xref: /titanic_52/usr/src/uts/common/inet/ip/ip_arp.c (revision fb2a9bae0030340ad72b9c26ba1ffee2ee3cafec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <inet/ip_arp.h>
28 #include <inet/ip_ndp.h>
29 #include <net/if_arp.h>
30 #include <netinet/if_ether.h>
31 #include <sys/strsubr.h>
32 #include <inet/ip6.h>
33 #include <inet/ip.h>
34 #include <inet/ip_ire.h>
35 #include <inet/ip_if.h>
36 #include <sys/dlpi.h>
37 #include <sys/sunddi.h>
38 #include <sys/strsun.h>
39 #include <sys/sdt.h>
40 #include <inet/mi.h>
41 #include <inet/arp.h>
42 #include <inet/ipdrop.h>
43 #include <sys/sockio.h>
44 #include <inet/ip_impl.h>
45 #include <sys/policy.h>
46 
47 #define	ARL_LL_ADDR_OFFSET(arl)	(((arl)->arl_sap_length) < 0 ? \
48 	(sizeof (dl_unitdata_req_t)) : \
49 	((sizeof (dl_unitdata_req_t)) + (ABS((arl)->arl_sap_length))))
50 
51 /*
52  * MAC-specific intelligence.  Shouldn't be needed, but the DL_INFO_ACK
53  * doesn't quite do it for us.
54  */
55 typedef struct arp_m_s {
56 	t_uscalar_t	arp_mac_type;
57 	uint32_t	arp_mac_arp_hw_type;
58 	t_scalar_t	arp_mac_sap_length;
59 	uint32_t	arp_mac_hw_addr_length;
60 } arp_m_t;
61 
62 static int arp_close(queue_t *, int);
63 static void arp_rput(queue_t *, mblk_t *);
64 static void arp_wput(queue_t *, mblk_t *);
65 static arp_m_t	*arp_m_lookup(t_uscalar_t mac_type);
66 static void arp_notify(ipaddr_t, mblk_t *, uint32_t, ip_recv_attr_t *,
67 	ncec_t *);
68 static int arp_output(ill_t *, uint32_t, const uchar_t *, const uchar_t *,
69 	const uchar_t *, const uchar_t *, uchar_t *);
70 static int  arp_modclose(arl_t *);
71 static void  arp_mod_close_tail(arl_t *);
72 static mblk_t *arl_unbind(arl_t *);
73 static void arp_process_packet(ill_t *, mblk_t *);
74 static void arp_excl(ipsq_t *, queue_t *, mblk_t *, void *);
75 static void arp_drop_packet(const char *str, mblk_t *, ill_t *);
76 static int arp_open(queue_t *, dev_t *, int, int, cred_t *);
77 static int ip_sioctl_ifunitsel_arp(queue_t *, int *);
78 static int ip_sioctl_slifname_arp(queue_t *, void *);
79 static void arp_dlpi_send(arl_t *, mblk_t *);
80 static void arl_defaults_common(arl_t *, mblk_t *);
81 static int arp_modopen(queue_t *, dev_t *, int, int, cred_t *);
82 static void arp_ifname_notify(arl_t *);
83 static void arp_rput_dlpi_writer(ipsq_t *, queue_t *, mblk_t *, void *);
84 static arl_t *ill_to_arl(ill_t *);
85 
86 #define	DL_PRIM(mp)	(((union DL_primitives *)(mp)->b_rptr)->dl_primitive)
87 #define	IS_DLPI_DATA(mp)						\
88 	((DB_TYPE(mp) == M_PROTO) &&					\
89 	MBLKL(mp) >= sizeof (dl_unitdata_ind_t) &&			\
90 	(DL_PRIM(mp) == DL_UNITDATA_IND))
91 
92 #define	AR_NOTFOUND	1	/* No matching ace found in cache */
93 #define	AR_MERGED	2	/* Matching ace updated (RFC 826 Merge_flag) */
94 #define	AR_LOOPBACK	3	/* Our own arp packet was received */
95 #define	AR_BOGON	4	/* Another host has our IP addr. */
96 #define	AR_FAILED	5	/* Duplicate Address Detection has failed */
97 #define	AR_CHANGED	6	/* Address has changed; tell IP (and merged) */
98 
99 boolean_t arp_no_defense;
100 
101 struct module_info arp_mod_info = {
102 	IP_MOD_ID, "arp", 1, INFPSZ, 65536, 1024
103 };
104 static struct qinit rinit_arp = {
105 	(pfi_t)arp_rput, NULL, arp_open, arp_close, NULL, &arp_mod_info
106 };
107 static struct qinit winit_arp = {
108 	(pfi_t)arp_wput, NULL, arp_open, arp_close, NULL,
109 	&arp_mod_info
110 };
111 struct streamtab arpinfo = {
112 	&rinit_arp, &winit_arp
113 };
114 #define	ARH_FIXED_LEN	8
115 #define	AR_LL_HDR_SLACK	32
116 
117 /*
118  * pfhooks for ARP.
119  */
120 #define	ARP_HOOK_IN(_hook, _event, _ilp, _hdr, _fm, _m, ipst)		\
121 									\
122 	if ((_hook).he_interested) {                       		\
123 		hook_pkt_event_t info;                          	\
124 									\
125 		info.hpe_protocol = ipst->ips_arp_net_data;		\
126 		info.hpe_ifp = _ilp;                       		\
127 		info.hpe_ofp = 0;                       		\
128 		info.hpe_hdr = _hdr;                            	\
129 		info.hpe_mp = &(_fm);                           	\
130 		info.hpe_mb = _m;                               	\
131 		if (hook_run(ipst->ips_arp_net_data->netd_hooks,	\
132 		    _event, (hook_data_t)&info) != 0) {			\
133 			if (_fm != NULL) {                      	\
134 				freemsg(_fm);                   	\
135 				_fm = NULL;                     	\
136 			}                                       	\
137 			_hdr = NULL;                            	\
138 			_m = NULL;                              	\
139 		} else {                                        	\
140 			_hdr = info.hpe_hdr;                    	\
141 			_m = info.hpe_mb;                       	\
142 		}                                               	\
143 	}
144 
145 #define	ARP_HOOK_OUT(_hook, _event, _olp, _hdr, _fm, _m, ipst)		\
146 									\
147 	if ((_hook).he_interested) {                       		\
148 		hook_pkt_event_t info;                          	\
149 									\
150 		info.hpe_protocol = ipst->ips_arp_net_data;		\
151 		info.hpe_ifp = 0;                       		\
152 		info.hpe_ofp = _olp;                       		\
153 		info.hpe_hdr = _hdr;                            	\
154 		info.hpe_mp = &(_fm);                           	\
155 		info.hpe_mb = _m;                               	\
156 		if (hook_run(ipst->ips_arp_net_data->netd_hooks,	\
157 		    _event, (hook_data_t)&info) != 0) {			\
158 			if (_fm != NULL) {                      	\
159 				freemsg(_fm);                   	\
160 				_fm = NULL;                     	\
161 			}                                       	\
162 			_hdr = NULL;                            	\
163 			_m = NULL;                              	\
164 		} else {                                        	\
165 			_hdr = info.hpe_hdr;                    	\
166 			_m = info.hpe_mb;                       	\
167 		}                                               	\
168 	}
169 
170 static arp_m_t	arp_m_tbl[] = {
171 	{ DL_CSMACD,	ARPHRD_ETHER,	-2,	6},	/* 802.3 */
172 	{ DL_TPB,	ARPHRD_IEEE802,	-2,	6},	/* 802.4 */
173 	{ DL_TPR,	ARPHRD_IEEE802,	-2,	6},	/* 802.5 */
174 	{ DL_METRO,	ARPHRD_IEEE802,	-2,	6},	/* 802.6 */
175 	{ DL_ETHER,	ARPHRD_ETHER,	-2,	6},	/* Ethernet */
176 	{ DL_FDDI,	ARPHRD_ETHER,	-2,	6},	/* FDDI */
177 	{ DL_IB,	ARPHRD_IB,	-2,	20},	/* Infiniband */
178 	{ DL_OTHER,	ARPHRD_ETHER,	-2,	6}	/* unknown */
179 };
180 
181 static void
182 arl_refhold_locked(arl_t *arl)
183 {
184 	ASSERT(MUTEX_HELD(&arl->arl_lock));
185 	arl->arl_refcnt++;
186 	ASSERT(arl->arl_refcnt != 0);
187 }
188 
189 static void
190 arl_refrele(arl_t *arl)
191 {
192 	mutex_enter(&arl->arl_lock);
193 	ASSERT(arl->arl_refcnt != 0);
194 	arl->arl_refcnt--;
195 	if (arl->arl_refcnt > 1) {
196 		mutex_exit(&arl->arl_lock);
197 		return;
198 	}
199 
200 	/* ill_close or arp_unbind_complete may be waiting */
201 	cv_broadcast(&arl->arl_cv);
202 	mutex_exit(&arl->arl_lock);
203 }
204 
205 /*
206  * wake up any pending ip ioctls.
207  */
208 static void
209 arp_cmd_done(ill_t *ill, int err, t_uscalar_t lastprim)
210 {
211 	if (lastprim == DL_UNBIND_REQ && ill->ill_replumbing)
212 		arp_replumb_done(ill, 0);
213 	else
214 		arp_bringup_done(ill, err);
215 }
216 
217 static int
218 ip_nce_resolve_all(ill_t *ill, uchar_t *src_haddr, uint32_t hlen,
219     const in_addr_t *src_paddr, ncec_t **sncec, int op)
220 {
221 	int retv;
222 	ncec_t *ncec;
223 	boolean_t ll_changed;
224 	uchar_t *lladdr = NULL;
225 	int new_state;
226 
227 	ASSERT(ill != NULL);
228 
229 	ncec = ncec_lookup_illgrp_v4(ill, src_paddr);
230 	*sncec = ncec;
231 
232 	if (ncec == NULL) {
233 		retv = AR_NOTFOUND;
234 		goto done;
235 	}
236 
237 	mutex_enter(&ncec->ncec_lock);
238 	/*
239 	 * IP addr and hardware address match what we already
240 	 * have, then this is a broadcast packet emitted by one of our
241 	 * interfaces, reflected by the switch and received on another
242 	 * interface.  We return AR_LOOPBACK.
243 	 */
244 	lladdr = ncec->ncec_lladdr;
245 	if (NCE_MYADDR(ncec) && hlen == ncec->ncec_ill->ill_phys_addr_length &&
246 	    bcmp(lladdr, src_haddr, hlen) == 0) {
247 		mutex_exit(&ncec->ncec_lock);
248 		retv = AR_LOOPBACK;
249 		goto done;
250 	}
251 	/*
252 	 * If the entry is unverified, then we've just verified that
253 	 * someone else already owns this address, because this is a
254 	 * message with the same protocol address but different
255 	 * hardware address.
256 	 */
257 	if (ncec->ncec_flags & NCE_F_UNVERIFIED) {
258 		mutex_exit(&ncec->ncec_lock);
259 		ncec_delete(ncec);
260 		ncec_refrele(ncec);
261 		*sncec = NULL;
262 		retv = AR_FAILED;
263 		goto done;
264 	}
265 
266 	/*
267 	 * If the IP address matches ours and we're authoritative for
268 	 * this entry, then some other node is using our IP addr, so
269 	 * return AR_BOGON.  Also reset the transmit count to zero so
270 	 * that, if we're currently in initial announcement mode, we
271 	 * switch back to the lazier defense mode.  Knowing that
272 	 * there's at least one duplicate out there, we ought not
273 	 * blindly announce.
274 	 *
275 	 * NCE_F_AUTHORITY is set in one of two ways:
276 	 * 1. /sbin/arp told us so, via the "permanent" flag.
277 	 * 2. This is one of my addresses.
278 	 */
279 	if (ncec->ncec_flags & NCE_F_AUTHORITY) {
280 		ncec->ncec_unsolicit_count = 0;
281 		mutex_exit(&ncec->ncec_lock);
282 		retv = AR_BOGON;
283 		goto done;
284 	}
285 
286 	/*
287 	 * No address conflict was detected, and we are getting
288 	 * ready to update the ncec's hwaddr. The nce MUST NOT be on an
289 	 * under interface, because all dynamic nce's are created on the
290 	 * native interface (in the non-IPMP case) or on the IPMP
291 	 * meta-interface (in the IPMP case)
292 	 */
293 	ASSERT(!IS_UNDER_IPMP(ncec->ncec_ill));
294 
295 	/*
296 	 * update ncec with src_haddr, hlen.
297 	 *
298 	 * We are trying to resolve this ncec_addr/src_paddr and we
299 	 * got a REQUEST/RESPONSE from the ncec_addr/src_paddr.
300 	 * So the new_state is at least "STALE". If, in addition,
301 	 * this a solicited, unicast ARP_RESPONSE, we can transition
302 	 * to REACHABLE.
303 	 */
304 	new_state = ND_STALE;
305 	ip1dbg(("got info for ncec %p from addr %x\n",
306 	    (void *)ncec, *src_paddr));
307 	retv = AR_MERGED;
308 	if (ncec->ncec_state == ND_INCOMPLETE ||
309 	    ncec->ncec_state == ND_INITIAL) {
310 		ll_changed = B_TRUE;
311 	} else {
312 		ll_changed = nce_cmp_ll_addr(ncec, src_haddr, hlen);
313 		if (!ll_changed)
314 			new_state = ND_UNCHANGED;
315 		else
316 			retv = AR_CHANGED;
317 	}
318 	/*
319 	 * We don't have the equivalent of the IPv6 'S' flag indicating
320 	 * a solicited response, so we assume that if we are in
321 	 * INCOMPLETE, or got back an unchanged lladdr in PROBE state,
322 	 * and this is an ARP_RESPONSE, it must be a
323 	 * solicited response allowing us to transtion to REACHABLE.
324 	 */
325 	if (op == ARP_RESPONSE) {
326 		switch (ncec->ncec_state) {
327 		case ND_PROBE:
328 			new_state = (ll_changed ? ND_STALE : ND_REACHABLE);
329 			break;
330 		case ND_INCOMPLETE:
331 			new_state = ND_REACHABLE;
332 			break;
333 		}
334 	}
335 	/*
336 	 * Call nce_update() to refresh fastpath information on any
337 	 * dependent nce_t entries.
338 	 */
339 	nce_update(ncec, new_state, (ll_changed ? src_haddr : NULL));
340 	mutex_exit(&ncec->ncec_lock);
341 	nce_resolv_ok(ncec);
342 done:
343 	return (retv);
344 }
345 
346 /* Find an entry for a particular MAC type in the arp_m_tbl. */
347 static arp_m_t	*
348 arp_m_lookup(t_uscalar_t mac_type)
349 {
350 	arp_m_t	*arm;
351 
352 	for (arm = arp_m_tbl; arm < A_END(arp_m_tbl); arm++) {
353 		if (arm->arp_mac_type == mac_type)
354 			return (arm);
355 	}
356 	return (NULL);
357 }
358 
359 static uint32_t
360 arp_hw_type(t_uscalar_t mactype)
361 {
362 	arp_m_t *arm;
363 
364 	if ((arm = arp_m_lookup(mactype)) == NULL)
365 		arm = arp_m_lookup(DL_OTHER);
366 	return (arm->arp_mac_arp_hw_type);
367 }
368 
369 /*
370  * Called when an DLPI control message has been acked; send down the next
371  * queued message (if any).
372  * The DLPI messages of interest being bind, attach and unbind since
373  * these are the only ones sent by ARP via arp_dlpi_send.
374  */
375 static void
376 arp_dlpi_done(arl_t *arl, ill_t *ill)
377 {
378 	mblk_t *mp;
379 	int err;
380 	t_uscalar_t prim;
381 
382 	mutex_enter(&arl->arl_lock);
383 	prim = arl->arl_dlpi_pending;
384 
385 	if ((mp = arl->arl_dlpi_deferred) == NULL) {
386 		arl->arl_dlpi_pending = DL_PRIM_INVAL;
387 		if (arl->arl_state_flags & ARL_LL_DOWN)
388 			err = ENETDOWN;
389 		else
390 			err = 0;
391 		mutex_exit(&arl->arl_lock);
392 
393 		mutex_enter(&ill->ill_lock);
394 		ill->ill_arl_dlpi_pending = 0;
395 		mutex_exit(&ill->ill_lock);
396 		arp_cmd_done(ill, err, prim);
397 		return;
398 	}
399 
400 	arl->arl_dlpi_deferred = mp->b_next;
401 	mp->b_next = NULL;
402 
403 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
404 
405 	arl->arl_dlpi_pending = DL_PRIM(mp);
406 	mutex_exit(&arl->arl_lock);
407 
408 	mutex_enter(&ill->ill_lock);
409 	ill->ill_arl_dlpi_pending = 1;
410 	mutex_exit(&ill->ill_lock);
411 
412 	putnext(arl->arl_wq, mp);
413 }
414 
415 /*
416  * This routine is called during module initialization when the DL_INFO_ACK
417  * comes back from the device.	We set up defaults for all the device dependent
418  * doo-dads we are going to need.  This will leave us ready to roll if we are
419  * attempting auto-configuration.  Alternatively, these defaults can be
420  * overridden by initialization procedures possessing higher intelligence.
421  *
422  * Caller will free the mp.
423  */
424 static void
425 arp_ll_set_defaults(arl_t *arl, mblk_t *mp)
426 {
427 	arp_m_t		*arm;
428 	dl_info_ack_t	*dlia = (dl_info_ack_t *)mp->b_rptr;
429 
430 	if ((arm = arp_m_lookup(dlia->dl_mac_type)) == NULL)
431 		arm = arp_m_lookup(DL_OTHER);
432 	ASSERT(arm != NULL);
433 
434 	/*
435 	 * We initialize based on parameters in the (currently) not too
436 	 * exhaustive arp_m_tbl.
437 	 */
438 	if (dlia->dl_version == DL_VERSION_2) {
439 		arl->arl_sap_length = dlia->dl_sap_length;
440 		arl->arl_phys_addr_length = dlia->dl_brdcst_addr_length;
441 		if (dlia->dl_provider_style == DL_STYLE2)
442 			arl->arl_needs_attach = 1;
443 	} else {
444 		arl->arl_sap_length = arm->arp_mac_sap_length;
445 		arl->arl_phys_addr_length = arm->arp_mac_hw_addr_length;
446 	}
447 	/*
448 	 * Note: the arp_hw_type in the arp header may be derived from
449 	 * the ill_mac_type and arp_m_lookup().
450 	 */
451 	arl->arl_sap = ETHERTYPE_ARP;
452 	arl_defaults_common(arl, mp);
453 }
454 
455 static void
456 arp_wput(queue_t *q, mblk_t *mp)
457 {
458 	int err = EINVAL;
459 	struct iocblk *ioc;
460 	mblk_t *mp1;
461 
462 	switch (DB_TYPE(mp)) {
463 	case M_IOCTL:
464 		ASSERT(q->q_next != NULL);
465 		ioc = (struct iocblk *)mp->b_rptr;
466 		if (ioc->ioc_cmd != SIOCSLIFNAME &&
467 		    ioc->ioc_cmd != IF_UNITSEL) {
468 			DTRACE_PROBE4(arl__dlpi, char *, "arp_wput",
469 			    char *, "<some ioctl>", char *, "-",
470 			    arl_t *, (arl_t *)q->q_ptr);
471 			putnext(q, mp);
472 			return;
473 		}
474 		if ((mp1 = mp->b_cont) == 0)
475 			err = EINVAL;
476 		else if (ioc->ioc_cmd == SIOCSLIFNAME)
477 			err = ip_sioctl_slifname_arp(q, mp1->b_rptr);
478 		else if (ioc->ioc_cmd == IF_UNITSEL)
479 			err = ip_sioctl_ifunitsel_arp(q, (int *)mp1->b_rptr);
480 		if (err == 0)
481 			miocack(q, mp, 0, 0);
482 		else
483 			miocnak(q, mp, 0, err);
484 		return;
485 	default:
486 		DTRACE_PROBE4(arl__dlpi, char *, "arp_wput default",
487 		    char *, "default mblk", char *, "-",
488 		    arl_t *, (arl_t *)q->q_ptr);
489 		putnext(q, mp);
490 		return;
491 	}
492 }
493 
494 /*
495  * similar to ill_dlpi_pending(): verify that the received DLPI response
496  * matches the one that is pending for the arl.
497  */
498 static boolean_t
499 arl_dlpi_pending(arl_t *arl, t_uscalar_t prim)
500 {
501 	t_uscalar_t pending;
502 
503 	mutex_enter(&arl->arl_lock);
504 	if (arl->arl_dlpi_pending == prim) {
505 		mutex_exit(&arl->arl_lock);
506 		return (B_TRUE);
507 	}
508 
509 	if (arl->arl_state_flags & ARL_CONDEMNED) {
510 		mutex_exit(&arl->arl_lock);
511 		return (B_FALSE);
512 	}
513 	pending = arl->arl_dlpi_pending;
514 	mutex_exit(&arl->arl_lock);
515 
516 	if (pending == DL_PRIM_INVAL) {
517 		ip0dbg(("arl_dlpi_pending unsolicited ack for %s on %s",
518 		    dl_primstr(prim), arl->arl_name));
519 	} else {
520 		ip0dbg(("arl_dlpi_pending ack for %s on %s expect %s",
521 		    dl_primstr(prim), arl->arl_name, dl_primstr(pending)));
522 	}
523 	return (B_FALSE);
524 }
525 
526 /* DLPI messages, other than DL_UNITDATA_IND are handled here. */
527 static void
528 arp_rput_dlpi(queue_t *q, mblk_t *mp)
529 {
530 	arl_t		*arl = (arl_t *)q->q_ptr;
531 	union DL_primitives *dlp;
532 	t_uscalar_t	prim;
533 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
534 	ill_t		*ill;
535 
536 	if ((mp->b_wptr - mp->b_rptr) < sizeof (dlp->dl_primitive)) {
537 		putnext(q, mp);
538 		return;
539 	}
540 	dlp = (union DL_primitives *)mp->b_rptr;
541 	prim = dlp->dl_primitive;
542 
543 	/*
544 	 * If we received an ACK but didn't send a request for it, then it
545 	 * can't be part of any pending operation; discard up-front.
546 	 */
547 	switch (prim) {
548 	case DL_ERROR_ACK:
549 		/*
550 		 * ce is confused about how DLPI works, so we have to interpret
551 		 * an "error" on DL_NOTIFY_ACK (which we never could have sent)
552 		 * as really meaning an error on DL_NOTIFY_REQ.
553 		 *
554 		 * Note that supporting DL_NOTIFY_REQ is optional, so printing
555 		 * out an error message on the console isn't warranted except
556 		 * for debug.
557 		 */
558 		if (dlp->error_ack.dl_error_primitive == DL_NOTIFY_ACK ||
559 		    dlp->error_ack.dl_error_primitive == DL_NOTIFY_REQ) {
560 			reqprim = DL_NOTIFY_REQ;
561 		} else {
562 			reqprim = dlp->error_ack.dl_error_primitive;
563 		}
564 		break;
565 	case DL_INFO_ACK:
566 		reqprim = DL_INFO_REQ;
567 		break;
568 	case DL_OK_ACK:
569 		reqprim = dlp->ok_ack.dl_correct_primitive;
570 		break;
571 	case DL_BIND_ACK:
572 		reqprim = DL_BIND_REQ;
573 		break;
574 	default:
575 		DTRACE_PROBE2(rput_dl_badprim, arl_t *, arl,
576 		    union DL_primitives *, dlp);
577 		putnext(q, mp);
578 		return;
579 	}
580 	if (reqprim == DL_PRIM_INVAL || !arl_dlpi_pending(arl, reqprim)) {
581 		freemsg(mp);
582 		return;
583 	}
584 	DTRACE_PROBE4(arl__dlpi, char *, "arp_rput_dlpi received",
585 	    char *, dl_primstr(prim), char *, dl_primstr(reqprim),
586 	    arl_t *, arl);
587 
588 	ASSERT(prim != DL_NOTIFY_IND);
589 
590 	ill = arl_to_ill(arl);
591 
592 	switch (reqprim) {
593 	case DL_INFO_REQ:
594 		/*
595 		 * ill has not been set up yet for this case. This is the
596 		 * DL_INFO_ACK for the first DL_INFO_REQ sent from
597 		 * arp_modopen(). There should be no other arl_dlpi_deferred
598 		 * messages pending. We initialize the arl here.
599 		 */
600 		ASSERT(!arl->arl_dlpi_style_set);
601 		ASSERT(arl->arl_dlpi_pending == DL_INFO_REQ);
602 		ASSERT(arl->arl_dlpi_deferred == NULL);
603 		arl->arl_dlpi_pending = DL_PRIM_INVAL;
604 		arp_ll_set_defaults(arl, mp);
605 		freemsg(mp);
606 		return;
607 	case DL_UNBIND_REQ:
608 		mutex_enter(&arl->arl_lock);
609 		arl->arl_state_flags &= ~ARL_DL_UNBIND_IN_PROGRESS;
610 		/*
611 		 * This is not an error, so we don't set ARL_LL_DOWN
612 		 */
613 		arl->arl_state_flags &= ~ARL_LL_UP;
614 		arl->arl_state_flags |= ARL_LL_UNBOUND;
615 		if (arl->arl_state_flags & ARL_CONDEMNED) {
616 			/*
617 			 * if this is part of the unplumb the arl may
618 			 * vaporize any moment after we cv_signal the
619 			 * arl_cv so we reset arl_dlpi_pending here.
620 			 * All other cases (including replumb) will
621 			 * have the arl_dlpi_pending reset in
622 			 * arp_dlpi_done.
623 			 */
624 			arl->arl_dlpi_pending = DL_PRIM_INVAL;
625 		}
626 		cv_signal(&arl->arl_cv);
627 		mutex_exit(&arl->arl_lock);
628 		break;
629 	}
630 	if (ill != NULL) {
631 		/*
632 		 * ill ref obtained by arl_to_ill()  will be released
633 		 * by qwriter_ip()
634 		 */
635 		qwriter_ip(ill, ill->ill_wq, mp, arp_rput_dlpi_writer,
636 		    CUR_OP, B_TRUE);
637 		return;
638 	}
639 	freemsg(mp);
640 }
641 
642 /*
643  * Handling of DLPI messages that require exclusive access to the ipsq.
644  */
645 /* ARGSUSED */
646 static void
647 arp_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
648 {
649 	union DL_primitives *dlp = (union DL_primitives *)mp->b_rptr;
650 	ill_t		*ill = (ill_t *)q->q_ptr;
651 	arl_t		*arl = ill_to_arl(ill);
652 
653 	if (arl == NULL) {
654 		/*
655 		 * happens as a result arp_modclose triggering unbind.
656 		 * arp_rput_dlpi will cv_signal the arl_cv and the modclose
657 		 * will complete, but when it does ipsq_exit, the waiting
658 		 * qwriter_ip gets into the ipsq but will find the arl null.
659 		 * There should be no deferred messages in this case, so
660 		 * just complete and exit.
661 		 */
662 		arp_cmd_done(ill, 0, DL_UNBIND_REQ);
663 		freemsg(mp);
664 		return;
665 	}
666 	switch (dlp->dl_primitive) {
667 	case DL_ERROR_ACK:
668 		switch (dlp->error_ack.dl_error_primitive) {
669 		case DL_UNBIND_REQ:
670 			mutex_enter(&arl->arl_lock);
671 			arl->arl_state_flags &= ~ARL_DL_UNBIND_IN_PROGRESS;
672 			arl->arl_state_flags &= ~ARL_LL_UP;
673 			arl->arl_state_flags |= ARL_LL_UNBOUND;
674 			arl->arl_state_flags |= ARL_LL_DOWN;
675 			cv_signal(&arl->arl_cv);
676 			mutex_exit(&arl->arl_lock);
677 			break;
678 		case DL_BIND_REQ:
679 			mutex_enter(&arl->arl_lock);
680 			arl->arl_state_flags &= ~ARL_LL_UP;
681 			arl->arl_state_flags |= ARL_LL_DOWN;
682 			arl->arl_state_flags |= ARL_LL_UNBOUND;
683 			cv_signal(&arl->arl_cv);
684 			mutex_exit(&arl->arl_lock);
685 			break;
686 		case DL_ATTACH_REQ:
687 			break;
688 		default:
689 			/* If it's anything else, we didn't send it. */
690 			arl_refrele(arl);
691 			putnext(q, mp);
692 			return;
693 		}
694 		break;
695 	case DL_OK_ACK:
696 		DTRACE_PROBE4(arl__dlpi, char *, "arp_rput_dlpi_writer ok",
697 		    char *, dl_primstr(dlp->ok_ack.dl_correct_primitive),
698 		    char *, dl_primstr(dlp->ok_ack.dl_correct_primitive),
699 		    arl_t *, arl);
700 		mutex_enter(&arl->arl_lock);
701 		switch (dlp->ok_ack.dl_correct_primitive) {
702 		case DL_UNBIND_REQ:
703 		case DL_ATTACH_REQ:
704 			break;
705 		default:
706 			ip0dbg(("Dropping unrecognized DL_OK_ACK for %s",
707 			    dl_primstr(dlp->ok_ack.dl_correct_primitive)));
708 			mutex_exit(&arl->arl_lock);
709 			arl_refrele(arl);
710 			freemsg(mp);
711 			return;
712 		}
713 		mutex_exit(&arl->arl_lock);
714 		break;
715 	case DL_BIND_ACK:
716 		DTRACE_PROBE2(rput_dl_bind, arl_t *, arl,
717 		    dl_bind_ack_t *, &dlp->bind_ack);
718 
719 		mutex_enter(&arl->arl_lock);
720 		ASSERT(arl->arl_state_flags & ARL_LL_BIND_PENDING);
721 		arl->arl_state_flags &=
722 		    ~(ARL_LL_BIND_PENDING|ARL_LL_DOWN|ARL_LL_UNBOUND);
723 		arl->arl_state_flags |= ARL_LL_UP;
724 		mutex_exit(&arl->arl_lock);
725 		break;
726 	case DL_UDERROR_IND:
727 		DTRACE_PROBE2(rput_dl_uderror, arl_t *, arl,
728 		    dl_uderror_ind_t *, &dlp->uderror_ind);
729 		arl_refrele(arl);
730 		putnext(q, mp);
731 		return;
732 	default:
733 		DTRACE_PROBE2(rput_dl_badprim, arl_t *, arl,
734 		    union DL_primitives *, dlp);
735 		arl_refrele(arl);
736 		putnext(q, mp);
737 		return;
738 	}
739 	arp_dlpi_done(arl, ill);
740 	arl_refrele(arl);
741 	freemsg(mp);
742 }
743 
744 void
745 arp_rput(queue_t *q, mblk_t *mp)
746 {
747 	arl_t		*arl = q->q_ptr;
748 	boolean_t	need_refrele = B_FALSE;
749 
750 	mutex_enter(&arl->arl_lock);
751 	if (((arl->arl_state_flags &
752 	    (ARL_CONDEMNED | ARL_LL_REPLUMBING)) != 0)) {
753 		/*
754 		 * Only allow high priority DLPI messages during unplumb or
755 		 * replumb, and we don't take an arl_refcnt for that case.
756 		 */
757 		if (DB_TYPE(mp) != M_PCPROTO) {
758 			mutex_exit(&arl->arl_lock);
759 			freemsg(mp);
760 			return;
761 		}
762 	} else {
763 		arl_refhold_locked(arl);
764 		need_refrele = B_TRUE;
765 	}
766 	mutex_exit(&arl->arl_lock);
767 
768 	switch (DB_TYPE(mp)) {
769 	case M_PCPROTO:
770 	case M_PROTO: {
771 		ill_t *ill;
772 
773 		/*
774 		 * could be one of
775 		 * (i)   real message from the wire, (DLPI_DATA)
776 		 * (ii)  DLPI message
777 		 * Take a ref on the ill associated with this arl to
778 		 * prevent the ill from being unplumbed until this thread
779 		 * is done.
780 		 */
781 		if (IS_DLPI_DATA(mp)) {
782 			ill = arl_to_ill(arl);
783 			if (ill == NULL) {
784 				arp_drop_packet("No ill", mp, ill);
785 				break;
786 			}
787 			arp_process_packet(ill, mp);
788 			ill_refrele(ill);
789 			break;
790 		}
791 		/* Miscellaneous DLPI messages get shuffled off. */
792 		arp_rput_dlpi(q, mp);
793 		break;
794 	}
795 	case M_ERROR:
796 	case M_HANGUP:
797 		if (mp->b_rptr < mp->b_wptr)
798 			arl->arl_error = (int)(*mp->b_rptr & 0xFF);
799 		if (arl->arl_error == 0)
800 			arl->arl_error = ENXIO;
801 		freemsg(mp);
802 		break;
803 	default:
804 		ip1dbg(("arp_rput other db type %x\n", DB_TYPE(mp)));
805 		putnext(q, mp);
806 		break;
807 	}
808 	if (need_refrele)
809 		arl_refrele(arl);
810 }
811 
812 static void
813 arp_process_packet(ill_t *ill, mblk_t *mp)
814 {
815 	mblk_t 		*mp1;
816 	arh_t		*arh;
817 	in_addr_t	src_paddr, dst_paddr;
818 	uint32_t	hlen, plen;
819 	boolean_t	is_probe;
820 	int		op;
821 	ncec_t		*dst_ncec, *src_ncec = NULL;
822 	uchar_t		*src_haddr, *arhp, *dst_haddr, *dp, *sp;
823 	int		err;
824 	ip_stack_t	*ipst;
825 	boolean_t	need_ill_refrele = B_FALSE;
826 	nce_t		*nce;
827 	uchar_t		*src_lladdr;
828 	dl_unitdata_ind_t *dlui;
829 	ip_recv_attr_t	iras;
830 
831 	ASSERT(ill != NULL);
832 	if (ill->ill_flags & ILLF_NOARP) {
833 		arp_drop_packet("Interface does not support ARP", mp, ill);
834 		return;
835 	}
836 	ipst = ill->ill_ipst;
837 	/*
838 	 * What we should have at this point is a DL_UNITDATA_IND message
839 	 * followed by an ARP packet.  We do some initial checks and then
840 	 * get to work.
841 	 */
842 	dlui = (dl_unitdata_ind_t *)mp->b_rptr;
843 	if (dlui->dl_group_address == 1) {
844 		/*
845 		 * multicast or broadcast  packet. Only accept on the ipmp
846 		 * nominated interface for multicasts ('cast_ill').
847 		 * If we have no cast_ill we are liberal and accept everything.
848 		 */
849 		if (IS_UNDER_IPMP(ill)) {
850 			/* For an under ill_grp can change under lock */
851 			rw_enter(&ipst->ips_ill_g_lock, RW_READER);
852 			if (!ill->ill_nom_cast && ill->ill_grp != NULL &&
853 			    ill->ill_grp->ig_cast_ill != NULL) {
854 				rw_exit(&ipst->ips_ill_g_lock);
855 				arp_drop_packet("Interface is not nominated "
856 				    "for multicast sends and receives",
857 				    mp, ill);
858 				return;
859 			}
860 			rw_exit(&ipst->ips_ill_g_lock);
861 		}
862 	}
863 	mp1 = mp->b_cont;
864 	if (mp1 == NULL) {
865 		arp_drop_packet("Missing ARP packet", mp, ill);
866 		return;
867 	}
868 	if (mp1->b_cont != NULL) {
869 		/* No fooling around with funny messages. */
870 		if (!pullupmsg(mp1, -1)) {
871 			arp_drop_packet("Funny message: pullup failed",
872 			    mp, ill);
873 			return;
874 		}
875 	}
876 	arh = (arh_t *)mp1->b_rptr;
877 	hlen = arh->arh_hlen;
878 	plen = arh->arh_plen;
879 	if (MBLKL(mp1) < ARH_FIXED_LEN + 2 * hlen + 2 * plen) {
880 		arp_drop_packet("mblk len too small", mp, ill);
881 		return;
882 	}
883 	/*
884 	 * hlen 0 is used for RFC 1868 UnARP.
885 	 *
886 	 * Note that the rest of the code checks that hlen is what we expect
887 	 * for this hardware address type, so might as well discard packets
888 	 * here that don't match.
889 	 */
890 	if ((hlen > 0 && hlen != ill->ill_phys_addr_length) || plen == 0) {
891 		DTRACE_PROBE2(rput_bogus, ill_t *, ill, mblk_t *, mp1);
892 		arp_drop_packet("Bogus hlen or plen", mp, ill);
893 		return;
894 	}
895 	/*
896 	 * Historically, Solaris has been lenient about hardware type numbers.
897 	 * We should check here, but don't.
898 	 */
899 	DTRACE_PROBE3(arp__physical__in__start, ill_t *, ill, arh_t *, arh,
900 	    mblk_t *, mp);
901 	/*
902 	 * If ill is in an ipmp group, it will be the under ill. If we want
903 	 * to report the packet as coming up the IPMP interface, we should
904 	 * convert it to the ipmp ill.
905 	 */
906 	ARP_HOOK_IN(ipst->ips_arp_physical_in_event, ipst->ips_arp_physical_in,
907 	    ill->ill_phyint->phyint_ifindex, arh, mp, mp1, ipst);
908 	DTRACE_PROBE1(arp__physical__in__end, mblk_t *, mp);
909 	if (mp == NULL)
910 		return;
911 	arhp = (uchar_t *)arh + ARH_FIXED_LEN;
912 	src_haddr = arhp;			/* ar$sha */
913 	arhp += hlen;
914 	bcopy(arhp, &src_paddr, IP_ADDR_LEN);	/* ar$spa */
915 	sp = arhp;
916 	arhp += IP_ADDR_LEN;
917 	dst_haddr = arhp;			/* ar$dha */
918 	arhp += hlen;
919 	bcopy(arhp, &dst_paddr, IP_ADDR_LEN);	/* ar$tpa */
920 	dp = arhp;
921 	op = BE16_TO_U16(arh->arh_operation);
922 
923 	DTRACE_PROBE2(ip__arp__input, (in_addr_t), src_paddr,
924 	    (in_addr_t), dst_paddr);
925 
926 	/* Determine if this is just a probe */
927 	is_probe = (src_paddr == INADDR_ANY);
928 
929 	/*
930 	 * The following test for loopback is faster than
931 	 * IP_LOOPBACK_ADDR(), because it avoids any bitwise
932 	 * operations.
933 	 * Note that these addresses are always in network byte order
934 	 */
935 	if ((*(uint8_t *)&src_paddr) == IN_LOOPBACKNET ||
936 	    (*(uint8_t *)&dst_paddr) == IN_LOOPBACKNET ||
937 	    IN_MULTICAST(src_paddr) || IN_MULTICAST(dst_paddr)) {
938 		arp_drop_packet("Martian IP addr", mp, ill);
939 		return;
940 	}
941 
942 	/*
943 	 * ira_ill is the only field used down the arp_notify path.
944 	 */
945 	bzero(&iras, sizeof (iras));
946 	iras.ira_ill = iras.ira_rill = ill;
947 	/*
948 	 * RFC 826: first check if the <protocol, sender protocol address> is
949 	 * in the cache, if there is a sender protocol address.  Note that this
950 	 * step also handles resolutions based on source.
951 	 */
952 	/* Note: after here we need to freeb(mp) and freemsg(mp1) separately */
953 	mp->b_cont = NULL;
954 	if (is_probe) {
955 		err = AR_NOTFOUND;
956 	} else {
957 		if (plen != 4) {
958 			arp_drop_packet("bad protocol len", mp, ill);
959 			return;
960 		}
961 		err = ip_nce_resolve_all(ill, src_haddr, hlen, &src_paddr,
962 		    &src_ncec, op);
963 		switch (err) {
964 		case AR_BOGON:
965 			ASSERT(src_ncec != NULL);
966 			arp_notify(src_paddr, mp1, AR_CN_BOGON,
967 			    &iras, src_ncec);
968 			break;
969 		case AR_FAILED:
970 			arp_notify(src_paddr, mp1, AR_CN_FAILED, &iras,
971 			    src_ncec);
972 			break;
973 		case AR_LOOPBACK:
974 			DTRACE_PROBE2(rput_loopback, ill_t *, ill, arh_t *,
975 			    arh);
976 			freemsg(mp1);
977 			break;
978 		default:
979 			goto update;
980 		}
981 		freemsg(mp);
982 		if (src_ncec != NULL)
983 			ncec_refrele(src_ncec);
984 		return;
985 	}
986 update:
987 	/*
988 	 * Now look up the destination address.  By RFC 826, we ignore the
989 	 * packet at this step if the target isn't one of our addresses (i.e.,
990 	 * one we have been asked to PUBLISH).  This is true even if the
991 	 * target is something we're trying to resolve and the packet
992 	 * is a response.
993 	 */
994 	dst_ncec = ncec_lookup_illgrp_v4(ill, &dst_paddr);
995 	if (dst_ncec == NULL || !NCE_PUBLISH(dst_ncec)) {
996 		/*
997 		 * Let the client know if the source mapping has changed, even
998 		 * if the destination provides no useful information for the
999 		 * client.
1000 		 */
1001 		if (err == AR_CHANGED) {
1002 			arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras,
1003 			    NULL);
1004 			freemsg(mp);
1005 		} else {
1006 			freemsg(mp);
1007 			arp_drop_packet("Target is not interesting", mp1, ill);
1008 		}
1009 		if (dst_ncec != NULL)
1010 			ncec_refrele(dst_ncec);
1011 		if (src_ncec != NULL)
1012 			ncec_refrele(src_ncec);
1013 		return;
1014 	}
1015 
1016 	if (dst_ncec->ncec_flags & NCE_F_UNVERIFIED) {
1017 		/*
1018 		 * Check for a reflection.  Some misbehaving bridges will
1019 		 * reflect our own transmitted packets back to us.
1020 		 */
1021 		ASSERT(NCE_PUBLISH(dst_ncec));
1022 		if (hlen != dst_ncec->ncec_ill->ill_phys_addr_length) {
1023 			ncec_refrele(dst_ncec);
1024 			if (src_ncec != NULL)
1025 				ncec_refrele(src_ncec);
1026 			freemsg(mp);
1027 			arp_drop_packet("bad arh_len", mp1, ill);
1028 			return;
1029 		}
1030 		if (!nce_cmp_ll_addr(dst_ncec, src_haddr, hlen)) {
1031 			DTRACE_PROBE3(rput_probe_reflected, ill_t *, ill,
1032 			    arh_t *, arh, ncec_t *, dst_ncec);
1033 			ncec_refrele(dst_ncec);
1034 			if (src_ncec != NULL)
1035 				ncec_refrele(src_ncec);
1036 			freemsg(mp);
1037 			arp_drop_packet("Reflected probe", mp1, ill);
1038 			return;
1039 		}
1040 		/*
1041 		 * Responses targeting our HW address that are not responses to
1042 		 * our DAD probe must be ignored as they are related to requests
1043 		 * sent before DAD was restarted.
1044 		 */
1045 		if (op == ARP_RESPONSE &&
1046 		    (nce_cmp_ll_addr(dst_ncec, dst_haddr, hlen) == 0)) {
1047 			ncec_refrele(dst_ncec);
1048 			if (src_ncec != NULL)
1049 				ncec_refrele(src_ncec);
1050 			freemsg(mp);
1051 			arp_drop_packet(
1052 			    "Response to request that was sent before DAD",
1053 			    mp1, ill);
1054 			return;
1055 		}
1056 		/*
1057 		 * Responses targeted to HW addresses which are not ours but
1058 		 * sent to our unverified proto address are also conflicts.
1059 		 * These may be reported by a proxy rather than the interface
1060 		 * with the conflicting address, dst_paddr is in conflict
1061 		 * rather than src_paddr. To ensure IP can locate the correct
1062 		 * ipif to take down, it is necessary to copy dst_paddr to
1063 		 * the src_paddr field before sending it to IP. The same is
1064 		 * required for probes, where src_paddr will be INADDR_ANY.
1065 		 */
1066 		if (is_probe || op == ARP_RESPONSE) {
1067 			bcopy(dp, sp, plen);
1068 			arp_notify(src_paddr, mp1, AR_CN_FAILED, &iras,
1069 			    NULL);
1070 			ncec_delete(dst_ncec);
1071 		} else if (err == AR_CHANGED) {
1072 			arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras,
1073 			    NULL);
1074 		} else {
1075 			DTRACE_PROBE3(rput_request_unverified,
1076 			    ill_t *, ill, arh_t *, arh, ncec_t *, dst_ncec);
1077 			arp_drop_packet("Unverified request", mp1, ill);
1078 		}
1079 		freemsg(mp);
1080 		ncec_refrele(dst_ncec);
1081 		if (src_ncec != NULL)
1082 			ncec_refrele(src_ncec);
1083 		return;
1084 	}
1085 	/*
1086 	 * If it's a request, then we reply to this, and if we think the
1087 	 * sender's unknown, then we create an entry to avoid unnecessary ARPs.
1088 	 * The design assumption is that someone ARPing us is likely to send us
1089 	 * a packet soon, and that we'll want to reply to it.
1090 	 */
1091 	if (op == ARP_REQUEST) {
1092 		const uchar_t *nce_hwaddr;
1093 		struct in_addr nce_paddr;
1094 		clock_t now;
1095 		ill_t *under_ill = ill;
1096 		boolean_t send_unicast = B_TRUE;
1097 
1098 		ASSERT(NCE_PUBLISH(dst_ncec));
1099 
1100 		if ((dst_ncec->ncec_flags & (NCE_F_BCAST|NCE_F_MCAST)) != 0) {
1101 			/*
1102 			 * Ignore senders who are deliberately or accidentally
1103 			 * confused.
1104 			 */
1105 			goto bail;
1106 		}
1107 
1108 		if (!is_probe && err == AR_NOTFOUND) {
1109 			ASSERT(src_ncec == NULL);
1110 
1111 			if (IS_UNDER_IPMP(under_ill)) {
1112 				/*
1113 				 * create the ncec for the sender on ipmp_ill.
1114 				 * We pass in the ipmp_ill itself to avoid
1115 				 * creating an nce_t on the under_ill.
1116 				 */
1117 				ill = ipmp_ill_hold_ipmp_ill(under_ill);
1118 				if (ill == NULL)
1119 					ill = under_ill;
1120 				else
1121 					need_ill_refrele = B_TRUE;
1122 			}
1123 
1124 			err = nce_lookup_then_add_v4(ill, src_haddr, hlen,
1125 			    &src_paddr, 0, ND_STALE, &nce);
1126 
1127 			switch (err) {
1128 			case 0:
1129 			case EEXIST:
1130 				ip1dbg(("added ncec %p in state %d ill %s\n",
1131 				    (void *)src_ncec, src_ncec->ncec_state,
1132 				    ill->ill_name));
1133 				src_ncec = nce->nce_common;
1134 				break;
1135 			default:
1136 				/*
1137 				 * Either no memory, or the outgoing interface
1138 				 * is in the process of down/unplumb. In the
1139 				 * latter case, we will fail the send anyway,
1140 				 * and in the former case, we should try to send
1141 				 * the ARP response.
1142 				 */
1143 				src_lladdr = src_haddr;
1144 				goto send_response;
1145 			}
1146 			ncec_refhold(src_ncec);
1147 			nce_refrele(nce);
1148 			/* set up cleanup interval on ncec */
1149 		}
1150 
1151 		/*
1152 		 * This implements periodic address defense based on a modified
1153 		 * version of the RFC 3927 requirements.  Instead of sending a
1154 		 * broadcasted reply every time, as demanded by the RFC, we
1155 		 * send at most one broadcast reply per arp_broadcast_interval.
1156 		 */
1157 		now = ddi_get_lbolt();
1158 		if ((now - dst_ncec->ncec_last_time_defended) >
1159 		    MSEC_TO_TICK(ipst->ips_ipv4_dad_announce_interval)) {
1160 			dst_ncec->ncec_last_time_defended = now;
1161 			/*
1162 			 * If this is one of the long-suffering entries,
1163 			 * pull it out now.  It no longer needs separate
1164 			 * defense, because we're now doing that with this
1165 			 * broadcasted reply.
1166 			 */
1167 			dst_ncec->ncec_flags &= ~NCE_F_DELAYED;
1168 			send_unicast = B_FALSE;
1169 		}
1170 		if (src_ncec != NULL && send_unicast) {
1171 			src_lladdr = src_ncec->ncec_lladdr;
1172 		} else {
1173 			src_lladdr = under_ill->ill_bcast_mp->b_rptr +
1174 			    NCE_LL_ADDR_OFFSET(under_ill);
1175 		}
1176 send_response:
1177 		nce_hwaddr = dst_ncec->ncec_lladdr;
1178 		IN6_V4MAPPED_TO_INADDR(&dst_ncec->ncec_addr, &nce_paddr);
1179 
1180 		(void) arp_output(under_ill, ARP_RESPONSE,
1181 		    nce_hwaddr, (uchar_t *)&nce_paddr, src_haddr,
1182 		    (uchar_t *)&src_paddr, src_lladdr);
1183 	}
1184 bail:
1185 	if (dst_ncec != NULL) {
1186 		ncec_refrele(dst_ncec);
1187 	}
1188 	if (src_ncec != NULL) {
1189 		ncec_refrele(src_ncec);
1190 	}
1191 	if (err == AR_CHANGED) {
1192 		mp->b_cont = NULL;
1193 		arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras, NULL);
1194 		mp1 = NULL;
1195 	}
1196 	if (need_ill_refrele)
1197 		ill_refrele(ill);
1198 done:
1199 	freemsg(mp);
1200 	freemsg(mp1);
1201 }
1202 
1203 /*
1204  * Basic initialization of the arl_t and the arl_common structure shared with
1205  * the ill_t that is done after SLIFNAME/IF_UNITSEL.
1206  */
1207 static int
1208 arl_ill_init(arl_t *arl, char *ill_name)
1209 {
1210 	ill_t *ill;
1211 	arl_ill_common_t *ai;
1212 
1213 	ill = ill_lookup_on_name(ill_name, B_FALSE, B_FALSE, B_FALSE,
1214 	    arl->arl_ipst);
1215 
1216 	if (ill == NULL)
1217 		return (ENXIO);
1218 
1219 	/*
1220 	 * By the time we set up the arl, we expect the ETHERTYPE_IP
1221 	 * stream to be fully bound and attached. So we copy/verify
1222 	 * relevant information as possible from/against the ill.
1223 	 *
1224 	 * The following should have been set up in arp_ll_set_defaults()
1225 	 * after the first DL_INFO_ACK was received.
1226 	 */
1227 	ASSERT(arl->arl_phys_addr_length == ill->ill_phys_addr_length);
1228 	ASSERT(arl->arl_sap == ETHERTYPE_ARP);
1229 	ASSERT(arl->arl_mactype == ill->ill_mactype);
1230 	ASSERT(arl->arl_sap_length == ill->ill_sap_length);
1231 
1232 	ai =  kmem_zalloc(sizeof (*ai), KM_SLEEP);
1233 	mutex_enter(&ill->ill_lock);
1234 	/* First ensure that the ill is not CONDEMNED.  */
1235 	if (ill->ill_state_flags & ILL_CONDEMNED) {
1236 		mutex_exit(&ill->ill_lock);
1237 		ill_refrele(ill);
1238 		kmem_free(ai, sizeof (*ai));
1239 		return (ENXIO);
1240 	}
1241 	if (ill->ill_common != NULL || arl->arl_common != NULL) {
1242 		mutex_exit(&ill->ill_lock);
1243 		ip0dbg(("%s: PPA already exists", ill->ill_name));
1244 		ill_refrele(ill);
1245 		kmem_free(ai, sizeof (*ai));
1246 		return (EEXIST);
1247 	}
1248 	mutex_init(&ai->ai_lock, NULL, MUTEX_DEFAULT, NULL);
1249 	ai->ai_arl = arl;
1250 	ai->ai_ill = ill;
1251 	ill->ill_common = ai;
1252 	arl->arl_common = ai;
1253 	mutex_exit(&ill->ill_lock);
1254 	(void) strlcpy(arl->arl_name, ill->ill_name, LIFNAMSIZ);
1255 	arl->arl_name_length = ill->ill_name_length;
1256 	ill_refrele(ill);
1257 	arp_ifname_notify(arl);
1258 	return (0);
1259 }
1260 
1261 /* Allocate and do common initializations for DLPI messages. */
1262 static mblk_t *
1263 ip_ar_dlpi_comm(t_uscalar_t prim, size_t size)
1264 {
1265 	mblk_t  *mp;
1266 
1267 	if ((mp = allocb(size, BPRI_HI)) == NULL)
1268 		return (NULL);
1269 
1270 	/*
1271 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
1272 	 * of which we don't seem to use) are sent with M_PCPROTO, and
1273 	 * that other DLPI are M_PROTO.
1274 	 */
1275 	DB_TYPE(mp) = (prim == DL_INFO_REQ) ? M_PCPROTO : M_PROTO;
1276 
1277 	mp->b_wptr = mp->b_rptr + size;
1278 	bzero(mp->b_rptr, size);
1279 	DL_PRIM(mp) = prim;
1280 	return (mp);
1281 }
1282 
1283 
1284 int
1285 ip_sioctl_ifunitsel_arp(queue_t *q, int *ppa)
1286 {
1287 	arl_t *arl;
1288 	char *cp, ill_name[LIFNAMSIZ];
1289 
1290 	if (q->q_next == NULL)
1291 		return (EINVAL);
1292 
1293 	do {
1294 		q = q->q_next;
1295 	} while (q->q_next != NULL);
1296 	cp = q->q_qinfo->qi_minfo->mi_idname;
1297 
1298 	arl = (arl_t *)q->q_ptr;
1299 	(void) snprintf(ill_name, sizeof (ill_name), "%s%d", cp, *ppa);
1300 	arl->arl_ppa = *ppa;
1301 	return (arl_ill_init(arl, ill_name));
1302 }
1303 
1304 int
1305 ip_sioctl_slifname_arp(queue_t *q, void *lifreq)
1306 {
1307 	arl_t *arl;
1308 	struct lifreq *lifr = lifreq;
1309 
1310 	/* ioctl not valid when IP opened as a device */
1311 	if (q->q_next == NULL)
1312 		return (EINVAL);
1313 
1314 	arl = (arl_t *)q->q_ptr;
1315 	arl->arl_ppa = lifr->lifr_ppa;
1316 	return (arl_ill_init(arl, lifr->lifr_name));
1317 }
1318 
1319 arl_t *
1320 ill_to_arl(ill_t *ill)
1321 {
1322 	arl_ill_common_t *ai = ill->ill_common;
1323 	arl_t *arl = NULL;
1324 
1325 	if (ai == NULL)
1326 		return (NULL);
1327 	/*
1328 	 * Find the arl_t that corresponds to this ill_t from the shared
1329 	 * ill_common structure. We can safely access the ai here as it
1330 	 * will only be freed in arp_modclose() after we have become
1331 	 * single-threaded.
1332 	 */
1333 	mutex_enter(&ai->ai_lock);
1334 	if ((arl = ai->ai_arl) != NULL) {
1335 		mutex_enter(&arl->arl_lock);
1336 		if (!(arl->arl_state_flags & ARL_CONDEMNED)) {
1337 			arl_refhold_locked(arl);
1338 			mutex_exit(&arl->arl_lock);
1339 		} else {
1340 			mutex_exit(&arl->arl_lock);
1341 			arl = NULL;
1342 		}
1343 	}
1344 	mutex_exit(&ai->ai_lock);
1345 	return (arl);
1346 }
1347 
1348 ill_t *
1349 arl_to_ill(arl_t *arl)
1350 {
1351 	arl_ill_common_t *ai = arl->arl_common;
1352 	ill_t *ill = NULL;
1353 
1354 	if (ai == NULL) {
1355 		/*
1356 		 * happens when the arp stream is just being opened, and
1357 		 * arl_ill_init has not been executed yet.
1358 		 */
1359 		return (NULL);
1360 	}
1361 	/*
1362 	 * Find the ill_t that corresponds to this arl_t from the shared
1363 	 * arl_common structure. We can safely access the ai here as it
1364 	 * will only be freed in arp_modclose() after we have become
1365 	 * single-threaded.
1366 	 */
1367 	mutex_enter(&ai->ai_lock);
1368 	if ((ill = ai->ai_ill) != NULL) {
1369 		mutex_enter(&ill->ill_lock);
1370 		if (!ILL_IS_CONDEMNED(ill)) {
1371 			ill_refhold_locked(ill);
1372 			mutex_exit(&ill->ill_lock);
1373 		} else {
1374 			mutex_exit(&ill->ill_lock);
1375 			ill = NULL;
1376 		}
1377 	}
1378 	mutex_exit(&ai->ai_lock);
1379 	return (ill);
1380 }
1381 
1382 int
1383 arp_ll_up(ill_t *ill)
1384 {
1385 	mblk_t	*attach_mp = NULL;
1386 	mblk_t	*bind_mp = NULL;
1387 	mblk_t	*unbind_mp = NULL;
1388 	arl_t 	*arl;
1389 
1390 	ASSERT(IAM_WRITER_ILL(ill));
1391 	arl = ill_to_arl(ill);
1392 
1393 	DTRACE_PROBE2(ill__downup, char *, "arp_ll_up", ill_t *, ill);
1394 	if (arl == NULL)
1395 		return (ENXIO);
1396 	DTRACE_PROBE2(arl__downup, char *, "arp_ll_up", arl_t *, arl);
1397 	if ((arl->arl_state_flags & ARL_LL_UP) != 0) {
1398 		arl_refrele(arl);
1399 		return (0);
1400 	}
1401 	if (arl->arl_needs_attach) { /* DL_STYLE2 */
1402 		attach_mp =
1403 		    ip_ar_dlpi_comm(DL_ATTACH_REQ, sizeof (dl_attach_req_t));
1404 		if (attach_mp == NULL)
1405 			goto bad;
1406 		((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = arl->arl_ppa;
1407 	}
1408 
1409 	/* Allocate and initialize a bind message. */
1410 	bind_mp = ip_ar_dlpi_comm(DL_BIND_REQ, sizeof (dl_bind_req_t));
1411 	if (bind_mp == NULL)
1412 		goto bad;
1413 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ETHERTYPE_ARP;
1414 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
1415 
1416 	unbind_mp = ip_ar_dlpi_comm(DL_UNBIND_REQ, sizeof (dl_unbind_req_t));
1417 	if (unbind_mp == NULL)
1418 		goto bad;
1419 	if (arl->arl_needs_attach) {
1420 		arp_dlpi_send(arl, attach_mp);
1421 	}
1422 	arl->arl_unbind_mp = unbind_mp;
1423 
1424 	arl->arl_state_flags |= ARL_LL_BIND_PENDING;
1425 	arp_dlpi_send(arl, bind_mp);
1426 	arl_refrele(arl);
1427 	return (EINPROGRESS);
1428 
1429 bad:
1430 	freemsg(attach_mp);
1431 	freemsg(bind_mp);
1432 	freemsg(unbind_mp);
1433 	arl_refrele(arl);
1434 	return (ENOMEM);
1435 }
1436 
1437 /*
1438  * consumes/frees mp
1439  */
1440 static void
1441 arp_notify(in_addr_t src, mblk_t *mp, uint32_t arcn_code,
1442     ip_recv_attr_t *ira, ncec_t *ncec)
1443 {
1444 	char		hbuf[MAC_STR_LEN];
1445 	char		sbuf[INET_ADDRSTRLEN];
1446 	ill_t		*ill = ira->ira_ill;
1447 	ip_stack_t	*ipst = ill->ill_ipst;
1448 	arh_t		*arh = (arh_t *)mp->b_rptr;
1449 
1450 	switch (arcn_code) {
1451 	case AR_CN_BOGON:
1452 		/*
1453 		 * Someone is sending ARP packets with a source protocol
1454 		 * address that we have published and for which we believe our
1455 		 * entry is authoritative and verified to be unique on
1456 		 * the network.
1457 		 *
1458 		 * arp_process_packet() sends AR_CN_FAILED for the case when
1459 		 * a DAD probe is received and the hardware address of a
1460 		 * non-authoritative entry has changed. Thus, AR_CN_BOGON
1461 		 * indicates a real conflict, and we have to do resolution.
1462 		 *
1463 		 * We back away quickly from the address if it's from DHCP or
1464 		 * otherwise temporary and hasn't been used recently (or at
1465 		 * all).  We'd like to include "deprecated" addresses here as
1466 		 * well (as there's no real reason to defend something we're
1467 		 * discarding), but IPMP "reuses" this flag to mean something
1468 		 * other than the standard meaning.
1469 		 */
1470 		if (ip_nce_conflict(mp, ira, ncec)) {
1471 			(void) mac_colon_addr((uint8_t *)(arh + 1),
1472 			    arh->arh_hlen, hbuf, sizeof (hbuf));
1473 			(void) ip_dot_addr(src, sbuf);
1474 			cmn_err(CE_WARN,
1475 			    "proxy ARP problem?  Node '%s' is using %s on %s",
1476 			    hbuf, sbuf, ill->ill_name);
1477 			if (!arp_no_defense)
1478 				(void) arp_announce(ncec);
1479 			/*
1480 			 * ncec_last_time_defended has been adjusted in
1481 			 * ip_nce_conflict.
1482 			 */
1483 		} else {
1484 			ncec_delete(ncec);
1485 		}
1486 		freemsg(mp);
1487 		break;
1488 	case AR_CN_ANNOUNCE: {
1489 		nce_hw_map_t hwm;
1490 		/*
1491 		 * ARP gives us a copy of any packet where it thinks
1492 		 * the address has changed, so that we can update our
1493 		 * caches.  We're responsible for caching known answers
1494 		 * in the current design.  We check whether the
1495 		 * hardware address really has changed in all of our
1496 		 * entries that have cached this mapping, and if so, we
1497 		 * blow them away.  This way we will immediately pick
1498 		 * up the rare case of a host changing hardware
1499 		 * address.
1500 		 */
1501 		if (src == 0) {
1502 			freemsg(mp);
1503 			break;
1504 		}
1505 		hwm.hwm_addr = src;
1506 		hwm.hwm_hwlen = arh->arh_hlen;
1507 		hwm.hwm_hwaddr = (uchar_t *)(arh + 1);
1508 		hwm.hwm_flags = 0;
1509 		ncec_walk_common(ipst->ips_ndp4, NULL,
1510 		    (pfi_t)nce_update_hw_changed, &hwm, B_TRUE);
1511 		freemsg(mp);
1512 		break;
1513 	}
1514 	case AR_CN_FAILED:
1515 		if (arp_no_defense) {
1516 			(void) mac_colon_addr((uint8_t *)(arh + 1),
1517 			    arh->arh_hlen, hbuf, sizeof (hbuf));
1518 			(void) ip_dot_addr(src, sbuf);
1519 
1520 			cmn_err(CE_WARN,
1521 			    "node %s is using our IP address %s on %s",
1522 			    hbuf, sbuf, ill->ill_name);
1523 			freemsg(mp);
1524 			break;
1525 		}
1526 		/*
1527 		 * mp will be freed by arp_excl.
1528 		 */
1529 		ill_refhold(ill);
1530 		qwriter_ip(ill, ill->ill_rq, mp, arp_excl, NEW_OP, B_FALSE);
1531 		return;
1532 	default:
1533 		ASSERT(0);
1534 		freemsg(mp);
1535 		break;
1536 	}
1537 }
1538 
1539 /*
1540  * arp_output is called to transmit an ARP Request or Response. The mapping
1541  * to RFC 826 variables is:
1542  *   haddr1 == ar$sha
1543  *   paddr1 == ar$spa
1544  *   haddr2 == ar$tha
1545  *   paddr2 == ar$tpa
1546  * The ARP frame is sent to the ether_dst in dst_lladdr.
1547  */
1548 static int
1549 arp_output(ill_t *ill, uint32_t operation,
1550     const uchar_t *haddr1, const uchar_t *paddr1, const uchar_t *haddr2,
1551     const uchar_t *paddr2, uchar_t *dst_lladdr)
1552 {
1553 	arh_t	*arh;
1554 	uint8_t	*cp;
1555 	uint_t	hlen;
1556 	uint32_t plen = IPV4_ADDR_LEN; /* ar$pln from RFC 826 */
1557 	uint32_t proto = IP_ARP_PROTO_TYPE;
1558 	mblk_t *mp;
1559 	arl_t *arl;
1560 
1561 	ASSERT(dst_lladdr != NULL);
1562 	hlen = ill->ill_phys_addr_length; /* ar$hln from RFC 826 */
1563 	mp = ill_dlur_gen(dst_lladdr, hlen, ETHERTYPE_ARP, ill->ill_sap_length);
1564 
1565 	if (mp == NULL)
1566 		return (ENOMEM);
1567 
1568 	/* IFF_NOARP flag is set or link down: do not send arp messages */
1569 	if ((ill->ill_flags & ILLF_NOARP) || !ill->ill_dl_up) {
1570 		freemsg(mp);
1571 		return (ENXIO);
1572 	}
1573 
1574 	mp->b_cont = allocb(AR_LL_HDR_SLACK + ARH_FIXED_LEN + (hlen * 4) +
1575 	    plen + plen, BPRI_MED);
1576 	if (mp->b_cont == NULL) {
1577 		freeb(mp);
1578 		return (ENOMEM);
1579 	}
1580 
1581 	/* Fill in the ARP header. */
1582 	cp = mp->b_cont->b_rptr + (AR_LL_HDR_SLACK + hlen + hlen);
1583 	mp->b_cont->b_rptr = cp;
1584 	arh = (arh_t *)cp;
1585 	U16_TO_BE16(arp_hw_type(ill->ill_mactype), arh->arh_hardware);
1586 	U16_TO_BE16(proto, arh->arh_proto);
1587 	arh->arh_hlen = (uint8_t)hlen;
1588 	arh->arh_plen = (uint8_t)plen;
1589 	U16_TO_BE16(operation, arh->arh_operation);
1590 	cp += ARH_FIXED_LEN;
1591 	bcopy(haddr1, cp, hlen);
1592 	cp += hlen;
1593 	if (paddr1 == NULL)
1594 		bzero(cp, plen);
1595 	else
1596 		bcopy(paddr1, cp, plen);
1597 	cp += plen;
1598 	if (haddr2 == NULL)
1599 		bzero(cp, hlen);
1600 	else
1601 		bcopy(haddr2, cp, hlen);
1602 	cp += hlen;
1603 	bcopy(paddr2, cp, plen);
1604 	cp += plen;
1605 	mp->b_cont->b_wptr = cp;
1606 
1607 	DTRACE_PROBE3(arp__physical__out__start,
1608 	    ill_t *, ill, arh_t *, arh, mblk_t *, mp);
1609 	ARP_HOOK_OUT(ill->ill_ipst->ips_arp_physical_out_event,
1610 	    ill->ill_ipst->ips_arp_physical_out,
1611 	    ill->ill_phyint->phyint_ifindex, arh, mp, mp->b_cont,
1612 	    ill->ill_ipst);
1613 	DTRACE_PROBE1(arp__physical__out__end, mblk_t *, mp);
1614 	if (mp == NULL)
1615 		return (0);
1616 
1617 	/* Ship it out. */
1618 	arl = ill_to_arl(ill);
1619 	if (arl == NULL) {
1620 		freemsg(mp);
1621 		return (0);
1622 	}
1623 	if (canputnext(arl->arl_wq))
1624 		putnext(arl->arl_wq, mp);
1625 	else
1626 		freemsg(mp);
1627 	arl_refrele(arl);
1628 	return (0);
1629 }
1630 
1631 /*
1632  * Process resolve requests.
1633  * If we are not yet reachable then we check and decrease ncec_rcnt; otherwise
1634  * we leave it alone (the caller will check and manage ncec_pcnt in those
1635  * cases.)
1636  */
1637 int
1638 arp_request(ncec_t *ncec, in_addr_t sender, ill_t *ill)
1639 {
1640 	int err;
1641 	const uchar_t *target_hwaddr;
1642 	struct in_addr nce_paddr;
1643 	uchar_t *dst_lladdr;
1644 	boolean_t use_rcnt = !NCE_ISREACHABLE(ncec);
1645 
1646 	ASSERT(MUTEX_HELD(&ncec->ncec_lock));
1647 	ASSERT(!IS_IPMP(ill));
1648 
1649 	if (use_rcnt && ncec->ncec_rcnt == 0) {
1650 		/* not allowed any more retransmits. */
1651 		return (0);
1652 	}
1653 
1654 	if ((ill->ill_flags & ILLF_NOARP) != 0)
1655 		return (0);
1656 
1657 	IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &nce_paddr);
1658 
1659 	target_hwaddr =
1660 	    ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill);
1661 
1662 	if (NCE_ISREACHABLE(ncec)) {
1663 		dst_lladdr =  ncec->ncec_lladdr;
1664 	} else {
1665 		dst_lladdr =  ill->ill_bcast_mp->b_rptr +
1666 		    NCE_LL_ADDR_OFFSET(ill);
1667 	}
1668 
1669 	mutex_exit(&ncec->ncec_lock);
1670 	err = arp_output(ill, ARP_REQUEST,
1671 	    ill->ill_phys_addr, (uchar_t *)&sender, target_hwaddr,
1672 	    (uchar_t *)&nce_paddr, dst_lladdr);
1673 	mutex_enter(&ncec->ncec_lock);
1674 
1675 	if (err != 0) {
1676 		/*
1677 		 * Some transient error such as ENOMEM or a down link was
1678 		 * encountered. If the link has been taken down permanently,
1679 		 * the ncec will eventually be cleaned up (ipif_down_tail()
1680 		 * will call ipif_nce_down() and flush the ncec), to terminate
1681 		 * recurring attempts to send ARP requests. In all other cases,
1682 		 * allow the caller another chance at success next time.
1683 		 */
1684 		return (ncec->ncec_ill->ill_reachable_retrans_time);
1685 	}
1686 
1687 	if (use_rcnt)
1688 		ncec->ncec_rcnt--;
1689 
1690 	return (ncec->ncec_ill->ill_reachable_retrans_time);
1691 }
1692 
1693 /* return B_TRUE if dropped */
1694 boolean_t
1695 arp_announce(ncec_t *ncec)
1696 {
1697 	ill_t *ill;
1698 	int err;
1699 	uchar_t *sphys_addr, *bcast_addr;
1700 	struct in_addr ncec_addr;
1701 	boolean_t need_refrele = B_FALSE;
1702 
1703 	ASSERT((ncec->ncec_flags & NCE_F_BCAST) == 0);
1704 	ASSERT((ncec->ncec_flags & NCE_F_MCAST) == 0);
1705 
1706 	if (IS_IPMP(ncec->ncec_ill)) {
1707 		/* sent on the cast_ill */
1708 		ill = ipmp_ill_get_xmit_ill(ncec->ncec_ill, B_FALSE);
1709 		if (ill == NULL)
1710 			return (B_TRUE);
1711 		need_refrele = B_TRUE;
1712 	} else {
1713 		ill = ncec->ncec_ill;
1714 	}
1715 
1716 	/*
1717 	 * broadcast an announce to ill_bcast address.
1718 	 */
1719 	IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &ncec_addr);
1720 
1721 	sphys_addr = ncec->ncec_lladdr;
1722 	bcast_addr = ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill);
1723 
1724 	err = arp_output(ill, ARP_REQUEST,
1725 	    sphys_addr, (uchar_t *)&ncec_addr, bcast_addr,
1726 	    (uchar_t *)&ncec_addr, bcast_addr);
1727 
1728 	if (need_refrele)
1729 		ill_refrele(ill);
1730 	return (err != 0);
1731 }
1732 
1733 /* return B_TRUE if dropped */
1734 boolean_t
1735 arp_probe(ncec_t *ncec)
1736 {
1737 	ill_t *ill;
1738 	int err;
1739 	struct in_addr ncec_addr;
1740 	uchar_t *sphys_addr, *dst_lladdr;
1741 
1742 	if (IS_IPMP(ncec->ncec_ill)) {
1743 		ill = ipmp_ill_get_xmit_ill(ncec->ncec_ill, B_FALSE);
1744 		if (ill == NULL)
1745 			return (B_TRUE);
1746 	} else {
1747 		ill = ncec->ncec_ill;
1748 	}
1749 
1750 	IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &ncec_addr);
1751 
1752 	sphys_addr = ncec->ncec_lladdr;
1753 	dst_lladdr = ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill);
1754 	err = arp_output(ill, ARP_REQUEST,
1755 	    sphys_addr, NULL, NULL, (uchar_t *)&ncec_addr, dst_lladdr);
1756 
1757 	if (IS_IPMP(ncec->ncec_ill))
1758 		ill_refrele(ill);
1759 	return (err != 0);
1760 }
1761 
1762 static mblk_t *
1763 arl_unbind(arl_t *arl)
1764 {
1765 	mblk_t *mp;
1766 
1767 	if ((mp = arl->arl_unbind_mp) != NULL) {
1768 		arl->arl_unbind_mp = NULL;
1769 		arl->arl_state_flags |= ARL_DL_UNBIND_IN_PROGRESS;
1770 	}
1771 	return (mp);
1772 }
1773 
1774 int
1775 arp_ll_down(ill_t *ill)
1776 {
1777 	arl_t 	*arl;
1778 	mblk_t *unbind_mp;
1779 	int err = 0;
1780 	boolean_t replumb = (ill->ill_replumbing == 1);
1781 
1782 	DTRACE_PROBE2(ill__downup, char *, "arp_ll_down", ill_t *, ill);
1783 	if ((arl = ill_to_arl(ill)) == NULL)
1784 		return (ENXIO);
1785 	DTRACE_PROBE2(arl__downup, char *, "arp_ll_down", arl_t *, arl);
1786 	mutex_enter(&arl->arl_lock);
1787 	unbind_mp = arl_unbind(arl);
1788 	if (unbind_mp != NULL) {
1789 		ASSERT(arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS);
1790 		DTRACE_PROBE2(arp__unbinding, mblk_t *, unbind_mp,
1791 		    arl_t *, arl);
1792 		err = EINPROGRESS;
1793 		if (replumb)
1794 			arl->arl_state_flags |= ARL_LL_REPLUMBING;
1795 	}
1796 	mutex_exit(&arl->arl_lock);
1797 	if (unbind_mp != NULL)
1798 		arp_dlpi_send(arl, unbind_mp);
1799 	arl_refrele(arl);
1800 	return (err);
1801 }
1802 
1803 /* ARGSUSED */
1804 int
1805 arp_close(queue_t *q, int flags)
1806 {
1807 	if (WR(q)->q_next != NULL) {
1808 		/* This is a module close */
1809 		return (arp_modclose(q->q_ptr));
1810 	}
1811 	qprocsoff(q);
1812 	q->q_ptr = WR(q)->q_ptr = NULL;
1813 	return (0);
1814 }
1815 
1816 static int
1817 arp_modclose(arl_t *arl)
1818 {
1819 	arl_ill_common_t *ai = arl->arl_common;
1820 	ill_t		*ill;
1821 	queue_t		*q = arl->arl_rq;
1822 	mblk_t		*mp, *nextmp;
1823 	ipsq_t		*ipsq = NULL;
1824 
1825 	ill = arl_to_ill(arl);
1826 	if (ill != NULL) {
1827 		if (!ill_waiter_inc(ill)) {
1828 			ill_refrele(ill);
1829 		} else {
1830 			ill_refrele(ill);
1831 			if (ipsq_enter(ill, B_FALSE, NEW_OP))
1832 				ipsq = ill->ill_phyint->phyint_ipsq;
1833 			ill_waiter_dcr(ill);
1834 		}
1835 		if (ipsq == NULL) {
1836 			/*
1837 			 * could not enter the ipsq because ill is already
1838 			 * marked CONDEMNED.
1839 			 */
1840 			ill = NULL;
1841 		}
1842 	}
1843 	if (ai != NULL && ipsq == NULL) {
1844 		/*
1845 		 * Either we did not get an ill because it was marked CONDEMNED
1846 		 * or we could not enter the ipsq because it was unplumbing.
1847 		 * In both cases, wait for the ill to complete ip_modclose().
1848 		 *
1849 		 * If the arp_modclose happened even before SLIFNAME, the ai
1850 		 * itself would be NULL, in which case we can complete the close
1851 		 * without waiting.
1852 		 */
1853 		mutex_enter(&ai->ai_lock);
1854 		while (ai->ai_ill != NULL)
1855 			cv_wait(&ai->ai_ill_unplumb_done, &ai->ai_lock);
1856 		mutex_exit(&ai->ai_lock);
1857 	}
1858 	ASSERT(ill == NULL || IAM_WRITER_ILL(ill));
1859 
1860 	mutex_enter(&arl->arl_lock);
1861 	/*
1862 	 * If the ill had completed unplumbing before arp_modclose(), there
1863 	 * would be no ill (and therefore, no ipsq) to serialize arp_modclose()
1864 	 * so that we need to explicitly check for ARL_CONDEMNED and back off
1865 	 * if it is set.
1866 	 */
1867 	if ((arl->arl_state_flags & ARL_CONDEMNED) != 0) {
1868 		mutex_exit(&arl->arl_lock);
1869 		ASSERT(ipsq == NULL);
1870 		return (0);
1871 	}
1872 	arl->arl_state_flags |= ARL_CONDEMNED;
1873 
1874 	/*
1875 	 * send out all pending dlpi messages, don't wait for the ack (which
1876 	 * will be ignored in arp_rput when CONDEMNED is set)
1877 	 *
1878 	 * We have to check for pending DL_UNBIND_REQ because, in the case
1879 	 * that ip_modclose() executed before arp_modclose(), the call to
1880 	 * ill_delete_tail->ipif_arp_down() would have triggered a
1881 	 * DL_UNBIND_REQ. When arp_modclose() executes ipsq_enter() will fail
1882 	 * (since ip_modclose() is in the ipsq) but the DL_UNBIND_ACK may not
1883 	 * have been processed yet. In this scenario, we cannot reset
1884 	 * arl_dlpi_pending, because the setting/clearing of arl_state_flags
1885 	 * related to unbind, and the associated cv_waits must be allowed to
1886 	 * continue.
1887 	 */
1888 	if (arl->arl_dlpi_pending != DL_UNBIND_REQ)
1889 		arl->arl_dlpi_pending = DL_PRIM_INVAL;
1890 	mp = arl->arl_dlpi_deferred;
1891 	arl->arl_dlpi_deferred = NULL;
1892 	mutex_exit(&arl->arl_lock);
1893 
1894 	for (; mp != NULL; mp = nextmp) {
1895 		nextmp = mp->b_next;
1896 		mp->b_next = NULL;
1897 		putnext(arl->arl_wq, mp);
1898 	}
1899 
1900 	/* Wait for data paths to quiesce */
1901 	mutex_enter(&arl->arl_lock);
1902 	while (arl->arl_refcnt != 0)
1903 		cv_wait(&arl->arl_cv, &arl->arl_lock);
1904 
1905 	/*
1906 	 * unbind, so that nothing else can come up from driver.
1907 	 */
1908 	mp = arl_unbind(arl);
1909 	mutex_exit(&arl->arl_lock);
1910 	if (mp != NULL)
1911 		arp_dlpi_send(arl, mp);
1912 	mutex_enter(&arl->arl_lock);
1913 
1914 	/* wait for unbind ack  */
1915 	while (arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS)
1916 		cv_wait(&arl->arl_cv, &arl->arl_lock);
1917 	mutex_exit(&arl->arl_lock);
1918 
1919 	qprocsoff(q);
1920 
1921 	if (ill != NULL) {
1922 		mutex_enter(&ill->ill_lock);
1923 		ill->ill_arl_dlpi_pending = 0;
1924 		mutex_exit(&ill->ill_lock);
1925 	}
1926 
1927 	if (ai != NULL) {
1928 		mutex_enter(&ai->ai_lock);
1929 		ai->ai_arl = NULL;
1930 		if (ai->ai_ill == NULL) {
1931 			mutex_destroy(&ai->ai_lock);
1932 			kmem_free(ai, sizeof (*ai));
1933 		} else {
1934 			mutex_exit(&ai->ai_lock);
1935 		}
1936 	}
1937 
1938 	/* free up the rest */
1939 	arp_mod_close_tail(arl);
1940 
1941 	q->q_ptr = WR(q)->q_ptr = NULL;
1942 
1943 	if (ipsq != NULL)
1944 		ipsq_exit(ipsq);
1945 
1946 	return (0);
1947 }
1948 
1949 static void
1950 arp_mod_close_tail(arl_t *arl)
1951 {
1952 	ip_stack_t	*ipst = arl->arl_ipst;
1953 	mblk_t		**mpp;
1954 
1955 	netstack_hold(ipst->ips_netstack);
1956 
1957 	mutex_enter(&ipst->ips_ip_mi_lock);
1958 	mi_close_unlink(&ipst->ips_arp_g_head, (IDP)arl);
1959 	mutex_exit(&ipst->ips_ip_mi_lock);
1960 
1961 	/*
1962 	 * credp could be null if the open didn't succeed and ip_modopen
1963 	 * itself calls ip_close.
1964 	 */
1965 	if (arl->arl_credp != NULL)
1966 		crfree(arl->arl_credp);
1967 
1968 	/* Free all retained control messages. */
1969 	mpp = &arl->arl_first_mp_to_free;
1970 	do {
1971 		while (mpp[0]) {
1972 			mblk_t  *mp;
1973 			mblk_t  *mp1;
1974 
1975 			mp = mpp[0];
1976 			mpp[0] = mp->b_next;
1977 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
1978 				mp1->b_next = NULL;
1979 				mp1->b_prev = NULL;
1980 			}
1981 			freemsg(mp);
1982 		}
1983 	} while (mpp++ != &arl->arl_last_mp_to_free);
1984 
1985 	netstack_rele(ipst->ips_netstack);
1986 	mi_free(arl->arl_name);
1987 	mi_close_free((IDP)arl);
1988 }
1989 
1990 /*
1991  * DAD failed. Tear down ipifs with the specified srce address. Note that
1992  * tearing down the ipif also meas deleting the ncec through ipif_down,
1993  * so it is not possible to use nce_timer for recovery. Instead we start
1994  * a timer on the ipif. Caller has to free the mp.
1995  */
1996 void
1997 arp_failure(mblk_t *mp, ip_recv_attr_t *ira)
1998 {
1999 	ill_t *ill = ira->ira_ill;
2000 
2001 	if ((mp = copymsg(mp)) != NULL) {
2002 		ill_refhold(ill);
2003 		qwriter_ip(ill, ill->ill_rq, mp, arp_excl, NEW_OP, B_FALSE);
2004 	}
2005 }
2006 
2007 /*
2008  * This is for exclusive changes due to ARP.  Tear down an interface due
2009  * to AR_CN_FAILED and AR_CN_BOGON.
2010  */
2011 /* ARGSUSED */
2012 static void
2013 arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
2014 {
2015 	ill_t	*ill = rq->q_ptr;
2016 	arh_t *arh;
2017 	ipaddr_t src;
2018 	ipif_t	*ipif;
2019 	ip_stack_t *ipst = ill->ill_ipst;
2020 	uchar_t	*haddr;
2021 	uint_t	haddrlen;
2022 
2023 	/* first try src = ar$spa */
2024 	arh = (arh_t *)mp->b_rptr;
2025 	bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
2026 
2027 	haddrlen = arh->arh_hlen;
2028 	haddr = (uint8_t *)(arh + 1);
2029 
2030 	if (haddrlen == ill->ill_phys_addr_length) {
2031 		/*
2032 		 * Ignore conflicts generated by misbehaving switches that
2033 		 * just reflect our own messages back to us.  For IPMP, we may
2034 		 * see reflections across any ill in the illgrp.
2035 		 */
2036 		/* For an under ill_grp can change under lock */
2037 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2038 		if (bcmp(haddr, ill->ill_phys_addr, haddrlen) == 0 ||
2039 		    IS_UNDER_IPMP(ill) && ill->ill_grp != NULL &&
2040 		    ipmp_illgrp_find_ill(ill->ill_grp, haddr,
2041 		    haddrlen) != NULL) {
2042 			rw_exit(&ipst->ips_ill_g_lock);
2043 			goto ignore_conflict;
2044 		}
2045 		rw_exit(&ipst->ips_ill_g_lock);
2046 	}
2047 
2048 	/*
2049 	 * Look up the appropriate ipif.
2050 	 */
2051 	ipif = ipif_lookup_addr(src, ill, ALL_ZONES, ipst);
2052 	if (ipif == NULL)
2053 		goto ignore_conflict;
2054 
2055 	/* Reload the ill to match the ipif */
2056 	ill = ipif->ipif_ill;
2057 
2058 	/* If it's already duplicate or ineligible, then don't do anything. */
2059 	if (ipif->ipif_flags & (IPIF_POINTOPOINT|IPIF_DUPLICATE)) {
2060 		ipif_refrele(ipif);
2061 		goto ignore_conflict;
2062 	}
2063 
2064 	/*
2065 	 * If we failed on a recovery probe, then restart the timer to
2066 	 * try again later.
2067 	 */
2068 	if (!ipif->ipif_was_dup) {
2069 		char hbuf[MAC_STR_LEN];
2070 		char sbuf[INET_ADDRSTRLEN];
2071 		char ibuf[LIFNAMSIZ];
2072 
2073 		(void) mac_colon_addr(haddr, haddrlen, hbuf, sizeof (hbuf));
2074 		(void) ip_dot_addr(src, sbuf);
2075 		ipif_get_name(ipif, ibuf, sizeof (ibuf));
2076 
2077 		cmn_err(CE_WARN, "%s has duplicate address %s (in use by %s);"
2078 		    " disabled", ibuf, sbuf, hbuf);
2079 	}
2080 	mutex_enter(&ill->ill_lock);
2081 	ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
2082 	ipif->ipif_flags |= IPIF_DUPLICATE;
2083 	ill->ill_ipif_dup_count++;
2084 	mutex_exit(&ill->ill_lock);
2085 	(void) ipif_down(ipif, NULL, NULL);
2086 	(void) ipif_down_tail(ipif);
2087 	mutex_enter(&ill->ill_lock);
2088 	if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
2089 	    ill->ill_net_type == IRE_IF_RESOLVER &&
2090 	    !(ipif->ipif_state_flags & IPIF_CONDEMNED) &&
2091 	    ipst->ips_ip_dup_recovery > 0) {
2092 		ASSERT(ipif->ipif_recovery_id == 0);
2093 		ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
2094 		    ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
2095 	}
2096 	mutex_exit(&ill->ill_lock);
2097 	ipif_refrele(ipif);
2098 
2099 ignore_conflict:
2100 	freemsg(mp);
2101 }
2102 
2103 /*
2104  * This is a place for a dtrace hook.
2105  * Note that mp can be either the DL_UNITDATA_IND with a b_cont payload,
2106  * or just the ARP packet payload as an M_DATA.
2107  */
2108 /* ARGSUSED */
2109 static void
2110 arp_drop_packet(const char *str, mblk_t *mp, ill_t *ill)
2111 {
2112 	freemsg(mp);
2113 }
2114 
2115 static boolean_t
2116 arp_over_driver(queue_t *q)
2117 {
2118 	queue_t *qnext = STREAM(q)->sd_wrq->q_next;
2119 
2120 	/*
2121 	 * check if first module below stream head is IP or UDP.
2122 	 */
2123 	ASSERT(qnext != NULL);
2124 	if (strcmp(Q2NAME(qnext), "ip") != 0 &&
2125 	    strcmp(Q2NAME(qnext), "udp") != 0) {
2126 		/*
2127 		 * module below is not ip or udp, so arp has been pushed
2128 		 * on the driver.
2129 		 */
2130 		return (B_TRUE);
2131 	}
2132 	return (B_FALSE);
2133 }
2134 
2135 static int
2136 arp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2137 {
2138 	int err;
2139 
2140 	ASSERT(sflag & MODOPEN);
2141 	if (!arp_over_driver(q)) {
2142 		q->q_qinfo = dummymodinfo.st_rdinit;
2143 		WR(q)->q_qinfo = dummymodinfo.st_wrinit;
2144 		return ((*dummymodinfo.st_rdinit->qi_qopen)(q, devp, flag,
2145 		    sflag, credp));
2146 	}
2147 	err = arp_modopen(q, devp, flag, sflag, credp);
2148 	return (err);
2149 }
2150 
2151 /*
2152  * In most cases we must be a writer on the IP stream before coming to
2153  * arp_dlpi_send(), to serialize DLPI sends to the driver. The exceptions
2154  * when we are not a writer are very early duing initialization (in
2155  * arl_init, before the arl has done a SLIFNAME, so that we don't yet know
2156  * the associated ill) or during arp_mod_close, when we could not enter the
2157  * ipsq because the ill has already unplumbed.
2158  */
2159 static void
2160 arp_dlpi_send(arl_t *arl, mblk_t *mp)
2161 {
2162 	mblk_t **mpp;
2163 	t_uscalar_t prim;
2164 	arl_ill_common_t *ai;
2165 
2166 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
2167 
2168 #ifdef DEBUG
2169 	ai = arl->arl_common;
2170 	if (ai != NULL) {
2171 		mutex_enter(&ai->ai_lock);
2172 		if (ai->ai_ill != NULL)
2173 			ASSERT(IAM_WRITER_ILL(ai->ai_ill));
2174 		mutex_exit(&ai->ai_lock);
2175 	}
2176 #endif /* DEBUG */
2177 
2178 	mutex_enter(&arl->arl_lock);
2179 	if (arl->arl_dlpi_pending != DL_PRIM_INVAL) {
2180 		/* Must queue message. Tail insertion */
2181 		mpp = &arl->arl_dlpi_deferred;
2182 		while (*mpp != NULL)
2183 			mpp = &((*mpp)->b_next);
2184 
2185 		*mpp = mp;
2186 		mutex_exit(&arl->arl_lock);
2187 		return;
2188 	}
2189 	mutex_exit(&arl->arl_lock);
2190 	if ((prim = ((union DL_primitives *)mp->b_rptr)->dl_primitive)
2191 	    == DL_BIND_REQ) {
2192 		ASSERT((arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS) == 0);
2193 	}
2194 	/*
2195 	 * No need to take the arl_lock to examine ARL_CONDEMNED at this point
2196 	 * because the only thread that can see ARL_CONDEMNED here is the
2197 	 * closing arp_modclose() thread which sets the flag after becoming a
2198 	 * writer on the ipsq. Threads from IP must have finished and
2199 	 * cannot be active now.
2200 	 */
2201 	if (!(arl->arl_state_flags & ARL_CONDEMNED) ||
2202 	    (prim == DL_UNBIND_REQ)) {
2203 		if (prim != DL_NOTIFY_CONF) {
2204 			ill_t *ill = arl_to_ill(arl);
2205 
2206 			arl->arl_dlpi_pending = prim;
2207 			if (ill != NULL) {
2208 				mutex_enter(&ill->ill_lock);
2209 				ill->ill_arl_dlpi_pending = 1;
2210 				mutex_exit(&ill->ill_lock);
2211 				ill_refrele(ill);
2212 			}
2213 		}
2214 	}
2215 	DTRACE_PROBE4(arl__dlpi, char *, "arp_dlpi_send",
2216 	    char *, dl_primstr(prim), char *, "-",  arl_t *, arl);
2217 	putnext(arl->arl_wq, mp);
2218 }
2219 
2220 static void
2221 arl_defaults_common(arl_t *arl, mblk_t *mp)
2222 {
2223 	dl_info_ack_t	*dlia = (dl_info_ack_t *)mp->b_rptr;
2224 	/*
2225 	 * Till the ill is fully up  the ill is not globally visible.
2226 	 * So no need for a lock.
2227 	 */
2228 	arl->arl_mactype = dlia->dl_mac_type;
2229 	arl->arl_sap_length = dlia->dl_sap_length;
2230 
2231 	if (!arl->arl_dlpi_style_set) {
2232 		if (dlia->dl_provider_style == DL_STYLE2)
2233 			arl->arl_needs_attach = 1;
2234 		mutex_enter(&arl->arl_lock);
2235 		ASSERT(arl->arl_dlpi_style_set == 0);
2236 		arl->arl_dlpi_style_set = 1;
2237 		arl->arl_state_flags &= ~ARL_LL_SUBNET_PENDING;
2238 		cv_broadcast(&arl->arl_cv);
2239 		mutex_exit(&arl->arl_lock);
2240 	}
2241 }
2242 
2243 int
2244 arl_init(queue_t *q, arl_t *arl)
2245 {
2246 	mblk_t *info_mp;
2247 	dl_info_req_t   *dlir;
2248 
2249 	/* subset of ill_init */
2250 	mutex_init(&arl->arl_lock, NULL, MUTEX_DEFAULT, 0);
2251 
2252 	arl->arl_rq = q;
2253 	arl->arl_wq = WR(q);
2254 
2255 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
2256 	    BPRI_HI);
2257 	if (info_mp == NULL)
2258 		return (ENOMEM);
2259 	/*
2260 	 * allocate sufficient space to contain device name.
2261 	 */
2262 	arl->arl_name = (char *)(mi_zalloc(2 * LIFNAMSIZ));
2263 	arl->arl_ppa = UINT_MAX;
2264 	arl->arl_state_flags |= (ARL_LL_SUBNET_PENDING | ARL_LL_UNBOUND);
2265 
2266 	/* Send down the Info Request to the driver. */
2267 	info_mp->b_datap->db_type = M_PCPROTO;
2268 	dlir = (dl_info_req_t *)info_mp->b_rptr;
2269 	info_mp->b_wptr = (uchar_t *)&dlir[1];
2270 	dlir->dl_primitive = DL_INFO_REQ;
2271 	arl->arl_dlpi_pending = DL_PRIM_INVAL;
2272 	qprocson(q);
2273 
2274 	arp_dlpi_send(arl, info_mp);
2275 	return (0);
2276 }
2277 
2278 int
2279 arl_wait_for_info_ack(arl_t *arl)
2280 {
2281 	int err;
2282 
2283 	mutex_enter(&arl->arl_lock);
2284 	while (arl->arl_state_flags & ARL_LL_SUBNET_PENDING) {
2285 		/*
2286 		 * Return value of 0 indicates a pending signal.
2287 		 */
2288 		err = cv_wait_sig(&arl->arl_cv, &arl->arl_lock);
2289 		if (err == 0) {
2290 			mutex_exit(&arl->arl_lock);
2291 			return (EINTR);
2292 		}
2293 	}
2294 	mutex_exit(&arl->arl_lock);
2295 	/*
2296 	 * ip_rput_other could have set an error  in ill_error on
2297 	 * receipt of M_ERROR.
2298 	 */
2299 	return (arl->arl_error);
2300 }
2301 
2302 void
2303 arl_set_muxid(ill_t *ill, int muxid)
2304 {
2305 	arl_t *arl;
2306 
2307 	arl = ill_to_arl(ill);
2308 	if (arl != NULL) {
2309 		arl->arl_muxid = muxid;
2310 		arl_refrele(arl);
2311 	}
2312 }
2313 
2314 int
2315 arl_get_muxid(ill_t *ill)
2316 {
2317 	arl_t *arl;
2318 	int muxid = 0;
2319 
2320 	arl = ill_to_arl(ill);
2321 	if (arl != NULL) {
2322 		muxid = arl->arl_muxid;
2323 		arl_refrele(arl);
2324 	}
2325 	return (muxid);
2326 }
2327 
2328 static int
2329 arp_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2330 {
2331 	int	err;
2332 	zoneid_t zoneid;
2333 	netstack_t *ns;
2334 	ip_stack_t *ipst;
2335 	arl_t	*arl = NULL;
2336 
2337 	/*
2338 	 * Prevent unprivileged processes from pushing IP so that
2339 	 * they can't send raw IP.
2340 	 */
2341 	if (secpolicy_net_rawaccess(credp) != 0)
2342 		return (EPERM);
2343 
2344 	ns = netstack_find_by_cred(credp);
2345 	ASSERT(ns != NULL);
2346 	ipst = ns->netstack_ip;
2347 	ASSERT(ipst != NULL);
2348 
2349 	/*
2350 	 * For exclusive stacks we set the zoneid to zero
2351 	 * to make IP operate as if in the global zone.
2352 	 */
2353 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
2354 		zoneid = GLOBAL_ZONEID;
2355 	else
2356 		zoneid = crgetzoneid(credp);
2357 
2358 	arl = (arl_t *)mi_open_alloc_sleep(sizeof (arl_t));
2359 	q->q_ptr = WR(q)->q_ptr = arl;
2360 	arl->arl_ipst = ipst;
2361 	arl->arl_zoneid = zoneid;
2362 	err = arl_init(q, arl);
2363 
2364 	if (err != 0) {
2365 		mi_free(arl->arl_name);
2366 		mi_free(arl);
2367 		netstack_rele(ipst->ips_netstack);
2368 		q->q_ptr = NULL;
2369 		WR(q)->q_ptr = NULL;
2370 		return (err);
2371 	}
2372 
2373 	/*
2374 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
2375 	 */
2376 	err = arl_wait_for_info_ack(arl);
2377 	if (err == 0)
2378 		arl->arl_credp = credp;
2379 	else
2380 		goto fail;
2381 
2382 	crhold(credp);
2383 
2384 	mutex_enter(&ipst->ips_ip_mi_lock);
2385 	err = mi_open_link(&ipst->ips_arp_g_head, (IDP)q->q_ptr, devp, flag,
2386 	    sflag, credp);
2387 	mutex_exit(&ipst->ips_ip_mi_lock);
2388 fail:
2389 	if (err) {
2390 		(void) arp_close(q, 0);
2391 		return (err);
2392 	}
2393 	return (0);
2394 }
2395 
2396 /*
2397  * Notify any downstream modules (esp softmac and hitbox) of the name
2398  * of this interface using an M_CTL.
2399  */
2400 static void
2401 arp_ifname_notify(arl_t *arl)
2402 {
2403 	mblk_t *mp1, *mp2;
2404 	struct iocblk *iocp;
2405 	struct lifreq *lifr;
2406 
2407 	if ((mp1 = mkiocb(SIOCSLIFNAME)) == NULL)
2408 		return;
2409 	if ((mp2 = allocb(sizeof (struct lifreq), BPRI_HI)) == NULL) {
2410 		freemsg(mp1);
2411 		return;
2412 	}
2413 
2414 	lifr = (struct lifreq *)mp2->b_rptr;
2415 	mp2->b_wptr += sizeof (struct lifreq);
2416 	bzero(lifr, sizeof (struct lifreq));
2417 
2418 	(void) strncpy(lifr->lifr_name, arl->arl_name, LIFNAMSIZ);
2419 	lifr->lifr_ppa = arl->arl_ppa;
2420 	lifr->lifr_flags = ILLF_IPV4;
2421 
2422 	/* Use M_CTL to avoid confusing anyone else who might be listening. */
2423 	DB_TYPE(mp1) = M_CTL;
2424 	mp1->b_cont = mp2;
2425 	iocp = (struct iocblk *)mp1->b_rptr;
2426 	iocp->ioc_count = msgsize(mp1->b_cont);
2427 	DTRACE_PROBE4(arl__dlpi, char *, "arp_ifname_notify",
2428 	    char *, "SIOCSLIFNAME", char *, "-",  arl_t *, arl);
2429 	putnext(arl->arl_wq, mp1);
2430 }
2431 
2432 void
2433 arp_send_replumb_conf(ill_t *ill)
2434 {
2435 	mblk_t *mp;
2436 	arl_t *arl = ill_to_arl(ill);
2437 
2438 	if (arl == NULL)
2439 		return;
2440 	/*
2441 	 * arl_got_replumb and arl_got_unbind to be cleared after we complete
2442 	 * arp_cmd_done.
2443 	 */
2444 	mp = mexchange(NULL, NULL, sizeof (dl_notify_conf_t), M_PROTO,
2445 	    DL_NOTIFY_CONF);
2446 	((dl_notify_conf_t *)(mp->b_rptr))->dl_notification =
2447 	    DL_NOTE_REPLUMB_DONE;
2448 	arp_dlpi_send(arl, mp);
2449 	mutex_enter(&arl->arl_lock);
2450 	arl->arl_state_flags &= ~ARL_LL_REPLUMBING;
2451 	mutex_exit(&arl->arl_lock);
2452 	arl_refrele(arl);
2453 }
2454 
2455 /*
2456  * The unplumb code paths call arp_unbind_complete() to make sure that it is
2457  * safe to tear down the ill. We wait for DL_UNBIND_ACK to complete, and also
2458  * for the arl_refcnt to fall to one so that, when we return from
2459  * arp_unbind_complete(), we know for certain that there are no threads in
2460  * arp_rput() that might access the arl_ill.
2461  */
2462 void
2463 arp_unbind_complete(ill_t *ill)
2464 {
2465 	arl_t *arl = ill_to_arl(ill);
2466 
2467 	if (arl == NULL)
2468 		return;
2469 	mutex_enter(&arl->arl_lock);
2470 	/*
2471 	 * wait for unbind ack and arl_refcnt to drop to 1. Note that the
2472 	 * quiescent arl_refcnt for this function is 1 (and not 0) because
2473 	 * ill_to_arl() will itself return after taking a ref on the arl_t.
2474 	 */
2475 	while (arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS)
2476 		cv_wait(&arl->arl_cv, &arl->arl_lock);
2477 	while (arl->arl_refcnt != 1)
2478 		cv_wait(&arl->arl_cv, &arl->arl_lock);
2479 	mutex_exit(&arl->arl_lock);
2480 	arl_refrele(arl);
2481 }
2482