xref: /titanic_52/usr/src/uts/common/inet/ip/ip_if.c (revision 86644ba28c50af32651bfc09efc3bd975a003ac1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91 
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 
98 #include <sys/systeminfo.h>
99 #include <sys/bootconf.h>
100 
101 #include <sys/tsol/tndb.h>
102 #include <sys/tsol/tnet.h>
103 
104 /* The character which tells where the ill_name ends */
105 #define	IPIF_SEPARATOR_CHAR	':'
106 
107 /* IP ioctl function table entry */
108 typedef struct ipft_s {
109 	int	ipft_cmd;
110 	pfi_t	ipft_pfi;
111 	int	ipft_min_size;
112 	int	ipft_flags;
113 } ipft_t;
114 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
115 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
116 
117 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
118 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
119 		    char *value, caddr_t cp, cred_t *ioc_cr);
120 
121 static boolean_t ill_is_quiescent(ill_t *);
122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
123 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
124 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
125     mblk_t *mp, boolean_t need_up);
126 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
127     mblk_t *mp, boolean_t need_up);
128 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
129     queue_t *q, mblk_t *mp, boolean_t need_up);
130 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
131     mblk_t *mp);
132 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp);
134 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
135     queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
137     int ioccmd, struct linkblk *li);
138 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
139 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
140 static void	ipsq_flush(ill_t *ill);
141 
142 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static void	ipsq_delete(ipsq_t *);
145 
146 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
147     boolean_t initialize, boolean_t insert, int *errorp);
148 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
149 static void	ipif_delete_bcast_ires(ipif_t *ipif);
150 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
152 		    boolean_t isv6);
153 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
154 static void	ipif_free(ipif_t *ipif);
155 static void	ipif_free_tail(ipif_t *ipif);
156 static void	ipif_set_default(ipif_t *ipif);
157 static int	ipif_set_values(queue_t *q, mblk_t *mp,
158     char *interf_name, uint_t *ppa);
159 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
160     queue_t *q);
161 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
162     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
163     ip_stack_t *);
164 
165 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
166 static void	ill_delete_interface_type(ill_if_t *);
167 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
168 static void	ill_dl_down(ill_t *ill);
169 static void	ill_down(ill_t *ill);
170 static void	ill_down_ipifs(ill_t *, boolean_t);
171 static void	ill_free_mib(ill_t *ill);
172 static void	ill_glist_delete(ill_t *);
173 static void	ill_phyint_reinit(ill_t *ill);
174 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
175 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
176 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
177 
178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
182 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
183 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
184 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
185 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
186 static ip_v4mapinfo_func_t ip_mbcast_mapping;
187 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
188 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
189 static void	phyint_free(phyint_t *);
190 
191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
197     dl_capability_sub_t *);
198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
199 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
200 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
201 		    dl_capability_sub_t *);
202 static void	ill_capability_dld_enable(ill_t *);
203 static void	ill_capability_ack_thr(void *);
204 static void	ill_capability_lso_enable(ill_t *);
205 
206 static ill_t	*ill_prev_usesrc(ill_t *);
207 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
208 static void	ill_disband_usesrc_group(ill_t *);
209 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
210 
211 #ifdef DEBUG
212 static	void	ill_trace_cleanup(const ill_t *);
213 static	void	ipif_trace_cleanup(const ipif_t *);
214 #endif
215 
216 /*
217  * if we go over the memory footprint limit more than once in this msec
218  * interval, we'll start pruning aggressively.
219  */
220 int ip_min_frag_prune_time = 0;
221 
222 static ipft_t	ip_ioctl_ftbl[] = {
223 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
224 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
225 		IPFT_F_NO_REPLY },
226 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
227 	{ 0 }
228 };
229 
230 /* Simple ICMP IP Header Template */
231 static ipha_t icmp_ipha = {
232 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
233 };
234 
235 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
236 
237 static ip_m_t   ip_m_tbl[] = {
238 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
239 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
240 	    ip_nodef_v6intfid },
241 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
242 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
243 	    ip_nodef_v6intfid },
244 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
245 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
246 	    ip_nodef_v6intfid },
247 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
248 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
249 	    ip_nodef_v6intfid },
250 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
251 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
252 	    ip_nodef_v6intfid },
253 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
255 	    ip_nodef_v6intfid },
256 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
257 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
258 	    ip_ipv4_v6destintfid },
259 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
260 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
261 	    ip_ipv6_v6destintfid },
262 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
263 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
264 	    ip_nodef_v6intfid },
265 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
266 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
267 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
269 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
270 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
271 	    ip_nodef_v6intfid }
272 };
273 
274 static ill_t	ill_null;		/* Empty ILL for init. */
275 char	ipif_loopback_name[] = "lo0";
276 static char *ipv4_forward_suffix = ":ip_forwarding";
277 static char *ipv6_forward_suffix = ":ip6_forwarding";
278 static	sin6_t	sin6_null;	/* Zero address for quick clears */
279 static	sin_t	sin_null;	/* Zero address for quick clears */
280 
281 /* When set search for unused ipif_seqid */
282 static ipif_t	ipif_zero;
283 
284 /*
285  * ppa arena is created after these many
286  * interfaces have been plumbed.
287  */
288 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
289 
290 /*
291  * Allocate per-interface mibs.
292  * Returns true if ok. False otherwise.
293  *  ipsq  may not yet be allocated (loopback case ).
294  */
295 static boolean_t
296 ill_allocate_mibs(ill_t *ill)
297 {
298 	/* Already allocated? */
299 	if (ill->ill_ip_mib != NULL) {
300 		if (ill->ill_isv6)
301 			ASSERT(ill->ill_icmp6_mib != NULL);
302 		return (B_TRUE);
303 	}
304 
305 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
306 	    KM_NOSLEEP);
307 	if (ill->ill_ip_mib == NULL) {
308 		return (B_FALSE);
309 	}
310 
311 	/* Setup static information */
312 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
313 	    sizeof (mib2_ipIfStatsEntry_t));
314 	if (ill->ill_isv6) {
315 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
316 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
317 		    sizeof (mib2_ipv6AddrEntry_t));
318 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
319 		    sizeof (mib2_ipv6RouteEntry_t));
320 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
321 		    sizeof (mib2_ipv6NetToMediaEntry_t));
322 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
323 		    sizeof (ipv6_member_t));
324 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
325 		    sizeof (ipv6_grpsrc_t));
326 	} else {
327 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
328 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
329 		    sizeof (mib2_ipAddrEntry_t));
330 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
331 		    sizeof (mib2_ipRouteEntry_t));
332 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
333 		    sizeof (mib2_ipNetToMediaEntry_t));
334 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
335 		    sizeof (ip_member_t));
336 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
337 		    sizeof (ip_grpsrc_t));
338 
339 		/*
340 		 * For a v4 ill, we are done at this point, because per ill
341 		 * icmp mibs are only used for v6.
342 		 */
343 		return (B_TRUE);
344 	}
345 
346 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
347 	    KM_NOSLEEP);
348 	if (ill->ill_icmp6_mib == NULL) {
349 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
350 		ill->ill_ip_mib = NULL;
351 		return (B_FALSE);
352 	}
353 	/* static icmp info */
354 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
355 	    sizeof (mib2_ipv6IfIcmpEntry_t);
356 	/*
357 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
358 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
359 	 * -> ill_phyint_reinit
360 	 */
361 	return (B_TRUE);
362 }
363 
364 /*
365  * Completely vaporize a lower level tap and all associated interfaces.
366  * ill_delete is called only out of ip_close when the device control
367  * stream is being closed.
368  */
369 void
370 ill_delete(ill_t *ill)
371 {
372 	ipif_t	*ipif;
373 	ill_t	*prev_ill;
374 	ip_stack_t	*ipst = ill->ill_ipst;
375 
376 	/*
377 	 * ill_delete may be forcibly entering the ipsq. The previous
378 	 * ioctl may not have completed and may need to be aborted.
379 	 * ipsq_flush takes care of it. If we don't need to enter the
380 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
381 	 * ill_delete_tail is sufficient.
382 	 */
383 	ipsq_flush(ill);
384 
385 	/*
386 	 * Nuke all interfaces.  ipif_free will take down the interface,
387 	 * remove it from the list, and free the data structure.
388 	 * Walk down the ipif list and remove the logical interfaces
389 	 * first before removing the main ipif. We can't unplumb
390 	 * zeroth interface first in the case of IPv6 as update_conn_ill
391 	 * -> ip_ll_multireq de-references ill_ipif for checking
392 	 * POINTOPOINT.
393 	 *
394 	 * If ill_ipif was not properly initialized (i.e low on memory),
395 	 * then no interfaces to clean up. In this case just clean up the
396 	 * ill.
397 	 */
398 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
399 		ipif_free(ipif);
400 
401 	/*
402 	 * clean out all the nce_t entries that depend on this
403 	 * ill for the ill_phys_addr.
404 	 */
405 	nce_flush(ill, B_TRUE);
406 
407 	/* Clean up msgs on pending upcalls for mrouted */
408 	reset_mrt_ill(ill);
409 
410 	update_conn_ill(ill, ipst);
411 
412 	/*
413 	 * Remove multicast references added as a result of calls to
414 	 * ip_join_allmulti().
415 	 */
416 	ip_purge_allmulti(ill);
417 
418 	/*
419 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
420 	 */
421 	if (IS_UNDER_IPMP(ill))
422 		ipmp_ill_leave_illgrp(ill);
423 
424 	/*
425 	 * ill_down will arrange to blow off any IRE's dependent on this
426 	 * ILL, and shut down fragmentation reassembly.
427 	 */
428 	ill_down(ill);
429 
430 	/* Let SCTP know, so that it can remove this from its list. */
431 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
432 
433 	/*
434 	 * Walk all CONNs that can have a reference on an ire or nce for this
435 	 * ill (we actually walk all that now have stale references).
436 	 */
437 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
438 
439 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
440 	if (ill->ill_isv6)
441 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
442 
443 	/*
444 	 * If an address on this ILL is being used as a source address then
445 	 * clear out the pointers in other ILLs that point to this ILL.
446 	 */
447 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
448 	if (ill->ill_usesrc_grp_next != NULL) {
449 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
450 			ill_disband_usesrc_group(ill);
451 		} else {	/* consumer of the usesrc ILL */
452 			prev_ill = ill_prev_usesrc(ill);
453 			prev_ill->ill_usesrc_grp_next =
454 			    ill->ill_usesrc_grp_next;
455 		}
456 	}
457 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
458 }
459 
460 static void
461 ipif_non_duplicate(ipif_t *ipif)
462 {
463 	ill_t *ill = ipif->ipif_ill;
464 	mutex_enter(&ill->ill_lock);
465 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
466 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
467 		ASSERT(ill->ill_ipif_dup_count > 0);
468 		ill->ill_ipif_dup_count--;
469 	}
470 	mutex_exit(&ill->ill_lock);
471 }
472 
473 /*
474  * ill_delete_tail is called from ip_modclose after all references
475  * to the closing ill are gone. The wait is done in ip_modclose
476  */
477 void
478 ill_delete_tail(ill_t *ill)
479 {
480 	mblk_t	**mpp;
481 	ipif_t	*ipif;
482 	ip_stack_t	*ipst = ill->ill_ipst;
483 
484 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
485 		ipif_non_duplicate(ipif);
486 		(void) ipif_down_tail(ipif);
487 	}
488 
489 	ASSERT(ill->ill_ipif_dup_count == 0);
490 
491 	/*
492 	 * If polling capability is enabled (which signifies direct
493 	 * upcall into IP and driver has ill saved as a handle),
494 	 * we need to make sure that unbind has completed before we
495 	 * let the ill disappear and driver no longer has any reference
496 	 * to this ill.
497 	 */
498 	mutex_enter(&ill->ill_lock);
499 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
500 		cv_wait(&ill->ill_cv, &ill->ill_lock);
501 	mutex_exit(&ill->ill_lock);
502 	ASSERT(!(ill->ill_capabilities &
503 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
504 
505 	if (ill->ill_net_type != IRE_LOOPBACK)
506 		qprocsoff(ill->ill_rq);
507 
508 	/*
509 	 * We do an ipsq_flush once again now. New messages could have
510 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
511 	 * could also have landed up if an ioctl thread had looked up
512 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
513 	 * enqueued the ioctl when we did the ipsq_flush last time.
514 	 */
515 	ipsq_flush(ill);
516 
517 	/*
518 	 * Free capabilities.
519 	 */
520 	if (ill->ill_hcksum_capab != NULL) {
521 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
522 		ill->ill_hcksum_capab = NULL;
523 	}
524 
525 	if (ill->ill_zerocopy_capab != NULL) {
526 		kmem_free(ill->ill_zerocopy_capab,
527 		    sizeof (ill_zerocopy_capab_t));
528 		ill->ill_zerocopy_capab = NULL;
529 	}
530 
531 	if (ill->ill_lso_capab != NULL) {
532 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
533 		ill->ill_lso_capab = NULL;
534 	}
535 
536 	if (ill->ill_dld_capab != NULL) {
537 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
538 		ill->ill_dld_capab = NULL;
539 	}
540 
541 	while (ill->ill_ipif != NULL)
542 		ipif_free_tail(ill->ill_ipif);
543 
544 	/*
545 	 * We have removed all references to ilm from conn and the ones joined
546 	 * within the kernel.
547 	 *
548 	 * We don't walk conns, mrts and ires because
549 	 *
550 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
551 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
552 	 *    ill references.
553 	 */
554 
555 	/*
556 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
557 	 * is safe to do because the illgrp has already been unlinked from the
558 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
559 	 */
560 	if (IS_IPMP(ill)) {
561 		ipmp_illgrp_destroy(ill->ill_grp);
562 		ill->ill_grp = NULL;
563 	}
564 
565 	/*
566 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
567 	 * could free the phyint. No more reference to the phyint after this
568 	 * point.
569 	 */
570 	(void) ill_glist_delete(ill);
571 
572 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
573 	if (ill->ill_ndd_name != NULL)
574 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
575 	rw_exit(&ipst->ips_ip_g_nd_lock);
576 
577 	if (ill->ill_frag_ptr != NULL) {
578 		uint_t count;
579 
580 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
581 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
582 		}
583 		mi_free(ill->ill_frag_ptr);
584 		ill->ill_frag_ptr = NULL;
585 		ill->ill_frag_hash_tbl = NULL;
586 	}
587 
588 	freemsg(ill->ill_nd_lla_mp);
589 	/* Free all retained control messages. */
590 	mpp = &ill->ill_first_mp_to_free;
591 	do {
592 		while (mpp[0]) {
593 			mblk_t  *mp;
594 			mblk_t  *mp1;
595 
596 			mp = mpp[0];
597 			mpp[0] = mp->b_next;
598 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
599 				mp1->b_next = NULL;
600 				mp1->b_prev = NULL;
601 			}
602 			freemsg(mp);
603 		}
604 	} while (mpp++ != &ill->ill_last_mp_to_free);
605 
606 	ill_free_mib(ill);
607 
608 #ifdef DEBUG
609 	ill_trace_cleanup(ill);
610 #endif
611 
612 	/* The default multicast interface might have changed */
613 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
614 
615 	/* Drop refcnt here */
616 	netstack_rele(ill->ill_ipst->ips_netstack);
617 	ill->ill_ipst = NULL;
618 }
619 
620 static void
621 ill_free_mib(ill_t *ill)
622 {
623 	ip_stack_t *ipst = ill->ill_ipst;
624 
625 	/*
626 	 * MIB statistics must not be lost, so when an interface
627 	 * goes away the counter values will be added to the global
628 	 * MIBs.
629 	 */
630 	if (ill->ill_ip_mib != NULL) {
631 		if (ill->ill_isv6) {
632 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
633 			    ill->ill_ip_mib);
634 		} else {
635 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
636 			    ill->ill_ip_mib);
637 		}
638 
639 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
640 		ill->ill_ip_mib = NULL;
641 	}
642 	if (ill->ill_icmp6_mib != NULL) {
643 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
644 		    ill->ill_icmp6_mib);
645 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
646 		ill->ill_icmp6_mib = NULL;
647 	}
648 }
649 
650 /*
651  * Concatenate together a physical address and a sap.
652  *
653  * Sap_lengths are interpreted as follows:
654  *   sap_length == 0	==>	no sap
655  *   sap_length > 0	==>	sap is at the head of the dlpi address
656  *   sap_length < 0	==>	sap is at the tail of the dlpi address
657  */
658 static void
659 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
660     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
661 {
662 	uint16_t sap_addr = (uint16_t)sap_src;
663 
664 	if (sap_length == 0) {
665 		if (phys_src == NULL)
666 			bzero(dst, phys_length);
667 		else
668 			bcopy(phys_src, dst, phys_length);
669 	} else if (sap_length < 0) {
670 		if (phys_src == NULL)
671 			bzero(dst, phys_length);
672 		else
673 			bcopy(phys_src, dst, phys_length);
674 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
675 	} else {
676 		bcopy(&sap_addr, dst, sizeof (sap_addr));
677 		if (phys_src == NULL)
678 			bzero((char *)dst + sap_length, phys_length);
679 		else
680 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
681 	}
682 }
683 
684 /*
685  * Generate a dl_unitdata_req mblk for the device and address given.
686  * addr_length is the length of the physical portion of the address.
687  * If addr is NULL include an all zero address of the specified length.
688  * TRUE? In any case, addr_length is taken to be the entire length of the
689  * dlpi address, including the absolute value of sap_length.
690  */
691 mblk_t *
692 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
693 		t_scalar_t sap_length)
694 {
695 	dl_unitdata_req_t *dlur;
696 	mblk_t	*mp;
697 	t_scalar_t	abs_sap_length;		/* absolute value */
698 
699 	abs_sap_length = ABS(sap_length);
700 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
701 	    DL_UNITDATA_REQ);
702 	if (mp == NULL)
703 		return (NULL);
704 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
705 	/* HACK: accomodate incompatible DLPI drivers */
706 	if (addr_length == 8)
707 		addr_length = 6;
708 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
709 	dlur->dl_dest_addr_offset = sizeof (*dlur);
710 	dlur->dl_priority.dl_min = 0;
711 	dlur->dl_priority.dl_max = 0;
712 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
713 	    (uchar_t *)&dlur[1]);
714 	return (mp);
715 }
716 
717 /*
718  * Add the pending mp to the list. There can be only 1 pending mp
719  * in the list. Any exclusive ioctl that needs to wait for a response
720  * from another module or driver needs to use this function to set
721  * the ipx_pending_mp to the ioctl mblk and wait for the response from
722  * the other module/driver. This is also used while waiting for the
723  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
724  */
725 boolean_t
726 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
727     int waitfor)
728 {
729 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
730 
731 	ASSERT(IAM_WRITER_IPIF(ipif));
732 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
733 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
734 	ASSERT(ipx->ipx_pending_mp == NULL);
735 	/*
736 	 * The caller may be using a different ipif than the one passed into
737 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
738 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
739 	 * that `ipx_current_ipif == ipif'.
740 	 */
741 	ASSERT(ipx->ipx_current_ipif != NULL);
742 
743 	/*
744 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
745 	 * driver.
746 	 */
747 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
748 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
749 	    (DB_TYPE(add_mp) == M_PCPROTO));
750 
751 	if (connp != NULL) {
752 		ASSERT(MUTEX_HELD(&connp->conn_lock));
753 		/*
754 		 * Return error if the conn has started closing. The conn
755 		 * could have finished cleaning up the pending mp list,
756 		 * If so we should not add another mp to the list negating
757 		 * the cleanup.
758 		 */
759 		if (connp->conn_state_flags & CONN_CLOSING)
760 			return (B_FALSE);
761 	}
762 	mutex_enter(&ipx->ipx_lock);
763 	ipx->ipx_pending_ipif = ipif;
764 	/*
765 	 * Note down the queue in b_queue. This will be returned by
766 	 * ipsq_pending_mp_get. Caller will then use these values to restart
767 	 * the processing
768 	 */
769 	add_mp->b_next = NULL;
770 	add_mp->b_queue = q;
771 	ipx->ipx_pending_mp = add_mp;
772 	ipx->ipx_waitfor = waitfor;
773 	mutex_exit(&ipx->ipx_lock);
774 
775 	if (connp != NULL)
776 		connp->conn_oper_pending_ill = ipif->ipif_ill;
777 
778 	return (B_TRUE);
779 }
780 
781 /*
782  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
783  * queued in the list.
784  */
785 mblk_t *
786 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
787 {
788 	mblk_t	*curr = NULL;
789 	ipxop_t	*ipx = ipsq->ipsq_xop;
790 
791 	*connpp = NULL;
792 	mutex_enter(&ipx->ipx_lock);
793 	if (ipx->ipx_pending_mp == NULL) {
794 		mutex_exit(&ipx->ipx_lock);
795 		return (NULL);
796 	}
797 
798 	/* There can be only 1 such excl message */
799 	curr = ipx->ipx_pending_mp;
800 	ASSERT(curr->b_next == NULL);
801 	ipx->ipx_pending_ipif = NULL;
802 	ipx->ipx_pending_mp = NULL;
803 	ipx->ipx_waitfor = 0;
804 	mutex_exit(&ipx->ipx_lock);
805 
806 	if (CONN_Q(curr->b_queue)) {
807 		/*
808 		 * This mp did a refhold on the conn, at the start of the ioctl.
809 		 * So we can safely return a pointer to the conn to the caller.
810 		 */
811 		*connpp = Q_TO_CONN(curr->b_queue);
812 	} else {
813 		*connpp = NULL;
814 	}
815 	curr->b_next = NULL;
816 	curr->b_prev = NULL;
817 	return (curr);
818 }
819 
820 /*
821  * Cleanup the ioctl mp queued in ipx_pending_mp
822  * - Called in the ill_delete path
823  * - Called in the M_ERROR or M_HANGUP path on the ill.
824  * - Called in the conn close path.
825  */
826 boolean_t
827 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
828 {
829 	mblk_t	*mp;
830 	ipxop_t	*ipx;
831 	queue_t	*q;
832 	ipif_t	*ipif;
833 	int	cmd;
834 
835 	ASSERT(IAM_WRITER_ILL(ill));
836 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
837 
838 	/*
839 	 * If connp is null, unconditionally clean up the ipx_pending_mp.
840 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
841 	 * even if it is meant for another ill, since we have to enqueue
842 	 * a new mp now in ipx_pending_mp to complete the ipif_down.
843 	 * If connp is non-null we are called from the conn close path.
844 	 */
845 	mutex_enter(&ipx->ipx_lock);
846 	mp = ipx->ipx_pending_mp;
847 	if (mp == NULL || (connp != NULL &&
848 	    mp->b_queue != CONNP_TO_WQ(connp))) {
849 		mutex_exit(&ipx->ipx_lock);
850 		return (B_FALSE);
851 	}
852 	/* Now remove from the ipx_pending_mp */
853 	ipx->ipx_pending_mp = NULL;
854 	q = mp->b_queue;
855 	mp->b_next = NULL;
856 	mp->b_prev = NULL;
857 	mp->b_queue = NULL;
858 
859 	ipif = ipx->ipx_pending_ipif;
860 	ipx->ipx_pending_ipif = NULL;
861 	ipx->ipx_waitfor = 0;
862 	ipx->ipx_current_ipif = NULL;
863 	cmd = ipx->ipx_current_ioctl;
864 	ipx->ipx_current_ioctl = 0;
865 	ipx->ipx_current_done = B_TRUE;
866 	mutex_exit(&ipx->ipx_lock);
867 
868 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
869 		DTRACE_PROBE4(ipif__ioctl,
870 		    char *, "ipsq_pending_mp_cleanup",
871 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
872 		    ipif_t *, ipif);
873 		if (connp == NULL) {
874 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
875 		} else {
876 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
877 			mutex_enter(&ipif->ipif_ill->ill_lock);
878 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
879 			mutex_exit(&ipif->ipif_ill->ill_lock);
880 		}
881 	} else {
882 		/*
883 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
884 		 * be just inet_freemsg. we have to restart it
885 		 * otherwise the thread will be stuck.
886 		 */
887 		inet_freemsg(mp);
888 	}
889 	return (B_TRUE);
890 }
891 
892 /*
893  * Called in the conn close path and ill delete path
894  */
895 static void
896 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
897 {
898 	ipsq_t	*ipsq;
899 	mblk_t	*prev;
900 	mblk_t	*curr;
901 	mblk_t	*next;
902 	queue_t	*rq, *wq;
903 	mblk_t	*tmp_list = NULL;
904 
905 	ASSERT(IAM_WRITER_ILL(ill));
906 	if (connp != NULL)
907 		wq = CONNP_TO_WQ(connp);
908 	else
909 		wq = ill->ill_wq;
910 	rq = RD(wq);
911 
912 	ipsq = ill->ill_phyint->phyint_ipsq;
913 	/*
914 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
915 	 * In the case of ioctl from a conn, there can be only 1 mp
916 	 * queued on the ipsq. If an ill is being unplumbed, only messages
917 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
918 	 * ioctls meant for this ill form conn's are not flushed. They will
919 	 * be processed during ipsq_exit and will not find the ill and will
920 	 * return error.
921 	 */
922 	mutex_enter(&ipsq->ipsq_lock);
923 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
924 	    curr = next) {
925 		next = curr->b_next;
926 		if (curr->b_queue == wq || curr->b_queue == rq) {
927 			/* Unlink the mblk from the pending mp list */
928 			if (prev != NULL) {
929 				prev->b_next = curr->b_next;
930 			} else {
931 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
932 				ipsq->ipsq_xopq_mphead = curr->b_next;
933 			}
934 			if (ipsq->ipsq_xopq_mptail == curr)
935 				ipsq->ipsq_xopq_mptail = prev;
936 			/*
937 			 * Create a temporary list and release the ipsq lock
938 			 * New elements are added to the head of the tmp_list
939 			 */
940 			curr->b_next = tmp_list;
941 			tmp_list = curr;
942 		} else {
943 			prev = curr;
944 		}
945 	}
946 	mutex_exit(&ipsq->ipsq_lock);
947 
948 	while (tmp_list != NULL) {
949 		curr = tmp_list;
950 		tmp_list = curr->b_next;
951 		curr->b_next = NULL;
952 		curr->b_prev = NULL;
953 		curr->b_queue = NULL;
954 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
955 			DTRACE_PROBE4(ipif__ioctl,
956 			    char *, "ipsq_xopq_mp_cleanup",
957 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
958 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
959 			    CONN_CLOSE : NO_COPYOUT, NULL);
960 		} else {
961 			/*
962 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
963 			 * this can't be just inet_freemsg. we have to
964 			 * restart it otherwise the thread will be stuck.
965 			 */
966 			inet_freemsg(curr);
967 		}
968 	}
969 }
970 
971 /*
972  * This conn has started closing. Cleanup any pending ioctl from this conn.
973  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
974  */
975 void
976 conn_ioctl_cleanup(conn_t *connp)
977 {
978 	ipsq_t	*ipsq;
979 	ill_t	*ill;
980 	boolean_t refheld;
981 
982 	/*
983 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
984 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
985 	 * started the mp could be present in ipx_pending_mp. Note that if
986 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
987 	 * not yet queued anywhere. In this case, the conn close code will wait
988 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
989 	 * tcp_close will wait first until all ioctls have completed for this
990 	 * conn.
991 	 */
992 	mutex_enter(&connp->conn_lock);
993 	ill = connp->conn_oper_pending_ill;
994 	if (ill == NULL) {
995 		mutex_exit(&connp->conn_lock);
996 		return;
997 	}
998 
999 	/*
1000 	 * We may not be able to refhold the ill if the ill/ipif
1001 	 * is changing. But we need to make sure that the ill will
1002 	 * not vanish. So we just bump up the ill_waiter count.
1003 	 */
1004 	refheld = ill_waiter_inc(ill);
1005 	mutex_exit(&connp->conn_lock);
1006 	if (refheld) {
1007 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1008 			ill_waiter_dcr(ill);
1009 			/*
1010 			 * Check whether this ioctl has started and is
1011 			 * pending. If it is not found there then check
1012 			 * whether this ioctl has not even started and is in
1013 			 * the ipsq_xopq list.
1014 			 */
1015 			if (!ipsq_pending_mp_cleanup(ill, connp))
1016 				ipsq_xopq_mp_cleanup(ill, connp);
1017 			ipsq = ill->ill_phyint->phyint_ipsq;
1018 			ipsq_exit(ipsq);
1019 			return;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * The ill is also closing and we could not bump up the
1025 	 * ill_waiter_count or we could not enter the ipsq. Leave
1026 	 * the cleanup to ill_delete
1027 	 */
1028 	mutex_enter(&connp->conn_lock);
1029 	while (connp->conn_oper_pending_ill != NULL)
1030 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1031 	mutex_exit(&connp->conn_lock);
1032 	if (refheld)
1033 		ill_waiter_dcr(ill);
1034 }
1035 
1036 /*
1037  * ipcl_walk function for cleaning up conn_*_ill fields.
1038  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1039  * conn_bound_if in place. We prefer dropping
1040  * packets instead of sending them out the wrong interface, or accepting
1041  * packets from the wrong ifindex.
1042  */
1043 static void
1044 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1045 {
1046 	ill_t	*ill = (ill_t *)arg;
1047 
1048 	mutex_enter(&connp->conn_lock);
1049 	if (connp->conn_dhcpinit_ill == ill) {
1050 		connp->conn_dhcpinit_ill = NULL;
1051 		ASSERT(ill->ill_dhcpinit != 0);
1052 		atomic_dec_32(&ill->ill_dhcpinit);
1053 		ill_set_inputfn(ill);
1054 	}
1055 	mutex_exit(&connp->conn_lock);
1056 }
1057 
1058 static int
1059 ill_down_ipifs_tail(ill_t *ill)
1060 {
1061 	ipif_t	*ipif;
1062 	int err;
1063 
1064 	ASSERT(IAM_WRITER_ILL(ill));
1065 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1066 		ipif_non_duplicate(ipif);
1067 		/*
1068 		 * ipif_down_tail will call arp_ll_down on the last ipif
1069 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1070 		 */
1071 		if ((err = ipif_down_tail(ipif)) != 0)
1072 			return (err);
1073 	}
1074 	return (0);
1075 }
1076 
1077 /* ARGSUSED */
1078 void
1079 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1080 {
1081 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1082 	(void) ill_down_ipifs_tail(q->q_ptr);
1083 	freemsg(mp);
1084 	ipsq_current_finish(ipsq);
1085 }
1086 
1087 /*
1088  * ill_down_start is called when we want to down this ill and bring it up again
1089  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1090  * all interfaces, but don't tear down any plumbing.
1091  */
1092 boolean_t
1093 ill_down_start(queue_t *q, mblk_t *mp)
1094 {
1095 	ill_t	*ill = q->q_ptr;
1096 	ipif_t	*ipif;
1097 
1098 	ASSERT(IAM_WRITER_ILL(ill));
1099 	mutex_enter(&ill->ill_lock);
1100 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
1101 	/* no more nce addition allowed */
1102 	mutex_exit(&ill->ill_lock);
1103 
1104 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1105 		(void) ipif_down(ipif, NULL, NULL);
1106 
1107 	ill_down(ill);
1108 
1109 	/*
1110 	 * Walk all CONNs that can have a reference on an ire or nce for this
1111 	 * ill (we actually walk all that now have stale references).
1112 	 */
1113 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1114 
1115 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1116 	if (ill->ill_isv6)
1117 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1118 
1119 
1120 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1121 
1122 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1123 
1124 	/*
1125 	 * Atomically test and add the pending mp if references are active.
1126 	 */
1127 	mutex_enter(&ill->ill_lock);
1128 	if (!ill_is_quiescent(ill)) {
1129 		/* call cannot fail since `conn_t *' argument is NULL */
1130 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1131 		    mp, ILL_DOWN);
1132 		mutex_exit(&ill->ill_lock);
1133 		return (B_FALSE);
1134 	}
1135 	mutex_exit(&ill->ill_lock);
1136 	return (B_TRUE);
1137 }
1138 
1139 static void
1140 ill_down(ill_t *ill)
1141 {
1142 	mblk_t	*mp;
1143 	ip_stack_t	*ipst = ill->ill_ipst;
1144 
1145 	/*
1146 	 * Blow off any IREs dependent on this ILL.
1147 	 * The caller needs to handle conn_ixa_cleanup
1148 	 */
1149 	ill_delete_ires(ill);
1150 
1151 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1152 
1153 	/* Remove any conn_*_ill depending on this ill */
1154 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1155 
1156 	/*
1157 	 * Free state for additional IREs.
1158 	 */
1159 	mutex_enter(&ill->ill_saved_ire_lock);
1160 	mp = ill->ill_saved_ire_mp;
1161 	ill->ill_saved_ire_mp = NULL;
1162 	ill->ill_saved_ire_cnt = 0;
1163 	mutex_exit(&ill->ill_saved_ire_lock);
1164 	freemsg(mp);
1165 }
1166 
1167 /*
1168  * ire_walk routine used to delete every IRE that depends on
1169  * 'ill'.  (Always called as writer.)
1170  *
1171  * Note: since the routes added by the kernel are deleted separately,
1172  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1173  *
1174  * We also remove references on ire_nce_cache entries that refer to the ill.
1175  */
1176 void
1177 ill_downi(ire_t *ire, char *ill_arg)
1178 {
1179 	ill_t	*ill = (ill_t *)ill_arg;
1180 	nce_t	*nce;
1181 
1182 	mutex_enter(&ire->ire_lock);
1183 	nce = ire->ire_nce_cache;
1184 	if (nce != NULL && nce->nce_ill == ill)
1185 		ire->ire_nce_cache = NULL;
1186 	else
1187 		nce = NULL;
1188 	mutex_exit(&ire->ire_lock);
1189 	if (nce != NULL)
1190 		nce_refrele(nce);
1191 	if (ire->ire_ill == ill)
1192 		ire_delete(ire);
1193 }
1194 
1195 /* Remove IRE_IF_CLONE on this ill */
1196 void
1197 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1198 {
1199 	ill_t	*ill = (ill_t *)ill_arg;
1200 
1201 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1202 	if (ire->ire_ill == ill)
1203 		ire_delete(ire);
1204 }
1205 
1206 /* Consume an M_IOCACK of the fastpath probe. */
1207 void
1208 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1209 {
1210 	mblk_t	*mp1 = mp;
1211 
1212 	/*
1213 	 * If this was the first attempt turn on the fastpath probing.
1214 	 */
1215 	mutex_enter(&ill->ill_lock);
1216 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1217 		ill->ill_dlpi_fastpath_state = IDS_OK;
1218 	mutex_exit(&ill->ill_lock);
1219 
1220 	/* Free the M_IOCACK mblk, hold on to the data */
1221 	mp = mp->b_cont;
1222 	freeb(mp1);
1223 	if (mp == NULL)
1224 		return;
1225 	if (mp->b_cont != NULL)
1226 		nce_fastpath_update(ill, mp);
1227 	else
1228 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1229 	freemsg(mp);
1230 }
1231 
1232 /*
1233  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1234  * The data portion of the request is a dl_unitdata_req_t template for
1235  * what we would send downstream in the absence of a fastpath confirmation.
1236  */
1237 int
1238 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1239 {
1240 	struct iocblk	*ioc;
1241 	mblk_t	*mp;
1242 
1243 	if (dlur_mp == NULL)
1244 		return (EINVAL);
1245 
1246 	mutex_enter(&ill->ill_lock);
1247 	switch (ill->ill_dlpi_fastpath_state) {
1248 	case IDS_FAILED:
1249 		/*
1250 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1251 		 * support it.
1252 		 */
1253 		mutex_exit(&ill->ill_lock);
1254 		return (ENOTSUP);
1255 	case IDS_UNKNOWN:
1256 		/* This is the first probe */
1257 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1258 		break;
1259 	default:
1260 		break;
1261 	}
1262 	mutex_exit(&ill->ill_lock);
1263 
1264 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1265 		return (EAGAIN);
1266 
1267 	mp->b_cont = copyb(dlur_mp);
1268 	if (mp->b_cont == NULL) {
1269 		freeb(mp);
1270 		return (EAGAIN);
1271 	}
1272 
1273 	ioc = (struct iocblk *)mp->b_rptr;
1274 	ioc->ioc_count = msgdsize(mp->b_cont);
1275 
1276 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1277 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1278 	putnext(ill->ill_wq, mp);
1279 	return (0);
1280 }
1281 
1282 void
1283 ill_capability_probe(ill_t *ill)
1284 {
1285 	mblk_t	*mp;
1286 
1287 	ASSERT(IAM_WRITER_ILL(ill));
1288 
1289 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1290 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1291 		return;
1292 
1293 	/*
1294 	 * We are starting a new cycle of capability negotiation.
1295 	 * Free up the capab reset messages of any previous incarnation.
1296 	 * We will do a fresh allocation when we get the response to our probe
1297 	 */
1298 	if (ill->ill_capab_reset_mp != NULL) {
1299 		freemsg(ill->ill_capab_reset_mp);
1300 		ill->ill_capab_reset_mp = NULL;
1301 	}
1302 
1303 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1304 
1305 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1306 	if (mp == NULL)
1307 		return;
1308 
1309 	ill_capability_send(ill, mp);
1310 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1311 }
1312 
1313 void
1314 ill_capability_reset(ill_t *ill, boolean_t reneg)
1315 {
1316 	ASSERT(IAM_WRITER_ILL(ill));
1317 
1318 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1319 		return;
1320 
1321 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1322 
1323 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1324 	ill->ill_capab_reset_mp = NULL;
1325 	/*
1326 	 * We turn off all capabilities except those pertaining to
1327 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1328 	 * which will be turned off by the corresponding reset functions.
1329 	 */
1330 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1331 }
1332 
1333 static void
1334 ill_capability_reset_alloc(ill_t *ill)
1335 {
1336 	mblk_t *mp;
1337 	size_t	size = 0;
1338 	int	err;
1339 	dl_capability_req_t	*capb;
1340 
1341 	ASSERT(IAM_WRITER_ILL(ill));
1342 	ASSERT(ill->ill_capab_reset_mp == NULL);
1343 
1344 	if (ILL_HCKSUM_CAPABLE(ill)) {
1345 		size += sizeof (dl_capability_sub_t) +
1346 		    sizeof (dl_capab_hcksum_t);
1347 	}
1348 
1349 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1350 		size += sizeof (dl_capability_sub_t) +
1351 		    sizeof (dl_capab_zerocopy_t);
1352 	}
1353 
1354 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1355 		size += sizeof (dl_capability_sub_t) +
1356 		    sizeof (dl_capab_dld_t);
1357 	}
1358 
1359 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1360 	    STR_NOSIG, &err);
1361 
1362 	mp->b_datap->db_type = M_PROTO;
1363 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1364 
1365 	capb = (dl_capability_req_t *)mp->b_rptr;
1366 	capb->dl_primitive = DL_CAPABILITY_REQ;
1367 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1368 	capb->dl_sub_length = size;
1369 
1370 	mp->b_wptr += sizeof (dl_capability_req_t);
1371 
1372 	/*
1373 	 * Each handler fills in the corresponding dl_capability_sub_t
1374 	 * inside the mblk,
1375 	 */
1376 	ill_capability_hcksum_reset_fill(ill, mp);
1377 	ill_capability_zerocopy_reset_fill(ill, mp);
1378 	ill_capability_dld_reset_fill(ill, mp);
1379 
1380 	ill->ill_capab_reset_mp = mp;
1381 }
1382 
1383 static void
1384 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1385 {
1386 	dl_capab_id_t *id_ic;
1387 	uint_t sub_dl_cap = outers->dl_cap;
1388 	dl_capability_sub_t *inners;
1389 	uint8_t *capend;
1390 
1391 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1392 
1393 	/*
1394 	 * Note: range checks here are not absolutely sufficient to
1395 	 * make us robust against malformed messages sent by drivers;
1396 	 * this is in keeping with the rest of IP's dlpi handling.
1397 	 * (Remember, it's coming from something else in the kernel
1398 	 * address space)
1399 	 */
1400 
1401 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1402 	if (capend > mp->b_wptr) {
1403 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1404 		    "malformed sub-capability too long for mblk");
1405 		return;
1406 	}
1407 
1408 	id_ic = (dl_capab_id_t *)(outers + 1);
1409 
1410 	if (outers->dl_length < sizeof (*id_ic) ||
1411 	    (inners = &id_ic->id_subcap,
1412 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1413 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1414 		    "encapsulated capab type %d too long for mblk",
1415 		    inners->dl_cap);
1416 		return;
1417 	}
1418 
1419 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1420 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1421 		    "isn't as expected; pass-thru module(s) detected, "
1422 		    "discarding capability\n", inners->dl_cap));
1423 		return;
1424 	}
1425 
1426 	/* Process the encapsulated sub-capability */
1427 	ill_capability_dispatch(ill, mp, inners);
1428 }
1429 
1430 static void
1431 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1432 {
1433 	dl_capability_sub_t *dl_subcap;
1434 
1435 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1436 		return;
1437 
1438 	/*
1439 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1440 	 * initialized below since it is not used by DLD.
1441 	 */
1442 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1443 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1444 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1445 
1446 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1447 }
1448 
1449 static void
1450 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1451 {
1452 	/*
1453 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1454 	 * is only to get the VRRP capability.
1455 	 *
1456 	 * Note that we cannot check ill_ipif_up_count here since
1457 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1458 	 * That is done asynchronously, and can race with this function.
1459 	 */
1460 	if (!ill->ill_dl_up) {
1461 		if (subp->dl_cap == DL_CAPAB_VRRP)
1462 			ill_capability_vrrp_ack(ill, mp, subp);
1463 		return;
1464 	}
1465 
1466 	switch (subp->dl_cap) {
1467 	case DL_CAPAB_HCKSUM:
1468 		ill_capability_hcksum_ack(ill, mp, subp);
1469 		break;
1470 	case DL_CAPAB_ZEROCOPY:
1471 		ill_capability_zerocopy_ack(ill, mp, subp);
1472 		break;
1473 	case DL_CAPAB_DLD:
1474 		ill_capability_dld_ack(ill, mp, subp);
1475 		break;
1476 	case DL_CAPAB_VRRP:
1477 		break;
1478 	default:
1479 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1480 		    subp->dl_cap));
1481 	}
1482 }
1483 
1484 /*
1485  * Process the vrrp capability received from a DLS Provider. isub must point
1486  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1487  */
1488 static void
1489 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1490 {
1491 	dl_capab_vrrp_t	*vrrp;
1492 	uint_t		sub_dl_cap = isub->dl_cap;
1493 	uint8_t		*capend;
1494 
1495 	ASSERT(IAM_WRITER_ILL(ill));
1496 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1497 
1498 	/*
1499 	 * Note: range checks here are not absolutely sufficient to
1500 	 * make us robust against malformed messages sent by drivers;
1501 	 * this is in keeping with the rest of IP's dlpi handling.
1502 	 * (Remember, it's coming from something else in the kernel
1503 	 * address space)
1504 	 */
1505 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1506 	if (capend > mp->b_wptr) {
1507 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1508 		    "malformed sub-capability too long for mblk");
1509 		return;
1510 	}
1511 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1512 
1513 	/*
1514 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1515 	 */
1516 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1517 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1518 		ill->ill_flags |= ILLF_VRRP;
1519 	}
1520 }
1521 
1522 /*
1523  * Process a hardware checksum offload capability negotiation ack received
1524  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1525  * of a DL_CAPABILITY_ACK message.
1526  */
1527 static void
1528 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1529 {
1530 	dl_capability_req_t	*ocap;
1531 	dl_capab_hcksum_t	*ihck, *ohck;
1532 	ill_hcksum_capab_t	**ill_hcksum;
1533 	mblk_t			*nmp = NULL;
1534 	uint_t			sub_dl_cap = isub->dl_cap;
1535 	uint8_t			*capend;
1536 
1537 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1538 
1539 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1540 
1541 	/*
1542 	 * Note: range checks here are not absolutely sufficient to
1543 	 * make us robust against malformed messages sent by drivers;
1544 	 * this is in keeping with the rest of IP's dlpi handling.
1545 	 * (Remember, it's coming from something else in the kernel
1546 	 * address space)
1547 	 */
1548 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1549 	if (capend > mp->b_wptr) {
1550 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1551 		    "malformed sub-capability too long for mblk");
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * There are two types of acks we process here:
1557 	 * 1. acks in reply to a (first form) generic capability req
1558 	 *    (no ENABLE flag set)
1559 	 * 2. acks in reply to a ENABLE capability req.
1560 	 *    (ENABLE flag set)
1561 	 */
1562 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1563 
1564 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1565 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1566 		    "unsupported hardware checksum "
1567 		    "sub-capability (version %d, expected %d)",
1568 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1569 		return;
1570 	}
1571 
1572 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1573 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1574 		    "checksum capability isn't as expected; pass-thru "
1575 		    "module(s) detected, discarding capability\n"));
1576 		return;
1577 	}
1578 
1579 #define	CURR_HCKSUM_CAPAB				\
1580 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1581 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1582 
1583 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1584 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1585 		/* do ENABLE processing */
1586 		if (*ill_hcksum == NULL) {
1587 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1588 			    KM_NOSLEEP);
1589 
1590 			if (*ill_hcksum == NULL) {
1591 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1592 				    "could not enable hcksum version %d "
1593 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1594 				    ill->ill_name);
1595 				return;
1596 			}
1597 		}
1598 
1599 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1600 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1601 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1602 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1603 		    "has enabled hardware checksumming\n ",
1604 		    ill->ill_name));
1605 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1606 		/*
1607 		 * Enabling hardware checksum offload
1608 		 * Currently IP supports {TCP,UDP}/IPv4
1609 		 * partial and full cksum offload and
1610 		 * IPv4 header checksum offload.
1611 		 * Allocate new mblk which will
1612 		 * contain a new capability request
1613 		 * to enable hardware checksum offload.
1614 		 */
1615 		uint_t	size;
1616 		uchar_t	*rptr;
1617 
1618 		size = sizeof (dl_capability_req_t) +
1619 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1620 
1621 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1622 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1623 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1624 			    ill->ill_name);
1625 			return;
1626 		}
1627 
1628 		rptr = nmp->b_rptr;
1629 		/* initialize dl_capability_req_t */
1630 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1631 		ocap->dl_sub_offset =
1632 		    sizeof (dl_capability_req_t);
1633 		ocap->dl_sub_length =
1634 		    sizeof (dl_capability_sub_t) +
1635 		    isub->dl_length;
1636 		nmp->b_rptr += sizeof (dl_capability_req_t);
1637 
1638 		/* initialize dl_capability_sub_t */
1639 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1640 		nmp->b_rptr += sizeof (*isub);
1641 
1642 		/* initialize dl_capab_hcksum_t */
1643 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1644 		bcopy(ihck, ohck, sizeof (*ihck));
1645 
1646 		nmp->b_rptr = rptr;
1647 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1648 
1649 		/* Set ENABLE flag */
1650 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1651 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1652 
1653 		/*
1654 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1655 		 * hardware checksum acceleration.
1656 		 */
1657 		ill_capability_send(ill, nmp);
1658 	} else {
1659 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1660 		    "advertised %x hardware checksum capability flags\n",
1661 		    ill->ill_name, ihck->hcksum_txflags));
1662 	}
1663 }
1664 
1665 static void
1666 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1667 {
1668 	dl_capab_hcksum_t *hck_subcap;
1669 	dl_capability_sub_t *dl_subcap;
1670 
1671 	if (!ILL_HCKSUM_CAPABLE(ill))
1672 		return;
1673 
1674 	ASSERT(ill->ill_hcksum_capab != NULL);
1675 
1676 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1677 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1678 	dl_subcap->dl_length = sizeof (*hck_subcap);
1679 
1680 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1681 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1682 	hck_subcap->hcksum_txflags = 0;
1683 
1684 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1685 }
1686 
1687 static void
1688 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1689 {
1690 	mblk_t *nmp = NULL;
1691 	dl_capability_req_t *oc;
1692 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1693 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1694 	uint_t sub_dl_cap = isub->dl_cap;
1695 	uint8_t *capend;
1696 
1697 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1698 
1699 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1700 
1701 	/*
1702 	 * Note: range checks here are not absolutely sufficient to
1703 	 * make us robust against malformed messages sent by drivers;
1704 	 * this is in keeping with the rest of IP's dlpi handling.
1705 	 * (Remember, it's coming from something else in the kernel
1706 	 * address space)
1707 	 */
1708 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1709 	if (capend > mp->b_wptr) {
1710 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1711 		    "malformed sub-capability too long for mblk");
1712 		return;
1713 	}
1714 
1715 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1716 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1717 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1718 		    "unsupported ZEROCOPY sub-capability (version %d, "
1719 		    "expected %d)", zc_ic->zerocopy_version,
1720 		    ZEROCOPY_VERSION_1);
1721 		return;
1722 	}
1723 
1724 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1725 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1726 		    "capability isn't as expected; pass-thru module(s) "
1727 		    "detected, discarding capability\n"));
1728 		return;
1729 	}
1730 
1731 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1732 		if (*ill_zerocopy_capab == NULL) {
1733 			*ill_zerocopy_capab =
1734 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1735 			    KM_NOSLEEP);
1736 
1737 			if (*ill_zerocopy_capab == NULL) {
1738 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1739 				    "could not enable Zero-copy version %d "
1740 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1741 				    ill->ill_name);
1742 				return;
1743 			}
1744 		}
1745 
1746 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1747 		    "supports Zero-copy version %d\n", ill->ill_name,
1748 		    ZEROCOPY_VERSION_1));
1749 
1750 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1751 		    zc_ic->zerocopy_version;
1752 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1753 		    zc_ic->zerocopy_flags;
1754 
1755 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1756 	} else {
1757 		uint_t size;
1758 		uchar_t *rptr;
1759 
1760 		size = sizeof (dl_capability_req_t) +
1761 		    sizeof (dl_capability_sub_t) +
1762 		    sizeof (dl_capab_zerocopy_t);
1763 
1764 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1765 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1766 			    "could not enable zerocopy for %s (ENOMEM)\n",
1767 			    ill->ill_name);
1768 			return;
1769 		}
1770 
1771 		rptr = nmp->b_rptr;
1772 		/* initialize dl_capability_req_t */
1773 		oc = (dl_capability_req_t *)rptr;
1774 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1775 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1776 		    sizeof (dl_capab_zerocopy_t);
1777 		rptr += sizeof (dl_capability_req_t);
1778 
1779 		/* initialize dl_capability_sub_t */
1780 		bcopy(isub, rptr, sizeof (*isub));
1781 		rptr += sizeof (*isub);
1782 
1783 		/* initialize dl_capab_zerocopy_t */
1784 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1785 		*zc_oc = *zc_ic;
1786 
1787 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1788 		    "to enable zero-copy version %d\n", ill->ill_name,
1789 		    ZEROCOPY_VERSION_1));
1790 
1791 		/* set VMSAFE_MEM flag */
1792 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1793 
1794 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1795 		ill_capability_send(ill, nmp);
1796 	}
1797 }
1798 
1799 static void
1800 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1801 {
1802 	dl_capab_zerocopy_t *zerocopy_subcap;
1803 	dl_capability_sub_t *dl_subcap;
1804 
1805 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1806 		return;
1807 
1808 	ASSERT(ill->ill_zerocopy_capab != NULL);
1809 
1810 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1811 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1812 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1813 
1814 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1815 	zerocopy_subcap->zerocopy_version =
1816 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1817 	zerocopy_subcap->zerocopy_flags = 0;
1818 
1819 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1820 }
1821 
1822 /*
1823  * DLD capability
1824  * Refer to dld.h for more information regarding the purpose and usage
1825  * of this capability.
1826  */
1827 static void
1828 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1829 {
1830 	dl_capab_dld_t		*dld_ic, dld;
1831 	uint_t			sub_dl_cap = isub->dl_cap;
1832 	uint8_t			*capend;
1833 	ill_dld_capab_t		*idc;
1834 
1835 	ASSERT(IAM_WRITER_ILL(ill));
1836 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1837 
1838 	/*
1839 	 * Note: range checks here are not absolutely sufficient to
1840 	 * make us robust against malformed messages sent by drivers;
1841 	 * this is in keeping with the rest of IP's dlpi handling.
1842 	 * (Remember, it's coming from something else in the kernel
1843 	 * address space)
1844 	 */
1845 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1846 	if (capend > mp->b_wptr) {
1847 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1848 		    "malformed sub-capability too long for mblk");
1849 		return;
1850 	}
1851 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1852 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1853 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1854 		    "unsupported DLD sub-capability (version %d, "
1855 		    "expected %d)", dld_ic->dld_version,
1856 		    DLD_CURRENT_VERSION);
1857 		return;
1858 	}
1859 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1860 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1861 		    "capability isn't as expected; pass-thru module(s) "
1862 		    "detected, discarding capability\n"));
1863 		return;
1864 	}
1865 
1866 	/*
1867 	 * Copy locally to ensure alignment.
1868 	 */
1869 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1870 
1871 	if ((idc = ill->ill_dld_capab) == NULL) {
1872 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1873 		if (idc == NULL) {
1874 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1875 			    "could not enable DLD version %d "
1876 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1877 			    ill->ill_name);
1878 			return;
1879 		}
1880 		ill->ill_dld_capab = idc;
1881 	}
1882 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1883 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1884 	ip1dbg(("ill_capability_dld_ack: interface %s "
1885 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1886 
1887 	ill_capability_dld_enable(ill);
1888 }
1889 
1890 /*
1891  * Typically capability negotiation between IP and the driver happens via
1892  * DLPI message exchange. However GLD also offers a direct function call
1893  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1894  * But arbitrary function calls into IP or GLD are not permitted, since both
1895  * of them are protected by their own perimeter mechanism. The perimeter can
1896  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1897  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1898  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1899  * to enter the mac perimeter and then do the direct function calls into
1900  * GLD to enable squeue polling. The ring related callbacks from the mac into
1901  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1902  * protected by the mac perimeter.
1903  */
1904 static void
1905 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1906 {
1907 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1908 	int			err;
1909 
1910 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1911 	    DLD_ENABLE);
1912 	ASSERT(err == 0);
1913 }
1914 
1915 static void
1916 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1917 {
1918 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1919 	int			err;
1920 
1921 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1922 	    DLD_DISABLE);
1923 	ASSERT(err == 0);
1924 }
1925 
1926 boolean_t
1927 ill_mac_perim_held(ill_t *ill)
1928 {
1929 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1930 
1931 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1932 	    DLD_QUERY));
1933 }
1934 
1935 static void
1936 ill_capability_direct_enable(ill_t *ill)
1937 {
1938 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1939 	ill_dld_direct_t	*idd = &idc->idc_direct;
1940 	dld_capab_direct_t	direct;
1941 	int			rc;
1942 
1943 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1944 
1945 	bzero(&direct, sizeof (direct));
1946 	direct.di_rx_cf = (uintptr_t)ip_input;
1947 	direct.di_rx_ch = ill;
1948 
1949 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
1950 	    DLD_ENABLE);
1951 	if (rc == 0) {
1952 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
1953 		idd->idd_tx_dh = direct.di_tx_dh;
1954 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
1955 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
1956 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
1957 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
1958 		ASSERT(idd->idd_tx_cb_df != NULL);
1959 		ASSERT(idd->idd_tx_fctl_df != NULL);
1960 		ASSERT(idd->idd_tx_df != NULL);
1961 		/*
1962 		 * One time registration of flow enable callback function
1963 		 */
1964 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
1965 		    ill_flow_enable, ill);
1966 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
1967 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
1968 	} else {
1969 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
1970 		    "capability, rc = %d\n", rc);
1971 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
1972 	}
1973 }
1974 
1975 static void
1976 ill_capability_poll_enable(ill_t *ill)
1977 {
1978 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1979 	dld_capab_poll_t	poll;
1980 	int			rc;
1981 
1982 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1983 
1984 	bzero(&poll, sizeof (poll));
1985 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
1986 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
1987 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
1988 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
1989 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
1990 	poll.poll_ring_ch = ill;
1991 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
1992 	    DLD_ENABLE);
1993 	if (rc == 0) {
1994 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
1995 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
1996 	} else {
1997 		ip1dbg(("warning: could not enable POLL "
1998 		    "capability, rc = %d\n", rc));
1999 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2000 	}
2001 }
2002 
2003 /*
2004  * Enable the LSO capability.
2005  */
2006 static void
2007 ill_capability_lso_enable(ill_t *ill)
2008 {
2009 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2010 	dld_capab_lso_t	lso;
2011 	int rc;
2012 
2013 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2014 
2015 	if (ill->ill_lso_capab == NULL) {
2016 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2017 		    KM_NOSLEEP);
2018 		if (ill->ill_lso_capab == NULL) {
2019 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2020 			    "could not enable LSO for %s (ENOMEM)\n",
2021 			    ill->ill_name);
2022 			return;
2023 		}
2024 	}
2025 
2026 	bzero(&lso, sizeof (lso));
2027 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2028 	    DLD_ENABLE)) == 0) {
2029 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2030 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2031 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2032 		ip1dbg(("ill_capability_lso_enable: interface %s "
2033 		    "has enabled LSO\n ", ill->ill_name));
2034 	} else {
2035 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2036 		ill->ill_lso_capab = NULL;
2037 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2038 	}
2039 }
2040 
2041 static void
2042 ill_capability_dld_enable(ill_t *ill)
2043 {
2044 	mac_perim_handle_t mph;
2045 
2046 	ASSERT(IAM_WRITER_ILL(ill));
2047 
2048 	if (ill->ill_isv6)
2049 		return;
2050 
2051 	ill_mac_perim_enter(ill, &mph);
2052 	if (!ill->ill_isv6) {
2053 		ill_capability_direct_enable(ill);
2054 		ill_capability_poll_enable(ill);
2055 		ill_capability_lso_enable(ill);
2056 	}
2057 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2058 	ill_mac_perim_exit(ill, mph);
2059 }
2060 
2061 static void
2062 ill_capability_dld_disable(ill_t *ill)
2063 {
2064 	ill_dld_capab_t	*idc;
2065 	ill_dld_direct_t *idd;
2066 	mac_perim_handle_t	mph;
2067 
2068 	ASSERT(IAM_WRITER_ILL(ill));
2069 
2070 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2071 		return;
2072 
2073 	ill_mac_perim_enter(ill, &mph);
2074 
2075 	idc = ill->ill_dld_capab;
2076 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2077 		/*
2078 		 * For performance we avoid locks in the transmit data path
2079 		 * and don't maintain a count of the number of threads using
2080 		 * direct calls. Thus some threads could be using direct
2081 		 * transmit calls to GLD, even after the capability mechanism
2082 		 * turns it off. This is still safe since the handles used in
2083 		 * the direct calls continue to be valid until the unplumb is
2084 		 * completed. Remove the callback that was added (1-time) at
2085 		 * capab enable time.
2086 		 */
2087 		mutex_enter(&ill->ill_lock);
2088 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2089 		mutex_exit(&ill->ill_lock);
2090 		if (ill->ill_flownotify_mh != NULL) {
2091 			idd = &idc->idc_direct;
2092 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2093 			    ill->ill_flownotify_mh);
2094 			ill->ill_flownotify_mh = NULL;
2095 		}
2096 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2097 		    NULL, DLD_DISABLE);
2098 	}
2099 
2100 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2101 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2102 		ip_squeue_clean_all(ill);
2103 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2104 		    NULL, DLD_DISABLE);
2105 	}
2106 
2107 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2108 		ASSERT(ill->ill_lso_capab != NULL);
2109 		/*
2110 		 * Clear the capability flag for LSO but retain the
2111 		 * ill_lso_capab structure since it's possible that another
2112 		 * thread is still referring to it.  The structure only gets
2113 		 * deallocated when we destroy the ill.
2114 		 */
2115 
2116 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2117 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2118 		    NULL, DLD_DISABLE);
2119 	}
2120 
2121 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2122 	ill_mac_perim_exit(ill, mph);
2123 }
2124 
2125 /*
2126  * Capability Negotiation protocol
2127  *
2128  * We don't wait for DLPI capability operations to finish during interface
2129  * bringup or teardown. Doing so would introduce more asynchrony and the
2130  * interface up/down operations will need multiple return and restarts.
2131  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2132  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2133  * exclusive operation won't start until the DLPI operations of the previous
2134  * exclusive operation complete.
2135  *
2136  * The capability state machine is shown below.
2137  *
2138  * state		next state		event, action
2139  *
2140  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2141  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2142  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2143  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2144  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2145  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2146  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2147  *						    ill_capability_probe.
2148  */
2149 
2150 /*
2151  * Dedicated thread started from ip_stack_init that handles capability
2152  * disable. This thread ensures the taskq dispatch does not fail by waiting
2153  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2154  * that direct calls to DLD are done in a cv_waitable context.
2155  */
2156 void
2157 ill_taskq_dispatch(ip_stack_t *ipst)
2158 {
2159 	callb_cpr_t cprinfo;
2160 	char 	name[64];
2161 	mblk_t	*mp;
2162 
2163 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2164 	    ipst->ips_netstack->netstack_stackid);
2165 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2166 	    name);
2167 	mutex_enter(&ipst->ips_capab_taskq_lock);
2168 
2169 	for (;;) {
2170 		mp = ipst->ips_capab_taskq_head;
2171 		while (mp != NULL) {
2172 			ipst->ips_capab_taskq_head = mp->b_next;
2173 			if (ipst->ips_capab_taskq_head == NULL)
2174 				ipst->ips_capab_taskq_tail = NULL;
2175 			mutex_exit(&ipst->ips_capab_taskq_lock);
2176 			mp->b_next = NULL;
2177 
2178 			VERIFY(taskq_dispatch(system_taskq,
2179 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2180 			mutex_enter(&ipst->ips_capab_taskq_lock);
2181 			mp = ipst->ips_capab_taskq_head;
2182 		}
2183 
2184 		if (ipst->ips_capab_taskq_quit)
2185 			break;
2186 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2187 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2188 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2189 	}
2190 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2191 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2192 	CALLB_CPR_EXIT(&cprinfo);
2193 	thread_exit();
2194 }
2195 
2196 /*
2197  * Consume a new-style hardware capabilities negotiation ack.
2198  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2199  */
2200 static void
2201 ill_capability_ack_thr(void *arg)
2202 {
2203 	mblk_t	*mp = arg;
2204 	dl_capability_ack_t *capp;
2205 	dl_capability_sub_t *subp, *endp;
2206 	ill_t	*ill;
2207 	boolean_t reneg;
2208 
2209 	ill = (ill_t *)mp->b_prev;
2210 	mp->b_prev = NULL;
2211 
2212 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2213 
2214 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2215 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2216 		/*
2217 		 * We have received the ack for our DL_CAPAB reset request.
2218 		 * There isnt' anything in the message that needs processing.
2219 		 * All message based capabilities have been disabled, now
2220 		 * do the function call based capability disable.
2221 		 */
2222 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2223 		ill_capability_dld_disable(ill);
2224 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2225 		if (reneg)
2226 			ill_capability_probe(ill);
2227 		goto done;
2228 	}
2229 
2230 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2231 		ill->ill_dlpi_capab_state = IDCS_OK;
2232 
2233 	capp = (dl_capability_ack_t *)mp->b_rptr;
2234 
2235 	if (capp->dl_sub_length == 0) {
2236 		/* no new-style capabilities */
2237 		goto done;
2238 	}
2239 
2240 	/* make sure the driver supplied correct dl_sub_length */
2241 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2242 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2243 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2244 		goto done;
2245 	}
2246 
2247 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2248 	/*
2249 	 * There are sub-capabilities. Process the ones we know about.
2250 	 * Loop until we don't have room for another sub-cap header..
2251 	 */
2252 	for (subp = SC(capp, capp->dl_sub_offset),
2253 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2254 	    subp <= endp;
2255 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2256 
2257 		switch (subp->dl_cap) {
2258 		case DL_CAPAB_ID_WRAPPER:
2259 			ill_capability_id_ack(ill, mp, subp);
2260 			break;
2261 		default:
2262 			ill_capability_dispatch(ill, mp, subp);
2263 			break;
2264 		}
2265 	}
2266 #undef SC
2267 done:
2268 	inet_freemsg(mp);
2269 	ill_capability_done(ill);
2270 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2271 }
2272 
2273 /*
2274  * This needs to be started in a taskq thread to provide a cv_waitable
2275  * context.
2276  */
2277 void
2278 ill_capability_ack(ill_t *ill, mblk_t *mp)
2279 {
2280 	ip_stack_t	*ipst = ill->ill_ipst;
2281 
2282 	mp->b_prev = (mblk_t *)ill;
2283 	ASSERT(mp->b_next == NULL);
2284 
2285 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2286 	    TQ_NOSLEEP) != 0)
2287 		return;
2288 
2289 	/*
2290 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2291 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2292 	 */
2293 	mutex_enter(&ipst->ips_capab_taskq_lock);
2294 	if (ipst->ips_capab_taskq_head == NULL) {
2295 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2296 		ipst->ips_capab_taskq_head = mp;
2297 	} else {
2298 		ipst->ips_capab_taskq_tail->b_next = mp;
2299 	}
2300 	ipst->ips_capab_taskq_tail = mp;
2301 
2302 	cv_signal(&ipst->ips_capab_taskq_cv);
2303 	mutex_exit(&ipst->ips_capab_taskq_lock);
2304 }
2305 
2306 /*
2307  * This routine is called to scan the fragmentation reassembly table for
2308  * the specified ILL for any packets that are starting to smell.
2309  * dead_interval is the maximum time in seconds that will be tolerated.  It
2310  * will either be the value specified in ip_g_frag_timeout, or zero if the
2311  * ILL is shutting down and it is time to blow everything off.
2312  *
2313  * It returns the number of seconds (as a time_t) that the next frag timer
2314  * should be scheduled for, 0 meaning that the timer doesn't need to be
2315  * re-started.  Note that the method of calculating next_timeout isn't
2316  * entirely accurate since time will flow between the time we grab
2317  * current_time and the time we schedule the next timeout.  This isn't a
2318  * big problem since this is the timer for sending an ICMP reassembly time
2319  * exceeded messages, and it doesn't have to be exactly accurate.
2320  *
2321  * This function is
2322  * sometimes called as writer, although this is not required.
2323  */
2324 time_t
2325 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2326 {
2327 	ipfb_t	*ipfb;
2328 	ipfb_t	*endp;
2329 	ipf_t	*ipf;
2330 	ipf_t	*ipfnext;
2331 	mblk_t	*mp;
2332 	time_t	current_time = gethrestime_sec();
2333 	time_t	next_timeout = 0;
2334 	uint32_t	hdr_length;
2335 	mblk_t	*send_icmp_head;
2336 	mblk_t	*send_icmp_head_v6;
2337 	ip_stack_t *ipst = ill->ill_ipst;
2338 	ip_recv_attr_t iras;
2339 
2340 	bzero(&iras, sizeof (iras));
2341 	iras.ira_flags = 0;
2342 	iras.ira_ill = iras.ira_rill = ill;
2343 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2344 	iras.ira_rifindex = iras.ira_ruifindex;
2345 
2346 	ipfb = ill->ill_frag_hash_tbl;
2347 	if (ipfb == NULL)
2348 		return (B_FALSE);
2349 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2350 	/* Walk the frag hash table. */
2351 	for (; ipfb < endp; ipfb++) {
2352 		send_icmp_head = NULL;
2353 		send_icmp_head_v6 = NULL;
2354 		mutex_enter(&ipfb->ipfb_lock);
2355 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2356 			time_t frag_time = current_time - ipf->ipf_timestamp;
2357 			time_t frag_timeout;
2358 
2359 			if (frag_time < dead_interval) {
2360 				/*
2361 				 * There are some outstanding fragments
2362 				 * that will timeout later.  Make note of
2363 				 * the time so that we can reschedule the
2364 				 * next timeout appropriately.
2365 				 */
2366 				frag_timeout = dead_interval - frag_time;
2367 				if (next_timeout == 0 ||
2368 				    frag_timeout < next_timeout) {
2369 					next_timeout = frag_timeout;
2370 				}
2371 				break;
2372 			}
2373 			/* Time's up.  Get it out of here. */
2374 			hdr_length = ipf->ipf_nf_hdr_len;
2375 			ipfnext = ipf->ipf_hash_next;
2376 			if (ipfnext)
2377 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2378 			*ipf->ipf_ptphn = ipfnext;
2379 			mp = ipf->ipf_mp->b_cont;
2380 			for (; mp; mp = mp->b_cont) {
2381 				/* Extra points for neatness. */
2382 				IP_REASS_SET_START(mp, 0);
2383 				IP_REASS_SET_END(mp, 0);
2384 			}
2385 			mp = ipf->ipf_mp->b_cont;
2386 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2387 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2388 			ipfb->ipfb_count -= ipf->ipf_count;
2389 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2390 			ipfb->ipfb_frag_pkts--;
2391 			/*
2392 			 * We do not send any icmp message from here because
2393 			 * we currently are holding the ipfb_lock for this
2394 			 * hash chain. If we try and send any icmp messages
2395 			 * from here we may end up via a put back into ip
2396 			 * trying to get the same lock, causing a recursive
2397 			 * mutex panic. Instead we build a list and send all
2398 			 * the icmp messages after we have dropped the lock.
2399 			 */
2400 			if (ill->ill_isv6) {
2401 				if (hdr_length != 0) {
2402 					mp->b_next = send_icmp_head_v6;
2403 					send_icmp_head_v6 = mp;
2404 				} else {
2405 					freemsg(mp);
2406 				}
2407 			} else {
2408 				if (hdr_length != 0) {
2409 					mp->b_next = send_icmp_head;
2410 					send_icmp_head = mp;
2411 				} else {
2412 					freemsg(mp);
2413 				}
2414 			}
2415 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2416 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2417 			freeb(ipf->ipf_mp);
2418 		}
2419 		mutex_exit(&ipfb->ipfb_lock);
2420 		/*
2421 		 * Now need to send any icmp messages that we delayed from
2422 		 * above.
2423 		 */
2424 		while (send_icmp_head_v6 != NULL) {
2425 			ip6_t *ip6h;
2426 
2427 			mp = send_icmp_head_v6;
2428 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2429 			mp->b_next = NULL;
2430 			ip6h = (ip6_t *)mp->b_rptr;
2431 			iras.ira_flags = 0;
2432 			/*
2433 			 * This will result in an incorrect ALL_ZONES zoneid
2434 			 * for multicast packets, but we
2435 			 * don't send ICMP errors for those in any case.
2436 			 */
2437 			iras.ira_zoneid =
2438 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2439 			    ill, ipst);
2440 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2441 			icmp_time_exceeded_v6(mp,
2442 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2443 			    &iras);
2444 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2445 		}
2446 		while (send_icmp_head != NULL) {
2447 			ipaddr_t dst;
2448 
2449 			mp = send_icmp_head;
2450 			send_icmp_head = send_icmp_head->b_next;
2451 			mp->b_next = NULL;
2452 
2453 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2454 
2455 			iras.ira_flags = IRAF_IS_IPV4;
2456 			/*
2457 			 * This will result in an incorrect ALL_ZONES zoneid
2458 			 * for broadcast and multicast packets, but we
2459 			 * don't send ICMP errors for those in any case.
2460 			 */
2461 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2462 			    ill, ipst);
2463 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2464 			icmp_time_exceeded(mp,
2465 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2466 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2467 		}
2468 	}
2469 	/*
2470 	 * A non-dying ILL will use the return value to decide whether to
2471 	 * restart the frag timer, and for how long.
2472 	 */
2473 	return (next_timeout);
2474 }
2475 
2476 /*
2477  * This routine is called when the approximate count of mblk memory used
2478  * for the specified ILL has exceeded max_count.
2479  */
2480 void
2481 ill_frag_prune(ill_t *ill, uint_t max_count)
2482 {
2483 	ipfb_t	*ipfb;
2484 	ipf_t	*ipf;
2485 	size_t	count;
2486 	clock_t now;
2487 
2488 	/*
2489 	 * If we are here within ip_min_frag_prune_time msecs remove
2490 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2491 	 * ill_frag_free_num_pkts.
2492 	 */
2493 	mutex_enter(&ill->ill_lock);
2494 	now = ddi_get_lbolt();
2495 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2496 	    (ip_min_frag_prune_time != 0 ?
2497 	    ip_min_frag_prune_time : msec_per_tick)) {
2498 
2499 		ill->ill_frag_free_num_pkts++;
2500 
2501 	} else {
2502 		ill->ill_frag_free_num_pkts = 0;
2503 	}
2504 	ill->ill_last_frag_clean_time = now;
2505 	mutex_exit(&ill->ill_lock);
2506 
2507 	/*
2508 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2509 	 */
2510 	if (ill->ill_frag_free_num_pkts != 0) {
2511 		int ix;
2512 
2513 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2514 			ipfb = &ill->ill_frag_hash_tbl[ix];
2515 			mutex_enter(&ipfb->ipfb_lock);
2516 			if (ipfb->ipfb_ipf != NULL) {
2517 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2518 				    ill->ill_frag_free_num_pkts);
2519 			}
2520 			mutex_exit(&ipfb->ipfb_lock);
2521 		}
2522 	}
2523 	/*
2524 	 * While the reassembly list for this ILL is too big, prune a fragment
2525 	 * queue by age, oldest first.
2526 	 */
2527 	while (ill->ill_frag_count > max_count) {
2528 		int	ix;
2529 		ipfb_t	*oipfb = NULL;
2530 		uint_t	oldest = UINT_MAX;
2531 
2532 		count = 0;
2533 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2534 			ipfb = &ill->ill_frag_hash_tbl[ix];
2535 			mutex_enter(&ipfb->ipfb_lock);
2536 			ipf = ipfb->ipfb_ipf;
2537 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2538 				oldest = ipf->ipf_gen;
2539 				oipfb = ipfb;
2540 			}
2541 			count += ipfb->ipfb_count;
2542 			mutex_exit(&ipfb->ipfb_lock);
2543 		}
2544 		if (oipfb == NULL)
2545 			break;
2546 
2547 		if (count <= max_count)
2548 			return;	/* Somebody beat us to it, nothing to do */
2549 		mutex_enter(&oipfb->ipfb_lock);
2550 		ipf = oipfb->ipfb_ipf;
2551 		if (ipf != NULL) {
2552 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2553 		}
2554 		mutex_exit(&oipfb->ipfb_lock);
2555 	}
2556 }
2557 
2558 /*
2559  * free 'free_cnt' fragmented packets starting at ipf.
2560  */
2561 void
2562 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2563 {
2564 	size_t	count;
2565 	mblk_t	*mp;
2566 	mblk_t	*tmp;
2567 	ipf_t **ipfp = ipf->ipf_ptphn;
2568 
2569 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2570 	ASSERT(ipfp != NULL);
2571 	ASSERT(ipf != NULL);
2572 
2573 	while (ipf != NULL && free_cnt-- > 0) {
2574 		count = ipf->ipf_count;
2575 		mp = ipf->ipf_mp;
2576 		ipf = ipf->ipf_hash_next;
2577 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2578 			IP_REASS_SET_START(tmp, 0);
2579 			IP_REASS_SET_END(tmp, 0);
2580 		}
2581 		atomic_add_32(&ill->ill_frag_count, -count);
2582 		ASSERT(ipfb->ipfb_count >= count);
2583 		ipfb->ipfb_count -= count;
2584 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2585 		ipfb->ipfb_frag_pkts--;
2586 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2587 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2588 		freemsg(mp);
2589 	}
2590 
2591 	if (ipf)
2592 		ipf->ipf_ptphn = ipfp;
2593 	ipfp[0] = ipf;
2594 }
2595 
2596 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
2597 	"obsolete and may be removed in a future release of Solaris.  Use " \
2598 	"ifconfig(1M) to manipulate the forwarding status of an interface."
2599 
2600 /*
2601  * For obsolete per-interface forwarding configuration;
2602  * called in response to ND_GET.
2603  */
2604 /* ARGSUSED */
2605 static int
2606 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
2607 {
2608 	ill_t *ill = (ill_t *)cp;
2609 
2610 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2611 
2612 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
2613 	return (0);
2614 }
2615 
2616 /*
2617  * For obsolete per-interface forwarding configuration;
2618  * called in response to ND_SET.
2619  */
2620 /* ARGSUSED */
2621 static int
2622 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
2623     cred_t *ioc_cr)
2624 {
2625 	long value;
2626 	int retval;
2627 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
2628 
2629 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2630 
2631 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
2632 	    value < 0 || value > 1) {
2633 		return (EINVAL);
2634 	}
2635 
2636 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2637 	retval = ill_forward_set((ill_t *)cp, (value != 0));
2638 	rw_exit(&ipst->ips_ill_g_lock);
2639 	return (retval);
2640 }
2641 
2642 /*
2643  * Helper function for ill_forward_set().
2644  */
2645 static void
2646 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2647 {
2648 	ip_stack_t	*ipst = ill->ill_ipst;
2649 
2650 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2651 
2652 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2653 	    (enable ? "Enabling" : "Disabling"),
2654 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2655 	mutex_enter(&ill->ill_lock);
2656 	if (enable)
2657 		ill->ill_flags |= ILLF_ROUTER;
2658 	else
2659 		ill->ill_flags &= ~ILLF_ROUTER;
2660 	mutex_exit(&ill->ill_lock);
2661 	if (ill->ill_isv6)
2662 		ill_set_nce_router_flags(ill, enable);
2663 	/* Notify routing socket listeners of this change. */
2664 	if (ill->ill_ipif != NULL)
2665 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2666 }
2667 
2668 /*
2669  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2670  * socket messages for each interface whose flags we change.
2671  */
2672 int
2673 ill_forward_set(ill_t *ill, boolean_t enable)
2674 {
2675 	ipmp_illgrp_t *illg;
2676 	ip_stack_t *ipst = ill->ill_ipst;
2677 
2678 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2679 
2680 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2681 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2682 		return (0);
2683 
2684 	if (IS_LOOPBACK(ill))
2685 		return (EINVAL);
2686 
2687 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2688 		/*
2689 		 * Update all of the interfaces in the group.
2690 		 */
2691 		illg = ill->ill_grp;
2692 		ill = list_head(&illg->ig_if);
2693 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2694 			ill_forward_set_on_ill(ill, enable);
2695 
2696 		/*
2697 		 * Update the IPMP meta-interface.
2698 		 */
2699 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2700 		return (0);
2701 	}
2702 
2703 	ill_forward_set_on_ill(ill, enable);
2704 	return (0);
2705 }
2706 
2707 /*
2708  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2709  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2710  * set or clear.
2711  */
2712 static void
2713 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2714 {
2715 	ipif_t *ipif;
2716 	ncec_t *ncec;
2717 	nce_t *nce;
2718 
2719 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2720 		/*
2721 		 * NOTE: we match across the illgrp because nce's for
2722 		 * addresses on IPMP interfaces have an nce_ill that points to
2723 		 * the bound underlying ill.
2724 		 */
2725 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2726 		if (nce != NULL) {
2727 			ncec = nce->nce_common;
2728 			mutex_enter(&ncec->ncec_lock);
2729 			if (enable)
2730 				ncec->ncec_flags |= NCE_F_ISROUTER;
2731 			else
2732 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2733 			mutex_exit(&ncec->ncec_lock);
2734 			nce_refrele(nce);
2735 		}
2736 	}
2737 }
2738 
2739 /*
2740  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
2741  * for this ill.  Make sure the v6/v4 question has been answered about this
2742  * ill.  The creation of this ndd variable is only for backwards compatibility.
2743  * The preferred way to control per-interface IP forwarding is through the
2744  * ILLF_ROUTER interface flag.
2745  */
2746 static int
2747 ill_set_ndd_name(ill_t *ill)
2748 {
2749 	char *suffix;
2750 	ip_stack_t	*ipst = ill->ill_ipst;
2751 
2752 	ASSERT(IAM_WRITER_ILL(ill));
2753 
2754 	if (ill->ill_isv6)
2755 		suffix = ipv6_forward_suffix;
2756 	else
2757 		suffix = ipv4_forward_suffix;
2758 
2759 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
2760 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
2761 	/*
2762 	 * Copies over the '\0'.
2763 	 * Note that strlen(suffix) is always bounded.
2764 	 */
2765 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
2766 	    strlen(suffix) + 1);
2767 
2768 	/*
2769 	 * Use of the nd table requires holding the reader lock.
2770 	 * Modifying the nd table thru nd_load/nd_unload requires
2771 	 * the writer lock.
2772 	 */
2773 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
2774 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
2775 	    nd_ill_forward_set, (caddr_t)ill)) {
2776 		/*
2777 		 * If the nd_load failed, it only meant that it could not
2778 		 * allocate a new bunch of room for further NDD expansion.
2779 		 * Because of that, the ill_ndd_name will be set to 0, and
2780 		 * this interface is at the mercy of the global ip_forwarding
2781 		 * variable.
2782 		 */
2783 		rw_exit(&ipst->ips_ip_g_nd_lock);
2784 		ill->ill_ndd_name = NULL;
2785 		return (ENOMEM);
2786 	}
2787 	rw_exit(&ipst->ips_ip_g_nd_lock);
2788 	return (0);
2789 }
2790 
2791 /*
2792  * Intializes the context structure and returns the first ill in the list
2793  * cuurently start_list and end_list can have values:
2794  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2795  * IP_V4_G_HEAD		Traverse IPV4 list only.
2796  * IP_V6_G_HEAD		Traverse IPV6 list only.
2797  */
2798 
2799 /*
2800  * We don't check for CONDEMNED ills here. Caller must do that if
2801  * necessary under the ill lock.
2802  */
2803 ill_t *
2804 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2805     ip_stack_t *ipst)
2806 {
2807 	ill_if_t *ifp;
2808 	ill_t *ill;
2809 	avl_tree_t *avl_tree;
2810 
2811 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2812 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2813 
2814 	/*
2815 	 * setup the lists to search
2816 	 */
2817 	if (end_list != MAX_G_HEADS) {
2818 		ctx->ctx_current_list = start_list;
2819 		ctx->ctx_last_list = end_list;
2820 	} else {
2821 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2822 		ctx->ctx_current_list = 0;
2823 	}
2824 
2825 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2826 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2827 		if (ifp != (ill_if_t *)
2828 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2829 			avl_tree = &ifp->illif_avl_by_ppa;
2830 			ill = avl_first(avl_tree);
2831 			/*
2832 			 * ill is guaranteed to be non NULL or ifp should have
2833 			 * not existed.
2834 			 */
2835 			ASSERT(ill != NULL);
2836 			return (ill);
2837 		}
2838 		ctx->ctx_current_list++;
2839 	}
2840 
2841 	return (NULL);
2842 }
2843 
2844 /*
2845  * returns the next ill in the list. ill_first() must have been called
2846  * before calling ill_next() or bad things will happen.
2847  */
2848 
2849 /*
2850  * We don't check for CONDEMNED ills here. Caller must do that if
2851  * necessary under the ill lock.
2852  */
2853 ill_t *
2854 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2855 {
2856 	ill_if_t *ifp;
2857 	ill_t *ill;
2858 	ip_stack_t	*ipst = lastill->ill_ipst;
2859 
2860 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2861 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2862 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2863 	    AVL_AFTER)) != NULL) {
2864 		return (ill);
2865 	}
2866 
2867 	/* goto next ill_ifp in the list. */
2868 	ifp = lastill->ill_ifptr->illif_next;
2869 
2870 	/* make sure not at end of circular list */
2871 	while (ifp ==
2872 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2873 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2874 			return (NULL);
2875 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2876 	}
2877 
2878 	return (avl_first(&ifp->illif_avl_by_ppa));
2879 }
2880 
2881 /*
2882  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2883  * The final number (PPA) must not have any leading zeros.  Upon success, a
2884  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2885  */
2886 static char *
2887 ill_get_ppa_ptr(char *name)
2888 {
2889 	int namelen = strlen(name);
2890 	int end_ndx = namelen - 1;
2891 	int ppa_ndx, i;
2892 
2893 	/*
2894 	 * Check that the first character is [a-zA-Z], and that the last
2895 	 * character is [0-9].
2896 	 */
2897 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2898 		return (NULL);
2899 
2900 	/*
2901 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2902 	 */
2903 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2904 		if (!isdigit(name[ppa_ndx - 1]))
2905 			break;
2906 
2907 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2908 		return (NULL);
2909 
2910 	/*
2911 	 * Check that the intermediate characters are [a-z0-9.]
2912 	 */
2913 	for (i = 1; i < ppa_ndx; i++) {
2914 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2915 		    name[i] != '.' && name[i] != '_') {
2916 			return (NULL);
2917 		}
2918 	}
2919 
2920 	return (name + ppa_ndx);
2921 }
2922 
2923 /*
2924  * use avl tree to locate the ill.
2925  */
2926 static ill_t *
2927 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2928 {
2929 	char *ppa_ptr = NULL;
2930 	int len;
2931 	uint_t ppa;
2932 	ill_t *ill = NULL;
2933 	ill_if_t *ifp;
2934 	int list;
2935 
2936 	/*
2937 	 * get ppa ptr
2938 	 */
2939 	if (isv6)
2940 		list = IP_V6_G_HEAD;
2941 	else
2942 		list = IP_V4_G_HEAD;
2943 
2944 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2945 		return (NULL);
2946 	}
2947 
2948 	len = ppa_ptr - name + 1;
2949 
2950 	ppa = stoi(&ppa_ptr);
2951 
2952 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2953 
2954 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2955 		/*
2956 		 * match is done on len - 1 as the name is not null
2957 		 * terminated it contains ppa in addition to the interface
2958 		 * name.
2959 		 */
2960 		if ((ifp->illif_name_len == len) &&
2961 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2962 			break;
2963 		} else {
2964 			ifp = ifp->illif_next;
2965 		}
2966 	}
2967 
2968 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2969 		/*
2970 		 * Even the interface type does not exist.
2971 		 */
2972 		return (NULL);
2973 	}
2974 
2975 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2976 	if (ill != NULL) {
2977 		mutex_enter(&ill->ill_lock);
2978 		if (ILL_CAN_LOOKUP(ill)) {
2979 			ill_refhold_locked(ill);
2980 			mutex_exit(&ill->ill_lock);
2981 			return (ill);
2982 		}
2983 		mutex_exit(&ill->ill_lock);
2984 	}
2985 	return (NULL);
2986 }
2987 
2988 /*
2989  * comparison function for use with avl.
2990  */
2991 static int
2992 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2993 {
2994 	uint_t ppa;
2995 	uint_t ill_ppa;
2996 
2997 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2998 
2999 	ppa = *((uint_t *)ppa_ptr);
3000 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
3001 	/*
3002 	 * We want the ill with the lowest ppa to be on the
3003 	 * top.
3004 	 */
3005 	if (ill_ppa < ppa)
3006 		return (1);
3007 	if (ill_ppa > ppa)
3008 		return (-1);
3009 	return (0);
3010 }
3011 
3012 /*
3013  * remove an interface type from the global list.
3014  */
3015 static void
3016 ill_delete_interface_type(ill_if_t *interface)
3017 {
3018 	ASSERT(interface != NULL);
3019 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
3020 
3021 	avl_destroy(&interface->illif_avl_by_ppa);
3022 	if (interface->illif_ppa_arena != NULL)
3023 		vmem_destroy(interface->illif_ppa_arena);
3024 
3025 	remque(interface);
3026 
3027 	mi_free(interface);
3028 }
3029 
3030 /*
3031  * remove ill from the global list.
3032  */
3033 static void
3034 ill_glist_delete(ill_t *ill)
3035 {
3036 	ip_stack_t	*ipst;
3037 	phyint_t	*phyi;
3038 
3039 	if (ill == NULL)
3040 		return;
3041 	ipst = ill->ill_ipst;
3042 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3043 
3044 	/*
3045 	 * If the ill was never inserted into the AVL tree
3046 	 * we skip the if branch.
3047 	 */
3048 	if (ill->ill_ifptr != NULL) {
3049 		/*
3050 		 * remove from AVL tree and free ppa number
3051 		 */
3052 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3053 
3054 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3055 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3056 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3057 		}
3058 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3059 			ill_delete_interface_type(ill->ill_ifptr);
3060 		}
3061 
3062 		/*
3063 		 * Indicate ill is no longer in the list.
3064 		 */
3065 		ill->ill_ifptr = NULL;
3066 		ill->ill_name_length = 0;
3067 		ill->ill_name[0] = '\0';
3068 		ill->ill_ppa = UINT_MAX;
3069 	}
3070 
3071 	/* Generate one last event for this ill. */
3072 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3073 	    ill->ill_name_length);
3074 
3075 	ASSERT(ill->ill_phyint != NULL);
3076 	phyi = ill->ill_phyint;
3077 	ill->ill_phyint = NULL;
3078 
3079 	/*
3080 	 * ill_init allocates a phyint always to store the copy
3081 	 * of flags relevant to phyint. At that point in time, we could
3082 	 * not assign the name and hence phyint_illv4/v6 could not be
3083 	 * initialized. Later in ipif_set_values, we assign the name to
3084 	 * the ill, at which point in time we assign phyint_illv4/v6.
3085 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3086 	 */
3087 	if (ill->ill_flags & ILLF_IPV6)
3088 		phyi->phyint_illv6 = NULL;
3089 	else
3090 		phyi->phyint_illv4 = NULL;
3091 
3092 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3093 		rw_exit(&ipst->ips_ill_g_lock);
3094 		return;
3095 	}
3096 
3097 	/*
3098 	 * There are no ills left on this phyint; pull it out of the phyint
3099 	 * avl trees, and free it.
3100 	 */
3101 	if (phyi->phyint_ifindex > 0) {
3102 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3103 		    phyi);
3104 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3105 		    phyi);
3106 	}
3107 	rw_exit(&ipst->ips_ill_g_lock);
3108 
3109 	phyint_free(phyi);
3110 }
3111 
3112 /*
3113  * allocate a ppa, if the number of plumbed interfaces of this type are
3114  * less than ill_no_arena do a linear search to find a unused ppa.
3115  * When the number goes beyond ill_no_arena switch to using an arena.
3116  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3117  * is the return value for an error condition, so allocation starts at one
3118  * and is decremented by one.
3119  */
3120 static int
3121 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3122 {
3123 	ill_t *tmp_ill;
3124 	uint_t start, end;
3125 	int ppa;
3126 
3127 	if (ifp->illif_ppa_arena == NULL &&
3128 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3129 		/*
3130 		 * Create an arena.
3131 		 */
3132 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3133 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3134 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3135 			/* allocate what has already been assigned */
3136 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3137 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3138 		    tmp_ill, AVL_AFTER)) {
3139 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3140 			    1,		/* size */
3141 			    1,		/* align/quantum */
3142 			    0,		/* phase */
3143 			    0,		/* nocross */
3144 			    /* minaddr */
3145 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3146 			    /* maxaddr */
3147 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3148 			    VM_NOSLEEP|VM_FIRSTFIT);
3149 			if (ppa == 0) {
3150 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3151 				    " failed while switching"));
3152 				vmem_destroy(ifp->illif_ppa_arena);
3153 				ifp->illif_ppa_arena = NULL;
3154 				break;
3155 			}
3156 		}
3157 	}
3158 
3159 	if (ifp->illif_ppa_arena != NULL) {
3160 		if (ill->ill_ppa == UINT_MAX) {
3161 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3162 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3163 			if (ppa == 0)
3164 				return (EAGAIN);
3165 			ill->ill_ppa = --ppa;
3166 		} else {
3167 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3168 			    1, 		/* size */
3169 			    1, 		/* align/quantum */
3170 			    0, 		/* phase */
3171 			    0, 		/* nocross */
3172 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3173 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3174 			    VM_NOSLEEP|VM_FIRSTFIT);
3175 			/*
3176 			 * Most likely the allocation failed because
3177 			 * the requested ppa was in use.
3178 			 */
3179 			if (ppa == 0)
3180 				return (EEXIST);
3181 		}
3182 		return (0);
3183 	}
3184 
3185 	/*
3186 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3187 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3188 	 */
3189 	if (ill->ill_ppa == UINT_MAX) {
3190 		end = UINT_MAX - 1;
3191 		start = 0;
3192 	} else {
3193 		end = start = ill->ill_ppa;
3194 	}
3195 
3196 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3197 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3198 		if (start++ >= end) {
3199 			if (ill->ill_ppa == UINT_MAX)
3200 				return (EAGAIN);
3201 			else
3202 				return (EEXIST);
3203 		}
3204 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3205 	}
3206 	ill->ill_ppa = start;
3207 	return (0);
3208 }
3209 
3210 /*
3211  * Insert ill into the list of configured ill's. Once this function completes,
3212  * the ill is globally visible and is available through lookups. More precisely
3213  * this happens after the caller drops the ill_g_lock.
3214  */
3215 static int
3216 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3217 {
3218 	ill_if_t *ill_interface;
3219 	avl_index_t where = 0;
3220 	int error;
3221 	int name_length;
3222 	int index;
3223 	boolean_t check_length = B_FALSE;
3224 	ip_stack_t	*ipst = ill->ill_ipst;
3225 
3226 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3227 
3228 	name_length = mi_strlen(name) + 1;
3229 
3230 	if (isv6)
3231 		index = IP_V6_G_HEAD;
3232 	else
3233 		index = IP_V4_G_HEAD;
3234 
3235 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3236 	/*
3237 	 * Search for interface type based on name
3238 	 */
3239 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3240 		if ((ill_interface->illif_name_len == name_length) &&
3241 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3242 			break;
3243 		}
3244 		ill_interface = ill_interface->illif_next;
3245 	}
3246 
3247 	/*
3248 	 * Interface type not found, create one.
3249 	 */
3250 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3251 		ill_g_head_t ghead;
3252 
3253 		/*
3254 		 * allocate ill_if_t structure
3255 		 */
3256 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3257 		if (ill_interface == NULL) {
3258 			return (ENOMEM);
3259 		}
3260 
3261 		(void) strcpy(ill_interface->illif_name, name);
3262 		ill_interface->illif_name_len = name_length;
3263 
3264 		avl_create(&ill_interface->illif_avl_by_ppa,
3265 		    ill_compare_ppa, sizeof (ill_t),
3266 		    offsetof(struct ill_s, ill_avl_byppa));
3267 
3268 		/*
3269 		 * link the structure in the back to maintain order
3270 		 * of configuration for ifconfig output.
3271 		 */
3272 		ghead = ipst->ips_ill_g_heads[index];
3273 		insque(ill_interface, ghead.ill_g_list_tail);
3274 	}
3275 
3276 	if (ill->ill_ppa == UINT_MAX)
3277 		check_length = B_TRUE;
3278 
3279 	error = ill_alloc_ppa(ill_interface, ill);
3280 	if (error != 0) {
3281 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3282 			ill_delete_interface_type(ill->ill_ifptr);
3283 		return (error);
3284 	}
3285 
3286 	/*
3287 	 * When the ppa is choosen by the system, check that there is
3288 	 * enough space to insert ppa. if a specific ppa was passed in this
3289 	 * check is not required as the interface name passed in will have
3290 	 * the right ppa in it.
3291 	 */
3292 	if (check_length) {
3293 		/*
3294 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3295 		 */
3296 		char buf[sizeof (uint_t) * 3];
3297 
3298 		/*
3299 		 * convert ppa to string to calculate the amount of space
3300 		 * required for it in the name.
3301 		 */
3302 		numtos(ill->ill_ppa, buf);
3303 
3304 		/* Do we have enough space to insert ppa ? */
3305 
3306 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3307 			/* Free ppa and interface type struct */
3308 			if (ill_interface->illif_ppa_arena != NULL) {
3309 				vmem_free(ill_interface->illif_ppa_arena,
3310 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3311 			}
3312 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3313 				ill_delete_interface_type(ill->ill_ifptr);
3314 
3315 			return (EINVAL);
3316 		}
3317 	}
3318 
3319 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3320 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3321 
3322 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3323 	    &where);
3324 	ill->ill_ifptr = ill_interface;
3325 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3326 
3327 	ill_phyint_reinit(ill);
3328 	return (0);
3329 }
3330 
3331 /* Initialize the per phyint ipsq used for serialization */
3332 static boolean_t
3333 ipsq_init(ill_t *ill, boolean_t enter)
3334 {
3335 	ipsq_t  *ipsq;
3336 	ipxop_t	*ipx;
3337 
3338 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3339 		return (B_FALSE);
3340 
3341 	ill->ill_phyint->phyint_ipsq = ipsq;
3342 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3343 	ipx->ipx_ipsq = ipsq;
3344 	ipsq->ipsq_next = ipsq;
3345 	ipsq->ipsq_phyint = ill->ill_phyint;
3346 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3347 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3348 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3349 	if (enter) {
3350 		ipx->ipx_writer = curthread;
3351 		ipx->ipx_forced = B_FALSE;
3352 		ipx->ipx_reentry_cnt = 1;
3353 #ifdef DEBUG
3354 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3355 #endif
3356 	}
3357 	return (B_TRUE);
3358 }
3359 
3360 /*
3361  * ill_init is called by ip_open when a device control stream is opened.
3362  * It does a few initializations, and shoots a DL_INFO_REQ message down
3363  * to the driver.  The response is later picked up in ip_rput_dlpi and
3364  * used to set up default mechanisms for talking to the driver.  (Always
3365  * called as writer.)
3366  *
3367  * If this function returns error, ip_open will call ip_close which in
3368  * turn will call ill_delete to clean up any memory allocated here that
3369  * is not yet freed.
3370  */
3371 int
3372 ill_init(queue_t *q, ill_t *ill)
3373 {
3374 	int	count;
3375 	dl_info_req_t	*dlir;
3376 	mblk_t	*info_mp;
3377 	uchar_t *frag_ptr;
3378 
3379 	/*
3380 	 * The ill is initialized to zero by mi_alloc*(). In addition
3381 	 * some fields already contain valid values, initialized in
3382 	 * ip_open(), before we reach here.
3383 	 */
3384 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3385 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3386 	ill->ill_saved_ire_cnt = 0;
3387 
3388 	ill->ill_rq = q;
3389 	ill->ill_wq = WR(q);
3390 
3391 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3392 	    BPRI_HI);
3393 	if (info_mp == NULL)
3394 		return (ENOMEM);
3395 
3396 	/*
3397 	 * Allocate sufficient space to contain our fragment hash table and
3398 	 * the device name.
3399 	 */
3400 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
3401 	    2 * LIFNAMSIZ + strlen(ipv6_forward_suffix));
3402 	if (frag_ptr == NULL) {
3403 		freemsg(info_mp);
3404 		return (ENOMEM);
3405 	}
3406 	ill->ill_frag_ptr = frag_ptr;
3407 	ill->ill_frag_free_num_pkts = 0;
3408 	ill->ill_last_frag_clean_time = 0;
3409 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3410 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3411 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3412 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3413 		    NULL, MUTEX_DEFAULT, NULL);
3414 	}
3415 
3416 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3417 	if (ill->ill_phyint == NULL) {
3418 		freemsg(info_mp);
3419 		mi_free(frag_ptr);
3420 		return (ENOMEM);
3421 	}
3422 
3423 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3424 	/*
3425 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3426 	 * at this point because of the following reason. If we can't
3427 	 * enter the ipsq at some point and cv_wait, the writer that
3428 	 * wakes us up tries to locate us using the list of all phyints
3429 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3430 	 * If we don't set it now, we risk a missed wakeup.
3431 	 */
3432 	ill->ill_phyint->phyint_illv4 = ill;
3433 	ill->ill_ppa = UINT_MAX;
3434 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3435 
3436 	ill_set_inputfn(ill);
3437 
3438 	if (!ipsq_init(ill, B_TRUE)) {
3439 		freemsg(info_mp);
3440 		mi_free(frag_ptr);
3441 		mi_free(ill->ill_phyint);
3442 		return (ENOMEM);
3443 	}
3444 
3445 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3446 
3447 	/* Frag queue limit stuff */
3448 	ill->ill_frag_count = 0;
3449 	ill->ill_ipf_gen = 0;
3450 
3451 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3452 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3453 	ill->ill_global_timer = INFINITY;
3454 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3455 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3456 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3457 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3458 
3459 	/*
3460 	 * Initialize IPv6 configuration variables.  The IP module is always
3461 	 * opened as an IPv4 module.  Instead tracking down the cases where
3462 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3463 	 * here for convenience, this has no effect until the ill is set to do
3464 	 * IPv6.
3465 	 */
3466 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3467 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3468 	ill->ill_max_buf = ND_MAX_Q;
3469 	ill->ill_refcnt = 0;
3470 
3471 	/* Send down the Info Request to the driver. */
3472 	info_mp->b_datap->db_type = M_PCPROTO;
3473 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3474 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3475 	dlir->dl_primitive = DL_INFO_REQ;
3476 
3477 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3478 
3479 	qprocson(q);
3480 	ill_dlpi_send(ill, info_mp);
3481 
3482 	return (0);
3483 }
3484 
3485 /*
3486  * ill_dls_info
3487  * creates datalink socket info from the device.
3488  */
3489 int
3490 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3491 {
3492 	size_t	len;
3493 
3494 	sdl->sdl_family = AF_LINK;
3495 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3496 	sdl->sdl_type = ill->ill_type;
3497 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3498 	len = strlen(sdl->sdl_data);
3499 	ASSERT(len < 256);
3500 	sdl->sdl_nlen = (uchar_t)len;
3501 	sdl->sdl_alen = ill->ill_phys_addr_length;
3502 	sdl->sdl_slen = 0;
3503 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3504 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3505 
3506 	return (sizeof (struct sockaddr_dl));
3507 }
3508 
3509 /*
3510  * ill_xarp_info
3511  * creates xarp info from the device.
3512  */
3513 static int
3514 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3515 {
3516 	sdl->sdl_family = AF_LINK;
3517 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3518 	sdl->sdl_type = ill->ill_type;
3519 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3520 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3521 	sdl->sdl_alen = ill->ill_phys_addr_length;
3522 	sdl->sdl_slen = 0;
3523 	return (sdl->sdl_nlen);
3524 }
3525 
3526 static int
3527 loopback_kstat_update(kstat_t *ksp, int rw)
3528 {
3529 	kstat_named_t *kn;
3530 	netstackid_t	stackid;
3531 	netstack_t	*ns;
3532 	ip_stack_t	*ipst;
3533 
3534 	if (ksp == NULL || ksp->ks_data == NULL)
3535 		return (EIO);
3536 
3537 	if (rw == KSTAT_WRITE)
3538 		return (EACCES);
3539 
3540 	kn = KSTAT_NAMED_PTR(ksp);
3541 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3542 
3543 	ns = netstack_find_by_stackid(stackid);
3544 	if (ns == NULL)
3545 		return (-1);
3546 
3547 	ipst = ns->netstack_ip;
3548 	if (ipst == NULL) {
3549 		netstack_rele(ns);
3550 		return (-1);
3551 	}
3552 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3553 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3554 	netstack_rele(ns);
3555 	return (0);
3556 }
3557 
3558 /*
3559  * Has ifindex been plumbed already?
3560  */
3561 static boolean_t
3562 phyint_exists(uint_t index, ip_stack_t *ipst)
3563 {
3564 	ASSERT(index != 0);
3565 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3566 
3567 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3568 	    &index, NULL) != NULL);
3569 }
3570 
3571 /* Pick a unique ifindex */
3572 boolean_t
3573 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3574 {
3575 	uint_t starting_index;
3576 
3577 	if (!ipst->ips_ill_index_wrap) {
3578 		*indexp = ipst->ips_ill_index++;
3579 		if (ipst->ips_ill_index == 0) {
3580 			/* Reached the uint_t limit Next time wrap  */
3581 			ipst->ips_ill_index_wrap = B_TRUE;
3582 		}
3583 		return (B_TRUE);
3584 	}
3585 
3586 	/*
3587 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3588 	 * at this point and don't want to call any function that attempts
3589 	 * to get the lock again.
3590 	 */
3591 	starting_index = ipst->ips_ill_index++;
3592 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
3593 		if (ipst->ips_ill_index != 0 &&
3594 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
3595 			/* found unused index - use it */
3596 			*indexp = ipst->ips_ill_index;
3597 			return (B_TRUE);
3598 		}
3599 	}
3600 
3601 	/*
3602 	 * all interface indicies are inuse.
3603 	 */
3604 	return (B_FALSE);
3605 }
3606 
3607 /*
3608  * Assign a unique interface index for the phyint.
3609  */
3610 static boolean_t
3611 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3612 {
3613 	ASSERT(phyi->phyint_ifindex == 0);
3614 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3615 }
3616 
3617 /*
3618  * Initialize the flags on `phyi' as per the provided mactype.
3619  */
3620 static void
3621 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3622 {
3623 	uint64_t flags = 0;
3624 
3625 	/*
3626 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3627 	 * we always presume the underlying hardware is working and set
3628 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3629 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3630 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3631 	 */
3632 	if (mactype == SUNW_DL_IPMP)
3633 		flags |= PHYI_FAILED;
3634 	else
3635 		flags |= PHYI_RUNNING;
3636 
3637 	switch (mactype) {
3638 	case SUNW_DL_VNI:
3639 		flags |= PHYI_VIRTUAL;
3640 		break;
3641 	case SUNW_DL_IPMP:
3642 		flags |= PHYI_IPMP;
3643 		break;
3644 	case DL_LOOP:
3645 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3646 		break;
3647 	}
3648 
3649 	mutex_enter(&phyi->phyint_lock);
3650 	phyi->phyint_flags |= flags;
3651 	mutex_exit(&phyi->phyint_lock);
3652 }
3653 
3654 /*
3655  * Return a pointer to the ill which matches the supplied name.  Note that
3656  * the ill name length includes the null termination character.  (May be
3657  * called as writer.)
3658  * If do_alloc and the interface is "lo0" it will be automatically created.
3659  * Cannot bump up reference on condemned ills. So dup detect can't be done
3660  * using this func.
3661  */
3662 ill_t *
3663 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3664     boolean_t *did_alloc, ip_stack_t *ipst)
3665 {
3666 	ill_t	*ill;
3667 	ipif_t	*ipif;
3668 	ipsq_t	*ipsq;
3669 	kstat_named_t	*kn;
3670 	boolean_t isloopback;
3671 	in6_addr_t ov6addr;
3672 
3673 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3674 
3675 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3676 	ill = ill_find_by_name(name, isv6, ipst);
3677 	rw_exit(&ipst->ips_ill_g_lock);
3678 	if (ill != NULL)
3679 		return (ill);
3680 
3681 	/*
3682 	 * Couldn't find it.  Does this happen to be a lookup for the
3683 	 * loopback device and are we allowed to allocate it?
3684 	 */
3685 	if (!isloopback || !do_alloc)
3686 		return (NULL);
3687 
3688 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3689 	ill = ill_find_by_name(name, isv6, ipst);
3690 	if (ill != NULL) {
3691 		rw_exit(&ipst->ips_ill_g_lock);
3692 		return (ill);
3693 	}
3694 
3695 	/* Create the loopback device on demand */
3696 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3697 	    sizeof (ipif_loopback_name), BPRI_MED));
3698 	if (ill == NULL)
3699 		goto done;
3700 
3701 	*ill = ill_null;
3702 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3703 	ill->ill_ipst = ipst;
3704 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3705 	netstack_hold(ipst->ips_netstack);
3706 	/*
3707 	 * For exclusive stacks we set the zoneid to zero
3708 	 * to make IP operate as if in the global zone.
3709 	 */
3710 	ill->ill_zoneid = GLOBAL_ZONEID;
3711 
3712 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3713 	if (ill->ill_phyint == NULL)
3714 		goto done;
3715 
3716 	if (isv6)
3717 		ill->ill_phyint->phyint_illv6 = ill;
3718 	else
3719 		ill->ill_phyint->phyint_illv4 = ill;
3720 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3721 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3722 
3723 	if (isv6) {
3724 		ill->ill_isv6 = B_TRUE;
3725 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3726 	} else {
3727 		ill->ill_max_frag = ip_loopback_mtuplus;
3728 	}
3729 	if (!ill_allocate_mibs(ill))
3730 		goto done;
3731 	ill->ill_current_frag = ill->ill_max_frag;
3732 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3733 	/*
3734 	 * ipif_loopback_name can't be pointed at directly because its used
3735 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3736 	 * from the glist, ill_glist_delete() sets the first character of
3737 	 * ill_name to '\0'.
3738 	 */
3739 	ill->ill_name = (char *)ill + sizeof (*ill);
3740 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3741 	ill->ill_name_length = sizeof (ipif_loopback_name);
3742 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3743 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3744 
3745 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3746 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3747 	ill->ill_global_timer = INFINITY;
3748 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3749 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3750 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3751 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3752 
3753 	/* No resolver here. */
3754 	ill->ill_net_type = IRE_LOOPBACK;
3755 
3756 	/* Initialize the ipsq */
3757 	if (!ipsq_init(ill, B_FALSE))
3758 		goto done;
3759 
3760 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3761 	if (ipif == NULL)
3762 		goto done;
3763 
3764 	ill->ill_flags = ILLF_MULTICAST;
3765 
3766 	ov6addr = ipif->ipif_v6lcl_addr;
3767 	/* Set up default loopback address and mask. */
3768 	if (!isv6) {
3769 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3770 
3771 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3772 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3773 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3774 		    ipif->ipif_v6subnet);
3775 		ill->ill_flags |= ILLF_IPV4;
3776 	} else {
3777 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3778 		ipif->ipif_v6net_mask = ipv6_all_ones;
3779 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3780 		    ipif->ipif_v6subnet);
3781 		ill->ill_flags |= ILLF_IPV6;
3782 	}
3783 
3784 	/*
3785 	 * Chain us in at the end of the ill list. hold the ill
3786 	 * before we make it globally visible. 1 for the lookup.
3787 	 */
3788 	ill->ill_refcnt = 0;
3789 	ill_refhold(ill);
3790 
3791 	ill->ill_frag_count = 0;
3792 	ill->ill_frag_free_num_pkts = 0;
3793 	ill->ill_last_frag_clean_time = 0;
3794 
3795 	ipsq = ill->ill_phyint->phyint_ipsq;
3796 
3797 	ill_set_inputfn(ill);
3798 
3799 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3800 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3801 
3802 	/* Let SCTP know so that it can add this to its list */
3803 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3804 
3805 	/*
3806 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3807 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3808 	 * requires to be after ill_glist_insert() since we need the
3809 	 * ill_index set. Pass on ipv6_loopback as the old address.
3810 	 */
3811 	sctp_update_ipif_addr(ipif, ov6addr);
3812 
3813 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3814 
3815 	/*
3816 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3817 	 * If so, free our original one.
3818 	 */
3819 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3820 		ipsq_delete(ipsq);
3821 
3822 	if (ipst->ips_loopback_ksp == NULL) {
3823 		/* Export loopback interface statistics */
3824 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3825 		    ipif_loopback_name, "net",
3826 		    KSTAT_TYPE_NAMED, 2, 0,
3827 		    ipst->ips_netstack->netstack_stackid);
3828 		if (ipst->ips_loopback_ksp != NULL) {
3829 			ipst->ips_loopback_ksp->ks_update =
3830 			    loopback_kstat_update;
3831 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3832 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3833 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3834 			ipst->ips_loopback_ksp->ks_private =
3835 			    (void *)(uintptr_t)ipst->ips_netstack->
3836 			    netstack_stackid;
3837 			kstat_install(ipst->ips_loopback_ksp);
3838 		}
3839 	}
3840 
3841 	*did_alloc = B_TRUE;
3842 	rw_exit(&ipst->ips_ill_g_lock);
3843 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3844 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3845 	return (ill);
3846 done:
3847 	if (ill != NULL) {
3848 		if (ill->ill_phyint != NULL) {
3849 			ipsq = ill->ill_phyint->phyint_ipsq;
3850 			if (ipsq != NULL) {
3851 				ipsq->ipsq_phyint = NULL;
3852 				ipsq_delete(ipsq);
3853 			}
3854 			mi_free(ill->ill_phyint);
3855 		}
3856 		ill_free_mib(ill);
3857 		if (ill->ill_ipst != NULL)
3858 			netstack_rele(ill->ill_ipst->ips_netstack);
3859 		mi_free(ill);
3860 	}
3861 	rw_exit(&ipst->ips_ill_g_lock);
3862 	return (NULL);
3863 }
3864 
3865 /*
3866  * For IPP calls - use the ip_stack_t for global stack.
3867  */
3868 ill_t *
3869 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3870 {
3871 	ip_stack_t	*ipst;
3872 	ill_t		*ill;
3873 
3874 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3875 	if (ipst == NULL) {
3876 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3877 		return (NULL);
3878 	}
3879 
3880 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3881 	netstack_rele(ipst->ips_netstack);
3882 	return (ill);
3883 }
3884 
3885 /*
3886  * Return a pointer to the ill which matches the index and IP version type.
3887  */
3888 ill_t *
3889 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3890 {
3891 	ill_t	*ill;
3892 	phyint_t *phyi;
3893 
3894 	/*
3895 	 * Indexes are stored in the phyint - a common structure
3896 	 * to both IPv4 and IPv6.
3897 	 */
3898 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3899 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3900 	    (void *) &index, NULL);
3901 	if (phyi != NULL) {
3902 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3903 		if (ill != NULL) {
3904 			mutex_enter(&ill->ill_lock);
3905 			if (!ILL_IS_CONDEMNED(ill)) {
3906 				ill_refhold_locked(ill);
3907 				mutex_exit(&ill->ill_lock);
3908 				rw_exit(&ipst->ips_ill_g_lock);
3909 				return (ill);
3910 			}
3911 			mutex_exit(&ill->ill_lock);
3912 		}
3913 	}
3914 	rw_exit(&ipst->ips_ill_g_lock);
3915 	return (NULL);
3916 }
3917 
3918 /*
3919  * Verify whether or not an interface index is valid for the specified zoneid
3920  * to transmit packets.
3921  * It can be zero (meaning "reset") or an interface index assigned
3922  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3923  */
3924 boolean_t
3925 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3926     ip_stack_t *ipst)
3927 {
3928 	ill_t		*ill;
3929 
3930 	if (ifindex == 0)
3931 		return (B_TRUE);
3932 
3933 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3934 	if (ill == NULL)
3935 		return (B_FALSE);
3936 	if (IS_VNI(ill)) {
3937 		ill_refrele(ill);
3938 		return (B_FALSE);
3939 	}
3940 	ill_refrele(ill);
3941 	return (B_TRUE);
3942 }
3943 
3944 /*
3945  * Return the ifindex next in sequence after the passed in ifindex.
3946  * If there is no next ifindex for the given protocol, return 0.
3947  */
3948 uint_t
3949 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3950 {
3951 	phyint_t *phyi;
3952 	phyint_t *phyi_initial;
3953 	uint_t   ifindex;
3954 
3955 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3956 
3957 	if (index == 0) {
3958 		phyi = avl_first(
3959 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3960 	} else {
3961 		phyi = phyi_initial = avl_find(
3962 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3963 		    (void *) &index, NULL);
3964 	}
3965 
3966 	for (; phyi != NULL;
3967 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3968 	    phyi, AVL_AFTER)) {
3969 		/*
3970 		 * If we're not returning the first interface in the tree
3971 		 * and we still haven't moved past the phyint_t that
3972 		 * corresponds to index, avl_walk needs to be called again
3973 		 */
3974 		if (!((index != 0) && (phyi == phyi_initial))) {
3975 			if (isv6) {
3976 				if ((phyi->phyint_illv6) &&
3977 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3978 				    (phyi->phyint_illv6->ill_isv6 == 1))
3979 					break;
3980 			} else {
3981 				if ((phyi->phyint_illv4) &&
3982 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3983 				    (phyi->phyint_illv4->ill_isv6 == 0))
3984 					break;
3985 			}
3986 		}
3987 	}
3988 
3989 	rw_exit(&ipst->ips_ill_g_lock);
3990 
3991 	if (phyi != NULL)
3992 		ifindex = phyi->phyint_ifindex;
3993 	else
3994 		ifindex = 0;
3995 
3996 	return (ifindex);
3997 }
3998 
3999 /*
4000  * Return the ifindex for the named interface.
4001  * If there is no next ifindex for the interface, return 0.
4002  */
4003 uint_t
4004 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
4005 {
4006 	phyint_t	*phyi;
4007 	avl_index_t	where = 0;
4008 	uint_t		ifindex;
4009 
4010 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4011 
4012 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4013 	    name, &where)) == NULL) {
4014 		rw_exit(&ipst->ips_ill_g_lock);
4015 		return (0);
4016 	}
4017 
4018 	ifindex = phyi->phyint_ifindex;
4019 
4020 	rw_exit(&ipst->ips_ill_g_lock);
4021 
4022 	return (ifindex);
4023 }
4024 
4025 /*
4026  * Return the ifindex to be used by upper layer protocols for instance
4027  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4028  */
4029 uint_t
4030 ill_get_upper_ifindex(const ill_t *ill)
4031 {
4032 	if (IS_UNDER_IPMP(ill))
4033 		return (ipmp_ill_get_ipmp_ifindex(ill));
4034 	else
4035 		return (ill->ill_phyint->phyint_ifindex);
4036 }
4037 
4038 
4039 /*
4040  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4041  * that gives a running thread a reference to the ill. This reference must be
4042  * released by the thread when it is done accessing the ill and related
4043  * objects. ill_refcnt can not be used to account for static references
4044  * such as other structures pointing to an ill. Callers must generally
4045  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4046  * or be sure that the ill is not being deleted or changing state before
4047  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4048  * ill won't change any of its critical state such as address, netmask etc.
4049  */
4050 void
4051 ill_refhold(ill_t *ill)
4052 {
4053 	mutex_enter(&ill->ill_lock);
4054 	ill->ill_refcnt++;
4055 	ILL_TRACE_REF(ill);
4056 	mutex_exit(&ill->ill_lock);
4057 }
4058 
4059 void
4060 ill_refhold_locked(ill_t *ill)
4061 {
4062 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4063 	ill->ill_refcnt++;
4064 	ILL_TRACE_REF(ill);
4065 }
4066 
4067 /* Returns true if we managed to get a refhold */
4068 boolean_t
4069 ill_check_and_refhold(ill_t *ill)
4070 {
4071 	mutex_enter(&ill->ill_lock);
4072 	if (!ILL_IS_CONDEMNED(ill)) {
4073 		ill_refhold_locked(ill);
4074 		mutex_exit(&ill->ill_lock);
4075 		return (B_TRUE);
4076 	}
4077 	mutex_exit(&ill->ill_lock);
4078 	return (B_FALSE);
4079 }
4080 
4081 /*
4082  * Must not be called while holding any locks. Otherwise if this is
4083  * the last reference to be released, there is a chance of recursive mutex
4084  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4085  * to restart an ioctl.
4086  */
4087 void
4088 ill_refrele(ill_t *ill)
4089 {
4090 	mutex_enter(&ill->ill_lock);
4091 	ASSERT(ill->ill_refcnt != 0);
4092 	ill->ill_refcnt--;
4093 	ILL_UNTRACE_REF(ill);
4094 	if (ill->ill_refcnt != 0) {
4095 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4096 		mutex_exit(&ill->ill_lock);
4097 		return;
4098 	}
4099 
4100 	/* Drops the ill_lock */
4101 	ipif_ill_refrele_tail(ill);
4102 }
4103 
4104 /*
4105  * Obtain a weak reference count on the ill. This reference ensures the
4106  * ill won't be freed, but the ill may change any of its critical state
4107  * such as netmask, address etc. Returns an error if the ill has started
4108  * closing.
4109  */
4110 boolean_t
4111 ill_waiter_inc(ill_t *ill)
4112 {
4113 	mutex_enter(&ill->ill_lock);
4114 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4115 		mutex_exit(&ill->ill_lock);
4116 		return (B_FALSE);
4117 	}
4118 	ill->ill_waiters++;
4119 	mutex_exit(&ill->ill_lock);
4120 	return (B_TRUE);
4121 }
4122 
4123 void
4124 ill_waiter_dcr(ill_t *ill)
4125 {
4126 	mutex_enter(&ill->ill_lock);
4127 	ill->ill_waiters--;
4128 	if (ill->ill_waiters == 0)
4129 		cv_broadcast(&ill->ill_cv);
4130 	mutex_exit(&ill->ill_lock);
4131 }
4132 
4133 /*
4134  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4135  * driver.  We construct best guess defaults for lower level information that
4136  * we need.  If an interface is brought up without injection of any overriding
4137  * information from outside, we have to be ready to go with these defaults.
4138  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4139  * we primarely want the dl_provider_style.
4140  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4141  * at which point we assume the other part of the information is valid.
4142  */
4143 void
4144 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4145 {
4146 	uchar_t		*brdcst_addr;
4147 	uint_t		brdcst_addr_length, phys_addr_length;
4148 	t_scalar_t	sap_length;
4149 	dl_info_ack_t	*dlia;
4150 	ip_m_t		*ipm;
4151 	dl_qos_cl_sel1_t *sel1;
4152 	int		min_mtu;
4153 
4154 	ASSERT(IAM_WRITER_ILL(ill));
4155 
4156 	/*
4157 	 * Till the ill is fully up  the ill is not globally visible.
4158 	 * So no need for a lock.
4159 	 */
4160 	dlia = (dl_info_ack_t *)mp->b_rptr;
4161 	ill->ill_mactype = dlia->dl_mac_type;
4162 
4163 	ipm = ip_m_lookup(dlia->dl_mac_type);
4164 	if (ipm == NULL) {
4165 		ipm = ip_m_lookup(DL_OTHER);
4166 		ASSERT(ipm != NULL);
4167 	}
4168 	ill->ill_media = ipm;
4169 
4170 	/*
4171 	 * When the new DLPI stuff is ready we'll pull lengths
4172 	 * from dlia.
4173 	 */
4174 	if (dlia->dl_version == DL_VERSION_2) {
4175 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4176 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4177 		    brdcst_addr_length);
4178 		if (brdcst_addr == NULL) {
4179 			brdcst_addr_length = 0;
4180 		}
4181 		sap_length = dlia->dl_sap_length;
4182 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4183 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4184 		    brdcst_addr_length, sap_length, phys_addr_length));
4185 	} else {
4186 		brdcst_addr_length = 6;
4187 		brdcst_addr = ip_six_byte_all_ones;
4188 		sap_length = -2;
4189 		phys_addr_length = brdcst_addr_length;
4190 	}
4191 
4192 	ill->ill_bcast_addr_length = brdcst_addr_length;
4193 	ill->ill_phys_addr_length = phys_addr_length;
4194 	ill->ill_sap_length = sap_length;
4195 
4196 	/*
4197 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4198 	 * but we must ensure a minimum IP MTU is used since other bits of
4199 	 * IP will fly apart otherwise.
4200 	 */
4201 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4202 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4203 	ill->ill_current_frag = ill->ill_max_frag;
4204 	ill->ill_mtu = ill->ill_max_frag;
4205 
4206 	ill->ill_type = ipm->ip_m_type;
4207 
4208 	if (!ill->ill_dlpi_style_set) {
4209 		if (dlia->dl_provider_style == DL_STYLE2)
4210 			ill->ill_needs_attach = 1;
4211 
4212 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4213 
4214 		/*
4215 		 * Allocate the first ipif on this ill.  We don't delay it
4216 		 * further as ioctl handling assumes at least one ipif exists.
4217 		 *
4218 		 * At this point we don't know whether the ill is v4 or v6.
4219 		 * We will know this whan the SIOCSLIFNAME happens and
4220 		 * the correct value for ill_isv6 will be assigned in
4221 		 * ipif_set_values(). We need to hold the ill lock and
4222 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4223 		 * the wakeup.
4224 		 */
4225 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4226 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4227 		mutex_enter(&ill->ill_lock);
4228 		ASSERT(ill->ill_dlpi_style_set == 0);
4229 		ill->ill_dlpi_style_set = 1;
4230 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4231 		cv_broadcast(&ill->ill_cv);
4232 		mutex_exit(&ill->ill_lock);
4233 		freemsg(mp);
4234 		return;
4235 	}
4236 	ASSERT(ill->ill_ipif != NULL);
4237 	/*
4238 	 * We know whether it is IPv4 or IPv6 now, as this is the
4239 	 * second DL_INFO_ACK we are recieving in response to the
4240 	 * DL_INFO_REQ sent in ipif_set_values.
4241 	 */
4242 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4243 	/*
4244 	 * Clear all the flags that were set based on ill_bcast_addr_length
4245 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4246 	 * changed now and we need to re-evaluate.
4247 	 */
4248 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4249 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4250 
4251 	/*
4252 	 * Free ill_bcast_mp as things could have changed now.
4253 	 *
4254 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4255 	 * with no underlying interfaces (and thus an unknown broadcast
4256 	 * address length), but we enforce that an interface is broadcast-
4257 	 * capable as part of allowing it to join a group.
4258 	 */
4259 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4260 		if (ill->ill_bcast_mp != NULL)
4261 			freemsg(ill->ill_bcast_mp);
4262 		ill->ill_net_type = IRE_IF_NORESOLVER;
4263 
4264 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4265 		    ill->ill_phys_addr_length,
4266 		    ill->ill_sap,
4267 		    ill->ill_sap_length);
4268 
4269 		if (ill->ill_isv6)
4270 			/*
4271 			 * Note: xresolv interfaces will eventually need NOARP
4272 			 * set here as well, but that will require those
4273 			 * external resolvers to have some knowledge of
4274 			 * that flag and act appropriately. Not to be changed
4275 			 * at present.
4276 			 */
4277 			ill->ill_flags |= ILLF_NONUD;
4278 		else
4279 			ill->ill_flags |= ILLF_NOARP;
4280 
4281 		if (ill->ill_mactype == SUNW_DL_VNI) {
4282 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4283 		} else if (ill->ill_phys_addr_length == 0 ||
4284 		    ill->ill_mactype == DL_IPV4 ||
4285 		    ill->ill_mactype == DL_IPV6) {
4286 			/*
4287 			 * The underying link is point-to-point, so mark the
4288 			 * interface as such.  We can do IP multicast over
4289 			 * such a link since it transmits all network-layer
4290 			 * packets to the remote side the same way.
4291 			 */
4292 			ill->ill_flags |= ILLF_MULTICAST;
4293 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4294 		}
4295 	} else {
4296 		ill->ill_net_type = IRE_IF_RESOLVER;
4297 		if (ill->ill_bcast_mp != NULL)
4298 			freemsg(ill->ill_bcast_mp);
4299 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4300 		    ill->ill_bcast_addr_length, ill->ill_sap,
4301 		    ill->ill_sap_length);
4302 		/*
4303 		 * Later detect lack of DLPI driver multicast
4304 		 * capability by catching DL_ENABMULTI errors in
4305 		 * ip_rput_dlpi.
4306 		 */
4307 		ill->ill_flags |= ILLF_MULTICAST;
4308 		if (!ill->ill_isv6)
4309 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4310 	}
4311 
4312 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4313 	if (ill->ill_mactype == SUNW_DL_IPMP)
4314 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4315 
4316 	/* By default an interface does not support any CoS marking */
4317 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4318 
4319 	/*
4320 	 * If we get QoS information in DL_INFO_ACK, the device supports
4321 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4322 	 */
4323 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4324 	    dlia->dl_qos_length);
4325 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4326 		ill->ill_flags |= ILLF_COS_ENABLED;
4327 	}
4328 
4329 	/* Clear any previous error indication. */
4330 	ill->ill_error = 0;
4331 	freemsg(mp);
4332 }
4333 
4334 /*
4335  * Perform various checks to verify that an address would make sense as a
4336  * local, remote, or subnet interface address.
4337  */
4338 static boolean_t
4339 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4340 {
4341 	ipaddr_t	net_mask;
4342 
4343 	/*
4344 	 * Don't allow all zeroes, or all ones, but allow
4345 	 * all ones netmask.
4346 	 */
4347 	if ((net_mask = ip_net_mask(addr)) == 0)
4348 		return (B_FALSE);
4349 	/* A given netmask overrides the "guess" netmask */
4350 	if (subnet_mask != 0)
4351 		net_mask = subnet_mask;
4352 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4353 	    (addr == (addr | ~net_mask)))) {
4354 		return (B_FALSE);
4355 	}
4356 
4357 	/*
4358 	 * Even if the netmask is all ones, we do not allow address to be
4359 	 * 255.255.255.255
4360 	 */
4361 	if (addr == INADDR_BROADCAST)
4362 		return (B_FALSE);
4363 
4364 	if (CLASSD(addr))
4365 		return (B_FALSE);
4366 
4367 	return (B_TRUE);
4368 }
4369 
4370 #define	V6_IPIF_LINKLOCAL(p)	\
4371 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4372 
4373 /*
4374  * Compare two given ipifs and check if the second one is better than
4375  * the first one using the order of preference (not taking deprecated
4376  * into acount) specified in ipif_lookup_multicast().
4377  */
4378 static boolean_t
4379 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4380 {
4381 	/* Check the least preferred first. */
4382 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4383 		/* If both ipifs are the same, use the first one. */
4384 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4385 			return (B_FALSE);
4386 		else
4387 			return (B_TRUE);
4388 	}
4389 
4390 	/* For IPv6, check for link local address. */
4391 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4392 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4393 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4394 			/* The second one is equal or less preferred. */
4395 			return (B_FALSE);
4396 		} else {
4397 			return (B_TRUE);
4398 		}
4399 	}
4400 
4401 	/* Then check for point to point interface. */
4402 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4403 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4404 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4405 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4406 			return (B_FALSE);
4407 		} else {
4408 			return (B_TRUE);
4409 		}
4410 	}
4411 
4412 	/* old_ipif is a normal interface, so no need to use the new one. */
4413 	return (B_FALSE);
4414 }
4415 
4416 /*
4417  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4418  * The ipif must be up, and its ill must multicast-capable, not
4419  * condemned, not an underlying interface in an IPMP group, and
4420  * not a VNI interface.  Order of preference:
4421  *
4422  * 	1a. normal
4423  * 	1b. normal, but deprecated
4424  * 	2a. point to point
4425  * 	2b. point to point, but deprecated
4426  * 	3a. link local
4427  * 	3b. link local, but deprecated
4428  * 	4. loopback.
4429  */
4430 static ipif_t *
4431 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4432 {
4433 	ill_t			*ill;
4434 	ill_walk_context_t	ctx;
4435 	ipif_t			*ipif;
4436 	ipif_t			*saved_ipif = NULL;
4437 	ipif_t			*dep_ipif = NULL;
4438 
4439 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4440 	if (isv6)
4441 		ill = ILL_START_WALK_V6(&ctx, ipst);
4442 	else
4443 		ill = ILL_START_WALK_V4(&ctx, ipst);
4444 
4445 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4446 		mutex_enter(&ill->ill_lock);
4447 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4448 		    ILL_IS_CONDEMNED(ill) ||
4449 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4450 			mutex_exit(&ill->ill_lock);
4451 			continue;
4452 		}
4453 		for (ipif = ill->ill_ipif; ipif != NULL;
4454 		    ipif = ipif->ipif_next) {
4455 			if (zoneid != ipif->ipif_zoneid &&
4456 			    zoneid != ALL_ZONES &&
4457 			    ipif->ipif_zoneid != ALL_ZONES) {
4458 				continue;
4459 			}
4460 			if (!(ipif->ipif_flags & IPIF_UP) ||
4461 			    IPIF_IS_CONDEMNED(ipif)) {
4462 				continue;
4463 			}
4464 
4465 			/*
4466 			 * Found one candidate.  If it is deprecated,
4467 			 * remember it in dep_ipif.  If it is not deprecated,
4468 			 * remember it in saved_ipif.
4469 			 */
4470 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4471 				if (dep_ipif == NULL) {
4472 					dep_ipif = ipif;
4473 				} else if (ipif_comp_multi(dep_ipif, ipif,
4474 				    isv6)) {
4475 					/*
4476 					 * If the previous dep_ipif does not
4477 					 * belong to the same ill, we've done
4478 					 * a ipif_refhold() on it.  So we need
4479 					 * to release it.
4480 					 */
4481 					if (dep_ipif->ipif_ill != ill)
4482 						ipif_refrele(dep_ipif);
4483 					dep_ipif = ipif;
4484 				}
4485 				continue;
4486 			}
4487 			if (saved_ipif == NULL) {
4488 				saved_ipif = ipif;
4489 			} else {
4490 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4491 					if (saved_ipif->ipif_ill != ill)
4492 						ipif_refrele(saved_ipif);
4493 					saved_ipif = ipif;
4494 				}
4495 			}
4496 		}
4497 		/*
4498 		 * Before going to the next ill, do a ipif_refhold() on the
4499 		 * saved ones.
4500 		 */
4501 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4502 			ipif_refhold_locked(saved_ipif);
4503 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4504 			ipif_refhold_locked(dep_ipif);
4505 		mutex_exit(&ill->ill_lock);
4506 	}
4507 	rw_exit(&ipst->ips_ill_g_lock);
4508 
4509 	/*
4510 	 * If we have only the saved_ipif, return it.  But if we have both
4511 	 * saved_ipif and dep_ipif, check to see which one is better.
4512 	 */
4513 	if (saved_ipif != NULL) {
4514 		if (dep_ipif != NULL) {
4515 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4516 				ipif_refrele(saved_ipif);
4517 				return (dep_ipif);
4518 			} else {
4519 				ipif_refrele(dep_ipif);
4520 				return (saved_ipif);
4521 			}
4522 		}
4523 		return (saved_ipif);
4524 	} else {
4525 		return (dep_ipif);
4526 	}
4527 }
4528 
4529 ill_t *
4530 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4531 {
4532 	ipif_t *ipif;
4533 	ill_t *ill;
4534 
4535 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4536 	if (ipif == NULL)
4537 		return (NULL);
4538 
4539 	ill = ipif->ipif_ill;
4540 	ill_refhold(ill);
4541 	ipif_refrele(ipif);
4542 	return (ill);
4543 }
4544 
4545 /*
4546  * This function is called when an application does not specify an interface
4547  * to be used for multicast traffic (joining a group/sending data).  It
4548  * calls ire_lookup_multi() to look for an interface route for the
4549  * specified multicast group.  Doing this allows the administrator to add
4550  * prefix routes for multicast to indicate which interface to be used for
4551  * multicast traffic in the above scenario.  The route could be for all
4552  * multicast (224.0/4), for a single multicast group (a /32 route) or
4553  * anything in between.  If there is no such multicast route, we just find
4554  * any multicast capable interface and return it.  The returned ipif
4555  * is refhold'ed.
4556  *
4557  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4558  * unicast table. This is used by CGTP.
4559  */
4560 ill_t *
4561 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4562     boolean_t *multirtp, ipaddr_t *setsrcp)
4563 {
4564 	ill_t			*ill;
4565 
4566 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4567 	if (ill != NULL)
4568 		return (ill);
4569 
4570 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4571 }
4572 
4573 /*
4574  * Look for an ipif with the specified interface address and destination.
4575  * The destination address is used only for matching point-to-point interfaces.
4576  */
4577 ipif_t *
4578 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4579 {
4580 	ipif_t	*ipif;
4581 	ill_t	*ill;
4582 	ill_walk_context_t ctx;
4583 
4584 	/*
4585 	 * First match all the point-to-point interfaces
4586 	 * before looking at non-point-to-point interfaces.
4587 	 * This is done to avoid returning non-point-to-point
4588 	 * ipif instead of unnumbered point-to-point ipif.
4589 	 */
4590 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4591 	ill = ILL_START_WALK_V4(&ctx, ipst);
4592 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4593 		mutex_enter(&ill->ill_lock);
4594 		for (ipif = ill->ill_ipif; ipif != NULL;
4595 		    ipif = ipif->ipif_next) {
4596 			/* Allow the ipif to be down */
4597 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4598 			    (ipif->ipif_lcl_addr == if_addr) &&
4599 			    (ipif->ipif_pp_dst_addr == dst)) {
4600 				if (!IPIF_IS_CONDEMNED(ipif)) {
4601 					ipif_refhold_locked(ipif);
4602 					mutex_exit(&ill->ill_lock);
4603 					rw_exit(&ipst->ips_ill_g_lock);
4604 					return (ipif);
4605 				}
4606 			}
4607 		}
4608 		mutex_exit(&ill->ill_lock);
4609 	}
4610 	rw_exit(&ipst->ips_ill_g_lock);
4611 
4612 	/* lookup the ipif based on interface address */
4613 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4614 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4615 	return (ipif);
4616 }
4617 
4618 /*
4619  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4620  */
4621 static ipif_t *
4622 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4623     zoneid_t zoneid, ip_stack_t *ipst)
4624 {
4625 	ipif_t  *ipif;
4626 	ill_t   *ill;
4627 	boolean_t ptp = B_FALSE;
4628 	ill_walk_context_t	ctx;
4629 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4630 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4631 
4632 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4633 	/*
4634 	 * Repeat twice, first based on local addresses and
4635 	 * next time for pointopoint.
4636 	 */
4637 repeat:
4638 	ill = ILL_START_WALK_V4(&ctx, ipst);
4639 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4640 		if (match_ill != NULL && ill != match_ill &&
4641 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4642 			continue;
4643 		}
4644 		mutex_enter(&ill->ill_lock);
4645 		for (ipif = ill->ill_ipif; ipif != NULL;
4646 		    ipif = ipif->ipif_next) {
4647 			if (zoneid != ALL_ZONES &&
4648 			    zoneid != ipif->ipif_zoneid &&
4649 			    ipif->ipif_zoneid != ALL_ZONES)
4650 				continue;
4651 
4652 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4653 				continue;
4654 
4655 			/* Allow the ipif to be down */
4656 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4657 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4658 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4659 			    (ipif->ipif_pp_dst_addr == addr))) {
4660 				if (!IPIF_IS_CONDEMNED(ipif)) {
4661 					ipif_refhold_locked(ipif);
4662 					mutex_exit(&ill->ill_lock);
4663 					rw_exit(&ipst->ips_ill_g_lock);
4664 					return (ipif);
4665 				}
4666 			}
4667 		}
4668 		mutex_exit(&ill->ill_lock);
4669 	}
4670 
4671 	/* If we already did the ptp case, then we are done */
4672 	if (ptp) {
4673 		rw_exit(&ipst->ips_ill_g_lock);
4674 		return (NULL);
4675 	}
4676 	ptp = B_TRUE;
4677 	goto repeat;
4678 }
4679 
4680 /*
4681  * Lookup an ipif with the specified address.  For point-to-point links we
4682  * look for matches on either the destination address or the local address,
4683  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4684  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4685  * (or illgrp if `match_ill' is in an IPMP group).
4686  */
4687 ipif_t *
4688 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4689     ip_stack_t *ipst)
4690 {
4691 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4692 	    zoneid, ipst));
4693 }
4694 
4695 /*
4696  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4697  * except that we will only return an address if it is not marked as
4698  * IPIF_DUPLICATE
4699  */
4700 ipif_t *
4701 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4702     ip_stack_t *ipst)
4703 {
4704 	return (ipif_lookup_addr_common(addr, match_ill,
4705 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4706 	    zoneid, ipst));
4707 }
4708 
4709 /*
4710  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4711  * `match_ill' across the IPMP group.  This function is only needed in some
4712  * corner-cases; almost everything should use ipif_lookup_addr().
4713  */
4714 ipif_t *
4715 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4716 {
4717 	ASSERT(match_ill != NULL);
4718 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4719 	    ipst));
4720 }
4721 
4722 /*
4723  * Look for an ipif with the specified address. For point-point links
4724  * we look for matches on either the destination address and the local
4725  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4726  * is set.
4727  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4728  * ill (or illgrp if `match_ill' is in an IPMP group).
4729  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4730  */
4731 zoneid_t
4732 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4733 {
4734 	zoneid_t zoneid;
4735 	ipif_t  *ipif;
4736 	ill_t   *ill;
4737 	boolean_t ptp = B_FALSE;
4738 	ill_walk_context_t	ctx;
4739 
4740 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4741 	/*
4742 	 * Repeat twice, first based on local addresses and
4743 	 * next time for pointopoint.
4744 	 */
4745 repeat:
4746 	ill = ILL_START_WALK_V4(&ctx, ipst);
4747 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4748 		if (match_ill != NULL && ill != match_ill &&
4749 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4750 			continue;
4751 		}
4752 		mutex_enter(&ill->ill_lock);
4753 		for (ipif = ill->ill_ipif; ipif != NULL;
4754 		    ipif = ipif->ipif_next) {
4755 			/* Allow the ipif to be down */
4756 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4757 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4758 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4759 			    (ipif->ipif_pp_dst_addr == addr)) &&
4760 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4761 				zoneid = ipif->ipif_zoneid;
4762 				mutex_exit(&ill->ill_lock);
4763 				rw_exit(&ipst->ips_ill_g_lock);
4764 				/*
4765 				 * If ipif_zoneid was ALL_ZONES then we have
4766 				 * a trusted extensions shared IP address.
4767 				 * In that case GLOBAL_ZONEID works to send.
4768 				 */
4769 				if (zoneid == ALL_ZONES)
4770 					zoneid = GLOBAL_ZONEID;
4771 				return (zoneid);
4772 			}
4773 		}
4774 		mutex_exit(&ill->ill_lock);
4775 	}
4776 
4777 	/* If we already did the ptp case, then we are done */
4778 	if (ptp) {
4779 		rw_exit(&ipst->ips_ill_g_lock);
4780 		return (ALL_ZONES);
4781 	}
4782 	ptp = B_TRUE;
4783 	goto repeat;
4784 }
4785 
4786 /*
4787  * Look for an ipif that matches the specified remote address i.e. the
4788  * ipif that would receive the specified packet.
4789  * First look for directly connected interfaces and then do a recursive
4790  * IRE lookup and pick the first ipif corresponding to the source address in the
4791  * ire.
4792  * Returns: held ipif
4793  *
4794  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4795  */
4796 ipif_t *
4797 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4798 {
4799 	ipif_t	*ipif;
4800 
4801 	ASSERT(!ill->ill_isv6);
4802 
4803 	/*
4804 	 * Someone could be changing this ipif currently or change it
4805 	 * after we return this. Thus  a few packets could use the old
4806 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4807 	 * will atomically be updated or cleaned up with the new value
4808 	 * Thus we don't need a lock to check the flags or other attrs below.
4809 	 */
4810 	mutex_enter(&ill->ill_lock);
4811 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4812 		if (IPIF_IS_CONDEMNED(ipif))
4813 			continue;
4814 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4815 		    ipif->ipif_zoneid != ALL_ZONES)
4816 			continue;
4817 		/* Allow the ipif to be down */
4818 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4819 			if ((ipif->ipif_pp_dst_addr == addr) ||
4820 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4821 			    ipif->ipif_lcl_addr == addr)) {
4822 				ipif_refhold_locked(ipif);
4823 				mutex_exit(&ill->ill_lock);
4824 				return (ipif);
4825 			}
4826 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4827 			ipif_refhold_locked(ipif);
4828 			mutex_exit(&ill->ill_lock);
4829 			return (ipif);
4830 		}
4831 	}
4832 	mutex_exit(&ill->ill_lock);
4833 	/*
4834 	 * For a remote destination it isn't possible to nail down a particular
4835 	 * ipif.
4836 	 */
4837 
4838 	/* Pick the first interface */
4839 	ipif = ipif_get_next_ipif(NULL, ill);
4840 	return (ipif);
4841 }
4842 
4843 /*
4844  * This func does not prevent refcnt from increasing. But if
4845  * the caller has taken steps to that effect, then this func
4846  * can be used to determine whether the ill has become quiescent
4847  */
4848 static boolean_t
4849 ill_is_quiescent(ill_t *ill)
4850 {
4851 	ipif_t	*ipif;
4852 
4853 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4854 
4855 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4856 		if (ipif->ipif_refcnt != 0)
4857 			return (B_FALSE);
4858 	}
4859 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4860 		return (B_FALSE);
4861 	}
4862 	return (B_TRUE);
4863 }
4864 
4865 boolean_t
4866 ill_is_freeable(ill_t *ill)
4867 {
4868 	ipif_t	*ipif;
4869 
4870 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4871 
4872 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4873 		if (ipif->ipif_refcnt != 0) {
4874 			return (B_FALSE);
4875 		}
4876 	}
4877 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4878 		return (B_FALSE);
4879 	}
4880 	return (B_TRUE);
4881 }
4882 
4883 /*
4884  * This func does not prevent refcnt from increasing. But if
4885  * the caller has taken steps to that effect, then this func
4886  * can be used to determine whether the ipif has become quiescent
4887  */
4888 static boolean_t
4889 ipif_is_quiescent(ipif_t *ipif)
4890 {
4891 	ill_t *ill;
4892 
4893 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4894 
4895 	if (ipif->ipif_refcnt != 0)
4896 		return (B_FALSE);
4897 
4898 	ill = ipif->ipif_ill;
4899 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4900 	    ill->ill_logical_down) {
4901 		return (B_TRUE);
4902 	}
4903 
4904 	/* This is the last ipif going down or being deleted on this ill */
4905 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4906 		return (B_FALSE);
4907 	}
4908 
4909 	return (B_TRUE);
4910 }
4911 
4912 /*
4913  * return true if the ipif can be destroyed: the ipif has to be quiescent
4914  * with zero references from ire/ilm to it.
4915  */
4916 static boolean_t
4917 ipif_is_freeable(ipif_t *ipif)
4918 {
4919 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4920 	ASSERT(ipif->ipif_id != 0);
4921 	return (ipif->ipif_refcnt == 0);
4922 }
4923 
4924 /*
4925  * The ipif/ill/ire has been refreled. Do the tail processing.
4926  * Determine if the ipif or ill in question has become quiescent and if so
4927  * wakeup close and/or restart any queued pending ioctl that is waiting
4928  * for the ipif_down (or ill_down)
4929  */
4930 void
4931 ipif_ill_refrele_tail(ill_t *ill)
4932 {
4933 	mblk_t	*mp;
4934 	conn_t	*connp;
4935 	ipsq_t	*ipsq;
4936 	ipxop_t	*ipx;
4937 	ipif_t	*ipif;
4938 	dl_notify_ind_t *dlindp;
4939 
4940 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4941 
4942 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4943 		/* ip_modclose() may be waiting */
4944 		cv_broadcast(&ill->ill_cv);
4945 	}
4946 
4947 	ipsq = ill->ill_phyint->phyint_ipsq;
4948 	mutex_enter(&ipsq->ipsq_lock);
4949 	ipx = ipsq->ipsq_xop;
4950 	mutex_enter(&ipx->ipx_lock);
4951 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4952 		goto unlock;
4953 
4954 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4955 
4956 	ipif = ipx->ipx_pending_ipif;
4957 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4958 		goto unlock;
4959 
4960 	switch (ipx->ipx_waitfor) {
4961 	case IPIF_DOWN:
4962 		if (!ipif_is_quiescent(ipif))
4963 			goto unlock;
4964 		break;
4965 	case IPIF_FREE:
4966 		if (!ipif_is_freeable(ipif))
4967 			goto unlock;
4968 		break;
4969 	case ILL_DOWN:
4970 		if (!ill_is_quiescent(ill))
4971 			goto unlock;
4972 		break;
4973 	case ILL_FREE:
4974 		/*
4975 		 * ILL_FREE is only for loopback; normal ill teardown waits
4976 		 * synchronously in ip_modclose() without using ipx_waitfor,
4977 		 * handled by the cv_broadcast() at the top of this function.
4978 		 */
4979 		if (!ill_is_freeable(ill))
4980 			goto unlock;
4981 		break;
4982 	default:
4983 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4984 		    (void *)ipsq, ipx->ipx_waitfor);
4985 	}
4986 
4987 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4988 	mutex_exit(&ipx->ipx_lock);
4989 	mp = ipsq_pending_mp_get(ipsq, &connp);
4990 	mutex_exit(&ipsq->ipsq_lock);
4991 	mutex_exit(&ill->ill_lock);
4992 
4993 	ASSERT(mp != NULL);
4994 	/*
4995 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4996 	 * we can only get here when the current operation decides it
4997 	 * it needs to quiesce via ipsq_pending_mp_add().
4998 	 */
4999 	switch (mp->b_datap->db_type) {
5000 	case M_PCPROTO:
5001 	case M_PROTO:
5002 		/*
5003 		 * For now, only DL_NOTIFY_IND messages can use this facility.
5004 		 */
5005 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
5006 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
5007 
5008 		switch (dlindp->dl_notification) {
5009 		case DL_NOTE_PHYS_ADDR:
5010 			qwriter_ip(ill, ill->ill_rq, mp,
5011 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5012 			return;
5013 		case DL_NOTE_REPLUMB:
5014 			qwriter_ip(ill, ill->ill_rq, mp,
5015 			    ill_replumb_tail, CUR_OP, B_TRUE);
5016 			return;
5017 		default:
5018 			ASSERT(0);
5019 			ill_refrele(ill);
5020 		}
5021 		break;
5022 
5023 	case M_ERROR:
5024 	case M_HANGUP:
5025 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5026 		    B_TRUE);
5027 		return;
5028 
5029 	case M_IOCTL:
5030 	case M_IOCDATA:
5031 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5032 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5033 		return;
5034 
5035 	default:
5036 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5037 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5038 	}
5039 	return;
5040 unlock:
5041 	mutex_exit(&ipsq->ipsq_lock);
5042 	mutex_exit(&ipx->ipx_lock);
5043 	mutex_exit(&ill->ill_lock);
5044 }
5045 
5046 #ifdef DEBUG
5047 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5048 static void
5049 th_trace_rrecord(th_trace_t *th_trace)
5050 {
5051 	tr_buf_t *tr_buf;
5052 	uint_t lastref;
5053 
5054 	lastref = th_trace->th_trace_lastref;
5055 	lastref++;
5056 	if (lastref == TR_BUF_MAX)
5057 		lastref = 0;
5058 	th_trace->th_trace_lastref = lastref;
5059 	tr_buf = &th_trace->th_trbuf[lastref];
5060 	tr_buf->tr_time = ddi_get_lbolt();
5061 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5062 }
5063 
5064 static void
5065 th_trace_free(void *value)
5066 {
5067 	th_trace_t *th_trace = value;
5068 
5069 	ASSERT(th_trace->th_refcnt == 0);
5070 	kmem_free(th_trace, sizeof (*th_trace));
5071 }
5072 
5073 /*
5074  * Find or create the per-thread hash table used to track object references.
5075  * The ipst argument is NULL if we shouldn't allocate.
5076  *
5077  * Accesses per-thread data, so there's no need to lock here.
5078  */
5079 static mod_hash_t *
5080 th_trace_gethash(ip_stack_t *ipst)
5081 {
5082 	th_hash_t *thh;
5083 
5084 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5085 		mod_hash_t *mh;
5086 		char name[256];
5087 		size_t objsize, rshift;
5088 		int retv;
5089 
5090 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5091 			return (NULL);
5092 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5093 		    (void *)curthread);
5094 
5095 		/*
5096 		 * We use mod_hash_create_extended here rather than the more
5097 		 * obvious mod_hash_create_ptrhash because the latter has a
5098 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5099 		 * block.
5100 		 */
5101 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5102 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5103 		rshift = highbit(objsize);
5104 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5105 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5106 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5107 		if (mh == NULL) {
5108 			kmem_free(thh, sizeof (*thh));
5109 			return (NULL);
5110 		}
5111 		thh->thh_hash = mh;
5112 		thh->thh_ipst = ipst;
5113 		/*
5114 		 * We trace ills, ipifs, ires, and nces.  All of these are
5115 		 * per-IP-stack, so the lock on the thread list is as well.
5116 		 */
5117 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5118 		list_insert_tail(&ip_thread_list, thh);
5119 		rw_exit(&ip_thread_rwlock);
5120 		retv = tsd_set(ip_thread_data, thh);
5121 		ASSERT(retv == 0);
5122 	}
5123 	return (thh != NULL ? thh->thh_hash : NULL);
5124 }
5125 
5126 boolean_t
5127 th_trace_ref(const void *obj, ip_stack_t *ipst)
5128 {
5129 	th_trace_t *th_trace;
5130 	mod_hash_t *mh;
5131 	mod_hash_val_t val;
5132 
5133 	if ((mh = th_trace_gethash(ipst)) == NULL)
5134 		return (B_FALSE);
5135 
5136 	/*
5137 	 * Attempt to locate the trace buffer for this obj and thread.
5138 	 * If it does not exist, then allocate a new trace buffer and
5139 	 * insert into the hash.
5140 	 */
5141 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5142 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5143 		if (th_trace == NULL)
5144 			return (B_FALSE);
5145 
5146 		th_trace->th_id = curthread;
5147 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5148 		    (mod_hash_val_t)th_trace) != 0) {
5149 			kmem_free(th_trace, sizeof (th_trace_t));
5150 			return (B_FALSE);
5151 		}
5152 	} else {
5153 		th_trace = (th_trace_t *)val;
5154 	}
5155 
5156 	ASSERT(th_trace->th_refcnt >= 0 &&
5157 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5158 
5159 	th_trace->th_refcnt++;
5160 	th_trace_rrecord(th_trace);
5161 	return (B_TRUE);
5162 }
5163 
5164 /*
5165  * For the purpose of tracing a reference release, we assume that global
5166  * tracing is always on and that the same thread initiated the reference hold
5167  * is releasing.
5168  */
5169 void
5170 th_trace_unref(const void *obj)
5171 {
5172 	int retv;
5173 	mod_hash_t *mh;
5174 	th_trace_t *th_trace;
5175 	mod_hash_val_t val;
5176 
5177 	mh = th_trace_gethash(NULL);
5178 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5179 	ASSERT(retv == 0);
5180 	th_trace = (th_trace_t *)val;
5181 
5182 	ASSERT(th_trace->th_refcnt > 0);
5183 	th_trace->th_refcnt--;
5184 	th_trace_rrecord(th_trace);
5185 }
5186 
5187 /*
5188  * If tracing has been disabled, then we assume that the reference counts are
5189  * now useless, and we clear them out before destroying the entries.
5190  */
5191 void
5192 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5193 {
5194 	th_hash_t	*thh;
5195 	mod_hash_t	*mh;
5196 	mod_hash_val_t	val;
5197 	th_trace_t	*th_trace;
5198 	int		retv;
5199 
5200 	rw_enter(&ip_thread_rwlock, RW_READER);
5201 	for (thh = list_head(&ip_thread_list); thh != NULL;
5202 	    thh = list_next(&ip_thread_list, thh)) {
5203 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5204 		    &val) == 0) {
5205 			th_trace = (th_trace_t *)val;
5206 			if (trace_disable)
5207 				th_trace->th_refcnt = 0;
5208 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5209 			ASSERT(retv == 0);
5210 		}
5211 	}
5212 	rw_exit(&ip_thread_rwlock);
5213 }
5214 
5215 void
5216 ipif_trace_ref(ipif_t *ipif)
5217 {
5218 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5219 
5220 	if (ipif->ipif_trace_disable)
5221 		return;
5222 
5223 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5224 		ipif->ipif_trace_disable = B_TRUE;
5225 		ipif_trace_cleanup(ipif);
5226 	}
5227 }
5228 
5229 void
5230 ipif_untrace_ref(ipif_t *ipif)
5231 {
5232 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5233 
5234 	if (!ipif->ipif_trace_disable)
5235 		th_trace_unref(ipif);
5236 }
5237 
5238 void
5239 ill_trace_ref(ill_t *ill)
5240 {
5241 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5242 
5243 	if (ill->ill_trace_disable)
5244 		return;
5245 
5246 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5247 		ill->ill_trace_disable = B_TRUE;
5248 		ill_trace_cleanup(ill);
5249 	}
5250 }
5251 
5252 void
5253 ill_untrace_ref(ill_t *ill)
5254 {
5255 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5256 
5257 	if (!ill->ill_trace_disable)
5258 		th_trace_unref(ill);
5259 }
5260 
5261 /*
5262  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5263  * failure, ipif_trace_disable is set.
5264  */
5265 static void
5266 ipif_trace_cleanup(const ipif_t *ipif)
5267 {
5268 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5269 }
5270 
5271 /*
5272  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5273  * failure, ill_trace_disable is set.
5274  */
5275 static void
5276 ill_trace_cleanup(const ill_t *ill)
5277 {
5278 	th_trace_cleanup(ill, ill->ill_trace_disable);
5279 }
5280 #endif /* DEBUG */
5281 
5282 void
5283 ipif_refhold_locked(ipif_t *ipif)
5284 {
5285 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5286 	ipif->ipif_refcnt++;
5287 	IPIF_TRACE_REF(ipif);
5288 }
5289 
5290 void
5291 ipif_refhold(ipif_t *ipif)
5292 {
5293 	ill_t	*ill;
5294 
5295 	ill = ipif->ipif_ill;
5296 	mutex_enter(&ill->ill_lock);
5297 	ipif->ipif_refcnt++;
5298 	IPIF_TRACE_REF(ipif);
5299 	mutex_exit(&ill->ill_lock);
5300 }
5301 
5302 /*
5303  * Must not be called while holding any locks. Otherwise if this is
5304  * the last reference to be released there is a chance of recursive mutex
5305  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5306  * to restart an ioctl.
5307  */
5308 void
5309 ipif_refrele(ipif_t *ipif)
5310 {
5311 	ill_t	*ill;
5312 
5313 	ill = ipif->ipif_ill;
5314 
5315 	mutex_enter(&ill->ill_lock);
5316 	ASSERT(ipif->ipif_refcnt != 0);
5317 	ipif->ipif_refcnt--;
5318 	IPIF_UNTRACE_REF(ipif);
5319 	if (ipif->ipif_refcnt != 0) {
5320 		mutex_exit(&ill->ill_lock);
5321 		return;
5322 	}
5323 
5324 	/* Drops the ill_lock */
5325 	ipif_ill_refrele_tail(ill);
5326 }
5327 
5328 ipif_t *
5329 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5330 {
5331 	ipif_t	*ipif;
5332 
5333 	mutex_enter(&ill->ill_lock);
5334 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5335 	    ipif != NULL; ipif = ipif->ipif_next) {
5336 		if (IPIF_IS_CONDEMNED(ipif))
5337 			continue;
5338 		ipif_refhold_locked(ipif);
5339 		mutex_exit(&ill->ill_lock);
5340 		return (ipif);
5341 	}
5342 	mutex_exit(&ill->ill_lock);
5343 	return (NULL);
5344 }
5345 
5346 /*
5347  * TODO: make this table extendible at run time
5348  * Return a pointer to the mac type info for 'mac_type'
5349  */
5350 static ip_m_t *
5351 ip_m_lookup(t_uscalar_t mac_type)
5352 {
5353 	ip_m_t	*ipm;
5354 
5355 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5356 		if (ipm->ip_m_mac_type == mac_type)
5357 			return (ipm);
5358 	return (NULL);
5359 }
5360 
5361 /*
5362  * Make a link layer address from the multicast IP address *addr.
5363  * To form the link layer address, invoke the ip_m_v*mapping function
5364  * associated with the link-layer type.
5365  */
5366 void
5367 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5368 {
5369 	ip_m_t *ipm;
5370 
5371 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5372 		return;
5373 
5374 	ASSERT(addr != NULL);
5375 
5376 	ipm = ip_m_lookup(ill->ill_mactype);
5377 	if (ipm == NULL ||
5378 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5379 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5380 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5381 		    ill->ill_name, ill->ill_mactype));
5382 		return;
5383 	}
5384 	if (ill->ill_isv6)
5385 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5386 	else
5387 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5388 }
5389 
5390 /*
5391  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5392  * ill is passed in to associate it with the correct interface.
5393  * If ire_arg is set, then we return the held IRE in that location.
5394  */
5395 int
5396 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5397     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5398     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5399 {
5400 	ire_t	*ire, *nire;
5401 	ire_t	*gw_ire = NULL;
5402 	ipif_t	*ipif = NULL;
5403 	uint_t	type;
5404 	int	match_flags = MATCH_IRE_TYPE;
5405 	tsol_gc_t *gc = NULL;
5406 	tsol_gcgrp_t *gcgrp = NULL;
5407 	boolean_t gcgrp_xtraref = B_FALSE;
5408 	boolean_t cgtp_broadcast;
5409 
5410 	ip1dbg(("ip_rt_add:"));
5411 
5412 	if (ire_arg != NULL)
5413 		*ire_arg = NULL;
5414 
5415 	/*
5416 	 * If this is the case of RTF_HOST being set, then we set the netmask
5417 	 * to all ones (regardless if one was supplied).
5418 	 */
5419 	if (flags & RTF_HOST)
5420 		mask = IP_HOST_MASK;
5421 
5422 	/*
5423 	 * Prevent routes with a zero gateway from being created (since
5424 	 * interfaces can currently be plumbed and brought up no assigned
5425 	 * address).
5426 	 */
5427 	if (gw_addr == 0)
5428 		return (ENETUNREACH);
5429 	/*
5430 	 * Get the ipif, if any, corresponding to the gw_addr
5431 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5432 	 * we match on the gatway and destination to handle unnumbered pt-pt
5433 	 * interfaces.
5434 	 */
5435 	if (ill != NULL)
5436 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5437 	else
5438 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5439 	if (ipif != NULL) {
5440 		if (IS_VNI(ipif->ipif_ill)) {
5441 			ipif_refrele(ipif);
5442 			return (EINVAL);
5443 		}
5444 	}
5445 
5446 	/*
5447 	 * GateD will attempt to create routes with a loopback interface
5448 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5449 	 * these routes to be added, but create them as interface routes
5450 	 * since the gateway is an interface address.
5451 	 */
5452 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5453 		flags &= ~RTF_GATEWAY;
5454 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5455 		    mask == IP_HOST_MASK) {
5456 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5457 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5458 			    NULL);
5459 			if (ire != NULL) {
5460 				ire_refrele(ire);
5461 				ipif_refrele(ipif);
5462 				return (EEXIST);
5463 			}
5464 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5465 			    "for 0x%x\n", (void *)ipif,
5466 			    ipif->ipif_ire_type,
5467 			    ntohl(ipif->ipif_lcl_addr)));
5468 			ire = ire_create(
5469 			    (uchar_t *)&dst_addr,	/* dest address */
5470 			    (uchar_t *)&mask,		/* mask */
5471 			    NULL,			/* no gateway */
5472 			    ipif->ipif_ire_type,	/* LOOPBACK */
5473 			    ipif->ipif_ill,
5474 			    zoneid,
5475 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5476 			    NULL,
5477 			    ipst);
5478 
5479 			if (ire == NULL) {
5480 				ipif_refrele(ipif);
5481 				return (ENOMEM);
5482 			}
5483 			/* src address assigned by the caller? */
5484 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5485 				ire->ire_setsrc_addr = src_addr;
5486 
5487 			nire = ire_add(ire);
5488 			if (nire == NULL) {
5489 				/*
5490 				 * In the result of failure, ire_add() will have
5491 				 * already deleted the ire in question, so there
5492 				 * is no need to do that here.
5493 				 */
5494 				ipif_refrele(ipif);
5495 				return (ENOMEM);
5496 			}
5497 			/*
5498 			 * Check if it was a duplicate entry. This handles
5499 			 * the case of two racing route adds for the same route
5500 			 */
5501 			if (nire != ire) {
5502 				ASSERT(nire->ire_identical_ref > 1);
5503 				ire_delete(nire);
5504 				ire_refrele(nire);
5505 				ipif_refrele(ipif);
5506 				return (EEXIST);
5507 			}
5508 			ire = nire;
5509 			goto save_ire;
5510 		}
5511 	}
5512 
5513 	/*
5514 	 * The routes for multicast with CGTP are quite special in that
5515 	 * the gateway is the local interface address, yet RTF_GATEWAY
5516 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5517 	 * this undocumented and unusual use of multicast routes.
5518 	 */
5519 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5520 		flags &= ~RTF_GATEWAY;
5521 
5522 	/*
5523 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5524 	 * and the gateway address provided is one of the system's interface
5525 	 * addresses.  By using the routing socket interface and supplying an
5526 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5527 	 * specifying an interface route to be created is available which uses
5528 	 * the interface index that specifies the outgoing interface rather than
5529 	 * the address of an outgoing interface (which may not be able to
5530 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5531 	 * flag, routes can be specified which not only specify the next-hop to
5532 	 * be used when routing to a certain prefix, but also which outgoing
5533 	 * interface should be used.
5534 	 *
5535 	 * Previously, interfaces would have unique addresses assigned to them
5536 	 * and so the address assigned to a particular interface could be used
5537 	 * to identify a particular interface.  One exception to this was the
5538 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5539 	 *
5540 	 * With the advent of IPv6 and its link-local addresses, this
5541 	 * restriction was relaxed and interfaces could share addresses between
5542 	 * themselves.  In fact, typically all of the link-local interfaces on
5543 	 * an IPv6 node or router will have the same link-local address.  In
5544 	 * order to differentiate between these interfaces, the use of an
5545 	 * interface index is necessary and this index can be carried inside a
5546 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5547 	 * of using the interface index, however, is that all of the ipif's that
5548 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5549 	 * cannot be used to differentiate between ipif's (or logical
5550 	 * interfaces) that belong to the same ill (physical interface).
5551 	 *
5552 	 * For example, in the following case involving IPv4 interfaces and
5553 	 * logical interfaces
5554 	 *
5555 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5556 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5557 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5558 	 *
5559 	 * the ipif's corresponding to each of these interface routes can be
5560 	 * uniquely identified by the "gateway" (actually interface address).
5561 	 *
5562 	 * In this case involving multiple IPv6 default routes to a particular
5563 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5564 	 * default route is of interest:
5565 	 *
5566 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5567 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5568 	 */
5569 
5570 	/* RTF_GATEWAY not set */
5571 	if (!(flags & RTF_GATEWAY)) {
5572 		if (sp != NULL) {
5573 			ip2dbg(("ip_rt_add: gateway security attributes "
5574 			    "cannot be set with interface route\n"));
5575 			if (ipif != NULL)
5576 				ipif_refrele(ipif);
5577 			return (EINVAL);
5578 		}
5579 
5580 		/*
5581 		 * Whether or not ill (RTA_IFP) is set, we require that
5582 		 * the gateway is one of our local addresses.
5583 		 */
5584 		if (ipif == NULL)
5585 			return (ENETUNREACH);
5586 
5587 		/*
5588 		 * We use MATCH_IRE_ILL here. If the caller specified an
5589 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5590 		 * we use the ill derived from the gateway address.
5591 		 * We can always match the gateway address since we record it
5592 		 * in ire_gateway_addr.
5593 		 * We don't allow RTA_IFP to specify a different ill than the
5594 		 * one matching the ipif to make sure we can delete the route.
5595 		 */
5596 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5597 		if (ill == NULL) {
5598 			ill = ipif->ipif_ill;
5599 		} else if (ill != ipif->ipif_ill) {
5600 			ipif_refrele(ipif);
5601 			return (EINVAL);
5602 		}
5603 
5604 		/*
5605 		 * We check for an existing entry at this point.
5606 		 *
5607 		 * Since a netmask isn't passed in via the ioctl interface
5608 		 * (SIOCADDRT), we don't check for a matching netmask in that
5609 		 * case.
5610 		 */
5611 		if (!ioctl_msg)
5612 			match_flags |= MATCH_IRE_MASK;
5613 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5614 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5615 		    NULL);
5616 		if (ire != NULL) {
5617 			ire_refrele(ire);
5618 			ipif_refrele(ipif);
5619 			return (EEXIST);
5620 		}
5621 
5622 		/*
5623 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
5624 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5625 		 * gateway.
5626 		 */
5627 		ire = ire_create(
5628 		    (uchar_t *)&dst_addr,
5629 		    (uint8_t *)&mask,
5630 		    (uint8_t *)&gw_addr,
5631 		    ill->ill_net_type,
5632 		    ill,
5633 		    zoneid,
5634 		    flags,
5635 		    NULL,
5636 		    ipst);
5637 		if (ire == NULL) {
5638 			ipif_refrele(ipif);
5639 			return (ENOMEM);
5640 		}
5641 
5642 		/*
5643 		 * Some software (for example, GateD and Sun Cluster) attempts
5644 		 * to create (what amount to) IRE_PREFIX routes with the
5645 		 * loopback address as the gateway.  This is primarily done to
5646 		 * set up prefixes with the RTF_REJECT flag set (for example,
5647 		 * when generating aggregate routes.)
5648 		 *
5649 		 * If the IRE type (as defined by ill->ill_net_type) is
5650 		 * IRE_LOOPBACK, then we map the request into a
5651 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5652 		 * these interface routes, by definition, can only be that.
5653 		 *
5654 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5655 		 * routine, but rather using ire_create() directly.
5656 		 *
5657 		 */
5658 		if (ill->ill_net_type == IRE_LOOPBACK) {
5659 			ire->ire_type = IRE_IF_NORESOLVER;
5660 			ire->ire_flags |= RTF_BLACKHOLE;
5661 		}
5662 
5663 		/* src address assigned by the caller? */
5664 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5665 			ire->ire_setsrc_addr = src_addr;
5666 
5667 		nire = ire_add(ire);
5668 		if (nire == NULL) {
5669 			/*
5670 			 * In the result of failure, ire_add() will have
5671 			 * already deleted the ire in question, so there
5672 			 * is no need to do that here.
5673 			 */
5674 			ipif_refrele(ipif);
5675 			return (ENOMEM);
5676 		}
5677 		/*
5678 		 * Check if it was a duplicate entry. This handles
5679 		 * the case of two racing route adds for the same route
5680 		 */
5681 		if (nire != ire) {
5682 			ire_delete(nire);
5683 			ire_refrele(nire);
5684 			ipif_refrele(ipif);
5685 			return (EEXIST);
5686 		}
5687 		ire = nire;
5688 		goto save_ire;
5689 	}
5690 
5691 	/*
5692 	 * Get an interface IRE for the specified gateway.
5693 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5694 	 * gateway, it is currently unreachable and we fail the request
5695 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5696 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5697 	 * If RTA_IFP was specified we look on that particular ill.
5698 	 */
5699 	if (ill != NULL)
5700 		match_flags |= MATCH_IRE_ILL;
5701 
5702 	/* Check whether the gateway is reachable. */
5703 again:
5704 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5705 	if (flags & RTF_INDIRECT)
5706 		type |= IRE_OFFLINK;
5707 
5708 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5709 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5710 	if (gw_ire == NULL) {
5711 		/*
5712 		 * With IPMP, we allow host routes to influence in.mpathd's
5713 		 * target selection.  However, if the test addresses are on
5714 		 * their own network, the above lookup will fail since the
5715 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5716 		 * hidden test IREs to be found and try again.
5717 		 */
5718 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5719 			match_flags |= MATCH_IRE_TESTHIDDEN;
5720 			goto again;
5721 		}
5722 		if (ipif != NULL)
5723 			ipif_refrele(ipif);
5724 		return (ENETUNREACH);
5725 	}
5726 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5727 		ire_refrele(gw_ire);
5728 		if (ipif != NULL)
5729 			ipif_refrele(ipif);
5730 		return (ENETUNREACH);
5731 	}
5732 
5733 	/*
5734 	 * We create one of three types of IREs as a result of this request
5735 	 * based on the netmask.  A netmask of all ones (which is automatically
5736 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5737 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5738 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5739 	 * destination prefix.
5740 	 */
5741 	if (mask == IP_HOST_MASK)
5742 		type = IRE_HOST;
5743 	else if (mask == 0)
5744 		type = IRE_DEFAULT;
5745 	else
5746 		type = IRE_PREFIX;
5747 
5748 	/* check for a duplicate entry */
5749 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5750 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5751 	    0, ipst, NULL);
5752 	if (ire != NULL) {
5753 		if (ipif != NULL)
5754 			ipif_refrele(ipif);
5755 		ire_refrele(gw_ire);
5756 		ire_refrele(ire);
5757 		return (EEXIST);
5758 	}
5759 
5760 	/* Security attribute exists */
5761 	if (sp != NULL) {
5762 		tsol_gcgrp_addr_t ga;
5763 
5764 		/* find or create the gateway credentials group */
5765 		ga.ga_af = AF_INET;
5766 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5767 
5768 		/* we hold reference to it upon success */
5769 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5770 		if (gcgrp == NULL) {
5771 			if (ipif != NULL)
5772 				ipif_refrele(ipif);
5773 			ire_refrele(gw_ire);
5774 			return (ENOMEM);
5775 		}
5776 
5777 		/*
5778 		 * Create and add the security attribute to the group; a
5779 		 * reference to the group is made upon allocating a new
5780 		 * entry successfully.  If it finds an already-existing
5781 		 * entry for the security attribute in the group, it simply
5782 		 * returns it and no new reference is made to the group.
5783 		 */
5784 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5785 		if (gc == NULL) {
5786 			if (ipif != NULL)
5787 				ipif_refrele(ipif);
5788 			/* release reference held by gcgrp_lookup */
5789 			GCGRP_REFRELE(gcgrp);
5790 			ire_refrele(gw_ire);
5791 			return (ENOMEM);
5792 		}
5793 	}
5794 
5795 	/* Create the IRE. */
5796 	ire = ire_create(
5797 	    (uchar_t *)&dst_addr,		/* dest address */
5798 	    (uchar_t *)&mask,			/* mask */
5799 	    (uchar_t *)&gw_addr,		/* gateway address */
5800 	    (ushort_t)type,			/* IRE type */
5801 	    ill,
5802 	    zoneid,
5803 	    flags,
5804 	    gc,					/* security attribute */
5805 	    ipst);
5806 
5807 	/*
5808 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5809 	 * reference to the 'gcgrp'. We can now release the extra reference
5810 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5811 	 */
5812 	if (gcgrp_xtraref)
5813 		GCGRP_REFRELE(gcgrp);
5814 	if (ire == NULL) {
5815 		if (gc != NULL)
5816 			GC_REFRELE(gc);
5817 		if (ipif != NULL)
5818 			ipif_refrele(ipif);
5819 		ire_refrele(gw_ire);
5820 		return (ENOMEM);
5821 	}
5822 
5823 	/* Before we add, check if an extra CGTP broadcast is needed */
5824 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5825 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5826 
5827 	/* src address assigned by the caller? */
5828 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5829 		ire->ire_setsrc_addr = src_addr;
5830 
5831 	/*
5832 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5833 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5834 	 */
5835 
5836 	/* Add the new IRE. */
5837 	nire = ire_add(ire);
5838 	if (nire == NULL) {
5839 		/*
5840 		 * In the result of failure, ire_add() will have
5841 		 * already deleted the ire in question, so there
5842 		 * is no need to do that here.
5843 		 */
5844 		if (ipif != NULL)
5845 			ipif_refrele(ipif);
5846 		ire_refrele(gw_ire);
5847 		return (ENOMEM);
5848 	}
5849 	/*
5850 	 * Check if it was a duplicate entry. This handles
5851 	 * the case of two racing route adds for the same route
5852 	 */
5853 	if (nire != ire) {
5854 		ire_delete(nire);
5855 		ire_refrele(nire);
5856 		if (ipif != NULL)
5857 			ipif_refrele(ipif);
5858 		ire_refrele(gw_ire);
5859 		return (EEXIST);
5860 	}
5861 	ire = nire;
5862 
5863 	if (flags & RTF_MULTIRT) {
5864 		/*
5865 		 * Invoke the CGTP (multirouting) filtering module
5866 		 * to add the dst address in the filtering database.
5867 		 * Replicated inbound packets coming from that address
5868 		 * will be filtered to discard the duplicates.
5869 		 * It is not necessary to call the CGTP filter hook
5870 		 * when the dst address is a broadcast or multicast,
5871 		 * because an IP source address cannot be a broadcast
5872 		 * or a multicast.
5873 		 */
5874 		if (cgtp_broadcast) {
5875 			ip_cgtp_bcast_add(ire, ipst);
5876 			goto save_ire;
5877 		}
5878 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5879 		    !CLASSD(ire->ire_addr)) {
5880 			int res;
5881 			ipif_t *src_ipif;
5882 
5883 			/* Find the source address corresponding to gw_ire */
5884 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5885 			    NULL, zoneid, ipst);
5886 			if (src_ipif != NULL) {
5887 				res = ipst->ips_ip_cgtp_filter_ops->
5888 				    cfo_add_dest_v4(
5889 				    ipst->ips_netstack->netstack_stackid,
5890 				    ire->ire_addr,
5891 				    ire->ire_gateway_addr,
5892 				    ire->ire_setsrc_addr,
5893 				    src_ipif->ipif_lcl_addr);
5894 				ipif_refrele(src_ipif);
5895 			} else {
5896 				res = EADDRNOTAVAIL;
5897 			}
5898 			if (res != 0) {
5899 				if (ipif != NULL)
5900 					ipif_refrele(ipif);
5901 				ire_refrele(gw_ire);
5902 				ire_delete(ire);
5903 				ire_refrele(ire);	/* Held in ire_add */
5904 				return (res);
5905 			}
5906 		}
5907 	}
5908 
5909 save_ire:
5910 	if (gw_ire != NULL) {
5911 		ire_refrele(gw_ire);
5912 		gw_ire = NULL;
5913 	}
5914 	if (ill != NULL) {
5915 		/*
5916 		 * Save enough information so that we can recreate the IRE if
5917 		 * the interface goes down and then up.  The metrics associated
5918 		 * with the route will be saved as well when rts_setmetrics() is
5919 		 * called after the IRE has been created.  In the case where
5920 		 * memory cannot be allocated, none of this information will be
5921 		 * saved.
5922 		 */
5923 		ill_save_ire(ill, ire);
5924 	}
5925 	if (ioctl_msg)
5926 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5927 	if (ire_arg != NULL) {
5928 		/*
5929 		 * Store the ire that was successfully added into where ire_arg
5930 		 * points to so that callers don't have to look it up
5931 		 * themselves (but they are responsible for ire_refrele()ing
5932 		 * the ire when they are finished with it).
5933 		 */
5934 		*ire_arg = ire;
5935 	} else {
5936 		ire_refrele(ire);		/* Held in ire_add */
5937 	}
5938 	if (ipif != NULL)
5939 		ipif_refrele(ipif);
5940 	return (0);
5941 }
5942 
5943 /*
5944  * ip_rt_delete is called to delete an IPv4 route.
5945  * ill is passed in to associate it with the correct interface.
5946  */
5947 /* ARGSUSED4 */
5948 int
5949 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5950     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5951     ip_stack_t *ipst, zoneid_t zoneid)
5952 {
5953 	ire_t	*ire = NULL;
5954 	ipif_t	*ipif;
5955 	uint_t	type;
5956 	uint_t	match_flags = MATCH_IRE_TYPE;
5957 	int	err = 0;
5958 
5959 	ip1dbg(("ip_rt_delete:"));
5960 	/*
5961 	 * If this is the case of RTF_HOST being set, then we set the netmask
5962 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5963 	 */
5964 	if (flags & RTF_HOST) {
5965 		mask = IP_HOST_MASK;
5966 		match_flags |= MATCH_IRE_MASK;
5967 	} else if (rtm_addrs & RTA_NETMASK) {
5968 		match_flags |= MATCH_IRE_MASK;
5969 	}
5970 
5971 	/*
5972 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5973 	 * we check if the gateway address is one of our interfaces first,
5974 	 * and fall back on RTF_GATEWAY routes.
5975 	 *
5976 	 * This makes it possible to delete an original
5977 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
5978 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
5979 	 * and those can not be deleted here.
5980 	 *
5981 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
5982 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
5983 	 * otherwise we use the ill derived from the gateway address.
5984 	 * We can always match the gateway address since we record it
5985 	 * in ire_gateway_addr.
5986 	 *
5987 	 * For more detail on specifying routes by gateway address and by
5988 	 * interface index, see the comments in ip_rt_add().
5989 	 */
5990 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5991 	if (ipif != NULL) {
5992 		ill_t	*ill_match;
5993 
5994 		if (ill != NULL)
5995 			ill_match = ill;
5996 		else
5997 			ill_match = ipif->ipif_ill;
5998 
5999 		match_flags |= MATCH_IRE_ILL;
6000 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6001 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
6002 			    ill_match, ALL_ZONES, NULL, match_flags, 0, ipst,
6003 			    NULL);
6004 		}
6005 		if (ire == NULL) {
6006 			match_flags |= MATCH_IRE_GW;
6007 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6008 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6009 			    match_flags, 0, ipst, NULL);
6010 		}
6011 		/* Avoid deleting routes created by kernel from an ipif */
6012 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6013 			ire_refrele(ire);
6014 			ire = NULL;
6015 		}
6016 
6017 		/* Restore in case we didn't find a match */
6018 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6019 	}
6020 
6021 	if (ire == NULL) {
6022 		/*
6023 		 * At this point, the gateway address is not one of our own
6024 		 * addresses or a matching interface route was not found.  We
6025 		 * set the IRE type to lookup based on whether
6026 		 * this is a host route, a default route or just a prefix.
6027 		 *
6028 		 * If an ill was passed in, then the lookup is based on an
6029 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6030 		 */
6031 		match_flags |= MATCH_IRE_GW;
6032 		if (ill != NULL)
6033 			match_flags |= MATCH_IRE_ILL;
6034 		if (mask == IP_HOST_MASK)
6035 			type = IRE_HOST;
6036 		else if (mask == 0)
6037 			type = IRE_DEFAULT;
6038 		else
6039 			type = IRE_PREFIX;
6040 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6041 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6042 	}
6043 
6044 	if (ipif != NULL) {
6045 		ipif_refrele(ipif);
6046 		ipif = NULL;
6047 	}
6048 
6049 	if (ire == NULL)
6050 		return (ESRCH);
6051 
6052 	if (ire->ire_flags & RTF_MULTIRT) {
6053 		/*
6054 		 * Invoke the CGTP (multirouting) filtering module
6055 		 * to remove the dst address from the filtering database.
6056 		 * Packets coming from that address will no longer be
6057 		 * filtered to remove duplicates.
6058 		 */
6059 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6060 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6061 			    ipst->ips_netstack->netstack_stackid,
6062 			    ire->ire_addr, ire->ire_gateway_addr);
6063 		}
6064 		ip_cgtp_bcast_delete(ire, ipst);
6065 	}
6066 
6067 	ill = ire->ire_ill;
6068 	if (ill != NULL)
6069 		ill_remove_saved_ire(ill, ire);
6070 	if (ioctl_msg)
6071 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6072 	ire_delete(ire);
6073 	ire_refrele(ire);
6074 	return (err);
6075 }
6076 
6077 /*
6078  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6079  */
6080 /* ARGSUSED */
6081 int
6082 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6083     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6084 {
6085 	ipaddr_t dst_addr;
6086 	ipaddr_t gw_addr;
6087 	ipaddr_t mask;
6088 	int error = 0;
6089 	mblk_t *mp1;
6090 	struct rtentry *rt;
6091 	ipif_t *ipif = NULL;
6092 	ip_stack_t	*ipst;
6093 
6094 	ASSERT(q->q_next == NULL);
6095 	ipst = CONNQ_TO_IPST(q);
6096 
6097 	ip1dbg(("ip_siocaddrt:"));
6098 	/* Existence of mp1 verified in ip_wput_nondata */
6099 	mp1 = mp->b_cont->b_cont;
6100 	rt = (struct rtentry *)mp1->b_rptr;
6101 
6102 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6103 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6104 
6105 	/*
6106 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6107 	 * to a particular host address.  In this case, we set the netmask to
6108 	 * all ones for the particular destination address.  Otherwise,
6109 	 * determine the netmask to be used based on dst_addr and the interfaces
6110 	 * in use.
6111 	 */
6112 	if (rt->rt_flags & RTF_HOST) {
6113 		mask = IP_HOST_MASK;
6114 	} else {
6115 		/*
6116 		 * Note that ip_subnet_mask returns a zero mask in the case of
6117 		 * default (an all-zeroes address).
6118 		 */
6119 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6120 	}
6121 
6122 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6123 	    B_TRUE, NULL, ipst, ALL_ZONES);
6124 	if (ipif != NULL)
6125 		ipif_refrele(ipif);
6126 	return (error);
6127 }
6128 
6129 /*
6130  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6131  */
6132 /* ARGSUSED */
6133 int
6134 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6135     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6136 {
6137 	ipaddr_t dst_addr;
6138 	ipaddr_t gw_addr;
6139 	ipaddr_t mask;
6140 	int error;
6141 	mblk_t *mp1;
6142 	struct rtentry *rt;
6143 	ipif_t *ipif = NULL;
6144 	ip_stack_t	*ipst;
6145 
6146 	ASSERT(q->q_next == NULL);
6147 	ipst = CONNQ_TO_IPST(q);
6148 
6149 	ip1dbg(("ip_siocdelrt:"));
6150 	/* Existence of mp1 verified in ip_wput_nondata */
6151 	mp1 = mp->b_cont->b_cont;
6152 	rt = (struct rtentry *)mp1->b_rptr;
6153 
6154 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6155 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6156 
6157 	/*
6158 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6159 	 * to a particular host address.  In this case, we set the netmask to
6160 	 * all ones for the particular destination address.  Otherwise,
6161 	 * determine the netmask to be used based on dst_addr and the interfaces
6162 	 * in use.
6163 	 */
6164 	if (rt->rt_flags & RTF_HOST) {
6165 		mask = IP_HOST_MASK;
6166 	} else {
6167 		/*
6168 		 * Note that ip_subnet_mask returns a zero mask in the case of
6169 		 * default (an all-zeroes address).
6170 		 */
6171 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6172 	}
6173 
6174 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6175 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6176 	    ipst, ALL_ZONES);
6177 	if (ipif != NULL)
6178 		ipif_refrele(ipif);
6179 	return (error);
6180 }
6181 
6182 /*
6183  * Enqueue the mp onto the ipsq, chained by b_next.
6184  * b_prev stores the function to be executed later, and b_queue the queue
6185  * where this mp originated.
6186  */
6187 void
6188 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6189     ill_t *pending_ill)
6190 {
6191 	conn_t	*connp;
6192 	ipxop_t *ipx = ipsq->ipsq_xop;
6193 
6194 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6195 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6196 	ASSERT(func != NULL);
6197 
6198 	mp->b_queue = q;
6199 	mp->b_prev = (void *)func;
6200 	mp->b_next = NULL;
6201 
6202 	switch (type) {
6203 	case CUR_OP:
6204 		if (ipx->ipx_mptail != NULL) {
6205 			ASSERT(ipx->ipx_mphead != NULL);
6206 			ipx->ipx_mptail->b_next = mp;
6207 		} else {
6208 			ASSERT(ipx->ipx_mphead == NULL);
6209 			ipx->ipx_mphead = mp;
6210 		}
6211 		ipx->ipx_mptail = mp;
6212 		break;
6213 
6214 	case NEW_OP:
6215 		if (ipsq->ipsq_xopq_mptail != NULL) {
6216 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6217 			ipsq->ipsq_xopq_mptail->b_next = mp;
6218 		} else {
6219 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6220 			ipsq->ipsq_xopq_mphead = mp;
6221 		}
6222 		ipsq->ipsq_xopq_mptail = mp;
6223 		ipx->ipx_ipsq_queued = B_TRUE;
6224 		break;
6225 
6226 	case SWITCH_OP:
6227 		ASSERT(ipsq->ipsq_swxop != NULL);
6228 		/* only one switch operation is currently allowed */
6229 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6230 		ipsq->ipsq_switch_mp = mp;
6231 		ipx->ipx_ipsq_queued = B_TRUE;
6232 		break;
6233 	default:
6234 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6235 	}
6236 
6237 	if (CONN_Q(q) && pending_ill != NULL) {
6238 		connp = Q_TO_CONN(q);
6239 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6240 		connp->conn_oper_pending_ill = pending_ill;
6241 	}
6242 }
6243 
6244 /*
6245  * Dequeue the next message that requested exclusive access to this IPSQ's
6246  * xop.  Specifically:
6247  *
6248  *  1. If we're still processing the current operation on `ipsq', then
6249  *     dequeue the next message for the operation (from ipx_mphead), or
6250  *     return NULL if there are no queued messages for the operation.
6251  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6252  *
6253  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6254  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6255  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6256  *     leaving IPMP groups and require a careful dance -- see the comments
6257  *     in-line below for details.  If we're leaving a group xop or if we're
6258  *     joining a group xop and become writer on it, then we proceed to (3).
6259  *     Otherwise, we return NULL and exit the xop.
6260  *
6261  *  3. For each IPSQ in the xop, return any switch operation stored on
6262  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6263  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6264  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6265  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6266  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6267  *     each phyint in the group, including the IPMP meta-interface phyint.
6268  */
6269 static mblk_t *
6270 ipsq_dq(ipsq_t *ipsq)
6271 {
6272 	ill_t	*illv4, *illv6;
6273 	mblk_t	*mp;
6274 	ipsq_t	*xopipsq;
6275 	ipsq_t	*leftipsq = NULL;
6276 	ipxop_t *ipx;
6277 	phyint_t *phyi = ipsq->ipsq_phyint;
6278 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6279 	boolean_t emptied = B_FALSE;
6280 
6281 	/*
6282 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6283 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6284 	 */
6285 	rw_enter(&ipst->ips_ill_g_lock,
6286 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6287 	mutex_enter(&ipsq->ipsq_lock);
6288 	ipx = ipsq->ipsq_xop;
6289 	mutex_enter(&ipx->ipx_lock);
6290 
6291 	/*
6292 	 * Dequeue the next message associated with the current exclusive
6293 	 * operation, if any.
6294 	 */
6295 	if ((mp = ipx->ipx_mphead) != NULL) {
6296 		ipx->ipx_mphead = mp->b_next;
6297 		if (ipx->ipx_mphead == NULL)
6298 			ipx->ipx_mptail = NULL;
6299 		mp->b_next = (void *)ipsq;
6300 		goto out;
6301 	}
6302 
6303 	if (ipx->ipx_current_ipif != NULL)
6304 		goto empty;
6305 
6306 	if (ipsq->ipsq_swxop != NULL) {
6307 		/*
6308 		 * The exclusive operation that is now being completed has
6309 		 * requested a switch to a different xop.  This happens
6310 		 * when an interface joins or leaves an IPMP group.  Joins
6311 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6312 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6313 		 * (phyint_free()), or interface plumb for an ill type
6314 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6315 		 *
6316 		 * Xop switches are not allowed on the IPMP meta-interface.
6317 		 */
6318 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6319 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6320 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6321 
6322 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6323 			/*
6324 			 * We're switching back to our own xop, so we have two
6325 			 * xop's to drain/exit: our own, and the group xop
6326 			 * that we are leaving.
6327 			 *
6328 			 * First, pull ourselves out of the group ipsq list.
6329 			 * This is safe since we're writer on ill_g_lock.
6330 			 */
6331 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6332 
6333 			xopipsq = ipx->ipx_ipsq;
6334 			while (xopipsq->ipsq_next != ipsq)
6335 				xopipsq = xopipsq->ipsq_next;
6336 
6337 			xopipsq->ipsq_next = ipsq->ipsq_next;
6338 			ipsq->ipsq_next = ipsq;
6339 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6340 			ipsq->ipsq_swxop = NULL;
6341 
6342 			/*
6343 			 * Second, prepare to exit the group xop.  The actual
6344 			 * ipsq_exit() is done at the end of this function
6345 			 * since we cannot hold any locks across ipsq_exit().
6346 			 * Note that although we drop the group's ipx_lock, no
6347 			 * threads can proceed since we're still ipx_writer.
6348 			 */
6349 			leftipsq = xopipsq;
6350 			mutex_exit(&ipx->ipx_lock);
6351 
6352 			/*
6353 			 * Third, set ipx to point to our own xop (which was
6354 			 * inactive and therefore can be entered).
6355 			 */
6356 			ipx = ipsq->ipsq_xop;
6357 			mutex_enter(&ipx->ipx_lock);
6358 			ASSERT(ipx->ipx_writer == NULL);
6359 			ASSERT(ipx->ipx_current_ipif == NULL);
6360 		} else {
6361 			/*
6362 			 * We're switching from our own xop to a group xop.
6363 			 * The requestor of the switch must ensure that the
6364 			 * group xop cannot go away (e.g. by ensuring the
6365 			 * phyint associated with the xop cannot go away).
6366 			 *
6367 			 * If we can become writer on our new xop, then we'll
6368 			 * do the drain.  Otherwise, the current writer of our
6369 			 * new xop will do the drain when it exits.
6370 			 *
6371 			 * First, splice ourselves into the group IPSQ list.
6372 			 * This is safe since we're writer on ill_g_lock.
6373 			 */
6374 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6375 
6376 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6377 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6378 				xopipsq = xopipsq->ipsq_next;
6379 
6380 			xopipsq->ipsq_next = ipsq;
6381 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6382 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6383 			ipsq->ipsq_swxop = NULL;
6384 
6385 			/*
6386 			 * Second, exit our own xop, since it's now unused.
6387 			 * This is safe since we've got the only reference.
6388 			 */
6389 			ASSERT(ipx->ipx_writer == curthread);
6390 			ipx->ipx_writer = NULL;
6391 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6392 			ipx->ipx_ipsq_queued = B_FALSE;
6393 			mutex_exit(&ipx->ipx_lock);
6394 
6395 			/*
6396 			 * Third, set ipx to point to our new xop, and check
6397 			 * if we can become writer on it.  If we cannot, then
6398 			 * the current writer will drain the IPSQ group when
6399 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6400 			 * because we're still holding ipsq_lock.
6401 			 */
6402 			ipx = ipsq->ipsq_xop;
6403 			mutex_enter(&ipx->ipx_lock);
6404 			if (ipx->ipx_writer != NULL ||
6405 			    ipx->ipx_current_ipif != NULL) {
6406 				goto out;
6407 			}
6408 		}
6409 
6410 		/*
6411 		 * Fourth, become writer on our new ipx before we continue
6412 		 * with the drain.  Note that we never dropped ipsq_lock
6413 		 * above, so no other thread could've raced with us to
6414 		 * become writer first.  Also, we're holding ipx_lock, so
6415 		 * no other thread can examine the ipx right now.
6416 		 */
6417 		ASSERT(ipx->ipx_current_ipif == NULL);
6418 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6419 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6420 		ipx->ipx_writer = curthread;
6421 		ipx->ipx_forced = B_FALSE;
6422 #ifdef DEBUG
6423 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6424 #endif
6425 	}
6426 
6427 	xopipsq = ipsq;
6428 	do {
6429 		/*
6430 		 * So that other operations operate on a consistent and
6431 		 * complete phyint, a switch message on an IPSQ must be
6432 		 * handled prior to any other operations on that IPSQ.
6433 		 */
6434 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6435 			xopipsq->ipsq_switch_mp = NULL;
6436 			ASSERT(mp->b_next == NULL);
6437 			mp->b_next = (void *)xopipsq;
6438 			goto out;
6439 		}
6440 
6441 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6442 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6443 			if (xopipsq->ipsq_xopq_mphead == NULL)
6444 				xopipsq->ipsq_xopq_mptail = NULL;
6445 			mp->b_next = (void *)xopipsq;
6446 			goto out;
6447 		}
6448 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6449 empty:
6450 	/*
6451 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6452 	 * new messages can end up on any IPSQ in the xop.
6453 	 */
6454 	ipx->ipx_writer = NULL;
6455 	ipx->ipx_forced = B_FALSE;
6456 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6457 	ipx->ipx_ipsq_queued = B_FALSE;
6458 	emptied = B_TRUE;
6459 #ifdef	DEBUG
6460 	ipx->ipx_depth = 0;
6461 #endif
6462 out:
6463 	mutex_exit(&ipx->ipx_lock);
6464 	mutex_exit(&ipsq->ipsq_lock);
6465 
6466 	/*
6467 	 * If we completely emptied the xop, then wake up any threads waiting
6468 	 * to enter any of the IPSQ's associated with it.
6469 	 */
6470 	if (emptied) {
6471 		xopipsq = ipsq;
6472 		do {
6473 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6474 				continue;
6475 
6476 			illv4 = phyi->phyint_illv4;
6477 			illv6 = phyi->phyint_illv6;
6478 
6479 			GRAB_ILL_LOCKS(illv4, illv6);
6480 			if (illv4 != NULL)
6481 				cv_broadcast(&illv4->ill_cv);
6482 			if (illv6 != NULL)
6483 				cv_broadcast(&illv6->ill_cv);
6484 			RELEASE_ILL_LOCKS(illv4, illv6);
6485 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6486 	}
6487 	rw_exit(&ipst->ips_ill_g_lock);
6488 
6489 	/*
6490 	 * Now that all locks are dropped, exit the IPSQ we left.
6491 	 */
6492 	if (leftipsq != NULL)
6493 		ipsq_exit(leftipsq);
6494 
6495 	return (mp);
6496 }
6497 
6498 /*
6499  * Return completion status of previously initiated DLPI operations on
6500  * ills in the purview of an ipsq.
6501  */
6502 static boolean_t
6503 ipsq_dlpi_done(ipsq_t *ipsq)
6504 {
6505 	ipsq_t		*ipsq_start;
6506 	phyint_t	*phyi;
6507 	ill_t		*ill;
6508 
6509 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6510 	ipsq_start = ipsq;
6511 
6512 	do {
6513 		/*
6514 		 * The only current users of this function are ipsq_try_enter
6515 		 * and ipsq_enter which have made sure that ipsq_writer is
6516 		 * NULL before we reach here. ill_dlpi_pending is modified
6517 		 * only by an ipsq writer
6518 		 */
6519 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6520 		phyi = ipsq->ipsq_phyint;
6521 		/*
6522 		 * phyi could be NULL if a phyint that is part of an
6523 		 * IPMP group is being unplumbed. A more detailed
6524 		 * comment is in ipmp_grp_update_kstats()
6525 		 */
6526 		if (phyi != NULL) {
6527 			ill = phyi->phyint_illv4;
6528 			if (ill != NULL &&
6529 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6530 			    ill->ill_arl_dlpi_pending))
6531 				return (B_FALSE);
6532 
6533 			ill = phyi->phyint_illv6;
6534 			if (ill != NULL &&
6535 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6536 				return (B_FALSE);
6537 		}
6538 
6539 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6540 
6541 	return (B_TRUE);
6542 }
6543 
6544 /*
6545  * Enter the ipsq corresponding to ill, by waiting synchronously till
6546  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6547  * will have to drain completely before ipsq_enter returns success.
6548  * ipx_current_ipif will be set if some exclusive op is in progress,
6549  * and the ipsq_exit logic will start the next enqueued op after
6550  * completion of the current op. If 'force' is used, we don't wait
6551  * for the enqueued ops. This is needed when a conn_close wants to
6552  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6553  * of an ill can also use this option. But we dont' use it currently.
6554  */
6555 #define	ENTER_SQ_WAIT_TICKS 100
6556 boolean_t
6557 ipsq_enter(ill_t *ill, boolean_t force, int type)
6558 {
6559 	ipsq_t	*ipsq;
6560 	ipxop_t *ipx;
6561 	boolean_t waited_enough = B_FALSE;
6562 	ip_stack_t *ipst = ill->ill_ipst;
6563 
6564 	/*
6565 	 * Note that the relationship between ill and ipsq is fixed as long as
6566 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6567 	 * relationship between the IPSQ and xop cannot change.  However,
6568 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6569 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6570 	 * waking up all ills in the xop when it becomes available.
6571 	 */
6572 	for (;;) {
6573 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6574 		mutex_enter(&ill->ill_lock);
6575 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6576 			mutex_exit(&ill->ill_lock);
6577 			rw_exit(&ipst->ips_ill_g_lock);
6578 			return (B_FALSE);
6579 		}
6580 
6581 		ipsq = ill->ill_phyint->phyint_ipsq;
6582 		mutex_enter(&ipsq->ipsq_lock);
6583 		ipx = ipsq->ipsq_xop;
6584 		mutex_enter(&ipx->ipx_lock);
6585 
6586 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6587 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6588 		    waited_enough))
6589 			break;
6590 
6591 		rw_exit(&ipst->ips_ill_g_lock);
6592 
6593 		if (!force || ipx->ipx_writer != NULL) {
6594 			mutex_exit(&ipx->ipx_lock);
6595 			mutex_exit(&ipsq->ipsq_lock);
6596 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6597 		} else {
6598 			mutex_exit(&ipx->ipx_lock);
6599 			mutex_exit(&ipsq->ipsq_lock);
6600 			(void) cv_reltimedwait(&ill->ill_cv,
6601 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6602 			waited_enough = B_TRUE;
6603 		}
6604 		mutex_exit(&ill->ill_lock);
6605 	}
6606 
6607 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6608 	ASSERT(ipx->ipx_reentry_cnt == 0);
6609 	ipx->ipx_writer = curthread;
6610 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6611 	ipx->ipx_reentry_cnt++;
6612 #ifdef DEBUG
6613 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6614 #endif
6615 	mutex_exit(&ipx->ipx_lock);
6616 	mutex_exit(&ipsq->ipsq_lock);
6617 	mutex_exit(&ill->ill_lock);
6618 	rw_exit(&ipst->ips_ill_g_lock);
6619 
6620 	return (B_TRUE);
6621 }
6622 
6623 /*
6624  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6625  * across the call to the core interface ipsq_try_enter() and hence calls this
6626  * function directly. This is explained more fully in ipif_set_values().
6627  * In order to support the above constraint, ipsq_try_enter is implemented as
6628  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6629  */
6630 static ipsq_t *
6631 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6632     int type, boolean_t reentry_ok)
6633 {
6634 	ipsq_t	*ipsq;
6635 	ipxop_t	*ipx;
6636 	ip_stack_t *ipst = ill->ill_ipst;
6637 
6638 	/*
6639 	 * lock ordering:
6640 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6641 	 *
6642 	 * ipx of an ipsq can't change when ipsq_lock is held.
6643 	 */
6644 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6645 	GRAB_CONN_LOCK(q);
6646 	mutex_enter(&ill->ill_lock);
6647 	ipsq = ill->ill_phyint->phyint_ipsq;
6648 	mutex_enter(&ipsq->ipsq_lock);
6649 	ipx = ipsq->ipsq_xop;
6650 	mutex_enter(&ipx->ipx_lock);
6651 
6652 	/*
6653 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6654 	 *    (Note: If the caller does not specify reentry_ok then neither
6655 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6656 	 *    again. Otherwise it can lead to an infinite loop
6657 	 * 2. Enter the ipsq if there is no current writer and this attempted
6658 	 *    entry is part of the current operation
6659 	 * 3. Enter the ipsq if there is no current writer and this is a new
6660 	 *    operation and the operation queue is empty and there is no
6661 	 *    operation currently in progress and if all previously initiated
6662 	 *    DLPI operations have completed.
6663 	 */
6664 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6665 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6666 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6667 	    ipsq_dlpi_done(ipsq))))) {
6668 		/* Success. */
6669 		ipx->ipx_reentry_cnt++;
6670 		ipx->ipx_writer = curthread;
6671 		ipx->ipx_forced = B_FALSE;
6672 		mutex_exit(&ipx->ipx_lock);
6673 		mutex_exit(&ipsq->ipsq_lock);
6674 		mutex_exit(&ill->ill_lock);
6675 		RELEASE_CONN_LOCK(q);
6676 #ifdef DEBUG
6677 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6678 #endif
6679 		return (ipsq);
6680 	}
6681 
6682 	if (func != NULL)
6683 		ipsq_enq(ipsq, q, mp, func, type, ill);
6684 
6685 	mutex_exit(&ipx->ipx_lock);
6686 	mutex_exit(&ipsq->ipsq_lock);
6687 	mutex_exit(&ill->ill_lock);
6688 	RELEASE_CONN_LOCK(q);
6689 	return (NULL);
6690 }
6691 
6692 /*
6693  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6694  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6695  * There is one ipsq per phyint. The ipsq
6696  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6697  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6698  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6699  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6700  * up the interface) and are enqueued in ipx_mphead.
6701  *
6702  * If a thread does not want to reenter the ipsq when it is already writer,
6703  * it must make sure that the specified reentry point to be called later
6704  * when the ipsq is empty, nor any code path starting from the specified reentry
6705  * point must never ever try to enter the ipsq again. Otherwise it can lead
6706  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6707  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6708  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6709  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6710  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6711  * ioctl if the current ioctl has completed. If the current ioctl is still
6712  * in progress it simply returns. The current ioctl could be waiting for
6713  * a response from another module (the driver or could be waiting for
6714  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6715  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6716  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6717  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6718  * all associated DLPI operations have completed.
6719  */
6720 
6721 /*
6722  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6723  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6724  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6725  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6726  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6727  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6728  */
6729 ipsq_t *
6730 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6731     ipsq_func_t func, int type, boolean_t reentry_ok)
6732 {
6733 	ip_stack_t	*ipst;
6734 	ipsq_t		*ipsq;
6735 
6736 	/* Only 1 of ipif or ill can be specified */
6737 	ASSERT((ipif != NULL) ^ (ill != NULL));
6738 
6739 	if (ipif != NULL)
6740 		ill = ipif->ipif_ill;
6741 	ipst = ill->ill_ipst;
6742 
6743 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6744 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6745 	rw_exit(&ipst->ips_ill_g_lock);
6746 
6747 	return (ipsq);
6748 }
6749 
6750 /*
6751  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6752  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6753  * cannot be entered, the mp is queued for completion.
6754  */
6755 void
6756 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6757     boolean_t reentry_ok)
6758 {
6759 	ipsq_t	*ipsq;
6760 
6761 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6762 
6763 	/*
6764 	 * Drop the caller's refhold on the ill.  This is safe since we either
6765 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6766 	 * IPSQ, in which case we return without accessing ill anymore.  This
6767 	 * is needed because func needs to see the correct refcount.
6768 	 * e.g. removeif can work only then.
6769 	 */
6770 	ill_refrele(ill);
6771 	if (ipsq != NULL) {
6772 		(*func)(ipsq, q, mp, NULL);
6773 		ipsq_exit(ipsq);
6774 	}
6775 }
6776 
6777 /*
6778  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6779  * prior to exiting.  Caller must be writer on the specified IPSQ.
6780  */
6781 void
6782 ipsq_exit(ipsq_t *ipsq)
6783 {
6784 	mblk_t *mp;
6785 	ipsq_t *mp_ipsq;
6786 	queue_t	*q;
6787 	phyint_t *phyi;
6788 	ipsq_func_t func;
6789 
6790 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6791 
6792 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6793 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6794 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6795 		return;
6796 	}
6797 
6798 	for (;;) {
6799 		phyi = ipsq->ipsq_phyint;
6800 		mp = ipsq_dq(ipsq);
6801 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6802 
6803 		/*
6804 		 * If we've changed to a new IPSQ, and the phyint associated
6805 		 * with the old one has gone away, free the old IPSQ.  Note
6806 		 * that this cannot happen while the IPSQ is in a group.
6807 		 */
6808 		if (mp_ipsq != ipsq && phyi == NULL) {
6809 			ASSERT(ipsq->ipsq_next == ipsq);
6810 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6811 			ipsq_delete(ipsq);
6812 		}
6813 
6814 		if (mp == NULL)
6815 			break;
6816 
6817 		q = mp->b_queue;
6818 		func = (ipsq_func_t)mp->b_prev;
6819 		ipsq = mp_ipsq;
6820 		mp->b_next = mp->b_prev = NULL;
6821 		mp->b_queue = NULL;
6822 
6823 		/*
6824 		 * If 'q' is an conn queue, it is valid, since we did a
6825 		 * a refhold on the conn at the start of the ioctl.
6826 		 * If 'q' is an ill queue, it is valid, since close of an
6827 		 * ill will clean up its IPSQ.
6828 		 */
6829 		(*func)(ipsq, q, mp, NULL);
6830 	}
6831 }
6832 
6833 /*
6834  * Used to start any igmp or mld timers that could not be started
6835  * while holding ill_mcast_lock. The timers can't be started while holding
6836  * the lock, since mld/igmp_start_timers may need to call untimeout()
6837  * which can't be done while holding the lock which the timeout handler
6838  * acquires. Otherwise
6839  * there could be a deadlock since the timeout handlers
6840  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6841  * ill_mcast_lock.
6842  */
6843 void
6844 ill_mcast_timer_start(ip_stack_t *ipst)
6845 {
6846 	int		next;
6847 
6848 	mutex_enter(&ipst->ips_igmp_timer_lock);
6849 	next = ipst->ips_igmp_deferred_next;
6850 	ipst->ips_igmp_deferred_next = INFINITY;
6851 	mutex_exit(&ipst->ips_igmp_timer_lock);
6852 
6853 	if (next != INFINITY)
6854 		igmp_start_timers(next, ipst);
6855 
6856 	mutex_enter(&ipst->ips_mld_timer_lock);
6857 	next = ipst->ips_mld_deferred_next;
6858 	ipst->ips_mld_deferred_next = INFINITY;
6859 	mutex_exit(&ipst->ips_mld_timer_lock);
6860 
6861 	if (next != INFINITY)
6862 		mld_start_timers(next, ipst);
6863 }
6864 
6865 /*
6866  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6867  * and `ioccmd'.
6868  */
6869 void
6870 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6871 {
6872 	ill_t *ill = ipif->ipif_ill;
6873 	ipxop_t *ipx = ipsq->ipsq_xop;
6874 
6875 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6876 	ASSERT(ipx->ipx_current_ipif == NULL);
6877 	ASSERT(ipx->ipx_current_ioctl == 0);
6878 
6879 	ipx->ipx_current_done = B_FALSE;
6880 	ipx->ipx_current_ioctl = ioccmd;
6881 	mutex_enter(&ipx->ipx_lock);
6882 	ipx->ipx_current_ipif = ipif;
6883 	mutex_exit(&ipx->ipx_lock);
6884 
6885 	/*
6886 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6887 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6888 	 * references to the ipif (so that the references will eventually
6889 	 * drop to zero) and also prevents any "get" operations (e.g.,
6890 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6891 	 * operation has completed and the ipif is again in a stable state.
6892 	 *
6893 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6894 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6895 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6896 	 * ipifs will be affected.
6897 	 *
6898 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6899 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6900 	 * operate on.
6901 	 */
6902 	switch (ioccmd) {
6903 	case SIOCLIFREMOVEIF:
6904 		break;
6905 	case 0:
6906 		mutex_enter(&ill->ill_lock);
6907 		ipif = ipif->ipif_ill->ill_ipif;
6908 		for (; ipif != NULL; ipif = ipif->ipif_next)
6909 			ipif->ipif_state_flags |= IPIF_CHANGING;
6910 		mutex_exit(&ill->ill_lock);
6911 		break;
6912 	default:
6913 		mutex_enter(&ill->ill_lock);
6914 		ipif->ipif_state_flags |= IPIF_CHANGING;
6915 		mutex_exit(&ill->ill_lock);
6916 	}
6917 }
6918 
6919 /*
6920  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6921  * the next exclusive operation to begin once we ipsq_exit().  However, if
6922  * pending DLPI operations remain, then we will wait for the queue to drain
6923  * before allowing the next exclusive operation to begin.  This ensures that
6924  * DLPI operations from one exclusive operation are never improperly processed
6925  * as part of a subsequent exclusive operation.
6926  */
6927 void
6928 ipsq_current_finish(ipsq_t *ipsq)
6929 {
6930 	ipxop_t	*ipx = ipsq->ipsq_xop;
6931 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6932 	ipif_t	*ipif = ipx->ipx_current_ipif;
6933 
6934 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6935 
6936 	/*
6937 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6938 	 * (but in that case, IPIF_CHANGING will already be clear and no
6939 	 * pending DLPI messages can remain).
6940 	 */
6941 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6942 		ill_t *ill = ipif->ipif_ill;
6943 
6944 		mutex_enter(&ill->ill_lock);
6945 		dlpi_pending = ill->ill_dlpi_pending;
6946 		if (ipx->ipx_current_ioctl == 0) {
6947 			ipif = ill->ill_ipif;
6948 			for (; ipif != NULL; ipif = ipif->ipif_next)
6949 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6950 		} else {
6951 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6952 		}
6953 		mutex_exit(&ill->ill_lock);
6954 	}
6955 
6956 	ASSERT(!ipx->ipx_current_done);
6957 	ipx->ipx_current_done = B_TRUE;
6958 	ipx->ipx_current_ioctl = 0;
6959 	if (dlpi_pending == DL_PRIM_INVAL) {
6960 		mutex_enter(&ipx->ipx_lock);
6961 		ipx->ipx_current_ipif = NULL;
6962 		mutex_exit(&ipx->ipx_lock);
6963 	}
6964 }
6965 
6966 /*
6967  * The ill is closing. Flush all messages on the ipsq that originated
6968  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6969  * for this ill since ipsq_enter could not have entered until then.
6970  * New messages can't be queued since the CONDEMNED flag is set.
6971  */
6972 static void
6973 ipsq_flush(ill_t *ill)
6974 {
6975 	queue_t	*q;
6976 	mblk_t	*prev;
6977 	mblk_t	*mp;
6978 	mblk_t	*mp_next;
6979 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
6980 
6981 	ASSERT(IAM_WRITER_ILL(ill));
6982 
6983 	/*
6984 	 * Flush any messages sent up by the driver.
6985 	 */
6986 	mutex_enter(&ipx->ipx_lock);
6987 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
6988 		mp_next = mp->b_next;
6989 		q = mp->b_queue;
6990 		if (q == ill->ill_rq || q == ill->ill_wq) {
6991 			/* dequeue mp */
6992 			if (prev == NULL)
6993 				ipx->ipx_mphead = mp->b_next;
6994 			else
6995 				prev->b_next = mp->b_next;
6996 			if (ipx->ipx_mptail == mp) {
6997 				ASSERT(mp_next == NULL);
6998 				ipx->ipx_mptail = prev;
6999 			}
7000 			inet_freemsg(mp);
7001 		} else {
7002 			prev = mp;
7003 		}
7004 	}
7005 	mutex_exit(&ipx->ipx_lock);
7006 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7007 	ipsq_xopq_mp_cleanup(ill, NULL);
7008 }
7009 
7010 /*
7011  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7012  * and return the associated ipif.
7013  * Return value:
7014  *	Non zero: An error has occurred. ci may not be filled out.
7015  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7016  *	a held ipif in ci.ci_ipif.
7017  */
7018 int
7019 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7020     cmd_info_t *ci)
7021 {
7022 	char		*name;
7023 	struct ifreq    *ifr;
7024 	struct lifreq    *lifr;
7025 	ipif_t		*ipif = NULL;
7026 	ill_t		*ill;
7027 	conn_t		*connp;
7028 	boolean_t	isv6;
7029 	boolean_t	exists;
7030 	mblk_t		*mp1;
7031 	zoneid_t	zoneid;
7032 	ip_stack_t	*ipst;
7033 
7034 	if (q->q_next != NULL) {
7035 		ill = (ill_t *)q->q_ptr;
7036 		isv6 = ill->ill_isv6;
7037 		connp = NULL;
7038 		zoneid = ALL_ZONES;
7039 		ipst = ill->ill_ipst;
7040 	} else {
7041 		ill = NULL;
7042 		connp = Q_TO_CONN(q);
7043 		isv6 = (connp->conn_family == AF_INET6);
7044 		zoneid = connp->conn_zoneid;
7045 		if (zoneid == GLOBAL_ZONEID) {
7046 			/* global zone can access ipifs in all zones */
7047 			zoneid = ALL_ZONES;
7048 		}
7049 		ipst = connp->conn_netstack->netstack_ip;
7050 	}
7051 
7052 	/* Has been checked in ip_wput_nondata */
7053 	mp1 = mp->b_cont->b_cont;
7054 
7055 	if (ipip->ipi_cmd_type == IF_CMD) {
7056 		/* This a old style SIOC[GS]IF* command */
7057 		ifr = (struct ifreq *)mp1->b_rptr;
7058 		/*
7059 		 * Null terminate the string to protect against buffer
7060 		 * overrun. String was generated by user code and may not
7061 		 * be trusted.
7062 		 */
7063 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7064 		name = ifr->ifr_name;
7065 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7066 		ci->ci_sin6 = NULL;
7067 		ci->ci_lifr = (struct lifreq *)ifr;
7068 	} else {
7069 		/* This a new style SIOC[GS]LIF* command */
7070 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7071 		lifr = (struct lifreq *)mp1->b_rptr;
7072 		/*
7073 		 * Null terminate the string to protect against buffer
7074 		 * overrun. String was generated by user code and may not
7075 		 * be trusted.
7076 		 */
7077 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7078 		name = lifr->lifr_name;
7079 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7080 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7081 		ci->ci_lifr = lifr;
7082 	}
7083 
7084 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7085 		/*
7086 		 * The ioctl will be failed if the ioctl comes down
7087 		 * an conn stream
7088 		 */
7089 		if (ill == NULL) {
7090 			/*
7091 			 * Not an ill queue, return EINVAL same as the
7092 			 * old error code.
7093 			 */
7094 			return (ENXIO);
7095 		}
7096 		ipif = ill->ill_ipif;
7097 		ipif_refhold(ipif);
7098 	} else {
7099 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
7100 		    &exists, isv6, zoneid, ipst);
7101 
7102 		/*
7103 		 * Ensure that get ioctls don't see any internal state changes
7104 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7105 		 * set.
7106 		 */
7107 		if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) &&
7108 		    !IAM_WRITER_IPIF(ipif)) {
7109 			ipsq_t	*ipsq;
7110 
7111 			if (connp != NULL)
7112 				mutex_enter(&connp->conn_lock);
7113 			mutex_enter(&ipif->ipif_ill->ill_lock);
7114 			if (IPIF_IS_CHANGING(ipif) &&
7115 			    !IPIF_IS_CONDEMNED(ipif)) {
7116 				ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
7117 				mutex_enter(&ipsq->ipsq_lock);
7118 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
7119 				mutex_exit(&ipif->ipif_ill->ill_lock);
7120 				ipsq_enq(ipsq, q, mp, ip_process_ioctl,
7121 				    NEW_OP, ipif->ipif_ill);
7122 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
7123 				mutex_exit(&ipsq->ipsq_lock);
7124 				if (connp != NULL)
7125 					mutex_exit(&connp->conn_lock);
7126 				ipif_refrele(ipif);
7127 				return (EINPROGRESS);
7128 			}
7129 			mutex_exit(&ipif->ipif_ill->ill_lock);
7130 			if (connp != NULL)
7131 				mutex_exit(&connp->conn_lock);
7132 		}
7133 	}
7134 
7135 	/*
7136 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7137 	 */
7138 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7139 		ipif_refrele(ipif);
7140 		return (ENXIO);
7141 	}
7142 
7143 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7144 	    name[0] == '\0') {
7145 		/*
7146 		 * Handle a or a SIOC?IF* with a null name
7147 		 * during plumb (on the ill queue before the I_PLINK).
7148 		 */
7149 		ipif = ill->ill_ipif;
7150 		ipif_refhold(ipif);
7151 	}
7152 
7153 	if (ipif == NULL)
7154 		return (ENXIO);
7155 
7156 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7157 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7158 
7159 	ci->ci_ipif = ipif;
7160 	return (0);
7161 }
7162 
7163 /*
7164  * Return the total number of ipifs.
7165  */
7166 static uint_t
7167 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7168 {
7169 	uint_t numifs = 0;
7170 	ill_t	*ill;
7171 	ill_walk_context_t	ctx;
7172 	ipif_t	*ipif;
7173 
7174 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7175 	ill = ILL_START_WALK_V4(&ctx, ipst);
7176 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7177 		if (IS_UNDER_IPMP(ill))
7178 			continue;
7179 		for (ipif = ill->ill_ipif; ipif != NULL;
7180 		    ipif = ipif->ipif_next) {
7181 			if (ipif->ipif_zoneid == zoneid ||
7182 			    ipif->ipif_zoneid == ALL_ZONES)
7183 				numifs++;
7184 		}
7185 	}
7186 	rw_exit(&ipst->ips_ill_g_lock);
7187 	return (numifs);
7188 }
7189 
7190 /*
7191  * Return the total number of ipifs.
7192  */
7193 static uint_t
7194 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7195 {
7196 	uint_t numifs = 0;
7197 	ill_t	*ill;
7198 	ipif_t	*ipif;
7199 	ill_walk_context_t	ctx;
7200 
7201 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7202 
7203 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7204 	if (family == AF_INET)
7205 		ill = ILL_START_WALK_V4(&ctx, ipst);
7206 	else if (family == AF_INET6)
7207 		ill = ILL_START_WALK_V6(&ctx, ipst);
7208 	else
7209 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7210 
7211 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7212 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7213 			continue;
7214 
7215 		for (ipif = ill->ill_ipif; ipif != NULL;
7216 		    ipif = ipif->ipif_next) {
7217 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7218 			    !(lifn_flags & LIFC_NOXMIT))
7219 				continue;
7220 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7221 			    !(lifn_flags & LIFC_TEMPORARY))
7222 				continue;
7223 			if (((ipif->ipif_flags &
7224 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7225 			    IPIF_DEPRECATED)) ||
7226 			    IS_LOOPBACK(ill) ||
7227 			    !(ipif->ipif_flags & IPIF_UP)) &&
7228 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7229 				continue;
7230 
7231 			if (zoneid != ipif->ipif_zoneid &&
7232 			    ipif->ipif_zoneid != ALL_ZONES &&
7233 			    (zoneid != GLOBAL_ZONEID ||
7234 			    !(lifn_flags & LIFC_ALLZONES)))
7235 				continue;
7236 
7237 			numifs++;
7238 		}
7239 	}
7240 	rw_exit(&ipst->ips_ill_g_lock);
7241 	return (numifs);
7242 }
7243 
7244 uint_t
7245 ip_get_lifsrcofnum(ill_t *ill)
7246 {
7247 	uint_t numifs = 0;
7248 	ill_t	*ill_head = ill;
7249 	ip_stack_t	*ipst = ill->ill_ipst;
7250 
7251 	/*
7252 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7253 	 * other thread may be trying to relink the ILLs in this usesrc group
7254 	 * and adjusting the ill_usesrc_grp_next pointers
7255 	 */
7256 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7257 	if ((ill->ill_usesrc_ifindex == 0) &&
7258 	    (ill->ill_usesrc_grp_next != NULL)) {
7259 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7260 		    ill = ill->ill_usesrc_grp_next)
7261 			numifs++;
7262 	}
7263 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7264 
7265 	return (numifs);
7266 }
7267 
7268 /* Null values are passed in for ipif, sin, and ifreq */
7269 /* ARGSUSED */
7270 int
7271 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7272     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7273 {
7274 	int *nump;
7275 	conn_t *connp = Q_TO_CONN(q);
7276 
7277 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7278 
7279 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7280 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7281 
7282 	*nump = ip_get_numifs(connp->conn_zoneid,
7283 	    connp->conn_netstack->netstack_ip);
7284 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7285 	return (0);
7286 }
7287 
7288 /* Null values are passed in for ipif, sin, and ifreq */
7289 /* ARGSUSED */
7290 int
7291 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7292     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7293 {
7294 	struct lifnum *lifn;
7295 	mblk_t	*mp1;
7296 	conn_t *connp = Q_TO_CONN(q);
7297 
7298 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7299 
7300 	/* Existence checked in ip_wput_nondata */
7301 	mp1 = mp->b_cont->b_cont;
7302 
7303 	lifn = (struct lifnum *)mp1->b_rptr;
7304 	switch (lifn->lifn_family) {
7305 	case AF_UNSPEC:
7306 	case AF_INET:
7307 	case AF_INET6:
7308 		break;
7309 	default:
7310 		return (EAFNOSUPPORT);
7311 	}
7312 
7313 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7314 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7315 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7316 	return (0);
7317 }
7318 
7319 /* ARGSUSED */
7320 int
7321 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7322     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7323 {
7324 	STRUCT_HANDLE(ifconf, ifc);
7325 	mblk_t *mp1;
7326 	struct iocblk *iocp;
7327 	struct ifreq *ifr;
7328 	ill_walk_context_t	ctx;
7329 	ill_t	*ill;
7330 	ipif_t	*ipif;
7331 	struct sockaddr_in *sin;
7332 	int32_t	ifclen;
7333 	zoneid_t zoneid;
7334 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7335 
7336 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7337 
7338 	ip1dbg(("ip_sioctl_get_ifconf"));
7339 	/* Existence verified in ip_wput_nondata */
7340 	mp1 = mp->b_cont->b_cont;
7341 	iocp = (struct iocblk *)mp->b_rptr;
7342 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7343 
7344 	/*
7345 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7346 	 * the user buffer address and length into which the list of struct
7347 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7348 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7349 	 * the SIOCGIFCONF operation was redefined to simply provide
7350 	 * a large output buffer into which we are supposed to jam the ifreq
7351 	 * array.  The same ioctl command code was used, despite the fact that
7352 	 * both the applications and the kernel code had to change, thus making
7353 	 * it impossible to support both interfaces.
7354 	 *
7355 	 * For reasons not good enough to try to explain, the following
7356 	 * algorithm is used for deciding what to do with one of these:
7357 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7358 	 * form with the output buffer coming down as the continuation message.
7359 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7360 	 * and we have to copy in the ifconf structure to find out how big the
7361 	 * output buffer is and where to copy out to.  Sure no problem...
7362 	 *
7363 	 */
7364 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7365 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7366 		int numifs = 0;
7367 		size_t ifc_bufsize;
7368 
7369 		/*
7370 		 * Must be (better be!) continuation of a TRANSPARENT
7371 		 * IOCTL.  We just copied in the ifconf structure.
7372 		 */
7373 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7374 		    (struct ifconf *)mp1->b_rptr);
7375 
7376 		/*
7377 		 * Allocate a buffer to hold requested information.
7378 		 *
7379 		 * If ifc_len is larger than what is needed, we only
7380 		 * allocate what we will use.
7381 		 *
7382 		 * If ifc_len is smaller than what is needed, return
7383 		 * EINVAL.
7384 		 *
7385 		 * XXX: the ill_t structure can hava 2 counters, for
7386 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7387 		 * number of interfaces for a device, so we don't need
7388 		 * to count them here...
7389 		 */
7390 		numifs = ip_get_numifs(zoneid, ipst);
7391 
7392 		ifclen = STRUCT_FGET(ifc, ifc_len);
7393 		ifc_bufsize = numifs * sizeof (struct ifreq);
7394 		if (ifc_bufsize > ifclen) {
7395 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7396 				/* old behaviour */
7397 				return (EINVAL);
7398 			} else {
7399 				ifc_bufsize = ifclen;
7400 			}
7401 		}
7402 
7403 		mp1 = mi_copyout_alloc(q, mp,
7404 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7405 		if (mp1 == NULL)
7406 			return (ENOMEM);
7407 
7408 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7409 	}
7410 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7411 	/*
7412 	 * the SIOCGIFCONF ioctl only knows about
7413 	 * IPv4 addresses, so don't try to tell
7414 	 * it about interfaces with IPv6-only
7415 	 * addresses. (Last parm 'isv6' is B_FALSE)
7416 	 */
7417 
7418 	ifr = (struct ifreq *)mp1->b_rptr;
7419 
7420 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7421 	ill = ILL_START_WALK_V4(&ctx, ipst);
7422 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7423 		if (IS_UNDER_IPMP(ill))
7424 			continue;
7425 		for (ipif = ill->ill_ipif; ipif != NULL;
7426 		    ipif = ipif->ipif_next) {
7427 			if (zoneid != ipif->ipif_zoneid &&
7428 			    ipif->ipif_zoneid != ALL_ZONES)
7429 				continue;
7430 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7431 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7432 					/* old behaviour */
7433 					rw_exit(&ipst->ips_ill_g_lock);
7434 					return (EINVAL);
7435 				} else {
7436 					goto if_copydone;
7437 				}
7438 			}
7439 			ipif_get_name(ipif, ifr->ifr_name,
7440 			    sizeof (ifr->ifr_name));
7441 			sin = (sin_t *)&ifr->ifr_addr;
7442 			*sin = sin_null;
7443 			sin->sin_family = AF_INET;
7444 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7445 			ifr++;
7446 		}
7447 	}
7448 if_copydone:
7449 	rw_exit(&ipst->ips_ill_g_lock);
7450 	mp1->b_wptr = (uchar_t *)ifr;
7451 
7452 	if (STRUCT_BUF(ifc) != NULL) {
7453 		STRUCT_FSET(ifc, ifc_len,
7454 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7455 	}
7456 	return (0);
7457 }
7458 
7459 /*
7460  * Get the interfaces using the address hosted on the interface passed in,
7461  * as a source adddress
7462  */
7463 /* ARGSUSED */
7464 int
7465 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7466     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7467 {
7468 	mblk_t *mp1;
7469 	ill_t	*ill, *ill_head;
7470 	ipif_t	*ipif, *orig_ipif;
7471 	int	numlifs = 0;
7472 	size_t	lifs_bufsize, lifsmaxlen;
7473 	struct	lifreq *lifr;
7474 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7475 	uint_t	ifindex;
7476 	zoneid_t zoneid;
7477 	boolean_t isv6 = B_FALSE;
7478 	struct	sockaddr_in	*sin;
7479 	struct	sockaddr_in6	*sin6;
7480 	STRUCT_HANDLE(lifsrcof, lifs);
7481 	ip_stack_t		*ipst;
7482 
7483 	ipst = CONNQ_TO_IPST(q);
7484 
7485 	ASSERT(q->q_next == NULL);
7486 
7487 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7488 
7489 	/* Existence verified in ip_wput_nondata */
7490 	mp1 = mp->b_cont->b_cont;
7491 
7492 	/*
7493 	 * Must be (better be!) continuation of a TRANSPARENT
7494 	 * IOCTL.  We just copied in the lifsrcof structure.
7495 	 */
7496 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7497 	    (struct lifsrcof *)mp1->b_rptr);
7498 
7499 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7500 		return (EINVAL);
7501 
7502 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7503 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7504 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7505 	if (ipif == NULL) {
7506 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7507 		    ifindex));
7508 		return (ENXIO);
7509 	}
7510 
7511 	/* Allocate a buffer to hold requested information */
7512 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7513 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7514 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7515 	/* The actual size needed is always returned in lifs_len */
7516 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7517 
7518 	/* If the amount we need is more than what is passed in, abort */
7519 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7520 		ipif_refrele(ipif);
7521 		return (0);
7522 	}
7523 
7524 	mp1 = mi_copyout_alloc(q, mp,
7525 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7526 	if (mp1 == NULL) {
7527 		ipif_refrele(ipif);
7528 		return (ENOMEM);
7529 	}
7530 
7531 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7532 	bzero(mp1->b_rptr, lifs_bufsize);
7533 
7534 	lifr = (struct lifreq *)mp1->b_rptr;
7535 
7536 	ill = ill_head = ipif->ipif_ill;
7537 	orig_ipif = ipif;
7538 
7539 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7540 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7541 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7542 
7543 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7544 	for (; (ill != NULL) && (ill != ill_head);
7545 	    ill = ill->ill_usesrc_grp_next) {
7546 
7547 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7548 			break;
7549 
7550 		ipif = ill->ill_ipif;
7551 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7552 		if (ipif->ipif_isv6) {
7553 			sin6 = (sin6_t *)&lifr->lifr_addr;
7554 			*sin6 = sin6_null;
7555 			sin6->sin6_family = AF_INET6;
7556 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7557 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7558 			    &ipif->ipif_v6net_mask);
7559 		} else {
7560 			sin = (sin_t *)&lifr->lifr_addr;
7561 			*sin = sin_null;
7562 			sin->sin_family = AF_INET;
7563 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7564 			lifr->lifr_addrlen = ip_mask_to_plen(
7565 			    ipif->ipif_net_mask);
7566 		}
7567 		lifr++;
7568 	}
7569 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7570 	rw_exit(&ipst->ips_ill_g_lock);
7571 	ipif_refrele(orig_ipif);
7572 	mp1->b_wptr = (uchar_t *)lifr;
7573 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7574 
7575 	return (0);
7576 }
7577 
7578 /* ARGSUSED */
7579 int
7580 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7581     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7582 {
7583 	mblk_t *mp1;
7584 	int	list;
7585 	ill_t	*ill;
7586 	ipif_t	*ipif;
7587 	int	flags;
7588 	int	numlifs = 0;
7589 	size_t	lifc_bufsize;
7590 	struct	lifreq *lifr;
7591 	sa_family_t	family;
7592 	struct	sockaddr_in	*sin;
7593 	struct	sockaddr_in6	*sin6;
7594 	ill_walk_context_t	ctx;
7595 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7596 	int32_t	lifclen;
7597 	zoneid_t zoneid;
7598 	STRUCT_HANDLE(lifconf, lifc);
7599 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7600 
7601 	ip1dbg(("ip_sioctl_get_lifconf"));
7602 
7603 	ASSERT(q->q_next == NULL);
7604 
7605 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7606 
7607 	/* Existence verified in ip_wput_nondata */
7608 	mp1 = mp->b_cont->b_cont;
7609 
7610 	/*
7611 	 * An extended version of SIOCGIFCONF that takes an
7612 	 * additional address family and flags field.
7613 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7614 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7615 	 * interfaces are omitted.
7616 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7617 	 * unless LIFC_TEMPORARY is specified.
7618 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7619 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7620 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7621 	 * has priority over LIFC_NOXMIT.
7622 	 */
7623 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7624 
7625 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7626 		return (EINVAL);
7627 
7628 	/*
7629 	 * Must be (better be!) continuation of a TRANSPARENT
7630 	 * IOCTL.  We just copied in the lifconf structure.
7631 	 */
7632 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7633 
7634 	family = STRUCT_FGET(lifc, lifc_family);
7635 	flags = STRUCT_FGET(lifc, lifc_flags);
7636 
7637 	switch (family) {
7638 	case AF_UNSPEC:
7639 		/*
7640 		 * walk all ILL's.
7641 		 */
7642 		list = MAX_G_HEADS;
7643 		break;
7644 	case AF_INET:
7645 		/*
7646 		 * walk only IPV4 ILL's.
7647 		 */
7648 		list = IP_V4_G_HEAD;
7649 		break;
7650 	case AF_INET6:
7651 		/*
7652 		 * walk only IPV6 ILL's.
7653 		 */
7654 		list = IP_V6_G_HEAD;
7655 		break;
7656 	default:
7657 		return (EAFNOSUPPORT);
7658 	}
7659 
7660 	/*
7661 	 * Allocate a buffer to hold requested information.
7662 	 *
7663 	 * If lifc_len is larger than what is needed, we only
7664 	 * allocate what we will use.
7665 	 *
7666 	 * If lifc_len is smaller than what is needed, return
7667 	 * EINVAL.
7668 	 */
7669 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7670 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7671 	lifclen = STRUCT_FGET(lifc, lifc_len);
7672 	if (lifc_bufsize > lifclen) {
7673 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7674 			return (EINVAL);
7675 		else
7676 			lifc_bufsize = lifclen;
7677 	}
7678 
7679 	mp1 = mi_copyout_alloc(q, mp,
7680 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7681 	if (mp1 == NULL)
7682 		return (ENOMEM);
7683 
7684 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7685 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7686 
7687 	lifr = (struct lifreq *)mp1->b_rptr;
7688 
7689 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7690 	ill = ill_first(list, list, &ctx, ipst);
7691 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7692 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7693 			continue;
7694 
7695 		for (ipif = ill->ill_ipif; ipif != NULL;
7696 		    ipif = ipif->ipif_next) {
7697 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7698 			    !(flags & LIFC_NOXMIT))
7699 				continue;
7700 
7701 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7702 			    !(flags & LIFC_TEMPORARY))
7703 				continue;
7704 
7705 			if (((ipif->ipif_flags &
7706 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7707 			    IPIF_DEPRECATED)) ||
7708 			    IS_LOOPBACK(ill) ||
7709 			    !(ipif->ipif_flags & IPIF_UP)) &&
7710 			    (flags & LIFC_EXTERNAL_SOURCE))
7711 				continue;
7712 
7713 			if (zoneid != ipif->ipif_zoneid &&
7714 			    ipif->ipif_zoneid != ALL_ZONES &&
7715 			    (zoneid != GLOBAL_ZONEID ||
7716 			    !(flags & LIFC_ALLZONES)))
7717 				continue;
7718 
7719 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7720 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7721 					rw_exit(&ipst->ips_ill_g_lock);
7722 					return (EINVAL);
7723 				} else {
7724 					goto lif_copydone;
7725 				}
7726 			}
7727 
7728 			ipif_get_name(ipif, lifr->lifr_name,
7729 			    sizeof (lifr->lifr_name));
7730 			lifr->lifr_type = ill->ill_type;
7731 			if (ipif->ipif_isv6) {
7732 				sin6 = (sin6_t *)&lifr->lifr_addr;
7733 				*sin6 = sin6_null;
7734 				sin6->sin6_family = AF_INET6;
7735 				sin6->sin6_addr =
7736 				    ipif->ipif_v6lcl_addr;
7737 				lifr->lifr_addrlen =
7738 				    ip_mask_to_plen_v6(
7739 				    &ipif->ipif_v6net_mask);
7740 			} else {
7741 				sin = (sin_t *)&lifr->lifr_addr;
7742 				*sin = sin_null;
7743 				sin->sin_family = AF_INET;
7744 				sin->sin_addr.s_addr =
7745 				    ipif->ipif_lcl_addr;
7746 				lifr->lifr_addrlen =
7747 				    ip_mask_to_plen(
7748 				    ipif->ipif_net_mask);
7749 			}
7750 			lifr++;
7751 		}
7752 	}
7753 lif_copydone:
7754 	rw_exit(&ipst->ips_ill_g_lock);
7755 
7756 	mp1->b_wptr = (uchar_t *)lifr;
7757 	if (STRUCT_BUF(lifc) != NULL) {
7758 		STRUCT_FSET(lifc, lifc_len,
7759 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7760 	}
7761 	return (0);
7762 }
7763 
7764 static void
7765 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7766 {
7767 	ip6_asp_t *table;
7768 	size_t table_size;
7769 	mblk_t *data_mp;
7770 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7771 	ip_stack_t	*ipst;
7772 
7773 	if (q->q_next == NULL)
7774 		ipst = CONNQ_TO_IPST(q);
7775 	else
7776 		ipst = ILLQ_TO_IPST(q);
7777 
7778 	/* These two ioctls are I_STR only */
7779 	if (iocp->ioc_count == TRANSPARENT) {
7780 		miocnak(q, mp, 0, EINVAL);
7781 		return;
7782 	}
7783 
7784 	data_mp = mp->b_cont;
7785 	if (data_mp == NULL) {
7786 		/* The user passed us a NULL argument */
7787 		table = NULL;
7788 		table_size = iocp->ioc_count;
7789 	} else {
7790 		/*
7791 		 * The user provided a table.  The stream head
7792 		 * may have copied in the user data in chunks,
7793 		 * so make sure everything is pulled up
7794 		 * properly.
7795 		 */
7796 		if (MBLKL(data_mp) < iocp->ioc_count) {
7797 			mblk_t *new_data_mp;
7798 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7799 			    NULL) {
7800 				miocnak(q, mp, 0, ENOMEM);
7801 				return;
7802 			}
7803 			freemsg(data_mp);
7804 			data_mp = new_data_mp;
7805 			mp->b_cont = data_mp;
7806 		}
7807 		table = (ip6_asp_t *)data_mp->b_rptr;
7808 		table_size = iocp->ioc_count;
7809 	}
7810 
7811 	switch (iocp->ioc_cmd) {
7812 	case SIOCGIP6ADDRPOLICY:
7813 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7814 		if (iocp->ioc_rval == -1)
7815 			iocp->ioc_error = EINVAL;
7816 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7817 		else if (table != NULL &&
7818 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7819 			ip6_asp_t *src = table;
7820 			ip6_asp32_t *dst = (void *)table;
7821 			int count = table_size / sizeof (ip6_asp_t);
7822 			int i;
7823 
7824 			/*
7825 			 * We need to do an in-place shrink of the array
7826 			 * to match the alignment attributes of the
7827 			 * 32-bit ABI looking at it.
7828 			 */
7829 			/* LINTED: logical expression always true: op "||" */
7830 			ASSERT(sizeof (*src) > sizeof (*dst));
7831 			for (i = 1; i < count; i++)
7832 				bcopy(src + i, dst + i, sizeof (*dst));
7833 		}
7834 #endif
7835 		break;
7836 
7837 	case SIOCSIP6ADDRPOLICY:
7838 		ASSERT(mp->b_prev == NULL);
7839 		mp->b_prev = (void *)q;
7840 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7841 		/*
7842 		 * We pass in the datamodel here so that the ip6_asp_replace()
7843 		 * routine can handle converting from 32-bit to native formats
7844 		 * where necessary.
7845 		 *
7846 		 * A better way to handle this might be to convert the inbound
7847 		 * data structure here, and hang it off a new 'mp'; thus the
7848 		 * ip6_asp_replace() logic would always be dealing with native
7849 		 * format data structures..
7850 		 *
7851 		 * (An even simpler way to handle these ioctls is to just
7852 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7853 		 * and just recompile everything that depends on it.)
7854 		 */
7855 #endif
7856 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7857 		    iocp->ioc_flag & IOC_MODELS);
7858 		return;
7859 	}
7860 
7861 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7862 	qreply(q, mp);
7863 }
7864 
7865 static void
7866 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7867 {
7868 	mblk_t 		*data_mp;
7869 	struct dstinforeq	*dir;
7870 	uint8_t		*end, *cur;
7871 	in6_addr_t	*daddr, *saddr;
7872 	ipaddr_t	v4daddr;
7873 	ire_t		*ire;
7874 	ipaddr_t	v4setsrc;
7875 	in6_addr_t	v6setsrc;
7876 	char		*slabel, *dlabel;
7877 	boolean_t	isipv4;
7878 	int		match_ire;
7879 	ill_t		*dst_ill;
7880 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7881 	conn_t		*connp = Q_TO_CONN(q);
7882 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7883 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7884 	uint64_t	ipif_flags;
7885 
7886 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7887 
7888 	/*
7889 	 * This ioctl is I_STR only, and must have a
7890 	 * data mblk following the M_IOCTL mblk.
7891 	 */
7892 	data_mp = mp->b_cont;
7893 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7894 		miocnak(q, mp, 0, EINVAL);
7895 		return;
7896 	}
7897 
7898 	if (MBLKL(data_mp) < iocp->ioc_count) {
7899 		mblk_t *new_data_mp;
7900 
7901 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7902 			miocnak(q, mp, 0, ENOMEM);
7903 			return;
7904 		}
7905 		freemsg(data_mp);
7906 		data_mp = new_data_mp;
7907 		mp->b_cont = data_mp;
7908 	}
7909 	match_ire = MATCH_IRE_DSTONLY;
7910 
7911 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7912 	    end - cur >= sizeof (struct dstinforeq);
7913 	    cur += sizeof (struct dstinforeq)) {
7914 		dir = (struct dstinforeq *)cur;
7915 		daddr = &dir->dir_daddr;
7916 		saddr = &dir->dir_saddr;
7917 
7918 		/*
7919 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7920 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7921 		 * and ip_select_source_v6() do not.
7922 		 */
7923 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7924 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7925 
7926 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7927 		if (isipv4) {
7928 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7929 			v4setsrc = INADDR_ANY;
7930 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7931 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7932 			    NULL, NULL);
7933 		} else {
7934 			v6setsrc = ipv6_all_zeros;
7935 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7936 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7937 			    NULL, NULL);
7938 		}
7939 		ASSERT(ire != NULL);
7940 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7941 			ire_refrele(ire);
7942 			dir->dir_dreachable = 0;
7943 
7944 			/* move on to next dst addr */
7945 			continue;
7946 		}
7947 		dir->dir_dreachable = 1;
7948 
7949 		dst_ill = ire_nexthop_ill(ire);
7950 		if (dst_ill == NULL) {
7951 			ire_refrele(ire);
7952 			continue;
7953 		}
7954 
7955 		/* With ipmp we most likely look at the ipmp ill here */
7956 		dir->dir_dmactype = dst_ill->ill_mactype;
7957 
7958 		if (isipv4) {
7959 			ipaddr_t v4saddr;
7960 
7961 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7962 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7963 			    &v4saddr, NULL, &ipif_flags) != 0) {
7964 				v4saddr = INADDR_ANY;
7965 				ipif_flags = 0;
7966 			}
7967 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7968 		} else {
7969 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7970 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7971 			    saddr, NULL, &ipif_flags) != 0) {
7972 				*saddr = ipv6_all_zeros;
7973 				ipif_flags = 0;
7974 			}
7975 		}
7976 
7977 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7978 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7979 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7980 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7981 		ire_refrele(ire);
7982 		ill_refrele(dst_ill);
7983 	}
7984 	miocack(q, mp, iocp->ioc_count, 0);
7985 }
7986 
7987 /*
7988  * Check if this is an address assigned to this machine.
7989  * Skips interfaces that are down by using ire checks.
7990  * Translates mapped addresses to v4 addresses and then
7991  * treats them as such, returning true if the v4 address
7992  * associated with this mapped address is configured.
7993  * Note: Applications will have to be careful what they do
7994  * with the response; use of mapped addresses limits
7995  * what can be done with the socket, especially with
7996  * respect to socket options and ioctls - neither IPv4
7997  * options nor IPv6 sticky options/ancillary data options
7998  * may be used.
7999  */
8000 /* ARGSUSED */
8001 int
8002 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8003     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8004 {
8005 	struct sioc_addrreq *sia;
8006 	sin_t *sin;
8007 	ire_t *ire;
8008 	mblk_t *mp1;
8009 	zoneid_t zoneid;
8010 	ip_stack_t	*ipst;
8011 
8012 	ip1dbg(("ip_sioctl_tmyaddr"));
8013 
8014 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8015 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8016 	ipst = CONNQ_TO_IPST(q);
8017 
8018 	/* Existence verified in ip_wput_nondata */
8019 	mp1 = mp->b_cont->b_cont;
8020 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8021 	sin = (sin_t *)&sia->sa_addr;
8022 	switch (sin->sin_family) {
8023 	case AF_INET6: {
8024 		sin6_t *sin6 = (sin6_t *)sin;
8025 
8026 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8027 			ipaddr_t v4_addr;
8028 
8029 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8030 			    v4_addr);
8031 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8032 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8033 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8034 		} else {
8035 			in6_addr_t v6addr;
8036 
8037 			v6addr = sin6->sin6_addr;
8038 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8039 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8040 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8041 		}
8042 		break;
8043 	}
8044 	case AF_INET: {
8045 		ipaddr_t v4addr;
8046 
8047 		v4addr = sin->sin_addr.s_addr;
8048 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8049 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8050 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8051 		break;
8052 	}
8053 	default:
8054 		return (EAFNOSUPPORT);
8055 	}
8056 	if (ire != NULL) {
8057 		sia->sa_res = 1;
8058 		ire_refrele(ire);
8059 	} else {
8060 		sia->sa_res = 0;
8061 	}
8062 	return (0);
8063 }
8064 
8065 /*
8066  * Check if this is an address assigned on-link i.e. neighbor,
8067  * and makes sure it's reachable from the current zone.
8068  * Returns true for my addresses as well.
8069  * Translates mapped addresses to v4 addresses and then
8070  * treats them as such, returning true if the v4 address
8071  * associated with this mapped address is configured.
8072  * Note: Applications will have to be careful what they do
8073  * with the response; use of mapped addresses limits
8074  * what can be done with the socket, especially with
8075  * respect to socket options and ioctls - neither IPv4
8076  * options nor IPv6 sticky options/ancillary data options
8077  * may be used.
8078  */
8079 /* ARGSUSED */
8080 int
8081 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8082     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8083 {
8084 	struct sioc_addrreq *sia;
8085 	sin_t *sin;
8086 	mblk_t	*mp1;
8087 	ire_t *ire = NULL;
8088 	zoneid_t zoneid;
8089 	ip_stack_t	*ipst;
8090 
8091 	ip1dbg(("ip_sioctl_tonlink"));
8092 
8093 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8094 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8095 	ipst = CONNQ_TO_IPST(q);
8096 
8097 	/* Existence verified in ip_wput_nondata */
8098 	mp1 = mp->b_cont->b_cont;
8099 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8100 	sin = (sin_t *)&sia->sa_addr;
8101 
8102 	/*
8103 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8104 	 * to make sure we only look at on-link unicast address.
8105 	 */
8106 	switch (sin->sin_family) {
8107 	case AF_INET6: {
8108 		sin6_t *sin6 = (sin6_t *)sin;
8109 
8110 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8111 			ipaddr_t v4_addr;
8112 
8113 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8114 			    v4_addr);
8115 			if (!CLASSD(v4_addr)) {
8116 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8117 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8118 				    0, ipst, NULL);
8119 			}
8120 		} else {
8121 			in6_addr_t v6addr;
8122 
8123 			v6addr = sin6->sin6_addr;
8124 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8125 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8126 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8127 				    ipst, NULL);
8128 			}
8129 		}
8130 		break;
8131 	}
8132 	case AF_INET: {
8133 		ipaddr_t v4addr;
8134 
8135 		v4addr = sin->sin_addr.s_addr;
8136 		if (!CLASSD(v4addr)) {
8137 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8138 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8139 		}
8140 		break;
8141 	}
8142 	default:
8143 		return (EAFNOSUPPORT);
8144 	}
8145 	sia->sa_res = 0;
8146 	if (ire != NULL) {
8147 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8148 
8149 		if ((ire->ire_type & IRE_ONLINK) &&
8150 		    !(ire->ire_type & IRE_BROADCAST))
8151 			sia->sa_res = 1;
8152 		ire_refrele(ire);
8153 	}
8154 	return (0);
8155 }
8156 
8157 /*
8158  * TBD: implement when kernel maintaines a list of site prefixes.
8159  */
8160 /* ARGSUSED */
8161 int
8162 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8163     ip_ioctl_cmd_t *ipip, void *ifreq)
8164 {
8165 	return (ENXIO);
8166 }
8167 
8168 /* ARP IOCTLs. */
8169 /* ARGSUSED */
8170 int
8171 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8172     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8173 {
8174 	int		err;
8175 	ipaddr_t	ipaddr;
8176 	struct iocblk	*iocp;
8177 	conn_t		*connp;
8178 	struct arpreq	*ar;
8179 	struct xarpreq	*xar;
8180 	int		arp_flags, flags, alength;
8181 	uchar_t		*lladdr;
8182 	ip_stack_t	*ipst;
8183 	ill_t		*ill = ipif->ipif_ill;
8184 	ill_t		*proxy_ill = NULL;
8185 	ipmp_arpent_t	*entp = NULL;
8186 	boolean_t	proxyarp = B_FALSE;
8187 	boolean_t	if_arp_ioctl = B_FALSE;
8188 	ncec_t		*ncec = NULL;
8189 	nce_t		*nce;
8190 
8191 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8192 	connp = Q_TO_CONN(q);
8193 	ipst = connp->conn_netstack->netstack_ip;
8194 	iocp = (struct iocblk *)mp->b_rptr;
8195 
8196 	if (ipip->ipi_cmd_type == XARP_CMD) {
8197 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8198 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8199 		ar = NULL;
8200 
8201 		arp_flags = xar->xarp_flags;
8202 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8203 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8204 		/*
8205 		 * Validate against user's link layer address length
8206 		 * input and name and addr length limits.
8207 		 */
8208 		alength = ill->ill_phys_addr_length;
8209 		if (ipip->ipi_cmd == SIOCSXARP) {
8210 			if (alength != xar->xarp_ha.sdl_alen ||
8211 			    (alength + xar->xarp_ha.sdl_nlen >
8212 			    sizeof (xar->xarp_ha.sdl_data)))
8213 				return (EINVAL);
8214 		}
8215 	} else {
8216 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8217 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8218 		xar = NULL;
8219 
8220 		arp_flags = ar->arp_flags;
8221 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8222 		/*
8223 		 * Theoretically, the sa_family could tell us what link
8224 		 * layer type this operation is trying to deal with. By
8225 		 * common usage AF_UNSPEC means ethernet. We'll assume
8226 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8227 		 * for now. Our new SIOC*XARP ioctls can be used more
8228 		 * generally.
8229 		 *
8230 		 * If the underlying media happens to have a non 6 byte
8231 		 * address, arp module will fail set/get, but the del
8232 		 * operation will succeed.
8233 		 */
8234 		alength = 6;
8235 		if ((ipip->ipi_cmd != SIOCDARP) &&
8236 		    (alength != ill->ill_phys_addr_length)) {
8237 			return (EINVAL);
8238 		}
8239 	}
8240 
8241 	/* Translate ATF* flags to NCE* flags */
8242 	flags = 0;
8243 	if (arp_flags & ATF_AUTHORITY)
8244 		flags |= NCE_F_AUTHORITY;
8245 	if (arp_flags & ATF_PERM)
8246 		flags |= NCE_F_NONUD; /* not subject to aging */
8247 	if (arp_flags & ATF_PUBL)
8248 		flags |= NCE_F_PUBLISH;
8249 
8250 	/*
8251 	 * IPMP ARP special handling:
8252 	 *
8253 	 * 1. Since ARP mappings must appear consistent across the group,
8254 	 *    prohibit changing ARP mappings on the underlying interfaces.
8255 	 *
8256 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8257 	 *    IP itself, prohibit changing them.
8258 	 *
8259 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8260 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8261 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8262 	 */
8263 	if (IS_UNDER_IPMP(ill)) {
8264 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8265 			return (EPERM);
8266 	}
8267 	if (IS_IPMP(ill)) {
8268 		ipmp_illgrp_t *illg = ill->ill_grp;
8269 
8270 		switch (ipip->ipi_cmd) {
8271 		case SIOCSARP:
8272 		case SIOCSXARP:
8273 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8274 			if (proxy_ill != NULL) {
8275 				proxyarp = B_TRUE;
8276 				if (!ipmp_ill_is_active(proxy_ill))
8277 					proxy_ill = ipmp_illgrp_next_ill(illg);
8278 				if (proxy_ill != NULL)
8279 					lladdr = proxy_ill->ill_phys_addr;
8280 			}
8281 			/* FALLTHRU */
8282 		}
8283 	}
8284 
8285 	ipaddr = sin->sin_addr.s_addr;
8286 	/*
8287 	 * don't match across illgrp per case (1) and (2).
8288 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8289 	 */
8290 	nce = nce_lookup_v4(ill, &ipaddr);
8291 	if (nce != NULL)
8292 		ncec = nce->nce_common;
8293 
8294 	switch (iocp->ioc_cmd) {
8295 	case SIOCDARP:
8296 	case SIOCDXARP: {
8297 		/*
8298 		 * Delete the NCE if any.
8299 		 */
8300 		if (ncec == NULL) {
8301 			iocp->ioc_error = ENXIO;
8302 			break;
8303 		}
8304 		/* Don't allow changes to arp mappings of local addresses. */
8305 		if (NCE_MYADDR(ncec)) {
8306 			nce_refrele(nce);
8307 			return (ENOTSUP);
8308 		}
8309 		iocp->ioc_error = 0;
8310 
8311 		/*
8312 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8313 		 * This will delete all the nce entries on the under_ills.
8314 		 */
8315 		ncec_delete(ncec);
8316 		/*
8317 		 * Once the NCE has been deleted, then the ire_dep* consistency
8318 		 * mechanism will find any IRE which depended on the now
8319 		 * condemned NCE (as part of sending packets).
8320 		 * That mechanism handles redirects by deleting redirects
8321 		 * that refer to UNREACHABLE nces.
8322 		 */
8323 		break;
8324 	}
8325 	case SIOCGARP:
8326 	case SIOCGXARP:
8327 		if (ncec != NULL) {
8328 			lladdr = ncec->ncec_lladdr;
8329 			flags = ncec->ncec_flags;
8330 			iocp->ioc_error = 0;
8331 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8332 		} else {
8333 			iocp->ioc_error = ENXIO;
8334 		}
8335 		break;
8336 	case SIOCSARP:
8337 	case SIOCSXARP:
8338 		/* Don't allow changes to arp mappings of local addresses. */
8339 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8340 			nce_refrele(nce);
8341 			return (ENOTSUP);
8342 		}
8343 
8344 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8345 		flags |= NCE_F_STATIC;
8346 		if (!if_arp_ioctl) {
8347 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8348 			    lladdr, alength, flags);
8349 		} else {
8350 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8351 			if (ipif != NULL) {
8352 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8353 				    lladdr, alength, flags);
8354 				ipif_refrele(ipif);
8355 			}
8356 		}
8357 		if (nce != NULL) {
8358 			nce_refrele(nce);
8359 			nce = NULL;
8360 		}
8361 		/*
8362 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8363 		 * by nce_add_common()
8364 		 */
8365 		err = nce_lookup_then_add_v4(ill, lladdr,
8366 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8367 		    &nce);
8368 		if (err == EEXIST) {
8369 			ncec = nce->nce_common;
8370 			mutex_enter(&ncec->ncec_lock);
8371 			ncec->ncec_state = ND_REACHABLE;
8372 			ncec->ncec_flags = flags;
8373 			nce_update(ncec, ND_UNCHANGED, lladdr);
8374 			mutex_exit(&ncec->ncec_lock);
8375 			err = 0;
8376 		}
8377 		if (nce != NULL) {
8378 			nce_refrele(nce);
8379 			nce = NULL;
8380 		}
8381 		if (IS_IPMP(ill) && err == 0) {
8382 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8383 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8384 			    flags);
8385 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8386 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8387 				break;
8388 			}
8389 		}
8390 		iocp->ioc_error = err;
8391 	}
8392 
8393 	if (nce != NULL) {
8394 		nce_refrele(nce);
8395 	}
8396 
8397 	/*
8398 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8399 	 */
8400 	if (entp != NULL)
8401 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8402 
8403 	return (iocp->ioc_error);
8404 }
8405 
8406 /*
8407  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8408  * the associated sin and refhold and return the associated ipif via `ci'.
8409  */
8410 int
8411 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8412     cmd_info_t *ci)
8413 {
8414 	mblk_t	*mp1;
8415 	sin_t	*sin;
8416 	conn_t	*connp;
8417 	ipif_t	*ipif;
8418 	ire_t	*ire = NULL;
8419 	ill_t	*ill = NULL;
8420 	boolean_t exists;
8421 	ip_stack_t *ipst;
8422 	struct arpreq *ar;
8423 	struct xarpreq *xar;
8424 	struct sockaddr_dl *sdl;
8425 
8426 	/* ioctl comes down on a conn */
8427 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8428 	connp = Q_TO_CONN(q);
8429 	if (connp->conn_family == AF_INET6)
8430 		return (ENXIO);
8431 
8432 	ipst = connp->conn_netstack->netstack_ip;
8433 
8434 	/* Verified in ip_wput_nondata */
8435 	mp1 = mp->b_cont->b_cont;
8436 
8437 	if (ipip->ipi_cmd_type == XARP_CMD) {
8438 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8439 		xar = (struct xarpreq *)mp1->b_rptr;
8440 		sin = (sin_t *)&xar->xarp_pa;
8441 		sdl = &xar->xarp_ha;
8442 
8443 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8444 			return (ENXIO);
8445 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8446 			return (EINVAL);
8447 	} else {
8448 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8449 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8450 		ar = (struct arpreq *)mp1->b_rptr;
8451 		sin = (sin_t *)&ar->arp_pa;
8452 	}
8453 
8454 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8455 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8456 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8457 		if (ipif == NULL)
8458 			return (ENXIO);
8459 		if (ipif->ipif_id != 0) {
8460 			ipif_refrele(ipif);
8461 			return (ENXIO);
8462 		}
8463 	} else {
8464 		/*
8465 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8466 		 * of 0: use the IP address to find the ipif.  If the IP
8467 		 * address is an IPMP test address, ire_ftable_lookup() will
8468 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8469 		 */
8470 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8471 		    ipst);
8472 		if (ipif == NULL) {
8473 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8474 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8475 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8476 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8477 				if (ire != NULL)
8478 					ire_refrele(ire);
8479 				return (ENXIO);
8480 			}
8481 			ASSERT(ire != NULL && ill != NULL);
8482 			ipif = ill->ill_ipif;
8483 			ipif_refhold(ipif);
8484 			ire_refrele(ire);
8485 		}
8486 	}
8487 
8488 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8489 		ipif_refrele(ipif);
8490 		return (ENXIO);
8491 	}
8492 
8493 	ci->ci_sin = sin;
8494 	ci->ci_ipif = ipif;
8495 	return (0);
8496 }
8497 
8498 /*
8499  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8500  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8501  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8502  * up and thus an ill can join that illgrp.
8503  *
8504  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8505  * open()/close() primarily because close() is not allowed to fail or block
8506  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8507  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8508  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8509  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8510  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8511  * state if I_UNLINK didn't occur.
8512  *
8513  * Note that for each plumb/unplumb operation, we may end up here more than
8514  * once because of the way ifconfig works.  However, it's OK to link the same
8515  * illgrp more than once, or unlink an illgrp that's already unlinked.
8516  */
8517 static int
8518 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8519 {
8520 	int err;
8521 	ip_stack_t *ipst = ill->ill_ipst;
8522 
8523 	ASSERT(IS_IPMP(ill));
8524 	ASSERT(IAM_WRITER_ILL(ill));
8525 
8526 	switch (ioccmd) {
8527 	case I_LINK:
8528 		return (ENOTSUP);
8529 
8530 	case I_PLINK:
8531 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8532 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8533 		rw_exit(&ipst->ips_ipmp_lock);
8534 		break;
8535 
8536 	case I_PUNLINK:
8537 		/*
8538 		 * Require all UP ipifs be brought down prior to unlinking the
8539 		 * illgrp so any associated IREs (and other state) is torched.
8540 		 */
8541 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8542 			return (EBUSY);
8543 
8544 		/*
8545 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8546 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8547 		 * join this group.  Specifically: ills trying to join grab
8548 		 * ipmp_lock and bump a "pending join" counter checked by
8549 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8550 		 * joins can occur (since we have ipmp_lock).  Once we drop
8551 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8552 		 * find the illgrp (since we unlinked it) and will return
8553 		 * EAFNOSUPPORT.  This will then take them back through the
8554 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8555 		 * back through I_PLINK above.
8556 		 */
8557 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8558 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8559 		rw_exit(&ipst->ips_ipmp_lock);
8560 		return (err);
8561 	default:
8562 		break;
8563 	}
8564 	return (0);
8565 }
8566 
8567 /*
8568  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8569  * atomically set/clear the muxids. Also complete the ioctl by acking or
8570  * naking it.  Note that the code is structured such that the link type,
8571  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8572  * its clones use the persistent link, while pppd(1M) and perhaps many
8573  * other daemons may use non-persistent link.  When combined with some
8574  * ill_t states, linking and unlinking lower streams may be used as
8575  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8576  */
8577 /* ARGSUSED */
8578 void
8579 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8580 {
8581 	mblk_t		*mp1;
8582 	struct linkblk	*li;
8583 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8584 	int		err = 0;
8585 
8586 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8587 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8588 
8589 	mp1 = mp->b_cont;	/* This is the linkblk info */
8590 	li = (struct linkblk *)mp1->b_rptr;
8591 
8592 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8593 	if (err == EINPROGRESS)
8594 		return;
8595 done:
8596 	if (err == 0)
8597 		miocack(q, mp, 0, 0);
8598 	else
8599 		miocnak(q, mp, 0, err);
8600 
8601 	/* Conn was refheld in ip_sioctl_copyin_setup */
8602 	if (CONN_Q(q))
8603 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8604 }
8605 
8606 /*
8607  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8608  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8609  * module stream).  If `doconsist' is set, then do the extended consistency
8610  * checks requested by ifconfig(1M) and (atomically) set ill_muxid here.
8611  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8612  * an error code on failure.
8613  */
8614 static int
8615 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8616     struct linkblk *li)
8617 {
8618 	int		err = 0;
8619 	ill_t  		*ill;
8620 	queue_t		*ipwq, *dwq;
8621 	const char	*name;
8622 	struct qinit	*qinfo;
8623 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8624 	boolean_t	entered_ipsq = B_FALSE;
8625 	boolean_t	is_ip = B_FALSE;
8626 	arl_t		*arl;
8627 
8628 	/*
8629 	 * Walk the lower stream to verify it's the IP module stream.
8630 	 * The IP module is identified by its name, wput function,
8631 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8632 	 * (li->l_qbot) will not vanish until this ioctl completes.
8633 	 */
8634 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8635 		qinfo = ipwq->q_qinfo;
8636 		name = qinfo->qi_minfo->mi_idname;
8637 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8638 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8639 			is_ip = B_TRUE;
8640 			break;
8641 		}
8642 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8643 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8644 			break;
8645 		}
8646 	}
8647 
8648 	/*
8649 	 * If this isn't an IP module stream, bail.
8650 	 */
8651 	if (ipwq == NULL)
8652 		return (0);
8653 
8654 	if (!is_ip) {
8655 		arl = (arl_t *)ipwq->q_ptr;
8656 		ill = arl_to_ill(arl);
8657 		if (ill == NULL)
8658 			return (0);
8659 	} else {
8660 		ill = ipwq->q_ptr;
8661 	}
8662 	ASSERT(ill != NULL);
8663 
8664 	if (ipsq == NULL) {
8665 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8666 		    NEW_OP, B_FALSE);
8667 		if (ipsq == NULL) {
8668 			if (!is_ip)
8669 				ill_refrele(ill);
8670 			return (EINPROGRESS);
8671 		}
8672 		entered_ipsq = B_TRUE;
8673 	}
8674 	ASSERT(IAM_WRITER_ILL(ill));
8675 	mutex_enter(&ill->ill_lock);
8676 	if (!is_ip) {
8677 		if (islink && ill->ill_muxid == 0) {
8678 			/*
8679 			 * Plumbing has to be done with IP plumbed first, arp
8680 			 * second, but here we have arp being plumbed first.
8681 			 */
8682 			mutex_exit(&ill->ill_lock);
8683 			ipsq_exit(ipsq);
8684 			ill_refrele(ill);
8685 			return (EINVAL);
8686 		}
8687 	}
8688 	mutex_exit(&ill->ill_lock);
8689 	if (!is_ip) {
8690 		arl->arl_muxid = islink ? li->l_index : 0;
8691 		ill_refrele(ill);
8692 		goto done;
8693 	}
8694 
8695 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8696 		goto done;
8697 
8698 	/*
8699 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8700 	 * the read queue of the module immediately below IP in the ill.
8701 	 * These are used during the capability negotiation below.
8702 	 */
8703 	ill->ill_lmod_rq = NULL;
8704 	ill->ill_lmod_cnt = 0;
8705 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8706 		ill->ill_lmod_rq = RD(dwq);
8707 		for (; dwq != NULL; dwq = dwq->q_next)
8708 			ill->ill_lmod_cnt++;
8709 	}
8710 
8711 	ill->ill_muxid = islink ? li->l_index : 0;
8712 
8713 	/*
8714 	 * Mark the ipsq busy until the capability operations initiated below
8715 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8716 	 * returns, but the capability operation may complete asynchronously
8717 	 * much later.
8718 	 */
8719 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8720 	/*
8721 	 * If there's at least one up ipif on this ill, then we're bound to
8722 	 * the underlying driver via DLPI.  In that case, renegotiate
8723 	 * capabilities to account for any possible change in modules
8724 	 * interposed between IP and the driver.
8725 	 */
8726 	if (ill->ill_ipif_up_count > 0) {
8727 		if (islink)
8728 			ill_capability_probe(ill);
8729 		else
8730 			ill_capability_reset(ill, B_FALSE);
8731 	}
8732 	ipsq_current_finish(ipsq);
8733 done:
8734 	if (entered_ipsq)
8735 		ipsq_exit(ipsq);
8736 
8737 	return (err);
8738 }
8739 
8740 /*
8741  * Search the ioctl command in the ioctl tables and return a pointer
8742  * to the ioctl command information. The ioctl command tables are
8743  * static and fully populated at compile time.
8744  */
8745 ip_ioctl_cmd_t *
8746 ip_sioctl_lookup(int ioc_cmd)
8747 {
8748 	int index;
8749 	ip_ioctl_cmd_t *ipip;
8750 	ip_ioctl_cmd_t *ipip_end;
8751 
8752 	if (ioc_cmd == IPI_DONTCARE)
8753 		return (NULL);
8754 
8755 	/*
8756 	 * Do a 2 step search. First search the indexed table
8757 	 * based on the least significant byte of the ioctl cmd.
8758 	 * If we don't find a match, then search the misc table
8759 	 * serially.
8760 	 */
8761 	index = ioc_cmd & 0xFF;
8762 	if (index < ip_ndx_ioctl_count) {
8763 		ipip = &ip_ndx_ioctl_table[index];
8764 		if (ipip->ipi_cmd == ioc_cmd) {
8765 			/* Found a match in the ndx table */
8766 			return (ipip);
8767 		}
8768 	}
8769 
8770 	/* Search the misc table */
8771 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8772 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8773 		if (ipip->ipi_cmd == ioc_cmd)
8774 			/* Found a match in the misc table */
8775 			return (ipip);
8776 	}
8777 
8778 	return (NULL);
8779 }
8780 
8781 /*
8782  * Wrapper function for resuming deferred ioctl processing
8783  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
8784  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
8785  */
8786 /* ARGSUSED */
8787 void
8788 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
8789     void *dummy_arg)
8790 {
8791 	ip_sioctl_copyin_setup(q, mp);
8792 }
8793 
8794 /*
8795  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
8796  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
8797  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
8798  * We establish here the size of the block to be copied in.  mi_copyin
8799  * arranges for this to happen, an processing continues in ip_wput_nondata with
8800  * an M_IOCDATA message.
8801  */
8802 void
8803 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
8804 {
8805 	int	copyin_size;
8806 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8807 	ip_ioctl_cmd_t *ipip;
8808 	cred_t *cr;
8809 	ip_stack_t	*ipst;
8810 
8811 	if (CONN_Q(q))
8812 		ipst = CONNQ_TO_IPST(q);
8813 	else
8814 		ipst = ILLQ_TO_IPST(q);
8815 
8816 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
8817 	if (ipip == NULL) {
8818 		/*
8819 		 * The ioctl is not one we understand or own.
8820 		 * Pass it along to be processed down stream,
8821 		 * if this is a module instance of IP, else nak
8822 		 * the ioctl.
8823 		 */
8824 		if (q->q_next == NULL) {
8825 			goto nak;
8826 		} else {
8827 			putnext(q, mp);
8828 			return;
8829 		}
8830 	}
8831 
8832 	/*
8833 	 * If this is deferred, then we will do all the checks when we
8834 	 * come back.
8835 	 */
8836 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
8837 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
8838 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
8839 		return;
8840 	}
8841 
8842 	/*
8843 	 * Only allow a very small subset of IP ioctls on this stream if
8844 	 * IP is a module and not a driver. Allowing ioctls to be processed
8845 	 * in this case may cause assert failures or data corruption.
8846 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
8847 	 * ioctls allowed on an IP module stream, after which this stream
8848 	 * normally becomes a multiplexor (at which time the stream head
8849 	 * will fail all ioctls).
8850 	 */
8851 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
8852 		goto nak;
8853 	}
8854 
8855 	/* Make sure we have ioctl data to process. */
8856 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
8857 		goto nak;
8858 
8859 	/*
8860 	 * Prefer dblk credential over ioctl credential; some synthesized
8861 	 * ioctls have kcred set because there's no way to crhold()
8862 	 * a credential in some contexts.  (ioc_cr is not crfree() by
8863 	 * the framework; the caller of ioctl needs to hold the reference
8864 	 * for the duration of the call).
8865 	 */
8866 	cr = msg_getcred(mp, NULL);
8867 	if (cr == NULL)
8868 		cr = iocp->ioc_cr;
8869 
8870 	/* Make sure normal users don't send down privileged ioctls */
8871 	if ((ipip->ipi_flags & IPI_PRIV) &&
8872 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
8873 		/* We checked the privilege earlier but log it here */
8874 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
8875 		return;
8876 	}
8877 
8878 	/*
8879 	 * The ioctl command tables can only encode fixed length
8880 	 * ioctl data. If the length is variable, the table will
8881 	 * encode the length as zero. Such special cases are handled
8882 	 * below in the switch.
8883 	 */
8884 	if (ipip->ipi_copyin_size != 0) {
8885 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
8886 		return;
8887 	}
8888 
8889 	switch (iocp->ioc_cmd) {
8890 	case O_SIOCGIFCONF:
8891 	case SIOCGIFCONF:
8892 		/*
8893 		 * This IOCTL is hilarious.  See comments in
8894 		 * ip_sioctl_get_ifconf for the story.
8895 		 */
8896 		if (iocp->ioc_count == TRANSPARENT)
8897 			copyin_size = SIZEOF_STRUCT(ifconf,
8898 			    iocp->ioc_flag);
8899 		else
8900 			copyin_size = iocp->ioc_count;
8901 		mi_copyin(q, mp, NULL, copyin_size);
8902 		return;
8903 
8904 	case O_SIOCGLIFCONF:
8905 	case SIOCGLIFCONF:
8906 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
8907 		mi_copyin(q, mp, NULL, copyin_size);
8908 		return;
8909 
8910 	case SIOCGLIFSRCOF:
8911 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
8912 		mi_copyin(q, mp, NULL, copyin_size);
8913 		return;
8914 	case SIOCGIP6ADDRPOLICY:
8915 		ip_sioctl_ip6addrpolicy(q, mp);
8916 		ip6_asp_table_refrele(ipst);
8917 		return;
8918 
8919 	case SIOCSIP6ADDRPOLICY:
8920 		ip_sioctl_ip6addrpolicy(q, mp);
8921 		return;
8922 
8923 	case SIOCGDSTINFO:
8924 		ip_sioctl_dstinfo(q, mp);
8925 		ip6_asp_table_refrele(ipst);
8926 		return;
8927 
8928 	case I_PLINK:
8929 	case I_PUNLINK:
8930 	case I_LINK:
8931 	case I_UNLINK:
8932 		/*
8933 		 * We treat non-persistent link similarly as the persistent
8934 		 * link case, in terms of plumbing/unplumbing, as well as
8935 		 * dynamic re-plumbing events indicator.  See comments
8936 		 * in ip_sioctl_plink() for more.
8937 		 *
8938 		 * Request can be enqueued in the 'ipsq' while waiting
8939 		 * to become exclusive. So bump up the conn ref.
8940 		 */
8941 		if (CONN_Q(q))
8942 			CONN_INC_REF(Q_TO_CONN(q));
8943 		ip_sioctl_plink(NULL, q, mp, NULL);
8944 		return;
8945 
8946 	case ND_GET:
8947 	case ND_SET:
8948 		/*
8949 		 * Use of the nd table requires holding the reader lock.
8950 		 * Modifying the nd table thru nd_load/nd_unload requires
8951 		 * the writer lock.
8952 		 */
8953 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
8954 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
8955 			rw_exit(&ipst->ips_ip_g_nd_lock);
8956 
8957 			if (iocp->ioc_error)
8958 				iocp->ioc_count = 0;
8959 			mp->b_datap->db_type = M_IOCACK;
8960 			qreply(q, mp);
8961 			return;
8962 		}
8963 		rw_exit(&ipst->ips_ip_g_nd_lock);
8964 		/*
8965 		 * We don't understand this subioctl of ND_GET / ND_SET.
8966 		 * Maybe intended for some driver / module below us
8967 		 */
8968 		if (q->q_next) {
8969 			putnext(q, mp);
8970 		} else {
8971 			iocp->ioc_error = ENOENT;
8972 			mp->b_datap->db_type = M_IOCNAK;
8973 			iocp->ioc_count = 0;
8974 			qreply(q, mp);
8975 		}
8976 		return;
8977 
8978 	case IP_IOCTL:
8979 		ip_wput_ioctl(q, mp);
8980 		return;
8981 
8982 	case SIOCILB:
8983 		/* The ioctl length varies depending on the ILB command. */
8984 		copyin_size = iocp->ioc_count;
8985 		if (copyin_size < sizeof (ilb_cmd_t))
8986 			goto nak;
8987 		mi_copyin(q, mp, NULL, copyin_size);
8988 		return;
8989 
8990 	default:
8991 		cmn_err(CE_PANIC, "should not happen ");
8992 	}
8993 nak:
8994 	if (mp->b_cont != NULL) {
8995 		freemsg(mp->b_cont);
8996 		mp->b_cont = NULL;
8997 	}
8998 	iocp->ioc_error = EINVAL;
8999 	mp->b_datap->db_type = M_IOCNAK;
9000 	iocp->ioc_count = 0;
9001 	qreply(q, mp);
9002 }
9003 
9004 static void
9005 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9006 {
9007 	struct arpreq *ar;
9008 	struct xarpreq *xar;
9009 	mblk_t	*tmp;
9010 	struct iocblk *iocp;
9011 	int x_arp_ioctl = B_FALSE;
9012 	int *flagsp;
9013 	char *storage = NULL;
9014 
9015 	ASSERT(ill != NULL);
9016 
9017 	iocp = (struct iocblk *)mp->b_rptr;
9018 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9019 
9020 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9021 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9022 	    (iocp->ioc_cmd == SIOCSXARP)) {
9023 		x_arp_ioctl = B_TRUE;
9024 		xar = (struct xarpreq *)tmp->b_rptr;
9025 		flagsp = &xar->xarp_flags;
9026 		storage = xar->xarp_ha.sdl_data;
9027 	} else {
9028 		ar = (struct arpreq *)tmp->b_rptr;
9029 		flagsp = &ar->arp_flags;
9030 		storage = ar->arp_ha.sa_data;
9031 	}
9032 
9033 	/*
9034 	 * We're done if this is not an SIOCG{X}ARP
9035 	 */
9036 	if (x_arp_ioctl) {
9037 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9038 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9039 		    sizeof (xar->xarp_ha.sdl_data)) {
9040 			iocp->ioc_error = EINVAL;
9041 			return;
9042 		}
9043 	}
9044 	*flagsp = ATF_INUSE;
9045 	/*
9046 	 * If /sbin/arp told us we are the authority using the "permanent"
9047 	 * flag, or if this is one of my addresses print "permanent"
9048 	 * in the /sbin/arp output.
9049 	 */
9050 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9051 		*flagsp |= ATF_AUTHORITY;
9052 	if (flags & NCE_F_NONUD)
9053 		*flagsp |= ATF_PERM; /* not subject to aging */
9054 	if (flags & NCE_F_PUBLISH)
9055 		*flagsp |= ATF_PUBL;
9056 	if (hwaddr != NULL) {
9057 		*flagsp |= ATF_COM;
9058 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9059 	}
9060 }
9061 
9062 /*
9063  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9064  * interface) create the next available logical interface for this
9065  * physical interface.
9066  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9067  * ipif with the specified name.
9068  *
9069  * If the address family is not AF_UNSPEC then set the address as well.
9070  *
9071  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9072  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9073  *
9074  * Executed as a writer on the ill.
9075  * So no lock is needed to traverse the ipif chain, or examine the
9076  * phyint flags.
9077  */
9078 /* ARGSUSED */
9079 int
9080 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9081     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9082 {
9083 	mblk_t	*mp1;
9084 	struct lifreq *lifr;
9085 	boolean_t	isv6;
9086 	boolean_t	exists;
9087 	char 	*name;
9088 	char	*endp;
9089 	char	*cp;
9090 	int	namelen;
9091 	ipif_t	*ipif;
9092 	long	id;
9093 	ipsq_t	*ipsq;
9094 	ill_t	*ill;
9095 	sin_t	*sin;
9096 	int	err = 0;
9097 	boolean_t found_sep = B_FALSE;
9098 	conn_t	*connp;
9099 	zoneid_t zoneid;
9100 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9101 
9102 	ASSERT(q->q_next == NULL);
9103 	ip1dbg(("ip_sioctl_addif\n"));
9104 	/* Existence of mp1 has been checked in ip_wput_nondata */
9105 	mp1 = mp->b_cont->b_cont;
9106 	/*
9107 	 * Null terminate the string to protect against buffer
9108 	 * overrun. String was generated by user code and may not
9109 	 * be trusted.
9110 	 */
9111 	lifr = (struct lifreq *)mp1->b_rptr;
9112 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9113 	name = lifr->lifr_name;
9114 	ASSERT(CONN_Q(q));
9115 	connp = Q_TO_CONN(q);
9116 	isv6 = (connp->conn_family == AF_INET6);
9117 	zoneid = connp->conn_zoneid;
9118 	namelen = mi_strlen(name);
9119 	if (namelen == 0)
9120 		return (EINVAL);
9121 
9122 	exists = B_FALSE;
9123 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9124 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9125 		/*
9126 		 * Allow creating lo0 using SIOCLIFADDIF.
9127 		 * can't be any other writer thread. So can pass null below
9128 		 * for the last 4 args to ipif_lookup_name.
9129 		 */
9130 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9131 		    &exists, isv6, zoneid, ipst);
9132 		/* Prevent any further action */
9133 		if (ipif == NULL) {
9134 			return (ENOBUFS);
9135 		} else if (!exists) {
9136 			/* We created the ipif now and as writer */
9137 			ipif_refrele(ipif);
9138 			return (0);
9139 		} else {
9140 			ill = ipif->ipif_ill;
9141 			ill_refhold(ill);
9142 			ipif_refrele(ipif);
9143 		}
9144 	} else {
9145 		/* Look for a colon in the name. */
9146 		endp = &name[namelen];
9147 		for (cp = endp; --cp > name; ) {
9148 			if (*cp == IPIF_SEPARATOR_CHAR) {
9149 				found_sep = B_TRUE;
9150 				/*
9151 				 * Reject any non-decimal aliases for plumbing
9152 				 * of logical interfaces. Aliases with leading
9153 				 * zeroes are also rejected as they introduce
9154 				 * ambiguity in the naming of the interfaces.
9155 				 * Comparing with "0" takes care of all such
9156 				 * cases.
9157 				 */
9158 				if ((strncmp("0", cp+1, 1)) == 0)
9159 					return (EINVAL);
9160 
9161 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9162 				    id <= 0 || *endp != '\0') {
9163 					return (EINVAL);
9164 				}
9165 				*cp = '\0';
9166 				break;
9167 			}
9168 		}
9169 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9170 		if (found_sep)
9171 			*cp = IPIF_SEPARATOR_CHAR;
9172 		if (ill == NULL)
9173 			return (ENXIO);
9174 	}
9175 
9176 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9177 	    B_TRUE);
9178 
9179 	/*
9180 	 * Release the refhold due to the lookup, now that we are excl
9181 	 * or we are just returning
9182 	 */
9183 	ill_refrele(ill);
9184 
9185 	if (ipsq == NULL)
9186 		return (EINPROGRESS);
9187 
9188 	/* We are now exclusive on the IPSQ */
9189 	ASSERT(IAM_WRITER_ILL(ill));
9190 
9191 	if (found_sep) {
9192 		/* Now see if there is an IPIF with this unit number. */
9193 		for (ipif = ill->ill_ipif; ipif != NULL;
9194 		    ipif = ipif->ipif_next) {
9195 			if (ipif->ipif_id == id) {
9196 				err = EEXIST;
9197 				goto done;
9198 			}
9199 		}
9200 	}
9201 
9202 	/*
9203 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9204 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9205 	 * instead.
9206 	 */
9207 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9208 	    B_TRUE, B_TRUE, &err)) == NULL) {
9209 		goto done;
9210 	}
9211 
9212 	/* Return created name with ioctl */
9213 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9214 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9215 	ip1dbg(("created %s\n", lifr->lifr_name));
9216 
9217 	/* Set address */
9218 	sin = (sin_t *)&lifr->lifr_addr;
9219 	if (sin->sin_family != AF_UNSPEC) {
9220 		err = ip_sioctl_addr(ipif, sin, q, mp,
9221 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9222 	}
9223 
9224 done:
9225 	ipsq_exit(ipsq);
9226 	return (err);
9227 }
9228 
9229 /*
9230  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9231  * interface) delete it based on the IP address (on this physical interface).
9232  * Otherwise delete it based on the ipif_id.
9233  * Also, special handling to allow a removeif of lo0.
9234  */
9235 /* ARGSUSED */
9236 int
9237 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9238     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9239 {
9240 	conn_t		*connp;
9241 	ill_t		*ill = ipif->ipif_ill;
9242 	boolean_t	 success;
9243 	ip_stack_t	*ipst;
9244 
9245 	ipst = CONNQ_TO_IPST(q);
9246 
9247 	ASSERT(q->q_next == NULL);
9248 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9249 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9250 	ASSERT(IAM_WRITER_IPIF(ipif));
9251 
9252 	connp = Q_TO_CONN(q);
9253 	/*
9254 	 * Special case for unplumbing lo0 (the loopback physical interface).
9255 	 * If unplumbing lo0, the incoming address structure has been
9256 	 * initialized to all zeros. When unplumbing lo0, all its logical
9257 	 * interfaces must be removed too.
9258 	 *
9259 	 * Note that this interface may be called to remove a specific
9260 	 * loopback logical interface (eg, lo0:1). But in that case
9261 	 * ipif->ipif_id != 0 so that the code path for that case is the
9262 	 * same as any other interface (meaning it skips the code directly
9263 	 * below).
9264 	 */
9265 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9266 		if (sin->sin_family == AF_UNSPEC &&
9267 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9268 			/*
9269 			 * Mark it condemned. No new ref. will be made to ill.
9270 			 */
9271 			mutex_enter(&ill->ill_lock);
9272 			ill->ill_state_flags |= ILL_CONDEMNED;
9273 			for (ipif = ill->ill_ipif; ipif != NULL;
9274 			    ipif = ipif->ipif_next) {
9275 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9276 			}
9277 			mutex_exit(&ill->ill_lock);
9278 
9279 			ipif = ill->ill_ipif;
9280 			/* unplumb the loopback interface */
9281 			ill_delete(ill);
9282 			mutex_enter(&connp->conn_lock);
9283 			mutex_enter(&ill->ill_lock);
9284 
9285 			/* Are any references to this ill active */
9286 			if (ill_is_freeable(ill)) {
9287 				mutex_exit(&ill->ill_lock);
9288 				mutex_exit(&connp->conn_lock);
9289 				ill_delete_tail(ill);
9290 				mi_free(ill);
9291 				return (0);
9292 			}
9293 			success = ipsq_pending_mp_add(connp, ipif,
9294 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9295 			mutex_exit(&connp->conn_lock);
9296 			mutex_exit(&ill->ill_lock);
9297 			if (success)
9298 				return (EINPROGRESS);
9299 			else
9300 				return (EINTR);
9301 		}
9302 	}
9303 
9304 	if (ipif->ipif_id == 0) {
9305 		ipsq_t *ipsq;
9306 
9307 		/* Find based on address */
9308 		if (ipif->ipif_isv6) {
9309 			sin6_t *sin6;
9310 
9311 			if (sin->sin_family != AF_INET6)
9312 				return (EAFNOSUPPORT);
9313 
9314 			sin6 = (sin6_t *)sin;
9315 			/* We are a writer, so we should be able to lookup */
9316 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9317 			    ipst);
9318 		} else {
9319 			if (sin->sin_family != AF_INET)
9320 				return (EAFNOSUPPORT);
9321 
9322 			/* We are a writer, so we should be able to lookup */
9323 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9324 			    ipst);
9325 		}
9326 		if (ipif == NULL) {
9327 			return (EADDRNOTAVAIL);
9328 		}
9329 
9330 		/*
9331 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9332 		 * lifr_name of the physical interface but with an ip address
9333 		 * lifr_addr of a logical interface plumbed over it.
9334 		 * So update ipx_current_ipif now that ipif points to the
9335 		 * correct one.
9336 		 */
9337 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9338 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9339 
9340 		/* This is a writer */
9341 		ipif_refrele(ipif);
9342 	}
9343 
9344 	/*
9345 	 * Can not delete instance zero since it is tied to the ill.
9346 	 */
9347 	if (ipif->ipif_id == 0)
9348 		return (EBUSY);
9349 
9350 	mutex_enter(&ill->ill_lock);
9351 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9352 	mutex_exit(&ill->ill_lock);
9353 
9354 	ipif_free(ipif);
9355 
9356 	mutex_enter(&connp->conn_lock);
9357 	mutex_enter(&ill->ill_lock);
9358 
9359 	/* Are any references to this ipif active */
9360 	if (ipif_is_freeable(ipif)) {
9361 		mutex_exit(&ill->ill_lock);
9362 		mutex_exit(&connp->conn_lock);
9363 		ipif_non_duplicate(ipif);
9364 		(void) ipif_down_tail(ipif);
9365 		ipif_free_tail(ipif); /* frees ipif */
9366 		return (0);
9367 	}
9368 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9369 	    IPIF_FREE);
9370 	mutex_exit(&ill->ill_lock);
9371 	mutex_exit(&connp->conn_lock);
9372 	if (success)
9373 		return (EINPROGRESS);
9374 	else
9375 		return (EINTR);
9376 }
9377 
9378 /*
9379  * Restart the removeif ioctl. The refcnt has gone down to 0.
9380  * The ipif is already condemned. So can't find it thru lookups.
9381  */
9382 /* ARGSUSED */
9383 int
9384 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9385     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9386 {
9387 	ill_t *ill = ipif->ipif_ill;
9388 
9389 	ASSERT(IAM_WRITER_IPIF(ipif));
9390 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9391 
9392 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9393 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9394 
9395 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9396 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9397 		ill_delete_tail(ill);
9398 		mi_free(ill);
9399 		return (0);
9400 	}
9401 
9402 	ipif_non_duplicate(ipif);
9403 	(void) ipif_down_tail(ipif);
9404 	ipif_free_tail(ipif);
9405 
9406 	return (0);
9407 }
9408 
9409 /*
9410  * Set the local interface address.
9411  * Allow an address of all zero when the interface is down.
9412  */
9413 /* ARGSUSED */
9414 int
9415 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9416     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9417 {
9418 	int err = 0;
9419 	in6_addr_t v6addr;
9420 	boolean_t need_up = B_FALSE;
9421 
9422 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9423 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9424 
9425 	ASSERT(IAM_WRITER_IPIF(ipif));
9426 
9427 	if (ipif->ipif_isv6) {
9428 		sin6_t *sin6;
9429 		ill_t *ill;
9430 		phyint_t *phyi;
9431 
9432 		if (sin->sin_family != AF_INET6)
9433 			return (EAFNOSUPPORT);
9434 
9435 		sin6 = (sin6_t *)sin;
9436 		v6addr = sin6->sin6_addr;
9437 		ill = ipif->ipif_ill;
9438 		phyi = ill->ill_phyint;
9439 
9440 		/*
9441 		 * Enforce that true multicast interfaces have a link-local
9442 		 * address for logical unit 0.
9443 		 */
9444 		if (ipif->ipif_id == 0 &&
9445 		    (ill->ill_flags & ILLF_MULTICAST) &&
9446 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9447 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9448 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9449 			return (EADDRNOTAVAIL);
9450 		}
9451 
9452 		/*
9453 		 * up interfaces shouldn't have the unspecified address
9454 		 * unless they also have the IPIF_NOLOCAL flags set and
9455 		 * have a subnet assigned.
9456 		 */
9457 		if ((ipif->ipif_flags & IPIF_UP) &&
9458 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9459 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9460 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9461 			return (EADDRNOTAVAIL);
9462 		}
9463 
9464 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9465 			return (EADDRNOTAVAIL);
9466 	} else {
9467 		ipaddr_t addr;
9468 
9469 		if (sin->sin_family != AF_INET)
9470 			return (EAFNOSUPPORT);
9471 
9472 		addr = sin->sin_addr.s_addr;
9473 
9474 		/* Allow 0 as the local address. */
9475 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9476 			return (EADDRNOTAVAIL);
9477 
9478 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9479 	}
9480 
9481 	/*
9482 	 * Even if there is no change we redo things just to rerun
9483 	 * ipif_set_default.
9484 	 */
9485 	if (ipif->ipif_flags & IPIF_UP) {
9486 		/*
9487 		 * Setting a new local address, make sure
9488 		 * we have net and subnet bcast ire's for
9489 		 * the old address if we need them.
9490 		 */
9491 		/*
9492 		 * If the interface is already marked up,
9493 		 * we call ipif_down which will take care
9494 		 * of ditching any IREs that have been set
9495 		 * up based on the old interface address.
9496 		 */
9497 		err = ipif_logical_down(ipif, q, mp);
9498 		if (err == EINPROGRESS)
9499 			return (err);
9500 		(void) ipif_down_tail(ipif);
9501 		need_up = 1;
9502 	}
9503 
9504 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9505 	return (err);
9506 }
9507 
9508 int
9509 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9510     boolean_t need_up)
9511 {
9512 	in6_addr_t v6addr;
9513 	in6_addr_t ov6addr;
9514 	ipaddr_t addr;
9515 	sin6_t	*sin6;
9516 	int	sinlen;
9517 	int	err = 0;
9518 	ill_t	*ill = ipif->ipif_ill;
9519 	boolean_t need_dl_down;
9520 	boolean_t need_arp_down;
9521 	struct iocblk *iocp;
9522 
9523 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9524 
9525 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9526 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9527 	ASSERT(IAM_WRITER_IPIF(ipif));
9528 
9529 	/* Must cancel any pending timer before taking the ill_lock */
9530 	if (ipif->ipif_recovery_id != 0)
9531 		(void) untimeout(ipif->ipif_recovery_id);
9532 	ipif->ipif_recovery_id = 0;
9533 
9534 	if (ipif->ipif_isv6) {
9535 		sin6 = (sin6_t *)sin;
9536 		v6addr = sin6->sin6_addr;
9537 		sinlen = sizeof (struct sockaddr_in6);
9538 	} else {
9539 		addr = sin->sin_addr.s_addr;
9540 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9541 		sinlen = sizeof (struct sockaddr_in);
9542 	}
9543 	mutex_enter(&ill->ill_lock);
9544 	ov6addr = ipif->ipif_v6lcl_addr;
9545 	ipif->ipif_v6lcl_addr = v6addr;
9546 	sctp_update_ipif_addr(ipif, ov6addr);
9547 	ipif->ipif_addr_ready = 0;
9548 
9549 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9550 
9551 	/*
9552 	 * If the interface was previously marked as a duplicate, then since
9553 	 * we've now got a "new" address, it should no longer be considered a
9554 	 * duplicate -- even if the "new" address is the same as the old one.
9555 	 * Note that if all ipifs are down, we may have a pending ARP down
9556 	 * event to handle.  This is because we want to recover from duplicates
9557 	 * and thus delay tearing down ARP until the duplicates have been
9558 	 * removed or disabled.
9559 	 */
9560 	need_dl_down = need_arp_down = B_FALSE;
9561 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9562 		need_arp_down = !need_up;
9563 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9564 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9565 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9566 			need_dl_down = B_TRUE;
9567 		}
9568 	}
9569 
9570 	ipif_set_default(ipif);
9571 
9572 	/*
9573 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9574 	 * tag the ill so that future updates to the interface ID don't result
9575 	 * in this address getting automatically reconfigured from under the
9576 	 * administrator.
9577 	 */
9578 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9579 		ill->ill_manual_linklocal = 1;
9580 
9581 	/*
9582 	 * When publishing an interface address change event, we only notify
9583 	 * the event listeners of the new address.  It is assumed that if they
9584 	 * actively care about the addresses assigned that they will have
9585 	 * already discovered the previous address assigned (if there was one.)
9586 	 *
9587 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9588 	 */
9589 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9590 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9591 		    NE_ADDRESS_CHANGE, sin, sinlen);
9592 	}
9593 
9594 	mutex_exit(&ill->ill_lock);
9595 
9596 	if (need_up) {
9597 		/*
9598 		 * Now bring the interface back up.  If this
9599 		 * is the only IPIF for the ILL, ipif_up
9600 		 * will have to re-bind to the device, so
9601 		 * we may get back EINPROGRESS, in which
9602 		 * case, this IOCTL will get completed in
9603 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9604 		 */
9605 		err = ipif_up(ipif, q, mp);
9606 	} else {
9607 		/* Perhaps ilgs should use this ill */
9608 		update_conn_ill(NULL, ill->ill_ipst);
9609 	}
9610 
9611 	if (need_dl_down)
9612 		ill_dl_down(ill);
9613 
9614 	if (need_arp_down && !ill->ill_isv6)
9615 		(void) ipif_arp_down(ipif);
9616 
9617 	/*
9618 	 * The default multicast interface might have changed (for
9619 	 * instance if the IPv6 scope of the address changed)
9620 	 */
9621 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9622 
9623 	return (err);
9624 }
9625 
9626 /*
9627  * Restart entry point to restart the address set operation after the
9628  * refcounts have dropped to zero.
9629  */
9630 /* ARGSUSED */
9631 int
9632 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9633     ip_ioctl_cmd_t *ipip, void *ifreq)
9634 {
9635 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9636 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9637 	ASSERT(IAM_WRITER_IPIF(ipif));
9638 	(void) ipif_down_tail(ipif);
9639 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9640 }
9641 
9642 /* ARGSUSED */
9643 int
9644 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9645     ip_ioctl_cmd_t *ipip, void *if_req)
9646 {
9647 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9648 	struct lifreq *lifr = (struct lifreq *)if_req;
9649 
9650 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9651 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9652 	/*
9653 	 * The net mask and address can't change since we have a
9654 	 * reference to the ipif. So no lock is necessary.
9655 	 */
9656 	if (ipif->ipif_isv6) {
9657 		*sin6 = sin6_null;
9658 		sin6->sin6_family = AF_INET6;
9659 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9660 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9661 		lifr->lifr_addrlen =
9662 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9663 	} else {
9664 		*sin = sin_null;
9665 		sin->sin_family = AF_INET;
9666 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9667 		if (ipip->ipi_cmd_type == LIF_CMD) {
9668 			lifr->lifr_addrlen =
9669 			    ip_mask_to_plen(ipif->ipif_net_mask);
9670 		}
9671 	}
9672 	return (0);
9673 }
9674 
9675 /*
9676  * Set the destination address for a pt-pt interface.
9677  */
9678 /* ARGSUSED */
9679 int
9680 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9681     ip_ioctl_cmd_t *ipip, void *if_req)
9682 {
9683 	int err = 0;
9684 	in6_addr_t v6addr;
9685 	boolean_t need_up = B_FALSE;
9686 
9687 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9688 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9689 	ASSERT(IAM_WRITER_IPIF(ipif));
9690 
9691 	if (ipif->ipif_isv6) {
9692 		sin6_t *sin6;
9693 
9694 		if (sin->sin_family != AF_INET6)
9695 			return (EAFNOSUPPORT);
9696 
9697 		sin6 = (sin6_t *)sin;
9698 		v6addr = sin6->sin6_addr;
9699 
9700 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9701 			return (EADDRNOTAVAIL);
9702 	} else {
9703 		ipaddr_t addr;
9704 
9705 		if (sin->sin_family != AF_INET)
9706 			return (EAFNOSUPPORT);
9707 
9708 		addr = sin->sin_addr.s_addr;
9709 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9710 			return (EADDRNOTAVAIL);
9711 
9712 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9713 	}
9714 
9715 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
9716 		return (0);	/* No change */
9717 
9718 	if (ipif->ipif_flags & IPIF_UP) {
9719 		/*
9720 		 * If the interface is already marked up,
9721 		 * we call ipif_down which will take care
9722 		 * of ditching any IREs that have been set
9723 		 * up based on the old pp dst address.
9724 		 */
9725 		err = ipif_logical_down(ipif, q, mp);
9726 		if (err == EINPROGRESS)
9727 			return (err);
9728 		(void) ipif_down_tail(ipif);
9729 		need_up = B_TRUE;
9730 	}
9731 	/*
9732 	 * could return EINPROGRESS. If so ioctl will complete in
9733 	 * ip_rput_dlpi_writer
9734 	 */
9735 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
9736 	return (err);
9737 }
9738 
9739 static int
9740 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9741     boolean_t need_up)
9742 {
9743 	in6_addr_t v6addr;
9744 	ill_t	*ill = ipif->ipif_ill;
9745 	int	err = 0;
9746 	boolean_t need_dl_down;
9747 	boolean_t need_arp_down;
9748 
9749 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
9750 	    ipif->ipif_id, (void *)ipif));
9751 
9752 	/* Must cancel any pending timer before taking the ill_lock */
9753 	if (ipif->ipif_recovery_id != 0)
9754 		(void) untimeout(ipif->ipif_recovery_id);
9755 	ipif->ipif_recovery_id = 0;
9756 
9757 	if (ipif->ipif_isv6) {
9758 		sin6_t *sin6;
9759 
9760 		sin6 = (sin6_t *)sin;
9761 		v6addr = sin6->sin6_addr;
9762 	} else {
9763 		ipaddr_t addr;
9764 
9765 		addr = sin->sin_addr.s_addr;
9766 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9767 	}
9768 	mutex_enter(&ill->ill_lock);
9769 	/* Set point to point destination address. */
9770 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
9771 		/*
9772 		 * Allow this as a means of creating logical
9773 		 * pt-pt interfaces on top of e.g. an Ethernet.
9774 		 * XXX Undocumented HACK for testing.
9775 		 * pt-pt interfaces are created with NUD disabled.
9776 		 */
9777 		ipif->ipif_flags |= IPIF_POINTOPOINT;
9778 		ipif->ipif_flags &= ~IPIF_BROADCAST;
9779 		if (ipif->ipif_isv6)
9780 			ill->ill_flags |= ILLF_NONUD;
9781 	}
9782 
9783 	/*
9784 	 * If the interface was previously marked as a duplicate, then since
9785 	 * we've now got a "new" address, it should no longer be considered a
9786 	 * duplicate -- even if the "new" address is the same as the old one.
9787 	 * Note that if all ipifs are down, we may have a pending ARP down
9788 	 * event to handle.
9789 	 */
9790 	need_dl_down = need_arp_down = B_FALSE;
9791 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9792 		need_arp_down = !need_up;
9793 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9794 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9795 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9796 			need_dl_down = B_TRUE;
9797 		}
9798 	}
9799 
9800 	/*
9801 	 * If we've just manually set the IPv6 destination link-local address
9802 	 * (0th ipif), tag the ill so that future updates to the destination
9803 	 * interface ID (as can happen with interfaces over IP tunnels) don't
9804 	 * result in this address getting automatically reconfigured from
9805 	 * under the administrator.
9806 	 */
9807 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9808 		ill->ill_manual_dst_linklocal = 1;
9809 
9810 	/* Set the new address. */
9811 	ipif->ipif_v6pp_dst_addr = v6addr;
9812 	/* Make sure subnet tracks pp_dst */
9813 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
9814 	mutex_exit(&ill->ill_lock);
9815 
9816 	if (need_up) {
9817 		/*
9818 		 * Now bring the interface back up.  If this
9819 		 * is the only IPIF for the ILL, ipif_up
9820 		 * will have to re-bind to the device, so
9821 		 * we may get back EINPROGRESS, in which
9822 		 * case, this IOCTL will get completed in
9823 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9824 		 */
9825 		err = ipif_up(ipif, q, mp);
9826 	}
9827 
9828 	if (need_dl_down)
9829 		ill_dl_down(ill);
9830 	if (need_arp_down && !ipif->ipif_isv6)
9831 		(void) ipif_arp_down(ipif);
9832 
9833 	return (err);
9834 }
9835 
9836 /*
9837  * Restart entry point to restart the dstaddress set operation after the
9838  * refcounts have dropped to zero.
9839  */
9840 /* ARGSUSED */
9841 int
9842 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9843     ip_ioctl_cmd_t *ipip, void *ifreq)
9844 {
9845 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
9846 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9847 	(void) ipif_down_tail(ipif);
9848 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
9849 }
9850 
9851 /* ARGSUSED */
9852 int
9853 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9854     ip_ioctl_cmd_t *ipip, void *if_req)
9855 {
9856 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
9857 
9858 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
9859 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9860 	/*
9861 	 * Get point to point destination address. The addresses can't
9862 	 * change since we hold a reference to the ipif.
9863 	 */
9864 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
9865 		return (EADDRNOTAVAIL);
9866 
9867 	if (ipif->ipif_isv6) {
9868 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9869 		*sin6 = sin6_null;
9870 		sin6->sin6_family = AF_INET6;
9871 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
9872 	} else {
9873 		*sin = sin_null;
9874 		sin->sin_family = AF_INET;
9875 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
9876 	}
9877 	return (0);
9878 }
9879 
9880 /*
9881  * Check which flags will change by the given flags being set
9882  * silently ignore flags which userland is not allowed to control.
9883  * (Because these flags may change between SIOCGLIFFLAGS and
9884  * SIOCSLIFFLAGS, and that's outside of userland's control,
9885  * we need to silently ignore them rather than fail.)
9886  */
9887 static void
9888 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
9889     uint64_t *offp)
9890 {
9891 	ill_t		*ill = ipif->ipif_ill;
9892 	phyint_t 	*phyi = ill->ill_phyint;
9893 	uint64_t	cantchange_flags, intf_flags;
9894 	uint64_t	turn_on, turn_off;
9895 
9896 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9897 	cantchange_flags = IFF_CANTCHANGE;
9898 	if (IS_IPMP(ill))
9899 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
9900 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
9901 	turn_off = intf_flags & turn_on;
9902 	turn_on ^= turn_off;
9903 	*onp = turn_on;
9904 	*offp = turn_off;
9905 }
9906 
9907 /*
9908  * Set interface flags.  Many flags require special handling (e.g.,
9909  * bringing the interface down); see below for details.
9910  *
9911  * NOTE : We really don't enforce that ipif_id zero should be used
9912  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
9913  *	  is because applications generally does SICGLIFFLAGS and
9914  *	  ORs in the new flags (that affects the logical) and does a
9915  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
9916  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
9917  *	  flags that will be turned on is correct with respect to
9918  *	  ipif_id 0. For backward compatibility reasons, it is not done.
9919  */
9920 /* ARGSUSED */
9921 int
9922 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9923     ip_ioctl_cmd_t *ipip, void *if_req)
9924 {
9925 	uint64_t turn_on;
9926 	uint64_t turn_off;
9927 	int	err = 0;
9928 	phyint_t *phyi;
9929 	ill_t *ill;
9930 	conn_t *connp;
9931 	uint64_t intf_flags;
9932 	boolean_t phyint_flags_modified = B_FALSE;
9933 	uint64_t flags;
9934 	struct ifreq *ifr;
9935 	struct lifreq *lifr;
9936 	boolean_t set_linklocal = B_FALSE;
9937 
9938 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
9939 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9940 
9941 	ASSERT(IAM_WRITER_IPIF(ipif));
9942 
9943 	ill = ipif->ipif_ill;
9944 	phyi = ill->ill_phyint;
9945 
9946 	if (ipip->ipi_cmd_type == IF_CMD) {
9947 		ifr = (struct ifreq *)if_req;
9948 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
9949 	} else {
9950 		lifr = (struct lifreq *)if_req;
9951 		flags = lifr->lifr_flags;
9952 	}
9953 
9954 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9955 
9956 	/*
9957 	 * Have the flags been set correctly until now?
9958 	 */
9959 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
9960 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
9961 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
9962 	/*
9963 	 * Compare the new flags to the old, and partition
9964 	 * into those coming on and those going off.
9965 	 * For the 16 bit command keep the bits above bit 16 unchanged.
9966 	 */
9967 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
9968 		flags |= intf_flags & ~0xFFFF;
9969 
9970 	/*
9971 	 * Explicitly fail attempts to change flags that are always invalid on
9972 	 * an IPMP meta-interface.
9973 	 */
9974 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
9975 		return (EINVAL);
9976 
9977 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
9978 	if ((turn_on|turn_off) == 0)
9979 		return (0);	/* No change */
9980 
9981 	/*
9982 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
9983 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
9984 	 * allow it to be turned off.
9985 	 */
9986 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
9987 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
9988 		return (EINVAL);
9989 
9990 	if ((connp = Q_TO_CONN(q)) == NULL)
9991 		return (EINVAL);
9992 
9993 	/*
9994 	 * Only vrrp control socket is allowed to change IFF_UP and
9995 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
9996 	 */
9997 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
9998 		if (!connp->conn_isvrrp)
9999 			return (EINVAL);
10000 	}
10001 
10002 	/*
10003 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10004 	 * VRRP control socket.
10005 	 */
10006 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10007 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10008 			return (EINVAL);
10009 	}
10010 
10011 	if (turn_on & IFF_NOFAILOVER) {
10012 		turn_on |= IFF_DEPRECATED;
10013 		flags |= IFF_DEPRECATED;
10014 	}
10015 
10016 	/*
10017 	 * On underlying interfaces, only allow applications to manage test
10018 	 * addresses -- otherwise, they may get confused when the address
10019 	 * moves as part of being brought up.  Likewise, prevent an
10020 	 * application-managed test address from being converted to a data
10021 	 * address.  To prevent migration of administratively up addresses in
10022 	 * the kernel, we don't allow them to be converted either.
10023 	 */
10024 	if (IS_UNDER_IPMP(ill)) {
10025 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10026 
10027 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10028 			return (EINVAL);
10029 
10030 		if ((turn_off & IFF_NOFAILOVER) &&
10031 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10032 			return (EINVAL);
10033 	}
10034 
10035 	/*
10036 	 * Only allow IFF_TEMPORARY flag to be set on
10037 	 * IPv6 interfaces.
10038 	 */
10039 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10040 		return (EINVAL);
10041 
10042 	/*
10043 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10044 	 */
10045 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10046 		return (EINVAL);
10047 
10048 	/*
10049 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10050 	 * interfaces.  It makes no sense in that context.
10051 	 */
10052 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10053 		return (EINVAL);
10054 
10055 	/*
10056 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10057 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10058 	 * If the link local address isn't set, and can be set, it will get
10059 	 * set later on in this function.
10060 	 */
10061 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10062 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10063 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10064 		if (ipif_cant_setlinklocal(ipif))
10065 			return (EINVAL);
10066 		set_linklocal = B_TRUE;
10067 	}
10068 
10069 	/*
10070 	 * If we modify physical interface flags, we'll potentially need to
10071 	 * send up two routing socket messages for the changes (one for the
10072 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10073 	 */
10074 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10075 		phyint_flags_modified = B_TRUE;
10076 
10077 	/*
10078 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10079 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10080 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10081 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10082 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10083 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10084 	 * will not be honored.
10085 	 */
10086 	if (turn_on & PHYI_STANDBY) {
10087 		/*
10088 		 * No need to grab ill_g_usesrc_lock here; see the
10089 		 * synchronization notes in ip.c.
10090 		 */
10091 		if (ill->ill_usesrc_grp_next != NULL ||
10092 		    intf_flags & PHYI_INACTIVE)
10093 			return (EINVAL);
10094 		if (!(flags & PHYI_FAILED)) {
10095 			flags |= PHYI_INACTIVE;
10096 			turn_on |= PHYI_INACTIVE;
10097 		}
10098 	}
10099 
10100 	if (turn_off & PHYI_STANDBY) {
10101 		flags &= ~PHYI_INACTIVE;
10102 		turn_off |= PHYI_INACTIVE;
10103 	}
10104 
10105 	/*
10106 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10107 	 * would end up on.
10108 	 */
10109 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10110 	    (PHYI_FAILED | PHYI_INACTIVE))
10111 		return (EINVAL);
10112 
10113 	/*
10114 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10115 	 * status of the interface.
10116 	 */
10117 	if ((turn_on | turn_off) & ILLF_ROUTER)
10118 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10119 
10120 	/*
10121 	 * If the interface is not UP and we are not going to
10122 	 * bring it UP, record the flags and return. When the
10123 	 * interface comes UP later, the right actions will be
10124 	 * taken.
10125 	 */
10126 	if (!(ipif->ipif_flags & IPIF_UP) &&
10127 	    !(turn_on & IPIF_UP)) {
10128 		/* Record new flags in their respective places. */
10129 		mutex_enter(&ill->ill_lock);
10130 		mutex_enter(&ill->ill_phyint->phyint_lock);
10131 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10132 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10133 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10134 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10135 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10136 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10137 		mutex_exit(&ill->ill_lock);
10138 		mutex_exit(&ill->ill_phyint->phyint_lock);
10139 
10140 		/*
10141 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10142 		 * same to the kernel: if any of them has been set by
10143 		 * userland, the interface cannot be used for data traffic.
10144 		 */
10145 		if ((turn_on|turn_off) &
10146 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10147 			ASSERT(!IS_IPMP(ill));
10148 			/*
10149 			 * It's possible the ill is part of an "anonymous"
10150 			 * IPMP group rather than a real group.  In that case,
10151 			 * there are no other interfaces in the group and thus
10152 			 * no need to call ipmp_phyint_refresh_active().
10153 			 */
10154 			if (IS_UNDER_IPMP(ill))
10155 				ipmp_phyint_refresh_active(phyi);
10156 		}
10157 
10158 		if (phyint_flags_modified) {
10159 			if (phyi->phyint_illv4 != NULL) {
10160 				ip_rts_ifmsg(phyi->phyint_illv4->
10161 				    ill_ipif, RTSQ_DEFAULT);
10162 			}
10163 			if (phyi->phyint_illv6 != NULL) {
10164 				ip_rts_ifmsg(phyi->phyint_illv6->
10165 				    ill_ipif, RTSQ_DEFAULT);
10166 			}
10167 		}
10168 		/* The default multicast interface might have changed */
10169 		ire_increment_multicast_generation(ill->ill_ipst,
10170 		    ill->ill_isv6);
10171 
10172 		return (0);
10173 	} else if (set_linklocal) {
10174 		mutex_enter(&ill->ill_lock);
10175 		if (set_linklocal)
10176 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10177 		mutex_exit(&ill->ill_lock);
10178 	}
10179 
10180 	/*
10181 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10182 	 * or point-to-point interfaces with an unspecified destination. We do
10183 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10184 	 * have a subnet assigned, which is how in.ndpd currently manages its
10185 	 * onlink prefix list when no addresses are configured with those
10186 	 * prefixes.
10187 	 */
10188 	if (ipif->ipif_isv6 &&
10189 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10190 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10191 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10192 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10193 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10194 		return (EINVAL);
10195 	}
10196 
10197 	/*
10198 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10199 	 * from being brought up.
10200 	 */
10201 	if (!ipif->ipif_isv6 &&
10202 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10203 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10204 		return (EINVAL);
10205 	}
10206 
10207 	/*
10208 	 * If we are going to change one or more of the flags that are
10209 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10210 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10211 	 * IPIF_NOFAILOVER, we will take special action.  This is
10212 	 * done by bring the ipif down, changing the flags and bringing
10213 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10214 	 * back up will trigger the address to be moved.
10215 	 *
10216 	 * If we are going to change IFF_NOACCEPT, we need to bring
10217 	 * all the ipifs down then bring them up again.	 The act of
10218 	 * bringing all the ipifs back up will trigger the local
10219 	 * ires being recreated with "no_accept" set/cleared.
10220 	 *
10221 	 * Note that ILLF_NOACCEPT is always set separately from the
10222 	 * other flags.
10223 	 */
10224 	if ((turn_on|turn_off) &
10225 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10226 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10227 	    IPIF_NOFAILOVER)) {
10228 		/*
10229 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10230 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10231 		 * entries shared between multiple ipifs on the same subnet.
10232 		 */
10233 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10234 		    !(turn_off & IPIF_UP)) {
10235 			if (ipif->ipif_flags & IPIF_UP)
10236 				ill->ill_logical_down = 1;
10237 			turn_on &= ~IPIF_UP;
10238 		}
10239 		err = ipif_down(ipif, q, mp);
10240 		ip1dbg(("ipif_down returns %d err ", err));
10241 		if (err == EINPROGRESS)
10242 			return (err);
10243 		(void) ipif_down_tail(ipif);
10244 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10245 		/*
10246 		 * If we can quiesce the ill, then continue.  If not, then
10247 		 * ip_sioctl_flags_tail() will be called from
10248 		 * ipif_ill_refrele_tail().
10249 		 */
10250 		ill_down_ipifs(ill, B_TRUE);
10251 
10252 		mutex_enter(&connp->conn_lock);
10253 		mutex_enter(&ill->ill_lock);
10254 		if (!ill_is_quiescent(ill)) {
10255 			boolean_t success;
10256 
10257 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10258 			    q, mp, ILL_DOWN);
10259 			mutex_exit(&ill->ill_lock);
10260 			mutex_exit(&connp->conn_lock);
10261 			return (success ? EINPROGRESS : EINTR);
10262 		}
10263 		mutex_exit(&ill->ill_lock);
10264 		mutex_exit(&connp->conn_lock);
10265 	}
10266 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10267 }
10268 
10269 static int
10270 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10271 {
10272 	ill_t	*ill;
10273 	phyint_t *phyi;
10274 	uint64_t turn_on, turn_off;
10275 	boolean_t phyint_flags_modified = B_FALSE;
10276 	int	err = 0;
10277 	boolean_t set_linklocal = B_FALSE;
10278 
10279 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10280 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10281 
10282 	ASSERT(IAM_WRITER_IPIF(ipif));
10283 
10284 	ill = ipif->ipif_ill;
10285 	phyi = ill->ill_phyint;
10286 
10287 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10288 
10289 	/*
10290 	 * IFF_UP is handled separately.
10291 	 */
10292 	turn_on &= ~IFF_UP;
10293 	turn_off &= ~IFF_UP;
10294 
10295 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10296 		phyint_flags_modified = B_TRUE;
10297 
10298 	/*
10299 	 * Now we change the flags. Track current value of
10300 	 * other flags in their respective places.
10301 	 */
10302 	mutex_enter(&ill->ill_lock);
10303 	mutex_enter(&phyi->phyint_lock);
10304 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10305 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10306 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10307 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10308 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10309 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10310 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10311 		set_linklocal = B_TRUE;
10312 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10313 	}
10314 
10315 	mutex_exit(&ill->ill_lock);
10316 	mutex_exit(&phyi->phyint_lock);
10317 
10318 	if (set_linklocal)
10319 		(void) ipif_setlinklocal(ipif);
10320 
10321 	/*
10322 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10323 	 * the kernel: if any of them has been set by userland, the interface
10324 	 * cannot be used for data traffic.
10325 	 */
10326 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10327 		ASSERT(!IS_IPMP(ill));
10328 		/*
10329 		 * It's possible the ill is part of an "anonymous" IPMP group
10330 		 * rather than a real group.  In that case, there are no other
10331 		 * interfaces in the group and thus no need for us to call
10332 		 * ipmp_phyint_refresh_active().
10333 		 */
10334 		if (IS_UNDER_IPMP(ill))
10335 			ipmp_phyint_refresh_active(phyi);
10336 	}
10337 
10338 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10339 		/*
10340 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10341 		 * ipifs that were brought down.
10342 		 *
10343 		 * The routing sockets messages are sent as the result
10344 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10345 		 * as well.
10346 		 */
10347 		err = ill_up_ipifs(ill, q, mp);
10348 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10349 		/*
10350 		 * XXX ipif_up really does not know whether a phyint flags
10351 		 * was modified or not. So, it sends up information on
10352 		 * only one routing sockets message. As we don't bring up
10353 		 * the interface and also set PHYI_ flags simultaneously
10354 		 * it should be okay.
10355 		 */
10356 		err = ipif_up(ipif, q, mp);
10357 	} else {
10358 		/*
10359 		 * Make sure routing socket sees all changes to the flags.
10360 		 * ipif_up_done* handles this when we use ipif_up.
10361 		 */
10362 		if (phyint_flags_modified) {
10363 			if (phyi->phyint_illv4 != NULL) {
10364 				ip_rts_ifmsg(phyi->phyint_illv4->
10365 				    ill_ipif, RTSQ_DEFAULT);
10366 			}
10367 			if (phyi->phyint_illv6 != NULL) {
10368 				ip_rts_ifmsg(phyi->phyint_illv6->
10369 				    ill_ipif, RTSQ_DEFAULT);
10370 			}
10371 		} else {
10372 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10373 		}
10374 		/*
10375 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10376 		 * this in need_up case.
10377 		 */
10378 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10379 	}
10380 
10381 	/* The default multicast interface might have changed */
10382 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10383 	return (err);
10384 }
10385 
10386 /*
10387  * Restart the flags operation now that the refcounts have dropped to zero.
10388  */
10389 /* ARGSUSED */
10390 int
10391 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10392     ip_ioctl_cmd_t *ipip, void *if_req)
10393 {
10394 	uint64_t flags;
10395 	struct ifreq *ifr = if_req;
10396 	struct lifreq *lifr = if_req;
10397 	uint64_t turn_on, turn_off;
10398 
10399 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10400 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10401 
10402 	if (ipip->ipi_cmd_type == IF_CMD) {
10403 		/* cast to uint16_t prevents unwanted sign extension */
10404 		flags = (uint16_t)ifr->ifr_flags;
10405 	} else {
10406 		flags = lifr->lifr_flags;
10407 	}
10408 
10409 	/*
10410 	 * If this function call is a result of the ILLF_NOACCEPT flag
10411 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10412 	 */
10413 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10414 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10415 		(void) ipif_down_tail(ipif);
10416 
10417 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10418 }
10419 
10420 /*
10421  * Can operate on either a module or a driver queue.
10422  */
10423 /* ARGSUSED */
10424 int
10425 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10426     ip_ioctl_cmd_t *ipip, void *if_req)
10427 {
10428 	/*
10429 	 * Has the flags been set correctly till now ?
10430 	 */
10431 	ill_t *ill = ipif->ipif_ill;
10432 	phyint_t *phyi = ill->ill_phyint;
10433 
10434 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10435 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10436 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10437 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10438 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10439 
10440 	/*
10441 	 * Need a lock since some flags can be set even when there are
10442 	 * references to the ipif.
10443 	 */
10444 	mutex_enter(&ill->ill_lock);
10445 	if (ipip->ipi_cmd_type == IF_CMD) {
10446 		struct ifreq *ifr = (struct ifreq *)if_req;
10447 
10448 		/* Get interface flags (low 16 only). */
10449 		ifr->ifr_flags = ((ipif->ipif_flags |
10450 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10451 	} else {
10452 		struct lifreq *lifr = (struct lifreq *)if_req;
10453 
10454 		/* Get interface flags. */
10455 		lifr->lifr_flags = ipif->ipif_flags |
10456 		    ill->ill_flags | phyi->phyint_flags;
10457 	}
10458 	mutex_exit(&ill->ill_lock);
10459 	return (0);
10460 }
10461 
10462 /*
10463  * We allow the MTU to be set on an ILL, but not have it be different
10464  * for different IPIFs since we don't actually send packets on IPIFs.
10465  */
10466 /* ARGSUSED */
10467 int
10468 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10469     ip_ioctl_cmd_t *ipip, void *if_req)
10470 {
10471 	int mtu;
10472 	int ip_min_mtu;
10473 	struct ifreq	*ifr;
10474 	struct lifreq *lifr;
10475 	ill_t	*ill;
10476 
10477 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10478 	    ipif->ipif_id, (void *)ipif));
10479 	if (ipip->ipi_cmd_type == IF_CMD) {
10480 		ifr = (struct ifreq *)if_req;
10481 		mtu = ifr->ifr_metric;
10482 	} else {
10483 		lifr = (struct lifreq *)if_req;
10484 		mtu = lifr->lifr_mtu;
10485 	}
10486 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10487 	if (ipif->ipif_id != 0)
10488 		return (EINVAL);
10489 
10490 	ill = ipif->ipif_ill;
10491 	if (ipif->ipif_isv6)
10492 		ip_min_mtu = IPV6_MIN_MTU;
10493 	else
10494 		ip_min_mtu = IP_MIN_MTU;
10495 
10496 	mutex_enter(&ill->ill_lock);
10497 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10498 		mutex_exit(&ill->ill_lock);
10499 		return (EINVAL);
10500 	}
10501 	/*
10502 	 * The dce and fragmentation code can handle changes to ill_mtu
10503 	 * concurrent with sending/fragmenting packets.
10504 	 */
10505 	ill->ill_mtu = mtu;
10506 	ill->ill_flags |= ILLF_FIXEDMTU;
10507 	mutex_exit(&ill->ill_lock);
10508 
10509 	/*
10510 	 * Make sure all dce_generation checks find out
10511 	 * that ill_mtu has changed.
10512 	 */
10513 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10514 
10515 	/* Update the MTU in SCTP's list */
10516 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10517 	return (0);
10518 }
10519 
10520 /* Get interface MTU. */
10521 /* ARGSUSED */
10522 int
10523 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10524 	ip_ioctl_cmd_t *ipip, void *if_req)
10525 {
10526 	struct ifreq	*ifr;
10527 	struct lifreq	*lifr;
10528 
10529 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10530 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10531 
10532 	/*
10533 	 * We allow a get on any logical interface even though the set
10534 	 * can only be done on logical unit 0.
10535 	 */
10536 	if (ipip->ipi_cmd_type == IF_CMD) {
10537 		ifr = (struct ifreq *)if_req;
10538 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10539 	} else {
10540 		lifr = (struct lifreq *)if_req;
10541 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10542 	}
10543 	return (0);
10544 }
10545 
10546 /* Set interface broadcast address. */
10547 /* ARGSUSED2 */
10548 int
10549 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10550 	ip_ioctl_cmd_t *ipip, void *if_req)
10551 {
10552 	ipaddr_t addr;
10553 	ire_t	*ire;
10554 	ill_t		*ill = ipif->ipif_ill;
10555 	ip_stack_t	*ipst = ill->ill_ipst;
10556 
10557 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10558 	    ipif->ipif_id));
10559 
10560 	ASSERT(IAM_WRITER_IPIF(ipif));
10561 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10562 		return (EADDRNOTAVAIL);
10563 
10564 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10565 
10566 	if (sin->sin_family != AF_INET)
10567 		return (EAFNOSUPPORT);
10568 
10569 	addr = sin->sin_addr.s_addr;
10570 	if (ipif->ipif_flags & IPIF_UP) {
10571 		/*
10572 		 * If we are already up, make sure the new
10573 		 * broadcast address makes sense.  If it does,
10574 		 * there should be an IRE for it already.
10575 		 */
10576 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10577 		    ill, ipif->ipif_zoneid, NULL,
10578 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10579 		if (ire == NULL) {
10580 			return (EINVAL);
10581 		} else {
10582 			ire_refrele(ire);
10583 		}
10584 	}
10585 	/*
10586 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10587 	 * needs to already exist we never need to change the set of
10588 	 * IRE_BROADCASTs when we are UP.
10589 	 */
10590 	if (addr != ipif->ipif_brd_addr)
10591 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10592 
10593 	return (0);
10594 }
10595 
10596 /* Get interface broadcast address. */
10597 /* ARGSUSED */
10598 int
10599 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10600     ip_ioctl_cmd_t *ipip, void *if_req)
10601 {
10602 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10603 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10604 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10605 		return (EADDRNOTAVAIL);
10606 
10607 	/* IPIF_BROADCAST not possible with IPv6 */
10608 	ASSERT(!ipif->ipif_isv6);
10609 	*sin = sin_null;
10610 	sin->sin_family = AF_INET;
10611 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10612 	return (0);
10613 }
10614 
10615 /*
10616  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10617  */
10618 /* ARGSUSED */
10619 int
10620 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10621     ip_ioctl_cmd_t *ipip, void *if_req)
10622 {
10623 	int err = 0;
10624 	in6_addr_t v6mask;
10625 
10626 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10627 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10628 
10629 	ASSERT(IAM_WRITER_IPIF(ipif));
10630 
10631 	if (ipif->ipif_isv6) {
10632 		sin6_t *sin6;
10633 
10634 		if (sin->sin_family != AF_INET6)
10635 			return (EAFNOSUPPORT);
10636 
10637 		sin6 = (sin6_t *)sin;
10638 		v6mask = sin6->sin6_addr;
10639 	} else {
10640 		ipaddr_t mask;
10641 
10642 		if (sin->sin_family != AF_INET)
10643 			return (EAFNOSUPPORT);
10644 
10645 		mask = sin->sin_addr.s_addr;
10646 		V4MASK_TO_V6(mask, v6mask);
10647 	}
10648 
10649 	/*
10650 	 * No big deal if the interface isn't already up, or the mask
10651 	 * isn't really changing, or this is pt-pt.
10652 	 */
10653 	if (!(ipif->ipif_flags & IPIF_UP) ||
10654 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10655 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10656 		ipif->ipif_v6net_mask = v6mask;
10657 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10658 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10659 			    ipif->ipif_v6net_mask,
10660 			    ipif->ipif_v6subnet);
10661 		}
10662 		return (0);
10663 	}
10664 	/*
10665 	 * Make sure we have valid net and subnet broadcast ire's
10666 	 * for the old netmask, if needed by other logical interfaces.
10667 	 */
10668 	err = ipif_logical_down(ipif, q, mp);
10669 	if (err == EINPROGRESS)
10670 		return (err);
10671 	(void) ipif_down_tail(ipif);
10672 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10673 	return (err);
10674 }
10675 
10676 static int
10677 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10678 {
10679 	in6_addr_t v6mask;
10680 	int err = 0;
10681 
10682 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10683 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10684 
10685 	if (ipif->ipif_isv6) {
10686 		sin6_t *sin6;
10687 
10688 		sin6 = (sin6_t *)sin;
10689 		v6mask = sin6->sin6_addr;
10690 	} else {
10691 		ipaddr_t mask;
10692 
10693 		mask = sin->sin_addr.s_addr;
10694 		V4MASK_TO_V6(mask, v6mask);
10695 	}
10696 
10697 	ipif->ipif_v6net_mask = v6mask;
10698 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10699 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
10700 		    ipif->ipif_v6subnet);
10701 	}
10702 	err = ipif_up(ipif, q, mp);
10703 
10704 	if (err == 0 || err == EINPROGRESS) {
10705 		/*
10706 		 * The interface must be DL_BOUND if this packet has to
10707 		 * go out on the wire. Since we only go through a logical
10708 		 * down and are bound with the driver during an internal
10709 		 * down/up that is satisfied.
10710 		 */
10711 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
10712 			/* Potentially broadcast an address mask reply. */
10713 			ipif_mask_reply(ipif);
10714 		}
10715 	}
10716 	return (err);
10717 }
10718 
10719 /* ARGSUSED */
10720 int
10721 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10722     ip_ioctl_cmd_t *ipip, void *if_req)
10723 {
10724 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
10725 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10726 	(void) ipif_down_tail(ipif);
10727 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
10728 }
10729 
10730 /* Get interface net mask. */
10731 /* ARGSUSED */
10732 int
10733 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10734     ip_ioctl_cmd_t *ipip, void *if_req)
10735 {
10736 	struct lifreq *lifr = (struct lifreq *)if_req;
10737 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
10738 
10739 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
10740 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10741 
10742 	/*
10743 	 * net mask can't change since we have a reference to the ipif.
10744 	 */
10745 	if (ipif->ipif_isv6) {
10746 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10747 		*sin6 = sin6_null;
10748 		sin6->sin6_family = AF_INET6;
10749 		sin6->sin6_addr = ipif->ipif_v6net_mask;
10750 		lifr->lifr_addrlen =
10751 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10752 	} else {
10753 		*sin = sin_null;
10754 		sin->sin_family = AF_INET;
10755 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
10756 		if (ipip->ipi_cmd_type == LIF_CMD) {
10757 			lifr->lifr_addrlen =
10758 			    ip_mask_to_plen(ipif->ipif_net_mask);
10759 		}
10760 	}
10761 	return (0);
10762 }
10763 
10764 /* ARGSUSED */
10765 int
10766 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10767     ip_ioctl_cmd_t *ipip, void *if_req)
10768 {
10769 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
10770 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10771 
10772 	/*
10773 	 * Since no applications should ever be setting metrics on underlying
10774 	 * interfaces, we explicitly fail to smoke 'em out.
10775 	 */
10776 	if (IS_UNDER_IPMP(ipif->ipif_ill))
10777 		return (EINVAL);
10778 
10779 	/*
10780 	 * Set interface metric.  We don't use this for
10781 	 * anything but we keep track of it in case it is
10782 	 * important to routing applications or such.
10783 	 */
10784 	if (ipip->ipi_cmd_type == IF_CMD) {
10785 		struct ifreq    *ifr;
10786 
10787 		ifr = (struct ifreq *)if_req;
10788 		ipif->ipif_metric = ifr->ifr_metric;
10789 	} else {
10790 		struct lifreq   *lifr;
10791 
10792 		lifr = (struct lifreq *)if_req;
10793 		ipif->ipif_metric = lifr->lifr_metric;
10794 	}
10795 	return (0);
10796 }
10797 
10798 /* ARGSUSED */
10799 int
10800 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10801     ip_ioctl_cmd_t *ipip, void *if_req)
10802 {
10803 	/* Get interface metric. */
10804 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
10805 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10806 
10807 	if (ipip->ipi_cmd_type == IF_CMD) {
10808 		struct ifreq    *ifr;
10809 
10810 		ifr = (struct ifreq *)if_req;
10811 		ifr->ifr_metric = ipif->ipif_metric;
10812 	} else {
10813 		struct lifreq   *lifr;
10814 
10815 		lifr = (struct lifreq *)if_req;
10816 		lifr->lifr_metric = ipif->ipif_metric;
10817 	}
10818 
10819 	return (0);
10820 }
10821 
10822 /* ARGSUSED */
10823 int
10824 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10825     ip_ioctl_cmd_t *ipip, void *if_req)
10826 {
10827 	int	arp_muxid;
10828 
10829 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
10830 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10831 	/*
10832 	 * Set the muxid returned from I_PLINK.
10833 	 */
10834 	if (ipip->ipi_cmd_type == IF_CMD) {
10835 		struct ifreq *ifr = (struct ifreq *)if_req;
10836 
10837 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
10838 		arp_muxid = ifr->ifr_arp_muxid;
10839 	} else {
10840 		struct lifreq *lifr = (struct lifreq *)if_req;
10841 
10842 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
10843 		arp_muxid = lifr->lifr_arp_muxid;
10844 	}
10845 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
10846 	return (0);
10847 }
10848 
10849 /* ARGSUSED */
10850 int
10851 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10852     ip_ioctl_cmd_t *ipip, void *if_req)
10853 {
10854 	int	arp_muxid = 0;
10855 
10856 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
10857 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10858 	/*
10859 	 * Get the muxid saved in ill for I_PUNLINK.
10860 	 */
10861 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
10862 	if (ipip->ipi_cmd_type == IF_CMD) {
10863 		struct ifreq *ifr = (struct ifreq *)if_req;
10864 
10865 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10866 		ifr->ifr_arp_muxid = arp_muxid;
10867 	} else {
10868 		struct lifreq *lifr = (struct lifreq *)if_req;
10869 
10870 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10871 		lifr->lifr_arp_muxid = arp_muxid;
10872 	}
10873 	return (0);
10874 }
10875 
10876 /*
10877  * Set the subnet prefix. Does not modify the broadcast address.
10878  */
10879 /* ARGSUSED */
10880 int
10881 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10882     ip_ioctl_cmd_t *ipip, void *if_req)
10883 {
10884 	int err = 0;
10885 	in6_addr_t v6addr;
10886 	in6_addr_t v6mask;
10887 	boolean_t need_up = B_FALSE;
10888 	int addrlen;
10889 
10890 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
10891 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10892 
10893 	ASSERT(IAM_WRITER_IPIF(ipif));
10894 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
10895 
10896 	if (ipif->ipif_isv6) {
10897 		sin6_t *sin6;
10898 
10899 		if (sin->sin_family != AF_INET6)
10900 			return (EAFNOSUPPORT);
10901 
10902 		sin6 = (sin6_t *)sin;
10903 		v6addr = sin6->sin6_addr;
10904 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
10905 			return (EADDRNOTAVAIL);
10906 	} else {
10907 		ipaddr_t addr;
10908 
10909 		if (sin->sin_family != AF_INET)
10910 			return (EAFNOSUPPORT);
10911 
10912 		addr = sin->sin_addr.s_addr;
10913 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
10914 			return (EADDRNOTAVAIL);
10915 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10916 		/* Add 96 bits */
10917 		addrlen += IPV6_ABITS - IP_ABITS;
10918 	}
10919 
10920 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
10921 		return (EINVAL);
10922 
10923 	/* Check if bits in the address is set past the mask */
10924 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
10925 		return (EINVAL);
10926 
10927 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
10928 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
10929 		return (0);	/* No change */
10930 
10931 	if (ipif->ipif_flags & IPIF_UP) {
10932 		/*
10933 		 * If the interface is already marked up,
10934 		 * we call ipif_down which will take care
10935 		 * of ditching any IREs that have been set
10936 		 * up based on the old interface address.
10937 		 */
10938 		err = ipif_logical_down(ipif, q, mp);
10939 		if (err == EINPROGRESS)
10940 			return (err);
10941 		(void) ipif_down_tail(ipif);
10942 		need_up = B_TRUE;
10943 	}
10944 
10945 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
10946 	return (err);
10947 }
10948 
10949 static int
10950 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
10951     queue_t *q, mblk_t *mp, boolean_t need_up)
10952 {
10953 	ill_t	*ill = ipif->ipif_ill;
10954 	int	err = 0;
10955 
10956 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
10957 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10958 
10959 	/* Set the new address. */
10960 	mutex_enter(&ill->ill_lock);
10961 	ipif->ipif_v6net_mask = v6mask;
10962 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10963 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
10964 		    ipif->ipif_v6subnet);
10965 	}
10966 	mutex_exit(&ill->ill_lock);
10967 
10968 	if (need_up) {
10969 		/*
10970 		 * Now bring the interface back up.  If this
10971 		 * is the only IPIF for the ILL, ipif_up
10972 		 * will have to re-bind to the device, so
10973 		 * we may get back EINPROGRESS, in which
10974 		 * case, this IOCTL will get completed in
10975 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10976 		 */
10977 		err = ipif_up(ipif, q, mp);
10978 		if (err == EINPROGRESS)
10979 			return (err);
10980 	}
10981 	return (err);
10982 }
10983 
10984 /* ARGSUSED */
10985 int
10986 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10987     ip_ioctl_cmd_t *ipip, void *if_req)
10988 {
10989 	int	addrlen;
10990 	in6_addr_t v6addr;
10991 	in6_addr_t v6mask;
10992 	struct lifreq *lifr = (struct lifreq *)if_req;
10993 
10994 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
10995 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10996 	(void) ipif_down_tail(ipif);
10997 
10998 	addrlen = lifr->lifr_addrlen;
10999 	if (ipif->ipif_isv6) {
11000 		sin6_t *sin6;
11001 
11002 		sin6 = (sin6_t *)sin;
11003 		v6addr = sin6->sin6_addr;
11004 	} else {
11005 		ipaddr_t addr;
11006 
11007 		addr = sin->sin_addr.s_addr;
11008 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11009 		addrlen += IPV6_ABITS - IP_ABITS;
11010 	}
11011 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11012 
11013 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11014 }
11015 
11016 /* ARGSUSED */
11017 int
11018 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11019     ip_ioctl_cmd_t *ipip, void *if_req)
11020 {
11021 	struct lifreq *lifr = (struct lifreq *)if_req;
11022 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11023 
11024 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11025 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11026 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11027 
11028 	if (ipif->ipif_isv6) {
11029 		*sin6 = sin6_null;
11030 		sin6->sin6_family = AF_INET6;
11031 		sin6->sin6_addr = ipif->ipif_v6subnet;
11032 		lifr->lifr_addrlen =
11033 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11034 	} else {
11035 		*sin = sin_null;
11036 		sin->sin_family = AF_INET;
11037 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11038 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11039 	}
11040 	return (0);
11041 }
11042 
11043 /*
11044  * Set the IPv6 address token.
11045  */
11046 /* ARGSUSED */
11047 int
11048 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11049     ip_ioctl_cmd_t *ipi, void *if_req)
11050 {
11051 	ill_t *ill = ipif->ipif_ill;
11052 	int err;
11053 	in6_addr_t v6addr;
11054 	in6_addr_t v6mask;
11055 	boolean_t need_up = B_FALSE;
11056 	int i;
11057 	sin6_t *sin6 = (sin6_t *)sin;
11058 	struct lifreq *lifr = (struct lifreq *)if_req;
11059 	int addrlen;
11060 
11061 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11062 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11063 	ASSERT(IAM_WRITER_IPIF(ipif));
11064 
11065 	addrlen = lifr->lifr_addrlen;
11066 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11067 	if (ipif->ipif_id != 0)
11068 		return (EINVAL);
11069 
11070 	if (!ipif->ipif_isv6)
11071 		return (EINVAL);
11072 
11073 	if (addrlen > IPV6_ABITS)
11074 		return (EINVAL);
11075 
11076 	v6addr = sin6->sin6_addr;
11077 
11078 	/*
11079 	 * The length of the token is the length from the end.  To get
11080 	 * the proper mask for this, compute the mask of the bits not
11081 	 * in the token; ie. the prefix, and then xor to get the mask.
11082 	 */
11083 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11084 		return (EINVAL);
11085 	for (i = 0; i < 4; i++) {
11086 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11087 	}
11088 
11089 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11090 	    ill->ill_token_length == addrlen)
11091 		return (0);	/* No change */
11092 
11093 	if (ipif->ipif_flags & IPIF_UP) {
11094 		err = ipif_logical_down(ipif, q, mp);
11095 		if (err == EINPROGRESS)
11096 			return (err);
11097 		(void) ipif_down_tail(ipif);
11098 		need_up = B_TRUE;
11099 	}
11100 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11101 	return (err);
11102 }
11103 
11104 static int
11105 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11106     mblk_t *mp, boolean_t need_up)
11107 {
11108 	in6_addr_t v6addr;
11109 	in6_addr_t v6mask;
11110 	ill_t	*ill = ipif->ipif_ill;
11111 	int	i;
11112 	int	err = 0;
11113 
11114 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11115 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11116 	v6addr = sin6->sin6_addr;
11117 	/*
11118 	 * The length of the token is the length from the end.  To get
11119 	 * the proper mask for this, compute the mask of the bits not
11120 	 * in the token; ie. the prefix, and then xor to get the mask.
11121 	 */
11122 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11123 	for (i = 0; i < 4; i++)
11124 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11125 
11126 	mutex_enter(&ill->ill_lock);
11127 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11128 	ill->ill_token_length = addrlen;
11129 	ill->ill_manual_token = 1;
11130 
11131 	/* Reconfigure the link-local address based on this new token */
11132 	ipif_setlinklocal(ill->ill_ipif);
11133 
11134 	mutex_exit(&ill->ill_lock);
11135 
11136 	if (need_up) {
11137 		/*
11138 		 * Now bring the interface back up.  If this
11139 		 * is the only IPIF for the ILL, ipif_up
11140 		 * will have to re-bind to the device, so
11141 		 * we may get back EINPROGRESS, in which
11142 		 * case, this IOCTL will get completed in
11143 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11144 		 */
11145 		err = ipif_up(ipif, q, mp);
11146 		if (err == EINPROGRESS)
11147 			return (err);
11148 	}
11149 	return (err);
11150 }
11151 
11152 /* ARGSUSED */
11153 int
11154 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11155     ip_ioctl_cmd_t *ipi, void *if_req)
11156 {
11157 	ill_t *ill;
11158 	sin6_t *sin6 = (sin6_t *)sin;
11159 	struct lifreq *lifr = (struct lifreq *)if_req;
11160 
11161 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11162 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11163 	if (ipif->ipif_id != 0)
11164 		return (EINVAL);
11165 
11166 	ill = ipif->ipif_ill;
11167 	if (!ill->ill_isv6)
11168 		return (ENXIO);
11169 
11170 	*sin6 = sin6_null;
11171 	sin6->sin6_family = AF_INET6;
11172 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11173 	sin6->sin6_addr = ill->ill_token;
11174 	lifr->lifr_addrlen = ill->ill_token_length;
11175 	return (0);
11176 }
11177 
11178 /*
11179  * Set (hardware) link specific information that might override
11180  * what was acquired through the DL_INFO_ACK.
11181  */
11182 /* ARGSUSED */
11183 int
11184 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11185     ip_ioctl_cmd_t *ipi, void *if_req)
11186 {
11187 	ill_t		*ill = ipif->ipif_ill;
11188 	int		ip_min_mtu;
11189 	struct lifreq	*lifr = (struct lifreq *)if_req;
11190 	lif_ifinfo_req_t *lir;
11191 
11192 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11193 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11194 	lir = &lifr->lifr_ifinfo;
11195 	ASSERT(IAM_WRITER_IPIF(ipif));
11196 
11197 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11198 	if (ipif->ipif_id != 0)
11199 		return (EINVAL);
11200 
11201 	/* Set interface MTU. */
11202 	if (ipif->ipif_isv6)
11203 		ip_min_mtu = IPV6_MIN_MTU;
11204 	else
11205 		ip_min_mtu = IP_MIN_MTU;
11206 
11207 	/*
11208 	 * Verify values before we set anything. Allow zero to
11209 	 * mean unspecified.
11210 	 *
11211 	 * XXX We should be able to set the user-defined lir_mtu to some value
11212 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11213 	 * ill_max_frag value tells us the max MTU that can be handled by the
11214 	 * datalink, whereas the ill_current_frag is dynamically computed for
11215 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11216 	 * since there is currently no way of distinguishing between
11217 	 * administratively fixed link mtu values (e.g., those set via
11218 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11219 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11220 	 * upper-bound.
11221 	 */
11222 	if (lir->lir_maxmtu != 0 &&
11223 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11224 	    lir->lir_maxmtu < ip_min_mtu))
11225 		return (EINVAL);
11226 	if (lir->lir_reachtime != 0 &&
11227 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11228 		return (EINVAL);
11229 	if (lir->lir_reachretrans != 0 &&
11230 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11231 		return (EINVAL);
11232 
11233 	mutex_enter(&ill->ill_lock);
11234 	/*
11235 	 * The dce and fragmentation code can handle changes to ill_mtu
11236 	 * concurrent with sending/fragmenting packets.
11237 	 */
11238 	if (lir->lir_maxmtu != 0)
11239 		ill->ill_user_mtu = lir->lir_maxmtu;
11240 
11241 	if (lir->lir_reachtime != 0)
11242 		ill->ill_reachable_time = lir->lir_reachtime;
11243 
11244 	if (lir->lir_reachretrans != 0)
11245 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11246 
11247 	ill->ill_max_hops = lir->lir_maxhops;
11248 	ill->ill_max_buf = ND_MAX_Q;
11249 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11250 		/*
11251 		 * ill_mtu is the actual interface MTU, obtained as the min
11252 		 * of user-configured mtu and the value announced by the
11253 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11254 		 * we have already made the choice of requiring
11255 		 * ill_user_mtu < ill_current_frag by the time we get here,
11256 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11257 		 * here.
11258 		 */
11259 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11260 	}
11261 	mutex_exit(&ill->ill_lock);
11262 
11263 	/*
11264 	 * Make sure all dce_generation checks find out
11265 	 * that ill_mtu has changed.
11266 	 */
11267 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11268 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11269 
11270 	/*
11271 	 * Refresh IPMP meta-interface MTU if necessary.
11272 	 */
11273 	if (IS_UNDER_IPMP(ill))
11274 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11275 
11276 	return (0);
11277 }
11278 
11279 /* ARGSUSED */
11280 int
11281 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11282     ip_ioctl_cmd_t *ipi, void *if_req)
11283 {
11284 	struct lif_ifinfo_req *lir;
11285 	ill_t *ill = ipif->ipif_ill;
11286 
11287 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11288 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11289 	if (ipif->ipif_id != 0)
11290 		return (EINVAL);
11291 
11292 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11293 	lir->lir_maxhops = ill->ill_max_hops;
11294 	lir->lir_reachtime = ill->ill_reachable_time;
11295 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11296 	lir->lir_maxmtu = ill->ill_mtu;
11297 
11298 	return (0);
11299 }
11300 
11301 /*
11302  * Return best guess as to the subnet mask for the specified address.
11303  * Based on the subnet masks for all the configured interfaces.
11304  *
11305  * We end up returning a zero mask in the case of default, multicast or
11306  * experimental.
11307  */
11308 static ipaddr_t
11309 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11310 {
11311 	ipaddr_t net_mask;
11312 	ill_t	*ill;
11313 	ipif_t	*ipif;
11314 	ill_walk_context_t ctx;
11315 	ipif_t	*fallback_ipif = NULL;
11316 
11317 	net_mask = ip_net_mask(addr);
11318 	if (net_mask == 0) {
11319 		*ipifp = NULL;
11320 		return (0);
11321 	}
11322 
11323 	/* Let's check to see if this is maybe a local subnet route. */
11324 	/* this function only applies to IPv4 interfaces */
11325 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11326 	ill = ILL_START_WALK_V4(&ctx, ipst);
11327 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11328 		mutex_enter(&ill->ill_lock);
11329 		for (ipif = ill->ill_ipif; ipif != NULL;
11330 		    ipif = ipif->ipif_next) {
11331 			if (IPIF_IS_CONDEMNED(ipif))
11332 				continue;
11333 			if (!(ipif->ipif_flags & IPIF_UP))
11334 				continue;
11335 			if ((ipif->ipif_subnet & net_mask) ==
11336 			    (addr & net_mask)) {
11337 				/*
11338 				 * Don't trust pt-pt interfaces if there are
11339 				 * other interfaces.
11340 				 */
11341 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11342 					if (fallback_ipif == NULL) {
11343 						ipif_refhold_locked(ipif);
11344 						fallback_ipif = ipif;
11345 					}
11346 					continue;
11347 				}
11348 
11349 				/*
11350 				 * Fine. Just assume the same net mask as the
11351 				 * directly attached subnet interface is using.
11352 				 */
11353 				ipif_refhold_locked(ipif);
11354 				mutex_exit(&ill->ill_lock);
11355 				rw_exit(&ipst->ips_ill_g_lock);
11356 				if (fallback_ipif != NULL)
11357 					ipif_refrele(fallback_ipif);
11358 				*ipifp = ipif;
11359 				return (ipif->ipif_net_mask);
11360 			}
11361 		}
11362 		mutex_exit(&ill->ill_lock);
11363 	}
11364 	rw_exit(&ipst->ips_ill_g_lock);
11365 
11366 	*ipifp = fallback_ipif;
11367 	return ((fallback_ipif != NULL) ?
11368 	    fallback_ipif->ipif_net_mask : net_mask);
11369 }
11370 
11371 /*
11372  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11373  */
11374 static void
11375 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11376 {
11377 	IOCP	iocp;
11378 	ipft_t	*ipft;
11379 	ipllc_t	*ipllc;
11380 	mblk_t	*mp1;
11381 	cred_t	*cr;
11382 	int	error = 0;
11383 	conn_t	*connp;
11384 
11385 	ip1dbg(("ip_wput_ioctl"));
11386 	iocp = (IOCP)mp->b_rptr;
11387 	mp1 = mp->b_cont;
11388 	if (mp1 == NULL) {
11389 		iocp->ioc_error = EINVAL;
11390 		mp->b_datap->db_type = M_IOCNAK;
11391 		iocp->ioc_count = 0;
11392 		qreply(q, mp);
11393 		return;
11394 	}
11395 
11396 	/*
11397 	 * These IOCTLs provide various control capabilities to
11398 	 * upstream agents such as ULPs and processes.	There
11399 	 * are currently two such IOCTLs implemented.  They
11400 	 * are used by TCP to provide update information for
11401 	 * existing IREs and to forcibly delete an IRE for a
11402 	 * host that is not responding, thereby forcing an
11403 	 * attempt at a new route.
11404 	 */
11405 	iocp->ioc_error = EINVAL;
11406 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11407 		goto done;
11408 
11409 	ipllc = (ipllc_t *)mp1->b_rptr;
11410 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11411 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11412 			break;
11413 	}
11414 	/*
11415 	 * prefer credential from mblk over ioctl;
11416 	 * see ip_sioctl_copyin_setup
11417 	 */
11418 	cr = msg_getcred(mp, NULL);
11419 	if (cr == NULL)
11420 		cr = iocp->ioc_cr;
11421 
11422 	/*
11423 	 * Refhold the conn in case the request gets queued up in some lookup
11424 	 */
11425 	ASSERT(CONN_Q(q));
11426 	connp = Q_TO_CONN(q);
11427 	CONN_INC_REF(connp);
11428 	if (ipft->ipft_pfi &&
11429 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11430 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11431 		error = (*ipft->ipft_pfi)(q,
11432 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11433 	}
11434 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11435 		/*
11436 		 * CONN_OPER_PENDING_DONE happens in the function called
11437 		 * through ipft_pfi above.
11438 		 */
11439 		return;
11440 	}
11441 
11442 	CONN_OPER_PENDING_DONE(connp);
11443 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11444 		freemsg(mp);
11445 		return;
11446 	}
11447 	iocp->ioc_error = error;
11448 
11449 done:
11450 	mp->b_datap->db_type = M_IOCACK;
11451 	if (iocp->ioc_error)
11452 		iocp->ioc_count = 0;
11453 	qreply(q, mp);
11454 }
11455 
11456 /*
11457  * Assign a unique id for the ipif. This is used by sctp_addr.c
11458  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11459  */
11460 static void
11461 ipif_assign_seqid(ipif_t *ipif)
11462 {
11463 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11464 
11465 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11466 }
11467 
11468 /*
11469  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11470  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11471  * that the clone is complete -- including the seqid -- and the expectation is
11472  * that the caller will either free or overwrite `sipif' before it's unlocked.
11473  */
11474 static void
11475 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11476 {
11477 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11478 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11479 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11480 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11481 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11482 
11483 	dipif->ipif_flags = sipif->ipif_flags;
11484 	dipif->ipif_metric = sipif->ipif_metric;
11485 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11486 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11487 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11488 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11489 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11490 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11491 
11492 	/*
11493 	 * As per the comment atop the function, we assume that these sipif
11494 	 * fields will be changed before sipif is unlocked.
11495 	 */
11496 	dipif->ipif_seqid = sipif->ipif_seqid;
11497 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11498 }
11499 
11500 /*
11501  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11502  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11503  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11504  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11505  * down (i.e., no DAD), of the same type, and unlocked.
11506  */
11507 static void
11508 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11509 {
11510 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11511 	ipxop_t *ipx = ipsq->ipsq_xop;
11512 
11513 	ASSERT(sipif != dipif);
11514 	ASSERT(sipif != virgipif);
11515 
11516 	/*
11517 	 * Grab all of the locks that protect the ipif in a defined order.
11518 	 */
11519 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11520 
11521 	ipif_clone(sipif, dipif);
11522 	if (virgipif != NULL) {
11523 		ipif_clone(virgipif, sipif);
11524 		mi_free(virgipif);
11525 	}
11526 
11527 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11528 
11529 	/*
11530 	 * Transfer ownership of the current xop, if necessary.
11531 	 */
11532 	if (ipx->ipx_current_ipif == sipif) {
11533 		ASSERT(ipx->ipx_pending_ipif == NULL);
11534 		mutex_enter(&ipx->ipx_lock);
11535 		ipx->ipx_current_ipif = dipif;
11536 		mutex_exit(&ipx->ipx_lock);
11537 	}
11538 
11539 	if (virgipif == NULL)
11540 		mi_free(sipif);
11541 }
11542 
11543 /*
11544  * checks if:
11545  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11546  *	- logical interface is within the allowed range
11547  */
11548 static int
11549 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11550 {
11551 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11552 		return (ENAMETOOLONG);
11553 
11554 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11555 		return (ERANGE);
11556 	return (0);
11557 }
11558 
11559 /*
11560  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11561  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11562  * be inserted into the first space available in the list. The value of
11563  * ipif_id will then be set to the appropriate value for its position.
11564  */
11565 static int
11566 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11567 {
11568 	ill_t *ill;
11569 	ipif_t *tipif;
11570 	ipif_t **tipifp;
11571 	int id, err;
11572 	ip_stack_t	*ipst;
11573 
11574 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11575 	    IAM_WRITER_IPIF(ipif));
11576 
11577 	ill = ipif->ipif_ill;
11578 	ASSERT(ill != NULL);
11579 	ipst = ill->ill_ipst;
11580 
11581 	/*
11582 	 * In the case of lo0:0 we already hold the ill_g_lock.
11583 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11584 	 * ipif_insert.
11585 	 */
11586 	if (acquire_g_lock)
11587 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11588 	mutex_enter(&ill->ill_lock);
11589 	id = ipif->ipif_id;
11590 	tipifp = &(ill->ill_ipif);
11591 	if (id == -1) {	/* need to find a real id */
11592 		id = 0;
11593 		while ((tipif = *tipifp) != NULL) {
11594 			ASSERT(tipif->ipif_id >= id);
11595 			if (tipif->ipif_id != id)
11596 				break; /* non-consecutive id */
11597 			id++;
11598 			tipifp = &(tipif->ipif_next);
11599 		}
11600 		if ((err = is_lifname_valid(ill, id)) != 0) {
11601 			mutex_exit(&ill->ill_lock);
11602 			if (acquire_g_lock)
11603 				rw_exit(&ipst->ips_ill_g_lock);
11604 			return (err);
11605 		}
11606 		ipif->ipif_id = id; /* assign new id */
11607 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11608 		/* we have a real id; insert ipif in the right place */
11609 		while ((tipif = *tipifp) != NULL) {
11610 			ASSERT(tipif->ipif_id != id);
11611 			if (tipif->ipif_id > id)
11612 				break; /* found correct location */
11613 			tipifp = &(tipif->ipif_next);
11614 		}
11615 	} else {
11616 		mutex_exit(&ill->ill_lock);
11617 		if (acquire_g_lock)
11618 			rw_exit(&ipst->ips_ill_g_lock);
11619 		return (err);
11620 	}
11621 
11622 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11623 
11624 	ipif->ipif_next = tipif;
11625 	*tipifp = ipif;
11626 	mutex_exit(&ill->ill_lock);
11627 	if (acquire_g_lock)
11628 		rw_exit(&ipst->ips_ill_g_lock);
11629 
11630 	return (0);
11631 }
11632 
11633 static void
11634 ipif_remove(ipif_t *ipif)
11635 {
11636 	ipif_t	**ipifp;
11637 	ill_t	*ill = ipif->ipif_ill;
11638 
11639 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11640 
11641 	mutex_enter(&ill->ill_lock);
11642 	ipifp = &ill->ill_ipif;
11643 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11644 		if (*ipifp == ipif) {
11645 			*ipifp = ipif->ipif_next;
11646 			break;
11647 		}
11648 	}
11649 	mutex_exit(&ill->ill_lock);
11650 }
11651 
11652 /*
11653  * Allocate and initialize a new interface control structure.  (Always
11654  * called as writer.)
11655  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11656  * is not part of the global linked list of ills. ipif_seqid is unique
11657  * in the system and to preserve the uniqueness, it is assigned only
11658  * when ill becomes part of the global list. At that point ill will
11659  * have a name. If it doesn't get assigned here, it will get assigned
11660  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11661  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11662  * the interface flags or any other information from the DL_INFO_ACK for
11663  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11664  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11665  * second DL_INFO_ACK comes in from the driver.
11666  */
11667 static ipif_t *
11668 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11669     boolean_t insert, int *errorp)
11670 {
11671 	int err;
11672 	ipif_t	*ipif;
11673 	ip_stack_t *ipst = ill->ill_ipst;
11674 
11675 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11676 	    ill->ill_name, id, (void *)ill));
11677 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11678 
11679 	if (errorp != NULL)
11680 		*errorp = 0;
11681 
11682 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11683 		if (errorp != NULL)
11684 			*errorp = ENOMEM;
11685 		return (NULL);
11686 	}
11687 	*ipif = ipif_zero;	/* start clean */
11688 
11689 	ipif->ipif_ill = ill;
11690 	ipif->ipif_id = id;	/* could be -1 */
11691 	/*
11692 	 * Inherit the zoneid from the ill; for the shared stack instance
11693 	 * this is always the global zone
11694 	 */
11695 	ipif->ipif_zoneid = ill->ill_zoneid;
11696 
11697 	ipif->ipif_refcnt = 0;
11698 
11699 	if (insert) {
11700 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
11701 			mi_free(ipif);
11702 			if (errorp != NULL)
11703 				*errorp = err;
11704 			return (NULL);
11705 		}
11706 		/* -1 id should have been replaced by real id */
11707 		id = ipif->ipif_id;
11708 		ASSERT(id >= 0);
11709 	}
11710 
11711 	if (ill->ill_name[0] != '\0')
11712 		ipif_assign_seqid(ipif);
11713 
11714 	/*
11715 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
11716 	 * (which must not exist yet because the zeroth ipif is created once
11717 	 * per ill).  However, do not not link it to the ipmp_grp_t until
11718 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
11719 	 */
11720 	if (id == 0 && IS_IPMP(ill)) {
11721 		if (ipmp_illgrp_create(ill) == NULL) {
11722 			if (insert) {
11723 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11724 				ipif_remove(ipif);
11725 				rw_exit(&ipst->ips_ill_g_lock);
11726 			}
11727 			mi_free(ipif);
11728 			if (errorp != NULL)
11729 				*errorp = ENOMEM;
11730 			return (NULL);
11731 		}
11732 	}
11733 
11734 	/*
11735 	 * We grab ill_lock to protect the flag changes.  The ipif is still
11736 	 * not up and can't be looked up until the ioctl completes and the
11737 	 * IPIF_CHANGING flag is cleared.
11738 	 */
11739 	mutex_enter(&ill->ill_lock);
11740 
11741 	ipif->ipif_ire_type = ire_type;
11742 
11743 	if (ipif->ipif_isv6) {
11744 		ill->ill_flags |= ILLF_IPV6;
11745 	} else {
11746 		ipaddr_t inaddr_any = INADDR_ANY;
11747 
11748 		ill->ill_flags |= ILLF_IPV4;
11749 
11750 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
11751 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11752 		    &ipif->ipif_v6lcl_addr);
11753 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11754 		    &ipif->ipif_v6subnet);
11755 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11756 		    &ipif->ipif_v6net_mask);
11757 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11758 		    &ipif->ipif_v6brd_addr);
11759 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11760 		    &ipif->ipif_v6pp_dst_addr);
11761 	}
11762 
11763 	/*
11764 	 * Don't set the interface flags etc. now, will do it in
11765 	 * ip_ll_subnet_defaults.
11766 	 */
11767 	if (!initialize)
11768 		goto out;
11769 
11770 	/*
11771 	 * NOTE: The IPMP meta-interface is special-cased because it starts
11772 	 * with no underlying interfaces (and thus an unknown broadcast
11773 	 * address length), but all interfaces that can be placed into an IPMP
11774 	 * group are required to be broadcast-capable.
11775 	 */
11776 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
11777 		/*
11778 		 * Later detect lack of DLPI driver multicast capability by
11779 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
11780 		 */
11781 		ill->ill_flags |= ILLF_MULTICAST;
11782 		if (!ipif->ipif_isv6)
11783 			ipif->ipif_flags |= IPIF_BROADCAST;
11784 	} else {
11785 		if (ill->ill_net_type != IRE_LOOPBACK) {
11786 			if (ipif->ipif_isv6)
11787 				/*
11788 				 * Note: xresolv interfaces will eventually need
11789 				 * NOARP set here as well, but that will require
11790 				 * those external resolvers to have some
11791 				 * knowledge of that flag and act appropriately.
11792 				 * Not to be changed at present.
11793 				 */
11794 				ill->ill_flags |= ILLF_NONUD;
11795 			else
11796 				ill->ill_flags |= ILLF_NOARP;
11797 		}
11798 		if (ill->ill_phys_addr_length == 0) {
11799 			if (IS_VNI(ill)) {
11800 				ipif->ipif_flags |= IPIF_NOXMIT;
11801 			} else {
11802 				/* pt-pt supports multicast. */
11803 				ill->ill_flags |= ILLF_MULTICAST;
11804 				if (ill->ill_net_type != IRE_LOOPBACK)
11805 					ipif->ipif_flags |= IPIF_POINTOPOINT;
11806 			}
11807 		}
11808 	}
11809 out:
11810 	mutex_exit(&ill->ill_lock);
11811 	return (ipif);
11812 }
11813 
11814 /*
11815  * Remove the neighbor cache entries associated with this logical
11816  * interface.
11817  */
11818 int
11819 ipif_arp_down(ipif_t *ipif)
11820 {
11821 	ill_t	*ill = ipif->ipif_ill;
11822 	int	err = 0;
11823 
11824 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
11825 	ASSERT(IAM_WRITER_IPIF(ipif));
11826 
11827 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
11828 	    ill_t *, ill, ipif_t *, ipif);
11829 	ipif_nce_down(ipif);
11830 
11831 	/*
11832 	 * If this is the last ipif that is going down and there are no
11833 	 * duplicate addresses we may yet attempt to re-probe, then we need to
11834 	 * clean up ARP completely.
11835 	 */
11836 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
11837 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
11838 		/*
11839 		 * If this was the last ipif on an IPMP interface, purge any
11840 		 * static ARP entries associated with it.
11841 		 */
11842 		if (IS_IPMP(ill))
11843 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
11844 
11845 		/* UNBIND, DETACH */
11846 		err = arp_ll_down(ill);
11847 	}
11848 
11849 	return (err);
11850 }
11851 
11852 /*
11853  * Get the resolver set up for a new IP address.  (Always called as writer.)
11854  * Called both for IPv4 and IPv6 interfaces, though it only does some
11855  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
11856  *
11857  * The enumerated value res_act tunes the behavior:
11858  * 	* Res_act_initial: set up all the resolver structures for a new
11859  *	  IP address.
11860  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
11861  *	  ARP message in defense of the address.
11862  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
11863  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
11864  *
11865  * Returns zero on success, or an errno upon failure.
11866  */
11867 int
11868 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
11869 {
11870 	ill_t		*ill = ipif->ipif_ill;
11871 	int		err;
11872 	boolean_t	was_dup;
11873 
11874 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
11875 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
11876 	ASSERT(IAM_WRITER_IPIF(ipif));
11877 
11878 	was_dup = B_FALSE;
11879 	if (res_act == Res_act_initial) {
11880 		ipif->ipif_addr_ready = 0;
11881 		/*
11882 		 * We're bringing an interface up here.  There's no way that we
11883 		 * should need to shut down ARP now.
11884 		 */
11885 		mutex_enter(&ill->ill_lock);
11886 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
11887 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
11888 			ill->ill_ipif_dup_count--;
11889 			was_dup = B_TRUE;
11890 		}
11891 		mutex_exit(&ill->ill_lock);
11892 	}
11893 	if (ipif->ipif_recovery_id != 0)
11894 		(void) untimeout(ipif->ipif_recovery_id);
11895 	ipif->ipif_recovery_id = 0;
11896 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
11897 		ipif->ipif_addr_ready = 1;
11898 		return (0);
11899 	}
11900 	/* NDP will set the ipif_addr_ready flag when it's ready */
11901 	if (ill->ill_isv6)
11902 		return (0);
11903 
11904 	err = ipif_arp_up(ipif, res_act, was_dup);
11905 	return (err);
11906 }
11907 
11908 /*
11909  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
11910  * when a link has just gone back up.
11911  */
11912 static void
11913 ipif_nce_start_dad(ipif_t *ipif)
11914 {
11915 	ncec_t *ncec;
11916 	ill_t *ill = ipif->ipif_ill;
11917 	boolean_t isv6 = ill->ill_isv6;
11918 
11919 	if (isv6) {
11920 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
11921 		    &ipif->ipif_v6lcl_addr);
11922 	} else {
11923 		ipaddr_t v4addr;
11924 
11925 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
11926 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
11927 		    ipif->ipif_lcl_addr == INADDR_ANY) {
11928 			/*
11929 			 * If we can't contact ARP for some reason,
11930 			 * that's not really a problem.  Just send
11931 			 * out the routing socket notification that
11932 			 * DAD completion would have done, and continue.
11933 			 */
11934 			ipif_mask_reply(ipif);
11935 			ipif_up_notify(ipif);
11936 			ipif->ipif_addr_ready = 1;
11937 			return;
11938 		}
11939 
11940 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
11941 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
11942 	}
11943 
11944 	if (ncec == NULL) {
11945 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
11946 		    (void *)ipif));
11947 		return;
11948 	}
11949 	if (!nce_restart_dad(ncec)) {
11950 		/*
11951 		 * If we can't restart DAD for some reason, that's not really a
11952 		 * problem.  Just send out the routing socket notification that
11953 		 * DAD completion would have done, and continue.
11954 		 */
11955 		ipif_up_notify(ipif);
11956 		ipif->ipif_addr_ready = 1;
11957 	}
11958 	ncec_refrele(ncec);
11959 }
11960 
11961 /*
11962  * Restart duplicate address detection on all interfaces on the given ill.
11963  *
11964  * This is called when an interface transitions from down to up
11965  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
11966  *
11967  * Note that since the underlying physical link has transitioned, we must cause
11968  * at least one routing socket message to be sent here, either via DAD
11969  * completion or just by default on the first ipif.  (If we don't do this, then
11970  * in.mpathd will see long delays when doing link-based failure recovery.)
11971  */
11972 void
11973 ill_restart_dad(ill_t *ill, boolean_t went_up)
11974 {
11975 	ipif_t *ipif;
11976 
11977 	if (ill == NULL)
11978 		return;
11979 
11980 	/*
11981 	 * If layer two doesn't support duplicate address detection, then just
11982 	 * send the routing socket message now and be done with it.
11983 	 */
11984 	if (!ill->ill_isv6 && arp_no_defense) {
11985 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
11986 		return;
11987 	}
11988 
11989 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11990 		if (went_up) {
11991 
11992 			if (ipif->ipif_flags & IPIF_UP) {
11993 				ipif_nce_start_dad(ipif);
11994 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
11995 				/*
11996 				 * kick off the bring-up process now.
11997 				 */
11998 				ipif_do_recovery(ipif);
11999 			} else {
12000 				/*
12001 				 * Unfortunately, the first ipif is "special"
12002 				 * and represents the underlying ill in the
12003 				 * routing socket messages.  Thus, when this
12004 				 * one ipif is down, we must still notify so
12005 				 * that the user knows the IFF_RUNNING status
12006 				 * change.  (If the first ipif is up, then
12007 				 * we'll handle eventual routing socket
12008 				 * notification via DAD completion.)
12009 				 */
12010 				if (ipif == ill->ill_ipif) {
12011 					ip_rts_ifmsg(ill->ill_ipif,
12012 					    RTSQ_DEFAULT);
12013 				}
12014 			}
12015 		} else {
12016 			/*
12017 			 * After link down, we'll need to send a new routing
12018 			 * message when the link comes back, so clear
12019 			 * ipif_addr_ready.
12020 			 */
12021 			ipif->ipif_addr_ready = 0;
12022 		}
12023 	}
12024 
12025 	/*
12026 	 * If we've torn down links, then notify the user right away.
12027 	 */
12028 	if (!went_up)
12029 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12030 }
12031 
12032 static void
12033 ipsq_delete(ipsq_t *ipsq)
12034 {
12035 	ipxop_t *ipx = ipsq->ipsq_xop;
12036 
12037 	ipsq->ipsq_ipst = NULL;
12038 	ASSERT(ipsq->ipsq_phyint == NULL);
12039 	ASSERT(ipsq->ipsq_xop != NULL);
12040 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12041 	ASSERT(ipx->ipx_pending_mp == NULL);
12042 	kmem_free(ipsq, sizeof (ipsq_t));
12043 }
12044 
12045 static int
12046 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12047 {
12048 	int err = 0;
12049 	ipif_t *ipif;
12050 
12051 	if (ill == NULL)
12052 		return (0);
12053 
12054 	ASSERT(IAM_WRITER_ILL(ill));
12055 	ill->ill_up_ipifs = B_TRUE;
12056 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12057 		if (ipif->ipif_was_up) {
12058 			if (!(ipif->ipif_flags & IPIF_UP))
12059 				err = ipif_up(ipif, q, mp);
12060 			ipif->ipif_was_up = B_FALSE;
12061 			if (err != 0) {
12062 				ASSERT(err == EINPROGRESS);
12063 				return (err);
12064 			}
12065 		}
12066 	}
12067 	ill->ill_up_ipifs = B_FALSE;
12068 	return (0);
12069 }
12070 
12071 /*
12072  * This function is called to bring up all the ipifs that were up before
12073  * bringing the ill down via ill_down_ipifs().
12074  */
12075 int
12076 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12077 {
12078 	int err;
12079 
12080 	ASSERT(IAM_WRITER_ILL(ill));
12081 
12082 	if (ill->ill_replumbing) {
12083 		ill->ill_replumbing = 0;
12084 		/*
12085 		 * Send down REPLUMB_DONE notification followed by the
12086 		 * BIND_REQ on the arp stream.
12087 		 */
12088 		if (!ill->ill_isv6)
12089 			arp_send_replumb_conf(ill);
12090 	}
12091 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12092 	if (err != 0)
12093 		return (err);
12094 
12095 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12096 }
12097 
12098 /*
12099  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12100  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12101  */
12102 static void
12103 ill_down_ipifs(ill_t *ill, boolean_t logical)
12104 {
12105 	ipif_t *ipif;
12106 
12107 	ASSERT(IAM_WRITER_ILL(ill));
12108 
12109 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12110 		/*
12111 		 * We go through the ipif_down logic even if the ipif
12112 		 * is already down, since routes can be added based
12113 		 * on down ipifs. Going through ipif_down once again
12114 		 * will delete any IREs created based on these routes.
12115 		 */
12116 		if (ipif->ipif_flags & IPIF_UP)
12117 			ipif->ipif_was_up = B_TRUE;
12118 
12119 		if (logical) {
12120 			(void) ipif_logical_down(ipif, NULL, NULL);
12121 			ipif_non_duplicate(ipif);
12122 			(void) ipif_down_tail(ipif);
12123 		} else {
12124 			(void) ipif_down(ipif, NULL, NULL);
12125 		}
12126 	}
12127 }
12128 
12129 /*
12130  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12131  * a look again at valid source addresses.
12132  * This should be called each time after the set of source addresses has been
12133  * changed.
12134  */
12135 void
12136 ip_update_source_selection(ip_stack_t *ipst)
12137 {
12138 	/* We skip past SRC_GENERATION_VERIFY */
12139 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12140 	    SRC_GENERATION_VERIFY)
12141 		atomic_add_32(&ipst->ips_src_generation, 1);
12142 }
12143 
12144 /*
12145  * Finish the group join started in ip_sioctl_groupname().
12146  */
12147 /* ARGSUSED */
12148 static void
12149 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12150 {
12151 	ill_t		*ill = q->q_ptr;
12152 	phyint_t	*phyi = ill->ill_phyint;
12153 	ipmp_grp_t	*grp = phyi->phyint_grp;
12154 	ip_stack_t	*ipst = ill->ill_ipst;
12155 
12156 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12157 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12158 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12159 
12160 	if (phyi->phyint_illv4 != NULL) {
12161 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12162 		VERIFY(grp->gr_pendv4-- > 0);
12163 		rw_exit(&ipst->ips_ipmp_lock);
12164 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12165 	}
12166 	if (phyi->phyint_illv6 != NULL) {
12167 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12168 		VERIFY(grp->gr_pendv6-- > 0);
12169 		rw_exit(&ipst->ips_ipmp_lock);
12170 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12171 	}
12172 	freemsg(mp);
12173 }
12174 
12175 /*
12176  * Process an SIOCSLIFGROUPNAME request.
12177  */
12178 /* ARGSUSED */
12179 int
12180 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12181     ip_ioctl_cmd_t *ipip, void *ifreq)
12182 {
12183 	struct lifreq	*lifr = ifreq;
12184 	ill_t		*ill = ipif->ipif_ill;
12185 	ip_stack_t	*ipst = ill->ill_ipst;
12186 	phyint_t	*phyi = ill->ill_phyint;
12187 	ipmp_grp_t	*grp = phyi->phyint_grp;
12188 	mblk_t		*ipsq_mp;
12189 	int		err = 0;
12190 
12191 	/*
12192 	 * Note that phyint_grp can only change here, where we're exclusive.
12193 	 */
12194 	ASSERT(IAM_WRITER_ILL(ill));
12195 
12196 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12197 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12198 		return (EINVAL);
12199 
12200 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12201 
12202 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12203 
12204 	/*
12205 	 * If the name hasn't changed, there's nothing to do.
12206 	 */
12207 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12208 		goto unlock;
12209 
12210 	/*
12211 	 * Handle requests to rename an IPMP meta-interface.
12212 	 *
12213 	 * Note that creation of the IPMP meta-interface is handled in
12214 	 * userland through the standard plumbing sequence.  As part of the
12215 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12216 	 * the name of the interface (see ipif_set_values_tail()).
12217 	 */
12218 	if (IS_IPMP(ill)) {
12219 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12220 		goto unlock;
12221 	}
12222 
12223 	/*
12224 	 * Handle requests to add or remove an IP interface from a group.
12225 	 */
12226 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12227 		/*
12228 		 * Moves are handled by first removing the interface from
12229 		 * its existing group, and then adding it to another group.
12230 		 * So, fail if it's already in a group.
12231 		 */
12232 		if (IS_UNDER_IPMP(ill)) {
12233 			err = EALREADY;
12234 			goto unlock;
12235 		}
12236 
12237 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12238 		if (grp == NULL) {
12239 			err = ENOENT;
12240 			goto unlock;
12241 		}
12242 
12243 		/*
12244 		 * Check if the phyint and its ills are suitable for
12245 		 * inclusion into the group.
12246 		 */
12247 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12248 			goto unlock;
12249 
12250 		/*
12251 		 * Checks pass; join the group, and enqueue the remaining
12252 		 * illgrp joins for when we've become part of the group xop
12253 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12254 		 * requires an mblk_t to scribble on, and since `mp' will be
12255 		 * freed as part of completing the ioctl, allocate another.
12256 		 */
12257 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12258 			err = ENOMEM;
12259 			goto unlock;
12260 		}
12261 
12262 		/*
12263 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12264 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12265 		 * before ip_join_illgrps() is called back.  See the comments
12266 		 * in ip_sioctl_plink_ipmp() for more.
12267 		 */
12268 		if (phyi->phyint_illv4 != NULL)
12269 			grp->gr_pendv4++;
12270 		if (phyi->phyint_illv6 != NULL)
12271 			grp->gr_pendv6++;
12272 
12273 		rw_exit(&ipst->ips_ipmp_lock);
12274 
12275 		ipmp_phyint_join_grp(phyi, grp);
12276 		ill_refhold(ill);
12277 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12278 		    SWITCH_OP, B_FALSE);
12279 		return (0);
12280 	} else {
12281 		/*
12282 		 * Request to remove the interface from a group.  If the
12283 		 * interface is not in a group, this trivially succeeds.
12284 		 */
12285 		rw_exit(&ipst->ips_ipmp_lock);
12286 		if (IS_UNDER_IPMP(ill))
12287 			ipmp_phyint_leave_grp(phyi);
12288 		return (0);
12289 	}
12290 unlock:
12291 	rw_exit(&ipst->ips_ipmp_lock);
12292 	return (err);
12293 }
12294 
12295 /*
12296  * Process an SIOCGLIFBINDING request.
12297  */
12298 /* ARGSUSED */
12299 int
12300 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12301     ip_ioctl_cmd_t *ipip, void *ifreq)
12302 {
12303 	ill_t		*ill;
12304 	struct lifreq	*lifr = ifreq;
12305 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12306 
12307 	if (!IS_IPMP(ipif->ipif_ill))
12308 		return (EINVAL);
12309 
12310 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12311 	if ((ill = ipif->ipif_bound_ill) == NULL)
12312 		lifr->lifr_binding[0] = '\0';
12313 	else
12314 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12315 	rw_exit(&ipst->ips_ipmp_lock);
12316 	return (0);
12317 }
12318 
12319 /*
12320  * Process an SIOCGLIFGROUPNAME request.
12321  */
12322 /* ARGSUSED */
12323 int
12324 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12325     ip_ioctl_cmd_t *ipip, void *ifreq)
12326 {
12327 	ipmp_grp_t	*grp;
12328 	struct lifreq	*lifr = ifreq;
12329 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12330 
12331 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12332 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12333 		lifr->lifr_groupname[0] = '\0';
12334 	else
12335 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12336 	rw_exit(&ipst->ips_ipmp_lock);
12337 	return (0);
12338 }
12339 
12340 /*
12341  * Process an SIOCGLIFGROUPINFO request.
12342  */
12343 /* ARGSUSED */
12344 int
12345 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12346     ip_ioctl_cmd_t *ipip, void *dummy)
12347 {
12348 	ipmp_grp_t	*grp;
12349 	lifgroupinfo_t	*lifgr;
12350 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12351 
12352 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12353 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12354 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12355 
12356 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12357 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12358 		rw_exit(&ipst->ips_ipmp_lock);
12359 		return (ENOENT);
12360 	}
12361 	ipmp_grp_info(grp, lifgr);
12362 	rw_exit(&ipst->ips_ipmp_lock);
12363 	return (0);
12364 }
12365 
12366 static void
12367 ill_dl_down(ill_t *ill)
12368 {
12369 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12370 
12371 	/*
12372 	 * The ill is down; unbind but stay attached since we're still
12373 	 * associated with a PPA. If we have negotiated DLPI capabilites
12374 	 * with the data link service provider (IDS_OK) then reset them.
12375 	 * The interval between unbinding and rebinding is potentially
12376 	 * unbounded hence we cannot assume things will be the same.
12377 	 * The DLPI capabilities will be probed again when the data link
12378 	 * is brought up.
12379 	 */
12380 	mblk_t	*mp = ill->ill_unbind_mp;
12381 
12382 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12383 
12384 	if (!ill->ill_replumbing) {
12385 		/* Free all ilms for this ill */
12386 		update_conn_ill(ill, ill->ill_ipst);
12387 	} else {
12388 		ill_leave_multicast(ill);
12389 	}
12390 
12391 	ill->ill_unbind_mp = NULL;
12392 	if (mp != NULL) {
12393 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12394 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12395 		    ill->ill_name));
12396 		mutex_enter(&ill->ill_lock);
12397 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12398 		mutex_exit(&ill->ill_lock);
12399 		/*
12400 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12401 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12402 		 * ill_capability_dld_disable disable rightaway. If this is not
12403 		 * an unplumb operation then the disable happens on receipt of
12404 		 * the capab ack via ip_rput_dlpi_writer ->
12405 		 * ill_capability_ack_thr. In both cases the order of
12406 		 * the operations seen by DLD is capability disable followed
12407 		 * by DL_UNBIND. Also the DLD capability disable needs a
12408 		 * cv_wait'able context.
12409 		 */
12410 		if (ill->ill_state_flags & ILL_CONDEMNED)
12411 			ill_capability_dld_disable(ill);
12412 		ill_capability_reset(ill, B_FALSE);
12413 		ill_dlpi_send(ill, mp);
12414 	}
12415 	mutex_enter(&ill->ill_lock);
12416 	ill->ill_dl_up = 0;
12417 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12418 	mutex_exit(&ill->ill_lock);
12419 }
12420 
12421 void
12422 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12423 {
12424 	union DL_primitives *dlp;
12425 	t_uscalar_t prim;
12426 	boolean_t waitack = B_FALSE;
12427 
12428 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12429 
12430 	dlp = (union DL_primitives *)mp->b_rptr;
12431 	prim = dlp->dl_primitive;
12432 
12433 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12434 	    dl_primstr(prim), prim, ill->ill_name));
12435 
12436 	switch (prim) {
12437 	case DL_PHYS_ADDR_REQ:
12438 	{
12439 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12440 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12441 		break;
12442 	}
12443 	case DL_BIND_REQ:
12444 		mutex_enter(&ill->ill_lock);
12445 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12446 		mutex_exit(&ill->ill_lock);
12447 		break;
12448 	}
12449 
12450 	/*
12451 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12452 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12453 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12454 	 */
12455 	mutex_enter(&ill->ill_lock);
12456 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12457 	    (prim == DL_UNBIND_REQ)) {
12458 		ill->ill_dlpi_pending = prim;
12459 		waitack = B_TRUE;
12460 	}
12461 
12462 	mutex_exit(&ill->ill_lock);
12463 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12464 	    char *, dl_primstr(prim), ill_t *, ill);
12465 	putnext(ill->ill_wq, mp);
12466 
12467 	/*
12468 	 * There is no ack for DL_NOTIFY_CONF messages
12469 	 */
12470 	if (waitack && prim == DL_NOTIFY_CONF)
12471 		ill_dlpi_done(ill, prim);
12472 }
12473 
12474 /*
12475  * Helper function for ill_dlpi_send().
12476  */
12477 /* ARGSUSED */
12478 static void
12479 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12480 {
12481 	ill_dlpi_send(q->q_ptr, mp);
12482 }
12483 
12484 /*
12485  * Send a DLPI control message to the driver but make sure there
12486  * is only one outstanding message. Uses ill_dlpi_pending to tell
12487  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12488  * when an ACK or a NAK is received to process the next queued message.
12489  */
12490 void
12491 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12492 {
12493 	mblk_t **mpp;
12494 
12495 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12496 
12497 	/*
12498 	 * To ensure that any DLPI requests for current exclusive operation
12499 	 * are always completely sent before any DLPI messages for other
12500 	 * operations, require writer access before enqueuing.
12501 	 */
12502 	if (!IAM_WRITER_ILL(ill)) {
12503 		ill_refhold(ill);
12504 		/* qwriter_ip() does the ill_refrele() */
12505 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12506 		    NEW_OP, B_TRUE);
12507 		return;
12508 	}
12509 
12510 	mutex_enter(&ill->ill_lock);
12511 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12512 		/* Must queue message. Tail insertion */
12513 		mpp = &ill->ill_dlpi_deferred;
12514 		while (*mpp != NULL)
12515 			mpp = &((*mpp)->b_next);
12516 
12517 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12518 		    "while %s pending\n", ill->ill_name,
12519 		    dl_primstr(ill->ill_dlpi_pending)));
12520 
12521 		*mpp = mp;
12522 		mutex_exit(&ill->ill_lock);
12523 		return;
12524 	}
12525 	mutex_exit(&ill->ill_lock);
12526 	ill_dlpi_dispatch(ill, mp);
12527 }
12528 
12529 void
12530 ill_capability_send(ill_t *ill, mblk_t *mp)
12531 {
12532 	ill->ill_capab_pending_cnt++;
12533 	ill_dlpi_send(ill, mp);
12534 }
12535 
12536 void
12537 ill_capability_done(ill_t *ill)
12538 {
12539 	ASSERT(ill->ill_capab_pending_cnt != 0);
12540 
12541 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12542 
12543 	ill->ill_capab_pending_cnt--;
12544 	if (ill->ill_capab_pending_cnt == 0 &&
12545 	    ill->ill_dlpi_capab_state == IDCS_OK)
12546 		ill_capability_reset_alloc(ill);
12547 }
12548 
12549 /*
12550  * Send all deferred DLPI messages without waiting for their ACKs.
12551  */
12552 void
12553 ill_dlpi_send_deferred(ill_t *ill)
12554 {
12555 	mblk_t *mp, *nextmp;
12556 
12557 	/*
12558 	 * Clear ill_dlpi_pending so that the message is not queued in
12559 	 * ill_dlpi_send().
12560 	 */
12561 	mutex_enter(&ill->ill_lock);
12562 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12563 	mp = ill->ill_dlpi_deferred;
12564 	ill->ill_dlpi_deferred = NULL;
12565 	mutex_exit(&ill->ill_lock);
12566 
12567 	for (; mp != NULL; mp = nextmp) {
12568 		nextmp = mp->b_next;
12569 		mp->b_next = NULL;
12570 		ill_dlpi_send(ill, mp);
12571 	}
12572 }
12573 
12574 /*
12575  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12576  */
12577 boolean_t
12578 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12579 {
12580 	t_uscalar_t pending;
12581 
12582 	mutex_enter(&ill->ill_lock);
12583 	if (ill->ill_dlpi_pending == prim) {
12584 		mutex_exit(&ill->ill_lock);
12585 		return (B_TRUE);
12586 	}
12587 
12588 	/*
12589 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12590 	 * without waiting, so don't print any warnings in that case.
12591 	 */
12592 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12593 		mutex_exit(&ill->ill_lock);
12594 		return (B_FALSE);
12595 	}
12596 	pending = ill->ill_dlpi_pending;
12597 	mutex_exit(&ill->ill_lock);
12598 
12599 	if (pending == DL_PRIM_INVAL) {
12600 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12601 		    "received unsolicited ack for %s on %s\n",
12602 		    dl_primstr(prim), ill->ill_name);
12603 	} else {
12604 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12605 		    "received unexpected ack for %s on %s (expecting %s)\n",
12606 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12607 	}
12608 	return (B_FALSE);
12609 }
12610 
12611 /*
12612  * Complete the current DLPI operation associated with `prim' on `ill' and
12613  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12614  * operations and the ill's current exclusive IPSQ operation has finished
12615  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12616  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12617  * the comments above ipsq_current_finish() for details.
12618  */
12619 void
12620 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12621 {
12622 	mblk_t *mp;
12623 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12624 	ipxop_t *ipx = ipsq->ipsq_xop;
12625 
12626 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12627 	mutex_enter(&ill->ill_lock);
12628 
12629 	ASSERT(prim != DL_PRIM_INVAL);
12630 	ASSERT(ill->ill_dlpi_pending == prim);
12631 
12632 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12633 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12634 
12635 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12636 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12637 		if (ipx->ipx_current_done) {
12638 			mutex_enter(&ipx->ipx_lock);
12639 			ipx->ipx_current_ipif = NULL;
12640 			mutex_exit(&ipx->ipx_lock);
12641 		}
12642 		cv_signal(&ill->ill_cv);
12643 		mutex_exit(&ill->ill_lock);
12644 		return;
12645 	}
12646 
12647 	ill->ill_dlpi_deferred = mp->b_next;
12648 	mp->b_next = NULL;
12649 	mutex_exit(&ill->ill_lock);
12650 
12651 	ill_dlpi_dispatch(ill, mp);
12652 }
12653 
12654 /*
12655  * Queue a (multicast) DLPI control message to be sent to the driver by
12656  * later calling ill_dlpi_send_queued.
12657  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12658  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12659  * for the same group to race.
12660  * We send DLPI control messages in order using ill_lock.
12661  * For IPMP we should be called on the cast_ill.
12662  */
12663 void
12664 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12665 {
12666 	mblk_t **mpp;
12667 
12668 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12669 
12670 	mutex_enter(&ill->ill_lock);
12671 	/* Must queue message. Tail insertion */
12672 	mpp = &ill->ill_dlpi_deferred;
12673 	while (*mpp != NULL)
12674 		mpp = &((*mpp)->b_next);
12675 
12676 	*mpp = mp;
12677 	mutex_exit(&ill->ill_lock);
12678 }
12679 
12680 /*
12681  * Send the messages that were queued. Make sure there is only
12682  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
12683  * when an ACK or a NAK is received to process the next queued message.
12684  * For IPMP we are called on the upper ill, but when send what is queued
12685  * on the cast_ill.
12686  */
12687 void
12688 ill_dlpi_send_queued(ill_t *ill)
12689 {
12690 	mblk_t	*mp;
12691 	union DL_primitives *dlp;
12692 	t_uscalar_t prim;
12693 	ill_t *release_ill = NULL;
12694 
12695 	if (IS_IPMP(ill)) {
12696 		/* On the upper IPMP ill. */
12697 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12698 		if (release_ill == NULL) {
12699 			/* Avoid ever sending anything down to the ipmpstub */
12700 			return;
12701 		}
12702 		ill = release_ill;
12703 	}
12704 	mutex_enter(&ill->ill_lock);
12705 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
12706 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12707 			/* Can't send. Somebody else will send it */
12708 			mutex_exit(&ill->ill_lock);
12709 			goto done;
12710 		}
12711 		ill->ill_dlpi_deferred = mp->b_next;
12712 		mp->b_next = NULL;
12713 		if (!ill->ill_dl_up) {
12714 			/*
12715 			 * Nobody there. All multicast addresses will be
12716 			 * re-joined when we get the DL_BIND_ACK bringing the
12717 			 * interface up.
12718 			 */
12719 			freemsg(mp);
12720 			continue;
12721 		}
12722 		dlp = (union DL_primitives *)mp->b_rptr;
12723 		prim = dlp->dl_primitive;
12724 
12725 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12726 		    (prim == DL_UNBIND_REQ)) {
12727 			ill->ill_dlpi_pending = prim;
12728 		}
12729 		mutex_exit(&ill->ill_lock);
12730 
12731 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
12732 		    char *, dl_primstr(prim), ill_t *, ill);
12733 		putnext(ill->ill_wq, mp);
12734 		mutex_enter(&ill->ill_lock);
12735 	}
12736 	mutex_exit(&ill->ill_lock);
12737 done:
12738 	if (release_ill != NULL)
12739 		ill_refrele(release_ill);
12740 }
12741 
12742 /*
12743  * Queue an IP (IGMP/MLD) message to be sent by IP from
12744  * ill_mcast_send_queued
12745  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12746  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
12747  * group to race.
12748  * We send them in order using ill_lock.
12749  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
12750  */
12751 void
12752 ill_mcast_queue(ill_t *ill, mblk_t *mp)
12753 {
12754 	mblk_t **mpp;
12755 	ill_t *release_ill = NULL;
12756 
12757 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
12758 
12759 	if (IS_IPMP(ill)) {
12760 		/* On the upper IPMP ill. */
12761 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12762 		if (release_ill == NULL) {
12763 			/* Discard instead of queuing for the ipmp interface */
12764 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12765 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
12766 			    mp, ill);
12767 			freemsg(mp);
12768 			return;
12769 		}
12770 		ill = release_ill;
12771 	}
12772 
12773 	mutex_enter(&ill->ill_lock);
12774 	/* Must queue message. Tail insertion */
12775 	mpp = &ill->ill_mcast_deferred;
12776 	while (*mpp != NULL)
12777 		mpp = &((*mpp)->b_next);
12778 
12779 	*mpp = mp;
12780 	mutex_exit(&ill->ill_lock);
12781 	if (release_ill != NULL)
12782 		ill_refrele(release_ill);
12783 }
12784 
12785 /*
12786  * Send the IP packets that were queued by ill_mcast_queue.
12787  * These are IGMP/MLD packets.
12788  *
12789  * For IPMP we are called on the upper ill, but when send what is queued
12790  * on the cast_ill.
12791  *
12792  * Request loopback of the report if we are acting as a multicast
12793  * router, so that the process-level routing demon can hear it.
12794  * This will run multiple times for the same group if there are members
12795  * on the same group for multiple ipif's on the same ill. The
12796  * igmp_input/mld_input code will suppress this due to the loopback thus we
12797  * always loopback membership report.
12798  *
12799  * We also need to make sure that this does not get load balanced
12800  * by IPMP. We do this by passing an ill to ip_output_simple.
12801  */
12802 void
12803 ill_mcast_send_queued(ill_t *ill)
12804 {
12805 	mblk_t	*mp;
12806 	ip_xmit_attr_t ixas;
12807 	ill_t *release_ill = NULL;
12808 
12809 	if (IS_IPMP(ill)) {
12810 		/* On the upper IPMP ill. */
12811 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12812 		if (release_ill == NULL) {
12813 			/*
12814 			 * We should have no messages on the ipmp interface
12815 			 * but no point in trying to send them.
12816 			 */
12817 			return;
12818 		}
12819 		ill = release_ill;
12820 	}
12821 	bzero(&ixas, sizeof (ixas));
12822 	ixas.ixa_zoneid = ALL_ZONES;
12823 	ixas.ixa_cred = kcred;
12824 	ixas.ixa_cpid = NOPID;
12825 	ixas.ixa_tsl = NULL;
12826 	/*
12827 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
12828 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
12829 	 * That is necessary to handle IGMP/MLD snooping switches.
12830 	 */
12831 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
12832 	ixas.ixa_ipst = ill->ill_ipst;
12833 
12834 	mutex_enter(&ill->ill_lock);
12835 	while ((mp = ill->ill_mcast_deferred) != NULL) {
12836 		ill->ill_mcast_deferred = mp->b_next;
12837 		mp->b_next = NULL;
12838 		if (!ill->ill_dl_up) {
12839 			/*
12840 			 * Nobody there. Just drop the ip packets.
12841 			 * IGMP/MLD will resend later, if this is a replumb.
12842 			 */
12843 			freemsg(mp);
12844 			continue;
12845 		}
12846 		mutex_enter(&ill->ill_phyint->phyint_lock);
12847 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
12848 			/*
12849 			 * When the ill is getting deactivated, we only want to
12850 			 * send the DLPI messages, so drop IGMP/MLD packets.
12851 			 * DLPI messages are handled by ill_dlpi_send_queued()
12852 			 */
12853 			mutex_exit(&ill->ill_phyint->phyint_lock);
12854 			freemsg(mp);
12855 			continue;
12856 		}
12857 		mutex_exit(&ill->ill_phyint->phyint_lock);
12858 		mutex_exit(&ill->ill_lock);
12859 
12860 		/* Check whether we are sending IPv4 or IPv6. */
12861 		if (ill->ill_isv6) {
12862 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
12863 
12864 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
12865 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
12866 		} else {
12867 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
12868 
12869 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
12870 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
12871 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
12872 		}
12873 
12874 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
12875 		(void) ip_output_simple(mp, &ixas);
12876 		ixa_cleanup(&ixas);
12877 
12878 		mutex_enter(&ill->ill_lock);
12879 	}
12880 	mutex_exit(&ill->ill_lock);
12881 
12882 done:
12883 	if (release_ill != NULL)
12884 		ill_refrele(release_ill);
12885 }
12886 
12887 /*
12888  * Take down a specific interface, but don't lose any information about it.
12889  * (Always called as writer.)
12890  * This function goes through the down sequence even if the interface is
12891  * already down. There are 2 reasons.
12892  * a. Currently we permit interface routes that depend on down interfaces
12893  *    to be added. This behaviour itself is questionable. However it appears
12894  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
12895  *    time. We go thru the cleanup in order to remove these routes.
12896  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
12897  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
12898  *    down, but we need to cleanup i.e. do ill_dl_down and
12899  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
12900  *
12901  * IP-MT notes:
12902  *
12903  * Model of reference to interfaces.
12904  *
12905  * The following members in ipif_t track references to the ipif.
12906  *	int     ipif_refcnt;    Active reference count
12907  *
12908  * The following members in ill_t track references to the ill.
12909  *	int             ill_refcnt;     active refcnt
12910  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
12911  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
12912  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
12913  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
12914  *
12915  * Reference to an ipif or ill can be obtained in any of the following ways.
12916  *
12917  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
12918  * Pointers to ipif / ill from other data structures viz ire and conn.
12919  * Implicit reference to the ipif / ill by holding a reference to the ire.
12920  *
12921  * The ipif/ill lookup functions return a reference held ipif / ill.
12922  * ipif_refcnt and ill_refcnt track the reference counts respectively.
12923  * This is a purely dynamic reference count associated with threads holding
12924  * references to the ipif / ill. Pointers from other structures do not
12925  * count towards this reference count.
12926  *
12927  * ill_ire_cnt is the number of ire's associated with the
12928  * ill. This is incremented whenever a new ire is created referencing the
12929  * ill. This is done atomically inside ire_add_v[46] where the ire is
12930  * actually added to the ire hash table. The count is decremented in
12931  * ire_inactive where the ire is destroyed.
12932  *
12933  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
12934  * This is incremented atomically in
12935  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
12936  * table. Similarly it is decremented in ncec_inactive() where the ncec
12937  * is destroyed.
12938  *
12939  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
12940  * incremented atomically in nce_add() where the nce is actually added to the
12941  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
12942  * is destroyed.
12943  *
12944  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
12945  * ilm_add() and decremented before the ilm is freed in ilm_delete().
12946  *
12947  * Flow of ioctls involving interface down/up
12948  *
12949  * The following is the sequence of an attempt to set some critical flags on an
12950  * up interface.
12951  * ip_sioctl_flags
12952  * ipif_down
12953  * wait for ipif to be quiescent
12954  * ipif_down_tail
12955  * ip_sioctl_flags_tail
12956  *
12957  * All set ioctls that involve down/up sequence would have a skeleton similar
12958  * to the above. All the *tail functions are called after the refcounts have
12959  * dropped to the appropriate values.
12960  *
12961  * SIOC ioctls during the IPIF_CHANGING interval.
12962  *
12963  * Threads handling SIOC set ioctls serialize on the squeue, but this
12964  * is not done for SIOC get ioctls. Since a set ioctl can cause several
12965  * steps of internal changes to the state, some of which are visible in
12966  * ipif_flags (such as IFF_UP being cleared and later set), and we want
12967  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
12968  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
12969  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
12970  * the current exclusive operation completes. The IPIF_CHANGING check
12971  * and enqueue is atomic using the ill_lock and ipsq_lock. The
12972  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
12973  * change while the ill_lock is held. Before dropping the ill_lock we acquire
12974  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
12975  * until we release the ipsq_lock, even though the ill/ipif state flags
12976  * can change after we drop the ill_lock.
12977  */
12978 int
12979 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
12980 {
12981 	ill_t		*ill = ipif->ipif_ill;
12982 	conn_t		*connp;
12983 	boolean_t	success;
12984 	boolean_t	ipif_was_up = B_FALSE;
12985 	ip_stack_t	*ipst = ill->ill_ipst;
12986 
12987 	ASSERT(IAM_WRITER_IPIF(ipif));
12988 
12989 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12990 
12991 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
12992 	    ill_t *, ill, ipif_t *, ipif);
12993 
12994 	if (ipif->ipif_flags & IPIF_UP) {
12995 		mutex_enter(&ill->ill_lock);
12996 		ipif->ipif_flags &= ~IPIF_UP;
12997 		ASSERT(ill->ill_ipif_up_count > 0);
12998 		--ill->ill_ipif_up_count;
12999 		mutex_exit(&ill->ill_lock);
13000 		ipif_was_up = B_TRUE;
13001 		/* Update status in SCTP's list */
13002 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13003 		ill_nic_event_dispatch(ipif->ipif_ill,
13004 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13005 	}
13006 
13007 	/*
13008 	 * Blow away memberships we established in ipif_multicast_up().
13009 	 */
13010 	ipif_multicast_down(ipif);
13011 
13012 	/*
13013 	 * Remove from the mapping for __sin6_src_id. We insert only
13014 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13015 	 * stored as mapped addresses, we need to check for mapped
13016 	 * INADDR_ANY also.
13017 	 */
13018 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13019 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13020 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13021 		int err;
13022 
13023 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13024 		    ipif->ipif_zoneid, ipst);
13025 		if (err != 0) {
13026 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13027 		}
13028 	}
13029 
13030 	if (ipif_was_up) {
13031 		/* only delete if we'd added ire's before */
13032 		if (ipif->ipif_isv6)
13033 			ipif_delete_ires_v6(ipif);
13034 		else
13035 			ipif_delete_ires_v4(ipif);
13036 	}
13037 
13038 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13039 		/*
13040 		 * Since the interface is now down, it may have just become
13041 		 * inactive.  Note that this needs to be done even for a
13042 		 * lll_logical_down(), or ARP entries will not get correctly
13043 		 * restored when the interface comes back up.
13044 		 */
13045 		if (IS_UNDER_IPMP(ill))
13046 			ipmp_ill_refresh_active(ill);
13047 	}
13048 
13049 	/*
13050 	 * neighbor-discovery or arp entries for this interface. The ipif
13051 	 * has to be quiesced, so we walk all the nce's and delete those
13052 	 * that point at the ipif->ipif_ill. At the same time, we also
13053 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13054 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13055 	 * that for ipif_down_tail()
13056 	 */
13057 	ipif_nce_down(ipif);
13058 
13059 	/*
13060 	 * If this is the last ipif on the ill, we also need to remove
13061 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13062 	 * never succeed.
13063 	 */
13064 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13065 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13066 
13067 	/*
13068 	 * Walk all CONNs that can have a reference on an ire for this
13069 	 * ipif (we actually walk all that now have stale references).
13070 	 */
13071 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13072 
13073 	/*
13074 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13075 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13076 	 * and ill_delete -> ipif_free -> ipif_down
13077 	 */
13078 	if (mp == NULL) {
13079 		ASSERT(q == NULL);
13080 		return (0);
13081 	}
13082 
13083 	if (CONN_Q(q)) {
13084 		connp = Q_TO_CONN(q);
13085 		mutex_enter(&connp->conn_lock);
13086 	} else {
13087 		connp = NULL;
13088 	}
13089 	mutex_enter(&ill->ill_lock);
13090 	/*
13091 	 * Are there any ire's pointing to this ipif that are still active ?
13092 	 * If this is the last ipif going down, are there any ire's pointing
13093 	 * to this ill that are still active ?
13094 	 */
13095 	if (ipif_is_quiescent(ipif)) {
13096 		mutex_exit(&ill->ill_lock);
13097 		if (connp != NULL)
13098 			mutex_exit(&connp->conn_lock);
13099 		return (0);
13100 	}
13101 
13102 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13103 	    ill->ill_name, (void *)ill));
13104 	/*
13105 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13106 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13107 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13108 	 */
13109 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13110 	if (!success) {
13111 		/* The conn is closing. So just return */
13112 		ASSERT(connp != NULL);
13113 		mutex_exit(&ill->ill_lock);
13114 		mutex_exit(&connp->conn_lock);
13115 		return (EINTR);
13116 	}
13117 
13118 	mutex_exit(&ill->ill_lock);
13119 	if (connp != NULL)
13120 		mutex_exit(&connp->conn_lock);
13121 	return (EINPROGRESS);
13122 }
13123 
13124 int
13125 ipif_down_tail(ipif_t *ipif)
13126 {
13127 	ill_t	*ill = ipif->ipif_ill;
13128 	int	err = 0;
13129 
13130 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13131 	    ill_t *, ill, ipif_t *, ipif);
13132 
13133 	/*
13134 	 * Skip any loopback interface (null wq).
13135 	 * If this is the last logical interface on the ill
13136 	 * have ill_dl_down tell the driver we are gone (unbind)
13137 	 * Note that lun 0 can ipif_down even though
13138 	 * there are other logical units that are up.
13139 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13140 	 */
13141 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13142 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13143 	    ill->ill_dl_up) {
13144 		ill_dl_down(ill);
13145 	}
13146 	if (!ipif->ipif_isv6)
13147 		err = ipif_arp_down(ipif);
13148 
13149 	ill->ill_logical_down = 0;
13150 
13151 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13152 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13153 	return (err);
13154 }
13155 
13156 /*
13157  * Bring interface logically down without bringing the physical interface
13158  * down e.g. when the netmask is changed. This avoids long lasting link
13159  * negotiations between an ethernet interface and a certain switches.
13160  */
13161 static int
13162 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13163 {
13164 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13165 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13166 
13167 	/*
13168 	 * The ill_logical_down flag is a transient flag. It is set here
13169 	 * and is cleared once the down has completed in ipif_down_tail.
13170 	 * This flag does not indicate whether the ill stream is in the
13171 	 * DL_BOUND state with the driver. Instead this flag is used by
13172 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13173 	 * the driver. The state of the ill stream i.e. whether it is
13174 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13175 	 */
13176 	ipif->ipif_ill->ill_logical_down = 1;
13177 	return (ipif_down(ipif, q, mp));
13178 }
13179 
13180 /*
13181  * Initiate deallocate of an IPIF. Always called as writer. Called by
13182  * ill_delete or ip_sioctl_removeif.
13183  */
13184 static void
13185 ipif_free(ipif_t *ipif)
13186 {
13187 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13188 
13189 	ASSERT(IAM_WRITER_IPIF(ipif));
13190 
13191 	if (ipif->ipif_recovery_id != 0)
13192 		(void) untimeout(ipif->ipif_recovery_id);
13193 	ipif->ipif_recovery_id = 0;
13194 
13195 	/*
13196 	 * Take down the interface. We can be called either from ill_delete
13197 	 * or from ip_sioctl_removeif.
13198 	 */
13199 	(void) ipif_down(ipif, NULL, NULL);
13200 
13201 	/*
13202 	 * Now that the interface is down, there's no chance it can still
13203 	 * become a duplicate.  Cancel any timer that may have been set while
13204 	 * tearing down.
13205 	 */
13206 	if (ipif->ipif_recovery_id != 0)
13207 		(void) untimeout(ipif->ipif_recovery_id);
13208 	ipif->ipif_recovery_id = 0;
13209 
13210 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13211 	/* Remove pointers to this ill in the multicast routing tables */
13212 	reset_mrt_vif_ipif(ipif);
13213 	/* If necessary, clear the cached source ipif rotor. */
13214 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13215 		ipif->ipif_ill->ill_src_ipif = NULL;
13216 	rw_exit(&ipst->ips_ill_g_lock);
13217 }
13218 
13219 static void
13220 ipif_free_tail(ipif_t *ipif)
13221 {
13222 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13223 
13224 	/*
13225 	 * Need to hold both ill_g_lock and ill_lock while
13226 	 * inserting or removing an ipif from the linked list
13227 	 * of ipifs hanging off the ill.
13228 	 */
13229 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13230 
13231 #ifdef DEBUG
13232 	ipif_trace_cleanup(ipif);
13233 #endif
13234 
13235 	/* Ask SCTP to take it out of it list */
13236 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13237 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13238 
13239 	/* Get it out of the ILL interface list. */
13240 	ipif_remove(ipif);
13241 	rw_exit(&ipst->ips_ill_g_lock);
13242 
13243 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13244 	ASSERT(ipif->ipif_recovery_id == 0);
13245 	ASSERT(ipif->ipif_ire_local == NULL);
13246 	ASSERT(ipif->ipif_ire_if == NULL);
13247 
13248 	/* Free the memory. */
13249 	mi_free(ipif);
13250 }
13251 
13252 /*
13253  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13254  * is zero.
13255  */
13256 void
13257 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13258 {
13259 	char	lbuf[LIFNAMSIZ];
13260 	char	*name;
13261 	size_t	name_len;
13262 
13263 	buf[0] = '\0';
13264 	name = ipif->ipif_ill->ill_name;
13265 	name_len = ipif->ipif_ill->ill_name_length;
13266 	if (ipif->ipif_id != 0) {
13267 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13268 		    ipif->ipif_id);
13269 		name = lbuf;
13270 		name_len = mi_strlen(name) + 1;
13271 	}
13272 	len -= 1;
13273 	buf[len] = '\0';
13274 	len = MIN(len, name_len);
13275 	bcopy(name, buf, len);
13276 }
13277 
13278 /*
13279  * Sets `buf' to an ill name.
13280  */
13281 void
13282 ill_get_name(const ill_t *ill, char *buf, int len)
13283 {
13284 	char	*name;
13285 	size_t	name_len;
13286 
13287 	name = ill->ill_name;
13288 	name_len = ill->ill_name_length;
13289 	len -= 1;
13290 	buf[len] = '\0';
13291 	len = MIN(len, name_len);
13292 	bcopy(name, buf, len);
13293 }
13294 
13295 /*
13296  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13297  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13298  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13299  * (May be called as writer.)
13300  */
13301 static ipif_t *
13302 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13303     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13304 {
13305 	char	*cp;
13306 	char	*endp;
13307 	long	id;
13308 	ill_t	*ill;
13309 	ipif_t	*ipif;
13310 	uint_t	ire_type;
13311 	boolean_t did_alloc = B_FALSE;
13312 
13313 	/*
13314 	 * If the caller wants to us to create the ipif, make sure we have a
13315 	 * valid zoneid
13316 	 */
13317 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13318 
13319 	if (namelen == 0) {
13320 		return (NULL);
13321 	}
13322 
13323 	*exists = B_FALSE;
13324 	/* Look for a colon in the name. */
13325 	endp = &name[namelen];
13326 	for (cp = endp; --cp > name; ) {
13327 		if (*cp == IPIF_SEPARATOR_CHAR)
13328 			break;
13329 	}
13330 
13331 	if (*cp == IPIF_SEPARATOR_CHAR) {
13332 		/*
13333 		 * Reject any non-decimal aliases for logical
13334 		 * interfaces. Aliases with leading zeroes
13335 		 * are also rejected as they introduce ambiguity
13336 		 * in the naming of the interfaces.
13337 		 * In order to confirm with existing semantics,
13338 		 * and to not break any programs/script relying
13339 		 * on that behaviour, if<0>:0 is considered to be
13340 		 * a valid interface.
13341 		 *
13342 		 * If alias has two or more digits and the first
13343 		 * is zero, fail.
13344 		 */
13345 		if (&cp[2] < endp && cp[1] == '0') {
13346 			return (NULL);
13347 		}
13348 	}
13349 
13350 	if (cp <= name) {
13351 		cp = endp;
13352 	} else {
13353 		*cp = '\0';
13354 	}
13355 
13356 	/*
13357 	 * Look up the ILL, based on the portion of the name
13358 	 * before the slash. ill_lookup_on_name returns a held ill.
13359 	 * Temporary to check whether ill exists already. If so
13360 	 * ill_lookup_on_name will clear it.
13361 	 */
13362 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13363 	    &did_alloc, ipst);
13364 	if (cp != endp)
13365 		*cp = IPIF_SEPARATOR_CHAR;
13366 	if (ill == NULL)
13367 		return (NULL);
13368 
13369 	/* Establish the unit number in the name. */
13370 	id = 0;
13371 	if (cp < endp && *endp == '\0') {
13372 		/* If there was a colon, the unit number follows. */
13373 		cp++;
13374 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13375 			ill_refrele(ill);
13376 			return (NULL);
13377 		}
13378 	}
13379 
13380 	mutex_enter(&ill->ill_lock);
13381 	/* Now see if there is an IPIF with this unit number. */
13382 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13383 		if (ipif->ipif_id == id) {
13384 			if (zoneid != ALL_ZONES &&
13385 			    zoneid != ipif->ipif_zoneid &&
13386 			    ipif->ipif_zoneid != ALL_ZONES) {
13387 				mutex_exit(&ill->ill_lock);
13388 				ill_refrele(ill);
13389 				return (NULL);
13390 			}
13391 			if (IPIF_CAN_LOOKUP(ipif)) {
13392 				ipif_refhold_locked(ipif);
13393 				mutex_exit(&ill->ill_lock);
13394 				if (!did_alloc)
13395 					*exists = B_TRUE;
13396 				/*
13397 				 * Drop locks before calling ill_refrele
13398 				 * since it can potentially call into
13399 				 * ipif_ill_refrele_tail which can end up
13400 				 * in trying to acquire any lock.
13401 				 */
13402 				ill_refrele(ill);
13403 				return (ipif);
13404 			}
13405 		}
13406 	}
13407 
13408 	if (!do_alloc) {
13409 		mutex_exit(&ill->ill_lock);
13410 		ill_refrele(ill);
13411 		return (NULL);
13412 	}
13413 
13414 	/*
13415 	 * If none found, atomically allocate and return a new one.
13416 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13417 	 * to support "receive only" use of lo0:1 etc. as is still done
13418 	 * below as an initial guess.
13419 	 * However, this is now likely to be overriden later in ipif_up_done()
13420 	 * when we know for sure what address has been configured on the
13421 	 * interface, since we might have more than one loopback interface
13422 	 * with a loopback address, e.g. in the case of zones, and all the
13423 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13424 	 */
13425 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13426 		ire_type = IRE_LOOPBACK;
13427 	else
13428 		ire_type = IRE_LOCAL;
13429 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13430 	if (ipif != NULL)
13431 		ipif_refhold_locked(ipif);
13432 	mutex_exit(&ill->ill_lock);
13433 	ill_refrele(ill);
13434 	return (ipif);
13435 }
13436 
13437 /*
13438  * This routine is called whenever a new address comes up on an ipif.  If
13439  * we are configured to respond to address mask requests, then we are supposed
13440  * to broadcast an address mask reply at this time.  This routine is also
13441  * called if we are already up, but a netmask change is made.  This is legal
13442  * but might not make the system manager very popular.	(May be called
13443  * as writer.)
13444  */
13445 void
13446 ipif_mask_reply(ipif_t *ipif)
13447 {
13448 	icmph_t	*icmph;
13449 	ipha_t	*ipha;
13450 	mblk_t	*mp;
13451 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13452 	ip_xmit_attr_t ixas;
13453 
13454 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13455 
13456 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13457 		return;
13458 
13459 	/* ICMP mask reply is IPv4 only */
13460 	ASSERT(!ipif->ipif_isv6);
13461 	/* ICMP mask reply is not for a loopback interface */
13462 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13463 
13464 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13465 		return;
13466 
13467 	mp = allocb(REPLY_LEN, BPRI_HI);
13468 	if (mp == NULL)
13469 		return;
13470 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13471 
13472 	ipha = (ipha_t *)mp->b_rptr;
13473 	bzero(ipha, REPLY_LEN);
13474 	*ipha = icmp_ipha;
13475 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13476 	ipha->ipha_src = ipif->ipif_lcl_addr;
13477 	ipha->ipha_dst = ipif->ipif_brd_addr;
13478 	ipha->ipha_length = htons(REPLY_LEN);
13479 	ipha->ipha_ident = 0;
13480 
13481 	icmph = (icmph_t *)&ipha[1];
13482 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13483 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13484 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13485 
13486 	bzero(&ixas, sizeof (ixas));
13487 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13488 	ixas.ixa_flags |= IXAF_SET_SOURCE;
13489 	ixas.ixa_zoneid = ALL_ZONES;
13490 	ixas.ixa_ifindex = 0;
13491 	ixas.ixa_ipst = ipst;
13492 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13493 	(void) ip_output_simple(mp, &ixas);
13494 	ixa_cleanup(&ixas);
13495 #undef	REPLY_LEN
13496 }
13497 
13498 /*
13499  * Join the ipif specific multicast groups.
13500  * Must be called after a mapping has been set up in the resolver.  (Always
13501  * called as writer.)
13502  */
13503 void
13504 ipif_multicast_up(ipif_t *ipif)
13505 {
13506 	int err;
13507 	ill_t *ill;
13508 	ilm_t *ilm;
13509 
13510 	ASSERT(IAM_WRITER_IPIF(ipif));
13511 
13512 	ill = ipif->ipif_ill;
13513 
13514 	ip1dbg(("ipif_multicast_up\n"));
13515 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
13516 	    ipif->ipif_allhosts_ilm != NULL)
13517 		return;
13518 
13519 	if (ipif->ipif_isv6) {
13520 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
13521 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
13522 
13523 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
13524 
13525 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
13526 			return;
13527 
13528 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13529 
13530 		/*
13531 		 * Join the all hosts multicast address.  We skip this for
13532 		 * underlying IPMP interfaces since they should be invisible.
13533 		 */
13534 		if (!IS_UNDER_IPMP(ill)) {
13535 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
13536 			    &err);
13537 			if (ilm == NULL) {
13538 				ASSERT(err != 0);
13539 				ip0dbg(("ipif_multicast_up: "
13540 				    "all_hosts_mcast failed %d\n", err));
13541 				return;
13542 			}
13543 			ipif->ipif_allhosts_ilm = ilm;
13544 		}
13545 
13546 		/*
13547 		 * Enable multicast for the solicited node multicast address.
13548 		 * If IPMP we need to put the membership on the upper ill.
13549 		 */
13550 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
13551 			ill_t *mcast_ill = NULL;
13552 			boolean_t need_refrele;
13553 
13554 			if (IS_UNDER_IPMP(ill) &&
13555 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
13556 				need_refrele = B_TRUE;
13557 			} else {
13558 				mcast_ill = ill;
13559 				need_refrele = B_FALSE;
13560 			}
13561 
13562 			ilm = ip_addmulti(&v6solmc, mcast_ill,
13563 			    ipif->ipif_zoneid, &err);
13564 			if (need_refrele)
13565 				ill_refrele(mcast_ill);
13566 
13567 			if (ilm == NULL) {
13568 				ASSERT(err != 0);
13569 				ip0dbg(("ipif_multicast_up: solicited MC"
13570 				    " failed %d\n", err));
13571 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
13572 					ipif->ipif_allhosts_ilm = NULL;
13573 					(void) ip_delmulti(ilm);
13574 				}
13575 				return;
13576 			}
13577 			ipif->ipif_solmulti_ilm = ilm;
13578 		}
13579 	} else {
13580 		in6_addr_t v6group;
13581 
13582 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
13583 			return;
13584 
13585 		/* Join the all hosts multicast address */
13586 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13587 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
13588 
13589 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
13590 		if (ilm == NULL) {
13591 			ASSERT(err != 0);
13592 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
13593 			return;
13594 		}
13595 		ipif->ipif_allhosts_ilm = ilm;
13596 	}
13597 }
13598 
13599 /*
13600  * Blow away any multicast groups that we joined in ipif_multicast_up().
13601  * (ilms from explicit memberships are handled in conn_update_ill.)
13602  */
13603 void
13604 ipif_multicast_down(ipif_t *ipif)
13605 {
13606 	ASSERT(IAM_WRITER_IPIF(ipif));
13607 
13608 	ip1dbg(("ipif_multicast_down\n"));
13609 
13610 	if (ipif->ipif_allhosts_ilm != NULL) {
13611 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
13612 		ipif->ipif_allhosts_ilm = NULL;
13613 	}
13614 	if (ipif->ipif_solmulti_ilm != NULL) {
13615 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
13616 		ipif->ipif_solmulti_ilm = NULL;
13617 	}
13618 }
13619 
13620 /*
13621  * Used when an interface comes up to recreate any extra routes on this
13622  * interface.
13623  */
13624 int
13625 ill_recover_saved_ire(ill_t *ill)
13626 {
13627 	mblk_t		*mp;
13628 	ip_stack_t	*ipst = ill->ill_ipst;
13629 
13630 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
13631 
13632 	mutex_enter(&ill->ill_saved_ire_lock);
13633 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
13634 		ire_t		*ire, *nire;
13635 		ifrt_t		*ifrt;
13636 
13637 		ifrt = (ifrt_t *)mp->b_rptr;
13638 		/*
13639 		 * Create a copy of the IRE with the saved address and netmask.
13640 		 */
13641 		if (ill->ill_isv6) {
13642 			ire = ire_create_v6(
13643 			    &ifrt->ifrt_v6addr,
13644 			    &ifrt->ifrt_v6mask,
13645 			    &ifrt->ifrt_v6gateway_addr,
13646 			    ifrt->ifrt_type,
13647 			    ill,
13648 			    ifrt->ifrt_zoneid,
13649 			    ifrt->ifrt_flags,
13650 			    NULL,
13651 			    ipst);
13652 		} else {
13653 			ire = ire_create(
13654 			    (uint8_t *)&ifrt->ifrt_addr,
13655 			    (uint8_t *)&ifrt->ifrt_mask,
13656 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
13657 			    ifrt->ifrt_type,
13658 			    ill,
13659 			    ifrt->ifrt_zoneid,
13660 			    ifrt->ifrt_flags,
13661 			    NULL,
13662 			    ipst);
13663 		}
13664 		if (ire == NULL) {
13665 			mutex_exit(&ill->ill_saved_ire_lock);
13666 			return (ENOMEM);
13667 		}
13668 
13669 		if (ifrt->ifrt_flags & RTF_SETSRC) {
13670 			if (ill->ill_isv6) {
13671 				ire->ire_setsrc_addr_v6 =
13672 				    ifrt->ifrt_v6setsrc_addr;
13673 			} else {
13674 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
13675 			}
13676 		}
13677 
13678 		/*
13679 		 * Some software (for example, GateD and Sun Cluster) attempts
13680 		 * to create (what amount to) IRE_PREFIX routes with the
13681 		 * loopback address as the gateway.  This is primarily done to
13682 		 * set up prefixes with the RTF_REJECT flag set (for example,
13683 		 * when generating aggregate routes.)
13684 		 *
13685 		 * If the IRE type (as defined by ill->ill_net_type) is
13686 		 * IRE_LOOPBACK, then we map the request into a
13687 		 * IRE_IF_NORESOLVER.
13688 		 */
13689 		if (ill->ill_net_type == IRE_LOOPBACK)
13690 			ire->ire_type = IRE_IF_NORESOLVER;
13691 
13692 		/*
13693 		 * ire held by ire_add, will be refreled' towards the
13694 		 * the end of ipif_up_done
13695 		 */
13696 		nire = ire_add(ire);
13697 		/*
13698 		 * Check if it was a duplicate entry. This handles
13699 		 * the case of two racing route adds for the same route
13700 		 */
13701 		if (nire == NULL) {
13702 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
13703 		} else if (nire != ire) {
13704 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
13705 			    (void *)nire));
13706 			ire_delete(nire);
13707 		} else {
13708 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
13709 			    (void *)nire));
13710 		}
13711 		if (nire != NULL)
13712 			ire_refrele(nire);
13713 	}
13714 	mutex_exit(&ill->ill_saved_ire_lock);
13715 	return (0);
13716 }
13717 
13718 /*
13719  * Used to set the netmask and broadcast address to default values when the
13720  * interface is brought up.  (Always called as writer.)
13721  */
13722 static void
13723 ipif_set_default(ipif_t *ipif)
13724 {
13725 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
13726 
13727 	if (!ipif->ipif_isv6) {
13728 		/*
13729 		 * Interface holds an IPv4 address. Default
13730 		 * mask is the natural netmask.
13731 		 */
13732 		if (!ipif->ipif_net_mask) {
13733 			ipaddr_t	v4mask;
13734 
13735 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
13736 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
13737 		}
13738 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13739 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13740 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13741 		} else {
13742 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13743 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13744 		}
13745 		/*
13746 		 * NOTE: SunOS 4.X does this even if the broadcast address
13747 		 * has been already set thus we do the same here.
13748 		 */
13749 		if (ipif->ipif_flags & IPIF_BROADCAST) {
13750 			ipaddr_t	v4addr;
13751 
13752 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
13753 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
13754 		}
13755 	} else {
13756 		/*
13757 		 * Interface holds an IPv6-only address.  Default
13758 		 * mask is all-ones.
13759 		 */
13760 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
13761 			ipif->ipif_v6net_mask = ipv6_all_ones;
13762 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13763 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13764 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13765 		} else {
13766 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13767 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13768 		}
13769 	}
13770 }
13771 
13772 /*
13773  * Return 0 if this address can be used as local address without causing
13774  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
13775  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
13776  * Note that the same IPv6 link-local address is allowed as long as the ills
13777  * are not on the same link.
13778  */
13779 int
13780 ip_addr_availability_check(ipif_t *new_ipif)
13781 {
13782 	in6_addr_t our_v6addr;
13783 	ill_t *ill;
13784 	ipif_t *ipif;
13785 	ill_walk_context_t ctx;
13786 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
13787 
13788 	ASSERT(IAM_WRITER_IPIF(new_ipif));
13789 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
13790 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
13791 
13792 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
13793 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
13794 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
13795 		return (0);
13796 
13797 	our_v6addr = new_ipif->ipif_v6lcl_addr;
13798 
13799 	if (new_ipif->ipif_isv6)
13800 		ill = ILL_START_WALK_V6(&ctx, ipst);
13801 	else
13802 		ill = ILL_START_WALK_V4(&ctx, ipst);
13803 
13804 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13805 		for (ipif = ill->ill_ipif; ipif != NULL;
13806 		    ipif = ipif->ipif_next) {
13807 			if ((ipif == new_ipif) ||
13808 			    !(ipif->ipif_flags & IPIF_UP) ||
13809 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13810 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
13811 			    &our_v6addr))
13812 				continue;
13813 
13814 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
13815 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
13816 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
13817 				ipif->ipif_flags |= IPIF_UNNUMBERED;
13818 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
13819 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
13820 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
13821 				continue;
13822 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
13823 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
13824 				continue;
13825 			else if (new_ipif->ipif_ill == ill)
13826 				return (EADDRINUSE);
13827 			else
13828 				return (EADDRNOTAVAIL);
13829 		}
13830 	}
13831 
13832 	return (0);
13833 }
13834 
13835 /*
13836  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
13837  * IREs for the ipif.
13838  * When the routine returns EINPROGRESS then mp has been consumed and
13839  * the ioctl will be acked from ip_rput_dlpi.
13840  */
13841 int
13842 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
13843 {
13844 	ill_t		*ill = ipif->ipif_ill;
13845 	boolean_t 	isv6 = ipif->ipif_isv6;
13846 	int		err = 0;
13847 	boolean_t	success;
13848 	uint_t		ipif_orig_id;
13849 	ip_stack_t	*ipst = ill->ill_ipst;
13850 
13851 	ASSERT(IAM_WRITER_IPIF(ipif));
13852 
13853 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13854 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
13855 	    ill_t *, ill, ipif_t *, ipif);
13856 
13857 	/* Shouldn't get here if it is already up. */
13858 	if (ipif->ipif_flags & IPIF_UP)
13859 		return (EALREADY);
13860 
13861 	/*
13862 	 * If this is a request to bring up a data address on an interface
13863 	 * under IPMP, then move the address to its IPMP meta-interface and
13864 	 * try to bring it up.  One complication is that the zeroth ipif for
13865 	 * an ill is special, in that every ill always has one, and that code
13866 	 * throughout IP deferences ill->ill_ipif without holding any locks.
13867 	 */
13868 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
13869 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
13870 		ipif_t	*stubipif = NULL, *moveipif = NULL;
13871 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
13872 
13873 		/*
13874 		 * The ipif being brought up should be quiesced.  If it's not,
13875 		 * something has gone amiss and we need to bail out.  (If it's
13876 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
13877 		 */
13878 		mutex_enter(&ill->ill_lock);
13879 		if (!ipif_is_quiescent(ipif)) {
13880 			mutex_exit(&ill->ill_lock);
13881 			return (EINVAL);
13882 		}
13883 		mutex_exit(&ill->ill_lock);
13884 
13885 		/*
13886 		 * If we're going to need to allocate ipifs, do it prior
13887 		 * to starting the move (and grabbing locks).
13888 		 */
13889 		if (ipif->ipif_id == 0) {
13890 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13891 			    B_FALSE, &err)) == NULL) {
13892 				return (err);
13893 			}
13894 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13895 			    B_FALSE, &err)) == NULL) {
13896 				mi_free(moveipif);
13897 				return (err);
13898 			}
13899 		}
13900 
13901 		/*
13902 		 * Grab or transfer the ipif to move.  During the move, keep
13903 		 * ill_g_lock held to prevent any ill walker threads from
13904 		 * seeing things in an inconsistent state.
13905 		 */
13906 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13907 		if (ipif->ipif_id != 0) {
13908 			ipif_remove(ipif);
13909 		} else {
13910 			ipif_transfer(ipif, moveipif, stubipif);
13911 			ipif = moveipif;
13912 		}
13913 
13914 		/*
13915 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
13916 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
13917 		 * replace that one.  Otherwise, pick the next available slot.
13918 		 */
13919 		ipif->ipif_ill = ipmp_ill;
13920 		ipif_orig_id = ipif->ipif_id;
13921 
13922 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
13923 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
13924 			ipif = ipmp_ill->ill_ipif;
13925 		} else {
13926 			ipif->ipif_id = -1;
13927 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
13928 				/*
13929 				 * No more available ipif_id's -- put it back
13930 				 * on the original ill and fail the operation.
13931 				 * Since we're writer on the ill, we can be
13932 				 * sure our old slot is still available.
13933 				 */
13934 				ipif->ipif_id = ipif_orig_id;
13935 				ipif->ipif_ill = ill;
13936 				if (ipif_orig_id == 0) {
13937 					ipif_transfer(ipif, ill->ill_ipif,
13938 					    NULL);
13939 				} else {
13940 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
13941 				}
13942 				rw_exit(&ipst->ips_ill_g_lock);
13943 				return (err);
13944 			}
13945 		}
13946 		rw_exit(&ipst->ips_ill_g_lock);
13947 
13948 		/*
13949 		 * Tell SCTP that the ipif has moved.  Note that even if we
13950 		 * had to allocate a new ipif, the original sequence id was
13951 		 * preserved and therefore SCTP won't know.
13952 		 */
13953 		sctp_move_ipif(ipif, ill, ipmp_ill);
13954 
13955 		/*
13956 		 * If the ipif being brought up was on slot zero, then we
13957 		 * first need to bring up the placeholder we stuck there.  In
13958 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
13959 		 * call to ipif_up() itself, if we successfully bring up the
13960 		 * placeholder, we'll check ill_move_ipif and bring it up too.
13961 		 */
13962 		if (ipif_orig_id == 0) {
13963 			ASSERT(ill->ill_move_ipif == NULL);
13964 			ill->ill_move_ipif = ipif;
13965 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
13966 				ASSERT(ill->ill_move_ipif == NULL);
13967 			if (err != EINPROGRESS)
13968 				ill->ill_move_ipif = NULL;
13969 			return (err);
13970 		}
13971 
13972 		/*
13973 		 * Bring it up on the IPMP ill.
13974 		 */
13975 		return (ipif_up(ipif, q, mp));
13976 	}
13977 
13978 	/* Skip arp/ndp for any loopback interface. */
13979 	if (ill->ill_wq != NULL) {
13980 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
13981 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
13982 
13983 		if (!ill->ill_dl_up) {
13984 			/*
13985 			 * ill_dl_up is not yet set. i.e. we are yet to
13986 			 * DL_BIND with the driver and this is the first
13987 			 * logical interface on the ill to become "up".
13988 			 * Tell the driver to get going (via DL_BIND_REQ).
13989 			 * Note that changing "significant" IFF_ flags
13990 			 * address/netmask etc cause a down/up dance, but
13991 			 * does not cause an unbind (DL_UNBIND) with the driver
13992 			 */
13993 			return (ill_dl_up(ill, ipif, mp, q));
13994 		}
13995 
13996 		/*
13997 		 * ipif_resolver_up may end up needeing to bind/attach
13998 		 * the ARP stream, which in turn necessitates a
13999 		 * DLPI message exchange with the driver. ioctls are
14000 		 * serialized and so we cannot send more than one
14001 		 * interface up message at a time. If ipif_resolver_up
14002 		 * does need to wait for the DLPI handshake for the ARP stream,
14003 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14004 		 */
14005 
14006 		ASSERT(connp != NULL || !CONN_Q(q));
14007 		if (connp != NULL)
14008 			mutex_enter(&connp->conn_lock);
14009 		mutex_enter(&ill->ill_lock);
14010 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14011 		mutex_exit(&ill->ill_lock);
14012 		if (connp != NULL)
14013 			mutex_exit(&connp->conn_lock);
14014 		if (!success)
14015 			return (EINTR);
14016 
14017 		/*
14018 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14019 		 * complete when ipif_ndp_up returns.
14020 		 */
14021 		err = ipif_resolver_up(ipif, Res_act_initial);
14022 		if (err == EINPROGRESS) {
14023 			/* We will complete it in arp_bringup_done() */
14024 			return (err);
14025 		}
14026 
14027 		if (isv6 && err == 0)
14028 			err = ipif_ndp_up(ipif, B_TRUE);
14029 
14030 		ASSERT(err != EINPROGRESS);
14031 		mp = ipsq_pending_mp_get(ipsq, &connp);
14032 		ASSERT(mp != NULL);
14033 		if (err != 0)
14034 			return (err);
14035 	} else {
14036 		/*
14037 		 * Interfaces without underlying hardware don't do duplicate
14038 		 * address detection.
14039 		 */
14040 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14041 		ipif->ipif_addr_ready = 1;
14042 		err = ill_add_ires(ill);
14043 		/* allocation failure? */
14044 		if (err != 0)
14045 			return (err);
14046 	}
14047 
14048 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14049 	if (err == 0 && ill->ill_move_ipif != NULL) {
14050 		ipif = ill->ill_move_ipif;
14051 		ill->ill_move_ipif = NULL;
14052 		return (ipif_up(ipif, q, mp));
14053 	}
14054 	return (err);
14055 }
14056 
14057 /*
14058  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14059  * The identical set of IREs need to be removed in ill_delete_ires().
14060  */
14061 int
14062 ill_add_ires(ill_t *ill)
14063 {
14064 	ire_t	*ire;
14065 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14066 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14067 
14068 	if (ill->ill_ire_multicast != NULL)
14069 		return (0);
14070 
14071 	/*
14072 	 * provide some dummy ire_addr for creating the ire.
14073 	 */
14074 	if (ill->ill_isv6) {
14075 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14076 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14077 	} else {
14078 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14079 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14080 	}
14081 	if (ire == NULL)
14082 		return (ENOMEM);
14083 
14084 	ill->ill_ire_multicast = ire;
14085 	return (0);
14086 }
14087 
14088 void
14089 ill_delete_ires(ill_t *ill)
14090 {
14091 	if (ill->ill_ire_multicast != NULL) {
14092 		/*
14093 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14094 		 * which was taken without any th_tracing enabled.
14095 		 * We also mark it as condemned (note that it was never added)
14096 		 * so that caching conn's can move off of it.
14097 		 */
14098 		ire_make_condemned(ill->ill_ire_multicast);
14099 		ire_refrele_notr(ill->ill_ire_multicast);
14100 		ill->ill_ire_multicast = NULL;
14101 	}
14102 }
14103 
14104 /*
14105  * Perform a bind for the physical device.
14106  * When the routine returns EINPROGRESS then mp has been consumed and
14107  * the ioctl will be acked from ip_rput_dlpi.
14108  * Allocate an unbind message and save it until ipif_down.
14109  */
14110 static int
14111 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14112 {
14113 	mblk_t	*bind_mp = NULL;
14114 	mblk_t	*unbind_mp = NULL;
14115 	conn_t	*connp;
14116 	boolean_t success;
14117 	int	err;
14118 
14119 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14120 
14121 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14122 	ASSERT(IAM_WRITER_ILL(ill));
14123 	ASSERT(mp != NULL);
14124 
14125 	/*
14126 	 * Make sure we have an IRE_MULTICAST in case we immediately
14127 	 * start receiving packets.
14128 	 */
14129 	err = ill_add_ires(ill);
14130 	if (err != 0)
14131 		goto bad;
14132 
14133 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14134 	    DL_BIND_REQ);
14135 	if (bind_mp == NULL)
14136 		goto bad;
14137 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14138 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14139 
14140 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
14141 	if (unbind_mp == NULL)
14142 		goto bad;
14143 
14144 	/*
14145 	 * Record state needed to complete this operation when the
14146 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14147 	 */
14148 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14149 	ASSERT(connp != NULL || !CONN_Q(q));
14150 	GRAB_CONN_LOCK(q);
14151 	mutex_enter(&ipif->ipif_ill->ill_lock);
14152 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14153 	mutex_exit(&ipif->ipif_ill->ill_lock);
14154 	RELEASE_CONN_LOCK(q);
14155 	if (!success)
14156 		goto bad;
14157 
14158 	/*
14159 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14160 	 * the interface goes down.
14161 	 */
14162 	ASSERT(ill->ill_unbind_mp == NULL);
14163 	ill->ill_unbind_mp = unbind_mp;
14164 
14165 	ill_dlpi_send(ill, bind_mp);
14166 	/* Send down link-layer capabilities probe if not already done. */
14167 	ill_capability_probe(ill);
14168 
14169 	/*
14170 	 * Sysid used to rely on the fact that netboots set domainname
14171 	 * and the like. Now that miniroot boots aren't strictly netboots
14172 	 * and miniroot network configuration is driven from userland
14173 	 * these things still need to be set. This situation can be detected
14174 	 * by comparing the interface being configured here to the one
14175 	 * dhcifname was set to reference by the boot loader. Once sysid is
14176 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14177 	 */
14178 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14179 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14180 	    (strlen(srpc_domain) == 0)) {
14181 		if (dhcpinit() != 0)
14182 			cmn_err(CE_WARN, "no cached dhcp response");
14183 	}
14184 
14185 	/*
14186 	 * This operation will complete in ip_rput_dlpi with either
14187 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14188 	 */
14189 	return (EINPROGRESS);
14190 bad:
14191 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14192 
14193 	freemsg(bind_mp);
14194 	freemsg(unbind_mp);
14195 	return (ENOMEM);
14196 }
14197 
14198 /* Add room for tcp+ip headers */
14199 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14200 
14201 /*
14202  * DLPI and ARP is up.
14203  * Create all the IREs associated with an interface. Bring up multicast.
14204  * Set the interface flag and finish other initialization
14205  * that potentially had to be deferred to after DL_BIND_ACK.
14206  */
14207 int
14208 ipif_up_done(ipif_t *ipif)
14209 {
14210 	ill_t		*ill = ipif->ipif_ill;
14211 	int		err = 0;
14212 	boolean_t	loopback = B_FALSE;
14213 	boolean_t	update_src_selection = B_TRUE;
14214 	ipif_t		*tmp_ipif;
14215 
14216 	ip1dbg(("ipif_up_done(%s:%u)\n",
14217 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14218 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14219 	    ill_t *, ill, ipif_t *, ipif);
14220 
14221 	/* Check if this is a loopback interface */
14222 	if (ipif->ipif_ill->ill_wq == NULL)
14223 		loopback = B_TRUE;
14224 
14225 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14226 
14227 	/*
14228 	 * If all other interfaces for this ill are down or DEPRECATED,
14229 	 * or otherwise unsuitable for source address selection,
14230 	 * reset the src generation numbers to make sure source
14231 	 * address selection gets to take this new ipif into account.
14232 	 * No need to hold ill_lock while traversing the ipif list since
14233 	 * we are writer
14234 	 */
14235 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14236 	    tmp_ipif = tmp_ipif->ipif_next) {
14237 		if (((tmp_ipif->ipif_flags &
14238 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14239 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14240 		    (tmp_ipif == ipif))
14241 			continue;
14242 		/* first useable pre-existing interface */
14243 		update_src_selection = B_FALSE;
14244 		break;
14245 	}
14246 	if (update_src_selection)
14247 		ip_update_source_selection(ill->ill_ipst);
14248 
14249 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14250 		nce_t *loop_nce = NULL;
14251 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14252 
14253 		/*
14254 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14255 		 * ipif_lookup_on_name(), but in the case of zones we can have
14256 		 * several loopback addresses on lo0. So all the interfaces with
14257 		 * loopback addresses need to be marked IRE_LOOPBACK.
14258 		 */
14259 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14260 		    htonl(INADDR_LOOPBACK))
14261 			ipif->ipif_ire_type = IRE_LOOPBACK;
14262 		else
14263 			ipif->ipif_ire_type = IRE_LOCAL;
14264 		if (ill->ill_net_type != IRE_LOOPBACK)
14265 			flags |= NCE_F_PUBLISH;
14266 
14267 		/* add unicast nce for the local addr */
14268 		err = nce_lookup_then_add_v4(ill, NULL,
14269 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14270 		    ND_REACHABLE, &loop_nce);
14271 		/* A shared-IP zone sees EEXIST for lo0:N */
14272 		if (err == 0 || err == EEXIST) {
14273 			ipif->ipif_added_nce = 1;
14274 			loop_nce->nce_ipif_cnt++;
14275 			nce_refrele(loop_nce);
14276 			err = 0;
14277 		} else {
14278 			ASSERT(loop_nce == NULL);
14279 			return (err);
14280 		}
14281 	}
14282 
14283 	/* Create all the IREs associated with this interface */
14284 	err = ipif_add_ires_v4(ipif, loopback);
14285 	if (err != 0) {
14286 		/*
14287 		 * see comments about return value from
14288 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14289 		 */
14290 		if (err != EADDRINUSE) {
14291 			(void) ipif_arp_down(ipif);
14292 		} else {
14293 			/*
14294 			 * Make IPMP aware of the deleted ipif so that
14295 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14296 			 * can be completed. Note that we do not want to
14297 			 * destroy the nce that was created on the ipmp_ill
14298 			 * for the active copy of the duplicate address in
14299 			 * use.
14300 			 */
14301 			if (IS_IPMP(ill))
14302 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14303 			err = EADDRNOTAVAIL;
14304 		}
14305 		return (err);
14306 	}
14307 
14308 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14309 		/* Recover any additional IREs entries for this ill */
14310 		(void) ill_recover_saved_ire(ill);
14311 	}
14312 
14313 	if (ill->ill_need_recover_multicast) {
14314 		/*
14315 		 * Need to recover all multicast memberships in the driver.
14316 		 * This had to be deferred until we had attached.  The same
14317 		 * code exists in ipif_up_done_v6() to recover IPv6
14318 		 * memberships.
14319 		 *
14320 		 * Note that it would be preferable to unconditionally do the
14321 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14322 		 * that since ill_join_allmulti() depends on ill_dl_up being
14323 		 * set, and it is not set until we receive a DL_BIND_ACK after
14324 		 * having called ill_dl_up().
14325 		 */
14326 		ill_recover_multicast(ill);
14327 	}
14328 
14329 	if (ill->ill_ipif_up_count == 1) {
14330 		/*
14331 		 * Since the interface is now up, it may now be active.
14332 		 */
14333 		if (IS_UNDER_IPMP(ill))
14334 			ipmp_ill_refresh_active(ill);
14335 
14336 		/*
14337 		 * If this is an IPMP interface, we may now be able to
14338 		 * establish ARP entries.
14339 		 */
14340 		if (IS_IPMP(ill))
14341 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14342 	}
14343 
14344 	/* Join the allhosts multicast address */
14345 	ipif_multicast_up(ipif);
14346 
14347 	if (!loopback && !update_src_selection &&
14348 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14349 		ip_update_source_selection(ill->ill_ipst);
14350 
14351 	if (!loopback && ipif->ipif_addr_ready) {
14352 		/* Broadcast an address mask reply. */
14353 		ipif_mask_reply(ipif);
14354 	}
14355 	/* Perhaps ilgs should use this ill */
14356 	update_conn_ill(NULL, ill->ill_ipst);
14357 
14358 	/*
14359 	 * This had to be deferred until we had bound.  Tell routing sockets and
14360 	 * others that this interface is up if it looks like the address has
14361 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14362 	 * duplicate address detection to do its thing.
14363 	 */
14364 	if (ipif->ipif_addr_ready)
14365 		ipif_up_notify(ipif);
14366 	return (0);
14367 }
14368 
14369 /*
14370  * Add the IREs associated with the ipif.
14371  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14372  */
14373 static int
14374 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14375 {
14376 	ill_t		*ill = ipif->ipif_ill;
14377 	ip_stack_t	*ipst = ill->ill_ipst;
14378 	ire_t		*ire_array[20];
14379 	ire_t		**irep = ire_array;
14380 	ire_t		**irep1;
14381 	ipaddr_t	net_mask = 0;
14382 	ipaddr_t	subnet_mask, route_mask;
14383 	int		err;
14384 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14385 	ire_t		*ire_if = NULL;
14386 
14387 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14388 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14389 		/*
14390 		 * If we're on a labeled system then make sure that zone-
14391 		 * private addresses have proper remote host database entries.
14392 		 */
14393 		if (is_system_labeled() &&
14394 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14395 		    !tsol_check_interface_address(ipif))
14396 			return (EINVAL);
14397 
14398 		/* Register the source address for __sin6_src_id */
14399 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14400 		    ipif->ipif_zoneid, ipst);
14401 		if (err != 0) {
14402 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14403 			return (err);
14404 		}
14405 
14406 		/* If the interface address is set, create the local IRE. */
14407 		ire_local = ire_create(
14408 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14409 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14410 		    NULL,				/* no gateway */
14411 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14412 		    ipif->ipif_ill,
14413 		    ipif->ipif_zoneid,
14414 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14415 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14416 		    NULL,
14417 		    ipst);
14418 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14419 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14420 		    ipif->ipif_ire_type,
14421 		    ntohl(ipif->ipif_lcl_addr)));
14422 		if (ire_local == NULL) {
14423 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14424 			err = ENOMEM;
14425 			goto bad;
14426 		}
14427 	} else {
14428 		ip1dbg((
14429 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14430 		    ipif->ipif_ire_type,
14431 		    ntohl(ipif->ipif_lcl_addr),
14432 		    (uint_t)ipif->ipif_flags));
14433 	}
14434 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14435 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14436 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14437 	} else {
14438 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14439 	}
14440 
14441 	subnet_mask = ipif->ipif_net_mask;
14442 
14443 	/*
14444 	 * If mask was not specified, use natural netmask of
14445 	 * interface address. Also, store this mask back into the
14446 	 * ipif struct.
14447 	 */
14448 	if (subnet_mask == 0) {
14449 		subnet_mask = net_mask;
14450 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14451 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14452 		    ipif->ipif_v6subnet);
14453 	}
14454 
14455 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14456 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14457 	    ipif->ipif_subnet != INADDR_ANY) {
14458 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14459 
14460 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14461 			route_mask = IP_HOST_MASK;
14462 		} else {
14463 			route_mask = subnet_mask;
14464 		}
14465 
14466 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14467 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14468 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14469 		    ntohl(ipif->ipif_subnet)));
14470 		ire_if = ire_create(
14471 		    (uchar_t *)&ipif->ipif_subnet,
14472 		    (uchar_t *)&route_mask,
14473 		    (uchar_t *)&ipif->ipif_lcl_addr,
14474 		    ill->ill_net_type,
14475 		    ill,
14476 		    ipif->ipif_zoneid,
14477 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14478 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14479 		    NULL,
14480 		    ipst);
14481 		if (ire_if == NULL) {
14482 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14483 			err = ENOMEM;
14484 			goto bad;
14485 		}
14486 	}
14487 
14488 	/*
14489 	 * Create any necessary broadcast IREs.
14490 	 */
14491 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14492 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14493 		irep = ipif_create_bcast_ires(ipif, irep);
14494 
14495 	/* If an earlier ire_create failed, get out now */
14496 	for (irep1 = irep; irep1 > ire_array; ) {
14497 		irep1--;
14498 		if (*irep1 == NULL) {
14499 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
14500 			err = ENOMEM;
14501 			goto bad;
14502 		}
14503 	}
14504 
14505 	/*
14506 	 * Need to atomically check for IP address availability under
14507 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
14508 	 * ills or new ipifs can be added while we are checking availability.
14509 	 */
14510 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14511 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
14512 	/* Mark it up, and increment counters. */
14513 	ipif->ipif_flags |= IPIF_UP;
14514 	ill->ill_ipif_up_count++;
14515 	err = ip_addr_availability_check(ipif);
14516 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
14517 	rw_exit(&ipst->ips_ill_g_lock);
14518 
14519 	if (err != 0) {
14520 		/*
14521 		 * Our address may already be up on the same ill. In this case,
14522 		 * the ARP entry for our ipif replaced the one for the other
14523 		 * ipif. So we don't want to delete it (otherwise the other ipif
14524 		 * would be unable to send packets).
14525 		 * ip_addr_availability_check() identifies this case for us and
14526 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
14527 		 * which is the expected error code.
14528 		 */
14529 		ill->ill_ipif_up_count--;
14530 		ipif->ipif_flags &= ~IPIF_UP;
14531 		goto bad;
14532 	}
14533 
14534 	/*
14535 	 * Add in all newly created IREs.  ire_create_bcast() has
14536 	 * already checked for duplicates of the IRE_BROADCAST type.
14537 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
14538 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
14539 	 * a /32 route.
14540 	 */
14541 	if (ire_if != NULL) {
14542 		ire_if = ire_add(ire_if);
14543 		if (ire_if == NULL) {
14544 			err = ENOMEM;
14545 			goto bad2;
14546 		}
14547 #ifdef DEBUG
14548 		ire_refhold_notr(ire_if);
14549 		ire_refrele(ire_if);
14550 #endif
14551 	}
14552 	if (ire_local != NULL) {
14553 		ire_local = ire_add(ire_local);
14554 		if (ire_local == NULL) {
14555 			err = ENOMEM;
14556 			goto bad2;
14557 		}
14558 #ifdef DEBUG
14559 		ire_refhold_notr(ire_local);
14560 		ire_refrele(ire_local);
14561 #endif
14562 	}
14563 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14564 	if (ire_local != NULL)
14565 		ipif->ipif_ire_local = ire_local;
14566 	if (ire_if != NULL)
14567 		ipif->ipif_ire_if = ire_if;
14568 	rw_exit(&ipst->ips_ill_g_lock);
14569 	ire_local = NULL;
14570 	ire_if = NULL;
14571 
14572 	/*
14573 	 * We first add all of them, and if that succeeds we refrele the
14574 	 * bunch. That enables us to delete all of them should any of the
14575 	 * ire_adds fail.
14576 	 */
14577 	for (irep1 = irep; irep1 > ire_array; ) {
14578 		irep1--;
14579 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
14580 		*irep1 = ire_add(*irep1);
14581 		if (*irep1 == NULL) {
14582 			err = ENOMEM;
14583 			goto bad2;
14584 		}
14585 	}
14586 
14587 	for (irep1 = irep; irep1 > ire_array; ) {
14588 		irep1--;
14589 		/* refheld by ire_add. */
14590 		if (*irep1 != NULL) {
14591 			ire_refrele(*irep1);
14592 			*irep1 = NULL;
14593 		}
14594 	}
14595 
14596 	if (!loopback) {
14597 		/*
14598 		 * If the broadcast address has been set, make sure it makes
14599 		 * sense based on the interface address.
14600 		 * Only match on ill since we are sharing broadcast addresses.
14601 		 */
14602 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
14603 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
14604 			ire_t	*ire;
14605 
14606 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
14607 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
14608 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
14609 
14610 			if (ire == NULL) {
14611 				/*
14612 				 * If there isn't a matching broadcast IRE,
14613 				 * revert to the default for this netmask.
14614 				 */
14615 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
14616 				mutex_enter(&ipif->ipif_ill->ill_lock);
14617 				ipif_set_default(ipif);
14618 				mutex_exit(&ipif->ipif_ill->ill_lock);
14619 			} else {
14620 				ire_refrele(ire);
14621 			}
14622 		}
14623 
14624 	}
14625 	return (0);
14626 
14627 bad2:
14628 	ill->ill_ipif_up_count--;
14629 	ipif->ipif_flags &= ~IPIF_UP;
14630 
14631 bad:
14632 	ip1dbg(("ipif_add_ires: FAILED \n"));
14633 	if (ire_local != NULL)
14634 		ire_delete(ire_local);
14635 	if (ire_if != NULL)
14636 		ire_delete(ire_if);
14637 
14638 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14639 	ire_local = ipif->ipif_ire_local;
14640 	ipif->ipif_ire_local = NULL;
14641 	ire_if = ipif->ipif_ire_if;
14642 	ipif->ipif_ire_if = NULL;
14643 	rw_exit(&ipst->ips_ill_g_lock);
14644 	if (ire_local != NULL) {
14645 		ire_delete(ire_local);
14646 		ire_refrele_notr(ire_local);
14647 	}
14648 	if (ire_if != NULL) {
14649 		ire_delete(ire_if);
14650 		ire_refrele_notr(ire_if);
14651 	}
14652 
14653 	while (irep > ire_array) {
14654 		irep--;
14655 		if (*irep != NULL) {
14656 			ire_delete(*irep);
14657 		}
14658 	}
14659 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
14660 
14661 	return (err);
14662 }
14663 
14664 /* Remove all the IREs created by ipif_add_ires_v4 */
14665 void
14666 ipif_delete_ires_v4(ipif_t *ipif)
14667 {
14668 	ill_t		*ill = ipif->ipif_ill;
14669 	ip_stack_t	*ipst = ill->ill_ipst;
14670 	ire_t		*ire;
14671 
14672 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14673 	ire = ipif->ipif_ire_local;
14674 	ipif->ipif_ire_local = NULL;
14675 	rw_exit(&ipst->ips_ill_g_lock);
14676 	if (ire != NULL) {
14677 		/*
14678 		 * Move count to ipif so we don't loose the count due to
14679 		 * a down/up dance.
14680 		 */
14681 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
14682 
14683 		ire_delete(ire);
14684 		ire_refrele_notr(ire);
14685 	}
14686 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14687 	ire = ipif->ipif_ire_if;
14688 	ipif->ipif_ire_if = NULL;
14689 	rw_exit(&ipst->ips_ill_g_lock);
14690 	if (ire != NULL) {
14691 		ire_delete(ire);
14692 		ire_refrele_notr(ire);
14693 	}
14694 
14695 	/*
14696 	 * Delete the broadcast IREs.
14697 	 */
14698 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14699 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14700 		ipif_delete_bcast_ires(ipif);
14701 }
14702 
14703 /*
14704  * Checks for availbility of a usable source address (if there is one) when the
14705  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
14706  * this selection is done regardless of the destination.
14707  */
14708 boolean_t
14709 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
14710     ip_stack_t *ipst)
14711 {
14712 	ipif_t		*ipif = NULL;
14713 	ill_t		*uill;
14714 
14715 	ASSERT(ifindex != 0);
14716 
14717 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
14718 	if (uill == NULL)
14719 		return (B_FALSE);
14720 
14721 	mutex_enter(&uill->ill_lock);
14722 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14723 		if (IPIF_IS_CONDEMNED(ipif))
14724 			continue;
14725 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14726 			continue;
14727 		if (!(ipif->ipif_flags & IPIF_UP))
14728 			continue;
14729 		if (ipif->ipif_zoneid != zoneid)
14730 			continue;
14731 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14732 		    ipif->ipif_lcl_addr == INADDR_ANY)
14733 			continue;
14734 		mutex_exit(&uill->ill_lock);
14735 		ill_refrele(uill);
14736 		return (B_TRUE);
14737 	}
14738 	mutex_exit(&uill->ill_lock);
14739 	ill_refrele(uill);
14740 	return (B_FALSE);
14741 }
14742 
14743 /*
14744  * Find an ipif with a good local address on the ill+zoneid.
14745  */
14746 ipif_t *
14747 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
14748 {
14749 	ipif_t		*ipif;
14750 
14751 	mutex_enter(&ill->ill_lock);
14752 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14753 		if (IPIF_IS_CONDEMNED(ipif))
14754 			continue;
14755 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14756 			continue;
14757 		if (!(ipif->ipif_flags & IPIF_UP))
14758 			continue;
14759 		if (ipif->ipif_zoneid != zoneid &&
14760 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
14761 			continue;
14762 		if (ill->ill_isv6 ?
14763 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14764 		    ipif->ipif_lcl_addr == INADDR_ANY)
14765 			continue;
14766 		ipif_refhold_locked(ipif);
14767 		mutex_exit(&ill->ill_lock);
14768 		return (ipif);
14769 	}
14770 	mutex_exit(&ill->ill_lock);
14771 	return (NULL);
14772 }
14773 
14774 /*
14775  * IP source address type, sorted from worst to best.  For a given type,
14776  * always prefer IP addresses on the same subnet.  All-zones addresses are
14777  * suboptimal because they pose problems with unlabeled destinations.
14778  */
14779 typedef enum {
14780 	IPIF_NONE,
14781 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
14782 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
14783 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
14784 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
14785 	IPIF_DIFFNET,			/* normal and different subnet */
14786 	IPIF_SAMENET,			/* normal and same subnet */
14787 	IPIF_LOCALADDR			/* local loopback */
14788 } ipif_type_t;
14789 
14790 /*
14791  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
14792  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
14793  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
14794  * the first one, unless IPMP is used in which case we round-robin among them;
14795  * see below for more.
14796  *
14797  * Returns NULL if there is no suitable source address for the ill.
14798  * This only occurs when there is no valid source address for the ill.
14799  */
14800 ipif_t *
14801 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
14802     boolean_t allow_usesrc, boolean_t *notreadyp)
14803 {
14804 	ill_t	*usill = NULL;
14805 	ill_t	*ipmp_ill = NULL;
14806 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
14807 	ipif_type_t type, best_type;
14808 	tsol_tpc_t *src_rhtp, *dst_rhtp;
14809 	ip_stack_t *ipst = ill->ill_ipst;
14810 	boolean_t samenet;
14811 
14812 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
14813 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
14814 		    B_FALSE, ipst);
14815 		if (usill != NULL)
14816 			ill = usill;	/* Select source from usesrc ILL */
14817 		else
14818 			return (NULL);
14819 	}
14820 
14821 	/*
14822 	 * Test addresses should never be used for source address selection,
14823 	 * so if we were passed one, switch to the IPMP meta-interface.
14824 	 */
14825 	if (IS_UNDER_IPMP(ill)) {
14826 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
14827 			ill = ipmp_ill;	/* Select source from IPMP ill */
14828 		else
14829 			return (NULL);
14830 	}
14831 
14832 	/*
14833 	 * If we're dealing with an unlabeled destination on a labeled system,
14834 	 * make sure that we ignore source addresses that are incompatible with
14835 	 * the destination's default label.  That destination's default label
14836 	 * must dominate the minimum label on the source address.
14837 	 */
14838 	dst_rhtp = NULL;
14839 	if (is_system_labeled()) {
14840 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
14841 		if (dst_rhtp == NULL)
14842 			return (NULL);
14843 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
14844 			TPC_RELE(dst_rhtp);
14845 			dst_rhtp = NULL;
14846 		}
14847 	}
14848 
14849 	/*
14850 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
14851 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
14852 	 * After selecting the right ipif, under ill_lock make sure ipif is
14853 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
14854 	 * we retry. Inside the loop we still need to check for CONDEMNED,
14855 	 * but not under a lock.
14856 	 */
14857 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14858 retry:
14859 	/*
14860 	 * For source address selection, we treat the ipif list as circular
14861 	 * and continue until we get back to where we started.  This allows
14862 	 * IPMP to vary source address selection (which improves inbound load
14863 	 * spreading) by caching its last ending point and starting from
14864 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
14865 	 * ills since that can't happen on the IPMP ill.
14866 	 */
14867 	start_ipif = ill->ill_ipif;
14868 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
14869 		start_ipif = ill->ill_src_ipif;
14870 
14871 	ipif = start_ipif;
14872 	best_ipif = NULL;
14873 	best_type = IPIF_NONE;
14874 	do {
14875 		if ((next_ipif = ipif->ipif_next) == NULL)
14876 			next_ipif = ill->ill_ipif;
14877 
14878 		if (IPIF_IS_CONDEMNED(ipif))
14879 			continue;
14880 		/* Always skip NOLOCAL and ANYCAST interfaces */
14881 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14882 			continue;
14883 		/* Always skip NOACCEPT interfaces */
14884 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
14885 			continue;
14886 		if (!(ipif->ipif_flags & IPIF_UP))
14887 			continue;
14888 
14889 		if (!ipif->ipif_addr_ready) {
14890 			if (notreadyp != NULL)
14891 				*notreadyp = B_TRUE;
14892 			continue;
14893 		}
14894 
14895 		if (zoneid != ALL_ZONES &&
14896 		    ipif->ipif_zoneid != zoneid &&
14897 		    ipif->ipif_zoneid != ALL_ZONES)
14898 			continue;
14899 
14900 		/*
14901 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
14902 		 * are not valid as source addresses.
14903 		 */
14904 		if (ipif->ipif_lcl_addr == INADDR_ANY)
14905 			continue;
14906 
14907 		/*
14908 		 * Check compatibility of local address for destination's
14909 		 * default label if we're on a labeled system.	Incompatible
14910 		 * addresses can't be used at all.
14911 		 */
14912 		if (dst_rhtp != NULL) {
14913 			boolean_t incompat;
14914 
14915 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
14916 			    IPV4_VERSION, B_FALSE);
14917 			if (src_rhtp == NULL)
14918 				continue;
14919 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
14920 			    src_rhtp->tpc_tp.tp_doi !=
14921 			    dst_rhtp->tpc_tp.tp_doi ||
14922 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
14923 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
14924 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
14925 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
14926 			TPC_RELE(src_rhtp);
14927 			if (incompat)
14928 				continue;
14929 		}
14930 
14931 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
14932 
14933 		if (ipif->ipif_lcl_addr == dst) {
14934 			type = IPIF_LOCALADDR;
14935 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
14936 			type = samenet ? IPIF_SAMENET_DEPRECATED :
14937 			    IPIF_DIFFNET_DEPRECATED;
14938 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
14939 			type = samenet ? IPIF_SAMENET_ALLZONES :
14940 			    IPIF_DIFFNET_ALLZONES;
14941 		} else {
14942 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
14943 		}
14944 
14945 		if (type > best_type) {
14946 			best_type = type;
14947 			best_ipif = ipif;
14948 			if (best_type == IPIF_LOCALADDR)
14949 				break; /* can't get better */
14950 		}
14951 	} while ((ipif = next_ipif) != start_ipif);
14952 
14953 	if ((ipif = best_ipif) != NULL) {
14954 		mutex_enter(&ipif->ipif_ill->ill_lock);
14955 		if (IPIF_IS_CONDEMNED(ipif)) {
14956 			mutex_exit(&ipif->ipif_ill->ill_lock);
14957 			goto retry;
14958 		}
14959 		ipif_refhold_locked(ipif);
14960 
14961 		/*
14962 		 * For IPMP, update the source ipif rotor to the next ipif,
14963 		 * provided we can look it up.  (We must not use it if it's
14964 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
14965 		 * ipif_free() checked ill_src_ipif.)
14966 		 */
14967 		if (IS_IPMP(ill) && ipif != NULL) {
14968 			next_ipif = ipif->ipif_next;
14969 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
14970 				ill->ill_src_ipif = next_ipif;
14971 			else
14972 				ill->ill_src_ipif = NULL;
14973 		}
14974 		mutex_exit(&ipif->ipif_ill->ill_lock);
14975 	}
14976 
14977 	rw_exit(&ipst->ips_ill_g_lock);
14978 	if (usill != NULL)
14979 		ill_refrele(usill);
14980 	if (ipmp_ill != NULL)
14981 		ill_refrele(ipmp_ill);
14982 	if (dst_rhtp != NULL)
14983 		TPC_RELE(dst_rhtp);
14984 
14985 #ifdef DEBUG
14986 	if (ipif == NULL) {
14987 		char buf1[INET6_ADDRSTRLEN];
14988 
14989 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
14990 		    ill->ill_name,
14991 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
14992 	} else {
14993 		char buf1[INET6_ADDRSTRLEN];
14994 		char buf2[INET6_ADDRSTRLEN];
14995 
14996 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
14997 		    ipif->ipif_ill->ill_name,
14998 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
14999 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15000 		    buf2, sizeof (buf2))));
15001 	}
15002 #endif /* DEBUG */
15003 	return (ipif);
15004 }
15005 
15006 /*
15007  * Pick a source address based on the destination ill and an optional setsrc
15008  * address.
15009  * The result is stored in srcp. If generation is set, then put the source
15010  * generation number there before we look for the source address (to avoid
15011  * missing changes in the set of source addresses.
15012  * If flagsp is set, then us it to pass back ipif_flags.
15013  *
15014  * If the caller wants to cache the returned source address and detect when
15015  * that might be stale, the caller should pass in a generation argument,
15016  * which the caller can later compare against ips_src_generation
15017  *
15018  * The precedence order for selecting an IPv4 source address is:
15019  *  - RTF_SETSRC on the offlink ire always wins.
15020  *  - If usrsrc is set, swap the ill to be the usesrc one.
15021  *  - If IPMP is used on the ill, select a random address from the most
15022  *    preferred ones below:
15023  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15024  * 2. Not deprecated, not ALL_ZONES
15025  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15026  * 4. Not deprecated, ALL_ZONES
15027  * 5. If onlink destination, same subnet and deprecated
15028  * 6. Deprecated.
15029  *
15030  * We have lower preference for ALL_ZONES IP addresses,
15031  * as they pose problems with unlabeled destinations.
15032  *
15033  * Note that when multiple IP addresses match e.g., #1 we pick
15034  * the first one if IPMP is not in use. With IPMP we randomize.
15035  */
15036 int
15037 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15038     ipaddr_t multicast_ifaddr,
15039     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15040     uint32_t *generation, uint64_t *flagsp)
15041 {
15042 	ipif_t *ipif;
15043 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15044 
15045 	if (flagsp != NULL)
15046 		*flagsp = 0;
15047 
15048 	/*
15049 	 * Need to grab the generation number before we check to
15050 	 * avoid a race with a change to the set of local addresses.
15051 	 * No lock needed since the thread which updates the set of local
15052 	 * addresses use ipif/ill locks and exit those (hence a store memory
15053 	 * barrier) before doing the atomic increase of ips_src_generation.
15054 	 */
15055 	if (generation != NULL) {
15056 		*generation = ipst->ips_src_generation;
15057 	}
15058 
15059 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15060 		*srcp = multicast_ifaddr;
15061 		return (0);
15062 	}
15063 
15064 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15065 	if (setsrc != INADDR_ANY) {
15066 		*srcp = setsrc;
15067 		return (0);
15068 	}
15069 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15070 	if (ipif == NULL) {
15071 		if (notready)
15072 			return (ENETDOWN);
15073 		else
15074 			return (EADDRNOTAVAIL);
15075 	}
15076 	*srcp = ipif->ipif_lcl_addr;
15077 	if (flagsp != NULL)
15078 		*flagsp = ipif->ipif_flags;
15079 	ipif_refrele(ipif);
15080 	return (0);
15081 }
15082 
15083 /* ARGSUSED */
15084 int
15085 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15086 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15087 {
15088 	/*
15089 	 * ill_phyint_reinit merged the v4 and v6 into a single
15090 	 * ipsq.  We might not have been able to complete the
15091 	 * operation in ipif_set_values, if we could not become
15092 	 * exclusive.  If so restart it here.
15093 	 */
15094 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15095 }
15096 
15097 /*
15098  * Can operate on either a module or a driver queue.
15099  * Returns an error if not a module queue.
15100  */
15101 /* ARGSUSED */
15102 int
15103 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15104     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15105 {
15106 	queue_t		*q1 = q;
15107 	char 		*cp;
15108 	char		interf_name[LIFNAMSIZ];
15109 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15110 
15111 	if (q->q_next == NULL) {
15112 		ip1dbg((
15113 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15114 		return (EINVAL);
15115 	}
15116 
15117 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15118 		return (EALREADY);
15119 
15120 	do {
15121 		q1 = q1->q_next;
15122 	} while (q1->q_next);
15123 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15124 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15125 
15126 	/*
15127 	 * Here we are not going to delay the ioack until after
15128 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15129 	 * original ioctl message before sending the requests.
15130 	 */
15131 	return (ipif_set_values(q, mp, interf_name, &ppa));
15132 }
15133 
15134 /* ARGSUSED */
15135 int
15136 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15137     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15138 {
15139 	return (ENXIO);
15140 }
15141 
15142 /*
15143  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15144  * `irep'.  Returns a pointer to the next free `irep' entry
15145  * A mirror exists in ipif_delete_bcast_ires().
15146  *
15147  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15148  * done in ire_add.
15149  */
15150 static ire_t **
15151 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15152 {
15153 	ipaddr_t addr;
15154 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15155 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15156 	ill_t *ill = ipif->ipif_ill;
15157 	zoneid_t zoneid = ipif->ipif_zoneid;
15158 
15159 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15160 
15161 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15162 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15163 
15164 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15165 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15166 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15167 
15168 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15169 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15170 
15171 	/*
15172 	 * For backward compatibility, we create net broadcast IREs based on
15173 	 * the old "IP address class system", since some old machines only
15174 	 * respond to these class derived net broadcast.  However, we must not
15175 	 * create these net broadcast IREs if the subnetmask is shorter than
15176 	 * the IP address class based derived netmask.  Otherwise, we may
15177 	 * create a net broadcast address which is the same as an IP address
15178 	 * on the subnet -- and then TCP will refuse to talk to that address.
15179 	 */
15180 	if (netmask < subnetmask) {
15181 		addr = netmask & ipif->ipif_subnet;
15182 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15183 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15184 	}
15185 
15186 	/*
15187 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15188 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15189 	 * created.  Creating these broadcast IREs will only create confusion
15190 	 * as `addr' will be the same as the IP address.
15191 	 */
15192 	if (subnetmask != 0xFFFFFFFF) {
15193 		addr = ipif->ipif_subnet;
15194 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15195 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15196 	}
15197 
15198 	return (irep);
15199 }
15200 
15201 /*
15202  * Mirror of ipif_create_bcast_ires()
15203  */
15204 static void
15205 ipif_delete_bcast_ires(ipif_t *ipif)
15206 {
15207 	ipaddr_t	addr;
15208 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15209 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15210 	ill_t		*ill = ipif->ipif_ill;
15211 	zoneid_t	zoneid = ipif->ipif_zoneid;
15212 	ire_t		*ire;
15213 
15214 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15215 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15216 
15217 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15218 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15219 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15220 
15221 	ire = ire_lookup_bcast(ill, 0, zoneid);
15222 	ASSERT(ire != NULL);
15223 	ire_delete(ire); ire_refrele(ire);
15224 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15225 	ASSERT(ire != NULL);
15226 	ire_delete(ire); ire_refrele(ire);
15227 
15228 	/*
15229 	 * For backward compatibility, we create net broadcast IREs based on
15230 	 * the old "IP address class system", since some old machines only
15231 	 * respond to these class derived net broadcast.  However, we must not
15232 	 * create these net broadcast IREs if the subnetmask is shorter than
15233 	 * the IP address class based derived netmask.  Otherwise, we may
15234 	 * create a net broadcast address which is the same as an IP address
15235 	 * on the subnet -- and then TCP will refuse to talk to that address.
15236 	 */
15237 	if (netmask < subnetmask) {
15238 		addr = netmask & ipif->ipif_subnet;
15239 		ire = ire_lookup_bcast(ill, addr, zoneid);
15240 		ASSERT(ire != NULL);
15241 		ire_delete(ire); ire_refrele(ire);
15242 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15243 		ASSERT(ire != NULL);
15244 		ire_delete(ire); ire_refrele(ire);
15245 	}
15246 
15247 	/*
15248 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15249 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15250 	 * created.  Creating these broadcast IREs will only create confusion
15251 	 * as `addr' will be the same as the IP address.
15252 	 */
15253 	if (subnetmask != 0xFFFFFFFF) {
15254 		addr = ipif->ipif_subnet;
15255 		ire = ire_lookup_bcast(ill, addr, zoneid);
15256 		ASSERT(ire != NULL);
15257 		ire_delete(ire); ire_refrele(ire);
15258 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15259 		ASSERT(ire != NULL);
15260 		ire_delete(ire); ire_refrele(ire);
15261 	}
15262 }
15263 
15264 /*
15265  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15266  * from lifr_flags and the name from lifr_name.
15267  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15268  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15269  * Returns EINPROGRESS when mp has been consumed by queueing it on
15270  * ipx_pending_mp and the ioctl will complete in ip_rput.
15271  *
15272  * Can operate on either a module or a driver queue.
15273  * Returns an error if not a module queue.
15274  */
15275 /* ARGSUSED */
15276 int
15277 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15278     ip_ioctl_cmd_t *ipip, void *if_req)
15279 {
15280 	ill_t	*ill = q->q_ptr;
15281 	phyint_t *phyi;
15282 	ip_stack_t *ipst;
15283 	struct lifreq *lifr = if_req;
15284 	uint64_t new_flags;
15285 
15286 	ASSERT(ipif != NULL);
15287 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15288 
15289 	if (q->q_next == NULL) {
15290 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15291 		return (EINVAL);
15292 	}
15293 
15294 	/*
15295 	 * If we are not writer on 'q' then this interface exists already
15296 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15297 	 * so return EALREADY.
15298 	 */
15299 	if (ill != ipif->ipif_ill)
15300 		return (EALREADY);
15301 
15302 	if (ill->ill_name[0] != '\0')
15303 		return (EALREADY);
15304 
15305 	/*
15306 	 * If there's another ill already with the requested name, ensure
15307 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15308 	 * fuse together two unrelated ills, which will cause chaos.
15309 	 */
15310 	ipst = ill->ill_ipst;
15311 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15312 	    lifr->lifr_name, NULL);
15313 	if (phyi != NULL) {
15314 		ill_t *ill_mate = phyi->phyint_illv4;
15315 
15316 		if (ill_mate == NULL)
15317 			ill_mate = phyi->phyint_illv6;
15318 		ASSERT(ill_mate != NULL);
15319 
15320 		if (ill_mate->ill_media->ip_m_mac_type !=
15321 		    ill->ill_media->ip_m_mac_type) {
15322 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15323 			    "use the same ill name on differing media\n"));
15324 			return (EINVAL);
15325 		}
15326 	}
15327 
15328 	/*
15329 	 * We start off as IFF_IPV4 in ipif_allocate and become
15330 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15331 	 * The only flags that we read from user space are IFF_IPV4,
15332 	 * IFF_IPV6, and IFF_BROADCAST.
15333 	 *
15334 	 * This ill has not been inserted into the global list.
15335 	 * So we are still single threaded and don't need any lock
15336 	 *
15337 	 * Saniy check the flags.
15338 	 */
15339 
15340 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15341 	    ((lifr->lifr_flags & IFF_IPV6) ||
15342 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15343 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15344 		    "or IPv6 i.e., no broadcast \n"));
15345 		return (EINVAL);
15346 	}
15347 
15348 	new_flags =
15349 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15350 
15351 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15352 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15353 		    "IFF_IPV4 or IFF_IPV6\n"));
15354 		return (EINVAL);
15355 	}
15356 
15357 	/*
15358 	 * We always start off as IPv4, so only need to check for IPv6.
15359 	 */
15360 	if ((new_flags & IFF_IPV6) != 0) {
15361 		ill->ill_flags |= ILLF_IPV6;
15362 		ill->ill_flags &= ~ILLF_IPV4;
15363 	}
15364 
15365 	if ((new_flags & IFF_BROADCAST) != 0)
15366 		ipif->ipif_flags |= IPIF_BROADCAST;
15367 	else
15368 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15369 
15370 	/* We started off as V4. */
15371 	if (ill->ill_flags & ILLF_IPV6) {
15372 		ill->ill_phyint->phyint_illv6 = ill;
15373 		ill->ill_phyint->phyint_illv4 = NULL;
15374 	}
15375 
15376 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15377 }
15378 
15379 /* ARGSUSED */
15380 int
15381 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15382     ip_ioctl_cmd_t *ipip, void *if_req)
15383 {
15384 	/*
15385 	 * ill_phyint_reinit merged the v4 and v6 into a single
15386 	 * ipsq.  We might not have been able to complete the
15387 	 * slifname in ipif_set_values, if we could not become
15388 	 * exclusive.  If so restart it here
15389 	 */
15390 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15391 }
15392 
15393 /*
15394  * Return a pointer to the ipif which matches the index, IP version type and
15395  * zoneid.
15396  */
15397 ipif_t *
15398 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15399     ip_stack_t *ipst)
15400 {
15401 	ill_t	*ill;
15402 	ipif_t	*ipif = NULL;
15403 
15404 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15405 	if (ill != NULL) {
15406 		mutex_enter(&ill->ill_lock);
15407 		for (ipif = ill->ill_ipif; ipif != NULL;
15408 		    ipif = ipif->ipif_next) {
15409 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15410 			    zoneid == ipif->ipif_zoneid ||
15411 			    ipif->ipif_zoneid == ALL_ZONES)) {
15412 				ipif_refhold_locked(ipif);
15413 				break;
15414 			}
15415 		}
15416 		mutex_exit(&ill->ill_lock);
15417 		ill_refrele(ill);
15418 	}
15419 	return (ipif);
15420 }
15421 
15422 /*
15423  * Change an existing physical interface's index. If the new index
15424  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15425  * Finally, we update other systems which may have a dependence on the
15426  * index value.
15427  */
15428 /* ARGSUSED */
15429 int
15430 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15431     ip_ioctl_cmd_t *ipip, void *ifreq)
15432 {
15433 	ill_t		*ill;
15434 	phyint_t	*phyi;
15435 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15436 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15437 	uint_t	old_index, index;
15438 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15439 	avl_index_t	where;
15440 
15441 	if (ipip->ipi_cmd_type == IF_CMD)
15442 		index = ifr->ifr_index;
15443 	else
15444 		index = lifr->lifr_index;
15445 
15446 	/*
15447 	 * Only allow on physical interface. Also, index zero is illegal.
15448 	 */
15449 	ill = ipif->ipif_ill;
15450 	phyi = ill->ill_phyint;
15451 	if (ipif->ipif_id != 0 || index == 0) {
15452 		return (EINVAL);
15453 	}
15454 
15455 	/* If the index is not changing, no work to do */
15456 	if (phyi->phyint_ifindex == index)
15457 		return (0);
15458 
15459 	/*
15460 	 * Use phyint_exists() to determine if the new interface index
15461 	 * is already in use. If the index is unused then we need to
15462 	 * change the phyint's position in the phyint_list_avl_by_index
15463 	 * tree. If we do not do this, subsequent lookups (using the new
15464 	 * index value) will not find the phyint.
15465 	 */
15466 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15467 	if (phyint_exists(index, ipst)) {
15468 		rw_exit(&ipst->ips_ill_g_lock);
15469 		return (EEXIST);
15470 	}
15471 
15472 	/*
15473 	 * The new index is unused. Set it in the phyint. However we must not
15474 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15475 	 * changes. The event must be bound to old ifindex value.
15476 	 */
15477 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15478 	    &index, sizeof (index));
15479 
15480 	old_index = phyi->phyint_ifindex;
15481 	phyi->phyint_ifindex = index;
15482 
15483 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15484 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15485 	    &index, &where);
15486 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15487 	    phyi, where);
15488 	rw_exit(&ipst->ips_ill_g_lock);
15489 
15490 	/* Update SCTP's ILL list */
15491 	sctp_ill_reindex(ill, old_index);
15492 
15493 	/* Send the routing sockets message */
15494 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
15495 	if (ILL_OTHER(ill))
15496 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
15497 
15498 	/* Perhaps ilgs should use this ill */
15499 	update_conn_ill(NULL, ill->ill_ipst);
15500 	return (0);
15501 }
15502 
15503 /* ARGSUSED */
15504 int
15505 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15506     ip_ioctl_cmd_t *ipip, void *ifreq)
15507 {
15508 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15509 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15510 
15511 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
15512 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15513 	/* Get the interface index */
15514 	if (ipip->ipi_cmd_type == IF_CMD) {
15515 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15516 	} else {
15517 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15518 	}
15519 	return (0);
15520 }
15521 
15522 /* ARGSUSED */
15523 int
15524 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15525     ip_ioctl_cmd_t *ipip, void *ifreq)
15526 {
15527 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15528 
15529 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
15530 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15531 	/* Get the interface zone */
15532 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15533 	lifr->lifr_zoneid = ipif->ipif_zoneid;
15534 	return (0);
15535 }
15536 
15537 /*
15538  * Set the zoneid of an interface.
15539  */
15540 /* ARGSUSED */
15541 int
15542 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15543     ip_ioctl_cmd_t *ipip, void *ifreq)
15544 {
15545 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15546 	int err = 0;
15547 	boolean_t need_up = B_FALSE;
15548 	zone_t *zptr;
15549 	zone_status_t status;
15550 	zoneid_t zoneid;
15551 
15552 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15553 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
15554 		if (!is_system_labeled())
15555 			return (ENOTSUP);
15556 		zoneid = GLOBAL_ZONEID;
15557 	}
15558 
15559 	/* cannot assign instance zero to a non-global zone */
15560 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
15561 		return (ENOTSUP);
15562 
15563 	/*
15564 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
15565 	 * the event of a race with the zone shutdown processing, since IP
15566 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
15567 	 * interface will be cleaned up even if the zone is shut down
15568 	 * immediately after the status check. If the interface can't be brought
15569 	 * down right away, and the zone is shut down before the restart
15570 	 * function is called, we resolve the possible races by rechecking the
15571 	 * zone status in the restart function.
15572 	 */
15573 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
15574 		return (EINVAL);
15575 	status = zone_status_get(zptr);
15576 	zone_rele(zptr);
15577 
15578 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
15579 		return (EINVAL);
15580 
15581 	if (ipif->ipif_flags & IPIF_UP) {
15582 		/*
15583 		 * If the interface is already marked up,
15584 		 * we call ipif_down which will take care
15585 		 * of ditching any IREs that have been set
15586 		 * up based on the old interface address.
15587 		 */
15588 		err = ipif_logical_down(ipif, q, mp);
15589 		if (err == EINPROGRESS)
15590 			return (err);
15591 		(void) ipif_down_tail(ipif);
15592 		need_up = B_TRUE;
15593 	}
15594 
15595 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
15596 	return (err);
15597 }
15598 
15599 static int
15600 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
15601     queue_t *q, mblk_t *mp, boolean_t need_up)
15602 {
15603 	int	err = 0;
15604 	ip_stack_t	*ipst;
15605 
15606 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
15607 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15608 
15609 	if (CONN_Q(q))
15610 		ipst = CONNQ_TO_IPST(q);
15611 	else
15612 		ipst = ILLQ_TO_IPST(q);
15613 
15614 	/*
15615 	 * For exclusive stacks we don't allow a different zoneid than
15616 	 * global.
15617 	 */
15618 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
15619 	    zoneid != GLOBAL_ZONEID)
15620 		return (EINVAL);
15621 
15622 	/* Set the new zone id. */
15623 	ipif->ipif_zoneid = zoneid;
15624 
15625 	/* Update sctp list */
15626 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
15627 
15628 	/* The default multicast interface might have changed */
15629 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
15630 
15631 	if (need_up) {
15632 		/*
15633 		 * Now bring the interface back up.  If this
15634 		 * is the only IPIF for the ILL, ipif_up
15635 		 * will have to re-bind to the device, so
15636 		 * we may get back EINPROGRESS, in which
15637 		 * case, this IOCTL will get completed in
15638 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
15639 		 */
15640 		err = ipif_up(ipif, q, mp);
15641 	}
15642 	return (err);
15643 }
15644 
15645 /* ARGSUSED */
15646 int
15647 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15648     ip_ioctl_cmd_t *ipip, void *if_req)
15649 {
15650 	struct lifreq *lifr = (struct lifreq *)if_req;
15651 	zoneid_t zoneid;
15652 	zone_t *zptr;
15653 	zone_status_t status;
15654 
15655 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15656 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
15657 		zoneid = GLOBAL_ZONEID;
15658 
15659 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
15660 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15661 
15662 	/*
15663 	 * We recheck the zone status to resolve the following race condition:
15664 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
15665 	 * 2) hme0:1 is up and can't be brought down right away;
15666 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
15667 	 * 3) zone "myzone" is halted; the zone status switches to
15668 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
15669 	 * the interfaces to remove - hme0:1 is not returned because it's not
15670 	 * yet in "myzone", so it won't be removed;
15671 	 * 4) the restart function for SIOCSLIFZONE is called; without the
15672 	 * status check here, we would have hme0:1 in "myzone" after it's been
15673 	 * destroyed.
15674 	 * Note that if the status check fails, we need to bring the interface
15675 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
15676 	 * ipif_up_done[_v6]().
15677 	 */
15678 	status = ZONE_IS_UNINITIALIZED;
15679 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
15680 		status = zone_status_get(zptr);
15681 		zone_rele(zptr);
15682 	}
15683 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
15684 		if (ipif->ipif_isv6) {
15685 			(void) ipif_up_done_v6(ipif);
15686 		} else {
15687 			(void) ipif_up_done(ipif);
15688 		}
15689 		return (EINVAL);
15690 	}
15691 
15692 	(void) ipif_down_tail(ipif);
15693 
15694 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
15695 	    B_TRUE));
15696 }
15697 
15698 /*
15699  * Return the number of addresses on `ill' with one or more of the values
15700  * in `set' set and all of the values in `clear' clear.
15701  */
15702 static uint_t
15703 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
15704 {
15705 	ipif_t	*ipif;
15706 	uint_t	cnt = 0;
15707 
15708 	ASSERT(IAM_WRITER_ILL(ill));
15709 
15710 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
15711 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
15712 			cnt++;
15713 
15714 	return (cnt);
15715 }
15716 
15717 /*
15718  * Return the number of migratable addresses on `ill' that are under
15719  * application control.
15720  */
15721 uint_t
15722 ill_appaddr_cnt(const ill_t *ill)
15723 {
15724 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
15725 	    IPIF_NOFAILOVER));
15726 }
15727 
15728 /*
15729  * Return the number of point-to-point addresses on `ill'.
15730  */
15731 uint_t
15732 ill_ptpaddr_cnt(const ill_t *ill)
15733 {
15734 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
15735 }
15736 
15737 /* ARGSUSED */
15738 int
15739 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15740 	ip_ioctl_cmd_t *ipip, void *ifreq)
15741 {
15742 	struct lifreq	*lifr = ifreq;
15743 
15744 	ASSERT(q->q_next == NULL);
15745 	ASSERT(CONN_Q(q));
15746 
15747 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
15748 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15749 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
15750 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
15751 
15752 	return (0);
15753 }
15754 
15755 /* Find the previous ILL in this usesrc group */
15756 static ill_t *
15757 ill_prev_usesrc(ill_t *uill)
15758 {
15759 	ill_t *ill;
15760 
15761 	for (ill = uill->ill_usesrc_grp_next;
15762 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
15763 	    ill = ill->ill_usesrc_grp_next)
15764 		/* do nothing */;
15765 	return (ill);
15766 }
15767 
15768 /*
15769  * Release all members of the usesrc group. This routine is called
15770  * from ill_delete when the interface being unplumbed is the
15771  * group head.
15772  *
15773  * This silently clears the usesrc that ifconfig setup.
15774  * An alternative would be to keep that ifindex, and drop packets on the floor
15775  * since no source address can be selected.
15776  * Even if we keep the current semantics, don't need a lock and a linked list.
15777  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
15778  * the one that is being removed. Issue is how we return the usesrc users
15779  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
15780  * ill_usesrc_ifindex matching a target ill. We could also do that with an
15781  * ill walk, but the walker would need to insert in the ioctl response.
15782  */
15783 static void
15784 ill_disband_usesrc_group(ill_t *uill)
15785 {
15786 	ill_t *next_ill, *tmp_ill;
15787 	ip_stack_t	*ipst = uill->ill_ipst;
15788 
15789 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15790 	next_ill = uill->ill_usesrc_grp_next;
15791 
15792 	do {
15793 		ASSERT(next_ill != NULL);
15794 		tmp_ill = next_ill->ill_usesrc_grp_next;
15795 		ASSERT(tmp_ill != NULL);
15796 		next_ill->ill_usesrc_grp_next = NULL;
15797 		next_ill->ill_usesrc_ifindex = 0;
15798 		next_ill = tmp_ill;
15799 	} while (next_ill->ill_usesrc_ifindex != 0);
15800 	uill->ill_usesrc_grp_next = NULL;
15801 }
15802 
15803 /*
15804  * Remove the client usesrc ILL from the list and relink to a new list
15805  */
15806 int
15807 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
15808 {
15809 	ill_t *ill, *tmp_ill;
15810 	ip_stack_t	*ipst = ucill->ill_ipst;
15811 
15812 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
15813 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15814 
15815 	/*
15816 	 * Check if the usesrc client ILL passed in is not already
15817 	 * in use as a usesrc ILL i.e one whose source address is
15818 	 * in use OR a usesrc ILL is not already in use as a usesrc
15819 	 * client ILL
15820 	 */
15821 	if ((ucill->ill_usesrc_ifindex == 0) ||
15822 	    (uill->ill_usesrc_ifindex != 0)) {
15823 		return (-1);
15824 	}
15825 
15826 	ill = ill_prev_usesrc(ucill);
15827 	ASSERT(ill->ill_usesrc_grp_next != NULL);
15828 
15829 	/* Remove from the current list */
15830 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
15831 		/* Only two elements in the list */
15832 		ASSERT(ill->ill_usesrc_ifindex == 0);
15833 		ill->ill_usesrc_grp_next = NULL;
15834 	} else {
15835 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
15836 	}
15837 
15838 	if (ifindex == 0) {
15839 		ucill->ill_usesrc_ifindex = 0;
15840 		ucill->ill_usesrc_grp_next = NULL;
15841 		return (0);
15842 	}
15843 
15844 	ucill->ill_usesrc_ifindex = ifindex;
15845 	tmp_ill = uill->ill_usesrc_grp_next;
15846 	uill->ill_usesrc_grp_next = ucill;
15847 	ucill->ill_usesrc_grp_next =
15848 	    (tmp_ill != NULL) ? tmp_ill : uill;
15849 	return (0);
15850 }
15851 
15852 /*
15853  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
15854  * ip.c for locking details.
15855  */
15856 /* ARGSUSED */
15857 int
15858 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15859     ip_ioctl_cmd_t *ipip, void *ifreq)
15860 {
15861 	struct lifreq *lifr = (struct lifreq *)ifreq;
15862 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
15863 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
15864 	int err = 0, ret;
15865 	uint_t ifindex;
15866 	ipsq_t *ipsq = NULL;
15867 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15868 
15869 	ASSERT(IAM_WRITER_IPIF(ipif));
15870 	ASSERT(q->q_next == NULL);
15871 	ASSERT(CONN_Q(q));
15872 
15873 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
15874 
15875 	ifindex = lifr->lifr_index;
15876 	if (ifindex == 0) {
15877 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
15878 			/* non usesrc group interface, nothing to reset */
15879 			return (0);
15880 		}
15881 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
15882 		/* valid reset request */
15883 		reset_flg = B_TRUE;
15884 	}
15885 
15886 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15887 	if (usesrc_ill == NULL) {
15888 		return (ENXIO);
15889 	}
15890 
15891 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
15892 	    NEW_OP, B_TRUE);
15893 	if (ipsq == NULL) {
15894 		err = EINPROGRESS;
15895 		/* Operation enqueued on the ipsq of the usesrc ILL */
15896 		goto done;
15897 	}
15898 
15899 	/* USESRC isn't currently supported with IPMP */
15900 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
15901 		err = ENOTSUP;
15902 		goto done;
15903 	}
15904 
15905 	/*
15906 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
15907 	 * used by IPMP underlying interfaces, but someone might think it's
15908 	 * more general and try to use it independently with VNI.)
15909 	 */
15910 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
15911 		err = ENOTSUP;
15912 		goto done;
15913 	}
15914 
15915 	/*
15916 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
15917 	 * already a client then return EINVAL
15918 	 */
15919 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
15920 		err = EINVAL;
15921 		goto done;
15922 	}
15923 
15924 	/*
15925 	 * If the ill_usesrc_ifindex field is already set to what it needs to
15926 	 * be then this is a duplicate operation.
15927 	 */
15928 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
15929 		err = 0;
15930 		goto done;
15931 	}
15932 
15933 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
15934 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
15935 	    usesrc_ill->ill_isv6));
15936 
15937 	/*
15938 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
15939 	 * and the ill_usesrc_ifindex fields
15940 	 */
15941 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
15942 
15943 	if (reset_flg) {
15944 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
15945 		if (ret != 0) {
15946 			err = EINVAL;
15947 		}
15948 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
15949 		goto done;
15950 	}
15951 
15952 	/*
15953 	 * Four possibilities to consider:
15954 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
15955 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
15956 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
15957 	 * 4. Both are part of their respective usesrc groups
15958 	 */
15959 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
15960 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15961 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
15962 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15963 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15964 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
15965 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
15966 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15967 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15968 		/* Insert at head of list */
15969 		usesrc_cli_ill->ill_usesrc_grp_next =
15970 		    usesrc_ill->ill_usesrc_grp_next;
15971 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15972 	} else {
15973 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
15974 		    ifindex);
15975 		if (ret != 0)
15976 			err = EINVAL;
15977 	}
15978 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
15979 
15980 done:
15981 	if (ipsq != NULL)
15982 		ipsq_exit(ipsq);
15983 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
15984 	ill_refrele(usesrc_ill);
15985 
15986 	/* Let conn_ixa caching know that source address selection changed */
15987 	ip_update_source_selection(ipst);
15988 
15989 	return (err);
15990 }
15991 
15992 /*
15993  * comparison function used by avl.
15994  */
15995 static int
15996 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
15997 {
15998 
15999 	uint_t index;
16000 
16001 	ASSERT(phyip != NULL && index_ptr != NULL);
16002 
16003 	index = *((uint_t *)index_ptr);
16004 	/*
16005 	 * let the phyint with the lowest index be on top.
16006 	 */
16007 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16008 		return (1);
16009 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16010 		return (-1);
16011 	return (0);
16012 }
16013 
16014 /*
16015  * comparison function used by avl.
16016  */
16017 static int
16018 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16019 {
16020 	ill_t *ill;
16021 	int res = 0;
16022 
16023 	ASSERT(phyip != NULL && name_ptr != NULL);
16024 
16025 	if (((phyint_t *)phyip)->phyint_illv4)
16026 		ill = ((phyint_t *)phyip)->phyint_illv4;
16027 	else
16028 		ill = ((phyint_t *)phyip)->phyint_illv6;
16029 	ASSERT(ill != NULL);
16030 
16031 	res = strcmp(ill->ill_name, (char *)name_ptr);
16032 	if (res > 0)
16033 		return (1);
16034 	else if (res < 0)
16035 		return (-1);
16036 	return (0);
16037 }
16038 
16039 /*
16040  * This function is called on the unplumb path via ill_glist_delete() when
16041  * there are no ills left on the phyint and thus the phyint can be freed.
16042  */
16043 static void
16044 phyint_free(phyint_t *phyi)
16045 {
16046 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16047 
16048 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16049 
16050 	/*
16051 	 * If this phyint was an IPMP meta-interface, blow away the group.
16052 	 * This is safe to do because all of the illgrps have already been
16053 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16054 	 * If we're cleaning up as a result of failed initialization,
16055 	 * phyint_grp may be NULL.
16056 	 */
16057 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16058 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16059 		ipmp_grp_destroy(phyi->phyint_grp);
16060 		phyi->phyint_grp = NULL;
16061 		rw_exit(&ipst->ips_ipmp_lock);
16062 	}
16063 
16064 	/*
16065 	 * If this interface was under IPMP, take it out of the group.
16066 	 */
16067 	if (phyi->phyint_grp != NULL)
16068 		ipmp_phyint_leave_grp(phyi);
16069 
16070 	/*
16071 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16072 	 * will be freed in ipsq_exit().
16073 	 */
16074 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16075 	phyi->phyint_name[0] = '\0';
16076 
16077 	mi_free(phyi);
16078 }
16079 
16080 /*
16081  * Attach the ill to the phyint structure which can be shared by both
16082  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16083  * function is called from ipif_set_values and ill_lookup_on_name (for
16084  * loopback) where we know the name of the ill. We lookup the ill and if
16085  * there is one present already with the name use that phyint. Otherwise
16086  * reuse the one allocated by ill_init.
16087  */
16088 static void
16089 ill_phyint_reinit(ill_t *ill)
16090 {
16091 	boolean_t isv6 = ill->ill_isv6;
16092 	phyint_t *phyi_old;
16093 	phyint_t *phyi;
16094 	avl_index_t where = 0;
16095 	ill_t	*ill_other = NULL;
16096 	ip_stack_t	*ipst = ill->ill_ipst;
16097 
16098 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16099 
16100 	phyi_old = ill->ill_phyint;
16101 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16102 	    phyi_old->phyint_illv6 == NULL));
16103 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16104 	    phyi_old->phyint_illv4 == NULL));
16105 	ASSERT(phyi_old->phyint_ifindex == 0);
16106 
16107 	/*
16108 	 * Now that our ill has a name, set it in the phyint.
16109 	 */
16110 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16111 
16112 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16113 	    ill->ill_name, &where);
16114 
16115 	/*
16116 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16117 	 *    the global list of ills. So no other thread could have located
16118 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16119 	 * 2. Now locate the other protocol instance of this ill.
16120 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16121 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16122 	 *    of neither ill can change.
16123 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16124 	 *    other ill.
16125 	 * 5. Release all locks.
16126 	 */
16127 
16128 	/*
16129 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16130 	 * we are initializing IPv4.
16131 	 */
16132 	if (phyi != NULL) {
16133 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16134 		ASSERT(ill_other->ill_phyint != NULL);
16135 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16136 		    (!isv6 && ill_other->ill_isv6));
16137 		GRAB_ILL_LOCKS(ill, ill_other);
16138 		/*
16139 		 * We are potentially throwing away phyint_flags which
16140 		 * could be different from the one that we obtain from
16141 		 * ill_other->ill_phyint. But it is okay as we are assuming
16142 		 * that the state maintained within IP is correct.
16143 		 */
16144 		mutex_enter(&phyi->phyint_lock);
16145 		if (isv6) {
16146 			ASSERT(phyi->phyint_illv6 == NULL);
16147 			phyi->phyint_illv6 = ill;
16148 		} else {
16149 			ASSERT(phyi->phyint_illv4 == NULL);
16150 			phyi->phyint_illv4 = ill;
16151 		}
16152 
16153 		/*
16154 		 * Delete the old phyint and make its ipsq eligible
16155 		 * to be freed in ipsq_exit().
16156 		 */
16157 		phyi_old->phyint_illv4 = NULL;
16158 		phyi_old->phyint_illv6 = NULL;
16159 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16160 		phyi_old->phyint_name[0] = '\0';
16161 		mi_free(phyi_old);
16162 	} else {
16163 		mutex_enter(&ill->ill_lock);
16164 		/*
16165 		 * We don't need to acquire any lock, since
16166 		 * the ill is not yet visible globally  and we
16167 		 * have not yet released the ill_g_lock.
16168 		 */
16169 		phyi = phyi_old;
16170 		mutex_enter(&phyi->phyint_lock);
16171 		/* XXX We need a recovery strategy here. */
16172 		if (!phyint_assign_ifindex(phyi, ipst))
16173 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16174 
16175 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16176 		    (void *)phyi, where);
16177 
16178 		(void) avl_find(&ipst->ips_phyint_g_list->
16179 		    phyint_list_avl_by_index,
16180 		    &phyi->phyint_ifindex, &where);
16181 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16182 		    (void *)phyi, where);
16183 	}
16184 
16185 	/*
16186 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16187 	 * pending mp is not affected because that is per ill basis.
16188 	 */
16189 	ill->ill_phyint = phyi;
16190 
16191 	/*
16192 	 * Now that the phyint's ifindex has been assigned, complete the
16193 	 * remaining
16194 	 */
16195 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16196 	if (ill->ill_isv6) {
16197 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16198 		    ill->ill_phyint->phyint_ifindex;
16199 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16200 	} else {
16201 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16202 	}
16203 
16204 	/*
16205 	 * Generate an event within the hooks framework to indicate that
16206 	 * a new interface has just been added to IP.  For this event to
16207 	 * be generated, the network interface must, at least, have an
16208 	 * ifindex assigned to it.  (We don't generate the event for
16209 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16210 	 *
16211 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16212 	 * that the ordering of delivered events to listeners matches the
16213 	 * order of them in the kernel.
16214 	 */
16215 	if (!IS_LOOPBACK(ill)) {
16216 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16217 		    ill->ill_name_length);
16218 	}
16219 	RELEASE_ILL_LOCKS(ill, ill_other);
16220 	mutex_exit(&phyi->phyint_lock);
16221 }
16222 
16223 /*
16224  * Notify any downstream modules of the name of this interface.
16225  * An M_IOCTL is used even though we don't expect a successful reply.
16226  * Any reply message from the driver (presumably an M_IOCNAK) will
16227  * eventually get discarded somewhere upstream.  The message format is
16228  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16229  * to IP.
16230  */
16231 static void
16232 ip_ifname_notify(ill_t *ill, queue_t *q)
16233 {
16234 	mblk_t *mp1, *mp2;
16235 	struct iocblk *iocp;
16236 	struct lifreq *lifr;
16237 
16238 	mp1 = mkiocb(SIOCSLIFNAME);
16239 	if (mp1 == NULL)
16240 		return;
16241 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16242 	if (mp2 == NULL) {
16243 		freeb(mp1);
16244 		return;
16245 	}
16246 
16247 	mp1->b_cont = mp2;
16248 	iocp = (struct iocblk *)mp1->b_rptr;
16249 	iocp->ioc_count = sizeof (struct lifreq);
16250 
16251 	lifr = (struct lifreq *)mp2->b_rptr;
16252 	mp2->b_wptr += sizeof (struct lifreq);
16253 	bzero(lifr, sizeof (struct lifreq));
16254 
16255 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16256 	lifr->lifr_ppa = ill->ill_ppa;
16257 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16258 
16259 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16260 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16261 	putnext(q, mp1);
16262 }
16263 
16264 static int
16265 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16266 {
16267 	int		err;
16268 	ip_stack_t	*ipst = ill->ill_ipst;
16269 	phyint_t	*phyi = ill->ill_phyint;
16270 
16271 	/* Set the obsolete NDD per-interface forwarding name. */
16272 	err = ill_set_ndd_name(ill);
16273 	if (err != 0) {
16274 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
16275 		    err);
16276 	}
16277 
16278 	/*
16279 	 * Now that ill_name is set, the configuration for the IPMP
16280 	 * meta-interface can be performed.
16281 	 */
16282 	if (IS_IPMP(ill)) {
16283 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16284 		/*
16285 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16286 		 * meta-interface and we need to create the IPMP group.
16287 		 */
16288 		if (phyi->phyint_grp == NULL) {
16289 			/*
16290 			 * If someone has renamed another IPMP group to have
16291 			 * the same name as our interface, bail.
16292 			 */
16293 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16294 				rw_exit(&ipst->ips_ipmp_lock);
16295 				return (EEXIST);
16296 			}
16297 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16298 			if (phyi->phyint_grp == NULL) {
16299 				rw_exit(&ipst->ips_ipmp_lock);
16300 				return (ENOMEM);
16301 			}
16302 		}
16303 		rw_exit(&ipst->ips_ipmp_lock);
16304 	}
16305 
16306 	/* Tell downstream modules where they are. */
16307 	ip_ifname_notify(ill, q);
16308 
16309 	/*
16310 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16311 	 * Error cases are ENOMEM ...
16312 	 */
16313 	err = ill_dl_phys(ill, ipif, mp, q);
16314 
16315 	if (ill->ill_isv6) {
16316 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16317 		if (ipst->ips_mld_slowtimeout_id == 0) {
16318 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16319 			    (void *)ipst,
16320 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16321 		}
16322 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16323 	} else {
16324 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16325 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16326 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16327 			    (void *)ipst,
16328 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16329 		}
16330 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16331 	}
16332 
16333 	return (err);
16334 }
16335 
16336 /*
16337  * Common routine for ppa and ifname setting. Should be called exclusive.
16338  *
16339  * Returns EINPROGRESS when mp has been consumed by queueing it on
16340  * ipx_pending_mp and the ioctl will complete in ip_rput.
16341  *
16342  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16343  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16344  * For SLIFNAME, we pass these values back to the userland.
16345  */
16346 static int
16347 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16348 {
16349 	ill_t	*ill;
16350 	ipif_t	*ipif;
16351 	ipsq_t	*ipsq;
16352 	char	*ppa_ptr;
16353 	char	*old_ptr;
16354 	char	old_char;
16355 	int	error;
16356 	ip_stack_t	*ipst;
16357 
16358 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16359 	ASSERT(q->q_next != NULL);
16360 	ASSERT(interf_name != NULL);
16361 
16362 	ill = (ill_t *)q->q_ptr;
16363 	ipst = ill->ill_ipst;
16364 
16365 	ASSERT(ill->ill_ipst != NULL);
16366 	ASSERT(ill->ill_name[0] == '\0');
16367 	ASSERT(IAM_WRITER_ILL(ill));
16368 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16369 	ASSERT(ill->ill_ppa == UINT_MAX);
16370 
16371 	ill->ill_defend_start = ill->ill_defend_count = 0;
16372 	/* The ppa is sent down by ifconfig or is chosen */
16373 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16374 		return (EINVAL);
16375 	}
16376 
16377 	/*
16378 	 * make sure ppa passed in is same as ppa in the name.
16379 	 * This check is not made when ppa == UINT_MAX in that case ppa
16380 	 * in the name could be anything. System will choose a ppa and
16381 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16382 	 */
16383 	if (*new_ppa_ptr != UINT_MAX) {
16384 		/* stoi changes the pointer */
16385 		old_ptr = ppa_ptr;
16386 		/*
16387 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16388 		 * (they don't have an externally visible ppa).  We assign one
16389 		 * here so that we can manage the interface.  Note that in
16390 		 * the past this value was always 0 for DLPI 1 drivers.
16391 		 */
16392 		if (*new_ppa_ptr == 0)
16393 			*new_ppa_ptr = stoi(&old_ptr);
16394 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16395 			return (EINVAL);
16396 	}
16397 	/*
16398 	 * terminate string before ppa
16399 	 * save char at that location.
16400 	 */
16401 	old_char = ppa_ptr[0];
16402 	ppa_ptr[0] = '\0';
16403 
16404 	ill->ill_ppa = *new_ppa_ptr;
16405 	/*
16406 	 * Finish as much work now as possible before calling ill_glist_insert
16407 	 * which makes the ill globally visible and also merges it with the
16408 	 * other protocol instance of this phyint. The remaining work is
16409 	 * done after entering the ipsq which may happen sometime later.
16410 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
16411 	 */
16412 	ipif = ill->ill_ipif;
16413 
16414 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16415 	ipif_assign_seqid(ipif);
16416 
16417 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16418 		ill->ill_flags |= ILLF_IPV4;
16419 
16420 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16421 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16422 
16423 	if (ill->ill_flags & ILLF_IPV6) {
16424 
16425 		ill->ill_isv6 = B_TRUE;
16426 		ill_set_inputfn(ill);
16427 		if (ill->ill_rq != NULL) {
16428 			ill->ill_rq->q_qinfo = &iprinitv6;
16429 		}
16430 
16431 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16432 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16433 		ipif->ipif_v6subnet = ipv6_all_zeros;
16434 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16435 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16436 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16437 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16438 		/*
16439 		 * point-to-point or Non-mulicast capable
16440 		 * interfaces won't do NUD unless explicitly
16441 		 * configured to do so.
16442 		 */
16443 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16444 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16445 			ill->ill_flags |= ILLF_NONUD;
16446 		}
16447 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16448 		if (ill->ill_flags & ILLF_NOARP) {
16449 			/*
16450 			 * Note: xresolv interfaces will eventually need
16451 			 * NOARP set here as well, but that will require
16452 			 * those external resolvers to have some
16453 			 * knowledge of that flag and act appropriately.
16454 			 * Not to be changed at present.
16455 			 */
16456 			ill->ill_flags &= ~ILLF_NOARP;
16457 		}
16458 		/*
16459 		 * Set the ILLF_ROUTER flag according to the global
16460 		 * IPv6 forwarding policy.
16461 		 */
16462 		if (ipst->ips_ipv6_forward != 0)
16463 			ill->ill_flags |= ILLF_ROUTER;
16464 	} else if (ill->ill_flags & ILLF_IPV4) {
16465 		ill->ill_isv6 = B_FALSE;
16466 		ill_set_inputfn(ill);
16467 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16468 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16469 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16470 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16471 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16472 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16473 		/*
16474 		 * Set the ILLF_ROUTER flag according to the global
16475 		 * IPv4 forwarding policy.
16476 		 */
16477 		if (ipst->ips_ip_g_forward != 0)
16478 			ill->ill_flags |= ILLF_ROUTER;
16479 	}
16480 
16481 	ASSERT(ill->ill_phyint != NULL);
16482 
16483 	/*
16484 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
16485 	 * be completed in ill_glist_insert -> ill_phyint_reinit
16486 	 */
16487 	if (!ill_allocate_mibs(ill))
16488 		return (ENOMEM);
16489 
16490 	/*
16491 	 * Pick a default sap until we get the DL_INFO_ACK back from
16492 	 * the driver.
16493 	 */
16494 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
16495 	    ill->ill_media->ip_m_ipv4sap;
16496 
16497 	ill->ill_ifname_pending = 1;
16498 	ill->ill_ifname_pending_err = 0;
16499 
16500 	/*
16501 	 * When the first ipif comes up in ipif_up_done(), multicast groups
16502 	 * that were joined while this ill was not bound to the DLPI link need
16503 	 * to be recovered by ill_recover_multicast().
16504 	 */
16505 	ill->ill_need_recover_multicast = 1;
16506 
16507 	ill_refhold(ill);
16508 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16509 	if ((error = ill_glist_insert(ill, interf_name,
16510 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
16511 		ill->ill_ppa = UINT_MAX;
16512 		ill->ill_name[0] = '\0';
16513 		/*
16514 		 * undo null termination done above.
16515 		 */
16516 		ppa_ptr[0] = old_char;
16517 		rw_exit(&ipst->ips_ill_g_lock);
16518 		ill_refrele(ill);
16519 		return (error);
16520 	}
16521 
16522 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
16523 
16524 	/*
16525 	 * When we return the buffer pointed to by interf_name should contain
16526 	 * the same name as in ill_name.
16527 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
16528 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
16529 	 * so copy full name and update the ppa ptr.
16530 	 * When ppa passed in != UINT_MAX all values are correct just undo
16531 	 * null termination, this saves a bcopy.
16532 	 */
16533 	if (*new_ppa_ptr == UINT_MAX) {
16534 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
16535 		*new_ppa_ptr = ill->ill_ppa;
16536 	} else {
16537 		/*
16538 		 * undo null termination done above.
16539 		 */
16540 		ppa_ptr[0] = old_char;
16541 	}
16542 
16543 	/* Let SCTP know about this ILL */
16544 	sctp_update_ill(ill, SCTP_ILL_INSERT);
16545 
16546 	/*
16547 	 * ill_glist_insert has made the ill visible globally, and
16548 	 * ill_phyint_reinit could have changed the ipsq. At this point,
16549 	 * we need to hold the ips_ill_g_lock across the call to enter the
16550 	 * ipsq to enforce atomicity and prevent reordering. In the event
16551 	 * the ipsq has changed, and if the new ipsq is currently busy,
16552 	 * we need to make sure that this half-completed ioctl is ahead of
16553 	 * any subsequent ioctl. We achieve this by not dropping the
16554 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
16555 	 * ensuring that new ioctls can't start.
16556 	 */
16557 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
16558 	    B_TRUE);
16559 
16560 	rw_exit(&ipst->ips_ill_g_lock);
16561 	ill_refrele(ill);
16562 	if (ipsq == NULL)
16563 		return (EINPROGRESS);
16564 
16565 	/*
16566 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
16567 	 */
16568 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
16569 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
16570 	else
16571 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
16572 
16573 	error = ipif_set_values_tail(ill, ipif, mp, q);
16574 	ipsq_exit(ipsq);
16575 	if (error != 0 && error != EINPROGRESS) {
16576 		/*
16577 		 * restore previous values
16578 		 */
16579 		ill->ill_isv6 = B_FALSE;
16580 		ill_set_inputfn(ill);
16581 	}
16582 	return (error);
16583 }
16584 
16585 void
16586 ipif_init(ip_stack_t *ipst)
16587 {
16588 	int i;
16589 
16590 	for (i = 0; i < MAX_G_HEADS; i++) {
16591 		ipst->ips_ill_g_heads[i].ill_g_list_head =
16592 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16593 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
16594 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16595 	}
16596 
16597 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16598 	    ill_phyint_compare_index,
16599 	    sizeof (phyint_t),
16600 	    offsetof(struct phyint, phyint_avl_by_index));
16601 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16602 	    ill_phyint_compare_name,
16603 	    sizeof (phyint_t),
16604 	    offsetof(struct phyint, phyint_avl_by_name));
16605 }
16606 
16607 /*
16608  * Save enough information so that we can recreate the IRE if
16609  * the interface goes down and then up.
16610  */
16611 void
16612 ill_save_ire(ill_t *ill, ire_t *ire)
16613 {
16614 	mblk_t	*save_mp;
16615 
16616 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
16617 	if (save_mp != NULL) {
16618 		ifrt_t	*ifrt;
16619 
16620 		save_mp->b_wptr += sizeof (ifrt_t);
16621 		ifrt = (ifrt_t *)save_mp->b_rptr;
16622 		bzero(ifrt, sizeof (ifrt_t));
16623 		ifrt->ifrt_type = ire->ire_type;
16624 		if (ire->ire_ipversion == IPV4_VERSION) {
16625 			ASSERT(!ill->ill_isv6);
16626 			ifrt->ifrt_addr = ire->ire_addr;
16627 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
16628 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
16629 			ifrt->ifrt_mask = ire->ire_mask;
16630 		} else {
16631 			ASSERT(ill->ill_isv6);
16632 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
16633 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
16634 			mutex_enter(&ire->ire_lock);
16635 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
16636 			mutex_exit(&ire->ire_lock);
16637 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
16638 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
16639 		}
16640 		ifrt->ifrt_flags = ire->ire_flags;
16641 		ifrt->ifrt_zoneid = ire->ire_zoneid;
16642 		mutex_enter(&ill->ill_saved_ire_lock);
16643 		save_mp->b_cont = ill->ill_saved_ire_mp;
16644 		ill->ill_saved_ire_mp = save_mp;
16645 		ill->ill_saved_ire_cnt++;
16646 		mutex_exit(&ill->ill_saved_ire_lock);
16647 	}
16648 }
16649 
16650 /*
16651  * Remove one entry from ill_saved_ire_mp.
16652  */
16653 void
16654 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
16655 {
16656 	mblk_t	**mpp;
16657 	mblk_t	*mp;
16658 	ifrt_t	*ifrt;
16659 
16660 	/* Remove from ill_saved_ire_mp list if it is there */
16661 	mutex_enter(&ill->ill_saved_ire_lock);
16662 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
16663 	    mpp = &(*mpp)->b_cont) {
16664 		in6_addr_t	gw_addr_v6;
16665 
16666 		/*
16667 		 * On a given ill, the tuple of address, gateway, mask,
16668 		 * ire_type, and zoneid is unique for each saved IRE.
16669 		 */
16670 		mp = *mpp;
16671 		ifrt = (ifrt_t *)mp->b_rptr;
16672 		/* ire_gateway_addr_v6 can change - need lock */
16673 		mutex_enter(&ire->ire_lock);
16674 		gw_addr_v6 = ire->ire_gateway_addr_v6;
16675 		mutex_exit(&ire->ire_lock);
16676 
16677 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
16678 		    ifrt->ifrt_type != ire->ire_type)
16679 			continue;
16680 
16681 		if (ill->ill_isv6 ?
16682 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
16683 		    &ire->ire_addr_v6) &&
16684 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
16685 		    &gw_addr_v6) &&
16686 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
16687 		    &ire->ire_mask_v6)) :
16688 		    (ifrt->ifrt_addr == ire->ire_addr &&
16689 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
16690 		    ifrt->ifrt_mask == ire->ire_mask)) {
16691 			*mpp = mp->b_cont;
16692 			ill->ill_saved_ire_cnt--;
16693 			freeb(mp);
16694 			break;
16695 		}
16696 	}
16697 	mutex_exit(&ill->ill_saved_ire_lock);
16698 }
16699 
16700 /*
16701  * IP multirouting broadcast routes handling
16702  * Append CGTP broadcast IREs to regular ones created
16703  * at ifconfig time.
16704  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
16705  * the destination and the gateway are broadcast addresses.
16706  * The caller has verified that the destination is an IRE_BROADCAST and that
16707  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
16708  * we create a MULTIRT IRE_BROADCAST.
16709  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
16710  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
16711  */
16712 static void
16713 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
16714 {
16715 	ire_t *ire_prim;
16716 
16717 	ASSERT(ire != NULL);
16718 
16719 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16720 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
16721 	    NULL);
16722 	if (ire_prim != NULL) {
16723 		/*
16724 		 * We are in the special case of broadcasts for
16725 		 * CGTP. We add an IRE_BROADCAST that holds
16726 		 * the RTF_MULTIRT flag, the destination
16727 		 * address and the low level
16728 		 * info of ire_prim. In other words, CGTP
16729 		 * broadcast is added to the redundant ipif.
16730 		 */
16731 		ill_t *ill_prim;
16732 		ire_t  *bcast_ire;
16733 
16734 		ill_prim = ire_prim->ire_ill;
16735 
16736 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
16737 		    (void *)ire_prim, (void *)ill_prim));
16738 
16739 		bcast_ire = ire_create(
16740 		    (uchar_t *)&ire->ire_addr,
16741 		    (uchar_t *)&ip_g_all_ones,
16742 		    (uchar_t *)&ire->ire_gateway_addr,
16743 		    IRE_BROADCAST,
16744 		    ill_prim,
16745 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
16746 		    ire->ire_flags | RTF_KERNEL,
16747 		    NULL,
16748 		    ipst);
16749 
16750 		/*
16751 		 * Here we assume that ire_add does head insertion so that
16752 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
16753 		 */
16754 		if (bcast_ire != NULL) {
16755 			if (ire->ire_flags & RTF_SETSRC) {
16756 				bcast_ire->ire_setsrc_addr =
16757 				    ire->ire_setsrc_addr;
16758 			}
16759 			bcast_ire = ire_add(bcast_ire);
16760 			if (bcast_ire != NULL) {
16761 				ip2dbg(("ip_cgtp_filter_bcast_add: "
16762 				    "added bcast_ire %p\n",
16763 				    (void *)bcast_ire));
16764 
16765 				ill_save_ire(ill_prim, bcast_ire);
16766 				ire_refrele(bcast_ire);
16767 			}
16768 		}
16769 		ire_refrele(ire_prim);
16770 	}
16771 }
16772 
16773 /*
16774  * IP multirouting broadcast routes handling
16775  * Remove the broadcast ire.
16776  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
16777  * the destination and the gateway are broadcast addresses.
16778  * The caller has only verified that RTF_MULTIRT was set. We check
16779  * that the destination is broadcast and that the gateway is a broadcast
16780  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
16781  */
16782 static void
16783 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
16784 {
16785 	ASSERT(ire != NULL);
16786 
16787 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
16788 		ire_t *ire_prim;
16789 
16790 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16791 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
16792 		    ipst, NULL);
16793 		if (ire_prim != NULL) {
16794 			ill_t *ill_prim;
16795 			ire_t  *bcast_ire;
16796 
16797 			ill_prim = ire_prim->ire_ill;
16798 
16799 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
16800 			    "ire_prim %p, ill_prim %p\n",
16801 			    (void *)ire_prim, (void *)ill_prim));
16802 
16803 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
16804 			    ire->ire_gateway_addr, IRE_BROADCAST,
16805 			    ill_prim, ALL_ZONES, NULL,
16806 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
16807 			    MATCH_IRE_MASK, 0, ipst, NULL);
16808 
16809 			if (bcast_ire != NULL) {
16810 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
16811 				    "looked up bcast_ire %p\n",
16812 				    (void *)bcast_ire));
16813 				ill_remove_saved_ire(bcast_ire->ire_ill,
16814 				    bcast_ire);
16815 				ire_delete(bcast_ire);
16816 				ire_refrele(bcast_ire);
16817 			}
16818 			ire_refrele(ire_prim);
16819 		}
16820 	}
16821 }
16822 
16823 /*
16824  * Derive an interface id from the link layer address.
16825  * Knows about IEEE 802 and IEEE EUI-64 mappings.
16826  */
16827 static void
16828 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16829 {
16830 	char		*addr;
16831 
16832 	/*
16833 	 * Note that some IPv6 interfaces get plumbed over links that claim to
16834 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
16835 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
16836 	 * interface ID on IPv6 interfaces above links that actually have real
16837 	 * Ethernet addresses.
16838 	 */
16839 	if (ill->ill_phys_addr_length == ETHERADDRL) {
16840 		/* Form EUI-64 like address */
16841 		addr = (char *)&v6addr->s6_addr32[2];
16842 		bcopy(ill->ill_phys_addr, addr, 3);
16843 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
16844 		addr[3] = (char)0xff;
16845 		addr[4] = (char)0xfe;
16846 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
16847 	}
16848 }
16849 
16850 /* ARGSUSED */
16851 static void
16852 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16853 {
16854 }
16855 
16856 typedef struct ipmp_ifcookie {
16857 	uint32_t	ic_hostid;
16858 	char		ic_ifname[LIFNAMSIZ];
16859 	char		ic_zonename[ZONENAME_MAX];
16860 } ipmp_ifcookie_t;
16861 
16862 /*
16863  * Construct a pseudo-random interface ID for the IPMP interface that's both
16864  * predictable and (almost) guaranteed to be unique.
16865  */
16866 static void
16867 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16868 {
16869 	zone_t		*zp;
16870 	uint8_t		*addr;
16871 	uchar_t		hash[16];
16872 	ulong_t 	hostid;
16873 	MD5_CTX		ctx;
16874 	ipmp_ifcookie_t	ic = { 0 };
16875 
16876 	ASSERT(IS_IPMP(ill));
16877 
16878 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
16879 	ic.ic_hostid = htonl((uint32_t)hostid);
16880 
16881 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
16882 
16883 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
16884 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
16885 		zone_rele(zp);
16886 	}
16887 
16888 	MD5Init(&ctx);
16889 	MD5Update(&ctx, &ic, sizeof (ic));
16890 	MD5Final(hash, &ctx);
16891 
16892 	/*
16893 	 * Map the hash to an interface ID per the basic approach in RFC3041.
16894 	 */
16895 	addr = &v6addr->s6_addr8[8];
16896 	bcopy(hash + 8, addr, sizeof (uint64_t));
16897 	addr[0] &= ~0x2;				/* set local bit */
16898 }
16899 
16900 /*
16901  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
16902  */
16903 static void
16904 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
16905 {
16906 	phyint_t *phyi = ill->ill_phyint;
16907 
16908 	/*
16909 	 * Check PHYI_MULTI_BCAST and length of physical
16910 	 * address to determine if we use the mapping or the
16911 	 * broadcast address.
16912 	 */
16913 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16914 	    ill->ill_phys_addr_length != ETHERADDRL) {
16915 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
16916 		return;
16917 	}
16918 	m_physaddr[0] = 0x33;
16919 	m_physaddr[1] = 0x33;
16920 	m_physaddr[2] = m_ip6addr[12];
16921 	m_physaddr[3] = m_ip6addr[13];
16922 	m_physaddr[4] = m_ip6addr[14];
16923 	m_physaddr[5] = m_ip6addr[15];
16924 }
16925 
16926 /*
16927  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
16928  */
16929 static void
16930 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16931 {
16932 	phyint_t *phyi = ill->ill_phyint;
16933 
16934 	/*
16935 	 * Check PHYI_MULTI_BCAST and length of physical
16936 	 * address to determine if we use the mapping or the
16937 	 * broadcast address.
16938 	 */
16939 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16940 	    ill->ill_phys_addr_length != ETHERADDRL) {
16941 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
16942 		return;
16943 	}
16944 	m_physaddr[0] = 0x01;
16945 	m_physaddr[1] = 0x00;
16946 	m_physaddr[2] = 0x5e;
16947 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
16948 	m_physaddr[4] = m_ipaddr[2];
16949 	m_physaddr[5] = m_ipaddr[3];
16950 }
16951 
16952 /* ARGSUSED */
16953 static void
16954 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16955 {
16956 	/*
16957 	 * for the MULTI_BCAST case and other cases when we want to
16958 	 * use the link-layer broadcast address for multicast.
16959 	 */
16960 	uint8_t	*bphys_addr;
16961 	dl_unitdata_req_t *dlur;
16962 
16963 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
16964 	if (ill->ill_sap_length < 0) {
16965 		bphys_addr = (uchar_t *)dlur +
16966 		    dlur->dl_dest_addr_offset;
16967 	} else  {
16968 		bphys_addr = (uchar_t *)dlur +
16969 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
16970 	}
16971 
16972 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
16973 }
16974 
16975 /*
16976  * Derive IPoIB interface id from the link layer address.
16977  */
16978 static void
16979 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16980 {
16981 	char		*addr;
16982 
16983 	ASSERT(ill->ill_phys_addr_length == 20);
16984 	addr = (char *)&v6addr->s6_addr32[2];
16985 	bcopy(ill->ill_phys_addr + 12, addr, 8);
16986 	/*
16987 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
16988 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
16989 	 * rules. In these cases, the IBA considers these GUIDs to be in
16990 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
16991 	 * required; vendors are required not to assign global EUI-64's
16992 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
16993 	 * of the interface identifier. Whether the GUID is in modified
16994 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
16995 	 * bit set to 1.
16996 	 */
16997 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
16998 }
16999 
17000 /*
17001  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17002  * Note on mapping from multicast IP addresses to IPoIB multicast link
17003  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17004  * The format of an IPoIB multicast address is:
17005  *
17006  *  4 byte QPN      Scope Sign.  Pkey
17007  * +--------------------------------------------+
17008  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17009  * +--------------------------------------------+
17010  *
17011  * The Scope and Pkey components are properties of the IBA port and
17012  * network interface. They can be ascertained from the broadcast address.
17013  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17014  */
17015 static void
17016 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17017 {
17018 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17019 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17020 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17021 	uint8_t	*bphys_addr;
17022 	dl_unitdata_req_t *dlur;
17023 
17024 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17025 
17026 	/*
17027 	 * RFC 4391: IPv4 MGID is 28-bit long.
17028 	 */
17029 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17030 	m_physaddr[17] = m_ipaddr[1];
17031 	m_physaddr[18] = m_ipaddr[2];
17032 	m_physaddr[19] = m_ipaddr[3];
17033 
17034 
17035 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17036 	if (ill->ill_sap_length < 0) {
17037 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17038 	} else  {
17039 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17040 		    ill->ill_sap_length;
17041 	}
17042 	/*
17043 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17044 	 */
17045 	m_physaddr[5] = bphys_addr[5];
17046 	m_physaddr[8] = bphys_addr[8];
17047 	m_physaddr[9] = bphys_addr[9];
17048 }
17049 
17050 static void
17051 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17052 {
17053 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17054 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17055 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17056 	uint8_t	*bphys_addr;
17057 	dl_unitdata_req_t *dlur;
17058 
17059 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17060 
17061 	/*
17062 	 * RFC 4391: IPv4 MGID is 80-bit long.
17063 	 */
17064 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17065 
17066 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17067 	if (ill->ill_sap_length < 0) {
17068 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17069 	} else  {
17070 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17071 		    ill->ill_sap_length;
17072 	}
17073 	/*
17074 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17075 	 */
17076 	m_physaddr[5] = bphys_addr[5];
17077 	m_physaddr[8] = bphys_addr[8];
17078 	m_physaddr[9] = bphys_addr[9];
17079 }
17080 
17081 /*
17082  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17083  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17084  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17085  * of RFC4213.
17086  */
17087 static void
17088 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17089 {
17090 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17091 	v6addr->s6_addr32[2] = 0;
17092 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17093 }
17094 
17095 /*
17096  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17097  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17098  * id.
17099  */
17100 static void
17101 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17102 {
17103 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17104 
17105 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17106 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17107 }
17108 
17109 static void
17110 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17111 {
17112 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17113 }
17114 
17115 static void
17116 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17117 {
17118 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17119 }
17120 
17121 static void
17122 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17123 {
17124 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17125 }
17126 
17127 static void
17128 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17129 {
17130 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17131 }
17132 
17133 /*
17134  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17135  * Returns an held ill, or NULL.
17136  */
17137 ill_t *
17138 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17139     ip_stack_t *ipst)
17140 {
17141 	ill_t	*ill;
17142 	ipif_t	*ipif;
17143 
17144 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17145 	if (ill == NULL)
17146 		return (NULL);
17147 
17148 	mutex_enter(&ill->ill_lock);
17149 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17150 		if (IPIF_IS_CONDEMNED(ipif))
17151 			continue;
17152 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17153 		    ipif->ipif_zoneid != ALL_ZONES)
17154 			continue;
17155 
17156 		mutex_exit(&ill->ill_lock);
17157 		return (ill);
17158 	}
17159 	mutex_exit(&ill->ill_lock);
17160 	ill_refrele(ill);
17161 	return (NULL);
17162 }
17163 
17164 /*
17165  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17166  * If a pointer to an ipif_t is returned then the caller will need to do
17167  * an ill_refrele().
17168  */
17169 ipif_t *
17170 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17171     ip_stack_t *ipst)
17172 {
17173 	ipif_t *ipif;
17174 	ill_t *ill;
17175 
17176 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17177 	if (ill == NULL)
17178 		return (NULL);
17179 
17180 	mutex_enter(&ill->ill_lock);
17181 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17182 		mutex_exit(&ill->ill_lock);
17183 		ill_refrele(ill);
17184 		return (NULL);
17185 	}
17186 
17187 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17188 		if (!IPIF_CAN_LOOKUP(ipif))
17189 			continue;
17190 		if (lifidx == ipif->ipif_id) {
17191 			ipif_refhold_locked(ipif);
17192 			break;
17193 		}
17194 	}
17195 
17196 	mutex_exit(&ill->ill_lock);
17197 	ill_refrele(ill);
17198 	return (ipif);
17199 }
17200 
17201 /*
17202  * Set ill_inputfn based on the current know state.
17203  * This needs to be called when any of the factors taken into
17204  * account changes.
17205  */
17206 void
17207 ill_set_inputfn(ill_t *ill)
17208 {
17209 	ip_stack_t	*ipst = ill->ill_ipst;
17210 
17211 	if (ill->ill_isv6) {
17212 		if (is_system_labeled())
17213 			ill->ill_inputfn = ill_input_full_v6;
17214 		else
17215 			ill->ill_inputfn = ill_input_short_v6;
17216 	} else {
17217 		if (is_system_labeled())
17218 			ill->ill_inputfn = ill_input_full_v4;
17219 		else if (ill->ill_dhcpinit != 0)
17220 			ill->ill_inputfn = ill_input_full_v4;
17221 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17222 		    != NULL)
17223 			ill->ill_inputfn = ill_input_full_v4;
17224 		else if (ipst->ips_ip_cgtp_filter &&
17225 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17226 			ill->ill_inputfn = ill_input_full_v4;
17227 		else
17228 			ill->ill_inputfn = ill_input_short_v4;
17229 	}
17230 }
17231 
17232 /*
17233  * Re-evaluate ill_inputfn for all the IPv4 ills.
17234  * Used when RSVP and CGTP comes and goes.
17235  */
17236 void
17237 ill_set_inputfn_all(ip_stack_t *ipst)
17238 {
17239 	ill_walk_context_t	ctx;
17240 	ill_t			*ill;
17241 
17242 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17243 	ill = ILL_START_WALK_V4(&ctx, ipst);
17244 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17245 		ill_set_inputfn(ill);
17246 
17247 	rw_exit(&ipst->ips_ill_g_lock);
17248 }
17249 
17250 /*
17251  * Set the physical address information for `ill' to the contents of the
17252  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17253  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17254  * EINPROGRESS will be returned.
17255  */
17256 int
17257 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17258 {
17259 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17260 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17261 
17262 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17263 
17264 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17265 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17266 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17267 		/* Changing DL_IPV6_TOKEN is not yet supported */
17268 		return (0);
17269 	}
17270 
17271 	/*
17272 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17273 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17274 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17275 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17276 	 */
17277 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17278 		freemsg(mp);
17279 		return (ENOMEM);
17280 	}
17281 
17282 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17283 	mutex_enter(&ill->ill_lock);
17284 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17285 	/* no more nce addition allowed */
17286 	mutex_exit(&ill->ill_lock);
17287 
17288 	/*
17289 	 * If we can quiesce the ill, then set the address.  If not, then
17290 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17291 	 */
17292 	ill_down_ipifs(ill, B_TRUE);
17293 	mutex_enter(&ill->ill_lock);
17294 	if (!ill_is_quiescent(ill)) {
17295 		/* call cannot fail since `conn_t *' argument is NULL */
17296 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17297 		    mp, ILL_DOWN);
17298 		mutex_exit(&ill->ill_lock);
17299 		return (EINPROGRESS);
17300 	}
17301 	mutex_exit(&ill->ill_lock);
17302 
17303 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17304 	return (0);
17305 }
17306 
17307 /*
17308  * Once the ill associated with `q' has quiesced, set its physical address
17309  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17310  * are passed (linked by b_cont), since we sometimes need to save two distinct
17311  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17312  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17313  * is quiesced, we know any stale nce's with the old address information have
17314  * already been removed, so we don't need to call nce_flush().
17315  */
17316 /* ARGSUSED */
17317 static void
17318 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17319 {
17320 	ill_t		*ill = q->q_ptr;
17321 	mblk_t		*addrmp2 = unlinkb(addrmp);
17322 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17323 	uint_t		addrlen, addroff;
17324 	int		status;
17325 
17326 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17327 
17328 	addroff	= dlindp->dl_addr_offset;
17329 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17330 
17331 	switch (dlindp->dl_data) {
17332 	case DL_IPV6_LINK_LAYER_ADDR:
17333 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17334 		freemsg(addrmp2);
17335 		break;
17336 
17337 	case DL_CURR_DEST_ADDR:
17338 		freemsg(ill->ill_dest_addr_mp);
17339 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17340 		ill->ill_dest_addr_mp = addrmp;
17341 		if (ill->ill_isv6) {
17342 			ill_setdesttoken(ill);
17343 			ipif_setdestlinklocal(ill->ill_ipif);
17344 		}
17345 		freemsg(addrmp2);
17346 		break;
17347 
17348 	case DL_CURR_PHYS_ADDR:
17349 		freemsg(ill->ill_phys_addr_mp);
17350 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17351 		ill->ill_phys_addr_mp = addrmp;
17352 		ill->ill_phys_addr_length = addrlen;
17353 		if (ill->ill_isv6)
17354 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17355 		else
17356 			freemsg(addrmp2);
17357 		if (ill->ill_isv6) {
17358 			ill_setdefaulttoken(ill);
17359 			ipif_setlinklocal(ill->ill_ipif);
17360 		}
17361 		break;
17362 	default:
17363 		ASSERT(0);
17364 	}
17365 
17366 	/*
17367 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17368 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17369 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17370 	 * brought up.
17371 	 */
17372 	status = ill_up_ipifs(ill, q, addrmp);
17373 	mutex_enter(&ill->ill_lock);
17374 	if (ill->ill_dl_up)
17375 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17376 	mutex_exit(&ill->ill_lock);
17377 	if (status != EINPROGRESS)
17378 		ipsq_current_finish(ipsq);
17379 }
17380 
17381 /*
17382  * Helper routine for setting the ill_nd_lla fields.
17383  */
17384 void
17385 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17386 {
17387 	freemsg(ill->ill_nd_lla_mp);
17388 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17389 	ill->ill_nd_lla_mp = ndmp;
17390 	ill->ill_nd_lla_len = addrlen;
17391 }
17392 
17393 /*
17394  * Replumb the ill.
17395  */
17396 int
17397 ill_replumb(ill_t *ill, mblk_t *mp)
17398 {
17399 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17400 
17401 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17402 
17403 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17404 
17405 	mutex_enter(&ill->ill_lock);
17406 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17407 	/* no more nce addition allowed */
17408 	mutex_exit(&ill->ill_lock);
17409 
17410 	/*
17411 	 * If we can quiesce the ill, then continue.  If not, then
17412 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17413 	 */
17414 	ill_down_ipifs(ill, B_FALSE);
17415 
17416 	mutex_enter(&ill->ill_lock);
17417 	if (!ill_is_quiescent(ill)) {
17418 		/* call cannot fail since `conn_t *' argument is NULL */
17419 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17420 		    mp, ILL_DOWN);
17421 		mutex_exit(&ill->ill_lock);
17422 		return (EINPROGRESS);
17423 	}
17424 	mutex_exit(&ill->ill_lock);
17425 
17426 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17427 	return (0);
17428 }
17429 
17430 /* ARGSUSED */
17431 static void
17432 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
17433 {
17434 	ill_t *ill = q->q_ptr;
17435 	int err;
17436 	conn_t *connp = NULL;
17437 
17438 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17439 	freemsg(ill->ill_replumb_mp);
17440 	ill->ill_replumb_mp = copyb(mp);
17441 
17442 	if (ill->ill_replumb_mp == NULL) {
17443 		/* out of memory */
17444 		ipsq_current_finish(ipsq);
17445 		return;
17446 	}
17447 
17448 	mutex_enter(&ill->ill_lock);
17449 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
17450 	    ill->ill_rq, ill->ill_replumb_mp, 0);
17451 	mutex_exit(&ill->ill_lock);
17452 
17453 	if (!ill->ill_up_ipifs) {
17454 		/* already closing */
17455 		ipsq_current_finish(ipsq);
17456 		return;
17457 	}
17458 	ill->ill_replumbing = 1;
17459 	err = ill_down_ipifs_tail(ill);
17460 
17461 	/*
17462 	 * Successfully quiesced and brought down the interface, now we send
17463 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
17464 	 * DL_NOTE_REPLUMB message.
17465 	 */
17466 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
17467 	    DL_NOTIFY_CONF);
17468 	ASSERT(mp != NULL);
17469 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
17470 	    DL_NOTE_REPLUMB_DONE;
17471 	ill_dlpi_send(ill, mp);
17472 
17473 	/*
17474 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
17475 	 * streams have to be unbound. When all the DLPI exchanges are done,
17476 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
17477 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
17478 	 * arp_bringup_done().
17479 	 */
17480 	ASSERT(ill->ill_replumb_mp != NULL);
17481 	if (err == EINPROGRESS)
17482 		return;
17483 	else
17484 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
17485 	ASSERT(connp == NULL);
17486 	if (err == 0 && ill->ill_replumb_mp != NULL &&
17487 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
17488 		return;
17489 	}
17490 	ipsq_current_finish(ipsq);
17491 }
17492 
17493 /*
17494  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
17495  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
17496  * as per the ioctl.  On failure, an errno is returned.
17497  */
17498 static int
17499 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
17500 {
17501 	int rval;
17502 	struct strioctl iocb;
17503 
17504 	iocb.ic_cmd = cmd;
17505 	iocb.ic_timout = 15;
17506 	iocb.ic_len = bufsize;
17507 	iocb.ic_dp = buf;
17508 
17509 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
17510 }
17511 
17512 /*
17513  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
17514  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
17515  */
17516 static int
17517 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
17518     uint_t *bufsizep, cred_t *cr)
17519 {
17520 	int err;
17521 	struct lifnum lifn;
17522 
17523 	bzero(&lifn, sizeof (lifn));
17524 	lifn.lifn_family = af;
17525 	lifn.lifn_flags = LIFC_UNDER_IPMP;
17526 
17527 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
17528 		return (err);
17529 
17530 	/*
17531 	 * Pad the interface count to account for additional interfaces that
17532 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
17533 	 */
17534 	lifn.lifn_count += 4;
17535 	bzero(lifcp, sizeof (*lifcp));
17536 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
17537 	lifcp->lifc_family = af;
17538 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
17539 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
17540 
17541 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
17542 	if (err != 0) {
17543 		kmem_free(lifcp->lifc_buf, *bufsizep);
17544 		return (err);
17545 	}
17546 
17547 	return (0);
17548 }
17549 
17550 /*
17551  * Helper for ip_interface_cleanup() that removes the loopback interface.
17552  */
17553 static void
17554 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17555 {
17556 	int err;
17557 	struct lifreq lifr;
17558 
17559 	bzero(&lifr, sizeof (lifr));
17560 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
17561 
17562 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
17563 	if (err != 0) {
17564 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
17565 		    "error %d\n", isv6 ? "v6" : "v4", err));
17566 	}
17567 }
17568 
17569 /*
17570  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
17571  * groups and that IPMP data addresses are down.  These conditions must be met
17572  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
17573  */
17574 static void
17575 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17576 {
17577 	int af = isv6 ? AF_INET6 : AF_INET;
17578 	int i, nifs;
17579 	int err;
17580 	uint_t bufsize;
17581 	uint_t lifrsize = sizeof (struct lifreq);
17582 	struct lifconf lifc;
17583 	struct lifreq *lifrp;
17584 
17585 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
17586 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
17587 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
17588 		return;
17589 	}
17590 
17591 	nifs = lifc.lifc_len / lifrsize;
17592 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
17593 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17594 		if (err != 0) {
17595 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
17596 			    "flags: error %d", lifrp->lifr_name, err);
17597 			continue;
17598 		}
17599 
17600 		if (lifrp->lifr_flags & IFF_IPMP) {
17601 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
17602 				continue;
17603 
17604 			lifrp->lifr_flags &= ~IFF_UP;
17605 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
17606 			if (err != 0) {
17607 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17608 				    "bring down (error %d); IPMP interface may "
17609 				    "not be shutdown", lifrp->lifr_name, err);
17610 			}
17611 
17612 			/*
17613 			 * Check if IFF_DUPLICATE is still set -- and if so,
17614 			 * reset the address to clear it.
17615 			 */
17616 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17617 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
17618 				continue;
17619 
17620 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
17621 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
17622 			    lifrp, lifrsize, cr)) != 0) {
17623 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17624 				    "reset DAD (error %d); IPMP interface may "
17625 				    "not be shutdown", lifrp->lifr_name, err);
17626 			}
17627 			continue;
17628 		}
17629 
17630 		lifrp->lifr_groupname[0] = '\0';
17631 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
17632 		if (err != 0) {
17633 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
17634 			    "IPMP group (error %d); associated IPMP interface "
17635 			    "may not be shutdown", lifrp->lifr_name, err);
17636 			continue;
17637 		}
17638 	}
17639 
17640 	kmem_free(lifc.lifc_buf, bufsize);
17641 }
17642 
17643 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
17644 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
17645 
17646 /*
17647  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
17648  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
17649  * when the user-level processes in the zone are killed and the latter are
17650  * cleaned up by str_stack_shutdown().
17651  */
17652 void
17653 ip_interface_cleanup(ip_stack_t *ipst)
17654 {
17655 	ldi_handle_t	lh;
17656 	ldi_ident_t	li;
17657 	cred_t		*cr;
17658 	int		err;
17659 	int		i;
17660 	char		*devs[] = { UDP6DEV, UDPDEV };
17661 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
17662 
17663 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
17664 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
17665 		    " error %d", err);
17666 		return;
17667 	}
17668 
17669 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
17670 	ASSERT(cr != NULL);
17671 
17672 	/*
17673 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
17674 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
17675 	 * the loop.)
17676 	 */
17677 	for (i = 0; i < 2; i++) {
17678 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
17679 		if (err != 0) {
17680 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
17681 			    " error %d", devs[i], err);
17682 			continue;
17683 		}
17684 
17685 		ip_loopback_removeif(lh, i == 0, cr);
17686 		ip_ipmp_cleanup(lh, i == 0, cr);
17687 
17688 		(void) ldi_close(lh, FREAD|FWRITE, cr);
17689 	}
17690 
17691 	ldi_ident_release(li);
17692 	crfree(cr);
17693 }
17694 
17695 /*
17696  * This needs to be in-sync with nic_event_t definition
17697  */
17698 static const char *
17699 ill_hook_event2str(nic_event_t event)
17700 {
17701 	switch (event) {
17702 	case NE_PLUMB:
17703 		return ("PLUMB");
17704 	case NE_UNPLUMB:
17705 		return ("UNPLUMB");
17706 	case NE_UP:
17707 		return ("UP");
17708 	case NE_DOWN:
17709 		return ("DOWN");
17710 	case NE_ADDRESS_CHANGE:
17711 		return ("ADDRESS_CHANGE");
17712 	case NE_LIF_UP:
17713 		return ("LIF_UP");
17714 	case NE_LIF_DOWN:
17715 		return ("LIF_DOWN");
17716 	case NE_IFINDEX_CHANGE:
17717 		return ("IFINDEX_CHANGE");
17718 	default:
17719 		return ("UNKNOWN");
17720 	}
17721 }
17722 
17723 void
17724 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
17725     nic_event_data_t data, size_t datalen)
17726 {
17727 	ip_stack_t		*ipst = ill->ill_ipst;
17728 	hook_nic_event_int_t	*info;
17729 	const char		*str = NULL;
17730 
17731 	/* create a new nic event info */
17732 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
17733 		goto fail;
17734 
17735 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
17736 	info->hnei_event.hne_lif = lif;
17737 	info->hnei_event.hne_event = event;
17738 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
17739 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
17740 	info->hnei_event.hne_data = NULL;
17741 	info->hnei_event.hne_datalen = 0;
17742 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
17743 
17744 	if (data != NULL && datalen != 0) {
17745 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
17746 		if (info->hnei_event.hne_data == NULL)
17747 			goto fail;
17748 		bcopy(data, info->hnei_event.hne_data, datalen);
17749 		info->hnei_event.hne_datalen = datalen;
17750 	}
17751 
17752 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
17753 	    DDI_NOSLEEP) == DDI_SUCCESS)
17754 		return;
17755 
17756 fail:
17757 	if (info != NULL) {
17758 		if (info->hnei_event.hne_data != NULL) {
17759 			kmem_free(info->hnei_event.hne_data,
17760 			    info->hnei_event.hne_datalen);
17761 		}
17762 		kmem_free(info, sizeof (hook_nic_event_t));
17763 	}
17764 	str = ill_hook_event2str(event);
17765 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
17766 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
17767 }
17768 
17769 static int
17770 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
17771 {
17772 	int		err = 0;
17773 	const in_addr_t	*addr = NULL;
17774 	nce_t		*nce = NULL;
17775 	ill_t		*ill = ipif->ipif_ill;
17776 	ill_t		*bound_ill;
17777 	boolean_t	added_ipif = B_FALSE;
17778 	uint16_t	state;
17779 	uint16_t	flags;
17780 
17781 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
17782 	    ill_t *, ill, ipif_t *, ipif);
17783 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
17784 		addr = &ipif->ipif_lcl_addr;
17785 	}
17786 
17787 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
17788 		if (res_act != Res_act_initial)
17789 			return (EINVAL);
17790 	}
17791 
17792 	if (addr != NULL) {
17793 		ipmp_illgrp_t	*illg = ill->ill_grp;
17794 
17795 		/* add unicast nce for the local addr */
17796 
17797 		if (IS_IPMP(ill)) {
17798 			/*
17799 			 * If we're here via ipif_up(), then the ipif
17800 			 * won't be bound yet -- add it to the group,
17801 			 * which will bind it if possible. (We would
17802 			 * add it in ipif_up(), but deleting on failure
17803 			 * there is gruesome.)  If we're here via
17804 			 * ipmp_ill_bind_ipif(), then the ipif has
17805 			 * already been added to the group and we
17806 			 * just need to use the binding.
17807 			 */
17808 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
17809 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
17810 				if (bound_ill == NULL) {
17811 					/*
17812 					 * We couldn't bind the ipif to an ill
17813 					 * yet, so we have nothing to publish.
17814 					 * Mark the address as ready and return.
17815 					 */
17816 					ipif->ipif_addr_ready = 1;
17817 					return (0);
17818 				}
17819 				added_ipif = B_TRUE;
17820 			}
17821 		} else {
17822 			bound_ill = ill;
17823 		}
17824 
17825 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
17826 		    NCE_F_NONUD);
17827 		/*
17828 		 * If this is an initial bring-up (or the ipif was never
17829 		 * completely brought up), do DAD.  Otherwise, we're here
17830 		 * because IPMP has rebound an address to this ill: send
17831 		 * unsolicited advertisements (ARP announcements) to
17832 		 * inform others.
17833 		 */
17834 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
17835 			state = ND_UNCHANGED; /* compute in nce_add_common() */
17836 		} else {
17837 			state = ND_REACHABLE;
17838 			flags |= NCE_F_UNSOL_ADV;
17839 		}
17840 
17841 retry:
17842 		err = nce_lookup_then_add_v4(ill,
17843 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
17844 		    addr, flags, state, &nce);
17845 
17846 		/*
17847 		 * note that we may encounter EEXIST if we are moving
17848 		 * the nce as a result of a rebind operation.
17849 		 */
17850 		switch (err) {
17851 		case 0:
17852 			ipif->ipif_added_nce = 1;
17853 			nce->nce_ipif_cnt++;
17854 			break;
17855 		case EEXIST:
17856 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
17857 			    ill->ill_name));
17858 			if (!NCE_MYADDR(nce->nce_common)) {
17859 				/*
17860 				 * A leftover nce from before this address
17861 				 * existed
17862 				 */
17863 				ncec_delete(nce->nce_common);
17864 				nce_refrele(nce);
17865 				nce = NULL;
17866 				goto retry;
17867 			}
17868 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
17869 				nce_refrele(nce);
17870 				nce = NULL;
17871 				ip1dbg(("ipif_arp_up: NCE already exists "
17872 				    "for %s:%u\n", ill->ill_name,
17873 				    ipif->ipif_id));
17874 				goto arp_up_done;
17875 			}
17876 			/*
17877 			 * Duplicate local addresses are permissible for
17878 			 * IPIF_POINTOPOINT interfaces which will get marked
17879 			 * IPIF_UNNUMBERED later in
17880 			 * ip_addr_availability_check().
17881 			 *
17882 			 * The nce_ipif_cnt field tracks the number of
17883 			 * ipifs that have nce_addr as their local address.
17884 			 */
17885 			ipif->ipif_addr_ready = 1;
17886 			ipif->ipif_added_nce = 1;
17887 			nce->nce_ipif_cnt++;
17888 			err = 0;
17889 			break;
17890 		default:
17891 			ASSERT(nce == NULL);
17892 			goto arp_up_done;
17893 		}
17894 		if (arp_no_defense) {
17895 			if ((ipif->ipif_flags & IPIF_UP) &&
17896 			    !ipif->ipif_addr_ready)
17897 				ipif_up_notify(ipif);
17898 			ipif->ipif_addr_ready = 1;
17899 		}
17900 	} else {
17901 		/* zero address. nothing to publish */
17902 		ipif->ipif_addr_ready = 1;
17903 	}
17904 	if (nce != NULL)
17905 		nce_refrele(nce);
17906 arp_up_done:
17907 	if (added_ipif && err != 0)
17908 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
17909 	return (err);
17910 }
17911 
17912 int
17913 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
17914 {
17915 	int 		err = 0;
17916 	ill_t 		*ill = ipif->ipif_ill;
17917 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
17918 
17919 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
17920 	    ill_t *, ill, ipif_t *, ipif);
17921 
17922 	/*
17923 	 * need to bring up ARP or setup mcast mapping only
17924 	 * when the first interface is coming UP.
17925 	 */
17926 	first_interface = (ill->ill_ipif_up_count == 0 &&
17927 	    ill->ill_ipif_dup_count == 0 && !was_dup);
17928 
17929 	if (res_act == Res_act_initial && first_interface) {
17930 		/*
17931 		 * Send ATTACH + BIND
17932 		 */
17933 		err = arp_ll_up(ill);
17934 		if (err != EINPROGRESS && err != 0)
17935 			return (err);
17936 
17937 		/*
17938 		 * Add NCE for local address. Start DAD.
17939 		 * we'll wait to hear that DAD has finished
17940 		 * before using the interface.
17941 		 */
17942 		if (err == EINPROGRESS)
17943 			wait_for_dlpi = B_TRUE;
17944 	}
17945 
17946 	if (!wait_for_dlpi)
17947 		(void) ipif_arp_up_done_tail(ipif, res_act);
17948 
17949 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
17950 }
17951 
17952 /*
17953  * Finish processing of "arp_up" after all the DLPI message
17954  * exchanges have completed between arp and the driver.
17955  */
17956 void
17957 arp_bringup_done(ill_t *ill, int err)
17958 {
17959 	mblk_t	*mp1;
17960 	ipif_t  *ipif;
17961 	conn_t *connp = NULL;
17962 	ipsq_t	*ipsq;
17963 	queue_t *q;
17964 
17965 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
17966 
17967 	ASSERT(IAM_WRITER_ILL(ill));
17968 
17969 	ipsq = ill->ill_phyint->phyint_ipsq;
17970 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
17971 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
17972 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
17973 	if (mp1 == NULL) /* bringup was aborted by the user */
17974 		return;
17975 
17976 	/*
17977 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
17978 	 * must have an associated conn_t.  Otherwise, we're bringing this
17979 	 * interface back up as part of handling an asynchronous event (e.g.,
17980 	 * physical address change).
17981 	 */
17982 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
17983 		ASSERT(connp != NULL);
17984 		q = CONNP_TO_WQ(connp);
17985 	} else {
17986 		ASSERT(connp == NULL);
17987 		q = ill->ill_rq;
17988 	}
17989 	if (err == 0) {
17990 		if (ipif->ipif_isv6) {
17991 			if ((err = ipif_up_done_v6(ipif)) != 0)
17992 				ip0dbg(("arp_bringup_done: init failed\n"));
17993 		} else {
17994 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
17995 			if (err != 0 ||
17996 			    (err = ipif_up_done(ipif)) != 0) {
17997 				ip0dbg(("arp_bringup_done: "
17998 				    "init failed err %x\n", err));
17999 				(void) ipif_arp_down(ipif);
18000 			}
18001 
18002 		}
18003 	} else {
18004 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18005 	}
18006 
18007 	if ((err == 0) && (ill->ill_up_ipifs)) {
18008 		err = ill_up_ipifs(ill, q, mp1);
18009 		if (err == EINPROGRESS)
18010 			return;
18011 	}
18012 
18013 	/*
18014 	 * If we have a moved ipif to bring up, and everything has succeeded
18015 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18016 	 * down -- the admin can try to bring it up by hand if need be.
18017 	 */
18018 	if (ill->ill_move_ipif != NULL) {
18019 		ipif = ill->ill_move_ipif;
18020 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18021 		    ipif->ipif_ill->ill_name));
18022 		ill->ill_move_ipif = NULL;
18023 		if (err == 0) {
18024 			err = ipif_up(ipif, q, mp1);
18025 			if (err == EINPROGRESS)
18026 				return;
18027 		}
18028 	}
18029 
18030 	/*
18031 	 * The operation must complete without EINPROGRESS since
18032 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18033 	 * Otherwise, the operation will be stuck forever in the ipsq.
18034 	 */
18035 	ASSERT(err != EINPROGRESS);
18036 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18037 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18038 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18039 		    ill_t *, ill, ipif_t *, ipif);
18040 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18041 	} else {
18042 		ipsq_current_finish(ipsq);
18043 	}
18044 }
18045 
18046 /*
18047  * Finish processing of arp replumb after all the DLPI message
18048  * exchanges have completed between arp and the driver.
18049  */
18050 void
18051 arp_replumb_done(ill_t *ill, int err)
18052 {
18053 	mblk_t	*mp1;
18054 	ipif_t  *ipif;
18055 	conn_t *connp = NULL;
18056 	ipsq_t	*ipsq;
18057 	queue_t *q;
18058 
18059 	ASSERT(IAM_WRITER_ILL(ill));
18060 
18061 	ipsq = ill->ill_phyint->phyint_ipsq;
18062 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18063 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18064 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18065 	if (mp1 == NULL) {
18066 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18067 		    ipsq->ipsq_xop->ipx_current_ioctl));
18068 		/* bringup was aborted by the user */
18069 		return;
18070 	}
18071 	/*
18072 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18073 	 * must have an associated conn_t.  Otherwise, we're bringing this
18074 	 * interface back up as part of handling an asynchronous event (e.g.,
18075 	 * physical address change).
18076 	 */
18077 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18078 		ASSERT(connp != NULL);
18079 		q = CONNP_TO_WQ(connp);
18080 	} else {
18081 		ASSERT(connp == NULL);
18082 		q = ill->ill_rq;
18083 	}
18084 	if ((err == 0) && (ill->ill_up_ipifs)) {
18085 		err = ill_up_ipifs(ill, q, mp1);
18086 		if (err == EINPROGRESS)
18087 			return;
18088 	}
18089 	/*
18090 	 * The operation must complete without EINPROGRESS since
18091 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18092 	 * Otherwise, the operation will be stuck forever in the ipsq.
18093 	 */
18094 	ASSERT(err != EINPROGRESS);
18095 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18096 		DTRACE_PROBE4(ipif__ioctl, char *,
18097 		    "arp_replumb_done finish",
18098 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18099 		    ill_t *, ill, ipif_t *, ipif);
18100 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18101 	} else {
18102 		ipsq_current_finish(ipsq);
18103 	}
18104 }
18105 
18106 void
18107 ipif_up_notify(ipif_t *ipif)
18108 {
18109 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18110 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18111 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18112 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18113 	    NE_LIF_UP, NULL, 0);
18114 }
18115 
18116 /*
18117  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18118  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18119  * TPI end points with STREAMS modules pushed above.  This is assured by not
18120  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18121  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18122  * while unwinding from the ispq and that could be a thread from the bottom.
18123  */
18124 /* ARGSUSED */
18125 int
18126 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18127     ip_ioctl_cmd_t *ipip, void *arg)
18128 {
18129 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18130 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18131 	int ret = 0;
18132 	int i;
18133 	size_t size;
18134 	ip_stack_t *ipst;
18135 	zoneid_t zoneid;
18136 	ilb_stack_t *ilbs;
18137 
18138 	ipst = CONNQ_TO_IPST(q);
18139 	ilbs = ipst->ips_netstack->netstack_ilb;
18140 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18141 
18142 	switch (command) {
18143 	case ILB_CREATE_RULE: {
18144 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18145 
18146 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18147 			ret = EINVAL;
18148 			break;
18149 		}
18150 
18151 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18152 		break;
18153 	}
18154 	case ILB_DESTROY_RULE:
18155 	case ILB_ENABLE_RULE:
18156 	case ILB_DISABLE_RULE: {
18157 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18158 
18159 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18160 			ret = EINVAL;
18161 			break;
18162 		}
18163 
18164 		if (cmd->flags & ILB_RULE_ALLRULES) {
18165 			if (command == ILB_DESTROY_RULE) {
18166 				ilb_rule_del_all(ilbs, zoneid);
18167 				break;
18168 			} else if (command == ILB_ENABLE_RULE) {
18169 				ilb_rule_enable_all(ilbs, zoneid);
18170 				break;
18171 			} else if (command == ILB_DISABLE_RULE) {
18172 				ilb_rule_disable_all(ilbs, zoneid);
18173 				break;
18174 			}
18175 		} else {
18176 			if (command == ILB_DESTROY_RULE) {
18177 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18178 			} else if (command == ILB_ENABLE_RULE) {
18179 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18180 				    NULL);
18181 			} else if (command == ILB_DISABLE_RULE) {
18182 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18183 				    NULL);
18184 			}
18185 		}
18186 		break;
18187 	}
18188 	case ILB_NUM_RULES: {
18189 		ilb_num_rules_cmd_t *cmd;
18190 
18191 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18192 			ret = EINVAL;
18193 			break;
18194 		}
18195 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18196 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18197 		break;
18198 	}
18199 	case ILB_RULE_NAMES: {
18200 		ilb_rule_names_cmd_t *cmd;
18201 
18202 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18203 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18204 		    cmd->num_names == 0) {
18205 			ret = EINVAL;
18206 			break;
18207 		}
18208 		size = cmd->num_names * ILB_RULE_NAMESZ;
18209 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18210 		    size != cmd_mp->b_wptr) {
18211 			ret = EINVAL;
18212 			break;
18213 		}
18214 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18215 		break;
18216 	}
18217 	case ILB_NUM_SERVERS: {
18218 		ilb_num_servers_cmd_t *cmd;
18219 
18220 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18221 			ret = EINVAL;
18222 			break;
18223 		}
18224 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18225 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18226 		    &(cmd->num));
18227 		break;
18228 	}
18229 	case ILB_LIST_RULE: {
18230 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18231 
18232 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18233 			ret = EINVAL;
18234 			break;
18235 		}
18236 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18237 		break;
18238 	}
18239 	case ILB_LIST_SERVERS: {
18240 		ilb_servers_info_cmd_t *cmd;
18241 
18242 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18243 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18244 		    cmd->num_servers == 0) {
18245 			ret = EINVAL;
18246 			break;
18247 		}
18248 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18249 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18250 		    size != cmd_mp->b_wptr) {
18251 			ret = EINVAL;
18252 			break;
18253 		}
18254 
18255 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18256 		    &cmd->num_servers);
18257 		break;
18258 	}
18259 	case ILB_ADD_SERVERS: {
18260 		ilb_servers_info_cmd_t *cmd;
18261 		ilb_rule_t *rule;
18262 
18263 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18264 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18265 			ret = EINVAL;
18266 			break;
18267 		}
18268 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18269 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18270 		    size != cmd_mp->b_wptr) {
18271 			ret = EINVAL;
18272 			break;
18273 		}
18274 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18275 		if (rule == NULL) {
18276 			ASSERT(ret != 0);
18277 			break;
18278 		}
18279 		for (i = 0; i < cmd->num_servers; i++) {
18280 			ilb_server_info_t *s;
18281 
18282 			s = &cmd->servers[i];
18283 			s->err = ilb_server_add(ilbs, rule, s);
18284 		}
18285 		ILB_RULE_REFRELE(rule);
18286 		break;
18287 	}
18288 	case ILB_DEL_SERVERS:
18289 	case ILB_ENABLE_SERVERS:
18290 	case ILB_DISABLE_SERVERS: {
18291 		ilb_servers_cmd_t *cmd;
18292 		ilb_rule_t *rule;
18293 		int (*f)();
18294 
18295 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18296 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18297 			ret = EINVAL;
18298 			break;
18299 		}
18300 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18301 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18302 		    size != cmd_mp->b_wptr) {
18303 			ret = EINVAL;
18304 			break;
18305 		}
18306 
18307 		if (command == ILB_DEL_SERVERS)
18308 			f = ilb_server_del;
18309 		else if (command == ILB_ENABLE_SERVERS)
18310 			f = ilb_server_enable;
18311 		else if (command == ILB_DISABLE_SERVERS)
18312 			f = ilb_server_disable;
18313 
18314 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18315 		if (rule == NULL) {
18316 			ASSERT(ret != 0);
18317 			break;
18318 		}
18319 
18320 		for (i = 0; i < cmd->num_servers; i++) {
18321 			ilb_server_arg_t *s;
18322 
18323 			s = &cmd->servers[i];
18324 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18325 		}
18326 		ILB_RULE_REFRELE(rule);
18327 		break;
18328 	}
18329 	case ILB_LIST_NAT_TABLE: {
18330 		ilb_list_nat_cmd_t *cmd;
18331 
18332 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18333 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18334 			ret = EINVAL;
18335 			break;
18336 		}
18337 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18338 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18339 		    size != cmd_mp->b_wptr) {
18340 			ret = EINVAL;
18341 			break;
18342 		}
18343 
18344 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18345 		    &cmd->flags);
18346 		break;
18347 	}
18348 	case ILB_LIST_STICKY_TABLE: {
18349 		ilb_list_sticky_cmd_t *cmd;
18350 
18351 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18352 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18353 			ret = EINVAL;
18354 			break;
18355 		}
18356 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18357 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18358 		    size != cmd_mp->b_wptr) {
18359 			ret = EINVAL;
18360 			break;
18361 		}
18362 
18363 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18364 		    &cmd->num_sticky, &cmd->flags);
18365 		break;
18366 	}
18367 	default:
18368 		ret = EINVAL;
18369 		break;
18370 	}
18371 done:
18372 	return (ret);
18373 }
18374 
18375 /* Remove all cache entries for this logical interface */
18376 void
18377 ipif_nce_down(ipif_t *ipif)
18378 {
18379 	ill_t *ill = ipif->ipif_ill;
18380 	nce_t *nce;
18381 
18382 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18383 	    ill_t *, ill, ipif_t *, ipif);
18384 	if (ipif->ipif_added_nce) {
18385 		if (ipif->ipif_isv6)
18386 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18387 		else
18388 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18389 		if (nce != NULL) {
18390 			if (--nce->nce_ipif_cnt == 0)
18391 				ncec_delete(nce->nce_common);
18392 			ipif->ipif_added_nce = 0;
18393 			nce_refrele(nce);
18394 		} else {
18395 			/*
18396 			 * nce may already be NULL because it was already
18397 			 * flushed, e.g., due to a call to nce_flush
18398 			 */
18399 			ipif->ipif_added_nce = 0;
18400 		}
18401 	}
18402 	/*
18403 	 * Make IPMP aware of the deleted data address.
18404 	 */
18405 	if (IS_IPMP(ill))
18406 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18407 
18408 	/*
18409 	 * Remove all other nces dependent on this ill when the last ipif
18410 	 * is going away.
18411 	 */
18412 	if (ill->ill_ipif_up_count == 0) {
18413 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18414 		    (uchar_t *)ill, ill->ill_ipst);
18415 		if (IS_UNDER_IPMP(ill))
18416 			nce_flush(ill, B_TRUE);
18417 	}
18418 }
18419