1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <inet/ipclassifier.h> 96 #include <sys/mac.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 typedef struct ip_sock_ar_s { 118 union { 119 area_t ip_sock_area; 120 ared_t ip_sock_ared; 121 areq_t ip_sock_areq; 122 } ip_sock_ar_u; 123 queue_t *ip_sock_ar_q; 124 } ip_sock_ar_t; 125 126 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 127 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 128 char *value, caddr_t cp, cred_t *ioc_cr); 129 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 145 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 static void ipsq_clean_all(ill_t *ill); 150 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 151 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 152 queue_t *q, mblk_t *mp, boolean_t need_up); 153 static void ipsq_delete(ipsq_t *); 154 155 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 156 boolean_t initialize); 157 static void ipif_check_bcast_ires(ipif_t *test_ipif); 158 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 159 static void ipif_delete_cache_ire(ire_t *, char *); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_dl_down(ill_t *ill); 183 static void ill_down(ill_t *ill); 184 static void ill_downi(ire_t *ire, char *ill_arg); 185 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 186 static void ill_down_tail(ill_t *ill); 187 static void ill_free_mib(ill_t *ill); 188 static void ill_glist_delete(ill_t *); 189 static boolean_t ill_has_usable_ipif(ill_t *); 190 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 191 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 192 static void ill_phyint_free(ill_t *ill); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 197 static void ill_stq_cache_delete(ire_t *, char *); 198 199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 202 in6_addr_t *); 203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 ipaddr_t *); 205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 211 static void ipif_save_ire(ipif_t *, ire_t *); 212 static void ipif_remove_ire(ipif_t *, ire_t *); 213 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 214 static void ip_cgtp_bcast_delete(ire_t *); 215 216 /* 217 * Per-ill IPsec capabilities management. 218 */ 219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 220 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 221 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 222 static void ill_ipsec_capab_delete(ill_t *, uint_t); 223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 224 static void ill_capability_proto(ill_t *, int, mblk_t *); 225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 226 boolean_t); 227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 235 dl_capability_sub_t *); 236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 237 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_lso_reset(ill_t *, mblk_t **); 239 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 240 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 241 static void ill_capability_dls_reset(ill_t *, mblk_t **); 242 static void ill_capability_dls_disable(ill_t *); 243 244 static void illgrp_cache_delete(ire_t *, char *); 245 static void illgrp_delete(ill_t *ill); 246 static void illgrp_reset_schednext(ill_t *ill); 247 248 static ill_t *ill_prev_usesrc(ill_t *); 249 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 250 static void ill_disband_usesrc_group(ill_t *); 251 252 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 253 254 /* 255 * if we go over the memory footprint limit more than once in this msec 256 * interval, we'll start pruning aggressively. 257 */ 258 int ip_min_frag_prune_time = 0; 259 260 /* 261 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 262 * and the IPsec DOI 263 */ 264 #define MAX_IPSEC_ALGS 256 265 266 #define BITSPERBYTE 8 267 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 268 269 #define IPSEC_ALG_ENABLE(algs, algid) \ 270 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 271 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 272 273 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 typedef uint8_t ipsec_capab_elem_t; 278 279 /* 280 * Per-algorithm parameters. Note that at present, only encryption 281 * algorithms have variable keysize (IKE does not provide a way to negotiate 282 * auth algorithm keysize). 283 * 284 * All sizes here are in bits. 285 */ 286 typedef struct 287 { 288 uint16_t minkeylen; 289 uint16_t maxkeylen; 290 } ipsec_capab_algparm_t; 291 292 /* 293 * Per-ill capabilities. 294 */ 295 struct ill_ipsec_capab_s { 296 ipsec_capab_elem_t *encr_hw_algs; 297 ipsec_capab_elem_t *auth_hw_algs; 298 uint32_t algs_size; /* size of _hw_algs in bytes */ 299 /* algorithm key lengths */ 300 ipsec_capab_algparm_t *encr_algparm; 301 uint32_t encr_algparm_size; 302 uint32_t encr_algparm_end; 303 }; 304 305 /* 306 * List of AH and ESP IPsec acceleration capable ills 307 */ 308 typedef struct ipsec_capab_ill_s { 309 uint_t ill_index; 310 boolean_t ill_isv6; 311 struct ipsec_capab_ill_s *next; 312 } ipsec_capab_ill_t; 313 314 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 315 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 316 krwlock_t ipsec_capab_ills_lock; 317 318 /* 319 * The field values are larger than strictly necessary for simple 320 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 321 */ 322 static area_t ip_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IP_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 /* 341 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 342 * support 343 */ 344 static area_t ip6_area_template = { 345 AR_ENTRY_ADD, /* area_cmd */ 346 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 347 /* area_name_offset */ 348 /* area_name_length temporarily holds this structure length */ 349 sizeof (area_t), /* area_name_length */ 350 IP_ARP_PROTO_TYPE, /* area_proto */ 351 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 352 IPV6_ADDR_LEN, /* area_proto_addr_length */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 354 /* area_proto_mask_offset */ 355 0, /* area_flags */ 356 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 357 /* area_hw_addr_offset */ 358 /* Zero length hw_addr_length means 'use your idea of the address' */ 359 0 /* area_hw_addr_length */ 360 }; 361 362 static ared_t ip_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IP_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IP_ADDR_LEN 369 }; 370 371 static ared_t ip6_ared_template = { 372 AR_ENTRY_DELETE, 373 sizeof (ared_t) + IPV6_ADDR_LEN, 374 sizeof (ared_t), 375 IP_ARP_PROTO_TYPE, 376 sizeof (ared_t), 377 IPV6_ADDR_LEN 378 }; 379 380 /* 381 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 382 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 383 * areq is used). 384 */ 385 static areq_t ip_areq_template = { 386 AR_ENTRY_QUERY, /* cmd */ 387 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 388 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 389 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 390 sizeof (areq_t), /* target addr offset */ 391 IP_ADDR_LEN, /* target addr_length */ 392 0, /* flags */ 393 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 394 IP_ADDR_LEN, /* sender addr length */ 395 6, /* xmit_count */ 396 1000, /* (re)xmit_interval in milliseconds */ 397 4 /* max # of requests to buffer */ 398 /* anything else filled in by the code */ 399 }; 400 401 static arc_t ip_aru_template = { 402 AR_INTERFACE_UP, 403 sizeof (arc_t), /* Name offset */ 404 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 405 }; 406 407 static arc_t ip_ard_template = { 408 AR_INTERFACE_DOWN, 409 sizeof (arc_t), /* Name offset */ 410 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 411 }; 412 413 static arc_t ip_aron_template = { 414 AR_INTERFACE_ON, 415 sizeof (arc_t), /* Name offset */ 416 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 417 }; 418 419 static arc_t ip_aroff_template = { 420 AR_INTERFACE_OFF, 421 sizeof (arc_t), /* Name offset */ 422 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 423 }; 424 425 426 static arma_t ip_arma_multi_template = { 427 AR_MAPPING_ADD, 428 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 429 /* Name offset */ 430 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 431 IP_ARP_PROTO_TYPE, 432 sizeof (arma_t), /* proto_addr_offset */ 433 IP_ADDR_LEN, /* proto_addr_length */ 434 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 435 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 436 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 437 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 438 IP_MAX_HW_LEN, /* hw_addr_length */ 439 0, /* hw_mapping_start */ 440 }; 441 442 static ipft_t ip_ioctl_ftbl[] = { 443 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 444 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 447 IPFT_F_NO_REPLY }, 448 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 449 { 0 } 450 }; 451 452 /* Simple ICMP IP Header Template */ 453 static ipha_t icmp_ipha = { 454 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 455 }; 456 457 /* Flag descriptors for ip_ipif_report */ 458 static nv_t ipif_nv_tbl[] = { 459 { IPIF_UP, "UP" }, 460 { IPIF_BROADCAST, "BROADCAST" }, 461 { ILLF_DEBUG, "DEBUG" }, 462 { PHYI_LOOPBACK, "LOOPBACK" }, 463 { IPIF_POINTOPOINT, "POINTOPOINT" }, 464 { ILLF_NOTRAILERS, "NOTRAILERS" }, 465 { PHYI_RUNNING, "RUNNING" }, 466 { ILLF_NOARP, "NOARP" }, 467 { PHYI_PROMISC, "PROMISC" }, 468 { PHYI_ALLMULTI, "ALLMULTI" }, 469 { PHYI_INTELLIGENT, "INTELLIGENT" }, 470 { ILLF_MULTICAST, "MULTICAST" }, 471 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 472 { IPIF_UNNUMBERED, "UNNUMBERED" }, 473 { IPIF_DHCPRUNNING, "DHCP" }, 474 { IPIF_PRIVATE, "PRIVATE" }, 475 { IPIF_NOXMIT, "NOXMIT" }, 476 { IPIF_NOLOCAL, "NOLOCAL" }, 477 { IPIF_DEPRECATED, "DEPRECATED" }, 478 { IPIF_PREFERRED, "PREFERRED" }, 479 { IPIF_TEMPORARY, "TEMPORARY" }, 480 { IPIF_ADDRCONF, "ADDRCONF" }, 481 { PHYI_VIRTUAL, "VIRTUAL" }, 482 { ILLF_ROUTER, "ROUTER" }, 483 { ILLF_NONUD, "NONUD" }, 484 { IPIF_ANYCAST, "ANYCAST" }, 485 { ILLF_NORTEXCH, "NORTEXCH" }, 486 { ILLF_IPV4, "IPV4" }, 487 { ILLF_IPV6, "IPV6" }, 488 { IPIF_MIPRUNNING, "MIP" }, 489 { IPIF_NOFAILOVER, "NOFAILOVER" }, 490 { PHYI_FAILED, "FAILED" }, 491 { PHYI_STANDBY, "STANDBY" }, 492 { PHYI_INACTIVE, "INACTIVE" }, 493 { PHYI_OFFLINE, "OFFLINE" }, 494 }; 495 496 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 497 498 static ip_m_t ip_m_tbl[] = { 499 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_nodef_v6intfid }, 507 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_ether_v6intfid }, 509 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 510 ip_ib_v6intfid }, 511 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 512 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 513 ip_nodef_v6intfid } 514 }; 515 516 static ill_t ill_null; /* Empty ILL for init. */ 517 char ipif_loopback_name[] = "lo0"; 518 static char *ipv4_forward_suffix = ":ip_forwarding"; 519 static char *ipv6_forward_suffix = ":ip6_forwarding"; 520 static kstat_t *loopback_ksp = NULL; 521 static sin6_t sin6_null; /* Zero address for quick clears */ 522 static sin_t sin_null; /* Zero address for quick clears */ 523 static uint_t ill_index = 1; /* Used to assign interface indicies */ 524 /* When set search for unused index */ 525 static boolean_t ill_index_wrap = B_FALSE; 526 /* When set search for unused ipif_seqid */ 527 static ipif_t ipif_zero; 528 uint_t ipif_src_random; 529 530 /* 531 * For details on the protection offered by these locks please refer 532 * to the notes under the Synchronization section at the start of ip.c 533 */ 534 krwlock_t ill_g_lock; /* The global ill_g_lock */ 535 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 536 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 537 538 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 539 540 /* 541 * illgrp_head/ifgrp_head is protected by IP's perimeter. 542 */ 543 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 544 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 545 546 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 547 548 /* 549 * ppa arena is created after these many 550 * interfaces have been plumbed. 551 */ 552 uint_t ill_no_arena = 12; 553 554 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 555 static phyint_list_t phyint_g_list; /* start of phyint list */ 556 557 /* 558 * Reflects value of FAILBACK variable in IPMP config file 559 * /etc/default/mpathd. Default value is B_TRUE. 560 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 561 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 562 */ 563 static boolean_t ipmp_enable_failback = B_TRUE; 564 565 /* 566 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 567 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 568 * set through platform specific code (Niagara/Ontario). 569 */ 570 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 571 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 572 573 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 574 575 static uint_t 576 ipif_rand(void) 577 { 578 ipif_src_random = ipif_src_random * 1103515245 + 12345; 579 return ((ipif_src_random >> 16) & 0x7fff); 580 } 581 582 /* 583 * Allocate per-interface mibs. Only used for ipv6. 584 * Returns true if ok. False otherwise. 585 * ipsq may not yet be allocated (loopback case ). 586 */ 587 static boolean_t 588 ill_allocate_mibs(ill_t *ill) 589 { 590 ASSERT(ill->ill_isv6); 591 592 /* Already allocated? */ 593 if (ill->ill_ip6_mib != NULL) { 594 ASSERT(ill->ill_icmp6_mib != NULL); 595 return (B_TRUE); 596 } 597 598 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 599 KM_NOSLEEP); 600 if (ill->ill_ip6_mib == NULL) { 601 return (B_FALSE); 602 } 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 607 ill->ill_ip6_mib = NULL; 608 return (B_FALSE); 609 } 610 /* 611 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 612 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 613 * -> ill_phyint_reinit 614 */ 615 return (B_TRUE); 616 } 617 618 /* 619 * Common code for preparation of ARP commands. Two points to remember: 620 * 1) The ill_name is tacked on at the end of the allocated space so 621 * the templates name_offset field must contain the total space 622 * to allocate less the name length. 623 * 624 * 2) The templates name_length field should contain the *template* 625 * length. We use it as a parameter to bcopy() and then write 626 * the real ill_name_length into the name_length field of the copy. 627 * (Always called as writer.) 628 */ 629 mblk_t * 630 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 631 { 632 arc_t *arc = (arc_t *)template; 633 char *cp; 634 int len; 635 mblk_t *mp; 636 uint_t name_length = ill->ill_name_length; 637 uint_t template_len = arc->arc_name_length; 638 639 len = arc->arc_name_offset + name_length; 640 mp = allocb(len, BPRI_HI); 641 if (mp == NULL) 642 return (NULL); 643 cp = (char *)mp->b_rptr; 644 mp->b_wptr = (uchar_t *)&cp[len]; 645 if (template_len) 646 bcopy(template, cp, template_len); 647 if (len > template_len) 648 bzero(&cp[template_len], len - template_len); 649 mp->b_datap->db_type = M_PROTO; 650 651 arc = (arc_t *)cp; 652 arc->arc_name_length = name_length; 653 cp = (char *)arc + arc->arc_name_offset; 654 bcopy(ill->ill_name, cp, name_length); 655 656 if (addr) { 657 area_t *area = (area_t *)mp->b_rptr; 658 659 cp = (char *)area + area->area_proto_addr_offset; 660 bcopy(addr, cp, area->area_proto_addr_length); 661 if (area->area_cmd == AR_ENTRY_ADD) { 662 cp = (char *)area; 663 len = area->area_proto_addr_length; 664 if (area->area_proto_mask_offset) 665 cp += area->area_proto_mask_offset; 666 else 667 cp += area->area_proto_addr_offset + len; 668 while (len-- > 0) 669 *cp++ = (char)~0; 670 } 671 } 672 return (mp); 673 } 674 675 mblk_t * 676 ipif_area_alloc(ipif_t *ipif) 677 { 678 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 679 (char *)&ipif->ipif_lcl_addr)); 680 } 681 682 mblk_t * 683 ipif_ared_alloc(ipif_t *ipif) 684 { 685 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 686 (char *)&ipif->ipif_lcl_addr)); 687 } 688 689 mblk_t * 690 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 691 { 692 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 693 (char *)&addr)); 694 } 695 696 /* 697 * Completely vaporize a lower level tap and all associated interfaces. 698 * ill_delete is called only out of ip_close when the device control 699 * stream is being closed. 700 */ 701 void 702 ill_delete(ill_t *ill) 703 { 704 ipif_t *ipif; 705 ill_t *prev_ill; 706 707 /* 708 * ill_delete may be forcibly entering the ipsq. The previous 709 * ioctl may not have completed and may need to be aborted. 710 * ipsq_flush takes care of it. If we don't need to enter the 711 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 712 * ill_delete_tail is sufficient. 713 */ 714 ipsq_flush(ill); 715 716 /* 717 * Nuke all interfaces. ipif_free will take down the interface, 718 * remove it from the list, and free the data structure. 719 * Walk down the ipif list and remove the logical interfaces 720 * first before removing the main ipif. We can't unplumb 721 * zeroth interface first in the case of IPv6 as reset_conn_ill 722 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 723 * POINTOPOINT. 724 * 725 * If ill_ipif was not properly initialized (i.e low on memory), 726 * then no interfaces to clean up. In this case just clean up the 727 * ill. 728 */ 729 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 730 ipif_free(ipif); 731 732 /* 733 * Used only by ill_arp_on and ill_arp_off, which are writers. 734 * So nobody can be using this mp now. Free the mp allocated for 735 * honoring ILLF_NOARP 736 */ 737 freemsg(ill->ill_arp_on_mp); 738 ill->ill_arp_on_mp = NULL; 739 740 /* Clean up msgs on pending upcalls for mrouted */ 741 reset_mrt_ill(ill); 742 743 /* 744 * ipif_free -> reset_conn_ipif will remove all multicast 745 * references for IPv4. For IPv6, we need to do it here as 746 * it points only at ills. 747 */ 748 reset_conn_ill(ill); 749 750 /* 751 * ill_down will arrange to blow off any IRE's dependent on this 752 * ILL, and shut down fragmentation reassembly. 753 */ 754 ill_down(ill); 755 756 /* Let SCTP know, so that it can remove this from its list. */ 757 sctp_update_ill(ill, SCTP_ILL_REMOVE); 758 759 /* 760 * If an address on this ILL is being used as a source address then 761 * clear out the pointers in other ILLs that point to this ILL. 762 */ 763 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 764 if (ill->ill_usesrc_grp_next != NULL) { 765 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 766 ill_disband_usesrc_group(ill); 767 } else { /* consumer of the usesrc ILL */ 768 prev_ill = ill_prev_usesrc(ill); 769 prev_ill->ill_usesrc_grp_next = 770 ill->ill_usesrc_grp_next; 771 } 772 } 773 rw_exit(&ill_g_usesrc_lock); 774 } 775 776 static void 777 ipif_non_duplicate(ipif_t *ipif) 778 { 779 ill_t *ill = ipif->ipif_ill; 780 mutex_enter(&ill->ill_lock); 781 if (ipif->ipif_flags & IPIF_DUPLICATE) { 782 ipif->ipif_flags &= ~IPIF_DUPLICATE; 783 ASSERT(ill->ill_ipif_dup_count > 0); 784 ill->ill_ipif_dup_count--; 785 } 786 mutex_exit(&ill->ill_lock); 787 } 788 789 /* 790 * ill_delete_tail is called from ip_modclose after all references 791 * to the closing ill are gone. The wait is done in ip_modclose 792 */ 793 void 794 ill_delete_tail(ill_t *ill) 795 { 796 mblk_t **mpp; 797 ipif_t *ipif; 798 799 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 800 ipif_non_duplicate(ipif); 801 ipif_down_tail(ipif); 802 } 803 804 ASSERT(ill->ill_ipif_dup_count == 0 && 805 ill->ill_arp_down_mp == NULL && 806 ill->ill_arp_del_mapping_mp == NULL); 807 808 /* 809 * If polling capability is enabled (which signifies direct 810 * upcall into IP and driver has ill saved as a handle), 811 * we need to make sure that unbind has completed before we 812 * let the ill disappear and driver no longer has any reference 813 * to this ill. 814 */ 815 mutex_enter(&ill->ill_lock); 816 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 817 cv_wait(&ill->ill_cv, &ill->ill_lock); 818 mutex_exit(&ill->ill_lock); 819 820 /* 821 * Clean up polling and soft ring capabilities 822 */ 823 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 824 ill_capability_dls_disable(ill); 825 826 /* 827 * Send the detach if there's one to send (i.e., if we're above a 828 * style 2 DLPI driver). 829 */ 830 if (ill->ill_detach_mp != NULL) { 831 ill_dlpi_send(ill, ill->ill_detach_mp); 832 ill->ill_detach_mp = NULL; 833 } 834 835 if (ill->ill_net_type != IRE_LOOPBACK) 836 qprocsoff(ill->ill_rq); 837 838 /* 839 * We do an ipsq_flush once again now. New messages could have 840 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 841 * could also have landed up if an ioctl thread had looked up 842 * the ill before we set the ILL_CONDEMNED flag, but not yet 843 * enqueued the ioctl when we did the ipsq_flush last time. 844 */ 845 ipsq_flush(ill); 846 847 /* 848 * Free capabilities. 849 */ 850 if (ill->ill_ipsec_capab_ah != NULL) { 851 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 852 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 853 ill->ill_ipsec_capab_ah = NULL; 854 } 855 856 if (ill->ill_ipsec_capab_esp != NULL) { 857 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 858 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 859 ill->ill_ipsec_capab_esp = NULL; 860 } 861 862 if (ill->ill_mdt_capab != NULL) { 863 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 864 ill->ill_mdt_capab = NULL; 865 } 866 867 if (ill->ill_hcksum_capab != NULL) { 868 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 869 ill->ill_hcksum_capab = NULL; 870 } 871 872 if (ill->ill_zerocopy_capab != NULL) { 873 kmem_free(ill->ill_zerocopy_capab, 874 sizeof (ill_zerocopy_capab_t)); 875 ill->ill_zerocopy_capab = NULL; 876 } 877 878 if (ill->ill_lso_capab != NULL) { 879 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 880 ill->ill_lso_capab = NULL; 881 } 882 883 if (ill->ill_dls_capab != NULL) { 884 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 885 ill->ill_dls_capab->ill_unbind_conn = NULL; 886 kmem_free(ill->ill_dls_capab, 887 sizeof (ill_dls_capab_t) + 888 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 889 ill->ill_dls_capab = NULL; 890 } 891 892 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 893 894 while (ill->ill_ipif != NULL) 895 ipif_free_tail(ill->ill_ipif); 896 897 ill_down_tail(ill); 898 899 /* 900 * We have removed all references to ilm from conn and the ones joined 901 * within the kernel. 902 * 903 * We don't walk conns, mrts and ires because 904 * 905 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 906 * 2) ill_down ->ill_downi walks all the ires and cleans up 907 * ill references. 908 */ 909 ASSERT(ilm_walk_ill(ill) == 0); 910 /* 911 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 912 * could free the phyint. No more reference to the phyint after this 913 * point. 914 */ 915 (void) ill_glist_delete(ill); 916 917 rw_enter(&ip_g_nd_lock, RW_WRITER); 918 if (ill->ill_ndd_name != NULL) 919 nd_unload(&ip_g_nd, ill->ill_ndd_name); 920 rw_exit(&ip_g_nd_lock); 921 922 923 if (ill->ill_frag_ptr != NULL) { 924 uint_t count; 925 926 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 927 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 928 } 929 mi_free(ill->ill_frag_ptr); 930 ill->ill_frag_ptr = NULL; 931 ill->ill_frag_hash_tbl = NULL; 932 } 933 if (ill->ill_nd_lla_mp != NULL) 934 freemsg(ill->ill_nd_lla_mp); 935 /* Free all retained control messages. */ 936 mpp = &ill->ill_first_mp_to_free; 937 do { 938 while (mpp[0]) { 939 mblk_t *mp; 940 mblk_t *mp1; 941 942 mp = mpp[0]; 943 mpp[0] = mp->b_next; 944 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 945 mp1->b_next = NULL; 946 mp1->b_prev = NULL; 947 } 948 freemsg(mp); 949 } 950 } while (mpp++ != &ill->ill_last_mp_to_free); 951 952 ill_free_mib(ill); 953 ILL_TRACE_CLEANUP(ill); 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 if (ill->ill_ip6_mib != NULL) { 960 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 961 ill->ill_ip6_mib = NULL; 962 } 963 if (ill->ill_icmp6_mib != NULL) { 964 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 965 ill->ill_icmp6_mib = NULL; 966 } 967 } 968 969 /* 970 * Concatenate together a physical address and a sap. 971 * 972 * Sap_lengths are interpreted as follows: 973 * sap_length == 0 ==> no sap 974 * sap_length > 0 ==> sap is at the head of the dlpi address 975 * sap_length < 0 ==> sap is at the tail of the dlpi address 976 */ 977 static void 978 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 979 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 980 { 981 uint16_t sap_addr = (uint16_t)sap_src; 982 983 if (sap_length == 0) { 984 if (phys_src == NULL) 985 bzero(dst, phys_length); 986 else 987 bcopy(phys_src, dst, phys_length); 988 } else if (sap_length < 0) { 989 if (phys_src == NULL) 990 bzero(dst, phys_length); 991 else 992 bcopy(phys_src, dst, phys_length); 993 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 994 } else { 995 bcopy(&sap_addr, dst, sizeof (sap_addr)); 996 if (phys_src == NULL) 997 bzero((char *)dst + sap_length, phys_length); 998 else 999 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1000 } 1001 } 1002 1003 /* 1004 * Generate a dl_unitdata_req mblk for the device and address given. 1005 * addr_length is the length of the physical portion of the address. 1006 * If addr is NULL include an all zero address of the specified length. 1007 * TRUE? In any case, addr_length is taken to be the entire length of the 1008 * dlpi address, including the absolute value of sap_length. 1009 */ 1010 mblk_t * 1011 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1012 t_scalar_t sap_length) 1013 { 1014 dl_unitdata_req_t *dlur; 1015 mblk_t *mp; 1016 t_scalar_t abs_sap_length; /* absolute value */ 1017 1018 abs_sap_length = ABS(sap_length); 1019 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1020 DL_UNITDATA_REQ); 1021 if (mp == NULL) 1022 return (NULL); 1023 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1024 /* HACK: accomodate incompatible DLPI drivers */ 1025 if (addr_length == 8) 1026 addr_length = 6; 1027 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1028 dlur->dl_dest_addr_offset = sizeof (*dlur); 1029 dlur->dl_priority.dl_min = 0; 1030 dlur->dl_priority.dl_max = 0; 1031 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1032 (uchar_t *)&dlur[1]); 1033 return (mp); 1034 } 1035 1036 /* 1037 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1038 * Return an error if we already have 1 or more ioctls in progress. 1039 * This is used only for non-exclusive ioctls. Currently this is used 1040 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1041 * and thus need to use ipsq_pending_mp_add. 1042 */ 1043 boolean_t 1044 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1045 { 1046 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1047 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1048 /* 1049 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1050 */ 1051 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1052 (add_mp->b_datap->db_type == M_IOCTL)); 1053 1054 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1055 /* 1056 * Return error if the conn has started closing. The conn 1057 * could have finished cleaning up the pending mp list, 1058 * If so we should not add another mp to the list negating 1059 * the cleanup. 1060 */ 1061 if (connp->conn_state_flags & CONN_CLOSING) 1062 return (B_FALSE); 1063 /* 1064 * Add the pending mp to the head of the list, chained by b_next. 1065 * Note down the conn on which the ioctl request came, in b_prev. 1066 * This will be used to later get the conn, when we get a response 1067 * on the ill queue, from some other module (typically arp) 1068 */ 1069 add_mp->b_next = (void *)ill->ill_pending_mp; 1070 add_mp->b_queue = CONNP_TO_WQ(connp); 1071 ill->ill_pending_mp = add_mp; 1072 if (connp != NULL) 1073 connp->conn_oper_pending_ill = ill; 1074 return (B_TRUE); 1075 } 1076 1077 /* 1078 * Retrieve the ill_pending_mp and return it. We have to walk the list 1079 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1080 */ 1081 mblk_t * 1082 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1083 { 1084 mblk_t *prev = NULL; 1085 mblk_t *curr = NULL; 1086 uint_t id; 1087 conn_t *connp; 1088 1089 /* 1090 * When the conn closes, conn_ioctl_cleanup needs to clean 1091 * up the pending mp, but it does not know the ioc_id and 1092 * passes in a zero for it. 1093 */ 1094 mutex_enter(&ill->ill_lock); 1095 if (ioc_id != 0) 1096 *connpp = NULL; 1097 1098 /* Search the list for the appropriate ioctl based on ioc_id */ 1099 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1100 prev = curr, curr = curr->b_next) { 1101 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1102 connp = Q_TO_CONN(curr->b_queue); 1103 /* Match based on the ioc_id or based on the conn */ 1104 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1105 break; 1106 } 1107 1108 if (curr != NULL) { 1109 /* Unlink the mblk from the pending mp list */ 1110 if (prev != NULL) { 1111 prev->b_next = curr->b_next; 1112 } else { 1113 ASSERT(ill->ill_pending_mp == curr); 1114 ill->ill_pending_mp = curr->b_next; 1115 } 1116 1117 /* 1118 * conn refcnt must have been bumped up at the start of 1119 * the ioctl. So we can safely access the conn. 1120 */ 1121 ASSERT(CONN_Q(curr->b_queue)); 1122 *connpp = Q_TO_CONN(curr->b_queue); 1123 curr->b_next = NULL; 1124 curr->b_queue = NULL; 1125 } 1126 1127 mutex_exit(&ill->ill_lock); 1128 1129 return (curr); 1130 } 1131 1132 /* 1133 * Add the pending mp to the list. There can be only 1 pending mp 1134 * in the list. Any exclusive ioctl that needs to wait for a response 1135 * from another module or driver needs to use this function to set 1136 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1137 * the other module/driver. This is also used while waiting for the 1138 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1139 */ 1140 boolean_t 1141 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1142 int waitfor) 1143 { 1144 ipsq_t *ipsq; 1145 1146 ASSERT(IAM_WRITER_IPIF(ipif)); 1147 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1148 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1149 /* 1150 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1151 * M_ERROR/M_HANGUP from driver 1152 */ 1153 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1154 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1155 1156 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1157 if (connp != NULL) { 1158 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1159 /* 1160 * Return error if the conn has started closing. The conn 1161 * could have finished cleaning up the pending mp list, 1162 * If so we should not add another mp to the list negating 1163 * the cleanup. 1164 */ 1165 if (connp->conn_state_flags & CONN_CLOSING) 1166 return (B_FALSE); 1167 } 1168 mutex_enter(&ipsq->ipsq_lock); 1169 ipsq->ipsq_pending_ipif = ipif; 1170 /* 1171 * Note down the queue in b_queue. This will be returned by 1172 * ipsq_pending_mp_get. Caller will then use these values to restart 1173 * the processing 1174 */ 1175 add_mp->b_next = NULL; 1176 add_mp->b_queue = q; 1177 ipsq->ipsq_pending_mp = add_mp; 1178 ipsq->ipsq_waitfor = waitfor; 1179 /* 1180 * ipsq_current_ipif is needed to restart the operation from 1181 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1182 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1183 * been set until now. 1184 */ 1185 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1186 ASSERT(ipsq->ipsq_current_ipif == NULL); 1187 ipsq->ipsq_current_ipif = ipif; 1188 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1189 } 1190 if (connp != NULL) 1191 connp->conn_oper_pending_ill = ipif->ipif_ill; 1192 mutex_exit(&ipsq->ipsq_lock); 1193 return (B_TRUE); 1194 } 1195 1196 /* 1197 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1198 * queued in the list. 1199 */ 1200 mblk_t * 1201 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1202 { 1203 mblk_t *curr = NULL; 1204 1205 mutex_enter(&ipsq->ipsq_lock); 1206 *connpp = NULL; 1207 if (ipsq->ipsq_pending_mp == NULL) { 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (NULL); 1210 } 1211 1212 /* There can be only 1 such excl message */ 1213 curr = ipsq->ipsq_pending_mp; 1214 ASSERT(curr != NULL && curr->b_next == NULL); 1215 ipsq->ipsq_pending_ipif = NULL; 1216 ipsq->ipsq_pending_mp = NULL; 1217 ipsq->ipsq_waitfor = 0; 1218 mutex_exit(&ipsq->ipsq_lock); 1219 1220 if (CONN_Q(curr->b_queue)) { 1221 /* 1222 * This mp did a refhold on the conn, at the start of the ioctl. 1223 * So we can safely return a pointer to the conn to the caller. 1224 */ 1225 *connpp = Q_TO_CONN(curr->b_queue); 1226 } else { 1227 *connpp = NULL; 1228 } 1229 curr->b_next = NULL; 1230 curr->b_prev = NULL; 1231 return (curr); 1232 } 1233 1234 /* 1235 * Cleanup the ioctl mp queued in ipsq_pending_mp 1236 * - Called in the ill_delete path 1237 * - Called in the M_ERROR or M_HANGUP path on the ill. 1238 * - Called in the conn close path. 1239 */ 1240 boolean_t 1241 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1242 { 1243 mblk_t *mp; 1244 ipsq_t *ipsq; 1245 queue_t *q; 1246 ipif_t *ipif; 1247 1248 ASSERT(IAM_WRITER_ILL(ill)); 1249 ipsq = ill->ill_phyint->phyint_ipsq; 1250 mutex_enter(&ipsq->ipsq_lock); 1251 /* 1252 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1253 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1254 * even if it is meant for another ill, since we have to enqueue 1255 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1256 * If connp is non-null we are called from the conn close path. 1257 */ 1258 mp = ipsq->ipsq_pending_mp; 1259 if (mp == NULL || (connp != NULL && 1260 mp->b_queue != CONNP_TO_WQ(connp))) { 1261 mutex_exit(&ipsq->ipsq_lock); 1262 return (B_FALSE); 1263 } 1264 /* Now remove from the ipsq_pending_mp */ 1265 ipsq->ipsq_pending_mp = NULL; 1266 q = mp->b_queue; 1267 mp->b_next = NULL; 1268 mp->b_prev = NULL; 1269 mp->b_queue = NULL; 1270 1271 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1272 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1273 if (ill->ill_move_in_progress) { 1274 ILL_CLEAR_MOVE(ill); 1275 } else if (ill->ill_up_ipifs) { 1276 ill_group_cleanup(ill); 1277 } 1278 1279 ipif = ipsq->ipsq_pending_ipif; 1280 ipsq->ipsq_pending_ipif = NULL; 1281 ipsq->ipsq_waitfor = 0; 1282 ipsq->ipsq_current_ipif = NULL; 1283 mutex_exit(&ipsq->ipsq_lock); 1284 1285 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1286 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1287 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1288 } else { 1289 /* 1290 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1291 * be just inet_freemsg. we have to restart it 1292 * otherwise the thread will be stuck. 1293 */ 1294 inet_freemsg(mp); 1295 } 1296 return (B_TRUE); 1297 } 1298 1299 /* 1300 * The ill is closing. Cleanup all the pending mps. Called exclusively 1301 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1302 * knows this ill, and hence nobody can add an mp to this list 1303 */ 1304 static void 1305 ill_pending_mp_cleanup(ill_t *ill) 1306 { 1307 mblk_t *mp; 1308 queue_t *q; 1309 1310 ASSERT(IAM_WRITER_ILL(ill)); 1311 1312 mutex_enter(&ill->ill_lock); 1313 /* 1314 * Every mp on the pending mp list originating from an ioctl 1315 * added 1 to the conn refcnt, at the start of the ioctl. 1316 * So bump it down now. See comments in ip_wput_nondata() 1317 */ 1318 while (ill->ill_pending_mp != NULL) { 1319 mp = ill->ill_pending_mp; 1320 ill->ill_pending_mp = mp->b_next; 1321 mutex_exit(&ill->ill_lock); 1322 1323 q = mp->b_queue; 1324 ASSERT(CONN_Q(q)); 1325 mp->b_next = NULL; 1326 mp->b_prev = NULL; 1327 mp->b_queue = NULL; 1328 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1329 mutex_enter(&ill->ill_lock); 1330 } 1331 ill->ill_pending_ipif = NULL; 1332 1333 mutex_exit(&ill->ill_lock); 1334 } 1335 1336 /* 1337 * Called in the conn close path and ill delete path 1338 */ 1339 static void 1340 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1341 { 1342 ipsq_t *ipsq; 1343 mblk_t *prev; 1344 mblk_t *curr; 1345 mblk_t *next; 1346 queue_t *q; 1347 mblk_t *tmp_list = NULL; 1348 1349 ASSERT(IAM_WRITER_ILL(ill)); 1350 if (connp != NULL) 1351 q = CONNP_TO_WQ(connp); 1352 else 1353 q = ill->ill_wq; 1354 1355 ipsq = ill->ill_phyint->phyint_ipsq; 1356 /* 1357 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1358 * In the case of ioctl from a conn, there can be only 1 mp 1359 * queued on the ipsq. If an ill is being unplumbed, only messages 1360 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1361 * ioctls meant for this ill form conn's are not flushed. They will 1362 * be processed during ipsq_exit and will not find the ill and will 1363 * return error. 1364 */ 1365 mutex_enter(&ipsq->ipsq_lock); 1366 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1367 curr = next) { 1368 next = curr->b_next; 1369 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1370 /* Unlink the mblk from the pending mp list */ 1371 if (prev != NULL) { 1372 prev->b_next = curr->b_next; 1373 } else { 1374 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1375 ipsq->ipsq_xopq_mphead = curr->b_next; 1376 } 1377 if (ipsq->ipsq_xopq_mptail == curr) 1378 ipsq->ipsq_xopq_mptail = prev; 1379 /* 1380 * Create a temporary list and release the ipsq lock 1381 * New elements are added to the head of the tmp_list 1382 */ 1383 curr->b_next = tmp_list; 1384 tmp_list = curr; 1385 } else { 1386 prev = curr; 1387 } 1388 } 1389 mutex_exit(&ipsq->ipsq_lock); 1390 1391 while (tmp_list != NULL) { 1392 curr = tmp_list; 1393 tmp_list = curr->b_next; 1394 curr->b_next = NULL; 1395 curr->b_prev = NULL; 1396 curr->b_queue = NULL; 1397 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1398 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1399 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1400 } else { 1401 /* 1402 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1403 * this can't be just inet_freemsg. we have to 1404 * restart it otherwise the thread will be stuck. 1405 */ 1406 inet_freemsg(curr); 1407 } 1408 } 1409 } 1410 1411 /* 1412 * This conn has started closing. Cleanup any pending ioctl from this conn. 1413 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1414 */ 1415 void 1416 conn_ioctl_cleanup(conn_t *connp) 1417 { 1418 mblk_t *curr; 1419 ipsq_t *ipsq; 1420 ill_t *ill; 1421 boolean_t refheld; 1422 1423 /* 1424 * Is any exclusive ioctl pending ? If so clean it up. If the 1425 * ioctl has not yet started, the mp is pending in the list headed by 1426 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1427 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1428 * is currently executing now the mp is not queued anywhere but 1429 * conn_oper_pending_ill is null. The conn close will wait 1430 * till the conn_ref drops to zero. 1431 */ 1432 mutex_enter(&connp->conn_lock); 1433 ill = connp->conn_oper_pending_ill; 1434 if (ill == NULL) { 1435 mutex_exit(&connp->conn_lock); 1436 return; 1437 } 1438 1439 curr = ill_pending_mp_get(ill, &connp, 0); 1440 if (curr != NULL) { 1441 mutex_exit(&connp->conn_lock); 1442 CONN_DEC_REF(connp); 1443 inet_freemsg(curr); 1444 return; 1445 } 1446 /* 1447 * We may not be able to refhold the ill if the ill/ipif 1448 * is changing. But we need to make sure that the ill will 1449 * not vanish. So we just bump up the ill_waiter count. 1450 */ 1451 refheld = ill_waiter_inc(ill); 1452 mutex_exit(&connp->conn_lock); 1453 if (refheld) { 1454 if (ipsq_enter(ill, B_TRUE)) { 1455 ill_waiter_dcr(ill); 1456 /* 1457 * Check whether this ioctl has started and is 1458 * pending now in ipsq_pending_mp. If it is not 1459 * found there then check whether this ioctl has 1460 * not even started and is in the ipsq_xopq list. 1461 */ 1462 if (!ipsq_pending_mp_cleanup(ill, connp)) 1463 ipsq_xopq_mp_cleanup(ill, connp); 1464 ipsq = ill->ill_phyint->phyint_ipsq; 1465 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1466 return; 1467 } 1468 } 1469 1470 /* 1471 * The ill is also closing and we could not bump up the 1472 * ill_waiter_count or we could not enter the ipsq. Leave 1473 * the cleanup to ill_delete 1474 */ 1475 mutex_enter(&connp->conn_lock); 1476 while (connp->conn_oper_pending_ill != NULL) 1477 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1478 mutex_exit(&connp->conn_lock); 1479 if (refheld) 1480 ill_waiter_dcr(ill); 1481 } 1482 1483 /* 1484 * ipcl_walk function for cleaning up conn_*_ill fields. 1485 */ 1486 static void 1487 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1488 { 1489 ill_t *ill = (ill_t *)arg; 1490 ire_t *ire; 1491 1492 mutex_enter(&connp->conn_lock); 1493 if (connp->conn_multicast_ill == ill) { 1494 /* Revert to late binding */ 1495 connp->conn_multicast_ill = NULL; 1496 connp->conn_orig_multicast_ifindex = 0; 1497 } 1498 if (connp->conn_incoming_ill == ill) 1499 connp->conn_incoming_ill = NULL; 1500 if (connp->conn_outgoing_ill == ill) 1501 connp->conn_outgoing_ill = NULL; 1502 if (connp->conn_outgoing_pill == ill) 1503 connp->conn_outgoing_pill = NULL; 1504 if (connp->conn_nofailover_ill == ill) 1505 connp->conn_nofailover_ill = NULL; 1506 if (connp->conn_xmit_if_ill == ill) 1507 connp->conn_xmit_if_ill = NULL; 1508 if (connp->conn_ire_cache != NULL) { 1509 ire = connp->conn_ire_cache; 1510 /* 1511 * ip_newroute creates IRE_CACHE with ire_stq coming from 1512 * interface X and ipif coming from interface Y, if interface 1513 * X and Y are part of the same IPMPgroup. Thus whenever 1514 * interface X goes down, remove all references to it by 1515 * checking both on ire_ipif and ire_stq. 1516 */ 1517 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1518 (ire->ire_type == IRE_CACHE && 1519 ire->ire_stq == ill->ill_wq)) { 1520 connp->conn_ire_cache = NULL; 1521 mutex_exit(&connp->conn_lock); 1522 ire_refrele_notr(ire); 1523 return; 1524 } 1525 } 1526 mutex_exit(&connp->conn_lock); 1527 1528 } 1529 1530 /* ARGSUSED */ 1531 void 1532 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1533 { 1534 ill_t *ill = q->q_ptr; 1535 ipif_t *ipif; 1536 1537 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1538 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1539 ipif_non_duplicate(ipif); 1540 ipif_down_tail(ipif); 1541 } 1542 ill_down_tail(ill); 1543 freemsg(mp); 1544 ipsq->ipsq_current_ipif = NULL; 1545 } 1546 1547 /* 1548 * ill_down_start is called when we want to down this ill and bring it up again 1549 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1550 * all interfaces, but don't tear down any plumbing. 1551 */ 1552 boolean_t 1553 ill_down_start(queue_t *q, mblk_t *mp) 1554 { 1555 ill_t *ill; 1556 ipif_t *ipif; 1557 1558 ill = q->q_ptr; 1559 1560 ASSERT(IAM_WRITER_ILL(ill)); 1561 1562 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1563 (void) ipif_down(ipif, NULL, NULL); 1564 1565 ill_down(ill); 1566 1567 (void) ipsq_pending_mp_cleanup(ill, NULL); 1568 mutex_enter(&ill->ill_lock); 1569 /* 1570 * Atomically test and add the pending mp if references are 1571 * still active. 1572 */ 1573 if (!ill_is_quiescent(ill)) { 1574 /* 1575 * Get rid of any pending mps and cleanup. Call will 1576 * not fail since we are passing a null connp. 1577 */ 1578 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1579 mp, ILL_DOWN); 1580 mutex_exit(&ill->ill_lock); 1581 return (B_FALSE); 1582 } 1583 mutex_exit(&ill->ill_lock); 1584 return (B_TRUE); 1585 } 1586 1587 static void 1588 ill_down(ill_t *ill) 1589 { 1590 /* Blow off any IREs dependent on this ILL. */ 1591 ire_walk(ill_downi, (char *)ill); 1592 1593 mutex_enter(&ire_mrtun_lock); 1594 if (ire_mrtun_count != 0) { 1595 mutex_exit(&ire_mrtun_lock); 1596 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1597 (char *)ill, NULL); 1598 } else { 1599 mutex_exit(&ire_mrtun_lock); 1600 } 1601 1602 /* 1603 * If any interface based forwarding table exists 1604 * Blow off the ires there dependent on this ill 1605 */ 1606 mutex_enter(&ire_srcif_table_lock); 1607 if (ire_srcif_table_count > 0) { 1608 mutex_exit(&ire_srcif_table_lock); 1609 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1610 } else { 1611 mutex_exit(&ire_srcif_table_lock); 1612 } 1613 1614 /* Remove any conn_*_ill depending on this ill */ 1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1616 1617 if (ill->ill_group != NULL) { 1618 illgrp_delete(ill); 1619 } 1620 1621 } 1622 1623 static void 1624 ill_down_tail(ill_t *ill) 1625 { 1626 int i; 1627 1628 /* Destroy ill_srcif_table if it exists */ 1629 /* Lock not reqd really because nobody should be able to access */ 1630 mutex_enter(&ill->ill_lock); 1631 if (ill->ill_srcif_table != NULL) { 1632 ill->ill_srcif_refcnt = 0; 1633 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1634 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1635 } 1636 kmem_free(ill->ill_srcif_table, 1637 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1638 ill->ill_srcif_table = NULL; 1639 ill->ill_srcif_refcnt = 0; 1640 ill->ill_mrtun_refcnt = 0; 1641 } 1642 mutex_exit(&ill->ill_lock); 1643 } 1644 1645 /* 1646 * ire_walk routine used to delete every IRE that depends on queues 1647 * associated with 'ill'. (Always called as writer.) 1648 */ 1649 static void 1650 ill_downi(ire_t *ire, char *ill_arg) 1651 { 1652 ill_t *ill = (ill_t *)ill_arg; 1653 1654 /* 1655 * ip_newroute creates IRE_CACHE with ire_stq coming from 1656 * interface X and ipif coming from interface Y, if interface 1657 * X and Y are part of the same IPMP group. Thus whenever interface 1658 * X goes down, remove all references to it by checking both 1659 * on ire_ipif and ire_stq. 1660 */ 1661 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1662 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1663 ire_delete(ire); 1664 } 1665 } 1666 1667 /* 1668 * A seperate routine for deleting revtun and srcif based routes 1669 * are needed because the ires only deleted when the interface 1670 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1671 * we want to keep mobile IP specific code separate. 1672 */ 1673 static void 1674 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1675 { 1676 ill_t *ill = (ill_t *)ill_arg; 1677 1678 ASSERT(ire->ire_in_ill != NULL); 1679 1680 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1681 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1682 ire_delete(ire); 1683 } 1684 } 1685 1686 /* 1687 * Remove ire/nce from the fastpath list. 1688 */ 1689 void 1690 ill_fastpath_nack(ill_t *ill) 1691 { 1692 if (ill->ill_isv6) { 1693 nce_fastpath_list_dispatch(ill, NULL, NULL); 1694 } else { 1695 ire_fastpath_list_dispatch(ill, NULL, NULL); 1696 } 1697 } 1698 1699 /* Consume an M_IOCACK of the fastpath probe. */ 1700 void 1701 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1702 { 1703 mblk_t *mp1 = mp; 1704 1705 /* 1706 * If this was the first attempt turn on the fastpath probing. 1707 */ 1708 mutex_enter(&ill->ill_lock); 1709 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1710 ill->ill_dlpi_fastpath_state = IDS_OK; 1711 mutex_exit(&ill->ill_lock); 1712 1713 /* Free the M_IOCACK mblk, hold on to the data */ 1714 mp = mp->b_cont; 1715 freeb(mp1); 1716 if (mp == NULL) 1717 return; 1718 if (mp->b_cont != NULL) { 1719 /* 1720 * Update all IRE's or NCE's that are waiting for 1721 * fastpath update. 1722 */ 1723 if (ill->ill_isv6) { 1724 /* 1725 * update nce's in the fastpath list. 1726 */ 1727 nce_fastpath_list_dispatch(ill, 1728 ndp_fastpath_update, mp); 1729 } else { 1730 1731 /* 1732 * update ire's in the fastpath list. 1733 */ 1734 ire_fastpath_list_dispatch(ill, 1735 ire_fastpath_update, mp); 1736 /* 1737 * Check if we need to traverse reverse tunnel table. 1738 * Since there is only single ire_type (IRE_MIPRTUN) 1739 * in the table, we don't need to match on ire_type. 1740 * We have to check ire_mrtun_count and not the 1741 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1742 * on the incoming ill and here we are dealing with 1743 * outgoing ill. 1744 */ 1745 mutex_enter(&ire_mrtun_lock); 1746 if (ire_mrtun_count != 0) { 1747 mutex_exit(&ire_mrtun_lock); 1748 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1749 (void (*)(ire_t *, void *)) 1750 ire_fastpath_update, mp, ill); 1751 } else { 1752 mutex_exit(&ire_mrtun_lock); 1753 } 1754 } 1755 mp1 = mp->b_cont; 1756 freeb(mp); 1757 mp = mp1; 1758 } else { 1759 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1760 } 1761 1762 freeb(mp); 1763 } 1764 1765 /* 1766 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1767 * The data portion of the request is a dl_unitdata_req_t template for 1768 * what we would send downstream in the absence of a fastpath confirmation. 1769 */ 1770 int 1771 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1772 { 1773 struct iocblk *ioc; 1774 mblk_t *mp; 1775 1776 if (dlur_mp == NULL) 1777 return (EINVAL); 1778 1779 mutex_enter(&ill->ill_lock); 1780 switch (ill->ill_dlpi_fastpath_state) { 1781 case IDS_FAILED: 1782 /* 1783 * Driver NAKed the first fastpath ioctl - assume it doesn't 1784 * support it. 1785 */ 1786 mutex_exit(&ill->ill_lock); 1787 return (ENOTSUP); 1788 case IDS_UNKNOWN: 1789 /* This is the first probe */ 1790 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1791 break; 1792 default: 1793 break; 1794 } 1795 mutex_exit(&ill->ill_lock); 1796 1797 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1798 return (EAGAIN); 1799 1800 mp->b_cont = copyb(dlur_mp); 1801 if (mp->b_cont == NULL) { 1802 freeb(mp); 1803 return (EAGAIN); 1804 } 1805 1806 ioc = (struct iocblk *)mp->b_rptr; 1807 ioc->ioc_count = msgdsize(mp->b_cont); 1808 1809 putnext(ill->ill_wq, mp); 1810 return (0); 1811 } 1812 1813 void 1814 ill_capability_probe(ill_t *ill) 1815 { 1816 /* 1817 * Do so only if negotiation is enabled, capabilities are unknown, 1818 * and a capability negotiation is not already in progress. 1819 */ 1820 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1821 ill->ill_dlpi_capab_state != IDS_RENEG) 1822 return; 1823 1824 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1825 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1826 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1827 } 1828 1829 void 1830 ill_capability_reset(ill_t *ill) 1831 { 1832 mblk_t *sc_mp = NULL; 1833 mblk_t *tmp; 1834 1835 /* 1836 * Note here that we reset the state to UNKNOWN, and later send 1837 * down the DL_CAPABILITY_REQ without first setting the state to 1838 * INPROGRESS. We do this in order to distinguish the 1839 * DL_CAPABILITY_ACK response which may come back in response to 1840 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1841 * also handle the case where the driver doesn't send us back 1842 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1843 * requires the state to be in UNKNOWN anyway. In any case, all 1844 * features are turned off until the state reaches IDS_OK. 1845 */ 1846 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1847 1848 /* 1849 * Disable sub-capabilities and request a list of sub-capability 1850 * messages which will be sent down to the driver. Each handler 1851 * allocates the corresponding dl_capability_sub_t inside an 1852 * mblk, and links it to the existing sc_mp mblk, or return it 1853 * as sc_mp if it's the first sub-capability (the passed in 1854 * sc_mp is NULL). Upon returning from all capability handlers, 1855 * sc_mp will be pulled-up, before passing it downstream. 1856 */ 1857 ill_capability_mdt_reset(ill, &sc_mp); 1858 ill_capability_hcksum_reset(ill, &sc_mp); 1859 ill_capability_zerocopy_reset(ill, &sc_mp); 1860 ill_capability_ipsec_reset(ill, &sc_mp); 1861 ill_capability_dls_reset(ill, &sc_mp); 1862 ill_capability_lso_reset(ill, &sc_mp); 1863 1864 /* Nothing to send down in order to disable the capabilities? */ 1865 if (sc_mp == NULL) 1866 return; 1867 1868 tmp = msgpullup(sc_mp, -1); 1869 freemsg(sc_mp); 1870 if ((sc_mp = tmp) == NULL) { 1871 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1872 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1873 return; 1874 } 1875 1876 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1877 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1878 } 1879 1880 /* 1881 * Request or set new-style hardware capabilities supported by DLS provider. 1882 */ 1883 static void 1884 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1885 { 1886 mblk_t *mp; 1887 dl_capability_req_t *capb; 1888 size_t size = 0; 1889 uint8_t *ptr; 1890 1891 if (reqp != NULL) 1892 size = MBLKL(reqp); 1893 1894 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1895 if (mp == NULL) { 1896 freemsg(reqp); 1897 return; 1898 } 1899 ptr = mp->b_rptr; 1900 1901 capb = (dl_capability_req_t *)ptr; 1902 ptr += sizeof (dl_capability_req_t); 1903 1904 if (reqp != NULL) { 1905 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1906 capb->dl_sub_length = size; 1907 bcopy(reqp->b_rptr, ptr, size); 1908 ptr += size; 1909 mp->b_cont = reqp->b_cont; 1910 freeb(reqp); 1911 } 1912 ASSERT(ptr == mp->b_wptr); 1913 1914 ill_dlpi_send(ill, mp); 1915 } 1916 1917 static void 1918 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1919 { 1920 dl_capab_id_t *id_ic; 1921 uint_t sub_dl_cap = outers->dl_cap; 1922 dl_capability_sub_t *inners; 1923 uint8_t *capend; 1924 1925 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1926 1927 /* 1928 * Note: range checks here are not absolutely sufficient to 1929 * make us robust against malformed messages sent by drivers; 1930 * this is in keeping with the rest of IP's dlpi handling. 1931 * (Remember, it's coming from something else in the kernel 1932 * address space) 1933 */ 1934 1935 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1936 if (capend > mp->b_wptr) { 1937 cmn_err(CE_WARN, "ill_capability_id_ack: " 1938 "malformed sub-capability too long for mblk"); 1939 return; 1940 } 1941 1942 id_ic = (dl_capab_id_t *)(outers + 1); 1943 1944 if (outers->dl_length < sizeof (*id_ic) || 1945 (inners = &id_ic->id_subcap, 1946 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1947 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1948 "encapsulated capab type %d too long for mblk", 1949 inners->dl_cap); 1950 return; 1951 } 1952 1953 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1954 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1955 "isn't as expected; pass-thru module(s) detected, " 1956 "discarding capability\n", inners->dl_cap)); 1957 return; 1958 } 1959 1960 /* Process the encapsulated sub-capability */ 1961 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1962 } 1963 1964 /* 1965 * Process Multidata Transmit capability negotiation ack received from a 1966 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1967 * DL_CAPABILITY_ACK message. 1968 */ 1969 static void 1970 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1971 { 1972 mblk_t *nmp = NULL; 1973 dl_capability_req_t *oc; 1974 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1975 ill_mdt_capab_t **ill_mdt_capab; 1976 uint_t sub_dl_cap = isub->dl_cap; 1977 uint8_t *capend; 1978 1979 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1980 1981 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1982 1983 /* 1984 * Note: range checks here are not absolutely sufficient to 1985 * make us robust against malformed messages sent by drivers; 1986 * this is in keeping with the rest of IP's dlpi handling. 1987 * (Remember, it's coming from something else in the kernel 1988 * address space) 1989 */ 1990 1991 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1992 if (capend > mp->b_wptr) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "malformed sub-capability too long for mblk"); 1995 return; 1996 } 1997 1998 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1999 2000 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2001 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2002 "unsupported MDT sub-capability (version %d, expected %d)", 2003 mdt_ic->mdt_version, MDT_VERSION_2); 2004 return; 2005 } 2006 2007 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2008 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2009 "capability isn't as expected; pass-thru module(s) " 2010 "detected, discarding capability\n")); 2011 return; 2012 } 2013 2014 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2015 2016 if (*ill_mdt_capab == NULL) { 2017 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2018 KM_NOSLEEP); 2019 2020 if (*ill_mdt_capab == NULL) { 2021 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2022 "could not enable MDT version %d " 2023 "for %s (ENOMEM)\n", MDT_VERSION_2, 2024 ill->ill_name); 2025 return; 2026 } 2027 } 2028 2029 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2030 "MDT version %d (%d bytes leading, %d bytes trailing " 2031 "header spaces, %d max pld bufs, %d span limit)\n", 2032 ill->ill_name, MDT_VERSION_2, 2033 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2034 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2035 2036 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2037 (*ill_mdt_capab)->ill_mdt_on = 1; 2038 /* 2039 * Round the following values to the nearest 32-bit; ULP 2040 * may further adjust them to accomodate for additional 2041 * protocol headers. We pass these values to ULP during 2042 * bind time. 2043 */ 2044 (*ill_mdt_capab)->ill_mdt_hdr_head = 2045 roundup(mdt_ic->mdt_hdr_head, 4); 2046 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2047 roundup(mdt_ic->mdt_hdr_tail, 4); 2048 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2049 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2050 2051 ill->ill_capabilities |= ILL_CAPAB_MDT; 2052 } else { 2053 uint_t size; 2054 uchar_t *rptr; 2055 2056 size = sizeof (dl_capability_req_t) + 2057 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2058 2059 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2060 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2061 "could not enable MDT for %s (ENOMEM)\n", 2062 ill->ill_name); 2063 return; 2064 } 2065 2066 rptr = nmp->b_rptr; 2067 /* initialize dl_capability_req_t */ 2068 oc = (dl_capability_req_t *)nmp->b_rptr; 2069 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2070 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2071 sizeof (dl_capab_mdt_t); 2072 nmp->b_rptr += sizeof (dl_capability_req_t); 2073 2074 /* initialize dl_capability_sub_t */ 2075 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2076 nmp->b_rptr += sizeof (*isub); 2077 2078 /* initialize dl_capab_mdt_t */ 2079 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2080 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2081 2082 nmp->b_rptr = rptr; 2083 2084 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2085 "to enable MDT version %d\n", ill->ill_name, 2086 MDT_VERSION_2)); 2087 2088 /* set ENABLE flag */ 2089 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2090 2091 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2092 ill_dlpi_send(ill, nmp); 2093 } 2094 } 2095 2096 static void 2097 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2098 { 2099 mblk_t *mp; 2100 dl_capab_mdt_t *mdt_subcap; 2101 dl_capability_sub_t *dl_subcap; 2102 int size; 2103 2104 if (!ILL_MDT_CAPABLE(ill)) 2105 return; 2106 2107 ASSERT(ill->ill_mdt_capab != NULL); 2108 /* 2109 * Clear the capability flag for MDT but retain the ill_mdt_capab 2110 * structure since it's possible that another thread is still 2111 * referring to it. The structure only gets deallocated when 2112 * we destroy the ill. 2113 */ 2114 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2115 2116 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2117 2118 mp = allocb(size, BPRI_HI); 2119 if (mp == NULL) { 2120 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2121 "request to disable MDT\n")); 2122 return; 2123 } 2124 2125 mp->b_wptr = mp->b_rptr + size; 2126 2127 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2128 dl_subcap->dl_cap = DL_CAPAB_MDT; 2129 dl_subcap->dl_length = sizeof (*mdt_subcap); 2130 2131 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2132 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2133 mdt_subcap->mdt_flags = 0; 2134 mdt_subcap->mdt_hdr_head = 0; 2135 mdt_subcap->mdt_hdr_tail = 0; 2136 2137 if (*sc_mp != NULL) 2138 linkb(*sc_mp, mp); 2139 else 2140 *sc_mp = mp; 2141 } 2142 2143 /* 2144 * Send a DL_NOTIFY_REQ to the specified ill to enable 2145 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2146 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2147 * acceleration. 2148 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2149 */ 2150 static boolean_t 2151 ill_enable_promisc_notify(ill_t *ill) 2152 { 2153 mblk_t *mp; 2154 dl_notify_req_t *req; 2155 2156 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2157 2158 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2159 if (mp == NULL) 2160 return (B_FALSE); 2161 2162 req = (dl_notify_req_t *)mp->b_rptr; 2163 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2164 DL_NOTE_PROMISC_OFF_PHYS; 2165 2166 ill_dlpi_send(ill, mp); 2167 2168 return (B_TRUE); 2169 } 2170 2171 2172 /* 2173 * Allocate an IPsec capability request which will be filled by our 2174 * caller to turn on support for one or more algorithms. 2175 */ 2176 static mblk_t * 2177 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2178 { 2179 mblk_t *nmp; 2180 dl_capability_req_t *ocap; 2181 dl_capab_ipsec_t *ocip; 2182 dl_capab_ipsec_t *icip; 2183 uint8_t *ptr; 2184 icip = (dl_capab_ipsec_t *)(isub + 1); 2185 2186 /* 2187 * The first time around, we send a DL_NOTIFY_REQ to enable 2188 * PROMISC_ON/OFF notification from the provider. We need to 2189 * do this before enabling the algorithms to avoid leakage of 2190 * cleartext packets. 2191 */ 2192 2193 if (!ill_enable_promisc_notify(ill)) 2194 return (NULL); 2195 2196 /* 2197 * Allocate new mblk which will contain a new capability 2198 * request to enable the capabilities. 2199 */ 2200 2201 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2202 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2203 if (nmp == NULL) 2204 return (NULL); 2205 2206 ptr = nmp->b_rptr; 2207 2208 /* initialize dl_capability_req_t */ 2209 ocap = (dl_capability_req_t *)ptr; 2210 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2211 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2212 ptr += sizeof (dl_capability_req_t); 2213 2214 /* initialize dl_capability_sub_t */ 2215 bcopy(isub, ptr, sizeof (*isub)); 2216 ptr += sizeof (*isub); 2217 2218 /* initialize dl_capab_ipsec_t */ 2219 ocip = (dl_capab_ipsec_t *)ptr; 2220 bcopy(icip, ocip, sizeof (*icip)); 2221 2222 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2223 return (nmp); 2224 } 2225 2226 /* 2227 * Process an IPsec capability negotiation ack received from a DLS Provider. 2228 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2229 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2230 */ 2231 static void 2232 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2233 { 2234 dl_capab_ipsec_t *icip; 2235 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2236 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2237 uint_t cipher, nciphers; 2238 mblk_t *nmp; 2239 uint_t alg_len; 2240 boolean_t need_sadb_dump; 2241 uint_t sub_dl_cap = isub->dl_cap; 2242 ill_ipsec_capab_t **ill_capab; 2243 uint64_t ill_capab_flag; 2244 uint8_t *capend, *ciphend; 2245 boolean_t sadb_resync; 2246 2247 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2248 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2249 2250 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2251 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2252 ill_capab_flag = ILL_CAPAB_AH; 2253 } else { 2254 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2255 ill_capab_flag = ILL_CAPAB_ESP; 2256 } 2257 2258 /* 2259 * If the ill capability structure exists, then this incoming 2260 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2261 * If this is so, then we'd need to resynchronize the SADB 2262 * after re-enabling the offloaded ciphers. 2263 */ 2264 sadb_resync = (*ill_capab != NULL); 2265 2266 /* 2267 * Note: range checks here are not absolutely sufficient to 2268 * make us robust against malformed messages sent by drivers; 2269 * this is in keeping with the rest of IP's dlpi handling. 2270 * (Remember, it's coming from something else in the kernel 2271 * address space) 2272 */ 2273 2274 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2275 if (capend > mp->b_wptr) { 2276 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2277 "malformed sub-capability too long for mblk"); 2278 return; 2279 } 2280 2281 /* 2282 * There are two types of acks we process here: 2283 * 1. acks in reply to a (first form) generic capability req 2284 * (no ENABLE flag set) 2285 * 2. acks in reply to a ENABLE capability req. 2286 * (ENABLE flag set) 2287 * 2288 * We process the subcapability passed as argument as follows: 2289 * 1 do initializations 2290 * 1.1 initialize nmp = NULL 2291 * 1.2 set need_sadb_dump to B_FALSE 2292 * 2 for each cipher in subcapability: 2293 * 2.1 if ENABLE flag is set: 2294 * 2.1.1 update per-ill ipsec capabilities info 2295 * 2.1.2 set need_sadb_dump to B_TRUE 2296 * 2.2 if ENABLE flag is not set: 2297 * 2.2.1 if nmp is NULL: 2298 * 2.2.1.1 allocate and initialize nmp 2299 * 2.2.1.2 init current pos in nmp 2300 * 2.2.2 copy current cipher to current pos in nmp 2301 * 2.2.3 set ENABLE flag in nmp 2302 * 2.2.4 update current pos 2303 * 3 if nmp is not equal to NULL, send enable request 2304 * 3.1 send capability request 2305 * 4 if need_sadb_dump is B_TRUE 2306 * 4.1 enable promiscuous on/off notifications 2307 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2308 * AH or ESP SA's to interface. 2309 */ 2310 2311 nmp = NULL; 2312 oalg = NULL; 2313 need_sadb_dump = B_FALSE; 2314 icip = (dl_capab_ipsec_t *)(isub + 1); 2315 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2316 2317 nciphers = icip->cip_nciphers; 2318 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2319 2320 if (ciphend > capend) { 2321 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2322 "too many ciphers for sub-capability len"); 2323 return; 2324 } 2325 2326 for (cipher = 0; cipher < nciphers; cipher++) { 2327 alg_len = sizeof (dl_capab_ipsec_alg_t); 2328 2329 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2330 /* 2331 * TBD: when we provide a way to disable capabilities 2332 * from above, need to manage the request-pending state 2333 * and fail if we were not expecting this ACK. 2334 */ 2335 IPSECHW_DEBUG(IPSECHW_CAPAB, 2336 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2337 2338 /* 2339 * Update IPsec capabilities for this ill 2340 */ 2341 2342 if (*ill_capab == NULL) { 2343 IPSECHW_DEBUG(IPSECHW_CAPAB, 2344 ("ill_capability_ipsec_ack: " 2345 "allocating ipsec_capab for ill\n")); 2346 *ill_capab = ill_ipsec_capab_alloc(); 2347 2348 if (*ill_capab == NULL) { 2349 cmn_err(CE_WARN, 2350 "ill_capability_ipsec_ack: " 2351 "could not enable IPsec Hardware " 2352 "acceleration for %s (ENOMEM)\n", 2353 ill->ill_name); 2354 return; 2355 } 2356 } 2357 2358 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2359 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2360 2361 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2362 cmn_err(CE_WARN, 2363 "ill_capability_ipsec_ack: " 2364 "malformed IPsec algorithm id %d", 2365 ialg->alg_prim); 2366 continue; 2367 } 2368 2369 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2370 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2371 ialg->alg_prim); 2372 } else { 2373 ipsec_capab_algparm_t *alp; 2374 2375 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2376 ialg->alg_prim); 2377 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2378 ialg->alg_prim)) { 2379 cmn_err(CE_WARN, 2380 "ill_capability_ipsec_ack: " 2381 "no space for IPsec alg id %d", 2382 ialg->alg_prim); 2383 continue; 2384 } 2385 alp = &((*ill_capab)->encr_algparm[ 2386 ialg->alg_prim]); 2387 alp->minkeylen = ialg->alg_minbits; 2388 alp->maxkeylen = ialg->alg_maxbits; 2389 } 2390 ill->ill_capabilities |= ill_capab_flag; 2391 /* 2392 * indicate that a capability was enabled, which 2393 * will be used below to kick off a SADB dump 2394 * to the ill. 2395 */ 2396 need_sadb_dump = B_TRUE; 2397 } else { 2398 IPSECHW_DEBUG(IPSECHW_CAPAB, 2399 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2400 ialg->alg_prim)); 2401 2402 if (nmp == NULL) { 2403 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2404 if (nmp == NULL) { 2405 /* 2406 * Sending the PROMISC_ON/OFF 2407 * notification request failed. 2408 * We cannot enable the algorithms 2409 * since the Provider will not 2410 * notify IP of promiscous mode 2411 * changes, which could lead 2412 * to leakage of packets. 2413 */ 2414 cmn_err(CE_WARN, 2415 "ill_capability_ipsec_ack: " 2416 "could not enable IPsec Hardware " 2417 "acceleration for %s (ENOMEM)\n", 2418 ill->ill_name); 2419 return; 2420 } 2421 /* ptr to current output alg specifier */ 2422 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2423 } 2424 2425 /* 2426 * Copy current alg specifier, set ENABLE 2427 * flag, and advance to next output alg. 2428 * For now we enable all IPsec capabilities. 2429 */ 2430 ASSERT(oalg != NULL); 2431 bcopy(ialg, oalg, alg_len); 2432 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2433 nmp->b_wptr += alg_len; 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* move to next input algorithm specifier */ 2438 ialg = (dl_capab_ipsec_alg_t *) 2439 ((char *)ialg + alg_len); 2440 } 2441 2442 if (nmp != NULL) 2443 /* 2444 * nmp points to a DL_CAPABILITY_REQ message to enable 2445 * IPsec hardware acceleration. 2446 */ 2447 ill_dlpi_send(ill, nmp); 2448 2449 if (need_sadb_dump) 2450 /* 2451 * An acknowledgement corresponding to a request to 2452 * enable acceleration was received, notify SADB. 2453 */ 2454 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2455 } 2456 2457 /* 2458 * Given an mblk with enough space in it, create sub-capability entries for 2459 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2460 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2461 * in preparation for the reset the DL_CAPABILITY_REQ message. 2462 */ 2463 static void 2464 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2465 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2466 { 2467 dl_capab_ipsec_t *oipsec; 2468 dl_capab_ipsec_alg_t *oalg; 2469 dl_capability_sub_t *dl_subcap; 2470 int i, k; 2471 2472 ASSERT(nciphers > 0); 2473 ASSERT(ill_cap != NULL); 2474 ASSERT(mp != NULL); 2475 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2476 2477 /* dl_capability_sub_t for "stype" */ 2478 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2479 dl_subcap->dl_cap = stype; 2480 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2481 mp->b_wptr += sizeof (dl_capability_sub_t); 2482 2483 /* dl_capab_ipsec_t for "stype" */ 2484 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2485 oipsec->cip_version = 1; 2486 oipsec->cip_nciphers = nciphers; 2487 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2488 2489 /* create entries for "stype" AUTH ciphers */ 2490 for (i = 0; i < ill_cap->algs_size; i++) { 2491 for (k = 0; k < BITSPERBYTE; k++) { 2492 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2493 continue; 2494 2495 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2496 bzero((void *)oalg, sizeof (*oalg)); 2497 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2498 oalg->alg_prim = k + (BITSPERBYTE * i); 2499 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2500 } 2501 } 2502 /* create entries for "stype" ENCR ciphers */ 2503 for (i = 0; i < ill_cap->algs_size; i++) { 2504 for (k = 0; k < BITSPERBYTE; k++) { 2505 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2506 continue; 2507 2508 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2509 bzero((void *)oalg, sizeof (*oalg)); 2510 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2511 oalg->alg_prim = k + (BITSPERBYTE * i); 2512 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2513 } 2514 } 2515 } 2516 2517 /* 2518 * Macro to count number of 1s in a byte (8-bit word). The total count is 2519 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2520 * POPC instruction, but our macro is more flexible for an arbitrary length 2521 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2522 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2523 * stays that way, we can reduce the number of iterations required. 2524 */ 2525 #define COUNT_1S(val, sum) { \ 2526 uint8_t x = val & 0xff; \ 2527 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2528 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2529 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2530 } 2531 2532 /* ARGSUSED */ 2533 static void 2534 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2535 { 2536 mblk_t *mp; 2537 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2538 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2539 uint64_t ill_capabilities = ill->ill_capabilities; 2540 int ah_cnt = 0, esp_cnt = 0; 2541 int ah_len = 0, esp_len = 0; 2542 int i, size = 0; 2543 2544 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2545 return; 2546 2547 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2548 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2549 2550 /* Find out the number of ciphers for AH */ 2551 if (cap_ah != NULL) { 2552 for (i = 0; i < cap_ah->algs_size; i++) { 2553 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2554 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2555 } 2556 if (ah_cnt > 0) { 2557 size += sizeof (dl_capability_sub_t) + 2558 sizeof (dl_capab_ipsec_t); 2559 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2560 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2561 size += ah_len; 2562 } 2563 } 2564 2565 /* Find out the number of ciphers for ESP */ 2566 if (cap_esp != NULL) { 2567 for (i = 0; i < cap_esp->algs_size; i++) { 2568 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2569 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2570 } 2571 if (esp_cnt > 0) { 2572 size += sizeof (dl_capability_sub_t) + 2573 sizeof (dl_capab_ipsec_t); 2574 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2575 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2576 size += esp_len; 2577 } 2578 } 2579 2580 if (size == 0) { 2581 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2582 "there's nothing to reset\n")); 2583 return; 2584 } 2585 2586 mp = allocb(size, BPRI_HI); 2587 if (mp == NULL) { 2588 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2589 "request to disable IPSEC Hardware Acceleration\n")); 2590 return; 2591 } 2592 2593 /* 2594 * Clear the capability flags for IPSec HA but retain the ill 2595 * capability structures since it's possible that another thread 2596 * is still referring to them. The structures only get deallocated 2597 * when we destroy the ill. 2598 * 2599 * Various places check the flags to see if the ill is capable of 2600 * hardware acceleration, and by clearing them we ensure that new 2601 * outbound IPSec packets are sent down encrypted. 2602 */ 2603 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2604 2605 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2606 if (ah_cnt > 0) { 2607 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2608 cap_ah, mp); 2609 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2610 } 2611 2612 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2613 if (esp_cnt > 0) { 2614 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2615 cap_esp, mp); 2616 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2617 } 2618 2619 /* 2620 * At this point we've composed a bunch of sub-capabilities to be 2621 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2622 * by the caller. Upon receiving this reset message, the driver 2623 * must stop inbound decryption (by destroying all inbound SAs) 2624 * and let the corresponding packets come in encrypted. 2625 */ 2626 2627 if (*sc_mp != NULL) 2628 linkb(*sc_mp, mp); 2629 else 2630 *sc_mp = mp; 2631 } 2632 2633 static void 2634 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2635 boolean_t encapsulated) 2636 { 2637 boolean_t legacy = B_FALSE; 2638 2639 /* 2640 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2641 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2642 * instructed the driver to disable its advertised capabilities, 2643 * so there's no point in accepting any response at this moment. 2644 */ 2645 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2646 return; 2647 2648 /* 2649 * Note that only the following two sub-capabilities may be 2650 * considered as "legacy", since their original definitions 2651 * do not incorporate the dl_mid_t module ID token, and hence 2652 * may require the use of the wrapper sub-capability. 2653 */ 2654 switch (subp->dl_cap) { 2655 case DL_CAPAB_IPSEC_AH: 2656 case DL_CAPAB_IPSEC_ESP: 2657 legacy = B_TRUE; 2658 break; 2659 } 2660 2661 /* 2662 * For legacy sub-capabilities which don't incorporate a queue_t 2663 * pointer in their structures, discard them if we detect that 2664 * there are intermediate modules in between IP and the driver. 2665 */ 2666 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2667 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2668 "%d discarded; %d module(s) present below IP\n", 2669 subp->dl_cap, ill->ill_lmod_cnt)); 2670 return; 2671 } 2672 2673 switch (subp->dl_cap) { 2674 case DL_CAPAB_IPSEC_AH: 2675 case DL_CAPAB_IPSEC_ESP: 2676 ill_capability_ipsec_ack(ill, mp, subp); 2677 break; 2678 case DL_CAPAB_MDT: 2679 ill_capability_mdt_ack(ill, mp, subp); 2680 break; 2681 case DL_CAPAB_HCKSUM: 2682 ill_capability_hcksum_ack(ill, mp, subp); 2683 break; 2684 case DL_CAPAB_ZEROCOPY: 2685 ill_capability_zerocopy_ack(ill, mp, subp); 2686 break; 2687 case DL_CAPAB_POLL: 2688 if (!SOFT_RINGS_ENABLED()) 2689 ill_capability_dls_ack(ill, mp, subp); 2690 break; 2691 case DL_CAPAB_SOFT_RING: 2692 if (SOFT_RINGS_ENABLED()) 2693 ill_capability_dls_ack(ill, mp, subp); 2694 break; 2695 case DL_CAPAB_LSO: 2696 ill_capability_lso_ack(ill, mp, subp); 2697 break; 2698 default: 2699 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2700 subp->dl_cap)); 2701 } 2702 } 2703 2704 /* 2705 * As part of negotiating polling capability, the driver tells us 2706 * the default (or normal) blanking interval and packet threshold 2707 * (the receive timer fires if blanking interval is reached or 2708 * the packet threshold is reached). 2709 * 2710 * As part of manipulating the polling interval, we always use our 2711 * estimated interval (avg service time * number of packets queued 2712 * on the squeue) but we try to blank for a minimum of 2713 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2714 * packet threshold during this time. When we are not in polling mode 2715 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2716 * rr_min_blank_ratio but up the packet cnt by a ratio of 2717 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2718 * possible although for a shorter interval. 2719 */ 2720 #define RR_MAX_BLANK_RATIO 20 2721 #define RR_MIN_BLANK_RATIO 10 2722 #define RR_MAX_PKT_CNT_RATIO 3 2723 #define RR_MIN_PKT_CNT_RATIO 3 2724 2725 /* 2726 * These can be tuned via /etc/system. 2727 */ 2728 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2729 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2730 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2731 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2732 2733 static mac_resource_handle_t 2734 ill_ring_add(void *arg, mac_resource_t *mrp) 2735 { 2736 ill_t *ill = (ill_t *)arg; 2737 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2738 ill_rx_ring_t *rx_ring; 2739 int ip_rx_index; 2740 2741 ASSERT(mrp != NULL); 2742 if (mrp->mr_type != MAC_RX_FIFO) { 2743 return (NULL); 2744 } 2745 ASSERT(ill != NULL); 2746 ASSERT(ill->ill_dls_capab != NULL); 2747 2748 mutex_enter(&ill->ill_lock); 2749 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2750 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2751 ASSERT(rx_ring != NULL); 2752 2753 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2754 time_t normal_blank_time = 2755 mrfp->mrf_normal_blank_time; 2756 uint_t normal_pkt_cnt = 2757 mrfp->mrf_normal_pkt_count; 2758 2759 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2760 2761 rx_ring->rr_blank = mrfp->mrf_blank; 2762 rx_ring->rr_handle = mrfp->mrf_arg; 2763 rx_ring->rr_ill = ill; 2764 rx_ring->rr_normal_blank_time = normal_blank_time; 2765 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2766 2767 rx_ring->rr_max_blank_time = 2768 normal_blank_time * rr_max_blank_ratio; 2769 rx_ring->rr_min_blank_time = 2770 normal_blank_time * rr_min_blank_ratio; 2771 rx_ring->rr_max_pkt_cnt = 2772 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2773 rx_ring->rr_min_pkt_cnt = 2774 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2775 2776 rx_ring->rr_ring_state = ILL_RING_INUSE; 2777 mutex_exit(&ill->ill_lock); 2778 2779 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2780 (int), ip_rx_index); 2781 return ((mac_resource_handle_t)rx_ring); 2782 } 2783 } 2784 2785 /* 2786 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2787 * we have devices which can overwhelm this limit, ILL_MAX_RING 2788 * should be made configurable. Meanwhile it cause no panic because 2789 * driver will pass ip_input a NULL handle which will make 2790 * IP allocate the default squeue and Polling mode will not 2791 * be used for this ring. 2792 */ 2793 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2794 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2795 2796 mutex_exit(&ill->ill_lock); 2797 return (NULL); 2798 } 2799 2800 static boolean_t 2801 ill_capability_dls_init(ill_t *ill) 2802 { 2803 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2804 conn_t *connp; 2805 size_t sz; 2806 2807 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2808 if (ill_dls == NULL) { 2809 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2810 "soft_ring enabled for ill=%s (%p) but data " 2811 "structs uninitialized\n", ill->ill_name, 2812 (void *)ill); 2813 } 2814 return (B_TRUE); 2815 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2816 if (ill_dls == NULL) { 2817 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2818 "polling enabled for ill=%s (%p) but data " 2819 "structs uninitialized\n", ill->ill_name, 2820 (void *)ill); 2821 } 2822 return (B_TRUE); 2823 } 2824 2825 if (ill_dls != NULL) { 2826 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2827 /* Soft_Ring or polling is being re-enabled */ 2828 2829 connp = ill_dls->ill_unbind_conn; 2830 ASSERT(rx_ring != NULL); 2831 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2832 bzero((void *)rx_ring, 2833 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2834 ill_dls->ill_ring_tbl = rx_ring; 2835 ill_dls->ill_unbind_conn = connp; 2836 return (B_TRUE); 2837 } 2838 2839 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2840 return (B_FALSE); 2841 2842 sz = sizeof (ill_dls_capab_t); 2843 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2844 2845 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2846 if (ill_dls == NULL) { 2847 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2848 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2849 (void *)ill); 2850 CONN_DEC_REF(connp); 2851 return (B_FALSE); 2852 } 2853 2854 /* Allocate space to hold ring table */ 2855 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2856 ill->ill_dls_capab = ill_dls; 2857 ill_dls->ill_unbind_conn = connp; 2858 return (B_TRUE); 2859 } 2860 2861 /* 2862 * ill_capability_dls_disable: disable soft_ring and/or polling 2863 * capability. Since any of the rings might already be in use, need 2864 * to call ipsq_clean_all() which gets behind the squeue to disable 2865 * direct calls if necessary. 2866 */ 2867 static void 2868 ill_capability_dls_disable(ill_t *ill) 2869 { 2870 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2871 2872 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2873 ipsq_clean_all(ill); 2874 ill_dls->ill_tx = NULL; 2875 ill_dls->ill_tx_handle = NULL; 2876 ill_dls->ill_dls_change_status = NULL; 2877 ill_dls->ill_dls_bind = NULL; 2878 ill_dls->ill_dls_unbind = NULL; 2879 } 2880 2881 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2882 } 2883 2884 static void 2885 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2886 dl_capability_sub_t *isub) 2887 { 2888 uint_t size; 2889 uchar_t *rptr; 2890 dl_capab_dls_t dls, *odls; 2891 ill_dls_capab_t *ill_dls; 2892 mblk_t *nmp = NULL; 2893 dl_capability_req_t *ocap; 2894 uint_t sub_dl_cap = isub->dl_cap; 2895 2896 if (!ill_capability_dls_init(ill)) 2897 return; 2898 ill_dls = ill->ill_dls_capab; 2899 2900 /* Copy locally to get the members aligned */ 2901 bcopy((void *)idls, (void *)&dls, 2902 sizeof (dl_capab_dls_t)); 2903 2904 /* Get the tx function and handle from dld */ 2905 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2906 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2907 2908 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2909 ill_dls->ill_dls_change_status = 2910 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2911 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2912 ill_dls->ill_dls_unbind = 2913 (ip_dls_unbind_t)dls.dls_ring_unbind; 2914 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2915 } 2916 2917 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2918 isub->dl_length; 2919 2920 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2921 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2922 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2923 ill->ill_name, (void *)ill); 2924 return; 2925 } 2926 2927 /* initialize dl_capability_req_t */ 2928 rptr = nmp->b_rptr; 2929 ocap = (dl_capability_req_t *)rptr; 2930 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2931 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2932 rptr += sizeof (dl_capability_req_t); 2933 2934 /* initialize dl_capability_sub_t */ 2935 bcopy(isub, rptr, sizeof (*isub)); 2936 rptr += sizeof (*isub); 2937 2938 odls = (dl_capab_dls_t *)rptr; 2939 rptr += sizeof (dl_capab_dls_t); 2940 2941 /* initialize dl_capab_dls_t to be sent down */ 2942 dls.dls_rx_handle = (uintptr_t)ill; 2943 dls.dls_rx = (uintptr_t)ip_input; 2944 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2945 2946 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2947 dls.dls_ring_cnt = ip_soft_rings_cnt; 2948 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2949 dls.dls_flags = SOFT_RING_ENABLE; 2950 } else { 2951 dls.dls_flags = POLL_ENABLE; 2952 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2953 "to enable polling\n", ill->ill_name)); 2954 } 2955 bcopy((void *)&dls, (void *)odls, 2956 sizeof (dl_capab_dls_t)); 2957 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2958 /* 2959 * nmp points to a DL_CAPABILITY_REQ message to 2960 * enable either soft_ring or polling 2961 */ 2962 ill_dlpi_send(ill, nmp); 2963 } 2964 2965 static void 2966 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2967 { 2968 mblk_t *mp; 2969 dl_capab_dls_t *idls; 2970 dl_capability_sub_t *dl_subcap; 2971 int size; 2972 2973 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2974 return; 2975 2976 ASSERT(ill->ill_dls_capab != NULL); 2977 2978 size = sizeof (*dl_subcap) + sizeof (*idls); 2979 2980 mp = allocb(size, BPRI_HI); 2981 if (mp == NULL) { 2982 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2983 "request to disable soft_ring\n")); 2984 return; 2985 } 2986 2987 mp->b_wptr = mp->b_rptr + size; 2988 2989 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2990 dl_subcap->dl_length = sizeof (*idls); 2991 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2992 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2993 else 2994 dl_subcap->dl_cap = DL_CAPAB_POLL; 2995 2996 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2997 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2998 idls->dls_flags = SOFT_RING_DISABLE; 2999 else 3000 idls->dls_flags = POLL_DISABLE; 3001 3002 if (*sc_mp != NULL) 3003 linkb(*sc_mp, mp); 3004 else 3005 *sc_mp = mp; 3006 } 3007 3008 /* 3009 * Process a soft_ring/poll capability negotiation ack received 3010 * from a DLS Provider.isub must point to the sub-capability 3011 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3012 */ 3013 static void 3014 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3015 { 3016 dl_capab_dls_t *idls; 3017 uint_t sub_dl_cap = isub->dl_cap; 3018 uint8_t *capend; 3019 3020 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3021 sub_dl_cap == DL_CAPAB_POLL); 3022 3023 if (ill->ill_isv6) 3024 return; 3025 3026 /* 3027 * Note: range checks here are not absolutely sufficient to 3028 * make us robust against malformed messages sent by drivers; 3029 * this is in keeping with the rest of IP's dlpi handling. 3030 * (Remember, it's coming from something else in the kernel 3031 * address space) 3032 */ 3033 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3034 if (capend > mp->b_wptr) { 3035 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3036 "malformed sub-capability too long for mblk"); 3037 return; 3038 } 3039 3040 /* 3041 * There are two types of acks we process here: 3042 * 1. acks in reply to a (first form) generic capability req 3043 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3044 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3045 * capability req. 3046 */ 3047 idls = (dl_capab_dls_t *)(isub + 1); 3048 3049 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3050 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3051 "capability isn't as expected; pass-thru " 3052 "module(s) detected, discarding capability\n")); 3053 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3054 /* 3055 * This is a capability renegotitation case. 3056 * The interface better be unusable at this 3057 * point other wise bad things will happen 3058 * if we disable direct calls on a running 3059 * and up interface. 3060 */ 3061 ill_capability_dls_disable(ill); 3062 } 3063 return; 3064 } 3065 3066 switch (idls->dls_flags) { 3067 default: 3068 /* Disable if unknown flag */ 3069 case SOFT_RING_DISABLE: 3070 case POLL_DISABLE: 3071 ill_capability_dls_disable(ill); 3072 break; 3073 case SOFT_RING_CAPABLE: 3074 case POLL_CAPABLE: 3075 /* 3076 * If the capability was already enabled, its safe 3077 * to disable it first to get rid of stale information 3078 * and then start enabling it again. 3079 */ 3080 ill_capability_dls_disable(ill); 3081 ill_capability_dls_capable(ill, idls, isub); 3082 break; 3083 case SOFT_RING_ENABLE: 3084 case POLL_ENABLE: 3085 mutex_enter(&ill->ill_lock); 3086 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3087 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3088 ASSERT(ill->ill_dls_capab != NULL); 3089 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3090 } 3091 if (sub_dl_cap == DL_CAPAB_POLL && 3092 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3093 ASSERT(ill->ill_dls_capab != NULL); 3094 ill->ill_capabilities |= ILL_CAPAB_POLL; 3095 ip1dbg(("ill_capability_dls_ack: interface %s " 3096 "has enabled polling\n", ill->ill_name)); 3097 } 3098 mutex_exit(&ill->ill_lock); 3099 break; 3100 } 3101 } 3102 3103 /* 3104 * Process a hardware checksum offload capability negotiation ack received 3105 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3106 * of a DL_CAPABILITY_ACK message. 3107 */ 3108 static void 3109 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3110 { 3111 dl_capability_req_t *ocap; 3112 dl_capab_hcksum_t *ihck, *ohck; 3113 ill_hcksum_capab_t **ill_hcksum; 3114 mblk_t *nmp = NULL; 3115 uint_t sub_dl_cap = isub->dl_cap; 3116 uint8_t *capend; 3117 3118 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3119 3120 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3121 3122 /* 3123 * Note: range checks here are not absolutely sufficient to 3124 * make us robust against malformed messages sent by drivers; 3125 * this is in keeping with the rest of IP's dlpi handling. 3126 * (Remember, it's coming from something else in the kernel 3127 * address space) 3128 */ 3129 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3130 if (capend > mp->b_wptr) { 3131 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3132 "malformed sub-capability too long for mblk"); 3133 return; 3134 } 3135 3136 /* 3137 * There are two types of acks we process here: 3138 * 1. acks in reply to a (first form) generic capability req 3139 * (no ENABLE flag set) 3140 * 2. acks in reply to a ENABLE capability req. 3141 * (ENABLE flag set) 3142 */ 3143 ihck = (dl_capab_hcksum_t *)(isub + 1); 3144 3145 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3146 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3147 "unsupported hardware checksum " 3148 "sub-capability (version %d, expected %d)", 3149 ihck->hcksum_version, HCKSUM_VERSION_1); 3150 return; 3151 } 3152 3153 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3154 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3155 "checksum capability isn't as expected; pass-thru " 3156 "module(s) detected, discarding capability\n")); 3157 return; 3158 } 3159 3160 #define CURR_HCKSUM_CAPAB \ 3161 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3162 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3163 3164 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3165 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3166 /* do ENABLE processing */ 3167 if (*ill_hcksum == NULL) { 3168 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3169 KM_NOSLEEP); 3170 3171 if (*ill_hcksum == NULL) { 3172 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3173 "could not enable hcksum version %d " 3174 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3175 ill->ill_name); 3176 return; 3177 } 3178 } 3179 3180 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3181 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3182 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3183 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3184 "has enabled hardware checksumming\n ", 3185 ill->ill_name)); 3186 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3187 /* 3188 * Enabling hardware checksum offload 3189 * Currently IP supports {TCP,UDP}/IPv4 3190 * partial and full cksum offload and 3191 * IPv4 header checksum offload. 3192 * Allocate new mblk which will 3193 * contain a new capability request 3194 * to enable hardware checksum offload. 3195 */ 3196 uint_t size; 3197 uchar_t *rptr; 3198 3199 size = sizeof (dl_capability_req_t) + 3200 sizeof (dl_capability_sub_t) + isub->dl_length; 3201 3202 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3203 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3204 "could not enable hardware cksum for %s (ENOMEM)\n", 3205 ill->ill_name); 3206 return; 3207 } 3208 3209 rptr = nmp->b_rptr; 3210 /* initialize dl_capability_req_t */ 3211 ocap = (dl_capability_req_t *)nmp->b_rptr; 3212 ocap->dl_sub_offset = 3213 sizeof (dl_capability_req_t); 3214 ocap->dl_sub_length = 3215 sizeof (dl_capability_sub_t) + 3216 isub->dl_length; 3217 nmp->b_rptr += sizeof (dl_capability_req_t); 3218 3219 /* initialize dl_capability_sub_t */ 3220 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3221 nmp->b_rptr += sizeof (*isub); 3222 3223 /* initialize dl_capab_hcksum_t */ 3224 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3225 bcopy(ihck, ohck, sizeof (*ihck)); 3226 3227 nmp->b_rptr = rptr; 3228 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3229 3230 /* Set ENABLE flag */ 3231 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3232 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3233 3234 /* 3235 * nmp points to a DL_CAPABILITY_REQ message to enable 3236 * hardware checksum acceleration. 3237 */ 3238 ill_dlpi_send(ill, nmp); 3239 } else { 3240 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3241 "advertised %x hardware checksum capability flags\n", 3242 ill->ill_name, ihck->hcksum_txflags)); 3243 } 3244 } 3245 3246 static void 3247 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3248 { 3249 mblk_t *mp; 3250 dl_capab_hcksum_t *hck_subcap; 3251 dl_capability_sub_t *dl_subcap; 3252 int size; 3253 3254 if (!ILL_HCKSUM_CAPABLE(ill)) 3255 return; 3256 3257 ASSERT(ill->ill_hcksum_capab != NULL); 3258 /* 3259 * Clear the capability flag for hardware checksum offload but 3260 * retain the ill_hcksum_capab structure since it's possible that 3261 * another thread is still referring to it. The structure only 3262 * gets deallocated when we destroy the ill. 3263 */ 3264 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3265 3266 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3267 3268 mp = allocb(size, BPRI_HI); 3269 if (mp == NULL) { 3270 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3271 "request to disable hardware checksum offload\n")); 3272 return; 3273 } 3274 3275 mp->b_wptr = mp->b_rptr + size; 3276 3277 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3278 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3279 dl_subcap->dl_length = sizeof (*hck_subcap); 3280 3281 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3282 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3283 hck_subcap->hcksum_txflags = 0; 3284 3285 if (*sc_mp != NULL) 3286 linkb(*sc_mp, mp); 3287 else 3288 *sc_mp = mp; 3289 } 3290 3291 static void 3292 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3293 { 3294 mblk_t *nmp = NULL; 3295 dl_capability_req_t *oc; 3296 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3297 ill_zerocopy_capab_t **ill_zerocopy_capab; 3298 uint_t sub_dl_cap = isub->dl_cap; 3299 uint8_t *capend; 3300 3301 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3302 3303 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3304 3305 /* 3306 * Note: range checks here are not absolutely sufficient to 3307 * make us robust against malformed messages sent by drivers; 3308 * this is in keeping with the rest of IP's dlpi handling. 3309 * (Remember, it's coming from something else in the kernel 3310 * address space) 3311 */ 3312 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3313 if (capend > mp->b_wptr) { 3314 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3315 "malformed sub-capability too long for mblk"); 3316 return; 3317 } 3318 3319 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3320 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3321 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3322 "unsupported ZEROCOPY sub-capability (version %d, " 3323 "expected %d)", zc_ic->zerocopy_version, 3324 ZEROCOPY_VERSION_1); 3325 return; 3326 } 3327 3328 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3329 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3330 "capability isn't as expected; pass-thru module(s) " 3331 "detected, discarding capability\n")); 3332 return; 3333 } 3334 3335 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3336 if (*ill_zerocopy_capab == NULL) { 3337 *ill_zerocopy_capab = 3338 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3339 KM_NOSLEEP); 3340 3341 if (*ill_zerocopy_capab == NULL) { 3342 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3343 "could not enable Zero-copy version %d " 3344 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3345 ill->ill_name); 3346 return; 3347 } 3348 } 3349 3350 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3351 "supports Zero-copy version %d\n", ill->ill_name, 3352 ZEROCOPY_VERSION_1)); 3353 3354 (*ill_zerocopy_capab)->ill_zerocopy_version = 3355 zc_ic->zerocopy_version; 3356 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3357 zc_ic->zerocopy_flags; 3358 3359 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3360 } else { 3361 uint_t size; 3362 uchar_t *rptr; 3363 3364 size = sizeof (dl_capability_req_t) + 3365 sizeof (dl_capability_sub_t) + 3366 sizeof (dl_capab_zerocopy_t); 3367 3368 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3369 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3370 "could not enable zerocopy for %s (ENOMEM)\n", 3371 ill->ill_name); 3372 return; 3373 } 3374 3375 rptr = nmp->b_rptr; 3376 /* initialize dl_capability_req_t */ 3377 oc = (dl_capability_req_t *)rptr; 3378 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3379 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 rptr += sizeof (dl_capability_req_t); 3382 3383 /* initialize dl_capability_sub_t */ 3384 bcopy(isub, rptr, sizeof (*isub)); 3385 rptr += sizeof (*isub); 3386 3387 /* initialize dl_capab_zerocopy_t */ 3388 zc_oc = (dl_capab_zerocopy_t *)rptr; 3389 *zc_oc = *zc_ic; 3390 3391 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3392 "to enable zero-copy version %d\n", ill->ill_name, 3393 ZEROCOPY_VERSION_1)); 3394 3395 /* set VMSAFE_MEM flag */ 3396 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3397 3398 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3399 ill_dlpi_send(ill, nmp); 3400 } 3401 } 3402 3403 static void 3404 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3405 { 3406 mblk_t *mp; 3407 dl_capab_zerocopy_t *zerocopy_subcap; 3408 dl_capability_sub_t *dl_subcap; 3409 int size; 3410 3411 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3412 return; 3413 3414 ASSERT(ill->ill_zerocopy_capab != NULL); 3415 /* 3416 * Clear the capability flag for Zero-copy but retain the 3417 * ill_zerocopy_capab structure since it's possible that another 3418 * thread is still referring to it. The structure only gets 3419 * deallocated when we destroy the ill. 3420 */ 3421 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3422 3423 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3424 3425 mp = allocb(size, BPRI_HI); 3426 if (mp == NULL) { 3427 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3428 "request to disable Zero-copy\n")); 3429 return; 3430 } 3431 3432 mp->b_wptr = mp->b_rptr + size; 3433 3434 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3435 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3436 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3437 3438 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3439 zerocopy_subcap->zerocopy_version = 3440 ill->ill_zerocopy_capab->ill_zerocopy_version; 3441 zerocopy_subcap->zerocopy_flags = 0; 3442 3443 if (*sc_mp != NULL) 3444 linkb(*sc_mp, mp); 3445 else 3446 *sc_mp = mp; 3447 } 3448 3449 /* 3450 * Process Large Segment Offload capability negotiation ack received from a 3451 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3452 * DL_CAPABILITY_ACK message. 3453 */ 3454 static void 3455 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3456 { 3457 mblk_t *nmp = NULL; 3458 dl_capability_req_t *oc; 3459 dl_capab_lso_t *lso_ic, *lso_oc; 3460 ill_lso_capab_t **ill_lso_capab; 3461 uint_t sub_dl_cap = isub->dl_cap; 3462 uint8_t *capend; 3463 3464 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3465 3466 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3467 3468 /* 3469 * Note: range checks here are not absolutely sufficient to 3470 * make us robust against malformed messages sent by drivers; 3471 * this is in keeping with the rest of IP's dlpi handling. 3472 * (Remember, it's coming from something else in the kernel 3473 * address space) 3474 */ 3475 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3476 if (capend > mp->b_wptr) { 3477 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3478 "malformed sub-capability too long for mblk"); 3479 return; 3480 } 3481 3482 lso_ic = (dl_capab_lso_t *)(isub + 1); 3483 3484 if (lso_ic->lso_version != LSO_VERSION_1) { 3485 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3486 "unsupported LSO sub-capability (version %d, expected %d)", 3487 lso_ic->lso_version, LSO_VERSION_1); 3488 return; 3489 } 3490 3491 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3492 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3493 "capability isn't as expected; pass-thru module(s) " 3494 "detected, discarding capability\n")); 3495 return; 3496 } 3497 3498 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3499 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3500 if (*ill_lso_capab == NULL) { 3501 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3502 KM_NOSLEEP); 3503 3504 if (*ill_lso_capab == NULL) { 3505 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3506 "could not enable LSO version %d " 3507 "for %s (ENOMEM)\n", LSO_VERSION_1, 3508 ill->ill_name); 3509 return; 3510 } 3511 } 3512 3513 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3514 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3515 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3516 ill->ill_capabilities |= ILL_CAPAB_LSO; 3517 3518 ip1dbg(("ill_capability_lso_ack: interface %s " 3519 "has enabled LSO\n ", ill->ill_name)); 3520 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3521 uint_t size; 3522 uchar_t *rptr; 3523 3524 size = sizeof (dl_capability_req_t) + 3525 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3526 3527 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3528 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3529 "could not enable LSO for %s (ENOMEM)\n", 3530 ill->ill_name); 3531 return; 3532 } 3533 3534 rptr = nmp->b_rptr; 3535 /* initialize dl_capability_req_t */ 3536 oc = (dl_capability_req_t *)nmp->b_rptr; 3537 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3538 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3539 sizeof (dl_capab_lso_t); 3540 nmp->b_rptr += sizeof (dl_capability_req_t); 3541 3542 /* initialize dl_capability_sub_t */ 3543 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3544 nmp->b_rptr += sizeof (*isub); 3545 3546 /* initialize dl_capab_lso_t */ 3547 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3548 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3549 3550 nmp->b_rptr = rptr; 3551 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3552 3553 /* set ENABLE flag */ 3554 lso_oc->lso_flags |= LSO_TX_ENABLE; 3555 3556 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3557 ill_dlpi_send(ill, nmp); 3558 } else { 3559 ip1dbg(("ill_capability_lso_ack: interface %s has " 3560 "advertised %x LSO capability flags\n", 3561 ill->ill_name, lso_ic->lso_flags)); 3562 } 3563 } 3564 3565 3566 static void 3567 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3568 { 3569 mblk_t *mp; 3570 dl_capab_lso_t *lso_subcap; 3571 dl_capability_sub_t *dl_subcap; 3572 int size; 3573 3574 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3575 return; 3576 3577 ASSERT(ill->ill_lso_capab != NULL); 3578 /* 3579 * Clear the capability flag for LSO but retain the 3580 * ill_lso_capab structure since it's possible that another 3581 * thread is still referring to it. The structure only gets 3582 * deallocated when we destroy the ill. 3583 */ 3584 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3585 3586 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3587 3588 mp = allocb(size, BPRI_HI); 3589 if (mp == NULL) { 3590 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3591 "request to disable LSO\n")); 3592 return; 3593 } 3594 3595 mp->b_wptr = mp->b_rptr + size; 3596 3597 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3598 dl_subcap->dl_cap = DL_CAPAB_LSO; 3599 dl_subcap->dl_length = sizeof (*lso_subcap); 3600 3601 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3602 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3603 lso_subcap->lso_flags = 0; 3604 3605 if (*sc_mp != NULL) 3606 linkb(*sc_mp, mp); 3607 else 3608 *sc_mp = mp; 3609 } 3610 3611 /* 3612 * Consume a new-style hardware capabilities negotiation ack. 3613 * Called from ip_rput_dlpi_writer(). 3614 */ 3615 void 3616 ill_capability_ack(ill_t *ill, mblk_t *mp) 3617 { 3618 dl_capability_ack_t *capp; 3619 dl_capability_sub_t *subp, *endp; 3620 3621 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3622 ill->ill_dlpi_capab_state = IDS_OK; 3623 3624 capp = (dl_capability_ack_t *)mp->b_rptr; 3625 3626 if (capp->dl_sub_length == 0) 3627 /* no new-style capabilities */ 3628 return; 3629 3630 /* make sure the driver supplied correct dl_sub_length */ 3631 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3632 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3633 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3634 return; 3635 } 3636 3637 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3638 /* 3639 * There are sub-capabilities. Process the ones we know about. 3640 * Loop until we don't have room for another sub-cap header.. 3641 */ 3642 for (subp = SC(capp, capp->dl_sub_offset), 3643 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3644 subp <= endp; 3645 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3646 3647 switch (subp->dl_cap) { 3648 case DL_CAPAB_ID_WRAPPER: 3649 ill_capability_id_ack(ill, mp, subp); 3650 break; 3651 default: 3652 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3653 break; 3654 } 3655 } 3656 #undef SC 3657 } 3658 3659 /* 3660 * This routine is called to scan the fragmentation reassembly table for 3661 * the specified ILL for any packets that are starting to smell. 3662 * dead_interval is the maximum time in seconds that will be tolerated. It 3663 * will either be the value specified in ip_g_frag_timeout, or zero if the 3664 * ILL is shutting down and it is time to blow everything off. 3665 * 3666 * It returns the number of seconds (as a time_t) that the next frag timer 3667 * should be scheduled for, 0 meaning that the timer doesn't need to be 3668 * re-started. Note that the method of calculating next_timeout isn't 3669 * entirely accurate since time will flow between the time we grab 3670 * current_time and the time we schedule the next timeout. This isn't a 3671 * big problem since this is the timer for sending an ICMP reassembly time 3672 * exceeded messages, and it doesn't have to be exactly accurate. 3673 * 3674 * This function is 3675 * sometimes called as writer, although this is not required. 3676 */ 3677 time_t 3678 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3679 { 3680 ipfb_t *ipfb; 3681 ipfb_t *endp; 3682 ipf_t *ipf; 3683 ipf_t *ipfnext; 3684 mblk_t *mp; 3685 time_t current_time = gethrestime_sec(); 3686 time_t next_timeout = 0; 3687 uint32_t hdr_length; 3688 mblk_t *send_icmp_head; 3689 mblk_t *send_icmp_head_v6; 3690 zoneid_t zoneid; 3691 3692 ipfb = ill->ill_frag_hash_tbl; 3693 if (ipfb == NULL) 3694 return (B_FALSE); 3695 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3696 /* Walk the frag hash table. */ 3697 for (; ipfb < endp; ipfb++) { 3698 send_icmp_head = NULL; 3699 send_icmp_head_v6 = NULL; 3700 mutex_enter(&ipfb->ipfb_lock); 3701 while ((ipf = ipfb->ipfb_ipf) != 0) { 3702 time_t frag_time = current_time - ipf->ipf_timestamp; 3703 time_t frag_timeout; 3704 3705 if (frag_time < dead_interval) { 3706 /* 3707 * There are some outstanding fragments 3708 * that will timeout later. Make note of 3709 * the time so that we can reschedule the 3710 * next timeout appropriately. 3711 */ 3712 frag_timeout = dead_interval - frag_time; 3713 if (next_timeout == 0 || 3714 frag_timeout < next_timeout) { 3715 next_timeout = frag_timeout; 3716 } 3717 break; 3718 } 3719 /* Time's up. Get it out of here. */ 3720 hdr_length = ipf->ipf_nf_hdr_len; 3721 ipfnext = ipf->ipf_hash_next; 3722 if (ipfnext) 3723 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3724 *ipf->ipf_ptphn = ipfnext; 3725 mp = ipf->ipf_mp->b_cont; 3726 for (; mp; mp = mp->b_cont) { 3727 /* Extra points for neatness. */ 3728 IP_REASS_SET_START(mp, 0); 3729 IP_REASS_SET_END(mp, 0); 3730 } 3731 mp = ipf->ipf_mp->b_cont; 3732 ill->ill_frag_count -= ipf->ipf_count; 3733 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3734 ipfb->ipfb_count -= ipf->ipf_count; 3735 ASSERT(ipfb->ipfb_frag_pkts > 0); 3736 ipfb->ipfb_frag_pkts--; 3737 /* 3738 * We do not send any icmp message from here because 3739 * we currently are holding the ipfb_lock for this 3740 * hash chain. If we try and send any icmp messages 3741 * from here we may end up via a put back into ip 3742 * trying to get the same lock, causing a recursive 3743 * mutex panic. Instead we build a list and send all 3744 * the icmp messages after we have dropped the lock. 3745 */ 3746 if (ill->ill_isv6) { 3747 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3748 if (hdr_length != 0) { 3749 mp->b_next = send_icmp_head_v6; 3750 send_icmp_head_v6 = mp; 3751 } else { 3752 freemsg(mp); 3753 } 3754 } else { 3755 BUMP_MIB(&ip_mib, ipReasmFails); 3756 if (hdr_length != 0) { 3757 mp->b_next = send_icmp_head; 3758 send_icmp_head = mp; 3759 } else { 3760 freemsg(mp); 3761 } 3762 } 3763 freeb(ipf->ipf_mp); 3764 } 3765 mutex_exit(&ipfb->ipfb_lock); 3766 /* 3767 * Now need to send any icmp messages that we delayed from 3768 * above. 3769 */ 3770 while (send_icmp_head_v6 != NULL) { 3771 ip6_t *ip6h; 3772 3773 mp = send_icmp_head_v6; 3774 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3775 mp->b_next = NULL; 3776 if (mp->b_datap->db_type == M_CTL) 3777 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3778 else 3779 ip6h = (ip6_t *)mp->b_rptr; 3780 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3781 ill); 3782 if (zoneid == ALL_ZONES) { 3783 freemsg(mp); 3784 } else { 3785 icmp_time_exceeded_v6(ill->ill_wq, mp, 3786 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3787 B_FALSE, zoneid); 3788 } 3789 } 3790 while (send_icmp_head != NULL) { 3791 ipaddr_t dst; 3792 3793 mp = send_icmp_head; 3794 send_icmp_head = send_icmp_head->b_next; 3795 mp->b_next = NULL; 3796 3797 if (mp->b_datap->db_type == M_CTL) 3798 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3799 else 3800 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3801 3802 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3803 if (zoneid == ALL_ZONES) { 3804 freemsg(mp); 3805 } else { 3806 icmp_time_exceeded(ill->ill_wq, mp, 3807 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3808 } 3809 } 3810 } 3811 /* 3812 * A non-dying ILL will use the return value to decide whether to 3813 * restart the frag timer, and for how long. 3814 */ 3815 return (next_timeout); 3816 } 3817 3818 /* 3819 * This routine is called when the approximate count of mblk memory used 3820 * for the specified ILL has exceeded max_count. 3821 */ 3822 void 3823 ill_frag_prune(ill_t *ill, uint_t max_count) 3824 { 3825 ipfb_t *ipfb; 3826 ipf_t *ipf; 3827 size_t count; 3828 3829 /* 3830 * If we are here within ip_min_frag_prune_time msecs remove 3831 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3832 * ill_frag_free_num_pkts. 3833 */ 3834 mutex_enter(&ill->ill_lock); 3835 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3836 (ip_min_frag_prune_time != 0 ? 3837 ip_min_frag_prune_time : msec_per_tick)) { 3838 3839 ill->ill_frag_free_num_pkts++; 3840 3841 } else { 3842 ill->ill_frag_free_num_pkts = 0; 3843 } 3844 ill->ill_last_frag_clean_time = lbolt; 3845 mutex_exit(&ill->ill_lock); 3846 3847 /* 3848 * free ill_frag_free_num_pkts oldest packets from each bucket. 3849 */ 3850 if (ill->ill_frag_free_num_pkts != 0) { 3851 int ix; 3852 3853 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3854 ipfb = &ill->ill_frag_hash_tbl[ix]; 3855 mutex_enter(&ipfb->ipfb_lock); 3856 if (ipfb->ipfb_ipf != NULL) { 3857 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3858 ill->ill_frag_free_num_pkts); 3859 } 3860 mutex_exit(&ipfb->ipfb_lock); 3861 } 3862 } 3863 /* 3864 * While the reassembly list for this ILL is too big, prune a fragment 3865 * queue by age, oldest first. Note that the per ILL count is 3866 * approximate, while the per frag hash bucket counts are accurate. 3867 */ 3868 while (ill->ill_frag_count > max_count) { 3869 int ix; 3870 ipfb_t *oipfb = NULL; 3871 uint_t oldest = UINT_MAX; 3872 3873 count = 0; 3874 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3875 ipfb = &ill->ill_frag_hash_tbl[ix]; 3876 mutex_enter(&ipfb->ipfb_lock); 3877 ipf = ipfb->ipfb_ipf; 3878 if (ipf != NULL && ipf->ipf_gen < oldest) { 3879 oldest = ipf->ipf_gen; 3880 oipfb = ipfb; 3881 } 3882 count += ipfb->ipfb_count; 3883 mutex_exit(&ipfb->ipfb_lock); 3884 } 3885 /* Refresh the per ILL count */ 3886 ill->ill_frag_count = count; 3887 if (oipfb == NULL) { 3888 ill->ill_frag_count = 0; 3889 break; 3890 } 3891 if (count <= max_count) 3892 return; /* Somebody beat us to it, nothing to do */ 3893 mutex_enter(&oipfb->ipfb_lock); 3894 ipf = oipfb->ipfb_ipf; 3895 if (ipf != NULL) { 3896 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3897 } 3898 mutex_exit(&oipfb->ipfb_lock); 3899 } 3900 } 3901 3902 /* 3903 * free 'free_cnt' fragmented packets starting at ipf. 3904 */ 3905 void 3906 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3907 { 3908 size_t count; 3909 mblk_t *mp; 3910 mblk_t *tmp; 3911 ipf_t **ipfp = ipf->ipf_ptphn; 3912 3913 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3914 ASSERT(ipfp != NULL); 3915 ASSERT(ipf != NULL); 3916 3917 while (ipf != NULL && free_cnt-- > 0) { 3918 count = ipf->ipf_count; 3919 mp = ipf->ipf_mp; 3920 ipf = ipf->ipf_hash_next; 3921 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3922 IP_REASS_SET_START(tmp, 0); 3923 IP_REASS_SET_END(tmp, 0); 3924 } 3925 ill->ill_frag_count -= count; 3926 ASSERT(ipfb->ipfb_count >= count); 3927 ipfb->ipfb_count -= count; 3928 ASSERT(ipfb->ipfb_frag_pkts > 0); 3929 ipfb->ipfb_frag_pkts--; 3930 freemsg(mp); 3931 BUMP_MIB(&ip_mib, ipReasmFails); 3932 } 3933 3934 if (ipf) 3935 ipf->ipf_ptphn = ipfp; 3936 ipfp[0] = ipf; 3937 } 3938 3939 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3940 "obsolete and may be removed in a future release of Solaris. Use " \ 3941 "ifconfig(1M) to manipulate the forwarding status of an interface." 3942 3943 /* 3944 * For obsolete per-interface forwarding configuration; 3945 * called in response to ND_GET. 3946 */ 3947 /* ARGSUSED */ 3948 static int 3949 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3950 { 3951 ill_t *ill = (ill_t *)cp; 3952 3953 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3954 3955 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3956 return (0); 3957 } 3958 3959 /* 3960 * For obsolete per-interface forwarding configuration; 3961 * called in response to ND_SET. 3962 */ 3963 /* ARGSUSED */ 3964 static int 3965 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3966 cred_t *ioc_cr) 3967 { 3968 long value; 3969 int retval; 3970 3971 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3972 3973 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3974 value < 0 || value > 1) { 3975 return (EINVAL); 3976 } 3977 3978 rw_enter(&ill_g_lock, RW_READER); 3979 retval = ill_forward_set(q, mp, (value != 0), cp); 3980 rw_exit(&ill_g_lock); 3981 return (retval); 3982 } 3983 3984 /* 3985 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3986 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3987 * up RTS_IFINFO routing socket messages for each interface whose flags we 3988 * change. 3989 */ 3990 /* ARGSUSED */ 3991 int 3992 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3993 { 3994 ill_t *ill = (ill_t *)cp; 3995 ill_group_t *illgrp; 3996 3997 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3998 3999 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4000 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4001 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4002 return (EINVAL); 4003 4004 /* 4005 * If the ill is in an IPMP group, set the forwarding policy on all 4006 * members of the group to the same value. 4007 */ 4008 illgrp = ill->ill_group; 4009 if (illgrp != NULL) { 4010 ill_t *tmp_ill; 4011 4012 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4013 tmp_ill = tmp_ill->ill_group_next) { 4014 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4015 (enable ? "Enabling" : "Disabling"), 4016 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4017 tmp_ill->ill_name)); 4018 mutex_enter(&tmp_ill->ill_lock); 4019 if (enable) 4020 tmp_ill->ill_flags |= ILLF_ROUTER; 4021 else 4022 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4023 mutex_exit(&tmp_ill->ill_lock); 4024 if (tmp_ill->ill_isv6) 4025 ill_set_nce_router_flags(tmp_ill, enable); 4026 /* Notify routing socket listeners of this change. */ 4027 ip_rts_ifmsg(tmp_ill->ill_ipif); 4028 } 4029 } else { 4030 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4031 (enable ? "Enabling" : "Disabling"), 4032 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4033 mutex_enter(&ill->ill_lock); 4034 if (enable) 4035 ill->ill_flags |= ILLF_ROUTER; 4036 else 4037 ill->ill_flags &= ~ILLF_ROUTER; 4038 mutex_exit(&ill->ill_lock); 4039 if (ill->ill_isv6) 4040 ill_set_nce_router_flags(ill, enable); 4041 /* Notify routing socket listeners of this change. */ 4042 ip_rts_ifmsg(ill->ill_ipif); 4043 } 4044 4045 return (0); 4046 } 4047 4048 /* 4049 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4050 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4051 * set or clear. 4052 */ 4053 static void 4054 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4055 { 4056 ipif_t *ipif; 4057 nce_t *nce; 4058 4059 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4060 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4061 if (nce != NULL) { 4062 mutex_enter(&nce->nce_lock); 4063 if (enable) 4064 nce->nce_flags |= NCE_F_ISROUTER; 4065 else 4066 nce->nce_flags &= ~NCE_F_ISROUTER; 4067 mutex_exit(&nce->nce_lock); 4068 NCE_REFRELE(nce); 4069 } 4070 } 4071 } 4072 4073 /* 4074 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4075 * for this ill. Make sure the v6/v4 question has been answered about this 4076 * ill. The creation of this ndd variable is only for backwards compatibility. 4077 * The preferred way to control per-interface IP forwarding is through the 4078 * ILLF_ROUTER interface flag. 4079 */ 4080 static int 4081 ill_set_ndd_name(ill_t *ill) 4082 { 4083 char *suffix; 4084 4085 ASSERT(IAM_WRITER_ILL(ill)); 4086 4087 if (ill->ill_isv6) 4088 suffix = ipv6_forward_suffix; 4089 else 4090 suffix = ipv4_forward_suffix; 4091 4092 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4093 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4094 /* 4095 * Copies over the '\0'. 4096 * Note that strlen(suffix) is always bounded. 4097 */ 4098 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4099 strlen(suffix) + 1); 4100 4101 /* 4102 * Use of the nd table requires holding the reader lock. 4103 * Modifying the nd table thru nd_load/nd_unload requires 4104 * the writer lock. 4105 */ 4106 rw_enter(&ip_g_nd_lock, RW_WRITER); 4107 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4108 nd_ill_forward_set, (caddr_t)ill)) { 4109 /* 4110 * If the nd_load failed, it only meant that it could not 4111 * allocate a new bunch of room for further NDD expansion. 4112 * Because of that, the ill_ndd_name will be set to 0, and 4113 * this interface is at the mercy of the global ip_forwarding 4114 * variable. 4115 */ 4116 rw_exit(&ip_g_nd_lock); 4117 ill->ill_ndd_name = NULL; 4118 return (ENOMEM); 4119 } 4120 rw_exit(&ip_g_nd_lock); 4121 return (0); 4122 } 4123 4124 /* 4125 * Intializes the context structure and returns the first ill in the list 4126 * cuurently start_list and end_list can have values: 4127 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4128 * IP_V4_G_HEAD Traverse IPV4 list only. 4129 * IP_V6_G_HEAD Traverse IPV6 list only. 4130 */ 4131 4132 /* 4133 * We don't check for CONDEMNED ills here. Caller must do that if 4134 * necessary under the ill lock. 4135 */ 4136 ill_t * 4137 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 4138 { 4139 ill_if_t *ifp; 4140 ill_t *ill; 4141 avl_tree_t *avl_tree; 4142 4143 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4144 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4145 4146 /* 4147 * setup the lists to search 4148 */ 4149 if (end_list != MAX_G_HEADS) { 4150 ctx->ctx_current_list = start_list; 4151 ctx->ctx_last_list = end_list; 4152 } else { 4153 ctx->ctx_last_list = MAX_G_HEADS - 1; 4154 ctx->ctx_current_list = 0; 4155 } 4156 4157 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4158 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4159 if (ifp != (ill_if_t *) 4160 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4161 avl_tree = &ifp->illif_avl_by_ppa; 4162 ill = avl_first(avl_tree); 4163 /* 4164 * ill is guaranteed to be non NULL or ifp should have 4165 * not existed. 4166 */ 4167 ASSERT(ill != NULL); 4168 return (ill); 4169 } 4170 ctx->ctx_current_list++; 4171 } 4172 4173 return (NULL); 4174 } 4175 4176 /* 4177 * returns the next ill in the list. ill_first() must have been called 4178 * before calling ill_next() or bad things will happen. 4179 */ 4180 4181 /* 4182 * We don't check for CONDEMNED ills here. Caller must do that if 4183 * necessary under the ill lock. 4184 */ 4185 ill_t * 4186 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4187 { 4188 ill_if_t *ifp; 4189 ill_t *ill; 4190 4191 4192 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4193 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4194 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4195 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4196 AVL_AFTER)) != NULL) { 4197 return (ill); 4198 } 4199 4200 /* goto next ill_ifp in the list. */ 4201 ifp = lastill->ill_ifptr->illif_next; 4202 4203 /* make sure not at end of circular list */ 4204 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4205 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4206 return (NULL); 4207 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4208 } 4209 4210 return (avl_first(&ifp->illif_avl_by_ppa)); 4211 } 4212 4213 /* 4214 * Check interface name for correct format which is name+ppa. 4215 * name can contain characters and digits, the right most digits 4216 * make up the ppa number. use of octal is not allowed, name must contain 4217 * a ppa, return pointer to the start of ppa. 4218 * In case of error return NULL. 4219 */ 4220 static char * 4221 ill_get_ppa_ptr(char *name) 4222 { 4223 int namelen = mi_strlen(name); 4224 4225 int len = namelen; 4226 4227 name += len; 4228 while (len > 0) { 4229 name--; 4230 if (*name < '0' || *name > '9') 4231 break; 4232 len--; 4233 } 4234 4235 /* empty string, all digits, or no trailing digits */ 4236 if (len == 0 || len == (int)namelen) 4237 return (NULL); 4238 4239 name++; 4240 /* check for attempted use of octal */ 4241 if (*name == '0' && len != (int)namelen - 1) 4242 return (NULL); 4243 return (name); 4244 } 4245 4246 /* 4247 * use avl tree to locate the ill. 4248 */ 4249 static ill_t * 4250 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4251 ipsq_func_t func, int *error) 4252 { 4253 char *ppa_ptr = NULL; 4254 int len; 4255 uint_t ppa; 4256 ill_t *ill = NULL; 4257 ill_if_t *ifp; 4258 int list; 4259 ipsq_t *ipsq; 4260 4261 if (error != NULL) 4262 *error = 0; 4263 4264 /* 4265 * get ppa ptr 4266 */ 4267 if (isv6) 4268 list = IP_V6_G_HEAD; 4269 else 4270 list = IP_V4_G_HEAD; 4271 4272 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4273 if (error != NULL) 4274 *error = ENXIO; 4275 return (NULL); 4276 } 4277 4278 len = ppa_ptr - name + 1; 4279 4280 ppa = stoi(&ppa_ptr); 4281 4282 ifp = IP_VX_ILL_G_LIST(list); 4283 4284 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4285 /* 4286 * match is done on len - 1 as the name is not null 4287 * terminated it contains ppa in addition to the interface 4288 * name. 4289 */ 4290 if ((ifp->illif_name_len == len) && 4291 bcmp(ifp->illif_name, name, len - 1) == 0) { 4292 break; 4293 } else { 4294 ifp = ifp->illif_next; 4295 } 4296 } 4297 4298 4299 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4300 /* 4301 * Even the interface type does not exist. 4302 */ 4303 if (error != NULL) 4304 *error = ENXIO; 4305 return (NULL); 4306 } 4307 4308 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4309 if (ill != NULL) { 4310 /* 4311 * The block comment at the start of ipif_down 4312 * explains the use of the macros used below 4313 */ 4314 GRAB_CONN_LOCK(q); 4315 mutex_enter(&ill->ill_lock); 4316 if (ILL_CAN_LOOKUP(ill)) { 4317 ill_refhold_locked(ill); 4318 mutex_exit(&ill->ill_lock); 4319 RELEASE_CONN_LOCK(q); 4320 return (ill); 4321 } else if (ILL_CAN_WAIT(ill, q)) { 4322 ipsq = ill->ill_phyint->phyint_ipsq; 4323 mutex_enter(&ipsq->ipsq_lock); 4324 mutex_exit(&ill->ill_lock); 4325 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4326 mutex_exit(&ipsq->ipsq_lock); 4327 RELEASE_CONN_LOCK(q); 4328 *error = EINPROGRESS; 4329 return (NULL); 4330 } 4331 mutex_exit(&ill->ill_lock); 4332 RELEASE_CONN_LOCK(q); 4333 } 4334 if (error != NULL) 4335 *error = ENXIO; 4336 return (NULL); 4337 } 4338 4339 /* 4340 * comparison function for use with avl. 4341 */ 4342 static int 4343 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4344 { 4345 uint_t ppa; 4346 uint_t ill_ppa; 4347 4348 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4349 4350 ppa = *((uint_t *)ppa_ptr); 4351 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4352 /* 4353 * We want the ill with the lowest ppa to be on the 4354 * top. 4355 */ 4356 if (ill_ppa < ppa) 4357 return (1); 4358 if (ill_ppa > ppa) 4359 return (-1); 4360 return (0); 4361 } 4362 4363 /* 4364 * remove an interface type from the global list. 4365 */ 4366 static void 4367 ill_delete_interface_type(ill_if_t *interface) 4368 { 4369 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4370 4371 ASSERT(interface != NULL); 4372 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4373 4374 avl_destroy(&interface->illif_avl_by_ppa); 4375 if (interface->illif_ppa_arena != NULL) 4376 vmem_destroy(interface->illif_ppa_arena); 4377 4378 remque(interface); 4379 4380 mi_free(interface); 4381 } 4382 4383 /* Defined in ip_netinfo.c */ 4384 extern ddi_taskq_t *eventq_queue_nic; 4385 4386 /* 4387 * remove ill from the global list. 4388 */ 4389 static void 4390 ill_glist_delete(ill_t *ill) 4391 { 4392 char *nicname; 4393 size_t nicnamelen; 4394 hook_nic_event_t *info; 4395 4396 if (ill == NULL) 4397 return; 4398 4399 rw_enter(&ill_g_lock, RW_WRITER); 4400 4401 if (ill->ill_name != NULL) { 4402 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4403 if (nicname != NULL) { 4404 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4405 nicnamelen = ill->ill_name_length; 4406 } 4407 } else { 4408 nicname = NULL; 4409 nicnamelen = 0; 4410 } 4411 4412 /* 4413 * If the ill was never inserted into the AVL tree 4414 * we skip the if branch. 4415 */ 4416 if (ill->ill_ifptr != NULL) { 4417 /* 4418 * remove from AVL tree and free ppa number 4419 */ 4420 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4421 4422 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4423 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4424 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4425 } 4426 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4427 ill_delete_interface_type(ill->ill_ifptr); 4428 } 4429 4430 /* 4431 * Indicate ill is no longer in the list. 4432 */ 4433 ill->ill_ifptr = NULL; 4434 ill->ill_name_length = 0; 4435 ill->ill_name[0] = '\0'; 4436 ill->ill_ppa = UINT_MAX; 4437 } 4438 4439 /* 4440 * Run the unplumb hook after the NIC has disappeared from being 4441 * visible so that attempts to revalidate its existance will fail. 4442 * 4443 * This needs to be run inside the ill_g_lock perimeter to ensure 4444 * that the ordering of delivered events to listeners matches the 4445 * order of them in the kernel. 4446 */ 4447 if ((info = ill->ill_nic_event_info) != NULL) { 4448 if (info->hne_event != NE_DOWN) { 4449 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4450 "attached for %s\n", info->hne_event, 4451 ill->ill_name)); 4452 if (info->hne_data != NULL) 4453 kmem_free(info->hne_data, info->hne_datalen); 4454 kmem_free(info, sizeof (hook_nic_event_t)); 4455 } else { 4456 if (ddi_taskq_dispatch(eventq_queue_nic, 4457 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4458 == DDI_FAILURE) { 4459 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4460 "failed\n")); 4461 if (info->hne_data != NULL) 4462 kmem_free(info->hne_data, 4463 info->hne_datalen); 4464 kmem_free(info, sizeof (hook_nic_event_t)); 4465 } 4466 } 4467 } 4468 4469 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4470 if (info != NULL) { 4471 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4472 info->hne_lif = 0; 4473 info->hne_event = NE_UNPLUMB; 4474 info->hne_data = nicname; 4475 info->hne_datalen = nicnamelen; 4476 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 4477 } else { 4478 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4479 "information for %s (ENOMEM)\n", ill->ill_name)); 4480 if (nicname != NULL) 4481 kmem_free(nicname, nicnamelen); 4482 } 4483 4484 ill->ill_nic_event_info = info; 4485 4486 ill_phyint_free(ill); 4487 4488 rw_exit(&ill_g_lock); 4489 } 4490 4491 /* 4492 * allocate a ppa, if the number of plumbed interfaces of this type are 4493 * less than ill_no_arena do a linear search to find a unused ppa. 4494 * When the number goes beyond ill_no_arena switch to using an arena. 4495 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4496 * is the return value for an error condition, so allocation starts at one 4497 * and is decremented by one. 4498 */ 4499 static int 4500 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4501 { 4502 ill_t *tmp_ill; 4503 uint_t start, end; 4504 int ppa; 4505 4506 if (ifp->illif_ppa_arena == NULL && 4507 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4508 /* 4509 * Create an arena. 4510 */ 4511 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4512 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4513 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4514 /* allocate what has already been assigned */ 4515 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4516 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4517 tmp_ill, AVL_AFTER)) { 4518 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4519 1, /* size */ 4520 1, /* align/quantum */ 4521 0, /* phase */ 4522 0, /* nocross */ 4523 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4524 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4525 VM_NOSLEEP|VM_FIRSTFIT); 4526 if (ppa == 0) { 4527 ip1dbg(("ill_alloc_ppa: ppa allocation" 4528 " failed while switching")); 4529 vmem_destroy(ifp->illif_ppa_arena); 4530 ifp->illif_ppa_arena = NULL; 4531 break; 4532 } 4533 } 4534 } 4535 4536 if (ifp->illif_ppa_arena != NULL) { 4537 if (ill->ill_ppa == UINT_MAX) { 4538 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4539 1, VM_NOSLEEP|VM_FIRSTFIT); 4540 if (ppa == 0) 4541 return (EAGAIN); 4542 ill->ill_ppa = --ppa; 4543 } else { 4544 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4545 1, /* size */ 4546 1, /* align/quantum */ 4547 0, /* phase */ 4548 0, /* nocross */ 4549 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4550 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4551 VM_NOSLEEP|VM_FIRSTFIT); 4552 /* 4553 * Most likely the allocation failed because 4554 * the requested ppa was in use. 4555 */ 4556 if (ppa == 0) 4557 return (EEXIST); 4558 } 4559 return (0); 4560 } 4561 4562 /* 4563 * No arena is in use and not enough (>ill_no_arena) interfaces have 4564 * been plumbed to create one. Do a linear search to get a unused ppa. 4565 */ 4566 if (ill->ill_ppa == UINT_MAX) { 4567 end = UINT_MAX - 1; 4568 start = 0; 4569 } else { 4570 end = start = ill->ill_ppa; 4571 } 4572 4573 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4574 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4575 if (start++ >= end) { 4576 if (ill->ill_ppa == UINT_MAX) 4577 return (EAGAIN); 4578 else 4579 return (EEXIST); 4580 } 4581 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4582 } 4583 ill->ill_ppa = start; 4584 return (0); 4585 } 4586 4587 /* 4588 * Insert ill into the list of configured ill's. Once this function completes, 4589 * the ill is globally visible and is available through lookups. More precisely 4590 * this happens after the caller drops the ill_g_lock. 4591 */ 4592 static int 4593 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4594 { 4595 ill_if_t *ill_interface; 4596 avl_index_t where = 0; 4597 int error; 4598 int name_length; 4599 int index; 4600 boolean_t check_length = B_FALSE; 4601 4602 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4603 4604 name_length = mi_strlen(name) + 1; 4605 4606 if (isv6) 4607 index = IP_V6_G_HEAD; 4608 else 4609 index = IP_V4_G_HEAD; 4610 4611 ill_interface = IP_VX_ILL_G_LIST(index); 4612 /* 4613 * Search for interface type based on name 4614 */ 4615 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4616 if ((ill_interface->illif_name_len == name_length) && 4617 (strcmp(ill_interface->illif_name, name) == 0)) { 4618 break; 4619 } 4620 ill_interface = ill_interface->illif_next; 4621 } 4622 4623 /* 4624 * Interface type not found, create one. 4625 */ 4626 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4627 4628 ill_g_head_t ghead; 4629 4630 /* 4631 * allocate ill_if_t structure 4632 */ 4633 4634 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4635 if (ill_interface == NULL) { 4636 return (ENOMEM); 4637 } 4638 4639 4640 4641 (void) strcpy(ill_interface->illif_name, name); 4642 ill_interface->illif_name_len = name_length; 4643 4644 avl_create(&ill_interface->illif_avl_by_ppa, 4645 ill_compare_ppa, sizeof (ill_t), 4646 offsetof(struct ill_s, ill_avl_byppa)); 4647 4648 /* 4649 * link the structure in the back to maintain order 4650 * of configuration for ifconfig output. 4651 */ 4652 ghead = ill_g_heads[index]; 4653 insque(ill_interface, ghead.ill_g_list_tail); 4654 4655 } 4656 4657 if (ill->ill_ppa == UINT_MAX) 4658 check_length = B_TRUE; 4659 4660 error = ill_alloc_ppa(ill_interface, ill); 4661 if (error != 0) { 4662 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4663 ill_delete_interface_type(ill->ill_ifptr); 4664 return (error); 4665 } 4666 4667 /* 4668 * When the ppa is choosen by the system, check that there is 4669 * enough space to insert ppa. if a specific ppa was passed in this 4670 * check is not required as the interface name passed in will have 4671 * the right ppa in it. 4672 */ 4673 if (check_length) { 4674 /* 4675 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4676 */ 4677 char buf[sizeof (uint_t) * 3]; 4678 4679 /* 4680 * convert ppa to string to calculate the amount of space 4681 * required for it in the name. 4682 */ 4683 numtos(ill->ill_ppa, buf); 4684 4685 /* Do we have enough space to insert ppa ? */ 4686 4687 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4688 /* Free ppa and interface type struct */ 4689 if (ill_interface->illif_ppa_arena != NULL) { 4690 vmem_free(ill_interface->illif_ppa_arena, 4691 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4692 } 4693 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4694 0) { 4695 ill_delete_interface_type(ill->ill_ifptr); 4696 } 4697 4698 return (EINVAL); 4699 } 4700 } 4701 4702 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4703 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4704 4705 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4706 &where); 4707 ill->ill_ifptr = ill_interface; 4708 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4709 4710 ill_phyint_reinit(ill); 4711 return (0); 4712 } 4713 4714 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4715 static boolean_t 4716 ipsq_init(ill_t *ill) 4717 { 4718 ipsq_t *ipsq; 4719 4720 /* Init the ipsq and impicitly enter as writer */ 4721 ill->ill_phyint->phyint_ipsq = 4722 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4723 if (ill->ill_phyint->phyint_ipsq == NULL) 4724 return (B_FALSE); 4725 ipsq = ill->ill_phyint->phyint_ipsq; 4726 ipsq->ipsq_phyint_list = ill->ill_phyint; 4727 ill->ill_phyint->phyint_ipsq_next = NULL; 4728 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4729 ipsq->ipsq_refs = 1; 4730 ipsq->ipsq_writer = curthread; 4731 ipsq->ipsq_reentry_cnt = 1; 4732 #ifdef ILL_DEBUG 4733 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4734 #endif 4735 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4736 return (B_TRUE); 4737 } 4738 4739 /* 4740 * ill_init is called by ip_open when a device control stream is opened. 4741 * It does a few initializations, and shoots a DL_INFO_REQ message down 4742 * to the driver. The response is later picked up in ip_rput_dlpi and 4743 * used to set up default mechanisms for talking to the driver. (Always 4744 * called as writer.) 4745 * 4746 * If this function returns error, ip_open will call ip_close which in 4747 * turn will call ill_delete to clean up any memory allocated here that 4748 * is not yet freed. 4749 */ 4750 int 4751 ill_init(queue_t *q, ill_t *ill) 4752 { 4753 int count; 4754 dl_info_req_t *dlir; 4755 mblk_t *info_mp; 4756 uchar_t *frag_ptr; 4757 4758 /* 4759 * The ill is initialized to zero by mi_alloc*(). In addition 4760 * some fields already contain valid values, initialized in 4761 * ip_open(), before we reach here. 4762 */ 4763 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4764 4765 ill->ill_rq = q; 4766 ill->ill_wq = WR(q); 4767 4768 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4769 BPRI_HI); 4770 if (info_mp == NULL) 4771 return (ENOMEM); 4772 4773 /* 4774 * Allocate sufficient space to contain our fragment hash table and 4775 * the device name. 4776 */ 4777 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4778 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4779 if (frag_ptr == NULL) { 4780 freemsg(info_mp); 4781 return (ENOMEM); 4782 } 4783 ill->ill_frag_ptr = frag_ptr; 4784 ill->ill_frag_free_num_pkts = 0; 4785 ill->ill_last_frag_clean_time = 0; 4786 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4787 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4788 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4789 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4790 NULL, MUTEX_DEFAULT, NULL); 4791 } 4792 4793 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4794 if (ill->ill_phyint == NULL) { 4795 freemsg(info_mp); 4796 mi_free(frag_ptr); 4797 return (ENOMEM); 4798 } 4799 4800 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4801 /* 4802 * For now pretend this is a v4 ill. We need to set phyint_ill* 4803 * at this point because of the following reason. If we can't 4804 * enter the ipsq at some point and cv_wait, the writer that 4805 * wakes us up tries to locate us using the list of all phyints 4806 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4807 * If we don't set it now, we risk a missed wakeup. 4808 */ 4809 ill->ill_phyint->phyint_illv4 = ill; 4810 ill->ill_ppa = UINT_MAX; 4811 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4812 4813 if (!ipsq_init(ill)) { 4814 freemsg(info_mp); 4815 mi_free(frag_ptr); 4816 mi_free(ill->ill_phyint); 4817 return (ENOMEM); 4818 } 4819 4820 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4821 4822 4823 /* Frag queue limit stuff */ 4824 ill->ill_frag_count = 0; 4825 ill->ill_ipf_gen = 0; 4826 4827 ill->ill_global_timer = INFINITY; 4828 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4829 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4830 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4831 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4832 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4833 4834 /* 4835 * Initialize IPv6 configuration variables. The IP module is always 4836 * opened as an IPv4 module. Instead tracking down the cases where 4837 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4838 * here for convenience, this has no effect until the ill is set to do 4839 * IPv6. 4840 */ 4841 ill->ill_reachable_time = ND_REACHABLE_TIME; 4842 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4843 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4844 ill->ill_max_buf = ND_MAX_Q; 4845 ill->ill_refcnt = 0; 4846 4847 /* Send down the Info Request to the driver. */ 4848 info_mp->b_datap->db_type = M_PCPROTO; 4849 dlir = (dl_info_req_t *)info_mp->b_rptr; 4850 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4851 dlir->dl_primitive = DL_INFO_REQ; 4852 4853 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4854 4855 qprocson(q); 4856 ill_dlpi_send(ill, info_mp); 4857 4858 return (0); 4859 } 4860 4861 /* 4862 * ill_dls_info 4863 * creates datalink socket info from the device. 4864 */ 4865 int 4866 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4867 { 4868 size_t length; 4869 ill_t *ill = ipif->ipif_ill; 4870 4871 sdl->sdl_family = AF_LINK; 4872 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4873 sdl->sdl_type = ipif->ipif_type; 4874 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4875 length = mi_strlen(sdl->sdl_data); 4876 ASSERT(length < 256); 4877 sdl->sdl_nlen = (uchar_t)length; 4878 sdl->sdl_alen = ill->ill_phys_addr_length; 4879 mutex_enter(&ill->ill_lock); 4880 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4881 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4882 ill->ill_phys_addr_length); 4883 } 4884 mutex_exit(&ill->ill_lock); 4885 sdl->sdl_slen = 0; 4886 return (sizeof (struct sockaddr_dl)); 4887 } 4888 4889 /* 4890 * ill_xarp_info 4891 * creates xarp info from the device. 4892 */ 4893 static int 4894 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4895 { 4896 sdl->sdl_family = AF_LINK; 4897 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4898 sdl->sdl_type = ill->ill_type; 4899 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4900 sizeof (sdl->sdl_data)); 4901 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4902 sdl->sdl_alen = ill->ill_phys_addr_length; 4903 sdl->sdl_slen = 0; 4904 return (sdl->sdl_nlen); 4905 } 4906 4907 static int 4908 loopback_kstat_update(kstat_t *ksp, int rw) 4909 { 4910 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4911 4912 if (rw == KSTAT_WRITE) 4913 return (EACCES); 4914 kn[0].value.ui32 = loopback_packets; 4915 kn[1].value.ui32 = loopback_packets; 4916 return (0); 4917 } 4918 4919 4920 /* 4921 * Has ifindex been plumbed already. 4922 */ 4923 static boolean_t 4924 phyint_exists(uint_t index) 4925 { 4926 phyint_t *phyi; 4927 4928 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4929 /* 4930 * Indexes are stored in the phyint - a common structure 4931 * to both IPv4 and IPv6. 4932 */ 4933 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4934 (void *) &index, NULL); 4935 return (phyi != NULL); 4936 } 4937 4938 /* 4939 * Assign a unique interface index for the phyint. 4940 */ 4941 static boolean_t 4942 phyint_assign_ifindex(phyint_t *phyi) 4943 { 4944 uint_t starting_index; 4945 4946 ASSERT(phyi->phyint_ifindex == 0); 4947 if (!ill_index_wrap) { 4948 phyi->phyint_ifindex = ill_index++; 4949 if (ill_index == 0) { 4950 /* Reached the uint_t limit Next time wrap */ 4951 ill_index_wrap = B_TRUE; 4952 } 4953 return (B_TRUE); 4954 } 4955 4956 /* 4957 * Start reusing unused indexes. Note that we hold the ill_g_lock 4958 * at this point and don't want to call any function that attempts 4959 * to get the lock again. 4960 */ 4961 starting_index = ill_index++; 4962 for (; ill_index != starting_index; ill_index++) { 4963 if (ill_index != 0 && !phyint_exists(ill_index)) { 4964 /* found unused index - use it */ 4965 phyi->phyint_ifindex = ill_index; 4966 return (B_TRUE); 4967 } 4968 } 4969 4970 /* 4971 * all interface indicies are inuse. 4972 */ 4973 return (B_FALSE); 4974 } 4975 4976 /* 4977 * Return a pointer to the ill which matches the supplied name. Note that 4978 * the ill name length includes the null termination character. (May be 4979 * called as writer.) 4980 * If do_alloc and the interface is "lo0" it will be automatically created. 4981 * Cannot bump up reference on condemned ills. So dup detect can't be done 4982 * using this func. 4983 */ 4984 ill_t * 4985 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4986 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4987 { 4988 ill_t *ill; 4989 ipif_t *ipif; 4990 kstat_named_t *kn; 4991 boolean_t isloopback; 4992 ipsq_t *old_ipsq; 4993 4994 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4995 4996 rw_enter(&ill_g_lock, RW_READER); 4997 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4998 rw_exit(&ill_g_lock); 4999 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5000 return (ill); 5001 5002 /* 5003 * Couldn't find it. Does this happen to be a lookup for the 5004 * loopback device and are we allowed to allocate it? 5005 */ 5006 if (!isloopback || !do_alloc) 5007 return (NULL); 5008 5009 rw_enter(&ill_g_lock, RW_WRITER); 5010 5011 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5012 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5013 rw_exit(&ill_g_lock); 5014 return (ill); 5015 } 5016 5017 /* Create the loopback device on demand */ 5018 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5019 sizeof (ipif_loopback_name), BPRI_MED)); 5020 if (ill == NULL) 5021 goto done; 5022 5023 *ill = ill_null; 5024 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5025 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5026 if (ill->ill_phyint == NULL) 5027 goto done; 5028 5029 if (isv6) 5030 ill->ill_phyint->phyint_illv6 = ill; 5031 else 5032 ill->ill_phyint->phyint_illv4 = ill; 5033 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5034 ill->ill_max_frag = IP_LOOPBACK_MTU; 5035 /* Add room for tcp+ip headers */ 5036 if (isv6) { 5037 ill->ill_isv6 = B_TRUE; 5038 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5039 if (!ill_allocate_mibs(ill)) 5040 goto done; 5041 } else { 5042 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5043 } 5044 ill->ill_max_mtu = ill->ill_max_frag; 5045 /* 5046 * ipif_loopback_name can't be pointed at directly because its used 5047 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5048 * from the glist, ill_glist_delete() sets the first character of 5049 * ill_name to '\0'. 5050 */ 5051 ill->ill_name = (char *)ill + sizeof (*ill); 5052 (void) strcpy(ill->ill_name, ipif_loopback_name); 5053 ill->ill_name_length = sizeof (ipif_loopback_name); 5054 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5055 5056 ill->ill_global_timer = INFINITY; 5057 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5058 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5059 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5060 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5061 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5062 5063 /* No resolver here. */ 5064 ill->ill_net_type = IRE_LOOPBACK; 5065 5066 /* Initialize the ipsq */ 5067 if (!ipsq_init(ill)) 5068 goto done; 5069 5070 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5071 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5072 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5073 #ifdef ILL_DEBUG 5074 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5075 #endif 5076 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5077 if (ipif == NULL) 5078 goto done; 5079 5080 ill->ill_flags = ILLF_MULTICAST; 5081 5082 /* Set up default loopback address and mask. */ 5083 if (!isv6) { 5084 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5085 5086 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5087 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5088 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5089 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5090 ipif->ipif_v6subnet); 5091 ill->ill_flags |= ILLF_IPV4; 5092 } else { 5093 ipif->ipif_v6lcl_addr = ipv6_loopback; 5094 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5095 ipif->ipif_v6net_mask = ipv6_all_ones; 5096 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5097 ipif->ipif_v6subnet); 5098 ill->ill_flags |= ILLF_IPV6; 5099 } 5100 5101 /* 5102 * Chain us in at the end of the ill list. hold the ill 5103 * before we make it globally visible. 1 for the lookup. 5104 */ 5105 ill->ill_refcnt = 0; 5106 ill_refhold(ill); 5107 5108 ill->ill_frag_count = 0; 5109 ill->ill_frag_free_num_pkts = 0; 5110 ill->ill_last_frag_clean_time = 0; 5111 5112 old_ipsq = ill->ill_phyint->phyint_ipsq; 5113 5114 if (ill_glist_insert(ill, "lo", isv6) != 0) 5115 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5116 5117 /* Let SCTP know so that it can add this to its list */ 5118 sctp_update_ill(ill, SCTP_ILL_INSERT); 5119 5120 /* Let SCTP know about this IPIF, so that it can add it to its list */ 5121 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 5122 5123 /* 5124 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5125 */ 5126 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5127 /* Loopback ills aren't in any IPMP group */ 5128 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5129 ipsq_delete(old_ipsq); 5130 } 5131 5132 /* 5133 * Delay this till the ipif is allocated as ipif_allocate 5134 * de-references ill_phyint for getting the ifindex. We 5135 * can't do this before ipif_allocate because ill_phyint_reinit 5136 * -> phyint_assign_ifindex expects ipif to be present. 5137 */ 5138 mutex_enter(&ill->ill_phyint->phyint_lock); 5139 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5140 mutex_exit(&ill->ill_phyint->phyint_lock); 5141 5142 if (loopback_ksp == NULL) { 5143 /* Export loopback interface statistics */ 5144 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 5145 KSTAT_TYPE_NAMED, 2, 0); 5146 if (loopback_ksp != NULL) { 5147 loopback_ksp->ks_update = loopback_kstat_update; 5148 kn = KSTAT_NAMED_PTR(loopback_ksp); 5149 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5150 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5151 kstat_install(loopback_ksp); 5152 } 5153 } 5154 5155 if (error != NULL) 5156 *error = 0; 5157 *did_alloc = B_TRUE; 5158 rw_exit(&ill_g_lock); 5159 return (ill); 5160 done: 5161 if (ill != NULL) { 5162 if (ill->ill_phyint != NULL) { 5163 ipsq_t *ipsq; 5164 5165 ipsq = ill->ill_phyint->phyint_ipsq; 5166 if (ipsq != NULL) 5167 kmem_free(ipsq, sizeof (ipsq_t)); 5168 mi_free(ill->ill_phyint); 5169 } 5170 ill_free_mib(ill); 5171 mi_free(ill); 5172 } 5173 rw_exit(&ill_g_lock); 5174 if (error != NULL) 5175 *error = ENOMEM; 5176 return (NULL); 5177 } 5178 5179 /* 5180 * Return a pointer to the ill which matches the index and IP version type. 5181 */ 5182 ill_t * 5183 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5184 ipsq_func_t func, int *err) 5185 { 5186 ill_t *ill; 5187 ipsq_t *ipsq; 5188 phyint_t *phyi; 5189 5190 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5191 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5192 5193 if (err != NULL) 5194 *err = 0; 5195 5196 /* 5197 * Indexes are stored in the phyint - a common structure 5198 * to both IPv4 and IPv6. 5199 */ 5200 rw_enter(&ill_g_lock, RW_READER); 5201 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5202 (void *) &index, NULL); 5203 if (phyi != NULL) { 5204 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5205 if (ill != NULL) { 5206 /* 5207 * The block comment at the start of ipif_down 5208 * explains the use of the macros used below 5209 */ 5210 GRAB_CONN_LOCK(q); 5211 mutex_enter(&ill->ill_lock); 5212 if (ILL_CAN_LOOKUP(ill)) { 5213 ill_refhold_locked(ill); 5214 mutex_exit(&ill->ill_lock); 5215 RELEASE_CONN_LOCK(q); 5216 rw_exit(&ill_g_lock); 5217 return (ill); 5218 } else if (ILL_CAN_WAIT(ill, q)) { 5219 ipsq = ill->ill_phyint->phyint_ipsq; 5220 mutex_enter(&ipsq->ipsq_lock); 5221 rw_exit(&ill_g_lock); 5222 mutex_exit(&ill->ill_lock); 5223 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5224 mutex_exit(&ipsq->ipsq_lock); 5225 RELEASE_CONN_LOCK(q); 5226 *err = EINPROGRESS; 5227 return (NULL); 5228 } 5229 RELEASE_CONN_LOCK(q); 5230 mutex_exit(&ill->ill_lock); 5231 } 5232 } 5233 rw_exit(&ill_g_lock); 5234 if (err != NULL) 5235 *err = ENXIO; 5236 return (NULL); 5237 } 5238 5239 /* 5240 * Return the ifindex next in sequence after the passed in ifindex. 5241 * If there is no next ifindex for the given protocol, return 0. 5242 */ 5243 uint_t 5244 ill_get_next_ifindex(uint_t index, boolean_t isv6) 5245 { 5246 phyint_t *phyi; 5247 phyint_t *phyi_initial; 5248 uint_t ifindex; 5249 5250 rw_enter(&ill_g_lock, RW_READER); 5251 5252 if (index == 0) { 5253 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 5254 } else { 5255 phyi = phyi_initial = avl_find( 5256 &phyint_g_list.phyint_list_avl_by_index, 5257 (void *) &index, NULL); 5258 } 5259 5260 for (; phyi != NULL; 5261 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 5262 phyi, AVL_AFTER)) { 5263 /* 5264 * If we're not returning the first interface in the tree 5265 * and we still haven't moved past the phyint_t that 5266 * corresponds to index, avl_walk needs to be called again 5267 */ 5268 if (!((index != 0) && (phyi == phyi_initial))) { 5269 if (isv6) { 5270 if ((phyi->phyint_illv6) && 5271 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5272 (phyi->phyint_illv6->ill_isv6 == 1)) 5273 break; 5274 } else { 5275 if ((phyi->phyint_illv4) && 5276 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5277 (phyi->phyint_illv4->ill_isv6 == 0)) 5278 break; 5279 } 5280 } 5281 } 5282 5283 rw_exit(&ill_g_lock); 5284 5285 if (phyi != NULL) 5286 ifindex = phyi->phyint_ifindex; 5287 else 5288 ifindex = 0; 5289 5290 return (ifindex); 5291 } 5292 5293 5294 /* 5295 * Return the ifindex for the named interface. 5296 * If there is no next ifindex for the interface, return 0. 5297 */ 5298 uint_t 5299 ill_get_ifindex_by_name(char *name) 5300 { 5301 phyint_t *phyi; 5302 avl_index_t where = 0; 5303 uint_t ifindex; 5304 5305 rw_enter(&ill_g_lock, RW_READER); 5306 5307 if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 5308 name, &where)) == NULL) { 5309 rw_exit(&ill_g_lock); 5310 return (0); 5311 } 5312 5313 ifindex = phyi->phyint_ifindex; 5314 5315 rw_exit(&ill_g_lock); 5316 5317 return (ifindex); 5318 } 5319 5320 5321 /* 5322 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5323 * that gives a running thread a reference to the ill. This reference must be 5324 * released by the thread when it is done accessing the ill and related 5325 * objects. ill_refcnt can not be used to account for static references 5326 * such as other structures pointing to an ill. Callers must generally 5327 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5328 * or be sure that the ill is not being deleted or changing state before 5329 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5330 * ill won't change any of its critical state such as address, netmask etc. 5331 */ 5332 void 5333 ill_refhold(ill_t *ill) 5334 { 5335 mutex_enter(&ill->ill_lock); 5336 ill->ill_refcnt++; 5337 ILL_TRACE_REF(ill); 5338 mutex_exit(&ill->ill_lock); 5339 } 5340 5341 void 5342 ill_refhold_locked(ill_t *ill) 5343 { 5344 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5345 ill->ill_refcnt++; 5346 ILL_TRACE_REF(ill); 5347 } 5348 5349 int 5350 ill_check_and_refhold(ill_t *ill) 5351 { 5352 mutex_enter(&ill->ill_lock); 5353 if (ILL_CAN_LOOKUP(ill)) { 5354 ill_refhold_locked(ill); 5355 mutex_exit(&ill->ill_lock); 5356 return (0); 5357 } 5358 mutex_exit(&ill->ill_lock); 5359 return (ILL_LOOKUP_FAILED); 5360 } 5361 5362 /* 5363 * Must not be called while holding any locks. Otherwise if this is 5364 * the last reference to be released, there is a chance of recursive mutex 5365 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5366 * to restart an ioctl. 5367 */ 5368 void 5369 ill_refrele(ill_t *ill) 5370 { 5371 mutex_enter(&ill->ill_lock); 5372 ASSERT(ill->ill_refcnt != 0); 5373 ill->ill_refcnt--; 5374 ILL_UNTRACE_REF(ill); 5375 if (ill->ill_refcnt != 0) { 5376 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5377 mutex_exit(&ill->ill_lock); 5378 return; 5379 } 5380 5381 /* Drops the ill_lock */ 5382 ipif_ill_refrele_tail(ill); 5383 } 5384 5385 /* 5386 * Obtain a weak reference count on the ill. This reference ensures the 5387 * ill won't be freed, but the ill may change any of its critical state 5388 * such as netmask, address etc. Returns an error if the ill has started 5389 * closing. 5390 */ 5391 boolean_t 5392 ill_waiter_inc(ill_t *ill) 5393 { 5394 mutex_enter(&ill->ill_lock); 5395 if (ill->ill_state_flags & ILL_CONDEMNED) { 5396 mutex_exit(&ill->ill_lock); 5397 return (B_FALSE); 5398 } 5399 ill->ill_waiters++; 5400 mutex_exit(&ill->ill_lock); 5401 return (B_TRUE); 5402 } 5403 5404 void 5405 ill_waiter_dcr(ill_t *ill) 5406 { 5407 mutex_enter(&ill->ill_lock); 5408 ill->ill_waiters--; 5409 if (ill->ill_waiters == 0) 5410 cv_broadcast(&ill->ill_cv); 5411 mutex_exit(&ill->ill_lock); 5412 } 5413 5414 /* 5415 * Named Dispatch routine to produce a formatted report on all ILLs. 5416 * This report is accessed by using the ndd utility to "get" ND variable 5417 * "ip_ill_status". 5418 */ 5419 /* ARGSUSED */ 5420 int 5421 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5422 { 5423 ill_t *ill; 5424 ill_walk_context_t ctx; 5425 5426 (void) mi_mpprintf(mp, 5427 "ILL " MI_COL_HDRPAD_STR 5428 /* 01234567[89ABCDEF] */ 5429 "rq " MI_COL_HDRPAD_STR 5430 /* 01234567[89ABCDEF] */ 5431 "wq " MI_COL_HDRPAD_STR 5432 /* 01234567[89ABCDEF] */ 5433 "upcnt mxfrg err name"); 5434 /* 12345 12345 123 xxxxxxxx */ 5435 5436 rw_enter(&ill_g_lock, RW_READER); 5437 ill = ILL_START_WALK_ALL(&ctx); 5438 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5439 (void) mi_mpprintf(mp, 5440 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5441 "%05u %05u %03d %s", 5442 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5443 ill->ill_ipif_up_count, 5444 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5445 } 5446 rw_exit(&ill_g_lock); 5447 5448 return (0); 5449 } 5450 5451 /* 5452 * Named Dispatch routine to produce a formatted report on all IPIFs. 5453 * This report is accessed by using the ndd utility to "get" ND variable 5454 * "ip_ipif_status". 5455 */ 5456 /* ARGSUSED */ 5457 int 5458 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5459 { 5460 char buf1[INET6_ADDRSTRLEN]; 5461 char buf2[INET6_ADDRSTRLEN]; 5462 char buf3[INET6_ADDRSTRLEN]; 5463 char buf4[INET6_ADDRSTRLEN]; 5464 char buf5[INET6_ADDRSTRLEN]; 5465 char buf6[INET6_ADDRSTRLEN]; 5466 char buf[LIFNAMSIZ]; 5467 ill_t *ill; 5468 ipif_t *ipif; 5469 nv_t *nvp; 5470 uint64_t flags; 5471 zoneid_t zoneid; 5472 ill_walk_context_t ctx; 5473 5474 (void) mi_mpprintf(mp, 5475 "IPIF metric mtu in/out/forward name zone flags...\n" 5476 "\tlocal address\n" 5477 "\tsrc address\n" 5478 "\tsubnet\n" 5479 "\tmask\n" 5480 "\tbroadcast\n" 5481 "\tp-p-dst"); 5482 5483 ASSERT(q->q_next == NULL); 5484 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5485 5486 rw_enter(&ill_g_lock, RW_READER); 5487 ill = ILL_START_WALK_ALL(&ctx); 5488 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5489 for (ipif = ill->ill_ipif; ipif != NULL; 5490 ipif = ipif->ipif_next) { 5491 if (zoneid != GLOBAL_ZONEID && 5492 zoneid != ipif->ipif_zoneid && 5493 ipif->ipif_zoneid != ALL_ZONES) 5494 continue; 5495 (void) mi_mpprintf(mp, 5496 MI_COL_PTRFMT_STR 5497 "%04u %05u %u/%u/%u %s %d", 5498 (void *)ipif, 5499 ipif->ipif_metric, ipif->ipif_mtu, 5500 ipif->ipif_ib_pkt_count, 5501 ipif->ipif_ob_pkt_count, 5502 ipif->ipif_fo_pkt_count, 5503 ipif_get_name(ipif, buf, sizeof (buf)), 5504 ipif->ipif_zoneid); 5505 5506 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5507 ipif->ipif_ill->ill_phyint->phyint_flags; 5508 5509 /* Tack on text strings for any flags. */ 5510 nvp = ipif_nv_tbl; 5511 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5512 if (nvp->nv_value & flags) 5513 (void) mi_mpprintf_nr(mp, " %s", 5514 nvp->nv_name); 5515 } 5516 (void) mi_mpprintf(mp, 5517 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5518 inet_ntop(AF_INET6, 5519 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5520 inet_ntop(AF_INET6, 5521 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5522 inet_ntop(AF_INET6, 5523 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5524 inet_ntop(AF_INET6, 5525 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5526 inet_ntop(AF_INET6, 5527 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5528 inet_ntop(AF_INET6, 5529 &ipif->ipif_v6pp_dst_addr, 5530 buf6, sizeof (buf6))); 5531 } 5532 } 5533 rw_exit(&ill_g_lock); 5534 return (0); 5535 } 5536 5537 /* 5538 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5539 * driver. We construct best guess defaults for lower level information that 5540 * we need. If an interface is brought up without injection of any overriding 5541 * information from outside, we have to be ready to go with these defaults. 5542 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5543 * we primarely want the dl_provider_style. 5544 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5545 * at which point we assume the other part of the information is valid. 5546 */ 5547 void 5548 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5549 { 5550 uchar_t *brdcst_addr; 5551 uint_t brdcst_addr_length, phys_addr_length; 5552 t_scalar_t sap_length; 5553 dl_info_ack_t *dlia; 5554 ip_m_t *ipm; 5555 dl_qos_cl_sel1_t *sel1; 5556 5557 ASSERT(IAM_WRITER_ILL(ill)); 5558 5559 /* 5560 * Till the ill is fully up ILL_CHANGING will be set and 5561 * the ill is not globally visible. So no need for a lock. 5562 */ 5563 dlia = (dl_info_ack_t *)mp->b_rptr; 5564 ill->ill_mactype = dlia->dl_mac_type; 5565 5566 ipm = ip_m_lookup(dlia->dl_mac_type); 5567 if (ipm == NULL) { 5568 ipm = ip_m_lookup(DL_OTHER); 5569 ASSERT(ipm != NULL); 5570 } 5571 ill->ill_media = ipm; 5572 5573 /* 5574 * When the new DLPI stuff is ready we'll pull lengths 5575 * from dlia. 5576 */ 5577 if (dlia->dl_version == DL_VERSION_2) { 5578 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5579 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5580 brdcst_addr_length); 5581 if (brdcst_addr == NULL) { 5582 brdcst_addr_length = 0; 5583 } 5584 sap_length = dlia->dl_sap_length; 5585 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5586 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5587 brdcst_addr_length, sap_length, phys_addr_length)); 5588 } else { 5589 brdcst_addr_length = 6; 5590 brdcst_addr = ip_six_byte_all_ones; 5591 sap_length = -2; 5592 phys_addr_length = brdcst_addr_length; 5593 } 5594 5595 ill->ill_bcast_addr_length = brdcst_addr_length; 5596 ill->ill_phys_addr_length = phys_addr_length; 5597 ill->ill_sap_length = sap_length; 5598 ill->ill_max_frag = dlia->dl_max_sdu; 5599 ill->ill_max_mtu = ill->ill_max_frag; 5600 5601 ill->ill_type = ipm->ip_m_type; 5602 5603 if (!ill->ill_dlpi_style_set) { 5604 if (dlia->dl_provider_style == DL_STYLE2) 5605 ill->ill_needs_attach = 1; 5606 5607 /* 5608 * Allocate the first ipif on this ill. We don't delay it 5609 * further as ioctl handling assumes atleast one ipif to 5610 * be present. 5611 * 5612 * At this point we don't know whether the ill is v4 or v6. 5613 * We will know this whan the SIOCSLIFNAME happens and 5614 * the correct value for ill_isv6 will be assigned in 5615 * ipif_set_values(). We need to hold the ill lock and 5616 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5617 * the wakeup. 5618 */ 5619 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5620 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5621 mutex_enter(&ill->ill_lock); 5622 ASSERT(ill->ill_dlpi_style_set == 0); 5623 ill->ill_dlpi_style_set = 1; 5624 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5625 cv_broadcast(&ill->ill_cv); 5626 mutex_exit(&ill->ill_lock); 5627 freemsg(mp); 5628 return; 5629 } 5630 ASSERT(ill->ill_ipif != NULL); 5631 /* 5632 * We know whether it is IPv4 or IPv6 now, as this is the 5633 * second DL_INFO_ACK we are recieving in response to the 5634 * DL_INFO_REQ sent in ipif_set_values. 5635 */ 5636 if (ill->ill_isv6) 5637 ill->ill_sap = IP6_DL_SAP; 5638 else 5639 ill->ill_sap = IP_DL_SAP; 5640 /* 5641 * Set ipif_mtu which is used to set the IRE's 5642 * ire_max_frag value. The driver could have sent 5643 * a different mtu from what it sent last time. No 5644 * need to call ipif_mtu_change because IREs have 5645 * not yet been created. 5646 */ 5647 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5648 /* 5649 * Clear all the flags that were set based on ill_bcast_addr_length 5650 * and ill_phys_addr_length (in ipif_set_values) as these could have 5651 * changed now and we need to re-evaluate. 5652 */ 5653 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5654 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5655 5656 /* 5657 * Free ill_resolver_mp and ill_bcast_mp as things could have 5658 * changed now. 5659 */ 5660 if (ill->ill_bcast_addr_length == 0) { 5661 if (ill->ill_resolver_mp != NULL) 5662 freemsg(ill->ill_resolver_mp); 5663 if (ill->ill_bcast_mp != NULL) 5664 freemsg(ill->ill_bcast_mp); 5665 if (ill->ill_flags & ILLF_XRESOLV) 5666 ill->ill_net_type = IRE_IF_RESOLVER; 5667 else 5668 ill->ill_net_type = IRE_IF_NORESOLVER; 5669 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5670 ill->ill_phys_addr_length, 5671 ill->ill_sap, 5672 ill->ill_sap_length); 5673 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5674 5675 if (ill->ill_isv6) 5676 /* 5677 * Note: xresolv interfaces will eventually need NOARP 5678 * set here as well, but that will require those 5679 * external resolvers to have some knowledge of 5680 * that flag and act appropriately. Not to be changed 5681 * at present. 5682 */ 5683 ill->ill_flags |= ILLF_NONUD; 5684 else 5685 ill->ill_flags |= ILLF_NOARP; 5686 5687 if (ill->ill_phys_addr_length == 0) { 5688 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5689 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5690 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5691 } else { 5692 /* pt-pt supports multicast. */ 5693 ill->ill_flags |= ILLF_MULTICAST; 5694 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5695 } 5696 } 5697 } else { 5698 ill->ill_net_type = IRE_IF_RESOLVER; 5699 if (ill->ill_bcast_mp != NULL) 5700 freemsg(ill->ill_bcast_mp); 5701 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5702 ill->ill_bcast_addr_length, ill->ill_sap, 5703 ill->ill_sap_length); 5704 /* 5705 * Later detect lack of DLPI driver multicast 5706 * capability by catching DL_ENABMULTI errors in 5707 * ip_rput_dlpi. 5708 */ 5709 ill->ill_flags |= ILLF_MULTICAST; 5710 if (!ill->ill_isv6) 5711 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5712 } 5713 /* By default an interface does not support any CoS marking */ 5714 ill->ill_flags &= ~ILLF_COS_ENABLED; 5715 5716 /* 5717 * If we get QoS information in DL_INFO_ACK, the device supports 5718 * some form of CoS marking, set ILLF_COS_ENABLED. 5719 */ 5720 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5721 dlia->dl_qos_length); 5722 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5723 ill->ill_flags |= ILLF_COS_ENABLED; 5724 } 5725 5726 /* Clear any previous error indication. */ 5727 ill->ill_error = 0; 5728 freemsg(mp); 5729 } 5730 5731 /* 5732 * Perform various checks to verify that an address would make sense as a 5733 * local, remote, or subnet interface address. 5734 */ 5735 static boolean_t 5736 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5737 { 5738 ipaddr_t net_mask; 5739 5740 /* 5741 * Don't allow all zeroes, all ones or experimental address, but allow 5742 * all ones netmask. 5743 */ 5744 if ((net_mask = ip_net_mask(addr)) == 0) 5745 return (B_FALSE); 5746 /* A given netmask overrides the "guess" netmask */ 5747 if (subnet_mask != 0) 5748 net_mask = subnet_mask; 5749 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5750 (addr == (addr | ~net_mask)))) { 5751 return (B_FALSE); 5752 } 5753 if (CLASSD(addr)) 5754 return (B_FALSE); 5755 5756 return (B_TRUE); 5757 } 5758 5759 /* 5760 * ipif_lookup_group 5761 * Returns held ipif 5762 */ 5763 ipif_t * 5764 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5765 { 5766 ire_t *ire; 5767 ipif_t *ipif; 5768 5769 ire = ire_lookup_multi(group, zoneid); 5770 if (ire == NULL) 5771 return (NULL); 5772 ipif = ire->ire_ipif; 5773 ipif_refhold(ipif); 5774 ire_refrele(ire); 5775 return (ipif); 5776 } 5777 5778 /* 5779 * Look for an ipif with the specified interface address and destination. 5780 * The destination address is used only for matching point-to-point interfaces. 5781 */ 5782 ipif_t * 5783 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5784 ipsq_func_t func, int *error) 5785 { 5786 ipif_t *ipif; 5787 ill_t *ill; 5788 ill_walk_context_t ctx; 5789 ipsq_t *ipsq; 5790 5791 if (error != NULL) 5792 *error = 0; 5793 5794 /* 5795 * First match all the point-to-point interfaces 5796 * before looking at non-point-to-point interfaces. 5797 * This is done to avoid returning non-point-to-point 5798 * ipif instead of unnumbered point-to-point ipif. 5799 */ 5800 rw_enter(&ill_g_lock, RW_READER); 5801 ill = ILL_START_WALK_V4(&ctx); 5802 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5803 GRAB_CONN_LOCK(q); 5804 mutex_enter(&ill->ill_lock); 5805 for (ipif = ill->ill_ipif; ipif != NULL; 5806 ipif = ipif->ipif_next) { 5807 /* Allow the ipif to be down */ 5808 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5809 (ipif->ipif_lcl_addr == if_addr) && 5810 (ipif->ipif_pp_dst_addr == dst)) { 5811 /* 5812 * The block comment at the start of ipif_down 5813 * explains the use of the macros used below 5814 */ 5815 if (IPIF_CAN_LOOKUP(ipif)) { 5816 ipif_refhold_locked(ipif); 5817 mutex_exit(&ill->ill_lock); 5818 RELEASE_CONN_LOCK(q); 5819 rw_exit(&ill_g_lock); 5820 return (ipif); 5821 } else if (IPIF_CAN_WAIT(ipif, q)) { 5822 ipsq = ill->ill_phyint->phyint_ipsq; 5823 mutex_enter(&ipsq->ipsq_lock); 5824 mutex_exit(&ill->ill_lock); 5825 rw_exit(&ill_g_lock); 5826 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5827 ill); 5828 mutex_exit(&ipsq->ipsq_lock); 5829 RELEASE_CONN_LOCK(q); 5830 *error = EINPROGRESS; 5831 return (NULL); 5832 } 5833 } 5834 } 5835 mutex_exit(&ill->ill_lock); 5836 RELEASE_CONN_LOCK(q); 5837 } 5838 rw_exit(&ill_g_lock); 5839 5840 /* lookup the ipif based on interface address */ 5841 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5842 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5843 return (ipif); 5844 } 5845 5846 /* 5847 * Look for an ipif with the specified address. For point-point links 5848 * we look for matches on either the destination address and the local 5849 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5850 * is set. 5851 * Matches on a specific ill if match_ill is set. 5852 */ 5853 ipif_t * 5854 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5855 mblk_t *mp, ipsq_func_t func, int *error) 5856 { 5857 ipif_t *ipif; 5858 ill_t *ill; 5859 boolean_t ptp = B_FALSE; 5860 ipsq_t *ipsq; 5861 ill_walk_context_t ctx; 5862 5863 if (error != NULL) 5864 *error = 0; 5865 5866 rw_enter(&ill_g_lock, RW_READER); 5867 /* 5868 * Repeat twice, first based on local addresses and 5869 * next time for pointopoint. 5870 */ 5871 repeat: 5872 ill = ILL_START_WALK_V4(&ctx); 5873 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5874 if (match_ill != NULL && ill != match_ill) { 5875 continue; 5876 } 5877 GRAB_CONN_LOCK(q); 5878 mutex_enter(&ill->ill_lock); 5879 for (ipif = ill->ill_ipif; ipif != NULL; 5880 ipif = ipif->ipif_next) { 5881 if (zoneid != ALL_ZONES && 5882 zoneid != ipif->ipif_zoneid && 5883 ipif->ipif_zoneid != ALL_ZONES) 5884 continue; 5885 /* Allow the ipif to be down */ 5886 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5887 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5888 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5889 (ipif->ipif_pp_dst_addr == addr))) { 5890 /* 5891 * The block comment at the start of ipif_down 5892 * explains the use of the macros used below 5893 */ 5894 if (IPIF_CAN_LOOKUP(ipif)) { 5895 ipif_refhold_locked(ipif); 5896 mutex_exit(&ill->ill_lock); 5897 RELEASE_CONN_LOCK(q); 5898 rw_exit(&ill_g_lock); 5899 return (ipif); 5900 } else if (IPIF_CAN_WAIT(ipif, q)) { 5901 ipsq = ill->ill_phyint->phyint_ipsq; 5902 mutex_enter(&ipsq->ipsq_lock); 5903 mutex_exit(&ill->ill_lock); 5904 rw_exit(&ill_g_lock); 5905 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5906 ill); 5907 mutex_exit(&ipsq->ipsq_lock); 5908 RELEASE_CONN_LOCK(q); 5909 *error = EINPROGRESS; 5910 return (NULL); 5911 } 5912 } 5913 } 5914 mutex_exit(&ill->ill_lock); 5915 RELEASE_CONN_LOCK(q); 5916 } 5917 5918 /* If we already did the ptp case, then we are done */ 5919 if (ptp) { 5920 rw_exit(&ill_g_lock); 5921 if (error != NULL) 5922 *error = ENXIO; 5923 return (NULL); 5924 } 5925 ptp = B_TRUE; 5926 goto repeat; 5927 } 5928 5929 /* 5930 * Look for an ipif with the specified address. For point-point links 5931 * we look for matches on either the destination address and the local 5932 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5933 * is set. 5934 * Matches on a specific ill if match_ill is set. 5935 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5936 */ 5937 zoneid_t 5938 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 5939 { 5940 zoneid_t zoneid; 5941 ipif_t *ipif; 5942 ill_t *ill; 5943 boolean_t ptp = B_FALSE; 5944 ill_walk_context_t ctx; 5945 5946 rw_enter(&ill_g_lock, RW_READER); 5947 /* 5948 * Repeat twice, first based on local addresses and 5949 * next time for pointopoint. 5950 */ 5951 repeat: 5952 ill = ILL_START_WALK_V4(&ctx); 5953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5954 if (match_ill != NULL && ill != match_ill) { 5955 continue; 5956 } 5957 mutex_enter(&ill->ill_lock); 5958 for (ipif = ill->ill_ipif; ipif != NULL; 5959 ipif = ipif->ipif_next) { 5960 /* Allow the ipif to be down */ 5961 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5962 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5963 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5964 (ipif->ipif_pp_dst_addr == addr)) && 5965 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5966 zoneid = ipif->ipif_zoneid; 5967 mutex_exit(&ill->ill_lock); 5968 rw_exit(&ill_g_lock); 5969 /* 5970 * If ipif_zoneid was ALL_ZONES then we have 5971 * a trusted extensions shared IP address. 5972 * In that case GLOBAL_ZONEID works to send. 5973 */ 5974 if (zoneid == ALL_ZONES) 5975 zoneid = GLOBAL_ZONEID; 5976 return (zoneid); 5977 } 5978 } 5979 mutex_exit(&ill->ill_lock); 5980 } 5981 5982 /* If we already did the ptp case, then we are done */ 5983 if (ptp) { 5984 rw_exit(&ill_g_lock); 5985 return (ALL_ZONES); 5986 } 5987 ptp = B_TRUE; 5988 goto repeat; 5989 } 5990 5991 /* 5992 * Look for an ipif that matches the specified remote address i.e. the 5993 * ipif that would receive the specified packet. 5994 * First look for directly connected interfaces and then do a recursive 5995 * IRE lookup and pick the first ipif corresponding to the source address in the 5996 * ire. 5997 * Returns: held ipif 5998 */ 5999 ipif_t * 6000 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6001 { 6002 ipif_t *ipif; 6003 ire_t *ire; 6004 6005 ASSERT(!ill->ill_isv6); 6006 6007 /* 6008 * Someone could be changing this ipif currently or change it 6009 * after we return this. Thus a few packets could use the old 6010 * old values. However structure updates/creates (ire, ilg, ilm etc) 6011 * will atomically be updated or cleaned up with the new value 6012 * Thus we don't need a lock to check the flags or other attrs below. 6013 */ 6014 mutex_enter(&ill->ill_lock); 6015 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6016 if (!IPIF_CAN_LOOKUP(ipif)) 6017 continue; 6018 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6019 ipif->ipif_zoneid != ALL_ZONES) 6020 continue; 6021 /* Allow the ipif to be down */ 6022 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6023 if ((ipif->ipif_pp_dst_addr == addr) || 6024 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6025 ipif->ipif_lcl_addr == addr)) { 6026 ipif_refhold_locked(ipif); 6027 mutex_exit(&ill->ill_lock); 6028 return (ipif); 6029 } 6030 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6031 ipif_refhold_locked(ipif); 6032 mutex_exit(&ill->ill_lock); 6033 return (ipif); 6034 } 6035 } 6036 mutex_exit(&ill->ill_lock); 6037 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6038 NULL, MATCH_IRE_RECURSIVE); 6039 if (ire != NULL) { 6040 /* 6041 * The callers of this function wants to know the 6042 * interface on which they have to send the replies 6043 * back. For IRE_CACHES that have ire_stq and ire_ipif 6044 * derived from different ills, we really don't care 6045 * what we return here. 6046 */ 6047 ipif = ire->ire_ipif; 6048 if (ipif != NULL) { 6049 ipif_refhold(ipif); 6050 ire_refrele(ire); 6051 return (ipif); 6052 } 6053 ire_refrele(ire); 6054 } 6055 /* Pick the first interface */ 6056 ipif = ipif_get_next_ipif(NULL, ill); 6057 return (ipif); 6058 } 6059 6060 /* 6061 * This func does not prevent refcnt from increasing. But if 6062 * the caller has taken steps to that effect, then this func 6063 * can be used to determine whether the ill has become quiescent 6064 */ 6065 boolean_t 6066 ill_is_quiescent(ill_t *ill) 6067 { 6068 ipif_t *ipif; 6069 6070 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6071 6072 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6073 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6074 return (B_FALSE); 6075 } 6076 } 6077 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6078 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6079 ill->ill_mrtun_refcnt != 0) { 6080 return (B_FALSE); 6081 } 6082 return (B_TRUE); 6083 } 6084 6085 /* 6086 * This func does not prevent refcnt from increasing. But if 6087 * the caller has taken steps to that effect, then this func 6088 * can be used to determine whether the ipif has become quiescent 6089 */ 6090 static boolean_t 6091 ipif_is_quiescent(ipif_t *ipif) 6092 { 6093 ill_t *ill; 6094 6095 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6096 6097 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6098 return (B_FALSE); 6099 } 6100 6101 ill = ipif->ipif_ill; 6102 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6103 ill->ill_logical_down) { 6104 return (B_TRUE); 6105 } 6106 6107 /* This is the last ipif going down or being deleted on this ill */ 6108 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6109 return (B_FALSE); 6110 } 6111 6112 return (B_TRUE); 6113 } 6114 6115 /* 6116 * This func does not prevent refcnt from increasing. But if 6117 * the caller has taken steps to that effect, then this func 6118 * can be used to determine whether the ipifs marked with IPIF_MOVING 6119 * have become quiescent and can be moved in a failover/failback. 6120 */ 6121 static ipif_t * 6122 ill_quiescent_to_move(ill_t *ill) 6123 { 6124 ipif_t *ipif; 6125 6126 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6127 6128 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6129 if (ipif->ipif_state_flags & IPIF_MOVING) { 6130 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6131 return (ipif); 6132 } 6133 } 6134 } 6135 return (NULL); 6136 } 6137 6138 /* 6139 * The ipif/ill/ire has been refreled. Do the tail processing. 6140 * Determine if the ipif or ill in question has become quiescent and if so 6141 * wakeup close and/or restart any queued pending ioctl that is waiting 6142 * for the ipif_down (or ill_down) 6143 */ 6144 void 6145 ipif_ill_refrele_tail(ill_t *ill) 6146 { 6147 mblk_t *mp; 6148 conn_t *connp; 6149 ipsq_t *ipsq; 6150 ipif_t *ipif; 6151 6152 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6153 6154 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6155 ill_is_quiescent(ill)) { 6156 /* ill_close may be waiting */ 6157 cv_broadcast(&ill->ill_cv); 6158 } 6159 6160 /* ipsq can't change because ill_lock is held */ 6161 ipsq = ill->ill_phyint->phyint_ipsq; 6162 if (ipsq->ipsq_waitfor == 0) { 6163 /* Not waiting for anything, just return. */ 6164 mutex_exit(&ill->ill_lock); 6165 return; 6166 } 6167 ASSERT(ipsq->ipsq_pending_mp != NULL && 6168 ipsq->ipsq_pending_ipif != NULL); 6169 /* 6170 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6171 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6172 * be zero for restarting an ioctl that ends up downing the ill. 6173 */ 6174 ipif = ipsq->ipsq_pending_ipif; 6175 if (ipif->ipif_ill != ill) { 6176 /* The ioctl is pending on some other ill. */ 6177 mutex_exit(&ill->ill_lock); 6178 return; 6179 } 6180 6181 switch (ipsq->ipsq_waitfor) { 6182 case IPIF_DOWN: 6183 case IPIF_FREE: 6184 if (!ipif_is_quiescent(ipif)) { 6185 mutex_exit(&ill->ill_lock); 6186 return; 6187 } 6188 break; 6189 6190 case ILL_DOWN: 6191 case ILL_FREE: 6192 /* 6193 * case ILL_FREE arises only for loopback. otherwise ill_delete 6194 * waits synchronously in ip_close, and no message is queued in 6195 * ipsq_pending_mp at all in this case 6196 */ 6197 if (!ill_is_quiescent(ill)) { 6198 mutex_exit(&ill->ill_lock); 6199 return; 6200 } 6201 6202 break; 6203 6204 case ILL_MOVE_OK: 6205 if (ill_quiescent_to_move(ill) != NULL) { 6206 mutex_exit(&ill->ill_lock); 6207 return; 6208 } 6209 6210 break; 6211 default: 6212 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6213 (void *)ipsq, ipsq->ipsq_waitfor); 6214 } 6215 6216 /* 6217 * Incr refcnt for the qwriter_ip call below which 6218 * does a refrele 6219 */ 6220 ill_refhold_locked(ill); 6221 mutex_exit(&ill->ill_lock); 6222 6223 mp = ipsq_pending_mp_get(ipsq, &connp); 6224 ASSERT(mp != NULL); 6225 6226 switch (mp->b_datap->db_type) { 6227 case M_ERROR: 6228 case M_HANGUP: 6229 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 6230 ipif_all_down_tail, CUR_OP, B_TRUE); 6231 return; 6232 6233 case M_IOCTL: 6234 case M_IOCDATA: 6235 (void) qwriter_ip(NULL, ill, 6236 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 6237 ip_reprocess_ioctl, CUR_OP, B_TRUE); 6238 return; 6239 6240 default: 6241 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6242 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6243 } 6244 } 6245 6246 #ifdef ILL_DEBUG 6247 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6248 void 6249 th_trace_rrecord(th_trace_t *th_trace) 6250 { 6251 tr_buf_t *tr_buf; 6252 uint_t lastref; 6253 6254 lastref = th_trace->th_trace_lastref; 6255 lastref++; 6256 if (lastref == TR_BUF_MAX) 6257 lastref = 0; 6258 th_trace->th_trace_lastref = lastref; 6259 tr_buf = &th_trace->th_trbuf[lastref]; 6260 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6261 } 6262 6263 th_trace_t * 6264 th_trace_ipif_lookup(ipif_t *ipif) 6265 { 6266 int bucket_id; 6267 th_trace_t *th_trace; 6268 6269 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6270 6271 bucket_id = IP_TR_HASH(curthread); 6272 ASSERT(bucket_id < IP_TR_HASH_MAX); 6273 6274 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6275 th_trace = th_trace->th_next) { 6276 if (th_trace->th_id == curthread) 6277 return (th_trace); 6278 } 6279 return (NULL); 6280 } 6281 6282 void 6283 ipif_trace_ref(ipif_t *ipif) 6284 { 6285 int bucket_id; 6286 th_trace_t *th_trace; 6287 6288 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6289 6290 if (ipif->ipif_trace_disable) 6291 return; 6292 6293 /* 6294 * Attempt to locate the trace buffer for the curthread. 6295 * If it does not exist, then allocate a new trace buffer 6296 * and link it in list of trace bufs for this ipif, at the head 6297 */ 6298 th_trace = th_trace_ipif_lookup(ipif); 6299 if (th_trace == NULL) { 6300 bucket_id = IP_TR_HASH(curthread); 6301 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6302 KM_NOSLEEP); 6303 if (th_trace == NULL) { 6304 ipif->ipif_trace_disable = B_TRUE; 6305 ipif_trace_cleanup(ipif); 6306 return; 6307 } 6308 th_trace->th_id = curthread; 6309 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6310 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6311 if (th_trace->th_next != NULL) 6312 th_trace->th_next->th_prev = &th_trace->th_next; 6313 ipif->ipif_trace[bucket_id] = th_trace; 6314 } 6315 ASSERT(th_trace->th_refcnt >= 0 && 6316 th_trace->th_refcnt < TR_BUF_MAX -1); 6317 th_trace->th_refcnt++; 6318 th_trace_rrecord(th_trace); 6319 } 6320 6321 void 6322 ipif_untrace_ref(ipif_t *ipif) 6323 { 6324 th_trace_t *th_trace; 6325 6326 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6327 6328 if (ipif->ipif_trace_disable) 6329 return; 6330 th_trace = th_trace_ipif_lookup(ipif); 6331 ASSERT(th_trace != NULL); 6332 ASSERT(th_trace->th_refcnt > 0); 6333 6334 th_trace->th_refcnt--; 6335 th_trace_rrecord(th_trace); 6336 } 6337 6338 th_trace_t * 6339 th_trace_ill_lookup(ill_t *ill) 6340 { 6341 th_trace_t *th_trace; 6342 int bucket_id; 6343 6344 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6345 6346 bucket_id = IP_TR_HASH(curthread); 6347 ASSERT(bucket_id < IP_TR_HASH_MAX); 6348 6349 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6350 th_trace = th_trace->th_next) { 6351 if (th_trace->th_id == curthread) 6352 return (th_trace); 6353 } 6354 return (NULL); 6355 } 6356 6357 void 6358 ill_trace_ref(ill_t *ill) 6359 { 6360 int bucket_id; 6361 th_trace_t *th_trace; 6362 6363 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6364 if (ill->ill_trace_disable) 6365 return; 6366 /* 6367 * Attempt to locate the trace buffer for the curthread. 6368 * If it does not exist, then allocate a new trace buffer 6369 * and link it in list of trace bufs for this ill, at the head 6370 */ 6371 th_trace = th_trace_ill_lookup(ill); 6372 if (th_trace == NULL) { 6373 bucket_id = IP_TR_HASH(curthread); 6374 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6375 KM_NOSLEEP); 6376 if (th_trace == NULL) { 6377 ill->ill_trace_disable = B_TRUE; 6378 ill_trace_cleanup(ill); 6379 return; 6380 } 6381 th_trace->th_id = curthread; 6382 th_trace->th_next = ill->ill_trace[bucket_id]; 6383 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6384 if (th_trace->th_next != NULL) 6385 th_trace->th_next->th_prev = &th_trace->th_next; 6386 ill->ill_trace[bucket_id] = th_trace; 6387 } 6388 ASSERT(th_trace->th_refcnt >= 0 && 6389 th_trace->th_refcnt < TR_BUF_MAX - 1); 6390 6391 th_trace->th_refcnt++; 6392 th_trace_rrecord(th_trace); 6393 } 6394 6395 void 6396 ill_untrace_ref(ill_t *ill) 6397 { 6398 th_trace_t *th_trace; 6399 6400 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6401 6402 if (ill->ill_trace_disable) 6403 return; 6404 th_trace = th_trace_ill_lookup(ill); 6405 ASSERT(th_trace != NULL); 6406 ASSERT(th_trace->th_refcnt > 0); 6407 6408 th_trace->th_refcnt--; 6409 th_trace_rrecord(th_trace); 6410 } 6411 6412 /* 6413 * Verify that this thread has no refs to the ipif and free 6414 * the trace buffers 6415 */ 6416 /* ARGSUSED */ 6417 void 6418 ipif_thread_exit(ipif_t *ipif, void *dummy) 6419 { 6420 th_trace_t *th_trace; 6421 6422 mutex_enter(&ipif->ipif_ill->ill_lock); 6423 6424 th_trace = th_trace_ipif_lookup(ipif); 6425 if (th_trace == NULL) { 6426 mutex_exit(&ipif->ipif_ill->ill_lock); 6427 return; 6428 } 6429 ASSERT(th_trace->th_refcnt == 0); 6430 /* unlink th_trace and free it */ 6431 *th_trace->th_prev = th_trace->th_next; 6432 if (th_trace->th_next != NULL) 6433 th_trace->th_next->th_prev = th_trace->th_prev; 6434 th_trace->th_next = NULL; 6435 th_trace->th_prev = NULL; 6436 kmem_free(th_trace, sizeof (th_trace_t)); 6437 6438 mutex_exit(&ipif->ipif_ill->ill_lock); 6439 } 6440 6441 /* 6442 * Verify that this thread has no refs to the ill and free 6443 * the trace buffers 6444 */ 6445 /* ARGSUSED */ 6446 void 6447 ill_thread_exit(ill_t *ill, void *dummy) 6448 { 6449 th_trace_t *th_trace; 6450 6451 mutex_enter(&ill->ill_lock); 6452 6453 th_trace = th_trace_ill_lookup(ill); 6454 if (th_trace == NULL) { 6455 mutex_exit(&ill->ill_lock); 6456 return; 6457 } 6458 ASSERT(th_trace->th_refcnt == 0); 6459 /* unlink th_trace and free it */ 6460 *th_trace->th_prev = th_trace->th_next; 6461 if (th_trace->th_next != NULL) 6462 th_trace->th_next->th_prev = th_trace->th_prev; 6463 th_trace->th_next = NULL; 6464 th_trace->th_prev = NULL; 6465 kmem_free(th_trace, sizeof (th_trace_t)); 6466 6467 mutex_exit(&ill->ill_lock); 6468 } 6469 #endif 6470 6471 #ifdef ILL_DEBUG 6472 void 6473 ip_thread_exit(void) 6474 { 6475 ill_t *ill; 6476 ipif_t *ipif; 6477 ill_walk_context_t ctx; 6478 6479 rw_enter(&ill_g_lock, RW_READER); 6480 ill = ILL_START_WALK_ALL(&ctx); 6481 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6482 for (ipif = ill->ill_ipif; ipif != NULL; 6483 ipif = ipif->ipif_next) { 6484 ipif_thread_exit(ipif, NULL); 6485 } 6486 ill_thread_exit(ill, NULL); 6487 } 6488 rw_exit(&ill_g_lock); 6489 6490 ire_walk(ire_thread_exit, NULL); 6491 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6492 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6493 } 6494 6495 /* 6496 * Called when ipif is unplumbed or when memory alloc fails 6497 */ 6498 void 6499 ipif_trace_cleanup(ipif_t *ipif) 6500 { 6501 int i; 6502 th_trace_t *th_trace; 6503 th_trace_t *th_trace_next; 6504 6505 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6506 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6507 th_trace = th_trace_next) { 6508 th_trace_next = th_trace->th_next; 6509 kmem_free(th_trace, sizeof (th_trace_t)); 6510 } 6511 ipif->ipif_trace[i] = NULL; 6512 } 6513 } 6514 6515 /* 6516 * Called when ill is unplumbed or when memory alloc fails 6517 */ 6518 void 6519 ill_trace_cleanup(ill_t *ill) 6520 { 6521 int i; 6522 th_trace_t *th_trace; 6523 th_trace_t *th_trace_next; 6524 6525 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6526 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6527 th_trace = th_trace_next) { 6528 th_trace_next = th_trace->th_next; 6529 kmem_free(th_trace, sizeof (th_trace_t)); 6530 } 6531 ill->ill_trace[i] = NULL; 6532 } 6533 } 6534 6535 #else 6536 void ip_thread_exit(void) {} 6537 #endif 6538 6539 void 6540 ipif_refhold_locked(ipif_t *ipif) 6541 { 6542 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6543 ipif->ipif_refcnt++; 6544 IPIF_TRACE_REF(ipif); 6545 } 6546 6547 void 6548 ipif_refhold(ipif_t *ipif) 6549 { 6550 ill_t *ill; 6551 6552 ill = ipif->ipif_ill; 6553 mutex_enter(&ill->ill_lock); 6554 ipif->ipif_refcnt++; 6555 IPIF_TRACE_REF(ipif); 6556 mutex_exit(&ill->ill_lock); 6557 } 6558 6559 /* 6560 * Must not be called while holding any locks. Otherwise if this is 6561 * the last reference to be released there is a chance of recursive mutex 6562 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6563 * to restart an ioctl. 6564 */ 6565 void 6566 ipif_refrele(ipif_t *ipif) 6567 { 6568 ill_t *ill; 6569 6570 ill = ipif->ipif_ill; 6571 6572 mutex_enter(&ill->ill_lock); 6573 ASSERT(ipif->ipif_refcnt != 0); 6574 ipif->ipif_refcnt--; 6575 IPIF_UNTRACE_REF(ipif); 6576 if (ipif->ipif_refcnt != 0) { 6577 mutex_exit(&ill->ill_lock); 6578 return; 6579 } 6580 6581 /* Drops the ill_lock */ 6582 ipif_ill_refrele_tail(ill); 6583 } 6584 6585 ipif_t * 6586 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6587 { 6588 ipif_t *ipif; 6589 6590 mutex_enter(&ill->ill_lock); 6591 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6592 ipif != NULL; ipif = ipif->ipif_next) { 6593 if (!IPIF_CAN_LOOKUP(ipif)) 6594 continue; 6595 ipif_refhold_locked(ipif); 6596 mutex_exit(&ill->ill_lock); 6597 return (ipif); 6598 } 6599 mutex_exit(&ill->ill_lock); 6600 return (NULL); 6601 } 6602 6603 /* 6604 * TODO: make this table extendible at run time 6605 * Return a pointer to the mac type info for 'mac_type' 6606 */ 6607 static ip_m_t * 6608 ip_m_lookup(t_uscalar_t mac_type) 6609 { 6610 ip_m_t *ipm; 6611 6612 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6613 if (ipm->ip_m_mac_type == mac_type) 6614 return (ipm); 6615 return (NULL); 6616 } 6617 6618 /* 6619 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6620 * ipif_arg is passed in to associate it with the correct interface. 6621 * We may need to restart this operation if the ipif cannot be looked up 6622 * due to an exclusive operation that is currently in progress. The restart 6623 * entry point is specified by 'func' 6624 */ 6625 int 6626 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6627 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6628 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6629 ipsq_func_t func, struct rtsa_s *sp) 6630 { 6631 ire_t *ire; 6632 ire_t *gw_ire = NULL; 6633 ipif_t *ipif = NULL; 6634 boolean_t ipif_refheld = B_FALSE; 6635 uint_t type; 6636 int match_flags = MATCH_IRE_TYPE; 6637 int error; 6638 tsol_gc_t *gc = NULL; 6639 tsol_gcgrp_t *gcgrp = NULL; 6640 boolean_t gcgrp_xtraref = B_FALSE; 6641 6642 ip1dbg(("ip_rt_add:")); 6643 6644 if (ire_arg != NULL) 6645 *ire_arg = NULL; 6646 6647 /* 6648 * If this is the case of RTF_HOST being set, then we set the netmask 6649 * to all ones (regardless if one was supplied). 6650 */ 6651 if (flags & RTF_HOST) 6652 mask = IP_HOST_MASK; 6653 6654 /* 6655 * Prevent routes with a zero gateway from being created (since 6656 * interfaces can currently be plumbed and brought up no assigned 6657 * address). 6658 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6659 */ 6660 if (gw_addr == 0 && src_ipif == NULL) 6661 return (ENETUNREACH); 6662 /* 6663 * Get the ipif, if any, corresponding to the gw_addr 6664 */ 6665 if (gw_addr != 0) { 6666 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6667 &error); 6668 if (ipif != NULL) { 6669 if (IS_VNI(ipif->ipif_ill)) { 6670 ipif_refrele(ipif); 6671 return (EINVAL); 6672 } 6673 ipif_refheld = B_TRUE; 6674 } else if (error == EINPROGRESS) { 6675 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6676 return (EINPROGRESS); 6677 } else { 6678 error = 0; 6679 } 6680 } 6681 6682 if (ipif != NULL) { 6683 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6684 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6685 } else { 6686 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6687 } 6688 6689 /* 6690 * GateD will attempt to create routes with a loopback interface 6691 * address as the gateway and with RTF_GATEWAY set. We allow 6692 * these routes to be added, but create them as interface routes 6693 * since the gateway is an interface address. 6694 */ 6695 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6696 flags &= ~RTF_GATEWAY; 6697 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6698 mask == IP_HOST_MASK) { 6699 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6700 ALL_ZONES, NULL, match_flags); 6701 if (ire != NULL) { 6702 ire_refrele(ire); 6703 if (ipif_refheld) 6704 ipif_refrele(ipif); 6705 return (EEXIST); 6706 } 6707 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6708 "for 0x%x\n", (void *)ipif, 6709 ipif->ipif_ire_type, 6710 ntohl(ipif->ipif_lcl_addr))); 6711 ire = ire_create( 6712 (uchar_t *)&dst_addr, /* dest address */ 6713 (uchar_t *)&mask, /* mask */ 6714 (uchar_t *)&ipif->ipif_src_addr, 6715 NULL, /* no gateway */ 6716 NULL, 6717 &ipif->ipif_mtu, 6718 NULL, 6719 ipif->ipif_rq, /* recv-from queue */ 6720 NULL, /* no send-to queue */ 6721 ipif->ipif_ire_type, /* LOOPBACK */ 6722 NULL, 6723 ipif, 6724 NULL, 6725 0, 6726 0, 6727 0, 6728 (ipif->ipif_flags & IPIF_PRIVATE) ? 6729 RTF_PRIVATE : 0, 6730 &ire_uinfo_null, 6731 NULL, 6732 NULL); 6733 6734 if (ire == NULL) { 6735 if (ipif_refheld) 6736 ipif_refrele(ipif); 6737 return (ENOMEM); 6738 } 6739 error = ire_add(&ire, q, mp, func, B_FALSE); 6740 if (error == 0) 6741 goto save_ire; 6742 if (ipif_refheld) 6743 ipif_refrele(ipif); 6744 return (error); 6745 6746 } 6747 } 6748 6749 /* 6750 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6751 * and the gateway address provided is one of the system's interface 6752 * addresses. By using the routing socket interface and supplying an 6753 * RTA_IFP sockaddr with an interface index, an alternate method of 6754 * specifying an interface route to be created is available which uses 6755 * the interface index that specifies the outgoing interface rather than 6756 * the address of an outgoing interface (which may not be able to 6757 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6758 * flag, routes can be specified which not only specify the next-hop to 6759 * be used when routing to a certain prefix, but also which outgoing 6760 * interface should be used. 6761 * 6762 * Previously, interfaces would have unique addresses assigned to them 6763 * and so the address assigned to a particular interface could be used 6764 * to identify a particular interface. One exception to this was the 6765 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6766 * 6767 * With the advent of IPv6 and its link-local addresses, this 6768 * restriction was relaxed and interfaces could share addresses between 6769 * themselves. In fact, typically all of the link-local interfaces on 6770 * an IPv6 node or router will have the same link-local address. In 6771 * order to differentiate between these interfaces, the use of an 6772 * interface index is necessary and this index can be carried inside a 6773 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6774 * of using the interface index, however, is that all of the ipif's that 6775 * are part of an ill have the same index and so the RTA_IFP sockaddr 6776 * cannot be used to differentiate between ipif's (or logical 6777 * interfaces) that belong to the same ill (physical interface). 6778 * 6779 * For example, in the following case involving IPv4 interfaces and 6780 * logical interfaces 6781 * 6782 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6783 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6784 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6785 * 6786 * the ipif's corresponding to each of these interface routes can be 6787 * uniquely identified by the "gateway" (actually interface address). 6788 * 6789 * In this case involving multiple IPv6 default routes to a particular 6790 * link-local gateway, the use of RTA_IFP is necessary to specify which 6791 * default route is of interest: 6792 * 6793 * default fe80::123:4567:89ab:cdef U if0 6794 * default fe80::123:4567:89ab:cdef U if1 6795 */ 6796 6797 /* RTF_GATEWAY not set */ 6798 if (!(flags & RTF_GATEWAY)) { 6799 queue_t *stq; 6800 queue_t *rfq = NULL; 6801 ill_t *in_ill = NULL; 6802 6803 if (sp != NULL) { 6804 ip2dbg(("ip_rt_add: gateway security attributes " 6805 "cannot be set with interface route\n")); 6806 if (ipif_refheld) 6807 ipif_refrele(ipif); 6808 return (EINVAL); 6809 } 6810 6811 /* 6812 * As the interface index specified with the RTA_IFP sockaddr is 6813 * the same for all ipif's off of an ill, the matching logic 6814 * below uses MATCH_IRE_ILL if such an index was specified. 6815 * This means that routes sharing the same prefix when added 6816 * using a RTA_IFP sockaddr must have distinct interface 6817 * indices (namely, they must be on distinct ill's). 6818 * 6819 * On the other hand, since the gateway address will usually be 6820 * different for each ipif on the system, the matching logic 6821 * uses MATCH_IRE_IPIF in the case of a traditional interface 6822 * route. This means that interface routes for the same prefix 6823 * can be created if they belong to distinct ipif's and if a 6824 * RTA_IFP sockaddr is not present. 6825 */ 6826 if (ipif_arg != NULL) { 6827 if (ipif_refheld) { 6828 ipif_refrele(ipif); 6829 ipif_refheld = B_FALSE; 6830 } 6831 ipif = ipif_arg; 6832 match_flags |= MATCH_IRE_ILL; 6833 } else { 6834 /* 6835 * Check the ipif corresponding to the gw_addr 6836 */ 6837 if (ipif == NULL) 6838 return (ENETUNREACH); 6839 match_flags |= MATCH_IRE_IPIF; 6840 } 6841 ASSERT(ipif != NULL); 6842 /* 6843 * If src_ipif is not NULL, we have to create 6844 * an ire with non-null ire_in_ill value 6845 */ 6846 if (src_ipif != NULL) { 6847 in_ill = src_ipif->ipif_ill; 6848 } 6849 6850 /* 6851 * We check for an existing entry at this point. 6852 * 6853 * Since a netmask isn't passed in via the ioctl interface 6854 * (SIOCADDRT), we don't check for a matching netmask in that 6855 * case. 6856 */ 6857 if (!ioctl_msg) 6858 match_flags |= MATCH_IRE_MASK; 6859 if (src_ipif != NULL) { 6860 /* Look up in the special table */ 6861 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6862 ipif, src_ipif->ipif_ill, match_flags); 6863 } else { 6864 ire = ire_ftable_lookup(dst_addr, mask, 0, 6865 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6866 NULL, match_flags); 6867 } 6868 if (ire != NULL) { 6869 ire_refrele(ire); 6870 if (ipif_refheld) 6871 ipif_refrele(ipif); 6872 return (EEXIST); 6873 } 6874 6875 if (src_ipif != NULL) { 6876 /* 6877 * Create the special ire for the IRE table 6878 * which hangs out of ire_in_ill. This ire 6879 * is in-between IRE_CACHE and IRE_INTERFACE. 6880 * Thus rfq is non-NULL. 6881 */ 6882 rfq = ipif->ipif_rq; 6883 } 6884 /* Create the usual interface ires */ 6885 6886 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6887 ? ipif->ipif_rq : ipif->ipif_wq; 6888 6889 /* 6890 * Create a copy of the IRE_LOOPBACK, 6891 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6892 * the modified address and netmask. 6893 */ 6894 ire = ire_create( 6895 (uchar_t *)&dst_addr, 6896 (uint8_t *)&mask, 6897 (uint8_t *)&ipif->ipif_src_addr, 6898 NULL, 6899 NULL, 6900 &ipif->ipif_mtu, 6901 NULL, 6902 rfq, 6903 stq, 6904 ipif->ipif_net_type, 6905 ipif->ipif_resolver_mp, 6906 ipif, 6907 in_ill, 6908 0, 6909 0, 6910 0, 6911 flags, 6912 &ire_uinfo_null, 6913 NULL, 6914 NULL); 6915 if (ire == NULL) { 6916 if (ipif_refheld) 6917 ipif_refrele(ipif); 6918 return (ENOMEM); 6919 } 6920 6921 /* 6922 * Some software (for example, GateD and Sun Cluster) attempts 6923 * to create (what amount to) IRE_PREFIX routes with the 6924 * loopback address as the gateway. This is primarily done to 6925 * set up prefixes with the RTF_REJECT flag set (for example, 6926 * when generating aggregate routes.) 6927 * 6928 * If the IRE type (as defined by ipif->ipif_net_type) is 6929 * IRE_LOOPBACK, then we map the request into a 6930 * IRE_IF_NORESOLVER. 6931 * 6932 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6933 * routine, but rather using ire_create() directly. 6934 * 6935 */ 6936 if (ipif->ipif_net_type == IRE_LOOPBACK) 6937 ire->ire_type = IRE_IF_NORESOLVER; 6938 6939 error = ire_add(&ire, q, mp, func, B_FALSE); 6940 if (error == 0) 6941 goto save_ire; 6942 6943 /* 6944 * In the result of failure, ire_add() will have already 6945 * deleted the ire in question, so there is no need to 6946 * do that here. 6947 */ 6948 if (ipif_refheld) 6949 ipif_refrele(ipif); 6950 return (error); 6951 } 6952 if (ipif_refheld) { 6953 ipif_refrele(ipif); 6954 ipif_refheld = B_FALSE; 6955 } 6956 6957 if (src_ipif != NULL) { 6958 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6959 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6960 return (EINVAL); 6961 } 6962 /* 6963 * Get an interface IRE for the specified gateway. 6964 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6965 * gateway, it is currently unreachable and we fail the request 6966 * accordingly. 6967 */ 6968 ipif = ipif_arg; 6969 if (ipif_arg != NULL) 6970 match_flags |= MATCH_IRE_ILL; 6971 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6972 ALL_ZONES, 0, NULL, match_flags); 6973 if (gw_ire == NULL) 6974 return (ENETUNREACH); 6975 6976 /* 6977 * We create one of three types of IREs as a result of this request 6978 * based on the netmask. A netmask of all ones (which is automatically 6979 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6980 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6981 * created. Otherwise, an IRE_PREFIX route is created for the 6982 * destination prefix. 6983 */ 6984 if (mask == IP_HOST_MASK) 6985 type = IRE_HOST; 6986 else if (mask == 0) 6987 type = IRE_DEFAULT; 6988 else 6989 type = IRE_PREFIX; 6990 6991 /* check for a duplicate entry */ 6992 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6993 NULL, ALL_ZONES, 0, NULL, 6994 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6995 if (ire != NULL) { 6996 ire_refrele(gw_ire); 6997 ire_refrele(ire); 6998 return (EEXIST); 6999 } 7000 7001 /* Security attribute exists */ 7002 if (sp != NULL) { 7003 tsol_gcgrp_addr_t ga; 7004 7005 /* find or create the gateway credentials group */ 7006 ga.ga_af = AF_INET; 7007 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7008 7009 /* we hold reference to it upon success */ 7010 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7011 if (gcgrp == NULL) { 7012 ire_refrele(gw_ire); 7013 return (ENOMEM); 7014 } 7015 7016 /* 7017 * Create and add the security attribute to the group; a 7018 * reference to the group is made upon allocating a new 7019 * entry successfully. If it finds an already-existing 7020 * entry for the security attribute in the group, it simply 7021 * returns it and no new reference is made to the group. 7022 */ 7023 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7024 if (gc == NULL) { 7025 /* release reference held by gcgrp_lookup */ 7026 GCGRP_REFRELE(gcgrp); 7027 ire_refrele(gw_ire); 7028 return (ENOMEM); 7029 } 7030 } 7031 7032 /* Create the IRE. */ 7033 ire = ire_create( 7034 (uchar_t *)&dst_addr, /* dest address */ 7035 (uchar_t *)&mask, /* mask */ 7036 /* src address assigned by the caller? */ 7037 (uchar_t *)(((src_addr != INADDR_ANY) && 7038 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7039 (uchar_t *)&gw_addr, /* gateway address */ 7040 NULL, /* no in-srcaddress */ 7041 &gw_ire->ire_max_frag, 7042 NULL, /* no Fast Path header */ 7043 NULL, /* no recv-from queue */ 7044 NULL, /* no send-to queue */ 7045 (ushort_t)type, /* IRE type */ 7046 NULL, 7047 ipif_arg, 7048 NULL, 7049 0, 7050 0, 7051 0, 7052 flags, 7053 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7054 gc, /* security attribute */ 7055 NULL); 7056 /* 7057 * The ire holds a reference to the 'gc' and the 'gc' holds a 7058 * reference to the 'gcgrp'. We can now release the extra reference 7059 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7060 */ 7061 if (gcgrp_xtraref) 7062 GCGRP_REFRELE(gcgrp); 7063 if (ire == NULL) { 7064 if (gc != NULL) 7065 GC_REFRELE(gc); 7066 ire_refrele(gw_ire); 7067 return (ENOMEM); 7068 } 7069 7070 /* 7071 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7072 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7073 */ 7074 7075 /* Add the new IRE. */ 7076 error = ire_add(&ire, q, mp, func, B_FALSE); 7077 if (error != 0) { 7078 /* 7079 * In the result of failure, ire_add() will have already 7080 * deleted the ire in question, so there is no need to 7081 * do that here. 7082 */ 7083 ire_refrele(gw_ire); 7084 return (error); 7085 } 7086 7087 if (flags & RTF_MULTIRT) { 7088 /* 7089 * Invoke the CGTP (multirouting) filtering module 7090 * to add the dst address in the filtering database. 7091 * Replicated inbound packets coming from that address 7092 * will be filtered to discard the duplicates. 7093 * It is not necessary to call the CGTP filter hook 7094 * when the dst address is a broadcast or multicast, 7095 * because an IP source address cannot be a broadcast 7096 * or a multicast. 7097 */ 7098 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7099 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 7100 if (ire_dst != NULL) { 7101 ip_cgtp_bcast_add(ire, ire_dst); 7102 ire_refrele(ire_dst); 7103 goto save_ire; 7104 } 7105 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 7106 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7107 ire->ire_addr, 7108 ire->ire_gateway_addr, 7109 ire->ire_src_addr, 7110 gw_ire->ire_src_addr); 7111 if (res != 0) { 7112 ire_refrele(gw_ire); 7113 ire_delete(ire); 7114 return (res); 7115 } 7116 } 7117 } 7118 7119 /* 7120 * Now that the prefix IRE entry has been created, delete any 7121 * existing gateway IRE cache entries as well as any IRE caches 7122 * using the gateway, and force them to be created through 7123 * ip_newroute. 7124 */ 7125 if (gc != NULL) { 7126 ASSERT(gcgrp != NULL); 7127 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 7128 } 7129 7130 save_ire: 7131 if (gw_ire != NULL) { 7132 ire_refrele(gw_ire); 7133 } 7134 /* 7135 * We do not do save_ire for the routes added with RTA_SRCIFP 7136 * flag. This route is only added and deleted by mipagent. 7137 * So, for simplicity of design, we refrain from saving 7138 * ires that are created with srcif value. This may change 7139 * in future if we find more usage of srcifp feature. 7140 */ 7141 if (ipif != NULL && src_ipif == NULL) { 7142 /* 7143 * Save enough information so that we can recreate the IRE if 7144 * the interface goes down and then up. The metrics associated 7145 * with the route will be saved as well when rts_setmetrics() is 7146 * called after the IRE has been created. In the case where 7147 * memory cannot be allocated, none of this information will be 7148 * saved. 7149 */ 7150 ipif_save_ire(ipif, ire); 7151 } 7152 if (ioctl_msg) 7153 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 7154 if (ire_arg != NULL) { 7155 /* 7156 * Store the ire that was successfully added into where ire_arg 7157 * points to so that callers don't have to look it up 7158 * themselves (but they are responsible for ire_refrele()ing 7159 * the ire when they are finished with it). 7160 */ 7161 *ire_arg = ire; 7162 } else { 7163 ire_refrele(ire); /* Held in ire_add */ 7164 } 7165 if (ipif_refheld) 7166 ipif_refrele(ipif); 7167 return (0); 7168 } 7169 7170 /* 7171 * ip_rt_delete is called to delete an IPv4 route. 7172 * ipif_arg is passed in to associate it with the correct interface. 7173 * src_ipif is passed to associate the incoming interface of the packet. 7174 * We may need to restart this operation if the ipif cannot be looked up 7175 * due to an exclusive operation that is currently in progress. The restart 7176 * entry point is specified by 'func' 7177 */ 7178 /* ARGSUSED4 */ 7179 int 7180 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7181 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7182 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 7183 { 7184 ire_t *ire = NULL; 7185 ipif_t *ipif; 7186 boolean_t ipif_refheld = B_FALSE; 7187 uint_t type; 7188 uint_t match_flags = MATCH_IRE_TYPE; 7189 int err = 0; 7190 7191 ip1dbg(("ip_rt_delete:")); 7192 /* 7193 * If this is the case of RTF_HOST being set, then we set the netmask 7194 * to all ones. Otherwise, we use the netmask if one was supplied. 7195 */ 7196 if (flags & RTF_HOST) { 7197 mask = IP_HOST_MASK; 7198 match_flags |= MATCH_IRE_MASK; 7199 } else if (rtm_addrs & RTA_NETMASK) { 7200 match_flags |= MATCH_IRE_MASK; 7201 } 7202 7203 /* 7204 * Note that RTF_GATEWAY is never set on a delete, therefore 7205 * we check if the gateway address is one of our interfaces first, 7206 * and fall back on RTF_GATEWAY routes. 7207 * 7208 * This makes it possible to delete an original 7209 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7210 * 7211 * As the interface index specified with the RTA_IFP sockaddr is the 7212 * same for all ipif's off of an ill, the matching logic below uses 7213 * MATCH_IRE_ILL if such an index was specified. This means a route 7214 * sharing the same prefix and interface index as the the route 7215 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7216 * is specified in the request. 7217 * 7218 * On the other hand, since the gateway address will usually be 7219 * different for each ipif on the system, the matching logic 7220 * uses MATCH_IRE_IPIF in the case of a traditional interface 7221 * route. This means that interface routes for the same prefix can be 7222 * uniquely identified if they belong to distinct ipif's and if a 7223 * RTA_IFP sockaddr is not present. 7224 * 7225 * For more detail on specifying routes by gateway address and by 7226 * interface index, see the comments in ip_rt_add(). 7227 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7228 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7229 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7230 * succeed. 7231 */ 7232 if (src_ipif != NULL) { 7233 if (ipif_arg == NULL && gw_addr != 0) { 7234 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7235 q, mp, func, &err); 7236 if (ipif_arg != NULL) 7237 ipif_refheld = B_TRUE; 7238 } 7239 if (ipif_arg == NULL) { 7240 err = (err == EINPROGRESS) ? err : ESRCH; 7241 return (err); 7242 } 7243 ipif = ipif_arg; 7244 } else { 7245 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7246 q, mp, func, &err); 7247 if (ipif != NULL) 7248 ipif_refheld = B_TRUE; 7249 else if (err == EINPROGRESS) 7250 return (err); 7251 else 7252 err = 0; 7253 } 7254 if (ipif != NULL) { 7255 if (ipif_arg != NULL) { 7256 if (ipif_refheld) { 7257 ipif_refrele(ipif); 7258 ipif_refheld = B_FALSE; 7259 } 7260 ipif = ipif_arg; 7261 match_flags |= MATCH_IRE_ILL; 7262 } else { 7263 match_flags |= MATCH_IRE_IPIF; 7264 } 7265 if (src_ipif != NULL) { 7266 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7267 ipif, src_ipif->ipif_ill, match_flags); 7268 } else { 7269 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7270 ire = ire_ctable_lookup(dst_addr, 0, 7271 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7272 match_flags); 7273 } 7274 if (ire == NULL) { 7275 ire = ire_ftable_lookup(dst_addr, mask, 0, 7276 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7277 NULL, match_flags); 7278 } 7279 } 7280 } 7281 7282 if (ire == NULL) { 7283 /* 7284 * At this point, the gateway address is not one of our own 7285 * addresses or a matching interface route was not found. We 7286 * set the IRE type to lookup based on whether 7287 * this is a host route, a default route or just a prefix. 7288 * 7289 * If an ipif_arg was passed in, then the lookup is based on an 7290 * interface index so MATCH_IRE_ILL is added to match_flags. 7291 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7292 * set as the route being looked up is not a traditional 7293 * interface route. 7294 * Since we do not add gateway route with srcipif, we don't 7295 * expect to find it either. 7296 */ 7297 if (src_ipif != NULL) { 7298 if (ipif_refheld) 7299 ipif_refrele(ipif); 7300 return (ESRCH); 7301 } else { 7302 match_flags &= ~MATCH_IRE_IPIF; 7303 match_flags |= MATCH_IRE_GW; 7304 if (ipif_arg != NULL) 7305 match_flags |= MATCH_IRE_ILL; 7306 if (mask == IP_HOST_MASK) 7307 type = IRE_HOST; 7308 else if (mask == 0) 7309 type = IRE_DEFAULT; 7310 else 7311 type = IRE_PREFIX; 7312 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7313 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 7314 } 7315 } 7316 7317 if (ipif_refheld) 7318 ipif_refrele(ipif); 7319 7320 /* ipif is not refheld anymore */ 7321 if (ire == NULL) 7322 return (ESRCH); 7323 7324 if (ire->ire_flags & RTF_MULTIRT) { 7325 /* 7326 * Invoke the CGTP (multirouting) filtering module 7327 * to remove the dst address from the filtering database. 7328 * Packets coming from that address will no longer be 7329 * filtered to remove duplicates. 7330 */ 7331 if (ip_cgtp_filter_ops != NULL) { 7332 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7333 ire->ire_gateway_addr); 7334 } 7335 ip_cgtp_bcast_delete(ire); 7336 } 7337 7338 ipif = ire->ire_ipif; 7339 /* 7340 * Removing from ipif_saved_ire_mp is not necessary 7341 * when src_ipif being non-NULL. ip_rt_add does not 7342 * save the ires which src_ipif being non-NULL. 7343 */ 7344 if (ipif != NULL && src_ipif == NULL) { 7345 ipif_remove_ire(ipif, ire); 7346 } 7347 if (ioctl_msg) 7348 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7349 ire_delete(ire); 7350 ire_refrele(ire); 7351 return (err); 7352 } 7353 7354 /* 7355 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7356 */ 7357 /* ARGSUSED */ 7358 int 7359 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7360 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7361 { 7362 ipaddr_t dst_addr; 7363 ipaddr_t gw_addr; 7364 ipaddr_t mask; 7365 int error = 0; 7366 mblk_t *mp1; 7367 struct rtentry *rt; 7368 ipif_t *ipif = NULL; 7369 7370 ip1dbg(("ip_siocaddrt:")); 7371 /* Existence of mp1 verified in ip_wput_nondata */ 7372 mp1 = mp->b_cont->b_cont; 7373 rt = (struct rtentry *)mp1->b_rptr; 7374 7375 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7376 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7377 7378 /* 7379 * If the RTF_HOST flag is on, this is a request to assign a gateway 7380 * to a particular host address. In this case, we set the netmask to 7381 * all ones for the particular destination address. Otherwise, 7382 * determine the netmask to be used based on dst_addr and the interfaces 7383 * in use. 7384 */ 7385 if (rt->rt_flags & RTF_HOST) { 7386 mask = IP_HOST_MASK; 7387 } else { 7388 /* 7389 * Note that ip_subnet_mask returns a zero mask in the case of 7390 * default (an all-zeroes address). 7391 */ 7392 mask = ip_subnet_mask(dst_addr, &ipif); 7393 } 7394 7395 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7396 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7397 if (ipif != NULL) 7398 ipif_refrele(ipif); 7399 return (error); 7400 } 7401 7402 /* 7403 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7404 */ 7405 /* ARGSUSED */ 7406 int 7407 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7408 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7409 { 7410 ipaddr_t dst_addr; 7411 ipaddr_t gw_addr; 7412 ipaddr_t mask; 7413 int error; 7414 mblk_t *mp1; 7415 struct rtentry *rt; 7416 ipif_t *ipif = NULL; 7417 7418 ip1dbg(("ip_siocdelrt:")); 7419 /* Existence of mp1 verified in ip_wput_nondata */ 7420 mp1 = mp->b_cont->b_cont; 7421 rt = (struct rtentry *)mp1->b_rptr; 7422 7423 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7424 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7425 7426 /* 7427 * If the RTF_HOST flag is on, this is a request to delete a gateway 7428 * to a particular host address. In this case, we set the netmask to 7429 * all ones for the particular destination address. Otherwise, 7430 * determine the netmask to be used based on dst_addr and the interfaces 7431 * in use. 7432 */ 7433 if (rt->rt_flags & RTF_HOST) { 7434 mask = IP_HOST_MASK; 7435 } else { 7436 /* 7437 * Note that ip_subnet_mask returns a zero mask in the case of 7438 * default (an all-zeroes address). 7439 */ 7440 mask = ip_subnet_mask(dst_addr, &ipif); 7441 } 7442 7443 error = ip_rt_delete(dst_addr, mask, gw_addr, 7444 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7445 B_TRUE, q, mp, ip_process_ioctl); 7446 if (ipif != NULL) 7447 ipif_refrele(ipif); 7448 return (error); 7449 } 7450 7451 /* 7452 * Enqueue the mp onto the ipsq, chained by b_next. 7453 * b_prev stores the function to be executed later, and b_queue the queue 7454 * where this mp originated. 7455 */ 7456 void 7457 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7458 ill_t *pending_ill) 7459 { 7460 conn_t *connp = NULL; 7461 7462 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7463 ASSERT(func != NULL); 7464 7465 mp->b_queue = q; 7466 mp->b_prev = (void *)func; 7467 mp->b_next = NULL; 7468 7469 switch (type) { 7470 case CUR_OP: 7471 if (ipsq->ipsq_mptail != NULL) { 7472 ASSERT(ipsq->ipsq_mphead != NULL); 7473 ipsq->ipsq_mptail->b_next = mp; 7474 } else { 7475 ASSERT(ipsq->ipsq_mphead == NULL); 7476 ipsq->ipsq_mphead = mp; 7477 } 7478 ipsq->ipsq_mptail = mp; 7479 break; 7480 7481 case NEW_OP: 7482 if (ipsq->ipsq_xopq_mptail != NULL) { 7483 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7484 ipsq->ipsq_xopq_mptail->b_next = mp; 7485 } else { 7486 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7487 ipsq->ipsq_xopq_mphead = mp; 7488 } 7489 ipsq->ipsq_xopq_mptail = mp; 7490 break; 7491 default: 7492 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7493 } 7494 7495 if (CONN_Q(q) && pending_ill != NULL) { 7496 connp = Q_TO_CONN(q); 7497 7498 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7499 connp->conn_oper_pending_ill = pending_ill; 7500 } 7501 } 7502 7503 /* 7504 * Return the mp at the head of the ipsq. After emptying the ipsq 7505 * look at the next ioctl, if this ioctl is complete. Otherwise 7506 * return, we will resume when we complete the current ioctl. 7507 * The current ioctl will wait till it gets a response from the 7508 * driver below. 7509 */ 7510 static mblk_t * 7511 ipsq_dq(ipsq_t *ipsq) 7512 { 7513 mblk_t *mp; 7514 7515 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7516 7517 mp = ipsq->ipsq_mphead; 7518 if (mp != NULL) { 7519 ipsq->ipsq_mphead = mp->b_next; 7520 if (ipsq->ipsq_mphead == NULL) 7521 ipsq->ipsq_mptail = NULL; 7522 mp->b_next = NULL; 7523 return (mp); 7524 } 7525 if (ipsq->ipsq_current_ipif != NULL) 7526 return (NULL); 7527 mp = ipsq->ipsq_xopq_mphead; 7528 if (mp != NULL) { 7529 ipsq->ipsq_xopq_mphead = mp->b_next; 7530 if (ipsq->ipsq_xopq_mphead == NULL) 7531 ipsq->ipsq_xopq_mptail = NULL; 7532 mp->b_next = NULL; 7533 return (mp); 7534 } 7535 return (NULL); 7536 } 7537 7538 /* 7539 * Enter the ipsq corresponding to ill, by waiting synchronously till 7540 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7541 * will have to drain completely before ipsq_enter returns success. 7542 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7543 * and the ipsq_exit logic will start the next enqueued ioctl after 7544 * completion of the current ioctl. If 'force' is used, we don't wait 7545 * for the enqueued ioctls. This is needed when a conn_close wants to 7546 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7547 * of an ill can also use this option. But we dont' use it currently. 7548 */ 7549 #define ENTER_SQ_WAIT_TICKS 100 7550 boolean_t 7551 ipsq_enter(ill_t *ill, boolean_t force) 7552 { 7553 ipsq_t *ipsq; 7554 boolean_t waited_enough = B_FALSE; 7555 7556 /* 7557 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7558 * Since the <ill-ipsq> assocs could change while we wait for the 7559 * writer, it is easier to wait on a fixed global rather than try to 7560 * cv_wait on a changing ipsq. 7561 */ 7562 mutex_enter(&ill->ill_lock); 7563 for (;;) { 7564 if (ill->ill_state_flags & ILL_CONDEMNED) { 7565 mutex_exit(&ill->ill_lock); 7566 return (B_FALSE); 7567 } 7568 7569 ipsq = ill->ill_phyint->phyint_ipsq; 7570 mutex_enter(&ipsq->ipsq_lock); 7571 if (ipsq->ipsq_writer == NULL && 7572 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7573 break; 7574 } else if (ipsq->ipsq_writer != NULL) { 7575 mutex_exit(&ipsq->ipsq_lock); 7576 cv_wait(&ill->ill_cv, &ill->ill_lock); 7577 } else { 7578 mutex_exit(&ipsq->ipsq_lock); 7579 if (force) { 7580 (void) cv_timedwait(&ill->ill_cv, 7581 &ill->ill_lock, 7582 lbolt + ENTER_SQ_WAIT_TICKS); 7583 waited_enough = B_TRUE; 7584 continue; 7585 } else { 7586 cv_wait(&ill->ill_cv, &ill->ill_lock); 7587 } 7588 } 7589 } 7590 7591 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7592 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7593 ipsq->ipsq_writer = curthread; 7594 ipsq->ipsq_reentry_cnt++; 7595 #ifdef ILL_DEBUG 7596 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7597 #endif 7598 mutex_exit(&ipsq->ipsq_lock); 7599 mutex_exit(&ill->ill_lock); 7600 return (B_TRUE); 7601 } 7602 7603 /* 7604 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7605 * certain critical operations like plumbing (i.e. most set ioctls), 7606 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7607 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7608 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7609 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7610 * threads executing in the ipsq. Responses from the driver pertain to the 7611 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7612 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7613 * 7614 * If a thread does not want to reenter the ipsq when it is already writer, 7615 * it must make sure that the specified reentry point to be called later 7616 * when the ipsq is empty, nor any code path starting from the specified reentry 7617 * point must never ever try to enter the ipsq again. Otherwise it can lead 7618 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7619 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7620 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7621 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7622 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7623 * ioctl if the current ioctl has completed. If the current ioctl is still 7624 * in progress it simply returns. The current ioctl could be waiting for 7625 * a response from another module (arp_ or the driver or could be waiting for 7626 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7627 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7628 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7629 * ipsq_current_ipif is clear which happens only on ioctl completion. 7630 */ 7631 7632 /* 7633 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7634 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7635 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7636 * completion. 7637 */ 7638 ipsq_t * 7639 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7640 ipsq_func_t func, int type, boolean_t reentry_ok) 7641 { 7642 ipsq_t *ipsq; 7643 7644 /* Only 1 of ipif or ill can be specified */ 7645 ASSERT((ipif != NULL) ^ (ill != NULL)); 7646 if (ipif != NULL) 7647 ill = ipif->ipif_ill; 7648 7649 /* 7650 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7651 * ipsq of an ill can't change when ill_lock is held. 7652 */ 7653 GRAB_CONN_LOCK(q); 7654 mutex_enter(&ill->ill_lock); 7655 ipsq = ill->ill_phyint->phyint_ipsq; 7656 mutex_enter(&ipsq->ipsq_lock); 7657 7658 /* 7659 * 1. Enter the ipsq if we are already writer and reentry is ok. 7660 * (Note: If the caller does not specify reentry_ok then neither 7661 * 'func' nor any of its callees must ever attempt to enter the ipsq 7662 * again. Otherwise it can lead to an infinite loop 7663 * 2. Enter the ipsq if there is no current writer and this attempted 7664 * entry is part of the current ioctl or operation 7665 * 3. Enter the ipsq if there is no current writer and this is a new 7666 * ioctl (or operation) and the ioctl (or operation) queue is 7667 * empty and there is no ioctl (or operation) currently in progress 7668 */ 7669 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7670 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7671 ipsq->ipsq_current_ipif == NULL))) || 7672 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7673 /* Success. */ 7674 ipsq->ipsq_reentry_cnt++; 7675 ipsq->ipsq_writer = curthread; 7676 mutex_exit(&ipsq->ipsq_lock); 7677 mutex_exit(&ill->ill_lock); 7678 RELEASE_CONN_LOCK(q); 7679 #ifdef ILL_DEBUG 7680 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7681 #endif 7682 return (ipsq); 7683 } 7684 7685 ipsq_enq(ipsq, q, mp, func, type, ill); 7686 7687 mutex_exit(&ipsq->ipsq_lock); 7688 mutex_exit(&ill->ill_lock); 7689 RELEASE_CONN_LOCK(q); 7690 return (NULL); 7691 } 7692 7693 /* 7694 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7695 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7696 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7697 * completion. 7698 * 7699 * This function does a refrele on the ipif/ill. 7700 */ 7701 void 7702 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7703 ipsq_func_t func, int type, boolean_t reentry_ok) 7704 { 7705 ipsq_t *ipsq; 7706 7707 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7708 /* 7709 * Caller must have done a refhold on the ipif. ipif_refrele 7710 * happens on the passed ipif. We can do this since we are 7711 * already exclusive, or we won't access ipif henceforth, Both 7712 * this func and caller will just return if we ipsq_try_enter 7713 * fails above. This is needed because func needs to 7714 * see the correct refcount. Eg. removeif can work only then. 7715 */ 7716 if (ipif != NULL) 7717 ipif_refrele(ipif); 7718 else 7719 ill_refrele(ill); 7720 if (ipsq != NULL) { 7721 (*func)(ipsq, q, mp, NULL); 7722 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7723 } 7724 } 7725 7726 /* 7727 * If there are more than ILL_GRP_CNT ills in a group, 7728 * we use kmem alloc'd buffers, else use the stack 7729 */ 7730 #define ILL_GRP_CNT 14 7731 /* 7732 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7733 * Called by a thread that is currently exclusive on this ipsq. 7734 */ 7735 void 7736 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7737 { 7738 queue_t *q; 7739 mblk_t *mp; 7740 ipsq_func_t func; 7741 int next; 7742 ill_t **ill_list = NULL; 7743 size_t ill_list_size = 0; 7744 int cnt = 0; 7745 boolean_t need_ipsq_free = B_FALSE; 7746 7747 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7748 mutex_enter(&ipsq->ipsq_lock); 7749 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7750 if (ipsq->ipsq_reentry_cnt != 1) { 7751 ipsq->ipsq_reentry_cnt--; 7752 mutex_exit(&ipsq->ipsq_lock); 7753 return; 7754 } 7755 7756 mp = ipsq_dq(ipsq); 7757 while (mp != NULL) { 7758 again: 7759 mutex_exit(&ipsq->ipsq_lock); 7760 func = (ipsq_func_t)mp->b_prev; 7761 q = (queue_t *)mp->b_queue; 7762 mp->b_prev = NULL; 7763 mp->b_queue = NULL; 7764 7765 /* 7766 * If 'q' is an conn queue, it is valid, since we did a 7767 * a refhold on the connp, at the start of the ioctl. 7768 * If 'q' is an ill queue, it is valid, since close of an 7769 * ill will clean up the 'ipsq'. 7770 */ 7771 (*func)(ipsq, q, mp, NULL); 7772 7773 mutex_enter(&ipsq->ipsq_lock); 7774 mp = ipsq_dq(ipsq); 7775 } 7776 7777 mutex_exit(&ipsq->ipsq_lock); 7778 7779 /* 7780 * Need to grab the locks in the right order. Need to 7781 * atomically check (under ipsq_lock) that there are no 7782 * messages before relinquishing the ipsq. Also need to 7783 * atomically wakeup waiters on ill_cv while holding ill_lock. 7784 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7785 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7786 * to grab ill_g_lock as writer. 7787 */ 7788 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7789 7790 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7791 if (ipsq->ipsq_refs != 0) { 7792 /* At most 2 ills v4/v6 per phyint */ 7793 cnt = ipsq->ipsq_refs << 1; 7794 ill_list_size = cnt * sizeof (ill_t *); 7795 /* 7796 * If memory allocation fails, we will do the split 7797 * the next time ipsq_exit is called for whatever reason. 7798 * As long as the ipsq_split flag is set the need to 7799 * split is remembered. 7800 */ 7801 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7802 if (ill_list != NULL) 7803 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7804 } 7805 mutex_enter(&ipsq->ipsq_lock); 7806 mp = ipsq_dq(ipsq); 7807 if (mp != NULL) { 7808 /* oops, some message has landed up, we can't get out */ 7809 if (ill_list != NULL) 7810 ill_unlock_ills(ill_list, cnt); 7811 rw_exit(&ill_g_lock); 7812 if (ill_list != NULL) 7813 kmem_free(ill_list, ill_list_size); 7814 ill_list = NULL; 7815 ill_list_size = 0; 7816 cnt = 0; 7817 goto again; 7818 } 7819 7820 /* 7821 * Split only if no ioctl is pending and if memory alloc succeeded 7822 * above. 7823 */ 7824 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7825 ill_list != NULL) { 7826 /* 7827 * No new ill can join this ipsq since we are holding the 7828 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7829 * ipsq. ill_split_ipsq may fail due to memory shortage. 7830 * If so we will retry on the next ipsq_exit. 7831 */ 7832 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7833 } 7834 7835 /* 7836 * We are holding the ipsq lock, hence no new messages can 7837 * land up on the ipsq, and there are no messages currently. 7838 * Now safe to get out. Wake up waiters and relinquish ipsq 7839 * atomically while holding ill locks. 7840 */ 7841 ipsq->ipsq_writer = NULL; 7842 ipsq->ipsq_reentry_cnt--; 7843 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7844 #ifdef ILL_DEBUG 7845 ipsq->ipsq_depth = 0; 7846 #endif 7847 mutex_exit(&ipsq->ipsq_lock); 7848 /* 7849 * For IPMP this should wake up all ills in this ipsq. 7850 * We need to hold the ill_lock while waking up waiters to 7851 * avoid missed wakeups. But there is no need to acquire all 7852 * the ill locks and then wakeup. If we have not acquired all 7853 * the locks (due to memory failure above) ill_signal_ipsq_ills 7854 * wakes up ills one at a time after getting the right ill_lock 7855 */ 7856 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7857 if (ill_list != NULL) 7858 ill_unlock_ills(ill_list, cnt); 7859 if (ipsq->ipsq_refs == 0) 7860 need_ipsq_free = B_TRUE; 7861 rw_exit(&ill_g_lock); 7862 if (ill_list != 0) 7863 kmem_free(ill_list, ill_list_size); 7864 7865 if (need_ipsq_free) { 7866 /* 7867 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7868 * looked up. ipsq can be looked up only thru ill or phyint 7869 * and there are no ills/phyint on this ipsq. 7870 */ 7871 ipsq_delete(ipsq); 7872 } 7873 /* 7874 * Now start any igmp or mld timers that could not be started 7875 * while inside the ipsq. The timers can't be started while inside 7876 * the ipsq, since igmp_start_timers may need to call untimeout() 7877 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7878 * there could be a deadlock since the timeout handlers 7879 * mld_timeout_handler / igmp_timeout_handler also synchronously 7880 * wait in ipsq_enter() trying to get the ipsq. 7881 * 7882 * However there is one exception to the above. If this thread is 7883 * itself the igmp/mld timeout handler thread, then we don't want 7884 * to start any new timer until the current handler is done. The 7885 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7886 * all others pass B_TRUE. 7887 */ 7888 if (start_igmp_timer) { 7889 mutex_enter(&igmp_timer_lock); 7890 next = igmp_deferred_next; 7891 igmp_deferred_next = INFINITY; 7892 mutex_exit(&igmp_timer_lock); 7893 7894 if (next != INFINITY) 7895 igmp_start_timers(next); 7896 } 7897 7898 if (start_mld_timer) { 7899 mutex_enter(&mld_timer_lock); 7900 next = mld_deferred_next; 7901 mld_deferred_next = INFINITY; 7902 mutex_exit(&mld_timer_lock); 7903 7904 if (next != INFINITY) 7905 mld_start_timers(next); 7906 } 7907 } 7908 7909 /* 7910 * The ill is closing. Flush all messages on the ipsq that originated 7911 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7912 * for this ill since ipsq_enter could not have entered until then. 7913 * New messages can't be queued since the CONDEMNED flag is set. 7914 */ 7915 static void 7916 ipsq_flush(ill_t *ill) 7917 { 7918 queue_t *q; 7919 mblk_t *prev; 7920 mblk_t *mp; 7921 mblk_t *mp_next; 7922 ipsq_t *ipsq; 7923 7924 ASSERT(IAM_WRITER_ILL(ill)); 7925 ipsq = ill->ill_phyint->phyint_ipsq; 7926 /* 7927 * Flush any messages sent up by the driver. 7928 */ 7929 mutex_enter(&ipsq->ipsq_lock); 7930 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7931 mp_next = mp->b_next; 7932 q = mp->b_queue; 7933 if (q == ill->ill_rq || q == ill->ill_wq) { 7934 /* Remove the mp from the ipsq */ 7935 if (prev == NULL) 7936 ipsq->ipsq_mphead = mp->b_next; 7937 else 7938 prev->b_next = mp->b_next; 7939 if (ipsq->ipsq_mptail == mp) { 7940 ASSERT(mp_next == NULL); 7941 ipsq->ipsq_mptail = prev; 7942 } 7943 inet_freemsg(mp); 7944 } else { 7945 prev = mp; 7946 } 7947 } 7948 mutex_exit(&ipsq->ipsq_lock); 7949 (void) ipsq_pending_mp_cleanup(ill, NULL); 7950 ipsq_xopq_mp_cleanup(ill, NULL); 7951 ill_pending_mp_cleanup(ill); 7952 } 7953 7954 /* 7955 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7956 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7957 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7958 * time (possible with one port going down for aggr and someone tearing down the 7959 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7960 * to indicate when the cleanup has started (1 ref) and when the cleanup 7961 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7962 * putting 2 ref on ill_inuse_ref. 7963 */ 7964 static void 7965 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7966 { 7967 conn_t *connp; 7968 squeue_t *sqp; 7969 mblk_t *mp; 7970 7971 ASSERT(rx_ring != NULL); 7972 7973 /* Just clean one squeue */ 7974 mutex_enter(&ill->ill_lock); 7975 /* 7976 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7977 * ip_squeue_soft_ring_affinty() will not go 7978 * ahead with assigning rings. 7979 */ 7980 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7981 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7982 /* Some operations pending on the ring. Wait */ 7983 cv_wait(&ill->ill_cv, &ill->ill_lock); 7984 7985 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7986 /* 7987 * Someone already trying to clean 7988 * this squeue or its already been cleaned. 7989 */ 7990 mutex_exit(&ill->ill_lock); 7991 return; 7992 } 7993 sqp = rx_ring->rr_sqp; 7994 7995 if (sqp == NULL) { 7996 /* 7997 * The rx_ring never had a squeue assigned to it. 7998 * We are under ill_lock so we can clean it up 7999 * here itself since no one can get to it. 8000 */ 8001 rx_ring->rr_blank = NULL; 8002 rx_ring->rr_handle = NULL; 8003 rx_ring->rr_sqp = NULL; 8004 rx_ring->rr_ring_state = ILL_RING_FREE; 8005 mutex_exit(&ill->ill_lock); 8006 return; 8007 } 8008 8009 /* Set the state that its being cleaned */ 8010 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8011 ASSERT(sqp != NULL); 8012 mutex_exit(&ill->ill_lock); 8013 8014 /* 8015 * Use the preallocated ill_unbind_conn for this purpose 8016 */ 8017 connp = ill->ill_dls_capab->ill_unbind_conn; 8018 8019 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8020 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8021 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8022 connp->conn_tcp->tcp_closemp_used = 1; 8023 else 8024 connp->conn_tcp->tcp_closemp_used++; 8025 mp = &connp->conn_tcp->tcp_closemp; 8026 CONN_INC_REF(connp); 8027 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8028 8029 mutex_enter(&ill->ill_lock); 8030 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8031 cv_wait(&ill->ill_cv, &ill->ill_lock); 8032 8033 mutex_exit(&ill->ill_lock); 8034 } 8035 8036 static void 8037 ipsq_clean_all(ill_t *ill) 8038 { 8039 int idx; 8040 8041 /* 8042 * No need to clean if poll_capab isn't set for this ill 8043 */ 8044 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8045 return; 8046 8047 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8048 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8049 ipsq_clean_ring(ill, ipr); 8050 } 8051 8052 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8053 } 8054 8055 /* ARGSUSED */ 8056 int 8057 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8058 ip_ioctl_cmd_t *ipip, void *ifreq) 8059 { 8060 ill_t *ill; 8061 struct lifreq *lifr = (struct lifreq *)ifreq; 8062 boolean_t isv6; 8063 conn_t *connp; 8064 8065 connp = Q_TO_CONN(q); 8066 isv6 = connp->conn_af_isv6; 8067 /* 8068 * Set original index. 8069 * Failover and failback move logical interfaces 8070 * from one physical interface to another. The 8071 * original index indicates the parent of a logical 8072 * interface, in other words, the physical interface 8073 * the logical interface will be moved back to on 8074 * failback. 8075 */ 8076 8077 /* 8078 * Don't allow the original index to be changed 8079 * for non-failover addresses, autoconfigured 8080 * addresses, or IPv6 link local addresses. 8081 */ 8082 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8083 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8084 return (EINVAL); 8085 } 8086 /* 8087 * The new original index must be in use by some 8088 * physical interface. 8089 */ 8090 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8091 NULL, NULL); 8092 if (ill == NULL) 8093 return (ENXIO); 8094 ill_refrele(ill); 8095 8096 ipif->ipif_orig_ifindex = lifr->lifr_index; 8097 /* 8098 * When this ipif gets failed back, don't 8099 * preserve the original id, as it is no 8100 * longer applicable. 8101 */ 8102 ipif->ipif_orig_ipifid = 0; 8103 /* 8104 * For IPv4, change the original index of any 8105 * multicast addresses associated with the 8106 * ipif to the new value. 8107 */ 8108 if (!isv6) { 8109 ilm_t *ilm; 8110 8111 mutex_enter(&ipif->ipif_ill->ill_lock); 8112 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8113 ilm = ilm->ilm_next) { 8114 if (ilm->ilm_ipif == ipif) { 8115 ilm->ilm_orig_ifindex = lifr->lifr_index; 8116 } 8117 } 8118 mutex_exit(&ipif->ipif_ill->ill_lock); 8119 } 8120 return (0); 8121 } 8122 8123 /* ARGSUSED */ 8124 int 8125 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8126 ip_ioctl_cmd_t *ipip, void *ifreq) 8127 { 8128 struct lifreq *lifr = (struct lifreq *)ifreq; 8129 8130 /* 8131 * Get the original interface index i.e the one 8132 * before FAILOVER if it ever happened. 8133 */ 8134 lifr->lifr_index = ipif->ipif_orig_ifindex; 8135 return (0); 8136 } 8137 8138 /* 8139 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8140 * refhold and return the associated ipif 8141 */ 8142 int 8143 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8144 { 8145 boolean_t exists; 8146 struct iftun_req *ta; 8147 ipif_t *ipif; 8148 ill_t *ill; 8149 boolean_t isv6; 8150 mblk_t *mp1; 8151 int error; 8152 conn_t *connp; 8153 8154 /* Existence verified in ip_wput_nondata */ 8155 mp1 = mp->b_cont->b_cont; 8156 ta = (struct iftun_req *)mp1->b_rptr; 8157 /* 8158 * Null terminate the string to protect against buffer 8159 * overrun. String was generated by user code and may not 8160 * be trusted. 8161 */ 8162 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8163 8164 connp = Q_TO_CONN(q); 8165 isv6 = connp->conn_af_isv6; 8166 8167 /* Disallows implicit create */ 8168 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8169 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8170 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 8171 if (ipif == NULL) 8172 return (error); 8173 8174 if (ipif->ipif_id != 0) { 8175 /* 8176 * We really don't want to set/get tunnel parameters 8177 * on virtual tunnel interfaces. Only allow the 8178 * base tunnel to do these. 8179 */ 8180 ipif_refrele(ipif); 8181 return (EINVAL); 8182 } 8183 8184 /* 8185 * Send down to tunnel mod for ioctl processing. 8186 * Will finish ioctl in ip_rput_other(). 8187 */ 8188 ill = ipif->ipif_ill; 8189 if (ill->ill_net_type == IRE_LOOPBACK) { 8190 ipif_refrele(ipif); 8191 return (EOPNOTSUPP); 8192 } 8193 8194 if (ill->ill_wq == NULL) { 8195 ipif_refrele(ipif); 8196 return (ENXIO); 8197 } 8198 /* 8199 * Mark the ioctl as coming from an IPv6 interface for 8200 * tun's convenience. 8201 */ 8202 if (ill->ill_isv6) 8203 ta->ifta_flags |= 0x80000000; 8204 *ipifp = ipif; 8205 return (0); 8206 } 8207 8208 /* 8209 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8210 * and return the associated ipif. 8211 * Return value: 8212 * Non zero: An error has occurred. ci may not be filled out. 8213 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8214 * a held ipif in ci.ci_ipif. 8215 */ 8216 int 8217 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8218 cmd_info_t *ci, ipsq_func_t func) 8219 { 8220 sin_t *sin; 8221 sin6_t *sin6; 8222 char *name; 8223 struct ifreq *ifr; 8224 struct lifreq *lifr; 8225 ipif_t *ipif = NULL; 8226 ill_t *ill; 8227 conn_t *connp; 8228 boolean_t isv6; 8229 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8230 boolean_t exists; 8231 int err; 8232 mblk_t *mp1; 8233 zoneid_t zoneid; 8234 8235 if (q->q_next != NULL) { 8236 ill = (ill_t *)q->q_ptr; 8237 isv6 = ill->ill_isv6; 8238 connp = NULL; 8239 zoneid = ALL_ZONES; 8240 } else { 8241 ill = NULL; 8242 connp = Q_TO_CONN(q); 8243 isv6 = connp->conn_af_isv6; 8244 zoneid = connp->conn_zoneid; 8245 if (zoneid == GLOBAL_ZONEID) { 8246 /* global zone can access ipifs in all zones */ 8247 zoneid = ALL_ZONES; 8248 } 8249 } 8250 8251 /* Has been checked in ip_wput_nondata */ 8252 mp1 = mp->b_cont->b_cont; 8253 8254 8255 if (cmd_type == IF_CMD) { 8256 /* This a old style SIOC[GS]IF* command */ 8257 ifr = (struct ifreq *)mp1->b_rptr; 8258 /* 8259 * Null terminate the string to protect against buffer 8260 * overrun. String was generated by user code and may not 8261 * be trusted. 8262 */ 8263 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8264 sin = (sin_t *)&ifr->ifr_addr; 8265 name = ifr->ifr_name; 8266 ci->ci_sin = sin; 8267 ci->ci_sin6 = NULL; 8268 ci->ci_lifr = (struct lifreq *)ifr; 8269 } else { 8270 /* This a new style SIOC[GS]LIF* command */ 8271 ASSERT(cmd_type == LIF_CMD); 8272 lifr = (struct lifreq *)mp1->b_rptr; 8273 /* 8274 * Null terminate the string to protect against buffer 8275 * overrun. String was generated by user code and may not 8276 * be trusted. 8277 */ 8278 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8279 name = lifr->lifr_name; 8280 sin = (sin_t *)&lifr->lifr_addr; 8281 sin6 = (sin6_t *)&lifr->lifr_addr; 8282 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8283 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8284 LIFNAMSIZ); 8285 } 8286 ci->ci_sin = sin; 8287 ci->ci_sin6 = sin6; 8288 ci->ci_lifr = lifr; 8289 } 8290 8291 8292 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8293 /* 8294 * The ioctl will be failed if the ioctl comes down 8295 * an conn stream 8296 */ 8297 if (ill == NULL) { 8298 /* 8299 * Not an ill queue, return EINVAL same as the 8300 * old error code. 8301 */ 8302 return (ENXIO); 8303 } 8304 ipif = ill->ill_ipif; 8305 ipif_refhold(ipif); 8306 } else { 8307 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8308 &exists, isv6, zoneid, 8309 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 8310 if (ipif == NULL) { 8311 if (err == EINPROGRESS) 8312 return (err); 8313 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8314 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8315 /* 8316 * Need to try both v4 and v6 since this 8317 * ioctl can come down either v4 or v6 8318 * socket. The lifreq.lifr_family passed 8319 * down by this ioctl is AF_UNSPEC. 8320 */ 8321 ipif = ipif_lookup_on_name(name, 8322 mi_strlen(name), B_FALSE, &exists, !isv6, 8323 zoneid, (connp == NULL) ? q : 8324 CONNP_TO_WQ(connp), mp, func, &err); 8325 if (err == EINPROGRESS) 8326 return (err); 8327 } 8328 err = 0; /* Ensure we don't use it below */ 8329 } 8330 } 8331 8332 /* 8333 * Old style [GS]IFCMD does not admit IPv6 ipif 8334 */ 8335 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8336 ipif_refrele(ipif); 8337 return (ENXIO); 8338 } 8339 8340 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8341 name[0] == '\0') { 8342 /* 8343 * Handle a or a SIOC?IF* with a null name 8344 * during plumb (on the ill queue before the I_PLINK). 8345 */ 8346 ipif = ill->ill_ipif; 8347 ipif_refhold(ipif); 8348 } 8349 8350 if (ipif == NULL) 8351 return (ENXIO); 8352 8353 /* 8354 * Allow only GET operations if this ipif has been created 8355 * temporarily due to a MOVE operation. 8356 */ 8357 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8358 ipif_refrele(ipif); 8359 return (EINVAL); 8360 } 8361 8362 ci->ci_ipif = ipif; 8363 return (0); 8364 } 8365 8366 /* 8367 * Return the total number of ipifs. 8368 */ 8369 static uint_t 8370 ip_get_numifs(zoneid_t zoneid) 8371 { 8372 uint_t numifs = 0; 8373 ill_t *ill; 8374 ill_walk_context_t ctx; 8375 ipif_t *ipif; 8376 8377 rw_enter(&ill_g_lock, RW_READER); 8378 ill = ILL_START_WALK_V4(&ctx); 8379 8380 while (ill != NULL) { 8381 for (ipif = ill->ill_ipif; ipif != NULL; 8382 ipif = ipif->ipif_next) { 8383 if (ipif->ipif_zoneid == zoneid || 8384 ipif->ipif_zoneid == ALL_ZONES) 8385 numifs++; 8386 } 8387 ill = ill_next(&ctx, ill); 8388 } 8389 rw_exit(&ill_g_lock); 8390 return (numifs); 8391 } 8392 8393 /* 8394 * Return the total number of ipifs. 8395 */ 8396 static uint_t 8397 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8398 { 8399 uint_t numifs = 0; 8400 ill_t *ill; 8401 ipif_t *ipif; 8402 ill_walk_context_t ctx; 8403 8404 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8405 8406 rw_enter(&ill_g_lock, RW_READER); 8407 if (family == AF_INET) 8408 ill = ILL_START_WALK_V4(&ctx); 8409 else if (family == AF_INET6) 8410 ill = ILL_START_WALK_V6(&ctx); 8411 else 8412 ill = ILL_START_WALK_ALL(&ctx); 8413 8414 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8415 for (ipif = ill->ill_ipif; ipif != NULL; 8416 ipif = ipif->ipif_next) { 8417 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8418 !(lifn_flags & LIFC_NOXMIT)) 8419 continue; 8420 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8421 !(lifn_flags & LIFC_TEMPORARY)) 8422 continue; 8423 if (((ipif->ipif_flags & 8424 (IPIF_NOXMIT|IPIF_NOLOCAL| 8425 IPIF_DEPRECATED)) || 8426 (ill->ill_phyint->phyint_flags & 8427 PHYI_LOOPBACK) || 8428 !(ipif->ipif_flags & IPIF_UP)) && 8429 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8430 continue; 8431 8432 if (zoneid != ipif->ipif_zoneid && 8433 ipif->ipif_zoneid != ALL_ZONES && 8434 (zoneid != GLOBAL_ZONEID || 8435 !(lifn_flags & LIFC_ALLZONES))) 8436 continue; 8437 8438 numifs++; 8439 } 8440 } 8441 rw_exit(&ill_g_lock); 8442 return (numifs); 8443 } 8444 8445 uint_t 8446 ip_get_lifsrcofnum(ill_t *ill) 8447 { 8448 uint_t numifs = 0; 8449 ill_t *ill_head = ill; 8450 8451 /* 8452 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8453 * other thread may be trying to relink the ILLs in this usesrc group 8454 * and adjusting the ill_usesrc_grp_next pointers 8455 */ 8456 rw_enter(&ill_g_usesrc_lock, RW_READER); 8457 if ((ill->ill_usesrc_ifindex == 0) && 8458 (ill->ill_usesrc_grp_next != NULL)) { 8459 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8460 ill = ill->ill_usesrc_grp_next) 8461 numifs++; 8462 } 8463 rw_exit(&ill_g_usesrc_lock); 8464 8465 return (numifs); 8466 } 8467 8468 /* Null values are passed in for ipif, sin, and ifreq */ 8469 /* ARGSUSED */ 8470 int 8471 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8472 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8473 { 8474 int *nump; 8475 8476 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8477 8478 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8479 nump = (int *)mp->b_cont->b_cont->b_rptr; 8480 8481 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8482 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8483 return (0); 8484 } 8485 8486 /* Null values are passed in for ipif, sin, and ifreq */ 8487 /* ARGSUSED */ 8488 int 8489 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8490 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8491 { 8492 struct lifnum *lifn; 8493 mblk_t *mp1; 8494 8495 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8496 8497 /* Existence checked in ip_wput_nondata */ 8498 mp1 = mp->b_cont->b_cont; 8499 8500 lifn = (struct lifnum *)mp1->b_rptr; 8501 switch (lifn->lifn_family) { 8502 case AF_UNSPEC: 8503 case AF_INET: 8504 case AF_INET6: 8505 break; 8506 default: 8507 return (EAFNOSUPPORT); 8508 } 8509 8510 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8511 Q_TO_CONN(q)->conn_zoneid); 8512 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8513 return (0); 8514 } 8515 8516 /* ARGSUSED */ 8517 int 8518 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8519 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8520 { 8521 STRUCT_HANDLE(ifconf, ifc); 8522 mblk_t *mp1; 8523 struct iocblk *iocp; 8524 struct ifreq *ifr; 8525 ill_walk_context_t ctx; 8526 ill_t *ill; 8527 ipif_t *ipif; 8528 struct sockaddr_in *sin; 8529 int32_t ifclen; 8530 zoneid_t zoneid; 8531 8532 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8533 8534 ip1dbg(("ip_sioctl_get_ifconf")); 8535 /* Existence verified in ip_wput_nondata */ 8536 mp1 = mp->b_cont->b_cont; 8537 iocp = (struct iocblk *)mp->b_rptr; 8538 zoneid = Q_TO_CONN(q)->conn_zoneid; 8539 8540 /* 8541 * The original SIOCGIFCONF passed in a struct ifconf which specified 8542 * the user buffer address and length into which the list of struct 8543 * ifreqs was to be copied. Since AT&T Streams does not seem to 8544 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8545 * the SIOCGIFCONF operation was redefined to simply provide 8546 * a large output buffer into which we are supposed to jam the ifreq 8547 * array. The same ioctl command code was used, despite the fact that 8548 * both the applications and the kernel code had to change, thus making 8549 * it impossible to support both interfaces. 8550 * 8551 * For reasons not good enough to try to explain, the following 8552 * algorithm is used for deciding what to do with one of these: 8553 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8554 * form with the output buffer coming down as the continuation message. 8555 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8556 * and we have to copy in the ifconf structure to find out how big the 8557 * output buffer is and where to copy out to. Sure no problem... 8558 * 8559 */ 8560 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8561 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8562 int numifs = 0; 8563 size_t ifc_bufsize; 8564 8565 /* 8566 * Must be (better be!) continuation of a TRANSPARENT 8567 * IOCTL. We just copied in the ifconf structure. 8568 */ 8569 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8570 (struct ifconf *)mp1->b_rptr); 8571 8572 /* 8573 * Allocate a buffer to hold requested information. 8574 * 8575 * If ifc_len is larger than what is needed, we only 8576 * allocate what we will use. 8577 * 8578 * If ifc_len is smaller than what is needed, return 8579 * EINVAL. 8580 * 8581 * XXX: the ill_t structure can hava 2 counters, for 8582 * v4 and v6 (not just ill_ipif_up_count) to store the 8583 * number of interfaces for a device, so we don't need 8584 * to count them here... 8585 */ 8586 numifs = ip_get_numifs(zoneid); 8587 8588 ifclen = STRUCT_FGET(ifc, ifc_len); 8589 ifc_bufsize = numifs * sizeof (struct ifreq); 8590 if (ifc_bufsize > ifclen) { 8591 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8592 /* old behaviour */ 8593 return (EINVAL); 8594 } else { 8595 ifc_bufsize = ifclen; 8596 } 8597 } 8598 8599 mp1 = mi_copyout_alloc(q, mp, 8600 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8601 if (mp1 == NULL) 8602 return (ENOMEM); 8603 8604 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8605 } 8606 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8607 /* 8608 * the SIOCGIFCONF ioctl only knows about 8609 * IPv4 addresses, so don't try to tell 8610 * it about interfaces with IPv6-only 8611 * addresses. (Last parm 'isv6' is B_FALSE) 8612 */ 8613 8614 ifr = (struct ifreq *)mp1->b_rptr; 8615 8616 rw_enter(&ill_g_lock, RW_READER); 8617 ill = ILL_START_WALK_V4(&ctx); 8618 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8619 for (ipif = ill->ill_ipif; ipif != NULL; 8620 ipif = ipif->ipif_next) { 8621 if (zoneid != ipif->ipif_zoneid && 8622 ipif->ipif_zoneid != ALL_ZONES) 8623 continue; 8624 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8625 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8626 /* old behaviour */ 8627 rw_exit(&ill_g_lock); 8628 return (EINVAL); 8629 } else { 8630 goto if_copydone; 8631 } 8632 } 8633 (void) ipif_get_name(ipif, 8634 ifr->ifr_name, 8635 sizeof (ifr->ifr_name)); 8636 sin = (sin_t *)&ifr->ifr_addr; 8637 *sin = sin_null; 8638 sin->sin_family = AF_INET; 8639 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8640 ifr++; 8641 } 8642 } 8643 if_copydone: 8644 rw_exit(&ill_g_lock); 8645 mp1->b_wptr = (uchar_t *)ifr; 8646 8647 if (STRUCT_BUF(ifc) != NULL) { 8648 STRUCT_FSET(ifc, ifc_len, 8649 (int)((uchar_t *)ifr - mp1->b_rptr)); 8650 } 8651 return (0); 8652 } 8653 8654 /* 8655 * Get the interfaces using the address hosted on the interface passed in, 8656 * as a source adddress 8657 */ 8658 /* ARGSUSED */ 8659 int 8660 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8661 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8662 { 8663 mblk_t *mp1; 8664 ill_t *ill, *ill_head; 8665 ipif_t *ipif, *orig_ipif; 8666 int numlifs = 0; 8667 size_t lifs_bufsize, lifsmaxlen; 8668 struct lifreq *lifr; 8669 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8670 uint_t ifindex; 8671 zoneid_t zoneid; 8672 int err = 0; 8673 boolean_t isv6 = B_FALSE; 8674 struct sockaddr_in *sin; 8675 struct sockaddr_in6 *sin6; 8676 8677 STRUCT_HANDLE(lifsrcof, lifs); 8678 8679 ASSERT(q->q_next == NULL); 8680 8681 zoneid = Q_TO_CONN(q)->conn_zoneid; 8682 8683 /* Existence verified in ip_wput_nondata */ 8684 mp1 = mp->b_cont->b_cont; 8685 8686 /* 8687 * Must be (better be!) continuation of a TRANSPARENT 8688 * IOCTL. We just copied in the lifsrcof structure. 8689 */ 8690 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8691 (struct lifsrcof *)mp1->b_rptr); 8692 8693 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8694 return (EINVAL); 8695 8696 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8697 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8698 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8699 ip_process_ioctl, &err); 8700 if (ipif == NULL) { 8701 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8702 ifindex)); 8703 return (err); 8704 } 8705 8706 8707 /* Allocate a buffer to hold requested information */ 8708 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8709 lifs_bufsize = numlifs * sizeof (struct lifreq); 8710 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8711 /* The actual size needed is always returned in lifs_len */ 8712 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8713 8714 /* If the amount we need is more than what is passed in, abort */ 8715 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8716 ipif_refrele(ipif); 8717 return (0); 8718 } 8719 8720 mp1 = mi_copyout_alloc(q, mp, 8721 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8722 if (mp1 == NULL) { 8723 ipif_refrele(ipif); 8724 return (ENOMEM); 8725 } 8726 8727 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8728 bzero(mp1->b_rptr, lifs_bufsize); 8729 8730 lifr = (struct lifreq *)mp1->b_rptr; 8731 8732 ill = ill_head = ipif->ipif_ill; 8733 orig_ipif = ipif; 8734 8735 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8736 rw_enter(&ill_g_usesrc_lock, RW_READER); 8737 rw_enter(&ill_g_lock, RW_READER); 8738 8739 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8740 for (; (ill != NULL) && (ill != ill_head); 8741 ill = ill->ill_usesrc_grp_next) { 8742 8743 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8744 break; 8745 8746 ipif = ill->ill_ipif; 8747 (void) ipif_get_name(ipif, 8748 lifr->lifr_name, sizeof (lifr->lifr_name)); 8749 if (ipif->ipif_isv6) { 8750 sin6 = (sin6_t *)&lifr->lifr_addr; 8751 *sin6 = sin6_null; 8752 sin6->sin6_family = AF_INET6; 8753 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8754 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8755 &ipif->ipif_v6net_mask); 8756 } else { 8757 sin = (sin_t *)&lifr->lifr_addr; 8758 *sin = sin_null; 8759 sin->sin_family = AF_INET; 8760 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8761 lifr->lifr_addrlen = ip_mask_to_plen( 8762 ipif->ipif_net_mask); 8763 } 8764 lifr++; 8765 } 8766 rw_exit(&ill_g_usesrc_lock); 8767 rw_exit(&ill_g_lock); 8768 ipif_refrele(orig_ipif); 8769 mp1->b_wptr = (uchar_t *)lifr; 8770 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8771 8772 return (0); 8773 } 8774 8775 /* ARGSUSED */ 8776 int 8777 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8778 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8779 { 8780 mblk_t *mp1; 8781 int list; 8782 ill_t *ill; 8783 ipif_t *ipif; 8784 int flags; 8785 int numlifs = 0; 8786 size_t lifc_bufsize; 8787 struct lifreq *lifr; 8788 sa_family_t family; 8789 struct sockaddr_in *sin; 8790 struct sockaddr_in6 *sin6; 8791 ill_walk_context_t ctx; 8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8793 int32_t lifclen; 8794 zoneid_t zoneid; 8795 STRUCT_HANDLE(lifconf, lifc); 8796 8797 ip1dbg(("ip_sioctl_get_lifconf")); 8798 8799 ASSERT(q->q_next == NULL); 8800 8801 zoneid = Q_TO_CONN(q)->conn_zoneid; 8802 8803 /* Existence verified in ip_wput_nondata */ 8804 mp1 = mp->b_cont->b_cont; 8805 8806 /* 8807 * An extended version of SIOCGIFCONF that takes an 8808 * additional address family and flags field. 8809 * AF_UNSPEC retrieve both IPv4 and IPv6. 8810 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8811 * interfaces are omitted. 8812 * Similarly, IPIF_TEMPORARY interfaces are omitted 8813 * unless LIFC_TEMPORARY is specified. 8814 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8815 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8816 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8817 * has priority over LIFC_NOXMIT. 8818 */ 8819 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8820 8821 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8822 return (EINVAL); 8823 8824 /* 8825 * Must be (better be!) continuation of a TRANSPARENT 8826 * IOCTL. We just copied in the lifconf structure. 8827 */ 8828 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8829 8830 family = STRUCT_FGET(lifc, lifc_family); 8831 flags = STRUCT_FGET(lifc, lifc_flags); 8832 8833 switch (family) { 8834 case AF_UNSPEC: 8835 /* 8836 * walk all ILL's. 8837 */ 8838 list = MAX_G_HEADS; 8839 break; 8840 case AF_INET: 8841 /* 8842 * walk only IPV4 ILL's. 8843 */ 8844 list = IP_V4_G_HEAD; 8845 break; 8846 case AF_INET6: 8847 /* 8848 * walk only IPV6 ILL's. 8849 */ 8850 list = IP_V6_G_HEAD; 8851 break; 8852 default: 8853 return (EAFNOSUPPORT); 8854 } 8855 8856 /* 8857 * Allocate a buffer to hold requested information. 8858 * 8859 * If lifc_len is larger than what is needed, we only 8860 * allocate what we will use. 8861 * 8862 * If lifc_len is smaller than what is needed, return 8863 * EINVAL. 8864 */ 8865 numlifs = ip_get_numlifs(family, flags, zoneid); 8866 lifc_bufsize = numlifs * sizeof (struct lifreq); 8867 lifclen = STRUCT_FGET(lifc, lifc_len); 8868 if (lifc_bufsize > lifclen) { 8869 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8870 return (EINVAL); 8871 else 8872 lifc_bufsize = lifclen; 8873 } 8874 8875 mp1 = mi_copyout_alloc(q, mp, 8876 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8877 if (mp1 == NULL) 8878 return (ENOMEM); 8879 8880 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8881 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8882 8883 lifr = (struct lifreq *)mp1->b_rptr; 8884 8885 rw_enter(&ill_g_lock, RW_READER); 8886 ill = ill_first(list, list, &ctx); 8887 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8888 for (ipif = ill->ill_ipif; ipif != NULL; 8889 ipif = ipif->ipif_next) { 8890 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8891 !(flags & LIFC_NOXMIT)) 8892 continue; 8893 8894 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8895 !(flags & LIFC_TEMPORARY)) 8896 continue; 8897 8898 if (((ipif->ipif_flags & 8899 (IPIF_NOXMIT|IPIF_NOLOCAL| 8900 IPIF_DEPRECATED)) || 8901 (ill->ill_phyint->phyint_flags & 8902 PHYI_LOOPBACK) || 8903 !(ipif->ipif_flags & IPIF_UP)) && 8904 (flags & LIFC_EXTERNAL_SOURCE)) 8905 continue; 8906 8907 if (zoneid != ipif->ipif_zoneid && 8908 ipif->ipif_zoneid != ALL_ZONES && 8909 (zoneid != GLOBAL_ZONEID || 8910 !(flags & LIFC_ALLZONES))) 8911 continue; 8912 8913 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8914 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8915 rw_exit(&ill_g_lock); 8916 return (EINVAL); 8917 } else { 8918 goto lif_copydone; 8919 } 8920 } 8921 8922 (void) ipif_get_name(ipif, 8923 lifr->lifr_name, 8924 sizeof (lifr->lifr_name)); 8925 if (ipif->ipif_isv6) { 8926 sin6 = (sin6_t *)&lifr->lifr_addr; 8927 *sin6 = sin6_null; 8928 sin6->sin6_family = AF_INET6; 8929 sin6->sin6_addr = 8930 ipif->ipif_v6lcl_addr; 8931 lifr->lifr_addrlen = 8932 ip_mask_to_plen_v6( 8933 &ipif->ipif_v6net_mask); 8934 } else { 8935 sin = (sin_t *)&lifr->lifr_addr; 8936 *sin = sin_null; 8937 sin->sin_family = AF_INET; 8938 sin->sin_addr.s_addr = 8939 ipif->ipif_lcl_addr; 8940 lifr->lifr_addrlen = 8941 ip_mask_to_plen( 8942 ipif->ipif_net_mask); 8943 } 8944 lifr++; 8945 } 8946 } 8947 lif_copydone: 8948 rw_exit(&ill_g_lock); 8949 8950 mp1->b_wptr = (uchar_t *)lifr; 8951 if (STRUCT_BUF(lifc) != NULL) { 8952 STRUCT_FSET(lifc, lifc_len, 8953 (int)((uchar_t *)lifr - mp1->b_rptr)); 8954 } 8955 return (0); 8956 } 8957 8958 /* ARGSUSED */ 8959 int 8960 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8961 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8962 { 8963 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8964 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8965 return (0); 8966 } 8967 8968 static void 8969 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8970 { 8971 ip6_asp_t *table; 8972 size_t table_size; 8973 mblk_t *data_mp; 8974 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8975 8976 /* These two ioctls are I_STR only */ 8977 if (iocp->ioc_count == TRANSPARENT) { 8978 miocnak(q, mp, 0, EINVAL); 8979 return; 8980 } 8981 8982 data_mp = mp->b_cont; 8983 if (data_mp == NULL) { 8984 /* The user passed us a NULL argument */ 8985 table = NULL; 8986 table_size = iocp->ioc_count; 8987 } else { 8988 /* 8989 * The user provided a table. The stream head 8990 * may have copied in the user data in chunks, 8991 * so make sure everything is pulled up 8992 * properly. 8993 */ 8994 if (MBLKL(data_mp) < iocp->ioc_count) { 8995 mblk_t *new_data_mp; 8996 if ((new_data_mp = msgpullup(data_mp, -1)) == 8997 NULL) { 8998 miocnak(q, mp, 0, ENOMEM); 8999 return; 9000 } 9001 freemsg(data_mp); 9002 data_mp = new_data_mp; 9003 mp->b_cont = data_mp; 9004 } 9005 table = (ip6_asp_t *)data_mp->b_rptr; 9006 table_size = iocp->ioc_count; 9007 } 9008 9009 switch (iocp->ioc_cmd) { 9010 case SIOCGIP6ADDRPOLICY: 9011 iocp->ioc_rval = ip6_asp_get(table, table_size); 9012 if (iocp->ioc_rval == -1) 9013 iocp->ioc_error = EINVAL; 9014 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9015 else if (table != NULL && 9016 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9017 ip6_asp_t *src = table; 9018 ip6_asp32_t *dst = (void *)table; 9019 int count = table_size / sizeof (ip6_asp_t); 9020 int i; 9021 9022 /* 9023 * We need to do an in-place shrink of the array 9024 * to match the alignment attributes of the 9025 * 32-bit ABI looking at it. 9026 */ 9027 /* LINTED: logical expression always true: op "||" */ 9028 ASSERT(sizeof (*src) > sizeof (*dst)); 9029 for (i = 1; i < count; i++) 9030 bcopy(src + i, dst + i, sizeof (*dst)); 9031 } 9032 #endif 9033 break; 9034 9035 case SIOCSIP6ADDRPOLICY: 9036 ASSERT(mp->b_prev == NULL); 9037 mp->b_prev = (void *)q; 9038 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9039 /* 9040 * We pass in the datamodel here so that the ip6_asp_replace() 9041 * routine can handle converting from 32-bit to native formats 9042 * where necessary. 9043 * 9044 * A better way to handle this might be to convert the inbound 9045 * data structure here, and hang it off a new 'mp'; thus the 9046 * ip6_asp_replace() logic would always be dealing with native 9047 * format data structures.. 9048 * 9049 * (An even simpler way to handle these ioctls is to just 9050 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9051 * and just recompile everything that depends on it.) 9052 */ 9053 #endif 9054 ip6_asp_replace(mp, table, table_size, B_FALSE, 9055 iocp->ioc_flag & IOC_MODELS); 9056 return; 9057 } 9058 9059 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9060 qreply(q, mp); 9061 } 9062 9063 static void 9064 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9065 { 9066 mblk_t *data_mp; 9067 struct dstinforeq *dir; 9068 uint8_t *end, *cur; 9069 in6_addr_t *daddr, *saddr; 9070 ipaddr_t v4daddr; 9071 ire_t *ire; 9072 char *slabel, *dlabel; 9073 boolean_t isipv4; 9074 int match_ire; 9075 ill_t *dst_ill; 9076 ipif_t *src_ipif, *ire_ipif; 9077 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9078 zoneid_t zoneid; 9079 9080 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9081 zoneid = Q_TO_CONN(q)->conn_zoneid; 9082 9083 /* 9084 * This ioctl is I_STR only, and must have a 9085 * data mblk following the M_IOCTL mblk. 9086 */ 9087 data_mp = mp->b_cont; 9088 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9089 miocnak(q, mp, 0, EINVAL); 9090 return; 9091 } 9092 9093 if (MBLKL(data_mp) < iocp->ioc_count) { 9094 mblk_t *new_data_mp; 9095 9096 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9097 miocnak(q, mp, 0, ENOMEM); 9098 return; 9099 } 9100 freemsg(data_mp); 9101 data_mp = new_data_mp; 9102 mp->b_cont = data_mp; 9103 } 9104 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9105 9106 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9107 end - cur >= sizeof (struct dstinforeq); 9108 cur += sizeof (struct dstinforeq)) { 9109 dir = (struct dstinforeq *)cur; 9110 daddr = &dir->dir_daddr; 9111 saddr = &dir->dir_saddr; 9112 9113 /* 9114 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9115 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9116 * and ipif_select_source[_v6]() do not. 9117 */ 9118 dir->dir_dscope = ip_addr_scope_v6(daddr); 9119 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 9120 9121 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9122 if (isipv4) { 9123 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9124 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9125 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9126 } else { 9127 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9128 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9129 } 9130 if (ire == NULL) { 9131 dir->dir_dreachable = 0; 9132 9133 /* move on to next dst addr */ 9134 continue; 9135 } 9136 dir->dir_dreachable = 1; 9137 9138 ire_ipif = ire->ire_ipif; 9139 if (ire_ipif == NULL) 9140 goto next_dst; 9141 9142 /* 9143 * We expect to get back an interface ire or a 9144 * gateway ire cache entry. For both types, the 9145 * output interface is ire_ipif->ipif_ill. 9146 */ 9147 dst_ill = ire_ipif->ipif_ill; 9148 dir->dir_dmactype = dst_ill->ill_mactype; 9149 9150 if (isipv4) { 9151 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9152 } else { 9153 src_ipif = ipif_select_source_v6(dst_ill, 9154 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9155 zoneid); 9156 } 9157 if (src_ipif == NULL) 9158 goto next_dst; 9159 9160 *saddr = src_ipif->ipif_v6lcl_addr; 9161 dir->dir_sscope = ip_addr_scope_v6(saddr); 9162 slabel = ip6_asp_lookup(saddr, NULL); 9163 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9164 dir->dir_sdeprecated = 9165 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9166 ipif_refrele(src_ipif); 9167 next_dst: 9168 ire_refrele(ire); 9169 } 9170 miocack(q, mp, iocp->ioc_count, 0); 9171 } 9172 9173 9174 /* 9175 * Check if this is an address assigned to this machine. 9176 * Skips interfaces that are down by using ire checks. 9177 * Translates mapped addresses to v4 addresses and then 9178 * treats them as such, returning true if the v4 address 9179 * associated with this mapped address is configured. 9180 * Note: Applications will have to be careful what they do 9181 * with the response; use of mapped addresses limits 9182 * what can be done with the socket, especially with 9183 * respect to socket options and ioctls - neither IPv4 9184 * options nor IPv6 sticky options/ancillary data options 9185 * may be used. 9186 */ 9187 /* ARGSUSED */ 9188 int 9189 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9190 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9191 { 9192 struct sioc_addrreq *sia; 9193 sin_t *sin; 9194 ire_t *ire; 9195 mblk_t *mp1; 9196 zoneid_t zoneid; 9197 9198 ip1dbg(("ip_sioctl_tmyaddr")); 9199 9200 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9201 zoneid = Q_TO_CONN(q)->conn_zoneid; 9202 9203 /* Existence verified in ip_wput_nondata */ 9204 mp1 = mp->b_cont->b_cont; 9205 sia = (struct sioc_addrreq *)mp1->b_rptr; 9206 sin = (sin_t *)&sia->sa_addr; 9207 switch (sin->sin_family) { 9208 case AF_INET6: { 9209 sin6_t *sin6 = (sin6_t *)sin; 9210 9211 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9212 ipaddr_t v4_addr; 9213 9214 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9215 v4_addr); 9216 ire = ire_ctable_lookup(v4_addr, 0, 9217 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9218 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9219 } else { 9220 in6_addr_t v6addr; 9221 9222 v6addr = sin6->sin6_addr; 9223 ire = ire_ctable_lookup_v6(&v6addr, 0, 9224 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9225 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9226 } 9227 break; 9228 } 9229 case AF_INET: { 9230 ipaddr_t v4addr; 9231 9232 v4addr = sin->sin_addr.s_addr; 9233 ire = ire_ctable_lookup(v4addr, 0, 9234 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9235 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9236 break; 9237 } 9238 default: 9239 return (EAFNOSUPPORT); 9240 } 9241 if (ire != NULL) { 9242 sia->sa_res = 1; 9243 ire_refrele(ire); 9244 } else { 9245 sia->sa_res = 0; 9246 } 9247 return (0); 9248 } 9249 9250 /* 9251 * Check if this is an address assigned on-link i.e. neighbor, 9252 * and makes sure it's reachable from the current zone. 9253 * Returns true for my addresses as well. 9254 * Translates mapped addresses to v4 addresses and then 9255 * treats them as such, returning true if the v4 address 9256 * associated with this mapped address is configured. 9257 * Note: Applications will have to be careful what they do 9258 * with the response; use of mapped addresses limits 9259 * what can be done with the socket, especially with 9260 * respect to socket options and ioctls - neither IPv4 9261 * options nor IPv6 sticky options/ancillary data options 9262 * may be used. 9263 */ 9264 /* ARGSUSED */ 9265 int 9266 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9267 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9268 { 9269 struct sioc_addrreq *sia; 9270 sin_t *sin; 9271 mblk_t *mp1; 9272 ire_t *ire = NULL; 9273 zoneid_t zoneid; 9274 9275 ip1dbg(("ip_sioctl_tonlink")); 9276 9277 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9278 zoneid = Q_TO_CONN(q)->conn_zoneid; 9279 9280 /* Existence verified in ip_wput_nondata */ 9281 mp1 = mp->b_cont->b_cont; 9282 sia = (struct sioc_addrreq *)mp1->b_rptr; 9283 sin = (sin_t *)&sia->sa_addr; 9284 9285 /* 9286 * Match addresses with a zero gateway field to avoid 9287 * routes going through a router. 9288 * Exclude broadcast and multicast addresses. 9289 */ 9290 switch (sin->sin_family) { 9291 case AF_INET6: { 9292 sin6_t *sin6 = (sin6_t *)sin; 9293 9294 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9295 ipaddr_t v4_addr; 9296 9297 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9298 v4_addr); 9299 if (!CLASSD(v4_addr)) { 9300 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9301 NULL, NULL, zoneid, NULL, 9302 MATCH_IRE_GW); 9303 } 9304 } else { 9305 in6_addr_t v6addr; 9306 in6_addr_t v6gw; 9307 9308 v6addr = sin6->sin6_addr; 9309 v6gw = ipv6_all_zeros; 9310 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9311 ire = ire_route_lookup_v6(&v6addr, 0, 9312 &v6gw, 0, NULL, NULL, zoneid, 9313 NULL, MATCH_IRE_GW); 9314 } 9315 } 9316 break; 9317 } 9318 case AF_INET: { 9319 ipaddr_t v4addr; 9320 9321 v4addr = sin->sin_addr.s_addr; 9322 if (!CLASSD(v4addr)) { 9323 ire = ire_route_lookup(v4addr, 0, 0, 0, 9324 NULL, NULL, zoneid, NULL, 9325 MATCH_IRE_GW); 9326 } 9327 break; 9328 } 9329 default: 9330 return (EAFNOSUPPORT); 9331 } 9332 sia->sa_res = 0; 9333 if (ire != NULL) { 9334 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9335 IRE_LOCAL|IRE_LOOPBACK)) { 9336 sia->sa_res = 1; 9337 } 9338 ire_refrele(ire); 9339 } 9340 return (0); 9341 } 9342 9343 /* 9344 * TBD: implement when kernel maintaines a list of site prefixes. 9345 */ 9346 /* ARGSUSED */ 9347 int 9348 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9349 ip_ioctl_cmd_t *ipip, void *ifreq) 9350 { 9351 return (ENXIO); 9352 } 9353 9354 /* ARGSUSED */ 9355 int 9356 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9357 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9358 { 9359 ill_t *ill; 9360 mblk_t *mp1; 9361 conn_t *connp; 9362 boolean_t success; 9363 9364 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9365 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9366 /* ioctl comes down on an conn */ 9367 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9368 connp = Q_TO_CONN(q); 9369 9370 mp->b_datap->db_type = M_IOCTL; 9371 9372 /* 9373 * Send down a copy. (copymsg does not copy b_next/b_prev). 9374 * The original mp contains contaminated b_next values due to 'mi', 9375 * which is needed to do the mi_copy_done. Unfortunately if we 9376 * send down the original mblk itself and if we are popped due to an 9377 * an unplumb before the response comes back from tunnel, 9378 * the streamhead (which does a freemsg) will see this contaminated 9379 * message and the assertion in freemsg about non-null b_next/b_prev 9380 * will panic a DEBUG kernel. 9381 */ 9382 mp1 = copymsg(mp); 9383 if (mp1 == NULL) 9384 return (ENOMEM); 9385 9386 ill = ipif->ipif_ill; 9387 mutex_enter(&connp->conn_lock); 9388 mutex_enter(&ill->ill_lock); 9389 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9390 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9391 mp, 0); 9392 } else { 9393 success = ill_pending_mp_add(ill, connp, mp); 9394 } 9395 mutex_exit(&ill->ill_lock); 9396 mutex_exit(&connp->conn_lock); 9397 9398 if (success) { 9399 ip1dbg(("sending down tunparam request ")); 9400 putnext(ill->ill_wq, mp1); 9401 return (EINPROGRESS); 9402 } else { 9403 /* The conn has started closing */ 9404 freemsg(mp1); 9405 return (EINTR); 9406 } 9407 } 9408 9409 static int 9410 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9411 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9412 { 9413 mblk_t *mp1; 9414 mblk_t *mp2; 9415 mblk_t *pending_mp; 9416 ipaddr_t ipaddr; 9417 area_t *area; 9418 struct iocblk *iocp; 9419 conn_t *connp; 9420 struct arpreq *ar; 9421 struct xarpreq *xar; 9422 boolean_t success; 9423 int flags, alength; 9424 char *lladdr; 9425 9426 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9427 connp = Q_TO_CONN(q); 9428 9429 iocp = (struct iocblk *)mp->b_rptr; 9430 /* 9431 * ill has already been set depending on whether 9432 * bsd style or interface style ioctl. 9433 */ 9434 ASSERT(ill != NULL); 9435 9436 /* 9437 * Is this one of the new SIOC*XARP ioctls? 9438 */ 9439 if (x_arp_ioctl) { 9440 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9441 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9442 ar = NULL; 9443 9444 flags = xar->xarp_flags; 9445 lladdr = LLADDR(&xar->xarp_ha); 9446 /* 9447 * Validate against user's link layer address length 9448 * input and name and addr length limits. 9449 */ 9450 alength = ill->ill_phys_addr_length; 9451 if (iocp->ioc_cmd == SIOCSXARP) { 9452 if (alength != xar->xarp_ha.sdl_alen || 9453 (alength + xar->xarp_ha.sdl_nlen > 9454 sizeof (xar->xarp_ha.sdl_data))) 9455 return (EINVAL); 9456 } 9457 } else { 9458 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9459 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9460 xar = NULL; 9461 9462 flags = ar->arp_flags; 9463 lladdr = ar->arp_ha.sa_data; 9464 /* 9465 * Theoretically, the sa_family could tell us what link 9466 * layer type this operation is trying to deal with. By 9467 * common usage AF_UNSPEC means ethernet. We'll assume 9468 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9469 * for now. Our new SIOC*XARP ioctls can be used more 9470 * generally. 9471 * 9472 * If the underlying media happens to have a non 6 byte 9473 * address, arp module will fail set/get, but the del 9474 * operation will succeed. 9475 */ 9476 alength = 6; 9477 if ((iocp->ioc_cmd != SIOCDARP) && 9478 (alength != ill->ill_phys_addr_length)) { 9479 return (EINVAL); 9480 } 9481 } 9482 9483 /* 9484 * We are going to pass up to ARP a packet chain that looks 9485 * like: 9486 * 9487 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9488 * 9489 * Get a copy of the original IOCTL mblk to head the chain, 9490 * to be sent up (in mp1). Also get another copy to store 9491 * in the ill_pending_mp list, for matching the response 9492 * when it comes back from ARP. 9493 */ 9494 mp1 = copyb(mp); 9495 pending_mp = copymsg(mp); 9496 if (mp1 == NULL || pending_mp == NULL) { 9497 if (mp1 != NULL) 9498 freeb(mp1); 9499 if (pending_mp != NULL) 9500 inet_freemsg(pending_mp); 9501 return (ENOMEM); 9502 } 9503 9504 ipaddr = sin->sin_addr.s_addr; 9505 9506 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9507 (caddr_t)&ipaddr); 9508 if (mp2 == NULL) { 9509 freeb(mp1); 9510 inet_freemsg(pending_mp); 9511 return (ENOMEM); 9512 } 9513 /* Put together the chain. */ 9514 mp1->b_cont = mp2; 9515 mp1->b_datap->db_type = M_IOCTL; 9516 mp2->b_cont = mp; 9517 mp2->b_datap->db_type = M_DATA; 9518 9519 iocp = (struct iocblk *)mp1->b_rptr; 9520 9521 /* 9522 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9523 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9524 * cp_private field (or cp_rval on 32-bit systems) in place of the 9525 * ioc_count field; set ioc_count to be correct. 9526 */ 9527 iocp->ioc_count = MBLKL(mp1->b_cont); 9528 9529 /* 9530 * Set the proper command in the ARP message. 9531 * Convert the SIOC{G|S|D}ARP calls into our 9532 * AR_ENTRY_xxx calls. 9533 */ 9534 area = (area_t *)mp2->b_rptr; 9535 switch (iocp->ioc_cmd) { 9536 case SIOCDARP: 9537 case SIOCDXARP: 9538 /* 9539 * We defer deleting the corresponding IRE until 9540 * we return from arp. 9541 */ 9542 area->area_cmd = AR_ENTRY_DELETE; 9543 area->area_proto_mask_offset = 0; 9544 break; 9545 case SIOCGARP: 9546 case SIOCGXARP: 9547 area->area_cmd = AR_ENTRY_SQUERY; 9548 area->area_proto_mask_offset = 0; 9549 break; 9550 case SIOCSARP: 9551 case SIOCSXARP: { 9552 /* 9553 * Delete the corresponding ire to make sure IP will 9554 * pick up any change from arp. 9555 */ 9556 if (!if_arp_ioctl) { 9557 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9558 break; 9559 } else { 9560 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9561 if (ipif != NULL) { 9562 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9563 ipif_refrele(ipif); 9564 } 9565 break; 9566 } 9567 } 9568 } 9569 iocp->ioc_cmd = area->area_cmd; 9570 9571 /* 9572 * Before sending 'mp' to ARP, we have to clear the b_next 9573 * and b_prev. Otherwise if STREAMS encounters such a message 9574 * in freemsg(), (because ARP can close any time) it can cause 9575 * a panic. But mi code needs the b_next and b_prev values of 9576 * mp->b_cont, to complete the ioctl. So we store it here 9577 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9578 * when the response comes down from ARP. 9579 */ 9580 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9581 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9582 mp->b_cont->b_next = NULL; 9583 mp->b_cont->b_prev = NULL; 9584 9585 mutex_enter(&connp->conn_lock); 9586 mutex_enter(&ill->ill_lock); 9587 /* conn has not yet started closing, hence this can't fail */ 9588 success = ill_pending_mp_add(ill, connp, pending_mp); 9589 ASSERT(success); 9590 mutex_exit(&ill->ill_lock); 9591 mutex_exit(&connp->conn_lock); 9592 9593 /* 9594 * Fill in the rest of the ARP operation fields. 9595 */ 9596 area->area_hw_addr_length = alength; 9597 bcopy(lladdr, 9598 (char *)area + area->area_hw_addr_offset, 9599 area->area_hw_addr_length); 9600 /* Translate the flags. */ 9601 if (flags & ATF_PERM) 9602 area->area_flags |= ACE_F_PERMANENT; 9603 if (flags & ATF_PUBL) 9604 area->area_flags |= ACE_F_PUBLISH; 9605 if (flags & ATF_AUTHORITY) 9606 area->area_flags |= ACE_F_AUTHORITY; 9607 9608 /* 9609 * Up to ARP it goes. The response will come 9610 * back in ip_wput as an M_IOCACK message, and 9611 * will be handed to ip_sioctl_iocack for 9612 * completion. 9613 */ 9614 putnext(ill->ill_rq, mp1); 9615 return (EINPROGRESS); 9616 } 9617 9618 /* ARGSUSED */ 9619 int 9620 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9621 ip_ioctl_cmd_t *ipip, void *ifreq) 9622 { 9623 struct xarpreq *xar; 9624 boolean_t isv6; 9625 mblk_t *mp1; 9626 int err; 9627 conn_t *connp; 9628 int ifnamelen; 9629 ire_t *ire = NULL; 9630 ill_t *ill = NULL; 9631 struct sockaddr_in *sin; 9632 boolean_t if_arp_ioctl = B_FALSE; 9633 9634 /* ioctl comes down on an conn */ 9635 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9636 connp = Q_TO_CONN(q); 9637 isv6 = connp->conn_af_isv6; 9638 9639 /* Existance verified in ip_wput_nondata */ 9640 mp1 = mp->b_cont->b_cont; 9641 9642 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9643 xar = (struct xarpreq *)mp1->b_rptr; 9644 sin = (sin_t *)&xar->xarp_pa; 9645 9646 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9647 (xar->xarp_pa.ss_family != AF_INET)) 9648 return (ENXIO); 9649 9650 ifnamelen = xar->xarp_ha.sdl_nlen; 9651 if (ifnamelen != 0) { 9652 char *cptr, cval; 9653 9654 if (ifnamelen >= LIFNAMSIZ) 9655 return (EINVAL); 9656 9657 /* 9658 * Instead of bcopying a bunch of bytes, 9659 * null-terminate the string in-situ. 9660 */ 9661 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9662 cval = *cptr; 9663 *cptr = '\0'; 9664 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9665 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9666 &err, NULL); 9667 *cptr = cval; 9668 if (ill == NULL) 9669 return (err); 9670 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9671 ill_refrele(ill); 9672 return (ENXIO); 9673 } 9674 9675 if_arp_ioctl = B_TRUE; 9676 } else { 9677 /* 9678 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9679 * as an extended BSD ioctl. The kernel uses the IP address 9680 * to figure out the network interface. 9681 */ 9682 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9683 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9684 ((ill = ire_to_ill(ire)) == NULL) || 9685 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9686 if (ire != NULL) 9687 ire_refrele(ire); 9688 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9689 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9690 NULL, MATCH_IRE_TYPE); 9691 if ((ire == NULL) || 9692 ((ill = ire_to_ill(ire)) == NULL)) { 9693 if (ire != NULL) 9694 ire_refrele(ire); 9695 return (ENXIO); 9696 } 9697 } 9698 ASSERT(ire != NULL && ill != NULL); 9699 } 9700 9701 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9702 if (if_arp_ioctl) 9703 ill_refrele(ill); 9704 if (ire != NULL) 9705 ire_refrele(ire); 9706 9707 return (err); 9708 } 9709 9710 /* 9711 * ARP IOCTLs. 9712 * How does IP get in the business of fronting ARP configuration/queries? 9713 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9714 * are by tradition passed in through a datagram socket. That lands in IP. 9715 * As it happens, this is just as well since the interface is quite crude in 9716 * that it passes in no information about protocol or hardware types, or 9717 * interface association. After making the protocol assumption, IP is in 9718 * the position to look up the name of the ILL, which ARP will need, and 9719 * format a request that can be handled by ARP. The request is passed up 9720 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9721 * back a response. ARP supports its own set of more general IOCTLs, in 9722 * case anyone is interested. 9723 */ 9724 /* ARGSUSED */ 9725 int 9726 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9727 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9728 { 9729 struct arpreq *ar; 9730 struct sockaddr_in *sin; 9731 ire_t *ire; 9732 boolean_t isv6; 9733 mblk_t *mp1; 9734 int err; 9735 conn_t *connp; 9736 ill_t *ill; 9737 9738 /* ioctl comes down on an conn */ 9739 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9740 connp = Q_TO_CONN(q); 9741 isv6 = connp->conn_af_isv6; 9742 if (isv6) 9743 return (ENXIO); 9744 9745 /* Existance verified in ip_wput_nondata */ 9746 mp1 = mp->b_cont->b_cont; 9747 9748 ar = (struct arpreq *)mp1->b_rptr; 9749 sin = (sin_t *)&ar->arp_pa; 9750 9751 /* 9752 * We need to let ARP know on which interface the IP 9753 * address has an ARP mapping. In the IPMP case, a 9754 * simple forwarding table lookup will return the 9755 * IRE_IF_RESOLVER for the first interface in the group, 9756 * which might not be the interface on which the 9757 * requested IP address was resolved due to the ill 9758 * selection algorithm (see ip_newroute_get_dst_ill()). 9759 * So we do a cache table lookup first: if the IRE cache 9760 * entry for the IP address is still there, it will 9761 * contain the ill pointer for the right interface, so 9762 * we use that. If the cache entry has been flushed, we 9763 * fall back to the forwarding table lookup. This should 9764 * be rare enough since IRE cache entries have a longer 9765 * life expectancy than ARP cache entries. 9766 */ 9767 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9768 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9769 ((ill = ire_to_ill(ire)) == NULL)) { 9770 if (ire != NULL) 9771 ire_refrele(ire); 9772 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9773 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9774 NULL, MATCH_IRE_TYPE); 9775 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9776 if (ire != NULL) 9777 ire_refrele(ire); 9778 return (ENXIO); 9779 } 9780 } 9781 ASSERT(ire != NULL && ill != NULL); 9782 9783 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9784 ire_refrele(ire); 9785 return (err); 9786 } 9787 9788 /* 9789 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9790 * atomically set/clear the muxids. Also complete the ioctl by acking or 9791 * naking it. Note that the code is structured such that the link type, 9792 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9793 * its clones use the persistent link, while pppd(1M) and perhaps many 9794 * other daemons may use non-persistent link. When combined with some 9795 * ill_t states, linking and unlinking lower streams may be used as 9796 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9797 */ 9798 /* ARGSUSED */ 9799 void 9800 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9801 { 9802 mblk_t *mp1; 9803 mblk_t *mp2; 9804 struct linkblk *li; 9805 queue_t *ipwq; 9806 char *name; 9807 struct qinit *qinfo; 9808 struct ipmx_s *ipmxp; 9809 ill_t *ill = NULL; 9810 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9811 int err = 0; 9812 boolean_t entered_ipsq = B_FALSE; 9813 boolean_t islink; 9814 queue_t *dwq = NULL; 9815 9816 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9817 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9818 9819 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9820 B_TRUE : B_FALSE; 9821 9822 mp1 = mp->b_cont; /* This is the linkblk info */ 9823 li = (struct linkblk *)mp1->b_rptr; 9824 9825 /* 9826 * ARP has added this special mblk, and the utility is asking us 9827 * to perform consistency checks, and also atomically set the 9828 * muxid. Ifconfig is an example. It achieves this by using 9829 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9830 * to /dev/udp[6] stream for use as the mux when plinking the IP 9831 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9832 * and other comments in this routine for more details. 9833 */ 9834 mp2 = mp1->b_cont; /* This is added by ARP */ 9835 9836 /* 9837 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9838 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9839 * get the special mblk above. For backward compatibility, we just 9840 * return success. The utility will use SIOCSLIFMUXID to store 9841 * the muxids. This is not atomic, and can leave the streams 9842 * unplumbable if the utility is interrrupted, before it does the 9843 * SIOCSLIFMUXID. 9844 */ 9845 if (mp2 == NULL) { 9846 /* 9847 * At this point we don't know whether or not this is the 9848 * IP module stream or the ARP device stream. We need to 9849 * walk the lower stream in order to find this out, since 9850 * the capability negotiation is done only on the IP module 9851 * stream. IP module instance is identified by the module 9852 * name IP, non-null q_next, and it's wput not being ip_lwput. 9853 * STREAMS ensures that the lower stream (l_qbot) will not 9854 * vanish until this ioctl completes. So we can safely walk 9855 * the stream or refer to the q_ptr. 9856 */ 9857 ipwq = li->l_qbot; 9858 while (ipwq != NULL) { 9859 qinfo = ipwq->q_qinfo; 9860 name = qinfo->qi_minfo->mi_idname; 9861 if (name != NULL && name[0] != NULL && 9862 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9863 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9864 (ipwq->q_next != NULL)) { 9865 break; 9866 } 9867 ipwq = ipwq->q_next; 9868 } 9869 /* 9870 * This looks like an IP module stream, so trigger 9871 * the capability reset or re-negotiation if necessary. 9872 */ 9873 if (ipwq != NULL) { 9874 ill = ipwq->q_ptr; 9875 ASSERT(ill != NULL); 9876 9877 if (ipsq == NULL) { 9878 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9879 ip_sioctl_plink, NEW_OP, B_TRUE); 9880 if (ipsq == NULL) 9881 return; 9882 entered_ipsq = B_TRUE; 9883 } 9884 ASSERT(IAM_WRITER_ILL(ill)); 9885 /* 9886 * Store the upper read queue of the module 9887 * immediately below IP, and count the total 9888 * number of lower modules. Do this only 9889 * for I_PLINK or I_LINK event. 9890 */ 9891 ill->ill_lmod_rq = NULL; 9892 ill->ill_lmod_cnt = 0; 9893 if (islink && (dwq = ipwq->q_next) != NULL) { 9894 ill->ill_lmod_rq = RD(dwq); 9895 9896 while (dwq != NULL) { 9897 ill->ill_lmod_cnt++; 9898 dwq = dwq->q_next; 9899 } 9900 } 9901 /* 9902 * There's no point in resetting or re-negotiating if 9903 * we are not bound to the driver, so only do this if 9904 * the DLPI state is idle (up); we assume such state 9905 * since ill_ipif_up_count gets incremented in 9906 * ipif_up_done(), which is after we are bound to the 9907 * driver. Note that in the case of logical 9908 * interfaces, IP won't rebind to the driver unless 9909 * the ill_ipif_up_count is 0, meaning that all other 9910 * IP interfaces (including the main ipif) are in the 9911 * down state. Because of this, we use such counter 9912 * as an indicator, instead of relying on the IPIF_UP 9913 * flag, which is per ipif instance. 9914 */ 9915 if (ill->ill_ipif_up_count > 0) { 9916 if (islink) 9917 ill_capability_probe(ill); 9918 else 9919 ill_capability_reset(ill); 9920 } 9921 } 9922 goto done; 9923 } 9924 9925 /* 9926 * This is an I_{P}LINK sent down by ifconfig on 9927 * /dev/arp. ARP has appended this last (3rd) mblk, 9928 * giving more info. STREAMS ensures that the lower 9929 * stream (l_qbot) will not vanish until this ioctl 9930 * completes. So we can safely walk the stream or refer 9931 * to the q_ptr. 9932 */ 9933 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9934 if (ipmxp->ipmx_arpdev_stream) { 9935 /* 9936 * The operation is occuring on the arp-device 9937 * stream. 9938 */ 9939 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9940 q, mp, ip_sioctl_plink, &err, NULL); 9941 if (ill == NULL) { 9942 if (err == EINPROGRESS) { 9943 return; 9944 } else { 9945 err = EINVAL; 9946 goto done; 9947 } 9948 } 9949 9950 if (ipsq == NULL) { 9951 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9952 NEW_OP, B_TRUE); 9953 if (ipsq == NULL) { 9954 ill_refrele(ill); 9955 return; 9956 } 9957 entered_ipsq = B_TRUE; 9958 } 9959 ASSERT(IAM_WRITER_ILL(ill)); 9960 ill_refrele(ill); 9961 /* 9962 * To ensure consistency between IP and ARP, 9963 * the following LIFO scheme is used in 9964 * plink/punlink. (IP first, ARP last). 9965 * This is because the muxid's are stored 9966 * in the IP stream on the ill. 9967 * 9968 * I_{P}LINK: ifconfig plinks the IP stream before 9969 * plinking the ARP stream. On an arp-dev 9970 * stream, IP checks that it is not yet 9971 * plinked, and it also checks that the 9972 * corresponding IP stream is already plinked. 9973 * 9974 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9975 * before punlinking the IP stream. IP does 9976 * not allow punlink of the IP stream unless 9977 * the arp stream has been punlinked. 9978 * 9979 */ 9980 if ((islink && 9981 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9982 (!islink && 9983 ill->ill_arp_muxid != li->l_index)) { 9984 err = EINVAL; 9985 goto done; 9986 } 9987 if (islink) { 9988 ill->ill_arp_muxid = li->l_index; 9989 } else { 9990 ill->ill_arp_muxid = 0; 9991 } 9992 } else { 9993 /* 9994 * This must be the IP module stream with or 9995 * without arp. Walk the stream and locate the 9996 * IP module. An IP module instance is 9997 * identified by the module name IP, non-null 9998 * q_next, and it's wput not being ip_lwput. 9999 */ 10000 ipwq = li->l_qbot; 10001 while (ipwq != NULL) { 10002 qinfo = ipwq->q_qinfo; 10003 name = qinfo->qi_minfo->mi_idname; 10004 if (name != NULL && name[0] != NULL && 10005 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10006 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10007 (ipwq->q_next != NULL)) { 10008 break; 10009 } 10010 ipwq = ipwq->q_next; 10011 } 10012 if (ipwq != NULL) { 10013 ill = ipwq->q_ptr; 10014 ASSERT(ill != NULL); 10015 10016 if (ipsq == NULL) { 10017 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10018 ip_sioctl_plink, NEW_OP, B_TRUE); 10019 if (ipsq == NULL) 10020 return; 10021 entered_ipsq = B_TRUE; 10022 } 10023 ASSERT(IAM_WRITER_ILL(ill)); 10024 /* 10025 * Return error if the ip_mux_id is 10026 * non-zero and command is I_{P}LINK. 10027 * If command is I_{P}UNLINK, return 10028 * error if the arp-devstr is not 10029 * yet punlinked. 10030 */ 10031 if ((islink && ill->ill_ip_muxid != 0) || 10032 (!islink && ill->ill_arp_muxid != 0)) { 10033 err = EINVAL; 10034 goto done; 10035 } 10036 ill->ill_lmod_rq = NULL; 10037 ill->ill_lmod_cnt = 0; 10038 if (islink) { 10039 /* 10040 * Store the upper read queue of the module 10041 * immediately below IP, and count the total 10042 * number of lower modules. 10043 */ 10044 if ((dwq = ipwq->q_next) != NULL) { 10045 ill->ill_lmod_rq = RD(dwq); 10046 10047 while (dwq != NULL) { 10048 ill->ill_lmod_cnt++; 10049 dwq = dwq->q_next; 10050 } 10051 } 10052 ill->ill_ip_muxid = li->l_index; 10053 } else { 10054 ill->ill_ip_muxid = 0; 10055 } 10056 10057 /* 10058 * See comments above about resetting/re- 10059 * negotiating driver sub-capabilities. 10060 */ 10061 if (ill->ill_ipif_up_count > 0) { 10062 if (islink) 10063 ill_capability_probe(ill); 10064 else 10065 ill_capability_reset(ill); 10066 } 10067 } 10068 } 10069 done: 10070 iocp->ioc_count = 0; 10071 iocp->ioc_error = err; 10072 if (err == 0) 10073 mp->b_datap->db_type = M_IOCACK; 10074 else 10075 mp->b_datap->db_type = M_IOCNAK; 10076 qreply(q, mp); 10077 10078 /* Conn was refheld in ip_sioctl_copyin_setup */ 10079 if (CONN_Q(q)) 10080 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10081 if (entered_ipsq) 10082 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10083 } 10084 10085 /* 10086 * Search the ioctl command in the ioctl tables and return a pointer 10087 * to the ioctl command information. The ioctl command tables are 10088 * static and fully populated at compile time. 10089 */ 10090 ip_ioctl_cmd_t * 10091 ip_sioctl_lookup(int ioc_cmd) 10092 { 10093 int index; 10094 ip_ioctl_cmd_t *ipip; 10095 ip_ioctl_cmd_t *ipip_end; 10096 10097 if (ioc_cmd == IPI_DONTCARE) 10098 return (NULL); 10099 10100 /* 10101 * Do a 2 step search. First search the indexed table 10102 * based on the least significant byte of the ioctl cmd. 10103 * If we don't find a match, then search the misc table 10104 * serially. 10105 */ 10106 index = ioc_cmd & 0xFF; 10107 if (index < ip_ndx_ioctl_count) { 10108 ipip = &ip_ndx_ioctl_table[index]; 10109 if (ipip->ipi_cmd == ioc_cmd) { 10110 /* Found a match in the ndx table */ 10111 return (ipip); 10112 } 10113 } 10114 10115 /* Search the misc table */ 10116 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10117 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10118 if (ipip->ipi_cmd == ioc_cmd) 10119 /* Found a match in the misc table */ 10120 return (ipip); 10121 } 10122 10123 return (NULL); 10124 } 10125 10126 /* 10127 * Wrapper function for resuming deferred ioctl processing 10128 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10129 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10130 */ 10131 /* ARGSUSED */ 10132 void 10133 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10134 void *dummy_arg) 10135 { 10136 ip_sioctl_copyin_setup(q, mp); 10137 } 10138 10139 /* 10140 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10141 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10142 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10143 * We establish here the size of the block to be copied in. mi_copyin 10144 * arranges for this to happen, an processing continues in ip_wput with 10145 * an M_IOCDATA message. 10146 */ 10147 void 10148 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10149 { 10150 int copyin_size; 10151 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10152 ip_ioctl_cmd_t *ipip; 10153 cred_t *cr; 10154 10155 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10156 if (ipip == NULL) { 10157 /* 10158 * The ioctl is not one we understand or own. 10159 * Pass it along to be processed down stream, 10160 * if this is a module instance of IP, else nak 10161 * the ioctl. 10162 */ 10163 if (q->q_next == NULL) { 10164 goto nak; 10165 } else { 10166 putnext(q, mp); 10167 return; 10168 } 10169 } 10170 10171 /* 10172 * If this is deferred, then we will do all the checks when we 10173 * come back. 10174 */ 10175 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10176 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 10177 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10178 return; 10179 } 10180 10181 /* 10182 * Only allow a very small subset of IP ioctls on this stream if 10183 * IP is a module and not a driver. Allowing ioctls to be processed 10184 * in this case may cause assert failures or data corruption. 10185 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10186 * ioctls allowed on an IP module stream, after which this stream 10187 * normally becomes a multiplexor (at which time the stream head 10188 * will fail all ioctls). 10189 */ 10190 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10191 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10192 /* 10193 * Pass common Streams ioctls which the IP 10194 * module does not own or consume along to 10195 * be processed down stream. 10196 */ 10197 putnext(q, mp); 10198 return; 10199 } else { 10200 goto nak; 10201 } 10202 } 10203 10204 /* Make sure we have ioctl data to process. */ 10205 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10206 goto nak; 10207 10208 /* 10209 * Prefer dblk credential over ioctl credential; some synthesized 10210 * ioctls have kcred set because there's no way to crhold() 10211 * a credential in some contexts. (ioc_cr is not crfree() by 10212 * the framework; the caller of ioctl needs to hold the reference 10213 * for the duration of the call). 10214 */ 10215 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10216 10217 /* Make sure normal users don't send down privileged ioctls */ 10218 if ((ipip->ipi_flags & IPI_PRIV) && 10219 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 10220 /* We checked the privilege earlier but log it here */ 10221 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 10222 return; 10223 } 10224 10225 /* 10226 * The ioctl command tables can only encode fixed length 10227 * ioctl data. If the length is variable, the table will 10228 * encode the length as zero. Such special cases are handled 10229 * below in the switch. 10230 */ 10231 if (ipip->ipi_copyin_size != 0) { 10232 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10233 return; 10234 } 10235 10236 switch (iocp->ioc_cmd) { 10237 case O_SIOCGIFCONF: 10238 case SIOCGIFCONF: 10239 /* 10240 * This IOCTL is hilarious. See comments in 10241 * ip_sioctl_get_ifconf for the story. 10242 */ 10243 if (iocp->ioc_count == TRANSPARENT) 10244 copyin_size = SIZEOF_STRUCT(ifconf, 10245 iocp->ioc_flag); 10246 else 10247 copyin_size = iocp->ioc_count; 10248 mi_copyin(q, mp, NULL, copyin_size); 10249 return; 10250 10251 case O_SIOCGLIFCONF: 10252 case SIOCGLIFCONF: 10253 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10254 mi_copyin(q, mp, NULL, copyin_size); 10255 return; 10256 10257 case SIOCGLIFSRCOF: 10258 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10259 mi_copyin(q, mp, NULL, copyin_size); 10260 return; 10261 case SIOCGIP6ADDRPOLICY: 10262 ip_sioctl_ip6addrpolicy(q, mp); 10263 ip6_asp_table_refrele(); 10264 return; 10265 10266 case SIOCSIP6ADDRPOLICY: 10267 ip_sioctl_ip6addrpolicy(q, mp); 10268 return; 10269 10270 case SIOCGDSTINFO: 10271 ip_sioctl_dstinfo(q, mp); 10272 ip6_asp_table_refrele(); 10273 return; 10274 10275 case I_PLINK: 10276 case I_PUNLINK: 10277 case I_LINK: 10278 case I_UNLINK: 10279 /* 10280 * We treat non-persistent link similarly as the persistent 10281 * link case, in terms of plumbing/unplumbing, as well as 10282 * dynamic re-plumbing events indicator. See comments 10283 * in ip_sioctl_plink() for more. 10284 * 10285 * Request can be enqueued in the 'ipsq' while waiting 10286 * to become exclusive. So bump up the conn ref. 10287 */ 10288 if (CONN_Q(q)) 10289 CONN_INC_REF(Q_TO_CONN(q)); 10290 ip_sioctl_plink(NULL, q, mp, NULL); 10291 return; 10292 10293 case ND_GET: 10294 case ND_SET: 10295 /* 10296 * Use of the nd table requires holding the reader lock. 10297 * Modifying the nd table thru nd_load/nd_unload requires 10298 * the writer lock. 10299 */ 10300 rw_enter(&ip_g_nd_lock, RW_READER); 10301 if (nd_getset(q, ip_g_nd, mp)) { 10302 rw_exit(&ip_g_nd_lock); 10303 10304 if (iocp->ioc_error) 10305 iocp->ioc_count = 0; 10306 mp->b_datap->db_type = M_IOCACK; 10307 qreply(q, mp); 10308 return; 10309 } 10310 rw_exit(&ip_g_nd_lock); 10311 /* 10312 * We don't understand this subioctl of ND_GET / ND_SET. 10313 * Maybe intended for some driver / module below us 10314 */ 10315 if (q->q_next) { 10316 putnext(q, mp); 10317 } else { 10318 iocp->ioc_error = ENOENT; 10319 mp->b_datap->db_type = M_IOCNAK; 10320 iocp->ioc_count = 0; 10321 qreply(q, mp); 10322 } 10323 return; 10324 10325 case IP_IOCTL: 10326 ip_wput_ioctl(q, mp); 10327 return; 10328 default: 10329 cmn_err(CE_PANIC, "should not happen "); 10330 } 10331 nak: 10332 if (mp->b_cont != NULL) { 10333 freemsg(mp->b_cont); 10334 mp->b_cont = NULL; 10335 } 10336 iocp->ioc_error = EINVAL; 10337 mp->b_datap->db_type = M_IOCNAK; 10338 iocp->ioc_count = 0; 10339 qreply(q, mp); 10340 } 10341 10342 /* ip_wput hands off ARP IOCTL responses to us */ 10343 void 10344 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10345 { 10346 struct arpreq *ar; 10347 struct xarpreq *xar; 10348 area_t *area; 10349 mblk_t *area_mp; 10350 struct iocblk *iocp; 10351 mblk_t *orig_ioc_mp, *tmp; 10352 struct iocblk *orig_iocp; 10353 ill_t *ill; 10354 conn_t *connp = NULL; 10355 uint_t ioc_id; 10356 mblk_t *pending_mp; 10357 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10358 int *flagsp; 10359 char *storage = NULL; 10360 sin_t *sin; 10361 ipaddr_t addr; 10362 int err; 10363 10364 ill = q->q_ptr; 10365 ASSERT(ill != NULL); 10366 10367 /* 10368 * We should get back from ARP a packet chain that looks like: 10369 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10370 */ 10371 if (!(area_mp = mp->b_cont) || 10372 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10373 !(orig_ioc_mp = area_mp->b_cont) || 10374 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10375 freemsg(mp); 10376 return; 10377 } 10378 10379 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10380 10381 tmp = (orig_ioc_mp->b_cont)->b_cont; 10382 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10383 (orig_iocp->ioc_cmd == SIOCSXARP) || 10384 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10385 x_arp_ioctl = B_TRUE; 10386 xar = (struct xarpreq *)tmp->b_rptr; 10387 sin = (sin_t *)&xar->xarp_pa; 10388 flagsp = &xar->xarp_flags; 10389 storage = xar->xarp_ha.sdl_data; 10390 if (xar->xarp_ha.sdl_nlen != 0) 10391 ifx_arp_ioctl = B_TRUE; 10392 } else { 10393 ar = (struct arpreq *)tmp->b_rptr; 10394 sin = (sin_t *)&ar->arp_pa; 10395 flagsp = &ar->arp_flags; 10396 storage = ar->arp_ha.sa_data; 10397 } 10398 10399 iocp = (struct iocblk *)mp->b_rptr; 10400 10401 /* 10402 * Pick out the originating queue based on the ioc_id. 10403 */ 10404 ioc_id = iocp->ioc_id; 10405 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10406 if (pending_mp == NULL) { 10407 ASSERT(connp == NULL); 10408 inet_freemsg(mp); 10409 return; 10410 } 10411 ASSERT(connp != NULL); 10412 q = CONNP_TO_WQ(connp); 10413 10414 /* Uncouple the internally generated IOCTL from the original one */ 10415 area = (area_t *)area_mp->b_rptr; 10416 area_mp->b_cont = NULL; 10417 10418 /* 10419 * Restore the b_next and b_prev used by mi code. This is needed 10420 * to complete the ioctl using mi* functions. We stored them in 10421 * the pending mp prior to sending the request to ARP. 10422 */ 10423 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10424 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10425 inet_freemsg(pending_mp); 10426 10427 /* 10428 * We're done if there was an error or if this is not an SIOCG{X}ARP 10429 * Catch the case where there is an IRE_CACHE by no entry in the 10430 * arp table. 10431 */ 10432 addr = sin->sin_addr.s_addr; 10433 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10434 ire_t *ire; 10435 dl_unitdata_req_t *dlup; 10436 mblk_t *llmp; 10437 int addr_len; 10438 ill_t *ipsqill = NULL; 10439 10440 if (ifx_arp_ioctl) { 10441 /* 10442 * There's no need to lookup the ill, since 10443 * we've already done that when we started 10444 * processing the ioctl and sent the message 10445 * to ARP on that ill. So use the ill that 10446 * is stored in q->q_ptr. 10447 */ 10448 ipsqill = ill; 10449 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10450 ipsqill->ill_ipif, ALL_ZONES, 10451 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10452 } else { 10453 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10454 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10455 if (ire != NULL) 10456 ipsqill = ire_to_ill(ire); 10457 } 10458 10459 if ((x_arp_ioctl) && (ipsqill != NULL)) 10460 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10461 10462 if (ire != NULL) { 10463 /* 10464 * Since the ire obtained from cachetable is used for 10465 * mac addr copying below, treat an incomplete ire as if 10466 * as if we never found it. 10467 */ 10468 if (ire->ire_nce != NULL && 10469 ire->ire_nce->nce_state != ND_REACHABLE) { 10470 ire_refrele(ire); 10471 ire = NULL; 10472 ipsqill = NULL; 10473 goto errack; 10474 } 10475 *flagsp = ATF_INUSE; 10476 llmp = (ire->ire_nce != NULL ? 10477 ire->ire_nce->nce_res_mp : NULL); 10478 if (llmp != NULL && ipsqill != NULL) { 10479 uchar_t *macaddr; 10480 10481 addr_len = ipsqill->ill_phys_addr_length; 10482 if (x_arp_ioctl && ((addr_len + 10483 ipsqill->ill_name_length) > 10484 sizeof (xar->xarp_ha.sdl_data))) { 10485 ire_refrele(ire); 10486 freemsg(mp); 10487 ip_ioctl_finish(q, orig_ioc_mp, 10488 EINVAL, NO_COPYOUT, NULL, NULL); 10489 return; 10490 } 10491 *flagsp |= ATF_COM; 10492 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10493 if (ipsqill->ill_sap_length < 0) 10494 macaddr = llmp->b_rptr + 10495 dlup->dl_dest_addr_offset; 10496 else 10497 macaddr = llmp->b_rptr + 10498 dlup->dl_dest_addr_offset + 10499 ipsqill->ill_sap_length; 10500 /* 10501 * For SIOCGARP, MAC address length 10502 * validation has already been done 10503 * before the ioctl was issued to ARP to 10504 * allow it to progress only on 6 byte 10505 * addressable (ethernet like) media. Thus 10506 * the mac address copying can not overwrite 10507 * the sa_data area below. 10508 */ 10509 bcopy(macaddr, storage, addr_len); 10510 } 10511 /* Ditch the internal IOCTL. */ 10512 freemsg(mp); 10513 ire_refrele(ire); 10514 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10515 return; 10516 } 10517 } 10518 10519 /* 10520 * Delete the coresponding IRE_CACHE if any. 10521 * Reset the error if there was one (in case there was no entry 10522 * in arp.) 10523 */ 10524 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10525 ipif_t *ipintf = NULL; 10526 10527 if (ifx_arp_ioctl) { 10528 /* 10529 * There's no need to lookup the ill, since 10530 * we've already done that when we started 10531 * processing the ioctl and sent the message 10532 * to ARP on that ill. So use the ill that 10533 * is stored in q->q_ptr. 10534 */ 10535 ipintf = ill->ill_ipif; 10536 } 10537 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10538 /* 10539 * The address in "addr" may be an entry for a 10540 * router. If that's true, then any off-net 10541 * IRE_CACHE entries that go through the router 10542 * with address "addr" must be clobbered. Use 10543 * ire_walk to achieve this goal. 10544 */ 10545 if (ifx_arp_ioctl) 10546 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10547 ire_delete_cache_gw, (char *)&addr, ill); 10548 else 10549 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10550 ALL_ZONES); 10551 iocp->ioc_error = 0; 10552 } 10553 } 10554 errack: 10555 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10556 err = iocp->ioc_error; 10557 freemsg(mp); 10558 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10559 return; 10560 } 10561 10562 /* 10563 * Completion of an SIOCG{X}ARP. Translate the information from 10564 * the area_t into the struct {x}arpreq. 10565 */ 10566 if (x_arp_ioctl) { 10567 storage += ill_xarp_info(&xar->xarp_ha, ill); 10568 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10569 sizeof (xar->xarp_ha.sdl_data)) { 10570 freemsg(mp); 10571 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10572 NO_COPYOUT, NULL, NULL); 10573 return; 10574 } 10575 } 10576 *flagsp = ATF_INUSE; 10577 if (area->area_flags & ACE_F_PERMANENT) 10578 *flagsp |= ATF_PERM; 10579 if (area->area_flags & ACE_F_PUBLISH) 10580 *flagsp |= ATF_PUBL; 10581 if (area->area_flags & ACE_F_AUTHORITY) 10582 *flagsp |= ATF_AUTHORITY; 10583 if (area->area_hw_addr_length != 0) { 10584 *flagsp |= ATF_COM; 10585 /* 10586 * For SIOCGARP, MAC address length validation has 10587 * already been done before the ioctl was issued to ARP 10588 * to allow it to progress only on 6 byte addressable 10589 * (ethernet like) media. Thus the mac address copying 10590 * can not overwrite the sa_data area below. 10591 */ 10592 bcopy((char *)area + area->area_hw_addr_offset, 10593 storage, area->area_hw_addr_length); 10594 } 10595 10596 /* Ditch the internal IOCTL. */ 10597 freemsg(mp); 10598 /* Complete the original. */ 10599 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10600 } 10601 10602 /* 10603 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10604 * interface) create the next available logical interface for this 10605 * physical interface. 10606 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10607 * ipif with the specified name. 10608 * 10609 * If the address family is not AF_UNSPEC then set the address as well. 10610 * 10611 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10612 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10613 * 10614 * Executed as a writer on the ill or ill group. 10615 * So no lock is needed to traverse the ipif chain, or examine the 10616 * phyint flags. 10617 */ 10618 /* ARGSUSED */ 10619 int 10620 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10621 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10622 { 10623 mblk_t *mp1; 10624 struct lifreq *lifr; 10625 boolean_t isv6; 10626 boolean_t exists; 10627 char *name; 10628 char *endp; 10629 char *cp; 10630 int namelen; 10631 ipif_t *ipif; 10632 long id; 10633 ipsq_t *ipsq; 10634 ill_t *ill; 10635 sin_t *sin; 10636 int err = 0; 10637 boolean_t found_sep = B_FALSE; 10638 conn_t *connp; 10639 zoneid_t zoneid; 10640 int orig_ifindex = 0; 10641 10642 ip1dbg(("ip_sioctl_addif\n")); 10643 /* Existence of mp1 has been checked in ip_wput_nondata */ 10644 mp1 = mp->b_cont->b_cont; 10645 /* 10646 * Null terminate the string to protect against buffer 10647 * overrun. String was generated by user code and may not 10648 * be trusted. 10649 */ 10650 lifr = (struct lifreq *)mp1->b_rptr; 10651 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10652 name = lifr->lifr_name; 10653 ASSERT(CONN_Q(q)); 10654 connp = Q_TO_CONN(q); 10655 isv6 = connp->conn_af_isv6; 10656 zoneid = connp->conn_zoneid; 10657 namelen = mi_strlen(name); 10658 if (namelen == 0) 10659 return (EINVAL); 10660 10661 exists = B_FALSE; 10662 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10663 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10664 /* 10665 * Allow creating lo0 using SIOCLIFADDIF. 10666 * can't be any other writer thread. So can pass null below 10667 * for the last 4 args to ipif_lookup_name. 10668 */ 10669 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10670 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10671 /* Prevent any further action */ 10672 if (ipif == NULL) { 10673 return (ENOBUFS); 10674 } else if (!exists) { 10675 /* We created the ipif now and as writer */ 10676 ipif_refrele(ipif); 10677 return (0); 10678 } else { 10679 ill = ipif->ipif_ill; 10680 ill_refhold(ill); 10681 ipif_refrele(ipif); 10682 } 10683 } else { 10684 /* Look for a colon in the name. */ 10685 endp = &name[namelen]; 10686 for (cp = endp; --cp > name; ) { 10687 if (*cp == IPIF_SEPARATOR_CHAR) { 10688 found_sep = B_TRUE; 10689 /* 10690 * Reject any non-decimal aliases for plumbing 10691 * of logical interfaces. Aliases with leading 10692 * zeroes are also rejected as they introduce 10693 * ambiguity in the naming of the interfaces. 10694 * Comparing with "0" takes care of all such 10695 * cases. 10696 */ 10697 if ((strncmp("0", cp+1, 1)) == 0) 10698 return (EINVAL); 10699 10700 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10701 id <= 0 || *endp != '\0') { 10702 return (EINVAL); 10703 } 10704 *cp = '\0'; 10705 break; 10706 } 10707 } 10708 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10709 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10710 if (found_sep) 10711 *cp = IPIF_SEPARATOR_CHAR; 10712 if (ill == NULL) 10713 return (err); 10714 } 10715 10716 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10717 B_TRUE); 10718 10719 /* 10720 * Release the refhold due to the lookup, now that we are excl 10721 * or we are just returning 10722 */ 10723 ill_refrele(ill); 10724 10725 if (ipsq == NULL) 10726 return (EINPROGRESS); 10727 10728 /* 10729 * If the interface is failed, inactive or offlined, look for a working 10730 * interface in the ill group and create the ipif there. If we can't 10731 * find a good interface, create the ipif anyway so that in.mpathd can 10732 * move it to the first repaired interface. 10733 */ 10734 if ((ill->ill_phyint->phyint_flags & 10735 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10736 ill->ill_phyint->phyint_groupname_len != 0) { 10737 phyint_t *phyi; 10738 char *groupname = ill->ill_phyint->phyint_groupname; 10739 10740 /* 10741 * We're looking for a working interface, but it doesn't matter 10742 * if it's up or down; so instead of following the group lists, 10743 * we look at each physical interface and compare the groupname. 10744 * We're only interested in interfaces with IPv4 (resp. IPv6) 10745 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10746 * Otherwise we create the ipif on the failed interface. 10747 */ 10748 rw_enter(&ill_g_lock, RW_READER); 10749 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10750 for (; phyi != NULL; 10751 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10752 phyi, AVL_AFTER)) { 10753 if (phyi->phyint_groupname_len == 0) 10754 continue; 10755 ASSERT(phyi->phyint_groupname != NULL); 10756 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10757 !(phyi->phyint_flags & 10758 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10759 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10760 (phyi->phyint_illv4 != NULL))) { 10761 break; 10762 } 10763 } 10764 rw_exit(&ill_g_lock); 10765 10766 if (phyi != NULL) { 10767 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10768 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10769 phyi->phyint_illv4); 10770 } 10771 } 10772 10773 /* 10774 * We are now exclusive on the ipsq, so an ill move will be serialized 10775 * before or after us. 10776 */ 10777 ASSERT(IAM_WRITER_ILL(ill)); 10778 ASSERT(ill->ill_move_in_progress == B_FALSE); 10779 10780 if (found_sep && orig_ifindex == 0) { 10781 /* Now see if there is an IPIF with this unit number. */ 10782 for (ipif = ill->ill_ipif; ipif != NULL; 10783 ipif = ipif->ipif_next) { 10784 if (ipif->ipif_id == id) { 10785 err = EEXIST; 10786 goto done; 10787 } 10788 } 10789 } 10790 10791 /* 10792 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10793 * of lo0. We never come here when we plumb lo0:0. It 10794 * happens in ipif_lookup_on_name. 10795 * The specified unit number is ignored when we create the ipif on a 10796 * different interface. However, we save it in ipif_orig_ipifid below so 10797 * that the ipif fails back to the right position. 10798 */ 10799 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10800 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10801 err = ENOBUFS; 10802 goto done; 10803 } 10804 10805 /* Return created name with ioctl */ 10806 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10807 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10808 ip1dbg(("created %s\n", lifr->lifr_name)); 10809 10810 /* Set address */ 10811 sin = (sin_t *)&lifr->lifr_addr; 10812 if (sin->sin_family != AF_UNSPEC) { 10813 err = ip_sioctl_addr(ipif, sin, q, mp, 10814 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10815 } 10816 10817 /* Set ifindex and unit number for failback */ 10818 if (err == 0 && orig_ifindex != 0) { 10819 ipif->ipif_orig_ifindex = orig_ifindex; 10820 if (found_sep) { 10821 ipif->ipif_orig_ipifid = id; 10822 } 10823 } 10824 10825 done: 10826 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10827 return (err); 10828 } 10829 10830 /* 10831 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10832 * interface) delete it based on the IP address (on this physical interface). 10833 * Otherwise delete it based on the ipif_id. 10834 * Also, special handling to allow a removeif of lo0. 10835 */ 10836 /* ARGSUSED */ 10837 int 10838 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10839 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10840 { 10841 conn_t *connp; 10842 ill_t *ill = ipif->ipif_ill; 10843 boolean_t success; 10844 10845 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10846 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10847 ASSERT(IAM_WRITER_IPIF(ipif)); 10848 10849 connp = Q_TO_CONN(q); 10850 /* 10851 * Special case for unplumbing lo0 (the loopback physical interface). 10852 * If unplumbing lo0, the incoming address structure has been 10853 * initialized to all zeros. When unplumbing lo0, all its logical 10854 * interfaces must be removed too. 10855 * 10856 * Note that this interface may be called to remove a specific 10857 * loopback logical interface (eg, lo0:1). But in that case 10858 * ipif->ipif_id != 0 so that the code path for that case is the 10859 * same as any other interface (meaning it skips the code directly 10860 * below). 10861 */ 10862 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10863 if (sin->sin_family == AF_UNSPEC && 10864 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10865 /* 10866 * Mark it condemned. No new ref. will be made to ill. 10867 */ 10868 mutex_enter(&ill->ill_lock); 10869 ill->ill_state_flags |= ILL_CONDEMNED; 10870 for (ipif = ill->ill_ipif; ipif != NULL; 10871 ipif = ipif->ipif_next) { 10872 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10873 } 10874 mutex_exit(&ill->ill_lock); 10875 10876 ipif = ill->ill_ipif; 10877 /* unplumb the loopback interface */ 10878 ill_delete(ill); 10879 mutex_enter(&connp->conn_lock); 10880 mutex_enter(&ill->ill_lock); 10881 ASSERT(ill->ill_group == NULL); 10882 10883 /* Are any references to this ill active */ 10884 if (ill_is_quiescent(ill)) { 10885 mutex_exit(&ill->ill_lock); 10886 mutex_exit(&connp->conn_lock); 10887 ill_delete_tail(ill); 10888 mi_free(ill); 10889 return (0); 10890 } 10891 success = ipsq_pending_mp_add(connp, ipif, 10892 CONNP_TO_WQ(connp), mp, ILL_FREE); 10893 mutex_exit(&connp->conn_lock); 10894 mutex_exit(&ill->ill_lock); 10895 if (success) 10896 return (EINPROGRESS); 10897 else 10898 return (EINTR); 10899 } 10900 } 10901 10902 /* 10903 * We are exclusive on the ipsq, so an ill move will be serialized 10904 * before or after us. 10905 */ 10906 ASSERT(ill->ill_move_in_progress == B_FALSE); 10907 10908 if (ipif->ipif_id == 0) { 10909 /* Find based on address */ 10910 if (ipif->ipif_isv6) { 10911 sin6_t *sin6; 10912 10913 if (sin->sin_family != AF_INET6) 10914 return (EAFNOSUPPORT); 10915 10916 sin6 = (sin6_t *)sin; 10917 /* We are a writer, so we should be able to lookup */ 10918 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10919 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10920 if (ipif == NULL) { 10921 /* 10922 * Maybe the address in on another interface in 10923 * the same IPMP group? We check this below. 10924 */ 10925 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10926 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10927 } 10928 } else { 10929 ipaddr_t addr; 10930 10931 if (sin->sin_family != AF_INET) 10932 return (EAFNOSUPPORT); 10933 10934 addr = sin->sin_addr.s_addr; 10935 /* We are a writer, so we should be able to lookup */ 10936 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10937 NULL, NULL, NULL); 10938 if (ipif == NULL) { 10939 /* 10940 * Maybe the address in on another interface in 10941 * the same IPMP group? We check this below. 10942 */ 10943 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10944 NULL, NULL, NULL, NULL); 10945 } 10946 } 10947 if (ipif == NULL) { 10948 return (EADDRNOTAVAIL); 10949 } 10950 /* 10951 * When the address to be removed is hosted on a different 10952 * interface, we check if the interface is in the same IPMP 10953 * group as the specified one; if so we proceed with the 10954 * removal. 10955 * ill->ill_group is NULL when the ill is down, so we have to 10956 * compare the group names instead. 10957 */ 10958 if (ipif->ipif_ill != ill && 10959 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10960 ill->ill_phyint->phyint_groupname_len == 0 || 10961 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10962 ill->ill_phyint->phyint_groupname) != 0)) { 10963 ipif_refrele(ipif); 10964 return (EADDRNOTAVAIL); 10965 } 10966 10967 /* This is a writer */ 10968 ipif_refrele(ipif); 10969 } 10970 10971 /* 10972 * Can not delete instance zero since it is tied to the ill. 10973 */ 10974 if (ipif->ipif_id == 0) 10975 return (EBUSY); 10976 10977 mutex_enter(&ill->ill_lock); 10978 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10979 mutex_exit(&ill->ill_lock); 10980 10981 ipif_free(ipif); 10982 10983 mutex_enter(&connp->conn_lock); 10984 mutex_enter(&ill->ill_lock); 10985 10986 /* Are any references to this ipif active */ 10987 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10988 mutex_exit(&ill->ill_lock); 10989 mutex_exit(&connp->conn_lock); 10990 ipif_non_duplicate(ipif); 10991 ipif_down_tail(ipif); 10992 ipif_free_tail(ipif); 10993 return (0); 10994 } 10995 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10996 IPIF_FREE); 10997 mutex_exit(&ill->ill_lock); 10998 mutex_exit(&connp->conn_lock); 10999 if (success) 11000 return (EINPROGRESS); 11001 else 11002 return (EINTR); 11003 } 11004 11005 /* 11006 * Restart the removeif ioctl. The refcnt has gone down to 0. 11007 * The ipif is already condemned. So can't find it thru lookups. 11008 */ 11009 /* ARGSUSED */ 11010 int 11011 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11012 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11013 { 11014 ill_t *ill; 11015 11016 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11017 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11018 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11019 ill = ipif->ipif_ill; 11020 ASSERT(IAM_WRITER_ILL(ill)); 11021 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11022 (ill->ill_state_flags & IPIF_CONDEMNED)); 11023 ill_delete_tail(ill); 11024 mi_free(ill); 11025 return (0); 11026 } 11027 11028 ill = ipif->ipif_ill; 11029 ASSERT(IAM_WRITER_IPIF(ipif)); 11030 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11031 11032 ipif_non_duplicate(ipif); 11033 ipif_down_tail(ipif); 11034 ipif_free_tail(ipif); 11035 11036 ILL_UNMARK_CHANGING(ill); 11037 return (0); 11038 } 11039 11040 /* 11041 * Set the local interface address. 11042 * Allow an address of all zero when the interface is down. 11043 */ 11044 /* ARGSUSED */ 11045 int 11046 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11047 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11048 { 11049 int err = 0; 11050 in6_addr_t v6addr; 11051 boolean_t need_up = B_FALSE; 11052 11053 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11055 11056 ASSERT(IAM_WRITER_IPIF(ipif)); 11057 11058 if (ipif->ipif_isv6) { 11059 sin6_t *sin6; 11060 ill_t *ill; 11061 phyint_t *phyi; 11062 11063 if (sin->sin_family != AF_INET6) 11064 return (EAFNOSUPPORT); 11065 11066 sin6 = (sin6_t *)sin; 11067 v6addr = sin6->sin6_addr; 11068 ill = ipif->ipif_ill; 11069 phyi = ill->ill_phyint; 11070 11071 /* 11072 * Enforce that true multicast interfaces have a link-local 11073 * address for logical unit 0. 11074 */ 11075 if (ipif->ipif_id == 0 && 11076 (ill->ill_flags & ILLF_MULTICAST) && 11077 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11078 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11079 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11080 return (EADDRNOTAVAIL); 11081 } 11082 11083 /* 11084 * up interfaces shouldn't have the unspecified address 11085 * unless they also have the IPIF_NOLOCAL flags set and 11086 * have a subnet assigned. 11087 */ 11088 if ((ipif->ipif_flags & IPIF_UP) && 11089 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11090 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11091 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11092 return (EADDRNOTAVAIL); 11093 } 11094 11095 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11096 return (EADDRNOTAVAIL); 11097 } else { 11098 ipaddr_t addr; 11099 11100 if (sin->sin_family != AF_INET) 11101 return (EAFNOSUPPORT); 11102 11103 addr = sin->sin_addr.s_addr; 11104 11105 /* Allow 0 as the local address. */ 11106 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11107 return (EADDRNOTAVAIL); 11108 11109 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11110 } 11111 11112 11113 /* 11114 * Even if there is no change we redo things just to rerun 11115 * ipif_set_default. 11116 */ 11117 if (ipif->ipif_flags & IPIF_UP) { 11118 /* 11119 * Setting a new local address, make sure 11120 * we have net and subnet bcast ire's for 11121 * the old address if we need them. 11122 */ 11123 if (!ipif->ipif_isv6) 11124 ipif_check_bcast_ires(ipif); 11125 /* 11126 * If the interface is already marked up, 11127 * we call ipif_down which will take care 11128 * of ditching any IREs that have been set 11129 * up based on the old interface address. 11130 */ 11131 err = ipif_logical_down(ipif, q, mp); 11132 if (err == EINPROGRESS) 11133 return (err); 11134 ipif_down_tail(ipif); 11135 need_up = 1; 11136 } 11137 11138 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11139 return (err); 11140 } 11141 11142 int 11143 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11144 boolean_t need_up) 11145 { 11146 in6_addr_t v6addr; 11147 ipaddr_t addr; 11148 sin6_t *sin6; 11149 int sinlen; 11150 int err = 0; 11151 ill_t *ill = ipif->ipif_ill; 11152 boolean_t need_dl_down; 11153 boolean_t need_arp_down; 11154 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 11155 11156 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11157 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11158 ASSERT(IAM_WRITER_IPIF(ipif)); 11159 11160 /* Must cancel any pending timer before taking the ill_lock */ 11161 if (ipif->ipif_recovery_id != 0) 11162 (void) untimeout(ipif->ipif_recovery_id); 11163 ipif->ipif_recovery_id = 0; 11164 11165 if (ipif->ipif_isv6) { 11166 sin6 = (sin6_t *)sin; 11167 v6addr = sin6->sin6_addr; 11168 sinlen = sizeof (struct sockaddr_in6); 11169 } else { 11170 addr = sin->sin_addr.s_addr; 11171 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11172 sinlen = sizeof (struct sockaddr_in); 11173 } 11174 mutex_enter(&ill->ill_lock); 11175 ipif->ipif_v6lcl_addr = v6addr; 11176 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11177 ipif->ipif_v6src_addr = ipv6_all_zeros; 11178 } else { 11179 ipif->ipif_v6src_addr = v6addr; 11180 } 11181 ipif->ipif_addr_ready = 0; 11182 11183 /* 11184 * If the interface was previously marked as a duplicate, then since 11185 * we've now got a "new" address, it should no longer be considered a 11186 * duplicate -- even if the "new" address is the same as the old one. 11187 * Note that if all ipifs are down, we may have a pending ARP down 11188 * event to handle. This is because we want to recover from duplicates 11189 * and thus delay tearing down ARP until the duplicates have been 11190 * removed or disabled. 11191 */ 11192 need_dl_down = need_arp_down = B_FALSE; 11193 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11194 need_arp_down = !need_up; 11195 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11196 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11197 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11198 need_dl_down = B_TRUE; 11199 } 11200 } 11201 11202 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11203 !ill->ill_is_6to4tun) { 11204 queue_t *wqp = ill->ill_wq; 11205 11206 /* 11207 * The local address of this interface is a 6to4 address, 11208 * check if this interface is in fact a 6to4 tunnel or just 11209 * an interface configured with a 6to4 address. We are only 11210 * interested in the former. 11211 */ 11212 if (wqp != NULL) { 11213 while ((wqp->q_next != NULL) && 11214 (wqp->q_next->q_qinfo != NULL) && 11215 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11216 11217 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11218 == TUN6TO4_MODID) { 11219 /* set for use in IP */ 11220 ill->ill_is_6to4tun = 1; 11221 break; 11222 } 11223 wqp = wqp->q_next; 11224 } 11225 } 11226 } 11227 11228 ipif_set_default(ipif); 11229 11230 /* 11231 * When publishing an interface address change event, we only notify 11232 * the event listeners of the new address. It is assumed that if they 11233 * actively care about the addresses assigned that they will have 11234 * already discovered the previous address assigned (if there was one.) 11235 * 11236 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11237 */ 11238 if (iocp->ioc_cmd != SIOCLIFADDIF) { 11239 hook_nic_event_t *info; 11240 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11241 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11242 "attached for %s\n", info->hne_event, 11243 ill->ill_name)); 11244 if (info->hne_data != NULL) 11245 kmem_free(info->hne_data, info->hne_datalen); 11246 kmem_free(info, sizeof (hook_nic_event_t)); 11247 } 11248 11249 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11250 if (info != NULL) { 11251 info->hne_nic = 11252 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11253 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11254 info->hne_event = NE_ADDRESS_CHANGE; 11255 info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4; 11256 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11257 if (info->hne_data != NULL) { 11258 info->hne_datalen = sinlen; 11259 bcopy(sin, info->hne_data, sinlen); 11260 } else { 11261 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11262 "address information for ADDRESS_CHANGE nic" 11263 " event of %s (ENOMEM)\n", 11264 ipif->ipif_ill->ill_name)); 11265 kmem_free(info, sizeof (hook_nic_event_t)); 11266 } 11267 } else 11268 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11269 "ADDRESS_CHANGE nic event information for %s " 11270 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11271 11272 ipif->ipif_ill->ill_nic_event_info = info; 11273 } 11274 11275 mutex_exit(&ipif->ipif_ill->ill_lock); 11276 11277 if (need_up) { 11278 /* 11279 * Now bring the interface back up. If this 11280 * is the only IPIF for the ILL, ipif_up 11281 * will have to re-bind to the device, so 11282 * we may get back EINPROGRESS, in which 11283 * case, this IOCTL will get completed in 11284 * ip_rput_dlpi when we see the DL_BIND_ACK. 11285 */ 11286 err = ipif_up(ipif, q, mp); 11287 } else { 11288 /* 11289 * Update the IPIF list in SCTP, ipif_up_done() will do it 11290 * if need_up is true. 11291 */ 11292 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11293 } 11294 11295 if (need_dl_down) 11296 ill_dl_down(ill); 11297 if (need_arp_down) 11298 ipif_arp_down(ipif); 11299 11300 return (err); 11301 } 11302 11303 11304 /* 11305 * Restart entry point to restart the address set operation after the 11306 * refcounts have dropped to zero. 11307 */ 11308 /* ARGSUSED */ 11309 int 11310 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11311 ip_ioctl_cmd_t *ipip, void *ifreq) 11312 { 11313 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11314 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11315 ASSERT(IAM_WRITER_IPIF(ipif)); 11316 ipif_down_tail(ipif); 11317 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11318 } 11319 11320 /* ARGSUSED */ 11321 int 11322 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11323 ip_ioctl_cmd_t *ipip, void *if_req) 11324 { 11325 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11326 struct lifreq *lifr = (struct lifreq *)if_req; 11327 11328 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11330 /* 11331 * The net mask and address can't change since we have a 11332 * reference to the ipif. So no lock is necessary. 11333 */ 11334 if (ipif->ipif_isv6) { 11335 *sin6 = sin6_null; 11336 sin6->sin6_family = AF_INET6; 11337 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11338 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11339 lifr->lifr_addrlen = 11340 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11341 } else { 11342 *sin = sin_null; 11343 sin->sin_family = AF_INET; 11344 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11345 if (ipip->ipi_cmd_type == LIF_CMD) { 11346 lifr->lifr_addrlen = 11347 ip_mask_to_plen(ipif->ipif_net_mask); 11348 } 11349 } 11350 return (0); 11351 } 11352 11353 /* 11354 * Set the destination address for a pt-pt interface. 11355 */ 11356 /* ARGSUSED */ 11357 int 11358 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11359 ip_ioctl_cmd_t *ipip, void *if_req) 11360 { 11361 int err = 0; 11362 in6_addr_t v6addr; 11363 boolean_t need_up = B_FALSE; 11364 11365 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11366 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11367 ASSERT(IAM_WRITER_IPIF(ipif)); 11368 11369 if (ipif->ipif_isv6) { 11370 sin6_t *sin6; 11371 11372 if (sin->sin_family != AF_INET6) 11373 return (EAFNOSUPPORT); 11374 11375 sin6 = (sin6_t *)sin; 11376 v6addr = sin6->sin6_addr; 11377 11378 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11379 return (EADDRNOTAVAIL); 11380 } else { 11381 ipaddr_t addr; 11382 11383 if (sin->sin_family != AF_INET) 11384 return (EAFNOSUPPORT); 11385 11386 addr = sin->sin_addr.s_addr; 11387 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11388 return (EADDRNOTAVAIL); 11389 11390 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11391 } 11392 11393 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11394 return (0); /* No change */ 11395 11396 if (ipif->ipif_flags & IPIF_UP) { 11397 /* 11398 * If the interface is already marked up, 11399 * we call ipif_down which will take care 11400 * of ditching any IREs that have been set 11401 * up based on the old pp dst address. 11402 */ 11403 err = ipif_logical_down(ipif, q, mp); 11404 if (err == EINPROGRESS) 11405 return (err); 11406 ipif_down_tail(ipif); 11407 need_up = B_TRUE; 11408 } 11409 /* 11410 * could return EINPROGRESS. If so ioctl will complete in 11411 * ip_rput_dlpi_writer 11412 */ 11413 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11414 return (err); 11415 } 11416 11417 static int 11418 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11419 boolean_t need_up) 11420 { 11421 in6_addr_t v6addr; 11422 ill_t *ill = ipif->ipif_ill; 11423 int err = 0; 11424 boolean_t need_dl_down; 11425 boolean_t need_arp_down; 11426 11427 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11428 ipif->ipif_id, (void *)ipif)); 11429 11430 /* Must cancel any pending timer before taking the ill_lock */ 11431 if (ipif->ipif_recovery_id != 0) 11432 (void) untimeout(ipif->ipif_recovery_id); 11433 ipif->ipif_recovery_id = 0; 11434 11435 if (ipif->ipif_isv6) { 11436 sin6_t *sin6; 11437 11438 sin6 = (sin6_t *)sin; 11439 v6addr = sin6->sin6_addr; 11440 } else { 11441 ipaddr_t addr; 11442 11443 addr = sin->sin_addr.s_addr; 11444 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11445 } 11446 mutex_enter(&ill->ill_lock); 11447 /* Set point to point destination address. */ 11448 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11449 /* 11450 * Allow this as a means of creating logical 11451 * pt-pt interfaces on top of e.g. an Ethernet. 11452 * XXX Undocumented HACK for testing. 11453 * pt-pt interfaces are created with NUD disabled. 11454 */ 11455 ipif->ipif_flags |= IPIF_POINTOPOINT; 11456 ipif->ipif_flags &= ~IPIF_BROADCAST; 11457 if (ipif->ipif_isv6) 11458 ill->ill_flags |= ILLF_NONUD; 11459 } 11460 11461 /* 11462 * If the interface was previously marked as a duplicate, then since 11463 * we've now got a "new" address, it should no longer be considered a 11464 * duplicate -- even if the "new" address is the same as the old one. 11465 * Note that if all ipifs are down, we may have a pending ARP down 11466 * event to handle. 11467 */ 11468 need_dl_down = need_arp_down = B_FALSE; 11469 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11470 need_arp_down = !need_up; 11471 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11472 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11473 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11474 need_dl_down = B_TRUE; 11475 } 11476 } 11477 11478 /* Set the new address. */ 11479 ipif->ipif_v6pp_dst_addr = v6addr; 11480 /* Make sure subnet tracks pp_dst */ 11481 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11482 mutex_exit(&ill->ill_lock); 11483 11484 if (need_up) { 11485 /* 11486 * Now bring the interface back up. If this 11487 * is the only IPIF for the ILL, ipif_up 11488 * will have to re-bind to the device, so 11489 * we may get back EINPROGRESS, in which 11490 * case, this IOCTL will get completed in 11491 * ip_rput_dlpi when we see the DL_BIND_ACK. 11492 */ 11493 err = ipif_up(ipif, q, mp); 11494 } 11495 11496 if (need_dl_down) 11497 ill_dl_down(ill); 11498 11499 if (need_arp_down) 11500 ipif_arp_down(ipif); 11501 return (err); 11502 } 11503 11504 /* 11505 * Restart entry point to restart the dstaddress set operation after the 11506 * refcounts have dropped to zero. 11507 */ 11508 /* ARGSUSED */ 11509 int 11510 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11511 ip_ioctl_cmd_t *ipip, void *ifreq) 11512 { 11513 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11514 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11515 ipif_down_tail(ipif); 11516 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11517 } 11518 11519 /* ARGSUSED */ 11520 int 11521 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11522 ip_ioctl_cmd_t *ipip, void *if_req) 11523 { 11524 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11525 11526 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11527 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11528 /* 11529 * Get point to point destination address. The addresses can't 11530 * change since we hold a reference to the ipif. 11531 */ 11532 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11533 return (EADDRNOTAVAIL); 11534 11535 if (ipif->ipif_isv6) { 11536 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11537 *sin6 = sin6_null; 11538 sin6->sin6_family = AF_INET6; 11539 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11540 } else { 11541 *sin = sin_null; 11542 sin->sin_family = AF_INET; 11543 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11544 } 11545 return (0); 11546 } 11547 11548 /* 11549 * part of ipmp, make this func return the active/inactive state and 11550 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11551 */ 11552 /* 11553 * This function either sets or clears the IFF_INACTIVE flag. 11554 * 11555 * As long as there are some addresses or multicast memberships on the 11556 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11557 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11558 * will be used for outbound packets. 11559 * 11560 * Caller needs to verify the validity of setting IFF_INACTIVE. 11561 */ 11562 static void 11563 phyint_inactive(phyint_t *phyi) 11564 { 11565 ill_t *ill_v4; 11566 ill_t *ill_v6; 11567 ipif_t *ipif; 11568 ilm_t *ilm; 11569 11570 ill_v4 = phyi->phyint_illv4; 11571 ill_v6 = phyi->phyint_illv6; 11572 11573 /* 11574 * No need for a lock while traversing the list since iam 11575 * a writer 11576 */ 11577 if (ill_v4 != NULL) { 11578 ASSERT(IAM_WRITER_ILL(ill_v4)); 11579 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11580 ipif = ipif->ipif_next) { 11581 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11582 mutex_enter(&phyi->phyint_lock); 11583 phyi->phyint_flags &= ~PHYI_INACTIVE; 11584 mutex_exit(&phyi->phyint_lock); 11585 return; 11586 } 11587 } 11588 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11589 ilm = ilm->ilm_next) { 11590 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11591 mutex_enter(&phyi->phyint_lock); 11592 phyi->phyint_flags &= ~PHYI_INACTIVE; 11593 mutex_exit(&phyi->phyint_lock); 11594 return; 11595 } 11596 } 11597 } 11598 if (ill_v6 != NULL) { 11599 ill_v6 = phyi->phyint_illv6; 11600 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11601 ipif = ipif->ipif_next) { 11602 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11603 mutex_enter(&phyi->phyint_lock); 11604 phyi->phyint_flags &= ~PHYI_INACTIVE; 11605 mutex_exit(&phyi->phyint_lock); 11606 return; 11607 } 11608 } 11609 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11610 ilm = ilm->ilm_next) { 11611 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11612 mutex_enter(&phyi->phyint_lock); 11613 phyi->phyint_flags &= ~PHYI_INACTIVE; 11614 mutex_exit(&phyi->phyint_lock); 11615 return; 11616 } 11617 } 11618 } 11619 mutex_enter(&phyi->phyint_lock); 11620 phyi->phyint_flags |= PHYI_INACTIVE; 11621 mutex_exit(&phyi->phyint_lock); 11622 } 11623 11624 /* 11625 * This function is called only when the phyint flags change. Currently 11626 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11627 * that we can select a good ill. 11628 */ 11629 static void 11630 ip_redo_nomination(phyint_t *phyi) 11631 { 11632 ill_t *ill_v4; 11633 11634 ill_v4 = phyi->phyint_illv4; 11635 11636 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11637 ASSERT(IAM_WRITER_ILL(ill_v4)); 11638 if (ill_v4->ill_group->illgrp_ill_count > 1) 11639 ill_nominate_bcast_rcv(ill_v4->ill_group); 11640 } 11641 } 11642 11643 /* 11644 * Heuristic to check if ill is INACTIVE. 11645 * Checks if ill has an ipif with an usable ip address. 11646 * 11647 * Return values: 11648 * B_TRUE - ill is INACTIVE; has no usable ipif 11649 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11650 */ 11651 static boolean_t 11652 ill_is_inactive(ill_t *ill) 11653 { 11654 ipif_t *ipif; 11655 11656 /* Check whether it is in an IPMP group */ 11657 if (ill->ill_phyint->phyint_groupname == NULL) 11658 return (B_FALSE); 11659 11660 if (ill->ill_ipif_up_count == 0) 11661 return (B_TRUE); 11662 11663 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11664 uint64_t flags = ipif->ipif_flags; 11665 11666 /* 11667 * This ipif is usable if it is IPIF_UP and not a 11668 * dedicated test address. A dedicated test address 11669 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11670 * (note in particular that V6 test addresses are 11671 * link-local data addresses and thus are marked 11672 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11673 */ 11674 if ((flags & IPIF_UP) && 11675 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11676 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11677 return (B_FALSE); 11678 } 11679 return (B_TRUE); 11680 } 11681 11682 /* 11683 * Set interface flags. 11684 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11685 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11686 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11687 * 11688 * NOTE : We really don't enforce that ipif_id zero should be used 11689 * for setting any flags other than IFF_LOGINT_FLAGS. This 11690 * is because applications generally does SICGLIFFLAGS and 11691 * ORs in the new flags (that affects the logical) and does a 11692 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11693 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11694 * flags that will be turned on is correct with respect to 11695 * ipif_id 0. For backward compatibility reasons, it is not done. 11696 */ 11697 /* ARGSUSED */ 11698 int 11699 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11700 ip_ioctl_cmd_t *ipip, void *if_req) 11701 { 11702 uint64_t turn_on; 11703 uint64_t turn_off; 11704 int err; 11705 boolean_t need_up = B_FALSE; 11706 phyint_t *phyi; 11707 ill_t *ill; 11708 uint64_t intf_flags; 11709 boolean_t phyint_flags_modified = B_FALSE; 11710 uint64_t flags; 11711 struct ifreq *ifr; 11712 struct lifreq *lifr; 11713 boolean_t set_linklocal = B_FALSE; 11714 boolean_t zero_source = B_FALSE; 11715 11716 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11717 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11718 11719 ASSERT(IAM_WRITER_IPIF(ipif)); 11720 11721 ill = ipif->ipif_ill; 11722 phyi = ill->ill_phyint; 11723 11724 if (ipip->ipi_cmd_type == IF_CMD) { 11725 ifr = (struct ifreq *)if_req; 11726 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11727 } else { 11728 lifr = (struct lifreq *)if_req; 11729 flags = lifr->lifr_flags; 11730 } 11731 11732 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11733 11734 /* 11735 * Has the flags been set correctly till now ? 11736 */ 11737 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11738 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11739 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11740 /* 11741 * Compare the new flags to the old, and partition 11742 * into those coming on and those going off. 11743 * For the 16 bit command keep the bits above bit 16 unchanged. 11744 */ 11745 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11746 flags |= intf_flags & ~0xFFFF; 11747 11748 /* 11749 * First check which bits will change and then which will 11750 * go on and off 11751 */ 11752 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11753 if (!turn_on) 11754 return (0); /* No change */ 11755 11756 turn_off = intf_flags & turn_on; 11757 turn_on ^= turn_off; 11758 err = 0; 11759 11760 /* 11761 * Don't allow any bits belonging to the logical interface 11762 * to be set or cleared on the replacement ipif that was 11763 * created temporarily during a MOVE. 11764 */ 11765 if (ipif->ipif_replace_zero && 11766 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11767 return (EINVAL); 11768 } 11769 11770 /* 11771 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11772 * IPv6 interfaces. 11773 */ 11774 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11775 return (EINVAL); 11776 11777 /* 11778 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11779 * interfaces. It makes no sense in that context. 11780 */ 11781 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11782 return (EINVAL); 11783 11784 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11785 zero_source = B_TRUE; 11786 11787 /* 11788 * For IPv6 ipif_id 0, don't allow the interface to be up without 11789 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11790 * If the link local address isn't set, and can be set, it will get 11791 * set later on in this function. 11792 */ 11793 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11794 (flags & IFF_UP) && !zero_source && 11795 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11796 if (ipif_cant_setlinklocal(ipif)) 11797 return (EINVAL); 11798 set_linklocal = B_TRUE; 11799 } 11800 11801 /* 11802 * ILL cannot be part of a usesrc group and and IPMP group at the 11803 * same time. No need to grab ill_g_usesrc_lock here, see 11804 * synchronization notes in ip.c 11805 */ 11806 if (turn_on & PHYI_STANDBY && 11807 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11808 return (EINVAL); 11809 } 11810 11811 /* 11812 * If we modify physical interface flags, we'll potentially need to 11813 * send up two routing socket messages for the changes (one for the 11814 * IPv4 ill, and another for the IPv6 ill). Note that here. 11815 */ 11816 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11817 phyint_flags_modified = B_TRUE; 11818 11819 /* 11820 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11821 * we need to flush the IRE_CACHES belonging to this ill. 11822 * We handle this case here without doing the DOWN/UP dance 11823 * like it is done for other flags. If some other flags are 11824 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11825 * below will handle it by bringing it down and then 11826 * bringing it UP. 11827 */ 11828 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11829 ill_t *ill_v4, *ill_v6; 11830 11831 ill_v4 = phyi->phyint_illv4; 11832 ill_v6 = phyi->phyint_illv6; 11833 11834 /* 11835 * First set the INACTIVE flag if needed. Then delete the ires. 11836 * ire_add will atomically prevent creating new IRE_CACHEs 11837 * unless hidden flag is set. 11838 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11839 */ 11840 if ((turn_on & PHYI_FAILED) && 11841 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11842 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11843 phyi->phyint_flags &= ~PHYI_INACTIVE; 11844 } 11845 if ((turn_off & PHYI_FAILED) && 11846 ((intf_flags & PHYI_STANDBY) || 11847 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11848 phyint_inactive(phyi); 11849 } 11850 11851 if (turn_on & PHYI_STANDBY) { 11852 /* 11853 * We implicitly set INACTIVE only when STANDBY is set. 11854 * INACTIVE is also set on non-STANDBY phyint when user 11855 * disables FAILBACK using configuration file. 11856 * Do not allow STANDBY to be set on such INACTIVE 11857 * phyint 11858 */ 11859 if (phyi->phyint_flags & PHYI_INACTIVE) 11860 return (EINVAL); 11861 if (!(phyi->phyint_flags & PHYI_FAILED)) 11862 phyint_inactive(phyi); 11863 } 11864 if (turn_off & PHYI_STANDBY) { 11865 if (ipmp_enable_failback) { 11866 /* 11867 * Reset PHYI_INACTIVE. 11868 */ 11869 phyi->phyint_flags &= ~PHYI_INACTIVE; 11870 } else if (ill_is_inactive(ill) && 11871 !(phyi->phyint_flags & PHYI_FAILED)) { 11872 /* 11873 * Need to set INACTIVE, when user sets 11874 * STANDBY on a non-STANDBY phyint and 11875 * later resets STANDBY 11876 */ 11877 phyint_inactive(phyi); 11878 } 11879 } 11880 /* 11881 * We should always send up a message so that the 11882 * daemons come to know of it. Note that the zeroth 11883 * interface can be down and the check below for IPIF_UP 11884 * will not make sense as we are actually setting 11885 * a phyint flag here. We assume that the ipif used 11886 * is always the zeroth ipif. (ip_rts_ifmsg does not 11887 * send up any message for non-zero ipifs). 11888 */ 11889 phyint_flags_modified = B_TRUE; 11890 11891 if (ill_v4 != NULL) { 11892 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11893 IRE_CACHE, ill_stq_cache_delete, 11894 (char *)ill_v4, ill_v4); 11895 illgrp_reset_schednext(ill_v4); 11896 } 11897 if (ill_v6 != NULL) { 11898 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11899 IRE_CACHE, ill_stq_cache_delete, 11900 (char *)ill_v6, ill_v6); 11901 illgrp_reset_schednext(ill_v6); 11902 } 11903 } 11904 11905 /* 11906 * If ILLF_ROUTER changes, we need to change the ip forwarding 11907 * status of the interface and, if the interface is part of an IPMP 11908 * group, all other interfaces that are part of the same IPMP 11909 * group. 11910 */ 11911 if ((turn_on | turn_off) & ILLF_ROUTER) { 11912 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11913 (caddr_t)ill); 11914 } 11915 11916 /* 11917 * If the interface is not UP and we are not going to 11918 * bring it UP, record the flags and return. When the 11919 * interface comes UP later, the right actions will be 11920 * taken. 11921 */ 11922 if (!(ipif->ipif_flags & IPIF_UP) && 11923 !(turn_on & IPIF_UP)) { 11924 /* Record new flags in their respective places. */ 11925 mutex_enter(&ill->ill_lock); 11926 mutex_enter(&ill->ill_phyint->phyint_lock); 11927 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11928 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11929 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11930 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11931 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11932 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11933 mutex_exit(&ill->ill_lock); 11934 mutex_exit(&ill->ill_phyint->phyint_lock); 11935 11936 /* 11937 * We do the broadcast and nomination here rather 11938 * than waiting for a FAILOVER/FAILBACK to happen. In 11939 * the case of FAILBACK from INACTIVE standby to the 11940 * interface that has been repaired, PHYI_FAILED has not 11941 * been cleared yet. If there are only two interfaces in 11942 * that group, all we have is a FAILED and INACTIVE 11943 * interface. If we do the nomination soon after a failback, 11944 * the broadcast nomination code would select the 11945 * INACTIVE interface for receiving broadcasts as FAILED is 11946 * not yet cleared. As we don't want STANDBY/INACTIVE to 11947 * receive broadcast packets, we need to redo nomination 11948 * when the FAILED is cleared here. Thus, in general we 11949 * always do the nomination here for FAILED, STANDBY 11950 * and OFFLINE. 11951 */ 11952 if (((turn_on | turn_off) & 11953 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11954 ip_redo_nomination(phyi); 11955 } 11956 if (phyint_flags_modified) { 11957 if (phyi->phyint_illv4 != NULL) { 11958 ip_rts_ifmsg(phyi->phyint_illv4-> 11959 ill_ipif); 11960 } 11961 if (phyi->phyint_illv6 != NULL) { 11962 ip_rts_ifmsg(phyi->phyint_illv6-> 11963 ill_ipif); 11964 } 11965 } 11966 return (0); 11967 } else if (set_linklocal || zero_source) { 11968 mutex_enter(&ill->ill_lock); 11969 if (set_linklocal) 11970 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11971 if (zero_source) 11972 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11973 mutex_exit(&ill->ill_lock); 11974 } 11975 11976 /* 11977 * Disallow IPv6 interfaces coming up that have the unspecified address, 11978 * or point-to-point interfaces with an unspecified destination. We do 11979 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11980 * have a subnet assigned, which is how in.ndpd currently manages its 11981 * onlink prefix list when no addresses are configured with those 11982 * prefixes. 11983 */ 11984 if (ipif->ipif_isv6 && 11985 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11986 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11987 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11988 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11989 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11990 return (EINVAL); 11991 } 11992 11993 /* 11994 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11995 * from being brought up. 11996 */ 11997 if (!ipif->ipif_isv6 && 11998 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11999 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12000 return (EINVAL); 12001 } 12002 12003 /* 12004 * The only flag changes that we currently take specific action on 12005 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12006 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12007 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12008 * the flags and bringing it back up again. 12009 */ 12010 if ((turn_on|turn_off) & 12011 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12012 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12013 /* 12014 * Taking this ipif down, make sure we have 12015 * valid net and subnet bcast ire's for other 12016 * logical interfaces, if we need them. 12017 */ 12018 if (!ipif->ipif_isv6) 12019 ipif_check_bcast_ires(ipif); 12020 12021 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12022 !(turn_off & IPIF_UP)) { 12023 need_up = B_TRUE; 12024 if (ipif->ipif_flags & IPIF_UP) 12025 ill->ill_logical_down = 1; 12026 turn_on &= ~IPIF_UP; 12027 } 12028 err = ipif_down(ipif, q, mp); 12029 ip1dbg(("ipif_down returns %d err ", err)); 12030 if (err == EINPROGRESS) 12031 return (err); 12032 ipif_down_tail(ipif); 12033 } 12034 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12035 } 12036 12037 static int 12038 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12039 boolean_t need_up) 12040 { 12041 ill_t *ill; 12042 phyint_t *phyi; 12043 uint64_t turn_on; 12044 uint64_t turn_off; 12045 uint64_t intf_flags; 12046 boolean_t phyint_flags_modified = B_FALSE; 12047 int err = 0; 12048 boolean_t set_linklocal = B_FALSE; 12049 boolean_t zero_source = B_FALSE; 12050 12051 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12052 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12053 12054 ASSERT(IAM_WRITER_IPIF(ipif)); 12055 12056 ill = ipif->ipif_ill; 12057 phyi = ill->ill_phyint; 12058 12059 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12060 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12061 12062 turn_off = intf_flags & turn_on; 12063 turn_on ^= turn_off; 12064 12065 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12066 phyint_flags_modified = B_TRUE; 12067 12068 /* 12069 * Now we change the flags. Track current value of 12070 * other flags in their respective places. 12071 */ 12072 mutex_enter(&ill->ill_lock); 12073 mutex_enter(&phyi->phyint_lock); 12074 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12075 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12076 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12077 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12078 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12079 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12080 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12081 set_linklocal = B_TRUE; 12082 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12083 } 12084 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12085 zero_source = B_TRUE; 12086 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12087 } 12088 mutex_exit(&ill->ill_lock); 12089 mutex_exit(&phyi->phyint_lock); 12090 12091 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12092 ip_redo_nomination(phyi); 12093 12094 if (set_linklocal) 12095 (void) ipif_setlinklocal(ipif); 12096 12097 if (zero_source) 12098 ipif->ipif_v6src_addr = ipv6_all_zeros; 12099 else 12100 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12101 12102 if (need_up) { 12103 /* 12104 * XXX ipif_up really does not know whether a phyint flags 12105 * was modified or not. So, it sends up information on 12106 * only one routing sockets message. As we don't bring up 12107 * the interface and also set STANDBY/FAILED simultaneously 12108 * it should be okay. 12109 */ 12110 err = ipif_up(ipif, q, mp); 12111 } else { 12112 /* 12113 * Make sure routing socket sees all changes to the flags. 12114 * ipif_up_done* handles this when we use ipif_up. 12115 */ 12116 if (phyint_flags_modified) { 12117 if (phyi->phyint_illv4 != NULL) { 12118 ip_rts_ifmsg(phyi->phyint_illv4-> 12119 ill_ipif); 12120 } 12121 if (phyi->phyint_illv6 != NULL) { 12122 ip_rts_ifmsg(phyi->phyint_illv6-> 12123 ill_ipif); 12124 } 12125 } else { 12126 ip_rts_ifmsg(ipif); 12127 } 12128 } 12129 return (err); 12130 } 12131 12132 /* 12133 * Restart entry point to restart the flags restart operation after the 12134 * refcounts have dropped to zero. 12135 */ 12136 /* ARGSUSED */ 12137 int 12138 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12139 ip_ioctl_cmd_t *ipip, void *if_req) 12140 { 12141 int err; 12142 struct ifreq *ifr = (struct ifreq *)if_req; 12143 struct lifreq *lifr = (struct lifreq *)if_req; 12144 12145 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12146 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12147 12148 ipif_down_tail(ipif); 12149 if (ipip->ipi_cmd_type == IF_CMD) { 12150 /* 12151 * Since ip_sioctl_flags expects an int and ifr_flags 12152 * is a short we need to cast ifr_flags into an int 12153 * to avoid having sign extension cause bits to get 12154 * set that should not be. 12155 */ 12156 err = ip_sioctl_flags_tail(ipif, 12157 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12158 q, mp, B_TRUE); 12159 } else { 12160 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12161 q, mp, B_TRUE); 12162 } 12163 return (err); 12164 } 12165 12166 /* ARGSUSED */ 12167 int 12168 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12169 ip_ioctl_cmd_t *ipip, void *if_req) 12170 { 12171 /* 12172 * Has the flags been set correctly till now ? 12173 */ 12174 ill_t *ill = ipif->ipif_ill; 12175 phyint_t *phyi = ill->ill_phyint; 12176 12177 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12178 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12179 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12180 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12181 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12182 12183 /* 12184 * Need a lock since some flags can be set even when there are 12185 * references to the ipif. 12186 */ 12187 mutex_enter(&ill->ill_lock); 12188 if (ipip->ipi_cmd_type == IF_CMD) { 12189 struct ifreq *ifr = (struct ifreq *)if_req; 12190 12191 /* Get interface flags (low 16 only). */ 12192 ifr->ifr_flags = ((ipif->ipif_flags | 12193 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12194 } else { 12195 struct lifreq *lifr = (struct lifreq *)if_req; 12196 12197 /* Get interface flags. */ 12198 lifr->lifr_flags = ipif->ipif_flags | 12199 ill->ill_flags | phyi->phyint_flags; 12200 } 12201 mutex_exit(&ill->ill_lock); 12202 return (0); 12203 } 12204 12205 /* ARGSUSED */ 12206 int 12207 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12208 ip_ioctl_cmd_t *ipip, void *if_req) 12209 { 12210 int mtu; 12211 int ip_min_mtu; 12212 struct ifreq *ifr; 12213 struct lifreq *lifr; 12214 ire_t *ire; 12215 12216 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12217 ipif->ipif_id, (void *)ipif)); 12218 if (ipip->ipi_cmd_type == IF_CMD) { 12219 ifr = (struct ifreq *)if_req; 12220 mtu = ifr->ifr_metric; 12221 } else { 12222 lifr = (struct lifreq *)if_req; 12223 mtu = lifr->lifr_mtu; 12224 } 12225 12226 if (ipif->ipif_isv6) 12227 ip_min_mtu = IPV6_MIN_MTU; 12228 else 12229 ip_min_mtu = IP_MIN_MTU; 12230 12231 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12232 return (EINVAL); 12233 12234 /* 12235 * Change the MTU size in all relevant ire's. 12236 * Mtu change Vs. new ire creation - protocol below. 12237 * First change ipif_mtu and the ire_max_frag of the 12238 * interface ire. Then do an ire walk and change the 12239 * ire_max_frag of all affected ires. During ire_add 12240 * under the bucket lock, set the ire_max_frag of the 12241 * new ire being created from the ipif/ire from which 12242 * it is being derived. If an mtu change happens after 12243 * the ire is added, the new ire will be cleaned up. 12244 * Conversely if the mtu change happens before the ire 12245 * is added, ire_add will see the new value of the mtu. 12246 */ 12247 ipif->ipif_mtu = mtu; 12248 ipif->ipif_flags |= IPIF_FIXEDMTU; 12249 12250 if (ipif->ipif_isv6) 12251 ire = ipif_to_ire_v6(ipif); 12252 else 12253 ire = ipif_to_ire(ipif); 12254 if (ire != NULL) { 12255 ire->ire_max_frag = ipif->ipif_mtu; 12256 ire_refrele(ire); 12257 } 12258 if (ipif->ipif_flags & IPIF_UP) { 12259 if (ipif->ipif_isv6) 12260 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12261 else 12262 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12263 } 12264 /* Update the MTU in SCTP's list */ 12265 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12266 return (0); 12267 } 12268 12269 /* Get interface MTU. */ 12270 /* ARGSUSED */ 12271 int 12272 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12273 ip_ioctl_cmd_t *ipip, void *if_req) 12274 { 12275 struct ifreq *ifr; 12276 struct lifreq *lifr; 12277 12278 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12279 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12280 if (ipip->ipi_cmd_type == IF_CMD) { 12281 ifr = (struct ifreq *)if_req; 12282 ifr->ifr_metric = ipif->ipif_mtu; 12283 } else { 12284 lifr = (struct lifreq *)if_req; 12285 lifr->lifr_mtu = ipif->ipif_mtu; 12286 } 12287 return (0); 12288 } 12289 12290 /* Set interface broadcast address. */ 12291 /* ARGSUSED2 */ 12292 int 12293 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12294 ip_ioctl_cmd_t *ipip, void *if_req) 12295 { 12296 ipaddr_t addr; 12297 ire_t *ire; 12298 12299 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12300 ipif->ipif_id)); 12301 12302 ASSERT(IAM_WRITER_IPIF(ipif)); 12303 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12304 return (EADDRNOTAVAIL); 12305 12306 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12307 12308 if (sin->sin_family != AF_INET) 12309 return (EAFNOSUPPORT); 12310 12311 addr = sin->sin_addr.s_addr; 12312 if (ipif->ipif_flags & IPIF_UP) { 12313 /* 12314 * If we are already up, make sure the new 12315 * broadcast address makes sense. If it does, 12316 * there should be an IRE for it already. 12317 * Don't match on ipif, only on the ill 12318 * since we are sharing these now. Don't use 12319 * MATCH_IRE_ILL_GROUP as we are looking for 12320 * the broadcast ire on this ill and each ill 12321 * in the group has its own broadcast ire. 12322 */ 12323 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12324 ipif, ALL_ZONES, NULL, 12325 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 12326 if (ire == NULL) { 12327 return (EINVAL); 12328 } else { 12329 ire_refrele(ire); 12330 } 12331 } 12332 /* 12333 * Changing the broadcast addr for this ipif. 12334 * Make sure we have valid net and subnet bcast 12335 * ire's for other logical interfaces, if needed. 12336 */ 12337 if (addr != ipif->ipif_brd_addr) 12338 ipif_check_bcast_ires(ipif); 12339 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12340 return (0); 12341 } 12342 12343 /* Get interface broadcast address. */ 12344 /* ARGSUSED */ 12345 int 12346 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12347 ip_ioctl_cmd_t *ipip, void *if_req) 12348 { 12349 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12350 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12351 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12352 return (EADDRNOTAVAIL); 12353 12354 /* IPIF_BROADCAST not possible with IPv6 */ 12355 ASSERT(!ipif->ipif_isv6); 12356 *sin = sin_null; 12357 sin->sin_family = AF_INET; 12358 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12359 return (0); 12360 } 12361 12362 /* 12363 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12364 */ 12365 /* ARGSUSED */ 12366 int 12367 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12368 ip_ioctl_cmd_t *ipip, void *if_req) 12369 { 12370 int err = 0; 12371 in6_addr_t v6mask; 12372 12373 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12374 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12375 12376 ASSERT(IAM_WRITER_IPIF(ipif)); 12377 12378 if (ipif->ipif_isv6) { 12379 sin6_t *sin6; 12380 12381 if (sin->sin_family != AF_INET6) 12382 return (EAFNOSUPPORT); 12383 12384 sin6 = (sin6_t *)sin; 12385 v6mask = sin6->sin6_addr; 12386 } else { 12387 ipaddr_t mask; 12388 12389 if (sin->sin_family != AF_INET) 12390 return (EAFNOSUPPORT); 12391 12392 mask = sin->sin_addr.s_addr; 12393 V4MASK_TO_V6(mask, v6mask); 12394 } 12395 12396 /* 12397 * No big deal if the interface isn't already up, or the mask 12398 * isn't really changing, or this is pt-pt. 12399 */ 12400 if (!(ipif->ipif_flags & IPIF_UP) || 12401 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12402 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12403 ipif->ipif_v6net_mask = v6mask; 12404 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12405 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12406 ipif->ipif_v6net_mask, 12407 ipif->ipif_v6subnet); 12408 } 12409 return (0); 12410 } 12411 /* 12412 * Make sure we have valid net and subnet broadcast ire's 12413 * for the old netmask, if needed by other logical interfaces. 12414 */ 12415 if (!ipif->ipif_isv6) 12416 ipif_check_bcast_ires(ipif); 12417 12418 err = ipif_logical_down(ipif, q, mp); 12419 if (err == EINPROGRESS) 12420 return (err); 12421 ipif_down_tail(ipif); 12422 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12423 return (err); 12424 } 12425 12426 static int 12427 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12428 { 12429 in6_addr_t v6mask; 12430 int err = 0; 12431 12432 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12434 12435 if (ipif->ipif_isv6) { 12436 sin6_t *sin6; 12437 12438 sin6 = (sin6_t *)sin; 12439 v6mask = sin6->sin6_addr; 12440 } else { 12441 ipaddr_t mask; 12442 12443 mask = sin->sin_addr.s_addr; 12444 V4MASK_TO_V6(mask, v6mask); 12445 } 12446 12447 ipif->ipif_v6net_mask = v6mask; 12448 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12449 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12450 ipif->ipif_v6subnet); 12451 } 12452 err = ipif_up(ipif, q, mp); 12453 12454 if (err == 0 || err == EINPROGRESS) { 12455 /* 12456 * The interface must be DL_BOUND if this packet has to 12457 * go out on the wire. Since we only go through a logical 12458 * down and are bound with the driver during an internal 12459 * down/up that is satisfied. 12460 */ 12461 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12462 /* Potentially broadcast an address mask reply. */ 12463 ipif_mask_reply(ipif); 12464 } 12465 } 12466 return (err); 12467 } 12468 12469 /* ARGSUSED */ 12470 int 12471 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12472 ip_ioctl_cmd_t *ipip, void *if_req) 12473 { 12474 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12475 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12476 ipif_down_tail(ipif); 12477 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12478 } 12479 12480 /* Get interface net mask. */ 12481 /* ARGSUSED */ 12482 int 12483 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12484 ip_ioctl_cmd_t *ipip, void *if_req) 12485 { 12486 struct lifreq *lifr = (struct lifreq *)if_req; 12487 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12488 12489 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12490 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12491 12492 /* 12493 * net mask can't change since we have a reference to the ipif. 12494 */ 12495 if (ipif->ipif_isv6) { 12496 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12497 *sin6 = sin6_null; 12498 sin6->sin6_family = AF_INET6; 12499 sin6->sin6_addr = ipif->ipif_v6net_mask; 12500 lifr->lifr_addrlen = 12501 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12502 } else { 12503 *sin = sin_null; 12504 sin->sin_family = AF_INET; 12505 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12506 if (ipip->ipi_cmd_type == LIF_CMD) { 12507 lifr->lifr_addrlen = 12508 ip_mask_to_plen(ipif->ipif_net_mask); 12509 } 12510 } 12511 return (0); 12512 } 12513 12514 /* ARGSUSED */ 12515 int 12516 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12517 ip_ioctl_cmd_t *ipip, void *if_req) 12518 { 12519 12520 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12521 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12522 /* 12523 * Set interface metric. We don't use this for 12524 * anything but we keep track of it in case it is 12525 * important to routing applications or such. 12526 */ 12527 if (ipip->ipi_cmd_type == IF_CMD) { 12528 struct ifreq *ifr; 12529 12530 ifr = (struct ifreq *)if_req; 12531 ipif->ipif_metric = ifr->ifr_metric; 12532 } else { 12533 struct lifreq *lifr; 12534 12535 lifr = (struct lifreq *)if_req; 12536 ipif->ipif_metric = lifr->lifr_metric; 12537 } 12538 return (0); 12539 } 12540 12541 12542 /* ARGSUSED */ 12543 int 12544 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12545 ip_ioctl_cmd_t *ipip, void *if_req) 12546 { 12547 12548 /* Get interface metric. */ 12549 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12550 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12551 if (ipip->ipi_cmd_type == IF_CMD) { 12552 struct ifreq *ifr; 12553 12554 ifr = (struct ifreq *)if_req; 12555 ifr->ifr_metric = ipif->ipif_metric; 12556 } else { 12557 struct lifreq *lifr; 12558 12559 lifr = (struct lifreq *)if_req; 12560 lifr->lifr_metric = ipif->ipif_metric; 12561 } 12562 12563 return (0); 12564 } 12565 12566 /* ARGSUSED */ 12567 int 12568 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12569 ip_ioctl_cmd_t *ipip, void *if_req) 12570 { 12571 12572 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12573 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12574 /* 12575 * Set the muxid returned from I_PLINK. 12576 */ 12577 if (ipip->ipi_cmd_type == IF_CMD) { 12578 struct ifreq *ifr = (struct ifreq *)if_req; 12579 12580 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12581 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12582 } else { 12583 struct lifreq *lifr = (struct lifreq *)if_req; 12584 12585 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12586 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12587 } 12588 return (0); 12589 } 12590 12591 /* ARGSUSED */ 12592 int 12593 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12594 ip_ioctl_cmd_t *ipip, void *if_req) 12595 { 12596 12597 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12599 /* 12600 * Get the muxid saved in ill for I_PUNLINK. 12601 */ 12602 if (ipip->ipi_cmd_type == IF_CMD) { 12603 struct ifreq *ifr = (struct ifreq *)if_req; 12604 12605 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12606 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12607 } else { 12608 struct lifreq *lifr = (struct lifreq *)if_req; 12609 12610 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12611 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12612 } 12613 return (0); 12614 } 12615 12616 /* 12617 * Set the subnet prefix. Does not modify the broadcast address. 12618 */ 12619 /* ARGSUSED */ 12620 int 12621 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12622 ip_ioctl_cmd_t *ipip, void *if_req) 12623 { 12624 int err = 0; 12625 in6_addr_t v6addr; 12626 in6_addr_t v6mask; 12627 boolean_t need_up = B_FALSE; 12628 int addrlen; 12629 12630 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12632 12633 ASSERT(IAM_WRITER_IPIF(ipif)); 12634 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12635 12636 if (ipif->ipif_isv6) { 12637 sin6_t *sin6; 12638 12639 if (sin->sin_family != AF_INET6) 12640 return (EAFNOSUPPORT); 12641 12642 sin6 = (sin6_t *)sin; 12643 v6addr = sin6->sin6_addr; 12644 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12645 return (EADDRNOTAVAIL); 12646 } else { 12647 ipaddr_t addr; 12648 12649 if (sin->sin_family != AF_INET) 12650 return (EAFNOSUPPORT); 12651 12652 addr = sin->sin_addr.s_addr; 12653 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12654 return (EADDRNOTAVAIL); 12655 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12656 /* Add 96 bits */ 12657 addrlen += IPV6_ABITS - IP_ABITS; 12658 } 12659 12660 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12661 return (EINVAL); 12662 12663 /* Check if bits in the address is set past the mask */ 12664 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12665 return (EINVAL); 12666 12667 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12668 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12669 return (0); /* No change */ 12670 12671 if (ipif->ipif_flags & IPIF_UP) { 12672 /* 12673 * If the interface is already marked up, 12674 * we call ipif_down which will take care 12675 * of ditching any IREs that have been set 12676 * up based on the old interface address. 12677 */ 12678 err = ipif_logical_down(ipif, q, mp); 12679 if (err == EINPROGRESS) 12680 return (err); 12681 ipif_down_tail(ipif); 12682 need_up = B_TRUE; 12683 } 12684 12685 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12686 return (err); 12687 } 12688 12689 static int 12690 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12691 queue_t *q, mblk_t *mp, boolean_t need_up) 12692 { 12693 ill_t *ill = ipif->ipif_ill; 12694 int err = 0; 12695 12696 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12697 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12698 12699 /* Set the new address. */ 12700 mutex_enter(&ill->ill_lock); 12701 ipif->ipif_v6net_mask = v6mask; 12702 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12703 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12704 ipif->ipif_v6subnet); 12705 } 12706 mutex_exit(&ill->ill_lock); 12707 12708 if (need_up) { 12709 /* 12710 * Now bring the interface back up. If this 12711 * is the only IPIF for the ILL, ipif_up 12712 * will have to re-bind to the device, so 12713 * we may get back EINPROGRESS, in which 12714 * case, this IOCTL will get completed in 12715 * ip_rput_dlpi when we see the DL_BIND_ACK. 12716 */ 12717 err = ipif_up(ipif, q, mp); 12718 if (err == EINPROGRESS) 12719 return (err); 12720 } 12721 return (err); 12722 } 12723 12724 /* ARGSUSED */ 12725 int 12726 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12727 ip_ioctl_cmd_t *ipip, void *if_req) 12728 { 12729 int addrlen; 12730 in6_addr_t v6addr; 12731 in6_addr_t v6mask; 12732 struct lifreq *lifr = (struct lifreq *)if_req; 12733 12734 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12736 ipif_down_tail(ipif); 12737 12738 addrlen = lifr->lifr_addrlen; 12739 if (ipif->ipif_isv6) { 12740 sin6_t *sin6; 12741 12742 sin6 = (sin6_t *)sin; 12743 v6addr = sin6->sin6_addr; 12744 } else { 12745 ipaddr_t addr; 12746 12747 addr = sin->sin_addr.s_addr; 12748 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12749 addrlen += IPV6_ABITS - IP_ABITS; 12750 } 12751 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12752 12753 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12754 } 12755 12756 /* ARGSUSED */ 12757 int 12758 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12759 ip_ioctl_cmd_t *ipip, void *if_req) 12760 { 12761 struct lifreq *lifr = (struct lifreq *)if_req; 12762 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12763 12764 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12765 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12766 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12767 12768 if (ipif->ipif_isv6) { 12769 *sin6 = sin6_null; 12770 sin6->sin6_family = AF_INET6; 12771 sin6->sin6_addr = ipif->ipif_v6subnet; 12772 lifr->lifr_addrlen = 12773 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12774 } else { 12775 *sin = sin_null; 12776 sin->sin_family = AF_INET; 12777 sin->sin_addr.s_addr = ipif->ipif_subnet; 12778 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12779 } 12780 return (0); 12781 } 12782 12783 /* 12784 * Set the IPv6 address token. 12785 */ 12786 /* ARGSUSED */ 12787 int 12788 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12789 ip_ioctl_cmd_t *ipi, void *if_req) 12790 { 12791 ill_t *ill = ipif->ipif_ill; 12792 int err; 12793 in6_addr_t v6addr; 12794 in6_addr_t v6mask; 12795 boolean_t need_up = B_FALSE; 12796 int i; 12797 sin6_t *sin6 = (sin6_t *)sin; 12798 struct lifreq *lifr = (struct lifreq *)if_req; 12799 int addrlen; 12800 12801 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12802 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12803 ASSERT(IAM_WRITER_IPIF(ipif)); 12804 12805 addrlen = lifr->lifr_addrlen; 12806 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12807 if (ipif->ipif_id != 0) 12808 return (EINVAL); 12809 12810 if (!ipif->ipif_isv6) 12811 return (EINVAL); 12812 12813 if (addrlen > IPV6_ABITS) 12814 return (EINVAL); 12815 12816 v6addr = sin6->sin6_addr; 12817 12818 /* 12819 * The length of the token is the length from the end. To get 12820 * the proper mask for this, compute the mask of the bits not 12821 * in the token; ie. the prefix, and then xor to get the mask. 12822 */ 12823 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12824 return (EINVAL); 12825 for (i = 0; i < 4; i++) { 12826 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12827 } 12828 12829 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12830 ill->ill_token_length == addrlen) 12831 return (0); /* No change */ 12832 12833 if (ipif->ipif_flags & IPIF_UP) { 12834 err = ipif_logical_down(ipif, q, mp); 12835 if (err == EINPROGRESS) 12836 return (err); 12837 ipif_down_tail(ipif); 12838 need_up = B_TRUE; 12839 } 12840 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12841 return (err); 12842 } 12843 12844 static int 12845 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12846 mblk_t *mp, boolean_t need_up) 12847 { 12848 in6_addr_t v6addr; 12849 in6_addr_t v6mask; 12850 ill_t *ill = ipif->ipif_ill; 12851 int i; 12852 int err = 0; 12853 12854 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12855 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12856 v6addr = sin6->sin6_addr; 12857 /* 12858 * The length of the token is the length from the end. To get 12859 * the proper mask for this, compute the mask of the bits not 12860 * in the token; ie. the prefix, and then xor to get the mask. 12861 */ 12862 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12863 for (i = 0; i < 4; i++) 12864 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12865 12866 mutex_enter(&ill->ill_lock); 12867 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12868 ill->ill_token_length = addrlen; 12869 mutex_exit(&ill->ill_lock); 12870 12871 if (need_up) { 12872 /* 12873 * Now bring the interface back up. If this 12874 * is the only IPIF for the ILL, ipif_up 12875 * will have to re-bind to the device, so 12876 * we may get back EINPROGRESS, in which 12877 * case, this IOCTL will get completed in 12878 * ip_rput_dlpi when we see the DL_BIND_ACK. 12879 */ 12880 err = ipif_up(ipif, q, mp); 12881 if (err == EINPROGRESS) 12882 return (err); 12883 } 12884 return (err); 12885 } 12886 12887 /* ARGSUSED */ 12888 int 12889 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12890 ip_ioctl_cmd_t *ipi, void *if_req) 12891 { 12892 ill_t *ill; 12893 sin6_t *sin6 = (sin6_t *)sin; 12894 struct lifreq *lifr = (struct lifreq *)if_req; 12895 12896 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12897 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12898 if (ipif->ipif_id != 0) 12899 return (EINVAL); 12900 12901 ill = ipif->ipif_ill; 12902 if (!ill->ill_isv6) 12903 return (ENXIO); 12904 12905 *sin6 = sin6_null; 12906 sin6->sin6_family = AF_INET6; 12907 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12908 sin6->sin6_addr = ill->ill_token; 12909 lifr->lifr_addrlen = ill->ill_token_length; 12910 return (0); 12911 } 12912 12913 /* 12914 * Set (hardware) link specific information that might override 12915 * what was acquired through the DL_INFO_ACK. 12916 * The logic is as follows. 12917 * 12918 * become exclusive 12919 * set CHANGING flag 12920 * change mtu on affected IREs 12921 * clear CHANGING flag 12922 * 12923 * An ire add that occurs before the CHANGING flag is set will have its mtu 12924 * changed by the ip_sioctl_lnkinfo. 12925 * 12926 * During the time the CHANGING flag is set, no new ires will be added to the 12927 * bucket, and ire add will fail (due the CHANGING flag). 12928 * 12929 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12930 * before it is added to the bucket. 12931 * 12932 * Obviously only 1 thread can set the CHANGING flag and we need to become 12933 * exclusive to set the flag. 12934 */ 12935 /* ARGSUSED */ 12936 int 12937 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12938 ip_ioctl_cmd_t *ipi, void *if_req) 12939 { 12940 ill_t *ill = ipif->ipif_ill; 12941 ipif_t *nipif; 12942 int ip_min_mtu; 12943 boolean_t mtu_walk = B_FALSE; 12944 struct lifreq *lifr = (struct lifreq *)if_req; 12945 lif_ifinfo_req_t *lir; 12946 ire_t *ire; 12947 12948 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12950 lir = &lifr->lifr_ifinfo; 12951 ASSERT(IAM_WRITER_IPIF(ipif)); 12952 12953 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12954 if (ipif->ipif_id != 0) 12955 return (EINVAL); 12956 12957 /* Set interface MTU. */ 12958 if (ipif->ipif_isv6) 12959 ip_min_mtu = IPV6_MIN_MTU; 12960 else 12961 ip_min_mtu = IP_MIN_MTU; 12962 12963 /* 12964 * Verify values before we set anything. Allow zero to 12965 * mean unspecified. 12966 */ 12967 if (lir->lir_maxmtu != 0 && 12968 (lir->lir_maxmtu > ill->ill_max_frag || 12969 lir->lir_maxmtu < ip_min_mtu)) 12970 return (EINVAL); 12971 if (lir->lir_reachtime != 0 && 12972 lir->lir_reachtime > ND_MAX_REACHTIME) 12973 return (EINVAL); 12974 if (lir->lir_reachretrans != 0 && 12975 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12976 return (EINVAL); 12977 12978 mutex_enter(&ill->ill_lock); 12979 ill->ill_state_flags |= ILL_CHANGING; 12980 for (nipif = ill->ill_ipif; nipif != NULL; 12981 nipif = nipif->ipif_next) { 12982 nipif->ipif_state_flags |= IPIF_CHANGING; 12983 } 12984 12985 mutex_exit(&ill->ill_lock); 12986 12987 if (lir->lir_maxmtu != 0) { 12988 ill->ill_max_mtu = lir->lir_maxmtu; 12989 ill->ill_mtu_userspecified = 1; 12990 mtu_walk = B_TRUE; 12991 } 12992 12993 if (lir->lir_reachtime != 0) 12994 ill->ill_reachable_time = lir->lir_reachtime; 12995 12996 if (lir->lir_reachretrans != 0) 12997 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12998 12999 ill->ill_max_hops = lir->lir_maxhops; 13000 13001 ill->ill_max_buf = ND_MAX_Q; 13002 13003 if (mtu_walk) { 13004 /* 13005 * Set the MTU on all ipifs associated with this ill except 13006 * for those whose MTU was fixed via SIOCSLIFMTU. 13007 */ 13008 for (nipif = ill->ill_ipif; nipif != NULL; 13009 nipif = nipif->ipif_next) { 13010 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13011 continue; 13012 13013 nipif->ipif_mtu = ill->ill_max_mtu; 13014 13015 if (!(nipif->ipif_flags & IPIF_UP)) 13016 continue; 13017 13018 if (nipif->ipif_isv6) 13019 ire = ipif_to_ire_v6(nipif); 13020 else 13021 ire = ipif_to_ire(nipif); 13022 if (ire != NULL) { 13023 ire->ire_max_frag = ipif->ipif_mtu; 13024 ire_refrele(ire); 13025 } 13026 if (ill->ill_isv6) { 13027 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13028 ipif_mtu_change, (char *)nipif, 13029 ill); 13030 } else { 13031 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13032 ipif_mtu_change, (char *)nipif, 13033 ill); 13034 } 13035 } 13036 } 13037 13038 mutex_enter(&ill->ill_lock); 13039 for (nipif = ill->ill_ipif; nipif != NULL; 13040 nipif = nipif->ipif_next) { 13041 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13042 } 13043 ILL_UNMARK_CHANGING(ill); 13044 mutex_exit(&ill->ill_lock); 13045 13046 return (0); 13047 } 13048 13049 /* ARGSUSED */ 13050 int 13051 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13052 ip_ioctl_cmd_t *ipi, void *if_req) 13053 { 13054 struct lif_ifinfo_req *lir; 13055 ill_t *ill = ipif->ipif_ill; 13056 13057 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13058 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13059 if (ipif->ipif_id != 0) 13060 return (EINVAL); 13061 13062 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13063 lir->lir_maxhops = ill->ill_max_hops; 13064 lir->lir_reachtime = ill->ill_reachable_time; 13065 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13066 lir->lir_maxmtu = ill->ill_max_mtu; 13067 13068 return (0); 13069 } 13070 13071 /* 13072 * Return best guess as to the subnet mask for the specified address. 13073 * Based on the subnet masks for all the configured interfaces. 13074 * 13075 * We end up returning a zero mask in the case of default, multicast or 13076 * experimental. 13077 */ 13078 static ipaddr_t 13079 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 13080 { 13081 ipaddr_t net_mask; 13082 ill_t *ill; 13083 ipif_t *ipif; 13084 ill_walk_context_t ctx; 13085 ipif_t *fallback_ipif = NULL; 13086 13087 net_mask = ip_net_mask(addr); 13088 if (net_mask == 0) { 13089 *ipifp = NULL; 13090 return (0); 13091 } 13092 13093 /* Let's check to see if this is maybe a local subnet route. */ 13094 /* this function only applies to IPv4 interfaces */ 13095 rw_enter(&ill_g_lock, RW_READER); 13096 ill = ILL_START_WALK_V4(&ctx); 13097 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13098 mutex_enter(&ill->ill_lock); 13099 for (ipif = ill->ill_ipif; ipif != NULL; 13100 ipif = ipif->ipif_next) { 13101 if (!IPIF_CAN_LOOKUP(ipif)) 13102 continue; 13103 if (!(ipif->ipif_flags & IPIF_UP)) 13104 continue; 13105 if ((ipif->ipif_subnet & net_mask) == 13106 (addr & net_mask)) { 13107 /* 13108 * Don't trust pt-pt interfaces if there are 13109 * other interfaces. 13110 */ 13111 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13112 if (fallback_ipif == NULL) { 13113 ipif_refhold_locked(ipif); 13114 fallback_ipif = ipif; 13115 } 13116 continue; 13117 } 13118 13119 /* 13120 * Fine. Just assume the same net mask as the 13121 * directly attached subnet interface is using. 13122 */ 13123 ipif_refhold_locked(ipif); 13124 mutex_exit(&ill->ill_lock); 13125 rw_exit(&ill_g_lock); 13126 if (fallback_ipif != NULL) 13127 ipif_refrele(fallback_ipif); 13128 *ipifp = ipif; 13129 return (ipif->ipif_net_mask); 13130 } 13131 } 13132 mutex_exit(&ill->ill_lock); 13133 } 13134 rw_exit(&ill_g_lock); 13135 13136 *ipifp = fallback_ipif; 13137 return ((fallback_ipif != NULL) ? 13138 fallback_ipif->ipif_net_mask : net_mask); 13139 } 13140 13141 /* 13142 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13143 */ 13144 static void 13145 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13146 { 13147 IOCP iocp; 13148 ipft_t *ipft; 13149 ipllc_t *ipllc; 13150 mblk_t *mp1; 13151 cred_t *cr; 13152 int error = 0; 13153 conn_t *connp; 13154 13155 ip1dbg(("ip_wput_ioctl")); 13156 iocp = (IOCP)mp->b_rptr; 13157 mp1 = mp->b_cont; 13158 if (mp1 == NULL) { 13159 iocp->ioc_error = EINVAL; 13160 mp->b_datap->db_type = M_IOCNAK; 13161 iocp->ioc_count = 0; 13162 qreply(q, mp); 13163 return; 13164 } 13165 13166 /* 13167 * These IOCTLs provide various control capabilities to 13168 * upstream agents such as ULPs and processes. There 13169 * are currently two such IOCTLs implemented. They 13170 * are used by TCP to provide update information for 13171 * existing IREs and to forcibly delete an IRE for a 13172 * host that is not responding, thereby forcing an 13173 * attempt at a new route. 13174 */ 13175 iocp->ioc_error = EINVAL; 13176 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13177 goto done; 13178 13179 ipllc = (ipllc_t *)mp1->b_rptr; 13180 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13181 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13182 break; 13183 } 13184 /* 13185 * prefer credential from mblk over ioctl; 13186 * see ip_sioctl_copyin_setup 13187 */ 13188 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13189 13190 /* 13191 * Refhold the conn in case the request gets queued up in some lookup 13192 */ 13193 ASSERT(CONN_Q(q)); 13194 connp = Q_TO_CONN(q); 13195 CONN_INC_REF(connp); 13196 if (ipft->ipft_pfi && 13197 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13198 pullupmsg(mp1, ipft->ipft_min_size))) { 13199 error = (*ipft->ipft_pfi)(q, 13200 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13201 } 13202 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13203 /* 13204 * CONN_OPER_PENDING_DONE happens in the function called 13205 * through ipft_pfi above. 13206 */ 13207 return; 13208 } 13209 13210 CONN_OPER_PENDING_DONE(connp); 13211 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13212 freemsg(mp); 13213 return; 13214 } 13215 iocp->ioc_error = error; 13216 13217 done: 13218 mp->b_datap->db_type = M_IOCACK; 13219 if (iocp->ioc_error) 13220 iocp->ioc_count = 0; 13221 qreply(q, mp); 13222 } 13223 13224 /* 13225 * Lookup an ipif using the sequence id (ipif_seqid) 13226 */ 13227 ipif_t * 13228 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13229 { 13230 ipif_t *ipif; 13231 13232 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13233 13234 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13235 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13236 return (ipif); 13237 } 13238 return (NULL); 13239 } 13240 13241 uint64_t ipif_g_seqid; 13242 13243 /* 13244 * Assign a unique id for the ipif. This is used later when we send 13245 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13246 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13247 * IRE is added, we verify that ipif has not disappeared. 13248 */ 13249 13250 static void 13251 ipif_assign_seqid(ipif_t *ipif) 13252 { 13253 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 13254 } 13255 13256 /* 13257 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13258 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13259 * be inserted into the first space available in the list. The value of 13260 * ipif_id will then be set to the appropriate value for its position. 13261 */ 13262 static int 13263 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13264 { 13265 ill_t *ill; 13266 ipif_t *tipif; 13267 ipif_t **tipifp; 13268 int id; 13269 13270 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13271 IAM_WRITER_IPIF(ipif)); 13272 13273 ill = ipif->ipif_ill; 13274 ASSERT(ill != NULL); 13275 13276 /* 13277 * In the case of lo0:0 we already hold the ill_g_lock. 13278 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13279 * ipif_insert. Another such caller is ipif_move. 13280 */ 13281 if (acquire_g_lock) 13282 rw_enter(&ill_g_lock, RW_WRITER); 13283 if (acquire_ill_lock) 13284 mutex_enter(&ill->ill_lock); 13285 id = ipif->ipif_id; 13286 tipifp = &(ill->ill_ipif); 13287 if (id == -1) { /* need to find a real id */ 13288 id = 0; 13289 while ((tipif = *tipifp) != NULL) { 13290 ASSERT(tipif->ipif_id >= id); 13291 if (tipif->ipif_id != id) 13292 break; /* non-consecutive id */ 13293 id++; 13294 tipifp = &(tipif->ipif_next); 13295 } 13296 /* limit number of logical interfaces */ 13297 if (id >= ip_addrs_per_if) { 13298 if (acquire_ill_lock) 13299 mutex_exit(&ill->ill_lock); 13300 if (acquire_g_lock) 13301 rw_exit(&ill_g_lock); 13302 return (-1); 13303 } 13304 ipif->ipif_id = id; /* assign new id */ 13305 } else if (id < ip_addrs_per_if) { 13306 /* we have a real id; insert ipif in the right place */ 13307 while ((tipif = *tipifp) != NULL) { 13308 ASSERT(tipif->ipif_id != id); 13309 if (tipif->ipif_id > id) 13310 break; /* found correct location */ 13311 tipifp = &(tipif->ipif_next); 13312 } 13313 } else { 13314 if (acquire_ill_lock) 13315 mutex_exit(&ill->ill_lock); 13316 if (acquire_g_lock) 13317 rw_exit(&ill_g_lock); 13318 return (-1); 13319 } 13320 13321 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13322 13323 ipif->ipif_next = tipif; 13324 *tipifp = ipif; 13325 if (acquire_ill_lock) 13326 mutex_exit(&ill->ill_lock); 13327 if (acquire_g_lock) 13328 rw_exit(&ill_g_lock); 13329 return (0); 13330 } 13331 13332 /* 13333 * Allocate and initialize a new interface control structure. (Always 13334 * called as writer.) 13335 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13336 * is not part of the global linked list of ills. ipif_seqid is unique 13337 * in the system and to preserve the uniqueness, it is assigned only 13338 * when ill becomes part of the global list. At that point ill will 13339 * have a name. If it doesn't get assigned here, it will get assigned 13340 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13341 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13342 * the interface flags or any other information from the DL_INFO_ACK for 13343 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13344 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13345 * second DL_INFO_ACK comes in from the driver. 13346 */ 13347 static ipif_t * 13348 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13349 { 13350 ipif_t *ipif; 13351 phyint_t *phyi; 13352 13353 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13354 ill->ill_name, id, (void *)ill)); 13355 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13356 13357 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13358 return (NULL); 13359 *ipif = ipif_zero; /* start clean */ 13360 13361 ipif->ipif_ill = ill; 13362 ipif->ipif_id = id; /* could be -1 */ 13363 ipif->ipif_zoneid = GLOBAL_ZONEID; 13364 13365 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13366 13367 ipif->ipif_refcnt = 0; 13368 ipif->ipif_saved_ire_cnt = 0; 13369 13370 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13371 mi_free(ipif); 13372 return (NULL); 13373 } 13374 /* -1 id should have been replaced by real id */ 13375 id = ipif->ipif_id; 13376 ASSERT(id >= 0); 13377 13378 if (ill->ill_name[0] != '\0') { 13379 ipif_assign_seqid(ipif); 13380 if (ill->ill_phyint->phyint_ifindex != 0) 13381 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13382 } 13383 /* 13384 * Keep a copy of original id in ipif_orig_ipifid. Failback 13385 * will attempt to restore the original id. The SIOCSLIFOINDEX 13386 * ioctl sets ipif_orig_ipifid to zero. 13387 */ 13388 ipif->ipif_orig_ipifid = id; 13389 13390 /* 13391 * We grab the ill_lock and phyint_lock to protect the flag changes. 13392 * The ipif is still not up and can't be looked up until the 13393 * ioctl completes and the IPIF_CHANGING flag is cleared. 13394 */ 13395 mutex_enter(&ill->ill_lock); 13396 mutex_enter(&ill->ill_phyint->phyint_lock); 13397 /* 13398 * Set the running flag when logical interface zero is created. 13399 * For subsequent logical interfaces, a DLPI link down 13400 * notification message may have cleared the running flag to 13401 * indicate the link is down, so we shouldn't just blindly set it. 13402 */ 13403 if (id == 0) 13404 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13405 ipif->ipif_ire_type = ire_type; 13406 phyi = ill->ill_phyint; 13407 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13408 13409 if (ipif->ipif_isv6) { 13410 ill->ill_flags |= ILLF_IPV6; 13411 } else { 13412 ipaddr_t inaddr_any = INADDR_ANY; 13413 13414 ill->ill_flags |= ILLF_IPV4; 13415 13416 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13417 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13418 &ipif->ipif_v6lcl_addr); 13419 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13420 &ipif->ipif_v6src_addr); 13421 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13422 &ipif->ipif_v6subnet); 13423 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13424 &ipif->ipif_v6net_mask); 13425 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13426 &ipif->ipif_v6brd_addr); 13427 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13428 &ipif->ipif_v6pp_dst_addr); 13429 } 13430 13431 /* 13432 * Don't set the interface flags etc. now, will do it in 13433 * ip_ll_subnet_defaults. 13434 */ 13435 if (!initialize) { 13436 mutex_exit(&ill->ill_lock); 13437 mutex_exit(&ill->ill_phyint->phyint_lock); 13438 return (ipif); 13439 } 13440 ipif->ipif_mtu = ill->ill_max_mtu; 13441 13442 if (ill->ill_bcast_addr_length != 0) { 13443 /* 13444 * Later detect lack of DLPI driver multicast 13445 * capability by catching DL_ENABMULTI errors in 13446 * ip_rput_dlpi. 13447 */ 13448 ill->ill_flags |= ILLF_MULTICAST; 13449 if (!ipif->ipif_isv6) 13450 ipif->ipif_flags |= IPIF_BROADCAST; 13451 } else { 13452 if (ill->ill_net_type != IRE_LOOPBACK) { 13453 if (ipif->ipif_isv6) 13454 /* 13455 * Note: xresolv interfaces will eventually need 13456 * NOARP set here as well, but that will require 13457 * those external resolvers to have some 13458 * knowledge of that flag and act appropriately. 13459 * Not to be changed at present. 13460 */ 13461 ill->ill_flags |= ILLF_NONUD; 13462 else 13463 ill->ill_flags |= ILLF_NOARP; 13464 } 13465 if (ill->ill_phys_addr_length == 0) { 13466 if (ill->ill_media && 13467 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13468 ipif->ipif_flags |= IPIF_NOXMIT; 13469 phyi->phyint_flags |= PHYI_VIRTUAL; 13470 } else { 13471 /* pt-pt supports multicast. */ 13472 ill->ill_flags |= ILLF_MULTICAST; 13473 if (ill->ill_net_type == IRE_LOOPBACK) { 13474 phyi->phyint_flags |= 13475 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13476 } else { 13477 ipif->ipif_flags |= IPIF_POINTOPOINT; 13478 } 13479 } 13480 } 13481 } 13482 mutex_exit(&ill->ill_lock); 13483 mutex_exit(&ill->ill_phyint->phyint_lock); 13484 return (ipif); 13485 } 13486 13487 /* 13488 * If appropriate, send a message up to the resolver delete the entry 13489 * for the address of this interface which is going out of business. 13490 * (Always called as writer). 13491 * 13492 * NOTE : We need to check for NULL mps as some of the fields are 13493 * initialized only for some interface types. See ipif_resolver_up() 13494 * for details. 13495 */ 13496 void 13497 ipif_arp_down(ipif_t *ipif) 13498 { 13499 mblk_t *mp; 13500 ill_t *ill = ipif->ipif_ill; 13501 13502 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13503 ASSERT(IAM_WRITER_IPIF(ipif)); 13504 13505 /* Delete the mapping for the local address */ 13506 mp = ipif->ipif_arp_del_mp; 13507 if (mp != NULL) { 13508 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13509 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13510 putnext(ill->ill_rq, mp); 13511 ipif->ipif_arp_del_mp = NULL; 13512 } 13513 13514 /* 13515 * If this is the last ipif that is going down and there are no 13516 * duplicate addresses we may yet attempt to re-probe, then we need to 13517 * clean up ARP completely. 13518 */ 13519 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13520 13521 /* Send up AR_INTERFACE_DOWN message */ 13522 mp = ill->ill_arp_down_mp; 13523 if (mp != NULL) { 13524 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13525 *(unsigned *)mp->b_rptr, ill->ill_name, 13526 ipif->ipif_id)); 13527 putnext(ill->ill_rq, mp); 13528 ill->ill_arp_down_mp = NULL; 13529 } 13530 13531 /* Tell ARP to delete the multicast mappings */ 13532 mp = ill->ill_arp_del_mapping_mp; 13533 if (mp != NULL) { 13534 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13535 *(unsigned *)mp->b_rptr, ill->ill_name, 13536 ipif->ipif_id)); 13537 putnext(ill->ill_rq, mp); 13538 ill->ill_arp_del_mapping_mp = NULL; 13539 } 13540 } 13541 } 13542 13543 /* 13544 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13545 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13546 * that it wants the add_mp allocated in this function to be returned 13547 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13548 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13549 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13550 * as it does a ipif_arp_down after calling this function - which will 13551 * remove what we add here. 13552 * 13553 * Returns -1 on failures and 0 on success. 13554 */ 13555 int 13556 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13557 { 13558 mblk_t *del_mp = NULL; 13559 mblk_t *add_mp = NULL; 13560 mblk_t *mp; 13561 ill_t *ill = ipif->ipif_ill; 13562 phyint_t *phyi = ill->ill_phyint; 13563 ipaddr_t addr, mask, extract_mask = 0; 13564 arma_t *arma; 13565 uint8_t *maddr, *bphys_addr; 13566 uint32_t hw_start; 13567 dl_unitdata_req_t *dlur; 13568 13569 ASSERT(IAM_WRITER_IPIF(ipif)); 13570 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13571 return (0); 13572 13573 /* 13574 * Delete the existing mapping from ARP. Normally ipif_down 13575 * -> ipif_arp_down should send this up to ARP. The only 13576 * reason we would find this when we are switching from 13577 * Multicast to Broadcast where we did not do a down. 13578 */ 13579 mp = ill->ill_arp_del_mapping_mp; 13580 if (mp != NULL) { 13581 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13582 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13583 putnext(ill->ill_rq, mp); 13584 ill->ill_arp_del_mapping_mp = NULL; 13585 } 13586 13587 if (arp_add_mapping_mp != NULL) 13588 *arp_add_mapping_mp = NULL; 13589 13590 /* 13591 * Check that the address is not to long for the constant 13592 * length reserved in the template arma_t. 13593 */ 13594 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13595 return (-1); 13596 13597 /* Add mapping mblk */ 13598 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13599 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13600 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13601 (caddr_t)&addr); 13602 if (add_mp == NULL) 13603 return (-1); 13604 arma = (arma_t *)add_mp->b_rptr; 13605 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13606 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13607 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13608 13609 /* 13610 * Determine the broadcast address. 13611 */ 13612 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13613 if (ill->ill_sap_length < 0) 13614 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13615 else 13616 bphys_addr = (uchar_t *)dlur + 13617 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13618 /* 13619 * Check PHYI_MULTI_BCAST and length of physical 13620 * address to determine if we use the mapping or the 13621 * broadcast address. 13622 */ 13623 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13624 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13625 bphys_addr, maddr, &hw_start, &extract_mask)) 13626 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13627 13628 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13629 (ill->ill_flags & ILLF_MULTICAST)) { 13630 /* Make sure this will not match the "exact" entry. */ 13631 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13632 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13633 (caddr_t)&addr); 13634 if (del_mp == NULL) { 13635 freemsg(add_mp); 13636 return (-1); 13637 } 13638 bcopy(&extract_mask, (char *)arma + 13639 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13640 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13641 /* Use link-layer broadcast address for MULTI_BCAST */ 13642 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13643 ip2dbg(("ipif_arp_setup_multicast: adding" 13644 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13645 } else { 13646 arma->arma_hw_mapping_start = hw_start; 13647 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13648 " ARP setup for %s\n", ill->ill_name)); 13649 } 13650 } else { 13651 freemsg(add_mp); 13652 ASSERT(del_mp == NULL); 13653 /* It is neither MULTICAST nor MULTI_BCAST */ 13654 return (0); 13655 } 13656 ASSERT(add_mp != NULL && del_mp != NULL); 13657 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13658 ill->ill_arp_del_mapping_mp = del_mp; 13659 if (arp_add_mapping_mp != NULL) { 13660 /* The caller just wants the mblks allocated */ 13661 *arp_add_mapping_mp = add_mp; 13662 } else { 13663 /* The caller wants us to send it to arp */ 13664 putnext(ill->ill_rq, add_mp); 13665 } 13666 return (0); 13667 } 13668 13669 /* 13670 * Get the resolver set up for a new interface address. 13671 * (Always called as writer.) 13672 * Called both for IPv4 and IPv6 interfaces, 13673 * though it only sets up the resolver for v6 13674 * if it's an xresolv interface (one using an external resolver). 13675 * Honors ILLF_NOARP. 13676 * The enumerated value res_act is used to tune the behavior. 13677 * If set to Res_act_initial, then we set up all the resolver 13678 * structures for a new interface. If set to Res_act_move, then 13679 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13680 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13681 * asynchronous hardware address change notification. If set to 13682 * Res_act_defend, then we tell ARP that it needs to send a single 13683 * gratuitous message in defense of the address. 13684 * Returns error on failure. 13685 */ 13686 int 13687 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13688 { 13689 caddr_t addr; 13690 mblk_t *arp_up_mp = NULL; 13691 mblk_t *arp_down_mp = NULL; 13692 mblk_t *arp_add_mp = NULL; 13693 mblk_t *arp_del_mp = NULL; 13694 mblk_t *arp_add_mapping_mp = NULL; 13695 mblk_t *arp_del_mapping_mp = NULL; 13696 ill_t *ill = ipif->ipif_ill; 13697 uchar_t *area_p = NULL; 13698 uchar_t *ared_p = NULL; 13699 int err = ENOMEM; 13700 boolean_t was_dup; 13701 13702 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13703 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13704 ASSERT(IAM_WRITER_IPIF(ipif)); 13705 13706 was_dup = B_FALSE; 13707 if (res_act == Res_act_initial) { 13708 ipif->ipif_addr_ready = 0; 13709 /* 13710 * We're bringing an interface up here. There's no way that we 13711 * should need to shut down ARP now. 13712 */ 13713 mutex_enter(&ill->ill_lock); 13714 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13715 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13716 ill->ill_ipif_dup_count--; 13717 was_dup = B_TRUE; 13718 } 13719 mutex_exit(&ill->ill_lock); 13720 } 13721 if (ipif->ipif_recovery_id != 0) 13722 (void) untimeout(ipif->ipif_recovery_id); 13723 ipif->ipif_recovery_id = 0; 13724 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13725 ipif->ipif_addr_ready = 1; 13726 return (0); 13727 } 13728 /* NDP will set the ipif_addr_ready flag when it's ready */ 13729 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13730 return (0); 13731 13732 if (ill->ill_isv6) { 13733 /* 13734 * External resolver for IPv6 13735 */ 13736 ASSERT(res_act == Res_act_initial); 13737 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13738 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13739 area_p = (uchar_t *)&ip6_area_template; 13740 ared_p = (uchar_t *)&ip6_ared_template; 13741 } 13742 } else { 13743 /* 13744 * IPv4 arp case. If the ARP stream has already started 13745 * closing, fail this request for ARP bringup. Else 13746 * record the fact that an ARP bringup is pending. 13747 */ 13748 mutex_enter(&ill->ill_lock); 13749 if (ill->ill_arp_closing) { 13750 mutex_exit(&ill->ill_lock); 13751 err = EINVAL; 13752 goto failed; 13753 } else { 13754 if (ill->ill_ipif_up_count == 0 && 13755 ill->ill_ipif_dup_count == 0 && !was_dup) 13756 ill->ill_arp_bringup_pending = 1; 13757 mutex_exit(&ill->ill_lock); 13758 } 13759 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13760 addr = (caddr_t)&ipif->ipif_lcl_addr; 13761 area_p = (uchar_t *)&ip_area_template; 13762 ared_p = (uchar_t *)&ip_ared_template; 13763 } 13764 } 13765 13766 /* 13767 * Add an entry for the local address in ARP only if it 13768 * is not UNNUMBERED and the address is not INADDR_ANY. 13769 */ 13770 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13771 area_t *area; 13772 13773 /* Now ask ARP to publish our address. */ 13774 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13775 if (arp_add_mp == NULL) 13776 goto failed; 13777 area = (area_t *)arp_add_mp->b_rptr; 13778 if (res_act != Res_act_initial) { 13779 /* 13780 * Copy the new hardware address and length into 13781 * arp_add_mp to be sent to ARP. 13782 */ 13783 area->area_hw_addr_length = 13784 ill->ill_phys_addr_length; 13785 bcopy((char *)ill->ill_phys_addr, 13786 ((char *)area + area->area_hw_addr_offset), 13787 area->area_hw_addr_length); 13788 } 13789 13790 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13791 ACE_F_MYADDR; 13792 13793 if (res_act == Res_act_defend) { 13794 area->area_flags |= ACE_F_DEFEND; 13795 /* 13796 * If we're just defending our address now, then 13797 * there's no need to set up ARP multicast mappings. 13798 * The publish command is enough. 13799 */ 13800 goto done; 13801 } 13802 13803 if (res_act != Res_act_initial) 13804 goto arp_setup_multicast; 13805 13806 /* 13807 * Allocate an ARP deletion message so we know we can tell ARP 13808 * when the interface goes down. 13809 */ 13810 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13811 if (arp_del_mp == NULL) 13812 goto failed; 13813 13814 } else { 13815 if (res_act != Res_act_initial) 13816 goto done; 13817 } 13818 /* 13819 * Need to bring up ARP or setup multicast mapping only 13820 * when the first interface is coming UP. 13821 */ 13822 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13823 was_dup) { 13824 goto done; 13825 } 13826 13827 /* 13828 * Allocate an ARP down message (to be saved) and an ARP up 13829 * message. 13830 */ 13831 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13832 if (arp_down_mp == NULL) 13833 goto failed; 13834 13835 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13836 if (arp_up_mp == NULL) 13837 goto failed; 13838 13839 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13840 goto done; 13841 13842 arp_setup_multicast: 13843 /* 13844 * Setup the multicast mappings. This function initializes 13845 * ill_arp_del_mapping_mp also. This does not need to be done for 13846 * IPv6. 13847 */ 13848 if (!ill->ill_isv6) { 13849 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13850 if (err != 0) 13851 goto failed; 13852 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13853 ASSERT(arp_add_mapping_mp != NULL); 13854 } 13855 13856 done: 13857 if (arp_del_mp != NULL) { 13858 ASSERT(ipif->ipif_arp_del_mp == NULL); 13859 ipif->ipif_arp_del_mp = arp_del_mp; 13860 } 13861 if (arp_down_mp != NULL) { 13862 ASSERT(ill->ill_arp_down_mp == NULL); 13863 ill->ill_arp_down_mp = arp_down_mp; 13864 } 13865 if (arp_del_mapping_mp != NULL) { 13866 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13867 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13868 } 13869 if (arp_up_mp != NULL) { 13870 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13871 ill->ill_name, ipif->ipif_id)); 13872 putnext(ill->ill_rq, arp_up_mp); 13873 } 13874 if (arp_add_mp != NULL) { 13875 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13876 ill->ill_name, ipif->ipif_id)); 13877 /* 13878 * If it's an extended ARP implementation, then we'll wait to 13879 * hear that DAD has finished before using the interface. 13880 */ 13881 if (!ill->ill_arp_extend) 13882 ipif->ipif_addr_ready = 1; 13883 putnext(ill->ill_rq, arp_add_mp); 13884 } else { 13885 ipif->ipif_addr_ready = 1; 13886 } 13887 if (arp_add_mapping_mp != NULL) { 13888 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13889 ill->ill_name, ipif->ipif_id)); 13890 putnext(ill->ill_rq, arp_add_mapping_mp); 13891 } 13892 if (res_act != Res_act_initial) 13893 return (0); 13894 13895 if (ill->ill_flags & ILLF_NOARP) 13896 err = ill_arp_off(ill); 13897 else 13898 err = ill_arp_on(ill); 13899 if (err != 0) { 13900 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13901 freemsg(ipif->ipif_arp_del_mp); 13902 freemsg(ill->ill_arp_down_mp); 13903 freemsg(ill->ill_arp_del_mapping_mp); 13904 ipif->ipif_arp_del_mp = NULL; 13905 ill->ill_arp_down_mp = NULL; 13906 ill->ill_arp_del_mapping_mp = NULL; 13907 return (err); 13908 } 13909 return ((ill->ill_ipif_up_count != 0 || was_dup || 13910 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13911 13912 failed: 13913 ip1dbg(("ipif_resolver_up: FAILED\n")); 13914 freemsg(arp_add_mp); 13915 freemsg(arp_del_mp); 13916 freemsg(arp_add_mapping_mp); 13917 freemsg(arp_up_mp); 13918 freemsg(arp_down_mp); 13919 ill->ill_arp_bringup_pending = 0; 13920 return (err); 13921 } 13922 13923 /* 13924 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13925 * just gone back up. 13926 */ 13927 static void 13928 ipif_arp_start_dad(ipif_t *ipif) 13929 { 13930 ill_t *ill = ipif->ipif_ill; 13931 mblk_t *arp_add_mp; 13932 area_t *area; 13933 13934 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13935 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13936 ipif->ipif_lcl_addr == INADDR_ANY || 13937 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13938 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13939 /* 13940 * If we can't contact ARP for some reason, that's not really a 13941 * problem. Just send out the routing socket notification that 13942 * DAD completion would have done, and continue. 13943 */ 13944 ipif_mask_reply(ipif); 13945 ip_rts_ifmsg(ipif); 13946 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13947 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13948 ipif->ipif_addr_ready = 1; 13949 return; 13950 } 13951 13952 /* Setting the 'unverified' flag restarts DAD */ 13953 area = (area_t *)arp_add_mp->b_rptr; 13954 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13955 ACE_F_UNVERIFIED; 13956 putnext(ill->ill_rq, arp_add_mp); 13957 } 13958 13959 static void 13960 ipif_ndp_start_dad(ipif_t *ipif) 13961 { 13962 nce_t *nce; 13963 13964 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13965 if (nce == NULL) 13966 return; 13967 13968 if (!ndp_restart_dad(nce)) { 13969 /* 13970 * If we can't restart DAD for some reason, that's not really a 13971 * problem. Just send out the routing socket notification that 13972 * DAD completion would have done, and continue. 13973 */ 13974 ip_rts_ifmsg(ipif); 13975 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13976 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13977 ipif->ipif_addr_ready = 1; 13978 } 13979 NCE_REFRELE(nce); 13980 } 13981 13982 /* 13983 * Restart duplicate address detection on all interfaces on the given ill. 13984 * 13985 * This is called when an interface transitions from down to up 13986 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13987 * 13988 * Note that since the underlying physical link has transitioned, we must cause 13989 * at least one routing socket message to be sent here, either via DAD 13990 * completion or just by default on the first ipif. (If we don't do this, then 13991 * in.mpathd will see long delays when doing link-based failure recovery.) 13992 */ 13993 void 13994 ill_restart_dad(ill_t *ill, boolean_t went_up) 13995 { 13996 ipif_t *ipif; 13997 13998 if (ill == NULL) 13999 return; 14000 14001 /* 14002 * If layer two doesn't support duplicate address detection, then just 14003 * send the routing socket message now and be done with it. 14004 */ 14005 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14006 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14007 ip_rts_ifmsg(ill->ill_ipif); 14008 return; 14009 } 14010 14011 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14012 if (went_up) { 14013 if (ipif->ipif_flags & IPIF_UP) { 14014 if (ill->ill_isv6) 14015 ipif_ndp_start_dad(ipif); 14016 else 14017 ipif_arp_start_dad(ipif); 14018 } else if (ill->ill_isv6 && 14019 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14020 /* 14021 * For IPv4, the ARP module itself will 14022 * automatically start the DAD process when it 14023 * sees DL_NOTE_LINK_UP. We respond to the 14024 * AR_CN_READY at the completion of that task. 14025 * For IPv6, we must kick off the bring-up 14026 * process now. 14027 */ 14028 ndp_do_recovery(ipif); 14029 } else { 14030 /* 14031 * Unfortunately, the first ipif is "special" 14032 * and represents the underlying ill in the 14033 * routing socket messages. Thus, when this 14034 * one ipif is down, we must still notify so 14035 * that the user knows the IFF_RUNNING status 14036 * change. (If the first ipif is up, then 14037 * we'll handle eventual routing socket 14038 * notification via DAD completion.) 14039 */ 14040 if (ipif == ill->ill_ipif) 14041 ip_rts_ifmsg(ill->ill_ipif); 14042 } 14043 } else { 14044 /* 14045 * After link down, we'll need to send a new routing 14046 * message when the link comes back, so clear 14047 * ipif_addr_ready. 14048 */ 14049 ipif->ipif_addr_ready = 0; 14050 } 14051 } 14052 14053 /* 14054 * If we've torn down links, then notify the user right away. 14055 */ 14056 if (!went_up) 14057 ip_rts_ifmsg(ill->ill_ipif); 14058 } 14059 14060 /* 14061 * Wakeup all threads waiting to enter the ipsq, and sleeping 14062 * on any of the ills in this ipsq. The ill_lock of the ill 14063 * must be held so that waiters don't miss wakeups 14064 */ 14065 static void 14066 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14067 { 14068 phyint_t *phyint; 14069 14070 phyint = ipsq->ipsq_phyint_list; 14071 while (phyint != NULL) { 14072 if (phyint->phyint_illv4) { 14073 if (!caller_holds_lock) 14074 mutex_enter(&phyint->phyint_illv4->ill_lock); 14075 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14076 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14077 if (!caller_holds_lock) 14078 mutex_exit(&phyint->phyint_illv4->ill_lock); 14079 } 14080 if (phyint->phyint_illv6) { 14081 if (!caller_holds_lock) 14082 mutex_enter(&phyint->phyint_illv6->ill_lock); 14083 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14084 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14085 if (!caller_holds_lock) 14086 mutex_exit(&phyint->phyint_illv6->ill_lock); 14087 } 14088 phyint = phyint->phyint_ipsq_next; 14089 } 14090 } 14091 14092 static ipsq_t * 14093 ipsq_create(char *groupname) 14094 { 14095 ipsq_t *ipsq; 14096 14097 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14098 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14099 if (ipsq == NULL) { 14100 return (NULL); 14101 } 14102 14103 if (groupname != NULL) 14104 (void) strcpy(ipsq->ipsq_name, groupname); 14105 else 14106 ipsq->ipsq_name[0] = '\0'; 14107 14108 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14109 ipsq->ipsq_flags |= IPSQ_GROUP; 14110 ipsq->ipsq_next = ipsq_g_head; 14111 ipsq_g_head = ipsq; 14112 return (ipsq); 14113 } 14114 14115 /* 14116 * Return an ipsq correspoding to the groupname. If 'create' is true 14117 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14118 * uniquely with an IPMP group. However during IPMP groupname operations, 14119 * multiple IPMP groups may be associated with a single ipsq. But no 14120 * IPMP group can be associated with more than 1 ipsq at any time. 14121 * For example 14122 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14123 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14124 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14125 * 14126 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14127 * status shown below during the execution of the above command. 14128 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14129 * 14130 * After the completion of the above groupname command we return to the stable 14131 * state shown below. 14132 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14133 * hme4 mpk17-85 ipsq2 mpk17-85 1 14134 * 14135 * Because of the above, we don't search based on the ipsq_name since that 14136 * would miss the correct ipsq during certain windows as shown above. 14137 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14138 * natural state. 14139 */ 14140 static ipsq_t * 14141 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 14142 { 14143 ipsq_t *ipsq; 14144 int group_len; 14145 phyint_t *phyint; 14146 14147 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14148 14149 group_len = strlen(groupname); 14150 ASSERT(group_len != 0); 14151 group_len++; 14152 14153 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 14154 /* 14155 * When an ipsq is being split, and ill_split_ipsq 14156 * calls this function, we exclude it from being considered. 14157 */ 14158 if (ipsq == exclude_ipsq) 14159 continue; 14160 14161 /* 14162 * Compare against the ipsq_name. The groupname change happens 14163 * in 2 phases. The 1st phase merges the from group into 14164 * the to group's ipsq, by calling ill_merge_groups and restarts 14165 * the ioctl. The 2nd phase then locates the ipsq again thru 14166 * ipsq_name. At this point the phyint_groupname has not been 14167 * updated. 14168 */ 14169 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14170 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14171 /* 14172 * Verify that an ipmp groupname is exactly 14173 * part of 1 ipsq and is not found in any other 14174 * ipsq. 14175 */ 14176 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 14177 NULL); 14178 return (ipsq); 14179 } 14180 14181 /* 14182 * Comparison against ipsq_name alone is not sufficient. 14183 * In the case when groups are currently being 14184 * merged, the ipsq could hold other IPMP groups temporarily. 14185 * so we walk the phyint list and compare against the 14186 * phyint_groupname as well. 14187 */ 14188 phyint = ipsq->ipsq_phyint_list; 14189 while (phyint != NULL) { 14190 if ((group_len == phyint->phyint_groupname_len) && 14191 (bcmp(phyint->phyint_groupname, groupname, 14192 group_len) == 0)) { 14193 /* 14194 * Verify that an ipmp groupname is exactly 14195 * part of 1 ipsq and is not found in any other 14196 * ipsq. 14197 */ 14198 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 14199 == NULL); 14200 return (ipsq); 14201 } 14202 phyint = phyint->phyint_ipsq_next; 14203 } 14204 } 14205 if (create) 14206 ipsq = ipsq_create(groupname); 14207 return (ipsq); 14208 } 14209 14210 static void 14211 ipsq_delete(ipsq_t *ipsq) 14212 { 14213 ipsq_t *nipsq; 14214 ipsq_t *pipsq = NULL; 14215 14216 /* 14217 * We don't hold the ipsq lock, but we are sure no new 14218 * messages can land up, since the ipsq_refs is zero. 14219 * i.e. this ipsq is unnamed and no phyint or phyint group 14220 * is associated with this ipsq. (Lookups are based on ill_name 14221 * or phyint_group_name) 14222 */ 14223 ASSERT(ipsq->ipsq_refs == 0); 14224 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14225 ASSERT(ipsq->ipsq_pending_mp == NULL); 14226 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14227 /* 14228 * This is not the ipsq of an IPMP group. 14229 */ 14230 kmem_free(ipsq, sizeof (ipsq_t)); 14231 return; 14232 } 14233 14234 rw_enter(&ill_g_lock, RW_WRITER); 14235 14236 /* 14237 * Locate the ipsq before we can remove it from 14238 * the singly linked list of ipsq's. 14239 */ 14240 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 14241 if (nipsq == ipsq) { 14242 break; 14243 } 14244 pipsq = nipsq; 14245 } 14246 14247 ASSERT(nipsq == ipsq); 14248 14249 /* unlink ipsq from the list */ 14250 if (pipsq != NULL) 14251 pipsq->ipsq_next = ipsq->ipsq_next; 14252 else 14253 ipsq_g_head = ipsq->ipsq_next; 14254 kmem_free(ipsq, sizeof (ipsq_t)); 14255 rw_exit(&ill_g_lock); 14256 } 14257 14258 static void 14259 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14260 queue_t *q) 14261 14262 { 14263 14264 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14265 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14266 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14267 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14268 ASSERT(current_mp != NULL); 14269 14270 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14271 NEW_OP, NULL); 14272 14273 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14274 new_ipsq->ipsq_xopq_mphead != NULL); 14275 14276 /* 14277 * move from old ipsq to the new ipsq. 14278 */ 14279 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14280 if (old_ipsq->ipsq_xopq_mphead != NULL) 14281 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14282 14283 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14284 } 14285 14286 void 14287 ill_group_cleanup(ill_t *ill) 14288 { 14289 ill_t *ill_v4; 14290 ill_t *ill_v6; 14291 ipif_t *ipif; 14292 14293 ill_v4 = ill->ill_phyint->phyint_illv4; 14294 ill_v6 = ill->ill_phyint->phyint_illv6; 14295 14296 if (ill_v4 != NULL) { 14297 mutex_enter(&ill_v4->ill_lock); 14298 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14299 ipif = ipif->ipif_next) { 14300 IPIF_UNMARK_MOVING(ipif); 14301 } 14302 ill_v4->ill_up_ipifs = B_FALSE; 14303 mutex_exit(&ill_v4->ill_lock); 14304 } 14305 14306 if (ill_v6 != NULL) { 14307 mutex_enter(&ill_v6->ill_lock); 14308 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14309 ipif = ipif->ipif_next) { 14310 IPIF_UNMARK_MOVING(ipif); 14311 } 14312 ill_v6->ill_up_ipifs = B_FALSE; 14313 mutex_exit(&ill_v6->ill_lock); 14314 } 14315 } 14316 /* 14317 * This function is called when an ill has had a change in its group status 14318 * to bring up all the ipifs that were up before the change. 14319 */ 14320 int 14321 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14322 { 14323 ipif_t *ipif; 14324 ill_t *ill_v4; 14325 ill_t *ill_v6; 14326 ill_t *from_ill; 14327 int err = 0; 14328 14329 14330 ASSERT(IAM_WRITER_ILL(ill)); 14331 14332 /* 14333 * Except for ipif_state_flags and ill_state_flags the other 14334 * fields of the ipif/ill that are modified below are protected 14335 * implicitly since we are a writer. We would have tried to down 14336 * even an ipif that was already down, in ill_down_ipifs. So we 14337 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14338 */ 14339 ill_v4 = ill->ill_phyint->phyint_illv4; 14340 ill_v6 = ill->ill_phyint->phyint_illv6; 14341 if (ill_v4 != NULL) { 14342 ill_v4->ill_up_ipifs = B_TRUE; 14343 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14344 ipif = ipif->ipif_next) { 14345 mutex_enter(&ill_v4->ill_lock); 14346 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14347 IPIF_UNMARK_MOVING(ipif); 14348 mutex_exit(&ill_v4->ill_lock); 14349 if (ipif->ipif_was_up) { 14350 if (!(ipif->ipif_flags & IPIF_UP)) 14351 err = ipif_up(ipif, q, mp); 14352 ipif->ipif_was_up = B_FALSE; 14353 if (err != 0) { 14354 /* 14355 * Can there be any other error ? 14356 */ 14357 ASSERT(err == EINPROGRESS); 14358 return (err); 14359 } 14360 } 14361 } 14362 mutex_enter(&ill_v4->ill_lock); 14363 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14364 mutex_exit(&ill_v4->ill_lock); 14365 ill_v4->ill_up_ipifs = B_FALSE; 14366 if (ill_v4->ill_move_in_progress) { 14367 ASSERT(ill_v4->ill_move_peer != NULL); 14368 ill_v4->ill_move_in_progress = B_FALSE; 14369 from_ill = ill_v4->ill_move_peer; 14370 from_ill->ill_move_in_progress = B_FALSE; 14371 from_ill->ill_move_peer = NULL; 14372 mutex_enter(&from_ill->ill_lock); 14373 from_ill->ill_state_flags &= ~ILL_CHANGING; 14374 mutex_exit(&from_ill->ill_lock); 14375 if (ill_v6 == NULL) { 14376 if (from_ill->ill_phyint->phyint_flags & 14377 PHYI_STANDBY) { 14378 phyint_inactive(from_ill->ill_phyint); 14379 } 14380 if (ill_v4->ill_phyint->phyint_flags & 14381 PHYI_STANDBY) { 14382 phyint_inactive(ill_v4->ill_phyint); 14383 } 14384 } 14385 ill_v4->ill_move_peer = NULL; 14386 } 14387 } 14388 14389 if (ill_v6 != NULL) { 14390 ill_v6->ill_up_ipifs = B_TRUE; 14391 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14392 ipif = ipif->ipif_next) { 14393 mutex_enter(&ill_v6->ill_lock); 14394 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14395 IPIF_UNMARK_MOVING(ipif); 14396 mutex_exit(&ill_v6->ill_lock); 14397 if (ipif->ipif_was_up) { 14398 if (!(ipif->ipif_flags & IPIF_UP)) 14399 err = ipif_up(ipif, q, mp); 14400 ipif->ipif_was_up = B_FALSE; 14401 if (err != 0) { 14402 /* 14403 * Can there be any other error ? 14404 */ 14405 ASSERT(err == EINPROGRESS); 14406 return (err); 14407 } 14408 } 14409 } 14410 mutex_enter(&ill_v6->ill_lock); 14411 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14412 mutex_exit(&ill_v6->ill_lock); 14413 ill_v6->ill_up_ipifs = B_FALSE; 14414 if (ill_v6->ill_move_in_progress) { 14415 ASSERT(ill_v6->ill_move_peer != NULL); 14416 ill_v6->ill_move_in_progress = B_FALSE; 14417 from_ill = ill_v6->ill_move_peer; 14418 from_ill->ill_move_in_progress = B_FALSE; 14419 from_ill->ill_move_peer = NULL; 14420 mutex_enter(&from_ill->ill_lock); 14421 from_ill->ill_state_flags &= ~ILL_CHANGING; 14422 mutex_exit(&from_ill->ill_lock); 14423 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14424 phyint_inactive(from_ill->ill_phyint); 14425 } 14426 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14427 phyint_inactive(ill_v6->ill_phyint); 14428 } 14429 ill_v6->ill_move_peer = NULL; 14430 } 14431 } 14432 return (0); 14433 } 14434 14435 /* 14436 * bring down all the approriate ipifs. 14437 */ 14438 /* ARGSUSED */ 14439 static void 14440 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14441 { 14442 ipif_t *ipif; 14443 14444 ASSERT(IAM_WRITER_ILL(ill)); 14445 14446 /* 14447 * Except for ipif_state_flags the other fields of the ipif/ill that 14448 * are modified below are protected implicitly since we are a writer 14449 */ 14450 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14451 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14452 continue; 14453 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14454 /* 14455 * We go through the ipif_down logic even if the ipif 14456 * is already down, since routes can be added based 14457 * on down ipifs. Going through ipif_down once again 14458 * will delete any IREs created based on these routes. 14459 */ 14460 if (ipif->ipif_flags & IPIF_UP) 14461 ipif->ipif_was_up = B_TRUE; 14462 /* 14463 * If called with chk_nofailover true ipif is moving. 14464 */ 14465 mutex_enter(&ill->ill_lock); 14466 if (chk_nofailover) { 14467 ipif->ipif_state_flags |= 14468 IPIF_MOVING | IPIF_CHANGING; 14469 } else { 14470 ipif->ipif_state_flags |= IPIF_CHANGING; 14471 } 14472 mutex_exit(&ill->ill_lock); 14473 /* 14474 * Need to re-create net/subnet bcast ires if 14475 * they are dependent on ipif. 14476 */ 14477 if (!ipif->ipif_isv6) 14478 ipif_check_bcast_ires(ipif); 14479 (void) ipif_logical_down(ipif, NULL, NULL); 14480 ipif_non_duplicate(ipif); 14481 ipif_down_tail(ipif); 14482 /* 14483 * We don't do ipif_multicast_down for IPv4 in 14484 * ipif_down. We need to set this so that 14485 * ipif_multicast_up will join the 14486 * ALLHOSTS_GROUP on to_ill. 14487 */ 14488 ipif->ipif_multicast_up = B_FALSE; 14489 } 14490 } 14491 } 14492 14493 #define IPSQ_INC_REF(ipsq) { \ 14494 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14495 (ipsq)->ipsq_refs++; \ 14496 } 14497 14498 #define IPSQ_DEC_REF(ipsq) { \ 14499 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14500 (ipsq)->ipsq_refs--; \ 14501 if ((ipsq)->ipsq_refs == 0) \ 14502 (ipsq)->ipsq_name[0] = '\0'; \ 14503 } 14504 14505 /* 14506 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14507 * new_ipsq. 14508 */ 14509 static void 14510 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14511 { 14512 phyint_t *phyint; 14513 phyint_t *next_phyint; 14514 14515 /* 14516 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14517 * writer and the ill_lock of the ill in question. Also the dest 14518 * ipsq can't vanish while we hold the ill_g_lock as writer. 14519 */ 14520 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14521 14522 phyint = cur_ipsq->ipsq_phyint_list; 14523 cur_ipsq->ipsq_phyint_list = NULL; 14524 while (phyint != NULL) { 14525 next_phyint = phyint->phyint_ipsq_next; 14526 IPSQ_DEC_REF(cur_ipsq); 14527 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14528 new_ipsq->ipsq_phyint_list = phyint; 14529 IPSQ_INC_REF(new_ipsq); 14530 phyint->phyint_ipsq = new_ipsq; 14531 phyint = next_phyint; 14532 } 14533 } 14534 14535 #define SPLIT_SUCCESS 0 14536 #define SPLIT_NOT_NEEDED 1 14537 #define SPLIT_FAILED 2 14538 14539 int 14540 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14541 { 14542 ipsq_t *newipsq = NULL; 14543 14544 /* 14545 * Assertions denote pre-requisites for changing the ipsq of 14546 * a phyint 14547 */ 14548 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14549 /* 14550 * <ill-phyint> assocs can't change while ill_g_lock 14551 * is held as writer. See ill_phyint_reinit() 14552 */ 14553 ASSERT(phyint->phyint_illv4 == NULL || 14554 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14555 ASSERT(phyint->phyint_illv6 == NULL || 14556 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14557 14558 if ((phyint->phyint_groupname_len != 14559 (strlen(cur_ipsq->ipsq_name) + 1) || 14560 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14561 phyint->phyint_groupname_len) != 0)) { 14562 /* 14563 * Once we fail in creating a new ipsq due to memory shortage, 14564 * don't attempt to create new ipsq again, based on another 14565 * phyint, since we want all phyints belonging to an IPMP group 14566 * to be in the same ipsq even in the event of mem alloc fails. 14567 */ 14568 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14569 cur_ipsq); 14570 if (newipsq == NULL) { 14571 /* Memory allocation failure */ 14572 return (SPLIT_FAILED); 14573 } else { 14574 /* ipsq_refs protected by ill_g_lock (writer) */ 14575 IPSQ_DEC_REF(cur_ipsq); 14576 phyint->phyint_ipsq = newipsq; 14577 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14578 newipsq->ipsq_phyint_list = phyint; 14579 IPSQ_INC_REF(newipsq); 14580 return (SPLIT_SUCCESS); 14581 } 14582 } 14583 return (SPLIT_NOT_NEEDED); 14584 } 14585 14586 /* 14587 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14588 * to do this split 14589 */ 14590 static int 14591 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14592 { 14593 ipsq_t *newipsq; 14594 14595 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14596 /* 14597 * <ill-phyint> assocs can't change while ill_g_lock 14598 * is held as writer. See ill_phyint_reinit() 14599 */ 14600 14601 ASSERT(phyint->phyint_illv4 == NULL || 14602 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14603 ASSERT(phyint->phyint_illv6 == NULL || 14604 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14605 14606 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14607 phyint->phyint_illv4: phyint->phyint_illv6)) { 14608 /* 14609 * ipsq_init failed due to no memory 14610 * caller will use the same ipsq 14611 */ 14612 return (SPLIT_FAILED); 14613 } 14614 14615 /* ipsq_ref is protected by ill_g_lock (writer) */ 14616 IPSQ_DEC_REF(cur_ipsq); 14617 14618 /* 14619 * This is a new ipsq that is unknown to the world. 14620 * So we don't need to hold ipsq_lock, 14621 */ 14622 newipsq = phyint->phyint_ipsq; 14623 newipsq->ipsq_writer = NULL; 14624 newipsq->ipsq_reentry_cnt--; 14625 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14626 #ifdef ILL_DEBUG 14627 newipsq->ipsq_depth = 0; 14628 #endif 14629 14630 return (SPLIT_SUCCESS); 14631 } 14632 14633 /* 14634 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14635 * ipsq's representing their individual groups or themselves. Return 14636 * whether split needs to be retried again later. 14637 */ 14638 static boolean_t 14639 ill_split_ipsq(ipsq_t *cur_ipsq) 14640 { 14641 phyint_t *phyint; 14642 phyint_t *next_phyint; 14643 int error; 14644 boolean_t need_retry = B_FALSE; 14645 14646 phyint = cur_ipsq->ipsq_phyint_list; 14647 cur_ipsq->ipsq_phyint_list = NULL; 14648 while (phyint != NULL) { 14649 next_phyint = phyint->phyint_ipsq_next; 14650 /* 14651 * 'created' will tell us whether the callee actually 14652 * created an ipsq. Lack of memory may force the callee 14653 * to return without creating an ipsq. 14654 */ 14655 if (phyint->phyint_groupname == NULL) { 14656 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14657 } else { 14658 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14659 need_retry); 14660 } 14661 14662 switch (error) { 14663 case SPLIT_FAILED: 14664 need_retry = B_TRUE; 14665 /* FALLTHRU */ 14666 case SPLIT_NOT_NEEDED: 14667 /* 14668 * Keep it on the list. 14669 */ 14670 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14671 cur_ipsq->ipsq_phyint_list = phyint; 14672 break; 14673 case SPLIT_SUCCESS: 14674 break; 14675 default: 14676 ASSERT(0); 14677 } 14678 14679 phyint = next_phyint; 14680 } 14681 return (need_retry); 14682 } 14683 14684 /* 14685 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14686 * and return the ills in the list. This list will be 14687 * needed to unlock all the ills later on by the caller. 14688 * The <ill-ipsq> associations could change between the 14689 * lock and unlock. Hence the unlock can't traverse the 14690 * ipsq to get the list of ills. 14691 */ 14692 static int 14693 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14694 { 14695 int cnt = 0; 14696 phyint_t *phyint; 14697 14698 /* 14699 * The caller holds ill_g_lock to ensure that the ill memberships 14700 * of the ipsq don't change 14701 */ 14702 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14703 14704 phyint = ipsq->ipsq_phyint_list; 14705 while (phyint != NULL) { 14706 if (phyint->phyint_illv4 != NULL) { 14707 ASSERT(cnt < list_max); 14708 list[cnt++] = phyint->phyint_illv4; 14709 } 14710 if (phyint->phyint_illv6 != NULL) { 14711 ASSERT(cnt < list_max); 14712 list[cnt++] = phyint->phyint_illv6; 14713 } 14714 phyint = phyint->phyint_ipsq_next; 14715 } 14716 ill_lock_ills(list, cnt); 14717 return (cnt); 14718 } 14719 14720 void 14721 ill_lock_ills(ill_t **list, int cnt) 14722 { 14723 int i; 14724 14725 if (cnt > 1) { 14726 boolean_t try_again; 14727 do { 14728 try_again = B_FALSE; 14729 for (i = 0; i < cnt - 1; i++) { 14730 if (list[i] < list[i + 1]) { 14731 ill_t *tmp; 14732 14733 /* swap the elements */ 14734 tmp = list[i]; 14735 list[i] = list[i + 1]; 14736 list[i + 1] = tmp; 14737 try_again = B_TRUE; 14738 } 14739 } 14740 } while (try_again); 14741 } 14742 14743 for (i = 0; i < cnt; i++) { 14744 if (i == 0) { 14745 if (list[i] != NULL) 14746 mutex_enter(&list[i]->ill_lock); 14747 else 14748 return; 14749 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14750 mutex_enter(&list[i]->ill_lock); 14751 } 14752 } 14753 } 14754 14755 void 14756 ill_unlock_ills(ill_t **list, int cnt) 14757 { 14758 int i; 14759 14760 for (i = 0; i < cnt; i++) { 14761 if ((i == 0) && (list[i] != NULL)) { 14762 mutex_exit(&list[i]->ill_lock); 14763 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14764 mutex_exit(&list[i]->ill_lock); 14765 } 14766 } 14767 } 14768 14769 /* 14770 * Merge all the ills from 1 ipsq group into another ipsq group. 14771 * The source ipsq group is specified by the ipsq associated with 14772 * 'from_ill'. The destination ipsq group is specified by the ipsq 14773 * associated with 'to_ill' or 'groupname' respectively. 14774 * Note that ipsq itself does not have a reference count mechanism 14775 * and functions don't look up an ipsq and pass it around. Instead 14776 * functions pass around an ill or groupname, and the ipsq is looked 14777 * up from the ill or groupname and the required operation performed 14778 * atomically with the lookup on the ipsq. 14779 */ 14780 static int 14781 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14782 queue_t *q) 14783 { 14784 ipsq_t *old_ipsq; 14785 ipsq_t *new_ipsq; 14786 ill_t **ill_list; 14787 int cnt; 14788 size_t ill_list_size; 14789 boolean_t became_writer_on_new_sq = B_FALSE; 14790 14791 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14792 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14793 14794 /* 14795 * Need to hold ill_g_lock as writer and also the ill_lock to 14796 * change the <ill-ipsq> assoc of an ill. Need to hold the 14797 * ipsq_lock to prevent new messages from landing on an ipsq. 14798 */ 14799 rw_enter(&ill_g_lock, RW_WRITER); 14800 14801 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14802 if (groupname != NULL) 14803 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14804 else { 14805 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14806 } 14807 14808 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14809 14810 /* 14811 * both groups are on the same ipsq. 14812 */ 14813 if (old_ipsq == new_ipsq) { 14814 rw_exit(&ill_g_lock); 14815 return (0); 14816 } 14817 14818 cnt = old_ipsq->ipsq_refs << 1; 14819 ill_list_size = cnt * sizeof (ill_t *); 14820 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14821 if (ill_list == NULL) { 14822 rw_exit(&ill_g_lock); 14823 return (ENOMEM); 14824 } 14825 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14826 14827 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14828 mutex_enter(&new_ipsq->ipsq_lock); 14829 if ((new_ipsq->ipsq_writer == NULL && 14830 new_ipsq->ipsq_current_ipif == NULL) || 14831 (new_ipsq->ipsq_writer == curthread)) { 14832 new_ipsq->ipsq_writer = curthread; 14833 new_ipsq->ipsq_reentry_cnt++; 14834 became_writer_on_new_sq = B_TRUE; 14835 } 14836 14837 /* 14838 * We are holding ill_g_lock as writer and all the ill locks of 14839 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14840 * message can land up on the old ipsq even though we don't hold the 14841 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14842 */ 14843 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14844 14845 /* 14846 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14847 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14848 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14849 */ 14850 ill_merge_ipsq(old_ipsq, new_ipsq); 14851 14852 /* 14853 * Mark the new ipsq as needing a split since it is currently 14854 * being shared by more than 1 IPMP group. The split will 14855 * occur at the end of ipsq_exit 14856 */ 14857 new_ipsq->ipsq_split = B_TRUE; 14858 14859 /* Now release all the locks */ 14860 mutex_exit(&new_ipsq->ipsq_lock); 14861 ill_unlock_ills(ill_list, cnt); 14862 rw_exit(&ill_g_lock); 14863 14864 kmem_free(ill_list, ill_list_size); 14865 14866 /* 14867 * If we succeeded in becoming writer on the new ipsq, then 14868 * drain the new ipsq and start processing all enqueued messages 14869 * including the current ioctl we are processing which is either 14870 * a set groupname or failover/failback. 14871 */ 14872 if (became_writer_on_new_sq) 14873 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14874 14875 /* 14876 * syncq has been changed and all the messages have been moved. 14877 */ 14878 mutex_enter(&old_ipsq->ipsq_lock); 14879 old_ipsq->ipsq_current_ipif = NULL; 14880 mutex_exit(&old_ipsq->ipsq_lock); 14881 return (EINPROGRESS); 14882 } 14883 14884 /* 14885 * Delete and add the loopback copy and non-loopback copy of 14886 * the BROADCAST ire corresponding to ill and addr. Used to 14887 * group broadcast ires together when ill becomes part of 14888 * a group. 14889 * 14890 * This function is also called when ill is leaving the group 14891 * so that the ires belonging to the group gets re-grouped. 14892 */ 14893 static void 14894 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14895 { 14896 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14897 ire_t **ire_ptpn = &ire_head; 14898 14899 /* 14900 * The loopback and non-loopback IREs are inserted in the order in which 14901 * they're found, on the basis that they are correctly ordered (loopback 14902 * first). 14903 */ 14904 for (;;) { 14905 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14906 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14907 if (ire == NULL) 14908 break; 14909 14910 /* 14911 * we are passing in KM_SLEEP because it is not easy to 14912 * go back to a sane state in case of memory failure. 14913 */ 14914 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14915 ASSERT(nire != NULL); 14916 bzero(nire, sizeof (ire_t)); 14917 /* 14918 * Don't use ire_max_frag directly since we don't 14919 * hold on to 'ire' until we add the new ire 'nire' and 14920 * we don't want the new ire to have a dangling reference 14921 * to 'ire'. The ire_max_frag of a broadcast ire must 14922 * be in sync with the ipif_mtu of the associate ipif. 14923 * For eg. this happens as a result of SIOCSLIFNAME, 14924 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14925 * the driver. A change in ire_max_frag triggered as 14926 * as a result of path mtu discovery, or due to an 14927 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14928 * route change -mtu command does not apply to broadcast ires. 14929 * 14930 * XXX We need a recovery strategy here if ire_init fails 14931 */ 14932 if (ire_init(nire, 14933 (uchar_t *)&ire->ire_addr, 14934 (uchar_t *)&ire->ire_mask, 14935 (uchar_t *)&ire->ire_src_addr, 14936 (uchar_t *)&ire->ire_gateway_addr, 14937 (uchar_t *)&ire->ire_in_src_addr, 14938 ire->ire_stq == NULL ? &ip_loopback_mtu : 14939 &ire->ire_ipif->ipif_mtu, 14940 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 14941 ire->ire_rfq, 14942 ire->ire_stq, 14943 ire->ire_type, 14944 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 14945 ire->ire_ipif, 14946 ire->ire_in_ill, 14947 ire->ire_cmask, 14948 ire->ire_phandle, 14949 ire->ire_ihandle, 14950 ire->ire_flags, 14951 &ire->ire_uinfo, 14952 NULL, 14953 NULL) == NULL) { 14954 cmn_err(CE_PANIC, "ire_init() failed"); 14955 } 14956 ire_delete(ire); 14957 ire_refrele(ire); 14958 14959 /* 14960 * The newly created IREs are inserted at the tail of the list 14961 * starting with ire_head. As we've just allocated them no one 14962 * knows about them so it's safe. 14963 */ 14964 *ire_ptpn = nire; 14965 ire_ptpn = &nire->ire_next; 14966 } 14967 14968 for (nire = ire_head; nire != NULL; nire = nire_next) { 14969 int error; 14970 ire_t *oire; 14971 /* unlink the IRE from our list before calling ire_add() */ 14972 nire_next = nire->ire_next; 14973 nire->ire_next = NULL; 14974 14975 /* ire_add adds the ire at the right place in the list */ 14976 oire = nire; 14977 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14978 ASSERT(error == 0); 14979 ASSERT(oire == nire); 14980 ire_refrele(nire); /* Held in ire_add */ 14981 } 14982 } 14983 14984 /* 14985 * This function is usually called when an ill is inserted in 14986 * a group and all the ipifs are already UP. As all the ipifs 14987 * are already UP, the broadcast ires have already been created 14988 * and been inserted. But, ire_add_v4 would not have grouped properly. 14989 * We need to re-group for the benefit of ip_wput_ire which 14990 * expects BROADCAST ires to be grouped properly to avoid sending 14991 * more than one copy of the broadcast packet per group. 14992 * 14993 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14994 * because when ipif_up_done ends up calling this, ires have 14995 * already been added before illgrp_insert i.e before ill_group 14996 * has been initialized. 14997 */ 14998 static void 14999 ill_group_bcast_for_xmit(ill_t *ill) 15000 { 15001 ill_group_t *illgrp; 15002 ipif_t *ipif; 15003 ipaddr_t addr; 15004 ipaddr_t net_mask; 15005 ipaddr_t subnet_netmask; 15006 15007 illgrp = ill->ill_group; 15008 15009 /* 15010 * This function is called even when an ill is deleted from 15011 * the group. Hence, illgrp could be null. 15012 */ 15013 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15014 return; 15015 15016 /* 15017 * Delete all the BROADCAST ires matching this ill and add 15018 * them back. This time, ire_add_v4 should take care of 15019 * grouping them with others because ill is part of the 15020 * group. 15021 */ 15022 ill_bcast_delete_and_add(ill, 0); 15023 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15024 15025 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15026 15027 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15028 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15029 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15030 } else { 15031 net_mask = htonl(IN_CLASSA_NET); 15032 } 15033 addr = net_mask & ipif->ipif_subnet; 15034 ill_bcast_delete_and_add(ill, addr); 15035 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15036 15037 subnet_netmask = ipif->ipif_net_mask; 15038 addr = ipif->ipif_subnet; 15039 ill_bcast_delete_and_add(ill, addr); 15040 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15041 } 15042 } 15043 15044 /* 15045 * This function is called from illgrp_delete when ill is being deleted 15046 * from the group. 15047 * 15048 * As ill is not there in the group anymore, any address belonging 15049 * to this ill should be cleared of IRE_MARK_NORECV. 15050 */ 15051 static void 15052 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15053 { 15054 ire_t *ire; 15055 irb_t *irb; 15056 15057 ASSERT(ill->ill_group == NULL); 15058 15059 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15060 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 15061 15062 if (ire != NULL) { 15063 /* 15064 * IPMP and plumbing operations are serialized on the ipsq, so 15065 * no one will insert or delete a broadcast ire under our feet. 15066 */ 15067 irb = ire->ire_bucket; 15068 rw_enter(&irb->irb_lock, RW_READER); 15069 ire_refrele(ire); 15070 15071 for (; ire != NULL; ire = ire->ire_next) { 15072 if (ire->ire_addr != addr) 15073 break; 15074 if (ire_to_ill(ire) != ill) 15075 continue; 15076 15077 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15078 ire->ire_marks &= ~IRE_MARK_NORECV; 15079 } 15080 rw_exit(&irb->irb_lock); 15081 } 15082 } 15083 15084 /* 15085 * This function must be called only after the broadcast ires 15086 * have been grouped together. For a given address addr, nominate 15087 * only one of the ires whose interface is not FAILED or OFFLINE. 15088 * 15089 * This is also called when an ipif goes down, so that we can nominate 15090 * a different ire with the same address for receiving. 15091 */ 15092 static void 15093 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 15094 { 15095 irb_t *irb; 15096 ire_t *ire; 15097 ire_t *ire1; 15098 ire_t *save_ire; 15099 ire_t **irep = NULL; 15100 boolean_t first = B_TRUE; 15101 ire_t *clear_ire = NULL; 15102 ire_t *start_ire = NULL; 15103 ire_t *new_lb_ire; 15104 ire_t *new_nlb_ire; 15105 boolean_t new_lb_ire_used = B_FALSE; 15106 boolean_t new_nlb_ire_used = B_FALSE; 15107 uint64_t match_flags; 15108 uint64_t phyi_flags; 15109 boolean_t fallback = B_FALSE; 15110 15111 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15112 NULL, MATCH_IRE_TYPE); 15113 /* 15114 * We may not be able to find some ires if a previous 15115 * ire_create failed. This happens when an ipif goes 15116 * down and we are unable to create BROADCAST ires due 15117 * to memory failure. Thus, we have to check for NULL 15118 * below. This should handle the case for LOOPBACK, 15119 * POINTOPOINT and interfaces with some POINTOPOINT 15120 * logicals for which there are no BROADCAST ires. 15121 */ 15122 if (ire == NULL) 15123 return; 15124 /* 15125 * Currently IRE_BROADCASTS are deleted when an ipif 15126 * goes down which runs exclusively. Thus, setting 15127 * IRE_MARK_RCVD should not race with ire_delete marking 15128 * IRE_MARK_CONDEMNED. We grab the lock below just to 15129 * be consistent with other parts of the code that walks 15130 * a given bucket. 15131 */ 15132 save_ire = ire; 15133 irb = ire->ire_bucket; 15134 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15135 if (new_lb_ire == NULL) { 15136 ire_refrele(ire); 15137 return; 15138 } 15139 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15140 if (new_nlb_ire == NULL) { 15141 ire_refrele(ire); 15142 kmem_cache_free(ire_cache, new_lb_ire); 15143 return; 15144 } 15145 IRB_REFHOLD(irb); 15146 rw_enter(&irb->irb_lock, RW_WRITER); 15147 /* 15148 * Get to the first ire matching the address and the 15149 * group. If the address does not match we are done 15150 * as we could not find the IRE. If the address matches 15151 * we should get to the first one matching the group. 15152 */ 15153 while (ire != NULL) { 15154 if (ire->ire_addr != addr || 15155 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15156 break; 15157 } 15158 ire = ire->ire_next; 15159 } 15160 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15161 start_ire = ire; 15162 redo: 15163 while (ire != NULL && ire->ire_addr == addr && 15164 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15165 /* 15166 * The first ire for any address within a group 15167 * should always be the one with IRE_MARK_NORECV cleared 15168 * so that ip_wput_ire can avoid searching for one. 15169 * Note down the insertion point which will be used 15170 * later. 15171 */ 15172 if (first && (irep == NULL)) 15173 irep = ire->ire_ptpn; 15174 /* 15175 * PHYI_FAILED is set when the interface fails. 15176 * This interface might have become good, but the 15177 * daemon has not yet detected. We should still 15178 * not receive on this. PHYI_OFFLINE should never 15179 * be picked as this has been offlined and soon 15180 * be removed. 15181 */ 15182 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15183 if (phyi_flags & PHYI_OFFLINE) { 15184 ire->ire_marks |= IRE_MARK_NORECV; 15185 ire = ire->ire_next; 15186 continue; 15187 } 15188 if (phyi_flags & match_flags) { 15189 ire->ire_marks |= IRE_MARK_NORECV; 15190 ire = ire->ire_next; 15191 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15192 PHYI_INACTIVE) { 15193 fallback = B_TRUE; 15194 } 15195 continue; 15196 } 15197 if (first) { 15198 /* 15199 * We will move this to the front of the list later 15200 * on. 15201 */ 15202 clear_ire = ire; 15203 ire->ire_marks &= ~IRE_MARK_NORECV; 15204 } else { 15205 ire->ire_marks |= IRE_MARK_NORECV; 15206 } 15207 first = B_FALSE; 15208 ire = ire->ire_next; 15209 } 15210 /* 15211 * If we never nominated anybody, try nominating at least 15212 * an INACTIVE, if we found one. Do it only once though. 15213 */ 15214 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15215 fallback) { 15216 match_flags = PHYI_FAILED; 15217 ire = start_ire; 15218 irep = NULL; 15219 goto redo; 15220 } 15221 ire_refrele(save_ire); 15222 15223 /* 15224 * irep non-NULL indicates that we entered the while loop 15225 * above. If clear_ire is at the insertion point, we don't 15226 * have to do anything. clear_ire will be NULL if all the 15227 * interfaces are failed. 15228 * 15229 * We cannot unlink and reinsert the ire at the right place 15230 * in the list since there can be other walkers of this bucket. 15231 * Instead we delete and recreate the ire 15232 */ 15233 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15234 ire_t *clear_ire_stq = NULL; 15235 mblk_t *fp_mp = NULL, *res_mp = NULL; 15236 15237 bzero(new_lb_ire, sizeof (ire_t)); 15238 if (clear_ire->ire_nce != NULL) { 15239 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15240 res_mp = clear_ire->ire_nce->nce_res_mp; 15241 } 15242 /* XXX We need a recovery strategy here. */ 15243 if (ire_init(new_lb_ire, 15244 (uchar_t *)&clear_ire->ire_addr, 15245 (uchar_t *)&clear_ire->ire_mask, 15246 (uchar_t *)&clear_ire->ire_src_addr, 15247 (uchar_t *)&clear_ire->ire_gateway_addr, 15248 (uchar_t *)&clear_ire->ire_in_src_addr, 15249 &clear_ire->ire_max_frag, 15250 fp_mp, 15251 clear_ire->ire_rfq, 15252 clear_ire->ire_stq, 15253 clear_ire->ire_type, 15254 res_mp, 15255 clear_ire->ire_ipif, 15256 clear_ire->ire_in_ill, 15257 clear_ire->ire_cmask, 15258 clear_ire->ire_phandle, 15259 clear_ire->ire_ihandle, 15260 clear_ire->ire_flags, 15261 &clear_ire->ire_uinfo, 15262 NULL, 15263 NULL) == NULL) 15264 cmn_err(CE_PANIC, "ire_init() failed"); 15265 if (clear_ire->ire_stq == NULL) { 15266 ire_t *ire_next = clear_ire->ire_next; 15267 if (ire_next != NULL && 15268 ire_next->ire_stq != NULL && 15269 ire_next->ire_addr == clear_ire->ire_addr && 15270 ire_next->ire_ipif->ipif_ill == 15271 clear_ire->ire_ipif->ipif_ill) { 15272 clear_ire_stq = ire_next; 15273 15274 bzero(new_nlb_ire, sizeof (ire_t)); 15275 if (clear_ire_stq->ire_nce != NULL) { 15276 fp_mp = 15277 clear_ire_stq->ire_nce->nce_fp_mp; 15278 res_mp = 15279 clear_ire_stq->ire_nce->nce_res_mp; 15280 } else { 15281 fp_mp = res_mp = NULL; 15282 } 15283 /* XXX We need a recovery strategy here. */ 15284 if (ire_init(new_nlb_ire, 15285 (uchar_t *)&clear_ire_stq->ire_addr, 15286 (uchar_t *)&clear_ire_stq->ire_mask, 15287 (uchar_t *)&clear_ire_stq->ire_src_addr, 15288 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15289 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15290 &clear_ire_stq->ire_max_frag, 15291 fp_mp, 15292 clear_ire_stq->ire_rfq, 15293 clear_ire_stq->ire_stq, 15294 clear_ire_stq->ire_type, 15295 res_mp, 15296 clear_ire_stq->ire_ipif, 15297 clear_ire_stq->ire_in_ill, 15298 clear_ire_stq->ire_cmask, 15299 clear_ire_stq->ire_phandle, 15300 clear_ire_stq->ire_ihandle, 15301 clear_ire_stq->ire_flags, 15302 &clear_ire_stq->ire_uinfo, 15303 NULL, 15304 NULL) == NULL) 15305 cmn_err(CE_PANIC, "ire_init() failed"); 15306 } 15307 } 15308 15309 /* 15310 * Delete the ire. We can't call ire_delete() since 15311 * we are holding the bucket lock. We can't release the 15312 * bucket lock since we can't allow irep to change. So just 15313 * mark it CONDEMNED. The IRB_REFRELE will delete the 15314 * ire from the list and do the refrele. 15315 */ 15316 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15317 irb->irb_marks |= IRB_MARK_CONDEMNED; 15318 15319 if (clear_ire_stq != NULL) { 15320 ire_fastpath_list_delete( 15321 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 15322 clear_ire_stq); 15323 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15324 } 15325 15326 /* 15327 * Also take care of otherfields like ib/ob pkt count 15328 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15329 */ 15330 15331 /* Add the new ire's. Insert at *irep */ 15332 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15333 ire1 = *irep; 15334 if (ire1 != NULL) 15335 ire1->ire_ptpn = &new_lb_ire->ire_next; 15336 new_lb_ire->ire_next = ire1; 15337 /* Link the new one in. */ 15338 new_lb_ire->ire_ptpn = irep; 15339 membar_producer(); 15340 *irep = new_lb_ire; 15341 new_lb_ire_used = B_TRUE; 15342 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15343 new_lb_ire->ire_bucket->irb_ire_cnt++; 15344 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15345 15346 if (clear_ire_stq != NULL) { 15347 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15348 irep = &new_lb_ire->ire_next; 15349 /* Add the new ire. Insert at *irep */ 15350 ire1 = *irep; 15351 if (ire1 != NULL) 15352 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15353 new_nlb_ire->ire_next = ire1; 15354 /* Link the new one in. */ 15355 new_nlb_ire->ire_ptpn = irep; 15356 membar_producer(); 15357 *irep = new_nlb_ire; 15358 new_nlb_ire_used = B_TRUE; 15359 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15360 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15361 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15362 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15363 } 15364 } 15365 rw_exit(&irb->irb_lock); 15366 if (!new_lb_ire_used) 15367 kmem_cache_free(ire_cache, new_lb_ire); 15368 if (!new_nlb_ire_used) 15369 kmem_cache_free(ire_cache, new_nlb_ire); 15370 IRB_REFRELE(irb); 15371 } 15372 15373 /* 15374 * Whenever an ipif goes down we have to renominate a different 15375 * broadcast ire to receive. Whenever an ipif comes up, we need 15376 * to make sure that we have only one nominated to receive. 15377 */ 15378 static void 15379 ipif_renominate_bcast(ipif_t *ipif) 15380 { 15381 ill_t *ill = ipif->ipif_ill; 15382 ipaddr_t subnet_addr; 15383 ipaddr_t net_addr; 15384 ipaddr_t net_mask = 0; 15385 ipaddr_t subnet_netmask; 15386 ipaddr_t addr; 15387 ill_group_t *illgrp; 15388 15389 illgrp = ill->ill_group; 15390 /* 15391 * If this is the last ipif going down, it might take 15392 * the ill out of the group. In that case ipif_down -> 15393 * illgrp_delete takes care of doing the nomination. 15394 * ipif_down does not call for this case. 15395 */ 15396 ASSERT(illgrp != NULL); 15397 15398 /* There could not have been any ires associated with this */ 15399 if (ipif->ipif_subnet == 0) 15400 return; 15401 15402 ill_mark_bcast(illgrp, 0); 15403 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15404 15405 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15406 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15407 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15408 } else { 15409 net_mask = htonl(IN_CLASSA_NET); 15410 } 15411 addr = net_mask & ipif->ipif_subnet; 15412 ill_mark_bcast(illgrp, addr); 15413 15414 net_addr = ~net_mask | addr; 15415 ill_mark_bcast(illgrp, net_addr); 15416 15417 subnet_netmask = ipif->ipif_net_mask; 15418 addr = ipif->ipif_subnet; 15419 ill_mark_bcast(illgrp, addr); 15420 15421 subnet_addr = ~subnet_netmask | addr; 15422 ill_mark_bcast(illgrp, subnet_addr); 15423 } 15424 15425 /* 15426 * Whenever we form or delete ill groups, we need to nominate one set of 15427 * BROADCAST ires for receiving in the group. 15428 * 15429 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15430 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15431 * for ill_ipif_up_count to be non-zero. This is the only case where 15432 * ill_ipif_up_count is zero and we would still find the ires. 15433 * 15434 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15435 * ipif is UP and we just have to do the nomination. 15436 * 15437 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15438 * from the group. So, we have to do the nomination. 15439 * 15440 * Because of (3), there could be just one ill in the group. But we have 15441 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15442 * Thus, this function does not optimize when there is only one ill as 15443 * it is not correct for (3). 15444 */ 15445 static void 15446 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15447 { 15448 ill_t *ill; 15449 ipif_t *ipif; 15450 ipaddr_t subnet_addr; 15451 ipaddr_t prev_subnet_addr = 0; 15452 ipaddr_t net_addr; 15453 ipaddr_t prev_net_addr = 0; 15454 ipaddr_t net_mask = 0; 15455 ipaddr_t subnet_netmask; 15456 ipaddr_t addr; 15457 15458 /* 15459 * When the last memeber is leaving, there is nothing to 15460 * nominate. 15461 */ 15462 if (illgrp->illgrp_ill_count == 0) { 15463 ASSERT(illgrp->illgrp_ill == NULL); 15464 return; 15465 } 15466 15467 ill = illgrp->illgrp_ill; 15468 ASSERT(!ill->ill_isv6); 15469 /* 15470 * We assume that ires with same address and belonging to the 15471 * same group, has been grouped together. Nominating a *single* 15472 * ill in the group for sending and receiving broadcast is done 15473 * by making sure that the first BROADCAST ire (which will be 15474 * the one returned by ire_ctable_lookup for ip_rput and the 15475 * one that will be used in ip_wput_ire) will be the one that 15476 * will not have IRE_MARK_NORECV set. 15477 * 15478 * 1) ip_rput checks and discards packets received on ires marked 15479 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15480 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15481 * first ire in the group for every broadcast address in the group. 15482 * ip_rput will accept packets only on the first ire i.e only 15483 * one copy of the ill. 15484 * 15485 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15486 * packet for the whole group. It needs to send out on the ill 15487 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15488 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15489 * the copy echoed back on other port where the ire is not marked 15490 * with IRE_MARK_NORECV. 15491 * 15492 * Note that we just need to have the first IRE either loopback or 15493 * non-loopback (either of them may not exist if ire_create failed 15494 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15495 * always hit the first one and hence will always accept one copy. 15496 * 15497 * We have a broadcast ire per ill for all the unique prefixes 15498 * hosted on that ill. As we don't have a way of knowing the 15499 * unique prefixes on a given ill and hence in the whole group, 15500 * we just call ill_mark_bcast on all the prefixes that exist 15501 * in the group. For the common case of one prefix, the code 15502 * below optimizes by remebering the last address used for 15503 * markng. In the case of multiple prefixes, this will still 15504 * optimize depending the order of prefixes. 15505 * 15506 * The only unique address across the whole group is 0.0.0.0 and 15507 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15508 * the first ire in the bucket for receiving and disables the 15509 * others. 15510 */ 15511 ill_mark_bcast(illgrp, 0); 15512 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15513 for (; ill != NULL; ill = ill->ill_group_next) { 15514 15515 for (ipif = ill->ill_ipif; ipif != NULL; 15516 ipif = ipif->ipif_next) { 15517 15518 if (!(ipif->ipif_flags & IPIF_UP) || 15519 ipif->ipif_subnet == 0) { 15520 continue; 15521 } 15522 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15523 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15524 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15525 } else { 15526 net_mask = htonl(IN_CLASSA_NET); 15527 } 15528 addr = net_mask & ipif->ipif_subnet; 15529 if (prev_net_addr == 0 || prev_net_addr != addr) { 15530 ill_mark_bcast(illgrp, addr); 15531 net_addr = ~net_mask | addr; 15532 ill_mark_bcast(illgrp, net_addr); 15533 } 15534 prev_net_addr = addr; 15535 15536 subnet_netmask = ipif->ipif_net_mask; 15537 addr = ipif->ipif_subnet; 15538 if (prev_subnet_addr == 0 || 15539 prev_subnet_addr != addr) { 15540 ill_mark_bcast(illgrp, addr); 15541 subnet_addr = ~subnet_netmask | addr; 15542 ill_mark_bcast(illgrp, subnet_addr); 15543 } 15544 prev_subnet_addr = addr; 15545 } 15546 } 15547 } 15548 15549 /* 15550 * This function is called while forming ill groups. 15551 * 15552 * Currently, we handle only allmulti groups. We want to join 15553 * allmulti on only one of the ills in the groups. In future, 15554 * when we have link aggregation, we may have to join normal 15555 * multicast groups on multiple ills as switch does inbound load 15556 * balancing. Following are the functions that calls this 15557 * function : 15558 * 15559 * 1) ill_recover_multicast : Interface is coming back UP. 15560 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15561 * will call ill_recover_multicast to recover all the multicast 15562 * groups. We need to make sure that only one member is joined 15563 * in the ill group. 15564 * 15565 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15566 * Somebody is joining allmulti. We need to make sure that only one 15567 * member is joined in the group. 15568 * 15569 * 3) illgrp_insert : If allmulti has already joined, we need to make 15570 * sure that only one member is joined in the group. 15571 * 15572 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15573 * allmulti who we have nominated. We need to pick someother ill. 15574 * 15575 * 5) illgrp_delete : The ill we nominated is leaving the group, 15576 * we need to pick a new ill to join the group. 15577 * 15578 * For (1), (2), (5) - we just have to check whether there is 15579 * a good ill joined in the group. If we could not find any ills 15580 * joined the group, we should join. 15581 * 15582 * For (4), the one that was nominated to receive, left the group. 15583 * There could be nobody joined in the group when this function is 15584 * called. 15585 * 15586 * For (3) - we need to explicitly check whether there are multiple 15587 * ills joined in the group. 15588 * 15589 * For simplicity, we don't differentiate any of the above cases. We 15590 * just leave the group if it is joined on any of them and join on 15591 * the first good ill. 15592 */ 15593 int 15594 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15595 { 15596 ilm_t *ilm; 15597 ill_t *ill; 15598 ill_t *fallback_inactive_ill = NULL; 15599 ill_t *fallback_failed_ill = NULL; 15600 int ret = 0; 15601 15602 /* 15603 * Leave the allmulti on all the ills and start fresh. 15604 */ 15605 for (ill = illgrp->illgrp_ill; ill != NULL; 15606 ill = ill->ill_group_next) { 15607 if (ill->ill_join_allmulti) 15608 (void) ip_leave_allmulti(ill->ill_ipif); 15609 } 15610 15611 /* 15612 * Choose a good ill. Fallback to inactive or failed if 15613 * none available. We need to fallback to FAILED in the 15614 * case where we have 2 interfaces in a group - where 15615 * one of them is failed and another is a good one and 15616 * the good one (not marked inactive) is leaving the group. 15617 */ 15618 ret = 0; 15619 for (ill = illgrp->illgrp_ill; ill != NULL; 15620 ill = ill->ill_group_next) { 15621 /* Never pick an offline interface */ 15622 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15623 continue; 15624 15625 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15626 fallback_failed_ill = ill; 15627 continue; 15628 } 15629 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15630 fallback_inactive_ill = ill; 15631 continue; 15632 } 15633 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15634 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15635 ret = ip_join_allmulti(ill->ill_ipif); 15636 /* 15637 * ip_join_allmulti can fail because of memory 15638 * failures. So, make sure we join at least 15639 * on one ill. 15640 */ 15641 if (ill->ill_join_allmulti) 15642 return (0); 15643 } 15644 } 15645 } 15646 if (ret != 0) { 15647 /* 15648 * If we tried nominating above and failed to do so, 15649 * return error. We might have tried multiple times. 15650 * But, return the latest error. 15651 */ 15652 return (ret); 15653 } 15654 if ((ill = fallback_inactive_ill) != NULL) { 15655 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15656 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15657 ret = ip_join_allmulti(ill->ill_ipif); 15658 return (ret); 15659 } 15660 } 15661 } else if ((ill = fallback_failed_ill) != NULL) { 15662 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15663 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15664 ret = ip_join_allmulti(ill->ill_ipif); 15665 return (ret); 15666 } 15667 } 15668 } 15669 return (0); 15670 } 15671 15672 /* 15673 * This function is called from illgrp_delete after it is 15674 * deleted from the group to reschedule responsibilities 15675 * to a different ill. 15676 */ 15677 static void 15678 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15679 { 15680 ilm_t *ilm; 15681 ipif_t *ipif; 15682 ipaddr_t subnet_addr; 15683 ipaddr_t net_addr; 15684 ipaddr_t net_mask = 0; 15685 ipaddr_t subnet_netmask; 15686 ipaddr_t addr; 15687 15688 ASSERT(ill->ill_group == NULL); 15689 /* 15690 * Broadcast Responsibility: 15691 * 15692 * 1. If this ill has been nominated for receiving broadcast 15693 * packets, we need to find a new one. Before we find a new 15694 * one, we need to re-group the ires that are part of this new 15695 * group (assumed by ill_nominate_bcast_rcv). We do this by 15696 * calling ill_group_bcast_for_xmit(ill) which will do the right 15697 * thing for us. 15698 * 15699 * 2. If this ill was not nominated for receiving broadcast 15700 * packets, we need to clear the IRE_MARK_NORECV flag 15701 * so that we continue to send up broadcast packets. 15702 */ 15703 if (!ill->ill_isv6) { 15704 /* 15705 * Case 1 above : No optimization here. Just redo the 15706 * nomination. 15707 */ 15708 ill_group_bcast_for_xmit(ill); 15709 ill_nominate_bcast_rcv(illgrp); 15710 15711 /* 15712 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15713 */ 15714 ill_clear_bcast_mark(ill, 0); 15715 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15716 15717 for (ipif = ill->ill_ipif; ipif != NULL; 15718 ipif = ipif->ipif_next) { 15719 15720 if (!(ipif->ipif_flags & IPIF_UP) || 15721 ipif->ipif_subnet == 0) { 15722 continue; 15723 } 15724 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15725 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15726 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15727 } else { 15728 net_mask = htonl(IN_CLASSA_NET); 15729 } 15730 addr = net_mask & ipif->ipif_subnet; 15731 ill_clear_bcast_mark(ill, addr); 15732 15733 net_addr = ~net_mask | addr; 15734 ill_clear_bcast_mark(ill, net_addr); 15735 15736 subnet_netmask = ipif->ipif_net_mask; 15737 addr = ipif->ipif_subnet; 15738 ill_clear_bcast_mark(ill, addr); 15739 15740 subnet_addr = ~subnet_netmask | addr; 15741 ill_clear_bcast_mark(ill, subnet_addr); 15742 } 15743 } 15744 15745 /* 15746 * Multicast Responsibility. 15747 * 15748 * If we have joined allmulti on this one, find a new member 15749 * in the group to join allmulti. As this ill is already part 15750 * of allmulti, we don't have to join on this one. 15751 * 15752 * If we have not joined allmulti on this one, there is no 15753 * responsibility to handoff. But we need to take new 15754 * responsibility i.e, join allmulti on this one if we need 15755 * to. 15756 */ 15757 if (ill->ill_join_allmulti) { 15758 (void) ill_nominate_mcast_rcv(illgrp); 15759 } else { 15760 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15761 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15762 (void) ip_join_allmulti(ill->ill_ipif); 15763 break; 15764 } 15765 } 15766 } 15767 15768 /* 15769 * We intentionally do the flushing of IRE_CACHES only matching 15770 * on the ill and not on groups. Note that we are already deleted 15771 * from the group. 15772 * 15773 * This will make sure that all IRE_CACHES whose stq is pointing 15774 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15775 * deleted and IRE_CACHES that are not pointing at this ill will 15776 * be left alone. 15777 */ 15778 if (ill->ill_isv6) { 15779 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15780 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15781 } else { 15782 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15783 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15784 } 15785 15786 /* 15787 * Some conn may have cached one of the IREs deleted above. By removing 15788 * the ire reference, we clean up the extra reference to the ill held in 15789 * ire->ire_stq. 15790 */ 15791 ipcl_walk(conn_cleanup_stale_ire, NULL); 15792 15793 /* 15794 * Re-do source address selection for all the members in the 15795 * group, if they borrowed source address from one of the ipifs 15796 * in this ill. 15797 */ 15798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15799 if (ill->ill_isv6) { 15800 ipif_update_other_ipifs_v6(ipif, illgrp); 15801 } else { 15802 ipif_update_other_ipifs(ipif, illgrp); 15803 } 15804 } 15805 } 15806 15807 /* 15808 * Delete the ill from the group. The caller makes sure that it is 15809 * in a group and it okay to delete from the group. So, we always 15810 * delete here. 15811 */ 15812 static void 15813 illgrp_delete(ill_t *ill) 15814 { 15815 ill_group_t *illgrp; 15816 ill_group_t *tmpg; 15817 ill_t *tmp_ill; 15818 15819 /* 15820 * Reset illgrp_ill_schednext if it was pointing at us. 15821 * We need to do this before we set ill_group to NULL. 15822 */ 15823 rw_enter(&ill_g_lock, RW_WRITER); 15824 mutex_enter(&ill->ill_lock); 15825 15826 illgrp_reset_schednext(ill); 15827 15828 illgrp = ill->ill_group; 15829 15830 /* Delete the ill from illgrp. */ 15831 if (illgrp->illgrp_ill == ill) { 15832 illgrp->illgrp_ill = ill->ill_group_next; 15833 } else { 15834 tmp_ill = illgrp->illgrp_ill; 15835 while (tmp_ill->ill_group_next != ill) { 15836 tmp_ill = tmp_ill->ill_group_next; 15837 ASSERT(tmp_ill != NULL); 15838 } 15839 tmp_ill->ill_group_next = ill->ill_group_next; 15840 } 15841 ill->ill_group = NULL; 15842 ill->ill_group_next = NULL; 15843 15844 illgrp->illgrp_ill_count--; 15845 mutex_exit(&ill->ill_lock); 15846 rw_exit(&ill_g_lock); 15847 15848 /* 15849 * As this ill is leaving the group, we need to hand off 15850 * the responsibilities to the other ills in the group, if 15851 * this ill had some responsibilities. 15852 */ 15853 15854 ill_handoff_responsibility(ill, illgrp); 15855 15856 rw_enter(&ill_g_lock, RW_WRITER); 15857 15858 if (illgrp->illgrp_ill_count == 0) { 15859 15860 ASSERT(illgrp->illgrp_ill == NULL); 15861 if (ill->ill_isv6) { 15862 if (illgrp == illgrp_head_v6) { 15863 illgrp_head_v6 = illgrp->illgrp_next; 15864 } else { 15865 tmpg = illgrp_head_v6; 15866 while (tmpg->illgrp_next != illgrp) { 15867 tmpg = tmpg->illgrp_next; 15868 ASSERT(tmpg != NULL); 15869 } 15870 tmpg->illgrp_next = illgrp->illgrp_next; 15871 } 15872 } else { 15873 if (illgrp == illgrp_head_v4) { 15874 illgrp_head_v4 = illgrp->illgrp_next; 15875 } else { 15876 tmpg = illgrp_head_v4; 15877 while (tmpg->illgrp_next != illgrp) { 15878 tmpg = tmpg->illgrp_next; 15879 ASSERT(tmpg != NULL); 15880 } 15881 tmpg->illgrp_next = illgrp->illgrp_next; 15882 } 15883 } 15884 mutex_destroy(&illgrp->illgrp_lock); 15885 mi_free(illgrp); 15886 } 15887 rw_exit(&ill_g_lock); 15888 15889 /* 15890 * Even though the ill is out of the group its not necessary 15891 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15892 * We will split the ipsq when phyint_groupname is set to NULL. 15893 */ 15894 15895 /* 15896 * Send a routing sockets message if we are deleting from 15897 * groups with names. 15898 */ 15899 if (ill->ill_phyint->phyint_groupname_len != 0) 15900 ip_rts_ifmsg(ill->ill_ipif); 15901 } 15902 15903 /* 15904 * Re-do source address selection. This is normally called when 15905 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15906 * ipif comes up. 15907 */ 15908 void 15909 ill_update_source_selection(ill_t *ill) 15910 { 15911 ipif_t *ipif; 15912 15913 ASSERT(IAM_WRITER_ILL(ill)); 15914 15915 if (ill->ill_group != NULL) 15916 ill = ill->ill_group->illgrp_ill; 15917 15918 for (; ill != NULL; ill = ill->ill_group_next) { 15919 for (ipif = ill->ill_ipif; ipif != NULL; 15920 ipif = ipif->ipif_next) { 15921 if (ill->ill_isv6) 15922 ipif_recreate_interface_routes_v6(NULL, ipif); 15923 else 15924 ipif_recreate_interface_routes(NULL, ipif); 15925 } 15926 } 15927 } 15928 15929 /* 15930 * Insert ill in a group headed by illgrp_head. The caller can either 15931 * pass a groupname in which case we search for a group with the 15932 * same name to insert in or pass a group to insert in. This function 15933 * would only search groups with names. 15934 * 15935 * NOTE : The caller should make sure that there is at least one ipif 15936 * UP on this ill so that illgrp_scheduler can pick this ill 15937 * for outbound packets. If ill_ipif_up_count is zero, we have 15938 * already sent a DL_UNBIND to the driver and we don't want to 15939 * send anymore packets. We don't assert for ipif_up_count 15940 * to be greater than zero, because ipif_up_done wants to call 15941 * this function before bumping up the ipif_up_count. See 15942 * ipif_up_done() for details. 15943 */ 15944 int 15945 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15946 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15947 { 15948 ill_group_t *illgrp; 15949 ill_t *prev_ill; 15950 phyint_t *phyi; 15951 15952 ASSERT(ill->ill_group == NULL); 15953 15954 rw_enter(&ill_g_lock, RW_WRITER); 15955 mutex_enter(&ill->ill_lock); 15956 15957 if (groupname != NULL) { 15958 /* 15959 * Look for a group with a matching groupname to insert. 15960 */ 15961 for (illgrp = *illgrp_head; illgrp != NULL; 15962 illgrp = illgrp->illgrp_next) { 15963 15964 ill_t *tmp_ill; 15965 15966 /* 15967 * If we have an ill_group_t in the list which has 15968 * no ill_t assigned then we must be in the process of 15969 * removing this group. We skip this as illgrp_delete() 15970 * will remove it from the list. 15971 */ 15972 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15973 ASSERT(illgrp->illgrp_ill_count == 0); 15974 continue; 15975 } 15976 15977 ASSERT(tmp_ill->ill_phyint != NULL); 15978 phyi = tmp_ill->ill_phyint; 15979 /* 15980 * Look at groups which has names only. 15981 */ 15982 if (phyi->phyint_groupname_len == 0) 15983 continue; 15984 /* 15985 * Names are stored in the phyint common to both 15986 * IPv4 and IPv6. 15987 */ 15988 if (mi_strcmp(phyi->phyint_groupname, 15989 groupname) == 0) { 15990 break; 15991 } 15992 } 15993 } else { 15994 /* 15995 * If the caller passes in a NULL "grp_to_insert", we 15996 * allocate one below and insert this singleton. 15997 */ 15998 illgrp = grp_to_insert; 15999 } 16000 16001 ill->ill_group_next = NULL; 16002 16003 if (illgrp == NULL) { 16004 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16005 if (illgrp == NULL) { 16006 return (ENOMEM); 16007 } 16008 illgrp->illgrp_next = *illgrp_head; 16009 *illgrp_head = illgrp; 16010 illgrp->illgrp_ill = ill; 16011 illgrp->illgrp_ill_count = 1; 16012 ill->ill_group = illgrp; 16013 /* 16014 * Used in illgrp_scheduler to protect multiple threads 16015 * from traversing the list. 16016 */ 16017 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16018 } else { 16019 ASSERT(ill->ill_net_type == 16020 illgrp->illgrp_ill->ill_net_type); 16021 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16022 16023 /* Insert ill at tail of this group */ 16024 prev_ill = illgrp->illgrp_ill; 16025 while (prev_ill->ill_group_next != NULL) 16026 prev_ill = prev_ill->ill_group_next; 16027 prev_ill->ill_group_next = ill; 16028 ill->ill_group = illgrp; 16029 illgrp->illgrp_ill_count++; 16030 /* 16031 * Inherit group properties. Currently only forwarding 16032 * is the property we try to keep the same with all the 16033 * ills. When there are more, we will abstract this into 16034 * a function. 16035 */ 16036 ill->ill_flags &= ~ILLF_ROUTER; 16037 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16038 } 16039 mutex_exit(&ill->ill_lock); 16040 rw_exit(&ill_g_lock); 16041 16042 /* 16043 * 1) When ipif_up_done() calls this function, ipif_up_count 16044 * may be zero as it has not yet been bumped. But the ires 16045 * have already been added. So, we do the nomination here 16046 * itself. But, when ip_sioctl_groupname calls this, it checks 16047 * for ill_ipif_up_count != 0. Thus we don't check for 16048 * ill_ipif_up_count here while nominating broadcast ires for 16049 * receive. 16050 * 16051 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16052 * to group them properly as ire_add() has already happened 16053 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16054 * case, we need to do it here anyway. 16055 */ 16056 if (!ill->ill_isv6) { 16057 ill_group_bcast_for_xmit(ill); 16058 ill_nominate_bcast_rcv(illgrp); 16059 } 16060 16061 if (!ipif_is_coming_up) { 16062 /* 16063 * When ipif_up_done() calls this function, the multicast 16064 * groups have not been joined yet. So, there is no point in 16065 * nomination. ip_join_allmulti will handle groups when 16066 * ill_recover_multicast is called from ipif_up_done() later. 16067 */ 16068 (void) ill_nominate_mcast_rcv(illgrp); 16069 /* 16070 * ipif_up_done calls ill_update_source_selection 16071 * anyway. Moreover, we don't want to re-create 16072 * interface routes while ipif_up_done() still has reference 16073 * to them. Refer to ipif_up_done() for more details. 16074 */ 16075 ill_update_source_selection(ill); 16076 } 16077 16078 /* 16079 * Send a routing sockets message if we are inserting into 16080 * groups with names. 16081 */ 16082 if (groupname != NULL) 16083 ip_rts_ifmsg(ill->ill_ipif); 16084 return (0); 16085 } 16086 16087 /* 16088 * Return the first phyint matching the groupname. There could 16089 * be more than one when there are ill groups. 16090 * 16091 * Needs work: called only from ip_sioctl_groupname 16092 */ 16093 static phyint_t * 16094 phyint_lookup_group(char *groupname) 16095 { 16096 phyint_t *phyi; 16097 16098 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 16099 /* 16100 * Group names are stored in the phyint - a common structure 16101 * to both IPv4 and IPv6. 16102 */ 16103 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 16104 for (; phyi != NULL; 16105 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 16106 phyi, AVL_AFTER)) { 16107 if (phyi->phyint_groupname_len == 0) 16108 continue; 16109 ASSERT(phyi->phyint_groupname != NULL); 16110 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16111 return (phyi); 16112 } 16113 return (NULL); 16114 } 16115 16116 16117 16118 /* 16119 * MT notes on creation and deletion of IPMP groups 16120 * 16121 * Creation and deletion of IPMP groups introduce the need to merge or 16122 * split the associated serialization objects i.e the ipsq's. Normally all 16123 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16124 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16125 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16126 * is a need to change the <ill-ipsq> association and we have to operate on both 16127 * the source and destination IPMP groups. For eg. attempting to set the 16128 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16129 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16130 * source or destination IPMP group are mapped to a single ipsq for executing 16131 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16132 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16133 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16134 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16135 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16136 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16137 * 16138 * In the above example the ioctl handling code locates the current ipsq of hme0 16139 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16140 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16141 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16142 * the destination ipsq. If the destination ipsq is not busy, it also enters 16143 * the destination ipsq exclusively. Now the actual groupname setting operation 16144 * can proceed. If the destination ipsq is busy, the operation is enqueued 16145 * on the destination (merged) ipsq and will be handled in the unwind from 16146 * ipsq_exit. 16147 * 16148 * To prevent other threads accessing the ill while the group name change is 16149 * in progres, we bring down the ipifs which also removes the ill from the 16150 * group. The group is changed in phyint and when the first ipif on the ill 16151 * is brought up, the ill is inserted into the right IPMP group by 16152 * illgrp_insert. 16153 */ 16154 /* ARGSUSED */ 16155 int 16156 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16157 ip_ioctl_cmd_t *ipip, void *ifreq) 16158 { 16159 int i; 16160 char *tmp; 16161 int namelen; 16162 ill_t *ill = ipif->ipif_ill; 16163 ill_t *ill_v4, *ill_v6; 16164 int err = 0; 16165 phyint_t *phyi; 16166 phyint_t *phyi_tmp; 16167 struct lifreq *lifr; 16168 mblk_t *mp1; 16169 char *groupname; 16170 ipsq_t *ipsq; 16171 16172 ASSERT(IAM_WRITER_IPIF(ipif)); 16173 16174 /* Existance verified in ip_wput_nondata */ 16175 mp1 = mp->b_cont->b_cont; 16176 lifr = (struct lifreq *)mp1->b_rptr; 16177 groupname = lifr->lifr_groupname; 16178 16179 if (ipif->ipif_id != 0) 16180 return (EINVAL); 16181 16182 phyi = ill->ill_phyint; 16183 ASSERT(phyi != NULL); 16184 16185 if (phyi->phyint_flags & PHYI_VIRTUAL) 16186 return (EINVAL); 16187 16188 tmp = groupname; 16189 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16190 ; 16191 16192 if (i == LIFNAMSIZ) { 16193 /* no null termination */ 16194 return (EINVAL); 16195 } 16196 16197 /* 16198 * Calculate the namelen exclusive of the null 16199 * termination character. 16200 */ 16201 namelen = tmp - groupname; 16202 16203 ill_v4 = phyi->phyint_illv4; 16204 ill_v6 = phyi->phyint_illv6; 16205 16206 /* 16207 * ILL cannot be part of a usesrc group and and IPMP group at the 16208 * same time. No need to grab the ill_g_usesrc_lock here, see 16209 * synchronization notes in ip.c 16210 */ 16211 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16212 return (EINVAL); 16213 } 16214 16215 /* 16216 * mark the ill as changing. 16217 * this should queue all new requests on the syncq. 16218 */ 16219 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16220 16221 if (ill_v4 != NULL) 16222 ill_v4->ill_state_flags |= ILL_CHANGING; 16223 if (ill_v6 != NULL) 16224 ill_v6->ill_state_flags |= ILL_CHANGING; 16225 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16226 16227 if (namelen == 0) { 16228 /* 16229 * Null string means remove this interface from the 16230 * existing group. 16231 */ 16232 if (phyi->phyint_groupname_len == 0) { 16233 /* 16234 * Never was in a group. 16235 */ 16236 err = 0; 16237 goto done; 16238 } 16239 16240 /* 16241 * IPv4 or IPv6 may be temporarily out of the group when all 16242 * the ipifs are down. Thus, we need to check for ill_group to 16243 * be non-NULL. 16244 */ 16245 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16246 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16247 mutex_enter(&ill_v4->ill_lock); 16248 if (!ill_is_quiescent(ill_v4)) { 16249 /* 16250 * ipsq_pending_mp_add will not fail since 16251 * connp is NULL 16252 */ 16253 (void) ipsq_pending_mp_add(NULL, 16254 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16255 mutex_exit(&ill_v4->ill_lock); 16256 err = EINPROGRESS; 16257 goto done; 16258 } 16259 mutex_exit(&ill_v4->ill_lock); 16260 } 16261 16262 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16263 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16264 mutex_enter(&ill_v6->ill_lock); 16265 if (!ill_is_quiescent(ill_v6)) { 16266 (void) ipsq_pending_mp_add(NULL, 16267 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16268 mutex_exit(&ill_v6->ill_lock); 16269 err = EINPROGRESS; 16270 goto done; 16271 } 16272 mutex_exit(&ill_v6->ill_lock); 16273 } 16274 16275 rw_enter(&ill_g_lock, RW_WRITER); 16276 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16277 mutex_enter(&phyi->phyint_lock); 16278 ASSERT(phyi->phyint_groupname != NULL); 16279 mi_free(phyi->phyint_groupname); 16280 phyi->phyint_groupname = NULL; 16281 phyi->phyint_groupname_len = 0; 16282 mutex_exit(&phyi->phyint_lock); 16283 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16284 rw_exit(&ill_g_lock); 16285 err = ill_up_ipifs(ill, q, mp); 16286 16287 /* 16288 * set the split flag so that the ipsq can be split 16289 */ 16290 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16291 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16292 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16293 16294 } else { 16295 if (phyi->phyint_groupname_len != 0) { 16296 ASSERT(phyi->phyint_groupname != NULL); 16297 /* Are we inserting in the same group ? */ 16298 if (mi_strcmp(groupname, 16299 phyi->phyint_groupname) == 0) { 16300 err = 0; 16301 goto done; 16302 } 16303 } 16304 16305 rw_enter(&ill_g_lock, RW_READER); 16306 /* 16307 * Merge ipsq for the group's. 16308 * This check is here as multiple groups/ills might be 16309 * sharing the same ipsq. 16310 * If we have to merege than the operation is restarted 16311 * on the new ipsq. 16312 */ 16313 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 16314 if (phyi->phyint_ipsq != ipsq) { 16315 rw_exit(&ill_g_lock); 16316 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16317 goto done; 16318 } 16319 /* 16320 * Running exclusive on new ipsq. 16321 */ 16322 16323 ASSERT(ipsq != NULL); 16324 ASSERT(ipsq->ipsq_writer == curthread); 16325 16326 /* 16327 * Check whether the ill_type and ill_net_type matches before 16328 * we allocate any memory so that the cleanup is easier. 16329 * 16330 * We can't group dissimilar ones as we can't load spread 16331 * packets across the group because of potential link-level 16332 * header differences. 16333 */ 16334 phyi_tmp = phyint_lookup_group(groupname); 16335 if (phyi_tmp != NULL) { 16336 if ((ill_v4 != NULL && 16337 phyi_tmp->phyint_illv4 != NULL) && 16338 ((ill_v4->ill_net_type != 16339 phyi_tmp->phyint_illv4->ill_net_type) || 16340 (ill_v4->ill_type != 16341 phyi_tmp->phyint_illv4->ill_type))) { 16342 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16343 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16344 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16345 rw_exit(&ill_g_lock); 16346 return (EINVAL); 16347 } 16348 if ((ill_v6 != NULL && 16349 phyi_tmp->phyint_illv6 != NULL) && 16350 ((ill_v6->ill_net_type != 16351 phyi_tmp->phyint_illv6->ill_net_type) || 16352 (ill_v6->ill_type != 16353 phyi_tmp->phyint_illv6->ill_type))) { 16354 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16355 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16356 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16357 rw_exit(&ill_g_lock); 16358 return (EINVAL); 16359 } 16360 } 16361 16362 rw_exit(&ill_g_lock); 16363 16364 /* 16365 * bring down all v4 ipifs. 16366 */ 16367 if (ill_v4 != NULL) { 16368 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16369 } 16370 16371 /* 16372 * bring down all v6 ipifs. 16373 */ 16374 if (ill_v6 != NULL) { 16375 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16376 } 16377 16378 /* 16379 * make sure all ipifs are down and there are no active 16380 * references. Call to ipsq_pending_mp_add will not fail 16381 * since connp is NULL. 16382 */ 16383 if (ill_v4 != NULL) { 16384 mutex_enter(&ill_v4->ill_lock); 16385 if (!ill_is_quiescent(ill_v4)) { 16386 (void) ipsq_pending_mp_add(NULL, 16387 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16388 mutex_exit(&ill_v4->ill_lock); 16389 err = EINPROGRESS; 16390 goto done; 16391 } 16392 mutex_exit(&ill_v4->ill_lock); 16393 } 16394 16395 if (ill_v6 != NULL) { 16396 mutex_enter(&ill_v6->ill_lock); 16397 if (!ill_is_quiescent(ill_v6)) { 16398 (void) ipsq_pending_mp_add(NULL, 16399 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16400 mutex_exit(&ill_v6->ill_lock); 16401 err = EINPROGRESS; 16402 goto done; 16403 } 16404 mutex_exit(&ill_v6->ill_lock); 16405 } 16406 16407 /* 16408 * allocate including space for null terminator 16409 * before we insert. 16410 */ 16411 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16412 if (tmp == NULL) 16413 return (ENOMEM); 16414 16415 rw_enter(&ill_g_lock, RW_WRITER); 16416 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16417 mutex_enter(&phyi->phyint_lock); 16418 if (phyi->phyint_groupname_len != 0) { 16419 ASSERT(phyi->phyint_groupname != NULL); 16420 mi_free(phyi->phyint_groupname); 16421 } 16422 16423 /* 16424 * setup the new group name. 16425 */ 16426 phyi->phyint_groupname = tmp; 16427 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16428 phyi->phyint_groupname_len = namelen + 1; 16429 mutex_exit(&phyi->phyint_lock); 16430 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16431 rw_exit(&ill_g_lock); 16432 16433 err = ill_up_ipifs(ill, q, mp); 16434 } 16435 16436 done: 16437 /* 16438 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16439 */ 16440 if (err != EINPROGRESS) { 16441 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16442 if (ill_v4 != NULL) 16443 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16444 if (ill_v6 != NULL) 16445 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16446 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16447 } 16448 return (err); 16449 } 16450 16451 /* ARGSUSED */ 16452 int 16453 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16454 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16455 { 16456 ill_t *ill; 16457 phyint_t *phyi; 16458 struct lifreq *lifr; 16459 mblk_t *mp1; 16460 16461 /* Existence verified in ip_wput_nondata */ 16462 mp1 = mp->b_cont->b_cont; 16463 lifr = (struct lifreq *)mp1->b_rptr; 16464 ill = ipif->ipif_ill; 16465 phyi = ill->ill_phyint; 16466 16467 lifr->lifr_groupname[0] = '\0'; 16468 /* 16469 * ill_group may be null if all the interfaces 16470 * are down. But still, the phyint should always 16471 * hold the name. 16472 */ 16473 if (phyi->phyint_groupname_len != 0) { 16474 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16475 phyi->phyint_groupname_len); 16476 } 16477 16478 return (0); 16479 } 16480 16481 16482 typedef struct conn_move_s { 16483 ill_t *cm_from_ill; 16484 ill_t *cm_to_ill; 16485 int cm_ifindex; 16486 } conn_move_t; 16487 16488 /* 16489 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16490 */ 16491 static void 16492 conn_move(conn_t *connp, caddr_t arg) 16493 { 16494 conn_move_t *connm; 16495 int ifindex; 16496 int i; 16497 ill_t *from_ill; 16498 ill_t *to_ill; 16499 ilg_t *ilg; 16500 ilm_t *ret_ilm; 16501 16502 connm = (conn_move_t *)arg; 16503 ifindex = connm->cm_ifindex; 16504 from_ill = connm->cm_from_ill; 16505 to_ill = connm->cm_to_ill; 16506 16507 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16508 16509 /* All multicast fields protected by conn_lock */ 16510 mutex_enter(&connp->conn_lock); 16511 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16512 if ((connp->conn_outgoing_ill == from_ill) && 16513 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16514 connp->conn_outgoing_ill = to_ill; 16515 connp->conn_incoming_ill = to_ill; 16516 } 16517 16518 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16519 16520 if ((connp->conn_multicast_ill == from_ill) && 16521 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16522 connp->conn_multicast_ill = connm->cm_to_ill; 16523 } 16524 16525 /* Change IP_XMIT_IF associations */ 16526 if ((connp->conn_xmit_if_ill == from_ill) && 16527 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16528 connp->conn_xmit_if_ill = to_ill; 16529 } 16530 /* 16531 * Change the ilg_ill to point to the new one. This assumes 16532 * ilm_move_v6 has moved the ilms to new_ill and the driver 16533 * has been told to receive packets on this interface. 16534 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16535 * But when doing a FAILOVER, it might fail with ENOMEM and so 16536 * some ilms may not have moved. We check to see whether 16537 * the ilms have moved to to_ill. We can't check on from_ill 16538 * as in the process of moving, we could have split an ilm 16539 * in to two - which has the same orig_ifindex and v6group. 16540 * 16541 * For IPv4, ilg_ipif moves implicitly. The code below really 16542 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16543 */ 16544 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16545 ilg = &connp->conn_ilg[i]; 16546 if ((ilg->ilg_ill == from_ill) && 16547 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16548 /* ifindex != 0 indicates failback */ 16549 if (ifindex != 0) { 16550 connp->conn_ilg[i].ilg_ill = to_ill; 16551 continue; 16552 } 16553 16554 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16555 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16556 connp->conn_zoneid); 16557 16558 if (ret_ilm != NULL) 16559 connp->conn_ilg[i].ilg_ill = to_ill; 16560 } 16561 } 16562 mutex_exit(&connp->conn_lock); 16563 } 16564 16565 static void 16566 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16567 { 16568 conn_move_t connm; 16569 16570 connm.cm_from_ill = from_ill; 16571 connm.cm_to_ill = to_ill; 16572 connm.cm_ifindex = ifindex; 16573 16574 ipcl_walk(conn_move, (caddr_t)&connm); 16575 } 16576 16577 /* 16578 * ilm has been moved from from_ill to to_ill. 16579 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16580 * appropriately. 16581 * 16582 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16583 * the code there de-references ipif_ill to get the ill to 16584 * send multicast requests. It does not work as ipif is on its 16585 * move and already moved when this function is called. 16586 * Thus, we need to use from_ill and to_ill send down multicast 16587 * requests. 16588 */ 16589 static void 16590 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16591 { 16592 ipif_t *ipif; 16593 ilm_t *ilm; 16594 16595 /* 16596 * See whether we need to send down DL_ENABMULTI_REQ on 16597 * to_ill as ilm has just been added. 16598 */ 16599 ASSERT(IAM_WRITER_ILL(to_ill)); 16600 ASSERT(IAM_WRITER_ILL(from_ill)); 16601 16602 ILM_WALKER_HOLD(to_ill); 16603 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16604 16605 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16606 continue; 16607 /* 16608 * no locks held, ill/ipif cannot dissappear as long 16609 * as we are writer. 16610 */ 16611 ipif = to_ill->ill_ipif; 16612 /* 16613 * No need to hold any lock as we are the writer and this 16614 * can only be changed by a writer. 16615 */ 16616 ilm->ilm_is_new = B_FALSE; 16617 16618 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16619 ipif->ipif_flags & IPIF_POINTOPOINT) { 16620 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16621 "resolver\n")); 16622 continue; /* Must be IRE_IF_NORESOLVER */ 16623 } 16624 16625 16626 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16627 ip1dbg(("ilm_send_multicast_reqs: " 16628 "to_ill MULTI_BCAST\n")); 16629 goto from; 16630 } 16631 16632 if (to_ill->ill_isv6) 16633 mld_joingroup(ilm); 16634 else 16635 igmp_joingroup(ilm); 16636 16637 if (to_ill->ill_ipif_up_count == 0) { 16638 /* 16639 * Nobody there. All multicast addresses will be 16640 * re-joined when we get the DL_BIND_ACK bringing the 16641 * interface up. 16642 */ 16643 ilm->ilm_notify_driver = B_FALSE; 16644 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16645 goto from; 16646 } 16647 16648 /* 16649 * For allmulti address, we want to join on only one interface. 16650 * Checking for ilm_numentries_v6 is not correct as you may 16651 * find an ilm with zero address on to_ill, but we may not 16652 * have nominated to_ill for receiving. Thus, if we have 16653 * nominated from_ill (ill_join_allmulti is set), nominate 16654 * only if to_ill is not already nominated (to_ill normally 16655 * should not have been nominated if "from_ill" has already 16656 * been nominated. As we don't prevent failovers from happening 16657 * across groups, we don't assert). 16658 */ 16659 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16660 /* 16661 * There is no need to hold ill locks as we are 16662 * writer on both ills and when ill_join_allmulti 16663 * is changed the thread is always a writer. 16664 */ 16665 if (from_ill->ill_join_allmulti && 16666 !to_ill->ill_join_allmulti) { 16667 (void) ip_join_allmulti(to_ill->ill_ipif); 16668 } 16669 } else if (ilm->ilm_notify_driver) { 16670 16671 /* 16672 * This is a newly moved ilm so we need to tell the 16673 * driver about the new group. There can be more than 16674 * one ilm's for the same group in the list each with a 16675 * different orig_ifindex. We have to inform the driver 16676 * once. In ilm_move_v[4,6] we only set the flag 16677 * ilm_notify_driver for the first ilm. 16678 */ 16679 16680 (void) ip_ll_send_enabmulti_req(to_ill, 16681 &ilm->ilm_v6addr); 16682 } 16683 16684 ilm->ilm_notify_driver = B_FALSE; 16685 16686 /* 16687 * See whether we need to send down DL_DISABMULTI_REQ on 16688 * from_ill as ilm has just been removed. 16689 */ 16690 from: 16691 ipif = from_ill->ill_ipif; 16692 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16693 ipif->ipif_flags & IPIF_POINTOPOINT) { 16694 ip1dbg(("ilm_send_multicast_reqs: " 16695 "from_ill not resolver\n")); 16696 continue; /* Must be IRE_IF_NORESOLVER */ 16697 } 16698 16699 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16700 ip1dbg(("ilm_send_multicast_reqs: " 16701 "from_ill MULTI_BCAST\n")); 16702 continue; 16703 } 16704 16705 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16706 if (from_ill->ill_join_allmulti) 16707 (void) ip_leave_allmulti(from_ill->ill_ipif); 16708 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16709 (void) ip_ll_send_disabmulti_req(from_ill, 16710 &ilm->ilm_v6addr); 16711 } 16712 } 16713 ILM_WALKER_RELE(to_ill); 16714 } 16715 16716 /* 16717 * This function is called when all multicast memberships needs 16718 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16719 * called only once unlike the IPv4 counterpart where it is called after 16720 * every logical interface is moved. The reason is due to multicast 16721 * memberships are joined using an interface address in IPv4 while in 16722 * IPv6, interface index is used. 16723 */ 16724 static void 16725 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16726 { 16727 ilm_t *ilm; 16728 ilm_t *ilm_next; 16729 ilm_t *new_ilm; 16730 ilm_t **ilmp; 16731 int count; 16732 char buf[INET6_ADDRSTRLEN]; 16733 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16734 16735 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16736 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16737 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16738 16739 if (ifindex == 0) { 16740 /* 16741 * Form the solicited node mcast address which is used later. 16742 */ 16743 ipif_t *ipif; 16744 16745 ipif = from_ill->ill_ipif; 16746 ASSERT(ipif->ipif_id == 0); 16747 16748 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16749 } 16750 16751 ilmp = &from_ill->ill_ilm; 16752 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16753 ilm_next = ilm->ilm_next; 16754 16755 if (ilm->ilm_flags & ILM_DELETED) { 16756 ilmp = &ilm->ilm_next; 16757 continue; 16758 } 16759 16760 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16761 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16762 ASSERT(ilm->ilm_orig_ifindex != 0); 16763 if (ilm->ilm_orig_ifindex == ifindex) { 16764 /* 16765 * We are failing back multicast memberships. 16766 * If the same ilm exists in to_ill, it means somebody 16767 * has joined the same group there e.g. ff02::1 16768 * is joined within the kernel when the interfaces 16769 * came UP. 16770 */ 16771 ASSERT(ilm->ilm_ipif == NULL); 16772 if (new_ilm != NULL) { 16773 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16774 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16775 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16776 new_ilm->ilm_is_new = B_TRUE; 16777 } 16778 } else { 16779 /* 16780 * check if we can just move the ilm 16781 */ 16782 if (from_ill->ill_ilm_walker_cnt != 0) { 16783 /* 16784 * We have walkers we cannot move 16785 * the ilm, so allocate a new ilm, 16786 * this (old) ilm will be marked 16787 * ILM_DELETED at the end of the loop 16788 * and will be freed when the 16789 * last walker exits. 16790 */ 16791 new_ilm = (ilm_t *)mi_zalloc 16792 (sizeof (ilm_t)); 16793 if (new_ilm == NULL) { 16794 ip0dbg(("ilm_move_v6: " 16795 "FAILBACK of IPv6" 16796 " multicast address %s : " 16797 "from %s to" 16798 " %s failed : ENOMEM \n", 16799 inet_ntop(AF_INET6, 16800 &ilm->ilm_v6addr, buf, 16801 sizeof (buf)), 16802 from_ill->ill_name, 16803 to_ill->ill_name)); 16804 16805 ilmp = &ilm->ilm_next; 16806 continue; 16807 } 16808 *new_ilm = *ilm; 16809 /* 16810 * we don't want new_ilm linked to 16811 * ilm's filter list. 16812 */ 16813 new_ilm->ilm_filter = NULL; 16814 } else { 16815 /* 16816 * No walkers we can move the ilm. 16817 * lets take it out of the list. 16818 */ 16819 *ilmp = ilm->ilm_next; 16820 ilm->ilm_next = NULL; 16821 new_ilm = ilm; 16822 } 16823 16824 /* 16825 * if this is the first ilm for the group 16826 * set ilm_notify_driver so that we notify the 16827 * driver in ilm_send_multicast_reqs. 16828 */ 16829 if (ilm_lookup_ill_v6(to_ill, 16830 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16831 new_ilm->ilm_notify_driver = B_TRUE; 16832 16833 new_ilm->ilm_ill = to_ill; 16834 /* Add to the to_ill's list */ 16835 new_ilm->ilm_next = to_ill->ill_ilm; 16836 to_ill->ill_ilm = new_ilm; 16837 /* 16838 * set the flag so that mld_joingroup is 16839 * called in ilm_send_multicast_reqs(). 16840 */ 16841 new_ilm->ilm_is_new = B_TRUE; 16842 } 16843 goto bottom; 16844 } else if (ifindex != 0) { 16845 /* 16846 * If this is FAILBACK (ifindex != 0) and the ifindex 16847 * has not matched above, look at the next ilm. 16848 */ 16849 ilmp = &ilm->ilm_next; 16850 continue; 16851 } 16852 /* 16853 * If we are here, it means ifindex is 0. Failover 16854 * everything. 16855 * 16856 * We need to handle solicited node mcast address 16857 * and all_nodes mcast address differently as they 16858 * are joined witin the kenrel (ipif_multicast_up) 16859 * and potentially from the userland. We are called 16860 * after the ipifs of from_ill has been moved. 16861 * If we still find ilms on ill with solicited node 16862 * mcast address or all_nodes mcast address, it must 16863 * belong to the UP interface that has not moved e.g. 16864 * ipif_id 0 with the link local prefix does not move. 16865 * We join this on the new ill accounting for all the 16866 * userland memberships so that applications don't 16867 * see any failure. 16868 * 16869 * We need to make sure that we account only for the 16870 * solicited node and all node multicast addresses 16871 * that was brought UP on these. In the case of 16872 * a failover from A to B, we might have ilms belonging 16873 * to A (ilm_orig_ifindex pointing at A) on B accounting 16874 * for the membership from the userland. If we are failing 16875 * over from B to C now, we will find the ones belonging 16876 * to A on B. These don't account for the ill_ipif_up_count. 16877 * They just move from B to C. The check below on 16878 * ilm_orig_ifindex ensures that. 16879 */ 16880 if ((ilm->ilm_orig_ifindex == 16881 from_ill->ill_phyint->phyint_ifindex) && 16882 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16883 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16884 &ilm->ilm_v6addr))) { 16885 ASSERT(ilm->ilm_refcnt > 0); 16886 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16887 /* 16888 * For indentation reasons, we are not using a 16889 * "else" here. 16890 */ 16891 if (count == 0) { 16892 ilmp = &ilm->ilm_next; 16893 continue; 16894 } 16895 ilm->ilm_refcnt -= count; 16896 if (new_ilm != NULL) { 16897 /* 16898 * Can find one with the same 16899 * ilm_orig_ifindex, if we are failing 16900 * over to a STANDBY. This happens 16901 * when somebody wants to join a group 16902 * on a STANDBY interface and we 16903 * internally join on a different one. 16904 * If we had joined on from_ill then, a 16905 * failover now will find a new ilm 16906 * with this index. 16907 */ 16908 ip1dbg(("ilm_move_v6: FAILOVER, found" 16909 " new ilm on %s, group address %s\n", 16910 to_ill->ill_name, 16911 inet_ntop(AF_INET6, 16912 &ilm->ilm_v6addr, buf, 16913 sizeof (buf)))); 16914 new_ilm->ilm_refcnt += count; 16915 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16916 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16917 new_ilm->ilm_is_new = B_TRUE; 16918 } 16919 } else { 16920 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16921 if (new_ilm == NULL) { 16922 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16923 " multicast address %s : from %s to" 16924 " %s failed : ENOMEM \n", 16925 inet_ntop(AF_INET6, 16926 &ilm->ilm_v6addr, buf, 16927 sizeof (buf)), from_ill->ill_name, 16928 to_ill->ill_name)); 16929 ilmp = &ilm->ilm_next; 16930 continue; 16931 } 16932 *new_ilm = *ilm; 16933 new_ilm->ilm_filter = NULL; 16934 new_ilm->ilm_refcnt = count; 16935 new_ilm->ilm_timer = INFINITY; 16936 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16937 new_ilm->ilm_is_new = B_TRUE; 16938 /* 16939 * If the to_ill has not joined this 16940 * group we need to tell the driver in 16941 * ill_send_multicast_reqs. 16942 */ 16943 if (ilm_lookup_ill_v6(to_ill, 16944 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16945 new_ilm->ilm_notify_driver = B_TRUE; 16946 16947 new_ilm->ilm_ill = to_ill; 16948 /* Add to the to_ill's list */ 16949 new_ilm->ilm_next = to_ill->ill_ilm; 16950 to_ill->ill_ilm = new_ilm; 16951 ASSERT(new_ilm->ilm_ipif == NULL); 16952 } 16953 if (ilm->ilm_refcnt == 0) { 16954 goto bottom; 16955 } else { 16956 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16957 CLEAR_SLIST(new_ilm->ilm_filter); 16958 ilmp = &ilm->ilm_next; 16959 } 16960 continue; 16961 } else { 16962 /* 16963 * ifindex = 0 means, move everything pointing at 16964 * from_ill. We are doing this becuase ill has 16965 * either FAILED or became INACTIVE. 16966 * 16967 * As we would like to move things later back to 16968 * from_ill, we want to retain the identity of this 16969 * ilm. Thus, we don't blindly increment the reference 16970 * count on the ilms matching the address alone. We 16971 * need to match on the ilm_orig_index also. new_ilm 16972 * was obtained by matching ilm_orig_index also. 16973 */ 16974 if (new_ilm != NULL) { 16975 /* 16976 * This is possible only if a previous restore 16977 * was incomplete i.e restore to 16978 * ilm_orig_ifindex left some ilms because 16979 * of some failures. Thus when we are failing 16980 * again, we might find our old friends there. 16981 */ 16982 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16983 " on %s, group address %s\n", 16984 to_ill->ill_name, 16985 inet_ntop(AF_INET6, 16986 &ilm->ilm_v6addr, buf, 16987 sizeof (buf)))); 16988 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16989 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16990 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16991 new_ilm->ilm_is_new = B_TRUE; 16992 } 16993 } else { 16994 if (from_ill->ill_ilm_walker_cnt != 0) { 16995 new_ilm = (ilm_t *) 16996 mi_zalloc(sizeof (ilm_t)); 16997 if (new_ilm == NULL) { 16998 ip0dbg(("ilm_move_v6: " 16999 "FAILOVER of IPv6" 17000 " multicast address %s : " 17001 "from %s to" 17002 " %s failed : ENOMEM \n", 17003 inet_ntop(AF_INET6, 17004 &ilm->ilm_v6addr, buf, 17005 sizeof (buf)), 17006 from_ill->ill_name, 17007 to_ill->ill_name)); 17008 17009 ilmp = &ilm->ilm_next; 17010 continue; 17011 } 17012 *new_ilm = *ilm; 17013 new_ilm->ilm_filter = NULL; 17014 } else { 17015 *ilmp = ilm->ilm_next; 17016 new_ilm = ilm; 17017 } 17018 /* 17019 * If the to_ill has not joined this 17020 * group we need to tell the driver in 17021 * ill_send_multicast_reqs. 17022 */ 17023 if (ilm_lookup_ill_v6(to_ill, 17024 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17025 new_ilm->ilm_notify_driver = B_TRUE; 17026 17027 /* Add to the to_ill's list */ 17028 new_ilm->ilm_next = to_ill->ill_ilm; 17029 to_ill->ill_ilm = new_ilm; 17030 ASSERT(ilm->ilm_ipif == NULL); 17031 new_ilm->ilm_ill = to_ill; 17032 new_ilm->ilm_is_new = B_TRUE; 17033 } 17034 17035 } 17036 17037 bottom: 17038 /* 17039 * Revert multicast filter state to (EXCLUDE, NULL). 17040 * new_ilm->ilm_is_new should already be set if needed. 17041 */ 17042 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17043 CLEAR_SLIST(new_ilm->ilm_filter); 17044 /* 17045 * We allocated/got a new ilm, free the old one. 17046 */ 17047 if (new_ilm != ilm) { 17048 if (from_ill->ill_ilm_walker_cnt == 0) { 17049 *ilmp = ilm->ilm_next; 17050 ilm->ilm_next = NULL; 17051 FREE_SLIST(ilm->ilm_filter); 17052 FREE_SLIST(ilm->ilm_pendsrcs); 17053 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17054 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17055 mi_free((char *)ilm); 17056 } else { 17057 ilm->ilm_flags |= ILM_DELETED; 17058 from_ill->ill_ilm_cleanup_reqd = 1; 17059 ilmp = &ilm->ilm_next; 17060 } 17061 } 17062 } 17063 } 17064 17065 /* 17066 * Move all the multicast memberships to to_ill. Called when 17067 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17068 * different from IPv6 counterpart as multicast memberships are associated 17069 * with ills in IPv6. This function is called after every ipif is moved 17070 * unlike IPv6, where it is moved only once. 17071 */ 17072 static void 17073 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17074 { 17075 ilm_t *ilm; 17076 ilm_t *ilm_next; 17077 ilm_t *new_ilm; 17078 ilm_t **ilmp; 17079 17080 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17081 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17082 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17083 17084 ilmp = &from_ill->ill_ilm; 17085 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17086 ilm_next = ilm->ilm_next; 17087 17088 if (ilm->ilm_flags & ILM_DELETED) { 17089 ilmp = &ilm->ilm_next; 17090 continue; 17091 } 17092 17093 ASSERT(ilm->ilm_ipif != NULL); 17094 17095 if (ilm->ilm_ipif != ipif) { 17096 ilmp = &ilm->ilm_next; 17097 continue; 17098 } 17099 17100 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17101 htonl(INADDR_ALLHOSTS_GROUP)) { 17102 /* 17103 * We joined this in ipif_multicast_up 17104 * and we never did an ipif_multicast_down 17105 * for IPv4. If nobody else from the userland 17106 * has reference, we free the ilm, and later 17107 * when this ipif comes up on the new ill, 17108 * we will join this again. 17109 */ 17110 if (--ilm->ilm_refcnt == 0) 17111 goto delete_ilm; 17112 17113 new_ilm = ilm_lookup_ipif(ipif, 17114 V4_PART_OF_V6(ilm->ilm_v6addr)); 17115 if (new_ilm != NULL) { 17116 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17117 /* 17118 * We still need to deal with the from_ill. 17119 */ 17120 new_ilm->ilm_is_new = B_TRUE; 17121 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17122 CLEAR_SLIST(new_ilm->ilm_filter); 17123 goto delete_ilm; 17124 } 17125 /* 17126 * If we could not find one e.g. ipif is 17127 * still down on to_ill, we add this ilm 17128 * on ill_new to preserve the reference 17129 * count. 17130 */ 17131 } 17132 /* 17133 * When ipifs move, ilms always move with it 17134 * to the NEW ill. Thus we should never be 17135 * able to find ilm till we really move it here. 17136 */ 17137 ASSERT(ilm_lookup_ipif(ipif, 17138 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17139 17140 if (from_ill->ill_ilm_walker_cnt != 0) { 17141 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17142 if (new_ilm == NULL) { 17143 char buf[INET6_ADDRSTRLEN]; 17144 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17145 " multicast address %s : " 17146 "from %s to" 17147 " %s failed : ENOMEM \n", 17148 inet_ntop(AF_INET, 17149 &ilm->ilm_v6addr, buf, 17150 sizeof (buf)), 17151 from_ill->ill_name, 17152 to_ill->ill_name)); 17153 17154 ilmp = &ilm->ilm_next; 17155 continue; 17156 } 17157 *new_ilm = *ilm; 17158 /* We don't want new_ilm linked to ilm's filter list */ 17159 new_ilm->ilm_filter = NULL; 17160 } else { 17161 /* Remove from the list */ 17162 *ilmp = ilm->ilm_next; 17163 new_ilm = ilm; 17164 } 17165 17166 /* 17167 * If we have never joined this group on the to_ill 17168 * make sure we tell the driver. 17169 */ 17170 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17171 ALL_ZONES) == NULL) 17172 new_ilm->ilm_notify_driver = B_TRUE; 17173 17174 /* Add to the to_ill's list */ 17175 new_ilm->ilm_next = to_ill->ill_ilm; 17176 to_ill->ill_ilm = new_ilm; 17177 new_ilm->ilm_is_new = B_TRUE; 17178 17179 /* 17180 * Revert multicast filter state to (EXCLUDE, NULL) 17181 */ 17182 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17183 CLEAR_SLIST(new_ilm->ilm_filter); 17184 17185 /* 17186 * Delete only if we have allocated a new ilm. 17187 */ 17188 if (new_ilm != ilm) { 17189 delete_ilm: 17190 if (from_ill->ill_ilm_walker_cnt == 0) { 17191 /* Remove from the list */ 17192 *ilmp = ilm->ilm_next; 17193 ilm->ilm_next = NULL; 17194 FREE_SLIST(ilm->ilm_filter); 17195 FREE_SLIST(ilm->ilm_pendsrcs); 17196 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17197 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17198 mi_free((char *)ilm); 17199 } else { 17200 ilm->ilm_flags |= ILM_DELETED; 17201 from_ill->ill_ilm_cleanup_reqd = 1; 17202 ilmp = &ilm->ilm_next; 17203 } 17204 } 17205 } 17206 } 17207 17208 static uint_t 17209 ipif_get_id(ill_t *ill, uint_t id) 17210 { 17211 uint_t unit; 17212 ipif_t *tipif; 17213 boolean_t found = B_FALSE; 17214 17215 /* 17216 * During failback, we want to go back to the same id 17217 * instead of the smallest id so that the original 17218 * configuration is maintained. id is non-zero in that 17219 * case. 17220 */ 17221 if (id != 0) { 17222 /* 17223 * While failing back, if we still have an ipif with 17224 * MAX_ADDRS_PER_IF, it means this will be replaced 17225 * as soon as we return from this function. It was 17226 * to set to MAX_ADDRS_PER_IF by the caller so that 17227 * we can choose the smallest id. Thus we return zero 17228 * in that case ignoring the hint. 17229 */ 17230 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17231 return (0); 17232 for (tipif = ill->ill_ipif; tipif != NULL; 17233 tipif = tipif->ipif_next) { 17234 if (tipif->ipif_id == id) { 17235 found = B_TRUE; 17236 break; 17237 } 17238 } 17239 /* 17240 * If somebody already plumbed another logical 17241 * with the same id, we won't be able to find it. 17242 */ 17243 if (!found) 17244 return (id); 17245 } 17246 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 17247 found = B_FALSE; 17248 for (tipif = ill->ill_ipif; tipif != NULL; 17249 tipif = tipif->ipif_next) { 17250 if (tipif->ipif_id == unit) { 17251 found = B_TRUE; 17252 break; 17253 } 17254 } 17255 if (!found) 17256 break; 17257 } 17258 return (unit); 17259 } 17260 17261 /* ARGSUSED */ 17262 static int 17263 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17264 ipif_t **rep_ipif_ptr) 17265 { 17266 ill_t *from_ill; 17267 ipif_t *rep_ipif; 17268 ipif_t **ipifp; 17269 uint_t unit; 17270 int err = 0; 17271 ipif_t *to_ipif; 17272 struct iocblk *iocp; 17273 boolean_t failback_cmd; 17274 boolean_t remove_ipif; 17275 int rc; 17276 17277 ASSERT(IAM_WRITER_ILL(to_ill)); 17278 ASSERT(IAM_WRITER_IPIF(ipif)); 17279 17280 iocp = (struct iocblk *)mp->b_rptr; 17281 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17282 remove_ipif = B_FALSE; 17283 17284 from_ill = ipif->ipif_ill; 17285 17286 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17287 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17288 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17289 17290 /* 17291 * Don't move LINK LOCAL addresses as they are tied to 17292 * physical interface. 17293 */ 17294 if (from_ill->ill_isv6 && 17295 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17296 ipif->ipif_was_up = B_FALSE; 17297 IPIF_UNMARK_MOVING(ipif); 17298 return (0); 17299 } 17300 17301 /* 17302 * We set the ipif_id to maximum so that the search for 17303 * ipif_id will pick the lowest number i.e 0 in the 17304 * following 2 cases : 17305 * 17306 * 1) We have a replacement ipif at the head of to_ill. 17307 * We can't remove it yet as we can exceed ip_addrs_per_if 17308 * on to_ill and hence the MOVE might fail. We want to 17309 * remove it only if we could move the ipif. Thus, by 17310 * setting it to the MAX value, we make the search in 17311 * ipif_get_id return the zeroth id. 17312 * 17313 * 2) When DR pulls out the NIC and re-plumbs the interface, 17314 * we might just have a zero address plumbed on the ipif 17315 * with zero id in the case of IPv4. We remove that while 17316 * doing the failback. We want to remove it only if we 17317 * could move the ipif. Thus, by setting it to the MAX 17318 * value, we make the search in ipif_get_id return the 17319 * zeroth id. 17320 * 17321 * Both (1) and (2) are done only when when we are moving 17322 * an ipif (either due to failover/failback) which originally 17323 * belonged to this interface i.e the ipif_orig_ifindex is 17324 * the same as to_ill's ifindex. This is needed so that 17325 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17326 * from B -> A (B is being removed from the group) and 17327 * FAILBACK from A -> B restores the original configuration. 17328 * Without the check for orig_ifindex, the second FAILOVER 17329 * could make the ipif belonging to B replace the A's zeroth 17330 * ipif and the subsequent failback re-creating the replacement 17331 * ipif again. 17332 * 17333 * NOTE : We created the replacement ipif when we did a 17334 * FAILOVER (See below). We could check for FAILBACK and 17335 * then look for replacement ipif to be removed. But we don't 17336 * want to do that because we wan't to allow the possibility 17337 * of a FAILOVER from A -> B (which creates the replacement ipif), 17338 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17339 * from B -> A. 17340 */ 17341 to_ipif = to_ill->ill_ipif; 17342 if ((to_ill->ill_phyint->phyint_ifindex == 17343 ipif->ipif_orig_ifindex) && 17344 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17345 ASSERT(to_ipif->ipif_id == 0); 17346 remove_ipif = B_TRUE; 17347 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17348 } 17349 /* 17350 * Find the lowest logical unit number on the to_ill. 17351 * If we are failing back, try to get the original id 17352 * rather than the lowest one so that the original 17353 * configuration is maintained. 17354 * 17355 * XXX need a better scheme for this. 17356 */ 17357 if (failback_cmd) { 17358 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17359 } else { 17360 unit = ipif_get_id(to_ill, 0); 17361 } 17362 17363 /* Reset back to zero in case we fail below */ 17364 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17365 to_ipif->ipif_id = 0; 17366 17367 if (unit == ip_addrs_per_if) { 17368 ipif->ipif_was_up = B_FALSE; 17369 IPIF_UNMARK_MOVING(ipif); 17370 return (EINVAL); 17371 } 17372 17373 /* 17374 * ipif is ready to move from "from_ill" to "to_ill". 17375 * 17376 * 1) If we are moving ipif with id zero, create a 17377 * replacement ipif for this ipif on from_ill. If this fails 17378 * fail the MOVE operation. 17379 * 17380 * 2) Remove the replacement ipif on to_ill if any. 17381 * We could remove the replacement ipif when we are moving 17382 * the ipif with id zero. But what if somebody already 17383 * unplumbed it ? Thus we always remove it if it is present. 17384 * We want to do it only if we are sure we are going to 17385 * move the ipif to to_ill which is why there are no 17386 * returns due to error till ipif is linked to to_ill. 17387 * Note that the first ipif that we failback will always 17388 * be zero if it is present. 17389 */ 17390 if (ipif->ipif_id == 0) { 17391 ipaddr_t inaddr_any = INADDR_ANY; 17392 17393 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17394 if (rep_ipif == NULL) { 17395 ipif->ipif_was_up = B_FALSE; 17396 IPIF_UNMARK_MOVING(ipif); 17397 return (ENOMEM); 17398 } 17399 *rep_ipif = ipif_zero; 17400 /* 17401 * Before we put the ipif on the list, store the addresses 17402 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17403 * assumes so. This logic is not any different from what 17404 * ipif_allocate does. 17405 */ 17406 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17407 &rep_ipif->ipif_v6lcl_addr); 17408 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17409 &rep_ipif->ipif_v6src_addr); 17410 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17411 &rep_ipif->ipif_v6subnet); 17412 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17413 &rep_ipif->ipif_v6net_mask); 17414 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17415 &rep_ipif->ipif_v6brd_addr); 17416 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17417 &rep_ipif->ipif_v6pp_dst_addr); 17418 /* 17419 * We mark IPIF_NOFAILOVER so that this can never 17420 * move. 17421 */ 17422 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17423 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17424 rep_ipif->ipif_replace_zero = B_TRUE; 17425 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17426 MUTEX_DEFAULT, NULL); 17427 rep_ipif->ipif_id = 0; 17428 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17429 rep_ipif->ipif_ill = from_ill; 17430 rep_ipif->ipif_orig_ifindex = 17431 from_ill->ill_phyint->phyint_ifindex; 17432 /* Insert at head */ 17433 rep_ipif->ipif_next = from_ill->ill_ipif; 17434 from_ill->ill_ipif = rep_ipif; 17435 /* 17436 * We don't really care to let apps know about 17437 * this interface. 17438 */ 17439 } 17440 17441 if (remove_ipif) { 17442 /* 17443 * We set to a max value above for this case to get 17444 * id zero. ASSERT that we did get one. 17445 */ 17446 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17447 rep_ipif = to_ipif; 17448 to_ill->ill_ipif = rep_ipif->ipif_next; 17449 rep_ipif->ipif_next = NULL; 17450 /* 17451 * If some apps scanned and find this interface, 17452 * it is time to let them know, so that they can 17453 * delete it. 17454 */ 17455 17456 *rep_ipif_ptr = rep_ipif; 17457 } 17458 17459 /* Get it out of the ILL interface list. */ 17460 ipifp = &ipif->ipif_ill->ill_ipif; 17461 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17462 if (*ipifp == ipif) { 17463 *ipifp = ipif->ipif_next; 17464 break; 17465 } 17466 } 17467 17468 /* Assign the new ill */ 17469 ipif->ipif_ill = to_ill; 17470 ipif->ipif_id = unit; 17471 /* id has already been checked */ 17472 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17473 ASSERT(rc == 0); 17474 /* Let SCTP update its list */ 17475 sctp_move_ipif(ipif, from_ill, to_ill); 17476 /* 17477 * Handle the failover and failback of ipif_t between 17478 * ill_t that have differing maximum mtu values. 17479 */ 17480 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17481 if (ipif->ipif_saved_mtu == 0) { 17482 /* 17483 * As this ipif_t is moving to an ill_t 17484 * that has a lower ill_max_mtu, its 17485 * ipif_mtu needs to be saved so it can 17486 * be restored during failback or during 17487 * failover to an ill_t which has a 17488 * higher ill_max_mtu. 17489 */ 17490 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17491 ipif->ipif_mtu = to_ill->ill_max_mtu; 17492 } else { 17493 /* 17494 * The ipif_t is, once again, moving to 17495 * an ill_t that has a lower maximum mtu 17496 * value. 17497 */ 17498 ipif->ipif_mtu = to_ill->ill_max_mtu; 17499 } 17500 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17501 ipif->ipif_saved_mtu != 0) { 17502 /* 17503 * The mtu of this ipif_t had to be reduced 17504 * during an earlier failover; this is an 17505 * opportunity for it to be increased (either as 17506 * part of another failover or a failback). 17507 */ 17508 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17509 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17510 ipif->ipif_saved_mtu = 0; 17511 } else { 17512 ipif->ipif_mtu = to_ill->ill_max_mtu; 17513 } 17514 } 17515 17516 /* 17517 * We preserve all the other fields of the ipif including 17518 * ipif_saved_ire_mp. The routes that are saved here will 17519 * be recreated on the new interface and back on the old 17520 * interface when we move back. 17521 */ 17522 ASSERT(ipif->ipif_arp_del_mp == NULL); 17523 17524 return (err); 17525 } 17526 17527 static int 17528 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17529 int ifindex, ipif_t **rep_ipif_ptr) 17530 { 17531 ipif_t *mipif; 17532 ipif_t *ipif_next; 17533 int err; 17534 17535 /* 17536 * We don't really try to MOVE back things if some of the 17537 * operations fail. The daemon will take care of moving again 17538 * later on. 17539 */ 17540 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17541 ipif_next = mipif->ipif_next; 17542 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17543 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17544 17545 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17546 17547 /* 17548 * When the MOVE fails, it is the job of the 17549 * application to take care of this properly 17550 * i.e try again if it is ENOMEM. 17551 */ 17552 if (mipif->ipif_ill != from_ill) { 17553 /* 17554 * ipif has moved. 17555 * 17556 * Move the multicast memberships associated 17557 * with this ipif to the new ill. For IPv6, we 17558 * do it once after all the ipifs are moved 17559 * (in ill_move) as they are not associated 17560 * with ipifs. 17561 * 17562 * We need to move the ilms as the ipif has 17563 * already been moved to a new ill even 17564 * in the case of errors. Neither 17565 * ilm_free(ipif) will find the ilm 17566 * when somebody unplumbs this ipif nor 17567 * ilm_delete(ilm) will be able to find the 17568 * ilm, if we don't move now. 17569 */ 17570 if (!from_ill->ill_isv6) 17571 ilm_move_v4(from_ill, to_ill, mipif); 17572 } 17573 17574 if (err != 0) 17575 return (err); 17576 } 17577 } 17578 return (0); 17579 } 17580 17581 static int 17582 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17583 { 17584 int ifindex; 17585 int err; 17586 struct iocblk *iocp; 17587 ipif_t *ipif; 17588 ipif_t *rep_ipif_ptr = NULL; 17589 ipif_t *from_ipif = NULL; 17590 boolean_t check_rep_if = B_FALSE; 17591 17592 iocp = (struct iocblk *)mp->b_rptr; 17593 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17594 /* 17595 * Move everything pointing at from_ill to to_ill. 17596 * We acheive this by passing in 0 as ifindex. 17597 */ 17598 ifindex = 0; 17599 } else { 17600 /* 17601 * Move everything pointing at from_ill whose original 17602 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17603 * We acheive this by passing in ifindex rather than 0. 17604 * Multicast vifs, ilgs move implicitly because ipifs move. 17605 */ 17606 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17607 ifindex = to_ill->ill_phyint->phyint_ifindex; 17608 } 17609 17610 /* 17611 * Determine if there is at least one ipif that would move from 17612 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17613 * ipif (if it exists) on the to_ill would be consumed as a result of 17614 * the move, in which case we need to quiesce the replacement ipif also. 17615 */ 17616 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17617 from_ipif = from_ipif->ipif_next) { 17618 if (((ifindex == 0) || 17619 (ifindex == from_ipif->ipif_orig_ifindex)) && 17620 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17621 check_rep_if = B_TRUE; 17622 break; 17623 } 17624 } 17625 17626 17627 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17628 17629 GRAB_ILL_LOCKS(from_ill, to_ill); 17630 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17631 (void) ipsq_pending_mp_add(NULL, ipif, q, 17632 mp, ILL_MOVE_OK); 17633 RELEASE_ILL_LOCKS(from_ill, to_ill); 17634 return (EINPROGRESS); 17635 } 17636 17637 /* Check if the replacement ipif is quiescent to delete */ 17638 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17639 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17640 to_ill->ill_ipif->ipif_state_flags |= 17641 IPIF_MOVING | IPIF_CHANGING; 17642 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17643 (void) ipsq_pending_mp_add(NULL, ipif, q, 17644 mp, ILL_MOVE_OK); 17645 RELEASE_ILL_LOCKS(from_ill, to_ill); 17646 return (EINPROGRESS); 17647 } 17648 } 17649 RELEASE_ILL_LOCKS(from_ill, to_ill); 17650 17651 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17652 rw_enter(&ill_g_lock, RW_WRITER); 17653 GRAB_ILL_LOCKS(from_ill, to_ill); 17654 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17655 17656 /* ilm_move is done inside ipif_move for IPv4 */ 17657 if (err == 0 && from_ill->ill_isv6) 17658 ilm_move_v6(from_ill, to_ill, ifindex); 17659 17660 RELEASE_ILL_LOCKS(from_ill, to_ill); 17661 rw_exit(&ill_g_lock); 17662 17663 /* 17664 * send rts messages and multicast messages. 17665 */ 17666 if (rep_ipif_ptr != NULL) { 17667 ip_rts_ifmsg(rep_ipif_ptr); 17668 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17669 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17670 mi_free(rep_ipif_ptr); 17671 } 17672 17673 conn_move_ill(from_ill, to_ill, ifindex); 17674 17675 return (err); 17676 } 17677 17678 /* 17679 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17680 * Also checks for the validity of the arguments. 17681 * Note: We are already exclusive inside the from group. 17682 * It is upto the caller to release refcnt on the to_ill's. 17683 */ 17684 static int 17685 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17686 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17687 { 17688 int dst_index; 17689 ipif_t *ipif_v4, *ipif_v6; 17690 struct lifreq *lifr; 17691 mblk_t *mp1; 17692 boolean_t exists; 17693 sin_t *sin; 17694 int err = 0; 17695 17696 if ((mp1 = mp->b_cont) == NULL) 17697 return (EPROTO); 17698 17699 if ((mp1 = mp1->b_cont) == NULL) 17700 return (EPROTO); 17701 17702 lifr = (struct lifreq *)mp1->b_rptr; 17703 sin = (sin_t *)&lifr->lifr_addr; 17704 17705 /* 17706 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17707 * specific operations. 17708 */ 17709 if (sin->sin_family != AF_UNSPEC) 17710 return (EINVAL); 17711 17712 /* 17713 * Get ipif with id 0. We are writer on the from ill. So we can pass 17714 * NULLs for the last 4 args and we know the lookup won't fail 17715 * with EINPROGRESS. 17716 */ 17717 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17718 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17719 ALL_ZONES, NULL, NULL, NULL, NULL); 17720 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17721 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17722 ALL_ZONES, NULL, NULL, NULL, NULL); 17723 17724 if (ipif_v4 == NULL && ipif_v6 == NULL) 17725 return (ENXIO); 17726 17727 if (ipif_v4 != NULL) { 17728 ASSERT(ipif_v4->ipif_refcnt != 0); 17729 if (ipif_v4->ipif_id != 0) { 17730 err = EINVAL; 17731 goto done; 17732 } 17733 17734 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17735 *ill_from_v4 = ipif_v4->ipif_ill; 17736 } 17737 17738 if (ipif_v6 != NULL) { 17739 ASSERT(ipif_v6->ipif_refcnt != 0); 17740 if (ipif_v6->ipif_id != 0) { 17741 err = EINVAL; 17742 goto done; 17743 } 17744 17745 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17746 *ill_from_v6 = ipif_v6->ipif_ill; 17747 } 17748 17749 err = 0; 17750 dst_index = lifr->lifr_movetoindex; 17751 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17752 q, mp, ip_process_ioctl, &err); 17753 if (err != 0) { 17754 /* 17755 * There could be only v6. 17756 */ 17757 if (err != ENXIO) 17758 goto done; 17759 err = 0; 17760 } 17761 17762 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17763 q, mp, ip_process_ioctl, &err); 17764 if (err != 0) { 17765 if (err != ENXIO) 17766 goto done; 17767 if (*ill_to_v4 == NULL) { 17768 err = ENXIO; 17769 goto done; 17770 } 17771 err = 0; 17772 } 17773 17774 /* 17775 * If we have something to MOVE i.e "from" not NULL, 17776 * "to" should be non-NULL. 17777 */ 17778 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17779 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17780 err = EINVAL; 17781 } 17782 17783 done: 17784 if (ipif_v4 != NULL) 17785 ipif_refrele(ipif_v4); 17786 if (ipif_v6 != NULL) 17787 ipif_refrele(ipif_v6); 17788 return (err); 17789 } 17790 17791 /* 17792 * FAILOVER and FAILBACK are modelled as MOVE operations. 17793 * 17794 * We don't check whether the MOVE is within the same group or 17795 * not, because this ioctl can be used as a generic mechanism 17796 * to failover from interface A to B, though things will function 17797 * only if they are really part of the same group. Moreover, 17798 * all ipifs may be down and hence temporarily out of the group. 17799 * 17800 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17801 * down first and then V6. For each we wait for the ipif's to become quiescent. 17802 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17803 * have been deleted and there are no active references. Once quiescent the 17804 * ipif's are moved and brought up on the new ill. 17805 * 17806 * Normally the source ill and destination ill belong to the same IPMP group 17807 * and hence the same ipsq_t. In the event they don't belong to the same 17808 * same group the two ipsq's are first merged into one ipsq - that of the 17809 * to_ill. The multicast memberships on the source and destination ill cannot 17810 * change during the move operation since multicast joins/leaves also have to 17811 * execute on the same ipsq and are hence serialized. 17812 */ 17813 /* ARGSUSED */ 17814 int 17815 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17816 ip_ioctl_cmd_t *ipip, void *ifreq) 17817 { 17818 ill_t *ill_to_v4 = NULL; 17819 ill_t *ill_to_v6 = NULL; 17820 ill_t *ill_from_v4 = NULL; 17821 ill_t *ill_from_v6 = NULL; 17822 int err = 0; 17823 17824 /* 17825 * setup from and to ill's, we can get EINPROGRESS only for 17826 * to_ill's. 17827 */ 17828 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17829 &ill_to_v4, &ill_to_v6); 17830 17831 if (err != 0) { 17832 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17833 goto done; 17834 } 17835 17836 /* 17837 * nothing to do. 17838 */ 17839 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17840 goto done; 17841 } 17842 17843 /* 17844 * nothing to do. 17845 */ 17846 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17847 goto done; 17848 } 17849 17850 /* 17851 * Mark the ill as changing. 17852 * ILL_CHANGING flag is cleared when the ipif's are brought up 17853 * in ill_up_ipifs in case of error they are cleared below. 17854 */ 17855 17856 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17857 if (ill_from_v4 != NULL) 17858 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17859 if (ill_from_v6 != NULL) 17860 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17861 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17862 17863 /* 17864 * Make sure that both src and dst are 17865 * in the same syncq group. If not make it happen. 17866 * We are not holding any locks because we are the writer 17867 * on the from_ipsq and we will hold locks in ill_merge_groups 17868 * to protect to_ipsq against changing. 17869 */ 17870 if (ill_from_v4 != NULL) { 17871 if (ill_from_v4->ill_phyint->phyint_ipsq != 17872 ill_to_v4->ill_phyint->phyint_ipsq) { 17873 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17874 NULL, mp, q); 17875 goto err_ret; 17876 17877 } 17878 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17879 } else { 17880 17881 if (ill_from_v6->ill_phyint->phyint_ipsq != 17882 ill_to_v6->ill_phyint->phyint_ipsq) { 17883 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17884 NULL, mp, q); 17885 goto err_ret; 17886 17887 } 17888 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17889 } 17890 17891 /* 17892 * Now that the ipsq's have been merged and we are the writer 17893 * lets mark to_ill as changing as well. 17894 */ 17895 17896 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17897 if (ill_to_v4 != NULL) 17898 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17899 if (ill_to_v6 != NULL) 17900 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17901 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17902 17903 /* 17904 * Its ok for us to proceed with the move even if 17905 * ill_pending_mp is non null on one of the from ill's as the reply 17906 * should not be looking at the ipif, it should only care about the 17907 * ill itself. 17908 */ 17909 17910 /* 17911 * lets move ipv4 first. 17912 */ 17913 if (ill_from_v4 != NULL) { 17914 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17915 ill_from_v4->ill_move_in_progress = B_TRUE; 17916 ill_to_v4->ill_move_in_progress = B_TRUE; 17917 ill_to_v4->ill_move_peer = ill_from_v4; 17918 ill_from_v4->ill_move_peer = ill_to_v4; 17919 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17920 } 17921 17922 /* 17923 * Now lets move ipv6. 17924 */ 17925 if (err == 0 && ill_from_v6 != NULL) { 17926 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17927 ill_from_v6->ill_move_in_progress = B_TRUE; 17928 ill_to_v6->ill_move_in_progress = B_TRUE; 17929 ill_to_v6->ill_move_peer = ill_from_v6; 17930 ill_from_v6->ill_move_peer = ill_to_v6; 17931 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17932 } 17933 17934 err_ret: 17935 /* 17936 * EINPROGRESS means we are waiting for the ipif's that need to be 17937 * moved to become quiescent. 17938 */ 17939 if (err == EINPROGRESS) { 17940 goto done; 17941 } 17942 17943 /* 17944 * if err is set ill_up_ipifs will not be called 17945 * lets clear the flags. 17946 */ 17947 17948 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17949 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17950 /* 17951 * Some of the clearing may be redundant. But it is simple 17952 * not making any extra checks. 17953 */ 17954 if (ill_from_v6 != NULL) { 17955 ill_from_v6->ill_move_in_progress = B_FALSE; 17956 ill_from_v6->ill_move_peer = NULL; 17957 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17958 } 17959 if (ill_from_v4 != NULL) { 17960 ill_from_v4->ill_move_in_progress = B_FALSE; 17961 ill_from_v4->ill_move_peer = NULL; 17962 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17963 } 17964 if (ill_to_v6 != NULL) { 17965 ill_to_v6->ill_move_in_progress = B_FALSE; 17966 ill_to_v6->ill_move_peer = NULL; 17967 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17968 } 17969 if (ill_to_v4 != NULL) { 17970 ill_to_v4->ill_move_in_progress = B_FALSE; 17971 ill_to_v4->ill_move_peer = NULL; 17972 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17973 } 17974 17975 /* 17976 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17977 * Do this always to maintain proper state i.e even in case of errors. 17978 * As phyint_inactive looks at both v4 and v6 interfaces, 17979 * we need not call on both v4 and v6 interfaces. 17980 */ 17981 if (ill_from_v4 != NULL) { 17982 if ((ill_from_v4->ill_phyint->phyint_flags & 17983 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17984 phyint_inactive(ill_from_v4->ill_phyint); 17985 } 17986 } else if (ill_from_v6 != NULL) { 17987 if ((ill_from_v6->ill_phyint->phyint_flags & 17988 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17989 phyint_inactive(ill_from_v6->ill_phyint); 17990 } 17991 } 17992 17993 if (ill_to_v4 != NULL) { 17994 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17995 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17996 } 17997 } else if (ill_to_v6 != NULL) { 17998 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17999 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18000 } 18001 } 18002 18003 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18004 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18005 18006 no_err: 18007 /* 18008 * lets bring the interfaces up on the to_ill. 18009 */ 18010 if (err == 0) { 18011 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18012 q, mp); 18013 } 18014 18015 if (err == 0) { 18016 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18017 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18018 18019 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18020 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18021 } 18022 done: 18023 18024 if (ill_to_v4 != NULL) { 18025 ill_refrele(ill_to_v4); 18026 } 18027 if (ill_to_v6 != NULL) { 18028 ill_refrele(ill_to_v6); 18029 } 18030 18031 return (err); 18032 } 18033 18034 static void 18035 ill_dl_down(ill_t *ill) 18036 { 18037 /* 18038 * The ill is down; unbind but stay attached since we're still 18039 * associated with a PPA. If we have negotiated DLPI capabilites 18040 * with the data link service provider (IDS_OK) then reset them. 18041 * The interval between unbinding and rebinding is potentially 18042 * unbounded hence we cannot assume things will be the same. 18043 * The DLPI capabilities will be probed again when the data link 18044 * is brought up. 18045 */ 18046 mblk_t *mp = ill->ill_unbind_mp; 18047 hook_nic_event_t *info; 18048 18049 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18050 18051 ill->ill_unbind_mp = NULL; 18052 if (mp != NULL) { 18053 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18054 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18055 ill->ill_name)); 18056 mutex_enter(&ill->ill_lock); 18057 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18058 mutex_exit(&ill->ill_lock); 18059 if (ill->ill_dlpi_capab_state == IDS_OK) 18060 ill_capability_reset(ill); 18061 ill_dlpi_send(ill, mp); 18062 } 18063 18064 /* 18065 * Toss all of our multicast memberships. We could keep them, but 18066 * then we'd have to do bookkeeping of any joins and leaves performed 18067 * by the application while the the interface is down (we can't just 18068 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18069 * on a downed interface). 18070 */ 18071 ill_leave_multicast(ill); 18072 18073 mutex_enter(&ill->ill_lock); 18074 18075 ill->ill_dl_up = 0; 18076 18077 if ((info = ill->ill_nic_event_info) != NULL) { 18078 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18079 info->hne_event, ill->ill_name)); 18080 if (info->hne_data != NULL) 18081 kmem_free(info->hne_data, info->hne_datalen); 18082 kmem_free(info, sizeof (hook_nic_event_t)); 18083 } 18084 18085 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18086 if (info != NULL) { 18087 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18088 info->hne_lif = 0; 18089 info->hne_event = NE_DOWN; 18090 info->hne_data = NULL; 18091 info->hne_datalen = 0; 18092 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 18093 } else 18094 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18095 "information for %s (ENOMEM)\n", ill->ill_name)); 18096 18097 ill->ill_nic_event_info = info; 18098 18099 mutex_exit(&ill->ill_lock); 18100 } 18101 18102 void 18103 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18104 { 18105 union DL_primitives *dlp; 18106 t_uscalar_t prim; 18107 18108 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18109 18110 dlp = (union DL_primitives *)mp->b_rptr; 18111 prim = dlp->dl_primitive; 18112 18113 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18114 dlpi_prim_str(prim), prim, ill->ill_name)); 18115 18116 switch (prim) { 18117 case DL_PHYS_ADDR_REQ: 18118 { 18119 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18120 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18121 break; 18122 } 18123 case DL_BIND_REQ: 18124 mutex_enter(&ill->ill_lock); 18125 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18126 mutex_exit(&ill->ill_lock); 18127 break; 18128 } 18129 18130 ill->ill_dlpi_pending = prim; 18131 18132 /* 18133 * Some drivers send M_FLUSH up to IP as part of unbind 18134 * request. When this M_FLUSH is sent back to the driver, 18135 * this can go after we send the detach request if the 18136 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18137 * to the M_FLUSH in ip_rput and locally generate another 18138 * M_FLUSH for the correctness. This will get freed in 18139 * ip_wput_nondata. 18140 */ 18141 if (prim == DL_UNBIND_REQ) 18142 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18143 18144 putnext(ill->ill_wq, mp); 18145 } 18146 18147 /* 18148 * Send a DLPI control message to the driver but make sure there 18149 * is only one outstanding message. Uses ill_dlpi_pending to tell 18150 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18151 * when an ACK or a NAK is received to process the next queued message. 18152 * 18153 * We don't protect ill_dlpi_pending with any lock. This is okay as 18154 * every place where its accessed, ip is exclusive while accessing 18155 * ill_dlpi_pending except when this function is called from ill_init() 18156 */ 18157 void 18158 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18159 { 18160 mblk_t **mpp; 18161 18162 ASSERT(IAM_WRITER_ILL(ill)); 18163 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18164 18165 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18166 /* Must queue message. Tail insertion */ 18167 mpp = &ill->ill_dlpi_deferred; 18168 while (*mpp != NULL) 18169 mpp = &((*mpp)->b_next); 18170 18171 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18172 ill->ill_name)); 18173 18174 *mpp = mp; 18175 return; 18176 } 18177 18178 ill_dlpi_dispatch(ill, mp); 18179 } 18180 18181 /* 18182 * Called when an DLPI control message has been acked or nacked to 18183 * send down the next queued message (if any). 18184 */ 18185 void 18186 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18187 { 18188 mblk_t *mp; 18189 18190 ASSERT(IAM_WRITER_ILL(ill)); 18191 18192 ASSERT(prim != DL_PRIM_INVAL); 18193 if (ill->ill_dlpi_pending != prim) { 18194 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18195 (void) mi_strlog(ill->ill_rq, 1, 18196 SL_CONSOLE|SL_ERROR|SL_TRACE, 18197 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18198 dlpi_prim_str(prim), ill->ill_name); 18199 } else { 18200 (void) mi_strlog(ill->ill_rq, 1, 18201 SL_CONSOLE|SL_ERROR|SL_TRACE, 18202 "ill_dlpi_done: unexpected ack for %s from %s " 18203 "(expecting ack for %s)\n", 18204 dlpi_prim_str(prim), ill->ill_name, 18205 dlpi_prim_str(ill->ill_dlpi_pending)); 18206 } 18207 return; 18208 } 18209 18210 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18211 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18212 18213 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18214 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18215 return; 18216 } 18217 18218 ill->ill_dlpi_deferred = mp->b_next; 18219 mp->b_next = NULL; 18220 18221 ill_dlpi_dispatch(ill, mp); 18222 } 18223 18224 void 18225 conn_delete_ire(conn_t *connp, caddr_t arg) 18226 { 18227 ipif_t *ipif = (ipif_t *)arg; 18228 ire_t *ire; 18229 18230 /* 18231 * Look at the cached ires on conns which has pointers to ipifs. 18232 * We just call ire_refrele which clears up the reference 18233 * to ire. Called when a conn closes. Also called from ipif_free 18234 * to cleanup indirect references to the stale ipif via the cached ire. 18235 */ 18236 mutex_enter(&connp->conn_lock); 18237 ire = connp->conn_ire_cache; 18238 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18239 connp->conn_ire_cache = NULL; 18240 mutex_exit(&connp->conn_lock); 18241 IRE_REFRELE_NOTR(ire); 18242 return; 18243 } 18244 mutex_exit(&connp->conn_lock); 18245 18246 } 18247 18248 /* 18249 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18250 * of IREs. Those IREs may have been previously cached in the conn structure. 18251 * This ipcl_walk() walker function releases all references to such IREs based 18252 * on the condemned flag. 18253 */ 18254 /* ARGSUSED */ 18255 void 18256 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18257 { 18258 ire_t *ire; 18259 18260 mutex_enter(&connp->conn_lock); 18261 ire = connp->conn_ire_cache; 18262 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18263 connp->conn_ire_cache = NULL; 18264 mutex_exit(&connp->conn_lock); 18265 IRE_REFRELE_NOTR(ire); 18266 return; 18267 } 18268 mutex_exit(&connp->conn_lock); 18269 } 18270 18271 /* 18272 * Take down a specific interface, but don't lose any information about it. 18273 * Also delete interface from its interface group (ifgrp). 18274 * (Always called as writer.) 18275 * This function goes through the down sequence even if the interface is 18276 * already down. There are 2 reasons. 18277 * a. Currently we permit interface routes that depend on down interfaces 18278 * to be added. This behaviour itself is questionable. However it appears 18279 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18280 * time. We go thru the cleanup in order to remove these routes. 18281 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18282 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18283 * down, but we need to cleanup i.e. do ill_dl_down and 18284 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18285 * 18286 * IP-MT notes: 18287 * 18288 * Model of reference to interfaces. 18289 * 18290 * The following members in ipif_t track references to the ipif. 18291 * int ipif_refcnt; Active reference count 18292 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18293 * The following members in ill_t track references to the ill. 18294 * int ill_refcnt; active refcnt 18295 * uint_t ill_ire_cnt; Number of ires referencing ill 18296 * uint_t ill_nce_cnt; Number of nces referencing ill 18297 * 18298 * Reference to an ipif or ill can be obtained in any of the following ways. 18299 * 18300 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18301 * Pointers to ipif / ill from other data structures viz ire and conn. 18302 * Implicit reference to the ipif / ill by holding a reference to the ire. 18303 * 18304 * The ipif/ill lookup functions return a reference held ipif / ill. 18305 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18306 * This is a purely dynamic reference count associated with threads holding 18307 * references to the ipif / ill. Pointers from other structures do not 18308 * count towards this reference count. 18309 * 18310 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18311 * ipif/ill. This is incremented whenever a new ire is created referencing the 18312 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18313 * actually added to the ire hash table. The count is decremented in 18314 * ire_inactive where the ire is destroyed. 18315 * 18316 * nce's reference ill's thru nce_ill and the count of nce's associated with 18317 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18318 * ndp_add() where the nce is actually added to the table. Similarly it is 18319 * decremented in ndp_inactive where the nce is destroyed. 18320 * 18321 * Flow of ioctls involving interface down/up 18322 * 18323 * The following is the sequence of an attempt to set some critical flags on an 18324 * up interface. 18325 * ip_sioctl_flags 18326 * ipif_down 18327 * wait for ipif to be quiescent 18328 * ipif_down_tail 18329 * ip_sioctl_flags_tail 18330 * 18331 * All set ioctls that involve down/up sequence would have a skeleton similar 18332 * to the above. All the *tail functions are called after the refcounts have 18333 * dropped to the appropriate values. 18334 * 18335 * The mechanism to quiesce an ipif is as follows. 18336 * 18337 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18338 * on the ipif. Callers either pass a flag requesting wait or the lookup 18339 * functions will return NULL. 18340 * 18341 * Delete all ires referencing this ipif 18342 * 18343 * Any thread attempting to do an ipif_refhold on an ipif that has been 18344 * obtained thru a cached pointer will first make sure that 18345 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18346 * increment the refcount. 18347 * 18348 * The above guarantees that the ipif refcount will eventually come down to 18349 * zero and the ipif will quiesce, once all threads that currently hold a 18350 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18351 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18352 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18353 * drop to zero. 18354 * 18355 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18356 * 18357 * Threads trying to lookup an ipif or ill can pass a flag requesting 18358 * wait and restart if the ipif / ill cannot be looked up currently. 18359 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18360 * failure if the ipif is currently undergoing an exclusive operation, and 18361 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18362 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18363 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18364 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18365 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18366 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18367 * until we release the ipsq_lock, even though the the ill/ipif state flags 18368 * can change after we drop the ill_lock. 18369 * 18370 * An attempt to send out a packet using an ipif that is currently 18371 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18372 * operation and restart it later when the exclusive condition on the ipif ends. 18373 * This is an example of not passing the wait flag to the lookup functions. For 18374 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18375 * out a multicast packet on that ipif will fail while the ipif is 18376 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18377 * currently IPIF_CHANGING will also fail. 18378 */ 18379 int 18380 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18381 { 18382 ill_t *ill = ipif->ipif_ill; 18383 phyint_t *phyi; 18384 conn_t *connp; 18385 boolean_t success; 18386 boolean_t ipif_was_up = B_FALSE; 18387 18388 ASSERT(IAM_WRITER_IPIF(ipif)); 18389 18390 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18391 18392 if (ipif->ipif_flags & IPIF_UP) { 18393 mutex_enter(&ill->ill_lock); 18394 ipif->ipif_flags &= ~IPIF_UP; 18395 ASSERT(ill->ill_ipif_up_count > 0); 18396 --ill->ill_ipif_up_count; 18397 mutex_exit(&ill->ill_lock); 18398 ipif_was_up = B_TRUE; 18399 /* Update status in SCTP's list */ 18400 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18401 } 18402 18403 /* 18404 * Blow away v6 memberships we established in ipif_multicast_up(); the 18405 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18406 * know not to rejoin when the interface is brought back up). 18407 */ 18408 if (ipif->ipif_isv6) 18409 ipif_multicast_down(ipif); 18410 /* 18411 * Remove from the mapping for __sin6_src_id. We insert only 18412 * when the address is not INADDR_ANY. As IPv4 addresses are 18413 * stored as mapped addresses, we need to check for mapped 18414 * INADDR_ANY also. 18415 */ 18416 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18417 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18418 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18419 int err; 18420 18421 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18422 ipif->ipif_zoneid); 18423 if (err != 0) { 18424 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18425 } 18426 } 18427 18428 /* 18429 * Before we delete the ill from the group (if any), we need 18430 * to make sure that we delete all the routes dependent on 18431 * this and also any ipifs dependent on this ipif for 18432 * source address. We need to do before we delete from 18433 * the group because 18434 * 18435 * 1) ipif_down_delete_ire de-references ill->ill_group. 18436 * 18437 * 2) ipif_update_other_ipifs needs to walk the whole group 18438 * for re-doing source address selection. Note that 18439 * ipif_select_source[_v6] called from 18440 * ipif_update_other_ipifs[_v6] will not pick this ipif 18441 * because we have already marked down here i.e cleared 18442 * IPIF_UP. 18443 */ 18444 if (ipif->ipif_isv6) 18445 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18446 else 18447 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18448 18449 /* 18450 * Need to add these also to be saved and restored when the 18451 * ipif is brought down and up 18452 */ 18453 mutex_enter(&ire_mrtun_lock); 18454 if (ire_mrtun_count != 0) { 18455 mutex_exit(&ire_mrtun_lock); 18456 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18457 (char *)ipif, NULL); 18458 } else { 18459 mutex_exit(&ire_mrtun_lock); 18460 } 18461 18462 mutex_enter(&ire_srcif_table_lock); 18463 if (ire_srcif_table_count > 0) { 18464 mutex_exit(&ire_srcif_table_lock); 18465 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18466 } else { 18467 mutex_exit(&ire_srcif_table_lock); 18468 } 18469 18470 /* 18471 * Cleaning up the conn_ire_cache or conns must be done only after the 18472 * ires have been deleted above. Otherwise a thread could end up 18473 * caching an ire in a conn after we have finished the cleanup of the 18474 * conn. The caching is done after making sure that the ire is not yet 18475 * condemned. Also documented in the block comment above ip_output 18476 */ 18477 ipcl_walk(conn_cleanup_stale_ire, NULL); 18478 /* Also, delete the ires cached in SCTP */ 18479 sctp_ire_cache_flush(ipif); 18480 18481 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18482 nattymod_clean_ipif(ipif); 18483 18484 /* 18485 * Update any other ipifs which have used "our" local address as 18486 * a source address. This entails removing and recreating IRE_INTERFACE 18487 * entries for such ipifs. 18488 */ 18489 if (ipif->ipif_isv6) 18490 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18491 else 18492 ipif_update_other_ipifs(ipif, ill->ill_group); 18493 18494 if (ipif_was_up) { 18495 /* 18496 * Check whether it is last ipif to leave this group. 18497 * If this is the last ipif to leave, we should remove 18498 * this ill from the group as ipif_select_source will not 18499 * be able to find any useful ipifs if this ill is selected 18500 * for load balancing. 18501 * 18502 * For nameless groups, we should call ifgrp_delete if this 18503 * belongs to some group. As this ipif is going down, we may 18504 * need to reconstruct groups. 18505 */ 18506 phyi = ill->ill_phyint; 18507 /* 18508 * If the phyint_groupname_len is 0, it may or may not 18509 * be in the nameless group. If the phyint_groupname_len is 18510 * not 0, then this ill should be part of some group. 18511 * As we always insert this ill in the group if 18512 * phyint_groupname_len is not zero when the first ipif 18513 * comes up (in ipif_up_done), it should be in a group 18514 * when the namelen is not 0. 18515 * 18516 * NOTE : When we delete the ill from the group,it will 18517 * blow away all the IRE_CACHES pointing either at this ipif or 18518 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18519 * should be pointing at this ill. 18520 */ 18521 ASSERT(phyi->phyint_groupname_len == 0 || 18522 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18523 18524 if (phyi->phyint_groupname_len != 0) { 18525 if (ill->ill_ipif_up_count == 0) 18526 illgrp_delete(ill); 18527 } 18528 18529 /* 18530 * If we have deleted some of the broadcast ires associated 18531 * with this ipif, we need to re-nominate somebody else if 18532 * the ires that we deleted were the nominated ones. 18533 */ 18534 if (ill->ill_group != NULL && !ill->ill_isv6) 18535 ipif_renominate_bcast(ipif); 18536 } 18537 18538 /* 18539 * neighbor-discovery or arp entries for this interface. 18540 */ 18541 ipif_ndp_down(ipif); 18542 18543 /* 18544 * If mp is NULL the caller will wait for the appropriate refcnt. 18545 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18546 * and ill_delete -> ipif_free -> ipif_down 18547 */ 18548 if (mp == NULL) { 18549 ASSERT(q == NULL); 18550 return (0); 18551 } 18552 18553 if (CONN_Q(q)) { 18554 connp = Q_TO_CONN(q); 18555 mutex_enter(&connp->conn_lock); 18556 } else { 18557 connp = NULL; 18558 } 18559 mutex_enter(&ill->ill_lock); 18560 /* 18561 * Are there any ire's pointing to this ipif that are still active ? 18562 * If this is the last ipif going down, are there any ire's pointing 18563 * to this ill that are still active ? 18564 */ 18565 if (ipif_is_quiescent(ipif)) { 18566 mutex_exit(&ill->ill_lock); 18567 if (connp != NULL) 18568 mutex_exit(&connp->conn_lock); 18569 return (0); 18570 } 18571 18572 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18573 ill->ill_name, (void *)ill)); 18574 /* 18575 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18576 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18577 * which in turn is called by the last refrele on the ipif/ill/ire. 18578 */ 18579 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18580 if (!success) { 18581 /* The conn is closing. So just return */ 18582 ASSERT(connp != NULL); 18583 mutex_exit(&ill->ill_lock); 18584 mutex_exit(&connp->conn_lock); 18585 return (EINTR); 18586 } 18587 18588 mutex_exit(&ill->ill_lock); 18589 if (connp != NULL) 18590 mutex_exit(&connp->conn_lock); 18591 return (EINPROGRESS); 18592 } 18593 18594 void 18595 ipif_down_tail(ipif_t *ipif) 18596 { 18597 ill_t *ill = ipif->ipif_ill; 18598 18599 /* 18600 * Skip any loopback interface (null wq). 18601 * If this is the last logical interface on the ill 18602 * have ill_dl_down tell the driver we are gone (unbind) 18603 * Note that lun 0 can ipif_down even though 18604 * there are other logical units that are up. 18605 * This occurs e.g. when we change a "significant" IFF_ flag. 18606 */ 18607 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18608 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18609 ill->ill_dl_up) { 18610 ill_dl_down(ill); 18611 } 18612 ill->ill_logical_down = 0; 18613 18614 /* 18615 * Have to be after removing the routes in ipif_down_delete_ire. 18616 */ 18617 if (ipif->ipif_isv6) { 18618 if (ill->ill_flags & ILLF_XRESOLV) 18619 ipif_arp_down(ipif); 18620 } else { 18621 ipif_arp_down(ipif); 18622 } 18623 18624 ip_rts_ifmsg(ipif); 18625 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18626 } 18627 18628 /* 18629 * Bring interface logically down without bringing the physical interface 18630 * down e.g. when the netmask is changed. This avoids long lasting link 18631 * negotiations between an ethernet interface and a certain switches. 18632 */ 18633 static int 18634 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18635 { 18636 /* 18637 * The ill_logical_down flag is a transient flag. It is set here 18638 * and is cleared once the down has completed in ipif_down_tail. 18639 * This flag does not indicate whether the ill stream is in the 18640 * DL_BOUND state with the driver. Instead this flag is used by 18641 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18642 * the driver. The state of the ill stream i.e. whether it is 18643 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18644 */ 18645 ipif->ipif_ill->ill_logical_down = 1; 18646 return (ipif_down(ipif, q, mp)); 18647 } 18648 18649 /* 18650 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18651 * If the usesrc client ILL is already part of a usesrc group or not, 18652 * in either case a ire_stq with the matching usesrc client ILL will 18653 * locate the IRE's that need to be deleted. We want IREs to be created 18654 * with the new source address. 18655 */ 18656 static void 18657 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18658 { 18659 ill_t *ucill = (ill_t *)ill_arg; 18660 18661 ASSERT(IAM_WRITER_ILL(ucill)); 18662 18663 if (ire->ire_stq == NULL) 18664 return; 18665 18666 if ((ire->ire_type == IRE_CACHE) && 18667 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18668 ire_delete(ire); 18669 } 18670 18671 /* 18672 * ire_walk routine to delete every IRE dependent on the interface 18673 * address that is going down. (Always called as writer.) 18674 * Works for both v4 and v6. 18675 * In addition for checking for ire_ipif matches it also checks for 18676 * IRE_CACHE entries which have the same source address as the 18677 * disappearing ipif since ipif_select_source might have picked 18678 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18679 * care of any IRE_INTERFACE with the disappearing source address. 18680 */ 18681 static void 18682 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18683 { 18684 ipif_t *ipif = (ipif_t *)ipif_arg; 18685 ill_t *ire_ill; 18686 ill_t *ipif_ill; 18687 18688 ASSERT(IAM_WRITER_IPIF(ipif)); 18689 if (ire->ire_ipif == NULL) 18690 return; 18691 18692 /* 18693 * For IPv4, we derive source addresses for an IRE from ipif's 18694 * belonging to the same IPMP group as the IRE's outgoing 18695 * interface. If an IRE's outgoing interface isn't in the 18696 * same IPMP group as a particular ipif, then that ipif 18697 * couldn't have been used as a source address for this IRE. 18698 * 18699 * For IPv6, source addresses are only restricted to the IPMP group 18700 * if the IRE is for a link-local address or a multicast address. 18701 * Otherwise, source addresses for an IRE can be chosen from 18702 * interfaces other than the the outgoing interface for that IRE. 18703 * 18704 * For source address selection details, see ipif_select_source() 18705 * and ipif_select_source_v6(). 18706 */ 18707 if (ire->ire_ipversion == IPV4_VERSION || 18708 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18710 ire_ill = ire->ire_ipif->ipif_ill; 18711 ipif_ill = ipif->ipif_ill; 18712 18713 if (ire_ill->ill_group != ipif_ill->ill_group) { 18714 return; 18715 } 18716 } 18717 18718 18719 if (ire->ire_ipif != ipif) { 18720 /* 18721 * Look for a matching source address. 18722 */ 18723 if (ire->ire_type != IRE_CACHE) 18724 return; 18725 if (ipif->ipif_flags & IPIF_NOLOCAL) 18726 return; 18727 18728 if (ire->ire_ipversion == IPV4_VERSION) { 18729 if (ire->ire_src_addr != ipif->ipif_src_addr) 18730 return; 18731 } else { 18732 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18733 &ipif->ipif_v6lcl_addr)) 18734 return; 18735 } 18736 ire_delete(ire); 18737 return; 18738 } 18739 /* 18740 * ire_delete() will do an ire_flush_cache which will delete 18741 * all ire_ipif matches 18742 */ 18743 ire_delete(ire); 18744 } 18745 18746 /* 18747 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18748 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18749 * 2) when an interface is brought up or down (on that ill). 18750 * This ensures that the IRE_CACHE entries don't retain stale source 18751 * address selection results. 18752 */ 18753 void 18754 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18755 { 18756 ill_t *ill = (ill_t *)ill_arg; 18757 ill_t *ipif_ill; 18758 18759 ASSERT(IAM_WRITER_ILL(ill)); 18760 /* 18761 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18762 * Hence this should be IRE_CACHE. 18763 */ 18764 ASSERT(ire->ire_type == IRE_CACHE); 18765 18766 /* 18767 * We are called for IRE_CACHES whose ire_ipif matches ill. 18768 * We are only interested in IRE_CACHES that has borrowed 18769 * the source address from ill_arg e.g. ipif_up_done[_v6] 18770 * for which we need to look at ire_ipif->ipif_ill match 18771 * with ill. 18772 */ 18773 ASSERT(ire->ire_ipif != NULL); 18774 ipif_ill = ire->ire_ipif->ipif_ill; 18775 if (ipif_ill == ill || (ill->ill_group != NULL && 18776 ipif_ill->ill_group == ill->ill_group)) { 18777 ire_delete(ire); 18778 } 18779 } 18780 18781 /* 18782 * Delete all the ire whose stq references ill_arg. 18783 */ 18784 static void 18785 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18786 { 18787 ill_t *ill = (ill_t *)ill_arg; 18788 ill_t *ire_ill; 18789 18790 ASSERT(IAM_WRITER_ILL(ill)); 18791 /* 18792 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18793 * Hence this should be IRE_CACHE. 18794 */ 18795 ASSERT(ire->ire_type == IRE_CACHE); 18796 18797 /* 18798 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18799 * matches ill. We are only interested in IRE_CACHES that 18800 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18801 * filtering here. 18802 */ 18803 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18804 18805 if (ire_ill == ill) 18806 ire_delete(ire); 18807 } 18808 18809 /* 18810 * This is called when an ill leaves the group. We want to delete 18811 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18812 * pointing at ill. 18813 */ 18814 static void 18815 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18816 { 18817 ill_t *ill = (ill_t *)ill_arg; 18818 18819 ASSERT(IAM_WRITER_ILL(ill)); 18820 ASSERT(ill->ill_group == NULL); 18821 /* 18822 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18823 * Hence this should be IRE_CACHE. 18824 */ 18825 ASSERT(ire->ire_type == IRE_CACHE); 18826 /* 18827 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18828 * matches ill. We are interested in both. 18829 */ 18830 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18831 (ire->ire_ipif->ipif_ill == ill)); 18832 18833 ire_delete(ire); 18834 } 18835 18836 /* 18837 * Initiate deallocate of an IPIF. Always called as writer. Called by 18838 * ill_delete or ip_sioctl_removeif. 18839 */ 18840 static void 18841 ipif_free(ipif_t *ipif) 18842 { 18843 ASSERT(IAM_WRITER_IPIF(ipif)); 18844 18845 if (ipif->ipif_recovery_id != 0) 18846 (void) untimeout(ipif->ipif_recovery_id); 18847 ipif->ipif_recovery_id = 0; 18848 18849 /* Remove conn references */ 18850 reset_conn_ipif(ipif); 18851 18852 /* 18853 * Make sure we have valid net and subnet broadcast ire's for the 18854 * other ipif's which share them with this ipif. 18855 */ 18856 if (!ipif->ipif_isv6) 18857 ipif_check_bcast_ires(ipif); 18858 18859 /* 18860 * Take down the interface. We can be called either from ill_delete 18861 * or from ip_sioctl_removeif. 18862 */ 18863 (void) ipif_down(ipif, NULL, NULL); 18864 18865 rw_enter(&ill_g_lock, RW_WRITER); 18866 /* Remove pointers to this ill in the multicast routing tables */ 18867 reset_mrt_vif_ipif(ipif); 18868 rw_exit(&ill_g_lock); 18869 } 18870 18871 static void 18872 ipif_free_tail(ipif_t *ipif) 18873 { 18874 mblk_t *mp; 18875 ipif_t **ipifp; 18876 18877 /* 18878 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18879 */ 18880 mutex_enter(&ipif->ipif_saved_ire_lock); 18881 mp = ipif->ipif_saved_ire_mp; 18882 ipif->ipif_saved_ire_mp = NULL; 18883 mutex_exit(&ipif->ipif_saved_ire_lock); 18884 freemsg(mp); 18885 18886 /* 18887 * Need to hold both ill_g_lock and ill_lock while 18888 * inserting or removing an ipif from the linked list 18889 * of ipifs hanging off the ill. 18890 */ 18891 rw_enter(&ill_g_lock, RW_WRITER); 18892 /* 18893 * Remove all multicast memberships on the interface now. 18894 * This removes IPv4 multicast memberships joined within 18895 * the kernel as ipif_down does not do ipif_multicast_down 18896 * for IPv4. IPv6 is not handled here as the multicast memberships 18897 * are based on ill and not on ipif. 18898 */ 18899 ilm_free(ipif); 18900 18901 /* 18902 * Since we held the ill_g_lock while doing the ilm_free above, 18903 * we can assert the ilms were really deleted and not just marked 18904 * ILM_DELETED. 18905 */ 18906 ASSERT(ilm_walk_ipif(ipif) == 0); 18907 18908 18909 IPIF_TRACE_CLEANUP(ipif); 18910 18911 /* Ask SCTP to take it out of it list */ 18912 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18913 18914 mutex_enter(&ipif->ipif_ill->ill_lock); 18915 /* Get it out of the ILL interface list. */ 18916 ipifp = &ipif->ipif_ill->ill_ipif; 18917 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18918 if (*ipifp == ipif) { 18919 *ipifp = ipif->ipif_next; 18920 break; 18921 } 18922 } 18923 18924 mutex_exit(&ipif->ipif_ill->ill_lock); 18925 rw_exit(&ill_g_lock); 18926 18927 mutex_destroy(&ipif->ipif_saved_ire_lock); 18928 18929 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18930 18931 /* Free the memory. */ 18932 mi_free((char *)ipif); 18933 } 18934 18935 /* 18936 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18937 * "ill_name" otherwise. 18938 */ 18939 char * 18940 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18941 { 18942 char lbuf[32]; 18943 char *name; 18944 size_t name_len; 18945 18946 buf[0] = '\0'; 18947 if (!ipif) 18948 return (buf); 18949 name = ipif->ipif_ill->ill_name; 18950 name_len = ipif->ipif_ill->ill_name_length; 18951 if (ipif->ipif_id != 0) { 18952 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18953 ipif->ipif_id); 18954 name = lbuf; 18955 name_len = mi_strlen(name) + 1; 18956 } 18957 len -= 1; 18958 buf[len] = '\0'; 18959 len = MIN(len, name_len); 18960 bcopy(name, buf, len); 18961 return (buf); 18962 } 18963 18964 /* 18965 * Find an IPIF based on the name passed in. Names can be of the 18966 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18967 * The <phys> string can have forms like <dev><#> (e.g., le0), 18968 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18969 * When there is no colon, the implied unit id is zero. <phys> must 18970 * correspond to the name of an ILL. (May be called as writer.) 18971 */ 18972 static ipif_t * 18973 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18974 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18975 mblk_t *mp, ipsq_func_t func, int *error) 18976 { 18977 char *cp; 18978 char *endp; 18979 long id; 18980 ill_t *ill; 18981 ipif_t *ipif; 18982 uint_t ire_type; 18983 boolean_t did_alloc = B_FALSE; 18984 ipsq_t *ipsq; 18985 18986 if (error != NULL) 18987 *error = 0; 18988 18989 /* 18990 * If the caller wants to us to create the ipif, make sure we have a 18991 * valid zoneid 18992 */ 18993 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18994 18995 if (namelen == 0) { 18996 if (error != NULL) 18997 *error = ENXIO; 18998 return (NULL); 18999 } 19000 19001 *exists = B_FALSE; 19002 /* Look for a colon in the name. */ 19003 endp = &name[namelen]; 19004 for (cp = endp; --cp > name; ) { 19005 if (*cp == IPIF_SEPARATOR_CHAR) 19006 break; 19007 } 19008 19009 if (*cp == IPIF_SEPARATOR_CHAR) { 19010 /* 19011 * Reject any non-decimal aliases for logical 19012 * interfaces. Aliases with leading zeroes 19013 * are also rejected as they introduce ambiguity 19014 * in the naming of the interfaces. 19015 * In order to confirm with existing semantics, 19016 * and to not break any programs/script relying 19017 * on that behaviour, if<0>:0 is considered to be 19018 * a valid interface. 19019 * 19020 * If alias has two or more digits and the first 19021 * is zero, fail. 19022 */ 19023 if (&cp[2] < endp && cp[1] == '0') 19024 return (NULL); 19025 } 19026 19027 if (cp <= name) { 19028 cp = endp; 19029 } else { 19030 *cp = '\0'; 19031 } 19032 19033 /* 19034 * Look up the ILL, based on the portion of the name 19035 * before the slash. ill_lookup_on_name returns a held ill. 19036 * Temporary to check whether ill exists already. If so 19037 * ill_lookup_on_name will clear it. 19038 */ 19039 ill = ill_lookup_on_name(name, do_alloc, isv6, 19040 q, mp, func, error, &did_alloc); 19041 if (cp != endp) 19042 *cp = IPIF_SEPARATOR_CHAR; 19043 if (ill == NULL) 19044 return (NULL); 19045 19046 /* Establish the unit number in the name. */ 19047 id = 0; 19048 if (cp < endp && *endp == '\0') { 19049 /* If there was a colon, the unit number follows. */ 19050 cp++; 19051 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19052 ill_refrele(ill); 19053 if (error != NULL) 19054 *error = ENXIO; 19055 return (NULL); 19056 } 19057 } 19058 19059 GRAB_CONN_LOCK(q); 19060 mutex_enter(&ill->ill_lock); 19061 /* Now see if there is an IPIF with this unit number. */ 19062 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19063 if (ipif->ipif_id == id) { 19064 if (zoneid != ALL_ZONES && 19065 zoneid != ipif->ipif_zoneid && 19066 ipif->ipif_zoneid != ALL_ZONES) { 19067 mutex_exit(&ill->ill_lock); 19068 RELEASE_CONN_LOCK(q); 19069 ill_refrele(ill); 19070 if (error != NULL) 19071 *error = ENXIO; 19072 return (NULL); 19073 } 19074 /* 19075 * The block comment at the start of ipif_down 19076 * explains the use of the macros used below 19077 */ 19078 if (IPIF_CAN_LOOKUP(ipif)) { 19079 ipif_refhold_locked(ipif); 19080 mutex_exit(&ill->ill_lock); 19081 if (!did_alloc) 19082 *exists = B_TRUE; 19083 /* 19084 * Drop locks before calling ill_refrele 19085 * since it can potentially call into 19086 * ipif_ill_refrele_tail which can end up 19087 * in trying to acquire any lock. 19088 */ 19089 RELEASE_CONN_LOCK(q); 19090 ill_refrele(ill); 19091 return (ipif); 19092 } else if (IPIF_CAN_WAIT(ipif, q)) { 19093 ipsq = ill->ill_phyint->phyint_ipsq; 19094 mutex_enter(&ipsq->ipsq_lock); 19095 mutex_exit(&ill->ill_lock); 19096 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19097 mutex_exit(&ipsq->ipsq_lock); 19098 RELEASE_CONN_LOCK(q); 19099 ill_refrele(ill); 19100 *error = EINPROGRESS; 19101 return (NULL); 19102 } 19103 } 19104 } 19105 RELEASE_CONN_LOCK(q); 19106 19107 if (!do_alloc) { 19108 mutex_exit(&ill->ill_lock); 19109 ill_refrele(ill); 19110 if (error != NULL) 19111 *error = ENXIO; 19112 return (NULL); 19113 } 19114 19115 /* 19116 * If none found, atomically allocate and return a new one. 19117 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19118 * to support "receive only" use of lo0:1 etc. as is still done 19119 * below as an initial guess. 19120 * However, this is now likely to be overriden later in ipif_up_done() 19121 * when we know for sure what address has been configured on the 19122 * interface, since we might have more than one loopback interface 19123 * with a loopback address, e.g. in the case of zones, and all the 19124 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19125 */ 19126 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19127 ire_type = IRE_LOOPBACK; 19128 else 19129 ire_type = IRE_LOCAL; 19130 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19131 if (ipif != NULL) 19132 ipif_refhold_locked(ipif); 19133 else if (error != NULL) 19134 *error = ENOMEM; 19135 mutex_exit(&ill->ill_lock); 19136 ill_refrele(ill); 19137 return (ipif); 19138 } 19139 19140 /* 19141 * This routine is called whenever a new address comes up on an ipif. If 19142 * we are configured to respond to address mask requests, then we are supposed 19143 * to broadcast an address mask reply at this time. This routine is also 19144 * called if we are already up, but a netmask change is made. This is legal 19145 * but might not make the system manager very popular. (May be called 19146 * as writer.) 19147 */ 19148 void 19149 ipif_mask_reply(ipif_t *ipif) 19150 { 19151 icmph_t *icmph; 19152 ipha_t *ipha; 19153 mblk_t *mp; 19154 19155 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19156 19157 if (!ip_respond_to_address_mask_broadcast) 19158 return; 19159 19160 /* ICMP mask reply is IPv4 only */ 19161 ASSERT(!ipif->ipif_isv6); 19162 /* ICMP mask reply is not for a loopback interface */ 19163 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19164 19165 mp = allocb(REPLY_LEN, BPRI_HI); 19166 if (mp == NULL) 19167 return; 19168 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19169 19170 ipha = (ipha_t *)mp->b_rptr; 19171 bzero(ipha, REPLY_LEN); 19172 *ipha = icmp_ipha; 19173 ipha->ipha_ttl = ip_broadcast_ttl; 19174 ipha->ipha_src = ipif->ipif_src_addr; 19175 ipha->ipha_dst = ipif->ipif_brd_addr; 19176 ipha->ipha_length = htons(REPLY_LEN); 19177 ipha->ipha_ident = 0; 19178 19179 icmph = (icmph_t *)&ipha[1]; 19180 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19181 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19182 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19183 if (icmph->icmph_checksum == 0) 19184 icmph->icmph_checksum = 0xffff; 19185 19186 put(ipif->ipif_wq, mp); 19187 19188 #undef REPLY_LEN 19189 } 19190 19191 /* 19192 * When the mtu in the ipif changes, we call this routine through ire_walk 19193 * to update all the relevant IREs. 19194 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19195 */ 19196 static void 19197 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19198 { 19199 ipif_t *ipif = (ipif_t *)ipif_arg; 19200 19201 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19202 return; 19203 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19204 } 19205 19206 /* 19207 * When the mtu in the ill changes, we call this routine through ire_walk 19208 * to update all the relevant IREs. 19209 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19210 */ 19211 void 19212 ill_mtu_change(ire_t *ire, char *ill_arg) 19213 { 19214 ill_t *ill = (ill_t *)ill_arg; 19215 19216 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19217 return; 19218 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19219 } 19220 19221 /* 19222 * Join the ipif specific multicast groups. 19223 * Must be called after a mapping has been set up in the resolver. (Always 19224 * called as writer.) 19225 */ 19226 void 19227 ipif_multicast_up(ipif_t *ipif) 19228 { 19229 int err, index; 19230 ill_t *ill; 19231 19232 ASSERT(IAM_WRITER_IPIF(ipif)); 19233 19234 ill = ipif->ipif_ill; 19235 index = ill->ill_phyint->phyint_ifindex; 19236 19237 ip1dbg(("ipif_multicast_up\n")); 19238 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19239 return; 19240 19241 if (ipif->ipif_isv6) { 19242 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19243 return; 19244 19245 /* Join the all hosts multicast address */ 19246 ip1dbg(("ipif_multicast_up - addmulti\n")); 19247 /* 19248 * Passing B_TRUE means we have to join the multicast 19249 * membership on this interface even though this is 19250 * FAILED. If we join on a different one in the group, 19251 * we will not be able to delete the membership later 19252 * as we currently don't track where we join when we 19253 * join within the kernel unlike applications where 19254 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19255 * for more on this. 19256 */ 19257 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19258 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19259 if (err != 0) { 19260 ip0dbg(("ipif_multicast_up: " 19261 "all_hosts_mcast failed %d\n", 19262 err)); 19263 return; 19264 } 19265 /* 19266 * Enable multicast for the solicited node multicast address 19267 */ 19268 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19269 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19270 19271 ipv6_multi.s6_addr32[3] |= 19272 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19273 19274 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19275 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19276 NULL); 19277 if (err != 0) { 19278 ip0dbg(("ipif_multicast_up: solicited MC" 19279 " failed %d\n", err)); 19280 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19281 ill, ill->ill_phyint->phyint_ifindex, 19282 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19283 return; 19284 } 19285 } 19286 } else { 19287 if (ipif->ipif_lcl_addr == INADDR_ANY) 19288 return; 19289 19290 /* Join the all hosts multicast address */ 19291 ip1dbg(("ipif_multicast_up - addmulti\n")); 19292 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19293 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19294 if (err) { 19295 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19296 return; 19297 } 19298 } 19299 ipif->ipif_multicast_up = 1; 19300 } 19301 19302 /* 19303 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19304 * any explicit memberships are blown away in ill_leave_multicast() when the 19305 * ill is brought down. 19306 */ 19307 static void 19308 ipif_multicast_down(ipif_t *ipif) 19309 { 19310 int err; 19311 19312 ASSERT(IAM_WRITER_IPIF(ipif)); 19313 19314 ip1dbg(("ipif_multicast_down\n")); 19315 if (!ipif->ipif_multicast_up) 19316 return; 19317 19318 ASSERT(ipif->ipif_isv6); 19319 19320 ip1dbg(("ipif_multicast_down - delmulti\n")); 19321 19322 /* 19323 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19324 * we should look for ilms on this ill rather than the ones that have 19325 * been failed over here. They are here temporarily. As 19326 * ipif_multicast_up has joined on this ill, we should delete only 19327 * from this ill. 19328 */ 19329 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19330 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19331 B_TRUE, B_TRUE); 19332 if (err != 0) { 19333 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19334 err)); 19335 } 19336 /* 19337 * Disable multicast for the solicited node multicast address 19338 */ 19339 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19340 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19341 19342 ipv6_multi.s6_addr32[3] |= 19343 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19344 19345 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19346 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19347 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19348 19349 if (err != 0) { 19350 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19351 err)); 19352 } 19353 } 19354 19355 ipif->ipif_multicast_up = 0; 19356 } 19357 19358 /* 19359 * Used when an interface comes up to recreate any extra routes on this 19360 * interface. 19361 */ 19362 static ire_t ** 19363 ipif_recover_ire(ipif_t *ipif) 19364 { 19365 mblk_t *mp; 19366 ire_t **ipif_saved_irep; 19367 ire_t **irep; 19368 19369 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19370 ipif->ipif_id)); 19371 19372 mutex_enter(&ipif->ipif_saved_ire_lock); 19373 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19374 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19375 if (ipif_saved_irep == NULL) { 19376 mutex_exit(&ipif->ipif_saved_ire_lock); 19377 return (NULL); 19378 } 19379 19380 irep = ipif_saved_irep; 19381 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19382 ire_t *ire; 19383 queue_t *rfq; 19384 queue_t *stq; 19385 ifrt_t *ifrt; 19386 uchar_t *src_addr; 19387 uchar_t *gateway_addr; 19388 mblk_t *resolver_mp; 19389 ushort_t type; 19390 19391 /* 19392 * When the ire was initially created and then added in 19393 * ip_rt_add(), it was created either using ipif->ipif_net_type 19394 * in the case of a traditional interface route, or as one of 19395 * the IRE_OFFSUBNET types (with the exception of 19396 * IRE_HOST types ire which is created by icmp_redirect() and 19397 * which we don't need to save or recover). In the case where 19398 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19399 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19400 * to satisfy software like GateD and Sun Cluster which creates 19401 * routes using the the loopback interface's address as a 19402 * gateway. 19403 * 19404 * As ifrt->ifrt_type reflects the already updated ire_type and 19405 * since ire_create() expects that IRE_IF_NORESOLVER will have 19406 * a valid nce_res_mp field (which doesn't make sense for a 19407 * IRE_LOOPBACK), ire_create() will be called in the same way 19408 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19409 * the route looks like a traditional interface route (where 19410 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19411 * the saved ifrt->ifrt_type. This means that in the case where 19412 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19413 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19414 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19415 */ 19416 ifrt = (ifrt_t *)mp->b_rptr; 19417 if (ifrt->ifrt_type & IRE_INTERFACE) { 19418 rfq = NULL; 19419 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19420 ? ipif->ipif_rq : ipif->ipif_wq; 19421 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19422 ? (uint8_t *)&ifrt->ifrt_src_addr 19423 : (uint8_t *)&ipif->ipif_src_addr; 19424 gateway_addr = NULL; 19425 resolver_mp = ipif->ipif_resolver_mp; 19426 type = ipif->ipif_net_type; 19427 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19428 /* Recover multiroute broadcast IRE. */ 19429 rfq = ipif->ipif_rq; 19430 stq = ipif->ipif_wq; 19431 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19432 ? (uint8_t *)&ifrt->ifrt_src_addr 19433 : (uint8_t *)&ipif->ipif_src_addr; 19434 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19435 resolver_mp = ipif->ipif_bcast_mp; 19436 type = ifrt->ifrt_type; 19437 } else { 19438 rfq = NULL; 19439 stq = NULL; 19440 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19441 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19442 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19443 resolver_mp = NULL; 19444 type = ifrt->ifrt_type; 19445 } 19446 19447 /* 19448 * Create a copy of the IRE with the saved address and netmask. 19449 */ 19450 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19451 "0x%x/0x%x\n", 19452 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19453 ntohl(ifrt->ifrt_addr), 19454 ntohl(ifrt->ifrt_mask))); 19455 ire = ire_create( 19456 (uint8_t *)&ifrt->ifrt_addr, 19457 (uint8_t *)&ifrt->ifrt_mask, 19458 src_addr, 19459 gateway_addr, 19460 NULL, 19461 &ifrt->ifrt_max_frag, 19462 NULL, 19463 rfq, 19464 stq, 19465 type, 19466 resolver_mp, 19467 ipif, 19468 NULL, 19469 0, 19470 0, 19471 0, 19472 ifrt->ifrt_flags, 19473 &ifrt->ifrt_iulp_info, 19474 NULL, 19475 NULL); 19476 19477 if (ire == NULL) { 19478 mutex_exit(&ipif->ipif_saved_ire_lock); 19479 kmem_free(ipif_saved_irep, 19480 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19481 return (NULL); 19482 } 19483 19484 /* 19485 * Some software (for example, GateD and Sun Cluster) attempts 19486 * to create (what amount to) IRE_PREFIX routes with the 19487 * loopback address as the gateway. This is primarily done to 19488 * set up prefixes with the RTF_REJECT flag set (for example, 19489 * when generating aggregate routes.) 19490 * 19491 * If the IRE type (as defined by ipif->ipif_net_type) is 19492 * IRE_LOOPBACK, then we map the request into a 19493 * IRE_IF_NORESOLVER. 19494 */ 19495 if (ipif->ipif_net_type == IRE_LOOPBACK) 19496 ire->ire_type = IRE_IF_NORESOLVER; 19497 /* 19498 * ire held by ire_add, will be refreled' towards the 19499 * the end of ipif_up_done 19500 */ 19501 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19502 *irep = ire; 19503 irep++; 19504 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19505 } 19506 mutex_exit(&ipif->ipif_saved_ire_lock); 19507 return (ipif_saved_irep); 19508 } 19509 19510 /* 19511 * Used to set the netmask and broadcast address to default values when the 19512 * interface is brought up. (Always called as writer.) 19513 */ 19514 static void 19515 ipif_set_default(ipif_t *ipif) 19516 { 19517 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19518 19519 if (!ipif->ipif_isv6) { 19520 /* 19521 * Interface holds an IPv4 address. Default 19522 * mask is the natural netmask. 19523 */ 19524 if (!ipif->ipif_net_mask) { 19525 ipaddr_t v4mask; 19526 19527 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19528 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19529 } 19530 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19531 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19532 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19533 } else { 19534 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19535 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19536 } 19537 /* 19538 * NOTE: SunOS 4.X does this even if the broadcast address 19539 * has been already set thus we do the same here. 19540 */ 19541 if (ipif->ipif_flags & IPIF_BROADCAST) { 19542 ipaddr_t v4addr; 19543 19544 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19545 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19546 } 19547 } else { 19548 /* 19549 * Interface holds an IPv6-only address. Default 19550 * mask is all-ones. 19551 */ 19552 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19553 ipif->ipif_v6net_mask = ipv6_all_ones; 19554 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19555 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19556 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19557 } else { 19558 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19559 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19560 } 19561 } 19562 } 19563 19564 /* 19565 * Return 0 if this address can be used as local address without causing 19566 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19567 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19568 * Special checks are needed to allow the same IPv6 link-local address 19569 * on different ills. 19570 * TODO: allowing the same site-local address on different ill's. 19571 */ 19572 int 19573 ip_addr_availability_check(ipif_t *new_ipif) 19574 { 19575 in6_addr_t our_v6addr; 19576 ill_t *ill; 19577 ipif_t *ipif; 19578 ill_walk_context_t ctx; 19579 19580 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19581 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19582 ASSERT(RW_READ_HELD(&ill_g_lock)); 19583 19584 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19585 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19586 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19587 return (0); 19588 19589 our_v6addr = new_ipif->ipif_v6lcl_addr; 19590 19591 if (new_ipif->ipif_isv6) 19592 ill = ILL_START_WALK_V6(&ctx); 19593 else 19594 ill = ILL_START_WALK_V4(&ctx); 19595 19596 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19597 for (ipif = ill->ill_ipif; ipif != NULL; 19598 ipif = ipif->ipif_next) { 19599 if ((ipif == new_ipif) || 19600 !(ipif->ipif_flags & IPIF_UP) || 19601 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19602 continue; 19603 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19604 &our_v6addr)) { 19605 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19606 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19607 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19608 ipif->ipif_flags |= IPIF_UNNUMBERED; 19609 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19610 new_ipif->ipif_ill != ill) 19611 continue; 19612 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19613 new_ipif->ipif_ill != ill) 19614 continue; 19615 else if (new_ipif->ipif_zoneid != 19616 ipif->ipif_zoneid && 19617 ipif->ipif_zoneid != ALL_ZONES && 19618 (ill->ill_phyint->phyint_flags & 19619 PHYI_LOOPBACK)) 19620 continue; 19621 else if (new_ipif->ipif_ill == ill) 19622 return (EADDRINUSE); 19623 else 19624 return (EADDRNOTAVAIL); 19625 } 19626 } 19627 } 19628 19629 return (0); 19630 } 19631 19632 /* 19633 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19634 * IREs for the ipif. 19635 * When the routine returns EINPROGRESS then mp has been consumed and 19636 * the ioctl will be acked from ip_rput_dlpi. 19637 */ 19638 static int 19639 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19640 { 19641 ill_t *ill = ipif->ipif_ill; 19642 boolean_t isv6 = ipif->ipif_isv6; 19643 int err = 0; 19644 boolean_t success; 19645 19646 ASSERT(IAM_WRITER_IPIF(ipif)); 19647 19648 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19649 19650 /* Shouldn't get here if it is already up. */ 19651 if (ipif->ipif_flags & IPIF_UP) 19652 return (EALREADY); 19653 19654 /* Skip arp/ndp for any loopback interface. */ 19655 if (ill->ill_wq != NULL) { 19656 conn_t *connp = Q_TO_CONN(q); 19657 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19658 19659 if (!ill->ill_dl_up) { 19660 /* 19661 * ill_dl_up is not yet set. i.e. we are yet to 19662 * DL_BIND with the driver and this is the first 19663 * logical interface on the ill to become "up". 19664 * Tell the driver to get going (via DL_BIND_REQ). 19665 * Note that changing "significant" IFF_ flags 19666 * address/netmask etc cause a down/up dance, but 19667 * does not cause an unbind (DL_UNBIND) with the driver 19668 */ 19669 return (ill_dl_up(ill, ipif, mp, q)); 19670 } 19671 19672 /* 19673 * ipif_resolver_up may end up sending an 19674 * AR_INTERFACE_UP message to ARP, which would, in 19675 * turn send a DLPI message to the driver. ioctls are 19676 * serialized and so we cannot send more than one 19677 * interface up message at a time. If ipif_resolver_up 19678 * does send an interface up message to ARP, we get 19679 * EINPROGRESS and we will complete in ip_arp_done. 19680 */ 19681 19682 ASSERT(connp != NULL); 19683 ASSERT(ipsq->ipsq_pending_mp == NULL); 19684 mutex_enter(&connp->conn_lock); 19685 mutex_enter(&ill->ill_lock); 19686 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19687 mutex_exit(&ill->ill_lock); 19688 mutex_exit(&connp->conn_lock); 19689 if (!success) 19690 return (EINTR); 19691 19692 /* 19693 * Crank up IPv6 neighbor discovery 19694 * Unlike ARP, this should complete when 19695 * ipif_ndp_up returns. However, for 19696 * ILLF_XRESOLV interfaces we also send a 19697 * AR_INTERFACE_UP to the external resolver. 19698 * That ioctl will complete in ip_rput. 19699 */ 19700 if (isv6) { 19701 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19702 B_FALSE); 19703 if (err != 0) { 19704 if (err != EINPROGRESS) 19705 mp = ipsq_pending_mp_get(ipsq, &connp); 19706 return (err); 19707 } 19708 } 19709 /* Now, ARP */ 19710 err = ipif_resolver_up(ipif, Res_act_initial); 19711 if (err == EINPROGRESS) { 19712 /* We will complete it in ip_arp_done */ 19713 return (err); 19714 } 19715 mp = ipsq_pending_mp_get(ipsq, &connp); 19716 ASSERT(mp != NULL); 19717 if (err != 0) 19718 return (err); 19719 } else { 19720 /* 19721 * Interfaces without underlying hardware don't do duplicate 19722 * address detection. 19723 */ 19724 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19725 ipif->ipif_addr_ready = 1; 19726 } 19727 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19728 } 19729 19730 /* 19731 * Perform a bind for the physical device. 19732 * When the routine returns EINPROGRESS then mp has been consumed and 19733 * the ioctl will be acked from ip_rput_dlpi. 19734 * Allocate an unbind message and save it until ipif_down. 19735 */ 19736 static int 19737 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19738 { 19739 mblk_t *areq_mp = NULL; 19740 mblk_t *bind_mp = NULL; 19741 mblk_t *unbind_mp = NULL; 19742 conn_t *connp; 19743 boolean_t success; 19744 19745 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19746 ASSERT(IAM_WRITER_ILL(ill)); 19747 19748 ASSERT(mp != NULL); 19749 19750 /* Create a resolver cookie for ARP */ 19751 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19752 areq_t *areq; 19753 uint16_t sap_addr; 19754 19755 areq_mp = ill_arp_alloc(ill, 19756 (uchar_t *)&ip_areq_template, 0); 19757 if (areq_mp == NULL) { 19758 return (ENOMEM); 19759 } 19760 freemsg(ill->ill_resolver_mp); 19761 ill->ill_resolver_mp = areq_mp; 19762 areq = (areq_t *)areq_mp->b_rptr; 19763 sap_addr = ill->ill_sap; 19764 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19765 /* 19766 * Wait till we call ill_pending_mp_add to determine 19767 * the success before we free the ill_resolver_mp and 19768 * attach areq_mp in it's place. 19769 */ 19770 } 19771 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19772 DL_BIND_REQ); 19773 if (bind_mp == NULL) 19774 goto bad; 19775 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19776 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19777 19778 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19779 if (unbind_mp == NULL) 19780 goto bad; 19781 19782 /* 19783 * Record state needed to complete this operation when the 19784 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19785 */ 19786 if (WR(q)->q_next == NULL) { 19787 connp = Q_TO_CONN(q); 19788 mutex_enter(&connp->conn_lock); 19789 } else { 19790 connp = NULL; 19791 } 19792 mutex_enter(&ipif->ipif_ill->ill_lock); 19793 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19794 mutex_exit(&ipif->ipif_ill->ill_lock); 19795 if (connp != NULL) 19796 mutex_exit(&connp->conn_lock); 19797 if (!success) 19798 goto bad; 19799 19800 /* 19801 * Save the unbind message for ill_dl_down(); it will be consumed when 19802 * the interface goes down. 19803 */ 19804 ASSERT(ill->ill_unbind_mp == NULL); 19805 ill->ill_unbind_mp = unbind_mp; 19806 19807 ill_dlpi_send(ill, bind_mp); 19808 /* Send down link-layer capabilities probe if not already done. */ 19809 ill_capability_probe(ill); 19810 19811 /* 19812 * Sysid used to rely on the fact that netboots set domainname 19813 * and the like. Now that miniroot boots aren't strictly netboots 19814 * and miniroot network configuration is driven from userland 19815 * these things still need to be set. This situation can be detected 19816 * by comparing the interface being configured here to the one 19817 * dhcack was set to reference by the boot loader. Once sysid is 19818 * converted to use dhcp_ipc_getinfo() this call can go away. 19819 */ 19820 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19821 (strcmp(ill->ill_name, dhcack) == 0) && 19822 (strlen(srpc_domain) == 0)) { 19823 if (dhcpinit() != 0) 19824 cmn_err(CE_WARN, "no cached dhcp response"); 19825 } 19826 19827 /* 19828 * This operation will complete in ip_rput_dlpi with either 19829 * a DL_BIND_ACK or DL_ERROR_ACK. 19830 */ 19831 return (EINPROGRESS); 19832 bad: 19833 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19834 /* 19835 * We don't have to check for possible removal from illgrp 19836 * as we have not yet inserted in illgrp. For groups 19837 * without names, this ipif is still not UP and hence 19838 * this could not have possibly had any influence in forming 19839 * groups. 19840 */ 19841 19842 if (bind_mp != NULL) 19843 freemsg(bind_mp); 19844 if (unbind_mp != NULL) 19845 freemsg(unbind_mp); 19846 return (ENOMEM); 19847 } 19848 19849 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19850 19851 /* 19852 * DLPI and ARP is up. 19853 * Create all the IREs associated with an interface bring up multicast. 19854 * Set the interface flag and finish other initialization 19855 * that potentially had to be differed to after DL_BIND_ACK. 19856 */ 19857 int 19858 ipif_up_done(ipif_t *ipif) 19859 { 19860 ire_t *ire_array[20]; 19861 ire_t **irep = ire_array; 19862 ire_t **irep1; 19863 ipaddr_t net_mask = 0; 19864 ipaddr_t subnet_mask, route_mask; 19865 ill_t *ill = ipif->ipif_ill; 19866 queue_t *stq; 19867 ipif_t *src_ipif; 19868 ipif_t *tmp_ipif; 19869 boolean_t flush_ire_cache = B_TRUE; 19870 int err = 0; 19871 phyint_t *phyi; 19872 ire_t **ipif_saved_irep = NULL; 19873 int ipif_saved_ire_cnt; 19874 int cnt; 19875 boolean_t src_ipif_held = B_FALSE; 19876 boolean_t ire_added = B_FALSE; 19877 boolean_t loopback = B_FALSE; 19878 19879 ip1dbg(("ipif_up_done(%s:%u)\n", 19880 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19881 /* Check if this is a loopback interface */ 19882 if (ipif->ipif_ill->ill_wq == NULL) 19883 loopback = B_TRUE; 19884 19885 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19886 /* 19887 * If all other interfaces for this ill are down or DEPRECATED, 19888 * or otherwise unsuitable for source address selection, remove 19889 * any IRE_CACHE entries for this ill to make sure source 19890 * address selection gets to take this new ipif into account. 19891 * No need to hold ill_lock while traversing the ipif list since 19892 * we are writer 19893 */ 19894 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19895 tmp_ipif = tmp_ipif->ipif_next) { 19896 if (((tmp_ipif->ipif_flags & 19897 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19898 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19899 (tmp_ipif == ipif)) 19900 continue; 19901 /* first useable pre-existing interface */ 19902 flush_ire_cache = B_FALSE; 19903 break; 19904 } 19905 if (flush_ire_cache) 19906 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19907 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19908 19909 /* 19910 * Figure out which way the send-to queue should go. Only 19911 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19912 * should show up here. 19913 */ 19914 switch (ill->ill_net_type) { 19915 case IRE_IF_RESOLVER: 19916 stq = ill->ill_rq; 19917 break; 19918 case IRE_IF_NORESOLVER: 19919 case IRE_LOOPBACK: 19920 stq = ill->ill_wq; 19921 break; 19922 default: 19923 return (EINVAL); 19924 } 19925 19926 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19927 /* 19928 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19929 * ipif_lookup_on_name(), but in the case of zones we can have 19930 * several loopback addresses on lo0. So all the interfaces with 19931 * loopback addresses need to be marked IRE_LOOPBACK. 19932 */ 19933 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19934 htonl(INADDR_LOOPBACK)) 19935 ipif->ipif_ire_type = IRE_LOOPBACK; 19936 else 19937 ipif->ipif_ire_type = IRE_LOCAL; 19938 } 19939 19940 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19941 /* 19942 * Can't use our source address. Select a different 19943 * source address for the IRE_INTERFACE and IRE_LOCAL 19944 */ 19945 src_ipif = ipif_select_source(ipif->ipif_ill, 19946 ipif->ipif_subnet, ipif->ipif_zoneid); 19947 if (src_ipif == NULL) 19948 src_ipif = ipif; /* Last resort */ 19949 else 19950 src_ipif_held = B_TRUE; 19951 } else { 19952 src_ipif = ipif; 19953 } 19954 19955 /* Create all the IREs associated with this interface */ 19956 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19957 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19958 19959 /* 19960 * If we're on a labeled system then make sure that zone- 19961 * private addresses have proper remote host database entries. 19962 */ 19963 if (is_system_labeled() && 19964 ipif->ipif_ire_type != IRE_LOOPBACK && 19965 !tsol_check_interface_address(ipif)) 19966 return (EINVAL); 19967 19968 /* Register the source address for __sin6_src_id */ 19969 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19970 ipif->ipif_zoneid); 19971 if (err != 0) { 19972 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19973 return (err); 19974 } 19975 19976 /* If the interface address is set, create the local IRE. */ 19977 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19978 (void *)ipif, 19979 ipif->ipif_ire_type, 19980 ntohl(ipif->ipif_lcl_addr))); 19981 *irep++ = ire_create( 19982 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19983 (uchar_t *)&ip_g_all_ones, /* mask */ 19984 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19985 NULL, /* no gateway */ 19986 NULL, 19987 &ip_loopback_mtuplus, /* max frag size */ 19988 NULL, 19989 ipif->ipif_rq, /* recv-from queue */ 19990 NULL, /* no send-to queue */ 19991 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19992 NULL, 19993 ipif, 19994 NULL, 19995 0, 19996 0, 19997 0, 19998 (ipif->ipif_flags & IPIF_PRIVATE) ? 19999 RTF_PRIVATE : 0, 20000 &ire_uinfo_null, 20001 NULL, 20002 NULL); 20003 } else { 20004 ip1dbg(( 20005 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20006 ipif->ipif_ire_type, 20007 ntohl(ipif->ipif_lcl_addr), 20008 (uint_t)ipif->ipif_flags)); 20009 } 20010 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20011 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20012 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20013 } else { 20014 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20015 } 20016 20017 subnet_mask = ipif->ipif_net_mask; 20018 20019 /* 20020 * If mask was not specified, use natural netmask of 20021 * interface address. Also, store this mask back into the 20022 * ipif struct. 20023 */ 20024 if (subnet_mask == 0) { 20025 subnet_mask = net_mask; 20026 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20027 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20028 ipif->ipif_v6subnet); 20029 } 20030 20031 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20032 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20033 ipif->ipif_subnet != INADDR_ANY) { 20034 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20035 20036 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20037 route_mask = IP_HOST_MASK; 20038 } else { 20039 route_mask = subnet_mask; 20040 } 20041 20042 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20043 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20044 (void *)ipif, (void *)ill, 20045 ill->ill_net_type, 20046 ntohl(ipif->ipif_subnet))); 20047 *irep++ = ire_create( 20048 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20049 (uchar_t *)&route_mask, /* mask */ 20050 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20051 NULL, /* no gateway */ 20052 NULL, 20053 &ipif->ipif_mtu, /* max frag */ 20054 NULL, 20055 NULL, /* no recv queue */ 20056 stq, /* send-to queue */ 20057 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20058 ill->ill_resolver_mp, /* xmit header */ 20059 ipif, 20060 NULL, 20061 0, 20062 0, 20063 0, 20064 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20065 &ire_uinfo_null, 20066 NULL, 20067 NULL); 20068 } 20069 20070 /* 20071 * If the interface address is set, create the broadcast IREs. 20072 * 20073 * ire_create_bcast checks if the proposed new IRE matches 20074 * any existing IRE's with the same physical interface (ILL). 20075 * This should get rid of duplicates. 20076 * ire_create_bcast also check IPIF_NOXMIT and does not create 20077 * any broadcast ires. 20078 */ 20079 if ((ipif->ipif_subnet != INADDR_ANY) && 20080 (ipif->ipif_flags & IPIF_BROADCAST)) { 20081 ipaddr_t addr; 20082 20083 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20084 irep = ire_check_and_create_bcast(ipif, 0, irep, 20085 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20086 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20087 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20088 20089 /* 20090 * For backward compatibility, we need to create net 20091 * broadcast ire's based on the old "IP address class 20092 * system." The reason is that some old machines only 20093 * respond to these class derived net broadcast. 20094 * 20095 * But we should not create these net broadcast ire's if 20096 * the subnet_mask is shorter than the IP address class based 20097 * derived netmask. Otherwise, we may create a net 20098 * broadcast address which is the same as an IP address 20099 * on the subnet. Then TCP will refuse to talk to that 20100 * address. 20101 * 20102 * Nor do we need IRE_BROADCAST ire's for the interface 20103 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20104 * interface is already created. Creating these broadcast 20105 * ire's will only create confusion as the "addr" is going 20106 * to be same as that of the IP address of the interface. 20107 */ 20108 if (net_mask < subnet_mask) { 20109 addr = net_mask & ipif->ipif_subnet; 20110 irep = ire_check_and_create_bcast(ipif, addr, irep, 20111 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20112 irep = ire_check_and_create_bcast(ipif, 20113 ~net_mask | addr, irep, 20114 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20115 } 20116 20117 if (subnet_mask != 0xFFFFFFFF) { 20118 addr = ipif->ipif_subnet; 20119 irep = ire_check_and_create_bcast(ipif, addr, irep, 20120 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20121 irep = ire_check_and_create_bcast(ipif, 20122 ~subnet_mask|addr, irep, 20123 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20124 } 20125 } 20126 20127 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20128 20129 /* If an earlier ire_create failed, get out now */ 20130 for (irep1 = irep; irep1 > ire_array; ) { 20131 irep1--; 20132 if (*irep1 == NULL) { 20133 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20134 err = ENOMEM; 20135 goto bad; 20136 } 20137 } 20138 20139 /* 20140 * Need to atomically check for ip_addr_availablity_check 20141 * under ip_addr_avail_lock, and if it fails got bad, and remove 20142 * from group also.The ill_g_lock is grabbed as reader 20143 * just to make sure no new ills or new ipifs are being added 20144 * to the system while we are checking the uniqueness of addresses. 20145 */ 20146 rw_enter(&ill_g_lock, RW_READER); 20147 mutex_enter(&ip_addr_avail_lock); 20148 /* Mark it up, and increment counters. */ 20149 ipif->ipif_flags |= IPIF_UP; 20150 ill->ill_ipif_up_count++; 20151 err = ip_addr_availability_check(ipif); 20152 mutex_exit(&ip_addr_avail_lock); 20153 rw_exit(&ill_g_lock); 20154 20155 if (err != 0) { 20156 /* 20157 * Our address may already be up on the same ill. In this case, 20158 * the ARP entry for our ipif replaced the one for the other 20159 * ipif. So we don't want to delete it (otherwise the other ipif 20160 * would be unable to send packets). 20161 * ip_addr_availability_check() identifies this case for us and 20162 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20163 * which is the expected error code. 20164 */ 20165 if (err == EADDRINUSE) { 20166 freemsg(ipif->ipif_arp_del_mp); 20167 ipif->ipif_arp_del_mp = NULL; 20168 err = EADDRNOTAVAIL; 20169 } 20170 ill->ill_ipif_up_count--; 20171 ipif->ipif_flags &= ~IPIF_UP; 20172 goto bad; 20173 } 20174 20175 /* 20176 * Add in all newly created IREs. ire_create_bcast() has 20177 * already checked for duplicates of the IRE_BROADCAST type. 20178 * We want to add before we call ifgrp_insert which wants 20179 * to know whether IRE_IF_RESOLVER exists or not. 20180 * 20181 * NOTE : We refrele the ire though we may branch to "bad" 20182 * later on where we do ire_delete. This is okay 20183 * because nobody can delete it as we are running 20184 * exclusively. 20185 */ 20186 for (irep1 = irep; irep1 > ire_array; ) { 20187 irep1--; 20188 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20189 /* 20190 * refheld by ire_add. refele towards the end of the func 20191 */ 20192 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20193 } 20194 ire_added = B_TRUE; 20195 /* 20196 * Form groups if possible. 20197 * 20198 * If we are supposed to be in a ill_group with a name, insert it 20199 * now as we know that at least one ipif is UP. Otherwise form 20200 * nameless groups. 20201 * 20202 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20203 * this ipif into the appropriate interface group, or create a 20204 * new one. If this is already in a nameless group, we try to form 20205 * a bigger group looking at other ills potentially sharing this 20206 * ipif's prefix. 20207 */ 20208 phyi = ill->ill_phyint; 20209 if (phyi->phyint_groupname_len != 0) { 20210 ASSERT(phyi->phyint_groupname != NULL); 20211 if (ill->ill_ipif_up_count == 1) { 20212 ASSERT(ill->ill_group == NULL); 20213 err = illgrp_insert(&illgrp_head_v4, ill, 20214 phyi->phyint_groupname, NULL, B_TRUE); 20215 if (err != 0) { 20216 ip1dbg(("ipif_up_done: illgrp allocation " 20217 "failed, error %d\n", err)); 20218 goto bad; 20219 } 20220 } 20221 ASSERT(ill->ill_group != NULL); 20222 } 20223 20224 /* 20225 * When this is part of group, we need to make sure that 20226 * any broadcast ires created because of this ipif coming 20227 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20228 * so that we don't receive duplicate broadcast packets. 20229 */ 20230 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20231 ipif_renominate_bcast(ipif); 20232 20233 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20234 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20235 ipif_saved_irep = ipif_recover_ire(ipif); 20236 20237 if (!loopback) { 20238 /* 20239 * If the broadcast address has been set, make sure it makes 20240 * sense based on the interface address. 20241 * Only match on ill since we are sharing broadcast addresses. 20242 */ 20243 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20244 (ipif->ipif_flags & IPIF_BROADCAST)) { 20245 ire_t *ire; 20246 20247 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20248 IRE_BROADCAST, ipif, ALL_ZONES, 20249 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20250 20251 if (ire == NULL) { 20252 /* 20253 * If there isn't a matching broadcast IRE, 20254 * revert to the default for this netmask. 20255 */ 20256 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20257 mutex_enter(&ipif->ipif_ill->ill_lock); 20258 ipif_set_default(ipif); 20259 mutex_exit(&ipif->ipif_ill->ill_lock); 20260 } else { 20261 ire_refrele(ire); 20262 } 20263 } 20264 20265 } 20266 20267 /* This is the first interface on this ill */ 20268 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20269 /* 20270 * Need to recover all multicast memberships in the driver. 20271 * This had to be deferred until we had attached. 20272 */ 20273 ill_recover_multicast(ill); 20274 } 20275 /* Join the allhosts multicast address */ 20276 ipif_multicast_up(ipif); 20277 20278 if (!loopback) { 20279 /* 20280 * See whether anybody else would benefit from the 20281 * new ipif that we added. We call this always rather 20282 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20283 * ipif is for the benefit of illgrp_insert (done above) 20284 * which does not do source address selection as it does 20285 * not want to re-create interface routes that we are 20286 * having reference to it here. 20287 */ 20288 ill_update_source_selection(ill); 20289 } 20290 20291 for (irep1 = irep; irep1 > ire_array; ) { 20292 irep1--; 20293 if (*irep1 != NULL) { 20294 /* was held in ire_add */ 20295 ire_refrele(*irep1); 20296 } 20297 } 20298 20299 cnt = ipif_saved_ire_cnt; 20300 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20301 if (*irep1 != NULL) { 20302 /* was held in ire_add */ 20303 ire_refrele(*irep1); 20304 } 20305 } 20306 20307 if (!loopback && ipif->ipif_addr_ready) { 20308 /* Broadcast an address mask reply. */ 20309 ipif_mask_reply(ipif); 20310 } 20311 if (ipif_saved_irep != NULL) { 20312 kmem_free(ipif_saved_irep, 20313 ipif_saved_ire_cnt * sizeof (ire_t *)); 20314 } 20315 if (src_ipif_held) 20316 ipif_refrele(src_ipif); 20317 20318 /* 20319 * This had to be deferred until we had bound. Tell routing sockets and 20320 * others that this interface is up if it looks like the address has 20321 * been validated. Otherwise, if it isn't ready yet, wait for 20322 * duplicate address detection to do its thing. 20323 */ 20324 if (ipif->ipif_addr_ready) { 20325 ip_rts_ifmsg(ipif); 20326 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20327 /* Let SCTP update the status for this ipif */ 20328 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20329 } 20330 return (0); 20331 20332 bad: 20333 ip1dbg(("ipif_up_done: FAILED \n")); 20334 /* 20335 * We don't have to bother removing from ill groups because 20336 * 20337 * 1) For groups with names, we insert only when the first ipif 20338 * comes up. In that case if it fails, it will not be in any 20339 * group. So, we need not try to remove for that case. 20340 * 20341 * 2) For groups without names, either we tried to insert ipif_ill 20342 * in a group as singleton or found some other group to become 20343 * a bigger group. For the former, if it fails we don't have 20344 * anything to do as ipif_ill is not in the group and for the 20345 * latter, there are no failures in illgrp_insert/illgrp_delete 20346 * (ENOMEM can't occur for this. Check ifgrp_insert). 20347 */ 20348 while (irep > ire_array) { 20349 irep--; 20350 if (*irep != NULL) { 20351 ire_delete(*irep); 20352 if (ire_added) 20353 ire_refrele(*irep); 20354 } 20355 } 20356 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 20357 20358 if (ipif_saved_irep != NULL) { 20359 kmem_free(ipif_saved_irep, 20360 ipif_saved_ire_cnt * sizeof (ire_t *)); 20361 } 20362 if (src_ipif_held) 20363 ipif_refrele(src_ipif); 20364 20365 ipif_arp_down(ipif); 20366 return (err); 20367 } 20368 20369 /* 20370 * Turn off the ARP with the ILLF_NOARP flag. 20371 */ 20372 static int 20373 ill_arp_off(ill_t *ill) 20374 { 20375 mblk_t *arp_off_mp = NULL; 20376 mblk_t *arp_on_mp = NULL; 20377 20378 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20379 20380 ASSERT(IAM_WRITER_ILL(ill)); 20381 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20382 20383 /* 20384 * If the on message is still around we've already done 20385 * an arp_off without doing an arp_on thus there is no 20386 * work needed. 20387 */ 20388 if (ill->ill_arp_on_mp != NULL) 20389 return (0); 20390 20391 /* 20392 * Allocate an ARP on message (to be saved) and an ARP off message 20393 */ 20394 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20395 if (!arp_off_mp) 20396 return (ENOMEM); 20397 20398 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20399 if (!arp_on_mp) 20400 goto failed; 20401 20402 ASSERT(ill->ill_arp_on_mp == NULL); 20403 ill->ill_arp_on_mp = arp_on_mp; 20404 20405 /* Send an AR_INTERFACE_OFF request */ 20406 putnext(ill->ill_rq, arp_off_mp); 20407 return (0); 20408 failed: 20409 20410 if (arp_off_mp) 20411 freemsg(arp_off_mp); 20412 return (ENOMEM); 20413 } 20414 20415 /* 20416 * Turn on ARP by turning off the ILLF_NOARP flag. 20417 */ 20418 static int 20419 ill_arp_on(ill_t *ill) 20420 { 20421 mblk_t *mp; 20422 20423 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20424 20425 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20426 20427 ASSERT(IAM_WRITER_ILL(ill)); 20428 /* 20429 * Send an AR_INTERFACE_ON request if we have already done 20430 * an arp_off (which allocated the message). 20431 */ 20432 if (ill->ill_arp_on_mp != NULL) { 20433 mp = ill->ill_arp_on_mp; 20434 ill->ill_arp_on_mp = NULL; 20435 putnext(ill->ill_rq, mp); 20436 } 20437 return (0); 20438 } 20439 20440 /* 20441 * Called after either deleting ill from the group or when setting 20442 * FAILED or STANDBY on the interface. 20443 */ 20444 static void 20445 illgrp_reset_schednext(ill_t *ill) 20446 { 20447 ill_group_t *illgrp; 20448 ill_t *save_ill; 20449 20450 ASSERT(IAM_WRITER_ILL(ill)); 20451 /* 20452 * When called from illgrp_delete, ill_group will be non-NULL. 20453 * But when called from ip_sioctl_flags, it could be NULL if 20454 * somebody is setting FAILED/INACTIVE on some interface which 20455 * is not part of a group. 20456 */ 20457 illgrp = ill->ill_group; 20458 if (illgrp == NULL) 20459 return; 20460 if (illgrp->illgrp_ill_schednext != ill) 20461 return; 20462 20463 illgrp->illgrp_ill_schednext = NULL; 20464 save_ill = ill; 20465 /* 20466 * Choose a good ill to be the next one for 20467 * outbound traffic. As the flags FAILED/STANDBY is 20468 * not yet marked when called from ip_sioctl_flags, 20469 * we check for ill separately. 20470 */ 20471 for (ill = illgrp->illgrp_ill; ill != NULL; 20472 ill = ill->ill_group_next) { 20473 if ((ill != save_ill) && 20474 !(ill->ill_phyint->phyint_flags & 20475 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20476 illgrp->illgrp_ill_schednext = ill; 20477 return; 20478 } 20479 } 20480 } 20481 20482 /* 20483 * Given an ill, find the next ill in the group to be scheduled. 20484 * (This should be called by ip_newroute() before ire_create().) 20485 * The passed in ill may be pulled out of the group, after we have picked 20486 * up a different outgoing ill from the same group. However ire add will 20487 * atomically check this. 20488 */ 20489 ill_t * 20490 illgrp_scheduler(ill_t *ill) 20491 { 20492 ill_t *retill; 20493 ill_group_t *illgrp; 20494 int illcnt; 20495 int i; 20496 uint64_t flags; 20497 20498 /* 20499 * We don't use a lock to check for the ill_group. If this ill 20500 * is currently being inserted we may end up just returning this 20501 * ill itself. That is ok. 20502 */ 20503 if (ill->ill_group == NULL) { 20504 ill_refhold(ill); 20505 return (ill); 20506 } 20507 20508 /* 20509 * Grab the ill_g_lock as reader to make sure we are dealing with 20510 * a set of stable ills. No ill can be added or deleted or change 20511 * group while we hold the reader lock. 20512 */ 20513 rw_enter(&ill_g_lock, RW_READER); 20514 if ((illgrp = ill->ill_group) == NULL) { 20515 rw_exit(&ill_g_lock); 20516 ill_refhold(ill); 20517 return (ill); 20518 } 20519 20520 illcnt = illgrp->illgrp_ill_count; 20521 mutex_enter(&illgrp->illgrp_lock); 20522 retill = illgrp->illgrp_ill_schednext; 20523 20524 if (retill == NULL) 20525 retill = illgrp->illgrp_ill; 20526 20527 /* 20528 * We do a circular search beginning at illgrp_ill_schednext 20529 * or illgrp_ill. We don't check the flags against the ill lock 20530 * since it can change anytime. The ire creation will be atomic 20531 * and will fail if the ill is FAILED or OFFLINE. 20532 */ 20533 for (i = 0; i < illcnt; i++) { 20534 flags = retill->ill_phyint->phyint_flags; 20535 20536 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20537 ILL_CAN_LOOKUP(retill)) { 20538 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20539 ill_refhold(retill); 20540 break; 20541 } 20542 retill = retill->ill_group_next; 20543 if (retill == NULL) 20544 retill = illgrp->illgrp_ill; 20545 } 20546 mutex_exit(&illgrp->illgrp_lock); 20547 rw_exit(&ill_g_lock); 20548 20549 return (i == illcnt ? NULL : retill); 20550 } 20551 20552 /* 20553 * Checks for availbility of a usable source address (if there is one) when the 20554 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20555 * this selection is done regardless of the destination. 20556 */ 20557 boolean_t 20558 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20559 { 20560 uint_t ifindex; 20561 ipif_t *ipif = NULL; 20562 ill_t *uill; 20563 boolean_t isv6; 20564 20565 ASSERT(ill != NULL); 20566 20567 isv6 = ill->ill_isv6; 20568 ifindex = ill->ill_usesrc_ifindex; 20569 if (ifindex != 0) { 20570 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20571 NULL); 20572 if (uill == NULL) 20573 return (NULL); 20574 mutex_enter(&uill->ill_lock); 20575 for (ipif = uill->ill_ipif; ipif != NULL; 20576 ipif = ipif->ipif_next) { 20577 if (!IPIF_CAN_LOOKUP(ipif)) 20578 continue; 20579 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20580 continue; 20581 if (!(ipif->ipif_flags & IPIF_UP)) 20582 continue; 20583 if (ipif->ipif_zoneid != zoneid) 20584 continue; 20585 if ((isv6 && 20586 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20587 (ipif->ipif_lcl_addr == INADDR_ANY)) 20588 continue; 20589 mutex_exit(&uill->ill_lock); 20590 ill_refrele(uill); 20591 return (B_TRUE); 20592 } 20593 mutex_exit(&uill->ill_lock); 20594 ill_refrele(uill); 20595 } 20596 return (B_FALSE); 20597 } 20598 20599 /* 20600 * Determine the best source address given a destination address and an ill. 20601 * Prefers non-deprecated over deprecated but will return a deprecated 20602 * address if there is no other choice. If there is a usable source address 20603 * on the interface pointed to by ill_usesrc_ifindex then that is given 20604 * first preference. 20605 * 20606 * Returns NULL if there is no suitable source address for the ill. 20607 * This only occurs when there is no valid source address for the ill. 20608 */ 20609 ipif_t * 20610 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20611 { 20612 ipif_t *ipif; 20613 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20614 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20615 int index = 0; 20616 boolean_t wrapped = B_FALSE; 20617 boolean_t same_subnet_only = B_FALSE; 20618 boolean_t ipif_same_found, ipif_other_found; 20619 boolean_t specific_found; 20620 ill_t *till, *usill = NULL; 20621 tsol_tpc_t *src_rhtp, *dst_rhtp; 20622 20623 if (ill->ill_usesrc_ifindex != 0) { 20624 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20625 NULL, NULL, NULL, NULL); 20626 if (usill != NULL) 20627 ill = usill; /* Select source from usesrc ILL */ 20628 else 20629 return (NULL); 20630 } 20631 20632 /* 20633 * If we're dealing with an unlabeled destination on a labeled system, 20634 * make sure that we ignore source addresses that are incompatible with 20635 * the destination's default label. That destination's default label 20636 * must dominate the minimum label on the source address. 20637 */ 20638 dst_rhtp = NULL; 20639 if (is_system_labeled()) { 20640 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20641 if (dst_rhtp == NULL) 20642 return (NULL); 20643 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20644 TPC_RELE(dst_rhtp); 20645 dst_rhtp = NULL; 20646 } 20647 } 20648 20649 /* 20650 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20651 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20652 * After selecting the right ipif, under ill_lock make sure ipif is 20653 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20654 * we retry. Inside the loop we still need to check for CONDEMNED, 20655 * but not under a lock. 20656 */ 20657 rw_enter(&ill_g_lock, RW_READER); 20658 20659 retry: 20660 till = ill; 20661 ipif_arr[0] = NULL; 20662 20663 if (till->ill_group != NULL) 20664 till = till->ill_group->illgrp_ill; 20665 20666 /* 20667 * Choose one good source address from each ill across the group. 20668 * If possible choose a source address in the same subnet as 20669 * the destination address. 20670 * 20671 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20672 * This is okay because of the following. 20673 * 20674 * If PHYI_FAILED is set and we still have non-deprecated 20675 * addresses, it means the addresses have not yet been 20676 * failed over to a different interface. We potentially 20677 * select them to create IRE_CACHES, which will be later 20678 * flushed when the addresses move over. 20679 * 20680 * If PHYI_INACTIVE is set and we still have non-deprecated 20681 * addresses, it means either the user has configured them 20682 * or PHYI_INACTIVE has not been cleared after the addresses 20683 * been moved over. For the former, in.mpathd does a failover 20684 * when the interface becomes INACTIVE and hence we should 20685 * not find them. Once INACTIVE is set, we don't allow them 20686 * to create logical interfaces anymore. For the latter, a 20687 * flush will happen when INACTIVE is cleared which will 20688 * flush the IRE_CACHES. 20689 * 20690 * If PHYI_OFFLINE is set, all the addresses will be failed 20691 * over soon. We potentially select them to create IRE_CACHEs, 20692 * which will be later flushed when the addresses move over. 20693 * 20694 * NOTE : As ipif_select_source is called to borrow source address 20695 * for an ipif that is part of a group, source address selection 20696 * will be re-done whenever the group changes i.e either an 20697 * insertion/deletion in the group. 20698 * 20699 * Fill ipif_arr[] with source addresses, using these rules: 20700 * 20701 * 1. At most one source address from a given ill ends up 20702 * in ipif_arr[] -- that is, at most one of the ipif's 20703 * associated with a given ill ends up in ipif_arr[]. 20704 * 20705 * 2. If there is at least one non-deprecated ipif in the 20706 * IPMP group with a source address on the same subnet as 20707 * our destination, then fill ipif_arr[] only with 20708 * source addresses on the same subnet as our destination. 20709 * Note that because of (1), only the first 20710 * non-deprecated ipif found with a source address 20711 * matching the destination ends up in ipif_arr[]. 20712 * 20713 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20714 * addresses not in the same subnet as our destination. 20715 * Again, because of (1), only the first off-subnet source 20716 * address will be chosen. 20717 * 20718 * 4. If there are no non-deprecated ipifs, then just use 20719 * the source address associated with the last deprecated 20720 * one we find that happens to be on the same subnet, 20721 * otherwise the first one not in the same subnet. 20722 */ 20723 specific_found = B_FALSE; 20724 for (; till != NULL; till = till->ill_group_next) { 20725 ipif_same_found = B_FALSE; 20726 ipif_other_found = B_FALSE; 20727 for (ipif = till->ill_ipif; ipif != NULL; 20728 ipif = ipif->ipif_next) { 20729 if (!IPIF_CAN_LOOKUP(ipif)) 20730 continue; 20731 /* Always skip NOLOCAL and ANYCAST interfaces */ 20732 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20733 continue; 20734 if (!(ipif->ipif_flags & IPIF_UP) || 20735 !ipif->ipif_addr_ready) 20736 continue; 20737 if (ipif->ipif_zoneid != zoneid && 20738 ipif->ipif_zoneid != ALL_ZONES) 20739 continue; 20740 /* 20741 * Interfaces with 0.0.0.0 address are allowed to be UP, 20742 * but are not valid as source addresses. 20743 */ 20744 if (ipif->ipif_lcl_addr == INADDR_ANY) 20745 continue; 20746 20747 /* 20748 * Check compatibility of local address for 20749 * destination's default label if we're on a labeled 20750 * system. Incompatible addresses can't be used at 20751 * all. 20752 */ 20753 if (dst_rhtp != NULL) { 20754 boolean_t incompat; 20755 20756 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20757 IPV4_VERSION, B_FALSE); 20758 if (src_rhtp == NULL) 20759 continue; 20760 incompat = 20761 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20762 src_rhtp->tpc_tp.tp_doi != 20763 dst_rhtp->tpc_tp.tp_doi || 20764 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20765 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20766 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20767 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20768 TPC_RELE(src_rhtp); 20769 if (incompat) 20770 continue; 20771 } 20772 20773 /* 20774 * We prefer not to use all all-zones addresses, if we 20775 * can avoid it, as they pose problems with unlabeled 20776 * destinations. 20777 */ 20778 if (ipif->ipif_zoneid != ALL_ZONES) { 20779 if (!specific_found && 20780 (!same_subnet_only || 20781 (ipif->ipif_net_mask & dst) == 20782 ipif->ipif_subnet)) { 20783 index = 0; 20784 specific_found = B_TRUE; 20785 ipif_other_found = B_FALSE; 20786 } 20787 } else { 20788 if (specific_found) 20789 continue; 20790 } 20791 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20792 if (ipif_dep == NULL || 20793 (ipif->ipif_net_mask & dst) == 20794 ipif->ipif_subnet) 20795 ipif_dep = ipif; 20796 continue; 20797 } 20798 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20799 /* found a source address in the same subnet */ 20800 if (!same_subnet_only) { 20801 same_subnet_only = B_TRUE; 20802 index = 0; 20803 } 20804 ipif_same_found = B_TRUE; 20805 } else { 20806 if (same_subnet_only || ipif_other_found) 20807 continue; 20808 ipif_other_found = B_TRUE; 20809 } 20810 ipif_arr[index++] = ipif; 20811 if (index == MAX_IPIF_SELECT_SOURCE) { 20812 wrapped = B_TRUE; 20813 index = 0; 20814 } 20815 if (ipif_same_found) 20816 break; 20817 } 20818 } 20819 20820 if (ipif_arr[0] == NULL) { 20821 ipif = ipif_dep; 20822 } else { 20823 if (wrapped) 20824 index = MAX_IPIF_SELECT_SOURCE; 20825 ipif = ipif_arr[ipif_rand() % index]; 20826 ASSERT(ipif != NULL); 20827 } 20828 20829 if (ipif != NULL) { 20830 mutex_enter(&ipif->ipif_ill->ill_lock); 20831 if (!IPIF_CAN_LOOKUP(ipif)) { 20832 mutex_exit(&ipif->ipif_ill->ill_lock); 20833 goto retry; 20834 } 20835 ipif_refhold_locked(ipif); 20836 mutex_exit(&ipif->ipif_ill->ill_lock); 20837 } 20838 20839 rw_exit(&ill_g_lock); 20840 if (usill != NULL) 20841 ill_refrele(usill); 20842 if (dst_rhtp != NULL) 20843 TPC_RELE(dst_rhtp); 20844 20845 #ifdef DEBUG 20846 if (ipif == NULL) { 20847 char buf1[INET6_ADDRSTRLEN]; 20848 20849 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20850 ill->ill_name, 20851 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20852 } else { 20853 char buf1[INET6_ADDRSTRLEN]; 20854 char buf2[INET6_ADDRSTRLEN]; 20855 20856 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20857 ipif->ipif_ill->ill_name, 20858 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20859 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20860 buf2, sizeof (buf2)))); 20861 } 20862 #endif /* DEBUG */ 20863 return (ipif); 20864 } 20865 20866 20867 /* 20868 * If old_ipif is not NULL, see if ipif was derived from old 20869 * ipif and if so, recreate the interface route by re-doing 20870 * source address selection. This happens when ipif_down -> 20871 * ipif_update_other_ipifs calls us. 20872 * 20873 * If old_ipif is NULL, just redo the source address selection 20874 * if needed. This happens when illgrp_insert or ipif_up_done 20875 * calls us. 20876 */ 20877 static void 20878 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20879 { 20880 ire_t *ire; 20881 ire_t *ipif_ire; 20882 queue_t *stq; 20883 ipif_t *nipif; 20884 ill_t *ill; 20885 boolean_t need_rele = B_FALSE; 20886 20887 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20888 ASSERT(IAM_WRITER_IPIF(ipif)); 20889 20890 ill = ipif->ipif_ill; 20891 if (!(ipif->ipif_flags & 20892 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20893 /* 20894 * Can't possibly have borrowed the source 20895 * from old_ipif. 20896 */ 20897 return; 20898 } 20899 20900 /* 20901 * Is there any work to be done? No work if the address 20902 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20903 * ipif_select_source() does not borrow addresses from 20904 * NOLOCAL and ANYCAST interfaces). 20905 */ 20906 if ((old_ipif != NULL) && 20907 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20908 (old_ipif->ipif_ill->ill_wq == NULL) || 20909 (old_ipif->ipif_flags & 20910 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20911 return; 20912 } 20913 20914 /* 20915 * Perform the same checks as when creating the 20916 * IRE_INTERFACE in ipif_up_done. 20917 */ 20918 if (!(ipif->ipif_flags & IPIF_UP)) 20919 return; 20920 20921 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20922 (ipif->ipif_subnet == INADDR_ANY)) 20923 return; 20924 20925 ipif_ire = ipif_to_ire(ipif); 20926 if (ipif_ire == NULL) 20927 return; 20928 20929 /* 20930 * We know that ipif uses some other source for its 20931 * IRE_INTERFACE. Is it using the source of this 20932 * old_ipif? 20933 */ 20934 if (old_ipif != NULL && 20935 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20936 ire_refrele(ipif_ire); 20937 return; 20938 } 20939 if (ip_debug > 2) { 20940 /* ip1dbg */ 20941 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20942 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20943 } 20944 20945 stq = ipif_ire->ire_stq; 20946 20947 /* 20948 * Can't use our source address. Select a different 20949 * source address for the IRE_INTERFACE. 20950 */ 20951 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20952 if (nipif == NULL) { 20953 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20954 nipif = ipif; 20955 } else { 20956 need_rele = B_TRUE; 20957 } 20958 20959 ire = ire_create( 20960 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20961 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20962 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20963 NULL, /* no gateway */ 20964 NULL, 20965 &ipif->ipif_mtu, /* max frag */ 20966 NULL, /* fast path header */ 20967 NULL, /* no recv from queue */ 20968 stq, /* send-to queue */ 20969 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20970 ill->ill_resolver_mp, /* xmit header */ 20971 ipif, 20972 NULL, 20973 0, 20974 0, 20975 0, 20976 0, 20977 &ire_uinfo_null, 20978 NULL, 20979 NULL); 20980 20981 if (ire != NULL) { 20982 ire_t *ret_ire; 20983 int error; 20984 20985 /* 20986 * We don't need ipif_ire anymore. We need to delete 20987 * before we add so that ire_add does not detect 20988 * duplicates. 20989 */ 20990 ire_delete(ipif_ire); 20991 ret_ire = ire; 20992 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 20993 ASSERT(error == 0); 20994 ASSERT(ire == ret_ire); 20995 /* Held in ire_add */ 20996 ire_refrele(ret_ire); 20997 } 20998 /* 20999 * Either we are falling through from above or could not 21000 * allocate a replacement. 21001 */ 21002 ire_refrele(ipif_ire); 21003 if (need_rele) 21004 ipif_refrele(nipif); 21005 } 21006 21007 /* 21008 * This old_ipif is going away. 21009 * 21010 * Determine if any other ipif's is using our address as 21011 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21012 * IPIF_DEPRECATED). 21013 * Find the IRE_INTERFACE for such ipifs and recreate them 21014 * to use an different source address following the rules in 21015 * ipif_up_done. 21016 * 21017 * This function takes an illgrp as an argument so that illgrp_delete 21018 * can call this to update source address even after deleting the 21019 * old_ipif->ipif_ill from the ill group. 21020 */ 21021 static void 21022 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21023 { 21024 ipif_t *ipif; 21025 ill_t *ill; 21026 char buf[INET6_ADDRSTRLEN]; 21027 21028 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21029 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21030 21031 ill = old_ipif->ipif_ill; 21032 21033 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21034 ill->ill_name, 21035 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21036 buf, sizeof (buf)))); 21037 /* 21038 * If this part of a group, look at all ills as ipif_select_source 21039 * borrows source address across all the ills in the group. 21040 */ 21041 if (illgrp != NULL) 21042 ill = illgrp->illgrp_ill; 21043 21044 for (; ill != NULL; ill = ill->ill_group_next) { 21045 for (ipif = ill->ill_ipif; ipif != NULL; 21046 ipif = ipif->ipif_next) { 21047 21048 if (ipif == old_ipif) 21049 continue; 21050 21051 ipif_recreate_interface_routes(old_ipif, ipif); 21052 } 21053 } 21054 } 21055 21056 /* ARGSUSED */ 21057 int 21058 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21059 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21060 { 21061 /* 21062 * ill_phyint_reinit merged the v4 and v6 into a single 21063 * ipsq. Could also have become part of a ipmp group in the 21064 * process, and we might not have been able to complete the 21065 * operation in ipif_set_values, if we could not become 21066 * exclusive. If so restart it here. 21067 */ 21068 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21069 } 21070 21071 21072 /* ARGSUSED */ 21073 int 21074 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21075 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21076 { 21077 queue_t *q1 = q; 21078 char *cp; 21079 char interf_name[LIFNAMSIZ]; 21080 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21081 21082 if (!q->q_next) { 21083 ip1dbg(( 21084 "if_unitsel: IF_UNITSEL: no q_next\n")); 21085 return (EINVAL); 21086 } 21087 21088 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21089 return (EALREADY); 21090 21091 do { 21092 q1 = q1->q_next; 21093 } while (q1->q_next); 21094 cp = q1->q_qinfo->qi_minfo->mi_idname; 21095 (void) sprintf(interf_name, "%s%d", cp, ppa); 21096 21097 /* 21098 * Here we are not going to delay the ioack until after 21099 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21100 * original ioctl message before sending the requests. 21101 */ 21102 return (ipif_set_values(q, mp, interf_name, &ppa)); 21103 } 21104 21105 /* ARGSUSED */ 21106 int 21107 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21108 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21109 { 21110 return (ENXIO); 21111 } 21112 21113 /* 21114 * Net and subnet broadcast ire's are now specific to the particular 21115 * physical interface (ill) and not to any one locigal interface (ipif). 21116 * However, if a particular logical interface is being taken down, it's 21117 * associated ire's will be taken down as well. Hence, when we go to 21118 * take down or change the local address, broadcast address or netmask 21119 * of a specific logical interface, we must check to make sure that we 21120 * have valid net and subnet broadcast ire's for the other logical 21121 * interfaces which may have been shared with the logical interface 21122 * being brought down or changed. 21123 * 21124 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21125 * is tied to the first interface coming UP. If that ipif is going down, 21126 * we need to recreate them on the next valid ipif. 21127 * 21128 * Note: assume that the ipif passed in is still up so that it's IRE 21129 * entries are still valid. 21130 */ 21131 static void 21132 ipif_check_bcast_ires(ipif_t *test_ipif) 21133 { 21134 ipif_t *ipif; 21135 ire_t *test_subnet_ire, *test_net_ire; 21136 ire_t *test_allzero_ire, *test_allone_ire; 21137 ire_t *ire_array[12]; 21138 ire_t **irep = &ire_array[0]; 21139 ire_t **irep1; 21140 21141 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21142 ipaddr_t test_net_addr, test_subnet_addr; 21143 ipaddr_t test_net_mask, test_subnet_mask; 21144 boolean_t need_net_bcast_ire = B_FALSE; 21145 boolean_t need_subnet_bcast_ire = B_FALSE; 21146 boolean_t allzero_bcast_ire_created = B_FALSE; 21147 boolean_t allone_bcast_ire_created = B_FALSE; 21148 boolean_t net_bcast_ire_created = B_FALSE; 21149 boolean_t subnet_bcast_ire_created = B_FALSE; 21150 21151 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21152 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21153 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21154 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21155 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21156 21157 ASSERT(!test_ipif->ipif_isv6); 21158 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21159 21160 /* 21161 * No broadcast IREs for the LOOPBACK interface 21162 * or others such as point to point and IPIF_NOXMIT. 21163 */ 21164 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21165 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21166 return; 21167 21168 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21169 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21170 21171 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21172 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21173 21174 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21175 test_subnet_mask = test_ipif->ipif_net_mask; 21176 21177 /* 21178 * If no net mask set, assume the default based on net class. 21179 */ 21180 if (test_subnet_mask == 0) 21181 test_subnet_mask = test_net_mask; 21182 21183 /* 21184 * Check if there is a network broadcast ire associated with this ipif 21185 */ 21186 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21187 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21188 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21189 21190 /* 21191 * Check if there is a subnet broadcast IRE associated with this ipif 21192 */ 21193 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21194 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21195 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21196 21197 /* 21198 * No broadcast ire's associated with this ipif. 21199 */ 21200 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21201 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21202 return; 21203 } 21204 21205 /* 21206 * We have established which bcast ires have to be replaced. 21207 * Next we try to locate ipifs that match there ires. 21208 * The rules are simple: If we find an ipif that matches on the subnet 21209 * address it will also match on the net address, the allzeros and 21210 * allones address. Any ipif that matches only on the net address will 21211 * also match the allzeros and allones addresses. 21212 * The other criterion is the ipif_flags. We look for non-deprecated 21213 * (and non-anycast and non-nolocal) ipifs as the best choice. 21214 * ipifs with check_flags matching (deprecated, etc) are used only 21215 * if good ipifs are not available. While looping, we save existing 21216 * deprecated ipifs as backup_ipif. 21217 * We loop through all the ipifs for this ill looking for ipifs 21218 * whose broadcast addr match the ipif passed in, but do not have 21219 * their own broadcast ires. For creating 0.0.0.0 and 21220 * 255.255.255.255 we just need an ipif on this ill to create. 21221 */ 21222 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21223 ipif = ipif->ipif_next) { 21224 21225 ASSERT(!ipif->ipif_isv6); 21226 /* 21227 * Already checked the ipif passed in. 21228 */ 21229 if (ipif == test_ipif) { 21230 continue; 21231 } 21232 21233 /* 21234 * We only need to recreate broadcast ires if another ipif in 21235 * the same zone uses them. The new ires must be created in the 21236 * same zone. 21237 */ 21238 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21239 continue; 21240 } 21241 21242 /* 21243 * Only interested in logical interfaces with valid local 21244 * addresses or with the ability to broadcast. 21245 */ 21246 if ((ipif->ipif_subnet == 0) || 21247 !(ipif->ipif_flags & IPIF_BROADCAST) || 21248 (ipif->ipif_flags & IPIF_NOXMIT) || 21249 !(ipif->ipif_flags & IPIF_UP)) { 21250 continue; 21251 } 21252 /* 21253 * Check if there is a net broadcast ire for this 21254 * net address. If it turns out that the ipif we are 21255 * about to take down owns this ire, we must make a 21256 * new one because it is potentially going away. 21257 */ 21258 if (test_net_ire && (!net_bcast_ire_created)) { 21259 net_mask = ip_net_mask(ipif->ipif_subnet); 21260 net_addr = net_mask & ipif->ipif_subnet; 21261 if (net_addr == test_net_addr) { 21262 need_net_bcast_ire = B_TRUE; 21263 /* 21264 * Use DEPRECATED ipif only if no good 21265 * ires are available. subnet_addr is 21266 * a better match than net_addr. 21267 */ 21268 if ((ipif->ipif_flags & check_flags) && 21269 (backup_ipif_net == NULL)) { 21270 backup_ipif_net = ipif; 21271 } 21272 } 21273 } 21274 /* 21275 * Check if there is a subnet broadcast ire for this 21276 * net address. If it turns out that the ipif we are 21277 * about to take down owns this ire, we must make a 21278 * new one because it is potentially going away. 21279 */ 21280 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21281 subnet_mask = ipif->ipif_net_mask; 21282 subnet_addr = ipif->ipif_subnet; 21283 if (subnet_addr == test_subnet_addr) { 21284 need_subnet_bcast_ire = B_TRUE; 21285 if ((ipif->ipif_flags & check_flags) && 21286 (backup_ipif_subnet == NULL)) { 21287 backup_ipif_subnet = ipif; 21288 } 21289 } 21290 } 21291 21292 21293 /* Short circuit here if this ipif is deprecated */ 21294 if (ipif->ipif_flags & check_flags) { 21295 if ((test_allzero_ire != NULL) && 21296 (!allzero_bcast_ire_created) && 21297 (backup_ipif_allzeros == NULL)) { 21298 backup_ipif_allzeros = ipif; 21299 } 21300 if ((test_allone_ire != NULL) && 21301 (!allone_bcast_ire_created) && 21302 (backup_ipif_allones == NULL)) { 21303 backup_ipif_allones = ipif; 21304 } 21305 continue; 21306 } 21307 21308 /* 21309 * Found an ipif which has the same broadcast ire as the 21310 * ipif passed in and the ipif passed in "owns" the ire. 21311 * Create new broadcast ire's for this broadcast addr. 21312 */ 21313 if (need_net_bcast_ire && !net_bcast_ire_created) { 21314 irep = ire_create_bcast(ipif, net_addr, irep); 21315 irep = ire_create_bcast(ipif, 21316 ~net_mask | net_addr, irep); 21317 net_bcast_ire_created = B_TRUE; 21318 } 21319 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21320 irep = ire_create_bcast(ipif, subnet_addr, irep); 21321 irep = ire_create_bcast(ipif, 21322 ~subnet_mask | subnet_addr, irep); 21323 subnet_bcast_ire_created = B_TRUE; 21324 } 21325 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21326 irep = ire_create_bcast(ipif, 0, irep); 21327 allzero_bcast_ire_created = B_TRUE; 21328 } 21329 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21330 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21331 allone_bcast_ire_created = B_TRUE; 21332 } 21333 /* 21334 * Once we have created all the appropriate ires, we 21335 * just break out of this loop to add what we have created. 21336 * This has been indented similar to ire_match_args for 21337 * readability. 21338 */ 21339 if (((test_net_ire == NULL) || 21340 (net_bcast_ire_created)) && 21341 ((test_subnet_ire == NULL) || 21342 (subnet_bcast_ire_created)) && 21343 ((test_allzero_ire == NULL) || 21344 (allzero_bcast_ire_created)) && 21345 ((test_allone_ire == NULL) || 21346 (allone_bcast_ire_created))) { 21347 break; 21348 } 21349 } 21350 21351 /* 21352 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21353 * exist. 6 pairs of bcast ires are needed. 21354 * Note - the old ires are deleted in ipif_down. 21355 */ 21356 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21357 ipif = backup_ipif_net; 21358 irep = ire_create_bcast(ipif, net_addr, irep); 21359 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21360 net_bcast_ire_created = B_TRUE; 21361 } 21362 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21363 backup_ipif_subnet) { 21364 ipif = backup_ipif_subnet; 21365 irep = ire_create_bcast(ipif, subnet_addr, irep); 21366 irep = ire_create_bcast(ipif, 21367 ~subnet_mask | subnet_addr, irep); 21368 subnet_bcast_ire_created = B_TRUE; 21369 } 21370 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21371 backup_ipif_allzeros) { 21372 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21373 allzero_bcast_ire_created = B_TRUE; 21374 } 21375 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21376 backup_ipif_allones) { 21377 irep = ire_create_bcast(backup_ipif_allones, 21378 INADDR_BROADCAST, irep); 21379 allone_bcast_ire_created = B_TRUE; 21380 } 21381 21382 /* 21383 * If we can't create all of them, don't add any of them. 21384 * Code in ip_wput_ire and ire_to_ill assumes that we 21385 * always have a non-loopback copy and loopback copy 21386 * for a given address. 21387 */ 21388 for (irep1 = irep; irep1 > ire_array; ) { 21389 irep1--; 21390 if (*irep1 == NULL) { 21391 ip0dbg(("ipif_check_bcast_ires: can't create " 21392 "IRE_BROADCAST, memory allocation failure\n")); 21393 while (irep > ire_array) { 21394 irep--; 21395 if (*irep != NULL) 21396 ire_delete(*irep); 21397 } 21398 goto bad; 21399 } 21400 } 21401 for (irep1 = irep; irep1 > ire_array; ) { 21402 int error; 21403 21404 irep1--; 21405 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21406 if (error == 0) { 21407 ire_refrele(*irep1); /* Held in ire_add */ 21408 } 21409 } 21410 bad: 21411 if (test_allzero_ire != NULL) 21412 ire_refrele(test_allzero_ire); 21413 if (test_allone_ire != NULL) 21414 ire_refrele(test_allone_ire); 21415 if (test_net_ire != NULL) 21416 ire_refrele(test_net_ire); 21417 if (test_subnet_ire != NULL) 21418 ire_refrele(test_subnet_ire); 21419 } 21420 21421 /* 21422 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21423 * from lifr_flags and the name from lifr_name. 21424 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21425 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21426 * Returns EINPROGRESS when mp has been consumed by queueing it on 21427 * ill_pending_mp and the ioctl will complete in ip_rput. 21428 */ 21429 /* ARGSUSED */ 21430 int 21431 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21432 ip_ioctl_cmd_t *ipip, void *if_req) 21433 { 21434 int err; 21435 ill_t *ill; 21436 struct lifreq *lifr = (struct lifreq *)if_req; 21437 21438 ASSERT(ipif != NULL); 21439 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21440 ASSERT(q->q_next != NULL); 21441 21442 ill = (ill_t *)q->q_ptr; 21443 /* 21444 * If we are not writer on 'q' then this interface exists already 21445 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21446 * So return EALREADY 21447 */ 21448 if (ill != ipif->ipif_ill) 21449 return (EALREADY); 21450 21451 if (ill->ill_name[0] != '\0') 21452 return (EALREADY); 21453 21454 /* 21455 * Set all the flags. Allows all kinds of override. Provide some 21456 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21457 * unless there is either multicast/broadcast support in the driver 21458 * or it is a pt-pt link. 21459 */ 21460 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21461 /* Meaningless to IP thus don't allow them to be set. */ 21462 ip1dbg(("ip_setname: EINVAL 1\n")); 21463 return (EINVAL); 21464 } 21465 /* 21466 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21467 * ill_bcast_addr_length info. 21468 */ 21469 if (!ill->ill_needs_attach && 21470 ((lifr->lifr_flags & IFF_MULTICAST) && 21471 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21472 ill->ill_bcast_addr_length == 0)) { 21473 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21474 ip1dbg(("ip_setname: EINVAL 2\n")); 21475 return (EINVAL); 21476 } 21477 if ((lifr->lifr_flags & IFF_BROADCAST) && 21478 ((lifr->lifr_flags & IFF_IPV6) || 21479 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21480 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21481 ip1dbg(("ip_setname: EINVAL 3\n")); 21482 return (EINVAL); 21483 } 21484 if (lifr->lifr_flags & IFF_UP) { 21485 /* Can only be set with SIOCSLIFFLAGS */ 21486 ip1dbg(("ip_setname: EINVAL 4\n")); 21487 return (EINVAL); 21488 } 21489 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21490 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21491 ip1dbg(("ip_setname: EINVAL 5\n")); 21492 return (EINVAL); 21493 } 21494 /* 21495 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21496 */ 21497 if ((lifr->lifr_flags & IFF_XRESOLV) && 21498 !(lifr->lifr_flags & IFF_IPV6) && 21499 !(ipif->ipif_isv6)) { 21500 ip1dbg(("ip_setname: EINVAL 6\n")); 21501 return (EINVAL); 21502 } 21503 21504 /* 21505 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21506 * we have all the flags here. So, we assign rather than we OR. 21507 * We can't OR the flags here because we don't want to set 21508 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21509 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21510 * on lifr_flags value here. 21511 */ 21512 /* 21513 * This ill has not been inserted into the global list. 21514 * So we are still single threaded and don't need any lock 21515 */ 21516 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21517 ~IFF_DUPLICATE; 21518 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21519 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21520 21521 /* We started off as V4. */ 21522 if (ill->ill_flags & ILLF_IPV6) { 21523 ill->ill_phyint->phyint_illv6 = ill; 21524 ill->ill_phyint->phyint_illv4 = NULL; 21525 } 21526 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21527 return (err); 21528 } 21529 21530 /* ARGSUSED */ 21531 int 21532 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21533 ip_ioctl_cmd_t *ipip, void *if_req) 21534 { 21535 /* 21536 * ill_phyint_reinit merged the v4 and v6 into a single 21537 * ipsq. Could also have become part of a ipmp group in the 21538 * process, and we might not have been able to complete the 21539 * slifname in ipif_set_values, if we could not become 21540 * exclusive. If so restart it here 21541 */ 21542 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21543 } 21544 21545 /* 21546 * Return a pointer to the ipif which matches the index, IP version type and 21547 * zoneid. 21548 */ 21549 ipif_t * 21550 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21551 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21552 { 21553 ill_t *ill; 21554 ipsq_t *ipsq; 21555 phyint_t *phyi; 21556 ipif_t *ipif; 21557 21558 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21559 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21560 21561 if (err != NULL) 21562 *err = 0; 21563 21564 /* 21565 * Indexes are stored in the phyint - a common structure 21566 * to both IPv4 and IPv6. 21567 */ 21568 21569 rw_enter(&ill_g_lock, RW_READER); 21570 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21571 (void *) &index, NULL); 21572 if (phyi != NULL) { 21573 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21574 if (ill == NULL) { 21575 rw_exit(&ill_g_lock); 21576 if (err != NULL) 21577 *err = ENXIO; 21578 return (NULL); 21579 } 21580 GRAB_CONN_LOCK(q); 21581 mutex_enter(&ill->ill_lock); 21582 if (ILL_CAN_LOOKUP(ill)) { 21583 for (ipif = ill->ill_ipif; ipif != NULL; 21584 ipif = ipif->ipif_next) { 21585 if (IPIF_CAN_LOOKUP(ipif) && 21586 (zoneid == ALL_ZONES || 21587 zoneid == ipif->ipif_zoneid || 21588 ipif->ipif_zoneid == ALL_ZONES)) { 21589 ipif_refhold_locked(ipif); 21590 mutex_exit(&ill->ill_lock); 21591 RELEASE_CONN_LOCK(q); 21592 rw_exit(&ill_g_lock); 21593 return (ipif); 21594 } 21595 } 21596 } else if (ILL_CAN_WAIT(ill, q)) { 21597 ipsq = ill->ill_phyint->phyint_ipsq; 21598 mutex_enter(&ipsq->ipsq_lock); 21599 rw_exit(&ill_g_lock); 21600 mutex_exit(&ill->ill_lock); 21601 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21602 mutex_exit(&ipsq->ipsq_lock); 21603 RELEASE_CONN_LOCK(q); 21604 *err = EINPROGRESS; 21605 return (NULL); 21606 } 21607 mutex_exit(&ill->ill_lock); 21608 RELEASE_CONN_LOCK(q); 21609 } 21610 rw_exit(&ill_g_lock); 21611 if (err != NULL) 21612 *err = ENXIO; 21613 return (NULL); 21614 } 21615 21616 typedef struct conn_change_s { 21617 uint_t cc_old_ifindex; 21618 uint_t cc_new_ifindex; 21619 } conn_change_t; 21620 21621 /* 21622 * ipcl_walk function for changing interface index. 21623 */ 21624 static void 21625 conn_change_ifindex(conn_t *connp, caddr_t arg) 21626 { 21627 conn_change_t *connc; 21628 uint_t old_ifindex; 21629 uint_t new_ifindex; 21630 int i; 21631 ilg_t *ilg; 21632 21633 connc = (conn_change_t *)arg; 21634 old_ifindex = connc->cc_old_ifindex; 21635 new_ifindex = connc->cc_new_ifindex; 21636 21637 if (connp->conn_orig_bound_ifindex == old_ifindex) 21638 connp->conn_orig_bound_ifindex = new_ifindex; 21639 21640 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21641 connp->conn_orig_multicast_ifindex = new_ifindex; 21642 21643 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21644 connp->conn_orig_xmit_ifindex = new_ifindex; 21645 21646 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21647 ilg = &connp->conn_ilg[i]; 21648 if (ilg->ilg_orig_ifindex == old_ifindex) 21649 ilg->ilg_orig_ifindex = new_ifindex; 21650 } 21651 } 21652 21653 /* 21654 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21655 * to new_index if it matches the old_index. 21656 * 21657 * Failovers typically happen within a group of ills. But somebody 21658 * can remove an ill from the group after a failover happened. If 21659 * we are setting the ifindex after this, we potentially need to 21660 * look at all the ills rather than just the ones in the group. 21661 * We cut down the work by looking at matching ill_net_types 21662 * and ill_types as we could not possibly grouped them together. 21663 */ 21664 static void 21665 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21666 { 21667 ill_t *ill; 21668 ipif_t *ipif; 21669 uint_t old_ifindex; 21670 uint_t new_ifindex; 21671 ilm_t *ilm; 21672 ill_walk_context_t ctx; 21673 21674 old_ifindex = connc->cc_old_ifindex; 21675 new_ifindex = connc->cc_new_ifindex; 21676 21677 rw_enter(&ill_g_lock, RW_READER); 21678 ill = ILL_START_WALK_ALL(&ctx); 21679 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21680 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21681 (ill_orig->ill_type != ill->ill_type)) { 21682 continue; 21683 } 21684 for (ipif = ill->ill_ipif; ipif != NULL; 21685 ipif = ipif->ipif_next) { 21686 if (ipif->ipif_orig_ifindex == old_ifindex) 21687 ipif->ipif_orig_ifindex = new_ifindex; 21688 } 21689 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21690 if (ilm->ilm_orig_ifindex == old_ifindex) 21691 ilm->ilm_orig_ifindex = new_ifindex; 21692 } 21693 } 21694 rw_exit(&ill_g_lock); 21695 } 21696 21697 /* 21698 * We first need to ensure that the new index is unique, and 21699 * then carry the change across both v4 and v6 ill representation 21700 * of the physical interface. 21701 */ 21702 /* ARGSUSED */ 21703 int 21704 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21705 ip_ioctl_cmd_t *ipip, void *ifreq) 21706 { 21707 ill_t *ill; 21708 ill_t *ill_other; 21709 phyint_t *phyi; 21710 int old_index; 21711 conn_change_t connc; 21712 struct ifreq *ifr = (struct ifreq *)ifreq; 21713 struct lifreq *lifr = (struct lifreq *)ifreq; 21714 uint_t index; 21715 ill_t *ill_v4; 21716 ill_t *ill_v6; 21717 21718 if (ipip->ipi_cmd_type == IF_CMD) 21719 index = ifr->ifr_index; 21720 else 21721 index = lifr->lifr_index; 21722 21723 /* 21724 * Only allow on physical interface. Also, index zero is illegal. 21725 * 21726 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21727 * 21728 * 1) If PHYI_FAILED is set, a failover could have happened which 21729 * implies a possible failback might have to happen. As failback 21730 * depends on the old index, we should fail setting the index. 21731 * 21732 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21733 * any addresses or multicast memberships are failed over to 21734 * a non-STANDBY interface. As failback depends on the old 21735 * index, we should fail setting the index for this case also. 21736 * 21737 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21738 * Be consistent with PHYI_FAILED and fail the ioctl. 21739 */ 21740 ill = ipif->ipif_ill; 21741 phyi = ill->ill_phyint; 21742 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21743 ipif->ipif_id != 0 || index == 0) { 21744 return (EINVAL); 21745 } 21746 old_index = phyi->phyint_ifindex; 21747 21748 /* If the index is not changing, no work to do */ 21749 if (old_index == index) 21750 return (0); 21751 21752 /* 21753 * Use ill_lookup_on_ifindex to determine if the 21754 * new index is unused and if so allow the change. 21755 */ 21756 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21757 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21758 if (ill_v6 != NULL || ill_v4 != NULL) { 21759 if (ill_v4 != NULL) 21760 ill_refrele(ill_v4); 21761 if (ill_v6 != NULL) 21762 ill_refrele(ill_v6); 21763 return (EBUSY); 21764 } 21765 21766 /* 21767 * The new index is unused. Set it in the phyint. 21768 * Locate the other ill so that we can send a routing 21769 * sockets message. 21770 */ 21771 if (ill->ill_isv6) { 21772 ill_other = phyi->phyint_illv4; 21773 } else { 21774 ill_other = phyi->phyint_illv6; 21775 } 21776 21777 phyi->phyint_ifindex = index; 21778 21779 connc.cc_old_ifindex = old_index; 21780 connc.cc_new_ifindex = index; 21781 ip_change_ifindex(ill, &connc); 21782 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21783 21784 /* Send the routing sockets message */ 21785 ip_rts_ifmsg(ipif); 21786 if (ill_other != NULL) 21787 ip_rts_ifmsg(ill_other->ill_ipif); 21788 21789 return (0); 21790 } 21791 21792 /* ARGSUSED */ 21793 int 21794 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21795 ip_ioctl_cmd_t *ipip, void *ifreq) 21796 { 21797 struct ifreq *ifr = (struct ifreq *)ifreq; 21798 struct lifreq *lifr = (struct lifreq *)ifreq; 21799 21800 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21801 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21802 /* Get the interface index */ 21803 if (ipip->ipi_cmd_type == IF_CMD) { 21804 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21805 } else { 21806 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21807 } 21808 return (0); 21809 } 21810 21811 /* ARGSUSED */ 21812 int 21813 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21814 ip_ioctl_cmd_t *ipip, void *ifreq) 21815 { 21816 struct lifreq *lifr = (struct lifreq *)ifreq; 21817 21818 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21819 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21820 /* Get the interface zone */ 21821 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21822 lifr->lifr_zoneid = ipif->ipif_zoneid; 21823 return (0); 21824 } 21825 21826 /* 21827 * Set the zoneid of an interface. 21828 */ 21829 /* ARGSUSED */ 21830 int 21831 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21832 ip_ioctl_cmd_t *ipip, void *ifreq) 21833 { 21834 struct lifreq *lifr = (struct lifreq *)ifreq; 21835 int err = 0; 21836 boolean_t need_up = B_FALSE; 21837 zone_t *zptr; 21838 zone_status_t status; 21839 zoneid_t zoneid; 21840 21841 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21842 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21843 if (!is_system_labeled()) 21844 return (ENOTSUP); 21845 zoneid = GLOBAL_ZONEID; 21846 } 21847 21848 /* cannot assign instance zero to a non-global zone */ 21849 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21850 return (ENOTSUP); 21851 21852 /* 21853 * Cannot assign to a zone that doesn't exist or is shutting down. In 21854 * the event of a race with the zone shutdown processing, since IP 21855 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21856 * interface will be cleaned up even if the zone is shut down 21857 * immediately after the status check. If the interface can't be brought 21858 * down right away, and the zone is shut down before the restart 21859 * function is called, we resolve the possible races by rechecking the 21860 * zone status in the restart function. 21861 */ 21862 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21863 return (EINVAL); 21864 status = zone_status_get(zptr); 21865 zone_rele(zptr); 21866 21867 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21868 return (EINVAL); 21869 21870 if (ipif->ipif_flags & IPIF_UP) { 21871 /* 21872 * If the interface is already marked up, 21873 * we call ipif_down which will take care 21874 * of ditching any IREs that have been set 21875 * up based on the old interface address. 21876 */ 21877 err = ipif_logical_down(ipif, q, mp); 21878 if (err == EINPROGRESS) 21879 return (err); 21880 ipif_down_tail(ipif); 21881 need_up = B_TRUE; 21882 } 21883 21884 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21885 return (err); 21886 } 21887 21888 static int 21889 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21890 queue_t *q, mblk_t *mp, boolean_t need_up) 21891 { 21892 int err = 0; 21893 21894 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21895 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21896 21897 /* Set the new zone id. */ 21898 ipif->ipif_zoneid = zoneid; 21899 21900 /* Update sctp list */ 21901 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21902 21903 if (need_up) { 21904 /* 21905 * Now bring the interface back up. If this 21906 * is the only IPIF for the ILL, ipif_up 21907 * will have to re-bind to the device, so 21908 * we may get back EINPROGRESS, in which 21909 * case, this IOCTL will get completed in 21910 * ip_rput_dlpi when we see the DL_BIND_ACK. 21911 */ 21912 err = ipif_up(ipif, q, mp); 21913 } 21914 return (err); 21915 } 21916 21917 /* ARGSUSED */ 21918 int 21919 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21920 ip_ioctl_cmd_t *ipip, void *if_req) 21921 { 21922 struct lifreq *lifr = (struct lifreq *)if_req; 21923 zoneid_t zoneid; 21924 zone_t *zptr; 21925 zone_status_t status; 21926 21927 ASSERT(ipif->ipif_id != 0); 21928 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21929 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21930 zoneid = GLOBAL_ZONEID; 21931 21932 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21933 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21934 21935 /* 21936 * We recheck the zone status to resolve the following race condition: 21937 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21938 * 2) hme0:1 is up and can't be brought down right away; 21939 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21940 * 3) zone "myzone" is halted; the zone status switches to 21941 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21942 * the interfaces to remove - hme0:1 is not returned because it's not 21943 * yet in "myzone", so it won't be removed; 21944 * 4) the restart function for SIOCSLIFZONE is called; without the 21945 * status check here, we would have hme0:1 in "myzone" after it's been 21946 * destroyed. 21947 * Note that if the status check fails, we need to bring the interface 21948 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21949 * ipif_up_done[_v6](). 21950 */ 21951 status = ZONE_IS_UNINITIALIZED; 21952 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21953 status = zone_status_get(zptr); 21954 zone_rele(zptr); 21955 } 21956 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21957 if (ipif->ipif_isv6) { 21958 (void) ipif_up_done_v6(ipif); 21959 } else { 21960 (void) ipif_up_done(ipif); 21961 } 21962 return (EINVAL); 21963 } 21964 21965 ipif_down_tail(ipif); 21966 21967 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21968 B_TRUE)); 21969 } 21970 21971 /* ARGSUSED */ 21972 int 21973 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21974 ip_ioctl_cmd_t *ipip, void *ifreq) 21975 { 21976 struct lifreq *lifr = ifreq; 21977 21978 ASSERT(q->q_next == NULL); 21979 ASSERT(CONN_Q(q)); 21980 21981 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21982 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21983 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21984 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21985 21986 return (0); 21987 } 21988 21989 21990 /* Find the previous ILL in this usesrc group */ 21991 static ill_t * 21992 ill_prev_usesrc(ill_t *uill) 21993 { 21994 ill_t *ill; 21995 21996 for (ill = uill->ill_usesrc_grp_next; 21997 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21998 ill = ill->ill_usesrc_grp_next) 21999 /* do nothing */; 22000 return (ill); 22001 } 22002 22003 /* 22004 * Release all members of the usesrc group. This routine is called 22005 * from ill_delete when the interface being unplumbed is the 22006 * group head. 22007 */ 22008 static void 22009 ill_disband_usesrc_group(ill_t *uill) 22010 { 22011 ill_t *next_ill, *tmp_ill; 22012 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 22013 next_ill = uill->ill_usesrc_grp_next; 22014 22015 do { 22016 ASSERT(next_ill != NULL); 22017 tmp_ill = next_ill->ill_usesrc_grp_next; 22018 ASSERT(tmp_ill != NULL); 22019 next_ill->ill_usesrc_grp_next = NULL; 22020 next_ill->ill_usesrc_ifindex = 0; 22021 next_ill = tmp_ill; 22022 } while (next_ill->ill_usesrc_ifindex != 0); 22023 uill->ill_usesrc_grp_next = NULL; 22024 } 22025 22026 /* 22027 * Remove the client usesrc ILL from the list and relink to a new list 22028 */ 22029 int 22030 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22031 { 22032 ill_t *ill, *tmp_ill; 22033 22034 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22035 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 22036 22037 /* 22038 * Check if the usesrc client ILL passed in is not already 22039 * in use as a usesrc ILL i.e one whose source address is 22040 * in use OR a usesrc ILL is not already in use as a usesrc 22041 * client ILL 22042 */ 22043 if ((ucill->ill_usesrc_ifindex == 0) || 22044 (uill->ill_usesrc_ifindex != 0)) { 22045 return (-1); 22046 } 22047 22048 ill = ill_prev_usesrc(ucill); 22049 ASSERT(ill->ill_usesrc_grp_next != NULL); 22050 22051 /* Remove from the current list */ 22052 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22053 /* Only two elements in the list */ 22054 ASSERT(ill->ill_usesrc_ifindex == 0); 22055 ill->ill_usesrc_grp_next = NULL; 22056 } else { 22057 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22058 } 22059 22060 if (ifindex == 0) { 22061 ucill->ill_usesrc_ifindex = 0; 22062 ucill->ill_usesrc_grp_next = NULL; 22063 return (0); 22064 } 22065 22066 ucill->ill_usesrc_ifindex = ifindex; 22067 tmp_ill = uill->ill_usesrc_grp_next; 22068 uill->ill_usesrc_grp_next = ucill; 22069 ucill->ill_usesrc_grp_next = 22070 (tmp_ill != NULL) ? tmp_ill : uill; 22071 return (0); 22072 } 22073 22074 /* 22075 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22076 * ip.c for locking details. 22077 */ 22078 /* ARGSUSED */ 22079 int 22080 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22081 ip_ioctl_cmd_t *ipip, void *ifreq) 22082 { 22083 struct lifreq *lifr = (struct lifreq *)ifreq; 22084 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22085 ill_flag_changed = B_FALSE; 22086 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22087 int err = 0, ret; 22088 uint_t ifindex; 22089 phyint_t *us_phyint, *us_cli_phyint; 22090 ipsq_t *ipsq = NULL; 22091 22092 ASSERT(IAM_WRITER_IPIF(ipif)); 22093 ASSERT(q->q_next == NULL); 22094 ASSERT(CONN_Q(q)); 22095 22096 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22097 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22098 22099 ASSERT(us_cli_phyint != NULL); 22100 22101 /* 22102 * If the client ILL is being used for IPMP, abort. 22103 * Note, this can be done before ipsq_try_enter since we are already 22104 * exclusive on this ILL 22105 */ 22106 if ((us_cli_phyint->phyint_groupname != NULL) || 22107 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22108 return (EINVAL); 22109 } 22110 22111 ifindex = lifr->lifr_index; 22112 if (ifindex == 0) { 22113 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22114 /* non usesrc group interface, nothing to reset */ 22115 return (0); 22116 } 22117 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22118 /* valid reset request */ 22119 reset_flg = B_TRUE; 22120 } 22121 22122 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22123 ip_process_ioctl, &err); 22124 22125 if (usesrc_ill == NULL) { 22126 return (err); 22127 } 22128 22129 /* 22130 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22131 * group nor can either of the interfaces be used for standy. So 22132 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22133 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22134 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22135 * We are already exlusive on this ipsq i.e ipsq corresponding to 22136 * the usesrc_cli_ill 22137 */ 22138 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22139 NEW_OP, B_TRUE); 22140 if (ipsq == NULL) { 22141 err = EINPROGRESS; 22142 /* Operation enqueued on the ipsq of the usesrc ILL */ 22143 goto done; 22144 } 22145 22146 /* Check if the usesrc_ill is used for IPMP */ 22147 us_phyint = usesrc_ill->ill_phyint; 22148 if ((us_phyint->phyint_groupname != NULL) || 22149 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22150 err = EINVAL; 22151 goto done; 22152 } 22153 22154 /* 22155 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22156 * already a client then return EINVAL 22157 */ 22158 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22159 err = EINVAL; 22160 goto done; 22161 } 22162 22163 /* 22164 * If the ill_usesrc_ifindex field is already set to what it needs to 22165 * be then this is a duplicate operation. 22166 */ 22167 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22168 err = 0; 22169 goto done; 22170 } 22171 22172 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22173 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22174 usesrc_ill->ill_isv6)); 22175 22176 /* 22177 * The next step ensures that no new ires will be created referencing 22178 * the client ill, until the ILL_CHANGING flag is cleared. Then 22179 * we go through an ire walk deleting all ire caches that reference 22180 * the client ill. New ires referencing the client ill that are added 22181 * to the ire table before the ILL_CHANGING flag is set, will be 22182 * cleaned up by the ire walk below. Attempt to add new ires referencing 22183 * the client ill while the ILL_CHANGING flag is set will be failed 22184 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22185 * checks (under the ill_g_usesrc_lock) that the ire being added 22186 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22187 * belong to the same usesrc group. 22188 */ 22189 mutex_enter(&usesrc_cli_ill->ill_lock); 22190 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22191 mutex_exit(&usesrc_cli_ill->ill_lock); 22192 ill_flag_changed = B_TRUE; 22193 22194 if (ipif->ipif_isv6) 22195 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22196 ALL_ZONES); 22197 else 22198 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22199 ALL_ZONES); 22200 22201 /* 22202 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22203 * and the ill_usesrc_ifindex fields 22204 */ 22205 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 22206 22207 if (reset_flg) { 22208 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22209 if (ret != 0) { 22210 err = EINVAL; 22211 } 22212 rw_exit(&ill_g_usesrc_lock); 22213 goto done; 22214 } 22215 22216 /* 22217 * Four possibilities to consider: 22218 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22219 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22220 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22221 * 4. Both are part of their respective usesrc groups 22222 */ 22223 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22224 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22225 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22226 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22227 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22228 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22229 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22230 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22231 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22232 /* Insert at head of list */ 22233 usesrc_cli_ill->ill_usesrc_grp_next = 22234 usesrc_ill->ill_usesrc_grp_next; 22235 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22236 } else { 22237 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22238 ifindex); 22239 if (ret != 0) 22240 err = EINVAL; 22241 } 22242 rw_exit(&ill_g_usesrc_lock); 22243 22244 done: 22245 if (ill_flag_changed) { 22246 mutex_enter(&usesrc_cli_ill->ill_lock); 22247 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22248 mutex_exit(&usesrc_cli_ill->ill_lock); 22249 } 22250 if (ipsq != NULL) 22251 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22252 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22253 ill_refrele(usesrc_ill); 22254 return (err); 22255 } 22256 22257 /* 22258 * comparison function used by avl. 22259 */ 22260 static int 22261 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22262 { 22263 22264 uint_t index; 22265 22266 ASSERT(phyip != NULL && index_ptr != NULL); 22267 22268 index = *((uint_t *)index_ptr); 22269 /* 22270 * let the phyint with the lowest index be on top. 22271 */ 22272 if (((phyint_t *)phyip)->phyint_ifindex < index) 22273 return (1); 22274 if (((phyint_t *)phyip)->phyint_ifindex > index) 22275 return (-1); 22276 return (0); 22277 } 22278 22279 /* 22280 * comparison function used by avl. 22281 */ 22282 static int 22283 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22284 { 22285 ill_t *ill; 22286 int res = 0; 22287 22288 ASSERT(phyip != NULL && name_ptr != NULL); 22289 22290 if (((phyint_t *)phyip)->phyint_illv4) 22291 ill = ((phyint_t *)phyip)->phyint_illv4; 22292 else 22293 ill = ((phyint_t *)phyip)->phyint_illv6; 22294 ASSERT(ill != NULL); 22295 22296 res = strcmp(ill->ill_name, (char *)name_ptr); 22297 if (res > 0) 22298 return (1); 22299 else if (res < 0) 22300 return (-1); 22301 return (0); 22302 } 22303 /* 22304 * This function is called from ill_delete when the ill is being 22305 * unplumbed. We remove the reference from the phyint and we also 22306 * free the phyint when there are no more references to it. 22307 */ 22308 static void 22309 ill_phyint_free(ill_t *ill) 22310 { 22311 phyint_t *phyi; 22312 phyint_t *next_phyint; 22313 ipsq_t *cur_ipsq; 22314 22315 ASSERT(ill->ill_phyint != NULL); 22316 22317 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22318 phyi = ill->ill_phyint; 22319 ill->ill_phyint = NULL; 22320 /* 22321 * ill_init allocates a phyint always to store the copy 22322 * of flags relevant to phyint. At that point in time, we could 22323 * not assign the name and hence phyint_illv4/v6 could not be 22324 * initialized. Later in ipif_set_values, we assign the name to 22325 * the ill, at which point in time we assign phyint_illv4/v6. 22326 * Thus we don't rely on phyint_illv6 to be initialized always. 22327 */ 22328 if (ill->ill_flags & ILLF_IPV6) { 22329 phyi->phyint_illv6 = NULL; 22330 } else { 22331 phyi->phyint_illv4 = NULL; 22332 } 22333 /* 22334 * ipif_down removes it from the group when the last ipif goes 22335 * down. 22336 */ 22337 ASSERT(ill->ill_group == NULL); 22338 22339 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22340 return; 22341 22342 /* 22343 * Make sure this phyint was put in the list. 22344 */ 22345 if (phyi->phyint_ifindex > 0) { 22346 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 22347 phyi); 22348 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 22349 phyi); 22350 } 22351 /* 22352 * remove phyint from the ipsq list. 22353 */ 22354 cur_ipsq = phyi->phyint_ipsq; 22355 if (phyi == cur_ipsq->ipsq_phyint_list) { 22356 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22357 } else { 22358 next_phyint = cur_ipsq->ipsq_phyint_list; 22359 while (next_phyint != NULL) { 22360 if (next_phyint->phyint_ipsq_next == phyi) { 22361 next_phyint->phyint_ipsq_next = 22362 phyi->phyint_ipsq_next; 22363 break; 22364 } 22365 next_phyint = next_phyint->phyint_ipsq_next; 22366 } 22367 ASSERT(next_phyint != NULL); 22368 } 22369 IPSQ_DEC_REF(cur_ipsq); 22370 22371 if (phyi->phyint_groupname_len != 0) { 22372 ASSERT(phyi->phyint_groupname != NULL); 22373 mi_free(phyi->phyint_groupname); 22374 } 22375 mi_free(phyi); 22376 } 22377 22378 /* 22379 * Attach the ill to the phyint structure which can be shared by both 22380 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22381 * function is called from ipif_set_values and ill_lookup_on_name (for 22382 * loopback) where we know the name of the ill. We lookup the ill and if 22383 * there is one present already with the name use that phyint. Otherwise 22384 * reuse the one allocated by ill_init. 22385 */ 22386 static void 22387 ill_phyint_reinit(ill_t *ill) 22388 { 22389 boolean_t isv6 = ill->ill_isv6; 22390 phyint_t *phyi_old; 22391 phyint_t *phyi; 22392 avl_index_t where = 0; 22393 ill_t *ill_other = NULL; 22394 ipsq_t *ipsq; 22395 22396 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22397 22398 phyi_old = ill->ill_phyint; 22399 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22400 phyi_old->phyint_illv6 == NULL)); 22401 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22402 phyi_old->phyint_illv4 == NULL)); 22403 ASSERT(phyi_old->phyint_ifindex == 0); 22404 22405 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 22406 ill->ill_name, &where); 22407 22408 /* 22409 * 1. We grabbed the ill_g_lock before inserting this ill into 22410 * the global list of ills. So no other thread could have located 22411 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22412 * 2. Now locate the other protocol instance of this ill. 22413 * 3. Now grab both ill locks in the right order, and the phyint lock of 22414 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22415 * of neither ill can change. 22416 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22417 * other ill. 22418 * 5. Release all locks. 22419 */ 22420 22421 /* 22422 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22423 * we are initializing IPv4. 22424 */ 22425 if (phyi != NULL) { 22426 ill_other = (isv6) ? phyi->phyint_illv4 : 22427 phyi->phyint_illv6; 22428 ASSERT(ill_other->ill_phyint != NULL); 22429 ASSERT((isv6 && !ill_other->ill_isv6) || 22430 (!isv6 && ill_other->ill_isv6)); 22431 GRAB_ILL_LOCKS(ill, ill_other); 22432 /* 22433 * We are potentially throwing away phyint_flags which 22434 * could be different from the one that we obtain from 22435 * ill_other->ill_phyint. But it is okay as we are assuming 22436 * that the state maintained within IP is correct. 22437 */ 22438 mutex_enter(&phyi->phyint_lock); 22439 if (isv6) { 22440 ASSERT(phyi->phyint_illv6 == NULL); 22441 phyi->phyint_illv6 = ill; 22442 } else { 22443 ASSERT(phyi->phyint_illv4 == NULL); 22444 phyi->phyint_illv4 = ill; 22445 } 22446 /* 22447 * This is a new ill, currently undergoing SLIFNAME 22448 * So we could not have joined an IPMP group until now. 22449 */ 22450 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22451 phyi_old->phyint_groupname == NULL); 22452 22453 /* 22454 * This phyi_old is going away. Decref ipsq_refs and 22455 * assert it is zero. The ipsq itself will be freed in 22456 * ipsq_exit 22457 */ 22458 ipsq = phyi_old->phyint_ipsq; 22459 IPSQ_DEC_REF(ipsq); 22460 ASSERT(ipsq->ipsq_refs == 0); 22461 /* Get the singleton phyint out of the ipsq list */ 22462 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22463 ipsq->ipsq_phyint_list = NULL; 22464 phyi_old->phyint_illv4 = NULL; 22465 phyi_old->phyint_illv6 = NULL; 22466 mi_free(phyi_old); 22467 } else { 22468 mutex_enter(&ill->ill_lock); 22469 /* 22470 * We don't need to acquire any lock, since 22471 * the ill is not yet visible globally and we 22472 * have not yet released the ill_g_lock. 22473 */ 22474 phyi = phyi_old; 22475 mutex_enter(&phyi->phyint_lock); 22476 /* XXX We need a recovery strategy here. */ 22477 if (!phyint_assign_ifindex(phyi)) 22478 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22479 22480 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22481 (void *)phyi, where); 22482 22483 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22484 &phyi->phyint_ifindex, &where); 22485 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22486 (void *)phyi, where); 22487 } 22488 22489 /* 22490 * Reassigning ill_phyint automatically reassigns the ipsq also. 22491 * pending mp is not affected because that is per ill basis. 22492 */ 22493 ill->ill_phyint = phyi; 22494 22495 /* 22496 * Keep the index on ipif_orig_index to be used by FAILOVER. 22497 * We do this here as when the first ipif was allocated, 22498 * ipif_allocate does not know the right interface index. 22499 */ 22500 22501 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22502 /* 22503 * Now that the phyint's ifindex has been assigned, complete the 22504 * remaining 22505 */ 22506 if (ill->ill_isv6) { 22507 ill->ill_ip6_mib->ipv6IfIndex = 22508 ill->ill_phyint->phyint_ifindex; 22509 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22510 ill->ill_phyint->phyint_ifindex; 22511 } 22512 22513 /* 22514 * Generate an event within the hooks framework to indicate that 22515 * a new interface has just been added to IP. For this event to 22516 * be generated, the network interface must, at least, have an 22517 * ifindex assigned to it. 22518 * 22519 * This needs to be run inside the ill_g_lock perimeter to ensure 22520 * that the ordering of delivered events to listeners matches the 22521 * order of them in the kernel. 22522 * 22523 * This function could be called from ill_lookup_on_name. In that case 22524 * the interface is loopback "lo", which will not generate a NIC event. 22525 */ 22526 if (ill->ill_name_length <= 2 || 22527 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22528 hook_nic_event_t *info; 22529 if ((info = ill->ill_nic_event_info) != NULL) { 22530 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22531 "attached for %s\n", info->hne_event, 22532 ill->ill_name)); 22533 if (info->hne_data != NULL) 22534 kmem_free(info->hne_data, info->hne_datalen); 22535 kmem_free(info, sizeof (hook_nic_event_t)); 22536 } 22537 22538 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22539 if (info != NULL) { 22540 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22541 info->hne_lif = 0; 22542 info->hne_event = NE_PLUMB; 22543 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 22544 info->hne_data = kmem_alloc(ill->ill_name_length, 22545 KM_NOSLEEP); 22546 if (info->hne_data != NULL) { 22547 info->hne_datalen = ill->ill_name_length; 22548 bcopy(ill->ill_name, info->hne_data, 22549 info->hne_datalen); 22550 } else { 22551 ip2dbg(("ill_phyint_reinit: could not attach " 22552 "ill_name information for PLUMB nic event " 22553 "of %s (ENOMEM)\n", ill->ill_name)); 22554 kmem_free(info, sizeof (hook_nic_event_t)); 22555 } 22556 } else 22557 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22558 "event information for %s (ENOMEM)\n", 22559 ill->ill_name)); 22560 22561 ill->ill_nic_event_info = info; 22562 } 22563 22564 RELEASE_ILL_LOCKS(ill, ill_other); 22565 mutex_exit(&phyi->phyint_lock); 22566 } 22567 22568 /* 22569 * Notify any downstream modules of the name of this interface. 22570 * An M_IOCTL is used even though we don't expect a successful reply. 22571 * Any reply message from the driver (presumably an M_IOCNAK) will 22572 * eventually get discarded somewhere upstream. The message format is 22573 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22574 * to IP. 22575 */ 22576 static void 22577 ip_ifname_notify(ill_t *ill, queue_t *q) 22578 { 22579 mblk_t *mp1, *mp2; 22580 struct iocblk *iocp; 22581 struct lifreq *lifr; 22582 22583 mp1 = mkiocb(SIOCSLIFNAME); 22584 if (mp1 == NULL) 22585 return; 22586 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22587 if (mp2 == NULL) { 22588 freeb(mp1); 22589 return; 22590 } 22591 22592 mp1->b_cont = mp2; 22593 iocp = (struct iocblk *)mp1->b_rptr; 22594 iocp->ioc_count = sizeof (struct lifreq); 22595 22596 lifr = (struct lifreq *)mp2->b_rptr; 22597 mp2->b_wptr += sizeof (struct lifreq); 22598 bzero(lifr, sizeof (struct lifreq)); 22599 22600 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22601 lifr->lifr_ppa = ill->ill_ppa; 22602 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22603 22604 putnext(q, mp1); 22605 } 22606 22607 static boolean_t ip_trash_timer_started = B_FALSE; 22608 22609 static int 22610 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22611 { 22612 int err; 22613 22614 /* Set the obsolete NDD per-interface forwarding name. */ 22615 err = ill_set_ndd_name(ill); 22616 if (err != 0) { 22617 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22618 err); 22619 } 22620 22621 /* Tell downstream modules where they are. */ 22622 ip_ifname_notify(ill, q); 22623 22624 /* 22625 * ill_dl_phys returns EINPROGRESS in the usual case. 22626 * Error cases are ENOMEM ... 22627 */ 22628 err = ill_dl_phys(ill, ipif, mp, q); 22629 22630 /* 22631 * If there is no IRE expiration timer running, get one started. 22632 * igmp and mld timers will be triggered by the first multicast 22633 */ 22634 if (!ip_trash_timer_started) { 22635 /* 22636 * acquire the lock and check again. 22637 */ 22638 mutex_enter(&ip_trash_timer_lock); 22639 if (!ip_trash_timer_started) { 22640 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22641 MSEC_TO_TICK(ip_timer_interval)); 22642 ip_trash_timer_started = B_TRUE; 22643 } 22644 mutex_exit(&ip_trash_timer_lock); 22645 } 22646 22647 if (ill->ill_isv6) { 22648 mutex_enter(&mld_slowtimeout_lock); 22649 if (mld_slowtimeout_id == 0) { 22650 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22651 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22652 } 22653 mutex_exit(&mld_slowtimeout_lock); 22654 } else { 22655 mutex_enter(&igmp_slowtimeout_lock); 22656 if (igmp_slowtimeout_id == 0) { 22657 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22658 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22659 } 22660 mutex_exit(&igmp_slowtimeout_lock); 22661 } 22662 22663 return (err); 22664 } 22665 22666 /* 22667 * Common routine for ppa and ifname setting. Should be called exclusive. 22668 * 22669 * Returns EINPROGRESS when mp has been consumed by queueing it on 22670 * ill_pending_mp and the ioctl will complete in ip_rput. 22671 * 22672 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22673 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22674 * For SLIFNAME, we pass these values back to the userland. 22675 */ 22676 static int 22677 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22678 { 22679 ill_t *ill; 22680 ipif_t *ipif; 22681 ipsq_t *ipsq; 22682 char *ppa_ptr; 22683 char *old_ptr; 22684 char old_char; 22685 int error; 22686 22687 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22688 ASSERT(q->q_next != NULL); 22689 ASSERT(interf_name != NULL); 22690 22691 ill = (ill_t *)q->q_ptr; 22692 22693 ASSERT(ill->ill_name[0] == '\0'); 22694 ASSERT(IAM_WRITER_ILL(ill)); 22695 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22696 ASSERT(ill->ill_ppa == UINT_MAX); 22697 22698 /* The ppa is sent down by ifconfig or is chosen */ 22699 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22700 return (EINVAL); 22701 } 22702 22703 /* 22704 * make sure ppa passed in is same as ppa in the name. 22705 * This check is not made when ppa == UINT_MAX in that case ppa 22706 * in the name could be anything. System will choose a ppa and 22707 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22708 */ 22709 if (*new_ppa_ptr != UINT_MAX) { 22710 /* stoi changes the pointer */ 22711 old_ptr = ppa_ptr; 22712 /* 22713 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22714 * (they don't have an externally visible ppa). We assign one 22715 * here so that we can manage the interface. Note that in 22716 * the past this value was always 0 for DLPI 1 drivers. 22717 */ 22718 if (*new_ppa_ptr == 0) 22719 *new_ppa_ptr = stoi(&old_ptr); 22720 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22721 return (EINVAL); 22722 } 22723 /* 22724 * terminate string before ppa 22725 * save char at that location. 22726 */ 22727 old_char = ppa_ptr[0]; 22728 ppa_ptr[0] = '\0'; 22729 22730 ill->ill_ppa = *new_ppa_ptr; 22731 /* 22732 * Finish as much work now as possible before calling ill_glist_insert 22733 * which makes the ill globally visible and also merges it with the 22734 * other protocol instance of this phyint. The remaining work is 22735 * done after entering the ipsq which may happen sometime later. 22736 * ill_set_ndd_name occurs after the ill has been made globally visible. 22737 */ 22738 ipif = ill->ill_ipif; 22739 22740 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22741 ipif_assign_seqid(ipif); 22742 22743 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22744 ill->ill_flags |= ILLF_IPV4; 22745 22746 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22747 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22748 22749 if (ill->ill_flags & ILLF_IPV6) { 22750 22751 ill->ill_isv6 = B_TRUE; 22752 if (ill->ill_rq != NULL) { 22753 ill->ill_rq->q_qinfo = &rinit_ipv6; 22754 ill->ill_wq->q_qinfo = &winit_ipv6; 22755 } 22756 22757 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22758 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22759 ipif->ipif_v6src_addr = ipv6_all_zeros; 22760 ipif->ipif_v6subnet = ipv6_all_zeros; 22761 ipif->ipif_v6net_mask = ipv6_all_zeros; 22762 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22763 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22764 /* 22765 * point-to-point or Non-mulicast capable 22766 * interfaces won't do NUD unless explicitly 22767 * configured to do so. 22768 */ 22769 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22770 !(ill->ill_flags & ILLF_MULTICAST)) { 22771 ill->ill_flags |= ILLF_NONUD; 22772 } 22773 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22774 if (ill->ill_flags & ILLF_NOARP) { 22775 /* 22776 * Note: xresolv interfaces will eventually need 22777 * NOARP set here as well, but that will require 22778 * those external resolvers to have some 22779 * knowledge of that flag and act appropriately. 22780 * Not to be changed at present. 22781 */ 22782 ill->ill_flags &= ~ILLF_NOARP; 22783 } 22784 /* 22785 * Set the ILLF_ROUTER flag according to the global 22786 * IPv6 forwarding policy. 22787 */ 22788 if (ipv6_forward != 0) 22789 ill->ill_flags |= ILLF_ROUTER; 22790 } else if (ill->ill_flags & ILLF_IPV4) { 22791 ill->ill_isv6 = B_FALSE; 22792 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22793 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22794 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22795 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22796 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22797 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22798 /* 22799 * Set the ILLF_ROUTER flag according to the global 22800 * IPv4 forwarding policy. 22801 */ 22802 if (ip_g_forward != 0) 22803 ill->ill_flags |= ILLF_ROUTER; 22804 } 22805 22806 ASSERT(ill->ill_phyint != NULL); 22807 22808 /* 22809 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 22810 * be completed in ill_glist_insert -> ill_phyint_reinit 22811 */ 22812 if (ill->ill_isv6) { 22813 /* allocate v6 mib */ 22814 if (!ill_allocate_mibs(ill)) 22815 return (ENOMEM); 22816 } 22817 22818 /* 22819 * Pick a default sap until we get the DL_INFO_ACK back from 22820 * the driver. 22821 */ 22822 if (ill->ill_sap == 0) { 22823 if (ill->ill_isv6) 22824 ill->ill_sap = IP6_DL_SAP; 22825 else 22826 ill->ill_sap = IP_DL_SAP; 22827 } 22828 22829 ill->ill_ifname_pending = 1; 22830 ill->ill_ifname_pending_err = 0; 22831 22832 ill_refhold(ill); 22833 rw_enter(&ill_g_lock, RW_WRITER); 22834 if ((error = ill_glist_insert(ill, interf_name, 22835 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22836 ill->ill_ppa = UINT_MAX; 22837 ill->ill_name[0] = '\0'; 22838 /* 22839 * undo null termination done above. 22840 */ 22841 ppa_ptr[0] = old_char; 22842 rw_exit(&ill_g_lock); 22843 ill_refrele(ill); 22844 return (error); 22845 } 22846 22847 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22848 22849 /* 22850 * When we return the buffer pointed to by interf_name should contain 22851 * the same name as in ill_name. 22852 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22853 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22854 * so copy full name and update the ppa ptr. 22855 * When ppa passed in != UINT_MAX all values are correct just undo 22856 * null termination, this saves a bcopy. 22857 */ 22858 if (*new_ppa_ptr == UINT_MAX) { 22859 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22860 *new_ppa_ptr = ill->ill_ppa; 22861 } else { 22862 /* 22863 * undo null termination done above. 22864 */ 22865 ppa_ptr[0] = old_char; 22866 } 22867 22868 /* Let SCTP know about this ILL */ 22869 sctp_update_ill(ill, SCTP_ILL_INSERT); 22870 22871 /* and also about the first ipif */ 22872 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22873 22874 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22875 B_TRUE); 22876 22877 rw_exit(&ill_g_lock); 22878 ill_refrele(ill); 22879 if (ipsq == NULL) 22880 return (EINPROGRESS); 22881 22882 /* 22883 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22884 * due to the phyint merge in ill_phyint_reinit. 22885 */ 22886 ASSERT(ipsq->ipsq_current_ipif == NULL || 22887 ipsq->ipsq_current_ipif == ipif); 22888 ipsq->ipsq_current_ipif = ipif; 22889 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22890 error = ipif_set_values_tail(ill, ipif, mp, q); 22891 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22892 if (error != 0 && error != EINPROGRESS) { 22893 /* 22894 * restore previous values 22895 */ 22896 ill->ill_isv6 = B_FALSE; 22897 } 22898 return (error); 22899 } 22900 22901 22902 extern void (*ip_cleanup_func)(void); 22903 22904 void 22905 ipif_init(void) 22906 { 22907 hrtime_t hrt; 22908 int i; 22909 22910 /* 22911 * Can't call drv_getparm here as it is too early in the boot. 22912 * As we use ipif_src_random just for picking a different 22913 * source address everytime, this need not be really random. 22914 */ 22915 hrt = gethrtime(); 22916 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22917 22918 for (i = 0; i < MAX_G_HEADS; i++) { 22919 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22920 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22921 } 22922 22923 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22924 ill_phyint_compare_index, 22925 sizeof (phyint_t), 22926 offsetof(struct phyint, phyint_avl_by_index)); 22927 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22928 ill_phyint_compare_name, 22929 sizeof (phyint_t), 22930 offsetof(struct phyint, phyint_avl_by_name)); 22931 22932 ip_cleanup_func = ip_thread_exit; 22933 } 22934 22935 /* 22936 * This is called by ip_rt_add when src_addr value is other than zero. 22937 * src_addr signifies the source address of the incoming packet. For 22938 * reverse tunnel route we need to create a source addr based routing 22939 * table. This routine creates ip_mrtun_table if it's empty and then 22940 * it adds the route entry hashed by source address. It verifies that 22941 * the outgoing interface is always a non-resolver interface (tunnel). 22942 */ 22943 int 22944 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22945 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22946 { 22947 ire_t *ire; 22948 ire_t *save_ire; 22949 ipif_t *ipif; 22950 ill_t *in_ill = NULL; 22951 ill_t *out_ill; 22952 queue_t *stq; 22953 mblk_t *dlureq_mp; 22954 int error; 22955 22956 if (ire_arg != NULL) 22957 *ire_arg = NULL; 22958 ASSERT(in_src_addr != INADDR_ANY); 22959 22960 ipif = ipif_arg; 22961 if (ipif != NULL) { 22962 out_ill = ipif->ipif_ill; 22963 } else { 22964 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22965 return (EINVAL); 22966 } 22967 22968 if (src_ipif == NULL) { 22969 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22970 return (EINVAL); 22971 } 22972 in_ill = src_ipif->ipif_ill; 22973 22974 /* 22975 * Check for duplicates. We don't need to 22976 * match out_ill, because the uniqueness of 22977 * a route is only dependent on src_addr and 22978 * in_ill. 22979 */ 22980 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22981 if (ire != NULL) { 22982 ire_refrele(ire); 22983 return (EEXIST); 22984 } 22985 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22986 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22987 ipif->ipif_net_type)); 22988 return (EINVAL); 22989 } 22990 22991 stq = ipif->ipif_wq; 22992 ASSERT(stq != NULL); 22993 22994 /* 22995 * The outgoing interface must be non-resolver 22996 * interface. 22997 */ 22998 dlureq_mp = ill_dlur_gen(NULL, 22999 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23000 out_ill->ill_sap_length); 23001 23002 if (dlureq_mp == NULL) { 23003 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23004 return (ENOMEM); 23005 } 23006 23007 /* Create the IRE. */ 23008 23009 ire = ire_create( 23010 NULL, /* Zero dst addr */ 23011 NULL, /* Zero mask */ 23012 NULL, /* Zero gateway addr */ 23013 NULL, /* Zero ipif_src addr */ 23014 (uint8_t *)&in_src_addr, /* in_src-addr */ 23015 &ipif->ipif_mtu, 23016 NULL, 23017 NULL, /* rfq */ 23018 stq, 23019 IRE_MIPRTUN, 23020 dlureq_mp, 23021 ipif, 23022 in_ill, 23023 0, 23024 0, 23025 0, 23026 flags, 23027 &ire_uinfo_null, 23028 NULL, 23029 NULL); 23030 23031 if (ire == NULL) { 23032 freeb(dlureq_mp); 23033 return (ENOMEM); 23034 } 23035 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23036 ire->ire_type)); 23037 save_ire = ire; 23038 ASSERT(save_ire != NULL); 23039 error = ire_add_mrtun(&ire, q, mp, func); 23040 /* 23041 * If ire_add_mrtun() failed, the ire passed in was freed 23042 * so there is no need to do so here. 23043 */ 23044 if (error != 0) { 23045 return (error); 23046 } 23047 23048 /* Duplicate check */ 23049 if (ire != save_ire) { 23050 /* route already exists by now */ 23051 ire_refrele(ire); 23052 return (EEXIST); 23053 } 23054 23055 if (ire_arg != NULL) { 23056 /* 23057 * Store the ire that was just added. the caller 23058 * ip_rts_request responsible for doing ire_refrele() 23059 * on it. 23060 */ 23061 *ire_arg = ire; 23062 } else { 23063 ire_refrele(ire); /* held in ire_add_mrtun */ 23064 } 23065 23066 return (0); 23067 } 23068 23069 /* 23070 * It is called by ip_rt_delete() only when mipagent requests to delete 23071 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23072 */ 23073 23074 int 23075 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23076 { 23077 ire_t *ire = NULL; 23078 23079 if (in_src_addr == INADDR_ANY) 23080 return (EINVAL); 23081 if (src_ipif == NULL) 23082 return (EINVAL); 23083 23084 /* search if this route exists in the ip_mrtun_table */ 23085 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23086 if (ire == NULL) { 23087 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23088 return (ESRCH); 23089 } 23090 ire_delete(ire); 23091 ire_refrele(ire); 23092 return (0); 23093 } 23094 23095 /* 23096 * Lookup the ipif corresponding to the onlink destination address. For 23097 * point-to-point interfaces, it matches with remote endpoint destination 23098 * address. For point-to-multipoint interfaces it only tries to match the 23099 * destination with the interface's subnet address. The longest, most specific 23100 * match is found to take care of such rare network configurations like - 23101 * le0: 129.146.1.1/16 23102 * le1: 129.146.2.2/24 23103 * It is used only by SO_DONTROUTE at the moment. 23104 */ 23105 ipif_t * 23106 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 23107 { 23108 ipif_t *ipif, *best_ipif; 23109 ill_t *ill; 23110 ill_walk_context_t ctx; 23111 23112 ASSERT(zoneid != ALL_ZONES); 23113 best_ipif = NULL; 23114 23115 rw_enter(&ill_g_lock, RW_READER); 23116 ill = ILL_START_WALK_V4(&ctx); 23117 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23118 mutex_enter(&ill->ill_lock); 23119 for (ipif = ill->ill_ipif; ipif != NULL; 23120 ipif = ipif->ipif_next) { 23121 if (!IPIF_CAN_LOOKUP(ipif)) 23122 continue; 23123 if (ipif->ipif_zoneid != zoneid && 23124 ipif->ipif_zoneid != ALL_ZONES) 23125 continue; 23126 /* 23127 * Point-to-point case. Look for exact match with 23128 * destination address. 23129 */ 23130 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23131 if (ipif->ipif_pp_dst_addr == addr) { 23132 ipif_refhold_locked(ipif); 23133 mutex_exit(&ill->ill_lock); 23134 rw_exit(&ill_g_lock); 23135 if (best_ipif != NULL) 23136 ipif_refrele(best_ipif); 23137 return (ipif); 23138 } 23139 } else if (ipif->ipif_subnet == (addr & 23140 ipif->ipif_net_mask)) { 23141 /* 23142 * Point-to-multipoint case. Looping through to 23143 * find the most specific match. If there are 23144 * multiple best match ipif's then prefer ipif's 23145 * that are UP. If there is only one best match 23146 * ipif and it is DOWN we must still return it. 23147 */ 23148 if ((best_ipif == NULL) || 23149 (ipif->ipif_net_mask > 23150 best_ipif->ipif_net_mask) || 23151 ((ipif->ipif_net_mask == 23152 best_ipif->ipif_net_mask) && 23153 ((ipif->ipif_flags & IPIF_UP) && 23154 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23155 ipif_refhold_locked(ipif); 23156 mutex_exit(&ill->ill_lock); 23157 rw_exit(&ill_g_lock); 23158 if (best_ipif != NULL) 23159 ipif_refrele(best_ipif); 23160 best_ipif = ipif; 23161 rw_enter(&ill_g_lock, RW_READER); 23162 mutex_enter(&ill->ill_lock); 23163 } 23164 } 23165 } 23166 mutex_exit(&ill->ill_lock); 23167 } 23168 rw_exit(&ill_g_lock); 23169 return (best_ipif); 23170 } 23171 23172 23173 /* 23174 * Save enough information so that we can recreate the IRE if 23175 * the interface goes down and then up. 23176 */ 23177 static void 23178 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23179 { 23180 mblk_t *save_mp; 23181 23182 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23183 if (save_mp != NULL) { 23184 ifrt_t *ifrt; 23185 23186 save_mp->b_wptr += sizeof (ifrt_t); 23187 ifrt = (ifrt_t *)save_mp->b_rptr; 23188 bzero(ifrt, sizeof (ifrt_t)); 23189 ifrt->ifrt_type = ire->ire_type; 23190 ifrt->ifrt_addr = ire->ire_addr; 23191 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23192 ifrt->ifrt_src_addr = ire->ire_src_addr; 23193 ifrt->ifrt_mask = ire->ire_mask; 23194 ifrt->ifrt_flags = ire->ire_flags; 23195 ifrt->ifrt_max_frag = ire->ire_max_frag; 23196 mutex_enter(&ipif->ipif_saved_ire_lock); 23197 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23198 ipif->ipif_saved_ire_mp = save_mp; 23199 ipif->ipif_saved_ire_cnt++; 23200 mutex_exit(&ipif->ipif_saved_ire_lock); 23201 } 23202 } 23203 23204 23205 static void 23206 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23207 { 23208 mblk_t **mpp; 23209 mblk_t *mp; 23210 ifrt_t *ifrt; 23211 23212 /* Remove from ipif_saved_ire_mp list if it is there */ 23213 mutex_enter(&ipif->ipif_saved_ire_lock); 23214 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23215 mpp = &(*mpp)->b_cont) { 23216 /* 23217 * On a given ipif, the triple of address, gateway and 23218 * mask is unique for each saved IRE (in the case of 23219 * ordinary interface routes, the gateway address is 23220 * all-zeroes). 23221 */ 23222 mp = *mpp; 23223 ifrt = (ifrt_t *)mp->b_rptr; 23224 if (ifrt->ifrt_addr == ire->ire_addr && 23225 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23226 ifrt->ifrt_mask == ire->ire_mask) { 23227 *mpp = mp->b_cont; 23228 ipif->ipif_saved_ire_cnt--; 23229 freeb(mp); 23230 break; 23231 } 23232 } 23233 mutex_exit(&ipif->ipif_saved_ire_lock); 23234 } 23235 23236 23237 /* 23238 * IP multirouting broadcast routes handling 23239 * Append CGTP broadcast IREs to regular ones created 23240 * at ifconfig time. 23241 */ 23242 static void 23243 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 23244 { 23245 ire_t *ire_prim; 23246 23247 ASSERT(ire != NULL); 23248 ASSERT(ire_dst != NULL); 23249 23250 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23251 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23252 if (ire_prim != NULL) { 23253 /* 23254 * We are in the special case of broadcasts for 23255 * CGTP. We add an IRE_BROADCAST that holds 23256 * the RTF_MULTIRT flag, the destination 23257 * address of ire_dst and the low level 23258 * info of ire_prim. In other words, CGTP 23259 * broadcast is added to the redundant ipif. 23260 */ 23261 ipif_t *ipif_prim; 23262 ire_t *bcast_ire; 23263 23264 ipif_prim = ire_prim->ire_ipif; 23265 23266 ip2dbg(("ip_cgtp_filter_bcast_add: " 23267 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23268 (void *)ire_dst, (void *)ire_prim, 23269 (void *)ipif_prim)); 23270 23271 bcast_ire = ire_create( 23272 (uchar_t *)&ire->ire_addr, 23273 (uchar_t *)&ip_g_all_ones, 23274 (uchar_t *)&ire_dst->ire_src_addr, 23275 (uchar_t *)&ire->ire_gateway_addr, 23276 NULL, 23277 &ipif_prim->ipif_mtu, 23278 NULL, 23279 ipif_prim->ipif_rq, 23280 ipif_prim->ipif_wq, 23281 IRE_BROADCAST, 23282 ipif_prim->ipif_bcast_mp, 23283 ipif_prim, 23284 NULL, 23285 0, 23286 0, 23287 0, 23288 ire->ire_flags, 23289 &ire_uinfo_null, 23290 NULL, 23291 NULL); 23292 23293 if (bcast_ire != NULL) { 23294 23295 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23296 B_FALSE) == 0) { 23297 ip2dbg(("ip_cgtp_filter_bcast_add: " 23298 "added bcast_ire %p\n", 23299 (void *)bcast_ire)); 23300 23301 ipif_save_ire(bcast_ire->ire_ipif, 23302 bcast_ire); 23303 ire_refrele(bcast_ire); 23304 } 23305 } 23306 ire_refrele(ire_prim); 23307 } 23308 } 23309 23310 23311 /* 23312 * IP multirouting broadcast routes handling 23313 * Remove the broadcast ire 23314 */ 23315 static void 23316 ip_cgtp_bcast_delete(ire_t *ire) 23317 { 23318 ire_t *ire_dst; 23319 23320 ASSERT(ire != NULL); 23321 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23322 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23323 if (ire_dst != NULL) { 23324 ire_t *ire_prim; 23325 23326 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23327 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23328 if (ire_prim != NULL) { 23329 ipif_t *ipif_prim; 23330 ire_t *bcast_ire; 23331 23332 ipif_prim = ire_prim->ire_ipif; 23333 23334 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23335 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23336 (void *)ire_dst, (void *)ire_prim, 23337 (void *)ipif_prim)); 23338 23339 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23340 ire->ire_gateway_addr, 23341 IRE_BROADCAST, 23342 ipif_prim, ALL_ZONES, 23343 NULL, 23344 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23345 MATCH_IRE_MASK); 23346 23347 if (bcast_ire != NULL) { 23348 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23349 "looked up bcast_ire %p\n", 23350 (void *)bcast_ire)); 23351 ipif_remove_ire(bcast_ire->ire_ipif, 23352 bcast_ire); 23353 ire_delete(bcast_ire); 23354 } 23355 ire_refrele(ire_prim); 23356 } 23357 ire_refrele(ire_dst); 23358 } 23359 } 23360 23361 /* 23362 * IPsec hardware acceleration capabilities related functions. 23363 */ 23364 23365 /* 23366 * Free a per-ill IPsec capabilities structure. 23367 */ 23368 static void 23369 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23370 { 23371 if (capab->auth_hw_algs != NULL) 23372 kmem_free(capab->auth_hw_algs, capab->algs_size); 23373 if (capab->encr_hw_algs != NULL) 23374 kmem_free(capab->encr_hw_algs, capab->algs_size); 23375 if (capab->encr_algparm != NULL) 23376 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23377 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23378 } 23379 23380 /* 23381 * Allocate a new per-ill IPsec capabilities structure. This structure 23382 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23383 * an array which specifies, for each algorithm, whether this algorithm 23384 * is supported by the ill or not. 23385 */ 23386 static ill_ipsec_capab_t * 23387 ill_ipsec_capab_alloc(void) 23388 { 23389 ill_ipsec_capab_t *capab; 23390 uint_t nelems; 23391 23392 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23393 if (capab == NULL) 23394 return (NULL); 23395 23396 /* we need one bit per algorithm */ 23397 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23398 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23399 23400 /* allocate memory to store algorithm flags */ 23401 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23402 if (capab->encr_hw_algs == NULL) 23403 goto nomem; 23404 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23405 if (capab->auth_hw_algs == NULL) 23406 goto nomem; 23407 /* 23408 * Leave encr_algparm NULL for now since we won't need it half 23409 * the time 23410 */ 23411 return (capab); 23412 23413 nomem: 23414 ill_ipsec_capab_free(capab); 23415 return (NULL); 23416 } 23417 23418 /* 23419 * Resize capability array. Since we're exclusive, this is OK. 23420 */ 23421 static boolean_t 23422 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23423 { 23424 ipsec_capab_algparm_t *nalp, *oalp; 23425 uint32_t olen, nlen; 23426 23427 oalp = capab->encr_algparm; 23428 olen = capab->encr_algparm_size; 23429 23430 if (oalp != NULL) { 23431 if (algid < capab->encr_algparm_end) 23432 return (B_TRUE); 23433 } 23434 23435 nlen = (algid + 1) * sizeof (*nalp); 23436 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23437 if (nalp == NULL) 23438 return (B_FALSE); 23439 23440 if (oalp != NULL) { 23441 bcopy(oalp, nalp, olen); 23442 kmem_free(oalp, olen); 23443 } 23444 capab->encr_algparm = nalp; 23445 capab->encr_algparm_size = nlen; 23446 capab->encr_algparm_end = algid + 1; 23447 23448 return (B_TRUE); 23449 } 23450 23451 /* 23452 * Compare the capabilities of the specified ill with the protocol 23453 * and algorithms specified by the SA passed as argument. 23454 * If they match, returns B_TRUE, B_FALSE if they do not match. 23455 * 23456 * The ill can be passed as a pointer to it, or by specifying its index 23457 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23458 * 23459 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23460 * packet is eligible for hardware acceleration, and by 23461 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23462 * to a particular ill. 23463 */ 23464 boolean_t 23465 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23466 ipsa_t *sa) 23467 { 23468 boolean_t sa_isv6; 23469 uint_t algid; 23470 struct ill_ipsec_capab_s *cpp; 23471 boolean_t need_refrele = B_FALSE; 23472 23473 if (ill == NULL) { 23474 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23475 NULL, NULL, NULL); 23476 if (ill == NULL) { 23477 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23478 return (B_FALSE); 23479 } 23480 need_refrele = B_TRUE; 23481 } 23482 23483 /* 23484 * Use the address length specified by the SA to determine 23485 * if it corresponds to a IPv6 address, and fail the matching 23486 * if the isv6 flag passed as argument does not match. 23487 * Note: this check is used for SADB capability checking before 23488 * sending SA information to an ill. 23489 */ 23490 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23491 if (sa_isv6 != ill_isv6) 23492 /* protocol mismatch */ 23493 goto done; 23494 23495 /* 23496 * Check if the ill supports the protocol, algorithm(s) and 23497 * key size(s) specified by the SA, and get the pointers to 23498 * the algorithms supported by the ill. 23499 */ 23500 switch (sa->ipsa_type) { 23501 23502 case SADB_SATYPE_ESP: 23503 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23504 /* ill does not support ESP acceleration */ 23505 goto done; 23506 cpp = ill->ill_ipsec_capab_esp; 23507 algid = sa->ipsa_auth_alg; 23508 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23509 goto done; 23510 algid = sa->ipsa_encr_alg; 23511 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23512 goto done; 23513 if (algid < cpp->encr_algparm_end) { 23514 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23515 if (sa->ipsa_encrkeybits < alp->minkeylen) 23516 goto done; 23517 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23518 goto done; 23519 } 23520 break; 23521 23522 case SADB_SATYPE_AH: 23523 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23524 /* ill does not support AH acceleration */ 23525 goto done; 23526 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23527 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23528 goto done; 23529 break; 23530 } 23531 23532 if (need_refrele) 23533 ill_refrele(ill); 23534 return (B_TRUE); 23535 done: 23536 if (need_refrele) 23537 ill_refrele(ill); 23538 return (B_FALSE); 23539 } 23540 23541 23542 /* 23543 * Add a new ill to the list of IPsec capable ills. 23544 * Called from ill_capability_ipsec_ack() when an ACK was received 23545 * indicating that IPsec hardware processing was enabled for an ill. 23546 * 23547 * ill must point to the ill for which acceleration was enabled. 23548 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23549 */ 23550 static void 23551 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23552 { 23553 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23554 uint_t sa_type; 23555 uint_t ipproto; 23556 23557 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23558 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23559 23560 switch (dl_cap) { 23561 case DL_CAPAB_IPSEC_AH: 23562 sa_type = SADB_SATYPE_AH; 23563 ills = &ipsec_capab_ills_ah; 23564 ipproto = IPPROTO_AH; 23565 break; 23566 case DL_CAPAB_IPSEC_ESP: 23567 sa_type = SADB_SATYPE_ESP; 23568 ills = &ipsec_capab_ills_esp; 23569 ipproto = IPPROTO_ESP; 23570 break; 23571 } 23572 23573 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23574 23575 /* 23576 * Add ill index to list of hardware accelerators. If 23577 * already in list, do nothing. 23578 */ 23579 for (cur_ill = *ills; cur_ill != NULL && 23580 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23581 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23582 ; 23583 23584 if (cur_ill == NULL) { 23585 /* if this is a new entry for this ill */ 23586 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23587 if (new_ill == NULL) { 23588 rw_exit(&ipsec_capab_ills_lock); 23589 return; 23590 } 23591 23592 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23593 new_ill->ill_isv6 = ill->ill_isv6; 23594 new_ill->next = *ills; 23595 *ills = new_ill; 23596 } else if (!sadb_resync) { 23597 /* not resync'ing SADB and an entry exists for this ill */ 23598 rw_exit(&ipsec_capab_ills_lock); 23599 return; 23600 } 23601 23602 rw_exit(&ipsec_capab_ills_lock); 23603 23604 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23605 /* 23606 * IPsec module for protocol loaded, initiate dump 23607 * of the SADB to this ill. 23608 */ 23609 sadb_ill_download(ill, sa_type); 23610 } 23611 23612 /* 23613 * Remove an ill from the list of IPsec capable ills. 23614 */ 23615 static void 23616 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23617 { 23618 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23619 23620 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23621 dl_cap == DL_CAPAB_IPSEC_ESP); 23622 23623 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23624 &ipsec_capab_ills_esp; 23625 23626 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23627 23628 prev_ill = NULL; 23629 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23630 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23631 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23632 ; 23633 if (cur_ill == NULL) { 23634 /* entry not found */ 23635 rw_exit(&ipsec_capab_ills_lock); 23636 return; 23637 } 23638 if (prev_ill == NULL) { 23639 /* entry at front of list */ 23640 *ills = NULL; 23641 } else { 23642 prev_ill->next = cur_ill->next; 23643 } 23644 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23645 rw_exit(&ipsec_capab_ills_lock); 23646 } 23647 23648 23649 /* 23650 * Handling of DL_CONTROL_REQ messages that must be sent down to 23651 * an ill while having exclusive access. 23652 */ 23653 /* ARGSUSED */ 23654 static void 23655 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23656 { 23657 ill_t *ill = (ill_t *)q->q_ptr; 23658 23659 ill_dlpi_send(ill, mp); 23660 } 23661 23662 23663 /* 23664 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23665 * supporting the specified IPsec protocol acceleration. 23666 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23667 * We free the mblk and, if sa is non-null, release the held referece. 23668 */ 23669 void 23670 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23671 { 23672 ipsec_capab_ill_t *ici, *cur_ici; 23673 ill_t *ill; 23674 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23675 23676 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23677 ipsec_capab_ills_esp; 23678 23679 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23680 23681 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23682 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23683 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23684 23685 /* 23686 * Handle the case where the ill goes away while the SADB is 23687 * attempting to send messages. If it's going away, it's 23688 * nuking its shadow SADB, so we don't care.. 23689 */ 23690 23691 if (ill == NULL) 23692 continue; 23693 23694 if (sa != NULL) { 23695 /* 23696 * Make sure capabilities match before 23697 * sending SA to ill. 23698 */ 23699 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23700 cur_ici->ill_isv6, sa)) { 23701 ill_refrele(ill); 23702 continue; 23703 } 23704 23705 mutex_enter(&sa->ipsa_lock); 23706 sa->ipsa_flags |= IPSA_F_HW; 23707 mutex_exit(&sa->ipsa_lock); 23708 } 23709 23710 /* 23711 * Copy template message, and add it to the front 23712 * of the mblk ship list. We want to avoid holding 23713 * the ipsec_capab_ills_lock while sending the 23714 * message to the ills. 23715 * 23716 * The b_next and b_prev are temporarily used 23717 * to build a list of mblks to be sent down, and to 23718 * save the ill to which they must be sent. 23719 */ 23720 nmp = copymsg(mp); 23721 if (nmp == NULL) { 23722 ill_refrele(ill); 23723 continue; 23724 } 23725 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23726 nmp->b_next = mp_ship_list; 23727 mp_ship_list = nmp; 23728 nmp->b_prev = (mblk_t *)ill; 23729 } 23730 23731 rw_exit(&ipsec_capab_ills_lock); 23732 23733 nmp = mp_ship_list; 23734 while (nmp != NULL) { 23735 /* restore the mblk to a sane state */ 23736 next_mp = nmp->b_next; 23737 nmp->b_next = NULL; 23738 ill = (ill_t *)nmp->b_prev; 23739 nmp->b_prev = NULL; 23740 23741 /* 23742 * Ship the mblk to the ill, must be exclusive. Keep the 23743 * reference to the ill as qwriter_ip() does a ill_referele(). 23744 */ 23745 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23746 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23747 23748 nmp = next_mp; 23749 } 23750 23751 if (sa != NULL) 23752 IPSA_REFRELE(sa); 23753 freemsg(mp); 23754 } 23755 23756 23757 /* 23758 * Derive an interface id from the link layer address. 23759 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23760 */ 23761 static boolean_t 23762 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23763 { 23764 char *addr; 23765 23766 if (phys_length != ETHERADDRL) 23767 return (B_FALSE); 23768 23769 /* Form EUI-64 like address */ 23770 addr = (char *)&v6addr->s6_addr32[2]; 23771 bcopy((char *)phys_addr, addr, 3); 23772 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23773 addr[3] = (char)0xff; 23774 addr[4] = (char)0xfe; 23775 bcopy((char *)phys_addr + 3, addr + 5, 3); 23776 return (B_TRUE); 23777 } 23778 23779 /* ARGSUSED */ 23780 static boolean_t 23781 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23782 { 23783 return (B_FALSE); 23784 } 23785 23786 /* ARGSUSED */ 23787 static boolean_t 23788 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23789 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23790 { 23791 /* 23792 * Multicast address mappings used over Ethernet/802.X. 23793 * This address is used as a base for mappings. 23794 */ 23795 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23796 0x00, 0x00, 0x00}; 23797 23798 /* 23799 * Extract low order 32 bits from IPv6 multicast address. 23800 * Or that into the link layer address, starting from the 23801 * second byte. 23802 */ 23803 *hw_start = 2; 23804 v6_extract_mask->s6_addr32[0] = 0; 23805 v6_extract_mask->s6_addr32[1] = 0; 23806 v6_extract_mask->s6_addr32[2] = 0; 23807 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23808 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23809 return (B_TRUE); 23810 } 23811 23812 /* 23813 * Indicate by return value whether multicast is supported. If not, 23814 * this code should not touch/change any parameters. 23815 */ 23816 /* ARGSUSED */ 23817 static boolean_t 23818 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23819 uint32_t *hw_start, ipaddr_t *extract_mask) 23820 { 23821 /* 23822 * Multicast address mappings used over Ethernet/802.X. 23823 * This address is used as a base for mappings. 23824 */ 23825 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23826 0x00, 0x00, 0x00 }; 23827 23828 if (phys_length != ETHERADDRL) 23829 return (B_FALSE); 23830 23831 *extract_mask = htonl(0x007fffff); 23832 *hw_start = 2; 23833 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23834 return (B_TRUE); 23835 } 23836 23837 /* 23838 * Derive IPoIB interface id from the link layer address. 23839 */ 23840 static boolean_t 23841 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23842 { 23843 char *addr; 23844 23845 if (phys_length != 20) 23846 return (B_FALSE); 23847 addr = (char *)&v6addr->s6_addr32[2]; 23848 bcopy(phys_addr + 12, addr, 8); 23849 /* 23850 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23851 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23852 * rules. In these cases, the IBA considers these GUIDs to be in 23853 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23854 * required; vendors are required not to assign global EUI-64's 23855 * that differ only in u/l bit values, thus guaranteeing uniqueness 23856 * of the interface identifier. Whether the GUID is in modified 23857 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23858 * bit set to 1. 23859 */ 23860 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23861 return (B_TRUE); 23862 } 23863 23864 /* 23865 * Note on mapping from multicast IP addresses to IPoIB multicast link 23866 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23867 * The format of an IPoIB multicast address is: 23868 * 23869 * 4 byte QPN Scope Sign. Pkey 23870 * +--------------------------------------------+ 23871 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23872 * +--------------------------------------------+ 23873 * 23874 * The Scope and Pkey components are properties of the IBA port and 23875 * network interface. They can be ascertained from the broadcast address. 23876 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23877 */ 23878 23879 static boolean_t 23880 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23881 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23882 { 23883 /* 23884 * Base IPoIB IPv6 multicast address used for mappings. 23885 * Does not contain the IBA scope/Pkey values. 23886 */ 23887 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23888 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23889 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23890 23891 /* 23892 * Extract low order 80 bits from IPv6 multicast address. 23893 * Or that into the link layer address, starting from the 23894 * sixth byte. 23895 */ 23896 *hw_start = 6; 23897 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23898 23899 /* 23900 * Now fill in the IBA scope/Pkey values from the broadcast address. 23901 */ 23902 *(maddr + 5) = *(bphys_addr + 5); 23903 *(maddr + 8) = *(bphys_addr + 8); 23904 *(maddr + 9) = *(bphys_addr + 9); 23905 23906 v6_extract_mask->s6_addr32[0] = 0; 23907 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23908 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23909 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23910 return (B_TRUE); 23911 } 23912 23913 static boolean_t 23914 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23915 uint32_t *hw_start, ipaddr_t *extract_mask) 23916 { 23917 /* 23918 * Base IPoIB IPv4 multicast address used for mappings. 23919 * Does not contain the IBA scope/Pkey values. 23920 */ 23921 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23922 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23923 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23924 23925 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23926 return (B_FALSE); 23927 23928 /* 23929 * Extract low order 28 bits from IPv4 multicast address. 23930 * Or that into the link layer address, starting from the 23931 * sixteenth byte. 23932 */ 23933 *extract_mask = htonl(0x0fffffff); 23934 *hw_start = 16; 23935 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23936 23937 /* 23938 * Now fill in the IBA scope/Pkey values from the broadcast address. 23939 */ 23940 *(maddr + 5) = *(bphys_addr + 5); 23941 *(maddr + 8) = *(bphys_addr + 8); 23942 *(maddr + 9) = *(bphys_addr + 9); 23943 return (B_TRUE); 23944 } 23945 23946 /* 23947 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23948 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23949 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23950 * the link-local address is preferred. 23951 */ 23952 boolean_t 23953 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23954 { 23955 ipif_t *ipif; 23956 ipif_t *maybe_ipif = NULL; 23957 23958 mutex_enter(&ill->ill_lock); 23959 if (ill->ill_state_flags & ILL_CONDEMNED) { 23960 mutex_exit(&ill->ill_lock); 23961 if (ipifp != NULL) 23962 *ipifp = NULL; 23963 return (B_FALSE); 23964 } 23965 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23966 if (!IPIF_CAN_LOOKUP(ipif)) 23967 continue; 23968 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23969 ipif->ipif_zoneid != ALL_ZONES) 23970 continue; 23971 if ((ipif->ipif_flags & flags) != flags) 23972 continue; 23973 23974 if (ipifp == NULL) { 23975 mutex_exit(&ill->ill_lock); 23976 ASSERT(maybe_ipif == NULL); 23977 return (B_TRUE); 23978 } 23979 if (!ill->ill_isv6 || 23980 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23981 ipif_refhold_locked(ipif); 23982 mutex_exit(&ill->ill_lock); 23983 *ipifp = ipif; 23984 return (B_TRUE); 23985 } 23986 if (maybe_ipif == NULL) 23987 maybe_ipif = ipif; 23988 } 23989 if (ipifp != NULL) { 23990 if (maybe_ipif != NULL) 23991 ipif_refhold_locked(maybe_ipif); 23992 *ipifp = maybe_ipif; 23993 } 23994 mutex_exit(&ill->ill_lock); 23995 return (maybe_ipif != NULL); 23996 } 23997 23998 /* 23999 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24000 */ 24001 boolean_t 24002 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24003 { 24004 ill_t *illg; 24005 24006 /* 24007 * We look at the passed-in ill first without grabbing ill_g_lock. 24008 */ 24009 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24010 return (B_TRUE); 24011 } 24012 rw_enter(&ill_g_lock, RW_READER); 24013 if (ill->ill_group == NULL) { 24014 /* ill not in a group */ 24015 rw_exit(&ill_g_lock); 24016 return (B_FALSE); 24017 } 24018 24019 /* 24020 * There's no ipif in the zone on ill, however ill is part of an IPMP 24021 * group. We need to look for an ipif in the zone on all the ills in the 24022 * group. 24023 */ 24024 illg = ill->ill_group->illgrp_ill; 24025 do { 24026 /* 24027 * We don't call ipif_lookup_zoneid() on ill as we already know 24028 * that it's not there. 24029 */ 24030 if (illg != ill && 24031 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24032 break; 24033 } 24034 } while ((illg = illg->ill_group_next) != NULL); 24035 rw_exit(&ill_g_lock); 24036 return (illg != NULL); 24037 } 24038 24039 /* 24040 * Check if this ill is only being used to send ICMP probes for IPMP 24041 */ 24042 boolean_t 24043 ill_is_probeonly(ill_t *ill) 24044 { 24045 /* 24046 * Check if the interface is FAILED, or INACTIVE 24047 */ 24048 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24049 return (B_TRUE); 24050 24051 return (B_FALSE); 24052 } 24053 24054 /* 24055 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24056 * If a pointer to an ipif_t is returned then the caller will need to do 24057 * an ill_refrele(). 24058 */ 24059 ipif_t * 24060 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6) 24061 { 24062 ipif_t *ipif; 24063 ill_t *ill; 24064 24065 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 24066 24067 if (ill == NULL) 24068 return (NULL); 24069 24070 mutex_enter(&ill->ill_lock); 24071 if (ill->ill_state_flags & ILL_CONDEMNED) { 24072 mutex_exit(&ill->ill_lock); 24073 ill_refrele(ill); 24074 return (NULL); 24075 } 24076 24077 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24078 if (!IPIF_CAN_LOOKUP(ipif)) 24079 continue; 24080 if (lifidx == ipif->ipif_id) { 24081 ipif_refhold_locked(ipif); 24082 break; 24083 } 24084 } 24085 24086 mutex_exit(&ill->ill_lock); 24087 ill_refrele(ill); 24088 return (ipif); 24089 } 24090