1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 1990 Mentat Inc. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains routines that manipulate Internet Routing Entries (IREs). 33 */ 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 40 #include <sys/systm.h> 41 #include <sys/param.h> 42 #include <sys/socket.h> 43 #include <net/if.h> 44 #include <net/route.h> 45 #include <netinet/in.h> 46 #include <net/if_dl.h> 47 #include <netinet/ip6.h> 48 #include <netinet/icmp6.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/ip.h> 53 #include <inet/ip6.h> 54 #include <inet/ip_ndp.h> 55 #include <inet/ip_if.h> 56 #include <inet/ip_ire.h> 57 #include <inet/ipclassifier.h> 58 #include <inet/nd.h> 59 #include <sys/kmem.h> 60 #include <sys/zone.h> 61 62 #include <sys/tsol/label.h> 63 #include <sys/tsol/tnet.h> 64 65 irb_t *ip_forwarding_table_v6[IP6_MASK_TABLE_SIZE]; 66 /* This is dynamically allocated in ip_ire_init */ 67 irb_t *ip_cache_table_v6; 68 static ire_t ire_null; 69 70 static ire_t *ire_ihandle_lookup_onlink_v6(ire_t *cire); 71 static void ire_report_ftable_v6(ire_t *ire, char *mp); 72 static void ire_report_ctable_v6(ire_t *ire, char *mp); 73 static boolean_t ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, 74 const in6_addr_t *mask, const in6_addr_t *gateway, int type, 75 const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 76 const ts_label_t *tsl, int match_flags); 77 78 /* 79 * Named Dispatch routine to produce a formatted report on all IREs. 80 * This report is accessed by using the ndd utility to "get" ND variable 81 * "ip_ire_status_v6". 82 */ 83 /* ARGSUSED */ 84 int 85 ip_ire_report_v6(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 86 { 87 zoneid_t zoneid; 88 89 (void) mi_mpprintf(mp, 90 "IRE " MI_COL_HDRPAD_STR 91 "rfq " MI_COL_HDRPAD_STR 92 "stq " MI_COL_HDRPAD_STR 93 " zone mxfrg rtt rtt_sd ssthresh ref " 94 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe recvpipe " 95 "in/out/forward type addr mask " 96 "src gateway"); 97 /* 98 * 01234567 01234567 01234567 12345 12345 12345 12345 12345678 123 99 * 123456 123456789 123456789 123456 12345678 1234 12345678 12345678 100 * in/out/forward xxxxxxxxxx 101 * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx 102 * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx 103 * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx 104 * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx 105 */ 106 107 /* 108 * Because of the ndd constraint, at most we can have 64K buffer 109 * to put in all IRE info. So to be more efficient, just 110 * allocate a 64K buffer here, assuming we need that large buffer. 111 * This should be OK as only root can do ndd /dev/ip. 112 */ 113 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 114 /* The following may work even if we cannot get a large buf. */ 115 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 116 return (0); 117 } 118 zoneid = Q_TO_CONN(q)->conn_zoneid; 119 if (zoneid == GLOBAL_ZONEID) 120 zoneid = ALL_ZONES; 121 122 ire_walk_v6(ire_report_ftable_v6, (char *)mp->b_cont, zoneid); 123 ire_walk_v6(ire_report_ctable_v6, (char *)mp->b_cont, zoneid); 124 return (0); 125 } 126 127 /* 128 * ire_walk routine invoked for ip_ire_report_v6 for each IRE. 129 */ 130 static void 131 ire_report_ftable_v6(ire_t *ire, char *mp) 132 { 133 char buf1[INET6_ADDRSTRLEN]; 134 char buf2[INET6_ADDRSTRLEN]; 135 char buf3[INET6_ADDRSTRLEN]; 136 char buf4[INET6_ADDRSTRLEN]; 137 uint_t fo_pkt_count; 138 uint_t ib_pkt_count; 139 int ref; 140 in6_addr_t gw_addr_v6; 141 uint_t print_len, buf_len; 142 143 ASSERT(ire->ire_ipversion == IPV6_VERSION); 144 if (ire->ire_type & IRE_CACHETABLE) 145 return; 146 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 147 if (buf_len <= 0) 148 return; 149 150 /* Number of active references of this ire */ 151 ref = ire->ire_refcnt; 152 /* "inbound" to a non local address is a forward */ 153 ib_pkt_count = ire->ire_ib_pkt_count; 154 fo_pkt_count = 0; 155 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 156 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 157 fo_pkt_count = ib_pkt_count; 158 ib_pkt_count = 0; 159 } 160 161 mutex_enter(&ire->ire_lock); 162 gw_addr_v6 = ire->ire_gateway_addr_v6; 163 mutex_exit(&ire->ire_lock); 164 165 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 166 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 167 "%05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 168 "%04d %08d %08d %d/%d/%d %s\n\t%s\n\t%s\n\t%s\n\t%s\n", 169 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 170 (int)ire->ire_zoneid, 171 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 172 ire->ire_uinfo.iulp_rtt_sd, 173 ire->ire_uinfo.iulp_ssthresh, ref, 174 ire->ire_uinfo.iulp_rtomax, 175 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 176 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 177 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 178 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 179 ire->ire_uinfo.iulp_sack, 180 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 181 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 182 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 183 inet_ntop(AF_INET6, &ire->ire_addr_v6, buf1, sizeof (buf1)), 184 inet_ntop(AF_INET6, &ire->ire_mask_v6, buf2, sizeof (buf2)), 185 inet_ntop(AF_INET6, &ire->ire_src_addr_v6, buf3, sizeof (buf3)), 186 inet_ntop(AF_INET6, &gw_addr_v6, buf4, sizeof (buf4))); 187 if (print_len < buf_len) { 188 ((mblk_t *)mp)->b_wptr += print_len; 189 } else { 190 ((mblk_t *)mp)->b_wptr += buf_len; 191 } 192 } 193 194 /* ire_walk routine invoked for ip_ire_report_v6 for each IRE. */ 195 static void 196 ire_report_ctable_v6(ire_t *ire, char *mp) 197 { 198 char buf1[INET6_ADDRSTRLEN]; 199 char buf2[INET6_ADDRSTRLEN]; 200 char buf3[INET6_ADDRSTRLEN]; 201 char buf4[INET6_ADDRSTRLEN]; 202 uint_t fo_pkt_count; 203 uint_t ib_pkt_count; 204 int ref; 205 in6_addr_t gw_addr_v6; 206 uint_t print_len, buf_len; 207 208 if ((ire->ire_type & IRE_CACHETABLE) == 0) 209 return; 210 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 211 if (buf_len <= 0) 212 return; 213 214 /* Number of active references of this ire */ 215 ref = ire->ire_refcnt; 216 /* "inbound" to a non local address is a forward */ 217 ib_pkt_count = ire->ire_ib_pkt_count; 218 fo_pkt_count = 0; 219 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 220 if (ire->ire_type & IRE_LOCAL) { 221 fo_pkt_count = ib_pkt_count; 222 ib_pkt_count = 0; 223 } 224 225 mutex_enter(&ire->ire_lock); 226 gw_addr_v6 = ire->ire_gateway_addr_v6; 227 mutex_exit(&ire->ire_lock); 228 229 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 230 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 231 "%05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 232 "%04d %08d %08d %d/%d/%d %s\n\t%s\n\t%s\n\t%s\n\t%s\n", 233 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 234 (int)ire->ire_zoneid, 235 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 236 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 237 ire->ire_uinfo.iulp_rtomax, 238 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 239 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 240 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 241 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 242 ire->ire_uinfo.iulp_sack, 243 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 244 ib_pkt_count, ire->ire_ob_pkt_count, 245 fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 246 inet_ntop(AF_INET6, &ire->ire_addr_v6, buf1, sizeof (buf1)), 247 inet_ntop(AF_INET6, &ire->ire_mask_v6, buf2, sizeof (buf2)), 248 inet_ntop(AF_INET6, &ire->ire_src_addr_v6, buf3, sizeof (buf3)), 249 inet_ntop(AF_INET6, &gw_addr_v6, buf4, sizeof (buf4))); 250 if (print_len < buf_len) { 251 ((mblk_t *)mp)->b_wptr += print_len; 252 } else { 253 ((mblk_t *)mp)->b_wptr += buf_len; 254 } 255 } 256 257 258 /* 259 * Initialize the ire that is specific to IPv6 part and call 260 * ire_init_common to finish it. 261 */ 262 ire_t * 263 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, 264 const in6_addr_t *v6mask, const in6_addr_t *v6src_addr, 265 const in6_addr_t *v6gateway, uint_t *max_fragp, 266 mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, 267 mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, 268 uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, 269 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 270 { 271 272 /* 273 * Reject IRE security attribute creation/initialization 274 * if system is not running in Trusted mode. 275 */ 276 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 277 return (NULL); 278 279 if (fp_mp != NULL) { 280 /* 281 * We can't dupb() here as multiple threads could be 282 * calling dupb on the same mp which is incorrect. 283 * First dupb() should be called only by one thread. 284 */ 285 fp_mp = copyb(fp_mp); 286 if (fp_mp == NULL) 287 return (NULL); 288 } 289 290 if (dlureq_mp != NULL) { 291 /* 292 * We can't dupb() here as multiple threads could be 293 * calling dupb on the same mp which is incorrect. 294 * First dupb() should be called only by one thread. 295 */ 296 dlureq_mp = copyb(dlureq_mp); 297 if (dlureq_mp == NULL) { 298 if (fp_mp != NULL) 299 freeb(fp_mp); 300 return (NULL); 301 } 302 } 303 304 BUMP_IRE_STATS(ire_stats_v6, ire_stats_alloced); 305 ire->ire_addr_v6 = *v6addr; 306 307 if (v6src_addr != NULL) 308 ire->ire_src_addr_v6 = *v6src_addr; 309 if (v6mask != NULL) { 310 ire->ire_mask_v6 = *v6mask; 311 ire->ire_masklen = ip_mask_to_plen_v6(&ire->ire_mask_v6); 312 } 313 if (v6gateway != NULL) 314 ire->ire_gateway_addr_v6 = *v6gateway; 315 316 if (type == IRE_CACHE && v6cmask != NULL) 317 ire->ire_cmask_v6 = *v6cmask; 318 319 /* 320 * Multirouted packets need to have a fragment header added so that 321 * the receiver is able to discard duplicates according to their 322 * fragment identifier. 323 */ 324 if (type == IRE_CACHE && (flags & RTF_MULTIRT)) { 325 ire->ire_frag_flag = IPH_FRAG_HDR; 326 } 327 328 /* ire_init_common will free the mblks upon encountering any failure */ 329 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 330 ipif, NULL, phandle, ihandle, flags, IPV6_VERSION, ulp_info, 331 gc, gcgrp)) 332 return (NULL); 333 334 return (ire); 335 } 336 337 /* 338 * Similar to ire_create_v6 except that it is called only when 339 * we want to allocate ire as an mblk e.g. we have a external 340 * resolver. Do we need this in IPv6 ? 341 */ 342 ire_t * 343 ire_create_mp_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask, 344 const in6_addr_t *v6src_addr, const in6_addr_t *v6gateway, 345 mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, 346 mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, 347 uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, 348 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 349 { 350 ire_t *ire; 351 ire_t *ret_ire; 352 mblk_t *mp; 353 354 ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr)); 355 356 /* Allocate the new IRE. */ 357 mp = allocb(sizeof (ire_t), BPRI_MED); 358 if (mp == NULL) { 359 ip1dbg(("ire_create_mp_v6: alloc failed\n")); 360 return (NULL); 361 } 362 363 ire = (ire_t *)mp->b_rptr; 364 mp->b_wptr = (uchar_t *)&ire[1]; 365 366 /* Start clean. */ 367 *ire = ire_null; 368 ire->ire_mp = mp; 369 mp->b_datap->db_type = IRE_DB_TYPE; 370 371 ret_ire = ire_init_v6(ire, v6addr, v6mask, v6src_addr, v6gateway, 372 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, v6cmask, phandle, 373 ihandle, flags, ulp_info, gc, gcgrp); 374 375 if (ret_ire == NULL) { 376 freeb(ire->ire_mp); 377 return (NULL); 378 } 379 return (ire); 380 } 381 382 /* 383 * ire_create_v6 is called to allocate and initialize a new IRE. 384 * 385 * NOTE : This is called as writer sometimes though not required 386 * by this function. 387 */ 388 ire_t * 389 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask, 390 const in6_addr_t *v6src_addr, const in6_addr_t *v6gateway, 391 uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, 392 mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, 393 uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, 394 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 395 { 396 ire_t *ire; 397 ire_t *ret_ire; 398 399 ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr)); 400 401 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 402 if (ire == NULL) { 403 ip1dbg(("ire_create_v6: alloc failed\n")); 404 return (NULL); 405 } 406 *ire = ire_null; 407 408 ret_ire = ire_init_v6(ire, v6addr, v6mask, v6src_addr, v6gateway, 409 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, v6cmask, phandle, 410 ihandle, flags, ulp_info, gc, gcgrp); 411 412 if (ret_ire == NULL) { 413 kmem_cache_free(ire_cache, ire); 414 return (NULL); 415 } 416 ASSERT(ret_ire == ire); 417 return (ire); 418 } 419 420 /* 421 * Find an IRE_INTERFACE for the multicast group. 422 * Allows different routes for multicast addresses 423 * in the unicast routing table (akin to FF::0/8 but could be more specific) 424 * which point at different interfaces. This is used when IPV6_MULTICAST_IF 425 * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't 426 * specify the interface to join on. 427 * 428 * Supports link-local addresses by following the ipif/ill when recursing. 429 */ 430 ire_t * 431 ire_lookup_multi_v6(const in6_addr_t *group, zoneid_t zoneid) 432 { 433 ire_t *ire; 434 ipif_t *ipif = NULL; 435 int match_flags = MATCH_IRE_TYPE; 436 in6_addr_t gw_addr_v6; 437 438 ire = ire_ftable_lookup_v6(group, 0, 0, 0, NULL, NULL, 439 zoneid, 0, NULL, MATCH_IRE_DEFAULT); 440 441 /* We search a resolvable ire in case of multirouting. */ 442 if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { 443 ire_t *cire = NULL; 444 /* 445 * If the route is not resolvable, the looked up ire 446 * may be changed here. In that case, ire_multirt_lookup() 447 * IRE_REFRELE the original ire and change it. 448 */ 449 (void) ire_multirt_lookup_v6(&cire, &ire, MULTIRT_CACHEGW, 450 NULL); 451 if (cire != NULL) 452 ire_refrele(cire); 453 } 454 if (ire == NULL) 455 return (NULL); 456 /* 457 * Make sure we follow ire_ipif. 458 * 459 * We need to determine the interface route through 460 * which the gateway will be reached. We don't really 461 * care which interface is picked if the interface is 462 * part of a group. 463 */ 464 if (ire->ire_ipif != NULL) { 465 ipif = ire->ire_ipif; 466 match_flags |= MATCH_IRE_ILL_GROUP; 467 } 468 469 switch (ire->ire_type) { 470 case IRE_DEFAULT: 471 case IRE_PREFIX: 472 case IRE_HOST: 473 mutex_enter(&ire->ire_lock); 474 gw_addr_v6 = ire->ire_gateway_addr_v6; 475 mutex_exit(&ire->ire_lock); 476 ire_refrele(ire); 477 ire = ire_ftable_lookup_v6(&gw_addr_v6, 0, 0, 478 IRE_INTERFACE, ipif, NULL, zoneid, 0, 479 NULL, match_flags); 480 return (ire); 481 case IRE_IF_NORESOLVER: 482 case IRE_IF_RESOLVER: 483 return (ire); 484 default: 485 ire_refrele(ire); 486 return (NULL); 487 } 488 } 489 490 /* 491 * Return any local address. We use this to target ourselves 492 * when the src address was specified as 'default'. 493 * Preference for IRE_LOCAL entries. 494 */ 495 ire_t * 496 ire_lookup_local_v6(zoneid_t zoneid) 497 { 498 ire_t *ire; 499 irb_t *irb; 500 ire_t *maybe = NULL; 501 int i; 502 503 for (i = 0; i < ip6_cache_table_size; i++) { 504 irb = &ip_cache_table_v6[i]; 505 if (irb->irb_ire == NULL) 506 continue; 507 rw_enter(&irb->irb_lock, RW_READER); 508 for (ire = irb->irb_ire; ire; ire = ire->ire_next) { 509 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 510 ire->ire_zoneid != zoneid && 511 ire->ire_zoneid != ALL_ZONES) 512 continue; 513 switch (ire->ire_type) { 514 case IRE_LOOPBACK: 515 if (maybe == NULL) { 516 IRE_REFHOLD(ire); 517 maybe = ire; 518 } 519 break; 520 case IRE_LOCAL: 521 if (maybe != NULL) { 522 ire_refrele(maybe); 523 } 524 IRE_REFHOLD(ire); 525 rw_exit(&irb->irb_lock); 526 return (ire); 527 } 528 } 529 rw_exit(&irb->irb_lock); 530 } 531 return (maybe); 532 } 533 534 /* 535 * This function takes a mask and returns number of bits set in the 536 * mask (the represented prefix length). Assumes a contiguous mask. 537 */ 538 int 539 ip_mask_to_plen_v6(const in6_addr_t *v6mask) 540 { 541 int bits; 542 int plen = IPV6_ABITS; 543 int i; 544 545 for (i = 3; i >= 0; i--) { 546 if (v6mask->s6_addr32[i] == 0) { 547 plen -= 32; 548 continue; 549 } 550 bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1; 551 if (bits == 0) 552 break; 553 plen -= bits; 554 } 555 556 return (plen); 557 } 558 559 /* 560 * Convert a prefix length to the mask for that prefix. 561 * Returns the argument bitmask. 562 */ 563 in6_addr_t * 564 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask) 565 { 566 uint32_t *ptr; 567 568 if (plen < 0 || plen > IPV6_ABITS) 569 return (NULL); 570 *bitmask = ipv6_all_zeros; 571 572 ptr = (uint32_t *)bitmask; 573 while (plen > 32) { 574 *ptr++ = 0xffffffffU; 575 plen -= 32; 576 } 577 *ptr = htonl(0xffffffffU << (32 - plen)); 578 return (bitmask); 579 } 580 581 /* 582 * Add a fully initialized IRE to an appropriate 583 * table based on ire_type. 584 * 585 * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT 586 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 587 * 588 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 589 * and IRE_CACHE. 590 * 591 * NOTE : This function is called as writer though not required 592 * by this function. 593 */ 594 int 595 ire_add_v6(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 596 { 597 ire_t *ire1; 598 int mask_table_index; 599 irb_t *irb_ptr; 600 ire_t **irep; 601 int flags; 602 ire_t *pire = NULL; 603 ill_t *stq_ill; 604 boolean_t ndp_g_lock_held = B_FALSE; 605 ire_t *ire = *ire_p; 606 int error; 607 608 ASSERT(ire->ire_ipversion == IPV6_VERSION); 609 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 610 ASSERT(ire->ire_nce == NULL); 611 612 /* Find the appropriate list head. */ 613 switch (ire->ire_type) { 614 case IRE_HOST: 615 ire->ire_mask_v6 = ipv6_all_ones; 616 ire->ire_masklen = IPV6_ABITS; 617 if ((ire->ire_flags & RTF_SETSRC) == 0) 618 ire->ire_src_addr_v6 = ipv6_all_zeros; 619 break; 620 case IRE_HOST_REDIRECT: 621 ire->ire_mask_v6 = ipv6_all_ones; 622 ire->ire_masklen = IPV6_ABITS; 623 ire->ire_src_addr_v6 = ipv6_all_zeros; 624 break; 625 case IRE_CACHE: 626 case IRE_LOCAL: 627 case IRE_LOOPBACK: 628 ire->ire_mask_v6 = ipv6_all_ones; 629 ire->ire_masklen = IPV6_ABITS; 630 break; 631 case IRE_PREFIX: 632 if ((ire->ire_flags & RTF_SETSRC) == 0) 633 ire->ire_src_addr_v6 = ipv6_all_zeros; 634 break; 635 case IRE_DEFAULT: 636 if ((ire->ire_flags & RTF_SETSRC) == 0) 637 ire->ire_src_addr_v6 = ipv6_all_zeros; 638 break; 639 case IRE_IF_RESOLVER: 640 case IRE_IF_NORESOLVER: 641 break; 642 default: 643 printf("ire_add_v6: ire %p has unrecognized IRE type (%d)\n", 644 (void *)ire, ire->ire_type); 645 ire_delete(ire); 646 *ire_p = NULL; 647 return (EINVAL); 648 } 649 650 /* Make sure the address is properly masked. */ 651 V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6); 652 653 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 654 /* IRE goes into Forward Table */ 655 mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6); 656 if ((ip_forwarding_table_v6[mask_table_index]) == NULL) { 657 irb_t *ptr; 658 int i; 659 660 ptr = (irb_t *)mi_zalloc((ip6_ftable_hash_size * 661 sizeof (irb_t))); 662 if (ptr == NULL) { 663 ire_delete(ire); 664 *ire_p = NULL; 665 return (ENOMEM); 666 } 667 for (i = 0; i < ip6_ftable_hash_size; i++) { 668 rw_init(&ptr[i].irb_lock, NULL, 669 RW_DEFAULT, NULL); 670 } 671 mutex_enter(&ire_ft_init_lock); 672 if (ip_forwarding_table_v6[mask_table_index] == NULL) { 673 ip_forwarding_table_v6[mask_table_index] = ptr; 674 mutex_exit(&ire_ft_init_lock); 675 } else { 676 /* 677 * Some other thread won the race in 678 * initializing the forwarding table at the 679 * same index. 680 */ 681 mutex_exit(&ire_ft_init_lock); 682 for (i = 0; i < ip6_ftable_hash_size; i++) { 683 rw_destroy(&ptr[i].irb_lock); 684 } 685 mi_free(ptr); 686 } 687 } 688 irb_ptr = &(ip_forwarding_table_v6[mask_table_index][ 689 IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6, 690 ip6_ftable_hash_size)]); 691 } else { 692 irb_ptr = &(ip_cache_table_v6[IRE_ADDR_HASH_V6( 693 ire->ire_addr_v6, ip6_cache_table_size)]); 694 } 695 /* 696 * For xresolv interfaces (v6 interfaces with an external 697 * address resolver), ip_newroute_v6/ip_newroute_ipif_v6 698 * are unable to prevent the deletion of the interface route 699 * while adding an IRE_CACHE for an on-link destination 700 * in the IRE_IF_RESOLVER case, since the ire has to go to 701 * the external resolver and return. We can't do a REFHOLD on the 702 * associated interface ire for fear of the message being freed 703 * if the external resolver can't resolve the address. 704 * Here we look up the interface ire in the forwarding table 705 * and make sure that the interface route has not been deleted. 706 */ 707 if (ire->ire_type == IRE_CACHE && 708 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6) && 709 (((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) && 710 (((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_XRESOLV)) { 711 712 pire = ire_ihandle_lookup_onlink_v6(ire); 713 if (pire == NULL) { 714 ire_delete(ire); 715 *ire_p = NULL; 716 return (EINVAL); 717 } 718 /* Prevent pire from getting deleted */ 719 IRB_REFHOLD(pire->ire_bucket); 720 /* Has it been removed already? */ 721 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 722 IRB_REFRELE(pire->ire_bucket); 723 ire_refrele(pire); 724 ire_delete(ire); 725 *ire_p = NULL; 726 return (EINVAL); 727 } 728 } 729 730 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 731 /* 732 * For IRE_CACHES, MATCH_IRE_IPIF is not enough to check 733 * for duplicates because : 734 * 735 * 1) ire_ipif->ipif_ill and ire_stq->q_ptr could be 736 * pointing at different ills. A real duplicate is 737 * a match on both ire_ipif and ire_stq. 738 * 739 * 2) We could have multiple packets trying to create 740 * an IRE_CACHE for the same ill. 741 * 742 * Moreover, IPIF_NOFAILOVER and IPV6_BOUND_PIF endpoints wants 743 * to go out on a particular ill. Rather than looking at the 744 * packet, we depend on the above for MATCH_IRE_ILL here. 745 * 746 * Unlike IPv4, MATCH_IRE_IPIF is needed here as we could have 747 * multiple IRE_CACHES for an ill for the same destination 748 * with various scoped addresses i.e represented by ipifs. 749 * 750 * MATCH_IRE_ILL is done implicitly below for IRE_CACHES. 751 */ 752 if (ire->ire_ipif != NULL) 753 flags |= MATCH_IRE_IPIF; 754 /* 755 * If we are creating hidden ires, make sure we search on 756 * this ill (MATCH_IRE_ILL) and a hidden ire, while we are 757 * searching for duplicates below. Otherwise we could 758 * potentially find an IRE on some other interface 759 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 760 * shouldn't do this as this will lead to an infinite loop as 761 * eventually we need an hidden ire for this packet to go 762 * out. MATCH_IRE_ILL is already marked above. 763 */ 764 if (ire->ire_marks & IRE_MARK_HIDDEN) { 765 ASSERT(ire->ire_type == IRE_CACHE); 766 flags |= MATCH_IRE_MARK_HIDDEN; 767 } 768 769 /* 770 * Start the atomic add of the ire. Grab the ill locks, 771 * ill_g_usesrc_lock and the bucket lock. Check for condemned. 772 * To avoid lock order problems, get the ndp6.ndp_g_lock now itself. 773 */ 774 if (ire->ire_type == IRE_CACHE) { 775 mutex_enter(&ndp6.ndp_g_lock); 776 ndp_g_lock_held = B_TRUE; 777 } 778 779 /* 780 * If ipif or ill is changing ire_atomic_start() may queue the 781 * request and return EINPROGRESS. 782 */ 783 784 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 785 if (error != 0) { 786 if (ndp_g_lock_held) 787 mutex_exit(&ndp6.ndp_g_lock); 788 /* 789 * We don't know whether it is a valid ipif or not. 790 * So, set it to NULL. This assumes that the ire has not added 791 * a reference to the ipif. 792 */ 793 ire->ire_ipif = NULL; 794 ire_delete(ire); 795 if (pire != NULL) { 796 IRB_REFRELE(pire->ire_bucket); 797 ire_refrele(pire); 798 } 799 *ire_p = NULL; 800 return (error); 801 } 802 /* 803 * To avoid creating ires having stale values for the ire_max_frag 804 * we get the latest value atomically here. For more details 805 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 806 * in ip_rput_dlpi_writer 807 */ 808 if (ire->ire_max_fragp == NULL) { 809 if (IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) 810 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 811 else 812 ire->ire_max_frag = pire->ire_max_frag; 813 } else { 814 uint_t max_frag; 815 816 max_frag = *ire->ire_max_fragp; 817 ire->ire_max_fragp = NULL; 818 ire->ire_max_frag = max_frag; 819 } 820 821 /* 822 * Atomically check for duplicate and insert in the table. 823 */ 824 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 825 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 826 continue; 827 828 if (ire->ire_type == IRE_CACHE) { 829 /* 830 * We do MATCH_IRE_ILL implicitly here for IRE_CACHES. 831 * As ire_ipif and ire_stq could point to two 832 * different ills, we can't pass just ire_ipif to 833 * ire_match_args and get a match on both ills. 834 * This is just needed for duplicate checks here and 835 * so we don't add an extra argument to 836 * ire_match_args for this. Do it locally. 837 * 838 * NOTE : Currently there is no part of the code 839 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 840 * match for IRE_CACHEs. Thus we don't want to 841 * extend the arguments to ire_match_args_v6. 842 */ 843 if (ire1->ire_stq != ire->ire_stq) 844 continue; 845 /* 846 * Multiroute IRE_CACHEs for a given destination can 847 * have the same ire_ipif, typically if their source 848 * address is forced using RTF_SETSRC, and the same 849 * send-to queue. We differentiate them using the parent 850 * handle. 851 */ 852 if ((ire1->ire_flags & RTF_MULTIRT) && 853 (ire->ire_flags & RTF_MULTIRT) && 854 (ire1->ire_phandle != ire->ire_phandle)) 855 continue; 856 } 857 if (ire1->ire_zoneid != ire->ire_zoneid) 858 continue; 859 if (ire_match_args_v6(ire1, &ire->ire_addr_v6, 860 &ire->ire_mask_v6, &ire->ire_gateway_addr_v6, 861 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 862 flags)) { 863 /* 864 * Return the old ire after doing a REFHOLD. 865 * As most of the callers continue to use the IRE 866 * after adding, we return a held ire. This will 867 * avoid a lookup in the caller again. If the callers 868 * don't want to use it, they need to do a REFRELE. 869 */ 870 ip1dbg(("found dup ire existing %p new %p", 871 (void *)ire1, (void *)ire)); 872 IRE_REFHOLD(ire1); 873 if (ndp_g_lock_held) 874 mutex_exit(&ndp6.ndp_g_lock); 875 ire_atomic_end(irb_ptr, ire); 876 ire_delete(ire); 877 if (pire != NULL) { 878 /* 879 * Assert that it is 880 * not yet removed from the list. 881 */ 882 ASSERT(pire->ire_ptpn != NULL); 883 IRB_REFRELE(pire->ire_bucket); 884 ire_refrele(pire); 885 } 886 *ire_p = ire1; 887 return (0); 888 } 889 } 890 if (ire->ire_type == IRE_CACHE) { 891 in6_addr_t gw_addr_v6; 892 ill_t *ill = ire_to_ill(ire); 893 char buf[INET6_ADDRSTRLEN]; 894 nce_t *nce; 895 896 /* 897 * All IRE_CACHE types must have a nce. If this is 898 * not the case the entry will not be added. We need 899 * to make sure that if somebody deletes the nce 900 * after we looked up, they will find this ire and 901 * delete the ire. To delete this ire one needs the 902 * bucket lock which we are still holding here. So, 903 * even if the nce gets deleted after we looked up, 904 * this ire will get deleted. 905 * 906 * NOTE : Don't need the ire_lock for accessing 907 * ire_gateway_addr_v6 as it is appearing first 908 * time on the list and rts_setgwr_v6 could not 909 * be changing this. 910 */ 911 gw_addr_v6 = ire->ire_gateway_addr_v6; 912 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 913 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, B_TRUE); 914 } else { 915 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_TRUE); 916 } 917 if (nce == NULL) 918 goto failed; 919 920 /* Pair of refhold, refrele just to get the tracing right */ 921 NCE_REFHOLD_TO_REFHOLD_NOTR(nce); 922 /* 923 * Atomically make sure that new IREs don't point 924 * to an NCE that is logically deleted (CONDEMNED). 925 * ndp_delete() first marks the NCE CONDEMNED. 926 * This ensures that the nce_refcnt won't increase 927 * due to new nce_lookups or due to addition of new IREs 928 * pointing to this NCE. Then ndp_delete() cleans up 929 * existing references. If we don't do it atomically here, 930 * ndp_delete() -> nce_ire_delete() will not be able to 931 * clean up the IRE list completely, and the nce_refcnt 932 * won't go down to zero. 933 */ 934 mutex_enter(&nce->nce_lock); 935 if (ill->ill_flags & ILLF_XRESOLV) { 936 /* 937 * If we used an external resolver, we may not 938 * have gone through neighbor discovery to get here. 939 * Must update the nce_state before the next check. 940 */ 941 if (nce->nce_state == ND_INCOMPLETE) 942 nce->nce_state = ND_REACHABLE; 943 } 944 if (nce->nce_state == ND_INCOMPLETE || 945 (nce->nce_flags & NCE_F_CONDEMNED) || 946 (nce->nce_state == ND_UNREACHABLE)) { 947 failed: 948 if (ndp_g_lock_held) 949 mutex_exit(&ndp6.ndp_g_lock); 950 if (nce != NULL) 951 mutex_exit(&nce->nce_lock); 952 ire_atomic_end(irb_ptr, ire); 953 ip1dbg(("ire_add_v6: No nce for dst %s \n", 954 inet_ntop(AF_INET6, &ire->ire_addr_v6, 955 buf, sizeof (buf)))); 956 ire_delete(ire); 957 if (pire != NULL) { 958 /* 959 * Assert that it is 960 * not yet removed from the list. 961 */ 962 ASSERT(pire->ire_ptpn != NULL); 963 IRB_REFRELE(pire->ire_bucket); 964 ire_refrele(pire); 965 } 966 if (nce != NULL) 967 NCE_REFRELE_NOTR(nce); 968 *ire_p = NULL; 969 return (EINVAL); 970 } else { 971 ire->ire_nce = nce; 972 } 973 mutex_exit(&nce->nce_lock); 974 } 975 /* 976 * Find the first entry that matches ire_addr - provides 977 * tail insertion. *irep will be null if no match. 978 */ 979 irep = (ire_t **)irb_ptr; 980 while ((ire1 = *irep) != NULL && 981 !IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &ire1->ire_addr_v6)) 982 irep = &ire1->ire_next; 983 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 984 985 if (*irep != NULL) { 986 /* 987 * Find the last ire which matches ire_addr_v6. 988 * Needed to do tail insertion among entries with the same 989 * ire_addr_v6. 990 */ 991 while (IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 992 &ire1->ire_addr_v6)) { 993 irep = &ire1->ire_next; 994 ire1 = *irep; 995 if (ire1 == NULL) 996 break; 997 } 998 } 999 1000 if (ire->ire_type == IRE_DEFAULT) { 1001 /* 1002 * We keep a count of default gateways which is used when 1003 * assigning them as routes. 1004 */ 1005 ipv6_ire_default_count++; 1006 ASSERT(ipv6_ire_default_count != 0); /* Wraparound */ 1007 } 1008 /* Insert at *irep */ 1009 ire1 = *irep; 1010 if (ire1 != NULL) 1011 ire1->ire_ptpn = &ire->ire_next; 1012 ire->ire_next = ire1; 1013 /* Link the new one in. */ 1014 ire->ire_ptpn = irep; 1015 /* 1016 * ire_walk routines de-reference ire_next without holding 1017 * a lock. Before we point to the new ire, we want to make 1018 * sure the store that sets the ire_next of the new ire 1019 * reaches global visibility, so that ire_walk routines 1020 * don't see a truncated list of ires i.e if the ire_next 1021 * of the new ire gets set after we do "*irep = ire" due 1022 * to re-ordering, the ire_walk thread will see a NULL 1023 * once it accesses the ire_next of the new ire. 1024 * membar_producer() makes sure that the following store 1025 * happens *after* all of the above stores. 1026 */ 1027 membar_producer(); 1028 *irep = ire; 1029 ire->ire_bucket = irb_ptr; 1030 /* 1031 * We return a bumped up IRE above. Keep it symmetrical 1032 * so that the callers will always have to release. This 1033 * helps the callers of this function because they continue 1034 * to use the IRE after adding and hence they don't have to 1035 * lookup again after we return the IRE. 1036 * 1037 * NOTE : We don't have to use atomics as this is appearing 1038 * in the list for the first time and no one else can bump 1039 * up the reference count on this yet. 1040 */ 1041 IRE_REFHOLD_LOCKED(ire); 1042 BUMP_IRE_STATS(ire_stats_v6, ire_stats_inserted); 1043 irb_ptr->irb_ire_cnt++; 1044 if (ire->ire_marks & IRE_MARK_TEMPORARY) 1045 irb_ptr->irb_tmp_ire_cnt++; 1046 1047 if (ire->ire_ipif != NULL) { 1048 ire->ire_ipif->ipif_ire_cnt++; 1049 if (ire->ire_stq != NULL) { 1050 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 1051 stq_ill->ill_ire_cnt++; 1052 } 1053 } else { 1054 ASSERT(ire->ire_stq == NULL); 1055 } 1056 1057 if (ndp_g_lock_held) 1058 mutex_exit(&ndp6.ndp_g_lock); 1059 ire_atomic_end(irb_ptr, ire); 1060 1061 if (pire != NULL) { 1062 /* Assert that it is not removed from the list yet */ 1063 ASSERT(pire->ire_ptpn != NULL); 1064 IRB_REFRELE(pire->ire_bucket); 1065 ire_refrele(pire); 1066 } 1067 1068 if (ire->ire_type != IRE_CACHE) { 1069 /* 1070 * For ire's with with host mask see if there is an entry 1071 * in the cache. If there is one flush the whole cache as 1072 * there might be multiple entries due to RTF_MULTIRT (CGTP). 1073 * If no entry is found than there is no need to flush the 1074 * cache. 1075 */ 1076 1077 if (ip_mask_to_plen_v6(&ire->ire_mask_v6) == IPV6_ABITS) { 1078 ire_t *lire; 1079 lire = ire_ctable_lookup_v6(&ire->ire_addr_v6, NULL, 1080 IRE_CACHE, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 1081 if (lire != NULL) { 1082 ire_refrele(lire); 1083 ire_flush_cache_v6(ire, IRE_FLUSH_ADD); 1084 } 1085 } else { 1086 ire_flush_cache_v6(ire, IRE_FLUSH_ADD); 1087 } 1088 } 1089 1090 *ire_p = ire; 1091 return (0); 1092 } 1093 1094 /* 1095 * Search for all HOST REDIRECT routes that are 1096 * pointing at the specified gateway and 1097 * delete them. This routine is called only 1098 * when a default gateway is going away. 1099 */ 1100 static void 1101 ire_delete_host_redirects_v6(const in6_addr_t *gateway) 1102 { 1103 irb_t *irb_ptr; 1104 irb_t *irb; 1105 ire_t *ire; 1106 in6_addr_t gw_addr_v6; 1107 int i; 1108 1109 /* get the hash table for HOST routes */ 1110 irb_ptr = ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)]; 1111 if (irb_ptr == NULL) 1112 return; 1113 for (i = 0; (i < ip6_ftable_hash_size); i++) { 1114 irb = &irb_ptr[i]; 1115 IRB_REFHOLD(irb); 1116 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1117 if (ire->ire_type != IRE_HOST_REDIRECT) 1118 continue; 1119 mutex_enter(&ire->ire_lock); 1120 gw_addr_v6 = ire->ire_gateway_addr_v6; 1121 mutex_exit(&ire->ire_lock); 1122 if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) 1123 ire_delete(ire); 1124 } 1125 IRB_REFRELE(irb); 1126 } 1127 } 1128 1129 /* 1130 * Delete all the cache entries with this 'addr'. This is the IPv6 counterpart 1131 * of ip_ire_clookup_and_delete. The difference being this function does not 1132 * return any value. IPv6 processing of a gratuitous ARP, as it stands, is 1133 * different than IPv4 in that, regardless of the presence of a cache entry 1134 * for this address, an ire_walk_v6 is done. Another difference is that unlike 1135 * in the case of IPv4 this does not take an ipif_t argument, since it is only 1136 * called by ip_arp_news and the match is always only on the address. 1137 */ 1138 void 1139 ip_ire_clookup_and_delete_v6(const in6_addr_t *addr) 1140 { 1141 irb_t *irb; 1142 ire_t *cire; 1143 boolean_t found = B_FALSE; 1144 1145 irb = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; 1146 IRB_REFHOLD(irb); 1147 for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { 1148 if (cire->ire_marks == IRE_MARK_CONDEMNED) 1149 continue; 1150 if (IN6_ARE_ADDR_EQUAL(&cire->ire_addr_v6, addr)) { 1151 1152 /* This signifies start of a match */ 1153 if (!found) 1154 found = B_TRUE; 1155 if (cire->ire_type == IRE_CACHE) { 1156 if (cire->ire_nce != NULL) 1157 ndp_delete(cire->ire_nce); 1158 ire_delete_v6(cire); 1159 } 1160 /* End of the match */ 1161 } else if (found) 1162 break; 1163 } 1164 IRB_REFRELE(irb); 1165 } 1166 1167 /* 1168 * Delete the specified IRE. 1169 * All calls should use ire_delete(). 1170 * Sometimes called as writer though not required by this function. 1171 * 1172 * NOTE : This function is called only if the ire was added 1173 * in the list. 1174 */ 1175 void 1176 ire_delete_v6(ire_t *ire) 1177 { 1178 in6_addr_t gw_addr_v6; 1179 1180 ASSERT(ire->ire_refcnt >= 1); 1181 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1182 1183 if (ire->ire_type != IRE_CACHE) 1184 ire_flush_cache_v6(ire, IRE_FLUSH_DELETE); 1185 if (ire->ire_type == IRE_DEFAULT) { 1186 /* 1187 * when a default gateway is going away 1188 * delete all the host redirects pointing at that 1189 * gateway. 1190 */ 1191 mutex_enter(&ire->ire_lock); 1192 gw_addr_v6 = ire->ire_gateway_addr_v6; 1193 mutex_exit(&ire->ire_lock); 1194 ire_delete_host_redirects_v6(&gw_addr_v6); 1195 } 1196 } 1197 1198 /* 1199 * ire_walk routine to delete all IRE_CACHE and IRE_HOST_REDIRECT 1200 * entries. 1201 */ 1202 /*ARGSUSED1*/ 1203 void 1204 ire_delete_cache_v6(ire_t *ire, char *arg) 1205 { 1206 char addrstr1[INET6_ADDRSTRLEN]; 1207 char addrstr2[INET6_ADDRSTRLEN]; 1208 1209 if (ire->ire_type & (IRE_CACHE | IRE_HOST_REDIRECT)) { 1210 ip1dbg(("ire_delete_cache_v6: deleted %s type %d through %s\n", 1211 inet_ntop(AF_INET6, &ire->ire_addr_v6, 1212 addrstr1, sizeof (addrstr1)), 1213 ire->ire_type, 1214 inet_ntop(AF_INET6, &ire->ire_gateway_addr_v6, 1215 addrstr2, sizeof (addrstr2)))); 1216 ire_delete(ire); 1217 } 1218 1219 } 1220 1221 /* 1222 * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries 1223 * that have a given gateway address. 1224 */ 1225 void 1226 ire_delete_cache_gw_v6(ire_t *ire, char *addr) 1227 { 1228 in6_addr_t *gw_addr = (in6_addr_t *)addr; 1229 char buf1[INET6_ADDRSTRLEN]; 1230 char buf2[INET6_ADDRSTRLEN]; 1231 in6_addr_t ire_gw_addr_v6; 1232 1233 if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) 1234 return; 1235 1236 mutex_enter(&ire->ire_lock); 1237 ire_gw_addr_v6 = ire->ire_gateway_addr_v6; 1238 mutex_exit(&ire->ire_lock); 1239 1240 if (IN6_ARE_ADDR_EQUAL(&ire_gw_addr_v6, gw_addr)) { 1241 ip1dbg(("ire_delete_cache_gw_v6: deleted %s type %d to %s\n", 1242 inet_ntop(AF_INET6, &ire->ire_src_addr_v6, 1243 buf1, sizeof (buf1)), 1244 ire->ire_type, 1245 inet_ntop(AF_INET6, &ire_gw_addr_v6, 1246 buf2, sizeof (buf2)))); 1247 ire_delete(ire); 1248 } 1249 } 1250 1251 /* 1252 * Remove all IRE_CACHE entries that match 1253 * the ire specified. (Sometimes called 1254 * as writer though not required by this function.) 1255 * 1256 * The flag argument indicates if the 1257 * flush request is due to addition 1258 * of new route (IRE_FLUSH_ADD) or deletion of old 1259 * route (IRE_FLUSH_DELETE). 1260 * 1261 * This routine takes only the IREs from the forwarding 1262 * table and flushes the corresponding entries from 1263 * the cache table. 1264 * 1265 * When flushing due to the deletion of an old route, it 1266 * just checks the cache handles (ire_phandle and ire_ihandle) and 1267 * deletes the ones that match. 1268 * 1269 * When flushing due to the creation of a new route, it checks 1270 * if a cache entry's address matches the one in the IRE and 1271 * that the cache entry's parent has a less specific mask than the 1272 * one in IRE. The destination of such a cache entry could be the 1273 * gateway for other cache entries, so we need to flush those as 1274 * well by looking for gateway addresses matching the IRE's address. 1275 */ 1276 void 1277 ire_flush_cache_v6(ire_t *ire, int flag) 1278 { 1279 int i; 1280 ire_t *cire; 1281 irb_t *irb; 1282 1283 if (ire->ire_type & IRE_CACHE) 1284 return; 1285 1286 /* 1287 * If a default is just created, there is no point 1288 * in going through the cache, as there will not be any 1289 * cached ires. 1290 */ 1291 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 1292 return; 1293 if (flag == IRE_FLUSH_ADD) { 1294 /* 1295 * This selective flush is 1296 * due to the addition of 1297 * new IRE. 1298 */ 1299 for (i = 0; i < ip6_cache_table_size; i++) { 1300 irb = &ip_cache_table_v6[i]; 1301 if ((cire = irb->irb_ire) == NULL) 1302 continue; 1303 IRB_REFHOLD(irb); 1304 for (cire = irb->irb_ire; cire != NULL; 1305 cire = cire->ire_next) { 1306 if (cire->ire_type != IRE_CACHE) 1307 continue; 1308 /* 1309 * If 'cire' belongs to the same subnet 1310 * as the new ire being added, and 'cire' 1311 * is derived from a prefix that is less 1312 * specific than the new ire being added, 1313 * we need to flush 'cire'; for instance, 1314 * when a new interface comes up. 1315 */ 1316 if ((V6_MASK_EQ_2(cire->ire_addr_v6, 1317 ire->ire_mask_v6, ire->ire_addr_v6) && 1318 (ip_mask_to_plen_v6(&cire->ire_cmask_v6) <= 1319 ire->ire_masklen))) { 1320 ire_delete(cire); 1321 continue; 1322 } 1323 /* 1324 * This is the case when the ire_gateway_addr 1325 * of 'cire' belongs to the same subnet as 1326 * the new ire being added. 1327 * Flushing such ires is sometimes required to 1328 * avoid misrouting: say we have a machine with 1329 * two interfaces (I1 and I2), a default router 1330 * R on the I1 subnet, and a host route to an 1331 * off-link destination D with a gateway G on 1332 * the I2 subnet. 1333 * Under normal operation, we will have an 1334 * on-link cache entry for G and an off-link 1335 * cache entry for D with G as ire_gateway_addr, 1336 * traffic to D will reach its destination 1337 * through gateway G. 1338 * If the administrator does 'ifconfig I2 down', 1339 * the cache entries for D and G will be 1340 * flushed. However, G will now be resolved as 1341 * an off-link destination using R (the default 1342 * router) as gateway. Then D will also be 1343 * resolved as an off-link destination using G 1344 * as gateway - this behavior is due to 1345 * compatibility reasons, see comment in 1346 * ire_ihandle_lookup_offlink(). Traffic to D 1347 * will go to the router R and probably won't 1348 * reach the destination. 1349 * The administrator then does 'ifconfig I2 up'. 1350 * Since G is on the I2 subnet, this routine 1351 * will flush its cache entry. It must also 1352 * flush the cache entry for D, otherwise 1353 * traffic will stay misrouted until the IRE 1354 * times out. 1355 */ 1356 if (V6_MASK_EQ_2(cire->ire_gateway_addr_v6, 1357 ire->ire_mask_v6, ire->ire_addr_v6)) { 1358 ire_delete(cire); 1359 continue; 1360 } 1361 } 1362 IRB_REFRELE(irb); 1363 } 1364 } else { 1365 /* 1366 * delete the cache entries based on 1367 * handle in the IRE as this IRE is 1368 * being deleted/changed. 1369 */ 1370 for (i = 0; i < ip6_cache_table_size; i++) { 1371 irb = &ip_cache_table_v6[i]; 1372 if ((cire = irb->irb_ire) == NULL) 1373 continue; 1374 IRB_REFHOLD(irb); 1375 for (cire = irb->irb_ire; cire != NULL; 1376 cire = cire->ire_next) { 1377 if (cire->ire_type != IRE_CACHE) 1378 continue; 1379 if ((cire->ire_phandle == 0 || 1380 cire->ire_phandle != ire->ire_phandle) && 1381 (cire->ire_ihandle == 0 || 1382 cire->ire_ihandle != ire->ire_ihandle)) 1383 continue; 1384 ire_delete(cire); 1385 } 1386 IRB_REFRELE(irb); 1387 } 1388 } 1389 } 1390 1391 /* 1392 * Matches the arguments passed with the values in the ire. 1393 * 1394 * Note: for match types that match using "ipif" passed in, ipif 1395 * must be checked for non-NULL before calling this routine. 1396 */ 1397 static boolean_t 1398 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask, 1399 const in6_addr_t *gateway, int type, const ipif_t *ipif, zoneid_t zoneid, 1400 uint32_t ihandle, const ts_label_t *tsl, int match_flags) 1401 { 1402 in6_addr_t masked_addr; 1403 in6_addr_t gw_addr_v6; 1404 ill_t *ire_ill = NULL, *dst_ill; 1405 ill_t *ipif_ill = NULL; 1406 ill_group_t *ire_ill_group = NULL; 1407 ill_group_t *ipif_ill_group = NULL; 1408 ipif_t *src_ipif; 1409 1410 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1411 ASSERT(addr != NULL); 1412 ASSERT(mask != NULL); 1413 ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL); 1414 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 1415 (ipif != NULL && ipif->ipif_isv6)); 1416 ASSERT(!(match_flags & MATCH_IRE_WQ)); 1417 1418 /* 1419 * HIDDEN cache entries have to be looked up specifically with 1420 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 1421 * when the interface is FAILED or INACTIVE. In that case, 1422 * any IRE_CACHES that exists should be marked with 1423 * IRE_MARK_HIDDEN. So, we don't really need to match below 1424 * for IRE_MARK_HIDDEN. But we do so for consistency. 1425 */ 1426 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 1427 (ire->ire_marks & IRE_MARK_HIDDEN)) 1428 return (B_FALSE); 1429 1430 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1431 ire->ire_zoneid != ALL_ZONES) { 1432 /* 1433 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 1434 * valid and does not match that of ire_zoneid, a failure to 1435 * match is reported at this point. Otherwise, since some IREs 1436 * that are available in the global zone can be used in local 1437 * zones, additional checks need to be performed: 1438 * 1439 * IRE_CACHE and IRE_LOOPBACK entries should 1440 * never be matched in this situation. 1441 * 1442 * IRE entries that have an interface associated with them 1443 * should in general not match unless they are an IRE_LOCAL 1444 * or in the case when MATCH_IRE_DEFAULT has been set in 1445 * the caller. In the case of the former, checking of the 1446 * other fields supplied should take place. 1447 * 1448 * In the case where MATCH_IRE_DEFAULT has been set, 1449 * all of the ipif's associated with the IRE's ill are 1450 * checked to see if there is a matching zoneid. If any 1451 * one ipif has a matching zoneid, this IRE is a 1452 * potential candidate so checking of the other fields 1453 * takes place. 1454 * 1455 * In the case where the IRE_INTERFACE has a usable source 1456 * address (indicated by ill_usesrc_ifindex) in the 1457 * correct zone then it's permitted to return this IRE 1458 */ 1459 if (match_flags & MATCH_IRE_ZONEONLY) 1460 return (B_FALSE); 1461 if (ire->ire_type & (IRE_CACHE | IRE_LOOPBACK)) 1462 return (B_FALSE); 1463 /* 1464 * Note, IRE_INTERFACE can have the stq as NULL. For 1465 * example, if the default multicast route is tied to 1466 * the loopback address. 1467 */ 1468 if ((ire->ire_type & IRE_INTERFACE) && 1469 (ire->ire_stq != NULL)) { 1470 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 1471 /* 1472 * If there is a usable source address in the 1473 * zone, then it's ok to return an 1474 * IRE_INTERFACE 1475 */ 1476 if ((dst_ill->ill_usesrc_ifindex != 0) && 1477 (src_ipif = ipif_select_source_v6(dst_ill, addr, 1478 RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, zoneid)) 1479 != NULL) { 1480 ip3dbg(("ire_match_args: src_ipif %p" 1481 " dst_ill %p", (void *)src_ipif, 1482 (void *)dst_ill)); 1483 ipif_refrele(src_ipif); 1484 } else { 1485 ip3dbg(("ire_match_args: src_ipif NULL" 1486 " dst_ill %p\n", (void *)dst_ill)); 1487 return (B_FALSE); 1488 } 1489 } 1490 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 1491 !(ire->ire_type & IRE_INTERFACE)) { 1492 ipif_t *tipif; 1493 1494 if ((match_flags & MATCH_IRE_DEFAULT) == 0) 1495 return (B_FALSE); 1496 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 1497 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 1498 tipif != NULL; tipif = tipif->ipif_next) { 1499 if (IPIF_CAN_LOOKUP(tipif) && 1500 (tipif->ipif_flags & IPIF_UP) && 1501 (tipif->ipif_zoneid == zoneid || 1502 tipif->ipif_zoneid == ALL_ZONES)) 1503 break; 1504 } 1505 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 1506 if (tipif == NULL) 1507 return (B_FALSE); 1508 } 1509 } 1510 1511 if (match_flags & MATCH_IRE_GW) { 1512 mutex_enter(&ire->ire_lock); 1513 gw_addr_v6 = ire->ire_gateway_addr_v6; 1514 mutex_exit(&ire->ire_lock); 1515 } 1516 /* 1517 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 1518 * somebody wants to send out on a particular interface which 1519 * is given by ire_stq and hence use ire_stq to derive the ill 1520 * value. ire_ipif for IRE_CACHES is just the 1521 * means of getting a source address i.e ire_src_addr_v6 = 1522 * ire->ire_ipif->ipif_src_addr_v6. 1523 */ 1524 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 1525 ire_ill = ire_to_ill(ire); 1526 if (ire_ill != NULL) 1527 ire_ill_group = ire_ill->ill_group; 1528 ipif_ill = ipif->ipif_ill; 1529 ipif_ill_group = ipif_ill->ill_group; 1530 } 1531 1532 /* No ire_addr_v6 bits set past the mask */ 1533 ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6, 1534 ire->ire_addr_v6)); 1535 V6_MASK_COPY(*addr, *mask, masked_addr); 1536 1537 if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) && 1538 ((!(match_flags & MATCH_IRE_GW)) || 1539 IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) && 1540 ((!(match_flags & MATCH_IRE_TYPE)) || 1541 (ire->ire_type & type)) && 1542 ((!(match_flags & MATCH_IRE_SRC)) || 1543 IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 1544 &ipif->ipif_v6src_addr)) && 1545 ((!(match_flags & MATCH_IRE_IPIF)) || 1546 (ire->ire_ipif == ipif)) && 1547 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 1548 (ire->ire_type != IRE_CACHE || 1549 ire->ire_marks & IRE_MARK_HIDDEN)) && 1550 ((!(match_flags & MATCH_IRE_ILL)) || 1551 (ire_ill == ipif_ill)) && 1552 ((!(match_flags & MATCH_IRE_IHANDLE)) || 1553 (ire->ire_ihandle == ihandle)) && 1554 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 1555 (ire_ill == ipif_ill) || 1556 (ire_ill_group != NULL && 1557 ire_ill_group == ipif_ill_group)) && 1558 ((!(match_flags & MATCH_IRE_SECATTR)) || 1559 (!is_system_labeled()) || 1560 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 1561 /* We found the matched IRE */ 1562 return (B_TRUE); 1563 } 1564 return (B_FALSE); 1565 } 1566 1567 /* 1568 * Lookup for a route in all the tables 1569 */ 1570 ire_t * 1571 ire_route_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask, 1572 const in6_addr_t *gateway, int type, const ipif_t *ipif, ire_t **pire, 1573 zoneid_t zoneid, const ts_label_t *tsl, int flags) 1574 { 1575 ire_t *ire = NULL; 1576 1577 /* 1578 * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or 1579 * MATCH_IRE_ILL is set. 1580 */ 1581 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 1582 (ipif == NULL)) 1583 return (NULL); 1584 1585 /* 1586 * might be asking for a cache lookup, 1587 * This is not best way to lookup cache, 1588 * user should call ire_cache_lookup directly. 1589 * 1590 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 1591 * in the forwarding table, if the applicable type flags were set. 1592 */ 1593 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 1594 ire = ire_ctable_lookup_v6(addr, gateway, type, ipif, zoneid, 1595 tsl, flags); 1596 if (ire != NULL) 1597 return (ire); 1598 } 1599 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 1600 ire = ire_ftable_lookup_v6(addr, mask, gateway, type, ipif, 1601 pire, zoneid, 0, tsl, flags); 1602 } 1603 return (ire); 1604 } 1605 1606 /* 1607 * Lookup a route in forwarding table. 1608 * specific lookup is indicated by passing the 1609 * required parameters and indicating the 1610 * match required in flag field. 1611 * 1612 * Looking for default route can be done in three ways 1613 * 1) pass mask as ipv6_all_zeros and set MATCH_IRE_MASK in flags field 1614 * along with other matches. 1615 * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags 1616 * field along with other matches. 1617 * 3) if the destination and mask are passed as zeros. 1618 * 1619 * A request to return a default route if no route 1620 * is found, can be specified by setting MATCH_IRE_DEFAULT 1621 * in flags. 1622 * 1623 * It does not support recursion more than one level. It 1624 * will do recursive lookup only when the lookup maps to 1625 * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. 1626 * 1627 * If the routing table is setup to allow more than one level 1628 * of recursion, the cleaning up cache table will not work resulting 1629 * in invalid routing. 1630 * 1631 * Supports link-local addresses by following the ipif/ill when recursing. 1632 * 1633 * NOTE : When this function returns NULL, pire has already been released. 1634 * pire is valid only when this function successfully returns an 1635 * ire. 1636 */ 1637 ire_t * 1638 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask, 1639 const in6_addr_t *gateway, int type, const ipif_t *ipif, ire_t **pire, 1640 zoneid_t zoneid, uint32_t ihandle, const ts_label_t *tsl, int flags) 1641 { 1642 irb_t *irb_ptr; 1643 ire_t *rire; 1644 ire_t *ire = NULL; 1645 ire_t *saved_ire; 1646 nce_t *nce; 1647 int i; 1648 in6_addr_t gw_addr_v6; 1649 1650 ASSERT(addr != NULL); 1651 ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL); 1652 ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL); 1653 ASSERT(ipif == NULL || ipif->ipif_isv6); 1654 ASSERT(!(flags & MATCH_IRE_WQ)); 1655 1656 /* 1657 * When we return NULL from this function, we should make 1658 * sure that *pire is NULL so that the callers will not 1659 * wrongly REFRELE the pire. 1660 */ 1661 if (pire != NULL) 1662 *pire = NULL; 1663 /* 1664 * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or 1665 * MATCH_IRE_ILL is set. 1666 */ 1667 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 1668 (ipif == NULL)) 1669 return (NULL); 1670 1671 /* 1672 * If the mask is known, the lookup 1673 * is simple, if the mask is not known 1674 * we need to search. 1675 */ 1676 if (flags & MATCH_IRE_MASK) { 1677 uint_t masklen; 1678 1679 masklen = ip_mask_to_plen_v6(mask); 1680 if (ip_forwarding_table_v6[masklen] == NULL) 1681 return (NULL); 1682 irb_ptr = &(ip_forwarding_table_v6[masklen][ 1683 IRE_ADDR_MASK_HASH_V6(*addr, *mask, ip6_ftable_hash_size)]); 1684 rw_enter(&irb_ptr->irb_lock, RW_READER); 1685 for (ire = irb_ptr->irb_ire; ire != NULL; 1686 ire = ire->ire_next) { 1687 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1688 continue; 1689 if (ire_match_args_v6(ire, addr, mask, gateway, type, 1690 ipif, zoneid, ihandle, tsl, flags)) 1691 goto found_ire; 1692 } 1693 rw_exit(&irb_ptr->irb_lock); 1694 } else { 1695 /* 1696 * In this case we don't know the mask, we need to 1697 * search the table assuming different mask sizes. 1698 * we start with 128 bit mask, we don't allow default here. 1699 */ 1700 for (i = (IP6_MASK_TABLE_SIZE - 1); i > 0; i--) { 1701 in6_addr_t tmpmask; 1702 1703 if ((ip_forwarding_table_v6[i]) == NULL) 1704 continue; 1705 (void) ip_plen_to_mask_v6(i, &tmpmask); 1706 irb_ptr = &ip_forwarding_table_v6[i][ 1707 IRE_ADDR_MASK_HASH_V6(*addr, tmpmask, 1708 ip6_ftable_hash_size)]; 1709 rw_enter(&irb_ptr->irb_lock, RW_READER); 1710 for (ire = irb_ptr->irb_ire; ire != NULL; 1711 ire = ire->ire_next) { 1712 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1713 continue; 1714 if (ire_match_args_v6(ire, addr, 1715 &ire->ire_mask_v6, gateway, type, ipif, 1716 zoneid, ihandle, tsl, flags)) 1717 goto found_ire; 1718 } 1719 rw_exit(&irb_ptr->irb_lock); 1720 } 1721 } 1722 1723 /* 1724 * We come here if no route has yet been found. 1725 * 1726 * Handle the case where default route is 1727 * requested by specifying type as one of the possible 1728 * types for that can have a zero mask (IRE_DEFAULT and IRE_INTERFACE). 1729 * 1730 * If MATCH_IRE_MASK is specified, then the appropriate default route 1731 * would have been found above if it exists so it isn't looked up here. 1732 * If MATCH_IRE_DEFAULT was also specified, then a default route will be 1733 * searched for later. 1734 */ 1735 if ((flags & (MATCH_IRE_TYPE | MATCH_IRE_MASK)) == MATCH_IRE_TYPE && 1736 (type & (IRE_DEFAULT | IRE_INTERFACE))) { 1737 if (ip_forwarding_table_v6[0] != NULL) { 1738 /* addr & mask is zero for defaults */ 1739 irb_ptr = &ip_forwarding_table_v6[0][ 1740 IRE_ADDR_HASH_V6(ipv6_all_zeros, 1741 ip6_ftable_hash_size)]; 1742 rw_enter(&irb_ptr->irb_lock, RW_READER); 1743 for (ire = irb_ptr->irb_ire; ire != NULL; 1744 ire = ire->ire_next) { 1745 1746 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1747 continue; 1748 1749 if (ire_match_args_v6(ire, addr, 1750 &ipv6_all_zeros, gateway, type, ipif, 1751 zoneid, ihandle, tsl, flags)) 1752 goto found_ire; 1753 } 1754 rw_exit(&irb_ptr->irb_lock); 1755 } 1756 } 1757 /* 1758 * We come here only if no route is found. 1759 * see if the default route can be used which is allowed 1760 * only if the default matching criteria is specified. 1761 * The ipv6_ire_default_count tracks the number of IRE_DEFAULT 1762 * entries. However, the ip_forwarding_table_v6[0] also contains 1763 * interface routes thus the count can be zero. 1764 */ 1765 saved_ire = NULL; 1766 if ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == 1767 MATCH_IRE_DEFAULT) { 1768 ire_t *ire_origin; 1769 uint_t g_index; 1770 uint_t index; 1771 1772 if (ip_forwarding_table_v6[0] == NULL) 1773 return (NULL); 1774 irb_ptr = &(ip_forwarding_table_v6[0])[0]; 1775 1776 /* 1777 * Keep a tab on the bucket while looking the IRE_DEFAULT 1778 * entries. We need to keep track of a particular IRE 1779 * (ire_origin) so this ensures that it will not be unlinked 1780 * from the hash list during the recursive lookup below. 1781 */ 1782 IRB_REFHOLD(irb_ptr); 1783 ire = irb_ptr->irb_ire; 1784 if (ire == NULL) { 1785 IRB_REFRELE(irb_ptr); 1786 return (NULL); 1787 } 1788 1789 /* 1790 * Get the index first, since it can be changed by other 1791 * threads. Then get to the right default route skipping 1792 * default interface routes if any. As we hold a reference on 1793 * the IRE bucket, ipv6_ire_default_count can only increase so 1794 * we can't reach the end of the hash list unexpectedly. 1795 */ 1796 if (ipv6_ire_default_count != 0) { 1797 g_index = ipv6_ire_default_index++; 1798 index = g_index % ipv6_ire_default_count; 1799 while (index != 0) { 1800 if (!(ire->ire_type & IRE_INTERFACE)) 1801 index--; 1802 ire = ire->ire_next; 1803 } 1804 ASSERT(ire != NULL); 1805 } else { 1806 /* 1807 * No default route, so we only have default interface 1808 * routes: don't enter the first loop. 1809 */ 1810 ire = NULL; 1811 } 1812 1813 /* 1814 * Round-robin the default routers list looking for a neighbor 1815 * that matches the passed in parameters and is reachable. If 1816 * none found, just return a route from the default router list 1817 * if it exists. If we can't find a default route (IRE_DEFAULT), 1818 * look for interface default routes. 1819 * We start with the ire we found above and we walk the hash 1820 * list until we're back where we started, see 1821 * ire_get_next_default_ire(). It doesn't matter if default 1822 * routes are added or deleted by other threads - we know this 1823 * ire will stay in the list because we hold a reference on the 1824 * ire bucket. 1825 * NB: if we only have interface default routes, ire is NULL so 1826 * we don't even enter this loop (see above). 1827 */ 1828 ire_origin = ire; 1829 for (; ire != NULL; 1830 ire = ire_get_next_default_ire(ire, ire_origin)) { 1831 1832 if (ire_match_args_v6(ire, addr, 1833 &ipv6_all_zeros, gateway, type, ipif, 1834 zoneid, ihandle, tsl, flags)) { 1835 int match_flags; 1836 1837 /* 1838 * We have something to work with. 1839 * If we can find a resolved/reachable 1840 * entry, we will use this. Otherwise 1841 * we'll try to find an entry that has 1842 * a resolved cache entry. We will fallback 1843 * on this if we don't find anything else. 1844 */ 1845 if (saved_ire == NULL) 1846 saved_ire = ire; 1847 mutex_enter(&ire->ire_lock); 1848 gw_addr_v6 = ire->ire_gateway_addr_v6; 1849 mutex_exit(&ire->ire_lock); 1850 match_flags = MATCH_IRE_ILL_GROUP | 1851 MATCH_IRE_SECATTR; 1852 rire = ire_ctable_lookup_v6(&gw_addr_v6, NULL, 1853 0, ire->ire_ipif, zoneid, tsl, match_flags); 1854 if (rire != NULL) { 1855 nce = rire->ire_nce; 1856 if (nce != NULL && 1857 NCE_ISREACHABLE(nce) && 1858 nce->nce_flags & NCE_F_ISROUTER) { 1859 ire_refrele(rire); 1860 IRE_REFHOLD(ire); 1861 IRB_REFRELE(irb_ptr); 1862 goto found_ire_held; 1863 } else if (nce != NULL && 1864 !(nce->nce_flags & 1865 NCE_F_ISROUTER)) { 1866 /* 1867 * Make sure we don't use 1868 * this ire 1869 */ 1870 if (saved_ire == ire) 1871 saved_ire = NULL; 1872 } 1873 ire_refrele(rire); 1874 } else if (ipv6_ire_default_count > 1 && 1875 zoneid != ALL_ZONES) { 1876 /* 1877 * When we're in a local zone, we're 1878 * only interested in default routers 1879 * that are reachable through ipifs 1880 * within our zone. 1881 * The potentially expensive call to 1882 * ire_route_lookup_v6() is avoided when 1883 * we have only one default route. 1884 */ 1885 rire = ire_route_lookup_v6(&gw_addr_v6, 1886 NULL, NULL, 0, ire->ire_ipif, NULL, 1887 zoneid, tsl, match_flags); 1888 if (rire != NULL) { 1889 ire_refrele(rire); 1890 saved_ire = ire; 1891 } else if (saved_ire == ire) { 1892 /* 1893 * Make sure we don't use 1894 * this ire 1895 */ 1896 saved_ire = NULL; 1897 } 1898 } 1899 } 1900 } 1901 if (saved_ire != NULL) { 1902 ire = saved_ire; 1903 IRE_REFHOLD(ire); 1904 IRB_REFRELE(irb_ptr); 1905 goto found_ire_held; 1906 } else { 1907 /* 1908 * Look for a interface default route matching the 1909 * args passed in. No round robin here. Just pick 1910 * the right one. 1911 */ 1912 for (ire = irb_ptr->irb_ire; ire != NULL; 1913 ire = ire->ire_next) { 1914 1915 if (!(ire->ire_type & IRE_INTERFACE)) 1916 continue; 1917 1918 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1919 continue; 1920 1921 if (ire_match_args_v6(ire, addr, 1922 &ipv6_all_zeros, gateway, type, ipif, 1923 zoneid, ihandle, tsl, flags)) { 1924 IRE_REFHOLD(ire); 1925 IRB_REFRELE(irb_ptr); 1926 goto found_ire_held; 1927 } 1928 } 1929 IRB_REFRELE(irb_ptr); 1930 } 1931 } 1932 ASSERT(ire == NULL); 1933 ip1dbg(("ire_ftable_lookup_v6: returning NULL ire")); 1934 return (NULL); 1935 found_ire: 1936 ASSERT((ire->ire_marks & IRE_MARK_CONDEMNED) == 0); 1937 IRE_REFHOLD(ire); 1938 rw_exit(&irb_ptr->irb_lock); 1939 1940 found_ire_held: 1941 if ((flags & MATCH_IRE_RJ_BHOLE) && 1942 (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { 1943 return (ire); 1944 } 1945 /* 1946 * At this point, IRE that was found must be an IRE_FORWARDTABLE 1947 * or IRE_CACHETABLE type. If this is a recursive lookup and an 1948 * IRE_INTERFACE type was found, return that. If it was some other 1949 * IRE_FORWARDTABLE type of IRE (one of the prefix types), then it 1950 * is necessary to fill in the parent IRE pointed to by pire, and 1951 * then lookup the gateway address of the parent. For backwards 1952 * compatiblity, if this lookup returns an 1953 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level 1954 * of lookup is done. 1955 */ 1956 if (flags & MATCH_IRE_RECURSIVE) { 1957 const ipif_t *gw_ipif; 1958 int match_flags = MATCH_IRE_DSTONLY; 1959 1960 if (ire->ire_type & IRE_INTERFACE) 1961 return (ire); 1962 if (pire != NULL) 1963 *pire = ire; 1964 /* 1965 * If we can't find an IRE_INTERFACE or the caller has not 1966 * asked for pire, we need to REFRELE the saved_ire. 1967 */ 1968 saved_ire = ire; 1969 1970 /* 1971 * Currently MATCH_IRE_ILL is never used with 1972 * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while 1973 * sending out packets as MATCH_IRE_ILL is used only 1974 * for communicating with on-link hosts. We can't assert 1975 * that here as RTM_GET calls this function with 1976 * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. 1977 * We have already used the MATCH_IRE_ILL in determining 1978 * the right prefix route at this point. To match the 1979 * behavior of how we locate routes while sending out 1980 * packets, we don't want to use MATCH_IRE_ILL below 1981 * while locating the interface route. 1982 */ 1983 if (ire->ire_ipif != NULL) 1984 match_flags |= MATCH_IRE_ILL_GROUP; 1985 1986 mutex_enter(&ire->ire_lock); 1987 gw_addr_v6 = ire->ire_gateway_addr_v6; 1988 mutex_exit(&ire->ire_lock); 1989 1990 ire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, 0, 1991 ire->ire_ipif, NULL, zoneid, tsl, match_flags); 1992 if (ire == NULL) { 1993 /* 1994 * In this case we have to deal with the 1995 * MATCH_IRE_PARENT flag, which means the 1996 * parent has to be returned if ire is NULL. 1997 * The aim of this is to have (at least) a starting 1998 * ire when we want to look at all of the ires in a 1999 * bucket aimed at a single destination (as is the 2000 * case in ip_newroute_v6 for the RTF_MULTIRT 2001 * flagged routes). 2002 */ 2003 if (flags & MATCH_IRE_PARENT) { 2004 if (pire != NULL) { 2005 /* 2006 * Need an extra REFHOLD, if the 2007 * parent ire is returned via both 2008 * ire and pire. 2009 */ 2010 IRE_REFHOLD(saved_ire); 2011 } 2012 ire = saved_ire; 2013 } else { 2014 ire_refrele(saved_ire); 2015 if (pire != NULL) 2016 *pire = NULL; 2017 } 2018 return (ire); 2019 } 2020 if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { 2021 /* 2022 * If the caller did not ask for pire, release 2023 * it now. 2024 */ 2025 if (pire == NULL) { 2026 ire_refrele(saved_ire); 2027 } 2028 return (ire); 2029 } 2030 match_flags |= MATCH_IRE_TYPE; 2031 mutex_enter(&ire->ire_lock); 2032 gw_addr_v6 = ire->ire_gateway_addr_v6; 2033 mutex_exit(&ire->ire_lock); 2034 gw_ipif = ire->ire_ipif; 2035 ire_refrele(ire); 2036 ire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, 2037 (IRE_CACHETABLE | IRE_INTERFACE), gw_ipif, NULL, zoneid, 2038 NULL, match_flags); 2039 if (ire == NULL) { 2040 /* 2041 * In this case we have to deal with the 2042 * MATCH_IRE_PARENT flag, which means the 2043 * parent has to be returned if ire is NULL. 2044 * The aim of this is to have (at least) a starting 2045 * ire when we want to look at all of the ires in a 2046 * bucket aimed at a single destination (as is the 2047 * case in ip_newroute_v6 for the RTF_MULTIRT 2048 * flagged routes). 2049 */ 2050 if (flags & MATCH_IRE_PARENT) { 2051 if (pire != NULL) { 2052 /* 2053 * Need an extra REFHOLD, if the 2054 * parent ire is returned via both 2055 * ire and pire. 2056 */ 2057 IRE_REFHOLD(saved_ire); 2058 } 2059 ire = saved_ire; 2060 } else { 2061 ire_refrele(saved_ire); 2062 if (pire != NULL) 2063 *pire = NULL; 2064 } 2065 return (ire); 2066 } else if (pire == NULL) { 2067 /* 2068 * If the caller did not ask for pire, release 2069 * it now. 2070 */ 2071 ire_refrele(saved_ire); 2072 } 2073 return (ire); 2074 } 2075 2076 ASSERT(pire == NULL || *pire == NULL); 2077 return (ire); 2078 } 2079 2080 /* 2081 * Delete the IRE cache for the gateway and all IRE caches whose 2082 * ire_gateway_addr_v6 points to this gateway, and allow them to 2083 * be created on demand by ip_newroute_v6. 2084 */ 2085 void 2086 ire_clookup_delete_cache_gw_v6(const in6_addr_t *addr, zoneid_t zoneid) 2087 { 2088 irb_t *irb; 2089 ire_t *ire; 2090 2091 irb = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; 2092 IRB_REFHOLD(irb); 2093 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2094 if (ire->ire_marks & IRE_MARK_CONDEMNED) 2095 continue; 2096 2097 ASSERT(IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, &ipv6_all_ones)); 2098 if (ire_match_args_v6(ire, addr, &ire->ire_mask_v6, 0, 2099 IRE_CACHE, NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 2100 ire_delete(ire); 2101 } 2102 } 2103 IRB_REFRELE(irb); 2104 2105 ire_walk_v6(ire_delete_cache_gw_v6, (char *)addr, zoneid); 2106 } 2107 2108 /* 2109 * Looks up cache table for a route. 2110 * specific lookup can be indicated by 2111 * passing the MATCH_* flags and the 2112 * necessary parameters. 2113 */ 2114 ire_t * 2115 ire_ctable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *gateway, 2116 int type, const ipif_t *ipif, zoneid_t zoneid, const ts_label_t *tsl, 2117 int flags) 2118 { 2119 ire_t *ire; 2120 irb_t *irb_ptr; 2121 ASSERT(addr != NULL); 2122 ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL); 2123 2124 /* 2125 * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or 2126 * MATCH_IRE_ILL is set. 2127 */ 2128 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 2129 (ipif == NULL)) 2130 return (NULL); 2131 2132 irb_ptr = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, 2133 ip6_cache_table_size)]; 2134 rw_enter(&irb_ptr->irb_lock, RW_READER); 2135 for (ire = irb_ptr->irb_ire; ire; ire = ire->ire_next) { 2136 if (ire->ire_marks & IRE_MARK_CONDEMNED) 2137 continue; 2138 2139 ASSERT(IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, &ipv6_all_ones)); 2140 if (ire_match_args_v6(ire, addr, &ire->ire_mask_v6, gateway, 2141 type, ipif, zoneid, 0, tsl, flags)) { 2142 IRE_REFHOLD(ire); 2143 rw_exit(&irb_ptr->irb_lock); 2144 return (ire); 2145 } 2146 } 2147 rw_exit(&irb_ptr->irb_lock); 2148 return (NULL); 2149 } 2150 2151 /* 2152 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 2153 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 2154 * to the hidden ones. 2155 */ 2156 ire_t * 2157 ire_cache_lookup_v6(const in6_addr_t *addr, zoneid_t zoneid, 2158 const ts_label_t *tsl) 2159 { 2160 irb_t *irb_ptr; 2161 ire_t *ire; 2162 2163 irb_ptr = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, 2164 ip6_cache_table_size)]; 2165 rw_enter(&irb_ptr->irb_lock, RW_READER); 2166 for (ire = irb_ptr->irb_ire; ire; ire = ire->ire_next) { 2167 if (ire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_HIDDEN)) 2168 continue; 2169 if (IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, addr)) { 2170 /* 2171 * Finally, check if the security policy has any 2172 * restriction on using this route for the specified 2173 * message. 2174 */ 2175 if (tsl != NULL && 2176 ire->ire_gw_secattr != NULL && 2177 tsol_ire_match_gwattr(ire, tsl) != 0) { 2178 continue; 2179 } 2180 2181 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 2182 ire->ire_zoneid == ALL_ZONES || 2183 ire->ire_type == IRE_LOCAL) { 2184 IRE_REFHOLD(ire); 2185 rw_exit(&irb_ptr->irb_lock); 2186 return (ire); 2187 } 2188 } 2189 } 2190 rw_exit(&irb_ptr->irb_lock); 2191 return (NULL); 2192 } 2193 2194 /* 2195 * Locate the interface ire that is tied to the cache ire 'cire' via 2196 * cire->ire_ihandle. 2197 * 2198 * We are trying to create the cache ire for an onlink destn. or 2199 * gateway in 'cire'. We are called from ire_add_v6() in the IRE_IF_RESOLVER 2200 * case for xresolv interfaces, after the ire has come back from 2201 * an external resolver. 2202 */ 2203 static ire_t * 2204 ire_ihandle_lookup_onlink_v6(ire_t *cire) 2205 { 2206 ire_t *ire; 2207 int match_flags; 2208 int i; 2209 int j; 2210 irb_t *irb_ptr; 2211 2212 ASSERT(cire != NULL); 2213 2214 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 2215 /* 2216 * We know that the mask of the interface ire equals cire->ire_cmask. 2217 * (When ip_newroute_v6() created 'cire' for an on-link destn. 2218 * it set its cmask from the interface ire's mask) 2219 */ 2220 ire = ire_ftable_lookup_v6(&cire->ire_addr_v6, &cire->ire_cmask_v6, 2221 NULL, IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, 2222 NULL, match_flags); 2223 if (ire != NULL) 2224 return (ire); 2225 /* 2226 * If we didn't find an interface ire above, we can't declare failure. 2227 * For backwards compatibility, we need to support prefix routes 2228 * pointing to next hop gateways that are not on-link. 2229 * 2230 * In the resolver/noresolver case, ip_newroute_v6() thinks 2231 * it is creating the cache ire for an onlink destination in 'cire'. 2232 * But 'cire' is not actually onlink, because ire_ftable_lookup_v6() 2233 * cheated it, by doing ire_route_lookup_v6() twice and returning an 2234 * interface ire. 2235 * 2236 * Eg. default - gw1 (line 1) 2237 * gw1 - gw2 (line 2) 2238 * gw2 - hme0 (line 3) 2239 * 2240 * In the above example, ip_newroute_v6() tried to create the cache ire 2241 * 'cire' for gw1, based on the interface route in line 3. The 2242 * ire_ftable_lookup_v6() above fails, because there is 2243 * no interface route to reach gw1. (it is gw2). We fall thru below. 2244 * 2245 * Do a brute force search based on the ihandle in a subset of the 2246 * forwarding tables, corresponding to cire->ire_cmask_v6. Otherwise 2247 * things become very complex, since we don't have 'pire' in this 2248 * case. (Also note that this method is not possible in the offlink 2249 * case because we don't know the mask) 2250 */ 2251 i = ip_mask_to_plen_v6(&cire->ire_cmask_v6); 2252 if ((ip_forwarding_table_v6[i]) == NULL) 2253 return (NULL); 2254 for (j = 0; j < ip6_ftable_hash_size; j++) { 2255 irb_ptr = &ip_forwarding_table_v6[i][j]; 2256 rw_enter(&irb_ptr->irb_lock, RW_READER); 2257 for (ire = irb_ptr->irb_ire; ire != NULL; 2258 ire = ire->ire_next) { 2259 if (ire->ire_marks & IRE_MARK_CONDEMNED) 2260 continue; 2261 if ((ire->ire_type & IRE_INTERFACE) && 2262 (ire->ire_ihandle == cire->ire_ihandle)) { 2263 IRE_REFHOLD(ire); 2264 rw_exit(&irb_ptr->irb_lock); 2265 return (ire); 2266 } 2267 } 2268 rw_exit(&irb_ptr->irb_lock); 2269 } 2270 return (NULL); 2271 } 2272 2273 2274 /* 2275 * Locate the interface ire that is tied to the cache ire 'cire' via 2276 * cire->ire_ihandle. 2277 * 2278 * We are trying to create the cache ire for an offlink destn based 2279 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 2280 * as found by ip_newroute_v6(). We are called from ip_newroute_v6() in 2281 * the IRE_CACHE case. 2282 */ 2283 ire_t * 2284 ire_ihandle_lookup_offlink_v6(ire_t *cire, ire_t *pire) 2285 { 2286 ire_t *ire; 2287 int match_flags; 2288 in6_addr_t gw_addr; 2289 ipif_t *gw_ipif; 2290 2291 ASSERT(cire != NULL && pire != NULL); 2292 2293 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 2294 /* 2295 * ip_newroute_v6 calls ire_ftable_lookup with MATCH_IRE_ILL only 2296 * for on-link hosts. We should never be here for onlink. 2297 * Thus, use MATCH_IRE_ILL_GROUP. 2298 */ 2299 if (pire->ire_ipif != NULL) 2300 match_flags |= MATCH_IRE_ILL_GROUP; 2301 /* 2302 * We know that the mask of the interface ire equals cire->ire_cmask. 2303 * (When ip_newroute_v6() created 'cire' for an on-link destn. it set 2304 * its cmask from the interface ire's mask) 2305 */ 2306 ire = ire_ftable_lookup_v6(&cire->ire_addr_v6, &cire->ire_cmask_v6, 0, 2307 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 2308 NULL, match_flags); 2309 if (ire != NULL) 2310 return (ire); 2311 /* 2312 * If we didn't find an interface ire above, we can't declare failure. 2313 * For backwards compatibility, we need to support prefix routes 2314 * pointing to next hop gateways that are not on-link. 2315 * 2316 * Assume we are trying to ping some offlink destn, and we have the 2317 * routing table below. 2318 * 2319 * Eg. default - gw1 <--- pire (line 1) 2320 * gw1 - gw2 (line 2) 2321 * gw2 - hme0 (line 3) 2322 * 2323 * If we already have a cache ire for gw1 in 'cire', the 2324 * ire_ftable_lookup_v6 above would have failed, since there is no 2325 * interface ire to reach gw1. We will fallthru below. 2326 * 2327 * Here we duplicate the steps that ire_ftable_lookup_v6() did in 2328 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 2329 * The differences are the following 2330 * i. We want the interface ire only, so we call 2331 * ire_ftable_lookup_v6() instead of ire_route_lookup_v6() 2332 * ii. We look for only prefix routes in the 1st call below. 2333 * ii. We want to match on the ihandle in the 2nd call below. 2334 */ 2335 match_flags = MATCH_IRE_TYPE; 2336 if (pire->ire_ipif != NULL) 2337 match_flags |= MATCH_IRE_ILL_GROUP; 2338 2339 mutex_enter(&pire->ire_lock); 2340 gw_addr = pire->ire_gateway_addr_v6; 2341 mutex_exit(&pire->ire_lock); 2342 ire = ire_ftable_lookup_v6(&gw_addr, 0, 0, IRE_OFFSUBNET, 2343 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 2344 if (ire == NULL) 2345 return (NULL); 2346 /* 2347 * At this point 'ire' corresponds to the entry shown in line 2. 2348 * gw_addr is 'gw2' in the example above. 2349 */ 2350 mutex_enter(&ire->ire_lock); 2351 gw_addr = ire->ire_gateway_addr_v6; 2352 mutex_exit(&ire->ire_lock); 2353 gw_ipif = ire->ire_ipif; 2354 ire_refrele(ire); 2355 2356 match_flags |= MATCH_IRE_IHANDLE; 2357 ire = ire_ftable_lookup_v6(&gw_addr, 0, 0, IRE_INTERFACE, 2358 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 2359 NULL, match_flags); 2360 return (ire); 2361 } 2362 2363 /* 2364 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 2365 * ire associated with the specified ipif. 2366 * 2367 * This might occasionally be called when IPIF_UP is not set since 2368 * the IPV6_MULTICAST_IF as well as creating interface routes 2369 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 2370 * 2371 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 2372 * the ipif this routine might return NULL. 2373 * (Sometimes called as writer though not required by this function.) 2374 */ 2375 ire_t * 2376 ipif_to_ire_v6(const ipif_t *ipif) 2377 { 2378 ire_t *ire; 2379 2380 ASSERT(ipif->ipif_isv6); 2381 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 2382 ire = ire_ctable_lookup_v6(&ipif->ipif_v6lcl_addr, NULL, 2383 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 2384 (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 2385 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 2386 /* In this case we need to lookup destination address. */ 2387 ire = ire_ftable_lookup_v6(&ipif->ipif_v6pp_dst_addr, 2388 &ipv6_all_ones, NULL, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 2389 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 2390 MATCH_IRE_MASK)); 2391 } else { 2392 ire = ire_ftable_lookup_v6(&ipif->ipif_v6subnet, 2393 &ipif->ipif_v6net_mask, NULL, IRE_INTERFACE, ipif, NULL, 2394 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 2395 MATCH_IRE_MASK)); 2396 } 2397 return (ire); 2398 } 2399 2400 /* 2401 * Return B_TRUE if a multirt route is resolvable 2402 * (or if no route is resolved yet), B_FALSE otherwise. 2403 * This only works in the global zone. 2404 */ 2405 boolean_t 2406 ire_multirt_need_resolve_v6(const in6_addr_t *v6dstp, const ts_label_t *tsl) 2407 { 2408 ire_t *first_fire; 2409 ire_t *first_cire; 2410 ire_t *fire; 2411 ire_t *cire; 2412 irb_t *firb; 2413 irb_t *cirb; 2414 int unres_cnt = 0; 2415 boolean_t resolvable = B_FALSE; 2416 2417 /* Retrieve the first IRE_HOST that matches the destination */ 2418 first_fire = ire_ftable_lookup_v6(v6dstp, &ipv6_all_ones, 0, IRE_HOST, 2419 NULL, NULL, ALL_ZONES, 0, tsl, MATCH_IRE_MASK | MATCH_IRE_TYPE | 2420 MATCH_IRE_SECATTR); 2421 2422 /* No route at all */ 2423 if (first_fire == NULL) { 2424 return (B_TRUE); 2425 } 2426 2427 firb = first_fire->ire_bucket; 2428 ASSERT(firb); 2429 2430 /* Retrieve the first IRE_CACHE ire for that destination. */ 2431 first_cire = ire_cache_lookup_v6(v6dstp, GLOBAL_ZONEID, tsl); 2432 2433 /* No resolved route. */ 2434 if (first_cire == NULL) { 2435 ire_refrele(first_fire); 2436 return (B_TRUE); 2437 } 2438 2439 /* At least one route is resolved. */ 2440 2441 cirb = first_cire->ire_bucket; 2442 ASSERT(cirb); 2443 2444 /* Count the number of routes to that dest that are declared. */ 2445 IRB_REFHOLD(firb); 2446 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 2447 if (!(fire->ire_flags & RTF_MULTIRT)) 2448 continue; 2449 if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, v6dstp)) 2450 continue; 2451 unres_cnt++; 2452 } 2453 IRB_REFRELE(firb); 2454 2455 2456 /* Then subtract the number of routes to that dst that are resolved */ 2457 IRB_REFHOLD(cirb); 2458 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 2459 if (!(cire->ire_flags & RTF_MULTIRT)) 2460 continue; 2461 if (!IN6_ARE_ADDR_EQUAL(&cire->ire_addr_v6, v6dstp)) 2462 continue; 2463 if (cire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_HIDDEN)) 2464 continue; 2465 unres_cnt--; 2466 } 2467 IRB_REFRELE(cirb); 2468 2469 /* At least one route is unresolved; search for a resolvable route. */ 2470 if (unres_cnt > 0) 2471 resolvable = ire_multirt_lookup_v6(&first_cire, &first_fire, 2472 MULTIRT_USESTAMP|MULTIRT_CACHEGW, tsl); 2473 2474 if (first_fire) 2475 ire_refrele(first_fire); 2476 2477 if (first_cire) 2478 ire_refrele(first_cire); 2479 2480 return (resolvable); 2481 } 2482 2483 2484 /* 2485 * Return B_TRUE and update *ire_arg and *fire_arg 2486 * if at least one resolvable route is found. 2487 * Return B_FALSE otherwise (all routes are resolved or 2488 * the remaining unresolved routes are all unresolvable). 2489 * This only works in the global zone. 2490 */ 2491 boolean_t 2492 ire_multirt_lookup_v6(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 2493 const ts_label_t *tsl) 2494 { 2495 clock_t delta; 2496 ire_t *best_fire = NULL; 2497 ire_t *best_cire = NULL; 2498 ire_t *first_fire; 2499 ire_t *first_cire; 2500 ire_t *fire; 2501 ire_t *cire; 2502 irb_t *firb = NULL; 2503 irb_t *cirb = NULL; 2504 ire_t *gw_ire; 2505 boolean_t already_resolved; 2506 boolean_t res; 2507 in6_addr_t v6dst; 2508 in6_addr_t v6gw; 2509 2510 ip2dbg(("ire_multirt_lookup_v6: *ire_arg %p, *fire_arg %p, " 2511 "flags %04x\n", (void *)*ire_arg, (void *)*fire_arg, flags)); 2512 2513 ASSERT(ire_arg); 2514 ASSERT(fire_arg); 2515 2516 /* Not an IRE_HOST ire; give up. */ 2517 if ((*fire_arg == NULL) || 2518 ((*fire_arg)->ire_type != IRE_HOST)) { 2519 return (B_FALSE); 2520 } 2521 2522 /* This is the first IRE_HOST ire for that destination. */ 2523 first_fire = *fire_arg; 2524 firb = first_fire->ire_bucket; 2525 ASSERT(firb); 2526 2527 mutex_enter(&first_fire->ire_lock); 2528 v6dst = first_fire->ire_addr_v6; 2529 mutex_exit(&first_fire->ire_lock); 2530 2531 ip2dbg(("ire_multirt_lookup_v6: dst %08x\n", 2532 ntohl(V4_PART_OF_V6(v6dst)))); 2533 2534 /* 2535 * Retrieve the first IRE_CACHE ire for that destination; 2536 * if we don't find one, no route for that dest is 2537 * resolved yet. 2538 */ 2539 first_cire = ire_cache_lookup_v6(&v6dst, GLOBAL_ZONEID, tsl); 2540 if (first_cire) { 2541 cirb = first_cire->ire_bucket; 2542 } 2543 2544 ip2dbg(("ire_multirt_lookup_v6: first_cire %p\n", (void *)first_cire)); 2545 2546 /* 2547 * Search for a resolvable route, giving the top priority 2548 * to routes that can be resolved without any call to the resolver. 2549 */ 2550 IRB_REFHOLD(firb); 2551 2552 if (!IN6_IS_ADDR_MULTICAST(&v6dst)) { 2553 /* 2554 * For all multiroute IRE_HOST ires for that destination, 2555 * check if the route via the IRE_HOST's gateway is 2556 * resolved yet. 2557 */ 2558 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 2559 2560 if (!(fire->ire_flags & RTF_MULTIRT)) 2561 continue; 2562 if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, &v6dst)) 2563 continue; 2564 2565 if (fire->ire_gw_secattr != NULL && 2566 tsol_ire_match_gwattr(fire, tsl) != 0) { 2567 continue; 2568 } 2569 2570 mutex_enter(&fire->ire_lock); 2571 v6gw = fire->ire_gateway_addr_v6; 2572 mutex_exit(&fire->ire_lock); 2573 2574 ip2dbg(("ire_multirt_lookup_v6: fire %p, " 2575 "ire_addr %08x, ire_gateway_addr %08x\n", 2576 (void *)fire, 2577 ntohl(V4_PART_OF_V6(fire->ire_addr_v6)), 2578 ntohl(V4_PART_OF_V6(v6gw)))); 2579 2580 already_resolved = B_FALSE; 2581 2582 if (first_cire) { 2583 ASSERT(cirb); 2584 2585 IRB_REFHOLD(cirb); 2586 /* 2587 * For all IRE_CACHE ires for that 2588 * destination. 2589 */ 2590 for (cire = first_cire; 2591 cire != NULL; 2592 cire = cire->ire_next) { 2593 2594 if (!(cire->ire_flags & RTF_MULTIRT)) 2595 continue; 2596 if (!IN6_ARE_ADDR_EQUAL( 2597 &cire->ire_addr_v6, &v6dst)) 2598 continue; 2599 if (cire->ire_marks & 2600 (IRE_MARK_CONDEMNED| 2601 IRE_MARK_HIDDEN)) 2602 continue; 2603 2604 if (cire->ire_gw_secattr != NULL && 2605 tsol_ire_match_gwattr(cire, 2606 tsl) != 0) { 2607 continue; 2608 } 2609 2610 /* 2611 * Check if the IRE_CACHE's gateway 2612 * matches the IRE_HOST's gateway. 2613 */ 2614 if (IN6_ARE_ADDR_EQUAL( 2615 &cire->ire_gateway_addr_v6, 2616 &v6gw)) { 2617 already_resolved = B_TRUE; 2618 break; 2619 } 2620 } 2621 IRB_REFRELE(cirb); 2622 } 2623 2624 /* 2625 * This route is already resolved; 2626 * proceed with next one. 2627 */ 2628 if (already_resolved) { 2629 ip2dbg(("ire_multirt_lookup_v6: found cire %p, " 2630 "already resolved\n", (void *)cire)); 2631 continue; 2632 } 2633 2634 /* 2635 * The route is unresolved; is it actually 2636 * resolvable, i.e. is there a cache or a resolver 2637 * for the gateway? 2638 */ 2639 gw_ire = ire_route_lookup_v6(&v6gw, 0, 0, 0, NULL, NULL, 2640 ALL_ZONES, tsl, MATCH_IRE_RECURSIVE | 2641 MATCH_IRE_SECATTR); 2642 2643 ip2dbg(("ire_multirt_lookup_v6: looked up gw_ire %p\n", 2644 (void *)gw_ire)); 2645 2646 /* 2647 * This route can be resolved without any call to the 2648 * resolver; if the MULTIRT_CACHEGW flag is set, 2649 * give the top priority to this ire and exit the 2650 * loop. 2651 * This occurs when an resolver reply is processed 2652 * through ip_wput_nondata() 2653 */ 2654 if ((flags & MULTIRT_CACHEGW) && 2655 (gw_ire != NULL) && 2656 (gw_ire->ire_type & IRE_CACHETABLE)) { 2657 /* 2658 * Release the resolver associated to the 2659 * previous candidate best ire, if any. 2660 */ 2661 if (best_cire) { 2662 ire_refrele(best_cire); 2663 ASSERT(best_fire); 2664 } 2665 2666 best_fire = fire; 2667 best_cire = gw_ire; 2668 2669 ip2dbg(("ire_multirt_lookup_v6: found top prio " 2670 "best_fire %p, best_cire %p\n", 2671 (void *)best_fire, (void *)best_cire)); 2672 break; 2673 } 2674 2675 /* 2676 * Compute the time elapsed since our preceding 2677 * attempt to resolve that route. 2678 * If the MULTIRT_USESTAMP flag is set, we take that 2679 * route into account only if this time interval 2680 * exceeds ip_multirt_resolution_interval; 2681 * this prevents us from attempting to resolve a 2682 * broken route upon each sending of a packet. 2683 */ 2684 delta = lbolt - fire->ire_last_used_time; 2685 delta = TICK_TO_MSEC(delta); 2686 2687 res = (boolean_t) 2688 ((delta > ip_multirt_resolution_interval) || 2689 (!(flags & MULTIRT_USESTAMP))); 2690 2691 ip2dbg(("ire_multirt_lookup_v6: fire %p, delta %lu, " 2692 "res %d\n", 2693 (void *)fire, delta, res)); 2694 2695 if (res) { 2696 /* 2697 * A resolver exists for the gateway: save 2698 * the current IRE_HOST ire as a candidate 2699 * best ire. If we later discover that a 2700 * top priority ire exists (i.e. no need to 2701 * call the resolver), then this new ire 2702 * will be preferred to the current one. 2703 */ 2704 if (gw_ire != NULL) { 2705 if (best_fire == NULL) { 2706 ASSERT(best_cire == NULL); 2707 2708 best_fire = fire; 2709 best_cire = gw_ire; 2710 2711 ip2dbg(("ire_multirt_lookup_v6:" 2712 "found candidate " 2713 "best_fire %p, " 2714 "best_cire %p\n", 2715 (void *)best_fire, 2716 (void *)best_cire)); 2717 2718 /* 2719 * If MULTIRT_CACHEGW is not 2720 * set, we ignore the top 2721 * priority ires that can 2722 * be resolved without any 2723 * call to the resolver; 2724 * In that case, there is 2725 * actually no need 2726 * to continue the loop. 2727 */ 2728 if (!(flags & 2729 MULTIRT_CACHEGW)) { 2730 break; 2731 } 2732 continue; 2733 } 2734 } else { 2735 /* 2736 * No resolver for the gateway: the 2737 * route is not resolvable. 2738 * If the MULTIRT_SETSTAMP flag is 2739 * set, we stamp the IRE_HOST ire, 2740 * so we will not select it again 2741 * during this resolution interval. 2742 */ 2743 if (flags & MULTIRT_SETSTAMP) 2744 fire->ire_last_used_time = 2745 lbolt; 2746 } 2747 } 2748 2749 if (gw_ire != NULL) 2750 ire_refrele(gw_ire); 2751 } 2752 } else { /* IN6_IS_ADDR_MULTICAST(&v6dst) */ 2753 2754 for (fire = first_fire; 2755 fire != NULL; 2756 fire = fire->ire_next) { 2757 2758 if (!(fire->ire_flags & RTF_MULTIRT)) 2759 continue; 2760 if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, &v6dst)) 2761 continue; 2762 2763 if (fire->ire_gw_secattr != NULL && 2764 tsol_ire_match_gwattr(fire, tsl) != 0) { 2765 continue; 2766 } 2767 2768 already_resolved = B_FALSE; 2769 2770 mutex_enter(&fire->ire_lock); 2771 v6gw = fire->ire_gateway_addr_v6; 2772 mutex_exit(&fire->ire_lock); 2773 2774 gw_ire = ire_ftable_lookup_v6(&v6gw, 0, 0, 2775 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, tsl, 2776 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 2777 MATCH_IRE_SECATTR); 2778 2779 /* No resolver for the gateway; we skip this ire. */ 2780 if (gw_ire == NULL) { 2781 continue; 2782 } 2783 2784 if (first_cire) { 2785 2786 IRB_REFHOLD(cirb); 2787 /* 2788 * For all IRE_CACHE ires for that 2789 * destination. 2790 */ 2791 for (cire = first_cire; 2792 cire != NULL; 2793 cire = cire->ire_next) { 2794 2795 if (!(cire->ire_flags & RTF_MULTIRT)) 2796 continue; 2797 if (!IN6_ARE_ADDR_EQUAL( 2798 &cire->ire_addr_v6, &v6dst)) 2799 continue; 2800 if (cire->ire_marks & 2801 (IRE_MARK_CONDEMNED| 2802 IRE_MARK_HIDDEN)) 2803 continue; 2804 2805 if (cire->ire_gw_secattr != NULL && 2806 tsol_ire_match_gwattr(cire, 2807 tsl) != 0) { 2808 continue; 2809 } 2810 2811 /* 2812 * Cache entries are linked to the 2813 * parent routes using the parent handle 2814 * (ire_phandle). If no cache entry has 2815 * the same handle as fire, fire is 2816 * still unresolved. 2817 */ 2818 ASSERT(cire->ire_phandle != 0); 2819 if (cire->ire_phandle == 2820 fire->ire_phandle) { 2821 already_resolved = B_TRUE; 2822 break; 2823 } 2824 } 2825 IRB_REFRELE(cirb); 2826 } 2827 2828 /* 2829 * This route is already resolved; proceed with 2830 * next one. 2831 */ 2832 if (already_resolved) { 2833 ire_refrele(gw_ire); 2834 continue; 2835 } 2836 2837 /* 2838 * Compute the time elapsed since our preceding 2839 * attempt to resolve that route. 2840 * If the MULTIRT_USESTAMP flag is set, we take 2841 * that route into account only if this time 2842 * interval exceeds ip_multirt_resolution_interval; 2843 * this prevents us from attempting to resolve a 2844 * broken route upon each sending of a packet. 2845 */ 2846 delta = lbolt - fire->ire_last_used_time; 2847 delta = TICK_TO_MSEC(delta); 2848 2849 res = (boolean_t) 2850 ((delta > ip_multirt_resolution_interval) || 2851 (!(flags & MULTIRT_USESTAMP))); 2852 2853 ip3dbg(("ire_multirt_lookup_v6: fire %p, delta %lx, " 2854 "flags %04x, res %d\n", 2855 (void *)fire, delta, flags, res)); 2856 2857 if (res) { 2858 if (best_cire) { 2859 /* 2860 * Release the resolver associated 2861 * to the preceding candidate best 2862 * ire, if any. 2863 */ 2864 ire_refrele(best_cire); 2865 ASSERT(best_fire); 2866 } 2867 best_fire = fire; 2868 best_cire = gw_ire; 2869 continue; 2870 } 2871 2872 ire_refrele(gw_ire); 2873 } 2874 } 2875 2876 if (best_fire) { 2877 IRE_REFHOLD(best_fire); 2878 } 2879 IRB_REFRELE(firb); 2880 2881 /* Release the first IRE_CACHE we initially looked up, if any. */ 2882 if (first_cire) 2883 ire_refrele(first_cire); 2884 2885 /* Found a resolvable route. */ 2886 if (best_fire) { 2887 ASSERT(best_cire); 2888 2889 if (*fire_arg) 2890 ire_refrele(*fire_arg); 2891 if (*ire_arg) 2892 ire_refrele(*ire_arg); 2893 2894 /* 2895 * Update the passed arguments with the 2896 * resolvable multirt route we found 2897 */ 2898 *fire_arg = best_fire; 2899 *ire_arg = best_cire; 2900 2901 ip2dbg(("ire_multirt_lookup_v6: returning B_TRUE, " 2902 "*fire_arg %p, *ire_arg %p\n", 2903 (void *)best_fire, (void *)best_cire)); 2904 2905 return (B_TRUE); 2906 } 2907 2908 ASSERT(best_cire == NULL); 2909 2910 ip2dbg(("ire_multirt_lookup_v6: returning B_FALSE, *fire_arg %p, " 2911 "*ire_arg %p\n", 2912 (void *)*fire_arg, (void *)*ire_arg)); 2913 2914 /* No resolvable route. */ 2915 return (B_FALSE); 2916 } 2917 2918 2919 /* 2920 * Find an IRE_OFFSUBNET IRE entry for the multicast address 'v6dstp' 2921 * that goes through 'ipif'. As a fallback, a route that goes through 2922 * ipif->ipif_ill can be returned. 2923 */ 2924 ire_t * 2925 ipif_lookup_multi_ire_v6(ipif_t *ipif, const in6_addr_t *v6dstp) 2926 { 2927 ire_t *ire; 2928 ire_t *save_ire = NULL; 2929 ire_t *gw_ire; 2930 irb_t *irb; 2931 in6_addr_t v6gw; 2932 int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 2933 2934 ire = ire_ftable_lookup_v6(v6dstp, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, 2935 NULL, MATCH_IRE_DEFAULT); 2936 2937 if (ire == NULL) 2938 return (NULL); 2939 2940 irb = ire->ire_bucket; 2941 ASSERT(irb); 2942 2943 IRB_REFHOLD(irb); 2944 ire_refrele(ire); 2945 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2946 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6dstp) || 2947 (ipif->ipif_zoneid != ire->ire_zoneid && 2948 ire->ire_zoneid != ALL_ZONES)) { 2949 continue; 2950 } 2951 2952 switch (ire->ire_type) { 2953 case IRE_DEFAULT: 2954 case IRE_PREFIX: 2955 case IRE_HOST: 2956 mutex_enter(&ire->ire_lock); 2957 v6gw = ire->ire_gateway_addr_v6; 2958 mutex_exit(&ire->ire_lock); 2959 gw_ire = ire_ftable_lookup_v6(&v6gw, 0, 0, 2960 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2961 NULL, match_flags); 2962 2963 if (gw_ire != NULL) { 2964 if (save_ire != NULL) { 2965 ire_refrele(save_ire); 2966 } 2967 IRE_REFHOLD(ire); 2968 if (gw_ire->ire_ipif == ipif) { 2969 ire_refrele(gw_ire); 2970 2971 IRB_REFRELE(irb); 2972 return (ire); 2973 } 2974 ire_refrele(gw_ire); 2975 save_ire = ire; 2976 } 2977 break; 2978 case IRE_IF_NORESOLVER: 2979 case IRE_IF_RESOLVER: 2980 if (ire->ire_ipif == ipif) { 2981 if (save_ire != NULL) { 2982 ire_refrele(save_ire); 2983 } 2984 IRE_REFHOLD(ire); 2985 2986 IRB_REFRELE(irb); 2987 return (ire); 2988 } 2989 break; 2990 } 2991 } 2992 IRB_REFRELE(irb); 2993 2994 return (save_ire); 2995 } 2996