1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 #include <inet/mib2.h> 86 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/sadb.h> 90 #include <inet/ipsec_impl.h> 91 #include <sys/iphada.h> 92 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 /* The character which tells where the ill_name ends */ 106 #define IPIF_SEPARATOR_CHAR ':' 107 108 /* IP ioctl function table entry */ 109 typedef struct ipft_s { 110 int ipft_cmd; 111 pfi_t ipft_pfi; 112 int ipft_min_size; 113 int ipft_flags; 114 } ipft_t; 115 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 116 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 117 118 typedef struct ip_sock_ar_s { 119 union { 120 area_t ip_sock_area; 121 ared_t ip_sock_ared; 122 areq_t ip_sock_areq; 123 } ip_sock_ar_u; 124 queue_t *ip_sock_ar_q; 125 } ip_sock_ar_t; 126 127 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 128 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 129 char *value, caddr_t cp, cred_t *ioc_cr); 130 131 static boolean_t ill_is_quiescent(ill_t *); 132 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 133 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 134 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 139 queue_t *q, mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 143 mblk_t *mp); 144 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 145 queue_t *q, mblk_t *mp, boolean_t need_up); 146 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 147 int ioccmd, struct linkblk *li, boolean_t doconsist); 148 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 149 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 150 static void ipsq_flush(ill_t *ill); 151 152 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 153 queue_t *q, mblk_t *mp, boolean_t need_up); 154 static void ipsq_delete(ipsq_t *); 155 156 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 157 boolean_t initialize); 158 static void ipif_check_bcast_ires(ipif_t *test_ipif); 159 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 160 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 161 boolean_t isv6); 162 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 163 static void ipif_delete_cache_ire(ire_t *, char *); 164 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 165 static void ipif_free(ipif_t *ipif); 166 static void ipif_free_tail(ipif_t *ipif); 167 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 168 static void ipif_multicast_down(ipif_t *ipif); 169 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 170 static void ipif_set_default(ipif_t *ipif); 171 static int ipif_set_values(queue_t *q, mblk_t *mp, 172 char *interf_name, uint_t *ppa); 173 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 174 queue_t *q); 175 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 176 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 177 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 178 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 179 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 180 181 static int ill_alloc_ppa(ill_if_t *, ill_t *); 182 static int ill_arp_off(ill_t *ill); 183 static int ill_arp_on(ill_t *ill); 184 static void ill_delete_interface_type(ill_if_t *); 185 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 186 static void ill_dl_down(ill_t *ill); 187 static void ill_down(ill_t *ill); 188 static void ill_downi(ire_t *ire, char *ill_arg); 189 static void ill_free_mib(ill_t *ill); 190 static void ill_glist_delete(ill_t *); 191 static boolean_t ill_has_usable_ipif(ill_t *); 192 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 193 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 194 static void ill_phyint_free(ill_t *ill); 195 static void ill_phyint_reinit(ill_t *ill); 196 static void ill_set_nce_router_flags(ill_t *, boolean_t); 197 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 198 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 199 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 200 static void ill_stq_cache_delete(ire_t *, char *); 201 202 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 203 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 205 in6_addr_t *); 206 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 ipaddr_t *); 208 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 209 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 in6_addr_t *); 211 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 ipaddr_t *); 213 214 static void ipif_save_ire(ipif_t *, ire_t *); 215 static void ipif_remove_ire(ipif_t *, ire_t *); 216 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 217 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 218 219 /* 220 * Per-ill IPsec capabilities management. 221 */ 222 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 223 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 224 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 225 static void ill_ipsec_capab_delete(ill_t *, uint_t); 226 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 227 static void ill_capability_proto(ill_t *, int, mblk_t *); 228 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 229 boolean_t); 230 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 233 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 235 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 237 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 238 dl_capability_sub_t *); 239 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 240 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 241 static void ill_capability_lso_reset(ill_t *, mblk_t **); 242 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 244 static void ill_capability_dls_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_disable(ill_t *); 246 247 static void illgrp_cache_delete(ire_t *, char *); 248 static void illgrp_delete(ill_t *ill); 249 static void illgrp_reset_schednext(ill_t *ill); 250 251 static ill_t *ill_prev_usesrc(ill_t *); 252 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 253 static void ill_disband_usesrc_group(ill_t *); 254 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 255 256 #ifdef DEBUG 257 static void ill_trace_cleanup(const ill_t *); 258 static void ipif_trace_cleanup(const ipif_t *); 259 #endif 260 261 /* 262 * if we go over the memory footprint limit more than once in this msec 263 * interval, we'll start pruning aggressively. 264 */ 265 int ip_min_frag_prune_time = 0; 266 267 /* 268 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 269 * and the IPsec DOI 270 */ 271 #define MAX_IPSEC_ALGS 256 272 273 #define BITSPERBYTE 8 274 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 275 276 #define IPSEC_ALG_ENABLE(algs, algid) \ 277 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 278 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 279 280 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 typedef uint8_t ipsec_capab_elem_t; 285 286 /* 287 * Per-algorithm parameters. Note that at present, only encryption 288 * algorithms have variable keysize (IKE does not provide a way to negotiate 289 * auth algorithm keysize). 290 * 291 * All sizes here are in bits. 292 */ 293 typedef struct 294 { 295 uint16_t minkeylen; 296 uint16_t maxkeylen; 297 } ipsec_capab_algparm_t; 298 299 /* 300 * Per-ill capabilities. 301 */ 302 struct ill_ipsec_capab_s { 303 ipsec_capab_elem_t *encr_hw_algs; 304 ipsec_capab_elem_t *auth_hw_algs; 305 uint32_t algs_size; /* size of _hw_algs in bytes */ 306 /* algorithm key lengths */ 307 ipsec_capab_algparm_t *encr_algparm; 308 uint32_t encr_algparm_size; 309 uint32_t encr_algparm_end; 310 }; 311 312 /* 313 * The field values are larger than strictly necessary for simple 314 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 315 */ 316 static area_t ip_area_template = { 317 AR_ENTRY_ADD, /* area_cmd */ 318 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 319 /* area_name_offset */ 320 /* area_name_length temporarily holds this structure length */ 321 sizeof (area_t), /* area_name_length */ 322 IP_ARP_PROTO_TYPE, /* area_proto */ 323 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 324 IP_ADDR_LEN, /* area_proto_addr_length */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 326 /* area_proto_mask_offset */ 327 0, /* area_flags */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 329 /* area_hw_addr_offset */ 330 /* Zero length hw_addr_length means 'use your idea of the address' */ 331 0 /* area_hw_addr_length */ 332 }; 333 334 /* 335 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 336 * support 337 */ 338 static area_t ip6_area_template = { 339 AR_ENTRY_ADD, /* area_cmd */ 340 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 341 /* area_name_offset */ 342 /* area_name_length temporarily holds this structure length */ 343 sizeof (area_t), /* area_name_length */ 344 IP_ARP_PROTO_TYPE, /* area_proto */ 345 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 346 IPV6_ADDR_LEN, /* area_proto_addr_length */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 348 /* area_proto_mask_offset */ 349 0, /* area_flags */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 351 /* area_hw_addr_offset */ 352 /* Zero length hw_addr_length means 'use your idea of the address' */ 353 0 /* area_hw_addr_length */ 354 }; 355 356 static ared_t ip_ared_template = { 357 AR_ENTRY_DELETE, 358 sizeof (ared_t) + IP_ADDR_LEN, 359 sizeof (ared_t), 360 IP_ARP_PROTO_TYPE, 361 sizeof (ared_t), 362 IP_ADDR_LEN, 363 0 364 }; 365 366 static ared_t ip6_ared_template = { 367 AR_ENTRY_DELETE, 368 sizeof (ared_t) + IPV6_ADDR_LEN, 369 sizeof (ared_t), 370 IP_ARP_PROTO_TYPE, 371 sizeof (ared_t), 372 IPV6_ADDR_LEN, 373 0 374 }; 375 376 /* 377 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 378 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 379 * areq is used). 380 */ 381 static areq_t ip_areq_template = { 382 AR_ENTRY_QUERY, /* cmd */ 383 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 384 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 385 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 386 sizeof (areq_t), /* target addr offset */ 387 IP_ADDR_LEN, /* target addr_length */ 388 0, /* flags */ 389 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 390 IP_ADDR_LEN, /* sender addr length */ 391 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 392 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 393 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 394 /* anything else filled in by the code */ 395 }; 396 397 static arc_t ip_aru_template = { 398 AR_INTERFACE_UP, 399 sizeof (arc_t), /* Name offset */ 400 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 401 }; 402 403 static arc_t ip_ard_template = { 404 AR_INTERFACE_DOWN, 405 sizeof (arc_t), /* Name offset */ 406 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 407 }; 408 409 static arc_t ip_aron_template = { 410 AR_INTERFACE_ON, 411 sizeof (arc_t), /* Name offset */ 412 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 413 }; 414 415 static arc_t ip_aroff_template = { 416 AR_INTERFACE_OFF, 417 sizeof (arc_t), /* Name offset */ 418 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 419 }; 420 421 static arma_t ip_arma_multi_template = { 422 AR_MAPPING_ADD, 423 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 424 /* Name offset */ 425 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 426 IP_ARP_PROTO_TYPE, 427 sizeof (arma_t), /* proto_addr_offset */ 428 IP_ADDR_LEN, /* proto_addr_length */ 429 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 430 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 431 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 432 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 433 IP_MAX_HW_LEN, /* hw_addr_length */ 434 0, /* hw_mapping_start */ 435 }; 436 437 static ipft_t ip_ioctl_ftbl[] = { 438 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 439 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 444 { 0 } 445 }; 446 447 /* Simple ICMP IP Header Template */ 448 static ipha_t icmp_ipha = { 449 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 450 }; 451 452 /* Flag descriptors for ip_ipif_report */ 453 static nv_t ipif_nv_tbl[] = { 454 { IPIF_UP, "UP" }, 455 { IPIF_BROADCAST, "BROADCAST" }, 456 { ILLF_DEBUG, "DEBUG" }, 457 { PHYI_LOOPBACK, "LOOPBACK" }, 458 { IPIF_POINTOPOINT, "POINTOPOINT" }, 459 { ILLF_NOTRAILERS, "NOTRAILERS" }, 460 { PHYI_RUNNING, "RUNNING" }, 461 { ILLF_NOARP, "NOARP" }, 462 { PHYI_PROMISC, "PROMISC" }, 463 { PHYI_ALLMULTI, "ALLMULTI" }, 464 { PHYI_INTELLIGENT, "INTELLIGENT" }, 465 { ILLF_MULTICAST, "MULTICAST" }, 466 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 467 { IPIF_UNNUMBERED, "UNNUMBERED" }, 468 { IPIF_DHCPRUNNING, "DHCP" }, 469 { IPIF_PRIVATE, "PRIVATE" }, 470 { IPIF_NOXMIT, "NOXMIT" }, 471 { IPIF_NOLOCAL, "NOLOCAL" }, 472 { IPIF_DEPRECATED, "DEPRECATED" }, 473 { IPIF_PREFERRED, "PREFERRED" }, 474 { IPIF_TEMPORARY, "TEMPORARY" }, 475 { IPIF_ADDRCONF, "ADDRCONF" }, 476 { PHYI_VIRTUAL, "VIRTUAL" }, 477 { ILLF_ROUTER, "ROUTER" }, 478 { ILLF_NONUD, "NONUD" }, 479 { IPIF_ANYCAST, "ANYCAST" }, 480 { ILLF_NORTEXCH, "NORTEXCH" }, 481 { ILLF_IPV4, "IPV4" }, 482 { ILLF_IPV6, "IPV6" }, 483 { IPIF_NOFAILOVER, "NOFAILOVER" }, 484 { PHYI_FAILED, "FAILED" }, 485 { PHYI_STANDBY, "STANDBY" }, 486 { PHYI_INACTIVE, "INACTIVE" }, 487 { PHYI_OFFLINE, "OFFLINE" }, 488 }; 489 490 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 491 492 static ip_m_t ip_m_tbl[] = { 493 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_ether_v6intfid }, 495 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_ether_v6intfid }, 503 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 504 ip_ib_v6intfid }, 505 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 506 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_nodef_v6intfid } 508 }; 509 510 static ill_t ill_null; /* Empty ILL for init. */ 511 char ipif_loopback_name[] = "lo0"; 512 static char *ipv4_forward_suffix = ":ip_forwarding"; 513 static char *ipv6_forward_suffix = ":ip6_forwarding"; 514 static sin6_t sin6_null; /* Zero address for quick clears */ 515 static sin_t sin_null; /* Zero address for quick clears */ 516 517 /* When set search for unused ipif_seqid */ 518 static ipif_t ipif_zero; 519 520 /* 521 * ppa arena is created after these many 522 * interfaces have been plumbed. 523 */ 524 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 525 526 /* 527 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 528 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 529 * set through platform specific code (Niagara/Ontario). 530 */ 531 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 532 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 533 534 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 535 536 static uint_t 537 ipif_rand(ip_stack_t *ipst) 538 { 539 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 540 12345; 541 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 542 } 543 544 /* 545 * Allocate per-interface mibs. 546 * Returns true if ok. False otherwise. 547 * ipsq may not yet be allocated (loopback case ). 548 */ 549 static boolean_t 550 ill_allocate_mibs(ill_t *ill) 551 { 552 /* Already allocated? */ 553 if (ill->ill_ip_mib != NULL) { 554 if (ill->ill_isv6) 555 ASSERT(ill->ill_icmp6_mib != NULL); 556 return (B_TRUE); 557 } 558 559 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 560 KM_NOSLEEP); 561 if (ill->ill_ip_mib == NULL) { 562 return (B_FALSE); 563 } 564 565 /* Setup static information */ 566 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 567 sizeof (mib2_ipIfStatsEntry_t)); 568 if (ill->ill_isv6) { 569 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 570 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 571 sizeof (mib2_ipv6AddrEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 573 sizeof (mib2_ipv6RouteEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 575 sizeof (mib2_ipv6NetToMediaEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 577 sizeof (ipv6_member_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 579 sizeof (ipv6_grpsrc_t)); 580 } else { 581 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 582 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 583 sizeof (mib2_ipAddrEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 585 sizeof (mib2_ipRouteEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 587 sizeof (mib2_ipNetToMediaEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 589 sizeof (ip_member_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 591 sizeof (ip_grpsrc_t)); 592 593 /* 594 * For a v4 ill, we are done at this point, because per ill 595 * icmp mibs are only used for v6. 596 */ 597 return (B_TRUE); 598 } 599 600 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 601 KM_NOSLEEP); 602 if (ill->ill_icmp6_mib == NULL) { 603 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 604 ill->ill_ip_mib = NULL; 605 return (B_FALSE); 606 } 607 /* static icmp info */ 608 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 609 sizeof (mib2_ipv6IfIcmpEntry_t); 610 /* 611 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 612 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 613 * -> ill_phyint_reinit 614 */ 615 return (B_TRUE); 616 } 617 618 /* 619 * Common code for preparation of ARP commands. Two points to remember: 620 * 1) The ill_name is tacked on at the end of the allocated space so 621 * the templates name_offset field must contain the total space 622 * to allocate less the name length. 623 * 624 * 2) The templates name_length field should contain the *template* 625 * length. We use it as a parameter to bcopy() and then write 626 * the real ill_name_length into the name_length field of the copy. 627 * (Always called as writer.) 628 */ 629 mblk_t * 630 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 631 { 632 arc_t *arc = (arc_t *)template; 633 char *cp; 634 int len; 635 mblk_t *mp; 636 uint_t name_length = ill->ill_name_length; 637 uint_t template_len = arc->arc_name_length; 638 639 len = arc->arc_name_offset + name_length; 640 mp = allocb(len, BPRI_HI); 641 if (mp == NULL) 642 return (NULL); 643 cp = (char *)mp->b_rptr; 644 mp->b_wptr = (uchar_t *)&cp[len]; 645 if (template_len) 646 bcopy(template, cp, template_len); 647 if (len > template_len) 648 bzero(&cp[template_len], len - template_len); 649 mp->b_datap->db_type = M_PROTO; 650 651 arc = (arc_t *)cp; 652 arc->arc_name_length = name_length; 653 cp = (char *)arc + arc->arc_name_offset; 654 bcopy(ill->ill_name, cp, name_length); 655 656 if (addr) { 657 area_t *area = (area_t *)mp->b_rptr; 658 659 cp = (char *)area + area->area_proto_addr_offset; 660 bcopy(addr, cp, area->area_proto_addr_length); 661 if (area->area_cmd == AR_ENTRY_ADD) { 662 cp = (char *)area; 663 len = area->area_proto_addr_length; 664 if (area->area_proto_mask_offset) 665 cp += area->area_proto_mask_offset; 666 else 667 cp += area->area_proto_addr_offset + len; 668 while (len-- > 0) 669 *cp++ = (char)~0; 670 } 671 } 672 return (mp); 673 } 674 675 mblk_t * 676 ipif_area_alloc(ipif_t *ipif) 677 { 678 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 679 (char *)&ipif->ipif_lcl_addr)); 680 } 681 682 mblk_t * 683 ipif_ared_alloc(ipif_t *ipif) 684 { 685 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 686 (char *)&ipif->ipif_lcl_addr)); 687 } 688 689 mblk_t * 690 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 691 { 692 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 693 (char *)&addr)); 694 } 695 696 /* 697 * Completely vaporize a lower level tap and all associated interfaces. 698 * ill_delete is called only out of ip_close when the device control 699 * stream is being closed. 700 */ 701 void 702 ill_delete(ill_t *ill) 703 { 704 ipif_t *ipif; 705 ill_t *prev_ill; 706 ip_stack_t *ipst = ill->ill_ipst; 707 708 /* 709 * ill_delete may be forcibly entering the ipsq. The previous 710 * ioctl may not have completed and may need to be aborted. 711 * ipsq_flush takes care of it. If we don't need to enter the 712 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 713 * ill_delete_tail is sufficient. 714 */ 715 ipsq_flush(ill); 716 717 /* 718 * Nuke all interfaces. ipif_free will take down the interface, 719 * remove it from the list, and free the data structure. 720 * Walk down the ipif list and remove the logical interfaces 721 * first before removing the main ipif. We can't unplumb 722 * zeroth interface first in the case of IPv6 as reset_conn_ill 723 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 724 * POINTOPOINT. 725 * 726 * If ill_ipif was not properly initialized (i.e low on memory), 727 * then no interfaces to clean up. In this case just clean up the 728 * ill. 729 */ 730 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 731 ipif_free(ipif); 732 733 /* 734 * Used only by ill_arp_on and ill_arp_off, which are writers. 735 * So nobody can be using this mp now. Free the mp allocated for 736 * honoring ILLF_NOARP 737 */ 738 freemsg(ill->ill_arp_on_mp); 739 ill->ill_arp_on_mp = NULL; 740 741 /* Clean up msgs on pending upcalls for mrouted */ 742 reset_mrt_ill(ill); 743 744 /* 745 * ipif_free -> reset_conn_ipif will remove all multicast 746 * references for IPv4. For IPv6, we need to do it here as 747 * it points only at ills. 748 */ 749 reset_conn_ill(ill); 750 751 /* 752 * Remove multicast references added as a result of calls to 753 * ip_join_allmulti(). 754 */ 755 ip_purge_allmulti(ill); 756 757 /* 758 * ill_down will arrange to blow off any IRE's dependent on this 759 * ILL, and shut down fragmentation reassembly. 760 */ 761 ill_down(ill); 762 763 /* Let SCTP know, so that it can remove this from its list. */ 764 sctp_update_ill(ill, SCTP_ILL_REMOVE); 765 766 /* 767 * If an address on this ILL is being used as a source address then 768 * clear out the pointers in other ILLs that point to this ILL. 769 */ 770 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 771 if (ill->ill_usesrc_grp_next != NULL) { 772 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 773 ill_disband_usesrc_group(ill); 774 } else { /* consumer of the usesrc ILL */ 775 prev_ill = ill_prev_usesrc(ill); 776 prev_ill->ill_usesrc_grp_next = 777 ill->ill_usesrc_grp_next; 778 } 779 } 780 rw_exit(&ipst->ips_ill_g_usesrc_lock); 781 } 782 783 static void 784 ipif_non_duplicate(ipif_t *ipif) 785 { 786 ill_t *ill = ipif->ipif_ill; 787 mutex_enter(&ill->ill_lock); 788 if (ipif->ipif_flags & IPIF_DUPLICATE) { 789 ipif->ipif_flags &= ~IPIF_DUPLICATE; 790 ASSERT(ill->ill_ipif_dup_count > 0); 791 ill->ill_ipif_dup_count--; 792 } 793 mutex_exit(&ill->ill_lock); 794 } 795 796 /* 797 * ill_delete_tail is called from ip_modclose after all references 798 * to the closing ill are gone. The wait is done in ip_modclose 799 */ 800 void 801 ill_delete_tail(ill_t *ill) 802 { 803 mblk_t **mpp; 804 ipif_t *ipif; 805 ip_stack_t *ipst = ill->ill_ipst; 806 807 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 808 ipif_non_duplicate(ipif); 809 ipif_down_tail(ipif); 810 } 811 812 ASSERT(ill->ill_ipif_dup_count == 0 && 813 ill->ill_arp_down_mp == NULL && 814 ill->ill_arp_del_mapping_mp == NULL); 815 816 /* 817 * If polling capability is enabled (which signifies direct 818 * upcall into IP and driver has ill saved as a handle), 819 * we need to make sure that unbind has completed before we 820 * let the ill disappear and driver no longer has any reference 821 * to this ill. 822 */ 823 mutex_enter(&ill->ill_lock); 824 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 825 cv_wait(&ill->ill_cv, &ill->ill_lock); 826 mutex_exit(&ill->ill_lock); 827 828 /* 829 * Clean up polling and soft ring capabilities 830 */ 831 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 832 ill_capability_dls_disable(ill); 833 834 if (ill->ill_net_type != IRE_LOOPBACK) 835 qprocsoff(ill->ill_rq); 836 837 /* 838 * We do an ipsq_flush once again now. New messages could have 839 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 840 * could also have landed up if an ioctl thread had looked up 841 * the ill before we set the ILL_CONDEMNED flag, but not yet 842 * enqueued the ioctl when we did the ipsq_flush last time. 843 */ 844 ipsq_flush(ill); 845 846 /* 847 * Free capabilities. 848 */ 849 if (ill->ill_ipsec_capab_ah != NULL) { 850 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 851 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 852 ill->ill_ipsec_capab_ah = NULL; 853 } 854 855 if (ill->ill_ipsec_capab_esp != NULL) { 856 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 857 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 858 ill->ill_ipsec_capab_esp = NULL; 859 } 860 861 if (ill->ill_mdt_capab != NULL) { 862 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 863 ill->ill_mdt_capab = NULL; 864 } 865 866 if (ill->ill_hcksum_capab != NULL) { 867 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 868 ill->ill_hcksum_capab = NULL; 869 } 870 871 if (ill->ill_zerocopy_capab != NULL) { 872 kmem_free(ill->ill_zerocopy_capab, 873 sizeof (ill_zerocopy_capab_t)); 874 ill->ill_zerocopy_capab = NULL; 875 } 876 877 if (ill->ill_lso_capab != NULL) { 878 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 879 ill->ill_lso_capab = NULL; 880 } 881 882 if (ill->ill_dls_capab != NULL) { 883 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 884 ill->ill_dls_capab->ill_unbind_conn = NULL; 885 kmem_free(ill->ill_dls_capab, 886 sizeof (ill_dls_capab_t) + 887 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 888 ill->ill_dls_capab = NULL; 889 } 890 891 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 892 893 while (ill->ill_ipif != NULL) 894 ipif_free_tail(ill->ill_ipif); 895 896 /* 897 * We have removed all references to ilm from conn and the ones joined 898 * within the kernel. 899 * 900 * We don't walk conns, mrts and ires because 901 * 902 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 903 * 2) ill_down ->ill_downi walks all the ires and cleans up 904 * ill references. 905 */ 906 ASSERT(ilm_walk_ill(ill) == 0); 907 /* 908 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 909 * could free the phyint. No more reference to the phyint after this 910 * point. 911 */ 912 (void) ill_glist_delete(ill); 913 914 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 915 if (ill->ill_ndd_name != NULL) 916 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 917 rw_exit(&ipst->ips_ip_g_nd_lock); 918 919 if (ill->ill_frag_ptr != NULL) { 920 uint_t count; 921 922 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 923 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 924 } 925 mi_free(ill->ill_frag_ptr); 926 ill->ill_frag_ptr = NULL; 927 ill->ill_frag_hash_tbl = NULL; 928 } 929 930 freemsg(ill->ill_nd_lla_mp); 931 /* Free all retained control messages. */ 932 mpp = &ill->ill_first_mp_to_free; 933 do { 934 while (mpp[0]) { 935 mblk_t *mp; 936 mblk_t *mp1; 937 938 mp = mpp[0]; 939 mpp[0] = mp->b_next; 940 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 941 mp1->b_next = NULL; 942 mp1->b_prev = NULL; 943 } 944 freemsg(mp); 945 } 946 } while (mpp++ != &ill->ill_last_mp_to_free); 947 948 ill_free_mib(ill); 949 950 #ifdef DEBUG 951 ill_trace_cleanup(ill); 952 #endif 953 954 /* Drop refcnt here */ 955 netstack_rele(ill->ill_ipst->ips_netstack); 956 ill->ill_ipst = NULL; 957 } 958 959 static void 960 ill_free_mib(ill_t *ill) 961 { 962 ip_stack_t *ipst = ill->ill_ipst; 963 964 /* 965 * MIB statistics must not be lost, so when an interface 966 * goes away the counter values will be added to the global 967 * MIBs. 968 */ 969 if (ill->ill_ip_mib != NULL) { 970 if (ill->ill_isv6) { 971 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 972 ill->ill_ip_mib); 973 } else { 974 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 975 ill->ill_ip_mib); 976 } 977 978 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 979 ill->ill_ip_mib = NULL; 980 } 981 if (ill->ill_icmp6_mib != NULL) { 982 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 983 ill->ill_icmp6_mib); 984 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 985 ill->ill_icmp6_mib = NULL; 986 } 987 } 988 989 /* 990 * Concatenate together a physical address and a sap. 991 * 992 * Sap_lengths are interpreted as follows: 993 * sap_length == 0 ==> no sap 994 * sap_length > 0 ==> sap is at the head of the dlpi address 995 * sap_length < 0 ==> sap is at the tail of the dlpi address 996 */ 997 static void 998 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 999 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1000 { 1001 uint16_t sap_addr = (uint16_t)sap_src; 1002 1003 if (sap_length == 0) { 1004 if (phys_src == NULL) 1005 bzero(dst, phys_length); 1006 else 1007 bcopy(phys_src, dst, phys_length); 1008 } else if (sap_length < 0) { 1009 if (phys_src == NULL) 1010 bzero(dst, phys_length); 1011 else 1012 bcopy(phys_src, dst, phys_length); 1013 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1014 } else { 1015 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1016 if (phys_src == NULL) 1017 bzero((char *)dst + sap_length, phys_length); 1018 else 1019 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1020 } 1021 } 1022 1023 /* 1024 * Generate a dl_unitdata_req mblk for the device and address given. 1025 * addr_length is the length of the physical portion of the address. 1026 * If addr is NULL include an all zero address of the specified length. 1027 * TRUE? In any case, addr_length is taken to be the entire length of the 1028 * dlpi address, including the absolute value of sap_length. 1029 */ 1030 mblk_t * 1031 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1032 t_scalar_t sap_length) 1033 { 1034 dl_unitdata_req_t *dlur; 1035 mblk_t *mp; 1036 t_scalar_t abs_sap_length; /* absolute value */ 1037 1038 abs_sap_length = ABS(sap_length); 1039 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1040 DL_UNITDATA_REQ); 1041 if (mp == NULL) 1042 return (NULL); 1043 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1044 /* HACK: accomodate incompatible DLPI drivers */ 1045 if (addr_length == 8) 1046 addr_length = 6; 1047 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1048 dlur->dl_dest_addr_offset = sizeof (*dlur); 1049 dlur->dl_priority.dl_min = 0; 1050 dlur->dl_priority.dl_max = 0; 1051 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1052 (uchar_t *)&dlur[1]); 1053 return (mp); 1054 } 1055 1056 /* 1057 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1058 * Return an error if we already have 1 or more ioctls in progress. 1059 * This is used only for non-exclusive ioctls. Currently this is used 1060 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1061 * and thus need to use ipsq_pending_mp_add. 1062 */ 1063 boolean_t 1064 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1065 { 1066 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1067 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1068 /* 1069 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1070 */ 1071 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1072 (add_mp->b_datap->db_type == M_IOCTL)); 1073 1074 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1075 /* 1076 * Return error if the conn has started closing. The conn 1077 * could have finished cleaning up the pending mp list, 1078 * If so we should not add another mp to the list negating 1079 * the cleanup. 1080 */ 1081 if (connp->conn_state_flags & CONN_CLOSING) 1082 return (B_FALSE); 1083 /* 1084 * Add the pending mp to the head of the list, chained by b_next. 1085 * Note down the conn on which the ioctl request came, in b_prev. 1086 * This will be used to later get the conn, when we get a response 1087 * on the ill queue, from some other module (typically arp) 1088 */ 1089 add_mp->b_next = (void *)ill->ill_pending_mp; 1090 add_mp->b_queue = CONNP_TO_WQ(connp); 1091 ill->ill_pending_mp = add_mp; 1092 if (connp != NULL) 1093 connp->conn_oper_pending_ill = ill; 1094 return (B_TRUE); 1095 } 1096 1097 /* 1098 * Retrieve the ill_pending_mp and return it. We have to walk the list 1099 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1100 */ 1101 mblk_t * 1102 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1103 { 1104 mblk_t *prev = NULL; 1105 mblk_t *curr = NULL; 1106 uint_t id; 1107 conn_t *connp; 1108 1109 /* 1110 * When the conn closes, conn_ioctl_cleanup needs to clean 1111 * up the pending mp, but it does not know the ioc_id and 1112 * passes in a zero for it. 1113 */ 1114 mutex_enter(&ill->ill_lock); 1115 if (ioc_id != 0) 1116 *connpp = NULL; 1117 1118 /* Search the list for the appropriate ioctl based on ioc_id */ 1119 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1120 prev = curr, curr = curr->b_next) { 1121 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1122 connp = Q_TO_CONN(curr->b_queue); 1123 /* Match based on the ioc_id or based on the conn */ 1124 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1125 break; 1126 } 1127 1128 if (curr != NULL) { 1129 /* Unlink the mblk from the pending mp list */ 1130 if (prev != NULL) { 1131 prev->b_next = curr->b_next; 1132 } else { 1133 ASSERT(ill->ill_pending_mp == curr); 1134 ill->ill_pending_mp = curr->b_next; 1135 } 1136 1137 /* 1138 * conn refcnt must have been bumped up at the start of 1139 * the ioctl. So we can safely access the conn. 1140 */ 1141 ASSERT(CONN_Q(curr->b_queue)); 1142 *connpp = Q_TO_CONN(curr->b_queue); 1143 curr->b_next = NULL; 1144 curr->b_queue = NULL; 1145 } 1146 1147 mutex_exit(&ill->ill_lock); 1148 1149 return (curr); 1150 } 1151 1152 /* 1153 * Add the pending mp to the list. There can be only 1 pending mp 1154 * in the list. Any exclusive ioctl that needs to wait for a response 1155 * from another module or driver needs to use this function to set 1156 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1157 * the other module/driver. This is also used while waiting for the 1158 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1159 */ 1160 boolean_t 1161 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1162 int waitfor) 1163 { 1164 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1165 1166 ASSERT(IAM_WRITER_IPIF(ipif)); 1167 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1168 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1169 ASSERT(ipsq->ipsq_pending_mp == NULL); 1170 /* 1171 * The caller may be using a different ipif than the one passed into 1172 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1173 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1174 * that `ipsq_current_ipif == ipif'. 1175 */ 1176 ASSERT(ipsq->ipsq_current_ipif != NULL); 1177 1178 /* 1179 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1180 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1181 */ 1182 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1183 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1184 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1185 1186 if (connp != NULL) { 1187 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1188 /* 1189 * Return error if the conn has started closing. The conn 1190 * could have finished cleaning up the pending mp list, 1191 * If so we should not add another mp to the list negating 1192 * the cleanup. 1193 */ 1194 if (connp->conn_state_flags & CONN_CLOSING) 1195 return (B_FALSE); 1196 } 1197 mutex_enter(&ipsq->ipsq_lock); 1198 ipsq->ipsq_pending_ipif = ipif; 1199 /* 1200 * Note down the queue in b_queue. This will be returned by 1201 * ipsq_pending_mp_get. Caller will then use these values to restart 1202 * the processing 1203 */ 1204 add_mp->b_next = NULL; 1205 add_mp->b_queue = q; 1206 ipsq->ipsq_pending_mp = add_mp; 1207 ipsq->ipsq_waitfor = waitfor; 1208 1209 if (connp != NULL) 1210 connp->conn_oper_pending_ill = ipif->ipif_ill; 1211 mutex_exit(&ipsq->ipsq_lock); 1212 return (B_TRUE); 1213 } 1214 1215 /* 1216 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1217 * queued in the list. 1218 */ 1219 mblk_t * 1220 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1221 { 1222 mblk_t *curr = NULL; 1223 1224 mutex_enter(&ipsq->ipsq_lock); 1225 *connpp = NULL; 1226 if (ipsq->ipsq_pending_mp == NULL) { 1227 mutex_exit(&ipsq->ipsq_lock); 1228 return (NULL); 1229 } 1230 1231 /* There can be only 1 such excl message */ 1232 curr = ipsq->ipsq_pending_mp; 1233 ASSERT(curr != NULL && curr->b_next == NULL); 1234 ipsq->ipsq_pending_ipif = NULL; 1235 ipsq->ipsq_pending_mp = NULL; 1236 ipsq->ipsq_waitfor = 0; 1237 mutex_exit(&ipsq->ipsq_lock); 1238 1239 if (CONN_Q(curr->b_queue)) { 1240 /* 1241 * This mp did a refhold on the conn, at the start of the ioctl. 1242 * So we can safely return a pointer to the conn to the caller. 1243 */ 1244 *connpp = Q_TO_CONN(curr->b_queue); 1245 } else { 1246 *connpp = NULL; 1247 } 1248 curr->b_next = NULL; 1249 curr->b_prev = NULL; 1250 return (curr); 1251 } 1252 1253 /* 1254 * Cleanup the ioctl mp queued in ipsq_pending_mp 1255 * - Called in the ill_delete path 1256 * - Called in the M_ERROR or M_HANGUP path on the ill. 1257 * - Called in the conn close path. 1258 */ 1259 boolean_t 1260 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1261 { 1262 mblk_t *mp; 1263 ipsq_t *ipsq; 1264 queue_t *q; 1265 ipif_t *ipif; 1266 1267 ASSERT(IAM_WRITER_ILL(ill)); 1268 ipsq = ill->ill_phyint->phyint_ipsq; 1269 mutex_enter(&ipsq->ipsq_lock); 1270 /* 1271 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1272 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1273 * even if it is meant for another ill, since we have to enqueue 1274 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1275 * If connp is non-null we are called from the conn close path. 1276 */ 1277 mp = ipsq->ipsq_pending_mp; 1278 if (mp == NULL || (connp != NULL && 1279 mp->b_queue != CONNP_TO_WQ(connp))) { 1280 mutex_exit(&ipsq->ipsq_lock); 1281 return (B_FALSE); 1282 } 1283 /* Now remove from the ipsq_pending_mp */ 1284 ipsq->ipsq_pending_mp = NULL; 1285 q = mp->b_queue; 1286 mp->b_next = NULL; 1287 mp->b_prev = NULL; 1288 mp->b_queue = NULL; 1289 1290 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1291 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1292 if (ill->ill_move_in_progress) { 1293 ILL_CLEAR_MOVE(ill); 1294 } else if (ill->ill_up_ipifs) { 1295 ill_group_cleanup(ill); 1296 } 1297 1298 ipif = ipsq->ipsq_pending_ipif; 1299 ipsq->ipsq_pending_ipif = NULL; 1300 ipsq->ipsq_waitfor = 0; 1301 ipsq->ipsq_current_ipif = NULL; 1302 ipsq->ipsq_current_ioctl = 0; 1303 ipsq->ipsq_current_done = B_TRUE; 1304 mutex_exit(&ipsq->ipsq_lock); 1305 1306 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1307 if (connp == NULL) { 1308 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1309 } else { 1310 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1311 mutex_enter(&ipif->ipif_ill->ill_lock); 1312 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1313 mutex_exit(&ipif->ipif_ill->ill_lock); 1314 } 1315 } else { 1316 /* 1317 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1318 * be just inet_freemsg. we have to restart it 1319 * otherwise the thread will be stuck. 1320 */ 1321 inet_freemsg(mp); 1322 } 1323 return (B_TRUE); 1324 } 1325 1326 /* 1327 * The ill is closing. Cleanup all the pending mps. Called exclusively 1328 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1329 * knows this ill, and hence nobody can add an mp to this list 1330 */ 1331 static void 1332 ill_pending_mp_cleanup(ill_t *ill) 1333 { 1334 mblk_t *mp; 1335 queue_t *q; 1336 1337 ASSERT(IAM_WRITER_ILL(ill)); 1338 1339 mutex_enter(&ill->ill_lock); 1340 /* 1341 * Every mp on the pending mp list originating from an ioctl 1342 * added 1 to the conn refcnt, at the start of the ioctl. 1343 * So bump it down now. See comments in ip_wput_nondata() 1344 */ 1345 while (ill->ill_pending_mp != NULL) { 1346 mp = ill->ill_pending_mp; 1347 ill->ill_pending_mp = mp->b_next; 1348 mutex_exit(&ill->ill_lock); 1349 1350 q = mp->b_queue; 1351 ASSERT(CONN_Q(q)); 1352 mp->b_next = NULL; 1353 mp->b_prev = NULL; 1354 mp->b_queue = NULL; 1355 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1356 mutex_enter(&ill->ill_lock); 1357 } 1358 ill->ill_pending_ipif = NULL; 1359 1360 mutex_exit(&ill->ill_lock); 1361 } 1362 1363 /* 1364 * Called in the conn close path and ill delete path 1365 */ 1366 static void 1367 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1368 { 1369 ipsq_t *ipsq; 1370 mblk_t *prev; 1371 mblk_t *curr; 1372 mblk_t *next; 1373 queue_t *q; 1374 mblk_t *tmp_list = NULL; 1375 1376 ASSERT(IAM_WRITER_ILL(ill)); 1377 if (connp != NULL) 1378 q = CONNP_TO_WQ(connp); 1379 else 1380 q = ill->ill_wq; 1381 1382 ipsq = ill->ill_phyint->phyint_ipsq; 1383 /* 1384 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1385 * In the case of ioctl from a conn, there can be only 1 mp 1386 * queued on the ipsq. If an ill is being unplumbed, only messages 1387 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1388 * ioctls meant for this ill form conn's are not flushed. They will 1389 * be processed during ipsq_exit and will not find the ill and will 1390 * return error. 1391 */ 1392 mutex_enter(&ipsq->ipsq_lock); 1393 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1394 curr = next) { 1395 next = curr->b_next; 1396 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1397 /* Unlink the mblk from the pending mp list */ 1398 if (prev != NULL) { 1399 prev->b_next = curr->b_next; 1400 } else { 1401 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1402 ipsq->ipsq_xopq_mphead = curr->b_next; 1403 } 1404 if (ipsq->ipsq_xopq_mptail == curr) 1405 ipsq->ipsq_xopq_mptail = prev; 1406 /* 1407 * Create a temporary list and release the ipsq lock 1408 * New elements are added to the head of the tmp_list 1409 */ 1410 curr->b_next = tmp_list; 1411 tmp_list = curr; 1412 } else { 1413 prev = curr; 1414 } 1415 } 1416 mutex_exit(&ipsq->ipsq_lock); 1417 1418 while (tmp_list != NULL) { 1419 curr = tmp_list; 1420 tmp_list = curr->b_next; 1421 curr->b_next = NULL; 1422 curr->b_prev = NULL; 1423 curr->b_queue = NULL; 1424 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1425 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1426 CONN_CLOSE : NO_COPYOUT, NULL); 1427 } else { 1428 /* 1429 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1430 * this can't be just inet_freemsg. we have to 1431 * restart it otherwise the thread will be stuck. 1432 */ 1433 inet_freemsg(curr); 1434 } 1435 } 1436 } 1437 1438 /* 1439 * This conn has started closing. Cleanup any pending ioctl from this conn. 1440 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1441 */ 1442 void 1443 conn_ioctl_cleanup(conn_t *connp) 1444 { 1445 mblk_t *curr; 1446 ipsq_t *ipsq; 1447 ill_t *ill; 1448 boolean_t refheld; 1449 1450 /* 1451 * Is any exclusive ioctl pending ? If so clean it up. If the 1452 * ioctl has not yet started, the mp is pending in the list headed by 1453 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1454 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1455 * is currently executing now the mp is not queued anywhere but 1456 * conn_oper_pending_ill is null. The conn close will wait 1457 * till the conn_ref drops to zero. 1458 */ 1459 mutex_enter(&connp->conn_lock); 1460 ill = connp->conn_oper_pending_ill; 1461 if (ill == NULL) { 1462 mutex_exit(&connp->conn_lock); 1463 return; 1464 } 1465 1466 curr = ill_pending_mp_get(ill, &connp, 0); 1467 if (curr != NULL) { 1468 mutex_exit(&connp->conn_lock); 1469 CONN_DEC_REF(connp); 1470 inet_freemsg(curr); 1471 return; 1472 } 1473 /* 1474 * We may not be able to refhold the ill if the ill/ipif 1475 * is changing. But we need to make sure that the ill will 1476 * not vanish. So we just bump up the ill_waiter count. 1477 */ 1478 refheld = ill_waiter_inc(ill); 1479 mutex_exit(&connp->conn_lock); 1480 if (refheld) { 1481 if (ipsq_enter(ill, B_TRUE)) { 1482 ill_waiter_dcr(ill); 1483 /* 1484 * Check whether this ioctl has started and is 1485 * pending now in ipsq_pending_mp. If it is not 1486 * found there then check whether this ioctl has 1487 * not even started and is in the ipsq_xopq list. 1488 */ 1489 if (!ipsq_pending_mp_cleanup(ill, connp)) 1490 ipsq_xopq_mp_cleanup(ill, connp); 1491 ipsq = ill->ill_phyint->phyint_ipsq; 1492 ipsq_exit(ipsq); 1493 return; 1494 } 1495 } 1496 1497 /* 1498 * The ill is also closing and we could not bump up the 1499 * ill_waiter_count or we could not enter the ipsq. Leave 1500 * the cleanup to ill_delete 1501 */ 1502 mutex_enter(&connp->conn_lock); 1503 while (connp->conn_oper_pending_ill != NULL) 1504 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1505 mutex_exit(&connp->conn_lock); 1506 if (refheld) 1507 ill_waiter_dcr(ill); 1508 } 1509 1510 /* 1511 * ipcl_walk function for cleaning up conn_*_ill fields. 1512 */ 1513 static void 1514 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1515 { 1516 ill_t *ill = (ill_t *)arg; 1517 ire_t *ire; 1518 1519 mutex_enter(&connp->conn_lock); 1520 if (connp->conn_multicast_ill == ill) { 1521 /* Revert to late binding */ 1522 connp->conn_multicast_ill = NULL; 1523 connp->conn_orig_multicast_ifindex = 0; 1524 } 1525 if (connp->conn_incoming_ill == ill) 1526 connp->conn_incoming_ill = NULL; 1527 if (connp->conn_outgoing_ill == ill) 1528 connp->conn_outgoing_ill = NULL; 1529 if (connp->conn_outgoing_pill == ill) 1530 connp->conn_outgoing_pill = NULL; 1531 if (connp->conn_nofailover_ill == ill) 1532 connp->conn_nofailover_ill = NULL; 1533 if (connp->conn_dhcpinit_ill == ill) { 1534 connp->conn_dhcpinit_ill = NULL; 1535 ASSERT(ill->ill_dhcpinit != 0); 1536 atomic_dec_32(&ill->ill_dhcpinit); 1537 } 1538 if (connp->conn_ire_cache != NULL) { 1539 ire = connp->conn_ire_cache; 1540 /* 1541 * ip_newroute creates IRE_CACHE with ire_stq coming from 1542 * interface X and ipif coming from interface Y, if interface 1543 * X and Y are part of the same IPMPgroup. Thus whenever 1544 * interface X goes down, remove all references to it by 1545 * checking both on ire_ipif and ire_stq. 1546 */ 1547 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1548 (ire->ire_type == IRE_CACHE && 1549 ire->ire_stq == ill->ill_wq)) { 1550 connp->conn_ire_cache = NULL; 1551 mutex_exit(&connp->conn_lock); 1552 ire_refrele_notr(ire); 1553 return; 1554 } 1555 } 1556 mutex_exit(&connp->conn_lock); 1557 } 1558 1559 /* ARGSUSED */ 1560 void 1561 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1562 { 1563 ill_t *ill = q->q_ptr; 1564 ipif_t *ipif; 1565 1566 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1567 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1568 ipif_non_duplicate(ipif); 1569 ipif_down_tail(ipif); 1570 } 1571 freemsg(mp); 1572 ipsq_current_finish(ipsq); 1573 } 1574 1575 /* 1576 * ill_down_start is called when we want to down this ill and bring it up again 1577 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1578 * all interfaces, but don't tear down any plumbing. 1579 */ 1580 boolean_t 1581 ill_down_start(queue_t *q, mblk_t *mp) 1582 { 1583 ill_t *ill = q->q_ptr; 1584 ipif_t *ipif; 1585 1586 ASSERT(IAM_WRITER_ILL(ill)); 1587 1588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1589 (void) ipif_down(ipif, NULL, NULL); 1590 1591 ill_down(ill); 1592 1593 (void) ipsq_pending_mp_cleanup(ill, NULL); 1594 1595 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1596 1597 /* 1598 * Atomically test and add the pending mp if references are active. 1599 */ 1600 mutex_enter(&ill->ill_lock); 1601 if (!ill_is_quiescent(ill)) { 1602 /* call cannot fail since `conn_t *' argument is NULL */ 1603 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1604 mp, ILL_DOWN); 1605 mutex_exit(&ill->ill_lock); 1606 return (B_FALSE); 1607 } 1608 mutex_exit(&ill->ill_lock); 1609 return (B_TRUE); 1610 } 1611 1612 static void 1613 ill_down(ill_t *ill) 1614 { 1615 ip_stack_t *ipst = ill->ill_ipst; 1616 1617 /* Blow off any IREs dependent on this ILL. */ 1618 ire_walk(ill_downi, (char *)ill, ipst); 1619 1620 /* Remove any conn_*_ill depending on this ill */ 1621 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1622 1623 if (ill->ill_group != NULL) { 1624 illgrp_delete(ill); 1625 } 1626 } 1627 1628 /* 1629 * ire_walk routine used to delete every IRE that depends on queues 1630 * associated with 'ill'. (Always called as writer.) 1631 */ 1632 static void 1633 ill_downi(ire_t *ire, char *ill_arg) 1634 { 1635 ill_t *ill = (ill_t *)ill_arg; 1636 1637 /* 1638 * ip_newroute creates IRE_CACHE with ire_stq coming from 1639 * interface X and ipif coming from interface Y, if interface 1640 * X and Y are part of the same IPMP group. Thus whenever interface 1641 * X goes down, remove all references to it by checking both 1642 * on ire_ipif and ire_stq. 1643 */ 1644 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1645 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1646 ire_delete(ire); 1647 } 1648 } 1649 1650 /* 1651 * Remove ire/nce from the fastpath list. 1652 */ 1653 void 1654 ill_fastpath_nack(ill_t *ill) 1655 { 1656 nce_fastpath_list_dispatch(ill, NULL, NULL); 1657 } 1658 1659 /* Consume an M_IOCACK of the fastpath probe. */ 1660 void 1661 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1662 { 1663 mblk_t *mp1 = mp; 1664 1665 /* 1666 * If this was the first attempt turn on the fastpath probing. 1667 */ 1668 mutex_enter(&ill->ill_lock); 1669 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1670 ill->ill_dlpi_fastpath_state = IDS_OK; 1671 mutex_exit(&ill->ill_lock); 1672 1673 /* Free the M_IOCACK mblk, hold on to the data */ 1674 mp = mp->b_cont; 1675 freeb(mp1); 1676 if (mp == NULL) 1677 return; 1678 if (mp->b_cont != NULL) { 1679 /* 1680 * Update all IRE's or NCE's that are waiting for 1681 * fastpath update. 1682 */ 1683 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1684 mp1 = mp->b_cont; 1685 freeb(mp); 1686 mp = mp1; 1687 } else { 1688 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1689 } 1690 1691 freeb(mp); 1692 } 1693 1694 /* 1695 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1696 * The data portion of the request is a dl_unitdata_req_t template for 1697 * what we would send downstream in the absence of a fastpath confirmation. 1698 */ 1699 int 1700 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1701 { 1702 struct iocblk *ioc; 1703 mblk_t *mp; 1704 1705 if (dlur_mp == NULL) 1706 return (EINVAL); 1707 1708 mutex_enter(&ill->ill_lock); 1709 switch (ill->ill_dlpi_fastpath_state) { 1710 case IDS_FAILED: 1711 /* 1712 * Driver NAKed the first fastpath ioctl - assume it doesn't 1713 * support it. 1714 */ 1715 mutex_exit(&ill->ill_lock); 1716 return (ENOTSUP); 1717 case IDS_UNKNOWN: 1718 /* This is the first probe */ 1719 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1720 break; 1721 default: 1722 break; 1723 } 1724 mutex_exit(&ill->ill_lock); 1725 1726 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1727 return (EAGAIN); 1728 1729 mp->b_cont = copyb(dlur_mp); 1730 if (mp->b_cont == NULL) { 1731 freeb(mp); 1732 return (EAGAIN); 1733 } 1734 1735 ioc = (struct iocblk *)mp->b_rptr; 1736 ioc->ioc_count = msgdsize(mp->b_cont); 1737 1738 putnext(ill->ill_wq, mp); 1739 return (0); 1740 } 1741 1742 void 1743 ill_capability_probe(ill_t *ill) 1744 { 1745 /* 1746 * Do so only if capabilities are still unknown. 1747 */ 1748 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1749 return; 1750 1751 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1752 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1753 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1754 } 1755 1756 void 1757 ill_capability_reset(ill_t *ill) 1758 { 1759 mblk_t *sc_mp = NULL; 1760 mblk_t *tmp; 1761 1762 /* 1763 * Note here that we reset the state to UNKNOWN, and later send 1764 * down the DL_CAPABILITY_REQ without first setting the state to 1765 * INPROGRESS. We do this in order to distinguish the 1766 * DL_CAPABILITY_ACK response which may come back in response to 1767 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1768 * also handle the case where the driver doesn't send us back 1769 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1770 * requires the state to be in UNKNOWN anyway. In any case, all 1771 * features are turned off until the state reaches IDS_OK. 1772 */ 1773 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1774 ill->ill_capab_reneg = B_FALSE; 1775 1776 /* 1777 * Disable sub-capabilities and request a list of sub-capability 1778 * messages which will be sent down to the driver. Each handler 1779 * allocates the corresponding dl_capability_sub_t inside an 1780 * mblk, and links it to the existing sc_mp mblk, or return it 1781 * as sc_mp if it's the first sub-capability (the passed in 1782 * sc_mp is NULL). Upon returning from all capability handlers, 1783 * sc_mp will be pulled-up, before passing it downstream. 1784 */ 1785 ill_capability_mdt_reset(ill, &sc_mp); 1786 ill_capability_hcksum_reset(ill, &sc_mp); 1787 ill_capability_zerocopy_reset(ill, &sc_mp); 1788 ill_capability_ipsec_reset(ill, &sc_mp); 1789 ill_capability_dls_reset(ill, &sc_mp); 1790 ill_capability_lso_reset(ill, &sc_mp); 1791 1792 /* Nothing to send down in order to disable the capabilities? */ 1793 if (sc_mp == NULL) 1794 return; 1795 1796 tmp = msgpullup(sc_mp, -1); 1797 freemsg(sc_mp); 1798 if ((sc_mp = tmp) == NULL) { 1799 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1800 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1801 return; 1802 } 1803 1804 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1805 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1806 } 1807 1808 /* 1809 * Request or set new-style hardware capabilities supported by DLS provider. 1810 */ 1811 static void 1812 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1813 { 1814 mblk_t *mp; 1815 dl_capability_req_t *capb; 1816 size_t size = 0; 1817 uint8_t *ptr; 1818 1819 if (reqp != NULL) 1820 size = MBLKL(reqp); 1821 1822 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1823 if (mp == NULL) { 1824 freemsg(reqp); 1825 return; 1826 } 1827 ptr = mp->b_rptr; 1828 1829 capb = (dl_capability_req_t *)ptr; 1830 ptr += sizeof (dl_capability_req_t); 1831 1832 if (reqp != NULL) { 1833 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1834 capb->dl_sub_length = size; 1835 bcopy(reqp->b_rptr, ptr, size); 1836 ptr += size; 1837 mp->b_cont = reqp->b_cont; 1838 freeb(reqp); 1839 } 1840 ASSERT(ptr == mp->b_wptr); 1841 1842 ill_dlpi_send(ill, mp); 1843 } 1844 1845 static void 1846 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1847 { 1848 dl_capab_id_t *id_ic; 1849 uint_t sub_dl_cap = outers->dl_cap; 1850 dl_capability_sub_t *inners; 1851 uint8_t *capend; 1852 1853 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1854 1855 /* 1856 * Note: range checks here are not absolutely sufficient to 1857 * make us robust against malformed messages sent by drivers; 1858 * this is in keeping with the rest of IP's dlpi handling. 1859 * (Remember, it's coming from something else in the kernel 1860 * address space) 1861 */ 1862 1863 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1864 if (capend > mp->b_wptr) { 1865 cmn_err(CE_WARN, "ill_capability_id_ack: " 1866 "malformed sub-capability too long for mblk"); 1867 return; 1868 } 1869 1870 id_ic = (dl_capab_id_t *)(outers + 1); 1871 1872 if (outers->dl_length < sizeof (*id_ic) || 1873 (inners = &id_ic->id_subcap, 1874 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1875 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1876 "encapsulated capab type %d too long for mblk", 1877 inners->dl_cap); 1878 return; 1879 } 1880 1881 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1882 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1883 "isn't as expected; pass-thru module(s) detected, " 1884 "discarding capability\n", inners->dl_cap)); 1885 return; 1886 } 1887 1888 /* Process the encapsulated sub-capability */ 1889 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1890 } 1891 1892 /* 1893 * Process Multidata Transmit capability negotiation ack received from a 1894 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1895 * DL_CAPABILITY_ACK message. 1896 */ 1897 static void 1898 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 mblk_t *nmp = NULL; 1901 dl_capability_req_t *oc; 1902 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1903 ill_mdt_capab_t **ill_mdt_capab; 1904 uint_t sub_dl_cap = isub->dl_cap; 1905 uint8_t *capend; 1906 1907 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1908 1909 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1910 1911 /* 1912 * Note: range checks here are not absolutely sufficient to 1913 * make us robust against malformed messages sent by drivers; 1914 * this is in keeping with the rest of IP's dlpi handling. 1915 * (Remember, it's coming from something else in the kernel 1916 * address space) 1917 */ 1918 1919 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1920 if (capend > mp->b_wptr) { 1921 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1922 "malformed sub-capability too long for mblk"); 1923 return; 1924 } 1925 1926 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1927 1928 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1929 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1930 "unsupported MDT sub-capability (version %d, expected %d)", 1931 mdt_ic->mdt_version, MDT_VERSION_2); 1932 return; 1933 } 1934 1935 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1936 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1937 "capability isn't as expected; pass-thru module(s) " 1938 "detected, discarding capability\n")); 1939 return; 1940 } 1941 1942 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1943 1944 if (*ill_mdt_capab == NULL) { 1945 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1946 KM_NOSLEEP); 1947 1948 if (*ill_mdt_capab == NULL) { 1949 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1950 "could not enable MDT version %d " 1951 "for %s (ENOMEM)\n", MDT_VERSION_2, 1952 ill->ill_name); 1953 return; 1954 } 1955 } 1956 1957 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1958 "MDT version %d (%d bytes leading, %d bytes trailing " 1959 "header spaces, %d max pld bufs, %d span limit)\n", 1960 ill->ill_name, MDT_VERSION_2, 1961 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1962 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1963 1964 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1965 (*ill_mdt_capab)->ill_mdt_on = 1; 1966 /* 1967 * Round the following values to the nearest 32-bit; ULP 1968 * may further adjust them to accomodate for additional 1969 * protocol headers. We pass these values to ULP during 1970 * bind time. 1971 */ 1972 (*ill_mdt_capab)->ill_mdt_hdr_head = 1973 roundup(mdt_ic->mdt_hdr_head, 4); 1974 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1975 roundup(mdt_ic->mdt_hdr_tail, 4); 1976 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1977 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1978 1979 ill->ill_capabilities |= ILL_CAPAB_MDT; 1980 } else { 1981 uint_t size; 1982 uchar_t *rptr; 1983 1984 size = sizeof (dl_capability_req_t) + 1985 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1986 1987 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1988 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1989 "could not enable MDT for %s (ENOMEM)\n", 1990 ill->ill_name); 1991 return; 1992 } 1993 1994 rptr = nmp->b_rptr; 1995 /* initialize dl_capability_req_t */ 1996 oc = (dl_capability_req_t *)nmp->b_rptr; 1997 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1998 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1999 sizeof (dl_capab_mdt_t); 2000 nmp->b_rptr += sizeof (dl_capability_req_t); 2001 2002 /* initialize dl_capability_sub_t */ 2003 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2004 nmp->b_rptr += sizeof (*isub); 2005 2006 /* initialize dl_capab_mdt_t */ 2007 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2008 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2009 2010 nmp->b_rptr = rptr; 2011 2012 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2013 "to enable MDT version %d\n", ill->ill_name, 2014 MDT_VERSION_2)); 2015 2016 /* set ENABLE flag */ 2017 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2018 2019 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2020 ill_dlpi_send(ill, nmp); 2021 } 2022 } 2023 2024 static void 2025 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2026 { 2027 mblk_t *mp; 2028 dl_capab_mdt_t *mdt_subcap; 2029 dl_capability_sub_t *dl_subcap; 2030 int size; 2031 2032 if (!ILL_MDT_CAPABLE(ill)) 2033 return; 2034 2035 ASSERT(ill->ill_mdt_capab != NULL); 2036 /* 2037 * Clear the capability flag for MDT but retain the ill_mdt_capab 2038 * structure since it's possible that another thread is still 2039 * referring to it. The structure only gets deallocated when 2040 * we destroy the ill. 2041 */ 2042 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2043 2044 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2045 2046 mp = allocb(size, BPRI_HI); 2047 if (mp == NULL) { 2048 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2049 "request to disable MDT\n")); 2050 return; 2051 } 2052 2053 mp->b_wptr = mp->b_rptr + size; 2054 2055 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2056 dl_subcap->dl_cap = DL_CAPAB_MDT; 2057 dl_subcap->dl_length = sizeof (*mdt_subcap); 2058 2059 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2060 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2061 mdt_subcap->mdt_flags = 0; 2062 mdt_subcap->mdt_hdr_head = 0; 2063 mdt_subcap->mdt_hdr_tail = 0; 2064 2065 if (*sc_mp != NULL) 2066 linkb(*sc_mp, mp); 2067 else 2068 *sc_mp = mp; 2069 } 2070 2071 /* 2072 * Send a DL_NOTIFY_REQ to the specified ill to enable 2073 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2074 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2075 * acceleration. 2076 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2077 */ 2078 static boolean_t 2079 ill_enable_promisc_notify(ill_t *ill) 2080 { 2081 mblk_t *mp; 2082 dl_notify_req_t *req; 2083 2084 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2085 2086 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2087 if (mp == NULL) 2088 return (B_FALSE); 2089 2090 req = (dl_notify_req_t *)mp->b_rptr; 2091 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2092 DL_NOTE_PROMISC_OFF_PHYS; 2093 2094 ill_dlpi_send(ill, mp); 2095 2096 return (B_TRUE); 2097 } 2098 2099 /* 2100 * Allocate an IPsec capability request which will be filled by our 2101 * caller to turn on support for one or more algorithms. 2102 */ 2103 static mblk_t * 2104 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2105 { 2106 mblk_t *nmp; 2107 dl_capability_req_t *ocap; 2108 dl_capab_ipsec_t *ocip; 2109 dl_capab_ipsec_t *icip; 2110 uint8_t *ptr; 2111 icip = (dl_capab_ipsec_t *)(isub + 1); 2112 2113 /* 2114 * The first time around, we send a DL_NOTIFY_REQ to enable 2115 * PROMISC_ON/OFF notification from the provider. We need to 2116 * do this before enabling the algorithms to avoid leakage of 2117 * cleartext packets. 2118 */ 2119 2120 if (!ill_enable_promisc_notify(ill)) 2121 return (NULL); 2122 2123 /* 2124 * Allocate new mblk which will contain a new capability 2125 * request to enable the capabilities. 2126 */ 2127 2128 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2129 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2130 if (nmp == NULL) 2131 return (NULL); 2132 2133 ptr = nmp->b_rptr; 2134 2135 /* initialize dl_capability_req_t */ 2136 ocap = (dl_capability_req_t *)ptr; 2137 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2138 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2139 ptr += sizeof (dl_capability_req_t); 2140 2141 /* initialize dl_capability_sub_t */ 2142 bcopy(isub, ptr, sizeof (*isub)); 2143 ptr += sizeof (*isub); 2144 2145 /* initialize dl_capab_ipsec_t */ 2146 ocip = (dl_capab_ipsec_t *)ptr; 2147 bcopy(icip, ocip, sizeof (*icip)); 2148 2149 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2150 return (nmp); 2151 } 2152 2153 /* 2154 * Process an IPsec capability negotiation ack received from a DLS Provider. 2155 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2156 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2157 */ 2158 static void 2159 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2160 { 2161 dl_capab_ipsec_t *icip; 2162 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2163 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2164 uint_t cipher, nciphers; 2165 mblk_t *nmp; 2166 uint_t alg_len; 2167 boolean_t need_sadb_dump; 2168 uint_t sub_dl_cap = isub->dl_cap; 2169 ill_ipsec_capab_t **ill_capab; 2170 uint64_t ill_capab_flag; 2171 uint8_t *capend, *ciphend; 2172 boolean_t sadb_resync; 2173 2174 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2175 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2176 2177 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2178 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2179 ill_capab_flag = ILL_CAPAB_AH; 2180 } else { 2181 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2182 ill_capab_flag = ILL_CAPAB_ESP; 2183 } 2184 2185 /* 2186 * If the ill capability structure exists, then this incoming 2187 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2188 * If this is so, then we'd need to resynchronize the SADB 2189 * after re-enabling the offloaded ciphers. 2190 */ 2191 sadb_resync = (*ill_capab != NULL); 2192 2193 /* 2194 * Note: range checks here are not absolutely sufficient to 2195 * make us robust against malformed messages sent by drivers; 2196 * this is in keeping with the rest of IP's dlpi handling. 2197 * (Remember, it's coming from something else in the kernel 2198 * address space) 2199 */ 2200 2201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2202 if (capend > mp->b_wptr) { 2203 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2204 "malformed sub-capability too long for mblk"); 2205 return; 2206 } 2207 2208 /* 2209 * There are two types of acks we process here: 2210 * 1. acks in reply to a (first form) generic capability req 2211 * (no ENABLE flag set) 2212 * 2. acks in reply to a ENABLE capability req. 2213 * (ENABLE flag set) 2214 * 2215 * We process the subcapability passed as argument as follows: 2216 * 1 do initializations 2217 * 1.1 initialize nmp = NULL 2218 * 1.2 set need_sadb_dump to B_FALSE 2219 * 2 for each cipher in subcapability: 2220 * 2.1 if ENABLE flag is set: 2221 * 2.1.1 update per-ill ipsec capabilities info 2222 * 2.1.2 set need_sadb_dump to B_TRUE 2223 * 2.2 if ENABLE flag is not set: 2224 * 2.2.1 if nmp is NULL: 2225 * 2.2.1.1 allocate and initialize nmp 2226 * 2.2.1.2 init current pos in nmp 2227 * 2.2.2 copy current cipher to current pos in nmp 2228 * 2.2.3 set ENABLE flag in nmp 2229 * 2.2.4 update current pos 2230 * 3 if nmp is not equal to NULL, send enable request 2231 * 3.1 send capability request 2232 * 4 if need_sadb_dump is B_TRUE 2233 * 4.1 enable promiscuous on/off notifications 2234 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2235 * AH or ESP SA's to interface. 2236 */ 2237 2238 nmp = NULL; 2239 oalg = NULL; 2240 need_sadb_dump = B_FALSE; 2241 icip = (dl_capab_ipsec_t *)(isub + 1); 2242 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2243 2244 nciphers = icip->cip_nciphers; 2245 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2246 2247 if (ciphend > capend) { 2248 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2249 "too many ciphers for sub-capability len"); 2250 return; 2251 } 2252 2253 for (cipher = 0; cipher < nciphers; cipher++) { 2254 alg_len = sizeof (dl_capab_ipsec_alg_t); 2255 2256 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2257 /* 2258 * TBD: when we provide a way to disable capabilities 2259 * from above, need to manage the request-pending state 2260 * and fail if we were not expecting this ACK. 2261 */ 2262 IPSECHW_DEBUG(IPSECHW_CAPAB, 2263 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2264 2265 /* 2266 * Update IPsec capabilities for this ill 2267 */ 2268 2269 if (*ill_capab == NULL) { 2270 IPSECHW_DEBUG(IPSECHW_CAPAB, 2271 ("ill_capability_ipsec_ack: " 2272 "allocating ipsec_capab for ill\n")); 2273 *ill_capab = ill_ipsec_capab_alloc(); 2274 2275 if (*ill_capab == NULL) { 2276 cmn_err(CE_WARN, 2277 "ill_capability_ipsec_ack: " 2278 "could not enable IPsec Hardware " 2279 "acceleration for %s (ENOMEM)\n", 2280 ill->ill_name); 2281 return; 2282 } 2283 } 2284 2285 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2286 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2287 2288 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2289 cmn_err(CE_WARN, 2290 "ill_capability_ipsec_ack: " 2291 "malformed IPsec algorithm id %d", 2292 ialg->alg_prim); 2293 continue; 2294 } 2295 2296 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2297 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2298 ialg->alg_prim); 2299 } else { 2300 ipsec_capab_algparm_t *alp; 2301 2302 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2303 ialg->alg_prim); 2304 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2305 ialg->alg_prim)) { 2306 cmn_err(CE_WARN, 2307 "ill_capability_ipsec_ack: " 2308 "no space for IPsec alg id %d", 2309 ialg->alg_prim); 2310 continue; 2311 } 2312 alp = &((*ill_capab)->encr_algparm[ 2313 ialg->alg_prim]); 2314 alp->minkeylen = ialg->alg_minbits; 2315 alp->maxkeylen = ialg->alg_maxbits; 2316 } 2317 ill->ill_capabilities |= ill_capab_flag; 2318 /* 2319 * indicate that a capability was enabled, which 2320 * will be used below to kick off a SADB dump 2321 * to the ill. 2322 */ 2323 need_sadb_dump = B_TRUE; 2324 } else { 2325 IPSECHW_DEBUG(IPSECHW_CAPAB, 2326 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2327 ialg->alg_prim)); 2328 2329 if (nmp == NULL) { 2330 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2331 if (nmp == NULL) { 2332 /* 2333 * Sending the PROMISC_ON/OFF 2334 * notification request failed. 2335 * We cannot enable the algorithms 2336 * since the Provider will not 2337 * notify IP of promiscous mode 2338 * changes, which could lead 2339 * to leakage of packets. 2340 */ 2341 cmn_err(CE_WARN, 2342 "ill_capability_ipsec_ack: " 2343 "could not enable IPsec Hardware " 2344 "acceleration for %s (ENOMEM)\n", 2345 ill->ill_name); 2346 return; 2347 } 2348 /* ptr to current output alg specifier */ 2349 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2350 } 2351 2352 /* 2353 * Copy current alg specifier, set ENABLE 2354 * flag, and advance to next output alg. 2355 * For now we enable all IPsec capabilities. 2356 */ 2357 ASSERT(oalg != NULL); 2358 bcopy(ialg, oalg, alg_len); 2359 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2360 nmp->b_wptr += alg_len; 2361 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2362 } 2363 2364 /* move to next input algorithm specifier */ 2365 ialg = (dl_capab_ipsec_alg_t *) 2366 ((char *)ialg + alg_len); 2367 } 2368 2369 if (nmp != NULL) 2370 /* 2371 * nmp points to a DL_CAPABILITY_REQ message to enable 2372 * IPsec hardware acceleration. 2373 */ 2374 ill_dlpi_send(ill, nmp); 2375 2376 if (need_sadb_dump) 2377 /* 2378 * An acknowledgement corresponding to a request to 2379 * enable acceleration was received, notify SADB. 2380 */ 2381 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2382 } 2383 2384 /* 2385 * Given an mblk with enough space in it, create sub-capability entries for 2386 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2387 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2388 * in preparation for the reset the DL_CAPABILITY_REQ message. 2389 */ 2390 static void 2391 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2392 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2393 { 2394 dl_capab_ipsec_t *oipsec; 2395 dl_capab_ipsec_alg_t *oalg; 2396 dl_capability_sub_t *dl_subcap; 2397 int i, k; 2398 2399 ASSERT(nciphers > 0); 2400 ASSERT(ill_cap != NULL); 2401 ASSERT(mp != NULL); 2402 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2403 2404 /* dl_capability_sub_t for "stype" */ 2405 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2406 dl_subcap->dl_cap = stype; 2407 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2408 mp->b_wptr += sizeof (dl_capability_sub_t); 2409 2410 /* dl_capab_ipsec_t for "stype" */ 2411 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2412 oipsec->cip_version = 1; 2413 oipsec->cip_nciphers = nciphers; 2414 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2415 2416 /* create entries for "stype" AUTH ciphers */ 2417 for (i = 0; i < ill_cap->algs_size; i++) { 2418 for (k = 0; k < BITSPERBYTE; k++) { 2419 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2420 continue; 2421 2422 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2423 bzero((void *)oalg, sizeof (*oalg)); 2424 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2425 oalg->alg_prim = k + (BITSPERBYTE * i); 2426 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2427 } 2428 } 2429 /* create entries for "stype" ENCR ciphers */ 2430 for (i = 0; i < ill_cap->algs_size; i++) { 2431 for (k = 0; k < BITSPERBYTE; k++) { 2432 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2433 continue; 2434 2435 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2436 bzero((void *)oalg, sizeof (*oalg)); 2437 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2438 oalg->alg_prim = k + (BITSPERBYTE * i); 2439 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2440 } 2441 } 2442 } 2443 2444 /* 2445 * Macro to count number of 1s in a byte (8-bit word). The total count is 2446 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2447 * POPC instruction, but our macro is more flexible for an arbitrary length 2448 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2449 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2450 * stays that way, we can reduce the number of iterations required. 2451 */ 2452 #define COUNT_1S(val, sum) { \ 2453 uint8_t x = val & 0xff; \ 2454 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2455 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2456 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2457 } 2458 2459 /* ARGSUSED */ 2460 static void 2461 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2462 { 2463 mblk_t *mp; 2464 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2465 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2466 uint64_t ill_capabilities = ill->ill_capabilities; 2467 int ah_cnt = 0, esp_cnt = 0; 2468 int ah_len = 0, esp_len = 0; 2469 int i, size = 0; 2470 2471 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2472 return; 2473 2474 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2475 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2476 2477 /* Find out the number of ciphers for AH */ 2478 if (cap_ah != NULL) { 2479 for (i = 0; i < cap_ah->algs_size; i++) { 2480 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2481 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2482 } 2483 if (ah_cnt > 0) { 2484 size += sizeof (dl_capability_sub_t) + 2485 sizeof (dl_capab_ipsec_t); 2486 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2487 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2488 size += ah_len; 2489 } 2490 } 2491 2492 /* Find out the number of ciphers for ESP */ 2493 if (cap_esp != NULL) { 2494 for (i = 0; i < cap_esp->algs_size; i++) { 2495 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2496 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2497 } 2498 if (esp_cnt > 0) { 2499 size += sizeof (dl_capability_sub_t) + 2500 sizeof (dl_capab_ipsec_t); 2501 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2502 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2503 size += esp_len; 2504 } 2505 } 2506 2507 if (size == 0) { 2508 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2509 "there's nothing to reset\n")); 2510 return; 2511 } 2512 2513 mp = allocb(size, BPRI_HI); 2514 if (mp == NULL) { 2515 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2516 "request to disable IPSEC Hardware Acceleration\n")); 2517 return; 2518 } 2519 2520 /* 2521 * Clear the capability flags for IPsec HA but retain the ill 2522 * capability structures since it's possible that another thread 2523 * is still referring to them. The structures only get deallocated 2524 * when we destroy the ill. 2525 * 2526 * Various places check the flags to see if the ill is capable of 2527 * hardware acceleration, and by clearing them we ensure that new 2528 * outbound IPsec packets are sent down encrypted. 2529 */ 2530 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2531 2532 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2533 if (ah_cnt > 0) { 2534 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2535 cap_ah, mp); 2536 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2537 } 2538 2539 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2540 if (esp_cnt > 0) { 2541 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2542 cap_esp, mp); 2543 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2544 } 2545 2546 /* 2547 * At this point we've composed a bunch of sub-capabilities to be 2548 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2549 * by the caller. Upon receiving this reset message, the driver 2550 * must stop inbound decryption (by destroying all inbound SAs) 2551 * and let the corresponding packets come in encrypted. 2552 */ 2553 2554 if (*sc_mp != NULL) 2555 linkb(*sc_mp, mp); 2556 else 2557 *sc_mp = mp; 2558 } 2559 2560 static void 2561 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2562 boolean_t encapsulated) 2563 { 2564 boolean_t legacy = B_FALSE; 2565 2566 /* 2567 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2568 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2569 * instructed the driver to disable its advertised capabilities, 2570 * so there's no point in accepting any response at this moment. 2571 */ 2572 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2573 return; 2574 2575 /* 2576 * Note that only the following two sub-capabilities may be 2577 * considered as "legacy", since their original definitions 2578 * do not incorporate the dl_mid_t module ID token, and hence 2579 * may require the use of the wrapper sub-capability. 2580 */ 2581 switch (subp->dl_cap) { 2582 case DL_CAPAB_IPSEC_AH: 2583 case DL_CAPAB_IPSEC_ESP: 2584 legacy = B_TRUE; 2585 break; 2586 } 2587 2588 /* 2589 * For legacy sub-capabilities which don't incorporate a queue_t 2590 * pointer in their structures, discard them if we detect that 2591 * there are intermediate modules in between IP and the driver. 2592 */ 2593 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2594 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2595 "%d discarded; %d module(s) present below IP\n", 2596 subp->dl_cap, ill->ill_lmod_cnt)); 2597 return; 2598 } 2599 2600 switch (subp->dl_cap) { 2601 case DL_CAPAB_IPSEC_AH: 2602 case DL_CAPAB_IPSEC_ESP: 2603 ill_capability_ipsec_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_MDT: 2606 ill_capability_mdt_ack(ill, mp, subp); 2607 break; 2608 case DL_CAPAB_HCKSUM: 2609 ill_capability_hcksum_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_ZEROCOPY: 2612 ill_capability_zerocopy_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_POLL: 2615 if (!SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_SOFT_RING: 2619 if (SOFT_RINGS_ENABLED()) 2620 ill_capability_dls_ack(ill, mp, subp); 2621 break; 2622 case DL_CAPAB_LSO: 2623 ill_capability_lso_ack(ill, mp, subp); 2624 break; 2625 default: 2626 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2627 subp->dl_cap)); 2628 } 2629 } 2630 2631 /* 2632 * As part of negotiating polling capability, the driver tells us 2633 * the default (or normal) blanking interval and packet threshold 2634 * (the receive timer fires if blanking interval is reached or 2635 * the packet threshold is reached). 2636 * 2637 * As part of manipulating the polling interval, we always use our 2638 * estimated interval (avg service time * number of packets queued 2639 * on the squeue) but we try to blank for a minimum of 2640 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2641 * packet threshold during this time. When we are not in polling mode 2642 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2643 * rr_min_blank_ratio but up the packet cnt by a ratio of 2644 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2645 * possible although for a shorter interval. 2646 */ 2647 #define RR_MAX_BLANK_RATIO 20 2648 #define RR_MIN_BLANK_RATIO 10 2649 #define RR_MAX_PKT_CNT_RATIO 3 2650 #define RR_MIN_PKT_CNT_RATIO 3 2651 2652 /* 2653 * These can be tuned via /etc/system. 2654 */ 2655 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2656 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2657 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2658 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2659 2660 static mac_resource_handle_t 2661 ill_ring_add(void *arg, mac_resource_t *mrp) 2662 { 2663 ill_t *ill = (ill_t *)arg; 2664 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2665 ill_rx_ring_t *rx_ring; 2666 int ip_rx_index; 2667 2668 ASSERT(mrp != NULL); 2669 if (mrp->mr_type != MAC_RX_FIFO) { 2670 return (NULL); 2671 } 2672 ASSERT(ill != NULL); 2673 ASSERT(ill->ill_dls_capab != NULL); 2674 2675 mutex_enter(&ill->ill_lock); 2676 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2677 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2678 ASSERT(rx_ring != NULL); 2679 2680 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2681 time_t normal_blank_time = 2682 mrfp->mrf_normal_blank_time; 2683 uint_t normal_pkt_cnt = 2684 mrfp->mrf_normal_pkt_count; 2685 2686 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2687 2688 rx_ring->rr_blank = mrfp->mrf_blank; 2689 rx_ring->rr_handle = mrfp->mrf_arg; 2690 rx_ring->rr_ill = ill; 2691 rx_ring->rr_normal_blank_time = normal_blank_time; 2692 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2693 2694 rx_ring->rr_max_blank_time = 2695 normal_blank_time * rr_max_blank_ratio; 2696 rx_ring->rr_min_blank_time = 2697 normal_blank_time * rr_min_blank_ratio; 2698 rx_ring->rr_max_pkt_cnt = 2699 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2700 rx_ring->rr_min_pkt_cnt = 2701 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2702 2703 rx_ring->rr_ring_state = ILL_RING_INUSE; 2704 mutex_exit(&ill->ill_lock); 2705 2706 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2707 (int), ip_rx_index); 2708 return ((mac_resource_handle_t)rx_ring); 2709 } 2710 } 2711 2712 /* 2713 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2714 * we have devices which can overwhelm this limit, ILL_MAX_RING 2715 * should be made configurable. Meanwhile it cause no panic because 2716 * driver will pass ip_input a NULL handle which will make 2717 * IP allocate the default squeue and Polling mode will not 2718 * be used for this ring. 2719 */ 2720 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2721 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2722 2723 mutex_exit(&ill->ill_lock); 2724 return (NULL); 2725 } 2726 2727 static boolean_t 2728 ill_capability_dls_init(ill_t *ill) 2729 { 2730 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2731 conn_t *connp; 2732 size_t sz; 2733 ip_stack_t *ipst = ill->ill_ipst; 2734 2735 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2736 if (ill_dls == NULL) { 2737 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2738 "soft_ring enabled for ill=%s (%p) but data " 2739 "structs uninitialized\n", ill->ill_name, 2740 (void *)ill); 2741 } 2742 return (B_TRUE); 2743 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2744 if (ill_dls == NULL) { 2745 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2746 "polling enabled for ill=%s (%p) but data " 2747 "structs uninitialized\n", ill->ill_name, 2748 (void *)ill); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 if (ill_dls != NULL) { 2754 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2755 /* Soft_Ring or polling is being re-enabled */ 2756 2757 connp = ill_dls->ill_unbind_conn; 2758 ASSERT(rx_ring != NULL); 2759 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2760 bzero((void *)rx_ring, 2761 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2762 ill_dls->ill_ring_tbl = rx_ring; 2763 ill_dls->ill_unbind_conn = connp; 2764 return (B_TRUE); 2765 } 2766 2767 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2768 ipst->ips_netstack)) == NULL) 2769 return (B_FALSE); 2770 2771 sz = sizeof (ill_dls_capab_t); 2772 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2773 2774 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2775 if (ill_dls == NULL) { 2776 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2777 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2778 (void *)ill); 2779 CONN_DEC_REF(connp); 2780 return (B_FALSE); 2781 } 2782 2783 /* Allocate space to hold ring table */ 2784 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2785 ill->ill_dls_capab = ill_dls; 2786 ill_dls->ill_unbind_conn = connp; 2787 return (B_TRUE); 2788 } 2789 2790 /* 2791 * ill_capability_dls_disable: disable soft_ring and/or polling 2792 * capability. Since any of the rings might already be in use, need 2793 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2794 * direct calls if necessary. 2795 */ 2796 static void 2797 ill_capability_dls_disable(ill_t *ill) 2798 { 2799 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2800 2801 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2802 ip_squeue_clean_all(ill); 2803 ill_dls->ill_tx = NULL; 2804 ill_dls->ill_tx_handle = NULL; 2805 ill_dls->ill_dls_change_status = NULL; 2806 ill_dls->ill_dls_bind = NULL; 2807 ill_dls->ill_dls_unbind = NULL; 2808 } 2809 2810 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2811 } 2812 2813 static void 2814 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2815 dl_capability_sub_t *isub) 2816 { 2817 uint_t size; 2818 uchar_t *rptr; 2819 dl_capab_dls_t dls, *odls; 2820 ill_dls_capab_t *ill_dls; 2821 mblk_t *nmp = NULL; 2822 dl_capability_req_t *ocap; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 2825 if (!ill_capability_dls_init(ill)) 2826 return; 2827 ill_dls = ill->ill_dls_capab; 2828 2829 /* Copy locally to get the members aligned */ 2830 bcopy((void *)idls, (void *)&dls, 2831 sizeof (dl_capab_dls_t)); 2832 2833 /* Get the tx function and handle from dld */ 2834 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2835 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2836 2837 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2838 ill_dls->ill_dls_change_status = 2839 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2840 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2841 ill_dls->ill_dls_unbind = 2842 (ip_dls_unbind_t)dls.dls_ring_unbind; 2843 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2844 } 2845 2846 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2847 isub->dl_length; 2848 2849 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2850 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2851 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2852 ill->ill_name, (void *)ill); 2853 return; 2854 } 2855 2856 /* initialize dl_capability_req_t */ 2857 rptr = nmp->b_rptr; 2858 ocap = (dl_capability_req_t *)rptr; 2859 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2860 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2861 rptr += sizeof (dl_capability_req_t); 2862 2863 /* initialize dl_capability_sub_t */ 2864 bcopy(isub, rptr, sizeof (*isub)); 2865 rptr += sizeof (*isub); 2866 2867 odls = (dl_capab_dls_t *)rptr; 2868 rptr += sizeof (dl_capab_dls_t); 2869 2870 /* initialize dl_capab_dls_t to be sent down */ 2871 dls.dls_rx_handle = (uintptr_t)ill; 2872 dls.dls_rx = (uintptr_t)ip_input; 2873 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2874 2875 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2876 dls.dls_ring_cnt = ip_soft_rings_cnt; 2877 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2878 dls.dls_flags = SOFT_RING_ENABLE; 2879 } else { 2880 dls.dls_flags = POLL_ENABLE; 2881 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2882 "to enable polling\n", ill->ill_name)); 2883 } 2884 bcopy((void *)&dls, (void *)odls, 2885 sizeof (dl_capab_dls_t)); 2886 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2887 /* 2888 * nmp points to a DL_CAPABILITY_REQ message to 2889 * enable either soft_ring or polling 2890 */ 2891 ill_dlpi_send(ill, nmp); 2892 } 2893 2894 static void 2895 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2896 { 2897 mblk_t *mp; 2898 dl_capab_dls_t *idls; 2899 dl_capability_sub_t *dl_subcap; 2900 int size; 2901 2902 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2903 return; 2904 2905 ASSERT(ill->ill_dls_capab != NULL); 2906 2907 size = sizeof (*dl_subcap) + sizeof (*idls); 2908 2909 mp = allocb(size, BPRI_HI); 2910 if (mp == NULL) { 2911 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2912 "request to disable soft_ring\n")); 2913 return; 2914 } 2915 2916 mp->b_wptr = mp->b_rptr + size; 2917 2918 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2919 dl_subcap->dl_length = sizeof (*idls); 2920 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2921 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2922 else 2923 dl_subcap->dl_cap = DL_CAPAB_POLL; 2924 2925 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2926 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2927 idls->dls_flags = SOFT_RING_DISABLE; 2928 else 2929 idls->dls_flags = POLL_DISABLE; 2930 2931 if (*sc_mp != NULL) 2932 linkb(*sc_mp, mp); 2933 else 2934 *sc_mp = mp; 2935 } 2936 2937 /* 2938 * Process a soft_ring/poll capability negotiation ack received 2939 * from a DLS Provider.isub must point to the sub-capability 2940 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2941 */ 2942 static void 2943 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2944 { 2945 dl_capab_dls_t *idls; 2946 uint_t sub_dl_cap = isub->dl_cap; 2947 uint8_t *capend; 2948 2949 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2950 sub_dl_cap == DL_CAPAB_POLL); 2951 2952 if (ill->ill_isv6) 2953 return; 2954 2955 /* 2956 * Note: range checks here are not absolutely sufficient to 2957 * make us robust against malformed messages sent by drivers; 2958 * this is in keeping with the rest of IP's dlpi handling. 2959 * (Remember, it's coming from something else in the kernel 2960 * address space) 2961 */ 2962 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2963 if (capend > mp->b_wptr) { 2964 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2965 "malformed sub-capability too long for mblk"); 2966 return; 2967 } 2968 2969 /* 2970 * There are two types of acks we process here: 2971 * 1. acks in reply to a (first form) generic capability req 2972 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2973 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2974 * capability req. 2975 */ 2976 idls = (dl_capab_dls_t *)(isub + 1); 2977 2978 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2979 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2980 "capability isn't as expected; pass-thru " 2981 "module(s) detected, discarding capability\n")); 2982 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2983 /* 2984 * This is a capability renegotitation case. 2985 * The interface better be unusable at this 2986 * point other wise bad things will happen 2987 * if we disable direct calls on a running 2988 * and up interface. 2989 */ 2990 ill_capability_dls_disable(ill); 2991 } 2992 return; 2993 } 2994 2995 switch (idls->dls_flags) { 2996 default: 2997 /* Disable if unknown flag */ 2998 case SOFT_RING_DISABLE: 2999 case POLL_DISABLE: 3000 ill_capability_dls_disable(ill); 3001 break; 3002 case SOFT_RING_CAPABLE: 3003 case POLL_CAPABLE: 3004 /* 3005 * If the capability was already enabled, its safe 3006 * to disable it first to get rid of stale information 3007 * and then start enabling it again. 3008 */ 3009 ill_capability_dls_disable(ill); 3010 ill_capability_dls_capable(ill, idls, isub); 3011 break; 3012 case SOFT_RING_ENABLE: 3013 case POLL_ENABLE: 3014 mutex_enter(&ill->ill_lock); 3015 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3016 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3019 } 3020 if (sub_dl_cap == DL_CAPAB_POLL && 3021 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3022 ASSERT(ill->ill_dls_capab != NULL); 3023 ill->ill_capabilities |= ILL_CAPAB_POLL; 3024 ip1dbg(("ill_capability_dls_ack: interface %s " 3025 "has enabled polling\n", ill->ill_name)); 3026 } 3027 mutex_exit(&ill->ill_lock); 3028 break; 3029 } 3030 } 3031 3032 /* 3033 * Process a hardware checksum offload capability negotiation ack received 3034 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3035 * of a DL_CAPABILITY_ACK message. 3036 */ 3037 static void 3038 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3039 { 3040 dl_capability_req_t *ocap; 3041 dl_capab_hcksum_t *ihck, *ohck; 3042 ill_hcksum_capab_t **ill_hcksum; 3043 mblk_t *nmp = NULL; 3044 uint_t sub_dl_cap = isub->dl_cap; 3045 uint8_t *capend; 3046 3047 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3048 3049 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3050 3051 /* 3052 * Note: range checks here are not absolutely sufficient to 3053 * make us robust against malformed messages sent by drivers; 3054 * this is in keeping with the rest of IP's dlpi handling. 3055 * (Remember, it's coming from something else in the kernel 3056 * address space) 3057 */ 3058 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3059 if (capend > mp->b_wptr) { 3060 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3061 "malformed sub-capability too long for mblk"); 3062 return; 3063 } 3064 3065 /* 3066 * There are two types of acks we process here: 3067 * 1. acks in reply to a (first form) generic capability req 3068 * (no ENABLE flag set) 3069 * 2. acks in reply to a ENABLE capability req. 3070 * (ENABLE flag set) 3071 */ 3072 ihck = (dl_capab_hcksum_t *)(isub + 1); 3073 3074 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3075 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3076 "unsupported hardware checksum " 3077 "sub-capability (version %d, expected %d)", 3078 ihck->hcksum_version, HCKSUM_VERSION_1); 3079 return; 3080 } 3081 3082 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3083 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3084 "checksum capability isn't as expected; pass-thru " 3085 "module(s) detected, discarding capability\n")); 3086 return; 3087 } 3088 3089 #define CURR_HCKSUM_CAPAB \ 3090 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3091 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3092 3093 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3094 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3095 /* do ENABLE processing */ 3096 if (*ill_hcksum == NULL) { 3097 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3098 KM_NOSLEEP); 3099 3100 if (*ill_hcksum == NULL) { 3101 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3102 "could not enable hcksum version %d " 3103 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3104 ill->ill_name); 3105 return; 3106 } 3107 } 3108 3109 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3110 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3111 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3112 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3113 "has enabled hardware checksumming\n ", 3114 ill->ill_name)); 3115 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3116 /* 3117 * Enabling hardware checksum offload 3118 * Currently IP supports {TCP,UDP}/IPv4 3119 * partial and full cksum offload and 3120 * IPv4 header checksum offload. 3121 * Allocate new mblk which will 3122 * contain a new capability request 3123 * to enable hardware checksum offload. 3124 */ 3125 uint_t size; 3126 uchar_t *rptr; 3127 3128 size = sizeof (dl_capability_req_t) + 3129 sizeof (dl_capability_sub_t) + isub->dl_length; 3130 3131 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3132 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3133 "could not enable hardware cksum for %s (ENOMEM)\n", 3134 ill->ill_name); 3135 return; 3136 } 3137 3138 rptr = nmp->b_rptr; 3139 /* initialize dl_capability_req_t */ 3140 ocap = (dl_capability_req_t *)nmp->b_rptr; 3141 ocap->dl_sub_offset = 3142 sizeof (dl_capability_req_t); 3143 ocap->dl_sub_length = 3144 sizeof (dl_capability_sub_t) + 3145 isub->dl_length; 3146 nmp->b_rptr += sizeof (dl_capability_req_t); 3147 3148 /* initialize dl_capability_sub_t */ 3149 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3150 nmp->b_rptr += sizeof (*isub); 3151 3152 /* initialize dl_capab_hcksum_t */ 3153 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3154 bcopy(ihck, ohck, sizeof (*ihck)); 3155 3156 nmp->b_rptr = rptr; 3157 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3158 3159 /* Set ENABLE flag */ 3160 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3161 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3162 3163 /* 3164 * nmp points to a DL_CAPABILITY_REQ message to enable 3165 * hardware checksum acceleration. 3166 */ 3167 ill_dlpi_send(ill, nmp); 3168 } else { 3169 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3170 "advertised %x hardware checksum capability flags\n", 3171 ill->ill_name, ihck->hcksum_txflags)); 3172 } 3173 } 3174 3175 static void 3176 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3177 { 3178 mblk_t *mp; 3179 dl_capab_hcksum_t *hck_subcap; 3180 dl_capability_sub_t *dl_subcap; 3181 int size; 3182 3183 if (!ILL_HCKSUM_CAPABLE(ill)) 3184 return; 3185 3186 ASSERT(ill->ill_hcksum_capab != NULL); 3187 /* 3188 * Clear the capability flag for hardware checksum offload but 3189 * retain the ill_hcksum_capab structure since it's possible that 3190 * another thread is still referring to it. The structure only 3191 * gets deallocated when we destroy the ill. 3192 */ 3193 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3194 3195 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3196 3197 mp = allocb(size, BPRI_HI); 3198 if (mp == NULL) { 3199 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3200 "request to disable hardware checksum offload\n")); 3201 return; 3202 } 3203 3204 mp->b_wptr = mp->b_rptr + size; 3205 3206 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3207 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3208 dl_subcap->dl_length = sizeof (*hck_subcap); 3209 3210 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3211 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3212 hck_subcap->hcksum_txflags = 0; 3213 3214 if (*sc_mp != NULL) 3215 linkb(*sc_mp, mp); 3216 else 3217 *sc_mp = mp; 3218 } 3219 3220 static void 3221 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3222 { 3223 mblk_t *nmp = NULL; 3224 dl_capability_req_t *oc; 3225 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3226 ill_zerocopy_capab_t **ill_zerocopy_capab; 3227 uint_t sub_dl_cap = isub->dl_cap; 3228 uint8_t *capend; 3229 3230 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3231 3232 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3233 3234 /* 3235 * Note: range checks here are not absolutely sufficient to 3236 * make us robust against malformed messages sent by drivers; 3237 * this is in keeping with the rest of IP's dlpi handling. 3238 * (Remember, it's coming from something else in the kernel 3239 * address space) 3240 */ 3241 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3242 if (capend > mp->b_wptr) { 3243 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3244 "malformed sub-capability too long for mblk"); 3245 return; 3246 } 3247 3248 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3249 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3250 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3251 "unsupported ZEROCOPY sub-capability (version %d, " 3252 "expected %d)", zc_ic->zerocopy_version, 3253 ZEROCOPY_VERSION_1); 3254 return; 3255 } 3256 3257 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3258 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3259 "capability isn't as expected; pass-thru module(s) " 3260 "detected, discarding capability\n")); 3261 return; 3262 } 3263 3264 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3265 if (*ill_zerocopy_capab == NULL) { 3266 *ill_zerocopy_capab = 3267 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3268 KM_NOSLEEP); 3269 3270 if (*ill_zerocopy_capab == NULL) { 3271 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3272 "could not enable Zero-copy version %d " 3273 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3274 ill->ill_name); 3275 return; 3276 } 3277 } 3278 3279 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3280 "supports Zero-copy version %d\n", ill->ill_name, 3281 ZEROCOPY_VERSION_1)); 3282 3283 (*ill_zerocopy_capab)->ill_zerocopy_version = 3284 zc_ic->zerocopy_version; 3285 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3286 zc_ic->zerocopy_flags; 3287 3288 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3289 } else { 3290 uint_t size; 3291 uchar_t *rptr; 3292 3293 size = sizeof (dl_capability_req_t) + 3294 sizeof (dl_capability_sub_t) + 3295 sizeof (dl_capab_zerocopy_t); 3296 3297 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3298 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3299 "could not enable zerocopy for %s (ENOMEM)\n", 3300 ill->ill_name); 3301 return; 3302 } 3303 3304 rptr = nmp->b_rptr; 3305 /* initialize dl_capability_req_t */ 3306 oc = (dl_capability_req_t *)rptr; 3307 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3308 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3309 sizeof (dl_capab_zerocopy_t); 3310 rptr += sizeof (dl_capability_req_t); 3311 3312 /* initialize dl_capability_sub_t */ 3313 bcopy(isub, rptr, sizeof (*isub)); 3314 rptr += sizeof (*isub); 3315 3316 /* initialize dl_capab_zerocopy_t */ 3317 zc_oc = (dl_capab_zerocopy_t *)rptr; 3318 *zc_oc = *zc_ic; 3319 3320 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3321 "to enable zero-copy version %d\n", ill->ill_name, 3322 ZEROCOPY_VERSION_1)); 3323 3324 /* set VMSAFE_MEM flag */ 3325 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3326 3327 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3328 ill_dlpi_send(ill, nmp); 3329 } 3330 } 3331 3332 static void 3333 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3334 { 3335 mblk_t *mp; 3336 dl_capab_zerocopy_t *zerocopy_subcap; 3337 dl_capability_sub_t *dl_subcap; 3338 int size; 3339 3340 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3341 return; 3342 3343 ASSERT(ill->ill_zerocopy_capab != NULL); 3344 /* 3345 * Clear the capability flag for Zero-copy but retain the 3346 * ill_zerocopy_capab structure since it's possible that another 3347 * thread is still referring to it. The structure only gets 3348 * deallocated when we destroy the ill. 3349 */ 3350 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3351 3352 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3353 3354 mp = allocb(size, BPRI_HI); 3355 if (mp == NULL) { 3356 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3357 "request to disable Zero-copy\n")); 3358 return; 3359 } 3360 3361 mp->b_wptr = mp->b_rptr + size; 3362 3363 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3364 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3365 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3366 3367 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3368 zerocopy_subcap->zerocopy_version = 3369 ill->ill_zerocopy_capab->ill_zerocopy_version; 3370 zerocopy_subcap->zerocopy_flags = 0; 3371 3372 if (*sc_mp != NULL) 3373 linkb(*sc_mp, mp); 3374 else 3375 *sc_mp = mp; 3376 } 3377 3378 /* 3379 * Process Large Segment Offload capability negotiation ack received from a 3380 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3381 * DL_CAPABILITY_ACK message. 3382 */ 3383 static void 3384 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3385 { 3386 mblk_t *nmp = NULL; 3387 dl_capability_req_t *oc; 3388 dl_capab_lso_t *lso_ic, *lso_oc; 3389 ill_lso_capab_t **ill_lso_capab; 3390 uint_t sub_dl_cap = isub->dl_cap; 3391 uint8_t *capend; 3392 3393 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3394 3395 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3396 3397 /* 3398 * Note: range checks here are not absolutely sufficient to 3399 * make us robust against malformed messages sent by drivers; 3400 * this is in keeping with the rest of IP's dlpi handling. 3401 * (Remember, it's coming from something else in the kernel 3402 * address space) 3403 */ 3404 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3405 if (capend > mp->b_wptr) { 3406 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3407 "malformed sub-capability too long for mblk"); 3408 return; 3409 } 3410 3411 lso_ic = (dl_capab_lso_t *)(isub + 1); 3412 3413 if (lso_ic->lso_version != LSO_VERSION_1) { 3414 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3415 "unsupported LSO sub-capability (version %d, expected %d)", 3416 lso_ic->lso_version, LSO_VERSION_1); 3417 return; 3418 } 3419 3420 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3421 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3422 "capability isn't as expected; pass-thru module(s) " 3423 "detected, discarding capability\n")); 3424 return; 3425 } 3426 3427 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3428 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3429 if (*ill_lso_capab == NULL) { 3430 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3431 KM_NOSLEEP); 3432 3433 if (*ill_lso_capab == NULL) { 3434 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3435 "could not enable LSO version %d " 3436 "for %s (ENOMEM)\n", LSO_VERSION_1, 3437 ill->ill_name); 3438 return; 3439 } 3440 } 3441 3442 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3443 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3444 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3445 ill->ill_capabilities |= ILL_CAPAB_LSO; 3446 3447 ip1dbg(("ill_capability_lso_ack: interface %s " 3448 "has enabled LSO\n ", ill->ill_name)); 3449 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3450 uint_t size; 3451 uchar_t *rptr; 3452 3453 size = sizeof (dl_capability_req_t) + 3454 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3455 3456 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3457 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3458 "could not enable LSO for %s (ENOMEM)\n", 3459 ill->ill_name); 3460 return; 3461 } 3462 3463 rptr = nmp->b_rptr; 3464 /* initialize dl_capability_req_t */ 3465 oc = (dl_capability_req_t *)nmp->b_rptr; 3466 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3467 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3468 sizeof (dl_capab_lso_t); 3469 nmp->b_rptr += sizeof (dl_capability_req_t); 3470 3471 /* initialize dl_capability_sub_t */ 3472 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3473 nmp->b_rptr += sizeof (*isub); 3474 3475 /* initialize dl_capab_lso_t */ 3476 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3477 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3478 3479 nmp->b_rptr = rptr; 3480 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3481 3482 /* set ENABLE flag */ 3483 lso_oc->lso_flags |= LSO_TX_ENABLE; 3484 3485 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3486 ill_dlpi_send(ill, nmp); 3487 } else { 3488 ip1dbg(("ill_capability_lso_ack: interface %s has " 3489 "advertised %x LSO capability flags\n", 3490 ill->ill_name, lso_ic->lso_flags)); 3491 } 3492 } 3493 3494 static void 3495 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3496 { 3497 mblk_t *mp; 3498 dl_capab_lso_t *lso_subcap; 3499 dl_capability_sub_t *dl_subcap; 3500 int size; 3501 3502 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3503 return; 3504 3505 ASSERT(ill->ill_lso_capab != NULL); 3506 /* 3507 * Clear the capability flag for LSO but retain the 3508 * ill_lso_capab structure since it's possible that another 3509 * thread is still referring to it. The structure only gets 3510 * deallocated when we destroy the ill. 3511 */ 3512 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3513 3514 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3515 3516 mp = allocb(size, BPRI_HI); 3517 if (mp == NULL) { 3518 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3519 "request to disable LSO\n")); 3520 return; 3521 } 3522 3523 mp->b_wptr = mp->b_rptr + size; 3524 3525 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3526 dl_subcap->dl_cap = DL_CAPAB_LSO; 3527 dl_subcap->dl_length = sizeof (*lso_subcap); 3528 3529 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3530 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3531 lso_subcap->lso_flags = 0; 3532 3533 if (*sc_mp != NULL) 3534 linkb(*sc_mp, mp); 3535 else 3536 *sc_mp = mp; 3537 } 3538 3539 /* 3540 * Consume a new-style hardware capabilities negotiation ack. 3541 * Called from ip_rput_dlpi_writer(). 3542 */ 3543 void 3544 ill_capability_ack(ill_t *ill, mblk_t *mp) 3545 { 3546 dl_capability_ack_t *capp; 3547 dl_capability_sub_t *subp, *endp; 3548 3549 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3550 ill->ill_dlpi_capab_state = IDS_OK; 3551 3552 capp = (dl_capability_ack_t *)mp->b_rptr; 3553 3554 if (capp->dl_sub_length == 0) 3555 /* no new-style capabilities */ 3556 return; 3557 3558 /* make sure the driver supplied correct dl_sub_length */ 3559 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3560 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3561 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3562 return; 3563 } 3564 3565 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3566 /* 3567 * There are sub-capabilities. Process the ones we know about. 3568 * Loop until we don't have room for another sub-cap header.. 3569 */ 3570 for (subp = SC(capp, capp->dl_sub_offset), 3571 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3572 subp <= endp; 3573 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3574 3575 switch (subp->dl_cap) { 3576 case DL_CAPAB_ID_WRAPPER: 3577 ill_capability_id_ack(ill, mp, subp); 3578 break; 3579 default: 3580 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3581 break; 3582 } 3583 } 3584 #undef SC 3585 } 3586 3587 /* 3588 * This routine is called to scan the fragmentation reassembly table for 3589 * the specified ILL for any packets that are starting to smell. 3590 * dead_interval is the maximum time in seconds that will be tolerated. It 3591 * will either be the value specified in ip_g_frag_timeout, or zero if the 3592 * ILL is shutting down and it is time to blow everything off. 3593 * 3594 * It returns the number of seconds (as a time_t) that the next frag timer 3595 * should be scheduled for, 0 meaning that the timer doesn't need to be 3596 * re-started. Note that the method of calculating next_timeout isn't 3597 * entirely accurate since time will flow between the time we grab 3598 * current_time and the time we schedule the next timeout. This isn't a 3599 * big problem since this is the timer for sending an ICMP reassembly time 3600 * exceeded messages, and it doesn't have to be exactly accurate. 3601 * 3602 * This function is 3603 * sometimes called as writer, although this is not required. 3604 */ 3605 time_t 3606 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3607 { 3608 ipfb_t *ipfb; 3609 ipfb_t *endp; 3610 ipf_t *ipf; 3611 ipf_t *ipfnext; 3612 mblk_t *mp; 3613 time_t current_time = gethrestime_sec(); 3614 time_t next_timeout = 0; 3615 uint32_t hdr_length; 3616 mblk_t *send_icmp_head; 3617 mblk_t *send_icmp_head_v6; 3618 zoneid_t zoneid; 3619 ip_stack_t *ipst = ill->ill_ipst; 3620 3621 ipfb = ill->ill_frag_hash_tbl; 3622 if (ipfb == NULL) 3623 return (B_FALSE); 3624 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3625 /* Walk the frag hash table. */ 3626 for (; ipfb < endp; ipfb++) { 3627 send_icmp_head = NULL; 3628 send_icmp_head_v6 = NULL; 3629 mutex_enter(&ipfb->ipfb_lock); 3630 while ((ipf = ipfb->ipfb_ipf) != 0) { 3631 time_t frag_time = current_time - ipf->ipf_timestamp; 3632 time_t frag_timeout; 3633 3634 if (frag_time < dead_interval) { 3635 /* 3636 * There are some outstanding fragments 3637 * that will timeout later. Make note of 3638 * the time so that we can reschedule the 3639 * next timeout appropriately. 3640 */ 3641 frag_timeout = dead_interval - frag_time; 3642 if (next_timeout == 0 || 3643 frag_timeout < next_timeout) { 3644 next_timeout = frag_timeout; 3645 } 3646 break; 3647 } 3648 /* Time's up. Get it out of here. */ 3649 hdr_length = ipf->ipf_nf_hdr_len; 3650 ipfnext = ipf->ipf_hash_next; 3651 if (ipfnext) 3652 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3653 *ipf->ipf_ptphn = ipfnext; 3654 mp = ipf->ipf_mp->b_cont; 3655 for (; mp; mp = mp->b_cont) { 3656 /* Extra points for neatness. */ 3657 IP_REASS_SET_START(mp, 0); 3658 IP_REASS_SET_END(mp, 0); 3659 } 3660 mp = ipf->ipf_mp->b_cont; 3661 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3662 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3663 ipfb->ipfb_count -= ipf->ipf_count; 3664 ASSERT(ipfb->ipfb_frag_pkts > 0); 3665 ipfb->ipfb_frag_pkts--; 3666 /* 3667 * We do not send any icmp message from here because 3668 * we currently are holding the ipfb_lock for this 3669 * hash chain. If we try and send any icmp messages 3670 * from here we may end up via a put back into ip 3671 * trying to get the same lock, causing a recursive 3672 * mutex panic. Instead we build a list and send all 3673 * the icmp messages after we have dropped the lock. 3674 */ 3675 if (ill->ill_isv6) { 3676 if (hdr_length != 0) { 3677 mp->b_next = send_icmp_head_v6; 3678 send_icmp_head_v6 = mp; 3679 } else { 3680 freemsg(mp); 3681 } 3682 } else { 3683 if (hdr_length != 0) { 3684 mp->b_next = send_icmp_head; 3685 send_icmp_head = mp; 3686 } else { 3687 freemsg(mp); 3688 } 3689 } 3690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3691 freeb(ipf->ipf_mp); 3692 } 3693 mutex_exit(&ipfb->ipfb_lock); 3694 /* 3695 * Now need to send any icmp messages that we delayed from 3696 * above. 3697 */ 3698 while (send_icmp_head_v6 != NULL) { 3699 ip6_t *ip6h; 3700 3701 mp = send_icmp_head_v6; 3702 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3703 mp->b_next = NULL; 3704 if (mp->b_datap->db_type == M_CTL) 3705 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3706 else 3707 ip6h = (ip6_t *)mp->b_rptr; 3708 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3709 ill, ipst); 3710 if (zoneid == ALL_ZONES) { 3711 freemsg(mp); 3712 } else { 3713 icmp_time_exceeded_v6(ill->ill_wq, mp, 3714 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3715 B_FALSE, zoneid, ipst); 3716 } 3717 } 3718 while (send_icmp_head != NULL) { 3719 ipaddr_t dst; 3720 3721 mp = send_icmp_head; 3722 send_icmp_head = send_icmp_head->b_next; 3723 mp->b_next = NULL; 3724 3725 if (mp->b_datap->db_type == M_CTL) 3726 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3727 else 3728 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3729 3730 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3731 if (zoneid == ALL_ZONES) { 3732 freemsg(mp); 3733 } else { 3734 icmp_time_exceeded(ill->ill_wq, mp, 3735 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3736 ipst); 3737 } 3738 } 3739 } 3740 /* 3741 * A non-dying ILL will use the return value to decide whether to 3742 * restart the frag timer, and for how long. 3743 */ 3744 return (next_timeout); 3745 } 3746 3747 /* 3748 * This routine is called when the approximate count of mblk memory used 3749 * for the specified ILL has exceeded max_count. 3750 */ 3751 void 3752 ill_frag_prune(ill_t *ill, uint_t max_count) 3753 { 3754 ipfb_t *ipfb; 3755 ipf_t *ipf; 3756 size_t count; 3757 3758 /* 3759 * If we are here within ip_min_frag_prune_time msecs remove 3760 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3761 * ill_frag_free_num_pkts. 3762 */ 3763 mutex_enter(&ill->ill_lock); 3764 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3765 (ip_min_frag_prune_time != 0 ? 3766 ip_min_frag_prune_time : msec_per_tick)) { 3767 3768 ill->ill_frag_free_num_pkts++; 3769 3770 } else { 3771 ill->ill_frag_free_num_pkts = 0; 3772 } 3773 ill->ill_last_frag_clean_time = lbolt; 3774 mutex_exit(&ill->ill_lock); 3775 3776 /* 3777 * free ill_frag_free_num_pkts oldest packets from each bucket. 3778 */ 3779 if (ill->ill_frag_free_num_pkts != 0) { 3780 int ix; 3781 3782 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3783 ipfb = &ill->ill_frag_hash_tbl[ix]; 3784 mutex_enter(&ipfb->ipfb_lock); 3785 if (ipfb->ipfb_ipf != NULL) { 3786 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3787 ill->ill_frag_free_num_pkts); 3788 } 3789 mutex_exit(&ipfb->ipfb_lock); 3790 } 3791 } 3792 /* 3793 * While the reassembly list for this ILL is too big, prune a fragment 3794 * queue by age, oldest first. 3795 */ 3796 while (ill->ill_frag_count > max_count) { 3797 int ix; 3798 ipfb_t *oipfb = NULL; 3799 uint_t oldest = UINT_MAX; 3800 3801 count = 0; 3802 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3803 ipfb = &ill->ill_frag_hash_tbl[ix]; 3804 mutex_enter(&ipfb->ipfb_lock); 3805 ipf = ipfb->ipfb_ipf; 3806 if (ipf != NULL && ipf->ipf_gen < oldest) { 3807 oldest = ipf->ipf_gen; 3808 oipfb = ipfb; 3809 } 3810 count += ipfb->ipfb_count; 3811 mutex_exit(&ipfb->ipfb_lock); 3812 } 3813 if (oipfb == NULL) 3814 break; 3815 3816 if (count <= max_count) 3817 return; /* Somebody beat us to it, nothing to do */ 3818 mutex_enter(&oipfb->ipfb_lock); 3819 ipf = oipfb->ipfb_ipf; 3820 if (ipf != NULL) { 3821 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3822 } 3823 mutex_exit(&oipfb->ipfb_lock); 3824 } 3825 } 3826 3827 /* 3828 * free 'free_cnt' fragmented packets starting at ipf. 3829 */ 3830 void 3831 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3832 { 3833 size_t count; 3834 mblk_t *mp; 3835 mblk_t *tmp; 3836 ipf_t **ipfp = ipf->ipf_ptphn; 3837 3838 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3839 ASSERT(ipfp != NULL); 3840 ASSERT(ipf != NULL); 3841 3842 while (ipf != NULL && free_cnt-- > 0) { 3843 count = ipf->ipf_count; 3844 mp = ipf->ipf_mp; 3845 ipf = ipf->ipf_hash_next; 3846 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3847 IP_REASS_SET_START(tmp, 0); 3848 IP_REASS_SET_END(tmp, 0); 3849 } 3850 atomic_add_32(&ill->ill_frag_count, -count); 3851 ASSERT(ipfb->ipfb_count >= count); 3852 ipfb->ipfb_count -= count; 3853 ASSERT(ipfb->ipfb_frag_pkts > 0); 3854 ipfb->ipfb_frag_pkts--; 3855 freemsg(mp); 3856 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3857 } 3858 3859 if (ipf) 3860 ipf->ipf_ptphn = ipfp; 3861 ipfp[0] = ipf; 3862 } 3863 3864 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3865 "obsolete and may be removed in a future release of Solaris. Use " \ 3866 "ifconfig(1M) to manipulate the forwarding status of an interface." 3867 3868 /* 3869 * For obsolete per-interface forwarding configuration; 3870 * called in response to ND_GET. 3871 */ 3872 /* ARGSUSED */ 3873 static int 3874 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3875 { 3876 ill_t *ill = (ill_t *)cp; 3877 3878 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3879 3880 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3881 return (0); 3882 } 3883 3884 /* 3885 * For obsolete per-interface forwarding configuration; 3886 * called in response to ND_SET. 3887 */ 3888 /* ARGSUSED */ 3889 static int 3890 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3891 cred_t *ioc_cr) 3892 { 3893 long value; 3894 int retval; 3895 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3896 3897 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3898 3899 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3900 value < 0 || value > 1) { 3901 return (EINVAL); 3902 } 3903 3904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3905 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3906 rw_exit(&ipst->ips_ill_g_lock); 3907 return (retval); 3908 } 3909 3910 /* 3911 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3912 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3913 * up RTS_IFINFO routing socket messages for each interface whose flags we 3914 * change. 3915 */ 3916 int 3917 ill_forward_set(ill_t *ill, boolean_t enable) 3918 { 3919 ill_group_t *illgrp; 3920 ip_stack_t *ipst = ill->ill_ipst; 3921 3922 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3923 3924 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3925 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3926 return (0); 3927 3928 if (IS_LOOPBACK(ill)) 3929 return (EINVAL); 3930 3931 /* 3932 * If the ill is in an IPMP group, set the forwarding policy on all 3933 * members of the group to the same value. 3934 */ 3935 illgrp = ill->ill_group; 3936 if (illgrp != NULL) { 3937 ill_t *tmp_ill; 3938 3939 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3940 tmp_ill = tmp_ill->ill_group_next) { 3941 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3942 (enable ? "Enabling" : "Disabling"), 3943 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3944 tmp_ill->ill_name)); 3945 mutex_enter(&tmp_ill->ill_lock); 3946 if (enable) 3947 tmp_ill->ill_flags |= ILLF_ROUTER; 3948 else 3949 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3950 mutex_exit(&tmp_ill->ill_lock); 3951 if (tmp_ill->ill_isv6) 3952 ill_set_nce_router_flags(tmp_ill, enable); 3953 /* Notify routing socket listeners of this change. */ 3954 ip_rts_ifmsg(tmp_ill->ill_ipif); 3955 } 3956 } else { 3957 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3958 (enable ? "Enabling" : "Disabling"), 3959 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3960 mutex_enter(&ill->ill_lock); 3961 if (enable) 3962 ill->ill_flags |= ILLF_ROUTER; 3963 else 3964 ill->ill_flags &= ~ILLF_ROUTER; 3965 mutex_exit(&ill->ill_lock); 3966 if (ill->ill_isv6) 3967 ill_set_nce_router_flags(ill, enable); 3968 /* Notify routing socket listeners of this change. */ 3969 ip_rts_ifmsg(ill->ill_ipif); 3970 } 3971 3972 return (0); 3973 } 3974 3975 /* 3976 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3977 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3978 * set or clear. 3979 */ 3980 static void 3981 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3982 { 3983 ipif_t *ipif; 3984 nce_t *nce; 3985 3986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3987 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3988 if (nce != NULL) { 3989 mutex_enter(&nce->nce_lock); 3990 if (enable) 3991 nce->nce_flags |= NCE_F_ISROUTER; 3992 else 3993 nce->nce_flags &= ~NCE_F_ISROUTER; 3994 mutex_exit(&nce->nce_lock); 3995 NCE_REFRELE(nce); 3996 } 3997 } 3998 } 3999 4000 /* 4001 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4002 * for this ill. Make sure the v6/v4 question has been answered about this 4003 * ill. The creation of this ndd variable is only for backwards compatibility. 4004 * The preferred way to control per-interface IP forwarding is through the 4005 * ILLF_ROUTER interface flag. 4006 */ 4007 static int 4008 ill_set_ndd_name(ill_t *ill) 4009 { 4010 char *suffix; 4011 ip_stack_t *ipst = ill->ill_ipst; 4012 4013 ASSERT(IAM_WRITER_ILL(ill)); 4014 4015 if (ill->ill_isv6) 4016 suffix = ipv6_forward_suffix; 4017 else 4018 suffix = ipv4_forward_suffix; 4019 4020 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4021 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4022 /* 4023 * Copies over the '\0'. 4024 * Note that strlen(suffix) is always bounded. 4025 */ 4026 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4027 strlen(suffix) + 1); 4028 4029 /* 4030 * Use of the nd table requires holding the reader lock. 4031 * Modifying the nd table thru nd_load/nd_unload requires 4032 * the writer lock. 4033 */ 4034 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4035 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4036 nd_ill_forward_set, (caddr_t)ill)) { 4037 /* 4038 * If the nd_load failed, it only meant that it could not 4039 * allocate a new bunch of room for further NDD expansion. 4040 * Because of that, the ill_ndd_name will be set to 0, and 4041 * this interface is at the mercy of the global ip_forwarding 4042 * variable. 4043 */ 4044 rw_exit(&ipst->ips_ip_g_nd_lock); 4045 ill->ill_ndd_name = NULL; 4046 return (ENOMEM); 4047 } 4048 rw_exit(&ipst->ips_ip_g_nd_lock); 4049 return (0); 4050 } 4051 4052 /* 4053 * Intializes the context structure and returns the first ill in the list 4054 * cuurently start_list and end_list can have values: 4055 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4056 * IP_V4_G_HEAD Traverse IPV4 list only. 4057 * IP_V6_G_HEAD Traverse IPV6 list only. 4058 */ 4059 4060 /* 4061 * We don't check for CONDEMNED ills here. Caller must do that if 4062 * necessary under the ill lock. 4063 */ 4064 ill_t * 4065 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4066 ip_stack_t *ipst) 4067 { 4068 ill_if_t *ifp; 4069 ill_t *ill; 4070 avl_tree_t *avl_tree; 4071 4072 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4073 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4074 4075 /* 4076 * setup the lists to search 4077 */ 4078 if (end_list != MAX_G_HEADS) { 4079 ctx->ctx_current_list = start_list; 4080 ctx->ctx_last_list = end_list; 4081 } else { 4082 ctx->ctx_last_list = MAX_G_HEADS - 1; 4083 ctx->ctx_current_list = 0; 4084 } 4085 4086 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4087 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4088 if (ifp != (ill_if_t *) 4089 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4090 avl_tree = &ifp->illif_avl_by_ppa; 4091 ill = avl_first(avl_tree); 4092 /* 4093 * ill is guaranteed to be non NULL or ifp should have 4094 * not existed. 4095 */ 4096 ASSERT(ill != NULL); 4097 return (ill); 4098 } 4099 ctx->ctx_current_list++; 4100 } 4101 4102 return (NULL); 4103 } 4104 4105 /* 4106 * returns the next ill in the list. ill_first() must have been called 4107 * before calling ill_next() or bad things will happen. 4108 */ 4109 4110 /* 4111 * We don't check for CONDEMNED ills here. Caller must do that if 4112 * necessary under the ill lock. 4113 */ 4114 ill_t * 4115 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4116 { 4117 ill_if_t *ifp; 4118 ill_t *ill; 4119 ip_stack_t *ipst = lastill->ill_ipst; 4120 4121 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4122 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4123 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4124 AVL_AFTER)) != NULL) { 4125 return (ill); 4126 } 4127 4128 /* goto next ill_ifp in the list. */ 4129 ifp = lastill->ill_ifptr->illif_next; 4130 4131 /* make sure not at end of circular list */ 4132 while (ifp == 4133 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4134 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4135 return (NULL); 4136 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4137 } 4138 4139 return (avl_first(&ifp->illif_avl_by_ppa)); 4140 } 4141 4142 /* 4143 * Check interface name for correct format which is name+ppa. 4144 * name can contain characters and digits, the right most digits 4145 * make up the ppa number. use of octal is not allowed, name must contain 4146 * a ppa, return pointer to the start of ppa. 4147 * In case of error return NULL. 4148 */ 4149 static char * 4150 ill_get_ppa_ptr(char *name) 4151 { 4152 int namelen = mi_strlen(name); 4153 4154 int len = namelen; 4155 4156 name += len; 4157 while (len > 0) { 4158 name--; 4159 if (*name < '0' || *name > '9') 4160 break; 4161 len--; 4162 } 4163 4164 /* empty string, all digits, or no trailing digits */ 4165 if (len == 0 || len == (int)namelen) 4166 return (NULL); 4167 4168 name++; 4169 /* check for attempted use of octal */ 4170 if (*name == '0' && len != (int)namelen - 1) 4171 return (NULL); 4172 return (name); 4173 } 4174 4175 /* 4176 * use avl tree to locate the ill. 4177 */ 4178 static ill_t * 4179 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4180 ipsq_func_t func, int *error, ip_stack_t *ipst) 4181 { 4182 char *ppa_ptr = NULL; 4183 int len; 4184 uint_t ppa; 4185 ill_t *ill = NULL; 4186 ill_if_t *ifp; 4187 int list; 4188 ipsq_t *ipsq; 4189 4190 if (error != NULL) 4191 *error = 0; 4192 4193 /* 4194 * get ppa ptr 4195 */ 4196 if (isv6) 4197 list = IP_V6_G_HEAD; 4198 else 4199 list = IP_V4_G_HEAD; 4200 4201 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4202 if (error != NULL) 4203 *error = ENXIO; 4204 return (NULL); 4205 } 4206 4207 len = ppa_ptr - name + 1; 4208 4209 ppa = stoi(&ppa_ptr); 4210 4211 ifp = IP_VX_ILL_G_LIST(list, ipst); 4212 4213 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4214 /* 4215 * match is done on len - 1 as the name is not null 4216 * terminated it contains ppa in addition to the interface 4217 * name. 4218 */ 4219 if ((ifp->illif_name_len == len) && 4220 bcmp(ifp->illif_name, name, len - 1) == 0) { 4221 break; 4222 } else { 4223 ifp = ifp->illif_next; 4224 } 4225 } 4226 4227 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4228 /* 4229 * Even the interface type does not exist. 4230 */ 4231 if (error != NULL) 4232 *error = ENXIO; 4233 return (NULL); 4234 } 4235 4236 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4237 if (ill != NULL) { 4238 /* 4239 * The block comment at the start of ipif_down 4240 * explains the use of the macros used below 4241 */ 4242 GRAB_CONN_LOCK(q); 4243 mutex_enter(&ill->ill_lock); 4244 if (ILL_CAN_LOOKUP(ill)) { 4245 ill_refhold_locked(ill); 4246 mutex_exit(&ill->ill_lock); 4247 RELEASE_CONN_LOCK(q); 4248 return (ill); 4249 } else if (ILL_CAN_WAIT(ill, q)) { 4250 ipsq = ill->ill_phyint->phyint_ipsq; 4251 mutex_enter(&ipsq->ipsq_lock); 4252 mutex_exit(&ill->ill_lock); 4253 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4254 mutex_exit(&ipsq->ipsq_lock); 4255 RELEASE_CONN_LOCK(q); 4256 if (error != NULL) 4257 *error = EINPROGRESS; 4258 return (NULL); 4259 } 4260 mutex_exit(&ill->ill_lock); 4261 RELEASE_CONN_LOCK(q); 4262 } 4263 if (error != NULL) 4264 *error = ENXIO; 4265 return (NULL); 4266 } 4267 4268 /* 4269 * comparison function for use with avl. 4270 */ 4271 static int 4272 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4273 { 4274 uint_t ppa; 4275 uint_t ill_ppa; 4276 4277 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4278 4279 ppa = *((uint_t *)ppa_ptr); 4280 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4281 /* 4282 * We want the ill with the lowest ppa to be on the 4283 * top. 4284 */ 4285 if (ill_ppa < ppa) 4286 return (1); 4287 if (ill_ppa > ppa) 4288 return (-1); 4289 return (0); 4290 } 4291 4292 /* 4293 * remove an interface type from the global list. 4294 */ 4295 static void 4296 ill_delete_interface_type(ill_if_t *interface) 4297 { 4298 ASSERT(interface != NULL); 4299 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4300 4301 avl_destroy(&interface->illif_avl_by_ppa); 4302 if (interface->illif_ppa_arena != NULL) 4303 vmem_destroy(interface->illif_ppa_arena); 4304 4305 remque(interface); 4306 4307 mi_free(interface); 4308 } 4309 4310 /* 4311 * remove ill from the global list. 4312 */ 4313 static void 4314 ill_glist_delete(ill_t *ill) 4315 { 4316 ip_stack_t *ipst; 4317 4318 if (ill == NULL) 4319 return; 4320 ipst = ill->ill_ipst; 4321 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4322 4323 /* 4324 * If the ill was never inserted into the AVL tree 4325 * we skip the if branch. 4326 */ 4327 if (ill->ill_ifptr != NULL) { 4328 /* 4329 * remove from AVL tree and free ppa number 4330 */ 4331 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4332 4333 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4334 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4335 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4336 } 4337 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4338 ill_delete_interface_type(ill->ill_ifptr); 4339 } 4340 4341 /* 4342 * Indicate ill is no longer in the list. 4343 */ 4344 ill->ill_ifptr = NULL; 4345 ill->ill_name_length = 0; 4346 ill->ill_name[0] = '\0'; 4347 ill->ill_ppa = UINT_MAX; 4348 } 4349 4350 /* Generate one last event for this ill. */ 4351 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4352 ill->ill_name_length); 4353 4354 ill_phyint_free(ill); 4355 rw_exit(&ipst->ips_ill_g_lock); 4356 } 4357 4358 /* 4359 * allocate a ppa, if the number of plumbed interfaces of this type are 4360 * less than ill_no_arena do a linear search to find a unused ppa. 4361 * When the number goes beyond ill_no_arena switch to using an arena. 4362 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4363 * is the return value for an error condition, so allocation starts at one 4364 * and is decremented by one. 4365 */ 4366 static int 4367 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4368 { 4369 ill_t *tmp_ill; 4370 uint_t start, end; 4371 int ppa; 4372 4373 if (ifp->illif_ppa_arena == NULL && 4374 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4375 /* 4376 * Create an arena. 4377 */ 4378 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4379 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4380 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4381 /* allocate what has already been assigned */ 4382 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4383 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4384 tmp_ill, AVL_AFTER)) { 4385 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4386 1, /* size */ 4387 1, /* align/quantum */ 4388 0, /* phase */ 4389 0, /* nocross */ 4390 /* minaddr */ 4391 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4392 /* maxaddr */ 4393 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4394 VM_NOSLEEP|VM_FIRSTFIT); 4395 if (ppa == 0) { 4396 ip1dbg(("ill_alloc_ppa: ppa allocation" 4397 " failed while switching")); 4398 vmem_destroy(ifp->illif_ppa_arena); 4399 ifp->illif_ppa_arena = NULL; 4400 break; 4401 } 4402 } 4403 } 4404 4405 if (ifp->illif_ppa_arena != NULL) { 4406 if (ill->ill_ppa == UINT_MAX) { 4407 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4408 1, VM_NOSLEEP|VM_FIRSTFIT); 4409 if (ppa == 0) 4410 return (EAGAIN); 4411 ill->ill_ppa = --ppa; 4412 } else { 4413 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4414 1, /* size */ 4415 1, /* align/quantum */ 4416 0, /* phase */ 4417 0, /* nocross */ 4418 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4419 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4420 VM_NOSLEEP|VM_FIRSTFIT); 4421 /* 4422 * Most likely the allocation failed because 4423 * the requested ppa was in use. 4424 */ 4425 if (ppa == 0) 4426 return (EEXIST); 4427 } 4428 return (0); 4429 } 4430 4431 /* 4432 * No arena is in use and not enough (>ill_no_arena) interfaces have 4433 * been plumbed to create one. Do a linear search to get a unused ppa. 4434 */ 4435 if (ill->ill_ppa == UINT_MAX) { 4436 end = UINT_MAX - 1; 4437 start = 0; 4438 } else { 4439 end = start = ill->ill_ppa; 4440 } 4441 4442 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4443 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4444 if (start++ >= end) { 4445 if (ill->ill_ppa == UINT_MAX) 4446 return (EAGAIN); 4447 else 4448 return (EEXIST); 4449 } 4450 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4451 } 4452 ill->ill_ppa = start; 4453 return (0); 4454 } 4455 4456 /* 4457 * Insert ill into the list of configured ill's. Once this function completes, 4458 * the ill is globally visible and is available through lookups. More precisely 4459 * this happens after the caller drops the ill_g_lock. 4460 */ 4461 static int 4462 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4463 { 4464 ill_if_t *ill_interface; 4465 avl_index_t where = 0; 4466 int error; 4467 int name_length; 4468 int index; 4469 boolean_t check_length = B_FALSE; 4470 ip_stack_t *ipst = ill->ill_ipst; 4471 4472 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4473 4474 name_length = mi_strlen(name) + 1; 4475 4476 if (isv6) 4477 index = IP_V6_G_HEAD; 4478 else 4479 index = IP_V4_G_HEAD; 4480 4481 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4482 /* 4483 * Search for interface type based on name 4484 */ 4485 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4486 if ((ill_interface->illif_name_len == name_length) && 4487 (strcmp(ill_interface->illif_name, name) == 0)) { 4488 break; 4489 } 4490 ill_interface = ill_interface->illif_next; 4491 } 4492 4493 /* 4494 * Interface type not found, create one. 4495 */ 4496 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4497 4498 ill_g_head_t ghead; 4499 4500 /* 4501 * allocate ill_if_t structure 4502 */ 4503 4504 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4505 if (ill_interface == NULL) { 4506 return (ENOMEM); 4507 } 4508 4509 4510 4511 (void) strcpy(ill_interface->illif_name, name); 4512 ill_interface->illif_name_len = name_length; 4513 4514 avl_create(&ill_interface->illif_avl_by_ppa, 4515 ill_compare_ppa, sizeof (ill_t), 4516 offsetof(struct ill_s, ill_avl_byppa)); 4517 4518 /* 4519 * link the structure in the back to maintain order 4520 * of configuration for ifconfig output. 4521 */ 4522 ghead = ipst->ips_ill_g_heads[index]; 4523 insque(ill_interface, ghead.ill_g_list_tail); 4524 4525 } 4526 4527 if (ill->ill_ppa == UINT_MAX) 4528 check_length = B_TRUE; 4529 4530 error = ill_alloc_ppa(ill_interface, ill); 4531 if (error != 0) { 4532 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4533 ill_delete_interface_type(ill->ill_ifptr); 4534 return (error); 4535 } 4536 4537 /* 4538 * When the ppa is choosen by the system, check that there is 4539 * enough space to insert ppa. if a specific ppa was passed in this 4540 * check is not required as the interface name passed in will have 4541 * the right ppa in it. 4542 */ 4543 if (check_length) { 4544 /* 4545 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4546 */ 4547 char buf[sizeof (uint_t) * 3]; 4548 4549 /* 4550 * convert ppa to string to calculate the amount of space 4551 * required for it in the name. 4552 */ 4553 numtos(ill->ill_ppa, buf); 4554 4555 /* Do we have enough space to insert ppa ? */ 4556 4557 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4558 /* Free ppa and interface type struct */ 4559 if (ill_interface->illif_ppa_arena != NULL) { 4560 vmem_free(ill_interface->illif_ppa_arena, 4561 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4562 } 4563 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4564 ill_delete_interface_type(ill->ill_ifptr); 4565 4566 return (EINVAL); 4567 } 4568 } 4569 4570 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4571 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4572 4573 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4574 &where); 4575 ill->ill_ifptr = ill_interface; 4576 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4577 4578 ill_phyint_reinit(ill); 4579 return (0); 4580 } 4581 4582 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4583 static boolean_t 4584 ipsq_init(ill_t *ill) 4585 { 4586 ipsq_t *ipsq; 4587 4588 /* Init the ipsq and impicitly enter as writer */ 4589 ill->ill_phyint->phyint_ipsq = 4590 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4591 if (ill->ill_phyint->phyint_ipsq == NULL) 4592 return (B_FALSE); 4593 ipsq = ill->ill_phyint->phyint_ipsq; 4594 ipsq->ipsq_phyint_list = ill->ill_phyint; 4595 ill->ill_phyint->phyint_ipsq_next = NULL; 4596 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4597 ipsq->ipsq_refs = 1; 4598 ipsq->ipsq_writer = curthread; 4599 ipsq->ipsq_reentry_cnt = 1; 4600 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4601 #ifdef DEBUG 4602 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4603 IPSQ_STACK_DEPTH); 4604 #endif 4605 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4606 return (B_TRUE); 4607 } 4608 4609 /* 4610 * ill_init is called by ip_open when a device control stream is opened. 4611 * It does a few initializations, and shoots a DL_INFO_REQ message down 4612 * to the driver. The response is later picked up in ip_rput_dlpi and 4613 * used to set up default mechanisms for talking to the driver. (Always 4614 * called as writer.) 4615 * 4616 * If this function returns error, ip_open will call ip_close which in 4617 * turn will call ill_delete to clean up any memory allocated here that 4618 * is not yet freed. 4619 */ 4620 int 4621 ill_init(queue_t *q, ill_t *ill) 4622 { 4623 int count; 4624 dl_info_req_t *dlir; 4625 mblk_t *info_mp; 4626 uchar_t *frag_ptr; 4627 4628 /* 4629 * The ill is initialized to zero by mi_alloc*(). In addition 4630 * some fields already contain valid values, initialized in 4631 * ip_open(), before we reach here. 4632 */ 4633 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4634 4635 ill->ill_rq = q; 4636 ill->ill_wq = WR(q); 4637 4638 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4639 BPRI_HI); 4640 if (info_mp == NULL) 4641 return (ENOMEM); 4642 4643 /* 4644 * Allocate sufficient space to contain our fragment hash table and 4645 * the device name. 4646 */ 4647 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4648 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4649 if (frag_ptr == NULL) { 4650 freemsg(info_mp); 4651 return (ENOMEM); 4652 } 4653 ill->ill_frag_ptr = frag_ptr; 4654 ill->ill_frag_free_num_pkts = 0; 4655 ill->ill_last_frag_clean_time = 0; 4656 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4657 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4658 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4659 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4660 NULL, MUTEX_DEFAULT, NULL); 4661 } 4662 4663 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4664 if (ill->ill_phyint == NULL) { 4665 freemsg(info_mp); 4666 mi_free(frag_ptr); 4667 return (ENOMEM); 4668 } 4669 4670 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4671 /* 4672 * For now pretend this is a v4 ill. We need to set phyint_ill* 4673 * at this point because of the following reason. If we can't 4674 * enter the ipsq at some point and cv_wait, the writer that 4675 * wakes us up tries to locate us using the list of all phyints 4676 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4677 * If we don't set it now, we risk a missed wakeup. 4678 */ 4679 ill->ill_phyint->phyint_illv4 = ill; 4680 ill->ill_ppa = UINT_MAX; 4681 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4682 4683 if (!ipsq_init(ill)) { 4684 freemsg(info_mp); 4685 mi_free(frag_ptr); 4686 mi_free(ill->ill_phyint); 4687 return (ENOMEM); 4688 } 4689 4690 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4691 4692 /* Frag queue limit stuff */ 4693 ill->ill_frag_count = 0; 4694 ill->ill_ipf_gen = 0; 4695 4696 ill->ill_global_timer = INFINITY; 4697 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4698 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4699 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4700 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4701 4702 /* 4703 * Initialize IPv6 configuration variables. The IP module is always 4704 * opened as an IPv4 module. Instead tracking down the cases where 4705 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4706 * here for convenience, this has no effect until the ill is set to do 4707 * IPv6. 4708 */ 4709 ill->ill_reachable_time = ND_REACHABLE_TIME; 4710 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4711 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4712 ill->ill_max_buf = ND_MAX_Q; 4713 ill->ill_refcnt = 0; 4714 4715 /* Send down the Info Request to the driver. */ 4716 info_mp->b_datap->db_type = M_PCPROTO; 4717 dlir = (dl_info_req_t *)info_mp->b_rptr; 4718 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4719 dlir->dl_primitive = DL_INFO_REQ; 4720 4721 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4722 4723 qprocson(q); 4724 ill_dlpi_send(ill, info_mp); 4725 4726 return (0); 4727 } 4728 4729 /* 4730 * ill_dls_info 4731 * creates datalink socket info from the device. 4732 */ 4733 int 4734 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4735 { 4736 size_t len; 4737 ill_t *ill = ipif->ipif_ill; 4738 4739 sdl->sdl_family = AF_LINK; 4740 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4741 sdl->sdl_type = ill->ill_type; 4742 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4743 len = strlen(sdl->sdl_data); 4744 ASSERT(len < 256); 4745 sdl->sdl_nlen = (uchar_t)len; 4746 sdl->sdl_alen = ill->ill_phys_addr_length; 4747 sdl->sdl_slen = 0; 4748 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4749 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4750 4751 return (sizeof (struct sockaddr_dl)); 4752 } 4753 4754 /* 4755 * ill_xarp_info 4756 * creates xarp info from the device. 4757 */ 4758 static int 4759 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4760 { 4761 sdl->sdl_family = AF_LINK; 4762 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4763 sdl->sdl_type = ill->ill_type; 4764 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4765 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4766 sdl->sdl_alen = ill->ill_phys_addr_length; 4767 sdl->sdl_slen = 0; 4768 return (sdl->sdl_nlen); 4769 } 4770 4771 static int 4772 loopback_kstat_update(kstat_t *ksp, int rw) 4773 { 4774 kstat_named_t *kn; 4775 netstackid_t stackid; 4776 netstack_t *ns; 4777 ip_stack_t *ipst; 4778 4779 if (ksp == NULL || ksp->ks_data == NULL) 4780 return (EIO); 4781 4782 if (rw == KSTAT_WRITE) 4783 return (EACCES); 4784 4785 kn = KSTAT_NAMED_PTR(ksp); 4786 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4787 4788 ns = netstack_find_by_stackid(stackid); 4789 if (ns == NULL) 4790 return (-1); 4791 4792 ipst = ns->netstack_ip; 4793 if (ipst == NULL) { 4794 netstack_rele(ns); 4795 return (-1); 4796 } 4797 kn[0].value.ui32 = ipst->ips_loopback_packets; 4798 kn[1].value.ui32 = ipst->ips_loopback_packets; 4799 netstack_rele(ns); 4800 return (0); 4801 } 4802 4803 /* 4804 * Has ifindex been plumbed already. 4805 * Compares both phyint_ifindex and phyint_group_ifindex. 4806 */ 4807 static boolean_t 4808 phyint_exists(uint_t index, ip_stack_t *ipst) 4809 { 4810 phyint_t *phyi; 4811 4812 ASSERT(index != 0); 4813 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4814 /* 4815 * Indexes are stored in the phyint - a common structure 4816 * to both IPv4 and IPv6. 4817 */ 4818 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4819 for (; phyi != NULL; 4820 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4821 phyi, AVL_AFTER)) { 4822 if (phyi->phyint_ifindex == index || 4823 phyi->phyint_group_ifindex == index) 4824 return (B_TRUE); 4825 } 4826 return (B_FALSE); 4827 } 4828 4829 /* Pick a unique ifindex */ 4830 boolean_t 4831 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4832 { 4833 uint_t starting_index; 4834 4835 if (!ipst->ips_ill_index_wrap) { 4836 *indexp = ipst->ips_ill_index++; 4837 if (ipst->ips_ill_index == 0) { 4838 /* Reached the uint_t limit Next time wrap */ 4839 ipst->ips_ill_index_wrap = B_TRUE; 4840 } 4841 return (B_TRUE); 4842 } 4843 4844 /* 4845 * Start reusing unused indexes. Note that we hold the ill_g_lock 4846 * at this point and don't want to call any function that attempts 4847 * to get the lock again. 4848 */ 4849 starting_index = ipst->ips_ill_index++; 4850 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4851 if (ipst->ips_ill_index != 0 && 4852 !phyint_exists(ipst->ips_ill_index, ipst)) { 4853 /* found unused index - use it */ 4854 *indexp = ipst->ips_ill_index; 4855 return (B_TRUE); 4856 } 4857 } 4858 4859 /* 4860 * all interface indicies are inuse. 4861 */ 4862 return (B_FALSE); 4863 } 4864 4865 /* 4866 * Assign a unique interface index for the phyint. 4867 */ 4868 static boolean_t 4869 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4870 { 4871 ASSERT(phyi->phyint_ifindex == 0); 4872 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4873 } 4874 4875 /* 4876 * Return a pointer to the ill which matches the supplied name. Note that 4877 * the ill name length includes the null termination character. (May be 4878 * called as writer.) 4879 * If do_alloc and the interface is "lo0" it will be automatically created. 4880 * Cannot bump up reference on condemned ills. So dup detect can't be done 4881 * using this func. 4882 */ 4883 ill_t * 4884 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4885 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4886 ip_stack_t *ipst) 4887 { 4888 ill_t *ill; 4889 ipif_t *ipif; 4890 kstat_named_t *kn; 4891 boolean_t isloopback; 4892 ipsq_t *old_ipsq; 4893 in6_addr_t ov6addr; 4894 4895 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4896 4897 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4898 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4899 rw_exit(&ipst->ips_ill_g_lock); 4900 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4901 return (ill); 4902 4903 /* 4904 * Couldn't find it. Does this happen to be a lookup for the 4905 * loopback device and are we allowed to allocate it? 4906 */ 4907 if (!isloopback || !do_alloc) 4908 return (NULL); 4909 4910 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4911 4912 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4913 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4914 rw_exit(&ipst->ips_ill_g_lock); 4915 return (ill); 4916 } 4917 4918 /* Create the loopback device on demand */ 4919 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4920 sizeof (ipif_loopback_name), BPRI_MED)); 4921 if (ill == NULL) 4922 goto done; 4923 4924 *ill = ill_null; 4925 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4926 ill->ill_ipst = ipst; 4927 netstack_hold(ipst->ips_netstack); 4928 /* 4929 * For exclusive stacks we set the zoneid to zero 4930 * to make IP operate as if in the global zone. 4931 */ 4932 ill->ill_zoneid = GLOBAL_ZONEID; 4933 4934 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4935 if (ill->ill_phyint == NULL) 4936 goto done; 4937 4938 if (isv6) 4939 ill->ill_phyint->phyint_illv6 = ill; 4940 else 4941 ill->ill_phyint->phyint_illv4 = ill; 4942 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4943 ill->ill_max_frag = IP_LOOPBACK_MTU; 4944 /* Add room for tcp+ip headers */ 4945 if (isv6) { 4946 ill->ill_isv6 = B_TRUE; 4947 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4948 } else { 4949 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4950 } 4951 if (!ill_allocate_mibs(ill)) 4952 goto done; 4953 ill->ill_max_mtu = ill->ill_max_frag; 4954 /* 4955 * ipif_loopback_name can't be pointed at directly because its used 4956 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4957 * from the glist, ill_glist_delete() sets the first character of 4958 * ill_name to '\0'. 4959 */ 4960 ill->ill_name = (char *)ill + sizeof (*ill); 4961 (void) strcpy(ill->ill_name, ipif_loopback_name); 4962 ill->ill_name_length = sizeof (ipif_loopback_name); 4963 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4964 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4965 4966 ill->ill_global_timer = INFINITY; 4967 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4968 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4969 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4970 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4971 4972 /* No resolver here. */ 4973 ill->ill_net_type = IRE_LOOPBACK; 4974 4975 /* Initialize the ipsq */ 4976 if (!ipsq_init(ill)) 4977 goto done; 4978 4979 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4980 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4981 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4982 #ifdef DEBUG 4983 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4984 #endif 4985 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4986 if (ipif == NULL) 4987 goto done; 4988 4989 ill->ill_flags = ILLF_MULTICAST; 4990 4991 ov6addr = ipif->ipif_v6lcl_addr; 4992 /* Set up default loopback address and mask. */ 4993 if (!isv6) { 4994 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4995 4996 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4997 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4998 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4999 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5000 ipif->ipif_v6subnet); 5001 ill->ill_flags |= ILLF_IPV4; 5002 } else { 5003 ipif->ipif_v6lcl_addr = ipv6_loopback; 5004 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5005 ipif->ipif_v6net_mask = ipv6_all_ones; 5006 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5007 ipif->ipif_v6subnet); 5008 ill->ill_flags |= ILLF_IPV6; 5009 } 5010 5011 /* 5012 * Chain us in at the end of the ill list. hold the ill 5013 * before we make it globally visible. 1 for the lookup. 5014 */ 5015 ill->ill_refcnt = 0; 5016 ill_refhold(ill); 5017 5018 ill->ill_frag_count = 0; 5019 ill->ill_frag_free_num_pkts = 0; 5020 ill->ill_last_frag_clean_time = 0; 5021 5022 old_ipsq = ill->ill_phyint->phyint_ipsq; 5023 5024 if (ill_glist_insert(ill, "lo", isv6) != 0) 5025 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5026 5027 /* Let SCTP know so that it can add this to its list */ 5028 sctp_update_ill(ill, SCTP_ILL_INSERT); 5029 5030 /* 5031 * We have already assigned ipif_v6lcl_addr above, but we need to 5032 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5033 * requires to be after ill_glist_insert() since we need the 5034 * ill_index set. Pass on ipv6_loopback as the old address. 5035 */ 5036 sctp_update_ipif_addr(ipif, ov6addr); 5037 5038 /* 5039 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5040 */ 5041 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5042 /* Loopback ills aren't in any IPMP group */ 5043 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5044 ipsq_delete(old_ipsq); 5045 } 5046 5047 /* 5048 * Delay this till the ipif is allocated as ipif_allocate 5049 * de-references ill_phyint for getting the ifindex. We 5050 * can't do this before ipif_allocate because ill_phyint_reinit 5051 * -> phyint_assign_ifindex expects ipif to be present. 5052 */ 5053 mutex_enter(&ill->ill_phyint->phyint_lock); 5054 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5055 mutex_exit(&ill->ill_phyint->phyint_lock); 5056 5057 if (ipst->ips_loopback_ksp == NULL) { 5058 /* Export loopback interface statistics */ 5059 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5060 ipif_loopback_name, "net", 5061 KSTAT_TYPE_NAMED, 2, 0, 5062 ipst->ips_netstack->netstack_stackid); 5063 if (ipst->ips_loopback_ksp != NULL) { 5064 ipst->ips_loopback_ksp->ks_update = 5065 loopback_kstat_update; 5066 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5067 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5068 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5069 ipst->ips_loopback_ksp->ks_private = 5070 (void *)(uintptr_t)ipst->ips_netstack-> 5071 netstack_stackid; 5072 kstat_install(ipst->ips_loopback_ksp); 5073 } 5074 } 5075 5076 if (error != NULL) 5077 *error = 0; 5078 *did_alloc = B_TRUE; 5079 rw_exit(&ipst->ips_ill_g_lock); 5080 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 5081 NE_PLUMB, ill->ill_name, ill->ill_name_length); 5082 return (ill); 5083 done: 5084 if (ill != NULL) { 5085 if (ill->ill_phyint != NULL) { 5086 ipsq_t *ipsq; 5087 5088 ipsq = ill->ill_phyint->phyint_ipsq; 5089 if (ipsq != NULL) { 5090 ipsq->ipsq_ipst = NULL; 5091 kmem_free(ipsq, sizeof (ipsq_t)); 5092 } 5093 mi_free(ill->ill_phyint); 5094 } 5095 ill_free_mib(ill); 5096 if (ill->ill_ipst != NULL) 5097 netstack_rele(ill->ill_ipst->ips_netstack); 5098 mi_free(ill); 5099 } 5100 rw_exit(&ipst->ips_ill_g_lock); 5101 if (error != NULL) 5102 *error = ENOMEM; 5103 return (NULL); 5104 } 5105 5106 /* 5107 * For IPP calls - use the ip_stack_t for global stack. 5108 */ 5109 ill_t * 5110 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5111 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5112 { 5113 ip_stack_t *ipst; 5114 ill_t *ill; 5115 5116 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5117 if (ipst == NULL) { 5118 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5119 return (NULL); 5120 } 5121 5122 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5123 netstack_rele(ipst->ips_netstack); 5124 return (ill); 5125 } 5126 5127 /* 5128 * Return a pointer to the ill which matches the index and IP version type. 5129 */ 5130 ill_t * 5131 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5132 ipsq_func_t func, int *err, ip_stack_t *ipst) 5133 { 5134 ill_t *ill; 5135 ipsq_t *ipsq; 5136 phyint_t *phyi; 5137 5138 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5139 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5140 5141 if (err != NULL) 5142 *err = 0; 5143 5144 /* 5145 * Indexes are stored in the phyint - a common structure 5146 * to both IPv4 and IPv6. 5147 */ 5148 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5149 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5150 (void *) &index, NULL); 5151 if (phyi != NULL) { 5152 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5153 if (ill != NULL) { 5154 /* 5155 * The block comment at the start of ipif_down 5156 * explains the use of the macros used below 5157 */ 5158 GRAB_CONN_LOCK(q); 5159 mutex_enter(&ill->ill_lock); 5160 if (ILL_CAN_LOOKUP(ill)) { 5161 ill_refhold_locked(ill); 5162 mutex_exit(&ill->ill_lock); 5163 RELEASE_CONN_LOCK(q); 5164 rw_exit(&ipst->ips_ill_g_lock); 5165 return (ill); 5166 } else if (ILL_CAN_WAIT(ill, q)) { 5167 ipsq = ill->ill_phyint->phyint_ipsq; 5168 mutex_enter(&ipsq->ipsq_lock); 5169 rw_exit(&ipst->ips_ill_g_lock); 5170 mutex_exit(&ill->ill_lock); 5171 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5172 mutex_exit(&ipsq->ipsq_lock); 5173 RELEASE_CONN_LOCK(q); 5174 if (err != NULL) 5175 *err = EINPROGRESS; 5176 return (NULL); 5177 } 5178 RELEASE_CONN_LOCK(q); 5179 mutex_exit(&ill->ill_lock); 5180 } 5181 } 5182 rw_exit(&ipst->ips_ill_g_lock); 5183 if (err != NULL) 5184 *err = ENXIO; 5185 return (NULL); 5186 } 5187 5188 /* 5189 * Return the ifindex next in sequence after the passed in ifindex. 5190 * If there is no next ifindex for the given protocol, return 0. 5191 */ 5192 uint_t 5193 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5194 { 5195 phyint_t *phyi; 5196 phyint_t *phyi_initial; 5197 uint_t ifindex; 5198 5199 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5200 5201 if (index == 0) { 5202 phyi = avl_first( 5203 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5204 } else { 5205 phyi = phyi_initial = avl_find( 5206 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5207 (void *) &index, NULL); 5208 } 5209 5210 for (; phyi != NULL; 5211 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5212 phyi, AVL_AFTER)) { 5213 /* 5214 * If we're not returning the first interface in the tree 5215 * and we still haven't moved past the phyint_t that 5216 * corresponds to index, avl_walk needs to be called again 5217 */ 5218 if (!((index != 0) && (phyi == phyi_initial))) { 5219 if (isv6) { 5220 if ((phyi->phyint_illv6) && 5221 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5222 (phyi->phyint_illv6->ill_isv6 == 1)) 5223 break; 5224 } else { 5225 if ((phyi->phyint_illv4) && 5226 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5227 (phyi->phyint_illv4->ill_isv6 == 0)) 5228 break; 5229 } 5230 } 5231 } 5232 5233 rw_exit(&ipst->ips_ill_g_lock); 5234 5235 if (phyi != NULL) 5236 ifindex = phyi->phyint_ifindex; 5237 else 5238 ifindex = 0; 5239 5240 return (ifindex); 5241 } 5242 5243 /* 5244 * Return the ifindex for the named interface. 5245 * If there is no next ifindex for the interface, return 0. 5246 */ 5247 uint_t 5248 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5249 { 5250 phyint_t *phyi; 5251 avl_index_t where = 0; 5252 uint_t ifindex; 5253 5254 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5255 5256 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5257 name, &where)) == NULL) { 5258 rw_exit(&ipst->ips_ill_g_lock); 5259 return (0); 5260 } 5261 5262 ifindex = phyi->phyint_ifindex; 5263 5264 rw_exit(&ipst->ips_ill_g_lock); 5265 5266 return (ifindex); 5267 } 5268 5269 /* 5270 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5271 * that gives a running thread a reference to the ill. This reference must be 5272 * released by the thread when it is done accessing the ill and related 5273 * objects. ill_refcnt can not be used to account for static references 5274 * such as other structures pointing to an ill. Callers must generally 5275 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5276 * or be sure that the ill is not being deleted or changing state before 5277 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5278 * ill won't change any of its critical state such as address, netmask etc. 5279 */ 5280 void 5281 ill_refhold(ill_t *ill) 5282 { 5283 mutex_enter(&ill->ill_lock); 5284 ill->ill_refcnt++; 5285 ILL_TRACE_REF(ill); 5286 mutex_exit(&ill->ill_lock); 5287 } 5288 5289 void 5290 ill_refhold_locked(ill_t *ill) 5291 { 5292 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5293 ill->ill_refcnt++; 5294 ILL_TRACE_REF(ill); 5295 } 5296 5297 int 5298 ill_check_and_refhold(ill_t *ill) 5299 { 5300 mutex_enter(&ill->ill_lock); 5301 if (ILL_CAN_LOOKUP(ill)) { 5302 ill_refhold_locked(ill); 5303 mutex_exit(&ill->ill_lock); 5304 return (0); 5305 } 5306 mutex_exit(&ill->ill_lock); 5307 return (ILL_LOOKUP_FAILED); 5308 } 5309 5310 /* 5311 * Must not be called while holding any locks. Otherwise if this is 5312 * the last reference to be released, there is a chance of recursive mutex 5313 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5314 * to restart an ioctl. 5315 */ 5316 void 5317 ill_refrele(ill_t *ill) 5318 { 5319 mutex_enter(&ill->ill_lock); 5320 ASSERT(ill->ill_refcnt != 0); 5321 ill->ill_refcnt--; 5322 ILL_UNTRACE_REF(ill); 5323 if (ill->ill_refcnt != 0) { 5324 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5325 mutex_exit(&ill->ill_lock); 5326 return; 5327 } 5328 5329 /* Drops the ill_lock */ 5330 ipif_ill_refrele_tail(ill); 5331 } 5332 5333 /* 5334 * Obtain a weak reference count on the ill. This reference ensures the 5335 * ill won't be freed, but the ill may change any of its critical state 5336 * such as netmask, address etc. Returns an error if the ill has started 5337 * closing. 5338 */ 5339 boolean_t 5340 ill_waiter_inc(ill_t *ill) 5341 { 5342 mutex_enter(&ill->ill_lock); 5343 if (ill->ill_state_flags & ILL_CONDEMNED) { 5344 mutex_exit(&ill->ill_lock); 5345 return (B_FALSE); 5346 } 5347 ill->ill_waiters++; 5348 mutex_exit(&ill->ill_lock); 5349 return (B_TRUE); 5350 } 5351 5352 void 5353 ill_waiter_dcr(ill_t *ill) 5354 { 5355 mutex_enter(&ill->ill_lock); 5356 ill->ill_waiters--; 5357 if (ill->ill_waiters == 0) 5358 cv_broadcast(&ill->ill_cv); 5359 mutex_exit(&ill->ill_lock); 5360 } 5361 5362 /* 5363 * Named Dispatch routine to produce a formatted report on all ILLs. 5364 * This report is accessed by using the ndd utility to "get" ND variable 5365 * "ip_ill_status". 5366 */ 5367 /* ARGSUSED */ 5368 int 5369 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5370 { 5371 ill_t *ill; 5372 ill_walk_context_t ctx; 5373 ip_stack_t *ipst; 5374 5375 ipst = CONNQ_TO_IPST(q); 5376 5377 (void) mi_mpprintf(mp, 5378 "ILL " MI_COL_HDRPAD_STR 5379 /* 01234567[89ABCDEF] */ 5380 "rq " MI_COL_HDRPAD_STR 5381 /* 01234567[89ABCDEF] */ 5382 "wq " MI_COL_HDRPAD_STR 5383 /* 01234567[89ABCDEF] */ 5384 "upcnt mxfrg err name"); 5385 /* 12345 12345 123 xxxxxxxx */ 5386 5387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5388 ill = ILL_START_WALK_ALL(&ctx, ipst); 5389 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5390 (void) mi_mpprintf(mp, 5391 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5392 "%05u %05u %03d %s", 5393 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5394 ill->ill_ipif_up_count, 5395 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5396 } 5397 rw_exit(&ipst->ips_ill_g_lock); 5398 5399 return (0); 5400 } 5401 5402 /* 5403 * Named Dispatch routine to produce a formatted report on all IPIFs. 5404 * This report is accessed by using the ndd utility to "get" ND variable 5405 * "ip_ipif_status". 5406 */ 5407 /* ARGSUSED */ 5408 int 5409 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5410 { 5411 char buf1[INET6_ADDRSTRLEN]; 5412 char buf2[INET6_ADDRSTRLEN]; 5413 char buf3[INET6_ADDRSTRLEN]; 5414 char buf4[INET6_ADDRSTRLEN]; 5415 char buf5[INET6_ADDRSTRLEN]; 5416 char buf6[INET6_ADDRSTRLEN]; 5417 char buf[LIFNAMSIZ]; 5418 ill_t *ill; 5419 ipif_t *ipif; 5420 nv_t *nvp; 5421 uint64_t flags; 5422 zoneid_t zoneid; 5423 ill_walk_context_t ctx; 5424 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5425 5426 (void) mi_mpprintf(mp, 5427 "IPIF metric mtu in/out/forward name zone flags...\n" 5428 "\tlocal address\n" 5429 "\tsrc address\n" 5430 "\tsubnet\n" 5431 "\tmask\n" 5432 "\tbroadcast\n" 5433 "\tp-p-dst"); 5434 5435 ASSERT(q->q_next == NULL); 5436 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5437 5438 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5439 ill = ILL_START_WALK_ALL(&ctx, ipst); 5440 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5441 for (ipif = ill->ill_ipif; ipif != NULL; 5442 ipif = ipif->ipif_next) { 5443 if (zoneid != GLOBAL_ZONEID && 5444 zoneid != ipif->ipif_zoneid && 5445 ipif->ipif_zoneid != ALL_ZONES) 5446 continue; 5447 5448 ipif_get_name(ipif, buf, sizeof (buf)); 5449 (void) mi_mpprintf(mp, 5450 MI_COL_PTRFMT_STR 5451 "%04u %05u %u/%u/%u %s %d", 5452 (void *)ipif, 5453 ipif->ipif_metric, ipif->ipif_mtu, 5454 ipif->ipif_ib_pkt_count, 5455 ipif->ipif_ob_pkt_count, 5456 ipif->ipif_fo_pkt_count, 5457 buf, 5458 ipif->ipif_zoneid); 5459 5460 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5461 ipif->ipif_ill->ill_phyint->phyint_flags; 5462 5463 /* Tack on text strings for any flags. */ 5464 nvp = ipif_nv_tbl; 5465 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5466 if (nvp->nv_value & flags) 5467 (void) mi_mpprintf_nr(mp, " %s", 5468 nvp->nv_name); 5469 } 5470 (void) mi_mpprintf(mp, 5471 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5472 inet_ntop(AF_INET6, 5473 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5474 inet_ntop(AF_INET6, 5475 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5476 inet_ntop(AF_INET6, 5477 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5478 inet_ntop(AF_INET6, 5479 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5480 inet_ntop(AF_INET6, 5481 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5482 inet_ntop(AF_INET6, 5483 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5484 } 5485 } 5486 rw_exit(&ipst->ips_ill_g_lock); 5487 return (0); 5488 } 5489 5490 /* 5491 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5492 * driver. We construct best guess defaults for lower level information that 5493 * we need. If an interface is brought up without injection of any overriding 5494 * information from outside, we have to be ready to go with these defaults. 5495 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5496 * we primarely want the dl_provider_style. 5497 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5498 * at which point we assume the other part of the information is valid. 5499 */ 5500 void 5501 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5502 { 5503 uchar_t *brdcst_addr; 5504 uint_t brdcst_addr_length, phys_addr_length; 5505 t_scalar_t sap_length; 5506 dl_info_ack_t *dlia; 5507 ip_m_t *ipm; 5508 dl_qos_cl_sel1_t *sel1; 5509 5510 ASSERT(IAM_WRITER_ILL(ill)); 5511 5512 /* 5513 * Till the ill is fully up ILL_CHANGING will be set and 5514 * the ill is not globally visible. So no need for a lock. 5515 */ 5516 dlia = (dl_info_ack_t *)mp->b_rptr; 5517 ill->ill_mactype = dlia->dl_mac_type; 5518 5519 ipm = ip_m_lookup(dlia->dl_mac_type); 5520 if (ipm == NULL) { 5521 ipm = ip_m_lookup(DL_OTHER); 5522 ASSERT(ipm != NULL); 5523 } 5524 ill->ill_media = ipm; 5525 5526 /* 5527 * When the new DLPI stuff is ready we'll pull lengths 5528 * from dlia. 5529 */ 5530 if (dlia->dl_version == DL_VERSION_2) { 5531 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5532 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5533 brdcst_addr_length); 5534 if (brdcst_addr == NULL) { 5535 brdcst_addr_length = 0; 5536 } 5537 sap_length = dlia->dl_sap_length; 5538 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5539 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5540 brdcst_addr_length, sap_length, phys_addr_length)); 5541 } else { 5542 brdcst_addr_length = 6; 5543 brdcst_addr = ip_six_byte_all_ones; 5544 sap_length = -2; 5545 phys_addr_length = brdcst_addr_length; 5546 } 5547 5548 ill->ill_bcast_addr_length = brdcst_addr_length; 5549 ill->ill_phys_addr_length = phys_addr_length; 5550 ill->ill_sap_length = sap_length; 5551 ill->ill_max_frag = dlia->dl_max_sdu; 5552 ill->ill_max_mtu = ill->ill_max_frag; 5553 5554 ill->ill_type = ipm->ip_m_type; 5555 5556 if (!ill->ill_dlpi_style_set) { 5557 if (dlia->dl_provider_style == DL_STYLE2) 5558 ill->ill_needs_attach = 1; 5559 5560 /* 5561 * Allocate the first ipif on this ill. We don't delay it 5562 * further as ioctl handling assumes atleast one ipif to 5563 * be present. 5564 * 5565 * At this point we don't know whether the ill is v4 or v6. 5566 * We will know this whan the SIOCSLIFNAME happens and 5567 * the correct value for ill_isv6 will be assigned in 5568 * ipif_set_values(). We need to hold the ill lock and 5569 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5570 * the wakeup. 5571 */ 5572 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5573 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5574 mutex_enter(&ill->ill_lock); 5575 ASSERT(ill->ill_dlpi_style_set == 0); 5576 ill->ill_dlpi_style_set = 1; 5577 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5578 cv_broadcast(&ill->ill_cv); 5579 mutex_exit(&ill->ill_lock); 5580 freemsg(mp); 5581 return; 5582 } 5583 ASSERT(ill->ill_ipif != NULL); 5584 /* 5585 * We know whether it is IPv4 or IPv6 now, as this is the 5586 * second DL_INFO_ACK we are recieving in response to the 5587 * DL_INFO_REQ sent in ipif_set_values. 5588 */ 5589 if (ill->ill_isv6) 5590 ill->ill_sap = IP6_DL_SAP; 5591 else 5592 ill->ill_sap = IP_DL_SAP; 5593 /* 5594 * Set ipif_mtu which is used to set the IRE's 5595 * ire_max_frag value. The driver could have sent 5596 * a different mtu from what it sent last time. No 5597 * need to call ipif_mtu_change because IREs have 5598 * not yet been created. 5599 */ 5600 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5601 /* 5602 * Clear all the flags that were set based on ill_bcast_addr_length 5603 * and ill_phys_addr_length (in ipif_set_values) as these could have 5604 * changed now and we need to re-evaluate. 5605 */ 5606 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5607 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5608 5609 /* 5610 * Free ill_resolver_mp and ill_bcast_mp as things could have 5611 * changed now. 5612 */ 5613 if (ill->ill_bcast_addr_length == 0) { 5614 if (ill->ill_resolver_mp != NULL) 5615 freemsg(ill->ill_resolver_mp); 5616 if (ill->ill_bcast_mp != NULL) 5617 freemsg(ill->ill_bcast_mp); 5618 if (ill->ill_flags & ILLF_XRESOLV) 5619 ill->ill_net_type = IRE_IF_RESOLVER; 5620 else 5621 ill->ill_net_type = IRE_IF_NORESOLVER; 5622 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5623 ill->ill_phys_addr_length, 5624 ill->ill_sap, 5625 ill->ill_sap_length); 5626 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5627 5628 if (ill->ill_isv6) 5629 /* 5630 * Note: xresolv interfaces will eventually need NOARP 5631 * set here as well, but that will require those 5632 * external resolvers to have some knowledge of 5633 * that flag and act appropriately. Not to be changed 5634 * at present. 5635 */ 5636 ill->ill_flags |= ILLF_NONUD; 5637 else 5638 ill->ill_flags |= ILLF_NOARP; 5639 5640 if (ill->ill_phys_addr_length == 0) { 5641 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5642 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5643 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5644 } else { 5645 /* pt-pt supports multicast. */ 5646 ill->ill_flags |= ILLF_MULTICAST; 5647 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5648 } 5649 } 5650 } else { 5651 ill->ill_net_type = IRE_IF_RESOLVER; 5652 if (ill->ill_bcast_mp != NULL) 5653 freemsg(ill->ill_bcast_mp); 5654 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5655 ill->ill_bcast_addr_length, ill->ill_sap, 5656 ill->ill_sap_length); 5657 /* 5658 * Later detect lack of DLPI driver multicast 5659 * capability by catching DL_ENABMULTI errors in 5660 * ip_rput_dlpi. 5661 */ 5662 ill->ill_flags |= ILLF_MULTICAST; 5663 if (!ill->ill_isv6) 5664 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5665 } 5666 /* By default an interface does not support any CoS marking */ 5667 ill->ill_flags &= ~ILLF_COS_ENABLED; 5668 5669 /* 5670 * If we get QoS information in DL_INFO_ACK, the device supports 5671 * some form of CoS marking, set ILLF_COS_ENABLED. 5672 */ 5673 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5674 dlia->dl_qos_length); 5675 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5676 ill->ill_flags |= ILLF_COS_ENABLED; 5677 } 5678 5679 /* Clear any previous error indication. */ 5680 ill->ill_error = 0; 5681 freemsg(mp); 5682 } 5683 5684 /* 5685 * Perform various checks to verify that an address would make sense as a 5686 * local, remote, or subnet interface address. 5687 */ 5688 static boolean_t 5689 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5690 { 5691 ipaddr_t net_mask; 5692 5693 /* 5694 * Don't allow all zeroes, or all ones, but allow 5695 * all ones netmask. 5696 */ 5697 if ((net_mask = ip_net_mask(addr)) == 0) 5698 return (B_FALSE); 5699 /* A given netmask overrides the "guess" netmask */ 5700 if (subnet_mask != 0) 5701 net_mask = subnet_mask; 5702 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5703 (addr == (addr | ~net_mask)))) { 5704 return (B_FALSE); 5705 } 5706 5707 /* 5708 * Even if the netmask is all ones, we do not allow address to be 5709 * 255.255.255.255 5710 */ 5711 if (addr == INADDR_BROADCAST) 5712 return (B_FALSE); 5713 5714 if (CLASSD(addr)) 5715 return (B_FALSE); 5716 5717 return (B_TRUE); 5718 } 5719 5720 #define V6_IPIF_LINKLOCAL(p) \ 5721 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5722 5723 /* 5724 * Compare two given ipifs and check if the second one is better than 5725 * the first one using the order of preference (not taking deprecated 5726 * into acount) specified in ipif_lookup_multicast(). 5727 */ 5728 static boolean_t 5729 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5730 { 5731 /* Check the least preferred first. */ 5732 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5733 /* If both ipifs are the same, use the first one. */ 5734 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5735 return (B_FALSE); 5736 else 5737 return (B_TRUE); 5738 } 5739 5740 /* For IPv6, check for link local address. */ 5741 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5742 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5743 V6_IPIF_LINKLOCAL(new_ipif)) { 5744 /* The second one is equal or less preferred. */ 5745 return (B_FALSE); 5746 } else { 5747 return (B_TRUE); 5748 } 5749 } 5750 5751 /* Then check for point to point interface. */ 5752 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5753 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5754 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5755 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5756 return (B_FALSE); 5757 } else { 5758 return (B_TRUE); 5759 } 5760 } 5761 5762 /* old_ipif is a normal interface, so no need to use the new one. */ 5763 return (B_FALSE); 5764 } 5765 5766 /* 5767 * Find any non-virtual, not condemned, and up multicast capable interface 5768 * given an IP instance and zoneid. Order of preference is: 5769 * 5770 * 1. normal 5771 * 1.1 normal, but deprecated 5772 * 2. point to point 5773 * 2.1 point to point, but deprecated 5774 * 3. link local 5775 * 3.1 link local, but deprecated 5776 * 4. loopback. 5777 */ 5778 ipif_t * 5779 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5780 { 5781 ill_t *ill; 5782 ill_walk_context_t ctx; 5783 ipif_t *ipif; 5784 ipif_t *saved_ipif = NULL; 5785 ipif_t *dep_ipif = NULL; 5786 5787 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5788 if (isv6) 5789 ill = ILL_START_WALK_V6(&ctx, ipst); 5790 else 5791 ill = ILL_START_WALK_V4(&ctx, ipst); 5792 5793 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5794 mutex_enter(&ill->ill_lock); 5795 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5796 !(ill->ill_flags & ILLF_MULTICAST)) { 5797 mutex_exit(&ill->ill_lock); 5798 continue; 5799 } 5800 for (ipif = ill->ill_ipif; ipif != NULL; 5801 ipif = ipif->ipif_next) { 5802 if (zoneid != ipif->ipif_zoneid && 5803 zoneid != ALL_ZONES && 5804 ipif->ipif_zoneid != ALL_ZONES) { 5805 continue; 5806 } 5807 if (!(ipif->ipif_flags & IPIF_UP) || 5808 !IPIF_CAN_LOOKUP(ipif)) { 5809 continue; 5810 } 5811 5812 /* 5813 * Found one candidate. If it is deprecated, 5814 * remember it in dep_ipif. If it is not deprecated, 5815 * remember it in saved_ipif. 5816 */ 5817 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5818 if (dep_ipif == NULL) { 5819 dep_ipif = ipif; 5820 } else if (ipif_comp_multi(dep_ipif, ipif, 5821 isv6)) { 5822 /* 5823 * If the previous dep_ipif does not 5824 * belong to the same ill, we've done 5825 * a ipif_refhold() on it. So we need 5826 * to release it. 5827 */ 5828 if (dep_ipif->ipif_ill != ill) 5829 ipif_refrele(dep_ipif); 5830 dep_ipif = ipif; 5831 } 5832 continue; 5833 } 5834 if (saved_ipif == NULL) { 5835 saved_ipif = ipif; 5836 } else { 5837 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5838 if (saved_ipif->ipif_ill != ill) 5839 ipif_refrele(saved_ipif); 5840 saved_ipif = ipif; 5841 } 5842 } 5843 } 5844 /* 5845 * Before going to the next ill, do a ipif_refhold() on the 5846 * saved ones. 5847 */ 5848 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5849 ipif_refhold_locked(saved_ipif); 5850 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5851 ipif_refhold_locked(dep_ipif); 5852 mutex_exit(&ill->ill_lock); 5853 } 5854 rw_exit(&ipst->ips_ill_g_lock); 5855 5856 /* 5857 * If we have only the saved_ipif, return it. But if we have both 5858 * saved_ipif and dep_ipif, check to see which one is better. 5859 */ 5860 if (saved_ipif != NULL) { 5861 if (dep_ipif != NULL) { 5862 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5863 ipif_refrele(saved_ipif); 5864 return (dep_ipif); 5865 } else { 5866 ipif_refrele(dep_ipif); 5867 return (saved_ipif); 5868 } 5869 } 5870 return (saved_ipif); 5871 } else { 5872 return (dep_ipif); 5873 } 5874 } 5875 5876 /* 5877 * This function is called when an application does not specify an interface 5878 * to be used for multicast traffic (joining a group/sending data). It 5879 * calls ire_lookup_multi() to look for an interface route for the 5880 * specified multicast group. Doing this allows the administrator to add 5881 * prefix routes for multicast to indicate which interface to be used for 5882 * multicast traffic in the above scenario. The route could be for all 5883 * multicast (224.0/4), for a single multicast group (a /32 route) or 5884 * anything in between. If there is no such multicast route, we just find 5885 * any multicast capable interface and return it. The returned ipif 5886 * is refhold'ed. 5887 */ 5888 ipif_t * 5889 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5890 { 5891 ire_t *ire; 5892 ipif_t *ipif; 5893 5894 ire = ire_lookup_multi(group, zoneid, ipst); 5895 if (ire != NULL) { 5896 ipif = ire->ire_ipif; 5897 ipif_refhold(ipif); 5898 ire_refrele(ire); 5899 return (ipif); 5900 } 5901 5902 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5903 } 5904 5905 /* 5906 * Look for an ipif with the specified interface address and destination. 5907 * The destination address is used only for matching point-to-point interfaces. 5908 */ 5909 ipif_t * 5910 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5911 ipsq_func_t func, int *error, ip_stack_t *ipst) 5912 { 5913 ipif_t *ipif; 5914 ill_t *ill; 5915 ill_walk_context_t ctx; 5916 ipsq_t *ipsq; 5917 5918 if (error != NULL) 5919 *error = 0; 5920 5921 /* 5922 * First match all the point-to-point interfaces 5923 * before looking at non-point-to-point interfaces. 5924 * This is done to avoid returning non-point-to-point 5925 * ipif instead of unnumbered point-to-point ipif. 5926 */ 5927 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5928 ill = ILL_START_WALK_V4(&ctx, ipst); 5929 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5930 GRAB_CONN_LOCK(q); 5931 mutex_enter(&ill->ill_lock); 5932 for (ipif = ill->ill_ipif; ipif != NULL; 5933 ipif = ipif->ipif_next) { 5934 /* Allow the ipif to be down */ 5935 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5936 (ipif->ipif_lcl_addr == if_addr) && 5937 (ipif->ipif_pp_dst_addr == dst)) { 5938 /* 5939 * The block comment at the start of ipif_down 5940 * explains the use of the macros used below 5941 */ 5942 if (IPIF_CAN_LOOKUP(ipif)) { 5943 ipif_refhold_locked(ipif); 5944 mutex_exit(&ill->ill_lock); 5945 RELEASE_CONN_LOCK(q); 5946 rw_exit(&ipst->ips_ill_g_lock); 5947 return (ipif); 5948 } else if (IPIF_CAN_WAIT(ipif, q)) { 5949 ipsq = ill->ill_phyint->phyint_ipsq; 5950 mutex_enter(&ipsq->ipsq_lock); 5951 mutex_exit(&ill->ill_lock); 5952 rw_exit(&ipst->ips_ill_g_lock); 5953 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5954 ill); 5955 mutex_exit(&ipsq->ipsq_lock); 5956 RELEASE_CONN_LOCK(q); 5957 if (error != NULL) 5958 *error = EINPROGRESS; 5959 return (NULL); 5960 } 5961 } 5962 } 5963 mutex_exit(&ill->ill_lock); 5964 RELEASE_CONN_LOCK(q); 5965 } 5966 rw_exit(&ipst->ips_ill_g_lock); 5967 5968 /* lookup the ipif based on interface address */ 5969 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5970 ipst); 5971 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5972 return (ipif); 5973 } 5974 5975 /* 5976 * Look for an ipif with the specified address. For point-point links 5977 * we look for matches on either the destination address and the local 5978 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5979 * is set. 5980 * Matches on a specific ill if match_ill is set. 5981 */ 5982 ipif_t * 5983 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5984 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5985 { 5986 ipif_t *ipif; 5987 ill_t *ill; 5988 boolean_t ptp = B_FALSE; 5989 ipsq_t *ipsq; 5990 ill_walk_context_t ctx; 5991 5992 if (error != NULL) 5993 *error = 0; 5994 5995 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5996 /* 5997 * Repeat twice, first based on local addresses and 5998 * next time for pointopoint. 5999 */ 6000 repeat: 6001 ill = ILL_START_WALK_V4(&ctx, ipst); 6002 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6003 if (match_ill != NULL && ill != match_ill) { 6004 continue; 6005 } 6006 GRAB_CONN_LOCK(q); 6007 mutex_enter(&ill->ill_lock); 6008 for (ipif = ill->ill_ipif; ipif != NULL; 6009 ipif = ipif->ipif_next) { 6010 if (zoneid != ALL_ZONES && 6011 zoneid != ipif->ipif_zoneid && 6012 ipif->ipif_zoneid != ALL_ZONES) 6013 continue; 6014 /* Allow the ipif to be down */ 6015 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6016 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6017 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6018 (ipif->ipif_pp_dst_addr == addr))) { 6019 /* 6020 * The block comment at the start of ipif_down 6021 * explains the use of the macros used below 6022 */ 6023 if (IPIF_CAN_LOOKUP(ipif)) { 6024 ipif_refhold_locked(ipif); 6025 mutex_exit(&ill->ill_lock); 6026 RELEASE_CONN_LOCK(q); 6027 rw_exit(&ipst->ips_ill_g_lock); 6028 return (ipif); 6029 } else if (IPIF_CAN_WAIT(ipif, q)) { 6030 ipsq = ill->ill_phyint->phyint_ipsq; 6031 mutex_enter(&ipsq->ipsq_lock); 6032 mutex_exit(&ill->ill_lock); 6033 rw_exit(&ipst->ips_ill_g_lock); 6034 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6035 ill); 6036 mutex_exit(&ipsq->ipsq_lock); 6037 RELEASE_CONN_LOCK(q); 6038 if (error != NULL) 6039 *error = EINPROGRESS; 6040 return (NULL); 6041 } 6042 } 6043 } 6044 mutex_exit(&ill->ill_lock); 6045 RELEASE_CONN_LOCK(q); 6046 } 6047 6048 /* If we already did the ptp case, then we are done */ 6049 if (ptp) { 6050 rw_exit(&ipst->ips_ill_g_lock); 6051 if (error != NULL) 6052 *error = ENXIO; 6053 return (NULL); 6054 } 6055 ptp = B_TRUE; 6056 goto repeat; 6057 } 6058 6059 /* 6060 * Look for an ipif with the specified address. For point-point links 6061 * we look for matches on either the destination address and the local 6062 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6063 * is set. 6064 * Matches on a specific ill if match_ill is set. 6065 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6066 */ 6067 zoneid_t 6068 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6069 { 6070 zoneid_t zoneid; 6071 ipif_t *ipif; 6072 ill_t *ill; 6073 boolean_t ptp = B_FALSE; 6074 ill_walk_context_t ctx; 6075 6076 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6077 /* 6078 * Repeat twice, first based on local addresses and 6079 * next time for pointopoint. 6080 */ 6081 repeat: 6082 ill = ILL_START_WALK_V4(&ctx, ipst); 6083 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6084 if (match_ill != NULL && ill != match_ill) { 6085 continue; 6086 } 6087 mutex_enter(&ill->ill_lock); 6088 for (ipif = ill->ill_ipif; ipif != NULL; 6089 ipif = ipif->ipif_next) { 6090 /* Allow the ipif to be down */ 6091 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6092 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6093 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6094 (ipif->ipif_pp_dst_addr == addr)) && 6095 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6096 zoneid = ipif->ipif_zoneid; 6097 mutex_exit(&ill->ill_lock); 6098 rw_exit(&ipst->ips_ill_g_lock); 6099 /* 6100 * If ipif_zoneid was ALL_ZONES then we have 6101 * a trusted extensions shared IP address. 6102 * In that case GLOBAL_ZONEID works to send. 6103 */ 6104 if (zoneid == ALL_ZONES) 6105 zoneid = GLOBAL_ZONEID; 6106 return (zoneid); 6107 } 6108 } 6109 mutex_exit(&ill->ill_lock); 6110 } 6111 6112 /* If we already did the ptp case, then we are done */ 6113 if (ptp) { 6114 rw_exit(&ipst->ips_ill_g_lock); 6115 return (ALL_ZONES); 6116 } 6117 ptp = B_TRUE; 6118 goto repeat; 6119 } 6120 6121 /* 6122 * Look for an ipif that matches the specified remote address i.e. the 6123 * ipif that would receive the specified packet. 6124 * First look for directly connected interfaces and then do a recursive 6125 * IRE lookup and pick the first ipif corresponding to the source address in the 6126 * ire. 6127 * Returns: held ipif 6128 */ 6129 ipif_t * 6130 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6131 { 6132 ipif_t *ipif; 6133 ire_t *ire; 6134 ip_stack_t *ipst = ill->ill_ipst; 6135 6136 ASSERT(!ill->ill_isv6); 6137 6138 /* 6139 * Someone could be changing this ipif currently or change it 6140 * after we return this. Thus a few packets could use the old 6141 * old values. However structure updates/creates (ire, ilg, ilm etc) 6142 * will atomically be updated or cleaned up with the new value 6143 * Thus we don't need a lock to check the flags or other attrs below. 6144 */ 6145 mutex_enter(&ill->ill_lock); 6146 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6147 if (!IPIF_CAN_LOOKUP(ipif)) 6148 continue; 6149 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6150 ipif->ipif_zoneid != ALL_ZONES) 6151 continue; 6152 /* Allow the ipif to be down */ 6153 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6154 if ((ipif->ipif_pp_dst_addr == addr) || 6155 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6156 ipif->ipif_lcl_addr == addr)) { 6157 ipif_refhold_locked(ipif); 6158 mutex_exit(&ill->ill_lock); 6159 return (ipif); 6160 } 6161 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6162 ipif_refhold_locked(ipif); 6163 mutex_exit(&ill->ill_lock); 6164 return (ipif); 6165 } 6166 } 6167 mutex_exit(&ill->ill_lock); 6168 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6169 NULL, MATCH_IRE_RECURSIVE, ipst); 6170 if (ire != NULL) { 6171 /* 6172 * The callers of this function wants to know the 6173 * interface on which they have to send the replies 6174 * back. For IRE_CACHES that have ire_stq and ire_ipif 6175 * derived from different ills, we really don't care 6176 * what we return here. 6177 */ 6178 ipif = ire->ire_ipif; 6179 if (ipif != NULL) { 6180 ipif_refhold(ipif); 6181 ire_refrele(ire); 6182 return (ipif); 6183 } 6184 ire_refrele(ire); 6185 } 6186 /* Pick the first interface */ 6187 ipif = ipif_get_next_ipif(NULL, ill); 6188 return (ipif); 6189 } 6190 6191 /* 6192 * This func does not prevent refcnt from increasing. But if 6193 * the caller has taken steps to that effect, then this func 6194 * can be used to determine whether the ill has become quiescent 6195 */ 6196 static boolean_t 6197 ill_is_quiescent(ill_t *ill) 6198 { 6199 ipif_t *ipif; 6200 6201 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6202 6203 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6204 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6205 return (B_FALSE); 6206 } 6207 } 6208 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6209 return (B_FALSE); 6210 } 6211 return (B_TRUE); 6212 } 6213 6214 boolean_t 6215 ill_is_freeable(ill_t *ill) 6216 { 6217 ipif_t *ipif; 6218 6219 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6220 6221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6222 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6223 return (B_FALSE); 6224 } 6225 } 6226 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6227 return (B_FALSE); 6228 } 6229 return (B_TRUE); 6230 } 6231 6232 /* 6233 * This func does not prevent refcnt from increasing. But if 6234 * the caller has taken steps to that effect, then this func 6235 * can be used to determine whether the ipif has become quiescent 6236 */ 6237 static boolean_t 6238 ipif_is_quiescent(ipif_t *ipif) 6239 { 6240 ill_t *ill; 6241 6242 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6243 6244 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6245 return (B_FALSE); 6246 } 6247 6248 ill = ipif->ipif_ill; 6249 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6250 ill->ill_logical_down) { 6251 return (B_TRUE); 6252 } 6253 6254 /* This is the last ipif going down or being deleted on this ill */ 6255 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6256 return (B_FALSE); 6257 } 6258 6259 return (B_TRUE); 6260 } 6261 6262 /* 6263 * return true if the ipif can be destroyed: the ipif has to be quiescent 6264 * with zero references from ire/nce/ilm to it. 6265 */ 6266 static boolean_t 6267 ipif_is_freeable(ipif_t *ipif) 6268 { 6269 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6270 ASSERT(ipif->ipif_id != 0); 6271 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6272 } 6273 6274 /* 6275 * This func does not prevent refcnt from increasing. But if 6276 * the caller has taken steps to that effect, then this func 6277 * can be used to determine whether the ipifs marked with IPIF_MOVING 6278 * have become quiescent and can be moved in a failover/failback. 6279 */ 6280 static ipif_t * 6281 ill_quiescent_to_move(ill_t *ill) 6282 { 6283 ipif_t *ipif; 6284 6285 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6286 6287 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6288 if (ipif->ipif_state_flags & IPIF_MOVING) { 6289 if (ipif->ipif_refcnt != 0 || 6290 !IPIF_DOWN_OK(ipif)) { 6291 return (ipif); 6292 } 6293 } 6294 } 6295 return (NULL); 6296 } 6297 6298 /* 6299 * The ipif/ill/ire has been refreled. Do the tail processing. 6300 * Determine if the ipif or ill in question has become quiescent and if so 6301 * wakeup close and/or restart any queued pending ioctl that is waiting 6302 * for the ipif_down (or ill_down) 6303 */ 6304 void 6305 ipif_ill_refrele_tail(ill_t *ill) 6306 { 6307 mblk_t *mp; 6308 conn_t *connp; 6309 ipsq_t *ipsq; 6310 ipif_t *ipif; 6311 dl_notify_ind_t *dlindp; 6312 6313 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6314 6315 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6316 ill_is_freeable(ill)) { 6317 /* ill_close may be waiting */ 6318 cv_broadcast(&ill->ill_cv); 6319 } 6320 6321 /* ipsq can't change because ill_lock is held */ 6322 ipsq = ill->ill_phyint->phyint_ipsq; 6323 if (ipsq->ipsq_waitfor == 0) { 6324 /* Not waiting for anything, just return. */ 6325 mutex_exit(&ill->ill_lock); 6326 return; 6327 } 6328 ASSERT(ipsq->ipsq_pending_mp != NULL && 6329 ipsq->ipsq_pending_ipif != NULL); 6330 /* 6331 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6332 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6333 * be zero for restarting an ioctl that ends up downing the ill. 6334 */ 6335 ipif = ipsq->ipsq_pending_ipif; 6336 if (ipif->ipif_ill != ill) { 6337 /* The ioctl is pending on some other ill. */ 6338 mutex_exit(&ill->ill_lock); 6339 return; 6340 } 6341 6342 switch (ipsq->ipsq_waitfor) { 6343 case IPIF_DOWN: 6344 if (!ipif_is_quiescent(ipif)) { 6345 mutex_exit(&ill->ill_lock); 6346 return; 6347 } 6348 break; 6349 case IPIF_FREE: 6350 if (!ipif_is_freeable(ipif)) { 6351 mutex_exit(&ill->ill_lock); 6352 return; 6353 } 6354 break; 6355 6356 case ILL_DOWN: 6357 if (!ill_is_quiescent(ill)) { 6358 mutex_exit(&ill->ill_lock); 6359 return; 6360 } 6361 break; 6362 case ILL_FREE: 6363 /* 6364 * case ILL_FREE arises only for loopback. otherwise ill_delete 6365 * waits synchronously in ip_close, and no message is queued in 6366 * ipsq_pending_mp at all in this case 6367 */ 6368 if (!ill_is_freeable(ill)) { 6369 mutex_exit(&ill->ill_lock); 6370 return; 6371 } 6372 break; 6373 6374 case ILL_MOVE_OK: 6375 if (ill_quiescent_to_move(ill) != NULL) { 6376 mutex_exit(&ill->ill_lock); 6377 return; 6378 } 6379 break; 6380 default: 6381 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6382 (void *)ipsq, ipsq->ipsq_waitfor); 6383 } 6384 6385 /* 6386 * Incr refcnt for the qwriter_ip call below which 6387 * does a refrele 6388 */ 6389 ill_refhold_locked(ill); 6390 mp = ipsq_pending_mp_get(ipsq, &connp); 6391 mutex_exit(&ill->ill_lock); 6392 6393 ASSERT(mp != NULL); 6394 /* 6395 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6396 * we can only get here when the current operation decides it 6397 * it needs to quiesce via ipsq_pending_mp_add(). 6398 */ 6399 switch (mp->b_datap->db_type) { 6400 case M_PCPROTO: 6401 case M_PROTO: 6402 /* 6403 * For now, only DL_NOTIFY_IND messages can use this facility. 6404 */ 6405 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6406 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6407 6408 switch (dlindp->dl_notification) { 6409 case DL_NOTE_PHYS_ADDR: 6410 qwriter_ip(ill, ill->ill_rq, mp, 6411 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6412 return; 6413 default: 6414 ASSERT(0); 6415 } 6416 break; 6417 6418 case M_ERROR: 6419 case M_HANGUP: 6420 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6421 B_TRUE); 6422 return; 6423 6424 case M_IOCTL: 6425 case M_IOCDATA: 6426 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6427 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6428 return; 6429 6430 default: 6431 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6432 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6433 } 6434 } 6435 6436 #ifdef DEBUG 6437 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6438 static void 6439 th_trace_rrecord(th_trace_t *th_trace) 6440 { 6441 tr_buf_t *tr_buf; 6442 uint_t lastref; 6443 6444 lastref = th_trace->th_trace_lastref; 6445 lastref++; 6446 if (lastref == TR_BUF_MAX) 6447 lastref = 0; 6448 th_trace->th_trace_lastref = lastref; 6449 tr_buf = &th_trace->th_trbuf[lastref]; 6450 tr_buf->tr_time = lbolt; 6451 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6452 } 6453 6454 static void 6455 th_trace_free(void *value) 6456 { 6457 th_trace_t *th_trace = value; 6458 6459 ASSERT(th_trace->th_refcnt == 0); 6460 kmem_free(th_trace, sizeof (*th_trace)); 6461 } 6462 6463 /* 6464 * Find or create the per-thread hash table used to track object references. 6465 * The ipst argument is NULL if we shouldn't allocate. 6466 * 6467 * Accesses per-thread data, so there's no need to lock here. 6468 */ 6469 static mod_hash_t * 6470 th_trace_gethash(ip_stack_t *ipst) 6471 { 6472 th_hash_t *thh; 6473 6474 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6475 mod_hash_t *mh; 6476 char name[256]; 6477 size_t objsize, rshift; 6478 int retv; 6479 6480 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6481 return (NULL); 6482 (void) snprintf(name, sizeof (name), "th_trace_%p", 6483 (void *)curthread); 6484 6485 /* 6486 * We use mod_hash_create_extended here rather than the more 6487 * obvious mod_hash_create_ptrhash because the latter has a 6488 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6489 * block. 6490 */ 6491 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6492 MAX(sizeof (ire_t), sizeof (nce_t))); 6493 rshift = highbit(objsize); 6494 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6495 th_trace_free, mod_hash_byptr, (void *)rshift, 6496 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6497 if (mh == NULL) { 6498 kmem_free(thh, sizeof (*thh)); 6499 return (NULL); 6500 } 6501 thh->thh_hash = mh; 6502 thh->thh_ipst = ipst; 6503 /* 6504 * We trace ills, ipifs, ires, and nces. All of these are 6505 * per-IP-stack, so the lock on the thread list is as well. 6506 */ 6507 rw_enter(&ip_thread_rwlock, RW_WRITER); 6508 list_insert_tail(&ip_thread_list, thh); 6509 rw_exit(&ip_thread_rwlock); 6510 retv = tsd_set(ip_thread_data, thh); 6511 ASSERT(retv == 0); 6512 } 6513 return (thh != NULL ? thh->thh_hash : NULL); 6514 } 6515 6516 boolean_t 6517 th_trace_ref(const void *obj, ip_stack_t *ipst) 6518 { 6519 th_trace_t *th_trace; 6520 mod_hash_t *mh; 6521 mod_hash_val_t val; 6522 6523 if ((mh = th_trace_gethash(ipst)) == NULL) 6524 return (B_FALSE); 6525 6526 /* 6527 * Attempt to locate the trace buffer for this obj and thread. 6528 * If it does not exist, then allocate a new trace buffer and 6529 * insert into the hash. 6530 */ 6531 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6532 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6533 if (th_trace == NULL) 6534 return (B_FALSE); 6535 6536 th_trace->th_id = curthread; 6537 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6538 (mod_hash_val_t)th_trace) != 0) { 6539 kmem_free(th_trace, sizeof (th_trace_t)); 6540 return (B_FALSE); 6541 } 6542 } else { 6543 th_trace = (th_trace_t *)val; 6544 } 6545 6546 ASSERT(th_trace->th_refcnt >= 0 && 6547 th_trace->th_refcnt < TR_BUF_MAX - 1); 6548 6549 th_trace->th_refcnt++; 6550 th_trace_rrecord(th_trace); 6551 return (B_TRUE); 6552 } 6553 6554 /* 6555 * For the purpose of tracing a reference release, we assume that global 6556 * tracing is always on and that the same thread initiated the reference hold 6557 * is releasing. 6558 */ 6559 void 6560 th_trace_unref(const void *obj) 6561 { 6562 int retv; 6563 mod_hash_t *mh; 6564 th_trace_t *th_trace; 6565 mod_hash_val_t val; 6566 6567 mh = th_trace_gethash(NULL); 6568 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6569 ASSERT(retv == 0); 6570 th_trace = (th_trace_t *)val; 6571 6572 ASSERT(th_trace->th_refcnt > 0); 6573 th_trace->th_refcnt--; 6574 th_trace_rrecord(th_trace); 6575 } 6576 6577 /* 6578 * If tracing has been disabled, then we assume that the reference counts are 6579 * now useless, and we clear them out before destroying the entries. 6580 */ 6581 void 6582 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6583 { 6584 th_hash_t *thh; 6585 mod_hash_t *mh; 6586 mod_hash_val_t val; 6587 th_trace_t *th_trace; 6588 int retv; 6589 6590 rw_enter(&ip_thread_rwlock, RW_READER); 6591 for (thh = list_head(&ip_thread_list); thh != NULL; 6592 thh = list_next(&ip_thread_list, thh)) { 6593 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6594 &val) == 0) { 6595 th_trace = (th_trace_t *)val; 6596 if (trace_disable) 6597 th_trace->th_refcnt = 0; 6598 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6599 ASSERT(retv == 0); 6600 } 6601 } 6602 rw_exit(&ip_thread_rwlock); 6603 } 6604 6605 void 6606 ipif_trace_ref(ipif_t *ipif) 6607 { 6608 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6609 6610 if (ipif->ipif_trace_disable) 6611 return; 6612 6613 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6614 ipif->ipif_trace_disable = B_TRUE; 6615 ipif_trace_cleanup(ipif); 6616 } 6617 } 6618 6619 void 6620 ipif_untrace_ref(ipif_t *ipif) 6621 { 6622 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6623 6624 if (!ipif->ipif_trace_disable) 6625 th_trace_unref(ipif); 6626 } 6627 6628 void 6629 ill_trace_ref(ill_t *ill) 6630 { 6631 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6632 6633 if (ill->ill_trace_disable) 6634 return; 6635 6636 if (!th_trace_ref(ill, ill->ill_ipst)) { 6637 ill->ill_trace_disable = B_TRUE; 6638 ill_trace_cleanup(ill); 6639 } 6640 } 6641 6642 void 6643 ill_untrace_ref(ill_t *ill) 6644 { 6645 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6646 6647 if (!ill->ill_trace_disable) 6648 th_trace_unref(ill); 6649 } 6650 6651 /* 6652 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6653 * failure, ipif_trace_disable is set. 6654 */ 6655 static void 6656 ipif_trace_cleanup(const ipif_t *ipif) 6657 { 6658 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6659 } 6660 6661 /* 6662 * Called when ill is unplumbed or when memory alloc fails. Note that on 6663 * failure, ill_trace_disable is set. 6664 */ 6665 static void 6666 ill_trace_cleanup(const ill_t *ill) 6667 { 6668 th_trace_cleanup(ill, ill->ill_trace_disable); 6669 } 6670 #endif /* DEBUG */ 6671 6672 void 6673 ipif_refhold_locked(ipif_t *ipif) 6674 { 6675 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6676 ipif->ipif_refcnt++; 6677 IPIF_TRACE_REF(ipif); 6678 } 6679 6680 void 6681 ipif_refhold(ipif_t *ipif) 6682 { 6683 ill_t *ill; 6684 6685 ill = ipif->ipif_ill; 6686 mutex_enter(&ill->ill_lock); 6687 ipif->ipif_refcnt++; 6688 IPIF_TRACE_REF(ipif); 6689 mutex_exit(&ill->ill_lock); 6690 } 6691 6692 /* 6693 * Must not be called while holding any locks. Otherwise if this is 6694 * the last reference to be released there is a chance of recursive mutex 6695 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6696 * to restart an ioctl. 6697 */ 6698 void 6699 ipif_refrele(ipif_t *ipif) 6700 { 6701 ill_t *ill; 6702 6703 ill = ipif->ipif_ill; 6704 6705 mutex_enter(&ill->ill_lock); 6706 ASSERT(ipif->ipif_refcnt != 0); 6707 ipif->ipif_refcnt--; 6708 IPIF_UNTRACE_REF(ipif); 6709 if (ipif->ipif_refcnt != 0) { 6710 mutex_exit(&ill->ill_lock); 6711 return; 6712 } 6713 6714 /* Drops the ill_lock */ 6715 ipif_ill_refrele_tail(ill); 6716 } 6717 6718 ipif_t * 6719 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6720 { 6721 ipif_t *ipif; 6722 6723 mutex_enter(&ill->ill_lock); 6724 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6725 ipif != NULL; ipif = ipif->ipif_next) { 6726 if (!IPIF_CAN_LOOKUP(ipif)) 6727 continue; 6728 ipif_refhold_locked(ipif); 6729 mutex_exit(&ill->ill_lock); 6730 return (ipif); 6731 } 6732 mutex_exit(&ill->ill_lock); 6733 return (NULL); 6734 } 6735 6736 /* 6737 * TODO: make this table extendible at run time 6738 * Return a pointer to the mac type info for 'mac_type' 6739 */ 6740 static ip_m_t * 6741 ip_m_lookup(t_uscalar_t mac_type) 6742 { 6743 ip_m_t *ipm; 6744 6745 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6746 if (ipm->ip_m_mac_type == mac_type) 6747 return (ipm); 6748 return (NULL); 6749 } 6750 6751 /* 6752 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6753 * ipif_arg is passed in to associate it with the correct interface. 6754 * We may need to restart this operation if the ipif cannot be looked up 6755 * due to an exclusive operation that is currently in progress. The restart 6756 * entry point is specified by 'func' 6757 */ 6758 int 6759 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6760 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6761 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6762 struct rtsa_s *sp, ip_stack_t *ipst) 6763 { 6764 ire_t *ire; 6765 ire_t *gw_ire = NULL; 6766 ipif_t *ipif = NULL; 6767 boolean_t ipif_refheld = B_FALSE; 6768 uint_t type; 6769 int match_flags = MATCH_IRE_TYPE; 6770 int error; 6771 tsol_gc_t *gc = NULL; 6772 tsol_gcgrp_t *gcgrp = NULL; 6773 boolean_t gcgrp_xtraref = B_FALSE; 6774 6775 ip1dbg(("ip_rt_add:")); 6776 6777 if (ire_arg != NULL) 6778 *ire_arg = NULL; 6779 6780 /* 6781 * If this is the case of RTF_HOST being set, then we set the netmask 6782 * to all ones (regardless if one was supplied). 6783 */ 6784 if (flags & RTF_HOST) 6785 mask = IP_HOST_MASK; 6786 6787 /* 6788 * Prevent routes with a zero gateway from being created (since 6789 * interfaces can currently be plumbed and brought up no assigned 6790 * address). 6791 */ 6792 if (gw_addr == 0) 6793 return (ENETUNREACH); 6794 /* 6795 * Get the ipif, if any, corresponding to the gw_addr 6796 */ 6797 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6798 ipst); 6799 if (ipif != NULL) { 6800 if (IS_VNI(ipif->ipif_ill)) { 6801 ipif_refrele(ipif); 6802 return (EINVAL); 6803 } 6804 ipif_refheld = B_TRUE; 6805 } else if (error == EINPROGRESS) { 6806 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6807 return (EINPROGRESS); 6808 } else { 6809 error = 0; 6810 } 6811 6812 if (ipif != NULL) { 6813 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6814 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6815 } else { 6816 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6817 } 6818 6819 /* 6820 * GateD will attempt to create routes with a loopback interface 6821 * address as the gateway and with RTF_GATEWAY set. We allow 6822 * these routes to be added, but create them as interface routes 6823 * since the gateway is an interface address. 6824 */ 6825 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6826 flags &= ~RTF_GATEWAY; 6827 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6828 mask == IP_HOST_MASK) { 6829 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6830 ALL_ZONES, NULL, match_flags, ipst); 6831 if (ire != NULL) { 6832 ire_refrele(ire); 6833 if (ipif_refheld) 6834 ipif_refrele(ipif); 6835 return (EEXIST); 6836 } 6837 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6838 "for 0x%x\n", (void *)ipif, 6839 ipif->ipif_ire_type, 6840 ntohl(ipif->ipif_lcl_addr))); 6841 ire = ire_create( 6842 (uchar_t *)&dst_addr, /* dest address */ 6843 (uchar_t *)&mask, /* mask */ 6844 (uchar_t *)&ipif->ipif_src_addr, 6845 NULL, /* no gateway */ 6846 &ipif->ipif_mtu, 6847 NULL, 6848 ipif->ipif_rq, /* recv-from queue */ 6849 NULL, /* no send-to queue */ 6850 ipif->ipif_ire_type, /* LOOPBACK */ 6851 ipif, 6852 0, 6853 0, 6854 0, 6855 (ipif->ipif_flags & IPIF_PRIVATE) ? 6856 RTF_PRIVATE : 0, 6857 &ire_uinfo_null, 6858 NULL, 6859 NULL, 6860 ipst); 6861 6862 if (ire == NULL) { 6863 if (ipif_refheld) 6864 ipif_refrele(ipif); 6865 return (ENOMEM); 6866 } 6867 error = ire_add(&ire, q, mp, func, B_FALSE); 6868 if (error == 0) 6869 goto save_ire; 6870 if (ipif_refheld) 6871 ipif_refrele(ipif); 6872 return (error); 6873 6874 } 6875 } 6876 6877 /* 6878 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6879 * and the gateway address provided is one of the system's interface 6880 * addresses. By using the routing socket interface and supplying an 6881 * RTA_IFP sockaddr with an interface index, an alternate method of 6882 * specifying an interface route to be created is available which uses 6883 * the interface index that specifies the outgoing interface rather than 6884 * the address of an outgoing interface (which may not be able to 6885 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6886 * flag, routes can be specified which not only specify the next-hop to 6887 * be used when routing to a certain prefix, but also which outgoing 6888 * interface should be used. 6889 * 6890 * Previously, interfaces would have unique addresses assigned to them 6891 * and so the address assigned to a particular interface could be used 6892 * to identify a particular interface. One exception to this was the 6893 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6894 * 6895 * With the advent of IPv6 and its link-local addresses, this 6896 * restriction was relaxed and interfaces could share addresses between 6897 * themselves. In fact, typically all of the link-local interfaces on 6898 * an IPv6 node or router will have the same link-local address. In 6899 * order to differentiate between these interfaces, the use of an 6900 * interface index is necessary and this index can be carried inside a 6901 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6902 * of using the interface index, however, is that all of the ipif's that 6903 * are part of an ill have the same index and so the RTA_IFP sockaddr 6904 * cannot be used to differentiate between ipif's (or logical 6905 * interfaces) that belong to the same ill (physical interface). 6906 * 6907 * For example, in the following case involving IPv4 interfaces and 6908 * logical interfaces 6909 * 6910 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6911 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6912 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6913 * 6914 * the ipif's corresponding to each of these interface routes can be 6915 * uniquely identified by the "gateway" (actually interface address). 6916 * 6917 * In this case involving multiple IPv6 default routes to a particular 6918 * link-local gateway, the use of RTA_IFP is necessary to specify which 6919 * default route is of interest: 6920 * 6921 * default fe80::123:4567:89ab:cdef U if0 6922 * default fe80::123:4567:89ab:cdef U if1 6923 */ 6924 6925 /* RTF_GATEWAY not set */ 6926 if (!(flags & RTF_GATEWAY)) { 6927 queue_t *stq; 6928 6929 if (sp != NULL) { 6930 ip2dbg(("ip_rt_add: gateway security attributes " 6931 "cannot be set with interface route\n")); 6932 if (ipif_refheld) 6933 ipif_refrele(ipif); 6934 return (EINVAL); 6935 } 6936 6937 /* 6938 * As the interface index specified with the RTA_IFP sockaddr is 6939 * the same for all ipif's off of an ill, the matching logic 6940 * below uses MATCH_IRE_ILL if such an index was specified. 6941 * This means that routes sharing the same prefix when added 6942 * using a RTA_IFP sockaddr must have distinct interface 6943 * indices (namely, they must be on distinct ill's). 6944 * 6945 * On the other hand, since the gateway address will usually be 6946 * different for each ipif on the system, the matching logic 6947 * uses MATCH_IRE_IPIF in the case of a traditional interface 6948 * route. This means that interface routes for the same prefix 6949 * can be created if they belong to distinct ipif's and if a 6950 * RTA_IFP sockaddr is not present. 6951 */ 6952 if (ipif_arg != NULL) { 6953 if (ipif_refheld) { 6954 ipif_refrele(ipif); 6955 ipif_refheld = B_FALSE; 6956 } 6957 ipif = ipif_arg; 6958 match_flags |= MATCH_IRE_ILL; 6959 } else { 6960 /* 6961 * Check the ipif corresponding to the gw_addr 6962 */ 6963 if (ipif == NULL) 6964 return (ENETUNREACH); 6965 match_flags |= MATCH_IRE_IPIF; 6966 } 6967 ASSERT(ipif != NULL); 6968 6969 /* 6970 * We check for an existing entry at this point. 6971 * 6972 * Since a netmask isn't passed in via the ioctl interface 6973 * (SIOCADDRT), we don't check for a matching netmask in that 6974 * case. 6975 */ 6976 if (!ioctl_msg) 6977 match_flags |= MATCH_IRE_MASK; 6978 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6979 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6980 if (ire != NULL) { 6981 ire_refrele(ire); 6982 if (ipif_refheld) 6983 ipif_refrele(ipif); 6984 return (EEXIST); 6985 } 6986 6987 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6988 ? ipif->ipif_rq : ipif->ipif_wq; 6989 6990 /* 6991 * Create a copy of the IRE_LOOPBACK, 6992 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6993 * the modified address and netmask. 6994 */ 6995 ire = ire_create( 6996 (uchar_t *)&dst_addr, 6997 (uint8_t *)&mask, 6998 (uint8_t *)&ipif->ipif_src_addr, 6999 NULL, 7000 &ipif->ipif_mtu, 7001 NULL, 7002 NULL, 7003 stq, 7004 ipif->ipif_net_type, 7005 ipif, 7006 0, 7007 0, 7008 0, 7009 flags, 7010 &ire_uinfo_null, 7011 NULL, 7012 NULL, 7013 ipst); 7014 if (ire == NULL) { 7015 if (ipif_refheld) 7016 ipif_refrele(ipif); 7017 return (ENOMEM); 7018 } 7019 7020 /* 7021 * Some software (for example, GateD and Sun Cluster) attempts 7022 * to create (what amount to) IRE_PREFIX routes with the 7023 * loopback address as the gateway. This is primarily done to 7024 * set up prefixes with the RTF_REJECT flag set (for example, 7025 * when generating aggregate routes.) 7026 * 7027 * If the IRE type (as defined by ipif->ipif_net_type) is 7028 * IRE_LOOPBACK, then we map the request into a 7029 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7030 * these interface routes, by definition, can only be that. 7031 * 7032 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7033 * routine, but rather using ire_create() directly. 7034 * 7035 */ 7036 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7037 ire->ire_type = IRE_IF_NORESOLVER; 7038 ire->ire_flags |= RTF_BLACKHOLE; 7039 } 7040 7041 error = ire_add(&ire, q, mp, func, B_FALSE); 7042 if (error == 0) 7043 goto save_ire; 7044 7045 /* 7046 * In the result of failure, ire_add() will have already 7047 * deleted the ire in question, so there is no need to 7048 * do that here. 7049 */ 7050 if (ipif_refheld) 7051 ipif_refrele(ipif); 7052 return (error); 7053 } 7054 if (ipif_refheld) { 7055 ipif_refrele(ipif); 7056 ipif_refheld = B_FALSE; 7057 } 7058 7059 /* 7060 * Get an interface IRE for the specified gateway. 7061 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7062 * gateway, it is currently unreachable and we fail the request 7063 * accordingly. 7064 */ 7065 ipif = ipif_arg; 7066 if (ipif_arg != NULL) 7067 match_flags |= MATCH_IRE_ILL; 7068 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7069 ALL_ZONES, 0, NULL, match_flags, ipst); 7070 if (gw_ire == NULL) 7071 return (ENETUNREACH); 7072 7073 /* 7074 * We create one of three types of IREs as a result of this request 7075 * based on the netmask. A netmask of all ones (which is automatically 7076 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7077 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7078 * created. Otherwise, an IRE_PREFIX route is created for the 7079 * destination prefix. 7080 */ 7081 if (mask == IP_HOST_MASK) 7082 type = IRE_HOST; 7083 else if (mask == 0) 7084 type = IRE_DEFAULT; 7085 else 7086 type = IRE_PREFIX; 7087 7088 /* check for a duplicate entry */ 7089 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7090 NULL, ALL_ZONES, 0, NULL, 7091 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7092 if (ire != NULL) { 7093 ire_refrele(gw_ire); 7094 ire_refrele(ire); 7095 return (EEXIST); 7096 } 7097 7098 /* Security attribute exists */ 7099 if (sp != NULL) { 7100 tsol_gcgrp_addr_t ga; 7101 7102 /* find or create the gateway credentials group */ 7103 ga.ga_af = AF_INET; 7104 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7105 7106 /* we hold reference to it upon success */ 7107 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7108 if (gcgrp == NULL) { 7109 ire_refrele(gw_ire); 7110 return (ENOMEM); 7111 } 7112 7113 /* 7114 * Create and add the security attribute to the group; a 7115 * reference to the group is made upon allocating a new 7116 * entry successfully. If it finds an already-existing 7117 * entry for the security attribute in the group, it simply 7118 * returns it and no new reference is made to the group. 7119 */ 7120 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7121 if (gc == NULL) { 7122 /* release reference held by gcgrp_lookup */ 7123 GCGRP_REFRELE(gcgrp); 7124 ire_refrele(gw_ire); 7125 return (ENOMEM); 7126 } 7127 } 7128 7129 /* Create the IRE. */ 7130 ire = ire_create( 7131 (uchar_t *)&dst_addr, /* dest address */ 7132 (uchar_t *)&mask, /* mask */ 7133 /* src address assigned by the caller? */ 7134 (uchar_t *)(((src_addr != INADDR_ANY) && 7135 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7136 (uchar_t *)&gw_addr, /* gateway address */ 7137 &gw_ire->ire_max_frag, 7138 NULL, /* no src nce */ 7139 NULL, /* no recv-from queue */ 7140 NULL, /* no send-to queue */ 7141 (ushort_t)type, /* IRE type */ 7142 ipif_arg, 7143 0, 7144 0, 7145 0, 7146 flags, 7147 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7148 gc, /* security attribute */ 7149 NULL, 7150 ipst); 7151 7152 /* 7153 * The ire holds a reference to the 'gc' and the 'gc' holds a 7154 * reference to the 'gcgrp'. We can now release the extra reference 7155 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7156 */ 7157 if (gcgrp_xtraref) 7158 GCGRP_REFRELE(gcgrp); 7159 if (ire == NULL) { 7160 if (gc != NULL) 7161 GC_REFRELE(gc); 7162 ire_refrele(gw_ire); 7163 return (ENOMEM); 7164 } 7165 7166 /* 7167 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7168 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7169 */ 7170 7171 /* Add the new IRE. */ 7172 error = ire_add(&ire, q, mp, func, B_FALSE); 7173 if (error != 0) { 7174 /* 7175 * In the result of failure, ire_add() will have already 7176 * deleted the ire in question, so there is no need to 7177 * do that here. 7178 */ 7179 ire_refrele(gw_ire); 7180 return (error); 7181 } 7182 7183 if (flags & RTF_MULTIRT) { 7184 /* 7185 * Invoke the CGTP (multirouting) filtering module 7186 * to add the dst address in the filtering database. 7187 * Replicated inbound packets coming from that address 7188 * will be filtered to discard the duplicates. 7189 * It is not necessary to call the CGTP filter hook 7190 * when the dst address is a broadcast or multicast, 7191 * because an IP source address cannot be a broadcast 7192 * or a multicast. 7193 */ 7194 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7195 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7196 if (ire_dst != NULL) { 7197 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7198 ire_refrele(ire_dst); 7199 goto save_ire; 7200 } 7201 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7202 !CLASSD(ire->ire_addr)) { 7203 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7204 ipst->ips_netstack->netstack_stackid, 7205 ire->ire_addr, 7206 ire->ire_gateway_addr, 7207 ire->ire_src_addr, 7208 gw_ire->ire_src_addr); 7209 if (res != 0) { 7210 ire_refrele(gw_ire); 7211 ire_delete(ire); 7212 return (res); 7213 } 7214 } 7215 } 7216 7217 /* 7218 * Now that the prefix IRE entry has been created, delete any 7219 * existing gateway IRE cache entries as well as any IRE caches 7220 * using the gateway, and force them to be created through 7221 * ip_newroute. 7222 */ 7223 if (gc != NULL) { 7224 ASSERT(gcgrp != NULL); 7225 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7226 } 7227 7228 save_ire: 7229 if (gw_ire != NULL) { 7230 ire_refrele(gw_ire); 7231 } 7232 if (ipif != NULL) { 7233 /* 7234 * Save enough information so that we can recreate the IRE if 7235 * the interface goes down and then up. The metrics associated 7236 * with the route will be saved as well when rts_setmetrics() is 7237 * called after the IRE has been created. In the case where 7238 * memory cannot be allocated, none of this information will be 7239 * saved. 7240 */ 7241 ipif_save_ire(ipif, ire); 7242 } 7243 if (ioctl_msg) 7244 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7245 if (ire_arg != NULL) { 7246 /* 7247 * Store the ire that was successfully added into where ire_arg 7248 * points to so that callers don't have to look it up 7249 * themselves (but they are responsible for ire_refrele()ing 7250 * the ire when they are finished with it). 7251 */ 7252 *ire_arg = ire; 7253 } else { 7254 ire_refrele(ire); /* Held in ire_add */ 7255 } 7256 if (ipif_refheld) 7257 ipif_refrele(ipif); 7258 return (0); 7259 } 7260 7261 /* 7262 * ip_rt_delete is called to delete an IPv4 route. 7263 * ipif_arg is passed in to associate it with the correct interface. 7264 * We may need to restart this operation if the ipif cannot be looked up 7265 * due to an exclusive operation that is currently in progress. The restart 7266 * entry point is specified by 'func' 7267 */ 7268 /* ARGSUSED4 */ 7269 int 7270 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7271 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7272 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7273 { 7274 ire_t *ire = NULL; 7275 ipif_t *ipif; 7276 boolean_t ipif_refheld = B_FALSE; 7277 uint_t type; 7278 uint_t match_flags = MATCH_IRE_TYPE; 7279 int err = 0; 7280 7281 ip1dbg(("ip_rt_delete:")); 7282 /* 7283 * If this is the case of RTF_HOST being set, then we set the netmask 7284 * to all ones. Otherwise, we use the netmask if one was supplied. 7285 */ 7286 if (flags & RTF_HOST) { 7287 mask = IP_HOST_MASK; 7288 match_flags |= MATCH_IRE_MASK; 7289 } else if (rtm_addrs & RTA_NETMASK) { 7290 match_flags |= MATCH_IRE_MASK; 7291 } 7292 7293 /* 7294 * Note that RTF_GATEWAY is never set on a delete, therefore 7295 * we check if the gateway address is one of our interfaces first, 7296 * and fall back on RTF_GATEWAY routes. 7297 * 7298 * This makes it possible to delete an original 7299 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7300 * 7301 * As the interface index specified with the RTA_IFP sockaddr is the 7302 * same for all ipif's off of an ill, the matching logic below uses 7303 * MATCH_IRE_ILL if such an index was specified. This means a route 7304 * sharing the same prefix and interface index as the the route 7305 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7306 * is specified in the request. 7307 * 7308 * On the other hand, since the gateway address will usually be 7309 * different for each ipif on the system, the matching logic 7310 * uses MATCH_IRE_IPIF in the case of a traditional interface 7311 * route. This means that interface routes for the same prefix can be 7312 * uniquely identified if they belong to distinct ipif's and if a 7313 * RTA_IFP sockaddr is not present. 7314 * 7315 * For more detail on specifying routes by gateway address and by 7316 * interface index, see the comments in ip_rt_add(). 7317 */ 7318 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7319 ipst); 7320 if (ipif != NULL) 7321 ipif_refheld = B_TRUE; 7322 else if (err == EINPROGRESS) 7323 return (err); 7324 else 7325 err = 0; 7326 if (ipif != NULL) { 7327 if (ipif_arg != NULL) { 7328 if (ipif_refheld) { 7329 ipif_refrele(ipif); 7330 ipif_refheld = B_FALSE; 7331 } 7332 ipif = ipif_arg; 7333 match_flags |= MATCH_IRE_ILL; 7334 } else { 7335 match_flags |= MATCH_IRE_IPIF; 7336 } 7337 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7338 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7339 ALL_ZONES, NULL, match_flags, ipst); 7340 } 7341 if (ire == NULL) { 7342 ire = ire_ftable_lookup(dst_addr, mask, 0, 7343 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7344 match_flags, ipst); 7345 } 7346 } 7347 7348 if (ire == NULL) { 7349 /* 7350 * At this point, the gateway address is not one of our own 7351 * addresses or a matching interface route was not found. We 7352 * set the IRE type to lookup based on whether 7353 * this is a host route, a default route or just a prefix. 7354 * 7355 * If an ipif_arg was passed in, then the lookup is based on an 7356 * interface index so MATCH_IRE_ILL is added to match_flags. 7357 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7358 * set as the route being looked up is not a traditional 7359 * interface route. 7360 */ 7361 match_flags &= ~MATCH_IRE_IPIF; 7362 match_flags |= MATCH_IRE_GW; 7363 if (ipif_arg != NULL) 7364 match_flags |= MATCH_IRE_ILL; 7365 if (mask == IP_HOST_MASK) 7366 type = IRE_HOST; 7367 else if (mask == 0) 7368 type = IRE_DEFAULT; 7369 else 7370 type = IRE_PREFIX; 7371 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7372 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7373 } 7374 7375 if (ipif_refheld) 7376 ipif_refrele(ipif); 7377 7378 /* ipif is not refheld anymore */ 7379 if (ire == NULL) 7380 return (ESRCH); 7381 7382 if (ire->ire_flags & RTF_MULTIRT) { 7383 /* 7384 * Invoke the CGTP (multirouting) filtering module 7385 * to remove the dst address from the filtering database. 7386 * Packets coming from that address will no longer be 7387 * filtered to remove duplicates. 7388 */ 7389 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7390 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7391 ipst->ips_netstack->netstack_stackid, 7392 ire->ire_addr, ire->ire_gateway_addr); 7393 } 7394 ip_cgtp_bcast_delete(ire, ipst); 7395 } 7396 7397 ipif = ire->ire_ipif; 7398 if (ipif != NULL) 7399 ipif_remove_ire(ipif, ire); 7400 if (ioctl_msg) 7401 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7402 ire_delete(ire); 7403 ire_refrele(ire); 7404 return (err); 7405 } 7406 7407 /* 7408 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7409 */ 7410 /* ARGSUSED */ 7411 int 7412 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7413 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7414 { 7415 ipaddr_t dst_addr; 7416 ipaddr_t gw_addr; 7417 ipaddr_t mask; 7418 int error = 0; 7419 mblk_t *mp1; 7420 struct rtentry *rt; 7421 ipif_t *ipif = NULL; 7422 ip_stack_t *ipst; 7423 7424 ASSERT(q->q_next == NULL); 7425 ipst = CONNQ_TO_IPST(q); 7426 7427 ip1dbg(("ip_siocaddrt:")); 7428 /* Existence of mp1 verified in ip_wput_nondata */ 7429 mp1 = mp->b_cont->b_cont; 7430 rt = (struct rtentry *)mp1->b_rptr; 7431 7432 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7433 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7434 7435 /* 7436 * If the RTF_HOST flag is on, this is a request to assign a gateway 7437 * to a particular host address. In this case, we set the netmask to 7438 * all ones for the particular destination address. Otherwise, 7439 * determine the netmask to be used based on dst_addr and the interfaces 7440 * in use. 7441 */ 7442 if (rt->rt_flags & RTF_HOST) { 7443 mask = IP_HOST_MASK; 7444 } else { 7445 /* 7446 * Note that ip_subnet_mask returns a zero mask in the case of 7447 * default (an all-zeroes address). 7448 */ 7449 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7450 } 7451 7452 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7453 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7454 if (ipif != NULL) 7455 ipif_refrele(ipif); 7456 return (error); 7457 } 7458 7459 /* 7460 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7461 */ 7462 /* ARGSUSED */ 7463 int 7464 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7465 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7466 { 7467 ipaddr_t dst_addr; 7468 ipaddr_t gw_addr; 7469 ipaddr_t mask; 7470 int error; 7471 mblk_t *mp1; 7472 struct rtentry *rt; 7473 ipif_t *ipif = NULL; 7474 ip_stack_t *ipst; 7475 7476 ASSERT(q->q_next == NULL); 7477 ipst = CONNQ_TO_IPST(q); 7478 7479 ip1dbg(("ip_siocdelrt:")); 7480 /* Existence of mp1 verified in ip_wput_nondata */ 7481 mp1 = mp->b_cont->b_cont; 7482 rt = (struct rtentry *)mp1->b_rptr; 7483 7484 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7485 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7486 7487 /* 7488 * If the RTF_HOST flag is on, this is a request to delete a gateway 7489 * to a particular host address. In this case, we set the netmask to 7490 * all ones for the particular destination address. Otherwise, 7491 * determine the netmask to be used based on dst_addr and the interfaces 7492 * in use. 7493 */ 7494 if (rt->rt_flags & RTF_HOST) { 7495 mask = IP_HOST_MASK; 7496 } else { 7497 /* 7498 * Note that ip_subnet_mask returns a zero mask in the case of 7499 * default (an all-zeroes address). 7500 */ 7501 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7502 } 7503 7504 error = ip_rt_delete(dst_addr, mask, gw_addr, 7505 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7506 mp, ip_process_ioctl, ipst); 7507 if (ipif != NULL) 7508 ipif_refrele(ipif); 7509 return (error); 7510 } 7511 7512 /* 7513 * Enqueue the mp onto the ipsq, chained by b_next. 7514 * b_prev stores the function to be executed later, and b_queue the queue 7515 * where this mp originated. 7516 */ 7517 void 7518 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7519 ill_t *pending_ill) 7520 { 7521 conn_t *connp = NULL; 7522 7523 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7524 ASSERT(func != NULL); 7525 7526 mp->b_queue = q; 7527 mp->b_prev = (void *)func; 7528 mp->b_next = NULL; 7529 7530 switch (type) { 7531 case CUR_OP: 7532 if (ipsq->ipsq_mptail != NULL) { 7533 ASSERT(ipsq->ipsq_mphead != NULL); 7534 ipsq->ipsq_mptail->b_next = mp; 7535 } else { 7536 ASSERT(ipsq->ipsq_mphead == NULL); 7537 ipsq->ipsq_mphead = mp; 7538 } 7539 ipsq->ipsq_mptail = mp; 7540 break; 7541 7542 case NEW_OP: 7543 if (ipsq->ipsq_xopq_mptail != NULL) { 7544 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7545 ipsq->ipsq_xopq_mptail->b_next = mp; 7546 } else { 7547 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7548 ipsq->ipsq_xopq_mphead = mp; 7549 } 7550 ipsq->ipsq_xopq_mptail = mp; 7551 break; 7552 default: 7553 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7554 } 7555 7556 if (CONN_Q(q) && pending_ill != NULL) { 7557 connp = Q_TO_CONN(q); 7558 7559 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7560 connp->conn_oper_pending_ill = pending_ill; 7561 } 7562 } 7563 7564 /* 7565 * Return the mp at the head of the ipsq. After emptying the ipsq 7566 * look at the next ioctl, if this ioctl is complete. Otherwise 7567 * return, we will resume when we complete the current ioctl. 7568 * The current ioctl will wait till it gets a response from the 7569 * driver below. 7570 */ 7571 static mblk_t * 7572 ipsq_dq(ipsq_t *ipsq) 7573 { 7574 mblk_t *mp; 7575 7576 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7577 7578 mp = ipsq->ipsq_mphead; 7579 if (mp != NULL) { 7580 ipsq->ipsq_mphead = mp->b_next; 7581 if (ipsq->ipsq_mphead == NULL) 7582 ipsq->ipsq_mptail = NULL; 7583 mp->b_next = NULL; 7584 return (mp); 7585 } 7586 if (ipsq->ipsq_current_ipif != NULL) 7587 return (NULL); 7588 mp = ipsq->ipsq_xopq_mphead; 7589 if (mp != NULL) { 7590 ipsq->ipsq_xopq_mphead = mp->b_next; 7591 if (ipsq->ipsq_xopq_mphead == NULL) 7592 ipsq->ipsq_xopq_mptail = NULL; 7593 mp->b_next = NULL; 7594 return (mp); 7595 } 7596 return (NULL); 7597 } 7598 7599 /* 7600 * Enter the ipsq corresponding to ill, by waiting synchronously till 7601 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7602 * will have to drain completely before ipsq_enter returns success. 7603 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7604 * and the ipsq_exit logic will start the next enqueued ioctl after 7605 * completion of the current ioctl. If 'force' is used, we don't wait 7606 * for the enqueued ioctls. This is needed when a conn_close wants to 7607 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7608 * of an ill can also use this option. But we dont' use it currently. 7609 */ 7610 #define ENTER_SQ_WAIT_TICKS 100 7611 boolean_t 7612 ipsq_enter(ill_t *ill, boolean_t force) 7613 { 7614 ipsq_t *ipsq; 7615 boolean_t waited_enough = B_FALSE; 7616 7617 /* 7618 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7619 * Since the <ill-ipsq> assocs could change while we wait for the 7620 * writer, it is easier to wait on a fixed global rather than try to 7621 * cv_wait on a changing ipsq. 7622 */ 7623 mutex_enter(&ill->ill_lock); 7624 for (;;) { 7625 if (ill->ill_state_flags & ILL_CONDEMNED) { 7626 mutex_exit(&ill->ill_lock); 7627 return (B_FALSE); 7628 } 7629 7630 ipsq = ill->ill_phyint->phyint_ipsq; 7631 mutex_enter(&ipsq->ipsq_lock); 7632 if (ipsq->ipsq_writer == NULL && 7633 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7634 break; 7635 } else if (ipsq->ipsq_writer != NULL) { 7636 mutex_exit(&ipsq->ipsq_lock); 7637 cv_wait(&ill->ill_cv, &ill->ill_lock); 7638 } else { 7639 mutex_exit(&ipsq->ipsq_lock); 7640 if (force) { 7641 (void) cv_timedwait(&ill->ill_cv, 7642 &ill->ill_lock, 7643 lbolt + ENTER_SQ_WAIT_TICKS); 7644 waited_enough = B_TRUE; 7645 continue; 7646 } else { 7647 cv_wait(&ill->ill_cv, &ill->ill_lock); 7648 } 7649 } 7650 } 7651 7652 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7653 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7654 ipsq->ipsq_writer = curthread; 7655 ipsq->ipsq_reentry_cnt++; 7656 #ifdef DEBUG 7657 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7658 #endif 7659 mutex_exit(&ipsq->ipsq_lock); 7660 mutex_exit(&ill->ill_lock); 7661 return (B_TRUE); 7662 } 7663 7664 /* 7665 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7666 * certain critical operations like plumbing (i.e. most set ioctls), 7667 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7668 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7669 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7670 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7671 * threads executing in the ipsq. Responses from the driver pertain to the 7672 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7673 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7674 * 7675 * If a thread does not want to reenter the ipsq when it is already writer, 7676 * it must make sure that the specified reentry point to be called later 7677 * when the ipsq is empty, nor any code path starting from the specified reentry 7678 * point must never ever try to enter the ipsq again. Otherwise it can lead 7679 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7680 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7681 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7682 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7683 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7684 * ioctl if the current ioctl has completed. If the current ioctl is still 7685 * in progress it simply returns. The current ioctl could be waiting for 7686 * a response from another module (arp_ or the driver or could be waiting for 7687 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7688 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7689 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7690 * ipsq_current_ipif is clear which happens only on ioctl completion. 7691 */ 7692 7693 /* 7694 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7695 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7696 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7697 * completion. 7698 */ 7699 ipsq_t * 7700 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7701 ipsq_func_t func, int type, boolean_t reentry_ok) 7702 { 7703 ipsq_t *ipsq; 7704 7705 /* Only 1 of ipif or ill can be specified */ 7706 ASSERT((ipif != NULL) ^ (ill != NULL)); 7707 if (ipif != NULL) 7708 ill = ipif->ipif_ill; 7709 7710 /* 7711 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7712 * ipsq of an ill can't change when ill_lock is held. 7713 */ 7714 GRAB_CONN_LOCK(q); 7715 mutex_enter(&ill->ill_lock); 7716 ipsq = ill->ill_phyint->phyint_ipsq; 7717 mutex_enter(&ipsq->ipsq_lock); 7718 7719 /* 7720 * 1. Enter the ipsq if we are already writer and reentry is ok. 7721 * (Note: If the caller does not specify reentry_ok then neither 7722 * 'func' nor any of its callees must ever attempt to enter the ipsq 7723 * again. Otherwise it can lead to an infinite loop 7724 * 2. Enter the ipsq if there is no current writer and this attempted 7725 * entry is part of the current ioctl or operation 7726 * 3. Enter the ipsq if there is no current writer and this is a new 7727 * ioctl (or operation) and the ioctl (or operation) queue is 7728 * empty and there is no ioctl (or operation) currently in progress 7729 */ 7730 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7731 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7732 ipsq->ipsq_current_ipif == NULL))) || 7733 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7734 /* Success. */ 7735 ipsq->ipsq_reentry_cnt++; 7736 ipsq->ipsq_writer = curthread; 7737 mutex_exit(&ipsq->ipsq_lock); 7738 mutex_exit(&ill->ill_lock); 7739 RELEASE_CONN_LOCK(q); 7740 #ifdef DEBUG 7741 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7742 IPSQ_STACK_DEPTH); 7743 #endif 7744 return (ipsq); 7745 } 7746 7747 ipsq_enq(ipsq, q, mp, func, type, ill); 7748 7749 mutex_exit(&ipsq->ipsq_lock); 7750 mutex_exit(&ill->ill_lock); 7751 RELEASE_CONN_LOCK(q); 7752 return (NULL); 7753 } 7754 7755 /* 7756 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7757 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7758 * cannot be entered, the mp is queued for completion. 7759 */ 7760 void 7761 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7762 boolean_t reentry_ok) 7763 { 7764 ipsq_t *ipsq; 7765 7766 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7767 7768 /* 7769 * Drop the caller's refhold on the ill. This is safe since we either 7770 * entered the IPSQ (and thus are exclusive), or failed to enter the 7771 * IPSQ, in which case we return without accessing ill anymore. This 7772 * is needed because func needs to see the correct refcount. 7773 * e.g. removeif can work only then. 7774 */ 7775 ill_refrele(ill); 7776 if (ipsq != NULL) { 7777 (*func)(ipsq, q, mp, NULL); 7778 ipsq_exit(ipsq); 7779 } 7780 } 7781 7782 /* 7783 * If there are more than ILL_GRP_CNT ills in a group, 7784 * we use kmem alloc'd buffers, else use the stack 7785 */ 7786 #define ILL_GRP_CNT 14 7787 /* 7788 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7789 * Called by a thread that is currently exclusive on this ipsq. 7790 */ 7791 void 7792 ipsq_exit(ipsq_t *ipsq) 7793 { 7794 queue_t *q; 7795 mblk_t *mp; 7796 ipsq_func_t func; 7797 int next; 7798 ill_t **ill_list = NULL; 7799 size_t ill_list_size = 0; 7800 int cnt = 0; 7801 boolean_t need_ipsq_free = B_FALSE; 7802 ip_stack_t *ipst = ipsq->ipsq_ipst; 7803 7804 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7805 mutex_enter(&ipsq->ipsq_lock); 7806 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7807 if (ipsq->ipsq_reentry_cnt != 1) { 7808 ipsq->ipsq_reentry_cnt--; 7809 mutex_exit(&ipsq->ipsq_lock); 7810 return; 7811 } 7812 7813 mp = ipsq_dq(ipsq); 7814 while (mp != NULL) { 7815 again: 7816 mutex_exit(&ipsq->ipsq_lock); 7817 func = (ipsq_func_t)mp->b_prev; 7818 q = (queue_t *)mp->b_queue; 7819 mp->b_prev = NULL; 7820 mp->b_queue = NULL; 7821 7822 /* 7823 * If 'q' is an conn queue, it is valid, since we did a 7824 * a refhold on the connp, at the start of the ioctl. 7825 * If 'q' is an ill queue, it is valid, since close of an 7826 * ill will clean up the 'ipsq'. 7827 */ 7828 (*func)(ipsq, q, mp, NULL); 7829 7830 mutex_enter(&ipsq->ipsq_lock); 7831 mp = ipsq_dq(ipsq); 7832 } 7833 7834 mutex_exit(&ipsq->ipsq_lock); 7835 7836 /* 7837 * Need to grab the locks in the right order. Need to 7838 * atomically check (under ipsq_lock) that there are no 7839 * messages before relinquishing the ipsq. Also need to 7840 * atomically wakeup waiters on ill_cv while holding ill_lock. 7841 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7842 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7843 * to grab ill_g_lock as writer. 7844 */ 7845 rw_enter(&ipst->ips_ill_g_lock, 7846 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7847 7848 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7849 if (ipsq->ipsq_refs != 0) { 7850 /* At most 2 ills v4/v6 per phyint */ 7851 cnt = ipsq->ipsq_refs << 1; 7852 ill_list_size = cnt * sizeof (ill_t *); 7853 /* 7854 * If memory allocation fails, we will do the split 7855 * the next time ipsq_exit is called for whatever reason. 7856 * As long as the ipsq_split flag is set the need to 7857 * split is remembered. 7858 */ 7859 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7860 if (ill_list != NULL) 7861 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7862 } 7863 mutex_enter(&ipsq->ipsq_lock); 7864 mp = ipsq_dq(ipsq); 7865 if (mp != NULL) { 7866 /* oops, some message has landed up, we can't get out */ 7867 if (ill_list != NULL) 7868 ill_unlock_ills(ill_list, cnt); 7869 rw_exit(&ipst->ips_ill_g_lock); 7870 if (ill_list != NULL) 7871 kmem_free(ill_list, ill_list_size); 7872 ill_list = NULL; 7873 ill_list_size = 0; 7874 cnt = 0; 7875 goto again; 7876 } 7877 7878 /* 7879 * Split only if no ioctl is pending and if memory alloc succeeded 7880 * above. 7881 */ 7882 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7883 ill_list != NULL) { 7884 /* 7885 * No new ill can join this ipsq since we are holding the 7886 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7887 * ipsq. ill_split_ipsq may fail due to memory shortage. 7888 * If so we will retry on the next ipsq_exit. 7889 */ 7890 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7891 } 7892 7893 /* 7894 * We are holding the ipsq lock, hence no new messages can 7895 * land up on the ipsq, and there are no messages currently. 7896 * Now safe to get out. Wake up waiters and relinquish ipsq 7897 * atomically while holding ill locks. 7898 */ 7899 ipsq->ipsq_writer = NULL; 7900 ipsq->ipsq_reentry_cnt--; 7901 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7902 #ifdef DEBUG 7903 ipsq->ipsq_depth = 0; 7904 #endif 7905 mutex_exit(&ipsq->ipsq_lock); 7906 /* 7907 * For IPMP this should wake up all ills in this ipsq. 7908 * We need to hold the ill_lock while waking up waiters to 7909 * avoid missed wakeups. But there is no need to acquire all 7910 * the ill locks and then wakeup. If we have not acquired all 7911 * the locks (due to memory failure above) ill_signal_ipsq_ills 7912 * wakes up ills one at a time after getting the right ill_lock 7913 */ 7914 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7915 if (ill_list != NULL) 7916 ill_unlock_ills(ill_list, cnt); 7917 if (ipsq->ipsq_refs == 0) 7918 need_ipsq_free = B_TRUE; 7919 rw_exit(&ipst->ips_ill_g_lock); 7920 if (ill_list != 0) 7921 kmem_free(ill_list, ill_list_size); 7922 7923 if (need_ipsq_free) { 7924 /* 7925 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7926 * looked up. ipsq can be looked up only thru ill or phyint 7927 * and there are no ills/phyint on this ipsq. 7928 */ 7929 ipsq_delete(ipsq); 7930 } 7931 7932 /* 7933 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7934 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7935 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7936 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7937 * (executing the timeout, waiting to get inside the IPSQ). 7938 * 7939 * However, there is one exception to the above: if this thread *is* 7940 * the IGMP/MLD timeout handler thread, then we must not start its 7941 * timer until the current handler is done. 7942 */ 7943 mutex_enter(&ipst->ips_igmp_timer_lock); 7944 if (curthread != ipst->ips_igmp_timer_thread) { 7945 next = ipst->ips_igmp_deferred_next; 7946 ipst->ips_igmp_deferred_next = INFINITY; 7947 mutex_exit(&ipst->ips_igmp_timer_lock); 7948 7949 if (next != INFINITY) 7950 igmp_start_timers(next, ipst); 7951 } else { 7952 mutex_exit(&ipst->ips_igmp_timer_lock); 7953 } 7954 7955 mutex_enter(&ipst->ips_mld_timer_lock); 7956 if (curthread != ipst->ips_mld_timer_thread) { 7957 next = ipst->ips_mld_deferred_next; 7958 ipst->ips_mld_deferred_next = INFINITY; 7959 mutex_exit(&ipst->ips_mld_timer_lock); 7960 7961 if (next != INFINITY) 7962 mld_start_timers(next, ipst); 7963 } else { 7964 mutex_exit(&ipst->ips_mld_timer_lock); 7965 } 7966 } 7967 7968 /* 7969 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7970 * and `ioccmd'. 7971 */ 7972 void 7973 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7974 { 7975 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7976 7977 mutex_enter(&ipsq->ipsq_lock); 7978 ASSERT(ipsq->ipsq_current_ipif == NULL); 7979 ASSERT(ipsq->ipsq_current_ioctl == 0); 7980 ipsq->ipsq_current_done = B_FALSE; 7981 ipsq->ipsq_current_ipif = ipif; 7982 ipsq->ipsq_current_ioctl = ioccmd; 7983 mutex_exit(&ipsq->ipsq_lock); 7984 } 7985 7986 /* 7987 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7988 * the next exclusive operation to begin once we ipsq_exit(). However, if 7989 * pending DLPI operations remain, then we will wait for the queue to drain 7990 * before allowing the next exclusive operation to begin. This ensures that 7991 * DLPI operations from one exclusive operation are never improperly processed 7992 * as part of a subsequent exclusive operation. 7993 */ 7994 void 7995 ipsq_current_finish(ipsq_t *ipsq) 7996 { 7997 ipif_t *ipif = ipsq->ipsq_current_ipif; 7998 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7999 8000 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8001 8002 /* 8003 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8004 * (but in that case, IPIF_CHANGING will already be clear and no 8005 * pending DLPI messages can remain). 8006 */ 8007 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8008 ill_t *ill = ipif->ipif_ill; 8009 8010 mutex_enter(&ill->ill_lock); 8011 dlpi_pending = ill->ill_dlpi_pending; 8012 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8013 mutex_exit(&ill->ill_lock); 8014 } 8015 8016 mutex_enter(&ipsq->ipsq_lock); 8017 ipsq->ipsq_current_ioctl = 0; 8018 ipsq->ipsq_current_done = B_TRUE; 8019 if (dlpi_pending == DL_PRIM_INVAL) 8020 ipsq->ipsq_current_ipif = NULL; 8021 mutex_exit(&ipsq->ipsq_lock); 8022 } 8023 8024 /* 8025 * The ill is closing. Flush all messages on the ipsq that originated 8026 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8027 * for this ill since ipsq_enter could not have entered until then. 8028 * New messages can't be queued since the CONDEMNED flag is set. 8029 */ 8030 static void 8031 ipsq_flush(ill_t *ill) 8032 { 8033 queue_t *q; 8034 mblk_t *prev; 8035 mblk_t *mp; 8036 mblk_t *mp_next; 8037 ipsq_t *ipsq; 8038 8039 ASSERT(IAM_WRITER_ILL(ill)); 8040 ipsq = ill->ill_phyint->phyint_ipsq; 8041 /* 8042 * Flush any messages sent up by the driver. 8043 */ 8044 mutex_enter(&ipsq->ipsq_lock); 8045 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8046 mp_next = mp->b_next; 8047 q = mp->b_queue; 8048 if (q == ill->ill_rq || q == ill->ill_wq) { 8049 /* Remove the mp from the ipsq */ 8050 if (prev == NULL) 8051 ipsq->ipsq_mphead = mp->b_next; 8052 else 8053 prev->b_next = mp->b_next; 8054 if (ipsq->ipsq_mptail == mp) { 8055 ASSERT(mp_next == NULL); 8056 ipsq->ipsq_mptail = prev; 8057 } 8058 inet_freemsg(mp); 8059 } else { 8060 prev = mp; 8061 } 8062 } 8063 mutex_exit(&ipsq->ipsq_lock); 8064 (void) ipsq_pending_mp_cleanup(ill, NULL); 8065 ipsq_xopq_mp_cleanup(ill, NULL); 8066 ill_pending_mp_cleanup(ill); 8067 } 8068 8069 /* ARGSUSED */ 8070 int 8071 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8072 ip_ioctl_cmd_t *ipip, void *ifreq) 8073 { 8074 ill_t *ill; 8075 struct lifreq *lifr = (struct lifreq *)ifreq; 8076 boolean_t isv6; 8077 conn_t *connp; 8078 ip_stack_t *ipst; 8079 8080 connp = Q_TO_CONN(q); 8081 ipst = connp->conn_netstack->netstack_ip; 8082 isv6 = connp->conn_af_isv6; 8083 /* 8084 * Set original index. 8085 * Failover and failback move logical interfaces 8086 * from one physical interface to another. The 8087 * original index indicates the parent of a logical 8088 * interface, in other words, the physical interface 8089 * the logical interface will be moved back to on 8090 * failback. 8091 */ 8092 8093 /* 8094 * Don't allow the original index to be changed 8095 * for non-failover addresses, autoconfigured 8096 * addresses, or IPv6 link local addresses. 8097 */ 8098 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8099 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8100 return (EINVAL); 8101 } 8102 /* 8103 * The new original index must be in use by some 8104 * physical interface. 8105 */ 8106 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8107 NULL, NULL, ipst); 8108 if (ill == NULL) 8109 return (ENXIO); 8110 ill_refrele(ill); 8111 8112 ipif->ipif_orig_ifindex = lifr->lifr_index; 8113 /* 8114 * When this ipif gets failed back, don't 8115 * preserve the original id, as it is no 8116 * longer applicable. 8117 */ 8118 ipif->ipif_orig_ipifid = 0; 8119 /* 8120 * For IPv4, change the original index of any 8121 * multicast addresses associated with the 8122 * ipif to the new value. 8123 */ 8124 if (!isv6) { 8125 ilm_t *ilm; 8126 8127 mutex_enter(&ipif->ipif_ill->ill_lock); 8128 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8129 ilm = ilm->ilm_next) { 8130 if (ilm->ilm_ipif == ipif) { 8131 ilm->ilm_orig_ifindex = lifr->lifr_index; 8132 } 8133 } 8134 mutex_exit(&ipif->ipif_ill->ill_lock); 8135 } 8136 return (0); 8137 } 8138 8139 /* ARGSUSED */ 8140 int 8141 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8142 ip_ioctl_cmd_t *ipip, void *ifreq) 8143 { 8144 struct lifreq *lifr = (struct lifreq *)ifreq; 8145 8146 /* 8147 * Get the original interface index i.e the one 8148 * before FAILOVER if it ever happened. 8149 */ 8150 lifr->lifr_index = ipif->ipif_orig_ifindex; 8151 return (0); 8152 } 8153 8154 /* 8155 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8156 * refhold and return the associated ipif 8157 */ 8158 /* ARGSUSED */ 8159 int 8160 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8161 cmd_info_t *ci, ipsq_func_t func) 8162 { 8163 boolean_t exists; 8164 struct iftun_req *ta; 8165 ipif_t *ipif; 8166 ill_t *ill; 8167 boolean_t isv6; 8168 mblk_t *mp1; 8169 int error; 8170 conn_t *connp; 8171 ip_stack_t *ipst; 8172 8173 /* Existence verified in ip_wput_nondata */ 8174 mp1 = mp->b_cont->b_cont; 8175 ta = (struct iftun_req *)mp1->b_rptr; 8176 /* 8177 * Null terminate the string to protect against buffer 8178 * overrun. String was generated by user code and may not 8179 * be trusted. 8180 */ 8181 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8182 8183 connp = Q_TO_CONN(q); 8184 isv6 = connp->conn_af_isv6; 8185 ipst = connp->conn_netstack->netstack_ip; 8186 8187 /* Disallows implicit create */ 8188 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8189 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8190 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8191 if (ipif == NULL) 8192 return (error); 8193 8194 if (ipif->ipif_id != 0) { 8195 /* 8196 * We really don't want to set/get tunnel parameters 8197 * on virtual tunnel interfaces. Only allow the 8198 * base tunnel to do these. 8199 */ 8200 ipif_refrele(ipif); 8201 return (EINVAL); 8202 } 8203 8204 /* 8205 * Send down to tunnel mod for ioctl processing. 8206 * Will finish ioctl in ip_rput_other(). 8207 */ 8208 ill = ipif->ipif_ill; 8209 if (ill->ill_net_type == IRE_LOOPBACK) { 8210 ipif_refrele(ipif); 8211 return (EOPNOTSUPP); 8212 } 8213 8214 if (ill->ill_wq == NULL) { 8215 ipif_refrele(ipif); 8216 return (ENXIO); 8217 } 8218 /* 8219 * Mark the ioctl as coming from an IPv6 interface for 8220 * tun's convenience. 8221 */ 8222 if (ill->ill_isv6) 8223 ta->ifta_flags |= 0x80000000; 8224 ci->ci_ipif = ipif; 8225 return (0); 8226 } 8227 8228 /* 8229 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8230 * and return the associated ipif. 8231 * Return value: 8232 * Non zero: An error has occurred. ci may not be filled out. 8233 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8234 * a held ipif in ci.ci_ipif. 8235 */ 8236 int 8237 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8238 cmd_info_t *ci, ipsq_func_t func) 8239 { 8240 sin_t *sin; 8241 sin6_t *sin6; 8242 char *name; 8243 struct ifreq *ifr; 8244 struct lifreq *lifr; 8245 ipif_t *ipif = NULL; 8246 ill_t *ill; 8247 conn_t *connp; 8248 boolean_t isv6; 8249 boolean_t exists; 8250 int err; 8251 mblk_t *mp1; 8252 zoneid_t zoneid; 8253 ip_stack_t *ipst; 8254 8255 if (q->q_next != NULL) { 8256 ill = (ill_t *)q->q_ptr; 8257 isv6 = ill->ill_isv6; 8258 connp = NULL; 8259 zoneid = ALL_ZONES; 8260 ipst = ill->ill_ipst; 8261 } else { 8262 ill = NULL; 8263 connp = Q_TO_CONN(q); 8264 isv6 = connp->conn_af_isv6; 8265 zoneid = connp->conn_zoneid; 8266 if (zoneid == GLOBAL_ZONEID) { 8267 /* global zone can access ipifs in all zones */ 8268 zoneid = ALL_ZONES; 8269 } 8270 ipst = connp->conn_netstack->netstack_ip; 8271 } 8272 8273 /* Has been checked in ip_wput_nondata */ 8274 mp1 = mp->b_cont->b_cont; 8275 8276 if (ipip->ipi_cmd_type == IF_CMD) { 8277 /* This a old style SIOC[GS]IF* command */ 8278 ifr = (struct ifreq *)mp1->b_rptr; 8279 /* 8280 * Null terminate the string to protect against buffer 8281 * overrun. String was generated by user code and may not 8282 * be trusted. 8283 */ 8284 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8285 sin = (sin_t *)&ifr->ifr_addr; 8286 name = ifr->ifr_name; 8287 ci->ci_sin = sin; 8288 ci->ci_sin6 = NULL; 8289 ci->ci_lifr = (struct lifreq *)ifr; 8290 } else { 8291 /* This a new style SIOC[GS]LIF* command */ 8292 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8293 lifr = (struct lifreq *)mp1->b_rptr; 8294 /* 8295 * Null terminate the string to protect against buffer 8296 * overrun. String was generated by user code and may not 8297 * be trusted. 8298 */ 8299 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8300 name = lifr->lifr_name; 8301 sin = (sin_t *)&lifr->lifr_addr; 8302 sin6 = (sin6_t *)&lifr->lifr_addr; 8303 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8304 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8305 LIFNAMSIZ); 8306 } 8307 ci->ci_sin = sin; 8308 ci->ci_sin6 = sin6; 8309 ci->ci_lifr = lifr; 8310 } 8311 8312 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8313 /* 8314 * The ioctl will be failed if the ioctl comes down 8315 * an conn stream 8316 */ 8317 if (ill == NULL) { 8318 /* 8319 * Not an ill queue, return EINVAL same as the 8320 * old error code. 8321 */ 8322 return (ENXIO); 8323 } 8324 ipif = ill->ill_ipif; 8325 ipif_refhold(ipif); 8326 } else { 8327 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8328 &exists, isv6, zoneid, 8329 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8330 ipst); 8331 if (ipif == NULL) { 8332 if (err == EINPROGRESS) 8333 return (err); 8334 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8335 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8336 /* 8337 * Need to try both v4 and v6 since this 8338 * ioctl can come down either v4 or v6 8339 * socket. The lifreq.lifr_family passed 8340 * down by this ioctl is AF_UNSPEC. 8341 */ 8342 ipif = ipif_lookup_on_name(name, 8343 mi_strlen(name), B_FALSE, &exists, !isv6, 8344 zoneid, (connp == NULL) ? q : 8345 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8346 if (err == EINPROGRESS) 8347 return (err); 8348 } 8349 err = 0; /* Ensure we don't use it below */ 8350 } 8351 } 8352 8353 /* 8354 * Old style [GS]IFCMD does not admit IPv6 ipif 8355 */ 8356 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8357 ipif_refrele(ipif); 8358 return (ENXIO); 8359 } 8360 8361 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8362 name[0] == '\0') { 8363 /* 8364 * Handle a or a SIOC?IF* with a null name 8365 * during plumb (on the ill queue before the I_PLINK). 8366 */ 8367 ipif = ill->ill_ipif; 8368 ipif_refhold(ipif); 8369 } 8370 8371 if (ipif == NULL) 8372 return (ENXIO); 8373 8374 /* 8375 * Allow only GET operations if this ipif has been created 8376 * temporarily due to a MOVE operation. 8377 */ 8378 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8379 ipif_refrele(ipif); 8380 return (EINVAL); 8381 } 8382 8383 ci->ci_ipif = ipif; 8384 return (0); 8385 } 8386 8387 /* 8388 * Return the total number of ipifs. 8389 */ 8390 static uint_t 8391 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8392 { 8393 uint_t numifs = 0; 8394 ill_t *ill; 8395 ill_walk_context_t ctx; 8396 ipif_t *ipif; 8397 8398 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8399 ill = ILL_START_WALK_V4(&ctx, ipst); 8400 8401 while (ill != NULL) { 8402 for (ipif = ill->ill_ipif; ipif != NULL; 8403 ipif = ipif->ipif_next) { 8404 if (ipif->ipif_zoneid == zoneid || 8405 ipif->ipif_zoneid == ALL_ZONES) 8406 numifs++; 8407 } 8408 ill = ill_next(&ctx, ill); 8409 } 8410 rw_exit(&ipst->ips_ill_g_lock); 8411 return (numifs); 8412 } 8413 8414 /* 8415 * Return the total number of ipifs. 8416 */ 8417 static uint_t 8418 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8419 { 8420 uint_t numifs = 0; 8421 ill_t *ill; 8422 ipif_t *ipif; 8423 ill_walk_context_t ctx; 8424 8425 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8426 8427 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8428 if (family == AF_INET) 8429 ill = ILL_START_WALK_V4(&ctx, ipst); 8430 else if (family == AF_INET6) 8431 ill = ILL_START_WALK_V6(&ctx, ipst); 8432 else 8433 ill = ILL_START_WALK_ALL(&ctx, ipst); 8434 8435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8436 for (ipif = ill->ill_ipif; ipif != NULL; 8437 ipif = ipif->ipif_next) { 8438 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8439 !(lifn_flags & LIFC_NOXMIT)) 8440 continue; 8441 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8442 !(lifn_flags & LIFC_TEMPORARY)) 8443 continue; 8444 if (((ipif->ipif_flags & 8445 (IPIF_NOXMIT|IPIF_NOLOCAL| 8446 IPIF_DEPRECATED)) || 8447 IS_LOOPBACK(ill) || 8448 !(ipif->ipif_flags & IPIF_UP)) && 8449 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8450 continue; 8451 8452 if (zoneid != ipif->ipif_zoneid && 8453 ipif->ipif_zoneid != ALL_ZONES && 8454 (zoneid != GLOBAL_ZONEID || 8455 !(lifn_flags & LIFC_ALLZONES))) 8456 continue; 8457 8458 numifs++; 8459 } 8460 } 8461 rw_exit(&ipst->ips_ill_g_lock); 8462 return (numifs); 8463 } 8464 8465 uint_t 8466 ip_get_lifsrcofnum(ill_t *ill) 8467 { 8468 uint_t numifs = 0; 8469 ill_t *ill_head = ill; 8470 ip_stack_t *ipst = ill->ill_ipst; 8471 8472 /* 8473 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8474 * other thread may be trying to relink the ILLs in this usesrc group 8475 * and adjusting the ill_usesrc_grp_next pointers 8476 */ 8477 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8478 if ((ill->ill_usesrc_ifindex == 0) && 8479 (ill->ill_usesrc_grp_next != NULL)) { 8480 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8481 ill = ill->ill_usesrc_grp_next) 8482 numifs++; 8483 } 8484 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8485 8486 return (numifs); 8487 } 8488 8489 /* Null values are passed in for ipif, sin, and ifreq */ 8490 /* ARGSUSED */ 8491 int 8492 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8493 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8494 { 8495 int *nump; 8496 conn_t *connp = Q_TO_CONN(q); 8497 8498 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8499 8500 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8501 nump = (int *)mp->b_cont->b_cont->b_rptr; 8502 8503 *nump = ip_get_numifs(connp->conn_zoneid, 8504 connp->conn_netstack->netstack_ip); 8505 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8506 return (0); 8507 } 8508 8509 /* Null values are passed in for ipif, sin, and ifreq */ 8510 /* ARGSUSED */ 8511 int 8512 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8513 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8514 { 8515 struct lifnum *lifn; 8516 mblk_t *mp1; 8517 conn_t *connp = Q_TO_CONN(q); 8518 8519 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8520 8521 /* Existence checked in ip_wput_nondata */ 8522 mp1 = mp->b_cont->b_cont; 8523 8524 lifn = (struct lifnum *)mp1->b_rptr; 8525 switch (lifn->lifn_family) { 8526 case AF_UNSPEC: 8527 case AF_INET: 8528 case AF_INET6: 8529 break; 8530 default: 8531 return (EAFNOSUPPORT); 8532 } 8533 8534 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8535 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8536 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8537 return (0); 8538 } 8539 8540 /* ARGSUSED */ 8541 int 8542 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8543 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8544 { 8545 STRUCT_HANDLE(ifconf, ifc); 8546 mblk_t *mp1; 8547 struct iocblk *iocp; 8548 struct ifreq *ifr; 8549 ill_walk_context_t ctx; 8550 ill_t *ill; 8551 ipif_t *ipif; 8552 struct sockaddr_in *sin; 8553 int32_t ifclen; 8554 zoneid_t zoneid; 8555 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8556 8557 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8558 8559 ip1dbg(("ip_sioctl_get_ifconf")); 8560 /* Existence verified in ip_wput_nondata */ 8561 mp1 = mp->b_cont->b_cont; 8562 iocp = (struct iocblk *)mp->b_rptr; 8563 zoneid = Q_TO_CONN(q)->conn_zoneid; 8564 8565 /* 8566 * The original SIOCGIFCONF passed in a struct ifconf which specified 8567 * the user buffer address and length into which the list of struct 8568 * ifreqs was to be copied. Since AT&T Streams does not seem to 8569 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8570 * the SIOCGIFCONF operation was redefined to simply provide 8571 * a large output buffer into which we are supposed to jam the ifreq 8572 * array. The same ioctl command code was used, despite the fact that 8573 * both the applications and the kernel code had to change, thus making 8574 * it impossible to support both interfaces. 8575 * 8576 * For reasons not good enough to try to explain, the following 8577 * algorithm is used for deciding what to do with one of these: 8578 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8579 * form with the output buffer coming down as the continuation message. 8580 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8581 * and we have to copy in the ifconf structure to find out how big the 8582 * output buffer is and where to copy out to. Sure no problem... 8583 * 8584 */ 8585 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8586 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8587 int numifs = 0; 8588 size_t ifc_bufsize; 8589 8590 /* 8591 * Must be (better be!) continuation of a TRANSPARENT 8592 * IOCTL. We just copied in the ifconf structure. 8593 */ 8594 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8595 (struct ifconf *)mp1->b_rptr); 8596 8597 /* 8598 * Allocate a buffer to hold requested information. 8599 * 8600 * If ifc_len is larger than what is needed, we only 8601 * allocate what we will use. 8602 * 8603 * If ifc_len is smaller than what is needed, return 8604 * EINVAL. 8605 * 8606 * XXX: the ill_t structure can hava 2 counters, for 8607 * v4 and v6 (not just ill_ipif_up_count) to store the 8608 * number of interfaces for a device, so we don't need 8609 * to count them here... 8610 */ 8611 numifs = ip_get_numifs(zoneid, ipst); 8612 8613 ifclen = STRUCT_FGET(ifc, ifc_len); 8614 ifc_bufsize = numifs * sizeof (struct ifreq); 8615 if (ifc_bufsize > ifclen) { 8616 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8617 /* old behaviour */ 8618 return (EINVAL); 8619 } else { 8620 ifc_bufsize = ifclen; 8621 } 8622 } 8623 8624 mp1 = mi_copyout_alloc(q, mp, 8625 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8626 if (mp1 == NULL) 8627 return (ENOMEM); 8628 8629 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8630 } 8631 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8632 /* 8633 * the SIOCGIFCONF ioctl only knows about 8634 * IPv4 addresses, so don't try to tell 8635 * it about interfaces with IPv6-only 8636 * addresses. (Last parm 'isv6' is B_FALSE) 8637 */ 8638 8639 ifr = (struct ifreq *)mp1->b_rptr; 8640 8641 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8642 ill = ILL_START_WALK_V4(&ctx, ipst); 8643 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8644 for (ipif = ill->ill_ipif; ipif != NULL; 8645 ipif = ipif->ipif_next) { 8646 if (zoneid != ipif->ipif_zoneid && 8647 ipif->ipif_zoneid != ALL_ZONES) 8648 continue; 8649 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8650 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8651 /* old behaviour */ 8652 rw_exit(&ipst->ips_ill_g_lock); 8653 return (EINVAL); 8654 } else { 8655 goto if_copydone; 8656 } 8657 } 8658 ipif_get_name(ipif, ifr->ifr_name, 8659 sizeof (ifr->ifr_name)); 8660 sin = (sin_t *)&ifr->ifr_addr; 8661 *sin = sin_null; 8662 sin->sin_family = AF_INET; 8663 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8664 ifr++; 8665 } 8666 } 8667 if_copydone: 8668 rw_exit(&ipst->ips_ill_g_lock); 8669 mp1->b_wptr = (uchar_t *)ifr; 8670 8671 if (STRUCT_BUF(ifc) != NULL) { 8672 STRUCT_FSET(ifc, ifc_len, 8673 (int)((uchar_t *)ifr - mp1->b_rptr)); 8674 } 8675 return (0); 8676 } 8677 8678 /* 8679 * Get the interfaces using the address hosted on the interface passed in, 8680 * as a source adddress 8681 */ 8682 /* ARGSUSED */ 8683 int 8684 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8685 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8686 { 8687 mblk_t *mp1; 8688 ill_t *ill, *ill_head; 8689 ipif_t *ipif, *orig_ipif; 8690 int numlifs = 0; 8691 size_t lifs_bufsize, lifsmaxlen; 8692 struct lifreq *lifr; 8693 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8694 uint_t ifindex; 8695 zoneid_t zoneid; 8696 int err = 0; 8697 boolean_t isv6 = B_FALSE; 8698 struct sockaddr_in *sin; 8699 struct sockaddr_in6 *sin6; 8700 STRUCT_HANDLE(lifsrcof, lifs); 8701 ip_stack_t *ipst; 8702 8703 ipst = CONNQ_TO_IPST(q); 8704 8705 ASSERT(q->q_next == NULL); 8706 8707 zoneid = Q_TO_CONN(q)->conn_zoneid; 8708 8709 /* Existence verified in ip_wput_nondata */ 8710 mp1 = mp->b_cont->b_cont; 8711 8712 /* 8713 * Must be (better be!) continuation of a TRANSPARENT 8714 * IOCTL. We just copied in the lifsrcof structure. 8715 */ 8716 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8717 (struct lifsrcof *)mp1->b_rptr); 8718 8719 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8720 return (EINVAL); 8721 8722 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8723 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8724 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8725 ip_process_ioctl, &err, ipst); 8726 if (ipif == NULL) { 8727 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8728 ifindex)); 8729 return (err); 8730 } 8731 8732 /* Allocate a buffer to hold requested information */ 8733 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8734 lifs_bufsize = numlifs * sizeof (struct lifreq); 8735 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8736 /* The actual size needed is always returned in lifs_len */ 8737 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8738 8739 /* If the amount we need is more than what is passed in, abort */ 8740 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8741 ipif_refrele(ipif); 8742 return (0); 8743 } 8744 8745 mp1 = mi_copyout_alloc(q, mp, 8746 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8747 if (mp1 == NULL) { 8748 ipif_refrele(ipif); 8749 return (ENOMEM); 8750 } 8751 8752 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8753 bzero(mp1->b_rptr, lifs_bufsize); 8754 8755 lifr = (struct lifreq *)mp1->b_rptr; 8756 8757 ill = ill_head = ipif->ipif_ill; 8758 orig_ipif = ipif; 8759 8760 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8762 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8763 8764 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8765 for (; (ill != NULL) && (ill != ill_head); 8766 ill = ill->ill_usesrc_grp_next) { 8767 8768 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8769 break; 8770 8771 ipif = ill->ill_ipif; 8772 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8773 if (ipif->ipif_isv6) { 8774 sin6 = (sin6_t *)&lifr->lifr_addr; 8775 *sin6 = sin6_null; 8776 sin6->sin6_family = AF_INET6; 8777 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8778 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8779 &ipif->ipif_v6net_mask); 8780 } else { 8781 sin = (sin_t *)&lifr->lifr_addr; 8782 *sin = sin_null; 8783 sin->sin_family = AF_INET; 8784 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8785 lifr->lifr_addrlen = ip_mask_to_plen( 8786 ipif->ipif_net_mask); 8787 } 8788 lifr++; 8789 } 8790 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8791 rw_exit(&ipst->ips_ill_g_lock); 8792 ipif_refrele(orig_ipif); 8793 mp1->b_wptr = (uchar_t *)lifr; 8794 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8795 8796 return (0); 8797 } 8798 8799 /* ARGSUSED */ 8800 int 8801 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8802 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8803 { 8804 mblk_t *mp1; 8805 int list; 8806 ill_t *ill; 8807 ipif_t *ipif; 8808 int flags; 8809 int numlifs = 0; 8810 size_t lifc_bufsize; 8811 struct lifreq *lifr; 8812 sa_family_t family; 8813 struct sockaddr_in *sin; 8814 struct sockaddr_in6 *sin6; 8815 ill_walk_context_t ctx; 8816 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8817 int32_t lifclen; 8818 zoneid_t zoneid; 8819 STRUCT_HANDLE(lifconf, lifc); 8820 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8821 8822 ip1dbg(("ip_sioctl_get_lifconf")); 8823 8824 ASSERT(q->q_next == NULL); 8825 8826 zoneid = Q_TO_CONN(q)->conn_zoneid; 8827 8828 /* Existence verified in ip_wput_nondata */ 8829 mp1 = mp->b_cont->b_cont; 8830 8831 /* 8832 * An extended version of SIOCGIFCONF that takes an 8833 * additional address family and flags field. 8834 * AF_UNSPEC retrieve both IPv4 and IPv6. 8835 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8836 * interfaces are omitted. 8837 * Similarly, IPIF_TEMPORARY interfaces are omitted 8838 * unless LIFC_TEMPORARY is specified. 8839 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8840 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8841 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8842 * has priority over LIFC_NOXMIT. 8843 */ 8844 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8845 8846 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8847 return (EINVAL); 8848 8849 /* 8850 * Must be (better be!) continuation of a TRANSPARENT 8851 * IOCTL. We just copied in the lifconf structure. 8852 */ 8853 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8854 8855 family = STRUCT_FGET(lifc, lifc_family); 8856 flags = STRUCT_FGET(lifc, lifc_flags); 8857 8858 switch (family) { 8859 case AF_UNSPEC: 8860 /* 8861 * walk all ILL's. 8862 */ 8863 list = MAX_G_HEADS; 8864 break; 8865 case AF_INET: 8866 /* 8867 * walk only IPV4 ILL's. 8868 */ 8869 list = IP_V4_G_HEAD; 8870 break; 8871 case AF_INET6: 8872 /* 8873 * walk only IPV6 ILL's. 8874 */ 8875 list = IP_V6_G_HEAD; 8876 break; 8877 default: 8878 return (EAFNOSUPPORT); 8879 } 8880 8881 /* 8882 * Allocate a buffer to hold requested information. 8883 * 8884 * If lifc_len is larger than what is needed, we only 8885 * allocate what we will use. 8886 * 8887 * If lifc_len is smaller than what is needed, return 8888 * EINVAL. 8889 */ 8890 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8891 lifc_bufsize = numlifs * sizeof (struct lifreq); 8892 lifclen = STRUCT_FGET(lifc, lifc_len); 8893 if (lifc_bufsize > lifclen) { 8894 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8895 return (EINVAL); 8896 else 8897 lifc_bufsize = lifclen; 8898 } 8899 8900 mp1 = mi_copyout_alloc(q, mp, 8901 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8902 if (mp1 == NULL) 8903 return (ENOMEM); 8904 8905 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8906 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8907 8908 lifr = (struct lifreq *)mp1->b_rptr; 8909 8910 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8911 ill = ill_first(list, list, &ctx, ipst); 8912 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8913 for (ipif = ill->ill_ipif; ipif != NULL; 8914 ipif = ipif->ipif_next) { 8915 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8916 !(flags & LIFC_NOXMIT)) 8917 continue; 8918 8919 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8920 !(flags & LIFC_TEMPORARY)) 8921 continue; 8922 8923 if (((ipif->ipif_flags & 8924 (IPIF_NOXMIT|IPIF_NOLOCAL| 8925 IPIF_DEPRECATED)) || 8926 IS_LOOPBACK(ill) || 8927 !(ipif->ipif_flags & IPIF_UP)) && 8928 (flags & LIFC_EXTERNAL_SOURCE)) 8929 continue; 8930 8931 if (zoneid != ipif->ipif_zoneid && 8932 ipif->ipif_zoneid != ALL_ZONES && 8933 (zoneid != GLOBAL_ZONEID || 8934 !(flags & LIFC_ALLZONES))) 8935 continue; 8936 8937 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8938 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8939 rw_exit(&ipst->ips_ill_g_lock); 8940 return (EINVAL); 8941 } else { 8942 goto lif_copydone; 8943 } 8944 } 8945 8946 ipif_get_name(ipif, lifr->lifr_name, 8947 sizeof (lifr->lifr_name)); 8948 if (ipif->ipif_isv6) { 8949 sin6 = (sin6_t *)&lifr->lifr_addr; 8950 *sin6 = sin6_null; 8951 sin6->sin6_family = AF_INET6; 8952 sin6->sin6_addr = 8953 ipif->ipif_v6lcl_addr; 8954 lifr->lifr_addrlen = 8955 ip_mask_to_plen_v6( 8956 &ipif->ipif_v6net_mask); 8957 } else { 8958 sin = (sin_t *)&lifr->lifr_addr; 8959 *sin = sin_null; 8960 sin->sin_family = AF_INET; 8961 sin->sin_addr.s_addr = 8962 ipif->ipif_lcl_addr; 8963 lifr->lifr_addrlen = 8964 ip_mask_to_plen( 8965 ipif->ipif_net_mask); 8966 } 8967 lifr++; 8968 } 8969 } 8970 lif_copydone: 8971 rw_exit(&ipst->ips_ill_g_lock); 8972 8973 mp1->b_wptr = (uchar_t *)lifr; 8974 if (STRUCT_BUF(lifc) != NULL) { 8975 STRUCT_FSET(lifc, lifc_len, 8976 (int)((uchar_t *)lifr - mp1->b_rptr)); 8977 } 8978 return (0); 8979 } 8980 8981 /* ARGSUSED */ 8982 int 8983 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8984 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8985 { 8986 ip_stack_t *ipst; 8987 8988 if (q->q_next == NULL) 8989 ipst = CONNQ_TO_IPST(q); 8990 else 8991 ipst = ILLQ_TO_IPST(q); 8992 8993 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8994 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8995 return (0); 8996 } 8997 8998 static void 8999 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9000 { 9001 ip6_asp_t *table; 9002 size_t table_size; 9003 mblk_t *data_mp; 9004 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9005 ip_stack_t *ipst; 9006 9007 if (q->q_next == NULL) 9008 ipst = CONNQ_TO_IPST(q); 9009 else 9010 ipst = ILLQ_TO_IPST(q); 9011 9012 /* These two ioctls are I_STR only */ 9013 if (iocp->ioc_count == TRANSPARENT) { 9014 miocnak(q, mp, 0, EINVAL); 9015 return; 9016 } 9017 9018 data_mp = mp->b_cont; 9019 if (data_mp == NULL) { 9020 /* The user passed us a NULL argument */ 9021 table = NULL; 9022 table_size = iocp->ioc_count; 9023 } else { 9024 /* 9025 * The user provided a table. The stream head 9026 * may have copied in the user data in chunks, 9027 * so make sure everything is pulled up 9028 * properly. 9029 */ 9030 if (MBLKL(data_mp) < iocp->ioc_count) { 9031 mblk_t *new_data_mp; 9032 if ((new_data_mp = msgpullup(data_mp, -1)) == 9033 NULL) { 9034 miocnak(q, mp, 0, ENOMEM); 9035 return; 9036 } 9037 freemsg(data_mp); 9038 data_mp = new_data_mp; 9039 mp->b_cont = data_mp; 9040 } 9041 table = (ip6_asp_t *)data_mp->b_rptr; 9042 table_size = iocp->ioc_count; 9043 } 9044 9045 switch (iocp->ioc_cmd) { 9046 case SIOCGIP6ADDRPOLICY: 9047 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9048 if (iocp->ioc_rval == -1) 9049 iocp->ioc_error = EINVAL; 9050 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9051 else if (table != NULL && 9052 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9053 ip6_asp_t *src = table; 9054 ip6_asp32_t *dst = (void *)table; 9055 int count = table_size / sizeof (ip6_asp_t); 9056 int i; 9057 9058 /* 9059 * We need to do an in-place shrink of the array 9060 * to match the alignment attributes of the 9061 * 32-bit ABI looking at it. 9062 */ 9063 /* LINTED: logical expression always true: op "||" */ 9064 ASSERT(sizeof (*src) > sizeof (*dst)); 9065 for (i = 1; i < count; i++) 9066 bcopy(src + i, dst + i, sizeof (*dst)); 9067 } 9068 #endif 9069 break; 9070 9071 case SIOCSIP6ADDRPOLICY: 9072 ASSERT(mp->b_prev == NULL); 9073 mp->b_prev = (void *)q; 9074 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9075 /* 9076 * We pass in the datamodel here so that the ip6_asp_replace() 9077 * routine can handle converting from 32-bit to native formats 9078 * where necessary. 9079 * 9080 * A better way to handle this might be to convert the inbound 9081 * data structure here, and hang it off a new 'mp'; thus the 9082 * ip6_asp_replace() logic would always be dealing with native 9083 * format data structures.. 9084 * 9085 * (An even simpler way to handle these ioctls is to just 9086 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9087 * and just recompile everything that depends on it.) 9088 */ 9089 #endif 9090 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9091 iocp->ioc_flag & IOC_MODELS); 9092 return; 9093 } 9094 9095 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9096 qreply(q, mp); 9097 } 9098 9099 static void 9100 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9101 { 9102 mblk_t *data_mp; 9103 struct dstinforeq *dir; 9104 uint8_t *end, *cur; 9105 in6_addr_t *daddr, *saddr; 9106 ipaddr_t v4daddr; 9107 ire_t *ire; 9108 char *slabel, *dlabel; 9109 boolean_t isipv4; 9110 int match_ire; 9111 ill_t *dst_ill; 9112 ipif_t *src_ipif, *ire_ipif; 9113 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9114 zoneid_t zoneid; 9115 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9116 9117 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9118 zoneid = Q_TO_CONN(q)->conn_zoneid; 9119 9120 /* 9121 * This ioctl is I_STR only, and must have a 9122 * data mblk following the M_IOCTL mblk. 9123 */ 9124 data_mp = mp->b_cont; 9125 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9126 miocnak(q, mp, 0, EINVAL); 9127 return; 9128 } 9129 9130 if (MBLKL(data_mp) < iocp->ioc_count) { 9131 mblk_t *new_data_mp; 9132 9133 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9134 miocnak(q, mp, 0, ENOMEM); 9135 return; 9136 } 9137 freemsg(data_mp); 9138 data_mp = new_data_mp; 9139 mp->b_cont = data_mp; 9140 } 9141 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9142 9143 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9144 end - cur >= sizeof (struct dstinforeq); 9145 cur += sizeof (struct dstinforeq)) { 9146 dir = (struct dstinforeq *)cur; 9147 daddr = &dir->dir_daddr; 9148 saddr = &dir->dir_saddr; 9149 9150 /* 9151 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9152 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9153 * and ipif_select_source[_v6]() do not. 9154 */ 9155 dir->dir_dscope = ip_addr_scope_v6(daddr); 9156 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9157 9158 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9159 if (isipv4) { 9160 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9161 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9162 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9163 } else { 9164 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9165 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9166 } 9167 if (ire == NULL) { 9168 dir->dir_dreachable = 0; 9169 9170 /* move on to next dst addr */ 9171 continue; 9172 } 9173 dir->dir_dreachable = 1; 9174 9175 ire_ipif = ire->ire_ipif; 9176 if (ire_ipif == NULL) 9177 goto next_dst; 9178 9179 /* 9180 * We expect to get back an interface ire or a 9181 * gateway ire cache entry. For both types, the 9182 * output interface is ire_ipif->ipif_ill. 9183 */ 9184 dst_ill = ire_ipif->ipif_ill; 9185 dir->dir_dmactype = dst_ill->ill_mactype; 9186 9187 if (isipv4) { 9188 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9189 } else { 9190 src_ipif = ipif_select_source_v6(dst_ill, 9191 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9192 zoneid); 9193 } 9194 if (src_ipif == NULL) 9195 goto next_dst; 9196 9197 *saddr = src_ipif->ipif_v6lcl_addr; 9198 dir->dir_sscope = ip_addr_scope_v6(saddr); 9199 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9200 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9201 dir->dir_sdeprecated = 9202 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9203 ipif_refrele(src_ipif); 9204 next_dst: 9205 ire_refrele(ire); 9206 } 9207 miocack(q, mp, iocp->ioc_count, 0); 9208 } 9209 9210 /* 9211 * Check if this is an address assigned to this machine. 9212 * Skips interfaces that are down by using ire checks. 9213 * Translates mapped addresses to v4 addresses and then 9214 * treats them as such, returning true if the v4 address 9215 * associated with this mapped address is configured. 9216 * Note: Applications will have to be careful what they do 9217 * with the response; use of mapped addresses limits 9218 * what can be done with the socket, especially with 9219 * respect to socket options and ioctls - neither IPv4 9220 * options nor IPv6 sticky options/ancillary data options 9221 * may be used. 9222 */ 9223 /* ARGSUSED */ 9224 int 9225 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9226 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9227 { 9228 struct sioc_addrreq *sia; 9229 sin_t *sin; 9230 ire_t *ire; 9231 mblk_t *mp1; 9232 zoneid_t zoneid; 9233 ip_stack_t *ipst; 9234 9235 ip1dbg(("ip_sioctl_tmyaddr")); 9236 9237 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9238 zoneid = Q_TO_CONN(q)->conn_zoneid; 9239 ipst = CONNQ_TO_IPST(q); 9240 9241 /* Existence verified in ip_wput_nondata */ 9242 mp1 = mp->b_cont->b_cont; 9243 sia = (struct sioc_addrreq *)mp1->b_rptr; 9244 sin = (sin_t *)&sia->sa_addr; 9245 switch (sin->sin_family) { 9246 case AF_INET6: { 9247 sin6_t *sin6 = (sin6_t *)sin; 9248 9249 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9250 ipaddr_t v4_addr; 9251 9252 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9253 v4_addr); 9254 ire = ire_ctable_lookup(v4_addr, 0, 9255 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9256 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9257 } else { 9258 in6_addr_t v6addr; 9259 9260 v6addr = sin6->sin6_addr; 9261 ire = ire_ctable_lookup_v6(&v6addr, 0, 9262 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9263 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9264 } 9265 break; 9266 } 9267 case AF_INET: { 9268 ipaddr_t v4addr; 9269 9270 v4addr = sin->sin_addr.s_addr; 9271 ire = ire_ctable_lookup(v4addr, 0, 9272 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9273 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9274 break; 9275 } 9276 default: 9277 return (EAFNOSUPPORT); 9278 } 9279 if (ire != NULL) { 9280 sia->sa_res = 1; 9281 ire_refrele(ire); 9282 } else { 9283 sia->sa_res = 0; 9284 } 9285 return (0); 9286 } 9287 9288 /* 9289 * Check if this is an address assigned on-link i.e. neighbor, 9290 * and makes sure it's reachable from the current zone. 9291 * Returns true for my addresses as well. 9292 * Translates mapped addresses to v4 addresses and then 9293 * treats them as such, returning true if the v4 address 9294 * associated with this mapped address is configured. 9295 * Note: Applications will have to be careful what they do 9296 * with the response; use of mapped addresses limits 9297 * what can be done with the socket, especially with 9298 * respect to socket options and ioctls - neither IPv4 9299 * options nor IPv6 sticky options/ancillary data options 9300 * may be used. 9301 */ 9302 /* ARGSUSED */ 9303 int 9304 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9305 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9306 { 9307 struct sioc_addrreq *sia; 9308 sin_t *sin; 9309 mblk_t *mp1; 9310 ire_t *ire = NULL; 9311 zoneid_t zoneid; 9312 ip_stack_t *ipst; 9313 9314 ip1dbg(("ip_sioctl_tonlink")); 9315 9316 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9317 zoneid = Q_TO_CONN(q)->conn_zoneid; 9318 ipst = CONNQ_TO_IPST(q); 9319 9320 /* Existence verified in ip_wput_nondata */ 9321 mp1 = mp->b_cont->b_cont; 9322 sia = (struct sioc_addrreq *)mp1->b_rptr; 9323 sin = (sin_t *)&sia->sa_addr; 9324 9325 /* 9326 * Match addresses with a zero gateway field to avoid 9327 * routes going through a router. 9328 * Exclude broadcast and multicast addresses. 9329 */ 9330 switch (sin->sin_family) { 9331 case AF_INET6: { 9332 sin6_t *sin6 = (sin6_t *)sin; 9333 9334 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9335 ipaddr_t v4_addr; 9336 9337 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9338 v4_addr); 9339 if (!CLASSD(v4_addr)) { 9340 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9341 NULL, NULL, zoneid, NULL, 9342 MATCH_IRE_GW, ipst); 9343 } 9344 } else { 9345 in6_addr_t v6addr; 9346 in6_addr_t v6gw; 9347 9348 v6addr = sin6->sin6_addr; 9349 v6gw = ipv6_all_zeros; 9350 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9351 ire = ire_route_lookup_v6(&v6addr, 0, 9352 &v6gw, 0, NULL, NULL, zoneid, 9353 NULL, MATCH_IRE_GW, ipst); 9354 } 9355 } 9356 break; 9357 } 9358 case AF_INET: { 9359 ipaddr_t v4addr; 9360 9361 v4addr = sin->sin_addr.s_addr; 9362 if (!CLASSD(v4addr)) { 9363 ire = ire_route_lookup(v4addr, 0, 0, 0, 9364 NULL, NULL, zoneid, NULL, 9365 MATCH_IRE_GW, ipst); 9366 } 9367 break; 9368 } 9369 default: 9370 return (EAFNOSUPPORT); 9371 } 9372 sia->sa_res = 0; 9373 if (ire != NULL) { 9374 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9375 IRE_LOCAL|IRE_LOOPBACK)) { 9376 sia->sa_res = 1; 9377 } 9378 ire_refrele(ire); 9379 } 9380 return (0); 9381 } 9382 9383 /* 9384 * TBD: implement when kernel maintaines a list of site prefixes. 9385 */ 9386 /* ARGSUSED */ 9387 int 9388 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9389 ip_ioctl_cmd_t *ipip, void *ifreq) 9390 { 9391 return (ENXIO); 9392 } 9393 9394 /* ARGSUSED */ 9395 int 9396 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9397 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9398 { 9399 ill_t *ill; 9400 mblk_t *mp1; 9401 conn_t *connp; 9402 boolean_t success; 9403 9404 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9405 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9406 /* ioctl comes down on an conn */ 9407 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9408 connp = Q_TO_CONN(q); 9409 9410 mp->b_datap->db_type = M_IOCTL; 9411 9412 /* 9413 * Send down a copy. (copymsg does not copy b_next/b_prev). 9414 * The original mp contains contaminated b_next values due to 'mi', 9415 * which is needed to do the mi_copy_done. Unfortunately if we 9416 * send down the original mblk itself and if we are popped due to an 9417 * an unplumb before the response comes back from tunnel, 9418 * the streamhead (which does a freemsg) will see this contaminated 9419 * message and the assertion in freemsg about non-null b_next/b_prev 9420 * will panic a DEBUG kernel. 9421 */ 9422 mp1 = copymsg(mp); 9423 if (mp1 == NULL) 9424 return (ENOMEM); 9425 9426 ill = ipif->ipif_ill; 9427 mutex_enter(&connp->conn_lock); 9428 mutex_enter(&ill->ill_lock); 9429 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9430 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9431 mp, 0); 9432 } else { 9433 success = ill_pending_mp_add(ill, connp, mp); 9434 } 9435 mutex_exit(&ill->ill_lock); 9436 mutex_exit(&connp->conn_lock); 9437 9438 if (success) { 9439 ip1dbg(("sending down tunparam request ")); 9440 putnext(ill->ill_wq, mp1); 9441 return (EINPROGRESS); 9442 } else { 9443 /* The conn has started closing */ 9444 freemsg(mp1); 9445 return (EINTR); 9446 } 9447 } 9448 9449 /* 9450 * ARP IOCTLs. 9451 * How does IP get in the business of fronting ARP configuration/queries? 9452 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9453 * are by tradition passed in through a datagram socket. That lands in IP. 9454 * As it happens, this is just as well since the interface is quite crude in 9455 * that it passes in no information about protocol or hardware types, or 9456 * interface association. After making the protocol assumption, IP is in 9457 * the position to look up the name of the ILL, which ARP will need, and 9458 * format a request that can be handled by ARP. The request is passed up 9459 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9460 * back a response. ARP supports its own set of more general IOCTLs, in 9461 * case anyone is interested. 9462 */ 9463 /* ARGSUSED */ 9464 int 9465 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9466 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9467 { 9468 mblk_t *mp1; 9469 mblk_t *mp2; 9470 mblk_t *pending_mp; 9471 ipaddr_t ipaddr; 9472 area_t *area; 9473 struct iocblk *iocp; 9474 conn_t *connp; 9475 struct arpreq *ar; 9476 struct xarpreq *xar; 9477 int flags, alength; 9478 char *lladdr; 9479 ip_stack_t *ipst; 9480 ill_t *ill = ipif->ipif_ill; 9481 boolean_t if_arp_ioctl = B_FALSE; 9482 9483 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9484 connp = Q_TO_CONN(q); 9485 ipst = connp->conn_netstack->netstack_ip; 9486 9487 if (ipip->ipi_cmd_type == XARP_CMD) { 9488 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9489 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9490 ar = NULL; 9491 9492 flags = xar->xarp_flags; 9493 lladdr = LLADDR(&xar->xarp_ha); 9494 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9495 /* 9496 * Validate against user's link layer address length 9497 * input and name and addr length limits. 9498 */ 9499 alength = ill->ill_phys_addr_length; 9500 if (ipip->ipi_cmd == SIOCSXARP) { 9501 if (alength != xar->xarp_ha.sdl_alen || 9502 (alength + xar->xarp_ha.sdl_nlen > 9503 sizeof (xar->xarp_ha.sdl_data))) 9504 return (EINVAL); 9505 } 9506 } else { 9507 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9508 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9509 xar = NULL; 9510 9511 flags = ar->arp_flags; 9512 lladdr = ar->arp_ha.sa_data; 9513 /* 9514 * Theoretically, the sa_family could tell us what link 9515 * layer type this operation is trying to deal with. By 9516 * common usage AF_UNSPEC means ethernet. We'll assume 9517 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9518 * for now. Our new SIOC*XARP ioctls can be used more 9519 * generally. 9520 * 9521 * If the underlying media happens to have a non 6 byte 9522 * address, arp module will fail set/get, but the del 9523 * operation will succeed. 9524 */ 9525 alength = 6; 9526 if ((ipip->ipi_cmd != SIOCDARP) && 9527 (alength != ill->ill_phys_addr_length)) { 9528 return (EINVAL); 9529 } 9530 } 9531 9532 /* 9533 * We are going to pass up to ARP a packet chain that looks 9534 * like: 9535 * 9536 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9537 * 9538 * Get a copy of the original IOCTL mblk to head the chain, 9539 * to be sent up (in mp1). Also get another copy to store 9540 * in the ill_pending_mp list, for matching the response 9541 * when it comes back from ARP. 9542 */ 9543 mp1 = copyb(mp); 9544 pending_mp = copymsg(mp); 9545 if (mp1 == NULL || pending_mp == NULL) { 9546 if (mp1 != NULL) 9547 freeb(mp1); 9548 if (pending_mp != NULL) 9549 inet_freemsg(pending_mp); 9550 return (ENOMEM); 9551 } 9552 9553 ipaddr = sin->sin_addr.s_addr; 9554 9555 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9556 (caddr_t)&ipaddr); 9557 if (mp2 == NULL) { 9558 freeb(mp1); 9559 inet_freemsg(pending_mp); 9560 return (ENOMEM); 9561 } 9562 /* Put together the chain. */ 9563 mp1->b_cont = mp2; 9564 mp1->b_datap->db_type = M_IOCTL; 9565 mp2->b_cont = mp; 9566 mp2->b_datap->db_type = M_DATA; 9567 9568 iocp = (struct iocblk *)mp1->b_rptr; 9569 9570 /* 9571 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9572 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9573 * cp_private field (or cp_rval on 32-bit systems) in place of the 9574 * ioc_count field; set ioc_count to be correct. 9575 */ 9576 iocp->ioc_count = MBLKL(mp1->b_cont); 9577 9578 /* 9579 * Set the proper command in the ARP message. 9580 * Convert the SIOC{G|S|D}ARP calls into our 9581 * AR_ENTRY_xxx calls. 9582 */ 9583 area = (area_t *)mp2->b_rptr; 9584 switch (iocp->ioc_cmd) { 9585 case SIOCDARP: 9586 case SIOCDXARP: 9587 /* 9588 * We defer deleting the corresponding IRE until 9589 * we return from arp. 9590 */ 9591 area->area_cmd = AR_ENTRY_DELETE; 9592 area->area_proto_mask_offset = 0; 9593 break; 9594 case SIOCGARP: 9595 case SIOCGXARP: 9596 area->area_cmd = AR_ENTRY_SQUERY; 9597 area->area_proto_mask_offset = 0; 9598 break; 9599 case SIOCSARP: 9600 case SIOCSXARP: 9601 /* 9602 * Delete the corresponding ire to make sure IP will 9603 * pick up any change from arp. 9604 */ 9605 if (!if_arp_ioctl) { 9606 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9607 } else { 9608 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9609 if (ipif != NULL) { 9610 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9611 ipst); 9612 ipif_refrele(ipif); 9613 } 9614 } 9615 break; 9616 } 9617 iocp->ioc_cmd = area->area_cmd; 9618 9619 /* 9620 * Fill in the rest of the ARP operation fields. 9621 */ 9622 area->area_hw_addr_length = alength; 9623 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9624 9625 /* Translate the flags. */ 9626 if (flags & ATF_PERM) 9627 area->area_flags |= ACE_F_PERMANENT; 9628 if (flags & ATF_PUBL) 9629 area->area_flags |= ACE_F_PUBLISH; 9630 if (flags & ATF_AUTHORITY) 9631 area->area_flags |= ACE_F_AUTHORITY; 9632 9633 /* 9634 * Before sending 'mp' to ARP, we have to clear the b_next 9635 * and b_prev. Otherwise if STREAMS encounters such a message 9636 * in freemsg(), (because ARP can close any time) it can cause 9637 * a panic. But mi code needs the b_next and b_prev values of 9638 * mp->b_cont, to complete the ioctl. So we store it here 9639 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9640 * when the response comes down from ARP. 9641 */ 9642 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9643 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9644 mp->b_cont->b_next = NULL; 9645 mp->b_cont->b_prev = NULL; 9646 9647 mutex_enter(&connp->conn_lock); 9648 mutex_enter(&ill->ill_lock); 9649 /* conn has not yet started closing, hence this can't fail */ 9650 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9651 mutex_exit(&ill->ill_lock); 9652 mutex_exit(&connp->conn_lock); 9653 9654 /* 9655 * Up to ARP it goes. The response will come back in ip_wput() as an 9656 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9657 */ 9658 putnext(ill->ill_rq, mp1); 9659 return (EINPROGRESS); 9660 } 9661 9662 /* 9663 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9664 * the associated sin and refhold and return the associated ipif via `ci'. 9665 */ 9666 int 9667 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9668 cmd_info_t *ci, ipsq_func_t func) 9669 { 9670 mblk_t *mp1; 9671 int err; 9672 sin_t *sin; 9673 conn_t *connp; 9674 ipif_t *ipif; 9675 ire_t *ire = NULL; 9676 ill_t *ill = NULL; 9677 boolean_t exists; 9678 ip_stack_t *ipst; 9679 struct arpreq *ar; 9680 struct xarpreq *xar; 9681 struct sockaddr_dl *sdl; 9682 9683 /* ioctl comes down on a conn */ 9684 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9685 connp = Q_TO_CONN(q); 9686 if (connp->conn_af_isv6) 9687 return (ENXIO); 9688 9689 ipst = connp->conn_netstack->netstack_ip; 9690 9691 /* Verified in ip_wput_nondata */ 9692 mp1 = mp->b_cont->b_cont; 9693 9694 if (ipip->ipi_cmd_type == XARP_CMD) { 9695 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9696 xar = (struct xarpreq *)mp1->b_rptr; 9697 sin = (sin_t *)&xar->xarp_pa; 9698 sdl = &xar->xarp_ha; 9699 9700 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9701 return (ENXIO); 9702 if (sdl->sdl_nlen >= LIFNAMSIZ) 9703 return (EINVAL); 9704 } else { 9705 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9706 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9707 ar = (struct arpreq *)mp1->b_rptr; 9708 sin = (sin_t *)&ar->arp_pa; 9709 } 9710 9711 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9712 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9713 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9714 mp, func, &err, ipst); 9715 if (ipif == NULL) 9716 return (err); 9717 if (ipif->ipif_id != 0 || 9718 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9719 ipif_refrele(ipif); 9720 return (ENXIO); 9721 } 9722 } else { 9723 /* 9724 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9725 * 0: use the IP address to figure out the ill. In the IPMP 9726 * case, a simple forwarding table lookup will return the 9727 * IRE_IF_RESOLVER for the first interface in the group, which 9728 * might not be the interface on which the requested IP 9729 * address was resolved due to the ill selection algorithm 9730 * (see ip_newroute_get_dst_ill()). So we do a cache table 9731 * lookup first: if the IRE cache entry for the IP address is 9732 * still there, it will contain the ill pointer for the right 9733 * interface, so we use that. If the cache entry has been 9734 * flushed, we fall back to the forwarding table lookup. This 9735 * should be rare enough since IRE cache entries have a longer 9736 * life expectancy than ARP cache entries. 9737 */ 9738 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9739 ipst); 9740 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9741 ((ill = ire_to_ill(ire)) == NULL) || 9742 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9743 if (ire != NULL) 9744 ire_refrele(ire); 9745 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9746 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9747 NULL, MATCH_IRE_TYPE, ipst); 9748 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9749 9750 if (ire != NULL) 9751 ire_refrele(ire); 9752 return (ENXIO); 9753 } 9754 } 9755 ASSERT(ire != NULL && ill != NULL); 9756 ipif = ill->ill_ipif; 9757 ipif_refhold(ipif); 9758 ire_refrele(ire); 9759 } 9760 ci->ci_sin = sin; 9761 ci->ci_ipif = ipif; 9762 return (0); 9763 } 9764 9765 /* 9766 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9767 * atomically set/clear the muxids. Also complete the ioctl by acking or 9768 * naking it. Note that the code is structured such that the link type, 9769 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9770 * its clones use the persistent link, while pppd(1M) and perhaps many 9771 * other daemons may use non-persistent link. When combined with some 9772 * ill_t states, linking and unlinking lower streams may be used as 9773 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9774 */ 9775 /* ARGSUSED */ 9776 void 9777 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9778 { 9779 mblk_t *mp1, *mp2; 9780 struct linkblk *li; 9781 struct ipmx_s *ipmxp; 9782 ill_t *ill; 9783 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9784 int err = 0; 9785 boolean_t entered_ipsq = B_FALSE; 9786 boolean_t islink; 9787 ip_stack_t *ipst; 9788 9789 if (CONN_Q(q)) 9790 ipst = CONNQ_TO_IPST(q); 9791 else 9792 ipst = ILLQ_TO_IPST(q); 9793 9794 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9795 ioccmd == I_LINK || ioccmd == I_UNLINK); 9796 9797 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9798 9799 mp1 = mp->b_cont; /* This is the linkblk info */ 9800 li = (struct linkblk *)mp1->b_rptr; 9801 9802 /* 9803 * ARP has added this special mblk, and the utility is asking us 9804 * to perform consistency checks, and also atomically set the 9805 * muxid. Ifconfig is an example. It achieves this by using 9806 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9807 * to /dev/udp[6] stream for use as the mux when plinking the IP 9808 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9809 * and other comments in this routine for more details. 9810 */ 9811 mp2 = mp1->b_cont; /* This is added by ARP */ 9812 9813 /* 9814 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9815 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9816 * get the special mblk above. For backward compatibility, we 9817 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9818 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9819 * not atomic, and can leave the streams unplumbable if the utility 9820 * is interrupted before it does the SIOCSLIFMUXID. 9821 */ 9822 if (mp2 == NULL) { 9823 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9824 if (err == EINPROGRESS) 9825 return; 9826 goto done; 9827 } 9828 9829 /* 9830 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9831 * ARP has appended this last mblk to tell us whether the lower stream 9832 * is an arp-dev stream or an IP module stream. 9833 */ 9834 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9835 if (ipmxp->ipmx_arpdev_stream) { 9836 /* 9837 * The lower stream is the arp-dev stream. 9838 */ 9839 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9840 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9841 if (ill == NULL) { 9842 if (err == EINPROGRESS) 9843 return; 9844 err = EINVAL; 9845 goto done; 9846 } 9847 9848 if (ipsq == NULL) { 9849 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9850 NEW_OP, B_TRUE); 9851 if (ipsq == NULL) { 9852 ill_refrele(ill); 9853 return; 9854 } 9855 entered_ipsq = B_TRUE; 9856 } 9857 ASSERT(IAM_WRITER_ILL(ill)); 9858 ill_refrele(ill); 9859 9860 /* 9861 * To ensure consistency between IP and ARP, the following 9862 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9863 * This is because the muxid's are stored in the IP stream on 9864 * the ill. 9865 * 9866 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9867 * the ARP stream. On an arp-dev stream, IP checks that it is 9868 * not yet plinked, and it also checks that the corresponding 9869 * IP stream is already plinked. 9870 * 9871 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9872 * punlinking the IP stream. IP does not allow punlink of the 9873 * IP stream unless the arp stream has been punlinked. 9874 */ 9875 if ((islink && 9876 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9877 (!islink && ill->ill_arp_muxid != li->l_index)) { 9878 err = EINVAL; 9879 goto done; 9880 } 9881 ill->ill_arp_muxid = islink ? li->l_index : 0; 9882 } else { 9883 /* 9884 * The lower stream is probably an IP module stream. Do 9885 * consistency checking. 9886 */ 9887 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9888 if (err == EINPROGRESS) 9889 return; 9890 } 9891 done: 9892 if (err == 0) 9893 miocack(q, mp, 0, 0); 9894 else 9895 miocnak(q, mp, 0, err); 9896 9897 /* Conn was refheld in ip_sioctl_copyin_setup */ 9898 if (CONN_Q(q)) 9899 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9900 if (entered_ipsq) 9901 ipsq_exit(ipsq); 9902 } 9903 9904 /* 9905 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9906 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9907 * module stream). If `doconsist' is set, then do the extended consistency 9908 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9909 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9910 * an error code on failure. 9911 */ 9912 static int 9913 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9914 struct linkblk *li, boolean_t doconsist) 9915 { 9916 ill_t *ill; 9917 queue_t *ipwq, *dwq; 9918 const char *name; 9919 struct qinit *qinfo; 9920 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9921 boolean_t entered_ipsq = B_FALSE; 9922 9923 /* 9924 * Walk the lower stream to verify it's the IP module stream. 9925 * The IP module is identified by its name, wput function, 9926 * and non-NULL q_next. STREAMS ensures that the lower stream 9927 * (li->l_qbot) will not vanish until this ioctl completes. 9928 */ 9929 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9930 qinfo = ipwq->q_qinfo; 9931 name = qinfo->qi_minfo->mi_idname; 9932 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9933 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9934 break; 9935 } 9936 } 9937 9938 /* 9939 * If this isn't an IP module stream, bail. 9940 */ 9941 if (ipwq == NULL) 9942 return (0); 9943 9944 ill = ipwq->q_ptr; 9945 ASSERT(ill != NULL); 9946 9947 if (ipsq == NULL) { 9948 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9949 NEW_OP, B_TRUE); 9950 if (ipsq == NULL) 9951 return (EINPROGRESS); 9952 entered_ipsq = B_TRUE; 9953 } 9954 ASSERT(IAM_WRITER_ILL(ill)); 9955 9956 if (doconsist) { 9957 /* 9958 * Consistency checking requires that I_{P}LINK occurs 9959 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9960 * occurs prior to clearing ill_arp_muxid. 9961 */ 9962 if ((islink && ill->ill_ip_muxid != 0) || 9963 (!islink && ill->ill_arp_muxid != 0)) { 9964 if (entered_ipsq) 9965 ipsq_exit(ipsq); 9966 return (EINVAL); 9967 } 9968 } 9969 9970 /* 9971 * As part of I_{P}LINKing, stash the number of downstream modules and 9972 * the read queue of the module immediately below IP in the ill. 9973 * These are used during the capability negotiation below. 9974 */ 9975 ill->ill_lmod_rq = NULL; 9976 ill->ill_lmod_cnt = 0; 9977 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9978 ill->ill_lmod_rq = RD(dwq); 9979 for (; dwq != NULL; dwq = dwq->q_next) 9980 ill->ill_lmod_cnt++; 9981 } 9982 9983 if (doconsist) 9984 ill->ill_ip_muxid = islink ? li->l_index : 0; 9985 9986 /* 9987 * If there's at least one up ipif on this ill, then we're bound to 9988 * the underlying driver via DLPI. In that case, renegotiate 9989 * capabilities to account for any possible change in modules 9990 * interposed between IP and the driver. 9991 */ 9992 if (ill->ill_ipif_up_count > 0) { 9993 if (islink) 9994 ill_capability_probe(ill); 9995 else 9996 ill_capability_reset(ill); 9997 } 9998 9999 if (entered_ipsq) 10000 ipsq_exit(ipsq); 10001 10002 return (0); 10003 } 10004 10005 /* 10006 * Search the ioctl command in the ioctl tables and return a pointer 10007 * to the ioctl command information. The ioctl command tables are 10008 * static and fully populated at compile time. 10009 */ 10010 ip_ioctl_cmd_t * 10011 ip_sioctl_lookup(int ioc_cmd) 10012 { 10013 int index; 10014 ip_ioctl_cmd_t *ipip; 10015 ip_ioctl_cmd_t *ipip_end; 10016 10017 if (ioc_cmd == IPI_DONTCARE) 10018 return (NULL); 10019 10020 /* 10021 * Do a 2 step search. First search the indexed table 10022 * based on the least significant byte of the ioctl cmd. 10023 * If we don't find a match, then search the misc table 10024 * serially. 10025 */ 10026 index = ioc_cmd & 0xFF; 10027 if (index < ip_ndx_ioctl_count) { 10028 ipip = &ip_ndx_ioctl_table[index]; 10029 if (ipip->ipi_cmd == ioc_cmd) { 10030 /* Found a match in the ndx table */ 10031 return (ipip); 10032 } 10033 } 10034 10035 /* Search the misc table */ 10036 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10037 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10038 if (ipip->ipi_cmd == ioc_cmd) 10039 /* Found a match in the misc table */ 10040 return (ipip); 10041 } 10042 10043 return (NULL); 10044 } 10045 10046 /* 10047 * Wrapper function for resuming deferred ioctl processing 10048 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10049 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10050 */ 10051 /* ARGSUSED */ 10052 void 10053 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10054 void *dummy_arg) 10055 { 10056 ip_sioctl_copyin_setup(q, mp); 10057 } 10058 10059 /* 10060 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10061 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10062 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10063 * We establish here the size of the block to be copied in. mi_copyin 10064 * arranges for this to happen, an processing continues in ip_wput with 10065 * an M_IOCDATA message. 10066 */ 10067 void 10068 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10069 { 10070 int copyin_size; 10071 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10072 ip_ioctl_cmd_t *ipip; 10073 cred_t *cr; 10074 ip_stack_t *ipst; 10075 10076 if (CONN_Q(q)) 10077 ipst = CONNQ_TO_IPST(q); 10078 else 10079 ipst = ILLQ_TO_IPST(q); 10080 10081 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10082 if (ipip == NULL) { 10083 /* 10084 * The ioctl is not one we understand or own. 10085 * Pass it along to be processed down stream, 10086 * if this is a module instance of IP, else nak 10087 * the ioctl. 10088 */ 10089 if (q->q_next == NULL) { 10090 goto nak; 10091 } else { 10092 putnext(q, mp); 10093 return; 10094 } 10095 } 10096 10097 /* 10098 * If this is deferred, then we will do all the checks when we 10099 * come back. 10100 */ 10101 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10102 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10103 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10104 return; 10105 } 10106 10107 /* 10108 * Only allow a very small subset of IP ioctls on this stream if 10109 * IP is a module and not a driver. Allowing ioctls to be processed 10110 * in this case may cause assert failures or data corruption. 10111 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10112 * ioctls allowed on an IP module stream, after which this stream 10113 * normally becomes a multiplexor (at which time the stream head 10114 * will fail all ioctls). 10115 */ 10116 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10117 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10118 /* 10119 * Pass common Streams ioctls which the IP 10120 * module does not own or consume along to 10121 * be processed down stream. 10122 */ 10123 putnext(q, mp); 10124 return; 10125 } else { 10126 goto nak; 10127 } 10128 } 10129 10130 /* Make sure we have ioctl data to process. */ 10131 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10132 goto nak; 10133 10134 /* 10135 * Prefer dblk credential over ioctl credential; some synthesized 10136 * ioctls have kcred set because there's no way to crhold() 10137 * a credential in some contexts. (ioc_cr is not crfree() by 10138 * the framework; the caller of ioctl needs to hold the reference 10139 * for the duration of the call). 10140 */ 10141 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10142 10143 /* Make sure normal users don't send down privileged ioctls */ 10144 if ((ipip->ipi_flags & IPI_PRIV) && 10145 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10146 /* We checked the privilege earlier but log it here */ 10147 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10148 return; 10149 } 10150 10151 /* 10152 * The ioctl command tables can only encode fixed length 10153 * ioctl data. If the length is variable, the table will 10154 * encode the length as zero. Such special cases are handled 10155 * below in the switch. 10156 */ 10157 if (ipip->ipi_copyin_size != 0) { 10158 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10159 return; 10160 } 10161 10162 switch (iocp->ioc_cmd) { 10163 case O_SIOCGIFCONF: 10164 case SIOCGIFCONF: 10165 /* 10166 * This IOCTL is hilarious. See comments in 10167 * ip_sioctl_get_ifconf for the story. 10168 */ 10169 if (iocp->ioc_count == TRANSPARENT) 10170 copyin_size = SIZEOF_STRUCT(ifconf, 10171 iocp->ioc_flag); 10172 else 10173 copyin_size = iocp->ioc_count; 10174 mi_copyin(q, mp, NULL, copyin_size); 10175 return; 10176 10177 case O_SIOCGLIFCONF: 10178 case SIOCGLIFCONF: 10179 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10180 mi_copyin(q, mp, NULL, copyin_size); 10181 return; 10182 10183 case SIOCGLIFSRCOF: 10184 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10185 mi_copyin(q, mp, NULL, copyin_size); 10186 return; 10187 case SIOCGIP6ADDRPOLICY: 10188 ip_sioctl_ip6addrpolicy(q, mp); 10189 ip6_asp_table_refrele(ipst); 10190 return; 10191 10192 case SIOCSIP6ADDRPOLICY: 10193 ip_sioctl_ip6addrpolicy(q, mp); 10194 return; 10195 10196 case SIOCGDSTINFO: 10197 ip_sioctl_dstinfo(q, mp); 10198 ip6_asp_table_refrele(ipst); 10199 return; 10200 10201 case I_PLINK: 10202 case I_PUNLINK: 10203 case I_LINK: 10204 case I_UNLINK: 10205 /* 10206 * We treat non-persistent link similarly as the persistent 10207 * link case, in terms of plumbing/unplumbing, as well as 10208 * dynamic re-plumbing events indicator. See comments 10209 * in ip_sioctl_plink() for more. 10210 * 10211 * Request can be enqueued in the 'ipsq' while waiting 10212 * to become exclusive. So bump up the conn ref. 10213 */ 10214 if (CONN_Q(q)) 10215 CONN_INC_REF(Q_TO_CONN(q)); 10216 ip_sioctl_plink(NULL, q, mp, NULL); 10217 return; 10218 10219 case ND_GET: 10220 case ND_SET: 10221 /* 10222 * Use of the nd table requires holding the reader lock. 10223 * Modifying the nd table thru nd_load/nd_unload requires 10224 * the writer lock. 10225 */ 10226 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10227 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10228 rw_exit(&ipst->ips_ip_g_nd_lock); 10229 10230 if (iocp->ioc_error) 10231 iocp->ioc_count = 0; 10232 mp->b_datap->db_type = M_IOCACK; 10233 qreply(q, mp); 10234 return; 10235 } 10236 rw_exit(&ipst->ips_ip_g_nd_lock); 10237 /* 10238 * We don't understand this subioctl of ND_GET / ND_SET. 10239 * Maybe intended for some driver / module below us 10240 */ 10241 if (q->q_next) { 10242 putnext(q, mp); 10243 } else { 10244 iocp->ioc_error = ENOENT; 10245 mp->b_datap->db_type = M_IOCNAK; 10246 iocp->ioc_count = 0; 10247 qreply(q, mp); 10248 } 10249 return; 10250 10251 case IP_IOCTL: 10252 ip_wput_ioctl(q, mp); 10253 return; 10254 default: 10255 cmn_err(CE_PANIC, "should not happen "); 10256 } 10257 nak: 10258 if (mp->b_cont != NULL) { 10259 freemsg(mp->b_cont); 10260 mp->b_cont = NULL; 10261 } 10262 iocp->ioc_error = EINVAL; 10263 mp->b_datap->db_type = M_IOCNAK; 10264 iocp->ioc_count = 0; 10265 qreply(q, mp); 10266 } 10267 10268 /* ip_wput hands off ARP IOCTL responses to us */ 10269 void 10270 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10271 { 10272 struct arpreq *ar; 10273 struct xarpreq *xar; 10274 area_t *area; 10275 mblk_t *area_mp; 10276 struct iocblk *iocp; 10277 mblk_t *orig_ioc_mp, *tmp; 10278 struct iocblk *orig_iocp; 10279 ill_t *ill; 10280 conn_t *connp = NULL; 10281 uint_t ioc_id; 10282 mblk_t *pending_mp; 10283 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10284 int *flagsp; 10285 char *storage = NULL; 10286 sin_t *sin; 10287 ipaddr_t addr; 10288 int err; 10289 ip_stack_t *ipst; 10290 10291 ill = q->q_ptr; 10292 ASSERT(ill != NULL); 10293 ipst = ill->ill_ipst; 10294 10295 /* 10296 * We should get back from ARP a packet chain that looks like: 10297 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10298 */ 10299 if (!(area_mp = mp->b_cont) || 10300 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10301 !(orig_ioc_mp = area_mp->b_cont) || 10302 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10303 freemsg(mp); 10304 return; 10305 } 10306 10307 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10308 10309 tmp = (orig_ioc_mp->b_cont)->b_cont; 10310 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10311 (orig_iocp->ioc_cmd == SIOCSXARP) || 10312 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10313 x_arp_ioctl = B_TRUE; 10314 xar = (struct xarpreq *)tmp->b_rptr; 10315 sin = (sin_t *)&xar->xarp_pa; 10316 flagsp = &xar->xarp_flags; 10317 storage = xar->xarp_ha.sdl_data; 10318 if (xar->xarp_ha.sdl_nlen != 0) 10319 ifx_arp_ioctl = B_TRUE; 10320 } else { 10321 ar = (struct arpreq *)tmp->b_rptr; 10322 sin = (sin_t *)&ar->arp_pa; 10323 flagsp = &ar->arp_flags; 10324 storage = ar->arp_ha.sa_data; 10325 } 10326 10327 iocp = (struct iocblk *)mp->b_rptr; 10328 10329 /* 10330 * Pick out the originating queue based on the ioc_id. 10331 */ 10332 ioc_id = iocp->ioc_id; 10333 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10334 if (pending_mp == NULL) { 10335 ASSERT(connp == NULL); 10336 inet_freemsg(mp); 10337 return; 10338 } 10339 ASSERT(connp != NULL); 10340 q = CONNP_TO_WQ(connp); 10341 10342 /* Uncouple the internally generated IOCTL from the original one */ 10343 area = (area_t *)area_mp->b_rptr; 10344 area_mp->b_cont = NULL; 10345 10346 /* 10347 * Restore the b_next and b_prev used by mi code. This is needed 10348 * to complete the ioctl using mi* functions. We stored them in 10349 * the pending mp prior to sending the request to ARP. 10350 */ 10351 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10352 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10353 inet_freemsg(pending_mp); 10354 10355 /* 10356 * We're done if there was an error or if this is not an SIOCG{X}ARP 10357 * Catch the case where there is an IRE_CACHE by no entry in the 10358 * arp table. 10359 */ 10360 addr = sin->sin_addr.s_addr; 10361 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10362 ire_t *ire; 10363 dl_unitdata_req_t *dlup; 10364 mblk_t *llmp; 10365 int addr_len; 10366 ill_t *ipsqill = NULL; 10367 10368 if (ifx_arp_ioctl) { 10369 /* 10370 * There's no need to lookup the ill, since 10371 * we've already done that when we started 10372 * processing the ioctl and sent the message 10373 * to ARP on that ill. So use the ill that 10374 * is stored in q->q_ptr. 10375 */ 10376 ipsqill = ill; 10377 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10378 ipsqill->ill_ipif, ALL_ZONES, 10379 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10380 } else { 10381 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10382 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10383 if (ire != NULL) 10384 ipsqill = ire_to_ill(ire); 10385 } 10386 10387 if ((x_arp_ioctl) && (ipsqill != NULL)) 10388 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10389 10390 if (ire != NULL) { 10391 /* 10392 * Since the ire obtained from cachetable is used for 10393 * mac addr copying below, treat an incomplete ire as if 10394 * as if we never found it. 10395 */ 10396 if (ire->ire_nce != NULL && 10397 ire->ire_nce->nce_state != ND_REACHABLE) { 10398 ire_refrele(ire); 10399 ire = NULL; 10400 ipsqill = NULL; 10401 goto errack; 10402 } 10403 *flagsp = ATF_INUSE; 10404 llmp = (ire->ire_nce != NULL ? 10405 ire->ire_nce->nce_res_mp : NULL); 10406 if (llmp != NULL && ipsqill != NULL) { 10407 uchar_t *macaddr; 10408 10409 addr_len = ipsqill->ill_phys_addr_length; 10410 if (x_arp_ioctl && ((addr_len + 10411 ipsqill->ill_name_length) > 10412 sizeof (xar->xarp_ha.sdl_data))) { 10413 ire_refrele(ire); 10414 freemsg(mp); 10415 ip_ioctl_finish(q, orig_ioc_mp, 10416 EINVAL, NO_COPYOUT, NULL); 10417 return; 10418 } 10419 *flagsp |= ATF_COM; 10420 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10421 if (ipsqill->ill_sap_length < 0) 10422 macaddr = llmp->b_rptr + 10423 dlup->dl_dest_addr_offset; 10424 else 10425 macaddr = llmp->b_rptr + 10426 dlup->dl_dest_addr_offset + 10427 ipsqill->ill_sap_length; 10428 /* 10429 * For SIOCGARP, MAC address length 10430 * validation has already been done 10431 * before the ioctl was issued to ARP to 10432 * allow it to progress only on 6 byte 10433 * addressable (ethernet like) media. Thus 10434 * the mac address copying can not overwrite 10435 * the sa_data area below. 10436 */ 10437 bcopy(macaddr, storage, addr_len); 10438 } 10439 /* Ditch the internal IOCTL. */ 10440 freemsg(mp); 10441 ire_refrele(ire); 10442 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10443 return; 10444 } 10445 } 10446 10447 /* 10448 * Delete the coresponding IRE_CACHE if any. 10449 * Reset the error if there was one (in case there was no entry 10450 * in arp.) 10451 */ 10452 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10453 ipif_t *ipintf = NULL; 10454 10455 if (ifx_arp_ioctl) { 10456 /* 10457 * There's no need to lookup the ill, since 10458 * we've already done that when we started 10459 * processing the ioctl and sent the message 10460 * to ARP on that ill. So use the ill that 10461 * is stored in q->q_ptr. 10462 */ 10463 ipintf = ill->ill_ipif; 10464 } 10465 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10466 /* 10467 * The address in "addr" may be an entry for a 10468 * router. If that's true, then any off-net 10469 * IRE_CACHE entries that go through the router 10470 * with address "addr" must be clobbered. Use 10471 * ire_walk to achieve this goal. 10472 */ 10473 if (ifx_arp_ioctl) 10474 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10475 ire_delete_cache_gw, (char *)&addr, ill); 10476 else 10477 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10478 ALL_ZONES, ipst); 10479 iocp->ioc_error = 0; 10480 } 10481 } 10482 errack: 10483 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10484 err = iocp->ioc_error; 10485 freemsg(mp); 10486 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10487 return; 10488 } 10489 10490 /* 10491 * Completion of an SIOCG{X}ARP. Translate the information from 10492 * the area_t into the struct {x}arpreq. 10493 */ 10494 if (x_arp_ioctl) { 10495 storage += ill_xarp_info(&xar->xarp_ha, ill); 10496 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10497 sizeof (xar->xarp_ha.sdl_data)) { 10498 freemsg(mp); 10499 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10500 NULL); 10501 return; 10502 } 10503 } 10504 *flagsp = ATF_INUSE; 10505 if (area->area_flags & ACE_F_PERMANENT) 10506 *flagsp |= ATF_PERM; 10507 if (area->area_flags & ACE_F_PUBLISH) 10508 *flagsp |= ATF_PUBL; 10509 if (area->area_flags & ACE_F_AUTHORITY) 10510 *flagsp |= ATF_AUTHORITY; 10511 if (area->area_hw_addr_length != 0) { 10512 *flagsp |= ATF_COM; 10513 /* 10514 * For SIOCGARP, MAC address length validation has 10515 * already been done before the ioctl was issued to ARP 10516 * to allow it to progress only on 6 byte addressable 10517 * (ethernet like) media. Thus the mac address copying 10518 * can not overwrite the sa_data area below. 10519 */ 10520 bcopy((char *)area + area->area_hw_addr_offset, 10521 storage, area->area_hw_addr_length); 10522 } 10523 10524 /* Ditch the internal IOCTL. */ 10525 freemsg(mp); 10526 /* Complete the original. */ 10527 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10528 } 10529 10530 /* 10531 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10532 * interface) create the next available logical interface for this 10533 * physical interface. 10534 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10535 * ipif with the specified name. 10536 * 10537 * If the address family is not AF_UNSPEC then set the address as well. 10538 * 10539 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10540 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10541 * 10542 * Executed as a writer on the ill or ill group. 10543 * So no lock is needed to traverse the ipif chain, or examine the 10544 * phyint flags. 10545 */ 10546 /* ARGSUSED */ 10547 int 10548 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10549 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10550 { 10551 mblk_t *mp1; 10552 struct lifreq *lifr; 10553 boolean_t isv6; 10554 boolean_t exists; 10555 char *name; 10556 char *endp; 10557 char *cp; 10558 int namelen; 10559 ipif_t *ipif; 10560 long id; 10561 ipsq_t *ipsq; 10562 ill_t *ill; 10563 sin_t *sin; 10564 int err = 0; 10565 boolean_t found_sep = B_FALSE; 10566 conn_t *connp; 10567 zoneid_t zoneid; 10568 int orig_ifindex = 0; 10569 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10570 10571 ASSERT(q->q_next == NULL); 10572 ip1dbg(("ip_sioctl_addif\n")); 10573 /* Existence of mp1 has been checked in ip_wput_nondata */ 10574 mp1 = mp->b_cont->b_cont; 10575 /* 10576 * Null terminate the string to protect against buffer 10577 * overrun. String was generated by user code and may not 10578 * be trusted. 10579 */ 10580 lifr = (struct lifreq *)mp1->b_rptr; 10581 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10582 name = lifr->lifr_name; 10583 ASSERT(CONN_Q(q)); 10584 connp = Q_TO_CONN(q); 10585 isv6 = connp->conn_af_isv6; 10586 zoneid = connp->conn_zoneid; 10587 namelen = mi_strlen(name); 10588 if (namelen == 0) 10589 return (EINVAL); 10590 10591 exists = B_FALSE; 10592 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10593 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10594 /* 10595 * Allow creating lo0 using SIOCLIFADDIF. 10596 * can't be any other writer thread. So can pass null below 10597 * for the last 4 args to ipif_lookup_name. 10598 */ 10599 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10600 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10601 /* Prevent any further action */ 10602 if (ipif == NULL) { 10603 return (ENOBUFS); 10604 } else if (!exists) { 10605 /* We created the ipif now and as writer */ 10606 ipif_refrele(ipif); 10607 return (0); 10608 } else { 10609 ill = ipif->ipif_ill; 10610 ill_refhold(ill); 10611 ipif_refrele(ipif); 10612 } 10613 } else { 10614 /* Look for a colon in the name. */ 10615 endp = &name[namelen]; 10616 for (cp = endp; --cp > name; ) { 10617 if (*cp == IPIF_SEPARATOR_CHAR) { 10618 found_sep = B_TRUE; 10619 /* 10620 * Reject any non-decimal aliases for plumbing 10621 * of logical interfaces. Aliases with leading 10622 * zeroes are also rejected as they introduce 10623 * ambiguity in the naming of the interfaces. 10624 * Comparing with "0" takes care of all such 10625 * cases. 10626 */ 10627 if ((strncmp("0", cp+1, 1)) == 0) 10628 return (EINVAL); 10629 10630 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10631 id <= 0 || *endp != '\0') { 10632 return (EINVAL); 10633 } 10634 *cp = '\0'; 10635 break; 10636 } 10637 } 10638 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10639 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10640 if (found_sep) 10641 *cp = IPIF_SEPARATOR_CHAR; 10642 if (ill == NULL) 10643 return (err); 10644 } 10645 10646 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10647 B_TRUE); 10648 10649 /* 10650 * Release the refhold due to the lookup, now that we are excl 10651 * or we are just returning 10652 */ 10653 ill_refrele(ill); 10654 10655 if (ipsq == NULL) 10656 return (EINPROGRESS); 10657 10658 /* 10659 * If the interface is failed, inactive or offlined, look for a working 10660 * interface in the ill group and create the ipif there. If we can't 10661 * find a good interface, create the ipif anyway so that in.mpathd can 10662 * move it to the first repaired interface. 10663 */ 10664 if ((ill->ill_phyint->phyint_flags & 10665 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10666 ill->ill_phyint->phyint_groupname_len != 0) { 10667 phyint_t *phyi; 10668 char *groupname = ill->ill_phyint->phyint_groupname; 10669 10670 /* 10671 * We're looking for a working interface, but it doesn't matter 10672 * if it's up or down; so instead of following the group lists, 10673 * we look at each physical interface and compare the groupname. 10674 * We're only interested in interfaces with IPv4 (resp. IPv6) 10675 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10676 * Otherwise we create the ipif on the failed interface. 10677 */ 10678 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10679 phyi = avl_first(&ipst->ips_phyint_g_list-> 10680 phyint_list_avl_by_index); 10681 for (; phyi != NULL; 10682 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10683 phyint_list_avl_by_index, 10684 phyi, AVL_AFTER)) { 10685 if (phyi->phyint_groupname_len == 0) 10686 continue; 10687 ASSERT(phyi->phyint_groupname != NULL); 10688 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10689 !(phyi->phyint_flags & 10690 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10691 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10692 (phyi->phyint_illv4 != NULL))) { 10693 break; 10694 } 10695 } 10696 rw_exit(&ipst->ips_ill_g_lock); 10697 10698 if (phyi != NULL) { 10699 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10700 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10701 phyi->phyint_illv4); 10702 } 10703 } 10704 10705 /* 10706 * We are now exclusive on the ipsq, so an ill move will be serialized 10707 * before or after us. 10708 */ 10709 ASSERT(IAM_WRITER_ILL(ill)); 10710 ASSERT(ill->ill_move_in_progress == B_FALSE); 10711 10712 if (found_sep && orig_ifindex == 0) { 10713 /* Now see if there is an IPIF with this unit number. */ 10714 for (ipif = ill->ill_ipif; ipif != NULL; 10715 ipif = ipif->ipif_next) { 10716 if (ipif->ipif_id == id) { 10717 err = EEXIST; 10718 goto done; 10719 } 10720 } 10721 } 10722 10723 /* 10724 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10725 * of lo0. We never come here when we plumb lo0:0. It 10726 * happens in ipif_lookup_on_name. 10727 * The specified unit number is ignored when we create the ipif on a 10728 * different interface. However, we save it in ipif_orig_ipifid below so 10729 * that the ipif fails back to the right position. 10730 */ 10731 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10732 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10733 err = ENOBUFS; 10734 goto done; 10735 } 10736 10737 /* Return created name with ioctl */ 10738 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10739 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10740 ip1dbg(("created %s\n", lifr->lifr_name)); 10741 10742 /* Set address */ 10743 sin = (sin_t *)&lifr->lifr_addr; 10744 if (sin->sin_family != AF_UNSPEC) { 10745 err = ip_sioctl_addr(ipif, sin, q, mp, 10746 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10747 } 10748 10749 /* Set ifindex and unit number for failback */ 10750 if (err == 0 && orig_ifindex != 0) { 10751 ipif->ipif_orig_ifindex = orig_ifindex; 10752 if (found_sep) { 10753 ipif->ipif_orig_ipifid = id; 10754 } 10755 } 10756 10757 done: 10758 ipsq_exit(ipsq); 10759 return (err); 10760 } 10761 10762 /* 10763 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10764 * interface) delete it based on the IP address (on this physical interface). 10765 * Otherwise delete it based on the ipif_id. 10766 * Also, special handling to allow a removeif of lo0. 10767 */ 10768 /* ARGSUSED */ 10769 int 10770 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10771 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10772 { 10773 conn_t *connp; 10774 ill_t *ill = ipif->ipif_ill; 10775 boolean_t success; 10776 ip_stack_t *ipst; 10777 10778 ipst = CONNQ_TO_IPST(q); 10779 10780 ASSERT(q->q_next == NULL); 10781 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10782 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10783 ASSERT(IAM_WRITER_IPIF(ipif)); 10784 10785 connp = Q_TO_CONN(q); 10786 /* 10787 * Special case for unplumbing lo0 (the loopback physical interface). 10788 * If unplumbing lo0, the incoming address structure has been 10789 * initialized to all zeros. When unplumbing lo0, all its logical 10790 * interfaces must be removed too. 10791 * 10792 * Note that this interface may be called to remove a specific 10793 * loopback logical interface (eg, lo0:1). But in that case 10794 * ipif->ipif_id != 0 so that the code path for that case is the 10795 * same as any other interface (meaning it skips the code directly 10796 * below). 10797 */ 10798 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10799 if (sin->sin_family == AF_UNSPEC && 10800 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10801 /* 10802 * Mark it condemned. No new ref. will be made to ill. 10803 */ 10804 mutex_enter(&ill->ill_lock); 10805 ill->ill_state_flags |= ILL_CONDEMNED; 10806 for (ipif = ill->ill_ipif; ipif != NULL; 10807 ipif = ipif->ipif_next) { 10808 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10809 } 10810 mutex_exit(&ill->ill_lock); 10811 10812 ipif = ill->ill_ipif; 10813 /* unplumb the loopback interface */ 10814 ill_delete(ill); 10815 mutex_enter(&connp->conn_lock); 10816 mutex_enter(&ill->ill_lock); 10817 ASSERT(ill->ill_group == NULL); 10818 10819 /* Are any references to this ill active */ 10820 if (ill_is_freeable(ill)) { 10821 mutex_exit(&ill->ill_lock); 10822 mutex_exit(&connp->conn_lock); 10823 ill_delete_tail(ill); 10824 mi_free(ill); 10825 return (0); 10826 } 10827 success = ipsq_pending_mp_add(connp, ipif, 10828 CONNP_TO_WQ(connp), mp, ILL_FREE); 10829 mutex_exit(&connp->conn_lock); 10830 mutex_exit(&ill->ill_lock); 10831 if (success) 10832 return (EINPROGRESS); 10833 else 10834 return (EINTR); 10835 } 10836 } 10837 10838 /* 10839 * We are exclusive on the ipsq, so an ill move will be serialized 10840 * before or after us. 10841 */ 10842 ASSERT(ill->ill_move_in_progress == B_FALSE); 10843 10844 if (ipif->ipif_id == 0) { 10845 10846 ipsq_t *ipsq; 10847 10848 /* Find based on address */ 10849 if (ipif->ipif_isv6) { 10850 sin6_t *sin6; 10851 10852 if (sin->sin_family != AF_INET6) 10853 return (EAFNOSUPPORT); 10854 10855 sin6 = (sin6_t *)sin; 10856 /* We are a writer, so we should be able to lookup */ 10857 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10858 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10859 if (ipif == NULL) { 10860 /* 10861 * Maybe the address in on another interface in 10862 * the same IPMP group? We check this below. 10863 */ 10864 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10865 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10866 ipst); 10867 } 10868 } else { 10869 ipaddr_t addr; 10870 10871 if (sin->sin_family != AF_INET) 10872 return (EAFNOSUPPORT); 10873 10874 addr = sin->sin_addr.s_addr; 10875 /* We are a writer, so we should be able to lookup */ 10876 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10877 NULL, NULL, NULL, ipst); 10878 if (ipif == NULL) { 10879 /* 10880 * Maybe the address in on another interface in 10881 * the same IPMP group? We check this below. 10882 */ 10883 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10884 NULL, NULL, NULL, NULL, ipst); 10885 } 10886 } 10887 if (ipif == NULL) { 10888 return (EADDRNOTAVAIL); 10889 } 10890 10891 /* 10892 * It is possible for a user to send an SIOCLIFREMOVEIF with 10893 * lifr_name of the physical interface but with an ip address 10894 * lifr_addr of a logical interface plumbed over it. 10895 * So update ipsq_current_ipif once ipif points to the 10896 * correct interface after doing ipif_lookup_addr(). 10897 */ 10898 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10899 ASSERT(ipsq != NULL); 10900 10901 mutex_enter(&ipsq->ipsq_lock); 10902 ipsq->ipsq_current_ipif = ipif; 10903 mutex_exit(&ipsq->ipsq_lock); 10904 10905 /* 10906 * When the address to be removed is hosted on a different 10907 * interface, we check if the interface is in the same IPMP 10908 * group as the specified one; if so we proceed with the 10909 * removal. 10910 * ill->ill_group is NULL when the ill is down, so we have to 10911 * compare the group names instead. 10912 */ 10913 if (ipif->ipif_ill != ill && 10914 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10915 ill->ill_phyint->phyint_groupname_len == 0 || 10916 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10917 ill->ill_phyint->phyint_groupname) != 0)) { 10918 ipif_refrele(ipif); 10919 return (EADDRNOTAVAIL); 10920 } 10921 10922 /* This is a writer */ 10923 ipif_refrele(ipif); 10924 } 10925 10926 /* 10927 * Can not delete instance zero since it is tied to the ill. 10928 */ 10929 if (ipif->ipif_id == 0) 10930 return (EBUSY); 10931 10932 mutex_enter(&ill->ill_lock); 10933 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10934 mutex_exit(&ill->ill_lock); 10935 10936 ipif_free(ipif); 10937 10938 mutex_enter(&connp->conn_lock); 10939 mutex_enter(&ill->ill_lock); 10940 10941 10942 /* Are any references to this ipif active */ 10943 if (ipif_is_freeable(ipif)) { 10944 mutex_exit(&ill->ill_lock); 10945 mutex_exit(&connp->conn_lock); 10946 ipif_non_duplicate(ipif); 10947 ipif_down_tail(ipif); 10948 ipif_free_tail(ipif); /* frees ipif */ 10949 return (0); 10950 } 10951 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10952 IPIF_FREE); 10953 mutex_exit(&ill->ill_lock); 10954 mutex_exit(&connp->conn_lock); 10955 if (success) 10956 return (EINPROGRESS); 10957 else 10958 return (EINTR); 10959 } 10960 10961 /* 10962 * Restart the removeif ioctl. The refcnt has gone down to 0. 10963 * The ipif is already condemned. So can't find it thru lookups. 10964 */ 10965 /* ARGSUSED */ 10966 int 10967 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10968 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10969 { 10970 ill_t *ill = ipif->ipif_ill; 10971 10972 ASSERT(IAM_WRITER_IPIF(ipif)); 10973 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10974 10975 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10976 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10977 10978 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10979 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10980 ill_delete_tail(ill); 10981 mi_free(ill); 10982 return (0); 10983 } 10984 10985 ipif_non_duplicate(ipif); 10986 ipif_down_tail(ipif); 10987 ipif_free_tail(ipif); 10988 10989 ILL_UNMARK_CHANGING(ill); 10990 return (0); 10991 } 10992 10993 /* 10994 * Set the local interface address. 10995 * Allow an address of all zero when the interface is down. 10996 */ 10997 /* ARGSUSED */ 10998 int 10999 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11000 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11001 { 11002 int err = 0; 11003 in6_addr_t v6addr; 11004 boolean_t need_up = B_FALSE; 11005 11006 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11007 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11008 11009 ASSERT(IAM_WRITER_IPIF(ipif)); 11010 11011 if (ipif->ipif_isv6) { 11012 sin6_t *sin6; 11013 ill_t *ill; 11014 phyint_t *phyi; 11015 11016 if (sin->sin_family != AF_INET6) 11017 return (EAFNOSUPPORT); 11018 11019 sin6 = (sin6_t *)sin; 11020 v6addr = sin6->sin6_addr; 11021 ill = ipif->ipif_ill; 11022 phyi = ill->ill_phyint; 11023 11024 /* 11025 * Enforce that true multicast interfaces have a link-local 11026 * address for logical unit 0. 11027 */ 11028 if (ipif->ipif_id == 0 && 11029 (ill->ill_flags & ILLF_MULTICAST) && 11030 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11031 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11032 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11033 return (EADDRNOTAVAIL); 11034 } 11035 11036 /* 11037 * up interfaces shouldn't have the unspecified address 11038 * unless they also have the IPIF_NOLOCAL flags set and 11039 * have a subnet assigned. 11040 */ 11041 if ((ipif->ipif_flags & IPIF_UP) && 11042 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11043 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11044 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11045 return (EADDRNOTAVAIL); 11046 } 11047 11048 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11049 return (EADDRNOTAVAIL); 11050 } else { 11051 ipaddr_t addr; 11052 11053 if (sin->sin_family != AF_INET) 11054 return (EAFNOSUPPORT); 11055 11056 addr = sin->sin_addr.s_addr; 11057 11058 /* Allow 0 as the local address. */ 11059 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11060 return (EADDRNOTAVAIL); 11061 11062 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11063 } 11064 11065 /* 11066 * Even if there is no change we redo things just to rerun 11067 * ipif_set_default. 11068 */ 11069 if (ipif->ipif_flags & IPIF_UP) { 11070 /* 11071 * Setting a new local address, make sure 11072 * we have net and subnet bcast ire's for 11073 * the old address if we need them. 11074 */ 11075 if (!ipif->ipif_isv6) 11076 ipif_check_bcast_ires(ipif); 11077 /* 11078 * If the interface is already marked up, 11079 * we call ipif_down which will take care 11080 * of ditching any IREs that have been set 11081 * up based on the old interface address. 11082 */ 11083 err = ipif_logical_down(ipif, q, mp); 11084 if (err == EINPROGRESS) 11085 return (err); 11086 ipif_down_tail(ipif); 11087 need_up = 1; 11088 } 11089 11090 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11091 return (err); 11092 } 11093 11094 int 11095 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11096 boolean_t need_up) 11097 { 11098 in6_addr_t v6addr; 11099 in6_addr_t ov6addr; 11100 ipaddr_t addr; 11101 sin6_t *sin6; 11102 int sinlen; 11103 int err = 0; 11104 ill_t *ill = ipif->ipif_ill; 11105 boolean_t need_dl_down; 11106 boolean_t need_arp_down; 11107 struct iocblk *iocp; 11108 11109 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11110 11111 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11112 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11113 ASSERT(IAM_WRITER_IPIF(ipif)); 11114 11115 /* Must cancel any pending timer before taking the ill_lock */ 11116 if (ipif->ipif_recovery_id != 0) 11117 (void) untimeout(ipif->ipif_recovery_id); 11118 ipif->ipif_recovery_id = 0; 11119 11120 if (ipif->ipif_isv6) { 11121 sin6 = (sin6_t *)sin; 11122 v6addr = sin6->sin6_addr; 11123 sinlen = sizeof (struct sockaddr_in6); 11124 } else { 11125 addr = sin->sin_addr.s_addr; 11126 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11127 sinlen = sizeof (struct sockaddr_in); 11128 } 11129 mutex_enter(&ill->ill_lock); 11130 ov6addr = ipif->ipif_v6lcl_addr; 11131 ipif->ipif_v6lcl_addr = v6addr; 11132 sctp_update_ipif_addr(ipif, ov6addr); 11133 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11134 ipif->ipif_v6src_addr = ipv6_all_zeros; 11135 } else { 11136 ipif->ipif_v6src_addr = v6addr; 11137 } 11138 ipif->ipif_addr_ready = 0; 11139 11140 /* 11141 * If the interface was previously marked as a duplicate, then since 11142 * we've now got a "new" address, it should no longer be considered a 11143 * duplicate -- even if the "new" address is the same as the old one. 11144 * Note that if all ipifs are down, we may have a pending ARP down 11145 * event to handle. This is because we want to recover from duplicates 11146 * and thus delay tearing down ARP until the duplicates have been 11147 * removed or disabled. 11148 */ 11149 need_dl_down = need_arp_down = B_FALSE; 11150 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11151 need_arp_down = !need_up; 11152 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11153 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11154 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11155 need_dl_down = B_TRUE; 11156 } 11157 } 11158 11159 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11160 !ill->ill_is_6to4tun) { 11161 queue_t *wqp = ill->ill_wq; 11162 11163 /* 11164 * The local address of this interface is a 6to4 address, 11165 * check if this interface is in fact a 6to4 tunnel or just 11166 * an interface configured with a 6to4 address. We are only 11167 * interested in the former. 11168 */ 11169 if (wqp != NULL) { 11170 while ((wqp->q_next != NULL) && 11171 (wqp->q_next->q_qinfo != NULL) && 11172 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11173 11174 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11175 == TUN6TO4_MODID) { 11176 /* set for use in IP */ 11177 ill->ill_is_6to4tun = 1; 11178 break; 11179 } 11180 wqp = wqp->q_next; 11181 } 11182 } 11183 } 11184 11185 ipif_set_default(ipif); 11186 11187 /* 11188 * When publishing an interface address change event, we only notify 11189 * the event listeners of the new address. It is assumed that if they 11190 * actively care about the addresses assigned that they will have 11191 * already discovered the previous address assigned (if there was one.) 11192 * 11193 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11194 */ 11195 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11196 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11197 NE_ADDRESS_CHANGE, sin, sinlen); 11198 } 11199 11200 mutex_exit(&ill->ill_lock); 11201 11202 if (need_up) { 11203 /* 11204 * Now bring the interface back up. If this 11205 * is the only IPIF for the ILL, ipif_up 11206 * will have to re-bind to the device, so 11207 * we may get back EINPROGRESS, in which 11208 * case, this IOCTL will get completed in 11209 * ip_rput_dlpi when we see the DL_BIND_ACK. 11210 */ 11211 err = ipif_up(ipif, q, mp); 11212 } 11213 11214 if (need_dl_down) 11215 ill_dl_down(ill); 11216 if (need_arp_down) 11217 ipif_arp_down(ipif); 11218 11219 return (err); 11220 } 11221 11222 11223 /* 11224 * Restart entry point to restart the address set operation after the 11225 * refcounts have dropped to zero. 11226 */ 11227 /* ARGSUSED */ 11228 int 11229 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11230 ip_ioctl_cmd_t *ipip, void *ifreq) 11231 { 11232 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11233 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11234 ASSERT(IAM_WRITER_IPIF(ipif)); 11235 ipif_down_tail(ipif); 11236 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11237 } 11238 11239 /* ARGSUSED */ 11240 int 11241 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11242 ip_ioctl_cmd_t *ipip, void *if_req) 11243 { 11244 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11245 struct lifreq *lifr = (struct lifreq *)if_req; 11246 11247 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11248 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11249 /* 11250 * The net mask and address can't change since we have a 11251 * reference to the ipif. So no lock is necessary. 11252 */ 11253 if (ipif->ipif_isv6) { 11254 *sin6 = sin6_null; 11255 sin6->sin6_family = AF_INET6; 11256 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11257 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11258 lifr->lifr_addrlen = 11259 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11260 } else { 11261 *sin = sin_null; 11262 sin->sin_family = AF_INET; 11263 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11264 if (ipip->ipi_cmd_type == LIF_CMD) { 11265 lifr->lifr_addrlen = 11266 ip_mask_to_plen(ipif->ipif_net_mask); 11267 } 11268 } 11269 return (0); 11270 } 11271 11272 /* 11273 * Set the destination address for a pt-pt interface. 11274 */ 11275 /* ARGSUSED */ 11276 int 11277 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11278 ip_ioctl_cmd_t *ipip, void *if_req) 11279 { 11280 int err = 0; 11281 in6_addr_t v6addr; 11282 boolean_t need_up = B_FALSE; 11283 11284 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11285 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11286 ASSERT(IAM_WRITER_IPIF(ipif)); 11287 11288 if (ipif->ipif_isv6) { 11289 sin6_t *sin6; 11290 11291 if (sin->sin_family != AF_INET6) 11292 return (EAFNOSUPPORT); 11293 11294 sin6 = (sin6_t *)sin; 11295 v6addr = sin6->sin6_addr; 11296 11297 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11298 return (EADDRNOTAVAIL); 11299 } else { 11300 ipaddr_t addr; 11301 11302 if (sin->sin_family != AF_INET) 11303 return (EAFNOSUPPORT); 11304 11305 addr = sin->sin_addr.s_addr; 11306 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11307 return (EADDRNOTAVAIL); 11308 11309 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11310 } 11311 11312 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11313 return (0); /* No change */ 11314 11315 if (ipif->ipif_flags & IPIF_UP) { 11316 /* 11317 * If the interface is already marked up, 11318 * we call ipif_down which will take care 11319 * of ditching any IREs that have been set 11320 * up based on the old pp dst address. 11321 */ 11322 err = ipif_logical_down(ipif, q, mp); 11323 if (err == EINPROGRESS) 11324 return (err); 11325 ipif_down_tail(ipif); 11326 need_up = B_TRUE; 11327 } 11328 /* 11329 * could return EINPROGRESS. If so ioctl will complete in 11330 * ip_rput_dlpi_writer 11331 */ 11332 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11333 return (err); 11334 } 11335 11336 static int 11337 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11338 boolean_t need_up) 11339 { 11340 in6_addr_t v6addr; 11341 ill_t *ill = ipif->ipif_ill; 11342 int err = 0; 11343 boolean_t need_dl_down; 11344 boolean_t need_arp_down; 11345 11346 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11347 ipif->ipif_id, (void *)ipif)); 11348 11349 /* Must cancel any pending timer before taking the ill_lock */ 11350 if (ipif->ipif_recovery_id != 0) 11351 (void) untimeout(ipif->ipif_recovery_id); 11352 ipif->ipif_recovery_id = 0; 11353 11354 if (ipif->ipif_isv6) { 11355 sin6_t *sin6; 11356 11357 sin6 = (sin6_t *)sin; 11358 v6addr = sin6->sin6_addr; 11359 } else { 11360 ipaddr_t addr; 11361 11362 addr = sin->sin_addr.s_addr; 11363 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11364 } 11365 mutex_enter(&ill->ill_lock); 11366 /* Set point to point destination address. */ 11367 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11368 /* 11369 * Allow this as a means of creating logical 11370 * pt-pt interfaces on top of e.g. an Ethernet. 11371 * XXX Undocumented HACK for testing. 11372 * pt-pt interfaces are created with NUD disabled. 11373 */ 11374 ipif->ipif_flags |= IPIF_POINTOPOINT; 11375 ipif->ipif_flags &= ~IPIF_BROADCAST; 11376 if (ipif->ipif_isv6) 11377 ill->ill_flags |= ILLF_NONUD; 11378 } 11379 11380 /* 11381 * If the interface was previously marked as a duplicate, then since 11382 * we've now got a "new" address, it should no longer be considered a 11383 * duplicate -- even if the "new" address is the same as the old one. 11384 * Note that if all ipifs are down, we may have a pending ARP down 11385 * event to handle. 11386 */ 11387 need_dl_down = need_arp_down = B_FALSE; 11388 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11389 need_arp_down = !need_up; 11390 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11391 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11392 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11393 need_dl_down = B_TRUE; 11394 } 11395 } 11396 11397 /* Set the new address. */ 11398 ipif->ipif_v6pp_dst_addr = v6addr; 11399 /* Make sure subnet tracks pp_dst */ 11400 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11401 mutex_exit(&ill->ill_lock); 11402 11403 if (need_up) { 11404 /* 11405 * Now bring the interface back up. If this 11406 * is the only IPIF for the ILL, ipif_up 11407 * will have to re-bind to the device, so 11408 * we may get back EINPROGRESS, in which 11409 * case, this IOCTL will get completed in 11410 * ip_rput_dlpi when we see the DL_BIND_ACK. 11411 */ 11412 err = ipif_up(ipif, q, mp); 11413 } 11414 11415 if (need_dl_down) 11416 ill_dl_down(ill); 11417 11418 if (need_arp_down) 11419 ipif_arp_down(ipif); 11420 return (err); 11421 } 11422 11423 /* 11424 * Restart entry point to restart the dstaddress set operation after the 11425 * refcounts have dropped to zero. 11426 */ 11427 /* ARGSUSED */ 11428 int 11429 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11430 ip_ioctl_cmd_t *ipip, void *ifreq) 11431 { 11432 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11434 ipif_down_tail(ipif); 11435 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11436 } 11437 11438 /* ARGSUSED */ 11439 int 11440 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11441 ip_ioctl_cmd_t *ipip, void *if_req) 11442 { 11443 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11444 11445 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11446 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11447 /* 11448 * Get point to point destination address. The addresses can't 11449 * change since we hold a reference to the ipif. 11450 */ 11451 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11452 return (EADDRNOTAVAIL); 11453 11454 if (ipif->ipif_isv6) { 11455 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11456 *sin6 = sin6_null; 11457 sin6->sin6_family = AF_INET6; 11458 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11459 } else { 11460 *sin = sin_null; 11461 sin->sin_family = AF_INET; 11462 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11463 } 11464 return (0); 11465 } 11466 11467 /* 11468 * part of ipmp, make this func return the active/inactive state and 11469 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11470 */ 11471 /* 11472 * This function either sets or clears the IFF_INACTIVE flag. 11473 * 11474 * As long as there are some addresses or multicast memberships on the 11475 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11476 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11477 * will be used for outbound packets. 11478 * 11479 * Caller needs to verify the validity of setting IFF_INACTIVE. 11480 */ 11481 static void 11482 phyint_inactive(phyint_t *phyi) 11483 { 11484 ill_t *ill_v4; 11485 ill_t *ill_v6; 11486 ipif_t *ipif; 11487 ilm_t *ilm; 11488 11489 ill_v4 = phyi->phyint_illv4; 11490 ill_v6 = phyi->phyint_illv6; 11491 11492 /* 11493 * No need for a lock while traversing the list since iam 11494 * a writer 11495 */ 11496 if (ill_v4 != NULL) { 11497 ASSERT(IAM_WRITER_ILL(ill_v4)); 11498 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11499 ipif = ipif->ipif_next) { 11500 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11501 mutex_enter(&phyi->phyint_lock); 11502 phyi->phyint_flags &= ~PHYI_INACTIVE; 11503 mutex_exit(&phyi->phyint_lock); 11504 return; 11505 } 11506 } 11507 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11508 ilm = ilm->ilm_next) { 11509 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11510 mutex_enter(&phyi->phyint_lock); 11511 phyi->phyint_flags &= ~PHYI_INACTIVE; 11512 mutex_exit(&phyi->phyint_lock); 11513 return; 11514 } 11515 } 11516 } 11517 if (ill_v6 != NULL) { 11518 ill_v6 = phyi->phyint_illv6; 11519 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11520 ipif = ipif->ipif_next) { 11521 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11522 mutex_enter(&phyi->phyint_lock); 11523 phyi->phyint_flags &= ~PHYI_INACTIVE; 11524 mutex_exit(&phyi->phyint_lock); 11525 return; 11526 } 11527 } 11528 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11529 ilm = ilm->ilm_next) { 11530 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11531 mutex_enter(&phyi->phyint_lock); 11532 phyi->phyint_flags &= ~PHYI_INACTIVE; 11533 mutex_exit(&phyi->phyint_lock); 11534 return; 11535 } 11536 } 11537 } 11538 mutex_enter(&phyi->phyint_lock); 11539 phyi->phyint_flags |= PHYI_INACTIVE; 11540 mutex_exit(&phyi->phyint_lock); 11541 } 11542 11543 /* 11544 * This function is called only when the phyint flags change. Currently 11545 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11546 * that we can select a good ill. 11547 */ 11548 static void 11549 ip_redo_nomination(phyint_t *phyi) 11550 { 11551 ill_t *ill_v4; 11552 11553 ill_v4 = phyi->phyint_illv4; 11554 11555 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11556 ASSERT(IAM_WRITER_ILL(ill_v4)); 11557 if (ill_v4->ill_group->illgrp_ill_count > 1) 11558 ill_nominate_bcast_rcv(ill_v4->ill_group); 11559 } 11560 } 11561 11562 /* 11563 * Heuristic to check if ill is INACTIVE. 11564 * Checks if ill has an ipif with an usable ip address. 11565 * 11566 * Return values: 11567 * B_TRUE - ill is INACTIVE; has no usable ipif 11568 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11569 */ 11570 static boolean_t 11571 ill_is_inactive(ill_t *ill) 11572 { 11573 ipif_t *ipif; 11574 11575 /* Check whether it is in an IPMP group */ 11576 if (ill->ill_phyint->phyint_groupname == NULL) 11577 return (B_FALSE); 11578 11579 if (ill->ill_ipif_up_count == 0) 11580 return (B_TRUE); 11581 11582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11583 uint64_t flags = ipif->ipif_flags; 11584 11585 /* 11586 * This ipif is usable if it is IPIF_UP and not a 11587 * dedicated test address. A dedicated test address 11588 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11589 * (note in particular that V6 test addresses are 11590 * link-local data addresses and thus are marked 11591 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11592 */ 11593 if ((flags & IPIF_UP) && 11594 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11595 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11596 return (B_FALSE); 11597 } 11598 return (B_TRUE); 11599 } 11600 11601 /* 11602 * Set interface flags. 11603 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11604 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11605 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11606 * 11607 * NOTE : We really don't enforce that ipif_id zero should be used 11608 * for setting any flags other than IFF_LOGINT_FLAGS. This 11609 * is because applications generally does SICGLIFFLAGS and 11610 * ORs in the new flags (that affects the logical) and does a 11611 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11612 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11613 * flags that will be turned on is correct with respect to 11614 * ipif_id 0. For backward compatibility reasons, it is not done. 11615 */ 11616 /* ARGSUSED */ 11617 int 11618 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11619 ip_ioctl_cmd_t *ipip, void *if_req) 11620 { 11621 uint64_t turn_on; 11622 uint64_t turn_off; 11623 int err; 11624 phyint_t *phyi; 11625 ill_t *ill; 11626 uint64_t intf_flags; 11627 boolean_t phyint_flags_modified = B_FALSE; 11628 uint64_t flags; 11629 struct ifreq *ifr; 11630 struct lifreq *lifr; 11631 boolean_t set_linklocal = B_FALSE; 11632 boolean_t zero_source = B_FALSE; 11633 ip_stack_t *ipst; 11634 11635 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11636 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11637 11638 ASSERT(IAM_WRITER_IPIF(ipif)); 11639 11640 ill = ipif->ipif_ill; 11641 phyi = ill->ill_phyint; 11642 ipst = ill->ill_ipst; 11643 11644 if (ipip->ipi_cmd_type == IF_CMD) { 11645 ifr = (struct ifreq *)if_req; 11646 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11647 } else { 11648 lifr = (struct lifreq *)if_req; 11649 flags = lifr->lifr_flags; 11650 } 11651 11652 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11653 11654 /* 11655 * Have the flags been set correctly until now? 11656 */ 11657 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11658 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11659 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11660 /* 11661 * Compare the new flags to the old, and partition 11662 * into those coming on and those going off. 11663 * For the 16 bit command keep the bits above bit 16 unchanged. 11664 */ 11665 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11666 flags |= intf_flags & ~0xFFFF; 11667 11668 /* 11669 * First check which bits will change and then which will 11670 * go on and off 11671 */ 11672 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11673 if (!turn_on) 11674 return (0); /* No change */ 11675 11676 turn_off = intf_flags & turn_on; 11677 turn_on ^= turn_off; 11678 err = 0; 11679 11680 /* 11681 * Don't allow any bits belonging to the logical interface 11682 * to be set or cleared on the replacement ipif that was 11683 * created temporarily during a MOVE. 11684 */ 11685 if (ipif->ipif_replace_zero && 11686 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11687 return (EINVAL); 11688 } 11689 11690 /* 11691 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11692 * IPv6 interfaces. 11693 */ 11694 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11695 return (EINVAL); 11696 11697 /* 11698 * cannot turn off IFF_NOXMIT on VNI interfaces. 11699 */ 11700 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11701 return (EINVAL); 11702 11703 /* 11704 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11705 * interfaces. It makes no sense in that context. 11706 */ 11707 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11708 return (EINVAL); 11709 11710 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11711 zero_source = B_TRUE; 11712 11713 /* 11714 * For IPv6 ipif_id 0, don't allow the interface to be up without 11715 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11716 * If the link local address isn't set, and can be set, it will get 11717 * set later on in this function. 11718 */ 11719 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11720 (flags & IFF_UP) && !zero_source && 11721 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11722 if (ipif_cant_setlinklocal(ipif)) 11723 return (EINVAL); 11724 set_linklocal = B_TRUE; 11725 } 11726 11727 /* 11728 * ILL cannot be part of a usesrc group and and IPMP group at the 11729 * same time. No need to grab ill_g_usesrc_lock here, see 11730 * synchronization notes in ip.c 11731 */ 11732 if (turn_on & PHYI_STANDBY && 11733 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11734 return (EINVAL); 11735 } 11736 11737 /* 11738 * If we modify physical interface flags, we'll potentially need to 11739 * send up two routing socket messages for the changes (one for the 11740 * IPv4 ill, and another for the IPv6 ill). Note that here. 11741 */ 11742 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11743 phyint_flags_modified = B_TRUE; 11744 11745 /* 11746 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11747 * we need to flush the IRE_CACHES belonging to this ill. 11748 * We handle this case here without doing the DOWN/UP dance 11749 * like it is done for other flags. If some other flags are 11750 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11751 * below will handle it by bringing it down and then 11752 * bringing it UP. 11753 */ 11754 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11755 ill_t *ill_v4, *ill_v6; 11756 11757 ill_v4 = phyi->phyint_illv4; 11758 ill_v6 = phyi->phyint_illv6; 11759 11760 /* 11761 * First set the INACTIVE flag if needed. Then delete the ires. 11762 * ire_add will atomically prevent creating new IRE_CACHEs 11763 * unless hidden flag is set. 11764 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11765 */ 11766 if ((turn_on & PHYI_FAILED) && 11767 ((intf_flags & PHYI_STANDBY) || 11768 !ipst->ips_ipmp_enable_failback)) { 11769 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11770 phyi->phyint_flags &= ~PHYI_INACTIVE; 11771 } 11772 if ((turn_off & PHYI_FAILED) && 11773 ((intf_flags & PHYI_STANDBY) || 11774 (!ipst->ips_ipmp_enable_failback && 11775 ill_is_inactive(ill)))) { 11776 phyint_inactive(phyi); 11777 } 11778 11779 if (turn_on & PHYI_STANDBY) { 11780 /* 11781 * We implicitly set INACTIVE only when STANDBY is set. 11782 * INACTIVE is also set on non-STANDBY phyint when user 11783 * disables FAILBACK using configuration file. 11784 * Do not allow STANDBY to be set on such INACTIVE 11785 * phyint 11786 */ 11787 if (phyi->phyint_flags & PHYI_INACTIVE) 11788 return (EINVAL); 11789 if (!(phyi->phyint_flags & PHYI_FAILED)) 11790 phyint_inactive(phyi); 11791 } 11792 if (turn_off & PHYI_STANDBY) { 11793 if (ipst->ips_ipmp_enable_failback) { 11794 /* 11795 * Reset PHYI_INACTIVE. 11796 */ 11797 phyi->phyint_flags &= ~PHYI_INACTIVE; 11798 } else if (ill_is_inactive(ill) && 11799 !(phyi->phyint_flags & PHYI_FAILED)) { 11800 /* 11801 * Need to set INACTIVE, when user sets 11802 * STANDBY on a non-STANDBY phyint and 11803 * later resets STANDBY 11804 */ 11805 phyint_inactive(phyi); 11806 } 11807 } 11808 /* 11809 * We should always send up a message so that the 11810 * daemons come to know of it. Note that the zeroth 11811 * interface can be down and the check below for IPIF_UP 11812 * will not make sense as we are actually setting 11813 * a phyint flag here. We assume that the ipif used 11814 * is always the zeroth ipif. (ip_rts_ifmsg does not 11815 * send up any message for non-zero ipifs). 11816 */ 11817 phyint_flags_modified = B_TRUE; 11818 11819 if (ill_v4 != NULL) { 11820 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11821 IRE_CACHE, ill_stq_cache_delete, 11822 (char *)ill_v4, ill_v4); 11823 illgrp_reset_schednext(ill_v4); 11824 } 11825 if (ill_v6 != NULL) { 11826 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11827 IRE_CACHE, ill_stq_cache_delete, 11828 (char *)ill_v6, ill_v6); 11829 illgrp_reset_schednext(ill_v6); 11830 } 11831 } 11832 11833 /* 11834 * If ILLF_ROUTER changes, we need to change the ip forwarding 11835 * status of the interface and, if the interface is part of an IPMP 11836 * group, all other interfaces that are part of the same IPMP 11837 * group. 11838 */ 11839 if ((turn_on | turn_off) & ILLF_ROUTER) 11840 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11841 11842 /* 11843 * If the interface is not UP and we are not going to 11844 * bring it UP, record the flags and return. When the 11845 * interface comes UP later, the right actions will be 11846 * taken. 11847 */ 11848 if (!(ipif->ipif_flags & IPIF_UP) && 11849 !(turn_on & IPIF_UP)) { 11850 /* Record new flags in their respective places. */ 11851 mutex_enter(&ill->ill_lock); 11852 mutex_enter(&ill->ill_phyint->phyint_lock); 11853 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11854 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11855 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11856 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11857 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11858 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11859 mutex_exit(&ill->ill_lock); 11860 mutex_exit(&ill->ill_phyint->phyint_lock); 11861 11862 /* 11863 * We do the broadcast and nomination here rather 11864 * than waiting for a FAILOVER/FAILBACK to happen. In 11865 * the case of FAILBACK from INACTIVE standby to the 11866 * interface that has been repaired, PHYI_FAILED has not 11867 * been cleared yet. If there are only two interfaces in 11868 * that group, all we have is a FAILED and INACTIVE 11869 * interface. If we do the nomination soon after a failback, 11870 * the broadcast nomination code would select the 11871 * INACTIVE interface for receiving broadcasts as FAILED is 11872 * not yet cleared. As we don't want STANDBY/INACTIVE to 11873 * receive broadcast packets, we need to redo nomination 11874 * when the FAILED is cleared here. Thus, in general we 11875 * always do the nomination here for FAILED, STANDBY 11876 * and OFFLINE. 11877 */ 11878 if (((turn_on | turn_off) & 11879 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11880 ip_redo_nomination(phyi); 11881 } 11882 if (phyint_flags_modified) { 11883 if (phyi->phyint_illv4 != NULL) { 11884 ip_rts_ifmsg(phyi->phyint_illv4-> 11885 ill_ipif); 11886 } 11887 if (phyi->phyint_illv6 != NULL) { 11888 ip_rts_ifmsg(phyi->phyint_illv6-> 11889 ill_ipif); 11890 } 11891 } 11892 return (0); 11893 } else if (set_linklocal || zero_source) { 11894 mutex_enter(&ill->ill_lock); 11895 if (set_linklocal) 11896 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11897 if (zero_source) 11898 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11899 mutex_exit(&ill->ill_lock); 11900 } 11901 11902 /* 11903 * Disallow IPv6 interfaces coming up that have the unspecified address, 11904 * or point-to-point interfaces with an unspecified destination. We do 11905 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11906 * have a subnet assigned, which is how in.ndpd currently manages its 11907 * onlink prefix list when no addresses are configured with those 11908 * prefixes. 11909 */ 11910 if (ipif->ipif_isv6 && 11911 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11912 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11913 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11914 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11915 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11916 return (EINVAL); 11917 } 11918 11919 /* 11920 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11921 * from being brought up. 11922 */ 11923 if (!ipif->ipif_isv6 && 11924 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11925 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11926 return (EINVAL); 11927 } 11928 11929 /* 11930 * The only flag changes that we currently take specific action on 11931 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11932 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11933 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11934 * the flags and bringing it back up again. 11935 */ 11936 if ((turn_on|turn_off) & 11937 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11938 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11939 /* 11940 * Taking this ipif down, make sure we have 11941 * valid net and subnet bcast ire's for other 11942 * logical interfaces, if we need them. 11943 */ 11944 if (!ipif->ipif_isv6) 11945 ipif_check_bcast_ires(ipif); 11946 11947 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11948 !(turn_off & IPIF_UP)) { 11949 if (ipif->ipif_flags & IPIF_UP) 11950 ill->ill_logical_down = 1; 11951 turn_on &= ~IPIF_UP; 11952 } 11953 err = ipif_down(ipif, q, mp); 11954 ip1dbg(("ipif_down returns %d err ", err)); 11955 if (err == EINPROGRESS) 11956 return (err); 11957 ipif_down_tail(ipif); 11958 } 11959 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11960 } 11961 11962 static int 11963 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11964 { 11965 ill_t *ill; 11966 phyint_t *phyi; 11967 uint64_t turn_on; 11968 uint64_t turn_off; 11969 uint64_t intf_flags; 11970 boolean_t phyint_flags_modified = B_FALSE; 11971 int err = 0; 11972 boolean_t set_linklocal = B_FALSE; 11973 boolean_t zero_source = B_FALSE; 11974 11975 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11976 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11977 11978 ASSERT(IAM_WRITER_IPIF(ipif)); 11979 11980 ill = ipif->ipif_ill; 11981 phyi = ill->ill_phyint; 11982 11983 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11984 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11985 11986 turn_off = intf_flags & turn_on; 11987 turn_on ^= turn_off; 11988 11989 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11990 phyint_flags_modified = B_TRUE; 11991 11992 /* 11993 * Now we change the flags. Track current value of 11994 * other flags in their respective places. 11995 */ 11996 mutex_enter(&ill->ill_lock); 11997 mutex_enter(&phyi->phyint_lock); 11998 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11999 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12000 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12001 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12002 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12003 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12004 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12005 set_linklocal = B_TRUE; 12006 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12007 } 12008 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12009 zero_source = B_TRUE; 12010 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12011 } 12012 mutex_exit(&ill->ill_lock); 12013 mutex_exit(&phyi->phyint_lock); 12014 12015 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12016 ip_redo_nomination(phyi); 12017 12018 if (set_linklocal) 12019 (void) ipif_setlinklocal(ipif); 12020 12021 if (zero_source) 12022 ipif->ipif_v6src_addr = ipv6_all_zeros; 12023 else 12024 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12025 12026 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 12027 /* 12028 * XXX ipif_up really does not know whether a phyint flags 12029 * was modified or not. So, it sends up information on 12030 * only one routing sockets message. As we don't bring up 12031 * the interface and also set STANDBY/FAILED simultaneously 12032 * it should be okay. 12033 */ 12034 err = ipif_up(ipif, q, mp); 12035 } else { 12036 /* 12037 * Make sure routing socket sees all changes to the flags. 12038 * ipif_up_done* handles this when we use ipif_up. 12039 */ 12040 if (phyint_flags_modified) { 12041 if (phyi->phyint_illv4 != NULL) { 12042 ip_rts_ifmsg(phyi->phyint_illv4-> 12043 ill_ipif); 12044 } 12045 if (phyi->phyint_illv6 != NULL) { 12046 ip_rts_ifmsg(phyi->phyint_illv6-> 12047 ill_ipif); 12048 } 12049 } else { 12050 ip_rts_ifmsg(ipif); 12051 } 12052 /* 12053 * Update the flags in SCTP's IPIF list, ipif_up() will do 12054 * this in need_up case. 12055 */ 12056 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12057 } 12058 return (err); 12059 } 12060 12061 /* 12062 * Restart the flags operation now that the refcounts have dropped to zero. 12063 */ 12064 /* ARGSUSED */ 12065 int 12066 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12067 ip_ioctl_cmd_t *ipip, void *if_req) 12068 { 12069 uint64_t flags; 12070 struct ifreq *ifr = if_req; 12071 struct lifreq *lifr = if_req; 12072 12073 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12074 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12075 12076 ipif_down_tail(ipif); 12077 if (ipip->ipi_cmd_type == IF_CMD) { 12078 /* cast to uint16_t prevents unwanted sign extension */ 12079 flags = (uint16_t)ifr->ifr_flags; 12080 } else { 12081 flags = lifr->lifr_flags; 12082 } 12083 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 12084 } 12085 12086 /* 12087 * Can operate on either a module or a driver queue. 12088 */ 12089 /* ARGSUSED */ 12090 int 12091 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12092 ip_ioctl_cmd_t *ipip, void *if_req) 12093 { 12094 /* 12095 * Has the flags been set correctly till now ? 12096 */ 12097 ill_t *ill = ipif->ipif_ill; 12098 phyint_t *phyi = ill->ill_phyint; 12099 12100 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12101 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12102 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12103 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12104 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12105 12106 /* 12107 * Need a lock since some flags can be set even when there are 12108 * references to the ipif. 12109 */ 12110 mutex_enter(&ill->ill_lock); 12111 if (ipip->ipi_cmd_type == IF_CMD) { 12112 struct ifreq *ifr = (struct ifreq *)if_req; 12113 12114 /* Get interface flags (low 16 only). */ 12115 ifr->ifr_flags = ((ipif->ipif_flags | 12116 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12117 } else { 12118 struct lifreq *lifr = (struct lifreq *)if_req; 12119 12120 /* Get interface flags. */ 12121 lifr->lifr_flags = ipif->ipif_flags | 12122 ill->ill_flags | phyi->phyint_flags; 12123 } 12124 mutex_exit(&ill->ill_lock); 12125 return (0); 12126 } 12127 12128 /* ARGSUSED */ 12129 int 12130 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12131 ip_ioctl_cmd_t *ipip, void *if_req) 12132 { 12133 int mtu; 12134 int ip_min_mtu; 12135 struct ifreq *ifr; 12136 struct lifreq *lifr; 12137 ire_t *ire; 12138 ip_stack_t *ipst; 12139 12140 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12141 ipif->ipif_id, (void *)ipif)); 12142 if (ipip->ipi_cmd_type == IF_CMD) { 12143 ifr = (struct ifreq *)if_req; 12144 mtu = ifr->ifr_metric; 12145 } else { 12146 lifr = (struct lifreq *)if_req; 12147 mtu = lifr->lifr_mtu; 12148 } 12149 12150 if (ipif->ipif_isv6) 12151 ip_min_mtu = IPV6_MIN_MTU; 12152 else 12153 ip_min_mtu = IP_MIN_MTU; 12154 12155 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12156 return (EINVAL); 12157 12158 /* 12159 * Change the MTU size in all relevant ire's. 12160 * Mtu change Vs. new ire creation - protocol below. 12161 * First change ipif_mtu and the ire_max_frag of the 12162 * interface ire. Then do an ire walk and change the 12163 * ire_max_frag of all affected ires. During ire_add 12164 * under the bucket lock, set the ire_max_frag of the 12165 * new ire being created from the ipif/ire from which 12166 * it is being derived. If an mtu change happens after 12167 * the ire is added, the new ire will be cleaned up. 12168 * Conversely if the mtu change happens before the ire 12169 * is added, ire_add will see the new value of the mtu. 12170 */ 12171 ipif->ipif_mtu = mtu; 12172 ipif->ipif_flags |= IPIF_FIXEDMTU; 12173 12174 if (ipif->ipif_isv6) 12175 ire = ipif_to_ire_v6(ipif); 12176 else 12177 ire = ipif_to_ire(ipif); 12178 if (ire != NULL) { 12179 ire->ire_max_frag = ipif->ipif_mtu; 12180 ire_refrele(ire); 12181 } 12182 ipst = ipif->ipif_ill->ill_ipst; 12183 if (ipif->ipif_flags & IPIF_UP) { 12184 if (ipif->ipif_isv6) 12185 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12186 ipst); 12187 else 12188 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12189 ipst); 12190 } 12191 /* Update the MTU in SCTP's list */ 12192 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12193 return (0); 12194 } 12195 12196 /* Get interface MTU. */ 12197 /* ARGSUSED */ 12198 int 12199 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12200 ip_ioctl_cmd_t *ipip, void *if_req) 12201 { 12202 struct ifreq *ifr; 12203 struct lifreq *lifr; 12204 12205 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12206 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12207 if (ipip->ipi_cmd_type == IF_CMD) { 12208 ifr = (struct ifreq *)if_req; 12209 ifr->ifr_metric = ipif->ipif_mtu; 12210 } else { 12211 lifr = (struct lifreq *)if_req; 12212 lifr->lifr_mtu = ipif->ipif_mtu; 12213 } 12214 return (0); 12215 } 12216 12217 /* Set interface broadcast address. */ 12218 /* ARGSUSED2 */ 12219 int 12220 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12221 ip_ioctl_cmd_t *ipip, void *if_req) 12222 { 12223 ipaddr_t addr; 12224 ire_t *ire; 12225 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12226 12227 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12228 ipif->ipif_id)); 12229 12230 ASSERT(IAM_WRITER_IPIF(ipif)); 12231 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12232 return (EADDRNOTAVAIL); 12233 12234 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12235 12236 if (sin->sin_family != AF_INET) 12237 return (EAFNOSUPPORT); 12238 12239 addr = sin->sin_addr.s_addr; 12240 if (ipif->ipif_flags & IPIF_UP) { 12241 /* 12242 * If we are already up, make sure the new 12243 * broadcast address makes sense. If it does, 12244 * there should be an IRE for it already. 12245 * Don't match on ipif, only on the ill 12246 * since we are sharing these now. Don't use 12247 * MATCH_IRE_ILL_GROUP as we are looking for 12248 * the broadcast ire on this ill and each ill 12249 * in the group has its own broadcast ire. 12250 */ 12251 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12252 ipif, ALL_ZONES, NULL, 12253 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12254 if (ire == NULL) { 12255 return (EINVAL); 12256 } else { 12257 ire_refrele(ire); 12258 } 12259 } 12260 /* 12261 * Changing the broadcast addr for this ipif. 12262 * Make sure we have valid net and subnet bcast 12263 * ire's for other logical interfaces, if needed. 12264 */ 12265 if (addr != ipif->ipif_brd_addr) 12266 ipif_check_bcast_ires(ipif); 12267 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12268 return (0); 12269 } 12270 12271 /* Get interface broadcast address. */ 12272 /* ARGSUSED */ 12273 int 12274 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12275 ip_ioctl_cmd_t *ipip, void *if_req) 12276 { 12277 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12278 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12279 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12280 return (EADDRNOTAVAIL); 12281 12282 /* IPIF_BROADCAST not possible with IPv6 */ 12283 ASSERT(!ipif->ipif_isv6); 12284 *sin = sin_null; 12285 sin->sin_family = AF_INET; 12286 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12287 return (0); 12288 } 12289 12290 /* 12291 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12292 */ 12293 /* ARGSUSED */ 12294 int 12295 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12296 ip_ioctl_cmd_t *ipip, void *if_req) 12297 { 12298 int err = 0; 12299 in6_addr_t v6mask; 12300 12301 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12302 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12303 12304 ASSERT(IAM_WRITER_IPIF(ipif)); 12305 12306 if (ipif->ipif_isv6) { 12307 sin6_t *sin6; 12308 12309 if (sin->sin_family != AF_INET6) 12310 return (EAFNOSUPPORT); 12311 12312 sin6 = (sin6_t *)sin; 12313 v6mask = sin6->sin6_addr; 12314 } else { 12315 ipaddr_t mask; 12316 12317 if (sin->sin_family != AF_INET) 12318 return (EAFNOSUPPORT); 12319 12320 mask = sin->sin_addr.s_addr; 12321 V4MASK_TO_V6(mask, v6mask); 12322 } 12323 12324 /* 12325 * No big deal if the interface isn't already up, or the mask 12326 * isn't really changing, or this is pt-pt. 12327 */ 12328 if (!(ipif->ipif_flags & IPIF_UP) || 12329 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12330 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12331 ipif->ipif_v6net_mask = v6mask; 12332 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12333 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12334 ipif->ipif_v6net_mask, 12335 ipif->ipif_v6subnet); 12336 } 12337 return (0); 12338 } 12339 /* 12340 * Make sure we have valid net and subnet broadcast ire's 12341 * for the old netmask, if needed by other logical interfaces. 12342 */ 12343 if (!ipif->ipif_isv6) 12344 ipif_check_bcast_ires(ipif); 12345 12346 err = ipif_logical_down(ipif, q, mp); 12347 if (err == EINPROGRESS) 12348 return (err); 12349 ipif_down_tail(ipif); 12350 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12351 return (err); 12352 } 12353 12354 static int 12355 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12356 { 12357 in6_addr_t v6mask; 12358 int err = 0; 12359 12360 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12361 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12362 12363 if (ipif->ipif_isv6) { 12364 sin6_t *sin6; 12365 12366 sin6 = (sin6_t *)sin; 12367 v6mask = sin6->sin6_addr; 12368 } else { 12369 ipaddr_t mask; 12370 12371 mask = sin->sin_addr.s_addr; 12372 V4MASK_TO_V6(mask, v6mask); 12373 } 12374 12375 ipif->ipif_v6net_mask = v6mask; 12376 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12377 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12378 ipif->ipif_v6subnet); 12379 } 12380 err = ipif_up(ipif, q, mp); 12381 12382 if (err == 0 || err == EINPROGRESS) { 12383 /* 12384 * The interface must be DL_BOUND if this packet has to 12385 * go out on the wire. Since we only go through a logical 12386 * down and are bound with the driver during an internal 12387 * down/up that is satisfied. 12388 */ 12389 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12390 /* Potentially broadcast an address mask reply. */ 12391 ipif_mask_reply(ipif); 12392 } 12393 } 12394 return (err); 12395 } 12396 12397 /* ARGSUSED */ 12398 int 12399 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12400 ip_ioctl_cmd_t *ipip, void *if_req) 12401 { 12402 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12403 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12404 ipif_down_tail(ipif); 12405 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12406 } 12407 12408 /* Get interface net mask. */ 12409 /* ARGSUSED */ 12410 int 12411 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12412 ip_ioctl_cmd_t *ipip, void *if_req) 12413 { 12414 struct lifreq *lifr = (struct lifreq *)if_req; 12415 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12416 12417 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12418 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12419 12420 /* 12421 * net mask can't change since we have a reference to the ipif. 12422 */ 12423 if (ipif->ipif_isv6) { 12424 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12425 *sin6 = sin6_null; 12426 sin6->sin6_family = AF_INET6; 12427 sin6->sin6_addr = ipif->ipif_v6net_mask; 12428 lifr->lifr_addrlen = 12429 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12430 } else { 12431 *sin = sin_null; 12432 sin->sin_family = AF_INET; 12433 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12434 if (ipip->ipi_cmd_type == LIF_CMD) { 12435 lifr->lifr_addrlen = 12436 ip_mask_to_plen(ipif->ipif_net_mask); 12437 } 12438 } 12439 return (0); 12440 } 12441 12442 /* ARGSUSED */ 12443 int 12444 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12445 ip_ioctl_cmd_t *ipip, void *if_req) 12446 { 12447 12448 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12449 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12450 /* 12451 * Set interface metric. We don't use this for 12452 * anything but we keep track of it in case it is 12453 * important to routing applications or such. 12454 */ 12455 if (ipip->ipi_cmd_type == IF_CMD) { 12456 struct ifreq *ifr; 12457 12458 ifr = (struct ifreq *)if_req; 12459 ipif->ipif_metric = ifr->ifr_metric; 12460 } else { 12461 struct lifreq *lifr; 12462 12463 lifr = (struct lifreq *)if_req; 12464 ipif->ipif_metric = lifr->lifr_metric; 12465 } 12466 return (0); 12467 } 12468 12469 /* ARGSUSED */ 12470 int 12471 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12472 ip_ioctl_cmd_t *ipip, void *if_req) 12473 { 12474 /* Get interface metric. */ 12475 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12477 if (ipip->ipi_cmd_type == IF_CMD) { 12478 struct ifreq *ifr; 12479 12480 ifr = (struct ifreq *)if_req; 12481 ifr->ifr_metric = ipif->ipif_metric; 12482 } else { 12483 struct lifreq *lifr; 12484 12485 lifr = (struct lifreq *)if_req; 12486 lifr->lifr_metric = ipif->ipif_metric; 12487 } 12488 12489 return (0); 12490 } 12491 12492 /* ARGSUSED */ 12493 int 12494 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12495 ip_ioctl_cmd_t *ipip, void *if_req) 12496 { 12497 12498 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12499 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12500 /* 12501 * Set the muxid returned from I_PLINK. 12502 */ 12503 if (ipip->ipi_cmd_type == IF_CMD) { 12504 struct ifreq *ifr = (struct ifreq *)if_req; 12505 12506 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12507 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12508 } else { 12509 struct lifreq *lifr = (struct lifreq *)if_req; 12510 12511 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12512 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12513 } 12514 return (0); 12515 } 12516 12517 /* ARGSUSED */ 12518 int 12519 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12520 ip_ioctl_cmd_t *ipip, void *if_req) 12521 { 12522 12523 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12524 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12525 /* 12526 * Get the muxid saved in ill for I_PUNLINK. 12527 */ 12528 if (ipip->ipi_cmd_type == IF_CMD) { 12529 struct ifreq *ifr = (struct ifreq *)if_req; 12530 12531 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12532 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12533 } else { 12534 struct lifreq *lifr = (struct lifreq *)if_req; 12535 12536 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12537 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12538 } 12539 return (0); 12540 } 12541 12542 /* 12543 * Set the subnet prefix. Does not modify the broadcast address. 12544 */ 12545 /* ARGSUSED */ 12546 int 12547 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12548 ip_ioctl_cmd_t *ipip, void *if_req) 12549 { 12550 int err = 0; 12551 in6_addr_t v6addr; 12552 in6_addr_t v6mask; 12553 boolean_t need_up = B_FALSE; 12554 int addrlen; 12555 12556 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12557 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12558 12559 ASSERT(IAM_WRITER_IPIF(ipif)); 12560 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12561 12562 if (ipif->ipif_isv6) { 12563 sin6_t *sin6; 12564 12565 if (sin->sin_family != AF_INET6) 12566 return (EAFNOSUPPORT); 12567 12568 sin6 = (sin6_t *)sin; 12569 v6addr = sin6->sin6_addr; 12570 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12571 return (EADDRNOTAVAIL); 12572 } else { 12573 ipaddr_t addr; 12574 12575 if (sin->sin_family != AF_INET) 12576 return (EAFNOSUPPORT); 12577 12578 addr = sin->sin_addr.s_addr; 12579 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12580 return (EADDRNOTAVAIL); 12581 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12582 /* Add 96 bits */ 12583 addrlen += IPV6_ABITS - IP_ABITS; 12584 } 12585 12586 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12587 return (EINVAL); 12588 12589 /* Check if bits in the address is set past the mask */ 12590 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12591 return (EINVAL); 12592 12593 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12594 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12595 return (0); /* No change */ 12596 12597 if (ipif->ipif_flags & IPIF_UP) { 12598 /* 12599 * If the interface is already marked up, 12600 * we call ipif_down which will take care 12601 * of ditching any IREs that have been set 12602 * up based on the old interface address. 12603 */ 12604 err = ipif_logical_down(ipif, q, mp); 12605 if (err == EINPROGRESS) 12606 return (err); 12607 ipif_down_tail(ipif); 12608 need_up = B_TRUE; 12609 } 12610 12611 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12612 return (err); 12613 } 12614 12615 static int 12616 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12617 queue_t *q, mblk_t *mp, boolean_t need_up) 12618 { 12619 ill_t *ill = ipif->ipif_ill; 12620 int err = 0; 12621 12622 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12624 12625 /* Set the new address. */ 12626 mutex_enter(&ill->ill_lock); 12627 ipif->ipif_v6net_mask = v6mask; 12628 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12629 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12630 ipif->ipif_v6subnet); 12631 } 12632 mutex_exit(&ill->ill_lock); 12633 12634 if (need_up) { 12635 /* 12636 * Now bring the interface back up. If this 12637 * is the only IPIF for the ILL, ipif_up 12638 * will have to re-bind to the device, so 12639 * we may get back EINPROGRESS, in which 12640 * case, this IOCTL will get completed in 12641 * ip_rput_dlpi when we see the DL_BIND_ACK. 12642 */ 12643 err = ipif_up(ipif, q, mp); 12644 if (err == EINPROGRESS) 12645 return (err); 12646 } 12647 return (err); 12648 } 12649 12650 /* ARGSUSED */ 12651 int 12652 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12653 ip_ioctl_cmd_t *ipip, void *if_req) 12654 { 12655 int addrlen; 12656 in6_addr_t v6addr; 12657 in6_addr_t v6mask; 12658 struct lifreq *lifr = (struct lifreq *)if_req; 12659 12660 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12661 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12662 ipif_down_tail(ipif); 12663 12664 addrlen = lifr->lifr_addrlen; 12665 if (ipif->ipif_isv6) { 12666 sin6_t *sin6; 12667 12668 sin6 = (sin6_t *)sin; 12669 v6addr = sin6->sin6_addr; 12670 } else { 12671 ipaddr_t addr; 12672 12673 addr = sin->sin_addr.s_addr; 12674 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12675 addrlen += IPV6_ABITS - IP_ABITS; 12676 } 12677 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12678 12679 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12680 } 12681 12682 /* ARGSUSED */ 12683 int 12684 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12685 ip_ioctl_cmd_t *ipip, void *if_req) 12686 { 12687 struct lifreq *lifr = (struct lifreq *)if_req; 12688 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12689 12690 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12691 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12692 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12693 12694 if (ipif->ipif_isv6) { 12695 *sin6 = sin6_null; 12696 sin6->sin6_family = AF_INET6; 12697 sin6->sin6_addr = ipif->ipif_v6subnet; 12698 lifr->lifr_addrlen = 12699 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12700 } else { 12701 *sin = sin_null; 12702 sin->sin_family = AF_INET; 12703 sin->sin_addr.s_addr = ipif->ipif_subnet; 12704 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12705 } 12706 return (0); 12707 } 12708 12709 /* 12710 * Set the IPv6 address token. 12711 */ 12712 /* ARGSUSED */ 12713 int 12714 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12715 ip_ioctl_cmd_t *ipi, void *if_req) 12716 { 12717 ill_t *ill = ipif->ipif_ill; 12718 int err; 12719 in6_addr_t v6addr; 12720 in6_addr_t v6mask; 12721 boolean_t need_up = B_FALSE; 12722 int i; 12723 sin6_t *sin6 = (sin6_t *)sin; 12724 struct lifreq *lifr = (struct lifreq *)if_req; 12725 int addrlen; 12726 12727 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12729 ASSERT(IAM_WRITER_IPIF(ipif)); 12730 12731 addrlen = lifr->lifr_addrlen; 12732 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12733 if (ipif->ipif_id != 0) 12734 return (EINVAL); 12735 12736 if (!ipif->ipif_isv6) 12737 return (EINVAL); 12738 12739 if (addrlen > IPV6_ABITS) 12740 return (EINVAL); 12741 12742 v6addr = sin6->sin6_addr; 12743 12744 /* 12745 * The length of the token is the length from the end. To get 12746 * the proper mask for this, compute the mask of the bits not 12747 * in the token; ie. the prefix, and then xor to get the mask. 12748 */ 12749 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12750 return (EINVAL); 12751 for (i = 0; i < 4; i++) { 12752 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12753 } 12754 12755 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12756 ill->ill_token_length == addrlen) 12757 return (0); /* No change */ 12758 12759 if (ipif->ipif_flags & IPIF_UP) { 12760 err = ipif_logical_down(ipif, q, mp); 12761 if (err == EINPROGRESS) 12762 return (err); 12763 ipif_down_tail(ipif); 12764 need_up = B_TRUE; 12765 } 12766 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12767 return (err); 12768 } 12769 12770 static int 12771 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12772 mblk_t *mp, boolean_t need_up) 12773 { 12774 in6_addr_t v6addr; 12775 in6_addr_t v6mask; 12776 ill_t *ill = ipif->ipif_ill; 12777 int i; 12778 int err = 0; 12779 12780 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12781 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12782 v6addr = sin6->sin6_addr; 12783 /* 12784 * The length of the token is the length from the end. To get 12785 * the proper mask for this, compute the mask of the bits not 12786 * in the token; ie. the prefix, and then xor to get the mask. 12787 */ 12788 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12789 for (i = 0; i < 4; i++) 12790 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12791 12792 mutex_enter(&ill->ill_lock); 12793 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12794 ill->ill_token_length = addrlen; 12795 mutex_exit(&ill->ill_lock); 12796 12797 if (need_up) { 12798 /* 12799 * Now bring the interface back up. If this 12800 * is the only IPIF for the ILL, ipif_up 12801 * will have to re-bind to the device, so 12802 * we may get back EINPROGRESS, in which 12803 * case, this IOCTL will get completed in 12804 * ip_rput_dlpi when we see the DL_BIND_ACK. 12805 */ 12806 err = ipif_up(ipif, q, mp); 12807 if (err == EINPROGRESS) 12808 return (err); 12809 } 12810 return (err); 12811 } 12812 12813 /* ARGSUSED */ 12814 int 12815 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12816 ip_ioctl_cmd_t *ipi, void *if_req) 12817 { 12818 ill_t *ill; 12819 sin6_t *sin6 = (sin6_t *)sin; 12820 struct lifreq *lifr = (struct lifreq *)if_req; 12821 12822 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12823 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12824 if (ipif->ipif_id != 0) 12825 return (EINVAL); 12826 12827 ill = ipif->ipif_ill; 12828 if (!ill->ill_isv6) 12829 return (ENXIO); 12830 12831 *sin6 = sin6_null; 12832 sin6->sin6_family = AF_INET6; 12833 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12834 sin6->sin6_addr = ill->ill_token; 12835 lifr->lifr_addrlen = ill->ill_token_length; 12836 return (0); 12837 } 12838 12839 /* 12840 * Set (hardware) link specific information that might override 12841 * what was acquired through the DL_INFO_ACK. 12842 * The logic is as follows. 12843 * 12844 * become exclusive 12845 * set CHANGING flag 12846 * change mtu on affected IREs 12847 * clear CHANGING flag 12848 * 12849 * An ire add that occurs before the CHANGING flag is set will have its mtu 12850 * changed by the ip_sioctl_lnkinfo. 12851 * 12852 * During the time the CHANGING flag is set, no new ires will be added to the 12853 * bucket, and ire add will fail (due the CHANGING flag). 12854 * 12855 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12856 * before it is added to the bucket. 12857 * 12858 * Obviously only 1 thread can set the CHANGING flag and we need to become 12859 * exclusive to set the flag. 12860 */ 12861 /* ARGSUSED */ 12862 int 12863 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12864 ip_ioctl_cmd_t *ipi, void *if_req) 12865 { 12866 ill_t *ill = ipif->ipif_ill; 12867 ipif_t *nipif; 12868 int ip_min_mtu; 12869 boolean_t mtu_walk = B_FALSE; 12870 struct lifreq *lifr = (struct lifreq *)if_req; 12871 lif_ifinfo_req_t *lir; 12872 ire_t *ire; 12873 12874 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12876 lir = &lifr->lifr_ifinfo; 12877 ASSERT(IAM_WRITER_IPIF(ipif)); 12878 12879 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12880 if (ipif->ipif_id != 0) 12881 return (EINVAL); 12882 12883 /* Set interface MTU. */ 12884 if (ipif->ipif_isv6) 12885 ip_min_mtu = IPV6_MIN_MTU; 12886 else 12887 ip_min_mtu = IP_MIN_MTU; 12888 12889 /* 12890 * Verify values before we set anything. Allow zero to 12891 * mean unspecified. 12892 */ 12893 if (lir->lir_maxmtu != 0 && 12894 (lir->lir_maxmtu > ill->ill_max_frag || 12895 lir->lir_maxmtu < ip_min_mtu)) 12896 return (EINVAL); 12897 if (lir->lir_reachtime != 0 && 12898 lir->lir_reachtime > ND_MAX_REACHTIME) 12899 return (EINVAL); 12900 if (lir->lir_reachretrans != 0 && 12901 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12902 return (EINVAL); 12903 12904 mutex_enter(&ill->ill_lock); 12905 ill->ill_state_flags |= ILL_CHANGING; 12906 for (nipif = ill->ill_ipif; nipif != NULL; 12907 nipif = nipif->ipif_next) { 12908 nipif->ipif_state_flags |= IPIF_CHANGING; 12909 } 12910 12911 mutex_exit(&ill->ill_lock); 12912 12913 if (lir->lir_maxmtu != 0) { 12914 ill->ill_max_mtu = lir->lir_maxmtu; 12915 ill->ill_mtu_userspecified = 1; 12916 mtu_walk = B_TRUE; 12917 } 12918 12919 if (lir->lir_reachtime != 0) 12920 ill->ill_reachable_time = lir->lir_reachtime; 12921 12922 if (lir->lir_reachretrans != 0) 12923 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12924 12925 ill->ill_max_hops = lir->lir_maxhops; 12926 12927 ill->ill_max_buf = ND_MAX_Q; 12928 12929 if (mtu_walk) { 12930 /* 12931 * Set the MTU on all ipifs associated with this ill except 12932 * for those whose MTU was fixed via SIOCSLIFMTU. 12933 */ 12934 for (nipif = ill->ill_ipif; nipif != NULL; 12935 nipif = nipif->ipif_next) { 12936 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12937 continue; 12938 12939 nipif->ipif_mtu = ill->ill_max_mtu; 12940 12941 if (!(nipif->ipif_flags & IPIF_UP)) 12942 continue; 12943 12944 if (nipif->ipif_isv6) 12945 ire = ipif_to_ire_v6(nipif); 12946 else 12947 ire = ipif_to_ire(nipif); 12948 if (ire != NULL) { 12949 ire->ire_max_frag = ipif->ipif_mtu; 12950 ire_refrele(ire); 12951 } 12952 12953 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12954 nipif, ill); 12955 } 12956 } 12957 12958 mutex_enter(&ill->ill_lock); 12959 for (nipif = ill->ill_ipif; nipif != NULL; 12960 nipif = nipif->ipif_next) { 12961 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12962 } 12963 ILL_UNMARK_CHANGING(ill); 12964 mutex_exit(&ill->ill_lock); 12965 12966 return (0); 12967 } 12968 12969 /* ARGSUSED */ 12970 int 12971 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12972 ip_ioctl_cmd_t *ipi, void *if_req) 12973 { 12974 struct lif_ifinfo_req *lir; 12975 ill_t *ill = ipif->ipif_ill; 12976 12977 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12978 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12979 if (ipif->ipif_id != 0) 12980 return (EINVAL); 12981 12982 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12983 lir->lir_maxhops = ill->ill_max_hops; 12984 lir->lir_reachtime = ill->ill_reachable_time; 12985 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12986 lir->lir_maxmtu = ill->ill_max_mtu; 12987 12988 return (0); 12989 } 12990 12991 /* 12992 * Return best guess as to the subnet mask for the specified address. 12993 * Based on the subnet masks for all the configured interfaces. 12994 * 12995 * We end up returning a zero mask in the case of default, multicast or 12996 * experimental. 12997 */ 12998 static ipaddr_t 12999 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13000 { 13001 ipaddr_t net_mask; 13002 ill_t *ill; 13003 ipif_t *ipif; 13004 ill_walk_context_t ctx; 13005 ipif_t *fallback_ipif = NULL; 13006 13007 net_mask = ip_net_mask(addr); 13008 if (net_mask == 0) { 13009 *ipifp = NULL; 13010 return (0); 13011 } 13012 13013 /* Let's check to see if this is maybe a local subnet route. */ 13014 /* this function only applies to IPv4 interfaces */ 13015 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13016 ill = ILL_START_WALK_V4(&ctx, ipst); 13017 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13018 mutex_enter(&ill->ill_lock); 13019 for (ipif = ill->ill_ipif; ipif != NULL; 13020 ipif = ipif->ipif_next) { 13021 if (!IPIF_CAN_LOOKUP(ipif)) 13022 continue; 13023 if (!(ipif->ipif_flags & IPIF_UP)) 13024 continue; 13025 if ((ipif->ipif_subnet & net_mask) == 13026 (addr & net_mask)) { 13027 /* 13028 * Don't trust pt-pt interfaces if there are 13029 * other interfaces. 13030 */ 13031 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13032 if (fallback_ipif == NULL) { 13033 ipif_refhold_locked(ipif); 13034 fallback_ipif = ipif; 13035 } 13036 continue; 13037 } 13038 13039 /* 13040 * Fine. Just assume the same net mask as the 13041 * directly attached subnet interface is using. 13042 */ 13043 ipif_refhold_locked(ipif); 13044 mutex_exit(&ill->ill_lock); 13045 rw_exit(&ipst->ips_ill_g_lock); 13046 if (fallback_ipif != NULL) 13047 ipif_refrele(fallback_ipif); 13048 *ipifp = ipif; 13049 return (ipif->ipif_net_mask); 13050 } 13051 } 13052 mutex_exit(&ill->ill_lock); 13053 } 13054 rw_exit(&ipst->ips_ill_g_lock); 13055 13056 *ipifp = fallback_ipif; 13057 return ((fallback_ipif != NULL) ? 13058 fallback_ipif->ipif_net_mask : net_mask); 13059 } 13060 13061 /* 13062 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13063 */ 13064 static void 13065 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13066 { 13067 IOCP iocp; 13068 ipft_t *ipft; 13069 ipllc_t *ipllc; 13070 mblk_t *mp1; 13071 cred_t *cr; 13072 int error = 0; 13073 conn_t *connp; 13074 13075 ip1dbg(("ip_wput_ioctl")); 13076 iocp = (IOCP)mp->b_rptr; 13077 mp1 = mp->b_cont; 13078 if (mp1 == NULL) { 13079 iocp->ioc_error = EINVAL; 13080 mp->b_datap->db_type = M_IOCNAK; 13081 iocp->ioc_count = 0; 13082 qreply(q, mp); 13083 return; 13084 } 13085 13086 /* 13087 * These IOCTLs provide various control capabilities to 13088 * upstream agents such as ULPs and processes. There 13089 * are currently two such IOCTLs implemented. They 13090 * are used by TCP to provide update information for 13091 * existing IREs and to forcibly delete an IRE for a 13092 * host that is not responding, thereby forcing an 13093 * attempt at a new route. 13094 */ 13095 iocp->ioc_error = EINVAL; 13096 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13097 goto done; 13098 13099 ipllc = (ipllc_t *)mp1->b_rptr; 13100 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13101 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13102 break; 13103 } 13104 /* 13105 * prefer credential from mblk over ioctl; 13106 * see ip_sioctl_copyin_setup 13107 */ 13108 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13109 13110 /* 13111 * Refhold the conn in case the request gets queued up in some lookup 13112 */ 13113 ASSERT(CONN_Q(q)); 13114 connp = Q_TO_CONN(q); 13115 CONN_INC_REF(connp); 13116 if (ipft->ipft_pfi && 13117 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13118 pullupmsg(mp1, ipft->ipft_min_size))) { 13119 error = (*ipft->ipft_pfi)(q, 13120 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13121 } 13122 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13123 /* 13124 * CONN_OPER_PENDING_DONE happens in the function called 13125 * through ipft_pfi above. 13126 */ 13127 return; 13128 } 13129 13130 CONN_OPER_PENDING_DONE(connp); 13131 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13132 freemsg(mp); 13133 return; 13134 } 13135 iocp->ioc_error = error; 13136 13137 done: 13138 mp->b_datap->db_type = M_IOCACK; 13139 if (iocp->ioc_error) 13140 iocp->ioc_count = 0; 13141 qreply(q, mp); 13142 } 13143 13144 /* 13145 * Lookup an ipif using the sequence id (ipif_seqid) 13146 */ 13147 ipif_t * 13148 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13149 { 13150 ipif_t *ipif; 13151 13152 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13153 13154 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13155 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13156 return (ipif); 13157 } 13158 return (NULL); 13159 } 13160 13161 /* 13162 * Assign a unique id for the ipif. This is used later when we send 13163 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13164 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13165 * IRE is added, we verify that ipif has not disappeared. 13166 */ 13167 13168 static void 13169 ipif_assign_seqid(ipif_t *ipif) 13170 { 13171 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13172 13173 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13174 } 13175 13176 /* 13177 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13178 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13179 * be inserted into the first space available in the list. The value of 13180 * ipif_id will then be set to the appropriate value for its position. 13181 */ 13182 static int 13183 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13184 { 13185 ill_t *ill; 13186 ipif_t *tipif; 13187 ipif_t **tipifp; 13188 int id; 13189 ip_stack_t *ipst; 13190 13191 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13192 IAM_WRITER_IPIF(ipif)); 13193 13194 ill = ipif->ipif_ill; 13195 ASSERT(ill != NULL); 13196 ipst = ill->ill_ipst; 13197 13198 /* 13199 * In the case of lo0:0 we already hold the ill_g_lock. 13200 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13201 * ipif_insert. Another such caller is ipif_move. 13202 */ 13203 if (acquire_g_lock) 13204 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13205 if (acquire_ill_lock) 13206 mutex_enter(&ill->ill_lock); 13207 id = ipif->ipif_id; 13208 tipifp = &(ill->ill_ipif); 13209 if (id == -1) { /* need to find a real id */ 13210 id = 0; 13211 while ((tipif = *tipifp) != NULL) { 13212 ASSERT(tipif->ipif_id >= id); 13213 if (tipif->ipif_id != id) 13214 break; /* non-consecutive id */ 13215 id++; 13216 tipifp = &(tipif->ipif_next); 13217 } 13218 /* limit number of logical interfaces */ 13219 if (id >= ipst->ips_ip_addrs_per_if) { 13220 if (acquire_ill_lock) 13221 mutex_exit(&ill->ill_lock); 13222 if (acquire_g_lock) 13223 rw_exit(&ipst->ips_ill_g_lock); 13224 return (-1); 13225 } 13226 ipif->ipif_id = id; /* assign new id */ 13227 } else if (id < ipst->ips_ip_addrs_per_if) { 13228 /* we have a real id; insert ipif in the right place */ 13229 while ((tipif = *tipifp) != NULL) { 13230 ASSERT(tipif->ipif_id != id); 13231 if (tipif->ipif_id > id) 13232 break; /* found correct location */ 13233 tipifp = &(tipif->ipif_next); 13234 } 13235 } else { 13236 if (acquire_ill_lock) 13237 mutex_exit(&ill->ill_lock); 13238 if (acquire_g_lock) 13239 rw_exit(&ipst->ips_ill_g_lock); 13240 return (-1); 13241 } 13242 13243 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13244 13245 ipif->ipif_next = tipif; 13246 *tipifp = ipif; 13247 if (acquire_ill_lock) 13248 mutex_exit(&ill->ill_lock); 13249 if (acquire_g_lock) 13250 rw_exit(&ipst->ips_ill_g_lock); 13251 return (0); 13252 } 13253 13254 static void 13255 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13256 { 13257 ipif_t **ipifp; 13258 ill_t *ill = ipif->ipif_ill; 13259 13260 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13261 if (acquire_ill_lock) 13262 mutex_enter(&ill->ill_lock); 13263 else 13264 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13265 13266 ipifp = &ill->ill_ipif; 13267 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13268 if (*ipifp == ipif) { 13269 *ipifp = ipif->ipif_next; 13270 break; 13271 } 13272 } 13273 13274 if (acquire_ill_lock) 13275 mutex_exit(&ill->ill_lock); 13276 } 13277 13278 /* 13279 * Allocate and initialize a new interface control structure. (Always 13280 * called as writer.) 13281 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13282 * is not part of the global linked list of ills. ipif_seqid is unique 13283 * in the system and to preserve the uniqueness, it is assigned only 13284 * when ill becomes part of the global list. At that point ill will 13285 * have a name. If it doesn't get assigned here, it will get assigned 13286 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13287 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13288 * the interface flags or any other information from the DL_INFO_ACK for 13289 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13290 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13291 * second DL_INFO_ACK comes in from the driver. 13292 */ 13293 static ipif_t * 13294 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13295 { 13296 ipif_t *ipif; 13297 phyint_t *phyi; 13298 13299 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13300 ill->ill_name, id, (void *)ill)); 13301 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13302 13303 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13304 return (NULL); 13305 *ipif = ipif_zero; /* start clean */ 13306 13307 ipif->ipif_ill = ill; 13308 ipif->ipif_id = id; /* could be -1 */ 13309 /* 13310 * Inherit the zoneid from the ill; for the shared stack instance 13311 * this is always the global zone 13312 */ 13313 ipif->ipif_zoneid = ill->ill_zoneid; 13314 13315 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13316 13317 ipif->ipif_refcnt = 0; 13318 ipif->ipif_saved_ire_cnt = 0; 13319 13320 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13321 mi_free(ipif); 13322 return (NULL); 13323 } 13324 /* -1 id should have been replaced by real id */ 13325 id = ipif->ipif_id; 13326 ASSERT(id >= 0); 13327 13328 if (ill->ill_name[0] != '\0') 13329 ipif_assign_seqid(ipif); 13330 13331 /* 13332 * Keep a copy of original id in ipif_orig_ipifid. Failback 13333 * will attempt to restore the original id. The SIOCSLIFOINDEX 13334 * ioctl sets ipif_orig_ipifid to zero. 13335 */ 13336 ipif->ipif_orig_ipifid = id; 13337 13338 /* 13339 * We grab the ill_lock and phyint_lock to protect the flag changes. 13340 * The ipif is still not up and can't be looked up until the 13341 * ioctl completes and the IPIF_CHANGING flag is cleared. 13342 */ 13343 mutex_enter(&ill->ill_lock); 13344 mutex_enter(&ill->ill_phyint->phyint_lock); 13345 /* 13346 * Set the running flag when logical interface zero is created. 13347 * For subsequent logical interfaces, a DLPI link down 13348 * notification message may have cleared the running flag to 13349 * indicate the link is down, so we shouldn't just blindly set it. 13350 */ 13351 if (id == 0) 13352 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13353 ipif->ipif_ire_type = ire_type; 13354 phyi = ill->ill_phyint; 13355 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13356 13357 if (ipif->ipif_isv6) { 13358 ill->ill_flags |= ILLF_IPV6; 13359 } else { 13360 ipaddr_t inaddr_any = INADDR_ANY; 13361 13362 ill->ill_flags |= ILLF_IPV4; 13363 13364 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13365 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13366 &ipif->ipif_v6lcl_addr); 13367 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13368 &ipif->ipif_v6src_addr); 13369 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13370 &ipif->ipif_v6subnet); 13371 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13372 &ipif->ipif_v6net_mask); 13373 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13374 &ipif->ipif_v6brd_addr); 13375 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13376 &ipif->ipif_v6pp_dst_addr); 13377 } 13378 13379 /* 13380 * Don't set the interface flags etc. now, will do it in 13381 * ip_ll_subnet_defaults. 13382 */ 13383 if (!initialize) { 13384 mutex_exit(&ill->ill_lock); 13385 mutex_exit(&ill->ill_phyint->phyint_lock); 13386 return (ipif); 13387 } 13388 ipif->ipif_mtu = ill->ill_max_mtu; 13389 13390 if (ill->ill_bcast_addr_length != 0) { 13391 /* 13392 * Later detect lack of DLPI driver multicast 13393 * capability by catching DL_ENABMULTI errors in 13394 * ip_rput_dlpi. 13395 */ 13396 ill->ill_flags |= ILLF_MULTICAST; 13397 if (!ipif->ipif_isv6) 13398 ipif->ipif_flags |= IPIF_BROADCAST; 13399 } else { 13400 if (ill->ill_net_type != IRE_LOOPBACK) { 13401 if (ipif->ipif_isv6) 13402 /* 13403 * Note: xresolv interfaces will eventually need 13404 * NOARP set here as well, but that will require 13405 * those external resolvers to have some 13406 * knowledge of that flag and act appropriately. 13407 * Not to be changed at present. 13408 */ 13409 ill->ill_flags |= ILLF_NONUD; 13410 else 13411 ill->ill_flags |= ILLF_NOARP; 13412 } 13413 if (ill->ill_phys_addr_length == 0) { 13414 if (ill->ill_media && 13415 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13416 ipif->ipif_flags |= IPIF_NOXMIT; 13417 phyi->phyint_flags |= PHYI_VIRTUAL; 13418 } else { 13419 /* pt-pt supports multicast. */ 13420 ill->ill_flags |= ILLF_MULTICAST; 13421 if (ill->ill_net_type == IRE_LOOPBACK) { 13422 phyi->phyint_flags |= 13423 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13424 } else { 13425 ipif->ipif_flags |= IPIF_POINTOPOINT; 13426 } 13427 } 13428 } 13429 } 13430 mutex_exit(&ill->ill_lock); 13431 mutex_exit(&ill->ill_phyint->phyint_lock); 13432 return (ipif); 13433 } 13434 13435 /* 13436 * If appropriate, send a message up to the resolver delete the entry 13437 * for the address of this interface which is going out of business. 13438 * (Always called as writer). 13439 * 13440 * NOTE : We need to check for NULL mps as some of the fields are 13441 * initialized only for some interface types. See ipif_resolver_up() 13442 * for details. 13443 */ 13444 void 13445 ipif_arp_down(ipif_t *ipif) 13446 { 13447 mblk_t *mp; 13448 ill_t *ill = ipif->ipif_ill; 13449 13450 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13451 ASSERT(IAM_WRITER_IPIF(ipif)); 13452 13453 /* Delete the mapping for the local address */ 13454 mp = ipif->ipif_arp_del_mp; 13455 if (mp != NULL) { 13456 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13457 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13458 putnext(ill->ill_rq, mp); 13459 ipif->ipif_arp_del_mp = NULL; 13460 } 13461 13462 /* 13463 * If this is the last ipif that is going down and there are no 13464 * duplicate addresses we may yet attempt to re-probe, then we need to 13465 * clean up ARP completely. 13466 */ 13467 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13468 13469 /* Send up AR_INTERFACE_DOWN message */ 13470 mp = ill->ill_arp_down_mp; 13471 if (mp != NULL) { 13472 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13473 *(unsigned *)mp->b_rptr, ill->ill_name, 13474 ipif->ipif_id)); 13475 putnext(ill->ill_rq, mp); 13476 ill->ill_arp_down_mp = NULL; 13477 } 13478 13479 /* Tell ARP to delete the multicast mappings */ 13480 mp = ill->ill_arp_del_mapping_mp; 13481 if (mp != NULL) { 13482 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13483 *(unsigned *)mp->b_rptr, ill->ill_name, 13484 ipif->ipif_id)); 13485 putnext(ill->ill_rq, mp); 13486 ill->ill_arp_del_mapping_mp = NULL; 13487 } 13488 } 13489 } 13490 13491 /* 13492 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13493 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13494 * that it wants the add_mp allocated in this function to be returned 13495 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13496 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13497 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13498 * as it does a ipif_arp_down after calling this function - which will 13499 * remove what we add here. 13500 * 13501 * Returns -1 on failures and 0 on success. 13502 */ 13503 int 13504 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13505 { 13506 mblk_t *del_mp = NULL; 13507 mblk_t *add_mp = NULL; 13508 mblk_t *mp; 13509 ill_t *ill = ipif->ipif_ill; 13510 phyint_t *phyi = ill->ill_phyint; 13511 ipaddr_t addr, mask, extract_mask = 0; 13512 arma_t *arma; 13513 uint8_t *maddr, *bphys_addr; 13514 uint32_t hw_start; 13515 dl_unitdata_req_t *dlur; 13516 13517 ASSERT(IAM_WRITER_IPIF(ipif)); 13518 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13519 return (0); 13520 13521 /* 13522 * Delete the existing mapping from ARP. Normally ipif_down 13523 * -> ipif_arp_down should send this up to ARP. The only 13524 * reason we would find this when we are switching from 13525 * Multicast to Broadcast where we did not do a down. 13526 */ 13527 mp = ill->ill_arp_del_mapping_mp; 13528 if (mp != NULL) { 13529 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13530 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13531 putnext(ill->ill_rq, mp); 13532 ill->ill_arp_del_mapping_mp = NULL; 13533 } 13534 13535 if (arp_add_mapping_mp != NULL) 13536 *arp_add_mapping_mp = NULL; 13537 13538 /* 13539 * Check that the address is not to long for the constant 13540 * length reserved in the template arma_t. 13541 */ 13542 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13543 return (-1); 13544 13545 /* Add mapping mblk */ 13546 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13547 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13548 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13549 (caddr_t)&addr); 13550 if (add_mp == NULL) 13551 return (-1); 13552 arma = (arma_t *)add_mp->b_rptr; 13553 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13554 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13555 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13556 13557 /* 13558 * Determine the broadcast address. 13559 */ 13560 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13561 if (ill->ill_sap_length < 0) 13562 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13563 else 13564 bphys_addr = (uchar_t *)dlur + 13565 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13566 /* 13567 * Check PHYI_MULTI_BCAST and length of physical 13568 * address to determine if we use the mapping or the 13569 * broadcast address. 13570 */ 13571 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13572 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13573 bphys_addr, maddr, &hw_start, &extract_mask)) 13574 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13575 13576 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13577 (ill->ill_flags & ILLF_MULTICAST)) { 13578 /* Make sure this will not match the "exact" entry. */ 13579 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13580 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13581 (caddr_t)&addr); 13582 if (del_mp == NULL) { 13583 freemsg(add_mp); 13584 return (-1); 13585 } 13586 bcopy(&extract_mask, (char *)arma + 13587 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13588 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13589 /* Use link-layer broadcast address for MULTI_BCAST */ 13590 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13591 ip2dbg(("ipif_arp_setup_multicast: adding" 13592 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13593 } else { 13594 arma->arma_hw_mapping_start = hw_start; 13595 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13596 " ARP setup for %s\n", ill->ill_name)); 13597 } 13598 } else { 13599 freemsg(add_mp); 13600 ASSERT(del_mp == NULL); 13601 /* It is neither MULTICAST nor MULTI_BCAST */ 13602 return (0); 13603 } 13604 ASSERT(add_mp != NULL && del_mp != NULL); 13605 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13606 ill->ill_arp_del_mapping_mp = del_mp; 13607 if (arp_add_mapping_mp != NULL) { 13608 /* The caller just wants the mblks allocated */ 13609 *arp_add_mapping_mp = add_mp; 13610 } else { 13611 /* The caller wants us to send it to arp */ 13612 putnext(ill->ill_rq, add_mp); 13613 } 13614 return (0); 13615 } 13616 13617 /* 13618 * Get the resolver set up for a new interface address. 13619 * (Always called as writer.) 13620 * Called both for IPv4 and IPv6 interfaces, 13621 * though it only sets up the resolver for v6 13622 * if it's an xresolv interface (one using an external resolver). 13623 * Honors ILLF_NOARP. 13624 * The enumerated value res_act is used to tune the behavior. 13625 * If set to Res_act_initial, then we set up all the resolver 13626 * structures for a new interface. If set to Res_act_move, then 13627 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13628 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13629 * asynchronous hardware address change notification. If set to 13630 * Res_act_defend, then we tell ARP that it needs to send a single 13631 * gratuitous message in defense of the address. 13632 * Returns error on failure. 13633 */ 13634 int 13635 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13636 { 13637 caddr_t addr; 13638 mblk_t *arp_up_mp = NULL; 13639 mblk_t *arp_down_mp = NULL; 13640 mblk_t *arp_add_mp = NULL; 13641 mblk_t *arp_del_mp = NULL; 13642 mblk_t *arp_add_mapping_mp = NULL; 13643 mblk_t *arp_del_mapping_mp = NULL; 13644 ill_t *ill = ipif->ipif_ill; 13645 uchar_t *area_p = NULL; 13646 uchar_t *ared_p = NULL; 13647 int err = ENOMEM; 13648 boolean_t was_dup; 13649 13650 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13651 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13652 ASSERT(IAM_WRITER_IPIF(ipif)); 13653 13654 was_dup = B_FALSE; 13655 if (res_act == Res_act_initial) { 13656 ipif->ipif_addr_ready = 0; 13657 /* 13658 * We're bringing an interface up here. There's no way that we 13659 * should need to shut down ARP now. 13660 */ 13661 mutex_enter(&ill->ill_lock); 13662 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13663 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13664 ill->ill_ipif_dup_count--; 13665 was_dup = B_TRUE; 13666 } 13667 mutex_exit(&ill->ill_lock); 13668 } 13669 if (ipif->ipif_recovery_id != 0) 13670 (void) untimeout(ipif->ipif_recovery_id); 13671 ipif->ipif_recovery_id = 0; 13672 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13673 ipif->ipif_addr_ready = 1; 13674 return (0); 13675 } 13676 /* NDP will set the ipif_addr_ready flag when it's ready */ 13677 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13678 return (0); 13679 13680 if (ill->ill_isv6) { 13681 /* 13682 * External resolver for IPv6 13683 */ 13684 ASSERT(res_act == Res_act_initial); 13685 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13686 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13687 area_p = (uchar_t *)&ip6_area_template; 13688 ared_p = (uchar_t *)&ip6_ared_template; 13689 } 13690 } else { 13691 /* 13692 * IPv4 arp case. If the ARP stream has already started 13693 * closing, fail this request for ARP bringup. Else 13694 * record the fact that an ARP bringup is pending. 13695 */ 13696 mutex_enter(&ill->ill_lock); 13697 if (ill->ill_arp_closing) { 13698 mutex_exit(&ill->ill_lock); 13699 err = EINVAL; 13700 goto failed; 13701 } else { 13702 if (ill->ill_ipif_up_count == 0 && 13703 ill->ill_ipif_dup_count == 0 && !was_dup) 13704 ill->ill_arp_bringup_pending = 1; 13705 mutex_exit(&ill->ill_lock); 13706 } 13707 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13708 addr = (caddr_t)&ipif->ipif_lcl_addr; 13709 area_p = (uchar_t *)&ip_area_template; 13710 ared_p = (uchar_t *)&ip_ared_template; 13711 } 13712 } 13713 13714 /* 13715 * Add an entry for the local address in ARP only if it 13716 * is not UNNUMBERED and the address is not INADDR_ANY. 13717 */ 13718 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13719 area_t *area; 13720 13721 /* Now ask ARP to publish our address. */ 13722 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13723 if (arp_add_mp == NULL) 13724 goto failed; 13725 area = (area_t *)arp_add_mp->b_rptr; 13726 if (res_act != Res_act_initial) { 13727 /* 13728 * Copy the new hardware address and length into 13729 * arp_add_mp to be sent to ARP. 13730 */ 13731 area->area_hw_addr_length = ill->ill_phys_addr_length; 13732 bcopy(ill->ill_phys_addr, 13733 ((char *)area + area->area_hw_addr_offset), 13734 area->area_hw_addr_length); 13735 } 13736 13737 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13738 ACE_F_MYADDR; 13739 13740 if (res_act == Res_act_defend) { 13741 area->area_flags |= ACE_F_DEFEND; 13742 /* 13743 * If we're just defending our address now, then 13744 * there's no need to set up ARP multicast mappings. 13745 * The publish command is enough. 13746 */ 13747 goto done; 13748 } 13749 13750 if (res_act != Res_act_initial) 13751 goto arp_setup_multicast; 13752 13753 /* 13754 * Allocate an ARP deletion message so we know we can tell ARP 13755 * when the interface goes down. 13756 */ 13757 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13758 if (arp_del_mp == NULL) 13759 goto failed; 13760 13761 } else { 13762 if (res_act != Res_act_initial) 13763 goto done; 13764 } 13765 /* 13766 * Need to bring up ARP or setup multicast mapping only 13767 * when the first interface is coming UP. 13768 */ 13769 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13770 was_dup) { 13771 goto done; 13772 } 13773 13774 /* 13775 * Allocate an ARP down message (to be saved) and an ARP up 13776 * message. 13777 */ 13778 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13779 if (arp_down_mp == NULL) 13780 goto failed; 13781 13782 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13783 if (arp_up_mp == NULL) 13784 goto failed; 13785 13786 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13787 goto done; 13788 13789 arp_setup_multicast: 13790 /* 13791 * Setup the multicast mappings. This function initializes 13792 * ill_arp_del_mapping_mp also. This does not need to be done for 13793 * IPv6. 13794 */ 13795 if (!ill->ill_isv6) { 13796 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13797 if (err != 0) 13798 goto failed; 13799 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13800 ASSERT(arp_add_mapping_mp != NULL); 13801 } 13802 13803 done: 13804 if (arp_del_mp != NULL) { 13805 ASSERT(ipif->ipif_arp_del_mp == NULL); 13806 ipif->ipif_arp_del_mp = arp_del_mp; 13807 } 13808 if (arp_down_mp != NULL) { 13809 ASSERT(ill->ill_arp_down_mp == NULL); 13810 ill->ill_arp_down_mp = arp_down_mp; 13811 } 13812 if (arp_del_mapping_mp != NULL) { 13813 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13814 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13815 } 13816 if (arp_up_mp != NULL) { 13817 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13818 ill->ill_name, ipif->ipif_id)); 13819 putnext(ill->ill_rq, arp_up_mp); 13820 } 13821 if (arp_add_mp != NULL) { 13822 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13823 ill->ill_name, ipif->ipif_id)); 13824 /* 13825 * If it's an extended ARP implementation, then we'll wait to 13826 * hear that DAD has finished before using the interface. 13827 */ 13828 if (!ill->ill_arp_extend) 13829 ipif->ipif_addr_ready = 1; 13830 putnext(ill->ill_rq, arp_add_mp); 13831 } else { 13832 ipif->ipif_addr_ready = 1; 13833 } 13834 if (arp_add_mapping_mp != NULL) { 13835 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13836 ill->ill_name, ipif->ipif_id)); 13837 putnext(ill->ill_rq, arp_add_mapping_mp); 13838 } 13839 if (res_act != Res_act_initial) 13840 return (0); 13841 13842 if (ill->ill_flags & ILLF_NOARP) 13843 err = ill_arp_off(ill); 13844 else 13845 err = ill_arp_on(ill); 13846 if (err != 0) { 13847 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13848 freemsg(ipif->ipif_arp_del_mp); 13849 freemsg(ill->ill_arp_down_mp); 13850 freemsg(ill->ill_arp_del_mapping_mp); 13851 ipif->ipif_arp_del_mp = NULL; 13852 ill->ill_arp_down_mp = NULL; 13853 ill->ill_arp_del_mapping_mp = NULL; 13854 return (err); 13855 } 13856 return ((ill->ill_ipif_up_count != 0 || was_dup || 13857 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13858 13859 failed: 13860 ip1dbg(("ipif_resolver_up: FAILED\n")); 13861 freemsg(arp_add_mp); 13862 freemsg(arp_del_mp); 13863 freemsg(arp_add_mapping_mp); 13864 freemsg(arp_up_mp); 13865 freemsg(arp_down_mp); 13866 ill->ill_arp_bringup_pending = 0; 13867 return (err); 13868 } 13869 13870 /* 13871 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13872 * just gone back up. 13873 */ 13874 static void 13875 ipif_arp_start_dad(ipif_t *ipif) 13876 { 13877 ill_t *ill = ipif->ipif_ill; 13878 mblk_t *arp_add_mp; 13879 area_t *area; 13880 13881 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13882 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13883 ipif->ipif_lcl_addr == INADDR_ANY || 13884 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13885 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13886 /* 13887 * If we can't contact ARP for some reason, that's not really a 13888 * problem. Just send out the routing socket notification that 13889 * DAD completion would have done, and continue. 13890 */ 13891 ipif_mask_reply(ipif); 13892 ipif_up_notify(ipif); 13893 ipif->ipif_addr_ready = 1; 13894 return; 13895 } 13896 13897 /* Setting the 'unverified' flag restarts DAD */ 13898 area = (area_t *)arp_add_mp->b_rptr; 13899 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13900 ACE_F_UNVERIFIED; 13901 putnext(ill->ill_rq, arp_add_mp); 13902 } 13903 13904 static void 13905 ipif_ndp_start_dad(ipif_t *ipif) 13906 { 13907 nce_t *nce; 13908 13909 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13910 if (nce == NULL) 13911 return; 13912 13913 if (!ndp_restart_dad(nce)) { 13914 /* 13915 * If we can't restart DAD for some reason, that's not really a 13916 * problem. Just send out the routing socket notification that 13917 * DAD completion would have done, and continue. 13918 */ 13919 ipif_up_notify(ipif); 13920 ipif->ipif_addr_ready = 1; 13921 } 13922 NCE_REFRELE(nce); 13923 } 13924 13925 /* 13926 * Restart duplicate address detection on all interfaces on the given ill. 13927 * 13928 * This is called when an interface transitions from down to up 13929 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13930 * 13931 * Note that since the underlying physical link has transitioned, we must cause 13932 * at least one routing socket message to be sent here, either via DAD 13933 * completion or just by default on the first ipif. (If we don't do this, then 13934 * in.mpathd will see long delays when doing link-based failure recovery.) 13935 */ 13936 void 13937 ill_restart_dad(ill_t *ill, boolean_t went_up) 13938 { 13939 ipif_t *ipif; 13940 13941 if (ill == NULL) 13942 return; 13943 13944 /* 13945 * If layer two doesn't support duplicate address detection, then just 13946 * send the routing socket message now and be done with it. 13947 */ 13948 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13949 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13950 ip_rts_ifmsg(ill->ill_ipif); 13951 return; 13952 } 13953 13954 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13955 if (went_up) { 13956 if (ipif->ipif_flags & IPIF_UP) { 13957 if (ill->ill_isv6) 13958 ipif_ndp_start_dad(ipif); 13959 else 13960 ipif_arp_start_dad(ipif); 13961 } else if (ill->ill_isv6 && 13962 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13963 /* 13964 * For IPv4, the ARP module itself will 13965 * automatically start the DAD process when it 13966 * sees DL_NOTE_LINK_UP. We respond to the 13967 * AR_CN_READY at the completion of that task. 13968 * For IPv6, we must kick off the bring-up 13969 * process now. 13970 */ 13971 ndp_do_recovery(ipif); 13972 } else { 13973 /* 13974 * Unfortunately, the first ipif is "special" 13975 * and represents the underlying ill in the 13976 * routing socket messages. Thus, when this 13977 * one ipif is down, we must still notify so 13978 * that the user knows the IFF_RUNNING status 13979 * change. (If the first ipif is up, then 13980 * we'll handle eventual routing socket 13981 * notification via DAD completion.) 13982 */ 13983 if (ipif == ill->ill_ipif) 13984 ip_rts_ifmsg(ill->ill_ipif); 13985 } 13986 } else { 13987 /* 13988 * After link down, we'll need to send a new routing 13989 * message when the link comes back, so clear 13990 * ipif_addr_ready. 13991 */ 13992 ipif->ipif_addr_ready = 0; 13993 } 13994 } 13995 13996 /* 13997 * If we've torn down links, then notify the user right away. 13998 */ 13999 if (!went_up) 14000 ip_rts_ifmsg(ill->ill_ipif); 14001 } 14002 14003 /* 14004 * Wakeup all threads waiting to enter the ipsq, and sleeping 14005 * on any of the ills in this ipsq. The ill_lock of the ill 14006 * must be held so that waiters don't miss wakeups 14007 */ 14008 static void 14009 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14010 { 14011 phyint_t *phyint; 14012 14013 phyint = ipsq->ipsq_phyint_list; 14014 while (phyint != NULL) { 14015 if (phyint->phyint_illv4) { 14016 if (!caller_holds_lock) 14017 mutex_enter(&phyint->phyint_illv4->ill_lock); 14018 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14019 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14020 if (!caller_holds_lock) 14021 mutex_exit(&phyint->phyint_illv4->ill_lock); 14022 } 14023 if (phyint->phyint_illv6) { 14024 if (!caller_holds_lock) 14025 mutex_enter(&phyint->phyint_illv6->ill_lock); 14026 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14027 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14028 if (!caller_holds_lock) 14029 mutex_exit(&phyint->phyint_illv6->ill_lock); 14030 } 14031 phyint = phyint->phyint_ipsq_next; 14032 } 14033 } 14034 14035 static ipsq_t * 14036 ipsq_create(char *groupname, ip_stack_t *ipst) 14037 { 14038 ipsq_t *ipsq; 14039 14040 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14041 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14042 if (ipsq == NULL) { 14043 return (NULL); 14044 } 14045 14046 if (groupname != NULL) 14047 (void) strcpy(ipsq->ipsq_name, groupname); 14048 else 14049 ipsq->ipsq_name[0] = '\0'; 14050 14051 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14052 ipsq->ipsq_flags |= IPSQ_GROUP; 14053 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14054 ipst->ips_ipsq_g_head = ipsq; 14055 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14056 return (ipsq); 14057 } 14058 14059 /* 14060 * Return an ipsq correspoding to the groupname. If 'create' is true 14061 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14062 * uniquely with an IPMP group. However during IPMP groupname operations, 14063 * multiple IPMP groups may be associated with a single ipsq. But no 14064 * IPMP group can be associated with more than 1 ipsq at any time. 14065 * For example 14066 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14067 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14068 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14069 * 14070 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14071 * status shown below during the execution of the above command. 14072 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14073 * 14074 * After the completion of the above groupname command we return to the stable 14075 * state shown below. 14076 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14077 * hme4 mpk17-85 ipsq2 mpk17-85 1 14078 * 14079 * Because of the above, we don't search based on the ipsq_name since that 14080 * would miss the correct ipsq during certain windows as shown above. 14081 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14082 * natural state. 14083 */ 14084 static ipsq_t * 14085 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14086 ip_stack_t *ipst) 14087 { 14088 ipsq_t *ipsq; 14089 int group_len; 14090 phyint_t *phyint; 14091 14092 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14093 14094 group_len = strlen(groupname); 14095 ASSERT(group_len != 0); 14096 group_len++; 14097 14098 for (ipsq = ipst->ips_ipsq_g_head; 14099 ipsq != NULL; 14100 ipsq = ipsq->ipsq_next) { 14101 /* 14102 * When an ipsq is being split, and ill_split_ipsq 14103 * calls this function, we exclude it from being considered. 14104 */ 14105 if (ipsq == exclude_ipsq) 14106 continue; 14107 14108 /* 14109 * Compare against the ipsq_name. The groupname change happens 14110 * in 2 phases. The 1st phase merges the from group into 14111 * the to group's ipsq, by calling ill_merge_groups and restarts 14112 * the ioctl. The 2nd phase then locates the ipsq again thru 14113 * ipsq_name. At this point the phyint_groupname has not been 14114 * updated. 14115 */ 14116 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14117 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14118 /* 14119 * Verify that an ipmp groupname is exactly 14120 * part of 1 ipsq and is not found in any other 14121 * ipsq. 14122 */ 14123 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14124 NULL); 14125 return (ipsq); 14126 } 14127 14128 /* 14129 * Comparison against ipsq_name alone is not sufficient. 14130 * In the case when groups are currently being 14131 * merged, the ipsq could hold other IPMP groups temporarily. 14132 * so we walk the phyint list and compare against the 14133 * phyint_groupname as well. 14134 */ 14135 phyint = ipsq->ipsq_phyint_list; 14136 while (phyint != NULL) { 14137 if ((group_len == phyint->phyint_groupname_len) && 14138 (bcmp(phyint->phyint_groupname, groupname, 14139 group_len) == 0)) { 14140 /* 14141 * Verify that an ipmp groupname is exactly 14142 * part of 1 ipsq and is not found in any other 14143 * ipsq. 14144 */ 14145 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14146 ipst) == NULL); 14147 return (ipsq); 14148 } 14149 phyint = phyint->phyint_ipsq_next; 14150 } 14151 } 14152 if (create) 14153 ipsq = ipsq_create(groupname, ipst); 14154 return (ipsq); 14155 } 14156 14157 static void 14158 ipsq_delete(ipsq_t *ipsq) 14159 { 14160 ipsq_t *nipsq; 14161 ipsq_t *pipsq = NULL; 14162 ip_stack_t *ipst = ipsq->ipsq_ipst; 14163 14164 /* 14165 * We don't hold the ipsq lock, but we are sure no new 14166 * messages can land up, since the ipsq_refs is zero. 14167 * i.e. this ipsq is unnamed and no phyint or phyint group 14168 * is associated with this ipsq. (Lookups are based on ill_name 14169 * or phyint_groupname) 14170 */ 14171 ASSERT(ipsq->ipsq_refs == 0); 14172 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14173 ASSERT(ipsq->ipsq_pending_mp == NULL); 14174 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14175 /* 14176 * This is not the ipsq of an IPMP group. 14177 */ 14178 ipsq->ipsq_ipst = NULL; 14179 kmem_free(ipsq, sizeof (ipsq_t)); 14180 return; 14181 } 14182 14183 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14184 14185 /* 14186 * Locate the ipsq before we can remove it from 14187 * the singly linked list of ipsq's. 14188 */ 14189 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14190 nipsq = nipsq->ipsq_next) { 14191 if (nipsq == ipsq) { 14192 break; 14193 } 14194 pipsq = nipsq; 14195 } 14196 14197 ASSERT(nipsq == ipsq); 14198 14199 /* unlink ipsq from the list */ 14200 if (pipsq != NULL) 14201 pipsq->ipsq_next = ipsq->ipsq_next; 14202 else 14203 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14204 ipsq->ipsq_ipst = NULL; 14205 kmem_free(ipsq, sizeof (ipsq_t)); 14206 rw_exit(&ipst->ips_ill_g_lock); 14207 } 14208 14209 static void 14210 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14211 queue_t *q) 14212 { 14213 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14214 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14215 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14216 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14217 ASSERT(current_mp != NULL); 14218 14219 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14220 NEW_OP, NULL); 14221 14222 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14223 new_ipsq->ipsq_xopq_mphead != NULL); 14224 14225 /* 14226 * move from old ipsq to the new ipsq. 14227 */ 14228 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14229 if (old_ipsq->ipsq_xopq_mphead != NULL) 14230 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14231 14232 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14233 } 14234 14235 void 14236 ill_group_cleanup(ill_t *ill) 14237 { 14238 ill_t *ill_v4; 14239 ill_t *ill_v6; 14240 ipif_t *ipif; 14241 14242 ill_v4 = ill->ill_phyint->phyint_illv4; 14243 ill_v6 = ill->ill_phyint->phyint_illv6; 14244 14245 if (ill_v4 != NULL) { 14246 mutex_enter(&ill_v4->ill_lock); 14247 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14248 ipif = ipif->ipif_next) { 14249 IPIF_UNMARK_MOVING(ipif); 14250 } 14251 ill_v4->ill_up_ipifs = B_FALSE; 14252 mutex_exit(&ill_v4->ill_lock); 14253 } 14254 14255 if (ill_v6 != NULL) { 14256 mutex_enter(&ill_v6->ill_lock); 14257 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14258 ipif = ipif->ipif_next) { 14259 IPIF_UNMARK_MOVING(ipif); 14260 } 14261 ill_v6->ill_up_ipifs = B_FALSE; 14262 mutex_exit(&ill_v6->ill_lock); 14263 } 14264 } 14265 /* 14266 * This function is called when an ill has had a change in its group status 14267 * to bring up all the ipifs that were up before the change. 14268 */ 14269 int 14270 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14271 { 14272 ipif_t *ipif; 14273 ill_t *ill_v4; 14274 ill_t *ill_v6; 14275 ill_t *from_ill; 14276 int err = 0; 14277 14278 ASSERT(IAM_WRITER_ILL(ill)); 14279 14280 /* 14281 * Except for ipif_state_flags and ill_state_flags the other 14282 * fields of the ipif/ill that are modified below are protected 14283 * implicitly since we are a writer. We would have tried to down 14284 * even an ipif that was already down, in ill_down_ipifs. So we 14285 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14286 */ 14287 ill_v4 = ill->ill_phyint->phyint_illv4; 14288 ill_v6 = ill->ill_phyint->phyint_illv6; 14289 if (ill_v4 != NULL) { 14290 ill_v4->ill_up_ipifs = B_TRUE; 14291 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14292 ipif = ipif->ipif_next) { 14293 mutex_enter(&ill_v4->ill_lock); 14294 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14295 IPIF_UNMARK_MOVING(ipif); 14296 mutex_exit(&ill_v4->ill_lock); 14297 if (ipif->ipif_was_up) { 14298 if (!(ipif->ipif_flags & IPIF_UP)) 14299 err = ipif_up(ipif, q, mp); 14300 ipif->ipif_was_up = B_FALSE; 14301 if (err != 0) { 14302 /* 14303 * Can there be any other error ? 14304 */ 14305 ASSERT(err == EINPROGRESS); 14306 return (err); 14307 } 14308 } 14309 } 14310 mutex_enter(&ill_v4->ill_lock); 14311 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14312 mutex_exit(&ill_v4->ill_lock); 14313 ill_v4->ill_up_ipifs = B_FALSE; 14314 if (ill_v4->ill_move_in_progress) { 14315 ASSERT(ill_v4->ill_move_peer != NULL); 14316 ill_v4->ill_move_in_progress = B_FALSE; 14317 from_ill = ill_v4->ill_move_peer; 14318 from_ill->ill_move_in_progress = B_FALSE; 14319 from_ill->ill_move_peer = NULL; 14320 mutex_enter(&from_ill->ill_lock); 14321 from_ill->ill_state_flags &= ~ILL_CHANGING; 14322 mutex_exit(&from_ill->ill_lock); 14323 if (ill_v6 == NULL) { 14324 if (from_ill->ill_phyint->phyint_flags & 14325 PHYI_STANDBY) { 14326 phyint_inactive(from_ill->ill_phyint); 14327 } 14328 if (ill_v4->ill_phyint->phyint_flags & 14329 PHYI_STANDBY) { 14330 phyint_inactive(ill_v4->ill_phyint); 14331 } 14332 } 14333 ill_v4->ill_move_peer = NULL; 14334 } 14335 } 14336 14337 if (ill_v6 != NULL) { 14338 ill_v6->ill_up_ipifs = B_TRUE; 14339 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14340 ipif = ipif->ipif_next) { 14341 mutex_enter(&ill_v6->ill_lock); 14342 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14343 IPIF_UNMARK_MOVING(ipif); 14344 mutex_exit(&ill_v6->ill_lock); 14345 if (ipif->ipif_was_up) { 14346 if (!(ipif->ipif_flags & IPIF_UP)) 14347 err = ipif_up(ipif, q, mp); 14348 ipif->ipif_was_up = B_FALSE; 14349 if (err != 0) { 14350 /* 14351 * Can there be any other error ? 14352 */ 14353 ASSERT(err == EINPROGRESS); 14354 return (err); 14355 } 14356 } 14357 } 14358 mutex_enter(&ill_v6->ill_lock); 14359 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14360 mutex_exit(&ill_v6->ill_lock); 14361 ill_v6->ill_up_ipifs = B_FALSE; 14362 if (ill_v6->ill_move_in_progress) { 14363 ASSERT(ill_v6->ill_move_peer != NULL); 14364 ill_v6->ill_move_in_progress = B_FALSE; 14365 from_ill = ill_v6->ill_move_peer; 14366 from_ill->ill_move_in_progress = B_FALSE; 14367 from_ill->ill_move_peer = NULL; 14368 mutex_enter(&from_ill->ill_lock); 14369 from_ill->ill_state_flags &= ~ILL_CHANGING; 14370 mutex_exit(&from_ill->ill_lock); 14371 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14372 phyint_inactive(from_ill->ill_phyint); 14373 } 14374 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14375 phyint_inactive(ill_v6->ill_phyint); 14376 } 14377 ill_v6->ill_move_peer = NULL; 14378 } 14379 } 14380 return (0); 14381 } 14382 14383 /* 14384 * bring down all the approriate ipifs. 14385 */ 14386 /* ARGSUSED */ 14387 static void 14388 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14389 { 14390 ipif_t *ipif; 14391 14392 ASSERT(IAM_WRITER_ILL(ill)); 14393 14394 /* 14395 * Except for ipif_state_flags the other fields of the ipif/ill that 14396 * are modified below are protected implicitly since we are a writer 14397 */ 14398 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14399 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14400 continue; 14401 /* 14402 * Don't bring down the LINK LOCAL addresses as they are tied 14403 * to physical interface and they don't move. Treat them as 14404 * IPIF_NOFAILOVER. 14405 */ 14406 if (chk_nofailover && ill->ill_isv6 && 14407 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) 14408 continue; 14409 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14410 /* 14411 * We go through the ipif_down logic even if the ipif 14412 * is already down, since routes can be added based 14413 * on down ipifs. Going through ipif_down once again 14414 * will delete any IREs created based on these routes. 14415 */ 14416 if (ipif->ipif_flags & IPIF_UP) 14417 ipif->ipif_was_up = B_TRUE; 14418 /* 14419 * If called with chk_nofailover true ipif is moving. 14420 */ 14421 mutex_enter(&ill->ill_lock); 14422 if (chk_nofailover) { 14423 ipif->ipif_state_flags |= 14424 IPIF_MOVING | IPIF_CHANGING; 14425 } else { 14426 ipif->ipif_state_flags |= IPIF_CHANGING; 14427 } 14428 mutex_exit(&ill->ill_lock); 14429 /* 14430 * Need to re-create net/subnet bcast ires if 14431 * they are dependent on ipif. 14432 */ 14433 if (!ipif->ipif_isv6) 14434 ipif_check_bcast_ires(ipif); 14435 (void) ipif_logical_down(ipif, NULL, NULL); 14436 ipif_non_duplicate(ipif); 14437 ipif_down_tail(ipif); 14438 } 14439 } 14440 } 14441 14442 #define IPSQ_INC_REF(ipsq, ipst) { \ 14443 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14444 (ipsq)->ipsq_refs++; \ 14445 } 14446 14447 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14448 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14449 (ipsq)->ipsq_refs--; \ 14450 if ((ipsq)->ipsq_refs == 0) \ 14451 (ipsq)->ipsq_name[0] = '\0'; \ 14452 } 14453 14454 /* 14455 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14456 * new_ipsq. 14457 */ 14458 static void 14459 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14460 { 14461 phyint_t *phyint; 14462 phyint_t *next_phyint; 14463 14464 /* 14465 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14466 * writer and the ill_lock of the ill in question. Also the dest 14467 * ipsq can't vanish while we hold the ill_g_lock as writer. 14468 */ 14469 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14470 14471 phyint = cur_ipsq->ipsq_phyint_list; 14472 cur_ipsq->ipsq_phyint_list = NULL; 14473 while (phyint != NULL) { 14474 next_phyint = phyint->phyint_ipsq_next; 14475 IPSQ_DEC_REF(cur_ipsq, ipst); 14476 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14477 new_ipsq->ipsq_phyint_list = phyint; 14478 IPSQ_INC_REF(new_ipsq, ipst); 14479 phyint->phyint_ipsq = new_ipsq; 14480 phyint = next_phyint; 14481 } 14482 } 14483 14484 #define SPLIT_SUCCESS 0 14485 #define SPLIT_NOT_NEEDED 1 14486 #define SPLIT_FAILED 2 14487 14488 int 14489 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14490 ip_stack_t *ipst) 14491 { 14492 ipsq_t *newipsq = NULL; 14493 14494 /* 14495 * Assertions denote pre-requisites for changing the ipsq of 14496 * a phyint 14497 */ 14498 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14499 /* 14500 * <ill-phyint> assocs can't change while ill_g_lock 14501 * is held as writer. See ill_phyint_reinit() 14502 */ 14503 ASSERT(phyint->phyint_illv4 == NULL || 14504 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14505 ASSERT(phyint->phyint_illv6 == NULL || 14506 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14507 14508 if ((phyint->phyint_groupname_len != 14509 (strlen(cur_ipsq->ipsq_name) + 1) || 14510 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14511 phyint->phyint_groupname_len) != 0)) { 14512 /* 14513 * Once we fail in creating a new ipsq due to memory shortage, 14514 * don't attempt to create new ipsq again, based on another 14515 * phyint, since we want all phyints belonging to an IPMP group 14516 * to be in the same ipsq even in the event of mem alloc fails. 14517 */ 14518 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14519 cur_ipsq, ipst); 14520 if (newipsq == NULL) { 14521 /* Memory allocation failure */ 14522 return (SPLIT_FAILED); 14523 } else { 14524 /* ipsq_refs protected by ill_g_lock (writer) */ 14525 IPSQ_DEC_REF(cur_ipsq, ipst); 14526 phyint->phyint_ipsq = newipsq; 14527 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14528 newipsq->ipsq_phyint_list = phyint; 14529 IPSQ_INC_REF(newipsq, ipst); 14530 return (SPLIT_SUCCESS); 14531 } 14532 } 14533 return (SPLIT_NOT_NEEDED); 14534 } 14535 14536 /* 14537 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14538 * to do this split 14539 */ 14540 static int 14541 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14542 { 14543 ipsq_t *newipsq; 14544 14545 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14546 /* 14547 * <ill-phyint> assocs can't change while ill_g_lock 14548 * is held as writer. See ill_phyint_reinit() 14549 */ 14550 14551 ASSERT(phyint->phyint_illv4 == NULL || 14552 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14553 ASSERT(phyint->phyint_illv6 == NULL || 14554 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14555 14556 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14557 phyint->phyint_illv4: phyint->phyint_illv6)) { 14558 /* 14559 * ipsq_init failed due to no memory 14560 * caller will use the same ipsq 14561 */ 14562 return (SPLIT_FAILED); 14563 } 14564 14565 /* ipsq_ref is protected by ill_g_lock (writer) */ 14566 IPSQ_DEC_REF(cur_ipsq, ipst); 14567 14568 /* 14569 * This is a new ipsq that is unknown to the world. 14570 * So we don't need to hold ipsq_lock, 14571 */ 14572 newipsq = phyint->phyint_ipsq; 14573 newipsq->ipsq_writer = NULL; 14574 newipsq->ipsq_reentry_cnt--; 14575 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14576 #ifdef DEBUG 14577 newipsq->ipsq_depth = 0; 14578 #endif 14579 14580 return (SPLIT_SUCCESS); 14581 } 14582 14583 /* 14584 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14585 * ipsq's representing their individual groups or themselves. Return 14586 * whether split needs to be retried again later. 14587 */ 14588 static boolean_t 14589 ill_split_ipsq(ipsq_t *cur_ipsq) 14590 { 14591 phyint_t *phyint; 14592 phyint_t *next_phyint; 14593 int error; 14594 boolean_t need_retry = B_FALSE; 14595 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14596 14597 phyint = cur_ipsq->ipsq_phyint_list; 14598 cur_ipsq->ipsq_phyint_list = NULL; 14599 while (phyint != NULL) { 14600 next_phyint = phyint->phyint_ipsq_next; 14601 /* 14602 * 'created' will tell us whether the callee actually 14603 * created an ipsq. Lack of memory may force the callee 14604 * to return without creating an ipsq. 14605 */ 14606 if (phyint->phyint_groupname == NULL) { 14607 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14608 } else { 14609 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14610 need_retry, ipst); 14611 } 14612 14613 switch (error) { 14614 case SPLIT_FAILED: 14615 need_retry = B_TRUE; 14616 /* FALLTHRU */ 14617 case SPLIT_NOT_NEEDED: 14618 /* 14619 * Keep it on the list. 14620 */ 14621 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14622 cur_ipsq->ipsq_phyint_list = phyint; 14623 break; 14624 case SPLIT_SUCCESS: 14625 break; 14626 default: 14627 ASSERT(0); 14628 } 14629 14630 phyint = next_phyint; 14631 } 14632 return (need_retry); 14633 } 14634 14635 /* 14636 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14637 * and return the ills in the list. This list will be 14638 * needed to unlock all the ills later on by the caller. 14639 * The <ill-ipsq> associations could change between the 14640 * lock and unlock. Hence the unlock can't traverse the 14641 * ipsq to get the list of ills. 14642 */ 14643 static int 14644 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14645 { 14646 int cnt = 0; 14647 phyint_t *phyint; 14648 ip_stack_t *ipst = ipsq->ipsq_ipst; 14649 14650 /* 14651 * The caller holds ill_g_lock to ensure that the ill memberships 14652 * of the ipsq don't change 14653 */ 14654 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14655 14656 phyint = ipsq->ipsq_phyint_list; 14657 while (phyint != NULL) { 14658 if (phyint->phyint_illv4 != NULL) { 14659 ASSERT(cnt < list_max); 14660 list[cnt++] = phyint->phyint_illv4; 14661 } 14662 if (phyint->phyint_illv6 != NULL) { 14663 ASSERT(cnt < list_max); 14664 list[cnt++] = phyint->phyint_illv6; 14665 } 14666 phyint = phyint->phyint_ipsq_next; 14667 } 14668 ill_lock_ills(list, cnt); 14669 return (cnt); 14670 } 14671 14672 void 14673 ill_lock_ills(ill_t **list, int cnt) 14674 { 14675 int i; 14676 14677 if (cnt > 1) { 14678 boolean_t try_again; 14679 do { 14680 try_again = B_FALSE; 14681 for (i = 0; i < cnt - 1; i++) { 14682 if (list[i] < list[i + 1]) { 14683 ill_t *tmp; 14684 14685 /* swap the elements */ 14686 tmp = list[i]; 14687 list[i] = list[i + 1]; 14688 list[i + 1] = tmp; 14689 try_again = B_TRUE; 14690 } 14691 } 14692 } while (try_again); 14693 } 14694 14695 for (i = 0; i < cnt; i++) { 14696 if (i == 0) { 14697 if (list[i] != NULL) 14698 mutex_enter(&list[i]->ill_lock); 14699 else 14700 return; 14701 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14702 mutex_enter(&list[i]->ill_lock); 14703 } 14704 } 14705 } 14706 14707 void 14708 ill_unlock_ills(ill_t **list, int cnt) 14709 { 14710 int i; 14711 14712 for (i = 0; i < cnt; i++) { 14713 if ((i == 0) && (list[i] != NULL)) { 14714 mutex_exit(&list[i]->ill_lock); 14715 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14716 mutex_exit(&list[i]->ill_lock); 14717 } 14718 } 14719 } 14720 14721 /* 14722 * Merge all the ills from 1 ipsq group into another ipsq group. 14723 * The source ipsq group is specified by the ipsq associated with 14724 * 'from_ill'. The destination ipsq group is specified by the ipsq 14725 * associated with 'to_ill' or 'groupname' respectively. 14726 * Note that ipsq itself does not have a reference count mechanism 14727 * and functions don't look up an ipsq and pass it around. Instead 14728 * functions pass around an ill or groupname, and the ipsq is looked 14729 * up from the ill or groupname and the required operation performed 14730 * atomically with the lookup on the ipsq. 14731 */ 14732 static int 14733 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14734 queue_t *q) 14735 { 14736 ipsq_t *old_ipsq; 14737 ipsq_t *new_ipsq; 14738 ill_t **ill_list; 14739 int cnt; 14740 size_t ill_list_size; 14741 boolean_t became_writer_on_new_sq = B_FALSE; 14742 ip_stack_t *ipst = from_ill->ill_ipst; 14743 14744 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14745 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14746 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14747 14748 /* 14749 * Need to hold ill_g_lock as writer and also the ill_lock to 14750 * change the <ill-ipsq> assoc of an ill. Need to hold the 14751 * ipsq_lock to prevent new messages from landing on an ipsq. 14752 */ 14753 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14754 14755 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14756 if (groupname != NULL) 14757 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14758 else { 14759 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14760 } 14761 14762 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14763 14764 /* 14765 * both groups are on the same ipsq. 14766 */ 14767 if (old_ipsq == new_ipsq) { 14768 rw_exit(&ipst->ips_ill_g_lock); 14769 return (0); 14770 } 14771 14772 cnt = old_ipsq->ipsq_refs << 1; 14773 ill_list_size = cnt * sizeof (ill_t *); 14774 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14775 if (ill_list == NULL) { 14776 rw_exit(&ipst->ips_ill_g_lock); 14777 return (ENOMEM); 14778 } 14779 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14780 14781 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14782 mutex_enter(&new_ipsq->ipsq_lock); 14783 if ((new_ipsq->ipsq_writer == NULL && 14784 new_ipsq->ipsq_current_ipif == NULL) || 14785 (new_ipsq->ipsq_writer == curthread)) { 14786 new_ipsq->ipsq_writer = curthread; 14787 new_ipsq->ipsq_reentry_cnt++; 14788 became_writer_on_new_sq = B_TRUE; 14789 } 14790 14791 /* 14792 * We are holding ill_g_lock as writer and all the ill locks of 14793 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14794 * message can land up on the old ipsq even though we don't hold the 14795 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14796 */ 14797 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14798 14799 /* 14800 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14801 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14802 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14803 */ 14804 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14805 14806 /* 14807 * Mark the new ipsq as needing a split since it is currently 14808 * being shared by more than 1 IPMP group. The split will 14809 * occur at the end of ipsq_exit 14810 */ 14811 new_ipsq->ipsq_split = B_TRUE; 14812 14813 /* Now release all the locks */ 14814 mutex_exit(&new_ipsq->ipsq_lock); 14815 ill_unlock_ills(ill_list, cnt); 14816 rw_exit(&ipst->ips_ill_g_lock); 14817 14818 kmem_free(ill_list, ill_list_size); 14819 14820 /* 14821 * If we succeeded in becoming writer on the new ipsq, then 14822 * drain the new ipsq and start processing all enqueued messages 14823 * including the current ioctl we are processing which is either 14824 * a set groupname or failover/failback. 14825 */ 14826 if (became_writer_on_new_sq) 14827 ipsq_exit(new_ipsq); 14828 14829 /* 14830 * syncq has been changed and all the messages have been moved. 14831 */ 14832 mutex_enter(&old_ipsq->ipsq_lock); 14833 old_ipsq->ipsq_current_ipif = NULL; 14834 old_ipsq->ipsq_current_ioctl = 0; 14835 old_ipsq->ipsq_current_done = B_TRUE; 14836 mutex_exit(&old_ipsq->ipsq_lock); 14837 return (EINPROGRESS); 14838 } 14839 14840 /* 14841 * Delete and add the loopback copy and non-loopback copy of 14842 * the BROADCAST ire corresponding to ill and addr. Used to 14843 * group broadcast ires together when ill becomes part of 14844 * a group. 14845 * 14846 * This function is also called when ill is leaving the group 14847 * so that the ires belonging to the group gets re-grouped. 14848 */ 14849 static void 14850 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14851 { 14852 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14853 ire_t **ire_ptpn = &ire_head; 14854 ip_stack_t *ipst = ill->ill_ipst; 14855 14856 /* 14857 * The loopback and non-loopback IREs are inserted in the order in which 14858 * they're found, on the basis that they are correctly ordered (loopback 14859 * first). 14860 */ 14861 for (;;) { 14862 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14863 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14864 if (ire == NULL) 14865 break; 14866 14867 /* 14868 * we are passing in KM_SLEEP because it is not easy to 14869 * go back to a sane state in case of memory failure. 14870 */ 14871 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14872 ASSERT(nire != NULL); 14873 bzero(nire, sizeof (ire_t)); 14874 /* 14875 * Don't use ire_max_frag directly since we don't 14876 * hold on to 'ire' until we add the new ire 'nire' and 14877 * we don't want the new ire to have a dangling reference 14878 * to 'ire'. The ire_max_frag of a broadcast ire must 14879 * be in sync with the ipif_mtu of the associate ipif. 14880 * For eg. this happens as a result of SIOCSLIFNAME, 14881 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14882 * the driver. A change in ire_max_frag triggered as 14883 * as a result of path mtu discovery, or due to an 14884 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14885 * route change -mtu command does not apply to broadcast ires. 14886 * 14887 * XXX We need a recovery strategy here if ire_init fails 14888 */ 14889 if (ire_init(nire, 14890 (uchar_t *)&ire->ire_addr, 14891 (uchar_t *)&ire->ire_mask, 14892 (uchar_t *)&ire->ire_src_addr, 14893 (uchar_t *)&ire->ire_gateway_addr, 14894 ire->ire_stq == NULL ? &ip_loopback_mtu : 14895 &ire->ire_ipif->ipif_mtu, 14896 ire->ire_nce, 14897 ire->ire_rfq, 14898 ire->ire_stq, 14899 ire->ire_type, 14900 ire->ire_ipif, 14901 ire->ire_cmask, 14902 ire->ire_phandle, 14903 ire->ire_ihandle, 14904 ire->ire_flags, 14905 &ire->ire_uinfo, 14906 NULL, 14907 NULL, 14908 ipst) == NULL) { 14909 cmn_err(CE_PANIC, "ire_init() failed"); 14910 } 14911 ire_delete(ire); 14912 ire_refrele(ire); 14913 14914 /* 14915 * The newly created IREs are inserted at the tail of the list 14916 * starting with ire_head. As we've just allocated them no one 14917 * knows about them so it's safe. 14918 */ 14919 *ire_ptpn = nire; 14920 ire_ptpn = &nire->ire_next; 14921 } 14922 14923 for (nire = ire_head; nire != NULL; nire = nire_next) { 14924 int error; 14925 ire_t *oire; 14926 /* unlink the IRE from our list before calling ire_add() */ 14927 nire_next = nire->ire_next; 14928 nire->ire_next = NULL; 14929 14930 /* ire_add adds the ire at the right place in the list */ 14931 oire = nire; 14932 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14933 ASSERT(error == 0); 14934 ASSERT(oire == nire); 14935 ire_refrele(nire); /* Held in ire_add */ 14936 } 14937 } 14938 14939 /* 14940 * This function is usually called when an ill is inserted in 14941 * a group and all the ipifs are already UP. As all the ipifs 14942 * are already UP, the broadcast ires have already been created 14943 * and been inserted. But, ire_add_v4 would not have grouped properly. 14944 * We need to re-group for the benefit of ip_wput_ire which 14945 * expects BROADCAST ires to be grouped properly to avoid sending 14946 * more than one copy of the broadcast packet per group. 14947 * 14948 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14949 * because when ipif_up_done ends up calling this, ires have 14950 * already been added before illgrp_insert i.e before ill_group 14951 * has been initialized. 14952 */ 14953 static void 14954 ill_group_bcast_for_xmit(ill_t *ill) 14955 { 14956 ill_group_t *illgrp; 14957 ipif_t *ipif; 14958 ipaddr_t addr; 14959 ipaddr_t net_mask; 14960 ipaddr_t subnet_netmask; 14961 14962 illgrp = ill->ill_group; 14963 14964 /* 14965 * This function is called even when an ill is deleted from 14966 * the group. Hence, illgrp could be null. 14967 */ 14968 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14969 return; 14970 14971 /* 14972 * Delete all the BROADCAST ires matching this ill and add 14973 * them back. This time, ire_add_v4 should take care of 14974 * grouping them with others because ill is part of the 14975 * group. 14976 */ 14977 ill_bcast_delete_and_add(ill, 0); 14978 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14979 14980 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14981 14982 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14983 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14984 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14985 } else { 14986 net_mask = htonl(IN_CLASSA_NET); 14987 } 14988 addr = net_mask & ipif->ipif_subnet; 14989 ill_bcast_delete_and_add(ill, addr); 14990 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14991 14992 subnet_netmask = ipif->ipif_net_mask; 14993 addr = ipif->ipif_subnet; 14994 ill_bcast_delete_and_add(ill, addr); 14995 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14996 } 14997 } 14998 14999 /* 15000 * This function is called from illgrp_delete when ill is being deleted 15001 * from the group. 15002 * 15003 * As ill is not there in the group anymore, any address belonging 15004 * to this ill should be cleared of IRE_MARK_NORECV. 15005 */ 15006 static void 15007 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15008 { 15009 ire_t *ire; 15010 irb_t *irb; 15011 ip_stack_t *ipst = ill->ill_ipst; 15012 15013 ASSERT(ill->ill_group == NULL); 15014 15015 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15016 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15017 15018 if (ire != NULL) { 15019 /* 15020 * IPMP and plumbing operations are serialized on the ipsq, so 15021 * no one will insert or delete a broadcast ire under our feet. 15022 */ 15023 irb = ire->ire_bucket; 15024 rw_enter(&irb->irb_lock, RW_READER); 15025 ire_refrele(ire); 15026 15027 for (; ire != NULL; ire = ire->ire_next) { 15028 if (ire->ire_addr != addr) 15029 break; 15030 if (ire_to_ill(ire) != ill) 15031 continue; 15032 15033 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15034 ire->ire_marks &= ~IRE_MARK_NORECV; 15035 } 15036 rw_exit(&irb->irb_lock); 15037 } 15038 } 15039 15040 ire_t * 15041 irep_insert(ill_group_t *illgrp, ipaddr_t addr, ire_t *ire, ire_t ***pirep) 15042 { 15043 boolean_t first = B_TRUE; 15044 ire_t *clear_ire = NULL; 15045 ire_t *start_ire = NULL; 15046 uint64_t match_flags; 15047 uint64_t phyi_flags; 15048 boolean_t fallback = B_FALSE; 15049 15050 /* 15051 * irb_lock must be held by the caller. 15052 * Get to the first ire matching the address and the 15053 * group. If the address does not match we are done 15054 * as we could not find the IRE. If the address matches 15055 * we should get to the first one matching the group. 15056 */ 15057 while (ire != NULL) { 15058 if (ire->ire_addr != addr || 15059 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15060 break; 15061 } 15062 ire = ire->ire_next; 15063 } 15064 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15065 start_ire = ire; 15066 redo: 15067 while (ire != NULL && ire->ire_addr == addr && 15068 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15069 /* 15070 * The first ire for any address within a group 15071 * should always be the one with IRE_MARK_NORECV cleared 15072 * so that ip_wput_ire can avoid searching for one. 15073 * Note down the insertion point which will be used 15074 * later. 15075 */ 15076 if (first && (*pirep == NULL)) 15077 *pirep = ire->ire_ptpn; 15078 /* 15079 * PHYI_FAILED is set when the interface fails. 15080 * This interface might have become good, but the 15081 * daemon has not yet detected. We should still 15082 * not receive on this. PHYI_OFFLINE should never 15083 * be picked as this has been offlined and soon 15084 * be removed. 15085 */ 15086 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15087 if (phyi_flags & PHYI_OFFLINE) { 15088 ire->ire_marks |= IRE_MARK_NORECV; 15089 ire = ire->ire_next; 15090 continue; 15091 } 15092 if (phyi_flags & match_flags) { 15093 ire->ire_marks |= IRE_MARK_NORECV; 15094 ire = ire->ire_next; 15095 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15096 PHYI_INACTIVE) { 15097 fallback = B_TRUE; 15098 } 15099 continue; 15100 } 15101 if (first) { 15102 /* 15103 * We will move this to the front of the list later 15104 * on. 15105 */ 15106 clear_ire = ire; 15107 ire->ire_marks &= ~IRE_MARK_NORECV; 15108 } else { 15109 ire->ire_marks |= IRE_MARK_NORECV; 15110 } 15111 first = B_FALSE; 15112 ire = ire->ire_next; 15113 } 15114 /* 15115 * If we never nominated anybody, try nominating at least 15116 * an INACTIVE, if we found one. Do it only once though. 15117 */ 15118 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15119 fallback) { 15120 match_flags = PHYI_FAILED; 15121 ire = start_ire; 15122 *pirep = NULL; 15123 goto redo; 15124 } 15125 return (clear_ire); 15126 } 15127 15128 /* 15129 * This function must be called only after the broadcast ires 15130 * have been grouped together. For a given address addr, nominate 15131 * only one of the ires whose interface is not FAILED or OFFLINE. 15132 * 15133 * This is also called when an ipif goes down, so that we can nominate 15134 * a different ire with the same address for receiving. 15135 */ 15136 static void 15137 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15138 { 15139 irb_t *irb; 15140 ire_t *ire; 15141 ire_t *ire1; 15142 ire_t *save_ire; 15143 ire_t **irep = NULL; 15144 ire_t *clear_ire = NULL; 15145 ire_t *new_lb_ire; 15146 ire_t *new_nlb_ire; 15147 boolean_t new_lb_ire_used = B_FALSE; 15148 boolean_t new_nlb_ire_used = B_FALSE; 15149 boolean_t refrele_lb_ire = B_FALSE; 15150 boolean_t refrele_nlb_ire = B_FALSE; 15151 uint_t max_frag; 15152 15153 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15154 NULL, MATCH_IRE_TYPE, ipst); 15155 /* 15156 * We may not be able to find some ires if a previous 15157 * ire_create failed. This happens when an ipif goes 15158 * down and we are unable to create BROADCAST ires due 15159 * to memory failure. Thus, we have to check for NULL 15160 * below. This should handle the case for LOOPBACK, 15161 * POINTOPOINT and interfaces with some POINTOPOINT 15162 * logicals for which there are no BROADCAST ires. 15163 */ 15164 if (ire == NULL) 15165 return; 15166 /* 15167 * Currently IRE_BROADCASTS are deleted when an ipif 15168 * goes down which runs exclusively. Thus, setting 15169 * IRE_MARK_RCVD should not race with ire_delete marking 15170 * IRE_MARK_CONDEMNED. We grab the lock below just to 15171 * be consistent with other parts of the code that walks 15172 * a given bucket. 15173 */ 15174 save_ire = ire; 15175 irb = ire->ire_bucket; 15176 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15177 if (new_lb_ire == NULL) { 15178 ire_refrele(ire); 15179 return; 15180 } 15181 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15182 if (new_nlb_ire == NULL) { 15183 ire_refrele(ire); 15184 kmem_cache_free(ire_cache, new_lb_ire); 15185 return; 15186 } 15187 IRB_REFHOLD(irb); 15188 rw_enter(&irb->irb_lock, RW_WRITER); 15189 clear_ire = irep_insert(illgrp, addr, ire, &irep); 15190 15191 /* 15192 * irep non-NULL indicates that we entered the while loop 15193 * above. If clear_ire is at the insertion point, we don't 15194 * have to do anything. clear_ire will be NULL if all the 15195 * interfaces are failed. 15196 * 15197 * We cannot unlink and reinsert the ire at the right place 15198 * in the list since there can be other walkers of this bucket. 15199 * Instead we delete and recreate the ire 15200 */ 15201 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15202 ire_t *clear_ire_stq = NULL; 15203 ire_t *clr_ire = NULL; 15204 ire_t *ire_next = NULL; 15205 15206 if (clear_ire->ire_stq == NULL) 15207 ire_next = clear_ire->ire_next; 15208 15209 rw_exit(&irb->irb_lock); 15210 15211 bzero(new_lb_ire, sizeof (ire_t)); 15212 /* XXX We need a recovery strategy here. */ 15213 if (ire_init(new_lb_ire, 15214 (uchar_t *)&clear_ire->ire_addr, 15215 (uchar_t *)&clear_ire->ire_mask, 15216 (uchar_t *)&clear_ire->ire_src_addr, 15217 (uchar_t *)&clear_ire->ire_gateway_addr, 15218 &clear_ire->ire_max_frag, 15219 NULL, /* let ire_nce_init derive the resolver info */ 15220 clear_ire->ire_rfq, 15221 clear_ire->ire_stq, 15222 clear_ire->ire_type, 15223 clear_ire->ire_ipif, 15224 clear_ire->ire_cmask, 15225 clear_ire->ire_phandle, 15226 clear_ire->ire_ihandle, 15227 clear_ire->ire_flags, 15228 &clear_ire->ire_uinfo, 15229 NULL, 15230 NULL, 15231 ipst) == NULL) 15232 cmn_err(CE_PANIC, "ire_init() failed"); 15233 15234 refrele_lb_ire = B_TRUE; 15235 15236 if (ire_next != NULL && 15237 ire_next->ire_stq != NULL && 15238 ire_next->ire_addr == clear_ire->ire_addr && 15239 ire_next->ire_ipif->ipif_ill == 15240 clear_ire->ire_ipif->ipif_ill) { 15241 clear_ire_stq = ire_next; 15242 15243 bzero(new_nlb_ire, sizeof (ire_t)); 15244 /* XXX We need a recovery strategy here. */ 15245 if (ire_init(new_nlb_ire, 15246 (uchar_t *)&clear_ire_stq->ire_addr, 15247 (uchar_t *)&clear_ire_stq->ire_mask, 15248 (uchar_t *)&clear_ire_stq->ire_src_addr, 15249 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15250 &clear_ire_stq->ire_max_frag, 15251 NULL, 15252 clear_ire_stq->ire_rfq, 15253 clear_ire_stq->ire_stq, 15254 clear_ire_stq->ire_type, 15255 clear_ire_stq->ire_ipif, 15256 clear_ire_stq->ire_cmask, 15257 clear_ire_stq->ire_phandle, 15258 clear_ire_stq->ire_ihandle, 15259 clear_ire_stq->ire_flags, 15260 &clear_ire_stq->ire_uinfo, 15261 NULL, 15262 NULL, 15263 ipst) == NULL) 15264 cmn_err(CE_PANIC, "ire_init() failed"); 15265 15266 refrele_nlb_ire = B_TRUE; 15267 } 15268 15269 rw_enter(&irb->irb_lock, RW_WRITER); 15270 /* 15271 * irb_lock was dropped across call to ire_init() due to 15272 * lock ordering issue with ipst->ips_ndp{4,6}->ndp_g_lock 15273 * mutex lock. Therefore irep could have changed. call 15274 * irep_insert() to get the new insertion point (irep) and 15275 * recheck all known conditions. 15276 */ 15277 irep = NULL; 15278 clr_ire = irep_insert(illgrp, addr, save_ire, &irep); 15279 if ((irep != NULL) && (*irep != clear_ire) && 15280 (clr_ire == clear_ire)) { 15281 if ((clear_ire_stq != NULL) && 15282 (clr_ire->ire_next != clear_ire_stq)) 15283 clear_ire_stq = NULL; 15284 /* 15285 * Delete the ire. We can't call ire_delete() since 15286 * we are holding the bucket lock. We can't release the 15287 * bucket lock since we can't allow irep to change. 15288 * So just mark it CONDEMNED. 15289 * The IRB_REFRELE will delete the ire from the list 15290 * and do the refrele. 15291 */ 15292 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15293 irb->irb_marks |= IRB_MARK_CONDEMNED; 15294 15295 if (clear_ire_stq != NULL && 15296 clear_ire_stq->ire_nce != NULL) { 15297 nce_fastpath_list_delete( 15298 clear_ire_stq->ire_nce); 15299 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15300 } 15301 15302 /* 15303 * Also take care of otherfields like ib/ob pkt count 15304 * etc. Need to dup them. 15305 * ditto in ill_bcast_delete_and_add 15306 */ 15307 15308 /* Set the max_frag before adding the ire */ 15309 max_frag = *new_lb_ire->ire_max_fragp; 15310 new_lb_ire->ire_max_fragp = NULL; 15311 new_lb_ire->ire_max_frag = max_frag; 15312 15313 /* Add the new ire's. Insert at *irep */ 15314 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15315 ire1 = *irep; 15316 if (ire1 != NULL) 15317 ire1->ire_ptpn = &new_lb_ire->ire_next; 15318 new_lb_ire->ire_next = ire1; 15319 /* Link the new one in. */ 15320 new_lb_ire->ire_ptpn = irep; 15321 membar_producer(); 15322 *irep = new_lb_ire; 15323 new_lb_ire_used = B_TRUE; 15324 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15325 ire_stats_inserted); 15326 new_lb_ire->ire_bucket->irb_ire_cnt++; 15327 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), 15328 new_lb_ire->ire_ipif, 15329 (char *), "ire", (void *), new_lb_ire); 15330 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15331 15332 if (clear_ire_stq != NULL) { 15333 ill_t *ire_ill; 15334 /* Set the max_frag before adding the ire */ 15335 max_frag = *new_nlb_ire->ire_max_fragp; 15336 new_nlb_ire->ire_max_fragp = NULL; 15337 new_nlb_ire->ire_max_frag = max_frag; 15338 15339 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15340 irep = &new_lb_ire->ire_next; 15341 /* Add the new ire. Insert at *irep */ 15342 ire1 = *irep; 15343 if (ire1 != NULL) 15344 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15345 new_nlb_ire->ire_next = ire1; 15346 /* Link the new one in. */ 15347 new_nlb_ire->ire_ptpn = irep; 15348 membar_producer(); 15349 *irep = new_nlb_ire; 15350 new_nlb_ire_used = B_TRUE; 15351 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15352 ire_stats_inserted); 15353 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15354 DTRACE_PROBE3(ipif__incr__cnt, 15355 (ipif_t *), new_nlb_ire->ire_ipif, 15356 (char *), "ire", (void *), new_nlb_ire); 15357 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15358 DTRACE_PROBE3(ill__incr__cnt, 15359 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15360 (char *), "ire", (void *), new_nlb_ire); 15361 ire_ill = (ill_t *)new_nlb_ire->ire_stq->q_ptr; 15362 ire_ill->ill_ire_cnt++; 15363 } 15364 } 15365 } 15366 ire_refrele(save_ire); 15367 rw_exit(&irb->irb_lock); 15368 /* 15369 * Since we dropped the irb_lock across call to ire_init() 15370 * and rechecking known conditions, it is possible that 15371 * the checks might fail, therefore undo the work done by 15372 * ire_init() by calling ire_refrele() on the newly created ire. 15373 */ 15374 if (!new_lb_ire_used) { 15375 if (refrele_lb_ire) { 15376 ire_refrele(new_lb_ire); 15377 } else { 15378 kmem_cache_free(ire_cache, new_lb_ire); 15379 } 15380 } 15381 if (!new_nlb_ire_used) { 15382 if (refrele_nlb_ire) { 15383 ire_refrele(new_nlb_ire); 15384 } else { 15385 kmem_cache_free(ire_cache, new_nlb_ire); 15386 } 15387 } 15388 IRB_REFRELE(irb); 15389 } 15390 15391 /* 15392 * Whenever an ipif goes down we have to renominate a different 15393 * broadcast ire to receive. Whenever an ipif comes up, we need 15394 * to make sure that we have only one nominated to receive. 15395 */ 15396 static void 15397 ipif_renominate_bcast(ipif_t *ipif) 15398 { 15399 ill_t *ill = ipif->ipif_ill; 15400 ipaddr_t subnet_addr; 15401 ipaddr_t net_addr; 15402 ipaddr_t net_mask = 0; 15403 ipaddr_t subnet_netmask; 15404 ipaddr_t addr; 15405 ill_group_t *illgrp; 15406 ip_stack_t *ipst = ill->ill_ipst; 15407 15408 illgrp = ill->ill_group; 15409 /* 15410 * If this is the last ipif going down, it might take 15411 * the ill out of the group. In that case ipif_down -> 15412 * illgrp_delete takes care of doing the nomination. 15413 * ipif_down does not call for this case. 15414 */ 15415 ASSERT(illgrp != NULL); 15416 15417 /* There could not have been any ires associated with this */ 15418 if (ipif->ipif_subnet == 0) 15419 return; 15420 15421 ill_mark_bcast(illgrp, 0, ipst); 15422 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15423 15424 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15425 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15426 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15427 } else { 15428 net_mask = htonl(IN_CLASSA_NET); 15429 } 15430 addr = net_mask & ipif->ipif_subnet; 15431 ill_mark_bcast(illgrp, addr, ipst); 15432 15433 net_addr = ~net_mask | addr; 15434 ill_mark_bcast(illgrp, net_addr, ipst); 15435 15436 subnet_netmask = ipif->ipif_net_mask; 15437 addr = ipif->ipif_subnet; 15438 ill_mark_bcast(illgrp, addr, ipst); 15439 15440 subnet_addr = ~subnet_netmask | addr; 15441 ill_mark_bcast(illgrp, subnet_addr, ipst); 15442 } 15443 15444 /* 15445 * Whenever we form or delete ill groups, we need to nominate one set of 15446 * BROADCAST ires for receiving in the group. 15447 * 15448 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15449 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15450 * for ill_ipif_up_count to be non-zero. This is the only case where 15451 * ill_ipif_up_count is zero and we would still find the ires. 15452 * 15453 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15454 * ipif is UP and we just have to do the nomination. 15455 * 15456 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15457 * from the group. So, we have to do the nomination. 15458 * 15459 * Because of (3), there could be just one ill in the group. But we have 15460 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15461 * Thus, this function does not optimize when there is only one ill as 15462 * it is not correct for (3). 15463 */ 15464 static void 15465 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15466 { 15467 ill_t *ill; 15468 ipif_t *ipif; 15469 ipaddr_t subnet_addr; 15470 ipaddr_t prev_subnet_addr = 0; 15471 ipaddr_t net_addr; 15472 ipaddr_t prev_net_addr = 0; 15473 ipaddr_t net_mask = 0; 15474 ipaddr_t subnet_netmask; 15475 ipaddr_t addr; 15476 ip_stack_t *ipst; 15477 15478 /* 15479 * When the last memeber is leaving, there is nothing to 15480 * nominate. 15481 */ 15482 if (illgrp->illgrp_ill_count == 0) { 15483 ASSERT(illgrp->illgrp_ill == NULL); 15484 return; 15485 } 15486 15487 ill = illgrp->illgrp_ill; 15488 ASSERT(!ill->ill_isv6); 15489 ipst = ill->ill_ipst; 15490 /* 15491 * We assume that ires with same address and belonging to the 15492 * same group, has been grouped together. Nominating a *single* 15493 * ill in the group for sending and receiving broadcast is done 15494 * by making sure that the first BROADCAST ire (which will be 15495 * the one returned by ire_ctable_lookup for ip_rput and the 15496 * one that will be used in ip_wput_ire) will be the one that 15497 * will not have IRE_MARK_NORECV set. 15498 * 15499 * 1) ip_rput checks and discards packets received on ires marked 15500 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15501 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15502 * first ire in the group for every broadcast address in the group. 15503 * ip_rput will accept packets only on the first ire i.e only 15504 * one copy of the ill. 15505 * 15506 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15507 * packet for the whole group. It needs to send out on the ill 15508 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15509 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15510 * the copy echoed back on other port where the ire is not marked 15511 * with IRE_MARK_NORECV. 15512 * 15513 * Note that we just need to have the first IRE either loopback or 15514 * non-loopback (either of them may not exist if ire_create failed 15515 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15516 * always hit the first one and hence will always accept one copy. 15517 * 15518 * We have a broadcast ire per ill for all the unique prefixes 15519 * hosted on that ill. As we don't have a way of knowing the 15520 * unique prefixes on a given ill and hence in the whole group, 15521 * we just call ill_mark_bcast on all the prefixes that exist 15522 * in the group. For the common case of one prefix, the code 15523 * below optimizes by remebering the last address used for 15524 * markng. In the case of multiple prefixes, this will still 15525 * optimize depending the order of prefixes. 15526 * 15527 * The only unique address across the whole group is 0.0.0.0 and 15528 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15529 * the first ire in the bucket for receiving and disables the 15530 * others. 15531 */ 15532 ill_mark_bcast(illgrp, 0, ipst); 15533 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15534 for (; ill != NULL; ill = ill->ill_group_next) { 15535 15536 for (ipif = ill->ill_ipif; ipif != NULL; 15537 ipif = ipif->ipif_next) { 15538 15539 if (!(ipif->ipif_flags & IPIF_UP) || 15540 ipif->ipif_subnet == 0) { 15541 continue; 15542 } 15543 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15544 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15545 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15546 } else { 15547 net_mask = htonl(IN_CLASSA_NET); 15548 } 15549 addr = net_mask & ipif->ipif_subnet; 15550 if (prev_net_addr == 0 || prev_net_addr != addr) { 15551 ill_mark_bcast(illgrp, addr, ipst); 15552 net_addr = ~net_mask | addr; 15553 ill_mark_bcast(illgrp, net_addr, ipst); 15554 } 15555 prev_net_addr = addr; 15556 15557 subnet_netmask = ipif->ipif_net_mask; 15558 addr = ipif->ipif_subnet; 15559 if (prev_subnet_addr == 0 || 15560 prev_subnet_addr != addr) { 15561 ill_mark_bcast(illgrp, addr, ipst); 15562 subnet_addr = ~subnet_netmask | addr; 15563 ill_mark_bcast(illgrp, subnet_addr, ipst); 15564 } 15565 prev_subnet_addr = addr; 15566 } 15567 } 15568 } 15569 15570 /* 15571 * This function is called while forming ill groups. 15572 * 15573 * Currently, we handle only allmulti groups. We want to join 15574 * allmulti on only one of the ills in the groups. In future, 15575 * when we have link aggregation, we may have to join normal 15576 * multicast groups on multiple ills as switch does inbound load 15577 * balancing. Following are the functions that calls this 15578 * function : 15579 * 15580 * 1) ill_recover_multicast : Interface is coming back UP. 15581 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15582 * will call ill_recover_multicast to recover all the multicast 15583 * groups. We need to make sure that only one member is joined 15584 * in the ill group. 15585 * 15586 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15587 * Somebody is joining allmulti. We need to make sure that only one 15588 * member is joined in the group. 15589 * 15590 * 3) illgrp_insert : If allmulti has already joined, we need to make 15591 * sure that only one member is joined in the group. 15592 * 15593 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15594 * allmulti who we have nominated. We need to pick someother ill. 15595 * 15596 * 5) illgrp_delete : The ill we nominated is leaving the group, 15597 * we need to pick a new ill to join the group. 15598 * 15599 * For (1), (2), (5) - we just have to check whether there is 15600 * a good ill joined in the group. If we could not find any ills 15601 * joined the group, we should join. 15602 * 15603 * For (4), the one that was nominated to receive, left the group. 15604 * There could be nobody joined in the group when this function is 15605 * called. 15606 * 15607 * For (3) - we need to explicitly check whether there are multiple 15608 * ills joined in the group. 15609 * 15610 * For simplicity, we don't differentiate any of the above cases. We 15611 * just leave the group if it is joined on any of them and join on 15612 * the first good ill. 15613 */ 15614 int 15615 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15616 { 15617 ilm_t *ilm; 15618 ill_t *ill; 15619 ill_t *fallback_inactive_ill = NULL; 15620 ill_t *fallback_failed_ill = NULL; 15621 int ret = 0; 15622 15623 /* 15624 * Leave the allmulti on all the ills and start fresh. 15625 */ 15626 for (ill = illgrp->illgrp_ill; ill != NULL; 15627 ill = ill->ill_group_next) { 15628 if (ill->ill_join_allmulti) 15629 ill_leave_allmulti(ill); 15630 } 15631 15632 /* 15633 * Choose a good ill. Fallback to inactive or failed if 15634 * none available. We need to fallback to FAILED in the 15635 * case where we have 2 interfaces in a group - where 15636 * one of them is failed and another is a good one and 15637 * the good one (not marked inactive) is leaving the group. 15638 */ 15639 for (ill = illgrp->illgrp_ill; ill != NULL; ill = ill->ill_group_next) { 15640 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15641 continue; 15642 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15643 fallback_failed_ill = ill; 15644 continue; 15645 } 15646 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15647 fallback_inactive_ill = ill; 15648 continue; 15649 } 15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 ret = ill_join_allmulti(ill); 15653 /* 15654 * ill_join_allmulti() can fail because of 15655 * memory failures so make sure we join at 15656 * least on one ill. 15657 */ 15658 if (ill->ill_join_allmulti) 15659 return (0); 15660 } 15661 } 15662 } 15663 if (ret != 0) { 15664 /* 15665 * If we tried nominating above and failed to do so, 15666 * return error. We might have tried multiple times. 15667 * But, return the latest error. 15668 */ 15669 return (ret); 15670 } 15671 if ((ill = fallback_inactive_ill) != NULL) { 15672 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15673 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15674 return (ill_join_allmulti(ill)); 15675 } 15676 } else if ((ill = fallback_failed_ill) != NULL) { 15677 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15678 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15679 return (ill_join_allmulti(ill)); 15680 } 15681 } 15682 return (0); 15683 } 15684 15685 /* 15686 * This function is called from illgrp_delete after it is 15687 * deleted from the group to reschedule responsibilities 15688 * to a different ill. 15689 */ 15690 static void 15691 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15692 { 15693 ilm_t *ilm; 15694 ipif_t *ipif; 15695 ipaddr_t subnet_addr; 15696 ipaddr_t net_addr; 15697 ipaddr_t net_mask = 0; 15698 ipaddr_t subnet_netmask; 15699 ipaddr_t addr; 15700 ip_stack_t *ipst = ill->ill_ipst; 15701 15702 ASSERT(ill->ill_group == NULL); 15703 /* 15704 * Broadcast Responsibility: 15705 * 15706 * 1. If this ill has been nominated for receiving broadcast 15707 * packets, we need to find a new one. Before we find a new 15708 * one, we need to re-group the ires that are part of this new 15709 * group (assumed by ill_nominate_bcast_rcv). We do this by 15710 * calling ill_group_bcast_for_xmit(ill) which will do the right 15711 * thing for us. 15712 * 15713 * 2. If this ill was not nominated for receiving broadcast 15714 * packets, we need to clear the IRE_MARK_NORECV flag 15715 * so that we continue to send up broadcast packets. 15716 */ 15717 if (!ill->ill_isv6) { 15718 /* 15719 * Case 1 above : No optimization here. Just redo the 15720 * nomination. 15721 */ 15722 ill_group_bcast_for_xmit(ill); 15723 ill_nominate_bcast_rcv(illgrp); 15724 15725 /* 15726 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15727 */ 15728 ill_clear_bcast_mark(ill, 0); 15729 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15730 15731 for (ipif = ill->ill_ipif; ipif != NULL; 15732 ipif = ipif->ipif_next) { 15733 15734 if (!(ipif->ipif_flags & IPIF_UP) || 15735 ipif->ipif_subnet == 0) { 15736 continue; 15737 } 15738 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15739 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15740 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15741 } else { 15742 net_mask = htonl(IN_CLASSA_NET); 15743 } 15744 addr = net_mask & ipif->ipif_subnet; 15745 ill_clear_bcast_mark(ill, addr); 15746 15747 net_addr = ~net_mask | addr; 15748 ill_clear_bcast_mark(ill, net_addr); 15749 15750 subnet_netmask = ipif->ipif_net_mask; 15751 addr = ipif->ipif_subnet; 15752 ill_clear_bcast_mark(ill, addr); 15753 15754 subnet_addr = ~subnet_netmask | addr; 15755 ill_clear_bcast_mark(ill, subnet_addr); 15756 } 15757 } 15758 15759 /* 15760 * Multicast Responsibility. 15761 * 15762 * If we have joined allmulti on this one, find a new member 15763 * in the group to join allmulti. As this ill is already part 15764 * of allmulti, we don't have to join on this one. 15765 * 15766 * If we have not joined allmulti on this one, there is no 15767 * responsibility to handoff. But we need to take new 15768 * responsibility i.e, join allmulti on this one if we need 15769 * to. 15770 */ 15771 if (ill->ill_join_allmulti) { 15772 (void) ill_nominate_mcast_rcv(illgrp); 15773 } else { 15774 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15775 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15776 (void) ill_join_allmulti(ill); 15777 break; 15778 } 15779 } 15780 } 15781 15782 /* 15783 * We intentionally do the flushing of IRE_CACHES only matching 15784 * on the ill and not on groups. Note that we are already deleted 15785 * from the group. 15786 * 15787 * This will make sure that all IRE_CACHES whose stq is pointing 15788 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15789 * deleted and IRE_CACHES that are not pointing at this ill will 15790 * be left alone. 15791 */ 15792 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15793 illgrp_cache_delete, ill, ill); 15794 15795 /* 15796 * Some conn may have cached one of the IREs deleted above. By removing 15797 * the ire reference, we clean up the extra reference to the ill held in 15798 * ire->ire_stq. 15799 */ 15800 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15801 15802 /* 15803 * Re-do source address selection for all the members in the 15804 * group, if they borrowed source address from one of the ipifs 15805 * in this ill. 15806 */ 15807 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15808 if (ill->ill_isv6) { 15809 ipif_update_other_ipifs_v6(ipif, illgrp); 15810 } else { 15811 ipif_update_other_ipifs(ipif, illgrp); 15812 } 15813 } 15814 } 15815 15816 /* 15817 * Delete the ill from the group. The caller makes sure that it is 15818 * in a group and it okay to delete from the group. So, we always 15819 * delete here. 15820 */ 15821 static void 15822 illgrp_delete(ill_t *ill) 15823 { 15824 ill_group_t *illgrp; 15825 ill_group_t *tmpg; 15826 ill_t *tmp_ill; 15827 ip_stack_t *ipst = ill->ill_ipst; 15828 15829 /* 15830 * Reset illgrp_ill_schednext if it was pointing at us. 15831 * We need to do this before we set ill_group to NULL. 15832 */ 15833 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15834 mutex_enter(&ill->ill_lock); 15835 15836 illgrp_reset_schednext(ill); 15837 15838 illgrp = ill->ill_group; 15839 15840 /* Delete the ill from illgrp. */ 15841 if (illgrp->illgrp_ill == ill) { 15842 illgrp->illgrp_ill = ill->ill_group_next; 15843 } else { 15844 tmp_ill = illgrp->illgrp_ill; 15845 while (tmp_ill->ill_group_next != ill) { 15846 tmp_ill = tmp_ill->ill_group_next; 15847 ASSERT(tmp_ill != NULL); 15848 } 15849 tmp_ill->ill_group_next = ill->ill_group_next; 15850 } 15851 ill->ill_group = NULL; 15852 ill->ill_group_next = NULL; 15853 15854 illgrp->illgrp_ill_count--; 15855 mutex_exit(&ill->ill_lock); 15856 rw_exit(&ipst->ips_ill_g_lock); 15857 15858 /* 15859 * As this ill is leaving the group, we need to hand off 15860 * the responsibilities to the other ills in the group, if 15861 * this ill had some responsibilities. 15862 */ 15863 15864 ill_handoff_responsibility(ill, illgrp); 15865 15866 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15867 15868 if (illgrp->illgrp_ill_count == 0) { 15869 15870 ASSERT(illgrp->illgrp_ill == NULL); 15871 if (ill->ill_isv6) { 15872 if (illgrp == ipst->ips_illgrp_head_v6) { 15873 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15874 } else { 15875 tmpg = ipst->ips_illgrp_head_v6; 15876 while (tmpg->illgrp_next != illgrp) { 15877 tmpg = tmpg->illgrp_next; 15878 ASSERT(tmpg != NULL); 15879 } 15880 tmpg->illgrp_next = illgrp->illgrp_next; 15881 } 15882 } else { 15883 if (illgrp == ipst->ips_illgrp_head_v4) { 15884 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15885 } else { 15886 tmpg = ipst->ips_illgrp_head_v4; 15887 while (tmpg->illgrp_next != illgrp) { 15888 tmpg = tmpg->illgrp_next; 15889 ASSERT(tmpg != NULL); 15890 } 15891 tmpg->illgrp_next = illgrp->illgrp_next; 15892 } 15893 } 15894 mutex_destroy(&illgrp->illgrp_lock); 15895 mi_free(illgrp); 15896 } 15897 rw_exit(&ipst->ips_ill_g_lock); 15898 15899 /* 15900 * Even though the ill is out of the group its not necessary 15901 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15902 * We will split the ipsq when phyint_groupname is set to NULL. 15903 */ 15904 15905 /* 15906 * Send a routing sockets message if we are deleting from 15907 * groups with names. 15908 */ 15909 if (ill->ill_phyint->phyint_groupname_len != 0) 15910 ip_rts_ifmsg(ill->ill_ipif); 15911 } 15912 15913 /* 15914 * Re-do source address selection. This is normally called when 15915 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15916 * ipif comes up. 15917 */ 15918 void 15919 ill_update_source_selection(ill_t *ill) 15920 { 15921 ipif_t *ipif; 15922 15923 ASSERT(IAM_WRITER_ILL(ill)); 15924 15925 if (ill->ill_group != NULL) 15926 ill = ill->ill_group->illgrp_ill; 15927 15928 for (; ill != NULL; ill = ill->ill_group_next) { 15929 for (ipif = ill->ill_ipif; ipif != NULL; 15930 ipif = ipif->ipif_next) { 15931 if (ill->ill_isv6) 15932 ipif_recreate_interface_routes_v6(NULL, ipif); 15933 else 15934 ipif_recreate_interface_routes(NULL, ipif); 15935 } 15936 } 15937 } 15938 15939 /* 15940 * Insert ill in a group headed by illgrp_head. The caller can either 15941 * pass a groupname in which case we search for a group with the 15942 * same name to insert in or pass a group to insert in. This function 15943 * would only search groups with names. 15944 * 15945 * NOTE : The caller should make sure that there is at least one ipif 15946 * UP on this ill so that illgrp_scheduler can pick this ill 15947 * for outbound packets. If ill_ipif_up_count is zero, we have 15948 * already sent a DL_UNBIND to the driver and we don't want to 15949 * send anymore packets. We don't assert for ipif_up_count 15950 * to be greater than zero, because ipif_up_done wants to call 15951 * this function before bumping up the ipif_up_count. See 15952 * ipif_up_done() for details. 15953 */ 15954 int 15955 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15956 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15957 { 15958 ill_group_t *illgrp; 15959 ill_t *prev_ill; 15960 phyint_t *phyi; 15961 ip_stack_t *ipst = ill->ill_ipst; 15962 15963 ASSERT(ill->ill_group == NULL); 15964 15965 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15966 mutex_enter(&ill->ill_lock); 15967 15968 if (groupname != NULL) { 15969 /* 15970 * Look for a group with a matching groupname to insert. 15971 */ 15972 for (illgrp = *illgrp_head; illgrp != NULL; 15973 illgrp = illgrp->illgrp_next) { 15974 15975 ill_t *tmp_ill; 15976 15977 /* 15978 * If we have an ill_group_t in the list which has 15979 * no ill_t assigned then we must be in the process of 15980 * removing this group. We skip this as illgrp_delete() 15981 * will remove it from the list. 15982 */ 15983 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15984 ASSERT(illgrp->illgrp_ill_count == 0); 15985 continue; 15986 } 15987 15988 ASSERT(tmp_ill->ill_phyint != NULL); 15989 phyi = tmp_ill->ill_phyint; 15990 /* 15991 * Look at groups which has names only. 15992 */ 15993 if (phyi->phyint_groupname_len == 0) 15994 continue; 15995 /* 15996 * Names are stored in the phyint common to both 15997 * IPv4 and IPv6. 15998 */ 15999 if (mi_strcmp(phyi->phyint_groupname, 16000 groupname) == 0) { 16001 break; 16002 } 16003 } 16004 } else { 16005 /* 16006 * If the caller passes in a NULL "grp_to_insert", we 16007 * allocate one below and insert this singleton. 16008 */ 16009 illgrp = grp_to_insert; 16010 } 16011 16012 ill->ill_group_next = NULL; 16013 16014 if (illgrp == NULL) { 16015 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16016 if (illgrp == NULL) { 16017 return (ENOMEM); 16018 } 16019 illgrp->illgrp_next = *illgrp_head; 16020 *illgrp_head = illgrp; 16021 illgrp->illgrp_ill = ill; 16022 illgrp->illgrp_ill_count = 1; 16023 ill->ill_group = illgrp; 16024 /* 16025 * Used in illgrp_scheduler to protect multiple threads 16026 * from traversing the list. 16027 */ 16028 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16029 } else { 16030 ASSERT(ill->ill_net_type == 16031 illgrp->illgrp_ill->ill_net_type); 16032 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16033 16034 /* Insert ill at tail of this group */ 16035 prev_ill = illgrp->illgrp_ill; 16036 while (prev_ill->ill_group_next != NULL) 16037 prev_ill = prev_ill->ill_group_next; 16038 prev_ill->ill_group_next = ill; 16039 ill->ill_group = illgrp; 16040 illgrp->illgrp_ill_count++; 16041 /* 16042 * Inherit group properties. Currently only forwarding 16043 * is the property we try to keep the same with all the 16044 * ills. When there are more, we will abstract this into 16045 * a function. 16046 */ 16047 ill->ill_flags &= ~ILLF_ROUTER; 16048 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16049 } 16050 mutex_exit(&ill->ill_lock); 16051 rw_exit(&ipst->ips_ill_g_lock); 16052 16053 /* 16054 * 1) When ipif_up_done() calls this function, ipif_up_count 16055 * may be zero as it has not yet been bumped. But the ires 16056 * have already been added. So, we do the nomination here 16057 * itself. But, when ip_sioctl_groupname calls this, it checks 16058 * for ill_ipif_up_count != 0. Thus we don't check for 16059 * ill_ipif_up_count here while nominating broadcast ires for 16060 * receive. 16061 * 16062 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16063 * to group them properly as ire_add() has already happened 16064 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16065 * case, we need to do it here anyway. 16066 */ 16067 if (!ill->ill_isv6) { 16068 ill_group_bcast_for_xmit(ill); 16069 ill_nominate_bcast_rcv(illgrp); 16070 } 16071 16072 if (!ipif_is_coming_up) { 16073 /* 16074 * When ipif_up_done() calls this function, the multicast 16075 * groups have not been joined yet. So, there is no point in 16076 * nomination. ill_join_allmulti() will handle groups when 16077 * ill_recover_multicast() is called from ipif_up_done() later. 16078 */ 16079 (void) ill_nominate_mcast_rcv(illgrp); 16080 /* 16081 * ipif_up_done calls ill_update_source_selection 16082 * anyway. Moreover, we don't want to re-create 16083 * interface routes while ipif_up_done() still has reference 16084 * to them. Refer to ipif_up_done() for more details. 16085 */ 16086 ill_update_source_selection(ill); 16087 } 16088 16089 /* 16090 * Send a routing sockets message if we are inserting into 16091 * groups with names. 16092 */ 16093 if (groupname != NULL) 16094 ip_rts_ifmsg(ill->ill_ipif); 16095 return (0); 16096 } 16097 16098 /* 16099 * Return the first phyint matching the groupname. There could 16100 * be more than one when there are ill groups. 16101 * 16102 * If 'usable' is set, then we exclude ones that are marked with any of 16103 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16104 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16105 * emulation of ipmp. 16106 */ 16107 phyint_t * 16108 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16109 { 16110 phyint_t *phyi; 16111 16112 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16113 /* 16114 * Group names are stored in the phyint - a common structure 16115 * to both IPv4 and IPv6. 16116 */ 16117 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16118 for (; phyi != NULL; 16119 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16120 phyi, AVL_AFTER)) { 16121 if (phyi->phyint_groupname_len == 0) 16122 continue; 16123 /* 16124 * Skip the ones that should not be used since the callers 16125 * sometime use this for sending packets. 16126 */ 16127 if (usable && (phyi->phyint_flags & 16128 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16129 continue; 16130 16131 ASSERT(phyi->phyint_groupname != NULL); 16132 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16133 return (phyi); 16134 } 16135 return (NULL); 16136 } 16137 16138 16139 /* 16140 * Return the first usable phyint matching the group index. By 'usable' 16141 * we exclude ones that are marked ununsable with any of 16142 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16143 * 16144 * Used only for the ipmp/netinfo emulation of ipmp. 16145 */ 16146 phyint_t * 16147 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16148 { 16149 phyint_t *phyi; 16150 16151 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16152 16153 if (!ipst->ips_ipmp_hook_emulation) 16154 return (NULL); 16155 16156 /* 16157 * Group indicies are stored in the phyint - a common structure 16158 * to both IPv4 and IPv6. 16159 */ 16160 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16161 for (; phyi != NULL; 16162 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16163 phyi, AVL_AFTER)) { 16164 /* Ignore the ones that do not have a group */ 16165 if (phyi->phyint_groupname_len == 0) 16166 continue; 16167 16168 ASSERT(phyi->phyint_group_ifindex != 0); 16169 /* 16170 * Skip the ones that should not be used since the callers 16171 * sometime use this for sending packets. 16172 */ 16173 if (phyi->phyint_flags & 16174 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16175 continue; 16176 if (phyi->phyint_group_ifindex == group_ifindex) 16177 return (phyi); 16178 } 16179 return (NULL); 16180 } 16181 16182 /* 16183 * MT notes on creation and deletion of IPMP groups 16184 * 16185 * Creation and deletion of IPMP groups introduce the need to merge or 16186 * split the associated serialization objects i.e the ipsq's. Normally all 16187 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16188 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16189 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16190 * is a need to change the <ill-ipsq> association and we have to operate on both 16191 * the source and destination IPMP groups. For eg. attempting to set the 16192 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16193 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16194 * source or destination IPMP group are mapped to a single ipsq for executing 16195 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16196 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16197 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16198 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16199 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16200 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16201 * 16202 * In the above example the ioctl handling code locates the current ipsq of hme0 16203 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16204 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16205 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16206 * the destination ipsq. If the destination ipsq is not busy, it also enters 16207 * the destination ipsq exclusively. Now the actual groupname setting operation 16208 * can proceed. If the destination ipsq is busy, the operation is enqueued 16209 * on the destination (merged) ipsq and will be handled in the unwind from 16210 * ipsq_exit. 16211 * 16212 * To prevent other threads accessing the ill while the group name change is 16213 * in progres, we bring down the ipifs which also removes the ill from the 16214 * group. The group is changed in phyint and when the first ipif on the ill 16215 * is brought up, the ill is inserted into the right IPMP group by 16216 * illgrp_insert. 16217 */ 16218 /* ARGSUSED */ 16219 int 16220 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16221 ip_ioctl_cmd_t *ipip, void *ifreq) 16222 { 16223 int i; 16224 char *tmp; 16225 int namelen; 16226 ill_t *ill = ipif->ipif_ill; 16227 ill_t *ill_v4, *ill_v6; 16228 int err = 0; 16229 phyint_t *phyi; 16230 phyint_t *phyi_tmp; 16231 struct lifreq *lifr; 16232 mblk_t *mp1; 16233 char *groupname; 16234 ipsq_t *ipsq; 16235 ip_stack_t *ipst = ill->ill_ipst; 16236 16237 ASSERT(IAM_WRITER_IPIF(ipif)); 16238 16239 /* Existance verified in ip_wput_nondata */ 16240 mp1 = mp->b_cont->b_cont; 16241 lifr = (struct lifreq *)mp1->b_rptr; 16242 groupname = lifr->lifr_groupname; 16243 16244 if (ipif->ipif_id != 0) 16245 return (EINVAL); 16246 16247 phyi = ill->ill_phyint; 16248 ASSERT(phyi != NULL); 16249 16250 if (phyi->phyint_flags & PHYI_VIRTUAL) 16251 return (EINVAL); 16252 16253 tmp = groupname; 16254 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16255 ; 16256 16257 if (i == LIFNAMSIZ) { 16258 /* no null termination */ 16259 return (EINVAL); 16260 } 16261 16262 /* 16263 * Calculate the namelen exclusive of the null 16264 * termination character. 16265 */ 16266 namelen = tmp - groupname; 16267 16268 ill_v4 = phyi->phyint_illv4; 16269 ill_v6 = phyi->phyint_illv6; 16270 16271 /* 16272 * ILL cannot be part of a usesrc group and and IPMP group at the 16273 * same time. No need to grab the ill_g_usesrc_lock here, see 16274 * synchronization notes in ip.c 16275 */ 16276 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16277 return (EINVAL); 16278 } 16279 16280 /* 16281 * mark the ill as changing. 16282 * this should queue all new requests on the syncq. 16283 */ 16284 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16285 16286 if (ill_v4 != NULL) 16287 ill_v4->ill_state_flags |= ILL_CHANGING; 16288 if (ill_v6 != NULL) 16289 ill_v6->ill_state_flags |= ILL_CHANGING; 16290 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16291 16292 if (namelen == 0) { 16293 /* 16294 * Null string means remove this interface from the 16295 * existing group. 16296 */ 16297 if (phyi->phyint_groupname_len == 0) { 16298 /* 16299 * Never was in a group. 16300 */ 16301 err = 0; 16302 goto done; 16303 } 16304 16305 /* 16306 * IPv4 or IPv6 may be temporarily out of the group when all 16307 * the ipifs are down. Thus, we need to check for ill_group to 16308 * be non-NULL. 16309 */ 16310 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16311 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16312 mutex_enter(&ill_v4->ill_lock); 16313 if (!ill_is_quiescent(ill_v4)) { 16314 /* 16315 * ipsq_pending_mp_add will not fail since 16316 * connp is NULL 16317 */ 16318 (void) ipsq_pending_mp_add(NULL, 16319 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16320 mutex_exit(&ill_v4->ill_lock); 16321 err = EINPROGRESS; 16322 goto done; 16323 } 16324 mutex_exit(&ill_v4->ill_lock); 16325 } 16326 16327 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16328 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16329 mutex_enter(&ill_v6->ill_lock); 16330 if (!ill_is_quiescent(ill_v6)) { 16331 (void) ipsq_pending_mp_add(NULL, 16332 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16333 mutex_exit(&ill_v6->ill_lock); 16334 err = EINPROGRESS; 16335 goto done; 16336 } 16337 mutex_exit(&ill_v6->ill_lock); 16338 } 16339 16340 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16341 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16342 mutex_enter(&phyi->phyint_lock); 16343 ASSERT(phyi->phyint_groupname != NULL); 16344 mi_free(phyi->phyint_groupname); 16345 phyi->phyint_groupname = NULL; 16346 phyi->phyint_groupname_len = 0; 16347 16348 /* Restore the ifindex used to be the per interface one */ 16349 phyi->phyint_group_ifindex = 0; 16350 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16351 mutex_exit(&phyi->phyint_lock); 16352 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16353 rw_exit(&ipst->ips_ill_g_lock); 16354 err = ill_up_ipifs(ill, q, mp); 16355 16356 /* 16357 * set the split flag so that the ipsq can be split 16358 */ 16359 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16360 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16361 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16362 16363 } else { 16364 if (phyi->phyint_groupname_len != 0) { 16365 ASSERT(phyi->phyint_groupname != NULL); 16366 /* Are we inserting in the same group ? */ 16367 if (mi_strcmp(groupname, 16368 phyi->phyint_groupname) == 0) { 16369 err = 0; 16370 goto done; 16371 } 16372 } 16373 16374 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16375 /* 16376 * Merge ipsq for the group's. 16377 * This check is here as multiple groups/ills might be 16378 * sharing the same ipsq. 16379 * If we have to merege than the operation is restarted 16380 * on the new ipsq. 16381 */ 16382 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16383 if (phyi->phyint_ipsq != ipsq) { 16384 rw_exit(&ipst->ips_ill_g_lock); 16385 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16386 goto done; 16387 } 16388 /* 16389 * Running exclusive on new ipsq. 16390 */ 16391 16392 ASSERT(ipsq != NULL); 16393 ASSERT(ipsq->ipsq_writer == curthread); 16394 16395 /* 16396 * Check whether the ill_type and ill_net_type matches before 16397 * we allocate any memory so that the cleanup is easier. 16398 * 16399 * We can't group dissimilar ones as we can't load spread 16400 * packets across the group because of potential link-level 16401 * header differences. 16402 */ 16403 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16404 if (phyi_tmp != NULL) { 16405 if ((ill_v4 != NULL && 16406 phyi_tmp->phyint_illv4 != NULL) && 16407 ((ill_v4->ill_net_type != 16408 phyi_tmp->phyint_illv4->ill_net_type) || 16409 (ill_v4->ill_type != 16410 phyi_tmp->phyint_illv4->ill_type))) { 16411 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16412 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16413 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16414 rw_exit(&ipst->ips_ill_g_lock); 16415 return (EINVAL); 16416 } 16417 if ((ill_v6 != NULL && 16418 phyi_tmp->phyint_illv6 != NULL) && 16419 ((ill_v6->ill_net_type != 16420 phyi_tmp->phyint_illv6->ill_net_type) || 16421 (ill_v6->ill_type != 16422 phyi_tmp->phyint_illv6->ill_type))) { 16423 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16424 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16425 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16426 rw_exit(&ipst->ips_ill_g_lock); 16427 return (EINVAL); 16428 } 16429 } 16430 16431 rw_exit(&ipst->ips_ill_g_lock); 16432 16433 /* 16434 * bring down all v4 ipifs. 16435 */ 16436 if (ill_v4 != NULL) { 16437 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16438 } 16439 16440 /* 16441 * bring down all v6 ipifs. 16442 */ 16443 if (ill_v6 != NULL) { 16444 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16445 } 16446 16447 /* 16448 * make sure all ipifs are down and there are no active 16449 * references. Call to ipsq_pending_mp_add will not fail 16450 * since connp is NULL. 16451 */ 16452 if (ill_v4 != NULL) { 16453 mutex_enter(&ill_v4->ill_lock); 16454 if (!ill_is_quiescent(ill_v4)) { 16455 (void) ipsq_pending_mp_add(NULL, 16456 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16457 mutex_exit(&ill_v4->ill_lock); 16458 err = EINPROGRESS; 16459 goto done; 16460 } 16461 mutex_exit(&ill_v4->ill_lock); 16462 } 16463 16464 if (ill_v6 != NULL) { 16465 mutex_enter(&ill_v6->ill_lock); 16466 if (!ill_is_quiescent(ill_v6)) { 16467 (void) ipsq_pending_mp_add(NULL, 16468 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16469 mutex_exit(&ill_v6->ill_lock); 16470 err = EINPROGRESS; 16471 goto done; 16472 } 16473 mutex_exit(&ill_v6->ill_lock); 16474 } 16475 16476 /* 16477 * allocate including space for null terminator 16478 * before we insert. 16479 */ 16480 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16481 if (tmp == NULL) 16482 return (ENOMEM); 16483 16484 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16485 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16486 mutex_enter(&phyi->phyint_lock); 16487 if (phyi->phyint_groupname_len != 0) { 16488 ASSERT(phyi->phyint_groupname != NULL); 16489 mi_free(phyi->phyint_groupname); 16490 } 16491 16492 /* 16493 * setup the new group name. 16494 */ 16495 phyi->phyint_groupname = tmp; 16496 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16497 phyi->phyint_groupname_len = namelen + 1; 16498 16499 if (ipst->ips_ipmp_hook_emulation) { 16500 /* 16501 * If the group already exists we use the existing 16502 * group_ifindex, otherwise we pick a new index here. 16503 */ 16504 if (phyi_tmp != NULL) { 16505 phyi->phyint_group_ifindex = 16506 phyi_tmp->phyint_group_ifindex; 16507 } else { 16508 /* XXX We need a recovery strategy here. */ 16509 if (!ip_assign_ifindex( 16510 &phyi->phyint_group_ifindex, ipst)) 16511 cmn_err(CE_PANIC, 16512 "ip_assign_ifindex() failed"); 16513 } 16514 } 16515 /* 16516 * Select whether the netinfo and hook use the per-interface 16517 * or per-group ifindex. 16518 */ 16519 if (ipst->ips_ipmp_hook_emulation) 16520 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16521 else 16522 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16523 16524 if (ipst->ips_ipmp_hook_emulation && 16525 phyi_tmp != NULL) { 16526 /* First phyint in group - group PLUMB event */ 16527 ill_nic_event_plumb(ill, B_TRUE); 16528 } 16529 mutex_exit(&phyi->phyint_lock); 16530 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16531 rw_exit(&ipst->ips_ill_g_lock); 16532 16533 err = ill_up_ipifs(ill, q, mp); 16534 } 16535 16536 done: 16537 /* 16538 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16539 */ 16540 if (err != EINPROGRESS) { 16541 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16542 if (ill_v4 != NULL) 16543 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16544 if (ill_v6 != NULL) 16545 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16546 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16547 } 16548 return (err); 16549 } 16550 16551 /* ARGSUSED */ 16552 int 16553 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16554 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16555 { 16556 ill_t *ill; 16557 phyint_t *phyi; 16558 struct lifreq *lifr; 16559 mblk_t *mp1; 16560 16561 /* Existence verified in ip_wput_nondata */ 16562 mp1 = mp->b_cont->b_cont; 16563 lifr = (struct lifreq *)mp1->b_rptr; 16564 ill = ipif->ipif_ill; 16565 phyi = ill->ill_phyint; 16566 16567 lifr->lifr_groupname[0] = '\0'; 16568 /* 16569 * ill_group may be null if all the interfaces 16570 * are down. But still, the phyint should always 16571 * hold the name. 16572 */ 16573 if (phyi->phyint_groupname_len != 0) { 16574 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16575 phyi->phyint_groupname_len); 16576 } 16577 16578 return (0); 16579 } 16580 16581 16582 typedef struct conn_move_s { 16583 ill_t *cm_from_ill; 16584 ill_t *cm_to_ill; 16585 int cm_ifindex; 16586 } conn_move_t; 16587 16588 /* 16589 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16590 */ 16591 static void 16592 conn_move(conn_t *connp, caddr_t arg) 16593 { 16594 conn_move_t *connm; 16595 int ifindex; 16596 int i; 16597 ill_t *from_ill; 16598 ill_t *to_ill; 16599 ilg_t *ilg; 16600 ilm_t *ret_ilm; 16601 16602 connm = (conn_move_t *)arg; 16603 ifindex = connm->cm_ifindex; 16604 from_ill = connm->cm_from_ill; 16605 to_ill = connm->cm_to_ill; 16606 16607 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16608 16609 /* All multicast fields protected by conn_lock */ 16610 mutex_enter(&connp->conn_lock); 16611 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16612 if ((connp->conn_outgoing_ill == from_ill) && 16613 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16614 connp->conn_outgoing_ill = to_ill; 16615 connp->conn_incoming_ill = to_ill; 16616 } 16617 16618 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16619 16620 if ((connp->conn_multicast_ill == from_ill) && 16621 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16622 connp->conn_multicast_ill = connm->cm_to_ill; 16623 } 16624 16625 /* 16626 * Change the ilg_ill to point to the new one. This assumes 16627 * ilm_move_v6 has moved the ilms to new_ill and the driver 16628 * has been told to receive packets on this interface. 16629 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16630 * But when doing a FAILOVER, it might fail with ENOMEM and so 16631 * some ilms may not have moved. We check to see whether 16632 * the ilms have moved to to_ill. We can't check on from_ill 16633 * as in the process of moving, we could have split an ilm 16634 * in to two - which has the same orig_ifindex and v6group. 16635 * 16636 * For IPv4, ilg_ipif moves implicitly. The code below really 16637 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16638 */ 16639 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16640 ilg = &connp->conn_ilg[i]; 16641 if ((ilg->ilg_ill == from_ill) && 16642 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16643 /* ifindex != 0 indicates failback */ 16644 if (ifindex != 0) { 16645 connp->conn_ilg[i].ilg_ill = to_ill; 16646 continue; 16647 } 16648 16649 mutex_enter(&to_ill->ill_lock); 16650 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16651 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16652 connp->conn_zoneid); 16653 mutex_exit(&to_ill->ill_lock); 16654 16655 if (ret_ilm != NULL) 16656 connp->conn_ilg[i].ilg_ill = to_ill; 16657 } 16658 } 16659 mutex_exit(&connp->conn_lock); 16660 } 16661 16662 static void 16663 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16664 { 16665 conn_move_t connm; 16666 ip_stack_t *ipst = from_ill->ill_ipst; 16667 16668 connm.cm_from_ill = from_ill; 16669 connm.cm_to_ill = to_ill; 16670 connm.cm_ifindex = ifindex; 16671 16672 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16673 } 16674 16675 /* 16676 * ilm has been moved from from_ill to to_ill. 16677 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16678 * appropriately. 16679 * 16680 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16681 * the code there de-references ipif_ill to get the ill to 16682 * send multicast requests. It does not work as ipif is on its 16683 * move and already moved when this function is called. 16684 * Thus, we need to use from_ill and to_ill send down multicast 16685 * requests. 16686 */ 16687 static void 16688 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16689 { 16690 ipif_t *ipif; 16691 ilm_t *ilm; 16692 16693 /* 16694 * See whether we need to send down DL_ENABMULTI_REQ on 16695 * to_ill as ilm has just been added. 16696 */ 16697 ASSERT(IAM_WRITER_ILL(to_ill)); 16698 ASSERT(IAM_WRITER_ILL(from_ill)); 16699 16700 ILM_WALKER_HOLD(to_ill); 16701 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16702 16703 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16704 continue; 16705 /* 16706 * no locks held, ill/ipif cannot dissappear as long 16707 * as we are writer. 16708 */ 16709 ipif = to_ill->ill_ipif; 16710 /* 16711 * No need to hold any lock as we are the writer and this 16712 * can only be changed by a writer. 16713 */ 16714 ilm->ilm_is_new = B_FALSE; 16715 16716 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16717 ipif->ipif_flags & IPIF_POINTOPOINT) { 16718 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16719 "resolver\n")); 16720 continue; /* Must be IRE_IF_NORESOLVER */ 16721 } 16722 16723 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16724 ip1dbg(("ilm_send_multicast_reqs: " 16725 "to_ill MULTI_BCAST\n")); 16726 goto from; 16727 } 16728 16729 if (to_ill->ill_isv6) 16730 mld_joingroup(ilm); 16731 else 16732 igmp_joingroup(ilm); 16733 16734 if (to_ill->ill_ipif_up_count == 0) { 16735 /* 16736 * Nobody there. All multicast addresses will be 16737 * re-joined when we get the DL_BIND_ACK bringing the 16738 * interface up. 16739 */ 16740 ilm->ilm_notify_driver = B_FALSE; 16741 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16742 goto from; 16743 } 16744 16745 /* 16746 * For allmulti address, we want to join on only one interface. 16747 * Checking for ilm_numentries_v6 is not correct as you may 16748 * find an ilm with zero address on to_ill, but we may not 16749 * have nominated to_ill for receiving. Thus, if we have 16750 * nominated from_ill (ill_join_allmulti is set), nominate 16751 * only if to_ill is not already nominated (to_ill normally 16752 * should not have been nominated if "from_ill" has already 16753 * been nominated. As we don't prevent failovers from happening 16754 * across groups, we don't assert). 16755 */ 16756 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16757 /* 16758 * There is no need to hold ill locks as we are 16759 * writer on both ills and when ill_join_allmulti() 16760 * is called the thread is always a writer. 16761 */ 16762 if (from_ill->ill_join_allmulti && 16763 !to_ill->ill_join_allmulti) { 16764 (void) ill_join_allmulti(to_ill); 16765 } 16766 } else if (ilm->ilm_notify_driver) { 16767 16768 /* 16769 * This is a newly moved ilm so we need to tell the 16770 * driver about the new group. There can be more than 16771 * one ilm's for the same group in the list each with a 16772 * different orig_ifindex. We have to inform the driver 16773 * once. In ilm_move_v[4,6] we only set the flag 16774 * ilm_notify_driver for the first ilm. 16775 */ 16776 16777 (void) ip_ll_send_enabmulti_req(to_ill, 16778 &ilm->ilm_v6addr); 16779 } 16780 16781 ilm->ilm_notify_driver = B_FALSE; 16782 16783 /* 16784 * See whether we need to send down DL_DISABMULTI_REQ on 16785 * from_ill as ilm has just been removed. 16786 */ 16787 from: 16788 ipif = from_ill->ill_ipif; 16789 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16790 ipif->ipif_flags & IPIF_POINTOPOINT) { 16791 ip1dbg(("ilm_send_multicast_reqs: " 16792 "from_ill not resolver\n")); 16793 continue; /* Must be IRE_IF_NORESOLVER */ 16794 } 16795 16796 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16797 ip1dbg(("ilm_send_multicast_reqs: " 16798 "from_ill MULTI_BCAST\n")); 16799 continue; 16800 } 16801 16802 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16803 if (from_ill->ill_join_allmulti) 16804 ill_leave_allmulti(from_ill); 16805 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16806 (void) ip_ll_send_disabmulti_req(from_ill, 16807 &ilm->ilm_v6addr); 16808 } 16809 } 16810 ILM_WALKER_RELE(to_ill); 16811 } 16812 16813 /* 16814 * This function is called when all multicast memberships needs 16815 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16816 * called only once unlike the IPv4 counterpart where it is called after 16817 * every logical interface is moved. The reason is due to multicast 16818 * memberships are joined using an interface address in IPv4 while in 16819 * IPv6, interface index is used. 16820 */ 16821 static void 16822 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16823 { 16824 ilm_t *ilm; 16825 ilm_t *ilm_next; 16826 ilm_t *new_ilm; 16827 ilm_t **ilmp; 16828 int count; 16829 char buf[INET6_ADDRSTRLEN]; 16830 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16831 ip_stack_t *ipst = from_ill->ill_ipst; 16832 16833 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16834 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16835 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16836 16837 if (ifindex == 0) { 16838 /* 16839 * Form the solicited node mcast address which is used later. 16840 */ 16841 ipif_t *ipif; 16842 16843 ipif = from_ill->ill_ipif; 16844 ASSERT(ipif->ipif_id == 0); 16845 16846 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16847 } 16848 16849 ilmp = &from_ill->ill_ilm; 16850 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16851 ilm_next = ilm->ilm_next; 16852 16853 if (ilm->ilm_flags & ILM_DELETED) { 16854 ilmp = &ilm->ilm_next; 16855 continue; 16856 } 16857 16858 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16859 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16860 ASSERT(ilm->ilm_orig_ifindex != 0); 16861 if (ilm->ilm_orig_ifindex == ifindex) { 16862 /* 16863 * We are failing back multicast memberships. 16864 * If the same ilm exists in to_ill, it means somebody 16865 * has joined the same group there e.g. ff02::1 16866 * is joined within the kernel when the interfaces 16867 * came UP. 16868 */ 16869 ASSERT(ilm->ilm_ipif == NULL); 16870 if (new_ilm != NULL) { 16871 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16872 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16873 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16874 new_ilm->ilm_is_new = B_TRUE; 16875 } 16876 } else { 16877 /* 16878 * check if we can just move the ilm 16879 */ 16880 if (from_ill->ill_ilm_walker_cnt != 0) { 16881 /* 16882 * We have walkers we cannot move 16883 * the ilm, so allocate a new ilm, 16884 * this (old) ilm will be marked 16885 * ILM_DELETED at the end of the loop 16886 * and will be freed when the 16887 * last walker exits. 16888 */ 16889 new_ilm = (ilm_t *)mi_zalloc 16890 (sizeof (ilm_t)); 16891 if (new_ilm == NULL) { 16892 ip0dbg(("ilm_move_v6: " 16893 "FAILBACK of IPv6" 16894 " multicast address %s : " 16895 "from %s to" 16896 " %s failed : ENOMEM \n", 16897 inet_ntop(AF_INET6, 16898 &ilm->ilm_v6addr, buf, 16899 sizeof (buf)), 16900 from_ill->ill_name, 16901 to_ill->ill_name)); 16902 16903 ilmp = &ilm->ilm_next; 16904 continue; 16905 } 16906 *new_ilm = *ilm; 16907 /* 16908 * we don't want new_ilm linked to 16909 * ilm's filter list. 16910 */ 16911 new_ilm->ilm_filter = NULL; 16912 } else { 16913 /* 16914 * No walkers we can move the ilm. 16915 * lets take it out of the list. 16916 */ 16917 *ilmp = ilm->ilm_next; 16918 ilm->ilm_next = NULL; 16919 DTRACE_PROBE3(ill__decr__cnt, 16920 (ill_t *), from_ill, 16921 (char *), "ilm", (void *), ilm); 16922 ASSERT(from_ill->ill_ilm_cnt > 0); 16923 from_ill->ill_ilm_cnt--; 16924 16925 new_ilm = ilm; 16926 } 16927 16928 /* 16929 * if this is the first ilm for the group 16930 * set ilm_notify_driver so that we notify the 16931 * driver in ilm_send_multicast_reqs. 16932 */ 16933 if (ilm_lookup_ill_v6(to_ill, 16934 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16935 new_ilm->ilm_notify_driver = B_TRUE; 16936 16937 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16938 (char *), "ilm", (void *), new_ilm); 16939 new_ilm->ilm_ill = to_ill; 16940 to_ill->ill_ilm_cnt++; 16941 16942 /* Add to the to_ill's list */ 16943 new_ilm->ilm_next = to_ill->ill_ilm; 16944 to_ill->ill_ilm = new_ilm; 16945 /* 16946 * set the flag so that mld_joingroup is 16947 * called in ilm_send_multicast_reqs(). 16948 */ 16949 new_ilm->ilm_is_new = B_TRUE; 16950 } 16951 goto bottom; 16952 } else if (ifindex != 0) { 16953 /* 16954 * If this is FAILBACK (ifindex != 0) and the ifindex 16955 * has not matched above, look at the next ilm. 16956 */ 16957 ilmp = &ilm->ilm_next; 16958 continue; 16959 } 16960 /* 16961 * If we are here, it means ifindex is 0. Failover 16962 * everything. 16963 * 16964 * We need to handle solicited node mcast address 16965 * and all_nodes mcast address differently as they 16966 * are joined witin the kenrel (ipif_multicast_up) 16967 * and potentially from the userland. We are called 16968 * after the ipifs of from_ill has been moved. 16969 * If we still find ilms on ill with solicited node 16970 * mcast address or all_nodes mcast address, it must 16971 * belong to the UP interface that has not moved e.g. 16972 * ipif_id 0 with the link local prefix does not move. 16973 * We join this on the new ill accounting for all the 16974 * userland memberships so that applications don't 16975 * see any failure. 16976 * 16977 * We need to make sure that we account only for the 16978 * solicited node and all node multicast addresses 16979 * that was brought UP on these. In the case of 16980 * a failover from A to B, we might have ilms belonging 16981 * to A (ilm_orig_ifindex pointing at A) on B accounting 16982 * for the membership from the userland. If we are failing 16983 * over from B to C now, we will find the ones belonging 16984 * to A on B. These don't account for the ill_ipif_up_count. 16985 * They just move from B to C. The check below on 16986 * ilm_orig_ifindex ensures that. 16987 */ 16988 if ((ilm->ilm_orig_ifindex == 16989 from_ill->ill_phyint->phyint_ifindex) && 16990 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16991 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16992 &ilm->ilm_v6addr))) { 16993 ASSERT(ilm->ilm_refcnt > 0); 16994 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16995 /* 16996 * For indentation reasons, we are not using a 16997 * "else" here. 16998 */ 16999 if (count == 0) { 17000 ilmp = &ilm->ilm_next; 17001 continue; 17002 } 17003 ilm->ilm_refcnt -= count; 17004 if (new_ilm != NULL) { 17005 /* 17006 * Can find one with the same 17007 * ilm_orig_ifindex, if we are failing 17008 * over to a STANDBY. This happens 17009 * when somebody wants to join a group 17010 * on a STANDBY interface and we 17011 * internally join on a different one. 17012 * If we had joined on from_ill then, a 17013 * failover now will find a new ilm 17014 * with this index. 17015 */ 17016 ip1dbg(("ilm_move_v6: FAILOVER, found" 17017 " new ilm on %s, group address %s\n", 17018 to_ill->ill_name, 17019 inet_ntop(AF_INET6, 17020 &ilm->ilm_v6addr, buf, 17021 sizeof (buf)))); 17022 new_ilm->ilm_refcnt += count; 17023 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17024 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17025 new_ilm->ilm_is_new = B_TRUE; 17026 } 17027 } else { 17028 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17029 if (new_ilm == NULL) { 17030 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17031 " multicast address %s : from %s to" 17032 " %s failed : ENOMEM \n", 17033 inet_ntop(AF_INET6, 17034 &ilm->ilm_v6addr, buf, 17035 sizeof (buf)), from_ill->ill_name, 17036 to_ill->ill_name)); 17037 ilmp = &ilm->ilm_next; 17038 continue; 17039 } 17040 *new_ilm = *ilm; 17041 new_ilm->ilm_filter = NULL; 17042 new_ilm->ilm_refcnt = count; 17043 new_ilm->ilm_timer = INFINITY; 17044 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17045 new_ilm->ilm_is_new = B_TRUE; 17046 /* 17047 * If the to_ill has not joined this 17048 * group we need to tell the driver in 17049 * ill_send_multicast_reqs. 17050 */ 17051 if (ilm_lookup_ill_v6(to_ill, 17052 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17053 new_ilm->ilm_notify_driver = B_TRUE; 17054 17055 new_ilm->ilm_ill = to_ill; 17056 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17057 (char *), "ilm", (void *), new_ilm); 17058 to_ill->ill_ilm_cnt++; 17059 17060 /* Add to the to_ill's list */ 17061 new_ilm->ilm_next = to_ill->ill_ilm; 17062 to_ill->ill_ilm = new_ilm; 17063 ASSERT(new_ilm->ilm_ipif == NULL); 17064 } 17065 if (ilm->ilm_refcnt == 0) { 17066 goto bottom; 17067 } else { 17068 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17069 CLEAR_SLIST(new_ilm->ilm_filter); 17070 ilmp = &ilm->ilm_next; 17071 } 17072 continue; 17073 } else { 17074 /* 17075 * ifindex = 0 means, move everything pointing at 17076 * from_ill. We are doing this becuase ill has 17077 * either FAILED or became INACTIVE. 17078 * 17079 * As we would like to move things later back to 17080 * from_ill, we want to retain the identity of this 17081 * ilm. Thus, we don't blindly increment the reference 17082 * count on the ilms matching the address alone. We 17083 * need to match on the ilm_orig_index also. new_ilm 17084 * was obtained by matching ilm_orig_index also. 17085 */ 17086 if (new_ilm != NULL) { 17087 /* 17088 * This is possible only if a previous restore 17089 * was incomplete i.e restore to 17090 * ilm_orig_ifindex left some ilms because 17091 * of some failures. Thus when we are failing 17092 * again, we might find our old friends there. 17093 */ 17094 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17095 " on %s, group address %s\n", 17096 to_ill->ill_name, 17097 inet_ntop(AF_INET6, 17098 &ilm->ilm_v6addr, buf, 17099 sizeof (buf)))); 17100 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17101 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17102 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17103 new_ilm->ilm_is_new = B_TRUE; 17104 } 17105 } else { 17106 if (from_ill->ill_ilm_walker_cnt != 0) { 17107 new_ilm = (ilm_t *) 17108 mi_zalloc(sizeof (ilm_t)); 17109 if (new_ilm == NULL) { 17110 ip0dbg(("ilm_move_v6: " 17111 "FAILOVER of IPv6" 17112 " multicast address %s : " 17113 "from %s to" 17114 " %s failed : ENOMEM \n", 17115 inet_ntop(AF_INET6, 17116 &ilm->ilm_v6addr, buf, 17117 sizeof (buf)), 17118 from_ill->ill_name, 17119 to_ill->ill_name)); 17120 17121 ilmp = &ilm->ilm_next; 17122 continue; 17123 } 17124 *new_ilm = *ilm; 17125 new_ilm->ilm_filter = NULL; 17126 } else { 17127 *ilmp = ilm->ilm_next; 17128 DTRACE_PROBE3(ill__decr__cnt, 17129 (ill_t *), from_ill, 17130 (char *), "ilm", (void *), ilm); 17131 ASSERT(from_ill->ill_ilm_cnt > 0); 17132 from_ill->ill_ilm_cnt--; 17133 17134 new_ilm = ilm; 17135 } 17136 /* 17137 * If the to_ill has not joined this 17138 * group we need to tell the driver in 17139 * ill_send_multicast_reqs. 17140 */ 17141 if (ilm_lookup_ill_v6(to_ill, 17142 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17143 new_ilm->ilm_notify_driver = B_TRUE; 17144 17145 /* Add to the to_ill's list */ 17146 new_ilm->ilm_next = to_ill->ill_ilm; 17147 to_ill->ill_ilm = new_ilm; 17148 ASSERT(ilm->ilm_ipif == NULL); 17149 new_ilm->ilm_ill = to_ill; 17150 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17151 (char *), "ilm", (void *), new_ilm); 17152 to_ill->ill_ilm_cnt++; 17153 new_ilm->ilm_is_new = B_TRUE; 17154 } 17155 17156 } 17157 17158 bottom: 17159 /* 17160 * Revert multicast filter state to (EXCLUDE, NULL). 17161 * new_ilm->ilm_is_new should already be set if needed. 17162 */ 17163 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17164 CLEAR_SLIST(new_ilm->ilm_filter); 17165 /* 17166 * We allocated/got a new ilm, free the old one. 17167 */ 17168 if (new_ilm != ilm) { 17169 if (from_ill->ill_ilm_walker_cnt == 0) { 17170 *ilmp = ilm->ilm_next; 17171 17172 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17173 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17174 from_ill, (char *), "ilm", (void *), ilm); 17175 ASSERT(from_ill->ill_ilm_cnt > 0); 17176 from_ill->ill_ilm_cnt--; 17177 17178 ilm_inactive(ilm); /* frees this ilm */ 17179 17180 } else { 17181 ilm->ilm_flags |= ILM_DELETED; 17182 from_ill->ill_ilm_cleanup_reqd = 1; 17183 ilmp = &ilm->ilm_next; 17184 } 17185 } 17186 } 17187 } 17188 17189 /* 17190 * Move all the multicast memberships to to_ill. Called when 17191 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17192 * different from IPv6 counterpart as multicast memberships are associated 17193 * with ills in IPv6. This function is called after every ipif is moved 17194 * unlike IPv6, where it is moved only once. 17195 */ 17196 static void 17197 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17198 { 17199 ilm_t *ilm; 17200 ilm_t *ilm_next; 17201 ilm_t *new_ilm; 17202 ilm_t **ilmp; 17203 ip_stack_t *ipst = from_ill->ill_ipst; 17204 17205 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17206 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17207 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17208 17209 ilmp = &from_ill->ill_ilm; 17210 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17211 ilm_next = ilm->ilm_next; 17212 17213 if (ilm->ilm_flags & ILM_DELETED) { 17214 ilmp = &ilm->ilm_next; 17215 continue; 17216 } 17217 17218 ASSERT(ilm->ilm_ipif != NULL); 17219 17220 if (ilm->ilm_ipif != ipif) { 17221 ilmp = &ilm->ilm_next; 17222 continue; 17223 } 17224 17225 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17226 htonl(INADDR_ALLHOSTS_GROUP)) { 17227 new_ilm = ilm_lookup_ipif(ipif, 17228 V4_PART_OF_V6(ilm->ilm_v6addr)); 17229 if (new_ilm != NULL) { 17230 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17231 /* 17232 * We still need to deal with the from_ill. 17233 */ 17234 new_ilm->ilm_is_new = B_TRUE; 17235 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17236 CLEAR_SLIST(new_ilm->ilm_filter); 17237 ASSERT(ilm->ilm_ipif == ipif); 17238 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17239 if (from_ill->ill_ilm_walker_cnt == 0) { 17240 DTRACE_PROBE3(ill__decr__cnt, 17241 (ill_t *), from_ill, 17242 (char *), "ilm", (void *), ilm); 17243 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17244 } 17245 goto delete_ilm; 17246 } 17247 /* 17248 * If we could not find one e.g. ipif is 17249 * still down on to_ill, we add this ilm 17250 * on ill_new to preserve the reference 17251 * count. 17252 */ 17253 } 17254 /* 17255 * When ipifs move, ilms always move with it 17256 * to the NEW ill. Thus we should never be 17257 * able to find ilm till we really move it here. 17258 */ 17259 ASSERT(ilm_lookup_ipif(ipif, 17260 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17261 17262 if (from_ill->ill_ilm_walker_cnt != 0) { 17263 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17264 if (new_ilm == NULL) { 17265 char buf[INET6_ADDRSTRLEN]; 17266 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17267 " multicast address %s : " 17268 "from %s to" 17269 " %s failed : ENOMEM \n", 17270 inet_ntop(AF_INET, 17271 &ilm->ilm_v6addr, buf, 17272 sizeof (buf)), 17273 from_ill->ill_name, 17274 to_ill->ill_name)); 17275 17276 ilmp = &ilm->ilm_next; 17277 continue; 17278 } 17279 *new_ilm = *ilm; 17280 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17281 (char *), "ilm", (void *), ilm); 17282 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17283 /* We don't want new_ilm linked to ilm's filter list */ 17284 new_ilm->ilm_filter = NULL; 17285 } else { 17286 /* Remove from the list */ 17287 *ilmp = ilm->ilm_next; 17288 new_ilm = ilm; 17289 } 17290 17291 /* 17292 * If we have never joined this group on the to_ill 17293 * make sure we tell the driver. 17294 */ 17295 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17296 ALL_ZONES) == NULL) 17297 new_ilm->ilm_notify_driver = B_TRUE; 17298 17299 /* Add to the to_ill's list */ 17300 new_ilm->ilm_next = to_ill->ill_ilm; 17301 to_ill->ill_ilm = new_ilm; 17302 new_ilm->ilm_is_new = B_TRUE; 17303 17304 /* 17305 * Revert multicast filter state to (EXCLUDE, NULL) 17306 */ 17307 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17308 CLEAR_SLIST(new_ilm->ilm_filter); 17309 17310 /* 17311 * Delete only if we have allocated a new ilm. 17312 */ 17313 if (new_ilm != ilm) { 17314 delete_ilm: 17315 if (from_ill->ill_ilm_walker_cnt == 0) { 17316 /* Remove from the list */ 17317 *ilmp = ilm->ilm_next; 17318 ilm->ilm_next = NULL; 17319 DTRACE_PROBE3(ipif__decr__cnt, 17320 (ipif_t *), ilm->ilm_ipif, 17321 (char *), "ilm", (void *), ilm); 17322 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17323 ilm->ilm_ipif->ipif_ilm_cnt--; 17324 ilm_inactive(ilm); 17325 } else { 17326 ilm->ilm_flags |= ILM_DELETED; 17327 from_ill->ill_ilm_cleanup_reqd = 1; 17328 ilmp = &ilm->ilm_next; 17329 } 17330 } 17331 } 17332 } 17333 17334 static uint_t 17335 ipif_get_id(ill_t *ill, uint_t id) 17336 { 17337 uint_t unit; 17338 ipif_t *tipif; 17339 boolean_t found = B_FALSE; 17340 ip_stack_t *ipst = ill->ill_ipst; 17341 17342 /* 17343 * During failback, we want to go back to the same id 17344 * instead of the smallest id so that the original 17345 * configuration is maintained. id is non-zero in that 17346 * case. 17347 */ 17348 if (id != 0) { 17349 /* 17350 * While failing back, if we still have an ipif with 17351 * MAX_ADDRS_PER_IF, it means this will be replaced 17352 * as soon as we return from this function. It was 17353 * to set to MAX_ADDRS_PER_IF by the caller so that 17354 * we can choose the smallest id. Thus we return zero 17355 * in that case ignoring the hint. 17356 */ 17357 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17358 return (0); 17359 for (tipif = ill->ill_ipif; tipif != NULL; 17360 tipif = tipif->ipif_next) { 17361 if (tipif->ipif_id == id) { 17362 found = B_TRUE; 17363 break; 17364 } 17365 } 17366 /* 17367 * If somebody already plumbed another logical 17368 * with the same id, we won't be able to find it. 17369 */ 17370 if (!found) 17371 return (id); 17372 } 17373 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17374 found = B_FALSE; 17375 for (tipif = ill->ill_ipif; tipif != NULL; 17376 tipif = tipif->ipif_next) { 17377 if (tipif->ipif_id == unit) { 17378 found = B_TRUE; 17379 break; 17380 } 17381 } 17382 if (!found) 17383 break; 17384 } 17385 return (unit); 17386 } 17387 17388 /* ARGSUSED */ 17389 static int 17390 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17391 ipif_t **rep_ipif_ptr) 17392 { 17393 ill_t *from_ill; 17394 ipif_t *rep_ipif; 17395 uint_t unit; 17396 int err = 0; 17397 ipif_t *to_ipif; 17398 struct iocblk *iocp; 17399 boolean_t failback_cmd; 17400 boolean_t remove_ipif; 17401 int rc; 17402 ip_stack_t *ipst; 17403 17404 ASSERT(IAM_WRITER_ILL(to_ill)); 17405 ASSERT(IAM_WRITER_IPIF(ipif)); 17406 17407 iocp = (struct iocblk *)mp->b_rptr; 17408 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17409 remove_ipif = B_FALSE; 17410 17411 from_ill = ipif->ipif_ill; 17412 ipst = from_ill->ill_ipst; 17413 17414 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17415 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17416 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17417 17418 /* 17419 * Don't move LINK LOCAL addresses as they are tied to 17420 * physical interface. 17421 */ 17422 if (from_ill->ill_isv6 && 17423 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17424 ipif->ipif_was_up = B_FALSE; 17425 IPIF_UNMARK_MOVING(ipif); 17426 return (0); 17427 } 17428 17429 /* 17430 * We set the ipif_id to maximum so that the search for 17431 * ipif_id will pick the lowest number i.e 0 in the 17432 * following 2 cases : 17433 * 17434 * 1) We have a replacement ipif at the head of to_ill. 17435 * We can't remove it yet as we can exceed ip_addrs_per_if 17436 * on to_ill and hence the MOVE might fail. We want to 17437 * remove it only if we could move the ipif. Thus, by 17438 * setting it to the MAX value, we make the search in 17439 * ipif_get_id return the zeroth id. 17440 * 17441 * 2) When DR pulls out the NIC and re-plumbs the interface, 17442 * we might just have a zero address plumbed on the ipif 17443 * with zero id in the case of IPv4. We remove that while 17444 * doing the failback. We want to remove it only if we 17445 * could move the ipif. Thus, by setting it to the MAX 17446 * value, we make the search in ipif_get_id return the 17447 * zeroth id. 17448 * 17449 * Both (1) and (2) are done only when when we are moving 17450 * an ipif (either due to failover/failback) which originally 17451 * belonged to this interface i.e the ipif_orig_ifindex is 17452 * the same as to_ill's ifindex. This is needed so that 17453 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17454 * from B -> A (B is being removed from the group) and 17455 * FAILBACK from A -> B restores the original configuration. 17456 * Without the check for orig_ifindex, the second FAILOVER 17457 * could make the ipif belonging to B replace the A's zeroth 17458 * ipif and the subsequent failback re-creating the replacement 17459 * ipif again. 17460 * 17461 * NOTE : We created the replacement ipif when we did a 17462 * FAILOVER (See below). We could check for FAILBACK and 17463 * then look for replacement ipif to be removed. But we don't 17464 * want to do that because we wan't to allow the possibility 17465 * of a FAILOVER from A -> B (which creates the replacement ipif), 17466 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17467 * from B -> A. 17468 */ 17469 to_ipif = to_ill->ill_ipif; 17470 if ((to_ill->ill_phyint->phyint_ifindex == 17471 ipif->ipif_orig_ifindex) && 17472 to_ipif->ipif_replace_zero) { 17473 ASSERT(to_ipif->ipif_id == 0); 17474 remove_ipif = B_TRUE; 17475 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17476 } 17477 /* 17478 * Find the lowest logical unit number on the to_ill. 17479 * If we are failing back, try to get the original id 17480 * rather than the lowest one so that the original 17481 * configuration is maintained. 17482 * 17483 * XXX need a better scheme for this. 17484 */ 17485 if (failback_cmd) { 17486 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17487 } else { 17488 unit = ipif_get_id(to_ill, 0); 17489 } 17490 17491 /* Reset back to zero in case we fail below */ 17492 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17493 to_ipif->ipif_id = 0; 17494 17495 if (unit == ipst->ips_ip_addrs_per_if) { 17496 ipif->ipif_was_up = B_FALSE; 17497 IPIF_UNMARK_MOVING(ipif); 17498 return (EINVAL); 17499 } 17500 17501 /* 17502 * ipif is ready to move from "from_ill" to "to_ill". 17503 * 17504 * 1) If we are moving ipif with id zero, create a 17505 * replacement ipif for this ipif on from_ill. If this fails 17506 * fail the MOVE operation. 17507 * 17508 * 2) Remove the replacement ipif on to_ill if any. 17509 * We could remove the replacement ipif when we are moving 17510 * the ipif with id zero. But what if somebody already 17511 * unplumbed it ? Thus we always remove it if it is present. 17512 * We want to do it only if we are sure we are going to 17513 * move the ipif to to_ill which is why there are no 17514 * returns due to error till ipif is linked to to_ill. 17515 * Note that the first ipif that we failback will always 17516 * be zero if it is present. 17517 */ 17518 if (ipif->ipif_id == 0) { 17519 ipaddr_t inaddr_any = INADDR_ANY; 17520 17521 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17522 if (rep_ipif == NULL) { 17523 ipif->ipif_was_up = B_FALSE; 17524 IPIF_UNMARK_MOVING(ipif); 17525 return (ENOMEM); 17526 } 17527 *rep_ipif = ipif_zero; 17528 /* 17529 * Before we put the ipif on the list, store the addresses 17530 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17531 * assumes so. This logic is not any different from what 17532 * ipif_allocate does. 17533 */ 17534 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17535 &rep_ipif->ipif_v6lcl_addr); 17536 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17537 &rep_ipif->ipif_v6src_addr); 17538 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17539 &rep_ipif->ipif_v6subnet); 17540 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17541 &rep_ipif->ipif_v6net_mask); 17542 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17543 &rep_ipif->ipif_v6brd_addr); 17544 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17545 &rep_ipif->ipif_v6pp_dst_addr); 17546 /* 17547 * We mark IPIF_NOFAILOVER so that this can never 17548 * move. 17549 */ 17550 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17551 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17552 rep_ipif->ipif_replace_zero = B_TRUE; 17553 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17554 MUTEX_DEFAULT, NULL); 17555 rep_ipif->ipif_id = 0; 17556 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17557 rep_ipif->ipif_ill = from_ill; 17558 rep_ipif->ipif_orig_ifindex = 17559 from_ill->ill_phyint->phyint_ifindex; 17560 /* Insert at head */ 17561 rep_ipif->ipif_next = from_ill->ill_ipif; 17562 from_ill->ill_ipif = rep_ipif; 17563 /* 17564 * We don't really care to let apps know about 17565 * this interface. 17566 */ 17567 } 17568 17569 if (remove_ipif) { 17570 /* 17571 * We set to a max value above for this case to get 17572 * id zero. ASSERT that we did get one. 17573 */ 17574 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17575 rep_ipif = to_ipif; 17576 to_ill->ill_ipif = rep_ipif->ipif_next; 17577 rep_ipif->ipif_next = NULL; 17578 /* 17579 * If some apps scanned and find this interface, 17580 * it is time to let them know, so that they can 17581 * delete it. 17582 */ 17583 17584 *rep_ipif_ptr = rep_ipif; 17585 } 17586 17587 /* Get it out of the ILL interface list. */ 17588 ipif_remove(ipif, B_FALSE); 17589 17590 /* Assign the new ill */ 17591 ipif->ipif_ill = to_ill; 17592 ipif->ipif_id = unit; 17593 /* id has already been checked */ 17594 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17595 ASSERT(rc == 0); 17596 /* Let SCTP update its list */ 17597 sctp_move_ipif(ipif, from_ill, to_ill); 17598 /* 17599 * Handle the failover and failback of ipif_t between 17600 * ill_t that have differing maximum mtu values. 17601 */ 17602 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17603 if (ipif->ipif_saved_mtu == 0) { 17604 /* 17605 * As this ipif_t is moving to an ill_t 17606 * that has a lower ill_max_mtu, its 17607 * ipif_mtu needs to be saved so it can 17608 * be restored during failback or during 17609 * failover to an ill_t which has a 17610 * higher ill_max_mtu. 17611 */ 17612 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17613 ipif->ipif_mtu = to_ill->ill_max_mtu; 17614 } else { 17615 /* 17616 * The ipif_t is, once again, moving to 17617 * an ill_t that has a lower maximum mtu 17618 * value. 17619 */ 17620 ipif->ipif_mtu = to_ill->ill_max_mtu; 17621 } 17622 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17623 ipif->ipif_saved_mtu != 0) { 17624 /* 17625 * The mtu of this ipif_t had to be reduced 17626 * during an earlier failover; this is an 17627 * opportunity for it to be increased (either as 17628 * part of another failover or a failback). 17629 */ 17630 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17631 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17632 ipif->ipif_saved_mtu = 0; 17633 } else { 17634 ipif->ipif_mtu = to_ill->ill_max_mtu; 17635 } 17636 } 17637 17638 /* 17639 * We preserve all the other fields of the ipif including 17640 * ipif_saved_ire_mp. The routes that are saved here will 17641 * be recreated on the new interface and back on the old 17642 * interface when we move back. 17643 */ 17644 ASSERT(ipif->ipif_arp_del_mp == NULL); 17645 17646 return (err); 17647 } 17648 17649 static int 17650 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17651 int ifindex, ipif_t **rep_ipif_ptr) 17652 { 17653 ipif_t *mipif; 17654 ipif_t *ipif_next; 17655 int err; 17656 17657 /* 17658 * We don't really try to MOVE back things if some of the 17659 * operations fail. The daemon will take care of moving again 17660 * later on. 17661 */ 17662 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17663 ipif_next = mipif->ipif_next; 17664 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17665 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17666 17667 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17668 17669 /* 17670 * When the MOVE fails, it is the job of the 17671 * application to take care of this properly 17672 * i.e try again if it is ENOMEM. 17673 */ 17674 if (mipif->ipif_ill != from_ill) { 17675 /* 17676 * ipif has moved. 17677 * 17678 * Move the multicast memberships associated 17679 * with this ipif to the new ill. For IPv6, we 17680 * do it once after all the ipifs are moved 17681 * (in ill_move) as they are not associated 17682 * with ipifs. 17683 * 17684 * We need to move the ilms as the ipif has 17685 * already been moved to a new ill even 17686 * in the case of errors. Neither 17687 * ilm_free(ipif) will find the ilm 17688 * when somebody unplumbs this ipif nor 17689 * ilm_delete(ilm) will be able to find the 17690 * ilm, if we don't move now. 17691 */ 17692 if (!from_ill->ill_isv6) 17693 ilm_move_v4(from_ill, to_ill, mipif); 17694 } 17695 17696 if (err != 0) 17697 return (err); 17698 } 17699 } 17700 return (0); 17701 } 17702 17703 static int 17704 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17705 { 17706 int ifindex; 17707 int err; 17708 struct iocblk *iocp; 17709 ipif_t *ipif; 17710 ipif_t *rep_ipif_ptr = NULL; 17711 ipif_t *from_ipif = NULL; 17712 boolean_t check_rep_if = B_FALSE; 17713 ip_stack_t *ipst = from_ill->ill_ipst; 17714 17715 iocp = (struct iocblk *)mp->b_rptr; 17716 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17717 /* 17718 * Move everything pointing at from_ill to to_ill. 17719 * We acheive this by passing in 0 as ifindex. 17720 */ 17721 ifindex = 0; 17722 } else { 17723 /* 17724 * Move everything pointing at from_ill whose original 17725 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17726 * We acheive this by passing in ifindex rather than 0. 17727 * Multicast vifs, ilgs move implicitly because ipifs move. 17728 */ 17729 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17730 ifindex = to_ill->ill_phyint->phyint_ifindex; 17731 } 17732 17733 /* 17734 * Determine if there is at least one ipif that would move from 17735 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17736 * ipif (if it exists) on the to_ill would be consumed as a result of 17737 * the move, in which case we need to quiesce the replacement ipif also. 17738 */ 17739 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17740 from_ipif = from_ipif->ipif_next) { 17741 if (((ifindex == 0) || 17742 (ifindex == from_ipif->ipif_orig_ifindex)) && 17743 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17744 check_rep_if = B_TRUE; 17745 break; 17746 } 17747 } 17748 17749 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17750 17751 GRAB_ILL_LOCKS(from_ill, to_ill); 17752 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17753 (void) ipsq_pending_mp_add(NULL, ipif, q, 17754 mp, ILL_MOVE_OK); 17755 RELEASE_ILL_LOCKS(from_ill, to_ill); 17756 return (EINPROGRESS); 17757 } 17758 17759 /* Check if the replacement ipif is quiescent to delete */ 17760 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17761 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17762 to_ill->ill_ipif->ipif_state_flags |= 17763 IPIF_MOVING | IPIF_CHANGING; 17764 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17765 (void) ipsq_pending_mp_add(NULL, ipif, q, 17766 mp, ILL_MOVE_OK); 17767 RELEASE_ILL_LOCKS(from_ill, to_ill); 17768 return (EINPROGRESS); 17769 } 17770 } 17771 RELEASE_ILL_LOCKS(from_ill, to_ill); 17772 17773 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17774 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17775 GRAB_ILL_LOCKS(from_ill, to_ill); 17776 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17777 17778 /* ilm_move is done inside ipif_move for IPv4 */ 17779 if (err == 0 && from_ill->ill_isv6) 17780 ilm_move_v6(from_ill, to_ill, ifindex); 17781 17782 RELEASE_ILL_LOCKS(from_ill, to_ill); 17783 rw_exit(&ipst->ips_ill_g_lock); 17784 17785 /* 17786 * send rts messages and multicast messages. 17787 */ 17788 if (rep_ipif_ptr != NULL) { 17789 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17790 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17791 rep_ipif_ptr->ipif_recovery_id = 0; 17792 } 17793 ip_rts_ifmsg(rep_ipif_ptr); 17794 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17795 #ifdef DEBUG 17796 ipif_trace_cleanup(rep_ipif_ptr); 17797 #endif 17798 mi_free(rep_ipif_ptr); 17799 } 17800 17801 conn_move_ill(from_ill, to_ill, ifindex); 17802 17803 return (err); 17804 } 17805 17806 /* 17807 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17808 * Also checks for the validity of the arguments. 17809 * Note: We are already exclusive inside the from group. 17810 * It is upto the caller to release refcnt on the to_ill's. 17811 */ 17812 static int 17813 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17814 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17815 { 17816 int dst_index; 17817 ipif_t *ipif_v4, *ipif_v6; 17818 struct lifreq *lifr; 17819 mblk_t *mp1; 17820 boolean_t exists; 17821 sin_t *sin; 17822 int err = 0; 17823 ip_stack_t *ipst; 17824 17825 if (CONN_Q(q)) 17826 ipst = CONNQ_TO_IPST(q); 17827 else 17828 ipst = ILLQ_TO_IPST(q); 17829 17830 if ((mp1 = mp->b_cont) == NULL) 17831 return (EPROTO); 17832 17833 if ((mp1 = mp1->b_cont) == NULL) 17834 return (EPROTO); 17835 17836 lifr = (struct lifreq *)mp1->b_rptr; 17837 sin = (sin_t *)&lifr->lifr_addr; 17838 17839 /* 17840 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17841 * specific operations. 17842 */ 17843 if (sin->sin_family != AF_UNSPEC) 17844 return (EINVAL); 17845 17846 /* 17847 * Get ipif with id 0. We are writer on the from ill. So we can pass 17848 * NULLs for the last 4 args and we know the lookup won't fail 17849 * with EINPROGRESS. 17850 */ 17851 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17852 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17853 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17854 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17855 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17856 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17857 17858 if (ipif_v4 == NULL && ipif_v6 == NULL) 17859 return (ENXIO); 17860 17861 if (ipif_v4 != NULL) { 17862 ASSERT(ipif_v4->ipif_refcnt != 0); 17863 if (ipif_v4->ipif_id != 0) { 17864 err = EINVAL; 17865 goto done; 17866 } 17867 17868 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17869 *ill_from_v4 = ipif_v4->ipif_ill; 17870 } 17871 17872 if (ipif_v6 != NULL) { 17873 ASSERT(ipif_v6->ipif_refcnt != 0); 17874 if (ipif_v6->ipif_id != 0) { 17875 err = EINVAL; 17876 goto done; 17877 } 17878 17879 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17880 *ill_from_v6 = ipif_v6->ipif_ill; 17881 } 17882 17883 err = 0; 17884 dst_index = lifr->lifr_movetoindex; 17885 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17886 q, mp, ip_process_ioctl, &err, ipst); 17887 if (err != 0) { 17888 /* 17889 * A move may be in progress, EINPROGRESS looking up the "to" 17890 * ill means changes already done to the "from" ipsq need to 17891 * be undone to avoid potential deadlocks. 17892 * 17893 * ENXIO will usually be because there is only v6 on the ill, 17894 * that's not treated as an error unless an ENXIO is also 17895 * seen when looking up the v6 "to" ill. 17896 * 17897 * If EINPROGRESS, the mp has been enqueued and can not be 17898 * used to look up the v6 "to" ill, but a preemptive clean 17899 * up of changes to the v6 "from" ipsq is done. 17900 */ 17901 if (err == EINPROGRESS) { 17902 if (*ill_from_v4 != NULL) { 17903 ill_t *from_ill; 17904 ipsq_t *from_ipsq; 17905 17906 from_ill = ipif_v4->ipif_ill; 17907 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17908 17909 mutex_enter(&from_ipsq->ipsq_lock); 17910 from_ipsq->ipsq_current_ipif = NULL; 17911 mutex_exit(&from_ipsq->ipsq_lock); 17912 } 17913 if (*ill_from_v6 != NULL) { 17914 ill_t *from_ill; 17915 ipsq_t *from_ipsq; 17916 17917 from_ill = ipif_v6->ipif_ill; 17918 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17919 17920 mutex_enter(&from_ipsq->ipsq_lock); 17921 from_ipsq->ipsq_current_ipif = NULL; 17922 mutex_exit(&from_ipsq->ipsq_lock); 17923 } 17924 goto done; 17925 } 17926 ASSERT(err == ENXIO); 17927 err = 0; 17928 } 17929 17930 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17931 q, mp, ip_process_ioctl, &err, ipst); 17932 if (err != 0) { 17933 /* 17934 * A move may be in progress, EINPROGRESS looking up the "to" 17935 * ill means changes already done to the "from" ipsq need to 17936 * be undone to avoid potential deadlocks. 17937 */ 17938 if (err == EINPROGRESS) { 17939 if (*ill_from_v6 != NULL) { 17940 ill_t *from_ill; 17941 ipsq_t *from_ipsq; 17942 17943 from_ill = ipif_v6->ipif_ill; 17944 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17945 17946 mutex_enter(&from_ipsq->ipsq_lock); 17947 from_ipsq->ipsq_current_ipif = NULL; 17948 mutex_exit(&from_ipsq->ipsq_lock); 17949 } 17950 goto done; 17951 } 17952 ASSERT(err == ENXIO); 17953 17954 /* Both v4 and v6 lookup failed */ 17955 if (*ill_to_v4 == NULL) { 17956 err = ENXIO; 17957 goto done; 17958 } 17959 err = 0; 17960 } 17961 17962 /* 17963 * If we have something to MOVE i.e "from" not NULL, 17964 * "to" should be non-NULL. 17965 */ 17966 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17967 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17968 err = EINVAL; 17969 } 17970 17971 done: 17972 if (ipif_v4 != NULL) 17973 ipif_refrele(ipif_v4); 17974 if (ipif_v6 != NULL) 17975 ipif_refrele(ipif_v6); 17976 return (err); 17977 } 17978 17979 /* 17980 * FAILOVER and FAILBACK are modelled as MOVE operations. 17981 * 17982 * We don't check whether the MOVE is within the same group or 17983 * not, because this ioctl can be used as a generic mechanism 17984 * to failover from interface A to B, though things will function 17985 * only if they are really part of the same group. Moreover, 17986 * all ipifs may be down and hence temporarily out of the group. 17987 * 17988 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17989 * down first and then V6. For each we wait for the ipif's to become quiescent. 17990 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17991 * have been deleted and there are no active references. Once quiescent the 17992 * ipif's are moved and brought up on the new ill. 17993 * 17994 * Normally the source ill and destination ill belong to the same IPMP group 17995 * and hence the same ipsq_t. In the event they don't belong to the same 17996 * same group the two ipsq's are first merged into one ipsq - that of the 17997 * to_ill. The multicast memberships on the source and destination ill cannot 17998 * change during the move operation since multicast joins/leaves also have to 17999 * execute on the same ipsq and are hence serialized. 18000 */ 18001 /* ARGSUSED */ 18002 int 18003 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18004 ip_ioctl_cmd_t *ipip, void *ifreq) 18005 { 18006 ill_t *ill_to_v4 = NULL; 18007 ill_t *ill_to_v6 = NULL; 18008 ill_t *ill_from_v4 = NULL; 18009 ill_t *ill_from_v6 = NULL; 18010 int err = 0; 18011 18012 /* 18013 * setup from and to ill's, we can get EINPROGRESS only for 18014 * to_ill's. 18015 */ 18016 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18017 &ill_to_v4, &ill_to_v6); 18018 18019 if (err != 0) { 18020 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18021 goto done; 18022 } 18023 18024 /* 18025 * nothing to do. 18026 */ 18027 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18028 goto done; 18029 } 18030 18031 /* 18032 * nothing to do. 18033 */ 18034 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18035 goto done; 18036 } 18037 18038 /* 18039 * Mark the ill as changing. 18040 * ILL_CHANGING flag is cleared when the ipif's are brought up 18041 * in ill_up_ipifs in case of error they are cleared below. 18042 */ 18043 18044 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18045 if (ill_from_v4 != NULL) 18046 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18047 if (ill_from_v6 != NULL) 18048 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18049 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18050 18051 /* 18052 * Make sure that both src and dst are 18053 * in the same syncq group. If not make it happen. 18054 * We are not holding any locks because we are the writer 18055 * on the from_ipsq and we will hold locks in ill_merge_groups 18056 * to protect to_ipsq against changing. 18057 */ 18058 if (ill_from_v4 != NULL) { 18059 if (ill_from_v4->ill_phyint->phyint_ipsq != 18060 ill_to_v4->ill_phyint->phyint_ipsq) { 18061 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18062 NULL, mp, q); 18063 goto err_ret; 18064 18065 } 18066 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18067 } else { 18068 18069 if (ill_from_v6->ill_phyint->phyint_ipsq != 18070 ill_to_v6->ill_phyint->phyint_ipsq) { 18071 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18072 NULL, mp, q); 18073 goto err_ret; 18074 18075 } 18076 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18077 } 18078 18079 /* 18080 * Now that the ipsq's have been merged and we are the writer 18081 * lets mark to_ill as changing as well. 18082 */ 18083 18084 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18085 if (ill_to_v4 != NULL) 18086 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18087 if (ill_to_v6 != NULL) 18088 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18089 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18090 18091 /* 18092 * Its ok for us to proceed with the move even if 18093 * ill_pending_mp is non null on one of the from ill's as the reply 18094 * should not be looking at the ipif, it should only care about the 18095 * ill itself. 18096 */ 18097 18098 /* 18099 * lets move ipv4 first. 18100 */ 18101 if (ill_from_v4 != NULL) { 18102 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18103 ill_from_v4->ill_move_in_progress = B_TRUE; 18104 ill_to_v4->ill_move_in_progress = B_TRUE; 18105 ill_to_v4->ill_move_peer = ill_from_v4; 18106 ill_from_v4->ill_move_peer = ill_to_v4; 18107 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18108 } 18109 18110 /* 18111 * Now lets move ipv6. 18112 */ 18113 if (err == 0 && ill_from_v6 != NULL) { 18114 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18115 ill_from_v6->ill_move_in_progress = B_TRUE; 18116 ill_to_v6->ill_move_in_progress = B_TRUE; 18117 ill_to_v6->ill_move_peer = ill_from_v6; 18118 ill_from_v6->ill_move_peer = ill_to_v6; 18119 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18120 } 18121 18122 err_ret: 18123 /* 18124 * EINPROGRESS means we are waiting for the ipif's that need to be 18125 * moved to become quiescent. 18126 */ 18127 if (err == EINPROGRESS) { 18128 goto done; 18129 } 18130 18131 /* 18132 * if err is set ill_up_ipifs will not be called 18133 * lets clear the flags. 18134 */ 18135 18136 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18137 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18138 /* 18139 * Some of the clearing may be redundant. But it is simple 18140 * not making any extra checks. 18141 */ 18142 if (ill_from_v6 != NULL) { 18143 ill_from_v6->ill_move_in_progress = B_FALSE; 18144 ill_from_v6->ill_move_peer = NULL; 18145 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18146 } 18147 if (ill_from_v4 != NULL) { 18148 ill_from_v4->ill_move_in_progress = B_FALSE; 18149 ill_from_v4->ill_move_peer = NULL; 18150 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18151 } 18152 if (ill_to_v6 != NULL) { 18153 ill_to_v6->ill_move_in_progress = B_FALSE; 18154 ill_to_v6->ill_move_peer = NULL; 18155 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18156 } 18157 if (ill_to_v4 != NULL) { 18158 ill_to_v4->ill_move_in_progress = B_FALSE; 18159 ill_to_v4->ill_move_peer = NULL; 18160 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18161 } 18162 18163 /* 18164 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18165 * Do this always to maintain proper state i.e even in case of errors. 18166 * As phyint_inactive looks at both v4 and v6 interfaces, 18167 * we need not call on both v4 and v6 interfaces. 18168 */ 18169 if (ill_from_v4 != NULL) { 18170 if ((ill_from_v4->ill_phyint->phyint_flags & 18171 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18172 phyint_inactive(ill_from_v4->ill_phyint); 18173 } 18174 } else if (ill_from_v6 != NULL) { 18175 if ((ill_from_v6->ill_phyint->phyint_flags & 18176 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18177 phyint_inactive(ill_from_v6->ill_phyint); 18178 } 18179 } 18180 18181 if (ill_to_v4 != NULL) { 18182 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18183 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18184 } 18185 } else if (ill_to_v6 != NULL) { 18186 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18187 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18188 } 18189 } 18190 18191 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18192 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18193 18194 no_err: 18195 /* 18196 * lets bring the interfaces up on the to_ill. 18197 */ 18198 if (err == 0) { 18199 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18200 q, mp); 18201 } 18202 18203 if (err == 0) { 18204 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18205 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18206 18207 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18208 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18209 } 18210 done: 18211 18212 if (ill_to_v4 != NULL) { 18213 ill_refrele(ill_to_v4); 18214 } 18215 if (ill_to_v6 != NULL) { 18216 ill_refrele(ill_to_v6); 18217 } 18218 18219 return (err); 18220 } 18221 18222 static void 18223 ill_dl_down(ill_t *ill) 18224 { 18225 /* 18226 * The ill is down; unbind but stay attached since we're still 18227 * associated with a PPA. If we have negotiated DLPI capabilites 18228 * with the data link service provider (IDS_OK) then reset them. 18229 * The interval between unbinding and rebinding is potentially 18230 * unbounded hence we cannot assume things will be the same. 18231 * The DLPI capabilities will be probed again when the data link 18232 * is brought up. 18233 */ 18234 mblk_t *mp = ill->ill_unbind_mp; 18235 18236 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18237 18238 ill->ill_unbind_mp = NULL; 18239 if (mp != NULL) { 18240 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18241 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18242 ill->ill_name)); 18243 mutex_enter(&ill->ill_lock); 18244 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18245 mutex_exit(&ill->ill_lock); 18246 /* 18247 * Reset the capabilities if the negotiation is done or is 18248 * still in progress. Note that ill_capability_reset() will 18249 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18250 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18251 * 18252 * Further, reset ill_capab_reneg to be B_FALSE so that the 18253 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18254 * the capabilities renegotiation from happening. 18255 */ 18256 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18257 ill_capability_reset(ill); 18258 ill->ill_capab_reneg = B_FALSE; 18259 18260 ill_dlpi_send(ill, mp); 18261 } 18262 18263 /* 18264 * Toss all of our multicast memberships. We could keep them, but 18265 * then we'd have to do bookkeeping of any joins and leaves performed 18266 * by the application while the the interface is down (we can't just 18267 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18268 * on a downed interface). 18269 */ 18270 ill_leave_multicast(ill); 18271 18272 mutex_enter(&ill->ill_lock); 18273 ill->ill_dl_up = 0; 18274 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 18275 mutex_exit(&ill->ill_lock); 18276 } 18277 18278 static void 18279 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18280 { 18281 union DL_primitives *dlp; 18282 t_uscalar_t prim; 18283 18284 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18285 18286 dlp = (union DL_primitives *)mp->b_rptr; 18287 prim = dlp->dl_primitive; 18288 18289 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18290 dl_primstr(prim), prim, ill->ill_name)); 18291 18292 switch (prim) { 18293 case DL_PHYS_ADDR_REQ: 18294 { 18295 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18296 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18297 break; 18298 } 18299 case DL_BIND_REQ: 18300 mutex_enter(&ill->ill_lock); 18301 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18302 mutex_exit(&ill->ill_lock); 18303 break; 18304 } 18305 18306 /* 18307 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18308 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18309 * we only wait for the ACK of the DL_UNBIND_REQ. 18310 */ 18311 mutex_enter(&ill->ill_lock); 18312 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18313 (prim == DL_UNBIND_REQ)) { 18314 ill->ill_dlpi_pending = prim; 18315 } 18316 mutex_exit(&ill->ill_lock); 18317 18318 putnext(ill->ill_wq, mp); 18319 } 18320 18321 /* 18322 * Helper function for ill_dlpi_send(). 18323 */ 18324 /* ARGSUSED */ 18325 static void 18326 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18327 { 18328 ill_dlpi_send(q->q_ptr, mp); 18329 } 18330 18331 /* 18332 * Send a DLPI control message to the driver but make sure there 18333 * is only one outstanding message. Uses ill_dlpi_pending to tell 18334 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18335 * when an ACK or a NAK is received to process the next queued message. 18336 */ 18337 void 18338 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18339 { 18340 mblk_t **mpp; 18341 18342 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18343 18344 /* 18345 * To ensure that any DLPI requests for current exclusive operation 18346 * are always completely sent before any DLPI messages for other 18347 * operations, require writer access before enqueuing. 18348 */ 18349 if (!IAM_WRITER_ILL(ill)) { 18350 ill_refhold(ill); 18351 /* qwriter_ip() does the ill_refrele() */ 18352 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18353 NEW_OP, B_TRUE); 18354 return; 18355 } 18356 18357 mutex_enter(&ill->ill_lock); 18358 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18359 /* Must queue message. Tail insertion */ 18360 mpp = &ill->ill_dlpi_deferred; 18361 while (*mpp != NULL) 18362 mpp = &((*mpp)->b_next); 18363 18364 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18365 ill->ill_name)); 18366 18367 *mpp = mp; 18368 mutex_exit(&ill->ill_lock); 18369 return; 18370 } 18371 mutex_exit(&ill->ill_lock); 18372 ill_dlpi_dispatch(ill, mp); 18373 } 18374 18375 /* 18376 * Send all deferred DLPI messages without waiting for their ACKs. 18377 */ 18378 void 18379 ill_dlpi_send_deferred(ill_t *ill) 18380 { 18381 mblk_t *mp, *nextmp; 18382 18383 /* 18384 * Clear ill_dlpi_pending so that the message is not queued in 18385 * ill_dlpi_send(). 18386 */ 18387 mutex_enter(&ill->ill_lock); 18388 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18389 mp = ill->ill_dlpi_deferred; 18390 ill->ill_dlpi_deferred = NULL; 18391 mutex_exit(&ill->ill_lock); 18392 18393 for (; mp != NULL; mp = nextmp) { 18394 nextmp = mp->b_next; 18395 mp->b_next = NULL; 18396 ill_dlpi_send(ill, mp); 18397 } 18398 } 18399 18400 /* 18401 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18402 */ 18403 boolean_t 18404 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18405 { 18406 t_uscalar_t pending; 18407 18408 mutex_enter(&ill->ill_lock); 18409 if (ill->ill_dlpi_pending == prim) { 18410 mutex_exit(&ill->ill_lock); 18411 return (B_TRUE); 18412 } 18413 18414 /* 18415 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18416 * without waiting, so don't print any warnings in that case. 18417 */ 18418 if (ill->ill_state_flags & ILL_CONDEMNED) { 18419 mutex_exit(&ill->ill_lock); 18420 return (B_FALSE); 18421 } 18422 pending = ill->ill_dlpi_pending; 18423 mutex_exit(&ill->ill_lock); 18424 18425 if (pending == DL_PRIM_INVAL) { 18426 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18427 "received unsolicited ack for %s on %s\n", 18428 dl_primstr(prim), ill->ill_name); 18429 } else { 18430 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18431 "received unexpected ack for %s on %s (expecting %s)\n", 18432 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18433 } 18434 return (B_FALSE); 18435 } 18436 18437 /* 18438 * Complete the current DLPI operation associated with `prim' on `ill' and 18439 * start the next queued DLPI operation (if any). If there are no queued DLPI 18440 * operations and the ill's current exclusive IPSQ operation has finished 18441 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18442 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18443 * the comments above ipsq_current_finish() for details. 18444 */ 18445 void 18446 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18447 { 18448 mblk_t *mp; 18449 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18450 18451 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18452 mutex_enter(&ill->ill_lock); 18453 18454 ASSERT(prim != DL_PRIM_INVAL); 18455 ASSERT(ill->ill_dlpi_pending == prim); 18456 18457 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18458 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18459 18460 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18461 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18462 18463 mutex_enter(&ipsq->ipsq_lock); 18464 if (ipsq->ipsq_current_done) 18465 ipsq->ipsq_current_ipif = NULL; 18466 mutex_exit(&ipsq->ipsq_lock); 18467 18468 cv_signal(&ill->ill_cv); 18469 mutex_exit(&ill->ill_lock); 18470 return; 18471 } 18472 18473 ill->ill_dlpi_deferred = mp->b_next; 18474 mp->b_next = NULL; 18475 mutex_exit(&ill->ill_lock); 18476 18477 ill_dlpi_dispatch(ill, mp); 18478 } 18479 18480 void 18481 conn_delete_ire(conn_t *connp, caddr_t arg) 18482 { 18483 ipif_t *ipif = (ipif_t *)arg; 18484 ire_t *ire; 18485 18486 /* 18487 * Look at the cached ires on conns which has pointers to ipifs. 18488 * We just call ire_refrele which clears up the reference 18489 * to ire. Called when a conn closes. Also called from ipif_free 18490 * to cleanup indirect references to the stale ipif via the cached ire. 18491 */ 18492 mutex_enter(&connp->conn_lock); 18493 ire = connp->conn_ire_cache; 18494 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18495 connp->conn_ire_cache = NULL; 18496 mutex_exit(&connp->conn_lock); 18497 IRE_REFRELE_NOTR(ire); 18498 return; 18499 } 18500 mutex_exit(&connp->conn_lock); 18501 18502 } 18503 18504 /* 18505 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18506 * of IREs. Those IREs may have been previously cached in the conn structure. 18507 * This ipcl_walk() walker function releases all references to such IREs based 18508 * on the condemned flag. 18509 */ 18510 /* ARGSUSED */ 18511 void 18512 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18513 { 18514 ire_t *ire; 18515 18516 mutex_enter(&connp->conn_lock); 18517 ire = connp->conn_ire_cache; 18518 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18519 connp->conn_ire_cache = NULL; 18520 mutex_exit(&connp->conn_lock); 18521 IRE_REFRELE_NOTR(ire); 18522 return; 18523 } 18524 mutex_exit(&connp->conn_lock); 18525 } 18526 18527 /* 18528 * Take down a specific interface, but don't lose any information about it. 18529 * Also delete interface from its interface group (ifgrp). 18530 * (Always called as writer.) 18531 * This function goes through the down sequence even if the interface is 18532 * already down. There are 2 reasons. 18533 * a. Currently we permit interface routes that depend on down interfaces 18534 * to be added. This behaviour itself is questionable. However it appears 18535 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18536 * time. We go thru the cleanup in order to remove these routes. 18537 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18538 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18539 * down, but we need to cleanup i.e. do ill_dl_down and 18540 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18541 * 18542 * IP-MT notes: 18543 * 18544 * Model of reference to interfaces. 18545 * 18546 * The following members in ipif_t track references to the ipif. 18547 * int ipif_refcnt; Active reference count 18548 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18549 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18550 * 18551 * The following members in ill_t track references to the ill. 18552 * int ill_refcnt; active refcnt 18553 * uint_t ill_ire_cnt; Number of ires referencing ill 18554 * uint_t ill_nce_cnt; Number of nces referencing ill 18555 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18556 * 18557 * Reference to an ipif or ill can be obtained in any of the following ways. 18558 * 18559 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18560 * Pointers to ipif / ill from other data structures viz ire and conn. 18561 * Implicit reference to the ipif / ill by holding a reference to the ire. 18562 * 18563 * The ipif/ill lookup functions return a reference held ipif / ill. 18564 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18565 * This is a purely dynamic reference count associated with threads holding 18566 * references to the ipif / ill. Pointers from other structures do not 18567 * count towards this reference count. 18568 * 18569 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18570 * associated with the ipif/ill. This is incremented whenever a new 18571 * ire is created referencing the ipif/ill. This is done atomically inside 18572 * ire_add_v[46] where the ire is actually added to the ire hash table. 18573 * The count is decremented in ire_inactive where the ire is destroyed. 18574 * 18575 * nce's reference ill's thru nce_ill and the count of nce's associated with 18576 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18577 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18578 * table. Similarly it is decremented in ndp_inactive() where the nce 18579 * is destroyed. 18580 * 18581 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18582 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18583 * in ilm_walker_cleanup() or ilm_delete(). 18584 * 18585 * Flow of ioctls involving interface down/up 18586 * 18587 * The following is the sequence of an attempt to set some critical flags on an 18588 * up interface. 18589 * ip_sioctl_flags 18590 * ipif_down 18591 * wait for ipif to be quiescent 18592 * ipif_down_tail 18593 * ip_sioctl_flags_tail 18594 * 18595 * All set ioctls that involve down/up sequence would have a skeleton similar 18596 * to the above. All the *tail functions are called after the refcounts have 18597 * dropped to the appropriate values. 18598 * 18599 * The mechanism to quiesce an ipif is as follows. 18600 * 18601 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18602 * on the ipif. Callers either pass a flag requesting wait or the lookup 18603 * functions will return NULL. 18604 * 18605 * Delete all ires referencing this ipif 18606 * 18607 * Any thread attempting to do an ipif_refhold on an ipif that has been 18608 * obtained thru a cached pointer will first make sure that 18609 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18610 * increment the refcount. 18611 * 18612 * The above guarantees that the ipif refcount will eventually come down to 18613 * zero and the ipif will quiesce, once all threads that currently hold a 18614 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18615 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18616 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18617 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18618 * in ip.h 18619 * 18620 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18621 * 18622 * Threads trying to lookup an ipif or ill can pass a flag requesting 18623 * wait and restart if the ipif / ill cannot be looked up currently. 18624 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18625 * failure if the ipif is currently undergoing an exclusive operation, and 18626 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18627 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18628 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18629 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18630 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18631 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18632 * until we release the ipsq_lock, even though the the ill/ipif state flags 18633 * can change after we drop the ill_lock. 18634 * 18635 * An attempt to send out a packet using an ipif that is currently 18636 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18637 * operation and restart it later when the exclusive condition on the ipif ends. 18638 * This is an example of not passing the wait flag to the lookup functions. For 18639 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18640 * out a multicast packet on that ipif will fail while the ipif is 18641 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18642 * currently IPIF_CHANGING will also fail. 18643 */ 18644 int 18645 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18646 { 18647 ill_t *ill = ipif->ipif_ill; 18648 phyint_t *phyi; 18649 conn_t *connp; 18650 boolean_t success; 18651 boolean_t ipif_was_up = B_FALSE; 18652 ip_stack_t *ipst = ill->ill_ipst; 18653 18654 ASSERT(IAM_WRITER_IPIF(ipif)); 18655 18656 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18657 18658 if (ipif->ipif_flags & IPIF_UP) { 18659 mutex_enter(&ill->ill_lock); 18660 ipif->ipif_flags &= ~IPIF_UP; 18661 ASSERT(ill->ill_ipif_up_count > 0); 18662 --ill->ill_ipif_up_count; 18663 mutex_exit(&ill->ill_lock); 18664 ipif_was_up = B_TRUE; 18665 /* Update status in SCTP's list */ 18666 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18667 ill_nic_event_dispatch(ipif->ipif_ill, 18668 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 18669 } 18670 18671 /* 18672 * Blow away memberships we established in ipif_multicast_up(). 18673 */ 18674 ipif_multicast_down(ipif); 18675 18676 /* 18677 * Remove from the mapping for __sin6_src_id. We insert only 18678 * when the address is not INADDR_ANY. As IPv4 addresses are 18679 * stored as mapped addresses, we need to check for mapped 18680 * INADDR_ANY also. 18681 */ 18682 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18683 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18684 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18685 int err; 18686 18687 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18688 ipif->ipif_zoneid, ipst); 18689 if (err != 0) { 18690 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18691 } 18692 } 18693 18694 /* 18695 * Before we delete the ill from the group (if any), we need 18696 * to make sure that we delete all the routes dependent on 18697 * this and also any ipifs dependent on this ipif for 18698 * source address. We need to do before we delete from 18699 * the group because 18700 * 18701 * 1) ipif_down_delete_ire de-references ill->ill_group. 18702 * 18703 * 2) ipif_update_other_ipifs needs to walk the whole group 18704 * for re-doing source address selection. Note that 18705 * ipif_select_source[_v6] called from 18706 * ipif_update_other_ipifs[_v6] will not pick this ipif 18707 * because we have already marked down here i.e cleared 18708 * IPIF_UP. 18709 */ 18710 if (ipif->ipif_isv6) { 18711 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18712 ipst); 18713 } else { 18714 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18715 ipst); 18716 } 18717 18718 /* 18719 * Cleaning up the conn_ire_cache or conns must be done only after the 18720 * ires have been deleted above. Otherwise a thread could end up 18721 * caching an ire in a conn after we have finished the cleanup of the 18722 * conn. The caching is done after making sure that the ire is not yet 18723 * condemned. Also documented in the block comment above ip_output 18724 */ 18725 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18726 /* Also, delete the ires cached in SCTP */ 18727 sctp_ire_cache_flush(ipif); 18728 18729 /* 18730 * Update any other ipifs which have used "our" local address as 18731 * a source address. This entails removing and recreating IRE_INTERFACE 18732 * entries for such ipifs. 18733 */ 18734 if (ipif->ipif_isv6) 18735 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18736 else 18737 ipif_update_other_ipifs(ipif, ill->ill_group); 18738 18739 if (ipif_was_up) { 18740 /* 18741 * Check whether it is last ipif to leave this group. 18742 * If this is the last ipif to leave, we should remove 18743 * this ill from the group as ipif_select_source will not 18744 * be able to find any useful ipifs if this ill is selected 18745 * for load balancing. 18746 * 18747 * For nameless groups, we should call ifgrp_delete if this 18748 * belongs to some group. As this ipif is going down, we may 18749 * need to reconstruct groups. 18750 */ 18751 phyi = ill->ill_phyint; 18752 /* 18753 * If the phyint_groupname_len is 0, it may or may not 18754 * be in the nameless group. If the phyint_groupname_len is 18755 * not 0, then this ill should be part of some group. 18756 * As we always insert this ill in the group if 18757 * phyint_groupname_len is not zero when the first ipif 18758 * comes up (in ipif_up_done), it should be in a group 18759 * when the namelen is not 0. 18760 * 18761 * NOTE : When we delete the ill from the group,it will 18762 * blow away all the IRE_CACHES pointing either at this ipif or 18763 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18764 * should be pointing at this ill. 18765 */ 18766 ASSERT(phyi->phyint_groupname_len == 0 || 18767 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18768 18769 if (phyi->phyint_groupname_len != 0) { 18770 if (ill->ill_ipif_up_count == 0) 18771 illgrp_delete(ill); 18772 } 18773 18774 /* 18775 * If we have deleted some of the broadcast ires associated 18776 * with this ipif, we need to re-nominate somebody else if 18777 * the ires that we deleted were the nominated ones. 18778 */ 18779 if (ill->ill_group != NULL && !ill->ill_isv6) 18780 ipif_renominate_bcast(ipif); 18781 } 18782 18783 /* 18784 * neighbor-discovery or arp entries for this interface. 18785 */ 18786 ipif_ndp_down(ipif); 18787 18788 /* 18789 * If mp is NULL the caller will wait for the appropriate refcnt. 18790 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18791 * and ill_delete -> ipif_free -> ipif_down 18792 */ 18793 if (mp == NULL) { 18794 ASSERT(q == NULL); 18795 return (0); 18796 } 18797 18798 if (CONN_Q(q)) { 18799 connp = Q_TO_CONN(q); 18800 mutex_enter(&connp->conn_lock); 18801 } else { 18802 connp = NULL; 18803 } 18804 mutex_enter(&ill->ill_lock); 18805 /* 18806 * Are there any ire's pointing to this ipif that are still active ? 18807 * If this is the last ipif going down, are there any ire's pointing 18808 * to this ill that are still active ? 18809 */ 18810 if (ipif_is_quiescent(ipif)) { 18811 mutex_exit(&ill->ill_lock); 18812 if (connp != NULL) 18813 mutex_exit(&connp->conn_lock); 18814 return (0); 18815 } 18816 18817 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18818 ill->ill_name, (void *)ill)); 18819 /* 18820 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18821 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18822 * which in turn is called by the last refrele on the ipif/ill/ire. 18823 */ 18824 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18825 if (!success) { 18826 /* The conn is closing. So just return */ 18827 ASSERT(connp != NULL); 18828 mutex_exit(&ill->ill_lock); 18829 mutex_exit(&connp->conn_lock); 18830 return (EINTR); 18831 } 18832 18833 mutex_exit(&ill->ill_lock); 18834 if (connp != NULL) 18835 mutex_exit(&connp->conn_lock); 18836 return (EINPROGRESS); 18837 } 18838 18839 void 18840 ipif_down_tail(ipif_t *ipif) 18841 { 18842 ill_t *ill = ipif->ipif_ill; 18843 18844 /* 18845 * Skip any loopback interface (null wq). 18846 * If this is the last logical interface on the ill 18847 * have ill_dl_down tell the driver we are gone (unbind) 18848 * Note that lun 0 can ipif_down even though 18849 * there are other logical units that are up. 18850 * This occurs e.g. when we change a "significant" IFF_ flag. 18851 */ 18852 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18853 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18854 ill->ill_dl_up) { 18855 ill_dl_down(ill); 18856 } 18857 ill->ill_logical_down = 0; 18858 18859 /* 18860 * Have to be after removing the routes in ipif_down_delete_ire. 18861 */ 18862 if (ipif->ipif_isv6) { 18863 if (ill->ill_flags & ILLF_XRESOLV) 18864 ipif_arp_down(ipif); 18865 } else { 18866 ipif_arp_down(ipif); 18867 } 18868 18869 ip_rts_ifmsg(ipif); 18870 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18871 } 18872 18873 /* 18874 * Bring interface logically down without bringing the physical interface 18875 * down e.g. when the netmask is changed. This avoids long lasting link 18876 * negotiations between an ethernet interface and a certain switches. 18877 */ 18878 static int 18879 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18880 { 18881 /* 18882 * The ill_logical_down flag is a transient flag. It is set here 18883 * and is cleared once the down has completed in ipif_down_tail. 18884 * This flag does not indicate whether the ill stream is in the 18885 * DL_BOUND state with the driver. Instead this flag is used by 18886 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18887 * the driver. The state of the ill stream i.e. whether it is 18888 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18889 */ 18890 ipif->ipif_ill->ill_logical_down = 1; 18891 return (ipif_down(ipif, q, mp)); 18892 } 18893 18894 /* 18895 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18896 * If the usesrc client ILL is already part of a usesrc group or not, 18897 * in either case a ire_stq with the matching usesrc client ILL will 18898 * locate the IRE's that need to be deleted. We want IREs to be created 18899 * with the new source address. 18900 */ 18901 static void 18902 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18903 { 18904 ill_t *ucill = (ill_t *)ill_arg; 18905 18906 ASSERT(IAM_WRITER_ILL(ucill)); 18907 18908 if (ire->ire_stq == NULL) 18909 return; 18910 18911 if ((ire->ire_type == IRE_CACHE) && 18912 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18913 ire_delete(ire); 18914 } 18915 18916 /* 18917 * ire_walk routine to delete every IRE dependent on the interface 18918 * address that is going down. (Always called as writer.) 18919 * Works for both v4 and v6. 18920 * In addition for checking for ire_ipif matches it also checks for 18921 * IRE_CACHE entries which have the same source address as the 18922 * disappearing ipif since ipif_select_source might have picked 18923 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18924 * care of any IRE_INTERFACE with the disappearing source address. 18925 */ 18926 static void 18927 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18928 { 18929 ipif_t *ipif = (ipif_t *)ipif_arg; 18930 ill_t *ire_ill; 18931 ill_t *ipif_ill; 18932 18933 ASSERT(IAM_WRITER_IPIF(ipif)); 18934 if (ire->ire_ipif == NULL) 18935 return; 18936 18937 /* 18938 * For IPv4, we derive source addresses for an IRE from ipif's 18939 * belonging to the same IPMP group as the IRE's outgoing 18940 * interface. If an IRE's outgoing interface isn't in the 18941 * same IPMP group as a particular ipif, then that ipif 18942 * couldn't have been used as a source address for this IRE. 18943 * 18944 * For IPv6, source addresses are only restricted to the IPMP group 18945 * if the IRE is for a link-local address or a multicast address. 18946 * Otherwise, source addresses for an IRE can be chosen from 18947 * interfaces other than the the outgoing interface for that IRE. 18948 * 18949 * For source address selection details, see ipif_select_source() 18950 * and ipif_select_source_v6(). 18951 */ 18952 if (ire->ire_ipversion == IPV4_VERSION || 18953 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18954 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18955 ire_ill = ire->ire_ipif->ipif_ill; 18956 ipif_ill = ipif->ipif_ill; 18957 18958 if (ire_ill->ill_group != ipif_ill->ill_group) { 18959 return; 18960 } 18961 } 18962 18963 if (ire->ire_ipif != ipif) { 18964 /* 18965 * Look for a matching source address. 18966 */ 18967 if (ire->ire_type != IRE_CACHE) 18968 return; 18969 if (ipif->ipif_flags & IPIF_NOLOCAL) 18970 return; 18971 18972 if (ire->ire_ipversion == IPV4_VERSION) { 18973 if (ire->ire_src_addr != ipif->ipif_src_addr) 18974 return; 18975 } else { 18976 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18977 &ipif->ipif_v6lcl_addr)) 18978 return; 18979 } 18980 ire_delete(ire); 18981 return; 18982 } 18983 /* 18984 * ire_delete() will do an ire_flush_cache which will delete 18985 * all ire_ipif matches 18986 */ 18987 ire_delete(ire); 18988 } 18989 18990 /* 18991 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18992 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18993 * 2) when an interface is brought up or down (on that ill). 18994 * This ensures that the IRE_CACHE entries don't retain stale source 18995 * address selection results. 18996 */ 18997 void 18998 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18999 { 19000 ill_t *ill = (ill_t *)ill_arg; 19001 ill_t *ipif_ill; 19002 19003 ASSERT(IAM_WRITER_ILL(ill)); 19004 /* 19005 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19006 * Hence this should be IRE_CACHE. 19007 */ 19008 ASSERT(ire->ire_type == IRE_CACHE); 19009 19010 /* 19011 * We are called for IRE_CACHES whose ire_ipif matches ill. 19012 * We are only interested in IRE_CACHES that has borrowed 19013 * the source address from ill_arg e.g. ipif_up_done[_v6] 19014 * for which we need to look at ire_ipif->ipif_ill match 19015 * with ill. 19016 */ 19017 ASSERT(ire->ire_ipif != NULL); 19018 ipif_ill = ire->ire_ipif->ipif_ill; 19019 if (ipif_ill == ill || (ill->ill_group != NULL && 19020 ipif_ill->ill_group == ill->ill_group)) { 19021 ire_delete(ire); 19022 } 19023 } 19024 19025 /* 19026 * Delete all the ire whose stq references ill_arg. 19027 */ 19028 static void 19029 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19030 { 19031 ill_t *ill = (ill_t *)ill_arg; 19032 ill_t *ire_ill; 19033 19034 ASSERT(IAM_WRITER_ILL(ill)); 19035 /* 19036 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19037 * Hence this should be IRE_CACHE. 19038 */ 19039 ASSERT(ire->ire_type == IRE_CACHE); 19040 19041 /* 19042 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19043 * matches ill. We are only interested in IRE_CACHES that 19044 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19045 * filtering here. 19046 */ 19047 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19048 19049 if (ire_ill == ill) 19050 ire_delete(ire); 19051 } 19052 19053 /* 19054 * This is called when an ill leaves the group. We want to delete 19055 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19056 * pointing at ill. 19057 */ 19058 static void 19059 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19060 { 19061 ill_t *ill = (ill_t *)ill_arg; 19062 19063 ASSERT(IAM_WRITER_ILL(ill)); 19064 ASSERT(ill->ill_group == NULL); 19065 /* 19066 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19067 * Hence this should be IRE_CACHE. 19068 */ 19069 ASSERT(ire->ire_type == IRE_CACHE); 19070 /* 19071 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19072 * matches ill. We are interested in both. 19073 */ 19074 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19075 (ire->ire_ipif->ipif_ill == ill)); 19076 19077 ire_delete(ire); 19078 } 19079 19080 /* 19081 * Initiate deallocate of an IPIF. Always called as writer. Called by 19082 * ill_delete or ip_sioctl_removeif. 19083 */ 19084 static void 19085 ipif_free(ipif_t *ipif) 19086 { 19087 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19088 19089 ASSERT(IAM_WRITER_IPIF(ipif)); 19090 19091 if (ipif->ipif_recovery_id != 0) 19092 (void) untimeout(ipif->ipif_recovery_id); 19093 ipif->ipif_recovery_id = 0; 19094 19095 /* Remove conn references */ 19096 reset_conn_ipif(ipif); 19097 19098 /* 19099 * Make sure we have valid net and subnet broadcast ire's for the 19100 * other ipif's which share them with this ipif. 19101 */ 19102 if (!ipif->ipif_isv6) 19103 ipif_check_bcast_ires(ipif); 19104 19105 /* 19106 * Take down the interface. We can be called either from ill_delete 19107 * or from ip_sioctl_removeif. 19108 */ 19109 (void) ipif_down(ipif, NULL, NULL); 19110 19111 /* 19112 * Now that the interface is down, there's no chance it can still 19113 * become a duplicate. Cancel any timer that may have been set while 19114 * tearing down. 19115 */ 19116 if (ipif->ipif_recovery_id != 0) 19117 (void) untimeout(ipif->ipif_recovery_id); 19118 ipif->ipif_recovery_id = 0; 19119 19120 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19121 /* Remove pointers to this ill in the multicast routing tables */ 19122 reset_mrt_vif_ipif(ipif); 19123 rw_exit(&ipst->ips_ill_g_lock); 19124 } 19125 19126 /* 19127 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19128 * also ill_move(). 19129 */ 19130 static void 19131 ipif_free_tail(ipif_t *ipif) 19132 { 19133 mblk_t *mp; 19134 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19135 19136 /* 19137 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19138 */ 19139 mutex_enter(&ipif->ipif_saved_ire_lock); 19140 mp = ipif->ipif_saved_ire_mp; 19141 ipif->ipif_saved_ire_mp = NULL; 19142 mutex_exit(&ipif->ipif_saved_ire_lock); 19143 freemsg(mp); 19144 19145 /* 19146 * Need to hold both ill_g_lock and ill_lock while 19147 * inserting or removing an ipif from the linked list 19148 * of ipifs hanging off the ill. 19149 */ 19150 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19151 19152 ASSERT(ilm_walk_ipif(ipif) == 0); 19153 19154 #ifdef DEBUG 19155 ipif_trace_cleanup(ipif); 19156 #endif 19157 19158 /* Ask SCTP to take it out of it list */ 19159 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19160 19161 /* Get it out of the ILL interface list. */ 19162 ipif_remove(ipif, B_TRUE); 19163 rw_exit(&ipst->ips_ill_g_lock); 19164 19165 mutex_destroy(&ipif->ipif_saved_ire_lock); 19166 19167 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19168 ASSERT(ipif->ipif_recovery_id == 0); 19169 19170 /* Free the memory. */ 19171 mi_free(ipif); 19172 } 19173 19174 /* 19175 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19176 * is zero. 19177 */ 19178 void 19179 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19180 { 19181 char lbuf[LIFNAMSIZ]; 19182 char *name; 19183 size_t name_len; 19184 19185 buf[0] = '\0'; 19186 name = ipif->ipif_ill->ill_name; 19187 name_len = ipif->ipif_ill->ill_name_length; 19188 if (ipif->ipif_id != 0) { 19189 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19190 ipif->ipif_id); 19191 name = lbuf; 19192 name_len = mi_strlen(name) + 1; 19193 } 19194 len -= 1; 19195 buf[len] = '\0'; 19196 len = MIN(len, name_len); 19197 bcopy(name, buf, len); 19198 } 19199 19200 /* 19201 * Find an IPIF based on the name passed in. Names can be of the 19202 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19203 * The <phys> string can have forms like <dev><#> (e.g., le0), 19204 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19205 * When there is no colon, the implied unit id is zero. <phys> must 19206 * correspond to the name of an ILL. (May be called as writer.) 19207 */ 19208 static ipif_t * 19209 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19210 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19211 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19212 { 19213 char *cp; 19214 char *endp; 19215 long id; 19216 ill_t *ill; 19217 ipif_t *ipif; 19218 uint_t ire_type; 19219 boolean_t did_alloc = B_FALSE; 19220 ipsq_t *ipsq; 19221 19222 if (error != NULL) 19223 *error = 0; 19224 19225 /* 19226 * If the caller wants to us to create the ipif, make sure we have a 19227 * valid zoneid 19228 */ 19229 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19230 19231 if (namelen == 0) { 19232 if (error != NULL) 19233 *error = ENXIO; 19234 return (NULL); 19235 } 19236 19237 *exists = B_FALSE; 19238 /* Look for a colon in the name. */ 19239 endp = &name[namelen]; 19240 for (cp = endp; --cp > name; ) { 19241 if (*cp == IPIF_SEPARATOR_CHAR) 19242 break; 19243 } 19244 19245 if (*cp == IPIF_SEPARATOR_CHAR) { 19246 /* 19247 * Reject any non-decimal aliases for logical 19248 * interfaces. Aliases with leading zeroes 19249 * are also rejected as they introduce ambiguity 19250 * in the naming of the interfaces. 19251 * In order to confirm with existing semantics, 19252 * and to not break any programs/script relying 19253 * on that behaviour, if<0>:0 is considered to be 19254 * a valid interface. 19255 * 19256 * If alias has two or more digits and the first 19257 * is zero, fail. 19258 */ 19259 if (&cp[2] < endp && cp[1] == '0') { 19260 if (error != NULL) 19261 *error = EINVAL; 19262 return (NULL); 19263 } 19264 } 19265 19266 if (cp <= name) { 19267 cp = endp; 19268 } else { 19269 *cp = '\0'; 19270 } 19271 19272 /* 19273 * Look up the ILL, based on the portion of the name 19274 * before the slash. ill_lookup_on_name returns a held ill. 19275 * Temporary to check whether ill exists already. If so 19276 * ill_lookup_on_name will clear it. 19277 */ 19278 ill = ill_lookup_on_name(name, do_alloc, isv6, 19279 q, mp, func, error, &did_alloc, ipst); 19280 if (cp != endp) 19281 *cp = IPIF_SEPARATOR_CHAR; 19282 if (ill == NULL) 19283 return (NULL); 19284 19285 /* Establish the unit number in the name. */ 19286 id = 0; 19287 if (cp < endp && *endp == '\0') { 19288 /* If there was a colon, the unit number follows. */ 19289 cp++; 19290 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19291 ill_refrele(ill); 19292 if (error != NULL) 19293 *error = ENXIO; 19294 return (NULL); 19295 } 19296 } 19297 19298 GRAB_CONN_LOCK(q); 19299 mutex_enter(&ill->ill_lock); 19300 /* Now see if there is an IPIF with this unit number. */ 19301 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19302 if (ipif->ipif_id == id) { 19303 if (zoneid != ALL_ZONES && 19304 zoneid != ipif->ipif_zoneid && 19305 ipif->ipif_zoneid != ALL_ZONES) { 19306 mutex_exit(&ill->ill_lock); 19307 RELEASE_CONN_LOCK(q); 19308 ill_refrele(ill); 19309 if (error != NULL) 19310 *error = ENXIO; 19311 return (NULL); 19312 } 19313 /* 19314 * The block comment at the start of ipif_down 19315 * explains the use of the macros used below 19316 */ 19317 if (IPIF_CAN_LOOKUP(ipif)) { 19318 ipif_refhold_locked(ipif); 19319 mutex_exit(&ill->ill_lock); 19320 if (!did_alloc) 19321 *exists = B_TRUE; 19322 /* 19323 * Drop locks before calling ill_refrele 19324 * since it can potentially call into 19325 * ipif_ill_refrele_tail which can end up 19326 * in trying to acquire any lock. 19327 */ 19328 RELEASE_CONN_LOCK(q); 19329 ill_refrele(ill); 19330 return (ipif); 19331 } else if (IPIF_CAN_WAIT(ipif, q)) { 19332 ipsq = ill->ill_phyint->phyint_ipsq; 19333 mutex_enter(&ipsq->ipsq_lock); 19334 mutex_exit(&ill->ill_lock); 19335 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19336 mutex_exit(&ipsq->ipsq_lock); 19337 RELEASE_CONN_LOCK(q); 19338 ill_refrele(ill); 19339 if (error != NULL) 19340 *error = EINPROGRESS; 19341 return (NULL); 19342 } 19343 } 19344 } 19345 RELEASE_CONN_LOCK(q); 19346 19347 if (!do_alloc) { 19348 mutex_exit(&ill->ill_lock); 19349 ill_refrele(ill); 19350 if (error != NULL) 19351 *error = ENXIO; 19352 return (NULL); 19353 } 19354 19355 /* 19356 * If none found, atomically allocate and return a new one. 19357 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19358 * to support "receive only" use of lo0:1 etc. as is still done 19359 * below as an initial guess. 19360 * However, this is now likely to be overriden later in ipif_up_done() 19361 * when we know for sure what address has been configured on the 19362 * interface, since we might have more than one loopback interface 19363 * with a loopback address, e.g. in the case of zones, and all the 19364 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19365 */ 19366 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19367 ire_type = IRE_LOOPBACK; 19368 else 19369 ire_type = IRE_LOCAL; 19370 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19371 if (ipif != NULL) 19372 ipif_refhold_locked(ipif); 19373 else if (error != NULL) 19374 *error = ENOMEM; 19375 mutex_exit(&ill->ill_lock); 19376 ill_refrele(ill); 19377 return (ipif); 19378 } 19379 19380 /* 19381 * This routine is called whenever a new address comes up on an ipif. If 19382 * we are configured to respond to address mask requests, then we are supposed 19383 * to broadcast an address mask reply at this time. This routine is also 19384 * called if we are already up, but a netmask change is made. This is legal 19385 * but might not make the system manager very popular. (May be called 19386 * as writer.) 19387 */ 19388 void 19389 ipif_mask_reply(ipif_t *ipif) 19390 { 19391 icmph_t *icmph; 19392 ipha_t *ipha; 19393 mblk_t *mp; 19394 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19395 19396 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19397 19398 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19399 return; 19400 19401 /* ICMP mask reply is IPv4 only */ 19402 ASSERT(!ipif->ipif_isv6); 19403 /* ICMP mask reply is not for a loopback interface */ 19404 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19405 19406 mp = allocb(REPLY_LEN, BPRI_HI); 19407 if (mp == NULL) 19408 return; 19409 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19410 19411 ipha = (ipha_t *)mp->b_rptr; 19412 bzero(ipha, REPLY_LEN); 19413 *ipha = icmp_ipha; 19414 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19415 ipha->ipha_src = ipif->ipif_src_addr; 19416 ipha->ipha_dst = ipif->ipif_brd_addr; 19417 ipha->ipha_length = htons(REPLY_LEN); 19418 ipha->ipha_ident = 0; 19419 19420 icmph = (icmph_t *)&ipha[1]; 19421 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19422 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19423 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19424 19425 put(ipif->ipif_wq, mp); 19426 19427 #undef REPLY_LEN 19428 } 19429 19430 /* 19431 * When the mtu in the ipif changes, we call this routine through ire_walk 19432 * to update all the relevant IREs. 19433 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19434 */ 19435 static void 19436 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19437 { 19438 ipif_t *ipif = (ipif_t *)ipif_arg; 19439 19440 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19441 return; 19442 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19443 } 19444 19445 /* 19446 * When the mtu in the ill changes, we call this routine through ire_walk 19447 * to update all the relevant IREs. 19448 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19449 */ 19450 void 19451 ill_mtu_change(ire_t *ire, char *ill_arg) 19452 { 19453 ill_t *ill = (ill_t *)ill_arg; 19454 19455 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19456 return; 19457 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19458 } 19459 19460 /* 19461 * Join the ipif specific multicast groups. 19462 * Must be called after a mapping has been set up in the resolver. (Always 19463 * called as writer.) 19464 */ 19465 void 19466 ipif_multicast_up(ipif_t *ipif) 19467 { 19468 int err, index; 19469 ill_t *ill; 19470 19471 ASSERT(IAM_WRITER_IPIF(ipif)); 19472 19473 ill = ipif->ipif_ill; 19474 index = ill->ill_phyint->phyint_ifindex; 19475 19476 ip1dbg(("ipif_multicast_up\n")); 19477 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19478 return; 19479 19480 if (ipif->ipif_isv6) { 19481 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19482 return; 19483 19484 /* Join the all hosts multicast address */ 19485 ip1dbg(("ipif_multicast_up - addmulti\n")); 19486 /* 19487 * Passing B_TRUE means we have to join the multicast 19488 * membership on this interface even though this is 19489 * FAILED. If we join on a different one in the group, 19490 * we will not be able to delete the membership later 19491 * as we currently don't track where we join when we 19492 * join within the kernel unlike applications where 19493 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19494 * for more on this. 19495 */ 19496 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19497 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19498 if (err != 0) { 19499 ip0dbg(("ipif_multicast_up: " 19500 "all_hosts_mcast failed %d\n", 19501 err)); 19502 return; 19503 } 19504 /* 19505 * Enable multicast for the solicited node multicast address 19506 */ 19507 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19508 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19509 19510 ipv6_multi.s6_addr32[3] |= 19511 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19512 19513 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19514 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19515 NULL); 19516 if (err != 0) { 19517 ip0dbg(("ipif_multicast_up: solicited MC" 19518 " failed %d\n", err)); 19519 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19520 ill, ill->ill_phyint->phyint_ifindex, 19521 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19522 return; 19523 } 19524 } 19525 } else { 19526 if (ipif->ipif_lcl_addr == INADDR_ANY) 19527 return; 19528 19529 /* Join the all hosts multicast address */ 19530 ip1dbg(("ipif_multicast_up - addmulti\n")); 19531 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19532 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19533 if (err) { 19534 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19535 return; 19536 } 19537 } 19538 ipif->ipif_multicast_up = 1; 19539 } 19540 19541 /* 19542 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19543 * (Explicit memberships are blown away in ill_leave_multicast() when the 19544 * ill is brought down.) 19545 */ 19546 static void 19547 ipif_multicast_down(ipif_t *ipif) 19548 { 19549 int err; 19550 19551 ASSERT(IAM_WRITER_IPIF(ipif)); 19552 19553 ip1dbg(("ipif_multicast_down\n")); 19554 if (!ipif->ipif_multicast_up) 19555 return; 19556 19557 ip1dbg(("ipif_multicast_down - delmulti\n")); 19558 19559 if (!ipif->ipif_isv6) { 19560 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19561 B_TRUE); 19562 if (err != 0) 19563 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19564 19565 ipif->ipif_multicast_up = 0; 19566 return; 19567 } 19568 19569 /* 19570 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19571 * we should look for ilms on this ill rather than the ones that have 19572 * been failed over here. They are here temporarily. As 19573 * ipif_multicast_up has joined on this ill, we should delete only 19574 * from this ill. 19575 */ 19576 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19577 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19578 B_TRUE, B_TRUE); 19579 if (err != 0) { 19580 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19581 err)); 19582 } 19583 /* 19584 * Disable multicast for the solicited node multicast address 19585 */ 19586 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19587 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19588 19589 ipv6_multi.s6_addr32[3] |= 19590 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19591 19592 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19593 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19594 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19595 19596 if (err != 0) { 19597 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19598 err)); 19599 } 19600 } 19601 19602 ipif->ipif_multicast_up = 0; 19603 } 19604 19605 /* 19606 * Used when an interface comes up to recreate any extra routes on this 19607 * interface. 19608 */ 19609 static ire_t ** 19610 ipif_recover_ire(ipif_t *ipif) 19611 { 19612 mblk_t *mp; 19613 ire_t **ipif_saved_irep; 19614 ire_t **irep; 19615 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19616 19617 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19618 ipif->ipif_id)); 19619 19620 mutex_enter(&ipif->ipif_saved_ire_lock); 19621 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19622 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19623 if (ipif_saved_irep == NULL) { 19624 mutex_exit(&ipif->ipif_saved_ire_lock); 19625 return (NULL); 19626 } 19627 19628 irep = ipif_saved_irep; 19629 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19630 ire_t *ire; 19631 queue_t *rfq; 19632 queue_t *stq; 19633 ifrt_t *ifrt; 19634 uchar_t *src_addr; 19635 uchar_t *gateway_addr; 19636 ushort_t type; 19637 19638 /* 19639 * When the ire was initially created and then added in 19640 * ip_rt_add(), it was created either using ipif->ipif_net_type 19641 * in the case of a traditional interface route, or as one of 19642 * the IRE_OFFSUBNET types (with the exception of 19643 * IRE_HOST types ire which is created by icmp_redirect() and 19644 * which we don't need to save or recover). In the case where 19645 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19646 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19647 * to satisfy software like GateD and Sun Cluster which creates 19648 * routes using the the loopback interface's address as a 19649 * gateway. 19650 * 19651 * As ifrt->ifrt_type reflects the already updated ire_type, 19652 * ire_create() will be called in the same way here as 19653 * in ip_rt_add(), namely using ipif->ipif_net_type when 19654 * the route looks like a traditional interface route (where 19655 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19656 * the saved ifrt->ifrt_type. This means that in the case where 19657 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19658 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19659 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19660 */ 19661 ifrt = (ifrt_t *)mp->b_rptr; 19662 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19663 if (ifrt->ifrt_type & IRE_INTERFACE) { 19664 rfq = NULL; 19665 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19666 ? ipif->ipif_rq : ipif->ipif_wq; 19667 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19668 ? (uint8_t *)&ifrt->ifrt_src_addr 19669 : (uint8_t *)&ipif->ipif_src_addr; 19670 gateway_addr = NULL; 19671 type = ipif->ipif_net_type; 19672 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19673 /* Recover multiroute broadcast IRE. */ 19674 rfq = ipif->ipif_rq; 19675 stq = ipif->ipif_wq; 19676 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19677 ? (uint8_t *)&ifrt->ifrt_src_addr 19678 : (uint8_t *)&ipif->ipif_src_addr; 19679 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19680 type = ifrt->ifrt_type; 19681 } else { 19682 rfq = NULL; 19683 stq = NULL; 19684 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19685 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19686 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19687 type = ifrt->ifrt_type; 19688 } 19689 19690 /* 19691 * Create a copy of the IRE with the saved address and netmask. 19692 */ 19693 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19694 "0x%x/0x%x\n", 19695 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19696 ntohl(ifrt->ifrt_addr), 19697 ntohl(ifrt->ifrt_mask))); 19698 ire = ire_create( 19699 (uint8_t *)&ifrt->ifrt_addr, 19700 (uint8_t *)&ifrt->ifrt_mask, 19701 src_addr, 19702 gateway_addr, 19703 &ifrt->ifrt_max_frag, 19704 NULL, 19705 rfq, 19706 stq, 19707 type, 19708 ipif, 19709 0, 19710 0, 19711 0, 19712 ifrt->ifrt_flags, 19713 &ifrt->ifrt_iulp_info, 19714 NULL, 19715 NULL, 19716 ipst); 19717 19718 if (ire == NULL) { 19719 mutex_exit(&ipif->ipif_saved_ire_lock); 19720 kmem_free(ipif_saved_irep, 19721 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19722 return (NULL); 19723 } 19724 19725 /* 19726 * Some software (for example, GateD and Sun Cluster) attempts 19727 * to create (what amount to) IRE_PREFIX routes with the 19728 * loopback address as the gateway. This is primarily done to 19729 * set up prefixes with the RTF_REJECT flag set (for example, 19730 * when generating aggregate routes.) 19731 * 19732 * If the IRE type (as defined by ipif->ipif_net_type) is 19733 * IRE_LOOPBACK, then we map the request into a 19734 * IRE_IF_NORESOLVER. 19735 */ 19736 if (ipif->ipif_net_type == IRE_LOOPBACK) 19737 ire->ire_type = IRE_IF_NORESOLVER; 19738 /* 19739 * ire held by ire_add, will be refreled' towards the 19740 * the end of ipif_up_done 19741 */ 19742 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19743 *irep = ire; 19744 irep++; 19745 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19746 } 19747 mutex_exit(&ipif->ipif_saved_ire_lock); 19748 return (ipif_saved_irep); 19749 } 19750 19751 /* 19752 * Used to set the netmask and broadcast address to default values when the 19753 * interface is brought up. (Always called as writer.) 19754 */ 19755 static void 19756 ipif_set_default(ipif_t *ipif) 19757 { 19758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19759 19760 if (!ipif->ipif_isv6) { 19761 /* 19762 * Interface holds an IPv4 address. Default 19763 * mask is the natural netmask. 19764 */ 19765 if (!ipif->ipif_net_mask) { 19766 ipaddr_t v4mask; 19767 19768 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19769 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19770 } 19771 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19772 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19773 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19774 } else { 19775 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19776 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19777 } 19778 /* 19779 * NOTE: SunOS 4.X does this even if the broadcast address 19780 * has been already set thus we do the same here. 19781 */ 19782 if (ipif->ipif_flags & IPIF_BROADCAST) { 19783 ipaddr_t v4addr; 19784 19785 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19786 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19787 } 19788 } else { 19789 /* 19790 * Interface holds an IPv6-only address. Default 19791 * mask is all-ones. 19792 */ 19793 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19794 ipif->ipif_v6net_mask = ipv6_all_ones; 19795 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19796 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19797 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19798 } else { 19799 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19800 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19801 } 19802 } 19803 } 19804 19805 /* 19806 * Return 0 if this address can be used as local address without causing 19807 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19808 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19809 * Special checks are needed to allow the same IPv6 link-local address 19810 * on different ills. 19811 * TODO: allowing the same site-local address on different ill's. 19812 */ 19813 int 19814 ip_addr_availability_check(ipif_t *new_ipif) 19815 { 19816 in6_addr_t our_v6addr; 19817 ill_t *ill; 19818 ipif_t *ipif; 19819 ill_walk_context_t ctx; 19820 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19821 19822 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19823 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19824 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19825 19826 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19827 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19828 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19829 return (0); 19830 19831 our_v6addr = new_ipif->ipif_v6lcl_addr; 19832 19833 if (new_ipif->ipif_isv6) 19834 ill = ILL_START_WALK_V6(&ctx, ipst); 19835 else 19836 ill = ILL_START_WALK_V4(&ctx, ipst); 19837 19838 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19839 for (ipif = ill->ill_ipif; ipif != NULL; 19840 ipif = ipif->ipif_next) { 19841 if ((ipif == new_ipif) || 19842 !(ipif->ipif_flags & IPIF_UP) || 19843 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19844 continue; 19845 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19846 &our_v6addr)) { 19847 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19848 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19849 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19850 ipif->ipif_flags |= IPIF_UNNUMBERED; 19851 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19852 new_ipif->ipif_ill != ill) 19853 continue; 19854 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19855 new_ipif->ipif_ill != ill) 19856 continue; 19857 else if (new_ipif->ipif_zoneid != 19858 ipif->ipif_zoneid && 19859 ipif->ipif_zoneid != ALL_ZONES && 19860 IS_LOOPBACK(ill)) 19861 continue; 19862 else if (new_ipif->ipif_ill == ill) 19863 return (EADDRINUSE); 19864 else 19865 return (EADDRNOTAVAIL); 19866 } 19867 } 19868 } 19869 19870 return (0); 19871 } 19872 19873 /* 19874 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19875 * IREs for the ipif. 19876 * When the routine returns EINPROGRESS then mp has been consumed and 19877 * the ioctl will be acked from ip_rput_dlpi. 19878 */ 19879 static int 19880 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19881 { 19882 ill_t *ill = ipif->ipif_ill; 19883 boolean_t isv6 = ipif->ipif_isv6; 19884 int err = 0; 19885 boolean_t success; 19886 19887 ASSERT(IAM_WRITER_IPIF(ipif)); 19888 19889 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19890 19891 /* Shouldn't get here if it is already up. */ 19892 if (ipif->ipif_flags & IPIF_UP) 19893 return (EALREADY); 19894 19895 /* Skip arp/ndp for any loopback interface. */ 19896 if (ill->ill_wq != NULL) { 19897 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19898 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19899 19900 if (!ill->ill_dl_up) { 19901 /* 19902 * ill_dl_up is not yet set. i.e. we are yet to 19903 * DL_BIND with the driver and this is the first 19904 * logical interface on the ill to become "up". 19905 * Tell the driver to get going (via DL_BIND_REQ). 19906 * Note that changing "significant" IFF_ flags 19907 * address/netmask etc cause a down/up dance, but 19908 * does not cause an unbind (DL_UNBIND) with the driver 19909 */ 19910 return (ill_dl_up(ill, ipif, mp, q)); 19911 } 19912 19913 /* 19914 * ipif_resolver_up may end up sending an 19915 * AR_INTERFACE_UP message to ARP, which would, in 19916 * turn send a DLPI message to the driver. ioctls are 19917 * serialized and so we cannot send more than one 19918 * interface up message at a time. If ipif_resolver_up 19919 * does send an interface up message to ARP, we get 19920 * EINPROGRESS and we will complete in ip_arp_done. 19921 */ 19922 19923 ASSERT(connp != NULL || !CONN_Q(q)); 19924 ASSERT(ipsq->ipsq_pending_mp == NULL); 19925 if (connp != NULL) 19926 mutex_enter(&connp->conn_lock); 19927 mutex_enter(&ill->ill_lock); 19928 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19929 mutex_exit(&ill->ill_lock); 19930 if (connp != NULL) 19931 mutex_exit(&connp->conn_lock); 19932 if (!success) 19933 return (EINTR); 19934 19935 /* 19936 * Crank up IPv6 neighbor discovery 19937 * Unlike ARP, this should complete when 19938 * ipif_ndp_up returns. However, for 19939 * ILLF_XRESOLV interfaces we also send a 19940 * AR_INTERFACE_UP to the external resolver. 19941 * That ioctl will complete in ip_rput. 19942 */ 19943 if (isv6) { 19944 err = ipif_ndp_up(ipif); 19945 if (err != 0) { 19946 if (err != EINPROGRESS) 19947 mp = ipsq_pending_mp_get(ipsq, &connp); 19948 return (err); 19949 } 19950 } 19951 /* Now, ARP */ 19952 err = ipif_resolver_up(ipif, Res_act_initial); 19953 if (err == EINPROGRESS) { 19954 /* We will complete it in ip_arp_done */ 19955 return (err); 19956 } 19957 mp = ipsq_pending_mp_get(ipsq, &connp); 19958 ASSERT(mp != NULL); 19959 if (err != 0) 19960 return (err); 19961 } else { 19962 /* 19963 * Interfaces without underlying hardware don't do duplicate 19964 * address detection. 19965 */ 19966 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19967 ipif->ipif_addr_ready = 1; 19968 } 19969 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19970 } 19971 19972 /* 19973 * Perform a bind for the physical device. 19974 * When the routine returns EINPROGRESS then mp has been consumed and 19975 * the ioctl will be acked from ip_rput_dlpi. 19976 * Allocate an unbind message and save it until ipif_down. 19977 */ 19978 static int 19979 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19980 { 19981 areq_t *areq; 19982 mblk_t *areq_mp = NULL; 19983 mblk_t *bind_mp = NULL; 19984 mblk_t *unbind_mp = NULL; 19985 conn_t *connp; 19986 boolean_t success; 19987 uint16_t sap_addr; 19988 19989 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19990 ASSERT(IAM_WRITER_ILL(ill)); 19991 ASSERT(mp != NULL); 19992 19993 /* Create a resolver cookie for ARP */ 19994 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19995 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19996 if (areq_mp == NULL) 19997 return (ENOMEM); 19998 19999 freemsg(ill->ill_resolver_mp); 20000 ill->ill_resolver_mp = areq_mp; 20001 areq = (areq_t *)areq_mp->b_rptr; 20002 sap_addr = ill->ill_sap; 20003 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20004 } 20005 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20006 DL_BIND_REQ); 20007 if (bind_mp == NULL) 20008 goto bad; 20009 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20010 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20011 20012 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20013 if (unbind_mp == NULL) 20014 goto bad; 20015 20016 /* 20017 * Record state needed to complete this operation when the 20018 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20019 */ 20020 ASSERT(WR(q)->q_next == NULL); 20021 connp = Q_TO_CONN(q); 20022 20023 mutex_enter(&connp->conn_lock); 20024 mutex_enter(&ipif->ipif_ill->ill_lock); 20025 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20026 mutex_exit(&ipif->ipif_ill->ill_lock); 20027 mutex_exit(&connp->conn_lock); 20028 if (!success) 20029 goto bad; 20030 20031 /* 20032 * Save the unbind message for ill_dl_down(); it will be consumed when 20033 * the interface goes down. 20034 */ 20035 ASSERT(ill->ill_unbind_mp == NULL); 20036 ill->ill_unbind_mp = unbind_mp; 20037 20038 ill_dlpi_send(ill, bind_mp); 20039 /* Send down link-layer capabilities probe if not already done. */ 20040 ill_capability_probe(ill); 20041 20042 /* 20043 * Sysid used to rely on the fact that netboots set domainname 20044 * and the like. Now that miniroot boots aren't strictly netboots 20045 * and miniroot network configuration is driven from userland 20046 * these things still need to be set. This situation can be detected 20047 * by comparing the interface being configured here to the one 20048 * dhcifname was set to reference by the boot loader. Once sysid is 20049 * converted to use dhcp_ipc_getinfo() this call can go away. 20050 */ 20051 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20052 (strcmp(ill->ill_name, dhcifname) == 0) && 20053 (strlen(srpc_domain) == 0)) { 20054 if (dhcpinit() != 0) 20055 cmn_err(CE_WARN, "no cached dhcp response"); 20056 } 20057 20058 /* 20059 * This operation will complete in ip_rput_dlpi with either 20060 * a DL_BIND_ACK or DL_ERROR_ACK. 20061 */ 20062 return (EINPROGRESS); 20063 bad: 20064 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20065 /* 20066 * We don't have to check for possible removal from illgrp 20067 * as we have not yet inserted in illgrp. For groups 20068 * without names, this ipif is still not UP and hence 20069 * this could not have possibly had any influence in forming 20070 * groups. 20071 */ 20072 20073 freemsg(bind_mp); 20074 freemsg(unbind_mp); 20075 return (ENOMEM); 20076 } 20077 20078 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20079 20080 /* 20081 * DLPI and ARP is up. 20082 * Create all the IREs associated with an interface bring up multicast. 20083 * Set the interface flag and finish other initialization 20084 * that potentially had to be differed to after DL_BIND_ACK. 20085 */ 20086 int 20087 ipif_up_done(ipif_t *ipif) 20088 { 20089 ire_t *ire_array[20]; 20090 ire_t **irep = ire_array; 20091 ire_t **irep1; 20092 ipaddr_t net_mask = 0; 20093 ipaddr_t subnet_mask, route_mask; 20094 ill_t *ill = ipif->ipif_ill; 20095 queue_t *stq; 20096 ipif_t *src_ipif; 20097 ipif_t *tmp_ipif; 20098 boolean_t flush_ire_cache = B_TRUE; 20099 int err = 0; 20100 phyint_t *phyi; 20101 ire_t **ipif_saved_irep = NULL; 20102 int ipif_saved_ire_cnt; 20103 int cnt; 20104 boolean_t src_ipif_held = B_FALSE; 20105 boolean_t ire_added = B_FALSE; 20106 boolean_t loopback = B_FALSE; 20107 ip_stack_t *ipst = ill->ill_ipst; 20108 20109 ip1dbg(("ipif_up_done(%s:%u)\n", 20110 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20111 /* Check if this is a loopback interface */ 20112 if (ipif->ipif_ill->ill_wq == NULL) 20113 loopback = B_TRUE; 20114 20115 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20116 /* 20117 * If all other interfaces for this ill are down or DEPRECATED, 20118 * or otherwise unsuitable for source address selection, remove 20119 * any IRE_CACHE entries for this ill to make sure source 20120 * address selection gets to take this new ipif into account. 20121 * No need to hold ill_lock while traversing the ipif list since 20122 * we are writer 20123 */ 20124 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20125 tmp_ipif = tmp_ipif->ipif_next) { 20126 if (((tmp_ipif->ipif_flags & 20127 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20128 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20129 (tmp_ipif == ipif)) 20130 continue; 20131 /* first useable pre-existing interface */ 20132 flush_ire_cache = B_FALSE; 20133 break; 20134 } 20135 if (flush_ire_cache) 20136 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20137 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20138 20139 /* 20140 * Figure out which way the send-to queue should go. Only 20141 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20142 * should show up here. 20143 */ 20144 switch (ill->ill_net_type) { 20145 case IRE_IF_RESOLVER: 20146 stq = ill->ill_rq; 20147 break; 20148 case IRE_IF_NORESOLVER: 20149 case IRE_LOOPBACK: 20150 stq = ill->ill_wq; 20151 break; 20152 default: 20153 return (EINVAL); 20154 } 20155 20156 if (IS_LOOPBACK(ill)) { 20157 /* 20158 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20159 * ipif_lookup_on_name(), but in the case of zones we can have 20160 * several loopback addresses on lo0. So all the interfaces with 20161 * loopback addresses need to be marked IRE_LOOPBACK. 20162 */ 20163 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20164 htonl(INADDR_LOOPBACK)) 20165 ipif->ipif_ire_type = IRE_LOOPBACK; 20166 else 20167 ipif->ipif_ire_type = IRE_LOCAL; 20168 } 20169 20170 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20171 /* 20172 * Can't use our source address. Select a different 20173 * source address for the IRE_INTERFACE and IRE_LOCAL 20174 */ 20175 src_ipif = ipif_select_source(ipif->ipif_ill, 20176 ipif->ipif_subnet, ipif->ipif_zoneid); 20177 if (src_ipif == NULL) 20178 src_ipif = ipif; /* Last resort */ 20179 else 20180 src_ipif_held = B_TRUE; 20181 } else { 20182 src_ipif = ipif; 20183 } 20184 20185 /* Create all the IREs associated with this interface */ 20186 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20187 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20188 20189 /* 20190 * If we're on a labeled system then make sure that zone- 20191 * private addresses have proper remote host database entries. 20192 */ 20193 if (is_system_labeled() && 20194 ipif->ipif_ire_type != IRE_LOOPBACK && 20195 !tsol_check_interface_address(ipif)) 20196 return (EINVAL); 20197 20198 /* Register the source address for __sin6_src_id */ 20199 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20200 ipif->ipif_zoneid, ipst); 20201 if (err != 0) { 20202 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20203 return (err); 20204 } 20205 20206 /* If the interface address is set, create the local IRE. */ 20207 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20208 (void *)ipif, 20209 ipif->ipif_ire_type, 20210 ntohl(ipif->ipif_lcl_addr))); 20211 *irep++ = ire_create( 20212 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20213 (uchar_t *)&ip_g_all_ones, /* mask */ 20214 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20215 NULL, /* no gateway */ 20216 &ip_loopback_mtuplus, /* max frag size */ 20217 NULL, 20218 ipif->ipif_rq, /* recv-from queue */ 20219 NULL, /* no send-to queue */ 20220 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20221 ipif, 20222 0, 20223 0, 20224 0, 20225 (ipif->ipif_flags & IPIF_PRIVATE) ? 20226 RTF_PRIVATE : 0, 20227 &ire_uinfo_null, 20228 NULL, 20229 NULL, 20230 ipst); 20231 } else { 20232 ip1dbg(( 20233 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20234 ipif->ipif_ire_type, 20235 ntohl(ipif->ipif_lcl_addr), 20236 (uint_t)ipif->ipif_flags)); 20237 } 20238 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20239 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20240 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20241 } else { 20242 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20243 } 20244 20245 subnet_mask = ipif->ipif_net_mask; 20246 20247 /* 20248 * If mask was not specified, use natural netmask of 20249 * interface address. Also, store this mask back into the 20250 * ipif struct. 20251 */ 20252 if (subnet_mask == 0) { 20253 subnet_mask = net_mask; 20254 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20255 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20256 ipif->ipif_v6subnet); 20257 } 20258 20259 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20260 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20261 ipif->ipif_subnet != INADDR_ANY) { 20262 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20263 20264 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20265 route_mask = IP_HOST_MASK; 20266 } else { 20267 route_mask = subnet_mask; 20268 } 20269 20270 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20271 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20272 (void *)ipif, (void *)ill, 20273 ill->ill_net_type, 20274 ntohl(ipif->ipif_subnet))); 20275 *irep++ = ire_create( 20276 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20277 (uchar_t *)&route_mask, /* mask */ 20278 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20279 NULL, /* no gateway */ 20280 &ipif->ipif_mtu, /* max frag */ 20281 NULL, 20282 NULL, /* no recv queue */ 20283 stq, /* send-to queue */ 20284 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20285 ipif, 20286 0, 20287 0, 20288 0, 20289 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20290 &ire_uinfo_null, 20291 NULL, 20292 NULL, 20293 ipst); 20294 } 20295 20296 /* 20297 * Create any necessary broadcast IREs. 20298 */ 20299 if (ipif->ipif_flags & IPIF_BROADCAST) 20300 irep = ipif_create_bcast_ires(ipif, irep); 20301 20302 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20303 20304 /* If an earlier ire_create failed, get out now */ 20305 for (irep1 = irep; irep1 > ire_array; ) { 20306 irep1--; 20307 if (*irep1 == NULL) { 20308 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20309 err = ENOMEM; 20310 goto bad; 20311 } 20312 } 20313 20314 /* 20315 * Need to atomically check for ip_addr_availablity_check 20316 * under ip_addr_avail_lock, and if it fails got bad, and remove 20317 * from group also.The ill_g_lock is grabbed as reader 20318 * just to make sure no new ills or new ipifs are being added 20319 * to the system while we are checking the uniqueness of addresses. 20320 */ 20321 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20322 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20323 /* Mark it up, and increment counters. */ 20324 ipif->ipif_flags |= IPIF_UP; 20325 ill->ill_ipif_up_count++; 20326 err = ip_addr_availability_check(ipif); 20327 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20328 rw_exit(&ipst->ips_ill_g_lock); 20329 20330 if (err != 0) { 20331 /* 20332 * Our address may already be up on the same ill. In this case, 20333 * the ARP entry for our ipif replaced the one for the other 20334 * ipif. So we don't want to delete it (otherwise the other ipif 20335 * would be unable to send packets). 20336 * ip_addr_availability_check() identifies this case for us and 20337 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20338 * which is the expected error code. 20339 */ 20340 if (err == EADDRINUSE) { 20341 freemsg(ipif->ipif_arp_del_mp); 20342 ipif->ipif_arp_del_mp = NULL; 20343 err = EADDRNOTAVAIL; 20344 } 20345 ill->ill_ipif_up_count--; 20346 ipif->ipif_flags &= ~IPIF_UP; 20347 goto bad; 20348 } 20349 20350 /* 20351 * Add in all newly created IREs. ire_create_bcast() has 20352 * already checked for duplicates of the IRE_BROADCAST type. 20353 * We want to add before we call ifgrp_insert which wants 20354 * to know whether IRE_IF_RESOLVER exists or not. 20355 * 20356 * NOTE : We refrele the ire though we may branch to "bad" 20357 * later on where we do ire_delete. This is okay 20358 * because nobody can delete it as we are running 20359 * exclusively. 20360 */ 20361 for (irep1 = irep; irep1 > ire_array; ) { 20362 irep1--; 20363 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20364 /* 20365 * refheld by ire_add. refele towards the end of the func 20366 */ 20367 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20368 } 20369 ire_added = B_TRUE; 20370 /* 20371 * Form groups if possible. 20372 * 20373 * If we are supposed to be in a ill_group with a name, insert it 20374 * now as we know that at least one ipif is UP. Otherwise form 20375 * nameless groups. 20376 * 20377 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20378 * this ipif into the appropriate interface group, or create a 20379 * new one. If this is already in a nameless group, we try to form 20380 * a bigger group looking at other ills potentially sharing this 20381 * ipif's prefix. 20382 */ 20383 phyi = ill->ill_phyint; 20384 if (phyi->phyint_groupname_len != 0) { 20385 ASSERT(phyi->phyint_groupname != NULL); 20386 if (ill->ill_ipif_up_count == 1) { 20387 ASSERT(ill->ill_group == NULL); 20388 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20389 phyi->phyint_groupname, NULL, B_TRUE); 20390 if (err != 0) { 20391 ip1dbg(("ipif_up_done: illgrp allocation " 20392 "failed, error %d\n", err)); 20393 goto bad; 20394 } 20395 } 20396 ASSERT(ill->ill_group != NULL); 20397 } 20398 20399 /* 20400 * When this is part of group, we need to make sure that 20401 * any broadcast ires created because of this ipif coming 20402 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20403 * so that we don't receive duplicate broadcast packets. 20404 */ 20405 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20406 ipif_renominate_bcast(ipif); 20407 20408 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20409 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20410 ipif_saved_irep = ipif_recover_ire(ipif); 20411 20412 if (!loopback) { 20413 /* 20414 * If the broadcast address has been set, make sure it makes 20415 * sense based on the interface address. 20416 * Only match on ill since we are sharing broadcast addresses. 20417 */ 20418 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20419 (ipif->ipif_flags & IPIF_BROADCAST)) { 20420 ire_t *ire; 20421 20422 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20423 IRE_BROADCAST, ipif, ALL_ZONES, 20424 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20425 20426 if (ire == NULL) { 20427 /* 20428 * If there isn't a matching broadcast IRE, 20429 * revert to the default for this netmask. 20430 */ 20431 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20432 mutex_enter(&ipif->ipif_ill->ill_lock); 20433 ipif_set_default(ipif); 20434 mutex_exit(&ipif->ipif_ill->ill_lock); 20435 } else { 20436 ire_refrele(ire); 20437 } 20438 } 20439 20440 } 20441 20442 if (ill->ill_need_recover_multicast) { 20443 /* 20444 * Need to recover all multicast memberships in the driver. 20445 * This had to be deferred until we had attached. The same 20446 * code exists in ipif_up_done_v6() to recover IPv6 20447 * memberships. 20448 * 20449 * Note that it would be preferable to unconditionally do the 20450 * ill_recover_multicast() in ill_dl_up(), but we cannot do 20451 * that since ill_join_allmulti() depends on ill_dl_up being 20452 * set, and it is not set until we receive a DL_BIND_ACK after 20453 * having called ill_dl_up(). 20454 */ 20455 ill_recover_multicast(ill); 20456 } 20457 /* Join the allhosts multicast address */ 20458 ipif_multicast_up(ipif); 20459 20460 if (!loopback) { 20461 /* 20462 * See whether anybody else would benefit from the 20463 * new ipif that we added. We call this always rather 20464 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20465 * ipif is for the benefit of illgrp_insert (done above) 20466 * which does not do source address selection as it does 20467 * not want to re-create interface routes that we are 20468 * having reference to it here. 20469 */ 20470 ill_update_source_selection(ill); 20471 } 20472 20473 for (irep1 = irep; irep1 > ire_array; ) { 20474 irep1--; 20475 if (*irep1 != NULL) { 20476 /* was held in ire_add */ 20477 ire_refrele(*irep1); 20478 } 20479 } 20480 20481 cnt = ipif_saved_ire_cnt; 20482 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20483 if (*irep1 != NULL) { 20484 /* was held in ire_add */ 20485 ire_refrele(*irep1); 20486 } 20487 } 20488 20489 if (!loopback && ipif->ipif_addr_ready) { 20490 /* Broadcast an address mask reply. */ 20491 ipif_mask_reply(ipif); 20492 } 20493 if (ipif_saved_irep != NULL) { 20494 kmem_free(ipif_saved_irep, 20495 ipif_saved_ire_cnt * sizeof (ire_t *)); 20496 } 20497 if (src_ipif_held) 20498 ipif_refrele(src_ipif); 20499 20500 /* 20501 * This had to be deferred until we had bound. Tell routing sockets and 20502 * others that this interface is up if it looks like the address has 20503 * been validated. Otherwise, if it isn't ready yet, wait for 20504 * duplicate address detection to do its thing. 20505 */ 20506 if (ipif->ipif_addr_ready) 20507 ipif_up_notify(ipif); 20508 return (0); 20509 20510 bad: 20511 ip1dbg(("ipif_up_done: FAILED \n")); 20512 /* 20513 * We don't have to bother removing from ill groups because 20514 * 20515 * 1) For groups with names, we insert only when the first ipif 20516 * comes up. In that case if it fails, it will not be in any 20517 * group. So, we need not try to remove for that case. 20518 * 20519 * 2) For groups without names, either we tried to insert ipif_ill 20520 * in a group as singleton or found some other group to become 20521 * a bigger group. For the former, if it fails we don't have 20522 * anything to do as ipif_ill is not in the group and for the 20523 * latter, there are no failures in illgrp_insert/illgrp_delete 20524 * (ENOMEM can't occur for this. Check ifgrp_insert). 20525 */ 20526 while (irep > ire_array) { 20527 irep--; 20528 if (*irep != NULL) { 20529 ire_delete(*irep); 20530 if (ire_added) 20531 ire_refrele(*irep); 20532 } 20533 } 20534 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20535 20536 if (ipif_saved_irep != NULL) { 20537 kmem_free(ipif_saved_irep, 20538 ipif_saved_ire_cnt * sizeof (ire_t *)); 20539 } 20540 if (src_ipif_held) 20541 ipif_refrele(src_ipif); 20542 20543 ipif_arp_down(ipif); 20544 return (err); 20545 } 20546 20547 /* 20548 * Turn off the ARP with the ILLF_NOARP flag. 20549 */ 20550 static int 20551 ill_arp_off(ill_t *ill) 20552 { 20553 mblk_t *arp_off_mp = NULL; 20554 mblk_t *arp_on_mp = NULL; 20555 20556 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20557 20558 ASSERT(IAM_WRITER_ILL(ill)); 20559 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20560 20561 /* 20562 * If the on message is still around we've already done 20563 * an arp_off without doing an arp_on thus there is no 20564 * work needed. 20565 */ 20566 if (ill->ill_arp_on_mp != NULL) 20567 return (0); 20568 20569 /* 20570 * Allocate an ARP on message (to be saved) and an ARP off message 20571 */ 20572 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20573 if (!arp_off_mp) 20574 return (ENOMEM); 20575 20576 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20577 if (!arp_on_mp) 20578 goto failed; 20579 20580 ASSERT(ill->ill_arp_on_mp == NULL); 20581 ill->ill_arp_on_mp = arp_on_mp; 20582 20583 /* Send an AR_INTERFACE_OFF request */ 20584 putnext(ill->ill_rq, arp_off_mp); 20585 return (0); 20586 failed: 20587 20588 if (arp_off_mp) 20589 freemsg(arp_off_mp); 20590 return (ENOMEM); 20591 } 20592 20593 /* 20594 * Turn on ARP by turning off the ILLF_NOARP flag. 20595 */ 20596 static int 20597 ill_arp_on(ill_t *ill) 20598 { 20599 mblk_t *mp; 20600 20601 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20602 20603 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20604 20605 ASSERT(IAM_WRITER_ILL(ill)); 20606 /* 20607 * Send an AR_INTERFACE_ON request if we have already done 20608 * an arp_off (which allocated the message). 20609 */ 20610 if (ill->ill_arp_on_mp != NULL) { 20611 mp = ill->ill_arp_on_mp; 20612 ill->ill_arp_on_mp = NULL; 20613 putnext(ill->ill_rq, mp); 20614 } 20615 return (0); 20616 } 20617 20618 /* 20619 * Called after either deleting ill from the group or when setting 20620 * FAILED or STANDBY on the interface. 20621 */ 20622 static void 20623 illgrp_reset_schednext(ill_t *ill) 20624 { 20625 ill_group_t *illgrp; 20626 ill_t *save_ill; 20627 20628 ASSERT(IAM_WRITER_ILL(ill)); 20629 /* 20630 * When called from illgrp_delete, ill_group will be non-NULL. 20631 * But when called from ip_sioctl_flags, it could be NULL if 20632 * somebody is setting FAILED/INACTIVE on some interface which 20633 * is not part of a group. 20634 */ 20635 illgrp = ill->ill_group; 20636 if (illgrp == NULL) 20637 return; 20638 if (illgrp->illgrp_ill_schednext != ill) 20639 return; 20640 20641 illgrp->illgrp_ill_schednext = NULL; 20642 save_ill = ill; 20643 /* 20644 * Choose a good ill to be the next one for 20645 * outbound traffic. As the flags FAILED/STANDBY is 20646 * not yet marked when called from ip_sioctl_flags, 20647 * we check for ill separately. 20648 */ 20649 for (ill = illgrp->illgrp_ill; ill != NULL; 20650 ill = ill->ill_group_next) { 20651 if ((ill != save_ill) && 20652 !(ill->ill_phyint->phyint_flags & 20653 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20654 illgrp->illgrp_ill_schednext = ill; 20655 return; 20656 } 20657 } 20658 } 20659 20660 /* 20661 * Given an ill, find the next ill in the group to be scheduled. 20662 * (This should be called by ip_newroute() before ire_create().) 20663 * The passed in ill may be pulled out of the group, after we have picked 20664 * up a different outgoing ill from the same group. However ire add will 20665 * atomically check this. 20666 */ 20667 ill_t * 20668 illgrp_scheduler(ill_t *ill) 20669 { 20670 ill_t *retill; 20671 ill_group_t *illgrp; 20672 int illcnt; 20673 int i; 20674 uint64_t flags; 20675 ip_stack_t *ipst = ill->ill_ipst; 20676 20677 /* 20678 * We don't use a lock to check for the ill_group. If this ill 20679 * is currently being inserted we may end up just returning this 20680 * ill itself. That is ok. 20681 */ 20682 if (ill->ill_group == NULL) { 20683 ill_refhold(ill); 20684 return (ill); 20685 } 20686 20687 /* 20688 * Grab the ill_g_lock as reader to make sure we are dealing with 20689 * a set of stable ills. No ill can be added or deleted or change 20690 * group while we hold the reader lock. 20691 */ 20692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20693 if ((illgrp = ill->ill_group) == NULL) { 20694 rw_exit(&ipst->ips_ill_g_lock); 20695 ill_refhold(ill); 20696 return (ill); 20697 } 20698 20699 illcnt = illgrp->illgrp_ill_count; 20700 mutex_enter(&illgrp->illgrp_lock); 20701 retill = illgrp->illgrp_ill_schednext; 20702 20703 if (retill == NULL) 20704 retill = illgrp->illgrp_ill; 20705 20706 /* 20707 * We do a circular search beginning at illgrp_ill_schednext 20708 * or illgrp_ill. We don't check the flags against the ill lock 20709 * since it can change anytime. The ire creation will be atomic 20710 * and will fail if the ill is FAILED or OFFLINE. 20711 */ 20712 for (i = 0; i < illcnt; i++) { 20713 flags = retill->ill_phyint->phyint_flags; 20714 20715 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20716 ILL_CAN_LOOKUP(retill)) { 20717 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20718 ill_refhold(retill); 20719 break; 20720 } 20721 retill = retill->ill_group_next; 20722 if (retill == NULL) 20723 retill = illgrp->illgrp_ill; 20724 } 20725 mutex_exit(&illgrp->illgrp_lock); 20726 rw_exit(&ipst->ips_ill_g_lock); 20727 20728 return (i == illcnt ? NULL : retill); 20729 } 20730 20731 /* 20732 * Checks for availbility of a usable source address (if there is one) when the 20733 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20734 * this selection is done regardless of the destination. 20735 */ 20736 boolean_t 20737 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20738 { 20739 uint_t ifindex; 20740 ipif_t *ipif = NULL; 20741 ill_t *uill; 20742 boolean_t isv6; 20743 ip_stack_t *ipst = ill->ill_ipst; 20744 20745 ASSERT(ill != NULL); 20746 20747 isv6 = ill->ill_isv6; 20748 ifindex = ill->ill_usesrc_ifindex; 20749 if (ifindex != 0) { 20750 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20751 NULL, ipst); 20752 if (uill == NULL) 20753 return (NULL); 20754 mutex_enter(&uill->ill_lock); 20755 for (ipif = uill->ill_ipif; ipif != NULL; 20756 ipif = ipif->ipif_next) { 20757 if (!IPIF_CAN_LOOKUP(ipif)) 20758 continue; 20759 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20760 continue; 20761 if (!(ipif->ipif_flags & IPIF_UP)) 20762 continue; 20763 if (ipif->ipif_zoneid != zoneid) 20764 continue; 20765 if ((isv6 && 20766 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20767 (ipif->ipif_lcl_addr == INADDR_ANY)) 20768 continue; 20769 mutex_exit(&uill->ill_lock); 20770 ill_refrele(uill); 20771 return (B_TRUE); 20772 } 20773 mutex_exit(&uill->ill_lock); 20774 ill_refrele(uill); 20775 } 20776 return (B_FALSE); 20777 } 20778 20779 /* 20780 * Determine the best source address given a destination address and an ill. 20781 * Prefers non-deprecated over deprecated but will return a deprecated 20782 * address if there is no other choice. If there is a usable source address 20783 * on the interface pointed to by ill_usesrc_ifindex then that is given 20784 * first preference. 20785 * 20786 * Returns NULL if there is no suitable source address for the ill. 20787 * This only occurs when there is no valid source address for the ill. 20788 */ 20789 ipif_t * 20790 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20791 { 20792 ipif_t *ipif; 20793 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20794 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20795 int index = 0; 20796 boolean_t wrapped = B_FALSE; 20797 boolean_t same_subnet_only = B_FALSE; 20798 boolean_t ipif_same_found, ipif_other_found; 20799 boolean_t specific_found; 20800 ill_t *till, *usill = NULL; 20801 tsol_tpc_t *src_rhtp, *dst_rhtp; 20802 ip_stack_t *ipst = ill->ill_ipst; 20803 20804 if (ill->ill_usesrc_ifindex != 0) { 20805 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20806 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20807 if (usill != NULL) 20808 ill = usill; /* Select source from usesrc ILL */ 20809 else 20810 return (NULL); 20811 } 20812 20813 /* 20814 * If we're dealing with an unlabeled destination on a labeled system, 20815 * make sure that we ignore source addresses that are incompatible with 20816 * the destination's default label. That destination's default label 20817 * must dominate the minimum label on the source address. 20818 */ 20819 dst_rhtp = NULL; 20820 if (is_system_labeled()) { 20821 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20822 if (dst_rhtp == NULL) 20823 return (NULL); 20824 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20825 TPC_RELE(dst_rhtp); 20826 dst_rhtp = NULL; 20827 } 20828 } 20829 20830 /* 20831 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20832 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20833 * After selecting the right ipif, under ill_lock make sure ipif is 20834 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20835 * we retry. Inside the loop we still need to check for CONDEMNED, 20836 * but not under a lock. 20837 */ 20838 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20839 20840 retry: 20841 till = ill; 20842 ipif_arr[0] = NULL; 20843 20844 if (till->ill_group != NULL) 20845 till = till->ill_group->illgrp_ill; 20846 20847 /* 20848 * Choose one good source address from each ill across the group. 20849 * If possible choose a source address in the same subnet as 20850 * the destination address. 20851 * 20852 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20853 * This is okay because of the following. 20854 * 20855 * If PHYI_FAILED is set and we still have non-deprecated 20856 * addresses, it means the addresses have not yet been 20857 * failed over to a different interface. We potentially 20858 * select them to create IRE_CACHES, which will be later 20859 * flushed when the addresses move over. 20860 * 20861 * If PHYI_INACTIVE is set and we still have non-deprecated 20862 * addresses, it means either the user has configured them 20863 * or PHYI_INACTIVE has not been cleared after the addresses 20864 * been moved over. For the former, in.mpathd does a failover 20865 * when the interface becomes INACTIVE and hence we should 20866 * not find them. Once INACTIVE is set, we don't allow them 20867 * to create logical interfaces anymore. For the latter, a 20868 * flush will happen when INACTIVE is cleared which will 20869 * flush the IRE_CACHES. 20870 * 20871 * If PHYI_OFFLINE is set, all the addresses will be failed 20872 * over soon. We potentially select them to create IRE_CACHEs, 20873 * which will be later flushed when the addresses move over. 20874 * 20875 * NOTE : As ipif_select_source is called to borrow source address 20876 * for an ipif that is part of a group, source address selection 20877 * will be re-done whenever the group changes i.e either an 20878 * insertion/deletion in the group. 20879 * 20880 * Fill ipif_arr[] with source addresses, using these rules: 20881 * 20882 * 1. At most one source address from a given ill ends up 20883 * in ipif_arr[] -- that is, at most one of the ipif's 20884 * associated with a given ill ends up in ipif_arr[]. 20885 * 20886 * 2. If there is at least one non-deprecated ipif in the 20887 * IPMP group with a source address on the same subnet as 20888 * our destination, then fill ipif_arr[] only with 20889 * source addresses on the same subnet as our destination. 20890 * Note that because of (1), only the first 20891 * non-deprecated ipif found with a source address 20892 * matching the destination ends up in ipif_arr[]. 20893 * 20894 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20895 * addresses not in the same subnet as our destination. 20896 * Again, because of (1), only the first off-subnet source 20897 * address will be chosen. 20898 * 20899 * 4. If there are no non-deprecated ipifs, then just use 20900 * the source address associated with the last deprecated 20901 * one we find that happens to be on the same subnet, 20902 * otherwise the first one not in the same subnet. 20903 */ 20904 specific_found = B_FALSE; 20905 for (; till != NULL; till = till->ill_group_next) { 20906 ipif_same_found = B_FALSE; 20907 ipif_other_found = B_FALSE; 20908 for (ipif = till->ill_ipif; ipif != NULL; 20909 ipif = ipif->ipif_next) { 20910 if (!IPIF_CAN_LOOKUP(ipif)) 20911 continue; 20912 /* Always skip NOLOCAL and ANYCAST interfaces */ 20913 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20914 continue; 20915 if (!(ipif->ipif_flags & IPIF_UP) || 20916 !ipif->ipif_addr_ready) 20917 continue; 20918 if (ipif->ipif_zoneid != zoneid && 20919 ipif->ipif_zoneid != ALL_ZONES) 20920 continue; 20921 /* 20922 * Interfaces with 0.0.0.0 address are allowed to be UP, 20923 * but are not valid as source addresses. 20924 */ 20925 if (ipif->ipif_lcl_addr == INADDR_ANY) 20926 continue; 20927 20928 /* 20929 * Check compatibility of local address for 20930 * destination's default label if we're on a labeled 20931 * system. Incompatible addresses can't be used at 20932 * all. 20933 */ 20934 if (dst_rhtp != NULL) { 20935 boolean_t incompat; 20936 20937 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20938 IPV4_VERSION, B_FALSE); 20939 if (src_rhtp == NULL) 20940 continue; 20941 incompat = 20942 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20943 src_rhtp->tpc_tp.tp_doi != 20944 dst_rhtp->tpc_tp.tp_doi || 20945 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20946 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20947 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20948 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20949 TPC_RELE(src_rhtp); 20950 if (incompat) 20951 continue; 20952 } 20953 20954 /* 20955 * We prefer not to use all all-zones addresses, if we 20956 * can avoid it, as they pose problems with unlabeled 20957 * destinations. 20958 */ 20959 if (ipif->ipif_zoneid != ALL_ZONES) { 20960 if (!specific_found && 20961 (!same_subnet_only || 20962 (ipif->ipif_net_mask & dst) == 20963 ipif->ipif_subnet)) { 20964 index = 0; 20965 specific_found = B_TRUE; 20966 ipif_other_found = B_FALSE; 20967 } 20968 } else { 20969 if (specific_found) 20970 continue; 20971 } 20972 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20973 if (ipif_dep == NULL || 20974 (ipif->ipif_net_mask & dst) == 20975 ipif->ipif_subnet) 20976 ipif_dep = ipif; 20977 continue; 20978 } 20979 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20980 /* found a source address in the same subnet */ 20981 if (!same_subnet_only) { 20982 same_subnet_only = B_TRUE; 20983 index = 0; 20984 } 20985 ipif_same_found = B_TRUE; 20986 } else { 20987 if (same_subnet_only || ipif_other_found) 20988 continue; 20989 ipif_other_found = B_TRUE; 20990 } 20991 ipif_arr[index++] = ipif; 20992 if (index == MAX_IPIF_SELECT_SOURCE) { 20993 wrapped = B_TRUE; 20994 index = 0; 20995 } 20996 if (ipif_same_found) 20997 break; 20998 } 20999 } 21000 21001 if (ipif_arr[0] == NULL) { 21002 ipif = ipif_dep; 21003 } else { 21004 if (wrapped) 21005 index = MAX_IPIF_SELECT_SOURCE; 21006 ipif = ipif_arr[ipif_rand(ipst) % index]; 21007 ASSERT(ipif != NULL); 21008 } 21009 21010 if (ipif != NULL) { 21011 mutex_enter(&ipif->ipif_ill->ill_lock); 21012 if (!IPIF_CAN_LOOKUP(ipif)) { 21013 mutex_exit(&ipif->ipif_ill->ill_lock); 21014 goto retry; 21015 } 21016 ipif_refhold_locked(ipif); 21017 mutex_exit(&ipif->ipif_ill->ill_lock); 21018 } 21019 21020 rw_exit(&ipst->ips_ill_g_lock); 21021 if (usill != NULL) 21022 ill_refrele(usill); 21023 if (dst_rhtp != NULL) 21024 TPC_RELE(dst_rhtp); 21025 21026 #ifdef DEBUG 21027 if (ipif == NULL) { 21028 char buf1[INET6_ADDRSTRLEN]; 21029 21030 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21031 ill->ill_name, 21032 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21033 } else { 21034 char buf1[INET6_ADDRSTRLEN]; 21035 char buf2[INET6_ADDRSTRLEN]; 21036 21037 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21038 ipif->ipif_ill->ill_name, 21039 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21040 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21041 buf2, sizeof (buf2)))); 21042 } 21043 #endif /* DEBUG */ 21044 return (ipif); 21045 } 21046 21047 21048 /* 21049 * If old_ipif is not NULL, see if ipif was derived from old 21050 * ipif and if so, recreate the interface route by re-doing 21051 * source address selection. This happens when ipif_down -> 21052 * ipif_update_other_ipifs calls us. 21053 * 21054 * If old_ipif is NULL, just redo the source address selection 21055 * if needed. This happens when illgrp_insert or ipif_up_done 21056 * calls us. 21057 */ 21058 static void 21059 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21060 { 21061 ire_t *ire; 21062 ire_t *ipif_ire; 21063 queue_t *stq; 21064 ipif_t *nipif; 21065 ill_t *ill; 21066 boolean_t need_rele = B_FALSE; 21067 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21068 21069 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21070 ASSERT(IAM_WRITER_IPIF(ipif)); 21071 21072 ill = ipif->ipif_ill; 21073 if (!(ipif->ipif_flags & 21074 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21075 /* 21076 * Can't possibly have borrowed the source 21077 * from old_ipif. 21078 */ 21079 return; 21080 } 21081 21082 /* 21083 * Is there any work to be done? No work if the address 21084 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21085 * ipif_select_source() does not borrow addresses from 21086 * NOLOCAL and ANYCAST interfaces). 21087 */ 21088 if ((old_ipif != NULL) && 21089 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21090 (old_ipif->ipif_ill->ill_wq == NULL) || 21091 (old_ipif->ipif_flags & 21092 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21093 return; 21094 } 21095 21096 /* 21097 * Perform the same checks as when creating the 21098 * IRE_INTERFACE in ipif_up_done. 21099 */ 21100 if (!(ipif->ipif_flags & IPIF_UP)) 21101 return; 21102 21103 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21104 (ipif->ipif_subnet == INADDR_ANY)) 21105 return; 21106 21107 ipif_ire = ipif_to_ire(ipif); 21108 if (ipif_ire == NULL) 21109 return; 21110 21111 /* 21112 * We know that ipif uses some other source for its 21113 * IRE_INTERFACE. Is it using the source of this 21114 * old_ipif? 21115 */ 21116 if (old_ipif != NULL && 21117 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21118 ire_refrele(ipif_ire); 21119 return; 21120 } 21121 if (ip_debug > 2) { 21122 /* ip1dbg */ 21123 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21124 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21125 } 21126 21127 stq = ipif_ire->ire_stq; 21128 21129 /* 21130 * Can't use our source address. Select a different 21131 * source address for the IRE_INTERFACE. 21132 */ 21133 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21134 if (nipif == NULL) { 21135 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21136 nipif = ipif; 21137 } else { 21138 need_rele = B_TRUE; 21139 } 21140 21141 ire = ire_create( 21142 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21143 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21144 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21145 NULL, /* no gateway */ 21146 &ipif->ipif_mtu, /* max frag */ 21147 NULL, /* no src nce */ 21148 NULL, /* no recv from queue */ 21149 stq, /* send-to queue */ 21150 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21151 ipif, 21152 0, 21153 0, 21154 0, 21155 0, 21156 &ire_uinfo_null, 21157 NULL, 21158 NULL, 21159 ipst); 21160 21161 if (ire != NULL) { 21162 ire_t *ret_ire; 21163 int error; 21164 21165 /* 21166 * We don't need ipif_ire anymore. We need to delete 21167 * before we add so that ire_add does not detect 21168 * duplicates. 21169 */ 21170 ire_delete(ipif_ire); 21171 ret_ire = ire; 21172 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21173 ASSERT(error == 0); 21174 ASSERT(ire == ret_ire); 21175 /* Held in ire_add */ 21176 ire_refrele(ret_ire); 21177 } 21178 /* 21179 * Either we are falling through from above or could not 21180 * allocate a replacement. 21181 */ 21182 ire_refrele(ipif_ire); 21183 if (need_rele) 21184 ipif_refrele(nipif); 21185 } 21186 21187 /* 21188 * This old_ipif is going away. 21189 * 21190 * Determine if any other ipif's is using our address as 21191 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21192 * IPIF_DEPRECATED). 21193 * Find the IRE_INTERFACE for such ipifs and recreate them 21194 * to use an different source address following the rules in 21195 * ipif_up_done. 21196 * 21197 * This function takes an illgrp as an argument so that illgrp_delete 21198 * can call this to update source address even after deleting the 21199 * old_ipif->ipif_ill from the ill group. 21200 */ 21201 static void 21202 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21203 { 21204 ipif_t *ipif; 21205 ill_t *ill; 21206 char buf[INET6_ADDRSTRLEN]; 21207 21208 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21209 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21210 21211 ill = old_ipif->ipif_ill; 21212 21213 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21214 ill->ill_name, 21215 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21216 buf, sizeof (buf)))); 21217 /* 21218 * If this part of a group, look at all ills as ipif_select_source 21219 * borrows source address across all the ills in the group. 21220 */ 21221 if (illgrp != NULL) 21222 ill = illgrp->illgrp_ill; 21223 21224 for (; ill != NULL; ill = ill->ill_group_next) { 21225 for (ipif = ill->ill_ipif; ipif != NULL; 21226 ipif = ipif->ipif_next) { 21227 21228 if (ipif == old_ipif) 21229 continue; 21230 21231 ipif_recreate_interface_routes(old_ipif, ipif); 21232 } 21233 } 21234 } 21235 21236 /* ARGSUSED */ 21237 int 21238 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21239 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21240 { 21241 /* 21242 * ill_phyint_reinit merged the v4 and v6 into a single 21243 * ipsq. Could also have become part of a ipmp group in the 21244 * process, and we might not have been able to complete the 21245 * operation in ipif_set_values, if we could not become 21246 * exclusive. If so restart it here. 21247 */ 21248 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21249 } 21250 21251 /* 21252 * Can operate on either a module or a driver queue. 21253 * Returns an error if not a module queue. 21254 */ 21255 /* ARGSUSED */ 21256 int 21257 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21258 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21259 { 21260 queue_t *q1 = q; 21261 char *cp; 21262 char interf_name[LIFNAMSIZ]; 21263 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21264 21265 if (q->q_next == NULL) { 21266 ip1dbg(( 21267 "if_unitsel: IF_UNITSEL: no q_next\n")); 21268 return (EINVAL); 21269 } 21270 21271 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21272 return (EALREADY); 21273 21274 do { 21275 q1 = q1->q_next; 21276 } while (q1->q_next); 21277 cp = q1->q_qinfo->qi_minfo->mi_idname; 21278 (void) sprintf(interf_name, "%s%d", cp, ppa); 21279 21280 /* 21281 * Here we are not going to delay the ioack until after 21282 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21283 * original ioctl message before sending the requests. 21284 */ 21285 return (ipif_set_values(q, mp, interf_name, &ppa)); 21286 } 21287 21288 /* ARGSUSED */ 21289 int 21290 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21291 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21292 { 21293 return (ENXIO); 21294 } 21295 21296 /* 21297 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21298 * `irep'. Returns a pointer to the next free `irep' entry (just like 21299 * ire_check_and_create_bcast()). 21300 */ 21301 static ire_t ** 21302 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21303 { 21304 ipaddr_t addr; 21305 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21306 ipaddr_t subnetmask = ipif->ipif_net_mask; 21307 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21308 21309 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21310 21311 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21312 21313 if (ipif->ipif_lcl_addr == INADDR_ANY || 21314 (ipif->ipif_flags & IPIF_NOLOCAL)) 21315 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21316 21317 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21318 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21319 21320 /* 21321 * For backward compatibility, we create net broadcast IREs based on 21322 * the old "IP address class system", since some old machines only 21323 * respond to these class derived net broadcast. However, we must not 21324 * create these net broadcast IREs if the subnetmask is shorter than 21325 * the IP address class based derived netmask. Otherwise, we may 21326 * create a net broadcast address which is the same as an IP address 21327 * on the subnet -- and then TCP will refuse to talk to that address. 21328 */ 21329 if (netmask < subnetmask) { 21330 addr = netmask & ipif->ipif_subnet; 21331 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21332 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21333 flags); 21334 } 21335 21336 /* 21337 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21338 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21339 * created. Creating these broadcast IREs will only create confusion 21340 * as `addr' will be the same as the IP address. 21341 */ 21342 if (subnetmask != 0xFFFFFFFF) { 21343 addr = ipif->ipif_subnet; 21344 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21345 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21346 irep, flags); 21347 } 21348 21349 return (irep); 21350 } 21351 21352 /* 21353 * Broadcast IRE info structure used in the functions below. Since we 21354 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21355 */ 21356 typedef struct bcast_ireinfo { 21357 uchar_t bi_type; /* BCAST_* value from below */ 21358 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21359 bi_needrep:1, /* do we need to replace it? */ 21360 bi_haverep:1, /* have we replaced it? */ 21361 bi_pad:5; 21362 ipaddr_t bi_addr; /* IRE address */ 21363 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21364 } bcast_ireinfo_t; 21365 21366 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21367 21368 /* 21369 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21370 * return B_TRUE if it should immediately be used to recreate the IRE. 21371 */ 21372 static boolean_t 21373 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21374 { 21375 ipaddr_t addr; 21376 21377 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21378 21379 switch (bireinfop->bi_type) { 21380 case BCAST_NET: 21381 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21382 if (addr != bireinfop->bi_addr) 21383 return (B_FALSE); 21384 break; 21385 case BCAST_SUBNET: 21386 if (ipif->ipif_subnet != bireinfop->bi_addr) 21387 return (B_FALSE); 21388 break; 21389 } 21390 21391 bireinfop->bi_needrep = 1; 21392 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21393 if (bireinfop->bi_backup == NULL) 21394 bireinfop->bi_backup = ipif; 21395 return (B_FALSE); 21396 } 21397 return (B_TRUE); 21398 } 21399 21400 /* 21401 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21402 * them ala ire_check_and_create_bcast(). 21403 */ 21404 static ire_t ** 21405 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21406 { 21407 ipaddr_t mask, addr; 21408 21409 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21410 21411 addr = bireinfop->bi_addr; 21412 irep = ire_create_bcast(ipif, addr, irep); 21413 21414 switch (bireinfop->bi_type) { 21415 case BCAST_NET: 21416 mask = ip_net_mask(ipif->ipif_subnet); 21417 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21418 break; 21419 case BCAST_SUBNET: 21420 mask = ipif->ipif_net_mask; 21421 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21422 break; 21423 } 21424 21425 bireinfop->bi_haverep = 1; 21426 return (irep); 21427 } 21428 21429 /* 21430 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21431 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21432 * that are going away are still needed. If so, have ipif_create_bcast() 21433 * recreate them (except for the deprecated case, as explained below). 21434 */ 21435 static ire_t ** 21436 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21437 ire_t **irep) 21438 { 21439 int i; 21440 ipif_t *ipif; 21441 21442 ASSERT(!ill->ill_isv6); 21443 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21444 /* 21445 * Skip this ipif if it's (a) the one being taken down, (b) 21446 * not in the same zone, or (c) has no valid local address. 21447 */ 21448 if (ipif == test_ipif || 21449 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21450 ipif->ipif_subnet == 0 || 21451 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21452 (IPIF_UP|IPIF_BROADCAST)) 21453 continue; 21454 21455 /* 21456 * For each dying IRE that hasn't yet been replaced, see if 21457 * `ipif' needs it and whether the IRE should be recreated on 21458 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21459 * will return B_FALSE even if `ipif' needs the IRE on the 21460 * hopes that we'll later find a needy non-deprecated ipif. 21461 * However, the ipif is recorded in bi_backup for possible 21462 * subsequent use by ipif_check_bcast_ires(). 21463 */ 21464 for (i = 0; i < BCAST_COUNT; i++) { 21465 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21466 continue; 21467 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21468 continue; 21469 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21470 } 21471 21472 /* 21473 * If we've replaced all of the broadcast IREs that are going 21474 * to be taken down, we know we're done. 21475 */ 21476 for (i = 0; i < BCAST_COUNT; i++) { 21477 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21478 break; 21479 } 21480 if (i == BCAST_COUNT) 21481 break; 21482 } 21483 return (irep); 21484 } 21485 21486 /* 21487 * Check if `test_ipif' (which is going away) is associated with any existing 21488 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21489 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21490 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21491 * 21492 * This is necessary because broadcast IREs are shared. In particular, a 21493 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21494 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21495 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21496 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21497 * same zone, they will share the same set of broadcast IREs. 21498 * 21499 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21500 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21501 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21502 */ 21503 static void 21504 ipif_check_bcast_ires(ipif_t *test_ipif) 21505 { 21506 ill_t *ill = test_ipif->ipif_ill; 21507 ire_t *ire, *ire_array[12]; /* see note above */ 21508 ire_t **irep1, **irep = &ire_array[0]; 21509 uint_t i, willdie; 21510 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21511 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21512 21513 ASSERT(!test_ipif->ipif_isv6); 21514 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21515 21516 /* 21517 * No broadcast IREs for the LOOPBACK interface 21518 * or others such as point to point and IPIF_NOXMIT. 21519 */ 21520 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21521 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21522 return; 21523 21524 bzero(bireinfo, sizeof (bireinfo)); 21525 bireinfo[0].bi_type = BCAST_ALLZEROES; 21526 bireinfo[0].bi_addr = 0; 21527 21528 bireinfo[1].bi_type = BCAST_ALLONES; 21529 bireinfo[1].bi_addr = INADDR_BROADCAST; 21530 21531 bireinfo[2].bi_type = BCAST_NET; 21532 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21533 21534 if (test_ipif->ipif_net_mask != 0) 21535 mask = test_ipif->ipif_net_mask; 21536 bireinfo[3].bi_type = BCAST_SUBNET; 21537 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21538 21539 /* 21540 * Figure out what (if any) broadcast IREs will die as a result of 21541 * `test_ipif' going away. If none will die, we're done. 21542 */ 21543 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21544 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21545 test_ipif, ALL_ZONES, NULL, 21546 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21547 if (ire != NULL) { 21548 willdie++; 21549 bireinfo[i].bi_willdie = 1; 21550 ire_refrele(ire); 21551 } 21552 } 21553 21554 if (willdie == 0) 21555 return; 21556 21557 /* 21558 * Walk through all the ipifs that will be affected by the dying IREs, 21559 * and recreate the IREs as necessary. 21560 */ 21561 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21562 21563 /* 21564 * Scan through the set of broadcast IREs and see if there are any 21565 * that we need to replace that have not yet been replaced. If so, 21566 * replace them using the appropriate backup ipif. 21567 */ 21568 for (i = 0; i < BCAST_COUNT; i++) { 21569 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21570 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21571 &bireinfo[i], irep); 21572 } 21573 21574 /* 21575 * If we can't create all of them, don't add any of them. (Code in 21576 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21577 * non-loopback copy and loopback copy for a given address.) 21578 */ 21579 for (irep1 = irep; irep1 > ire_array; ) { 21580 irep1--; 21581 if (*irep1 == NULL) { 21582 ip0dbg(("ipif_check_bcast_ires: can't create " 21583 "IRE_BROADCAST, memory allocation failure\n")); 21584 while (irep > ire_array) { 21585 irep--; 21586 if (*irep != NULL) 21587 ire_delete(*irep); 21588 } 21589 return; 21590 } 21591 } 21592 21593 for (irep1 = irep; irep1 > ire_array; ) { 21594 irep1--; 21595 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21596 ire_refrele(*irep1); /* Held in ire_add */ 21597 } 21598 } 21599 21600 /* 21601 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21602 * from lifr_flags and the name from lifr_name. 21603 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21604 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21605 * Returns EINPROGRESS when mp has been consumed by queueing it on 21606 * ill_pending_mp and the ioctl will complete in ip_rput. 21607 * 21608 * Can operate on either a module or a driver queue. 21609 * Returns an error if not a module queue. 21610 */ 21611 /* ARGSUSED */ 21612 int 21613 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21614 ip_ioctl_cmd_t *ipip, void *if_req) 21615 { 21616 ill_t *ill = q->q_ptr; 21617 phyint_t *phyi; 21618 ip_stack_t *ipst; 21619 struct lifreq *lifr = if_req; 21620 21621 ASSERT(ipif != NULL); 21622 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21623 21624 if (q->q_next == NULL) { 21625 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21626 return (EINVAL); 21627 } 21628 21629 /* 21630 * If we are not writer on 'q' then this interface exists already 21631 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21632 * so return EALREADY. 21633 */ 21634 if (ill != ipif->ipif_ill) 21635 return (EALREADY); 21636 21637 if (ill->ill_name[0] != '\0') 21638 return (EALREADY); 21639 21640 /* 21641 * Set all the flags. Allows all kinds of override. Provide some 21642 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21643 * unless there is either multicast/broadcast support in the driver 21644 * or it is a pt-pt link. 21645 */ 21646 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21647 /* Meaningless to IP thus don't allow them to be set. */ 21648 ip1dbg(("ip_setname: EINVAL 1\n")); 21649 return (EINVAL); 21650 } 21651 21652 /* 21653 * If there's another ill already with the requested name, ensure 21654 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21655 * fuse together two unrelated ills, which will cause chaos. 21656 */ 21657 ipst = ill->ill_ipst; 21658 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21659 lifr->lifr_name, NULL); 21660 if (phyi != NULL) { 21661 ill_t *ill_mate = phyi->phyint_illv4; 21662 21663 if (ill_mate == NULL) 21664 ill_mate = phyi->phyint_illv6; 21665 ASSERT(ill_mate != NULL); 21666 21667 if (ill_mate->ill_media->ip_m_mac_type != 21668 ill->ill_media->ip_m_mac_type) { 21669 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21670 "use the same ill name on differing media\n")); 21671 return (EINVAL); 21672 } 21673 } 21674 21675 /* 21676 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21677 * ill_bcast_addr_length info. 21678 */ 21679 if (!ill->ill_needs_attach && 21680 ((lifr->lifr_flags & IFF_MULTICAST) && 21681 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21682 ill->ill_bcast_addr_length == 0)) { 21683 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21684 ip1dbg(("ip_setname: EINVAL 2\n")); 21685 return (EINVAL); 21686 } 21687 if ((lifr->lifr_flags & IFF_BROADCAST) && 21688 ((lifr->lifr_flags & IFF_IPV6) || 21689 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21690 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21691 ip1dbg(("ip_setname: EINVAL 3\n")); 21692 return (EINVAL); 21693 } 21694 if (lifr->lifr_flags & IFF_UP) { 21695 /* Can only be set with SIOCSLIFFLAGS */ 21696 ip1dbg(("ip_setname: EINVAL 4\n")); 21697 return (EINVAL); 21698 } 21699 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21700 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21701 ip1dbg(("ip_setname: EINVAL 5\n")); 21702 return (EINVAL); 21703 } 21704 /* 21705 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21706 */ 21707 if ((lifr->lifr_flags & IFF_XRESOLV) && 21708 !(lifr->lifr_flags & IFF_IPV6) && 21709 !(ipif->ipif_isv6)) { 21710 ip1dbg(("ip_setname: EINVAL 6\n")); 21711 return (EINVAL); 21712 } 21713 21714 /* 21715 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21716 * we have all the flags here. So, we assign rather than we OR. 21717 * We can't OR the flags here because we don't want to set 21718 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21719 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21720 * on lifr_flags value here. 21721 */ 21722 /* 21723 * This ill has not been inserted into the global list. 21724 * So we are still single threaded and don't need any lock 21725 */ 21726 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21727 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21728 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21729 21730 /* We started off as V4. */ 21731 if (ill->ill_flags & ILLF_IPV6) { 21732 ill->ill_phyint->phyint_illv6 = ill; 21733 ill->ill_phyint->phyint_illv4 = NULL; 21734 } 21735 21736 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21737 } 21738 21739 /* ARGSUSED */ 21740 int 21741 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21742 ip_ioctl_cmd_t *ipip, void *if_req) 21743 { 21744 /* 21745 * ill_phyint_reinit merged the v4 and v6 into a single 21746 * ipsq. Could also have become part of a ipmp group in the 21747 * process, and we might not have been able to complete the 21748 * slifname in ipif_set_values, if we could not become 21749 * exclusive. If so restart it here 21750 */ 21751 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21752 } 21753 21754 /* 21755 * Return a pointer to the ipif which matches the index, IP version type and 21756 * zoneid. 21757 */ 21758 ipif_t * 21759 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21760 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21761 { 21762 ill_t *ill; 21763 ipif_t *ipif = NULL; 21764 21765 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21766 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21767 21768 if (err != NULL) 21769 *err = 0; 21770 21771 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21772 if (ill != NULL) { 21773 mutex_enter(&ill->ill_lock); 21774 for (ipif = ill->ill_ipif; ipif != NULL; 21775 ipif = ipif->ipif_next) { 21776 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21777 zoneid == ipif->ipif_zoneid || 21778 ipif->ipif_zoneid == ALL_ZONES)) { 21779 ipif_refhold_locked(ipif); 21780 break; 21781 } 21782 } 21783 mutex_exit(&ill->ill_lock); 21784 ill_refrele(ill); 21785 if (ipif == NULL && err != NULL) 21786 *err = ENXIO; 21787 } 21788 return (ipif); 21789 } 21790 21791 typedef struct conn_change_s { 21792 uint_t cc_old_ifindex; 21793 uint_t cc_new_ifindex; 21794 } conn_change_t; 21795 21796 /* 21797 * ipcl_walk function for changing interface index. 21798 */ 21799 static void 21800 conn_change_ifindex(conn_t *connp, caddr_t arg) 21801 { 21802 conn_change_t *connc; 21803 uint_t old_ifindex; 21804 uint_t new_ifindex; 21805 int i; 21806 ilg_t *ilg; 21807 21808 connc = (conn_change_t *)arg; 21809 old_ifindex = connc->cc_old_ifindex; 21810 new_ifindex = connc->cc_new_ifindex; 21811 21812 if (connp->conn_orig_bound_ifindex == old_ifindex) 21813 connp->conn_orig_bound_ifindex = new_ifindex; 21814 21815 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21816 connp->conn_orig_multicast_ifindex = new_ifindex; 21817 21818 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21819 ilg = &connp->conn_ilg[i]; 21820 if (ilg->ilg_orig_ifindex == old_ifindex) 21821 ilg->ilg_orig_ifindex = new_ifindex; 21822 } 21823 } 21824 21825 /* 21826 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21827 * to new_index if it matches the old_index. 21828 * 21829 * Failovers typically happen within a group of ills. But somebody 21830 * can remove an ill from the group after a failover happened. If 21831 * we are setting the ifindex after this, we potentially need to 21832 * look at all the ills rather than just the ones in the group. 21833 * We cut down the work by looking at matching ill_net_types 21834 * and ill_types as we could not possibly grouped them together. 21835 */ 21836 static void 21837 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21838 { 21839 ill_t *ill; 21840 ipif_t *ipif; 21841 uint_t old_ifindex; 21842 uint_t new_ifindex; 21843 ilm_t *ilm; 21844 ill_walk_context_t ctx; 21845 ip_stack_t *ipst = ill_orig->ill_ipst; 21846 21847 old_ifindex = connc->cc_old_ifindex; 21848 new_ifindex = connc->cc_new_ifindex; 21849 21850 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21851 ill = ILL_START_WALK_ALL(&ctx, ipst); 21852 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21853 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21854 (ill_orig->ill_type != ill->ill_type)) { 21855 continue; 21856 } 21857 for (ipif = ill->ill_ipif; ipif != NULL; 21858 ipif = ipif->ipif_next) { 21859 if (ipif->ipif_orig_ifindex == old_ifindex) 21860 ipif->ipif_orig_ifindex = new_ifindex; 21861 } 21862 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21863 if (ilm->ilm_orig_ifindex == old_ifindex) 21864 ilm->ilm_orig_ifindex = new_ifindex; 21865 } 21866 } 21867 rw_exit(&ipst->ips_ill_g_lock); 21868 } 21869 21870 /* 21871 * We first need to ensure that the new index is unique, and 21872 * then carry the change across both v4 and v6 ill representation 21873 * of the physical interface. 21874 */ 21875 /* ARGSUSED */ 21876 int 21877 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21878 ip_ioctl_cmd_t *ipip, void *ifreq) 21879 { 21880 ill_t *ill; 21881 ill_t *ill_other; 21882 phyint_t *phyi; 21883 int old_index; 21884 conn_change_t connc; 21885 struct ifreq *ifr = (struct ifreq *)ifreq; 21886 struct lifreq *lifr = (struct lifreq *)ifreq; 21887 uint_t index; 21888 ill_t *ill_v4; 21889 ill_t *ill_v6; 21890 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21891 21892 if (ipip->ipi_cmd_type == IF_CMD) 21893 index = ifr->ifr_index; 21894 else 21895 index = lifr->lifr_index; 21896 21897 /* 21898 * Only allow on physical interface. Also, index zero is illegal. 21899 * 21900 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21901 * 21902 * 1) If PHYI_FAILED is set, a failover could have happened which 21903 * implies a possible failback might have to happen. As failback 21904 * depends on the old index, we should fail setting the index. 21905 * 21906 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21907 * any addresses or multicast memberships are failed over to 21908 * a non-STANDBY interface. As failback depends on the old 21909 * index, we should fail setting the index for this case also. 21910 * 21911 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21912 * Be consistent with PHYI_FAILED and fail the ioctl. 21913 */ 21914 ill = ipif->ipif_ill; 21915 phyi = ill->ill_phyint; 21916 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21917 ipif->ipif_id != 0 || index == 0) { 21918 return (EINVAL); 21919 } 21920 old_index = phyi->phyint_ifindex; 21921 21922 /* If the index is not changing, no work to do */ 21923 if (old_index == index) 21924 return (0); 21925 21926 /* 21927 * Use ill_lookup_on_ifindex to determine if the 21928 * new index is unused and if so allow the change. 21929 */ 21930 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21931 ipst); 21932 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21933 ipst); 21934 if (ill_v6 != NULL || ill_v4 != NULL) { 21935 if (ill_v4 != NULL) 21936 ill_refrele(ill_v4); 21937 if (ill_v6 != NULL) 21938 ill_refrele(ill_v6); 21939 return (EBUSY); 21940 } 21941 21942 /* 21943 * The new index is unused. Set it in the phyint. 21944 * Locate the other ill so that we can send a routing 21945 * sockets message. 21946 */ 21947 if (ill->ill_isv6) { 21948 ill_other = phyi->phyint_illv4; 21949 } else { 21950 ill_other = phyi->phyint_illv6; 21951 } 21952 21953 phyi->phyint_ifindex = index; 21954 21955 /* Update SCTP's ILL list */ 21956 sctp_ill_reindex(ill, old_index); 21957 21958 connc.cc_old_ifindex = old_index; 21959 connc.cc_new_ifindex = index; 21960 ip_change_ifindex(ill, &connc); 21961 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21962 21963 /* Send the routing sockets message */ 21964 ip_rts_ifmsg(ipif); 21965 if (ill_other != NULL) 21966 ip_rts_ifmsg(ill_other->ill_ipif); 21967 21968 return (0); 21969 } 21970 21971 /* ARGSUSED */ 21972 int 21973 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21974 ip_ioctl_cmd_t *ipip, void *ifreq) 21975 { 21976 struct ifreq *ifr = (struct ifreq *)ifreq; 21977 struct lifreq *lifr = (struct lifreq *)ifreq; 21978 21979 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21980 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21981 /* Get the interface index */ 21982 if (ipip->ipi_cmd_type == IF_CMD) { 21983 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21984 } else { 21985 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21986 } 21987 return (0); 21988 } 21989 21990 /* ARGSUSED */ 21991 int 21992 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21993 ip_ioctl_cmd_t *ipip, void *ifreq) 21994 { 21995 struct lifreq *lifr = (struct lifreq *)ifreq; 21996 21997 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21998 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21999 /* Get the interface zone */ 22000 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22001 lifr->lifr_zoneid = ipif->ipif_zoneid; 22002 return (0); 22003 } 22004 22005 /* 22006 * Set the zoneid of an interface. 22007 */ 22008 /* ARGSUSED */ 22009 int 22010 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22011 ip_ioctl_cmd_t *ipip, void *ifreq) 22012 { 22013 struct lifreq *lifr = (struct lifreq *)ifreq; 22014 int err = 0; 22015 boolean_t need_up = B_FALSE; 22016 zone_t *zptr; 22017 zone_status_t status; 22018 zoneid_t zoneid; 22019 22020 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22021 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22022 if (!is_system_labeled()) 22023 return (ENOTSUP); 22024 zoneid = GLOBAL_ZONEID; 22025 } 22026 22027 /* cannot assign instance zero to a non-global zone */ 22028 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22029 return (ENOTSUP); 22030 22031 /* 22032 * Cannot assign to a zone that doesn't exist or is shutting down. In 22033 * the event of a race with the zone shutdown processing, since IP 22034 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22035 * interface will be cleaned up even if the zone is shut down 22036 * immediately after the status check. If the interface can't be brought 22037 * down right away, and the zone is shut down before the restart 22038 * function is called, we resolve the possible races by rechecking the 22039 * zone status in the restart function. 22040 */ 22041 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22042 return (EINVAL); 22043 status = zone_status_get(zptr); 22044 zone_rele(zptr); 22045 22046 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22047 return (EINVAL); 22048 22049 if (ipif->ipif_flags & IPIF_UP) { 22050 /* 22051 * If the interface is already marked up, 22052 * we call ipif_down which will take care 22053 * of ditching any IREs that have been set 22054 * up based on the old interface address. 22055 */ 22056 err = ipif_logical_down(ipif, q, mp); 22057 if (err == EINPROGRESS) 22058 return (err); 22059 ipif_down_tail(ipif); 22060 need_up = B_TRUE; 22061 } 22062 22063 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22064 return (err); 22065 } 22066 22067 static int 22068 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22069 queue_t *q, mblk_t *mp, boolean_t need_up) 22070 { 22071 int err = 0; 22072 ip_stack_t *ipst; 22073 22074 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22075 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22076 22077 if (CONN_Q(q)) 22078 ipst = CONNQ_TO_IPST(q); 22079 else 22080 ipst = ILLQ_TO_IPST(q); 22081 22082 /* 22083 * For exclusive stacks we don't allow a different zoneid than 22084 * global. 22085 */ 22086 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22087 zoneid != GLOBAL_ZONEID) 22088 return (EINVAL); 22089 22090 /* Set the new zone id. */ 22091 ipif->ipif_zoneid = zoneid; 22092 22093 /* Update sctp list */ 22094 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22095 22096 if (need_up) { 22097 /* 22098 * Now bring the interface back up. If this 22099 * is the only IPIF for the ILL, ipif_up 22100 * will have to re-bind to the device, so 22101 * we may get back EINPROGRESS, in which 22102 * case, this IOCTL will get completed in 22103 * ip_rput_dlpi when we see the DL_BIND_ACK. 22104 */ 22105 err = ipif_up(ipif, q, mp); 22106 } 22107 return (err); 22108 } 22109 22110 /* ARGSUSED */ 22111 int 22112 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22113 ip_ioctl_cmd_t *ipip, void *if_req) 22114 { 22115 struct lifreq *lifr = (struct lifreq *)if_req; 22116 zoneid_t zoneid; 22117 zone_t *zptr; 22118 zone_status_t status; 22119 22120 ASSERT(ipif->ipif_id != 0); 22121 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22122 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22123 zoneid = GLOBAL_ZONEID; 22124 22125 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22127 22128 /* 22129 * We recheck the zone status to resolve the following race condition: 22130 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22131 * 2) hme0:1 is up and can't be brought down right away; 22132 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22133 * 3) zone "myzone" is halted; the zone status switches to 22134 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22135 * the interfaces to remove - hme0:1 is not returned because it's not 22136 * yet in "myzone", so it won't be removed; 22137 * 4) the restart function for SIOCSLIFZONE is called; without the 22138 * status check here, we would have hme0:1 in "myzone" after it's been 22139 * destroyed. 22140 * Note that if the status check fails, we need to bring the interface 22141 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22142 * ipif_up_done[_v6](). 22143 */ 22144 status = ZONE_IS_UNINITIALIZED; 22145 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22146 status = zone_status_get(zptr); 22147 zone_rele(zptr); 22148 } 22149 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22150 if (ipif->ipif_isv6) { 22151 (void) ipif_up_done_v6(ipif); 22152 } else { 22153 (void) ipif_up_done(ipif); 22154 } 22155 return (EINVAL); 22156 } 22157 22158 ipif_down_tail(ipif); 22159 22160 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22161 B_TRUE)); 22162 } 22163 22164 /* ARGSUSED */ 22165 int 22166 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22167 ip_ioctl_cmd_t *ipip, void *ifreq) 22168 { 22169 struct lifreq *lifr = ifreq; 22170 22171 ASSERT(q->q_next == NULL); 22172 ASSERT(CONN_Q(q)); 22173 22174 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22176 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22177 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22178 22179 return (0); 22180 } 22181 22182 /* Find the previous ILL in this usesrc group */ 22183 static ill_t * 22184 ill_prev_usesrc(ill_t *uill) 22185 { 22186 ill_t *ill; 22187 22188 for (ill = uill->ill_usesrc_grp_next; 22189 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22190 ill = ill->ill_usesrc_grp_next) 22191 /* do nothing */; 22192 return (ill); 22193 } 22194 22195 /* 22196 * Release all members of the usesrc group. This routine is called 22197 * from ill_delete when the interface being unplumbed is the 22198 * group head. 22199 */ 22200 static void 22201 ill_disband_usesrc_group(ill_t *uill) 22202 { 22203 ill_t *next_ill, *tmp_ill; 22204 ip_stack_t *ipst = uill->ill_ipst; 22205 22206 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22207 next_ill = uill->ill_usesrc_grp_next; 22208 22209 do { 22210 ASSERT(next_ill != NULL); 22211 tmp_ill = next_ill->ill_usesrc_grp_next; 22212 ASSERT(tmp_ill != NULL); 22213 next_ill->ill_usesrc_grp_next = NULL; 22214 next_ill->ill_usesrc_ifindex = 0; 22215 next_ill = tmp_ill; 22216 } while (next_ill->ill_usesrc_ifindex != 0); 22217 uill->ill_usesrc_grp_next = NULL; 22218 } 22219 22220 /* 22221 * Remove the client usesrc ILL from the list and relink to a new list 22222 */ 22223 int 22224 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22225 { 22226 ill_t *ill, *tmp_ill; 22227 ip_stack_t *ipst = ucill->ill_ipst; 22228 22229 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22230 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22231 22232 /* 22233 * Check if the usesrc client ILL passed in is not already 22234 * in use as a usesrc ILL i.e one whose source address is 22235 * in use OR a usesrc ILL is not already in use as a usesrc 22236 * client ILL 22237 */ 22238 if ((ucill->ill_usesrc_ifindex == 0) || 22239 (uill->ill_usesrc_ifindex != 0)) { 22240 return (-1); 22241 } 22242 22243 ill = ill_prev_usesrc(ucill); 22244 ASSERT(ill->ill_usesrc_grp_next != NULL); 22245 22246 /* Remove from the current list */ 22247 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22248 /* Only two elements in the list */ 22249 ASSERT(ill->ill_usesrc_ifindex == 0); 22250 ill->ill_usesrc_grp_next = NULL; 22251 } else { 22252 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22253 } 22254 22255 if (ifindex == 0) { 22256 ucill->ill_usesrc_ifindex = 0; 22257 ucill->ill_usesrc_grp_next = NULL; 22258 return (0); 22259 } 22260 22261 ucill->ill_usesrc_ifindex = ifindex; 22262 tmp_ill = uill->ill_usesrc_grp_next; 22263 uill->ill_usesrc_grp_next = ucill; 22264 ucill->ill_usesrc_grp_next = 22265 (tmp_ill != NULL) ? tmp_ill : uill; 22266 return (0); 22267 } 22268 22269 /* 22270 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22271 * ip.c for locking details. 22272 */ 22273 /* ARGSUSED */ 22274 int 22275 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22276 ip_ioctl_cmd_t *ipip, void *ifreq) 22277 { 22278 struct lifreq *lifr = (struct lifreq *)ifreq; 22279 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22280 ill_flag_changed = B_FALSE; 22281 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22282 int err = 0, ret; 22283 uint_t ifindex; 22284 phyint_t *us_phyint, *us_cli_phyint; 22285 ipsq_t *ipsq = NULL; 22286 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22287 22288 ASSERT(IAM_WRITER_IPIF(ipif)); 22289 ASSERT(q->q_next == NULL); 22290 ASSERT(CONN_Q(q)); 22291 22292 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22293 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22294 22295 ASSERT(us_cli_phyint != NULL); 22296 22297 /* 22298 * If the client ILL is being used for IPMP, abort. 22299 * Note, this can be done before ipsq_try_enter since we are already 22300 * exclusive on this ILL 22301 */ 22302 if ((us_cli_phyint->phyint_groupname != NULL) || 22303 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22304 return (EINVAL); 22305 } 22306 22307 ifindex = lifr->lifr_index; 22308 if (ifindex == 0) { 22309 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22310 /* non usesrc group interface, nothing to reset */ 22311 return (0); 22312 } 22313 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22314 /* valid reset request */ 22315 reset_flg = B_TRUE; 22316 } 22317 22318 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22319 ip_process_ioctl, &err, ipst); 22320 22321 if (usesrc_ill == NULL) { 22322 return (err); 22323 } 22324 22325 /* 22326 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22327 * group nor can either of the interfaces be used for standy. So 22328 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22329 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22330 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22331 * We are already exlusive on this ipsq i.e ipsq corresponding to 22332 * the usesrc_cli_ill 22333 */ 22334 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22335 NEW_OP, B_TRUE); 22336 if (ipsq == NULL) { 22337 err = EINPROGRESS; 22338 /* Operation enqueued on the ipsq of the usesrc ILL */ 22339 goto done; 22340 } 22341 22342 /* Check if the usesrc_ill is used for IPMP */ 22343 us_phyint = usesrc_ill->ill_phyint; 22344 if ((us_phyint->phyint_groupname != NULL) || 22345 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22346 err = EINVAL; 22347 goto done; 22348 } 22349 22350 /* 22351 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22352 * already a client then return EINVAL 22353 */ 22354 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22355 err = EINVAL; 22356 goto done; 22357 } 22358 22359 /* 22360 * If the ill_usesrc_ifindex field is already set to what it needs to 22361 * be then this is a duplicate operation. 22362 */ 22363 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22364 err = 0; 22365 goto done; 22366 } 22367 22368 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22369 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22370 usesrc_ill->ill_isv6)); 22371 22372 /* 22373 * The next step ensures that no new ires will be created referencing 22374 * the client ill, until the ILL_CHANGING flag is cleared. Then 22375 * we go through an ire walk deleting all ire caches that reference 22376 * the client ill. New ires referencing the client ill that are added 22377 * to the ire table before the ILL_CHANGING flag is set, will be 22378 * cleaned up by the ire walk below. Attempt to add new ires referencing 22379 * the client ill while the ILL_CHANGING flag is set will be failed 22380 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22381 * checks (under the ill_g_usesrc_lock) that the ire being added 22382 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22383 * belong to the same usesrc group. 22384 */ 22385 mutex_enter(&usesrc_cli_ill->ill_lock); 22386 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22387 mutex_exit(&usesrc_cli_ill->ill_lock); 22388 ill_flag_changed = B_TRUE; 22389 22390 if (ipif->ipif_isv6) 22391 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22392 ALL_ZONES, ipst); 22393 else 22394 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22395 ALL_ZONES, ipst); 22396 22397 /* 22398 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22399 * and the ill_usesrc_ifindex fields 22400 */ 22401 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22402 22403 if (reset_flg) { 22404 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22405 if (ret != 0) { 22406 err = EINVAL; 22407 } 22408 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22409 goto done; 22410 } 22411 22412 /* 22413 * Four possibilities to consider: 22414 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22415 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22416 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22417 * 4. Both are part of their respective usesrc groups 22418 */ 22419 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22420 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22421 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22422 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22423 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22424 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22425 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22426 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22427 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22428 /* Insert at head of list */ 22429 usesrc_cli_ill->ill_usesrc_grp_next = 22430 usesrc_ill->ill_usesrc_grp_next; 22431 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22432 } else { 22433 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22434 ifindex); 22435 if (ret != 0) 22436 err = EINVAL; 22437 } 22438 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22439 22440 done: 22441 if (ill_flag_changed) { 22442 mutex_enter(&usesrc_cli_ill->ill_lock); 22443 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22444 mutex_exit(&usesrc_cli_ill->ill_lock); 22445 } 22446 if (ipsq != NULL) 22447 ipsq_exit(ipsq); 22448 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22449 ill_refrele(usesrc_ill); 22450 return (err); 22451 } 22452 22453 /* 22454 * comparison function used by avl. 22455 */ 22456 static int 22457 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22458 { 22459 22460 uint_t index; 22461 22462 ASSERT(phyip != NULL && index_ptr != NULL); 22463 22464 index = *((uint_t *)index_ptr); 22465 /* 22466 * let the phyint with the lowest index be on top. 22467 */ 22468 if (((phyint_t *)phyip)->phyint_ifindex < index) 22469 return (1); 22470 if (((phyint_t *)phyip)->phyint_ifindex > index) 22471 return (-1); 22472 return (0); 22473 } 22474 22475 /* 22476 * comparison function used by avl. 22477 */ 22478 static int 22479 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22480 { 22481 ill_t *ill; 22482 int res = 0; 22483 22484 ASSERT(phyip != NULL && name_ptr != NULL); 22485 22486 if (((phyint_t *)phyip)->phyint_illv4) 22487 ill = ((phyint_t *)phyip)->phyint_illv4; 22488 else 22489 ill = ((phyint_t *)phyip)->phyint_illv6; 22490 ASSERT(ill != NULL); 22491 22492 res = strcmp(ill->ill_name, (char *)name_ptr); 22493 if (res > 0) 22494 return (1); 22495 else if (res < 0) 22496 return (-1); 22497 return (0); 22498 } 22499 /* 22500 * This function is called from ill_delete when the ill is being 22501 * unplumbed. We remove the reference from the phyint and we also 22502 * free the phyint when there are no more references to it. 22503 */ 22504 static void 22505 ill_phyint_free(ill_t *ill) 22506 { 22507 phyint_t *phyi; 22508 phyint_t *next_phyint; 22509 ipsq_t *cur_ipsq; 22510 ip_stack_t *ipst = ill->ill_ipst; 22511 22512 ASSERT(ill->ill_phyint != NULL); 22513 22514 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22515 phyi = ill->ill_phyint; 22516 ill->ill_phyint = NULL; 22517 /* 22518 * ill_init allocates a phyint always to store the copy 22519 * of flags relevant to phyint. At that point in time, we could 22520 * not assign the name and hence phyint_illv4/v6 could not be 22521 * initialized. Later in ipif_set_values, we assign the name to 22522 * the ill, at which point in time we assign phyint_illv4/v6. 22523 * Thus we don't rely on phyint_illv6 to be initialized always. 22524 */ 22525 if (ill->ill_flags & ILLF_IPV6) { 22526 phyi->phyint_illv6 = NULL; 22527 } else { 22528 phyi->phyint_illv4 = NULL; 22529 } 22530 /* 22531 * ipif_down removes it from the group when the last ipif goes 22532 * down. 22533 */ 22534 ASSERT(ill->ill_group == NULL); 22535 22536 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22537 return; 22538 22539 /* 22540 * Make sure this phyint was put in the list. 22541 */ 22542 if (phyi->phyint_ifindex > 0) { 22543 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22544 phyi); 22545 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22546 phyi); 22547 } 22548 /* 22549 * remove phyint from the ipsq list. 22550 */ 22551 cur_ipsq = phyi->phyint_ipsq; 22552 if (phyi == cur_ipsq->ipsq_phyint_list) { 22553 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22554 } else { 22555 next_phyint = cur_ipsq->ipsq_phyint_list; 22556 while (next_phyint != NULL) { 22557 if (next_phyint->phyint_ipsq_next == phyi) { 22558 next_phyint->phyint_ipsq_next = 22559 phyi->phyint_ipsq_next; 22560 break; 22561 } 22562 next_phyint = next_phyint->phyint_ipsq_next; 22563 } 22564 ASSERT(next_phyint != NULL); 22565 } 22566 IPSQ_DEC_REF(cur_ipsq, ipst); 22567 22568 if (phyi->phyint_groupname_len != 0) { 22569 ASSERT(phyi->phyint_groupname != NULL); 22570 mi_free(phyi->phyint_groupname); 22571 } 22572 mi_free(phyi); 22573 } 22574 22575 /* 22576 * Attach the ill to the phyint structure which can be shared by both 22577 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22578 * function is called from ipif_set_values and ill_lookup_on_name (for 22579 * loopback) where we know the name of the ill. We lookup the ill and if 22580 * there is one present already with the name use that phyint. Otherwise 22581 * reuse the one allocated by ill_init. 22582 */ 22583 static void 22584 ill_phyint_reinit(ill_t *ill) 22585 { 22586 boolean_t isv6 = ill->ill_isv6; 22587 phyint_t *phyi_old; 22588 phyint_t *phyi; 22589 avl_index_t where = 0; 22590 ill_t *ill_other = NULL; 22591 ipsq_t *ipsq; 22592 ip_stack_t *ipst = ill->ill_ipst; 22593 22594 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22595 22596 phyi_old = ill->ill_phyint; 22597 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22598 phyi_old->phyint_illv6 == NULL)); 22599 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22600 phyi_old->phyint_illv4 == NULL)); 22601 ASSERT(phyi_old->phyint_ifindex == 0); 22602 22603 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22604 ill->ill_name, &where); 22605 22606 /* 22607 * 1. We grabbed the ill_g_lock before inserting this ill into 22608 * the global list of ills. So no other thread could have located 22609 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22610 * 2. Now locate the other protocol instance of this ill. 22611 * 3. Now grab both ill locks in the right order, and the phyint lock of 22612 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22613 * of neither ill can change. 22614 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22615 * other ill. 22616 * 5. Release all locks. 22617 */ 22618 22619 /* 22620 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22621 * we are initializing IPv4. 22622 */ 22623 if (phyi != NULL) { 22624 ill_other = (isv6) ? phyi->phyint_illv4 : 22625 phyi->phyint_illv6; 22626 ASSERT(ill_other->ill_phyint != NULL); 22627 ASSERT((isv6 && !ill_other->ill_isv6) || 22628 (!isv6 && ill_other->ill_isv6)); 22629 GRAB_ILL_LOCKS(ill, ill_other); 22630 /* 22631 * We are potentially throwing away phyint_flags which 22632 * could be different from the one that we obtain from 22633 * ill_other->ill_phyint. But it is okay as we are assuming 22634 * that the state maintained within IP is correct. 22635 */ 22636 mutex_enter(&phyi->phyint_lock); 22637 if (isv6) { 22638 ASSERT(phyi->phyint_illv6 == NULL); 22639 phyi->phyint_illv6 = ill; 22640 } else { 22641 ASSERT(phyi->phyint_illv4 == NULL); 22642 phyi->phyint_illv4 = ill; 22643 } 22644 /* 22645 * This is a new ill, currently undergoing SLIFNAME 22646 * So we could not have joined an IPMP group until now. 22647 */ 22648 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22649 phyi_old->phyint_groupname == NULL); 22650 22651 /* 22652 * This phyi_old is going away. Decref ipsq_refs and 22653 * assert it is zero. The ipsq itself will be freed in 22654 * ipsq_exit 22655 */ 22656 ipsq = phyi_old->phyint_ipsq; 22657 IPSQ_DEC_REF(ipsq, ipst); 22658 ASSERT(ipsq->ipsq_refs == 0); 22659 /* Get the singleton phyint out of the ipsq list */ 22660 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22661 ipsq->ipsq_phyint_list = NULL; 22662 phyi_old->phyint_illv4 = NULL; 22663 phyi_old->phyint_illv6 = NULL; 22664 mi_free(phyi_old); 22665 } else { 22666 mutex_enter(&ill->ill_lock); 22667 /* 22668 * We don't need to acquire any lock, since 22669 * the ill is not yet visible globally and we 22670 * have not yet released the ill_g_lock. 22671 */ 22672 phyi = phyi_old; 22673 mutex_enter(&phyi->phyint_lock); 22674 /* XXX We need a recovery strategy here. */ 22675 if (!phyint_assign_ifindex(phyi, ipst)) 22676 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22677 22678 /* No IPMP group yet, thus the hook uses the ifindex */ 22679 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22680 22681 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22682 (void *)phyi, where); 22683 22684 (void) avl_find(&ipst->ips_phyint_g_list-> 22685 phyint_list_avl_by_index, 22686 &phyi->phyint_ifindex, &where); 22687 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22688 (void *)phyi, where); 22689 } 22690 22691 /* 22692 * Reassigning ill_phyint automatically reassigns the ipsq also. 22693 * pending mp is not affected because that is per ill basis. 22694 */ 22695 ill->ill_phyint = phyi; 22696 22697 /* 22698 * Keep the index on ipif_orig_index to be used by FAILOVER. 22699 * We do this here as when the first ipif was allocated, 22700 * ipif_allocate does not know the right interface index. 22701 */ 22702 22703 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22704 /* 22705 * Now that the phyint's ifindex has been assigned, complete the 22706 * remaining 22707 */ 22708 22709 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22710 if (ill->ill_isv6) { 22711 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22712 ill->ill_phyint->phyint_ifindex; 22713 ill->ill_mcast_type = ipst->ips_mld_max_version; 22714 } else { 22715 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22716 } 22717 22718 /* 22719 * Generate an event within the hooks framework to indicate that 22720 * a new interface has just been added to IP. For this event to 22721 * be generated, the network interface must, at least, have an 22722 * ifindex assigned to it. 22723 * 22724 * This needs to be run inside the ill_g_lock perimeter to ensure 22725 * that the ordering of delivered events to listeners matches the 22726 * order of them in the kernel. 22727 * 22728 * This function could be called from ill_lookup_on_name. In that case 22729 * the interface is loopback "lo", which will not generate a NIC event. 22730 */ 22731 if (ill->ill_name_length <= 2 || 22732 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22733 /* 22734 * Generate nic plumb event for ill_name even if 22735 * ipmp_hook_emulation is set. That avoids generating events 22736 * for the ill_names should ipmp_hook_emulation be turned on 22737 * later. 22738 */ 22739 ill_nic_event_plumb(ill, B_FALSE); 22740 } 22741 RELEASE_ILL_LOCKS(ill, ill_other); 22742 mutex_exit(&phyi->phyint_lock); 22743 } 22744 22745 /* 22746 * Allocate a NE_PLUMB nic info event and store in the ill. 22747 * If 'group' is set we do it for the group name, otherwise the ill name. 22748 * It will be sent when we leave the ipsq. 22749 */ 22750 void 22751 ill_nic_event_plumb(ill_t *ill, boolean_t group) 22752 { 22753 phyint_t *phyi = ill->ill_phyint; 22754 char *name; 22755 int namelen; 22756 22757 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22758 22759 if (group) { 22760 ASSERT(phyi->phyint_groupname_len != 0); 22761 namelen = phyi->phyint_groupname_len; 22762 name = phyi->phyint_groupname; 22763 } else { 22764 namelen = ill->ill_name_length; 22765 name = ill->ill_name; 22766 } 22767 22768 ill_nic_event_dispatch(ill, 0, NE_PLUMB, name, namelen); 22769 } 22770 22771 /* 22772 * Notify any downstream modules of the name of this interface. 22773 * An M_IOCTL is used even though we don't expect a successful reply. 22774 * Any reply message from the driver (presumably an M_IOCNAK) will 22775 * eventually get discarded somewhere upstream. The message format is 22776 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22777 * to IP. 22778 */ 22779 static void 22780 ip_ifname_notify(ill_t *ill, queue_t *q) 22781 { 22782 mblk_t *mp1, *mp2; 22783 struct iocblk *iocp; 22784 struct lifreq *lifr; 22785 22786 mp1 = mkiocb(SIOCSLIFNAME); 22787 if (mp1 == NULL) 22788 return; 22789 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22790 if (mp2 == NULL) { 22791 freeb(mp1); 22792 return; 22793 } 22794 22795 mp1->b_cont = mp2; 22796 iocp = (struct iocblk *)mp1->b_rptr; 22797 iocp->ioc_count = sizeof (struct lifreq); 22798 22799 lifr = (struct lifreq *)mp2->b_rptr; 22800 mp2->b_wptr += sizeof (struct lifreq); 22801 bzero(lifr, sizeof (struct lifreq)); 22802 22803 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22804 lifr->lifr_ppa = ill->ill_ppa; 22805 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22806 22807 putnext(q, mp1); 22808 } 22809 22810 static int 22811 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22812 { 22813 int err; 22814 ip_stack_t *ipst = ill->ill_ipst; 22815 22816 /* Set the obsolete NDD per-interface forwarding name. */ 22817 err = ill_set_ndd_name(ill); 22818 if (err != 0) { 22819 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22820 err); 22821 } 22822 22823 /* Tell downstream modules where they are. */ 22824 ip_ifname_notify(ill, q); 22825 22826 /* 22827 * ill_dl_phys returns EINPROGRESS in the usual case. 22828 * Error cases are ENOMEM ... 22829 */ 22830 err = ill_dl_phys(ill, ipif, mp, q); 22831 22832 /* 22833 * If there is no IRE expiration timer running, get one started. 22834 * igmp and mld timers will be triggered by the first multicast 22835 */ 22836 if (ipst->ips_ip_ire_expire_id == 0) { 22837 /* 22838 * acquire the lock and check again. 22839 */ 22840 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22841 if (ipst->ips_ip_ire_expire_id == 0) { 22842 ipst->ips_ip_ire_expire_id = timeout( 22843 ip_trash_timer_expire, ipst, 22844 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22845 } 22846 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22847 } 22848 22849 if (ill->ill_isv6) { 22850 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22851 if (ipst->ips_mld_slowtimeout_id == 0) { 22852 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22853 (void *)ipst, 22854 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22855 } 22856 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22857 } else { 22858 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22859 if (ipst->ips_igmp_slowtimeout_id == 0) { 22860 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22861 (void *)ipst, 22862 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22863 } 22864 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22865 } 22866 22867 return (err); 22868 } 22869 22870 /* 22871 * Common routine for ppa and ifname setting. Should be called exclusive. 22872 * 22873 * Returns EINPROGRESS when mp has been consumed by queueing it on 22874 * ill_pending_mp and the ioctl will complete in ip_rput. 22875 * 22876 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22877 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22878 * For SLIFNAME, we pass these values back to the userland. 22879 */ 22880 static int 22881 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22882 { 22883 ill_t *ill; 22884 ipif_t *ipif; 22885 ipsq_t *ipsq; 22886 char *ppa_ptr; 22887 char *old_ptr; 22888 char old_char; 22889 int error; 22890 ip_stack_t *ipst; 22891 22892 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22893 ASSERT(q->q_next != NULL); 22894 ASSERT(interf_name != NULL); 22895 22896 ill = (ill_t *)q->q_ptr; 22897 ipst = ill->ill_ipst; 22898 22899 ASSERT(ill->ill_ipst != NULL); 22900 ASSERT(ill->ill_name[0] == '\0'); 22901 ASSERT(IAM_WRITER_ILL(ill)); 22902 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22903 ASSERT(ill->ill_ppa == UINT_MAX); 22904 22905 /* The ppa is sent down by ifconfig or is chosen */ 22906 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22907 return (EINVAL); 22908 } 22909 22910 /* 22911 * make sure ppa passed in is same as ppa in the name. 22912 * This check is not made when ppa == UINT_MAX in that case ppa 22913 * in the name could be anything. System will choose a ppa and 22914 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22915 */ 22916 if (*new_ppa_ptr != UINT_MAX) { 22917 /* stoi changes the pointer */ 22918 old_ptr = ppa_ptr; 22919 /* 22920 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22921 * (they don't have an externally visible ppa). We assign one 22922 * here so that we can manage the interface. Note that in 22923 * the past this value was always 0 for DLPI 1 drivers. 22924 */ 22925 if (*new_ppa_ptr == 0) 22926 *new_ppa_ptr = stoi(&old_ptr); 22927 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22928 return (EINVAL); 22929 } 22930 /* 22931 * terminate string before ppa 22932 * save char at that location. 22933 */ 22934 old_char = ppa_ptr[0]; 22935 ppa_ptr[0] = '\0'; 22936 22937 ill->ill_ppa = *new_ppa_ptr; 22938 /* 22939 * Finish as much work now as possible before calling ill_glist_insert 22940 * which makes the ill globally visible and also merges it with the 22941 * other protocol instance of this phyint. The remaining work is 22942 * done after entering the ipsq which may happen sometime later. 22943 * ill_set_ndd_name occurs after the ill has been made globally visible. 22944 */ 22945 ipif = ill->ill_ipif; 22946 22947 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22948 ipif_assign_seqid(ipif); 22949 22950 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22951 ill->ill_flags |= ILLF_IPV4; 22952 22953 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22954 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22955 22956 if (ill->ill_flags & ILLF_IPV6) { 22957 22958 ill->ill_isv6 = B_TRUE; 22959 if (ill->ill_rq != NULL) { 22960 ill->ill_rq->q_qinfo = &iprinitv6; 22961 ill->ill_wq->q_qinfo = &ipwinitv6; 22962 } 22963 22964 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22965 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22966 ipif->ipif_v6src_addr = ipv6_all_zeros; 22967 ipif->ipif_v6subnet = ipv6_all_zeros; 22968 ipif->ipif_v6net_mask = ipv6_all_zeros; 22969 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22970 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22971 /* 22972 * point-to-point or Non-mulicast capable 22973 * interfaces won't do NUD unless explicitly 22974 * configured to do so. 22975 */ 22976 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22977 !(ill->ill_flags & ILLF_MULTICAST)) { 22978 ill->ill_flags |= ILLF_NONUD; 22979 } 22980 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22981 if (ill->ill_flags & ILLF_NOARP) { 22982 /* 22983 * Note: xresolv interfaces will eventually need 22984 * NOARP set here as well, but that will require 22985 * those external resolvers to have some 22986 * knowledge of that flag and act appropriately. 22987 * Not to be changed at present. 22988 */ 22989 ill->ill_flags &= ~ILLF_NOARP; 22990 } 22991 /* 22992 * Set the ILLF_ROUTER flag according to the global 22993 * IPv6 forwarding policy. 22994 */ 22995 if (ipst->ips_ipv6_forward != 0) 22996 ill->ill_flags |= ILLF_ROUTER; 22997 } else if (ill->ill_flags & ILLF_IPV4) { 22998 ill->ill_isv6 = B_FALSE; 22999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23000 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23001 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23005 /* 23006 * Set the ILLF_ROUTER flag according to the global 23007 * IPv4 forwarding policy. 23008 */ 23009 if (ipst->ips_ip_g_forward != 0) 23010 ill->ill_flags |= ILLF_ROUTER; 23011 } 23012 23013 ASSERT(ill->ill_phyint != NULL); 23014 23015 /* 23016 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23017 * be completed in ill_glist_insert -> ill_phyint_reinit 23018 */ 23019 if (!ill_allocate_mibs(ill)) 23020 return (ENOMEM); 23021 23022 /* 23023 * Pick a default sap until we get the DL_INFO_ACK back from 23024 * the driver. 23025 */ 23026 if (ill->ill_sap == 0) { 23027 if (ill->ill_isv6) 23028 ill->ill_sap = IP6_DL_SAP; 23029 else 23030 ill->ill_sap = IP_DL_SAP; 23031 } 23032 23033 ill->ill_ifname_pending = 1; 23034 ill->ill_ifname_pending_err = 0; 23035 23036 /* 23037 * When the first ipif comes up in ipif_up_done(), multicast groups 23038 * that were joined while this ill was not bound to the DLPI link need 23039 * to be recovered by ill_recover_multicast(). 23040 */ 23041 ill->ill_need_recover_multicast = 1; 23042 23043 ill_refhold(ill); 23044 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23045 if ((error = ill_glist_insert(ill, interf_name, 23046 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23047 ill->ill_ppa = UINT_MAX; 23048 ill->ill_name[0] = '\0'; 23049 /* 23050 * undo null termination done above. 23051 */ 23052 ppa_ptr[0] = old_char; 23053 rw_exit(&ipst->ips_ill_g_lock); 23054 ill_refrele(ill); 23055 return (error); 23056 } 23057 23058 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23059 23060 /* 23061 * When we return the buffer pointed to by interf_name should contain 23062 * the same name as in ill_name. 23063 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23064 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23065 * so copy full name and update the ppa ptr. 23066 * When ppa passed in != UINT_MAX all values are correct just undo 23067 * null termination, this saves a bcopy. 23068 */ 23069 if (*new_ppa_ptr == UINT_MAX) { 23070 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23071 *new_ppa_ptr = ill->ill_ppa; 23072 } else { 23073 /* 23074 * undo null termination done above. 23075 */ 23076 ppa_ptr[0] = old_char; 23077 } 23078 23079 /* Let SCTP know about this ILL */ 23080 sctp_update_ill(ill, SCTP_ILL_INSERT); 23081 23082 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23083 B_TRUE); 23084 23085 rw_exit(&ipst->ips_ill_g_lock); 23086 ill_refrele(ill); 23087 if (ipsq == NULL) 23088 return (EINPROGRESS); 23089 23090 /* 23091 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23092 */ 23093 if (ipsq->ipsq_current_ipif == NULL) 23094 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23095 else 23096 ASSERT(ipsq->ipsq_current_ipif == ipif); 23097 23098 error = ipif_set_values_tail(ill, ipif, mp, q); 23099 ipsq_exit(ipsq); 23100 if (error != 0 && error != EINPROGRESS) { 23101 /* 23102 * restore previous values 23103 */ 23104 ill->ill_isv6 = B_FALSE; 23105 } 23106 return (error); 23107 } 23108 23109 23110 void 23111 ipif_init(ip_stack_t *ipst) 23112 { 23113 hrtime_t hrt; 23114 int i; 23115 23116 /* 23117 * Can't call drv_getparm here as it is too early in the boot. 23118 * As we use ipif_src_random just for picking a different 23119 * source address everytime, this need not be really random. 23120 */ 23121 hrt = gethrtime(); 23122 ipst->ips_ipif_src_random = 23123 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23124 23125 for (i = 0; i < MAX_G_HEADS; i++) { 23126 ipst->ips_ill_g_heads[i].ill_g_list_head = 23127 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23128 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23129 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23130 } 23131 23132 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23133 ill_phyint_compare_index, 23134 sizeof (phyint_t), 23135 offsetof(struct phyint, phyint_avl_by_index)); 23136 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23137 ill_phyint_compare_name, 23138 sizeof (phyint_t), 23139 offsetof(struct phyint, phyint_avl_by_name)); 23140 } 23141 23142 /* 23143 * Lookup the ipif corresponding to the onlink destination address. For 23144 * point-to-point interfaces, it matches with remote endpoint destination 23145 * address. For point-to-multipoint interfaces it only tries to match the 23146 * destination with the interface's subnet address. The longest, most specific 23147 * match is found to take care of such rare network configurations like - 23148 * le0: 129.146.1.1/16 23149 * le1: 129.146.2.2/24 23150 * It is used only by SO_DONTROUTE at the moment. 23151 */ 23152 ipif_t * 23153 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23154 { 23155 ipif_t *ipif, *best_ipif; 23156 ill_t *ill; 23157 ill_walk_context_t ctx; 23158 23159 ASSERT(zoneid != ALL_ZONES); 23160 best_ipif = NULL; 23161 23162 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23163 ill = ILL_START_WALK_V4(&ctx, ipst); 23164 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23165 mutex_enter(&ill->ill_lock); 23166 for (ipif = ill->ill_ipif; ipif != NULL; 23167 ipif = ipif->ipif_next) { 23168 if (!IPIF_CAN_LOOKUP(ipif)) 23169 continue; 23170 if (ipif->ipif_zoneid != zoneid && 23171 ipif->ipif_zoneid != ALL_ZONES) 23172 continue; 23173 /* 23174 * Point-to-point case. Look for exact match with 23175 * destination address. 23176 */ 23177 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23178 if (ipif->ipif_pp_dst_addr == addr) { 23179 ipif_refhold_locked(ipif); 23180 mutex_exit(&ill->ill_lock); 23181 rw_exit(&ipst->ips_ill_g_lock); 23182 if (best_ipif != NULL) 23183 ipif_refrele(best_ipif); 23184 return (ipif); 23185 } 23186 } else if (ipif->ipif_subnet == (addr & 23187 ipif->ipif_net_mask)) { 23188 /* 23189 * Point-to-multipoint case. Looping through to 23190 * find the most specific match. If there are 23191 * multiple best match ipif's then prefer ipif's 23192 * that are UP. If there is only one best match 23193 * ipif and it is DOWN we must still return it. 23194 */ 23195 if ((best_ipif == NULL) || 23196 (ipif->ipif_net_mask > 23197 best_ipif->ipif_net_mask) || 23198 ((ipif->ipif_net_mask == 23199 best_ipif->ipif_net_mask) && 23200 ((ipif->ipif_flags & IPIF_UP) && 23201 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23202 ipif_refhold_locked(ipif); 23203 mutex_exit(&ill->ill_lock); 23204 rw_exit(&ipst->ips_ill_g_lock); 23205 if (best_ipif != NULL) 23206 ipif_refrele(best_ipif); 23207 best_ipif = ipif; 23208 rw_enter(&ipst->ips_ill_g_lock, 23209 RW_READER); 23210 mutex_enter(&ill->ill_lock); 23211 } 23212 } 23213 } 23214 mutex_exit(&ill->ill_lock); 23215 } 23216 rw_exit(&ipst->ips_ill_g_lock); 23217 return (best_ipif); 23218 } 23219 23220 /* 23221 * Save enough information so that we can recreate the IRE if 23222 * the interface goes down and then up. 23223 */ 23224 static void 23225 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23226 { 23227 mblk_t *save_mp; 23228 23229 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23230 if (save_mp != NULL) { 23231 ifrt_t *ifrt; 23232 23233 save_mp->b_wptr += sizeof (ifrt_t); 23234 ifrt = (ifrt_t *)save_mp->b_rptr; 23235 bzero(ifrt, sizeof (ifrt_t)); 23236 ifrt->ifrt_type = ire->ire_type; 23237 ifrt->ifrt_addr = ire->ire_addr; 23238 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23239 ifrt->ifrt_src_addr = ire->ire_src_addr; 23240 ifrt->ifrt_mask = ire->ire_mask; 23241 ifrt->ifrt_flags = ire->ire_flags; 23242 ifrt->ifrt_max_frag = ire->ire_max_frag; 23243 mutex_enter(&ipif->ipif_saved_ire_lock); 23244 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23245 ipif->ipif_saved_ire_mp = save_mp; 23246 ipif->ipif_saved_ire_cnt++; 23247 mutex_exit(&ipif->ipif_saved_ire_lock); 23248 } 23249 } 23250 23251 static void 23252 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23253 { 23254 mblk_t **mpp; 23255 mblk_t *mp; 23256 ifrt_t *ifrt; 23257 23258 /* Remove from ipif_saved_ire_mp list if it is there */ 23259 mutex_enter(&ipif->ipif_saved_ire_lock); 23260 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23261 mpp = &(*mpp)->b_cont) { 23262 /* 23263 * On a given ipif, the triple of address, gateway and 23264 * mask is unique for each saved IRE (in the case of 23265 * ordinary interface routes, the gateway address is 23266 * all-zeroes). 23267 */ 23268 mp = *mpp; 23269 ifrt = (ifrt_t *)mp->b_rptr; 23270 if (ifrt->ifrt_addr == ire->ire_addr && 23271 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23272 ifrt->ifrt_mask == ire->ire_mask) { 23273 *mpp = mp->b_cont; 23274 ipif->ipif_saved_ire_cnt--; 23275 freeb(mp); 23276 break; 23277 } 23278 } 23279 mutex_exit(&ipif->ipif_saved_ire_lock); 23280 } 23281 23282 /* 23283 * IP multirouting broadcast routes handling 23284 * Append CGTP broadcast IREs to regular ones created 23285 * at ifconfig time. 23286 */ 23287 static void 23288 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23289 { 23290 ire_t *ire_prim; 23291 23292 ASSERT(ire != NULL); 23293 ASSERT(ire_dst != NULL); 23294 23295 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23296 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23297 if (ire_prim != NULL) { 23298 /* 23299 * We are in the special case of broadcasts for 23300 * CGTP. We add an IRE_BROADCAST that holds 23301 * the RTF_MULTIRT flag, the destination 23302 * address of ire_dst and the low level 23303 * info of ire_prim. In other words, CGTP 23304 * broadcast is added to the redundant ipif. 23305 */ 23306 ipif_t *ipif_prim; 23307 ire_t *bcast_ire; 23308 23309 ipif_prim = ire_prim->ire_ipif; 23310 23311 ip2dbg(("ip_cgtp_filter_bcast_add: " 23312 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23313 (void *)ire_dst, (void *)ire_prim, 23314 (void *)ipif_prim)); 23315 23316 bcast_ire = ire_create( 23317 (uchar_t *)&ire->ire_addr, 23318 (uchar_t *)&ip_g_all_ones, 23319 (uchar_t *)&ire_dst->ire_src_addr, 23320 (uchar_t *)&ire->ire_gateway_addr, 23321 &ipif_prim->ipif_mtu, 23322 NULL, 23323 ipif_prim->ipif_rq, 23324 ipif_prim->ipif_wq, 23325 IRE_BROADCAST, 23326 ipif_prim, 23327 0, 23328 0, 23329 0, 23330 ire->ire_flags, 23331 &ire_uinfo_null, 23332 NULL, 23333 NULL, 23334 ipst); 23335 23336 if (bcast_ire != NULL) { 23337 23338 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23339 B_FALSE) == 0) { 23340 ip2dbg(("ip_cgtp_filter_bcast_add: " 23341 "added bcast_ire %p\n", 23342 (void *)bcast_ire)); 23343 23344 ipif_save_ire(bcast_ire->ire_ipif, 23345 bcast_ire); 23346 ire_refrele(bcast_ire); 23347 } 23348 } 23349 ire_refrele(ire_prim); 23350 } 23351 } 23352 23353 23354 /* 23355 * IP multirouting broadcast routes handling 23356 * Remove the broadcast ire 23357 */ 23358 static void 23359 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23360 { 23361 ire_t *ire_dst; 23362 23363 ASSERT(ire != NULL); 23364 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23365 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23366 if (ire_dst != NULL) { 23367 ire_t *ire_prim; 23368 23369 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23370 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23371 if (ire_prim != NULL) { 23372 ipif_t *ipif_prim; 23373 ire_t *bcast_ire; 23374 23375 ipif_prim = ire_prim->ire_ipif; 23376 23377 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23378 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23379 (void *)ire_dst, (void *)ire_prim, 23380 (void *)ipif_prim)); 23381 23382 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23383 ire->ire_gateway_addr, 23384 IRE_BROADCAST, 23385 ipif_prim, ALL_ZONES, 23386 NULL, 23387 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23388 MATCH_IRE_MASK, ipst); 23389 23390 if (bcast_ire != NULL) { 23391 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23392 "looked up bcast_ire %p\n", 23393 (void *)bcast_ire)); 23394 ipif_remove_ire(bcast_ire->ire_ipif, 23395 bcast_ire); 23396 ire_delete(bcast_ire); 23397 ire_refrele(bcast_ire); 23398 } 23399 ire_refrele(ire_prim); 23400 } 23401 ire_refrele(ire_dst); 23402 } 23403 } 23404 23405 /* 23406 * IPsec hardware acceleration capabilities related functions. 23407 */ 23408 23409 /* 23410 * Free a per-ill IPsec capabilities structure. 23411 */ 23412 static void 23413 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23414 { 23415 if (capab->auth_hw_algs != NULL) 23416 kmem_free(capab->auth_hw_algs, capab->algs_size); 23417 if (capab->encr_hw_algs != NULL) 23418 kmem_free(capab->encr_hw_algs, capab->algs_size); 23419 if (capab->encr_algparm != NULL) 23420 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23421 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23422 } 23423 23424 /* 23425 * Allocate a new per-ill IPsec capabilities structure. This structure 23426 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23427 * an array which specifies, for each algorithm, whether this algorithm 23428 * is supported by the ill or not. 23429 */ 23430 static ill_ipsec_capab_t * 23431 ill_ipsec_capab_alloc(void) 23432 { 23433 ill_ipsec_capab_t *capab; 23434 uint_t nelems; 23435 23436 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23437 if (capab == NULL) 23438 return (NULL); 23439 23440 /* we need one bit per algorithm */ 23441 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23442 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23443 23444 /* allocate memory to store algorithm flags */ 23445 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23446 if (capab->encr_hw_algs == NULL) 23447 goto nomem; 23448 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23449 if (capab->auth_hw_algs == NULL) 23450 goto nomem; 23451 /* 23452 * Leave encr_algparm NULL for now since we won't need it half 23453 * the time 23454 */ 23455 return (capab); 23456 23457 nomem: 23458 ill_ipsec_capab_free(capab); 23459 return (NULL); 23460 } 23461 23462 /* 23463 * Resize capability array. Since we're exclusive, this is OK. 23464 */ 23465 static boolean_t 23466 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23467 { 23468 ipsec_capab_algparm_t *nalp, *oalp; 23469 uint32_t olen, nlen; 23470 23471 oalp = capab->encr_algparm; 23472 olen = capab->encr_algparm_size; 23473 23474 if (oalp != NULL) { 23475 if (algid < capab->encr_algparm_end) 23476 return (B_TRUE); 23477 } 23478 23479 nlen = (algid + 1) * sizeof (*nalp); 23480 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23481 if (nalp == NULL) 23482 return (B_FALSE); 23483 23484 if (oalp != NULL) { 23485 bcopy(oalp, nalp, olen); 23486 kmem_free(oalp, olen); 23487 } 23488 capab->encr_algparm = nalp; 23489 capab->encr_algparm_size = nlen; 23490 capab->encr_algparm_end = algid + 1; 23491 23492 return (B_TRUE); 23493 } 23494 23495 /* 23496 * Compare the capabilities of the specified ill with the protocol 23497 * and algorithms specified by the SA passed as argument. 23498 * If they match, returns B_TRUE, B_FALSE if they do not match. 23499 * 23500 * The ill can be passed as a pointer to it, or by specifying its index 23501 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23502 * 23503 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23504 * packet is eligible for hardware acceleration, and by 23505 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23506 * to a particular ill. 23507 */ 23508 boolean_t 23509 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23510 ipsa_t *sa, netstack_t *ns) 23511 { 23512 boolean_t sa_isv6; 23513 uint_t algid; 23514 struct ill_ipsec_capab_s *cpp; 23515 boolean_t need_refrele = B_FALSE; 23516 ip_stack_t *ipst = ns->netstack_ip; 23517 23518 if (ill == NULL) { 23519 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23520 NULL, NULL, NULL, ipst); 23521 if (ill == NULL) { 23522 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23523 return (B_FALSE); 23524 } 23525 need_refrele = B_TRUE; 23526 } 23527 23528 /* 23529 * Use the address length specified by the SA to determine 23530 * if it corresponds to a IPv6 address, and fail the matching 23531 * if the isv6 flag passed as argument does not match. 23532 * Note: this check is used for SADB capability checking before 23533 * sending SA information to an ill. 23534 */ 23535 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23536 if (sa_isv6 != ill_isv6) 23537 /* protocol mismatch */ 23538 goto done; 23539 23540 /* 23541 * Check if the ill supports the protocol, algorithm(s) and 23542 * key size(s) specified by the SA, and get the pointers to 23543 * the algorithms supported by the ill. 23544 */ 23545 switch (sa->ipsa_type) { 23546 23547 case SADB_SATYPE_ESP: 23548 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23549 /* ill does not support ESP acceleration */ 23550 goto done; 23551 cpp = ill->ill_ipsec_capab_esp; 23552 algid = sa->ipsa_auth_alg; 23553 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23554 goto done; 23555 algid = sa->ipsa_encr_alg; 23556 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23557 goto done; 23558 if (algid < cpp->encr_algparm_end) { 23559 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23560 if (sa->ipsa_encrkeybits < alp->minkeylen) 23561 goto done; 23562 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23563 goto done; 23564 } 23565 break; 23566 23567 case SADB_SATYPE_AH: 23568 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23569 /* ill does not support AH acceleration */ 23570 goto done; 23571 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23572 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23573 goto done; 23574 break; 23575 } 23576 23577 if (need_refrele) 23578 ill_refrele(ill); 23579 return (B_TRUE); 23580 done: 23581 if (need_refrele) 23582 ill_refrele(ill); 23583 return (B_FALSE); 23584 } 23585 23586 /* 23587 * Add a new ill to the list of IPsec capable ills. 23588 * Called from ill_capability_ipsec_ack() when an ACK was received 23589 * indicating that IPsec hardware processing was enabled for an ill. 23590 * 23591 * ill must point to the ill for which acceleration was enabled. 23592 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23593 */ 23594 static void 23595 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23596 { 23597 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23598 uint_t sa_type; 23599 uint_t ipproto; 23600 ip_stack_t *ipst = ill->ill_ipst; 23601 23602 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23603 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23604 23605 switch (dl_cap) { 23606 case DL_CAPAB_IPSEC_AH: 23607 sa_type = SADB_SATYPE_AH; 23608 ills = &ipst->ips_ipsec_capab_ills_ah; 23609 ipproto = IPPROTO_AH; 23610 break; 23611 case DL_CAPAB_IPSEC_ESP: 23612 sa_type = SADB_SATYPE_ESP; 23613 ills = &ipst->ips_ipsec_capab_ills_esp; 23614 ipproto = IPPROTO_ESP; 23615 break; 23616 } 23617 23618 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23619 23620 /* 23621 * Add ill index to list of hardware accelerators. If 23622 * already in list, do nothing. 23623 */ 23624 for (cur_ill = *ills; cur_ill != NULL && 23625 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23626 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23627 ; 23628 23629 if (cur_ill == NULL) { 23630 /* if this is a new entry for this ill */ 23631 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23632 if (new_ill == NULL) { 23633 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23634 return; 23635 } 23636 23637 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23638 new_ill->ill_isv6 = ill->ill_isv6; 23639 new_ill->next = *ills; 23640 *ills = new_ill; 23641 } else if (!sadb_resync) { 23642 /* not resync'ing SADB and an entry exists for this ill */ 23643 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23644 return; 23645 } 23646 23647 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23648 23649 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23650 /* 23651 * IPsec module for protocol loaded, initiate dump 23652 * of the SADB to this ill. 23653 */ 23654 sadb_ill_download(ill, sa_type); 23655 } 23656 23657 /* 23658 * Remove an ill from the list of IPsec capable ills. 23659 */ 23660 static void 23661 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23662 { 23663 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23664 ip_stack_t *ipst = ill->ill_ipst; 23665 23666 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23667 dl_cap == DL_CAPAB_IPSEC_ESP); 23668 23669 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23670 &ipst->ips_ipsec_capab_ills_esp; 23671 23672 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23673 23674 prev_ill = NULL; 23675 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23676 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23677 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23678 ; 23679 if (cur_ill == NULL) { 23680 /* entry not found */ 23681 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23682 return; 23683 } 23684 if (prev_ill == NULL) { 23685 /* entry at front of list */ 23686 *ills = NULL; 23687 } else { 23688 prev_ill->next = cur_ill->next; 23689 } 23690 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23691 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23692 } 23693 23694 /* 23695 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23696 * supporting the specified IPsec protocol acceleration. 23697 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23698 * We free the mblk and, if sa is non-null, release the held referece. 23699 */ 23700 void 23701 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23702 netstack_t *ns) 23703 { 23704 ipsec_capab_ill_t *ici, *cur_ici; 23705 ill_t *ill; 23706 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23707 ip_stack_t *ipst = ns->netstack_ip; 23708 23709 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23710 ipst->ips_ipsec_capab_ills_esp; 23711 23712 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23713 23714 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23715 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23716 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23717 23718 /* 23719 * Handle the case where the ill goes away while the SADB is 23720 * attempting to send messages. If it's going away, it's 23721 * nuking its shadow SADB, so we don't care.. 23722 */ 23723 23724 if (ill == NULL) 23725 continue; 23726 23727 if (sa != NULL) { 23728 /* 23729 * Make sure capabilities match before 23730 * sending SA to ill. 23731 */ 23732 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23733 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23734 ill_refrele(ill); 23735 continue; 23736 } 23737 23738 mutex_enter(&sa->ipsa_lock); 23739 sa->ipsa_flags |= IPSA_F_HW; 23740 mutex_exit(&sa->ipsa_lock); 23741 } 23742 23743 /* 23744 * Copy template message, and add it to the front 23745 * of the mblk ship list. We want to avoid holding 23746 * the ipsec_capab_ills_lock while sending the 23747 * message to the ills. 23748 * 23749 * The b_next and b_prev are temporarily used 23750 * to build a list of mblks to be sent down, and to 23751 * save the ill to which they must be sent. 23752 */ 23753 nmp = copymsg(mp); 23754 if (nmp == NULL) { 23755 ill_refrele(ill); 23756 continue; 23757 } 23758 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23759 nmp->b_next = mp_ship_list; 23760 mp_ship_list = nmp; 23761 nmp->b_prev = (mblk_t *)ill; 23762 } 23763 23764 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23765 23766 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23767 /* restore the mblk to a sane state */ 23768 next_mp = nmp->b_next; 23769 nmp->b_next = NULL; 23770 ill = (ill_t *)nmp->b_prev; 23771 nmp->b_prev = NULL; 23772 23773 ill_dlpi_send(ill, nmp); 23774 ill_refrele(ill); 23775 } 23776 23777 if (sa != NULL) 23778 IPSA_REFRELE(sa); 23779 freemsg(mp); 23780 } 23781 23782 /* 23783 * Derive an interface id from the link layer address. 23784 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23785 */ 23786 static boolean_t 23787 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23788 { 23789 char *addr; 23790 23791 if (phys_length != ETHERADDRL) 23792 return (B_FALSE); 23793 23794 /* Form EUI-64 like address */ 23795 addr = (char *)&v6addr->s6_addr32[2]; 23796 bcopy((char *)phys_addr, addr, 3); 23797 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23798 addr[3] = (char)0xff; 23799 addr[4] = (char)0xfe; 23800 bcopy((char *)phys_addr + 3, addr + 5, 3); 23801 return (B_TRUE); 23802 } 23803 23804 /* ARGSUSED */ 23805 static boolean_t 23806 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23807 { 23808 return (B_FALSE); 23809 } 23810 23811 /* ARGSUSED */ 23812 static boolean_t 23813 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23814 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23815 { 23816 /* 23817 * Multicast address mappings used over Ethernet/802.X. 23818 * This address is used as a base for mappings. 23819 */ 23820 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23821 0x00, 0x00, 0x00}; 23822 23823 /* 23824 * Extract low order 32 bits from IPv6 multicast address. 23825 * Or that into the link layer address, starting from the 23826 * second byte. 23827 */ 23828 *hw_start = 2; 23829 v6_extract_mask->s6_addr32[0] = 0; 23830 v6_extract_mask->s6_addr32[1] = 0; 23831 v6_extract_mask->s6_addr32[2] = 0; 23832 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23833 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23834 return (B_TRUE); 23835 } 23836 23837 /* 23838 * Indicate by return value whether multicast is supported. If not, 23839 * this code should not touch/change any parameters. 23840 */ 23841 /* ARGSUSED */ 23842 static boolean_t 23843 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23844 uint32_t *hw_start, ipaddr_t *extract_mask) 23845 { 23846 /* 23847 * Multicast address mappings used over Ethernet/802.X. 23848 * This address is used as a base for mappings. 23849 */ 23850 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23851 0x00, 0x00, 0x00 }; 23852 23853 if (phys_length != ETHERADDRL) 23854 return (B_FALSE); 23855 23856 *extract_mask = htonl(0x007fffff); 23857 *hw_start = 2; 23858 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23859 return (B_TRUE); 23860 } 23861 23862 /* 23863 * Derive IPoIB interface id from the link layer address. 23864 */ 23865 static boolean_t 23866 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23867 { 23868 char *addr; 23869 23870 if (phys_length != 20) 23871 return (B_FALSE); 23872 addr = (char *)&v6addr->s6_addr32[2]; 23873 bcopy(phys_addr + 12, addr, 8); 23874 /* 23875 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23876 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23877 * rules. In these cases, the IBA considers these GUIDs to be in 23878 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23879 * required; vendors are required not to assign global EUI-64's 23880 * that differ only in u/l bit values, thus guaranteeing uniqueness 23881 * of the interface identifier. Whether the GUID is in modified 23882 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23883 * bit set to 1. 23884 */ 23885 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23886 return (B_TRUE); 23887 } 23888 23889 /* 23890 * Note on mapping from multicast IP addresses to IPoIB multicast link 23891 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23892 * The format of an IPoIB multicast address is: 23893 * 23894 * 4 byte QPN Scope Sign. Pkey 23895 * +--------------------------------------------+ 23896 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23897 * +--------------------------------------------+ 23898 * 23899 * The Scope and Pkey components are properties of the IBA port and 23900 * network interface. They can be ascertained from the broadcast address. 23901 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23902 */ 23903 23904 static boolean_t 23905 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23906 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23907 { 23908 /* 23909 * Base IPoIB IPv6 multicast address used for mappings. 23910 * Does not contain the IBA scope/Pkey values. 23911 */ 23912 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23913 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23915 23916 /* 23917 * Extract low order 80 bits from IPv6 multicast address. 23918 * Or that into the link layer address, starting from the 23919 * sixth byte. 23920 */ 23921 *hw_start = 6; 23922 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23923 23924 /* 23925 * Now fill in the IBA scope/Pkey values from the broadcast address. 23926 */ 23927 *(maddr + 5) = *(bphys_addr + 5); 23928 *(maddr + 8) = *(bphys_addr + 8); 23929 *(maddr + 9) = *(bphys_addr + 9); 23930 23931 v6_extract_mask->s6_addr32[0] = 0; 23932 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23933 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23934 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23935 return (B_TRUE); 23936 } 23937 23938 static boolean_t 23939 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23940 uint32_t *hw_start, ipaddr_t *extract_mask) 23941 { 23942 /* 23943 * Base IPoIB IPv4 multicast address used for mappings. 23944 * Does not contain the IBA scope/Pkey values. 23945 */ 23946 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23947 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23948 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23949 23950 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23951 return (B_FALSE); 23952 23953 /* 23954 * Extract low order 28 bits from IPv4 multicast address. 23955 * Or that into the link layer address, starting from the 23956 * sixteenth byte. 23957 */ 23958 *extract_mask = htonl(0x0fffffff); 23959 *hw_start = 16; 23960 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23961 23962 /* 23963 * Now fill in the IBA scope/Pkey values from the broadcast address. 23964 */ 23965 *(maddr + 5) = *(bphys_addr + 5); 23966 *(maddr + 8) = *(bphys_addr + 8); 23967 *(maddr + 9) = *(bphys_addr + 9); 23968 return (B_TRUE); 23969 } 23970 23971 /* 23972 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23973 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23974 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23975 * the link-local address is preferred. 23976 */ 23977 boolean_t 23978 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23979 { 23980 ipif_t *ipif; 23981 ipif_t *maybe_ipif = NULL; 23982 23983 mutex_enter(&ill->ill_lock); 23984 if (ill->ill_state_flags & ILL_CONDEMNED) { 23985 mutex_exit(&ill->ill_lock); 23986 if (ipifp != NULL) 23987 *ipifp = NULL; 23988 return (B_FALSE); 23989 } 23990 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23991 if (!IPIF_CAN_LOOKUP(ipif)) 23992 continue; 23993 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23994 ipif->ipif_zoneid != ALL_ZONES) 23995 continue; 23996 if ((ipif->ipif_flags & flags) != flags) 23997 continue; 23998 23999 if (ipifp == NULL) { 24000 mutex_exit(&ill->ill_lock); 24001 ASSERT(maybe_ipif == NULL); 24002 return (B_TRUE); 24003 } 24004 if (!ill->ill_isv6 || 24005 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24006 ipif_refhold_locked(ipif); 24007 mutex_exit(&ill->ill_lock); 24008 *ipifp = ipif; 24009 return (B_TRUE); 24010 } 24011 if (maybe_ipif == NULL) 24012 maybe_ipif = ipif; 24013 } 24014 if (ipifp != NULL) { 24015 if (maybe_ipif != NULL) 24016 ipif_refhold_locked(maybe_ipif); 24017 *ipifp = maybe_ipif; 24018 } 24019 mutex_exit(&ill->ill_lock); 24020 return (maybe_ipif != NULL); 24021 } 24022 24023 /* 24024 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24025 */ 24026 boolean_t 24027 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24028 { 24029 ill_t *illg; 24030 ip_stack_t *ipst = ill->ill_ipst; 24031 24032 /* 24033 * We look at the passed-in ill first without grabbing ill_g_lock. 24034 */ 24035 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24036 return (B_TRUE); 24037 } 24038 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24039 if (ill->ill_group == NULL) { 24040 /* ill not in a group */ 24041 rw_exit(&ipst->ips_ill_g_lock); 24042 return (B_FALSE); 24043 } 24044 24045 /* 24046 * There's no ipif in the zone on ill, however ill is part of an IPMP 24047 * group. We need to look for an ipif in the zone on all the ills in the 24048 * group. 24049 */ 24050 illg = ill->ill_group->illgrp_ill; 24051 do { 24052 /* 24053 * We don't call ipif_lookup_zoneid() on ill as we already know 24054 * that it's not there. 24055 */ 24056 if (illg != ill && 24057 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24058 break; 24059 } 24060 } while ((illg = illg->ill_group_next) != NULL); 24061 rw_exit(&ipst->ips_ill_g_lock); 24062 return (illg != NULL); 24063 } 24064 24065 /* 24066 * Check if this ill is only being used to send ICMP probes for IPMP 24067 */ 24068 boolean_t 24069 ill_is_probeonly(ill_t *ill) 24070 { 24071 /* 24072 * Check if the interface is FAILED, or INACTIVE 24073 */ 24074 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24075 return (B_TRUE); 24076 24077 return (B_FALSE); 24078 } 24079 24080 /* 24081 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24082 * If a pointer to an ipif_t is returned then the caller will need to do 24083 * an ill_refrele(). 24084 * 24085 * If there is no real interface which matches the ifindex, then it looks 24086 * for a group that has a matching index. In the case of a group match the 24087 * lifidx must be zero. We don't need emulate the logical interfaces 24088 * since IP Filter's use of netinfo doesn't use that. 24089 */ 24090 ipif_t * 24091 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24092 ip_stack_t *ipst) 24093 { 24094 ipif_t *ipif; 24095 ill_t *ill; 24096 24097 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24098 ipst); 24099 24100 if (ill == NULL) { 24101 /* Fallback to group names only if hook_emulation set */ 24102 if (!ipst->ips_ipmp_hook_emulation) 24103 return (NULL); 24104 24105 if (lifidx != 0) 24106 return (NULL); 24107 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24108 if (ill == NULL) 24109 return (NULL); 24110 } 24111 24112 mutex_enter(&ill->ill_lock); 24113 if (ill->ill_state_flags & ILL_CONDEMNED) { 24114 mutex_exit(&ill->ill_lock); 24115 ill_refrele(ill); 24116 return (NULL); 24117 } 24118 24119 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24120 if (!IPIF_CAN_LOOKUP(ipif)) 24121 continue; 24122 if (lifidx == ipif->ipif_id) { 24123 ipif_refhold_locked(ipif); 24124 break; 24125 } 24126 } 24127 24128 mutex_exit(&ill->ill_lock); 24129 ill_refrele(ill); 24130 return (ipif); 24131 } 24132 24133 /* 24134 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24135 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24136 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24137 * for details. 24138 */ 24139 void 24140 ill_fastpath_flush(ill_t *ill) 24141 { 24142 ip_stack_t *ipst = ill->ill_ipst; 24143 24144 nce_fastpath_list_dispatch(ill, NULL, NULL); 24145 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24146 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24147 } 24148 24149 /* 24150 * Set the physical address information for `ill' to the contents of the 24151 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24152 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24153 * EINPROGRESS will be returned. 24154 */ 24155 int 24156 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24157 { 24158 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24159 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24160 24161 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24162 24163 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24164 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24165 /* Changing DL_IPV6_TOKEN is not yet supported */ 24166 return (0); 24167 } 24168 24169 /* 24170 * We need to store up to two copies of `mp' in `ill'. Due to the 24171 * design of ipsq_pending_mp_add(), we can't pass them as separate 24172 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24173 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24174 */ 24175 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24176 freemsg(mp); 24177 return (ENOMEM); 24178 } 24179 24180 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24181 24182 /* 24183 * If we can quiesce the ill, then set the address. If not, then 24184 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24185 */ 24186 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24187 mutex_enter(&ill->ill_lock); 24188 if (!ill_is_quiescent(ill)) { 24189 /* call cannot fail since `conn_t *' argument is NULL */ 24190 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24191 mp, ILL_DOWN); 24192 mutex_exit(&ill->ill_lock); 24193 return (EINPROGRESS); 24194 } 24195 mutex_exit(&ill->ill_lock); 24196 24197 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24198 return (0); 24199 } 24200 24201 /* 24202 * Once the ill associated with `q' has quiesced, set its physical address 24203 * information to the values in `addrmp'. Note that two copies of `addrmp' 24204 * are passed (linked by b_cont), since we sometimes need to save two distinct 24205 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24206 * failure (we'll free the other copy if it's not needed). Since the ill_t 24207 * is quiesced, we know any stale IREs with the old address information have 24208 * already been removed, so we don't need to call ill_fastpath_flush(). 24209 */ 24210 /* ARGSUSED */ 24211 static void 24212 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24213 { 24214 ill_t *ill = q->q_ptr; 24215 mblk_t *addrmp2 = unlinkb(addrmp); 24216 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24217 uint_t addrlen, addroff; 24218 24219 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24220 24221 addroff = dlindp->dl_addr_offset; 24222 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24223 24224 switch (dlindp->dl_data) { 24225 case DL_IPV6_LINK_LAYER_ADDR: 24226 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24227 freemsg(addrmp2); 24228 break; 24229 24230 case DL_CURR_PHYS_ADDR: 24231 freemsg(ill->ill_phys_addr_mp); 24232 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24233 ill->ill_phys_addr_mp = addrmp; 24234 ill->ill_phys_addr_length = addrlen; 24235 24236 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24237 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24238 else 24239 freemsg(addrmp2); 24240 break; 24241 default: 24242 ASSERT(0); 24243 } 24244 24245 /* 24246 * If there are ipifs to bring up, ill_up_ipifs() will return 24247 * EINPROGRESS, and ipsq_current_finish() will be called by 24248 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24249 * brought up. 24250 */ 24251 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24252 ipsq_current_finish(ipsq); 24253 } 24254 24255 /* 24256 * Helper routine for setting the ill_nd_lla fields. 24257 */ 24258 void 24259 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24260 { 24261 freemsg(ill->ill_nd_lla_mp); 24262 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24263 ill->ill_nd_lla_mp = ndmp; 24264 ill->ill_nd_lla_len = addrlen; 24265 } 24266 24267 major_t IP_MAJ; 24268 #define IP "ip" 24269 24270 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24271 #define UDPDEV "/devices/pseudo/udp@0:udp" 24272 24273 /* 24274 * Issue REMOVEIF ioctls to have the loopback interfaces 24275 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24276 * the former going away when the user-level processes in the zone 24277 * are killed * and the latter are cleaned up by the stream head 24278 * str_stack_shutdown callback that undoes all I_PLINKs. 24279 */ 24280 void 24281 ip_loopback_cleanup(ip_stack_t *ipst) 24282 { 24283 int error; 24284 ldi_handle_t lh = NULL; 24285 ldi_ident_t li = NULL; 24286 int rval; 24287 cred_t *cr; 24288 struct strioctl iocb; 24289 struct lifreq lifreq; 24290 24291 IP_MAJ = ddi_name_to_major(IP); 24292 24293 #ifdef NS_DEBUG 24294 (void) printf("ip_loopback_cleanup() stackid %d\n", 24295 ipst->ips_netstack->netstack_stackid); 24296 #endif 24297 24298 bzero(&lifreq, sizeof (lifreq)); 24299 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24300 24301 error = ldi_ident_from_major(IP_MAJ, &li); 24302 if (error) { 24303 #ifdef DEBUG 24304 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24305 error); 24306 #endif 24307 return; 24308 } 24309 24310 cr = zone_get_kcred(netstackid_to_zoneid( 24311 ipst->ips_netstack->netstack_stackid)); 24312 ASSERT(cr != NULL); 24313 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24314 if (error) { 24315 #ifdef DEBUG 24316 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24317 error); 24318 #endif 24319 goto out; 24320 } 24321 iocb.ic_cmd = SIOCLIFREMOVEIF; 24322 iocb.ic_timout = 15; 24323 iocb.ic_len = sizeof (lifreq); 24324 iocb.ic_dp = (char *)&lifreq; 24325 24326 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24327 /* LINTED - statement has no consequent */ 24328 if (error) { 24329 #ifdef NS_DEBUG 24330 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24331 "UDP6 error %d\n", error); 24332 #endif 24333 } 24334 (void) ldi_close(lh, FREAD|FWRITE, cr); 24335 lh = NULL; 24336 24337 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24338 if (error) { 24339 #ifdef NS_DEBUG 24340 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24341 error); 24342 #endif 24343 goto out; 24344 } 24345 24346 iocb.ic_cmd = SIOCLIFREMOVEIF; 24347 iocb.ic_timout = 15; 24348 iocb.ic_len = sizeof (lifreq); 24349 iocb.ic_dp = (char *)&lifreq; 24350 24351 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24352 /* LINTED - statement has no consequent */ 24353 if (error) { 24354 #ifdef NS_DEBUG 24355 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24356 "UDP error %d\n", error); 24357 #endif 24358 } 24359 (void) ldi_close(lh, FREAD|FWRITE, cr); 24360 lh = NULL; 24361 24362 out: 24363 /* Close layered handles */ 24364 if (lh) 24365 (void) ldi_close(lh, FREAD|FWRITE, cr); 24366 if (li) 24367 ldi_ident_release(li); 24368 24369 crfree(cr); 24370 } 24371 24372 /* 24373 * This needs to be in-sync with nic_event_t definition 24374 */ 24375 static const char * 24376 ill_hook_event2str(nic_event_t event) 24377 { 24378 switch (event) { 24379 case NE_PLUMB: 24380 return ("PLUMB"); 24381 case NE_UNPLUMB: 24382 return ("UNPLUMB"); 24383 case NE_UP: 24384 return ("UP"); 24385 case NE_DOWN: 24386 return ("DOWN"); 24387 case NE_ADDRESS_CHANGE: 24388 return ("ADDRESS_CHANGE"); 24389 case NE_LIF_UP: 24390 return ("LIF_UP"); 24391 case NE_LIF_DOWN: 24392 return ("LIF_DOWN"); 24393 default: 24394 return ("UNKNOWN"); 24395 } 24396 } 24397 24398 void 24399 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 24400 nic_event_data_t data, size_t datalen) 24401 { 24402 ip_stack_t *ipst = ill->ill_ipst; 24403 hook_nic_event_int_t *info; 24404 const char *str = NULL; 24405 24406 /* create a new nic event info */ 24407 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 24408 goto fail; 24409 24410 if (event == NE_UNPLUMB) 24411 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24412 else 24413 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24414 info->hnei_event.hne_lif = lif; 24415 info->hnei_event.hne_event = event; 24416 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24417 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24418 info->hnei_event.hne_data = NULL; 24419 info->hnei_event.hne_datalen = 0; 24420 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24421 24422 if (data != NULL && datalen != 0) { 24423 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24424 if (info->hnei_event.hne_data == NULL) 24425 goto fail; 24426 bcopy(data, info->hnei_event.hne_data, datalen); 24427 info->hnei_event.hne_datalen = datalen; 24428 } 24429 24430 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 24431 DDI_NOSLEEP) == DDI_SUCCESS) 24432 return; 24433 24434 fail: 24435 if (info != NULL) { 24436 if (info->hnei_event.hne_data != NULL) { 24437 kmem_free(info->hnei_event.hne_data, 24438 info->hnei_event.hne_datalen); 24439 } 24440 kmem_free(info, sizeof (hook_nic_event_t)); 24441 } 24442 str = ill_hook_event2str(event); 24443 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 24444 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24445 } 24446 24447 void 24448 ipif_up_notify(ipif_t *ipif) 24449 { 24450 ip_rts_ifmsg(ipif); 24451 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 24452 sctp_update_ipif(ipif, SCTP_IPIF_UP); 24453 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 24454 NE_LIF_UP, NULL, 0); 24455 } 24456