xref: /titanic_52/usr/src/uts/common/inet/ip/ip_ftable.c (revision 8523fda3525b37e02f4d11efc8cf763bf08204ec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains consumer routines of the IPv4 forwarding engine
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/dlpi.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38 
39 #include <sys/systm.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/param.h>
43 #include <sys/socket.h>
44 #include <sys/strsubr.h>
45 #include <net/if.h>
46 #include <net/route.h>
47 #include <netinet/in.h>
48 #include <net/if_dl.h>
49 #include <netinet/ip6.h>
50 #include <netinet/icmp6.h>
51 
52 #include <inet/ipsec_impl.h>
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/mib2.h>
56 #include <inet/ip.h>
57 #include <inet/ip_impl.h>
58 #include <inet/ip6.h>
59 #include <inet/ip_ndp.h>
60 #include <inet/arp.h>
61 #include <inet/ip_if.h>
62 #include <inet/ip_ire.h>
63 #include <inet/ip_ftable.h>
64 #include <inet/ip_rts.h>
65 #include <inet/nd.h>
66 
67 #include <net/pfkeyv2.h>
68 #include <inet/sadb.h>
69 #include <inet/tcp.h>
70 #include <inet/ipclassifier.h>
71 #include <sys/zone.h>
72 #include <net/radix.h>
73 #include <sys/tsol/label.h>
74 #include <sys/tsol/tnet.h>
75 
76 #define	IS_DEFAULT_ROUTE(ire)	\
77 	(((ire)->ire_type & IRE_DEFAULT) || \
78 	    (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0)))
79 
80 static ire_t	*route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *);
81 static void	ire_del_host_redir(ire_t *, char *);
82 static boolean_t ire_find_best_route(struct radix_node *, void *);
83 
84 /*
85  * Lookup a route in forwarding table. A specific lookup is indicated by
86  * passing the required parameters and indicating the match required in the
87  * flag field.
88  *
89  * Supports IP_BOUND_IF by following the ipif/ill when recursing.
90  */
91 ire_t *
92 ire_ftable_lookup_v4(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
93     int type, const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl,
94     int flags, uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
95 {
96 	ire_t *ire;
97 	struct rt_sockaddr rdst, rmask;
98 	struct rt_entry *rt;
99 	ire_ftable_args_t margs;
100 
101 	ASSERT(ill == NULL || !ill->ill_isv6);
102 
103 	/*
104 	 * ire_match_args() will dereference ill if MATCH_IRE_ILL
105 	 * is set.
106 	 */
107 	if ((flags & MATCH_IRE_ILL) && (ill == NULL))
108 		return (NULL);
109 
110 	(void) memset(&rdst, 0, sizeof (rdst));
111 	rdst.rt_sin_len = sizeof (rdst);
112 	rdst.rt_sin_family = AF_INET;
113 	rdst.rt_sin_addr.s_addr = addr;
114 
115 	(void) memset(&rmask, 0, sizeof (rmask));
116 	rmask.rt_sin_len = sizeof (rmask);
117 	rmask.rt_sin_family = AF_INET;
118 	rmask.rt_sin_addr.s_addr = mask;
119 
120 	(void) memset(&margs, 0, sizeof (margs));
121 	margs.ift_addr = addr;
122 	margs.ift_mask = mask;
123 	margs.ift_gateway = gateway;
124 	margs.ift_type = type;
125 	margs.ift_ill = ill;
126 	margs.ift_zoneid = zoneid;
127 	margs.ift_tsl = tsl;
128 	margs.ift_flags = flags;
129 
130 	/*
131 	 * The flags argument passed to ire_ftable_lookup may cause the
132 	 * search to return, not the longest matching prefix, but the
133 	 * "best matching prefix", i.e., the longest prefix that also
134 	 * satisfies constraints imposed via the permutation of flags
135 	 * passed in. To achieve this, we invoke ire_match_args() on
136 	 * each matching leaf in the  radix tree. ire_match_args is
137 	 * invoked by the callback function ire_find_best_route()
138 	 * We hold the global tree lock in read mode when calling
139 	 * rn_match_args. Before dropping the global tree lock, ensure
140 	 * that the radix node can't be deleted by incrementing ire_refcnt.
141 	 */
142 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
143 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
144 	    ipst->ips_ip_ftable, ire_find_best_route, &margs);
145 	ire = margs.ift_best_ire;
146 	if (rt == NULL) {
147 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
148 		return (NULL);
149 	}
150 	ASSERT(ire != NULL);
151 
152 	DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire);
153 
154 	/*
155 	 * round-robin only if we have more than one route in the bucket.
156 	 * ips_ip_ecmp_behavior controls when we do ECMP
157 	 *	2:	always
158 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
159 	 *	0:	never
160 	 */
161 	if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
162 		if (ipst->ips_ip_ecmp_behavior == 2 ||
163 		    (ipst->ips_ip_ecmp_behavior == 1 &&
164 		    IS_DEFAULT_ROUTE(ire))) {
165 			ire_t	*next_ire;
166 
167 			margs.ift_best_ire = NULL;
168 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
169 			    xmit_hint, ire, ipst);
170 			if (next_ire == NULL) {
171 				/* keep ire if next_ire is null */
172 				goto done;
173 			}
174 			ire_refrele(ire);
175 			ire = next_ire;
176 		}
177 	}
178 
179 done:
180 	/* Return generation before dropping lock */
181 	if (generationp != NULL)
182 		*generationp = ire->ire_generation;
183 
184 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
185 
186 	/*
187 	 * For shared-IP zones we need additional checks to what was
188 	 * done in ire_match_args to make sure IRE_LOCALs are handled.
189 	 *
190 	 * When ip_restrict_interzone_loopback is set, then
191 	 * we ensure that IRE_LOCAL are only used for loopback
192 	 * between zones when the logical "Ethernet" would
193 	 * have looped them back. That is, if in the absense of
194 	 * the IRE_LOCAL we would have sent to packet out the
195 	 * same ill.
196 	 */
197 	if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
198 	    ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
199 	    ipst->ips_ip_restrict_interzone_loopback) {
200 		ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
201 		ASSERT(ire != NULL);
202 	}
203 	return (ire);
204 }
205 
206 /*
207  * This function is called by
208  * ip_input/ire_route_recursive when doing a route lookup on only the
209  * destination address.
210  *
211  * The optimizations of this function over ire_ftable_lookup are:
212  *	o removing unnecessary flag matching
213  *	o doing longest prefix match instead of overloading it further
214  *	  with the unnecessary "best_prefix_match"
215  *
216  * If no route is found we return IRE_NOROUTE.
217  */
218 ire_t *
219 ire_ftable_lookup_simple_v4(ipaddr_t addr, uint32_t xmit_hint, ip_stack_t *ipst,
220     uint_t *generationp)
221 {
222 	ire_t *ire;
223 	struct rt_sockaddr rdst;
224 	struct rt_entry *rt;
225 	irb_t *irb;
226 
227 	rdst.rt_sin_len = sizeof (rdst);
228 	rdst.rt_sin_family = AF_INET;
229 	rdst.rt_sin_addr.s_addr = addr;
230 
231 	/*
232 	 * This is basically inlining  a simpler version of ire_match_args
233 	 */
234 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
235 
236 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
237 	    ipst->ips_ip_ftable, NULL, NULL);
238 
239 	if (rt == NULL)
240 		goto bad;
241 
242 	irb = &rt->rt_irb;
243 	if (irb->irb_ire_cnt == 0)
244 		goto bad;
245 
246 	rw_enter(&irb->irb_lock, RW_READER);
247 	ire = irb->irb_ire;
248 	if (ire == NULL) {
249 		rw_exit(&irb->irb_lock);
250 		goto bad;
251 	}
252 	while (IRE_IS_CONDEMNED(ire)) {
253 		ire = ire->ire_next;
254 		if (ire == NULL) {
255 			rw_exit(&irb->irb_lock);
256 			goto bad;
257 		}
258 	}
259 
260 	/* we have a ire that matches */
261 	ire_refhold(ire);
262 	rw_exit(&irb->irb_lock);
263 
264 	/*
265 	 * round-robin only if we have more than one route in the bucket.
266 	 * ips_ip_ecmp_behavior controls when we do ECMP
267 	 *	2:	always
268 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
269 	 *	0:	never
270 	 *
271 	 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
272 	 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
273 	 * and the IRE_INTERFACESs are likely to be shorter matches.
274 	 */
275 	if (ire->ire_bucket->irb_ire_cnt > 1) {
276 		if (ipst->ips_ip_ecmp_behavior == 2 ||
277 		    (ipst->ips_ip_ecmp_behavior == 1 &&
278 		    IS_DEFAULT_ROUTE(ire))) {
279 			ire_t	*next_ire;
280 			ire_ftable_args_t margs;
281 
282 			(void) memset(&margs, 0, sizeof (margs));
283 			margs.ift_addr = addr;
284 			margs.ift_zoneid = ALL_ZONES;
285 
286 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
287 			    xmit_hint, ire, ipst);
288 			if (next_ire == NULL) {
289 				/* keep ire if next_ire is null */
290 				if (generationp != NULL)
291 					*generationp = ire->ire_generation;
292 				RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
293 				return (ire);
294 			}
295 			ire_refrele(ire);
296 			ire = next_ire;
297 		}
298 	}
299 	/* Return generation before dropping lock */
300 	if (generationp != NULL)
301 		*generationp = ire->ire_generation;
302 
303 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
304 
305 	/*
306 	 * Since we only did ALL_ZONES matches there is no special handling
307 	 * of IRE_LOCALs needed here. ire_ftable_lookup_v4 has to handle that.
308 	 */
309 	return (ire);
310 
311 bad:
312 	if (generationp != NULL)
313 		*generationp = IRE_GENERATION_VERIFY;
314 
315 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
316 	return (ire_reject(ipst, B_FALSE));
317 }
318 
319 /*
320  * Find the ill matching a multicast group.
321  * Allows different routes for multicast addresses
322  * in the unicast routing table (akin to 224.0.0.0 but could be more specific)
323  * which point at different interfaces. This is used when IP_MULTICAST_IF
324  * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't
325  * specify the interface to join on.
326  *
327  * Supports link-local addresses by using ire_route_recursive which follows
328  * the ill when recursing.
329  *
330  * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
331  * and the MULTIRT property can be different for different groups, we
332  * extract RTF_MULTIRT from the special unicast route added for a group
333  * with CGTP and pass that back in the multirtp argument.
334  * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
335  * We have a setsrcp argument for the same reason.
336  */
337 ill_t *
338 ire_lookup_multi_ill_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
339     boolean_t *multirtp, ipaddr_t *setsrcp)
340 {
341 	ire_t	*ire;
342 	ill_t	*ill;
343 
344 	ire = ire_route_recursive_v4(group, 0, NULL, zoneid, NULL,
345 	    MATCH_IRE_DSTONLY, B_FALSE, 0, ipst, setsrcp, NULL, NULL);
346 	ASSERT(ire != NULL);
347 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
348 		ire_refrele(ire);
349 		return (NULL);
350 	}
351 
352 	if (multirtp != NULL)
353 		*multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
354 
355 	ill = ire_nexthop_ill(ire);
356 	ire_refrele(ire);
357 	return (ill);
358 }
359 
360 /*
361  * Delete the passed in ire if the gateway addr matches
362  */
363 void
364 ire_del_host_redir(ire_t *ire, char *gateway)
365 {
366 	if ((ire->ire_flags & RTF_DYNAMIC) &&
367 	    (ire->ire_gateway_addr == *(ipaddr_t *)gateway))
368 		ire_delete(ire);
369 }
370 
371 /*
372  * Search for all IRE_HOST RTF_DYNAMIC (aka redirect) routes that are
373  * pointing at the specified gateway and
374  * delete them. This routine is called only
375  * when a default gateway is going away.
376  */
377 void
378 ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst)
379 {
380 	struct rtfuncarg rtfarg;
381 
382 	(void) memset(&rtfarg, 0, sizeof (rtfarg));
383 	rtfarg.rt_func = ire_del_host_redir;
384 	rtfarg.rt_arg = (void *)&gateway;
385 	(void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable,
386 	    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
387 }
388 
389 /*
390  * Obtain the rt_entry and rt_irb for the route to be added to
391  * the ips_ip_ftable.
392  * First attempt to add a node to the radix tree via rn_addroute. If the
393  * route already exists, return the bucket for the existing route.
394  *
395  * Locking notes: Need to hold the global radix tree lock in write mode to
396  * add a radix node. To prevent the node from being deleted, ire_get_bucket()
397  * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4()
398  * while holding the irb_lock, but not the radix tree lock.
399  */
400 irb_t *
401 ire_get_bucket(ire_t *ire)
402 {
403 	struct radix_node *rn;
404 	struct rt_entry *rt;
405 	struct rt_sockaddr rmask, rdst;
406 	irb_t *irb = NULL;
407 	ip_stack_t *ipst = ire->ire_ipst;
408 
409 	ASSERT(ipst->ips_ip_ftable != NULL);
410 
411 	/* first try to see if route exists (based on rtalloc1) */
412 	(void) memset(&rdst, 0, sizeof (rdst));
413 	rdst.rt_sin_len = sizeof (rdst);
414 	rdst.rt_sin_family = AF_INET;
415 	rdst.rt_sin_addr.s_addr = ire->ire_addr;
416 
417 	(void) memset(&rmask, 0, sizeof (rmask));
418 	rmask.rt_sin_len = sizeof (rmask);
419 	rmask.rt_sin_family = AF_INET;
420 	rmask.rt_sin_addr.s_addr = ire->ire_mask;
421 
422 	/*
423 	 * add the route. based on BSD's rtrequest1(RTM_ADD)
424 	 */
425 	R_Malloc(rt, rt_entry_cache,  sizeof (*rt));
426 	/* kmem_alloc failed */
427 	if (rt == NULL)
428 		return (NULL);
429 
430 	(void) memset(rt, 0, sizeof (*rt));
431 	rt->rt_nodes->rn_key = (char *)&rt->rt_dst;
432 	rt->rt_dst = rdst;
433 	irb = &rt->rt_irb;
434 	irb->irb_marks |= IRB_MARK_DYNAMIC; /* dynamically allocated/freed */
435 	irb->irb_ipst = ipst;
436 	rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL);
437 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
438 	rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask,
439 	    ipst->ips_ip_ftable, (struct radix_node *)rt);
440 	if (rn == NULL) {
441 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
442 		Free(rt, rt_entry_cache);
443 		rt = NULL;
444 		irb = NULL;
445 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
446 		rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask,
447 		    ipst->ips_ip_ftable);
448 		if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) {
449 			/* found a non-root match */
450 			rt = (struct rt_entry *)rn;
451 		}
452 	}
453 	if (rt != NULL) {
454 		irb = &rt->rt_irb;
455 		irb_refhold(irb);
456 	}
457 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
458 	return (irb);
459 }
460 
461 /*
462  * This function is used when the caller wants to know the outbound
463  * interface for a packet given only the address.
464  * If this is a offlink IP address and there are multiple
465  * routes to this destination, this routine will utilise the
466  * first route it finds to IP address
467  * Return values:
468  * 	0	- FAILURE
469  *	nonzero	- ifindex
470  */
471 uint_t
472 ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid)
473 {
474 	uint_t ifindex = 0;
475 	ire_t *ire;
476 	ill_t *ill;
477 	netstack_t *ns;
478 	ip_stack_t *ipst;
479 
480 	if (zoneid == ALL_ZONES)
481 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
482 	else
483 		ns = netstack_find_by_zoneid(zoneid);
484 	ASSERT(ns != NULL);
485 
486 	/*
487 	 * For exclusive stacks we set the zoneid to zero
488 	 * since IP uses the global zoneid in the exclusive stacks.
489 	 */
490 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
491 		zoneid = GLOBAL_ZONEID;
492 	ipst = ns->netstack_ip;
493 
494 	ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6);
495 
496 	if ((ire = route_to_dst(ipaddr, zoneid, ipst)) != NULL) {
497 		ill = ire_nexthop_ill(ire);
498 		if (ill != NULL) {
499 			ifindex = ill->ill_phyint->phyint_ifindex;
500 			ill_refrele(ill);
501 		}
502 		ire_refrele(ire);
503 	}
504 	netstack_rele(ns);
505 	return (ifindex);
506 }
507 
508 /*
509  * Routine to find the route to a destination. If a ifindex is supplied
510  * it tries to match the route to the corresponding ipif for the ifindex
511  */
512 static	ire_t *
513 route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst)
514 {
515 	ire_t *ire = NULL;
516 	int match_flags;
517 
518 	match_flags = MATCH_IRE_DSTONLY;
519 
520 	/* XXX pass NULL tsl for now */
521 
522 	if (dst_addr->sa_family == AF_INET) {
523 		ire = ire_route_recursive_v4(
524 		    ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr, 0, NULL,
525 		    zoneid, NULL, match_flags, B_TRUE, 0, ipst, NULL, NULL,
526 		    NULL);
527 	} else {
528 		ire = ire_route_recursive_v6(
529 		    &((struct sockaddr_in6 *)dst_addr)->sin6_addr, 0, NULL,
530 		    zoneid, NULL, match_flags, B_TRUE, 0, ipst, NULL, NULL,
531 		    NULL);
532 	}
533 	ASSERT(ire != NULL);
534 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
535 		ire_refrele(ire);
536 		return (NULL);
537 	}
538 	return (ire);
539 }
540 
541 /*
542  * This routine is called by IP Filter to send a packet out on the wire
543  * to a specified dstination (which may be onlink or offlink). The ifindex may
544  * or may not be 0. A non-null ifindex indicates IP Filter has stipulated
545  * an outgoing interface and requires the nexthop to be on that interface.
546  * IP WILL NOT DO the following to the data packet before sending it out:
547  *	a. manipulate ttl
548  *	b. ipsec work
549  *	c. fragmentation
550  *
551  * If the packet has been prepared for hardware checksum then it will be
552  * passed off to ip_send_align_cksum() to check that the flags set on the
553  * packet are in alignment with the capabilities of the new outgoing NIC.
554  *
555  * Return values:
556  *	0:		IP was able to send of the data pkt
557  *	ECOMM:		Could not send packet
558  *	ENONET		No route to dst. It is up to the caller
559  *			to send icmp unreachable error message,
560  *	EINPROGRESS	The macaddr of the onlink dst or that
561  *			of the offlink dst's nexthop needs to get
562  *			resolved before packet can be sent to dst.
563  *			Thus transmission is not guaranteed.
564  *			Note: No longer have visibility to the ARP queue
565  *			hence no EINPROGRESS.
566  */
567 int
568 ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex,
569     zoneid_t zoneid)
570 {
571 	ipaddr_t nexthop;
572 	netstack_t *ns;
573 	ip_stack_t *ipst;
574 	ip_xmit_attr_t ixas;
575 	int error;
576 
577 	ASSERT(mp != NULL);
578 
579 	if (zoneid == ALL_ZONES)
580 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
581 	else
582 		ns = netstack_find_by_zoneid(zoneid);
583 	ASSERT(ns != NULL);
584 
585 	/*
586 	 * For exclusive stacks we set the zoneid to zero
587 	 * since IP uses the global zoneid in the exclusive stacks.
588 	 */
589 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
590 		zoneid = GLOBAL_ZONEID;
591 	ipst = ns->netstack_ip;
592 
593 	ASSERT(dst_addr->sa_family == AF_INET ||
594 	    dst_addr->sa_family == AF_INET6);
595 
596 	bzero(&ixas, sizeof (ixas));
597 	/*
598 	 * No IPsec, no fragmentation, and don't let any hooks see
599 	 * the packet.
600 	 */
601 	ixas.ixa_flags = IXAF_NO_IPSEC | IXAF_DONTFRAG | IXAF_NO_PFHOOK;
602 	ixas.ixa_cred = kcred;
603 	ixas.ixa_cpid = NOPID;
604 	ixas.ixa_tsl = NULL;
605 	ixas.ixa_ipst = ipst;
606 	ixas.ixa_ifindex = ifindex;
607 
608 	if (dst_addr->sa_family == AF_INET) {
609 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
610 
611 		ixas.ixa_flags |= IXAF_IS_IPV4;
612 		nexthop = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr;
613 		if (nexthop != ipha->ipha_dst) {
614 			ixas.ixa_flags |= IXAF_NEXTHOP_SET;
615 			ixas.ixa_nexthop_v4 = nexthop;
616 		}
617 		ixas.ixa_multicast_ttl = ipha->ipha_ttl;
618 	} else {
619 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
620 		in6_addr_t *nexthop6;
621 
622 		nexthop6 = &((struct sockaddr_in6 *)dst_addr)->sin6_addr;
623 		if (!IN6_ARE_ADDR_EQUAL(nexthop6, &ip6h->ip6_dst)) {
624 			ixas.ixa_flags |= IXAF_NEXTHOP_SET;
625 			ixas.ixa_nexthop_v6 = *nexthop6;
626 		}
627 		ixas.ixa_multicast_ttl = ip6h->ip6_hops;
628 	}
629 	error = ip_output_simple(mp, &ixas);
630 	ixa_cleanup(&ixas);
631 
632 	netstack_rele(ns);
633 	switch (error) {
634 	case 0:
635 		break;
636 
637 	case EHOSTUNREACH:
638 	case ENETUNREACH:
639 		error = ENONET;
640 		break;
641 
642 	default:
643 		error = ECOMM;
644 		break;
645 	}
646 	return (error);
647 }
648 
649 /*
650  * callback function provided by ire_ftable_lookup when calling
651  * rn_match_args(). Invoke ire_match_args on each matching leaf node in
652  * the radix tree.
653  */
654 boolean_t
655 ire_find_best_route(struct radix_node *rn, void *arg)
656 {
657 	struct rt_entry *rt = (struct rt_entry *)rn;
658 	irb_t *irb_ptr;
659 	ire_t *ire;
660 	ire_ftable_args_t *margs = arg;
661 	ipaddr_t match_mask;
662 
663 	ASSERT(rt != NULL);
664 
665 	irb_ptr = &rt->rt_irb;
666 
667 	if (irb_ptr->irb_ire_cnt == 0)
668 		return (B_FALSE);
669 
670 	rw_enter(&irb_ptr->irb_lock, RW_READER);
671 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
672 		if (IRE_IS_CONDEMNED(ire))
673 			continue;
674 		if (margs->ift_flags & (MATCH_IRE_MASK|MATCH_IRE_SHORTERMASK))
675 			match_mask = margs->ift_mask;
676 		else
677 			match_mask = ire->ire_mask;
678 
679 		if (ire_match_args(ire, margs->ift_addr, match_mask,
680 		    margs->ift_gateway, margs->ift_type, margs->ift_ill,
681 		    margs->ift_zoneid, margs->ift_tsl,
682 		    margs->ift_flags)) {
683 			ire_refhold(ire);
684 			rw_exit(&irb_ptr->irb_lock);
685 			margs->ift_best_ire = ire;
686 			return (B_TRUE);
687 		}
688 	}
689 	rw_exit(&irb_ptr->irb_lock);
690 	return (B_FALSE);
691 }
692 
693 /*
694  * ftable irb_t structures are dynamically allocated, and we need to
695  * check if the irb_t (and associated ftable tree attachment) needs to
696  * be cleaned up when the irb_refcnt goes to 0. The conditions that need
697  * be verified are:
698  * - no other walkers of the irebucket, i.e., quiescent irb_refcnt,
699  * - no other threads holding references to ire's in the bucket,
700  *   i.e., irb_nire == 0
701  * - no active ire's in the bucket, i.e., irb_ire_cnt == 0
702  * - need to hold the global tree lock and irb_lock in write mode.
703  */
704 void
705 irb_refrele_ftable(irb_t *irb)
706 {
707 	for (;;) {
708 		rw_enter(&irb->irb_lock, RW_WRITER);
709 		ASSERT(irb->irb_refcnt != 0);
710 		if (irb->irb_refcnt != 1) {
711 			/*
712 			 * Someone has a reference to this radix node
713 			 * or there is some bucket walker.
714 			 */
715 			irb->irb_refcnt--;
716 			rw_exit(&irb->irb_lock);
717 			return;
718 		} else {
719 			/*
720 			 * There is no other walker, nor is there any
721 			 * other thread that holds a direct ref to this
722 			 * radix node. Do the clean up if needed. Call
723 			 * to ire_unlink will clear the IRB_MARK_CONDEMNED flag
724 			 */
725 			if (irb->irb_marks & IRB_MARK_CONDEMNED)  {
726 				ire_t *ire_list;
727 
728 				ire_list = ire_unlink(irb);
729 				rw_exit(&irb->irb_lock);
730 
731 				if (ire_list != NULL)
732 					ire_cleanup(ire_list);
733 				/*
734 				 * more CONDEMNED entries could have
735 				 * been added while we dropped the lock,
736 				 * so we have to re-check.
737 				 */
738 				continue;
739 			}
740 
741 			/*
742 			 * Now check if there are still any ires
743 			 * associated with this radix node.
744 			 */
745 			if (irb->irb_nire != 0) {
746 				/*
747 				 * someone is still holding on
748 				 * to ires in this bucket
749 				 */
750 				irb->irb_refcnt--;
751 				rw_exit(&irb->irb_lock);
752 				return;
753 			} else {
754 				/*
755 				 * Everything is clear. Zero walkers,
756 				 * Zero threads with a ref to this
757 				 * radix node, Zero ires associated with
758 				 * this radix node. Due to lock order,
759 				 * check the above conditions again
760 				 * after grabbing all locks in the right order
761 				 */
762 				rw_exit(&irb->irb_lock);
763 				if (irb_inactive(irb))
764 					return;
765 				/*
766 				 * irb_inactive could not free the irb.
767 				 * See if there are any walkers, if not
768 				 * try to clean up again.
769 				 */
770 			}
771 		}
772 	}
773 }
774 
775 /*
776  * IRE iterator used by ire_ftable_lookup to process multiple equal
777  * routes. Given a starting point in the hash list (hash), walk the IREs
778  * in the bucket skipping deleted entries. We treat the bucket as a circular
779  * list for the purposes of walking it.
780  * Returns the IRE (held) that corresponds to the hash value. If that IRE is
781  * not applicable (ire_match_args failed) then it returns a subsequent one.
782  * If we fail to find an IRE we return NULL.
783  *
784  * Assumes that the caller holds a reference on the IRE bucket and a read lock
785  * on the radix_node_head (for IPv4) or the ip6_ire_head (for IPv6).
786  *
787  * Applies to IPv4 and IPv6.
788  *
789  * For CGTP, where an IRE_BROADCAST and IRE_HOST can exist for the same
790  * address and bucket, we compare against ire_type for the orig_ire. We also
791  * have IRE_BROADCASTs with and without RTF_MULTIRT, with the former being
792  * first in the bucket. Thus we compare that ire_flags match the orig_ire.
793  *
794  * Due to shared-IP zones we check that an IRE_OFFLINK has a gateway that is
795  * reachable from the zone i.e., that the ire_gateway_addr is in a subnet
796  * in which the zone has an IP address. We check this for the global zone
797  * even if no shared-IP zones are configured.
798  */
799 ire_t *
800 ire_round_robin(irb_t *irb_ptr, ire_ftable_args_t *margs, uint_t hash,
801     ire_t *orig_ire, ip_stack_t *ipst)
802 {
803 	ire_t		*ire, *maybe_ire = NULL;
804 	uint_t		maybe_badcnt;
805 	uint_t		maxwalk;
806 
807 	/* Fold in more bits from the hint/hash */
808 	hash = hash ^ (hash >> 8) ^ (hash >> 16);
809 
810 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
811 	maxwalk = irb_ptr->irb_ire_cnt;	/* Excludes condemned */
812 	hash %= maxwalk;
813 	irb_refhold_locked(irb_ptr);
814 	rw_exit(&irb_ptr->irb_lock);
815 
816 	/*
817 	 * Round-robin the routers list looking for a route that
818 	 * matches the passed in parameters.
819 	 * First we skip "hash" number of non-condemned IREs.
820 	 * Then we match the IRE.
821 	 * If we find an ire which has a non-zero ire_badcnt then we remember
822 	 * it and keep on looking for a lower ire_badcnt.
823 	 * If we come to the end of the list we continue (treat the
824 	 * bucket list as a circular list) but we match less than "max"
825 	 * entries.
826 	 */
827 	ire = irb_ptr->irb_ire;
828 	while (maxwalk > 0) {
829 		if (IRE_IS_CONDEMNED(ire))
830 			goto next_ire_skip;
831 
832 		/* Skip the first "hash" entries to do ECMP */
833 		if (hash != 0) {
834 			hash--;
835 			goto next_ire_skip;
836 		}
837 
838 		/* See CGTP comment above */
839 		if (ire->ire_type != orig_ire->ire_type ||
840 		    ire->ire_flags != orig_ire->ire_flags)
841 			goto next_ire;
842 
843 		/*
844 		 * Note: Since IPv6 has hash buckets instead of radix
845 		 * buckers we need to explicitly compare the addresses.
846 		 * That makes this less efficient since we will be called
847 		 * even if there is no alternatives just because the
848 		 * bucket has multiple IREs for different addresses.
849 		 */
850 		if (ire->ire_ipversion == IPV6_VERSION) {
851 			if (!IN6_ARE_ADDR_EQUAL(&orig_ire->ire_addr_v6,
852 			    &ire->ire_addr_v6))
853 				goto next_ire;
854 		}
855 
856 		/*
857 		 * For some reason find_best_route uses ire_mask. We do
858 		 * the same.
859 		 */
860 		if (ire->ire_ipversion == IPV4_VERSION ?
861 		    !ire_match_args(ire, margs->ift_addr,
862 		    ire->ire_mask, margs->ift_gateway,
863 		    margs->ift_type, margs->ift_ill, margs->ift_zoneid,
864 		    margs->ift_tsl, margs->ift_flags) :
865 		    !ire_match_args_v6(ire, &margs->ift_addr_v6,
866 		    &ire->ire_mask_v6, &margs->ift_gateway_v6,
867 		    margs->ift_type, margs->ift_ill, margs->ift_zoneid,
868 		    margs->ift_tsl, margs->ift_flags))
869 			goto next_ire;
870 
871 		if (margs->ift_zoneid != ALL_ZONES &&
872 		    (ire->ire_type & IRE_OFFLINK)) {
873 			/*
874 			 * When we're in a zone, we're only
875 			 * interested in routers that are
876 			 * reachable through ipifs within our zone.
877 			 */
878 			if (ire->ire_ipversion == IPV4_VERSION) {
879 				if (!ire_gateway_ok_zone_v4(
880 				    ire->ire_gateway_addr, margs->ift_zoneid,
881 				    ire->ire_ill, margs->ift_tsl, ipst,
882 				    B_TRUE))
883 					goto next_ire;
884 			} else {
885 				if (!ire_gateway_ok_zone_v6(
886 				    &ire->ire_gateway_addr_v6,
887 				    margs->ift_zoneid, ire->ire_ill,
888 				    margs->ift_tsl, ipst, B_TRUE))
889 					goto next_ire;
890 			}
891 		}
892 		mutex_enter(&ire->ire_lock);
893 		/* Look for stale ire_badcnt and clear */
894 		if (ire->ire_badcnt != 0 &&
895 		    (TICK_TO_SEC(ddi_get_lbolt64()) - ire->ire_last_badcnt >
896 		    ipst->ips_ip_ire_badcnt_lifetime))
897 			ire->ire_badcnt = 0;
898 		mutex_exit(&ire->ire_lock);
899 
900 		if (ire->ire_badcnt == 0) {
901 			/* We found one with a zero badcnt; done */
902 			ire_refhold(ire);
903 			/*
904 			 * Care needed since irb_refrele grabs WLOCK to free
905 			 * the irb_t.
906 			 */
907 			if (ire->ire_ipversion == IPV4_VERSION) {
908 				RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
909 				irb_refrele(irb_ptr);
910 				RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
911 			} else {
912 				rw_exit(&ipst->ips_ip6_ire_head_lock);
913 				irb_refrele(irb_ptr);
914 				rw_enter(&ipst->ips_ip6_ire_head_lock,
915 				    RW_READER);
916 			}
917 			return (ire);
918 		}
919 		/*
920 		 * keep looking to see if there is a better (lower
921 		 * badcnt) matching IRE, but save this one as a last resort.
922 		 * If we find a lower badcnt pick that one as the last* resort.
923 		 */
924 		if (maybe_ire == NULL) {
925 			maybe_ire = ire;
926 			maybe_badcnt = ire->ire_badcnt;
927 		} else if (ire->ire_badcnt < maybe_badcnt) {
928 			maybe_ire = ire;
929 			maybe_badcnt = ire->ire_badcnt;
930 		}
931 
932 next_ire:
933 		maxwalk--;
934 next_ire_skip:
935 		ire = ire->ire_next;
936 		if (ire == NULL)
937 			ire = irb_ptr->irb_ire;
938 	}
939 	if (maybe_ire != NULL)
940 		ire_refhold(maybe_ire);
941 
942 	/* Care needed since irb_refrele grabs WLOCK to free the irb_t. */
943 	if (ire->ire_ipversion == IPV4_VERSION) {
944 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
945 		irb_refrele(irb_ptr);
946 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
947 	} else {
948 		rw_exit(&ipst->ips_ip6_ire_head_lock);
949 		irb_refrele(irb_ptr);
950 		rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
951 	}
952 	return (maybe_ire);
953 }
954 
955 void
956 irb_refhold_rn(struct radix_node *rn)
957 {
958 	if ((rn->rn_flags & RNF_ROOT) == 0)
959 		irb_refhold(&((rt_t *)(rn))->rt_irb);
960 }
961 
962 void
963 irb_refrele_rn(struct radix_node *rn)
964 {
965 	if ((rn->rn_flags & RNF_ROOT) == 0)
966 		irb_refrele_ftable(&((rt_t *)(rn))->rt_irb);
967 }
968 
969 /*
970  * Select a route for IPv4 and IPv6. Except for multicast, loopback and reject
971  * routes this routine sets up a ire_nce_cache as well. The caller needs to
972  * lookup an nce for the multicast case.
973  */
974 ire_t *
975 ip_select_route(const in6_addr_t *v6dst, ip_xmit_attr_t *ixa,
976     uint_t *generationp, in6_addr_t *setsrcp, int *errorp, boolean_t *multirtp)
977 {
978 	uint_t		match_args;
979 	uint_t		ire_type;
980 	ill_t		*ill;
981 	ire_t		*ire;
982 	ip_stack_t	*ipst = ixa->ixa_ipst;
983 	ipaddr_t	v4dst;
984 	in6_addr_t	v6nexthop;
985 	iaflags_t	ixaflags = ixa->ixa_flags;
986 	nce_t		*nce;
987 
988 	match_args = MATCH_IRE_SECATTR;
989 	IN6_V4MAPPED_TO_IPADDR(v6dst, v4dst);
990 	if (setsrcp != NULL)
991 		ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
992 	if (errorp != NULL)
993 		ASSERT(*errorp == 0);
994 
995 	/*
996 	 * The content of the ixa will be different if IP_NEXTHOP,
997 	 * SO_DONTROUTE, IP_BOUND_IF, IP_PKTINFO etc are set
998 	 */
999 
1000 	if ((ixaflags & IXAF_IS_IPV4) ? CLASSD(v4dst) :
1001 	    IN6_IS_ADDR_MULTICAST(v6dst)) {
1002 		/* Pick up the IRE_MULTICAST for the ill */
1003 		if (ixa->ixa_multicast_ifindex != 0) {
1004 			ill = ill_lookup_on_ifindex(ixa->ixa_multicast_ifindex,
1005 			    !(ixaflags & IXAF_IS_IPV4), ipst);
1006 		} else if (ixaflags & IXAF_SCOPEID_SET) {
1007 			/* sin6_scope_id takes precedence over ixa_ifindex */
1008 			ASSERT(ixa->ixa_scopeid != 0);
1009 			ill = ill_lookup_on_ifindex(ixa->ixa_scopeid,
1010 			    !(ixaflags & IXAF_IS_IPV4), ipst);
1011 		} else if (ixa->ixa_ifindex != 0) {
1012 			/*
1013 			 * In the ipmp case, the ixa_ifindex is set to
1014 			 * point at an under_ill and we would return the
1015 			 * ire_multicast() corresponding to that under_ill.
1016 			 */
1017 			ill = ill_lookup_on_ifindex(ixa->ixa_ifindex,
1018 			    !(ixaflags & IXAF_IS_IPV4), ipst);
1019 		} else if (ixaflags & IXAF_IS_IPV4) {
1020 			ipaddr_t	v4setsrc = INADDR_ANY;
1021 
1022 			ill = ill_lookup_group_v4(v4dst, ixa->ixa_zoneid, ipst,
1023 			    multirtp, &v4setsrc);
1024 			if (setsrcp != NULL)
1025 				IN6_IPADDR_TO_V4MAPPED(v4setsrc, setsrcp);
1026 		} else {
1027 			ill = ill_lookup_group_v6(v6dst, ixa->ixa_zoneid, ipst,
1028 			    multirtp, setsrcp);
1029 		}
1030 		if (ill != NULL && IS_VNI(ill)) {
1031 			ill_refrele(ill);
1032 			ill = NULL;
1033 		}
1034 		if (ill == NULL) {
1035 			if (errorp != NULL)
1036 				*errorp = ENXIO;
1037 			/* Get a hold on the IRE_NOROUTE */
1038 			ire = ire_reject(ipst, !(ixaflags & IXAF_IS_IPV4));
1039 			return (ire);
1040 		}
1041 		if (!(ill->ill_flags & ILLF_MULTICAST)) {
1042 			ill_refrele(ill);
1043 			if (errorp != NULL)
1044 				*errorp = EHOSTUNREACH;
1045 			/* Get a hold on the IRE_NOROUTE */
1046 			ire = ire_reject(ipst, !(ixaflags & IXAF_IS_IPV4));
1047 			return (ire);
1048 		}
1049 		/* Get a refcnt on the single IRE_MULTICAST per ill */
1050 		ire = ire_multicast(ill);
1051 		ill_refrele(ill);
1052 		if (generationp != NULL)
1053 			*generationp = ire->ire_generation;
1054 		if (errorp != NULL &&
1055 		    (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
1056 			*errorp = EHOSTUNREACH;
1057 		}
1058 		return (ire);
1059 	}
1060 
1061 	if (ixa->ixa_ifindex != 0 || (ixaflags & IXAF_SCOPEID_SET)) {
1062 		if (ixaflags & IXAF_SCOPEID_SET) {
1063 			/* sin6_scope_id takes precedence over ixa_ifindex */
1064 			ASSERT(ixa->ixa_scopeid != 0);
1065 			ill = ill_lookup_on_ifindex(ixa->ixa_scopeid,
1066 			    !(ixaflags & IXAF_IS_IPV4), ipst);
1067 		} else {
1068 			ASSERT(ixa->ixa_ifindex != 0);
1069 			ill = ill_lookup_on_ifindex(ixa->ixa_ifindex,
1070 			    !(ixaflags & IXAF_IS_IPV4), ipst);
1071 		}
1072 		if (ill != NULL && IS_VNI(ill)) {
1073 			ill_refrele(ill);
1074 			ill = NULL;
1075 		}
1076 		if (ill == NULL) {
1077 			if (errorp != NULL)
1078 				*errorp = ENXIO;
1079 			/* Get a hold on the IRE_NOROUTE */
1080 			ire = ire_reject(ipst, !(ixaflags & IXAF_IS_IPV4));
1081 			return (ire);
1082 		}
1083 		/*
1084 		 * icmp_send_reply_v6 uses scopeid, and mpathd sets IP*_BOUND_IF
1085 		 * so for both of them we need to be able look for an under
1086 		 * interface.
1087 		 */
1088 		if (IS_UNDER_IPMP(ill))
1089 			match_args |= MATCH_IRE_TESTHIDDEN;
1090 	} else {
1091 		ill = NULL;
1092 	}
1093 
1094 	if (ixaflags & IXAF_NEXTHOP_SET) {
1095 		/* IP_NEXTHOP was set */
1096 		v6nexthop = ixa->ixa_nexthop_v6;
1097 	} else {
1098 		v6nexthop = *v6dst;
1099 	}
1100 
1101 	ire_type = 0;
1102 	/* If ill is null then ire_route_recursive will set MATCH_IRE_ILL */
1103 
1104 	/*
1105 	 * If SO_DONTROUTE is set or if IP_NEXTHOP is set, then
1106 	 * we only look for an onlink IRE.
1107 	 */
1108 	if (ixaflags & (IXAF_DONTROUTE|IXAF_NEXTHOP_SET)) {
1109 		match_args |= MATCH_IRE_TYPE;
1110 		ire_type = IRE_ONLINK;
1111 	}
1112 
1113 	if (ixaflags & IXAF_IS_IPV4) {
1114 		ipaddr_t	v4nexthop;
1115 		ipaddr_t	v4setsrc = INADDR_ANY;
1116 
1117 		IN6_V4MAPPED_TO_IPADDR(&v6nexthop, v4nexthop);
1118 		ire = ire_route_recursive_v4(v4nexthop, ire_type, ill,
1119 		    ixa->ixa_zoneid, ixa->ixa_tsl, match_args, B_TRUE,
1120 		    ixa->ixa_xmit_hint, ipst, &v4setsrc, NULL, generationp);
1121 		if (setsrcp != NULL)
1122 			IN6_IPADDR_TO_V4MAPPED(v4setsrc, setsrcp);
1123 	} else {
1124 		ire = ire_route_recursive_v6(&v6nexthop, ire_type, ill,
1125 		    ixa->ixa_zoneid, ixa->ixa_tsl, match_args, B_TRUE,
1126 		    ixa->ixa_xmit_hint, ipst, setsrcp, NULL, generationp);
1127 	}
1128 
1129 #ifdef DEBUG
1130 	if (match_args & MATCH_IRE_TESTHIDDEN) {
1131 		ip3dbg(("looking for hidden; dst %x ire %p\n",
1132 		    v4dst, (void *)ire));
1133 	}
1134 #endif
1135 
1136 	if (ill != NULL)
1137 		ill_refrele(ill);
1138 
1139 	if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1140 	    (ire->ire_type & IRE_MULTICAST)) {
1141 		/* No ire_nce_cache */
1142 		return (ire);
1143 	}
1144 
1145 	/* Setup ire_nce_cache if it doesn't exist or is condemned. */
1146 	mutex_enter(&ire->ire_lock);
1147 	nce = ire->ire_nce_cache;
1148 	if (nce == NULL || nce->nce_is_condemned) {
1149 		mutex_exit(&ire->ire_lock);
1150 		(void) ire_revalidate_nce(ire);
1151 	} else {
1152 		mutex_exit(&ire->ire_lock);
1153 	}
1154 	return (ire);
1155 }
1156 
1157 /*
1158  * Find a route given some xmit attributes and a packet.
1159  * Generic for IPv4 and IPv6
1160  *
1161  * This never returns NULL. But when it returns the IRE_NOROUTE
1162  * it might set errorp.
1163  */
1164 ire_t *
1165 ip_select_route_pkt(mblk_t *mp, ip_xmit_attr_t *ixa, uint_t *generationp,
1166     int *errorp, boolean_t *multirtp)
1167 {
1168 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
1169 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
1170 		in6_addr_t	v6dst;
1171 
1172 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
1173 
1174 		return (ip_select_route(&v6dst, ixa, generationp,
1175 		    NULL, errorp, multirtp));
1176 	} else {
1177 		ip6_t	*ip6h = (ip6_t *)mp->b_rptr;
1178 
1179 		return (ip_select_route(&ip6h->ip6_dst, ixa, generationp,
1180 		    NULL, errorp, multirtp));
1181 	}
1182 }
1183 
1184 ire_t *
1185 ip_select_route_v4(ipaddr_t dst, ip_xmit_attr_t *ixa, uint_t *generationp,
1186     ipaddr_t *v4setsrcp, int *errorp, boolean_t *multirtp)
1187 {
1188 	in6_addr_t	v6dst;
1189 	ire_t		*ire;
1190 	in6_addr_t	setsrc;
1191 
1192 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
1193 
1194 	IN6_IPADDR_TO_V4MAPPED(dst, &v6dst);
1195 
1196 	setsrc = ipv6_all_zeros;
1197 	ire = ip_select_route(&v6dst, ixa, generationp, &setsrc, errorp,
1198 	    multirtp);
1199 	if (v4setsrcp != NULL)
1200 		IN6_V4MAPPED_TO_IPADDR(&setsrc, *v4setsrcp);
1201 	return (ire);
1202 }
1203 
1204 /*
1205  * Recursively look for a route to the destination. Can also match on
1206  * the zoneid, ill, and label. Used for the data paths. See also
1207  * ire_route_recursive.
1208  *
1209  * If ill is set this means we will match it by adding MATCH_IRE_ILL.
1210  *
1211  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1212  * instead.
1213  *
1214  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1215  * is an error.
1216  * Allow at most one RTF_INDIRECT.
1217  */
1218 ire_t *
1219 ire_route_recursive_impl_v4(ire_t *ire,
1220     ipaddr_t nexthop, uint_t ire_type, const ill_t *ill_arg,
1221     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1222     boolean_t allocate, uint32_t xmit_hint, ip_stack_t *ipst, ipaddr_t *setsrcp,
1223     tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1224 {
1225 	int		i, j;
1226 	ire_t		*ires[MAX_IRE_RECURSION];
1227 	uint_t		generation;
1228 	uint_t		generations[MAX_IRE_RECURSION];
1229 	boolean_t	need_refrele = B_FALSE;
1230 	boolean_t	invalidate = B_FALSE;
1231 	int		prefs[MAX_IRE_RECURSION];
1232 	ill_t		*ill = NULL;
1233 
1234 	if (setsrcp != NULL)
1235 		ASSERT(*setsrcp == INADDR_ANY);
1236 	if (gwattrp != NULL)
1237 		ASSERT(*gwattrp == NULL);
1238 
1239 	if (ill_arg != NULL)
1240 		match_args |= MATCH_IRE_ILL;
1241 
1242 	/*
1243 	 * We iterate up to three times to resolve a route, even though
1244 	 * we have four slots in the array. The extra slot is for an
1245 	 * IRE_IF_CLONE we might need to create.
1246 	 */
1247 	i = 0;
1248 	while (i < MAX_IRE_RECURSION - 1) {
1249 		/* ire_ftable_lookup handles round-robin/ECMP */
1250 		if (ire == NULL) {
1251 			ire = ire_ftable_lookup_v4(nexthop, 0, 0, ire_type,
1252 			    (ill_arg != NULL ? ill_arg : ill), zoneid, tsl,
1253 			    match_args, xmit_hint, ipst, &generation);
1254 		} else {
1255 			/* Caller passed it; extra hold since we will rele */
1256 			ire_refhold(ire);
1257 			if (generationp != NULL)
1258 				generation = *generationp;
1259 			else
1260 				generation = IRE_GENERATION_VERIFY;
1261 		}
1262 		if (ire == NULL)
1263 			ire = ire_reject(ipst, B_FALSE);
1264 
1265 		/* Need to return the ire with RTF_REJECT|BLACKHOLE */
1266 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1267 			goto error;
1268 
1269 		ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1270 
1271 		prefs[i] = ire_pref(ire);
1272 		if (i != 0) {
1273 			/*
1274 			 * Don't allow anything unusual past the first
1275 			 * iteration.
1276 			 */
1277 			if ((ire->ire_type &
1278 			    (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) ||
1279 			    prefs[i] <= prefs[i-1]) {
1280 				ire_refrele(ire);
1281 				ire = ire_reject(ipst, B_FALSE);
1282 				goto error;
1283 			}
1284 		}
1285 		/* We have a usable IRE */
1286 		ires[i] = ire;
1287 		generations[i] = generation;
1288 		i++;
1289 
1290 		/* The first RTF_SETSRC address is passed back if setsrcp */
1291 		if ((ire->ire_flags & RTF_SETSRC) &&
1292 		    setsrcp != NULL && *setsrcp == INADDR_ANY) {
1293 			ASSERT(ire->ire_setsrc_addr != INADDR_ANY);
1294 			*setsrcp = ire->ire_setsrc_addr;
1295 		}
1296 
1297 		/* The first ire_gw_secattr is passed back if gwattrp */
1298 		if (ire->ire_gw_secattr != NULL &&
1299 		    gwattrp != NULL && *gwattrp == NULL)
1300 			*gwattrp = ire->ire_gw_secattr;
1301 
1302 		/*
1303 		 * Check if we have a short-cut pointer to an IRE for this
1304 		 * destination, and that the cached dependency isn't stale.
1305 		 * In that case we've rejoined an existing tree towards a
1306 		 * parent, thus we don't need to continue the loop to
1307 		 * discover the rest of the tree.
1308 		 */
1309 		mutex_enter(&ire->ire_lock);
1310 		if (ire->ire_dep_parent != NULL &&
1311 		    ire->ire_dep_parent->ire_generation ==
1312 		    ire->ire_dep_parent_generation) {
1313 			mutex_exit(&ire->ire_lock);
1314 			ire = NULL;
1315 			goto done;
1316 		}
1317 		mutex_exit(&ire->ire_lock);
1318 
1319 		/*
1320 		 * If this type should have an ire_nce_cache (even if it
1321 		 * doesn't yet have one) then we are done. Includes
1322 		 * IRE_INTERFACE with a full 32 bit mask.
1323 		 */
1324 		if (ire->ire_nce_capable) {
1325 			ire = NULL;
1326 			goto done;
1327 		}
1328 		ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1329 		/*
1330 		 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1331 		 * particular destination
1332 		 */
1333 		if (ire->ire_type & IRE_INTERFACE) {
1334 			in6_addr_t	v6nexthop;
1335 			ire_t		*clone;
1336 
1337 			ASSERT(ire->ire_masklen != IPV4_ABITS);
1338 
1339 			/*
1340 			 * In the case of ip_input and ILLF_FORWARDING not
1341 			 * being set, and in the case of RTM_GET,
1342 			 * there is no point in allocating
1343 			 * an IRE_IF_CLONE. We return the IRE_INTERFACE.
1344 			 * Note that !allocate can result in a ire_dep_parent
1345 			 * which is IRE_IF_* without an IRE_IF_CLONE.
1346 			 * We recover from that when we need to send packets
1347 			 * by ensuring that the generations become
1348 			 * IRE_GENERATION_VERIFY in this case.
1349 			 */
1350 			if (!allocate) {
1351 				invalidate = B_TRUE;
1352 				ire = NULL;
1353 				goto done;
1354 			}
1355 
1356 			IN6_IPADDR_TO_V4MAPPED(nexthop, &v6nexthop);
1357 
1358 			clone = ire_create_if_clone(ire, &v6nexthop,
1359 			    &generation);
1360 			if (clone == NULL) {
1361 				/*
1362 				 * Temporary failure - no memory.
1363 				 * Don't want caller to cache IRE_NOROUTE.
1364 				 */
1365 				invalidate = B_TRUE;
1366 				ire = ire_blackhole(ipst, B_FALSE);
1367 				goto error;
1368 			}
1369 			/*
1370 			 * Make clone next to last entry and the
1371 			 * IRE_INTERFACE the last in the dependency
1372 			 * chain since the clone depends on the
1373 			 * IRE_INTERFACE.
1374 			 */
1375 			ASSERT(i >= 1);
1376 			ASSERT(i < MAX_IRE_RECURSION);
1377 
1378 			ires[i] = ires[i-1];
1379 			generations[i] = generations[i-1];
1380 			ires[i-1] = clone;
1381 			generations[i-1] = generation;
1382 			i++;
1383 
1384 			ire = NULL;
1385 			goto done;
1386 		}
1387 
1388 		/*
1389 		 * We only match on the type and optionally ILL when
1390 		 * recursing. The type match is used by some callers
1391 		 * to exclude certain types (such as IRE_IF_CLONE or
1392 		 * IRE_LOCAL|IRE_LOOPBACK).
1393 		 */
1394 		match_args &= MATCH_IRE_TYPE;
1395 		nexthop = ire->ire_gateway_addr;
1396 		if (ill == NULL && ire->ire_ill != NULL) {
1397 			ill = ire->ire_ill;
1398 			need_refrele = B_TRUE;
1399 			ill_refhold(ill);
1400 			match_args |= MATCH_IRE_ILL;
1401 		}
1402 		ire = NULL;
1403 	}
1404 	ASSERT(ire == NULL);
1405 	ire = ire_reject(ipst, B_FALSE);
1406 
1407 error:
1408 	ASSERT(ire != NULL);
1409 	if (need_refrele)
1410 		ill_refrele(ill);
1411 
1412 	/*
1413 	 * In the case of MULTIRT we want to try a different IRE the next
1414 	 * time. We let the next packet retry in that case.
1415 	 */
1416 	if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1417 		(void) ire_no_good(ires[0]);
1418 
1419 cleanup:
1420 	/* cleanup ires[i] */
1421 	ire_dep_unbuild(ires, i);
1422 	for (j = 0; j < i; j++)
1423 		ire_refrele(ires[j]);
1424 
1425 	ASSERT(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE));
1426 	/*
1427 	 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1428 	 * ip_select_route since the reject or lack of memory might be gone.
1429 	 */
1430 	if (generationp != NULL)
1431 		*generationp = IRE_GENERATION_VERIFY;
1432 	return (ire);
1433 
1434 done:
1435 	ASSERT(ire == NULL);
1436 	if (need_refrele) {
1437 		ill_refrele(ill);
1438 		ill = NULL;
1439 	}
1440 
1441 	/* Build dependencies */
1442 	if (!ire_dep_build(ires, generations, i)) {
1443 		/* Something in chain was condemned; tear it apart */
1444 		ire = ire_reject(ipst, B_FALSE);
1445 		goto cleanup;
1446 	}
1447 
1448 	/*
1449 	 * Release all refholds except the one for ires[0] that we
1450 	 * will return to the caller.
1451 	 */
1452 	for (j = 1; j < i; j++)
1453 		ire_refrele(ires[j]);
1454 
1455 	if (invalidate) {
1456 		/*
1457 		 * Since we needed to allocate but couldn't we need to make
1458 		 * sure that the dependency chain is rebuilt the next time.
1459 		 */
1460 		ire_dep_invalidate_generations(ires[0]);
1461 		generation = IRE_GENERATION_VERIFY;
1462 	} else {
1463 		/*
1464 		 * IREs can have been added or deleted while we did the
1465 		 * recursive lookup and we can't catch those until we've built
1466 		 * the dependencies. We verify the stored
1467 		 * ire_dep_parent_generation to catch any such changes and
1468 		 * return IRE_GENERATION_VERIFY (which will cause
1469 		 * ip_select_route to be called again so we can redo the
1470 		 * recursive lookup next time we send a packet.
1471 		 */
1472 		generation = ire_dep_validate_generations(ires[0]);
1473 		if (generations[0] != ires[0]->ire_generation) {
1474 			/* Something changed at the top */
1475 			generation = IRE_GENERATION_VERIFY;
1476 		}
1477 	}
1478 	if (generationp != NULL)
1479 		*generationp = generation;
1480 
1481 	return (ires[0]);
1482 }
1483 
1484 ire_t *
1485 ire_route_recursive_v4(ipaddr_t nexthop, uint_t ire_type, const ill_t *ill,
1486     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1487     boolean_t allocate, uint32_t xmit_hint, ip_stack_t *ipst, ipaddr_t *setsrcp,
1488     tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1489 {
1490 	return (ire_route_recursive_impl_v4(NULL, nexthop, ire_type, ill,
1491 	    zoneid, tsl, match_args, allocate, xmit_hint, ipst, setsrcp,
1492 	    gwattrp, generationp));
1493 }
1494 
1495 /*
1496  * Recursively look for a route to the destination.
1497  * We only handle a destination match here, yet we have the same arguments
1498  * as the full match to allow function pointers to select between the two.
1499  *
1500  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1501  * instead.
1502  *
1503  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1504  * is an error.
1505  * Allow at most one RTF_INDIRECT.
1506  */
1507 ire_t *
1508 ire_route_recursive_dstonly_v4(ipaddr_t nexthop, boolean_t allocate,
1509     uint32_t xmit_hint, ip_stack_t *ipst)
1510 {
1511 	ire_t	*ire;
1512 	ire_t	*ire1;
1513 	uint_t	generation;
1514 
1515 	/* ire_ftable_lookup handles round-robin/ECMP */
1516 	ire = ire_ftable_lookup_simple_v4(nexthop, xmit_hint, ipst,
1517 	    &generation);
1518 	ASSERT(ire != NULL);
1519 
1520 	/*
1521 	 * If this type should have an ire_nce_cache (even if it
1522 	 * doesn't yet have one) then we are done. Includes
1523 	 * IRE_INTERFACE with a full 32 bit mask.
1524 	 */
1525 	if (ire->ire_nce_capable)
1526 		return (ire);
1527 
1528 	/*
1529 	 * If the IRE has a current cached parent we know that the whole
1530 	 * parent chain is current, hence we don't need to discover and
1531 	 * build any dependencies by doing a recursive lookup.
1532 	 */
1533 	mutex_enter(&ire->ire_lock);
1534 	if (ire->ire_dep_parent != NULL &&
1535 	    ire->ire_dep_parent->ire_generation ==
1536 	    ire->ire_dep_parent_generation) {
1537 		mutex_exit(&ire->ire_lock);
1538 		return (ire);
1539 	}
1540 	mutex_exit(&ire->ire_lock);
1541 
1542 	/*
1543 	 * Fallback to loop in the normal code starting with the ire
1544 	 * we found. Normally this would return the same ire.
1545 	 */
1546 	ire1 = ire_route_recursive_impl_v4(ire, nexthop, 0, NULL, ALL_ZONES,
1547 	    NULL, MATCH_IRE_DSTONLY, allocate, xmit_hint, ipst, NULL, NULL,
1548 	    &generation);
1549 	ire_refrele(ire);
1550 	return (ire1);
1551 }
1552