xref: /titanic_52/usr/src/uts/common/inet/ip/ip_if.c (revision 65e70c04884b95e29d10e9933a3d55f0ec5af3be)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  */
25 
26 /*
27  * This file contains the interface control functions for IP.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/sysmacros.h>
36 #include <sys/strsubr.h>
37 #include <sys/strlog.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/cmn_err.h>
41 #include <sys/kstat.h>
42 #include <sys/debug.h>
43 #include <sys/zone.h>
44 #include <sys/sunldi.h>
45 #include <sys/file.h>
46 #include <sys/bitmap.h>
47 #include <sys/cpuvar.h>
48 #include <sys/time.h>
49 #include <sys/ctype.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 #include <sys/callb.h>
68 #include <sys/md5.h>
69 
70 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
71 #include <inet/mi.h>
72 #include <inet/nd.h>
73 #include <inet/tunables.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91 
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 #include <sys/mac_flow.h>
98 
99 #include <sys/systeminfo.h>
100 #include <sys/bootconf.h>
101 
102 #include <sys/tsol/tndb.h>
103 #include <sys/tsol/tnet.h>
104 
105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
106 #include <inet/udp_impl.h> /* needed for udp_stack_t */
107 
108 /* The character which tells where the ill_name ends */
109 #define	IPIF_SEPARATOR_CHAR	':'
110 
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 	int	ipft_cmd;
114 	pfi_t	ipft_pfi;
115 	int	ipft_min_size;
116 	int	ipft_flags;
117 } ipft_t;
118 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
119 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
120 
121 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
122 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
123 		    char *value, caddr_t cp, cred_t *ioc_cr);
124 
125 static boolean_t ill_is_quiescent(ill_t *);
126 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
127 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
128 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
129     mblk_t *mp, boolean_t need_up);
130 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
131     mblk_t *mp, boolean_t need_up);
132 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
133     queue_t *q, mblk_t *mp, boolean_t need_up);
134 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
135     mblk_t *mp);
136 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137     mblk_t *mp);
138 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
139     queue_t *q, mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
141     int ioccmd, struct linkblk *li);
142 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
143 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
144 static void	ipsq_flush(ill_t *ill);
145 
146 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
147     queue_t *q, mblk_t *mp, boolean_t need_up);
148 static void	ipsq_delete(ipsq_t *);
149 
150 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
151     boolean_t initialize, boolean_t insert, int *errorp);
152 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
153 static void	ipif_delete_bcast_ires(ipif_t *ipif);
154 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
155 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
156 		    boolean_t isv6);
157 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
158 static void	ipif_free(ipif_t *ipif);
159 static void	ipif_free_tail(ipif_t *ipif);
160 static void	ipif_set_default(ipif_t *ipif);
161 static int	ipif_set_values(queue_t *q, mblk_t *mp,
162     char *interf_name, uint_t *ppa);
163 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
164     queue_t *q);
165 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
166     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
167     ip_stack_t *);
168 static ipif_t	*ipif_lookup_on_name_async(char *name, size_t namelen,
169     boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
170     int *error, ip_stack_t *);
171 
172 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
173 static void	ill_delete_interface_type(ill_if_t *);
174 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
175 static void	ill_dl_down(ill_t *ill);
176 static void	ill_down(ill_t *ill);
177 static void	ill_down_ipifs(ill_t *, boolean_t);
178 static void	ill_free_mib(ill_t *ill);
179 static void	ill_glist_delete(ill_t *);
180 static void	ill_phyint_reinit(ill_t *ill);
181 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
182 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
183 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
184 
185 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
186 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
187 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
188 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
189 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
190 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
191 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
192 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
193 static ip_v4mapinfo_func_t ip_mbcast_mapping;
194 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
195 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
196 static void	phyint_free(phyint_t *);
197 
198 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
199 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
200 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
203 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
204     dl_capability_sub_t *);
205 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
206 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
207 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
208 		    dl_capability_sub_t *);
209 static void	ill_capability_dld_enable(ill_t *);
210 static void	ill_capability_ack_thr(void *);
211 static void	ill_capability_lso_enable(ill_t *);
212 
213 static ill_t	*ill_prev_usesrc(ill_t *);
214 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
215 static void	ill_disband_usesrc_group(ill_t *);
216 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
217 
218 #ifdef DEBUG
219 static	void	ill_trace_cleanup(const ill_t *);
220 static	void	ipif_trace_cleanup(const ipif_t *);
221 #endif
222 
223 static	void	ill_dlpi_clear_deferred(ill_t *ill);
224 
225 /*
226  * if we go over the memory footprint limit more than once in this msec
227  * interval, we'll start pruning aggressively.
228  */
229 int ip_min_frag_prune_time = 0;
230 
231 static ipft_t	ip_ioctl_ftbl[] = {
232 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
233 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
234 		IPFT_F_NO_REPLY },
235 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
236 	{ 0 }
237 };
238 
239 /* Simple ICMP IP Header Template */
240 static ipha_t icmp_ipha = {
241 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
242 };
243 
244 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
245 
246 static ip_m_t   ip_m_tbl[] = {
247 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
248 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
249 	    ip_nodef_v6intfid },
250 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
251 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
252 	    ip_nodef_v6intfid },
253 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
255 	    ip_nodef_v6intfid },
256 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
257 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
258 	    ip_nodef_v6intfid },
259 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
260 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
261 	    ip_nodef_v6intfid },
262 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
263 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
264 	    ip_nodef_v6intfid },
265 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
266 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
267 	    ip_ipv4_v6destintfid },
268 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
269 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
270 	    ip_ipv6_v6destintfid },
271 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
272 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
273 	    ip_nodef_v6intfid },
274 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
275 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
276 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
277 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
278 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
279 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
280 	    ip_nodef_v6intfid }
281 };
282 
283 static ill_t	ill_null;		/* Empty ILL for init. */
284 char	ipif_loopback_name[] = "lo0";
285 
286 /* These are used by all IP network modules. */
287 sin6_t	sin6_null;	/* Zero address for quick clears */
288 sin_t	sin_null;	/* Zero address for quick clears */
289 
290 /* When set search for unused ipif_seqid */
291 static ipif_t	ipif_zero;
292 
293 /*
294  * ppa arena is created after these many
295  * interfaces have been plumbed.
296  */
297 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
298 
299 /*
300  * Allocate per-interface mibs.
301  * Returns true if ok. False otherwise.
302  *  ipsq  may not yet be allocated (loopback case ).
303  */
304 static boolean_t
305 ill_allocate_mibs(ill_t *ill)
306 {
307 	/* Already allocated? */
308 	if (ill->ill_ip_mib != NULL) {
309 		if (ill->ill_isv6)
310 			ASSERT(ill->ill_icmp6_mib != NULL);
311 		return (B_TRUE);
312 	}
313 
314 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
315 	    KM_NOSLEEP);
316 	if (ill->ill_ip_mib == NULL) {
317 		return (B_FALSE);
318 	}
319 
320 	/* Setup static information */
321 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
322 	    sizeof (mib2_ipIfStatsEntry_t));
323 	if (ill->ill_isv6) {
324 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
325 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
326 		    sizeof (mib2_ipv6AddrEntry_t));
327 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
328 		    sizeof (mib2_ipv6RouteEntry_t));
329 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
330 		    sizeof (mib2_ipv6NetToMediaEntry_t));
331 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
332 		    sizeof (ipv6_member_t));
333 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
334 		    sizeof (ipv6_grpsrc_t));
335 	} else {
336 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
337 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
338 		    sizeof (mib2_ipAddrEntry_t));
339 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
340 		    sizeof (mib2_ipRouteEntry_t));
341 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
342 		    sizeof (mib2_ipNetToMediaEntry_t));
343 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
344 		    sizeof (ip_member_t));
345 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
346 		    sizeof (ip_grpsrc_t));
347 
348 		/*
349 		 * For a v4 ill, we are done at this point, because per ill
350 		 * icmp mibs are only used for v6.
351 		 */
352 		return (B_TRUE);
353 	}
354 
355 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
356 	    KM_NOSLEEP);
357 	if (ill->ill_icmp6_mib == NULL) {
358 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
359 		ill->ill_ip_mib = NULL;
360 		return (B_FALSE);
361 	}
362 	/* static icmp info */
363 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
364 	    sizeof (mib2_ipv6IfIcmpEntry_t);
365 	/*
366 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
367 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
368 	 * -> ill_phyint_reinit
369 	 */
370 	return (B_TRUE);
371 }
372 
373 /*
374  * Completely vaporize a lower level tap and all associated interfaces.
375  * ill_delete is called only out of ip_close when the device control
376  * stream is being closed.
377  */
378 void
379 ill_delete(ill_t *ill)
380 {
381 	ipif_t	*ipif;
382 	ill_t	*prev_ill;
383 	ip_stack_t	*ipst = ill->ill_ipst;
384 
385 	/*
386 	 * ill_delete may be forcibly entering the ipsq. The previous
387 	 * ioctl may not have completed and may need to be aborted.
388 	 * ipsq_flush takes care of it. If we don't need to enter the
389 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
390 	 * ill_delete_tail is sufficient.
391 	 */
392 	ipsq_flush(ill);
393 
394 	/*
395 	 * Nuke all interfaces.  ipif_free will take down the interface,
396 	 * remove it from the list, and free the data structure.
397 	 * Walk down the ipif list and remove the logical interfaces
398 	 * first before removing the main ipif. We can't unplumb
399 	 * zeroth interface first in the case of IPv6 as update_conn_ill
400 	 * -> ip_ll_multireq de-references ill_ipif for checking
401 	 * POINTOPOINT.
402 	 *
403 	 * If ill_ipif was not properly initialized (i.e low on memory),
404 	 * then no interfaces to clean up. In this case just clean up the
405 	 * ill.
406 	 */
407 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
408 		ipif_free(ipif);
409 
410 	/*
411 	 * clean out all the nce_t entries that depend on this
412 	 * ill for the ill_phys_addr.
413 	 */
414 	nce_flush(ill, B_TRUE);
415 
416 	/* Clean up msgs on pending upcalls for mrouted */
417 	reset_mrt_ill(ill);
418 
419 	update_conn_ill(ill, ipst);
420 
421 	/*
422 	 * Remove multicast references added as a result of calls to
423 	 * ip_join_allmulti().
424 	 */
425 	ip_purge_allmulti(ill);
426 
427 	/*
428 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
429 	 */
430 	if (IS_UNDER_IPMP(ill))
431 		ipmp_ill_leave_illgrp(ill);
432 
433 	/*
434 	 * ill_down will arrange to blow off any IRE's dependent on this
435 	 * ILL, and shut down fragmentation reassembly.
436 	 */
437 	ill_down(ill);
438 
439 	/* Let SCTP know, so that it can remove this from its list. */
440 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
441 
442 	/*
443 	 * Walk all CONNs that can have a reference on an ire or nce for this
444 	 * ill (we actually walk all that now have stale references).
445 	 */
446 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
447 
448 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
449 	if (ill->ill_isv6)
450 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
451 
452 	/*
453 	 * If an address on this ILL is being used as a source address then
454 	 * clear out the pointers in other ILLs that point to this ILL.
455 	 */
456 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
457 	if (ill->ill_usesrc_grp_next != NULL) {
458 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
459 			ill_disband_usesrc_group(ill);
460 		} else {	/* consumer of the usesrc ILL */
461 			prev_ill = ill_prev_usesrc(ill);
462 			prev_ill->ill_usesrc_grp_next =
463 			    ill->ill_usesrc_grp_next;
464 		}
465 	}
466 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
467 }
468 
469 static void
470 ipif_non_duplicate(ipif_t *ipif)
471 {
472 	ill_t *ill = ipif->ipif_ill;
473 	mutex_enter(&ill->ill_lock);
474 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
475 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
476 		ASSERT(ill->ill_ipif_dup_count > 0);
477 		ill->ill_ipif_dup_count--;
478 	}
479 	mutex_exit(&ill->ill_lock);
480 }
481 
482 /*
483  * ill_delete_tail is called from ip_modclose after all references
484  * to the closing ill are gone. The wait is done in ip_modclose
485  */
486 void
487 ill_delete_tail(ill_t *ill)
488 {
489 	mblk_t	**mpp;
490 	ipif_t	*ipif;
491 	ip_stack_t *ipst = ill->ill_ipst;
492 
493 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
494 		ipif_non_duplicate(ipif);
495 		(void) ipif_down_tail(ipif);
496 	}
497 
498 	ASSERT(ill->ill_ipif_dup_count == 0);
499 
500 	/*
501 	 * If polling capability is enabled (which signifies direct
502 	 * upcall into IP and driver has ill saved as a handle),
503 	 * we need to make sure that unbind has completed before we
504 	 * let the ill disappear and driver no longer has any reference
505 	 * to this ill.
506 	 */
507 	mutex_enter(&ill->ill_lock);
508 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
509 		cv_wait(&ill->ill_cv, &ill->ill_lock);
510 	mutex_exit(&ill->ill_lock);
511 	ASSERT(!(ill->ill_capabilities &
512 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
513 
514 	if (ill->ill_net_type != IRE_LOOPBACK)
515 		qprocsoff(ill->ill_rq);
516 
517 	/*
518 	 * We do an ipsq_flush once again now. New messages could have
519 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
520 	 * could also have landed up if an ioctl thread had looked up
521 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
522 	 * enqueued the ioctl when we did the ipsq_flush last time.
523 	 */
524 	ipsq_flush(ill);
525 
526 	/*
527 	 * Free capabilities.
528 	 */
529 	if (ill->ill_hcksum_capab != NULL) {
530 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
531 		ill->ill_hcksum_capab = NULL;
532 	}
533 
534 	if (ill->ill_zerocopy_capab != NULL) {
535 		kmem_free(ill->ill_zerocopy_capab,
536 		    sizeof (ill_zerocopy_capab_t));
537 		ill->ill_zerocopy_capab = NULL;
538 	}
539 
540 	if (ill->ill_lso_capab != NULL) {
541 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
542 		ill->ill_lso_capab = NULL;
543 	}
544 
545 	if (ill->ill_dld_capab != NULL) {
546 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
547 		ill->ill_dld_capab = NULL;
548 	}
549 
550 	/* Clean up ill_allowed_ips* related state */
551 	if (ill->ill_allowed_ips != NULL) {
552 		ASSERT(ill->ill_allowed_ips_cnt > 0);
553 		kmem_free(ill->ill_allowed_ips,
554 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
555 		ill->ill_allowed_ips = NULL;
556 		ill->ill_allowed_ips_cnt = 0;
557 	}
558 
559 	while (ill->ill_ipif != NULL)
560 		ipif_free_tail(ill->ill_ipif);
561 
562 	/*
563 	 * We have removed all references to ilm from conn and the ones joined
564 	 * within the kernel.
565 	 *
566 	 * We don't walk conns, mrts and ires because
567 	 *
568 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
569 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
570 	 *    ill references.
571 	 */
572 
573 	/*
574 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
575 	 * is safe to do because the illgrp has already been unlinked from the
576 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
577 	 */
578 	if (IS_IPMP(ill)) {
579 		ipmp_illgrp_destroy(ill->ill_grp);
580 		ill->ill_grp = NULL;
581 	}
582 
583 	/*
584 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
585 	 * could free the phyint. No more reference to the phyint after this
586 	 * point.
587 	 */
588 	(void) ill_glist_delete(ill);
589 
590 	if (ill->ill_frag_ptr != NULL) {
591 		uint_t count;
592 
593 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
594 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
595 		}
596 		mi_free(ill->ill_frag_ptr);
597 		ill->ill_frag_ptr = NULL;
598 		ill->ill_frag_hash_tbl = NULL;
599 	}
600 
601 	freemsg(ill->ill_nd_lla_mp);
602 	/* Free all retained control messages. */
603 	mpp = &ill->ill_first_mp_to_free;
604 	do {
605 		while (mpp[0]) {
606 			mblk_t  *mp;
607 			mblk_t  *mp1;
608 
609 			mp = mpp[0];
610 			mpp[0] = mp->b_next;
611 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
612 				mp1->b_next = NULL;
613 				mp1->b_prev = NULL;
614 			}
615 			freemsg(mp);
616 		}
617 	} while (mpp++ != &ill->ill_last_mp_to_free);
618 
619 	ill_free_mib(ill);
620 
621 #ifdef DEBUG
622 	ill_trace_cleanup(ill);
623 #endif
624 
625 	/* The default multicast interface might have changed */
626 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
627 
628 	/* Drop refcnt here */
629 	netstack_rele(ill->ill_ipst->ips_netstack);
630 	ill->ill_ipst = NULL;
631 }
632 
633 static void
634 ill_free_mib(ill_t *ill)
635 {
636 	ip_stack_t *ipst = ill->ill_ipst;
637 
638 	/*
639 	 * MIB statistics must not be lost, so when an interface
640 	 * goes away the counter values will be added to the global
641 	 * MIBs.
642 	 */
643 	if (ill->ill_ip_mib != NULL) {
644 		if (ill->ill_isv6) {
645 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
646 			    ill->ill_ip_mib);
647 		} else {
648 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
649 			    ill->ill_ip_mib);
650 		}
651 
652 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
653 		ill->ill_ip_mib = NULL;
654 	}
655 	if (ill->ill_icmp6_mib != NULL) {
656 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
657 		    ill->ill_icmp6_mib);
658 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
659 		ill->ill_icmp6_mib = NULL;
660 	}
661 }
662 
663 /*
664  * Concatenate together a physical address and a sap.
665  *
666  * Sap_lengths are interpreted as follows:
667  *   sap_length == 0	==>	no sap
668  *   sap_length > 0	==>	sap is at the head of the dlpi address
669  *   sap_length < 0	==>	sap is at the tail of the dlpi address
670  */
671 static void
672 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
673     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
674 {
675 	uint16_t sap_addr = (uint16_t)sap_src;
676 
677 	if (sap_length == 0) {
678 		if (phys_src == NULL)
679 			bzero(dst, phys_length);
680 		else
681 			bcopy(phys_src, dst, phys_length);
682 	} else if (sap_length < 0) {
683 		if (phys_src == NULL)
684 			bzero(dst, phys_length);
685 		else
686 			bcopy(phys_src, dst, phys_length);
687 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
688 	} else {
689 		bcopy(&sap_addr, dst, sizeof (sap_addr));
690 		if (phys_src == NULL)
691 			bzero((char *)dst + sap_length, phys_length);
692 		else
693 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
694 	}
695 }
696 
697 /*
698  * Generate a dl_unitdata_req mblk for the device and address given.
699  * addr_length is the length of the physical portion of the address.
700  * If addr is NULL include an all zero address of the specified length.
701  * TRUE? In any case, addr_length is taken to be the entire length of the
702  * dlpi address, including the absolute value of sap_length.
703  */
704 mblk_t *
705 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
706 		t_scalar_t sap_length)
707 {
708 	dl_unitdata_req_t *dlur;
709 	mblk_t	*mp;
710 	t_scalar_t	abs_sap_length;		/* absolute value */
711 
712 	abs_sap_length = ABS(sap_length);
713 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
714 	    DL_UNITDATA_REQ);
715 	if (mp == NULL)
716 		return (NULL);
717 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
718 	/* HACK: accomodate incompatible DLPI drivers */
719 	if (addr_length == 8)
720 		addr_length = 6;
721 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
722 	dlur->dl_dest_addr_offset = sizeof (*dlur);
723 	dlur->dl_priority.dl_min = 0;
724 	dlur->dl_priority.dl_max = 0;
725 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
726 	    (uchar_t *)&dlur[1]);
727 	return (mp);
728 }
729 
730 /*
731  * Add the pending mp to the list. There can be only 1 pending mp
732  * in the list. Any exclusive ioctl that needs to wait for a response
733  * from another module or driver needs to use this function to set
734  * the ipx_pending_mp to the ioctl mblk and wait for the response from
735  * the other module/driver. This is also used while waiting for the
736  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
737  */
738 boolean_t
739 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
740     int waitfor)
741 {
742 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
743 
744 	ASSERT(IAM_WRITER_IPIF(ipif));
745 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
746 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
747 	ASSERT(ipx->ipx_pending_mp == NULL);
748 	/*
749 	 * The caller may be using a different ipif than the one passed into
750 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
751 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
752 	 * that `ipx_current_ipif == ipif'.
753 	 */
754 	ASSERT(ipx->ipx_current_ipif != NULL);
755 
756 	/*
757 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
758 	 * driver.
759 	 */
760 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
761 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
762 	    (DB_TYPE(add_mp) == M_PCPROTO));
763 
764 	if (connp != NULL) {
765 		ASSERT(MUTEX_HELD(&connp->conn_lock));
766 		/*
767 		 * Return error if the conn has started closing. The conn
768 		 * could have finished cleaning up the pending mp list,
769 		 * If so we should not add another mp to the list negating
770 		 * the cleanup.
771 		 */
772 		if (connp->conn_state_flags & CONN_CLOSING)
773 			return (B_FALSE);
774 	}
775 	mutex_enter(&ipx->ipx_lock);
776 	ipx->ipx_pending_ipif = ipif;
777 	/*
778 	 * Note down the queue in b_queue. This will be returned by
779 	 * ipsq_pending_mp_get. Caller will then use these values to restart
780 	 * the processing
781 	 */
782 	add_mp->b_next = NULL;
783 	add_mp->b_queue = q;
784 	ipx->ipx_pending_mp = add_mp;
785 	ipx->ipx_waitfor = waitfor;
786 	mutex_exit(&ipx->ipx_lock);
787 
788 	if (connp != NULL)
789 		connp->conn_oper_pending_ill = ipif->ipif_ill;
790 
791 	return (B_TRUE);
792 }
793 
794 /*
795  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
796  * queued in the list.
797  */
798 mblk_t *
799 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
800 {
801 	mblk_t	*curr = NULL;
802 	ipxop_t	*ipx = ipsq->ipsq_xop;
803 
804 	*connpp = NULL;
805 	mutex_enter(&ipx->ipx_lock);
806 	if (ipx->ipx_pending_mp == NULL) {
807 		mutex_exit(&ipx->ipx_lock);
808 		return (NULL);
809 	}
810 
811 	/* There can be only 1 such excl message */
812 	curr = ipx->ipx_pending_mp;
813 	ASSERT(curr->b_next == NULL);
814 	ipx->ipx_pending_ipif = NULL;
815 	ipx->ipx_pending_mp = NULL;
816 	ipx->ipx_waitfor = 0;
817 	mutex_exit(&ipx->ipx_lock);
818 
819 	if (CONN_Q(curr->b_queue)) {
820 		/*
821 		 * This mp did a refhold on the conn, at the start of the ioctl.
822 		 * So we can safely return a pointer to the conn to the caller.
823 		 */
824 		*connpp = Q_TO_CONN(curr->b_queue);
825 	} else {
826 		*connpp = NULL;
827 	}
828 	curr->b_next = NULL;
829 	curr->b_prev = NULL;
830 	return (curr);
831 }
832 
833 /*
834  * Cleanup the ioctl mp queued in ipx_pending_mp
835  * - Called in the ill_delete path
836  * - Called in the M_ERROR or M_HANGUP path on the ill.
837  * - Called in the conn close path.
838  *
839  * Returns success on finding the pending mblk associated with the ioctl or
840  * exclusive operation in progress, failure otherwise.
841  */
842 boolean_t
843 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
844 {
845 	mblk_t	*mp;
846 	ipxop_t	*ipx;
847 	queue_t	*q;
848 	ipif_t	*ipif;
849 	int	cmd;
850 
851 	ASSERT(IAM_WRITER_ILL(ill));
852 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
853 
854 	mutex_enter(&ipx->ipx_lock);
855 	mp = ipx->ipx_pending_mp;
856 	if (connp != NULL) {
857 		if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
858 			/*
859 			 * Nothing to clean since the conn that is closing
860 			 * does not have a matching pending mblk in
861 			 * ipx_pending_mp.
862 			 */
863 			mutex_exit(&ipx->ipx_lock);
864 			return (B_FALSE);
865 		}
866 	} else {
867 		/*
868 		 * A non-zero ill_error signifies we are called in the
869 		 * M_ERROR or M_HANGUP path and we need to unconditionally
870 		 * abort any current ioctl and do the corresponding cleanup.
871 		 * A zero ill_error means we are in the ill_delete path and
872 		 * we do the cleanup only if there is a pending mp.
873 		 */
874 		if (mp == NULL && ill->ill_error == 0) {
875 			mutex_exit(&ipx->ipx_lock);
876 			return (B_FALSE);
877 		}
878 	}
879 
880 	/* Now remove from the ipx_pending_mp */
881 	ipx->ipx_pending_mp = NULL;
882 	ipif = ipx->ipx_pending_ipif;
883 	ipx->ipx_pending_ipif = NULL;
884 	ipx->ipx_waitfor = 0;
885 	ipx->ipx_current_ipif = NULL;
886 	cmd = ipx->ipx_current_ioctl;
887 	ipx->ipx_current_ioctl = 0;
888 	ipx->ipx_current_done = B_TRUE;
889 	mutex_exit(&ipx->ipx_lock);
890 
891 	if (mp == NULL)
892 		return (B_FALSE);
893 
894 	q = mp->b_queue;
895 	mp->b_next = NULL;
896 	mp->b_prev = NULL;
897 	mp->b_queue = NULL;
898 
899 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
900 		DTRACE_PROBE4(ipif__ioctl,
901 		    char *, "ipsq_pending_mp_cleanup",
902 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
903 		    ipif_t *, ipif);
904 		if (connp == NULL) {
905 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
906 		} else {
907 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
908 			mutex_enter(&ipif->ipif_ill->ill_lock);
909 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
910 			mutex_exit(&ipif->ipif_ill->ill_lock);
911 		}
912 	} else {
913 		inet_freemsg(mp);
914 	}
915 	return (B_TRUE);
916 }
917 
918 /*
919  * Called in the conn close path and ill delete path
920  */
921 static void
922 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
923 {
924 	ipsq_t	*ipsq;
925 	mblk_t	*prev;
926 	mblk_t	*curr;
927 	mblk_t	*next;
928 	queue_t	*wq, *rq = NULL;
929 	mblk_t	*tmp_list = NULL;
930 
931 	ASSERT(IAM_WRITER_ILL(ill));
932 	if (connp != NULL)
933 		wq = CONNP_TO_WQ(connp);
934 	else
935 		wq = ill->ill_wq;
936 
937 	/*
938 	 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
939 	 * against this here.
940 	 */
941 	if (wq != NULL)
942 		rq = RD(wq);
943 
944 	ipsq = ill->ill_phyint->phyint_ipsq;
945 	/*
946 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
947 	 * In the case of ioctl from a conn, there can be only 1 mp
948 	 * queued on the ipsq. If an ill is being unplumbed flush all
949 	 * the messages.
950 	 */
951 	mutex_enter(&ipsq->ipsq_lock);
952 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
953 	    curr = next) {
954 		next = curr->b_next;
955 		if (connp == NULL ||
956 		    (curr->b_queue == wq || curr->b_queue == rq)) {
957 			/* Unlink the mblk from the pending mp list */
958 			if (prev != NULL) {
959 				prev->b_next = curr->b_next;
960 			} else {
961 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
962 				ipsq->ipsq_xopq_mphead = curr->b_next;
963 			}
964 			if (ipsq->ipsq_xopq_mptail == curr)
965 				ipsq->ipsq_xopq_mptail = prev;
966 			/*
967 			 * Create a temporary list and release the ipsq lock
968 			 * New elements are added to the head of the tmp_list
969 			 */
970 			curr->b_next = tmp_list;
971 			tmp_list = curr;
972 		} else {
973 			prev = curr;
974 		}
975 	}
976 	mutex_exit(&ipsq->ipsq_lock);
977 
978 	while (tmp_list != NULL) {
979 		curr = tmp_list;
980 		tmp_list = curr->b_next;
981 		curr->b_next = NULL;
982 		curr->b_prev = NULL;
983 		wq = curr->b_queue;
984 		curr->b_queue = NULL;
985 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
986 			DTRACE_PROBE4(ipif__ioctl,
987 			    char *, "ipsq_xopq_mp_cleanup",
988 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
989 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
990 			    CONN_CLOSE : NO_COPYOUT, NULL);
991 		} else {
992 			/*
993 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
994 			 * this can't be just inet_freemsg. we have to
995 			 * restart it otherwise the thread will be stuck.
996 			 */
997 			inet_freemsg(curr);
998 		}
999 	}
1000 }
1001 
1002 /*
1003  * This conn has started closing. Cleanup any pending ioctl from this conn.
1004  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1005  */
1006 void
1007 conn_ioctl_cleanup(conn_t *connp)
1008 {
1009 	ipsq_t	*ipsq;
1010 	ill_t	*ill;
1011 	boolean_t refheld;
1012 
1013 	/*
1014 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1015 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1016 	 * started the mp could be present in ipx_pending_mp. Note that if
1017 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1018 	 * not yet queued anywhere. In this case, the conn close code will wait
1019 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
1020 	 * tcp_close will wait first until all ioctls have completed for this
1021 	 * conn.
1022 	 */
1023 	mutex_enter(&connp->conn_lock);
1024 	ill = connp->conn_oper_pending_ill;
1025 	if (ill == NULL) {
1026 		mutex_exit(&connp->conn_lock);
1027 		return;
1028 	}
1029 
1030 	/*
1031 	 * We may not be able to refhold the ill if the ill/ipif
1032 	 * is changing. But we need to make sure that the ill will
1033 	 * not vanish. So we just bump up the ill_waiter count.
1034 	 */
1035 	refheld = ill_waiter_inc(ill);
1036 	mutex_exit(&connp->conn_lock);
1037 	if (refheld) {
1038 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1039 			ill_waiter_dcr(ill);
1040 			/*
1041 			 * Check whether this ioctl has started and is
1042 			 * pending. If it is not found there then check
1043 			 * whether this ioctl has not even started and is in
1044 			 * the ipsq_xopq list.
1045 			 */
1046 			if (!ipsq_pending_mp_cleanup(ill, connp))
1047 				ipsq_xopq_mp_cleanup(ill, connp);
1048 			ipsq = ill->ill_phyint->phyint_ipsq;
1049 			ipsq_exit(ipsq);
1050 			return;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * The ill is also closing and we could not bump up the
1056 	 * ill_waiter_count or we could not enter the ipsq. Leave
1057 	 * the cleanup to ill_delete
1058 	 */
1059 	mutex_enter(&connp->conn_lock);
1060 	while (connp->conn_oper_pending_ill != NULL)
1061 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1062 	mutex_exit(&connp->conn_lock);
1063 	if (refheld)
1064 		ill_waiter_dcr(ill);
1065 }
1066 
1067 /*
1068  * ipcl_walk function for cleaning up conn_*_ill fields.
1069  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1070  * conn_bound_if in place. We prefer dropping
1071  * packets instead of sending them out the wrong interface, or accepting
1072  * packets from the wrong ifindex.
1073  */
1074 static void
1075 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1076 {
1077 	ill_t	*ill = (ill_t *)arg;
1078 
1079 	mutex_enter(&connp->conn_lock);
1080 	if (connp->conn_dhcpinit_ill == ill) {
1081 		connp->conn_dhcpinit_ill = NULL;
1082 		ASSERT(ill->ill_dhcpinit != 0);
1083 		atomic_dec_32(&ill->ill_dhcpinit);
1084 		ill_set_inputfn(ill);
1085 	}
1086 	mutex_exit(&connp->conn_lock);
1087 }
1088 
1089 static int
1090 ill_down_ipifs_tail(ill_t *ill)
1091 {
1092 	ipif_t	*ipif;
1093 	int err;
1094 
1095 	ASSERT(IAM_WRITER_ILL(ill));
1096 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1097 		ipif_non_duplicate(ipif);
1098 		/*
1099 		 * ipif_down_tail will call arp_ll_down on the last ipif
1100 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1101 		 */
1102 		if ((err = ipif_down_tail(ipif)) != 0)
1103 			return (err);
1104 	}
1105 	return (0);
1106 }
1107 
1108 /* ARGSUSED */
1109 void
1110 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1111 {
1112 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1113 	(void) ill_down_ipifs_tail(q->q_ptr);
1114 	freemsg(mp);
1115 	ipsq_current_finish(ipsq);
1116 }
1117 
1118 /*
1119  * ill_down_start is called when we want to down this ill and bring it up again
1120  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1121  * all interfaces, but don't tear down any plumbing.
1122  */
1123 boolean_t
1124 ill_down_start(queue_t *q, mblk_t *mp)
1125 {
1126 	ill_t	*ill = q->q_ptr;
1127 	ipif_t	*ipif;
1128 
1129 	ASSERT(IAM_WRITER_ILL(ill));
1130 	/*
1131 	 * It is possible that some ioctl is already in progress while we
1132 	 * received the M_ERROR / M_HANGUP in which case, we need to abort
1133 	 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1134 	 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1135 	 * the in progress ioctl from ever completing.
1136 	 *
1137 	 * The thread that started the ioctl (if any) must have returned,
1138 	 * since we are now executing as writer. After the 2 calls below,
1139 	 * the state of the ipsq and the ill would reflect no trace of any
1140 	 * pending operation. Subsequently if there is any response to the
1141 	 * original ioctl from the driver, it would be discarded as an
1142 	 * unsolicited message from the driver.
1143 	 */
1144 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1145 	ill_dlpi_clear_deferred(ill);
1146 
1147 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1148 		(void) ipif_down(ipif, NULL, NULL);
1149 
1150 	ill_down(ill);
1151 
1152 	/*
1153 	 * Walk all CONNs that can have a reference on an ire or nce for this
1154 	 * ill (we actually walk all that now have stale references).
1155 	 */
1156 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1157 
1158 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1159 	if (ill->ill_isv6)
1160 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1161 
1162 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1163 
1164 	/*
1165 	 * Atomically test and add the pending mp if references are active.
1166 	 */
1167 	mutex_enter(&ill->ill_lock);
1168 	if (!ill_is_quiescent(ill)) {
1169 		/* call cannot fail since `conn_t *' argument is NULL */
1170 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1171 		    mp, ILL_DOWN);
1172 		mutex_exit(&ill->ill_lock);
1173 		return (B_FALSE);
1174 	}
1175 	mutex_exit(&ill->ill_lock);
1176 	return (B_TRUE);
1177 }
1178 
1179 static void
1180 ill_down(ill_t *ill)
1181 {
1182 	mblk_t	*mp;
1183 	ip_stack_t	*ipst = ill->ill_ipst;
1184 
1185 	/*
1186 	 * Blow off any IREs dependent on this ILL.
1187 	 * The caller needs to handle conn_ixa_cleanup
1188 	 */
1189 	ill_delete_ires(ill);
1190 
1191 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1192 
1193 	/* Remove any conn_*_ill depending on this ill */
1194 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1195 
1196 	/*
1197 	 * Free state for additional IREs.
1198 	 */
1199 	mutex_enter(&ill->ill_saved_ire_lock);
1200 	mp = ill->ill_saved_ire_mp;
1201 	ill->ill_saved_ire_mp = NULL;
1202 	ill->ill_saved_ire_cnt = 0;
1203 	mutex_exit(&ill->ill_saved_ire_lock);
1204 	freemsg(mp);
1205 }
1206 
1207 /*
1208  * ire_walk routine used to delete every IRE that depends on
1209  * 'ill'.  (Always called as writer, and may only be called from ire_walk.)
1210  *
1211  * Note: since the routes added by the kernel are deleted separately,
1212  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1213  *
1214  * We also remove references on ire_nce_cache entries that refer to the ill.
1215  */
1216 void
1217 ill_downi(ire_t *ire, char *ill_arg)
1218 {
1219 	ill_t	*ill = (ill_t *)ill_arg;
1220 	nce_t	*nce;
1221 
1222 	mutex_enter(&ire->ire_lock);
1223 	nce = ire->ire_nce_cache;
1224 	if (nce != NULL && nce->nce_ill == ill)
1225 		ire->ire_nce_cache = NULL;
1226 	else
1227 		nce = NULL;
1228 	mutex_exit(&ire->ire_lock);
1229 	if (nce != NULL)
1230 		nce_refrele(nce);
1231 	if (ire->ire_ill == ill) {
1232 		/*
1233 		 * The existing interface binding for ire must be
1234 		 * deleted before trying to bind the route to another
1235 		 * interface. However, since we are using the contents of the
1236 		 * ire after ire_delete, the caller has to ensure that
1237 		 * CONDEMNED (deleted) ire's are not removed from the list
1238 		 * when ire_delete() returns. Currently ill_downi() is
1239 		 * only called as part of ire_walk*() routines, so that
1240 		 * the irb_refhold() done by ire_walk*() will ensure that
1241 		 * ire_delete() does not lead to ire_inactive().
1242 		 */
1243 		ASSERT(ire->ire_bucket->irb_refcnt > 0);
1244 		ire_delete(ire);
1245 		if (ire->ire_unbound)
1246 			ire_rebind(ire);
1247 	}
1248 }
1249 
1250 /* Remove IRE_IF_CLONE on this ill */
1251 void
1252 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1253 {
1254 	ill_t	*ill = (ill_t *)ill_arg;
1255 
1256 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1257 	if (ire->ire_ill == ill)
1258 		ire_delete(ire);
1259 }
1260 
1261 /* Consume an M_IOCACK of the fastpath probe. */
1262 void
1263 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1264 {
1265 	mblk_t	*mp1 = mp;
1266 
1267 	/*
1268 	 * If this was the first attempt turn on the fastpath probing.
1269 	 */
1270 	mutex_enter(&ill->ill_lock);
1271 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1272 		ill->ill_dlpi_fastpath_state = IDS_OK;
1273 	mutex_exit(&ill->ill_lock);
1274 
1275 	/* Free the M_IOCACK mblk, hold on to the data */
1276 	mp = mp->b_cont;
1277 	freeb(mp1);
1278 	if (mp == NULL)
1279 		return;
1280 	if (mp->b_cont != NULL)
1281 		nce_fastpath_update(ill, mp);
1282 	else
1283 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1284 	freemsg(mp);
1285 }
1286 
1287 /*
1288  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1289  * The data portion of the request is a dl_unitdata_req_t template for
1290  * what we would send downstream in the absence of a fastpath confirmation.
1291  */
1292 int
1293 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1294 {
1295 	struct iocblk	*ioc;
1296 	mblk_t	*mp;
1297 
1298 	if (dlur_mp == NULL)
1299 		return (EINVAL);
1300 
1301 	mutex_enter(&ill->ill_lock);
1302 	switch (ill->ill_dlpi_fastpath_state) {
1303 	case IDS_FAILED:
1304 		/*
1305 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1306 		 * support it.
1307 		 */
1308 		mutex_exit(&ill->ill_lock);
1309 		return (ENOTSUP);
1310 	case IDS_UNKNOWN:
1311 		/* This is the first probe */
1312 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1313 		break;
1314 	default:
1315 		break;
1316 	}
1317 	mutex_exit(&ill->ill_lock);
1318 
1319 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1320 		return (EAGAIN);
1321 
1322 	mp->b_cont = copyb(dlur_mp);
1323 	if (mp->b_cont == NULL) {
1324 		freeb(mp);
1325 		return (EAGAIN);
1326 	}
1327 
1328 	ioc = (struct iocblk *)mp->b_rptr;
1329 	ioc->ioc_count = msgdsize(mp->b_cont);
1330 
1331 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1332 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1333 	putnext(ill->ill_wq, mp);
1334 	return (0);
1335 }
1336 
1337 void
1338 ill_capability_probe(ill_t *ill)
1339 {
1340 	mblk_t	*mp;
1341 
1342 	ASSERT(IAM_WRITER_ILL(ill));
1343 
1344 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1345 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1346 		return;
1347 
1348 	/*
1349 	 * We are starting a new cycle of capability negotiation.
1350 	 * Free up the capab reset messages of any previous incarnation.
1351 	 * We will do a fresh allocation when we get the response to our probe
1352 	 */
1353 	if (ill->ill_capab_reset_mp != NULL) {
1354 		freemsg(ill->ill_capab_reset_mp);
1355 		ill->ill_capab_reset_mp = NULL;
1356 	}
1357 
1358 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1359 
1360 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1361 	if (mp == NULL)
1362 		return;
1363 
1364 	ill_capability_send(ill, mp);
1365 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1366 }
1367 
1368 void
1369 ill_capability_reset(ill_t *ill, boolean_t reneg)
1370 {
1371 	ASSERT(IAM_WRITER_ILL(ill));
1372 
1373 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1374 		return;
1375 
1376 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1377 
1378 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1379 	ill->ill_capab_reset_mp = NULL;
1380 	/*
1381 	 * We turn off all capabilities except those pertaining to
1382 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1383 	 * which will be turned off by the corresponding reset functions.
1384 	 */
1385 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1386 }
1387 
1388 static void
1389 ill_capability_reset_alloc(ill_t *ill)
1390 {
1391 	mblk_t *mp;
1392 	size_t	size = 0;
1393 	int	err;
1394 	dl_capability_req_t	*capb;
1395 
1396 	ASSERT(IAM_WRITER_ILL(ill));
1397 	ASSERT(ill->ill_capab_reset_mp == NULL);
1398 
1399 	if (ILL_HCKSUM_CAPABLE(ill)) {
1400 		size += sizeof (dl_capability_sub_t) +
1401 		    sizeof (dl_capab_hcksum_t);
1402 	}
1403 
1404 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1405 		size += sizeof (dl_capability_sub_t) +
1406 		    sizeof (dl_capab_zerocopy_t);
1407 	}
1408 
1409 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1410 		size += sizeof (dl_capability_sub_t) +
1411 		    sizeof (dl_capab_dld_t);
1412 	}
1413 
1414 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1415 	    STR_NOSIG, &err);
1416 
1417 	mp->b_datap->db_type = M_PROTO;
1418 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1419 
1420 	capb = (dl_capability_req_t *)mp->b_rptr;
1421 	capb->dl_primitive = DL_CAPABILITY_REQ;
1422 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1423 	capb->dl_sub_length = size;
1424 
1425 	mp->b_wptr += sizeof (dl_capability_req_t);
1426 
1427 	/*
1428 	 * Each handler fills in the corresponding dl_capability_sub_t
1429 	 * inside the mblk,
1430 	 */
1431 	ill_capability_hcksum_reset_fill(ill, mp);
1432 	ill_capability_zerocopy_reset_fill(ill, mp);
1433 	ill_capability_dld_reset_fill(ill, mp);
1434 
1435 	ill->ill_capab_reset_mp = mp;
1436 }
1437 
1438 static void
1439 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1440 {
1441 	dl_capab_id_t *id_ic;
1442 	uint_t sub_dl_cap = outers->dl_cap;
1443 	dl_capability_sub_t *inners;
1444 	uint8_t *capend;
1445 
1446 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1447 
1448 	/*
1449 	 * Note: range checks here are not absolutely sufficient to
1450 	 * make us robust against malformed messages sent by drivers;
1451 	 * this is in keeping with the rest of IP's dlpi handling.
1452 	 * (Remember, it's coming from something else in the kernel
1453 	 * address space)
1454 	 */
1455 
1456 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1457 	if (capend > mp->b_wptr) {
1458 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1459 		    "malformed sub-capability too long for mblk");
1460 		return;
1461 	}
1462 
1463 	id_ic = (dl_capab_id_t *)(outers + 1);
1464 
1465 	if (outers->dl_length < sizeof (*id_ic) ||
1466 	    (inners = &id_ic->id_subcap,
1467 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1468 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1469 		    "encapsulated capab type %d too long for mblk",
1470 		    inners->dl_cap);
1471 		return;
1472 	}
1473 
1474 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1475 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1476 		    "isn't as expected; pass-thru module(s) detected, "
1477 		    "discarding capability\n", inners->dl_cap));
1478 		return;
1479 	}
1480 
1481 	/* Process the encapsulated sub-capability */
1482 	ill_capability_dispatch(ill, mp, inners);
1483 }
1484 
1485 static void
1486 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1487 {
1488 	dl_capability_sub_t *dl_subcap;
1489 
1490 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1491 		return;
1492 
1493 	/*
1494 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1495 	 * initialized below since it is not used by DLD.
1496 	 */
1497 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1498 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1499 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1500 
1501 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1502 }
1503 
1504 static void
1505 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1506 {
1507 	/*
1508 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1509 	 * is only to get the VRRP capability.
1510 	 *
1511 	 * Note that we cannot check ill_ipif_up_count here since
1512 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1513 	 * That is done asynchronously, and can race with this function.
1514 	 */
1515 	if (!ill->ill_dl_up) {
1516 		if (subp->dl_cap == DL_CAPAB_VRRP)
1517 			ill_capability_vrrp_ack(ill, mp, subp);
1518 		return;
1519 	}
1520 
1521 	switch (subp->dl_cap) {
1522 	case DL_CAPAB_HCKSUM:
1523 		ill_capability_hcksum_ack(ill, mp, subp);
1524 		break;
1525 	case DL_CAPAB_ZEROCOPY:
1526 		ill_capability_zerocopy_ack(ill, mp, subp);
1527 		break;
1528 	case DL_CAPAB_DLD:
1529 		ill_capability_dld_ack(ill, mp, subp);
1530 		break;
1531 	case DL_CAPAB_VRRP:
1532 		break;
1533 	default:
1534 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1535 		    subp->dl_cap));
1536 	}
1537 }
1538 
1539 /*
1540  * Process the vrrp capability received from a DLS Provider. isub must point
1541  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1542  */
1543 static void
1544 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1545 {
1546 	dl_capab_vrrp_t	*vrrp;
1547 	uint_t		sub_dl_cap = isub->dl_cap;
1548 	uint8_t		*capend;
1549 
1550 	ASSERT(IAM_WRITER_ILL(ill));
1551 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1552 
1553 	/*
1554 	 * Note: range checks here are not absolutely sufficient to
1555 	 * make us robust against malformed messages sent by drivers;
1556 	 * this is in keeping with the rest of IP's dlpi handling.
1557 	 * (Remember, it's coming from something else in the kernel
1558 	 * address space)
1559 	 */
1560 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1561 	if (capend > mp->b_wptr) {
1562 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1563 		    "malformed sub-capability too long for mblk");
1564 		return;
1565 	}
1566 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1567 
1568 	/*
1569 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1570 	 */
1571 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1572 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1573 		ill->ill_flags |= ILLF_VRRP;
1574 	}
1575 }
1576 
1577 /*
1578  * Process a hardware checksum offload capability negotiation ack received
1579  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1580  * of a DL_CAPABILITY_ACK message.
1581  */
1582 static void
1583 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1584 {
1585 	dl_capability_req_t	*ocap;
1586 	dl_capab_hcksum_t	*ihck, *ohck;
1587 	ill_hcksum_capab_t	**ill_hcksum;
1588 	mblk_t			*nmp = NULL;
1589 	uint_t			sub_dl_cap = isub->dl_cap;
1590 	uint8_t			*capend;
1591 
1592 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1593 
1594 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1595 
1596 	/*
1597 	 * Note: range checks here are not absolutely sufficient to
1598 	 * make us robust against malformed messages sent by drivers;
1599 	 * this is in keeping with the rest of IP's dlpi handling.
1600 	 * (Remember, it's coming from something else in the kernel
1601 	 * address space)
1602 	 */
1603 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1604 	if (capend > mp->b_wptr) {
1605 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1606 		    "malformed sub-capability too long for mblk");
1607 		return;
1608 	}
1609 
1610 	/*
1611 	 * There are two types of acks we process here:
1612 	 * 1. acks in reply to a (first form) generic capability req
1613 	 *    (no ENABLE flag set)
1614 	 * 2. acks in reply to a ENABLE capability req.
1615 	 *    (ENABLE flag set)
1616 	 */
1617 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1618 
1619 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1620 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1621 		    "unsupported hardware checksum "
1622 		    "sub-capability (version %d, expected %d)",
1623 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1624 		return;
1625 	}
1626 
1627 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1628 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1629 		    "checksum capability isn't as expected; pass-thru "
1630 		    "module(s) detected, discarding capability\n"));
1631 		return;
1632 	}
1633 
1634 #define	CURR_HCKSUM_CAPAB				\
1635 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1636 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1637 
1638 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1639 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1640 		/* do ENABLE processing */
1641 		if (*ill_hcksum == NULL) {
1642 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1643 			    KM_NOSLEEP);
1644 
1645 			if (*ill_hcksum == NULL) {
1646 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1647 				    "could not enable hcksum version %d "
1648 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1649 				    ill->ill_name);
1650 				return;
1651 			}
1652 		}
1653 
1654 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1655 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1656 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1657 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1658 		    "has enabled hardware checksumming\n ",
1659 		    ill->ill_name));
1660 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1661 		/*
1662 		 * Enabling hardware checksum offload
1663 		 * Currently IP supports {TCP,UDP}/IPv4
1664 		 * partial and full cksum offload and
1665 		 * IPv4 header checksum offload.
1666 		 * Allocate new mblk which will
1667 		 * contain a new capability request
1668 		 * to enable hardware checksum offload.
1669 		 */
1670 		uint_t	size;
1671 		uchar_t	*rptr;
1672 
1673 		size = sizeof (dl_capability_req_t) +
1674 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1675 
1676 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1677 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1678 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1679 			    ill->ill_name);
1680 			return;
1681 		}
1682 
1683 		rptr = nmp->b_rptr;
1684 		/* initialize dl_capability_req_t */
1685 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1686 		ocap->dl_sub_offset =
1687 		    sizeof (dl_capability_req_t);
1688 		ocap->dl_sub_length =
1689 		    sizeof (dl_capability_sub_t) +
1690 		    isub->dl_length;
1691 		nmp->b_rptr += sizeof (dl_capability_req_t);
1692 
1693 		/* initialize dl_capability_sub_t */
1694 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1695 		nmp->b_rptr += sizeof (*isub);
1696 
1697 		/* initialize dl_capab_hcksum_t */
1698 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1699 		bcopy(ihck, ohck, sizeof (*ihck));
1700 
1701 		nmp->b_rptr = rptr;
1702 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1703 
1704 		/* Set ENABLE flag */
1705 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1706 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1707 
1708 		/*
1709 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1710 		 * hardware checksum acceleration.
1711 		 */
1712 		ill_capability_send(ill, nmp);
1713 	} else {
1714 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1715 		    "advertised %x hardware checksum capability flags\n",
1716 		    ill->ill_name, ihck->hcksum_txflags));
1717 	}
1718 }
1719 
1720 static void
1721 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1722 {
1723 	dl_capab_hcksum_t *hck_subcap;
1724 	dl_capability_sub_t *dl_subcap;
1725 
1726 	if (!ILL_HCKSUM_CAPABLE(ill))
1727 		return;
1728 
1729 	ASSERT(ill->ill_hcksum_capab != NULL);
1730 
1731 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1732 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1733 	dl_subcap->dl_length = sizeof (*hck_subcap);
1734 
1735 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1736 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1737 	hck_subcap->hcksum_txflags = 0;
1738 
1739 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1740 }
1741 
1742 static void
1743 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1744 {
1745 	mblk_t *nmp = NULL;
1746 	dl_capability_req_t *oc;
1747 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1748 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1749 	uint_t sub_dl_cap = isub->dl_cap;
1750 	uint8_t *capend;
1751 
1752 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1753 
1754 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1755 
1756 	/*
1757 	 * Note: range checks here are not absolutely sufficient to
1758 	 * make us robust against malformed messages sent by drivers;
1759 	 * this is in keeping with the rest of IP's dlpi handling.
1760 	 * (Remember, it's coming from something else in the kernel
1761 	 * address space)
1762 	 */
1763 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1764 	if (capend > mp->b_wptr) {
1765 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1766 		    "malformed sub-capability too long for mblk");
1767 		return;
1768 	}
1769 
1770 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1771 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1772 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1773 		    "unsupported ZEROCOPY sub-capability (version %d, "
1774 		    "expected %d)", zc_ic->zerocopy_version,
1775 		    ZEROCOPY_VERSION_1);
1776 		return;
1777 	}
1778 
1779 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1780 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1781 		    "capability isn't as expected; pass-thru module(s) "
1782 		    "detected, discarding capability\n"));
1783 		return;
1784 	}
1785 
1786 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1787 		if (*ill_zerocopy_capab == NULL) {
1788 			*ill_zerocopy_capab =
1789 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1790 			    KM_NOSLEEP);
1791 
1792 			if (*ill_zerocopy_capab == NULL) {
1793 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1794 				    "could not enable Zero-copy version %d "
1795 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1796 				    ill->ill_name);
1797 				return;
1798 			}
1799 		}
1800 
1801 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1802 		    "supports Zero-copy version %d\n", ill->ill_name,
1803 		    ZEROCOPY_VERSION_1));
1804 
1805 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1806 		    zc_ic->zerocopy_version;
1807 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1808 		    zc_ic->zerocopy_flags;
1809 
1810 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1811 	} else {
1812 		uint_t size;
1813 		uchar_t *rptr;
1814 
1815 		size = sizeof (dl_capability_req_t) +
1816 		    sizeof (dl_capability_sub_t) +
1817 		    sizeof (dl_capab_zerocopy_t);
1818 
1819 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1820 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1821 			    "could not enable zerocopy for %s (ENOMEM)\n",
1822 			    ill->ill_name);
1823 			return;
1824 		}
1825 
1826 		rptr = nmp->b_rptr;
1827 		/* initialize dl_capability_req_t */
1828 		oc = (dl_capability_req_t *)rptr;
1829 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1830 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1831 		    sizeof (dl_capab_zerocopy_t);
1832 		rptr += sizeof (dl_capability_req_t);
1833 
1834 		/* initialize dl_capability_sub_t */
1835 		bcopy(isub, rptr, sizeof (*isub));
1836 		rptr += sizeof (*isub);
1837 
1838 		/* initialize dl_capab_zerocopy_t */
1839 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1840 		*zc_oc = *zc_ic;
1841 
1842 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1843 		    "to enable zero-copy version %d\n", ill->ill_name,
1844 		    ZEROCOPY_VERSION_1));
1845 
1846 		/* set VMSAFE_MEM flag */
1847 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1848 
1849 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1850 		ill_capability_send(ill, nmp);
1851 	}
1852 }
1853 
1854 static void
1855 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1856 {
1857 	dl_capab_zerocopy_t *zerocopy_subcap;
1858 	dl_capability_sub_t *dl_subcap;
1859 
1860 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1861 		return;
1862 
1863 	ASSERT(ill->ill_zerocopy_capab != NULL);
1864 
1865 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1866 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1867 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1868 
1869 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1870 	zerocopy_subcap->zerocopy_version =
1871 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1872 	zerocopy_subcap->zerocopy_flags = 0;
1873 
1874 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1875 }
1876 
1877 /*
1878  * DLD capability
1879  * Refer to dld.h for more information regarding the purpose and usage
1880  * of this capability.
1881  */
1882 static void
1883 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1884 {
1885 	dl_capab_dld_t		*dld_ic, dld;
1886 	uint_t			sub_dl_cap = isub->dl_cap;
1887 	uint8_t			*capend;
1888 	ill_dld_capab_t		*idc;
1889 
1890 	ASSERT(IAM_WRITER_ILL(ill));
1891 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1892 
1893 	/*
1894 	 * Note: range checks here are not absolutely sufficient to
1895 	 * make us robust against malformed messages sent by drivers;
1896 	 * this is in keeping with the rest of IP's dlpi handling.
1897 	 * (Remember, it's coming from something else in the kernel
1898 	 * address space)
1899 	 */
1900 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1901 	if (capend > mp->b_wptr) {
1902 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1903 		    "malformed sub-capability too long for mblk");
1904 		return;
1905 	}
1906 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1907 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1908 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1909 		    "unsupported DLD sub-capability (version %d, "
1910 		    "expected %d)", dld_ic->dld_version,
1911 		    DLD_CURRENT_VERSION);
1912 		return;
1913 	}
1914 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1915 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1916 		    "capability isn't as expected; pass-thru module(s) "
1917 		    "detected, discarding capability\n"));
1918 		return;
1919 	}
1920 
1921 	/*
1922 	 * Copy locally to ensure alignment.
1923 	 */
1924 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1925 
1926 	if ((idc = ill->ill_dld_capab) == NULL) {
1927 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1928 		if (idc == NULL) {
1929 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1930 			    "could not enable DLD version %d "
1931 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1932 			    ill->ill_name);
1933 			return;
1934 		}
1935 		ill->ill_dld_capab = idc;
1936 	}
1937 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1938 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1939 	ip1dbg(("ill_capability_dld_ack: interface %s "
1940 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1941 
1942 	ill_capability_dld_enable(ill);
1943 }
1944 
1945 /*
1946  * Typically capability negotiation between IP and the driver happens via
1947  * DLPI message exchange. However GLD also offers a direct function call
1948  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1949  * But arbitrary function calls into IP or GLD are not permitted, since both
1950  * of them are protected by their own perimeter mechanism. The perimeter can
1951  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1952  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1953  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1954  * to enter the mac perimeter and then do the direct function calls into
1955  * GLD to enable squeue polling. The ring related callbacks from the mac into
1956  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1957  * protected by the mac perimeter.
1958  */
1959 static void
1960 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1961 {
1962 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1963 	int			err;
1964 
1965 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1966 	    DLD_ENABLE);
1967 	ASSERT(err == 0);
1968 }
1969 
1970 static void
1971 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1972 {
1973 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1974 	int			err;
1975 
1976 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1977 	    DLD_DISABLE);
1978 	ASSERT(err == 0);
1979 }
1980 
1981 boolean_t
1982 ill_mac_perim_held(ill_t *ill)
1983 {
1984 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1985 
1986 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1987 	    DLD_QUERY));
1988 }
1989 
1990 static void
1991 ill_capability_direct_enable(ill_t *ill)
1992 {
1993 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1994 	ill_dld_direct_t	*idd = &idc->idc_direct;
1995 	dld_capab_direct_t	direct;
1996 	int			rc;
1997 
1998 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1999 
2000 	bzero(&direct, sizeof (direct));
2001 	direct.di_rx_cf = (uintptr_t)ip_input;
2002 	direct.di_rx_ch = ill;
2003 
2004 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2005 	    DLD_ENABLE);
2006 	if (rc == 0) {
2007 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2008 		idd->idd_tx_dh = direct.di_tx_dh;
2009 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2010 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2011 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2012 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2013 		ASSERT(idd->idd_tx_cb_df != NULL);
2014 		ASSERT(idd->idd_tx_fctl_df != NULL);
2015 		ASSERT(idd->idd_tx_df != NULL);
2016 		/*
2017 		 * One time registration of flow enable callback function
2018 		 */
2019 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2020 		    ill_flow_enable, ill);
2021 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2022 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
2023 	} else {
2024 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
2025 		    "capability, rc = %d\n", rc);
2026 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2027 	}
2028 }
2029 
2030 static void
2031 ill_capability_poll_enable(ill_t *ill)
2032 {
2033 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2034 	dld_capab_poll_t	poll;
2035 	int			rc;
2036 
2037 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2038 
2039 	bzero(&poll, sizeof (poll));
2040 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2041 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2042 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2043 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2044 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2045 	poll.poll_ring_ch = ill;
2046 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2047 	    DLD_ENABLE);
2048 	if (rc == 0) {
2049 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2050 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
2051 	} else {
2052 		ip1dbg(("warning: could not enable POLL "
2053 		    "capability, rc = %d\n", rc));
2054 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2055 	}
2056 }
2057 
2058 /*
2059  * Enable the LSO capability.
2060  */
2061 static void
2062 ill_capability_lso_enable(ill_t *ill)
2063 {
2064 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2065 	dld_capab_lso_t	lso;
2066 	int rc;
2067 
2068 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2069 
2070 	if (ill->ill_lso_capab == NULL) {
2071 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2072 		    KM_NOSLEEP);
2073 		if (ill->ill_lso_capab == NULL) {
2074 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2075 			    "could not enable LSO for %s (ENOMEM)\n",
2076 			    ill->ill_name);
2077 			return;
2078 		}
2079 	}
2080 
2081 	bzero(&lso, sizeof (lso));
2082 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2083 	    DLD_ENABLE)) == 0) {
2084 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2085 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2086 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2087 		ip1dbg(("ill_capability_lso_enable: interface %s "
2088 		    "has enabled LSO\n ", ill->ill_name));
2089 	} else {
2090 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2091 		ill->ill_lso_capab = NULL;
2092 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2093 	}
2094 }
2095 
2096 static void
2097 ill_capability_dld_enable(ill_t *ill)
2098 {
2099 	mac_perim_handle_t mph;
2100 
2101 	ASSERT(IAM_WRITER_ILL(ill));
2102 
2103 	if (ill->ill_isv6)
2104 		return;
2105 
2106 	ill_mac_perim_enter(ill, &mph);
2107 	if (!ill->ill_isv6) {
2108 		ill_capability_direct_enable(ill);
2109 		ill_capability_poll_enable(ill);
2110 		ill_capability_lso_enable(ill);
2111 	}
2112 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2113 	ill_mac_perim_exit(ill, mph);
2114 }
2115 
2116 static void
2117 ill_capability_dld_disable(ill_t *ill)
2118 {
2119 	ill_dld_capab_t	*idc;
2120 	ill_dld_direct_t *idd;
2121 	mac_perim_handle_t	mph;
2122 
2123 	ASSERT(IAM_WRITER_ILL(ill));
2124 
2125 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2126 		return;
2127 
2128 	ill_mac_perim_enter(ill, &mph);
2129 
2130 	idc = ill->ill_dld_capab;
2131 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2132 		/*
2133 		 * For performance we avoid locks in the transmit data path
2134 		 * and don't maintain a count of the number of threads using
2135 		 * direct calls. Thus some threads could be using direct
2136 		 * transmit calls to GLD, even after the capability mechanism
2137 		 * turns it off. This is still safe since the handles used in
2138 		 * the direct calls continue to be valid until the unplumb is
2139 		 * completed. Remove the callback that was added (1-time) at
2140 		 * capab enable time.
2141 		 */
2142 		mutex_enter(&ill->ill_lock);
2143 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2144 		mutex_exit(&ill->ill_lock);
2145 		if (ill->ill_flownotify_mh != NULL) {
2146 			idd = &idc->idc_direct;
2147 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2148 			    ill->ill_flownotify_mh);
2149 			ill->ill_flownotify_mh = NULL;
2150 		}
2151 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2152 		    NULL, DLD_DISABLE);
2153 	}
2154 
2155 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2156 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2157 		ip_squeue_clean_all(ill);
2158 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2159 		    NULL, DLD_DISABLE);
2160 	}
2161 
2162 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2163 		ASSERT(ill->ill_lso_capab != NULL);
2164 		/*
2165 		 * Clear the capability flag for LSO but retain the
2166 		 * ill_lso_capab structure since it's possible that another
2167 		 * thread is still referring to it.  The structure only gets
2168 		 * deallocated when we destroy the ill.
2169 		 */
2170 
2171 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2172 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2173 		    NULL, DLD_DISABLE);
2174 	}
2175 
2176 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2177 	ill_mac_perim_exit(ill, mph);
2178 }
2179 
2180 /*
2181  * Capability Negotiation protocol
2182  *
2183  * We don't wait for DLPI capability operations to finish during interface
2184  * bringup or teardown. Doing so would introduce more asynchrony and the
2185  * interface up/down operations will need multiple return and restarts.
2186  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2187  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2188  * exclusive operation won't start until the DLPI operations of the previous
2189  * exclusive operation complete.
2190  *
2191  * The capability state machine is shown below.
2192  *
2193  * state		next state		event, action
2194  *
2195  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2196  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2197  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2198  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2199  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2200  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2201  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2202  *						    ill_capability_probe.
2203  */
2204 
2205 /*
2206  * Dedicated thread started from ip_stack_init that handles capability
2207  * disable. This thread ensures the taskq dispatch does not fail by waiting
2208  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2209  * that direct calls to DLD are done in a cv_waitable context.
2210  */
2211 void
2212 ill_taskq_dispatch(ip_stack_t *ipst)
2213 {
2214 	callb_cpr_t cprinfo;
2215 	char 	name[64];
2216 	mblk_t	*mp;
2217 
2218 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2219 	    ipst->ips_netstack->netstack_stackid);
2220 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2221 	    name);
2222 	mutex_enter(&ipst->ips_capab_taskq_lock);
2223 
2224 	for (;;) {
2225 		mp = ipst->ips_capab_taskq_head;
2226 		while (mp != NULL) {
2227 			ipst->ips_capab_taskq_head = mp->b_next;
2228 			if (ipst->ips_capab_taskq_head == NULL)
2229 				ipst->ips_capab_taskq_tail = NULL;
2230 			mutex_exit(&ipst->ips_capab_taskq_lock);
2231 			mp->b_next = NULL;
2232 
2233 			VERIFY(taskq_dispatch(system_taskq,
2234 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2235 			mutex_enter(&ipst->ips_capab_taskq_lock);
2236 			mp = ipst->ips_capab_taskq_head;
2237 		}
2238 
2239 		if (ipst->ips_capab_taskq_quit)
2240 			break;
2241 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2242 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2243 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2244 	}
2245 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2246 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2247 	CALLB_CPR_EXIT(&cprinfo);
2248 	thread_exit();
2249 }
2250 
2251 /*
2252  * Consume a new-style hardware capabilities negotiation ack.
2253  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2254  */
2255 static void
2256 ill_capability_ack_thr(void *arg)
2257 {
2258 	mblk_t	*mp = arg;
2259 	dl_capability_ack_t *capp;
2260 	dl_capability_sub_t *subp, *endp;
2261 	ill_t	*ill;
2262 	boolean_t reneg;
2263 
2264 	ill = (ill_t *)mp->b_prev;
2265 	mp->b_prev = NULL;
2266 
2267 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2268 
2269 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2270 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2271 		/*
2272 		 * We have received the ack for our DL_CAPAB reset request.
2273 		 * There isnt' anything in the message that needs processing.
2274 		 * All message based capabilities have been disabled, now
2275 		 * do the function call based capability disable.
2276 		 */
2277 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2278 		ill_capability_dld_disable(ill);
2279 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2280 		if (reneg)
2281 			ill_capability_probe(ill);
2282 		goto done;
2283 	}
2284 
2285 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2286 		ill->ill_dlpi_capab_state = IDCS_OK;
2287 
2288 	capp = (dl_capability_ack_t *)mp->b_rptr;
2289 
2290 	if (capp->dl_sub_length == 0) {
2291 		/* no new-style capabilities */
2292 		goto done;
2293 	}
2294 
2295 	/* make sure the driver supplied correct dl_sub_length */
2296 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2297 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2298 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2299 		goto done;
2300 	}
2301 
2302 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2303 	/*
2304 	 * There are sub-capabilities. Process the ones we know about.
2305 	 * Loop until we don't have room for another sub-cap header..
2306 	 */
2307 	for (subp = SC(capp, capp->dl_sub_offset),
2308 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2309 	    subp <= endp;
2310 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2311 
2312 		switch (subp->dl_cap) {
2313 		case DL_CAPAB_ID_WRAPPER:
2314 			ill_capability_id_ack(ill, mp, subp);
2315 			break;
2316 		default:
2317 			ill_capability_dispatch(ill, mp, subp);
2318 			break;
2319 		}
2320 	}
2321 #undef SC
2322 done:
2323 	inet_freemsg(mp);
2324 	ill_capability_done(ill);
2325 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2326 }
2327 
2328 /*
2329  * This needs to be started in a taskq thread to provide a cv_waitable
2330  * context.
2331  */
2332 void
2333 ill_capability_ack(ill_t *ill, mblk_t *mp)
2334 {
2335 	ip_stack_t	*ipst = ill->ill_ipst;
2336 
2337 	mp->b_prev = (mblk_t *)ill;
2338 	ASSERT(mp->b_next == NULL);
2339 
2340 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2341 	    TQ_NOSLEEP) != 0)
2342 		return;
2343 
2344 	/*
2345 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2346 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2347 	 */
2348 	mutex_enter(&ipst->ips_capab_taskq_lock);
2349 	if (ipst->ips_capab_taskq_head == NULL) {
2350 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2351 		ipst->ips_capab_taskq_head = mp;
2352 	} else {
2353 		ipst->ips_capab_taskq_tail->b_next = mp;
2354 	}
2355 	ipst->ips_capab_taskq_tail = mp;
2356 
2357 	cv_signal(&ipst->ips_capab_taskq_cv);
2358 	mutex_exit(&ipst->ips_capab_taskq_lock);
2359 }
2360 
2361 /*
2362  * This routine is called to scan the fragmentation reassembly table for
2363  * the specified ILL for any packets that are starting to smell.
2364  * dead_interval is the maximum time in seconds that will be tolerated.  It
2365  * will either be the value specified in ip_g_frag_timeout, or zero if the
2366  * ILL is shutting down and it is time to blow everything off.
2367  *
2368  * It returns the number of seconds (as a time_t) that the next frag timer
2369  * should be scheduled for, 0 meaning that the timer doesn't need to be
2370  * re-started.  Note that the method of calculating next_timeout isn't
2371  * entirely accurate since time will flow between the time we grab
2372  * current_time and the time we schedule the next timeout.  This isn't a
2373  * big problem since this is the timer for sending an ICMP reassembly time
2374  * exceeded messages, and it doesn't have to be exactly accurate.
2375  *
2376  * This function is
2377  * sometimes called as writer, although this is not required.
2378  */
2379 time_t
2380 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2381 {
2382 	ipfb_t	*ipfb;
2383 	ipfb_t	*endp;
2384 	ipf_t	*ipf;
2385 	ipf_t	*ipfnext;
2386 	mblk_t	*mp;
2387 	time_t	current_time = gethrestime_sec();
2388 	time_t	next_timeout = 0;
2389 	uint32_t	hdr_length;
2390 	mblk_t	*send_icmp_head;
2391 	mblk_t	*send_icmp_head_v6;
2392 	ip_stack_t *ipst = ill->ill_ipst;
2393 	ip_recv_attr_t iras;
2394 
2395 	bzero(&iras, sizeof (iras));
2396 	iras.ira_flags = 0;
2397 	iras.ira_ill = iras.ira_rill = ill;
2398 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2399 	iras.ira_rifindex = iras.ira_ruifindex;
2400 
2401 	ipfb = ill->ill_frag_hash_tbl;
2402 	if (ipfb == NULL)
2403 		return (B_FALSE);
2404 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2405 	/* Walk the frag hash table. */
2406 	for (; ipfb < endp; ipfb++) {
2407 		send_icmp_head = NULL;
2408 		send_icmp_head_v6 = NULL;
2409 		mutex_enter(&ipfb->ipfb_lock);
2410 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2411 			time_t frag_time = current_time - ipf->ipf_timestamp;
2412 			time_t frag_timeout;
2413 
2414 			if (frag_time < dead_interval) {
2415 				/*
2416 				 * There are some outstanding fragments
2417 				 * that will timeout later.  Make note of
2418 				 * the time so that we can reschedule the
2419 				 * next timeout appropriately.
2420 				 */
2421 				frag_timeout = dead_interval - frag_time;
2422 				if (next_timeout == 0 ||
2423 				    frag_timeout < next_timeout) {
2424 					next_timeout = frag_timeout;
2425 				}
2426 				break;
2427 			}
2428 			/* Time's up.  Get it out of here. */
2429 			hdr_length = ipf->ipf_nf_hdr_len;
2430 			ipfnext = ipf->ipf_hash_next;
2431 			if (ipfnext)
2432 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2433 			*ipf->ipf_ptphn = ipfnext;
2434 			mp = ipf->ipf_mp->b_cont;
2435 			for (; mp; mp = mp->b_cont) {
2436 				/* Extra points for neatness. */
2437 				IP_REASS_SET_START(mp, 0);
2438 				IP_REASS_SET_END(mp, 0);
2439 			}
2440 			mp = ipf->ipf_mp->b_cont;
2441 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2442 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2443 			ipfb->ipfb_count -= ipf->ipf_count;
2444 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2445 			ipfb->ipfb_frag_pkts--;
2446 			/*
2447 			 * We do not send any icmp message from here because
2448 			 * we currently are holding the ipfb_lock for this
2449 			 * hash chain. If we try and send any icmp messages
2450 			 * from here we may end up via a put back into ip
2451 			 * trying to get the same lock, causing a recursive
2452 			 * mutex panic. Instead we build a list and send all
2453 			 * the icmp messages after we have dropped the lock.
2454 			 */
2455 			if (ill->ill_isv6) {
2456 				if (hdr_length != 0) {
2457 					mp->b_next = send_icmp_head_v6;
2458 					send_icmp_head_v6 = mp;
2459 				} else {
2460 					freemsg(mp);
2461 				}
2462 			} else {
2463 				if (hdr_length != 0) {
2464 					mp->b_next = send_icmp_head;
2465 					send_icmp_head = mp;
2466 				} else {
2467 					freemsg(mp);
2468 				}
2469 			}
2470 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2471 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2472 			freeb(ipf->ipf_mp);
2473 		}
2474 		mutex_exit(&ipfb->ipfb_lock);
2475 		/*
2476 		 * Now need to send any icmp messages that we delayed from
2477 		 * above.
2478 		 */
2479 		while (send_icmp_head_v6 != NULL) {
2480 			ip6_t *ip6h;
2481 
2482 			mp = send_icmp_head_v6;
2483 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2484 			mp->b_next = NULL;
2485 			ip6h = (ip6_t *)mp->b_rptr;
2486 			iras.ira_flags = 0;
2487 			/*
2488 			 * This will result in an incorrect ALL_ZONES zoneid
2489 			 * for multicast packets, but we
2490 			 * don't send ICMP errors for those in any case.
2491 			 */
2492 			iras.ira_zoneid =
2493 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2494 			    ill, ipst);
2495 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2496 			icmp_time_exceeded_v6(mp,
2497 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2498 			    &iras);
2499 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2500 		}
2501 		while (send_icmp_head != NULL) {
2502 			ipaddr_t dst;
2503 
2504 			mp = send_icmp_head;
2505 			send_icmp_head = send_icmp_head->b_next;
2506 			mp->b_next = NULL;
2507 
2508 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2509 
2510 			iras.ira_flags = IRAF_IS_IPV4;
2511 			/*
2512 			 * This will result in an incorrect ALL_ZONES zoneid
2513 			 * for broadcast and multicast packets, but we
2514 			 * don't send ICMP errors for those in any case.
2515 			 */
2516 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2517 			    ill, ipst);
2518 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2519 			icmp_time_exceeded(mp,
2520 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2521 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2522 		}
2523 	}
2524 	/*
2525 	 * A non-dying ILL will use the return value to decide whether to
2526 	 * restart the frag timer, and for how long.
2527 	 */
2528 	return (next_timeout);
2529 }
2530 
2531 /*
2532  * This routine is called when the approximate count of mblk memory used
2533  * for the specified ILL has exceeded max_count.
2534  */
2535 void
2536 ill_frag_prune(ill_t *ill, uint_t max_count)
2537 {
2538 	ipfb_t	*ipfb;
2539 	ipf_t	*ipf;
2540 	size_t	count;
2541 	clock_t now;
2542 
2543 	/*
2544 	 * If we are here within ip_min_frag_prune_time msecs remove
2545 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2546 	 * ill_frag_free_num_pkts.
2547 	 */
2548 	mutex_enter(&ill->ill_lock);
2549 	now = ddi_get_lbolt();
2550 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2551 	    (ip_min_frag_prune_time != 0 ?
2552 	    ip_min_frag_prune_time : msec_per_tick)) {
2553 
2554 		ill->ill_frag_free_num_pkts++;
2555 
2556 	} else {
2557 		ill->ill_frag_free_num_pkts = 0;
2558 	}
2559 	ill->ill_last_frag_clean_time = now;
2560 	mutex_exit(&ill->ill_lock);
2561 
2562 	/*
2563 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2564 	 */
2565 	if (ill->ill_frag_free_num_pkts != 0) {
2566 		int ix;
2567 
2568 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2569 			ipfb = &ill->ill_frag_hash_tbl[ix];
2570 			mutex_enter(&ipfb->ipfb_lock);
2571 			if (ipfb->ipfb_ipf != NULL) {
2572 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2573 				    ill->ill_frag_free_num_pkts);
2574 			}
2575 			mutex_exit(&ipfb->ipfb_lock);
2576 		}
2577 	}
2578 	/*
2579 	 * While the reassembly list for this ILL is too big, prune a fragment
2580 	 * queue by age, oldest first.
2581 	 */
2582 	while (ill->ill_frag_count > max_count) {
2583 		int	ix;
2584 		ipfb_t	*oipfb = NULL;
2585 		uint_t	oldest = UINT_MAX;
2586 
2587 		count = 0;
2588 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2589 			ipfb = &ill->ill_frag_hash_tbl[ix];
2590 			mutex_enter(&ipfb->ipfb_lock);
2591 			ipf = ipfb->ipfb_ipf;
2592 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2593 				oldest = ipf->ipf_gen;
2594 				oipfb = ipfb;
2595 			}
2596 			count += ipfb->ipfb_count;
2597 			mutex_exit(&ipfb->ipfb_lock);
2598 		}
2599 		if (oipfb == NULL)
2600 			break;
2601 
2602 		if (count <= max_count)
2603 			return;	/* Somebody beat us to it, nothing to do */
2604 		mutex_enter(&oipfb->ipfb_lock);
2605 		ipf = oipfb->ipfb_ipf;
2606 		if (ipf != NULL) {
2607 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2608 		}
2609 		mutex_exit(&oipfb->ipfb_lock);
2610 	}
2611 }
2612 
2613 /*
2614  * free 'free_cnt' fragmented packets starting at ipf.
2615  */
2616 void
2617 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2618 {
2619 	size_t	count;
2620 	mblk_t	*mp;
2621 	mblk_t	*tmp;
2622 	ipf_t **ipfp = ipf->ipf_ptphn;
2623 
2624 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2625 	ASSERT(ipfp != NULL);
2626 	ASSERT(ipf != NULL);
2627 
2628 	while (ipf != NULL && free_cnt-- > 0) {
2629 		count = ipf->ipf_count;
2630 		mp = ipf->ipf_mp;
2631 		ipf = ipf->ipf_hash_next;
2632 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2633 			IP_REASS_SET_START(tmp, 0);
2634 			IP_REASS_SET_END(tmp, 0);
2635 		}
2636 		atomic_add_32(&ill->ill_frag_count, -count);
2637 		ASSERT(ipfb->ipfb_count >= count);
2638 		ipfb->ipfb_count -= count;
2639 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2640 		ipfb->ipfb_frag_pkts--;
2641 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2642 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2643 		freemsg(mp);
2644 	}
2645 
2646 	if (ipf)
2647 		ipf->ipf_ptphn = ipfp;
2648 	ipfp[0] = ipf;
2649 }
2650 
2651 /*
2652  * Helper function for ill_forward_set().
2653  */
2654 static void
2655 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2656 {
2657 	ip_stack_t	*ipst = ill->ill_ipst;
2658 
2659 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2660 
2661 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2662 	    (enable ? "Enabling" : "Disabling"),
2663 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2664 	mutex_enter(&ill->ill_lock);
2665 	if (enable)
2666 		ill->ill_flags |= ILLF_ROUTER;
2667 	else
2668 		ill->ill_flags &= ~ILLF_ROUTER;
2669 	mutex_exit(&ill->ill_lock);
2670 	if (ill->ill_isv6)
2671 		ill_set_nce_router_flags(ill, enable);
2672 	/* Notify routing socket listeners of this change. */
2673 	if (ill->ill_ipif != NULL)
2674 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2675 }
2676 
2677 /*
2678  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2679  * socket messages for each interface whose flags we change.
2680  */
2681 int
2682 ill_forward_set(ill_t *ill, boolean_t enable)
2683 {
2684 	ipmp_illgrp_t *illg;
2685 	ip_stack_t *ipst = ill->ill_ipst;
2686 
2687 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2688 
2689 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2690 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2691 		return (0);
2692 
2693 	if (IS_LOOPBACK(ill))
2694 		return (EINVAL);
2695 
2696 	if (enable && ill->ill_allowed_ips_cnt > 0)
2697 		return (EPERM);
2698 
2699 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2700 		/*
2701 		 * Update all of the interfaces in the group.
2702 		 */
2703 		illg = ill->ill_grp;
2704 		ill = list_head(&illg->ig_if);
2705 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2706 			ill_forward_set_on_ill(ill, enable);
2707 
2708 		/*
2709 		 * Update the IPMP meta-interface.
2710 		 */
2711 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2712 		return (0);
2713 	}
2714 
2715 	ill_forward_set_on_ill(ill, enable);
2716 	return (0);
2717 }
2718 
2719 /*
2720  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2721  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2722  * set or clear.
2723  */
2724 static void
2725 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2726 {
2727 	ipif_t *ipif;
2728 	ncec_t *ncec;
2729 	nce_t *nce;
2730 
2731 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2732 		/*
2733 		 * NOTE: we match across the illgrp because nce's for
2734 		 * addresses on IPMP interfaces have an nce_ill that points to
2735 		 * the bound underlying ill.
2736 		 */
2737 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2738 		if (nce != NULL) {
2739 			ncec = nce->nce_common;
2740 			mutex_enter(&ncec->ncec_lock);
2741 			if (enable)
2742 				ncec->ncec_flags |= NCE_F_ISROUTER;
2743 			else
2744 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2745 			mutex_exit(&ncec->ncec_lock);
2746 			nce_refrele(nce);
2747 		}
2748 	}
2749 }
2750 
2751 /*
2752  * Intializes the context structure and returns the first ill in the list
2753  * cuurently start_list and end_list can have values:
2754  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2755  * IP_V4_G_HEAD		Traverse IPV4 list only.
2756  * IP_V6_G_HEAD		Traverse IPV6 list only.
2757  */
2758 
2759 /*
2760  * We don't check for CONDEMNED ills here. Caller must do that if
2761  * necessary under the ill lock.
2762  */
2763 ill_t *
2764 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2765     ip_stack_t *ipst)
2766 {
2767 	ill_if_t *ifp;
2768 	ill_t *ill;
2769 	avl_tree_t *avl_tree;
2770 
2771 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2772 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2773 
2774 	/*
2775 	 * setup the lists to search
2776 	 */
2777 	if (end_list != MAX_G_HEADS) {
2778 		ctx->ctx_current_list = start_list;
2779 		ctx->ctx_last_list = end_list;
2780 	} else {
2781 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2782 		ctx->ctx_current_list = 0;
2783 	}
2784 
2785 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2786 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2787 		if (ifp != (ill_if_t *)
2788 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2789 			avl_tree = &ifp->illif_avl_by_ppa;
2790 			ill = avl_first(avl_tree);
2791 			/*
2792 			 * ill is guaranteed to be non NULL or ifp should have
2793 			 * not existed.
2794 			 */
2795 			ASSERT(ill != NULL);
2796 			return (ill);
2797 		}
2798 		ctx->ctx_current_list++;
2799 	}
2800 
2801 	return (NULL);
2802 }
2803 
2804 /*
2805  * returns the next ill in the list. ill_first() must have been called
2806  * before calling ill_next() or bad things will happen.
2807  */
2808 
2809 /*
2810  * We don't check for CONDEMNED ills here. Caller must do that if
2811  * necessary under the ill lock.
2812  */
2813 ill_t *
2814 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2815 {
2816 	ill_if_t *ifp;
2817 	ill_t *ill;
2818 	ip_stack_t	*ipst = lastill->ill_ipst;
2819 
2820 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2821 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2822 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2823 	    AVL_AFTER)) != NULL) {
2824 		return (ill);
2825 	}
2826 
2827 	/* goto next ill_ifp in the list. */
2828 	ifp = lastill->ill_ifptr->illif_next;
2829 
2830 	/* make sure not at end of circular list */
2831 	while (ifp ==
2832 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2833 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2834 			return (NULL);
2835 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2836 	}
2837 
2838 	return (avl_first(&ifp->illif_avl_by_ppa));
2839 }
2840 
2841 /*
2842  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2843  * The final number (PPA) must not have any leading zeros.  Upon success, a
2844  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2845  */
2846 static char *
2847 ill_get_ppa_ptr(char *name)
2848 {
2849 	int namelen = strlen(name);
2850 	int end_ndx = namelen - 1;
2851 	int ppa_ndx, i;
2852 
2853 	/*
2854 	 * Check that the first character is [a-zA-Z], and that the last
2855 	 * character is [0-9].
2856 	 */
2857 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2858 		return (NULL);
2859 
2860 	/*
2861 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2862 	 */
2863 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2864 		if (!isdigit(name[ppa_ndx - 1]))
2865 			break;
2866 
2867 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2868 		return (NULL);
2869 
2870 	/*
2871 	 * Check that the intermediate characters are [a-z0-9.]
2872 	 */
2873 	for (i = 1; i < ppa_ndx; i++) {
2874 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2875 		    name[i] != '.' && name[i] != '_') {
2876 			return (NULL);
2877 		}
2878 	}
2879 
2880 	return (name + ppa_ndx);
2881 }
2882 
2883 /*
2884  * use avl tree to locate the ill.
2885  */
2886 static ill_t *
2887 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2888 {
2889 	char *ppa_ptr = NULL;
2890 	int len;
2891 	uint_t ppa;
2892 	ill_t *ill = NULL;
2893 	ill_if_t *ifp;
2894 	int list;
2895 
2896 	/*
2897 	 * get ppa ptr
2898 	 */
2899 	if (isv6)
2900 		list = IP_V6_G_HEAD;
2901 	else
2902 		list = IP_V4_G_HEAD;
2903 
2904 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2905 		return (NULL);
2906 	}
2907 
2908 	len = ppa_ptr - name + 1;
2909 
2910 	ppa = stoi(&ppa_ptr);
2911 
2912 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2913 
2914 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2915 		/*
2916 		 * match is done on len - 1 as the name is not null
2917 		 * terminated it contains ppa in addition to the interface
2918 		 * name.
2919 		 */
2920 		if ((ifp->illif_name_len == len) &&
2921 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2922 			break;
2923 		} else {
2924 			ifp = ifp->illif_next;
2925 		}
2926 	}
2927 
2928 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2929 		/*
2930 		 * Even the interface type does not exist.
2931 		 */
2932 		return (NULL);
2933 	}
2934 
2935 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2936 	if (ill != NULL) {
2937 		mutex_enter(&ill->ill_lock);
2938 		if (ILL_CAN_LOOKUP(ill)) {
2939 			ill_refhold_locked(ill);
2940 			mutex_exit(&ill->ill_lock);
2941 			return (ill);
2942 		}
2943 		mutex_exit(&ill->ill_lock);
2944 	}
2945 	return (NULL);
2946 }
2947 
2948 /*
2949  * comparison function for use with avl.
2950  */
2951 static int
2952 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2953 {
2954 	uint_t ppa;
2955 	uint_t ill_ppa;
2956 
2957 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2958 
2959 	ppa = *((uint_t *)ppa_ptr);
2960 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2961 	/*
2962 	 * We want the ill with the lowest ppa to be on the
2963 	 * top.
2964 	 */
2965 	if (ill_ppa < ppa)
2966 		return (1);
2967 	if (ill_ppa > ppa)
2968 		return (-1);
2969 	return (0);
2970 }
2971 
2972 /*
2973  * remove an interface type from the global list.
2974  */
2975 static void
2976 ill_delete_interface_type(ill_if_t *interface)
2977 {
2978 	ASSERT(interface != NULL);
2979 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2980 
2981 	avl_destroy(&interface->illif_avl_by_ppa);
2982 	if (interface->illif_ppa_arena != NULL)
2983 		vmem_destroy(interface->illif_ppa_arena);
2984 
2985 	remque(interface);
2986 
2987 	mi_free(interface);
2988 }
2989 
2990 /*
2991  * remove ill from the global list.
2992  */
2993 static void
2994 ill_glist_delete(ill_t *ill)
2995 {
2996 	ip_stack_t	*ipst;
2997 	phyint_t	*phyi;
2998 
2999 	if (ill == NULL)
3000 		return;
3001 	ipst = ill->ill_ipst;
3002 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3003 
3004 	/*
3005 	 * If the ill was never inserted into the AVL tree
3006 	 * we skip the if branch.
3007 	 */
3008 	if (ill->ill_ifptr != NULL) {
3009 		/*
3010 		 * remove from AVL tree and free ppa number
3011 		 */
3012 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3013 
3014 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3015 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3016 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3017 		}
3018 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3019 			ill_delete_interface_type(ill->ill_ifptr);
3020 		}
3021 
3022 		/*
3023 		 * Indicate ill is no longer in the list.
3024 		 */
3025 		ill->ill_ifptr = NULL;
3026 		ill->ill_name_length = 0;
3027 		ill->ill_name[0] = '\0';
3028 		ill->ill_ppa = UINT_MAX;
3029 	}
3030 
3031 	/* Generate one last event for this ill. */
3032 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3033 	    ill->ill_name_length);
3034 
3035 	ASSERT(ill->ill_phyint != NULL);
3036 	phyi = ill->ill_phyint;
3037 	ill->ill_phyint = NULL;
3038 
3039 	/*
3040 	 * ill_init allocates a phyint always to store the copy
3041 	 * of flags relevant to phyint. At that point in time, we could
3042 	 * not assign the name and hence phyint_illv4/v6 could not be
3043 	 * initialized. Later in ipif_set_values, we assign the name to
3044 	 * the ill, at which point in time we assign phyint_illv4/v6.
3045 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3046 	 */
3047 	if (ill->ill_flags & ILLF_IPV6)
3048 		phyi->phyint_illv6 = NULL;
3049 	else
3050 		phyi->phyint_illv4 = NULL;
3051 
3052 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3053 		rw_exit(&ipst->ips_ill_g_lock);
3054 		return;
3055 	}
3056 
3057 	/*
3058 	 * There are no ills left on this phyint; pull it out of the phyint
3059 	 * avl trees, and free it.
3060 	 */
3061 	if (phyi->phyint_ifindex > 0) {
3062 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3063 		    phyi);
3064 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3065 		    phyi);
3066 	}
3067 	rw_exit(&ipst->ips_ill_g_lock);
3068 
3069 	phyint_free(phyi);
3070 }
3071 
3072 /*
3073  * allocate a ppa, if the number of plumbed interfaces of this type are
3074  * less than ill_no_arena do a linear search to find a unused ppa.
3075  * When the number goes beyond ill_no_arena switch to using an arena.
3076  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3077  * is the return value for an error condition, so allocation starts at one
3078  * and is decremented by one.
3079  */
3080 static int
3081 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3082 {
3083 	ill_t *tmp_ill;
3084 	uint_t start, end;
3085 	int ppa;
3086 
3087 	if (ifp->illif_ppa_arena == NULL &&
3088 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3089 		/*
3090 		 * Create an arena.
3091 		 */
3092 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3093 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3094 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3095 			/* allocate what has already been assigned */
3096 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3097 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3098 		    tmp_ill, AVL_AFTER)) {
3099 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3100 			    1,		/* size */
3101 			    1,		/* align/quantum */
3102 			    0,		/* phase */
3103 			    0,		/* nocross */
3104 			    /* minaddr */
3105 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3106 			    /* maxaddr */
3107 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3108 			    VM_NOSLEEP|VM_FIRSTFIT);
3109 			if (ppa == 0) {
3110 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3111 				    " failed while switching"));
3112 				vmem_destroy(ifp->illif_ppa_arena);
3113 				ifp->illif_ppa_arena = NULL;
3114 				break;
3115 			}
3116 		}
3117 	}
3118 
3119 	if (ifp->illif_ppa_arena != NULL) {
3120 		if (ill->ill_ppa == UINT_MAX) {
3121 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3122 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3123 			if (ppa == 0)
3124 				return (EAGAIN);
3125 			ill->ill_ppa = --ppa;
3126 		} else {
3127 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3128 			    1, 		/* size */
3129 			    1, 		/* align/quantum */
3130 			    0, 		/* phase */
3131 			    0, 		/* nocross */
3132 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3133 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3134 			    VM_NOSLEEP|VM_FIRSTFIT);
3135 			/*
3136 			 * Most likely the allocation failed because
3137 			 * the requested ppa was in use.
3138 			 */
3139 			if (ppa == 0)
3140 				return (EEXIST);
3141 		}
3142 		return (0);
3143 	}
3144 
3145 	/*
3146 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3147 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3148 	 */
3149 	if (ill->ill_ppa == UINT_MAX) {
3150 		end = UINT_MAX - 1;
3151 		start = 0;
3152 	} else {
3153 		end = start = ill->ill_ppa;
3154 	}
3155 
3156 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3157 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3158 		if (start++ >= end) {
3159 			if (ill->ill_ppa == UINT_MAX)
3160 				return (EAGAIN);
3161 			else
3162 				return (EEXIST);
3163 		}
3164 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3165 	}
3166 	ill->ill_ppa = start;
3167 	return (0);
3168 }
3169 
3170 /*
3171  * Insert ill into the list of configured ill's. Once this function completes,
3172  * the ill is globally visible and is available through lookups. More precisely
3173  * this happens after the caller drops the ill_g_lock.
3174  */
3175 static int
3176 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3177 {
3178 	ill_if_t *ill_interface;
3179 	avl_index_t where = 0;
3180 	int error;
3181 	int name_length;
3182 	int index;
3183 	boolean_t check_length = B_FALSE;
3184 	ip_stack_t	*ipst = ill->ill_ipst;
3185 
3186 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3187 
3188 	name_length = mi_strlen(name) + 1;
3189 
3190 	if (isv6)
3191 		index = IP_V6_G_HEAD;
3192 	else
3193 		index = IP_V4_G_HEAD;
3194 
3195 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3196 	/*
3197 	 * Search for interface type based on name
3198 	 */
3199 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3200 		if ((ill_interface->illif_name_len == name_length) &&
3201 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3202 			break;
3203 		}
3204 		ill_interface = ill_interface->illif_next;
3205 	}
3206 
3207 	/*
3208 	 * Interface type not found, create one.
3209 	 */
3210 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3211 		ill_g_head_t ghead;
3212 
3213 		/*
3214 		 * allocate ill_if_t structure
3215 		 */
3216 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3217 		if (ill_interface == NULL) {
3218 			return (ENOMEM);
3219 		}
3220 
3221 		(void) strcpy(ill_interface->illif_name, name);
3222 		ill_interface->illif_name_len = name_length;
3223 
3224 		avl_create(&ill_interface->illif_avl_by_ppa,
3225 		    ill_compare_ppa, sizeof (ill_t),
3226 		    offsetof(struct ill_s, ill_avl_byppa));
3227 
3228 		/*
3229 		 * link the structure in the back to maintain order
3230 		 * of configuration for ifconfig output.
3231 		 */
3232 		ghead = ipst->ips_ill_g_heads[index];
3233 		insque(ill_interface, ghead.ill_g_list_tail);
3234 	}
3235 
3236 	if (ill->ill_ppa == UINT_MAX)
3237 		check_length = B_TRUE;
3238 
3239 	error = ill_alloc_ppa(ill_interface, ill);
3240 	if (error != 0) {
3241 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3242 			ill_delete_interface_type(ill->ill_ifptr);
3243 		return (error);
3244 	}
3245 
3246 	/*
3247 	 * When the ppa is choosen by the system, check that there is
3248 	 * enough space to insert ppa. if a specific ppa was passed in this
3249 	 * check is not required as the interface name passed in will have
3250 	 * the right ppa in it.
3251 	 */
3252 	if (check_length) {
3253 		/*
3254 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3255 		 */
3256 		char buf[sizeof (uint_t) * 3];
3257 
3258 		/*
3259 		 * convert ppa to string to calculate the amount of space
3260 		 * required for it in the name.
3261 		 */
3262 		numtos(ill->ill_ppa, buf);
3263 
3264 		/* Do we have enough space to insert ppa ? */
3265 
3266 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3267 			/* Free ppa and interface type struct */
3268 			if (ill_interface->illif_ppa_arena != NULL) {
3269 				vmem_free(ill_interface->illif_ppa_arena,
3270 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3271 			}
3272 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3273 				ill_delete_interface_type(ill->ill_ifptr);
3274 
3275 			return (EINVAL);
3276 		}
3277 	}
3278 
3279 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3280 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3281 
3282 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3283 	    &where);
3284 	ill->ill_ifptr = ill_interface;
3285 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3286 
3287 	ill_phyint_reinit(ill);
3288 	return (0);
3289 }
3290 
3291 /* Initialize the per phyint ipsq used for serialization */
3292 static boolean_t
3293 ipsq_init(ill_t *ill, boolean_t enter)
3294 {
3295 	ipsq_t  *ipsq;
3296 	ipxop_t	*ipx;
3297 
3298 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3299 		return (B_FALSE);
3300 
3301 	ill->ill_phyint->phyint_ipsq = ipsq;
3302 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3303 	ipx->ipx_ipsq = ipsq;
3304 	ipsq->ipsq_next = ipsq;
3305 	ipsq->ipsq_phyint = ill->ill_phyint;
3306 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3307 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3308 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3309 	if (enter) {
3310 		ipx->ipx_writer = curthread;
3311 		ipx->ipx_forced = B_FALSE;
3312 		ipx->ipx_reentry_cnt = 1;
3313 #ifdef DEBUG
3314 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3315 #endif
3316 	}
3317 	return (B_TRUE);
3318 }
3319 
3320 /*
3321  * ill_init is called by ip_open when a device control stream is opened.
3322  * It does a few initializations, and shoots a DL_INFO_REQ message down
3323  * to the driver.  The response is later picked up in ip_rput_dlpi and
3324  * used to set up default mechanisms for talking to the driver.  (Always
3325  * called as writer.)
3326  *
3327  * If this function returns error, ip_open will call ip_close which in
3328  * turn will call ill_delete to clean up any memory allocated here that
3329  * is not yet freed.
3330  */
3331 int
3332 ill_init(queue_t *q, ill_t *ill)
3333 {
3334 	int	count;
3335 	dl_info_req_t	*dlir;
3336 	mblk_t	*info_mp;
3337 	uchar_t *frag_ptr;
3338 
3339 	/*
3340 	 * The ill is initialized to zero by mi_alloc*(). In addition
3341 	 * some fields already contain valid values, initialized in
3342 	 * ip_open(), before we reach here.
3343 	 */
3344 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3345 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3346 	ill->ill_saved_ire_cnt = 0;
3347 
3348 	ill->ill_rq = q;
3349 	ill->ill_wq = WR(q);
3350 
3351 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3352 	    BPRI_HI);
3353 	if (info_mp == NULL)
3354 		return (ENOMEM);
3355 
3356 	/*
3357 	 * Allocate sufficient space to contain our fragment hash table and
3358 	 * the device name.
3359 	 */
3360 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3361 	if (frag_ptr == NULL) {
3362 		freemsg(info_mp);
3363 		return (ENOMEM);
3364 	}
3365 	ill->ill_frag_ptr = frag_ptr;
3366 	ill->ill_frag_free_num_pkts = 0;
3367 	ill->ill_last_frag_clean_time = 0;
3368 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3369 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3370 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3371 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3372 		    NULL, MUTEX_DEFAULT, NULL);
3373 	}
3374 
3375 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3376 	if (ill->ill_phyint == NULL) {
3377 		freemsg(info_mp);
3378 		mi_free(frag_ptr);
3379 		return (ENOMEM);
3380 	}
3381 
3382 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3383 	/*
3384 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3385 	 * at this point because of the following reason. If we can't
3386 	 * enter the ipsq at some point and cv_wait, the writer that
3387 	 * wakes us up tries to locate us using the list of all phyints
3388 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3389 	 * If we don't set it now, we risk a missed wakeup.
3390 	 */
3391 	ill->ill_phyint->phyint_illv4 = ill;
3392 	ill->ill_ppa = UINT_MAX;
3393 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3394 
3395 	ill_set_inputfn(ill);
3396 
3397 	if (!ipsq_init(ill, B_TRUE)) {
3398 		freemsg(info_mp);
3399 		mi_free(frag_ptr);
3400 		mi_free(ill->ill_phyint);
3401 		return (ENOMEM);
3402 	}
3403 
3404 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3405 
3406 	/* Frag queue limit stuff */
3407 	ill->ill_frag_count = 0;
3408 	ill->ill_ipf_gen = 0;
3409 
3410 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3411 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3412 	ill->ill_global_timer = INFINITY;
3413 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3414 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3415 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3416 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3417 
3418 	/*
3419 	 * Initialize IPv6 configuration variables.  The IP module is always
3420 	 * opened as an IPv4 module.  Instead tracking down the cases where
3421 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3422 	 * here for convenience, this has no effect until the ill is set to do
3423 	 * IPv6.
3424 	 */
3425 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3426 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3427 	ill->ill_max_buf = ND_MAX_Q;
3428 	ill->ill_refcnt = 0;
3429 
3430 	/* Send down the Info Request to the driver. */
3431 	info_mp->b_datap->db_type = M_PCPROTO;
3432 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3433 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3434 	dlir->dl_primitive = DL_INFO_REQ;
3435 
3436 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3437 
3438 	qprocson(q);
3439 	ill_dlpi_send(ill, info_mp);
3440 
3441 	return (0);
3442 }
3443 
3444 /*
3445  * ill_dls_info
3446  * creates datalink socket info from the device.
3447  */
3448 int
3449 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3450 {
3451 	size_t	len;
3452 
3453 	sdl->sdl_family = AF_LINK;
3454 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3455 	sdl->sdl_type = ill->ill_type;
3456 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3457 	len = strlen(sdl->sdl_data);
3458 	ASSERT(len < 256);
3459 	sdl->sdl_nlen = (uchar_t)len;
3460 	sdl->sdl_alen = ill->ill_phys_addr_length;
3461 	sdl->sdl_slen = 0;
3462 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3463 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3464 
3465 	return (sizeof (struct sockaddr_dl));
3466 }
3467 
3468 /*
3469  * ill_xarp_info
3470  * creates xarp info from the device.
3471  */
3472 static int
3473 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3474 {
3475 	sdl->sdl_family = AF_LINK;
3476 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3477 	sdl->sdl_type = ill->ill_type;
3478 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3479 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3480 	sdl->sdl_alen = ill->ill_phys_addr_length;
3481 	sdl->sdl_slen = 0;
3482 	return (sdl->sdl_nlen);
3483 }
3484 
3485 static int
3486 loopback_kstat_update(kstat_t *ksp, int rw)
3487 {
3488 	kstat_named_t *kn;
3489 	netstackid_t	stackid;
3490 	netstack_t	*ns;
3491 	ip_stack_t	*ipst;
3492 
3493 	if (ksp == NULL || ksp->ks_data == NULL)
3494 		return (EIO);
3495 
3496 	if (rw == KSTAT_WRITE)
3497 		return (EACCES);
3498 
3499 	kn = KSTAT_NAMED_PTR(ksp);
3500 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3501 
3502 	ns = netstack_find_by_stackid(stackid);
3503 	if (ns == NULL)
3504 		return (-1);
3505 
3506 	ipst = ns->netstack_ip;
3507 	if (ipst == NULL) {
3508 		netstack_rele(ns);
3509 		return (-1);
3510 	}
3511 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3512 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3513 	netstack_rele(ns);
3514 	return (0);
3515 }
3516 
3517 /*
3518  * Has ifindex been plumbed already?
3519  */
3520 static boolean_t
3521 phyint_exists(uint_t index, ip_stack_t *ipst)
3522 {
3523 	ASSERT(index != 0);
3524 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3525 
3526 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3527 	    &index, NULL) != NULL);
3528 }
3529 
3530 /* Pick a unique ifindex */
3531 boolean_t
3532 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3533 {
3534 	uint_t starting_index;
3535 
3536 	if (!ipst->ips_ill_index_wrap) {
3537 		*indexp = ipst->ips_ill_index++;
3538 		if (ipst->ips_ill_index == 0) {
3539 			/* Reached the uint_t limit Next time wrap  */
3540 			ipst->ips_ill_index_wrap = B_TRUE;
3541 		}
3542 		return (B_TRUE);
3543 	}
3544 
3545 	/*
3546 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3547 	 * at this point and don't want to call any function that attempts
3548 	 * to get the lock again.
3549 	 */
3550 	starting_index = ipst->ips_ill_index++;
3551 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
3552 		if (ipst->ips_ill_index != 0 &&
3553 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
3554 			/* found unused index - use it */
3555 			*indexp = ipst->ips_ill_index;
3556 			return (B_TRUE);
3557 		}
3558 	}
3559 
3560 	/*
3561 	 * all interface indicies are inuse.
3562 	 */
3563 	return (B_FALSE);
3564 }
3565 
3566 /*
3567  * Assign a unique interface index for the phyint.
3568  */
3569 static boolean_t
3570 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3571 {
3572 	ASSERT(phyi->phyint_ifindex == 0);
3573 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3574 }
3575 
3576 /*
3577  * Initialize the flags on `phyi' as per the provided mactype.
3578  */
3579 static void
3580 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3581 {
3582 	uint64_t flags = 0;
3583 
3584 	/*
3585 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3586 	 * we always presume the underlying hardware is working and set
3587 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3588 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3589 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3590 	 */
3591 	if (mactype == SUNW_DL_IPMP)
3592 		flags |= PHYI_FAILED;
3593 	else
3594 		flags |= PHYI_RUNNING;
3595 
3596 	switch (mactype) {
3597 	case SUNW_DL_VNI:
3598 		flags |= PHYI_VIRTUAL;
3599 		break;
3600 	case SUNW_DL_IPMP:
3601 		flags |= PHYI_IPMP;
3602 		break;
3603 	case DL_LOOP:
3604 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3605 		break;
3606 	}
3607 
3608 	mutex_enter(&phyi->phyint_lock);
3609 	phyi->phyint_flags |= flags;
3610 	mutex_exit(&phyi->phyint_lock);
3611 }
3612 
3613 /*
3614  * Return a pointer to the ill which matches the supplied name.  Note that
3615  * the ill name length includes the null termination character.  (May be
3616  * called as writer.)
3617  * If do_alloc and the interface is "lo0" it will be automatically created.
3618  * Cannot bump up reference on condemned ills. So dup detect can't be done
3619  * using this func.
3620  */
3621 ill_t *
3622 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3623     boolean_t *did_alloc, ip_stack_t *ipst)
3624 {
3625 	ill_t	*ill;
3626 	ipif_t	*ipif;
3627 	ipsq_t	*ipsq;
3628 	kstat_named_t	*kn;
3629 	boolean_t isloopback;
3630 	in6_addr_t ov6addr;
3631 
3632 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3633 
3634 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3635 	ill = ill_find_by_name(name, isv6, ipst);
3636 	rw_exit(&ipst->ips_ill_g_lock);
3637 	if (ill != NULL)
3638 		return (ill);
3639 
3640 	/*
3641 	 * Couldn't find it.  Does this happen to be a lookup for the
3642 	 * loopback device and are we allowed to allocate it?
3643 	 */
3644 	if (!isloopback || !do_alloc)
3645 		return (NULL);
3646 
3647 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3648 	ill = ill_find_by_name(name, isv6, ipst);
3649 	if (ill != NULL) {
3650 		rw_exit(&ipst->ips_ill_g_lock);
3651 		return (ill);
3652 	}
3653 
3654 	/* Create the loopback device on demand */
3655 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3656 	    sizeof (ipif_loopback_name), BPRI_MED));
3657 	if (ill == NULL)
3658 		goto done;
3659 
3660 	*ill = ill_null;
3661 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3662 	ill->ill_ipst = ipst;
3663 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3664 	netstack_hold(ipst->ips_netstack);
3665 	/*
3666 	 * For exclusive stacks we set the zoneid to zero
3667 	 * to make IP operate as if in the global zone.
3668 	 */
3669 	ill->ill_zoneid = GLOBAL_ZONEID;
3670 
3671 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3672 	if (ill->ill_phyint == NULL)
3673 		goto done;
3674 
3675 	if (isv6)
3676 		ill->ill_phyint->phyint_illv6 = ill;
3677 	else
3678 		ill->ill_phyint->phyint_illv4 = ill;
3679 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3680 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3681 
3682 	if (isv6) {
3683 		ill->ill_isv6 = B_TRUE;
3684 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3685 	} else {
3686 		ill->ill_max_frag = ip_loopback_mtuplus;
3687 	}
3688 	if (!ill_allocate_mibs(ill))
3689 		goto done;
3690 	ill->ill_current_frag = ill->ill_max_frag;
3691 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3692 	/*
3693 	 * ipif_loopback_name can't be pointed at directly because its used
3694 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3695 	 * from the glist, ill_glist_delete() sets the first character of
3696 	 * ill_name to '\0'.
3697 	 */
3698 	ill->ill_name = (char *)ill + sizeof (*ill);
3699 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3700 	ill->ill_name_length = sizeof (ipif_loopback_name);
3701 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3702 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3703 
3704 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3705 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3706 	ill->ill_global_timer = INFINITY;
3707 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3708 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3709 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3710 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3711 
3712 	/* No resolver here. */
3713 	ill->ill_net_type = IRE_LOOPBACK;
3714 
3715 	/* Initialize the ipsq */
3716 	if (!ipsq_init(ill, B_FALSE))
3717 		goto done;
3718 
3719 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3720 	if (ipif == NULL)
3721 		goto done;
3722 
3723 	ill->ill_flags = ILLF_MULTICAST;
3724 
3725 	ov6addr = ipif->ipif_v6lcl_addr;
3726 	/* Set up default loopback address and mask. */
3727 	if (!isv6) {
3728 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3729 
3730 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3731 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3732 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3733 		    ipif->ipif_v6subnet);
3734 		ill->ill_flags |= ILLF_IPV4;
3735 	} else {
3736 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3737 		ipif->ipif_v6net_mask = ipv6_all_ones;
3738 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3739 		    ipif->ipif_v6subnet);
3740 		ill->ill_flags |= ILLF_IPV6;
3741 	}
3742 
3743 	/*
3744 	 * Chain us in at the end of the ill list. hold the ill
3745 	 * before we make it globally visible. 1 for the lookup.
3746 	 */
3747 	ill->ill_refcnt = 0;
3748 	ill_refhold(ill);
3749 
3750 	ill->ill_frag_count = 0;
3751 	ill->ill_frag_free_num_pkts = 0;
3752 	ill->ill_last_frag_clean_time = 0;
3753 
3754 	ipsq = ill->ill_phyint->phyint_ipsq;
3755 
3756 	ill_set_inputfn(ill);
3757 
3758 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3759 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3760 
3761 	/* Let SCTP know so that it can add this to its list */
3762 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3763 
3764 	/*
3765 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3766 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3767 	 * requires to be after ill_glist_insert() since we need the
3768 	 * ill_index set. Pass on ipv6_loopback as the old address.
3769 	 */
3770 	sctp_update_ipif_addr(ipif, ov6addr);
3771 
3772 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3773 
3774 	/*
3775 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3776 	 * If so, free our original one.
3777 	 */
3778 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3779 		ipsq_delete(ipsq);
3780 
3781 	if (ipst->ips_loopback_ksp == NULL) {
3782 		/* Export loopback interface statistics */
3783 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3784 		    ipif_loopback_name, "net",
3785 		    KSTAT_TYPE_NAMED, 2, 0,
3786 		    ipst->ips_netstack->netstack_stackid);
3787 		if (ipst->ips_loopback_ksp != NULL) {
3788 			ipst->ips_loopback_ksp->ks_update =
3789 			    loopback_kstat_update;
3790 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3791 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3792 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3793 			ipst->ips_loopback_ksp->ks_private =
3794 			    (void *)(uintptr_t)ipst->ips_netstack->
3795 			    netstack_stackid;
3796 			kstat_install(ipst->ips_loopback_ksp);
3797 		}
3798 	}
3799 
3800 	*did_alloc = B_TRUE;
3801 	rw_exit(&ipst->ips_ill_g_lock);
3802 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3803 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3804 	return (ill);
3805 done:
3806 	if (ill != NULL) {
3807 		if (ill->ill_phyint != NULL) {
3808 			ipsq = ill->ill_phyint->phyint_ipsq;
3809 			if (ipsq != NULL) {
3810 				ipsq->ipsq_phyint = NULL;
3811 				ipsq_delete(ipsq);
3812 			}
3813 			mi_free(ill->ill_phyint);
3814 		}
3815 		ill_free_mib(ill);
3816 		if (ill->ill_ipst != NULL)
3817 			netstack_rele(ill->ill_ipst->ips_netstack);
3818 		mi_free(ill);
3819 	}
3820 	rw_exit(&ipst->ips_ill_g_lock);
3821 	return (NULL);
3822 }
3823 
3824 /*
3825  * For IPP calls - use the ip_stack_t for global stack.
3826  */
3827 ill_t *
3828 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3829 {
3830 	ip_stack_t	*ipst;
3831 	ill_t		*ill;
3832 
3833 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3834 	if (ipst == NULL) {
3835 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3836 		return (NULL);
3837 	}
3838 
3839 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3840 	netstack_rele(ipst->ips_netstack);
3841 	return (ill);
3842 }
3843 
3844 /*
3845  * Return a pointer to the ill which matches the index and IP version type.
3846  */
3847 ill_t *
3848 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3849 {
3850 	ill_t	*ill;
3851 	phyint_t *phyi;
3852 
3853 	/*
3854 	 * Indexes are stored in the phyint - a common structure
3855 	 * to both IPv4 and IPv6.
3856 	 */
3857 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3858 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3859 	    (void *) &index, NULL);
3860 	if (phyi != NULL) {
3861 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3862 		if (ill != NULL) {
3863 			mutex_enter(&ill->ill_lock);
3864 			if (!ILL_IS_CONDEMNED(ill)) {
3865 				ill_refhold_locked(ill);
3866 				mutex_exit(&ill->ill_lock);
3867 				rw_exit(&ipst->ips_ill_g_lock);
3868 				return (ill);
3869 			}
3870 			mutex_exit(&ill->ill_lock);
3871 		}
3872 	}
3873 	rw_exit(&ipst->ips_ill_g_lock);
3874 	return (NULL);
3875 }
3876 
3877 /*
3878  * Verify whether or not an interface index is valid for the specified zoneid
3879  * to transmit packets.
3880  * It can be zero (meaning "reset") or an interface index assigned
3881  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3882  */
3883 boolean_t
3884 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3885     ip_stack_t *ipst)
3886 {
3887 	ill_t		*ill;
3888 
3889 	if (ifindex == 0)
3890 		return (B_TRUE);
3891 
3892 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3893 	if (ill == NULL)
3894 		return (B_FALSE);
3895 	if (IS_VNI(ill)) {
3896 		ill_refrele(ill);
3897 		return (B_FALSE);
3898 	}
3899 	ill_refrele(ill);
3900 	return (B_TRUE);
3901 }
3902 
3903 /*
3904  * Return the ifindex next in sequence after the passed in ifindex.
3905  * If there is no next ifindex for the given protocol, return 0.
3906  */
3907 uint_t
3908 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3909 {
3910 	phyint_t *phyi;
3911 	phyint_t *phyi_initial;
3912 	uint_t   ifindex;
3913 
3914 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3915 
3916 	if (index == 0) {
3917 		phyi = avl_first(
3918 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3919 	} else {
3920 		phyi = phyi_initial = avl_find(
3921 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3922 		    (void *) &index, NULL);
3923 	}
3924 
3925 	for (; phyi != NULL;
3926 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3927 	    phyi, AVL_AFTER)) {
3928 		/*
3929 		 * If we're not returning the first interface in the tree
3930 		 * and we still haven't moved past the phyint_t that
3931 		 * corresponds to index, avl_walk needs to be called again
3932 		 */
3933 		if (!((index != 0) && (phyi == phyi_initial))) {
3934 			if (isv6) {
3935 				if ((phyi->phyint_illv6) &&
3936 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3937 				    (phyi->phyint_illv6->ill_isv6 == 1))
3938 					break;
3939 			} else {
3940 				if ((phyi->phyint_illv4) &&
3941 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3942 				    (phyi->phyint_illv4->ill_isv6 == 0))
3943 					break;
3944 			}
3945 		}
3946 	}
3947 
3948 	rw_exit(&ipst->ips_ill_g_lock);
3949 
3950 	if (phyi != NULL)
3951 		ifindex = phyi->phyint_ifindex;
3952 	else
3953 		ifindex = 0;
3954 
3955 	return (ifindex);
3956 }
3957 
3958 /*
3959  * Return the ifindex for the named interface.
3960  * If there is no next ifindex for the interface, return 0.
3961  */
3962 uint_t
3963 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3964 {
3965 	phyint_t	*phyi;
3966 	avl_index_t	where = 0;
3967 	uint_t		ifindex;
3968 
3969 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3970 
3971 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3972 	    name, &where)) == NULL) {
3973 		rw_exit(&ipst->ips_ill_g_lock);
3974 		return (0);
3975 	}
3976 
3977 	ifindex = phyi->phyint_ifindex;
3978 
3979 	rw_exit(&ipst->ips_ill_g_lock);
3980 
3981 	return (ifindex);
3982 }
3983 
3984 /*
3985  * Return the ifindex to be used by upper layer protocols for instance
3986  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
3987  */
3988 uint_t
3989 ill_get_upper_ifindex(const ill_t *ill)
3990 {
3991 	if (IS_UNDER_IPMP(ill))
3992 		return (ipmp_ill_get_ipmp_ifindex(ill));
3993 	else
3994 		return (ill->ill_phyint->phyint_ifindex);
3995 }
3996 
3997 
3998 /*
3999  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4000  * that gives a running thread a reference to the ill. This reference must be
4001  * released by the thread when it is done accessing the ill and related
4002  * objects. ill_refcnt can not be used to account for static references
4003  * such as other structures pointing to an ill. Callers must generally
4004  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4005  * or be sure that the ill is not being deleted or changing state before
4006  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4007  * ill won't change any of its critical state such as address, netmask etc.
4008  */
4009 void
4010 ill_refhold(ill_t *ill)
4011 {
4012 	mutex_enter(&ill->ill_lock);
4013 	ill->ill_refcnt++;
4014 	ILL_TRACE_REF(ill);
4015 	mutex_exit(&ill->ill_lock);
4016 }
4017 
4018 void
4019 ill_refhold_locked(ill_t *ill)
4020 {
4021 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4022 	ill->ill_refcnt++;
4023 	ILL_TRACE_REF(ill);
4024 }
4025 
4026 /* Returns true if we managed to get a refhold */
4027 boolean_t
4028 ill_check_and_refhold(ill_t *ill)
4029 {
4030 	mutex_enter(&ill->ill_lock);
4031 	if (!ILL_IS_CONDEMNED(ill)) {
4032 		ill_refhold_locked(ill);
4033 		mutex_exit(&ill->ill_lock);
4034 		return (B_TRUE);
4035 	}
4036 	mutex_exit(&ill->ill_lock);
4037 	return (B_FALSE);
4038 }
4039 
4040 /*
4041  * Must not be called while holding any locks. Otherwise if this is
4042  * the last reference to be released, there is a chance of recursive mutex
4043  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4044  * to restart an ioctl.
4045  */
4046 void
4047 ill_refrele(ill_t *ill)
4048 {
4049 	mutex_enter(&ill->ill_lock);
4050 	ASSERT(ill->ill_refcnt != 0);
4051 	ill->ill_refcnt--;
4052 	ILL_UNTRACE_REF(ill);
4053 	if (ill->ill_refcnt != 0) {
4054 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4055 		mutex_exit(&ill->ill_lock);
4056 		return;
4057 	}
4058 
4059 	/* Drops the ill_lock */
4060 	ipif_ill_refrele_tail(ill);
4061 }
4062 
4063 /*
4064  * Obtain a weak reference count on the ill. This reference ensures the
4065  * ill won't be freed, but the ill may change any of its critical state
4066  * such as netmask, address etc. Returns an error if the ill has started
4067  * closing.
4068  */
4069 boolean_t
4070 ill_waiter_inc(ill_t *ill)
4071 {
4072 	mutex_enter(&ill->ill_lock);
4073 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4074 		mutex_exit(&ill->ill_lock);
4075 		return (B_FALSE);
4076 	}
4077 	ill->ill_waiters++;
4078 	mutex_exit(&ill->ill_lock);
4079 	return (B_TRUE);
4080 }
4081 
4082 void
4083 ill_waiter_dcr(ill_t *ill)
4084 {
4085 	mutex_enter(&ill->ill_lock);
4086 	ill->ill_waiters--;
4087 	if (ill->ill_waiters == 0)
4088 		cv_broadcast(&ill->ill_cv);
4089 	mutex_exit(&ill->ill_lock);
4090 }
4091 
4092 /*
4093  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4094  * driver.  We construct best guess defaults for lower level information that
4095  * we need.  If an interface is brought up without injection of any overriding
4096  * information from outside, we have to be ready to go with these defaults.
4097  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4098  * we primarely want the dl_provider_style.
4099  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4100  * at which point we assume the other part of the information is valid.
4101  */
4102 void
4103 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4104 {
4105 	uchar_t		*brdcst_addr;
4106 	uint_t		brdcst_addr_length, phys_addr_length;
4107 	t_scalar_t	sap_length;
4108 	dl_info_ack_t	*dlia;
4109 	ip_m_t		*ipm;
4110 	dl_qos_cl_sel1_t *sel1;
4111 	int		min_mtu;
4112 
4113 	ASSERT(IAM_WRITER_ILL(ill));
4114 
4115 	/*
4116 	 * Till the ill is fully up  the ill is not globally visible.
4117 	 * So no need for a lock.
4118 	 */
4119 	dlia = (dl_info_ack_t *)mp->b_rptr;
4120 	ill->ill_mactype = dlia->dl_mac_type;
4121 
4122 	ipm = ip_m_lookup(dlia->dl_mac_type);
4123 	if (ipm == NULL) {
4124 		ipm = ip_m_lookup(DL_OTHER);
4125 		ASSERT(ipm != NULL);
4126 	}
4127 	ill->ill_media = ipm;
4128 
4129 	/*
4130 	 * When the new DLPI stuff is ready we'll pull lengths
4131 	 * from dlia.
4132 	 */
4133 	if (dlia->dl_version == DL_VERSION_2) {
4134 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4135 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4136 		    brdcst_addr_length);
4137 		if (brdcst_addr == NULL) {
4138 			brdcst_addr_length = 0;
4139 		}
4140 		sap_length = dlia->dl_sap_length;
4141 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4142 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4143 		    brdcst_addr_length, sap_length, phys_addr_length));
4144 	} else {
4145 		brdcst_addr_length = 6;
4146 		brdcst_addr = ip_six_byte_all_ones;
4147 		sap_length = -2;
4148 		phys_addr_length = brdcst_addr_length;
4149 	}
4150 
4151 	ill->ill_bcast_addr_length = brdcst_addr_length;
4152 	ill->ill_phys_addr_length = phys_addr_length;
4153 	ill->ill_sap_length = sap_length;
4154 
4155 	/*
4156 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4157 	 * but we must ensure a minimum IP MTU is used since other bits of
4158 	 * IP will fly apart otherwise.
4159 	 */
4160 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4161 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4162 	ill->ill_current_frag = ill->ill_max_frag;
4163 	ill->ill_mtu = ill->ill_max_frag;
4164 
4165 	ill->ill_type = ipm->ip_m_type;
4166 
4167 	if (!ill->ill_dlpi_style_set) {
4168 		if (dlia->dl_provider_style == DL_STYLE2)
4169 			ill->ill_needs_attach = 1;
4170 
4171 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4172 
4173 		/*
4174 		 * Allocate the first ipif on this ill.  We don't delay it
4175 		 * further as ioctl handling assumes at least one ipif exists.
4176 		 *
4177 		 * At this point we don't know whether the ill is v4 or v6.
4178 		 * We will know this whan the SIOCSLIFNAME happens and
4179 		 * the correct value for ill_isv6 will be assigned in
4180 		 * ipif_set_values(). We need to hold the ill lock and
4181 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4182 		 * the wakeup.
4183 		 */
4184 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4185 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4186 		mutex_enter(&ill->ill_lock);
4187 		ASSERT(ill->ill_dlpi_style_set == 0);
4188 		ill->ill_dlpi_style_set = 1;
4189 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4190 		cv_broadcast(&ill->ill_cv);
4191 		mutex_exit(&ill->ill_lock);
4192 		freemsg(mp);
4193 		return;
4194 	}
4195 	ASSERT(ill->ill_ipif != NULL);
4196 	/*
4197 	 * We know whether it is IPv4 or IPv6 now, as this is the
4198 	 * second DL_INFO_ACK we are recieving in response to the
4199 	 * DL_INFO_REQ sent in ipif_set_values.
4200 	 */
4201 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4202 	/*
4203 	 * Clear all the flags that were set based on ill_bcast_addr_length
4204 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4205 	 * changed now and we need to re-evaluate.
4206 	 */
4207 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4208 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4209 
4210 	/*
4211 	 * Free ill_bcast_mp as things could have changed now.
4212 	 *
4213 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4214 	 * with no underlying interfaces (and thus an unknown broadcast
4215 	 * address length), but we enforce that an interface is broadcast-
4216 	 * capable as part of allowing it to join a group.
4217 	 */
4218 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4219 		if (ill->ill_bcast_mp != NULL)
4220 			freemsg(ill->ill_bcast_mp);
4221 		ill->ill_net_type = IRE_IF_NORESOLVER;
4222 
4223 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4224 		    ill->ill_phys_addr_length,
4225 		    ill->ill_sap,
4226 		    ill->ill_sap_length);
4227 
4228 		if (ill->ill_isv6)
4229 			/*
4230 			 * Note: xresolv interfaces will eventually need NOARP
4231 			 * set here as well, but that will require those
4232 			 * external resolvers to have some knowledge of
4233 			 * that flag and act appropriately. Not to be changed
4234 			 * at present.
4235 			 */
4236 			ill->ill_flags |= ILLF_NONUD;
4237 		else
4238 			ill->ill_flags |= ILLF_NOARP;
4239 
4240 		if (ill->ill_mactype == SUNW_DL_VNI) {
4241 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4242 		} else if (ill->ill_phys_addr_length == 0 ||
4243 		    ill->ill_mactype == DL_IPV4 ||
4244 		    ill->ill_mactype == DL_IPV6) {
4245 			/*
4246 			 * The underying link is point-to-point, so mark the
4247 			 * interface as such.  We can do IP multicast over
4248 			 * such a link since it transmits all network-layer
4249 			 * packets to the remote side the same way.
4250 			 */
4251 			ill->ill_flags |= ILLF_MULTICAST;
4252 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4253 		}
4254 	} else {
4255 		ill->ill_net_type = IRE_IF_RESOLVER;
4256 		if (ill->ill_bcast_mp != NULL)
4257 			freemsg(ill->ill_bcast_mp);
4258 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4259 		    ill->ill_bcast_addr_length, ill->ill_sap,
4260 		    ill->ill_sap_length);
4261 		/*
4262 		 * Later detect lack of DLPI driver multicast
4263 		 * capability by catching DL_ENABMULTI errors in
4264 		 * ip_rput_dlpi.
4265 		 */
4266 		ill->ill_flags |= ILLF_MULTICAST;
4267 		if (!ill->ill_isv6)
4268 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4269 	}
4270 
4271 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4272 	if (ill->ill_mactype == SUNW_DL_IPMP)
4273 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4274 
4275 	/* By default an interface does not support any CoS marking */
4276 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4277 
4278 	/*
4279 	 * If we get QoS information in DL_INFO_ACK, the device supports
4280 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4281 	 */
4282 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4283 	    dlia->dl_qos_length);
4284 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4285 		ill->ill_flags |= ILLF_COS_ENABLED;
4286 	}
4287 
4288 	/* Clear any previous error indication. */
4289 	ill->ill_error = 0;
4290 	freemsg(mp);
4291 }
4292 
4293 /*
4294  * Perform various checks to verify that an address would make sense as a
4295  * local, remote, or subnet interface address.
4296  */
4297 static boolean_t
4298 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4299 {
4300 	ipaddr_t	net_mask;
4301 
4302 	/*
4303 	 * Don't allow all zeroes, or all ones, but allow
4304 	 * all ones netmask.
4305 	 */
4306 	if ((net_mask = ip_net_mask(addr)) == 0)
4307 		return (B_FALSE);
4308 	/* A given netmask overrides the "guess" netmask */
4309 	if (subnet_mask != 0)
4310 		net_mask = subnet_mask;
4311 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4312 	    (addr == (addr | ~net_mask)))) {
4313 		return (B_FALSE);
4314 	}
4315 
4316 	/*
4317 	 * Even if the netmask is all ones, we do not allow address to be
4318 	 * 255.255.255.255
4319 	 */
4320 	if (addr == INADDR_BROADCAST)
4321 		return (B_FALSE);
4322 
4323 	if (CLASSD(addr))
4324 		return (B_FALSE);
4325 
4326 	return (B_TRUE);
4327 }
4328 
4329 #define	V6_IPIF_LINKLOCAL(p)	\
4330 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4331 
4332 /*
4333  * Compare two given ipifs and check if the second one is better than
4334  * the first one using the order of preference (not taking deprecated
4335  * into acount) specified in ipif_lookup_multicast().
4336  */
4337 static boolean_t
4338 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4339 {
4340 	/* Check the least preferred first. */
4341 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4342 		/* If both ipifs are the same, use the first one. */
4343 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4344 			return (B_FALSE);
4345 		else
4346 			return (B_TRUE);
4347 	}
4348 
4349 	/* For IPv6, check for link local address. */
4350 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4351 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4352 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4353 			/* The second one is equal or less preferred. */
4354 			return (B_FALSE);
4355 		} else {
4356 			return (B_TRUE);
4357 		}
4358 	}
4359 
4360 	/* Then check for point to point interface. */
4361 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4362 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4363 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4364 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4365 			return (B_FALSE);
4366 		} else {
4367 			return (B_TRUE);
4368 		}
4369 	}
4370 
4371 	/* old_ipif is a normal interface, so no need to use the new one. */
4372 	return (B_FALSE);
4373 }
4374 
4375 /*
4376  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4377  * The ipif must be up, and its ill must multicast-capable, not
4378  * condemned, not an underlying interface in an IPMP group, and
4379  * not a VNI interface.  Order of preference:
4380  *
4381  * 	1a. normal
4382  * 	1b. normal, but deprecated
4383  * 	2a. point to point
4384  * 	2b. point to point, but deprecated
4385  * 	3a. link local
4386  * 	3b. link local, but deprecated
4387  * 	4. loopback.
4388  */
4389 static ipif_t *
4390 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4391 {
4392 	ill_t			*ill;
4393 	ill_walk_context_t	ctx;
4394 	ipif_t			*ipif;
4395 	ipif_t			*saved_ipif = NULL;
4396 	ipif_t			*dep_ipif = NULL;
4397 
4398 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4399 	if (isv6)
4400 		ill = ILL_START_WALK_V6(&ctx, ipst);
4401 	else
4402 		ill = ILL_START_WALK_V4(&ctx, ipst);
4403 
4404 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4405 		mutex_enter(&ill->ill_lock);
4406 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4407 		    ILL_IS_CONDEMNED(ill) ||
4408 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4409 			mutex_exit(&ill->ill_lock);
4410 			continue;
4411 		}
4412 		for (ipif = ill->ill_ipif; ipif != NULL;
4413 		    ipif = ipif->ipif_next) {
4414 			if (zoneid != ipif->ipif_zoneid &&
4415 			    zoneid != ALL_ZONES &&
4416 			    ipif->ipif_zoneid != ALL_ZONES) {
4417 				continue;
4418 			}
4419 			if (!(ipif->ipif_flags & IPIF_UP) ||
4420 			    IPIF_IS_CONDEMNED(ipif)) {
4421 				continue;
4422 			}
4423 
4424 			/*
4425 			 * Found one candidate.  If it is deprecated,
4426 			 * remember it in dep_ipif.  If it is not deprecated,
4427 			 * remember it in saved_ipif.
4428 			 */
4429 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4430 				if (dep_ipif == NULL) {
4431 					dep_ipif = ipif;
4432 				} else if (ipif_comp_multi(dep_ipif, ipif,
4433 				    isv6)) {
4434 					/*
4435 					 * If the previous dep_ipif does not
4436 					 * belong to the same ill, we've done
4437 					 * a ipif_refhold() on it.  So we need
4438 					 * to release it.
4439 					 */
4440 					if (dep_ipif->ipif_ill != ill)
4441 						ipif_refrele(dep_ipif);
4442 					dep_ipif = ipif;
4443 				}
4444 				continue;
4445 			}
4446 			if (saved_ipif == NULL) {
4447 				saved_ipif = ipif;
4448 			} else {
4449 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4450 					if (saved_ipif->ipif_ill != ill)
4451 						ipif_refrele(saved_ipif);
4452 					saved_ipif = ipif;
4453 				}
4454 			}
4455 		}
4456 		/*
4457 		 * Before going to the next ill, do a ipif_refhold() on the
4458 		 * saved ones.
4459 		 */
4460 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4461 			ipif_refhold_locked(saved_ipif);
4462 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4463 			ipif_refhold_locked(dep_ipif);
4464 		mutex_exit(&ill->ill_lock);
4465 	}
4466 	rw_exit(&ipst->ips_ill_g_lock);
4467 
4468 	/*
4469 	 * If we have only the saved_ipif, return it.  But if we have both
4470 	 * saved_ipif and dep_ipif, check to see which one is better.
4471 	 */
4472 	if (saved_ipif != NULL) {
4473 		if (dep_ipif != NULL) {
4474 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4475 				ipif_refrele(saved_ipif);
4476 				return (dep_ipif);
4477 			} else {
4478 				ipif_refrele(dep_ipif);
4479 				return (saved_ipif);
4480 			}
4481 		}
4482 		return (saved_ipif);
4483 	} else {
4484 		return (dep_ipif);
4485 	}
4486 }
4487 
4488 ill_t *
4489 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4490 {
4491 	ipif_t *ipif;
4492 	ill_t *ill;
4493 
4494 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4495 	if (ipif == NULL)
4496 		return (NULL);
4497 
4498 	ill = ipif->ipif_ill;
4499 	ill_refhold(ill);
4500 	ipif_refrele(ipif);
4501 	return (ill);
4502 }
4503 
4504 /*
4505  * This function is called when an application does not specify an interface
4506  * to be used for multicast traffic (joining a group/sending data).  It
4507  * calls ire_lookup_multi() to look for an interface route for the
4508  * specified multicast group.  Doing this allows the administrator to add
4509  * prefix routes for multicast to indicate which interface to be used for
4510  * multicast traffic in the above scenario.  The route could be for all
4511  * multicast (224.0/4), for a single multicast group (a /32 route) or
4512  * anything in between.  If there is no such multicast route, we just find
4513  * any multicast capable interface and return it.  The returned ipif
4514  * is refhold'ed.
4515  *
4516  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4517  * unicast table. This is used by CGTP.
4518  */
4519 ill_t *
4520 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4521     boolean_t *multirtp, ipaddr_t *setsrcp)
4522 {
4523 	ill_t			*ill;
4524 
4525 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4526 	if (ill != NULL)
4527 		return (ill);
4528 
4529 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4530 }
4531 
4532 /*
4533  * Look for an ipif with the specified interface address and destination.
4534  * The destination address is used only for matching point-to-point interfaces.
4535  */
4536 ipif_t *
4537 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4538 {
4539 	ipif_t	*ipif;
4540 	ill_t	*ill;
4541 	ill_walk_context_t ctx;
4542 
4543 	/*
4544 	 * First match all the point-to-point interfaces
4545 	 * before looking at non-point-to-point interfaces.
4546 	 * This is done to avoid returning non-point-to-point
4547 	 * ipif instead of unnumbered point-to-point ipif.
4548 	 */
4549 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4550 	ill = ILL_START_WALK_V4(&ctx, ipst);
4551 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4552 		mutex_enter(&ill->ill_lock);
4553 		for (ipif = ill->ill_ipif; ipif != NULL;
4554 		    ipif = ipif->ipif_next) {
4555 			/* Allow the ipif to be down */
4556 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4557 			    (ipif->ipif_lcl_addr == if_addr) &&
4558 			    (ipif->ipif_pp_dst_addr == dst)) {
4559 				if (!IPIF_IS_CONDEMNED(ipif)) {
4560 					ipif_refhold_locked(ipif);
4561 					mutex_exit(&ill->ill_lock);
4562 					rw_exit(&ipst->ips_ill_g_lock);
4563 					return (ipif);
4564 				}
4565 			}
4566 		}
4567 		mutex_exit(&ill->ill_lock);
4568 	}
4569 	rw_exit(&ipst->ips_ill_g_lock);
4570 
4571 	/* lookup the ipif based on interface address */
4572 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4573 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4574 	return (ipif);
4575 }
4576 
4577 /*
4578  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4579  */
4580 static ipif_t *
4581 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4582     zoneid_t zoneid, ip_stack_t *ipst)
4583 {
4584 	ipif_t  *ipif;
4585 	ill_t   *ill;
4586 	boolean_t ptp = B_FALSE;
4587 	ill_walk_context_t	ctx;
4588 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4589 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4590 
4591 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4592 	/*
4593 	 * Repeat twice, first based on local addresses and
4594 	 * next time for pointopoint.
4595 	 */
4596 repeat:
4597 	ill = ILL_START_WALK_V4(&ctx, ipst);
4598 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4599 		if (match_ill != NULL && ill != match_ill &&
4600 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4601 			continue;
4602 		}
4603 		mutex_enter(&ill->ill_lock);
4604 		for (ipif = ill->ill_ipif; ipif != NULL;
4605 		    ipif = ipif->ipif_next) {
4606 			if (zoneid != ALL_ZONES &&
4607 			    zoneid != ipif->ipif_zoneid &&
4608 			    ipif->ipif_zoneid != ALL_ZONES)
4609 				continue;
4610 
4611 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4612 				continue;
4613 
4614 			/* Allow the ipif to be down */
4615 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4616 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4617 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4618 			    (ipif->ipif_pp_dst_addr == addr))) {
4619 				if (!IPIF_IS_CONDEMNED(ipif)) {
4620 					ipif_refhold_locked(ipif);
4621 					mutex_exit(&ill->ill_lock);
4622 					rw_exit(&ipst->ips_ill_g_lock);
4623 					return (ipif);
4624 				}
4625 			}
4626 		}
4627 		mutex_exit(&ill->ill_lock);
4628 	}
4629 
4630 	/* If we already did the ptp case, then we are done */
4631 	if (ptp) {
4632 		rw_exit(&ipst->ips_ill_g_lock);
4633 		return (NULL);
4634 	}
4635 	ptp = B_TRUE;
4636 	goto repeat;
4637 }
4638 
4639 /*
4640  * Lookup an ipif with the specified address.  For point-to-point links we
4641  * look for matches on either the destination address or the local address,
4642  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4643  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4644  * (or illgrp if `match_ill' is in an IPMP group).
4645  */
4646 ipif_t *
4647 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4648     ip_stack_t *ipst)
4649 {
4650 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4651 	    zoneid, ipst));
4652 }
4653 
4654 /*
4655  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4656  * except that we will only return an address if it is not marked as
4657  * IPIF_DUPLICATE
4658  */
4659 ipif_t *
4660 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4661     ip_stack_t *ipst)
4662 {
4663 	return (ipif_lookup_addr_common(addr, match_ill,
4664 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4665 	    zoneid, ipst));
4666 }
4667 
4668 /*
4669  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4670  * `match_ill' across the IPMP group.  This function is only needed in some
4671  * corner-cases; almost everything should use ipif_lookup_addr().
4672  */
4673 ipif_t *
4674 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4675 {
4676 	ASSERT(match_ill != NULL);
4677 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4678 	    ipst));
4679 }
4680 
4681 /*
4682  * Look for an ipif with the specified address. For point-point links
4683  * we look for matches on either the destination address and the local
4684  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4685  * is set.
4686  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4687  * ill (or illgrp if `match_ill' is in an IPMP group).
4688  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4689  */
4690 zoneid_t
4691 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4692 {
4693 	zoneid_t zoneid;
4694 	ipif_t  *ipif;
4695 	ill_t   *ill;
4696 	boolean_t ptp = B_FALSE;
4697 	ill_walk_context_t	ctx;
4698 
4699 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4700 	/*
4701 	 * Repeat twice, first based on local addresses and
4702 	 * next time for pointopoint.
4703 	 */
4704 repeat:
4705 	ill = ILL_START_WALK_V4(&ctx, ipst);
4706 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4707 		if (match_ill != NULL && ill != match_ill &&
4708 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4709 			continue;
4710 		}
4711 		mutex_enter(&ill->ill_lock);
4712 		for (ipif = ill->ill_ipif; ipif != NULL;
4713 		    ipif = ipif->ipif_next) {
4714 			/* Allow the ipif to be down */
4715 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4716 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4717 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4718 			    (ipif->ipif_pp_dst_addr == addr)) &&
4719 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4720 				zoneid = ipif->ipif_zoneid;
4721 				mutex_exit(&ill->ill_lock);
4722 				rw_exit(&ipst->ips_ill_g_lock);
4723 				/*
4724 				 * If ipif_zoneid was ALL_ZONES then we have
4725 				 * a trusted extensions shared IP address.
4726 				 * In that case GLOBAL_ZONEID works to send.
4727 				 */
4728 				if (zoneid == ALL_ZONES)
4729 					zoneid = GLOBAL_ZONEID;
4730 				return (zoneid);
4731 			}
4732 		}
4733 		mutex_exit(&ill->ill_lock);
4734 	}
4735 
4736 	/* If we already did the ptp case, then we are done */
4737 	if (ptp) {
4738 		rw_exit(&ipst->ips_ill_g_lock);
4739 		return (ALL_ZONES);
4740 	}
4741 	ptp = B_TRUE;
4742 	goto repeat;
4743 }
4744 
4745 /*
4746  * Look for an ipif that matches the specified remote address i.e. the
4747  * ipif that would receive the specified packet.
4748  * First look for directly connected interfaces and then do a recursive
4749  * IRE lookup and pick the first ipif corresponding to the source address in the
4750  * ire.
4751  * Returns: held ipif
4752  *
4753  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4754  */
4755 ipif_t *
4756 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4757 {
4758 	ipif_t	*ipif;
4759 
4760 	ASSERT(!ill->ill_isv6);
4761 
4762 	/*
4763 	 * Someone could be changing this ipif currently or change it
4764 	 * after we return this. Thus  a few packets could use the old
4765 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4766 	 * will atomically be updated or cleaned up with the new value
4767 	 * Thus we don't need a lock to check the flags or other attrs below.
4768 	 */
4769 	mutex_enter(&ill->ill_lock);
4770 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4771 		if (IPIF_IS_CONDEMNED(ipif))
4772 			continue;
4773 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4774 		    ipif->ipif_zoneid != ALL_ZONES)
4775 			continue;
4776 		/* Allow the ipif to be down */
4777 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4778 			if ((ipif->ipif_pp_dst_addr == addr) ||
4779 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4780 			    ipif->ipif_lcl_addr == addr)) {
4781 				ipif_refhold_locked(ipif);
4782 				mutex_exit(&ill->ill_lock);
4783 				return (ipif);
4784 			}
4785 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4786 			ipif_refhold_locked(ipif);
4787 			mutex_exit(&ill->ill_lock);
4788 			return (ipif);
4789 		}
4790 	}
4791 	mutex_exit(&ill->ill_lock);
4792 	/*
4793 	 * For a remote destination it isn't possible to nail down a particular
4794 	 * ipif.
4795 	 */
4796 
4797 	/* Pick the first interface */
4798 	ipif = ipif_get_next_ipif(NULL, ill);
4799 	return (ipif);
4800 }
4801 
4802 /*
4803  * This func does not prevent refcnt from increasing. But if
4804  * the caller has taken steps to that effect, then this func
4805  * can be used to determine whether the ill has become quiescent
4806  */
4807 static boolean_t
4808 ill_is_quiescent(ill_t *ill)
4809 {
4810 	ipif_t	*ipif;
4811 
4812 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4813 
4814 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4815 		if (ipif->ipif_refcnt != 0)
4816 			return (B_FALSE);
4817 	}
4818 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4819 		return (B_FALSE);
4820 	}
4821 	return (B_TRUE);
4822 }
4823 
4824 boolean_t
4825 ill_is_freeable(ill_t *ill)
4826 {
4827 	ipif_t	*ipif;
4828 
4829 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4830 
4831 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4832 		if (ipif->ipif_refcnt != 0) {
4833 			return (B_FALSE);
4834 		}
4835 	}
4836 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4837 		return (B_FALSE);
4838 	}
4839 	return (B_TRUE);
4840 }
4841 
4842 /*
4843  * This func does not prevent refcnt from increasing. But if
4844  * the caller has taken steps to that effect, then this func
4845  * can be used to determine whether the ipif has become quiescent
4846  */
4847 static boolean_t
4848 ipif_is_quiescent(ipif_t *ipif)
4849 {
4850 	ill_t *ill;
4851 
4852 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4853 
4854 	if (ipif->ipif_refcnt != 0)
4855 		return (B_FALSE);
4856 
4857 	ill = ipif->ipif_ill;
4858 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4859 	    ill->ill_logical_down) {
4860 		return (B_TRUE);
4861 	}
4862 
4863 	/* This is the last ipif going down or being deleted on this ill */
4864 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4865 		return (B_FALSE);
4866 	}
4867 
4868 	return (B_TRUE);
4869 }
4870 
4871 /*
4872  * return true if the ipif can be destroyed: the ipif has to be quiescent
4873  * with zero references from ire/ilm to it.
4874  */
4875 static boolean_t
4876 ipif_is_freeable(ipif_t *ipif)
4877 {
4878 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4879 	ASSERT(ipif->ipif_id != 0);
4880 	return (ipif->ipif_refcnt == 0);
4881 }
4882 
4883 /*
4884  * The ipif/ill/ire has been refreled. Do the tail processing.
4885  * Determine if the ipif or ill in question has become quiescent and if so
4886  * wakeup close and/or restart any queued pending ioctl that is waiting
4887  * for the ipif_down (or ill_down)
4888  */
4889 void
4890 ipif_ill_refrele_tail(ill_t *ill)
4891 {
4892 	mblk_t	*mp;
4893 	conn_t	*connp;
4894 	ipsq_t	*ipsq;
4895 	ipxop_t	*ipx;
4896 	ipif_t	*ipif;
4897 	dl_notify_ind_t *dlindp;
4898 
4899 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4900 
4901 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4902 		/* ip_modclose() may be waiting */
4903 		cv_broadcast(&ill->ill_cv);
4904 	}
4905 
4906 	ipsq = ill->ill_phyint->phyint_ipsq;
4907 	mutex_enter(&ipsq->ipsq_lock);
4908 	ipx = ipsq->ipsq_xop;
4909 	mutex_enter(&ipx->ipx_lock);
4910 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4911 		goto unlock;
4912 
4913 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4914 
4915 	ipif = ipx->ipx_pending_ipif;
4916 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4917 		goto unlock;
4918 
4919 	switch (ipx->ipx_waitfor) {
4920 	case IPIF_DOWN:
4921 		if (!ipif_is_quiescent(ipif))
4922 			goto unlock;
4923 		break;
4924 	case IPIF_FREE:
4925 		if (!ipif_is_freeable(ipif))
4926 			goto unlock;
4927 		break;
4928 	case ILL_DOWN:
4929 		if (!ill_is_quiescent(ill))
4930 			goto unlock;
4931 		break;
4932 	case ILL_FREE:
4933 		/*
4934 		 * ILL_FREE is only for loopback; normal ill teardown waits
4935 		 * synchronously in ip_modclose() without using ipx_waitfor,
4936 		 * handled by the cv_broadcast() at the top of this function.
4937 		 */
4938 		if (!ill_is_freeable(ill))
4939 			goto unlock;
4940 		break;
4941 	default:
4942 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4943 		    (void *)ipsq, ipx->ipx_waitfor);
4944 	}
4945 
4946 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4947 	mutex_exit(&ipx->ipx_lock);
4948 	mp = ipsq_pending_mp_get(ipsq, &connp);
4949 	mutex_exit(&ipsq->ipsq_lock);
4950 	mutex_exit(&ill->ill_lock);
4951 
4952 	ASSERT(mp != NULL);
4953 	/*
4954 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4955 	 * we can only get here when the current operation decides it
4956 	 * it needs to quiesce via ipsq_pending_mp_add().
4957 	 */
4958 	switch (mp->b_datap->db_type) {
4959 	case M_PCPROTO:
4960 	case M_PROTO:
4961 		/*
4962 		 * For now, only DL_NOTIFY_IND messages can use this facility.
4963 		 */
4964 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
4965 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4966 
4967 		switch (dlindp->dl_notification) {
4968 		case DL_NOTE_PHYS_ADDR:
4969 			qwriter_ip(ill, ill->ill_rq, mp,
4970 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
4971 			return;
4972 		case DL_NOTE_REPLUMB:
4973 			qwriter_ip(ill, ill->ill_rq, mp,
4974 			    ill_replumb_tail, CUR_OP, B_TRUE);
4975 			return;
4976 		default:
4977 			ASSERT(0);
4978 			ill_refrele(ill);
4979 		}
4980 		break;
4981 
4982 	case M_ERROR:
4983 	case M_HANGUP:
4984 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
4985 		    B_TRUE);
4986 		return;
4987 
4988 	case M_IOCTL:
4989 	case M_IOCDATA:
4990 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
4991 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
4992 		return;
4993 
4994 	default:
4995 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
4996 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
4997 	}
4998 	return;
4999 unlock:
5000 	mutex_exit(&ipsq->ipsq_lock);
5001 	mutex_exit(&ipx->ipx_lock);
5002 	mutex_exit(&ill->ill_lock);
5003 }
5004 
5005 #ifdef DEBUG
5006 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5007 static void
5008 th_trace_rrecord(th_trace_t *th_trace)
5009 {
5010 	tr_buf_t *tr_buf;
5011 	uint_t lastref;
5012 
5013 	lastref = th_trace->th_trace_lastref;
5014 	lastref++;
5015 	if (lastref == TR_BUF_MAX)
5016 		lastref = 0;
5017 	th_trace->th_trace_lastref = lastref;
5018 	tr_buf = &th_trace->th_trbuf[lastref];
5019 	tr_buf->tr_time = ddi_get_lbolt();
5020 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5021 }
5022 
5023 static void
5024 th_trace_free(void *value)
5025 {
5026 	th_trace_t *th_trace = value;
5027 
5028 	ASSERT(th_trace->th_refcnt == 0);
5029 	kmem_free(th_trace, sizeof (*th_trace));
5030 }
5031 
5032 /*
5033  * Find or create the per-thread hash table used to track object references.
5034  * The ipst argument is NULL if we shouldn't allocate.
5035  *
5036  * Accesses per-thread data, so there's no need to lock here.
5037  */
5038 static mod_hash_t *
5039 th_trace_gethash(ip_stack_t *ipst)
5040 {
5041 	th_hash_t *thh;
5042 
5043 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5044 		mod_hash_t *mh;
5045 		char name[256];
5046 		size_t objsize, rshift;
5047 		int retv;
5048 
5049 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5050 			return (NULL);
5051 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5052 		    (void *)curthread);
5053 
5054 		/*
5055 		 * We use mod_hash_create_extended here rather than the more
5056 		 * obvious mod_hash_create_ptrhash because the latter has a
5057 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5058 		 * block.
5059 		 */
5060 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5061 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5062 		rshift = highbit(objsize);
5063 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5064 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5065 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5066 		if (mh == NULL) {
5067 			kmem_free(thh, sizeof (*thh));
5068 			return (NULL);
5069 		}
5070 		thh->thh_hash = mh;
5071 		thh->thh_ipst = ipst;
5072 		/*
5073 		 * We trace ills, ipifs, ires, and nces.  All of these are
5074 		 * per-IP-stack, so the lock on the thread list is as well.
5075 		 */
5076 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5077 		list_insert_tail(&ip_thread_list, thh);
5078 		rw_exit(&ip_thread_rwlock);
5079 		retv = tsd_set(ip_thread_data, thh);
5080 		ASSERT(retv == 0);
5081 	}
5082 	return (thh != NULL ? thh->thh_hash : NULL);
5083 }
5084 
5085 boolean_t
5086 th_trace_ref(const void *obj, ip_stack_t *ipst)
5087 {
5088 	th_trace_t *th_trace;
5089 	mod_hash_t *mh;
5090 	mod_hash_val_t val;
5091 
5092 	if ((mh = th_trace_gethash(ipst)) == NULL)
5093 		return (B_FALSE);
5094 
5095 	/*
5096 	 * Attempt to locate the trace buffer for this obj and thread.
5097 	 * If it does not exist, then allocate a new trace buffer and
5098 	 * insert into the hash.
5099 	 */
5100 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5101 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5102 		if (th_trace == NULL)
5103 			return (B_FALSE);
5104 
5105 		th_trace->th_id = curthread;
5106 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5107 		    (mod_hash_val_t)th_trace) != 0) {
5108 			kmem_free(th_trace, sizeof (th_trace_t));
5109 			return (B_FALSE);
5110 		}
5111 	} else {
5112 		th_trace = (th_trace_t *)val;
5113 	}
5114 
5115 	ASSERT(th_trace->th_refcnt >= 0 &&
5116 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5117 
5118 	th_trace->th_refcnt++;
5119 	th_trace_rrecord(th_trace);
5120 	return (B_TRUE);
5121 }
5122 
5123 /*
5124  * For the purpose of tracing a reference release, we assume that global
5125  * tracing is always on and that the same thread initiated the reference hold
5126  * is releasing.
5127  */
5128 void
5129 th_trace_unref(const void *obj)
5130 {
5131 	int retv;
5132 	mod_hash_t *mh;
5133 	th_trace_t *th_trace;
5134 	mod_hash_val_t val;
5135 
5136 	mh = th_trace_gethash(NULL);
5137 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5138 	ASSERT(retv == 0);
5139 	th_trace = (th_trace_t *)val;
5140 
5141 	ASSERT(th_trace->th_refcnt > 0);
5142 	th_trace->th_refcnt--;
5143 	th_trace_rrecord(th_trace);
5144 }
5145 
5146 /*
5147  * If tracing has been disabled, then we assume that the reference counts are
5148  * now useless, and we clear them out before destroying the entries.
5149  */
5150 void
5151 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5152 {
5153 	th_hash_t	*thh;
5154 	mod_hash_t	*mh;
5155 	mod_hash_val_t	val;
5156 	th_trace_t	*th_trace;
5157 	int		retv;
5158 
5159 	rw_enter(&ip_thread_rwlock, RW_READER);
5160 	for (thh = list_head(&ip_thread_list); thh != NULL;
5161 	    thh = list_next(&ip_thread_list, thh)) {
5162 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5163 		    &val) == 0) {
5164 			th_trace = (th_trace_t *)val;
5165 			if (trace_disable)
5166 				th_trace->th_refcnt = 0;
5167 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5168 			ASSERT(retv == 0);
5169 		}
5170 	}
5171 	rw_exit(&ip_thread_rwlock);
5172 }
5173 
5174 void
5175 ipif_trace_ref(ipif_t *ipif)
5176 {
5177 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5178 
5179 	if (ipif->ipif_trace_disable)
5180 		return;
5181 
5182 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5183 		ipif->ipif_trace_disable = B_TRUE;
5184 		ipif_trace_cleanup(ipif);
5185 	}
5186 }
5187 
5188 void
5189 ipif_untrace_ref(ipif_t *ipif)
5190 {
5191 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5192 
5193 	if (!ipif->ipif_trace_disable)
5194 		th_trace_unref(ipif);
5195 }
5196 
5197 void
5198 ill_trace_ref(ill_t *ill)
5199 {
5200 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5201 
5202 	if (ill->ill_trace_disable)
5203 		return;
5204 
5205 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5206 		ill->ill_trace_disable = B_TRUE;
5207 		ill_trace_cleanup(ill);
5208 	}
5209 }
5210 
5211 void
5212 ill_untrace_ref(ill_t *ill)
5213 {
5214 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5215 
5216 	if (!ill->ill_trace_disable)
5217 		th_trace_unref(ill);
5218 }
5219 
5220 /*
5221  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5222  * failure, ipif_trace_disable is set.
5223  */
5224 static void
5225 ipif_trace_cleanup(const ipif_t *ipif)
5226 {
5227 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5228 }
5229 
5230 /*
5231  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5232  * failure, ill_trace_disable is set.
5233  */
5234 static void
5235 ill_trace_cleanup(const ill_t *ill)
5236 {
5237 	th_trace_cleanup(ill, ill->ill_trace_disable);
5238 }
5239 #endif /* DEBUG */
5240 
5241 void
5242 ipif_refhold_locked(ipif_t *ipif)
5243 {
5244 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5245 	ipif->ipif_refcnt++;
5246 	IPIF_TRACE_REF(ipif);
5247 }
5248 
5249 void
5250 ipif_refhold(ipif_t *ipif)
5251 {
5252 	ill_t	*ill;
5253 
5254 	ill = ipif->ipif_ill;
5255 	mutex_enter(&ill->ill_lock);
5256 	ipif->ipif_refcnt++;
5257 	IPIF_TRACE_REF(ipif);
5258 	mutex_exit(&ill->ill_lock);
5259 }
5260 
5261 /*
5262  * Must not be called while holding any locks. Otherwise if this is
5263  * the last reference to be released there is a chance of recursive mutex
5264  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5265  * to restart an ioctl.
5266  */
5267 void
5268 ipif_refrele(ipif_t *ipif)
5269 {
5270 	ill_t	*ill;
5271 
5272 	ill = ipif->ipif_ill;
5273 
5274 	mutex_enter(&ill->ill_lock);
5275 	ASSERT(ipif->ipif_refcnt != 0);
5276 	ipif->ipif_refcnt--;
5277 	IPIF_UNTRACE_REF(ipif);
5278 	if (ipif->ipif_refcnt != 0) {
5279 		mutex_exit(&ill->ill_lock);
5280 		return;
5281 	}
5282 
5283 	/* Drops the ill_lock */
5284 	ipif_ill_refrele_tail(ill);
5285 }
5286 
5287 ipif_t *
5288 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5289 {
5290 	ipif_t	*ipif;
5291 
5292 	mutex_enter(&ill->ill_lock);
5293 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5294 	    ipif != NULL; ipif = ipif->ipif_next) {
5295 		if (IPIF_IS_CONDEMNED(ipif))
5296 			continue;
5297 		ipif_refhold_locked(ipif);
5298 		mutex_exit(&ill->ill_lock);
5299 		return (ipif);
5300 	}
5301 	mutex_exit(&ill->ill_lock);
5302 	return (NULL);
5303 }
5304 
5305 /*
5306  * TODO: make this table extendible at run time
5307  * Return a pointer to the mac type info for 'mac_type'
5308  */
5309 static ip_m_t *
5310 ip_m_lookup(t_uscalar_t mac_type)
5311 {
5312 	ip_m_t	*ipm;
5313 
5314 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5315 		if (ipm->ip_m_mac_type == mac_type)
5316 			return (ipm);
5317 	return (NULL);
5318 }
5319 
5320 /*
5321  * Make a link layer address from the multicast IP address *addr.
5322  * To form the link layer address, invoke the ip_m_v*mapping function
5323  * associated with the link-layer type.
5324  */
5325 void
5326 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5327 {
5328 	ip_m_t *ipm;
5329 
5330 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5331 		return;
5332 
5333 	ASSERT(addr != NULL);
5334 
5335 	ipm = ip_m_lookup(ill->ill_mactype);
5336 	if (ipm == NULL ||
5337 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5338 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5339 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5340 		    ill->ill_name, ill->ill_mactype));
5341 		return;
5342 	}
5343 	if (ill->ill_isv6)
5344 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5345 	else
5346 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5347 }
5348 
5349 /*
5350  * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5351  * Otherwise returns B_TRUE.
5352  *
5353  * The netmask can be verified to be contiguous with 32 shifts and or
5354  * operations. Take the contiguous mask (in host byte order) and compute
5355  * 	mask | mask << 1 | mask << 2 | ... | mask << 31
5356  * the result will be the same as the 'mask' for contiguous mask.
5357  */
5358 static boolean_t
5359 ip_contiguous_mask(uint32_t mask)
5360 {
5361 	uint32_t	m = mask;
5362 	int		i;
5363 
5364 	for (i = 1; i < 32; i++)
5365 		m |= (mask << i);
5366 
5367 	return (m == mask);
5368 }
5369 
5370 /*
5371  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5372  * ill is passed in to associate it with the correct interface.
5373  * If ire_arg is set, then we return the held IRE in that location.
5374  */
5375 int
5376 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5377     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5378     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5379 {
5380 	ire_t	*ire, *nire;
5381 	ire_t	*gw_ire = NULL;
5382 	ipif_t	*ipif = NULL;
5383 	uint_t	type;
5384 	int	match_flags = MATCH_IRE_TYPE;
5385 	tsol_gc_t *gc = NULL;
5386 	tsol_gcgrp_t *gcgrp = NULL;
5387 	boolean_t gcgrp_xtraref = B_FALSE;
5388 	boolean_t cgtp_broadcast;
5389 	boolean_t unbound = B_FALSE;
5390 
5391 	ip1dbg(("ip_rt_add:"));
5392 
5393 	if (ire_arg != NULL)
5394 		*ire_arg = NULL;
5395 
5396 	/* disallow non-contiguous netmasks */
5397 	if (!ip_contiguous_mask(ntohl(mask)))
5398 		return (ENOTSUP);
5399 
5400 	/*
5401 	 * If this is the case of RTF_HOST being set, then we set the netmask
5402 	 * to all ones (regardless if one was supplied).
5403 	 */
5404 	if (flags & RTF_HOST)
5405 		mask = IP_HOST_MASK;
5406 
5407 	/*
5408 	 * Prevent routes with a zero gateway from being created (since
5409 	 * interfaces can currently be plumbed and brought up no assigned
5410 	 * address).
5411 	 */
5412 	if (gw_addr == 0)
5413 		return (ENETUNREACH);
5414 	/*
5415 	 * Get the ipif, if any, corresponding to the gw_addr
5416 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5417 	 * we match on the gatway and destination to handle unnumbered pt-pt
5418 	 * interfaces.
5419 	 */
5420 	if (ill != NULL)
5421 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5422 	else
5423 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5424 	if (ipif != NULL) {
5425 		if (IS_VNI(ipif->ipif_ill)) {
5426 			ipif_refrele(ipif);
5427 			return (EINVAL);
5428 		}
5429 	}
5430 
5431 	/*
5432 	 * GateD will attempt to create routes with a loopback interface
5433 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5434 	 * these routes to be added, but create them as interface routes
5435 	 * since the gateway is an interface address.
5436 	 */
5437 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5438 		flags &= ~RTF_GATEWAY;
5439 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5440 		    mask == IP_HOST_MASK) {
5441 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5442 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5443 			    NULL);
5444 			if (ire != NULL) {
5445 				ire_refrele(ire);
5446 				ipif_refrele(ipif);
5447 				return (EEXIST);
5448 			}
5449 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5450 			    "for 0x%x\n", (void *)ipif,
5451 			    ipif->ipif_ire_type,
5452 			    ntohl(ipif->ipif_lcl_addr)));
5453 			ire = ire_create(
5454 			    (uchar_t *)&dst_addr,	/* dest address */
5455 			    (uchar_t *)&mask,		/* mask */
5456 			    NULL,			/* no gateway */
5457 			    ipif->ipif_ire_type,	/* LOOPBACK */
5458 			    ipif->ipif_ill,
5459 			    zoneid,
5460 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5461 			    NULL,
5462 			    ipst);
5463 
5464 			if (ire == NULL) {
5465 				ipif_refrele(ipif);
5466 				return (ENOMEM);
5467 			}
5468 			/* src address assigned by the caller? */
5469 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5470 				ire->ire_setsrc_addr = src_addr;
5471 
5472 			nire = ire_add(ire);
5473 			if (nire == NULL) {
5474 				/*
5475 				 * In the result of failure, ire_add() will have
5476 				 * already deleted the ire in question, so there
5477 				 * is no need to do that here.
5478 				 */
5479 				ipif_refrele(ipif);
5480 				return (ENOMEM);
5481 			}
5482 			/*
5483 			 * Check if it was a duplicate entry. This handles
5484 			 * the case of two racing route adds for the same route
5485 			 */
5486 			if (nire != ire) {
5487 				ASSERT(nire->ire_identical_ref > 1);
5488 				ire_delete(nire);
5489 				ire_refrele(nire);
5490 				ipif_refrele(ipif);
5491 				return (EEXIST);
5492 			}
5493 			ire = nire;
5494 			goto save_ire;
5495 		}
5496 	}
5497 
5498 	/*
5499 	 * The routes for multicast with CGTP are quite special in that
5500 	 * the gateway is the local interface address, yet RTF_GATEWAY
5501 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5502 	 * this undocumented and unusual use of multicast routes.
5503 	 */
5504 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5505 		flags &= ~RTF_GATEWAY;
5506 
5507 	/*
5508 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5509 	 * and the gateway address provided is one of the system's interface
5510 	 * addresses.  By using the routing socket interface and supplying an
5511 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5512 	 * specifying an interface route to be created is available which uses
5513 	 * the interface index that specifies the outgoing interface rather than
5514 	 * the address of an outgoing interface (which may not be able to
5515 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5516 	 * flag, routes can be specified which not only specify the next-hop to
5517 	 * be used when routing to a certain prefix, but also which outgoing
5518 	 * interface should be used.
5519 	 *
5520 	 * Previously, interfaces would have unique addresses assigned to them
5521 	 * and so the address assigned to a particular interface could be used
5522 	 * to identify a particular interface.  One exception to this was the
5523 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5524 	 *
5525 	 * With the advent of IPv6 and its link-local addresses, this
5526 	 * restriction was relaxed and interfaces could share addresses between
5527 	 * themselves.  In fact, typically all of the link-local interfaces on
5528 	 * an IPv6 node or router will have the same link-local address.  In
5529 	 * order to differentiate between these interfaces, the use of an
5530 	 * interface index is necessary and this index can be carried inside a
5531 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5532 	 * of using the interface index, however, is that all of the ipif's that
5533 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5534 	 * cannot be used to differentiate between ipif's (or logical
5535 	 * interfaces) that belong to the same ill (physical interface).
5536 	 *
5537 	 * For example, in the following case involving IPv4 interfaces and
5538 	 * logical interfaces
5539 	 *
5540 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5541 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5542 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5543 	 *
5544 	 * the ipif's corresponding to each of these interface routes can be
5545 	 * uniquely identified by the "gateway" (actually interface address).
5546 	 *
5547 	 * In this case involving multiple IPv6 default routes to a particular
5548 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5549 	 * default route is of interest:
5550 	 *
5551 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5552 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5553 	 */
5554 
5555 	/* RTF_GATEWAY not set */
5556 	if (!(flags & RTF_GATEWAY)) {
5557 		if (sp != NULL) {
5558 			ip2dbg(("ip_rt_add: gateway security attributes "
5559 			    "cannot be set with interface route\n"));
5560 			if (ipif != NULL)
5561 				ipif_refrele(ipif);
5562 			return (EINVAL);
5563 		}
5564 
5565 		/*
5566 		 * Whether or not ill (RTA_IFP) is set, we require that
5567 		 * the gateway is one of our local addresses.
5568 		 */
5569 		if (ipif == NULL)
5570 			return (ENETUNREACH);
5571 
5572 		/*
5573 		 * We use MATCH_IRE_ILL here. If the caller specified an
5574 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5575 		 * we use the ill derived from the gateway address.
5576 		 * We can always match the gateway address since we record it
5577 		 * in ire_gateway_addr.
5578 		 * We don't allow RTA_IFP to specify a different ill than the
5579 		 * one matching the ipif to make sure we can delete the route.
5580 		 */
5581 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5582 		if (ill == NULL) {
5583 			ill = ipif->ipif_ill;
5584 		} else if (ill != ipif->ipif_ill) {
5585 			ipif_refrele(ipif);
5586 			return (EINVAL);
5587 		}
5588 
5589 		/*
5590 		 * We check for an existing entry at this point.
5591 		 *
5592 		 * Since a netmask isn't passed in via the ioctl interface
5593 		 * (SIOCADDRT), we don't check for a matching netmask in that
5594 		 * case.
5595 		 */
5596 		if (!ioctl_msg)
5597 			match_flags |= MATCH_IRE_MASK;
5598 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5599 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5600 		    NULL);
5601 		if (ire != NULL) {
5602 			ire_refrele(ire);
5603 			ipif_refrele(ipif);
5604 			return (EEXIST);
5605 		}
5606 
5607 		/*
5608 		 * Some software (for example, GateD and Sun Cluster) attempts
5609 		 * to create (what amount to) IRE_PREFIX routes with the
5610 		 * loopback address as the gateway.  This is primarily done to
5611 		 * set up prefixes with the RTF_REJECT flag set (for example,
5612 		 * when generating aggregate routes.)
5613 		 *
5614 		 * If the IRE type (as defined by ill->ill_net_type) would be
5615 		 * IRE_LOOPBACK, then we map the request into a
5616 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5617 		 * these interface routes, by definition, can only be that.
5618 		 *
5619 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5620 		 * routine, but rather using ire_create() directly.
5621 		 *
5622 		 */
5623 		type = ill->ill_net_type;
5624 		if (type == IRE_LOOPBACK) {
5625 			type = IRE_IF_NORESOLVER;
5626 			flags |= RTF_BLACKHOLE;
5627 		}
5628 
5629 		/*
5630 		 * Create a copy of the IRE_IF_NORESOLVER or
5631 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5632 		 * gateway.
5633 		 */
5634 		ire = ire_create(
5635 		    (uchar_t *)&dst_addr,
5636 		    (uint8_t *)&mask,
5637 		    (uint8_t *)&gw_addr,
5638 		    type,
5639 		    ill,
5640 		    zoneid,
5641 		    flags,
5642 		    NULL,
5643 		    ipst);
5644 		if (ire == NULL) {
5645 			ipif_refrele(ipif);
5646 			return (ENOMEM);
5647 		}
5648 
5649 		/* src address assigned by the caller? */
5650 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5651 			ire->ire_setsrc_addr = src_addr;
5652 
5653 		nire = ire_add(ire);
5654 		if (nire == NULL) {
5655 			/*
5656 			 * In the result of failure, ire_add() will have
5657 			 * already deleted the ire in question, so there
5658 			 * is no need to do that here.
5659 			 */
5660 			ipif_refrele(ipif);
5661 			return (ENOMEM);
5662 		}
5663 		/*
5664 		 * Check if it was a duplicate entry. This handles
5665 		 * the case of two racing route adds for the same route
5666 		 */
5667 		if (nire != ire) {
5668 			ire_delete(nire);
5669 			ire_refrele(nire);
5670 			ipif_refrele(ipif);
5671 			return (EEXIST);
5672 		}
5673 		ire = nire;
5674 		goto save_ire;
5675 	}
5676 
5677 	/*
5678 	 * Get an interface IRE for the specified gateway.
5679 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5680 	 * gateway, it is currently unreachable and we fail the request
5681 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5682 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5683 	 * If RTA_IFP was specified we look on that particular ill.
5684 	 */
5685 	if (ill != NULL)
5686 		match_flags |= MATCH_IRE_ILL;
5687 
5688 	/* Check whether the gateway is reachable. */
5689 again:
5690 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5691 	if (flags & RTF_INDIRECT)
5692 		type |= IRE_OFFLINK;
5693 
5694 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5695 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5696 	if (gw_ire == NULL) {
5697 		/*
5698 		 * With IPMP, we allow host routes to influence in.mpathd's
5699 		 * target selection.  However, if the test addresses are on
5700 		 * their own network, the above lookup will fail since the
5701 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5702 		 * hidden test IREs to be found and try again.
5703 		 */
5704 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5705 			match_flags |= MATCH_IRE_TESTHIDDEN;
5706 			goto again;
5707 		}
5708 		if (ipif != NULL)
5709 			ipif_refrele(ipif);
5710 		return (ENETUNREACH);
5711 	}
5712 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5713 		ire_refrele(gw_ire);
5714 		if (ipif != NULL)
5715 			ipif_refrele(ipif);
5716 		return (ENETUNREACH);
5717 	}
5718 
5719 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
5720 		unbound = B_TRUE;
5721 		if (ipst->ips_ip_strict_src_multihoming > 0)
5722 			ill = gw_ire->ire_ill;
5723 	}
5724 
5725 	/*
5726 	 * We create one of three types of IREs as a result of this request
5727 	 * based on the netmask.  A netmask of all ones (which is automatically
5728 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5729 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5730 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5731 	 * destination prefix.
5732 	 */
5733 	if (mask == IP_HOST_MASK)
5734 		type = IRE_HOST;
5735 	else if (mask == 0)
5736 		type = IRE_DEFAULT;
5737 	else
5738 		type = IRE_PREFIX;
5739 
5740 	/* check for a duplicate entry */
5741 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5742 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5743 	    0, ipst, NULL);
5744 	if (ire != NULL) {
5745 		if (ipif != NULL)
5746 			ipif_refrele(ipif);
5747 		ire_refrele(gw_ire);
5748 		ire_refrele(ire);
5749 		return (EEXIST);
5750 	}
5751 
5752 	/* Security attribute exists */
5753 	if (sp != NULL) {
5754 		tsol_gcgrp_addr_t ga;
5755 
5756 		/* find or create the gateway credentials group */
5757 		ga.ga_af = AF_INET;
5758 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5759 
5760 		/* we hold reference to it upon success */
5761 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5762 		if (gcgrp == NULL) {
5763 			if (ipif != NULL)
5764 				ipif_refrele(ipif);
5765 			ire_refrele(gw_ire);
5766 			return (ENOMEM);
5767 		}
5768 
5769 		/*
5770 		 * Create and add the security attribute to the group; a
5771 		 * reference to the group is made upon allocating a new
5772 		 * entry successfully.  If it finds an already-existing
5773 		 * entry for the security attribute in the group, it simply
5774 		 * returns it and no new reference is made to the group.
5775 		 */
5776 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5777 		if (gc == NULL) {
5778 			if (ipif != NULL)
5779 				ipif_refrele(ipif);
5780 			/* release reference held by gcgrp_lookup */
5781 			GCGRP_REFRELE(gcgrp);
5782 			ire_refrele(gw_ire);
5783 			return (ENOMEM);
5784 		}
5785 	}
5786 
5787 	/* Create the IRE. */
5788 	ire = ire_create(
5789 	    (uchar_t *)&dst_addr,		/* dest address */
5790 	    (uchar_t *)&mask,			/* mask */
5791 	    (uchar_t *)&gw_addr,		/* gateway address */
5792 	    (ushort_t)type,			/* IRE type */
5793 	    ill,
5794 	    zoneid,
5795 	    flags,
5796 	    gc,					/* security attribute */
5797 	    ipst);
5798 
5799 	/*
5800 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5801 	 * reference to the 'gcgrp'. We can now release the extra reference
5802 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5803 	 */
5804 	if (gcgrp_xtraref)
5805 		GCGRP_REFRELE(gcgrp);
5806 	if (ire == NULL) {
5807 		if (gc != NULL)
5808 			GC_REFRELE(gc);
5809 		if (ipif != NULL)
5810 			ipif_refrele(ipif);
5811 		ire_refrele(gw_ire);
5812 		return (ENOMEM);
5813 	}
5814 
5815 	/* Before we add, check if an extra CGTP broadcast is needed */
5816 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5817 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5818 
5819 	/* src address assigned by the caller? */
5820 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5821 		ire->ire_setsrc_addr = src_addr;
5822 
5823 	ire->ire_unbound = unbound;
5824 
5825 	/*
5826 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5827 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5828 	 */
5829 
5830 	/* Add the new IRE. */
5831 	nire = ire_add(ire);
5832 	if (nire == NULL) {
5833 		/*
5834 		 * In the result of failure, ire_add() will have
5835 		 * already deleted the ire in question, so there
5836 		 * is no need to do that here.
5837 		 */
5838 		if (ipif != NULL)
5839 			ipif_refrele(ipif);
5840 		ire_refrele(gw_ire);
5841 		return (ENOMEM);
5842 	}
5843 	/*
5844 	 * Check if it was a duplicate entry. This handles
5845 	 * the case of two racing route adds for the same route
5846 	 */
5847 	if (nire != ire) {
5848 		ire_delete(nire);
5849 		ire_refrele(nire);
5850 		if (ipif != NULL)
5851 			ipif_refrele(ipif);
5852 		ire_refrele(gw_ire);
5853 		return (EEXIST);
5854 	}
5855 	ire = nire;
5856 
5857 	if (flags & RTF_MULTIRT) {
5858 		/*
5859 		 * Invoke the CGTP (multirouting) filtering module
5860 		 * to add the dst address in the filtering database.
5861 		 * Replicated inbound packets coming from that address
5862 		 * will be filtered to discard the duplicates.
5863 		 * It is not necessary to call the CGTP filter hook
5864 		 * when the dst address is a broadcast or multicast,
5865 		 * because an IP source address cannot be a broadcast
5866 		 * or a multicast.
5867 		 */
5868 		if (cgtp_broadcast) {
5869 			ip_cgtp_bcast_add(ire, ipst);
5870 			goto save_ire;
5871 		}
5872 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5873 		    !CLASSD(ire->ire_addr)) {
5874 			int res;
5875 			ipif_t *src_ipif;
5876 
5877 			/* Find the source address corresponding to gw_ire */
5878 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5879 			    NULL, zoneid, ipst);
5880 			if (src_ipif != NULL) {
5881 				res = ipst->ips_ip_cgtp_filter_ops->
5882 				    cfo_add_dest_v4(
5883 				    ipst->ips_netstack->netstack_stackid,
5884 				    ire->ire_addr,
5885 				    ire->ire_gateway_addr,
5886 				    ire->ire_setsrc_addr,
5887 				    src_ipif->ipif_lcl_addr);
5888 				ipif_refrele(src_ipif);
5889 			} else {
5890 				res = EADDRNOTAVAIL;
5891 			}
5892 			if (res != 0) {
5893 				if (ipif != NULL)
5894 					ipif_refrele(ipif);
5895 				ire_refrele(gw_ire);
5896 				ire_delete(ire);
5897 				ire_refrele(ire);	/* Held in ire_add */
5898 				return (res);
5899 			}
5900 		}
5901 	}
5902 
5903 save_ire:
5904 	if (gw_ire != NULL) {
5905 		ire_refrele(gw_ire);
5906 		gw_ire = NULL;
5907 	}
5908 	if (ill != NULL) {
5909 		/*
5910 		 * Save enough information so that we can recreate the IRE if
5911 		 * the interface goes down and then up.  The metrics associated
5912 		 * with the route will be saved as well when rts_setmetrics() is
5913 		 * called after the IRE has been created.  In the case where
5914 		 * memory cannot be allocated, none of this information will be
5915 		 * saved.
5916 		 */
5917 		ill_save_ire(ill, ire);
5918 	}
5919 	if (ioctl_msg)
5920 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5921 	if (ire_arg != NULL) {
5922 		/*
5923 		 * Store the ire that was successfully added into where ire_arg
5924 		 * points to so that callers don't have to look it up
5925 		 * themselves (but they are responsible for ire_refrele()ing
5926 		 * the ire when they are finished with it).
5927 		 */
5928 		*ire_arg = ire;
5929 	} else {
5930 		ire_refrele(ire);		/* Held in ire_add */
5931 	}
5932 	if (ipif != NULL)
5933 		ipif_refrele(ipif);
5934 	return (0);
5935 }
5936 
5937 /*
5938  * ip_rt_delete is called to delete an IPv4 route.
5939  * ill is passed in to associate it with the correct interface.
5940  */
5941 /* ARGSUSED4 */
5942 int
5943 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5944     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5945     ip_stack_t *ipst, zoneid_t zoneid)
5946 {
5947 	ire_t	*ire = NULL;
5948 	ipif_t	*ipif;
5949 	uint_t	type;
5950 	uint_t	match_flags = MATCH_IRE_TYPE;
5951 	int	err = 0;
5952 
5953 	ip1dbg(("ip_rt_delete:"));
5954 	/*
5955 	 * If this is the case of RTF_HOST being set, then we set the netmask
5956 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5957 	 */
5958 	if (flags & RTF_HOST) {
5959 		mask = IP_HOST_MASK;
5960 		match_flags |= MATCH_IRE_MASK;
5961 	} else if (rtm_addrs & RTA_NETMASK) {
5962 		match_flags |= MATCH_IRE_MASK;
5963 	}
5964 
5965 	/*
5966 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5967 	 * we check if the gateway address is one of our interfaces first,
5968 	 * and fall back on RTF_GATEWAY routes.
5969 	 *
5970 	 * This makes it possible to delete an original
5971 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
5972 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
5973 	 * and those can not be deleted here.
5974 	 *
5975 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
5976 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
5977 	 * otherwise we use the ill derived from the gateway address.
5978 	 * We can always match the gateway address since we record it
5979 	 * in ire_gateway_addr.
5980 	 *
5981 	 * For more detail on specifying routes by gateway address and by
5982 	 * interface index, see the comments in ip_rt_add().
5983 	 */
5984 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5985 	if (ipif != NULL) {
5986 		ill_t	*ill_match;
5987 
5988 		if (ill != NULL)
5989 			ill_match = ill;
5990 		else
5991 			ill_match = ipif->ipif_ill;
5992 
5993 		match_flags |= MATCH_IRE_ILL;
5994 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
5995 			ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
5996 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
5997 			    match_flags, 0, ipst, NULL);
5998 		}
5999 		if (ire == NULL) {
6000 			match_flags |= MATCH_IRE_GW;
6001 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6002 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6003 			    match_flags, 0, ipst, NULL);
6004 		}
6005 		/* Avoid deleting routes created by kernel from an ipif */
6006 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6007 			ire_refrele(ire);
6008 			ire = NULL;
6009 		}
6010 
6011 		/* Restore in case we didn't find a match */
6012 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6013 	}
6014 
6015 	if (ire == NULL) {
6016 		/*
6017 		 * At this point, the gateway address is not one of our own
6018 		 * addresses or a matching interface route was not found.  We
6019 		 * set the IRE type to lookup based on whether
6020 		 * this is a host route, a default route or just a prefix.
6021 		 *
6022 		 * If an ill was passed in, then the lookup is based on an
6023 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6024 		 */
6025 		match_flags |= MATCH_IRE_GW;
6026 		if (ill != NULL)
6027 			match_flags |= MATCH_IRE_ILL;
6028 		if (mask == IP_HOST_MASK)
6029 			type = IRE_HOST;
6030 		else if (mask == 0)
6031 			type = IRE_DEFAULT;
6032 		else
6033 			type = IRE_PREFIX;
6034 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6035 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6036 	}
6037 
6038 	if (ipif != NULL) {
6039 		ipif_refrele(ipif);
6040 		ipif = NULL;
6041 	}
6042 
6043 	if (ire == NULL)
6044 		return (ESRCH);
6045 
6046 	if (ire->ire_flags & RTF_MULTIRT) {
6047 		/*
6048 		 * Invoke the CGTP (multirouting) filtering module
6049 		 * to remove the dst address from the filtering database.
6050 		 * Packets coming from that address will no longer be
6051 		 * filtered to remove duplicates.
6052 		 */
6053 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6054 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6055 			    ipst->ips_netstack->netstack_stackid,
6056 			    ire->ire_addr, ire->ire_gateway_addr);
6057 		}
6058 		ip_cgtp_bcast_delete(ire, ipst);
6059 	}
6060 
6061 	ill = ire->ire_ill;
6062 	if (ill != NULL)
6063 		ill_remove_saved_ire(ill, ire);
6064 	if (ioctl_msg)
6065 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6066 	ire_delete(ire);
6067 	ire_refrele(ire);
6068 	return (err);
6069 }
6070 
6071 /*
6072  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6073  */
6074 /* ARGSUSED */
6075 int
6076 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6077     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6078 {
6079 	ipaddr_t dst_addr;
6080 	ipaddr_t gw_addr;
6081 	ipaddr_t mask;
6082 	int error = 0;
6083 	mblk_t *mp1;
6084 	struct rtentry *rt;
6085 	ipif_t *ipif = NULL;
6086 	ip_stack_t	*ipst;
6087 
6088 	ASSERT(q->q_next == NULL);
6089 	ipst = CONNQ_TO_IPST(q);
6090 
6091 	ip1dbg(("ip_siocaddrt:"));
6092 	/* Existence of mp1 verified in ip_wput_nondata */
6093 	mp1 = mp->b_cont->b_cont;
6094 	rt = (struct rtentry *)mp1->b_rptr;
6095 
6096 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6097 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6098 
6099 	/*
6100 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6101 	 * to a particular host address.  In this case, we set the netmask to
6102 	 * all ones for the particular destination address.  Otherwise,
6103 	 * determine the netmask to be used based on dst_addr and the interfaces
6104 	 * in use.
6105 	 */
6106 	if (rt->rt_flags & RTF_HOST) {
6107 		mask = IP_HOST_MASK;
6108 	} else {
6109 		/*
6110 		 * Note that ip_subnet_mask returns a zero mask in the case of
6111 		 * default (an all-zeroes address).
6112 		 */
6113 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6114 	}
6115 
6116 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6117 	    B_TRUE, NULL, ipst, ALL_ZONES);
6118 	if (ipif != NULL)
6119 		ipif_refrele(ipif);
6120 	return (error);
6121 }
6122 
6123 /*
6124  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6125  */
6126 /* ARGSUSED */
6127 int
6128 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6129     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6130 {
6131 	ipaddr_t dst_addr;
6132 	ipaddr_t gw_addr;
6133 	ipaddr_t mask;
6134 	int error;
6135 	mblk_t *mp1;
6136 	struct rtentry *rt;
6137 	ipif_t *ipif = NULL;
6138 	ip_stack_t	*ipst;
6139 
6140 	ASSERT(q->q_next == NULL);
6141 	ipst = CONNQ_TO_IPST(q);
6142 
6143 	ip1dbg(("ip_siocdelrt:"));
6144 	/* Existence of mp1 verified in ip_wput_nondata */
6145 	mp1 = mp->b_cont->b_cont;
6146 	rt = (struct rtentry *)mp1->b_rptr;
6147 
6148 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6149 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6150 
6151 	/*
6152 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6153 	 * to a particular host address.  In this case, we set the netmask to
6154 	 * all ones for the particular destination address.  Otherwise,
6155 	 * determine the netmask to be used based on dst_addr and the interfaces
6156 	 * in use.
6157 	 */
6158 	if (rt->rt_flags & RTF_HOST) {
6159 		mask = IP_HOST_MASK;
6160 	} else {
6161 		/*
6162 		 * Note that ip_subnet_mask returns a zero mask in the case of
6163 		 * default (an all-zeroes address).
6164 		 */
6165 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6166 	}
6167 
6168 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6169 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6170 	    ipst, ALL_ZONES);
6171 	if (ipif != NULL)
6172 		ipif_refrele(ipif);
6173 	return (error);
6174 }
6175 
6176 /*
6177  * Enqueue the mp onto the ipsq, chained by b_next.
6178  * b_prev stores the function to be executed later, and b_queue the queue
6179  * where this mp originated.
6180  */
6181 void
6182 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6183     ill_t *pending_ill)
6184 {
6185 	conn_t	*connp;
6186 	ipxop_t *ipx = ipsq->ipsq_xop;
6187 
6188 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6189 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6190 	ASSERT(func != NULL);
6191 
6192 	mp->b_queue = q;
6193 	mp->b_prev = (void *)func;
6194 	mp->b_next = NULL;
6195 
6196 	switch (type) {
6197 	case CUR_OP:
6198 		if (ipx->ipx_mptail != NULL) {
6199 			ASSERT(ipx->ipx_mphead != NULL);
6200 			ipx->ipx_mptail->b_next = mp;
6201 		} else {
6202 			ASSERT(ipx->ipx_mphead == NULL);
6203 			ipx->ipx_mphead = mp;
6204 		}
6205 		ipx->ipx_mptail = mp;
6206 		break;
6207 
6208 	case NEW_OP:
6209 		if (ipsq->ipsq_xopq_mptail != NULL) {
6210 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6211 			ipsq->ipsq_xopq_mptail->b_next = mp;
6212 		} else {
6213 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6214 			ipsq->ipsq_xopq_mphead = mp;
6215 		}
6216 		ipsq->ipsq_xopq_mptail = mp;
6217 		ipx->ipx_ipsq_queued = B_TRUE;
6218 		break;
6219 
6220 	case SWITCH_OP:
6221 		ASSERT(ipsq->ipsq_swxop != NULL);
6222 		/* only one switch operation is currently allowed */
6223 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6224 		ipsq->ipsq_switch_mp = mp;
6225 		ipx->ipx_ipsq_queued = B_TRUE;
6226 		break;
6227 	default:
6228 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6229 	}
6230 
6231 	if (CONN_Q(q) && pending_ill != NULL) {
6232 		connp = Q_TO_CONN(q);
6233 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6234 		connp->conn_oper_pending_ill = pending_ill;
6235 	}
6236 }
6237 
6238 /*
6239  * Dequeue the next message that requested exclusive access to this IPSQ's
6240  * xop.  Specifically:
6241  *
6242  *  1. If we're still processing the current operation on `ipsq', then
6243  *     dequeue the next message for the operation (from ipx_mphead), or
6244  *     return NULL if there are no queued messages for the operation.
6245  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6246  *
6247  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6248  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6249  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6250  *     leaving IPMP groups and require a careful dance -- see the comments
6251  *     in-line below for details.  If we're leaving a group xop or if we're
6252  *     joining a group xop and become writer on it, then we proceed to (3).
6253  *     Otherwise, we return NULL and exit the xop.
6254  *
6255  *  3. For each IPSQ in the xop, return any switch operation stored on
6256  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6257  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6258  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6259  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6260  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6261  *     each phyint in the group, including the IPMP meta-interface phyint.
6262  */
6263 static mblk_t *
6264 ipsq_dq(ipsq_t *ipsq)
6265 {
6266 	ill_t	*illv4, *illv6;
6267 	mblk_t	*mp;
6268 	ipsq_t	*xopipsq;
6269 	ipsq_t	*leftipsq = NULL;
6270 	ipxop_t *ipx;
6271 	phyint_t *phyi = ipsq->ipsq_phyint;
6272 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6273 	boolean_t emptied = B_FALSE;
6274 
6275 	/*
6276 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6277 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6278 	 */
6279 	rw_enter(&ipst->ips_ill_g_lock,
6280 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6281 	mutex_enter(&ipsq->ipsq_lock);
6282 	ipx = ipsq->ipsq_xop;
6283 	mutex_enter(&ipx->ipx_lock);
6284 
6285 	/*
6286 	 * Dequeue the next message associated with the current exclusive
6287 	 * operation, if any.
6288 	 */
6289 	if ((mp = ipx->ipx_mphead) != NULL) {
6290 		ipx->ipx_mphead = mp->b_next;
6291 		if (ipx->ipx_mphead == NULL)
6292 			ipx->ipx_mptail = NULL;
6293 		mp->b_next = (void *)ipsq;
6294 		goto out;
6295 	}
6296 
6297 	if (ipx->ipx_current_ipif != NULL)
6298 		goto empty;
6299 
6300 	if (ipsq->ipsq_swxop != NULL) {
6301 		/*
6302 		 * The exclusive operation that is now being completed has
6303 		 * requested a switch to a different xop.  This happens
6304 		 * when an interface joins or leaves an IPMP group.  Joins
6305 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6306 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6307 		 * (phyint_free()), or interface plumb for an ill type
6308 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6309 		 *
6310 		 * Xop switches are not allowed on the IPMP meta-interface.
6311 		 */
6312 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6313 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6314 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6315 
6316 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6317 			/*
6318 			 * We're switching back to our own xop, so we have two
6319 			 * xop's to drain/exit: our own, and the group xop
6320 			 * that we are leaving.
6321 			 *
6322 			 * First, pull ourselves out of the group ipsq list.
6323 			 * This is safe since we're writer on ill_g_lock.
6324 			 */
6325 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6326 
6327 			xopipsq = ipx->ipx_ipsq;
6328 			while (xopipsq->ipsq_next != ipsq)
6329 				xopipsq = xopipsq->ipsq_next;
6330 
6331 			xopipsq->ipsq_next = ipsq->ipsq_next;
6332 			ipsq->ipsq_next = ipsq;
6333 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6334 			ipsq->ipsq_swxop = NULL;
6335 
6336 			/*
6337 			 * Second, prepare to exit the group xop.  The actual
6338 			 * ipsq_exit() is done at the end of this function
6339 			 * since we cannot hold any locks across ipsq_exit().
6340 			 * Note that although we drop the group's ipx_lock, no
6341 			 * threads can proceed since we're still ipx_writer.
6342 			 */
6343 			leftipsq = xopipsq;
6344 			mutex_exit(&ipx->ipx_lock);
6345 
6346 			/*
6347 			 * Third, set ipx to point to our own xop (which was
6348 			 * inactive and therefore can be entered).
6349 			 */
6350 			ipx = ipsq->ipsq_xop;
6351 			mutex_enter(&ipx->ipx_lock);
6352 			ASSERT(ipx->ipx_writer == NULL);
6353 			ASSERT(ipx->ipx_current_ipif == NULL);
6354 		} else {
6355 			/*
6356 			 * We're switching from our own xop to a group xop.
6357 			 * The requestor of the switch must ensure that the
6358 			 * group xop cannot go away (e.g. by ensuring the
6359 			 * phyint associated with the xop cannot go away).
6360 			 *
6361 			 * If we can become writer on our new xop, then we'll
6362 			 * do the drain.  Otherwise, the current writer of our
6363 			 * new xop will do the drain when it exits.
6364 			 *
6365 			 * First, splice ourselves into the group IPSQ list.
6366 			 * This is safe since we're writer on ill_g_lock.
6367 			 */
6368 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6369 
6370 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6371 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6372 				xopipsq = xopipsq->ipsq_next;
6373 
6374 			xopipsq->ipsq_next = ipsq;
6375 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6376 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6377 			ipsq->ipsq_swxop = NULL;
6378 
6379 			/*
6380 			 * Second, exit our own xop, since it's now unused.
6381 			 * This is safe since we've got the only reference.
6382 			 */
6383 			ASSERT(ipx->ipx_writer == curthread);
6384 			ipx->ipx_writer = NULL;
6385 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6386 			ipx->ipx_ipsq_queued = B_FALSE;
6387 			mutex_exit(&ipx->ipx_lock);
6388 
6389 			/*
6390 			 * Third, set ipx to point to our new xop, and check
6391 			 * if we can become writer on it.  If we cannot, then
6392 			 * the current writer will drain the IPSQ group when
6393 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6394 			 * because we're still holding ipsq_lock.
6395 			 */
6396 			ipx = ipsq->ipsq_xop;
6397 			mutex_enter(&ipx->ipx_lock);
6398 			if (ipx->ipx_writer != NULL ||
6399 			    ipx->ipx_current_ipif != NULL) {
6400 				goto out;
6401 			}
6402 		}
6403 
6404 		/*
6405 		 * Fourth, become writer on our new ipx before we continue
6406 		 * with the drain.  Note that we never dropped ipsq_lock
6407 		 * above, so no other thread could've raced with us to
6408 		 * become writer first.  Also, we're holding ipx_lock, so
6409 		 * no other thread can examine the ipx right now.
6410 		 */
6411 		ASSERT(ipx->ipx_current_ipif == NULL);
6412 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6413 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6414 		ipx->ipx_writer = curthread;
6415 		ipx->ipx_forced = B_FALSE;
6416 #ifdef DEBUG
6417 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6418 #endif
6419 	}
6420 
6421 	xopipsq = ipsq;
6422 	do {
6423 		/*
6424 		 * So that other operations operate on a consistent and
6425 		 * complete phyint, a switch message on an IPSQ must be
6426 		 * handled prior to any other operations on that IPSQ.
6427 		 */
6428 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6429 			xopipsq->ipsq_switch_mp = NULL;
6430 			ASSERT(mp->b_next == NULL);
6431 			mp->b_next = (void *)xopipsq;
6432 			goto out;
6433 		}
6434 
6435 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6436 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6437 			if (xopipsq->ipsq_xopq_mphead == NULL)
6438 				xopipsq->ipsq_xopq_mptail = NULL;
6439 			mp->b_next = (void *)xopipsq;
6440 			goto out;
6441 		}
6442 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6443 empty:
6444 	/*
6445 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6446 	 * new messages can end up on any IPSQ in the xop.
6447 	 */
6448 	ipx->ipx_writer = NULL;
6449 	ipx->ipx_forced = B_FALSE;
6450 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6451 	ipx->ipx_ipsq_queued = B_FALSE;
6452 	emptied = B_TRUE;
6453 #ifdef	DEBUG
6454 	ipx->ipx_depth = 0;
6455 #endif
6456 out:
6457 	mutex_exit(&ipx->ipx_lock);
6458 	mutex_exit(&ipsq->ipsq_lock);
6459 
6460 	/*
6461 	 * If we completely emptied the xop, then wake up any threads waiting
6462 	 * to enter any of the IPSQ's associated with it.
6463 	 */
6464 	if (emptied) {
6465 		xopipsq = ipsq;
6466 		do {
6467 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6468 				continue;
6469 
6470 			illv4 = phyi->phyint_illv4;
6471 			illv6 = phyi->phyint_illv6;
6472 
6473 			GRAB_ILL_LOCKS(illv4, illv6);
6474 			if (illv4 != NULL)
6475 				cv_broadcast(&illv4->ill_cv);
6476 			if (illv6 != NULL)
6477 				cv_broadcast(&illv6->ill_cv);
6478 			RELEASE_ILL_LOCKS(illv4, illv6);
6479 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6480 	}
6481 	rw_exit(&ipst->ips_ill_g_lock);
6482 
6483 	/*
6484 	 * Now that all locks are dropped, exit the IPSQ we left.
6485 	 */
6486 	if (leftipsq != NULL)
6487 		ipsq_exit(leftipsq);
6488 
6489 	return (mp);
6490 }
6491 
6492 /*
6493  * Return completion status of previously initiated DLPI operations on
6494  * ills in the purview of an ipsq.
6495  */
6496 static boolean_t
6497 ipsq_dlpi_done(ipsq_t *ipsq)
6498 {
6499 	ipsq_t		*ipsq_start;
6500 	phyint_t	*phyi;
6501 	ill_t		*ill;
6502 
6503 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6504 	ipsq_start = ipsq;
6505 
6506 	do {
6507 		/*
6508 		 * The only current users of this function are ipsq_try_enter
6509 		 * and ipsq_enter which have made sure that ipsq_writer is
6510 		 * NULL before we reach here. ill_dlpi_pending is modified
6511 		 * only by an ipsq writer
6512 		 */
6513 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6514 		phyi = ipsq->ipsq_phyint;
6515 		/*
6516 		 * phyi could be NULL if a phyint that is part of an
6517 		 * IPMP group is being unplumbed. A more detailed
6518 		 * comment is in ipmp_grp_update_kstats()
6519 		 */
6520 		if (phyi != NULL) {
6521 			ill = phyi->phyint_illv4;
6522 			if (ill != NULL &&
6523 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6524 			    ill->ill_arl_dlpi_pending))
6525 				return (B_FALSE);
6526 
6527 			ill = phyi->phyint_illv6;
6528 			if (ill != NULL &&
6529 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6530 				return (B_FALSE);
6531 		}
6532 
6533 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6534 
6535 	return (B_TRUE);
6536 }
6537 
6538 /*
6539  * Enter the ipsq corresponding to ill, by waiting synchronously till
6540  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6541  * will have to drain completely before ipsq_enter returns success.
6542  * ipx_current_ipif will be set if some exclusive op is in progress,
6543  * and the ipsq_exit logic will start the next enqueued op after
6544  * completion of the current op. If 'force' is used, we don't wait
6545  * for the enqueued ops. This is needed when a conn_close wants to
6546  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6547  * of an ill can also use this option. But we dont' use it currently.
6548  */
6549 #define	ENTER_SQ_WAIT_TICKS 100
6550 boolean_t
6551 ipsq_enter(ill_t *ill, boolean_t force, int type)
6552 {
6553 	ipsq_t	*ipsq;
6554 	ipxop_t *ipx;
6555 	boolean_t waited_enough = B_FALSE;
6556 	ip_stack_t *ipst = ill->ill_ipst;
6557 
6558 	/*
6559 	 * Note that the relationship between ill and ipsq is fixed as long as
6560 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6561 	 * relationship between the IPSQ and xop cannot change.  However,
6562 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6563 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6564 	 * waking up all ills in the xop when it becomes available.
6565 	 */
6566 	for (;;) {
6567 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6568 		mutex_enter(&ill->ill_lock);
6569 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6570 			mutex_exit(&ill->ill_lock);
6571 			rw_exit(&ipst->ips_ill_g_lock);
6572 			return (B_FALSE);
6573 		}
6574 
6575 		ipsq = ill->ill_phyint->phyint_ipsq;
6576 		mutex_enter(&ipsq->ipsq_lock);
6577 		ipx = ipsq->ipsq_xop;
6578 		mutex_enter(&ipx->ipx_lock);
6579 
6580 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6581 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6582 		    waited_enough))
6583 			break;
6584 
6585 		rw_exit(&ipst->ips_ill_g_lock);
6586 
6587 		if (!force || ipx->ipx_writer != NULL) {
6588 			mutex_exit(&ipx->ipx_lock);
6589 			mutex_exit(&ipsq->ipsq_lock);
6590 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6591 		} else {
6592 			mutex_exit(&ipx->ipx_lock);
6593 			mutex_exit(&ipsq->ipsq_lock);
6594 			(void) cv_reltimedwait(&ill->ill_cv,
6595 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6596 			waited_enough = B_TRUE;
6597 		}
6598 		mutex_exit(&ill->ill_lock);
6599 	}
6600 
6601 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6602 	ASSERT(ipx->ipx_reentry_cnt == 0);
6603 	ipx->ipx_writer = curthread;
6604 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6605 	ipx->ipx_reentry_cnt++;
6606 #ifdef DEBUG
6607 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6608 #endif
6609 	mutex_exit(&ipx->ipx_lock);
6610 	mutex_exit(&ipsq->ipsq_lock);
6611 	mutex_exit(&ill->ill_lock);
6612 	rw_exit(&ipst->ips_ill_g_lock);
6613 
6614 	return (B_TRUE);
6615 }
6616 
6617 /*
6618  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6619  * across the call to the core interface ipsq_try_enter() and hence calls this
6620  * function directly. This is explained more fully in ipif_set_values().
6621  * In order to support the above constraint, ipsq_try_enter is implemented as
6622  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6623  */
6624 static ipsq_t *
6625 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6626     int type, boolean_t reentry_ok)
6627 {
6628 	ipsq_t	*ipsq;
6629 	ipxop_t	*ipx;
6630 	ip_stack_t *ipst = ill->ill_ipst;
6631 
6632 	/*
6633 	 * lock ordering:
6634 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6635 	 *
6636 	 * ipx of an ipsq can't change when ipsq_lock is held.
6637 	 */
6638 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6639 	GRAB_CONN_LOCK(q);
6640 	mutex_enter(&ill->ill_lock);
6641 	ipsq = ill->ill_phyint->phyint_ipsq;
6642 	mutex_enter(&ipsq->ipsq_lock);
6643 	ipx = ipsq->ipsq_xop;
6644 	mutex_enter(&ipx->ipx_lock);
6645 
6646 	/*
6647 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6648 	 *    (Note: If the caller does not specify reentry_ok then neither
6649 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6650 	 *    again. Otherwise it can lead to an infinite loop
6651 	 * 2. Enter the ipsq if there is no current writer and this attempted
6652 	 *    entry is part of the current operation
6653 	 * 3. Enter the ipsq if there is no current writer and this is a new
6654 	 *    operation and the operation queue is empty and there is no
6655 	 *    operation currently in progress and if all previously initiated
6656 	 *    DLPI operations have completed.
6657 	 */
6658 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6659 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6660 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6661 	    ipsq_dlpi_done(ipsq))))) {
6662 		/* Success. */
6663 		ipx->ipx_reentry_cnt++;
6664 		ipx->ipx_writer = curthread;
6665 		ipx->ipx_forced = B_FALSE;
6666 		mutex_exit(&ipx->ipx_lock);
6667 		mutex_exit(&ipsq->ipsq_lock);
6668 		mutex_exit(&ill->ill_lock);
6669 		RELEASE_CONN_LOCK(q);
6670 #ifdef DEBUG
6671 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6672 #endif
6673 		return (ipsq);
6674 	}
6675 
6676 	if (func != NULL)
6677 		ipsq_enq(ipsq, q, mp, func, type, ill);
6678 
6679 	mutex_exit(&ipx->ipx_lock);
6680 	mutex_exit(&ipsq->ipsq_lock);
6681 	mutex_exit(&ill->ill_lock);
6682 	RELEASE_CONN_LOCK(q);
6683 	return (NULL);
6684 }
6685 
6686 /*
6687  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6688  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6689  * There is one ipsq per phyint. The ipsq
6690  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6691  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6692  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6693  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6694  * up the interface) and are enqueued in ipx_mphead.
6695  *
6696  * If a thread does not want to reenter the ipsq when it is already writer,
6697  * it must make sure that the specified reentry point to be called later
6698  * when the ipsq is empty, nor any code path starting from the specified reentry
6699  * point must never ever try to enter the ipsq again. Otherwise it can lead
6700  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6701  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6702  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6703  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6704  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6705  * ioctl if the current ioctl has completed. If the current ioctl is still
6706  * in progress it simply returns. The current ioctl could be waiting for
6707  * a response from another module (the driver or could be waiting for
6708  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6709  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6710  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6711  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6712  * all associated DLPI operations have completed.
6713  */
6714 
6715 /*
6716  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6717  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6718  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6719  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6720  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6721  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6722  */
6723 ipsq_t *
6724 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6725     ipsq_func_t func, int type, boolean_t reentry_ok)
6726 {
6727 	ip_stack_t	*ipst;
6728 	ipsq_t		*ipsq;
6729 
6730 	/* Only 1 of ipif or ill can be specified */
6731 	ASSERT((ipif != NULL) ^ (ill != NULL));
6732 
6733 	if (ipif != NULL)
6734 		ill = ipif->ipif_ill;
6735 	ipst = ill->ill_ipst;
6736 
6737 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6738 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6739 	rw_exit(&ipst->ips_ill_g_lock);
6740 
6741 	return (ipsq);
6742 }
6743 
6744 /*
6745  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6746  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6747  * cannot be entered, the mp is queued for completion.
6748  */
6749 void
6750 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6751     boolean_t reentry_ok)
6752 {
6753 	ipsq_t	*ipsq;
6754 
6755 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6756 
6757 	/*
6758 	 * Drop the caller's refhold on the ill.  This is safe since we either
6759 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6760 	 * IPSQ, in which case we return without accessing ill anymore.  This
6761 	 * is needed because func needs to see the correct refcount.
6762 	 * e.g. removeif can work only then.
6763 	 */
6764 	ill_refrele(ill);
6765 	if (ipsq != NULL) {
6766 		(*func)(ipsq, q, mp, NULL);
6767 		ipsq_exit(ipsq);
6768 	}
6769 }
6770 
6771 /*
6772  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6773  * prior to exiting.  Caller must be writer on the specified IPSQ.
6774  */
6775 void
6776 ipsq_exit(ipsq_t *ipsq)
6777 {
6778 	mblk_t *mp;
6779 	ipsq_t *mp_ipsq;
6780 	queue_t	*q;
6781 	phyint_t *phyi;
6782 	ipsq_func_t func;
6783 
6784 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6785 
6786 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6787 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6788 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6789 		return;
6790 	}
6791 
6792 	for (;;) {
6793 		phyi = ipsq->ipsq_phyint;
6794 		mp = ipsq_dq(ipsq);
6795 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6796 
6797 		/*
6798 		 * If we've changed to a new IPSQ, and the phyint associated
6799 		 * with the old one has gone away, free the old IPSQ.  Note
6800 		 * that this cannot happen while the IPSQ is in a group.
6801 		 */
6802 		if (mp_ipsq != ipsq && phyi == NULL) {
6803 			ASSERT(ipsq->ipsq_next == ipsq);
6804 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6805 			ipsq_delete(ipsq);
6806 		}
6807 
6808 		if (mp == NULL)
6809 			break;
6810 
6811 		q = mp->b_queue;
6812 		func = (ipsq_func_t)mp->b_prev;
6813 		ipsq = mp_ipsq;
6814 		mp->b_next = mp->b_prev = NULL;
6815 		mp->b_queue = NULL;
6816 
6817 		/*
6818 		 * If 'q' is an conn queue, it is valid, since we did a
6819 		 * a refhold on the conn at the start of the ioctl.
6820 		 * If 'q' is an ill queue, it is valid, since close of an
6821 		 * ill will clean up its IPSQ.
6822 		 */
6823 		(*func)(ipsq, q, mp, NULL);
6824 	}
6825 }
6826 
6827 /*
6828  * Used to start any igmp or mld timers that could not be started
6829  * while holding ill_mcast_lock. The timers can't be started while holding
6830  * the lock, since mld/igmp_start_timers may need to call untimeout()
6831  * which can't be done while holding the lock which the timeout handler
6832  * acquires. Otherwise
6833  * there could be a deadlock since the timeout handlers
6834  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6835  * ill_mcast_lock.
6836  */
6837 void
6838 ill_mcast_timer_start(ip_stack_t *ipst)
6839 {
6840 	int		next;
6841 
6842 	mutex_enter(&ipst->ips_igmp_timer_lock);
6843 	next = ipst->ips_igmp_deferred_next;
6844 	ipst->ips_igmp_deferred_next = INFINITY;
6845 	mutex_exit(&ipst->ips_igmp_timer_lock);
6846 
6847 	if (next != INFINITY)
6848 		igmp_start_timers(next, ipst);
6849 
6850 	mutex_enter(&ipst->ips_mld_timer_lock);
6851 	next = ipst->ips_mld_deferred_next;
6852 	ipst->ips_mld_deferred_next = INFINITY;
6853 	mutex_exit(&ipst->ips_mld_timer_lock);
6854 
6855 	if (next != INFINITY)
6856 		mld_start_timers(next, ipst);
6857 }
6858 
6859 /*
6860  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6861  * and `ioccmd'.
6862  */
6863 void
6864 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6865 {
6866 	ill_t *ill = ipif->ipif_ill;
6867 	ipxop_t *ipx = ipsq->ipsq_xop;
6868 
6869 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6870 	ASSERT(ipx->ipx_current_ipif == NULL);
6871 	ASSERT(ipx->ipx_current_ioctl == 0);
6872 
6873 	ipx->ipx_current_done = B_FALSE;
6874 	ipx->ipx_current_ioctl = ioccmd;
6875 	mutex_enter(&ipx->ipx_lock);
6876 	ipx->ipx_current_ipif = ipif;
6877 	mutex_exit(&ipx->ipx_lock);
6878 
6879 	/*
6880 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6881 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6882 	 * references to the ipif (so that the references will eventually
6883 	 * drop to zero) and also prevents any "get" operations (e.g.,
6884 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6885 	 * operation has completed and the ipif is again in a stable state.
6886 	 *
6887 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6888 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6889 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6890 	 * ipifs will be affected.
6891 	 *
6892 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6893 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6894 	 * operate on.
6895 	 */
6896 	switch (ioccmd) {
6897 	case SIOCLIFREMOVEIF:
6898 		break;
6899 	case 0:
6900 		mutex_enter(&ill->ill_lock);
6901 		ipif = ipif->ipif_ill->ill_ipif;
6902 		for (; ipif != NULL; ipif = ipif->ipif_next)
6903 			ipif->ipif_state_flags |= IPIF_CHANGING;
6904 		mutex_exit(&ill->ill_lock);
6905 		break;
6906 	default:
6907 		mutex_enter(&ill->ill_lock);
6908 		ipif->ipif_state_flags |= IPIF_CHANGING;
6909 		mutex_exit(&ill->ill_lock);
6910 	}
6911 }
6912 
6913 /*
6914  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6915  * the next exclusive operation to begin once we ipsq_exit().  However, if
6916  * pending DLPI operations remain, then we will wait for the queue to drain
6917  * before allowing the next exclusive operation to begin.  This ensures that
6918  * DLPI operations from one exclusive operation are never improperly processed
6919  * as part of a subsequent exclusive operation.
6920  */
6921 void
6922 ipsq_current_finish(ipsq_t *ipsq)
6923 {
6924 	ipxop_t	*ipx = ipsq->ipsq_xop;
6925 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6926 	ipif_t	*ipif = ipx->ipx_current_ipif;
6927 
6928 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6929 
6930 	/*
6931 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6932 	 * (but in that case, IPIF_CHANGING will already be clear and no
6933 	 * pending DLPI messages can remain).
6934 	 */
6935 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6936 		ill_t *ill = ipif->ipif_ill;
6937 
6938 		mutex_enter(&ill->ill_lock);
6939 		dlpi_pending = ill->ill_dlpi_pending;
6940 		if (ipx->ipx_current_ioctl == 0) {
6941 			ipif = ill->ill_ipif;
6942 			for (; ipif != NULL; ipif = ipif->ipif_next)
6943 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6944 		} else {
6945 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6946 		}
6947 		mutex_exit(&ill->ill_lock);
6948 	}
6949 
6950 	ASSERT(!ipx->ipx_current_done);
6951 	ipx->ipx_current_done = B_TRUE;
6952 	ipx->ipx_current_ioctl = 0;
6953 	if (dlpi_pending == DL_PRIM_INVAL) {
6954 		mutex_enter(&ipx->ipx_lock);
6955 		ipx->ipx_current_ipif = NULL;
6956 		mutex_exit(&ipx->ipx_lock);
6957 	}
6958 }
6959 
6960 /*
6961  * The ill is closing. Flush all messages on the ipsq that originated
6962  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6963  * for this ill since ipsq_enter could not have entered until then.
6964  * New messages can't be queued since the CONDEMNED flag is set.
6965  */
6966 static void
6967 ipsq_flush(ill_t *ill)
6968 {
6969 	queue_t	*q;
6970 	mblk_t	*prev;
6971 	mblk_t	*mp;
6972 	mblk_t	*mp_next;
6973 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
6974 
6975 	ASSERT(IAM_WRITER_ILL(ill));
6976 
6977 	/*
6978 	 * Flush any messages sent up by the driver.
6979 	 */
6980 	mutex_enter(&ipx->ipx_lock);
6981 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
6982 		mp_next = mp->b_next;
6983 		q = mp->b_queue;
6984 		if (q == ill->ill_rq || q == ill->ill_wq) {
6985 			/* dequeue mp */
6986 			if (prev == NULL)
6987 				ipx->ipx_mphead = mp->b_next;
6988 			else
6989 				prev->b_next = mp->b_next;
6990 			if (ipx->ipx_mptail == mp) {
6991 				ASSERT(mp_next == NULL);
6992 				ipx->ipx_mptail = prev;
6993 			}
6994 			inet_freemsg(mp);
6995 		} else {
6996 			prev = mp;
6997 		}
6998 	}
6999 	mutex_exit(&ipx->ipx_lock);
7000 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7001 	ipsq_xopq_mp_cleanup(ill, NULL);
7002 }
7003 
7004 /*
7005  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7006  * and return the associated ipif.
7007  * Return value:
7008  *	Non zero: An error has occurred. ci may not be filled out.
7009  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7010  *	a held ipif in ci.ci_ipif.
7011  */
7012 int
7013 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7014     cmd_info_t *ci)
7015 {
7016 	char		*name;
7017 	struct ifreq    *ifr;
7018 	struct lifreq    *lifr;
7019 	ipif_t		*ipif = NULL;
7020 	ill_t		*ill;
7021 	conn_t		*connp;
7022 	boolean_t	isv6;
7023 	int		err;
7024 	mblk_t		*mp1;
7025 	zoneid_t	zoneid;
7026 	ip_stack_t	*ipst;
7027 
7028 	if (q->q_next != NULL) {
7029 		ill = (ill_t *)q->q_ptr;
7030 		isv6 = ill->ill_isv6;
7031 		connp = NULL;
7032 		zoneid = ALL_ZONES;
7033 		ipst = ill->ill_ipst;
7034 	} else {
7035 		ill = NULL;
7036 		connp = Q_TO_CONN(q);
7037 		isv6 = (connp->conn_family == AF_INET6);
7038 		zoneid = connp->conn_zoneid;
7039 		if (zoneid == GLOBAL_ZONEID) {
7040 			/* global zone can access ipifs in all zones */
7041 			zoneid = ALL_ZONES;
7042 		}
7043 		ipst = connp->conn_netstack->netstack_ip;
7044 	}
7045 
7046 	/* Has been checked in ip_wput_nondata */
7047 	mp1 = mp->b_cont->b_cont;
7048 
7049 	if (ipip->ipi_cmd_type == IF_CMD) {
7050 		/* This a old style SIOC[GS]IF* command */
7051 		ifr = (struct ifreq *)mp1->b_rptr;
7052 		/*
7053 		 * Null terminate the string to protect against buffer
7054 		 * overrun. String was generated by user code and may not
7055 		 * be trusted.
7056 		 */
7057 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7058 		name = ifr->ifr_name;
7059 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7060 		ci->ci_sin6 = NULL;
7061 		ci->ci_lifr = (struct lifreq *)ifr;
7062 	} else {
7063 		/* This a new style SIOC[GS]LIF* command */
7064 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7065 		lifr = (struct lifreq *)mp1->b_rptr;
7066 		/*
7067 		 * Null terminate the string to protect against buffer
7068 		 * overrun. String was generated by user code and may not
7069 		 * be trusted.
7070 		 */
7071 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7072 		name = lifr->lifr_name;
7073 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7074 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7075 		ci->ci_lifr = lifr;
7076 	}
7077 
7078 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7079 		/*
7080 		 * The ioctl will be failed if the ioctl comes down
7081 		 * an conn stream
7082 		 */
7083 		if (ill == NULL) {
7084 			/*
7085 			 * Not an ill queue, return EINVAL same as the
7086 			 * old error code.
7087 			 */
7088 			return (ENXIO);
7089 		}
7090 		ipif = ill->ill_ipif;
7091 		ipif_refhold(ipif);
7092 	} else {
7093 		/*
7094 		 * Ensure that ioctls don't see any internal state changes
7095 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7096 		 * set.
7097 		 */
7098 		ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7099 		    isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7100 		if (ipif == NULL) {
7101 			if (err == EINPROGRESS)
7102 				return (err);
7103 			err = 0;	/* Ensure we don't use it below */
7104 		}
7105 	}
7106 
7107 	/*
7108 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7109 	 */
7110 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7111 		ipif_refrele(ipif);
7112 		return (ENXIO);
7113 	}
7114 
7115 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7116 	    name[0] == '\0') {
7117 		/*
7118 		 * Handle a or a SIOC?IF* with a null name
7119 		 * during plumb (on the ill queue before the I_PLINK).
7120 		 */
7121 		ipif = ill->ill_ipif;
7122 		ipif_refhold(ipif);
7123 	}
7124 
7125 	if (ipif == NULL)
7126 		return (ENXIO);
7127 
7128 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7129 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7130 
7131 	ci->ci_ipif = ipif;
7132 	return (0);
7133 }
7134 
7135 /*
7136  * Return the total number of ipifs.
7137  */
7138 static uint_t
7139 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7140 {
7141 	uint_t numifs = 0;
7142 	ill_t	*ill;
7143 	ill_walk_context_t	ctx;
7144 	ipif_t	*ipif;
7145 
7146 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7147 	ill = ILL_START_WALK_V4(&ctx, ipst);
7148 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7149 		if (IS_UNDER_IPMP(ill))
7150 			continue;
7151 		for (ipif = ill->ill_ipif; ipif != NULL;
7152 		    ipif = ipif->ipif_next) {
7153 			if (ipif->ipif_zoneid == zoneid ||
7154 			    ipif->ipif_zoneid == ALL_ZONES)
7155 				numifs++;
7156 		}
7157 	}
7158 	rw_exit(&ipst->ips_ill_g_lock);
7159 	return (numifs);
7160 }
7161 
7162 /*
7163  * Return the total number of ipifs.
7164  */
7165 static uint_t
7166 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7167 {
7168 	uint_t numifs = 0;
7169 	ill_t	*ill;
7170 	ipif_t	*ipif;
7171 	ill_walk_context_t	ctx;
7172 
7173 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7174 
7175 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7176 	if (family == AF_INET)
7177 		ill = ILL_START_WALK_V4(&ctx, ipst);
7178 	else if (family == AF_INET6)
7179 		ill = ILL_START_WALK_V6(&ctx, ipst);
7180 	else
7181 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7182 
7183 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7184 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7185 			continue;
7186 
7187 		for (ipif = ill->ill_ipif; ipif != NULL;
7188 		    ipif = ipif->ipif_next) {
7189 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7190 			    !(lifn_flags & LIFC_NOXMIT))
7191 				continue;
7192 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7193 			    !(lifn_flags & LIFC_TEMPORARY))
7194 				continue;
7195 			if (((ipif->ipif_flags &
7196 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7197 			    IPIF_DEPRECATED)) ||
7198 			    IS_LOOPBACK(ill) ||
7199 			    !(ipif->ipif_flags & IPIF_UP)) &&
7200 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7201 				continue;
7202 
7203 			if (zoneid != ipif->ipif_zoneid &&
7204 			    ipif->ipif_zoneid != ALL_ZONES &&
7205 			    (zoneid != GLOBAL_ZONEID ||
7206 			    !(lifn_flags & LIFC_ALLZONES)))
7207 				continue;
7208 
7209 			numifs++;
7210 		}
7211 	}
7212 	rw_exit(&ipst->ips_ill_g_lock);
7213 	return (numifs);
7214 }
7215 
7216 uint_t
7217 ip_get_lifsrcofnum(ill_t *ill)
7218 {
7219 	uint_t numifs = 0;
7220 	ill_t	*ill_head = ill;
7221 	ip_stack_t	*ipst = ill->ill_ipst;
7222 
7223 	/*
7224 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7225 	 * other thread may be trying to relink the ILLs in this usesrc group
7226 	 * and adjusting the ill_usesrc_grp_next pointers
7227 	 */
7228 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7229 	if ((ill->ill_usesrc_ifindex == 0) &&
7230 	    (ill->ill_usesrc_grp_next != NULL)) {
7231 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7232 		    ill = ill->ill_usesrc_grp_next)
7233 			numifs++;
7234 	}
7235 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7236 
7237 	return (numifs);
7238 }
7239 
7240 /* Null values are passed in for ipif, sin, and ifreq */
7241 /* ARGSUSED */
7242 int
7243 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7244     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7245 {
7246 	int *nump;
7247 	conn_t *connp = Q_TO_CONN(q);
7248 
7249 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7250 
7251 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7252 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7253 
7254 	*nump = ip_get_numifs(connp->conn_zoneid,
7255 	    connp->conn_netstack->netstack_ip);
7256 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7257 	return (0);
7258 }
7259 
7260 /* Null values are passed in for ipif, sin, and ifreq */
7261 /* ARGSUSED */
7262 int
7263 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7264     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7265 {
7266 	struct lifnum *lifn;
7267 	mblk_t	*mp1;
7268 	conn_t *connp = Q_TO_CONN(q);
7269 
7270 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7271 
7272 	/* Existence checked in ip_wput_nondata */
7273 	mp1 = mp->b_cont->b_cont;
7274 
7275 	lifn = (struct lifnum *)mp1->b_rptr;
7276 	switch (lifn->lifn_family) {
7277 	case AF_UNSPEC:
7278 	case AF_INET:
7279 	case AF_INET6:
7280 		break;
7281 	default:
7282 		return (EAFNOSUPPORT);
7283 	}
7284 
7285 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7286 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7287 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7288 	return (0);
7289 }
7290 
7291 /* ARGSUSED */
7292 int
7293 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7294     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7295 {
7296 	STRUCT_HANDLE(ifconf, ifc);
7297 	mblk_t *mp1;
7298 	struct iocblk *iocp;
7299 	struct ifreq *ifr;
7300 	ill_walk_context_t	ctx;
7301 	ill_t	*ill;
7302 	ipif_t	*ipif;
7303 	struct sockaddr_in *sin;
7304 	int32_t	ifclen;
7305 	zoneid_t zoneid;
7306 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7307 
7308 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7309 
7310 	ip1dbg(("ip_sioctl_get_ifconf"));
7311 	/* Existence verified in ip_wput_nondata */
7312 	mp1 = mp->b_cont->b_cont;
7313 	iocp = (struct iocblk *)mp->b_rptr;
7314 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7315 
7316 	/*
7317 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7318 	 * the user buffer address and length into which the list of struct
7319 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7320 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7321 	 * the SIOCGIFCONF operation was redefined to simply provide
7322 	 * a large output buffer into which we are supposed to jam the ifreq
7323 	 * array.  The same ioctl command code was used, despite the fact that
7324 	 * both the applications and the kernel code had to change, thus making
7325 	 * it impossible to support both interfaces.
7326 	 *
7327 	 * For reasons not good enough to try to explain, the following
7328 	 * algorithm is used for deciding what to do with one of these:
7329 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7330 	 * form with the output buffer coming down as the continuation message.
7331 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7332 	 * and we have to copy in the ifconf structure to find out how big the
7333 	 * output buffer is and where to copy out to.  Sure no problem...
7334 	 *
7335 	 */
7336 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7337 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7338 		int numifs = 0;
7339 		size_t ifc_bufsize;
7340 
7341 		/*
7342 		 * Must be (better be!) continuation of a TRANSPARENT
7343 		 * IOCTL.  We just copied in the ifconf structure.
7344 		 */
7345 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7346 		    (struct ifconf *)mp1->b_rptr);
7347 
7348 		/*
7349 		 * Allocate a buffer to hold requested information.
7350 		 *
7351 		 * If ifc_len is larger than what is needed, we only
7352 		 * allocate what we will use.
7353 		 *
7354 		 * If ifc_len is smaller than what is needed, return
7355 		 * EINVAL.
7356 		 *
7357 		 * XXX: the ill_t structure can hava 2 counters, for
7358 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7359 		 * number of interfaces for a device, so we don't need
7360 		 * to count them here...
7361 		 */
7362 		numifs = ip_get_numifs(zoneid, ipst);
7363 
7364 		ifclen = STRUCT_FGET(ifc, ifc_len);
7365 		ifc_bufsize = numifs * sizeof (struct ifreq);
7366 		if (ifc_bufsize > ifclen) {
7367 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7368 				/* old behaviour */
7369 				return (EINVAL);
7370 			} else {
7371 				ifc_bufsize = ifclen;
7372 			}
7373 		}
7374 
7375 		mp1 = mi_copyout_alloc(q, mp,
7376 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7377 		if (mp1 == NULL)
7378 			return (ENOMEM);
7379 
7380 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7381 	}
7382 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7383 	/*
7384 	 * the SIOCGIFCONF ioctl only knows about
7385 	 * IPv4 addresses, so don't try to tell
7386 	 * it about interfaces with IPv6-only
7387 	 * addresses. (Last parm 'isv6' is B_FALSE)
7388 	 */
7389 
7390 	ifr = (struct ifreq *)mp1->b_rptr;
7391 
7392 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7393 	ill = ILL_START_WALK_V4(&ctx, ipst);
7394 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7395 		if (IS_UNDER_IPMP(ill))
7396 			continue;
7397 		for (ipif = ill->ill_ipif; ipif != NULL;
7398 		    ipif = ipif->ipif_next) {
7399 			if (zoneid != ipif->ipif_zoneid &&
7400 			    ipif->ipif_zoneid != ALL_ZONES)
7401 				continue;
7402 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7403 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7404 					/* old behaviour */
7405 					rw_exit(&ipst->ips_ill_g_lock);
7406 					return (EINVAL);
7407 				} else {
7408 					goto if_copydone;
7409 				}
7410 			}
7411 			ipif_get_name(ipif, ifr->ifr_name,
7412 			    sizeof (ifr->ifr_name));
7413 			sin = (sin_t *)&ifr->ifr_addr;
7414 			*sin = sin_null;
7415 			sin->sin_family = AF_INET;
7416 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7417 			ifr++;
7418 		}
7419 	}
7420 if_copydone:
7421 	rw_exit(&ipst->ips_ill_g_lock);
7422 	mp1->b_wptr = (uchar_t *)ifr;
7423 
7424 	if (STRUCT_BUF(ifc) != NULL) {
7425 		STRUCT_FSET(ifc, ifc_len,
7426 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7427 	}
7428 	return (0);
7429 }
7430 
7431 /*
7432  * Get the interfaces using the address hosted on the interface passed in,
7433  * as a source adddress
7434  */
7435 /* ARGSUSED */
7436 int
7437 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7438     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7439 {
7440 	mblk_t *mp1;
7441 	ill_t	*ill, *ill_head;
7442 	ipif_t	*ipif, *orig_ipif;
7443 	int	numlifs = 0;
7444 	size_t	lifs_bufsize, lifsmaxlen;
7445 	struct	lifreq *lifr;
7446 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7447 	uint_t	ifindex;
7448 	zoneid_t zoneid;
7449 	boolean_t isv6 = B_FALSE;
7450 	struct	sockaddr_in	*sin;
7451 	struct	sockaddr_in6	*sin6;
7452 	STRUCT_HANDLE(lifsrcof, lifs);
7453 	ip_stack_t		*ipst;
7454 
7455 	ipst = CONNQ_TO_IPST(q);
7456 
7457 	ASSERT(q->q_next == NULL);
7458 
7459 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7460 
7461 	/* Existence verified in ip_wput_nondata */
7462 	mp1 = mp->b_cont->b_cont;
7463 
7464 	/*
7465 	 * Must be (better be!) continuation of a TRANSPARENT
7466 	 * IOCTL.  We just copied in the lifsrcof structure.
7467 	 */
7468 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7469 	    (struct lifsrcof *)mp1->b_rptr);
7470 
7471 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7472 		return (EINVAL);
7473 
7474 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7475 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7476 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7477 	if (ipif == NULL) {
7478 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7479 		    ifindex));
7480 		return (ENXIO);
7481 	}
7482 
7483 	/* Allocate a buffer to hold requested information */
7484 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7485 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7486 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7487 	/* The actual size needed is always returned in lifs_len */
7488 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7489 
7490 	/* If the amount we need is more than what is passed in, abort */
7491 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7492 		ipif_refrele(ipif);
7493 		return (0);
7494 	}
7495 
7496 	mp1 = mi_copyout_alloc(q, mp,
7497 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7498 	if (mp1 == NULL) {
7499 		ipif_refrele(ipif);
7500 		return (ENOMEM);
7501 	}
7502 
7503 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7504 	bzero(mp1->b_rptr, lifs_bufsize);
7505 
7506 	lifr = (struct lifreq *)mp1->b_rptr;
7507 
7508 	ill = ill_head = ipif->ipif_ill;
7509 	orig_ipif = ipif;
7510 
7511 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7512 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7513 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7514 
7515 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7516 	for (; (ill != NULL) && (ill != ill_head);
7517 	    ill = ill->ill_usesrc_grp_next) {
7518 
7519 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7520 			break;
7521 
7522 		ipif = ill->ill_ipif;
7523 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7524 		if (ipif->ipif_isv6) {
7525 			sin6 = (sin6_t *)&lifr->lifr_addr;
7526 			*sin6 = sin6_null;
7527 			sin6->sin6_family = AF_INET6;
7528 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7529 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7530 			    &ipif->ipif_v6net_mask);
7531 		} else {
7532 			sin = (sin_t *)&lifr->lifr_addr;
7533 			*sin = sin_null;
7534 			sin->sin_family = AF_INET;
7535 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7536 			lifr->lifr_addrlen = ip_mask_to_plen(
7537 			    ipif->ipif_net_mask);
7538 		}
7539 		lifr++;
7540 	}
7541 	rw_exit(&ipst->ips_ill_g_lock);
7542 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7543 	ipif_refrele(orig_ipif);
7544 	mp1->b_wptr = (uchar_t *)lifr;
7545 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7546 
7547 	return (0);
7548 }
7549 
7550 /* ARGSUSED */
7551 int
7552 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7553     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7554 {
7555 	mblk_t *mp1;
7556 	int	list;
7557 	ill_t	*ill;
7558 	ipif_t	*ipif;
7559 	int	flags;
7560 	int	numlifs = 0;
7561 	size_t	lifc_bufsize;
7562 	struct	lifreq *lifr;
7563 	sa_family_t	family;
7564 	struct	sockaddr_in	*sin;
7565 	struct	sockaddr_in6	*sin6;
7566 	ill_walk_context_t	ctx;
7567 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7568 	int32_t	lifclen;
7569 	zoneid_t zoneid;
7570 	STRUCT_HANDLE(lifconf, lifc);
7571 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7572 
7573 	ip1dbg(("ip_sioctl_get_lifconf"));
7574 
7575 	ASSERT(q->q_next == NULL);
7576 
7577 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7578 
7579 	/* Existence verified in ip_wput_nondata */
7580 	mp1 = mp->b_cont->b_cont;
7581 
7582 	/*
7583 	 * An extended version of SIOCGIFCONF that takes an
7584 	 * additional address family and flags field.
7585 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7586 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7587 	 * interfaces are omitted.
7588 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7589 	 * unless LIFC_TEMPORARY is specified.
7590 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7591 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7592 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7593 	 * has priority over LIFC_NOXMIT.
7594 	 */
7595 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7596 
7597 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7598 		return (EINVAL);
7599 
7600 	/*
7601 	 * Must be (better be!) continuation of a TRANSPARENT
7602 	 * IOCTL.  We just copied in the lifconf structure.
7603 	 */
7604 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7605 
7606 	family = STRUCT_FGET(lifc, lifc_family);
7607 	flags = STRUCT_FGET(lifc, lifc_flags);
7608 
7609 	switch (family) {
7610 	case AF_UNSPEC:
7611 		/*
7612 		 * walk all ILL's.
7613 		 */
7614 		list = MAX_G_HEADS;
7615 		break;
7616 	case AF_INET:
7617 		/*
7618 		 * walk only IPV4 ILL's.
7619 		 */
7620 		list = IP_V4_G_HEAD;
7621 		break;
7622 	case AF_INET6:
7623 		/*
7624 		 * walk only IPV6 ILL's.
7625 		 */
7626 		list = IP_V6_G_HEAD;
7627 		break;
7628 	default:
7629 		return (EAFNOSUPPORT);
7630 	}
7631 
7632 	/*
7633 	 * Allocate a buffer to hold requested information.
7634 	 *
7635 	 * If lifc_len is larger than what is needed, we only
7636 	 * allocate what we will use.
7637 	 *
7638 	 * If lifc_len is smaller than what is needed, return
7639 	 * EINVAL.
7640 	 */
7641 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7642 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7643 	lifclen = STRUCT_FGET(lifc, lifc_len);
7644 	if (lifc_bufsize > lifclen) {
7645 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7646 			return (EINVAL);
7647 		else
7648 			lifc_bufsize = lifclen;
7649 	}
7650 
7651 	mp1 = mi_copyout_alloc(q, mp,
7652 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7653 	if (mp1 == NULL)
7654 		return (ENOMEM);
7655 
7656 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7657 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7658 
7659 	lifr = (struct lifreq *)mp1->b_rptr;
7660 
7661 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7662 	ill = ill_first(list, list, &ctx, ipst);
7663 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7664 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7665 			continue;
7666 
7667 		for (ipif = ill->ill_ipif; ipif != NULL;
7668 		    ipif = ipif->ipif_next) {
7669 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7670 			    !(flags & LIFC_NOXMIT))
7671 				continue;
7672 
7673 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7674 			    !(flags & LIFC_TEMPORARY))
7675 				continue;
7676 
7677 			if (((ipif->ipif_flags &
7678 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7679 			    IPIF_DEPRECATED)) ||
7680 			    IS_LOOPBACK(ill) ||
7681 			    !(ipif->ipif_flags & IPIF_UP)) &&
7682 			    (flags & LIFC_EXTERNAL_SOURCE))
7683 				continue;
7684 
7685 			if (zoneid != ipif->ipif_zoneid &&
7686 			    ipif->ipif_zoneid != ALL_ZONES &&
7687 			    (zoneid != GLOBAL_ZONEID ||
7688 			    !(flags & LIFC_ALLZONES)))
7689 				continue;
7690 
7691 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7692 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7693 					rw_exit(&ipst->ips_ill_g_lock);
7694 					return (EINVAL);
7695 				} else {
7696 					goto lif_copydone;
7697 				}
7698 			}
7699 
7700 			ipif_get_name(ipif, lifr->lifr_name,
7701 			    sizeof (lifr->lifr_name));
7702 			lifr->lifr_type = ill->ill_type;
7703 			if (ipif->ipif_isv6) {
7704 				sin6 = (sin6_t *)&lifr->lifr_addr;
7705 				*sin6 = sin6_null;
7706 				sin6->sin6_family = AF_INET6;
7707 				sin6->sin6_addr =
7708 				    ipif->ipif_v6lcl_addr;
7709 				lifr->lifr_addrlen =
7710 				    ip_mask_to_plen_v6(
7711 				    &ipif->ipif_v6net_mask);
7712 			} else {
7713 				sin = (sin_t *)&lifr->lifr_addr;
7714 				*sin = sin_null;
7715 				sin->sin_family = AF_INET;
7716 				sin->sin_addr.s_addr =
7717 				    ipif->ipif_lcl_addr;
7718 				lifr->lifr_addrlen =
7719 				    ip_mask_to_plen(
7720 				    ipif->ipif_net_mask);
7721 			}
7722 			lifr++;
7723 		}
7724 	}
7725 lif_copydone:
7726 	rw_exit(&ipst->ips_ill_g_lock);
7727 
7728 	mp1->b_wptr = (uchar_t *)lifr;
7729 	if (STRUCT_BUF(lifc) != NULL) {
7730 		STRUCT_FSET(lifc, lifc_len,
7731 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7732 	}
7733 	return (0);
7734 }
7735 
7736 static void
7737 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7738 {
7739 	ip6_asp_t *table;
7740 	size_t table_size;
7741 	mblk_t *data_mp;
7742 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7743 	ip_stack_t	*ipst;
7744 
7745 	if (q->q_next == NULL)
7746 		ipst = CONNQ_TO_IPST(q);
7747 	else
7748 		ipst = ILLQ_TO_IPST(q);
7749 
7750 	/* These two ioctls are I_STR only */
7751 	if (iocp->ioc_count == TRANSPARENT) {
7752 		miocnak(q, mp, 0, EINVAL);
7753 		return;
7754 	}
7755 
7756 	data_mp = mp->b_cont;
7757 	if (data_mp == NULL) {
7758 		/* The user passed us a NULL argument */
7759 		table = NULL;
7760 		table_size = iocp->ioc_count;
7761 	} else {
7762 		/*
7763 		 * The user provided a table.  The stream head
7764 		 * may have copied in the user data in chunks,
7765 		 * so make sure everything is pulled up
7766 		 * properly.
7767 		 */
7768 		if (MBLKL(data_mp) < iocp->ioc_count) {
7769 			mblk_t *new_data_mp;
7770 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7771 			    NULL) {
7772 				miocnak(q, mp, 0, ENOMEM);
7773 				return;
7774 			}
7775 			freemsg(data_mp);
7776 			data_mp = new_data_mp;
7777 			mp->b_cont = data_mp;
7778 		}
7779 		table = (ip6_asp_t *)data_mp->b_rptr;
7780 		table_size = iocp->ioc_count;
7781 	}
7782 
7783 	switch (iocp->ioc_cmd) {
7784 	case SIOCGIP6ADDRPOLICY:
7785 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7786 		if (iocp->ioc_rval == -1)
7787 			iocp->ioc_error = EINVAL;
7788 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7789 		else if (table != NULL &&
7790 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7791 			ip6_asp_t *src = table;
7792 			ip6_asp32_t *dst = (void *)table;
7793 			int count = table_size / sizeof (ip6_asp_t);
7794 			int i;
7795 
7796 			/*
7797 			 * We need to do an in-place shrink of the array
7798 			 * to match the alignment attributes of the
7799 			 * 32-bit ABI looking at it.
7800 			 */
7801 			/* LINTED: logical expression always true: op "||" */
7802 			ASSERT(sizeof (*src) > sizeof (*dst));
7803 			for (i = 1; i < count; i++)
7804 				bcopy(src + i, dst + i, sizeof (*dst));
7805 		}
7806 #endif
7807 		break;
7808 
7809 	case SIOCSIP6ADDRPOLICY:
7810 		ASSERT(mp->b_prev == NULL);
7811 		mp->b_prev = (void *)q;
7812 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7813 		/*
7814 		 * We pass in the datamodel here so that the ip6_asp_replace()
7815 		 * routine can handle converting from 32-bit to native formats
7816 		 * where necessary.
7817 		 *
7818 		 * A better way to handle this might be to convert the inbound
7819 		 * data structure here, and hang it off a new 'mp'; thus the
7820 		 * ip6_asp_replace() logic would always be dealing with native
7821 		 * format data structures..
7822 		 *
7823 		 * (An even simpler way to handle these ioctls is to just
7824 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7825 		 * and just recompile everything that depends on it.)
7826 		 */
7827 #endif
7828 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7829 		    iocp->ioc_flag & IOC_MODELS);
7830 		return;
7831 	}
7832 
7833 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7834 	qreply(q, mp);
7835 }
7836 
7837 static void
7838 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7839 {
7840 	mblk_t 		*data_mp;
7841 	struct dstinforeq	*dir;
7842 	uint8_t		*end, *cur;
7843 	in6_addr_t	*daddr, *saddr;
7844 	ipaddr_t	v4daddr;
7845 	ire_t		*ire;
7846 	ipaddr_t	v4setsrc;
7847 	in6_addr_t	v6setsrc;
7848 	char		*slabel, *dlabel;
7849 	boolean_t	isipv4;
7850 	int		match_ire;
7851 	ill_t		*dst_ill;
7852 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7853 	conn_t		*connp = Q_TO_CONN(q);
7854 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7855 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7856 	uint64_t	ipif_flags;
7857 
7858 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7859 
7860 	/*
7861 	 * This ioctl is I_STR only, and must have a
7862 	 * data mblk following the M_IOCTL mblk.
7863 	 */
7864 	data_mp = mp->b_cont;
7865 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7866 		miocnak(q, mp, 0, EINVAL);
7867 		return;
7868 	}
7869 
7870 	if (MBLKL(data_mp) < iocp->ioc_count) {
7871 		mblk_t *new_data_mp;
7872 
7873 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7874 			miocnak(q, mp, 0, ENOMEM);
7875 			return;
7876 		}
7877 		freemsg(data_mp);
7878 		data_mp = new_data_mp;
7879 		mp->b_cont = data_mp;
7880 	}
7881 	match_ire = MATCH_IRE_DSTONLY;
7882 
7883 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7884 	    end - cur >= sizeof (struct dstinforeq);
7885 	    cur += sizeof (struct dstinforeq)) {
7886 		dir = (struct dstinforeq *)cur;
7887 		daddr = &dir->dir_daddr;
7888 		saddr = &dir->dir_saddr;
7889 
7890 		/*
7891 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7892 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7893 		 * and ip_select_source_v6() do not.
7894 		 */
7895 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7896 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7897 
7898 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7899 		if (isipv4) {
7900 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7901 			v4setsrc = INADDR_ANY;
7902 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7903 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7904 			    NULL, NULL);
7905 		} else {
7906 			v6setsrc = ipv6_all_zeros;
7907 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7908 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7909 			    NULL, NULL);
7910 		}
7911 		ASSERT(ire != NULL);
7912 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7913 			ire_refrele(ire);
7914 			dir->dir_dreachable = 0;
7915 
7916 			/* move on to next dst addr */
7917 			continue;
7918 		}
7919 		dir->dir_dreachable = 1;
7920 
7921 		dst_ill = ire_nexthop_ill(ire);
7922 		if (dst_ill == NULL) {
7923 			ire_refrele(ire);
7924 			continue;
7925 		}
7926 
7927 		/* With ipmp we most likely look at the ipmp ill here */
7928 		dir->dir_dmactype = dst_ill->ill_mactype;
7929 
7930 		if (isipv4) {
7931 			ipaddr_t v4saddr;
7932 
7933 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7934 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7935 			    &v4saddr, NULL, &ipif_flags) != 0) {
7936 				v4saddr = INADDR_ANY;
7937 				ipif_flags = 0;
7938 			}
7939 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7940 		} else {
7941 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7942 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7943 			    saddr, NULL, &ipif_flags) != 0) {
7944 				*saddr = ipv6_all_zeros;
7945 				ipif_flags = 0;
7946 			}
7947 		}
7948 
7949 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7950 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7951 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7952 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7953 		ire_refrele(ire);
7954 		ill_refrele(dst_ill);
7955 	}
7956 	miocack(q, mp, iocp->ioc_count, 0);
7957 }
7958 
7959 /*
7960  * Check if this is an address assigned to this machine.
7961  * Skips interfaces that are down by using ire checks.
7962  * Translates mapped addresses to v4 addresses and then
7963  * treats them as such, returning true if the v4 address
7964  * associated with this mapped address is configured.
7965  * Note: Applications will have to be careful what they do
7966  * with the response; use of mapped addresses limits
7967  * what can be done with the socket, especially with
7968  * respect to socket options and ioctls - neither IPv4
7969  * options nor IPv6 sticky options/ancillary data options
7970  * may be used.
7971  */
7972 /* ARGSUSED */
7973 int
7974 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7975     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
7976 {
7977 	struct sioc_addrreq *sia;
7978 	sin_t *sin;
7979 	ire_t *ire;
7980 	mblk_t *mp1;
7981 	zoneid_t zoneid;
7982 	ip_stack_t	*ipst;
7983 
7984 	ip1dbg(("ip_sioctl_tmyaddr"));
7985 
7986 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7987 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7988 	ipst = CONNQ_TO_IPST(q);
7989 
7990 	/* Existence verified in ip_wput_nondata */
7991 	mp1 = mp->b_cont->b_cont;
7992 	sia = (struct sioc_addrreq *)mp1->b_rptr;
7993 	sin = (sin_t *)&sia->sa_addr;
7994 	switch (sin->sin_family) {
7995 	case AF_INET6: {
7996 		sin6_t *sin6 = (sin6_t *)sin;
7997 
7998 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
7999 			ipaddr_t v4_addr;
8000 
8001 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8002 			    v4_addr);
8003 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8004 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8005 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8006 		} else {
8007 			in6_addr_t v6addr;
8008 
8009 			v6addr = sin6->sin6_addr;
8010 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8011 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8012 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8013 		}
8014 		break;
8015 	}
8016 	case AF_INET: {
8017 		ipaddr_t v4addr;
8018 
8019 		v4addr = sin->sin_addr.s_addr;
8020 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8021 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8022 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8023 		break;
8024 	}
8025 	default:
8026 		return (EAFNOSUPPORT);
8027 	}
8028 	if (ire != NULL) {
8029 		sia->sa_res = 1;
8030 		ire_refrele(ire);
8031 	} else {
8032 		sia->sa_res = 0;
8033 	}
8034 	return (0);
8035 }
8036 
8037 /*
8038  * Check if this is an address assigned on-link i.e. neighbor,
8039  * and makes sure it's reachable from the current zone.
8040  * Returns true for my addresses as well.
8041  * Translates mapped addresses to v4 addresses and then
8042  * treats them as such, returning true if the v4 address
8043  * associated with this mapped address is configured.
8044  * Note: Applications will have to be careful what they do
8045  * with the response; use of mapped addresses limits
8046  * what can be done with the socket, especially with
8047  * respect to socket options and ioctls - neither IPv4
8048  * options nor IPv6 sticky options/ancillary data options
8049  * may be used.
8050  */
8051 /* ARGSUSED */
8052 int
8053 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8054     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8055 {
8056 	struct sioc_addrreq *sia;
8057 	sin_t *sin;
8058 	mblk_t	*mp1;
8059 	ire_t *ire = NULL;
8060 	zoneid_t zoneid;
8061 	ip_stack_t	*ipst;
8062 
8063 	ip1dbg(("ip_sioctl_tonlink"));
8064 
8065 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8066 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8067 	ipst = CONNQ_TO_IPST(q);
8068 
8069 	/* Existence verified in ip_wput_nondata */
8070 	mp1 = mp->b_cont->b_cont;
8071 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8072 	sin = (sin_t *)&sia->sa_addr;
8073 
8074 	/*
8075 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8076 	 * to make sure we only look at on-link unicast address.
8077 	 */
8078 	switch (sin->sin_family) {
8079 	case AF_INET6: {
8080 		sin6_t *sin6 = (sin6_t *)sin;
8081 
8082 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8083 			ipaddr_t v4_addr;
8084 
8085 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8086 			    v4_addr);
8087 			if (!CLASSD(v4_addr)) {
8088 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8089 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8090 				    0, ipst, NULL);
8091 			}
8092 		} else {
8093 			in6_addr_t v6addr;
8094 
8095 			v6addr = sin6->sin6_addr;
8096 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8097 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8098 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8099 				    ipst, NULL);
8100 			}
8101 		}
8102 		break;
8103 	}
8104 	case AF_INET: {
8105 		ipaddr_t v4addr;
8106 
8107 		v4addr = sin->sin_addr.s_addr;
8108 		if (!CLASSD(v4addr)) {
8109 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8110 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8111 		}
8112 		break;
8113 	}
8114 	default:
8115 		return (EAFNOSUPPORT);
8116 	}
8117 	sia->sa_res = 0;
8118 	if (ire != NULL) {
8119 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8120 
8121 		if ((ire->ire_type & IRE_ONLINK) &&
8122 		    !(ire->ire_type & IRE_BROADCAST))
8123 			sia->sa_res = 1;
8124 		ire_refrele(ire);
8125 	}
8126 	return (0);
8127 }
8128 
8129 /*
8130  * TBD: implement when kernel maintaines a list of site prefixes.
8131  */
8132 /* ARGSUSED */
8133 int
8134 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8135     ip_ioctl_cmd_t *ipip, void *ifreq)
8136 {
8137 	return (ENXIO);
8138 }
8139 
8140 /* ARP IOCTLs. */
8141 /* ARGSUSED */
8142 int
8143 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8144     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8145 {
8146 	int		err;
8147 	ipaddr_t	ipaddr;
8148 	struct iocblk	*iocp;
8149 	conn_t		*connp;
8150 	struct arpreq	*ar;
8151 	struct xarpreq	*xar;
8152 	int		arp_flags, flags, alength;
8153 	uchar_t		*lladdr;
8154 	ip_stack_t	*ipst;
8155 	ill_t		*ill = ipif->ipif_ill;
8156 	ill_t		*proxy_ill = NULL;
8157 	ipmp_arpent_t	*entp = NULL;
8158 	boolean_t	proxyarp = B_FALSE;
8159 	boolean_t	if_arp_ioctl = B_FALSE;
8160 	ncec_t		*ncec = NULL;
8161 	nce_t		*nce;
8162 
8163 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8164 	connp = Q_TO_CONN(q);
8165 	ipst = connp->conn_netstack->netstack_ip;
8166 	iocp = (struct iocblk *)mp->b_rptr;
8167 
8168 	if (ipip->ipi_cmd_type == XARP_CMD) {
8169 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8170 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8171 		ar = NULL;
8172 
8173 		arp_flags = xar->xarp_flags;
8174 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8175 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8176 		/*
8177 		 * Validate against user's link layer address length
8178 		 * input and name and addr length limits.
8179 		 */
8180 		alength = ill->ill_phys_addr_length;
8181 		if (ipip->ipi_cmd == SIOCSXARP) {
8182 			if (alength != xar->xarp_ha.sdl_alen ||
8183 			    (alength + xar->xarp_ha.sdl_nlen >
8184 			    sizeof (xar->xarp_ha.sdl_data)))
8185 				return (EINVAL);
8186 		}
8187 	} else {
8188 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8189 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8190 		xar = NULL;
8191 
8192 		arp_flags = ar->arp_flags;
8193 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8194 		/*
8195 		 * Theoretically, the sa_family could tell us what link
8196 		 * layer type this operation is trying to deal with. By
8197 		 * common usage AF_UNSPEC means ethernet. We'll assume
8198 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8199 		 * for now. Our new SIOC*XARP ioctls can be used more
8200 		 * generally.
8201 		 *
8202 		 * If the underlying media happens to have a non 6 byte
8203 		 * address, arp module will fail set/get, but the del
8204 		 * operation will succeed.
8205 		 */
8206 		alength = 6;
8207 		if ((ipip->ipi_cmd != SIOCDARP) &&
8208 		    (alength != ill->ill_phys_addr_length)) {
8209 			return (EINVAL);
8210 		}
8211 	}
8212 
8213 	/* Translate ATF* flags to NCE* flags */
8214 	flags = 0;
8215 	if (arp_flags & ATF_AUTHORITY)
8216 		flags |= NCE_F_AUTHORITY;
8217 	if (arp_flags & ATF_PERM)
8218 		flags |= NCE_F_NONUD; /* not subject to aging */
8219 	if (arp_flags & ATF_PUBL)
8220 		flags |= NCE_F_PUBLISH;
8221 
8222 	/*
8223 	 * IPMP ARP special handling:
8224 	 *
8225 	 * 1. Since ARP mappings must appear consistent across the group,
8226 	 *    prohibit changing ARP mappings on the underlying interfaces.
8227 	 *
8228 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8229 	 *    IP itself, prohibit changing them.
8230 	 *
8231 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8232 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8233 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8234 	 */
8235 	if (IS_UNDER_IPMP(ill)) {
8236 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8237 			return (EPERM);
8238 	}
8239 	if (IS_IPMP(ill)) {
8240 		ipmp_illgrp_t *illg = ill->ill_grp;
8241 
8242 		switch (ipip->ipi_cmd) {
8243 		case SIOCSARP:
8244 		case SIOCSXARP:
8245 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8246 			if (proxy_ill != NULL) {
8247 				proxyarp = B_TRUE;
8248 				if (!ipmp_ill_is_active(proxy_ill))
8249 					proxy_ill = ipmp_illgrp_next_ill(illg);
8250 				if (proxy_ill != NULL)
8251 					lladdr = proxy_ill->ill_phys_addr;
8252 			}
8253 			/* FALLTHRU */
8254 		}
8255 	}
8256 
8257 	ipaddr = sin->sin_addr.s_addr;
8258 	/*
8259 	 * don't match across illgrp per case (1) and (2).
8260 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8261 	 */
8262 	nce = nce_lookup_v4(ill, &ipaddr);
8263 	if (nce != NULL)
8264 		ncec = nce->nce_common;
8265 
8266 	switch (iocp->ioc_cmd) {
8267 	case SIOCDARP:
8268 	case SIOCDXARP: {
8269 		/*
8270 		 * Delete the NCE if any.
8271 		 */
8272 		if (ncec == NULL) {
8273 			iocp->ioc_error = ENXIO;
8274 			break;
8275 		}
8276 		/* Don't allow changes to arp mappings of local addresses. */
8277 		if (NCE_MYADDR(ncec)) {
8278 			nce_refrele(nce);
8279 			return (ENOTSUP);
8280 		}
8281 		iocp->ioc_error = 0;
8282 
8283 		/*
8284 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8285 		 * This will delete all the nce entries on the under_ills.
8286 		 */
8287 		ncec_delete(ncec);
8288 		/*
8289 		 * Once the NCE has been deleted, then the ire_dep* consistency
8290 		 * mechanism will find any IRE which depended on the now
8291 		 * condemned NCE (as part of sending packets).
8292 		 * That mechanism handles redirects by deleting redirects
8293 		 * that refer to UNREACHABLE nces.
8294 		 */
8295 		break;
8296 	}
8297 	case SIOCGARP:
8298 	case SIOCGXARP:
8299 		if (ncec != NULL) {
8300 			lladdr = ncec->ncec_lladdr;
8301 			flags = ncec->ncec_flags;
8302 			iocp->ioc_error = 0;
8303 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8304 		} else {
8305 			iocp->ioc_error = ENXIO;
8306 		}
8307 		break;
8308 	case SIOCSARP:
8309 	case SIOCSXARP:
8310 		/* Don't allow changes to arp mappings of local addresses. */
8311 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8312 			nce_refrele(nce);
8313 			return (ENOTSUP);
8314 		}
8315 
8316 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8317 		flags |= NCE_F_STATIC;
8318 		if (!if_arp_ioctl) {
8319 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8320 			    lladdr, alength, flags);
8321 		} else {
8322 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8323 			if (ipif != NULL) {
8324 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8325 				    lladdr, alength, flags);
8326 				ipif_refrele(ipif);
8327 			}
8328 		}
8329 		if (nce != NULL) {
8330 			nce_refrele(nce);
8331 			nce = NULL;
8332 		}
8333 		/*
8334 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8335 		 * by nce_add_common()
8336 		 */
8337 		err = nce_lookup_then_add_v4(ill, lladdr,
8338 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8339 		    &nce);
8340 		if (err == EEXIST) {
8341 			ncec = nce->nce_common;
8342 			mutex_enter(&ncec->ncec_lock);
8343 			ncec->ncec_state = ND_REACHABLE;
8344 			ncec->ncec_flags = flags;
8345 			nce_update(ncec, ND_UNCHANGED, lladdr);
8346 			mutex_exit(&ncec->ncec_lock);
8347 			err = 0;
8348 		}
8349 		if (nce != NULL) {
8350 			nce_refrele(nce);
8351 			nce = NULL;
8352 		}
8353 		if (IS_IPMP(ill) && err == 0) {
8354 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8355 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8356 			    flags);
8357 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8358 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8359 				break;
8360 			}
8361 		}
8362 		iocp->ioc_error = err;
8363 	}
8364 
8365 	if (nce != NULL) {
8366 		nce_refrele(nce);
8367 	}
8368 
8369 	/*
8370 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8371 	 */
8372 	if (entp != NULL)
8373 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8374 
8375 	return (iocp->ioc_error);
8376 }
8377 
8378 /*
8379  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8380  * the associated sin and refhold and return the associated ipif via `ci'.
8381  */
8382 int
8383 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8384     cmd_info_t *ci)
8385 {
8386 	mblk_t	*mp1;
8387 	sin_t	*sin;
8388 	conn_t	*connp;
8389 	ipif_t	*ipif;
8390 	ire_t	*ire = NULL;
8391 	ill_t	*ill = NULL;
8392 	boolean_t exists;
8393 	ip_stack_t *ipst;
8394 	struct arpreq *ar;
8395 	struct xarpreq *xar;
8396 	struct sockaddr_dl *sdl;
8397 
8398 	/* ioctl comes down on a conn */
8399 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8400 	connp = Q_TO_CONN(q);
8401 	if (connp->conn_family == AF_INET6)
8402 		return (ENXIO);
8403 
8404 	ipst = connp->conn_netstack->netstack_ip;
8405 
8406 	/* Verified in ip_wput_nondata */
8407 	mp1 = mp->b_cont->b_cont;
8408 
8409 	if (ipip->ipi_cmd_type == XARP_CMD) {
8410 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8411 		xar = (struct xarpreq *)mp1->b_rptr;
8412 		sin = (sin_t *)&xar->xarp_pa;
8413 		sdl = &xar->xarp_ha;
8414 
8415 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8416 			return (ENXIO);
8417 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8418 			return (EINVAL);
8419 	} else {
8420 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8421 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8422 		ar = (struct arpreq *)mp1->b_rptr;
8423 		sin = (sin_t *)&ar->arp_pa;
8424 	}
8425 
8426 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8427 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8428 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8429 		if (ipif == NULL)
8430 			return (ENXIO);
8431 		if (ipif->ipif_id != 0) {
8432 			ipif_refrele(ipif);
8433 			return (ENXIO);
8434 		}
8435 	} else {
8436 		/*
8437 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8438 		 * of 0: use the IP address to find the ipif.  If the IP
8439 		 * address is an IPMP test address, ire_ftable_lookup() will
8440 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8441 		 */
8442 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8443 		    ipst);
8444 		if (ipif == NULL) {
8445 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8446 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8447 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8448 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8449 				if (ire != NULL)
8450 					ire_refrele(ire);
8451 				return (ENXIO);
8452 			}
8453 			ASSERT(ire != NULL && ill != NULL);
8454 			ipif = ill->ill_ipif;
8455 			ipif_refhold(ipif);
8456 			ire_refrele(ire);
8457 		}
8458 	}
8459 
8460 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8461 		ipif_refrele(ipif);
8462 		return (ENXIO);
8463 	}
8464 
8465 	ci->ci_sin = sin;
8466 	ci->ci_ipif = ipif;
8467 	return (0);
8468 }
8469 
8470 /*
8471  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8472  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8473  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8474  * up and thus an ill can join that illgrp.
8475  *
8476  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8477  * open()/close() primarily because close() is not allowed to fail or block
8478  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8479  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8480  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8481  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8482  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8483  * state if I_UNLINK didn't occur.
8484  *
8485  * Note that for each plumb/unplumb operation, we may end up here more than
8486  * once because of the way ifconfig works.  However, it's OK to link the same
8487  * illgrp more than once, or unlink an illgrp that's already unlinked.
8488  */
8489 static int
8490 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8491 {
8492 	int err;
8493 	ip_stack_t *ipst = ill->ill_ipst;
8494 
8495 	ASSERT(IS_IPMP(ill));
8496 	ASSERT(IAM_WRITER_ILL(ill));
8497 
8498 	switch (ioccmd) {
8499 	case I_LINK:
8500 		return (ENOTSUP);
8501 
8502 	case I_PLINK:
8503 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8504 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8505 		rw_exit(&ipst->ips_ipmp_lock);
8506 		break;
8507 
8508 	case I_PUNLINK:
8509 		/*
8510 		 * Require all UP ipifs be brought down prior to unlinking the
8511 		 * illgrp so any associated IREs (and other state) is torched.
8512 		 */
8513 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8514 			return (EBUSY);
8515 
8516 		/*
8517 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8518 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8519 		 * join this group.  Specifically: ills trying to join grab
8520 		 * ipmp_lock and bump a "pending join" counter checked by
8521 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8522 		 * joins can occur (since we have ipmp_lock).  Once we drop
8523 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8524 		 * find the illgrp (since we unlinked it) and will return
8525 		 * EAFNOSUPPORT.  This will then take them back through the
8526 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8527 		 * back through I_PLINK above.
8528 		 */
8529 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8530 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8531 		rw_exit(&ipst->ips_ipmp_lock);
8532 		return (err);
8533 	default:
8534 		break;
8535 	}
8536 	return (0);
8537 }
8538 
8539 /*
8540  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8541  * atomically set/clear the muxids. Also complete the ioctl by acking or
8542  * naking it.  Note that the code is structured such that the link type,
8543  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8544  * its clones use the persistent link, while pppd(1M) and perhaps many
8545  * other daemons may use non-persistent link.  When combined with some
8546  * ill_t states, linking and unlinking lower streams may be used as
8547  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8548  */
8549 /* ARGSUSED */
8550 void
8551 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8552 {
8553 	mblk_t		*mp1;
8554 	struct linkblk	*li;
8555 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8556 	int		err = 0;
8557 
8558 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8559 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8560 
8561 	mp1 = mp->b_cont;	/* This is the linkblk info */
8562 	li = (struct linkblk *)mp1->b_rptr;
8563 
8564 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8565 	if (err == EINPROGRESS)
8566 		return;
8567 	if (err == 0)
8568 		miocack(q, mp, 0, 0);
8569 	else
8570 		miocnak(q, mp, 0, err);
8571 
8572 	/* Conn was refheld in ip_sioctl_copyin_setup */
8573 	if (CONN_Q(q)) {
8574 		CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8575 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8576 	}
8577 }
8578 
8579 /*
8580  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8581  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8582  * module stream).
8583  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8584  * an error code on failure.
8585  */
8586 static int
8587 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8588     struct linkblk *li)
8589 {
8590 	int		err = 0;
8591 	ill_t  		*ill;
8592 	queue_t		*ipwq, *dwq;
8593 	const char	*name;
8594 	struct qinit	*qinfo;
8595 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8596 	boolean_t	entered_ipsq = B_FALSE;
8597 	boolean_t	is_ip = B_FALSE;
8598 	arl_t		*arl;
8599 
8600 	/*
8601 	 * Walk the lower stream to verify it's the IP module stream.
8602 	 * The IP module is identified by its name, wput function,
8603 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8604 	 * (li->l_qbot) will not vanish until this ioctl completes.
8605 	 */
8606 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8607 		qinfo = ipwq->q_qinfo;
8608 		name = qinfo->qi_minfo->mi_idname;
8609 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8610 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8611 			is_ip = B_TRUE;
8612 			break;
8613 		}
8614 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8615 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8616 			break;
8617 		}
8618 	}
8619 
8620 	/*
8621 	 * If this isn't an IP module stream, bail.
8622 	 */
8623 	if (ipwq == NULL)
8624 		return (0);
8625 
8626 	if (!is_ip) {
8627 		arl = (arl_t *)ipwq->q_ptr;
8628 		ill = arl_to_ill(arl);
8629 		if (ill == NULL)
8630 			return (0);
8631 	} else {
8632 		ill = ipwq->q_ptr;
8633 	}
8634 	ASSERT(ill != NULL);
8635 
8636 	if (ipsq == NULL) {
8637 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8638 		    NEW_OP, B_FALSE);
8639 		if (ipsq == NULL) {
8640 			if (!is_ip)
8641 				ill_refrele(ill);
8642 			return (EINPROGRESS);
8643 		}
8644 		entered_ipsq = B_TRUE;
8645 	}
8646 	ASSERT(IAM_WRITER_ILL(ill));
8647 	mutex_enter(&ill->ill_lock);
8648 	if (!is_ip) {
8649 		if (islink && ill->ill_muxid == 0) {
8650 			/*
8651 			 * Plumbing has to be done with IP plumbed first, arp
8652 			 * second, but here we have arp being plumbed first.
8653 			 */
8654 			mutex_exit(&ill->ill_lock);
8655 			if (entered_ipsq)
8656 				ipsq_exit(ipsq);
8657 			ill_refrele(ill);
8658 			return (EINVAL);
8659 		}
8660 	}
8661 	mutex_exit(&ill->ill_lock);
8662 	if (!is_ip) {
8663 		arl->arl_muxid = islink ? li->l_index : 0;
8664 		ill_refrele(ill);
8665 		goto done;
8666 	}
8667 
8668 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8669 		goto done;
8670 
8671 	/*
8672 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8673 	 * the read queue of the module immediately below IP in the ill.
8674 	 * These are used during the capability negotiation below.
8675 	 */
8676 	ill->ill_lmod_rq = NULL;
8677 	ill->ill_lmod_cnt = 0;
8678 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8679 		ill->ill_lmod_rq = RD(dwq);
8680 		for (; dwq != NULL; dwq = dwq->q_next)
8681 			ill->ill_lmod_cnt++;
8682 	}
8683 
8684 	ill->ill_muxid = islink ? li->l_index : 0;
8685 
8686 	/*
8687 	 * Mark the ipsq busy until the capability operations initiated below
8688 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8689 	 * returns, but the capability operation may complete asynchronously
8690 	 * much later.
8691 	 */
8692 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8693 	/*
8694 	 * If there's at least one up ipif on this ill, then we're bound to
8695 	 * the underlying driver via DLPI.  In that case, renegotiate
8696 	 * capabilities to account for any possible change in modules
8697 	 * interposed between IP and the driver.
8698 	 */
8699 	if (ill->ill_ipif_up_count > 0) {
8700 		if (islink)
8701 			ill_capability_probe(ill);
8702 		else
8703 			ill_capability_reset(ill, B_FALSE);
8704 	}
8705 	ipsq_current_finish(ipsq);
8706 done:
8707 	if (entered_ipsq)
8708 		ipsq_exit(ipsq);
8709 
8710 	return (err);
8711 }
8712 
8713 /*
8714  * Search the ioctl command in the ioctl tables and return a pointer
8715  * to the ioctl command information. The ioctl command tables are
8716  * static and fully populated at compile time.
8717  */
8718 ip_ioctl_cmd_t *
8719 ip_sioctl_lookup(int ioc_cmd)
8720 {
8721 	int index;
8722 	ip_ioctl_cmd_t *ipip;
8723 	ip_ioctl_cmd_t *ipip_end;
8724 
8725 	if (ioc_cmd == IPI_DONTCARE)
8726 		return (NULL);
8727 
8728 	/*
8729 	 * Do a 2 step search. First search the indexed table
8730 	 * based on the least significant byte of the ioctl cmd.
8731 	 * If we don't find a match, then search the misc table
8732 	 * serially.
8733 	 */
8734 	index = ioc_cmd & 0xFF;
8735 	if (index < ip_ndx_ioctl_count) {
8736 		ipip = &ip_ndx_ioctl_table[index];
8737 		if (ipip->ipi_cmd == ioc_cmd) {
8738 			/* Found a match in the ndx table */
8739 			return (ipip);
8740 		}
8741 	}
8742 
8743 	/* Search the misc table */
8744 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8745 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8746 		if (ipip->ipi_cmd == ioc_cmd)
8747 			/* Found a match in the misc table */
8748 			return (ipip);
8749 	}
8750 
8751 	return (NULL);
8752 }
8753 
8754 /*
8755  * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8756  */
8757 static boolean_t
8758 getset_ioctl_checks(mblk_t *mp)
8759 {
8760 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8761 	mblk_t		*mp1 = mp->b_cont;
8762 	mod_ioc_prop_t	*pioc;
8763 	uint_t		flags;
8764 	uint_t		pioc_size;
8765 
8766 	/* do sanity checks on various arguments */
8767 	if (mp1 == NULL || iocp->ioc_count == 0 ||
8768 	    iocp->ioc_count == TRANSPARENT) {
8769 		return (B_FALSE);
8770 	}
8771 	if (msgdsize(mp1) < iocp->ioc_count) {
8772 		if (!pullupmsg(mp1, iocp->ioc_count))
8773 			return (B_FALSE);
8774 	}
8775 
8776 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8777 
8778 	/* sanity checks on mpr_valsize */
8779 	pioc_size = sizeof (mod_ioc_prop_t);
8780 	if (pioc->mpr_valsize != 0)
8781 		pioc_size += pioc->mpr_valsize - 1;
8782 
8783 	if (iocp->ioc_count != pioc_size)
8784 		return (B_FALSE);
8785 
8786 	flags = pioc->mpr_flags;
8787 	if (iocp->ioc_cmd == SIOCSETPROP) {
8788 		/*
8789 		 * One can either reset the value to it's default value or
8790 		 * change the current value or append/remove the value from
8791 		 * a multi-valued properties.
8792 		 */
8793 		if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8794 		    flags != MOD_PROP_ACTIVE &&
8795 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8796 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8797 			return (B_FALSE);
8798 	} else {
8799 		ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8800 
8801 		/*
8802 		 * One can retrieve only one kind of property information
8803 		 * at a time.
8804 		 */
8805 		if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8806 		    (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8807 		    (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8808 		    (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8809 			return (B_FALSE);
8810 	}
8811 
8812 	return (B_TRUE);
8813 }
8814 
8815 /*
8816  * process the SIOC{SET|GET}PROP ioctl's
8817  */
8818 /* ARGSUSED */
8819 static void
8820 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8821 {
8822 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8823 	mblk_t		*mp1 = mp->b_cont;
8824 	mod_ioc_prop_t	*pioc;
8825 	mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8826 	ip_stack_t	*ipst;
8827 	icmp_stack_t	*is;
8828 	tcp_stack_t	*tcps;
8829 	sctp_stack_t	*sctps;
8830 	udp_stack_t	*us;
8831 	netstack_t	*stack;
8832 	void		*cbarg;
8833 	cred_t		*cr;
8834 	boolean_t 	set;
8835 	int		err;
8836 
8837 	ASSERT(q->q_next == NULL);
8838 	ASSERT(CONN_Q(q));
8839 
8840 	if (!getset_ioctl_checks(mp)) {
8841 		miocnak(q, mp, 0, EINVAL);
8842 		return;
8843 	}
8844 	ipst = CONNQ_TO_IPST(q);
8845 	stack = ipst->ips_netstack;
8846 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8847 
8848 	switch (pioc->mpr_proto) {
8849 	case MOD_PROTO_IP:
8850 	case MOD_PROTO_IPV4:
8851 	case MOD_PROTO_IPV6:
8852 		ptbl = ipst->ips_propinfo_tbl;
8853 		cbarg = ipst;
8854 		break;
8855 	case MOD_PROTO_RAWIP:
8856 		is = stack->netstack_icmp;
8857 		ptbl = is->is_propinfo_tbl;
8858 		cbarg = is;
8859 		break;
8860 	case MOD_PROTO_TCP:
8861 		tcps = stack->netstack_tcp;
8862 		ptbl = tcps->tcps_propinfo_tbl;
8863 		cbarg = tcps;
8864 		break;
8865 	case MOD_PROTO_UDP:
8866 		us = stack->netstack_udp;
8867 		ptbl = us->us_propinfo_tbl;
8868 		cbarg = us;
8869 		break;
8870 	case MOD_PROTO_SCTP:
8871 		sctps = stack->netstack_sctp;
8872 		ptbl = sctps->sctps_propinfo_tbl;
8873 		cbarg = sctps;
8874 		break;
8875 	default:
8876 		miocnak(q, mp, 0, EINVAL);
8877 		return;
8878 	}
8879 
8880 	/* search for given property in respective protocol propinfo table */
8881 	for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8882 		if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 &&
8883 		    pinfo->mpi_proto == pioc->mpr_proto)
8884 			break;
8885 	}
8886 	if (pinfo->mpi_name == NULL) {
8887 		miocnak(q, mp, 0, ENOENT);
8888 		return;
8889 	}
8890 
8891 	set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8892 	if (set && pinfo->mpi_setf != NULL) {
8893 		cr = msg_getcred(mp, NULL);
8894 		if (cr == NULL)
8895 			cr = iocp->ioc_cr;
8896 		err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname,
8897 		    pioc->mpr_val, pioc->mpr_flags);
8898 	} else if (!set && pinfo->mpi_getf != NULL) {
8899 		err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname,
8900 		    pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8901 	} else {
8902 		err = EPERM;
8903 	}
8904 
8905 	if (err != 0) {
8906 		miocnak(q, mp, 0, err);
8907 	} else {
8908 		if (set)
8909 			miocack(q, mp, 0, 0);
8910 		else    /* For get, we need to return back the data */
8911 			miocack(q, mp, iocp->ioc_count, 0);
8912 	}
8913 }
8914 
8915 /*
8916  * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8917  * as several routing daemons have unfortunately used this 'unpublished'
8918  * but well-known ioctls.
8919  */
8920 /* ARGSUSED */
8921 static void
8922 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8923 {
8924 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8925 	mblk_t		*mp1 = mp->b_cont;
8926 	char		*pname, *pval, *buf;
8927 	uint_t		bufsize, proto;
8928 	mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8929 	ip_stack_t	*ipst;
8930 	int		err = 0;
8931 
8932 	ASSERT(CONN_Q(q));
8933 	ipst = CONNQ_TO_IPST(q);
8934 
8935 	if (iocp->ioc_count == 0 || mp1 == NULL) {
8936 		miocnak(q, mp, 0, EINVAL);
8937 		return;
8938 	}
8939 
8940 	mp1->b_datap->db_lim[-1] = '\0';	/* Force null termination */
8941 	pval = buf = pname = (char *)mp1->b_rptr;
8942 	bufsize = MBLKL(mp1);
8943 
8944 	if (strcmp(pname, "ip_forwarding") == 0) {
8945 		pname = "forwarding";
8946 		proto = MOD_PROTO_IPV4;
8947 	} else if (strcmp(pname, "ip6_forwarding") == 0) {
8948 		pname = "forwarding";
8949 		proto = MOD_PROTO_IPV6;
8950 	} else {
8951 		miocnak(q, mp, 0, EINVAL);
8952 		return;
8953 	}
8954 
8955 	ptbl = ipst->ips_propinfo_tbl;
8956 	for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8957 		if (strcmp(pinfo->mpi_name, pname) == 0 &&
8958 		    pinfo->mpi_proto == proto)
8959 			break;
8960 	}
8961 
8962 	ASSERT(pinfo->mpi_name != NULL);
8963 
8964 	switch (iocp->ioc_cmd) {
8965 	case ND_GET:
8966 		if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize,
8967 		    0)) == 0) {
8968 			miocack(q, mp, iocp->ioc_count, 0);
8969 			return;
8970 		}
8971 		break;
8972 	case ND_SET:
8973 		/*
8974 		 * buffer will have property name and value in the following
8975 		 * format,
8976 		 * <property name>'\0'<property value>'\0', extract them;
8977 		 */
8978 		while (*pval++)
8979 			noop;
8980 
8981 		if (!*pval || pval >= (char *)mp1->b_wptr) {
8982 			err = EINVAL;
8983 		} else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL,
8984 		    pval, 0)) == 0) {
8985 			miocack(q, mp, 0, 0);
8986 			return;
8987 		}
8988 		break;
8989 	default:
8990 		err = EINVAL;
8991 		break;
8992 	}
8993 	miocnak(q, mp, 0, err);
8994 }
8995 
8996 /*
8997  * Wrapper function for resuming deferred ioctl processing
8998  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
8999  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9000  */
9001 /* ARGSUSED */
9002 void
9003 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9004     void *dummy_arg)
9005 {
9006 	ip_sioctl_copyin_setup(q, mp);
9007 }
9008 
9009 /*
9010  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9011  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
9012  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9013  * We establish here the size of the block to be copied in.  mi_copyin
9014  * arranges for this to happen, an processing continues in ip_wput_nondata with
9015  * an M_IOCDATA message.
9016  */
9017 void
9018 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9019 {
9020 	int	copyin_size;
9021 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9022 	ip_ioctl_cmd_t *ipip;
9023 	cred_t *cr;
9024 	ip_stack_t	*ipst;
9025 
9026 	if (CONN_Q(q))
9027 		ipst = CONNQ_TO_IPST(q);
9028 	else
9029 		ipst = ILLQ_TO_IPST(q);
9030 
9031 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9032 	if (ipip == NULL) {
9033 		/*
9034 		 * The ioctl is not one we understand or own.
9035 		 * Pass it along to be processed down stream,
9036 		 * if this is a module instance of IP, else nak
9037 		 * the ioctl.
9038 		 */
9039 		if (q->q_next == NULL) {
9040 			goto nak;
9041 		} else {
9042 			putnext(q, mp);
9043 			return;
9044 		}
9045 	}
9046 
9047 	/*
9048 	 * If this is deferred, then we will do all the checks when we
9049 	 * come back.
9050 	 */
9051 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9052 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9053 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9054 		return;
9055 	}
9056 
9057 	/*
9058 	 * Only allow a very small subset of IP ioctls on this stream if
9059 	 * IP is a module and not a driver. Allowing ioctls to be processed
9060 	 * in this case may cause assert failures or data corruption.
9061 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9062 	 * ioctls allowed on an IP module stream, after which this stream
9063 	 * normally becomes a multiplexor (at which time the stream head
9064 	 * will fail all ioctls).
9065 	 */
9066 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9067 		goto nak;
9068 	}
9069 
9070 	/* Make sure we have ioctl data to process. */
9071 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9072 		goto nak;
9073 
9074 	/*
9075 	 * Prefer dblk credential over ioctl credential; some synthesized
9076 	 * ioctls have kcred set because there's no way to crhold()
9077 	 * a credential in some contexts.  (ioc_cr is not crfree() by
9078 	 * the framework; the caller of ioctl needs to hold the reference
9079 	 * for the duration of the call).
9080 	 */
9081 	cr = msg_getcred(mp, NULL);
9082 	if (cr == NULL)
9083 		cr = iocp->ioc_cr;
9084 
9085 	/* Make sure normal users don't send down privileged ioctls */
9086 	if ((ipip->ipi_flags & IPI_PRIV) &&
9087 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9088 		/* We checked the privilege earlier but log it here */
9089 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9090 		return;
9091 	}
9092 
9093 	/*
9094 	 * The ioctl command tables can only encode fixed length
9095 	 * ioctl data. If the length is variable, the table will
9096 	 * encode the length as zero. Such special cases are handled
9097 	 * below in the switch.
9098 	 */
9099 	if (ipip->ipi_copyin_size != 0) {
9100 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9101 		return;
9102 	}
9103 
9104 	switch (iocp->ioc_cmd) {
9105 	case O_SIOCGIFCONF:
9106 	case SIOCGIFCONF:
9107 		/*
9108 		 * This IOCTL is hilarious.  See comments in
9109 		 * ip_sioctl_get_ifconf for the story.
9110 		 */
9111 		if (iocp->ioc_count == TRANSPARENT)
9112 			copyin_size = SIZEOF_STRUCT(ifconf,
9113 			    iocp->ioc_flag);
9114 		else
9115 			copyin_size = iocp->ioc_count;
9116 		mi_copyin(q, mp, NULL, copyin_size);
9117 		return;
9118 
9119 	case O_SIOCGLIFCONF:
9120 	case SIOCGLIFCONF:
9121 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9122 		mi_copyin(q, mp, NULL, copyin_size);
9123 		return;
9124 
9125 	case SIOCGLIFSRCOF:
9126 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9127 		mi_copyin(q, mp, NULL, copyin_size);
9128 		return;
9129 
9130 	case SIOCGIP6ADDRPOLICY:
9131 		ip_sioctl_ip6addrpolicy(q, mp);
9132 		ip6_asp_table_refrele(ipst);
9133 		return;
9134 
9135 	case SIOCSIP6ADDRPOLICY:
9136 		ip_sioctl_ip6addrpolicy(q, mp);
9137 		return;
9138 
9139 	case SIOCGDSTINFO:
9140 		ip_sioctl_dstinfo(q, mp);
9141 		ip6_asp_table_refrele(ipst);
9142 		return;
9143 
9144 	case ND_SET:
9145 	case ND_GET:
9146 		ip_process_legacy_nddprop(q, mp);
9147 		return;
9148 
9149 	case SIOCSETPROP:
9150 	case SIOCGETPROP:
9151 		ip_sioctl_getsetprop(q, mp);
9152 		return;
9153 
9154 	case I_PLINK:
9155 	case I_PUNLINK:
9156 	case I_LINK:
9157 	case I_UNLINK:
9158 		/*
9159 		 * We treat non-persistent link similarly as the persistent
9160 		 * link case, in terms of plumbing/unplumbing, as well as
9161 		 * dynamic re-plumbing events indicator.  See comments
9162 		 * in ip_sioctl_plink() for more.
9163 		 *
9164 		 * Request can be enqueued in the 'ipsq' while waiting
9165 		 * to become exclusive. So bump up the conn ref.
9166 		 */
9167 		if (CONN_Q(q)) {
9168 			CONN_INC_REF(Q_TO_CONN(q));
9169 			CONN_INC_IOCTLREF(Q_TO_CONN(q))
9170 		}
9171 		ip_sioctl_plink(NULL, q, mp, NULL);
9172 		return;
9173 
9174 	case IP_IOCTL:
9175 		ip_wput_ioctl(q, mp);
9176 		return;
9177 
9178 	case SIOCILB:
9179 		/* The ioctl length varies depending on the ILB command. */
9180 		copyin_size = iocp->ioc_count;
9181 		if (copyin_size < sizeof (ilb_cmd_t))
9182 			goto nak;
9183 		mi_copyin(q, mp, NULL, copyin_size);
9184 		return;
9185 
9186 	default:
9187 		cmn_err(CE_PANIC, "should not happen ");
9188 	}
9189 nak:
9190 	if (mp->b_cont != NULL) {
9191 		freemsg(mp->b_cont);
9192 		mp->b_cont = NULL;
9193 	}
9194 	iocp->ioc_error = EINVAL;
9195 	mp->b_datap->db_type = M_IOCNAK;
9196 	iocp->ioc_count = 0;
9197 	qreply(q, mp);
9198 }
9199 
9200 static void
9201 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9202 {
9203 	struct arpreq *ar;
9204 	struct xarpreq *xar;
9205 	mblk_t	*tmp;
9206 	struct iocblk *iocp;
9207 	int x_arp_ioctl = B_FALSE;
9208 	int *flagsp;
9209 	char *storage = NULL;
9210 
9211 	ASSERT(ill != NULL);
9212 
9213 	iocp = (struct iocblk *)mp->b_rptr;
9214 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9215 
9216 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9217 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9218 	    (iocp->ioc_cmd == SIOCSXARP)) {
9219 		x_arp_ioctl = B_TRUE;
9220 		xar = (struct xarpreq *)tmp->b_rptr;
9221 		flagsp = &xar->xarp_flags;
9222 		storage = xar->xarp_ha.sdl_data;
9223 	} else {
9224 		ar = (struct arpreq *)tmp->b_rptr;
9225 		flagsp = &ar->arp_flags;
9226 		storage = ar->arp_ha.sa_data;
9227 	}
9228 
9229 	/*
9230 	 * We're done if this is not an SIOCG{X}ARP
9231 	 */
9232 	if (x_arp_ioctl) {
9233 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9234 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9235 		    sizeof (xar->xarp_ha.sdl_data)) {
9236 			iocp->ioc_error = EINVAL;
9237 			return;
9238 		}
9239 	}
9240 	*flagsp = ATF_INUSE;
9241 	/*
9242 	 * If /sbin/arp told us we are the authority using the "permanent"
9243 	 * flag, or if this is one of my addresses print "permanent"
9244 	 * in the /sbin/arp output.
9245 	 */
9246 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9247 		*flagsp |= ATF_AUTHORITY;
9248 	if (flags & NCE_F_NONUD)
9249 		*flagsp |= ATF_PERM; /* not subject to aging */
9250 	if (flags & NCE_F_PUBLISH)
9251 		*flagsp |= ATF_PUBL;
9252 	if (hwaddr != NULL) {
9253 		*flagsp |= ATF_COM;
9254 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9255 	}
9256 }
9257 
9258 /*
9259  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9260  * interface) create the next available logical interface for this
9261  * physical interface.
9262  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9263  * ipif with the specified name.
9264  *
9265  * If the address family is not AF_UNSPEC then set the address as well.
9266  *
9267  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9268  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9269  *
9270  * Executed as a writer on the ill.
9271  * So no lock is needed to traverse the ipif chain, or examine the
9272  * phyint flags.
9273  */
9274 /* ARGSUSED */
9275 int
9276 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9277     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9278 {
9279 	mblk_t	*mp1;
9280 	struct lifreq *lifr;
9281 	boolean_t	isv6;
9282 	boolean_t	exists;
9283 	char 	*name;
9284 	char	*endp;
9285 	char	*cp;
9286 	int	namelen;
9287 	ipif_t	*ipif;
9288 	long	id;
9289 	ipsq_t	*ipsq;
9290 	ill_t	*ill;
9291 	sin_t	*sin;
9292 	int	err = 0;
9293 	boolean_t found_sep = B_FALSE;
9294 	conn_t	*connp;
9295 	zoneid_t zoneid;
9296 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9297 
9298 	ASSERT(q->q_next == NULL);
9299 	ip1dbg(("ip_sioctl_addif\n"));
9300 	/* Existence of mp1 has been checked in ip_wput_nondata */
9301 	mp1 = mp->b_cont->b_cont;
9302 	/*
9303 	 * Null terminate the string to protect against buffer
9304 	 * overrun. String was generated by user code and may not
9305 	 * be trusted.
9306 	 */
9307 	lifr = (struct lifreq *)mp1->b_rptr;
9308 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9309 	name = lifr->lifr_name;
9310 	ASSERT(CONN_Q(q));
9311 	connp = Q_TO_CONN(q);
9312 	isv6 = (connp->conn_family == AF_INET6);
9313 	zoneid = connp->conn_zoneid;
9314 	namelen = mi_strlen(name);
9315 	if (namelen == 0)
9316 		return (EINVAL);
9317 
9318 	exists = B_FALSE;
9319 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9320 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9321 		/*
9322 		 * Allow creating lo0 using SIOCLIFADDIF.
9323 		 * can't be any other writer thread. So can pass null below
9324 		 * for the last 4 args to ipif_lookup_name.
9325 		 */
9326 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9327 		    &exists, isv6, zoneid, ipst);
9328 		/* Prevent any further action */
9329 		if (ipif == NULL) {
9330 			return (ENOBUFS);
9331 		} else if (!exists) {
9332 			/* We created the ipif now and as writer */
9333 			ipif_refrele(ipif);
9334 			return (0);
9335 		} else {
9336 			ill = ipif->ipif_ill;
9337 			ill_refhold(ill);
9338 			ipif_refrele(ipif);
9339 		}
9340 	} else {
9341 		/* Look for a colon in the name. */
9342 		endp = &name[namelen];
9343 		for (cp = endp; --cp > name; ) {
9344 			if (*cp == IPIF_SEPARATOR_CHAR) {
9345 				found_sep = B_TRUE;
9346 				/*
9347 				 * Reject any non-decimal aliases for plumbing
9348 				 * of logical interfaces. Aliases with leading
9349 				 * zeroes are also rejected as they introduce
9350 				 * ambiguity in the naming of the interfaces.
9351 				 * Comparing with "0" takes care of all such
9352 				 * cases.
9353 				 */
9354 				if ((strncmp("0", cp+1, 1)) == 0)
9355 					return (EINVAL);
9356 
9357 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9358 				    id <= 0 || *endp != '\0') {
9359 					return (EINVAL);
9360 				}
9361 				*cp = '\0';
9362 				break;
9363 			}
9364 		}
9365 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9366 		if (found_sep)
9367 			*cp = IPIF_SEPARATOR_CHAR;
9368 		if (ill == NULL)
9369 			return (ENXIO);
9370 	}
9371 
9372 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9373 	    B_TRUE);
9374 
9375 	/*
9376 	 * Release the refhold due to the lookup, now that we are excl
9377 	 * or we are just returning
9378 	 */
9379 	ill_refrele(ill);
9380 
9381 	if (ipsq == NULL)
9382 		return (EINPROGRESS);
9383 
9384 	/* We are now exclusive on the IPSQ */
9385 	ASSERT(IAM_WRITER_ILL(ill));
9386 
9387 	if (found_sep) {
9388 		/* Now see if there is an IPIF with this unit number. */
9389 		for (ipif = ill->ill_ipif; ipif != NULL;
9390 		    ipif = ipif->ipif_next) {
9391 			if (ipif->ipif_id == id) {
9392 				err = EEXIST;
9393 				goto done;
9394 			}
9395 		}
9396 	}
9397 
9398 	/*
9399 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9400 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9401 	 * instead.
9402 	 */
9403 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9404 	    B_TRUE, B_TRUE, &err)) == NULL) {
9405 		goto done;
9406 	}
9407 
9408 	/* Return created name with ioctl */
9409 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9410 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9411 	ip1dbg(("created %s\n", lifr->lifr_name));
9412 
9413 	/* Set address */
9414 	sin = (sin_t *)&lifr->lifr_addr;
9415 	if (sin->sin_family != AF_UNSPEC) {
9416 		err = ip_sioctl_addr(ipif, sin, q, mp,
9417 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9418 	}
9419 
9420 done:
9421 	ipsq_exit(ipsq);
9422 	return (err);
9423 }
9424 
9425 /*
9426  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9427  * interface) delete it based on the IP address (on this physical interface).
9428  * Otherwise delete it based on the ipif_id.
9429  * Also, special handling to allow a removeif of lo0.
9430  */
9431 /* ARGSUSED */
9432 int
9433 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9434     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9435 {
9436 	conn_t		*connp;
9437 	ill_t		*ill = ipif->ipif_ill;
9438 	boolean_t	 success;
9439 	ip_stack_t	*ipst;
9440 
9441 	ipst = CONNQ_TO_IPST(q);
9442 
9443 	ASSERT(q->q_next == NULL);
9444 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9445 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9446 	ASSERT(IAM_WRITER_IPIF(ipif));
9447 
9448 	connp = Q_TO_CONN(q);
9449 	/*
9450 	 * Special case for unplumbing lo0 (the loopback physical interface).
9451 	 * If unplumbing lo0, the incoming address structure has been
9452 	 * initialized to all zeros. When unplumbing lo0, all its logical
9453 	 * interfaces must be removed too.
9454 	 *
9455 	 * Note that this interface may be called to remove a specific
9456 	 * loopback logical interface (eg, lo0:1). But in that case
9457 	 * ipif->ipif_id != 0 so that the code path for that case is the
9458 	 * same as any other interface (meaning it skips the code directly
9459 	 * below).
9460 	 */
9461 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9462 		if (sin->sin_family == AF_UNSPEC &&
9463 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9464 			/*
9465 			 * Mark it condemned. No new ref. will be made to ill.
9466 			 */
9467 			mutex_enter(&ill->ill_lock);
9468 			ill->ill_state_flags |= ILL_CONDEMNED;
9469 			for (ipif = ill->ill_ipif; ipif != NULL;
9470 			    ipif = ipif->ipif_next) {
9471 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9472 			}
9473 			mutex_exit(&ill->ill_lock);
9474 
9475 			ipif = ill->ill_ipif;
9476 			/* unplumb the loopback interface */
9477 			ill_delete(ill);
9478 			mutex_enter(&connp->conn_lock);
9479 			mutex_enter(&ill->ill_lock);
9480 
9481 			/* Are any references to this ill active */
9482 			if (ill_is_freeable(ill)) {
9483 				mutex_exit(&ill->ill_lock);
9484 				mutex_exit(&connp->conn_lock);
9485 				ill_delete_tail(ill);
9486 				mi_free(ill);
9487 				return (0);
9488 			}
9489 			success = ipsq_pending_mp_add(connp, ipif,
9490 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9491 			mutex_exit(&connp->conn_lock);
9492 			mutex_exit(&ill->ill_lock);
9493 			if (success)
9494 				return (EINPROGRESS);
9495 			else
9496 				return (EINTR);
9497 		}
9498 	}
9499 
9500 	if (ipif->ipif_id == 0) {
9501 		ipsq_t *ipsq;
9502 
9503 		/* Find based on address */
9504 		if (ipif->ipif_isv6) {
9505 			sin6_t *sin6;
9506 
9507 			if (sin->sin_family != AF_INET6)
9508 				return (EAFNOSUPPORT);
9509 
9510 			sin6 = (sin6_t *)sin;
9511 			/* We are a writer, so we should be able to lookup */
9512 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9513 			    ipst);
9514 		} else {
9515 			if (sin->sin_family != AF_INET)
9516 				return (EAFNOSUPPORT);
9517 
9518 			/* We are a writer, so we should be able to lookup */
9519 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9520 			    ipst);
9521 		}
9522 		if (ipif == NULL) {
9523 			return (EADDRNOTAVAIL);
9524 		}
9525 
9526 		/*
9527 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9528 		 * lifr_name of the physical interface but with an ip address
9529 		 * lifr_addr of a logical interface plumbed over it.
9530 		 * So update ipx_current_ipif now that ipif points to the
9531 		 * correct one.
9532 		 */
9533 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9534 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9535 
9536 		/* This is a writer */
9537 		ipif_refrele(ipif);
9538 	}
9539 
9540 	/*
9541 	 * Can not delete instance zero since it is tied to the ill.
9542 	 */
9543 	if (ipif->ipif_id == 0)
9544 		return (EBUSY);
9545 
9546 	mutex_enter(&ill->ill_lock);
9547 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9548 	mutex_exit(&ill->ill_lock);
9549 
9550 	ipif_free(ipif);
9551 
9552 	mutex_enter(&connp->conn_lock);
9553 	mutex_enter(&ill->ill_lock);
9554 
9555 	/* Are any references to this ipif active */
9556 	if (ipif_is_freeable(ipif)) {
9557 		mutex_exit(&ill->ill_lock);
9558 		mutex_exit(&connp->conn_lock);
9559 		ipif_non_duplicate(ipif);
9560 		(void) ipif_down_tail(ipif);
9561 		ipif_free_tail(ipif); /* frees ipif */
9562 		return (0);
9563 	}
9564 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9565 	    IPIF_FREE);
9566 	mutex_exit(&ill->ill_lock);
9567 	mutex_exit(&connp->conn_lock);
9568 	if (success)
9569 		return (EINPROGRESS);
9570 	else
9571 		return (EINTR);
9572 }
9573 
9574 /*
9575  * Restart the removeif ioctl. The refcnt has gone down to 0.
9576  * The ipif is already condemned. So can't find it thru lookups.
9577  */
9578 /* ARGSUSED */
9579 int
9580 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9581     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9582 {
9583 	ill_t *ill = ipif->ipif_ill;
9584 
9585 	ASSERT(IAM_WRITER_IPIF(ipif));
9586 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9587 
9588 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9589 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9590 
9591 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9592 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9593 		ill_delete_tail(ill);
9594 		mi_free(ill);
9595 		return (0);
9596 	}
9597 
9598 	ipif_non_duplicate(ipif);
9599 	(void) ipif_down_tail(ipif);
9600 	ipif_free_tail(ipif);
9601 
9602 	return (0);
9603 }
9604 
9605 /*
9606  * Set the local interface address using the given prefix and ill_token.
9607  */
9608 /* ARGSUSED */
9609 int
9610 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9611     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9612 {
9613 	int err;
9614 	in6_addr_t v6addr;
9615 	sin6_t *sin6;
9616 	ill_t *ill;
9617 	int i;
9618 
9619 	ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9620 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9621 
9622 	ASSERT(IAM_WRITER_IPIF(ipif));
9623 
9624 	if (!ipif->ipif_isv6)
9625 		return (EINVAL);
9626 
9627 	if (sin->sin_family != AF_INET6)
9628 		return (EAFNOSUPPORT);
9629 
9630 	sin6 = (sin6_t *)sin;
9631 	v6addr = sin6->sin6_addr;
9632 	ill = ipif->ipif_ill;
9633 
9634 	if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9635 	    IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9636 		return (EADDRNOTAVAIL);
9637 
9638 	for (i = 0; i < 4; i++)
9639 		sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9640 
9641 	err = ip_sioctl_addr(ipif, sin, q, mp,
9642 	    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9643 	return (err);
9644 }
9645 
9646 /*
9647  * Restart entry point to restart the address set operation after the
9648  * refcounts have dropped to zero.
9649  */
9650 /* ARGSUSED */
9651 int
9652 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9653     ip_ioctl_cmd_t *ipip, void *ifreq)
9654 {
9655 	ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9656 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9657 	return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9658 }
9659 
9660 /*
9661  * Set the local interface address.
9662  * Allow an address of all zero when the interface is down.
9663  */
9664 /* ARGSUSED */
9665 int
9666 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9667     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9668 {
9669 	int err = 0;
9670 	in6_addr_t v6addr;
9671 	boolean_t need_up = B_FALSE;
9672 	ill_t *ill;
9673 	int i;
9674 
9675 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9676 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9677 
9678 	ASSERT(IAM_WRITER_IPIF(ipif));
9679 
9680 	ill = ipif->ipif_ill;
9681 	if (ipif->ipif_isv6) {
9682 		sin6_t *sin6;
9683 		phyint_t *phyi;
9684 
9685 		if (sin->sin_family != AF_INET6)
9686 			return (EAFNOSUPPORT);
9687 
9688 		sin6 = (sin6_t *)sin;
9689 		v6addr = sin6->sin6_addr;
9690 		phyi = ill->ill_phyint;
9691 
9692 		/*
9693 		 * Enforce that true multicast interfaces have a link-local
9694 		 * address for logical unit 0.
9695 		 *
9696 		 * However for those ipif's for which link-local address was
9697 		 * not created by default, also allow setting :: as the address.
9698 		 * This scenario would arise, when we delete an address on ipif
9699 		 * with logical unit 0, we would want to set :: as the address.
9700 		 */
9701 		if (ipif->ipif_id == 0 &&
9702 		    (ill->ill_flags & ILLF_MULTICAST) &&
9703 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9704 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9705 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9706 
9707 			/*
9708 			 * if default link-local was not created by kernel for
9709 			 * this ill, allow setting :: as the address on ipif:0.
9710 			 */
9711 			if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9712 				if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9713 					return (EADDRNOTAVAIL);
9714 			} else {
9715 				return (EADDRNOTAVAIL);
9716 			}
9717 		}
9718 
9719 		/*
9720 		 * up interfaces shouldn't have the unspecified address
9721 		 * unless they also have the IPIF_NOLOCAL flags set and
9722 		 * have a subnet assigned.
9723 		 */
9724 		if ((ipif->ipif_flags & IPIF_UP) &&
9725 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9726 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9727 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9728 			return (EADDRNOTAVAIL);
9729 		}
9730 
9731 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9732 			return (EADDRNOTAVAIL);
9733 	} else {
9734 		ipaddr_t addr;
9735 
9736 		if (sin->sin_family != AF_INET)
9737 			return (EAFNOSUPPORT);
9738 
9739 		addr = sin->sin_addr.s_addr;
9740 
9741 		/* Allow INADDR_ANY as the local address. */
9742 		if (addr != INADDR_ANY &&
9743 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9744 			return (EADDRNOTAVAIL);
9745 
9746 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9747 	}
9748 	/*
9749 	 * verify that the address being configured is permitted by the
9750 	 * ill_allowed_ips[] for the interface.
9751 	 */
9752 	if (ill->ill_allowed_ips_cnt > 0) {
9753 		for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9754 			if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9755 			    &v6addr))
9756 				break;
9757 		}
9758 		if (i == ill->ill_allowed_ips_cnt) {
9759 			pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9760 			return (EPERM);
9761 		}
9762 	}
9763 	/*
9764 	 * Even if there is no change we redo things just to rerun
9765 	 * ipif_set_default.
9766 	 */
9767 	if (ipif->ipif_flags & IPIF_UP) {
9768 		/*
9769 		 * Setting a new local address, make sure
9770 		 * we have net and subnet bcast ire's for
9771 		 * the old address if we need them.
9772 		 */
9773 		/*
9774 		 * If the interface is already marked up,
9775 		 * we call ipif_down which will take care
9776 		 * of ditching any IREs that have been set
9777 		 * up based on the old interface address.
9778 		 */
9779 		err = ipif_logical_down(ipif, q, mp);
9780 		if (err == EINPROGRESS)
9781 			return (err);
9782 		(void) ipif_down_tail(ipif);
9783 		need_up = 1;
9784 	}
9785 
9786 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9787 	return (err);
9788 }
9789 
9790 int
9791 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9792     boolean_t need_up)
9793 {
9794 	in6_addr_t v6addr;
9795 	in6_addr_t ov6addr;
9796 	ipaddr_t addr;
9797 	sin6_t	*sin6;
9798 	int	sinlen;
9799 	int	err = 0;
9800 	ill_t	*ill = ipif->ipif_ill;
9801 	boolean_t need_dl_down;
9802 	boolean_t need_arp_down;
9803 	struct iocblk *iocp;
9804 
9805 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9806 
9807 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9808 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9809 	ASSERT(IAM_WRITER_IPIF(ipif));
9810 
9811 	/* Must cancel any pending timer before taking the ill_lock */
9812 	if (ipif->ipif_recovery_id != 0)
9813 		(void) untimeout(ipif->ipif_recovery_id);
9814 	ipif->ipif_recovery_id = 0;
9815 
9816 	if (ipif->ipif_isv6) {
9817 		sin6 = (sin6_t *)sin;
9818 		v6addr = sin6->sin6_addr;
9819 		sinlen = sizeof (struct sockaddr_in6);
9820 	} else {
9821 		addr = sin->sin_addr.s_addr;
9822 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9823 		sinlen = sizeof (struct sockaddr_in);
9824 	}
9825 	mutex_enter(&ill->ill_lock);
9826 	ov6addr = ipif->ipif_v6lcl_addr;
9827 	ipif->ipif_v6lcl_addr = v6addr;
9828 	sctp_update_ipif_addr(ipif, ov6addr);
9829 	ipif->ipif_addr_ready = 0;
9830 
9831 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9832 
9833 	/*
9834 	 * If the interface was previously marked as a duplicate, then since
9835 	 * we've now got a "new" address, it should no longer be considered a
9836 	 * duplicate -- even if the "new" address is the same as the old one.
9837 	 * Note that if all ipifs are down, we may have a pending ARP down
9838 	 * event to handle.  This is because we want to recover from duplicates
9839 	 * and thus delay tearing down ARP until the duplicates have been
9840 	 * removed or disabled.
9841 	 */
9842 	need_dl_down = need_arp_down = B_FALSE;
9843 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9844 		need_arp_down = !need_up;
9845 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9846 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9847 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9848 			need_dl_down = B_TRUE;
9849 		}
9850 	}
9851 
9852 	ipif_set_default(ipif);
9853 
9854 	/*
9855 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9856 	 * tag the ill so that future updates to the interface ID don't result
9857 	 * in this address getting automatically reconfigured from under the
9858 	 * administrator.
9859 	 */
9860 	if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9861 		if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9862 		    !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9863 			ill->ill_manual_linklocal = 1;
9864 	}
9865 
9866 	/*
9867 	 * When publishing an interface address change event, we only notify
9868 	 * the event listeners of the new address.  It is assumed that if they
9869 	 * actively care about the addresses assigned that they will have
9870 	 * already discovered the previous address assigned (if there was one.)
9871 	 *
9872 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9873 	 */
9874 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9875 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9876 		    NE_ADDRESS_CHANGE, sin, sinlen);
9877 	}
9878 
9879 	mutex_exit(&ill->ill_lock);
9880 
9881 	if (need_up) {
9882 		/*
9883 		 * Now bring the interface back up.  If this
9884 		 * is the only IPIF for the ILL, ipif_up
9885 		 * will have to re-bind to the device, so
9886 		 * we may get back EINPROGRESS, in which
9887 		 * case, this IOCTL will get completed in
9888 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9889 		 */
9890 		err = ipif_up(ipif, q, mp);
9891 	} else {
9892 		/* Perhaps ilgs should use this ill */
9893 		update_conn_ill(NULL, ill->ill_ipst);
9894 	}
9895 
9896 	if (need_dl_down)
9897 		ill_dl_down(ill);
9898 
9899 	if (need_arp_down && !ill->ill_isv6)
9900 		(void) ipif_arp_down(ipif);
9901 
9902 	/*
9903 	 * The default multicast interface might have changed (for
9904 	 * instance if the IPv6 scope of the address changed)
9905 	 */
9906 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9907 
9908 	return (err);
9909 }
9910 
9911 /*
9912  * Restart entry point to restart the address set operation after the
9913  * refcounts have dropped to zero.
9914  */
9915 /* ARGSUSED */
9916 int
9917 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9918     ip_ioctl_cmd_t *ipip, void *ifreq)
9919 {
9920 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9921 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9922 	ASSERT(IAM_WRITER_IPIF(ipif));
9923 	(void) ipif_down_tail(ipif);
9924 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9925 }
9926 
9927 /* ARGSUSED */
9928 int
9929 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9930     ip_ioctl_cmd_t *ipip, void *if_req)
9931 {
9932 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9933 	struct lifreq *lifr = (struct lifreq *)if_req;
9934 
9935 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9936 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9937 	/*
9938 	 * The net mask and address can't change since we have a
9939 	 * reference to the ipif. So no lock is necessary.
9940 	 */
9941 	if (ipif->ipif_isv6) {
9942 		*sin6 = sin6_null;
9943 		sin6->sin6_family = AF_INET6;
9944 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9945 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9946 		lifr->lifr_addrlen =
9947 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9948 	} else {
9949 		*sin = sin_null;
9950 		sin->sin_family = AF_INET;
9951 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9952 		if (ipip->ipi_cmd_type == LIF_CMD) {
9953 			lifr->lifr_addrlen =
9954 			    ip_mask_to_plen(ipif->ipif_net_mask);
9955 		}
9956 	}
9957 	return (0);
9958 }
9959 
9960 /*
9961  * Set the destination address for a pt-pt interface.
9962  */
9963 /* ARGSUSED */
9964 int
9965 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9966     ip_ioctl_cmd_t *ipip, void *if_req)
9967 {
9968 	int err = 0;
9969 	in6_addr_t v6addr;
9970 	boolean_t need_up = B_FALSE;
9971 
9972 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9973 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9974 	ASSERT(IAM_WRITER_IPIF(ipif));
9975 
9976 	if (ipif->ipif_isv6) {
9977 		sin6_t *sin6;
9978 
9979 		if (sin->sin_family != AF_INET6)
9980 			return (EAFNOSUPPORT);
9981 
9982 		sin6 = (sin6_t *)sin;
9983 		v6addr = sin6->sin6_addr;
9984 
9985 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9986 			return (EADDRNOTAVAIL);
9987 	} else {
9988 		ipaddr_t addr;
9989 
9990 		if (sin->sin_family != AF_INET)
9991 			return (EAFNOSUPPORT);
9992 
9993 		addr = sin->sin_addr.s_addr;
9994 		if (addr != INADDR_ANY &&
9995 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
9996 			return (EADDRNOTAVAIL);
9997 		}
9998 
9999 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10000 	}
10001 
10002 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10003 		return (0);	/* No change */
10004 
10005 	if (ipif->ipif_flags & IPIF_UP) {
10006 		/*
10007 		 * If the interface is already marked up,
10008 		 * we call ipif_down which will take care
10009 		 * of ditching any IREs that have been set
10010 		 * up based on the old pp dst address.
10011 		 */
10012 		err = ipif_logical_down(ipif, q, mp);
10013 		if (err == EINPROGRESS)
10014 			return (err);
10015 		(void) ipif_down_tail(ipif);
10016 		need_up = B_TRUE;
10017 	}
10018 	/*
10019 	 * could return EINPROGRESS. If so ioctl will complete in
10020 	 * ip_rput_dlpi_writer
10021 	 */
10022 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10023 	return (err);
10024 }
10025 
10026 static int
10027 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10028     boolean_t need_up)
10029 {
10030 	in6_addr_t v6addr;
10031 	ill_t	*ill = ipif->ipif_ill;
10032 	int	err = 0;
10033 	boolean_t need_dl_down;
10034 	boolean_t need_arp_down;
10035 
10036 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10037 	    ipif->ipif_id, (void *)ipif));
10038 
10039 	/* Must cancel any pending timer before taking the ill_lock */
10040 	if (ipif->ipif_recovery_id != 0)
10041 		(void) untimeout(ipif->ipif_recovery_id);
10042 	ipif->ipif_recovery_id = 0;
10043 
10044 	if (ipif->ipif_isv6) {
10045 		sin6_t *sin6;
10046 
10047 		sin6 = (sin6_t *)sin;
10048 		v6addr = sin6->sin6_addr;
10049 	} else {
10050 		ipaddr_t addr;
10051 
10052 		addr = sin->sin_addr.s_addr;
10053 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10054 	}
10055 	mutex_enter(&ill->ill_lock);
10056 	/* Set point to point destination address. */
10057 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10058 		/*
10059 		 * Allow this as a means of creating logical
10060 		 * pt-pt interfaces on top of e.g. an Ethernet.
10061 		 * XXX Undocumented HACK for testing.
10062 		 * pt-pt interfaces are created with NUD disabled.
10063 		 */
10064 		ipif->ipif_flags |= IPIF_POINTOPOINT;
10065 		ipif->ipif_flags &= ~IPIF_BROADCAST;
10066 		if (ipif->ipif_isv6)
10067 			ill->ill_flags |= ILLF_NONUD;
10068 	}
10069 
10070 	/*
10071 	 * If the interface was previously marked as a duplicate, then since
10072 	 * we've now got a "new" address, it should no longer be considered a
10073 	 * duplicate -- even if the "new" address is the same as the old one.
10074 	 * Note that if all ipifs are down, we may have a pending ARP down
10075 	 * event to handle.
10076 	 */
10077 	need_dl_down = need_arp_down = B_FALSE;
10078 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
10079 		need_arp_down = !need_up;
10080 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
10081 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10082 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10083 			need_dl_down = B_TRUE;
10084 		}
10085 	}
10086 
10087 	/*
10088 	 * If we've just manually set the IPv6 destination link-local address
10089 	 * (0th ipif), tag the ill so that future updates to the destination
10090 	 * interface ID (as can happen with interfaces over IP tunnels) don't
10091 	 * result in this address getting automatically reconfigured from
10092 	 * under the administrator.
10093 	 */
10094 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10095 		ill->ill_manual_dst_linklocal = 1;
10096 
10097 	/* Set the new address. */
10098 	ipif->ipif_v6pp_dst_addr = v6addr;
10099 	/* Make sure subnet tracks pp_dst */
10100 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10101 	mutex_exit(&ill->ill_lock);
10102 
10103 	if (need_up) {
10104 		/*
10105 		 * Now bring the interface back up.  If this
10106 		 * is the only IPIF for the ILL, ipif_up
10107 		 * will have to re-bind to the device, so
10108 		 * we may get back EINPROGRESS, in which
10109 		 * case, this IOCTL will get completed in
10110 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10111 		 */
10112 		err = ipif_up(ipif, q, mp);
10113 	}
10114 
10115 	if (need_dl_down)
10116 		ill_dl_down(ill);
10117 	if (need_arp_down && !ipif->ipif_isv6)
10118 		(void) ipif_arp_down(ipif);
10119 
10120 	return (err);
10121 }
10122 
10123 /*
10124  * Restart entry point to restart the dstaddress set operation after the
10125  * refcounts have dropped to zero.
10126  */
10127 /* ARGSUSED */
10128 int
10129 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10130     ip_ioctl_cmd_t *ipip, void *ifreq)
10131 {
10132 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10133 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10134 	(void) ipif_down_tail(ipif);
10135 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10136 }
10137 
10138 /* ARGSUSED */
10139 int
10140 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10141     ip_ioctl_cmd_t *ipip, void *if_req)
10142 {
10143 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
10144 
10145 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10146 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10147 	/*
10148 	 * Get point to point destination address. The addresses can't
10149 	 * change since we hold a reference to the ipif.
10150 	 */
10151 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10152 		return (EADDRNOTAVAIL);
10153 
10154 	if (ipif->ipif_isv6) {
10155 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10156 		*sin6 = sin6_null;
10157 		sin6->sin6_family = AF_INET6;
10158 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10159 	} else {
10160 		*sin = sin_null;
10161 		sin->sin_family = AF_INET;
10162 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10163 	}
10164 	return (0);
10165 }
10166 
10167 /*
10168  * Check which flags will change by the given flags being set
10169  * silently ignore flags which userland is not allowed to control.
10170  * (Because these flags may change between SIOCGLIFFLAGS and
10171  * SIOCSLIFFLAGS, and that's outside of userland's control,
10172  * we need to silently ignore them rather than fail.)
10173  */
10174 static void
10175 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10176     uint64_t *offp)
10177 {
10178 	ill_t		*ill = ipif->ipif_ill;
10179 	phyint_t 	*phyi = ill->ill_phyint;
10180 	uint64_t	cantchange_flags, intf_flags;
10181 	uint64_t	turn_on, turn_off;
10182 
10183 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10184 	cantchange_flags = IFF_CANTCHANGE;
10185 	if (IS_IPMP(ill))
10186 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
10187 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10188 	turn_off = intf_flags & turn_on;
10189 	turn_on ^= turn_off;
10190 	*onp = turn_on;
10191 	*offp = turn_off;
10192 }
10193 
10194 /*
10195  * Set interface flags.  Many flags require special handling (e.g.,
10196  * bringing the interface down); see below for details.
10197  *
10198  * NOTE : We really don't enforce that ipif_id zero should be used
10199  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
10200  *	  is because applications generally does SICGLIFFLAGS and
10201  *	  ORs in the new flags (that affects the logical) and does a
10202  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10203  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10204  *	  flags that will be turned on is correct with respect to
10205  *	  ipif_id 0. For backward compatibility reasons, it is not done.
10206  */
10207 /* ARGSUSED */
10208 int
10209 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10210     ip_ioctl_cmd_t *ipip, void *if_req)
10211 {
10212 	uint64_t turn_on;
10213 	uint64_t turn_off;
10214 	int	err = 0;
10215 	phyint_t *phyi;
10216 	ill_t *ill;
10217 	conn_t *connp;
10218 	uint64_t intf_flags;
10219 	boolean_t phyint_flags_modified = B_FALSE;
10220 	uint64_t flags;
10221 	struct ifreq *ifr;
10222 	struct lifreq *lifr;
10223 	boolean_t set_linklocal = B_FALSE;
10224 
10225 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10226 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10227 
10228 	ASSERT(IAM_WRITER_IPIF(ipif));
10229 
10230 	ill = ipif->ipif_ill;
10231 	phyi = ill->ill_phyint;
10232 
10233 	if (ipip->ipi_cmd_type == IF_CMD) {
10234 		ifr = (struct ifreq *)if_req;
10235 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10236 	} else {
10237 		lifr = (struct lifreq *)if_req;
10238 		flags = lifr->lifr_flags;
10239 	}
10240 
10241 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10242 
10243 	/*
10244 	 * Have the flags been set correctly until now?
10245 	 */
10246 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10247 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10248 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10249 	/*
10250 	 * Compare the new flags to the old, and partition
10251 	 * into those coming on and those going off.
10252 	 * For the 16 bit command keep the bits above bit 16 unchanged.
10253 	 */
10254 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
10255 		flags |= intf_flags & ~0xFFFF;
10256 
10257 	/*
10258 	 * Explicitly fail attempts to change flags that are always invalid on
10259 	 * an IPMP meta-interface.
10260 	 */
10261 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10262 		return (EINVAL);
10263 
10264 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10265 	if ((turn_on|turn_off) == 0)
10266 		return (0);	/* No change */
10267 
10268 	/*
10269 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
10270 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10271 	 * allow it to be turned off.
10272 	 */
10273 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10274 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
10275 		return (EINVAL);
10276 
10277 	if ((connp = Q_TO_CONN(q)) == NULL)
10278 		return (EINVAL);
10279 
10280 	/*
10281 	 * Only vrrp control socket is allowed to change IFF_UP and
10282 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
10283 	 */
10284 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10285 		if (!connp->conn_isvrrp)
10286 			return (EINVAL);
10287 	}
10288 
10289 	/*
10290 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10291 	 * VRRP control socket.
10292 	 */
10293 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10294 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10295 			return (EINVAL);
10296 	}
10297 
10298 	if (turn_on & IFF_NOFAILOVER) {
10299 		turn_on |= IFF_DEPRECATED;
10300 		flags |= IFF_DEPRECATED;
10301 	}
10302 
10303 	/*
10304 	 * On underlying interfaces, only allow applications to manage test
10305 	 * addresses -- otherwise, they may get confused when the address
10306 	 * moves as part of being brought up.  Likewise, prevent an
10307 	 * application-managed test address from being converted to a data
10308 	 * address.  To prevent migration of administratively up addresses in
10309 	 * the kernel, we don't allow them to be converted either.
10310 	 */
10311 	if (IS_UNDER_IPMP(ill)) {
10312 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10313 
10314 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10315 			return (EINVAL);
10316 
10317 		if ((turn_off & IFF_NOFAILOVER) &&
10318 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10319 			return (EINVAL);
10320 	}
10321 
10322 	/*
10323 	 * Only allow IFF_TEMPORARY flag to be set on
10324 	 * IPv6 interfaces.
10325 	 */
10326 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10327 		return (EINVAL);
10328 
10329 	/*
10330 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10331 	 */
10332 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10333 		return (EINVAL);
10334 
10335 	/*
10336 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10337 	 * interfaces.  It makes no sense in that context.
10338 	 */
10339 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10340 		return (EINVAL);
10341 
10342 	/*
10343 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10344 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10345 	 * If the link local address isn't set, and can be set, it will get
10346 	 * set later on in this function.
10347 	 */
10348 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10349 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10350 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10351 		if (ipif_cant_setlinklocal(ipif))
10352 			return (EINVAL);
10353 		set_linklocal = B_TRUE;
10354 	}
10355 
10356 	/*
10357 	 * If we modify physical interface flags, we'll potentially need to
10358 	 * send up two routing socket messages for the changes (one for the
10359 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10360 	 */
10361 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10362 		phyint_flags_modified = B_TRUE;
10363 
10364 	/*
10365 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10366 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10367 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10368 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10369 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10370 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10371 	 * will not be honored.
10372 	 */
10373 	if (turn_on & PHYI_STANDBY) {
10374 		/*
10375 		 * No need to grab ill_g_usesrc_lock here; see the
10376 		 * synchronization notes in ip.c.
10377 		 */
10378 		if (ill->ill_usesrc_grp_next != NULL ||
10379 		    intf_flags & PHYI_INACTIVE)
10380 			return (EINVAL);
10381 		if (!(flags & PHYI_FAILED)) {
10382 			flags |= PHYI_INACTIVE;
10383 			turn_on |= PHYI_INACTIVE;
10384 		}
10385 	}
10386 
10387 	if (turn_off & PHYI_STANDBY) {
10388 		flags &= ~PHYI_INACTIVE;
10389 		turn_off |= PHYI_INACTIVE;
10390 	}
10391 
10392 	/*
10393 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10394 	 * would end up on.
10395 	 */
10396 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10397 	    (PHYI_FAILED | PHYI_INACTIVE))
10398 		return (EINVAL);
10399 
10400 	/*
10401 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10402 	 * status of the interface.
10403 	 */
10404 	if ((turn_on | turn_off) & ILLF_ROUTER) {
10405 		err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10406 		if (err != 0)
10407 			return (err);
10408 	}
10409 
10410 	/*
10411 	 * If the interface is not UP and we are not going to
10412 	 * bring it UP, record the flags and return. When the
10413 	 * interface comes UP later, the right actions will be
10414 	 * taken.
10415 	 */
10416 	if (!(ipif->ipif_flags & IPIF_UP) &&
10417 	    !(turn_on & IPIF_UP)) {
10418 		/* Record new flags in their respective places. */
10419 		mutex_enter(&ill->ill_lock);
10420 		mutex_enter(&ill->ill_phyint->phyint_lock);
10421 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10422 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10423 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10424 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10425 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10426 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10427 		mutex_exit(&ill->ill_lock);
10428 		mutex_exit(&ill->ill_phyint->phyint_lock);
10429 
10430 		/*
10431 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10432 		 * same to the kernel: if any of them has been set by
10433 		 * userland, the interface cannot be used for data traffic.
10434 		 */
10435 		if ((turn_on|turn_off) &
10436 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10437 			ASSERT(!IS_IPMP(ill));
10438 			/*
10439 			 * It's possible the ill is part of an "anonymous"
10440 			 * IPMP group rather than a real group.  In that case,
10441 			 * there are no other interfaces in the group and thus
10442 			 * no need to call ipmp_phyint_refresh_active().
10443 			 */
10444 			if (IS_UNDER_IPMP(ill))
10445 				ipmp_phyint_refresh_active(phyi);
10446 		}
10447 
10448 		if (phyint_flags_modified) {
10449 			if (phyi->phyint_illv4 != NULL) {
10450 				ip_rts_ifmsg(phyi->phyint_illv4->
10451 				    ill_ipif, RTSQ_DEFAULT);
10452 			}
10453 			if (phyi->phyint_illv6 != NULL) {
10454 				ip_rts_ifmsg(phyi->phyint_illv6->
10455 				    ill_ipif, RTSQ_DEFAULT);
10456 			}
10457 		}
10458 		/* The default multicast interface might have changed */
10459 		ire_increment_multicast_generation(ill->ill_ipst,
10460 		    ill->ill_isv6);
10461 
10462 		return (0);
10463 	} else if (set_linklocal) {
10464 		mutex_enter(&ill->ill_lock);
10465 		if (set_linklocal)
10466 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10467 		mutex_exit(&ill->ill_lock);
10468 	}
10469 
10470 	/*
10471 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10472 	 * or point-to-point interfaces with an unspecified destination. We do
10473 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10474 	 * have a subnet assigned, which is how in.ndpd currently manages its
10475 	 * onlink prefix list when no addresses are configured with those
10476 	 * prefixes.
10477 	 */
10478 	if (ipif->ipif_isv6 &&
10479 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10480 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10481 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10482 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10483 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10484 		return (EINVAL);
10485 	}
10486 
10487 	/*
10488 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10489 	 * from being brought up.
10490 	 */
10491 	if (!ipif->ipif_isv6 &&
10492 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10493 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10494 		return (EINVAL);
10495 	}
10496 
10497 	/*
10498 	 * If we are going to change one or more of the flags that are
10499 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10500 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10501 	 * IPIF_NOFAILOVER, we will take special action.  This is
10502 	 * done by bring the ipif down, changing the flags and bringing
10503 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10504 	 * back up will trigger the address to be moved.
10505 	 *
10506 	 * If we are going to change IFF_NOACCEPT, we need to bring
10507 	 * all the ipifs down then bring them up again.	 The act of
10508 	 * bringing all the ipifs back up will trigger the local
10509 	 * ires being recreated with "no_accept" set/cleared.
10510 	 *
10511 	 * Note that ILLF_NOACCEPT is always set separately from the
10512 	 * other flags.
10513 	 */
10514 	if ((turn_on|turn_off) &
10515 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10516 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10517 	    IPIF_NOFAILOVER)) {
10518 		/*
10519 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10520 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10521 		 * entries shared between multiple ipifs on the same subnet.
10522 		 */
10523 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10524 		    !(turn_off & IPIF_UP)) {
10525 			if (ipif->ipif_flags & IPIF_UP)
10526 				ill->ill_logical_down = 1;
10527 			turn_on &= ~IPIF_UP;
10528 		}
10529 		err = ipif_down(ipif, q, mp);
10530 		ip1dbg(("ipif_down returns %d err ", err));
10531 		if (err == EINPROGRESS)
10532 			return (err);
10533 		(void) ipif_down_tail(ipif);
10534 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10535 		/*
10536 		 * If we can quiesce the ill, then continue.  If not, then
10537 		 * ip_sioctl_flags_tail() will be called from
10538 		 * ipif_ill_refrele_tail().
10539 		 */
10540 		ill_down_ipifs(ill, B_TRUE);
10541 
10542 		mutex_enter(&connp->conn_lock);
10543 		mutex_enter(&ill->ill_lock);
10544 		if (!ill_is_quiescent(ill)) {
10545 			boolean_t success;
10546 
10547 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10548 			    q, mp, ILL_DOWN);
10549 			mutex_exit(&ill->ill_lock);
10550 			mutex_exit(&connp->conn_lock);
10551 			return (success ? EINPROGRESS : EINTR);
10552 		}
10553 		mutex_exit(&ill->ill_lock);
10554 		mutex_exit(&connp->conn_lock);
10555 	}
10556 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10557 }
10558 
10559 static int
10560 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10561 {
10562 	ill_t	*ill;
10563 	phyint_t *phyi;
10564 	uint64_t turn_on, turn_off;
10565 	boolean_t phyint_flags_modified = B_FALSE;
10566 	int	err = 0;
10567 	boolean_t set_linklocal = B_FALSE;
10568 
10569 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10570 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10571 
10572 	ASSERT(IAM_WRITER_IPIF(ipif));
10573 
10574 	ill = ipif->ipif_ill;
10575 	phyi = ill->ill_phyint;
10576 
10577 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10578 
10579 	/*
10580 	 * IFF_UP is handled separately.
10581 	 */
10582 	turn_on &= ~IFF_UP;
10583 	turn_off &= ~IFF_UP;
10584 
10585 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10586 		phyint_flags_modified = B_TRUE;
10587 
10588 	/*
10589 	 * Now we change the flags. Track current value of
10590 	 * other flags in their respective places.
10591 	 */
10592 	mutex_enter(&ill->ill_lock);
10593 	mutex_enter(&phyi->phyint_lock);
10594 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10595 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10596 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10597 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10598 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10599 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10600 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10601 		set_linklocal = B_TRUE;
10602 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10603 	}
10604 
10605 	mutex_exit(&ill->ill_lock);
10606 	mutex_exit(&phyi->phyint_lock);
10607 
10608 	if (set_linklocal)
10609 		(void) ipif_setlinklocal(ipif);
10610 
10611 	/*
10612 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10613 	 * the kernel: if any of them has been set by userland, the interface
10614 	 * cannot be used for data traffic.
10615 	 */
10616 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10617 		ASSERT(!IS_IPMP(ill));
10618 		/*
10619 		 * It's possible the ill is part of an "anonymous" IPMP group
10620 		 * rather than a real group.  In that case, there are no other
10621 		 * interfaces in the group and thus no need for us to call
10622 		 * ipmp_phyint_refresh_active().
10623 		 */
10624 		if (IS_UNDER_IPMP(ill))
10625 			ipmp_phyint_refresh_active(phyi);
10626 	}
10627 
10628 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10629 		/*
10630 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10631 		 * ipifs that were brought down.
10632 		 *
10633 		 * The routing sockets messages are sent as the result
10634 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10635 		 * as well.
10636 		 */
10637 		err = ill_up_ipifs(ill, q, mp);
10638 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10639 		/*
10640 		 * XXX ipif_up really does not know whether a phyint flags
10641 		 * was modified or not. So, it sends up information on
10642 		 * only one routing sockets message. As we don't bring up
10643 		 * the interface and also set PHYI_ flags simultaneously
10644 		 * it should be okay.
10645 		 */
10646 		err = ipif_up(ipif, q, mp);
10647 	} else {
10648 		/*
10649 		 * Make sure routing socket sees all changes to the flags.
10650 		 * ipif_up_done* handles this when we use ipif_up.
10651 		 */
10652 		if (phyint_flags_modified) {
10653 			if (phyi->phyint_illv4 != NULL) {
10654 				ip_rts_ifmsg(phyi->phyint_illv4->
10655 				    ill_ipif, RTSQ_DEFAULT);
10656 			}
10657 			if (phyi->phyint_illv6 != NULL) {
10658 				ip_rts_ifmsg(phyi->phyint_illv6->
10659 				    ill_ipif, RTSQ_DEFAULT);
10660 			}
10661 		} else {
10662 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10663 		}
10664 		/*
10665 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10666 		 * this in need_up case.
10667 		 */
10668 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10669 	}
10670 
10671 	/* The default multicast interface might have changed */
10672 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10673 	return (err);
10674 }
10675 
10676 /*
10677  * Restart the flags operation now that the refcounts have dropped to zero.
10678  */
10679 /* ARGSUSED */
10680 int
10681 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10682     ip_ioctl_cmd_t *ipip, void *if_req)
10683 {
10684 	uint64_t flags;
10685 	struct ifreq *ifr = if_req;
10686 	struct lifreq *lifr = if_req;
10687 	uint64_t turn_on, turn_off;
10688 
10689 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10690 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10691 
10692 	if (ipip->ipi_cmd_type == IF_CMD) {
10693 		/* cast to uint16_t prevents unwanted sign extension */
10694 		flags = (uint16_t)ifr->ifr_flags;
10695 	} else {
10696 		flags = lifr->lifr_flags;
10697 	}
10698 
10699 	/*
10700 	 * If this function call is a result of the ILLF_NOACCEPT flag
10701 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10702 	 */
10703 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10704 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10705 		(void) ipif_down_tail(ipif);
10706 
10707 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10708 }
10709 
10710 /*
10711  * Can operate on either a module or a driver queue.
10712  */
10713 /* ARGSUSED */
10714 int
10715 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10716     ip_ioctl_cmd_t *ipip, void *if_req)
10717 {
10718 	/*
10719 	 * Has the flags been set correctly till now ?
10720 	 */
10721 	ill_t *ill = ipif->ipif_ill;
10722 	phyint_t *phyi = ill->ill_phyint;
10723 
10724 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10725 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10726 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10727 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10728 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10729 
10730 	/*
10731 	 * Need a lock since some flags can be set even when there are
10732 	 * references to the ipif.
10733 	 */
10734 	mutex_enter(&ill->ill_lock);
10735 	if (ipip->ipi_cmd_type == IF_CMD) {
10736 		struct ifreq *ifr = (struct ifreq *)if_req;
10737 
10738 		/* Get interface flags (low 16 only). */
10739 		ifr->ifr_flags = ((ipif->ipif_flags |
10740 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10741 	} else {
10742 		struct lifreq *lifr = (struct lifreq *)if_req;
10743 
10744 		/* Get interface flags. */
10745 		lifr->lifr_flags = ipif->ipif_flags |
10746 		    ill->ill_flags | phyi->phyint_flags;
10747 	}
10748 	mutex_exit(&ill->ill_lock);
10749 	return (0);
10750 }
10751 
10752 /*
10753  * We allow the MTU to be set on an ILL, but not have it be different
10754  * for different IPIFs since we don't actually send packets on IPIFs.
10755  */
10756 /* ARGSUSED */
10757 int
10758 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10759     ip_ioctl_cmd_t *ipip, void *if_req)
10760 {
10761 	int mtu;
10762 	int ip_min_mtu;
10763 	struct ifreq	*ifr;
10764 	struct lifreq *lifr;
10765 	ill_t	*ill;
10766 
10767 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10768 	    ipif->ipif_id, (void *)ipif));
10769 	if (ipip->ipi_cmd_type == IF_CMD) {
10770 		ifr = (struct ifreq *)if_req;
10771 		mtu = ifr->ifr_metric;
10772 	} else {
10773 		lifr = (struct lifreq *)if_req;
10774 		mtu = lifr->lifr_mtu;
10775 	}
10776 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10777 	if (ipif->ipif_id != 0)
10778 		return (EINVAL);
10779 
10780 	ill = ipif->ipif_ill;
10781 	if (ipif->ipif_isv6)
10782 		ip_min_mtu = IPV6_MIN_MTU;
10783 	else
10784 		ip_min_mtu = IP_MIN_MTU;
10785 
10786 	mutex_enter(&ill->ill_lock);
10787 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10788 		mutex_exit(&ill->ill_lock);
10789 		return (EINVAL);
10790 	}
10791 	/*
10792 	 * The dce and fragmentation code can handle changes to ill_mtu
10793 	 * concurrent with sending/fragmenting packets.
10794 	 */
10795 	ill->ill_mtu = mtu;
10796 	ill->ill_flags |= ILLF_FIXEDMTU;
10797 	mutex_exit(&ill->ill_lock);
10798 
10799 	/*
10800 	 * Make sure all dce_generation checks find out
10801 	 * that ill_mtu has changed.
10802 	 */
10803 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10804 
10805 	/*
10806 	 * Refresh IPMP meta-interface MTU if necessary.
10807 	 */
10808 	if (IS_UNDER_IPMP(ill))
10809 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
10810 
10811 	/* Update the MTU in SCTP's list */
10812 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10813 	return (0);
10814 }
10815 
10816 /* Get interface MTU. */
10817 /* ARGSUSED */
10818 int
10819 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10820 	ip_ioctl_cmd_t *ipip, void *if_req)
10821 {
10822 	struct ifreq	*ifr;
10823 	struct lifreq	*lifr;
10824 
10825 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10826 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10827 
10828 	/*
10829 	 * We allow a get on any logical interface even though the set
10830 	 * can only be done on logical unit 0.
10831 	 */
10832 	if (ipip->ipi_cmd_type == IF_CMD) {
10833 		ifr = (struct ifreq *)if_req;
10834 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10835 	} else {
10836 		lifr = (struct lifreq *)if_req;
10837 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10838 	}
10839 	return (0);
10840 }
10841 
10842 /* Set interface broadcast address. */
10843 /* ARGSUSED2 */
10844 int
10845 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10846 	ip_ioctl_cmd_t *ipip, void *if_req)
10847 {
10848 	ipaddr_t addr;
10849 	ire_t	*ire;
10850 	ill_t		*ill = ipif->ipif_ill;
10851 	ip_stack_t	*ipst = ill->ill_ipst;
10852 
10853 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10854 	    ipif->ipif_id));
10855 
10856 	ASSERT(IAM_WRITER_IPIF(ipif));
10857 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10858 		return (EADDRNOTAVAIL);
10859 
10860 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10861 
10862 	if (sin->sin_family != AF_INET)
10863 		return (EAFNOSUPPORT);
10864 
10865 	addr = sin->sin_addr.s_addr;
10866 
10867 	if (ipif->ipif_flags & IPIF_UP) {
10868 		/*
10869 		 * If we are already up, make sure the new
10870 		 * broadcast address makes sense.  If it does,
10871 		 * there should be an IRE for it already.
10872 		 */
10873 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10874 		    ill, ipif->ipif_zoneid, NULL,
10875 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10876 		if (ire == NULL) {
10877 			return (EINVAL);
10878 		} else {
10879 			ire_refrele(ire);
10880 		}
10881 	}
10882 	/*
10883 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10884 	 * needs to already exist we never need to change the set of
10885 	 * IRE_BROADCASTs when we are UP.
10886 	 */
10887 	if (addr != ipif->ipif_brd_addr)
10888 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10889 
10890 	return (0);
10891 }
10892 
10893 /* Get interface broadcast address. */
10894 /* ARGSUSED */
10895 int
10896 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10897     ip_ioctl_cmd_t *ipip, void *if_req)
10898 {
10899 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10900 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10901 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10902 		return (EADDRNOTAVAIL);
10903 
10904 	/* IPIF_BROADCAST not possible with IPv6 */
10905 	ASSERT(!ipif->ipif_isv6);
10906 	*sin = sin_null;
10907 	sin->sin_family = AF_INET;
10908 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10909 	return (0);
10910 }
10911 
10912 /*
10913  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10914  */
10915 /* ARGSUSED */
10916 int
10917 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10918     ip_ioctl_cmd_t *ipip, void *if_req)
10919 {
10920 	int err = 0;
10921 	in6_addr_t v6mask;
10922 
10923 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10924 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10925 
10926 	ASSERT(IAM_WRITER_IPIF(ipif));
10927 
10928 	if (ipif->ipif_isv6) {
10929 		sin6_t *sin6;
10930 
10931 		if (sin->sin_family != AF_INET6)
10932 			return (EAFNOSUPPORT);
10933 
10934 		sin6 = (sin6_t *)sin;
10935 		v6mask = sin6->sin6_addr;
10936 	} else {
10937 		ipaddr_t mask;
10938 
10939 		if (sin->sin_family != AF_INET)
10940 			return (EAFNOSUPPORT);
10941 
10942 		mask = sin->sin_addr.s_addr;
10943 		if (!ip_contiguous_mask(ntohl(mask)))
10944 			return (ENOTSUP);
10945 		V4MASK_TO_V6(mask, v6mask);
10946 	}
10947 
10948 	/*
10949 	 * No big deal if the interface isn't already up, or the mask
10950 	 * isn't really changing, or this is pt-pt.
10951 	 */
10952 	if (!(ipif->ipif_flags & IPIF_UP) ||
10953 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10954 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10955 		ipif->ipif_v6net_mask = v6mask;
10956 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10957 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10958 			    ipif->ipif_v6net_mask,
10959 			    ipif->ipif_v6subnet);
10960 		}
10961 		return (0);
10962 	}
10963 	/*
10964 	 * Make sure we have valid net and subnet broadcast ire's
10965 	 * for the old netmask, if needed by other logical interfaces.
10966 	 */
10967 	err = ipif_logical_down(ipif, q, mp);
10968 	if (err == EINPROGRESS)
10969 		return (err);
10970 	(void) ipif_down_tail(ipif);
10971 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10972 	return (err);
10973 }
10974 
10975 static int
10976 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10977 {
10978 	in6_addr_t v6mask;
10979 	int err = 0;
10980 
10981 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10982 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10983 
10984 	if (ipif->ipif_isv6) {
10985 		sin6_t *sin6;
10986 
10987 		sin6 = (sin6_t *)sin;
10988 		v6mask = sin6->sin6_addr;
10989 	} else {
10990 		ipaddr_t mask;
10991 
10992 		mask = sin->sin_addr.s_addr;
10993 		V4MASK_TO_V6(mask, v6mask);
10994 	}
10995 
10996 	ipif->ipif_v6net_mask = v6mask;
10997 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10998 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
10999 		    ipif->ipif_v6subnet);
11000 	}
11001 	err = ipif_up(ipif, q, mp);
11002 
11003 	if (err == 0 || err == EINPROGRESS) {
11004 		/*
11005 		 * The interface must be DL_BOUND if this packet has to
11006 		 * go out on the wire. Since we only go through a logical
11007 		 * down and are bound with the driver during an internal
11008 		 * down/up that is satisfied.
11009 		 */
11010 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11011 			/* Potentially broadcast an address mask reply. */
11012 			ipif_mask_reply(ipif);
11013 		}
11014 	}
11015 	return (err);
11016 }
11017 
11018 /* ARGSUSED */
11019 int
11020 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11021     ip_ioctl_cmd_t *ipip, void *if_req)
11022 {
11023 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11024 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11025 	(void) ipif_down_tail(ipif);
11026 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11027 }
11028 
11029 /* Get interface net mask. */
11030 /* ARGSUSED */
11031 int
11032 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11033     ip_ioctl_cmd_t *ipip, void *if_req)
11034 {
11035 	struct lifreq *lifr = (struct lifreq *)if_req;
11036 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11037 
11038 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11039 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11040 
11041 	/*
11042 	 * net mask can't change since we have a reference to the ipif.
11043 	 */
11044 	if (ipif->ipif_isv6) {
11045 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11046 		*sin6 = sin6_null;
11047 		sin6->sin6_family = AF_INET6;
11048 		sin6->sin6_addr = ipif->ipif_v6net_mask;
11049 		lifr->lifr_addrlen =
11050 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11051 	} else {
11052 		*sin = sin_null;
11053 		sin->sin_family = AF_INET;
11054 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
11055 		if (ipip->ipi_cmd_type == LIF_CMD) {
11056 			lifr->lifr_addrlen =
11057 			    ip_mask_to_plen(ipif->ipif_net_mask);
11058 		}
11059 	}
11060 	return (0);
11061 }
11062 
11063 /* ARGSUSED */
11064 int
11065 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11066     ip_ioctl_cmd_t *ipip, void *if_req)
11067 {
11068 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11069 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11070 
11071 	/*
11072 	 * Since no applications should ever be setting metrics on underlying
11073 	 * interfaces, we explicitly fail to smoke 'em out.
11074 	 */
11075 	if (IS_UNDER_IPMP(ipif->ipif_ill))
11076 		return (EINVAL);
11077 
11078 	/*
11079 	 * Set interface metric.  We don't use this for
11080 	 * anything but we keep track of it in case it is
11081 	 * important to routing applications or such.
11082 	 */
11083 	if (ipip->ipi_cmd_type == IF_CMD) {
11084 		struct ifreq    *ifr;
11085 
11086 		ifr = (struct ifreq *)if_req;
11087 		ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11088 	} else {
11089 		struct lifreq   *lifr;
11090 
11091 		lifr = (struct lifreq *)if_req;
11092 		ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11093 	}
11094 	return (0);
11095 }
11096 
11097 /* ARGSUSED */
11098 int
11099 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11100     ip_ioctl_cmd_t *ipip, void *if_req)
11101 {
11102 	/* Get interface metric. */
11103 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11104 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11105 
11106 	if (ipip->ipi_cmd_type == IF_CMD) {
11107 		struct ifreq    *ifr;
11108 
11109 		ifr = (struct ifreq *)if_req;
11110 		ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11111 	} else {
11112 		struct lifreq   *lifr;
11113 
11114 		lifr = (struct lifreq *)if_req;
11115 		lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11116 	}
11117 
11118 	return (0);
11119 }
11120 
11121 /* ARGSUSED */
11122 int
11123 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11124     ip_ioctl_cmd_t *ipip, void *if_req)
11125 {
11126 	int	arp_muxid;
11127 
11128 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11129 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11130 	/*
11131 	 * Set the muxid returned from I_PLINK.
11132 	 */
11133 	if (ipip->ipi_cmd_type == IF_CMD) {
11134 		struct ifreq *ifr = (struct ifreq *)if_req;
11135 
11136 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11137 		arp_muxid = ifr->ifr_arp_muxid;
11138 	} else {
11139 		struct lifreq *lifr = (struct lifreq *)if_req;
11140 
11141 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11142 		arp_muxid = lifr->lifr_arp_muxid;
11143 	}
11144 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
11145 	return (0);
11146 }
11147 
11148 /* ARGSUSED */
11149 int
11150 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11151     ip_ioctl_cmd_t *ipip, void *if_req)
11152 {
11153 	int	arp_muxid = 0;
11154 
11155 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11156 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11157 	/*
11158 	 * Get the muxid saved in ill for I_PUNLINK.
11159 	 */
11160 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
11161 	if (ipip->ipi_cmd_type == IF_CMD) {
11162 		struct ifreq *ifr = (struct ifreq *)if_req;
11163 
11164 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11165 		ifr->ifr_arp_muxid = arp_muxid;
11166 	} else {
11167 		struct lifreq *lifr = (struct lifreq *)if_req;
11168 
11169 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11170 		lifr->lifr_arp_muxid = arp_muxid;
11171 	}
11172 	return (0);
11173 }
11174 
11175 /*
11176  * Set the subnet prefix. Does not modify the broadcast address.
11177  */
11178 /* ARGSUSED */
11179 int
11180 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11181     ip_ioctl_cmd_t *ipip, void *if_req)
11182 {
11183 	int err = 0;
11184 	in6_addr_t v6addr;
11185 	in6_addr_t v6mask;
11186 	boolean_t need_up = B_FALSE;
11187 	int addrlen;
11188 
11189 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11190 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11191 
11192 	ASSERT(IAM_WRITER_IPIF(ipif));
11193 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11194 
11195 	if (ipif->ipif_isv6) {
11196 		sin6_t *sin6;
11197 
11198 		if (sin->sin_family != AF_INET6)
11199 			return (EAFNOSUPPORT);
11200 
11201 		sin6 = (sin6_t *)sin;
11202 		v6addr = sin6->sin6_addr;
11203 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11204 			return (EADDRNOTAVAIL);
11205 	} else {
11206 		ipaddr_t addr;
11207 
11208 		if (sin->sin_family != AF_INET)
11209 			return (EAFNOSUPPORT);
11210 
11211 		addr = sin->sin_addr.s_addr;
11212 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11213 			return (EADDRNOTAVAIL);
11214 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11215 		/* Add 96 bits */
11216 		addrlen += IPV6_ABITS - IP_ABITS;
11217 	}
11218 
11219 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11220 		return (EINVAL);
11221 
11222 	/* Check if bits in the address is set past the mask */
11223 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11224 		return (EINVAL);
11225 
11226 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11227 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11228 		return (0);	/* No change */
11229 
11230 	if (ipif->ipif_flags & IPIF_UP) {
11231 		/*
11232 		 * If the interface is already marked up,
11233 		 * we call ipif_down which will take care
11234 		 * of ditching any IREs that have been set
11235 		 * up based on the old interface address.
11236 		 */
11237 		err = ipif_logical_down(ipif, q, mp);
11238 		if (err == EINPROGRESS)
11239 			return (err);
11240 		(void) ipif_down_tail(ipif);
11241 		need_up = B_TRUE;
11242 	}
11243 
11244 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11245 	return (err);
11246 }
11247 
11248 static int
11249 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11250     queue_t *q, mblk_t *mp, boolean_t need_up)
11251 {
11252 	ill_t	*ill = ipif->ipif_ill;
11253 	int	err = 0;
11254 
11255 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11256 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11257 
11258 	/* Set the new address. */
11259 	mutex_enter(&ill->ill_lock);
11260 	ipif->ipif_v6net_mask = v6mask;
11261 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11262 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11263 		    ipif->ipif_v6subnet);
11264 	}
11265 	mutex_exit(&ill->ill_lock);
11266 
11267 	if (need_up) {
11268 		/*
11269 		 * Now bring the interface back up.  If this
11270 		 * is the only IPIF for the ILL, ipif_up
11271 		 * will have to re-bind to the device, so
11272 		 * we may get back EINPROGRESS, in which
11273 		 * case, this IOCTL will get completed in
11274 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11275 		 */
11276 		err = ipif_up(ipif, q, mp);
11277 		if (err == EINPROGRESS)
11278 			return (err);
11279 	}
11280 	return (err);
11281 }
11282 
11283 /* ARGSUSED */
11284 int
11285 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11286     ip_ioctl_cmd_t *ipip, void *if_req)
11287 {
11288 	int	addrlen;
11289 	in6_addr_t v6addr;
11290 	in6_addr_t v6mask;
11291 	struct lifreq *lifr = (struct lifreq *)if_req;
11292 
11293 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11294 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11295 	(void) ipif_down_tail(ipif);
11296 
11297 	addrlen = lifr->lifr_addrlen;
11298 	if (ipif->ipif_isv6) {
11299 		sin6_t *sin6;
11300 
11301 		sin6 = (sin6_t *)sin;
11302 		v6addr = sin6->sin6_addr;
11303 	} else {
11304 		ipaddr_t addr;
11305 
11306 		addr = sin->sin_addr.s_addr;
11307 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11308 		addrlen += IPV6_ABITS - IP_ABITS;
11309 	}
11310 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11311 
11312 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11313 }
11314 
11315 /* ARGSUSED */
11316 int
11317 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11318     ip_ioctl_cmd_t *ipip, void *if_req)
11319 {
11320 	struct lifreq *lifr = (struct lifreq *)if_req;
11321 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11322 
11323 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11324 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11325 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11326 
11327 	if (ipif->ipif_isv6) {
11328 		*sin6 = sin6_null;
11329 		sin6->sin6_family = AF_INET6;
11330 		sin6->sin6_addr = ipif->ipif_v6subnet;
11331 		lifr->lifr_addrlen =
11332 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11333 	} else {
11334 		*sin = sin_null;
11335 		sin->sin_family = AF_INET;
11336 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11337 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11338 	}
11339 	return (0);
11340 }
11341 
11342 /*
11343  * Set the IPv6 address token.
11344  */
11345 /* ARGSUSED */
11346 int
11347 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11348     ip_ioctl_cmd_t *ipi, void *if_req)
11349 {
11350 	ill_t *ill = ipif->ipif_ill;
11351 	int err;
11352 	in6_addr_t v6addr;
11353 	in6_addr_t v6mask;
11354 	boolean_t need_up = B_FALSE;
11355 	int i;
11356 	sin6_t *sin6 = (sin6_t *)sin;
11357 	struct lifreq *lifr = (struct lifreq *)if_req;
11358 	int addrlen;
11359 
11360 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11361 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11362 	ASSERT(IAM_WRITER_IPIF(ipif));
11363 
11364 	addrlen = lifr->lifr_addrlen;
11365 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11366 	if (ipif->ipif_id != 0)
11367 		return (EINVAL);
11368 
11369 	if (!ipif->ipif_isv6)
11370 		return (EINVAL);
11371 
11372 	if (addrlen > IPV6_ABITS)
11373 		return (EINVAL);
11374 
11375 	v6addr = sin6->sin6_addr;
11376 
11377 	/*
11378 	 * The length of the token is the length from the end.  To get
11379 	 * the proper mask for this, compute the mask of the bits not
11380 	 * in the token; ie. the prefix, and then xor to get the mask.
11381 	 */
11382 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11383 		return (EINVAL);
11384 	for (i = 0; i < 4; i++) {
11385 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11386 	}
11387 
11388 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11389 	    ill->ill_token_length == addrlen)
11390 		return (0);	/* No change */
11391 
11392 	if (ipif->ipif_flags & IPIF_UP) {
11393 		err = ipif_logical_down(ipif, q, mp);
11394 		if (err == EINPROGRESS)
11395 			return (err);
11396 		(void) ipif_down_tail(ipif);
11397 		need_up = B_TRUE;
11398 	}
11399 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11400 	return (err);
11401 }
11402 
11403 static int
11404 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11405     mblk_t *mp, boolean_t need_up)
11406 {
11407 	in6_addr_t v6addr;
11408 	in6_addr_t v6mask;
11409 	ill_t	*ill = ipif->ipif_ill;
11410 	int	i;
11411 	int	err = 0;
11412 
11413 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11414 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11415 	v6addr = sin6->sin6_addr;
11416 	/*
11417 	 * The length of the token is the length from the end.  To get
11418 	 * the proper mask for this, compute the mask of the bits not
11419 	 * in the token; ie. the prefix, and then xor to get the mask.
11420 	 */
11421 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11422 	for (i = 0; i < 4; i++)
11423 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11424 
11425 	mutex_enter(&ill->ill_lock);
11426 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11427 	ill->ill_token_length = addrlen;
11428 	ill->ill_manual_token = 1;
11429 
11430 	/* Reconfigure the link-local address based on this new token */
11431 	ipif_setlinklocal(ill->ill_ipif);
11432 
11433 	mutex_exit(&ill->ill_lock);
11434 
11435 	if (need_up) {
11436 		/*
11437 		 * Now bring the interface back up.  If this
11438 		 * is the only IPIF for the ILL, ipif_up
11439 		 * will have to re-bind to the device, so
11440 		 * we may get back EINPROGRESS, in which
11441 		 * case, this IOCTL will get completed in
11442 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11443 		 */
11444 		err = ipif_up(ipif, q, mp);
11445 		if (err == EINPROGRESS)
11446 			return (err);
11447 	}
11448 	return (err);
11449 }
11450 
11451 /* ARGSUSED */
11452 int
11453 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11454     ip_ioctl_cmd_t *ipi, void *if_req)
11455 {
11456 	ill_t *ill;
11457 	sin6_t *sin6 = (sin6_t *)sin;
11458 	struct lifreq *lifr = (struct lifreq *)if_req;
11459 
11460 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11461 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11462 	if (ipif->ipif_id != 0)
11463 		return (EINVAL);
11464 
11465 	ill = ipif->ipif_ill;
11466 	if (!ill->ill_isv6)
11467 		return (ENXIO);
11468 
11469 	*sin6 = sin6_null;
11470 	sin6->sin6_family = AF_INET6;
11471 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11472 	sin6->sin6_addr = ill->ill_token;
11473 	lifr->lifr_addrlen = ill->ill_token_length;
11474 	return (0);
11475 }
11476 
11477 /*
11478  * Set (hardware) link specific information that might override
11479  * what was acquired through the DL_INFO_ACK.
11480  */
11481 /* ARGSUSED */
11482 int
11483 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11484     ip_ioctl_cmd_t *ipi, void *if_req)
11485 {
11486 	ill_t		*ill = ipif->ipif_ill;
11487 	int		ip_min_mtu;
11488 	struct lifreq	*lifr = (struct lifreq *)if_req;
11489 	lif_ifinfo_req_t *lir;
11490 
11491 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11492 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11493 	lir = &lifr->lifr_ifinfo;
11494 	ASSERT(IAM_WRITER_IPIF(ipif));
11495 
11496 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11497 	if (ipif->ipif_id != 0)
11498 		return (EINVAL);
11499 
11500 	/* Set interface MTU. */
11501 	if (ipif->ipif_isv6)
11502 		ip_min_mtu = IPV6_MIN_MTU;
11503 	else
11504 		ip_min_mtu = IP_MIN_MTU;
11505 
11506 	/*
11507 	 * Verify values before we set anything. Allow zero to
11508 	 * mean unspecified.
11509 	 *
11510 	 * XXX We should be able to set the user-defined lir_mtu to some value
11511 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11512 	 * ill_max_frag value tells us the max MTU that can be handled by the
11513 	 * datalink, whereas the ill_current_frag is dynamically computed for
11514 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11515 	 * since there is currently no way of distinguishing between
11516 	 * administratively fixed link mtu values (e.g., those set via
11517 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11518 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11519 	 * upper-bound.
11520 	 */
11521 	if (lir->lir_maxmtu != 0 &&
11522 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11523 	    lir->lir_maxmtu < ip_min_mtu))
11524 		return (EINVAL);
11525 	if (lir->lir_reachtime != 0 &&
11526 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11527 		return (EINVAL);
11528 	if (lir->lir_reachretrans != 0 &&
11529 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11530 		return (EINVAL);
11531 
11532 	mutex_enter(&ill->ill_lock);
11533 	/*
11534 	 * The dce and fragmentation code can handle changes to ill_mtu
11535 	 * concurrent with sending/fragmenting packets.
11536 	 */
11537 	if (lir->lir_maxmtu != 0)
11538 		ill->ill_user_mtu = lir->lir_maxmtu;
11539 
11540 	if (lir->lir_reachtime != 0)
11541 		ill->ill_reachable_time = lir->lir_reachtime;
11542 
11543 	if (lir->lir_reachretrans != 0)
11544 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11545 
11546 	ill->ill_max_hops = lir->lir_maxhops;
11547 	ill->ill_max_buf = ND_MAX_Q;
11548 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11549 		/*
11550 		 * ill_mtu is the actual interface MTU, obtained as the min
11551 		 * of user-configured mtu and the value announced by the
11552 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11553 		 * we have already made the choice of requiring
11554 		 * ill_user_mtu < ill_current_frag by the time we get here,
11555 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11556 		 * here.
11557 		 */
11558 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11559 	}
11560 	mutex_exit(&ill->ill_lock);
11561 
11562 	/*
11563 	 * Make sure all dce_generation checks find out
11564 	 * that ill_mtu has changed.
11565 	 */
11566 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11567 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11568 
11569 	/*
11570 	 * Refresh IPMP meta-interface MTU if necessary.
11571 	 */
11572 	if (IS_UNDER_IPMP(ill))
11573 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11574 
11575 	return (0);
11576 }
11577 
11578 /* ARGSUSED */
11579 int
11580 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11581     ip_ioctl_cmd_t *ipi, void *if_req)
11582 {
11583 	struct lif_ifinfo_req *lir;
11584 	ill_t *ill = ipif->ipif_ill;
11585 
11586 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11587 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11588 	if (ipif->ipif_id != 0)
11589 		return (EINVAL);
11590 
11591 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11592 	lir->lir_maxhops = ill->ill_max_hops;
11593 	lir->lir_reachtime = ill->ill_reachable_time;
11594 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11595 	lir->lir_maxmtu = ill->ill_mtu;
11596 
11597 	return (0);
11598 }
11599 
11600 /*
11601  * Return best guess as to the subnet mask for the specified address.
11602  * Based on the subnet masks for all the configured interfaces.
11603  *
11604  * We end up returning a zero mask in the case of default, multicast or
11605  * experimental.
11606  */
11607 static ipaddr_t
11608 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11609 {
11610 	ipaddr_t net_mask;
11611 	ill_t	*ill;
11612 	ipif_t	*ipif;
11613 	ill_walk_context_t ctx;
11614 	ipif_t	*fallback_ipif = NULL;
11615 
11616 	net_mask = ip_net_mask(addr);
11617 	if (net_mask == 0) {
11618 		*ipifp = NULL;
11619 		return (0);
11620 	}
11621 
11622 	/* Let's check to see if this is maybe a local subnet route. */
11623 	/* this function only applies to IPv4 interfaces */
11624 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11625 	ill = ILL_START_WALK_V4(&ctx, ipst);
11626 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11627 		mutex_enter(&ill->ill_lock);
11628 		for (ipif = ill->ill_ipif; ipif != NULL;
11629 		    ipif = ipif->ipif_next) {
11630 			if (IPIF_IS_CONDEMNED(ipif))
11631 				continue;
11632 			if (!(ipif->ipif_flags & IPIF_UP))
11633 				continue;
11634 			if ((ipif->ipif_subnet & net_mask) ==
11635 			    (addr & net_mask)) {
11636 				/*
11637 				 * Don't trust pt-pt interfaces if there are
11638 				 * other interfaces.
11639 				 */
11640 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11641 					if (fallback_ipif == NULL) {
11642 						ipif_refhold_locked(ipif);
11643 						fallback_ipif = ipif;
11644 					}
11645 					continue;
11646 				}
11647 
11648 				/*
11649 				 * Fine. Just assume the same net mask as the
11650 				 * directly attached subnet interface is using.
11651 				 */
11652 				ipif_refhold_locked(ipif);
11653 				mutex_exit(&ill->ill_lock);
11654 				rw_exit(&ipst->ips_ill_g_lock);
11655 				if (fallback_ipif != NULL)
11656 					ipif_refrele(fallback_ipif);
11657 				*ipifp = ipif;
11658 				return (ipif->ipif_net_mask);
11659 			}
11660 		}
11661 		mutex_exit(&ill->ill_lock);
11662 	}
11663 	rw_exit(&ipst->ips_ill_g_lock);
11664 
11665 	*ipifp = fallback_ipif;
11666 	return ((fallback_ipif != NULL) ?
11667 	    fallback_ipif->ipif_net_mask : net_mask);
11668 }
11669 
11670 /*
11671  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11672  */
11673 static void
11674 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11675 {
11676 	IOCP	iocp;
11677 	ipft_t	*ipft;
11678 	ipllc_t	*ipllc;
11679 	mblk_t	*mp1;
11680 	cred_t	*cr;
11681 	int	error = 0;
11682 	conn_t	*connp;
11683 
11684 	ip1dbg(("ip_wput_ioctl"));
11685 	iocp = (IOCP)mp->b_rptr;
11686 	mp1 = mp->b_cont;
11687 	if (mp1 == NULL) {
11688 		iocp->ioc_error = EINVAL;
11689 		mp->b_datap->db_type = M_IOCNAK;
11690 		iocp->ioc_count = 0;
11691 		qreply(q, mp);
11692 		return;
11693 	}
11694 
11695 	/*
11696 	 * These IOCTLs provide various control capabilities to
11697 	 * upstream agents such as ULPs and processes.	There
11698 	 * are currently two such IOCTLs implemented.  They
11699 	 * are used by TCP to provide update information for
11700 	 * existing IREs and to forcibly delete an IRE for a
11701 	 * host that is not responding, thereby forcing an
11702 	 * attempt at a new route.
11703 	 */
11704 	iocp->ioc_error = EINVAL;
11705 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11706 		goto done;
11707 
11708 	ipllc = (ipllc_t *)mp1->b_rptr;
11709 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11710 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11711 			break;
11712 	}
11713 	/*
11714 	 * prefer credential from mblk over ioctl;
11715 	 * see ip_sioctl_copyin_setup
11716 	 */
11717 	cr = msg_getcred(mp, NULL);
11718 	if (cr == NULL)
11719 		cr = iocp->ioc_cr;
11720 
11721 	/*
11722 	 * Refhold the conn in case the request gets queued up in some lookup
11723 	 */
11724 	ASSERT(CONN_Q(q));
11725 	connp = Q_TO_CONN(q);
11726 	CONN_INC_REF(connp);
11727 	CONN_INC_IOCTLREF(connp);
11728 	if (ipft->ipft_pfi &&
11729 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11730 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11731 		error = (*ipft->ipft_pfi)(q,
11732 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11733 	}
11734 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11735 		/*
11736 		 * CONN_OPER_PENDING_DONE happens in the function called
11737 		 * through ipft_pfi above.
11738 		 */
11739 		return;
11740 	}
11741 
11742 	CONN_DEC_IOCTLREF(connp);
11743 	CONN_OPER_PENDING_DONE(connp);
11744 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11745 		freemsg(mp);
11746 		return;
11747 	}
11748 	iocp->ioc_error = error;
11749 
11750 done:
11751 	mp->b_datap->db_type = M_IOCACK;
11752 	if (iocp->ioc_error)
11753 		iocp->ioc_count = 0;
11754 	qreply(q, mp);
11755 }
11756 
11757 /*
11758  * Assign a unique id for the ipif. This is used by sctp_addr.c
11759  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11760  */
11761 static void
11762 ipif_assign_seqid(ipif_t *ipif)
11763 {
11764 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11765 
11766 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11767 }
11768 
11769 /*
11770  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11771  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11772  * that the clone is complete -- including the seqid -- and the expectation is
11773  * that the caller will either free or overwrite `sipif' before it's unlocked.
11774  */
11775 static void
11776 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11777 {
11778 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11779 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11780 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11781 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11782 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11783 
11784 	dipif->ipif_flags = sipif->ipif_flags;
11785 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11786 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11787 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11788 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11789 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11790 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11791 
11792 	/*
11793 	 * As per the comment atop the function, we assume that these sipif
11794 	 * fields will be changed before sipif is unlocked.
11795 	 */
11796 	dipif->ipif_seqid = sipif->ipif_seqid;
11797 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11798 }
11799 
11800 /*
11801  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11802  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11803  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11804  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11805  * down (i.e., no DAD), of the same type, and unlocked.
11806  */
11807 static void
11808 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11809 {
11810 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11811 	ipxop_t *ipx = ipsq->ipsq_xop;
11812 
11813 	ASSERT(sipif != dipif);
11814 	ASSERT(sipif != virgipif);
11815 
11816 	/*
11817 	 * Grab all of the locks that protect the ipif in a defined order.
11818 	 */
11819 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11820 
11821 	ipif_clone(sipif, dipif);
11822 	if (virgipif != NULL) {
11823 		ipif_clone(virgipif, sipif);
11824 		mi_free(virgipif);
11825 	}
11826 
11827 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11828 
11829 	/*
11830 	 * Transfer ownership of the current xop, if necessary.
11831 	 */
11832 	if (ipx->ipx_current_ipif == sipif) {
11833 		ASSERT(ipx->ipx_pending_ipif == NULL);
11834 		mutex_enter(&ipx->ipx_lock);
11835 		ipx->ipx_current_ipif = dipif;
11836 		mutex_exit(&ipx->ipx_lock);
11837 	}
11838 
11839 	if (virgipif == NULL)
11840 		mi_free(sipif);
11841 }
11842 
11843 /*
11844  * checks if:
11845  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11846  *	- logical interface is within the allowed range
11847  */
11848 static int
11849 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11850 {
11851 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11852 		return (ENAMETOOLONG);
11853 
11854 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11855 		return (ERANGE);
11856 	return (0);
11857 }
11858 
11859 /*
11860  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11861  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11862  * be inserted into the first space available in the list. The value of
11863  * ipif_id will then be set to the appropriate value for its position.
11864  */
11865 static int
11866 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11867 {
11868 	ill_t *ill;
11869 	ipif_t *tipif;
11870 	ipif_t **tipifp;
11871 	int id, err;
11872 	ip_stack_t	*ipst;
11873 
11874 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11875 	    IAM_WRITER_IPIF(ipif));
11876 
11877 	ill = ipif->ipif_ill;
11878 	ASSERT(ill != NULL);
11879 	ipst = ill->ill_ipst;
11880 
11881 	/*
11882 	 * In the case of lo0:0 we already hold the ill_g_lock.
11883 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11884 	 * ipif_insert.
11885 	 */
11886 	if (acquire_g_lock)
11887 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11888 	mutex_enter(&ill->ill_lock);
11889 	id = ipif->ipif_id;
11890 	tipifp = &(ill->ill_ipif);
11891 	if (id == -1) {	/* need to find a real id */
11892 		id = 0;
11893 		while ((tipif = *tipifp) != NULL) {
11894 			ASSERT(tipif->ipif_id >= id);
11895 			if (tipif->ipif_id != id)
11896 				break; /* non-consecutive id */
11897 			id++;
11898 			tipifp = &(tipif->ipif_next);
11899 		}
11900 		if ((err = is_lifname_valid(ill, id)) != 0) {
11901 			mutex_exit(&ill->ill_lock);
11902 			if (acquire_g_lock)
11903 				rw_exit(&ipst->ips_ill_g_lock);
11904 			return (err);
11905 		}
11906 		ipif->ipif_id = id; /* assign new id */
11907 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11908 		/* we have a real id; insert ipif in the right place */
11909 		while ((tipif = *tipifp) != NULL) {
11910 			ASSERT(tipif->ipif_id != id);
11911 			if (tipif->ipif_id > id)
11912 				break; /* found correct location */
11913 			tipifp = &(tipif->ipif_next);
11914 		}
11915 	} else {
11916 		mutex_exit(&ill->ill_lock);
11917 		if (acquire_g_lock)
11918 			rw_exit(&ipst->ips_ill_g_lock);
11919 		return (err);
11920 	}
11921 
11922 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11923 
11924 	ipif->ipif_next = tipif;
11925 	*tipifp = ipif;
11926 	mutex_exit(&ill->ill_lock);
11927 	if (acquire_g_lock)
11928 		rw_exit(&ipst->ips_ill_g_lock);
11929 
11930 	return (0);
11931 }
11932 
11933 static void
11934 ipif_remove(ipif_t *ipif)
11935 {
11936 	ipif_t	**ipifp;
11937 	ill_t	*ill = ipif->ipif_ill;
11938 
11939 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11940 
11941 	mutex_enter(&ill->ill_lock);
11942 	ipifp = &ill->ill_ipif;
11943 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11944 		if (*ipifp == ipif) {
11945 			*ipifp = ipif->ipif_next;
11946 			break;
11947 		}
11948 	}
11949 	mutex_exit(&ill->ill_lock);
11950 }
11951 
11952 /*
11953  * Allocate and initialize a new interface control structure.  (Always
11954  * called as writer.)
11955  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11956  * is not part of the global linked list of ills. ipif_seqid is unique
11957  * in the system and to preserve the uniqueness, it is assigned only
11958  * when ill becomes part of the global list. At that point ill will
11959  * have a name. If it doesn't get assigned here, it will get assigned
11960  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11961  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11962  * the interface flags or any other information from the DL_INFO_ACK for
11963  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11964  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11965  * second DL_INFO_ACK comes in from the driver.
11966  */
11967 static ipif_t *
11968 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11969     boolean_t insert, int *errorp)
11970 {
11971 	int err;
11972 	ipif_t	*ipif;
11973 	ip_stack_t *ipst = ill->ill_ipst;
11974 
11975 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11976 	    ill->ill_name, id, (void *)ill));
11977 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11978 
11979 	if (errorp != NULL)
11980 		*errorp = 0;
11981 
11982 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11983 		if (errorp != NULL)
11984 			*errorp = ENOMEM;
11985 		return (NULL);
11986 	}
11987 	*ipif = ipif_zero;	/* start clean */
11988 
11989 	ipif->ipif_ill = ill;
11990 	ipif->ipif_id = id;	/* could be -1 */
11991 	/*
11992 	 * Inherit the zoneid from the ill; for the shared stack instance
11993 	 * this is always the global zone
11994 	 */
11995 	ipif->ipif_zoneid = ill->ill_zoneid;
11996 
11997 	ipif->ipif_refcnt = 0;
11998 
11999 	if (insert) {
12000 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12001 			mi_free(ipif);
12002 			if (errorp != NULL)
12003 				*errorp = err;
12004 			return (NULL);
12005 		}
12006 		/* -1 id should have been replaced by real id */
12007 		id = ipif->ipif_id;
12008 		ASSERT(id >= 0);
12009 	}
12010 
12011 	if (ill->ill_name[0] != '\0')
12012 		ipif_assign_seqid(ipif);
12013 
12014 	/*
12015 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12016 	 * (which must not exist yet because the zeroth ipif is created once
12017 	 * per ill).  However, do not not link it to the ipmp_grp_t until
12018 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12019 	 */
12020 	if (id == 0 && IS_IPMP(ill)) {
12021 		if (ipmp_illgrp_create(ill) == NULL) {
12022 			if (insert) {
12023 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12024 				ipif_remove(ipif);
12025 				rw_exit(&ipst->ips_ill_g_lock);
12026 			}
12027 			mi_free(ipif);
12028 			if (errorp != NULL)
12029 				*errorp = ENOMEM;
12030 			return (NULL);
12031 		}
12032 	}
12033 
12034 	/*
12035 	 * We grab ill_lock to protect the flag changes.  The ipif is still
12036 	 * not up and can't be looked up until the ioctl completes and the
12037 	 * IPIF_CHANGING flag is cleared.
12038 	 */
12039 	mutex_enter(&ill->ill_lock);
12040 
12041 	ipif->ipif_ire_type = ire_type;
12042 
12043 	if (ipif->ipif_isv6) {
12044 		ill->ill_flags |= ILLF_IPV6;
12045 	} else {
12046 		ipaddr_t inaddr_any = INADDR_ANY;
12047 
12048 		ill->ill_flags |= ILLF_IPV4;
12049 
12050 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12051 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12052 		    &ipif->ipif_v6lcl_addr);
12053 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12054 		    &ipif->ipif_v6subnet);
12055 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12056 		    &ipif->ipif_v6net_mask);
12057 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12058 		    &ipif->ipif_v6brd_addr);
12059 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12060 		    &ipif->ipif_v6pp_dst_addr);
12061 	}
12062 
12063 	/*
12064 	 * Don't set the interface flags etc. now, will do it in
12065 	 * ip_ll_subnet_defaults.
12066 	 */
12067 	if (!initialize)
12068 		goto out;
12069 
12070 	/*
12071 	 * NOTE: The IPMP meta-interface is special-cased because it starts
12072 	 * with no underlying interfaces (and thus an unknown broadcast
12073 	 * address length), but all interfaces that can be placed into an IPMP
12074 	 * group are required to be broadcast-capable.
12075 	 */
12076 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12077 		/*
12078 		 * Later detect lack of DLPI driver multicast capability by
12079 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12080 		 */
12081 		ill->ill_flags |= ILLF_MULTICAST;
12082 		if (!ipif->ipif_isv6)
12083 			ipif->ipif_flags |= IPIF_BROADCAST;
12084 	} else {
12085 		if (ill->ill_net_type != IRE_LOOPBACK) {
12086 			if (ipif->ipif_isv6)
12087 				/*
12088 				 * Note: xresolv interfaces will eventually need
12089 				 * NOARP set here as well, but that will require
12090 				 * those external resolvers to have some
12091 				 * knowledge of that flag and act appropriately.
12092 				 * Not to be changed at present.
12093 				 */
12094 				ill->ill_flags |= ILLF_NONUD;
12095 			else
12096 				ill->ill_flags |= ILLF_NOARP;
12097 		}
12098 		if (ill->ill_phys_addr_length == 0) {
12099 			if (IS_VNI(ill)) {
12100 				ipif->ipif_flags |= IPIF_NOXMIT;
12101 			} else {
12102 				/* pt-pt supports multicast. */
12103 				ill->ill_flags |= ILLF_MULTICAST;
12104 				if (ill->ill_net_type != IRE_LOOPBACK)
12105 					ipif->ipif_flags |= IPIF_POINTOPOINT;
12106 			}
12107 		}
12108 	}
12109 out:
12110 	mutex_exit(&ill->ill_lock);
12111 	return (ipif);
12112 }
12113 
12114 /*
12115  * Remove the neighbor cache entries associated with this logical
12116  * interface.
12117  */
12118 int
12119 ipif_arp_down(ipif_t *ipif)
12120 {
12121 	ill_t	*ill = ipif->ipif_ill;
12122 	int	err = 0;
12123 
12124 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12125 	ASSERT(IAM_WRITER_IPIF(ipif));
12126 
12127 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12128 	    ill_t *, ill, ipif_t *, ipif);
12129 	ipif_nce_down(ipif);
12130 
12131 	/*
12132 	 * If this is the last ipif that is going down and there are no
12133 	 * duplicate addresses we may yet attempt to re-probe, then we need to
12134 	 * clean up ARP completely.
12135 	 */
12136 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12137 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12138 		/*
12139 		 * If this was the last ipif on an IPMP interface, purge any
12140 		 * static ARP entries associated with it.
12141 		 */
12142 		if (IS_IPMP(ill))
12143 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
12144 
12145 		/* UNBIND, DETACH */
12146 		err = arp_ll_down(ill);
12147 	}
12148 
12149 	return (err);
12150 }
12151 
12152 /*
12153  * Get the resolver set up for a new IP address.  (Always called as writer.)
12154  * Called both for IPv4 and IPv6 interfaces, though it only does some
12155  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12156  *
12157  * The enumerated value res_act tunes the behavior:
12158  * 	* Res_act_initial: set up all the resolver structures for a new
12159  *	  IP address.
12160  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
12161  *	  ARP message in defense of the address.
12162  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
12163  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
12164  *
12165  * Returns zero on success, or an errno upon failure.
12166  */
12167 int
12168 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12169 {
12170 	ill_t		*ill = ipif->ipif_ill;
12171 	int		err;
12172 	boolean_t	was_dup;
12173 
12174 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12175 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12176 	ASSERT(IAM_WRITER_IPIF(ipif));
12177 
12178 	was_dup = B_FALSE;
12179 	if (res_act == Res_act_initial) {
12180 		ipif->ipif_addr_ready = 0;
12181 		/*
12182 		 * We're bringing an interface up here.  There's no way that we
12183 		 * should need to shut down ARP now.
12184 		 */
12185 		mutex_enter(&ill->ill_lock);
12186 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
12187 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
12188 			ill->ill_ipif_dup_count--;
12189 			was_dup = B_TRUE;
12190 		}
12191 		mutex_exit(&ill->ill_lock);
12192 	}
12193 	if (ipif->ipif_recovery_id != 0)
12194 		(void) untimeout(ipif->ipif_recovery_id);
12195 	ipif->ipif_recovery_id = 0;
12196 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
12197 		ipif->ipif_addr_ready = 1;
12198 		return (0);
12199 	}
12200 	/* NDP will set the ipif_addr_ready flag when it's ready */
12201 	if (ill->ill_isv6)
12202 		return (0);
12203 
12204 	err = ipif_arp_up(ipif, res_act, was_dup);
12205 	return (err);
12206 }
12207 
12208 /*
12209  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12210  * when a link has just gone back up.
12211  */
12212 static void
12213 ipif_nce_start_dad(ipif_t *ipif)
12214 {
12215 	ncec_t *ncec;
12216 	ill_t *ill = ipif->ipif_ill;
12217 	boolean_t isv6 = ill->ill_isv6;
12218 
12219 	if (isv6) {
12220 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12221 		    &ipif->ipif_v6lcl_addr);
12222 	} else {
12223 		ipaddr_t v4addr;
12224 
12225 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
12226 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12227 		    ipif->ipif_lcl_addr == INADDR_ANY) {
12228 			/*
12229 			 * If we can't contact ARP for some reason,
12230 			 * that's not really a problem.  Just send
12231 			 * out the routing socket notification that
12232 			 * DAD completion would have done, and continue.
12233 			 */
12234 			ipif_mask_reply(ipif);
12235 			ipif_up_notify(ipif);
12236 			ipif->ipif_addr_ready = 1;
12237 			return;
12238 		}
12239 
12240 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12241 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12242 	}
12243 
12244 	if (ncec == NULL) {
12245 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12246 		    (void *)ipif));
12247 		return;
12248 	}
12249 	if (!nce_restart_dad(ncec)) {
12250 		/*
12251 		 * If we can't restart DAD for some reason, that's not really a
12252 		 * problem.  Just send out the routing socket notification that
12253 		 * DAD completion would have done, and continue.
12254 		 */
12255 		ipif_up_notify(ipif);
12256 		ipif->ipif_addr_ready = 1;
12257 	}
12258 	ncec_refrele(ncec);
12259 }
12260 
12261 /*
12262  * Restart duplicate address detection on all interfaces on the given ill.
12263  *
12264  * This is called when an interface transitions from down to up
12265  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12266  *
12267  * Note that since the underlying physical link has transitioned, we must cause
12268  * at least one routing socket message to be sent here, either via DAD
12269  * completion or just by default on the first ipif.  (If we don't do this, then
12270  * in.mpathd will see long delays when doing link-based failure recovery.)
12271  */
12272 void
12273 ill_restart_dad(ill_t *ill, boolean_t went_up)
12274 {
12275 	ipif_t *ipif;
12276 
12277 	if (ill == NULL)
12278 		return;
12279 
12280 	/*
12281 	 * If layer two doesn't support duplicate address detection, then just
12282 	 * send the routing socket message now and be done with it.
12283 	 */
12284 	if (!ill->ill_isv6 && arp_no_defense) {
12285 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12286 		return;
12287 	}
12288 
12289 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12290 		if (went_up) {
12291 
12292 			if (ipif->ipif_flags & IPIF_UP) {
12293 				ipif_nce_start_dad(ipif);
12294 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12295 				/*
12296 				 * kick off the bring-up process now.
12297 				 */
12298 				ipif_do_recovery(ipif);
12299 			} else {
12300 				/*
12301 				 * Unfortunately, the first ipif is "special"
12302 				 * and represents the underlying ill in the
12303 				 * routing socket messages.  Thus, when this
12304 				 * one ipif is down, we must still notify so
12305 				 * that the user knows the IFF_RUNNING status
12306 				 * change.  (If the first ipif is up, then
12307 				 * we'll handle eventual routing socket
12308 				 * notification via DAD completion.)
12309 				 */
12310 				if (ipif == ill->ill_ipif) {
12311 					ip_rts_ifmsg(ill->ill_ipif,
12312 					    RTSQ_DEFAULT);
12313 				}
12314 			}
12315 		} else {
12316 			/*
12317 			 * After link down, we'll need to send a new routing
12318 			 * message when the link comes back, so clear
12319 			 * ipif_addr_ready.
12320 			 */
12321 			ipif->ipif_addr_ready = 0;
12322 		}
12323 	}
12324 
12325 	/*
12326 	 * If we've torn down links, then notify the user right away.
12327 	 */
12328 	if (!went_up)
12329 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12330 }
12331 
12332 static void
12333 ipsq_delete(ipsq_t *ipsq)
12334 {
12335 	ipxop_t *ipx = ipsq->ipsq_xop;
12336 
12337 	ipsq->ipsq_ipst = NULL;
12338 	ASSERT(ipsq->ipsq_phyint == NULL);
12339 	ASSERT(ipsq->ipsq_xop != NULL);
12340 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12341 	ASSERT(ipx->ipx_pending_mp == NULL);
12342 	kmem_free(ipsq, sizeof (ipsq_t));
12343 }
12344 
12345 static int
12346 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12347 {
12348 	int err = 0;
12349 	ipif_t *ipif;
12350 
12351 	if (ill == NULL)
12352 		return (0);
12353 
12354 	ASSERT(IAM_WRITER_ILL(ill));
12355 	ill->ill_up_ipifs = B_TRUE;
12356 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12357 		if (ipif->ipif_was_up) {
12358 			if (!(ipif->ipif_flags & IPIF_UP))
12359 				err = ipif_up(ipif, q, mp);
12360 			ipif->ipif_was_up = B_FALSE;
12361 			if (err != 0) {
12362 				ASSERT(err == EINPROGRESS);
12363 				return (err);
12364 			}
12365 		}
12366 	}
12367 	ill->ill_up_ipifs = B_FALSE;
12368 	return (0);
12369 }
12370 
12371 /*
12372  * This function is called to bring up all the ipifs that were up before
12373  * bringing the ill down via ill_down_ipifs().
12374  */
12375 int
12376 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12377 {
12378 	int err;
12379 
12380 	ASSERT(IAM_WRITER_ILL(ill));
12381 
12382 	if (ill->ill_replumbing) {
12383 		ill->ill_replumbing = 0;
12384 		/*
12385 		 * Send down REPLUMB_DONE notification followed by the
12386 		 * BIND_REQ on the arp stream.
12387 		 */
12388 		if (!ill->ill_isv6)
12389 			arp_send_replumb_conf(ill);
12390 	}
12391 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12392 	if (err != 0)
12393 		return (err);
12394 
12395 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12396 }
12397 
12398 /*
12399  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12400  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12401  */
12402 static void
12403 ill_down_ipifs(ill_t *ill, boolean_t logical)
12404 {
12405 	ipif_t *ipif;
12406 
12407 	ASSERT(IAM_WRITER_ILL(ill));
12408 
12409 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12410 		/*
12411 		 * We go through the ipif_down logic even if the ipif
12412 		 * is already down, since routes can be added based
12413 		 * on down ipifs. Going through ipif_down once again
12414 		 * will delete any IREs created based on these routes.
12415 		 */
12416 		if (ipif->ipif_flags & IPIF_UP)
12417 			ipif->ipif_was_up = B_TRUE;
12418 
12419 		if (logical) {
12420 			(void) ipif_logical_down(ipif, NULL, NULL);
12421 			ipif_non_duplicate(ipif);
12422 			(void) ipif_down_tail(ipif);
12423 		} else {
12424 			(void) ipif_down(ipif, NULL, NULL);
12425 		}
12426 	}
12427 }
12428 
12429 /*
12430  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12431  * a look again at valid source addresses.
12432  * This should be called each time after the set of source addresses has been
12433  * changed.
12434  */
12435 void
12436 ip_update_source_selection(ip_stack_t *ipst)
12437 {
12438 	/* We skip past SRC_GENERATION_VERIFY */
12439 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12440 	    SRC_GENERATION_VERIFY)
12441 		atomic_add_32(&ipst->ips_src_generation, 1);
12442 }
12443 
12444 /*
12445  * Finish the group join started in ip_sioctl_groupname().
12446  */
12447 /* ARGSUSED */
12448 static void
12449 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12450 {
12451 	ill_t		*ill = q->q_ptr;
12452 	phyint_t	*phyi = ill->ill_phyint;
12453 	ipmp_grp_t	*grp = phyi->phyint_grp;
12454 	ip_stack_t	*ipst = ill->ill_ipst;
12455 
12456 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12457 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12458 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12459 
12460 	if (phyi->phyint_illv4 != NULL) {
12461 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12462 		VERIFY(grp->gr_pendv4-- > 0);
12463 		rw_exit(&ipst->ips_ipmp_lock);
12464 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12465 	}
12466 	if (phyi->phyint_illv6 != NULL) {
12467 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12468 		VERIFY(grp->gr_pendv6-- > 0);
12469 		rw_exit(&ipst->ips_ipmp_lock);
12470 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12471 	}
12472 	freemsg(mp);
12473 }
12474 
12475 /*
12476  * Process an SIOCSLIFGROUPNAME request.
12477  */
12478 /* ARGSUSED */
12479 int
12480 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12481     ip_ioctl_cmd_t *ipip, void *ifreq)
12482 {
12483 	struct lifreq	*lifr = ifreq;
12484 	ill_t		*ill = ipif->ipif_ill;
12485 	ip_stack_t	*ipst = ill->ill_ipst;
12486 	phyint_t	*phyi = ill->ill_phyint;
12487 	ipmp_grp_t	*grp = phyi->phyint_grp;
12488 	mblk_t		*ipsq_mp;
12489 	int		err = 0;
12490 
12491 	/*
12492 	 * Note that phyint_grp can only change here, where we're exclusive.
12493 	 */
12494 	ASSERT(IAM_WRITER_ILL(ill));
12495 
12496 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12497 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12498 		return (EINVAL);
12499 
12500 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12501 
12502 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12503 
12504 	/*
12505 	 * If the name hasn't changed, there's nothing to do.
12506 	 */
12507 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12508 		goto unlock;
12509 
12510 	/*
12511 	 * Handle requests to rename an IPMP meta-interface.
12512 	 *
12513 	 * Note that creation of the IPMP meta-interface is handled in
12514 	 * userland through the standard plumbing sequence.  As part of the
12515 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12516 	 * the name of the interface (see ipif_set_values_tail()).
12517 	 */
12518 	if (IS_IPMP(ill)) {
12519 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12520 		goto unlock;
12521 	}
12522 
12523 	/*
12524 	 * Handle requests to add or remove an IP interface from a group.
12525 	 */
12526 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12527 		/*
12528 		 * Moves are handled by first removing the interface from
12529 		 * its existing group, and then adding it to another group.
12530 		 * So, fail if it's already in a group.
12531 		 */
12532 		if (IS_UNDER_IPMP(ill)) {
12533 			err = EALREADY;
12534 			goto unlock;
12535 		}
12536 
12537 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12538 		if (grp == NULL) {
12539 			err = ENOENT;
12540 			goto unlock;
12541 		}
12542 
12543 		/*
12544 		 * Check if the phyint and its ills are suitable for
12545 		 * inclusion into the group.
12546 		 */
12547 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12548 			goto unlock;
12549 
12550 		/*
12551 		 * Checks pass; join the group, and enqueue the remaining
12552 		 * illgrp joins for when we've become part of the group xop
12553 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12554 		 * requires an mblk_t to scribble on, and since `mp' will be
12555 		 * freed as part of completing the ioctl, allocate another.
12556 		 */
12557 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12558 			err = ENOMEM;
12559 			goto unlock;
12560 		}
12561 
12562 		/*
12563 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12564 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12565 		 * before ip_join_illgrps() is called back.  See the comments
12566 		 * in ip_sioctl_plink_ipmp() for more.
12567 		 */
12568 		if (phyi->phyint_illv4 != NULL)
12569 			grp->gr_pendv4++;
12570 		if (phyi->phyint_illv6 != NULL)
12571 			grp->gr_pendv6++;
12572 
12573 		rw_exit(&ipst->ips_ipmp_lock);
12574 
12575 		ipmp_phyint_join_grp(phyi, grp);
12576 		ill_refhold(ill);
12577 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12578 		    SWITCH_OP, B_FALSE);
12579 		return (0);
12580 	} else {
12581 		/*
12582 		 * Request to remove the interface from a group.  If the
12583 		 * interface is not in a group, this trivially succeeds.
12584 		 */
12585 		rw_exit(&ipst->ips_ipmp_lock);
12586 		if (IS_UNDER_IPMP(ill))
12587 			ipmp_phyint_leave_grp(phyi);
12588 		return (0);
12589 	}
12590 unlock:
12591 	rw_exit(&ipst->ips_ipmp_lock);
12592 	return (err);
12593 }
12594 
12595 /*
12596  * Process an SIOCGLIFBINDING request.
12597  */
12598 /* ARGSUSED */
12599 int
12600 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12601     ip_ioctl_cmd_t *ipip, void *ifreq)
12602 {
12603 	ill_t		*ill;
12604 	struct lifreq	*lifr = ifreq;
12605 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12606 
12607 	if (!IS_IPMP(ipif->ipif_ill))
12608 		return (EINVAL);
12609 
12610 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12611 	if ((ill = ipif->ipif_bound_ill) == NULL)
12612 		lifr->lifr_binding[0] = '\0';
12613 	else
12614 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12615 	rw_exit(&ipst->ips_ipmp_lock);
12616 	return (0);
12617 }
12618 
12619 /*
12620  * Process an SIOCGLIFGROUPNAME request.
12621  */
12622 /* ARGSUSED */
12623 int
12624 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12625     ip_ioctl_cmd_t *ipip, void *ifreq)
12626 {
12627 	ipmp_grp_t	*grp;
12628 	struct lifreq	*lifr = ifreq;
12629 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12630 
12631 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12632 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12633 		lifr->lifr_groupname[0] = '\0';
12634 	else
12635 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12636 	rw_exit(&ipst->ips_ipmp_lock);
12637 	return (0);
12638 }
12639 
12640 /*
12641  * Process an SIOCGLIFGROUPINFO request.
12642  */
12643 /* ARGSUSED */
12644 int
12645 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12646     ip_ioctl_cmd_t *ipip, void *dummy)
12647 {
12648 	ipmp_grp_t	*grp;
12649 	lifgroupinfo_t	*lifgr;
12650 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12651 
12652 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12653 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12654 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12655 
12656 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12657 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12658 		rw_exit(&ipst->ips_ipmp_lock);
12659 		return (ENOENT);
12660 	}
12661 	ipmp_grp_info(grp, lifgr);
12662 	rw_exit(&ipst->ips_ipmp_lock);
12663 	return (0);
12664 }
12665 
12666 static void
12667 ill_dl_down(ill_t *ill)
12668 {
12669 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12670 
12671 	/*
12672 	 * The ill is down; unbind but stay attached since we're still
12673 	 * associated with a PPA. If we have negotiated DLPI capabilites
12674 	 * with the data link service provider (IDS_OK) then reset them.
12675 	 * The interval between unbinding and rebinding is potentially
12676 	 * unbounded hence we cannot assume things will be the same.
12677 	 * The DLPI capabilities will be probed again when the data link
12678 	 * is brought up.
12679 	 */
12680 	mblk_t	*mp = ill->ill_unbind_mp;
12681 
12682 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12683 
12684 	if (!ill->ill_replumbing) {
12685 		/* Free all ilms for this ill */
12686 		update_conn_ill(ill, ill->ill_ipst);
12687 	} else {
12688 		ill_leave_multicast(ill);
12689 	}
12690 
12691 	ill->ill_unbind_mp = NULL;
12692 	if (mp != NULL) {
12693 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12694 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12695 		    ill->ill_name));
12696 		mutex_enter(&ill->ill_lock);
12697 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12698 		mutex_exit(&ill->ill_lock);
12699 		/*
12700 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12701 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12702 		 * ill_capability_dld_disable disable rightaway. If this is not
12703 		 * an unplumb operation then the disable happens on receipt of
12704 		 * the capab ack via ip_rput_dlpi_writer ->
12705 		 * ill_capability_ack_thr. In both cases the order of
12706 		 * the operations seen by DLD is capability disable followed
12707 		 * by DL_UNBIND. Also the DLD capability disable needs a
12708 		 * cv_wait'able context.
12709 		 */
12710 		if (ill->ill_state_flags & ILL_CONDEMNED)
12711 			ill_capability_dld_disable(ill);
12712 		ill_capability_reset(ill, B_FALSE);
12713 		ill_dlpi_send(ill, mp);
12714 	}
12715 	mutex_enter(&ill->ill_lock);
12716 	ill->ill_dl_up = 0;
12717 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12718 	mutex_exit(&ill->ill_lock);
12719 }
12720 
12721 void
12722 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12723 {
12724 	union DL_primitives *dlp;
12725 	t_uscalar_t prim;
12726 	boolean_t waitack = B_FALSE;
12727 
12728 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12729 
12730 	dlp = (union DL_primitives *)mp->b_rptr;
12731 	prim = dlp->dl_primitive;
12732 
12733 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12734 	    dl_primstr(prim), prim, ill->ill_name));
12735 
12736 	switch (prim) {
12737 	case DL_PHYS_ADDR_REQ:
12738 	{
12739 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12740 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12741 		break;
12742 	}
12743 	case DL_BIND_REQ:
12744 		mutex_enter(&ill->ill_lock);
12745 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12746 		mutex_exit(&ill->ill_lock);
12747 		break;
12748 	}
12749 
12750 	/*
12751 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12752 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12753 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12754 	 */
12755 	mutex_enter(&ill->ill_lock);
12756 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12757 	    (prim == DL_UNBIND_REQ)) {
12758 		ill->ill_dlpi_pending = prim;
12759 		waitack = B_TRUE;
12760 	}
12761 
12762 	mutex_exit(&ill->ill_lock);
12763 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12764 	    char *, dl_primstr(prim), ill_t *, ill);
12765 	putnext(ill->ill_wq, mp);
12766 
12767 	/*
12768 	 * There is no ack for DL_NOTIFY_CONF messages
12769 	 */
12770 	if (waitack && prim == DL_NOTIFY_CONF)
12771 		ill_dlpi_done(ill, prim);
12772 }
12773 
12774 /*
12775  * Helper function for ill_dlpi_send().
12776  */
12777 /* ARGSUSED */
12778 static void
12779 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12780 {
12781 	ill_dlpi_send(q->q_ptr, mp);
12782 }
12783 
12784 /*
12785  * Send a DLPI control message to the driver but make sure there
12786  * is only one outstanding message. Uses ill_dlpi_pending to tell
12787  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12788  * when an ACK or a NAK is received to process the next queued message.
12789  */
12790 void
12791 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12792 {
12793 	mblk_t **mpp;
12794 
12795 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12796 
12797 	/*
12798 	 * To ensure that any DLPI requests for current exclusive operation
12799 	 * are always completely sent before any DLPI messages for other
12800 	 * operations, require writer access before enqueuing.
12801 	 */
12802 	if (!IAM_WRITER_ILL(ill)) {
12803 		ill_refhold(ill);
12804 		/* qwriter_ip() does the ill_refrele() */
12805 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12806 		    NEW_OP, B_TRUE);
12807 		return;
12808 	}
12809 
12810 	mutex_enter(&ill->ill_lock);
12811 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12812 		/* Must queue message. Tail insertion */
12813 		mpp = &ill->ill_dlpi_deferred;
12814 		while (*mpp != NULL)
12815 			mpp = &((*mpp)->b_next);
12816 
12817 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12818 		    "while %s pending\n", ill->ill_name,
12819 		    dl_primstr(ill->ill_dlpi_pending)));
12820 
12821 		*mpp = mp;
12822 		mutex_exit(&ill->ill_lock);
12823 		return;
12824 	}
12825 	mutex_exit(&ill->ill_lock);
12826 	ill_dlpi_dispatch(ill, mp);
12827 }
12828 
12829 void
12830 ill_capability_send(ill_t *ill, mblk_t *mp)
12831 {
12832 	ill->ill_capab_pending_cnt++;
12833 	ill_dlpi_send(ill, mp);
12834 }
12835 
12836 void
12837 ill_capability_done(ill_t *ill)
12838 {
12839 	ASSERT(ill->ill_capab_pending_cnt != 0);
12840 
12841 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12842 
12843 	ill->ill_capab_pending_cnt--;
12844 	if (ill->ill_capab_pending_cnt == 0 &&
12845 	    ill->ill_dlpi_capab_state == IDCS_OK)
12846 		ill_capability_reset_alloc(ill);
12847 }
12848 
12849 /*
12850  * Send all deferred DLPI messages without waiting for their ACKs.
12851  */
12852 void
12853 ill_dlpi_send_deferred(ill_t *ill)
12854 {
12855 	mblk_t *mp, *nextmp;
12856 
12857 	/*
12858 	 * Clear ill_dlpi_pending so that the message is not queued in
12859 	 * ill_dlpi_send().
12860 	 */
12861 	mutex_enter(&ill->ill_lock);
12862 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12863 	mp = ill->ill_dlpi_deferred;
12864 	ill->ill_dlpi_deferred = NULL;
12865 	mutex_exit(&ill->ill_lock);
12866 
12867 	for (; mp != NULL; mp = nextmp) {
12868 		nextmp = mp->b_next;
12869 		mp->b_next = NULL;
12870 		ill_dlpi_send(ill, mp);
12871 	}
12872 }
12873 
12874 /*
12875  * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12876  * or M_HANGUP
12877  */
12878 static void
12879 ill_dlpi_clear_deferred(ill_t *ill)
12880 {
12881 	mblk_t	*mp, *nextmp;
12882 
12883 	mutex_enter(&ill->ill_lock);
12884 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12885 	mp = ill->ill_dlpi_deferred;
12886 	ill->ill_dlpi_deferred = NULL;
12887 	mutex_exit(&ill->ill_lock);
12888 
12889 	for (; mp != NULL; mp = nextmp) {
12890 		nextmp = mp->b_next;
12891 		inet_freemsg(mp);
12892 	}
12893 }
12894 
12895 /*
12896  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12897  */
12898 boolean_t
12899 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12900 {
12901 	t_uscalar_t pending;
12902 
12903 	mutex_enter(&ill->ill_lock);
12904 	if (ill->ill_dlpi_pending == prim) {
12905 		mutex_exit(&ill->ill_lock);
12906 		return (B_TRUE);
12907 	}
12908 
12909 	/*
12910 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12911 	 * without waiting, so don't print any warnings in that case.
12912 	 */
12913 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12914 		mutex_exit(&ill->ill_lock);
12915 		return (B_FALSE);
12916 	}
12917 	pending = ill->ill_dlpi_pending;
12918 	mutex_exit(&ill->ill_lock);
12919 
12920 	if (pending == DL_PRIM_INVAL) {
12921 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12922 		    "received unsolicited ack for %s on %s\n",
12923 		    dl_primstr(prim), ill->ill_name);
12924 	} else {
12925 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12926 		    "received unexpected ack for %s on %s (expecting %s)\n",
12927 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12928 	}
12929 	return (B_FALSE);
12930 }
12931 
12932 /*
12933  * Complete the current DLPI operation associated with `prim' on `ill' and
12934  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12935  * operations and the ill's current exclusive IPSQ operation has finished
12936  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12937  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12938  * the comments above ipsq_current_finish() for details.
12939  */
12940 void
12941 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12942 {
12943 	mblk_t *mp;
12944 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12945 	ipxop_t *ipx = ipsq->ipsq_xop;
12946 
12947 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12948 	mutex_enter(&ill->ill_lock);
12949 
12950 	ASSERT(prim != DL_PRIM_INVAL);
12951 	ASSERT(ill->ill_dlpi_pending == prim);
12952 
12953 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12954 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12955 
12956 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12957 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12958 		if (ipx->ipx_current_done) {
12959 			mutex_enter(&ipx->ipx_lock);
12960 			ipx->ipx_current_ipif = NULL;
12961 			mutex_exit(&ipx->ipx_lock);
12962 		}
12963 		cv_signal(&ill->ill_cv);
12964 		mutex_exit(&ill->ill_lock);
12965 		return;
12966 	}
12967 
12968 	ill->ill_dlpi_deferred = mp->b_next;
12969 	mp->b_next = NULL;
12970 	mutex_exit(&ill->ill_lock);
12971 
12972 	ill_dlpi_dispatch(ill, mp);
12973 }
12974 
12975 /*
12976  * Queue a (multicast) DLPI control message to be sent to the driver by
12977  * later calling ill_dlpi_send_queued.
12978  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12979  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12980  * for the same group to race.
12981  * We send DLPI control messages in order using ill_lock.
12982  * For IPMP we should be called on the cast_ill.
12983  */
12984 void
12985 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12986 {
12987 	mblk_t **mpp;
12988 
12989 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12990 
12991 	mutex_enter(&ill->ill_lock);
12992 	/* Must queue message. Tail insertion */
12993 	mpp = &ill->ill_dlpi_deferred;
12994 	while (*mpp != NULL)
12995 		mpp = &((*mpp)->b_next);
12996 
12997 	*mpp = mp;
12998 	mutex_exit(&ill->ill_lock);
12999 }
13000 
13001 /*
13002  * Send the messages that were queued. Make sure there is only
13003  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13004  * when an ACK or a NAK is received to process the next queued message.
13005  * For IPMP we are called on the upper ill, but when send what is queued
13006  * on the cast_ill.
13007  */
13008 void
13009 ill_dlpi_send_queued(ill_t *ill)
13010 {
13011 	mblk_t	*mp;
13012 	union DL_primitives *dlp;
13013 	t_uscalar_t prim;
13014 	ill_t *release_ill = NULL;
13015 
13016 	if (IS_IPMP(ill)) {
13017 		/* On the upper IPMP ill. */
13018 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13019 		if (release_ill == NULL) {
13020 			/* Avoid ever sending anything down to the ipmpstub */
13021 			return;
13022 		}
13023 		ill = release_ill;
13024 	}
13025 	mutex_enter(&ill->ill_lock);
13026 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
13027 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13028 			/* Can't send. Somebody else will send it */
13029 			mutex_exit(&ill->ill_lock);
13030 			goto done;
13031 		}
13032 		ill->ill_dlpi_deferred = mp->b_next;
13033 		mp->b_next = NULL;
13034 		if (!ill->ill_dl_up) {
13035 			/*
13036 			 * Nobody there. All multicast addresses will be
13037 			 * re-joined when we get the DL_BIND_ACK bringing the
13038 			 * interface up.
13039 			 */
13040 			freemsg(mp);
13041 			continue;
13042 		}
13043 		dlp = (union DL_primitives *)mp->b_rptr;
13044 		prim = dlp->dl_primitive;
13045 
13046 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13047 		    (prim == DL_UNBIND_REQ)) {
13048 			ill->ill_dlpi_pending = prim;
13049 		}
13050 		mutex_exit(&ill->ill_lock);
13051 
13052 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13053 		    char *, dl_primstr(prim), ill_t *, ill);
13054 		putnext(ill->ill_wq, mp);
13055 		mutex_enter(&ill->ill_lock);
13056 	}
13057 	mutex_exit(&ill->ill_lock);
13058 done:
13059 	if (release_ill != NULL)
13060 		ill_refrele(release_ill);
13061 }
13062 
13063 /*
13064  * Queue an IP (IGMP/MLD) message to be sent by IP from
13065  * ill_mcast_send_queued
13066  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13067  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13068  * group to race.
13069  * We send them in order using ill_lock.
13070  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13071  */
13072 void
13073 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13074 {
13075 	mblk_t **mpp;
13076 	ill_t *release_ill = NULL;
13077 
13078 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13079 
13080 	if (IS_IPMP(ill)) {
13081 		/* On the upper IPMP ill. */
13082 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13083 		if (release_ill == NULL) {
13084 			/* Discard instead of queuing for the ipmp interface */
13085 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13086 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13087 			    mp, ill);
13088 			freemsg(mp);
13089 			return;
13090 		}
13091 		ill = release_ill;
13092 	}
13093 
13094 	mutex_enter(&ill->ill_lock);
13095 	/* Must queue message. Tail insertion */
13096 	mpp = &ill->ill_mcast_deferred;
13097 	while (*mpp != NULL)
13098 		mpp = &((*mpp)->b_next);
13099 
13100 	*mpp = mp;
13101 	mutex_exit(&ill->ill_lock);
13102 	if (release_ill != NULL)
13103 		ill_refrele(release_ill);
13104 }
13105 
13106 /*
13107  * Send the IP packets that were queued by ill_mcast_queue.
13108  * These are IGMP/MLD packets.
13109  *
13110  * For IPMP we are called on the upper ill, but when send what is queued
13111  * on the cast_ill.
13112  *
13113  * Request loopback of the report if we are acting as a multicast
13114  * router, so that the process-level routing demon can hear it.
13115  * This will run multiple times for the same group if there are members
13116  * on the same group for multiple ipif's on the same ill. The
13117  * igmp_input/mld_input code will suppress this due to the loopback thus we
13118  * always loopback membership report.
13119  *
13120  * We also need to make sure that this does not get load balanced
13121  * by IPMP. We do this by passing an ill to ip_output_simple.
13122  */
13123 void
13124 ill_mcast_send_queued(ill_t *ill)
13125 {
13126 	mblk_t	*mp;
13127 	ip_xmit_attr_t ixas;
13128 	ill_t *release_ill = NULL;
13129 
13130 	if (IS_IPMP(ill)) {
13131 		/* On the upper IPMP ill. */
13132 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13133 		if (release_ill == NULL) {
13134 			/*
13135 			 * We should have no messages on the ipmp interface
13136 			 * but no point in trying to send them.
13137 			 */
13138 			return;
13139 		}
13140 		ill = release_ill;
13141 	}
13142 	bzero(&ixas, sizeof (ixas));
13143 	ixas.ixa_zoneid = ALL_ZONES;
13144 	ixas.ixa_cred = kcred;
13145 	ixas.ixa_cpid = NOPID;
13146 	ixas.ixa_tsl = NULL;
13147 	/*
13148 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13149 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13150 	 * That is necessary to handle IGMP/MLD snooping switches.
13151 	 */
13152 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13153 	ixas.ixa_ipst = ill->ill_ipst;
13154 
13155 	mutex_enter(&ill->ill_lock);
13156 	while ((mp = ill->ill_mcast_deferred) != NULL) {
13157 		ill->ill_mcast_deferred = mp->b_next;
13158 		mp->b_next = NULL;
13159 		if (!ill->ill_dl_up) {
13160 			/*
13161 			 * Nobody there. Just drop the ip packets.
13162 			 * IGMP/MLD will resend later, if this is a replumb.
13163 			 */
13164 			freemsg(mp);
13165 			continue;
13166 		}
13167 		mutex_enter(&ill->ill_phyint->phyint_lock);
13168 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13169 			/*
13170 			 * When the ill is getting deactivated, we only want to
13171 			 * send the DLPI messages, so drop IGMP/MLD packets.
13172 			 * DLPI messages are handled by ill_dlpi_send_queued()
13173 			 */
13174 			mutex_exit(&ill->ill_phyint->phyint_lock);
13175 			freemsg(mp);
13176 			continue;
13177 		}
13178 		mutex_exit(&ill->ill_phyint->phyint_lock);
13179 		mutex_exit(&ill->ill_lock);
13180 
13181 		/* Check whether we are sending IPv4 or IPv6. */
13182 		if (ill->ill_isv6) {
13183 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
13184 
13185 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13186 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13187 		} else {
13188 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
13189 
13190 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13191 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13192 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13193 		}
13194 		ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13195 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13196 		(void) ip_output_simple(mp, &ixas);
13197 		ixa_cleanup(&ixas);
13198 
13199 		mutex_enter(&ill->ill_lock);
13200 	}
13201 	mutex_exit(&ill->ill_lock);
13202 
13203 done:
13204 	if (release_ill != NULL)
13205 		ill_refrele(release_ill);
13206 }
13207 
13208 /*
13209  * Take down a specific interface, but don't lose any information about it.
13210  * (Always called as writer.)
13211  * This function goes through the down sequence even if the interface is
13212  * already down. There are 2 reasons.
13213  * a. Currently we permit interface routes that depend on down interfaces
13214  *    to be added. This behaviour itself is questionable. However it appears
13215  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13216  *    time. We go thru the cleanup in order to remove these routes.
13217  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13218  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
13219  *    down, but we need to cleanup i.e. do ill_dl_down and
13220  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13221  *
13222  * IP-MT notes:
13223  *
13224  * Model of reference to interfaces.
13225  *
13226  * The following members in ipif_t track references to the ipif.
13227  *	int     ipif_refcnt;    Active reference count
13228  *
13229  * The following members in ill_t track references to the ill.
13230  *	int             ill_refcnt;     active refcnt
13231  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
13232  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
13233  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
13234  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
13235  *
13236  * Reference to an ipif or ill can be obtained in any of the following ways.
13237  *
13238  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13239  * Pointers to ipif / ill from other data structures viz ire and conn.
13240  * Implicit reference to the ipif / ill by holding a reference to the ire.
13241  *
13242  * The ipif/ill lookup functions return a reference held ipif / ill.
13243  * ipif_refcnt and ill_refcnt track the reference counts respectively.
13244  * This is a purely dynamic reference count associated with threads holding
13245  * references to the ipif / ill. Pointers from other structures do not
13246  * count towards this reference count.
13247  *
13248  * ill_ire_cnt is the number of ire's associated with the
13249  * ill. This is incremented whenever a new ire is created referencing the
13250  * ill. This is done atomically inside ire_add_v[46] where the ire is
13251  * actually added to the ire hash table. The count is decremented in
13252  * ire_inactive where the ire is destroyed.
13253  *
13254  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13255  * This is incremented atomically in
13256  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13257  * table. Similarly it is decremented in ncec_inactive() where the ncec
13258  * is destroyed.
13259  *
13260  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13261  * incremented atomically in nce_add() where the nce is actually added to the
13262  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13263  * is destroyed.
13264  *
13265  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13266  * ilm_add() and decremented before the ilm is freed in ilm_delete().
13267  *
13268  * Flow of ioctls involving interface down/up
13269  *
13270  * The following is the sequence of an attempt to set some critical flags on an
13271  * up interface.
13272  * ip_sioctl_flags
13273  * ipif_down
13274  * wait for ipif to be quiescent
13275  * ipif_down_tail
13276  * ip_sioctl_flags_tail
13277  *
13278  * All set ioctls that involve down/up sequence would have a skeleton similar
13279  * to the above. All the *tail functions are called after the refcounts have
13280  * dropped to the appropriate values.
13281  *
13282  * SIOC ioctls during the IPIF_CHANGING interval.
13283  *
13284  * Threads handling SIOC set ioctls serialize on the squeue, but this
13285  * is not done for SIOC get ioctls. Since a set ioctl can cause several
13286  * steps of internal changes to the state, some of which are visible in
13287  * ipif_flags (such as IFF_UP being cleared and later set), and we want
13288  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13289  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13290  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13291  * the current exclusive operation completes. The IPIF_CHANGING check
13292  * and enqueue is atomic using the ill_lock and ipsq_lock. The
13293  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13294  * change while the ill_lock is held. Before dropping the ill_lock we acquire
13295  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13296  * until we release the ipsq_lock, even though the ill/ipif state flags
13297  * can change after we drop the ill_lock.
13298  */
13299 int
13300 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13301 {
13302 	ill_t		*ill = ipif->ipif_ill;
13303 	conn_t		*connp;
13304 	boolean_t	success;
13305 	boolean_t	ipif_was_up = B_FALSE;
13306 	ip_stack_t	*ipst = ill->ill_ipst;
13307 
13308 	ASSERT(IAM_WRITER_IPIF(ipif));
13309 
13310 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13311 
13312 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13313 	    ill_t *, ill, ipif_t *, ipif);
13314 
13315 	if (ipif->ipif_flags & IPIF_UP) {
13316 		mutex_enter(&ill->ill_lock);
13317 		ipif->ipif_flags &= ~IPIF_UP;
13318 		ASSERT(ill->ill_ipif_up_count > 0);
13319 		--ill->ill_ipif_up_count;
13320 		mutex_exit(&ill->ill_lock);
13321 		ipif_was_up = B_TRUE;
13322 		/* Update status in SCTP's list */
13323 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13324 		ill_nic_event_dispatch(ipif->ipif_ill,
13325 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13326 	}
13327 
13328 	/*
13329 	 * Removal of the last ipif from an ill may result in a DL_UNBIND
13330 	 * being sent to the driver, and we must not send any data packets to
13331 	 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13332 	 * ire and nce entries used in the data path will be cleaned
13333 	 * up, and we also set  the ILL_DOWN_IN_PROGRESS bit to make
13334 	 * sure on new entries will be added until the ill is bound
13335 	 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13336 	 * receipt of a DL_BIND_ACK.
13337 	 */
13338 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13339 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13340 	    ill->ill_dl_up) {
13341 		ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13342 	}
13343 
13344 	/*
13345 	 * Blow away memberships we established in ipif_multicast_up().
13346 	 */
13347 	ipif_multicast_down(ipif);
13348 
13349 	/*
13350 	 * Remove from the mapping for __sin6_src_id. We insert only
13351 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13352 	 * stored as mapped addresses, we need to check for mapped
13353 	 * INADDR_ANY also.
13354 	 */
13355 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13356 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13357 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13358 		int err;
13359 
13360 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13361 		    ipif->ipif_zoneid, ipst);
13362 		if (err != 0) {
13363 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13364 		}
13365 	}
13366 
13367 	if (ipif_was_up) {
13368 		/* only delete if we'd added ire's before */
13369 		if (ipif->ipif_isv6)
13370 			ipif_delete_ires_v6(ipif);
13371 		else
13372 			ipif_delete_ires_v4(ipif);
13373 	}
13374 
13375 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13376 		/*
13377 		 * Since the interface is now down, it may have just become
13378 		 * inactive.  Note that this needs to be done even for a
13379 		 * lll_logical_down(), or ARP entries will not get correctly
13380 		 * restored when the interface comes back up.
13381 		 */
13382 		if (IS_UNDER_IPMP(ill))
13383 			ipmp_ill_refresh_active(ill);
13384 	}
13385 
13386 	/*
13387 	 * neighbor-discovery or arp entries for this interface. The ipif
13388 	 * has to be quiesced, so we walk all the nce's and delete those
13389 	 * that point at the ipif->ipif_ill. At the same time, we also
13390 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13391 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13392 	 * that for ipif_down_tail()
13393 	 */
13394 	ipif_nce_down(ipif);
13395 
13396 	/*
13397 	 * If this is the last ipif on the ill, we also need to remove
13398 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13399 	 * never succeed.
13400 	 */
13401 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13402 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13403 
13404 	/*
13405 	 * Walk all CONNs that can have a reference on an ire for this
13406 	 * ipif (we actually walk all that now have stale references).
13407 	 */
13408 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13409 
13410 	/*
13411 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13412 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13413 	 * and ill_delete -> ipif_free -> ipif_down
13414 	 */
13415 	if (mp == NULL) {
13416 		ASSERT(q == NULL);
13417 		return (0);
13418 	}
13419 
13420 	if (CONN_Q(q)) {
13421 		connp = Q_TO_CONN(q);
13422 		mutex_enter(&connp->conn_lock);
13423 	} else {
13424 		connp = NULL;
13425 	}
13426 	mutex_enter(&ill->ill_lock);
13427 	/*
13428 	 * Are there any ire's pointing to this ipif that are still active ?
13429 	 * If this is the last ipif going down, are there any ire's pointing
13430 	 * to this ill that are still active ?
13431 	 */
13432 	if (ipif_is_quiescent(ipif)) {
13433 		mutex_exit(&ill->ill_lock);
13434 		if (connp != NULL)
13435 			mutex_exit(&connp->conn_lock);
13436 		return (0);
13437 	}
13438 
13439 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13440 	    ill->ill_name, (void *)ill));
13441 	/*
13442 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13443 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13444 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13445 	 */
13446 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13447 	if (!success) {
13448 		/* The conn is closing. So just return */
13449 		ASSERT(connp != NULL);
13450 		mutex_exit(&ill->ill_lock);
13451 		mutex_exit(&connp->conn_lock);
13452 		return (EINTR);
13453 	}
13454 
13455 	mutex_exit(&ill->ill_lock);
13456 	if (connp != NULL)
13457 		mutex_exit(&connp->conn_lock);
13458 	return (EINPROGRESS);
13459 }
13460 
13461 int
13462 ipif_down_tail(ipif_t *ipif)
13463 {
13464 	ill_t	*ill = ipif->ipif_ill;
13465 	int	err = 0;
13466 
13467 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13468 	    ill_t *, ill, ipif_t *, ipif);
13469 
13470 	/*
13471 	 * Skip any loopback interface (null wq).
13472 	 * If this is the last logical interface on the ill
13473 	 * have ill_dl_down tell the driver we are gone (unbind)
13474 	 * Note that lun 0 can ipif_down even though
13475 	 * there are other logical units that are up.
13476 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13477 	 */
13478 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13479 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13480 	    ill->ill_dl_up) {
13481 		ill_dl_down(ill);
13482 	}
13483 	if (!ipif->ipif_isv6)
13484 		err = ipif_arp_down(ipif);
13485 
13486 	ill->ill_logical_down = 0;
13487 
13488 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13489 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13490 	return (err);
13491 }
13492 
13493 /*
13494  * Bring interface logically down without bringing the physical interface
13495  * down e.g. when the netmask is changed. This avoids long lasting link
13496  * negotiations between an ethernet interface and a certain switches.
13497  */
13498 static int
13499 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13500 {
13501 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13502 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13503 
13504 	/*
13505 	 * The ill_logical_down flag is a transient flag. It is set here
13506 	 * and is cleared once the down has completed in ipif_down_tail.
13507 	 * This flag does not indicate whether the ill stream is in the
13508 	 * DL_BOUND state with the driver. Instead this flag is used by
13509 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13510 	 * the driver. The state of the ill stream i.e. whether it is
13511 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13512 	 */
13513 	ipif->ipif_ill->ill_logical_down = 1;
13514 	return (ipif_down(ipif, q, mp));
13515 }
13516 
13517 /*
13518  * Initiate deallocate of an IPIF. Always called as writer. Called by
13519  * ill_delete or ip_sioctl_removeif.
13520  */
13521 static void
13522 ipif_free(ipif_t *ipif)
13523 {
13524 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13525 
13526 	ASSERT(IAM_WRITER_IPIF(ipif));
13527 
13528 	if (ipif->ipif_recovery_id != 0)
13529 		(void) untimeout(ipif->ipif_recovery_id);
13530 	ipif->ipif_recovery_id = 0;
13531 
13532 	/*
13533 	 * Take down the interface. We can be called either from ill_delete
13534 	 * or from ip_sioctl_removeif.
13535 	 */
13536 	(void) ipif_down(ipif, NULL, NULL);
13537 
13538 	/*
13539 	 * Now that the interface is down, there's no chance it can still
13540 	 * become a duplicate.  Cancel any timer that may have been set while
13541 	 * tearing down.
13542 	 */
13543 	if (ipif->ipif_recovery_id != 0)
13544 		(void) untimeout(ipif->ipif_recovery_id);
13545 	ipif->ipif_recovery_id = 0;
13546 
13547 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13548 	/* Remove pointers to this ill in the multicast routing tables */
13549 	reset_mrt_vif_ipif(ipif);
13550 	/* If necessary, clear the cached source ipif rotor. */
13551 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13552 		ipif->ipif_ill->ill_src_ipif = NULL;
13553 	rw_exit(&ipst->ips_ill_g_lock);
13554 }
13555 
13556 static void
13557 ipif_free_tail(ipif_t *ipif)
13558 {
13559 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13560 
13561 	/*
13562 	 * Need to hold both ill_g_lock and ill_lock while
13563 	 * inserting or removing an ipif from the linked list
13564 	 * of ipifs hanging off the ill.
13565 	 */
13566 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13567 
13568 #ifdef DEBUG
13569 	ipif_trace_cleanup(ipif);
13570 #endif
13571 
13572 	/* Ask SCTP to take it out of it list */
13573 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13574 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13575 
13576 	/* Get it out of the ILL interface list. */
13577 	ipif_remove(ipif);
13578 	rw_exit(&ipst->ips_ill_g_lock);
13579 
13580 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13581 	ASSERT(ipif->ipif_recovery_id == 0);
13582 	ASSERT(ipif->ipif_ire_local == NULL);
13583 	ASSERT(ipif->ipif_ire_if == NULL);
13584 
13585 	/* Free the memory. */
13586 	mi_free(ipif);
13587 }
13588 
13589 /*
13590  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13591  * is zero.
13592  */
13593 void
13594 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13595 {
13596 	char	lbuf[LIFNAMSIZ];
13597 	char	*name;
13598 	size_t	name_len;
13599 
13600 	buf[0] = '\0';
13601 	name = ipif->ipif_ill->ill_name;
13602 	name_len = ipif->ipif_ill->ill_name_length;
13603 	if (ipif->ipif_id != 0) {
13604 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13605 		    ipif->ipif_id);
13606 		name = lbuf;
13607 		name_len = mi_strlen(name) + 1;
13608 	}
13609 	len -= 1;
13610 	buf[len] = '\0';
13611 	len = MIN(len, name_len);
13612 	bcopy(name, buf, len);
13613 }
13614 
13615 /*
13616  * Sets `buf' to an ill name.
13617  */
13618 void
13619 ill_get_name(const ill_t *ill, char *buf, int len)
13620 {
13621 	char	*name;
13622 	size_t	name_len;
13623 
13624 	name = ill->ill_name;
13625 	name_len = ill->ill_name_length;
13626 	len -= 1;
13627 	buf[len] = '\0';
13628 	len = MIN(len, name_len);
13629 	bcopy(name, buf, len);
13630 }
13631 
13632 /*
13633  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13634  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13635  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13636  * (May be called as writer.)
13637  */
13638 static ipif_t *
13639 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13640     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13641 {
13642 	char	*cp;
13643 	char	*endp;
13644 	long	id;
13645 	ill_t	*ill;
13646 	ipif_t	*ipif;
13647 	uint_t	ire_type;
13648 	boolean_t did_alloc = B_FALSE;
13649 	char	last;
13650 
13651 	/*
13652 	 * If the caller wants to us to create the ipif, make sure we have a
13653 	 * valid zoneid
13654 	 */
13655 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13656 
13657 	if (namelen == 0) {
13658 		return (NULL);
13659 	}
13660 
13661 	*exists = B_FALSE;
13662 	/* Look for a colon in the name. */
13663 	endp = &name[namelen];
13664 	for (cp = endp; --cp > name; ) {
13665 		if (*cp == IPIF_SEPARATOR_CHAR)
13666 			break;
13667 	}
13668 
13669 	if (*cp == IPIF_SEPARATOR_CHAR) {
13670 		/*
13671 		 * Reject any non-decimal aliases for logical
13672 		 * interfaces. Aliases with leading zeroes
13673 		 * are also rejected as they introduce ambiguity
13674 		 * in the naming of the interfaces.
13675 		 * In order to confirm with existing semantics,
13676 		 * and to not break any programs/script relying
13677 		 * on that behaviour, if<0>:0 is considered to be
13678 		 * a valid interface.
13679 		 *
13680 		 * If alias has two or more digits and the first
13681 		 * is zero, fail.
13682 		 */
13683 		if (&cp[2] < endp && cp[1] == '0') {
13684 			return (NULL);
13685 		}
13686 	}
13687 
13688 	if (cp <= name) {
13689 		cp = endp;
13690 	}
13691 	last = *cp;
13692 	*cp = '\0';
13693 
13694 	/*
13695 	 * Look up the ILL, based on the portion of the name
13696 	 * before the slash. ill_lookup_on_name returns a held ill.
13697 	 * Temporary to check whether ill exists already. If so
13698 	 * ill_lookup_on_name will clear it.
13699 	 */
13700 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13701 	    &did_alloc, ipst);
13702 	*cp = last;
13703 	if (ill == NULL)
13704 		return (NULL);
13705 
13706 	/* Establish the unit number in the name. */
13707 	id = 0;
13708 	if (cp < endp && *endp == '\0') {
13709 		/* If there was a colon, the unit number follows. */
13710 		cp++;
13711 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13712 			ill_refrele(ill);
13713 			return (NULL);
13714 		}
13715 	}
13716 
13717 	mutex_enter(&ill->ill_lock);
13718 	/* Now see if there is an IPIF with this unit number. */
13719 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13720 		if (ipif->ipif_id == id) {
13721 			if (zoneid != ALL_ZONES &&
13722 			    zoneid != ipif->ipif_zoneid &&
13723 			    ipif->ipif_zoneid != ALL_ZONES) {
13724 				mutex_exit(&ill->ill_lock);
13725 				ill_refrele(ill);
13726 				return (NULL);
13727 			}
13728 			if (IPIF_CAN_LOOKUP(ipif)) {
13729 				ipif_refhold_locked(ipif);
13730 				mutex_exit(&ill->ill_lock);
13731 				if (!did_alloc)
13732 					*exists = B_TRUE;
13733 				/*
13734 				 * Drop locks before calling ill_refrele
13735 				 * since it can potentially call into
13736 				 * ipif_ill_refrele_tail which can end up
13737 				 * in trying to acquire any lock.
13738 				 */
13739 				ill_refrele(ill);
13740 				return (ipif);
13741 			}
13742 		}
13743 	}
13744 
13745 	if (!do_alloc) {
13746 		mutex_exit(&ill->ill_lock);
13747 		ill_refrele(ill);
13748 		return (NULL);
13749 	}
13750 
13751 	/*
13752 	 * If none found, atomically allocate and return a new one.
13753 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13754 	 * to support "receive only" use of lo0:1 etc. as is still done
13755 	 * below as an initial guess.
13756 	 * However, this is now likely to be overriden later in ipif_up_done()
13757 	 * when we know for sure what address has been configured on the
13758 	 * interface, since we might have more than one loopback interface
13759 	 * with a loopback address, e.g. in the case of zones, and all the
13760 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13761 	 */
13762 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13763 		ire_type = IRE_LOOPBACK;
13764 	else
13765 		ire_type = IRE_LOCAL;
13766 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13767 	if (ipif != NULL)
13768 		ipif_refhold_locked(ipif);
13769 	mutex_exit(&ill->ill_lock);
13770 	ill_refrele(ill);
13771 	return (ipif);
13772 }
13773 
13774 /*
13775  * Variant of the above that queues the request on the ipsq when
13776  * IPIF_CHANGING is set.
13777  */
13778 static ipif_t *
13779 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13780     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13781     ip_stack_t *ipst)
13782 {
13783 	char	*cp;
13784 	char	*endp;
13785 	long	id;
13786 	ill_t	*ill;
13787 	ipif_t	*ipif;
13788 	boolean_t did_alloc = B_FALSE;
13789 	ipsq_t	*ipsq;
13790 
13791 	if (error != NULL)
13792 		*error = 0;
13793 
13794 	if (namelen == 0) {
13795 		if (error != NULL)
13796 			*error = ENXIO;
13797 		return (NULL);
13798 	}
13799 
13800 	/* Look for a colon in the name. */
13801 	endp = &name[namelen];
13802 	for (cp = endp; --cp > name; ) {
13803 		if (*cp == IPIF_SEPARATOR_CHAR)
13804 			break;
13805 	}
13806 
13807 	if (*cp == IPIF_SEPARATOR_CHAR) {
13808 		/*
13809 		 * Reject any non-decimal aliases for logical
13810 		 * interfaces. Aliases with leading zeroes
13811 		 * are also rejected as they introduce ambiguity
13812 		 * in the naming of the interfaces.
13813 		 * In order to confirm with existing semantics,
13814 		 * and to not break any programs/script relying
13815 		 * on that behaviour, if<0>:0 is considered to be
13816 		 * a valid interface.
13817 		 *
13818 		 * If alias has two or more digits and the first
13819 		 * is zero, fail.
13820 		 */
13821 		if (&cp[2] < endp && cp[1] == '0') {
13822 			if (error != NULL)
13823 				*error = EINVAL;
13824 			return (NULL);
13825 		}
13826 	}
13827 
13828 	if (cp <= name) {
13829 		cp = endp;
13830 	} else {
13831 		*cp = '\0';
13832 	}
13833 
13834 	/*
13835 	 * Look up the ILL, based on the portion of the name
13836 	 * before the slash. ill_lookup_on_name returns a held ill.
13837 	 * Temporary to check whether ill exists already. If so
13838 	 * ill_lookup_on_name will clear it.
13839 	 */
13840 	ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13841 	if (cp != endp)
13842 		*cp = IPIF_SEPARATOR_CHAR;
13843 	if (ill == NULL)
13844 		return (NULL);
13845 
13846 	/* Establish the unit number in the name. */
13847 	id = 0;
13848 	if (cp < endp && *endp == '\0') {
13849 		/* If there was a colon, the unit number follows. */
13850 		cp++;
13851 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13852 			ill_refrele(ill);
13853 			if (error != NULL)
13854 				*error = ENXIO;
13855 			return (NULL);
13856 		}
13857 	}
13858 
13859 	GRAB_CONN_LOCK(q);
13860 	mutex_enter(&ill->ill_lock);
13861 	/* Now see if there is an IPIF with this unit number. */
13862 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13863 		if (ipif->ipif_id == id) {
13864 			if (zoneid != ALL_ZONES &&
13865 			    zoneid != ipif->ipif_zoneid &&
13866 			    ipif->ipif_zoneid != ALL_ZONES) {
13867 				mutex_exit(&ill->ill_lock);
13868 				RELEASE_CONN_LOCK(q);
13869 				ill_refrele(ill);
13870 				if (error != NULL)
13871 					*error = ENXIO;
13872 				return (NULL);
13873 			}
13874 
13875 			if (!(IPIF_IS_CHANGING(ipif) ||
13876 			    IPIF_IS_CONDEMNED(ipif)) ||
13877 			    IAM_WRITER_IPIF(ipif)) {
13878 				ipif_refhold_locked(ipif);
13879 				mutex_exit(&ill->ill_lock);
13880 				/*
13881 				 * Drop locks before calling ill_refrele
13882 				 * since it can potentially call into
13883 				 * ipif_ill_refrele_tail which can end up
13884 				 * in trying to acquire any lock.
13885 				 */
13886 				RELEASE_CONN_LOCK(q);
13887 				ill_refrele(ill);
13888 				return (ipif);
13889 			} else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13890 				ipsq = ill->ill_phyint->phyint_ipsq;
13891 				mutex_enter(&ipsq->ipsq_lock);
13892 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13893 				mutex_exit(&ill->ill_lock);
13894 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13895 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13896 				mutex_exit(&ipsq->ipsq_lock);
13897 				RELEASE_CONN_LOCK(q);
13898 				ill_refrele(ill);
13899 				if (error != NULL)
13900 					*error = EINPROGRESS;
13901 				return (NULL);
13902 			}
13903 		}
13904 	}
13905 	RELEASE_CONN_LOCK(q);
13906 	mutex_exit(&ill->ill_lock);
13907 	ill_refrele(ill);
13908 	if (error != NULL)
13909 		*error = ENXIO;
13910 	return (NULL);
13911 }
13912 
13913 /*
13914  * This routine is called whenever a new address comes up on an ipif.  If
13915  * we are configured to respond to address mask requests, then we are supposed
13916  * to broadcast an address mask reply at this time.  This routine is also
13917  * called if we are already up, but a netmask change is made.  This is legal
13918  * but might not make the system manager very popular.	(May be called
13919  * as writer.)
13920  */
13921 void
13922 ipif_mask_reply(ipif_t *ipif)
13923 {
13924 	icmph_t	*icmph;
13925 	ipha_t	*ipha;
13926 	mblk_t	*mp;
13927 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13928 	ip_xmit_attr_t ixas;
13929 
13930 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13931 
13932 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13933 		return;
13934 
13935 	/* ICMP mask reply is IPv4 only */
13936 	ASSERT(!ipif->ipif_isv6);
13937 	/* ICMP mask reply is not for a loopback interface */
13938 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13939 
13940 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13941 		return;
13942 
13943 	mp = allocb(REPLY_LEN, BPRI_HI);
13944 	if (mp == NULL)
13945 		return;
13946 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13947 
13948 	ipha = (ipha_t *)mp->b_rptr;
13949 	bzero(ipha, REPLY_LEN);
13950 	*ipha = icmp_ipha;
13951 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13952 	ipha->ipha_src = ipif->ipif_lcl_addr;
13953 	ipha->ipha_dst = ipif->ipif_brd_addr;
13954 	ipha->ipha_length = htons(REPLY_LEN);
13955 	ipha->ipha_ident = 0;
13956 
13957 	icmph = (icmph_t *)&ipha[1];
13958 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13959 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13960 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13961 
13962 	bzero(&ixas, sizeof (ixas));
13963 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13964 	ixas.ixa_zoneid = ALL_ZONES;
13965 	ixas.ixa_ifindex = 0;
13966 	ixas.ixa_ipst = ipst;
13967 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13968 	(void) ip_output_simple(mp, &ixas);
13969 	ixa_cleanup(&ixas);
13970 #undef	REPLY_LEN
13971 }
13972 
13973 /*
13974  * Join the ipif specific multicast groups.
13975  * Must be called after a mapping has been set up in the resolver.  (Always
13976  * called as writer.)
13977  */
13978 void
13979 ipif_multicast_up(ipif_t *ipif)
13980 {
13981 	int err;
13982 	ill_t *ill;
13983 	ilm_t *ilm;
13984 
13985 	ASSERT(IAM_WRITER_IPIF(ipif));
13986 
13987 	ill = ipif->ipif_ill;
13988 
13989 	ip1dbg(("ipif_multicast_up\n"));
13990 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
13991 	    ipif->ipif_allhosts_ilm != NULL)
13992 		return;
13993 
13994 	if (ipif->ipif_isv6) {
13995 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
13996 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
13997 
13998 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
13999 
14000 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14001 			return;
14002 
14003 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14004 
14005 		/*
14006 		 * Join the all hosts multicast address.  We skip this for
14007 		 * underlying IPMP interfaces since they should be invisible.
14008 		 */
14009 		if (!IS_UNDER_IPMP(ill)) {
14010 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14011 			    &err);
14012 			if (ilm == NULL) {
14013 				ASSERT(err != 0);
14014 				ip0dbg(("ipif_multicast_up: "
14015 				    "all_hosts_mcast failed %d\n", err));
14016 				return;
14017 			}
14018 			ipif->ipif_allhosts_ilm = ilm;
14019 		}
14020 
14021 		/*
14022 		 * Enable multicast for the solicited node multicast address.
14023 		 * If IPMP we need to put the membership on the upper ill.
14024 		 */
14025 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14026 			ill_t *mcast_ill = NULL;
14027 			boolean_t need_refrele;
14028 
14029 			if (IS_UNDER_IPMP(ill) &&
14030 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14031 				need_refrele = B_TRUE;
14032 			} else {
14033 				mcast_ill = ill;
14034 				need_refrele = B_FALSE;
14035 			}
14036 
14037 			ilm = ip_addmulti(&v6solmc, mcast_ill,
14038 			    ipif->ipif_zoneid, &err);
14039 			if (need_refrele)
14040 				ill_refrele(mcast_ill);
14041 
14042 			if (ilm == NULL) {
14043 				ASSERT(err != 0);
14044 				ip0dbg(("ipif_multicast_up: solicited MC"
14045 				    " failed %d\n", err));
14046 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14047 					ipif->ipif_allhosts_ilm = NULL;
14048 					(void) ip_delmulti(ilm);
14049 				}
14050 				return;
14051 			}
14052 			ipif->ipif_solmulti_ilm = ilm;
14053 		}
14054 	} else {
14055 		in6_addr_t v6group;
14056 
14057 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14058 			return;
14059 
14060 		/* Join the all hosts multicast address */
14061 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14062 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14063 
14064 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14065 		if (ilm == NULL) {
14066 			ASSERT(err != 0);
14067 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
14068 			return;
14069 		}
14070 		ipif->ipif_allhosts_ilm = ilm;
14071 	}
14072 }
14073 
14074 /*
14075  * Blow away any multicast groups that we joined in ipif_multicast_up().
14076  * (ilms from explicit memberships are handled in conn_update_ill.)
14077  */
14078 void
14079 ipif_multicast_down(ipif_t *ipif)
14080 {
14081 	ASSERT(IAM_WRITER_IPIF(ipif));
14082 
14083 	ip1dbg(("ipif_multicast_down\n"));
14084 
14085 	if (ipif->ipif_allhosts_ilm != NULL) {
14086 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
14087 		ipif->ipif_allhosts_ilm = NULL;
14088 	}
14089 	if (ipif->ipif_solmulti_ilm != NULL) {
14090 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
14091 		ipif->ipif_solmulti_ilm = NULL;
14092 	}
14093 }
14094 
14095 /*
14096  * Used when an interface comes up to recreate any extra routes on this
14097  * interface.
14098  */
14099 int
14100 ill_recover_saved_ire(ill_t *ill)
14101 {
14102 	mblk_t		*mp;
14103 	ip_stack_t	*ipst = ill->ill_ipst;
14104 
14105 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14106 
14107 	mutex_enter(&ill->ill_saved_ire_lock);
14108 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14109 		ire_t		*ire, *nire;
14110 		ifrt_t		*ifrt;
14111 
14112 		ifrt = (ifrt_t *)mp->b_rptr;
14113 		/*
14114 		 * Create a copy of the IRE with the saved address and netmask.
14115 		 */
14116 		if (ill->ill_isv6) {
14117 			ire = ire_create_v6(
14118 			    &ifrt->ifrt_v6addr,
14119 			    &ifrt->ifrt_v6mask,
14120 			    &ifrt->ifrt_v6gateway_addr,
14121 			    ifrt->ifrt_type,
14122 			    ill,
14123 			    ifrt->ifrt_zoneid,
14124 			    ifrt->ifrt_flags,
14125 			    NULL,
14126 			    ipst);
14127 		} else {
14128 			ire = ire_create(
14129 			    (uint8_t *)&ifrt->ifrt_addr,
14130 			    (uint8_t *)&ifrt->ifrt_mask,
14131 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
14132 			    ifrt->ifrt_type,
14133 			    ill,
14134 			    ifrt->ifrt_zoneid,
14135 			    ifrt->ifrt_flags,
14136 			    NULL,
14137 			    ipst);
14138 		}
14139 		if (ire == NULL) {
14140 			mutex_exit(&ill->ill_saved_ire_lock);
14141 			return (ENOMEM);
14142 		}
14143 
14144 		if (ifrt->ifrt_flags & RTF_SETSRC) {
14145 			if (ill->ill_isv6) {
14146 				ire->ire_setsrc_addr_v6 =
14147 				    ifrt->ifrt_v6setsrc_addr;
14148 			} else {
14149 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14150 			}
14151 		}
14152 
14153 		/*
14154 		 * Some software (for example, GateD and Sun Cluster) attempts
14155 		 * to create (what amount to) IRE_PREFIX routes with the
14156 		 * loopback address as the gateway.  This is primarily done to
14157 		 * set up prefixes with the RTF_REJECT flag set (for example,
14158 		 * when generating aggregate routes.)
14159 		 *
14160 		 * If the IRE type (as defined by ill->ill_net_type) is
14161 		 * IRE_LOOPBACK, then we map the request into a
14162 		 * IRE_IF_NORESOLVER.
14163 		 */
14164 		if (ill->ill_net_type == IRE_LOOPBACK)
14165 			ire->ire_type = IRE_IF_NORESOLVER;
14166 
14167 		/*
14168 		 * ire held by ire_add, will be refreled' towards the
14169 		 * the end of ipif_up_done
14170 		 */
14171 		nire = ire_add(ire);
14172 		/*
14173 		 * Check if it was a duplicate entry. This handles
14174 		 * the case of two racing route adds for the same route
14175 		 */
14176 		if (nire == NULL) {
14177 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14178 		} else if (nire != ire) {
14179 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14180 			    (void *)nire));
14181 			ire_delete(nire);
14182 		} else {
14183 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14184 			    (void *)nire));
14185 		}
14186 		if (nire != NULL)
14187 			ire_refrele(nire);
14188 	}
14189 	mutex_exit(&ill->ill_saved_ire_lock);
14190 	return (0);
14191 }
14192 
14193 /*
14194  * Used to set the netmask and broadcast address to default values when the
14195  * interface is brought up.  (Always called as writer.)
14196  */
14197 static void
14198 ipif_set_default(ipif_t *ipif)
14199 {
14200 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14201 
14202 	if (!ipif->ipif_isv6) {
14203 		/*
14204 		 * Interface holds an IPv4 address. Default
14205 		 * mask is the natural netmask.
14206 		 */
14207 		if (!ipif->ipif_net_mask) {
14208 			ipaddr_t	v4mask;
14209 
14210 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14211 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14212 		}
14213 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14214 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14215 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14216 		} else {
14217 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14218 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14219 		}
14220 		/*
14221 		 * NOTE: SunOS 4.X does this even if the broadcast address
14222 		 * has been already set thus we do the same here.
14223 		 */
14224 		if (ipif->ipif_flags & IPIF_BROADCAST) {
14225 			ipaddr_t	v4addr;
14226 
14227 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14228 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14229 		}
14230 	} else {
14231 		/*
14232 		 * Interface holds an IPv6-only address.  Default
14233 		 * mask is all-ones.
14234 		 */
14235 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14236 			ipif->ipif_v6net_mask = ipv6_all_ones;
14237 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14238 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14239 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14240 		} else {
14241 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14242 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14243 		}
14244 	}
14245 }
14246 
14247 /*
14248  * Return 0 if this address can be used as local address without causing
14249  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14250  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14251  * Note that the same IPv6 link-local address is allowed as long as the ills
14252  * are not on the same link.
14253  */
14254 int
14255 ip_addr_availability_check(ipif_t *new_ipif)
14256 {
14257 	in6_addr_t our_v6addr;
14258 	ill_t *ill;
14259 	ipif_t *ipif;
14260 	ill_walk_context_t ctx;
14261 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
14262 
14263 	ASSERT(IAM_WRITER_IPIF(new_ipif));
14264 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14265 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14266 
14267 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14268 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14269 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14270 		return (0);
14271 
14272 	our_v6addr = new_ipif->ipif_v6lcl_addr;
14273 
14274 	if (new_ipif->ipif_isv6)
14275 		ill = ILL_START_WALK_V6(&ctx, ipst);
14276 	else
14277 		ill = ILL_START_WALK_V4(&ctx, ipst);
14278 
14279 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14280 		for (ipif = ill->ill_ipif; ipif != NULL;
14281 		    ipif = ipif->ipif_next) {
14282 			if ((ipif == new_ipif) ||
14283 			    !(ipif->ipif_flags & IPIF_UP) ||
14284 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14285 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14286 			    &our_v6addr))
14287 				continue;
14288 
14289 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14290 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14291 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14292 				ipif->ipif_flags |= IPIF_UNNUMBERED;
14293 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14294 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14295 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14296 				continue;
14297 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14298 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14299 				continue;
14300 			else if (new_ipif->ipif_ill == ill)
14301 				return (EADDRINUSE);
14302 			else
14303 				return (EADDRNOTAVAIL);
14304 		}
14305 	}
14306 
14307 	return (0);
14308 }
14309 
14310 /*
14311  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14312  * IREs for the ipif.
14313  * When the routine returns EINPROGRESS then mp has been consumed and
14314  * the ioctl will be acked from ip_rput_dlpi.
14315  */
14316 int
14317 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14318 {
14319 	ill_t		*ill = ipif->ipif_ill;
14320 	boolean_t 	isv6 = ipif->ipif_isv6;
14321 	int		err = 0;
14322 	boolean_t	success;
14323 	uint_t		ipif_orig_id;
14324 	ip_stack_t	*ipst = ill->ill_ipst;
14325 
14326 	ASSERT(IAM_WRITER_IPIF(ipif));
14327 
14328 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14329 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14330 	    ill_t *, ill, ipif_t *, ipif);
14331 
14332 	/* Shouldn't get here if it is already up. */
14333 	if (ipif->ipif_flags & IPIF_UP)
14334 		return (EALREADY);
14335 
14336 	/*
14337 	 * If this is a request to bring up a data address on an interface
14338 	 * under IPMP, then move the address to its IPMP meta-interface and
14339 	 * try to bring it up.  One complication is that the zeroth ipif for
14340 	 * an ill is special, in that every ill always has one, and that code
14341 	 * throughout IP deferences ill->ill_ipif without holding any locks.
14342 	 */
14343 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14344 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14345 		ipif_t	*stubipif = NULL, *moveipif = NULL;
14346 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14347 
14348 		/*
14349 		 * The ipif being brought up should be quiesced.  If it's not,
14350 		 * something has gone amiss and we need to bail out.  (If it's
14351 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14352 		 */
14353 		mutex_enter(&ill->ill_lock);
14354 		if (!ipif_is_quiescent(ipif)) {
14355 			mutex_exit(&ill->ill_lock);
14356 			return (EINVAL);
14357 		}
14358 		mutex_exit(&ill->ill_lock);
14359 
14360 		/*
14361 		 * If we're going to need to allocate ipifs, do it prior
14362 		 * to starting the move (and grabbing locks).
14363 		 */
14364 		if (ipif->ipif_id == 0) {
14365 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14366 			    B_FALSE, &err)) == NULL) {
14367 				return (err);
14368 			}
14369 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14370 			    B_FALSE, &err)) == NULL) {
14371 				mi_free(moveipif);
14372 				return (err);
14373 			}
14374 		}
14375 
14376 		/*
14377 		 * Grab or transfer the ipif to move.  During the move, keep
14378 		 * ill_g_lock held to prevent any ill walker threads from
14379 		 * seeing things in an inconsistent state.
14380 		 */
14381 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14382 		if (ipif->ipif_id != 0) {
14383 			ipif_remove(ipif);
14384 		} else {
14385 			ipif_transfer(ipif, moveipif, stubipif);
14386 			ipif = moveipif;
14387 		}
14388 
14389 		/*
14390 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
14391 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
14392 		 * replace that one.  Otherwise, pick the next available slot.
14393 		 */
14394 		ipif->ipif_ill = ipmp_ill;
14395 		ipif_orig_id = ipif->ipif_id;
14396 
14397 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14398 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14399 			ipif = ipmp_ill->ill_ipif;
14400 		} else {
14401 			ipif->ipif_id = -1;
14402 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14403 				/*
14404 				 * No more available ipif_id's -- put it back
14405 				 * on the original ill and fail the operation.
14406 				 * Since we're writer on the ill, we can be
14407 				 * sure our old slot is still available.
14408 				 */
14409 				ipif->ipif_id = ipif_orig_id;
14410 				ipif->ipif_ill = ill;
14411 				if (ipif_orig_id == 0) {
14412 					ipif_transfer(ipif, ill->ill_ipif,
14413 					    NULL);
14414 				} else {
14415 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14416 				}
14417 				rw_exit(&ipst->ips_ill_g_lock);
14418 				return (err);
14419 			}
14420 		}
14421 		rw_exit(&ipst->ips_ill_g_lock);
14422 
14423 		/*
14424 		 * Tell SCTP that the ipif has moved.  Note that even if we
14425 		 * had to allocate a new ipif, the original sequence id was
14426 		 * preserved and therefore SCTP won't know.
14427 		 */
14428 		sctp_move_ipif(ipif, ill, ipmp_ill);
14429 
14430 		/*
14431 		 * If the ipif being brought up was on slot zero, then we
14432 		 * first need to bring up the placeholder we stuck there.  In
14433 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14434 		 * call to ipif_up() itself, if we successfully bring up the
14435 		 * placeholder, we'll check ill_move_ipif and bring it up too.
14436 		 */
14437 		if (ipif_orig_id == 0) {
14438 			ASSERT(ill->ill_move_ipif == NULL);
14439 			ill->ill_move_ipif = ipif;
14440 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14441 				ASSERT(ill->ill_move_ipif == NULL);
14442 			if (err != EINPROGRESS)
14443 				ill->ill_move_ipif = NULL;
14444 			return (err);
14445 		}
14446 
14447 		/*
14448 		 * Bring it up on the IPMP ill.
14449 		 */
14450 		return (ipif_up(ipif, q, mp));
14451 	}
14452 
14453 	/* Skip arp/ndp for any loopback interface. */
14454 	if (ill->ill_wq != NULL) {
14455 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14456 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
14457 
14458 		if (!ill->ill_dl_up) {
14459 			/*
14460 			 * ill_dl_up is not yet set. i.e. we are yet to
14461 			 * DL_BIND with the driver and this is the first
14462 			 * logical interface on the ill to become "up".
14463 			 * Tell the driver to get going (via DL_BIND_REQ).
14464 			 * Note that changing "significant" IFF_ flags
14465 			 * address/netmask etc cause a down/up dance, but
14466 			 * does not cause an unbind (DL_UNBIND) with the driver
14467 			 */
14468 			return (ill_dl_up(ill, ipif, mp, q));
14469 		}
14470 
14471 		/*
14472 		 * ipif_resolver_up may end up needeing to bind/attach
14473 		 * the ARP stream, which in turn necessitates a
14474 		 * DLPI message exchange with the driver. ioctls are
14475 		 * serialized and so we cannot send more than one
14476 		 * interface up message at a time. If ipif_resolver_up
14477 		 * does need to wait for the DLPI handshake for the ARP stream,
14478 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14479 		 */
14480 
14481 		ASSERT(connp != NULL || !CONN_Q(q));
14482 		if (connp != NULL)
14483 			mutex_enter(&connp->conn_lock);
14484 		mutex_enter(&ill->ill_lock);
14485 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14486 		mutex_exit(&ill->ill_lock);
14487 		if (connp != NULL)
14488 			mutex_exit(&connp->conn_lock);
14489 		if (!success)
14490 			return (EINTR);
14491 
14492 		/*
14493 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14494 		 * complete when ipif_ndp_up returns.
14495 		 */
14496 		err = ipif_resolver_up(ipif, Res_act_initial);
14497 		if (err == EINPROGRESS) {
14498 			/* We will complete it in arp_bringup_done() */
14499 			return (err);
14500 		}
14501 
14502 		if (isv6 && err == 0)
14503 			err = ipif_ndp_up(ipif, B_TRUE);
14504 
14505 		ASSERT(err != EINPROGRESS);
14506 		mp = ipsq_pending_mp_get(ipsq, &connp);
14507 		ASSERT(mp != NULL);
14508 		if (err != 0)
14509 			return (err);
14510 	} else {
14511 		/*
14512 		 * Interfaces without underlying hardware don't do duplicate
14513 		 * address detection.
14514 		 */
14515 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14516 		ipif->ipif_addr_ready = 1;
14517 		err = ill_add_ires(ill);
14518 		/* allocation failure? */
14519 		if (err != 0)
14520 			return (err);
14521 	}
14522 
14523 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14524 	if (err == 0 && ill->ill_move_ipif != NULL) {
14525 		ipif = ill->ill_move_ipif;
14526 		ill->ill_move_ipif = NULL;
14527 		return (ipif_up(ipif, q, mp));
14528 	}
14529 	return (err);
14530 }
14531 
14532 /*
14533  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14534  * The identical set of IREs need to be removed in ill_delete_ires().
14535  */
14536 int
14537 ill_add_ires(ill_t *ill)
14538 {
14539 	ire_t	*ire;
14540 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14541 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14542 
14543 	if (ill->ill_ire_multicast != NULL)
14544 		return (0);
14545 
14546 	/*
14547 	 * provide some dummy ire_addr for creating the ire.
14548 	 */
14549 	if (ill->ill_isv6) {
14550 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14551 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14552 	} else {
14553 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14554 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14555 	}
14556 	if (ire == NULL)
14557 		return (ENOMEM);
14558 
14559 	ill->ill_ire_multicast = ire;
14560 	return (0);
14561 }
14562 
14563 void
14564 ill_delete_ires(ill_t *ill)
14565 {
14566 	if (ill->ill_ire_multicast != NULL) {
14567 		/*
14568 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14569 		 * which was taken without any th_tracing enabled.
14570 		 * We also mark it as condemned (note that it was never added)
14571 		 * so that caching conn's can move off of it.
14572 		 */
14573 		ire_make_condemned(ill->ill_ire_multicast);
14574 		ire_refrele_notr(ill->ill_ire_multicast);
14575 		ill->ill_ire_multicast = NULL;
14576 	}
14577 }
14578 
14579 /*
14580  * Perform a bind for the physical device.
14581  * When the routine returns EINPROGRESS then mp has been consumed and
14582  * the ioctl will be acked from ip_rput_dlpi.
14583  * Allocate an unbind message and save it until ipif_down.
14584  */
14585 static int
14586 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14587 {
14588 	mblk_t	*bind_mp = NULL;
14589 	mblk_t	*unbind_mp = NULL;
14590 	conn_t	*connp;
14591 	boolean_t success;
14592 	int	err;
14593 
14594 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14595 
14596 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14597 	ASSERT(IAM_WRITER_ILL(ill));
14598 	ASSERT(mp != NULL);
14599 
14600 	/*
14601 	 * Make sure we have an IRE_MULTICAST in case we immediately
14602 	 * start receiving packets.
14603 	 */
14604 	err = ill_add_ires(ill);
14605 	if (err != 0)
14606 		goto bad;
14607 
14608 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14609 	    DL_BIND_REQ);
14610 	if (bind_mp == NULL)
14611 		goto bad;
14612 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14613 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14614 
14615 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
14616 	if (unbind_mp == NULL)
14617 		goto bad;
14618 
14619 	/*
14620 	 * Record state needed to complete this operation when the
14621 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14622 	 */
14623 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14624 	ASSERT(connp != NULL || !CONN_Q(q));
14625 	GRAB_CONN_LOCK(q);
14626 	mutex_enter(&ipif->ipif_ill->ill_lock);
14627 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14628 	mutex_exit(&ipif->ipif_ill->ill_lock);
14629 	RELEASE_CONN_LOCK(q);
14630 	if (!success)
14631 		goto bad;
14632 
14633 	/*
14634 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14635 	 * the interface goes down.
14636 	 */
14637 	ASSERT(ill->ill_unbind_mp == NULL);
14638 	ill->ill_unbind_mp = unbind_mp;
14639 
14640 	ill_dlpi_send(ill, bind_mp);
14641 	/* Send down link-layer capabilities probe if not already done. */
14642 	ill_capability_probe(ill);
14643 
14644 	/*
14645 	 * Sysid used to rely on the fact that netboots set domainname
14646 	 * and the like. Now that miniroot boots aren't strictly netboots
14647 	 * and miniroot network configuration is driven from userland
14648 	 * these things still need to be set. This situation can be detected
14649 	 * by comparing the interface being configured here to the one
14650 	 * dhcifname was set to reference by the boot loader. Once sysid is
14651 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14652 	 */
14653 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14654 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14655 	    (strlen(srpc_domain) == 0)) {
14656 		if (dhcpinit() != 0)
14657 			cmn_err(CE_WARN, "no cached dhcp response");
14658 	}
14659 
14660 	/*
14661 	 * This operation will complete in ip_rput_dlpi with either
14662 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14663 	 */
14664 	return (EINPROGRESS);
14665 bad:
14666 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14667 
14668 	freemsg(bind_mp);
14669 	freemsg(unbind_mp);
14670 	return (ENOMEM);
14671 }
14672 
14673 /* Add room for tcp+ip headers */
14674 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14675 
14676 /*
14677  * DLPI and ARP is up.
14678  * Create all the IREs associated with an interface. Bring up multicast.
14679  * Set the interface flag and finish other initialization
14680  * that potentially had to be deferred to after DL_BIND_ACK.
14681  */
14682 int
14683 ipif_up_done(ipif_t *ipif)
14684 {
14685 	ill_t		*ill = ipif->ipif_ill;
14686 	int		err = 0;
14687 	boolean_t	loopback = B_FALSE;
14688 	boolean_t	update_src_selection = B_TRUE;
14689 	ipif_t		*tmp_ipif;
14690 
14691 	ip1dbg(("ipif_up_done(%s:%u)\n",
14692 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14693 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14694 	    ill_t *, ill, ipif_t *, ipif);
14695 
14696 	/* Check if this is a loopback interface */
14697 	if (ipif->ipif_ill->ill_wq == NULL)
14698 		loopback = B_TRUE;
14699 
14700 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14701 
14702 	/*
14703 	 * If all other interfaces for this ill are down or DEPRECATED,
14704 	 * or otherwise unsuitable for source address selection,
14705 	 * reset the src generation numbers to make sure source
14706 	 * address selection gets to take this new ipif into account.
14707 	 * No need to hold ill_lock while traversing the ipif list since
14708 	 * we are writer
14709 	 */
14710 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14711 	    tmp_ipif = tmp_ipif->ipif_next) {
14712 		if (((tmp_ipif->ipif_flags &
14713 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14714 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14715 		    (tmp_ipif == ipif))
14716 			continue;
14717 		/* first useable pre-existing interface */
14718 		update_src_selection = B_FALSE;
14719 		break;
14720 	}
14721 	if (update_src_selection)
14722 		ip_update_source_selection(ill->ill_ipst);
14723 
14724 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14725 		nce_t *loop_nce = NULL;
14726 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14727 
14728 		/*
14729 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14730 		 * ipif_lookup_on_name(), but in the case of zones we can have
14731 		 * several loopback addresses on lo0. So all the interfaces with
14732 		 * loopback addresses need to be marked IRE_LOOPBACK.
14733 		 */
14734 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14735 		    htonl(INADDR_LOOPBACK))
14736 			ipif->ipif_ire_type = IRE_LOOPBACK;
14737 		else
14738 			ipif->ipif_ire_type = IRE_LOCAL;
14739 		if (ill->ill_net_type != IRE_LOOPBACK)
14740 			flags |= NCE_F_PUBLISH;
14741 
14742 		/* add unicast nce for the local addr */
14743 		err = nce_lookup_then_add_v4(ill, NULL,
14744 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14745 		    ND_REACHABLE, &loop_nce);
14746 		/* A shared-IP zone sees EEXIST for lo0:N */
14747 		if (err == 0 || err == EEXIST) {
14748 			ipif->ipif_added_nce = 1;
14749 			loop_nce->nce_ipif_cnt++;
14750 			nce_refrele(loop_nce);
14751 			err = 0;
14752 		} else {
14753 			ASSERT(loop_nce == NULL);
14754 			return (err);
14755 		}
14756 	}
14757 
14758 	/* Create all the IREs associated with this interface */
14759 	err = ipif_add_ires_v4(ipif, loopback);
14760 	if (err != 0) {
14761 		/*
14762 		 * see comments about return value from
14763 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14764 		 */
14765 		if (err != EADDRINUSE) {
14766 			(void) ipif_arp_down(ipif);
14767 		} else {
14768 			/*
14769 			 * Make IPMP aware of the deleted ipif so that
14770 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14771 			 * can be completed. Note that we do not want to
14772 			 * destroy the nce that was created on the ipmp_ill
14773 			 * for the active copy of the duplicate address in
14774 			 * use.
14775 			 */
14776 			if (IS_IPMP(ill))
14777 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14778 			err = EADDRNOTAVAIL;
14779 		}
14780 		return (err);
14781 	}
14782 
14783 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14784 		/* Recover any additional IREs entries for this ill */
14785 		(void) ill_recover_saved_ire(ill);
14786 	}
14787 
14788 	if (ill->ill_need_recover_multicast) {
14789 		/*
14790 		 * Need to recover all multicast memberships in the driver.
14791 		 * This had to be deferred until we had attached.  The same
14792 		 * code exists in ipif_up_done_v6() to recover IPv6
14793 		 * memberships.
14794 		 *
14795 		 * Note that it would be preferable to unconditionally do the
14796 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14797 		 * that since ill_join_allmulti() depends on ill_dl_up being
14798 		 * set, and it is not set until we receive a DL_BIND_ACK after
14799 		 * having called ill_dl_up().
14800 		 */
14801 		ill_recover_multicast(ill);
14802 	}
14803 
14804 	if (ill->ill_ipif_up_count == 1) {
14805 		/*
14806 		 * Since the interface is now up, it may now be active.
14807 		 */
14808 		if (IS_UNDER_IPMP(ill))
14809 			ipmp_ill_refresh_active(ill);
14810 
14811 		/*
14812 		 * If this is an IPMP interface, we may now be able to
14813 		 * establish ARP entries.
14814 		 */
14815 		if (IS_IPMP(ill))
14816 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14817 	}
14818 
14819 	/* Join the allhosts multicast address */
14820 	ipif_multicast_up(ipif);
14821 
14822 	if (!loopback && !update_src_selection &&
14823 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14824 		ip_update_source_selection(ill->ill_ipst);
14825 
14826 	if (!loopback && ipif->ipif_addr_ready) {
14827 		/* Broadcast an address mask reply. */
14828 		ipif_mask_reply(ipif);
14829 	}
14830 	/* Perhaps ilgs should use this ill */
14831 	update_conn_ill(NULL, ill->ill_ipst);
14832 
14833 	/*
14834 	 * This had to be deferred until we had bound.  Tell routing sockets and
14835 	 * others that this interface is up if it looks like the address has
14836 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14837 	 * duplicate address detection to do its thing.
14838 	 */
14839 	if (ipif->ipif_addr_ready)
14840 		ipif_up_notify(ipif);
14841 	return (0);
14842 }
14843 
14844 /*
14845  * Add the IREs associated with the ipif.
14846  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14847  */
14848 static int
14849 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14850 {
14851 	ill_t		*ill = ipif->ipif_ill;
14852 	ip_stack_t	*ipst = ill->ill_ipst;
14853 	ire_t		*ire_array[20];
14854 	ire_t		**irep = ire_array;
14855 	ire_t		**irep1;
14856 	ipaddr_t	net_mask = 0;
14857 	ipaddr_t	subnet_mask, route_mask;
14858 	int		err;
14859 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14860 	ire_t		*ire_if = NULL;
14861 	uchar_t		*gw;
14862 
14863 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14864 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14865 		/*
14866 		 * If we're on a labeled system then make sure that zone-
14867 		 * private addresses have proper remote host database entries.
14868 		 */
14869 		if (is_system_labeled() &&
14870 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14871 		    !tsol_check_interface_address(ipif))
14872 			return (EINVAL);
14873 
14874 		/* Register the source address for __sin6_src_id */
14875 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14876 		    ipif->ipif_zoneid, ipst);
14877 		if (err != 0) {
14878 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14879 			return (err);
14880 		}
14881 
14882 		if (loopback)
14883 			gw = (uchar_t *)&ipif->ipif_lcl_addr;
14884 		else
14885 			gw = NULL;
14886 
14887 		/* If the interface address is set, create the local IRE. */
14888 		ire_local = ire_create(
14889 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14890 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14891 		    gw,					/* gateway */
14892 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14893 		    ipif->ipif_ill,
14894 		    ipif->ipif_zoneid,
14895 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14896 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14897 		    NULL,
14898 		    ipst);
14899 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14900 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14901 		    ipif->ipif_ire_type,
14902 		    ntohl(ipif->ipif_lcl_addr)));
14903 		if (ire_local == NULL) {
14904 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14905 			err = ENOMEM;
14906 			goto bad;
14907 		}
14908 	} else {
14909 		ip1dbg((
14910 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14911 		    ipif->ipif_ire_type,
14912 		    ntohl(ipif->ipif_lcl_addr),
14913 		    (uint_t)ipif->ipif_flags));
14914 	}
14915 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14916 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14917 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14918 	} else {
14919 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14920 	}
14921 
14922 	subnet_mask = ipif->ipif_net_mask;
14923 
14924 	/*
14925 	 * If mask was not specified, use natural netmask of
14926 	 * interface address. Also, store this mask back into the
14927 	 * ipif struct.
14928 	 */
14929 	if (subnet_mask == 0) {
14930 		subnet_mask = net_mask;
14931 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14932 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14933 		    ipif->ipif_v6subnet);
14934 	}
14935 
14936 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14937 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14938 	    ipif->ipif_subnet != INADDR_ANY) {
14939 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14940 
14941 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14942 			route_mask = IP_HOST_MASK;
14943 		} else {
14944 			route_mask = subnet_mask;
14945 		}
14946 
14947 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14948 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14949 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14950 		    ntohl(ipif->ipif_subnet)));
14951 		ire_if = ire_create(
14952 		    (uchar_t *)&ipif->ipif_subnet,
14953 		    (uchar_t *)&route_mask,
14954 		    (uchar_t *)&ipif->ipif_lcl_addr,
14955 		    ill->ill_net_type,
14956 		    ill,
14957 		    ipif->ipif_zoneid,
14958 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14959 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14960 		    NULL,
14961 		    ipst);
14962 		if (ire_if == NULL) {
14963 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14964 			err = ENOMEM;
14965 			goto bad;
14966 		}
14967 	}
14968 
14969 	/*
14970 	 * Create any necessary broadcast IREs.
14971 	 */
14972 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14973 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14974 		irep = ipif_create_bcast_ires(ipif, irep);
14975 
14976 	/* If an earlier ire_create failed, get out now */
14977 	for (irep1 = irep; irep1 > ire_array; ) {
14978 		irep1--;
14979 		if (*irep1 == NULL) {
14980 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
14981 			err = ENOMEM;
14982 			goto bad;
14983 		}
14984 	}
14985 
14986 	/*
14987 	 * Need to atomically check for IP address availability under
14988 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
14989 	 * ills or new ipifs can be added while we are checking availability.
14990 	 */
14991 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14992 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
14993 	/* Mark it up, and increment counters. */
14994 	ipif->ipif_flags |= IPIF_UP;
14995 	ill->ill_ipif_up_count++;
14996 	err = ip_addr_availability_check(ipif);
14997 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
14998 	rw_exit(&ipst->ips_ill_g_lock);
14999 
15000 	if (err != 0) {
15001 		/*
15002 		 * Our address may already be up on the same ill. In this case,
15003 		 * the ARP entry for our ipif replaced the one for the other
15004 		 * ipif. So we don't want to delete it (otherwise the other ipif
15005 		 * would be unable to send packets).
15006 		 * ip_addr_availability_check() identifies this case for us and
15007 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15008 		 * which is the expected error code.
15009 		 */
15010 		ill->ill_ipif_up_count--;
15011 		ipif->ipif_flags &= ~IPIF_UP;
15012 		goto bad;
15013 	}
15014 
15015 	/*
15016 	 * Add in all newly created IREs.  ire_create_bcast() has
15017 	 * already checked for duplicates of the IRE_BROADCAST type.
15018 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15019 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15020 	 * a /32 route.
15021 	 */
15022 	if (ire_if != NULL) {
15023 		ire_if = ire_add(ire_if);
15024 		if (ire_if == NULL) {
15025 			err = ENOMEM;
15026 			goto bad2;
15027 		}
15028 #ifdef DEBUG
15029 		ire_refhold_notr(ire_if);
15030 		ire_refrele(ire_if);
15031 #endif
15032 	}
15033 	if (ire_local != NULL) {
15034 		ire_local = ire_add(ire_local);
15035 		if (ire_local == NULL) {
15036 			err = ENOMEM;
15037 			goto bad2;
15038 		}
15039 #ifdef DEBUG
15040 		ire_refhold_notr(ire_local);
15041 		ire_refrele(ire_local);
15042 #endif
15043 	}
15044 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15045 	if (ire_local != NULL)
15046 		ipif->ipif_ire_local = ire_local;
15047 	if (ire_if != NULL)
15048 		ipif->ipif_ire_if = ire_if;
15049 	rw_exit(&ipst->ips_ill_g_lock);
15050 	ire_local = NULL;
15051 	ire_if = NULL;
15052 
15053 	/*
15054 	 * We first add all of them, and if that succeeds we refrele the
15055 	 * bunch. That enables us to delete all of them should any of the
15056 	 * ire_adds fail.
15057 	 */
15058 	for (irep1 = irep; irep1 > ire_array; ) {
15059 		irep1--;
15060 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15061 		*irep1 = ire_add(*irep1);
15062 		if (*irep1 == NULL) {
15063 			err = ENOMEM;
15064 			goto bad2;
15065 		}
15066 	}
15067 
15068 	for (irep1 = irep; irep1 > ire_array; ) {
15069 		irep1--;
15070 		/* refheld by ire_add. */
15071 		if (*irep1 != NULL) {
15072 			ire_refrele(*irep1);
15073 			*irep1 = NULL;
15074 		}
15075 	}
15076 
15077 	if (!loopback) {
15078 		/*
15079 		 * If the broadcast address has been set, make sure it makes
15080 		 * sense based on the interface address.
15081 		 * Only match on ill since we are sharing broadcast addresses.
15082 		 */
15083 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15084 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
15085 			ire_t	*ire;
15086 
15087 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15088 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15089 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15090 
15091 			if (ire == NULL) {
15092 				/*
15093 				 * If there isn't a matching broadcast IRE,
15094 				 * revert to the default for this netmask.
15095 				 */
15096 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
15097 				mutex_enter(&ipif->ipif_ill->ill_lock);
15098 				ipif_set_default(ipif);
15099 				mutex_exit(&ipif->ipif_ill->ill_lock);
15100 			} else {
15101 				ire_refrele(ire);
15102 			}
15103 		}
15104 
15105 	}
15106 	return (0);
15107 
15108 bad2:
15109 	ill->ill_ipif_up_count--;
15110 	ipif->ipif_flags &= ~IPIF_UP;
15111 
15112 bad:
15113 	ip1dbg(("ipif_add_ires: FAILED \n"));
15114 	if (ire_local != NULL)
15115 		ire_delete(ire_local);
15116 	if (ire_if != NULL)
15117 		ire_delete(ire_if);
15118 
15119 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15120 	ire_local = ipif->ipif_ire_local;
15121 	ipif->ipif_ire_local = NULL;
15122 	ire_if = ipif->ipif_ire_if;
15123 	ipif->ipif_ire_if = NULL;
15124 	rw_exit(&ipst->ips_ill_g_lock);
15125 	if (ire_local != NULL) {
15126 		ire_delete(ire_local);
15127 		ire_refrele_notr(ire_local);
15128 	}
15129 	if (ire_if != NULL) {
15130 		ire_delete(ire_if);
15131 		ire_refrele_notr(ire_if);
15132 	}
15133 
15134 	while (irep > ire_array) {
15135 		irep--;
15136 		if (*irep != NULL) {
15137 			ire_delete(*irep);
15138 		}
15139 	}
15140 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15141 
15142 	return (err);
15143 }
15144 
15145 /* Remove all the IREs created by ipif_add_ires_v4 */
15146 void
15147 ipif_delete_ires_v4(ipif_t *ipif)
15148 {
15149 	ill_t		*ill = ipif->ipif_ill;
15150 	ip_stack_t	*ipst = ill->ill_ipst;
15151 	ire_t		*ire;
15152 
15153 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15154 	ire = ipif->ipif_ire_local;
15155 	ipif->ipif_ire_local = NULL;
15156 	rw_exit(&ipst->ips_ill_g_lock);
15157 	if (ire != NULL) {
15158 		/*
15159 		 * Move count to ipif so we don't loose the count due to
15160 		 * a down/up dance.
15161 		 */
15162 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15163 
15164 		ire_delete(ire);
15165 		ire_refrele_notr(ire);
15166 	}
15167 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15168 	ire = ipif->ipif_ire_if;
15169 	ipif->ipif_ire_if = NULL;
15170 	rw_exit(&ipst->ips_ill_g_lock);
15171 	if (ire != NULL) {
15172 		ire_delete(ire);
15173 		ire_refrele_notr(ire);
15174 	}
15175 
15176 	/*
15177 	 * Delete the broadcast IREs.
15178 	 */
15179 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15180 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15181 		ipif_delete_bcast_ires(ipif);
15182 }
15183 
15184 /*
15185  * Checks for availbility of a usable source address (if there is one) when the
15186  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15187  * this selection is done regardless of the destination.
15188  */
15189 boolean_t
15190 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15191     ip_stack_t *ipst)
15192 {
15193 	ipif_t		*ipif = NULL;
15194 	ill_t		*uill;
15195 
15196 	ASSERT(ifindex != 0);
15197 
15198 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15199 	if (uill == NULL)
15200 		return (B_FALSE);
15201 
15202 	mutex_enter(&uill->ill_lock);
15203 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15204 		if (IPIF_IS_CONDEMNED(ipif))
15205 			continue;
15206 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15207 			continue;
15208 		if (!(ipif->ipif_flags & IPIF_UP))
15209 			continue;
15210 		if (ipif->ipif_zoneid != zoneid)
15211 			continue;
15212 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15213 		    ipif->ipif_lcl_addr == INADDR_ANY)
15214 			continue;
15215 		mutex_exit(&uill->ill_lock);
15216 		ill_refrele(uill);
15217 		return (B_TRUE);
15218 	}
15219 	mutex_exit(&uill->ill_lock);
15220 	ill_refrele(uill);
15221 	return (B_FALSE);
15222 }
15223 
15224 /*
15225  * Find an ipif with a good local address on the ill+zoneid.
15226  */
15227 ipif_t *
15228 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15229 {
15230 	ipif_t		*ipif;
15231 
15232 	mutex_enter(&ill->ill_lock);
15233 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15234 		if (IPIF_IS_CONDEMNED(ipif))
15235 			continue;
15236 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15237 			continue;
15238 		if (!(ipif->ipif_flags & IPIF_UP))
15239 			continue;
15240 		if (ipif->ipif_zoneid != zoneid &&
15241 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15242 			continue;
15243 		if (ill->ill_isv6 ?
15244 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15245 		    ipif->ipif_lcl_addr == INADDR_ANY)
15246 			continue;
15247 		ipif_refhold_locked(ipif);
15248 		mutex_exit(&ill->ill_lock);
15249 		return (ipif);
15250 	}
15251 	mutex_exit(&ill->ill_lock);
15252 	return (NULL);
15253 }
15254 
15255 /*
15256  * IP source address type, sorted from worst to best.  For a given type,
15257  * always prefer IP addresses on the same subnet.  All-zones addresses are
15258  * suboptimal because they pose problems with unlabeled destinations.
15259  */
15260 typedef enum {
15261 	IPIF_NONE,
15262 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
15263 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
15264 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
15265 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
15266 	IPIF_DIFFNET,			/* normal and different subnet */
15267 	IPIF_SAMENET,			/* normal and same subnet */
15268 	IPIF_LOCALADDR			/* local loopback */
15269 } ipif_type_t;
15270 
15271 /*
15272  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15273  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
15274  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
15275  * the first one, unless IPMP is used in which case we round-robin among them;
15276  * see below for more.
15277  *
15278  * Returns NULL if there is no suitable source address for the ill.
15279  * This only occurs when there is no valid source address for the ill.
15280  */
15281 ipif_t *
15282 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15283     boolean_t allow_usesrc, boolean_t *notreadyp)
15284 {
15285 	ill_t	*usill = NULL;
15286 	ill_t	*ipmp_ill = NULL;
15287 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
15288 	ipif_type_t type, best_type;
15289 	tsol_tpc_t *src_rhtp, *dst_rhtp;
15290 	ip_stack_t *ipst = ill->ill_ipst;
15291 	boolean_t samenet;
15292 
15293 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15294 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15295 		    B_FALSE, ipst);
15296 		if (usill != NULL)
15297 			ill = usill;	/* Select source from usesrc ILL */
15298 		else
15299 			return (NULL);
15300 	}
15301 
15302 	/*
15303 	 * Test addresses should never be used for source address selection,
15304 	 * so if we were passed one, switch to the IPMP meta-interface.
15305 	 */
15306 	if (IS_UNDER_IPMP(ill)) {
15307 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15308 			ill = ipmp_ill;	/* Select source from IPMP ill */
15309 		else
15310 			return (NULL);
15311 	}
15312 
15313 	/*
15314 	 * If we're dealing with an unlabeled destination on a labeled system,
15315 	 * make sure that we ignore source addresses that are incompatible with
15316 	 * the destination's default label.  That destination's default label
15317 	 * must dominate the minimum label on the source address.
15318 	 */
15319 	dst_rhtp = NULL;
15320 	if (is_system_labeled()) {
15321 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15322 		if (dst_rhtp == NULL)
15323 			return (NULL);
15324 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15325 			TPC_RELE(dst_rhtp);
15326 			dst_rhtp = NULL;
15327 		}
15328 	}
15329 
15330 	/*
15331 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15332 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15333 	 * After selecting the right ipif, under ill_lock make sure ipif is
15334 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15335 	 * we retry. Inside the loop we still need to check for CONDEMNED,
15336 	 * but not under a lock.
15337 	 */
15338 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15339 retry:
15340 	/*
15341 	 * For source address selection, we treat the ipif list as circular
15342 	 * and continue until we get back to where we started.  This allows
15343 	 * IPMP to vary source address selection (which improves inbound load
15344 	 * spreading) by caching its last ending point and starting from
15345 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
15346 	 * ills since that can't happen on the IPMP ill.
15347 	 */
15348 	start_ipif = ill->ill_ipif;
15349 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15350 		start_ipif = ill->ill_src_ipif;
15351 
15352 	ipif = start_ipif;
15353 	best_ipif = NULL;
15354 	best_type = IPIF_NONE;
15355 	do {
15356 		if ((next_ipif = ipif->ipif_next) == NULL)
15357 			next_ipif = ill->ill_ipif;
15358 
15359 		if (IPIF_IS_CONDEMNED(ipif))
15360 			continue;
15361 		/* Always skip NOLOCAL and ANYCAST interfaces */
15362 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15363 			continue;
15364 		/* Always skip NOACCEPT interfaces */
15365 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15366 			continue;
15367 		if (!(ipif->ipif_flags & IPIF_UP))
15368 			continue;
15369 
15370 		if (!ipif->ipif_addr_ready) {
15371 			if (notreadyp != NULL)
15372 				*notreadyp = B_TRUE;
15373 			continue;
15374 		}
15375 
15376 		if (zoneid != ALL_ZONES &&
15377 		    ipif->ipif_zoneid != zoneid &&
15378 		    ipif->ipif_zoneid != ALL_ZONES)
15379 			continue;
15380 
15381 		/*
15382 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15383 		 * are not valid as source addresses.
15384 		 */
15385 		if (ipif->ipif_lcl_addr == INADDR_ANY)
15386 			continue;
15387 
15388 		/*
15389 		 * Check compatibility of local address for destination's
15390 		 * default label if we're on a labeled system.	Incompatible
15391 		 * addresses can't be used at all.
15392 		 */
15393 		if (dst_rhtp != NULL) {
15394 			boolean_t incompat;
15395 
15396 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15397 			    IPV4_VERSION, B_FALSE);
15398 			if (src_rhtp == NULL)
15399 				continue;
15400 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15401 			    src_rhtp->tpc_tp.tp_doi !=
15402 			    dst_rhtp->tpc_tp.tp_doi ||
15403 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15404 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15405 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15406 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
15407 			TPC_RELE(src_rhtp);
15408 			if (incompat)
15409 				continue;
15410 		}
15411 
15412 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15413 
15414 		if (ipif->ipif_lcl_addr == dst) {
15415 			type = IPIF_LOCALADDR;
15416 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15417 			type = samenet ? IPIF_SAMENET_DEPRECATED :
15418 			    IPIF_DIFFNET_DEPRECATED;
15419 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
15420 			type = samenet ? IPIF_SAMENET_ALLZONES :
15421 			    IPIF_DIFFNET_ALLZONES;
15422 		} else {
15423 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15424 		}
15425 
15426 		if (type > best_type) {
15427 			best_type = type;
15428 			best_ipif = ipif;
15429 			if (best_type == IPIF_LOCALADDR)
15430 				break; /* can't get better */
15431 		}
15432 	} while ((ipif = next_ipif) != start_ipif);
15433 
15434 	if ((ipif = best_ipif) != NULL) {
15435 		mutex_enter(&ipif->ipif_ill->ill_lock);
15436 		if (IPIF_IS_CONDEMNED(ipif)) {
15437 			mutex_exit(&ipif->ipif_ill->ill_lock);
15438 			goto retry;
15439 		}
15440 		ipif_refhold_locked(ipif);
15441 
15442 		/*
15443 		 * For IPMP, update the source ipif rotor to the next ipif,
15444 		 * provided we can look it up.  (We must not use it if it's
15445 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15446 		 * ipif_free() checked ill_src_ipif.)
15447 		 */
15448 		if (IS_IPMP(ill) && ipif != NULL) {
15449 			next_ipif = ipif->ipif_next;
15450 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15451 				ill->ill_src_ipif = next_ipif;
15452 			else
15453 				ill->ill_src_ipif = NULL;
15454 		}
15455 		mutex_exit(&ipif->ipif_ill->ill_lock);
15456 	}
15457 
15458 	rw_exit(&ipst->ips_ill_g_lock);
15459 	if (usill != NULL)
15460 		ill_refrele(usill);
15461 	if (ipmp_ill != NULL)
15462 		ill_refrele(ipmp_ill);
15463 	if (dst_rhtp != NULL)
15464 		TPC_RELE(dst_rhtp);
15465 
15466 #ifdef DEBUG
15467 	if (ipif == NULL) {
15468 		char buf1[INET6_ADDRSTRLEN];
15469 
15470 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15471 		    ill->ill_name,
15472 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15473 	} else {
15474 		char buf1[INET6_ADDRSTRLEN];
15475 		char buf2[INET6_ADDRSTRLEN];
15476 
15477 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15478 		    ipif->ipif_ill->ill_name,
15479 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15480 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15481 		    buf2, sizeof (buf2))));
15482 	}
15483 #endif /* DEBUG */
15484 	return (ipif);
15485 }
15486 
15487 /*
15488  * Pick a source address based on the destination ill and an optional setsrc
15489  * address.
15490  * The result is stored in srcp. If generation is set, then put the source
15491  * generation number there before we look for the source address (to avoid
15492  * missing changes in the set of source addresses.
15493  * If flagsp is set, then us it to pass back ipif_flags.
15494  *
15495  * If the caller wants to cache the returned source address and detect when
15496  * that might be stale, the caller should pass in a generation argument,
15497  * which the caller can later compare against ips_src_generation
15498  *
15499  * The precedence order for selecting an IPv4 source address is:
15500  *  - RTF_SETSRC on the offlink ire always wins.
15501  *  - If usrsrc is set, swap the ill to be the usesrc one.
15502  *  - If IPMP is used on the ill, select a random address from the most
15503  *    preferred ones below:
15504  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15505  * 2. Not deprecated, not ALL_ZONES
15506  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15507  * 4. Not deprecated, ALL_ZONES
15508  * 5. If onlink destination, same subnet and deprecated
15509  * 6. Deprecated.
15510  *
15511  * We have lower preference for ALL_ZONES IP addresses,
15512  * as they pose problems with unlabeled destinations.
15513  *
15514  * Note that when multiple IP addresses match e.g., #1 we pick
15515  * the first one if IPMP is not in use. With IPMP we randomize.
15516  */
15517 int
15518 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15519     ipaddr_t multicast_ifaddr,
15520     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15521     uint32_t *generation, uint64_t *flagsp)
15522 {
15523 	ipif_t *ipif;
15524 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15525 
15526 	if (flagsp != NULL)
15527 		*flagsp = 0;
15528 
15529 	/*
15530 	 * Need to grab the generation number before we check to
15531 	 * avoid a race with a change to the set of local addresses.
15532 	 * No lock needed since the thread which updates the set of local
15533 	 * addresses use ipif/ill locks and exit those (hence a store memory
15534 	 * barrier) before doing the atomic increase of ips_src_generation.
15535 	 */
15536 	if (generation != NULL) {
15537 		*generation = ipst->ips_src_generation;
15538 	}
15539 
15540 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15541 		*srcp = multicast_ifaddr;
15542 		return (0);
15543 	}
15544 
15545 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15546 	if (setsrc != INADDR_ANY) {
15547 		*srcp = setsrc;
15548 		return (0);
15549 	}
15550 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15551 	if (ipif == NULL) {
15552 		if (notready)
15553 			return (ENETDOWN);
15554 		else
15555 			return (EADDRNOTAVAIL);
15556 	}
15557 	*srcp = ipif->ipif_lcl_addr;
15558 	if (flagsp != NULL)
15559 		*flagsp = ipif->ipif_flags;
15560 	ipif_refrele(ipif);
15561 	return (0);
15562 }
15563 
15564 /* ARGSUSED */
15565 int
15566 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15567 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15568 {
15569 	/*
15570 	 * ill_phyint_reinit merged the v4 and v6 into a single
15571 	 * ipsq.  We might not have been able to complete the
15572 	 * operation in ipif_set_values, if we could not become
15573 	 * exclusive.  If so restart it here.
15574 	 */
15575 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15576 }
15577 
15578 /*
15579  * Can operate on either a module or a driver queue.
15580  * Returns an error if not a module queue.
15581  */
15582 /* ARGSUSED */
15583 int
15584 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15585     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15586 {
15587 	queue_t		*q1 = q;
15588 	char 		*cp;
15589 	char		interf_name[LIFNAMSIZ];
15590 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15591 
15592 	if (q->q_next == NULL) {
15593 		ip1dbg((
15594 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15595 		return (EINVAL);
15596 	}
15597 
15598 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15599 		return (EALREADY);
15600 
15601 	do {
15602 		q1 = q1->q_next;
15603 	} while (q1->q_next);
15604 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15605 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15606 
15607 	/*
15608 	 * Here we are not going to delay the ioack until after
15609 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15610 	 * original ioctl message before sending the requests.
15611 	 */
15612 	return (ipif_set_values(q, mp, interf_name, &ppa));
15613 }
15614 
15615 /* ARGSUSED */
15616 int
15617 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15618     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15619 {
15620 	return (ENXIO);
15621 }
15622 
15623 /*
15624  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15625  * `irep'.  Returns a pointer to the next free `irep' entry
15626  * A mirror exists in ipif_delete_bcast_ires().
15627  *
15628  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15629  * done in ire_add.
15630  */
15631 static ire_t **
15632 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15633 {
15634 	ipaddr_t addr;
15635 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15636 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15637 	ill_t *ill = ipif->ipif_ill;
15638 	zoneid_t zoneid = ipif->ipif_zoneid;
15639 
15640 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15641 
15642 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15643 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15644 
15645 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15646 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15647 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15648 
15649 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15650 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15651 
15652 	/*
15653 	 * For backward compatibility, we create net broadcast IREs based on
15654 	 * the old "IP address class system", since some old machines only
15655 	 * respond to these class derived net broadcast.  However, we must not
15656 	 * create these net broadcast IREs if the subnetmask is shorter than
15657 	 * the IP address class based derived netmask.  Otherwise, we may
15658 	 * create a net broadcast address which is the same as an IP address
15659 	 * on the subnet -- and then TCP will refuse to talk to that address.
15660 	 */
15661 	if (netmask < subnetmask) {
15662 		addr = netmask & ipif->ipif_subnet;
15663 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15664 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15665 	}
15666 
15667 	/*
15668 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15669 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15670 	 * created.  Creating these broadcast IREs will only create confusion
15671 	 * as `addr' will be the same as the IP address.
15672 	 */
15673 	if (subnetmask != 0xFFFFFFFF) {
15674 		addr = ipif->ipif_subnet;
15675 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15676 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15677 	}
15678 
15679 	return (irep);
15680 }
15681 
15682 /*
15683  * Mirror of ipif_create_bcast_ires()
15684  */
15685 static void
15686 ipif_delete_bcast_ires(ipif_t *ipif)
15687 {
15688 	ipaddr_t	addr;
15689 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15690 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15691 	ill_t		*ill = ipif->ipif_ill;
15692 	zoneid_t	zoneid = ipif->ipif_zoneid;
15693 	ire_t		*ire;
15694 
15695 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15696 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15697 
15698 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15699 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15700 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15701 
15702 	ire = ire_lookup_bcast(ill, 0, zoneid);
15703 	ASSERT(ire != NULL);
15704 	ire_delete(ire); ire_refrele(ire);
15705 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15706 	ASSERT(ire != NULL);
15707 	ire_delete(ire); ire_refrele(ire);
15708 
15709 	/*
15710 	 * For backward compatibility, we create net broadcast IREs based on
15711 	 * the old "IP address class system", since some old machines only
15712 	 * respond to these class derived net broadcast.  However, we must not
15713 	 * create these net broadcast IREs if the subnetmask is shorter than
15714 	 * the IP address class based derived netmask.  Otherwise, we may
15715 	 * create a net broadcast address which is the same as an IP address
15716 	 * on the subnet -- and then TCP will refuse to talk to that address.
15717 	 */
15718 	if (netmask < subnetmask) {
15719 		addr = netmask & ipif->ipif_subnet;
15720 		ire = ire_lookup_bcast(ill, addr, zoneid);
15721 		ASSERT(ire != NULL);
15722 		ire_delete(ire); ire_refrele(ire);
15723 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15724 		ASSERT(ire != NULL);
15725 		ire_delete(ire); ire_refrele(ire);
15726 	}
15727 
15728 	/*
15729 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15730 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15731 	 * created.  Creating these broadcast IREs will only create confusion
15732 	 * as `addr' will be the same as the IP address.
15733 	 */
15734 	if (subnetmask != 0xFFFFFFFF) {
15735 		addr = ipif->ipif_subnet;
15736 		ire = ire_lookup_bcast(ill, addr, zoneid);
15737 		ASSERT(ire != NULL);
15738 		ire_delete(ire); ire_refrele(ire);
15739 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15740 		ASSERT(ire != NULL);
15741 		ire_delete(ire); ire_refrele(ire);
15742 	}
15743 }
15744 
15745 /*
15746  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15747  * from lifr_flags and the name from lifr_name.
15748  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15749  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15750  * Returns EINPROGRESS when mp has been consumed by queueing it on
15751  * ipx_pending_mp and the ioctl will complete in ip_rput.
15752  *
15753  * Can operate on either a module or a driver queue.
15754  * Returns an error if not a module queue.
15755  */
15756 /* ARGSUSED */
15757 int
15758 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15759     ip_ioctl_cmd_t *ipip, void *if_req)
15760 {
15761 	ill_t	*ill = q->q_ptr;
15762 	phyint_t *phyi;
15763 	ip_stack_t *ipst;
15764 	struct lifreq *lifr = if_req;
15765 	uint64_t new_flags;
15766 
15767 	ASSERT(ipif != NULL);
15768 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15769 
15770 	if (q->q_next == NULL) {
15771 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15772 		return (EINVAL);
15773 	}
15774 
15775 	/*
15776 	 * If we are not writer on 'q' then this interface exists already
15777 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15778 	 * so return EALREADY.
15779 	 */
15780 	if (ill != ipif->ipif_ill)
15781 		return (EALREADY);
15782 
15783 	if (ill->ill_name[0] != '\0')
15784 		return (EALREADY);
15785 
15786 	/*
15787 	 * If there's another ill already with the requested name, ensure
15788 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15789 	 * fuse together two unrelated ills, which will cause chaos.
15790 	 */
15791 	ipst = ill->ill_ipst;
15792 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15793 	    lifr->lifr_name, NULL);
15794 	if (phyi != NULL) {
15795 		ill_t *ill_mate = phyi->phyint_illv4;
15796 
15797 		if (ill_mate == NULL)
15798 			ill_mate = phyi->phyint_illv6;
15799 		ASSERT(ill_mate != NULL);
15800 
15801 		if (ill_mate->ill_media->ip_m_mac_type !=
15802 		    ill->ill_media->ip_m_mac_type) {
15803 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15804 			    "use the same ill name on differing media\n"));
15805 			return (EINVAL);
15806 		}
15807 	}
15808 
15809 	/*
15810 	 * We start off as IFF_IPV4 in ipif_allocate and become
15811 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15812 	 * The only flags that we read from user space are IFF_IPV4,
15813 	 * IFF_IPV6, and IFF_BROADCAST.
15814 	 *
15815 	 * This ill has not been inserted into the global list.
15816 	 * So we are still single threaded and don't need any lock
15817 	 *
15818 	 * Saniy check the flags.
15819 	 */
15820 
15821 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15822 	    ((lifr->lifr_flags & IFF_IPV6) ||
15823 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15824 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15825 		    "or IPv6 i.e., no broadcast \n"));
15826 		return (EINVAL);
15827 	}
15828 
15829 	new_flags =
15830 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15831 
15832 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15833 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15834 		    "IFF_IPV4 or IFF_IPV6\n"));
15835 		return (EINVAL);
15836 	}
15837 
15838 	/*
15839 	 * We always start off as IPv4, so only need to check for IPv6.
15840 	 */
15841 	if ((new_flags & IFF_IPV6) != 0) {
15842 		ill->ill_flags |= ILLF_IPV6;
15843 		ill->ill_flags &= ~ILLF_IPV4;
15844 
15845 		if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15846 			ill->ill_flags |= ILLF_NOLINKLOCAL;
15847 	}
15848 
15849 	if ((new_flags & IFF_BROADCAST) != 0)
15850 		ipif->ipif_flags |= IPIF_BROADCAST;
15851 	else
15852 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15853 
15854 	/* We started off as V4. */
15855 	if (ill->ill_flags & ILLF_IPV6) {
15856 		ill->ill_phyint->phyint_illv6 = ill;
15857 		ill->ill_phyint->phyint_illv4 = NULL;
15858 	}
15859 
15860 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15861 }
15862 
15863 /* ARGSUSED */
15864 int
15865 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15866     ip_ioctl_cmd_t *ipip, void *if_req)
15867 {
15868 	/*
15869 	 * ill_phyint_reinit merged the v4 and v6 into a single
15870 	 * ipsq.  We might not have been able to complete the
15871 	 * slifname in ipif_set_values, if we could not become
15872 	 * exclusive.  If so restart it here
15873 	 */
15874 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15875 }
15876 
15877 /*
15878  * Return a pointer to the ipif which matches the index, IP version type and
15879  * zoneid.
15880  */
15881 ipif_t *
15882 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15883     ip_stack_t *ipst)
15884 {
15885 	ill_t	*ill;
15886 	ipif_t	*ipif = NULL;
15887 
15888 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15889 	if (ill != NULL) {
15890 		mutex_enter(&ill->ill_lock);
15891 		for (ipif = ill->ill_ipif; ipif != NULL;
15892 		    ipif = ipif->ipif_next) {
15893 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15894 			    zoneid == ipif->ipif_zoneid ||
15895 			    ipif->ipif_zoneid == ALL_ZONES)) {
15896 				ipif_refhold_locked(ipif);
15897 				break;
15898 			}
15899 		}
15900 		mutex_exit(&ill->ill_lock);
15901 		ill_refrele(ill);
15902 	}
15903 	return (ipif);
15904 }
15905 
15906 /*
15907  * Change an existing physical interface's index. If the new index
15908  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15909  * Finally, we update other systems which may have a dependence on the
15910  * index value.
15911  */
15912 /* ARGSUSED */
15913 int
15914 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15915     ip_ioctl_cmd_t *ipip, void *ifreq)
15916 {
15917 	ill_t		*ill;
15918 	phyint_t	*phyi;
15919 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15920 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15921 	uint_t	old_index, index;
15922 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15923 	avl_index_t	where;
15924 
15925 	if (ipip->ipi_cmd_type == IF_CMD)
15926 		index = ifr->ifr_index;
15927 	else
15928 		index = lifr->lifr_index;
15929 
15930 	/*
15931 	 * Only allow on physical interface. Also, index zero is illegal.
15932 	 */
15933 	ill = ipif->ipif_ill;
15934 	phyi = ill->ill_phyint;
15935 	if (ipif->ipif_id != 0 || index == 0) {
15936 		return (EINVAL);
15937 	}
15938 
15939 	/* If the index is not changing, no work to do */
15940 	if (phyi->phyint_ifindex == index)
15941 		return (0);
15942 
15943 	/*
15944 	 * Use phyint_exists() to determine if the new interface index
15945 	 * is already in use. If the index is unused then we need to
15946 	 * change the phyint's position in the phyint_list_avl_by_index
15947 	 * tree. If we do not do this, subsequent lookups (using the new
15948 	 * index value) will not find the phyint.
15949 	 */
15950 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15951 	if (phyint_exists(index, ipst)) {
15952 		rw_exit(&ipst->ips_ill_g_lock);
15953 		return (EEXIST);
15954 	}
15955 
15956 	/*
15957 	 * The new index is unused. Set it in the phyint. However we must not
15958 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15959 	 * changes. The event must be bound to old ifindex value.
15960 	 */
15961 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15962 	    &index, sizeof (index));
15963 
15964 	old_index = phyi->phyint_ifindex;
15965 	phyi->phyint_ifindex = index;
15966 
15967 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15968 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15969 	    &index, &where);
15970 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15971 	    phyi, where);
15972 	rw_exit(&ipst->ips_ill_g_lock);
15973 
15974 	/* Update SCTP's ILL list */
15975 	sctp_ill_reindex(ill, old_index);
15976 
15977 	/* Send the routing sockets message */
15978 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
15979 	if (ILL_OTHER(ill))
15980 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
15981 
15982 	/* Perhaps ilgs should use this ill */
15983 	update_conn_ill(NULL, ill->ill_ipst);
15984 	return (0);
15985 }
15986 
15987 /* ARGSUSED */
15988 int
15989 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15990     ip_ioctl_cmd_t *ipip, void *ifreq)
15991 {
15992 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15993 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15994 
15995 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
15996 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15997 	/* Get the interface index */
15998 	if (ipip->ipi_cmd_type == IF_CMD) {
15999 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16000 	} else {
16001 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16002 	}
16003 	return (0);
16004 }
16005 
16006 /* ARGSUSED */
16007 int
16008 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16009     ip_ioctl_cmd_t *ipip, void *ifreq)
16010 {
16011 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16012 
16013 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16014 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16015 	/* Get the interface zone */
16016 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16017 	lifr->lifr_zoneid = ipif->ipif_zoneid;
16018 	return (0);
16019 }
16020 
16021 /*
16022  * Set the zoneid of an interface.
16023  */
16024 /* ARGSUSED */
16025 int
16026 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16027     ip_ioctl_cmd_t *ipip, void *ifreq)
16028 {
16029 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16030 	int err = 0;
16031 	boolean_t need_up = B_FALSE;
16032 	zone_t *zptr;
16033 	zone_status_t status;
16034 	zoneid_t zoneid;
16035 
16036 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16037 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16038 		if (!is_system_labeled())
16039 			return (ENOTSUP);
16040 		zoneid = GLOBAL_ZONEID;
16041 	}
16042 
16043 	/* cannot assign instance zero to a non-global zone */
16044 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16045 		return (ENOTSUP);
16046 
16047 	/*
16048 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
16049 	 * the event of a race with the zone shutdown processing, since IP
16050 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16051 	 * interface will be cleaned up even if the zone is shut down
16052 	 * immediately after the status check. If the interface can't be brought
16053 	 * down right away, and the zone is shut down before the restart
16054 	 * function is called, we resolve the possible races by rechecking the
16055 	 * zone status in the restart function.
16056 	 */
16057 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
16058 		return (EINVAL);
16059 	status = zone_status_get(zptr);
16060 	zone_rele(zptr);
16061 
16062 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16063 		return (EINVAL);
16064 
16065 	if (ipif->ipif_flags & IPIF_UP) {
16066 		/*
16067 		 * If the interface is already marked up,
16068 		 * we call ipif_down which will take care
16069 		 * of ditching any IREs that have been set
16070 		 * up based on the old interface address.
16071 		 */
16072 		err = ipif_logical_down(ipif, q, mp);
16073 		if (err == EINPROGRESS)
16074 			return (err);
16075 		(void) ipif_down_tail(ipif);
16076 		need_up = B_TRUE;
16077 	}
16078 
16079 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16080 	return (err);
16081 }
16082 
16083 static int
16084 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16085     queue_t *q, mblk_t *mp, boolean_t need_up)
16086 {
16087 	int	err = 0;
16088 	ip_stack_t	*ipst;
16089 
16090 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16091 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16092 
16093 	if (CONN_Q(q))
16094 		ipst = CONNQ_TO_IPST(q);
16095 	else
16096 		ipst = ILLQ_TO_IPST(q);
16097 
16098 	/*
16099 	 * For exclusive stacks we don't allow a different zoneid than
16100 	 * global.
16101 	 */
16102 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16103 	    zoneid != GLOBAL_ZONEID)
16104 		return (EINVAL);
16105 
16106 	/* Set the new zone id. */
16107 	ipif->ipif_zoneid = zoneid;
16108 
16109 	/* Update sctp list */
16110 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16111 
16112 	/* The default multicast interface might have changed */
16113 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16114 
16115 	if (need_up) {
16116 		/*
16117 		 * Now bring the interface back up.  If this
16118 		 * is the only IPIF for the ILL, ipif_up
16119 		 * will have to re-bind to the device, so
16120 		 * we may get back EINPROGRESS, in which
16121 		 * case, this IOCTL will get completed in
16122 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
16123 		 */
16124 		err = ipif_up(ipif, q, mp);
16125 	}
16126 	return (err);
16127 }
16128 
16129 /* ARGSUSED */
16130 int
16131 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16132     ip_ioctl_cmd_t *ipip, void *if_req)
16133 {
16134 	struct lifreq *lifr = (struct lifreq *)if_req;
16135 	zoneid_t zoneid;
16136 	zone_t *zptr;
16137 	zone_status_t status;
16138 
16139 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16140 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16141 		zoneid = GLOBAL_ZONEID;
16142 
16143 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16144 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16145 
16146 	/*
16147 	 * We recheck the zone status to resolve the following race condition:
16148 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16149 	 * 2) hme0:1 is up and can't be brought down right away;
16150 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16151 	 * 3) zone "myzone" is halted; the zone status switches to
16152 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16153 	 * the interfaces to remove - hme0:1 is not returned because it's not
16154 	 * yet in "myzone", so it won't be removed;
16155 	 * 4) the restart function for SIOCSLIFZONE is called; without the
16156 	 * status check here, we would have hme0:1 in "myzone" after it's been
16157 	 * destroyed.
16158 	 * Note that if the status check fails, we need to bring the interface
16159 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16160 	 * ipif_up_done[_v6]().
16161 	 */
16162 	status = ZONE_IS_UNINITIALIZED;
16163 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16164 		status = zone_status_get(zptr);
16165 		zone_rele(zptr);
16166 	}
16167 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16168 		if (ipif->ipif_isv6) {
16169 			(void) ipif_up_done_v6(ipif);
16170 		} else {
16171 			(void) ipif_up_done(ipif);
16172 		}
16173 		return (EINVAL);
16174 	}
16175 
16176 	(void) ipif_down_tail(ipif);
16177 
16178 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16179 	    B_TRUE));
16180 }
16181 
16182 /*
16183  * Return the number of addresses on `ill' with one or more of the values
16184  * in `set' set and all of the values in `clear' clear.
16185  */
16186 static uint_t
16187 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16188 {
16189 	ipif_t	*ipif;
16190 	uint_t	cnt = 0;
16191 
16192 	ASSERT(IAM_WRITER_ILL(ill));
16193 
16194 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16195 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16196 			cnt++;
16197 
16198 	return (cnt);
16199 }
16200 
16201 /*
16202  * Return the number of migratable addresses on `ill' that are under
16203  * application control.
16204  */
16205 uint_t
16206 ill_appaddr_cnt(const ill_t *ill)
16207 {
16208 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16209 	    IPIF_NOFAILOVER));
16210 }
16211 
16212 /*
16213  * Return the number of point-to-point addresses on `ill'.
16214  */
16215 uint_t
16216 ill_ptpaddr_cnt(const ill_t *ill)
16217 {
16218 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16219 }
16220 
16221 /* ARGSUSED */
16222 int
16223 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16224 	ip_ioctl_cmd_t *ipip, void *ifreq)
16225 {
16226 	struct lifreq	*lifr = ifreq;
16227 
16228 	ASSERT(q->q_next == NULL);
16229 	ASSERT(CONN_Q(q));
16230 
16231 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16232 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16233 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16234 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16235 
16236 	return (0);
16237 }
16238 
16239 /* Find the previous ILL in this usesrc group */
16240 static ill_t *
16241 ill_prev_usesrc(ill_t *uill)
16242 {
16243 	ill_t *ill;
16244 
16245 	for (ill = uill->ill_usesrc_grp_next;
16246 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16247 	    ill = ill->ill_usesrc_grp_next)
16248 		/* do nothing */;
16249 	return (ill);
16250 }
16251 
16252 /*
16253  * Release all members of the usesrc group. This routine is called
16254  * from ill_delete when the interface being unplumbed is the
16255  * group head.
16256  *
16257  * This silently clears the usesrc that ifconfig setup.
16258  * An alternative would be to keep that ifindex, and drop packets on the floor
16259  * since no source address can be selected.
16260  * Even if we keep the current semantics, don't need a lock and a linked list.
16261  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16262  * the one that is being removed. Issue is how we return the usesrc users
16263  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16264  * ill_usesrc_ifindex matching a target ill. We could also do that with an
16265  * ill walk, but the walker would need to insert in the ioctl response.
16266  */
16267 static void
16268 ill_disband_usesrc_group(ill_t *uill)
16269 {
16270 	ill_t *next_ill, *tmp_ill;
16271 	ip_stack_t	*ipst = uill->ill_ipst;
16272 
16273 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16274 	next_ill = uill->ill_usesrc_grp_next;
16275 
16276 	do {
16277 		ASSERT(next_ill != NULL);
16278 		tmp_ill = next_ill->ill_usesrc_grp_next;
16279 		ASSERT(tmp_ill != NULL);
16280 		next_ill->ill_usesrc_grp_next = NULL;
16281 		next_ill->ill_usesrc_ifindex = 0;
16282 		next_ill = tmp_ill;
16283 	} while (next_ill->ill_usesrc_ifindex != 0);
16284 	uill->ill_usesrc_grp_next = NULL;
16285 }
16286 
16287 /*
16288  * Remove the client usesrc ILL from the list and relink to a new list
16289  */
16290 int
16291 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16292 {
16293 	ill_t *ill, *tmp_ill;
16294 	ip_stack_t	*ipst = ucill->ill_ipst;
16295 
16296 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16297 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16298 
16299 	/*
16300 	 * Check if the usesrc client ILL passed in is not already
16301 	 * in use as a usesrc ILL i.e one whose source address is
16302 	 * in use OR a usesrc ILL is not already in use as a usesrc
16303 	 * client ILL
16304 	 */
16305 	if ((ucill->ill_usesrc_ifindex == 0) ||
16306 	    (uill->ill_usesrc_ifindex != 0)) {
16307 		return (-1);
16308 	}
16309 
16310 	ill = ill_prev_usesrc(ucill);
16311 	ASSERT(ill->ill_usesrc_grp_next != NULL);
16312 
16313 	/* Remove from the current list */
16314 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16315 		/* Only two elements in the list */
16316 		ASSERT(ill->ill_usesrc_ifindex == 0);
16317 		ill->ill_usesrc_grp_next = NULL;
16318 	} else {
16319 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16320 	}
16321 
16322 	if (ifindex == 0) {
16323 		ucill->ill_usesrc_ifindex = 0;
16324 		ucill->ill_usesrc_grp_next = NULL;
16325 		return (0);
16326 	}
16327 
16328 	ucill->ill_usesrc_ifindex = ifindex;
16329 	tmp_ill = uill->ill_usesrc_grp_next;
16330 	uill->ill_usesrc_grp_next = ucill;
16331 	ucill->ill_usesrc_grp_next =
16332 	    (tmp_ill != NULL) ? tmp_ill : uill;
16333 	return (0);
16334 }
16335 
16336 /*
16337  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16338  * ip.c for locking details.
16339  */
16340 /* ARGSUSED */
16341 int
16342 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16343     ip_ioctl_cmd_t *ipip, void *ifreq)
16344 {
16345 	struct lifreq *lifr = (struct lifreq *)ifreq;
16346 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16347 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16348 	int err = 0, ret;
16349 	uint_t ifindex;
16350 	ipsq_t *ipsq = NULL;
16351 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16352 
16353 	ASSERT(IAM_WRITER_IPIF(ipif));
16354 	ASSERT(q->q_next == NULL);
16355 	ASSERT(CONN_Q(q));
16356 
16357 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16358 
16359 	ifindex = lifr->lifr_index;
16360 	if (ifindex == 0) {
16361 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16362 			/* non usesrc group interface, nothing to reset */
16363 			return (0);
16364 		}
16365 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16366 		/* valid reset request */
16367 		reset_flg = B_TRUE;
16368 	}
16369 
16370 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16371 	if (usesrc_ill == NULL)
16372 		return (ENXIO);
16373 	if (usesrc_ill == ipif->ipif_ill) {
16374 		ill_refrele(usesrc_ill);
16375 		return (EINVAL);
16376 	}
16377 
16378 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16379 	    NEW_OP, B_TRUE);
16380 	if (ipsq == NULL) {
16381 		err = EINPROGRESS;
16382 		/* Operation enqueued on the ipsq of the usesrc ILL */
16383 		goto done;
16384 	}
16385 
16386 	/* USESRC isn't currently supported with IPMP */
16387 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16388 		err = ENOTSUP;
16389 		goto done;
16390 	}
16391 
16392 	/*
16393 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
16394 	 * used by IPMP underlying interfaces, but someone might think it's
16395 	 * more general and try to use it independently with VNI.)
16396 	 */
16397 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16398 		err = ENOTSUP;
16399 		goto done;
16400 	}
16401 
16402 	/*
16403 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16404 	 * already a client then return EINVAL
16405 	 */
16406 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16407 		err = EINVAL;
16408 		goto done;
16409 	}
16410 
16411 	/*
16412 	 * If the ill_usesrc_ifindex field is already set to what it needs to
16413 	 * be then this is a duplicate operation.
16414 	 */
16415 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16416 		err = 0;
16417 		goto done;
16418 	}
16419 
16420 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16421 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16422 	    usesrc_ill->ill_isv6));
16423 
16424 	/*
16425 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16426 	 * and the ill_usesrc_ifindex fields
16427 	 */
16428 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16429 
16430 	if (reset_flg) {
16431 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16432 		if (ret != 0) {
16433 			err = EINVAL;
16434 		}
16435 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
16436 		goto done;
16437 	}
16438 
16439 	/*
16440 	 * Four possibilities to consider:
16441 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16442 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16443 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16444 	 * 4. Both are part of their respective usesrc groups
16445 	 */
16446 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16447 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16448 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16449 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16450 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16451 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16452 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16453 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16454 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16455 		/* Insert at head of list */
16456 		usesrc_cli_ill->ill_usesrc_grp_next =
16457 		    usesrc_ill->ill_usesrc_grp_next;
16458 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16459 	} else {
16460 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16461 		    ifindex);
16462 		if (ret != 0)
16463 			err = EINVAL;
16464 	}
16465 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
16466 
16467 done:
16468 	if (ipsq != NULL)
16469 		ipsq_exit(ipsq);
16470 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16471 	ill_refrele(usesrc_ill);
16472 
16473 	/* Let conn_ixa caching know that source address selection changed */
16474 	ip_update_source_selection(ipst);
16475 
16476 	return (err);
16477 }
16478 
16479 /* ARGSUSED */
16480 int
16481 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16482     ip_ioctl_cmd_t *ipip, void *if_req)
16483 {
16484 	struct lifreq	*lifr = (struct lifreq *)if_req;
16485 	ill_t		*ill = ipif->ipif_ill;
16486 
16487 	/*
16488 	 * Need a lock since IFF_UP can be set even when there are
16489 	 * references to the ipif.
16490 	 */
16491 	mutex_enter(&ill->ill_lock);
16492 	if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16493 		lifr->lifr_dadstate = DAD_IN_PROGRESS;
16494 	else
16495 		lifr->lifr_dadstate = DAD_DONE;
16496 	mutex_exit(&ill->ill_lock);
16497 	return (0);
16498 }
16499 
16500 /*
16501  * comparison function used by avl.
16502  */
16503 static int
16504 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16505 {
16506 
16507 	uint_t index;
16508 
16509 	ASSERT(phyip != NULL && index_ptr != NULL);
16510 
16511 	index = *((uint_t *)index_ptr);
16512 	/*
16513 	 * let the phyint with the lowest index be on top.
16514 	 */
16515 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16516 		return (1);
16517 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16518 		return (-1);
16519 	return (0);
16520 }
16521 
16522 /*
16523  * comparison function used by avl.
16524  */
16525 static int
16526 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16527 {
16528 	ill_t *ill;
16529 	int res = 0;
16530 
16531 	ASSERT(phyip != NULL && name_ptr != NULL);
16532 
16533 	if (((phyint_t *)phyip)->phyint_illv4)
16534 		ill = ((phyint_t *)phyip)->phyint_illv4;
16535 	else
16536 		ill = ((phyint_t *)phyip)->phyint_illv6;
16537 	ASSERT(ill != NULL);
16538 
16539 	res = strcmp(ill->ill_name, (char *)name_ptr);
16540 	if (res > 0)
16541 		return (1);
16542 	else if (res < 0)
16543 		return (-1);
16544 	return (0);
16545 }
16546 
16547 /*
16548  * This function is called on the unplumb path via ill_glist_delete() when
16549  * there are no ills left on the phyint and thus the phyint can be freed.
16550  */
16551 static void
16552 phyint_free(phyint_t *phyi)
16553 {
16554 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16555 
16556 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16557 
16558 	/*
16559 	 * If this phyint was an IPMP meta-interface, blow away the group.
16560 	 * This is safe to do because all of the illgrps have already been
16561 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16562 	 * If we're cleaning up as a result of failed initialization,
16563 	 * phyint_grp may be NULL.
16564 	 */
16565 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16566 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16567 		ipmp_grp_destroy(phyi->phyint_grp);
16568 		phyi->phyint_grp = NULL;
16569 		rw_exit(&ipst->ips_ipmp_lock);
16570 	}
16571 
16572 	/*
16573 	 * If this interface was under IPMP, take it out of the group.
16574 	 */
16575 	if (phyi->phyint_grp != NULL)
16576 		ipmp_phyint_leave_grp(phyi);
16577 
16578 	/*
16579 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16580 	 * will be freed in ipsq_exit().
16581 	 */
16582 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16583 	phyi->phyint_name[0] = '\0';
16584 
16585 	mi_free(phyi);
16586 }
16587 
16588 /*
16589  * Attach the ill to the phyint structure which can be shared by both
16590  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16591  * function is called from ipif_set_values and ill_lookup_on_name (for
16592  * loopback) where we know the name of the ill. We lookup the ill and if
16593  * there is one present already with the name use that phyint. Otherwise
16594  * reuse the one allocated by ill_init.
16595  */
16596 static void
16597 ill_phyint_reinit(ill_t *ill)
16598 {
16599 	boolean_t isv6 = ill->ill_isv6;
16600 	phyint_t *phyi_old;
16601 	phyint_t *phyi;
16602 	avl_index_t where = 0;
16603 	ill_t	*ill_other = NULL;
16604 	ip_stack_t	*ipst = ill->ill_ipst;
16605 
16606 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16607 
16608 	phyi_old = ill->ill_phyint;
16609 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16610 	    phyi_old->phyint_illv6 == NULL));
16611 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16612 	    phyi_old->phyint_illv4 == NULL));
16613 	ASSERT(phyi_old->phyint_ifindex == 0);
16614 
16615 	/*
16616 	 * Now that our ill has a name, set it in the phyint.
16617 	 */
16618 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16619 
16620 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16621 	    ill->ill_name, &where);
16622 
16623 	/*
16624 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16625 	 *    the global list of ills. So no other thread could have located
16626 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16627 	 * 2. Now locate the other protocol instance of this ill.
16628 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16629 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16630 	 *    of neither ill can change.
16631 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16632 	 *    other ill.
16633 	 * 5. Release all locks.
16634 	 */
16635 
16636 	/*
16637 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16638 	 * we are initializing IPv4.
16639 	 */
16640 	if (phyi != NULL) {
16641 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16642 		ASSERT(ill_other->ill_phyint != NULL);
16643 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16644 		    (!isv6 && ill_other->ill_isv6));
16645 		GRAB_ILL_LOCKS(ill, ill_other);
16646 		/*
16647 		 * We are potentially throwing away phyint_flags which
16648 		 * could be different from the one that we obtain from
16649 		 * ill_other->ill_phyint. But it is okay as we are assuming
16650 		 * that the state maintained within IP is correct.
16651 		 */
16652 		mutex_enter(&phyi->phyint_lock);
16653 		if (isv6) {
16654 			ASSERT(phyi->phyint_illv6 == NULL);
16655 			phyi->phyint_illv6 = ill;
16656 		} else {
16657 			ASSERT(phyi->phyint_illv4 == NULL);
16658 			phyi->phyint_illv4 = ill;
16659 		}
16660 
16661 		/*
16662 		 * Delete the old phyint and make its ipsq eligible
16663 		 * to be freed in ipsq_exit().
16664 		 */
16665 		phyi_old->phyint_illv4 = NULL;
16666 		phyi_old->phyint_illv6 = NULL;
16667 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16668 		phyi_old->phyint_name[0] = '\0';
16669 		mi_free(phyi_old);
16670 	} else {
16671 		mutex_enter(&ill->ill_lock);
16672 		/*
16673 		 * We don't need to acquire any lock, since
16674 		 * the ill is not yet visible globally  and we
16675 		 * have not yet released the ill_g_lock.
16676 		 */
16677 		phyi = phyi_old;
16678 		mutex_enter(&phyi->phyint_lock);
16679 		/* XXX We need a recovery strategy here. */
16680 		if (!phyint_assign_ifindex(phyi, ipst))
16681 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16682 
16683 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16684 		    (void *)phyi, where);
16685 
16686 		(void) avl_find(&ipst->ips_phyint_g_list->
16687 		    phyint_list_avl_by_index,
16688 		    &phyi->phyint_ifindex, &where);
16689 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16690 		    (void *)phyi, where);
16691 	}
16692 
16693 	/*
16694 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16695 	 * pending mp is not affected because that is per ill basis.
16696 	 */
16697 	ill->ill_phyint = phyi;
16698 
16699 	/*
16700 	 * Now that the phyint's ifindex has been assigned, complete the
16701 	 * remaining
16702 	 */
16703 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16704 	if (ill->ill_isv6) {
16705 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16706 		    ill->ill_phyint->phyint_ifindex;
16707 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16708 	} else {
16709 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16710 	}
16711 
16712 	/*
16713 	 * Generate an event within the hooks framework to indicate that
16714 	 * a new interface has just been added to IP.  For this event to
16715 	 * be generated, the network interface must, at least, have an
16716 	 * ifindex assigned to it.  (We don't generate the event for
16717 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16718 	 *
16719 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16720 	 * that the ordering of delivered events to listeners matches the
16721 	 * order of them in the kernel.
16722 	 */
16723 	if (!IS_LOOPBACK(ill)) {
16724 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16725 		    ill->ill_name_length);
16726 	}
16727 	RELEASE_ILL_LOCKS(ill, ill_other);
16728 	mutex_exit(&phyi->phyint_lock);
16729 }
16730 
16731 /*
16732  * Notify any downstream modules of the name of this interface.
16733  * An M_IOCTL is used even though we don't expect a successful reply.
16734  * Any reply message from the driver (presumably an M_IOCNAK) will
16735  * eventually get discarded somewhere upstream.  The message format is
16736  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16737  * to IP.
16738  */
16739 static void
16740 ip_ifname_notify(ill_t *ill, queue_t *q)
16741 {
16742 	mblk_t *mp1, *mp2;
16743 	struct iocblk *iocp;
16744 	struct lifreq *lifr;
16745 
16746 	mp1 = mkiocb(SIOCSLIFNAME);
16747 	if (mp1 == NULL)
16748 		return;
16749 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16750 	if (mp2 == NULL) {
16751 		freeb(mp1);
16752 		return;
16753 	}
16754 
16755 	mp1->b_cont = mp2;
16756 	iocp = (struct iocblk *)mp1->b_rptr;
16757 	iocp->ioc_count = sizeof (struct lifreq);
16758 
16759 	lifr = (struct lifreq *)mp2->b_rptr;
16760 	mp2->b_wptr += sizeof (struct lifreq);
16761 	bzero(lifr, sizeof (struct lifreq));
16762 
16763 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16764 	lifr->lifr_ppa = ill->ill_ppa;
16765 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16766 
16767 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16768 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16769 	putnext(q, mp1);
16770 }
16771 
16772 static int
16773 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16774 {
16775 	int		err;
16776 	ip_stack_t	*ipst = ill->ill_ipst;
16777 	phyint_t	*phyi = ill->ill_phyint;
16778 
16779 	/*
16780 	 * Now that ill_name is set, the configuration for the IPMP
16781 	 * meta-interface can be performed.
16782 	 */
16783 	if (IS_IPMP(ill)) {
16784 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16785 		/*
16786 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16787 		 * meta-interface and we need to create the IPMP group.
16788 		 */
16789 		if (phyi->phyint_grp == NULL) {
16790 			/*
16791 			 * If someone has renamed another IPMP group to have
16792 			 * the same name as our interface, bail.
16793 			 */
16794 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16795 				rw_exit(&ipst->ips_ipmp_lock);
16796 				return (EEXIST);
16797 			}
16798 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16799 			if (phyi->phyint_grp == NULL) {
16800 				rw_exit(&ipst->ips_ipmp_lock);
16801 				return (ENOMEM);
16802 			}
16803 		}
16804 		rw_exit(&ipst->ips_ipmp_lock);
16805 	}
16806 
16807 	/* Tell downstream modules where they are. */
16808 	ip_ifname_notify(ill, q);
16809 
16810 	/*
16811 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16812 	 * Error cases are ENOMEM ...
16813 	 */
16814 	err = ill_dl_phys(ill, ipif, mp, q);
16815 
16816 	if (ill->ill_isv6) {
16817 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16818 		if (ipst->ips_mld_slowtimeout_id == 0) {
16819 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16820 			    (void *)ipst,
16821 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16822 		}
16823 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16824 	} else {
16825 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16826 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16827 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16828 			    (void *)ipst,
16829 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16830 		}
16831 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16832 	}
16833 
16834 	return (err);
16835 }
16836 
16837 /*
16838  * Common routine for ppa and ifname setting. Should be called exclusive.
16839  *
16840  * Returns EINPROGRESS when mp has been consumed by queueing it on
16841  * ipx_pending_mp and the ioctl will complete in ip_rput.
16842  *
16843  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16844  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16845  * For SLIFNAME, we pass these values back to the userland.
16846  */
16847 static int
16848 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16849 {
16850 	ill_t	*ill;
16851 	ipif_t	*ipif;
16852 	ipsq_t	*ipsq;
16853 	char	*ppa_ptr;
16854 	char	*old_ptr;
16855 	char	old_char;
16856 	int	error;
16857 	ip_stack_t	*ipst;
16858 
16859 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16860 	ASSERT(q->q_next != NULL);
16861 	ASSERT(interf_name != NULL);
16862 
16863 	ill = (ill_t *)q->q_ptr;
16864 	ipst = ill->ill_ipst;
16865 
16866 	ASSERT(ill->ill_ipst != NULL);
16867 	ASSERT(ill->ill_name[0] == '\0');
16868 	ASSERT(IAM_WRITER_ILL(ill));
16869 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16870 	ASSERT(ill->ill_ppa == UINT_MAX);
16871 
16872 	ill->ill_defend_start = ill->ill_defend_count = 0;
16873 	/* The ppa is sent down by ifconfig or is chosen */
16874 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16875 		return (EINVAL);
16876 	}
16877 
16878 	/*
16879 	 * make sure ppa passed in is same as ppa in the name.
16880 	 * This check is not made when ppa == UINT_MAX in that case ppa
16881 	 * in the name could be anything. System will choose a ppa and
16882 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16883 	 */
16884 	if (*new_ppa_ptr != UINT_MAX) {
16885 		/* stoi changes the pointer */
16886 		old_ptr = ppa_ptr;
16887 		/*
16888 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16889 		 * (they don't have an externally visible ppa).  We assign one
16890 		 * here so that we can manage the interface.  Note that in
16891 		 * the past this value was always 0 for DLPI 1 drivers.
16892 		 */
16893 		if (*new_ppa_ptr == 0)
16894 			*new_ppa_ptr = stoi(&old_ptr);
16895 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16896 			return (EINVAL);
16897 	}
16898 	/*
16899 	 * terminate string before ppa
16900 	 * save char at that location.
16901 	 */
16902 	old_char = ppa_ptr[0];
16903 	ppa_ptr[0] = '\0';
16904 
16905 	ill->ill_ppa = *new_ppa_ptr;
16906 	/*
16907 	 * Finish as much work now as possible before calling ill_glist_insert
16908 	 * which makes the ill globally visible and also merges it with the
16909 	 * other protocol instance of this phyint. The remaining work is
16910 	 * done after entering the ipsq which may happen sometime later.
16911 	 */
16912 	ipif = ill->ill_ipif;
16913 
16914 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16915 	ipif_assign_seqid(ipif);
16916 
16917 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16918 		ill->ill_flags |= ILLF_IPV4;
16919 
16920 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16921 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16922 
16923 	if (ill->ill_flags & ILLF_IPV6) {
16924 
16925 		ill->ill_isv6 = B_TRUE;
16926 		ill_set_inputfn(ill);
16927 		if (ill->ill_rq != NULL) {
16928 			ill->ill_rq->q_qinfo = &iprinitv6;
16929 		}
16930 
16931 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16932 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16933 		ipif->ipif_v6subnet = ipv6_all_zeros;
16934 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16935 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16936 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16937 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16938 		/*
16939 		 * point-to-point or Non-mulicast capable
16940 		 * interfaces won't do NUD unless explicitly
16941 		 * configured to do so.
16942 		 */
16943 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16944 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16945 			ill->ill_flags |= ILLF_NONUD;
16946 		}
16947 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16948 		if (ill->ill_flags & ILLF_NOARP) {
16949 			/*
16950 			 * Note: xresolv interfaces will eventually need
16951 			 * NOARP set here as well, but that will require
16952 			 * those external resolvers to have some
16953 			 * knowledge of that flag and act appropriately.
16954 			 * Not to be changed at present.
16955 			 */
16956 			ill->ill_flags &= ~ILLF_NOARP;
16957 		}
16958 		/*
16959 		 * Set the ILLF_ROUTER flag according to the global
16960 		 * IPv6 forwarding policy.
16961 		 */
16962 		if (ipst->ips_ipv6_forwarding != 0)
16963 			ill->ill_flags |= ILLF_ROUTER;
16964 	} else if (ill->ill_flags & ILLF_IPV4) {
16965 		ill->ill_isv6 = B_FALSE;
16966 		ill_set_inputfn(ill);
16967 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16968 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16969 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16970 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16971 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16972 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16973 		/*
16974 		 * Set the ILLF_ROUTER flag according to the global
16975 		 * IPv4 forwarding policy.
16976 		 */
16977 		if (ipst->ips_ip_forwarding != 0)
16978 			ill->ill_flags |= ILLF_ROUTER;
16979 	}
16980 
16981 	ASSERT(ill->ill_phyint != NULL);
16982 
16983 	/*
16984 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
16985 	 * be completed in ill_glist_insert -> ill_phyint_reinit
16986 	 */
16987 	if (!ill_allocate_mibs(ill))
16988 		return (ENOMEM);
16989 
16990 	/*
16991 	 * Pick a default sap until we get the DL_INFO_ACK back from
16992 	 * the driver.
16993 	 */
16994 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
16995 	    ill->ill_media->ip_m_ipv4sap;
16996 
16997 	ill->ill_ifname_pending = 1;
16998 	ill->ill_ifname_pending_err = 0;
16999 
17000 	/*
17001 	 * When the first ipif comes up in ipif_up_done(), multicast groups
17002 	 * that were joined while this ill was not bound to the DLPI link need
17003 	 * to be recovered by ill_recover_multicast().
17004 	 */
17005 	ill->ill_need_recover_multicast = 1;
17006 
17007 	ill_refhold(ill);
17008 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17009 	if ((error = ill_glist_insert(ill, interf_name,
17010 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17011 		ill->ill_ppa = UINT_MAX;
17012 		ill->ill_name[0] = '\0';
17013 		/*
17014 		 * undo null termination done above.
17015 		 */
17016 		ppa_ptr[0] = old_char;
17017 		rw_exit(&ipst->ips_ill_g_lock);
17018 		ill_refrele(ill);
17019 		return (error);
17020 	}
17021 
17022 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17023 
17024 	/*
17025 	 * When we return the buffer pointed to by interf_name should contain
17026 	 * the same name as in ill_name.
17027 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17028 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17029 	 * so copy full name and update the ppa ptr.
17030 	 * When ppa passed in != UINT_MAX all values are correct just undo
17031 	 * null termination, this saves a bcopy.
17032 	 */
17033 	if (*new_ppa_ptr == UINT_MAX) {
17034 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17035 		*new_ppa_ptr = ill->ill_ppa;
17036 	} else {
17037 		/*
17038 		 * undo null termination done above.
17039 		 */
17040 		ppa_ptr[0] = old_char;
17041 	}
17042 
17043 	/* Let SCTP know about this ILL */
17044 	sctp_update_ill(ill, SCTP_ILL_INSERT);
17045 
17046 	/*
17047 	 * ill_glist_insert has made the ill visible globally, and
17048 	 * ill_phyint_reinit could have changed the ipsq. At this point,
17049 	 * we need to hold the ips_ill_g_lock across the call to enter the
17050 	 * ipsq to enforce atomicity and prevent reordering. In the event
17051 	 * the ipsq has changed, and if the new ipsq is currently busy,
17052 	 * we need to make sure that this half-completed ioctl is ahead of
17053 	 * any subsequent ioctl. We achieve this by not dropping the
17054 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
17055 	 * ensuring that new ioctls can't start.
17056 	 */
17057 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17058 	    B_TRUE);
17059 
17060 	rw_exit(&ipst->ips_ill_g_lock);
17061 	ill_refrele(ill);
17062 	if (ipsq == NULL)
17063 		return (EINPROGRESS);
17064 
17065 	/*
17066 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17067 	 */
17068 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17069 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17070 	else
17071 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17072 
17073 	error = ipif_set_values_tail(ill, ipif, mp, q);
17074 	ipsq_exit(ipsq);
17075 	if (error != 0 && error != EINPROGRESS) {
17076 		/*
17077 		 * restore previous values
17078 		 */
17079 		ill->ill_isv6 = B_FALSE;
17080 		ill_set_inputfn(ill);
17081 	}
17082 	return (error);
17083 }
17084 
17085 void
17086 ipif_init(ip_stack_t *ipst)
17087 {
17088 	int i;
17089 
17090 	for (i = 0; i < MAX_G_HEADS; i++) {
17091 		ipst->ips_ill_g_heads[i].ill_g_list_head =
17092 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17093 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
17094 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17095 	}
17096 
17097 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17098 	    ill_phyint_compare_index,
17099 	    sizeof (phyint_t),
17100 	    offsetof(struct phyint, phyint_avl_by_index));
17101 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17102 	    ill_phyint_compare_name,
17103 	    sizeof (phyint_t),
17104 	    offsetof(struct phyint, phyint_avl_by_name));
17105 }
17106 
17107 /*
17108  * Save enough information so that we can recreate the IRE if
17109  * the interface goes down and then up.
17110  */
17111 void
17112 ill_save_ire(ill_t *ill, ire_t *ire)
17113 {
17114 	mblk_t	*save_mp;
17115 
17116 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17117 	if (save_mp != NULL) {
17118 		ifrt_t	*ifrt;
17119 
17120 		save_mp->b_wptr += sizeof (ifrt_t);
17121 		ifrt = (ifrt_t *)save_mp->b_rptr;
17122 		bzero(ifrt, sizeof (ifrt_t));
17123 		ifrt->ifrt_type = ire->ire_type;
17124 		if (ire->ire_ipversion == IPV4_VERSION) {
17125 			ASSERT(!ill->ill_isv6);
17126 			ifrt->ifrt_addr = ire->ire_addr;
17127 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17128 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17129 			ifrt->ifrt_mask = ire->ire_mask;
17130 		} else {
17131 			ASSERT(ill->ill_isv6);
17132 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
17133 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17134 			mutex_enter(&ire->ire_lock);
17135 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17136 			mutex_exit(&ire->ire_lock);
17137 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17138 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
17139 		}
17140 		ifrt->ifrt_flags = ire->ire_flags;
17141 		ifrt->ifrt_zoneid = ire->ire_zoneid;
17142 		mutex_enter(&ill->ill_saved_ire_lock);
17143 		save_mp->b_cont = ill->ill_saved_ire_mp;
17144 		ill->ill_saved_ire_mp = save_mp;
17145 		ill->ill_saved_ire_cnt++;
17146 		mutex_exit(&ill->ill_saved_ire_lock);
17147 	}
17148 }
17149 
17150 /*
17151  * Remove one entry from ill_saved_ire_mp.
17152  */
17153 void
17154 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17155 {
17156 	mblk_t	**mpp;
17157 	mblk_t	*mp;
17158 	ifrt_t	*ifrt;
17159 
17160 	/* Remove from ill_saved_ire_mp list if it is there */
17161 	mutex_enter(&ill->ill_saved_ire_lock);
17162 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17163 	    mpp = &(*mpp)->b_cont) {
17164 		in6_addr_t	gw_addr_v6;
17165 
17166 		/*
17167 		 * On a given ill, the tuple of address, gateway, mask,
17168 		 * ire_type, and zoneid is unique for each saved IRE.
17169 		 */
17170 		mp = *mpp;
17171 		ifrt = (ifrt_t *)mp->b_rptr;
17172 		/* ire_gateway_addr_v6 can change - need lock */
17173 		mutex_enter(&ire->ire_lock);
17174 		gw_addr_v6 = ire->ire_gateway_addr_v6;
17175 		mutex_exit(&ire->ire_lock);
17176 
17177 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17178 		    ifrt->ifrt_type != ire->ire_type)
17179 			continue;
17180 
17181 		if (ill->ill_isv6 ?
17182 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17183 		    &ire->ire_addr_v6) &&
17184 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17185 		    &gw_addr_v6) &&
17186 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17187 		    &ire->ire_mask_v6)) :
17188 		    (ifrt->ifrt_addr == ire->ire_addr &&
17189 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17190 		    ifrt->ifrt_mask == ire->ire_mask)) {
17191 			*mpp = mp->b_cont;
17192 			ill->ill_saved_ire_cnt--;
17193 			freeb(mp);
17194 			break;
17195 		}
17196 	}
17197 	mutex_exit(&ill->ill_saved_ire_lock);
17198 }
17199 
17200 /*
17201  * IP multirouting broadcast routes handling
17202  * Append CGTP broadcast IREs to regular ones created
17203  * at ifconfig time.
17204  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17205  * the destination and the gateway are broadcast addresses.
17206  * The caller has verified that the destination is an IRE_BROADCAST and that
17207  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17208  * we create a MULTIRT IRE_BROADCAST.
17209  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17210  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17211  */
17212 static void
17213 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17214 {
17215 	ire_t *ire_prim;
17216 
17217 	ASSERT(ire != NULL);
17218 
17219 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17220 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17221 	    NULL);
17222 	if (ire_prim != NULL) {
17223 		/*
17224 		 * We are in the special case of broadcasts for
17225 		 * CGTP. We add an IRE_BROADCAST that holds
17226 		 * the RTF_MULTIRT flag, the destination
17227 		 * address and the low level
17228 		 * info of ire_prim. In other words, CGTP
17229 		 * broadcast is added to the redundant ipif.
17230 		 */
17231 		ill_t *ill_prim;
17232 		ire_t  *bcast_ire;
17233 
17234 		ill_prim = ire_prim->ire_ill;
17235 
17236 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17237 		    (void *)ire_prim, (void *)ill_prim));
17238 
17239 		bcast_ire = ire_create(
17240 		    (uchar_t *)&ire->ire_addr,
17241 		    (uchar_t *)&ip_g_all_ones,
17242 		    (uchar_t *)&ire->ire_gateway_addr,
17243 		    IRE_BROADCAST,
17244 		    ill_prim,
17245 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
17246 		    ire->ire_flags | RTF_KERNEL,
17247 		    NULL,
17248 		    ipst);
17249 
17250 		/*
17251 		 * Here we assume that ire_add does head insertion so that
17252 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17253 		 */
17254 		if (bcast_ire != NULL) {
17255 			if (ire->ire_flags & RTF_SETSRC) {
17256 				bcast_ire->ire_setsrc_addr =
17257 				    ire->ire_setsrc_addr;
17258 			}
17259 			bcast_ire = ire_add(bcast_ire);
17260 			if (bcast_ire != NULL) {
17261 				ip2dbg(("ip_cgtp_filter_bcast_add: "
17262 				    "added bcast_ire %p\n",
17263 				    (void *)bcast_ire));
17264 
17265 				ill_save_ire(ill_prim, bcast_ire);
17266 				ire_refrele(bcast_ire);
17267 			}
17268 		}
17269 		ire_refrele(ire_prim);
17270 	}
17271 }
17272 
17273 /*
17274  * IP multirouting broadcast routes handling
17275  * Remove the broadcast ire.
17276  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17277  * the destination and the gateway are broadcast addresses.
17278  * The caller has only verified that RTF_MULTIRT was set. We check
17279  * that the destination is broadcast and that the gateway is a broadcast
17280  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17281  */
17282 static void
17283 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17284 {
17285 	ASSERT(ire != NULL);
17286 
17287 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17288 		ire_t *ire_prim;
17289 
17290 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17291 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17292 		    ipst, NULL);
17293 		if (ire_prim != NULL) {
17294 			ill_t *ill_prim;
17295 			ire_t  *bcast_ire;
17296 
17297 			ill_prim = ire_prim->ire_ill;
17298 
17299 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
17300 			    "ire_prim %p, ill_prim %p\n",
17301 			    (void *)ire_prim, (void *)ill_prim));
17302 
17303 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17304 			    ire->ire_gateway_addr, IRE_BROADCAST,
17305 			    ill_prim, ALL_ZONES, NULL,
17306 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17307 			    MATCH_IRE_MASK, 0, ipst, NULL);
17308 
17309 			if (bcast_ire != NULL) {
17310 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
17311 				    "looked up bcast_ire %p\n",
17312 				    (void *)bcast_ire));
17313 				ill_remove_saved_ire(bcast_ire->ire_ill,
17314 				    bcast_ire);
17315 				ire_delete(bcast_ire);
17316 				ire_refrele(bcast_ire);
17317 			}
17318 			ire_refrele(ire_prim);
17319 		}
17320 	}
17321 }
17322 
17323 /*
17324  * Derive an interface id from the link layer address.
17325  * Knows about IEEE 802 and IEEE EUI-64 mappings.
17326  */
17327 static void
17328 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17329 {
17330 	char		*addr;
17331 
17332 	/*
17333 	 * Note that some IPv6 interfaces get plumbed over links that claim to
17334 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17335 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
17336 	 * interface ID on IPv6 interfaces above links that actually have real
17337 	 * Ethernet addresses.
17338 	 */
17339 	if (ill->ill_phys_addr_length == ETHERADDRL) {
17340 		/* Form EUI-64 like address */
17341 		addr = (char *)&v6addr->s6_addr32[2];
17342 		bcopy(ill->ill_phys_addr, addr, 3);
17343 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
17344 		addr[3] = (char)0xff;
17345 		addr[4] = (char)0xfe;
17346 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17347 	}
17348 }
17349 
17350 /* ARGSUSED */
17351 static void
17352 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17353 {
17354 }
17355 
17356 typedef struct ipmp_ifcookie {
17357 	uint32_t	ic_hostid;
17358 	char		ic_ifname[LIFNAMSIZ];
17359 	char		ic_zonename[ZONENAME_MAX];
17360 } ipmp_ifcookie_t;
17361 
17362 /*
17363  * Construct a pseudo-random interface ID for the IPMP interface that's both
17364  * predictable and (almost) guaranteed to be unique.
17365  */
17366 static void
17367 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17368 {
17369 	zone_t		*zp;
17370 	uint8_t		*addr;
17371 	uchar_t		hash[16];
17372 	ulong_t 	hostid;
17373 	MD5_CTX		ctx;
17374 	ipmp_ifcookie_t	ic = { 0 };
17375 
17376 	ASSERT(IS_IPMP(ill));
17377 
17378 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17379 	ic.ic_hostid = htonl((uint32_t)hostid);
17380 
17381 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17382 
17383 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17384 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17385 		zone_rele(zp);
17386 	}
17387 
17388 	MD5Init(&ctx);
17389 	MD5Update(&ctx, &ic, sizeof (ic));
17390 	MD5Final(hash, &ctx);
17391 
17392 	/*
17393 	 * Map the hash to an interface ID per the basic approach in RFC3041.
17394 	 */
17395 	addr = &v6addr->s6_addr8[8];
17396 	bcopy(hash + 8, addr, sizeof (uint64_t));
17397 	addr[0] &= ~0x2;				/* set local bit */
17398 }
17399 
17400 /*
17401  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17402  */
17403 static void
17404 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17405 {
17406 	phyint_t *phyi = ill->ill_phyint;
17407 
17408 	/*
17409 	 * Check PHYI_MULTI_BCAST and length of physical
17410 	 * address to determine if we use the mapping or the
17411 	 * broadcast address.
17412 	 */
17413 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17414 	    ill->ill_phys_addr_length != ETHERADDRL) {
17415 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17416 		return;
17417 	}
17418 	m_physaddr[0] = 0x33;
17419 	m_physaddr[1] = 0x33;
17420 	m_physaddr[2] = m_ip6addr[12];
17421 	m_physaddr[3] = m_ip6addr[13];
17422 	m_physaddr[4] = m_ip6addr[14];
17423 	m_physaddr[5] = m_ip6addr[15];
17424 }
17425 
17426 /*
17427  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17428  */
17429 static void
17430 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17431 {
17432 	phyint_t *phyi = ill->ill_phyint;
17433 
17434 	/*
17435 	 * Check PHYI_MULTI_BCAST and length of physical
17436 	 * address to determine if we use the mapping or the
17437 	 * broadcast address.
17438 	 */
17439 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17440 	    ill->ill_phys_addr_length != ETHERADDRL) {
17441 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17442 		return;
17443 	}
17444 	m_physaddr[0] = 0x01;
17445 	m_physaddr[1] = 0x00;
17446 	m_physaddr[2] = 0x5e;
17447 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
17448 	m_physaddr[4] = m_ipaddr[2];
17449 	m_physaddr[5] = m_ipaddr[3];
17450 }
17451 
17452 /* ARGSUSED */
17453 static void
17454 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17455 {
17456 	/*
17457 	 * for the MULTI_BCAST case and other cases when we want to
17458 	 * use the link-layer broadcast address for multicast.
17459 	 */
17460 	uint8_t	*bphys_addr;
17461 	dl_unitdata_req_t *dlur;
17462 
17463 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17464 	if (ill->ill_sap_length < 0) {
17465 		bphys_addr = (uchar_t *)dlur +
17466 		    dlur->dl_dest_addr_offset;
17467 	} else  {
17468 		bphys_addr = (uchar_t *)dlur +
17469 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
17470 	}
17471 
17472 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17473 }
17474 
17475 /*
17476  * Derive IPoIB interface id from the link layer address.
17477  */
17478 static void
17479 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17480 {
17481 	char		*addr;
17482 
17483 	ASSERT(ill->ill_phys_addr_length == 20);
17484 	addr = (char *)&v6addr->s6_addr32[2];
17485 	bcopy(ill->ill_phys_addr + 12, addr, 8);
17486 	/*
17487 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17488 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17489 	 * rules. In these cases, the IBA considers these GUIDs to be in
17490 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17491 	 * required; vendors are required not to assign global EUI-64's
17492 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
17493 	 * of the interface identifier. Whether the GUID is in modified
17494 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17495 	 * bit set to 1.
17496 	 */
17497 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
17498 }
17499 
17500 /*
17501  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17502  * Note on mapping from multicast IP addresses to IPoIB multicast link
17503  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17504  * The format of an IPoIB multicast address is:
17505  *
17506  *  4 byte QPN      Scope Sign.  Pkey
17507  * +--------------------------------------------+
17508  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17509  * +--------------------------------------------+
17510  *
17511  * The Scope and Pkey components are properties of the IBA port and
17512  * network interface. They can be ascertained from the broadcast address.
17513  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17514  */
17515 static void
17516 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17517 {
17518 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17519 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17520 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17521 	uint8_t	*bphys_addr;
17522 	dl_unitdata_req_t *dlur;
17523 
17524 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17525 
17526 	/*
17527 	 * RFC 4391: IPv4 MGID is 28-bit long.
17528 	 */
17529 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17530 	m_physaddr[17] = m_ipaddr[1];
17531 	m_physaddr[18] = m_ipaddr[2];
17532 	m_physaddr[19] = m_ipaddr[3];
17533 
17534 
17535 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17536 	if (ill->ill_sap_length < 0) {
17537 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17538 	} else  {
17539 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17540 		    ill->ill_sap_length;
17541 	}
17542 	/*
17543 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17544 	 */
17545 	m_physaddr[5] = bphys_addr[5];
17546 	m_physaddr[8] = bphys_addr[8];
17547 	m_physaddr[9] = bphys_addr[9];
17548 }
17549 
17550 static void
17551 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17552 {
17553 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17554 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17555 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17556 	uint8_t	*bphys_addr;
17557 	dl_unitdata_req_t *dlur;
17558 
17559 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17560 
17561 	/*
17562 	 * RFC 4391: IPv4 MGID is 80-bit long.
17563 	 */
17564 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17565 
17566 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17567 	if (ill->ill_sap_length < 0) {
17568 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17569 	} else  {
17570 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17571 		    ill->ill_sap_length;
17572 	}
17573 	/*
17574 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17575 	 */
17576 	m_physaddr[5] = bphys_addr[5];
17577 	m_physaddr[8] = bphys_addr[8];
17578 	m_physaddr[9] = bphys_addr[9];
17579 }
17580 
17581 /*
17582  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17583  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17584  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17585  * of RFC4213.
17586  */
17587 static void
17588 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17589 {
17590 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17591 	v6addr->s6_addr32[2] = 0;
17592 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17593 }
17594 
17595 /*
17596  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17597  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17598  * id.
17599  */
17600 static void
17601 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17602 {
17603 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17604 
17605 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17606 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17607 }
17608 
17609 static void
17610 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17611 {
17612 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17613 }
17614 
17615 static void
17616 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17617 {
17618 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17619 }
17620 
17621 static void
17622 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17623 {
17624 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17625 }
17626 
17627 static void
17628 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17629 {
17630 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17631 }
17632 
17633 /*
17634  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17635  * Returns an held ill, or NULL.
17636  */
17637 ill_t *
17638 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17639     ip_stack_t *ipst)
17640 {
17641 	ill_t	*ill;
17642 	ipif_t	*ipif;
17643 
17644 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17645 	if (ill == NULL)
17646 		return (NULL);
17647 
17648 	mutex_enter(&ill->ill_lock);
17649 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17650 		if (IPIF_IS_CONDEMNED(ipif))
17651 			continue;
17652 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17653 		    ipif->ipif_zoneid != ALL_ZONES)
17654 			continue;
17655 
17656 		mutex_exit(&ill->ill_lock);
17657 		return (ill);
17658 	}
17659 	mutex_exit(&ill->ill_lock);
17660 	ill_refrele(ill);
17661 	return (NULL);
17662 }
17663 
17664 /*
17665  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17666  * If a pointer to an ipif_t is returned then the caller will need to do
17667  * an ill_refrele().
17668  */
17669 ipif_t *
17670 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17671     ip_stack_t *ipst)
17672 {
17673 	ipif_t *ipif;
17674 	ill_t *ill;
17675 
17676 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17677 	if (ill == NULL)
17678 		return (NULL);
17679 
17680 	mutex_enter(&ill->ill_lock);
17681 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17682 		mutex_exit(&ill->ill_lock);
17683 		ill_refrele(ill);
17684 		return (NULL);
17685 	}
17686 
17687 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17688 		if (!IPIF_CAN_LOOKUP(ipif))
17689 			continue;
17690 		if (lifidx == ipif->ipif_id) {
17691 			ipif_refhold_locked(ipif);
17692 			break;
17693 		}
17694 	}
17695 
17696 	mutex_exit(&ill->ill_lock);
17697 	ill_refrele(ill);
17698 	return (ipif);
17699 }
17700 
17701 /*
17702  * Set ill_inputfn based on the current know state.
17703  * This needs to be called when any of the factors taken into
17704  * account changes.
17705  */
17706 void
17707 ill_set_inputfn(ill_t *ill)
17708 {
17709 	ip_stack_t	*ipst = ill->ill_ipst;
17710 
17711 	if (ill->ill_isv6) {
17712 		if (is_system_labeled())
17713 			ill->ill_inputfn = ill_input_full_v6;
17714 		else
17715 			ill->ill_inputfn = ill_input_short_v6;
17716 	} else {
17717 		if (is_system_labeled())
17718 			ill->ill_inputfn = ill_input_full_v4;
17719 		else if (ill->ill_dhcpinit != 0)
17720 			ill->ill_inputfn = ill_input_full_v4;
17721 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17722 		    != NULL)
17723 			ill->ill_inputfn = ill_input_full_v4;
17724 		else if (ipst->ips_ip_cgtp_filter &&
17725 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17726 			ill->ill_inputfn = ill_input_full_v4;
17727 		else
17728 			ill->ill_inputfn = ill_input_short_v4;
17729 	}
17730 }
17731 
17732 /*
17733  * Re-evaluate ill_inputfn for all the IPv4 ills.
17734  * Used when RSVP and CGTP comes and goes.
17735  */
17736 void
17737 ill_set_inputfn_all(ip_stack_t *ipst)
17738 {
17739 	ill_walk_context_t	ctx;
17740 	ill_t			*ill;
17741 
17742 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17743 	ill = ILL_START_WALK_V4(&ctx, ipst);
17744 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17745 		ill_set_inputfn(ill);
17746 
17747 	rw_exit(&ipst->ips_ill_g_lock);
17748 }
17749 
17750 /*
17751  * Set the physical address information for `ill' to the contents of the
17752  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17753  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17754  * EINPROGRESS will be returned.
17755  */
17756 int
17757 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17758 {
17759 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17760 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17761 
17762 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17763 
17764 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17765 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17766 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17767 		/* Changing DL_IPV6_TOKEN is not yet supported */
17768 		return (0);
17769 	}
17770 
17771 	/*
17772 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17773 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17774 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17775 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17776 	 */
17777 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17778 		freemsg(mp);
17779 		return (ENOMEM);
17780 	}
17781 
17782 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17783 
17784 	/*
17785 	 * Since we'll only do a logical down, we can't rely on ipif_down
17786 	 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17787 	 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17788 	 * case, to quiesce ire's and nce's for ill_is_quiescent.
17789 	 */
17790 	mutex_enter(&ill->ill_lock);
17791 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17792 	/* no more ire/nce addition allowed */
17793 	mutex_exit(&ill->ill_lock);
17794 
17795 	/*
17796 	 * If we can quiesce the ill, then set the address.  If not, then
17797 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17798 	 */
17799 	ill_down_ipifs(ill, B_TRUE);
17800 	mutex_enter(&ill->ill_lock);
17801 	if (!ill_is_quiescent(ill)) {
17802 		/* call cannot fail since `conn_t *' argument is NULL */
17803 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17804 		    mp, ILL_DOWN);
17805 		mutex_exit(&ill->ill_lock);
17806 		return (EINPROGRESS);
17807 	}
17808 	mutex_exit(&ill->ill_lock);
17809 
17810 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17811 	return (0);
17812 }
17813 
17814 /*
17815  * When the allowed-ips link property is set on the datalink, IP receives a
17816  * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17817  * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17818  * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17819  * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17820  * array.
17821  */
17822 void
17823 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17824 {
17825 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17826 	dl_notify_ind_t	*dlip = (dl_notify_ind_t *)mp->b_rptr;
17827 	mac_protect_t *mrp;
17828 	int i;
17829 
17830 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17831 	mrp = (mac_protect_t *)&dlip[1];
17832 
17833 	if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17834 		kmem_free(ill->ill_allowed_ips,
17835 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17836 		ill->ill_allowed_ips_cnt = 0;
17837 		ill->ill_allowed_ips = NULL;
17838 		mutex_enter(&ill->ill_phyint->phyint_lock);
17839 		ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17840 		mutex_exit(&ill->ill_phyint->phyint_lock);
17841 		return;
17842 	}
17843 
17844 	if (ill->ill_allowed_ips != NULL) {
17845 		kmem_free(ill->ill_allowed_ips,
17846 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17847 	}
17848 	ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17849 	ill->ill_allowed_ips = kmem_alloc(
17850 	    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17851 	for (i = 0; i < mrp->mp_ipaddrcnt;  i++)
17852 		ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17853 
17854 	mutex_enter(&ill->ill_phyint->phyint_lock);
17855 	ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17856 	mutex_exit(&ill->ill_phyint->phyint_lock);
17857 }
17858 
17859 /*
17860  * Once the ill associated with `q' has quiesced, set its physical address
17861  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17862  * are passed (linked by b_cont), since we sometimes need to save two distinct
17863  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17864  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17865  * is quiesced, we know any stale nce's with the old address information have
17866  * already been removed, so we don't need to call nce_flush().
17867  */
17868 /* ARGSUSED */
17869 static void
17870 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17871 {
17872 	ill_t		*ill = q->q_ptr;
17873 	mblk_t		*addrmp2 = unlinkb(addrmp);
17874 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17875 	uint_t		addrlen, addroff;
17876 	int		status;
17877 
17878 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17879 
17880 	addroff	= dlindp->dl_addr_offset;
17881 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17882 
17883 	switch (dlindp->dl_data) {
17884 	case DL_IPV6_LINK_LAYER_ADDR:
17885 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17886 		freemsg(addrmp2);
17887 		break;
17888 
17889 	case DL_CURR_DEST_ADDR:
17890 		freemsg(ill->ill_dest_addr_mp);
17891 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17892 		ill->ill_dest_addr_mp = addrmp;
17893 		if (ill->ill_isv6) {
17894 			ill_setdesttoken(ill);
17895 			ipif_setdestlinklocal(ill->ill_ipif);
17896 		}
17897 		freemsg(addrmp2);
17898 		break;
17899 
17900 	case DL_CURR_PHYS_ADDR:
17901 		freemsg(ill->ill_phys_addr_mp);
17902 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17903 		ill->ill_phys_addr_mp = addrmp;
17904 		ill->ill_phys_addr_length = addrlen;
17905 		if (ill->ill_isv6)
17906 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17907 		else
17908 			freemsg(addrmp2);
17909 		if (ill->ill_isv6) {
17910 			ill_setdefaulttoken(ill);
17911 			ipif_setlinklocal(ill->ill_ipif);
17912 		}
17913 		break;
17914 	default:
17915 		ASSERT(0);
17916 	}
17917 
17918 	/*
17919 	 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17920 	 * as we bring the ipifs up again.
17921 	 */
17922 	mutex_enter(&ill->ill_lock);
17923 	ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17924 	mutex_exit(&ill->ill_lock);
17925 	/*
17926 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17927 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17928 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17929 	 * brought up.
17930 	 */
17931 	status = ill_up_ipifs(ill, q, addrmp);
17932 	if (status != EINPROGRESS)
17933 		ipsq_current_finish(ipsq);
17934 }
17935 
17936 /*
17937  * Helper routine for setting the ill_nd_lla fields.
17938  */
17939 void
17940 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17941 {
17942 	freemsg(ill->ill_nd_lla_mp);
17943 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17944 	ill->ill_nd_lla_mp = ndmp;
17945 	ill->ill_nd_lla_len = addrlen;
17946 }
17947 
17948 /*
17949  * Replumb the ill.
17950  */
17951 int
17952 ill_replumb(ill_t *ill, mblk_t *mp)
17953 {
17954 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17955 
17956 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17957 
17958 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17959 
17960 	/*
17961 	 * If we can quiesce the ill, then continue.  If not, then
17962 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17963 	 */
17964 	ill_down_ipifs(ill, B_FALSE);
17965 
17966 	mutex_enter(&ill->ill_lock);
17967 	if (!ill_is_quiescent(ill)) {
17968 		/* call cannot fail since `conn_t *' argument is NULL */
17969 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17970 		    mp, ILL_DOWN);
17971 		mutex_exit(&ill->ill_lock);
17972 		return (EINPROGRESS);
17973 	}
17974 	mutex_exit(&ill->ill_lock);
17975 
17976 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17977 	return (0);
17978 }
17979 
17980 /* ARGSUSED */
17981 static void
17982 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
17983 {
17984 	ill_t *ill = q->q_ptr;
17985 	int err;
17986 	conn_t *connp = NULL;
17987 
17988 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17989 	freemsg(ill->ill_replumb_mp);
17990 	ill->ill_replumb_mp = copyb(mp);
17991 
17992 	if (ill->ill_replumb_mp == NULL) {
17993 		/* out of memory */
17994 		ipsq_current_finish(ipsq);
17995 		return;
17996 	}
17997 
17998 	mutex_enter(&ill->ill_lock);
17999 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18000 	    ill->ill_rq, ill->ill_replumb_mp, 0);
18001 	mutex_exit(&ill->ill_lock);
18002 
18003 	if (!ill->ill_up_ipifs) {
18004 		/* already closing */
18005 		ipsq_current_finish(ipsq);
18006 		return;
18007 	}
18008 	ill->ill_replumbing = 1;
18009 	err = ill_down_ipifs_tail(ill);
18010 
18011 	/*
18012 	 * Successfully quiesced and brought down the interface, now we send
18013 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18014 	 * DL_NOTE_REPLUMB message.
18015 	 */
18016 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18017 	    DL_NOTIFY_CONF);
18018 	ASSERT(mp != NULL);
18019 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18020 	    DL_NOTE_REPLUMB_DONE;
18021 	ill_dlpi_send(ill, mp);
18022 
18023 	/*
18024 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18025 	 * streams have to be unbound. When all the DLPI exchanges are done,
18026 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
18027 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18028 	 * arp_bringup_done().
18029 	 */
18030 	ASSERT(ill->ill_replumb_mp != NULL);
18031 	if (err == EINPROGRESS)
18032 		return;
18033 	else
18034 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18035 	ASSERT(connp == NULL);
18036 	if (err == 0 && ill->ill_replumb_mp != NULL &&
18037 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18038 		return;
18039 	}
18040 	ipsq_current_finish(ipsq);
18041 }
18042 
18043 /*
18044  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18045  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
18046  * as per the ioctl.  On failure, an errno is returned.
18047  */
18048 static int
18049 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18050 {
18051 	int rval;
18052 	struct strioctl iocb;
18053 
18054 	iocb.ic_cmd = cmd;
18055 	iocb.ic_timout = 15;
18056 	iocb.ic_len = bufsize;
18057 	iocb.ic_dp = buf;
18058 
18059 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18060 }
18061 
18062 /*
18063  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18064  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18065  */
18066 static int
18067 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18068     uint_t *bufsizep, cred_t *cr)
18069 {
18070 	int err;
18071 	struct lifnum lifn;
18072 
18073 	bzero(&lifn, sizeof (lifn));
18074 	lifn.lifn_family = af;
18075 	lifn.lifn_flags = LIFC_UNDER_IPMP;
18076 
18077 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18078 		return (err);
18079 
18080 	/*
18081 	 * Pad the interface count to account for additional interfaces that
18082 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18083 	 */
18084 	lifn.lifn_count += 4;
18085 	bzero(lifcp, sizeof (*lifcp));
18086 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
18087 	lifcp->lifc_family = af;
18088 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18089 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18090 
18091 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18092 	if (err != 0) {
18093 		kmem_free(lifcp->lifc_buf, *bufsizep);
18094 		return (err);
18095 	}
18096 
18097 	return (0);
18098 }
18099 
18100 /*
18101  * Helper for ip_interface_cleanup() that removes the loopback interface.
18102  */
18103 static void
18104 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18105 {
18106 	int err;
18107 	struct lifreq lifr;
18108 
18109 	bzero(&lifr, sizeof (lifr));
18110 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
18111 
18112 	/*
18113 	 * Attempt to remove the interface.  It may legitimately not exist
18114 	 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18115 	 */
18116 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18117 	if (err != 0 && err != ENXIO) {
18118 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18119 		    "error %d\n", isv6 ? "v6" : "v4", err));
18120 	}
18121 }
18122 
18123 /*
18124  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18125  * groups and that IPMP data addresses are down.  These conditions must be met
18126  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18127  */
18128 static void
18129 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18130 {
18131 	int af = isv6 ? AF_INET6 : AF_INET;
18132 	int i, nifs;
18133 	int err;
18134 	uint_t bufsize;
18135 	uint_t lifrsize = sizeof (struct lifreq);
18136 	struct lifconf lifc;
18137 	struct lifreq *lifrp;
18138 
18139 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18140 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18141 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
18142 		return;
18143 	}
18144 
18145 	nifs = lifc.lifc_len / lifrsize;
18146 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18147 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18148 		if (err != 0) {
18149 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18150 			    "flags: error %d", lifrp->lifr_name, err);
18151 			continue;
18152 		}
18153 
18154 		if (lifrp->lifr_flags & IFF_IPMP) {
18155 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18156 				continue;
18157 
18158 			lifrp->lifr_flags &= ~IFF_UP;
18159 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18160 			if (err != 0) {
18161 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18162 				    "bring down (error %d); IPMP interface may "
18163 				    "not be shutdown", lifrp->lifr_name, err);
18164 			}
18165 
18166 			/*
18167 			 * Check if IFF_DUPLICATE is still set -- and if so,
18168 			 * reset the address to clear it.
18169 			 */
18170 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18171 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18172 				continue;
18173 
18174 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18175 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18176 			    lifrp, lifrsize, cr)) != 0) {
18177 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18178 				    "reset DAD (error %d); IPMP interface may "
18179 				    "not be shutdown", lifrp->lifr_name, err);
18180 			}
18181 			continue;
18182 		}
18183 
18184 		if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18185 			lifrp->lifr_groupname[0] = '\0';
18186 			if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18187 			    lifrsize, cr)) != 0) {
18188 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18189 				    "leave IPMP group (error %d); associated "
18190 				    "IPMP interface may not be shutdown",
18191 				    lifrp->lifr_name, err);
18192 				continue;
18193 			}
18194 		}
18195 	}
18196 
18197 	kmem_free(lifc.lifc_buf, bufsize);
18198 }
18199 
18200 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
18201 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
18202 
18203 /*
18204  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18205  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18206  * when the user-level processes in the zone are killed and the latter are
18207  * cleaned up by str_stack_shutdown().
18208  */
18209 void
18210 ip_interface_cleanup(ip_stack_t *ipst)
18211 {
18212 	ldi_handle_t	lh;
18213 	ldi_ident_t	li;
18214 	cred_t		*cr;
18215 	int		err;
18216 	int		i;
18217 	char		*devs[] = { UDP6DEV, UDPDEV };
18218 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
18219 
18220 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18221 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18222 		    " error %d", err);
18223 		return;
18224 	}
18225 
18226 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18227 	ASSERT(cr != NULL);
18228 
18229 	/*
18230 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
18231 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
18232 	 * the loop.)
18233 	 */
18234 	for (i = 0; i < 2; i++) {
18235 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18236 		if (err != 0) {
18237 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18238 			    " error %d", devs[i], err);
18239 			continue;
18240 		}
18241 
18242 		ip_loopback_removeif(lh, i == 0, cr);
18243 		ip_ipmp_cleanup(lh, i == 0, cr);
18244 
18245 		(void) ldi_close(lh, FREAD|FWRITE, cr);
18246 	}
18247 
18248 	ldi_ident_release(li);
18249 	crfree(cr);
18250 }
18251 
18252 /*
18253  * This needs to be in-sync with nic_event_t definition
18254  */
18255 static const char *
18256 ill_hook_event2str(nic_event_t event)
18257 {
18258 	switch (event) {
18259 	case NE_PLUMB:
18260 		return ("PLUMB");
18261 	case NE_UNPLUMB:
18262 		return ("UNPLUMB");
18263 	case NE_UP:
18264 		return ("UP");
18265 	case NE_DOWN:
18266 		return ("DOWN");
18267 	case NE_ADDRESS_CHANGE:
18268 		return ("ADDRESS_CHANGE");
18269 	case NE_LIF_UP:
18270 		return ("LIF_UP");
18271 	case NE_LIF_DOWN:
18272 		return ("LIF_DOWN");
18273 	case NE_IFINDEX_CHANGE:
18274 		return ("IFINDEX_CHANGE");
18275 	default:
18276 		return ("UNKNOWN");
18277 	}
18278 }
18279 
18280 void
18281 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18282     nic_event_data_t data, size_t datalen)
18283 {
18284 	ip_stack_t		*ipst = ill->ill_ipst;
18285 	hook_nic_event_int_t	*info;
18286 	const char		*str = NULL;
18287 
18288 	/* create a new nic event info */
18289 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18290 		goto fail;
18291 
18292 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18293 	info->hnei_event.hne_lif = lif;
18294 	info->hnei_event.hne_event = event;
18295 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
18296 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18297 	info->hnei_event.hne_data = NULL;
18298 	info->hnei_event.hne_datalen = 0;
18299 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18300 
18301 	if (data != NULL && datalen != 0) {
18302 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18303 		if (info->hnei_event.hne_data == NULL)
18304 			goto fail;
18305 		bcopy(data, info->hnei_event.hne_data, datalen);
18306 		info->hnei_event.hne_datalen = datalen;
18307 	}
18308 
18309 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18310 	    DDI_NOSLEEP) == DDI_SUCCESS)
18311 		return;
18312 
18313 fail:
18314 	if (info != NULL) {
18315 		if (info->hnei_event.hne_data != NULL) {
18316 			kmem_free(info->hnei_event.hne_data,
18317 			    info->hnei_event.hne_datalen);
18318 		}
18319 		kmem_free(info, sizeof (hook_nic_event_t));
18320 	}
18321 	str = ill_hook_event2str(event);
18322 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18323 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
18324 }
18325 
18326 static int
18327 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18328 {
18329 	int		err = 0;
18330 	const in_addr_t	*addr = NULL;
18331 	nce_t		*nce = NULL;
18332 	ill_t		*ill = ipif->ipif_ill;
18333 	ill_t		*bound_ill;
18334 	boolean_t	added_ipif = B_FALSE;
18335 	uint16_t	state;
18336 	uint16_t	flags;
18337 
18338 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18339 	    ill_t *, ill, ipif_t *, ipif);
18340 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
18341 		addr = &ipif->ipif_lcl_addr;
18342 	}
18343 
18344 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18345 		if (res_act != Res_act_initial)
18346 			return (EINVAL);
18347 	}
18348 
18349 	if (addr != NULL) {
18350 		ipmp_illgrp_t	*illg = ill->ill_grp;
18351 
18352 		/* add unicast nce for the local addr */
18353 
18354 		if (IS_IPMP(ill)) {
18355 			/*
18356 			 * If we're here via ipif_up(), then the ipif
18357 			 * won't be bound yet -- add it to the group,
18358 			 * which will bind it if possible. (We would
18359 			 * add it in ipif_up(), but deleting on failure
18360 			 * there is gruesome.)  If we're here via
18361 			 * ipmp_ill_bind_ipif(), then the ipif has
18362 			 * already been added to the group and we
18363 			 * just need to use the binding.
18364 			 */
18365 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18366 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
18367 				if (bound_ill == NULL) {
18368 					/*
18369 					 * We couldn't bind the ipif to an ill
18370 					 * yet, so we have nothing to publish.
18371 					 * Mark the address as ready and return.
18372 					 */
18373 					ipif->ipif_addr_ready = 1;
18374 					return (0);
18375 				}
18376 				added_ipif = B_TRUE;
18377 			}
18378 		} else {
18379 			bound_ill = ill;
18380 		}
18381 
18382 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18383 		    NCE_F_NONUD);
18384 		/*
18385 		 * If this is an initial bring-up (or the ipif was never
18386 		 * completely brought up), do DAD.  Otherwise, we're here
18387 		 * because IPMP has rebound an address to this ill: send
18388 		 * unsolicited advertisements (ARP announcements) to
18389 		 * inform others.
18390 		 */
18391 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18392 			state = ND_UNCHANGED; /* compute in nce_add_common() */
18393 		} else {
18394 			state = ND_REACHABLE;
18395 			flags |= NCE_F_UNSOL_ADV;
18396 		}
18397 
18398 retry:
18399 		err = nce_lookup_then_add_v4(ill,
18400 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18401 		    addr, flags, state, &nce);
18402 
18403 		/*
18404 		 * note that we may encounter EEXIST if we are moving
18405 		 * the nce as a result of a rebind operation.
18406 		 */
18407 		switch (err) {
18408 		case 0:
18409 			ipif->ipif_added_nce = 1;
18410 			nce->nce_ipif_cnt++;
18411 			break;
18412 		case EEXIST:
18413 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18414 			    ill->ill_name));
18415 			if (!NCE_MYADDR(nce->nce_common)) {
18416 				/*
18417 				 * A leftover nce from before this address
18418 				 * existed
18419 				 */
18420 				ncec_delete(nce->nce_common);
18421 				nce_refrele(nce);
18422 				nce = NULL;
18423 				goto retry;
18424 			}
18425 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18426 				nce_refrele(nce);
18427 				nce = NULL;
18428 				ip1dbg(("ipif_arp_up: NCE already exists "
18429 				    "for %s:%u\n", ill->ill_name,
18430 				    ipif->ipif_id));
18431 				goto arp_up_done;
18432 			}
18433 			/*
18434 			 * Duplicate local addresses are permissible for
18435 			 * IPIF_POINTOPOINT interfaces which will get marked
18436 			 * IPIF_UNNUMBERED later in
18437 			 * ip_addr_availability_check().
18438 			 *
18439 			 * The nce_ipif_cnt field tracks the number of
18440 			 * ipifs that have nce_addr as their local address.
18441 			 */
18442 			ipif->ipif_addr_ready = 1;
18443 			ipif->ipif_added_nce = 1;
18444 			nce->nce_ipif_cnt++;
18445 			err = 0;
18446 			break;
18447 		default:
18448 			ASSERT(nce == NULL);
18449 			goto arp_up_done;
18450 		}
18451 		if (arp_no_defense) {
18452 			if ((ipif->ipif_flags & IPIF_UP) &&
18453 			    !ipif->ipif_addr_ready)
18454 				ipif_up_notify(ipif);
18455 			ipif->ipif_addr_ready = 1;
18456 		}
18457 	} else {
18458 		/* zero address. nothing to publish */
18459 		ipif->ipif_addr_ready = 1;
18460 	}
18461 	if (nce != NULL)
18462 		nce_refrele(nce);
18463 arp_up_done:
18464 	if (added_ipif && err != 0)
18465 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18466 	return (err);
18467 }
18468 
18469 int
18470 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18471 {
18472 	int 		err = 0;
18473 	ill_t 		*ill = ipif->ipif_ill;
18474 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
18475 
18476 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18477 	    ill_t *, ill, ipif_t *, ipif);
18478 
18479 	/*
18480 	 * need to bring up ARP or setup mcast mapping only
18481 	 * when the first interface is coming UP.
18482 	 */
18483 	first_interface = (ill->ill_ipif_up_count == 0 &&
18484 	    ill->ill_ipif_dup_count == 0 && !was_dup);
18485 
18486 	if (res_act == Res_act_initial && first_interface) {
18487 		/*
18488 		 * Send ATTACH + BIND
18489 		 */
18490 		err = arp_ll_up(ill);
18491 		if (err != EINPROGRESS && err != 0)
18492 			return (err);
18493 
18494 		/*
18495 		 * Add NCE for local address. Start DAD.
18496 		 * we'll wait to hear that DAD has finished
18497 		 * before using the interface.
18498 		 */
18499 		if (err == EINPROGRESS)
18500 			wait_for_dlpi = B_TRUE;
18501 	}
18502 
18503 	if (!wait_for_dlpi)
18504 		(void) ipif_arp_up_done_tail(ipif, res_act);
18505 
18506 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
18507 }
18508 
18509 /*
18510  * Finish processing of "arp_up" after all the DLPI message
18511  * exchanges have completed between arp and the driver.
18512  */
18513 void
18514 arp_bringup_done(ill_t *ill, int err)
18515 {
18516 	mblk_t	*mp1;
18517 	ipif_t  *ipif;
18518 	conn_t *connp = NULL;
18519 	ipsq_t	*ipsq;
18520 	queue_t *q;
18521 
18522 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18523 
18524 	ASSERT(IAM_WRITER_ILL(ill));
18525 
18526 	ipsq = ill->ill_phyint->phyint_ipsq;
18527 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18528 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18529 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18530 	if (mp1 == NULL) /* bringup was aborted by the user */
18531 		return;
18532 
18533 	/*
18534 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18535 	 * must have an associated conn_t.  Otherwise, we're bringing this
18536 	 * interface back up as part of handling an asynchronous event (e.g.,
18537 	 * physical address change).
18538 	 */
18539 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18540 		ASSERT(connp != NULL);
18541 		q = CONNP_TO_WQ(connp);
18542 	} else {
18543 		ASSERT(connp == NULL);
18544 		q = ill->ill_rq;
18545 	}
18546 	if (err == 0) {
18547 		if (ipif->ipif_isv6) {
18548 			if ((err = ipif_up_done_v6(ipif)) != 0)
18549 				ip0dbg(("arp_bringup_done: init failed\n"));
18550 		} else {
18551 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18552 			if (err != 0 ||
18553 			    (err = ipif_up_done(ipif)) != 0) {
18554 				ip0dbg(("arp_bringup_done: "
18555 				    "init failed err %x\n", err));
18556 				(void) ipif_arp_down(ipif);
18557 			}
18558 
18559 		}
18560 	} else {
18561 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18562 	}
18563 
18564 	if ((err == 0) && (ill->ill_up_ipifs)) {
18565 		err = ill_up_ipifs(ill, q, mp1);
18566 		if (err == EINPROGRESS)
18567 			return;
18568 	}
18569 
18570 	/*
18571 	 * If we have a moved ipif to bring up, and everything has succeeded
18572 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18573 	 * down -- the admin can try to bring it up by hand if need be.
18574 	 */
18575 	if (ill->ill_move_ipif != NULL) {
18576 		ipif = ill->ill_move_ipif;
18577 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18578 		    ipif->ipif_ill->ill_name));
18579 		ill->ill_move_ipif = NULL;
18580 		if (err == 0) {
18581 			err = ipif_up(ipif, q, mp1);
18582 			if (err == EINPROGRESS)
18583 				return;
18584 		}
18585 	}
18586 
18587 	/*
18588 	 * The operation must complete without EINPROGRESS since
18589 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18590 	 * Otherwise, the operation will be stuck forever in the ipsq.
18591 	 */
18592 	ASSERT(err != EINPROGRESS);
18593 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18594 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18595 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18596 		    ill_t *, ill, ipif_t *, ipif);
18597 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18598 	} else {
18599 		ipsq_current_finish(ipsq);
18600 	}
18601 }
18602 
18603 /*
18604  * Finish processing of arp replumb after all the DLPI message
18605  * exchanges have completed between arp and the driver.
18606  */
18607 void
18608 arp_replumb_done(ill_t *ill, int err)
18609 {
18610 	mblk_t	*mp1;
18611 	ipif_t  *ipif;
18612 	conn_t *connp = NULL;
18613 	ipsq_t	*ipsq;
18614 	queue_t *q;
18615 
18616 	ASSERT(IAM_WRITER_ILL(ill));
18617 
18618 	ipsq = ill->ill_phyint->phyint_ipsq;
18619 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18620 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18621 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18622 	if (mp1 == NULL) {
18623 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18624 		    ipsq->ipsq_xop->ipx_current_ioctl));
18625 		/* bringup was aborted by the user */
18626 		return;
18627 	}
18628 	/*
18629 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18630 	 * must have an associated conn_t.  Otherwise, we're bringing this
18631 	 * interface back up as part of handling an asynchronous event (e.g.,
18632 	 * physical address change).
18633 	 */
18634 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18635 		ASSERT(connp != NULL);
18636 		q = CONNP_TO_WQ(connp);
18637 	} else {
18638 		ASSERT(connp == NULL);
18639 		q = ill->ill_rq;
18640 	}
18641 	if ((err == 0) && (ill->ill_up_ipifs)) {
18642 		err = ill_up_ipifs(ill, q, mp1);
18643 		if (err == EINPROGRESS)
18644 			return;
18645 	}
18646 	/*
18647 	 * The operation must complete without EINPROGRESS since
18648 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18649 	 * Otherwise, the operation will be stuck forever in the ipsq.
18650 	 */
18651 	ASSERT(err != EINPROGRESS);
18652 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18653 		DTRACE_PROBE4(ipif__ioctl, char *,
18654 		    "arp_replumb_done finish",
18655 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18656 		    ill_t *, ill, ipif_t *, ipif);
18657 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18658 	} else {
18659 		ipsq_current_finish(ipsq);
18660 	}
18661 }
18662 
18663 void
18664 ipif_up_notify(ipif_t *ipif)
18665 {
18666 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18667 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18668 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18669 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18670 	    NE_LIF_UP, NULL, 0);
18671 }
18672 
18673 /*
18674  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18675  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18676  * TPI end points with STREAMS modules pushed above.  This is assured by not
18677  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18678  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18679  * while unwinding from the ispq and that could be a thread from the bottom.
18680  */
18681 /* ARGSUSED */
18682 int
18683 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18684     ip_ioctl_cmd_t *ipip, void *arg)
18685 {
18686 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18687 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18688 	int ret = 0;
18689 	int i;
18690 	size_t size;
18691 	ip_stack_t *ipst;
18692 	zoneid_t zoneid;
18693 	ilb_stack_t *ilbs;
18694 
18695 	ipst = CONNQ_TO_IPST(q);
18696 	ilbs = ipst->ips_netstack->netstack_ilb;
18697 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18698 
18699 	switch (command) {
18700 	case ILB_CREATE_RULE: {
18701 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18702 
18703 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18704 			ret = EINVAL;
18705 			break;
18706 		}
18707 
18708 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18709 		break;
18710 	}
18711 	case ILB_DESTROY_RULE:
18712 	case ILB_ENABLE_RULE:
18713 	case ILB_DISABLE_RULE: {
18714 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18715 
18716 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18717 			ret = EINVAL;
18718 			break;
18719 		}
18720 
18721 		if (cmd->flags & ILB_RULE_ALLRULES) {
18722 			if (command == ILB_DESTROY_RULE) {
18723 				ilb_rule_del_all(ilbs, zoneid);
18724 				break;
18725 			} else if (command == ILB_ENABLE_RULE) {
18726 				ilb_rule_enable_all(ilbs, zoneid);
18727 				break;
18728 			} else if (command == ILB_DISABLE_RULE) {
18729 				ilb_rule_disable_all(ilbs, zoneid);
18730 				break;
18731 			}
18732 		} else {
18733 			if (command == ILB_DESTROY_RULE) {
18734 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18735 			} else if (command == ILB_ENABLE_RULE) {
18736 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18737 				    NULL);
18738 			} else if (command == ILB_DISABLE_RULE) {
18739 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18740 				    NULL);
18741 			}
18742 		}
18743 		break;
18744 	}
18745 	case ILB_NUM_RULES: {
18746 		ilb_num_rules_cmd_t *cmd;
18747 
18748 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18749 			ret = EINVAL;
18750 			break;
18751 		}
18752 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18753 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18754 		break;
18755 	}
18756 	case ILB_RULE_NAMES: {
18757 		ilb_rule_names_cmd_t *cmd;
18758 
18759 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18760 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18761 		    cmd->num_names == 0) {
18762 			ret = EINVAL;
18763 			break;
18764 		}
18765 		size = cmd->num_names * ILB_RULE_NAMESZ;
18766 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18767 		    size != cmd_mp->b_wptr) {
18768 			ret = EINVAL;
18769 			break;
18770 		}
18771 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18772 		break;
18773 	}
18774 	case ILB_NUM_SERVERS: {
18775 		ilb_num_servers_cmd_t *cmd;
18776 
18777 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18778 			ret = EINVAL;
18779 			break;
18780 		}
18781 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18782 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18783 		    &(cmd->num));
18784 		break;
18785 	}
18786 	case ILB_LIST_RULE: {
18787 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18788 
18789 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18790 			ret = EINVAL;
18791 			break;
18792 		}
18793 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18794 		break;
18795 	}
18796 	case ILB_LIST_SERVERS: {
18797 		ilb_servers_info_cmd_t *cmd;
18798 
18799 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18800 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18801 		    cmd->num_servers == 0) {
18802 			ret = EINVAL;
18803 			break;
18804 		}
18805 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18806 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18807 		    size != cmd_mp->b_wptr) {
18808 			ret = EINVAL;
18809 			break;
18810 		}
18811 
18812 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18813 		    &cmd->num_servers);
18814 		break;
18815 	}
18816 	case ILB_ADD_SERVERS: {
18817 		ilb_servers_info_cmd_t *cmd;
18818 		ilb_rule_t *rule;
18819 
18820 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18821 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18822 			ret = EINVAL;
18823 			break;
18824 		}
18825 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18826 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18827 		    size != cmd_mp->b_wptr) {
18828 			ret = EINVAL;
18829 			break;
18830 		}
18831 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18832 		if (rule == NULL) {
18833 			ASSERT(ret != 0);
18834 			break;
18835 		}
18836 		for (i = 0; i < cmd->num_servers; i++) {
18837 			ilb_server_info_t *s;
18838 
18839 			s = &cmd->servers[i];
18840 			s->err = ilb_server_add(ilbs, rule, s);
18841 		}
18842 		ILB_RULE_REFRELE(rule);
18843 		break;
18844 	}
18845 	case ILB_DEL_SERVERS:
18846 	case ILB_ENABLE_SERVERS:
18847 	case ILB_DISABLE_SERVERS: {
18848 		ilb_servers_cmd_t *cmd;
18849 		ilb_rule_t *rule;
18850 		int (*f)();
18851 
18852 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18853 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18854 			ret = EINVAL;
18855 			break;
18856 		}
18857 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18858 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18859 		    size != cmd_mp->b_wptr) {
18860 			ret = EINVAL;
18861 			break;
18862 		}
18863 
18864 		if (command == ILB_DEL_SERVERS)
18865 			f = ilb_server_del;
18866 		else if (command == ILB_ENABLE_SERVERS)
18867 			f = ilb_server_enable;
18868 		else if (command == ILB_DISABLE_SERVERS)
18869 			f = ilb_server_disable;
18870 
18871 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18872 		if (rule == NULL) {
18873 			ASSERT(ret != 0);
18874 			break;
18875 		}
18876 
18877 		for (i = 0; i < cmd->num_servers; i++) {
18878 			ilb_server_arg_t *s;
18879 
18880 			s = &cmd->servers[i];
18881 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18882 		}
18883 		ILB_RULE_REFRELE(rule);
18884 		break;
18885 	}
18886 	case ILB_LIST_NAT_TABLE: {
18887 		ilb_list_nat_cmd_t *cmd;
18888 
18889 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18890 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18891 			ret = EINVAL;
18892 			break;
18893 		}
18894 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18895 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18896 		    size != cmd_mp->b_wptr) {
18897 			ret = EINVAL;
18898 			break;
18899 		}
18900 
18901 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18902 		    &cmd->flags);
18903 		break;
18904 	}
18905 	case ILB_LIST_STICKY_TABLE: {
18906 		ilb_list_sticky_cmd_t *cmd;
18907 
18908 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18909 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18910 			ret = EINVAL;
18911 			break;
18912 		}
18913 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18914 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18915 		    size != cmd_mp->b_wptr) {
18916 			ret = EINVAL;
18917 			break;
18918 		}
18919 
18920 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18921 		    &cmd->num_sticky, &cmd->flags);
18922 		break;
18923 	}
18924 	default:
18925 		ret = EINVAL;
18926 		break;
18927 	}
18928 done:
18929 	return (ret);
18930 }
18931 
18932 /* Remove all cache entries for this logical interface */
18933 void
18934 ipif_nce_down(ipif_t *ipif)
18935 {
18936 	ill_t *ill = ipif->ipif_ill;
18937 	nce_t *nce;
18938 
18939 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18940 	    ill_t *, ill, ipif_t *, ipif);
18941 	if (ipif->ipif_added_nce) {
18942 		if (ipif->ipif_isv6)
18943 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18944 		else
18945 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18946 		if (nce != NULL) {
18947 			if (--nce->nce_ipif_cnt == 0)
18948 				ncec_delete(nce->nce_common);
18949 			ipif->ipif_added_nce = 0;
18950 			nce_refrele(nce);
18951 		} else {
18952 			/*
18953 			 * nce may already be NULL because it was already
18954 			 * flushed, e.g., due to a call to nce_flush
18955 			 */
18956 			ipif->ipif_added_nce = 0;
18957 		}
18958 	}
18959 	/*
18960 	 * Make IPMP aware of the deleted data address.
18961 	 */
18962 	if (IS_IPMP(ill))
18963 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18964 
18965 	/*
18966 	 * Remove all other nces dependent on this ill when the last ipif
18967 	 * is going away.
18968 	 */
18969 	if (ill->ill_ipif_up_count == 0) {
18970 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18971 		    (uchar_t *)ill, ill->ill_ipst);
18972 		if (IS_UNDER_IPMP(ill))
18973 			nce_flush(ill, B_TRUE);
18974 	}
18975 }
18976 
18977 /*
18978  * find the first interface that uses usill for its source address.
18979  */
18980 ill_t *
18981 ill_lookup_usesrc(ill_t *usill)
18982 {
18983 	ip_stack_t *ipst = usill->ill_ipst;
18984 	ill_t *ill;
18985 
18986 	ASSERT(usill != NULL);
18987 
18988 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
18989 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
18990 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18991 	for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
18992 	    ill = ill->ill_usesrc_grp_next) {
18993 		if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
18994 		    !ILL_IS_CONDEMNED(ill)) {
18995 			ill_refhold(ill);
18996 			break;
18997 		}
18998 	}
18999 	rw_exit(&ipst->ips_ill_g_lock);
19000 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
19001 	return (ill);
19002 }
19003