1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1758 break; 1759 case ICMP_ADDRESS_MASK_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1761 break; 1762 default: 1763 interested = B_TRUE; /* Pass up to transport */ 1764 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1765 break; 1766 } 1767 /* See if there is an ICMP client. */ 1768 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1769 /* If there is an ICMP client and we want one too, copy it. */ 1770 mblk_t *first_mp1; 1771 1772 if (!interested) { 1773 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1774 ip_policy, recv_ill, zoneid); 1775 return; 1776 } 1777 first_mp1 = ip_copymsg(first_mp); 1778 if (first_mp1 != NULL) { 1779 ip_fanout_proto(q, first_mp1, ill, ipha, 1780 0, mctl_present, ip_policy, recv_ill, zoneid); 1781 } 1782 } else if (!interested) { 1783 freemsg(first_mp); 1784 return; 1785 } else { 1786 /* 1787 * Initiate policy processing for this packet if ip_policy 1788 * is true. 1789 */ 1790 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1791 ill_index = ill->ill_phyint->phyint_ifindex; 1792 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1793 if (mp == NULL) { 1794 if (mctl_present) { 1795 freeb(first_mp); 1796 } 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1798 return; 1799 } 1800 } 1801 } 1802 /* We want to do something with it. */ 1803 /* Check db_ref to make sure we can modify the packet. */ 1804 if (mp->b_datap->db_ref > 1) { 1805 mblk_t *first_mp1; 1806 1807 first_mp1 = ip_copymsg(first_mp); 1808 freemsg(first_mp); 1809 if (!first_mp1) { 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1811 return; 1812 } 1813 first_mp = first_mp1; 1814 if (mctl_present) { 1815 mp = first_mp->b_cont; 1816 ASSERT(mp != NULL); 1817 } else { 1818 mp = first_mp; 1819 } 1820 ipha = (ipha_t *)mp->b_rptr; 1821 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1822 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1823 } 1824 switch (icmph->icmph_type) { 1825 case ICMP_ADDRESS_MASK_REQUEST: 1826 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1827 if (ipif == NULL) { 1828 freemsg(first_mp); 1829 return; 1830 } 1831 /* 1832 * outging interface must be IPv4 1833 */ 1834 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1835 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1836 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1837 ipif_refrele(ipif); 1838 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1839 break; 1840 case ICMP_ECHO_REQUEST: 1841 icmph->icmph_type = ICMP_ECHO_REPLY; 1842 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1843 break; 1844 case ICMP_TIME_STAMP_REQUEST: { 1845 uint32_t *tsp; 1846 1847 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1848 tsp = (uint32_t *)wptr; 1849 tsp++; /* Skip past 'originate time' */ 1850 /* Compute # of milliseconds since midnight */ 1851 gethrestime(&now); 1852 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1853 now.tv_nsec / (NANOSEC / MILLISEC); 1854 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1855 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1857 break; 1858 } 1859 default: 1860 ipha = (ipha_t *)&icmph[1]; 1861 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1862 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1864 freemsg(first_mp); 1865 return; 1866 } 1867 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1868 ipha = (ipha_t *)&icmph[1]; 1869 } 1870 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 hdr_length = IPH_HDR_LENGTH(ipha); 1876 if (hdr_length < sizeof (ipha_t)) { 1877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1882 if (!pullupmsg(mp, 1883 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1889 ipha = (ipha_t *)&icmph[1]; 1890 } 1891 switch (icmph->icmph_type) { 1892 case ICMP_REDIRECT: 1893 /* 1894 * As there is no upper client to deliver, we don't 1895 * need the first_mp any more. 1896 */ 1897 if (mctl_present) { 1898 freeb(first_mp); 1899 } 1900 icmp_redirect(ill, mp); 1901 return; 1902 case ICMP_DEST_UNREACHABLE: 1903 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1904 if (!icmp_inbound_too_big(icmph, ipha, ill, 1905 zoneid, mp, iph_hdr_length, ipst)) { 1906 freemsg(first_mp); 1907 return; 1908 } 1909 /* 1910 * icmp_inbound_too_big() may alter mp. 1911 * Resynch ipha and icmph accordingly. 1912 */ 1913 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1914 ipha = (ipha_t *)&icmph[1]; 1915 } 1916 /* FALLTHRU */ 1917 default : 1918 /* 1919 * IPQoS notes: Since we have already done IPQoS 1920 * processing we don't want to do it again in 1921 * the fanout routines called by 1922 * icmp_inbound_error_fanout, hence the last 1923 * argument, ip_policy, is B_FALSE. 1924 */ 1925 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1926 ipha, iph_hdr_length, hdr_length, mctl_present, 1927 B_FALSE, recv_ill, zoneid); 1928 } 1929 return; 1930 } 1931 /* Send out an ICMP packet */ 1932 icmph->icmph_checksum = 0; 1933 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1934 if (broadcast || CLASSD(ipha->ipha_dst)) { 1935 ipif_t *ipif_chosen; 1936 /* 1937 * Make it look like it was directed to us, so we don't look 1938 * like a fool with a broadcast or multicast source address. 1939 */ 1940 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1941 /* 1942 * Make sure that we haven't grabbed an interface that's DOWN. 1943 */ 1944 if (ipif != NULL) { 1945 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1946 ipha->ipha_src, zoneid); 1947 if (ipif_chosen != NULL) { 1948 ipif_refrele(ipif); 1949 ipif = ipif_chosen; 1950 } 1951 } 1952 if (ipif == NULL) { 1953 ip0dbg(("icmp_inbound: " 1954 "No source for broadcast/multicast:\n" 1955 "\tsrc 0x%x dst 0x%x ill %p " 1956 "ipif_lcl_addr 0x%x\n", 1957 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1958 (void *)ill, 1959 ill->ill_ipif->ipif_lcl_addr)); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1964 ipha->ipha_dst = ipif->ipif_src_addr; 1965 ipif_refrele(ipif); 1966 } 1967 /* Reset time to live. */ 1968 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1969 { 1970 /* Swap source and destination addresses */ 1971 ipaddr_t tmp; 1972 1973 tmp = ipha->ipha_src; 1974 ipha->ipha_src = ipha->ipha_dst; 1975 ipha->ipha_dst = tmp; 1976 } 1977 ipha->ipha_ident = 0; 1978 if (!IS_SIMPLE_IPH(ipha)) 1979 icmp_options_update(ipha); 1980 1981 /* 1982 * ICMP echo replies should go out on the same interface 1983 * the request came on as probes used by in.mpathd for detecting 1984 * NIC failures are ECHO packets. We turn-off load spreading 1985 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1986 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1987 * function. This is in turn handled by ip_wput and ip_newroute 1988 * to make sure that the packet goes out on the interface it came 1989 * in on. If we don't turnoff load spreading, the packets might get 1990 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1991 * to go out and in.mpathd would wrongly detect a failure or 1992 * mis-detect a NIC failure for link failure. As load spreading 1993 * can happen only if ill_group is not NULL, we do only for 1994 * that case and this does not affect the normal case. 1995 * 1996 * We turn off load spreading only on echo packets that came from 1997 * on-link hosts. If the interface route has been deleted, this will 1998 * not be enforced as we can't do much. For off-link hosts, as the 1999 * default routes in IPv4 does not typically have an ire_ipif 2000 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2001 * Moreover, expecting a default route through this interface may 2002 * not be correct. We use ipha_dst because of the swap above. 2003 */ 2004 onlink = B_FALSE; 2005 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2006 /* 2007 * First, we need to make sure that it is not one of our 2008 * local addresses. If we set onlink when it is one of 2009 * our local addresses, we will end up creating IRE_CACHES 2010 * for one of our local addresses. Then, we will never 2011 * accept packets for them afterwards. 2012 */ 2013 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2014 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2015 if (src_ire == NULL) { 2016 ipif = ipif_get_next_ipif(NULL, ill); 2017 if (ipif == NULL) { 2018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2019 freemsg(mp); 2020 return; 2021 } 2022 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2023 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2024 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2025 ipif_refrele(ipif); 2026 if (src_ire != NULL) { 2027 onlink = B_TRUE; 2028 ire_refrele(src_ire); 2029 } 2030 } else { 2031 ire_refrele(src_ire); 2032 } 2033 } 2034 if (!mctl_present) { 2035 /* 2036 * This packet should go out the same way as it 2037 * came in i.e in clear. To make sure that global 2038 * policy will not be applied to this in ip_wput_ire, 2039 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2040 */ 2041 ASSERT(first_mp == mp); 2042 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2043 if (first_mp == NULL) { 2044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2045 freemsg(mp); 2046 return; 2047 } 2048 ii = (ipsec_in_t *)first_mp->b_rptr; 2049 2050 /* This is not a secure packet */ 2051 ii->ipsec_in_secure = B_FALSE; 2052 if (onlink) { 2053 ii->ipsec_in_attach_if = B_TRUE; 2054 ii->ipsec_in_ill_index = 2055 ill->ill_phyint->phyint_ifindex; 2056 ii->ipsec_in_rill_index = 2057 recv_ill->ill_phyint->phyint_ifindex; 2058 } 2059 first_mp->b_cont = mp; 2060 } else if (onlink) { 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } else { 2067 ii = (ipsec_in_t *)first_mp->b_rptr; 2068 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2069 } 2070 ii->ipsec_in_zoneid = zoneid; 2071 ASSERT(zoneid != ALL_ZONES); 2072 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2074 return; 2075 } 2076 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2077 put(WR(q), first_mp); 2078 } 2079 2080 static ipaddr_t 2081 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2082 { 2083 conn_t *connp; 2084 connf_t *connfp; 2085 ipaddr_t nexthop_addr = INADDR_ANY; 2086 int hdr_length = IPH_HDR_LENGTH(ipha); 2087 uint16_t *up; 2088 uint32_t ports; 2089 ip_stack_t *ipst = ill->ill_ipst; 2090 2091 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2092 switch (ipha->ipha_protocol) { 2093 case IPPROTO_TCP: 2094 { 2095 tcph_t *tcph; 2096 2097 /* do a reverse lookup */ 2098 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2099 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2100 TCPS_LISTEN, ipst); 2101 break; 2102 } 2103 case IPPROTO_UDP: 2104 { 2105 uint32_t dstport, srcport; 2106 2107 ((uint16_t *)&ports)[0] = up[1]; 2108 ((uint16_t *)&ports)[1] = up[0]; 2109 2110 /* Extract ports in net byte order */ 2111 dstport = htons(ntohl(ports) & 0xFFFF); 2112 srcport = htons(ntohl(ports) >> 16); 2113 2114 connfp = &ipst->ips_ipcl_udp_fanout[ 2115 IPCL_UDP_HASH(dstport, ipst)]; 2116 mutex_enter(&connfp->connf_lock); 2117 connp = connfp->connf_head; 2118 2119 /* do a reverse lookup */ 2120 while ((connp != NULL) && 2121 (!IPCL_UDP_MATCH(connp, dstport, 2122 ipha->ipha_src, srcport, ipha->ipha_dst) || 2123 !IPCL_ZONE_MATCH(connp, zoneid))) { 2124 connp = connp->conn_next; 2125 } 2126 if (connp != NULL) 2127 CONN_INC_REF(connp); 2128 mutex_exit(&connfp->connf_lock); 2129 break; 2130 } 2131 case IPPROTO_SCTP: 2132 { 2133 in6_addr_t map_src, map_dst; 2134 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2136 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2137 ((uint16_t *)&ports)[0] = up[1]; 2138 ((uint16_t *)&ports)[1] = up[0]; 2139 2140 connp = sctp_find_conn(&map_src, &map_dst, ports, 2141 zoneid, ipst->ips_netstack->netstack_sctp); 2142 if (connp == NULL) { 2143 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2144 zoneid, ports, ipha, ipst); 2145 } else { 2146 CONN_INC_REF(connp); 2147 SCTP_REFRELE(CONN2SCTP(connp)); 2148 } 2149 break; 2150 } 2151 default: 2152 { 2153 ipha_t ripha; 2154 2155 ripha.ipha_src = ipha->ipha_dst; 2156 ripha.ipha_dst = ipha->ipha_src; 2157 ripha.ipha_protocol = ipha->ipha_protocol; 2158 2159 connfp = &ipst->ips_ipcl_proto_fanout[ 2160 ipha->ipha_protocol]; 2161 mutex_enter(&connfp->connf_lock); 2162 connp = connfp->connf_head; 2163 for (connp = connfp->connf_head; connp != NULL; 2164 connp = connp->conn_next) { 2165 if (IPCL_PROTO_MATCH(connp, 2166 ipha->ipha_protocol, &ripha, ill, 2167 0, zoneid)) { 2168 CONN_INC_REF(connp); 2169 break; 2170 } 2171 } 2172 mutex_exit(&connfp->connf_lock); 2173 } 2174 } 2175 if (connp != NULL) { 2176 if (connp->conn_nexthop_set) 2177 nexthop_addr = connp->conn_nexthop_v4; 2178 CONN_DEC_REF(connp); 2179 } 2180 return (nexthop_addr); 2181 } 2182 2183 /* Table from RFC 1191 */ 2184 static int icmp_frag_size_table[] = 2185 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2186 2187 /* 2188 * Process received ICMP Packet too big. 2189 * After updating any IRE it does the fanout to any matching transport streams. 2190 * Assumes the message has been pulled up till the IP header that caused 2191 * the error. 2192 * 2193 * Returns B_FALSE on failure and B_TRUE on success. 2194 */ 2195 static boolean_t 2196 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2197 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2198 ip_stack_t *ipst) 2199 { 2200 ire_t *ire, *first_ire; 2201 int mtu; 2202 int hdr_length; 2203 ipaddr_t nexthop_addr; 2204 2205 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2206 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2207 ASSERT(ill != NULL); 2208 2209 hdr_length = IPH_HDR_LENGTH(ipha); 2210 2211 /* Drop if the original packet contained a source route */ 2212 if (ip_source_route_included(ipha)) { 2213 return (B_FALSE); 2214 } 2215 /* 2216 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2217 * header. 2218 */ 2219 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2220 mp->b_wptr) { 2221 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2222 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2224 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2225 return (B_FALSE); 2226 } 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 } 2230 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2231 if (nexthop_addr != INADDR_ANY) { 2232 /* nexthop set */ 2233 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2234 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2235 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2236 } else { 2237 /* nexthop not set */ 2238 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2239 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2240 } 2241 2242 if (!first_ire) { 2243 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2244 ntohl(ipha->ipha_dst))); 2245 return (B_FALSE); 2246 } 2247 /* Check for MTU discovery advice as described in RFC 1191 */ 2248 mtu = ntohs(icmph->icmph_du_mtu); 2249 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2250 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2251 ire = ire->ire_next) { 2252 /* 2253 * Look for the connection to which this ICMP message is 2254 * directed. If it has the IP_NEXTHOP option set, then the 2255 * search is limited to IREs with the MATCH_IRE_PRIVATE 2256 * option. Else the search is limited to regular IREs. 2257 */ 2258 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2259 (nexthop_addr != ire->ire_gateway_addr)) || 2260 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != INADDR_ANY))) 2262 continue; 2263 2264 mutex_enter(&ire->ire_lock); 2265 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2266 /* Reduce the IRE max frag value as advised. */ 2267 ip1dbg(("Received mtu from router: %d (was %d)\n", 2268 mtu, ire->ire_max_frag)); 2269 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2270 } else { 2271 uint32_t length; 2272 int i; 2273 2274 /* 2275 * Use the table from RFC 1191 to figure out 2276 * the next "plateau" based on the length in 2277 * the original IP packet. 2278 */ 2279 length = ntohs(ipha->ipha_length); 2280 if (ire->ire_max_frag <= length && 2281 ire->ire_max_frag >= length - hdr_length) { 2282 /* 2283 * Handle broken BSD 4.2 systems that 2284 * return the wrong iph_length in ICMP 2285 * errors. 2286 */ 2287 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2288 length, ire->ire_max_frag)); 2289 length -= hdr_length; 2290 } 2291 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2292 if (length > icmp_frag_size_table[i]) 2293 break; 2294 } 2295 if (i == A_CNT(icmp_frag_size_table)) { 2296 /* Smaller than 68! */ 2297 ip1dbg(("Too big for packet size %d\n", 2298 length)); 2299 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2300 ire->ire_frag_flag = 0; 2301 } else { 2302 mtu = icmp_frag_size_table[i]; 2303 ip1dbg(("Calculated mtu %d, packet size %d, " 2304 "before %d", mtu, length, 2305 ire->ire_max_frag)); 2306 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2307 ip1dbg((", after %d\n", ire->ire_max_frag)); 2308 } 2309 /* Record the new max frag size for the ULP. */ 2310 icmph->icmph_du_zero = 0; 2311 icmph->icmph_du_mtu = 2312 htons((uint16_t)ire->ire_max_frag); 2313 } 2314 mutex_exit(&ire->ire_lock); 2315 } 2316 rw_exit(&first_ire->ire_bucket->irb_lock); 2317 ire_refrele(first_ire); 2318 return (B_TRUE); 2319 } 2320 2321 /* 2322 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2323 * calls this function. 2324 */ 2325 static mblk_t * 2326 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2327 { 2328 ipha_t *ipha; 2329 icmph_t *icmph; 2330 ipha_t *in_ipha; 2331 int length; 2332 2333 ASSERT(mp->b_datap->db_type == M_DATA); 2334 2335 /* 2336 * For Self-encapsulated packets, we added an extra IP header 2337 * without the options. Inner IP header is the one from which 2338 * the outer IP header was formed. Thus, we need to remove the 2339 * outer IP header. To do this, we pullup the whole message 2340 * and overlay whatever follows the outer IP header over the 2341 * outer IP header. 2342 */ 2343 2344 if (!pullupmsg(mp, -1)) 2345 return (NULL); 2346 2347 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2348 ipha = (ipha_t *)&icmph[1]; 2349 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2350 2351 /* 2352 * The length that we want to overlay is following the inner 2353 * IP header. Subtracting the IP header + icmp header + outer 2354 * IP header's length should give us the length that we want to 2355 * overlay. 2356 */ 2357 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2358 hdr_length; 2359 /* 2360 * Overlay whatever follows the inner header over the 2361 * outer header. 2362 */ 2363 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2364 2365 /* Set the wptr to account for the outer header */ 2366 mp->b_wptr -= hdr_length; 2367 return (mp); 2368 } 2369 2370 /* 2371 * Try to pass the ICMP message upstream in case the ULP cares. 2372 * 2373 * If the packet that caused the ICMP error is secure, we send 2374 * it to AH/ESP to make sure that the attached packet has a 2375 * valid association. ipha in the code below points to the 2376 * IP header of the packet that caused the error. 2377 * 2378 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2379 * in the context of IPSEC. Normally we tell the upper layer 2380 * whenever we send the ire (including ip_bind), the IPSEC header 2381 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2382 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2383 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2384 * same thing. As TCP has the IPSEC options size that needs to be 2385 * adjusted, we just pass the MTU unchanged. 2386 * 2387 * IFN could have been generated locally or by some router. 2388 * 2389 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2390 * This happens because IP adjusted its value of MTU on an 2391 * earlier IFN message and could not tell the upper layer, 2392 * the new adjusted value of MTU e.g. Packet was encrypted 2393 * or there was not enough information to fanout to upper 2394 * layers. Thus on the next outbound datagram, ip_wput_ire 2395 * generates the IFN, where IPSEC processing has *not* been 2396 * done. 2397 * 2398 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2399 * could have generated this. This happens because ire_max_frag 2400 * value in IP was set to a new value, while the IPSEC processing 2401 * was being done and after we made the fragmentation check in 2402 * ip_wput_ire. Thus on return from IPSEC processing, 2403 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2404 * and generates the IFN. As IPSEC processing is over, we fanout 2405 * to AH/ESP to remove the header. 2406 * 2407 * In both these cases, ipsec_in_loopback will be set indicating 2408 * that IFN was generated locally. 2409 * 2410 * ROUTER : IFN could be secure or non-secure. 2411 * 2412 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2413 * packet in error has AH/ESP headers to validate the AH/ESP 2414 * headers. AH/ESP will verify whether there is a valid SA or 2415 * not and send it back. We will fanout again if we have more 2416 * data in the packet. 2417 * 2418 * If the packet in error does not have AH/ESP, we handle it 2419 * like any other case. 2420 * 2421 * * NON_SECURE : If the packet in error has AH/ESP headers, 2422 * we attach a dummy ipsec_in and send it up to AH/ESP 2423 * for validation. AH/ESP will verify whether there is a 2424 * valid SA or not and send it back. We will fanout again if 2425 * we have more data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 */ 2430 static void 2431 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2432 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2434 zoneid_t zoneid) 2435 { 2436 uint16_t *up; /* Pointer to ports in ULP header */ 2437 uint32_t ports; /* reversed ports for fanout */ 2438 ipha_t ripha; /* With reversed addresses */ 2439 mblk_t *first_mp; 2440 ipsec_in_t *ii; 2441 tcph_t *tcph; 2442 conn_t *connp; 2443 ip_stack_t *ipst; 2444 2445 ASSERT(ill != NULL); 2446 2447 ASSERT(recv_ill != NULL); 2448 ipst = recv_ill->ill_ipst; 2449 2450 first_mp = mp; 2451 if (mctl_present) { 2452 mp = first_mp->b_cont; 2453 ASSERT(mp != NULL); 2454 2455 ii = (ipsec_in_t *)first_mp->b_rptr; 2456 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2457 } else { 2458 ii = NULL; 2459 } 2460 2461 switch (ipha->ipha_protocol) { 2462 case IPPROTO_UDP: 2463 /* 2464 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2465 * transport header. 2466 */ 2467 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2468 mp->b_wptr) { 2469 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2470 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2471 goto discard_pkt; 2472 } 2473 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2474 ipha = (ipha_t *)&icmph[1]; 2475 } 2476 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2477 2478 /* 2479 * Attempt to find a client stream based on port. 2480 * Note that we do a reverse lookup since the header is 2481 * in the form we sent it out. 2482 * The ripha header is only used for the IP_UDP_MATCH and we 2483 * only set the src and dst addresses and protocol. 2484 */ 2485 ripha.ipha_src = ipha->ipha_dst; 2486 ripha.ipha_dst = ipha->ipha_src; 2487 ripha.ipha_protocol = ipha->ipha_protocol; 2488 ((uint16_t *)&ports)[0] = up[1]; 2489 ((uint16_t *)&ports)[1] = up[0]; 2490 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2491 ntohl(ipha->ipha_src), ntohs(up[0]), 2492 ntohl(ipha->ipha_dst), ntohs(up[1]), 2493 icmph->icmph_type, icmph->icmph_code)); 2494 2495 /* Have to change db_type after any pullupmsg */ 2496 DB_TYPE(mp) = M_CTL; 2497 2498 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2499 mctl_present, ip_policy, recv_ill, zoneid); 2500 return; 2501 2502 case IPPROTO_TCP: 2503 /* 2504 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2505 * transport header. 2506 */ 2507 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2508 mp->b_wptr) { 2509 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2510 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2511 goto discard_pkt; 2512 } 2513 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2514 ipha = (ipha_t *)&icmph[1]; 2515 } 2516 /* 2517 * Find a TCP client stream for this packet. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 */ 2521 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2522 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2523 ipst); 2524 if (connp == NULL) 2525 goto discard_pkt; 2526 2527 /* Have to change db_type after any pullupmsg */ 2528 DB_TYPE(mp) = M_CTL; 2529 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2530 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2531 return; 2532 2533 case IPPROTO_SCTP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 goto discard_pkt; 2543 } 2544 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2545 ipha = (ipha_t *)&icmph[1]; 2546 } 2547 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2548 /* 2549 * Find a SCTP client stream for this packet. 2550 * Note that we do a reverse lookup since the header is 2551 * in the form we sent it out. 2552 * The ripha header is only used for the matching and we 2553 * only set the src and dst addresses, protocol, and version. 2554 */ 2555 ripha.ipha_src = ipha->ipha_dst; 2556 ripha.ipha_dst = ipha->ipha_src; 2557 ripha.ipha_protocol = ipha->ipha_protocol; 2558 ripha.ipha_version_and_hdr_length = 2559 ipha->ipha_version_and_hdr_length; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 2563 /* Have to change db_type after any pullupmsg */ 2564 DB_TYPE(mp) = M_CTL; 2565 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2566 mctl_present, ip_policy, zoneid); 2567 return; 2568 2569 case IPPROTO_ESP: 2570 case IPPROTO_AH: { 2571 int ipsec_rc; 2572 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2573 2574 /* 2575 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2576 * We will re-use the IPSEC_IN if it is already present as 2577 * AH/ESP will not affect any fields in the IPSEC_IN for 2578 * ICMP errors. If there is no IPSEC_IN, allocate a new 2579 * one and attach it in the front. 2580 */ 2581 if (ii != NULL) { 2582 /* 2583 * ip_fanout_proto_again converts the ICMP errors 2584 * that come back from AH/ESP to M_DATA so that 2585 * if it is non-AH/ESP and we do a pullupmsg in 2586 * this function, it would work. Convert it back 2587 * to M_CTL before we send up as this is a ICMP 2588 * error. This could have been generated locally or 2589 * by some router. Validate the inner IPSEC 2590 * headers. 2591 * 2592 * NOTE : ill_index is used by ip_fanout_proto_again 2593 * to locate the ill. 2594 */ 2595 ASSERT(ill != NULL); 2596 ii->ipsec_in_ill_index = 2597 ill->ill_phyint->phyint_ifindex; 2598 ii->ipsec_in_rill_index = 2599 recv_ill->ill_phyint->phyint_ifindex; 2600 DB_TYPE(first_mp->b_cont) = M_CTL; 2601 } else { 2602 /* 2603 * IPSEC_IN is not present. We attach a ipsec_in 2604 * message and send up to IPSEC for validating 2605 * and removing the IPSEC headers. Clear 2606 * ipsec_in_secure so that when we return 2607 * from IPSEC, we don't mistakenly think that this 2608 * is a secure packet came from the network. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(first_mp == mp); 2614 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2615 if (first_mp == NULL) { 2616 freemsg(mp); 2617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2618 return; 2619 } 2620 ii = (ipsec_in_t *)first_mp->b_rptr; 2621 2622 /* This is not a secure packet */ 2623 ii->ipsec_in_secure = B_FALSE; 2624 first_mp->b_cont = mp; 2625 DB_TYPE(mp) = M_CTL; 2626 ASSERT(ill != NULL); 2627 ii->ipsec_in_ill_index = 2628 ill->ill_phyint->phyint_ifindex; 2629 ii->ipsec_in_rill_index = 2630 recv_ill->ill_phyint->phyint_ifindex; 2631 } 2632 ip2dbg(("icmp_inbound_error: ipsec\n")); 2633 2634 if (!ipsec_loaded(ipss)) { 2635 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2636 return; 2637 } 2638 2639 if (ipha->ipha_protocol == IPPROTO_ESP) 2640 ipsec_rc = ipsecesp_icmp_error(first_mp); 2641 else 2642 ipsec_rc = ipsecah_icmp_error(first_mp); 2643 if (ipsec_rc == IPSEC_STATUS_FAILED) 2644 return; 2645 2646 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2647 return; 2648 } 2649 default: 2650 /* 2651 * The ripha header is only used for the lookup and we 2652 * only set the src and dst addresses and protocol. 2653 */ 2654 ripha.ipha_src = ipha->ipha_dst; 2655 ripha.ipha_dst = ipha->ipha_src; 2656 ripha.ipha_protocol = ipha->ipha_protocol; 2657 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2658 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2659 ntohl(ipha->ipha_dst), 2660 icmph->icmph_type, icmph->icmph_code)); 2661 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2662 ipha_t *in_ipha; 2663 2664 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2665 mp->b_wptr) { 2666 if (!pullupmsg(mp, (uchar_t *)ipha + 2667 hdr_length + sizeof (ipha_t) - 2668 mp->b_rptr)) { 2669 goto discard_pkt; 2670 } 2671 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2672 ipha = (ipha_t *)&icmph[1]; 2673 } 2674 /* 2675 * Caller has verified that length has to be 2676 * at least the size of IP header. 2677 */ 2678 ASSERT(hdr_length >= sizeof (ipha_t)); 2679 /* 2680 * Check the sanity of the inner IP header like 2681 * we did for the outer header. 2682 */ 2683 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2684 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2685 goto discard_pkt; 2686 } 2687 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2688 goto discard_pkt; 2689 } 2690 /* Check for Self-encapsulated tunnels */ 2691 if (in_ipha->ipha_src == ipha->ipha_src && 2692 in_ipha->ipha_dst == ipha->ipha_dst) { 2693 2694 mp = icmp_inbound_self_encap_error(mp, 2695 iph_hdr_length, hdr_length); 2696 if (mp == NULL) 2697 goto discard_pkt; 2698 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2699 ipha = (ipha_t *)&icmph[1]; 2700 hdr_length = IPH_HDR_LENGTH(ipha); 2701 /* 2702 * The packet in error is self-encapsualted. 2703 * And we are finding it further encapsulated 2704 * which we could not have possibly generated. 2705 */ 2706 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2707 goto discard_pkt; 2708 } 2709 icmp_inbound_error_fanout(q, ill, first_mp, 2710 icmph, ipha, iph_hdr_length, hdr_length, 2711 mctl_present, ip_policy, recv_ill, zoneid); 2712 return; 2713 } 2714 } 2715 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2716 ipha->ipha_protocol == IPPROTO_IPV6) && 2717 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2718 ii != NULL && 2719 ii->ipsec_in_loopback && 2720 ii->ipsec_in_secure) { 2721 /* 2722 * For IP tunnels that get a looped-back 2723 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2724 * reported new MTU to take into account the IPsec 2725 * headers protecting this configured tunnel. 2726 * 2727 * This allows the tunnel module (tun.c) to blindly 2728 * accept the MTU reported in an ICMP "too big" 2729 * message. 2730 * 2731 * Non-looped back ICMP messages will just be 2732 * handled by the security protocols (if needed), 2733 * and the first subsequent packet will hit this 2734 * path. 2735 */ 2736 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2737 ipsec_in_extra_length(first_mp)); 2738 } 2739 /* Have to change db_type after any pullupmsg */ 2740 DB_TYPE(mp) = M_CTL; 2741 2742 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2743 ip_policy, recv_ill, zoneid); 2744 return; 2745 } 2746 /* NOTREACHED */ 2747 discard_pkt: 2748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2749 drop_pkt:; 2750 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2751 freemsg(first_mp); 2752 } 2753 2754 /* 2755 * Common IP options parser. 2756 * 2757 * Setup routine: fill in *optp with options-parsing state, then 2758 * tail-call ipoptp_next to return the first option. 2759 */ 2760 uint8_t 2761 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2762 { 2763 uint32_t totallen; /* total length of all options */ 2764 2765 totallen = ipha->ipha_version_and_hdr_length - 2766 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2767 totallen <<= 2; 2768 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2769 optp->ipoptp_end = optp->ipoptp_next + totallen; 2770 optp->ipoptp_flags = 0; 2771 return (ipoptp_next(optp)); 2772 } 2773 2774 /* 2775 * Common IP options parser: extract next option. 2776 */ 2777 uint8_t 2778 ipoptp_next(ipoptp_t *optp) 2779 { 2780 uint8_t *end = optp->ipoptp_end; 2781 uint8_t *cur = optp->ipoptp_next; 2782 uint8_t opt, len, pointer; 2783 2784 /* 2785 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2786 * has been corrupted. 2787 */ 2788 ASSERT(cur <= end); 2789 2790 if (cur == end) 2791 return (IPOPT_EOL); 2792 2793 opt = cur[IPOPT_OPTVAL]; 2794 2795 /* 2796 * Skip any NOP options. 2797 */ 2798 while (opt == IPOPT_NOP) { 2799 cur++; 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 opt = cur[IPOPT_OPTVAL]; 2803 } 2804 2805 if (opt == IPOPT_EOL) 2806 return (IPOPT_EOL); 2807 2808 /* 2809 * Option requiring a length. 2810 */ 2811 if ((cur + 1) >= end) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (IPOPT_EOL); 2814 } 2815 len = cur[IPOPT_OLEN]; 2816 if (len < 2) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (IPOPT_EOL); 2819 } 2820 optp->ipoptp_cur = cur; 2821 optp->ipoptp_len = len; 2822 optp->ipoptp_next = cur + len; 2823 if (cur + len > end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 2828 /* 2829 * For the options which require a pointer field, make sure 2830 * its there, and make sure it points to either something 2831 * inside this option, or the end of the option. 2832 */ 2833 switch (opt) { 2834 case IPOPT_RR: 2835 case IPOPT_TS: 2836 case IPOPT_LSRR: 2837 case IPOPT_SSRR: 2838 if (len <= IPOPT_OFFSET) { 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 return (opt); 2841 } 2842 pointer = cur[IPOPT_OFFSET]; 2843 if (pointer - 1 > len) { 2844 optp->ipoptp_flags |= IPOPTP_ERROR; 2845 return (opt); 2846 } 2847 break; 2848 } 2849 2850 /* 2851 * Sanity check the pointer field based on the type of the 2852 * option. 2853 */ 2854 switch (opt) { 2855 case IPOPT_RR: 2856 case IPOPT_SSRR: 2857 case IPOPT_LSRR: 2858 if (pointer < IPOPT_MINOFF_SR) 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 break; 2861 case IPOPT_TS: 2862 if (pointer < IPOPT_MINOFF_IT) 2863 optp->ipoptp_flags |= IPOPTP_ERROR; 2864 /* 2865 * Note that the Internet Timestamp option also 2866 * contains two four bit fields (the Overflow field, 2867 * and the Flag field), which follow the pointer 2868 * field. We don't need to check that these fields 2869 * fall within the length of the option because this 2870 * was implicitely done above. We've checked that the 2871 * pointer value is at least IPOPT_MINOFF_IT, and that 2872 * it falls within the option. Since IPOPT_MINOFF_IT > 2873 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2874 */ 2875 ASSERT(len > IPOPT_POS_OV_FLG); 2876 break; 2877 } 2878 2879 return (opt); 2880 } 2881 2882 /* 2883 * Use the outgoing IP header to create an IP_OPTIONS option the way 2884 * it was passed down from the application. 2885 */ 2886 int 2887 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2888 { 2889 ipoptp_t opts; 2890 const uchar_t *opt; 2891 uint8_t optval; 2892 uint8_t optlen; 2893 uint32_t len = 0; 2894 uchar_t *buf1 = buf; 2895 2896 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2897 len += IP_ADDR_LEN; 2898 bzero(buf1, IP_ADDR_LEN); 2899 2900 /* 2901 * OK to cast away const here, as we don't store through the returned 2902 * opts.ipoptp_cur pointer. 2903 */ 2904 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2905 optval != IPOPT_EOL; 2906 optval = ipoptp_next(&opts)) { 2907 int off; 2908 2909 opt = opts.ipoptp_cur; 2910 optlen = opts.ipoptp_len; 2911 switch (optval) { 2912 case IPOPT_SSRR: 2913 case IPOPT_LSRR: 2914 2915 /* 2916 * Insert ipha_dst as the first entry in the source 2917 * route and move down the entries on step. 2918 * The last entry gets placed at buf1. 2919 */ 2920 buf[IPOPT_OPTVAL] = optval; 2921 buf[IPOPT_OLEN] = optlen; 2922 buf[IPOPT_OFFSET] = optlen; 2923 2924 off = optlen - IP_ADDR_LEN; 2925 if (off < 0) { 2926 /* No entries in source route */ 2927 break; 2928 } 2929 /* Last entry in source route */ 2930 bcopy(opt + off, buf1, IP_ADDR_LEN); 2931 off -= IP_ADDR_LEN; 2932 2933 while (off > 0) { 2934 bcopy(opt + off, 2935 buf + off + IP_ADDR_LEN, 2936 IP_ADDR_LEN); 2937 off -= IP_ADDR_LEN; 2938 } 2939 /* ipha_dst into first slot */ 2940 bcopy(&ipha->ipha_dst, 2941 buf + off + IP_ADDR_LEN, 2942 IP_ADDR_LEN); 2943 buf += optlen; 2944 len += optlen; 2945 break; 2946 2947 case IPOPT_COMSEC: 2948 case IPOPT_SECURITY: 2949 /* if passing up a label is not ok, then remove */ 2950 if (is_system_labeled()) 2951 break; 2952 /* FALLTHROUGH */ 2953 default: 2954 bcopy(opt, buf, optlen); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 } 2959 } 2960 done: 2961 /* Pad the resulting options */ 2962 while (len & 0x3) { 2963 *buf++ = IPOPT_EOL; 2964 len++; 2965 } 2966 return (len); 2967 } 2968 2969 /* 2970 * Update any record route or timestamp options to include this host. 2971 * Reverse any source route option. 2972 * This routine assumes that the options are well formed i.e. that they 2973 * have already been checked. 2974 */ 2975 static void 2976 icmp_options_update(ipha_t *ipha) 2977 { 2978 ipoptp_t opts; 2979 uchar_t *opt; 2980 uint8_t optval; 2981 ipaddr_t src; /* Our local address */ 2982 ipaddr_t dst; 2983 2984 ip2dbg(("icmp_options_update\n")); 2985 src = ipha->ipha_src; 2986 dst = ipha->ipha_dst; 2987 2988 for (optval = ipoptp_first(&opts, ipha); 2989 optval != IPOPT_EOL; 2990 optval = ipoptp_next(&opts)) { 2991 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2992 opt = opts.ipoptp_cur; 2993 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2994 optval, opts.ipoptp_len)); 2995 switch (optval) { 2996 int off1, off2; 2997 case IPOPT_SSRR: 2998 case IPOPT_LSRR: 2999 /* 3000 * Reverse the source route. The first entry 3001 * should be the next to last one in the current 3002 * source route (the last entry is our address). 3003 * The last entry should be the final destination. 3004 */ 3005 off1 = IPOPT_MINOFF_SR - 1; 3006 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3007 if (off2 < 0) { 3008 /* No entries in source route */ 3009 ip1dbg(( 3010 "icmp_options_update: bad src route\n")); 3011 break; 3012 } 3013 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3014 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3015 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3016 off2 -= IP_ADDR_LEN; 3017 3018 while (off1 < off2) { 3019 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3020 bcopy((char *)opt + off2, (char *)opt + off1, 3021 IP_ADDR_LEN); 3022 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3023 off1 += IP_ADDR_LEN; 3024 off2 -= IP_ADDR_LEN; 3025 } 3026 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3027 break; 3028 } 3029 } 3030 } 3031 3032 /* 3033 * Process received ICMP Redirect messages. 3034 */ 3035 static void 3036 icmp_redirect(ill_t *ill, mblk_t *mp) 3037 { 3038 ipha_t *ipha; 3039 int iph_hdr_length; 3040 icmph_t *icmph; 3041 ipha_t *ipha_err; 3042 ire_t *ire; 3043 ire_t *prev_ire; 3044 ire_t *save_ire; 3045 ipaddr_t src, dst, gateway; 3046 iulp_t ulp_info = { 0 }; 3047 int error; 3048 ip_stack_t *ipst; 3049 3050 ASSERT(ill != NULL); 3051 ipst = ill->ill_ipst; 3052 3053 ipha = (ipha_t *)mp->b_rptr; 3054 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3055 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3056 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3058 freemsg(mp); 3059 return; 3060 } 3061 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3062 ipha_err = (ipha_t *)&icmph[1]; 3063 src = ipha->ipha_src; 3064 dst = ipha_err->ipha_dst; 3065 gateway = icmph->icmph_rd_gateway; 3066 /* Make sure the new gateway is reachable somehow. */ 3067 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3068 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3069 /* 3070 * Make sure we had a route for the dest in question and that 3071 * that route was pointing to the old gateway (the source of the 3072 * redirect packet.) 3073 */ 3074 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3075 NULL, MATCH_IRE_GW, ipst); 3076 /* 3077 * Check that 3078 * the redirect was not from ourselves 3079 * the new gateway and the old gateway are directly reachable 3080 */ 3081 if (!prev_ire || 3082 !ire || 3083 ire->ire_type == IRE_LOCAL) { 3084 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3085 freemsg(mp); 3086 if (ire != NULL) 3087 ire_refrele(ire); 3088 if (prev_ire != NULL) 3089 ire_refrele(prev_ire); 3090 return; 3091 } 3092 3093 /* 3094 * Should we use the old ULP info to create the new gateway? From 3095 * a user's perspective, we should inherit the info so that it 3096 * is a "smooth" transition. If we do not do that, then new 3097 * connections going thru the new gateway will have no route metrics, 3098 * which is counter-intuitive to user. From a network point of 3099 * view, this may or may not make sense even though the new gateway 3100 * is still directly connected to us so the route metrics should not 3101 * change much. 3102 * 3103 * But if the old ire_uinfo is not initialized, we do another 3104 * recursive lookup on the dest using the new gateway. There may 3105 * be a route to that. If so, use it to initialize the redirect 3106 * route. 3107 */ 3108 if (prev_ire->ire_uinfo.iulp_set) { 3109 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3110 } else { 3111 ire_t *tmp_ire; 3112 ire_t *sire; 3113 3114 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3115 ALL_ZONES, 0, NULL, 3116 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3117 ipst); 3118 if (sire != NULL) { 3119 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 /* 3121 * If sire != NULL, ire_ftable_lookup() should not 3122 * return a NULL value. 3123 */ 3124 ASSERT(tmp_ire != NULL); 3125 ire_refrele(tmp_ire); 3126 ire_refrele(sire); 3127 } else if (tmp_ire != NULL) { 3128 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3129 sizeof (iulp_t)); 3130 ire_refrele(tmp_ire); 3131 } 3132 } 3133 if (prev_ire->ire_type == IRE_CACHE) 3134 ire_delete(prev_ire); 3135 ire_refrele(prev_ire); 3136 /* 3137 * TODO: more precise handling for cases 0, 2, 3, the latter two 3138 * require TOS routing 3139 */ 3140 switch (icmph->icmph_code) { 3141 case 0: 3142 case 1: 3143 /* TODO: TOS specificity for cases 2 and 3 */ 3144 case 2: 3145 case 3: 3146 break; 3147 default: 3148 freemsg(mp); 3149 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3150 ire_refrele(ire); 3151 return; 3152 } 3153 /* 3154 * Create a Route Association. This will allow us to remember that 3155 * someone we believe told us to use the particular gateway. 3156 */ 3157 save_ire = ire; 3158 ire = ire_create( 3159 (uchar_t *)&dst, /* dest addr */ 3160 (uchar_t *)&ip_g_all_ones, /* mask */ 3161 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3162 (uchar_t *)&gateway, /* gateway addr */ 3163 NULL, /* no in_srcaddr */ 3164 &save_ire->ire_max_frag, /* max frag */ 3165 NULL, /* no src nce */ 3166 NULL, /* no rfq */ 3167 NULL, /* no stq */ 3168 IRE_HOST, 3169 NULL, /* ipif */ 3170 NULL, /* in_ill */ 3171 0, /* cmask */ 3172 0, /* phandle */ 3173 0, /* ihandle */ 3174 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3175 &ulp_info, 3176 NULL, /* tsol_gc_t */ 3177 NULL, /* gcgrp */ 3178 ipst); 3179 3180 if (ire == NULL) { 3181 freemsg(mp); 3182 ire_refrele(save_ire); 3183 return; 3184 } 3185 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3186 ire_refrele(save_ire); 3187 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3188 3189 if (error == 0) { 3190 ire_refrele(ire); /* Held in ire_add_v4 */ 3191 /* tell routing sockets that we received a redirect */ 3192 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3193 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3194 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3195 } 3196 3197 /* 3198 * Delete any existing IRE_HOST type redirect ires for this destination. 3199 * This together with the added IRE has the effect of 3200 * modifying an existing redirect. 3201 */ 3202 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3203 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3204 if (prev_ire != NULL) { 3205 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3206 ire_delete(prev_ire); 3207 ire_refrele(prev_ire); 3208 } 3209 3210 freemsg(mp); 3211 } 3212 3213 /* 3214 * Generate an ICMP parameter problem message. 3215 */ 3216 static void 3217 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3218 ip_stack_t *ipst) 3219 { 3220 icmph_t icmph; 3221 boolean_t mctl_present; 3222 mblk_t *first_mp; 3223 3224 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3225 3226 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3227 if (mctl_present) 3228 freeb(first_mp); 3229 return; 3230 } 3231 3232 bzero(&icmph, sizeof (icmph_t)); 3233 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3234 icmph.icmph_pp_ptr = ptr; 3235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3236 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3237 ipst); 3238 } 3239 3240 /* 3241 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3242 * the ICMP header pointed to by "stuff". (May be called as writer.) 3243 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3244 * an icmp error packet can be sent. 3245 * Assigns an appropriate source address to the packet. If ipha_dst is 3246 * one of our addresses use it for source. Otherwise pick a source based 3247 * on a route lookup back to ipha_src. 3248 * Note that ipha_src must be set here since the 3249 * packet is likely to arrive on an ill queue in ip_wput() which will 3250 * not set a source address. 3251 */ 3252 static void 3253 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3254 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3255 { 3256 ipaddr_t dst; 3257 icmph_t *icmph; 3258 ipha_t *ipha; 3259 uint_t len_needed; 3260 size_t msg_len; 3261 mblk_t *mp1; 3262 ipaddr_t src; 3263 ire_t *ire; 3264 mblk_t *ipsec_mp; 3265 ipsec_out_t *io = NULL; 3266 boolean_t xmit_if_on = B_FALSE; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPSEC processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 if (io->ipsec_out_xmit_if) 3305 xmit_if_on = B_TRUE; 3306 /* 3307 * Clear out ipsec_out_proc_begin, so we do a fresh 3308 * ire lookup. 3309 */ 3310 io->ipsec_out_proc_begin = B_FALSE; 3311 } 3312 ASSERT(zoneid == io->ipsec_out_zoneid); 3313 ASSERT(zoneid != ALL_ZONES); 3314 } else { 3315 /* 3316 * This is in clear. The icmp message we are building 3317 * here should go out in clear. 3318 * 3319 * Pardon the convolution of it all, but it's easier to 3320 * allocate a "use cleartext" IPSEC_IN message and convert 3321 * it than it is to allocate a new one. 3322 */ 3323 ipsec_in_t *ii; 3324 ASSERT(DB_TYPE(mp) == M_DATA); 3325 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3326 if (ipsec_mp == NULL) { 3327 freemsg(mp); 3328 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3329 return; 3330 } 3331 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3332 3333 /* This is not a secure packet */ 3334 ii->ipsec_in_secure = B_FALSE; 3335 /* 3336 * For trusted extensions using a shared IP address we can 3337 * send using any zoneid. 3338 */ 3339 if (zoneid == ALL_ZONES) 3340 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3341 else 3342 ii->ipsec_in_zoneid = zoneid; 3343 ipsec_mp->b_cont = mp; 3344 ipha = (ipha_t *)mp->b_rptr; 3345 /* 3346 * Convert the IPSEC_IN to IPSEC_OUT. 3347 */ 3348 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3349 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3350 return; 3351 } 3352 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3353 } 3354 3355 /* Remember our eventual destination */ 3356 dst = ipha->ipha_src; 3357 3358 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3359 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3360 if (ire != NULL && 3361 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3362 src = ipha->ipha_dst; 3363 } else if (!xmit_if_on) { 3364 if (ire != NULL) 3365 ire_refrele(ire); 3366 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3367 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3368 ipst); 3369 if (ire == NULL) { 3370 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3371 freemsg(ipsec_mp); 3372 return; 3373 } 3374 src = ire->ire_src_addr; 3375 } else { 3376 ipif_t *ipif = NULL; 3377 ill_t *ill; 3378 /* 3379 * This must be an ICMP error coming from 3380 * ip_mrtun_forward(). The src addr should 3381 * be equal to the IP-addr of the outgoing 3382 * interface. 3383 */ 3384 if (io == NULL) { 3385 /* This is not a IPSEC_OUT type control msg */ 3386 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3387 freemsg(ipsec_mp); 3388 return; 3389 } 3390 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3391 NULL, NULL, NULL, NULL, ipst); 3392 if (ill != NULL) { 3393 ipif = ipif_get_next_ipif(NULL, ill); 3394 ill_refrele(ill); 3395 } 3396 if (ipif == NULL) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 src = ipif->ipif_src_addr; 3402 ipif_refrele(ipif); 3403 } 3404 3405 if (ire != NULL) 3406 ire_refrele(ire); 3407 3408 /* 3409 * Check if we can send back more then 8 bytes in addition to 3410 * the IP header. We try to send 64 bytes of data and the internal 3411 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3412 */ 3413 len_needed = IPH_HDR_LENGTH(ipha); 3414 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3415 ipha->ipha_protocol == IPPROTO_IPV6) { 3416 3417 if (!pullupmsg(mp, -1)) { 3418 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3419 freemsg(ipsec_mp); 3420 return; 3421 } 3422 ipha = (ipha_t *)mp->b_rptr; 3423 3424 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3425 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3426 len_needed)); 3427 } else { 3428 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3429 3430 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3431 len_needed += ip_hdr_length_v6(mp, ip6h); 3432 } 3433 } 3434 len_needed += ipst->ips_ip_icmp_return; 3435 msg_len = msgdsize(mp); 3436 if (msg_len > len_needed) { 3437 (void) adjmsg(mp, len_needed - msg_len); 3438 msg_len = len_needed; 3439 } 3440 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3441 if (mp1 == NULL) { 3442 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3443 freemsg(ipsec_mp); 3444 return; 3445 } 3446 mp1->b_cont = mp; 3447 mp = mp1; 3448 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3449 ipsec_mp->b_rptr == (uint8_t *)io && 3450 io->ipsec_out_type == IPSEC_OUT); 3451 ipsec_mp->b_cont = mp; 3452 3453 /* 3454 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3455 * node generates be accepted in peace by all on-host destinations. 3456 * If we do NOT assume that all on-host destinations trust 3457 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3458 * (Look for ipsec_out_icmp_loopback). 3459 */ 3460 io->ipsec_out_icmp_loopback = B_TRUE; 3461 3462 ipha = (ipha_t *)mp->b_rptr; 3463 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3464 *ipha = icmp_ipha; 3465 ipha->ipha_src = src; 3466 ipha->ipha_dst = dst; 3467 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3468 msg_len += sizeof (icmp_ipha) + len; 3469 if (msg_len > IP_MAXPACKET) { 3470 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3471 msg_len = IP_MAXPACKET; 3472 } 3473 ipha->ipha_length = htons((uint16_t)msg_len); 3474 icmph = (icmph_t *)&ipha[1]; 3475 bcopy(stuff, icmph, len); 3476 icmph->icmph_checksum = 0; 3477 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3478 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3479 put(q, ipsec_mp); 3480 } 3481 3482 /* 3483 * Determine if an ICMP error packet can be sent given the rate limit. 3484 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3485 * in milliseconds) and a burst size. Burst size number of packets can 3486 * be sent arbitrarely closely spaced. 3487 * The state is tracked using two variables to implement an approximate 3488 * token bucket filter: 3489 * icmp_pkt_err_last - lbolt value when the last burst started 3490 * icmp_pkt_err_sent - number of packets sent in current burst 3491 */ 3492 boolean_t 3493 icmp_err_rate_limit(ip_stack_t *ipst) 3494 { 3495 clock_t now = TICK_TO_MSEC(lbolt); 3496 uint_t refilled; /* Number of packets refilled in tbf since last */ 3497 /* Guard against changes by loading into local variable */ 3498 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3499 3500 if (err_interval == 0) 3501 return (B_FALSE); 3502 3503 if (ipst->ips_icmp_pkt_err_last > now) { 3504 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3505 ipst->ips_icmp_pkt_err_last = 0; 3506 ipst->ips_icmp_pkt_err_sent = 0; 3507 } 3508 /* 3509 * If we are in a burst update the token bucket filter. 3510 * Update the "last" time to be close to "now" but make sure 3511 * we don't loose precision. 3512 */ 3513 if (ipst->ips_icmp_pkt_err_sent != 0) { 3514 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3515 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3516 ipst->ips_icmp_pkt_err_sent = 0; 3517 } else { 3518 ipst->ips_icmp_pkt_err_sent -= refilled; 3519 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3520 } 3521 } 3522 if (ipst->ips_icmp_pkt_err_sent == 0) { 3523 /* Start of new burst */ 3524 ipst->ips_icmp_pkt_err_last = now; 3525 } 3526 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3527 ipst->ips_icmp_pkt_err_sent++; 3528 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3529 ipst->ips_icmp_pkt_err_sent)); 3530 return (B_FALSE); 3531 } 3532 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3533 return (B_TRUE); 3534 } 3535 3536 /* 3537 * Check if it is ok to send an IPv4 ICMP error packet in 3538 * response to the IPv4 packet in mp. 3539 * Free the message and return null if no 3540 * ICMP error packet should be sent. 3541 */ 3542 static mblk_t * 3543 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3544 { 3545 icmph_t *icmph; 3546 ipha_t *ipha; 3547 uint_t len_needed; 3548 ire_t *src_ire; 3549 ire_t *dst_ire; 3550 3551 if (!mp) 3552 return (NULL); 3553 ipha = (ipha_t *)mp->b_rptr; 3554 if (ip_csum_hdr(ipha)) { 3555 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3556 freemsg(mp); 3557 return (NULL); 3558 } 3559 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3560 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3561 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3562 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3563 if (src_ire != NULL || dst_ire != NULL || 3564 CLASSD(ipha->ipha_dst) || 3565 CLASSD(ipha->ipha_src) || 3566 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3567 /* Note: only errors to the fragment with offset 0 */ 3568 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3569 freemsg(mp); 3570 if (src_ire != NULL) 3571 ire_refrele(src_ire); 3572 if (dst_ire != NULL) 3573 ire_refrele(dst_ire); 3574 return (NULL); 3575 } 3576 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3577 /* 3578 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3579 * errors in response to any ICMP errors. 3580 */ 3581 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3582 if (mp->b_wptr - mp->b_rptr < len_needed) { 3583 if (!pullupmsg(mp, len_needed)) { 3584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3585 freemsg(mp); 3586 return (NULL); 3587 } 3588 ipha = (ipha_t *)mp->b_rptr; 3589 } 3590 icmph = (icmph_t *) 3591 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3592 switch (icmph->icmph_type) { 3593 case ICMP_DEST_UNREACHABLE: 3594 case ICMP_SOURCE_QUENCH: 3595 case ICMP_TIME_EXCEEDED: 3596 case ICMP_PARAM_PROBLEM: 3597 case ICMP_REDIRECT: 3598 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3599 freemsg(mp); 3600 return (NULL); 3601 default: 3602 break; 3603 } 3604 } 3605 /* 3606 * If this is a labeled system, then check to see if we're allowed to 3607 * send a response to this particular sender. If not, then just drop. 3608 */ 3609 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3610 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3611 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3612 freemsg(mp); 3613 return (NULL); 3614 } 3615 if (icmp_err_rate_limit(ipst)) { 3616 /* 3617 * Only send ICMP error packets every so often. 3618 * This should be done on a per port/source basis, 3619 * but for now this will suffice. 3620 */ 3621 freemsg(mp); 3622 return (NULL); 3623 } 3624 return (mp); 3625 } 3626 3627 /* 3628 * Generate an ICMP redirect message. 3629 */ 3630 static void 3631 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3632 { 3633 icmph_t icmph; 3634 3635 /* 3636 * We are called from ip_rput where we could 3637 * not have attached an IPSEC_IN. 3638 */ 3639 ASSERT(mp->b_datap->db_type == M_DATA); 3640 3641 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3642 return; 3643 } 3644 3645 bzero(&icmph, sizeof (icmph_t)); 3646 icmph.icmph_type = ICMP_REDIRECT; 3647 icmph.icmph_code = 1; 3648 icmph.icmph_rd_gateway = gateway; 3649 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3650 /* Redirects sent by router, and router is global zone */ 3651 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3652 } 3653 3654 /* 3655 * Generate an ICMP time exceeded message. 3656 */ 3657 void 3658 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3659 ip_stack_t *ipst) 3660 { 3661 icmph_t icmph; 3662 boolean_t mctl_present; 3663 mblk_t *first_mp; 3664 3665 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3666 3667 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3668 if (mctl_present) 3669 freeb(first_mp); 3670 return; 3671 } 3672 3673 bzero(&icmph, sizeof (icmph_t)); 3674 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3675 icmph.icmph_code = code; 3676 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3677 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3678 ipst); 3679 } 3680 3681 /* 3682 * Generate an ICMP unreachable message. 3683 */ 3684 void 3685 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3686 ip_stack_t *ipst) 3687 { 3688 icmph_t icmph; 3689 mblk_t *first_mp; 3690 boolean_t mctl_present; 3691 3692 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3693 3694 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3695 if (mctl_present) 3696 freeb(first_mp); 3697 return; 3698 } 3699 3700 bzero(&icmph, sizeof (icmph_t)); 3701 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3702 icmph.icmph_code = code; 3703 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3704 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3705 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3706 zoneid, ipst); 3707 } 3708 3709 /* 3710 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3711 * duplicate. As long as someone else holds the address, the interface will 3712 * stay down. When that conflict goes away, the interface is brought back up. 3713 * This is done so that accidental shutdowns of addresses aren't made 3714 * permanent. Your server will recover from a failure. 3715 * 3716 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3717 * user space process (dhcpagent). 3718 * 3719 * Recovery completes if ARP reports that the address is now ours (via 3720 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3721 * 3722 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3723 */ 3724 static void 3725 ipif_dup_recovery(void *arg) 3726 { 3727 ipif_t *ipif = arg; 3728 ill_t *ill = ipif->ipif_ill; 3729 mblk_t *arp_add_mp; 3730 mblk_t *arp_del_mp; 3731 area_t *area; 3732 ip_stack_t *ipst = ill->ill_ipst; 3733 3734 ipif->ipif_recovery_id = 0; 3735 3736 /* 3737 * No lock needed for moving or condemned check, as this is just an 3738 * optimization. 3739 */ 3740 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3741 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3742 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3743 /* No reason to try to bring this address back. */ 3744 return; 3745 } 3746 3747 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3748 goto alloc_fail; 3749 3750 if (ipif->ipif_arp_del_mp == NULL) { 3751 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3752 goto alloc_fail; 3753 ipif->ipif_arp_del_mp = arp_del_mp; 3754 } 3755 3756 /* Setting the 'unverified' flag restarts DAD */ 3757 area = (area_t *)arp_add_mp->b_rptr; 3758 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3759 ACE_F_UNVERIFIED; 3760 putnext(ill->ill_rq, arp_add_mp); 3761 return; 3762 3763 alloc_fail: 3764 /* 3765 * On allocation failure, just restart the timer. Note that the ipif 3766 * is down here, so no other thread could be trying to start a recovery 3767 * timer. The ill_lock protects the condemned flag and the recovery 3768 * timer ID. 3769 */ 3770 freemsg(arp_add_mp); 3771 mutex_enter(&ill->ill_lock); 3772 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3773 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3774 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3775 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3776 } 3777 mutex_exit(&ill->ill_lock); 3778 } 3779 3780 /* 3781 * This is for exclusive changes due to ARP. Either tear down an interface due 3782 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3783 */ 3784 /* ARGSUSED */ 3785 static void 3786 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3787 { 3788 ill_t *ill = rq->q_ptr; 3789 arh_t *arh; 3790 ipaddr_t src; 3791 ipif_t *ipif; 3792 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3793 char hbuf[MAC_STR_LEN]; 3794 char sbuf[INET_ADDRSTRLEN]; 3795 const char *failtype; 3796 boolean_t bring_up; 3797 ip_stack_t *ipst = ill->ill_ipst; 3798 3799 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3800 case AR_CN_READY: 3801 failtype = NULL; 3802 bring_up = B_TRUE; 3803 break; 3804 case AR_CN_FAILED: 3805 failtype = "in use"; 3806 bring_up = B_FALSE; 3807 break; 3808 default: 3809 failtype = "claimed"; 3810 bring_up = B_FALSE; 3811 break; 3812 } 3813 3814 arh = (arh_t *)mp->b_cont->b_rptr; 3815 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3816 3817 /* Handle failures due to probes */ 3818 if (src == 0) { 3819 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3820 IP_ADDR_LEN); 3821 } 3822 3823 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3824 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3825 sizeof (hbuf)); 3826 (void) ip_dot_addr(src, sbuf); 3827 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3828 3829 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3830 ipif->ipif_lcl_addr != src) { 3831 continue; 3832 } 3833 3834 /* 3835 * If we failed on a recovery probe, then restart the timer to 3836 * try again later. 3837 */ 3838 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3839 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3840 ill->ill_net_type == IRE_IF_RESOLVER && 3841 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3842 ipst->ips_ip_dup_recovery > 0 && 3843 ipif->ipif_recovery_id == 0) { 3844 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3845 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3846 continue; 3847 } 3848 3849 /* 3850 * If what we're trying to do has already been done, then do 3851 * nothing. 3852 */ 3853 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3854 continue; 3855 3856 if (ipif->ipif_id != 0) { 3857 (void) snprintf(ibuf + ill->ill_name_length - 1, 3858 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3859 ipif->ipif_id); 3860 } 3861 if (failtype == NULL) { 3862 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3863 ibuf); 3864 } else { 3865 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3866 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3867 } 3868 3869 if (bring_up) { 3870 ASSERT(ill->ill_dl_up); 3871 /* 3872 * Free up the ARP delete message so we can allocate 3873 * a fresh one through the normal path. 3874 */ 3875 freemsg(ipif->ipif_arp_del_mp); 3876 ipif->ipif_arp_del_mp = NULL; 3877 if (ipif_resolver_up(ipif, Res_act_initial) != 3878 EINPROGRESS) { 3879 ipif->ipif_addr_ready = 1; 3880 (void) ipif_up_done(ipif); 3881 } 3882 continue; 3883 } 3884 3885 mutex_enter(&ill->ill_lock); 3886 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3887 ipif->ipif_flags |= IPIF_DUPLICATE; 3888 ill->ill_ipif_dup_count++; 3889 mutex_exit(&ill->ill_lock); 3890 /* 3891 * Already exclusive on the ill; no need to handle deferred 3892 * processing here. 3893 */ 3894 (void) ipif_down(ipif, NULL, NULL); 3895 ipif_down_tail(ipif); 3896 mutex_enter(&ill->ill_lock); 3897 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3898 ill->ill_net_type == IRE_IF_RESOLVER && 3899 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3900 ipst->ips_ip_dup_recovery > 0) { 3901 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3902 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3903 } 3904 mutex_exit(&ill->ill_lock); 3905 } 3906 freemsg(mp); 3907 } 3908 3909 /* ARGSUSED */ 3910 static void 3911 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3912 { 3913 ill_t *ill = rq->q_ptr; 3914 arh_t *arh; 3915 ipaddr_t src; 3916 ipif_t *ipif; 3917 3918 arh = (arh_t *)mp->b_cont->b_rptr; 3919 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3920 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3921 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3922 (void) ipif_resolver_up(ipif, Res_act_defend); 3923 } 3924 freemsg(mp); 3925 } 3926 3927 /* 3928 * News from ARP. ARP sends notification of interesting events down 3929 * to its clients using M_CTL messages with the interesting ARP packet 3930 * attached via b_cont. 3931 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3932 * queue as opposed to ARP sending the message to all the clients, i.e. all 3933 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3934 * table if a cache IRE is found to delete all the entries for the address in 3935 * the packet. 3936 */ 3937 static void 3938 ip_arp_news(queue_t *q, mblk_t *mp) 3939 { 3940 arcn_t *arcn; 3941 arh_t *arh; 3942 ire_t *ire = NULL; 3943 char hbuf[MAC_STR_LEN]; 3944 char sbuf[INET_ADDRSTRLEN]; 3945 ipaddr_t src; 3946 in6_addr_t v6src; 3947 boolean_t isv6 = B_FALSE; 3948 ipif_t *ipif; 3949 ill_t *ill; 3950 ip_stack_t *ipst; 3951 3952 if (CONN_Q(q)) { 3953 conn_t *connp = Q_TO_CONN(q); 3954 3955 ipst = connp->conn_netstack->netstack_ip; 3956 } else { 3957 ill_t *ill = (ill_t *)q->q_ptr; 3958 3959 ipst = ill->ill_ipst; 3960 } 3961 3962 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3963 if (q->q_next) { 3964 putnext(q, mp); 3965 } else 3966 freemsg(mp); 3967 return; 3968 } 3969 arh = (arh_t *)mp->b_cont->b_rptr; 3970 /* Is it one we are interested in? */ 3971 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3972 isv6 = B_TRUE; 3973 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3974 IPV6_ADDR_LEN); 3975 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3976 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3977 IP_ADDR_LEN); 3978 } else { 3979 freemsg(mp); 3980 return; 3981 } 3982 3983 ill = q->q_ptr; 3984 3985 arcn = (arcn_t *)mp->b_rptr; 3986 switch (arcn->arcn_code) { 3987 case AR_CN_BOGON: 3988 /* 3989 * Someone is sending ARP packets with a source protocol 3990 * address that we have published and for which we believe our 3991 * entry is authoritative and (when ill_arp_extend is set) 3992 * verified to be unique on the network. 3993 * 3994 * The ARP module internally handles the cases where the sender 3995 * is just probing (for DAD) and where the hardware address of 3996 * a non-authoritative entry has changed. Thus, these are the 3997 * real conflicts, and we have to do resolution. 3998 * 3999 * We back away quickly from the address if it's from DHCP or 4000 * otherwise temporary and hasn't been used recently (or at 4001 * all). We'd like to include "deprecated" addresses here as 4002 * well (as there's no real reason to defend something we're 4003 * discarding), but IPMP "reuses" this flag to mean something 4004 * other than the standard meaning. 4005 * 4006 * If the ARP module above is not extended (meaning that it 4007 * doesn't know how to defend the address), then we just log 4008 * the problem as we always did and continue on. It's not 4009 * right, but there's little else we can do, and those old ATM 4010 * users are going away anyway. 4011 */ 4012 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4013 hbuf, sizeof (hbuf)); 4014 (void) ip_dot_addr(src, sbuf); 4015 if (isv6) { 4016 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4017 ipst); 4018 } else { 4019 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4020 } 4021 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4022 uint32_t now; 4023 uint32_t maxage; 4024 clock_t lused; 4025 uint_t maxdefense; 4026 uint_t defs; 4027 4028 /* 4029 * First, figure out if this address hasn't been used 4030 * in a while. If it hasn't, then it's a better 4031 * candidate for abandoning. 4032 */ 4033 ipif = ire->ire_ipif; 4034 ASSERT(ipif != NULL); 4035 now = gethrestime_sec(); 4036 maxage = now - ire->ire_create_time; 4037 if (maxage > ipst->ips_ip_max_temp_idle) 4038 maxage = ipst->ips_ip_max_temp_idle; 4039 lused = drv_hztousec(ddi_get_lbolt() - 4040 ire->ire_last_used_time) / MICROSEC + 1; 4041 if (lused >= maxage && (ipif->ipif_flags & 4042 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4043 maxdefense = ipst->ips_ip_max_temp_defend; 4044 else 4045 maxdefense = ipst->ips_ip_max_defend; 4046 4047 /* 4048 * Now figure out how many times we've defended 4049 * ourselves. Ignore defenses that happened long in 4050 * the past. 4051 */ 4052 mutex_enter(&ire->ire_lock); 4053 if ((defs = ire->ire_defense_count) > 0 && 4054 now - ire->ire_defense_time > 4055 ipst->ips_ip_defend_interval) { 4056 ire->ire_defense_count = defs = 0; 4057 } 4058 ire->ire_defense_count++; 4059 ire->ire_defense_time = now; 4060 mutex_exit(&ire->ire_lock); 4061 ill_refhold(ill); 4062 ire_refrele(ire); 4063 4064 /* 4065 * If we've defended ourselves too many times already, 4066 * then give up and tear down the interface(s) using 4067 * this address. Otherwise, defend by sending out a 4068 * gratuitous ARP. 4069 */ 4070 if (defs >= maxdefense && ill->ill_arp_extend) { 4071 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4072 B_FALSE); 4073 } else { 4074 cmn_err(CE_WARN, 4075 "node %s is using our IP address %s on %s", 4076 hbuf, sbuf, ill->ill_name); 4077 /* 4078 * If this is an old (ATM) ARP module, then 4079 * don't try to defend the address. Remain 4080 * compatible with the old behavior. Defend 4081 * only with new ARP. 4082 */ 4083 if (ill->ill_arp_extend) { 4084 qwriter_ip(ill, q, mp, ip_arp_defend, 4085 NEW_OP, B_FALSE); 4086 } else { 4087 ill_refrele(ill); 4088 } 4089 } 4090 return; 4091 } 4092 cmn_err(CE_WARN, 4093 "proxy ARP problem? Node '%s' is using %s on %s", 4094 hbuf, sbuf, ill->ill_name); 4095 if (ire != NULL) 4096 ire_refrele(ire); 4097 break; 4098 case AR_CN_ANNOUNCE: 4099 if (isv6) { 4100 /* 4101 * For XRESOLV interfaces. 4102 * Delete the IRE cache entry and NCE for this 4103 * v6 address 4104 */ 4105 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4106 /* 4107 * If v6src is a non-zero, it's a router address 4108 * as below. Do the same sort of thing to clean 4109 * out off-net IRE_CACHE entries that go through 4110 * the router. 4111 */ 4112 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4113 ire_walk_v6(ire_delete_cache_gw_v6, 4114 (char *)&v6src, ALL_ZONES, ipst); 4115 } 4116 } else { 4117 nce_hw_map_t hwm; 4118 4119 /* 4120 * ARP gives us a copy of any packet where it thinks 4121 * the address has changed, so that we can update our 4122 * caches. We're responsible for caching known answers 4123 * in the current design. We check whether the 4124 * hardware address really has changed in all of our 4125 * entries that have cached this mapping, and if so, we 4126 * blow them away. This way we will immediately pick 4127 * up the rare case of a host changing hardware 4128 * address. 4129 */ 4130 if (src == 0) 4131 break; 4132 hwm.hwm_addr = src; 4133 hwm.hwm_hwlen = arh->arh_hlen; 4134 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4135 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4136 ndp_walk_common(ipst->ips_ndp4, NULL, 4137 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4138 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4139 } 4140 break; 4141 case AR_CN_READY: 4142 /* No external v6 resolver has a contract to use this */ 4143 if (isv6) 4144 break; 4145 /* If the link is down, we'll retry this later */ 4146 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4147 break; 4148 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4149 NULL, NULL, ipst); 4150 if (ipif != NULL) { 4151 /* 4152 * If this is a duplicate recovery, then we now need to 4153 * go exclusive to bring this thing back up. 4154 */ 4155 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4156 IPIF_DUPLICATE) { 4157 ipif_refrele(ipif); 4158 ill_refhold(ill); 4159 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4160 B_FALSE); 4161 return; 4162 } 4163 /* 4164 * If this is the first notice that this address is 4165 * ready, then let the user know now. 4166 */ 4167 if ((ipif->ipif_flags & IPIF_UP) && 4168 !ipif->ipif_addr_ready) { 4169 ipif_mask_reply(ipif); 4170 ip_rts_ifmsg(ipif); 4171 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4172 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4173 } 4174 ipif->ipif_addr_ready = 1; 4175 ipif_refrele(ipif); 4176 } 4177 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4178 if (ire != NULL) { 4179 ire->ire_defense_count = 0; 4180 ire_refrele(ire); 4181 } 4182 break; 4183 case AR_CN_FAILED: 4184 /* No external v6 resolver has a contract to use this */ 4185 if (isv6) 4186 break; 4187 ill_refhold(ill); 4188 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4189 return; 4190 } 4191 freemsg(mp); 4192 } 4193 4194 /* 4195 * Create a mblk suitable for carrying the interface index and/or source link 4196 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4197 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4198 * application. 4199 */ 4200 mblk_t * 4201 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4202 ip_stack_t *ipst) 4203 { 4204 mblk_t *mp; 4205 ip_pktinfo_t *pinfo; 4206 ipha_t *ipha; 4207 struct ether_header *pether; 4208 4209 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4210 if (mp == NULL) { 4211 ip1dbg(("ip_add_info: allocation failure.\n")); 4212 return (data_mp); 4213 } 4214 4215 ipha = (ipha_t *)data_mp->b_rptr; 4216 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4217 bzero(pinfo, sizeof (ip_pktinfo_t)); 4218 pinfo->ip_pkt_flags = (uchar_t)flags; 4219 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4220 4221 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4222 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4223 if (flags & IPF_RECVADDR) { 4224 ipif_t *ipif; 4225 ire_t *ire; 4226 4227 /* 4228 * Only valid for V4 4229 */ 4230 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4231 (IPV4_VERSION << 4)); 4232 4233 ipif = ipif_get_next_ipif(NULL, ill); 4234 if (ipif != NULL) { 4235 /* 4236 * Since a decision has already been made to deliver the 4237 * packet, there is no need to test for SECATTR and 4238 * ZONEONLY. 4239 * When a multicast packet is transmitted 4240 * a cache entry is created for the multicast address. 4241 * When delivering a copy of the packet or when new 4242 * packets are received we do not want to match on the 4243 * cached entry so explicitly match on 4244 * IRE_LOCAL and IRE_LOOPBACK 4245 */ 4246 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4247 IRE_LOCAL | IRE_LOOPBACK, 4248 ipif, zoneid, NULL, 4249 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4250 if (ire == NULL) { 4251 /* 4252 * packet must have come on a different 4253 * interface. 4254 * Since a decision has already been made to 4255 * deliver the packet, there is no need to test 4256 * for SECATTR and ZONEONLY. 4257 * Only match on local and broadcast ire's. 4258 * See detailed comment above. 4259 */ 4260 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4261 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4262 NULL, MATCH_IRE_TYPE, ipst); 4263 } 4264 4265 if (ire == NULL) { 4266 /* 4267 * This is either a multicast packet or 4268 * the address has been removed since 4269 * the packet was received. 4270 * Return INADDR_ANY so that normal source 4271 * selection occurs for the response. 4272 */ 4273 4274 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4275 } else { 4276 pinfo->ip_pkt_match_addr.s_addr = 4277 ire->ire_src_addr; 4278 ire_refrele(ire); 4279 } 4280 ipif_refrele(ipif); 4281 } else { 4282 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4283 } 4284 } 4285 4286 pether = (struct ether_header *)((char *)ipha 4287 - sizeof (struct ether_header)); 4288 /* 4289 * Make sure the interface is an ethernet type, since this option 4290 * is currently supported only on this type of interface. Also make 4291 * sure we are pointing correctly above db_base. 4292 */ 4293 4294 if ((flags & IPF_RECVSLLA) && 4295 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4296 (ill->ill_type == IFT_ETHER) && 4297 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4298 4299 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4300 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4301 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4302 } else { 4303 /* 4304 * Clear the bit. Indicate to upper layer that IP is not 4305 * sending this ancillary info. 4306 */ 4307 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4308 } 4309 4310 mp->b_datap->db_type = M_CTL; 4311 mp->b_wptr += sizeof (ip_pktinfo_t); 4312 mp->b_cont = data_mp; 4313 4314 return (mp); 4315 } 4316 4317 /* 4318 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4319 * part of the bind request. 4320 */ 4321 4322 boolean_t 4323 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4324 { 4325 ipsec_in_t *ii; 4326 4327 ASSERT(policy_mp != NULL); 4328 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4329 4330 ii = (ipsec_in_t *)policy_mp->b_rptr; 4331 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4332 4333 connp->conn_policy = ii->ipsec_in_policy; 4334 ii->ipsec_in_policy = NULL; 4335 4336 if (ii->ipsec_in_action != NULL) { 4337 if (connp->conn_latch == NULL) { 4338 connp->conn_latch = iplatch_create(); 4339 if (connp->conn_latch == NULL) 4340 return (B_FALSE); 4341 } 4342 ipsec_latch_inbound(connp->conn_latch, ii); 4343 } 4344 return (B_TRUE); 4345 } 4346 4347 /* 4348 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4349 * and to arrange for power-fanout assist. The ULP is identified by 4350 * adding a single byte at the end of the original bind message. 4351 * A ULP other than UDP or TCP that wishes to be recognized passes 4352 * down a bind with a zero length address. 4353 * 4354 * The binding works as follows: 4355 * - A zero byte address means just bind to the protocol. 4356 * - A four byte address is treated as a request to validate 4357 * that the address is a valid local address, appropriate for 4358 * an application to bind to. This does not affect any fanout 4359 * information in IP. 4360 * - A sizeof sin_t byte address is used to bind to only the local address 4361 * and port. 4362 * - A sizeof ipa_conn_t byte address contains complete fanout information 4363 * consisting of local and remote addresses and ports. In 4364 * this case, the addresses are both validated as appropriate 4365 * for this operation, and, if so, the information is retained 4366 * for use in the inbound fanout. 4367 * 4368 * The ULP (except in the zero-length bind) can append an 4369 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4370 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4371 * a copy of the source or destination IRE (source for local bind; 4372 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4373 * policy information contained should be copied on to the conn. 4374 * 4375 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4376 */ 4377 mblk_t * 4378 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4379 { 4380 ssize_t len; 4381 struct T_bind_req *tbr; 4382 sin_t *sin; 4383 ipa_conn_t *ac; 4384 uchar_t *ucp; 4385 mblk_t *mp1; 4386 boolean_t ire_requested; 4387 boolean_t ipsec_policy_set = B_FALSE; 4388 int error = 0; 4389 int protocol; 4390 ipa_conn_x_t *acx; 4391 4392 ASSERT(!connp->conn_af_isv6); 4393 connp->conn_pkt_isv6 = B_FALSE; 4394 4395 len = MBLKL(mp); 4396 if (len < (sizeof (*tbr) + 1)) { 4397 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4398 "ip_bind: bogus msg, len %ld", len); 4399 /* XXX: Need to return something better */ 4400 goto bad_addr; 4401 } 4402 /* Back up and extract the protocol identifier. */ 4403 mp->b_wptr--; 4404 protocol = *mp->b_wptr & 0xFF; 4405 tbr = (struct T_bind_req *)mp->b_rptr; 4406 /* Reset the message type in preparation for shipping it back. */ 4407 DB_TYPE(mp) = M_PCPROTO; 4408 4409 connp->conn_ulp = (uint8_t)protocol; 4410 4411 /* 4412 * Check for a zero length address. This is from a protocol that 4413 * wants to register to receive all packets of its type. 4414 */ 4415 if (tbr->ADDR_length == 0) { 4416 /* 4417 * These protocols are now intercepted in ip_bind_v6(). 4418 * Reject protocol-level binds here for now. 4419 * 4420 * For SCTP raw socket, ICMP sends down a bind with sin_t 4421 * so that the protocol type cannot be SCTP. 4422 */ 4423 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4424 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4425 goto bad_addr; 4426 } 4427 4428 /* 4429 * 4430 * The udp module never sends down a zero-length address, 4431 * and allowing this on a labeled system will break MLP 4432 * functionality. 4433 */ 4434 if (is_system_labeled() && protocol == IPPROTO_UDP) 4435 goto bad_addr; 4436 4437 if (connp->conn_mac_exempt) 4438 goto bad_addr; 4439 4440 /* No hash here really. The table is big enough. */ 4441 connp->conn_srcv6 = ipv6_all_zeros; 4442 4443 ipcl_proto_insert(connp, protocol); 4444 4445 tbr->PRIM_type = T_BIND_ACK; 4446 return (mp); 4447 } 4448 4449 /* Extract the address pointer from the message. */ 4450 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4451 tbr->ADDR_length); 4452 if (ucp == NULL) { 4453 ip1dbg(("ip_bind: no address\n")); 4454 goto bad_addr; 4455 } 4456 if (!OK_32PTR(ucp)) { 4457 ip1dbg(("ip_bind: unaligned address\n")); 4458 goto bad_addr; 4459 } 4460 /* 4461 * Check for trailing mps. 4462 */ 4463 4464 mp1 = mp->b_cont; 4465 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4466 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4467 4468 switch (tbr->ADDR_length) { 4469 default: 4470 ip1dbg(("ip_bind: bad address length %d\n", 4471 (int)tbr->ADDR_length)); 4472 goto bad_addr; 4473 4474 case IP_ADDR_LEN: 4475 /* Verification of local address only */ 4476 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4477 ire_requested, ipsec_policy_set, B_FALSE); 4478 break; 4479 4480 case sizeof (sin_t): 4481 sin = (sin_t *)ucp; 4482 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4483 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4484 break; 4485 4486 case sizeof (ipa_conn_t): 4487 ac = (ipa_conn_t *)ucp; 4488 /* For raw socket, the local port is not set. */ 4489 if (ac->ac_lport == 0) 4490 ac->ac_lport = connp->conn_lport; 4491 /* Always verify destination reachability. */ 4492 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4493 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4494 ipsec_policy_set, B_TRUE, B_TRUE); 4495 break; 4496 4497 case sizeof (ipa_conn_x_t): 4498 acx = (ipa_conn_x_t *)ucp; 4499 /* 4500 * Whether or not to verify destination reachability depends 4501 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4502 */ 4503 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4504 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4505 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4506 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4507 break; 4508 } 4509 if (error == EINPROGRESS) 4510 return (NULL); 4511 else if (error != 0) 4512 goto bad_addr; 4513 /* 4514 * Pass the IPSEC headers size in ire_ipsec_overhead. 4515 * We can't do this in ip_bind_insert_ire because the policy 4516 * may not have been inherited at that point in time and hence 4517 * conn_out_enforce_policy may not be set. 4518 */ 4519 mp1 = mp->b_cont; 4520 if (ire_requested && connp->conn_out_enforce_policy && 4521 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4522 ire_t *ire = (ire_t *)mp1->b_rptr; 4523 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4524 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4525 } 4526 4527 /* Send it home. */ 4528 mp->b_datap->db_type = M_PCPROTO; 4529 tbr->PRIM_type = T_BIND_ACK; 4530 return (mp); 4531 4532 bad_addr: 4533 /* 4534 * If error = -1 then we generate a TBADADDR - otherwise error is 4535 * a unix errno. 4536 */ 4537 if (error > 0) 4538 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4539 else 4540 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4541 return (mp); 4542 } 4543 4544 /* 4545 * Here address is verified to be a valid local address. 4546 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4547 * address is also considered a valid local address. 4548 * In the case of a broadcast/multicast address, however, the 4549 * upper protocol is expected to reset the src address 4550 * to 0 if it sees a IRE_BROADCAST type returned so that 4551 * no packets are emitted with broadcast/multicast address as 4552 * source address (that violates hosts requirements RFC1122) 4553 * The addresses valid for bind are: 4554 * (1) - INADDR_ANY (0) 4555 * (2) - IP address of an UP interface 4556 * (3) - IP address of a DOWN interface 4557 * (4) - valid local IP broadcast addresses. In this case 4558 * the conn will only receive packets destined to 4559 * the specified broadcast address. 4560 * (5) - a multicast address. In this case 4561 * the conn will only receive packets destined to 4562 * the specified multicast address. Note: the 4563 * application still has to issue an 4564 * IP_ADD_MEMBERSHIP socket option. 4565 * 4566 * On error, return -1 for TBADADDR otherwise pass the 4567 * errno with TSYSERR reply. 4568 * 4569 * In all the above cases, the bound address must be valid in the current zone. 4570 * When the address is loopback, multicast or broadcast, there might be many 4571 * matching IREs so bind has to look up based on the zone. 4572 * 4573 * Note: lport is in network byte order. 4574 */ 4575 int 4576 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4577 boolean_t ire_requested, boolean_t ipsec_policy_set, 4578 boolean_t fanout_insert) 4579 { 4580 int error = 0; 4581 ire_t *src_ire; 4582 mblk_t *policy_mp; 4583 ipif_t *ipif; 4584 zoneid_t zoneid; 4585 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4586 4587 if (ipsec_policy_set) { 4588 policy_mp = mp->b_cont; 4589 } 4590 4591 /* 4592 * If it was previously connected, conn_fully_bound would have 4593 * been set. 4594 */ 4595 connp->conn_fully_bound = B_FALSE; 4596 4597 src_ire = NULL; 4598 ipif = NULL; 4599 4600 zoneid = IPCL_ZONEID(connp); 4601 4602 if (src_addr) { 4603 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4604 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4605 /* 4606 * If an address other than 0.0.0.0 is requested, 4607 * we verify that it is a valid address for bind 4608 * Note: Following code is in if-else-if form for 4609 * readability compared to a condition check. 4610 */ 4611 /* LINTED - statement has no consequent */ 4612 if (IRE_IS_LOCAL(src_ire)) { 4613 /* 4614 * (2) Bind to address of local UP interface 4615 */ 4616 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4617 /* 4618 * (4) Bind to broadcast address 4619 * Note: permitted only from transports that 4620 * request IRE 4621 */ 4622 if (!ire_requested) 4623 error = EADDRNOTAVAIL; 4624 } else { 4625 /* 4626 * (3) Bind to address of local DOWN interface 4627 * (ipif_lookup_addr() looks up all interfaces 4628 * but we do not get here for UP interfaces 4629 * - case (2) above) 4630 * We put the protocol byte back into the mblk 4631 * since we may come back via ip_wput_nondata() 4632 * later with this mblk if ipif_lookup_addr chooses 4633 * to defer processing. 4634 */ 4635 *mp->b_wptr++ = (char)connp->conn_ulp; 4636 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4637 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4638 &error, ipst)) != NULL) { 4639 ipif_refrele(ipif); 4640 } else if (error == EINPROGRESS) { 4641 if (src_ire != NULL) 4642 ire_refrele(src_ire); 4643 return (EINPROGRESS); 4644 } else if (CLASSD(src_addr)) { 4645 error = 0; 4646 if (src_ire != NULL) 4647 ire_refrele(src_ire); 4648 /* 4649 * (5) bind to multicast address. 4650 * Fake out the IRE returned to upper 4651 * layer to be a broadcast IRE. 4652 */ 4653 src_ire = ire_ctable_lookup( 4654 INADDR_BROADCAST, INADDR_ANY, 4655 IRE_BROADCAST, NULL, zoneid, NULL, 4656 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4657 ipst); 4658 if (src_ire == NULL || !ire_requested) 4659 error = EADDRNOTAVAIL; 4660 } else { 4661 /* 4662 * Not a valid address for bind 4663 */ 4664 error = EADDRNOTAVAIL; 4665 } 4666 /* 4667 * Just to keep it consistent with the processing in 4668 * ip_bind_v4() 4669 */ 4670 mp->b_wptr--; 4671 } 4672 if (error) { 4673 /* Red Alert! Attempting to be a bogon! */ 4674 ip1dbg(("ip_bind: bad src address 0x%x\n", 4675 ntohl(src_addr))); 4676 goto bad_addr; 4677 } 4678 } 4679 4680 /* 4681 * Allow setting new policies. For example, disconnects come 4682 * down as ipa_t bind. As we would have set conn_policy_cached 4683 * to B_TRUE before, we should set it to B_FALSE, so that policy 4684 * can change after the disconnect. 4685 */ 4686 connp->conn_policy_cached = B_FALSE; 4687 4688 /* 4689 * If not fanout_insert this was just an address verification 4690 */ 4691 if (fanout_insert) { 4692 /* 4693 * The addresses have been verified. Time to insert in 4694 * the correct fanout list. 4695 */ 4696 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4697 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4698 connp->conn_lport = lport; 4699 connp->conn_fport = 0; 4700 /* 4701 * Do we need to add a check to reject Multicast packets 4702 * 4703 * We need to make sure that the conn_recv is set to a non-null 4704 * value before we insert the conn into the classifier table. 4705 * This is to avoid a race with an incoming packet which does an 4706 * ipcl_classify(). 4707 */ 4708 if (*mp->b_wptr == IPPROTO_TCP) 4709 connp->conn_recv = tcp_conn_request; 4710 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4711 } 4712 4713 if (error == 0) { 4714 if (ire_requested) { 4715 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4716 error = -1; 4717 /* Falls through to bad_addr */ 4718 } 4719 } else if (ipsec_policy_set) { 4720 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4721 error = -1; 4722 /* Falls through to bad_addr */ 4723 } 4724 } 4725 } else if (connp->conn_ulp == IPPROTO_TCP) { 4726 connp->conn_recv = tcp_input; 4727 } 4728 bad_addr: 4729 if (error != 0) { 4730 if (connp->conn_anon_port) { 4731 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4732 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4733 B_FALSE); 4734 } 4735 connp->conn_mlp_type = mlptSingle; 4736 } 4737 if (src_ire != NULL) 4738 IRE_REFRELE(src_ire); 4739 if (ipsec_policy_set) { 4740 ASSERT(policy_mp == mp->b_cont); 4741 ASSERT(policy_mp != NULL); 4742 freeb(policy_mp); 4743 /* 4744 * As of now assume that nothing else accompanies 4745 * IPSEC_POLICY_SET. 4746 */ 4747 mp->b_cont = NULL; 4748 } 4749 return (error); 4750 } 4751 4752 /* 4753 * Verify that both the source and destination addresses 4754 * are valid. If verify_dst is false, then the destination address may be 4755 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4756 * destination reachability, while tunnels do not. 4757 * Note that we allow connect to broadcast and multicast 4758 * addresses when ire_requested is set. Thus the ULP 4759 * has to check for IRE_BROADCAST and multicast. 4760 * 4761 * Returns zero if ok. 4762 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4763 * (for use with TSYSERR reply). 4764 * 4765 * Note: lport and fport are in network byte order. 4766 */ 4767 int 4768 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4769 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4770 boolean_t ire_requested, boolean_t ipsec_policy_set, 4771 boolean_t fanout_insert, boolean_t verify_dst) 4772 { 4773 ire_t *src_ire; 4774 ire_t *dst_ire; 4775 int error = 0; 4776 int protocol; 4777 mblk_t *policy_mp; 4778 ire_t *sire = NULL; 4779 ire_t *md_dst_ire = NULL; 4780 ire_t *lso_dst_ire = NULL; 4781 ill_t *ill = NULL; 4782 zoneid_t zoneid; 4783 ipaddr_t src_addr = *src_addrp; 4784 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4785 4786 src_ire = dst_ire = NULL; 4787 protocol = *mp->b_wptr & 0xFF; 4788 4789 /* 4790 * If we never got a disconnect before, clear it now. 4791 */ 4792 connp->conn_fully_bound = B_FALSE; 4793 4794 if (ipsec_policy_set) { 4795 policy_mp = mp->b_cont; 4796 } 4797 4798 zoneid = IPCL_ZONEID(connp); 4799 4800 if (CLASSD(dst_addr)) { 4801 /* Pick up an IRE_BROADCAST */ 4802 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4803 NULL, zoneid, MBLK_GETLABEL(mp), 4804 (MATCH_IRE_RECURSIVE | 4805 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4806 MATCH_IRE_SECATTR), ipst); 4807 } else { 4808 /* 4809 * If conn_dontroute is set or if conn_nexthop_set is set, 4810 * and onlink ipif is not found set ENETUNREACH error. 4811 */ 4812 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4813 ipif_t *ipif; 4814 4815 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4816 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4817 if (ipif == NULL) { 4818 error = ENETUNREACH; 4819 goto bad_addr; 4820 } 4821 ipif_refrele(ipif); 4822 } 4823 4824 if (connp->conn_nexthop_set) { 4825 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4826 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4827 MATCH_IRE_SECATTR, ipst); 4828 } else { 4829 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4830 &sire, zoneid, MBLK_GETLABEL(mp), 4831 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4832 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4833 MATCH_IRE_SECATTR), ipst); 4834 } 4835 } 4836 /* 4837 * dst_ire can't be a broadcast when not ire_requested. 4838 * We also prevent ire's with src address INADDR_ANY to 4839 * be used, which are created temporarily for 4840 * sending out packets from endpoints that have 4841 * conn_unspec_src set. If verify_dst is true, the destination must be 4842 * reachable. If verify_dst is false, the destination needn't be 4843 * reachable. 4844 * 4845 * If we match on a reject or black hole, then we've got a 4846 * local failure. May as well fail out the connect() attempt, 4847 * since it's never going to succeed. 4848 */ 4849 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4850 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4851 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4852 /* 4853 * If we're verifying destination reachability, we always want 4854 * to complain here. 4855 * 4856 * If we're not verifying destination reachability but the 4857 * destination has a route, we still want to fail on the 4858 * temporary address and broadcast address tests. 4859 */ 4860 if (verify_dst || (dst_ire != NULL)) { 4861 if (ip_debug > 2) { 4862 pr_addr_dbg("ip_bind_connected: bad connected " 4863 "dst %s\n", AF_INET, &dst_addr); 4864 } 4865 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4866 error = ENETUNREACH; 4867 else 4868 error = EHOSTUNREACH; 4869 goto bad_addr; 4870 } 4871 } 4872 4873 /* 4874 * We now know that routing will allow us to reach the destination. 4875 * Check whether Trusted Solaris policy allows communication with this 4876 * host, and pretend that the destination is unreachable if not. 4877 * 4878 * This is never a problem for TCP, since that transport is known to 4879 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4880 * handling. If the remote is unreachable, it will be detected at that 4881 * point, so there's no reason to check it here. 4882 * 4883 * Note that for sendto (and other datagram-oriented friends), this 4884 * check is done as part of the data path label computation instead. 4885 * The check here is just to make non-TCP connect() report the right 4886 * error. 4887 */ 4888 if (dst_ire != NULL && is_system_labeled() && 4889 !IPCL_IS_TCP(connp) && 4890 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4891 connp->conn_mac_exempt, ipst) != 0) { 4892 error = EHOSTUNREACH; 4893 if (ip_debug > 2) { 4894 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4895 AF_INET, &dst_addr); 4896 } 4897 goto bad_addr; 4898 } 4899 4900 /* 4901 * If the app does a connect(), it means that it will most likely 4902 * send more than 1 packet to the destination. It makes sense 4903 * to clear the temporary flag. 4904 */ 4905 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4906 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4907 irb_t *irb = dst_ire->ire_bucket; 4908 4909 rw_enter(&irb->irb_lock, RW_WRITER); 4910 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4911 irb->irb_tmp_ire_cnt--; 4912 rw_exit(&irb->irb_lock); 4913 } 4914 4915 /* 4916 * See if we should notify ULP about LSO/MDT; we do this whether or not 4917 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4918 * eligibility tests for passive connects are handled separately 4919 * through tcp_adapt_ire(). We do this before the source address 4920 * selection, because dst_ire may change after a call to 4921 * ipif_select_source(). This is a best-effort check, as the 4922 * packet for this connection may not actually go through 4923 * dst_ire->ire_stq, and the exact IRE can only be known after 4924 * calling ip_newroute(). This is why we further check on the 4925 * IRE during LSO/Multidata packet transmission in 4926 * tcp_lsosend()/tcp_multisend(). 4927 */ 4928 if (!ipsec_policy_set && dst_ire != NULL && 4929 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4930 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4931 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4932 lso_dst_ire = dst_ire; 4933 IRE_REFHOLD(lso_dst_ire); 4934 } else if (ipst->ips_ip_multidata_outbound && 4935 ILL_MDT_CAPABLE(ill)) { 4936 md_dst_ire = dst_ire; 4937 IRE_REFHOLD(md_dst_ire); 4938 } 4939 } 4940 4941 if (dst_ire != NULL && 4942 dst_ire->ire_type == IRE_LOCAL && 4943 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4944 /* 4945 * If the IRE belongs to a different zone, look for a matching 4946 * route in the forwarding table and use the source address from 4947 * that route. 4948 */ 4949 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4950 zoneid, 0, NULL, 4951 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4952 MATCH_IRE_RJ_BHOLE, ipst); 4953 if (src_ire == NULL) { 4954 error = EHOSTUNREACH; 4955 goto bad_addr; 4956 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4957 if (!(src_ire->ire_type & IRE_HOST)) 4958 error = ENETUNREACH; 4959 else 4960 error = EHOSTUNREACH; 4961 goto bad_addr; 4962 } 4963 if (src_addr == INADDR_ANY) 4964 src_addr = src_ire->ire_src_addr; 4965 ire_refrele(src_ire); 4966 src_ire = NULL; 4967 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4968 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4969 src_addr = sire->ire_src_addr; 4970 ire_refrele(dst_ire); 4971 dst_ire = sire; 4972 sire = NULL; 4973 } else { 4974 /* 4975 * Pick a source address so that a proper inbound 4976 * load spreading would happen. 4977 */ 4978 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4979 ipif_t *src_ipif = NULL; 4980 ire_t *ipif_ire; 4981 4982 /* 4983 * Supply a local source address such that inbound 4984 * load spreading happens. 4985 * 4986 * Determine the best source address on this ill for 4987 * the destination. 4988 * 4989 * 1) For broadcast, we should return a broadcast ire 4990 * found above so that upper layers know that the 4991 * destination address is a broadcast address. 4992 * 4993 * 2) If this is part of a group, select a better 4994 * source address so that better inbound load 4995 * balancing happens. Do the same if the ipif 4996 * is DEPRECATED. 4997 * 4998 * 3) If the outgoing interface is part of a usesrc 4999 * group, then try selecting a source address from 5000 * the usesrc ILL. 5001 */ 5002 if ((dst_ire->ire_zoneid != zoneid && 5003 dst_ire->ire_zoneid != ALL_ZONES) || 5004 (!(dst_ire->ire_type & IRE_BROADCAST) && 5005 ((dst_ill->ill_group != NULL) || 5006 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5007 (dst_ill->ill_usesrc_ifindex != 0)))) { 5008 /* 5009 * If the destination is reachable via a 5010 * given gateway, the selected source address 5011 * should be in the same subnet as the gateway. 5012 * Otherwise, the destination is not reachable. 5013 * 5014 * If there are no interfaces on the same subnet 5015 * as the destination, ipif_select_source gives 5016 * first non-deprecated interface which might be 5017 * on a different subnet than the gateway. 5018 * This is not desirable. Hence pass the dst_ire 5019 * source address to ipif_select_source. 5020 * It is sure that the destination is reachable 5021 * with the dst_ire source address subnet. 5022 * So passing dst_ire source address to 5023 * ipif_select_source will make sure that the 5024 * selected source will be on the same subnet 5025 * as dst_ire source address. 5026 */ 5027 ipaddr_t saddr = 5028 dst_ire->ire_ipif->ipif_src_addr; 5029 src_ipif = ipif_select_source(dst_ill, 5030 saddr, zoneid); 5031 if (src_ipif != NULL) { 5032 if (IS_VNI(src_ipif->ipif_ill)) { 5033 /* 5034 * For VNI there is no 5035 * interface route 5036 */ 5037 src_addr = 5038 src_ipif->ipif_src_addr; 5039 } else { 5040 ipif_ire = 5041 ipif_to_ire(src_ipif); 5042 if (ipif_ire != NULL) { 5043 IRE_REFRELE(dst_ire); 5044 dst_ire = ipif_ire; 5045 } 5046 src_addr = 5047 dst_ire->ire_src_addr; 5048 } 5049 ipif_refrele(src_ipif); 5050 } else { 5051 src_addr = dst_ire->ire_src_addr; 5052 } 5053 } else { 5054 src_addr = dst_ire->ire_src_addr; 5055 } 5056 } 5057 } 5058 5059 /* 5060 * We do ire_route_lookup() here (and not 5061 * interface lookup as we assert that 5062 * src_addr should only come from an 5063 * UP interface for hard binding. 5064 */ 5065 ASSERT(src_ire == NULL); 5066 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5067 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5068 /* src_ire must be a local|loopback */ 5069 if (!IRE_IS_LOCAL(src_ire)) { 5070 if (ip_debug > 2) { 5071 pr_addr_dbg("ip_bind_connected: bad connected " 5072 "src %s\n", AF_INET, &src_addr); 5073 } 5074 error = EADDRNOTAVAIL; 5075 goto bad_addr; 5076 } 5077 5078 /* 5079 * If the source address is a loopback address, the 5080 * destination had best be local or multicast. 5081 * The transports that can't handle multicast will reject 5082 * those addresses. 5083 */ 5084 if (src_ire->ire_type == IRE_LOOPBACK && 5085 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5086 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5087 error = -1; 5088 goto bad_addr; 5089 } 5090 5091 /* 5092 * Allow setting new policies. For example, disconnects come 5093 * down as ipa_t bind. As we would have set conn_policy_cached 5094 * to B_TRUE before, we should set it to B_FALSE, so that policy 5095 * can change after the disconnect. 5096 */ 5097 connp->conn_policy_cached = B_FALSE; 5098 5099 /* 5100 * Set the conn addresses/ports immediately, so the IPsec policy calls 5101 * can handle their passed-in conn's. 5102 */ 5103 5104 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5105 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5106 connp->conn_lport = lport; 5107 connp->conn_fport = fport; 5108 *src_addrp = src_addr; 5109 5110 ASSERT(!(ipsec_policy_set && ire_requested)); 5111 if (ire_requested) { 5112 iulp_t *ulp_info = NULL; 5113 5114 /* 5115 * Note that sire will not be NULL if this is an off-link 5116 * connection and there is not cache for that dest yet. 5117 * 5118 * XXX Because of an existing bug, if there are multiple 5119 * default routes, the IRE returned now may not be the actual 5120 * default route used (default routes are chosen in a 5121 * round robin fashion). So if the metrics for different 5122 * default routes are different, we may return the wrong 5123 * metrics. This will not be a problem if the existing 5124 * bug is fixed. 5125 */ 5126 if (sire != NULL) { 5127 ulp_info = &(sire->ire_uinfo); 5128 } 5129 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5130 error = -1; 5131 goto bad_addr; 5132 } 5133 } else if (ipsec_policy_set) { 5134 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5135 error = -1; 5136 goto bad_addr; 5137 } 5138 } 5139 5140 /* 5141 * Cache IPsec policy in this conn. If we have per-socket policy, 5142 * we'll cache that. If we don't, we'll inherit global policy. 5143 * 5144 * We can't insert until the conn reflects the policy. Note that 5145 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5146 * connections where we don't have a policy. This is to prevent 5147 * global policy lookups in the inbound path. 5148 * 5149 * If we insert before we set conn_policy_cached, 5150 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5151 * because global policy cound be non-empty. We normally call 5152 * ipsec_check_policy() for conn_policy_cached connections only if 5153 * ipc_in_enforce_policy is set. But in this case, 5154 * conn_policy_cached can get set anytime since we made the 5155 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5156 * called, which will make the above assumption false. Thus, we 5157 * need to insert after we set conn_policy_cached. 5158 */ 5159 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5160 goto bad_addr; 5161 5162 if (fanout_insert) { 5163 /* 5164 * The addresses have been verified. Time to insert in 5165 * the correct fanout list. 5166 * We need to make sure that the conn_recv is set to a non-null 5167 * value before we insert into the classifier table to avoid a 5168 * race with an incoming packet which does an ipcl_classify(). 5169 */ 5170 if (protocol == IPPROTO_TCP) 5171 connp->conn_recv = tcp_input; 5172 error = ipcl_conn_insert(connp, protocol, src_addr, 5173 dst_addr, connp->conn_ports); 5174 } 5175 5176 if (error == 0) { 5177 connp->conn_fully_bound = B_TRUE; 5178 /* 5179 * Our initial checks for LSO/MDT have passed; the IRE is not 5180 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5181 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5182 * ip_xxinfo_return(), which performs further checks 5183 * against them and upon success, returns the LSO/MDT info 5184 * mblk which we will attach to the bind acknowledgment. 5185 */ 5186 if (lso_dst_ire != NULL) { 5187 mblk_t *lsoinfo_mp; 5188 5189 ASSERT(ill->ill_lso_capab != NULL); 5190 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5191 ill->ill_name, ill->ill_lso_capab)) != NULL) 5192 linkb(mp, lsoinfo_mp); 5193 } else if (md_dst_ire != NULL) { 5194 mblk_t *mdinfo_mp; 5195 5196 ASSERT(ill->ill_mdt_capab != NULL); 5197 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5198 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5199 linkb(mp, mdinfo_mp); 5200 } 5201 } 5202 bad_addr: 5203 if (ipsec_policy_set) { 5204 ASSERT(policy_mp == mp->b_cont); 5205 ASSERT(policy_mp != NULL); 5206 freeb(policy_mp); 5207 /* 5208 * As of now assume that nothing else accompanies 5209 * IPSEC_POLICY_SET. 5210 */ 5211 mp->b_cont = NULL; 5212 } 5213 if (src_ire != NULL) 5214 IRE_REFRELE(src_ire); 5215 if (dst_ire != NULL) 5216 IRE_REFRELE(dst_ire); 5217 if (sire != NULL) 5218 IRE_REFRELE(sire); 5219 if (md_dst_ire != NULL) 5220 IRE_REFRELE(md_dst_ire); 5221 if (lso_dst_ire != NULL) 5222 IRE_REFRELE(lso_dst_ire); 5223 return (error); 5224 } 5225 5226 /* 5227 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5228 * Prefers dst_ire over src_ire. 5229 */ 5230 static boolean_t 5231 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5232 { 5233 mblk_t *mp1; 5234 ire_t *ret_ire = NULL; 5235 5236 mp1 = mp->b_cont; 5237 ASSERT(mp1 != NULL); 5238 5239 if (ire != NULL) { 5240 /* 5241 * mp1 initialized above to IRE_DB_REQ_TYPE 5242 * appended mblk. Its <upper protocol>'s 5243 * job to make sure there is room. 5244 */ 5245 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5246 return (0); 5247 5248 mp1->b_datap->db_type = IRE_DB_TYPE; 5249 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5250 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5251 ret_ire = (ire_t *)mp1->b_rptr; 5252 /* 5253 * Pass the latest setting of the ip_path_mtu_discovery and 5254 * copy the ulp info if any. 5255 */ 5256 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5257 IPH_DF : 0; 5258 if (ulp_info != NULL) { 5259 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5260 sizeof (iulp_t)); 5261 } 5262 ret_ire->ire_mp = mp1; 5263 } else { 5264 /* 5265 * No IRE was found. Remove IRE mblk. 5266 */ 5267 mp->b_cont = mp1->b_cont; 5268 freeb(mp1); 5269 } 5270 5271 return (1); 5272 } 5273 5274 /* 5275 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5276 * the final piece where we don't. Return a pointer to the first mblk in the 5277 * result, and update the pointer to the next mblk to chew on. If anything 5278 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5279 * NULL pointer. 5280 */ 5281 mblk_t * 5282 ip_carve_mp(mblk_t **mpp, ssize_t len) 5283 { 5284 mblk_t *mp0; 5285 mblk_t *mp1; 5286 mblk_t *mp2; 5287 5288 if (!len || !mpp || !(mp0 = *mpp)) 5289 return (NULL); 5290 /* If we aren't going to consume the first mblk, we need a dup. */ 5291 if (mp0->b_wptr - mp0->b_rptr > len) { 5292 mp1 = dupb(mp0); 5293 if (mp1) { 5294 /* Partition the data between the two mblks. */ 5295 mp1->b_wptr = mp1->b_rptr + len; 5296 mp0->b_rptr = mp1->b_wptr; 5297 /* 5298 * after adjustments if mblk not consumed is now 5299 * unaligned, try to align it. If this fails free 5300 * all messages and let upper layer recover. 5301 */ 5302 if (!OK_32PTR(mp0->b_rptr)) { 5303 if (!pullupmsg(mp0, -1)) { 5304 freemsg(mp0); 5305 freemsg(mp1); 5306 *mpp = NULL; 5307 return (NULL); 5308 } 5309 } 5310 } 5311 return (mp1); 5312 } 5313 /* Eat through as many mblks as we need to get len bytes. */ 5314 len -= mp0->b_wptr - mp0->b_rptr; 5315 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5316 if (mp2->b_wptr - mp2->b_rptr > len) { 5317 /* 5318 * We won't consume the entire last mblk. Like 5319 * above, dup and partition it. 5320 */ 5321 mp1->b_cont = dupb(mp2); 5322 mp1 = mp1->b_cont; 5323 if (!mp1) { 5324 /* 5325 * Trouble. Rather than go to a lot of 5326 * trouble to clean up, we free the messages. 5327 * This won't be any worse than losing it on 5328 * the wire. 5329 */ 5330 freemsg(mp0); 5331 freemsg(mp2); 5332 *mpp = NULL; 5333 return (NULL); 5334 } 5335 mp1->b_wptr = mp1->b_rptr + len; 5336 mp2->b_rptr = mp1->b_wptr; 5337 /* 5338 * after adjustments if mblk not consumed is now 5339 * unaligned, try to align it. If this fails free 5340 * all messages and let upper layer recover. 5341 */ 5342 if (!OK_32PTR(mp2->b_rptr)) { 5343 if (!pullupmsg(mp2, -1)) { 5344 freemsg(mp0); 5345 freemsg(mp2); 5346 *mpp = NULL; 5347 return (NULL); 5348 } 5349 } 5350 *mpp = mp2; 5351 return (mp0); 5352 } 5353 /* Decrement len by the amount we just got. */ 5354 len -= mp2->b_wptr - mp2->b_rptr; 5355 } 5356 /* 5357 * len should be reduced to zero now. If not our caller has 5358 * screwed up. 5359 */ 5360 if (len) { 5361 /* Shouldn't happen! */ 5362 freemsg(mp0); 5363 *mpp = NULL; 5364 return (NULL); 5365 } 5366 /* 5367 * We consumed up to exactly the end of an mblk. Detach the part 5368 * we are returning from the rest of the chain. 5369 */ 5370 mp1->b_cont = NULL; 5371 *mpp = mp2; 5372 return (mp0); 5373 } 5374 5375 /* The ill stream is being unplumbed. Called from ip_close */ 5376 int 5377 ip_modclose(ill_t *ill) 5378 { 5379 boolean_t success; 5380 ipsq_t *ipsq; 5381 ipif_t *ipif; 5382 queue_t *q = ill->ill_rq; 5383 ip_stack_t *ipst = ill->ill_ipst; 5384 clock_t timeout; 5385 5386 /* 5387 * Wait for the ACKs of all deferred control messages to be processed. 5388 * In particular, we wait for a potential capability reset initiated 5389 * in ip_sioctl_plink() to complete before proceeding. 5390 * 5391 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5392 * in case the driver never replies. 5393 */ 5394 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5395 mutex_enter(&ill->ill_lock); 5396 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5397 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5398 /* Timeout */ 5399 break; 5400 } 5401 } 5402 mutex_exit(&ill->ill_lock); 5403 5404 /* 5405 * Forcibly enter the ipsq after some delay. This is to take 5406 * care of the case when some ioctl does not complete because 5407 * we sent a control message to the driver and it did not 5408 * send us a reply. We want to be able to at least unplumb 5409 * and replumb rather than force the user to reboot the system. 5410 */ 5411 success = ipsq_enter(ill, B_FALSE); 5412 5413 /* 5414 * Open/close/push/pop is guaranteed to be single threaded 5415 * per stream by STREAMS. FS guarantees that all references 5416 * from top are gone before close is called. So there can't 5417 * be another close thread that has set CONDEMNED on this ill. 5418 * and cause ipsq_enter to return failure. 5419 */ 5420 ASSERT(success); 5421 ipsq = ill->ill_phyint->phyint_ipsq; 5422 5423 /* 5424 * Mark it condemned. No new reference will be made to this ill. 5425 * Lookup functions will return an error. Threads that try to 5426 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5427 * that the refcnt will drop down to zero. 5428 */ 5429 mutex_enter(&ill->ill_lock); 5430 ill->ill_state_flags |= ILL_CONDEMNED; 5431 for (ipif = ill->ill_ipif; ipif != NULL; 5432 ipif = ipif->ipif_next) { 5433 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5434 } 5435 /* 5436 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5437 * returns error if ILL_CONDEMNED is set 5438 */ 5439 cv_broadcast(&ill->ill_cv); 5440 mutex_exit(&ill->ill_lock); 5441 5442 /* 5443 * Send all the deferred DLPI messages downstream which came in 5444 * during the small window right before ipsq_enter(). We do this 5445 * without waiting for the ACKs because all the ACKs for M_PROTO 5446 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5447 */ 5448 ill_dlpi_send_deferred(ill); 5449 5450 /* 5451 * Shut down fragmentation reassembly. 5452 * ill_frag_timer won't start a timer again. 5453 * Now cancel any existing timer 5454 */ 5455 (void) untimeout(ill->ill_frag_timer_id); 5456 (void) ill_frag_timeout(ill, 0); 5457 5458 /* 5459 * If MOVE was in progress, clear the 5460 * move_in_progress fields also. 5461 */ 5462 if (ill->ill_move_in_progress) { 5463 ILL_CLEAR_MOVE(ill); 5464 } 5465 5466 /* 5467 * Call ill_delete to bring down the ipifs, ilms and ill on 5468 * this ill. Then wait for the refcnts to drop to zero. 5469 * ill_is_quiescent checks whether the ill is really quiescent. 5470 * Then make sure that threads that are waiting to enter the 5471 * ipsq have seen the error returned by ipsq_enter and have 5472 * gone away. Then we call ill_delete_tail which does the 5473 * DL_UNBIND_REQ with the driver and then qprocsoff. 5474 */ 5475 ill_delete(ill); 5476 mutex_enter(&ill->ill_lock); 5477 while (!ill_is_quiescent(ill)) 5478 cv_wait(&ill->ill_cv, &ill->ill_lock); 5479 while (ill->ill_waiters) 5480 cv_wait(&ill->ill_cv, &ill->ill_lock); 5481 5482 mutex_exit(&ill->ill_lock); 5483 5484 /* 5485 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5486 * it held until the end of the function since the cleanup 5487 * below needs to be able to use the ip_stack_t. 5488 */ 5489 netstack_hold(ipst->ips_netstack); 5490 5491 /* qprocsoff is called in ill_delete_tail */ 5492 ill_delete_tail(ill); 5493 ASSERT(ill->ill_ipst == NULL); 5494 5495 /* 5496 * Walk through all upper (conn) streams and qenable 5497 * those that have queued data. 5498 * close synchronization needs this to 5499 * be done to ensure that all upper layers blocked 5500 * due to flow control to the closing device 5501 * get unblocked. 5502 */ 5503 ip1dbg(("ip_wsrv: walking\n")); 5504 conn_walk_drain(ipst); 5505 5506 mutex_enter(&ipst->ips_ip_mi_lock); 5507 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5508 mutex_exit(&ipst->ips_ip_mi_lock); 5509 5510 /* 5511 * credp could be null if the open didn't succeed and ip_modopen 5512 * itself calls ip_close. 5513 */ 5514 if (ill->ill_credp != NULL) 5515 crfree(ill->ill_credp); 5516 5517 mutex_enter(&ill->ill_lock); 5518 ill_nic_info_dispatch(ill); 5519 mutex_exit(&ill->ill_lock); 5520 5521 /* 5522 * Now we are done with the module close pieces that 5523 * need the netstack_t. 5524 */ 5525 netstack_rele(ipst->ips_netstack); 5526 5527 mi_close_free((IDP)ill); 5528 q->q_ptr = WR(q)->q_ptr = NULL; 5529 5530 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5531 5532 return (0); 5533 } 5534 5535 /* 5536 * This is called as part of close() for both IP and UDP 5537 * in order to quiesce the conn. 5538 */ 5539 void 5540 ip_quiesce_conn(conn_t *connp) 5541 { 5542 boolean_t drain_cleanup_reqd = B_FALSE; 5543 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5544 boolean_t ilg_cleanup_reqd = B_FALSE; 5545 ip_stack_t *ipst; 5546 5547 ASSERT(!IPCL_IS_TCP(connp)); 5548 ipst = connp->conn_netstack->netstack_ip; 5549 5550 /* 5551 * Mark the conn as closing, and this conn must not be 5552 * inserted in future into any list. Eg. conn_drain_insert(), 5553 * won't insert this conn into the conn_drain_list. 5554 * Similarly ill_pending_mp_add() will not add any mp to 5555 * the pending mp list, after this conn has started closing. 5556 * 5557 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5558 * cannot get set henceforth. 5559 */ 5560 mutex_enter(&connp->conn_lock); 5561 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5562 connp->conn_state_flags |= CONN_CLOSING; 5563 if (connp->conn_idl != NULL) 5564 drain_cleanup_reqd = B_TRUE; 5565 if (connp->conn_oper_pending_ill != NULL) 5566 conn_ioctl_cleanup_reqd = B_TRUE; 5567 if (connp->conn_ilg_inuse != 0) 5568 ilg_cleanup_reqd = B_TRUE; 5569 mutex_exit(&connp->conn_lock); 5570 5571 if (IPCL_IS_UDP(connp)) 5572 udp_quiesce_conn(connp); 5573 5574 if (conn_ioctl_cleanup_reqd) 5575 conn_ioctl_cleanup(connp); 5576 5577 if (is_system_labeled() && connp->conn_anon_port) { 5578 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5579 connp->conn_mlp_type, connp->conn_ulp, 5580 ntohs(connp->conn_lport), B_FALSE); 5581 connp->conn_anon_port = 0; 5582 } 5583 connp->conn_mlp_type = mlptSingle; 5584 5585 /* 5586 * Remove this conn from any fanout list it is on. 5587 * and then wait for any threads currently operating 5588 * on this endpoint to finish 5589 */ 5590 ipcl_hash_remove(connp); 5591 5592 /* 5593 * Remove this conn from the drain list, and do 5594 * any other cleanup that may be required. 5595 * (Only non-tcp streams may have a non-null conn_idl. 5596 * TCP streams are never flow controlled, and 5597 * conn_idl will be null) 5598 */ 5599 if (drain_cleanup_reqd) 5600 conn_drain_tail(connp, B_TRUE); 5601 5602 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5603 connp->conn_wq == ipst->ips_ip_g_mrouter) 5604 (void) ip_mrouter_done(NULL, ipst); 5605 5606 if (ilg_cleanup_reqd) 5607 ilg_delete_all(connp); 5608 5609 conn_delete_ire(connp, NULL); 5610 5611 /* 5612 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5613 * callers from write side can't be there now because close 5614 * is in progress. The only other caller is ipcl_walk 5615 * which checks for the condemned flag. 5616 */ 5617 mutex_enter(&connp->conn_lock); 5618 connp->conn_state_flags |= CONN_CONDEMNED; 5619 while (connp->conn_ref != 1) 5620 cv_wait(&connp->conn_cv, &connp->conn_lock); 5621 connp->conn_state_flags |= CONN_QUIESCED; 5622 mutex_exit(&connp->conn_lock); 5623 } 5624 5625 /* ARGSUSED */ 5626 int 5627 ip_close(queue_t *q, int flags) 5628 { 5629 conn_t *connp; 5630 5631 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5632 5633 /* 5634 * Call the appropriate delete routine depending on whether this is 5635 * a module or device. 5636 */ 5637 if (WR(q)->q_next != NULL) { 5638 /* This is a module close */ 5639 return (ip_modclose((ill_t *)q->q_ptr)); 5640 } 5641 5642 connp = q->q_ptr; 5643 ip_quiesce_conn(connp); 5644 5645 qprocsoff(q); 5646 5647 /* 5648 * Now we are truly single threaded on this stream, and can 5649 * delete the things hanging off the connp, and finally the connp. 5650 * We removed this connp from the fanout list, it cannot be 5651 * accessed thru the fanouts, and we already waited for the 5652 * conn_ref to drop to 0. We are already in close, so 5653 * there cannot be any other thread from the top. qprocsoff 5654 * has completed, and service has completed or won't run in 5655 * future. 5656 */ 5657 ASSERT(connp->conn_ref == 1); 5658 5659 /* 5660 * A conn which was previously marked as IPCL_UDP cannot 5661 * retain the flag because it would have been cleared by 5662 * udp_close(). 5663 */ 5664 ASSERT(!IPCL_IS_UDP(connp)); 5665 5666 if (connp->conn_latch != NULL) { 5667 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5668 connp->conn_latch = NULL; 5669 } 5670 if (connp->conn_policy != NULL) { 5671 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5672 connp->conn_policy = NULL; 5673 } 5674 if (connp->conn_ipsec_opt_mp != NULL) { 5675 freemsg(connp->conn_ipsec_opt_mp); 5676 connp->conn_ipsec_opt_mp = NULL; 5677 } 5678 5679 inet_minor_free(ip_minor_arena, connp->conn_dev); 5680 5681 connp->conn_ref--; 5682 ipcl_conn_destroy(connp); 5683 5684 q->q_ptr = WR(q)->q_ptr = NULL; 5685 return (0); 5686 } 5687 5688 int 5689 ip_snmpmod_close(queue_t *q) 5690 { 5691 conn_t *connp = Q_TO_CONN(q); 5692 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5693 5694 qprocsoff(q); 5695 5696 if (connp->conn_flags & IPCL_UDPMOD) 5697 udp_close_free(connp); 5698 5699 if (connp->conn_cred != NULL) { 5700 crfree(connp->conn_cred); 5701 connp->conn_cred = NULL; 5702 } 5703 CONN_DEC_REF(connp); 5704 q->q_ptr = WR(q)->q_ptr = NULL; 5705 return (0); 5706 } 5707 5708 /* 5709 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5710 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5711 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5712 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5713 * queues as we never enqueue messages there and we don't handle any ioctls. 5714 * Everything else is freed. 5715 */ 5716 void 5717 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5718 { 5719 conn_t *connp = q->q_ptr; 5720 pfi_t setfn; 5721 pfi_t getfn; 5722 5723 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5724 5725 switch (DB_TYPE(mp)) { 5726 case M_PROTO: 5727 case M_PCPROTO: 5728 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5729 ((((union T_primitives *)mp->b_rptr)->type == 5730 T_SVR4_OPTMGMT_REQ) || 5731 (((union T_primitives *)mp->b_rptr)->type == 5732 T_OPTMGMT_REQ))) { 5733 /* 5734 * This is the only TPI primitive supported. Its 5735 * handling does not require tcp_t, but it does require 5736 * conn_t to check permissions. 5737 */ 5738 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5739 5740 if (connp->conn_flags & IPCL_TCPMOD) { 5741 setfn = tcp_snmp_set; 5742 getfn = tcp_snmp_get; 5743 } else { 5744 setfn = udp_snmp_set; 5745 getfn = udp_snmp_get; 5746 } 5747 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5748 freemsg(mp); 5749 return; 5750 } 5751 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5752 != NULL) 5753 qreply(q, mp); 5754 break; 5755 case M_FLUSH: 5756 case M_IOCTL: 5757 putnext(q, mp); 5758 break; 5759 default: 5760 freemsg(mp); 5761 break; 5762 } 5763 } 5764 5765 /* Return the IP checksum for the IP header at "iph". */ 5766 uint16_t 5767 ip_csum_hdr(ipha_t *ipha) 5768 { 5769 uint16_t *uph; 5770 uint32_t sum; 5771 int opt_len; 5772 5773 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5774 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5775 uph = (uint16_t *)ipha; 5776 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5777 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5778 if (opt_len > 0) { 5779 do { 5780 sum += uph[10]; 5781 sum += uph[11]; 5782 uph += 2; 5783 } while (--opt_len); 5784 } 5785 sum = (sum & 0xFFFF) + (sum >> 16); 5786 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5787 if (sum == 0xffff) 5788 sum = 0; 5789 return ((uint16_t)sum); 5790 } 5791 5792 /* 5793 * Called when the module is about to be unloaded 5794 */ 5795 void 5796 ip_ddi_destroy(void) 5797 { 5798 tnet_fini(); 5799 5800 sctp_ddi_g_destroy(); 5801 tcp_ddi_g_destroy(); 5802 ipsec_policy_g_destroy(); 5803 ipcl_g_destroy(); 5804 ip_net_g_destroy(); 5805 ip_ire_g_fini(); 5806 inet_minor_destroy(ip_minor_arena); 5807 5808 netstack_unregister(NS_IP); 5809 } 5810 5811 /* 5812 * First step in cleanup. 5813 */ 5814 /* ARGSUSED */ 5815 static void 5816 ip_stack_shutdown(netstackid_t stackid, void *arg) 5817 { 5818 ip_stack_t *ipst = (ip_stack_t *)arg; 5819 5820 #ifdef NS_DEBUG 5821 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5822 #endif 5823 5824 /* Get rid of loopback interfaces and their IREs */ 5825 ip_loopback_cleanup(ipst); 5826 } 5827 5828 /* 5829 * Free the IP stack instance. 5830 */ 5831 static void 5832 ip_stack_fini(netstackid_t stackid, void *arg) 5833 { 5834 ip_stack_t *ipst = (ip_stack_t *)arg; 5835 int ret; 5836 5837 #ifdef NS_DEBUG 5838 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5839 #endif 5840 ipv4_hook_destroy(ipst); 5841 ipv6_hook_destroy(ipst); 5842 ip_net_destroy(ipst); 5843 5844 rw_destroy(&ipst->ips_srcid_lock); 5845 5846 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5847 ipst->ips_ip_mibkp = NULL; 5848 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5849 ipst->ips_icmp_mibkp = NULL; 5850 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5851 ipst->ips_ip_kstat = NULL; 5852 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5853 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5854 ipst->ips_ip6_kstat = NULL; 5855 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5856 5857 nd_free(&ipst->ips_ip_g_nd); 5858 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5859 ipst->ips_param_arr = NULL; 5860 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5861 ipst->ips_ndp_arr = NULL; 5862 5863 ip_mrouter_stack_destroy(ipst); 5864 5865 mutex_destroy(&ipst->ips_ip_mi_lock); 5866 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5867 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5868 rw_destroy(&ipst->ips_ip_g_nd_lock); 5869 5870 ret = untimeout(ipst->ips_igmp_timeout_id); 5871 if (ret == -1) { 5872 ASSERT(ipst->ips_igmp_timeout_id == 0); 5873 } else { 5874 ASSERT(ipst->ips_igmp_timeout_id != 0); 5875 ipst->ips_igmp_timeout_id = 0; 5876 } 5877 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5878 if (ret == -1) { 5879 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5880 } else { 5881 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5882 ipst->ips_igmp_slowtimeout_id = 0; 5883 } 5884 ret = untimeout(ipst->ips_mld_timeout_id); 5885 if (ret == -1) { 5886 ASSERT(ipst->ips_mld_timeout_id == 0); 5887 } else { 5888 ASSERT(ipst->ips_mld_timeout_id != 0); 5889 ipst->ips_mld_timeout_id = 0; 5890 } 5891 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5892 if (ret == -1) { 5893 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5894 } else { 5895 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5896 ipst->ips_mld_slowtimeout_id = 0; 5897 } 5898 ret = untimeout(ipst->ips_ip_ire_expire_id); 5899 if (ret == -1) { 5900 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5901 } else { 5902 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5903 ipst->ips_ip_ire_expire_id = 0; 5904 } 5905 5906 mutex_destroy(&ipst->ips_igmp_timer_lock); 5907 mutex_destroy(&ipst->ips_mld_timer_lock); 5908 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5909 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5910 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5911 rw_destroy(&ipst->ips_ill_g_lock); 5912 5913 ip_ire_fini(ipst); 5914 ip6_asp_free(ipst); 5915 conn_drain_fini(ipst); 5916 ipcl_destroy(ipst); 5917 5918 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5919 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5920 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5921 ipst->ips_ndp4 = NULL; 5922 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5923 ipst->ips_ndp6 = NULL; 5924 5925 if (ipst->ips_loopback_ksp != NULL) { 5926 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5927 ipst->ips_loopback_ksp = NULL; 5928 } 5929 5930 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5931 ipst->ips_phyint_g_list = NULL; 5932 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5933 ipst->ips_ill_g_heads = NULL; 5934 5935 kmem_free(ipst, sizeof (*ipst)); 5936 } 5937 5938 /* 5939 * Called when the IP kernel module is loaded into the kernel 5940 */ 5941 void 5942 ip_ddi_init(void) 5943 { 5944 TCP6_MAJ = ddi_name_to_major(TCP6); 5945 TCP_MAJ = ddi_name_to_major(TCP); 5946 SCTP_MAJ = ddi_name_to_major(SCTP); 5947 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5948 5949 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5950 5951 /* 5952 * For IP and TCP the minor numbers should start from 2 since we have 4 5953 * initial devices: ip, ip6, tcp, tcp6. 5954 */ 5955 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5956 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5957 cmn_err(CE_PANIC, 5958 "ip_ddi_init: ip_minor_arena creation failed\n"); 5959 } 5960 5961 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5962 5963 ipcl_g_init(); 5964 ip_ire_g_init(); 5965 ip_net_g_init(); 5966 5967 #ifdef ILL_DEBUG 5968 /* Default cleanup function */ 5969 ip_cleanup_func = ip_thread_exit; 5970 #endif 5971 5972 /* 5973 * We want to be informed each time a stack is created or 5974 * destroyed in the kernel, so we can maintain the 5975 * set of udp_stack_t's. 5976 */ 5977 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5978 ip_stack_fini); 5979 5980 ipsec_policy_g_init(); 5981 tcp_ddi_g_init(); 5982 sctp_ddi_g_init(); 5983 5984 tnet_init(); 5985 } 5986 5987 /* 5988 * Initialize the IP stack instance. 5989 */ 5990 static void * 5991 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5992 { 5993 ip_stack_t *ipst; 5994 ipparam_t *pa; 5995 ipndp_t *na; 5996 5997 #ifdef NS_DEBUG 5998 printf("ip_stack_init(stack %d)\n", stackid); 5999 #endif 6000 6001 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6002 ipst->ips_netstack = ns; 6003 6004 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6005 KM_SLEEP); 6006 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6007 KM_SLEEP); 6008 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6009 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6010 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6011 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6012 6013 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6014 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6015 ipst->ips_igmp_deferred_next = INFINITY; 6016 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6017 ipst->ips_mld_deferred_next = INFINITY; 6018 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6019 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6020 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6021 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6022 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6023 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6024 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6025 6026 ipcl_init(ipst); 6027 ip_ire_init(ipst); 6028 ip6_asp_init(ipst); 6029 ipif_init(ipst); 6030 conn_drain_init(ipst); 6031 ip_mrouter_stack_init(ipst); 6032 6033 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6034 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6035 6036 ipst->ips_ip_multirt_log_interval = 1000; 6037 6038 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6039 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6040 ipst->ips_ill_index = 1; 6041 6042 ipst->ips_saved_ip_g_forward = -1; 6043 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6044 6045 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6046 ipst->ips_param_arr = pa; 6047 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6048 6049 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6050 ipst->ips_ndp_arr = na; 6051 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6052 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6053 (caddr_t)&ipst->ips_ip_g_forward; 6054 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6055 (caddr_t)&ipst->ips_ipv6_forward; 6056 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6057 "ip_cgtp_filter") == 0); 6058 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6059 (caddr_t)&ip_cgtp_filter; 6060 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6061 "ipmp_hook_emulation") == 0); 6062 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6063 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6064 6065 (void) ip_param_register(&ipst->ips_ip_g_nd, 6066 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6067 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6068 6069 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6070 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6071 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6072 ipst->ips_ip6_kstat = 6073 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6074 6075 ipst->ips_ipmp_enable_failback = B_TRUE; 6076 6077 ipst->ips_ip_src_id = 1; 6078 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6079 6080 ip_net_init(ipst, ns); 6081 ipv4_hook_init(ipst); 6082 ipv6_hook_init(ipst); 6083 6084 return (ipst); 6085 } 6086 6087 /* 6088 * Allocate and initialize a DLPI template of the specified length. (May be 6089 * called as writer.) 6090 */ 6091 mblk_t * 6092 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6093 { 6094 mblk_t *mp; 6095 6096 mp = allocb(len, BPRI_MED); 6097 if (!mp) 6098 return (NULL); 6099 6100 /* 6101 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6102 * of which we don't seem to use) are sent with M_PCPROTO, and 6103 * that other DLPI are M_PROTO. 6104 */ 6105 if (prim == DL_INFO_REQ) { 6106 mp->b_datap->db_type = M_PCPROTO; 6107 } else { 6108 mp->b_datap->db_type = M_PROTO; 6109 } 6110 6111 mp->b_wptr = mp->b_rptr + len; 6112 bzero(mp->b_rptr, len); 6113 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6114 return (mp); 6115 } 6116 6117 const char * 6118 dlpi_prim_str(int prim) 6119 { 6120 switch (prim) { 6121 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6122 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6123 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6124 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6125 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6126 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6127 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6128 case DL_OK_ACK: return ("DL_OK_ACK"); 6129 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6130 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6131 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6132 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6133 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6134 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6135 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6136 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6137 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6138 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6139 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6140 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6141 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6142 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6143 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6144 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6145 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6146 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6147 default: return ("<unknown primitive>"); 6148 } 6149 } 6150 6151 const char * 6152 dlpi_err_str(int err) 6153 { 6154 switch (err) { 6155 case DL_ACCESS: return ("DL_ACCESS"); 6156 case DL_BADADDR: return ("DL_BADADDR"); 6157 case DL_BADCORR: return ("DL_BADCORR"); 6158 case DL_BADDATA: return ("DL_BADDATA"); 6159 case DL_BADPPA: return ("DL_BADPPA"); 6160 case DL_BADPRIM: return ("DL_BADPRIM"); 6161 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6162 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6163 case DL_BADSAP: return ("DL_BADSAP"); 6164 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6165 case DL_BOUND: return ("DL_BOUND"); 6166 case DL_INITFAILED: return ("DL_INITFAILED"); 6167 case DL_NOADDR: return ("DL_NOADDR"); 6168 case DL_NOTINIT: return ("DL_NOTINIT"); 6169 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6170 case DL_SYSERR: return ("DL_SYSERR"); 6171 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6172 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6173 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6174 case DL_TOOMANY: return ("DL_TOOMANY"); 6175 case DL_NOTENAB: return ("DL_NOTENAB"); 6176 case DL_BUSY: return ("DL_BUSY"); 6177 case DL_NOAUTO: return ("DL_NOAUTO"); 6178 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6179 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6180 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6181 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6182 case DL_PENDING: return ("DL_PENDING"); 6183 default: return ("<unknown error>"); 6184 } 6185 } 6186 6187 /* 6188 * Debug formatting routine. Returns a character string representation of the 6189 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6190 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6191 * 6192 * Once the ndd table-printing interfaces are removed, this can be changed to 6193 * standard dotted-decimal form. 6194 */ 6195 char * 6196 ip_dot_addr(ipaddr_t addr, char *buf) 6197 { 6198 uint8_t *ap = (uint8_t *)&addr; 6199 6200 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6201 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6202 return (buf); 6203 } 6204 6205 /* 6206 * Write the given MAC address as a printable string in the usual colon- 6207 * separated format. 6208 */ 6209 const char * 6210 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6211 { 6212 char *bp; 6213 6214 if (alen == 0 || buflen < 4) 6215 return ("?"); 6216 bp = buf; 6217 for (;;) { 6218 /* 6219 * If there are more MAC address bytes available, but we won't 6220 * have any room to print them, then add "..." to the string 6221 * instead. See below for the 'magic number' explanation. 6222 */ 6223 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6224 (void) strcpy(bp, "..."); 6225 break; 6226 } 6227 (void) sprintf(bp, "%02x", *addr++); 6228 bp += 2; 6229 if (--alen == 0) 6230 break; 6231 *bp++ = ':'; 6232 buflen -= 3; 6233 /* 6234 * At this point, based on the first 'if' statement above, 6235 * either alen == 1 and buflen >= 3, or alen > 1 and 6236 * buflen >= 4. The first case leaves room for the final "xx" 6237 * number and trailing NUL byte. The second leaves room for at 6238 * least "...". Thus the apparently 'magic' numbers chosen for 6239 * that statement. 6240 */ 6241 } 6242 return (buf); 6243 } 6244 6245 /* 6246 * Send an ICMP error after patching up the packet appropriately. Returns 6247 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6248 */ 6249 static boolean_t 6250 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6251 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6252 zoneid_t zoneid, ip_stack_t *ipst) 6253 { 6254 ipha_t *ipha; 6255 mblk_t *first_mp; 6256 boolean_t secure; 6257 unsigned char db_type; 6258 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6259 6260 first_mp = mp; 6261 if (mctl_present) { 6262 mp = mp->b_cont; 6263 secure = ipsec_in_is_secure(first_mp); 6264 ASSERT(mp != NULL); 6265 } else { 6266 /* 6267 * If this is an ICMP error being reported - which goes 6268 * up as M_CTLs, we need to convert them to M_DATA till 6269 * we finish checking with global policy because 6270 * ipsec_check_global_policy() assumes M_DATA as clear 6271 * and M_CTL as secure. 6272 */ 6273 db_type = DB_TYPE(mp); 6274 DB_TYPE(mp) = M_DATA; 6275 secure = B_FALSE; 6276 } 6277 /* 6278 * We are generating an icmp error for some inbound packet. 6279 * Called from all ip_fanout_(udp, tcp, proto) functions. 6280 * Before we generate an error, check with global policy 6281 * to see whether this is allowed to enter the system. As 6282 * there is no "conn", we are checking with global policy. 6283 */ 6284 ipha = (ipha_t *)mp->b_rptr; 6285 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6286 first_mp = ipsec_check_global_policy(first_mp, NULL, 6287 ipha, NULL, mctl_present, ipst->ips_netstack); 6288 if (first_mp == NULL) 6289 return (B_FALSE); 6290 } 6291 6292 if (!mctl_present) 6293 DB_TYPE(mp) = db_type; 6294 6295 if (flags & IP_FF_SEND_ICMP) { 6296 if (flags & IP_FF_HDR_COMPLETE) { 6297 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6298 freemsg(first_mp); 6299 return (B_TRUE); 6300 } 6301 } 6302 if (flags & IP_FF_CKSUM) { 6303 /* 6304 * Have to correct checksum since 6305 * the packet might have been 6306 * fragmented and the reassembly code in ip_rput 6307 * does not restore the IP checksum. 6308 */ 6309 ipha->ipha_hdr_checksum = 0; 6310 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6311 } 6312 switch (icmp_type) { 6313 case ICMP_DEST_UNREACHABLE: 6314 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6315 ipst); 6316 break; 6317 default: 6318 freemsg(first_mp); 6319 break; 6320 } 6321 } else { 6322 freemsg(first_mp); 6323 return (B_FALSE); 6324 } 6325 6326 return (B_TRUE); 6327 } 6328 6329 /* 6330 * Used to send an ICMP error message when a packet is received for 6331 * a protocol that is not supported. The mblk passed as argument 6332 * is consumed by this function. 6333 */ 6334 void 6335 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6336 ip_stack_t *ipst) 6337 { 6338 mblk_t *mp; 6339 ipha_t *ipha; 6340 ill_t *ill; 6341 ipsec_in_t *ii; 6342 6343 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6344 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6345 6346 mp = ipsec_mp->b_cont; 6347 ipsec_mp->b_cont = NULL; 6348 ipha = (ipha_t *)mp->b_rptr; 6349 /* Get ill from index in ipsec_in_t. */ 6350 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6351 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6352 ipst); 6353 if (ill != NULL) { 6354 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6355 if (ip_fanout_send_icmp(q, mp, flags, 6356 ICMP_DEST_UNREACHABLE, 6357 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6358 BUMP_MIB(ill->ill_ip_mib, 6359 ipIfStatsInUnknownProtos); 6360 } 6361 } else { 6362 if (ip_fanout_send_icmp_v6(q, mp, flags, 6363 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6364 0, B_FALSE, zoneid, ipst)) { 6365 BUMP_MIB(ill->ill_ip_mib, 6366 ipIfStatsInUnknownProtos); 6367 } 6368 } 6369 ill_refrele(ill); 6370 } else { /* re-link for the freemsg() below. */ 6371 ipsec_mp->b_cont = mp; 6372 } 6373 6374 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6375 freemsg(ipsec_mp); 6376 } 6377 6378 /* 6379 * See if the inbound datagram has had IPsec processing applied to it. 6380 */ 6381 boolean_t 6382 ipsec_in_is_secure(mblk_t *ipsec_mp) 6383 { 6384 ipsec_in_t *ii; 6385 6386 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6387 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6388 6389 if (ii->ipsec_in_loopback) { 6390 return (ii->ipsec_in_secure); 6391 } else { 6392 return (ii->ipsec_in_ah_sa != NULL || 6393 ii->ipsec_in_esp_sa != NULL || 6394 ii->ipsec_in_decaps); 6395 } 6396 } 6397 6398 /* 6399 * Handle protocols with which IP is less intimate. There 6400 * can be more than one stream bound to a particular 6401 * protocol. When this is the case, normally each one gets a copy 6402 * of any incoming packets. 6403 * 6404 * IPSEC NOTE : 6405 * 6406 * Don't allow a secure packet going up a non-secure connection. 6407 * We don't allow this because 6408 * 6409 * 1) Reply might go out in clear which will be dropped at 6410 * the sending side. 6411 * 2) If the reply goes out in clear it will give the 6412 * adversary enough information for getting the key in 6413 * most of the cases. 6414 * 6415 * Moreover getting a secure packet when we expect clear 6416 * implies that SA's were added without checking for 6417 * policy on both ends. This should not happen once ISAKMP 6418 * is used to negotiate SAs as SAs will be added only after 6419 * verifying the policy. 6420 * 6421 * NOTE : If the packet was tunneled and not multicast we only send 6422 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6423 * back to delivering packets to AF_INET6 raw sockets. 6424 * 6425 * IPQoS Notes: 6426 * Once we have determined the client, invoke IPPF processing. 6427 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6428 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6429 * ip_policy will be false. 6430 * 6431 * Zones notes: 6432 * Currently only applications in the global zone can create raw sockets for 6433 * protocols other than ICMP. So unlike the broadcast / multicast case of 6434 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6435 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6436 */ 6437 static void 6438 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6439 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6440 zoneid_t zoneid) 6441 { 6442 queue_t *rq; 6443 mblk_t *mp1, *first_mp1; 6444 uint_t protocol = ipha->ipha_protocol; 6445 ipaddr_t dst; 6446 boolean_t one_only; 6447 mblk_t *first_mp = mp; 6448 boolean_t secure; 6449 uint32_t ill_index; 6450 conn_t *connp, *first_connp, *next_connp; 6451 connf_t *connfp; 6452 boolean_t shared_addr; 6453 mib2_ipIfStatsEntry_t *mibptr; 6454 ip_stack_t *ipst = recv_ill->ill_ipst; 6455 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6456 6457 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6458 if (mctl_present) { 6459 mp = first_mp->b_cont; 6460 secure = ipsec_in_is_secure(first_mp); 6461 ASSERT(mp != NULL); 6462 } else { 6463 secure = B_FALSE; 6464 } 6465 dst = ipha->ipha_dst; 6466 /* 6467 * If the packet was tunneled and not multicast we only send to it 6468 * the first match. 6469 */ 6470 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6471 !CLASSD(dst)); 6472 6473 shared_addr = (zoneid == ALL_ZONES); 6474 if (shared_addr) { 6475 /* 6476 * We don't allow multilevel ports for raw IP, so no need to 6477 * check for that here. 6478 */ 6479 zoneid = tsol_packet_to_zoneid(mp); 6480 } 6481 6482 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6483 mutex_enter(&connfp->connf_lock); 6484 connp = connfp->connf_head; 6485 for (connp = connfp->connf_head; connp != NULL; 6486 connp = connp->conn_next) { 6487 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6488 zoneid) && 6489 (!is_system_labeled() || 6490 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6491 connp))) { 6492 break; 6493 } 6494 } 6495 6496 if (connp == NULL || connp->conn_upq == NULL) { 6497 /* 6498 * No one bound to these addresses. Is 6499 * there a client that wants all 6500 * unclaimed datagrams? 6501 */ 6502 mutex_exit(&connfp->connf_lock); 6503 /* 6504 * Check for IPPROTO_ENCAP... 6505 */ 6506 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6507 /* 6508 * If an IPsec mblk is here on a multicast 6509 * tunnel (using ip_mroute stuff), check policy here, 6510 * THEN ship off to ip_mroute_decap(). 6511 * 6512 * BTW, If I match a configured IP-in-IP 6513 * tunnel, this path will not be reached, and 6514 * ip_mroute_decap will never be called. 6515 */ 6516 first_mp = ipsec_check_global_policy(first_mp, connp, 6517 ipha, NULL, mctl_present, ipst->ips_netstack); 6518 if (first_mp != NULL) { 6519 if (mctl_present) 6520 freeb(first_mp); 6521 ip_mroute_decap(q, mp, ill); 6522 } /* Else we already freed everything! */ 6523 } else { 6524 /* 6525 * Otherwise send an ICMP protocol unreachable. 6526 */ 6527 if (ip_fanout_send_icmp(q, first_mp, flags, 6528 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6529 mctl_present, zoneid, ipst)) { 6530 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6531 } 6532 } 6533 return; 6534 } 6535 CONN_INC_REF(connp); 6536 first_connp = connp; 6537 6538 /* 6539 * Only send message to one tunnel driver by immediately 6540 * terminating the loop. 6541 */ 6542 connp = one_only ? NULL : connp->conn_next; 6543 6544 for (;;) { 6545 while (connp != NULL) { 6546 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6547 flags, zoneid) && 6548 (!is_system_labeled() || 6549 tsol_receive_local(mp, &dst, IPV4_VERSION, 6550 shared_addr, connp))) 6551 break; 6552 connp = connp->conn_next; 6553 } 6554 6555 /* 6556 * Copy the packet. 6557 */ 6558 if (connp == NULL || connp->conn_upq == NULL || 6559 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6560 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6561 /* 6562 * No more interested clients or memory 6563 * allocation failed 6564 */ 6565 connp = first_connp; 6566 break; 6567 } 6568 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6569 CONN_INC_REF(connp); 6570 mutex_exit(&connfp->connf_lock); 6571 rq = connp->conn_rq; 6572 if (!canputnext(rq)) { 6573 if (flags & IP_FF_RAWIP) { 6574 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6575 } else { 6576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6577 } 6578 6579 freemsg(first_mp1); 6580 } else { 6581 /* 6582 * Don't enforce here if we're an actual tunnel - 6583 * let "tun" do it instead. 6584 */ 6585 if (!IPCL_IS_IPTUN(connp) && 6586 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6587 secure)) { 6588 first_mp1 = ipsec_check_inbound_policy 6589 (first_mp1, connp, ipha, NULL, 6590 mctl_present); 6591 } 6592 if (first_mp1 != NULL) { 6593 int in_flags = 0; 6594 /* 6595 * ip_fanout_proto also gets called from 6596 * icmp_inbound_error_fanout, in which case 6597 * the msg type is M_CTL. Don't add info 6598 * in this case for the time being. In future 6599 * when there is a need for knowing the 6600 * inbound iface index for ICMP error msgs, 6601 * then this can be changed. 6602 */ 6603 if (connp->conn_recvif) 6604 in_flags = IPF_RECVIF; 6605 /* 6606 * The ULP may support IP_RECVPKTINFO for both 6607 * IP v4 and v6 so pass the appropriate argument 6608 * based on conn IP version. 6609 */ 6610 if (connp->conn_ip_recvpktinfo) { 6611 if (connp->conn_af_isv6) { 6612 /* 6613 * V6 only needs index 6614 */ 6615 in_flags |= IPF_RECVIF; 6616 } else { 6617 /* 6618 * V4 needs index + 6619 * matching address. 6620 */ 6621 in_flags |= IPF_RECVADDR; 6622 } 6623 } 6624 if ((in_flags != 0) && 6625 (mp->b_datap->db_type != M_CTL)) { 6626 /* 6627 * the actual data will be 6628 * contained in b_cont upon 6629 * successful return of the 6630 * following call else 6631 * original mblk is returned 6632 */ 6633 ASSERT(recv_ill != NULL); 6634 mp1 = ip_add_info(mp1, recv_ill, 6635 in_flags, IPCL_ZONEID(connp), ipst); 6636 } 6637 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6638 if (mctl_present) 6639 freeb(first_mp1); 6640 putnext(rq, mp1); 6641 } 6642 } 6643 mutex_enter(&connfp->connf_lock); 6644 /* Follow the next pointer before releasing the conn. */ 6645 next_connp = connp->conn_next; 6646 CONN_DEC_REF(connp); 6647 connp = next_connp; 6648 } 6649 6650 /* Last one. Send it upstream. */ 6651 mutex_exit(&connfp->connf_lock); 6652 6653 /* 6654 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6655 * will be set to false. 6656 */ 6657 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6658 ill_index = ill->ill_phyint->phyint_ifindex; 6659 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6660 if (mp == NULL) { 6661 CONN_DEC_REF(connp); 6662 if (mctl_present) { 6663 freeb(first_mp); 6664 } 6665 return; 6666 } 6667 } 6668 6669 rq = connp->conn_rq; 6670 if (!canputnext(rq)) { 6671 if (flags & IP_FF_RAWIP) { 6672 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6673 } else { 6674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6675 } 6676 6677 freemsg(first_mp); 6678 } else { 6679 if (IPCL_IS_IPTUN(connp)) { 6680 /* 6681 * Tunneled packet. We enforce policy in the tunnel 6682 * module itself. 6683 * 6684 * Send the WHOLE packet up (incl. IPSEC_IN) without 6685 * a policy check. 6686 */ 6687 putnext(rq, first_mp); 6688 CONN_DEC_REF(connp); 6689 return; 6690 } 6691 6692 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6693 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6694 ipha, NULL, mctl_present); 6695 } 6696 6697 if (first_mp != NULL) { 6698 int in_flags = 0; 6699 6700 /* 6701 * ip_fanout_proto also gets called 6702 * from icmp_inbound_error_fanout, in 6703 * which case the msg type is M_CTL. 6704 * Don't add info in this case for time 6705 * being. In future when there is a 6706 * need for knowing the inbound iface 6707 * index for ICMP error msgs, then this 6708 * can be changed 6709 */ 6710 if (connp->conn_recvif) 6711 in_flags = IPF_RECVIF; 6712 if (connp->conn_ip_recvpktinfo) { 6713 if (connp->conn_af_isv6) { 6714 /* 6715 * V6 only needs index 6716 */ 6717 in_flags |= IPF_RECVIF; 6718 } else { 6719 /* 6720 * V4 needs index + 6721 * matching address. 6722 */ 6723 in_flags |= IPF_RECVADDR; 6724 } 6725 } 6726 if ((in_flags != 0) && 6727 (mp->b_datap->db_type != M_CTL)) { 6728 6729 /* 6730 * the actual data will be contained in 6731 * b_cont upon successful return 6732 * of the following call else original 6733 * mblk is returned 6734 */ 6735 ASSERT(recv_ill != NULL); 6736 mp = ip_add_info(mp, recv_ill, 6737 in_flags, IPCL_ZONEID(connp), ipst); 6738 } 6739 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6740 putnext(rq, mp); 6741 if (mctl_present) 6742 freeb(first_mp); 6743 } 6744 } 6745 CONN_DEC_REF(connp); 6746 } 6747 6748 /* 6749 * Fanout for TCP packets 6750 * The caller puts <fport, lport> in the ports parameter. 6751 * 6752 * IPQoS Notes 6753 * Before sending it to the client, invoke IPPF processing. 6754 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6755 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6756 * ip_policy is false. 6757 */ 6758 static void 6759 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6760 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6761 { 6762 mblk_t *first_mp; 6763 boolean_t secure; 6764 uint32_t ill_index; 6765 int ip_hdr_len; 6766 tcph_t *tcph; 6767 boolean_t syn_present = B_FALSE; 6768 conn_t *connp; 6769 ip_stack_t *ipst = recv_ill->ill_ipst; 6770 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6771 6772 ASSERT(recv_ill != NULL); 6773 6774 first_mp = mp; 6775 if (mctl_present) { 6776 ASSERT(first_mp->b_datap->db_type == M_CTL); 6777 mp = first_mp->b_cont; 6778 secure = ipsec_in_is_secure(first_mp); 6779 ASSERT(mp != NULL); 6780 } else { 6781 secure = B_FALSE; 6782 } 6783 6784 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6785 6786 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6787 zoneid, ipst)) == NULL) { 6788 /* 6789 * No connected connection or listener. Send a 6790 * TH_RST via tcp_xmit_listeners_reset. 6791 */ 6792 6793 /* Initiate IPPf processing, if needed. */ 6794 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6795 uint32_t ill_index; 6796 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6797 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6798 if (first_mp == NULL) 6799 return; 6800 } 6801 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6802 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6803 zoneid)); 6804 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6805 ipst->ips_netstack->netstack_tcp); 6806 return; 6807 } 6808 6809 /* 6810 * Allocate the SYN for the TCP connection here itself 6811 */ 6812 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6813 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6814 if (IPCL_IS_TCP(connp)) { 6815 squeue_t *sqp; 6816 6817 /* 6818 * For fused tcp loopback, assign the eager's 6819 * squeue to be that of the active connect's. 6820 * Note that we don't check for IP_FF_LOOPBACK 6821 * here since this routine gets called only 6822 * for loopback (unlike the IPv6 counterpart). 6823 */ 6824 ASSERT(Q_TO_CONN(q) != NULL); 6825 if (do_tcp_fusion && 6826 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6827 !secure && 6828 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6829 IPCL_IS_TCP(Q_TO_CONN(q))) { 6830 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6831 sqp = Q_TO_CONN(q)->conn_sqp; 6832 } else { 6833 sqp = IP_SQUEUE_GET(lbolt); 6834 } 6835 6836 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6837 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6838 syn_present = B_TRUE; 6839 } 6840 } 6841 6842 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6843 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6844 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6845 if ((flags & TH_RST) || (flags & TH_URG)) { 6846 CONN_DEC_REF(connp); 6847 freemsg(first_mp); 6848 return; 6849 } 6850 if (flags & TH_ACK) { 6851 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6852 ipst->ips_netstack->netstack_tcp); 6853 CONN_DEC_REF(connp); 6854 return; 6855 } 6856 6857 CONN_DEC_REF(connp); 6858 freemsg(first_mp); 6859 return; 6860 } 6861 6862 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6863 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6864 NULL, mctl_present); 6865 if (first_mp == NULL) { 6866 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6867 CONN_DEC_REF(connp); 6868 return; 6869 } 6870 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6871 ASSERT(syn_present); 6872 if (mctl_present) { 6873 ASSERT(first_mp != mp); 6874 first_mp->b_datap->db_struioflag |= 6875 STRUIO_POLICY; 6876 } else { 6877 ASSERT(first_mp == mp); 6878 mp->b_datap->db_struioflag &= 6879 ~STRUIO_EAGER; 6880 mp->b_datap->db_struioflag |= 6881 STRUIO_POLICY; 6882 } 6883 } else { 6884 /* 6885 * Discard first_mp early since we're dealing with a 6886 * fully-connected conn_t and tcp doesn't do policy in 6887 * this case. 6888 */ 6889 if (mctl_present) { 6890 freeb(first_mp); 6891 mctl_present = B_FALSE; 6892 } 6893 first_mp = mp; 6894 } 6895 } 6896 6897 /* 6898 * Initiate policy processing here if needed. If we get here from 6899 * icmp_inbound_error_fanout, ip_policy is false. 6900 */ 6901 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6902 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6903 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6904 if (mp == NULL) { 6905 CONN_DEC_REF(connp); 6906 if (mctl_present) 6907 freeb(first_mp); 6908 return; 6909 } else if (mctl_present) { 6910 ASSERT(first_mp != mp); 6911 first_mp->b_cont = mp; 6912 } else { 6913 first_mp = mp; 6914 } 6915 } 6916 6917 6918 6919 /* Handle socket options. */ 6920 if (!syn_present && 6921 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6922 /* Add header */ 6923 ASSERT(recv_ill != NULL); 6924 /* 6925 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6926 * IPF_RECVIF. 6927 */ 6928 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6929 ipst); 6930 if (mp == NULL) { 6931 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6932 CONN_DEC_REF(connp); 6933 if (mctl_present) 6934 freeb(first_mp); 6935 return; 6936 } else if (mctl_present) { 6937 /* 6938 * ip_add_info might return a new mp. 6939 */ 6940 ASSERT(first_mp != mp); 6941 first_mp->b_cont = mp; 6942 } else { 6943 first_mp = mp; 6944 } 6945 } 6946 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6947 if (IPCL_IS_TCP(connp)) { 6948 /* do not drain, certain use cases can blow the stack */ 6949 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6950 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6951 } else { 6952 putnext(connp->conn_rq, first_mp); 6953 CONN_DEC_REF(connp); 6954 } 6955 } 6956 6957 /* 6958 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6959 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6960 * Caller is responsible for dropping references to the conn, and freeing 6961 * first_mp. 6962 * 6963 * IPQoS Notes 6964 * Before sending it to the client, invoke IPPF processing. Policy processing 6965 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6966 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6967 * ip_wput_local, ip_policy is false. 6968 */ 6969 static void 6970 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6971 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6972 boolean_t ip_policy) 6973 { 6974 boolean_t mctl_present = (first_mp != NULL); 6975 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6976 uint32_t ill_index; 6977 ip_stack_t *ipst = recv_ill->ill_ipst; 6978 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6979 6980 ASSERT(ill != NULL); 6981 6982 if (mctl_present) 6983 first_mp->b_cont = mp; 6984 else 6985 first_mp = mp; 6986 6987 if (CONN_UDP_FLOWCTLD(connp)) { 6988 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6989 freemsg(first_mp); 6990 return; 6991 } 6992 6993 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6994 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6995 NULL, mctl_present); 6996 if (first_mp == NULL) { 6997 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6998 return; /* Freed by ipsec_check_inbound_policy(). */ 6999 } 7000 } 7001 if (mctl_present) 7002 freeb(first_mp); 7003 7004 /* Handle options. */ 7005 if (connp->conn_recvif) 7006 in_flags = IPF_RECVIF; 7007 /* 7008 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7009 * passed to ip_add_info is based on IP version of connp. 7010 */ 7011 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7012 if (connp->conn_af_isv6) { 7013 /* 7014 * V6 only needs index 7015 */ 7016 in_flags |= IPF_RECVIF; 7017 } else { 7018 /* 7019 * V4 needs index + matching address. 7020 */ 7021 in_flags |= IPF_RECVADDR; 7022 } 7023 } 7024 7025 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7026 in_flags |= IPF_RECVSLLA; 7027 7028 /* 7029 * Initiate IPPF processing here, if needed. Note first_mp won't be 7030 * freed if the packet is dropped. The caller will do so. 7031 */ 7032 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7033 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7034 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7035 if (mp == NULL) { 7036 return; 7037 } 7038 } 7039 if ((in_flags != 0) && 7040 (mp->b_datap->db_type != M_CTL)) { 7041 /* 7042 * The actual data will be contained in b_cont 7043 * upon successful return of the following call 7044 * else original mblk is returned 7045 */ 7046 ASSERT(recv_ill != NULL); 7047 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7048 ipst); 7049 } 7050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7051 /* Send it upstream */ 7052 CONN_UDP_RECV(connp, mp); 7053 } 7054 7055 /* 7056 * Fanout for UDP packets. 7057 * The caller puts <fport, lport> in the ports parameter. 7058 * 7059 * If SO_REUSEADDR is set all multicast and broadcast packets 7060 * will be delivered to all streams bound to the same port. 7061 * 7062 * Zones notes: 7063 * Multicast and broadcast packets will be distributed to streams in all zones. 7064 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7065 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7066 * packets. To maintain this behavior with multiple zones, the conns are grouped 7067 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7068 * each zone. If unset, all the following conns in the same zone are skipped. 7069 */ 7070 static void 7071 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7072 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7073 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7074 { 7075 uint32_t dstport, srcport; 7076 ipaddr_t dst; 7077 mblk_t *first_mp; 7078 boolean_t secure; 7079 in6_addr_t v6src; 7080 conn_t *connp; 7081 connf_t *connfp; 7082 conn_t *first_connp; 7083 conn_t *next_connp; 7084 mblk_t *mp1, *first_mp1; 7085 ipaddr_t src; 7086 zoneid_t last_zoneid; 7087 boolean_t reuseaddr; 7088 boolean_t shared_addr; 7089 ip_stack_t *ipst; 7090 7091 ASSERT(recv_ill != NULL); 7092 ipst = recv_ill->ill_ipst; 7093 7094 first_mp = mp; 7095 if (mctl_present) { 7096 mp = first_mp->b_cont; 7097 first_mp->b_cont = NULL; 7098 secure = ipsec_in_is_secure(first_mp); 7099 ASSERT(mp != NULL); 7100 } else { 7101 first_mp = NULL; 7102 secure = B_FALSE; 7103 } 7104 7105 /* Extract ports in net byte order */ 7106 dstport = htons(ntohl(ports) & 0xFFFF); 7107 srcport = htons(ntohl(ports) >> 16); 7108 dst = ipha->ipha_dst; 7109 src = ipha->ipha_src; 7110 7111 shared_addr = (zoneid == ALL_ZONES); 7112 if (shared_addr) { 7113 /* 7114 * No need to handle exclusive-stack zones since ALL_ZONES 7115 * only applies to the shared stack. 7116 */ 7117 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7118 if (zoneid == ALL_ZONES) 7119 zoneid = tsol_packet_to_zoneid(mp); 7120 } 7121 7122 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7123 mutex_enter(&connfp->connf_lock); 7124 connp = connfp->connf_head; 7125 if (!broadcast && !CLASSD(dst)) { 7126 /* 7127 * Not broadcast or multicast. Send to the one (first) 7128 * client we find. No need to check conn_wantpacket() 7129 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7130 * IPv4 unicast packets. 7131 */ 7132 while ((connp != NULL) && 7133 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7134 !IPCL_ZONE_MATCH(connp, zoneid))) { 7135 connp = connp->conn_next; 7136 } 7137 7138 if (connp == NULL || connp->conn_upq == NULL) 7139 goto notfound; 7140 7141 if (is_system_labeled() && 7142 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7143 connp)) 7144 goto notfound; 7145 7146 CONN_INC_REF(connp); 7147 mutex_exit(&connfp->connf_lock); 7148 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7149 flags, recv_ill, ip_policy); 7150 IP_STAT(ipst, ip_udp_fannorm); 7151 CONN_DEC_REF(connp); 7152 return; 7153 } 7154 7155 /* 7156 * Broadcast and multicast case 7157 * 7158 * Need to check conn_wantpacket(). 7159 * If SO_REUSEADDR has been set on the first we send the 7160 * packet to all clients that have joined the group and 7161 * match the port. 7162 */ 7163 7164 while (connp != NULL) { 7165 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7166 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7167 (!is_system_labeled() || 7168 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7169 connp))) 7170 break; 7171 connp = connp->conn_next; 7172 } 7173 7174 if (connp == NULL || connp->conn_upq == NULL) 7175 goto notfound; 7176 7177 first_connp = connp; 7178 /* 7179 * When SO_REUSEADDR is not set, send the packet only to the first 7180 * matching connection in its zone by keeping track of the zoneid. 7181 */ 7182 reuseaddr = first_connp->conn_reuseaddr; 7183 last_zoneid = first_connp->conn_zoneid; 7184 7185 CONN_INC_REF(connp); 7186 connp = connp->conn_next; 7187 for (;;) { 7188 while (connp != NULL) { 7189 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7190 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7191 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7192 (!is_system_labeled() || 7193 tsol_receive_local(mp, &dst, IPV4_VERSION, 7194 shared_addr, connp))) 7195 break; 7196 connp = connp->conn_next; 7197 } 7198 /* 7199 * Just copy the data part alone. The mctl part is 7200 * needed just for verifying policy and it is never 7201 * sent up. 7202 */ 7203 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7204 ((mp1 = copymsg(mp)) == NULL))) { 7205 /* 7206 * No more interested clients or memory 7207 * allocation failed 7208 */ 7209 connp = first_connp; 7210 break; 7211 } 7212 if (connp->conn_zoneid != last_zoneid) { 7213 /* 7214 * Update the zoneid so that the packet isn't sent to 7215 * any more conns in the same zone unless SO_REUSEADDR 7216 * is set. 7217 */ 7218 reuseaddr = connp->conn_reuseaddr; 7219 last_zoneid = connp->conn_zoneid; 7220 } 7221 if (first_mp != NULL) { 7222 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7223 ipsec_info_type == IPSEC_IN); 7224 first_mp1 = ipsec_in_tag(first_mp, NULL, 7225 ipst->ips_netstack); 7226 if (first_mp1 == NULL) { 7227 freemsg(mp1); 7228 connp = first_connp; 7229 break; 7230 } 7231 } else { 7232 first_mp1 = NULL; 7233 } 7234 CONN_INC_REF(connp); 7235 mutex_exit(&connfp->connf_lock); 7236 /* 7237 * IPQoS notes: We don't send the packet for policy 7238 * processing here, will do it for the last one (below). 7239 * i.e. we do it per-packet now, but if we do policy 7240 * processing per-conn, then we would need to do it 7241 * here too. 7242 */ 7243 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7244 ipha, flags, recv_ill, B_FALSE); 7245 mutex_enter(&connfp->connf_lock); 7246 /* Follow the next pointer before releasing the conn. */ 7247 next_connp = connp->conn_next; 7248 IP_STAT(ipst, ip_udp_fanmb); 7249 CONN_DEC_REF(connp); 7250 connp = next_connp; 7251 } 7252 7253 /* Last one. Send it upstream. */ 7254 mutex_exit(&connfp->connf_lock); 7255 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7256 recv_ill, ip_policy); 7257 IP_STAT(ipst, ip_udp_fanmb); 7258 CONN_DEC_REF(connp); 7259 return; 7260 7261 notfound: 7262 7263 mutex_exit(&connfp->connf_lock); 7264 IP_STAT(ipst, ip_udp_fanothers); 7265 /* 7266 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7267 * have already been matched above, since they live in the IPv4 7268 * fanout tables. This implies we only need to 7269 * check for IPv6 in6addr_any endpoints here. 7270 * Thus we compare using ipv6_all_zeros instead of the destination 7271 * address, except for the multicast group membership lookup which 7272 * uses the IPv4 destination. 7273 */ 7274 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7275 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7276 mutex_enter(&connfp->connf_lock); 7277 connp = connfp->connf_head; 7278 if (!broadcast && !CLASSD(dst)) { 7279 while (connp != NULL) { 7280 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7281 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7282 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7283 !connp->conn_ipv6_v6only) 7284 break; 7285 connp = connp->conn_next; 7286 } 7287 7288 if (connp != NULL && is_system_labeled() && 7289 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7290 connp)) 7291 connp = NULL; 7292 7293 if (connp == NULL || connp->conn_upq == NULL) { 7294 /* 7295 * No one bound to this port. Is 7296 * there a client that wants all 7297 * unclaimed datagrams? 7298 */ 7299 mutex_exit(&connfp->connf_lock); 7300 7301 if (mctl_present) 7302 first_mp->b_cont = mp; 7303 else 7304 first_mp = mp; 7305 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7306 connf_head != NULL) { 7307 ip_fanout_proto(q, first_mp, ill, ipha, 7308 flags | IP_FF_RAWIP, mctl_present, 7309 ip_policy, recv_ill, zoneid); 7310 } else { 7311 if (ip_fanout_send_icmp(q, first_mp, flags, 7312 ICMP_DEST_UNREACHABLE, 7313 ICMP_PORT_UNREACHABLE, 7314 mctl_present, zoneid, ipst)) { 7315 BUMP_MIB(ill->ill_ip_mib, 7316 udpIfStatsNoPorts); 7317 } 7318 } 7319 return; 7320 } 7321 7322 CONN_INC_REF(connp); 7323 mutex_exit(&connfp->connf_lock); 7324 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7325 flags, recv_ill, ip_policy); 7326 CONN_DEC_REF(connp); 7327 return; 7328 } 7329 /* 7330 * IPv4 multicast packet being delivered to an AF_INET6 7331 * in6addr_any endpoint. 7332 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7333 * and not conn_wantpacket_v6() since any multicast membership is 7334 * for an IPv4-mapped multicast address. 7335 * The packet is sent to all clients in all zones that have joined the 7336 * group and match the port. 7337 */ 7338 while (connp != NULL) { 7339 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7340 srcport, v6src) && 7341 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7342 (!is_system_labeled() || 7343 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7344 connp))) 7345 break; 7346 connp = connp->conn_next; 7347 } 7348 7349 if (connp == NULL || connp->conn_upq == NULL) { 7350 /* 7351 * No one bound to this port. Is 7352 * there a client that wants all 7353 * unclaimed datagrams? 7354 */ 7355 mutex_exit(&connfp->connf_lock); 7356 7357 if (mctl_present) 7358 first_mp->b_cont = mp; 7359 else 7360 first_mp = mp; 7361 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7362 NULL) { 7363 ip_fanout_proto(q, first_mp, ill, ipha, 7364 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7365 recv_ill, zoneid); 7366 } else { 7367 /* 7368 * We used to attempt to send an icmp error here, but 7369 * since this is known to be a multicast packet 7370 * and we don't send icmp errors in response to 7371 * multicast, just drop the packet and give up sooner. 7372 */ 7373 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7374 freemsg(first_mp); 7375 } 7376 return; 7377 } 7378 7379 first_connp = connp; 7380 7381 CONN_INC_REF(connp); 7382 connp = connp->conn_next; 7383 for (;;) { 7384 while (connp != NULL) { 7385 if (IPCL_UDP_MATCH_V6(connp, dstport, 7386 ipv6_all_zeros, srcport, v6src) && 7387 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7388 (!is_system_labeled() || 7389 tsol_receive_local(mp, &dst, IPV4_VERSION, 7390 shared_addr, connp))) 7391 break; 7392 connp = connp->conn_next; 7393 } 7394 /* 7395 * Just copy the data part alone. The mctl part is 7396 * needed just for verifying policy and it is never 7397 * sent up. 7398 */ 7399 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7400 ((mp1 = copymsg(mp)) == NULL))) { 7401 /* 7402 * No more intested clients or memory 7403 * allocation failed 7404 */ 7405 connp = first_connp; 7406 break; 7407 } 7408 if (first_mp != NULL) { 7409 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7410 ipsec_info_type == IPSEC_IN); 7411 first_mp1 = ipsec_in_tag(first_mp, NULL, 7412 ipst->ips_netstack); 7413 if (first_mp1 == NULL) { 7414 freemsg(mp1); 7415 connp = first_connp; 7416 break; 7417 } 7418 } else { 7419 first_mp1 = NULL; 7420 } 7421 CONN_INC_REF(connp); 7422 mutex_exit(&connfp->connf_lock); 7423 /* 7424 * IPQoS notes: We don't send the packet for policy 7425 * processing here, will do it for the last one (below). 7426 * i.e. we do it per-packet now, but if we do policy 7427 * processing per-conn, then we would need to do it 7428 * here too. 7429 */ 7430 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7431 ipha, flags, recv_ill, B_FALSE); 7432 mutex_enter(&connfp->connf_lock); 7433 /* Follow the next pointer before releasing the conn. */ 7434 next_connp = connp->conn_next; 7435 CONN_DEC_REF(connp); 7436 connp = next_connp; 7437 } 7438 7439 /* Last one. Send it upstream. */ 7440 mutex_exit(&connfp->connf_lock); 7441 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7442 recv_ill, ip_policy); 7443 CONN_DEC_REF(connp); 7444 } 7445 7446 /* 7447 * Complete the ip_wput header so that it 7448 * is possible to generate ICMP 7449 * errors. 7450 */ 7451 int 7452 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7453 { 7454 ire_t *ire; 7455 7456 if (ipha->ipha_src == INADDR_ANY) { 7457 ire = ire_lookup_local(zoneid, ipst); 7458 if (ire == NULL) { 7459 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7460 return (1); 7461 } 7462 ipha->ipha_src = ire->ire_addr; 7463 ire_refrele(ire); 7464 } 7465 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7466 ipha->ipha_hdr_checksum = 0; 7467 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7468 return (0); 7469 } 7470 7471 /* 7472 * Nobody should be sending 7473 * packets up this stream 7474 */ 7475 static void 7476 ip_lrput(queue_t *q, mblk_t *mp) 7477 { 7478 mblk_t *mp1; 7479 7480 switch (mp->b_datap->db_type) { 7481 case M_FLUSH: 7482 /* Turn around */ 7483 if (*mp->b_rptr & FLUSHW) { 7484 *mp->b_rptr &= ~FLUSHR; 7485 qreply(q, mp); 7486 return; 7487 } 7488 break; 7489 } 7490 /* Could receive messages that passed through ar_rput */ 7491 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7492 mp1->b_prev = mp1->b_next = NULL; 7493 freemsg(mp); 7494 } 7495 7496 /* Nobody should be sending packets down this stream */ 7497 /* ARGSUSED */ 7498 void 7499 ip_lwput(queue_t *q, mblk_t *mp) 7500 { 7501 freemsg(mp); 7502 } 7503 7504 /* 7505 * Move the first hop in any source route to ipha_dst and remove that part of 7506 * the source route. Called by other protocols. Errors in option formatting 7507 * are ignored - will be handled by ip_wput_options Return the final 7508 * destination (either ipha_dst or the last entry in a source route.) 7509 */ 7510 ipaddr_t 7511 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7512 { 7513 ipoptp_t opts; 7514 uchar_t *opt; 7515 uint8_t optval; 7516 uint8_t optlen; 7517 ipaddr_t dst; 7518 int i; 7519 ire_t *ire; 7520 ip_stack_t *ipst = ns->netstack_ip; 7521 7522 ip2dbg(("ip_massage_options\n")); 7523 dst = ipha->ipha_dst; 7524 for (optval = ipoptp_first(&opts, ipha); 7525 optval != IPOPT_EOL; 7526 optval = ipoptp_next(&opts)) { 7527 opt = opts.ipoptp_cur; 7528 switch (optval) { 7529 uint8_t off; 7530 case IPOPT_SSRR: 7531 case IPOPT_LSRR: 7532 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7533 ip1dbg(("ip_massage_options: bad src route\n")); 7534 break; 7535 } 7536 optlen = opts.ipoptp_len; 7537 off = opt[IPOPT_OFFSET]; 7538 off--; 7539 redo_srr: 7540 if (optlen < IP_ADDR_LEN || 7541 off > optlen - IP_ADDR_LEN) { 7542 /* End of source route */ 7543 ip1dbg(("ip_massage_options: end of SR\n")); 7544 break; 7545 } 7546 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7547 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7548 ntohl(dst))); 7549 /* 7550 * Check if our address is present more than 7551 * once as consecutive hops in source route. 7552 * XXX verify per-interface ip_forwarding 7553 * for source route? 7554 */ 7555 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7556 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7557 if (ire != NULL) { 7558 ire_refrele(ire); 7559 off += IP_ADDR_LEN; 7560 goto redo_srr; 7561 } 7562 if (dst == htonl(INADDR_LOOPBACK)) { 7563 ip1dbg(("ip_massage_options: loopback addr in " 7564 "source route!\n")); 7565 break; 7566 } 7567 /* 7568 * Update ipha_dst to be the first hop and remove the 7569 * first hop from the source route (by overwriting 7570 * part of the option with NOP options). 7571 */ 7572 ipha->ipha_dst = dst; 7573 /* Put the last entry in dst */ 7574 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7575 3; 7576 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7577 7578 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7579 ntohl(dst))); 7580 /* Move down and overwrite */ 7581 opt[IP_ADDR_LEN] = opt[0]; 7582 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7583 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7584 for (i = 0; i < IP_ADDR_LEN; i++) 7585 opt[i] = IPOPT_NOP; 7586 break; 7587 } 7588 } 7589 return (dst); 7590 } 7591 7592 /* 7593 * This function's job is to forward data to the reverse tunnel (FA->HA) 7594 * after doing a few checks. It is assumed that the incoming interface 7595 * of the packet is always different than the outgoing interface and the 7596 * ire_type of the found ire has to be a non-resolver type. 7597 * 7598 * IPQoS notes 7599 * IP policy is invoked twice for a forwarded packet, once on the read side 7600 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7601 * enabled. 7602 */ 7603 static void 7604 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7605 { 7606 ipha_t *ipha; 7607 queue_t *q; 7608 uint32_t pkt_len; 7609 #define rptr ((uchar_t *)ipha) 7610 uint32_t sum; 7611 uint32_t max_frag; 7612 mblk_t *first_mp; 7613 uint32_t ill_index; 7614 ipxmit_state_t pktxmit_state; 7615 ill_t *out_ill; 7616 ip_stack_t *ipst = in_ill->ill_ipst; 7617 7618 ASSERT(ire != NULL); 7619 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7620 ASSERT(ire->ire_stq != NULL); 7621 7622 /* Initiate read side IPPF processing */ 7623 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7624 ill_index = in_ill->ill_phyint->phyint_ifindex; 7625 ip_process(IPP_FWD_IN, &mp, ill_index); 7626 if (mp == NULL) { 7627 ip2dbg(("ip_mrtun_forward: inbound pkt " 7628 "dropped during IPPF processing\n")); 7629 return; 7630 } 7631 } 7632 7633 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7634 ILLF_ROUTER) == 0) || 7635 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7636 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7637 ip0dbg(("ip_mrtun_forward: Can't forward :" 7638 "forwarding is not turned on\n")); 7639 goto drop_pkt; 7640 } 7641 7642 /* 7643 * Don't forward if the interface is down 7644 */ 7645 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7646 goto discard_pkt; 7647 } 7648 7649 ipha = (ipha_t *)mp->b_rptr; 7650 pkt_len = ntohs(ipha->ipha_length); 7651 /* Adjust the checksum to reflect the ttl decrement. */ 7652 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7653 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7654 if (ipha->ipha_ttl-- <= 1) { 7655 if (ip_csum_hdr(ipha)) { 7656 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7657 goto drop_pkt; 7658 } 7659 q = ire->ire_stq; 7660 if ((first_mp = allocb(sizeof (ipsec_info_t), 7661 BPRI_HI)) == NULL) { 7662 goto discard_pkt; 7663 } 7664 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7665 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7666 /* Sent by forwarding path, and router is global zone */ 7667 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7668 GLOBAL_ZONEID, ipst); 7669 return; 7670 } 7671 7672 /* Get the ill_index of the ILL */ 7673 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7674 7675 /* 7676 * This location is chosen for the placement of the forwarding hook 7677 * because at this point we know that we have a path out for the 7678 * packet but haven't yet applied any logic (such as fragmenting) 7679 * that happen as part of transmitting the packet out. 7680 */ 7681 out_ill = ire->ire_ipif->ipif_ill; 7682 7683 DTRACE_PROBE4(ip4__forwarding__start, 7684 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7685 7686 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7687 ipst->ips_ipv4firewall_forwarding, 7688 in_ill, out_ill, ipha, mp, mp, ipst); 7689 7690 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7691 7692 if (mp == NULL) 7693 return; 7694 pkt_len = ntohs(ipha->ipha_length); 7695 7696 /* 7697 * ip_mrtun_forward is only used by foreign agent to reverse 7698 * tunnel the incoming packet. So it does not do any option 7699 * processing for source routing. 7700 */ 7701 max_frag = ire->ire_max_frag; 7702 if (pkt_len > max_frag) { 7703 /* 7704 * It needs fragging on its way out. We haven't 7705 * verified the header checksum yet. Since we 7706 * are going to put a surely good checksum in the 7707 * outgoing header, we have to make sure that it 7708 * was good coming in. 7709 */ 7710 if (ip_csum_hdr(ipha)) { 7711 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7712 goto drop_pkt; 7713 } 7714 7715 /* Initiate write side IPPF processing */ 7716 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7717 ip_process(IPP_FWD_OUT, &mp, ill_index); 7718 if (mp == NULL) { 7719 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7720 "dropped/deferred during ip policy "\ 7721 "processing\n")); 7722 return; 7723 } 7724 } 7725 if ((first_mp = allocb(sizeof (ipsec_info_t), 7726 BPRI_HI)) == NULL) { 7727 goto discard_pkt; 7728 } 7729 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7730 mp = first_mp; 7731 7732 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7733 return; 7734 } 7735 7736 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7737 7738 ASSERT(ire->ire_ipif != NULL); 7739 7740 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7741 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7742 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7743 ipst->ips_ipv4firewall_physical_out, 7744 NULL, out_ill, ipha, mp, mp, ipst); 7745 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7746 if (mp == NULL) 7747 return; 7748 7749 /* Now send the packet to the tunnel interface */ 7750 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7751 q = ire->ire_stq; 7752 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7753 if ((pktxmit_state == SEND_FAILED) || 7754 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7755 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7756 q->q_ptr)); 7757 } 7758 7759 return; 7760 discard_pkt: 7761 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7762 drop_pkt:; 7763 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7764 freemsg(mp); 7765 #undef rptr 7766 } 7767 7768 /* 7769 * Fills the ipsec_out_t data structure with appropriate fields and 7770 * prepends it to mp which contains the IP hdr + data that was meant 7771 * to be forwarded. Please note that ipsec_out_info data structure 7772 * is used here to communicate the outgoing ill path at ip_wput() 7773 * for the ICMP error packet. This has nothing to do with ipsec IP 7774 * security. ipsec_out_t is really used to pass the info to the module 7775 * IP where this information cannot be extracted from conn. 7776 * This functions is called by ip_mrtun_forward(). 7777 */ 7778 void 7779 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7780 { 7781 ipsec_out_t *io; 7782 7783 ASSERT(xmit_ill != NULL); 7784 first_mp->b_datap->db_type = M_CTL; 7785 first_mp->b_wptr += sizeof (ipsec_info_t); 7786 /* 7787 * This is to pass info to ip_wput in absence of conn. 7788 * ipsec_out_secure will be B_FALSE because of this. 7789 * Thus ipsec_out_secure being B_FALSE indicates that 7790 * this is not IPSEC security related information. 7791 */ 7792 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7793 io = (ipsec_out_t *)first_mp->b_rptr; 7794 io->ipsec_out_type = IPSEC_OUT; 7795 io->ipsec_out_len = sizeof (ipsec_out_t); 7796 first_mp->b_cont = mp; 7797 io->ipsec_out_ill_index = 7798 xmit_ill->ill_phyint->phyint_ifindex; 7799 io->ipsec_out_xmit_if = B_TRUE; 7800 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7801 } 7802 7803 /* 7804 * Return the network mask 7805 * associated with the specified address. 7806 */ 7807 ipaddr_t 7808 ip_net_mask(ipaddr_t addr) 7809 { 7810 uchar_t *up = (uchar_t *)&addr; 7811 ipaddr_t mask = 0; 7812 uchar_t *maskp = (uchar_t *)&mask; 7813 7814 #if defined(__i386) || defined(__amd64) 7815 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7816 #endif 7817 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7818 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7819 #endif 7820 if (CLASSD(addr)) { 7821 maskp[0] = 0xF0; 7822 return (mask); 7823 } 7824 if (addr == 0) 7825 return (0); 7826 maskp[0] = 0xFF; 7827 if ((up[0] & 0x80) == 0) 7828 return (mask); 7829 7830 maskp[1] = 0xFF; 7831 if ((up[0] & 0xC0) == 0x80) 7832 return (mask); 7833 7834 maskp[2] = 0xFF; 7835 if ((up[0] & 0xE0) == 0xC0) 7836 return (mask); 7837 7838 /* Must be experimental or multicast, indicate as much */ 7839 return ((ipaddr_t)0); 7840 } 7841 7842 /* 7843 * Select an ill for the packet by considering load spreading across 7844 * a different ill in the group if dst_ill is part of some group. 7845 */ 7846 ill_t * 7847 ip_newroute_get_dst_ill(ill_t *dst_ill) 7848 { 7849 ill_t *ill; 7850 7851 /* 7852 * We schedule irrespective of whether the source address is 7853 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7854 */ 7855 ill = illgrp_scheduler(dst_ill); 7856 if (ill == NULL) 7857 return (NULL); 7858 7859 /* 7860 * For groups with names ip_sioctl_groupname ensures that all 7861 * ills are of same type. For groups without names, ifgrp_insert 7862 * ensures this. 7863 */ 7864 ASSERT(dst_ill->ill_type == ill->ill_type); 7865 7866 return (ill); 7867 } 7868 7869 /* 7870 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7871 */ 7872 ill_t * 7873 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7874 ip_stack_t *ipst) 7875 { 7876 ill_t *ret_ill; 7877 7878 ASSERT(ifindex != 0); 7879 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7880 ipst); 7881 if (ret_ill == NULL || 7882 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7883 if (isv6) { 7884 if (ill != NULL) { 7885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7886 } else { 7887 BUMP_MIB(&ipst->ips_ip6_mib, 7888 ipIfStatsOutDiscards); 7889 } 7890 ip1dbg(("ip_grab_attach_ill (IPv6): " 7891 "bad ifindex %d.\n", ifindex)); 7892 } else { 7893 if (ill != NULL) { 7894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7895 } else { 7896 BUMP_MIB(&ipst->ips_ip_mib, 7897 ipIfStatsOutDiscards); 7898 } 7899 ip1dbg(("ip_grab_attach_ill (IPv4): " 7900 "bad ifindex %d.\n", ifindex)); 7901 } 7902 if (ret_ill != NULL) 7903 ill_refrele(ret_ill); 7904 freemsg(first_mp); 7905 return (NULL); 7906 } 7907 7908 return (ret_ill); 7909 } 7910 7911 /* 7912 * IPv4 - 7913 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7914 * out a packet to a destination address for which we do not have specific 7915 * (or sufficient) routing information. 7916 * 7917 * NOTE : These are the scopes of some of the variables that point at IRE, 7918 * which needs to be followed while making any future modifications 7919 * to avoid memory leaks. 7920 * 7921 * - ire and sire are the entries looked up initially by 7922 * ire_ftable_lookup. 7923 * - ipif_ire is used to hold the interface ire associated with 7924 * the new cache ire. But it's scope is limited, so we always REFRELE 7925 * it before branching out to error paths. 7926 * - save_ire is initialized before ire_create, so that ire returned 7927 * by ire_create will not over-write the ire. We REFRELE save_ire 7928 * before breaking out of the switch. 7929 * 7930 * Thus on failures, we have to REFRELE only ire and sire, if they 7931 * are not NULL. 7932 */ 7933 void 7934 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7935 zoneid_t zoneid, ip_stack_t *ipst) 7936 { 7937 areq_t *areq; 7938 ipaddr_t gw = 0; 7939 ire_t *ire = NULL; 7940 mblk_t *res_mp; 7941 ipaddr_t *addrp; 7942 ipaddr_t nexthop_addr; 7943 ipif_t *src_ipif = NULL; 7944 ill_t *dst_ill = NULL; 7945 ipha_t *ipha; 7946 ire_t *sire = NULL; 7947 mblk_t *first_mp; 7948 ire_t *save_ire; 7949 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7950 ushort_t ire_marks = 0; 7951 boolean_t mctl_present; 7952 ipsec_out_t *io; 7953 mblk_t *saved_mp; 7954 ire_t *first_sire = NULL; 7955 mblk_t *copy_mp = NULL; 7956 mblk_t *xmit_mp = NULL; 7957 ipaddr_t save_dst; 7958 uint32_t multirt_flags = 7959 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7960 boolean_t multirt_is_resolvable; 7961 boolean_t multirt_resolve_next; 7962 boolean_t do_attach_ill = B_FALSE; 7963 boolean_t ip_nexthop = B_FALSE; 7964 tsol_ire_gw_secattr_t *attrp = NULL; 7965 tsol_gcgrp_t *gcgrp = NULL; 7966 tsol_gcgrp_addr_t ga; 7967 7968 if (ip_debug > 2) { 7969 /* ip1dbg */ 7970 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7971 } 7972 7973 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7974 if (mctl_present) { 7975 io = (ipsec_out_t *)first_mp->b_rptr; 7976 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7977 ASSERT(zoneid == io->ipsec_out_zoneid); 7978 ASSERT(zoneid != ALL_ZONES); 7979 } 7980 7981 ipha = (ipha_t *)mp->b_rptr; 7982 7983 /* All multicast lookups come through ip_newroute_ipif() */ 7984 if (CLASSD(dst)) { 7985 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7986 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7987 freemsg(first_mp); 7988 return; 7989 } 7990 7991 if (mctl_present && io->ipsec_out_attach_if) { 7992 /* ip_grab_attach_ill returns a held ill */ 7993 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7994 io->ipsec_out_ill_index, B_FALSE, ipst); 7995 7996 /* Failure case frees things for us. */ 7997 if (attach_ill == NULL) 7998 return; 7999 8000 /* 8001 * Check if we need an ire that will not be 8002 * looked up by anybody else i.e. HIDDEN. 8003 */ 8004 if (ill_is_probeonly(attach_ill)) 8005 ire_marks = IRE_MARK_HIDDEN; 8006 } 8007 if (mctl_present && io->ipsec_out_ip_nexthop) { 8008 ip_nexthop = B_TRUE; 8009 nexthop_addr = io->ipsec_out_nexthop_addr; 8010 } 8011 /* 8012 * If this IRE is created for forwarding or it is not for 8013 * traffic for congestion controlled protocols, mark it as temporary. 8014 */ 8015 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 8016 ire_marks |= IRE_MARK_TEMPORARY; 8017 8018 /* 8019 * Get what we can from ire_ftable_lookup which will follow an IRE 8020 * chain until it gets the most specific information available. 8021 * For example, we know that there is no IRE_CACHE for this dest, 8022 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8023 * ire_ftable_lookup will look up the gateway, etc. 8024 * Check if in_ill != NULL. If it is true, the packet must be 8025 * from an incoming interface where RTA_SRCIFP is set. 8026 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8027 * to the destination, of equal netmask length in the forward table, 8028 * will be recursively explored. If no information is available 8029 * for the final gateway of that route, we force the returned ire 8030 * to be equal to sire using MATCH_IRE_PARENT. 8031 * At least, in this case we have a starting point (in the buckets) 8032 * to look for other routes to the destination in the forward table. 8033 * This is actually used only for multirouting, where a list 8034 * of routes has to be processed in sequence. 8035 * 8036 * In the process of coming up with the most specific information, 8037 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8038 * for the gateway (i.e., one for which the ire_nce->nce_state is 8039 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8040 * Two caveats when handling incomplete ire's in ip_newroute: 8041 * - we should be careful when accessing its ire_nce (specifically 8042 * the nce_res_mp) ast it might change underneath our feet, and, 8043 * - not all legacy code path callers are prepared to handle 8044 * incomplete ire's, so we should not create/add incomplete 8045 * ire_cache entries here. (See discussion about temporary solution 8046 * further below). 8047 * 8048 * In order to minimize packet dropping, and to preserve existing 8049 * behavior, we treat this case as if there were no IRE_CACHE for the 8050 * gateway, and instead use the IF_RESOLVER ire to send out 8051 * another request to ARP (this is achieved by passing the 8052 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8053 * arp response comes back in ip_wput_nondata, we will create 8054 * a per-dst ire_cache that has an ND_COMPLETE ire. 8055 * 8056 * Note that this is a temporary solution; the correct solution is 8057 * to create an incomplete per-dst ire_cache entry, and send the 8058 * packet out when the gw's nce is resolved. In order to achieve this, 8059 * all packet processing must have been completed prior to calling 8060 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8061 * to be modified to accomodate this solution. 8062 */ 8063 if (in_ill != NULL) { 8064 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8065 in_ill, MATCH_IRE_TYPE); 8066 } else if (ip_nexthop) { 8067 /* 8068 * The first time we come here, we look for an IRE_INTERFACE 8069 * entry for the specified nexthop, set the dst to be the 8070 * nexthop address and create an IRE_CACHE entry for the 8071 * nexthop. The next time around, we are able to find an 8072 * IRE_CACHE entry for the nexthop, set the gateway to be the 8073 * nexthop address and create an IRE_CACHE entry for the 8074 * destination address via the specified nexthop. 8075 */ 8076 ire = ire_cache_lookup(nexthop_addr, zoneid, 8077 MBLK_GETLABEL(mp), ipst); 8078 if (ire != NULL) { 8079 gw = nexthop_addr; 8080 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8081 } else { 8082 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8083 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8084 MBLK_GETLABEL(mp), 8085 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8086 ipst); 8087 if (ire != NULL) { 8088 dst = nexthop_addr; 8089 } 8090 } 8091 } else if (attach_ill == NULL) { 8092 ire = ire_ftable_lookup(dst, 0, 0, 0, 8093 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8094 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8095 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8096 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8097 ipst); 8098 } else { 8099 /* 8100 * attach_ill is set only for communicating with 8101 * on-link hosts. So, don't look for DEFAULT. 8102 */ 8103 ipif_t *attach_ipif; 8104 8105 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8106 if (attach_ipif == NULL) { 8107 ill_refrele(attach_ill); 8108 goto icmp_err_ret; 8109 } 8110 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8111 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8112 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8113 MATCH_IRE_SECATTR, ipst); 8114 ipif_refrele(attach_ipif); 8115 } 8116 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8117 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8118 8119 /* 8120 * This loop is run only once in most cases. 8121 * We loop to resolve further routes only when the destination 8122 * can be reached through multiple RTF_MULTIRT-flagged ires. 8123 */ 8124 do { 8125 /* Clear the previous iteration's values */ 8126 if (src_ipif != NULL) { 8127 ipif_refrele(src_ipif); 8128 src_ipif = NULL; 8129 } 8130 if (dst_ill != NULL) { 8131 ill_refrele(dst_ill); 8132 dst_ill = NULL; 8133 } 8134 8135 multirt_resolve_next = B_FALSE; 8136 /* 8137 * We check if packets have to be multirouted. 8138 * In this case, given the current <ire, sire> couple, 8139 * we look for the next suitable <ire, sire>. 8140 * This check is done in ire_multirt_lookup(), 8141 * which applies various criteria to find the next route 8142 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8143 * unchanged if it detects it has not been tried yet. 8144 */ 8145 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8146 ip3dbg(("ip_newroute: starting next_resolution " 8147 "with first_mp %p, tag %d\n", 8148 (void *)first_mp, 8149 MULTIRT_DEBUG_TAGGED(first_mp))); 8150 8151 ASSERT(sire != NULL); 8152 multirt_is_resolvable = 8153 ire_multirt_lookup(&ire, &sire, multirt_flags, 8154 MBLK_GETLABEL(mp), ipst); 8155 8156 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8157 "ire %p, sire %p\n", 8158 multirt_is_resolvable, 8159 (void *)ire, (void *)sire)); 8160 8161 if (!multirt_is_resolvable) { 8162 /* 8163 * No more multirt route to resolve; give up 8164 * (all routes resolved or no more 8165 * resolvable routes). 8166 */ 8167 if (ire != NULL) { 8168 ire_refrele(ire); 8169 ire = NULL; 8170 } 8171 } else { 8172 ASSERT(sire != NULL); 8173 ASSERT(ire != NULL); 8174 /* 8175 * We simply use first_sire as a flag that 8176 * indicates if a resolvable multirt route 8177 * has already been found. 8178 * If it is not the case, we may have to send 8179 * an ICMP error to report that the 8180 * destination is unreachable. 8181 * We do not IRE_REFHOLD first_sire. 8182 */ 8183 if (first_sire == NULL) { 8184 first_sire = sire; 8185 } 8186 } 8187 } 8188 if (ire == NULL) { 8189 if (ip_debug > 3) { 8190 /* ip2dbg */ 8191 pr_addr_dbg("ip_newroute: " 8192 "can't resolve %s\n", AF_INET, &dst); 8193 } 8194 ip3dbg(("ip_newroute: " 8195 "ire %p, sire %p, first_sire %p\n", 8196 (void *)ire, (void *)sire, (void *)first_sire)); 8197 8198 if (sire != NULL) { 8199 ire_refrele(sire); 8200 sire = NULL; 8201 } 8202 8203 if (first_sire != NULL) { 8204 /* 8205 * At least one multirt route has been found 8206 * in the same call to ip_newroute(); 8207 * there is no need to report an ICMP error. 8208 * first_sire was not IRE_REFHOLDed. 8209 */ 8210 MULTIRT_DEBUG_UNTAG(first_mp); 8211 freemsg(first_mp); 8212 return; 8213 } 8214 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8215 RTA_DST, ipst); 8216 if (attach_ill != NULL) 8217 ill_refrele(attach_ill); 8218 goto icmp_err_ret; 8219 } 8220 8221 /* 8222 * When RTA_SRCIFP is used to add a route, then an interface 8223 * route is added in the source interface's routing table. 8224 * If the outgoing interface of this route is of type 8225 * IRE_IF_RESOLVER, then upon creation of the ire, 8226 * ire_nce->nce_res_mp is set to NULL. 8227 * Later, when this route is first used for forwarding 8228 * a packet, ip_newroute() is called 8229 * to resolve the hardware address of the outgoing ipif. 8230 * We do not come here for IRE_IF_NORESOLVER entries in the 8231 * source interface based table. We only come here if the 8232 * outgoing interface is a resolver interface and we don't 8233 * have the ire_nce->nce_res_mp information yet. 8234 * If in_ill is not null that means it is called from 8235 * ip_rput. 8236 */ 8237 8238 ASSERT(ire->ire_in_ill == NULL || 8239 (ire->ire_type == IRE_IF_RESOLVER && 8240 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8241 8242 /* 8243 * Verify that the returned IRE does not have either 8244 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8245 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8246 */ 8247 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8248 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8249 if (attach_ill != NULL) 8250 ill_refrele(attach_ill); 8251 goto icmp_err_ret; 8252 } 8253 /* 8254 * Increment the ire_ob_pkt_count field for ire if it is an 8255 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8256 * increment the same for the parent IRE, sire, if it is some 8257 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8258 */ 8259 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8260 UPDATE_OB_PKT_COUNT(ire); 8261 ire->ire_last_used_time = lbolt; 8262 } 8263 8264 if (sire != NULL) { 8265 gw = sire->ire_gateway_addr; 8266 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8267 IRE_INTERFACE)) == 0); 8268 UPDATE_OB_PKT_COUNT(sire); 8269 sire->ire_last_used_time = lbolt; 8270 } 8271 /* 8272 * We have a route to reach the destination. 8273 * 8274 * 1) If the interface is part of ill group, try to get a new 8275 * ill taking load spreading into account. 8276 * 8277 * 2) After selecting the ill, get a source address that 8278 * might create good inbound load spreading. 8279 * ipif_select_source does this for us. 8280 * 8281 * If the application specified the ill (ifindex), we still 8282 * load spread. Only if the packets needs to go out 8283 * specifically on a given ill e.g. binding to 8284 * IPIF_NOFAILOVER address, then we don't try to use a 8285 * different ill for load spreading. 8286 */ 8287 if (attach_ill == NULL) { 8288 /* 8289 * Don't perform outbound load spreading in the 8290 * case of an RTF_MULTIRT route, as we actually 8291 * typically want to replicate outgoing packets 8292 * through particular interfaces. 8293 */ 8294 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8295 dst_ill = ire->ire_ipif->ipif_ill; 8296 /* for uniformity */ 8297 ill_refhold(dst_ill); 8298 } else { 8299 /* 8300 * If we are here trying to create an IRE_CACHE 8301 * for an offlink destination and have the 8302 * IRE_CACHE for the next hop and the latter is 8303 * using virtual IP source address selection i.e 8304 * it's ire->ire_ipif is pointing to a virtual 8305 * network interface (vni) then 8306 * ip_newroute_get_dst_ll() will return the vni 8307 * interface as the dst_ill. Since the vni is 8308 * virtual i.e not associated with any physical 8309 * interface, it cannot be the dst_ill, hence 8310 * in such a case call ip_newroute_get_dst_ll() 8311 * with the stq_ill instead of the ire_ipif ILL. 8312 * The function returns a refheld ill. 8313 */ 8314 if ((ire->ire_type == IRE_CACHE) && 8315 IS_VNI(ire->ire_ipif->ipif_ill)) 8316 dst_ill = ip_newroute_get_dst_ill( 8317 ire->ire_stq->q_ptr); 8318 else 8319 dst_ill = ip_newroute_get_dst_ill( 8320 ire->ire_ipif->ipif_ill); 8321 } 8322 if (dst_ill == NULL) { 8323 if (ip_debug > 2) { 8324 pr_addr_dbg("ip_newroute: " 8325 "no dst ill for dst" 8326 " %s\n", AF_INET, &dst); 8327 } 8328 goto icmp_err_ret; 8329 } 8330 } else { 8331 dst_ill = ire->ire_ipif->ipif_ill; 8332 /* for uniformity */ 8333 ill_refhold(dst_ill); 8334 /* 8335 * We should have found a route matching ill as we 8336 * called ire_ftable_lookup with MATCH_IRE_ILL. 8337 * Rather than asserting, when there is a mismatch, 8338 * we just drop the packet. 8339 */ 8340 if (dst_ill != attach_ill) { 8341 ip0dbg(("ip_newroute: Packet dropped as " 8342 "IPIF_NOFAILOVER ill is %s, " 8343 "ire->ire_ipif->ipif_ill is %s\n", 8344 attach_ill->ill_name, 8345 dst_ill->ill_name)); 8346 ill_refrele(attach_ill); 8347 goto icmp_err_ret; 8348 } 8349 } 8350 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8351 if (attach_ill != NULL) { 8352 ill_refrele(attach_ill); 8353 attach_ill = NULL; 8354 do_attach_ill = B_TRUE; 8355 } 8356 ASSERT(dst_ill != NULL); 8357 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8358 8359 /* 8360 * Pick the best source address from dst_ill. 8361 * 8362 * 1) If it is part of a multipathing group, we would 8363 * like to spread the inbound packets across different 8364 * interfaces. ipif_select_source picks a random source 8365 * across the different ills in the group. 8366 * 8367 * 2) If it is not part of a multipathing group, we try 8368 * to pick the source address from the destination 8369 * route. Clustering assumes that when we have multiple 8370 * prefixes hosted on an interface, the prefix of the 8371 * source address matches the prefix of the destination 8372 * route. We do this only if the address is not 8373 * DEPRECATED. 8374 * 8375 * 3) If the conn is in a different zone than the ire, we 8376 * need to pick a source address from the right zone. 8377 * 8378 * NOTE : If we hit case (1) above, the prefix of the source 8379 * address picked may not match the prefix of the 8380 * destination routes prefix as ipif_select_source 8381 * does not look at "dst" while picking a source 8382 * address. 8383 * If we want the same behavior as (2), we will need 8384 * to change the behavior of ipif_select_source. 8385 */ 8386 ASSERT(src_ipif == NULL); 8387 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8388 /* 8389 * The RTF_SETSRC flag is set in the parent ire (sire). 8390 * Check that the ipif matching the requested source 8391 * address still exists. 8392 */ 8393 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8394 zoneid, NULL, NULL, NULL, NULL, ipst); 8395 } 8396 if (src_ipif == NULL) { 8397 ire_marks |= IRE_MARK_USESRC_CHECK; 8398 if ((dst_ill->ill_group != NULL) || 8399 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8400 (connp != NULL && ire->ire_zoneid != zoneid && 8401 ire->ire_zoneid != ALL_ZONES) || 8402 (dst_ill->ill_usesrc_ifindex != 0)) { 8403 /* 8404 * If the destination is reachable via a 8405 * given gateway, the selected source address 8406 * should be in the same subnet as the gateway. 8407 * Otherwise, the destination is not reachable. 8408 * 8409 * If there are no interfaces on the same subnet 8410 * as the destination, ipif_select_source gives 8411 * first non-deprecated interface which might be 8412 * on a different subnet than the gateway. 8413 * This is not desirable. Hence pass the dst_ire 8414 * source address to ipif_select_source. 8415 * It is sure that the destination is reachable 8416 * with the dst_ire source address subnet. 8417 * So passing dst_ire source address to 8418 * ipif_select_source will make sure that the 8419 * selected source will be on the same subnet 8420 * as dst_ire source address. 8421 */ 8422 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8423 src_ipif = ipif_select_source(dst_ill, saddr, 8424 zoneid); 8425 if (src_ipif == NULL) { 8426 if (ip_debug > 2) { 8427 pr_addr_dbg("ip_newroute: " 8428 "no src for dst %s ", 8429 AF_INET, &dst); 8430 printf("through interface %s\n", 8431 dst_ill->ill_name); 8432 } 8433 goto icmp_err_ret; 8434 } 8435 } else { 8436 src_ipif = ire->ire_ipif; 8437 ASSERT(src_ipif != NULL); 8438 /* hold src_ipif for uniformity */ 8439 ipif_refhold(src_ipif); 8440 } 8441 } 8442 8443 /* 8444 * Assign a source address while we have the conn. 8445 * We can't have ip_wput_ire pick a source address when the 8446 * packet returns from arp since we need to look at 8447 * conn_unspec_src and conn_zoneid, and we lose the conn when 8448 * going through arp. 8449 * 8450 * NOTE : ip_newroute_v6 does not have this piece of code as 8451 * it uses ip6i to store this information. 8452 */ 8453 if (ipha->ipha_src == INADDR_ANY && 8454 (connp == NULL || !connp->conn_unspec_src)) { 8455 ipha->ipha_src = src_ipif->ipif_src_addr; 8456 } 8457 if (ip_debug > 3) { 8458 /* ip2dbg */ 8459 pr_addr_dbg("ip_newroute: first hop %s\n", 8460 AF_INET, &gw); 8461 } 8462 ip2dbg(("\tire type %s (%d)\n", 8463 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8464 8465 /* 8466 * The TTL of multirouted packets is bounded by the 8467 * ip_multirt_ttl ndd variable. 8468 */ 8469 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8470 /* Force TTL of multirouted packets */ 8471 if ((ipst->ips_ip_multirt_ttl > 0) && 8472 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8473 ip2dbg(("ip_newroute: forcing multirt TTL " 8474 "to %d (was %d), dst 0x%08x\n", 8475 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8476 ntohl(sire->ire_addr))); 8477 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8478 } 8479 } 8480 /* 8481 * At this point in ip_newroute(), ire is either the 8482 * IRE_CACHE of the next-hop gateway for an off-subnet 8483 * destination or an IRE_INTERFACE type that should be used 8484 * to resolve an on-subnet destination or an on-subnet 8485 * next-hop gateway. 8486 * 8487 * In the IRE_CACHE case, we have the following : 8488 * 8489 * 1) src_ipif - used for getting a source address. 8490 * 8491 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8492 * means packets using this IRE_CACHE will go out on 8493 * dst_ill. 8494 * 8495 * 3) The IRE sire will point to the prefix that is the 8496 * longest matching route for the destination. These 8497 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8498 * 8499 * The newly created IRE_CACHE entry for the off-subnet 8500 * destination is tied to both the prefix route and the 8501 * interface route used to resolve the next-hop gateway 8502 * via the ire_phandle and ire_ihandle fields, 8503 * respectively. 8504 * 8505 * In the IRE_INTERFACE case, we have the following : 8506 * 8507 * 1) src_ipif - used for getting a source address. 8508 * 8509 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8510 * means packets using the IRE_CACHE that we will build 8511 * here will go out on dst_ill. 8512 * 8513 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8514 * to be created will only be tied to the IRE_INTERFACE 8515 * that was derived from the ire_ihandle field. 8516 * 8517 * If sire is non-NULL, it means the destination is 8518 * off-link and we will first create the IRE_CACHE for the 8519 * gateway. Next time through ip_newroute, we will create 8520 * the IRE_CACHE for the final destination as described 8521 * above. 8522 * 8523 * In both cases, after the current resolution has been 8524 * completed (or possibly initialised, in the IRE_INTERFACE 8525 * case), the loop may be re-entered to attempt the resolution 8526 * of another RTF_MULTIRT route. 8527 * 8528 * When an IRE_CACHE entry for the off-subnet destination is 8529 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8530 * for further processing in emission loops. 8531 */ 8532 save_ire = ire; 8533 switch (ire->ire_type) { 8534 case IRE_CACHE: { 8535 ire_t *ipif_ire; 8536 8537 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8538 if (gw == 0) 8539 gw = ire->ire_gateway_addr; 8540 /* 8541 * We need 3 ire's to create a new cache ire for an 8542 * off-link destination from the cache ire of the 8543 * gateway. 8544 * 8545 * 1. The prefix ire 'sire' (Note that this does 8546 * not apply to the conn_nexthop_set case) 8547 * 2. The cache ire of the gateway 'ire' 8548 * 3. The interface ire 'ipif_ire' 8549 * 8550 * We have (1) and (2). We lookup (3) below. 8551 * 8552 * If there is no interface route to the gateway, 8553 * it is a race condition, where we found the cache 8554 * but the interface route has been deleted. 8555 */ 8556 if (ip_nexthop) { 8557 ipif_ire = ire_ihandle_lookup_onlink(ire); 8558 } else { 8559 ipif_ire = 8560 ire_ihandle_lookup_offlink(ire, sire); 8561 } 8562 if (ipif_ire == NULL) { 8563 ip1dbg(("ip_newroute: " 8564 "ire_ihandle_lookup_offlink failed\n")); 8565 goto icmp_err_ret; 8566 } 8567 8568 /* 8569 * Check cached gateway IRE for any security 8570 * attributes; if found, associate the gateway 8571 * credentials group to the destination IRE. 8572 */ 8573 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8574 mutex_enter(&attrp->igsa_lock); 8575 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8576 GCGRP_REFHOLD(gcgrp); 8577 mutex_exit(&attrp->igsa_lock); 8578 } 8579 8580 /* 8581 * XXX For the source of the resolver mp, 8582 * we are using the same DL_UNITDATA_REQ 8583 * (from save_ire->ire_nce->nce_res_mp) 8584 * though the save_ire is not pointing at the same ill. 8585 * This is incorrect. We need to send it up to the 8586 * resolver to get the right res_mp. For ethernets 8587 * this may be okay (ill_type == DL_ETHER). 8588 */ 8589 8590 ire = ire_create( 8591 (uchar_t *)&dst, /* dest address */ 8592 (uchar_t *)&ip_g_all_ones, /* mask */ 8593 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8594 (uchar_t *)&gw, /* gateway address */ 8595 NULL, 8596 &save_ire->ire_max_frag, 8597 save_ire->ire_nce, /* src nce */ 8598 dst_ill->ill_rq, /* recv-from queue */ 8599 dst_ill->ill_wq, /* send-to queue */ 8600 IRE_CACHE, /* IRE type */ 8601 src_ipif, 8602 in_ill, /* incoming ill */ 8603 (sire != NULL) ? 8604 sire->ire_mask : 0, /* Parent mask */ 8605 (sire != NULL) ? 8606 sire->ire_phandle : 0, /* Parent handle */ 8607 ipif_ire->ire_ihandle, /* Interface handle */ 8608 (sire != NULL) ? (sire->ire_flags & 8609 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8610 (sire != NULL) ? 8611 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8612 NULL, 8613 gcgrp, 8614 ipst); 8615 8616 if (ire == NULL) { 8617 if (gcgrp != NULL) { 8618 GCGRP_REFRELE(gcgrp); 8619 gcgrp = NULL; 8620 } 8621 ire_refrele(ipif_ire); 8622 ire_refrele(save_ire); 8623 break; 8624 } 8625 8626 /* reference now held by IRE */ 8627 gcgrp = NULL; 8628 8629 ire->ire_marks |= ire_marks; 8630 8631 /* 8632 * Prevent sire and ipif_ire from getting deleted. 8633 * The newly created ire is tied to both of them via 8634 * the phandle and ihandle respectively. 8635 */ 8636 if (sire != NULL) { 8637 IRB_REFHOLD(sire->ire_bucket); 8638 /* Has it been removed already ? */ 8639 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8640 IRB_REFRELE(sire->ire_bucket); 8641 ire_refrele(ipif_ire); 8642 ire_refrele(save_ire); 8643 break; 8644 } 8645 } 8646 8647 IRB_REFHOLD(ipif_ire->ire_bucket); 8648 /* Has it been removed already ? */ 8649 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8650 IRB_REFRELE(ipif_ire->ire_bucket); 8651 if (sire != NULL) 8652 IRB_REFRELE(sire->ire_bucket); 8653 ire_refrele(ipif_ire); 8654 ire_refrele(save_ire); 8655 break; 8656 } 8657 8658 xmit_mp = first_mp; 8659 /* 8660 * In the case of multirouting, a copy 8661 * of the packet is done before its sending. 8662 * The copy is used to attempt another 8663 * route resolution, in a next loop. 8664 */ 8665 if (ire->ire_flags & RTF_MULTIRT) { 8666 copy_mp = copymsg(first_mp); 8667 if (copy_mp != NULL) { 8668 xmit_mp = copy_mp; 8669 MULTIRT_DEBUG_TAG(first_mp); 8670 } 8671 } 8672 ire_add_then_send(q, ire, xmit_mp); 8673 ire_refrele(save_ire); 8674 8675 /* Assert that sire is not deleted yet. */ 8676 if (sire != NULL) { 8677 ASSERT(sire->ire_ptpn != NULL); 8678 IRB_REFRELE(sire->ire_bucket); 8679 } 8680 8681 /* Assert that ipif_ire is not deleted yet. */ 8682 ASSERT(ipif_ire->ire_ptpn != NULL); 8683 IRB_REFRELE(ipif_ire->ire_bucket); 8684 ire_refrele(ipif_ire); 8685 8686 /* 8687 * If copy_mp is not NULL, multirouting was 8688 * requested. We loop to initiate a next 8689 * route resolution attempt, starting from sire. 8690 */ 8691 if (copy_mp != NULL) { 8692 /* 8693 * Search for the next unresolved 8694 * multirt route. 8695 */ 8696 copy_mp = NULL; 8697 ipif_ire = NULL; 8698 ire = NULL; 8699 multirt_resolve_next = B_TRUE; 8700 continue; 8701 } 8702 if (sire != NULL) 8703 ire_refrele(sire); 8704 ipif_refrele(src_ipif); 8705 ill_refrele(dst_ill); 8706 return; 8707 } 8708 case IRE_IF_NORESOLVER: { 8709 8710 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8711 dst_ill->ill_resolver_mp == NULL) { 8712 ip1dbg(("ip_newroute: dst_ill %p " 8713 "for IRE_IF_NORESOLVER ire %p has " 8714 "no ill_resolver_mp\n", 8715 (void *)dst_ill, (void *)ire)); 8716 break; 8717 } 8718 8719 /* 8720 * TSol note: We are creating the ire cache for the 8721 * destination 'dst'. If 'dst' is offlink, going 8722 * through the first hop 'gw', the security attributes 8723 * of 'dst' must be set to point to the gateway 8724 * credentials of gateway 'gw'. If 'dst' is onlink, it 8725 * is possible that 'dst' is a potential gateway that is 8726 * referenced by some route that has some security 8727 * attributes. Thus in the former case, we need to do a 8728 * gcgrp_lookup of 'gw' while in the latter case we 8729 * need to do gcgrp_lookup of 'dst' itself. 8730 */ 8731 ga.ga_af = AF_INET; 8732 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8733 &ga.ga_addr); 8734 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8735 8736 ire = ire_create( 8737 (uchar_t *)&dst, /* dest address */ 8738 (uchar_t *)&ip_g_all_ones, /* mask */ 8739 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8740 (uchar_t *)&gw, /* gateway address */ 8741 NULL, 8742 &save_ire->ire_max_frag, 8743 NULL, /* no src nce */ 8744 dst_ill->ill_rq, /* recv-from queue */ 8745 dst_ill->ill_wq, /* send-to queue */ 8746 IRE_CACHE, 8747 src_ipif, 8748 in_ill, /* Incoming ill */ 8749 save_ire->ire_mask, /* Parent mask */ 8750 (sire != NULL) ? /* Parent handle */ 8751 sire->ire_phandle : 0, 8752 save_ire->ire_ihandle, /* Interface handle */ 8753 (sire != NULL) ? sire->ire_flags & 8754 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8755 &(save_ire->ire_uinfo), 8756 NULL, 8757 gcgrp, 8758 ipst); 8759 8760 if (ire == NULL) { 8761 if (gcgrp != NULL) { 8762 GCGRP_REFRELE(gcgrp); 8763 gcgrp = NULL; 8764 } 8765 ire_refrele(save_ire); 8766 break; 8767 } 8768 8769 /* reference now held by IRE */ 8770 gcgrp = NULL; 8771 8772 ire->ire_marks |= ire_marks; 8773 8774 /* Prevent save_ire from getting deleted */ 8775 IRB_REFHOLD(save_ire->ire_bucket); 8776 /* Has it been removed already ? */ 8777 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8778 IRB_REFRELE(save_ire->ire_bucket); 8779 ire_refrele(save_ire); 8780 break; 8781 } 8782 8783 /* 8784 * In the case of multirouting, a copy 8785 * of the packet is made before it is sent. 8786 * The copy is used in the next 8787 * loop to attempt another resolution. 8788 */ 8789 xmit_mp = first_mp; 8790 if ((sire != NULL) && 8791 (sire->ire_flags & RTF_MULTIRT)) { 8792 copy_mp = copymsg(first_mp); 8793 if (copy_mp != NULL) { 8794 xmit_mp = copy_mp; 8795 MULTIRT_DEBUG_TAG(first_mp); 8796 } 8797 } 8798 ire_add_then_send(q, ire, xmit_mp); 8799 8800 /* Assert that it is not deleted yet. */ 8801 ASSERT(save_ire->ire_ptpn != NULL); 8802 IRB_REFRELE(save_ire->ire_bucket); 8803 ire_refrele(save_ire); 8804 8805 if (copy_mp != NULL) { 8806 /* 8807 * If we found a (no)resolver, we ignore any 8808 * trailing top priority IRE_CACHE in further 8809 * loops. This ensures that we do not omit any 8810 * (no)resolver. 8811 * This IRE_CACHE, if any, will be processed 8812 * by another thread entering ip_newroute(). 8813 * IRE_CACHE entries, if any, will be processed 8814 * by another thread entering ip_newroute(), 8815 * (upon resolver response, for instance). 8816 * This aims to force parallel multirt 8817 * resolutions as soon as a packet must be sent. 8818 * In the best case, after the tx of only one 8819 * packet, all reachable routes are resolved. 8820 * Otherwise, the resolution of all RTF_MULTIRT 8821 * routes would require several emissions. 8822 */ 8823 multirt_flags &= ~MULTIRT_CACHEGW; 8824 8825 /* 8826 * Search for the next unresolved multirt 8827 * route. 8828 */ 8829 copy_mp = NULL; 8830 save_ire = NULL; 8831 ire = NULL; 8832 multirt_resolve_next = B_TRUE; 8833 continue; 8834 } 8835 8836 /* 8837 * Don't need sire anymore 8838 */ 8839 if (sire != NULL) 8840 ire_refrele(sire); 8841 8842 ipif_refrele(src_ipif); 8843 ill_refrele(dst_ill); 8844 return; 8845 } 8846 case IRE_IF_RESOLVER: 8847 /* 8848 * We can't build an IRE_CACHE yet, but at least we 8849 * found a resolver that can help. 8850 */ 8851 res_mp = dst_ill->ill_resolver_mp; 8852 if (!OK_RESOLVER_MP(res_mp)) 8853 break; 8854 8855 /* 8856 * To be at this point in the code with a non-zero gw 8857 * means that dst is reachable through a gateway that 8858 * we have never resolved. By changing dst to the gw 8859 * addr we resolve the gateway first. 8860 * When ire_add_then_send() tries to put the IP dg 8861 * to dst, it will reenter ip_newroute() at which 8862 * time we will find the IRE_CACHE for the gw and 8863 * create another IRE_CACHE in case IRE_CACHE above. 8864 */ 8865 if (gw != INADDR_ANY) { 8866 /* 8867 * The source ipif that was determined above was 8868 * relative to the destination address, not the 8869 * gateway's. If src_ipif was not taken out of 8870 * the IRE_IF_RESOLVER entry, we'll need to call 8871 * ipif_select_source() again. 8872 */ 8873 if (src_ipif != ire->ire_ipif) { 8874 ipif_refrele(src_ipif); 8875 src_ipif = ipif_select_source(dst_ill, 8876 gw, zoneid); 8877 if (src_ipif == NULL) { 8878 if (ip_debug > 2) { 8879 pr_addr_dbg( 8880 "ip_newroute: no " 8881 "src for gw %s ", 8882 AF_INET, &gw); 8883 printf("through " 8884 "interface %s\n", 8885 dst_ill->ill_name); 8886 } 8887 goto icmp_err_ret; 8888 } 8889 } 8890 save_dst = dst; 8891 dst = gw; 8892 gw = INADDR_ANY; 8893 } 8894 8895 /* 8896 * We obtain a partial IRE_CACHE which we will pass 8897 * along with the resolver query. When the response 8898 * comes back it will be there ready for us to add. 8899 * The ire_max_frag is atomically set under the 8900 * irebucket lock in ire_add_v[46]. 8901 */ 8902 8903 ire = ire_create_mp( 8904 (uchar_t *)&dst, /* dest address */ 8905 (uchar_t *)&ip_g_all_ones, /* mask */ 8906 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8907 (uchar_t *)&gw, /* gateway address */ 8908 NULL, /* no in_src_addr */ 8909 NULL, /* ire_max_frag */ 8910 NULL, /* no src nce */ 8911 dst_ill->ill_rq, /* recv-from queue */ 8912 dst_ill->ill_wq, /* send-to queue */ 8913 IRE_CACHE, 8914 src_ipif, /* Interface ipif */ 8915 in_ill, /* Incoming ILL */ 8916 save_ire->ire_mask, /* Parent mask */ 8917 0, 8918 save_ire->ire_ihandle, /* Interface handle */ 8919 0, /* flags if any */ 8920 &(save_ire->ire_uinfo), 8921 NULL, 8922 NULL, 8923 ipst); 8924 8925 if (ire == NULL) { 8926 ire_refrele(save_ire); 8927 break; 8928 } 8929 8930 if ((sire != NULL) && 8931 (sire->ire_flags & RTF_MULTIRT)) { 8932 copy_mp = copymsg(first_mp); 8933 if (copy_mp != NULL) 8934 MULTIRT_DEBUG_TAG(copy_mp); 8935 } 8936 8937 ire->ire_marks |= ire_marks; 8938 8939 /* 8940 * Construct message chain for the resolver 8941 * of the form: 8942 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8943 * Packet could contain a IPSEC_OUT mp. 8944 * 8945 * NOTE : ire will be added later when the response 8946 * comes back from ARP. If the response does not 8947 * come back, ARP frees the packet. For this reason, 8948 * we can't REFHOLD the bucket of save_ire to prevent 8949 * deletions. We may not be able to REFRELE the bucket 8950 * if the response never comes back. Thus, before 8951 * adding the ire, ire_add_v4 will make sure that the 8952 * interface route does not get deleted. This is the 8953 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8954 * where we can always prevent deletions because of 8955 * the synchronous nature of adding IRES i.e 8956 * ire_add_then_send is called after creating the IRE. 8957 */ 8958 ASSERT(ire->ire_mp != NULL); 8959 ire->ire_mp->b_cont = first_mp; 8960 /* Have saved_mp handy, for cleanup if canput fails */ 8961 saved_mp = mp; 8962 mp = copyb(res_mp); 8963 if (mp == NULL) { 8964 /* Prepare for cleanup */ 8965 mp = saved_mp; /* pkt */ 8966 ire_delete(ire); /* ire_mp */ 8967 ire = NULL; 8968 ire_refrele(save_ire); 8969 if (copy_mp != NULL) { 8970 MULTIRT_DEBUG_UNTAG(copy_mp); 8971 freemsg(copy_mp); 8972 copy_mp = NULL; 8973 } 8974 break; 8975 } 8976 linkb(mp, ire->ire_mp); 8977 8978 /* 8979 * Fill in the source and dest addrs for the resolver. 8980 * NOTE: this depends on memory layouts imposed by 8981 * ill_init(). 8982 */ 8983 areq = (areq_t *)mp->b_rptr; 8984 addrp = (ipaddr_t *)((char *)areq + 8985 areq->areq_sender_addr_offset); 8986 if (do_attach_ill) { 8987 /* 8988 * This is bind to no failover case. 8989 * arp packet also must go out on attach_ill. 8990 */ 8991 ASSERT(ipha->ipha_src != NULL); 8992 *addrp = ipha->ipha_src; 8993 } else { 8994 *addrp = save_ire->ire_src_addr; 8995 } 8996 8997 ire_refrele(save_ire); 8998 addrp = (ipaddr_t *)((char *)areq + 8999 areq->areq_target_addr_offset); 9000 *addrp = dst; 9001 /* Up to the resolver. */ 9002 if (canputnext(dst_ill->ill_rq) && 9003 !(dst_ill->ill_arp_closing)) { 9004 putnext(dst_ill->ill_rq, mp); 9005 ire = NULL; 9006 if (copy_mp != NULL) { 9007 /* 9008 * If we found a resolver, we ignore 9009 * any trailing top priority IRE_CACHE 9010 * in the further loops. This ensures 9011 * that we do not omit any resolver. 9012 * IRE_CACHE entries, if any, will be 9013 * processed next time we enter 9014 * ip_newroute(). 9015 */ 9016 multirt_flags &= ~MULTIRT_CACHEGW; 9017 /* 9018 * Search for the next unresolved 9019 * multirt route. 9020 */ 9021 first_mp = copy_mp; 9022 copy_mp = NULL; 9023 /* Prepare the next resolution loop. */ 9024 mp = first_mp; 9025 EXTRACT_PKT_MP(mp, first_mp, 9026 mctl_present); 9027 if (mctl_present) 9028 io = (ipsec_out_t *) 9029 first_mp->b_rptr; 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 ASSERT(sire != NULL); 9033 9034 dst = save_dst; 9035 multirt_resolve_next = B_TRUE; 9036 continue; 9037 } 9038 9039 if (sire != NULL) 9040 ire_refrele(sire); 9041 9042 /* 9043 * The response will come back in ip_wput 9044 * with db_type IRE_DB_TYPE. 9045 */ 9046 ipif_refrele(src_ipif); 9047 ill_refrele(dst_ill); 9048 return; 9049 } else { 9050 /* Prepare for cleanup */ 9051 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9052 mp); 9053 mp->b_cont = NULL; 9054 freeb(mp); /* areq */ 9055 /* 9056 * this is an ire that is not added to the 9057 * cache. ire_freemblk will handle the release 9058 * of any resources associated with the ire. 9059 */ 9060 ire_delete(ire); /* ire_mp */ 9061 mp = saved_mp; /* pkt */ 9062 ire = NULL; 9063 if (copy_mp != NULL) { 9064 MULTIRT_DEBUG_UNTAG(copy_mp); 9065 freemsg(copy_mp); 9066 copy_mp = NULL; 9067 } 9068 break; 9069 } 9070 default: 9071 break; 9072 } 9073 } while (multirt_resolve_next); 9074 9075 ip1dbg(("ip_newroute: dropped\n")); 9076 /* Did this packet originate externally? */ 9077 if (mp->b_prev) { 9078 mp->b_next = NULL; 9079 mp->b_prev = NULL; 9080 if (in_ill != NULL) { 9081 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9082 } else { 9083 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9084 } 9085 } else { 9086 if (dst_ill != NULL) { 9087 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9088 } else { 9089 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9090 } 9091 } 9092 ASSERT(copy_mp == NULL); 9093 MULTIRT_DEBUG_UNTAG(first_mp); 9094 freemsg(first_mp); 9095 if (ire != NULL) 9096 ire_refrele(ire); 9097 if (sire != NULL) 9098 ire_refrele(sire); 9099 if (src_ipif != NULL) 9100 ipif_refrele(src_ipif); 9101 if (dst_ill != NULL) 9102 ill_refrele(dst_ill); 9103 return; 9104 9105 icmp_err_ret: 9106 ip1dbg(("ip_newroute: no route\n")); 9107 if (src_ipif != NULL) 9108 ipif_refrele(src_ipif); 9109 if (dst_ill != NULL) 9110 ill_refrele(dst_ill); 9111 if (sire != NULL) 9112 ire_refrele(sire); 9113 /* Did this packet originate externally? */ 9114 if (mp->b_prev) { 9115 mp->b_next = NULL; 9116 mp->b_prev = NULL; 9117 if (in_ill != NULL) { 9118 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9119 } else { 9120 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9121 } 9122 q = WR(q); 9123 } else { 9124 /* 9125 * There is no outgoing ill, so just increment the 9126 * system MIB. 9127 */ 9128 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9129 /* 9130 * Since ip_wput() isn't close to finished, we fill 9131 * in enough of the header for credible error reporting. 9132 */ 9133 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9134 /* Failed */ 9135 MULTIRT_DEBUG_UNTAG(first_mp); 9136 freemsg(first_mp); 9137 if (ire != NULL) 9138 ire_refrele(ire); 9139 return; 9140 } 9141 } 9142 9143 /* 9144 * At this point we will have ire only if RTF_BLACKHOLE 9145 * or RTF_REJECT flags are set on the IRE. It will not 9146 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9147 */ 9148 if (ire != NULL) { 9149 if (ire->ire_flags & RTF_BLACKHOLE) { 9150 ire_refrele(ire); 9151 MULTIRT_DEBUG_UNTAG(first_mp); 9152 freemsg(first_mp); 9153 return; 9154 } 9155 ire_refrele(ire); 9156 } 9157 if (ip_source_routed(ipha, ipst)) { 9158 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9159 zoneid, ipst); 9160 return; 9161 } 9162 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9163 } 9164 9165 ip_opt_info_t zero_info; 9166 9167 /* 9168 * IPv4 - 9169 * ip_newroute_ipif is called by ip_wput_multicast and 9170 * ip_rput_forward_multicast whenever we need to send 9171 * out a packet to a destination address for which we do not have specific 9172 * routing information. It is used when the packet will be sent out 9173 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9174 * socket option is set or icmp error message wants to go out on a particular 9175 * interface for a unicast packet. 9176 * 9177 * In most cases, the destination address is resolved thanks to the ipif 9178 * intrinsic resolver. However, there are some cases where the call to 9179 * ip_newroute_ipif must take into account the potential presence of 9180 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9181 * that uses the interface. This is specified through flags, 9182 * which can be a combination of: 9183 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9184 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9185 * and flags. Additionally, the packet source address has to be set to 9186 * the specified address. The caller is thus expected to set this flag 9187 * if the packet has no specific source address yet. 9188 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9189 * flag, the resulting ire will inherit the flag. All unresolved routes 9190 * to the destination must be explored in the same call to 9191 * ip_newroute_ipif(). 9192 */ 9193 static void 9194 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9195 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9196 { 9197 areq_t *areq; 9198 ire_t *ire = NULL; 9199 mblk_t *res_mp; 9200 ipaddr_t *addrp; 9201 mblk_t *first_mp; 9202 ire_t *save_ire = NULL; 9203 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9204 ipif_t *src_ipif = NULL; 9205 ushort_t ire_marks = 0; 9206 ill_t *dst_ill = NULL; 9207 boolean_t mctl_present; 9208 ipsec_out_t *io; 9209 ipha_t *ipha; 9210 int ihandle = 0; 9211 mblk_t *saved_mp; 9212 ire_t *fire = NULL; 9213 mblk_t *copy_mp = NULL; 9214 boolean_t multirt_resolve_next; 9215 ipaddr_t ipha_dst; 9216 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9217 9218 /* 9219 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9220 * here for uniformity 9221 */ 9222 ipif_refhold(ipif); 9223 9224 /* 9225 * This loop is run only once in most cases. 9226 * We loop to resolve further routes only when the destination 9227 * can be reached through multiple RTF_MULTIRT-flagged ires. 9228 */ 9229 do { 9230 if (dst_ill != NULL) { 9231 ill_refrele(dst_ill); 9232 dst_ill = NULL; 9233 } 9234 if (src_ipif != NULL) { 9235 ipif_refrele(src_ipif); 9236 src_ipif = NULL; 9237 } 9238 multirt_resolve_next = B_FALSE; 9239 9240 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9241 ipif->ipif_ill->ill_name)); 9242 9243 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9244 if (mctl_present) 9245 io = (ipsec_out_t *)first_mp->b_rptr; 9246 9247 ipha = (ipha_t *)mp->b_rptr; 9248 9249 /* 9250 * Save the packet destination address, we may need it after 9251 * the packet has been consumed. 9252 */ 9253 ipha_dst = ipha->ipha_dst; 9254 9255 /* 9256 * If the interface is a pt-pt interface we look for an 9257 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9258 * local_address and the pt-pt destination address. Otherwise 9259 * we just match the local address. 9260 * NOTE: dst could be different than ipha->ipha_dst in case 9261 * of sending igmp multicast packets over a point-to-point 9262 * connection. 9263 * Thus we must be careful enough to check ipha_dst to be a 9264 * multicast address, otherwise it will take xmit_if path for 9265 * multicast packets resulting into kernel stack overflow by 9266 * repeated calls to ip_newroute_ipif from ire_send(). 9267 */ 9268 if (CLASSD(ipha_dst) && 9269 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9270 goto err_ret; 9271 } 9272 9273 /* 9274 * We check if an IRE_OFFSUBNET for the addr that goes through 9275 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9276 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9277 * propagate its flags to the new ire. 9278 */ 9279 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9280 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9281 ip2dbg(("ip_newroute_ipif: " 9282 "ipif_lookup_multi_ire(" 9283 "ipif %p, dst %08x) = fire %p\n", 9284 (void *)ipif, ntohl(dst), (void *)fire)); 9285 } 9286 9287 if (mctl_present && io->ipsec_out_attach_if) { 9288 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9289 io->ipsec_out_ill_index, B_FALSE, ipst); 9290 9291 /* Failure case frees things for us. */ 9292 if (attach_ill == NULL) { 9293 ipif_refrele(ipif); 9294 if (fire != NULL) 9295 ire_refrele(fire); 9296 return; 9297 } 9298 9299 /* 9300 * Check if we need an ire that will not be 9301 * looked up by anybody else i.e. HIDDEN. 9302 */ 9303 if (ill_is_probeonly(attach_ill)) { 9304 ire_marks = IRE_MARK_HIDDEN; 9305 } 9306 /* 9307 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9308 * case. 9309 */ 9310 dst_ill = ipif->ipif_ill; 9311 /* attach_ill has been refheld by ip_grab_attach_ill */ 9312 ASSERT(dst_ill == attach_ill); 9313 } else { 9314 /* 9315 * If this is set by IP_XMIT_IF, then make sure that 9316 * ipif is pointing to the same ill as the IP_XMIT_IF 9317 * specified ill. 9318 */ 9319 ASSERT((connp == NULL) || 9320 (connp->conn_xmit_if_ill == NULL) || 9321 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9322 /* 9323 * If the interface belongs to an interface group, 9324 * make sure the next possible interface in the group 9325 * is used. This encourages load spreading among 9326 * peers in an interface group. 9327 * Note: load spreading is disabled for RTF_MULTIRT 9328 * routes. 9329 */ 9330 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9331 (fire->ire_flags & RTF_MULTIRT)) { 9332 /* 9333 * Don't perform outbound load spreading 9334 * in the case of an RTF_MULTIRT issued route, 9335 * we actually typically want to replicate 9336 * outgoing packets through particular 9337 * interfaces. 9338 */ 9339 dst_ill = ipif->ipif_ill; 9340 ill_refhold(dst_ill); 9341 } else { 9342 dst_ill = ip_newroute_get_dst_ill( 9343 ipif->ipif_ill); 9344 } 9345 if (dst_ill == NULL) { 9346 if (ip_debug > 2) { 9347 pr_addr_dbg("ip_newroute_ipif: " 9348 "no dst ill for dst %s\n", 9349 AF_INET, &dst); 9350 } 9351 goto err_ret; 9352 } 9353 } 9354 9355 /* 9356 * Pick a source address preferring non-deprecated ones. 9357 * Unlike ip_newroute, we don't do any source address 9358 * selection here since for multicast it really does not help 9359 * in inbound load spreading as in the unicast case. 9360 */ 9361 if ((flags & RTF_SETSRC) && (fire != NULL) && 9362 (fire->ire_flags & RTF_SETSRC)) { 9363 /* 9364 * As requested by flags, an IRE_OFFSUBNET was looked up 9365 * on that interface. This ire has RTF_SETSRC flag, so 9366 * the source address of the packet must be changed. 9367 * Check that the ipif matching the requested source 9368 * address still exists. 9369 */ 9370 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9371 zoneid, NULL, NULL, NULL, NULL, ipst); 9372 } 9373 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9374 (connp != NULL && ipif->ipif_zoneid != zoneid && 9375 ipif->ipif_zoneid != ALL_ZONES)) && 9376 (src_ipif == NULL)) { 9377 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9378 if (src_ipif == NULL) { 9379 if (ip_debug > 2) { 9380 /* ip1dbg */ 9381 pr_addr_dbg("ip_newroute_ipif: " 9382 "no src for dst %s", 9383 AF_INET, &dst); 9384 } 9385 ip1dbg((" through interface %s\n", 9386 dst_ill->ill_name)); 9387 goto err_ret; 9388 } 9389 ipif_refrele(ipif); 9390 ipif = src_ipif; 9391 ipif_refhold(ipif); 9392 } 9393 if (src_ipif == NULL) { 9394 src_ipif = ipif; 9395 ipif_refhold(src_ipif); 9396 } 9397 9398 /* 9399 * Assign a source address while we have the conn. 9400 * We can't have ip_wput_ire pick a source address when the 9401 * packet returns from arp since conn_unspec_src might be set 9402 * and we loose the conn when going through arp. 9403 */ 9404 if (ipha->ipha_src == INADDR_ANY && 9405 (connp == NULL || !connp->conn_unspec_src)) { 9406 ipha->ipha_src = src_ipif->ipif_src_addr; 9407 } 9408 9409 /* 9410 * In case of IP_XMIT_IF, it is possible that the outgoing 9411 * interface does not have an interface ire. 9412 * Example: Thousands of mobileip PPP interfaces to mobile 9413 * nodes. We don't want to create interface ires because 9414 * packets from other mobile nodes must not take the route 9415 * via interface ires to the visiting mobile node without 9416 * going through the home agent, in absence of mobileip 9417 * route optimization. 9418 */ 9419 if (CLASSD(ipha_dst) && (connp == NULL || 9420 connp->conn_xmit_if_ill == NULL) && 9421 infop->ip_opt_ill_index == 0) { 9422 /* ipif_to_ire returns an held ire */ 9423 ire = ipif_to_ire(ipif); 9424 if (ire == NULL) 9425 goto err_ret; 9426 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9427 goto err_ret; 9428 /* 9429 * ihandle is needed when the ire is added to 9430 * cache table. 9431 */ 9432 save_ire = ire; 9433 ihandle = save_ire->ire_ihandle; 9434 9435 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9436 "flags %04x\n", 9437 (void *)ire, (void *)ipif, flags)); 9438 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9439 (fire->ire_flags & RTF_MULTIRT)) { 9440 /* 9441 * As requested by flags, an IRE_OFFSUBNET was 9442 * looked up on that interface. This ire has 9443 * RTF_MULTIRT flag, so the resolution loop will 9444 * be re-entered to resolve additional routes on 9445 * other interfaces. For that purpose, a copy of 9446 * the packet is performed at this point. 9447 */ 9448 fire->ire_last_used_time = lbolt; 9449 copy_mp = copymsg(first_mp); 9450 if (copy_mp) { 9451 MULTIRT_DEBUG_TAG(copy_mp); 9452 } 9453 } 9454 if ((flags & RTF_SETSRC) && (fire != NULL) && 9455 (fire->ire_flags & RTF_SETSRC)) { 9456 /* 9457 * As requested by flags, an IRE_OFFSUBET was 9458 * looked up on that interface. This ire has 9459 * RTF_SETSRC flag, so the source address of the 9460 * packet must be changed. 9461 */ 9462 ipha->ipha_src = fire->ire_src_addr; 9463 } 9464 } else { 9465 ASSERT((connp == NULL) || 9466 (connp->conn_xmit_if_ill != NULL) || 9467 (connp->conn_dontroute) || 9468 infop->ip_opt_ill_index != 0); 9469 /* 9470 * The only ways we can come here are: 9471 * 1) IP_XMIT_IF socket option is set 9472 * 2) ICMP error message generated from 9473 * ip_mrtun_forward() routine and it needs 9474 * to go through the specified ill. 9475 * 3) SO_DONTROUTE socket option is set 9476 * 4) IP_PKTINFO option is passed in as ancillary data. 9477 * In all cases, the new ire will not be added 9478 * into cache table. 9479 */ 9480 ire_marks |= IRE_MARK_NOADD; 9481 } 9482 9483 switch (ipif->ipif_net_type) { 9484 case IRE_IF_NORESOLVER: { 9485 /* We have what we need to build an IRE_CACHE. */ 9486 9487 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9488 (dst_ill->ill_resolver_mp == NULL)) { 9489 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9490 "for IRE_IF_NORESOLVER ire %p has " 9491 "no ill_resolver_mp\n", 9492 (void *)dst_ill, (void *)ire)); 9493 break; 9494 } 9495 9496 /* 9497 * The new ire inherits the IRE_OFFSUBNET flags 9498 * and source address, if this was requested. 9499 */ 9500 ire = ire_create( 9501 (uchar_t *)&dst, /* dest address */ 9502 (uchar_t *)&ip_g_all_ones, /* mask */ 9503 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9504 NULL, /* gateway address */ 9505 NULL, 9506 &ipif->ipif_mtu, 9507 NULL, /* no src nce */ 9508 dst_ill->ill_rq, /* recv-from queue */ 9509 dst_ill->ill_wq, /* send-to queue */ 9510 IRE_CACHE, 9511 src_ipif, 9512 NULL, 9513 (save_ire != NULL ? save_ire->ire_mask : 0), 9514 (fire != NULL) ? /* Parent handle */ 9515 fire->ire_phandle : 0, 9516 ihandle, /* Interface handle */ 9517 (fire != NULL) ? 9518 (fire->ire_flags & 9519 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9520 (save_ire == NULL ? &ire_uinfo_null : 9521 &save_ire->ire_uinfo), 9522 NULL, 9523 NULL, 9524 ipst); 9525 9526 if (ire == NULL) { 9527 if (save_ire != NULL) 9528 ire_refrele(save_ire); 9529 break; 9530 } 9531 9532 ire->ire_marks |= ire_marks; 9533 9534 /* 9535 * If IRE_MARK_NOADD is set then we need to convert 9536 * the max_fragp to a useable value now. This is 9537 * normally done in ire_add_v[46]. We also need to 9538 * associate the ire with an nce (normally would be 9539 * done in ip_wput_nondata()). 9540 * 9541 * Note that IRE_MARK_NOADD packets created here 9542 * do not have a non-null ire_mp pointer. The null 9543 * value of ire_bucket indicates that they were 9544 * never added. 9545 */ 9546 if (ire->ire_marks & IRE_MARK_NOADD) { 9547 uint_t max_frag; 9548 9549 max_frag = *ire->ire_max_fragp; 9550 ire->ire_max_fragp = NULL; 9551 ire->ire_max_frag = max_frag; 9552 9553 if ((ire->ire_nce = ndp_lookup_v4( 9554 ire_to_ill(ire), 9555 (ire->ire_gateway_addr != INADDR_ANY ? 9556 &ire->ire_gateway_addr : &ire->ire_addr), 9557 B_FALSE)) == NULL) { 9558 if (save_ire != NULL) 9559 ire_refrele(save_ire); 9560 break; 9561 } 9562 ASSERT(ire->ire_nce->nce_state == 9563 ND_REACHABLE); 9564 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9565 } 9566 9567 /* Prevent save_ire from getting deleted */ 9568 if (save_ire != NULL) { 9569 IRB_REFHOLD(save_ire->ire_bucket); 9570 /* Has it been removed already ? */ 9571 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9572 IRB_REFRELE(save_ire->ire_bucket); 9573 ire_refrele(save_ire); 9574 break; 9575 } 9576 } 9577 9578 ire_add_then_send(q, ire, first_mp); 9579 9580 /* Assert that save_ire is not deleted yet. */ 9581 if (save_ire != NULL) { 9582 ASSERT(save_ire->ire_ptpn != NULL); 9583 IRB_REFRELE(save_ire->ire_bucket); 9584 ire_refrele(save_ire); 9585 save_ire = NULL; 9586 } 9587 if (fire != NULL) { 9588 ire_refrele(fire); 9589 fire = NULL; 9590 } 9591 9592 /* 9593 * the resolution loop is re-entered if this 9594 * was requested through flags and if we 9595 * actually are in a multirouting case. 9596 */ 9597 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9598 boolean_t need_resolve = 9599 ire_multirt_need_resolve(ipha_dst, 9600 MBLK_GETLABEL(copy_mp), ipst); 9601 if (!need_resolve) { 9602 MULTIRT_DEBUG_UNTAG(copy_mp); 9603 freemsg(copy_mp); 9604 copy_mp = NULL; 9605 } else { 9606 /* 9607 * ipif_lookup_group() calls 9608 * ire_lookup_multi() that uses 9609 * ire_ftable_lookup() to find 9610 * an IRE_INTERFACE for the group. 9611 * In the multirt case, 9612 * ire_lookup_multi() then invokes 9613 * ire_multirt_lookup() to find 9614 * the next resolvable ire. 9615 * As a result, we obtain an new 9616 * interface, derived from the 9617 * next ire. 9618 */ 9619 ipif_refrele(ipif); 9620 ipif = ipif_lookup_group(ipha_dst, 9621 zoneid, ipst); 9622 ip2dbg(("ip_newroute_ipif: " 9623 "multirt dst %08x, ipif %p\n", 9624 htonl(dst), (void *)ipif)); 9625 if (ipif != NULL) { 9626 mp = copy_mp; 9627 copy_mp = NULL; 9628 multirt_resolve_next = B_TRUE; 9629 continue; 9630 } else { 9631 freemsg(copy_mp); 9632 } 9633 } 9634 } 9635 if (ipif != NULL) 9636 ipif_refrele(ipif); 9637 ill_refrele(dst_ill); 9638 ipif_refrele(src_ipif); 9639 return; 9640 } 9641 case IRE_IF_RESOLVER: 9642 /* 9643 * We can't build an IRE_CACHE yet, but at least 9644 * we found a resolver that can help. 9645 */ 9646 res_mp = dst_ill->ill_resolver_mp; 9647 if (!OK_RESOLVER_MP(res_mp)) 9648 break; 9649 9650 /* 9651 * We obtain a partial IRE_CACHE which we will pass 9652 * along with the resolver query. When the response 9653 * comes back it will be there ready for us to add. 9654 * The new ire inherits the IRE_OFFSUBNET flags 9655 * and source address, if this was requested. 9656 * The ire_max_frag is atomically set under the 9657 * irebucket lock in ire_add_v[46]. Only in the 9658 * case of IRE_MARK_NOADD, we set it here itself. 9659 */ 9660 ire = ire_create_mp( 9661 (uchar_t *)&dst, /* dest address */ 9662 (uchar_t *)&ip_g_all_ones, /* mask */ 9663 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9664 NULL, /* gateway address */ 9665 NULL, /* no in_src_addr */ 9666 (ire_marks & IRE_MARK_NOADD) ? 9667 ipif->ipif_mtu : 0, /* max_frag */ 9668 NULL, /* no src nce */ 9669 dst_ill->ill_rq, /* recv-from queue */ 9670 dst_ill->ill_wq, /* send-to queue */ 9671 IRE_CACHE, 9672 src_ipif, 9673 NULL, 9674 (save_ire != NULL ? save_ire->ire_mask : 0), 9675 (fire != NULL) ? /* Parent handle */ 9676 fire->ire_phandle : 0, 9677 ihandle, /* Interface handle */ 9678 (fire != NULL) ? /* flags if any */ 9679 (fire->ire_flags & 9680 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9681 (save_ire == NULL ? &ire_uinfo_null : 9682 &save_ire->ire_uinfo), 9683 NULL, 9684 NULL, 9685 ipst); 9686 9687 if (save_ire != NULL) { 9688 ire_refrele(save_ire); 9689 save_ire = NULL; 9690 } 9691 if (ire == NULL) 9692 break; 9693 9694 ire->ire_marks |= ire_marks; 9695 /* 9696 * Construct message chain for the resolver of the 9697 * form: 9698 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9699 * 9700 * NOTE : ire will be added later when the response 9701 * comes back from ARP. If the response does not 9702 * come back, ARP frees the packet. For this reason, 9703 * we can't REFHOLD the bucket of save_ire to prevent 9704 * deletions. We may not be able to REFRELE the 9705 * bucket if the response never comes back. 9706 * Thus, before adding the ire, ire_add_v4 will make 9707 * sure that the interface route does not get deleted. 9708 * This is the only case unlike ip_newroute_v6, 9709 * ip_newroute_ipif_v6 where we can always prevent 9710 * deletions because ire_add_then_send is called after 9711 * creating the IRE. 9712 * If IRE_MARK_NOADD is set, then ire_add_then_send 9713 * does not add this IRE into the IRE CACHE. 9714 */ 9715 ASSERT(ire->ire_mp != NULL); 9716 ire->ire_mp->b_cont = first_mp; 9717 /* Have saved_mp handy, for cleanup if canput fails */ 9718 saved_mp = mp; 9719 mp = copyb(res_mp); 9720 if (mp == NULL) { 9721 /* Prepare for cleanup */ 9722 mp = saved_mp; /* pkt */ 9723 ire_delete(ire); /* ire_mp */ 9724 ire = NULL; 9725 if (copy_mp != NULL) { 9726 MULTIRT_DEBUG_UNTAG(copy_mp); 9727 freemsg(copy_mp); 9728 copy_mp = NULL; 9729 } 9730 break; 9731 } 9732 linkb(mp, ire->ire_mp); 9733 9734 /* 9735 * Fill in the source and dest addrs for the resolver. 9736 * NOTE: this depends on memory layouts imposed by 9737 * ill_init(). 9738 */ 9739 areq = (areq_t *)mp->b_rptr; 9740 addrp = (ipaddr_t *)((char *)areq + 9741 areq->areq_sender_addr_offset); 9742 *addrp = ire->ire_src_addr; 9743 addrp = (ipaddr_t *)((char *)areq + 9744 areq->areq_target_addr_offset); 9745 *addrp = dst; 9746 /* Up to the resolver. */ 9747 if (canputnext(dst_ill->ill_rq) && 9748 !(dst_ill->ill_arp_closing)) { 9749 putnext(dst_ill->ill_rq, mp); 9750 /* 9751 * The response will come back in ip_wput 9752 * with db_type IRE_DB_TYPE. 9753 */ 9754 } else { 9755 mp->b_cont = NULL; 9756 freeb(mp); /* areq */ 9757 ire_delete(ire); /* ire_mp */ 9758 saved_mp->b_next = NULL; 9759 saved_mp->b_prev = NULL; 9760 freemsg(first_mp); /* pkt */ 9761 ip2dbg(("ip_newroute_ipif: dropped\n")); 9762 } 9763 9764 if (fire != NULL) { 9765 ire_refrele(fire); 9766 fire = NULL; 9767 } 9768 9769 9770 /* 9771 * The resolution loop is re-entered if this was 9772 * requested through flags and we actually are 9773 * in a multirouting case. 9774 */ 9775 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9776 boolean_t need_resolve = 9777 ire_multirt_need_resolve(ipha_dst, 9778 MBLK_GETLABEL(copy_mp), ipst); 9779 if (!need_resolve) { 9780 MULTIRT_DEBUG_UNTAG(copy_mp); 9781 freemsg(copy_mp); 9782 copy_mp = NULL; 9783 } else { 9784 /* 9785 * ipif_lookup_group() calls 9786 * ire_lookup_multi() that uses 9787 * ire_ftable_lookup() to find 9788 * an IRE_INTERFACE for the group. 9789 * In the multirt case, 9790 * ire_lookup_multi() then invokes 9791 * ire_multirt_lookup() to find 9792 * the next resolvable ire. 9793 * As a result, we obtain an new 9794 * interface, derived from the 9795 * next ire. 9796 */ 9797 ipif_refrele(ipif); 9798 ipif = ipif_lookup_group(ipha_dst, 9799 zoneid, ipst); 9800 if (ipif != NULL) { 9801 mp = copy_mp; 9802 copy_mp = NULL; 9803 multirt_resolve_next = B_TRUE; 9804 continue; 9805 } else { 9806 freemsg(copy_mp); 9807 } 9808 } 9809 } 9810 if (ipif != NULL) 9811 ipif_refrele(ipif); 9812 ill_refrele(dst_ill); 9813 ipif_refrele(src_ipif); 9814 return; 9815 default: 9816 break; 9817 } 9818 } while (multirt_resolve_next); 9819 9820 err_ret: 9821 ip2dbg(("ip_newroute_ipif: dropped\n")); 9822 if (fire != NULL) 9823 ire_refrele(fire); 9824 ipif_refrele(ipif); 9825 /* Did this packet originate externally? */ 9826 if (dst_ill != NULL) 9827 ill_refrele(dst_ill); 9828 if (src_ipif != NULL) 9829 ipif_refrele(src_ipif); 9830 if (mp->b_prev || mp->b_next) { 9831 mp->b_next = NULL; 9832 mp->b_prev = NULL; 9833 } else { 9834 /* 9835 * Since ip_wput() isn't close to finished, we fill 9836 * in enough of the header for credible error reporting. 9837 */ 9838 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9839 /* Failed */ 9840 freemsg(first_mp); 9841 if (ire != NULL) 9842 ire_refrele(ire); 9843 return; 9844 } 9845 } 9846 /* 9847 * At this point we will have ire only if RTF_BLACKHOLE 9848 * or RTF_REJECT flags are set on the IRE. It will not 9849 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9850 */ 9851 if (ire != NULL) { 9852 if (ire->ire_flags & RTF_BLACKHOLE) { 9853 ire_refrele(ire); 9854 freemsg(first_mp); 9855 return; 9856 } 9857 ire_refrele(ire); 9858 } 9859 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9860 } 9861 9862 /* Name/Value Table Lookup Routine */ 9863 char * 9864 ip_nv_lookup(nv_t *nv, int value) 9865 { 9866 if (!nv) 9867 return (NULL); 9868 for (; nv->nv_name; nv++) { 9869 if (nv->nv_value == value) 9870 return (nv->nv_name); 9871 } 9872 return ("unknown"); 9873 } 9874 9875 /* 9876 * This is a module open, i.e. this is a control stream for access 9877 * to a DLPI device. We allocate an ill_t as the instance data in 9878 * this case. 9879 */ 9880 int 9881 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9882 { 9883 ill_t *ill; 9884 int err; 9885 zoneid_t zoneid; 9886 netstack_t *ns; 9887 ip_stack_t *ipst; 9888 9889 /* 9890 * Prevent unprivileged processes from pushing IP so that 9891 * they can't send raw IP. 9892 */ 9893 if (secpolicy_net_rawaccess(credp) != 0) 9894 return (EPERM); 9895 9896 ns = netstack_find_by_cred(credp); 9897 ASSERT(ns != NULL); 9898 ipst = ns->netstack_ip; 9899 ASSERT(ipst != NULL); 9900 9901 /* 9902 * For exclusive stacks we set the zoneid to zero 9903 * to make IP operate as if in the global zone. 9904 */ 9905 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9906 zoneid = GLOBAL_ZONEID; 9907 else 9908 zoneid = crgetzoneid(credp); 9909 9910 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9911 q->q_ptr = WR(q)->q_ptr = ill; 9912 ill->ill_ipst = ipst; 9913 ill->ill_zoneid = zoneid; 9914 9915 /* 9916 * ill_init initializes the ill fields and then sends down 9917 * down a DL_INFO_REQ after calling qprocson. 9918 */ 9919 err = ill_init(q, ill); 9920 if (err != 0) { 9921 mi_free(ill); 9922 netstack_rele(ipst->ips_netstack); 9923 q->q_ptr = NULL; 9924 WR(q)->q_ptr = NULL; 9925 return (err); 9926 } 9927 9928 /* ill_init initializes the ipsq marking this thread as writer */ 9929 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9930 /* Wait for the DL_INFO_ACK */ 9931 mutex_enter(&ill->ill_lock); 9932 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9933 /* 9934 * Return value of 0 indicates a pending signal. 9935 */ 9936 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9937 if (err == 0) { 9938 mutex_exit(&ill->ill_lock); 9939 (void) ip_close(q, 0); 9940 return (EINTR); 9941 } 9942 } 9943 mutex_exit(&ill->ill_lock); 9944 9945 /* 9946 * ip_rput_other could have set an error in ill_error on 9947 * receipt of M_ERROR. 9948 */ 9949 9950 err = ill->ill_error; 9951 if (err != 0) { 9952 (void) ip_close(q, 0); 9953 return (err); 9954 } 9955 9956 ill->ill_credp = credp; 9957 crhold(credp); 9958 9959 mutex_enter(&ipst->ips_ip_mi_lock); 9960 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9961 credp); 9962 mutex_exit(&ipst->ips_ip_mi_lock); 9963 if (err) { 9964 (void) ip_close(q, 0); 9965 return (err); 9966 } 9967 return (0); 9968 } 9969 9970 /* IP open routine. */ 9971 int 9972 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9973 { 9974 conn_t *connp; 9975 major_t maj; 9976 zoneid_t zoneid; 9977 netstack_t *ns; 9978 ip_stack_t *ipst; 9979 9980 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9981 9982 /* Allow reopen. */ 9983 if (q->q_ptr != NULL) 9984 return (0); 9985 9986 if (sflag & MODOPEN) { 9987 /* This is a module open */ 9988 return (ip_modopen(q, devp, flag, sflag, credp)); 9989 } 9990 9991 ns = netstack_find_by_cred(credp); 9992 ASSERT(ns != NULL); 9993 ipst = ns->netstack_ip; 9994 ASSERT(ipst != NULL); 9995 9996 /* 9997 * For exclusive stacks we set the zoneid to zero 9998 * to make IP operate as if in the global zone. 9999 */ 10000 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10001 zoneid = GLOBAL_ZONEID; 10002 else 10003 zoneid = crgetzoneid(credp); 10004 10005 /* 10006 * We are opening as a device. This is an IP client stream, and we 10007 * allocate an conn_t as the instance data. 10008 */ 10009 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10010 10011 /* 10012 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10013 * done by netstack_find_by_cred() 10014 */ 10015 netstack_rele(ipst->ips_netstack); 10016 10017 connp->conn_zoneid = zoneid; 10018 10019 connp->conn_upq = q; 10020 q->q_ptr = WR(q)->q_ptr = connp; 10021 10022 if (flag & SO_SOCKSTR) 10023 connp->conn_flags |= IPCL_SOCKET; 10024 10025 /* Minor tells us which /dev entry was opened */ 10026 if (geteminor(*devp) == IPV6_MINOR) { 10027 connp->conn_flags |= IPCL_ISV6; 10028 connp->conn_af_isv6 = B_TRUE; 10029 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10030 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10031 } else { 10032 connp->conn_af_isv6 = B_FALSE; 10033 connp->conn_pkt_isv6 = B_FALSE; 10034 } 10035 10036 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10037 /* CONN_DEC_REF takes care of netstack_rele() */ 10038 q->q_ptr = WR(q)->q_ptr = NULL; 10039 CONN_DEC_REF(connp); 10040 return (EBUSY); 10041 } 10042 10043 maj = getemajor(*devp); 10044 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10045 10046 /* 10047 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10048 */ 10049 connp->conn_cred = credp; 10050 crhold(connp->conn_cred); 10051 10052 /* 10053 * If the caller has the process-wide flag set, then default to MAC 10054 * exempt mode. This allows read-down to unlabeled hosts. 10055 */ 10056 if (getpflags(NET_MAC_AWARE, credp) != 0) 10057 connp->conn_mac_exempt = B_TRUE; 10058 10059 /* 10060 * This should only happen for ndd, netstat, raw socket or other SCTP 10061 * administrative ops. In these cases, we just need a normal conn_t 10062 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10063 * an error will be returned. 10064 */ 10065 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10066 connp->conn_rq = q; 10067 connp->conn_wq = WR(q); 10068 } else { 10069 connp->conn_ulp = IPPROTO_SCTP; 10070 connp->conn_rq = connp->conn_wq = NULL; 10071 } 10072 /* Non-zero default values */ 10073 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10074 10075 /* 10076 * Make the conn globally visible to walkers 10077 */ 10078 mutex_enter(&connp->conn_lock); 10079 connp->conn_state_flags &= ~CONN_INCIPIENT; 10080 mutex_exit(&connp->conn_lock); 10081 ASSERT(connp->conn_ref == 1); 10082 10083 qprocson(q); 10084 10085 return (0); 10086 } 10087 10088 /* 10089 * Change q_qinfo based on the value of isv6. 10090 * This can not called on an ill queue. 10091 * Note that there is no race since either q_qinfo works for conn queues - it 10092 * is just an optimization to enter the best wput routine directly. 10093 */ 10094 void 10095 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10096 { 10097 ASSERT(q->q_flag & QREADR); 10098 ASSERT(WR(q)->q_next == NULL); 10099 ASSERT(q->q_ptr != NULL); 10100 10101 if (minor == IPV6_MINOR) { 10102 if (bump_mib) { 10103 BUMP_MIB(&ipst->ips_ip6_mib, 10104 ipIfStatsOutSwitchIPVersion); 10105 } 10106 q->q_qinfo = &rinit_ipv6; 10107 WR(q)->q_qinfo = &winit_ipv6; 10108 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10109 } else { 10110 if (bump_mib) { 10111 BUMP_MIB(&ipst->ips_ip_mib, 10112 ipIfStatsOutSwitchIPVersion); 10113 } 10114 q->q_qinfo = &iprinit; 10115 WR(q)->q_qinfo = &ipwinit; 10116 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10117 } 10118 10119 } 10120 10121 /* 10122 * See if IPsec needs loading because of the options in mp. 10123 */ 10124 static boolean_t 10125 ipsec_opt_present(mblk_t *mp) 10126 { 10127 uint8_t *optcp, *next_optcp, *opt_endcp; 10128 struct opthdr *opt; 10129 struct T_opthdr *topt; 10130 int opthdr_len; 10131 t_uscalar_t optname, optlevel; 10132 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10133 ipsec_req_t *ipsr; 10134 10135 /* 10136 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10137 * return TRUE. 10138 */ 10139 10140 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10141 opt_endcp = optcp + tor->OPT_length; 10142 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10143 opthdr_len = sizeof (struct T_opthdr); 10144 } else { /* O_OPTMGMT_REQ */ 10145 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10146 opthdr_len = sizeof (struct opthdr); 10147 } 10148 for (; optcp < opt_endcp; optcp = next_optcp) { 10149 if (optcp + opthdr_len > opt_endcp) 10150 return (B_FALSE); /* Not enough option header. */ 10151 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10152 topt = (struct T_opthdr *)optcp; 10153 optlevel = topt->level; 10154 optname = topt->name; 10155 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10156 } else { 10157 opt = (struct opthdr *)optcp; 10158 optlevel = opt->level; 10159 optname = opt->name; 10160 next_optcp = optcp + opthdr_len + 10161 _TPI_ALIGN_OPT(opt->len); 10162 } 10163 if ((next_optcp < optcp) || /* wraparound pointer space */ 10164 ((next_optcp >= opt_endcp) && /* last option bad len */ 10165 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10166 return (B_FALSE); /* bad option buffer */ 10167 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10168 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10169 /* 10170 * Check to see if it's an all-bypass or all-zeroes 10171 * IPsec request. Don't bother loading IPsec if 10172 * the socket doesn't want to use it. (A good example 10173 * is a bypass request.) 10174 * 10175 * Basically, if any of the non-NEVER bits are set, 10176 * load IPsec. 10177 */ 10178 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10179 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10180 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10181 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10182 != 0) 10183 return (B_TRUE); 10184 } 10185 } 10186 return (B_FALSE); 10187 } 10188 10189 /* 10190 * If conn is is waiting for ipsec to finish loading, kick it. 10191 */ 10192 /* ARGSUSED */ 10193 static void 10194 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10195 { 10196 t_scalar_t optreq_prim; 10197 mblk_t *mp; 10198 cred_t *cr; 10199 int err = 0; 10200 10201 /* 10202 * This function is called, after ipsec loading is complete. 10203 * Since IP checks exclusively and atomically (i.e it prevents 10204 * ipsec load from completing until ip_optcom_req completes) 10205 * whether ipsec load is complete, there cannot be a race with IP 10206 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10207 */ 10208 mutex_enter(&connp->conn_lock); 10209 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10210 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10211 mp = connp->conn_ipsec_opt_mp; 10212 connp->conn_ipsec_opt_mp = NULL; 10213 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10214 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10215 mutex_exit(&connp->conn_lock); 10216 10217 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10218 10219 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10220 if (optreq_prim == T_OPTMGMT_REQ) { 10221 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10222 &ip_opt_obj); 10223 } else { 10224 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10225 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10226 &ip_opt_obj); 10227 } 10228 if (err != EINPROGRESS) 10229 CONN_OPER_PENDING_DONE(connp); 10230 return; 10231 } 10232 mutex_exit(&connp->conn_lock); 10233 } 10234 10235 /* 10236 * Called from the ipsec_loader thread, outside any perimeter, to tell 10237 * ip qenable any of the queues waiting for the ipsec loader to 10238 * complete. 10239 */ 10240 void 10241 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10242 { 10243 netstack_t *ns = ipss->ipsec_netstack; 10244 10245 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10246 } 10247 10248 /* 10249 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10250 * determines the grp on which it has to become exclusive, queues the mp 10251 * and sq draining restarts the optmgmt 10252 */ 10253 static boolean_t 10254 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10255 { 10256 conn_t *connp = Q_TO_CONN(q); 10257 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10258 10259 /* 10260 * Take IPsec requests and treat them special. 10261 */ 10262 if (ipsec_opt_present(mp)) { 10263 /* First check if IPsec is loaded. */ 10264 mutex_enter(&ipss->ipsec_loader_lock); 10265 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10266 mutex_exit(&ipss->ipsec_loader_lock); 10267 return (B_FALSE); 10268 } 10269 mutex_enter(&connp->conn_lock); 10270 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10271 10272 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10273 connp->conn_ipsec_opt_mp = mp; 10274 mutex_exit(&connp->conn_lock); 10275 mutex_exit(&ipss->ipsec_loader_lock); 10276 10277 ipsec_loader_loadnow(ipss); 10278 return (B_TRUE); 10279 } 10280 return (B_FALSE); 10281 } 10282 10283 /* 10284 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10285 * all of them are copied to the conn_t. If the req is "zero", the policy is 10286 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10287 * fields. 10288 * We keep only the latest setting of the policy and thus policy setting 10289 * is not incremental/cumulative. 10290 * 10291 * Requests to set policies with multiple alternative actions will 10292 * go through a different API. 10293 */ 10294 int 10295 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10296 { 10297 uint_t ah_req = 0; 10298 uint_t esp_req = 0; 10299 uint_t se_req = 0; 10300 ipsec_selkey_t sel; 10301 ipsec_act_t *actp = NULL; 10302 uint_t nact; 10303 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10304 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10305 ipsec_policy_root_t *pr; 10306 ipsec_policy_head_t *ph; 10307 int fam; 10308 boolean_t is_pol_reset; 10309 int error = 0; 10310 netstack_t *ns = connp->conn_netstack; 10311 ip_stack_t *ipst = ns->netstack_ip; 10312 ipsec_stack_t *ipss = ns->netstack_ipsec; 10313 10314 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10315 10316 /* 10317 * The IP_SEC_OPT option does not allow variable length parameters, 10318 * hence a request cannot be NULL. 10319 */ 10320 if (req == NULL) 10321 return (EINVAL); 10322 10323 ah_req = req->ipsr_ah_req; 10324 esp_req = req->ipsr_esp_req; 10325 se_req = req->ipsr_self_encap_req; 10326 10327 /* 10328 * Are we dealing with a request to reset the policy (i.e. 10329 * zero requests). 10330 */ 10331 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10332 (esp_req & REQ_MASK) == 0 && 10333 (se_req & REQ_MASK) == 0); 10334 10335 if (!is_pol_reset) { 10336 /* 10337 * If we couldn't load IPsec, fail with "protocol 10338 * not supported". 10339 * IPsec may not have been loaded for a request with zero 10340 * policies, so we don't fail in this case. 10341 */ 10342 mutex_enter(&ipss->ipsec_loader_lock); 10343 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10344 mutex_exit(&ipss->ipsec_loader_lock); 10345 return (EPROTONOSUPPORT); 10346 } 10347 mutex_exit(&ipss->ipsec_loader_lock); 10348 10349 /* 10350 * Test for valid requests. Invalid algorithms 10351 * need to be tested by IPSEC code because new 10352 * algorithms can be added dynamically. 10353 */ 10354 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10355 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10356 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10357 return (EINVAL); 10358 } 10359 10360 /* 10361 * Only privileged users can issue these 10362 * requests. 10363 */ 10364 if (((ah_req & IPSEC_PREF_NEVER) || 10365 (esp_req & IPSEC_PREF_NEVER) || 10366 (se_req & IPSEC_PREF_NEVER)) && 10367 secpolicy_ip_config(cr, B_FALSE) != 0) { 10368 return (EPERM); 10369 } 10370 10371 /* 10372 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10373 * are mutually exclusive. 10374 */ 10375 if (((ah_req & REQ_MASK) == REQ_MASK) || 10376 ((esp_req & REQ_MASK) == REQ_MASK) || 10377 ((se_req & REQ_MASK) == REQ_MASK)) { 10378 /* Both of them are set */ 10379 return (EINVAL); 10380 } 10381 } 10382 10383 mutex_enter(&connp->conn_lock); 10384 10385 /* 10386 * If we have already cached policies in ip_bind_connected*(), don't 10387 * let them change now. We cache policies for connections 10388 * whose src,dst [addr, port] is known. 10389 */ 10390 if (connp->conn_policy_cached) { 10391 mutex_exit(&connp->conn_lock); 10392 return (EINVAL); 10393 } 10394 10395 /* 10396 * We have a zero policies, reset the connection policy if already 10397 * set. This will cause the connection to inherit the 10398 * global policy, if any. 10399 */ 10400 if (is_pol_reset) { 10401 if (connp->conn_policy != NULL) { 10402 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10403 connp->conn_policy = NULL; 10404 } 10405 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10406 connp->conn_in_enforce_policy = B_FALSE; 10407 connp->conn_out_enforce_policy = B_FALSE; 10408 mutex_exit(&connp->conn_lock); 10409 return (0); 10410 } 10411 10412 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10413 ipst->ips_netstack); 10414 if (ph == NULL) 10415 goto enomem; 10416 10417 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10418 if (actp == NULL) 10419 goto enomem; 10420 10421 /* 10422 * Always allocate IPv4 policy entries, since they can also 10423 * apply to ipv6 sockets being used in ipv4-compat mode. 10424 */ 10425 bzero(&sel, sizeof (sel)); 10426 sel.ipsl_valid = IPSL_IPV4; 10427 10428 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10429 ipst->ips_netstack); 10430 if (pin4 == NULL) 10431 goto enomem; 10432 10433 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10434 ipst->ips_netstack); 10435 if (pout4 == NULL) 10436 goto enomem; 10437 10438 if (connp->conn_pkt_isv6) { 10439 /* 10440 * We're looking at a v6 socket, also allocate the 10441 * v6-specific entries... 10442 */ 10443 sel.ipsl_valid = IPSL_IPV6; 10444 pin6 = ipsec_policy_create(&sel, actp, nact, 10445 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10446 if (pin6 == NULL) 10447 goto enomem; 10448 10449 pout6 = ipsec_policy_create(&sel, actp, nact, 10450 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10451 if (pout6 == NULL) 10452 goto enomem; 10453 10454 /* 10455 * .. and file them away in the right place. 10456 */ 10457 fam = IPSEC_AF_V6; 10458 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10459 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10460 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10461 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10462 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10463 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10464 } 10465 10466 ipsec_actvec_free(actp, nact); 10467 10468 /* 10469 * File the v4 policies. 10470 */ 10471 fam = IPSEC_AF_V4; 10472 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10473 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10474 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10475 10476 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10477 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10478 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10479 10480 /* 10481 * If the requests need security, set enforce_policy. 10482 * If the requests are IPSEC_PREF_NEVER, one should 10483 * still set conn_out_enforce_policy so that an ipsec_out 10484 * gets attached in ip_wput. This is needed so that 10485 * for connections that we don't cache policy in ip_bind, 10486 * if global policy matches in ip_wput_attach_policy, we 10487 * don't wrongly inherit global policy. Similarly, we need 10488 * to set conn_in_enforce_policy also so that we don't verify 10489 * policy wrongly. 10490 */ 10491 if ((ah_req & REQ_MASK) != 0 || 10492 (esp_req & REQ_MASK) != 0 || 10493 (se_req & REQ_MASK) != 0) { 10494 connp->conn_in_enforce_policy = B_TRUE; 10495 connp->conn_out_enforce_policy = B_TRUE; 10496 connp->conn_flags |= IPCL_CHECK_POLICY; 10497 } 10498 10499 mutex_exit(&connp->conn_lock); 10500 return (error); 10501 #undef REQ_MASK 10502 10503 /* 10504 * Common memory-allocation-failure exit path. 10505 */ 10506 enomem: 10507 mutex_exit(&connp->conn_lock); 10508 if (actp != NULL) 10509 ipsec_actvec_free(actp, nact); 10510 if (pin4 != NULL) 10511 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10512 if (pout4 != NULL) 10513 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10514 if (pin6 != NULL) 10515 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10516 if (pout6 != NULL) 10517 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10518 return (ENOMEM); 10519 } 10520 10521 /* 10522 * Only for options that pass in an IP addr. Currently only V4 options 10523 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10524 * So this function assumes level is IPPROTO_IP 10525 */ 10526 int 10527 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10528 mblk_t *first_mp) 10529 { 10530 ipif_t *ipif = NULL; 10531 int error; 10532 ill_t *ill; 10533 int zoneid; 10534 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10535 10536 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10537 10538 if (addr != INADDR_ANY || checkonly) { 10539 ASSERT(connp != NULL); 10540 zoneid = IPCL_ZONEID(connp); 10541 if (option == IP_NEXTHOP) { 10542 ipif = ipif_lookup_onlink_addr(addr, 10543 connp->conn_zoneid, ipst); 10544 } else { 10545 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10546 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10547 &error, ipst); 10548 } 10549 if (ipif == NULL) { 10550 if (error == EINPROGRESS) 10551 return (error); 10552 else if ((option == IP_MULTICAST_IF) || 10553 (option == IP_NEXTHOP)) 10554 return (EHOSTUNREACH); 10555 else 10556 return (EINVAL); 10557 } else if (checkonly) { 10558 if (option == IP_MULTICAST_IF) { 10559 ill = ipif->ipif_ill; 10560 /* not supported by the virtual network iface */ 10561 if (IS_VNI(ill)) { 10562 ipif_refrele(ipif); 10563 return (EINVAL); 10564 } 10565 } 10566 ipif_refrele(ipif); 10567 return (0); 10568 } 10569 ill = ipif->ipif_ill; 10570 mutex_enter(&connp->conn_lock); 10571 mutex_enter(&ill->ill_lock); 10572 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10573 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10574 mutex_exit(&ill->ill_lock); 10575 mutex_exit(&connp->conn_lock); 10576 ipif_refrele(ipif); 10577 return (option == IP_MULTICAST_IF ? 10578 EHOSTUNREACH : EINVAL); 10579 } 10580 } else { 10581 mutex_enter(&connp->conn_lock); 10582 } 10583 10584 /* None of the options below are supported on the VNI */ 10585 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10586 mutex_exit(&ill->ill_lock); 10587 mutex_exit(&connp->conn_lock); 10588 ipif_refrele(ipif); 10589 return (EINVAL); 10590 } 10591 10592 switch (option) { 10593 case IP_DONTFAILOVER_IF: 10594 /* 10595 * This option is used by in.mpathd to ensure 10596 * that IPMP probe packets only go out on the 10597 * test interfaces. in.mpathd sets this option 10598 * on the non-failover interfaces. 10599 * For backward compatibility, this option 10600 * implicitly sets IP_MULTICAST_IF, as used 10601 * be done in bind(), so that ip_wput gets 10602 * this ipif to send mcast packets. 10603 */ 10604 if (ipif != NULL) { 10605 ASSERT(addr != INADDR_ANY); 10606 connp->conn_nofailover_ill = ipif->ipif_ill; 10607 connp->conn_multicast_ipif = ipif; 10608 } else { 10609 ASSERT(addr == INADDR_ANY); 10610 connp->conn_nofailover_ill = NULL; 10611 connp->conn_multicast_ipif = NULL; 10612 } 10613 break; 10614 10615 case IP_MULTICAST_IF: 10616 connp->conn_multicast_ipif = ipif; 10617 break; 10618 case IP_NEXTHOP: 10619 connp->conn_nexthop_v4 = addr; 10620 connp->conn_nexthop_set = B_TRUE; 10621 break; 10622 } 10623 10624 if (ipif != NULL) { 10625 mutex_exit(&ill->ill_lock); 10626 mutex_exit(&connp->conn_lock); 10627 ipif_refrele(ipif); 10628 return (0); 10629 } 10630 mutex_exit(&connp->conn_lock); 10631 /* We succeded in cleared the option */ 10632 return (0); 10633 } 10634 10635 /* 10636 * For options that pass in an ifindex specifying the ill. V6 options always 10637 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10638 */ 10639 int 10640 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10641 int level, int option, mblk_t *first_mp) 10642 { 10643 ill_t *ill = NULL; 10644 int error = 0; 10645 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10646 10647 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10648 if (ifindex != 0) { 10649 ASSERT(connp != NULL); 10650 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10651 first_mp, ip_restart_optmgmt, &error, ipst); 10652 if (ill != NULL) { 10653 if (checkonly) { 10654 /* not supported by the virtual network iface */ 10655 if (IS_VNI(ill)) { 10656 ill_refrele(ill); 10657 return (EINVAL); 10658 } 10659 ill_refrele(ill); 10660 return (0); 10661 } 10662 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10663 0, NULL)) { 10664 ill_refrele(ill); 10665 ill = NULL; 10666 mutex_enter(&connp->conn_lock); 10667 goto setit; 10668 } 10669 mutex_enter(&connp->conn_lock); 10670 mutex_enter(&ill->ill_lock); 10671 if (ill->ill_state_flags & ILL_CONDEMNED) { 10672 mutex_exit(&ill->ill_lock); 10673 mutex_exit(&connp->conn_lock); 10674 ill_refrele(ill); 10675 ill = NULL; 10676 mutex_enter(&connp->conn_lock); 10677 } 10678 goto setit; 10679 } else if (error == EINPROGRESS) { 10680 return (error); 10681 } else { 10682 error = 0; 10683 } 10684 } 10685 mutex_enter(&connp->conn_lock); 10686 setit: 10687 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10688 10689 /* 10690 * The options below assume that the ILL (if any) transmits and/or 10691 * receives traffic. Neither of which is true for the virtual network 10692 * interface, so fail setting these on a VNI. 10693 */ 10694 if (IS_VNI(ill)) { 10695 ASSERT(ill != NULL); 10696 mutex_exit(&ill->ill_lock); 10697 mutex_exit(&connp->conn_lock); 10698 ill_refrele(ill); 10699 return (EINVAL); 10700 } 10701 10702 if (level == IPPROTO_IP) { 10703 switch (option) { 10704 case IP_BOUND_IF: 10705 connp->conn_incoming_ill = ill; 10706 connp->conn_outgoing_ill = ill; 10707 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10708 0 : ifindex; 10709 break; 10710 10711 case IP_XMIT_IF: 10712 /* 10713 * Similar to IP_BOUND_IF, but this only 10714 * determines the outgoing interface for 10715 * unicast packets. Also no IRE_CACHE entry 10716 * is added for the destination of the 10717 * outgoing packets. This feature is needed 10718 * for mobile IP. 10719 */ 10720 connp->conn_xmit_if_ill = ill; 10721 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10722 0 : ifindex; 10723 break; 10724 10725 case IP_MULTICAST_IF: 10726 /* 10727 * This option is an internal special. The socket 10728 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10729 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10730 * specifies an ifindex and we try first on V6 ill's. 10731 * If we don't find one, we they try using on v4 ill's 10732 * intenally and we come here. 10733 */ 10734 if (!checkonly && ill != NULL) { 10735 ipif_t *ipif; 10736 ipif = ill->ill_ipif; 10737 10738 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10739 mutex_exit(&ill->ill_lock); 10740 mutex_exit(&connp->conn_lock); 10741 ill_refrele(ill); 10742 ill = NULL; 10743 mutex_enter(&connp->conn_lock); 10744 } else { 10745 connp->conn_multicast_ipif = ipif; 10746 } 10747 } 10748 break; 10749 } 10750 } else { 10751 switch (option) { 10752 case IPV6_BOUND_IF: 10753 connp->conn_incoming_ill = ill; 10754 connp->conn_outgoing_ill = ill; 10755 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10756 0 : ifindex; 10757 break; 10758 10759 case IPV6_BOUND_PIF: 10760 /* 10761 * Limit all transmit to this ill. 10762 * Unlike IPV6_BOUND_IF, using this option 10763 * prevents load spreading and failover from 10764 * happening when the interface is part of the 10765 * group. That's why we don't need to remember 10766 * the ifindex in orig_bound_ifindex as in 10767 * IPV6_BOUND_IF. 10768 */ 10769 connp->conn_outgoing_pill = ill; 10770 break; 10771 10772 case IPV6_DONTFAILOVER_IF: 10773 /* 10774 * This option is used by in.mpathd to ensure 10775 * that IPMP probe packets only go out on the 10776 * test interfaces. in.mpathd sets this option 10777 * on the non-failover interfaces. 10778 */ 10779 connp->conn_nofailover_ill = ill; 10780 /* 10781 * For backward compatibility, this option 10782 * implicitly sets ip_multicast_ill as used in 10783 * IP_MULTICAST_IF so that ip_wput gets 10784 * this ipif to send mcast packets. 10785 */ 10786 connp->conn_multicast_ill = ill; 10787 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10788 0 : ifindex; 10789 break; 10790 10791 case IPV6_MULTICAST_IF: 10792 /* 10793 * Set conn_multicast_ill to be the IPv6 ill. 10794 * Set conn_multicast_ipif to be an IPv4 ipif 10795 * for ifindex to make IPv4 mapped addresses 10796 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10797 * Even if no IPv6 ill exists for the ifindex 10798 * we need to check for an IPv4 ifindex in order 10799 * for this to work with mapped addresses. In that 10800 * case only set conn_multicast_ipif. 10801 */ 10802 if (!checkonly) { 10803 if (ifindex == 0) { 10804 connp->conn_multicast_ill = NULL; 10805 connp->conn_orig_multicast_ifindex = 0; 10806 connp->conn_multicast_ipif = NULL; 10807 } else if (ill != NULL) { 10808 connp->conn_multicast_ill = ill; 10809 connp->conn_orig_multicast_ifindex = 10810 ifindex; 10811 } 10812 } 10813 break; 10814 } 10815 } 10816 10817 if (ill != NULL) { 10818 mutex_exit(&ill->ill_lock); 10819 mutex_exit(&connp->conn_lock); 10820 ill_refrele(ill); 10821 return (0); 10822 } 10823 mutex_exit(&connp->conn_lock); 10824 /* 10825 * We succeeded in clearing the option (ifindex == 0) or failed to 10826 * locate the ill and could not set the option (ifindex != 0) 10827 */ 10828 return (ifindex == 0 ? 0 : EINVAL); 10829 } 10830 10831 /* This routine sets socket options. */ 10832 /* ARGSUSED */ 10833 int 10834 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10835 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10836 void *dummy, cred_t *cr, mblk_t *first_mp) 10837 { 10838 int *i1 = (int *)invalp; 10839 conn_t *connp = Q_TO_CONN(q); 10840 int error = 0; 10841 boolean_t checkonly; 10842 ire_t *ire; 10843 boolean_t found; 10844 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10845 10846 switch (optset_context) { 10847 10848 case SETFN_OPTCOM_CHECKONLY: 10849 checkonly = B_TRUE; 10850 /* 10851 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10852 * inlen != 0 implies value supplied and 10853 * we have to "pretend" to set it. 10854 * inlen == 0 implies that there is no 10855 * value part in T_CHECK request and just validation 10856 * done elsewhere should be enough, we just return here. 10857 */ 10858 if (inlen == 0) { 10859 *outlenp = 0; 10860 return (0); 10861 } 10862 break; 10863 case SETFN_OPTCOM_NEGOTIATE: 10864 case SETFN_UD_NEGOTIATE: 10865 case SETFN_CONN_NEGOTIATE: 10866 checkonly = B_FALSE; 10867 break; 10868 default: 10869 /* 10870 * We should never get here 10871 */ 10872 *outlenp = 0; 10873 return (EINVAL); 10874 } 10875 10876 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10877 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10878 10879 /* 10880 * For fixed length options, no sanity check 10881 * of passed in length is done. It is assumed *_optcom_req() 10882 * routines do the right thing. 10883 */ 10884 10885 switch (level) { 10886 case SOL_SOCKET: 10887 /* 10888 * conn_lock protects the bitfields, and is used to 10889 * set the fields atomically. 10890 */ 10891 switch (name) { 10892 case SO_BROADCAST: 10893 if (!checkonly) { 10894 /* TODO: use value someplace? */ 10895 mutex_enter(&connp->conn_lock); 10896 connp->conn_broadcast = *i1 ? 1 : 0; 10897 mutex_exit(&connp->conn_lock); 10898 } 10899 break; /* goto sizeof (int) option return */ 10900 case SO_USELOOPBACK: 10901 if (!checkonly) { 10902 /* TODO: use value someplace? */ 10903 mutex_enter(&connp->conn_lock); 10904 connp->conn_loopback = *i1 ? 1 : 0; 10905 mutex_exit(&connp->conn_lock); 10906 } 10907 break; /* goto sizeof (int) option return */ 10908 case SO_DONTROUTE: 10909 if (!checkonly) { 10910 mutex_enter(&connp->conn_lock); 10911 connp->conn_dontroute = *i1 ? 1 : 0; 10912 mutex_exit(&connp->conn_lock); 10913 } 10914 break; /* goto sizeof (int) option return */ 10915 case SO_REUSEADDR: 10916 if (!checkonly) { 10917 mutex_enter(&connp->conn_lock); 10918 connp->conn_reuseaddr = *i1 ? 1 : 0; 10919 mutex_exit(&connp->conn_lock); 10920 } 10921 break; /* goto sizeof (int) option return */ 10922 case SO_PROTOTYPE: 10923 if (!checkonly) { 10924 mutex_enter(&connp->conn_lock); 10925 connp->conn_proto = *i1; 10926 mutex_exit(&connp->conn_lock); 10927 } 10928 break; /* goto sizeof (int) option return */ 10929 case SO_ALLZONES: 10930 if (!checkonly) { 10931 mutex_enter(&connp->conn_lock); 10932 if (IPCL_IS_BOUND(connp)) { 10933 mutex_exit(&connp->conn_lock); 10934 return (EINVAL); 10935 } 10936 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10937 mutex_exit(&connp->conn_lock); 10938 } 10939 break; /* goto sizeof (int) option return */ 10940 case SO_ANON_MLP: 10941 if (!checkonly) { 10942 mutex_enter(&connp->conn_lock); 10943 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10944 mutex_exit(&connp->conn_lock); 10945 } 10946 break; /* goto sizeof (int) option return */ 10947 case SO_MAC_EXEMPT: 10948 if (secpolicy_net_mac_aware(cr) != 0 || 10949 IPCL_IS_BOUND(connp)) 10950 return (EACCES); 10951 if (!checkonly) { 10952 mutex_enter(&connp->conn_lock); 10953 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10954 mutex_exit(&connp->conn_lock); 10955 } 10956 break; /* goto sizeof (int) option return */ 10957 default: 10958 /* 10959 * "soft" error (negative) 10960 * option not handled at this level 10961 * Note: Do not modify *outlenp 10962 */ 10963 return (-EINVAL); 10964 } 10965 break; 10966 case IPPROTO_IP: 10967 switch (name) { 10968 case IP_NEXTHOP: 10969 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10970 return (EPERM); 10971 /* FALLTHRU */ 10972 case IP_MULTICAST_IF: 10973 case IP_DONTFAILOVER_IF: { 10974 ipaddr_t addr = *i1; 10975 10976 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10977 first_mp); 10978 if (error != 0) 10979 return (error); 10980 break; /* goto sizeof (int) option return */ 10981 } 10982 10983 case IP_MULTICAST_TTL: 10984 /* Recorded in transport above IP */ 10985 *outvalp = *invalp; 10986 *outlenp = sizeof (uchar_t); 10987 return (0); 10988 case IP_MULTICAST_LOOP: 10989 if (!checkonly) { 10990 mutex_enter(&connp->conn_lock); 10991 connp->conn_multicast_loop = *invalp ? 1 : 0; 10992 mutex_exit(&connp->conn_lock); 10993 } 10994 *outvalp = *invalp; 10995 *outlenp = sizeof (uchar_t); 10996 return (0); 10997 case IP_ADD_MEMBERSHIP: 10998 case MCAST_JOIN_GROUP: 10999 case IP_DROP_MEMBERSHIP: 11000 case MCAST_LEAVE_GROUP: { 11001 struct ip_mreq *mreqp; 11002 struct group_req *greqp; 11003 ire_t *ire; 11004 boolean_t done = B_FALSE; 11005 ipaddr_t group, ifaddr; 11006 struct sockaddr_in *sin; 11007 uint32_t *ifindexp; 11008 boolean_t mcast_opt = B_TRUE; 11009 mcast_record_t fmode; 11010 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11011 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11012 11013 switch (name) { 11014 case IP_ADD_MEMBERSHIP: 11015 mcast_opt = B_FALSE; 11016 /* FALLTHRU */ 11017 case MCAST_JOIN_GROUP: 11018 fmode = MODE_IS_EXCLUDE; 11019 optfn = ip_opt_add_group; 11020 break; 11021 11022 case IP_DROP_MEMBERSHIP: 11023 mcast_opt = B_FALSE; 11024 /* FALLTHRU */ 11025 case MCAST_LEAVE_GROUP: 11026 fmode = MODE_IS_INCLUDE; 11027 optfn = ip_opt_delete_group; 11028 break; 11029 } 11030 11031 if (mcast_opt) { 11032 greqp = (struct group_req *)i1; 11033 sin = (struct sockaddr_in *)&greqp->gr_group; 11034 if (sin->sin_family != AF_INET) { 11035 *outlenp = 0; 11036 return (ENOPROTOOPT); 11037 } 11038 group = (ipaddr_t)sin->sin_addr.s_addr; 11039 ifaddr = INADDR_ANY; 11040 ifindexp = &greqp->gr_interface; 11041 } else { 11042 mreqp = (struct ip_mreq *)i1; 11043 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11044 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11045 ifindexp = NULL; 11046 } 11047 11048 /* 11049 * In the multirouting case, we need to replicate 11050 * the request on all interfaces that will take part 11051 * in replication. We do so because multirouting is 11052 * reflective, thus we will probably receive multi- 11053 * casts on those interfaces. 11054 * The ip_multirt_apply_membership() succeeds if the 11055 * operation succeeds on at least one interface. 11056 */ 11057 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11058 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11059 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11060 if (ire != NULL) { 11061 if (ire->ire_flags & RTF_MULTIRT) { 11062 error = ip_multirt_apply_membership( 11063 optfn, ire, connp, checkonly, group, 11064 fmode, INADDR_ANY, first_mp); 11065 done = B_TRUE; 11066 } 11067 ire_refrele(ire); 11068 } 11069 if (!done) { 11070 error = optfn(connp, checkonly, group, ifaddr, 11071 ifindexp, fmode, INADDR_ANY, first_mp); 11072 } 11073 if (error) { 11074 /* 11075 * EINPROGRESS is a soft error, needs retry 11076 * so don't make *outlenp zero. 11077 */ 11078 if (error != EINPROGRESS) 11079 *outlenp = 0; 11080 return (error); 11081 } 11082 /* OK return - copy input buffer into output buffer */ 11083 if (invalp != outvalp) { 11084 /* don't trust bcopy for identical src/dst */ 11085 bcopy(invalp, outvalp, inlen); 11086 } 11087 *outlenp = inlen; 11088 return (0); 11089 } 11090 case IP_BLOCK_SOURCE: 11091 case IP_UNBLOCK_SOURCE: 11092 case IP_ADD_SOURCE_MEMBERSHIP: 11093 case IP_DROP_SOURCE_MEMBERSHIP: 11094 case MCAST_BLOCK_SOURCE: 11095 case MCAST_UNBLOCK_SOURCE: 11096 case MCAST_JOIN_SOURCE_GROUP: 11097 case MCAST_LEAVE_SOURCE_GROUP: { 11098 struct ip_mreq_source *imreqp; 11099 struct group_source_req *gsreqp; 11100 in_addr_t grp, src, ifaddr = INADDR_ANY; 11101 uint32_t ifindex = 0; 11102 mcast_record_t fmode; 11103 struct sockaddr_in *sin; 11104 ire_t *ire; 11105 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11106 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11107 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11108 11109 switch (name) { 11110 case IP_BLOCK_SOURCE: 11111 mcast_opt = B_FALSE; 11112 /* FALLTHRU */ 11113 case MCAST_BLOCK_SOURCE: 11114 fmode = MODE_IS_EXCLUDE; 11115 optfn = ip_opt_add_group; 11116 break; 11117 11118 case IP_UNBLOCK_SOURCE: 11119 mcast_opt = B_FALSE; 11120 /* FALLTHRU */ 11121 case MCAST_UNBLOCK_SOURCE: 11122 fmode = MODE_IS_EXCLUDE; 11123 optfn = ip_opt_delete_group; 11124 break; 11125 11126 case IP_ADD_SOURCE_MEMBERSHIP: 11127 mcast_opt = B_FALSE; 11128 /* FALLTHRU */ 11129 case MCAST_JOIN_SOURCE_GROUP: 11130 fmode = MODE_IS_INCLUDE; 11131 optfn = ip_opt_add_group; 11132 break; 11133 11134 case IP_DROP_SOURCE_MEMBERSHIP: 11135 mcast_opt = B_FALSE; 11136 /* FALLTHRU */ 11137 case MCAST_LEAVE_SOURCE_GROUP: 11138 fmode = MODE_IS_INCLUDE; 11139 optfn = ip_opt_delete_group; 11140 break; 11141 } 11142 11143 if (mcast_opt) { 11144 gsreqp = (struct group_source_req *)i1; 11145 if (gsreqp->gsr_group.ss_family != AF_INET) { 11146 *outlenp = 0; 11147 return (ENOPROTOOPT); 11148 } 11149 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11150 grp = (ipaddr_t)sin->sin_addr.s_addr; 11151 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11152 src = (ipaddr_t)sin->sin_addr.s_addr; 11153 ifindex = gsreqp->gsr_interface; 11154 } else { 11155 imreqp = (struct ip_mreq_source *)i1; 11156 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11157 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11158 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11159 } 11160 11161 /* 11162 * In the multirouting case, we need to replicate 11163 * the request as noted in the mcast cases above. 11164 */ 11165 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11166 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11167 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11168 if (ire != NULL) { 11169 if (ire->ire_flags & RTF_MULTIRT) { 11170 error = ip_multirt_apply_membership( 11171 optfn, ire, connp, checkonly, grp, 11172 fmode, src, first_mp); 11173 done = B_TRUE; 11174 } 11175 ire_refrele(ire); 11176 } 11177 if (!done) { 11178 error = optfn(connp, checkonly, grp, ifaddr, 11179 &ifindex, fmode, src, first_mp); 11180 } 11181 if (error != 0) { 11182 /* 11183 * EINPROGRESS is a soft error, needs retry 11184 * so don't make *outlenp zero. 11185 */ 11186 if (error != EINPROGRESS) 11187 *outlenp = 0; 11188 return (error); 11189 } 11190 /* OK return - copy input buffer into output buffer */ 11191 if (invalp != outvalp) { 11192 bcopy(invalp, outvalp, inlen); 11193 } 11194 *outlenp = inlen; 11195 return (0); 11196 } 11197 case IP_SEC_OPT: 11198 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11199 if (error != 0) { 11200 *outlenp = 0; 11201 return (error); 11202 } 11203 break; 11204 case IP_HDRINCL: 11205 case IP_OPTIONS: 11206 case T_IP_OPTIONS: 11207 case IP_TOS: 11208 case T_IP_TOS: 11209 case IP_TTL: 11210 case IP_RECVDSTADDR: 11211 case IP_RECVOPTS: 11212 /* OK return - copy input buffer into output buffer */ 11213 if (invalp != outvalp) { 11214 /* don't trust bcopy for identical src/dst */ 11215 bcopy(invalp, outvalp, inlen); 11216 } 11217 *outlenp = inlen; 11218 return (0); 11219 case IP_RECVIF: 11220 /* Retrieve the inbound interface index */ 11221 if (!checkonly) { 11222 mutex_enter(&connp->conn_lock); 11223 connp->conn_recvif = *i1 ? 1 : 0; 11224 mutex_exit(&connp->conn_lock); 11225 } 11226 break; /* goto sizeof (int) option return */ 11227 case IP_RECVPKTINFO: 11228 if (!checkonly) { 11229 mutex_enter(&connp->conn_lock); 11230 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11231 mutex_exit(&connp->conn_lock); 11232 } 11233 break; /* goto sizeof (int) option return */ 11234 case IP_RECVSLLA: 11235 /* Retrieve the source link layer address */ 11236 if (!checkonly) { 11237 mutex_enter(&connp->conn_lock); 11238 connp->conn_recvslla = *i1 ? 1 : 0; 11239 mutex_exit(&connp->conn_lock); 11240 } 11241 break; /* goto sizeof (int) option return */ 11242 case MRT_INIT: 11243 case MRT_DONE: 11244 case MRT_ADD_VIF: 11245 case MRT_DEL_VIF: 11246 case MRT_ADD_MFC: 11247 case MRT_DEL_MFC: 11248 case MRT_ASSERT: 11249 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11250 *outlenp = 0; 11251 return (error); 11252 } 11253 error = ip_mrouter_set((int)name, q, checkonly, 11254 (uchar_t *)invalp, inlen, first_mp); 11255 if (error) { 11256 *outlenp = 0; 11257 return (error); 11258 } 11259 /* OK return - copy input buffer into output buffer */ 11260 if (invalp != outvalp) { 11261 /* don't trust bcopy for identical src/dst */ 11262 bcopy(invalp, outvalp, inlen); 11263 } 11264 *outlenp = inlen; 11265 return (0); 11266 case IP_BOUND_IF: 11267 case IP_XMIT_IF: 11268 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11269 level, name, first_mp); 11270 if (error != 0) 11271 return (error); 11272 break; /* goto sizeof (int) option return */ 11273 11274 case IP_UNSPEC_SRC: 11275 /* Allow sending with a zero source address */ 11276 if (!checkonly) { 11277 mutex_enter(&connp->conn_lock); 11278 connp->conn_unspec_src = *i1 ? 1 : 0; 11279 mutex_exit(&connp->conn_lock); 11280 } 11281 break; /* goto sizeof (int) option return */ 11282 default: 11283 /* 11284 * "soft" error (negative) 11285 * option not handled at this level 11286 * Note: Do not modify *outlenp 11287 */ 11288 return (-EINVAL); 11289 } 11290 break; 11291 case IPPROTO_IPV6: 11292 switch (name) { 11293 case IPV6_BOUND_IF: 11294 case IPV6_BOUND_PIF: 11295 case IPV6_DONTFAILOVER_IF: 11296 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11297 level, name, first_mp); 11298 if (error != 0) 11299 return (error); 11300 break; /* goto sizeof (int) option return */ 11301 11302 case IPV6_MULTICAST_IF: 11303 /* 11304 * The only possible errors are EINPROGRESS and 11305 * EINVAL. EINPROGRESS will be restarted and is not 11306 * a hard error. We call this option on both V4 and V6 11307 * If both return EINVAL, then this call returns 11308 * EINVAL. If at least one of them succeeds we 11309 * return success. 11310 */ 11311 found = B_FALSE; 11312 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11313 level, name, first_mp); 11314 if (error == EINPROGRESS) 11315 return (error); 11316 if (error == 0) 11317 found = B_TRUE; 11318 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11319 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11320 if (error == 0) 11321 found = B_TRUE; 11322 if (!found) 11323 return (error); 11324 break; /* goto sizeof (int) option return */ 11325 11326 case IPV6_MULTICAST_HOPS: 11327 /* Recorded in transport above IP */ 11328 break; /* goto sizeof (int) option return */ 11329 case IPV6_MULTICAST_LOOP: 11330 if (!checkonly) { 11331 mutex_enter(&connp->conn_lock); 11332 connp->conn_multicast_loop = *i1; 11333 mutex_exit(&connp->conn_lock); 11334 } 11335 break; /* goto sizeof (int) option return */ 11336 case IPV6_JOIN_GROUP: 11337 case MCAST_JOIN_GROUP: 11338 case IPV6_LEAVE_GROUP: 11339 case MCAST_LEAVE_GROUP: { 11340 struct ipv6_mreq *ip_mreqp; 11341 struct group_req *greqp; 11342 ire_t *ire; 11343 boolean_t done = B_FALSE; 11344 in6_addr_t groupv6; 11345 uint32_t ifindex; 11346 boolean_t mcast_opt = B_TRUE; 11347 mcast_record_t fmode; 11348 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11349 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11350 11351 switch (name) { 11352 case IPV6_JOIN_GROUP: 11353 mcast_opt = B_FALSE; 11354 /* FALLTHRU */ 11355 case MCAST_JOIN_GROUP: 11356 fmode = MODE_IS_EXCLUDE; 11357 optfn = ip_opt_add_group_v6; 11358 break; 11359 11360 case IPV6_LEAVE_GROUP: 11361 mcast_opt = B_FALSE; 11362 /* FALLTHRU */ 11363 case MCAST_LEAVE_GROUP: 11364 fmode = MODE_IS_INCLUDE; 11365 optfn = ip_opt_delete_group_v6; 11366 break; 11367 } 11368 11369 if (mcast_opt) { 11370 struct sockaddr_in *sin; 11371 struct sockaddr_in6 *sin6; 11372 greqp = (struct group_req *)i1; 11373 if (greqp->gr_group.ss_family == AF_INET) { 11374 sin = (struct sockaddr_in *) 11375 &(greqp->gr_group); 11376 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11377 &groupv6); 11378 } else { 11379 sin6 = (struct sockaddr_in6 *) 11380 &(greqp->gr_group); 11381 groupv6 = sin6->sin6_addr; 11382 } 11383 ifindex = greqp->gr_interface; 11384 } else { 11385 ip_mreqp = (struct ipv6_mreq *)i1; 11386 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11387 ifindex = ip_mreqp->ipv6mr_interface; 11388 } 11389 /* 11390 * In the multirouting case, we need to replicate 11391 * the request on all interfaces that will take part 11392 * in replication. We do so because multirouting is 11393 * reflective, thus we will probably receive multi- 11394 * casts on those interfaces. 11395 * The ip_multirt_apply_membership_v6() succeeds if 11396 * the operation succeeds on at least one interface. 11397 */ 11398 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11399 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11400 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11401 if (ire != NULL) { 11402 if (ire->ire_flags & RTF_MULTIRT) { 11403 error = ip_multirt_apply_membership_v6( 11404 optfn, ire, connp, checkonly, 11405 &groupv6, fmode, &ipv6_all_zeros, 11406 first_mp); 11407 done = B_TRUE; 11408 } 11409 ire_refrele(ire); 11410 } 11411 if (!done) { 11412 error = optfn(connp, checkonly, &groupv6, 11413 ifindex, fmode, &ipv6_all_zeros, first_mp); 11414 } 11415 if (error) { 11416 /* 11417 * EINPROGRESS is a soft error, needs retry 11418 * so don't make *outlenp zero. 11419 */ 11420 if (error != EINPROGRESS) 11421 *outlenp = 0; 11422 return (error); 11423 } 11424 /* OK return - copy input buffer into output buffer */ 11425 if (invalp != outvalp) { 11426 /* don't trust bcopy for identical src/dst */ 11427 bcopy(invalp, outvalp, inlen); 11428 } 11429 *outlenp = inlen; 11430 return (0); 11431 } 11432 case MCAST_BLOCK_SOURCE: 11433 case MCAST_UNBLOCK_SOURCE: 11434 case MCAST_JOIN_SOURCE_GROUP: 11435 case MCAST_LEAVE_SOURCE_GROUP: { 11436 struct group_source_req *gsreqp; 11437 in6_addr_t v6grp, v6src; 11438 uint32_t ifindex; 11439 mcast_record_t fmode; 11440 ire_t *ire; 11441 boolean_t done = B_FALSE; 11442 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11443 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11444 11445 switch (name) { 11446 case MCAST_BLOCK_SOURCE: 11447 fmode = MODE_IS_EXCLUDE; 11448 optfn = ip_opt_add_group_v6; 11449 break; 11450 case MCAST_UNBLOCK_SOURCE: 11451 fmode = MODE_IS_EXCLUDE; 11452 optfn = ip_opt_delete_group_v6; 11453 break; 11454 case MCAST_JOIN_SOURCE_GROUP: 11455 fmode = MODE_IS_INCLUDE; 11456 optfn = ip_opt_add_group_v6; 11457 break; 11458 case MCAST_LEAVE_SOURCE_GROUP: 11459 fmode = MODE_IS_INCLUDE; 11460 optfn = ip_opt_delete_group_v6; 11461 break; 11462 } 11463 11464 gsreqp = (struct group_source_req *)i1; 11465 ifindex = gsreqp->gsr_interface; 11466 if (gsreqp->gsr_group.ss_family == AF_INET) { 11467 struct sockaddr_in *s; 11468 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11469 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11470 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11471 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11472 } else { 11473 struct sockaddr_in6 *s6; 11474 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11475 v6grp = s6->sin6_addr; 11476 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11477 v6src = s6->sin6_addr; 11478 } 11479 11480 /* 11481 * In the multirouting case, we need to replicate 11482 * the request as noted in the mcast cases above. 11483 */ 11484 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11485 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11486 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11487 if (ire != NULL) { 11488 if (ire->ire_flags & RTF_MULTIRT) { 11489 error = ip_multirt_apply_membership_v6( 11490 optfn, ire, connp, checkonly, 11491 &v6grp, fmode, &v6src, first_mp); 11492 done = B_TRUE; 11493 } 11494 ire_refrele(ire); 11495 } 11496 if (!done) { 11497 error = optfn(connp, checkonly, &v6grp, 11498 ifindex, fmode, &v6src, first_mp); 11499 } 11500 if (error != 0) { 11501 /* 11502 * EINPROGRESS is a soft error, needs retry 11503 * so don't make *outlenp zero. 11504 */ 11505 if (error != EINPROGRESS) 11506 *outlenp = 0; 11507 return (error); 11508 } 11509 /* OK return - copy input buffer into output buffer */ 11510 if (invalp != outvalp) { 11511 bcopy(invalp, outvalp, inlen); 11512 } 11513 *outlenp = inlen; 11514 return (0); 11515 } 11516 case IPV6_UNICAST_HOPS: 11517 /* Recorded in transport above IP */ 11518 break; /* goto sizeof (int) option return */ 11519 case IPV6_UNSPEC_SRC: 11520 /* Allow sending with a zero source address */ 11521 if (!checkonly) { 11522 mutex_enter(&connp->conn_lock); 11523 connp->conn_unspec_src = *i1 ? 1 : 0; 11524 mutex_exit(&connp->conn_lock); 11525 } 11526 break; /* goto sizeof (int) option return */ 11527 case IPV6_RECVPKTINFO: 11528 if (!checkonly) { 11529 mutex_enter(&connp->conn_lock); 11530 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11531 mutex_exit(&connp->conn_lock); 11532 } 11533 break; /* goto sizeof (int) option return */ 11534 case IPV6_RECVTCLASS: 11535 if (!checkonly) { 11536 if (*i1 < 0 || *i1 > 1) { 11537 return (EINVAL); 11538 } 11539 mutex_enter(&connp->conn_lock); 11540 connp->conn_ipv6_recvtclass = *i1; 11541 mutex_exit(&connp->conn_lock); 11542 } 11543 break; 11544 case IPV6_RECVPATHMTU: 11545 if (!checkonly) { 11546 if (*i1 < 0 || *i1 > 1) { 11547 return (EINVAL); 11548 } 11549 mutex_enter(&connp->conn_lock); 11550 connp->conn_ipv6_recvpathmtu = *i1; 11551 mutex_exit(&connp->conn_lock); 11552 } 11553 break; 11554 case IPV6_RECVHOPLIMIT: 11555 if (!checkonly) { 11556 mutex_enter(&connp->conn_lock); 11557 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11558 mutex_exit(&connp->conn_lock); 11559 } 11560 break; /* goto sizeof (int) option return */ 11561 case IPV6_RECVHOPOPTS: 11562 if (!checkonly) { 11563 mutex_enter(&connp->conn_lock); 11564 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11565 mutex_exit(&connp->conn_lock); 11566 } 11567 break; /* goto sizeof (int) option return */ 11568 case IPV6_RECVDSTOPTS: 11569 if (!checkonly) { 11570 mutex_enter(&connp->conn_lock); 11571 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11572 mutex_exit(&connp->conn_lock); 11573 } 11574 break; /* goto sizeof (int) option return */ 11575 case IPV6_RECVRTHDR: 11576 if (!checkonly) { 11577 mutex_enter(&connp->conn_lock); 11578 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11579 mutex_exit(&connp->conn_lock); 11580 } 11581 break; /* goto sizeof (int) option return */ 11582 case IPV6_RECVRTHDRDSTOPTS: 11583 if (!checkonly) { 11584 mutex_enter(&connp->conn_lock); 11585 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11586 mutex_exit(&connp->conn_lock); 11587 } 11588 break; /* goto sizeof (int) option return */ 11589 case IPV6_PKTINFO: 11590 if (inlen == 0) 11591 return (-EINVAL); /* clearing option */ 11592 error = ip6_set_pktinfo(cr, connp, 11593 (struct in6_pktinfo *)invalp, first_mp); 11594 if (error != 0) 11595 *outlenp = 0; 11596 else 11597 *outlenp = inlen; 11598 return (error); 11599 case IPV6_NEXTHOP: { 11600 struct sockaddr_in6 *sin6; 11601 11602 /* Verify that the nexthop is reachable */ 11603 if (inlen == 0) 11604 return (-EINVAL); /* clearing option */ 11605 11606 sin6 = (struct sockaddr_in6 *)invalp; 11607 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11608 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11609 NULL, MATCH_IRE_DEFAULT, ipst); 11610 11611 if (ire == NULL) { 11612 *outlenp = 0; 11613 return (EHOSTUNREACH); 11614 } 11615 ire_refrele(ire); 11616 return (-EINVAL); 11617 } 11618 case IPV6_SEC_OPT: 11619 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11620 if (error != 0) { 11621 *outlenp = 0; 11622 return (error); 11623 } 11624 break; 11625 case IPV6_SRC_PREFERENCES: { 11626 /* 11627 * This is implemented strictly in the ip module 11628 * (here and in tcp_opt_*() to accomodate tcp 11629 * sockets). Modules above ip pass this option 11630 * down here since ip is the only one that needs to 11631 * be aware of source address preferences. 11632 * 11633 * This socket option only affects connected 11634 * sockets that haven't already bound to a specific 11635 * IPv6 address. In other words, sockets that 11636 * don't call bind() with an address other than the 11637 * unspecified address and that call connect(). 11638 * ip_bind_connected_v6() passes these preferences 11639 * to the ipif_select_source_v6() function. 11640 */ 11641 if (inlen != sizeof (uint32_t)) 11642 return (EINVAL); 11643 error = ip6_set_src_preferences(connp, 11644 *(uint32_t *)invalp); 11645 if (error != 0) { 11646 *outlenp = 0; 11647 return (error); 11648 } else { 11649 *outlenp = sizeof (uint32_t); 11650 } 11651 break; 11652 } 11653 case IPV6_V6ONLY: 11654 if (*i1 < 0 || *i1 > 1) { 11655 return (EINVAL); 11656 } 11657 mutex_enter(&connp->conn_lock); 11658 connp->conn_ipv6_v6only = *i1; 11659 mutex_exit(&connp->conn_lock); 11660 break; 11661 default: 11662 return (-EINVAL); 11663 } 11664 break; 11665 default: 11666 /* 11667 * "soft" error (negative) 11668 * option not handled at this level 11669 * Note: Do not modify *outlenp 11670 */ 11671 return (-EINVAL); 11672 } 11673 /* 11674 * Common case of return from an option that is sizeof (int) 11675 */ 11676 *(int *)outvalp = *i1; 11677 *outlenp = sizeof (int); 11678 return (0); 11679 } 11680 11681 /* 11682 * This routine gets default values of certain options whose default 11683 * values are maintained by protocol specific code 11684 */ 11685 /* ARGSUSED */ 11686 int 11687 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11688 { 11689 int *i1 = (int *)ptr; 11690 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11691 11692 switch (level) { 11693 case IPPROTO_IP: 11694 switch (name) { 11695 case IP_MULTICAST_TTL: 11696 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11697 return (sizeof (uchar_t)); 11698 case IP_MULTICAST_LOOP: 11699 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11700 return (sizeof (uchar_t)); 11701 default: 11702 return (-1); 11703 } 11704 case IPPROTO_IPV6: 11705 switch (name) { 11706 case IPV6_UNICAST_HOPS: 11707 *i1 = ipst->ips_ipv6_def_hops; 11708 return (sizeof (int)); 11709 case IPV6_MULTICAST_HOPS: 11710 *i1 = IP_DEFAULT_MULTICAST_TTL; 11711 return (sizeof (int)); 11712 case IPV6_MULTICAST_LOOP: 11713 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11714 return (sizeof (int)); 11715 case IPV6_V6ONLY: 11716 *i1 = 1; 11717 return (sizeof (int)); 11718 default: 11719 return (-1); 11720 } 11721 default: 11722 return (-1); 11723 } 11724 /* NOTREACHED */ 11725 } 11726 11727 /* 11728 * Given a destination address and a pointer to where to put the information 11729 * this routine fills in the mtuinfo. 11730 */ 11731 int 11732 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11733 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11734 { 11735 ire_t *ire; 11736 ip_stack_t *ipst = ns->netstack_ip; 11737 11738 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11739 return (-1); 11740 11741 bzero(mtuinfo, sizeof (*mtuinfo)); 11742 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11743 mtuinfo->ip6m_addr.sin6_port = port; 11744 mtuinfo->ip6m_addr.sin6_addr = *in6; 11745 11746 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11747 if (ire != NULL) { 11748 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11749 ire_refrele(ire); 11750 } else { 11751 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11752 } 11753 return (sizeof (struct ip6_mtuinfo)); 11754 } 11755 11756 /* 11757 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11758 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11759 * isn't. This doesn't matter as the error checking is done properly for the 11760 * other MRT options coming in through ip_opt_set. 11761 */ 11762 int 11763 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11764 { 11765 conn_t *connp = Q_TO_CONN(q); 11766 ipsec_req_t *req = (ipsec_req_t *)ptr; 11767 11768 switch (level) { 11769 case IPPROTO_IP: 11770 switch (name) { 11771 case MRT_VERSION: 11772 case MRT_ASSERT: 11773 (void) ip_mrouter_get(name, q, ptr); 11774 return (sizeof (int)); 11775 case IP_SEC_OPT: 11776 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11777 case IP_NEXTHOP: 11778 if (connp->conn_nexthop_set) { 11779 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11780 return (sizeof (ipaddr_t)); 11781 } else 11782 return (0); 11783 case IP_RECVPKTINFO: 11784 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11785 return (sizeof (int)); 11786 default: 11787 break; 11788 } 11789 break; 11790 case IPPROTO_IPV6: 11791 switch (name) { 11792 case IPV6_SEC_OPT: 11793 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11794 case IPV6_SRC_PREFERENCES: { 11795 return (ip6_get_src_preferences(connp, 11796 (uint32_t *)ptr)); 11797 } 11798 case IPV6_V6ONLY: 11799 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11800 return (sizeof (int)); 11801 case IPV6_PATHMTU: 11802 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11803 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11804 default: 11805 break; 11806 } 11807 break; 11808 default: 11809 break; 11810 } 11811 return (-1); 11812 } 11813 11814 /* Named Dispatch routine to get a current value out of our parameter table. */ 11815 /* ARGSUSED */ 11816 static int 11817 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11818 { 11819 ipparam_t *ippa = (ipparam_t *)cp; 11820 11821 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11822 return (0); 11823 } 11824 11825 /* ARGSUSED */ 11826 static int 11827 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11828 { 11829 11830 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11831 return (0); 11832 } 11833 11834 /* 11835 * Set ip{,6}_forwarding values. This means walking through all of the 11836 * ill's and toggling their forwarding values. 11837 */ 11838 /* ARGSUSED */ 11839 static int 11840 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11841 { 11842 long new_value; 11843 int *forwarding_value = (int *)cp; 11844 ill_t *ill; 11845 boolean_t isv6; 11846 ill_walk_context_t ctx; 11847 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11848 11849 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11850 11851 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11852 new_value < 0 || new_value > 1) { 11853 return (EINVAL); 11854 } 11855 11856 *forwarding_value = new_value; 11857 11858 /* 11859 * Regardless of the current value of ip_forwarding, set all per-ill 11860 * values of ip_forwarding to the value being set. 11861 * 11862 * Bring all the ill's up to date with the new global value. 11863 */ 11864 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11865 11866 if (isv6) 11867 ill = ILL_START_WALK_V6(&ctx, ipst); 11868 else 11869 ill = ILL_START_WALK_V4(&ctx, ipst); 11870 11871 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11872 (void) ill_forward_set(ill, new_value != 0); 11873 11874 rw_exit(&ipst->ips_ill_g_lock); 11875 return (0); 11876 } 11877 11878 /* 11879 * Walk through the param array specified registering each element with the 11880 * Named Dispatch handler. This is called only during init. So it is ok 11881 * not to acquire any locks 11882 */ 11883 static boolean_t 11884 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11885 ipndp_t *ipnd, size_t ipnd_cnt) 11886 { 11887 for (; ippa_cnt-- > 0; ippa++) { 11888 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11889 if (!nd_load(ndp, ippa->ip_param_name, 11890 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11891 nd_free(ndp); 11892 return (B_FALSE); 11893 } 11894 } 11895 } 11896 11897 for (; ipnd_cnt-- > 0; ipnd++) { 11898 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11899 if (!nd_load(ndp, ipnd->ip_ndp_name, 11900 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11901 ipnd->ip_ndp_data)) { 11902 nd_free(ndp); 11903 return (B_FALSE); 11904 } 11905 } 11906 } 11907 11908 return (B_TRUE); 11909 } 11910 11911 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11912 /* ARGSUSED */ 11913 static int 11914 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11915 { 11916 long new_value; 11917 ipparam_t *ippa = (ipparam_t *)cp; 11918 11919 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11920 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11921 return (EINVAL); 11922 } 11923 ippa->ip_param_value = new_value; 11924 return (0); 11925 } 11926 11927 /* 11928 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11929 * When an ipf is passed here for the first time, if 11930 * we already have in-order fragments on the queue, we convert from the fast- 11931 * path reassembly scheme to the hard-case scheme. From then on, additional 11932 * fragments are reassembled here. We keep track of the start and end offsets 11933 * of each piece, and the number of holes in the chain. When the hole count 11934 * goes to zero, we are done! 11935 * 11936 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11937 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11938 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11939 * after the call to ip_reassemble(). 11940 */ 11941 int 11942 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11943 size_t msg_len) 11944 { 11945 uint_t end; 11946 mblk_t *next_mp; 11947 mblk_t *mp1; 11948 uint_t offset; 11949 boolean_t incr_dups = B_TRUE; 11950 boolean_t offset_zero_seen = B_FALSE; 11951 boolean_t pkt_boundary_checked = B_FALSE; 11952 11953 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11954 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11955 11956 /* Add in byte count */ 11957 ipf->ipf_count += msg_len; 11958 if (ipf->ipf_end) { 11959 /* 11960 * We were part way through in-order reassembly, but now there 11961 * is a hole. We walk through messages already queued, and 11962 * mark them for hard case reassembly. We know that up till 11963 * now they were in order starting from offset zero. 11964 */ 11965 offset = 0; 11966 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11967 IP_REASS_SET_START(mp1, offset); 11968 if (offset == 0) { 11969 ASSERT(ipf->ipf_nf_hdr_len != 0); 11970 offset = -ipf->ipf_nf_hdr_len; 11971 } 11972 offset += mp1->b_wptr - mp1->b_rptr; 11973 IP_REASS_SET_END(mp1, offset); 11974 } 11975 /* One hole at the end. */ 11976 ipf->ipf_hole_cnt = 1; 11977 /* Brand it as a hard case, forever. */ 11978 ipf->ipf_end = 0; 11979 } 11980 /* Walk through all the new pieces. */ 11981 do { 11982 end = start + (mp->b_wptr - mp->b_rptr); 11983 /* 11984 * If start is 0, decrease 'end' only for the first mblk of 11985 * the fragment. Otherwise 'end' can get wrong value in the 11986 * second pass of the loop if first mblk is exactly the 11987 * size of ipf_nf_hdr_len. 11988 */ 11989 if (start == 0 && !offset_zero_seen) { 11990 /* First segment */ 11991 ASSERT(ipf->ipf_nf_hdr_len != 0); 11992 end -= ipf->ipf_nf_hdr_len; 11993 offset_zero_seen = B_TRUE; 11994 } 11995 next_mp = mp->b_cont; 11996 /* 11997 * We are checking to see if there is any interesing data 11998 * to process. If there isn't and the mblk isn't the 11999 * one which carries the unfragmentable header then we 12000 * drop it. It's possible to have just the unfragmentable 12001 * header come through without any data. That needs to be 12002 * saved. 12003 * 12004 * If the assert at the top of this function holds then the 12005 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12006 * is infrequently traveled enough that the test is left in 12007 * to protect against future code changes which break that 12008 * invariant. 12009 */ 12010 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12011 /* Empty. Blast it. */ 12012 IP_REASS_SET_START(mp, 0); 12013 IP_REASS_SET_END(mp, 0); 12014 /* 12015 * If the ipf points to the mblk we are about to free, 12016 * update ipf to point to the next mblk (or NULL 12017 * if none). 12018 */ 12019 if (ipf->ipf_mp->b_cont == mp) 12020 ipf->ipf_mp->b_cont = next_mp; 12021 freeb(mp); 12022 continue; 12023 } 12024 mp->b_cont = NULL; 12025 IP_REASS_SET_START(mp, start); 12026 IP_REASS_SET_END(mp, end); 12027 if (!ipf->ipf_tail_mp) { 12028 ipf->ipf_tail_mp = mp; 12029 ipf->ipf_mp->b_cont = mp; 12030 if (start == 0 || !more) { 12031 ipf->ipf_hole_cnt = 1; 12032 /* 12033 * if the first fragment comes in more than one 12034 * mblk, this loop will be executed for each 12035 * mblk. Need to adjust hole count so exiting 12036 * this routine will leave hole count at 1. 12037 */ 12038 if (next_mp) 12039 ipf->ipf_hole_cnt++; 12040 } else 12041 ipf->ipf_hole_cnt = 2; 12042 continue; 12043 } else if (ipf->ipf_last_frag_seen && !more && 12044 !pkt_boundary_checked) { 12045 /* 12046 * We check datagram boundary only if this fragment 12047 * claims to be the last fragment and we have seen a 12048 * last fragment in the past too. We do this only 12049 * once for a given fragment. 12050 * 12051 * start cannot be 0 here as fragments with start=0 12052 * and MF=0 gets handled as a complete packet. These 12053 * fragments should not reach here. 12054 */ 12055 12056 if (start + msgdsize(mp) != 12057 IP_REASS_END(ipf->ipf_tail_mp)) { 12058 /* 12059 * We have two fragments both of which claim 12060 * to be the last fragment but gives conflicting 12061 * information about the whole datagram size. 12062 * Something fishy is going on. Drop the 12063 * fragment and free up the reassembly list. 12064 */ 12065 return (IP_REASS_FAILED); 12066 } 12067 12068 /* 12069 * We shouldn't come to this code block again for this 12070 * particular fragment. 12071 */ 12072 pkt_boundary_checked = B_TRUE; 12073 } 12074 12075 /* New stuff at or beyond tail? */ 12076 offset = IP_REASS_END(ipf->ipf_tail_mp); 12077 if (start >= offset) { 12078 if (ipf->ipf_last_frag_seen) { 12079 /* current fragment is beyond last fragment */ 12080 return (IP_REASS_FAILED); 12081 } 12082 /* Link it on end. */ 12083 ipf->ipf_tail_mp->b_cont = mp; 12084 ipf->ipf_tail_mp = mp; 12085 if (more) { 12086 if (start != offset) 12087 ipf->ipf_hole_cnt++; 12088 } else if (start == offset && next_mp == NULL) 12089 ipf->ipf_hole_cnt--; 12090 continue; 12091 } 12092 mp1 = ipf->ipf_mp->b_cont; 12093 offset = IP_REASS_START(mp1); 12094 /* New stuff at the front? */ 12095 if (start < offset) { 12096 if (start == 0) { 12097 if (end >= offset) { 12098 /* Nailed the hole at the begining. */ 12099 ipf->ipf_hole_cnt--; 12100 } 12101 } else if (end < offset) { 12102 /* 12103 * A hole, stuff, and a hole where there used 12104 * to be just a hole. 12105 */ 12106 ipf->ipf_hole_cnt++; 12107 } 12108 mp->b_cont = mp1; 12109 /* Check for overlap. */ 12110 while (end > offset) { 12111 if (end < IP_REASS_END(mp1)) { 12112 mp->b_wptr -= end - offset; 12113 IP_REASS_SET_END(mp, offset); 12114 BUMP_MIB(ill->ill_ip_mib, 12115 ipIfStatsReasmPartDups); 12116 break; 12117 } 12118 /* Did we cover another hole? */ 12119 if ((mp1->b_cont && 12120 IP_REASS_END(mp1) != 12121 IP_REASS_START(mp1->b_cont) && 12122 end >= IP_REASS_START(mp1->b_cont)) || 12123 (!ipf->ipf_last_frag_seen && !more)) { 12124 ipf->ipf_hole_cnt--; 12125 } 12126 /* Clip out mp1. */ 12127 if ((mp->b_cont = mp1->b_cont) == NULL) { 12128 /* 12129 * After clipping out mp1, this guy 12130 * is now hanging off the end. 12131 */ 12132 ipf->ipf_tail_mp = mp; 12133 } 12134 IP_REASS_SET_START(mp1, 0); 12135 IP_REASS_SET_END(mp1, 0); 12136 /* Subtract byte count */ 12137 ipf->ipf_count -= mp1->b_datap->db_lim - 12138 mp1->b_datap->db_base; 12139 freeb(mp1); 12140 BUMP_MIB(ill->ill_ip_mib, 12141 ipIfStatsReasmPartDups); 12142 mp1 = mp->b_cont; 12143 if (!mp1) 12144 break; 12145 offset = IP_REASS_START(mp1); 12146 } 12147 ipf->ipf_mp->b_cont = mp; 12148 continue; 12149 } 12150 /* 12151 * The new piece starts somewhere between the start of the head 12152 * and before the end of the tail. 12153 */ 12154 for (; mp1; mp1 = mp1->b_cont) { 12155 offset = IP_REASS_END(mp1); 12156 if (start < offset) { 12157 if (end <= offset) { 12158 /* Nothing new. */ 12159 IP_REASS_SET_START(mp, 0); 12160 IP_REASS_SET_END(mp, 0); 12161 /* Subtract byte count */ 12162 ipf->ipf_count -= mp->b_datap->db_lim - 12163 mp->b_datap->db_base; 12164 if (incr_dups) { 12165 ipf->ipf_num_dups++; 12166 incr_dups = B_FALSE; 12167 } 12168 freeb(mp); 12169 BUMP_MIB(ill->ill_ip_mib, 12170 ipIfStatsReasmDuplicates); 12171 break; 12172 } 12173 /* 12174 * Trim redundant stuff off beginning of new 12175 * piece. 12176 */ 12177 IP_REASS_SET_START(mp, offset); 12178 mp->b_rptr += offset - start; 12179 BUMP_MIB(ill->ill_ip_mib, 12180 ipIfStatsReasmPartDups); 12181 start = offset; 12182 if (!mp1->b_cont) { 12183 /* 12184 * After trimming, this guy is now 12185 * hanging off the end. 12186 */ 12187 mp1->b_cont = mp; 12188 ipf->ipf_tail_mp = mp; 12189 if (!more) { 12190 ipf->ipf_hole_cnt--; 12191 } 12192 break; 12193 } 12194 } 12195 if (start >= IP_REASS_START(mp1->b_cont)) 12196 continue; 12197 /* Fill a hole */ 12198 if (start > offset) 12199 ipf->ipf_hole_cnt++; 12200 mp->b_cont = mp1->b_cont; 12201 mp1->b_cont = mp; 12202 mp1 = mp->b_cont; 12203 offset = IP_REASS_START(mp1); 12204 if (end >= offset) { 12205 ipf->ipf_hole_cnt--; 12206 /* Check for overlap. */ 12207 while (end > offset) { 12208 if (end < IP_REASS_END(mp1)) { 12209 mp->b_wptr -= end - offset; 12210 IP_REASS_SET_END(mp, offset); 12211 /* 12212 * TODO we might bump 12213 * this up twice if there is 12214 * overlap at both ends. 12215 */ 12216 BUMP_MIB(ill->ill_ip_mib, 12217 ipIfStatsReasmPartDups); 12218 break; 12219 } 12220 /* Did we cover another hole? */ 12221 if ((mp1->b_cont && 12222 IP_REASS_END(mp1) 12223 != IP_REASS_START(mp1->b_cont) && 12224 end >= 12225 IP_REASS_START(mp1->b_cont)) || 12226 (!ipf->ipf_last_frag_seen && 12227 !more)) { 12228 ipf->ipf_hole_cnt--; 12229 } 12230 /* Clip out mp1. */ 12231 if ((mp->b_cont = mp1->b_cont) == 12232 NULL) { 12233 /* 12234 * After clipping out mp1, 12235 * this guy is now hanging 12236 * off the end. 12237 */ 12238 ipf->ipf_tail_mp = mp; 12239 } 12240 IP_REASS_SET_START(mp1, 0); 12241 IP_REASS_SET_END(mp1, 0); 12242 /* Subtract byte count */ 12243 ipf->ipf_count -= 12244 mp1->b_datap->db_lim - 12245 mp1->b_datap->db_base; 12246 freeb(mp1); 12247 BUMP_MIB(ill->ill_ip_mib, 12248 ipIfStatsReasmPartDups); 12249 mp1 = mp->b_cont; 12250 if (!mp1) 12251 break; 12252 offset = IP_REASS_START(mp1); 12253 } 12254 } 12255 break; 12256 } 12257 } while (start = end, mp = next_mp); 12258 12259 /* Fragment just processed could be the last one. Remember this fact */ 12260 if (!more) 12261 ipf->ipf_last_frag_seen = B_TRUE; 12262 12263 /* Still got holes? */ 12264 if (ipf->ipf_hole_cnt) 12265 return (IP_REASS_PARTIAL); 12266 /* Clean up overloaded fields to avoid upstream disasters. */ 12267 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12268 IP_REASS_SET_START(mp1, 0); 12269 IP_REASS_SET_END(mp1, 0); 12270 } 12271 return (IP_REASS_COMPLETE); 12272 } 12273 12274 /* 12275 * ipsec processing for the fast path, used for input UDP Packets 12276 */ 12277 static boolean_t 12278 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12279 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12280 { 12281 uint32_t ill_index; 12282 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12283 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12284 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12285 12286 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12287 /* The ill_index of the incoming ILL */ 12288 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12289 12290 /* pass packet up to the transport */ 12291 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12292 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12293 NULL, mctl_present); 12294 if (*first_mpp == NULL) { 12295 return (B_FALSE); 12296 } 12297 } 12298 12299 /* Initiate IPPF processing for fastpath UDP */ 12300 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12301 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12302 if (*mpp == NULL) { 12303 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12304 "deferred/dropped during IPPF processing\n")); 12305 return (B_FALSE); 12306 } 12307 } 12308 /* 12309 * We make the checks as below since we are in the fast path 12310 * and want to minimize the number of checks if the IP_RECVIF and/or 12311 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12312 */ 12313 if (connp->conn_recvif || connp->conn_recvslla || 12314 connp->conn_ip_recvpktinfo) { 12315 if (connp->conn_recvif) { 12316 in_flags = IPF_RECVIF; 12317 } 12318 /* 12319 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12320 * so the flag passed to ip_add_info is based on IP version 12321 * of connp. 12322 */ 12323 if (connp->conn_ip_recvpktinfo) { 12324 if (connp->conn_af_isv6) { 12325 /* 12326 * V6 only needs index 12327 */ 12328 in_flags |= IPF_RECVIF; 12329 } else { 12330 /* 12331 * V4 needs index + matching address. 12332 */ 12333 in_flags |= IPF_RECVADDR; 12334 } 12335 } 12336 if (connp->conn_recvslla) { 12337 in_flags |= IPF_RECVSLLA; 12338 } 12339 /* 12340 * since in_flags are being set ill will be 12341 * referenced in ip_add_info, so it better not 12342 * be NULL. 12343 */ 12344 /* 12345 * the actual data will be contained in b_cont 12346 * upon successful return of the following call. 12347 * If the call fails then the original mblk is 12348 * returned. 12349 */ 12350 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12351 ipst); 12352 } 12353 12354 return (B_TRUE); 12355 } 12356 12357 /* 12358 * Fragmentation reassembly. Each ILL has a hash table for 12359 * queuing packets undergoing reassembly for all IPIFs 12360 * associated with the ILL. The hash is based on the packet 12361 * IP ident field. The ILL frag hash table was allocated 12362 * as a timer block at the time the ILL was created. Whenever 12363 * there is anything on the reassembly queue, the timer will 12364 * be running. Returns B_TRUE if successful else B_FALSE; 12365 * frees mp on failure. 12366 */ 12367 static boolean_t 12368 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12369 uint32_t *cksum_val, uint16_t *cksum_flags) 12370 { 12371 uint32_t frag_offset_flags; 12372 ill_t *ill = (ill_t *)q->q_ptr; 12373 mblk_t *mp = *mpp; 12374 mblk_t *t_mp; 12375 ipaddr_t dst; 12376 uint8_t proto = ipha->ipha_protocol; 12377 uint32_t sum_val; 12378 uint16_t sum_flags; 12379 ipf_t *ipf; 12380 ipf_t **ipfp; 12381 ipfb_t *ipfb; 12382 uint16_t ident; 12383 uint32_t offset; 12384 ipaddr_t src; 12385 uint_t hdr_length; 12386 uint32_t end; 12387 mblk_t *mp1; 12388 mblk_t *tail_mp; 12389 size_t count; 12390 size_t msg_len; 12391 uint8_t ecn_info = 0; 12392 uint32_t packet_size; 12393 boolean_t pruned = B_FALSE; 12394 ip_stack_t *ipst = ill->ill_ipst; 12395 12396 if (cksum_val != NULL) 12397 *cksum_val = 0; 12398 if (cksum_flags != NULL) 12399 *cksum_flags = 0; 12400 12401 /* 12402 * Drop the fragmented as early as possible, if 12403 * we don't have resource(s) to re-assemble. 12404 */ 12405 if (ipst->ips_ip_reass_queue_bytes == 0) { 12406 freemsg(mp); 12407 return (B_FALSE); 12408 } 12409 12410 /* Check for fragmentation offset; return if there's none */ 12411 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12412 (IPH_MF | IPH_OFFSET)) == 0) 12413 return (B_TRUE); 12414 12415 /* 12416 * We utilize hardware computed checksum info only for UDP since 12417 * IP fragmentation is a normal occurence for the protocol. In 12418 * addition, checksum offload support for IP fragments carrying 12419 * UDP payload is commonly implemented across network adapters. 12420 */ 12421 ASSERT(ill != NULL); 12422 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12423 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12424 mblk_t *mp1 = mp->b_cont; 12425 int32_t len; 12426 12427 /* Record checksum information from the packet */ 12428 sum_val = (uint32_t)DB_CKSUM16(mp); 12429 sum_flags = DB_CKSUMFLAGS(mp); 12430 12431 /* IP payload offset from beginning of mblk */ 12432 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12433 12434 if ((sum_flags & HCK_PARTIALCKSUM) && 12435 (mp1 == NULL || mp1->b_cont == NULL) && 12436 offset >= DB_CKSUMSTART(mp) && 12437 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12438 uint32_t adj; 12439 /* 12440 * Partial checksum has been calculated by hardware 12441 * and attached to the packet; in addition, any 12442 * prepended extraneous data is even byte aligned. 12443 * If any such data exists, we adjust the checksum; 12444 * this would also handle any postpended data. 12445 */ 12446 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12447 mp, mp1, len, adj); 12448 12449 /* One's complement subtract extraneous checksum */ 12450 if (adj >= sum_val) 12451 sum_val = ~(adj - sum_val) & 0xFFFF; 12452 else 12453 sum_val -= adj; 12454 } 12455 } else { 12456 sum_val = 0; 12457 sum_flags = 0; 12458 } 12459 12460 /* Clear hardware checksumming flag */ 12461 DB_CKSUMFLAGS(mp) = 0; 12462 12463 ident = ipha->ipha_ident; 12464 offset = (frag_offset_flags << 3) & 0xFFFF; 12465 src = ipha->ipha_src; 12466 dst = ipha->ipha_dst; 12467 hdr_length = IPH_HDR_LENGTH(ipha); 12468 end = ntohs(ipha->ipha_length) - hdr_length; 12469 12470 /* If end == 0 then we have a packet with no data, so just free it */ 12471 if (end == 0) { 12472 freemsg(mp); 12473 return (B_FALSE); 12474 } 12475 12476 /* Record the ECN field info. */ 12477 ecn_info = (ipha->ipha_type_of_service & 0x3); 12478 if (offset != 0) { 12479 /* 12480 * If this isn't the first piece, strip the header, and 12481 * add the offset to the end value. 12482 */ 12483 mp->b_rptr += hdr_length; 12484 end += offset; 12485 } 12486 12487 msg_len = MBLKSIZE(mp); 12488 tail_mp = mp; 12489 while (tail_mp->b_cont != NULL) { 12490 tail_mp = tail_mp->b_cont; 12491 msg_len += MBLKSIZE(tail_mp); 12492 } 12493 12494 /* If the reassembly list for this ILL will get too big, prune it */ 12495 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12496 ipst->ips_ip_reass_queue_bytes) { 12497 ill_frag_prune(ill, 12498 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12499 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12500 pruned = B_TRUE; 12501 } 12502 12503 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12504 mutex_enter(&ipfb->ipfb_lock); 12505 12506 ipfp = &ipfb->ipfb_ipf; 12507 /* Try to find an existing fragment queue for this packet. */ 12508 for (;;) { 12509 ipf = ipfp[0]; 12510 if (ipf != NULL) { 12511 /* 12512 * It has to match on ident and src/dst address. 12513 */ 12514 if (ipf->ipf_ident == ident && 12515 ipf->ipf_src == src && 12516 ipf->ipf_dst == dst && 12517 ipf->ipf_protocol == proto) { 12518 /* 12519 * If we have received too many 12520 * duplicate fragments for this packet 12521 * free it. 12522 */ 12523 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12524 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12525 freemsg(mp); 12526 mutex_exit(&ipfb->ipfb_lock); 12527 return (B_FALSE); 12528 } 12529 /* Found it. */ 12530 break; 12531 } 12532 ipfp = &ipf->ipf_hash_next; 12533 continue; 12534 } 12535 12536 /* 12537 * If we pruned the list, do we want to store this new 12538 * fragment?. We apply an optimization here based on the 12539 * fact that most fragments will be received in order. 12540 * So if the offset of this incoming fragment is zero, 12541 * it is the first fragment of a new packet. We will 12542 * keep it. Otherwise drop the fragment, as we have 12543 * probably pruned the packet already (since the 12544 * packet cannot be found). 12545 */ 12546 if (pruned && offset != 0) { 12547 mutex_exit(&ipfb->ipfb_lock); 12548 freemsg(mp); 12549 return (B_FALSE); 12550 } 12551 12552 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12553 /* 12554 * Too many fragmented packets in this hash 12555 * bucket. Free the oldest. 12556 */ 12557 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12558 } 12559 12560 /* New guy. Allocate a frag message. */ 12561 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12562 if (mp1 == NULL) { 12563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12564 freemsg(mp); 12565 reass_done: 12566 mutex_exit(&ipfb->ipfb_lock); 12567 return (B_FALSE); 12568 } 12569 12570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12571 mp1->b_cont = mp; 12572 12573 /* Initialize the fragment header. */ 12574 ipf = (ipf_t *)mp1->b_rptr; 12575 ipf->ipf_mp = mp1; 12576 ipf->ipf_ptphn = ipfp; 12577 ipfp[0] = ipf; 12578 ipf->ipf_hash_next = NULL; 12579 ipf->ipf_ident = ident; 12580 ipf->ipf_protocol = proto; 12581 ipf->ipf_src = src; 12582 ipf->ipf_dst = dst; 12583 ipf->ipf_nf_hdr_len = 0; 12584 /* Record reassembly start time. */ 12585 ipf->ipf_timestamp = gethrestime_sec(); 12586 /* Record ipf generation and account for frag header */ 12587 ipf->ipf_gen = ill->ill_ipf_gen++; 12588 ipf->ipf_count = MBLKSIZE(mp1); 12589 ipf->ipf_last_frag_seen = B_FALSE; 12590 ipf->ipf_ecn = ecn_info; 12591 ipf->ipf_num_dups = 0; 12592 ipfb->ipfb_frag_pkts++; 12593 ipf->ipf_checksum = 0; 12594 ipf->ipf_checksum_flags = 0; 12595 12596 /* Store checksum value in fragment header */ 12597 if (sum_flags != 0) { 12598 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12599 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12600 ipf->ipf_checksum = sum_val; 12601 ipf->ipf_checksum_flags = sum_flags; 12602 } 12603 12604 /* 12605 * We handle reassembly two ways. In the easy case, 12606 * where all the fragments show up in order, we do 12607 * minimal bookkeeping, and just clip new pieces on 12608 * the end. If we ever see a hole, then we go off 12609 * to ip_reassemble which has to mark the pieces and 12610 * keep track of the number of holes, etc. Obviously, 12611 * the point of having both mechanisms is so we can 12612 * handle the easy case as efficiently as possible. 12613 */ 12614 if (offset == 0) { 12615 /* Easy case, in-order reassembly so far. */ 12616 ipf->ipf_count += msg_len; 12617 ipf->ipf_tail_mp = tail_mp; 12618 /* 12619 * Keep track of next expected offset in 12620 * ipf_end. 12621 */ 12622 ipf->ipf_end = end; 12623 ipf->ipf_nf_hdr_len = hdr_length; 12624 } else { 12625 /* Hard case, hole at the beginning. */ 12626 ipf->ipf_tail_mp = NULL; 12627 /* 12628 * ipf_end == 0 means that we have given up 12629 * on easy reassembly. 12630 */ 12631 ipf->ipf_end = 0; 12632 12633 /* Forget checksum offload from now on */ 12634 ipf->ipf_checksum_flags = 0; 12635 12636 /* 12637 * ipf_hole_cnt is set by ip_reassemble. 12638 * ipf_count is updated by ip_reassemble. 12639 * No need to check for return value here 12640 * as we don't expect reassembly to complete 12641 * or fail for the first fragment itself. 12642 */ 12643 (void) ip_reassemble(mp, ipf, 12644 (frag_offset_flags & IPH_OFFSET) << 3, 12645 (frag_offset_flags & IPH_MF), ill, msg_len); 12646 } 12647 /* Update per ipfb and ill byte counts */ 12648 ipfb->ipfb_count += ipf->ipf_count; 12649 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12650 ill->ill_frag_count += ipf->ipf_count; 12651 /* If the frag timer wasn't already going, start it. */ 12652 mutex_enter(&ill->ill_lock); 12653 ill_frag_timer_start(ill); 12654 mutex_exit(&ill->ill_lock); 12655 goto reass_done; 12656 } 12657 12658 /* 12659 * If the packet's flag has changed (it could be coming up 12660 * from an interface different than the previous, therefore 12661 * possibly different checksum capability), then forget about 12662 * any stored checksum states. Otherwise add the value to 12663 * the existing one stored in the fragment header. 12664 */ 12665 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12666 sum_val += ipf->ipf_checksum; 12667 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12668 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12669 ipf->ipf_checksum = sum_val; 12670 } else if (ipf->ipf_checksum_flags != 0) { 12671 /* Forget checksum offload from now on */ 12672 ipf->ipf_checksum_flags = 0; 12673 } 12674 12675 /* 12676 * We have a new piece of a datagram which is already being 12677 * reassembled. Update the ECN info if all IP fragments 12678 * are ECN capable. If there is one which is not, clear 12679 * all the info. If there is at least one which has CE 12680 * code point, IP needs to report that up to transport. 12681 */ 12682 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12683 if (ecn_info == IPH_ECN_CE) 12684 ipf->ipf_ecn = IPH_ECN_CE; 12685 } else { 12686 ipf->ipf_ecn = IPH_ECN_NECT; 12687 } 12688 if (offset && ipf->ipf_end == offset) { 12689 /* The new fragment fits at the end */ 12690 ipf->ipf_tail_mp->b_cont = mp; 12691 /* Update the byte count */ 12692 ipf->ipf_count += msg_len; 12693 /* Update per ipfb and ill byte counts */ 12694 ipfb->ipfb_count += msg_len; 12695 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12696 ill->ill_frag_count += msg_len; 12697 if (frag_offset_flags & IPH_MF) { 12698 /* More to come. */ 12699 ipf->ipf_end = end; 12700 ipf->ipf_tail_mp = tail_mp; 12701 goto reass_done; 12702 } 12703 } else { 12704 /* Go do the hard cases. */ 12705 int ret; 12706 12707 if (offset == 0) 12708 ipf->ipf_nf_hdr_len = hdr_length; 12709 12710 /* Save current byte count */ 12711 count = ipf->ipf_count; 12712 ret = ip_reassemble(mp, ipf, 12713 (frag_offset_flags & IPH_OFFSET) << 3, 12714 (frag_offset_flags & IPH_MF), ill, msg_len); 12715 /* Count of bytes added and subtracted (freeb()ed) */ 12716 count = ipf->ipf_count - count; 12717 if (count) { 12718 /* Update per ipfb and ill byte counts */ 12719 ipfb->ipfb_count += count; 12720 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12721 ill->ill_frag_count += count; 12722 } 12723 if (ret == IP_REASS_PARTIAL) { 12724 goto reass_done; 12725 } else if (ret == IP_REASS_FAILED) { 12726 /* Reassembly failed. Free up all resources */ 12727 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12728 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12729 IP_REASS_SET_START(t_mp, 0); 12730 IP_REASS_SET_END(t_mp, 0); 12731 } 12732 freemsg(mp); 12733 goto reass_done; 12734 } 12735 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12736 } 12737 /* 12738 * We have completed reassembly. Unhook the frag header from 12739 * the reassembly list. 12740 * 12741 * Before we free the frag header, record the ECN info 12742 * to report back to the transport. 12743 */ 12744 ecn_info = ipf->ipf_ecn; 12745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12746 ipfp = ipf->ipf_ptphn; 12747 12748 /* We need to supply these to caller */ 12749 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12750 sum_val = ipf->ipf_checksum; 12751 else 12752 sum_val = 0; 12753 12754 mp1 = ipf->ipf_mp; 12755 count = ipf->ipf_count; 12756 ipf = ipf->ipf_hash_next; 12757 if (ipf != NULL) 12758 ipf->ipf_ptphn = ipfp; 12759 ipfp[0] = ipf; 12760 ill->ill_frag_count -= count; 12761 ASSERT(ipfb->ipfb_count >= count); 12762 ipfb->ipfb_count -= count; 12763 ipfb->ipfb_frag_pkts--; 12764 mutex_exit(&ipfb->ipfb_lock); 12765 /* Ditch the frag header. */ 12766 mp = mp1->b_cont; 12767 12768 freeb(mp1); 12769 12770 /* Restore original IP length in header. */ 12771 packet_size = (uint32_t)msgdsize(mp); 12772 if (packet_size > IP_MAXPACKET) { 12773 freemsg(mp); 12774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12775 return (B_FALSE); 12776 } 12777 12778 if (DB_REF(mp) > 1) { 12779 mblk_t *mp2 = copymsg(mp); 12780 12781 freemsg(mp); 12782 if (mp2 == NULL) { 12783 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12784 return (B_FALSE); 12785 } 12786 mp = mp2; 12787 } 12788 ipha = (ipha_t *)mp->b_rptr; 12789 12790 ipha->ipha_length = htons((uint16_t)packet_size); 12791 /* We're now complete, zip the frag state */ 12792 ipha->ipha_fragment_offset_and_flags = 0; 12793 /* Record the ECN info. */ 12794 ipha->ipha_type_of_service &= 0xFC; 12795 ipha->ipha_type_of_service |= ecn_info; 12796 *mpp = mp; 12797 12798 /* Reassembly is successful; return checksum information if needed */ 12799 if (cksum_val != NULL) 12800 *cksum_val = sum_val; 12801 if (cksum_flags != NULL) 12802 *cksum_flags = sum_flags; 12803 12804 return (B_TRUE); 12805 } 12806 12807 /* 12808 * Perform ip header check sum update local options. 12809 * return B_TRUE if all is well, else return B_FALSE and release 12810 * the mp. caller is responsible for decrementing ire ref cnt. 12811 */ 12812 static boolean_t 12813 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12814 ip_stack_t *ipst) 12815 { 12816 mblk_t *first_mp; 12817 boolean_t mctl_present; 12818 uint16_t sum; 12819 12820 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12821 /* 12822 * Don't do the checksum if it has gone through AH/ESP 12823 * processing. 12824 */ 12825 if (!mctl_present) { 12826 sum = ip_csum_hdr(ipha); 12827 if (sum != 0) { 12828 if (ill != NULL) { 12829 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12830 } else { 12831 BUMP_MIB(&ipst->ips_ip_mib, 12832 ipIfStatsInCksumErrs); 12833 } 12834 freemsg(first_mp); 12835 return (B_FALSE); 12836 } 12837 } 12838 12839 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12840 if (mctl_present) 12841 freeb(first_mp); 12842 return (B_FALSE); 12843 } 12844 12845 return (B_TRUE); 12846 } 12847 12848 /* 12849 * All udp packet are delivered to the local host via this routine. 12850 */ 12851 void 12852 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12853 ill_t *recv_ill) 12854 { 12855 uint32_t sum; 12856 uint32_t u1; 12857 boolean_t mctl_present; 12858 conn_t *connp; 12859 mblk_t *first_mp; 12860 uint16_t *up; 12861 ill_t *ill = (ill_t *)q->q_ptr; 12862 uint16_t reass_hck_flags = 0; 12863 ip_stack_t *ipst; 12864 12865 ASSERT(recv_ill != NULL); 12866 ipst = recv_ill->ill_ipst; 12867 12868 #define rptr ((uchar_t *)ipha) 12869 12870 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12871 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12872 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12873 ASSERT(ill != NULL); 12874 12875 /* 12876 * FAST PATH for udp packets 12877 */ 12878 12879 /* u1 is # words of IP options */ 12880 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12881 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12882 12883 /* IP options present */ 12884 if (u1 != 0) 12885 goto ipoptions; 12886 12887 /* Check the IP header checksum. */ 12888 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12889 /* Clear the IP header h/w cksum flag */ 12890 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12891 } else { 12892 #define uph ((uint16_t *)ipha) 12893 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12894 uph[6] + uph[7] + uph[8] + uph[9]; 12895 #undef uph 12896 /* finish doing IP checksum */ 12897 sum = (sum & 0xFFFF) + (sum >> 16); 12898 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12899 /* 12900 * Don't verify header checksum if this packet is coming 12901 * back from AH/ESP as we already did it. 12902 */ 12903 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12904 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12905 freemsg(first_mp); 12906 return; 12907 } 12908 } 12909 12910 /* 12911 * Count for SNMP of inbound packets for ire. 12912 * if mctl is present this might be a secure packet and 12913 * has already been counted for in ip_proto_input(). 12914 */ 12915 if (!mctl_present) { 12916 UPDATE_IB_PKT_COUNT(ire); 12917 ire->ire_last_used_time = lbolt; 12918 } 12919 12920 /* packet part of fragmented IP packet? */ 12921 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12922 if (u1 & (IPH_MF | IPH_OFFSET)) { 12923 goto fragmented; 12924 } 12925 12926 /* u1 = IP header length (20 bytes) */ 12927 u1 = IP_SIMPLE_HDR_LENGTH; 12928 12929 /* packet does not contain complete IP & UDP headers */ 12930 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12931 goto udppullup; 12932 12933 /* up points to UDP header */ 12934 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12935 #define iphs ((uint16_t *)ipha) 12936 12937 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12938 if (up[3] != 0) { 12939 mblk_t *mp1 = mp->b_cont; 12940 boolean_t cksum_err; 12941 uint16_t hck_flags = 0; 12942 12943 /* Pseudo-header checksum */ 12944 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12945 iphs[9] + up[2]; 12946 12947 /* 12948 * Revert to software checksum calculation if the interface 12949 * isn't capable of checksum offload or if IPsec is present. 12950 */ 12951 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12952 hck_flags = DB_CKSUMFLAGS(mp); 12953 12954 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12955 IP_STAT(ipst, ip_in_sw_cksum); 12956 12957 IP_CKSUM_RECV(hck_flags, u1, 12958 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12959 (int32_t)((uchar_t *)up - rptr), 12960 mp, mp1, cksum_err); 12961 12962 if (cksum_err) { 12963 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12964 if (hck_flags & HCK_FULLCKSUM) 12965 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12966 else if (hck_flags & HCK_PARTIALCKSUM) 12967 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12968 else 12969 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12970 12971 freemsg(first_mp); 12972 return; 12973 } 12974 } 12975 12976 /* Non-fragmented broadcast or multicast packet? */ 12977 if (ire->ire_type == IRE_BROADCAST) 12978 goto udpslowpath; 12979 12980 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12981 ire->ire_zoneid, ipst)) != NULL) { 12982 ASSERT(connp->conn_upq != NULL); 12983 IP_STAT(ipst, ip_udp_fast_path); 12984 12985 if (CONN_UDP_FLOWCTLD(connp)) { 12986 freemsg(mp); 12987 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12988 } else { 12989 if (!mctl_present) { 12990 BUMP_MIB(ill->ill_ip_mib, 12991 ipIfStatsHCInDelivers); 12992 } 12993 /* 12994 * mp and first_mp can change. 12995 */ 12996 if (ip_udp_check(q, connp, recv_ill, 12997 ipha, &mp, &first_mp, mctl_present)) { 12998 /* Send it upstream */ 12999 CONN_UDP_RECV(connp, mp); 13000 } 13001 } 13002 /* 13003 * freeb() cannot deal with null mblk being passed 13004 * in and first_mp can be set to null in the call 13005 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13006 */ 13007 if (mctl_present && first_mp != NULL) { 13008 freeb(first_mp); 13009 } 13010 CONN_DEC_REF(connp); 13011 return; 13012 } 13013 13014 /* 13015 * if we got here we know the packet is not fragmented and 13016 * has no options. The classifier could not find a conn_t and 13017 * most likely its an icmp packet so send it through slow path. 13018 */ 13019 13020 goto udpslowpath; 13021 13022 ipoptions: 13023 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13024 goto slow_done; 13025 } 13026 13027 UPDATE_IB_PKT_COUNT(ire); 13028 ire->ire_last_used_time = lbolt; 13029 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13030 if (u1 & (IPH_MF | IPH_OFFSET)) { 13031 fragmented: 13032 /* 13033 * "sum" and "reass_hck_flags" are non-zero if the 13034 * reassembled packet has a valid hardware computed 13035 * checksum information associated with it. 13036 */ 13037 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13038 goto slow_done; 13039 /* 13040 * Make sure that first_mp points back to mp as 13041 * the mp we came in with could have changed in 13042 * ip_rput_fragment(). 13043 */ 13044 ASSERT(!mctl_present); 13045 ipha = (ipha_t *)mp->b_rptr; 13046 first_mp = mp; 13047 } 13048 13049 /* Now we have a complete datagram, destined for this machine. */ 13050 u1 = IPH_HDR_LENGTH(ipha); 13051 /* Pull up the UDP header, if necessary. */ 13052 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13053 udppullup: 13054 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13055 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13056 freemsg(first_mp); 13057 goto slow_done; 13058 } 13059 ipha = (ipha_t *)mp->b_rptr; 13060 } 13061 13062 /* 13063 * Validate the checksum for the reassembled packet; for the 13064 * pullup case we calculate the payload checksum in software. 13065 */ 13066 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13067 if (up[3] != 0) { 13068 boolean_t cksum_err; 13069 13070 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13071 IP_STAT(ipst, ip_in_sw_cksum); 13072 13073 IP_CKSUM_RECV_REASS(reass_hck_flags, 13074 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13075 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13076 iphs[9] + up[2], sum, cksum_err); 13077 13078 if (cksum_err) { 13079 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13080 13081 if (reass_hck_flags & HCK_FULLCKSUM) 13082 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13083 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13084 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13085 else 13086 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13087 13088 freemsg(first_mp); 13089 goto slow_done; 13090 } 13091 } 13092 udpslowpath: 13093 13094 /* Clear hardware checksum flag to be safe */ 13095 DB_CKSUMFLAGS(mp) = 0; 13096 13097 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13098 (ire->ire_type == IRE_BROADCAST), 13099 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13100 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13101 13102 slow_done: 13103 IP_STAT(ipst, ip_udp_slow_path); 13104 return; 13105 13106 #undef iphs 13107 #undef rptr 13108 } 13109 13110 /* ARGSUSED */ 13111 static mblk_t * 13112 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13113 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13114 ill_rx_ring_t *ill_ring) 13115 { 13116 conn_t *connp; 13117 uint32_t sum; 13118 uint32_t u1; 13119 uint16_t *up; 13120 int offset; 13121 ssize_t len; 13122 mblk_t *mp1; 13123 boolean_t syn_present = B_FALSE; 13124 tcph_t *tcph; 13125 uint_t ip_hdr_len; 13126 ill_t *ill = (ill_t *)q->q_ptr; 13127 zoneid_t zoneid = ire->ire_zoneid; 13128 boolean_t cksum_err; 13129 uint16_t hck_flags = 0; 13130 ip_stack_t *ipst = recv_ill->ill_ipst; 13131 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13132 13133 #define rptr ((uchar_t *)ipha) 13134 13135 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13136 ASSERT(ill != NULL); 13137 13138 /* 13139 * FAST PATH for tcp packets 13140 */ 13141 13142 /* u1 is # words of IP options */ 13143 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13144 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13145 13146 /* IP options present */ 13147 if (u1) { 13148 goto ipoptions; 13149 } else { 13150 /* Check the IP header checksum. */ 13151 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13152 /* Clear the IP header h/w cksum flag */ 13153 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13154 } else { 13155 #define uph ((uint16_t *)ipha) 13156 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13157 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13158 #undef uph 13159 /* finish doing IP checksum */ 13160 sum = (sum & 0xFFFF) + (sum >> 16); 13161 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13162 /* 13163 * Don't verify header checksum if this packet 13164 * is coming back from AH/ESP as we already did it. 13165 */ 13166 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13167 BUMP_MIB(ill->ill_ip_mib, 13168 ipIfStatsInCksumErrs); 13169 goto error; 13170 } 13171 } 13172 } 13173 13174 if (!mctl_present) { 13175 UPDATE_IB_PKT_COUNT(ire); 13176 ire->ire_last_used_time = lbolt; 13177 } 13178 13179 /* packet part of fragmented IP packet? */ 13180 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13181 if (u1 & (IPH_MF | IPH_OFFSET)) { 13182 goto fragmented; 13183 } 13184 13185 /* u1 = IP header length (20 bytes) */ 13186 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13187 13188 /* does packet contain IP+TCP headers? */ 13189 len = mp->b_wptr - rptr; 13190 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13191 IP_STAT(ipst, ip_tcppullup); 13192 goto tcppullup; 13193 } 13194 13195 /* TCP options present? */ 13196 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13197 13198 /* 13199 * If options need to be pulled up, then goto tcpoptions. 13200 * otherwise we are still in the fast path 13201 */ 13202 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13203 IP_STAT(ipst, ip_tcpoptions); 13204 goto tcpoptions; 13205 } 13206 13207 /* multiple mblks of tcp data? */ 13208 if ((mp1 = mp->b_cont) != NULL) { 13209 /* more then two? */ 13210 if (mp1->b_cont != NULL) { 13211 IP_STAT(ipst, ip_multipkttcp); 13212 goto multipkttcp; 13213 } 13214 len += mp1->b_wptr - mp1->b_rptr; 13215 } 13216 13217 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13218 13219 /* part of pseudo checksum */ 13220 13221 /* TCP datagram length */ 13222 u1 = len - IP_SIMPLE_HDR_LENGTH; 13223 13224 #define iphs ((uint16_t *)ipha) 13225 13226 #ifdef _BIG_ENDIAN 13227 u1 += IPPROTO_TCP; 13228 #else 13229 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13230 #endif 13231 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13232 13233 /* 13234 * Revert to software checksum calculation if the interface 13235 * isn't capable of checksum offload or if IPsec is present. 13236 */ 13237 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13238 hck_flags = DB_CKSUMFLAGS(mp); 13239 13240 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13241 IP_STAT(ipst, ip_in_sw_cksum); 13242 13243 IP_CKSUM_RECV(hck_flags, u1, 13244 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13245 (int32_t)((uchar_t *)up - rptr), 13246 mp, mp1, cksum_err); 13247 13248 if (cksum_err) { 13249 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13250 13251 if (hck_flags & HCK_FULLCKSUM) 13252 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13253 else if (hck_flags & HCK_PARTIALCKSUM) 13254 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13255 else 13256 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13257 13258 goto error; 13259 } 13260 13261 try_again: 13262 13263 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13264 zoneid, ipst)) == NULL) { 13265 /* Send the TH_RST */ 13266 goto no_conn; 13267 } 13268 13269 /* 13270 * TCP FAST PATH for AF_INET socket. 13271 * 13272 * TCP fast path to avoid extra work. An AF_INET socket type 13273 * does not have facility to receive extra information via 13274 * ip_process or ip_add_info. Also, when the connection was 13275 * established, we made a check if this connection is impacted 13276 * by any global IPSec policy or per connection policy (a 13277 * policy that comes in effect later will not apply to this 13278 * connection). Since all this can be determined at the 13279 * connection establishment time, a quick check of flags 13280 * can avoid extra work. 13281 */ 13282 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13283 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13284 ASSERT(first_mp == mp); 13285 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13286 SET_SQUEUE(mp, tcp_rput_data, connp); 13287 return (mp); 13288 } 13289 13290 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13291 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13292 if (IPCL_IS_TCP(connp)) { 13293 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13294 DB_CKSUMSTART(mp) = 13295 (intptr_t)ip_squeue_get(ill_ring); 13296 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13297 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13298 BUMP_MIB(ill->ill_ip_mib, 13299 ipIfStatsHCInDelivers); 13300 SET_SQUEUE(mp, connp->conn_recv, connp); 13301 return (mp); 13302 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13303 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13304 BUMP_MIB(ill->ill_ip_mib, 13305 ipIfStatsHCInDelivers); 13306 ip_squeue_enter_unbound++; 13307 SET_SQUEUE(mp, tcp_conn_request_unbound, 13308 connp); 13309 return (mp); 13310 } 13311 syn_present = B_TRUE; 13312 } 13313 13314 } 13315 13316 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13317 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13318 13319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13320 /* No need to send this packet to TCP */ 13321 if ((flags & TH_RST) || (flags & TH_URG)) { 13322 CONN_DEC_REF(connp); 13323 freemsg(first_mp); 13324 return (NULL); 13325 } 13326 if (flags & TH_ACK) { 13327 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13328 ipst->ips_netstack->netstack_tcp); 13329 CONN_DEC_REF(connp); 13330 return (NULL); 13331 } 13332 13333 CONN_DEC_REF(connp); 13334 freemsg(first_mp); 13335 return (NULL); 13336 } 13337 13338 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13339 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13340 ipha, NULL, mctl_present); 13341 if (first_mp == NULL) { 13342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13343 CONN_DEC_REF(connp); 13344 return (NULL); 13345 } 13346 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13347 ASSERT(syn_present); 13348 if (mctl_present) { 13349 ASSERT(first_mp != mp); 13350 first_mp->b_datap->db_struioflag |= 13351 STRUIO_POLICY; 13352 } else { 13353 ASSERT(first_mp == mp); 13354 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13355 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13356 } 13357 } else { 13358 /* 13359 * Discard first_mp early since we're dealing with a 13360 * fully-connected conn_t and tcp doesn't do policy in 13361 * this case. 13362 */ 13363 if (mctl_present) { 13364 freeb(first_mp); 13365 mctl_present = B_FALSE; 13366 } 13367 first_mp = mp; 13368 } 13369 } 13370 13371 /* Initiate IPPF processing for fastpath */ 13372 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13373 uint32_t ill_index; 13374 13375 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13376 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13377 if (mp == NULL) { 13378 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13379 "deferred/dropped during IPPF processing\n")); 13380 CONN_DEC_REF(connp); 13381 if (mctl_present) 13382 freeb(first_mp); 13383 return (NULL); 13384 } else if (mctl_present) { 13385 /* 13386 * ip_process might return a new mp. 13387 */ 13388 ASSERT(first_mp != mp); 13389 first_mp->b_cont = mp; 13390 } else { 13391 first_mp = mp; 13392 } 13393 13394 } 13395 13396 if (!syn_present && connp->conn_ip_recvpktinfo) { 13397 /* 13398 * TCP does not support IP_RECVPKTINFO for v4 so lets 13399 * make sure IPF_RECVIF is passed to ip_add_info. 13400 */ 13401 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13402 IPCL_ZONEID(connp), ipst); 13403 if (mp == NULL) { 13404 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13405 CONN_DEC_REF(connp); 13406 if (mctl_present) 13407 freeb(first_mp); 13408 return (NULL); 13409 } else if (mctl_present) { 13410 /* 13411 * ip_add_info might return a new mp. 13412 */ 13413 ASSERT(first_mp != mp); 13414 first_mp->b_cont = mp; 13415 } else { 13416 first_mp = mp; 13417 } 13418 } 13419 13420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13421 if (IPCL_IS_TCP(connp)) { 13422 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13423 return (first_mp); 13424 } else { 13425 putnext(connp->conn_rq, first_mp); 13426 CONN_DEC_REF(connp); 13427 return (NULL); 13428 } 13429 13430 no_conn: 13431 /* Initiate IPPf processing, if needed. */ 13432 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13433 uint32_t ill_index; 13434 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13435 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13436 if (first_mp == NULL) { 13437 return (NULL); 13438 } 13439 } 13440 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13441 13442 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13443 ipst->ips_netstack->netstack_tcp); 13444 return (NULL); 13445 ipoptions: 13446 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13447 goto slow_done; 13448 } 13449 13450 UPDATE_IB_PKT_COUNT(ire); 13451 ire->ire_last_used_time = lbolt; 13452 13453 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13454 if (u1 & (IPH_MF | IPH_OFFSET)) { 13455 fragmented: 13456 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13457 if (mctl_present) 13458 freeb(first_mp); 13459 goto slow_done; 13460 } 13461 /* 13462 * Make sure that first_mp points back to mp as 13463 * the mp we came in with could have changed in 13464 * ip_rput_fragment(). 13465 */ 13466 ASSERT(!mctl_present); 13467 ipha = (ipha_t *)mp->b_rptr; 13468 first_mp = mp; 13469 } 13470 13471 /* Now we have a complete datagram, destined for this machine. */ 13472 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13473 13474 len = mp->b_wptr - mp->b_rptr; 13475 /* Pull up a minimal TCP header, if necessary. */ 13476 if (len < (u1 + 20)) { 13477 tcppullup: 13478 if (!pullupmsg(mp, u1 + 20)) { 13479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13480 goto error; 13481 } 13482 ipha = (ipha_t *)mp->b_rptr; 13483 len = mp->b_wptr - mp->b_rptr; 13484 } 13485 13486 /* 13487 * Extract the offset field from the TCP header. As usual, we 13488 * try to help the compiler more than the reader. 13489 */ 13490 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13491 if (offset != 5) { 13492 tcpoptions: 13493 if (offset < 5) { 13494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13495 goto error; 13496 } 13497 /* 13498 * There must be TCP options. 13499 * Make sure we can grab them. 13500 */ 13501 offset <<= 2; 13502 offset += u1; 13503 if (len < offset) { 13504 if (!pullupmsg(mp, offset)) { 13505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13506 goto error; 13507 } 13508 ipha = (ipha_t *)mp->b_rptr; 13509 len = mp->b_wptr - rptr; 13510 } 13511 } 13512 13513 /* Get the total packet length in len, including headers. */ 13514 if (mp->b_cont) { 13515 multipkttcp: 13516 len = msgdsize(mp); 13517 } 13518 13519 /* 13520 * Check the TCP checksum by pulling together the pseudo- 13521 * header checksum, and passing it to ip_csum to be added in 13522 * with the TCP datagram. 13523 * 13524 * Since we are not using the hwcksum if available we must 13525 * clear the flag. We may come here via tcppullup or tcpoptions. 13526 * If either of these fails along the way the mblk is freed. 13527 * If this logic ever changes and mblk is reused to say send 13528 * ICMP's back, then this flag may need to be cleared in 13529 * other places as well. 13530 */ 13531 DB_CKSUMFLAGS(mp) = 0; 13532 13533 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13534 13535 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13536 #ifdef _BIG_ENDIAN 13537 u1 += IPPROTO_TCP; 13538 #else 13539 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13540 #endif 13541 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13542 /* 13543 * Not M_DATA mblk or its a dup, so do the checksum now. 13544 */ 13545 IP_STAT(ipst, ip_in_sw_cksum); 13546 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13547 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13548 goto error; 13549 } 13550 13551 IP_STAT(ipst, ip_tcp_slow_path); 13552 goto try_again; 13553 #undef iphs 13554 #undef rptr 13555 13556 error: 13557 freemsg(first_mp); 13558 slow_done: 13559 return (NULL); 13560 } 13561 13562 /* ARGSUSED */ 13563 static void 13564 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13565 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13566 { 13567 conn_t *connp; 13568 uint32_t sum; 13569 uint32_t u1; 13570 ssize_t len; 13571 sctp_hdr_t *sctph; 13572 zoneid_t zoneid = ire->ire_zoneid; 13573 uint32_t pktsum; 13574 uint32_t calcsum; 13575 uint32_t ports; 13576 in6_addr_t map_src, map_dst; 13577 ill_t *ill = (ill_t *)q->q_ptr; 13578 ip_stack_t *ipst; 13579 sctp_stack_t *sctps; 13580 13581 ASSERT(recv_ill != NULL); 13582 ipst = recv_ill->ill_ipst; 13583 sctps = ipst->ips_netstack->netstack_sctp; 13584 13585 #define rptr ((uchar_t *)ipha) 13586 13587 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13588 ASSERT(ill != NULL); 13589 13590 /* u1 is # words of IP options */ 13591 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13592 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13593 13594 /* IP options present */ 13595 if (u1 > 0) { 13596 goto ipoptions; 13597 } else { 13598 /* Check the IP header checksum. */ 13599 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13600 #define uph ((uint16_t *)ipha) 13601 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13602 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13603 #undef uph 13604 /* finish doing IP checksum */ 13605 sum = (sum & 0xFFFF) + (sum >> 16); 13606 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13607 /* 13608 * Don't verify header checksum if this packet 13609 * is coming back from AH/ESP as we already did it. 13610 */ 13611 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13613 goto error; 13614 } 13615 } 13616 /* 13617 * Since there is no SCTP h/w cksum support yet, just 13618 * clear the flag. 13619 */ 13620 DB_CKSUMFLAGS(mp) = 0; 13621 } 13622 13623 /* 13624 * Don't verify header checksum if this packet is coming 13625 * back from AH/ESP as we already did it. 13626 */ 13627 if (!mctl_present) { 13628 UPDATE_IB_PKT_COUNT(ire); 13629 ire->ire_last_used_time = lbolt; 13630 } 13631 13632 /* packet part of fragmented IP packet? */ 13633 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13634 if (u1 & (IPH_MF | IPH_OFFSET)) 13635 goto fragmented; 13636 13637 /* u1 = IP header length (20 bytes) */ 13638 u1 = IP_SIMPLE_HDR_LENGTH; 13639 13640 find_sctp_client: 13641 /* Pullup if we don't have the sctp common header. */ 13642 len = MBLKL(mp); 13643 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13644 if (mp->b_cont == NULL || 13645 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13647 goto error; 13648 } 13649 ipha = (ipha_t *)mp->b_rptr; 13650 len = MBLKL(mp); 13651 } 13652 13653 sctph = (sctp_hdr_t *)(rptr + u1); 13654 #ifdef DEBUG 13655 if (!skip_sctp_cksum) { 13656 #endif 13657 pktsum = sctph->sh_chksum; 13658 sctph->sh_chksum = 0; 13659 calcsum = sctp_cksum(mp, u1); 13660 if (calcsum != pktsum) { 13661 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13662 goto error; 13663 } 13664 sctph->sh_chksum = pktsum; 13665 #ifdef DEBUG /* skip_sctp_cksum */ 13666 } 13667 #endif 13668 /* get the ports */ 13669 ports = *(uint32_t *)&sctph->sh_sport; 13670 13671 IRE_REFRELE(ire); 13672 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13673 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13674 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13675 sctps)) == NULL) { 13676 /* Check for raw socket or OOTB handling */ 13677 goto no_conn; 13678 } 13679 13680 /* Found a client; up it goes */ 13681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13682 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13683 return; 13684 13685 no_conn: 13686 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13687 ports, mctl_present, flags, B_TRUE, zoneid); 13688 return; 13689 13690 ipoptions: 13691 DB_CKSUMFLAGS(mp) = 0; 13692 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13693 goto slow_done; 13694 13695 UPDATE_IB_PKT_COUNT(ire); 13696 ire->ire_last_used_time = lbolt; 13697 13698 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13699 if (u1 & (IPH_MF | IPH_OFFSET)) { 13700 fragmented: 13701 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13702 goto slow_done; 13703 /* 13704 * Make sure that first_mp points back to mp as 13705 * the mp we came in with could have changed in 13706 * ip_rput_fragment(). 13707 */ 13708 ASSERT(!mctl_present); 13709 ipha = (ipha_t *)mp->b_rptr; 13710 first_mp = mp; 13711 } 13712 13713 /* Now we have a complete datagram, destined for this machine. */ 13714 u1 = IPH_HDR_LENGTH(ipha); 13715 goto find_sctp_client; 13716 #undef iphs 13717 #undef rptr 13718 13719 error: 13720 freemsg(first_mp); 13721 slow_done: 13722 IRE_REFRELE(ire); 13723 } 13724 13725 #define VER_BITS 0xF0 13726 #define VERSION_6 0x60 13727 13728 static boolean_t 13729 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13730 ipaddr_t *dstp, ip_stack_t *ipst) 13731 { 13732 uint_t opt_len; 13733 ipha_t *ipha; 13734 ssize_t len; 13735 uint_t pkt_len; 13736 13737 ASSERT(ill != NULL); 13738 IP_STAT(ipst, ip_ipoptions); 13739 ipha = *iphapp; 13740 13741 #define rptr ((uchar_t *)ipha) 13742 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13743 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13745 freemsg(mp); 13746 return (B_FALSE); 13747 } 13748 13749 /* multiple mblk or too short */ 13750 pkt_len = ntohs(ipha->ipha_length); 13751 13752 /* Get the number of words of IP options in the IP header. */ 13753 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13754 if (opt_len) { 13755 /* IP Options present! Validate and process. */ 13756 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13757 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13758 goto done; 13759 } 13760 /* 13761 * Recompute complete header length and make sure we 13762 * have access to all of it. 13763 */ 13764 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13765 if (len > (mp->b_wptr - rptr)) { 13766 if (len > pkt_len) { 13767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13768 goto done; 13769 } 13770 if (!pullupmsg(mp, len)) { 13771 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13772 goto done; 13773 } 13774 ipha = (ipha_t *)mp->b_rptr; 13775 } 13776 /* 13777 * Go off to ip_rput_options which returns the next hop 13778 * destination address, which may have been affected 13779 * by source routing. 13780 */ 13781 IP_STAT(ipst, ip_opt); 13782 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13783 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13784 return (B_FALSE); 13785 } 13786 } 13787 *iphapp = ipha; 13788 return (B_TRUE); 13789 done: 13790 /* clear b_prev - used by ip_mroute_decap */ 13791 mp->b_prev = NULL; 13792 freemsg(mp); 13793 return (B_FALSE); 13794 #undef rptr 13795 } 13796 13797 /* 13798 * Deal with the fact that there is no ire for the destination. 13799 * The incoming ill (in_ill) is passed in to ip_newroute only 13800 * in the case of packets coming from mobile ip forward tunnel. 13801 * It must be null otherwise. 13802 */ 13803 static ire_t * 13804 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13805 ipaddr_t dst) 13806 { 13807 ipha_t *ipha; 13808 ill_t *ill; 13809 ire_t *ire; 13810 boolean_t check_multirt = B_FALSE; 13811 ip_stack_t *ipst; 13812 13813 ipha = (ipha_t *)mp->b_rptr; 13814 ill = (ill_t *)q->q_ptr; 13815 13816 ASSERT(ill != NULL); 13817 ipst = ill->ill_ipst; 13818 13819 /* 13820 * No IRE for this destination, so it can't be for us. 13821 * Unless we are forwarding, drop the packet. 13822 * We have to let source routed packets through 13823 * since we don't yet know if they are 'ping -l' 13824 * packets i.e. if they will go out over the 13825 * same interface as they came in on. 13826 */ 13827 if (ll_multicast) { 13828 freemsg(mp); 13829 return (NULL); 13830 } 13831 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13832 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13833 freemsg(mp); 13834 return (NULL); 13835 } 13836 13837 /* 13838 * Mark this packet as having originated externally. 13839 * 13840 * For non-forwarding code path, ire_send later double 13841 * checks this interface to see if it is still exists 13842 * post-ARP resolution. 13843 * 13844 * Also, IPQOS uses this to differentiate between 13845 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13846 * QOS packet processing in ip_wput_attach_llhdr(). 13847 * The QoS module can mark the b_band for a fastpath message 13848 * or the dl_priority field in a unitdata_req header for 13849 * CoS marking. This info can only be found in 13850 * ip_wput_attach_llhdr(). 13851 */ 13852 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13853 /* 13854 * Clear the indication that this may have a hardware checksum 13855 * as we are not using it 13856 */ 13857 DB_CKSUMFLAGS(mp) = 0; 13858 13859 if (in_ill != NULL) { 13860 /* 13861 * Now hand the packet to ip_newroute. 13862 */ 13863 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13864 return (NULL); 13865 } 13866 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13867 MBLK_GETLABEL(mp), ipst); 13868 13869 if (ire == NULL && check_multirt) { 13870 /* Let ip_newroute handle CGTP */ 13871 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13872 return (NULL); 13873 } 13874 13875 if (ire != NULL) 13876 return (ire); 13877 13878 mp->b_prev = mp->b_next = 0; 13879 /* send icmp unreachable */ 13880 q = WR(q); 13881 /* Sent by forwarding path, and router is global zone */ 13882 if (ip_source_routed(ipha, ipst)) { 13883 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13884 GLOBAL_ZONEID, ipst); 13885 } else { 13886 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13887 ipst); 13888 } 13889 13890 return (NULL); 13891 13892 } 13893 13894 /* 13895 * check ip header length and align it. 13896 */ 13897 static boolean_t 13898 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13899 { 13900 ssize_t len; 13901 ill_t *ill; 13902 ipha_t *ipha; 13903 13904 len = MBLKL(mp); 13905 13906 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13907 ill = (ill_t *)q->q_ptr; 13908 13909 if (!OK_32PTR(mp->b_rptr)) 13910 IP_STAT(ipst, ip_notaligned1); 13911 else 13912 IP_STAT(ipst, ip_notaligned2); 13913 /* Guard against bogus device drivers */ 13914 if (len < 0) { 13915 /* clear b_prev - used by ip_mroute_decap */ 13916 mp->b_prev = NULL; 13917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13918 freemsg(mp); 13919 return (B_FALSE); 13920 } 13921 13922 if (ip_rput_pullups++ == 0) { 13923 ipha = (ipha_t *)mp->b_rptr; 13924 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13925 "ip_check_and_align_header: %s forced us to " 13926 " pullup pkt, hdr len %ld, hdr addr %p", 13927 ill->ill_name, len, ipha); 13928 } 13929 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13930 /* clear b_prev - used by ip_mroute_decap */ 13931 mp->b_prev = NULL; 13932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13933 freemsg(mp); 13934 return (B_FALSE); 13935 } 13936 } 13937 return (B_TRUE); 13938 } 13939 13940 ire_t * 13941 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13942 { 13943 ire_t *new_ire; 13944 ill_t *ire_ill; 13945 uint_t ifindex; 13946 ip_stack_t *ipst = ill->ill_ipst; 13947 boolean_t strict_check = B_FALSE; 13948 13949 /* 13950 * This packet came in on an interface other than the one associated 13951 * with the first ire we found for the destination address. We do 13952 * another ire lookup here, using the ingress ill, to see if the 13953 * interface is in an interface group. 13954 * As long as the ills belong to the same group, we don't consider 13955 * them to be arriving on the wrong interface. Thus, if the switch 13956 * is doing inbound load spreading, we won't drop packets when the 13957 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13958 * for 'usesrc groups' where the destination address may belong to 13959 * another interface to allow multipathing to happen. 13960 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13961 * where the local address may not be unique. In this case we were 13962 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13963 * actually returned. The new lookup, which is more specific, should 13964 * only find the IRE_LOCAL associated with the ingress ill if one 13965 * exists. 13966 */ 13967 13968 if (ire->ire_ipversion == IPV4_VERSION) { 13969 if (ipst->ips_ip_strict_dst_multihoming) 13970 strict_check = B_TRUE; 13971 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13972 ill->ill_ipif, ALL_ZONES, NULL, 13973 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13974 } else { 13975 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13976 if (ipst->ips_ipv6_strict_dst_multihoming) 13977 strict_check = B_TRUE; 13978 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13979 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13980 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13981 } 13982 /* 13983 * If the same ire that was returned in ip_input() is found then this 13984 * is an indication that interface groups are in use. The packet 13985 * arrived on a different ill in the group than the one associated with 13986 * the destination address. If a different ire was found then the same 13987 * IP address must be hosted on multiple ills. This is possible with 13988 * unnumbered point2point interfaces. We switch to use this new ire in 13989 * order to have accurate interface statistics. 13990 */ 13991 if (new_ire != NULL) { 13992 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13993 ire_refrele(ire); 13994 ire = new_ire; 13995 } else { 13996 ire_refrele(new_ire); 13997 } 13998 return (ire); 13999 } else if ((ire->ire_rfq == NULL) && 14000 (ire->ire_ipversion == IPV4_VERSION)) { 14001 /* 14002 * The best match could have been the original ire which 14003 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14004 * the strict multihoming checks are irrelevant as we consider 14005 * local addresses hosted on lo0 to be interface agnostic. We 14006 * only expect a null ire_rfq on IREs which are associated with 14007 * lo0 hence we can return now. 14008 */ 14009 return (ire); 14010 } 14011 14012 /* 14013 * Chase pointers once and store locally. 14014 */ 14015 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14016 (ill_t *)(ire->ire_rfq->q_ptr); 14017 ifindex = ill->ill_usesrc_ifindex; 14018 14019 /* 14020 * Check if it's a legal address on the 'usesrc' interface. 14021 */ 14022 if ((ifindex != 0) && (ire_ill != NULL) && 14023 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14024 return (ire); 14025 } 14026 14027 /* 14028 * If the ip*_strict_dst_multihoming switch is on then we can 14029 * only accept this packet if the interface is marked as routing. 14030 */ 14031 if (!(strict_check)) 14032 return (ire); 14033 14034 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14035 ILLF_ROUTER) != 0) { 14036 return (ire); 14037 } 14038 14039 ire_refrele(ire); 14040 return (NULL); 14041 } 14042 14043 ire_t * 14044 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14045 { 14046 ipha_t *ipha; 14047 ipaddr_t ip_dst, ip_src; 14048 ire_t *src_ire = NULL; 14049 ill_t *stq_ill; 14050 uint_t hlen; 14051 uint_t pkt_len; 14052 uint32_t sum; 14053 queue_t *dev_q; 14054 boolean_t check_multirt = B_FALSE; 14055 ip_stack_t *ipst = ill->ill_ipst; 14056 14057 ipha = (ipha_t *)mp->b_rptr; 14058 14059 /* 14060 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14061 * The loopback address check for both src and dst has already 14062 * been checked in ip_input 14063 */ 14064 ip_dst = ntohl(dst); 14065 ip_src = ntohl(ipha->ipha_src); 14066 14067 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14068 IN_CLASSD(ip_src)) { 14069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14070 goto drop; 14071 } 14072 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14073 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14074 14075 if (src_ire != NULL) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14077 goto drop; 14078 } 14079 14080 14081 /* No ire cache of nexthop. So first create one */ 14082 if (ire == NULL) { 14083 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14084 /* 14085 * We only come to ip_fast_forward if ip_cgtp_filter is 14086 * is not set. So upon return from ire_forward 14087 * check_multirt should remain as false. 14088 */ 14089 ASSERT(!check_multirt); 14090 if (ire == NULL) { 14091 /* An attempt was made to forward the packet */ 14092 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14094 mp->b_prev = mp->b_next = 0; 14095 /* send icmp unreachable */ 14096 /* Sent by forwarding path, and router is global zone */ 14097 if (ip_source_routed(ipha, ipst)) { 14098 icmp_unreachable(ill->ill_wq, mp, 14099 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14100 ipst); 14101 } else { 14102 icmp_unreachable(ill->ill_wq, mp, 14103 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14104 ipst); 14105 } 14106 return (ire); 14107 } 14108 } 14109 14110 /* 14111 * Forwarding fastpath exception case: 14112 * If either of the follwoing case is true, we take 14113 * the slowpath 14114 * o forwarding is not enabled 14115 * o incoming and outgoing interface are the same, or the same 14116 * IPMP group 14117 * o corresponding ire is in incomplete state 14118 * o packet needs fragmentation 14119 * 14120 * The codeflow from here on is thus: 14121 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14122 */ 14123 pkt_len = ntohs(ipha->ipha_length); 14124 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14125 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14126 !(ill->ill_flags & ILLF_ROUTER) || 14127 (ill == stq_ill) || 14128 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14129 (ire->ire_nce == NULL) || 14130 (ire->ire_nce->nce_state != ND_REACHABLE) || 14131 (pkt_len > ire->ire_max_frag) || 14132 ipha->ipha_ttl <= 1) { 14133 ip_rput_process_forward(ill->ill_rq, mp, ire, 14134 ipha, ill, B_FALSE); 14135 return (ire); 14136 } 14137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14138 14139 DTRACE_PROBE4(ip4__forwarding__start, 14140 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14141 14142 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14143 ipst->ips_ipv4firewall_forwarding, 14144 ill, stq_ill, ipha, mp, mp, ipst); 14145 14146 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14147 14148 if (mp == NULL) 14149 goto drop; 14150 14151 mp->b_datap->db_struioun.cksum.flags = 0; 14152 /* Adjust the checksum to reflect the ttl decrement. */ 14153 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14154 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14155 ipha->ipha_ttl--; 14156 14157 dev_q = ire->ire_stq->q_next; 14158 if ((dev_q->q_next != NULL || 14159 dev_q->q_first != NULL) && !canput(dev_q)) { 14160 goto indiscard; 14161 } 14162 14163 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14164 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14165 14166 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14167 mblk_t *mpip = mp; 14168 14169 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14170 if (mp != NULL) { 14171 DTRACE_PROBE4(ip4__physical__out__start, 14172 ill_t *, NULL, ill_t *, stq_ill, 14173 ipha_t *, ipha, mblk_t *, mp); 14174 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14175 ipst->ips_ipv4firewall_physical_out, 14176 NULL, stq_ill, ipha, mp, mpip, ipst); 14177 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14178 mp); 14179 if (mp == NULL) 14180 goto drop; 14181 14182 UPDATE_IB_PKT_COUNT(ire); 14183 ire->ire_last_used_time = lbolt; 14184 BUMP_MIB(stq_ill->ill_ip_mib, 14185 ipIfStatsHCOutForwDatagrams); 14186 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14187 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14188 pkt_len); 14189 putnext(ire->ire_stq, mp); 14190 return (ire); 14191 } 14192 } 14193 14194 indiscard: 14195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14196 drop: 14197 if (mp != NULL) 14198 freemsg(mp); 14199 if (src_ire != NULL) 14200 ire_refrele(src_ire); 14201 return (ire); 14202 14203 } 14204 14205 /* 14206 * This function is called in the forwarding slowpath, when 14207 * either the ire lacks the link-layer address, or the packet needs 14208 * further processing(eg. fragmentation), before transmission. 14209 */ 14210 14211 static void 14212 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14213 ill_t *ill, boolean_t ll_multicast) 14214 { 14215 ill_group_t *ill_group; 14216 ill_group_t *ire_group; 14217 queue_t *dev_q; 14218 ire_t *src_ire; 14219 ip_stack_t *ipst = ill->ill_ipst; 14220 14221 ASSERT(ire->ire_stq != NULL); 14222 14223 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14224 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14225 14226 if (ll_multicast != 0) { 14227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14228 goto drop_pkt; 14229 } 14230 14231 /* 14232 * check if ipha_src is a broadcast address. Note that this 14233 * check is redundant when we get here from ip_fast_forward() 14234 * which has already done this check. However, since we can 14235 * also get here from ip_rput_process_broadcast() or, for 14236 * for the slow path through ip_fast_forward(), we perform 14237 * the check again for code-reusability 14238 */ 14239 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14240 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14241 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14242 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14243 if (src_ire != NULL) 14244 ire_refrele(src_ire); 14245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14246 ip2dbg(("ip_rput_process_forward: Received packet with" 14247 " bad src/dst address on %s\n", ill->ill_name)); 14248 goto drop_pkt; 14249 } 14250 14251 ill_group = ill->ill_group; 14252 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14253 /* 14254 * Check if we want to forward this one at this time. 14255 * We allow source routed packets on a host provided that 14256 * they go out the same interface or same interface group 14257 * as they came in on. 14258 * 14259 * XXX To be quicker, we may wish to not chase pointers to 14260 * get the ILLF_ROUTER flag and instead store the 14261 * forwarding policy in the ire. An unfortunate 14262 * side-effect of that would be requiring an ire flush 14263 * whenever the ILLF_ROUTER flag changes. 14264 */ 14265 if (((ill->ill_flags & 14266 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14267 ILLF_ROUTER) == 0) && 14268 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14269 (ill_group != NULL && ill_group == ire_group)))) { 14270 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14271 if (ip_source_routed(ipha, ipst)) { 14272 q = WR(q); 14273 /* 14274 * Clear the indication that this may have 14275 * hardware checksum as we are not using it. 14276 */ 14277 DB_CKSUMFLAGS(mp) = 0; 14278 /* Sent by forwarding path, and router is global zone */ 14279 icmp_unreachable(q, mp, 14280 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14281 return; 14282 } 14283 goto drop_pkt; 14284 } 14285 14286 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14287 14288 /* Packet is being forwarded. Turning off hwcksum flag. */ 14289 DB_CKSUMFLAGS(mp) = 0; 14290 if (ipst->ips_ip_g_send_redirects) { 14291 /* 14292 * Check whether the incoming interface and outgoing 14293 * interface is part of the same group. If so, 14294 * send redirects. 14295 * 14296 * Check the source address to see if it originated 14297 * on the same logical subnet it is going back out on. 14298 * If so, we should be able to send it a redirect. 14299 * Avoid sending a redirect if the destination 14300 * is directly connected (i.e., ipha_dst is the same 14301 * as ire_gateway_addr or the ire_addr of the 14302 * nexthop IRE_CACHE ), or if the packet was source 14303 * routed out this interface. 14304 */ 14305 ipaddr_t src, nhop; 14306 mblk_t *mp1; 14307 ire_t *nhop_ire = NULL; 14308 14309 /* 14310 * Check whether ire_rfq and q are from the same ill 14311 * or if they are not same, they at least belong 14312 * to the same group. If so, send redirects. 14313 */ 14314 if ((ire->ire_rfq == q || 14315 (ill_group != NULL && ill_group == ire_group)) && 14316 !ip_source_routed(ipha, ipst)) { 14317 14318 nhop = (ire->ire_gateway_addr != 0 ? 14319 ire->ire_gateway_addr : ire->ire_addr); 14320 14321 if (ipha->ipha_dst == nhop) { 14322 /* 14323 * We avoid sending a redirect if the 14324 * destination is directly connected 14325 * because it is possible that multiple 14326 * IP subnets may have been configured on 14327 * the link, and the source may not 14328 * be on the same subnet as ip destination, 14329 * even though they are on the same 14330 * physical link. 14331 */ 14332 goto sendit; 14333 } 14334 14335 src = ipha->ipha_src; 14336 14337 /* 14338 * We look up the interface ire for the nexthop, 14339 * to see if ipha_src is in the same subnet 14340 * as the nexthop. 14341 * 14342 * Note that, if, in the future, IRE_CACHE entries 14343 * are obsoleted, this lookup will not be needed, 14344 * as the ire passed to this function will be the 14345 * same as the nhop_ire computed below. 14346 */ 14347 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14348 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14349 0, NULL, MATCH_IRE_TYPE, ipst); 14350 14351 if (nhop_ire != NULL) { 14352 if ((src & nhop_ire->ire_mask) == 14353 (nhop & nhop_ire->ire_mask)) { 14354 /* 14355 * The source is directly connected. 14356 * Just copy the ip header (which is 14357 * in the first mblk) 14358 */ 14359 mp1 = copyb(mp); 14360 if (mp1 != NULL) { 14361 icmp_send_redirect(WR(q), mp1, 14362 nhop, ipst); 14363 } 14364 } 14365 ire_refrele(nhop_ire); 14366 } 14367 } 14368 } 14369 sendit: 14370 dev_q = ire->ire_stq->q_next; 14371 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14373 freemsg(mp); 14374 return; 14375 } 14376 14377 ip_rput_forward(ire, ipha, mp, ill); 14378 return; 14379 14380 drop_pkt: 14381 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14382 freemsg(mp); 14383 } 14384 14385 ire_t * 14386 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14387 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14388 { 14389 queue_t *q; 14390 uint16_t hcksumflags; 14391 ip_stack_t *ipst = ill->ill_ipst; 14392 14393 q = *qp; 14394 14395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14396 14397 /* 14398 * Clear the indication that this may have hardware 14399 * checksum as we are not using it for forwarding. 14400 */ 14401 hcksumflags = DB_CKSUMFLAGS(mp); 14402 DB_CKSUMFLAGS(mp) = 0; 14403 14404 /* 14405 * Directed broadcast forwarding: if the packet came in over a 14406 * different interface then it is routed out over we can forward it. 14407 */ 14408 if (ipha->ipha_protocol == IPPROTO_TCP) { 14409 ire_refrele(ire); 14410 freemsg(mp); 14411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14412 return (NULL); 14413 } 14414 /* 14415 * For multicast we have set dst to be INADDR_BROADCAST 14416 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14417 * only for broadcast packets. 14418 */ 14419 if (!CLASSD(ipha->ipha_dst)) { 14420 ire_t *new_ire; 14421 ipif_t *ipif; 14422 /* 14423 * For ill groups, as the switch duplicates broadcasts 14424 * across all the ports, we need to filter out and 14425 * send up only one copy. There is one copy for every 14426 * broadcast address on each ill. Thus, we look for a 14427 * specific IRE on this ill and look at IRE_MARK_NORECV 14428 * later to see whether this ill is eligible to receive 14429 * them or not. ill_nominate_bcast_rcv() nominates only 14430 * one set of IREs for receiving. 14431 */ 14432 14433 ipif = ipif_get_next_ipif(NULL, ill); 14434 if (ipif == NULL) { 14435 ire_refrele(ire); 14436 freemsg(mp); 14437 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14438 return (NULL); 14439 } 14440 new_ire = ire_ctable_lookup(dst, 0, 0, 14441 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14442 ipif_refrele(ipif); 14443 14444 if (new_ire != NULL) { 14445 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14446 ire_refrele(ire); 14447 ire_refrele(new_ire); 14448 freemsg(mp); 14449 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14450 return (NULL); 14451 } 14452 /* 14453 * In the special case of multirouted broadcast 14454 * packets, we unconditionally need to "gateway" 14455 * them to the appropriate interface here. 14456 * In the normal case, this cannot happen, because 14457 * there is no broadcast IRE tagged with the 14458 * RTF_MULTIRT flag. 14459 */ 14460 if (new_ire->ire_flags & RTF_MULTIRT) { 14461 ire_refrele(new_ire); 14462 if (ire->ire_rfq != NULL) { 14463 q = ire->ire_rfq; 14464 *qp = q; 14465 } 14466 } else { 14467 ire_refrele(ire); 14468 ire = new_ire; 14469 } 14470 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14471 if (!ipst->ips_ip_g_forward_directed_bcast) { 14472 /* 14473 * Free the message if 14474 * ip_g_forward_directed_bcast is turned 14475 * off for non-local broadcast. 14476 */ 14477 ire_refrele(ire); 14478 freemsg(mp); 14479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14480 return (NULL); 14481 } 14482 } else { 14483 /* 14484 * This CGTP packet successfully passed the 14485 * CGTP filter, but the related CGTP 14486 * broadcast IRE has not been found, 14487 * meaning that the redundant ipif is 14488 * probably down. However, if we discarded 14489 * this packet, its duplicate would be 14490 * filtered out by the CGTP filter so none 14491 * of them would get through. So we keep 14492 * going with this one. 14493 */ 14494 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14495 if (ire->ire_rfq != NULL) { 14496 q = ire->ire_rfq; 14497 *qp = q; 14498 } 14499 } 14500 } 14501 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14502 /* 14503 * Verify that there are not more then one 14504 * IRE_BROADCAST with this broadcast address which 14505 * has ire_stq set. 14506 * TODO: simplify, loop over all IRE's 14507 */ 14508 ire_t *ire1; 14509 int num_stq = 0; 14510 mblk_t *mp1; 14511 14512 /* Find the first one with ire_stq set */ 14513 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14514 for (ire1 = ire; ire1 && 14515 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14516 ire1 = ire1->ire_next) 14517 ; 14518 if (ire1) { 14519 ire_refrele(ire); 14520 ire = ire1; 14521 IRE_REFHOLD(ire); 14522 } 14523 14524 /* Check if there are additional ones with stq set */ 14525 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14526 if (ire->ire_addr != ire1->ire_addr) 14527 break; 14528 if (ire1->ire_stq) { 14529 num_stq++; 14530 break; 14531 } 14532 } 14533 rw_exit(&ire->ire_bucket->irb_lock); 14534 if (num_stq == 1 && ire->ire_stq != NULL) { 14535 ip1dbg(("ip_rput_process_broadcast: directed " 14536 "broadcast to 0x%x\n", 14537 ntohl(ire->ire_addr))); 14538 mp1 = copymsg(mp); 14539 if (mp1) { 14540 switch (ipha->ipha_protocol) { 14541 case IPPROTO_UDP: 14542 ip_udp_input(q, mp1, ipha, ire, ill); 14543 break; 14544 default: 14545 ip_proto_input(q, mp1, ipha, ire, ill); 14546 break; 14547 } 14548 } 14549 /* 14550 * Adjust ttl to 2 (1+1 - the forward engine 14551 * will decrement it by one. 14552 */ 14553 if (ip_csum_hdr(ipha)) { 14554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14555 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14556 freemsg(mp); 14557 ire_refrele(ire); 14558 return (NULL); 14559 } 14560 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14561 ipha->ipha_hdr_checksum = 0; 14562 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14563 ip_rput_process_forward(q, mp, ire, ipha, 14564 ill, ll_multicast); 14565 ire_refrele(ire); 14566 return (NULL); 14567 } 14568 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14569 ntohl(ire->ire_addr))); 14570 } 14571 14572 14573 /* Restore any hardware checksum flags */ 14574 DB_CKSUMFLAGS(mp) = hcksumflags; 14575 return (ire); 14576 } 14577 14578 /* ARGSUSED */ 14579 static boolean_t 14580 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14581 int *ll_multicast, ipaddr_t *dstp) 14582 { 14583 ip_stack_t *ipst = ill->ill_ipst; 14584 14585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14586 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14587 ntohs(ipha->ipha_length)); 14588 14589 /* 14590 * Forward packets only if we have joined the allmulti 14591 * group on this interface. 14592 */ 14593 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14594 int retval; 14595 14596 /* 14597 * Clear the indication that this may have hardware 14598 * checksum as we are not using it. 14599 */ 14600 DB_CKSUMFLAGS(mp) = 0; 14601 retval = ip_mforward(ill, ipha, mp); 14602 /* ip_mforward updates mib variables if needed */ 14603 /* clear b_prev - used by ip_mroute_decap */ 14604 mp->b_prev = NULL; 14605 14606 switch (retval) { 14607 case 0: 14608 /* 14609 * pkt is okay and arrived on phyint. 14610 * 14611 * If we are running as a multicast router 14612 * we need to see all IGMP and/or PIM packets. 14613 */ 14614 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14615 (ipha->ipha_protocol == IPPROTO_PIM)) { 14616 goto done; 14617 } 14618 break; 14619 case -1: 14620 /* pkt is mal-formed, toss it */ 14621 goto drop_pkt; 14622 case 1: 14623 /* pkt is okay and arrived on a tunnel */ 14624 /* 14625 * If we are running a multicast router 14626 * we need to see all igmp packets. 14627 */ 14628 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14629 *dstp = INADDR_BROADCAST; 14630 *ll_multicast = 1; 14631 return (B_FALSE); 14632 } 14633 14634 goto drop_pkt; 14635 } 14636 } 14637 14638 ILM_WALKER_HOLD(ill); 14639 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14640 /* 14641 * This might just be caused by the fact that 14642 * multiple IP Multicast addresses map to the same 14643 * link layer multicast - no need to increment counter! 14644 */ 14645 ILM_WALKER_RELE(ill); 14646 freemsg(mp); 14647 return (B_TRUE); 14648 } 14649 ILM_WALKER_RELE(ill); 14650 done: 14651 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14652 /* 14653 * This assumes the we deliver to all streams for multicast 14654 * and broadcast packets. 14655 */ 14656 *dstp = INADDR_BROADCAST; 14657 *ll_multicast = 1; 14658 return (B_FALSE); 14659 drop_pkt: 14660 ip2dbg(("ip_rput: drop pkt\n")); 14661 freemsg(mp); 14662 return (B_TRUE); 14663 } 14664 14665 static boolean_t 14666 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14667 int *ll_multicast, mblk_t **mpp) 14668 { 14669 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14670 boolean_t must_copy = B_FALSE; 14671 struct iocblk *iocp; 14672 ipha_t *ipha; 14673 ip_stack_t *ipst = ill->ill_ipst; 14674 14675 #define rptr ((uchar_t *)ipha) 14676 14677 first_mp = *first_mpp; 14678 mp = *mpp; 14679 14680 ASSERT(first_mp == mp); 14681 14682 /* 14683 * if db_ref > 1 then copymsg and free original. Packet may be 14684 * changed and do not want other entity who has a reference to this 14685 * message to trip over the changes. This is a blind change because 14686 * trying to catch all places that might change packet is too 14687 * difficult (since it may be a module above this one) 14688 * 14689 * This corresponds to the non-fast path case. We walk down the full 14690 * chain in this case, and check the db_ref count of all the dblks, 14691 * and do a copymsg if required. It is possible that the db_ref counts 14692 * of the data blocks in the mblk chain can be different. 14693 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14694 * count of 1, followed by a M_DATA block with a ref count of 2, if 14695 * 'snoop' is running. 14696 */ 14697 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14698 if (mp1->b_datap->db_ref > 1) { 14699 must_copy = B_TRUE; 14700 break; 14701 } 14702 } 14703 14704 if (must_copy) { 14705 mp1 = copymsg(mp); 14706 if (mp1 == NULL) { 14707 for (mp1 = mp; mp1 != NULL; 14708 mp1 = mp1->b_cont) { 14709 mp1->b_next = NULL; 14710 mp1->b_prev = NULL; 14711 } 14712 freemsg(mp); 14713 if (ill != NULL) { 14714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14715 } else { 14716 BUMP_MIB(&ipst->ips_ip_mib, 14717 ipIfStatsInDiscards); 14718 } 14719 return (B_TRUE); 14720 } 14721 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14722 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14723 /* Copy b_prev - used by ip_mroute_decap */ 14724 to_mp->b_prev = from_mp->b_prev; 14725 from_mp->b_prev = NULL; 14726 } 14727 *first_mpp = first_mp = mp1; 14728 freemsg(mp); 14729 mp = mp1; 14730 *mpp = mp1; 14731 } 14732 14733 ipha = (ipha_t *)mp->b_rptr; 14734 14735 /* 14736 * previous code has a case for M_DATA. 14737 * We want to check how that happens. 14738 */ 14739 ASSERT(first_mp->b_datap->db_type != M_DATA); 14740 switch (first_mp->b_datap->db_type) { 14741 case M_PROTO: 14742 case M_PCPROTO: 14743 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14744 DL_UNITDATA_IND) { 14745 /* Go handle anything other than data elsewhere. */ 14746 ip_rput_dlpi(q, mp); 14747 return (B_TRUE); 14748 } 14749 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14750 /* Ditch the DLPI header. */ 14751 mp1 = mp->b_cont; 14752 ASSERT(first_mp == mp); 14753 *first_mpp = mp1; 14754 freeb(mp); 14755 *mpp = mp1; 14756 return (B_FALSE); 14757 case M_IOCACK: 14758 ip1dbg(("got iocack ")); 14759 iocp = (struct iocblk *)mp->b_rptr; 14760 switch (iocp->ioc_cmd) { 14761 case DL_IOC_HDR_INFO: 14762 ill = (ill_t *)q->q_ptr; 14763 ill_fastpath_ack(ill, mp); 14764 return (B_TRUE); 14765 case SIOCSTUNPARAM: 14766 case OSIOCSTUNPARAM: 14767 /* Go through qwriter_ip */ 14768 break; 14769 case SIOCGTUNPARAM: 14770 case OSIOCGTUNPARAM: 14771 ip_rput_other(NULL, q, mp, NULL); 14772 return (B_TRUE); 14773 default: 14774 putnext(q, mp); 14775 return (B_TRUE); 14776 } 14777 /* FALLTHRU */ 14778 case M_ERROR: 14779 case M_HANGUP: 14780 /* 14781 * Since this is on the ill stream we unconditionally 14782 * bump up the refcount 14783 */ 14784 ill_refhold(ill); 14785 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14786 return (B_TRUE); 14787 case M_CTL: 14788 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14789 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14790 IPHADA_M_CTL)) { 14791 /* 14792 * It's an IPsec accelerated packet. 14793 * Make sure that the ill from which we received the 14794 * packet has enabled IPsec hardware acceleration. 14795 */ 14796 if (!(ill->ill_capabilities & 14797 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14798 /* IPsec kstats: bean counter */ 14799 freemsg(mp); 14800 return (B_TRUE); 14801 } 14802 14803 /* 14804 * Make mp point to the mblk following the M_CTL, 14805 * then process according to type of mp. 14806 * After this processing, first_mp will point to 14807 * the data-attributes and mp to the pkt following 14808 * the M_CTL. 14809 */ 14810 mp = first_mp->b_cont; 14811 if (mp == NULL) { 14812 freemsg(first_mp); 14813 return (B_TRUE); 14814 } 14815 /* 14816 * A Hardware Accelerated packet can only be M_DATA 14817 * ESP or AH packet. 14818 */ 14819 if (mp->b_datap->db_type != M_DATA) { 14820 /* non-M_DATA IPsec accelerated packet */ 14821 IPSECHW_DEBUG(IPSECHW_PKT, 14822 ("non-M_DATA IPsec accelerated pkt\n")); 14823 freemsg(first_mp); 14824 return (B_TRUE); 14825 } 14826 ipha = (ipha_t *)mp->b_rptr; 14827 if (ipha->ipha_protocol != IPPROTO_AH && 14828 ipha->ipha_protocol != IPPROTO_ESP) { 14829 IPSECHW_DEBUG(IPSECHW_PKT, 14830 ("non-M_DATA IPsec accelerated pkt\n")); 14831 freemsg(first_mp); 14832 return (B_TRUE); 14833 } 14834 *mpp = mp; 14835 return (B_FALSE); 14836 } 14837 putnext(q, mp); 14838 return (B_TRUE); 14839 case M_IOCNAK: 14840 ip1dbg(("got iocnak ")); 14841 iocp = (struct iocblk *)mp->b_rptr; 14842 switch (iocp->ioc_cmd) { 14843 case SIOCSTUNPARAM: 14844 case OSIOCSTUNPARAM: 14845 /* 14846 * Since this is on the ill stream we unconditionally 14847 * bump up the refcount 14848 */ 14849 ill_refhold(ill); 14850 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14851 return (B_TRUE); 14852 case DL_IOC_HDR_INFO: 14853 case SIOCGTUNPARAM: 14854 case OSIOCGTUNPARAM: 14855 ip_rput_other(NULL, q, mp, NULL); 14856 return (B_TRUE); 14857 default: 14858 break; 14859 } 14860 /* FALLTHRU */ 14861 default: 14862 putnext(q, mp); 14863 return (B_TRUE); 14864 } 14865 } 14866 14867 /* Read side put procedure. Packets coming from the wire arrive here. */ 14868 void 14869 ip_rput(queue_t *q, mblk_t *mp) 14870 { 14871 ill_t *ill = (ill_t *)q->q_ptr; 14872 ip_stack_t *ipst = ill->ill_ipst; 14873 union DL_primitives *dl; 14874 14875 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14876 14877 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14878 /* 14879 * If things are opening or closing, only accept high-priority 14880 * DLPI messages. (On open ill->ill_ipif has not yet been 14881 * created; on close, things hanging off the ill may have been 14882 * freed already.) 14883 */ 14884 dl = (union DL_primitives *)mp->b_rptr; 14885 if (DB_TYPE(mp) != M_PCPROTO || 14886 dl->dl_primitive == DL_UNITDATA_IND) { 14887 /* 14888 * SIOC[GS]TUNPARAM ioctls can come here. 14889 */ 14890 inet_freemsg(mp); 14891 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14892 "ip_rput_end: q %p (%S)", q, "uninit"); 14893 return; 14894 } 14895 } 14896 14897 /* 14898 * if db_ref > 1 then copymsg and free original. Packet may be 14899 * changed and we do not want the other entity who has a reference to 14900 * this message to trip over the changes. This is a blind change because 14901 * trying to catch all places that might change the packet is too 14902 * difficult. 14903 * 14904 * This corresponds to the fast path case, where we have a chain of 14905 * M_DATA mblks. We check the db_ref count of only the 1st data block 14906 * in the mblk chain. There doesn't seem to be a reason why a device 14907 * driver would send up data with varying db_ref counts in the mblk 14908 * chain. In any case the Fast path is a private interface, and our 14909 * drivers don't do such a thing. Given the above assumption, there is 14910 * no need to walk down the entire mblk chain (which could have a 14911 * potential performance problem) 14912 */ 14913 if (mp->b_datap->db_ref > 1) { 14914 mblk_t *mp1; 14915 boolean_t adjusted = B_FALSE; 14916 IP_STAT(ipst, ip_db_ref); 14917 14918 /* 14919 * The IP_RECVSLLA option depends on having the link layer 14920 * header. First check that: 14921 * a> the underlying device is of type ether, since this 14922 * option is currently supported only over ethernet. 14923 * b> there is enough room to copy over the link layer header. 14924 * 14925 * Once the checks are done, adjust rptr so that the link layer 14926 * header will be copied via copymsg. Note that, IFT_ETHER may 14927 * be returned by some non-ethernet drivers but in this case the 14928 * second check will fail. 14929 */ 14930 if (ill->ill_type == IFT_ETHER && 14931 (mp->b_rptr - mp->b_datap->db_base) >= 14932 sizeof (struct ether_header)) { 14933 mp->b_rptr -= sizeof (struct ether_header); 14934 adjusted = B_TRUE; 14935 } 14936 mp1 = copymsg(mp); 14937 if (mp1 == NULL) { 14938 mp->b_next = NULL; 14939 /* clear b_prev - used by ip_mroute_decap */ 14940 mp->b_prev = NULL; 14941 freemsg(mp); 14942 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14943 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14944 "ip_rput_end: q %p (%S)", q, "copymsg"); 14945 return; 14946 } 14947 if (adjusted) { 14948 /* 14949 * Copy is done. Restore the pointer in the _new_ mblk 14950 */ 14951 mp1->b_rptr += sizeof (struct ether_header); 14952 } 14953 /* Copy b_prev - used by ip_mroute_decap */ 14954 mp1->b_prev = mp->b_prev; 14955 mp->b_prev = NULL; 14956 freemsg(mp); 14957 mp = mp1; 14958 } 14959 14960 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14961 "ip_rput_end: q %p (%S)", q, "end"); 14962 14963 ip_input(ill, NULL, mp, NULL); 14964 } 14965 14966 /* 14967 * Direct read side procedure capable of dealing with chains. GLDv3 based 14968 * drivers call this function directly with mblk chains while STREAMS 14969 * read side procedure ip_rput() calls this for single packet with ip_ring 14970 * set to NULL to process one packet at a time. 14971 * 14972 * The ill will always be valid if this function is called directly from 14973 * the driver. 14974 * 14975 * If ip_input() is called from GLDv3: 14976 * 14977 * - This must be a non-VLAN IP stream. 14978 * - 'mp' is either an untagged or a special priority-tagged packet. 14979 * - Any VLAN tag that was in the MAC header has been stripped. 14980 * 14981 * If the IP header in packet is not 32-bit aligned, every message in the 14982 * chain will be aligned before further operations. This is required on SPARC 14983 * platform. 14984 */ 14985 /* ARGSUSED */ 14986 void 14987 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14988 struct mac_header_info_s *mhip) 14989 { 14990 ipaddr_t dst = NULL; 14991 ipaddr_t prev_dst; 14992 ire_t *ire = NULL; 14993 ipha_t *ipha; 14994 uint_t pkt_len; 14995 ssize_t len; 14996 uint_t opt_len; 14997 int ll_multicast; 14998 int cgtp_flt_pkt; 14999 queue_t *q = ill->ill_rq; 15000 squeue_t *curr_sqp = NULL; 15001 mblk_t *head = NULL; 15002 mblk_t *tail = NULL; 15003 mblk_t *first_mp; 15004 mblk_t *mp; 15005 mblk_t *dmp; 15006 int cnt = 0; 15007 ip_stack_t *ipst = ill->ill_ipst; 15008 15009 ASSERT(mp_chain != NULL); 15010 ASSERT(ill != NULL); 15011 15012 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15013 15014 #define rptr ((uchar_t *)ipha) 15015 15016 while (mp_chain != NULL) { 15017 first_mp = mp = mp_chain; 15018 mp_chain = mp_chain->b_next; 15019 mp->b_next = NULL; 15020 ll_multicast = 0; 15021 15022 /* 15023 * We do ire caching from one iteration to 15024 * another. In the event the packet chain contains 15025 * all packets from the same dst, this caching saves 15026 * an ire_cache_lookup for each of the succeeding 15027 * packets in a packet chain. 15028 */ 15029 prev_dst = dst; 15030 15031 /* 15032 * Check and align the IP header. 15033 */ 15034 if (DB_TYPE(mp) == M_DATA) { 15035 dmp = mp; 15036 } else if (DB_TYPE(mp) == M_PROTO && 15037 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15038 dmp = mp->b_cont; 15039 } else { 15040 dmp = NULL; 15041 } 15042 if (dmp != NULL) { 15043 /* 15044 * IP header ptr not aligned? 15045 * OR IP header not complete in first mblk 15046 */ 15047 if (!OK_32PTR(dmp->b_rptr) || 15048 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15049 if (!ip_check_and_align_header(q, dmp, ipst)) 15050 continue; 15051 } 15052 } 15053 15054 /* 15055 * ip_input fast path 15056 */ 15057 15058 /* mblk type is not M_DATA */ 15059 if (DB_TYPE(mp) != M_DATA) { 15060 if (ip_rput_process_notdata(q, &first_mp, ill, 15061 &ll_multicast, &mp)) 15062 continue; 15063 } 15064 15065 /* Make sure its an M_DATA and that its aligned */ 15066 ASSERT(DB_TYPE(mp) == M_DATA); 15067 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15068 15069 ipha = (ipha_t *)mp->b_rptr; 15070 len = mp->b_wptr - rptr; 15071 pkt_len = ntohs(ipha->ipha_length); 15072 15073 /* 15074 * We must count all incoming packets, even if they end 15075 * up being dropped later on. 15076 */ 15077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15078 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15079 15080 /* multiple mblk or too short */ 15081 len -= pkt_len; 15082 if (len != 0) { 15083 /* 15084 * Make sure we have data length consistent 15085 * with the IP header. 15086 */ 15087 if (mp->b_cont == NULL) { 15088 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15089 BUMP_MIB(ill->ill_ip_mib, 15090 ipIfStatsInHdrErrors); 15091 ip2dbg(("ip_input: drop pkt\n")); 15092 freemsg(mp); 15093 continue; 15094 } 15095 mp->b_wptr = rptr + pkt_len; 15096 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15097 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15098 BUMP_MIB(ill->ill_ip_mib, 15099 ipIfStatsInHdrErrors); 15100 ip2dbg(("ip_input: drop pkt\n")); 15101 freemsg(mp); 15102 continue; 15103 } 15104 (void) adjmsg(mp, -len); 15105 IP_STAT(ipst, ip_multimblk3); 15106 } 15107 } 15108 15109 /* Obtain the dst of the current packet */ 15110 dst = ipha->ipha_dst; 15111 15112 if (IP_LOOPBACK_ADDR(dst) || 15113 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15114 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15115 cmn_err(CE_CONT, "dst %X src %X\n", 15116 dst, ipha->ipha_src); 15117 freemsg(mp); 15118 continue; 15119 } 15120 15121 /* 15122 * The event for packets being received from a 'physical' 15123 * interface is placed after validation of the source and/or 15124 * destination address as being local so that packets can be 15125 * redirected to loopback addresses using ipnat. 15126 */ 15127 DTRACE_PROBE4(ip4__physical__in__start, 15128 ill_t *, ill, ill_t *, NULL, 15129 ipha_t *, ipha, mblk_t *, first_mp); 15130 15131 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15132 ipst->ips_ipv4firewall_physical_in, 15133 ill, NULL, ipha, first_mp, mp, ipst); 15134 15135 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15136 15137 if (first_mp == NULL) { 15138 continue; 15139 } 15140 dst = ipha->ipha_dst; 15141 15142 /* 15143 * Attach any necessary label information to 15144 * this packet 15145 */ 15146 if (is_system_labeled() && 15147 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15148 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15149 freemsg(mp); 15150 continue; 15151 } 15152 15153 /* 15154 * Reuse the cached ire only if the ipha_dst of the previous 15155 * packet is the same as the current packet AND it is not 15156 * INADDR_ANY. 15157 */ 15158 if (!(dst == prev_dst && dst != INADDR_ANY) && 15159 (ire != NULL)) { 15160 ire_refrele(ire); 15161 ire = NULL; 15162 } 15163 opt_len = ipha->ipha_version_and_hdr_length - 15164 IP_SIMPLE_HDR_VERSION; 15165 15166 /* 15167 * Check to see if we can take the fastpath. 15168 * That is possible if the following conditions are met 15169 * o Tsol disabled 15170 * o CGTP disabled 15171 * o ipp_action_count is 0 15172 * o Mobile IP not running 15173 * o no options in the packet 15174 * o not a RSVP packet 15175 * o not a multicast packet 15176 */ 15177 if (!is_system_labeled() && 15178 !ip_cgtp_filter && ipp_action_count == 0 && 15179 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15180 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15181 !ll_multicast && !CLASSD(dst)) { 15182 if (ire == NULL) 15183 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15184 ipst); 15185 15186 /* incoming packet is for forwarding */ 15187 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15188 ire = ip_fast_forward(ire, dst, ill, mp); 15189 continue; 15190 } 15191 /* incoming packet is for local consumption */ 15192 if (ire->ire_type & IRE_LOCAL) 15193 goto local; 15194 } 15195 15196 /* 15197 * Disable ire caching for anything more complex 15198 * than the simple fast path case we checked for above. 15199 */ 15200 if (ire != NULL) { 15201 ire_refrele(ire); 15202 ire = NULL; 15203 } 15204 15205 /* Full-blown slow path */ 15206 if (opt_len != 0) { 15207 if (len != 0) 15208 IP_STAT(ipst, ip_multimblk4); 15209 else 15210 IP_STAT(ipst, ip_ipoptions); 15211 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15212 &dst, ipst)) 15213 continue; 15214 } 15215 15216 /* 15217 * Invoke the CGTP (multirouting) filtering module to process 15218 * the incoming packet. Packets identified as duplicates 15219 * must be discarded. Filtering is active only if the 15220 * the ip_cgtp_filter ndd variable is non-zero. 15221 * 15222 * Only applies to the shared stack since the filter_ops 15223 * do not carry an ip_stack_t or zoneid. 15224 */ 15225 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15226 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15227 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15228 cgtp_flt_pkt = 15229 ip_cgtp_filter_ops->cfo_filter(q, mp); 15230 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15231 freemsg(first_mp); 15232 continue; 15233 } 15234 } 15235 15236 /* 15237 * If rsvpd is running, let RSVP daemon handle its processing 15238 * and forwarding of RSVP multicast/unicast packets. 15239 * If rsvpd is not running but mrouted is running, RSVP 15240 * multicast packets are forwarded as multicast traffic 15241 * and RSVP unicast packets are forwarded by unicast router. 15242 * If neither rsvpd nor mrouted is running, RSVP multicast 15243 * packets are not forwarded, but the unicast packets are 15244 * forwarded like unicast traffic. 15245 */ 15246 if (ipha->ipha_protocol == IPPROTO_RSVP && 15247 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15248 NULL) { 15249 /* RSVP packet and rsvpd running. Treat as ours */ 15250 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15251 /* 15252 * This assumes that we deliver to all streams for 15253 * multicast and broadcast packets. 15254 * We have to force ll_multicast to 1 to handle the 15255 * M_DATA messages passed in from ip_mroute_decap. 15256 */ 15257 dst = INADDR_BROADCAST; 15258 ll_multicast = 1; 15259 } else if (CLASSD(dst)) { 15260 /* packet is multicast */ 15261 mp->b_next = NULL; 15262 if (ip_rput_process_multicast(q, mp, ill, ipha, 15263 &ll_multicast, &dst)) 15264 continue; 15265 } 15266 15267 15268 /* 15269 * Check if the packet is coming from the Mobile IP 15270 * forward tunnel interface 15271 */ 15272 if (ill->ill_srcif_refcnt > 0) { 15273 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15274 NULL, ill, MATCH_IRE_TYPE); 15275 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15276 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15277 15278 /* We need to resolve the link layer info */ 15279 ire_refrele(ire); 15280 ire = NULL; 15281 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15282 ll_multicast, dst); 15283 continue; 15284 } 15285 } 15286 15287 if (ire == NULL) { 15288 ire = ire_cache_lookup(dst, ALL_ZONES, 15289 MBLK_GETLABEL(mp), ipst); 15290 } 15291 15292 /* 15293 * If mipagent is running and reverse tunnel is created as per 15294 * mobile node request, then any packet coming through the 15295 * incoming interface from the mobile-node, should be reverse 15296 * tunneled to it's home agent except those that are destined 15297 * to foreign agent only. 15298 * This needs source address based ire lookup. The routing 15299 * entries for source address based lookup are only created by 15300 * mipagent program only when a reverse tunnel is created. 15301 * Reference : RFC2002, RFC2344 15302 */ 15303 if (ill->ill_mrtun_refcnt > 0) { 15304 ipaddr_t srcaddr; 15305 ire_t *tmp_ire; 15306 15307 tmp_ire = ire; /* Save, we might need it later */ 15308 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15309 ire->ire_type != IRE_BROADCAST)) { 15310 srcaddr = ipha->ipha_src; 15311 ire = ire_mrtun_lookup(srcaddr, ill); 15312 if (ire != NULL) { 15313 /* 15314 * Should not be getting iphada packet 15315 * here. we should only get those for 15316 * IRE_LOCAL traffic, excluded above. 15317 * Fail-safe (drop packet) in the event 15318 * hardware is misbehaving. 15319 */ 15320 if (first_mp != mp) { 15321 /* IPsec KSTATS: beancount me */ 15322 freemsg(first_mp); 15323 } else { 15324 /* 15325 * This packet must be forwarded 15326 * to Reverse Tunnel 15327 */ 15328 ip_mrtun_forward(ire, ill, mp); 15329 } 15330 ire_refrele(ire); 15331 ire = NULL; 15332 if (tmp_ire != NULL) { 15333 ire_refrele(tmp_ire); 15334 tmp_ire = NULL; 15335 } 15336 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15337 "ip_input_end: q %p (%S)", 15338 q, "uninit"); 15339 continue; 15340 } 15341 } 15342 /* 15343 * If this packet is from a non-mobilenode or a 15344 * mobile-node which does not request reverse 15345 * tunnel service 15346 */ 15347 ire = tmp_ire; 15348 } 15349 15350 15351 /* 15352 * If we reach here that means the incoming packet satisfies 15353 * one of the following conditions: 15354 * - packet is from a mobile node which does not request 15355 * reverse tunnel 15356 * - packet is from a non-mobile node, which is the most 15357 * common case 15358 * - packet is from a reverse tunnel enabled mobile node 15359 * and destined to foreign agent only 15360 */ 15361 15362 if (ire == NULL) { 15363 /* 15364 * No IRE for this destination, so it can't be for us. 15365 * Unless we are forwarding, drop the packet. 15366 * We have to let source routed packets through 15367 * since we don't yet know if they are 'ping -l' 15368 * packets i.e. if they will go out over the 15369 * same interface as they came in on. 15370 */ 15371 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15372 if (ire == NULL) 15373 continue; 15374 } 15375 15376 /* 15377 * Broadcast IRE may indicate either broadcast or 15378 * multicast packet 15379 */ 15380 if (ire->ire_type == IRE_BROADCAST) { 15381 /* 15382 * Skip broadcast checks if packet is UDP multicast; 15383 * we'd rather not enter ip_rput_process_broadcast() 15384 * unless the packet is broadcast for real, since 15385 * that routine is a no-op for multicast. 15386 */ 15387 if (ipha->ipha_protocol != IPPROTO_UDP || 15388 !CLASSD(ipha->ipha_dst)) { 15389 ire = ip_rput_process_broadcast(&q, mp, 15390 ire, ipha, ill, dst, cgtp_flt_pkt, 15391 ll_multicast); 15392 if (ire == NULL) 15393 continue; 15394 } 15395 } else if (ire->ire_stq != NULL) { 15396 /* fowarding? */ 15397 ip_rput_process_forward(q, mp, ire, ipha, ill, 15398 ll_multicast); 15399 /* ip_rput_process_forward consumed the packet */ 15400 continue; 15401 } 15402 15403 local: 15404 /* 15405 * If the queue in the ire is different to the ingress queue 15406 * then we need to check to see if we can accept the packet. 15407 * Note that for multicast packets and broadcast packets sent 15408 * to a broadcast address which is shared between multiple 15409 * interfaces we should not do this since we just got a random 15410 * broadcast ire. 15411 */ 15412 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15413 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15414 ill)) == NULL) { 15415 /* Drop packet */ 15416 BUMP_MIB(ill->ill_ip_mib, 15417 ipIfStatsForwProhibits); 15418 freemsg(mp); 15419 continue; 15420 } 15421 if (ire->ire_rfq != NULL) 15422 q = ire->ire_rfq; 15423 } 15424 15425 switch (ipha->ipha_protocol) { 15426 case IPPROTO_TCP: 15427 ASSERT(first_mp == mp); 15428 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15429 mp, 0, q, ip_ring)) != NULL) { 15430 if (curr_sqp == NULL) { 15431 curr_sqp = GET_SQUEUE(mp); 15432 ASSERT(cnt == 0); 15433 cnt++; 15434 head = tail = mp; 15435 } else if (curr_sqp == GET_SQUEUE(mp)) { 15436 ASSERT(tail != NULL); 15437 cnt++; 15438 tail->b_next = mp; 15439 tail = mp; 15440 } else { 15441 /* 15442 * A different squeue. Send the 15443 * chain for the previous squeue on 15444 * its way. This shouldn't happen 15445 * often unless interrupt binding 15446 * changes. 15447 */ 15448 IP_STAT(ipst, ip_input_multi_squeue); 15449 squeue_enter_chain(curr_sqp, head, 15450 tail, cnt, SQTAG_IP_INPUT); 15451 curr_sqp = GET_SQUEUE(mp); 15452 head = mp; 15453 tail = mp; 15454 cnt = 1; 15455 } 15456 } 15457 continue; 15458 case IPPROTO_UDP: 15459 ASSERT(first_mp == mp); 15460 ip_udp_input(q, mp, ipha, ire, ill); 15461 continue; 15462 case IPPROTO_SCTP: 15463 ASSERT(first_mp == mp); 15464 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15465 q, dst); 15466 /* ire has been released by ip_sctp_input */ 15467 ire = NULL; 15468 continue; 15469 default: 15470 ip_proto_input(q, first_mp, ipha, ire, ill); 15471 continue; 15472 } 15473 } 15474 15475 if (ire != NULL) 15476 ire_refrele(ire); 15477 15478 if (head != NULL) 15479 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15480 15481 /* 15482 * This code is there just to make netperf/ttcp look good. 15483 * 15484 * Its possible that after being in polling mode (and having cleared 15485 * the backlog), squeues have turned the interrupt frequency higher 15486 * to improve latency at the expense of more CPU utilization (less 15487 * packets per interrupts or more number of interrupts). Workloads 15488 * like ttcp/netperf do manage to tickle polling once in a while 15489 * but for the remaining time, stay in higher interrupt mode since 15490 * their packet arrival rate is pretty uniform and this shows up 15491 * as higher CPU utilization. Since people care about CPU utilization 15492 * while running netperf/ttcp, turn the interrupt frequency back to 15493 * normal/default if polling has not been used in ip_poll_normal_ticks. 15494 */ 15495 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15496 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15497 ip_ring->rr_poll_state &= ~ILL_POLLING; 15498 ip_ring->rr_blank(ip_ring->rr_handle, 15499 ip_ring->rr_normal_blank_time, 15500 ip_ring->rr_normal_pkt_cnt); 15501 } 15502 } 15503 15504 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15505 "ip_input_end: q %p (%S)", q, "end"); 15506 #undef rptr 15507 } 15508 15509 static void 15510 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15511 t_uscalar_t err) 15512 { 15513 if (dl_err == DL_SYSERR) { 15514 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15515 "%s: %s failed: DL_SYSERR (errno %u)\n", 15516 ill->ill_name, dlpi_prim_str(prim), err); 15517 return; 15518 } 15519 15520 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15521 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15522 dlpi_err_str(dl_err)); 15523 } 15524 15525 /* 15526 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15527 * than DL_UNITDATA_IND messages. If we need to process this message 15528 * exclusively, we call qwriter_ip, in which case we also need to call 15529 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15530 */ 15531 void 15532 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15533 { 15534 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15535 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15536 ill_t *ill = (ill_t *)q->q_ptr; 15537 boolean_t pending; 15538 15539 ip1dbg(("ip_rput_dlpi")); 15540 if (dloa->dl_primitive == DL_ERROR_ACK) { 15541 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15542 "%s (0x%x), unix %u\n", ill->ill_name, 15543 dlpi_prim_str(dlea->dl_error_primitive), 15544 dlea->dl_error_primitive, 15545 dlpi_err_str(dlea->dl_errno), 15546 dlea->dl_errno, 15547 dlea->dl_unix_errno)); 15548 } 15549 15550 /* 15551 * If we received an ACK but didn't send a request for it, then it 15552 * can't be part of any pending operation; discard up-front. 15553 */ 15554 switch (dloa->dl_primitive) { 15555 case DL_NOTIFY_IND: 15556 pending = B_TRUE; 15557 break; 15558 case DL_ERROR_ACK: 15559 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15560 break; 15561 case DL_OK_ACK: 15562 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15563 break; 15564 case DL_INFO_ACK: 15565 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15566 break; 15567 case DL_BIND_ACK: 15568 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15569 break; 15570 case DL_PHYS_ADDR_ACK: 15571 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15572 break; 15573 case DL_NOTIFY_ACK: 15574 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15575 break; 15576 case DL_CONTROL_ACK: 15577 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15578 break; 15579 case DL_CAPABILITY_ACK: 15580 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15581 break; 15582 default: 15583 /* Not a DLPI message we support or were expecting */ 15584 freemsg(mp); 15585 return; 15586 } 15587 15588 if (!pending) { 15589 freemsg(mp); 15590 return; 15591 } 15592 15593 switch (dloa->dl_primitive) { 15594 case DL_ERROR_ACK: 15595 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15596 mutex_enter(&ill->ill_lock); 15597 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15598 cv_signal(&ill->ill_cv); 15599 mutex_exit(&ill->ill_lock); 15600 } 15601 break; 15602 15603 case DL_OK_ACK: 15604 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15605 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15606 switch (dloa->dl_correct_primitive) { 15607 case DL_UNBIND_REQ: 15608 mutex_enter(&ill->ill_lock); 15609 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15610 cv_signal(&ill->ill_cv); 15611 mutex_exit(&ill->ill_lock); 15612 break; 15613 15614 case DL_ENABMULTI_REQ: 15615 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15616 ill->ill_dlpi_multicast_state = IDS_OK; 15617 break; 15618 } 15619 break; 15620 default: 15621 break; 15622 } 15623 15624 /* 15625 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15626 * and we need to become writer to continue to process it. If it's not 15627 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15628 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15629 * some work as part of the current exclusive operation that actually 15630 * is not part of it -- which is wrong, but better than the 15631 * alternative of deadlock (if NEW_OP is always used). Someday, we 15632 * should track which DLPI requests have ACKs that we wait on 15633 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15634 * 15635 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15636 * Since this is on the ill stream we unconditionally bump up the 15637 * refcount without doing ILL_CAN_LOOKUP(). 15638 */ 15639 ill_refhold(ill); 15640 if (dloa->dl_primitive == DL_NOTIFY_IND) 15641 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15642 else 15643 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15644 } 15645 15646 /* 15647 * Handling of DLPI messages that require exclusive access to the ipsq. 15648 * 15649 * Need to do ill_pending_mp_release on ioctl completion, which could 15650 * happen here. (along with mi_copy_done) 15651 */ 15652 /* ARGSUSED */ 15653 static void 15654 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15655 { 15656 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15657 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15658 int err = 0; 15659 ill_t *ill; 15660 ipif_t *ipif = NULL; 15661 mblk_t *mp1 = NULL; 15662 conn_t *connp = NULL; 15663 t_uscalar_t paddrreq; 15664 mblk_t *mp_hw; 15665 boolean_t success; 15666 boolean_t ioctl_aborted = B_FALSE; 15667 boolean_t log = B_TRUE; 15668 hook_nic_event_t *info; 15669 ip_stack_t *ipst; 15670 15671 ip1dbg(("ip_rput_dlpi_writer ..")); 15672 ill = (ill_t *)q->q_ptr; 15673 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15674 15675 ASSERT(IAM_WRITER_ILL(ill)); 15676 15677 ipst = ill->ill_ipst; 15678 15679 /* 15680 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15681 * both are null or non-null. However we can assert that only 15682 * after grabbing the ipsq_lock. So we don't make any assertion 15683 * here and in other places in the code. 15684 */ 15685 ipif = ipsq->ipsq_pending_ipif; 15686 /* 15687 * The current ioctl could have been aborted by the user and a new 15688 * ioctl to bring up another ill could have started. We could still 15689 * get a response from the driver later. 15690 */ 15691 if (ipif != NULL && ipif->ipif_ill != ill) 15692 ioctl_aborted = B_TRUE; 15693 15694 switch (dloa->dl_primitive) { 15695 case DL_ERROR_ACK: 15696 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15697 dlpi_prim_str(dlea->dl_error_primitive))); 15698 15699 switch (dlea->dl_error_primitive) { 15700 case DL_PROMISCON_REQ: 15701 case DL_PROMISCOFF_REQ: 15702 case DL_DISABMULTI_REQ: 15703 case DL_UNBIND_REQ: 15704 case DL_ATTACH_REQ: 15705 case DL_INFO_REQ: 15706 ill_dlpi_done(ill, dlea->dl_error_primitive); 15707 break; 15708 case DL_NOTIFY_REQ: 15709 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15710 log = B_FALSE; 15711 break; 15712 case DL_PHYS_ADDR_REQ: 15713 /* 15714 * For IPv6 only, there are two additional 15715 * phys_addr_req's sent to the driver to get the 15716 * IPv6 token and lla. This allows IP to acquire 15717 * the hardware address format for a given interface 15718 * without having built in knowledge of the hardware 15719 * address. ill_phys_addr_pend keeps track of the last 15720 * DL_PAR sent so we know which response we are 15721 * dealing with. ill_dlpi_done will update 15722 * ill_phys_addr_pend when it sends the next req. 15723 * We don't complete the IOCTL until all three DL_PARs 15724 * have been attempted, so set *_len to 0 and break. 15725 */ 15726 paddrreq = ill->ill_phys_addr_pend; 15727 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15728 if (paddrreq == DL_IPV6_TOKEN) { 15729 ill->ill_token_length = 0; 15730 log = B_FALSE; 15731 break; 15732 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15733 ill->ill_nd_lla_len = 0; 15734 log = B_FALSE; 15735 break; 15736 } 15737 /* 15738 * Something went wrong with the DL_PHYS_ADDR_REQ. 15739 * We presumably have an IOCTL hanging out waiting 15740 * for completion. Find it and complete the IOCTL 15741 * with the error noted. 15742 * However, ill_dl_phys was called on an ill queue 15743 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15744 * set. But the ioctl is known to be pending on ill_wq. 15745 */ 15746 if (!ill->ill_ifname_pending) 15747 break; 15748 ill->ill_ifname_pending = 0; 15749 if (!ioctl_aborted) 15750 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15751 if (mp1 != NULL) { 15752 /* 15753 * This operation (SIOCSLIFNAME) must have 15754 * happened on the ill. Assert there is no conn 15755 */ 15756 ASSERT(connp == NULL); 15757 q = ill->ill_wq; 15758 } 15759 break; 15760 case DL_BIND_REQ: 15761 ill_dlpi_done(ill, DL_BIND_REQ); 15762 if (ill->ill_ifname_pending) 15763 break; 15764 /* 15765 * Something went wrong with the bind. We presumably 15766 * have an IOCTL hanging out waiting for completion. 15767 * Find it, take down the interface that was coming 15768 * up, and complete the IOCTL with the error noted. 15769 */ 15770 if (!ioctl_aborted) 15771 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15772 if (mp1 != NULL) { 15773 /* 15774 * This operation (SIOCSLIFFLAGS) must have 15775 * happened from a conn. 15776 */ 15777 ASSERT(connp != NULL); 15778 q = CONNP_TO_WQ(connp); 15779 if (ill->ill_move_in_progress) { 15780 ILL_CLEAR_MOVE(ill); 15781 } 15782 (void) ipif_down(ipif, NULL, NULL); 15783 /* error is set below the switch */ 15784 } 15785 break; 15786 case DL_ENABMULTI_REQ: 15787 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15788 15789 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15790 ill->ill_dlpi_multicast_state = IDS_FAILED; 15791 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15792 ipif_t *ipif; 15793 15794 printf("ip: joining multicasts failed (%d)" 15795 " on %s - will use link layer " 15796 "broadcasts for multicast\n", 15797 dlea->dl_errno, ill->ill_name); 15798 15799 /* 15800 * Set up the multicast mapping alone. 15801 * writer, so ok to access ill->ill_ipif 15802 * without any lock. 15803 */ 15804 ipif = ill->ill_ipif; 15805 mutex_enter(&ill->ill_phyint->phyint_lock); 15806 ill->ill_phyint->phyint_flags |= 15807 PHYI_MULTI_BCAST; 15808 mutex_exit(&ill->ill_phyint->phyint_lock); 15809 15810 if (!ill->ill_isv6) { 15811 (void) ipif_arp_setup_multicast(ipif, 15812 NULL); 15813 } else { 15814 (void) ipif_ndp_setup_multicast(ipif, 15815 NULL); 15816 } 15817 } 15818 freemsg(mp); /* Don't want to pass this up */ 15819 return; 15820 15821 case DL_CAPABILITY_REQ: 15822 case DL_CONTROL_REQ: 15823 ill_dlpi_done(ill, dlea->dl_error_primitive); 15824 ill->ill_dlpi_capab_state = IDS_FAILED; 15825 freemsg(mp); 15826 return; 15827 } 15828 /* 15829 * Note the error for IOCTL completion (mp1 is set when 15830 * ready to complete ioctl). If ill_ifname_pending_err is 15831 * set, an error occured during plumbing (ill_ifname_pending), 15832 * so we want to report that error. 15833 * 15834 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15835 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15836 * expected to get errack'd if the driver doesn't support 15837 * these flags (e.g. ethernet). log will be set to B_FALSE 15838 * if these error conditions are encountered. 15839 */ 15840 if (mp1 != NULL) { 15841 if (ill->ill_ifname_pending_err != 0) { 15842 err = ill->ill_ifname_pending_err; 15843 ill->ill_ifname_pending_err = 0; 15844 } else { 15845 err = dlea->dl_unix_errno ? 15846 dlea->dl_unix_errno : ENXIO; 15847 } 15848 /* 15849 * If we're plumbing an interface and an error hasn't already 15850 * been saved, set ill_ifname_pending_err to the error passed 15851 * up. Ignore the error if log is B_FALSE (see comment above). 15852 */ 15853 } else if (log && ill->ill_ifname_pending && 15854 ill->ill_ifname_pending_err == 0) { 15855 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15856 dlea->dl_unix_errno : ENXIO; 15857 } 15858 15859 if (log) 15860 ip_dlpi_error(ill, dlea->dl_error_primitive, 15861 dlea->dl_errno, dlea->dl_unix_errno); 15862 break; 15863 case DL_CAPABILITY_ACK: { 15864 boolean_t reneg_flag = B_FALSE; 15865 /* Call a routine to handle this one. */ 15866 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15867 /* 15868 * Check if the ACK is due to renegotiation case since we 15869 * will need to send a new CAPABILITY_REQ later. 15870 */ 15871 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15872 /* This is the ack for a renogiation case */ 15873 reneg_flag = B_TRUE; 15874 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15875 } 15876 ill_capability_ack(ill, mp); 15877 if (reneg_flag) 15878 ill_capability_probe(ill); 15879 break; 15880 } 15881 case DL_CONTROL_ACK: 15882 /* We treat all of these as "fire and forget" */ 15883 ill_dlpi_done(ill, DL_CONTROL_REQ); 15884 break; 15885 case DL_INFO_ACK: 15886 /* Call a routine to handle this one. */ 15887 ill_dlpi_done(ill, DL_INFO_REQ); 15888 ip_ll_subnet_defaults(ill, mp); 15889 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15890 return; 15891 case DL_BIND_ACK: 15892 /* 15893 * We should have an IOCTL waiting on this unless 15894 * sent by ill_dl_phys, in which case just return 15895 */ 15896 ill_dlpi_done(ill, DL_BIND_REQ); 15897 if (ill->ill_ifname_pending) 15898 break; 15899 15900 if (!ioctl_aborted) 15901 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15902 if (mp1 == NULL) 15903 break; 15904 /* 15905 * Because mp1 was added by ill_dl_up(), and it always 15906 * passes a valid connp, connp must be valid here. 15907 */ 15908 ASSERT(connp != NULL); 15909 q = CONNP_TO_WQ(connp); 15910 15911 /* 15912 * We are exclusive. So nothing can change even after 15913 * we get the pending mp. If need be we can put it back 15914 * and restart, as in calling ipif_arp_up() below. 15915 */ 15916 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15917 15918 mutex_enter(&ill->ill_lock); 15919 15920 ill->ill_dl_up = 1; 15921 15922 if ((info = ill->ill_nic_event_info) != NULL) { 15923 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15924 "attached for %s\n", info->hne_event, 15925 ill->ill_name)); 15926 if (info->hne_data != NULL) 15927 kmem_free(info->hne_data, info->hne_datalen); 15928 kmem_free(info, sizeof (hook_nic_event_t)); 15929 } 15930 15931 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15932 if (info != NULL) { 15933 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15934 info->hne_lif = 0; 15935 info->hne_event = NE_UP; 15936 info->hne_data = NULL; 15937 info->hne_datalen = 0; 15938 info->hne_family = ill->ill_isv6 ? 15939 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15940 } else 15941 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15942 "event information for %s (ENOMEM)\n", 15943 ill->ill_name)); 15944 15945 ill->ill_nic_event_info = info; 15946 15947 mutex_exit(&ill->ill_lock); 15948 15949 /* 15950 * Now bring up the resolver; when that is complete, we'll 15951 * create IREs. Note that we intentionally mirror what 15952 * ipif_up() would have done, because we got here by way of 15953 * ill_dl_up(), which stopped ipif_up()'s processing. 15954 */ 15955 if (ill->ill_isv6) { 15956 /* 15957 * v6 interfaces. 15958 * Unlike ARP which has to do another bind 15959 * and attach, once we get here we are 15960 * done with NDP. Except in the case of 15961 * ILLF_XRESOLV, in which case we send an 15962 * AR_INTERFACE_UP to the external resolver. 15963 * If all goes well, the ioctl will complete 15964 * in ip_rput(). If there's an error, we 15965 * complete it here. 15966 */ 15967 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15968 if (err == 0) { 15969 if (ill->ill_flags & ILLF_XRESOLV) { 15970 mutex_enter(&connp->conn_lock); 15971 mutex_enter(&ill->ill_lock); 15972 success = ipsq_pending_mp_add( 15973 connp, ipif, q, mp1, 0); 15974 mutex_exit(&ill->ill_lock); 15975 mutex_exit(&connp->conn_lock); 15976 if (success) { 15977 err = ipif_resolver_up(ipif, 15978 Res_act_initial); 15979 if (err == EINPROGRESS) { 15980 freemsg(mp); 15981 return; 15982 } 15983 ASSERT(err != 0); 15984 mp1 = ipsq_pending_mp_get(ipsq, 15985 &connp); 15986 ASSERT(mp1 != NULL); 15987 } else { 15988 /* conn has started closing */ 15989 err = EINTR; 15990 } 15991 } else { /* Non XRESOLV interface */ 15992 (void) ipif_resolver_up(ipif, 15993 Res_act_initial); 15994 err = ipif_up_done_v6(ipif); 15995 } 15996 } 15997 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15998 /* 15999 * ARP and other v4 external resolvers. 16000 * Leave the pending mblk intact so that 16001 * the ioctl completes in ip_rput(). 16002 */ 16003 mutex_enter(&connp->conn_lock); 16004 mutex_enter(&ill->ill_lock); 16005 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16006 mutex_exit(&ill->ill_lock); 16007 mutex_exit(&connp->conn_lock); 16008 if (success) { 16009 err = ipif_resolver_up(ipif, Res_act_initial); 16010 if (err == EINPROGRESS) { 16011 freemsg(mp); 16012 return; 16013 } 16014 ASSERT(err != 0); 16015 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16016 } else { 16017 /* The conn has started closing */ 16018 err = EINTR; 16019 } 16020 } else { 16021 /* 16022 * This one is complete. Reply to pending ioctl. 16023 */ 16024 (void) ipif_resolver_up(ipif, Res_act_initial); 16025 err = ipif_up_done(ipif); 16026 } 16027 16028 if ((err == 0) && (ill->ill_up_ipifs)) { 16029 err = ill_up_ipifs(ill, q, mp1); 16030 if (err == EINPROGRESS) { 16031 freemsg(mp); 16032 return; 16033 } 16034 } 16035 16036 if (ill->ill_up_ipifs) { 16037 ill_group_cleanup(ill); 16038 } 16039 16040 break; 16041 case DL_NOTIFY_IND: { 16042 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16043 ire_t *ire; 16044 boolean_t need_ire_walk_v4 = B_FALSE; 16045 boolean_t need_ire_walk_v6 = B_FALSE; 16046 16047 switch (notify->dl_notification) { 16048 case DL_NOTE_PHYS_ADDR: 16049 err = ill_set_phys_addr(ill, mp); 16050 break; 16051 16052 case DL_NOTE_FASTPATH_FLUSH: 16053 ill_fastpath_flush(ill); 16054 break; 16055 16056 case DL_NOTE_SDU_SIZE: 16057 /* 16058 * Change the MTU size of the interface, of all 16059 * attached ipif's, and of all relevant ire's. The 16060 * new value's a uint32_t at notify->dl_data. 16061 * Mtu change Vs. new ire creation - protocol below. 16062 * 16063 * a Mark the ipif as IPIF_CHANGING. 16064 * b Set the new mtu in the ipif. 16065 * c Change the ire_max_frag on all affected ires 16066 * d Unmark the IPIF_CHANGING 16067 * 16068 * To see how the protocol works, assume an interface 16069 * route is also being added simultaneously by 16070 * ip_rt_add and let 'ipif' be the ipif referenced by 16071 * the ire. If the ire is created before step a, 16072 * it will be cleaned up by step c. If the ire is 16073 * created after step d, it will see the new value of 16074 * ipif_mtu. Any attempt to create the ire between 16075 * steps a to d will fail because of the IPIF_CHANGING 16076 * flag. Note that ire_create() is passed a pointer to 16077 * the ipif_mtu, and not the value. During ire_add 16078 * under the bucket lock, the ire_max_frag of the 16079 * new ire being created is set from the ipif/ire from 16080 * which it is being derived. 16081 */ 16082 mutex_enter(&ill->ill_lock); 16083 ill->ill_max_frag = (uint_t)notify->dl_data; 16084 16085 /* 16086 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16087 * leave it alone 16088 */ 16089 if (ill->ill_mtu_userspecified) { 16090 mutex_exit(&ill->ill_lock); 16091 break; 16092 } 16093 ill->ill_max_mtu = ill->ill_max_frag; 16094 if (ill->ill_isv6) { 16095 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16096 ill->ill_max_mtu = IPV6_MIN_MTU; 16097 } else { 16098 if (ill->ill_max_mtu < IP_MIN_MTU) 16099 ill->ill_max_mtu = IP_MIN_MTU; 16100 } 16101 for (ipif = ill->ill_ipif; ipif != NULL; 16102 ipif = ipif->ipif_next) { 16103 /* 16104 * Don't override the mtu if the user 16105 * has explicitly set it. 16106 */ 16107 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16108 continue; 16109 ipif->ipif_mtu = (uint_t)notify->dl_data; 16110 if (ipif->ipif_isv6) 16111 ire = ipif_to_ire_v6(ipif); 16112 else 16113 ire = ipif_to_ire(ipif); 16114 if (ire != NULL) { 16115 ire->ire_max_frag = ipif->ipif_mtu; 16116 ire_refrele(ire); 16117 } 16118 if (ipif->ipif_flags & IPIF_UP) { 16119 if (ill->ill_isv6) 16120 need_ire_walk_v6 = B_TRUE; 16121 else 16122 need_ire_walk_v4 = B_TRUE; 16123 } 16124 } 16125 mutex_exit(&ill->ill_lock); 16126 if (need_ire_walk_v4) 16127 ire_walk_v4(ill_mtu_change, (char *)ill, 16128 ALL_ZONES, ipst); 16129 if (need_ire_walk_v6) 16130 ire_walk_v6(ill_mtu_change, (char *)ill, 16131 ALL_ZONES, ipst); 16132 break; 16133 case DL_NOTE_LINK_UP: 16134 case DL_NOTE_LINK_DOWN: { 16135 /* 16136 * We are writer. ill / phyint / ipsq assocs stable. 16137 * The RUNNING flag reflects the state of the link. 16138 */ 16139 phyint_t *phyint = ill->ill_phyint; 16140 uint64_t new_phyint_flags; 16141 boolean_t changed = B_FALSE; 16142 boolean_t went_up; 16143 16144 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16145 mutex_enter(&phyint->phyint_lock); 16146 new_phyint_flags = went_up ? 16147 phyint->phyint_flags | PHYI_RUNNING : 16148 phyint->phyint_flags & ~PHYI_RUNNING; 16149 if (new_phyint_flags != phyint->phyint_flags) { 16150 phyint->phyint_flags = new_phyint_flags; 16151 changed = B_TRUE; 16152 } 16153 mutex_exit(&phyint->phyint_lock); 16154 /* 16155 * ill_restart_dad handles the DAD restart and routing 16156 * socket notification logic. 16157 */ 16158 if (changed) { 16159 ill_restart_dad(phyint->phyint_illv4, went_up); 16160 ill_restart_dad(phyint->phyint_illv6, went_up); 16161 } 16162 break; 16163 } 16164 case DL_NOTE_PROMISC_ON_PHYS: 16165 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16166 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16167 mutex_enter(&ill->ill_lock); 16168 ill->ill_promisc_on_phys = B_TRUE; 16169 mutex_exit(&ill->ill_lock); 16170 break; 16171 case DL_NOTE_PROMISC_OFF_PHYS: 16172 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16173 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16174 mutex_enter(&ill->ill_lock); 16175 ill->ill_promisc_on_phys = B_FALSE; 16176 mutex_exit(&ill->ill_lock); 16177 break; 16178 case DL_NOTE_CAPAB_RENEG: 16179 /* 16180 * Something changed on the driver side. 16181 * It wants us to renegotiate the capabilities 16182 * on this ill. The most likely cause is the 16183 * aggregation interface under us where a 16184 * port got added or went away. 16185 * 16186 * We reset the capabilities and set the 16187 * state to IDS_RENG so that when the ack 16188 * comes back, we can start the 16189 * renegotiation process. 16190 */ 16191 ill_capability_reset(ill); 16192 ill->ill_dlpi_capab_state = IDS_RENEG; 16193 break; 16194 default: 16195 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16196 "type 0x%x for DL_NOTIFY_IND\n", 16197 notify->dl_notification)); 16198 break; 16199 } 16200 16201 /* 16202 * As this is an asynchronous operation, we 16203 * should not call ill_dlpi_done 16204 */ 16205 break; 16206 } 16207 case DL_NOTIFY_ACK: { 16208 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16209 16210 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16211 ill->ill_note_link = 1; 16212 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16213 break; 16214 } 16215 case DL_PHYS_ADDR_ACK: { 16216 /* 16217 * As part of plumbing the interface via SIOCSLIFNAME, 16218 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16219 * whose answers we receive here. As each answer is received, 16220 * we call ill_dlpi_done() to dispatch the next request as 16221 * we're processing the current one. Once all answers have 16222 * been received, we use ipsq_pending_mp_get() to dequeue the 16223 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16224 * is invoked from an ill queue, conn_oper_pending_ill is not 16225 * available, but we know the ioctl is pending on ill_wq.) 16226 */ 16227 uint_t paddrlen, paddroff; 16228 16229 paddrreq = ill->ill_phys_addr_pend; 16230 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16231 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16232 16233 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16234 if (paddrreq == DL_IPV6_TOKEN) { 16235 /* 16236 * bcopy to low-order bits of ill_token 16237 * 16238 * XXX Temporary hack - currently, all known tokens 16239 * are 64 bits, so I'll cheat for the moment. 16240 */ 16241 bcopy(mp->b_rptr + paddroff, 16242 &ill->ill_token.s6_addr32[2], paddrlen); 16243 ill->ill_token_length = paddrlen; 16244 break; 16245 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16246 ASSERT(ill->ill_nd_lla_mp == NULL); 16247 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16248 mp = NULL; 16249 break; 16250 } 16251 16252 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16253 ASSERT(ill->ill_phys_addr_mp == NULL); 16254 if (!ill->ill_ifname_pending) 16255 break; 16256 ill->ill_ifname_pending = 0; 16257 if (!ioctl_aborted) 16258 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16259 if (mp1 != NULL) { 16260 ASSERT(connp == NULL); 16261 q = ill->ill_wq; 16262 } 16263 /* 16264 * If any error acks received during the plumbing sequence, 16265 * ill_ifname_pending_err will be set. Break out and send up 16266 * the error to the pending ioctl. 16267 */ 16268 if (ill->ill_ifname_pending_err != 0) { 16269 err = ill->ill_ifname_pending_err; 16270 ill->ill_ifname_pending_err = 0; 16271 break; 16272 } 16273 16274 ill->ill_phys_addr_mp = mp; 16275 ill->ill_phys_addr = mp->b_rptr + paddroff; 16276 mp = NULL; 16277 16278 /* 16279 * If paddrlen is zero, the DLPI provider doesn't support 16280 * physical addresses. The other two tests were historical 16281 * workarounds for bugs in our former PPP implementation, but 16282 * now other things have grown dependencies on them -- e.g., 16283 * the tun module specifies a dl_addr_length of zero in its 16284 * DL_BIND_ACK, but then specifies an incorrect value in its 16285 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16286 * but only after careful testing ensures that all dependent 16287 * broken DLPI providers have been fixed. 16288 */ 16289 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16290 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16291 ill->ill_phys_addr = NULL; 16292 } else if (paddrlen != ill->ill_phys_addr_length) { 16293 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16294 paddrlen, ill->ill_phys_addr_length)); 16295 err = EINVAL; 16296 break; 16297 } 16298 16299 if (ill->ill_nd_lla_mp == NULL) { 16300 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16301 err = ENOMEM; 16302 break; 16303 } 16304 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16305 } 16306 16307 /* 16308 * Set the interface token. If the zeroth interface address 16309 * is unspecified, then set it to the link local address. 16310 */ 16311 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16312 (void) ill_setdefaulttoken(ill); 16313 16314 ASSERT(ill->ill_ipif->ipif_id == 0); 16315 if (ipif != NULL && 16316 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16317 (void) ipif_setlinklocal(ipif); 16318 } 16319 break; 16320 } 16321 case DL_OK_ACK: 16322 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16323 dlpi_prim_str((int)dloa->dl_correct_primitive), 16324 dloa->dl_correct_primitive)); 16325 switch (dloa->dl_correct_primitive) { 16326 case DL_PROMISCON_REQ: 16327 case DL_PROMISCOFF_REQ: 16328 case DL_ENABMULTI_REQ: 16329 case DL_DISABMULTI_REQ: 16330 case DL_UNBIND_REQ: 16331 case DL_ATTACH_REQ: 16332 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16333 break; 16334 } 16335 break; 16336 default: 16337 break; 16338 } 16339 16340 freemsg(mp); 16341 if (mp1 != NULL) { 16342 /* 16343 * The operation must complete without EINPROGRESS 16344 * since ipsq_pending_mp_get() has removed the mblk 16345 * from ipsq_pending_mp. Otherwise, the operation 16346 * will be stuck forever in the ipsq. 16347 */ 16348 ASSERT(err != EINPROGRESS); 16349 16350 switch (ipsq->ipsq_current_ioctl) { 16351 case 0: 16352 ipsq_current_finish(ipsq); 16353 break; 16354 16355 case SIOCLIFADDIF: 16356 case SIOCSLIFNAME: 16357 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16358 break; 16359 16360 default: 16361 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16362 break; 16363 } 16364 } 16365 } 16366 16367 /* 16368 * ip_rput_other is called by ip_rput to handle messages modifying the global 16369 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16370 */ 16371 /* ARGSUSED */ 16372 void 16373 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16374 { 16375 ill_t *ill; 16376 struct iocblk *iocp; 16377 mblk_t *mp1; 16378 conn_t *connp = NULL; 16379 16380 ip1dbg(("ip_rput_other ")); 16381 ill = (ill_t *)q->q_ptr; 16382 /* 16383 * This routine is not a writer in the case of SIOCGTUNPARAM 16384 * in which case ipsq is NULL. 16385 */ 16386 if (ipsq != NULL) { 16387 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16388 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16389 } 16390 16391 switch (mp->b_datap->db_type) { 16392 case M_ERROR: 16393 case M_HANGUP: 16394 /* 16395 * The device has a problem. We force the ILL down. It can 16396 * be brought up again manually using SIOCSIFFLAGS (via 16397 * ifconfig or equivalent). 16398 */ 16399 ASSERT(ipsq != NULL); 16400 if (mp->b_rptr < mp->b_wptr) 16401 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16402 if (ill->ill_error == 0) 16403 ill->ill_error = ENXIO; 16404 if (!ill_down_start(q, mp)) 16405 return; 16406 ipif_all_down_tail(ipsq, q, mp, NULL); 16407 break; 16408 case M_IOCACK: 16409 iocp = (struct iocblk *)mp->b_rptr; 16410 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16411 switch (iocp->ioc_cmd) { 16412 case SIOCSTUNPARAM: 16413 case OSIOCSTUNPARAM: 16414 ASSERT(ipsq != NULL); 16415 /* 16416 * Finish socket ioctl passed through to tun. 16417 * We should have an IOCTL waiting on this. 16418 */ 16419 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16420 if (ill->ill_isv6) { 16421 struct iftun_req *ta; 16422 16423 /* 16424 * if a source or destination is 16425 * being set, try and set the link 16426 * local address for the tunnel 16427 */ 16428 ta = (struct iftun_req *)mp->b_cont-> 16429 b_cont->b_rptr; 16430 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16431 ipif_set_tun_llink(ill, ta); 16432 } 16433 16434 } 16435 if (mp1 != NULL) { 16436 /* 16437 * Now copy back the b_next/b_prev used by 16438 * mi code for the mi_copy* functions. 16439 * See ip_sioctl_tunparam() for the reason. 16440 * Also protect against missing b_cont. 16441 */ 16442 if (mp->b_cont != NULL) { 16443 mp->b_cont->b_next = 16444 mp1->b_cont->b_next; 16445 mp->b_cont->b_prev = 16446 mp1->b_cont->b_prev; 16447 } 16448 inet_freemsg(mp1); 16449 ASSERT(connp != NULL); 16450 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16451 iocp->ioc_error, NO_COPYOUT, ipsq); 16452 } else { 16453 ASSERT(connp == NULL); 16454 putnext(q, mp); 16455 } 16456 break; 16457 case SIOCGTUNPARAM: 16458 case OSIOCGTUNPARAM: 16459 /* 16460 * This is really M_IOCDATA from the tunnel driver. 16461 * convert back and complete the ioctl. 16462 * We should have an IOCTL waiting on this. 16463 */ 16464 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16465 if (mp1) { 16466 /* 16467 * Now copy back the b_next/b_prev used by 16468 * mi code for the mi_copy* functions. 16469 * See ip_sioctl_tunparam() for the reason. 16470 * Also protect against missing b_cont. 16471 */ 16472 if (mp->b_cont != NULL) { 16473 mp->b_cont->b_next = 16474 mp1->b_cont->b_next; 16475 mp->b_cont->b_prev = 16476 mp1->b_cont->b_prev; 16477 } 16478 inet_freemsg(mp1); 16479 if (iocp->ioc_error == 0) 16480 mp->b_datap->db_type = M_IOCDATA; 16481 ASSERT(connp != NULL); 16482 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16483 iocp->ioc_error, COPYOUT, NULL); 16484 } else { 16485 ASSERT(connp == NULL); 16486 putnext(q, mp); 16487 } 16488 break; 16489 default: 16490 break; 16491 } 16492 break; 16493 case M_IOCNAK: 16494 iocp = (struct iocblk *)mp->b_rptr; 16495 16496 switch (iocp->ioc_cmd) { 16497 int mode; 16498 16499 case DL_IOC_HDR_INFO: 16500 /* 16501 * If this was the first attempt turn of the 16502 * fastpath probing. 16503 */ 16504 mutex_enter(&ill->ill_lock); 16505 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16506 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16507 mutex_exit(&ill->ill_lock); 16508 ill_fastpath_nack(ill); 16509 ip1dbg(("ip_rput: DLPI fastpath off on " 16510 "interface %s\n", 16511 ill->ill_name)); 16512 } else { 16513 mutex_exit(&ill->ill_lock); 16514 } 16515 freemsg(mp); 16516 break; 16517 case SIOCSTUNPARAM: 16518 case OSIOCSTUNPARAM: 16519 ASSERT(ipsq != NULL); 16520 /* 16521 * Finish socket ioctl passed through to tun 16522 * We should have an IOCTL waiting on this. 16523 */ 16524 /* FALLTHRU */ 16525 case SIOCGTUNPARAM: 16526 case OSIOCGTUNPARAM: 16527 /* 16528 * This is really M_IOCDATA from the tunnel driver. 16529 * convert back and complete the ioctl. 16530 * We should have an IOCTL waiting on this. 16531 */ 16532 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16533 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16534 mp1 = ill_pending_mp_get(ill, &connp, 16535 iocp->ioc_id); 16536 mode = COPYOUT; 16537 ipsq = NULL; 16538 } else { 16539 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16540 mode = NO_COPYOUT; 16541 } 16542 if (mp1 != NULL) { 16543 /* 16544 * Now copy back the b_next/b_prev used by 16545 * mi code for the mi_copy* functions. 16546 * See ip_sioctl_tunparam() for the reason. 16547 * Also protect against missing b_cont. 16548 */ 16549 if (mp->b_cont != NULL) { 16550 mp->b_cont->b_next = 16551 mp1->b_cont->b_next; 16552 mp->b_cont->b_prev = 16553 mp1->b_cont->b_prev; 16554 } 16555 inet_freemsg(mp1); 16556 if (iocp->ioc_error == 0) 16557 iocp->ioc_error = EINVAL; 16558 ASSERT(connp != NULL); 16559 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16560 iocp->ioc_error, mode, ipsq); 16561 } else { 16562 ASSERT(connp == NULL); 16563 putnext(q, mp); 16564 } 16565 break; 16566 default: 16567 break; 16568 } 16569 default: 16570 break; 16571 } 16572 } 16573 16574 /* 16575 * NOTE : This function does not ire_refrele the ire argument passed in. 16576 * 16577 * IPQoS notes 16578 * IP policy is invoked twice for a forwarded packet, once on the read side 16579 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16580 * enabled. An additional parameter, in_ill, has been added for this purpose. 16581 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16582 * because ip_mroute drops this information. 16583 * 16584 */ 16585 void 16586 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16587 { 16588 uint32_t old_pkt_len; 16589 uint32_t pkt_len; 16590 queue_t *q; 16591 uint32_t sum; 16592 #define rptr ((uchar_t *)ipha) 16593 uint32_t max_frag; 16594 uint32_t ill_index; 16595 ill_t *out_ill; 16596 mib2_ipIfStatsEntry_t *mibptr; 16597 ip_stack_t *ipst = in_ill->ill_ipst; 16598 16599 /* Get the ill_index of the incoming ILL */ 16600 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16601 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16602 16603 /* Initiate Read side IPPF processing */ 16604 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16605 ip_process(IPP_FWD_IN, &mp, ill_index); 16606 if (mp == NULL) { 16607 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16608 "during IPPF processing\n")); 16609 return; 16610 } 16611 } 16612 16613 /* Adjust the checksum to reflect the ttl decrement. */ 16614 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16615 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16616 16617 if (ipha->ipha_ttl-- <= 1) { 16618 if (ip_csum_hdr(ipha)) { 16619 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16620 goto drop_pkt; 16621 } 16622 /* 16623 * Note: ire_stq this will be NULL for multicast 16624 * datagrams using the long path through arp (the IRE 16625 * is not an IRE_CACHE). This should not cause 16626 * problems since we don't generate ICMP errors for 16627 * multicast packets. 16628 */ 16629 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16630 q = ire->ire_stq; 16631 if (q != NULL) { 16632 /* Sent by forwarding path, and router is global zone */ 16633 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16634 GLOBAL_ZONEID, ipst); 16635 } else 16636 freemsg(mp); 16637 return; 16638 } 16639 16640 /* 16641 * Don't forward if the interface is down 16642 */ 16643 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16644 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16645 ip2dbg(("ip_rput_forward:interface is down\n")); 16646 goto drop_pkt; 16647 } 16648 16649 /* Get the ill_index of the outgoing ILL */ 16650 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16651 16652 out_ill = ire->ire_ipif->ipif_ill; 16653 16654 DTRACE_PROBE4(ip4__forwarding__start, 16655 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16656 16657 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16658 ipst->ips_ipv4firewall_forwarding, 16659 in_ill, out_ill, ipha, mp, mp, ipst); 16660 16661 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16662 16663 if (mp == NULL) 16664 return; 16665 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16666 16667 if (is_system_labeled()) { 16668 mblk_t *mp1; 16669 16670 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16671 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16672 goto drop_pkt; 16673 } 16674 /* Size may have changed */ 16675 mp = mp1; 16676 ipha = (ipha_t *)mp->b_rptr; 16677 pkt_len = ntohs(ipha->ipha_length); 16678 } 16679 16680 /* Check if there are options to update */ 16681 if (!IS_SIMPLE_IPH(ipha)) { 16682 if (ip_csum_hdr(ipha)) { 16683 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16684 goto drop_pkt; 16685 } 16686 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16687 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16688 return; 16689 } 16690 16691 ipha->ipha_hdr_checksum = 0; 16692 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16693 } 16694 max_frag = ire->ire_max_frag; 16695 if (pkt_len > max_frag) { 16696 /* 16697 * It needs fragging on its way out. We haven't 16698 * verified the header checksum yet. Since we 16699 * are going to put a surely good checksum in the 16700 * outgoing header, we have to make sure that it 16701 * was good coming in. 16702 */ 16703 if (ip_csum_hdr(ipha)) { 16704 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16705 goto drop_pkt; 16706 } 16707 /* Initiate Write side IPPF processing */ 16708 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16709 ip_process(IPP_FWD_OUT, &mp, ill_index); 16710 if (mp == NULL) { 16711 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16712 " during IPPF processing\n")); 16713 return; 16714 } 16715 } 16716 /* 16717 * Handle labeled packet resizing. 16718 * 16719 * If we have added a label, inform ip_wput_frag() of its 16720 * effect on the MTU for ICMP messages. 16721 */ 16722 if (pkt_len > old_pkt_len) { 16723 uint32_t secopt_size; 16724 16725 secopt_size = pkt_len - old_pkt_len; 16726 if (secopt_size < max_frag) 16727 max_frag -= secopt_size; 16728 } 16729 16730 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16731 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16732 return; 16733 } 16734 16735 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16736 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16737 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16738 ipst->ips_ipv4firewall_physical_out, 16739 NULL, out_ill, ipha, mp, mp, ipst); 16740 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16741 if (mp == NULL) 16742 return; 16743 16744 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16745 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16746 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16747 /* ip_xmit_v4 always consumes the packet */ 16748 return; 16749 16750 drop_pkt:; 16751 ip1dbg(("ip_rput_forward: drop pkt\n")); 16752 freemsg(mp); 16753 #undef rptr 16754 } 16755 16756 void 16757 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16758 { 16759 ire_t *ire; 16760 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16761 16762 ASSERT(!ipif->ipif_isv6); 16763 /* 16764 * Find an IRE which matches the destination and the outgoing 16765 * queue in the cache table. All we need is an IRE_CACHE which 16766 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16767 * then it is enough to have some IRE_CACHE in the group. 16768 */ 16769 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16770 dst = ipif->ipif_pp_dst_addr; 16771 16772 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16773 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16774 if (ire == NULL) { 16775 /* 16776 * Mark this packet to make it be delivered to 16777 * ip_rput_forward after the new ire has been 16778 * created. 16779 */ 16780 mp->b_prev = NULL; 16781 mp->b_next = mp; 16782 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16783 NULL, 0, GLOBAL_ZONEID, &zero_info); 16784 } else { 16785 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16786 IRE_REFRELE(ire); 16787 } 16788 } 16789 16790 /* Update any source route, record route or timestamp options */ 16791 static int 16792 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16793 { 16794 ipoptp_t opts; 16795 uchar_t *opt; 16796 uint8_t optval; 16797 uint8_t optlen; 16798 ipaddr_t dst; 16799 uint32_t ts; 16800 ire_t *dst_ire = NULL; 16801 ire_t *tmp_ire = NULL; 16802 timestruc_t now; 16803 16804 ip2dbg(("ip_rput_forward_options\n")); 16805 dst = ipha->ipha_dst; 16806 for (optval = ipoptp_first(&opts, ipha); 16807 optval != IPOPT_EOL; 16808 optval = ipoptp_next(&opts)) { 16809 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16810 opt = opts.ipoptp_cur; 16811 optlen = opts.ipoptp_len; 16812 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16813 optval, opts.ipoptp_len)); 16814 switch (optval) { 16815 uint32_t off; 16816 case IPOPT_SSRR: 16817 case IPOPT_LSRR: 16818 /* Check if adminstratively disabled */ 16819 if (!ipst->ips_ip_forward_src_routed) { 16820 if (ire->ire_stq != NULL) { 16821 /* 16822 * Sent by forwarding path, and router 16823 * is global zone 16824 */ 16825 icmp_unreachable(ire->ire_stq, mp, 16826 ICMP_SOURCE_ROUTE_FAILED, 16827 GLOBAL_ZONEID, ipst); 16828 } else { 16829 ip0dbg(("ip_rput_forward_options: " 16830 "unable to send unreach\n")); 16831 freemsg(mp); 16832 } 16833 return (-1); 16834 } 16835 16836 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16837 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16838 if (dst_ire == NULL) { 16839 /* 16840 * Must be partial since ip_rput_options 16841 * checked for strict. 16842 */ 16843 break; 16844 } 16845 off = opt[IPOPT_OFFSET]; 16846 off--; 16847 redo_srr: 16848 if (optlen < IP_ADDR_LEN || 16849 off > optlen - IP_ADDR_LEN) { 16850 /* End of source route */ 16851 ip1dbg(( 16852 "ip_rput_forward_options: end of SR\n")); 16853 ire_refrele(dst_ire); 16854 break; 16855 } 16856 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16857 bcopy(&ire->ire_src_addr, (char *)opt + off, 16858 IP_ADDR_LEN); 16859 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16860 ntohl(dst))); 16861 16862 /* 16863 * Check if our address is present more than 16864 * once as consecutive hops in source route. 16865 */ 16866 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16867 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16868 if (tmp_ire != NULL) { 16869 ire_refrele(tmp_ire); 16870 off += IP_ADDR_LEN; 16871 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16872 goto redo_srr; 16873 } 16874 ipha->ipha_dst = dst; 16875 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16876 ire_refrele(dst_ire); 16877 break; 16878 case IPOPT_RR: 16879 off = opt[IPOPT_OFFSET]; 16880 off--; 16881 if (optlen < IP_ADDR_LEN || 16882 off > optlen - IP_ADDR_LEN) { 16883 /* No more room - ignore */ 16884 ip1dbg(( 16885 "ip_rput_forward_options: end of RR\n")); 16886 break; 16887 } 16888 bcopy(&ire->ire_src_addr, (char *)opt + off, 16889 IP_ADDR_LEN); 16890 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16891 break; 16892 case IPOPT_TS: 16893 /* Insert timestamp if there is room */ 16894 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16895 case IPOPT_TS_TSONLY: 16896 off = IPOPT_TS_TIMELEN; 16897 break; 16898 case IPOPT_TS_PRESPEC: 16899 case IPOPT_TS_PRESPEC_RFC791: 16900 /* Verify that the address matched */ 16901 off = opt[IPOPT_OFFSET] - 1; 16902 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16903 dst_ire = ire_ctable_lookup(dst, 0, 16904 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16905 MATCH_IRE_TYPE, ipst); 16906 if (dst_ire == NULL) { 16907 /* Not for us */ 16908 break; 16909 } 16910 ire_refrele(dst_ire); 16911 /* FALLTHRU */ 16912 case IPOPT_TS_TSANDADDR: 16913 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16914 break; 16915 default: 16916 /* 16917 * ip_*put_options should have already 16918 * dropped this packet. 16919 */ 16920 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16921 "unknown IT - bug in ip_rput_options?\n"); 16922 return (0); /* Keep "lint" happy */ 16923 } 16924 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16925 /* Increase overflow counter */ 16926 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16927 opt[IPOPT_POS_OV_FLG] = 16928 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16929 (off << 4)); 16930 break; 16931 } 16932 off = opt[IPOPT_OFFSET] - 1; 16933 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16934 case IPOPT_TS_PRESPEC: 16935 case IPOPT_TS_PRESPEC_RFC791: 16936 case IPOPT_TS_TSANDADDR: 16937 bcopy(&ire->ire_src_addr, 16938 (char *)opt + off, IP_ADDR_LEN); 16939 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16940 /* FALLTHRU */ 16941 case IPOPT_TS_TSONLY: 16942 off = opt[IPOPT_OFFSET] - 1; 16943 /* Compute # of milliseconds since midnight */ 16944 gethrestime(&now); 16945 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16946 now.tv_nsec / (NANOSEC / MILLISEC); 16947 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16948 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16949 break; 16950 } 16951 break; 16952 } 16953 } 16954 return (0); 16955 } 16956 16957 /* 16958 * This is called after processing at least one of AH/ESP headers. 16959 * 16960 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16961 * the actual, physical interface on which the packet was received, 16962 * but, when ip_strict_dst_multihoming is set to 1, could be the 16963 * interface which had the ipha_dst configured when the packet went 16964 * through ip_rput. The ill_index corresponding to the recv_ill 16965 * is saved in ipsec_in_rill_index 16966 * 16967 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16968 * cannot assume "ire" points to valid data for any IPv6 cases. 16969 */ 16970 void 16971 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16972 { 16973 mblk_t *mp; 16974 ipaddr_t dst; 16975 in6_addr_t *v6dstp; 16976 ipha_t *ipha; 16977 ip6_t *ip6h; 16978 ipsec_in_t *ii; 16979 boolean_t ill_need_rele = B_FALSE; 16980 boolean_t rill_need_rele = B_FALSE; 16981 boolean_t ire_need_rele = B_FALSE; 16982 netstack_t *ns; 16983 ip_stack_t *ipst; 16984 16985 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16986 ASSERT(ii->ipsec_in_ill_index != 0); 16987 ns = ii->ipsec_in_ns; 16988 ASSERT(ii->ipsec_in_ns != NULL); 16989 ipst = ns->netstack_ip; 16990 16991 mp = ipsec_mp->b_cont; 16992 ASSERT(mp != NULL); 16993 16994 16995 if (ill == NULL) { 16996 ASSERT(recv_ill == NULL); 16997 /* 16998 * We need to get the original queue on which ip_rput_local 16999 * or ip_rput_data_v6 was called. 17000 */ 17001 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17002 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17003 ill_need_rele = B_TRUE; 17004 17005 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17006 recv_ill = ill_lookup_on_ifindex( 17007 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17008 NULL, NULL, NULL, NULL, ipst); 17009 rill_need_rele = B_TRUE; 17010 } else { 17011 recv_ill = ill; 17012 } 17013 17014 if ((ill == NULL) || (recv_ill == NULL)) { 17015 ip0dbg(("ip_fanout_proto_again: interface " 17016 "disappeared\n")); 17017 if (ill != NULL) 17018 ill_refrele(ill); 17019 if (recv_ill != NULL) 17020 ill_refrele(recv_ill); 17021 freemsg(ipsec_mp); 17022 return; 17023 } 17024 } 17025 17026 ASSERT(ill != NULL && recv_ill != NULL); 17027 17028 if (mp->b_datap->db_type == M_CTL) { 17029 /* 17030 * AH/ESP is returning the ICMP message after 17031 * removing their headers. Fanout again till 17032 * it gets to the right protocol. 17033 */ 17034 if (ii->ipsec_in_v4) { 17035 icmph_t *icmph; 17036 int iph_hdr_length; 17037 int hdr_length; 17038 17039 ipha = (ipha_t *)mp->b_rptr; 17040 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17041 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17042 ipha = (ipha_t *)&icmph[1]; 17043 hdr_length = IPH_HDR_LENGTH(ipha); 17044 /* 17045 * icmp_inbound_error_fanout may need to do pullupmsg. 17046 * Reset the type to M_DATA. 17047 */ 17048 mp->b_datap->db_type = M_DATA; 17049 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17050 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17051 B_FALSE, ill, ii->ipsec_in_zoneid); 17052 } else { 17053 icmp6_t *icmp6; 17054 int hdr_length; 17055 17056 ip6h = (ip6_t *)mp->b_rptr; 17057 /* Don't call hdr_length_v6() unless you have to. */ 17058 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17059 hdr_length = ip_hdr_length_v6(mp, ip6h); 17060 else 17061 hdr_length = IPV6_HDR_LEN; 17062 17063 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17064 /* 17065 * icmp_inbound_error_fanout_v6 may need to do 17066 * pullupmsg. Reset the type to M_DATA. 17067 */ 17068 mp->b_datap->db_type = M_DATA; 17069 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17070 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17071 } 17072 if (ill_need_rele) 17073 ill_refrele(ill); 17074 if (rill_need_rele) 17075 ill_refrele(recv_ill); 17076 return; 17077 } 17078 17079 if (ii->ipsec_in_v4) { 17080 ipha = (ipha_t *)mp->b_rptr; 17081 dst = ipha->ipha_dst; 17082 if (CLASSD(dst)) { 17083 /* 17084 * Multicast has to be delivered to all streams. 17085 */ 17086 dst = INADDR_BROADCAST; 17087 } 17088 17089 if (ire == NULL) { 17090 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17091 MBLK_GETLABEL(mp), ipst); 17092 if (ire == NULL) { 17093 if (ill_need_rele) 17094 ill_refrele(ill); 17095 if (rill_need_rele) 17096 ill_refrele(recv_ill); 17097 ip1dbg(("ip_fanout_proto_again: " 17098 "IRE not found")); 17099 freemsg(ipsec_mp); 17100 return; 17101 } 17102 ire_need_rele = B_TRUE; 17103 } 17104 17105 switch (ipha->ipha_protocol) { 17106 case IPPROTO_UDP: 17107 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17108 recv_ill); 17109 if (ire_need_rele) 17110 ire_refrele(ire); 17111 break; 17112 case IPPROTO_TCP: 17113 if (!ire_need_rele) 17114 IRE_REFHOLD(ire); 17115 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17116 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17117 IRE_REFRELE(ire); 17118 if (mp != NULL) 17119 squeue_enter_chain(GET_SQUEUE(mp), mp, 17120 mp, 1, SQTAG_IP_PROTO_AGAIN); 17121 break; 17122 case IPPROTO_SCTP: 17123 if (!ire_need_rele) 17124 IRE_REFHOLD(ire); 17125 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17126 ipsec_mp, 0, ill->ill_rq, dst); 17127 break; 17128 default: 17129 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17130 recv_ill); 17131 if (ire_need_rele) 17132 ire_refrele(ire); 17133 break; 17134 } 17135 } else { 17136 uint32_t rput_flags = 0; 17137 17138 ip6h = (ip6_t *)mp->b_rptr; 17139 v6dstp = &ip6h->ip6_dst; 17140 /* 17141 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17142 * address. 17143 * 17144 * Currently, we don't store that state in the IPSEC_IN 17145 * message, and we may need to. 17146 */ 17147 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17148 IP6_IN_LLMCAST : 0); 17149 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17150 NULL, NULL); 17151 } 17152 if (ill_need_rele) 17153 ill_refrele(ill); 17154 if (rill_need_rele) 17155 ill_refrele(recv_ill); 17156 } 17157 17158 /* 17159 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17160 * returns 'true' if there are still fragments left on the queue, in 17161 * which case we restart the timer. 17162 */ 17163 void 17164 ill_frag_timer(void *arg) 17165 { 17166 ill_t *ill = (ill_t *)arg; 17167 boolean_t frag_pending; 17168 ip_stack_t *ipst = ill->ill_ipst; 17169 17170 mutex_enter(&ill->ill_lock); 17171 ASSERT(!ill->ill_fragtimer_executing); 17172 if (ill->ill_state_flags & ILL_CONDEMNED) { 17173 ill->ill_frag_timer_id = 0; 17174 mutex_exit(&ill->ill_lock); 17175 return; 17176 } 17177 ill->ill_fragtimer_executing = 1; 17178 mutex_exit(&ill->ill_lock); 17179 17180 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17181 17182 /* 17183 * Restart the timer, if we have fragments pending or if someone 17184 * wanted us to be scheduled again. 17185 */ 17186 mutex_enter(&ill->ill_lock); 17187 ill->ill_fragtimer_executing = 0; 17188 ill->ill_frag_timer_id = 0; 17189 if (frag_pending || ill->ill_fragtimer_needrestart) 17190 ill_frag_timer_start(ill); 17191 mutex_exit(&ill->ill_lock); 17192 } 17193 17194 void 17195 ill_frag_timer_start(ill_t *ill) 17196 { 17197 ip_stack_t *ipst = ill->ill_ipst; 17198 17199 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17200 17201 /* If the ill is closing or opening don't proceed */ 17202 if (ill->ill_state_flags & ILL_CONDEMNED) 17203 return; 17204 17205 if (ill->ill_fragtimer_executing) { 17206 /* 17207 * ill_frag_timer is currently executing. Just record the 17208 * the fact that we want the timer to be restarted. 17209 * ill_frag_timer will post a timeout before it returns, 17210 * ensuring it will be called again. 17211 */ 17212 ill->ill_fragtimer_needrestart = 1; 17213 return; 17214 } 17215 17216 if (ill->ill_frag_timer_id == 0) { 17217 /* 17218 * The timer is neither running nor is the timeout handler 17219 * executing. Post a timeout so that ill_frag_timer will be 17220 * called 17221 */ 17222 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17223 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17224 ill->ill_fragtimer_needrestart = 0; 17225 } 17226 } 17227 17228 /* 17229 * This routine is needed for loopback when forwarding multicasts. 17230 * 17231 * IPQoS Notes: 17232 * IPPF processing is done in fanout routines. 17233 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17234 * processing for IPSec packets is done when it comes back in clear. 17235 * NOTE : The callers of this function need to do the ire_refrele for the 17236 * ire that is being passed in. 17237 */ 17238 void 17239 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17240 ill_t *recv_ill) 17241 { 17242 ill_t *ill = (ill_t *)q->q_ptr; 17243 uint32_t sum; 17244 uint32_t u1; 17245 uint32_t u2; 17246 int hdr_length; 17247 boolean_t mctl_present; 17248 mblk_t *first_mp = mp; 17249 mblk_t *hada_mp = NULL; 17250 ipha_t *inner_ipha; 17251 ip_stack_t *ipst; 17252 17253 ASSERT(recv_ill != NULL); 17254 ipst = recv_ill->ill_ipst; 17255 17256 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17257 "ip_rput_locl_start: q %p", q); 17258 17259 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17260 ASSERT(ill != NULL); 17261 17262 17263 #define rptr ((uchar_t *)ipha) 17264 #define iphs ((uint16_t *)ipha) 17265 17266 /* 17267 * no UDP or TCP packet should come here anymore. 17268 */ 17269 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17270 (ipha->ipha_protocol != IPPROTO_UDP)); 17271 17272 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17273 if (mctl_present && 17274 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17275 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17276 17277 /* 17278 * It's an IPsec accelerated packet. 17279 * Keep a pointer to the data attributes around until 17280 * we allocate the ipsec_info_t. 17281 */ 17282 IPSECHW_DEBUG(IPSECHW_PKT, 17283 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17284 hada_mp = first_mp; 17285 hada_mp->b_cont = NULL; 17286 /* 17287 * Since it is accelerated, it comes directly from 17288 * the ill and the data attributes is followed by 17289 * the packet data. 17290 */ 17291 ASSERT(mp->b_datap->db_type != M_CTL); 17292 first_mp = mp; 17293 mctl_present = B_FALSE; 17294 } 17295 17296 /* 17297 * IF M_CTL is not present, then ipsec_in_is_secure 17298 * should return B_TRUE. There is a case where loopback 17299 * packets has an M_CTL in the front with all the 17300 * IPSEC options set to IPSEC_PREF_NEVER - which means 17301 * ipsec_in_is_secure will return B_FALSE. As loopback 17302 * packets never comes here, it is safe to ASSERT the 17303 * following. 17304 */ 17305 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17306 17307 17308 /* u1 is # words of IP options */ 17309 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17310 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17311 17312 if (u1) { 17313 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17314 if (hada_mp != NULL) 17315 freemsg(hada_mp); 17316 return; 17317 } 17318 } else { 17319 /* Check the IP header checksum. */ 17320 #define uph ((uint16_t *)ipha) 17321 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17322 uph[6] + uph[7] + uph[8] + uph[9]; 17323 #undef uph 17324 /* finish doing IP checksum */ 17325 sum = (sum & 0xFFFF) + (sum >> 16); 17326 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17327 /* 17328 * Don't verify header checksum if this packet is coming 17329 * back from AH/ESP as we already did it. 17330 */ 17331 if (!mctl_present && (sum && sum != 0xFFFF)) { 17332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17333 goto drop_pkt; 17334 } 17335 } 17336 17337 /* 17338 * Count for SNMP of inbound packets for ire. As ip_proto_input 17339 * might be called more than once for secure packets, count only 17340 * the first time. 17341 */ 17342 if (!mctl_present) { 17343 UPDATE_IB_PKT_COUNT(ire); 17344 ire->ire_last_used_time = lbolt; 17345 } 17346 17347 /* Check for fragmentation offset. */ 17348 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17349 u1 = u2 & (IPH_MF | IPH_OFFSET); 17350 if (u1) { 17351 /* 17352 * We re-assemble fragments before we do the AH/ESP 17353 * processing. Thus, M_CTL should not be present 17354 * while we are re-assembling. 17355 */ 17356 ASSERT(!mctl_present); 17357 ASSERT(first_mp == mp); 17358 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17359 return; 17360 } 17361 /* 17362 * Make sure that first_mp points back to mp as 17363 * the mp we came in with could have changed in 17364 * ip_rput_fragment(). 17365 */ 17366 ipha = (ipha_t *)mp->b_rptr; 17367 first_mp = mp; 17368 } 17369 17370 /* 17371 * Clear hardware checksumming flag as it is currently only 17372 * used by TCP and UDP. 17373 */ 17374 DB_CKSUMFLAGS(mp) = 0; 17375 17376 /* Now we have a complete datagram, destined for this machine. */ 17377 u1 = IPH_HDR_LENGTH(ipha); 17378 switch (ipha->ipha_protocol) { 17379 case IPPROTO_ICMP: { 17380 ire_t *ire_zone; 17381 ilm_t *ilm; 17382 mblk_t *mp1; 17383 zoneid_t last_zoneid; 17384 17385 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17386 ASSERT(ire->ire_type == IRE_BROADCAST); 17387 /* 17388 * In the multicast case, applications may have joined 17389 * the group from different zones, so we need to deliver 17390 * the packet to each of them. Loop through the 17391 * multicast memberships structures (ilm) on the receive 17392 * ill and send a copy of the packet up each matching 17393 * one. However, we don't do this for multicasts sent on 17394 * the loopback interface (PHYI_LOOPBACK flag set) as 17395 * they must stay in the sender's zone. 17396 * 17397 * ilm_add_v6() ensures that ilms in the same zone are 17398 * contiguous in the ill_ilm list. We use this property 17399 * to avoid sending duplicates needed when two 17400 * applications in the same zone join the same group on 17401 * different logical interfaces: we ignore the ilm if 17402 * its zoneid is the same as the last matching one. 17403 * In addition, the sending of the packet for 17404 * ire_zoneid is delayed until all of the other ilms 17405 * have been exhausted. 17406 */ 17407 last_zoneid = -1; 17408 ILM_WALKER_HOLD(recv_ill); 17409 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17410 ilm = ilm->ilm_next) { 17411 if ((ilm->ilm_flags & ILM_DELETED) || 17412 ipha->ipha_dst != ilm->ilm_addr || 17413 ilm->ilm_zoneid == last_zoneid || 17414 ilm->ilm_zoneid == ire->ire_zoneid || 17415 ilm->ilm_zoneid == ALL_ZONES || 17416 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17417 continue; 17418 mp1 = ip_copymsg(first_mp); 17419 if (mp1 == NULL) 17420 continue; 17421 icmp_inbound(q, mp1, B_TRUE, ill, 17422 0, sum, mctl_present, B_TRUE, 17423 recv_ill, ilm->ilm_zoneid); 17424 last_zoneid = ilm->ilm_zoneid; 17425 } 17426 ILM_WALKER_RELE(recv_ill); 17427 } else if (ire->ire_type == IRE_BROADCAST) { 17428 /* 17429 * In the broadcast case, there may be many zones 17430 * which need a copy of the packet delivered to them. 17431 * There is one IRE_BROADCAST per broadcast address 17432 * and per zone; we walk those using a helper function. 17433 * In addition, the sending of the packet for ire is 17434 * delayed until all of the other ires have been 17435 * processed. 17436 */ 17437 IRB_REFHOLD(ire->ire_bucket); 17438 ire_zone = NULL; 17439 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17440 ire)) != NULL) { 17441 mp1 = ip_copymsg(first_mp); 17442 if (mp1 == NULL) 17443 continue; 17444 17445 UPDATE_IB_PKT_COUNT(ire_zone); 17446 ire_zone->ire_last_used_time = lbolt; 17447 icmp_inbound(q, mp1, B_TRUE, ill, 17448 0, sum, mctl_present, B_TRUE, 17449 recv_ill, ire_zone->ire_zoneid); 17450 } 17451 IRB_REFRELE(ire->ire_bucket); 17452 } 17453 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17454 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17455 ire->ire_zoneid); 17456 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17457 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17458 return; 17459 } 17460 case IPPROTO_IGMP: 17461 /* 17462 * If we are not willing to accept IGMP packets in clear, 17463 * then check with global policy. 17464 */ 17465 if (ipst->ips_igmp_accept_clear_messages == 0) { 17466 first_mp = ipsec_check_global_policy(first_mp, NULL, 17467 ipha, NULL, mctl_present, ipst->ips_netstack); 17468 if (first_mp == NULL) 17469 return; 17470 } 17471 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17472 freemsg(first_mp); 17473 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17475 return; 17476 } 17477 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17478 /* Bad packet - discarded by igmp_input */ 17479 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17480 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17481 if (mctl_present) 17482 freeb(first_mp); 17483 return; 17484 } 17485 /* 17486 * igmp_input() may have returned the pulled up message. 17487 * So first_mp and ipha need to be reinitialized. 17488 */ 17489 ipha = (ipha_t *)mp->b_rptr; 17490 if (mctl_present) 17491 first_mp->b_cont = mp; 17492 else 17493 first_mp = mp; 17494 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17495 connf_head != NULL) { 17496 /* No user-level listener for IGMP packets */ 17497 goto drop_pkt; 17498 } 17499 /* deliver to local raw users */ 17500 break; 17501 case IPPROTO_PIM: 17502 /* 17503 * If we are not willing to accept PIM packets in clear, 17504 * then check with global policy. 17505 */ 17506 if (ipst->ips_pim_accept_clear_messages == 0) { 17507 first_mp = ipsec_check_global_policy(first_mp, NULL, 17508 ipha, NULL, mctl_present, ipst->ips_netstack); 17509 if (first_mp == NULL) 17510 return; 17511 } 17512 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17513 freemsg(first_mp); 17514 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17516 return; 17517 } 17518 if (pim_input(q, mp, ill) != 0) { 17519 /* Bad packet - discarded by pim_input */ 17520 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17521 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17522 if (mctl_present) 17523 freeb(first_mp); 17524 return; 17525 } 17526 17527 /* 17528 * pim_input() may have pulled up the message so ipha needs to 17529 * be reinitialized. 17530 */ 17531 ipha = (ipha_t *)mp->b_rptr; 17532 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17533 connf_head != NULL) { 17534 /* No user-level listener for PIM packets */ 17535 goto drop_pkt; 17536 } 17537 /* deliver to local raw users */ 17538 break; 17539 case IPPROTO_ENCAP: 17540 /* 17541 * Handle self-encapsulated packets (IP-in-IP where 17542 * the inner addresses == the outer addresses). 17543 */ 17544 hdr_length = IPH_HDR_LENGTH(ipha); 17545 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17546 mp->b_wptr) { 17547 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17548 sizeof (ipha_t) - mp->b_rptr)) { 17549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17550 freemsg(first_mp); 17551 return; 17552 } 17553 ipha = (ipha_t *)mp->b_rptr; 17554 } 17555 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17556 /* 17557 * Check the sanity of the inner IP header. 17558 */ 17559 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17561 freemsg(first_mp); 17562 return; 17563 } 17564 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17566 freemsg(first_mp); 17567 return; 17568 } 17569 if (inner_ipha->ipha_src == ipha->ipha_src && 17570 inner_ipha->ipha_dst == ipha->ipha_dst) { 17571 ipsec_in_t *ii; 17572 17573 /* 17574 * Self-encapsulated tunnel packet. Remove 17575 * the outer IP header and fanout again. 17576 * We also need to make sure that the inner 17577 * header is pulled up until options. 17578 */ 17579 mp->b_rptr = (uchar_t *)inner_ipha; 17580 ipha = inner_ipha; 17581 hdr_length = IPH_HDR_LENGTH(ipha); 17582 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17583 if (!pullupmsg(mp, (uchar_t *)ipha + 17584 + hdr_length - mp->b_rptr)) { 17585 freemsg(first_mp); 17586 return; 17587 } 17588 ipha = (ipha_t *)mp->b_rptr; 17589 } 17590 if (!mctl_present) { 17591 ASSERT(first_mp == mp); 17592 /* 17593 * This means that somebody is sending 17594 * Self-encapsualted packets without AH/ESP. 17595 * If AH/ESP was present, we would have already 17596 * allocated the first_mp. 17597 */ 17598 first_mp = ipsec_in_alloc(B_TRUE, 17599 ipst->ips_netstack); 17600 if (first_mp == NULL) { 17601 ip1dbg(("ip_proto_input: IPSEC_IN " 17602 "allocation failure.\n")); 17603 BUMP_MIB(ill->ill_ip_mib, 17604 ipIfStatsInDiscards); 17605 freemsg(mp); 17606 return; 17607 } 17608 first_mp->b_cont = mp; 17609 } 17610 /* 17611 * We generally store the ill_index if we need to 17612 * do IPSEC processing as we lose the ill queue when 17613 * we come back. But in this case, we never should 17614 * have to store the ill_index here as it should have 17615 * been stored previously when we processed the 17616 * AH/ESP header in this routine or for non-ipsec 17617 * cases, we still have the queue. But for some bad 17618 * packets from the wire, we can get to IPSEC after 17619 * this and we better store the index for that case. 17620 */ 17621 ill = (ill_t *)q->q_ptr; 17622 ii = (ipsec_in_t *)first_mp->b_rptr; 17623 ii->ipsec_in_ill_index = 17624 ill->ill_phyint->phyint_ifindex; 17625 ii->ipsec_in_rill_index = 17626 recv_ill->ill_phyint->phyint_ifindex; 17627 if (ii->ipsec_in_decaps) { 17628 /* 17629 * This packet is self-encapsulated multiple 17630 * times. We don't want to recurse infinitely. 17631 * To keep it simple, drop the packet. 17632 */ 17633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17634 freemsg(first_mp); 17635 return; 17636 } 17637 ii->ipsec_in_decaps = B_TRUE; 17638 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17639 ire); 17640 return; 17641 } 17642 break; 17643 case IPPROTO_AH: 17644 case IPPROTO_ESP: { 17645 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17646 17647 /* 17648 * Fast path for AH/ESP. If this is the first time 17649 * we are sending a datagram to AH/ESP, allocate 17650 * a IPSEC_IN message and prepend it. Otherwise, 17651 * just fanout. 17652 */ 17653 17654 int ipsec_rc; 17655 ipsec_in_t *ii; 17656 netstack_t *ns = ipst->ips_netstack; 17657 17658 IP_STAT(ipst, ipsec_proto_ahesp); 17659 if (!mctl_present) { 17660 ASSERT(first_mp == mp); 17661 first_mp = ipsec_in_alloc(B_TRUE, ns); 17662 if (first_mp == NULL) { 17663 ip1dbg(("ip_proto_input: IPSEC_IN " 17664 "allocation failure.\n")); 17665 freemsg(hada_mp); /* okay ifnull */ 17666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17667 freemsg(mp); 17668 return; 17669 } 17670 /* 17671 * Store the ill_index so that when we come back 17672 * from IPSEC we ride on the same queue. 17673 */ 17674 ill = (ill_t *)q->q_ptr; 17675 ii = (ipsec_in_t *)first_mp->b_rptr; 17676 ii->ipsec_in_ill_index = 17677 ill->ill_phyint->phyint_ifindex; 17678 ii->ipsec_in_rill_index = 17679 recv_ill->ill_phyint->phyint_ifindex; 17680 first_mp->b_cont = mp; 17681 /* 17682 * Cache hardware acceleration info. 17683 */ 17684 if (hada_mp != NULL) { 17685 IPSECHW_DEBUG(IPSECHW_PKT, 17686 ("ip_rput_local: caching data attr.\n")); 17687 ii->ipsec_in_accelerated = B_TRUE; 17688 ii->ipsec_in_da = hada_mp; 17689 hada_mp = NULL; 17690 } 17691 } else { 17692 ii = (ipsec_in_t *)first_mp->b_rptr; 17693 } 17694 17695 if (!ipsec_loaded(ipss)) { 17696 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17697 ire->ire_zoneid, ipst); 17698 return; 17699 } 17700 17701 ns = ipst->ips_netstack; 17702 /* select inbound SA and have IPsec process the pkt */ 17703 if (ipha->ipha_protocol == IPPROTO_ESP) { 17704 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17705 if (esph == NULL) 17706 return; 17707 ASSERT(ii->ipsec_in_esp_sa != NULL); 17708 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17709 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17710 first_mp, esph); 17711 } else { 17712 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17713 if (ah == NULL) 17714 return; 17715 ASSERT(ii->ipsec_in_ah_sa != NULL); 17716 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17717 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17718 first_mp, ah); 17719 } 17720 17721 switch (ipsec_rc) { 17722 case IPSEC_STATUS_SUCCESS: 17723 break; 17724 case IPSEC_STATUS_FAILED: 17725 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17726 /* FALLTHRU */ 17727 case IPSEC_STATUS_PENDING: 17728 return; 17729 } 17730 /* we're done with IPsec processing, send it up */ 17731 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17732 return; 17733 } 17734 default: 17735 break; 17736 } 17737 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17738 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17739 ire->ire_zoneid)); 17740 goto drop_pkt; 17741 } 17742 /* 17743 * Handle protocols with which IP is less intimate. There 17744 * can be more than one stream bound to a particular 17745 * protocol. When this is the case, each one gets a copy 17746 * of any incoming packets. 17747 */ 17748 ip_fanout_proto(q, first_mp, ill, ipha, 17749 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17750 B_TRUE, recv_ill, ire->ire_zoneid); 17751 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17752 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17753 return; 17754 17755 drop_pkt: 17756 freemsg(first_mp); 17757 if (hada_mp != NULL) 17758 freeb(hada_mp); 17759 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17760 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17761 #undef rptr 17762 #undef iphs 17763 17764 } 17765 17766 /* 17767 * Update any source route, record route or timestamp options. 17768 * Check that we are at end of strict source route. 17769 * The options have already been checked for sanity in ip_rput_options(). 17770 */ 17771 static boolean_t 17772 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17773 ip_stack_t *ipst) 17774 { 17775 ipoptp_t opts; 17776 uchar_t *opt; 17777 uint8_t optval; 17778 uint8_t optlen; 17779 ipaddr_t dst; 17780 uint32_t ts; 17781 ire_t *dst_ire; 17782 timestruc_t now; 17783 zoneid_t zoneid; 17784 ill_t *ill; 17785 17786 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17787 17788 ip2dbg(("ip_rput_local_options\n")); 17789 17790 for (optval = ipoptp_first(&opts, ipha); 17791 optval != IPOPT_EOL; 17792 optval = ipoptp_next(&opts)) { 17793 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17794 opt = opts.ipoptp_cur; 17795 optlen = opts.ipoptp_len; 17796 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17797 optval, optlen)); 17798 switch (optval) { 17799 uint32_t off; 17800 case IPOPT_SSRR: 17801 case IPOPT_LSRR: 17802 off = opt[IPOPT_OFFSET]; 17803 off--; 17804 if (optlen < IP_ADDR_LEN || 17805 off > optlen - IP_ADDR_LEN) { 17806 /* End of source route */ 17807 ip1dbg(("ip_rput_local_options: end of SR\n")); 17808 break; 17809 } 17810 /* 17811 * This will only happen if two consecutive entries 17812 * in the source route contains our address or if 17813 * it is a packet with a loose source route which 17814 * reaches us before consuming the whole source route 17815 */ 17816 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17817 if (optval == IPOPT_SSRR) { 17818 goto bad_src_route; 17819 } 17820 /* 17821 * Hack: instead of dropping the packet truncate the 17822 * source route to what has been used by filling the 17823 * rest with IPOPT_NOP. 17824 */ 17825 opt[IPOPT_OLEN] = (uint8_t)off; 17826 while (off < optlen) { 17827 opt[off++] = IPOPT_NOP; 17828 } 17829 break; 17830 case IPOPT_RR: 17831 off = opt[IPOPT_OFFSET]; 17832 off--; 17833 if (optlen < IP_ADDR_LEN || 17834 off > optlen - IP_ADDR_LEN) { 17835 /* No more room - ignore */ 17836 ip1dbg(( 17837 "ip_rput_local_options: end of RR\n")); 17838 break; 17839 } 17840 bcopy(&ire->ire_src_addr, (char *)opt + off, 17841 IP_ADDR_LEN); 17842 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17843 break; 17844 case IPOPT_TS: 17845 /* Insert timestamp if there is romm */ 17846 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17847 case IPOPT_TS_TSONLY: 17848 off = IPOPT_TS_TIMELEN; 17849 break; 17850 case IPOPT_TS_PRESPEC: 17851 case IPOPT_TS_PRESPEC_RFC791: 17852 /* Verify that the address matched */ 17853 off = opt[IPOPT_OFFSET] - 1; 17854 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17855 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17856 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17857 ipst); 17858 if (dst_ire == NULL) { 17859 /* Not for us */ 17860 break; 17861 } 17862 ire_refrele(dst_ire); 17863 /* FALLTHRU */ 17864 case IPOPT_TS_TSANDADDR: 17865 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17866 break; 17867 default: 17868 /* 17869 * ip_*put_options should have already 17870 * dropped this packet. 17871 */ 17872 cmn_err(CE_PANIC, "ip_rput_local_options: " 17873 "unknown IT - bug in ip_rput_options?\n"); 17874 return (B_TRUE); /* Keep "lint" happy */ 17875 } 17876 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17877 /* Increase overflow counter */ 17878 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17879 opt[IPOPT_POS_OV_FLG] = 17880 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17881 (off << 4)); 17882 break; 17883 } 17884 off = opt[IPOPT_OFFSET] - 1; 17885 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17886 case IPOPT_TS_PRESPEC: 17887 case IPOPT_TS_PRESPEC_RFC791: 17888 case IPOPT_TS_TSANDADDR: 17889 bcopy(&ire->ire_src_addr, (char *)opt + off, 17890 IP_ADDR_LEN); 17891 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17892 /* FALLTHRU */ 17893 case IPOPT_TS_TSONLY: 17894 off = opt[IPOPT_OFFSET] - 1; 17895 /* Compute # of milliseconds since midnight */ 17896 gethrestime(&now); 17897 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17898 now.tv_nsec / (NANOSEC / MILLISEC); 17899 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17900 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17901 break; 17902 } 17903 break; 17904 } 17905 } 17906 return (B_TRUE); 17907 17908 bad_src_route: 17909 q = WR(q); 17910 if (q->q_next != NULL) 17911 ill = q->q_ptr; 17912 else 17913 ill = NULL; 17914 17915 /* make sure we clear any indication of a hardware checksum */ 17916 DB_CKSUMFLAGS(mp) = 0; 17917 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17918 if (zoneid == ALL_ZONES) 17919 freemsg(mp); 17920 else 17921 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17922 return (B_FALSE); 17923 17924 } 17925 17926 /* 17927 * Process IP options in an inbound packet. If an option affects the 17928 * effective destination address, return the next hop address via dstp. 17929 * Returns -1 if something fails in which case an ICMP error has been sent 17930 * and mp freed. 17931 */ 17932 static int 17933 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17934 ip_stack_t *ipst) 17935 { 17936 ipoptp_t opts; 17937 uchar_t *opt; 17938 uint8_t optval; 17939 uint8_t optlen; 17940 ipaddr_t dst; 17941 intptr_t code = 0; 17942 ire_t *ire = NULL; 17943 zoneid_t zoneid; 17944 ill_t *ill; 17945 17946 ip2dbg(("ip_rput_options\n")); 17947 dst = ipha->ipha_dst; 17948 for (optval = ipoptp_first(&opts, ipha); 17949 optval != IPOPT_EOL; 17950 optval = ipoptp_next(&opts)) { 17951 opt = opts.ipoptp_cur; 17952 optlen = opts.ipoptp_len; 17953 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17954 optval, optlen)); 17955 /* 17956 * Note: we need to verify the checksum before we 17957 * modify anything thus this routine only extracts the next 17958 * hop dst from any source route. 17959 */ 17960 switch (optval) { 17961 uint32_t off; 17962 case IPOPT_SSRR: 17963 case IPOPT_LSRR: 17964 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17965 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17966 if (ire == NULL) { 17967 if (optval == IPOPT_SSRR) { 17968 ip1dbg(("ip_rput_options: not next" 17969 " strict source route 0x%x\n", 17970 ntohl(dst))); 17971 code = (char *)&ipha->ipha_dst - 17972 (char *)ipha; 17973 goto param_prob; /* RouterReq's */ 17974 } 17975 ip2dbg(("ip_rput_options: " 17976 "not next source route 0x%x\n", 17977 ntohl(dst))); 17978 break; 17979 } 17980 ire_refrele(ire); 17981 17982 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17983 ip1dbg(( 17984 "ip_rput_options: bad option offset\n")); 17985 code = (char *)&opt[IPOPT_OLEN] - 17986 (char *)ipha; 17987 goto param_prob; 17988 } 17989 off = opt[IPOPT_OFFSET]; 17990 off--; 17991 redo_srr: 17992 if (optlen < IP_ADDR_LEN || 17993 off > optlen - IP_ADDR_LEN) { 17994 /* End of source route */ 17995 ip1dbg(("ip_rput_options: end of SR\n")); 17996 break; 17997 } 17998 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17999 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18000 ntohl(dst))); 18001 18002 /* 18003 * Check if our address is present more than 18004 * once as consecutive hops in source route. 18005 * XXX verify per-interface ip_forwarding 18006 * for source route? 18007 */ 18008 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18009 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18010 18011 if (ire != NULL) { 18012 ire_refrele(ire); 18013 off += IP_ADDR_LEN; 18014 goto redo_srr; 18015 } 18016 18017 if (dst == htonl(INADDR_LOOPBACK)) { 18018 ip1dbg(("ip_rput_options: loopback addr in " 18019 "source route!\n")); 18020 goto bad_src_route; 18021 } 18022 /* 18023 * For strict: verify that dst is directly 18024 * reachable. 18025 */ 18026 if (optval == IPOPT_SSRR) { 18027 ire = ire_ftable_lookup(dst, 0, 0, 18028 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18029 MBLK_GETLABEL(mp), 18030 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18031 if (ire == NULL) { 18032 ip1dbg(("ip_rput_options: SSRR not " 18033 "directly reachable: 0x%x\n", 18034 ntohl(dst))); 18035 goto bad_src_route; 18036 } 18037 ire_refrele(ire); 18038 } 18039 /* 18040 * Defer update of the offset and the record route 18041 * until the packet is forwarded. 18042 */ 18043 break; 18044 case IPOPT_RR: 18045 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18046 ip1dbg(( 18047 "ip_rput_options: bad option offset\n")); 18048 code = (char *)&opt[IPOPT_OLEN] - 18049 (char *)ipha; 18050 goto param_prob; 18051 } 18052 break; 18053 case IPOPT_TS: 18054 /* 18055 * Verify that length >= 5 and that there is either 18056 * room for another timestamp or that the overflow 18057 * counter is not maxed out. 18058 */ 18059 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18060 if (optlen < IPOPT_MINLEN_IT) { 18061 goto param_prob; 18062 } 18063 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18064 ip1dbg(( 18065 "ip_rput_options: bad option offset\n")); 18066 code = (char *)&opt[IPOPT_OFFSET] - 18067 (char *)ipha; 18068 goto param_prob; 18069 } 18070 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18071 case IPOPT_TS_TSONLY: 18072 off = IPOPT_TS_TIMELEN; 18073 break; 18074 case IPOPT_TS_TSANDADDR: 18075 case IPOPT_TS_PRESPEC: 18076 case IPOPT_TS_PRESPEC_RFC791: 18077 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18078 break; 18079 default: 18080 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18081 (char *)ipha; 18082 goto param_prob; 18083 } 18084 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18085 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18086 /* 18087 * No room and the overflow counter is 15 18088 * already. 18089 */ 18090 goto param_prob; 18091 } 18092 break; 18093 } 18094 } 18095 18096 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18097 *dstp = dst; 18098 return (0); 18099 } 18100 18101 ip1dbg(("ip_rput_options: error processing IP options.")); 18102 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18103 18104 param_prob: 18105 q = WR(q); 18106 if (q->q_next != NULL) 18107 ill = q->q_ptr; 18108 else 18109 ill = NULL; 18110 18111 /* make sure we clear any indication of a hardware checksum */ 18112 DB_CKSUMFLAGS(mp) = 0; 18113 /* Don't know whether this is for non-global or global/forwarding */ 18114 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18115 if (zoneid == ALL_ZONES) 18116 freemsg(mp); 18117 else 18118 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18119 return (-1); 18120 18121 bad_src_route: 18122 q = WR(q); 18123 if (q->q_next != NULL) 18124 ill = q->q_ptr; 18125 else 18126 ill = NULL; 18127 18128 /* make sure we clear any indication of a hardware checksum */ 18129 DB_CKSUMFLAGS(mp) = 0; 18130 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18131 if (zoneid == ALL_ZONES) 18132 freemsg(mp); 18133 else 18134 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18135 return (-1); 18136 } 18137 18138 /* 18139 * IP & ICMP info in >=14 msg's ... 18140 * - ip fixed part (mib2_ip_t) 18141 * - icmp fixed part (mib2_icmp_t) 18142 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18143 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18144 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18145 * - ipRouteAttributeTable (ip 102) labeled routes 18146 * - ip multicast membership (ip_member_t) 18147 * - ip multicast source filtering (ip_grpsrc_t) 18148 * - igmp fixed part (struct igmpstat) 18149 * - multicast routing stats (struct mrtstat) 18150 * - multicast routing vifs (array of struct vifctl) 18151 * - multicast routing routes (array of struct mfcctl) 18152 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18153 * One per ill plus one generic 18154 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18155 * One per ill plus one generic 18156 * - ipv6RouteEntry all IPv6 IREs 18157 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18158 * - ipv6NetToMediaEntry all Neighbor Cache entries 18159 * - ipv6AddrEntry all IPv6 ipifs 18160 * - ipv6 multicast membership (ipv6_member_t) 18161 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18162 * 18163 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18164 * 18165 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18166 * already filled in by the caller. 18167 * Return value of 0 indicates that no messages were sent and caller 18168 * should free mpctl. 18169 */ 18170 int 18171 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18172 { 18173 ip_stack_t *ipst; 18174 sctp_stack_t *sctps; 18175 18176 18177 if (q->q_next != NULL) { 18178 ipst = ILLQ_TO_IPST(q); 18179 } else { 18180 ipst = CONNQ_TO_IPST(q); 18181 } 18182 ASSERT(ipst != NULL); 18183 sctps = ipst->ips_netstack->netstack_sctp; 18184 18185 if (mpctl == NULL || mpctl->b_cont == NULL) { 18186 return (0); 18187 } 18188 18189 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18190 ipst)) == NULL) { 18191 return (1); 18192 } 18193 18194 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18195 return (1); 18196 } 18197 18198 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18199 return (1); 18200 } 18201 18202 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18203 return (1); 18204 } 18205 18206 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18207 return (1); 18208 } 18209 18210 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18211 return (1); 18212 } 18213 18214 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18215 return (1); 18216 } 18217 18218 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18219 return (1); 18220 } 18221 18222 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18223 return (1); 18224 } 18225 18226 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18227 return (1); 18228 } 18229 18230 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18231 return (1); 18232 } 18233 18234 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18235 return (1); 18236 } 18237 18238 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18239 return (1); 18240 } 18241 18242 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18243 return (1); 18244 } 18245 18246 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18247 return (1); 18248 } 18249 18250 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18251 if (mpctl == NULL) { 18252 return (1); 18253 } 18254 18255 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18256 return (1); 18257 } 18258 freemsg(mpctl); 18259 return (1); 18260 } 18261 18262 18263 /* Get global (legacy) IPv4 statistics */ 18264 static mblk_t * 18265 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18266 ip_stack_t *ipst) 18267 { 18268 mib2_ip_t old_ip_mib; 18269 struct opthdr *optp; 18270 mblk_t *mp2ctl; 18271 18272 /* 18273 * make a copy of the original message 18274 */ 18275 mp2ctl = copymsg(mpctl); 18276 18277 /* fixed length IP structure... */ 18278 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18279 optp->level = MIB2_IP; 18280 optp->name = 0; 18281 SET_MIB(old_ip_mib.ipForwarding, 18282 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18283 SET_MIB(old_ip_mib.ipDefaultTTL, 18284 (uint32_t)ipst->ips_ip_def_ttl); 18285 SET_MIB(old_ip_mib.ipReasmTimeout, 18286 ipst->ips_ip_g_frag_timeout); 18287 SET_MIB(old_ip_mib.ipAddrEntrySize, 18288 sizeof (mib2_ipAddrEntry_t)); 18289 SET_MIB(old_ip_mib.ipRouteEntrySize, 18290 sizeof (mib2_ipRouteEntry_t)); 18291 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18292 sizeof (mib2_ipNetToMediaEntry_t)); 18293 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18294 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18295 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18296 sizeof (mib2_ipAttributeEntry_t)); 18297 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18298 18299 /* 18300 * Grab the statistics from the new IP MIB 18301 */ 18302 SET_MIB(old_ip_mib.ipInReceives, 18303 (uint32_t)ipmib->ipIfStatsHCInReceives); 18304 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18305 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18306 SET_MIB(old_ip_mib.ipForwDatagrams, 18307 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18308 SET_MIB(old_ip_mib.ipInUnknownProtos, 18309 ipmib->ipIfStatsInUnknownProtos); 18310 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18311 SET_MIB(old_ip_mib.ipInDelivers, 18312 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18313 SET_MIB(old_ip_mib.ipOutRequests, 18314 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18315 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18316 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18317 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18318 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18319 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18320 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18321 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18322 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18323 18324 /* ipRoutingDiscards is not being used */ 18325 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18326 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18327 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18328 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18329 SET_MIB(old_ip_mib.ipReasmDuplicates, 18330 ipmib->ipIfStatsReasmDuplicates); 18331 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18332 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18333 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18334 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18335 SET_MIB(old_ip_mib.rawipInOverflows, 18336 ipmib->rawipIfStatsInOverflows); 18337 18338 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18339 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18340 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18341 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18342 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18343 ipmib->ipIfStatsOutSwitchIPVersion); 18344 18345 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18346 (int)sizeof (old_ip_mib))) { 18347 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18348 (uint_t)sizeof (old_ip_mib))); 18349 } 18350 18351 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18352 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18353 (int)optp->level, (int)optp->name, (int)optp->len)); 18354 qreply(q, mpctl); 18355 return (mp2ctl); 18356 } 18357 18358 /* Per interface IPv4 statistics */ 18359 static mblk_t * 18360 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18361 { 18362 struct opthdr *optp; 18363 mblk_t *mp2ctl; 18364 ill_t *ill; 18365 ill_walk_context_t ctx; 18366 mblk_t *mp_tail = NULL; 18367 mib2_ipIfStatsEntry_t global_ip_mib; 18368 18369 /* 18370 * Make a copy of the original message 18371 */ 18372 mp2ctl = copymsg(mpctl); 18373 18374 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18375 optp->level = MIB2_IP; 18376 optp->name = MIB2_IP_TRAFFIC_STATS; 18377 /* Include "unknown interface" ip_mib */ 18378 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18379 ipst->ips_ip_mib.ipIfStatsIfIndex = 18380 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18381 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18382 (ipst->ips_ip_g_forward ? 1 : 2)); 18383 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18384 (uint32_t)ipst->ips_ip_def_ttl); 18385 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18386 sizeof (mib2_ipIfStatsEntry_t)); 18387 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18388 sizeof (mib2_ipAddrEntry_t)); 18389 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18390 sizeof (mib2_ipRouteEntry_t)); 18391 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18392 sizeof (mib2_ipNetToMediaEntry_t)); 18393 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18394 sizeof (ip_member_t)); 18395 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18396 sizeof (ip_grpsrc_t)); 18397 18398 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18399 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18400 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18401 "failed to allocate %u bytes\n", 18402 (uint_t)sizeof (ipst->ips_ip_mib))); 18403 } 18404 18405 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18406 18407 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18408 ill = ILL_START_WALK_V4(&ctx, ipst); 18409 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18410 ill->ill_ip_mib->ipIfStatsIfIndex = 18411 ill->ill_phyint->phyint_ifindex; 18412 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18413 (ipst->ips_ip_g_forward ? 1 : 2)); 18414 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18415 (uint32_t)ipst->ips_ip_def_ttl); 18416 18417 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18418 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18419 (char *)ill->ill_ip_mib, 18420 (int)sizeof (*ill->ill_ip_mib))) { 18421 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18422 "failed to allocate %u bytes\n", 18423 (uint_t)sizeof (*ill->ill_ip_mib))); 18424 } 18425 } 18426 rw_exit(&ipst->ips_ill_g_lock); 18427 18428 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18429 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18430 "level %d, name %d, len %d\n", 18431 (int)optp->level, (int)optp->name, (int)optp->len)); 18432 qreply(q, mpctl); 18433 18434 if (mp2ctl == NULL) 18435 return (NULL); 18436 18437 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18438 } 18439 18440 /* Global IPv4 ICMP statistics */ 18441 static mblk_t * 18442 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18443 { 18444 struct opthdr *optp; 18445 mblk_t *mp2ctl; 18446 18447 /* 18448 * Make a copy of the original message 18449 */ 18450 mp2ctl = copymsg(mpctl); 18451 18452 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18453 optp->level = MIB2_ICMP; 18454 optp->name = 0; 18455 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18456 (int)sizeof (ipst->ips_icmp_mib))) { 18457 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18458 (uint_t)sizeof (ipst->ips_icmp_mib))); 18459 } 18460 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18461 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18462 (int)optp->level, (int)optp->name, (int)optp->len)); 18463 qreply(q, mpctl); 18464 return (mp2ctl); 18465 } 18466 18467 /* Global IPv4 IGMP statistics */ 18468 static mblk_t * 18469 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18470 { 18471 struct opthdr *optp; 18472 mblk_t *mp2ctl; 18473 18474 /* 18475 * make a copy of the original message 18476 */ 18477 mp2ctl = copymsg(mpctl); 18478 18479 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18480 optp->level = EXPER_IGMP; 18481 optp->name = 0; 18482 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18483 (int)sizeof (ipst->ips_igmpstat))) { 18484 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18485 (uint_t)sizeof (ipst->ips_igmpstat))); 18486 } 18487 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18488 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18489 (int)optp->level, (int)optp->name, (int)optp->len)); 18490 qreply(q, mpctl); 18491 return (mp2ctl); 18492 } 18493 18494 /* Global IPv4 Multicast Routing statistics */ 18495 static mblk_t * 18496 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18497 { 18498 struct opthdr *optp; 18499 mblk_t *mp2ctl; 18500 18501 /* 18502 * make a copy of the original message 18503 */ 18504 mp2ctl = copymsg(mpctl); 18505 18506 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18507 optp->level = EXPER_DVMRP; 18508 optp->name = 0; 18509 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18510 ip0dbg(("ip_mroute_stats: failed\n")); 18511 } 18512 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18513 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18514 (int)optp->level, (int)optp->name, (int)optp->len)); 18515 qreply(q, mpctl); 18516 return (mp2ctl); 18517 } 18518 18519 /* IPv4 address information */ 18520 static mblk_t * 18521 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18522 { 18523 struct opthdr *optp; 18524 mblk_t *mp2ctl; 18525 mblk_t *mp_tail = NULL; 18526 ill_t *ill; 18527 ipif_t *ipif; 18528 uint_t bitval; 18529 mib2_ipAddrEntry_t mae; 18530 zoneid_t zoneid; 18531 ill_walk_context_t ctx; 18532 18533 /* 18534 * make a copy of the original message 18535 */ 18536 mp2ctl = copymsg(mpctl); 18537 18538 /* ipAddrEntryTable */ 18539 18540 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18541 optp->level = MIB2_IP; 18542 optp->name = MIB2_IP_ADDR; 18543 zoneid = Q_TO_CONN(q)->conn_zoneid; 18544 18545 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18546 ill = ILL_START_WALK_V4(&ctx, ipst); 18547 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18548 for (ipif = ill->ill_ipif; ipif != NULL; 18549 ipif = ipif->ipif_next) { 18550 if (ipif->ipif_zoneid != zoneid && 18551 ipif->ipif_zoneid != ALL_ZONES) 18552 continue; 18553 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18554 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18555 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18556 18557 (void) ipif_get_name(ipif, 18558 mae.ipAdEntIfIndex.o_bytes, 18559 OCTET_LENGTH); 18560 mae.ipAdEntIfIndex.o_length = 18561 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18562 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18563 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18564 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18565 mae.ipAdEntInfo.ae_subnet_len = 18566 ip_mask_to_plen(ipif->ipif_net_mask); 18567 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18568 for (bitval = 1; 18569 bitval && 18570 !(bitval & ipif->ipif_brd_addr); 18571 bitval <<= 1) 18572 noop; 18573 mae.ipAdEntBcastAddr = bitval; 18574 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18575 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18576 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18577 mae.ipAdEntInfo.ae_broadcast_addr = 18578 ipif->ipif_brd_addr; 18579 mae.ipAdEntInfo.ae_pp_dst_addr = 18580 ipif->ipif_pp_dst_addr; 18581 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18582 ill->ill_flags | ill->ill_phyint->phyint_flags; 18583 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18584 18585 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18586 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18587 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18588 "allocate %u bytes\n", 18589 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18590 } 18591 } 18592 } 18593 rw_exit(&ipst->ips_ill_g_lock); 18594 18595 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18596 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18597 (int)optp->level, (int)optp->name, (int)optp->len)); 18598 qreply(q, mpctl); 18599 return (mp2ctl); 18600 } 18601 18602 /* IPv6 address information */ 18603 static mblk_t * 18604 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18605 { 18606 struct opthdr *optp; 18607 mblk_t *mp2ctl; 18608 mblk_t *mp_tail = NULL; 18609 ill_t *ill; 18610 ipif_t *ipif; 18611 mib2_ipv6AddrEntry_t mae6; 18612 zoneid_t zoneid; 18613 ill_walk_context_t ctx; 18614 18615 /* 18616 * make a copy of the original message 18617 */ 18618 mp2ctl = copymsg(mpctl); 18619 18620 /* ipv6AddrEntryTable */ 18621 18622 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18623 optp->level = MIB2_IP6; 18624 optp->name = MIB2_IP6_ADDR; 18625 zoneid = Q_TO_CONN(q)->conn_zoneid; 18626 18627 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18628 ill = ILL_START_WALK_V6(&ctx, ipst); 18629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18630 for (ipif = ill->ill_ipif; ipif != NULL; 18631 ipif = ipif->ipif_next) { 18632 if (ipif->ipif_zoneid != zoneid && 18633 ipif->ipif_zoneid != ALL_ZONES) 18634 continue; 18635 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18636 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18637 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18638 18639 (void) ipif_get_name(ipif, 18640 mae6.ipv6AddrIfIndex.o_bytes, 18641 OCTET_LENGTH); 18642 mae6.ipv6AddrIfIndex.o_length = 18643 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18644 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18645 mae6.ipv6AddrPfxLength = 18646 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18647 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18648 mae6.ipv6AddrInfo.ae_subnet_len = 18649 mae6.ipv6AddrPfxLength; 18650 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18651 18652 /* Type: stateless(1), stateful(2), unknown(3) */ 18653 if (ipif->ipif_flags & IPIF_ADDRCONF) 18654 mae6.ipv6AddrType = 1; 18655 else 18656 mae6.ipv6AddrType = 2; 18657 /* Anycast: true(1), false(2) */ 18658 if (ipif->ipif_flags & IPIF_ANYCAST) 18659 mae6.ipv6AddrAnycastFlag = 1; 18660 else 18661 mae6.ipv6AddrAnycastFlag = 2; 18662 18663 /* 18664 * Address status: preferred(1), deprecated(2), 18665 * invalid(3), inaccessible(4), unknown(5) 18666 */ 18667 if (ipif->ipif_flags & IPIF_NOLOCAL) 18668 mae6.ipv6AddrStatus = 3; 18669 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18670 mae6.ipv6AddrStatus = 2; 18671 else 18672 mae6.ipv6AddrStatus = 1; 18673 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18674 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18675 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18676 ipif->ipif_v6pp_dst_addr; 18677 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18678 ill->ill_flags | ill->ill_phyint->phyint_flags; 18679 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18680 mae6.ipv6AddrIdentifier = ill->ill_token; 18681 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18682 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18683 mae6.ipv6AddrRetransmitTime = 18684 ill->ill_reachable_retrans_time; 18685 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18686 (char *)&mae6, 18687 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18688 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18689 "allocate %u bytes\n", 18690 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18691 } 18692 } 18693 } 18694 rw_exit(&ipst->ips_ill_g_lock); 18695 18696 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18697 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18698 (int)optp->level, (int)optp->name, (int)optp->len)); 18699 qreply(q, mpctl); 18700 return (mp2ctl); 18701 } 18702 18703 /* IPv4 multicast group membership. */ 18704 static mblk_t * 18705 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18706 { 18707 struct opthdr *optp; 18708 mblk_t *mp2ctl; 18709 ill_t *ill; 18710 ipif_t *ipif; 18711 ilm_t *ilm; 18712 ip_member_t ipm; 18713 mblk_t *mp_tail = NULL; 18714 ill_walk_context_t ctx; 18715 zoneid_t zoneid; 18716 18717 /* 18718 * make a copy of the original message 18719 */ 18720 mp2ctl = copymsg(mpctl); 18721 zoneid = Q_TO_CONN(q)->conn_zoneid; 18722 18723 /* ipGroupMember table */ 18724 optp = (struct opthdr *)&mpctl->b_rptr[ 18725 sizeof (struct T_optmgmt_ack)]; 18726 optp->level = MIB2_IP; 18727 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18728 18729 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18730 ill = ILL_START_WALK_V4(&ctx, ipst); 18731 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18732 ILM_WALKER_HOLD(ill); 18733 for (ipif = ill->ill_ipif; ipif != NULL; 18734 ipif = ipif->ipif_next) { 18735 if (ipif->ipif_zoneid != zoneid && 18736 ipif->ipif_zoneid != ALL_ZONES) 18737 continue; /* not this zone */ 18738 (void) ipif_get_name(ipif, 18739 ipm.ipGroupMemberIfIndex.o_bytes, 18740 OCTET_LENGTH); 18741 ipm.ipGroupMemberIfIndex.o_length = 18742 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18743 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18744 ASSERT(ilm->ilm_ipif != NULL); 18745 ASSERT(ilm->ilm_ill == NULL); 18746 if (ilm->ilm_ipif != ipif) 18747 continue; 18748 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18749 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18750 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18751 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18752 (char *)&ipm, (int)sizeof (ipm))) { 18753 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18754 "failed to allocate %u bytes\n", 18755 (uint_t)sizeof (ipm))); 18756 } 18757 } 18758 } 18759 ILM_WALKER_RELE(ill); 18760 } 18761 rw_exit(&ipst->ips_ill_g_lock); 18762 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18763 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18764 (int)optp->level, (int)optp->name, (int)optp->len)); 18765 qreply(q, mpctl); 18766 return (mp2ctl); 18767 } 18768 18769 /* IPv6 multicast group membership. */ 18770 static mblk_t * 18771 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18772 { 18773 struct opthdr *optp; 18774 mblk_t *mp2ctl; 18775 ill_t *ill; 18776 ilm_t *ilm; 18777 ipv6_member_t ipm6; 18778 mblk_t *mp_tail = NULL; 18779 ill_walk_context_t ctx; 18780 zoneid_t zoneid; 18781 18782 /* 18783 * make a copy of the original message 18784 */ 18785 mp2ctl = copymsg(mpctl); 18786 zoneid = Q_TO_CONN(q)->conn_zoneid; 18787 18788 /* ip6GroupMember table */ 18789 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18790 optp->level = MIB2_IP6; 18791 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18792 18793 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18794 ill = ILL_START_WALK_V6(&ctx, ipst); 18795 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18796 ILM_WALKER_HOLD(ill); 18797 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18798 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18799 ASSERT(ilm->ilm_ipif == NULL); 18800 ASSERT(ilm->ilm_ill != NULL); 18801 if (ilm->ilm_zoneid != zoneid) 18802 continue; /* not this zone */ 18803 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18804 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18805 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18806 if (!snmp_append_data2(mpctl->b_cont, 18807 &mp_tail, 18808 (char *)&ipm6, (int)sizeof (ipm6))) { 18809 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18810 "failed to allocate %u bytes\n", 18811 (uint_t)sizeof (ipm6))); 18812 } 18813 } 18814 ILM_WALKER_RELE(ill); 18815 } 18816 rw_exit(&ipst->ips_ill_g_lock); 18817 18818 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18819 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18820 (int)optp->level, (int)optp->name, (int)optp->len)); 18821 qreply(q, mpctl); 18822 return (mp2ctl); 18823 } 18824 18825 /* IP multicast filtered sources */ 18826 static mblk_t * 18827 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18828 { 18829 struct opthdr *optp; 18830 mblk_t *mp2ctl; 18831 ill_t *ill; 18832 ipif_t *ipif; 18833 ilm_t *ilm; 18834 ip_grpsrc_t ips; 18835 mblk_t *mp_tail = NULL; 18836 ill_walk_context_t ctx; 18837 zoneid_t zoneid; 18838 int i; 18839 slist_t *sl; 18840 18841 /* 18842 * make a copy of the original message 18843 */ 18844 mp2ctl = copymsg(mpctl); 18845 zoneid = Q_TO_CONN(q)->conn_zoneid; 18846 18847 /* ipGroupSource table */ 18848 optp = (struct opthdr *)&mpctl->b_rptr[ 18849 sizeof (struct T_optmgmt_ack)]; 18850 optp->level = MIB2_IP; 18851 optp->name = EXPER_IP_GROUP_SOURCES; 18852 18853 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18854 ill = ILL_START_WALK_V4(&ctx, ipst); 18855 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18856 ILM_WALKER_HOLD(ill); 18857 for (ipif = ill->ill_ipif; ipif != NULL; 18858 ipif = ipif->ipif_next) { 18859 if (ipif->ipif_zoneid != zoneid) 18860 continue; /* not this zone */ 18861 (void) ipif_get_name(ipif, 18862 ips.ipGroupSourceIfIndex.o_bytes, 18863 OCTET_LENGTH); 18864 ips.ipGroupSourceIfIndex.o_length = 18865 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18866 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18867 ASSERT(ilm->ilm_ipif != NULL); 18868 ASSERT(ilm->ilm_ill == NULL); 18869 sl = ilm->ilm_filter; 18870 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18871 continue; 18872 ips.ipGroupSourceGroup = ilm->ilm_addr; 18873 for (i = 0; i < sl->sl_numsrc; i++) { 18874 if (!IN6_IS_ADDR_V4MAPPED( 18875 &sl->sl_addr[i])) 18876 continue; 18877 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18878 ips.ipGroupSourceAddress); 18879 if (snmp_append_data2(mpctl->b_cont, 18880 &mp_tail, (char *)&ips, 18881 (int)sizeof (ips)) == 0) { 18882 ip1dbg(("ip_snmp_get_mib2_" 18883 "ip_group_src: failed to " 18884 "allocate %u bytes\n", 18885 (uint_t)sizeof (ips))); 18886 } 18887 } 18888 } 18889 } 18890 ILM_WALKER_RELE(ill); 18891 } 18892 rw_exit(&ipst->ips_ill_g_lock); 18893 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18894 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18895 (int)optp->level, (int)optp->name, (int)optp->len)); 18896 qreply(q, mpctl); 18897 return (mp2ctl); 18898 } 18899 18900 /* IPv6 multicast filtered sources. */ 18901 static mblk_t * 18902 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18903 { 18904 struct opthdr *optp; 18905 mblk_t *mp2ctl; 18906 ill_t *ill; 18907 ilm_t *ilm; 18908 ipv6_grpsrc_t ips6; 18909 mblk_t *mp_tail = NULL; 18910 ill_walk_context_t ctx; 18911 zoneid_t zoneid; 18912 int i; 18913 slist_t *sl; 18914 18915 /* 18916 * make a copy of the original message 18917 */ 18918 mp2ctl = copymsg(mpctl); 18919 zoneid = Q_TO_CONN(q)->conn_zoneid; 18920 18921 /* ip6GroupMember table */ 18922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18923 optp->level = MIB2_IP6; 18924 optp->name = EXPER_IP6_GROUP_SOURCES; 18925 18926 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18927 ill = ILL_START_WALK_V6(&ctx, ipst); 18928 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18929 ILM_WALKER_HOLD(ill); 18930 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18931 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18932 ASSERT(ilm->ilm_ipif == NULL); 18933 ASSERT(ilm->ilm_ill != NULL); 18934 sl = ilm->ilm_filter; 18935 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18936 continue; 18937 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18938 for (i = 0; i < sl->sl_numsrc; i++) { 18939 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18940 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18941 (char *)&ips6, (int)sizeof (ips6))) { 18942 ip1dbg(("ip_snmp_get_mib2_ip6_" 18943 "group_src: failed to allocate " 18944 "%u bytes\n", 18945 (uint_t)sizeof (ips6))); 18946 } 18947 } 18948 } 18949 ILM_WALKER_RELE(ill); 18950 } 18951 rw_exit(&ipst->ips_ill_g_lock); 18952 18953 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18954 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18955 (int)optp->level, (int)optp->name, (int)optp->len)); 18956 qreply(q, mpctl); 18957 return (mp2ctl); 18958 } 18959 18960 /* Multicast routing virtual interface table. */ 18961 static mblk_t * 18962 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18963 { 18964 struct opthdr *optp; 18965 mblk_t *mp2ctl; 18966 18967 /* 18968 * make a copy of the original message 18969 */ 18970 mp2ctl = copymsg(mpctl); 18971 18972 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18973 optp->level = EXPER_DVMRP; 18974 optp->name = EXPER_DVMRP_VIF; 18975 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18976 ip0dbg(("ip_mroute_vif: failed\n")); 18977 } 18978 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18979 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18980 (int)optp->level, (int)optp->name, (int)optp->len)); 18981 qreply(q, mpctl); 18982 return (mp2ctl); 18983 } 18984 18985 /* Multicast routing table. */ 18986 static mblk_t * 18987 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18988 { 18989 struct opthdr *optp; 18990 mblk_t *mp2ctl; 18991 18992 /* 18993 * make a copy of the original message 18994 */ 18995 mp2ctl = copymsg(mpctl); 18996 18997 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18998 optp->level = EXPER_DVMRP; 18999 optp->name = EXPER_DVMRP_MRT; 19000 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19001 ip0dbg(("ip_mroute_mrt: failed\n")); 19002 } 19003 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19004 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19005 (int)optp->level, (int)optp->name, (int)optp->len)); 19006 qreply(q, mpctl); 19007 return (mp2ctl); 19008 } 19009 19010 /* 19011 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19012 * in one IRE walk. 19013 */ 19014 static mblk_t * 19015 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19016 { 19017 struct opthdr *optp; 19018 mblk_t *mp2ctl; /* Returned */ 19019 mblk_t *mp3ctl; /* nettomedia */ 19020 mblk_t *mp4ctl; /* routeattrs */ 19021 iproutedata_t ird; 19022 zoneid_t zoneid; 19023 19024 /* 19025 * make copies of the original message 19026 * - mp2ctl is returned unchanged to the caller for his use 19027 * - mpctl is sent upstream as ipRouteEntryTable 19028 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19029 * - mp4ctl is sent upstream as ipRouteAttributeTable 19030 */ 19031 mp2ctl = copymsg(mpctl); 19032 mp3ctl = copymsg(mpctl); 19033 mp4ctl = copymsg(mpctl); 19034 if (mp3ctl == NULL || mp4ctl == NULL) { 19035 freemsg(mp4ctl); 19036 freemsg(mp3ctl); 19037 freemsg(mp2ctl); 19038 freemsg(mpctl); 19039 return (NULL); 19040 } 19041 19042 bzero(&ird, sizeof (ird)); 19043 19044 ird.ird_route.lp_head = mpctl->b_cont; 19045 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19046 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19047 19048 zoneid = Q_TO_CONN(q)->conn_zoneid; 19049 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19050 if (zoneid == GLOBAL_ZONEID) { 19051 /* 19052 * Those IREs are used by Mobile-IP; since mipagent(1M) 19053 * requires the sys_net_config or sys_ip_config privilege, 19054 * it can only run in the global zone or an exclusive-IP zone, 19055 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19056 */ 19057 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19058 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19059 } 19060 19061 /* ipRouteEntryTable in mpctl */ 19062 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19063 optp->level = MIB2_IP; 19064 optp->name = MIB2_IP_ROUTE; 19065 optp->len = msgdsize(ird.ird_route.lp_head); 19066 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19067 (int)optp->level, (int)optp->name, (int)optp->len)); 19068 qreply(q, mpctl); 19069 19070 /* ipNetToMediaEntryTable in mp3ctl */ 19071 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19072 optp->level = MIB2_IP; 19073 optp->name = MIB2_IP_MEDIA; 19074 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19075 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19076 (int)optp->level, (int)optp->name, (int)optp->len)); 19077 qreply(q, mp3ctl); 19078 19079 /* ipRouteAttributeTable in mp4ctl */ 19080 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19081 optp->level = MIB2_IP; 19082 optp->name = EXPER_IP_RTATTR; 19083 optp->len = msgdsize(ird.ird_attrs.lp_head); 19084 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19085 (int)optp->level, (int)optp->name, (int)optp->len)); 19086 if (optp->len == 0) 19087 freemsg(mp4ctl); 19088 else 19089 qreply(q, mp4ctl); 19090 19091 return (mp2ctl); 19092 } 19093 19094 /* 19095 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19096 * ipv6NetToMediaEntryTable in an NDP walk. 19097 */ 19098 static mblk_t * 19099 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19100 { 19101 struct opthdr *optp; 19102 mblk_t *mp2ctl; /* Returned */ 19103 mblk_t *mp3ctl; /* nettomedia */ 19104 mblk_t *mp4ctl; /* routeattrs */ 19105 iproutedata_t ird; 19106 zoneid_t zoneid; 19107 19108 /* 19109 * make copies of the original message 19110 * - mp2ctl is returned unchanged to the caller for his use 19111 * - mpctl is sent upstream as ipv6RouteEntryTable 19112 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19113 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19114 */ 19115 mp2ctl = copymsg(mpctl); 19116 mp3ctl = copymsg(mpctl); 19117 mp4ctl = copymsg(mpctl); 19118 if (mp3ctl == NULL || mp4ctl == NULL) { 19119 freemsg(mp4ctl); 19120 freemsg(mp3ctl); 19121 freemsg(mp2ctl); 19122 freemsg(mpctl); 19123 return (NULL); 19124 } 19125 19126 bzero(&ird, sizeof (ird)); 19127 19128 ird.ird_route.lp_head = mpctl->b_cont; 19129 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19130 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19131 19132 zoneid = Q_TO_CONN(q)->conn_zoneid; 19133 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19134 19135 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19136 optp->level = MIB2_IP6; 19137 optp->name = MIB2_IP6_ROUTE; 19138 optp->len = msgdsize(ird.ird_route.lp_head); 19139 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19140 (int)optp->level, (int)optp->name, (int)optp->len)); 19141 qreply(q, mpctl); 19142 19143 /* ipv6NetToMediaEntryTable in mp3ctl */ 19144 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19145 19146 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19147 optp->level = MIB2_IP6; 19148 optp->name = MIB2_IP6_MEDIA; 19149 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19150 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19151 (int)optp->level, (int)optp->name, (int)optp->len)); 19152 qreply(q, mp3ctl); 19153 19154 /* ipv6RouteAttributeTable in mp4ctl */ 19155 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19156 optp->level = MIB2_IP6; 19157 optp->name = EXPER_IP_RTATTR; 19158 optp->len = msgdsize(ird.ird_attrs.lp_head); 19159 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19160 (int)optp->level, (int)optp->name, (int)optp->len)); 19161 if (optp->len == 0) 19162 freemsg(mp4ctl); 19163 else 19164 qreply(q, mp4ctl); 19165 19166 return (mp2ctl); 19167 } 19168 19169 /* 19170 * IPv6 mib: One per ill 19171 */ 19172 static mblk_t * 19173 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19174 { 19175 struct opthdr *optp; 19176 mblk_t *mp2ctl; 19177 ill_t *ill; 19178 ill_walk_context_t ctx; 19179 mblk_t *mp_tail = NULL; 19180 19181 /* 19182 * Make a copy of the original message 19183 */ 19184 mp2ctl = copymsg(mpctl); 19185 19186 /* fixed length IPv6 structure ... */ 19187 19188 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19189 optp->level = MIB2_IP6; 19190 optp->name = 0; 19191 /* Include "unknown interface" ip6_mib */ 19192 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19193 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19194 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19195 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19196 ipst->ips_ipv6_forward ? 1 : 2); 19197 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19198 ipst->ips_ipv6_def_hops); 19199 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19200 sizeof (mib2_ipIfStatsEntry_t)); 19201 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19202 sizeof (mib2_ipv6AddrEntry_t)); 19203 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19204 sizeof (mib2_ipv6RouteEntry_t)); 19205 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19206 sizeof (mib2_ipv6NetToMediaEntry_t)); 19207 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19208 sizeof (ipv6_member_t)); 19209 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19210 sizeof (ipv6_grpsrc_t)); 19211 19212 /* 19213 * Synchronize 64- and 32-bit counters 19214 */ 19215 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19216 ipIfStatsHCInReceives); 19217 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19218 ipIfStatsHCInDelivers); 19219 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19220 ipIfStatsHCOutRequests); 19221 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19222 ipIfStatsHCOutForwDatagrams); 19223 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19224 ipIfStatsHCOutMcastPkts); 19225 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19226 ipIfStatsHCInMcastPkts); 19227 19228 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19229 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19230 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19231 (uint_t)sizeof (ipst->ips_ip6_mib))); 19232 } 19233 19234 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19235 ill = ILL_START_WALK_V6(&ctx, ipst); 19236 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19237 ill->ill_ip_mib->ipIfStatsIfIndex = 19238 ill->ill_phyint->phyint_ifindex; 19239 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19240 ipst->ips_ipv6_forward ? 1 : 2); 19241 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19242 ill->ill_max_hops); 19243 19244 /* 19245 * Synchronize 64- and 32-bit counters 19246 */ 19247 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19248 ipIfStatsHCInReceives); 19249 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19250 ipIfStatsHCInDelivers); 19251 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19252 ipIfStatsHCOutRequests); 19253 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19254 ipIfStatsHCOutForwDatagrams); 19255 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19256 ipIfStatsHCOutMcastPkts); 19257 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19258 ipIfStatsHCInMcastPkts); 19259 19260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19261 (char *)ill->ill_ip_mib, 19262 (int)sizeof (*ill->ill_ip_mib))) { 19263 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19264 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19265 } 19266 } 19267 rw_exit(&ipst->ips_ill_g_lock); 19268 19269 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19270 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19271 (int)optp->level, (int)optp->name, (int)optp->len)); 19272 qreply(q, mpctl); 19273 return (mp2ctl); 19274 } 19275 19276 /* 19277 * ICMPv6 mib: One per ill 19278 */ 19279 static mblk_t * 19280 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19281 { 19282 struct opthdr *optp; 19283 mblk_t *mp2ctl; 19284 ill_t *ill; 19285 ill_walk_context_t ctx; 19286 mblk_t *mp_tail = NULL; 19287 /* 19288 * Make a copy of the original message 19289 */ 19290 mp2ctl = copymsg(mpctl); 19291 19292 /* fixed length ICMPv6 structure ... */ 19293 19294 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19295 optp->level = MIB2_ICMP6; 19296 optp->name = 0; 19297 /* Include "unknown interface" icmp6_mib */ 19298 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19299 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19300 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19301 sizeof (mib2_ipv6IfIcmpEntry_t); 19302 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19303 (char *)&ipst->ips_icmp6_mib, 19304 (int)sizeof (ipst->ips_icmp6_mib))) { 19305 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19306 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19307 } 19308 19309 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19310 ill = ILL_START_WALK_V6(&ctx, ipst); 19311 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19312 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19313 ill->ill_phyint->phyint_ifindex; 19314 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19315 (char *)ill->ill_icmp6_mib, 19316 (int)sizeof (*ill->ill_icmp6_mib))) { 19317 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19318 "%u bytes\n", 19319 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19320 } 19321 } 19322 rw_exit(&ipst->ips_ill_g_lock); 19323 19324 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19325 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19326 (int)optp->level, (int)optp->name, (int)optp->len)); 19327 qreply(q, mpctl); 19328 return (mp2ctl); 19329 } 19330 19331 /* 19332 * ire_walk routine to create both ipRouteEntryTable and 19333 * ipRouteAttributeTable in one IRE walk 19334 */ 19335 static void 19336 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19337 { 19338 ill_t *ill; 19339 ipif_t *ipif; 19340 mib2_ipRouteEntry_t *re; 19341 mib2_ipAttributeEntry_t *iae, *iaeptr; 19342 ipaddr_t gw_addr; 19343 tsol_ire_gw_secattr_t *attrp; 19344 tsol_gc_t *gc = NULL; 19345 tsol_gcgrp_t *gcgrp = NULL; 19346 uint_t sacnt = 0; 19347 int i; 19348 19349 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19350 19351 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19352 return; 19353 19354 if ((attrp = ire->ire_gw_secattr) != NULL) { 19355 mutex_enter(&attrp->igsa_lock); 19356 if ((gc = attrp->igsa_gc) != NULL) { 19357 gcgrp = gc->gc_grp; 19358 ASSERT(gcgrp != NULL); 19359 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19360 sacnt = 1; 19361 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19362 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19363 gc = gcgrp->gcgrp_head; 19364 sacnt = gcgrp->gcgrp_count; 19365 } 19366 mutex_exit(&attrp->igsa_lock); 19367 19368 /* do nothing if there's no gc to report */ 19369 if (gc == NULL) { 19370 ASSERT(sacnt == 0); 19371 if (gcgrp != NULL) { 19372 /* we might as well drop the lock now */ 19373 rw_exit(&gcgrp->gcgrp_rwlock); 19374 gcgrp = NULL; 19375 } 19376 attrp = NULL; 19377 } 19378 19379 ASSERT(gc == NULL || (gcgrp != NULL && 19380 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19381 } 19382 ASSERT(sacnt == 0 || gc != NULL); 19383 19384 if (sacnt != 0 && 19385 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19386 kmem_free(re, sizeof (*re)); 19387 rw_exit(&gcgrp->gcgrp_rwlock); 19388 return; 19389 } 19390 19391 /* 19392 * Return all IRE types for route table... let caller pick and choose 19393 */ 19394 re->ipRouteDest = ire->ire_addr; 19395 ipif = ire->ire_ipif; 19396 re->ipRouteIfIndex.o_length = 0; 19397 if (ire->ire_type == IRE_CACHE) { 19398 ill = (ill_t *)ire->ire_stq->q_ptr; 19399 re->ipRouteIfIndex.o_length = 19400 ill->ill_name_length == 0 ? 0 : 19401 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19402 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19403 re->ipRouteIfIndex.o_length); 19404 } else if (ipif != NULL) { 19405 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19406 OCTET_LENGTH); 19407 re->ipRouteIfIndex.o_length = 19408 mi_strlen(re->ipRouteIfIndex.o_bytes); 19409 } 19410 re->ipRouteMetric1 = -1; 19411 re->ipRouteMetric2 = -1; 19412 re->ipRouteMetric3 = -1; 19413 re->ipRouteMetric4 = -1; 19414 19415 gw_addr = ire->ire_gateway_addr; 19416 19417 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19418 re->ipRouteNextHop = ire->ire_src_addr; 19419 else 19420 re->ipRouteNextHop = gw_addr; 19421 /* indirect(4), direct(3), or invalid(2) */ 19422 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19423 re->ipRouteType = 2; 19424 else 19425 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19426 re->ipRouteProto = -1; 19427 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19428 re->ipRouteMask = ire->ire_mask; 19429 re->ipRouteMetric5 = -1; 19430 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19431 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19432 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19433 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19434 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19435 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19436 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19437 re->ipRouteInfo.re_flags = ire->ire_flags; 19438 re->ipRouteInfo.re_in_ill.o_length = 0; 19439 19440 if (ire->ire_flags & RTF_DYNAMIC) { 19441 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19442 } else { 19443 re->ipRouteInfo.re_ire_type = ire->ire_type; 19444 } 19445 19446 if (ire->ire_in_ill != NULL) { 19447 re->ipRouteInfo.re_in_ill.o_length = 19448 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19449 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19450 bcopy(ire->ire_in_ill->ill_name, 19451 re->ipRouteInfo.re_in_ill.o_bytes, 19452 re->ipRouteInfo.re_in_ill.o_length); 19453 } 19454 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19455 19456 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19457 (char *)re, (int)sizeof (*re))) { 19458 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19459 (uint_t)sizeof (*re))); 19460 } 19461 19462 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19463 iaeptr->iae_routeidx = ird->ird_idx; 19464 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19465 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19466 } 19467 19468 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19469 (char *)iae, sacnt * sizeof (*iae))) { 19470 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19471 (unsigned)(sacnt * sizeof (*iae)))); 19472 } 19473 19474 /* bump route index for next pass */ 19475 ird->ird_idx++; 19476 19477 kmem_free(re, sizeof (*re)); 19478 if (sacnt != 0) 19479 kmem_free(iae, sacnt * sizeof (*iae)); 19480 19481 if (gcgrp != NULL) 19482 rw_exit(&gcgrp->gcgrp_rwlock); 19483 } 19484 19485 /* 19486 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19487 */ 19488 static void 19489 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19490 { 19491 ill_t *ill; 19492 ipif_t *ipif; 19493 mib2_ipv6RouteEntry_t *re; 19494 mib2_ipAttributeEntry_t *iae, *iaeptr; 19495 in6_addr_t gw_addr_v6; 19496 tsol_ire_gw_secattr_t *attrp; 19497 tsol_gc_t *gc = NULL; 19498 tsol_gcgrp_t *gcgrp = NULL; 19499 uint_t sacnt = 0; 19500 int i; 19501 19502 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19503 19504 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19505 return; 19506 19507 if ((attrp = ire->ire_gw_secattr) != NULL) { 19508 mutex_enter(&attrp->igsa_lock); 19509 if ((gc = attrp->igsa_gc) != NULL) { 19510 gcgrp = gc->gc_grp; 19511 ASSERT(gcgrp != NULL); 19512 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19513 sacnt = 1; 19514 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19515 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19516 gc = gcgrp->gcgrp_head; 19517 sacnt = gcgrp->gcgrp_count; 19518 } 19519 mutex_exit(&attrp->igsa_lock); 19520 19521 /* do nothing if there's no gc to report */ 19522 if (gc == NULL) { 19523 ASSERT(sacnt == 0); 19524 if (gcgrp != NULL) { 19525 /* we might as well drop the lock now */ 19526 rw_exit(&gcgrp->gcgrp_rwlock); 19527 gcgrp = NULL; 19528 } 19529 attrp = NULL; 19530 } 19531 19532 ASSERT(gc == NULL || (gcgrp != NULL && 19533 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19534 } 19535 ASSERT(sacnt == 0 || gc != NULL); 19536 19537 if (sacnt != 0 && 19538 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19539 kmem_free(re, sizeof (*re)); 19540 rw_exit(&gcgrp->gcgrp_rwlock); 19541 return; 19542 } 19543 19544 /* 19545 * Return all IRE types for route table... let caller pick and choose 19546 */ 19547 re->ipv6RouteDest = ire->ire_addr_v6; 19548 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19549 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19550 re->ipv6RouteIfIndex.o_length = 0; 19551 ipif = ire->ire_ipif; 19552 if (ire->ire_type == IRE_CACHE) { 19553 ill = (ill_t *)ire->ire_stq->q_ptr; 19554 re->ipv6RouteIfIndex.o_length = 19555 ill->ill_name_length == 0 ? 0 : 19556 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19557 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19558 re->ipv6RouteIfIndex.o_length); 19559 } else if (ipif != NULL) { 19560 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19561 OCTET_LENGTH); 19562 re->ipv6RouteIfIndex.o_length = 19563 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19564 } 19565 19566 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19567 19568 mutex_enter(&ire->ire_lock); 19569 gw_addr_v6 = ire->ire_gateway_addr_v6; 19570 mutex_exit(&ire->ire_lock); 19571 19572 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19573 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19574 else 19575 re->ipv6RouteNextHop = gw_addr_v6; 19576 19577 /* remote(4), local(3), or discard(2) */ 19578 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19579 re->ipv6RouteType = 2; 19580 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19581 re->ipv6RouteType = 3; 19582 else 19583 re->ipv6RouteType = 4; 19584 19585 re->ipv6RouteProtocol = -1; 19586 re->ipv6RoutePolicy = 0; 19587 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19588 re->ipv6RouteNextHopRDI = 0; 19589 re->ipv6RouteWeight = 0; 19590 re->ipv6RouteMetric = 0; 19591 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19592 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19593 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19594 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19595 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19596 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19597 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19598 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19599 19600 if (ire->ire_flags & RTF_DYNAMIC) { 19601 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19602 } else { 19603 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19604 } 19605 19606 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19607 (char *)re, (int)sizeof (*re))) { 19608 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19609 (uint_t)sizeof (*re))); 19610 } 19611 19612 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19613 iaeptr->iae_routeidx = ird->ird_idx; 19614 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19615 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19616 } 19617 19618 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19619 (char *)iae, sacnt * sizeof (*iae))) { 19620 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19621 (unsigned)(sacnt * sizeof (*iae)))); 19622 } 19623 19624 /* bump route index for next pass */ 19625 ird->ird_idx++; 19626 19627 kmem_free(re, sizeof (*re)); 19628 if (sacnt != 0) 19629 kmem_free(iae, sacnt * sizeof (*iae)); 19630 19631 if (gcgrp != NULL) 19632 rw_exit(&gcgrp->gcgrp_rwlock); 19633 } 19634 19635 /* 19636 * ndp_walk routine to create ipv6NetToMediaEntryTable 19637 */ 19638 static int 19639 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19640 { 19641 ill_t *ill; 19642 mib2_ipv6NetToMediaEntry_t ntme; 19643 dl_unitdata_req_t *dl; 19644 19645 ill = nce->nce_ill; 19646 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19647 return (0); 19648 19649 /* 19650 * Neighbor cache entry attached to IRE with on-link 19651 * destination. 19652 */ 19653 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19654 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19655 if ((ill->ill_flags & ILLF_XRESOLV) && 19656 (nce->nce_res_mp != NULL)) { 19657 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19658 ntme.ipv6NetToMediaPhysAddress.o_length = 19659 dl->dl_dest_addr_length; 19660 } else { 19661 ntme.ipv6NetToMediaPhysAddress.o_length = 19662 ill->ill_phys_addr_length; 19663 } 19664 if (nce->nce_res_mp != NULL) { 19665 bcopy((char *)nce->nce_res_mp->b_rptr + 19666 NCE_LL_ADDR_OFFSET(ill), 19667 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19668 ntme.ipv6NetToMediaPhysAddress.o_length); 19669 } else { 19670 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19671 ill->ill_phys_addr_length); 19672 } 19673 /* 19674 * Note: Returns ND_* states. Should be: 19675 * reachable(1), stale(2), delay(3), probe(4), 19676 * invalid(5), unknown(6) 19677 */ 19678 ntme.ipv6NetToMediaState = nce->nce_state; 19679 ntme.ipv6NetToMediaLastUpdated = 0; 19680 19681 /* other(1), dynamic(2), static(3), local(4) */ 19682 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19683 ntme.ipv6NetToMediaType = 4; 19684 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19685 ntme.ipv6NetToMediaType = 1; 19686 } else { 19687 ntme.ipv6NetToMediaType = 2; 19688 } 19689 19690 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19691 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19692 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19693 (uint_t)sizeof (ntme))); 19694 } 19695 return (0); 19696 } 19697 19698 /* 19699 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19700 */ 19701 /* ARGSUSED */ 19702 int 19703 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19704 { 19705 switch (level) { 19706 case MIB2_IP: 19707 case MIB2_ICMP: 19708 switch (name) { 19709 default: 19710 break; 19711 } 19712 return (1); 19713 default: 19714 return (1); 19715 } 19716 } 19717 19718 /* 19719 * When there exists both a 64- and 32-bit counter of a particular type 19720 * (i.e., InReceives), only the 64-bit counters are added. 19721 */ 19722 void 19723 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19724 { 19725 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19726 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19727 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19728 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19729 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19730 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19731 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19732 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19733 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19734 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19735 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19736 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19737 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19738 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19739 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19740 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19741 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19742 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19743 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19744 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19745 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19746 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19747 o2->ipIfStatsInWrongIPVersion); 19748 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19749 o2->ipIfStatsInWrongIPVersion); 19750 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19751 o2->ipIfStatsOutSwitchIPVersion); 19752 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19753 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19754 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19755 o2->ipIfStatsHCInForwDatagrams); 19756 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19757 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19758 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19759 o2->ipIfStatsHCOutForwDatagrams); 19760 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19761 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19762 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19763 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19764 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19765 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19766 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19767 o2->ipIfStatsHCOutMcastOctets); 19768 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19769 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19770 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19771 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19772 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19773 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19774 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19775 } 19776 19777 void 19778 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19779 { 19780 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19781 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19782 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19783 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19784 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19785 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19786 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19787 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19788 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19789 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19790 o2->ipv6IfIcmpInRouterSolicits); 19791 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19792 o2->ipv6IfIcmpInRouterAdvertisements); 19793 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19794 o2->ipv6IfIcmpInNeighborSolicits); 19795 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19796 o2->ipv6IfIcmpInNeighborAdvertisements); 19797 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19798 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19799 o2->ipv6IfIcmpInGroupMembQueries); 19800 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19801 o2->ipv6IfIcmpInGroupMembResponses); 19802 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19803 o2->ipv6IfIcmpInGroupMembReductions); 19804 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19805 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19806 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19807 o2->ipv6IfIcmpOutDestUnreachs); 19808 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19809 o2->ipv6IfIcmpOutAdminProhibs); 19810 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19811 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19812 o2->ipv6IfIcmpOutParmProblems); 19813 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19814 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19815 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19816 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19817 o2->ipv6IfIcmpOutRouterSolicits); 19818 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19819 o2->ipv6IfIcmpOutRouterAdvertisements); 19820 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19821 o2->ipv6IfIcmpOutNeighborSolicits); 19822 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19823 o2->ipv6IfIcmpOutNeighborAdvertisements); 19824 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19825 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19826 o2->ipv6IfIcmpOutGroupMembQueries); 19827 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19828 o2->ipv6IfIcmpOutGroupMembResponses); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19830 o2->ipv6IfIcmpOutGroupMembReductions); 19831 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19832 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19833 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19834 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19835 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19836 o2->ipv6IfIcmpInBadNeighborSolicitations); 19837 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19838 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19839 o2->ipv6IfIcmpInGroupMembTotal); 19840 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19841 o2->ipv6IfIcmpInGroupMembBadQueries); 19842 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19843 o2->ipv6IfIcmpInGroupMembBadReports); 19844 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19845 o2->ipv6IfIcmpInGroupMembOurReports); 19846 } 19847 19848 /* 19849 * Called before the options are updated to check if this packet will 19850 * be source routed from here. 19851 * This routine assumes that the options are well formed i.e. that they 19852 * have already been checked. 19853 */ 19854 static boolean_t 19855 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19856 { 19857 ipoptp_t opts; 19858 uchar_t *opt; 19859 uint8_t optval; 19860 uint8_t optlen; 19861 ipaddr_t dst; 19862 ire_t *ire; 19863 19864 if (IS_SIMPLE_IPH(ipha)) { 19865 ip2dbg(("not source routed\n")); 19866 return (B_FALSE); 19867 } 19868 dst = ipha->ipha_dst; 19869 for (optval = ipoptp_first(&opts, ipha); 19870 optval != IPOPT_EOL; 19871 optval = ipoptp_next(&opts)) { 19872 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19873 opt = opts.ipoptp_cur; 19874 optlen = opts.ipoptp_len; 19875 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19876 optval, optlen)); 19877 switch (optval) { 19878 uint32_t off; 19879 case IPOPT_SSRR: 19880 case IPOPT_LSRR: 19881 /* 19882 * If dst is one of our addresses and there are some 19883 * entries left in the source route return (true). 19884 */ 19885 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19886 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19887 if (ire == NULL) { 19888 ip2dbg(("ip_source_routed: not next" 19889 " source route 0x%x\n", 19890 ntohl(dst))); 19891 return (B_FALSE); 19892 } 19893 ire_refrele(ire); 19894 off = opt[IPOPT_OFFSET]; 19895 off--; 19896 if (optlen < IP_ADDR_LEN || 19897 off > optlen - IP_ADDR_LEN) { 19898 /* End of source route */ 19899 ip1dbg(("ip_source_routed: end of SR\n")); 19900 return (B_FALSE); 19901 } 19902 return (B_TRUE); 19903 } 19904 } 19905 ip2dbg(("not source routed\n")); 19906 return (B_FALSE); 19907 } 19908 19909 /* 19910 * Check if the packet contains any source route. 19911 */ 19912 static boolean_t 19913 ip_source_route_included(ipha_t *ipha) 19914 { 19915 ipoptp_t opts; 19916 uint8_t optval; 19917 19918 if (IS_SIMPLE_IPH(ipha)) 19919 return (B_FALSE); 19920 for (optval = ipoptp_first(&opts, ipha); 19921 optval != IPOPT_EOL; 19922 optval = ipoptp_next(&opts)) { 19923 switch (optval) { 19924 case IPOPT_SSRR: 19925 case IPOPT_LSRR: 19926 return (B_TRUE); 19927 } 19928 } 19929 return (B_FALSE); 19930 } 19931 19932 /* 19933 * Called when the IRE expiration timer fires. 19934 */ 19935 void 19936 ip_trash_timer_expire(void *args) 19937 { 19938 int flush_flag = 0; 19939 ire_expire_arg_t iea; 19940 ip_stack_t *ipst = (ip_stack_t *)args; 19941 19942 iea.iea_ipst = ipst; /* No netstack_hold */ 19943 19944 /* 19945 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19946 * This lock makes sure that a new invocation of this function 19947 * that occurs due to an almost immediate timer firing will not 19948 * progress beyond this point until the current invocation is done 19949 */ 19950 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19951 ipst->ips_ip_ire_expire_id = 0; 19952 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19953 19954 /* Periodic timer */ 19955 if (ipst->ips_ip_ire_arp_time_elapsed >= 19956 ipst->ips_ip_ire_arp_interval) { 19957 /* 19958 * Remove all IRE_CACHE entries since they might 19959 * contain arp information. 19960 */ 19961 flush_flag |= FLUSH_ARP_TIME; 19962 ipst->ips_ip_ire_arp_time_elapsed = 0; 19963 IP_STAT(ipst, ip_ire_arp_timer_expired); 19964 } 19965 if (ipst->ips_ip_ire_rd_time_elapsed >= 19966 ipst->ips_ip_ire_redir_interval) { 19967 /* Remove all redirects */ 19968 flush_flag |= FLUSH_REDIRECT_TIME; 19969 ipst->ips_ip_ire_rd_time_elapsed = 0; 19970 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19971 } 19972 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19973 ipst->ips_ip_ire_pathmtu_interval) { 19974 /* Increase path mtu */ 19975 flush_flag |= FLUSH_MTU_TIME; 19976 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19977 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19978 } 19979 19980 /* 19981 * Optimize for the case when there are no redirects in the 19982 * ftable, that is, no need to walk the ftable in that case. 19983 */ 19984 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19985 iea.iea_flush_flag = flush_flag; 19986 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19987 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19988 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19989 NULL, ALL_ZONES, ipst); 19990 } 19991 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19992 ipst->ips_ip_redirect_cnt > 0) { 19993 iea.iea_flush_flag = flush_flag; 19994 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19995 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19996 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19997 } 19998 if (flush_flag & FLUSH_MTU_TIME) { 19999 /* 20000 * Walk all IPv6 IRE's and update them 20001 * Note that ARP and redirect timers are not 20002 * needed since NUD handles stale entries. 20003 */ 20004 flush_flag = FLUSH_MTU_TIME; 20005 iea.iea_flush_flag = flush_flag; 20006 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20007 ALL_ZONES, ipst); 20008 } 20009 20010 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20011 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20012 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20013 20014 /* 20015 * Hold the lock to serialize timeout calls and prevent 20016 * stale values in ip_ire_expire_id. Otherwise it is possible 20017 * for the timer to fire and a new invocation of this function 20018 * to start before the return value of timeout has been stored 20019 * in ip_ire_expire_id by the current invocation. 20020 */ 20021 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20022 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20023 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20024 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20025 } 20026 20027 /* 20028 * Called by the memory allocator subsystem directly, when the system 20029 * is running low on memory. 20030 */ 20031 /* ARGSUSED */ 20032 void 20033 ip_trash_ire_reclaim(void *args) 20034 { 20035 netstack_handle_t nh; 20036 netstack_t *ns; 20037 20038 netstack_next_init(&nh); 20039 while ((ns = netstack_next(&nh)) != NULL) { 20040 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20041 netstack_rele(ns); 20042 } 20043 netstack_next_fini(&nh); 20044 } 20045 20046 static void 20047 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20048 { 20049 ire_cache_count_t icc; 20050 ire_cache_reclaim_t icr; 20051 ncc_cache_count_t ncc; 20052 nce_cache_reclaim_t ncr; 20053 uint_t delete_cnt; 20054 /* 20055 * Memory reclaim call back. 20056 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20057 * Then, with a target of freeing 1/Nth of IRE_CACHE 20058 * entries, determine what fraction to free for 20059 * each category of IRE_CACHE entries giving absolute priority 20060 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20061 * entry will be freed unless all offlink entries are freed). 20062 */ 20063 icc.icc_total = 0; 20064 icc.icc_unused = 0; 20065 icc.icc_offlink = 0; 20066 icc.icc_pmtu = 0; 20067 icc.icc_onlink = 0; 20068 ire_walk(ire_cache_count, (char *)&icc, ipst); 20069 20070 /* 20071 * Free NCEs for IPv6 like the onlink ires. 20072 */ 20073 ncc.ncc_total = 0; 20074 ncc.ncc_host = 0; 20075 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20076 20077 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20078 icc.icc_pmtu + icc.icc_onlink); 20079 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20080 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20081 if (delete_cnt == 0) 20082 return; 20083 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20084 /* Always delete all unused offlink entries */ 20085 icr.icr_ipst = ipst; 20086 icr.icr_unused = 1; 20087 if (delete_cnt <= icc.icc_unused) { 20088 /* 20089 * Only need to free unused entries. In other words, 20090 * there are enough unused entries to free to meet our 20091 * target number of freed ire cache entries. 20092 */ 20093 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20094 ncr.ncr_host = 0; 20095 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20096 /* 20097 * Only need to free unused entries, plus a fraction of offlink 20098 * entries. It follows from the first if statement that 20099 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20100 */ 20101 delete_cnt -= icc.icc_unused; 20102 /* Round up # deleted by truncating fraction */ 20103 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20104 icr.icr_pmtu = icr.icr_onlink = 0; 20105 ncr.ncr_host = 0; 20106 } else if (delete_cnt <= 20107 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20108 /* 20109 * Free all unused and offlink entries, plus a fraction of 20110 * pmtu entries. It follows from the previous if statement 20111 * that icc_pmtu is non-zero, and that 20112 * delete_cnt != icc_unused + icc_offlink. 20113 */ 20114 icr.icr_offlink = 1; 20115 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20116 /* Round up # deleted by truncating fraction */ 20117 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20118 icr.icr_onlink = 0; 20119 ncr.ncr_host = 0; 20120 } else { 20121 /* 20122 * Free all unused, offlink, and pmtu entries, plus a fraction 20123 * of onlink entries. If we're here, then we know that 20124 * icc_onlink is non-zero, and that 20125 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20126 */ 20127 icr.icr_offlink = icr.icr_pmtu = 1; 20128 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20129 icc.icc_pmtu; 20130 /* Round up # deleted by truncating fraction */ 20131 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20132 /* Using the same delete fraction as for onlink IREs */ 20133 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20134 } 20135 #ifdef DEBUG 20136 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20137 "fractions %d/%d/%d/%d\n", 20138 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20139 icc.icc_unused, icc.icc_offlink, 20140 icc.icc_pmtu, icc.icc_onlink, 20141 icr.icr_unused, icr.icr_offlink, 20142 icr.icr_pmtu, icr.icr_onlink)); 20143 #endif 20144 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20145 if (ncr.ncr_host != 0) 20146 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20147 (uchar_t *)&ncr, ipst); 20148 #ifdef DEBUG 20149 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20150 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20151 ire_walk(ire_cache_count, (char *)&icc, ipst); 20152 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20153 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20154 icc.icc_pmtu, icc.icc_onlink)); 20155 #endif 20156 } 20157 20158 /* 20159 * ip_unbind is called when a copy of an unbind request is received from the 20160 * upper level protocol. We remove this conn from any fanout hash list it is 20161 * on, and zero out the bind information. No reply is expected up above. 20162 */ 20163 mblk_t * 20164 ip_unbind(queue_t *q, mblk_t *mp) 20165 { 20166 conn_t *connp = Q_TO_CONN(q); 20167 20168 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20169 20170 if (is_system_labeled() && connp->conn_anon_port) { 20171 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20172 connp->conn_mlp_type, connp->conn_ulp, 20173 ntohs(connp->conn_lport), B_FALSE); 20174 connp->conn_anon_port = 0; 20175 } 20176 connp->conn_mlp_type = mlptSingle; 20177 20178 ipcl_hash_remove(connp); 20179 20180 ASSERT(mp->b_cont == NULL); 20181 /* 20182 * Convert mp into a T_OK_ACK 20183 */ 20184 mp = mi_tpi_ok_ack_alloc(mp); 20185 20186 /* 20187 * should not happen in practice... T_OK_ACK is smaller than the 20188 * original message. 20189 */ 20190 if (mp == NULL) 20191 return (NULL); 20192 20193 /* 20194 * Don't bzero the ports if its TCP since TCP still needs the 20195 * lport to remove it from its own bind hash. TCP will do the 20196 * cleanup. 20197 */ 20198 if (!IPCL_IS_TCP(connp)) 20199 bzero(&connp->u_port, sizeof (connp->u_port)); 20200 20201 return (mp); 20202 } 20203 20204 /* 20205 * Write side put procedure. Outbound data, IOCTLs, responses from 20206 * resolvers, etc, come down through here. 20207 * 20208 * arg2 is always a queue_t *. 20209 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20210 * the zoneid. 20211 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20212 */ 20213 void 20214 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20215 { 20216 ip_output_options(arg, mp, arg2, caller, &zero_info); 20217 } 20218 20219 void 20220 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20221 ip_opt_info_t *infop) 20222 { 20223 conn_t *connp = NULL; 20224 queue_t *q = (queue_t *)arg2; 20225 ipha_t *ipha; 20226 #define rptr ((uchar_t *)ipha) 20227 ire_t *ire = NULL; 20228 ire_t *sctp_ire = NULL; 20229 uint32_t v_hlen_tos_len; 20230 ipaddr_t dst; 20231 mblk_t *first_mp = NULL; 20232 boolean_t mctl_present; 20233 ipsec_out_t *io; 20234 int match_flags; 20235 ill_t *attach_ill = NULL; 20236 /* Bind to IPIF_NOFAILOVER ill etc. */ 20237 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20238 ipif_t *dst_ipif; 20239 boolean_t multirt_need_resolve = B_FALSE; 20240 mblk_t *copy_mp = NULL; 20241 int err; 20242 zoneid_t zoneid; 20243 int adjust; 20244 uint16_t iplen; 20245 boolean_t need_decref = B_FALSE; 20246 boolean_t ignore_dontroute = B_FALSE; 20247 boolean_t ignore_nexthop = B_FALSE; 20248 boolean_t ip_nexthop = B_FALSE; 20249 ipaddr_t nexthop_addr; 20250 ip_stack_t *ipst; 20251 20252 #ifdef _BIG_ENDIAN 20253 #define V_HLEN (v_hlen_tos_len >> 24) 20254 #else 20255 #define V_HLEN (v_hlen_tos_len & 0xFF) 20256 #endif 20257 20258 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20259 "ip_wput_start: q %p", q); 20260 20261 /* 20262 * ip_wput fast path 20263 */ 20264 20265 /* is packet from ARP ? */ 20266 if (q->q_next != NULL) { 20267 zoneid = (zoneid_t)(uintptr_t)arg; 20268 goto qnext; 20269 } 20270 20271 connp = (conn_t *)arg; 20272 ASSERT(connp != NULL); 20273 zoneid = connp->conn_zoneid; 20274 ipst = connp->conn_netstack->netstack_ip; 20275 20276 /* is queue flow controlled? */ 20277 if ((q->q_first != NULL || connp->conn_draining) && 20278 (caller == IP_WPUT)) { 20279 ASSERT(!need_decref); 20280 (void) putq(q, mp); 20281 return; 20282 } 20283 20284 /* Multidata transmit? */ 20285 if (DB_TYPE(mp) == M_MULTIDATA) { 20286 /* 20287 * We should never get here, since all Multidata messages 20288 * originating from tcp should have been directed over to 20289 * tcp_multisend() in the first place. 20290 */ 20291 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20292 freemsg(mp); 20293 return; 20294 } else if (DB_TYPE(mp) != M_DATA) 20295 goto notdata; 20296 20297 if (mp->b_flag & MSGHASREF) { 20298 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20299 mp->b_flag &= ~MSGHASREF; 20300 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20301 need_decref = B_TRUE; 20302 } 20303 ipha = (ipha_t *)mp->b_rptr; 20304 20305 /* is IP header non-aligned or mblk smaller than basic IP header */ 20306 #ifndef SAFETY_BEFORE_SPEED 20307 if (!OK_32PTR(rptr) || 20308 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20309 goto hdrtoosmall; 20310 #endif 20311 20312 ASSERT(OK_32PTR(ipha)); 20313 20314 /* 20315 * This function assumes that mp points to an IPv4 packet. If it's the 20316 * wrong version, we'll catch it again in ip_output_v6. 20317 * 20318 * Note that this is *only* locally-generated output here, and never 20319 * forwarded data, and that we need to deal only with transports that 20320 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20321 * label.) 20322 */ 20323 if (is_system_labeled() && 20324 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20325 !connp->conn_ulp_labeled) { 20326 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20327 connp->conn_mac_exempt, ipst); 20328 ipha = (ipha_t *)mp->b_rptr; 20329 if (err != 0) { 20330 first_mp = mp; 20331 if (err == EINVAL) 20332 goto icmp_parameter_problem; 20333 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20334 goto discard_pkt; 20335 } 20336 iplen = ntohs(ipha->ipha_length) + adjust; 20337 ipha->ipha_length = htons(iplen); 20338 } 20339 20340 ASSERT(infop != NULL); 20341 20342 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20343 /* 20344 * IP_PKTINFO ancillary option is present. 20345 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20346 * allows using address of any zone as the source address. 20347 */ 20348 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20349 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20350 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20351 if (ire == NULL) 20352 goto drop_pkt; 20353 ire_refrele(ire); 20354 ire = NULL; 20355 } 20356 20357 /* 20358 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20359 * ill index passed in IP_PKTINFO. 20360 */ 20361 if (infop->ip_opt_ill_index != 0 && 20362 connp->conn_xmit_if_ill == NULL && 20363 connp->conn_nofailover_ill == NULL) { 20364 20365 xmit_ill = ill_lookup_on_ifindex( 20366 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20367 ipst); 20368 20369 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20370 goto drop_pkt; 20371 /* 20372 * check that there is an ipif belonging 20373 * to our zone. IPCL_ZONEID is not used because 20374 * IP_ALLZONES option is valid only when the ill is 20375 * accessible from all zones i.e has a valid ipif in 20376 * all zones. 20377 */ 20378 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20379 goto drop_pkt; 20380 } 20381 } 20382 20383 /* 20384 * If there is a policy, try to attach an ipsec_out in 20385 * the front. At the end, first_mp either points to a 20386 * M_DATA message or IPSEC_OUT message linked to a 20387 * M_DATA message. We have to do it now as we might 20388 * lose the "conn" if we go through ip_newroute. 20389 */ 20390 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20391 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20392 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20393 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20394 if (need_decref) 20395 CONN_DEC_REF(connp); 20396 return; 20397 } else { 20398 ASSERT(mp->b_datap->db_type == M_CTL); 20399 first_mp = mp; 20400 mp = mp->b_cont; 20401 mctl_present = B_TRUE; 20402 } 20403 } else { 20404 first_mp = mp; 20405 mctl_present = B_FALSE; 20406 } 20407 20408 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20409 20410 /* is wrong version or IP options present */ 20411 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20412 goto version_hdrlen_check; 20413 dst = ipha->ipha_dst; 20414 20415 if (connp->conn_nofailover_ill != NULL) { 20416 attach_ill = conn_get_held_ill(connp, 20417 &connp->conn_nofailover_ill, &err); 20418 if (err == ILL_LOOKUP_FAILED) { 20419 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20420 if (need_decref) 20421 CONN_DEC_REF(connp); 20422 freemsg(first_mp); 20423 return; 20424 } 20425 } 20426 20427 20428 /* is packet multicast? */ 20429 if (CLASSD(dst)) 20430 goto multicast; 20431 20432 /* 20433 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20434 * takes precedence over conn_dontroute and conn_nexthop_set 20435 */ 20436 if (xmit_ill != NULL) { 20437 goto send_from_ill; 20438 } 20439 20440 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20441 (connp->conn_nexthop_set)) { 20442 /* 20443 * If the destination is a broadcast or a loopback 20444 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20445 * through the standard path. But in the case of local 20446 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20447 * the standard path not IP_XMIT_IF. 20448 */ 20449 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20450 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20451 (ire->ire_type != IRE_LOOPBACK))) { 20452 if ((connp->conn_dontroute || 20453 connp->conn_nexthop_set) && (ire != NULL) && 20454 (ire->ire_type == IRE_LOCAL)) 20455 goto standard_path; 20456 20457 if (ire != NULL) { 20458 ire_refrele(ire); 20459 /* No more access to ire */ 20460 ire = NULL; 20461 } 20462 /* 20463 * bypass routing checks and go directly to 20464 * interface. 20465 */ 20466 if (connp->conn_dontroute) { 20467 goto dontroute; 20468 } else if (connp->conn_nexthop_set) { 20469 ip_nexthop = B_TRUE; 20470 nexthop_addr = connp->conn_nexthop_v4; 20471 goto send_from_ill; 20472 } 20473 20474 /* 20475 * If IP_XMIT_IF socket option is set, 20476 * then we allow unicast and multicast 20477 * packets to go through the ill. It is 20478 * quite possible that the destination 20479 * is not in the ire cache table and we 20480 * do not want to go to ip_newroute() 20481 * instead we call ip_newroute_ipif. 20482 */ 20483 xmit_ill = conn_get_held_ill(connp, 20484 &connp->conn_xmit_if_ill, &err); 20485 if (err == ILL_LOOKUP_FAILED) { 20486 BUMP_MIB(&ipst->ips_ip_mib, 20487 ipIfStatsOutDiscards); 20488 if (attach_ill != NULL) 20489 ill_refrele(attach_ill); 20490 if (need_decref) 20491 CONN_DEC_REF(connp); 20492 freemsg(first_mp); 20493 return; 20494 } 20495 goto send_from_ill; 20496 } 20497 standard_path: 20498 /* Must be a broadcast, a loopback or a local ire */ 20499 if (ire != NULL) { 20500 ire_refrele(ire); 20501 /* No more access to ire */ 20502 ire = NULL; 20503 } 20504 } 20505 20506 if (attach_ill != NULL) 20507 goto send_from_ill; 20508 20509 /* 20510 * We cache IRE_CACHEs to avoid lookups. We don't do 20511 * this for the tcp global queue and listen end point 20512 * as it does not really have a real destination to 20513 * talk to. This is also true for SCTP. 20514 */ 20515 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20516 !connp->conn_fully_bound) { 20517 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20518 if (ire == NULL) 20519 goto noirefound; 20520 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20521 "ip_wput_end: q %p (%S)", q, "end"); 20522 20523 /* 20524 * Check if the ire has the RTF_MULTIRT flag, inherited 20525 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20526 */ 20527 if (ire->ire_flags & RTF_MULTIRT) { 20528 20529 /* 20530 * Force the TTL of multirouted packets if required. 20531 * The TTL of such packets is bounded by the 20532 * ip_multirt_ttl ndd variable. 20533 */ 20534 if ((ipst->ips_ip_multirt_ttl > 0) && 20535 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20536 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20537 "(was %d), dst 0x%08x\n", 20538 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20539 ntohl(ire->ire_addr))); 20540 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20541 } 20542 /* 20543 * We look at this point if there are pending 20544 * unresolved routes. ire_multirt_resolvable() 20545 * checks in O(n) that all IRE_OFFSUBNET ire 20546 * entries for the packet's destination and 20547 * flagged RTF_MULTIRT are currently resolved. 20548 * If some remain unresolved, we make a copy 20549 * of the current message. It will be used 20550 * to initiate additional route resolutions. 20551 */ 20552 multirt_need_resolve = 20553 ire_multirt_need_resolve(ire->ire_addr, 20554 MBLK_GETLABEL(first_mp), ipst); 20555 ip2dbg(("ip_wput[TCP]: ire %p, " 20556 "multirt_need_resolve %d, first_mp %p\n", 20557 (void *)ire, multirt_need_resolve, 20558 (void *)first_mp)); 20559 if (multirt_need_resolve) { 20560 copy_mp = copymsg(first_mp); 20561 if (copy_mp != NULL) { 20562 MULTIRT_DEBUG_TAG(copy_mp); 20563 } 20564 } 20565 } 20566 20567 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20568 20569 /* 20570 * Try to resolve another multiroute if 20571 * ire_multirt_need_resolve() deemed it necessary. 20572 */ 20573 if (copy_mp != NULL) { 20574 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20575 } 20576 if (need_decref) 20577 CONN_DEC_REF(connp); 20578 return; 20579 } 20580 20581 /* 20582 * Access to conn_ire_cache. (protected by conn_lock) 20583 * 20584 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20585 * the ire bucket lock here to check for CONDEMNED as it is okay to 20586 * send a packet or two with the IRE_CACHE that is going away. 20587 * Access to the ire requires an ire refhold on the ire prior to 20588 * its use since an interface unplumb thread may delete the cached 20589 * ire and release the refhold at any time. 20590 * 20591 * Caching an ire in the conn_ire_cache 20592 * 20593 * o Caching an ire pointer in the conn requires a strict check for 20594 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20595 * ires before cleaning up the conns. So the caching of an ire pointer 20596 * in the conn is done after making sure under the bucket lock that the 20597 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20598 * caching an ire after the unplumb thread has cleaned up the conn. 20599 * If the conn does not send a packet subsequently the unplumb thread 20600 * will be hanging waiting for the ire count to drop to zero. 20601 * 20602 * o We also need to atomically test for a null conn_ire_cache and 20603 * set the conn_ire_cache under the the protection of the conn_lock 20604 * to avoid races among concurrent threads trying to simultaneously 20605 * cache an ire in the conn_ire_cache. 20606 */ 20607 mutex_enter(&connp->conn_lock); 20608 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20609 20610 if (ire != NULL && ire->ire_addr == dst && 20611 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20612 20613 IRE_REFHOLD(ire); 20614 mutex_exit(&connp->conn_lock); 20615 20616 } else { 20617 boolean_t cached = B_FALSE; 20618 connp->conn_ire_cache = NULL; 20619 mutex_exit(&connp->conn_lock); 20620 /* Release the old ire */ 20621 if (ire != NULL && sctp_ire == NULL) 20622 IRE_REFRELE_NOTR(ire); 20623 20624 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20625 if (ire == NULL) 20626 goto noirefound; 20627 IRE_REFHOLD_NOTR(ire); 20628 20629 mutex_enter(&connp->conn_lock); 20630 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20631 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20632 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20633 if (connp->conn_ulp == IPPROTO_TCP) 20634 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20635 connp->conn_ire_cache = ire; 20636 cached = B_TRUE; 20637 } 20638 rw_exit(&ire->ire_bucket->irb_lock); 20639 } 20640 mutex_exit(&connp->conn_lock); 20641 20642 /* 20643 * We can continue to use the ire but since it was 20644 * not cached, we should drop the extra reference. 20645 */ 20646 if (!cached) 20647 IRE_REFRELE_NOTR(ire); 20648 } 20649 20650 20651 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20652 "ip_wput_end: q %p (%S)", q, "end"); 20653 20654 /* 20655 * Check if the ire has the RTF_MULTIRT flag, inherited 20656 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20657 */ 20658 if (ire->ire_flags & RTF_MULTIRT) { 20659 20660 /* 20661 * Force the TTL of multirouted packets if required. 20662 * The TTL of such packets is bounded by the 20663 * ip_multirt_ttl ndd variable. 20664 */ 20665 if ((ipst->ips_ip_multirt_ttl > 0) && 20666 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20667 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20668 "(was %d), dst 0x%08x\n", 20669 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20670 ntohl(ire->ire_addr))); 20671 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20672 } 20673 20674 /* 20675 * At this point, we check to see if there are any pending 20676 * unresolved routes. ire_multirt_resolvable() 20677 * checks in O(n) that all IRE_OFFSUBNET ire 20678 * entries for the packet's destination and 20679 * flagged RTF_MULTIRT are currently resolved. 20680 * If some remain unresolved, we make a copy 20681 * of the current message. It will be used 20682 * to initiate additional route resolutions. 20683 */ 20684 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20685 MBLK_GETLABEL(first_mp), ipst); 20686 ip2dbg(("ip_wput[not TCP]: ire %p, " 20687 "multirt_need_resolve %d, first_mp %p\n", 20688 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20689 if (multirt_need_resolve) { 20690 copy_mp = copymsg(first_mp); 20691 if (copy_mp != NULL) { 20692 MULTIRT_DEBUG_TAG(copy_mp); 20693 } 20694 } 20695 } 20696 20697 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20698 20699 /* 20700 * Try to resolve another multiroute if 20701 * ire_multirt_resolvable() deemed it necessary 20702 */ 20703 if (copy_mp != NULL) { 20704 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20705 } 20706 if (need_decref) 20707 CONN_DEC_REF(connp); 20708 return; 20709 20710 qnext: 20711 /* 20712 * Upper Level Protocols pass down complete IP datagrams 20713 * as M_DATA messages. Everything else is a sideshow. 20714 * 20715 * 1) We could be re-entering ip_wput because of ip_neworute 20716 * in which case we could have a IPSEC_OUT message. We 20717 * need to pass through ip_wput like other datagrams and 20718 * hence cannot branch to ip_wput_nondata. 20719 * 20720 * 2) ARP, AH, ESP, and other clients who are on the module 20721 * instance of IP stream, give us something to deal with. 20722 * We will handle AH and ESP here and rest in ip_wput_nondata. 20723 * 20724 * 3) ICMP replies also could come here. 20725 */ 20726 ipst = ILLQ_TO_IPST(q); 20727 20728 if (DB_TYPE(mp) != M_DATA) { 20729 notdata: 20730 if (DB_TYPE(mp) == M_CTL) { 20731 /* 20732 * M_CTL messages are used by ARP, AH and ESP to 20733 * communicate with IP. We deal with IPSEC_IN and 20734 * IPSEC_OUT here. ip_wput_nondata handles other 20735 * cases. 20736 */ 20737 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20738 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20739 first_mp = mp->b_cont; 20740 first_mp->b_flag &= ~MSGHASREF; 20741 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20742 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20743 CONN_DEC_REF(connp); 20744 connp = NULL; 20745 } 20746 if (ii->ipsec_info_type == IPSEC_IN) { 20747 /* 20748 * Either this message goes back to 20749 * IPSEC for further processing or to 20750 * ULP after policy checks. 20751 */ 20752 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20753 return; 20754 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20755 io = (ipsec_out_t *)ii; 20756 if (io->ipsec_out_proc_begin) { 20757 /* 20758 * IPSEC processing has already started. 20759 * Complete it. 20760 * IPQoS notes: We don't care what is 20761 * in ipsec_out_ill_index since this 20762 * won't be processed for IPQoS policies 20763 * in ipsec_out_process. 20764 */ 20765 ipsec_out_process(q, mp, NULL, 20766 io->ipsec_out_ill_index); 20767 return; 20768 } else { 20769 connp = (q->q_next != NULL) ? 20770 NULL : Q_TO_CONN(q); 20771 first_mp = mp; 20772 mp = mp->b_cont; 20773 mctl_present = B_TRUE; 20774 } 20775 zoneid = io->ipsec_out_zoneid; 20776 ASSERT(zoneid != ALL_ZONES); 20777 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20778 /* 20779 * It's an IPsec control message requesting 20780 * an SADB update to be sent to the IPsec 20781 * hardware acceleration capable ills. 20782 */ 20783 ipsec_ctl_t *ipsec_ctl = 20784 (ipsec_ctl_t *)mp->b_rptr; 20785 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20786 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20787 mblk_t *cmp = mp->b_cont; 20788 20789 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20790 ASSERT(cmp != NULL); 20791 20792 freeb(mp); 20793 ill_ipsec_capab_send_all(satype, cmp, sa, 20794 ipst->ips_netstack); 20795 return; 20796 } else { 20797 /* 20798 * This must be ARP or special TSOL signaling. 20799 */ 20800 ip_wput_nondata(NULL, q, mp, NULL); 20801 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20802 "ip_wput_end: q %p (%S)", q, "nondata"); 20803 return; 20804 } 20805 } else { 20806 /* 20807 * This must be non-(ARP/AH/ESP) messages. 20808 */ 20809 ASSERT(!need_decref); 20810 ip_wput_nondata(NULL, q, mp, NULL); 20811 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20812 "ip_wput_end: q %p (%S)", q, "nondata"); 20813 return; 20814 } 20815 } else { 20816 first_mp = mp; 20817 mctl_present = B_FALSE; 20818 } 20819 20820 ASSERT(first_mp != NULL); 20821 /* 20822 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20823 * to make sure that this packet goes out on the same interface it 20824 * came in. We handle that here. 20825 */ 20826 if (mctl_present) { 20827 uint_t ifindex; 20828 20829 io = (ipsec_out_t *)first_mp->b_rptr; 20830 if (io->ipsec_out_attach_if || 20831 io->ipsec_out_xmit_if || 20832 io->ipsec_out_ip_nexthop) { 20833 ill_t *ill; 20834 20835 /* 20836 * We may have lost the conn context if we are 20837 * coming here from ip_newroute(). Copy the 20838 * nexthop information. 20839 */ 20840 if (io->ipsec_out_ip_nexthop) { 20841 ip_nexthop = B_TRUE; 20842 nexthop_addr = io->ipsec_out_nexthop_addr; 20843 20844 ipha = (ipha_t *)mp->b_rptr; 20845 dst = ipha->ipha_dst; 20846 goto send_from_ill; 20847 } else { 20848 ASSERT(io->ipsec_out_ill_index != 0); 20849 ifindex = io->ipsec_out_ill_index; 20850 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20851 NULL, NULL, NULL, NULL, ipst); 20852 /* 20853 * ipsec_out_xmit_if bit is used to tell 20854 * ip_wput to use the ill to send outgoing data 20855 * as we have no conn when data comes from ICMP 20856 * error msg routines. Currently this feature is 20857 * only used by ip_mrtun_forward routine. 20858 */ 20859 if (io->ipsec_out_xmit_if) { 20860 xmit_ill = ill; 20861 if (xmit_ill == NULL) { 20862 ip1dbg(("ip_output:bad ifindex " 20863 "for xmit_ill %d\n", 20864 ifindex)); 20865 freemsg(first_mp); 20866 BUMP_MIB(&ipst->ips_ip_mib, 20867 ipIfStatsOutDiscards); 20868 ASSERT(!need_decref); 20869 return; 20870 } 20871 /* Free up the ipsec_out_t mblk */ 20872 ASSERT(first_mp->b_cont == mp); 20873 first_mp->b_cont = NULL; 20874 freeb(first_mp); 20875 /* Just send the IP header+ICMP+data */ 20876 first_mp = mp; 20877 ipha = (ipha_t *)mp->b_rptr; 20878 dst = ipha->ipha_dst; 20879 goto send_from_ill; 20880 } else { 20881 attach_ill = ill; 20882 } 20883 20884 if (attach_ill == NULL) { 20885 ASSERT(xmit_ill == NULL); 20886 ip1dbg(("ip_output: bad ifindex for " 20887 "(BIND TO IPIF_NOFAILOVER) %d\n", 20888 ifindex)); 20889 freemsg(first_mp); 20890 BUMP_MIB(&ipst->ips_ip_mib, 20891 ipIfStatsOutDiscards); 20892 ASSERT(!need_decref); 20893 return; 20894 } 20895 } 20896 } 20897 } 20898 20899 ASSERT(xmit_ill == NULL); 20900 20901 /* We have a complete IP datagram heading outbound. */ 20902 ipha = (ipha_t *)mp->b_rptr; 20903 20904 #ifndef SPEED_BEFORE_SAFETY 20905 /* 20906 * Make sure we have a full-word aligned message and that at least 20907 * a simple IP header is accessible in the first message. If not, 20908 * try a pullup. 20909 */ 20910 if (!OK_32PTR(rptr) || 20911 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20912 hdrtoosmall: 20913 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20914 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20915 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20916 if (first_mp == NULL) 20917 first_mp = mp; 20918 goto discard_pkt; 20919 } 20920 20921 /* This function assumes that mp points to an IPv4 packet. */ 20922 if (is_system_labeled() && q->q_next == NULL && 20923 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20924 !connp->conn_ulp_labeled) { 20925 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20926 &adjust, connp->conn_mac_exempt, ipst); 20927 ipha = (ipha_t *)mp->b_rptr; 20928 if (first_mp != NULL) 20929 first_mp->b_cont = mp; 20930 if (err != 0) { 20931 if (first_mp == NULL) 20932 first_mp = mp; 20933 if (err == EINVAL) 20934 goto icmp_parameter_problem; 20935 ip2dbg(("ip_wput: label check failed (%d)\n", 20936 err)); 20937 goto discard_pkt; 20938 } 20939 iplen = ntohs(ipha->ipha_length) + adjust; 20940 ipha->ipha_length = htons(iplen); 20941 } 20942 20943 ipha = (ipha_t *)mp->b_rptr; 20944 if (first_mp == NULL) { 20945 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20946 /* 20947 * If we got here because of "goto hdrtoosmall" 20948 * We need to attach a IPSEC_OUT. 20949 */ 20950 if (connp->conn_out_enforce_policy) { 20951 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20952 NULL, ipha->ipha_protocol, 20953 ipst->ips_netstack)) == NULL)) { 20954 BUMP_MIB(&ipst->ips_ip_mib, 20955 ipIfStatsOutDiscards); 20956 if (need_decref) 20957 CONN_DEC_REF(connp); 20958 return; 20959 } else { 20960 ASSERT(mp->b_datap->db_type == M_CTL); 20961 first_mp = mp; 20962 mp = mp->b_cont; 20963 mctl_present = B_TRUE; 20964 } 20965 } else { 20966 first_mp = mp; 20967 mctl_present = B_FALSE; 20968 } 20969 } 20970 } 20971 #endif 20972 20973 /* Most of the code below is written for speed, not readability */ 20974 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20975 20976 /* 20977 * If ip_newroute() fails, we're going to need a full 20978 * header for the icmp wraparound. 20979 */ 20980 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20981 uint_t v_hlen; 20982 version_hdrlen_check: 20983 ASSERT(first_mp != NULL); 20984 v_hlen = V_HLEN; 20985 /* 20986 * siphon off IPv6 packets coming down from transport 20987 * layer modules here. 20988 * Note: high-order bit carries NUD reachability confirmation 20989 */ 20990 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20991 /* 20992 * XXX implement a IPv4 and IPv6 packet counter per 20993 * conn and switch when ratio exceeds e.g. 10:1 20994 */ 20995 #ifdef notyet 20996 if (q->q_next == NULL) /* Avoid ill queue */ 20997 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 20998 #endif 20999 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21000 ASSERT(xmit_ill == NULL); 21001 if (attach_ill != NULL) 21002 ill_refrele(attach_ill); 21003 if (need_decref) 21004 mp->b_flag |= MSGHASREF; 21005 (void) ip_output_v6(arg, first_mp, arg2, caller); 21006 return; 21007 } 21008 21009 if ((v_hlen >> 4) != IP_VERSION) { 21010 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21011 "ip_wput_end: q %p (%S)", q, "badvers"); 21012 goto discard_pkt; 21013 } 21014 /* 21015 * Is the header length at least 20 bytes? 21016 * 21017 * Are there enough bytes accessible in the header? If 21018 * not, try a pullup. 21019 */ 21020 v_hlen &= 0xF; 21021 v_hlen <<= 2; 21022 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21023 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21024 "ip_wput_end: q %p (%S)", q, "badlen"); 21025 goto discard_pkt; 21026 } 21027 if (v_hlen > (mp->b_wptr - rptr)) { 21028 if (!pullupmsg(mp, v_hlen)) { 21029 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21030 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21031 goto discard_pkt; 21032 } 21033 ipha = (ipha_t *)mp->b_rptr; 21034 } 21035 /* 21036 * Move first entry from any source route into ipha_dst and 21037 * verify the options 21038 */ 21039 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21040 zoneid, ipst)) { 21041 ASSERT(xmit_ill == NULL); 21042 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21043 if (attach_ill != NULL) 21044 ill_refrele(attach_ill); 21045 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21046 "ip_wput_end: q %p (%S)", q, "badopts"); 21047 if (need_decref) 21048 CONN_DEC_REF(connp); 21049 return; 21050 } 21051 } 21052 dst = ipha->ipha_dst; 21053 21054 /* 21055 * Try to get an IRE_CACHE for the destination address. If we can't, 21056 * we have to run the packet through ip_newroute which will take 21057 * the appropriate action to arrange for an IRE_CACHE, such as querying 21058 * a resolver, or assigning a default gateway, etc. 21059 */ 21060 if (CLASSD(dst)) { 21061 ipif_t *ipif; 21062 uint32_t setsrc = 0; 21063 21064 multicast: 21065 ASSERT(first_mp != NULL); 21066 ip2dbg(("ip_wput: CLASSD\n")); 21067 if (connp == NULL) { 21068 /* 21069 * Use the first good ipif on the ill. 21070 * XXX Should this ever happen? (Appears 21071 * to show up with just ppp and no ethernet due 21072 * to in.rdisc.) 21073 * However, ire_send should be able to 21074 * call ip_wput_ire directly. 21075 * 21076 * XXX Also, this can happen for ICMP and other packets 21077 * with multicast source addresses. Perhaps we should 21078 * fix things so that we drop the packet in question, 21079 * but for now, just run with it. 21080 */ 21081 ill_t *ill = (ill_t *)q->q_ptr; 21082 21083 /* 21084 * Don't honor attach_if for this case. If ill 21085 * is part of the group, ipif could belong to 21086 * any ill and we cannot maintain attach_ill 21087 * and ipif_ill same anymore and the assert 21088 * below would fail. 21089 */ 21090 if (mctl_present && io->ipsec_out_attach_if) { 21091 io->ipsec_out_ill_index = 0; 21092 io->ipsec_out_attach_if = B_FALSE; 21093 ASSERT(attach_ill != NULL); 21094 ill_refrele(attach_ill); 21095 attach_ill = NULL; 21096 } 21097 21098 ASSERT(attach_ill == NULL); 21099 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21100 if (ipif == NULL) { 21101 if (need_decref) 21102 CONN_DEC_REF(connp); 21103 freemsg(first_mp); 21104 return; 21105 } 21106 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21107 ntohl(dst), ill->ill_name)); 21108 } else { 21109 /* 21110 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21111 * and IP_MULTICAST_IF. 21112 * Block comment above this function explains the 21113 * locking mechanism used here 21114 */ 21115 if (xmit_ill == NULL) { 21116 xmit_ill = conn_get_held_ill(connp, 21117 &connp->conn_xmit_if_ill, &err); 21118 if (err == ILL_LOOKUP_FAILED) { 21119 ip1dbg(("ip_wput: No ill for " 21120 "IP_XMIT_IF\n")); 21121 BUMP_MIB(&ipst->ips_ip_mib, 21122 ipIfStatsOutNoRoutes); 21123 goto drop_pkt; 21124 } 21125 } 21126 21127 if (xmit_ill == NULL) { 21128 ipif = conn_get_held_ipif(connp, 21129 &connp->conn_multicast_ipif, &err); 21130 if (err == IPIF_LOOKUP_FAILED) { 21131 ip1dbg(("ip_wput: No ipif for " 21132 "multicast\n")); 21133 BUMP_MIB(&ipst->ips_ip_mib, 21134 ipIfStatsOutNoRoutes); 21135 goto drop_pkt; 21136 } 21137 } 21138 if (xmit_ill != NULL) { 21139 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21140 if (ipif == NULL) { 21141 ip1dbg(("ip_wput: No ipif for " 21142 "IP_XMIT_IF\n")); 21143 BUMP_MIB(&ipst->ips_ip_mib, 21144 ipIfStatsOutNoRoutes); 21145 goto drop_pkt; 21146 } 21147 } else if (ipif == NULL || ipif->ipif_isv6) { 21148 /* 21149 * We must do this ipif determination here 21150 * else we could pass through ip_newroute 21151 * and come back here without the conn context. 21152 * 21153 * Note: we do late binding i.e. we bind to 21154 * the interface when the first packet is sent. 21155 * For performance reasons we do not rebind on 21156 * each packet but keep the binding until the 21157 * next IP_MULTICAST_IF option. 21158 * 21159 * conn_multicast_{ipif,ill} are shared between 21160 * IPv4 and IPv6 and AF_INET6 sockets can 21161 * send both IPv4 and IPv6 packets. Hence 21162 * we have to check that "isv6" matches above. 21163 */ 21164 if (ipif != NULL) 21165 ipif_refrele(ipif); 21166 ipif = ipif_lookup_group(dst, zoneid, ipst); 21167 if (ipif == NULL) { 21168 ip1dbg(("ip_wput: No ipif for " 21169 "multicast\n")); 21170 BUMP_MIB(&ipst->ips_ip_mib, 21171 ipIfStatsOutNoRoutes); 21172 goto drop_pkt; 21173 } 21174 err = conn_set_held_ipif(connp, 21175 &connp->conn_multicast_ipif, ipif); 21176 if (err == IPIF_LOOKUP_FAILED) { 21177 ipif_refrele(ipif); 21178 ip1dbg(("ip_wput: No ipif for " 21179 "multicast\n")); 21180 BUMP_MIB(&ipst->ips_ip_mib, 21181 ipIfStatsOutNoRoutes); 21182 goto drop_pkt; 21183 } 21184 } 21185 } 21186 ASSERT(!ipif->ipif_isv6); 21187 /* 21188 * As we may lose the conn by the time we reach ip_wput_ire, 21189 * we copy conn_multicast_loop and conn_dontroute on to an 21190 * ipsec_out. In case if this datagram goes out secure, 21191 * we need the ill_index also. Copy that also into the 21192 * ipsec_out. 21193 */ 21194 if (mctl_present) { 21195 io = (ipsec_out_t *)first_mp->b_rptr; 21196 ASSERT(first_mp->b_datap->db_type == M_CTL); 21197 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21198 } else { 21199 ASSERT(mp == first_mp); 21200 if ((first_mp = allocb(sizeof (ipsec_info_t), 21201 BPRI_HI)) == NULL) { 21202 ipif_refrele(ipif); 21203 first_mp = mp; 21204 goto discard_pkt; 21205 } 21206 first_mp->b_datap->db_type = M_CTL; 21207 first_mp->b_wptr += sizeof (ipsec_info_t); 21208 /* ipsec_out_secure is B_FALSE now */ 21209 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21210 io = (ipsec_out_t *)first_mp->b_rptr; 21211 io->ipsec_out_type = IPSEC_OUT; 21212 io->ipsec_out_len = sizeof (ipsec_out_t); 21213 io->ipsec_out_use_global_policy = B_TRUE; 21214 io->ipsec_out_ns = ipst->ips_netstack; 21215 first_mp->b_cont = mp; 21216 mctl_present = B_TRUE; 21217 } 21218 if (attach_ill != NULL) { 21219 ASSERT(attach_ill == ipif->ipif_ill); 21220 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21221 21222 /* 21223 * Check if we need an ire that will not be 21224 * looked up by anybody else i.e. HIDDEN. 21225 */ 21226 if (ill_is_probeonly(attach_ill)) { 21227 match_flags |= MATCH_IRE_MARK_HIDDEN; 21228 } 21229 io->ipsec_out_ill_index = 21230 attach_ill->ill_phyint->phyint_ifindex; 21231 io->ipsec_out_attach_if = B_TRUE; 21232 } else { 21233 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21234 io->ipsec_out_ill_index = 21235 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21236 } 21237 if (connp != NULL) { 21238 io->ipsec_out_multicast_loop = 21239 connp->conn_multicast_loop; 21240 io->ipsec_out_dontroute = connp->conn_dontroute; 21241 io->ipsec_out_zoneid = connp->conn_zoneid; 21242 } 21243 /* 21244 * If the application uses IP_MULTICAST_IF with 21245 * different logical addresses of the same ILL, we 21246 * need to make sure that the soruce address of 21247 * the packet matches the logical IP address used 21248 * in the option. We do it by initializing ipha_src 21249 * here. This should keep IPSEC also happy as 21250 * when we return from IPSEC processing, we don't 21251 * have to worry about getting the right address on 21252 * the packet. Thus it is sufficient to look for 21253 * IRE_CACHE using MATCH_IRE_ILL rathen than 21254 * MATCH_IRE_IPIF. 21255 * 21256 * NOTE : We need to do it for non-secure case also as 21257 * this might go out secure if there is a global policy 21258 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21259 * address, the source should be initialized already and 21260 * hence we won't be initializing here. 21261 * 21262 * As we do not have the ire yet, it is possible that 21263 * we set the source address here and then later discover 21264 * that the ire implies the source address to be assigned 21265 * through the RTF_SETSRC flag. 21266 * In that case, the setsrc variable will remind us 21267 * that overwritting the source address by the one 21268 * of the RTF_SETSRC-flagged ire is allowed. 21269 */ 21270 if (ipha->ipha_src == INADDR_ANY && 21271 (connp == NULL || !connp->conn_unspec_src)) { 21272 ipha->ipha_src = ipif->ipif_src_addr; 21273 setsrc = RTF_SETSRC; 21274 } 21275 /* 21276 * Find an IRE which matches the destination and the outgoing 21277 * queue (i.e. the outgoing interface.) 21278 * For loopback use a unicast IP address for 21279 * the ire lookup. 21280 */ 21281 if (IS_LOOPBACK(ipif->ipif_ill)) 21282 dst = ipif->ipif_lcl_addr; 21283 21284 /* 21285 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21286 * We don't need to lookup ire in ctable as the packet 21287 * needs to be sent to the destination through the specified 21288 * ill irrespective of ires in the cache table. 21289 */ 21290 ire = NULL; 21291 if (xmit_ill == NULL) { 21292 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21293 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21294 } 21295 21296 /* 21297 * refrele attach_ill as its not needed anymore. 21298 */ 21299 if (attach_ill != NULL) { 21300 ill_refrele(attach_ill); 21301 attach_ill = NULL; 21302 } 21303 21304 if (ire == NULL) { 21305 /* 21306 * Multicast loopback and multicast forwarding is 21307 * done in ip_wput_ire. 21308 * 21309 * Mark this packet to make it be delivered to 21310 * ip_wput_ire after the new ire has been 21311 * created. 21312 * 21313 * The call to ip_newroute_ipif takes into account 21314 * the setsrc reminder. In any case, we take care 21315 * of the RTF_MULTIRT flag. 21316 */ 21317 mp->b_prev = mp->b_next = NULL; 21318 if (xmit_ill == NULL || 21319 xmit_ill->ill_ipif_up_count > 0) { 21320 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21321 setsrc | RTF_MULTIRT, zoneid, infop); 21322 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21323 "ip_wput_end: q %p (%S)", q, "noire"); 21324 } else { 21325 freemsg(first_mp); 21326 } 21327 ipif_refrele(ipif); 21328 if (xmit_ill != NULL) 21329 ill_refrele(xmit_ill); 21330 if (need_decref) 21331 CONN_DEC_REF(connp); 21332 return; 21333 } 21334 21335 ipif_refrele(ipif); 21336 ipif = NULL; 21337 ASSERT(xmit_ill == NULL); 21338 21339 /* 21340 * Honor the RTF_SETSRC flag for multicast packets, 21341 * if allowed by the setsrc reminder. 21342 */ 21343 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21344 ipha->ipha_src = ire->ire_src_addr; 21345 } 21346 21347 /* 21348 * Unconditionally force the TTL to 1 for 21349 * multirouted multicast packets: 21350 * multirouted multicast should not cross 21351 * multicast routers. 21352 */ 21353 if (ire->ire_flags & RTF_MULTIRT) { 21354 if (ipha->ipha_ttl > 1) { 21355 ip2dbg(("ip_wput: forcing multicast " 21356 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21357 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21358 ipha->ipha_ttl = 1; 21359 } 21360 } 21361 } else { 21362 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21363 if ((ire != NULL) && (ire->ire_type & 21364 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21365 ignore_dontroute = B_TRUE; 21366 ignore_nexthop = B_TRUE; 21367 } 21368 if (ire != NULL) { 21369 ire_refrele(ire); 21370 ire = NULL; 21371 } 21372 /* 21373 * Guard against coming in from arp in which case conn is NULL. 21374 * Also guard against non M_DATA with dontroute set but 21375 * destined to local, loopback or broadcast addresses. 21376 */ 21377 if (connp != NULL && connp->conn_dontroute && 21378 !ignore_dontroute) { 21379 dontroute: 21380 /* 21381 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21382 * routing protocols from seeing false direct 21383 * connectivity. 21384 */ 21385 ipha->ipha_ttl = 1; 21386 /* 21387 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21388 * along with SO_DONTROUTE, higher precedence is 21389 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21390 */ 21391 if (connp->conn_xmit_if_ill == NULL) { 21392 /* If suitable ipif not found, drop packet */ 21393 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21394 ipst); 21395 if (dst_ipif == NULL) { 21396 ip1dbg(("ip_wput: no route for " 21397 "dst using SO_DONTROUTE\n")); 21398 BUMP_MIB(&ipst->ips_ip_mib, 21399 ipIfStatsOutNoRoutes); 21400 mp->b_prev = mp->b_next = NULL; 21401 if (first_mp == NULL) 21402 first_mp = mp; 21403 goto drop_pkt; 21404 } else { 21405 /* 21406 * If suitable ipif has been found, set 21407 * xmit_ill to the corresponding 21408 * ipif_ill because we'll be following 21409 * the IP_XMIT_IF logic. 21410 */ 21411 ASSERT(xmit_ill == NULL); 21412 xmit_ill = dst_ipif->ipif_ill; 21413 mutex_enter(&xmit_ill->ill_lock); 21414 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21415 mutex_exit(&xmit_ill->ill_lock); 21416 xmit_ill = NULL; 21417 ipif_refrele(dst_ipif); 21418 ip1dbg(("ip_wput: no route for" 21419 " dst using" 21420 " SO_DONTROUTE\n")); 21421 BUMP_MIB(&ipst->ips_ip_mib, 21422 ipIfStatsOutNoRoutes); 21423 mp->b_prev = mp->b_next = NULL; 21424 if (first_mp == NULL) 21425 first_mp = mp; 21426 goto drop_pkt; 21427 } 21428 ill_refhold_locked(xmit_ill); 21429 mutex_exit(&xmit_ill->ill_lock); 21430 ipif_refrele(dst_ipif); 21431 } 21432 } 21433 21434 } 21435 /* 21436 * If we are bound to IPIF_NOFAILOVER address, look for 21437 * an IRE_CACHE matching the ill. 21438 */ 21439 send_from_ill: 21440 if (attach_ill != NULL) { 21441 ipif_t *attach_ipif; 21442 21443 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21444 21445 /* 21446 * Check if we need an ire that will not be 21447 * looked up by anybody else i.e. HIDDEN. 21448 */ 21449 if (ill_is_probeonly(attach_ill)) { 21450 match_flags |= MATCH_IRE_MARK_HIDDEN; 21451 } 21452 21453 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21454 if (attach_ipif == NULL) { 21455 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21456 goto discard_pkt; 21457 } 21458 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21459 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21460 ipif_refrele(attach_ipif); 21461 } else if (xmit_ill != NULL || (connp != NULL && 21462 connp->conn_xmit_if_ill != NULL)) { 21463 /* 21464 * Mark this packet as originated locally 21465 */ 21466 mp->b_prev = mp->b_next = NULL; 21467 /* 21468 * xmit_ill could be NULL if SO_DONTROUTE 21469 * is also set. 21470 */ 21471 if (xmit_ill == NULL) { 21472 xmit_ill = conn_get_held_ill(connp, 21473 &connp->conn_xmit_if_ill, &err); 21474 if (err == ILL_LOOKUP_FAILED) { 21475 BUMP_MIB(&ipst->ips_ip_mib, 21476 ipIfStatsOutDiscards); 21477 if (need_decref) 21478 CONN_DEC_REF(connp); 21479 freemsg(first_mp); 21480 return; 21481 } 21482 if (xmit_ill == NULL) { 21483 if (connp->conn_dontroute) 21484 goto dontroute; 21485 goto send_from_ill; 21486 } 21487 } 21488 /* 21489 * Could be SO_DONTROUTE case also. 21490 * check at least one interface is UP as 21491 * specified by this ILL 21492 */ 21493 if (xmit_ill->ill_ipif_up_count > 0) { 21494 ipif_t *ipif; 21495 21496 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21497 if (ipif == NULL) { 21498 ip1dbg(("ip_output: " 21499 "xmit_ill NULL ipif\n")); 21500 goto drop_pkt; 21501 } 21502 /* 21503 * Look for a ire that is part of the group, 21504 * if found use it else call ip_newroute_ipif. 21505 * IPCL_ZONEID is not used for matching because 21506 * IP_ALLZONES option is valid only when the 21507 * ill is accessible from all zones i.e has a 21508 * valid ipif in all zones. 21509 */ 21510 match_flags = MATCH_IRE_ILL_GROUP | 21511 MATCH_IRE_SECATTR; 21512 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21513 MBLK_GETLABEL(mp), match_flags, ipst); 21514 /* 21515 * If an ire exists use it or else create 21516 * an ire but don't add it to the cache. 21517 * Adding an ire may cause issues with 21518 * asymmetric routing. 21519 * In case of multiroute always act as if 21520 * ire does not exist. 21521 */ 21522 if (ire == NULL || 21523 ire->ire_flags & RTF_MULTIRT) { 21524 if (ire != NULL) 21525 ire_refrele(ire); 21526 ip_newroute_ipif(q, first_mp, ipif, 21527 dst, connp, 0, zoneid, infop); 21528 ipif_refrele(ipif); 21529 ip1dbg(("ip_wput: ip_unicast_if\n")); 21530 ill_refrele(xmit_ill); 21531 if (need_decref) 21532 CONN_DEC_REF(connp); 21533 return; 21534 } 21535 ipif_refrele(ipif); 21536 } else { 21537 goto drop_pkt; 21538 } 21539 } else if (ip_nexthop || (connp != NULL && 21540 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21541 if (!ip_nexthop) { 21542 ip_nexthop = B_TRUE; 21543 nexthop_addr = connp->conn_nexthop_v4; 21544 } 21545 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21546 MATCH_IRE_GW; 21547 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21548 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21549 } else { 21550 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21551 ipst); 21552 } 21553 if (!ire) { 21554 /* 21555 * Make sure we don't load spread if this 21556 * is IPIF_NOFAILOVER case. 21557 */ 21558 if ((attach_ill != NULL) || 21559 (ip_nexthop && !ignore_nexthop)) { 21560 if (mctl_present) { 21561 io = (ipsec_out_t *)first_mp->b_rptr; 21562 ASSERT(first_mp->b_datap->db_type == 21563 M_CTL); 21564 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21565 } else { 21566 ASSERT(mp == first_mp); 21567 first_mp = allocb( 21568 sizeof (ipsec_info_t), BPRI_HI); 21569 if (first_mp == NULL) { 21570 first_mp = mp; 21571 goto discard_pkt; 21572 } 21573 first_mp->b_datap->db_type = M_CTL; 21574 first_mp->b_wptr += 21575 sizeof (ipsec_info_t); 21576 /* ipsec_out_secure is B_FALSE now */ 21577 bzero(first_mp->b_rptr, 21578 sizeof (ipsec_info_t)); 21579 io = (ipsec_out_t *)first_mp->b_rptr; 21580 io->ipsec_out_type = IPSEC_OUT; 21581 io->ipsec_out_len = 21582 sizeof (ipsec_out_t); 21583 io->ipsec_out_use_global_policy = 21584 B_TRUE; 21585 io->ipsec_out_ns = ipst->ips_netstack; 21586 first_mp->b_cont = mp; 21587 mctl_present = B_TRUE; 21588 } 21589 if (attach_ill != NULL) { 21590 io->ipsec_out_ill_index = attach_ill-> 21591 ill_phyint->phyint_ifindex; 21592 io->ipsec_out_attach_if = B_TRUE; 21593 } else { 21594 io->ipsec_out_ip_nexthop = ip_nexthop; 21595 io->ipsec_out_nexthop_addr = 21596 nexthop_addr; 21597 } 21598 } 21599 noirefound: 21600 /* 21601 * Mark this packet as having originated on 21602 * this machine. This will be noted in 21603 * ire_add_then_send, which needs to know 21604 * whether to run it back through ip_wput or 21605 * ip_rput following successful resolution. 21606 */ 21607 mp->b_prev = NULL; 21608 mp->b_next = NULL; 21609 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21610 ipst); 21611 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21612 "ip_wput_end: q %p (%S)", q, "newroute"); 21613 if (attach_ill != NULL) 21614 ill_refrele(attach_ill); 21615 if (xmit_ill != NULL) 21616 ill_refrele(xmit_ill); 21617 if (need_decref) 21618 CONN_DEC_REF(connp); 21619 return; 21620 } 21621 } 21622 21623 /* We now know where we are going with it. */ 21624 21625 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21626 "ip_wput_end: q %p (%S)", q, "end"); 21627 21628 /* 21629 * Check if the ire has the RTF_MULTIRT flag, inherited 21630 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21631 */ 21632 if (ire->ire_flags & RTF_MULTIRT) { 21633 /* 21634 * Force the TTL of multirouted packets if required. 21635 * The TTL of such packets is bounded by the 21636 * ip_multirt_ttl ndd variable. 21637 */ 21638 if ((ipst->ips_ip_multirt_ttl > 0) && 21639 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21640 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21641 "(was %d), dst 0x%08x\n", 21642 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21643 ntohl(ire->ire_addr))); 21644 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21645 } 21646 /* 21647 * At this point, we check to see if there are any pending 21648 * unresolved routes. ire_multirt_resolvable() 21649 * checks in O(n) that all IRE_OFFSUBNET ire 21650 * entries for the packet's destination and 21651 * flagged RTF_MULTIRT are currently resolved. 21652 * If some remain unresolved, we make a copy 21653 * of the current message. It will be used 21654 * to initiate additional route resolutions. 21655 */ 21656 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21657 MBLK_GETLABEL(first_mp), ipst); 21658 ip2dbg(("ip_wput[noirefound]: ire %p, " 21659 "multirt_need_resolve %d, first_mp %p\n", 21660 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21661 if (multirt_need_resolve) { 21662 copy_mp = copymsg(first_mp); 21663 if (copy_mp != NULL) { 21664 MULTIRT_DEBUG_TAG(copy_mp); 21665 } 21666 } 21667 } 21668 21669 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21670 /* 21671 * Try to resolve another multiroute if 21672 * ire_multirt_resolvable() deemed it necessary. 21673 * At this point, we need to distinguish 21674 * multicasts from other packets. For multicasts, 21675 * we call ip_newroute_ipif() and request that both 21676 * multirouting and setsrc flags are checked. 21677 */ 21678 if (copy_mp != NULL) { 21679 if (CLASSD(dst)) { 21680 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21681 if (ipif) { 21682 ASSERT(infop->ip_opt_ill_index == 0); 21683 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21684 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21685 ipif_refrele(ipif); 21686 } else { 21687 MULTIRT_DEBUG_UNTAG(copy_mp); 21688 freemsg(copy_mp); 21689 copy_mp = NULL; 21690 } 21691 } else { 21692 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21693 } 21694 } 21695 if (attach_ill != NULL) 21696 ill_refrele(attach_ill); 21697 if (xmit_ill != NULL) 21698 ill_refrele(xmit_ill); 21699 if (need_decref) 21700 CONN_DEC_REF(connp); 21701 return; 21702 21703 icmp_parameter_problem: 21704 /* could not have originated externally */ 21705 ASSERT(mp->b_prev == NULL); 21706 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21707 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21708 /* it's the IP header length that's in trouble */ 21709 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21710 first_mp = NULL; 21711 } 21712 21713 discard_pkt: 21714 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21715 drop_pkt: 21716 ip1dbg(("ip_wput: dropped packet\n")); 21717 if (ire != NULL) 21718 ire_refrele(ire); 21719 if (need_decref) 21720 CONN_DEC_REF(connp); 21721 freemsg(first_mp); 21722 if (attach_ill != NULL) 21723 ill_refrele(attach_ill); 21724 if (xmit_ill != NULL) 21725 ill_refrele(xmit_ill); 21726 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21727 "ip_wput_end: q %p (%S)", q, "droppkt"); 21728 } 21729 21730 /* 21731 * If this is a conn_t queue, then we pass in the conn. This includes the 21732 * zoneid. 21733 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21734 * in which case we use the global zoneid since those are all part of 21735 * the global zone. 21736 */ 21737 void 21738 ip_wput(queue_t *q, mblk_t *mp) 21739 { 21740 if (CONN_Q(q)) 21741 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21742 else 21743 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21744 } 21745 21746 /* 21747 * 21748 * The following rules must be observed when accessing any ipif or ill 21749 * that has been cached in the conn. Typically conn_nofailover_ill, 21750 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21751 * 21752 * Access: The ipif or ill pointed to from the conn can be accessed under 21753 * the protection of the conn_lock or after it has been refheld under the 21754 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21755 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21756 * The reason for this is that a concurrent unplumb could actually be 21757 * cleaning up these cached pointers by walking the conns and might have 21758 * finished cleaning up the conn in question. The macros check that an 21759 * unplumb has not yet started on the ipif or ill. 21760 * 21761 * Caching: An ipif or ill pointer may be cached in the conn only after 21762 * making sure that an unplumb has not started. So the caching is done 21763 * while holding both the conn_lock and the ill_lock and after using the 21764 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21765 * flag before starting the cleanup of conns. 21766 * 21767 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21768 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21769 * or a reference to the ipif or a reference to an ire that references the 21770 * ipif. An ipif does not change its ill except for failover/failback. Since 21771 * failover/failback happens only after bringing down the ipif and making sure 21772 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21773 * the above holds. 21774 */ 21775 ipif_t * 21776 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21777 { 21778 ipif_t *ipif; 21779 ill_t *ill; 21780 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21781 21782 *err = 0; 21783 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21784 mutex_enter(&connp->conn_lock); 21785 ipif = *ipifp; 21786 if (ipif != NULL) { 21787 ill = ipif->ipif_ill; 21788 mutex_enter(&ill->ill_lock); 21789 if (IPIF_CAN_LOOKUP(ipif)) { 21790 ipif_refhold_locked(ipif); 21791 mutex_exit(&ill->ill_lock); 21792 mutex_exit(&connp->conn_lock); 21793 rw_exit(&ipst->ips_ill_g_lock); 21794 return (ipif); 21795 } else { 21796 *err = IPIF_LOOKUP_FAILED; 21797 } 21798 mutex_exit(&ill->ill_lock); 21799 } 21800 mutex_exit(&connp->conn_lock); 21801 rw_exit(&ipst->ips_ill_g_lock); 21802 return (NULL); 21803 } 21804 21805 ill_t * 21806 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21807 { 21808 ill_t *ill; 21809 21810 *err = 0; 21811 mutex_enter(&connp->conn_lock); 21812 ill = *illp; 21813 if (ill != NULL) { 21814 mutex_enter(&ill->ill_lock); 21815 if (ILL_CAN_LOOKUP(ill)) { 21816 ill_refhold_locked(ill); 21817 mutex_exit(&ill->ill_lock); 21818 mutex_exit(&connp->conn_lock); 21819 return (ill); 21820 } else { 21821 *err = ILL_LOOKUP_FAILED; 21822 } 21823 mutex_exit(&ill->ill_lock); 21824 } 21825 mutex_exit(&connp->conn_lock); 21826 return (NULL); 21827 } 21828 21829 static int 21830 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21831 { 21832 ill_t *ill; 21833 21834 ill = ipif->ipif_ill; 21835 mutex_enter(&connp->conn_lock); 21836 mutex_enter(&ill->ill_lock); 21837 if (IPIF_CAN_LOOKUP(ipif)) { 21838 *ipifp = ipif; 21839 mutex_exit(&ill->ill_lock); 21840 mutex_exit(&connp->conn_lock); 21841 return (0); 21842 } 21843 mutex_exit(&ill->ill_lock); 21844 mutex_exit(&connp->conn_lock); 21845 return (IPIF_LOOKUP_FAILED); 21846 } 21847 21848 /* 21849 * This is called if the outbound datagram needs fragmentation. 21850 * 21851 * NOTE : This function does not ire_refrele the ire argument passed in. 21852 */ 21853 static void 21854 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21855 ip_stack_t *ipst) 21856 { 21857 ipha_t *ipha; 21858 mblk_t *mp; 21859 uint32_t v_hlen_tos_len; 21860 uint32_t max_frag; 21861 uint32_t frag_flag; 21862 boolean_t dont_use; 21863 21864 if (ipsec_mp->b_datap->db_type == M_CTL) { 21865 mp = ipsec_mp->b_cont; 21866 } else { 21867 mp = ipsec_mp; 21868 } 21869 21870 ipha = (ipha_t *)mp->b_rptr; 21871 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21872 21873 #ifdef _BIG_ENDIAN 21874 #define V_HLEN (v_hlen_tos_len >> 24) 21875 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21876 #else 21877 #define V_HLEN (v_hlen_tos_len & 0xFF) 21878 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21879 #endif 21880 21881 #ifndef SPEED_BEFORE_SAFETY 21882 /* 21883 * Check that ipha_length is consistent with 21884 * the mblk length 21885 */ 21886 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21887 ip0dbg(("Packet length mismatch: %d, %ld\n", 21888 LENGTH, msgdsize(mp))); 21889 freemsg(ipsec_mp); 21890 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21891 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21892 "packet length mismatch"); 21893 return; 21894 } 21895 #endif 21896 /* 21897 * Don't use frag_flag if pre-built packet or source 21898 * routed or if multicast (since multicast packets do not solicit 21899 * ICMP "packet too big" messages). Get the values of 21900 * max_frag and frag_flag atomically by acquiring the 21901 * ire_lock. 21902 */ 21903 mutex_enter(&ire->ire_lock); 21904 max_frag = ire->ire_max_frag; 21905 frag_flag = ire->ire_frag_flag; 21906 mutex_exit(&ire->ire_lock); 21907 21908 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21909 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21910 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21911 21912 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21913 (dont_use ? 0 : frag_flag), zoneid, ipst); 21914 } 21915 21916 /* 21917 * Used for deciding the MSS size for the upper layer. Thus 21918 * we need to check the outbound policy values in the conn. 21919 */ 21920 int 21921 conn_ipsec_length(conn_t *connp) 21922 { 21923 ipsec_latch_t *ipl; 21924 21925 ipl = connp->conn_latch; 21926 if (ipl == NULL) 21927 return (0); 21928 21929 if (ipl->ipl_out_policy == NULL) 21930 return (0); 21931 21932 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21933 } 21934 21935 /* 21936 * Returns an estimate of the IPSEC headers size. This is used if 21937 * we don't want to call into IPSEC to get the exact size. 21938 */ 21939 int 21940 ipsec_out_extra_length(mblk_t *ipsec_mp) 21941 { 21942 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21943 ipsec_action_t *a; 21944 21945 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21946 if (!io->ipsec_out_secure) 21947 return (0); 21948 21949 a = io->ipsec_out_act; 21950 21951 if (a == NULL) { 21952 ASSERT(io->ipsec_out_policy != NULL); 21953 a = io->ipsec_out_policy->ipsp_act; 21954 } 21955 ASSERT(a != NULL); 21956 21957 return (a->ipa_ovhd); 21958 } 21959 21960 /* 21961 * Returns an estimate of the IPSEC headers size. This is used if 21962 * we don't want to call into IPSEC to get the exact size. 21963 */ 21964 int 21965 ipsec_in_extra_length(mblk_t *ipsec_mp) 21966 { 21967 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21968 ipsec_action_t *a; 21969 21970 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21971 21972 a = ii->ipsec_in_action; 21973 return (a == NULL ? 0 : a->ipa_ovhd); 21974 } 21975 21976 /* 21977 * If there are any source route options, return the true final 21978 * destination. Otherwise, return the destination. 21979 */ 21980 ipaddr_t 21981 ip_get_dst(ipha_t *ipha) 21982 { 21983 ipoptp_t opts; 21984 uchar_t *opt; 21985 uint8_t optval; 21986 uint8_t optlen; 21987 ipaddr_t dst; 21988 uint32_t off; 21989 21990 dst = ipha->ipha_dst; 21991 21992 if (IS_SIMPLE_IPH(ipha)) 21993 return (dst); 21994 21995 for (optval = ipoptp_first(&opts, ipha); 21996 optval != IPOPT_EOL; 21997 optval = ipoptp_next(&opts)) { 21998 opt = opts.ipoptp_cur; 21999 optlen = opts.ipoptp_len; 22000 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22001 switch (optval) { 22002 case IPOPT_SSRR: 22003 case IPOPT_LSRR: 22004 off = opt[IPOPT_OFFSET]; 22005 /* 22006 * If one of the conditions is true, it means 22007 * end of options and dst already has the right 22008 * value. 22009 */ 22010 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22011 off = optlen - IP_ADDR_LEN; 22012 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22013 } 22014 return (dst); 22015 default: 22016 break; 22017 } 22018 } 22019 22020 return (dst); 22021 } 22022 22023 mblk_t * 22024 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22025 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22026 { 22027 ipsec_out_t *io; 22028 mblk_t *first_mp; 22029 boolean_t policy_present; 22030 ip_stack_t *ipst; 22031 ipsec_stack_t *ipss; 22032 22033 ASSERT(ire != NULL); 22034 ipst = ire->ire_ipst; 22035 ipss = ipst->ips_netstack->netstack_ipsec; 22036 22037 first_mp = mp; 22038 if (mp->b_datap->db_type == M_CTL) { 22039 io = (ipsec_out_t *)first_mp->b_rptr; 22040 /* 22041 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22042 * 22043 * 1) There is per-socket policy (including cached global 22044 * policy) or a policy on the IP-in-IP tunnel. 22045 * 2) There is no per-socket policy, but it is 22046 * a multicast packet that needs to go out 22047 * on a specific interface. This is the case 22048 * where (ip_wput and ip_wput_multicast) attaches 22049 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22050 * 22051 * In case (2) we check with global policy to 22052 * see if there is a match and set the ill_index 22053 * appropriately so that we can lookup the ire 22054 * properly in ip_wput_ipsec_out. 22055 */ 22056 22057 /* 22058 * ipsec_out_use_global_policy is set to B_FALSE 22059 * in ipsec_in_to_out(). Refer to that function for 22060 * details. 22061 */ 22062 if ((io->ipsec_out_latch == NULL) && 22063 (io->ipsec_out_use_global_policy)) { 22064 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22065 ire, connp, unspec_src, zoneid)); 22066 } 22067 if (!io->ipsec_out_secure) { 22068 /* 22069 * If this is not a secure packet, drop 22070 * the IPSEC_OUT mp and treat it as a clear 22071 * packet. This happens when we are sending 22072 * a ICMP reply back to a clear packet. See 22073 * ipsec_in_to_out() for details. 22074 */ 22075 mp = first_mp->b_cont; 22076 freeb(first_mp); 22077 } 22078 return (mp); 22079 } 22080 /* 22081 * See whether we need to attach a global policy here. We 22082 * don't depend on the conn (as it could be null) for deciding 22083 * what policy this datagram should go through because it 22084 * should have happened in ip_wput if there was some 22085 * policy. This normally happens for connections which are not 22086 * fully bound preventing us from caching policies in 22087 * ip_bind. Packets coming from the TCP listener/global queue 22088 * - which are non-hard_bound - could also be affected by 22089 * applying policy here. 22090 * 22091 * If this packet is coming from tcp global queue or listener, 22092 * we will be applying policy here. This may not be *right* 22093 * if these packets are coming from the detached connection as 22094 * it could have gone in clear before. This happens only if a 22095 * TCP connection started when there is no policy and somebody 22096 * added policy before it became detached. Thus packets of the 22097 * detached connection could go out secure and the other end 22098 * would drop it because it will be expecting in clear. The 22099 * converse is not true i.e if somebody starts a TCP 22100 * connection and deletes the policy, all the packets will 22101 * still go out with the policy that existed before deleting 22102 * because ip_unbind sends up policy information which is used 22103 * by TCP on subsequent ip_wputs. The right solution is to fix 22104 * TCP to attach a dummy IPSEC_OUT and set 22105 * ipsec_out_use_global_policy to B_FALSE. As this might 22106 * affect performance for normal cases, we are not doing it. 22107 * Thus, set policy before starting any TCP connections. 22108 * 22109 * NOTE - We might apply policy even for a hard bound connection 22110 * - for which we cached policy in ip_bind - if somebody added 22111 * global policy after we inherited the policy in ip_bind. 22112 * This means that the packets that were going out in clear 22113 * previously would start going secure and hence get dropped 22114 * on the other side. To fix this, TCP attaches a dummy 22115 * ipsec_out and make sure that we don't apply global policy. 22116 */ 22117 if (ipha != NULL) 22118 policy_present = ipss->ipsec_outbound_v4_policy_present; 22119 else 22120 policy_present = ipss->ipsec_outbound_v6_policy_present; 22121 if (!policy_present) 22122 return (mp); 22123 22124 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22125 zoneid)); 22126 } 22127 22128 ire_t * 22129 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22130 { 22131 ipaddr_t addr; 22132 ire_t *save_ire; 22133 irb_t *irb; 22134 ill_group_t *illgrp; 22135 int err; 22136 22137 save_ire = ire; 22138 addr = ire->ire_addr; 22139 22140 ASSERT(ire->ire_type == IRE_BROADCAST); 22141 22142 illgrp = connp->conn_outgoing_ill->ill_group; 22143 if (illgrp == NULL) { 22144 *conn_outgoing_ill = conn_get_held_ill(connp, 22145 &connp->conn_outgoing_ill, &err); 22146 if (err == ILL_LOOKUP_FAILED) { 22147 ire_refrele(save_ire); 22148 return (NULL); 22149 } 22150 return (save_ire); 22151 } 22152 /* 22153 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22154 * If it is part of the group, we need to send on the ire 22155 * that has been cleared of IRE_MARK_NORECV and that belongs 22156 * to this group. This is okay as IP_BOUND_IF really means 22157 * any ill in the group. We depend on the fact that the 22158 * first ire in the group is always cleared of IRE_MARK_NORECV 22159 * if such an ire exists. This is possible only if you have 22160 * at least one ill in the group that has not failed. 22161 * 22162 * First get to the ire that matches the address and group. 22163 * 22164 * We don't look for an ire with a matching zoneid because a given zone 22165 * won't always have broadcast ires on all ills in the group. 22166 */ 22167 irb = ire->ire_bucket; 22168 rw_enter(&irb->irb_lock, RW_READER); 22169 if (ire->ire_marks & IRE_MARK_NORECV) { 22170 /* 22171 * If the current zone only has an ire broadcast for this 22172 * address marked NORECV, the ire we want is ahead in the 22173 * bucket, so we look it up deliberately ignoring the zoneid. 22174 */ 22175 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22176 if (ire->ire_addr != addr) 22177 continue; 22178 /* skip over deleted ires */ 22179 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22180 continue; 22181 } 22182 } 22183 while (ire != NULL) { 22184 /* 22185 * If a new interface is coming up, we could end up 22186 * seeing the loopback ire and the non-loopback ire 22187 * may not have been added yet. So check for ire_stq 22188 */ 22189 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22190 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22191 break; 22192 } 22193 ire = ire->ire_next; 22194 } 22195 if (ire != NULL && ire->ire_addr == addr && 22196 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22197 IRE_REFHOLD(ire); 22198 rw_exit(&irb->irb_lock); 22199 ire_refrele(save_ire); 22200 *conn_outgoing_ill = ire_to_ill(ire); 22201 /* 22202 * Refhold the ill to make the conn_outgoing_ill 22203 * independent of the ire. ip_wput_ire goes in a loop 22204 * and may refrele the ire. Since we have an ire at this 22205 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22206 */ 22207 ill_refhold(*conn_outgoing_ill); 22208 return (ire); 22209 } 22210 rw_exit(&irb->irb_lock); 22211 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22212 /* 22213 * If we can't find a suitable ire, return the original ire. 22214 */ 22215 return (save_ire); 22216 } 22217 22218 /* 22219 * This function does the ire_refrele of the ire passed in as the 22220 * argument. As this function looks up more ires i.e broadcast ires, 22221 * it needs to REFRELE them. Currently, for simplicity we don't 22222 * differentiate the one passed in and looked up here. We always 22223 * REFRELE. 22224 * IPQoS Notes: 22225 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22226 * IPSec packets are done in ipsec_out_process. 22227 * 22228 */ 22229 void 22230 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22231 zoneid_t zoneid) 22232 { 22233 ipha_t *ipha; 22234 #define rptr ((uchar_t *)ipha) 22235 queue_t *stq; 22236 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22237 uint32_t v_hlen_tos_len; 22238 uint32_t ttl_protocol; 22239 ipaddr_t src; 22240 ipaddr_t dst; 22241 uint32_t cksum; 22242 ipaddr_t orig_src; 22243 ire_t *ire1; 22244 mblk_t *next_mp; 22245 uint_t hlen; 22246 uint16_t *up; 22247 uint32_t max_frag = ire->ire_max_frag; 22248 ill_t *ill = ire_to_ill(ire); 22249 int clusterwide; 22250 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22251 int ipsec_len; 22252 mblk_t *first_mp; 22253 ipsec_out_t *io; 22254 boolean_t conn_dontroute; /* conn value for multicast */ 22255 boolean_t conn_multicast_loop; /* conn value for multicast */ 22256 boolean_t multicast_forward; /* Should we forward ? */ 22257 boolean_t unspec_src; 22258 ill_t *conn_outgoing_ill = NULL; 22259 ill_t *ire_ill; 22260 ill_t *ire1_ill; 22261 ill_t *out_ill; 22262 uint32_t ill_index = 0; 22263 boolean_t multirt_send = B_FALSE; 22264 int err; 22265 ipxmit_state_t pktxmit_state; 22266 ip_stack_t *ipst = ire->ire_ipst; 22267 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22268 22269 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22270 "ip_wput_ire_start: q %p", q); 22271 22272 multicast_forward = B_FALSE; 22273 unspec_src = (connp != NULL && connp->conn_unspec_src); 22274 22275 if (ire->ire_flags & RTF_MULTIRT) { 22276 /* 22277 * Multirouting case. The bucket where ire is stored 22278 * probably holds other RTF_MULTIRT flagged ire 22279 * to the destination. In this call to ip_wput_ire, 22280 * we attempt to send the packet through all 22281 * those ires. Thus, we first ensure that ire is the 22282 * first RTF_MULTIRT ire in the bucket, 22283 * before walking the ire list. 22284 */ 22285 ire_t *first_ire; 22286 irb_t *irb = ire->ire_bucket; 22287 ASSERT(irb != NULL); 22288 22289 /* Make sure we do not omit any multiroute ire. */ 22290 IRB_REFHOLD(irb); 22291 for (first_ire = irb->irb_ire; 22292 first_ire != NULL; 22293 first_ire = first_ire->ire_next) { 22294 if ((first_ire->ire_flags & RTF_MULTIRT) && 22295 (first_ire->ire_addr == ire->ire_addr) && 22296 !(first_ire->ire_marks & 22297 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22298 break; 22299 } 22300 } 22301 22302 if ((first_ire != NULL) && (first_ire != ire)) { 22303 IRE_REFHOLD(first_ire); 22304 ire_refrele(ire); 22305 ire = first_ire; 22306 ill = ire_to_ill(ire); 22307 } 22308 IRB_REFRELE(irb); 22309 } 22310 22311 /* 22312 * conn_outgoing_ill is used only in the broadcast loop. 22313 * for performance we don't grab the mutexs in the fastpath 22314 */ 22315 if ((connp != NULL) && 22316 (connp->conn_xmit_if_ill == NULL) && 22317 (ire->ire_type == IRE_BROADCAST) && 22318 ((connp->conn_nofailover_ill != NULL) || 22319 (connp->conn_outgoing_ill != NULL))) { 22320 /* 22321 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22322 * option. So, see if this endpoint is bound to a 22323 * IPIF_NOFAILOVER address. If so, honor it. This implies 22324 * that if the interface is failed, we will still send 22325 * the packet on the same ill which is what we want. 22326 */ 22327 conn_outgoing_ill = conn_get_held_ill(connp, 22328 &connp->conn_nofailover_ill, &err); 22329 if (err == ILL_LOOKUP_FAILED) { 22330 ire_refrele(ire); 22331 freemsg(mp); 22332 return; 22333 } 22334 if (conn_outgoing_ill == NULL) { 22335 /* 22336 * Choose a good ill in the group to send the 22337 * packets on. 22338 */ 22339 ire = conn_set_outgoing_ill(connp, ire, 22340 &conn_outgoing_ill); 22341 if (ire == NULL) { 22342 freemsg(mp); 22343 return; 22344 } 22345 } 22346 } 22347 22348 if (mp->b_datap->db_type != M_CTL) { 22349 ipha = (ipha_t *)mp->b_rptr; 22350 } else { 22351 io = (ipsec_out_t *)mp->b_rptr; 22352 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22353 ASSERT(zoneid == io->ipsec_out_zoneid); 22354 ASSERT(zoneid != ALL_ZONES); 22355 ipha = (ipha_t *)mp->b_cont->b_rptr; 22356 dst = ipha->ipha_dst; 22357 /* 22358 * For the multicast case, ipsec_out carries conn_dontroute and 22359 * conn_multicast_loop as conn may not be available here. We 22360 * need this for multicast loopback and forwarding which is done 22361 * later in the code. 22362 */ 22363 if (CLASSD(dst)) { 22364 conn_dontroute = io->ipsec_out_dontroute; 22365 conn_multicast_loop = io->ipsec_out_multicast_loop; 22366 /* 22367 * If conn_dontroute is not set or conn_multicast_loop 22368 * is set, we need to do forwarding/loopback. For 22369 * datagrams from ip_wput_multicast, conn_dontroute is 22370 * set to B_TRUE and conn_multicast_loop is set to 22371 * B_FALSE so that we neither do forwarding nor 22372 * loopback. 22373 */ 22374 if (!conn_dontroute || conn_multicast_loop) 22375 multicast_forward = B_TRUE; 22376 } 22377 } 22378 22379 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22380 ire->ire_zoneid != ALL_ZONES) { 22381 /* 22382 * When a zone sends a packet to another zone, we try to deliver 22383 * the packet under the same conditions as if the destination 22384 * was a real node on the network. To do so, we look for a 22385 * matching route in the forwarding table. 22386 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22387 * ip_newroute() does. 22388 * Note that IRE_LOCAL are special, since they are used 22389 * when the zoneid doesn't match in some cases. This means that 22390 * we need to handle ipha_src differently since ire_src_addr 22391 * belongs to the receiving zone instead of the sending zone. 22392 * When ip_restrict_interzone_loopback is set, then 22393 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22394 * for loopback between zones when the logical "Ethernet" would 22395 * have looped them back. 22396 */ 22397 ire_t *src_ire; 22398 22399 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22400 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22401 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22402 if (src_ire != NULL && 22403 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22404 (!ipst->ips_ip_restrict_interzone_loopback || 22405 ire_local_same_ill_group(ire, src_ire))) { 22406 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22407 ipha->ipha_src = src_ire->ire_src_addr; 22408 ire_refrele(src_ire); 22409 } else { 22410 ire_refrele(ire); 22411 if (conn_outgoing_ill != NULL) 22412 ill_refrele(conn_outgoing_ill); 22413 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22414 if (src_ire != NULL) { 22415 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22416 ire_refrele(src_ire); 22417 freemsg(mp); 22418 return; 22419 } 22420 ire_refrele(src_ire); 22421 } 22422 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22423 /* Failed */ 22424 freemsg(mp); 22425 return; 22426 } 22427 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22428 ipst); 22429 return; 22430 } 22431 } 22432 22433 if (mp->b_datap->db_type == M_CTL || 22434 ipss->ipsec_outbound_v4_policy_present) { 22435 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22436 unspec_src, zoneid); 22437 if (mp == NULL) { 22438 ire_refrele(ire); 22439 if (conn_outgoing_ill != NULL) 22440 ill_refrele(conn_outgoing_ill); 22441 return; 22442 } 22443 } 22444 22445 first_mp = mp; 22446 ipsec_len = 0; 22447 22448 if (first_mp->b_datap->db_type == M_CTL) { 22449 io = (ipsec_out_t *)first_mp->b_rptr; 22450 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22451 mp = first_mp->b_cont; 22452 ipsec_len = ipsec_out_extra_length(first_mp); 22453 ASSERT(ipsec_len >= 0); 22454 /* We already picked up the zoneid from the M_CTL above */ 22455 ASSERT(zoneid == io->ipsec_out_zoneid); 22456 ASSERT(zoneid != ALL_ZONES); 22457 22458 /* 22459 * Drop M_CTL here if IPsec processing is not needed. 22460 * (Non-IPsec use of M_CTL extracted any information it 22461 * needed above). 22462 */ 22463 if (ipsec_len == 0) { 22464 freeb(first_mp); 22465 first_mp = mp; 22466 } 22467 } 22468 22469 /* 22470 * Fast path for ip_wput_ire 22471 */ 22472 22473 ipha = (ipha_t *)mp->b_rptr; 22474 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22475 dst = ipha->ipha_dst; 22476 22477 /* 22478 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22479 * if the socket is a SOCK_RAW type. The transport checksum should 22480 * be provided in the pre-built packet, so we don't need to compute it. 22481 * Also, other application set flags, like DF, should not be altered. 22482 * Other transport MUST pass down zero. 22483 */ 22484 ip_hdr_included = ipha->ipha_ident; 22485 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22486 22487 if (CLASSD(dst)) { 22488 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22489 ntohl(dst), 22490 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22491 ntohl(ire->ire_addr))); 22492 } 22493 22494 /* Macros to extract header fields from data already in registers */ 22495 #ifdef _BIG_ENDIAN 22496 #define V_HLEN (v_hlen_tos_len >> 24) 22497 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22498 #define PROTO (ttl_protocol & 0xFF) 22499 #else 22500 #define V_HLEN (v_hlen_tos_len & 0xFF) 22501 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22502 #define PROTO (ttl_protocol >> 8) 22503 #endif 22504 22505 22506 orig_src = src = ipha->ipha_src; 22507 /* (The loop back to "another" is explained down below.) */ 22508 another:; 22509 /* 22510 * Assign an ident value for this packet. We assign idents on 22511 * a per destination basis out of the IRE. There could be 22512 * other threads targeting the same destination, so we have to 22513 * arrange for a atomic increment. Note that we use a 32-bit 22514 * atomic add because it has better performance than its 22515 * 16-bit sibling. 22516 * 22517 * If running in cluster mode and if the source address 22518 * belongs to a replicated service then vector through 22519 * cl_inet_ipident vector to allocate ip identifier 22520 * NOTE: This is a contract private interface with the 22521 * clustering group. 22522 */ 22523 clusterwide = 0; 22524 if (cl_inet_ipident) { 22525 ASSERT(cl_inet_isclusterwide); 22526 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22527 AF_INET, (uint8_t *)(uintptr_t)src)) { 22528 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22529 AF_INET, (uint8_t *)(uintptr_t)src, 22530 (uint8_t *)(uintptr_t)dst); 22531 clusterwide = 1; 22532 } 22533 } 22534 if (!clusterwide) { 22535 ipha->ipha_ident = 22536 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22537 } 22538 22539 #ifndef _BIG_ENDIAN 22540 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22541 #endif 22542 22543 /* 22544 * Set source address unless sent on an ill or conn_unspec_src is set. 22545 * This is needed to obey conn_unspec_src when packets go through 22546 * ip_newroute + arp. 22547 * Assumes ip_newroute{,_multi} sets the source address as well. 22548 */ 22549 if (src == INADDR_ANY && !unspec_src) { 22550 /* 22551 * Assign the appropriate source address from the IRE if none 22552 * was specified. 22553 */ 22554 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22555 22556 /* 22557 * With IP multipathing, broadcast packets are sent on the ire 22558 * that has been cleared of IRE_MARK_NORECV and that belongs to 22559 * the group. However, this ire might not be in the same zone so 22560 * we can't always use its source address. We look for a 22561 * broadcast ire in the same group and in the right zone. 22562 */ 22563 if (ire->ire_type == IRE_BROADCAST && 22564 ire->ire_zoneid != zoneid) { 22565 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22566 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22567 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22568 if (src_ire != NULL) { 22569 src = src_ire->ire_src_addr; 22570 ire_refrele(src_ire); 22571 } else { 22572 ire_refrele(ire); 22573 if (conn_outgoing_ill != NULL) 22574 ill_refrele(conn_outgoing_ill); 22575 freemsg(first_mp); 22576 if (ill != NULL) { 22577 BUMP_MIB(ill->ill_ip_mib, 22578 ipIfStatsOutDiscards); 22579 } else { 22580 BUMP_MIB(&ipst->ips_ip_mib, 22581 ipIfStatsOutDiscards); 22582 } 22583 return; 22584 } 22585 } else { 22586 src = ire->ire_src_addr; 22587 } 22588 22589 if (connp == NULL) { 22590 ip1dbg(("ip_wput_ire: no connp and no src " 22591 "address for dst 0x%x, using src 0x%x\n", 22592 ntohl(dst), 22593 ntohl(src))); 22594 } 22595 ipha->ipha_src = src; 22596 } 22597 stq = ire->ire_stq; 22598 22599 /* 22600 * We only allow ire chains for broadcasts since there will 22601 * be multiple IRE_CACHE entries for the same multicast 22602 * address (one per ipif). 22603 */ 22604 next_mp = NULL; 22605 22606 /* broadcast packet */ 22607 if (ire->ire_type == IRE_BROADCAST) 22608 goto broadcast; 22609 22610 /* loopback ? */ 22611 if (stq == NULL) 22612 goto nullstq; 22613 22614 /* The ill_index for outbound ILL */ 22615 ill_index = Q_TO_INDEX(stq); 22616 22617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22618 ttl_protocol = ((uint16_t *)ipha)[4]; 22619 22620 /* pseudo checksum (do it in parts for IP header checksum) */ 22621 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22622 22623 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22624 queue_t *dev_q = stq->q_next; 22625 22626 /* flow controlled */ 22627 if ((dev_q->q_next || dev_q->q_first) && 22628 !canput(dev_q)) 22629 goto blocked; 22630 if ((PROTO == IPPROTO_UDP) && 22631 (ip_hdr_included != IP_HDR_INCLUDED)) { 22632 hlen = (V_HLEN & 0xF) << 2; 22633 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22634 if (*up != 0) { 22635 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22636 hlen, LENGTH, max_frag, ipsec_len, cksum); 22637 /* Software checksum? */ 22638 if (DB_CKSUMFLAGS(mp) == 0) { 22639 IP_STAT(ipst, ip_out_sw_cksum); 22640 IP_STAT_UPDATE(ipst, 22641 ip_udp_out_sw_cksum_bytes, 22642 LENGTH - hlen); 22643 } 22644 } 22645 } 22646 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22647 hlen = (V_HLEN & 0xF) << 2; 22648 if (PROTO == IPPROTO_TCP) { 22649 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22650 /* 22651 * The packet header is processed once and for all, even 22652 * in the multirouting case. We disable hardware 22653 * checksum if the packet is multirouted, as it will be 22654 * replicated via several interfaces, and not all of 22655 * them may have this capability. 22656 */ 22657 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22658 LENGTH, max_frag, ipsec_len, cksum); 22659 /* Software checksum? */ 22660 if (DB_CKSUMFLAGS(mp) == 0) { 22661 IP_STAT(ipst, ip_out_sw_cksum); 22662 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22663 LENGTH - hlen); 22664 } 22665 } else { 22666 sctp_hdr_t *sctph; 22667 22668 ASSERT(PROTO == IPPROTO_SCTP); 22669 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22670 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22671 /* 22672 * Zero out the checksum field to ensure proper 22673 * checksum calculation. 22674 */ 22675 sctph->sh_chksum = 0; 22676 #ifdef DEBUG 22677 if (!skip_sctp_cksum) 22678 #endif 22679 sctph->sh_chksum = sctp_cksum(mp, hlen); 22680 } 22681 } 22682 22683 /* 22684 * If this is a multicast packet and originated from ip_wput 22685 * we need to do loopback and forwarding checks. If it comes 22686 * from ip_wput_multicast, we SHOULD not do this. 22687 */ 22688 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22689 22690 /* checksum */ 22691 cksum += ttl_protocol; 22692 22693 /* fragment the packet */ 22694 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22695 goto fragmentit; 22696 /* 22697 * Don't use frag_flag if packet is pre-built or source 22698 * routed or if multicast (since multicast packets do 22699 * not solicit ICMP "packet too big" messages). 22700 */ 22701 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22702 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22703 !ip_source_route_included(ipha)) && 22704 !CLASSD(ipha->ipha_dst)) 22705 ipha->ipha_fragment_offset_and_flags |= 22706 htons(ire->ire_frag_flag); 22707 22708 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22709 /* calculate IP header checksum */ 22710 cksum += ipha->ipha_ident; 22711 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22712 cksum += ipha->ipha_fragment_offset_and_flags; 22713 22714 /* IP options present */ 22715 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22716 if (hlen) 22717 goto checksumoptions; 22718 22719 /* calculate hdr checksum */ 22720 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22721 cksum = ~(cksum + (cksum >> 16)); 22722 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22723 } 22724 if (ipsec_len != 0) { 22725 /* 22726 * We will do the rest of the processing after 22727 * we come back from IPSEC in ip_wput_ipsec_out(). 22728 */ 22729 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22730 22731 io = (ipsec_out_t *)first_mp->b_rptr; 22732 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22733 ill_phyint->phyint_ifindex; 22734 22735 ipsec_out_process(q, first_mp, ire, ill_index); 22736 ire_refrele(ire); 22737 if (conn_outgoing_ill != NULL) 22738 ill_refrele(conn_outgoing_ill); 22739 return; 22740 } 22741 22742 /* 22743 * In most cases, the emission loop below is entered only 22744 * once. Only in the case where the ire holds the 22745 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22746 * flagged ires in the bucket, and send the packet 22747 * through all crossed RTF_MULTIRT routes. 22748 */ 22749 if (ire->ire_flags & RTF_MULTIRT) { 22750 multirt_send = B_TRUE; 22751 } 22752 do { 22753 if (multirt_send) { 22754 irb_t *irb; 22755 /* 22756 * We are in a multiple send case, need to get 22757 * the next ire and make a duplicate of the packet. 22758 * ire1 holds here the next ire to process in the 22759 * bucket. If multirouting is expected, 22760 * any non-RTF_MULTIRT ire that has the 22761 * right destination address is ignored. 22762 */ 22763 irb = ire->ire_bucket; 22764 ASSERT(irb != NULL); 22765 22766 IRB_REFHOLD(irb); 22767 for (ire1 = ire->ire_next; 22768 ire1 != NULL; 22769 ire1 = ire1->ire_next) { 22770 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22771 continue; 22772 if (ire1->ire_addr != ire->ire_addr) 22773 continue; 22774 if (ire1->ire_marks & 22775 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22776 continue; 22777 22778 /* Got one */ 22779 IRE_REFHOLD(ire1); 22780 break; 22781 } 22782 IRB_REFRELE(irb); 22783 22784 if (ire1 != NULL) { 22785 next_mp = copyb(mp); 22786 if ((next_mp == NULL) || 22787 ((mp->b_cont != NULL) && 22788 ((next_mp->b_cont = 22789 dupmsg(mp->b_cont)) == NULL))) { 22790 freemsg(next_mp); 22791 next_mp = NULL; 22792 ire_refrele(ire1); 22793 ire1 = NULL; 22794 } 22795 } 22796 22797 /* Last multiroute ire; don't loop anymore. */ 22798 if (ire1 == NULL) { 22799 multirt_send = B_FALSE; 22800 } 22801 } 22802 22803 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22804 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22805 mblk_t *, mp); 22806 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22807 ipst->ips_ipv4firewall_physical_out, 22808 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22809 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22810 if (mp == NULL) 22811 goto release_ire_and_ill; 22812 22813 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22814 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22815 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22816 if ((pktxmit_state == SEND_FAILED) || 22817 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22818 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22819 "- packet dropped\n")); 22820 release_ire_and_ill: 22821 ire_refrele(ire); 22822 if (next_mp != NULL) { 22823 freemsg(next_mp); 22824 ire_refrele(ire1); 22825 } 22826 if (conn_outgoing_ill != NULL) 22827 ill_refrele(conn_outgoing_ill); 22828 return; 22829 } 22830 22831 if (CLASSD(dst)) { 22832 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22833 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22834 LENGTH); 22835 } 22836 22837 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22838 "ip_wput_ire_end: q %p (%S)", 22839 q, "last copy out"); 22840 IRE_REFRELE(ire); 22841 22842 if (multirt_send) { 22843 ASSERT(ire1); 22844 /* 22845 * Proceed with the next RTF_MULTIRT ire, 22846 * Also set up the send-to queue accordingly. 22847 */ 22848 ire = ire1; 22849 ire1 = NULL; 22850 stq = ire->ire_stq; 22851 mp = next_mp; 22852 next_mp = NULL; 22853 ipha = (ipha_t *)mp->b_rptr; 22854 ill_index = Q_TO_INDEX(stq); 22855 ill = (ill_t *)stq->q_ptr; 22856 } 22857 } while (multirt_send); 22858 if (conn_outgoing_ill != NULL) 22859 ill_refrele(conn_outgoing_ill); 22860 return; 22861 22862 /* 22863 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22864 */ 22865 broadcast: 22866 { 22867 /* 22868 * Avoid broadcast storms by setting the ttl to 1 22869 * for broadcasts. This parameter can be set 22870 * via ndd, so make sure that for the SO_DONTROUTE 22871 * case that ipha_ttl is always set to 1. 22872 * In the event that we are replying to incoming 22873 * ICMP packets, conn could be NULL. 22874 */ 22875 if ((connp != NULL) && connp->conn_dontroute) 22876 ipha->ipha_ttl = 1; 22877 else 22878 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22879 22880 /* 22881 * Note that we are not doing a IRB_REFHOLD here. 22882 * Actually we don't care if the list changes i.e 22883 * if somebody deletes an IRE from the list while 22884 * we drop the lock, the next time we come around 22885 * ire_next will be NULL and hence we won't send 22886 * out multiple copies which is fine. 22887 */ 22888 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22889 ire1 = ire->ire_next; 22890 if (conn_outgoing_ill != NULL) { 22891 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22892 ASSERT(ire1 == ire->ire_next); 22893 if (ire1 != NULL && ire1->ire_addr == dst) { 22894 ire_refrele(ire); 22895 ire = ire1; 22896 IRE_REFHOLD(ire); 22897 ire1 = ire->ire_next; 22898 continue; 22899 } 22900 rw_exit(&ire->ire_bucket->irb_lock); 22901 /* Did not find a matching ill */ 22902 ip1dbg(("ip_wput_ire: broadcast with no " 22903 "matching IP_BOUND_IF ill %s\n", 22904 conn_outgoing_ill->ill_name)); 22905 freemsg(first_mp); 22906 if (ire != NULL) 22907 ire_refrele(ire); 22908 ill_refrele(conn_outgoing_ill); 22909 return; 22910 } 22911 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22912 /* 22913 * If the next IRE has the same address and is not one 22914 * of the two copies that we need to send, try to see 22915 * whether this copy should be sent at all. This 22916 * assumes that we insert loopbacks first and then 22917 * non-loopbacks. This is acheived by inserting the 22918 * loopback always before non-loopback. 22919 * This is used to send a single copy of a broadcast 22920 * packet out all physical interfaces that have an 22921 * matching IRE_BROADCAST while also looping 22922 * back one copy (to ip_wput_local) for each 22923 * matching physical interface. However, we avoid 22924 * sending packets out different logical that match by 22925 * having ipif_up/ipif_down supress duplicate 22926 * IRE_BROADCASTS. 22927 * 22928 * This feature is currently used to get broadcasts 22929 * sent to multiple interfaces, when the broadcast 22930 * address being used applies to multiple interfaces. 22931 * For example, a whole net broadcast will be 22932 * replicated on every connected subnet of 22933 * the target net. 22934 * 22935 * Each zone has its own set of IRE_BROADCASTs, so that 22936 * we're able to distribute inbound packets to multiple 22937 * zones who share a broadcast address. We avoid looping 22938 * back outbound packets in different zones but on the 22939 * same ill, as the application would see duplicates. 22940 * 22941 * If the interfaces are part of the same group, 22942 * we would want to send only one copy out for 22943 * whole group. 22944 * 22945 * This logic assumes that ire_add_v4() groups the 22946 * IRE_BROADCAST entries so that those with the same 22947 * ire_addr and ill_group are kept together. 22948 */ 22949 ire_ill = ire->ire_ipif->ipif_ill; 22950 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22951 if (ire_ill->ill_group != NULL && 22952 (ire->ire_marks & IRE_MARK_NORECV)) { 22953 /* 22954 * If the current zone only has an ire 22955 * broadcast for this address marked 22956 * NORECV, the ire we want is ahead in 22957 * the bucket, so we look it up 22958 * deliberately ignoring the zoneid. 22959 */ 22960 for (ire1 = ire->ire_bucket->irb_ire; 22961 ire1 != NULL; 22962 ire1 = ire1->ire_next) { 22963 ire1_ill = 22964 ire1->ire_ipif->ipif_ill; 22965 if (ire1->ire_addr != dst) 22966 continue; 22967 /* skip over the current ire */ 22968 if (ire1 == ire) 22969 continue; 22970 /* skip over deleted ires */ 22971 if (ire1->ire_marks & 22972 IRE_MARK_CONDEMNED) 22973 continue; 22974 /* 22975 * non-loopback ire in our 22976 * group: use it for the next 22977 * pass in the loop 22978 */ 22979 if (ire1->ire_stq != NULL && 22980 ire1_ill->ill_group == 22981 ire_ill->ill_group) 22982 break; 22983 } 22984 } 22985 } else { 22986 while (ire1 != NULL && ire1->ire_addr == dst) { 22987 ire1_ill = ire1->ire_ipif->ipif_ill; 22988 /* 22989 * We can have two broadcast ires on the 22990 * same ill in different zones; here 22991 * we'll send a copy of the packet on 22992 * each ill and the fanout code will 22993 * call conn_wantpacket() to check that 22994 * the zone has the broadcast address 22995 * configured on the ill. If the two 22996 * ires are in the same group we only 22997 * send one copy up. 22998 */ 22999 if (ire1_ill != ire_ill && 23000 (ire1_ill->ill_group == NULL || 23001 ire_ill->ill_group == NULL || 23002 ire1_ill->ill_group != 23003 ire_ill->ill_group)) { 23004 break; 23005 } 23006 ire1 = ire1->ire_next; 23007 } 23008 } 23009 } 23010 ASSERT(multirt_send == B_FALSE); 23011 if (ire1 != NULL && ire1->ire_addr == dst) { 23012 if ((ire->ire_flags & RTF_MULTIRT) && 23013 (ire1->ire_flags & RTF_MULTIRT)) { 23014 /* 23015 * We are in the multirouting case. 23016 * The message must be sent at least 23017 * on both ires. These ires have been 23018 * inserted AFTER the standard ones 23019 * in ip_rt_add(). There are thus no 23020 * other ire entries for the destination 23021 * address in the rest of the bucket 23022 * that do not have the RTF_MULTIRT 23023 * flag. We don't process a copy 23024 * of the message here. This will be 23025 * done in the final sending loop. 23026 */ 23027 multirt_send = B_TRUE; 23028 } else { 23029 next_mp = ip_copymsg(first_mp); 23030 if (next_mp != NULL) 23031 IRE_REFHOLD(ire1); 23032 } 23033 } 23034 rw_exit(&ire->ire_bucket->irb_lock); 23035 } 23036 23037 if (stq) { 23038 /* 23039 * A non-NULL send-to queue means this packet is going 23040 * out of this machine. 23041 */ 23042 out_ill = (ill_t *)stq->q_ptr; 23043 23044 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23045 ttl_protocol = ((uint16_t *)ipha)[4]; 23046 /* 23047 * We accumulate the pseudo header checksum in cksum. 23048 * This is pretty hairy code, so watch close. One 23049 * thing to keep in mind is that UDP and TCP have 23050 * stored their respective datagram lengths in their 23051 * checksum fields. This lines things up real nice. 23052 */ 23053 cksum = (dst >> 16) + (dst & 0xFFFF) + 23054 (src >> 16) + (src & 0xFFFF); 23055 /* 23056 * We assume the udp checksum field contains the 23057 * length, so to compute the pseudo header checksum, 23058 * all we need is the protocol number and src/dst. 23059 */ 23060 /* Provide the checksums for UDP and TCP. */ 23061 if ((PROTO == IPPROTO_TCP) && 23062 (ip_hdr_included != IP_HDR_INCLUDED)) { 23063 /* hlen gets the number of uchar_ts in the IP header */ 23064 hlen = (V_HLEN & 0xF) << 2; 23065 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23066 IP_STAT(ipst, ip_out_sw_cksum); 23067 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23068 LENGTH - hlen); 23069 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23070 } else if (PROTO == IPPROTO_SCTP && 23071 (ip_hdr_included != IP_HDR_INCLUDED)) { 23072 sctp_hdr_t *sctph; 23073 23074 hlen = (V_HLEN & 0xF) << 2; 23075 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23076 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23077 sctph->sh_chksum = 0; 23078 #ifdef DEBUG 23079 if (!skip_sctp_cksum) 23080 #endif 23081 sctph->sh_chksum = sctp_cksum(mp, hlen); 23082 } else { 23083 queue_t *dev_q = stq->q_next; 23084 23085 if ((dev_q->q_next || dev_q->q_first) && 23086 !canput(dev_q)) { 23087 blocked: 23088 ipha->ipha_ident = ip_hdr_included; 23089 /* 23090 * If we don't have a conn to apply 23091 * backpressure, free the message. 23092 * In the ire_send path, we don't know 23093 * the position to requeue the packet. Rather 23094 * than reorder packets, we just drop this 23095 * packet. 23096 */ 23097 if (ipst->ips_ip_output_queue && 23098 connp != NULL && 23099 caller != IRE_SEND) { 23100 if (caller == IP_WSRV) { 23101 connp->conn_did_putbq = 1; 23102 (void) putbq(connp->conn_wq, 23103 first_mp); 23104 conn_drain_insert(connp); 23105 /* 23106 * This is the service thread, 23107 * and the queue is already 23108 * noenabled. The check for 23109 * canput and the putbq is not 23110 * atomic. So we need to check 23111 * again. 23112 */ 23113 if (canput(stq->q_next)) 23114 connp->conn_did_putbq 23115 = 0; 23116 IP_STAT(ipst, ip_conn_flputbq); 23117 } else { 23118 /* 23119 * We are not the service proc. 23120 * ip_wsrv will be scheduled or 23121 * is already running. 23122 */ 23123 (void) putq(connp->conn_wq, 23124 first_mp); 23125 } 23126 } else { 23127 out_ill = (ill_t *)stq->q_ptr; 23128 BUMP_MIB(out_ill->ill_ip_mib, 23129 ipIfStatsOutDiscards); 23130 freemsg(first_mp); 23131 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23132 "ip_wput_ire_end: q %p (%S)", 23133 q, "discard"); 23134 } 23135 ire_refrele(ire); 23136 if (next_mp) { 23137 ire_refrele(ire1); 23138 freemsg(next_mp); 23139 } 23140 if (conn_outgoing_ill != NULL) 23141 ill_refrele(conn_outgoing_ill); 23142 return; 23143 } 23144 if ((PROTO == IPPROTO_UDP) && 23145 (ip_hdr_included != IP_HDR_INCLUDED)) { 23146 /* 23147 * hlen gets the number of uchar_ts in the 23148 * IP header 23149 */ 23150 hlen = (V_HLEN & 0xF) << 2; 23151 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23152 max_frag = ire->ire_max_frag; 23153 if (*up != 0) { 23154 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23155 up, PROTO, hlen, LENGTH, max_frag, 23156 ipsec_len, cksum); 23157 /* Software checksum? */ 23158 if (DB_CKSUMFLAGS(mp) == 0) { 23159 IP_STAT(ipst, ip_out_sw_cksum); 23160 IP_STAT_UPDATE(ipst, 23161 ip_udp_out_sw_cksum_bytes, 23162 LENGTH - hlen); 23163 } 23164 } 23165 } 23166 } 23167 /* 23168 * Need to do this even when fragmenting. The local 23169 * loopback can be done without computing checksums 23170 * but forwarding out other interface must be done 23171 * after the IP checksum (and ULP checksums) have been 23172 * computed. 23173 * 23174 * NOTE : multicast_forward is set only if this packet 23175 * originated from ip_wput. For packets originating from 23176 * ip_wput_multicast, it is not set. 23177 */ 23178 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23179 multi_loopback: 23180 ip2dbg(("ip_wput: multicast, loop %d\n", 23181 conn_multicast_loop)); 23182 23183 /* Forget header checksum offload */ 23184 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23185 23186 /* 23187 * Local loopback of multicasts? Check the 23188 * ill. 23189 * 23190 * Note that the loopback function will not come 23191 * in through ip_rput - it will only do the 23192 * client fanout thus we need to do an mforward 23193 * as well. The is different from the BSD 23194 * logic. 23195 */ 23196 if (ill != NULL) { 23197 ilm_t *ilm; 23198 23199 ILM_WALKER_HOLD(ill); 23200 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23201 ALL_ZONES); 23202 ILM_WALKER_RELE(ill); 23203 if (ilm != NULL) { 23204 /* 23205 * Pass along the virtual output q. 23206 * ip_wput_local() will distribute the 23207 * packet to all the matching zones, 23208 * except the sending zone when 23209 * IP_MULTICAST_LOOP is false. 23210 */ 23211 ip_multicast_loopback(q, ill, first_mp, 23212 conn_multicast_loop ? 0 : 23213 IP_FF_NO_MCAST_LOOP, zoneid); 23214 } 23215 } 23216 if (ipha->ipha_ttl == 0) { 23217 /* 23218 * 0 => only to this host i.e. we are 23219 * done. We are also done if this was the 23220 * loopback interface since it is sufficient 23221 * to loopback one copy of a multicast packet. 23222 */ 23223 freemsg(first_mp); 23224 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23225 "ip_wput_ire_end: q %p (%S)", 23226 q, "loopback"); 23227 ire_refrele(ire); 23228 if (conn_outgoing_ill != NULL) 23229 ill_refrele(conn_outgoing_ill); 23230 return; 23231 } 23232 /* 23233 * ILLF_MULTICAST is checked in ip_newroute 23234 * i.e. we don't need to check it here since 23235 * all IRE_CACHEs come from ip_newroute. 23236 * For multicast traffic, SO_DONTROUTE is interpreted 23237 * to mean only send the packet out the interface 23238 * (optionally specified with IP_MULTICAST_IF) 23239 * and do not forward it out additional interfaces. 23240 * RSVP and the rsvp daemon is an example of a 23241 * protocol and user level process that 23242 * handles it's own routing. Hence, it uses the 23243 * SO_DONTROUTE option to accomplish this. 23244 */ 23245 23246 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23247 ill != NULL) { 23248 /* Unconditionally redo the checksum */ 23249 ipha->ipha_hdr_checksum = 0; 23250 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23251 23252 /* 23253 * If this needs to go out secure, we need 23254 * to wait till we finish the IPSEC 23255 * processing. 23256 */ 23257 if (ipsec_len == 0 && 23258 ip_mforward(ill, ipha, mp)) { 23259 freemsg(first_mp); 23260 ip1dbg(("ip_wput: mforward failed\n")); 23261 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23262 "ip_wput_ire_end: q %p (%S)", 23263 q, "mforward failed"); 23264 ire_refrele(ire); 23265 if (conn_outgoing_ill != NULL) 23266 ill_refrele(conn_outgoing_ill); 23267 return; 23268 } 23269 } 23270 } 23271 max_frag = ire->ire_max_frag; 23272 cksum += ttl_protocol; 23273 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23274 /* No fragmentation required for this one. */ 23275 /* 23276 * Don't use frag_flag if packet is pre-built or source 23277 * routed or if multicast (since multicast packets do 23278 * not solicit ICMP "packet too big" messages). 23279 */ 23280 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23281 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23282 !ip_source_route_included(ipha)) && 23283 !CLASSD(ipha->ipha_dst)) 23284 ipha->ipha_fragment_offset_and_flags |= 23285 htons(ire->ire_frag_flag); 23286 23287 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23288 /* Complete the IP header checksum. */ 23289 cksum += ipha->ipha_ident; 23290 cksum += (v_hlen_tos_len >> 16)+ 23291 (v_hlen_tos_len & 0xFFFF); 23292 cksum += ipha->ipha_fragment_offset_and_flags; 23293 hlen = (V_HLEN & 0xF) - 23294 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23295 if (hlen) { 23296 checksumoptions: 23297 /* 23298 * Account for the IP Options in the IP 23299 * header checksum. 23300 */ 23301 up = (uint16_t *)(rptr+ 23302 IP_SIMPLE_HDR_LENGTH); 23303 do { 23304 cksum += up[0]; 23305 cksum += up[1]; 23306 up += 2; 23307 } while (--hlen); 23308 } 23309 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23310 cksum = ~(cksum + (cksum >> 16)); 23311 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23312 } 23313 if (ipsec_len != 0) { 23314 ipsec_out_process(q, first_mp, ire, ill_index); 23315 if (!next_mp) { 23316 ire_refrele(ire); 23317 if (conn_outgoing_ill != NULL) 23318 ill_refrele(conn_outgoing_ill); 23319 return; 23320 } 23321 goto next; 23322 } 23323 23324 /* 23325 * multirt_send has already been handled 23326 * for broadcast, but not yet for multicast 23327 * or IP options. 23328 */ 23329 if (next_mp == NULL) { 23330 if (ire->ire_flags & RTF_MULTIRT) { 23331 multirt_send = B_TRUE; 23332 } 23333 } 23334 23335 /* 23336 * In most cases, the emission loop below is 23337 * entered only once. Only in the case where 23338 * the ire holds the RTF_MULTIRT flag, do we loop 23339 * to process all RTF_MULTIRT ires in the bucket, 23340 * and send the packet through all crossed 23341 * RTF_MULTIRT routes. 23342 */ 23343 do { 23344 if (multirt_send) { 23345 irb_t *irb; 23346 23347 irb = ire->ire_bucket; 23348 ASSERT(irb != NULL); 23349 /* 23350 * We are in a multiple send case, 23351 * need to get the next IRE and make 23352 * a duplicate of the packet. 23353 */ 23354 IRB_REFHOLD(irb); 23355 for (ire1 = ire->ire_next; 23356 ire1 != NULL; 23357 ire1 = ire1->ire_next) { 23358 if (!(ire1->ire_flags & 23359 RTF_MULTIRT)) { 23360 continue; 23361 } 23362 if (ire1->ire_addr != 23363 ire->ire_addr) { 23364 continue; 23365 } 23366 if (ire1->ire_marks & 23367 (IRE_MARK_CONDEMNED| 23368 IRE_MARK_HIDDEN)) { 23369 continue; 23370 } 23371 23372 /* Got one */ 23373 IRE_REFHOLD(ire1); 23374 break; 23375 } 23376 IRB_REFRELE(irb); 23377 23378 if (ire1 != NULL) { 23379 next_mp = copyb(mp); 23380 if ((next_mp == NULL) || 23381 ((mp->b_cont != NULL) && 23382 ((next_mp->b_cont = 23383 dupmsg(mp->b_cont)) 23384 == NULL))) { 23385 freemsg(next_mp); 23386 next_mp = NULL; 23387 ire_refrele(ire1); 23388 ire1 = NULL; 23389 } 23390 } 23391 23392 /* 23393 * Last multiroute ire; don't loop 23394 * anymore. The emission is over 23395 * and next_mp is NULL. 23396 */ 23397 if (ire1 == NULL) { 23398 multirt_send = B_FALSE; 23399 } 23400 } 23401 23402 out_ill = ire->ire_ipif->ipif_ill; 23403 DTRACE_PROBE4(ip4__physical__out__start, 23404 ill_t *, NULL, 23405 ill_t *, out_ill, 23406 ipha_t *, ipha, mblk_t *, mp); 23407 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23408 ipst->ips_ipv4firewall_physical_out, 23409 NULL, out_ill, ipha, mp, mp, ipst); 23410 DTRACE_PROBE1(ip4__physical__out__end, 23411 mblk_t *, mp); 23412 if (mp == NULL) 23413 goto release_ire_and_ill_2; 23414 23415 ASSERT(ipsec_len == 0); 23416 mp->b_prev = 23417 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23418 DTRACE_PROBE2(ip__xmit__2, 23419 mblk_t *, mp, ire_t *, ire); 23420 pktxmit_state = ip_xmit_v4(mp, ire, 23421 NULL, B_TRUE); 23422 if ((pktxmit_state == SEND_FAILED) || 23423 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23424 release_ire_and_ill_2: 23425 if (next_mp) { 23426 freemsg(next_mp); 23427 ire_refrele(ire1); 23428 } 23429 ire_refrele(ire); 23430 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23431 "ip_wput_ire_end: q %p (%S)", 23432 q, "discard MDATA"); 23433 if (conn_outgoing_ill != NULL) 23434 ill_refrele(conn_outgoing_ill); 23435 return; 23436 } 23437 23438 if (CLASSD(dst)) { 23439 BUMP_MIB(out_ill->ill_ip_mib, 23440 ipIfStatsHCOutMcastPkts); 23441 UPDATE_MIB(out_ill->ill_ip_mib, 23442 ipIfStatsHCOutMcastOctets, 23443 LENGTH); 23444 } else if (ire->ire_type == IRE_BROADCAST) { 23445 BUMP_MIB(out_ill->ill_ip_mib, 23446 ipIfStatsHCOutBcastPkts); 23447 } 23448 23449 if (multirt_send) { 23450 /* 23451 * We are in a multiple send case, 23452 * need to re-enter the sending loop 23453 * using the next ire. 23454 */ 23455 ire_refrele(ire); 23456 ire = ire1; 23457 stq = ire->ire_stq; 23458 mp = next_mp; 23459 next_mp = NULL; 23460 ipha = (ipha_t *)mp->b_rptr; 23461 ill_index = Q_TO_INDEX(stq); 23462 } 23463 } while (multirt_send); 23464 23465 if (!next_mp) { 23466 /* 23467 * Last copy going out (the ultra-common 23468 * case). Note that we intentionally replicate 23469 * the putnext rather than calling it before 23470 * the next_mp check in hopes of a little 23471 * tail-call action out of the compiler. 23472 */ 23473 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23474 "ip_wput_ire_end: q %p (%S)", 23475 q, "last copy out(1)"); 23476 ire_refrele(ire); 23477 if (conn_outgoing_ill != NULL) 23478 ill_refrele(conn_outgoing_ill); 23479 return; 23480 } 23481 /* More copies going out below. */ 23482 } else { 23483 int offset; 23484 fragmentit: 23485 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23486 /* 23487 * If this would generate a icmp_frag_needed message, 23488 * we need to handle it before we do the IPSEC 23489 * processing. Otherwise, we need to strip the IPSEC 23490 * headers before we send up the message to the ULPs 23491 * which becomes messy and difficult. 23492 */ 23493 if (ipsec_len != 0) { 23494 if ((max_frag < (unsigned int)(LENGTH + 23495 ipsec_len)) && (offset & IPH_DF)) { 23496 out_ill = (ill_t *)stq->q_ptr; 23497 BUMP_MIB(out_ill->ill_ip_mib, 23498 ipIfStatsOutFragFails); 23499 BUMP_MIB(out_ill->ill_ip_mib, 23500 ipIfStatsOutFragReqds); 23501 ipha->ipha_hdr_checksum = 0; 23502 ipha->ipha_hdr_checksum = 23503 (uint16_t)ip_csum_hdr(ipha); 23504 icmp_frag_needed(ire->ire_stq, first_mp, 23505 max_frag, zoneid, ipst); 23506 if (!next_mp) { 23507 ire_refrele(ire); 23508 if (conn_outgoing_ill != NULL) { 23509 ill_refrele( 23510 conn_outgoing_ill); 23511 } 23512 return; 23513 } 23514 } else { 23515 /* 23516 * This won't cause a icmp_frag_needed 23517 * message. to be generated. Send it on 23518 * the wire. Note that this could still 23519 * cause fragmentation and all we 23520 * do is the generation of the message 23521 * to the ULP if needed before IPSEC. 23522 */ 23523 if (!next_mp) { 23524 ipsec_out_process(q, first_mp, 23525 ire, ill_index); 23526 TRACE_2(TR_FAC_IP, 23527 TR_IP_WPUT_IRE_END, 23528 "ip_wput_ire_end: q %p " 23529 "(%S)", q, 23530 "last ipsec_out_process"); 23531 ire_refrele(ire); 23532 if (conn_outgoing_ill != NULL) { 23533 ill_refrele( 23534 conn_outgoing_ill); 23535 } 23536 return; 23537 } 23538 ipsec_out_process(q, first_mp, 23539 ire, ill_index); 23540 } 23541 } else { 23542 /* 23543 * Initiate IPPF processing. For 23544 * fragmentable packets we finish 23545 * all QOS packet processing before 23546 * calling: 23547 * ip_wput_ire_fragmentit->ip_wput_frag 23548 */ 23549 23550 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23551 ip_process(IPP_LOCAL_OUT, &mp, 23552 ill_index); 23553 if (mp == NULL) { 23554 out_ill = (ill_t *)stq->q_ptr; 23555 BUMP_MIB(out_ill->ill_ip_mib, 23556 ipIfStatsOutDiscards); 23557 if (next_mp != NULL) { 23558 freemsg(next_mp); 23559 ire_refrele(ire1); 23560 } 23561 ire_refrele(ire); 23562 TRACE_2(TR_FAC_IP, 23563 TR_IP_WPUT_IRE_END, 23564 "ip_wput_ire: q %p (%S)", 23565 q, "discard MDATA"); 23566 if (conn_outgoing_ill != NULL) { 23567 ill_refrele( 23568 conn_outgoing_ill); 23569 } 23570 return; 23571 } 23572 } 23573 if (!next_mp) { 23574 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23575 "ip_wput_ire_end: q %p (%S)", 23576 q, "last fragmentation"); 23577 ip_wput_ire_fragmentit(mp, ire, 23578 zoneid, ipst); 23579 ire_refrele(ire); 23580 if (conn_outgoing_ill != NULL) 23581 ill_refrele(conn_outgoing_ill); 23582 return; 23583 } 23584 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23585 } 23586 } 23587 } else { 23588 nullstq: 23589 /* A NULL stq means the destination address is local. */ 23590 UPDATE_OB_PKT_COUNT(ire); 23591 ire->ire_last_used_time = lbolt; 23592 ASSERT(ire->ire_ipif != NULL); 23593 if (!next_mp) { 23594 /* 23595 * Is there an "in" and "out" for traffic local 23596 * to a host (loopback)? The code in Solaris doesn't 23597 * explicitly draw a line in its code for in vs out, 23598 * so we've had to draw a line in the sand: ip_wput_ire 23599 * is considered to be the "output" side and 23600 * ip_wput_local to be the "input" side. 23601 */ 23602 out_ill = ire->ire_ipif->ipif_ill; 23603 23604 DTRACE_PROBE4(ip4__loopback__out__start, 23605 ill_t *, NULL, ill_t *, out_ill, 23606 ipha_t *, ipha, mblk_t *, first_mp); 23607 23608 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23609 ipst->ips_ipv4firewall_loopback_out, 23610 NULL, out_ill, ipha, first_mp, mp, ipst); 23611 23612 DTRACE_PROBE1(ip4__loopback__out_end, 23613 mblk_t *, first_mp); 23614 23615 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23616 "ip_wput_ire_end: q %p (%S)", 23617 q, "local address"); 23618 23619 if (first_mp != NULL) 23620 ip_wput_local(q, out_ill, ipha, 23621 first_mp, ire, 0, ire->ire_zoneid); 23622 ire_refrele(ire); 23623 if (conn_outgoing_ill != NULL) 23624 ill_refrele(conn_outgoing_ill); 23625 return; 23626 } 23627 23628 out_ill = ire->ire_ipif->ipif_ill; 23629 23630 DTRACE_PROBE4(ip4__loopback__out__start, 23631 ill_t *, NULL, ill_t *, out_ill, 23632 ipha_t *, ipha, mblk_t *, first_mp); 23633 23634 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23635 ipst->ips_ipv4firewall_loopback_out, 23636 NULL, out_ill, ipha, first_mp, mp, ipst); 23637 23638 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23639 23640 if (first_mp != NULL) 23641 ip_wput_local(q, out_ill, ipha, 23642 first_mp, ire, 0, ire->ire_zoneid); 23643 } 23644 next: 23645 /* 23646 * More copies going out to additional interfaces. 23647 * ire1 has already been held. We don't need the 23648 * "ire" anymore. 23649 */ 23650 ire_refrele(ire); 23651 ire = ire1; 23652 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23653 mp = next_mp; 23654 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23655 ill = ire_to_ill(ire); 23656 first_mp = mp; 23657 if (ipsec_len != 0) { 23658 ASSERT(first_mp->b_datap->db_type == M_CTL); 23659 mp = mp->b_cont; 23660 } 23661 dst = ire->ire_addr; 23662 ipha = (ipha_t *)mp->b_rptr; 23663 /* 23664 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23665 * Restore ipha_ident "no checksum" flag. 23666 */ 23667 src = orig_src; 23668 ipha->ipha_ident = ip_hdr_included; 23669 goto another; 23670 23671 #undef rptr 23672 #undef Q_TO_INDEX 23673 } 23674 23675 /* 23676 * Routine to allocate a message that is used to notify the ULP about MDT. 23677 * The caller may provide a pointer to the link-layer MDT capabilities, 23678 * or NULL if MDT is to be disabled on the stream. 23679 */ 23680 mblk_t * 23681 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23682 { 23683 mblk_t *mp; 23684 ip_mdt_info_t *mdti; 23685 ill_mdt_capab_t *idst; 23686 23687 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23688 DB_TYPE(mp) = M_CTL; 23689 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23690 mdti = (ip_mdt_info_t *)mp->b_rptr; 23691 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23692 idst = &(mdti->mdt_capab); 23693 23694 /* 23695 * If the caller provides us with the capability, copy 23696 * it over into our notification message; otherwise 23697 * we zero out the capability portion. 23698 */ 23699 if (isrc != NULL) 23700 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23701 else 23702 bzero((caddr_t)idst, sizeof (*idst)); 23703 } 23704 return (mp); 23705 } 23706 23707 /* 23708 * Routine which determines whether MDT can be enabled on the destination 23709 * IRE and IPC combination, and if so, allocates and returns the MDT 23710 * notification mblk that may be used by ULP. We also check if we need to 23711 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23712 * MDT usage in the past have been lifted. This gets called during IP 23713 * and ULP binding. 23714 */ 23715 mblk_t * 23716 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23717 ill_mdt_capab_t *mdt_cap) 23718 { 23719 mblk_t *mp; 23720 boolean_t rc = B_FALSE; 23721 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23722 23723 ASSERT(dst_ire != NULL); 23724 ASSERT(connp != NULL); 23725 ASSERT(mdt_cap != NULL); 23726 23727 /* 23728 * Currently, we only support simple TCP/{IPv4,IPv6} with 23729 * Multidata, which is handled in tcp_multisend(). This 23730 * is the reason why we do all these checks here, to ensure 23731 * that we don't enable Multidata for the cases which we 23732 * can't handle at the moment. 23733 */ 23734 do { 23735 /* Only do TCP at the moment */ 23736 if (connp->conn_ulp != IPPROTO_TCP) 23737 break; 23738 23739 /* 23740 * IPSEC outbound policy present? Note that we get here 23741 * after calling ipsec_conn_cache_policy() where the global 23742 * policy checking is performed. conn_latch will be 23743 * non-NULL as long as there's a policy defined, 23744 * i.e. conn_out_enforce_policy may be NULL in such case 23745 * when the connection is non-secure, and hence we check 23746 * further if the latch refers to an outbound policy. 23747 */ 23748 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23749 break; 23750 23751 /* CGTP (multiroute) is enabled? */ 23752 if (dst_ire->ire_flags & RTF_MULTIRT) 23753 break; 23754 23755 /* Outbound IPQoS enabled? */ 23756 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23757 /* 23758 * In this case, we disable MDT for this and all 23759 * future connections going over the interface. 23760 */ 23761 mdt_cap->ill_mdt_on = 0; 23762 break; 23763 } 23764 23765 /* socket option(s) present? */ 23766 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23767 break; 23768 23769 rc = B_TRUE; 23770 /* CONSTCOND */ 23771 } while (0); 23772 23773 /* Remember the result */ 23774 connp->conn_mdt_ok = rc; 23775 23776 if (!rc) 23777 return (NULL); 23778 else if (!mdt_cap->ill_mdt_on) { 23779 /* 23780 * If MDT has been previously turned off in the past, and we 23781 * currently can do MDT (due to IPQoS policy removal, etc.) 23782 * then enable it for this interface. 23783 */ 23784 mdt_cap->ill_mdt_on = 1; 23785 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23786 "interface %s\n", ill_name)); 23787 } 23788 23789 /* Allocate the MDT info mblk */ 23790 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23791 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23792 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23793 return (NULL); 23794 } 23795 return (mp); 23796 } 23797 23798 /* 23799 * Routine to allocate a message that is used to notify the ULP about LSO. 23800 * The caller may provide a pointer to the link-layer LSO capabilities, 23801 * or NULL if LSO is to be disabled on the stream. 23802 */ 23803 mblk_t * 23804 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23805 { 23806 mblk_t *mp; 23807 ip_lso_info_t *lsoi; 23808 ill_lso_capab_t *idst; 23809 23810 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23811 DB_TYPE(mp) = M_CTL; 23812 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23813 lsoi = (ip_lso_info_t *)mp->b_rptr; 23814 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23815 idst = &(lsoi->lso_capab); 23816 23817 /* 23818 * If the caller provides us with the capability, copy 23819 * it over into our notification message; otherwise 23820 * we zero out the capability portion. 23821 */ 23822 if (isrc != NULL) 23823 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23824 else 23825 bzero((caddr_t)idst, sizeof (*idst)); 23826 } 23827 return (mp); 23828 } 23829 23830 /* 23831 * Routine which determines whether LSO can be enabled on the destination 23832 * IRE and IPC combination, and if so, allocates and returns the LSO 23833 * notification mblk that may be used by ULP. We also check if we need to 23834 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23835 * LSO usage in the past have been lifted. This gets called during IP 23836 * and ULP binding. 23837 */ 23838 mblk_t * 23839 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23840 ill_lso_capab_t *lso_cap) 23841 { 23842 mblk_t *mp; 23843 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23844 23845 ASSERT(dst_ire != NULL); 23846 ASSERT(connp != NULL); 23847 ASSERT(lso_cap != NULL); 23848 23849 connp->conn_lso_ok = B_TRUE; 23850 23851 if ((connp->conn_ulp != IPPROTO_TCP) || 23852 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23853 (dst_ire->ire_flags & RTF_MULTIRT) || 23854 !CONN_IS_LSO_MD_FASTPATH(connp) || 23855 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23856 connp->conn_lso_ok = B_FALSE; 23857 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23858 /* 23859 * Disable LSO for this and all future connections going 23860 * over the interface. 23861 */ 23862 lso_cap->ill_lso_on = 0; 23863 } 23864 } 23865 23866 if (!connp->conn_lso_ok) 23867 return (NULL); 23868 else if (!lso_cap->ill_lso_on) { 23869 /* 23870 * If LSO has been previously turned off in the past, and we 23871 * currently can do LSO (due to IPQoS policy removal, etc.) 23872 * then enable it for this interface. 23873 */ 23874 lso_cap->ill_lso_on = 1; 23875 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23876 ill_name)); 23877 } 23878 23879 /* Allocate the LSO info mblk */ 23880 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23881 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23882 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23883 23884 return (mp); 23885 } 23886 23887 /* 23888 * Create destination address attribute, and fill it with the physical 23889 * destination address and SAP taken from the template DL_UNITDATA_REQ 23890 * message block. 23891 */ 23892 boolean_t 23893 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23894 { 23895 dl_unitdata_req_t *dlurp; 23896 pattr_t *pa; 23897 pattrinfo_t pa_info; 23898 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23899 uint_t das_len, das_off; 23900 23901 ASSERT(dlmp != NULL); 23902 23903 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23904 das_len = dlurp->dl_dest_addr_length; 23905 das_off = dlurp->dl_dest_addr_offset; 23906 23907 pa_info.type = PATTR_DSTADDRSAP; 23908 pa_info.len = sizeof (**das) + das_len - 1; 23909 23910 /* create and associate the attribute */ 23911 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23912 if (pa != NULL) { 23913 ASSERT(*das != NULL); 23914 (*das)->addr_is_group = 0; 23915 (*das)->addr_len = (uint8_t)das_len; 23916 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23917 } 23918 23919 return (pa != NULL); 23920 } 23921 23922 /* 23923 * Create hardware checksum attribute and fill it with the values passed. 23924 */ 23925 boolean_t 23926 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23927 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23928 { 23929 pattr_t *pa; 23930 pattrinfo_t pa_info; 23931 23932 ASSERT(mmd != NULL); 23933 23934 pa_info.type = PATTR_HCKSUM; 23935 pa_info.len = sizeof (pattr_hcksum_t); 23936 23937 /* create and associate the attribute */ 23938 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23939 if (pa != NULL) { 23940 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23941 23942 hck->hcksum_start_offset = start_offset; 23943 hck->hcksum_stuff_offset = stuff_offset; 23944 hck->hcksum_end_offset = end_offset; 23945 hck->hcksum_flags = flags; 23946 } 23947 return (pa != NULL); 23948 } 23949 23950 /* 23951 * Create zerocopy attribute and fill it with the specified flags 23952 */ 23953 boolean_t 23954 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23955 { 23956 pattr_t *pa; 23957 pattrinfo_t pa_info; 23958 23959 ASSERT(mmd != NULL); 23960 pa_info.type = PATTR_ZCOPY; 23961 pa_info.len = sizeof (pattr_zcopy_t); 23962 23963 /* create and associate the attribute */ 23964 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23965 if (pa != NULL) { 23966 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23967 23968 zcopy->zcopy_flags = flags; 23969 } 23970 return (pa != NULL); 23971 } 23972 23973 /* 23974 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23975 * block chain. We could rewrite to handle arbitrary message block chains but 23976 * that would make the code complicated and slow. Right now there three 23977 * restrictions: 23978 * 23979 * 1. The first message block must contain the complete IP header and 23980 * at least 1 byte of payload data. 23981 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23982 * so that we can use a single Multidata message. 23983 * 3. No frag must be distributed over two or more message blocks so 23984 * that we don't need more than two packet descriptors per frag. 23985 * 23986 * The above restrictions allow us to support userland applications (which 23987 * will send down a single message block) and NFS over UDP (which will 23988 * send down a chain of at most three message blocks). 23989 * 23990 * We also don't use MDT for payloads with less than or equal to 23991 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23992 */ 23993 boolean_t 23994 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23995 { 23996 int blocks; 23997 ssize_t total, missing, size; 23998 23999 ASSERT(mp != NULL); 24000 ASSERT(hdr_len > 0); 24001 24002 size = MBLKL(mp) - hdr_len; 24003 if (size <= 0) 24004 return (B_FALSE); 24005 24006 /* The first mblk contains the header and some payload. */ 24007 blocks = 1; 24008 total = size; 24009 size %= len; 24010 missing = (size == 0) ? 0 : (len - size); 24011 mp = mp->b_cont; 24012 24013 while (mp != NULL) { 24014 /* 24015 * Give up if we encounter a zero length message block. 24016 * In practice, this should rarely happen and therefore 24017 * not worth the trouble of freeing and re-linking the 24018 * mblk from the chain to handle such case. 24019 */ 24020 if ((size = MBLKL(mp)) == 0) 24021 return (B_FALSE); 24022 24023 /* Too many payload buffers for a single Multidata message? */ 24024 if (++blocks > MULTIDATA_MAX_PBUFS) 24025 return (B_FALSE); 24026 24027 total += size; 24028 /* Is a frag distributed over two or more message blocks? */ 24029 if (missing > size) 24030 return (B_FALSE); 24031 size -= missing; 24032 24033 size %= len; 24034 missing = (size == 0) ? 0 : (len - size); 24035 24036 mp = mp->b_cont; 24037 } 24038 24039 return (total > ip_wput_frag_mdt_min); 24040 } 24041 24042 /* 24043 * Outbound IPv4 fragmentation routine using MDT. 24044 */ 24045 static void 24046 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24047 uint32_t frag_flag, int offset) 24048 { 24049 ipha_t *ipha_orig; 24050 int i1, ip_data_end; 24051 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24052 mblk_t *hdr_mp, *md_mp = NULL; 24053 unsigned char *hdr_ptr, *pld_ptr; 24054 multidata_t *mmd; 24055 ip_pdescinfo_t pdi; 24056 ill_t *ill; 24057 ip_stack_t *ipst = ire->ire_ipst; 24058 24059 ASSERT(DB_TYPE(mp) == M_DATA); 24060 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24061 24062 ill = ire_to_ill(ire); 24063 ASSERT(ill != NULL); 24064 24065 ipha_orig = (ipha_t *)mp->b_rptr; 24066 mp->b_rptr += sizeof (ipha_t); 24067 24068 /* Calculate how many packets we will send out */ 24069 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24070 pkts = (i1 + len - 1) / len; 24071 ASSERT(pkts > 1); 24072 24073 /* Allocate a message block which will hold all the IP Headers. */ 24074 wroff = ipst->ips_ip_wroff_extra; 24075 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24076 24077 i1 = pkts * hdr_chunk_len; 24078 /* 24079 * Create the header buffer, Multidata and destination address 24080 * and SAP attribute that should be associated with it. 24081 */ 24082 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24083 ((hdr_mp->b_wptr += i1), 24084 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24085 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24086 freemsg(mp); 24087 if (md_mp == NULL) { 24088 freemsg(hdr_mp); 24089 } else { 24090 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24091 freemsg(md_mp); 24092 } 24093 IP_STAT(ipst, ip_frag_mdt_allocfail); 24094 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24095 return; 24096 } 24097 IP_STAT(ipst, ip_frag_mdt_allocd); 24098 24099 /* 24100 * Add a payload buffer to the Multidata; this operation must not 24101 * fail, or otherwise our logic in this routine is broken. There 24102 * is no memory allocation done by the routine, so any returned 24103 * failure simply tells us that we've done something wrong. 24104 * 24105 * A failure tells us that either we're adding the same payload 24106 * buffer more than once, or we're trying to add more buffers than 24107 * allowed. None of the above cases should happen, and we panic 24108 * because either there's horrible heap corruption, and/or 24109 * programming mistake. 24110 */ 24111 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24112 goto pbuf_panic; 24113 24114 hdr_ptr = hdr_mp->b_rptr; 24115 pld_ptr = mp->b_rptr; 24116 24117 /* Establish the ending byte offset, based on the starting offset. */ 24118 offset <<= 3; 24119 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24120 IP_SIMPLE_HDR_LENGTH; 24121 24122 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24123 24124 while (pld_ptr < mp->b_wptr) { 24125 ipha_t *ipha; 24126 uint16_t offset_and_flags; 24127 uint16_t ip_len; 24128 int error; 24129 24130 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24131 ipha = (ipha_t *)(hdr_ptr + wroff); 24132 ASSERT(OK_32PTR(ipha)); 24133 *ipha = *ipha_orig; 24134 24135 if (ip_data_end - offset > len) { 24136 offset_and_flags = IPH_MF; 24137 } else { 24138 /* 24139 * Last frag. Set len to the length of this last piece. 24140 */ 24141 len = ip_data_end - offset; 24142 /* A frag of a frag might have IPH_MF non-zero */ 24143 offset_and_flags = 24144 ntohs(ipha->ipha_fragment_offset_and_flags) & 24145 IPH_MF; 24146 } 24147 offset_and_flags |= (uint16_t)(offset >> 3); 24148 offset_and_flags |= (uint16_t)frag_flag; 24149 /* Store the offset and flags in the IP header. */ 24150 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24151 24152 /* Store the length in the IP header. */ 24153 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24154 ipha->ipha_length = htons(ip_len); 24155 24156 /* 24157 * Set the IP header checksum. Note that mp is just 24158 * the header, so this is easy to pass to ip_csum. 24159 */ 24160 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24161 24162 /* 24163 * Record offset and size of header and data of the next packet 24164 * in the multidata message. 24165 */ 24166 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24167 PDESC_PLD_INIT(&pdi); 24168 i1 = MIN(mp->b_wptr - pld_ptr, len); 24169 ASSERT(i1 > 0); 24170 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24171 if (i1 == len) { 24172 pld_ptr += len; 24173 } else { 24174 i1 = len - i1; 24175 mp = mp->b_cont; 24176 ASSERT(mp != NULL); 24177 ASSERT(MBLKL(mp) >= i1); 24178 /* 24179 * Attach the next payload message block to the 24180 * multidata message. 24181 */ 24182 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24183 goto pbuf_panic; 24184 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24185 pld_ptr = mp->b_rptr + i1; 24186 } 24187 24188 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24189 KM_NOSLEEP)) == NULL) { 24190 /* 24191 * Any failure other than ENOMEM indicates that we 24192 * have passed in invalid pdesc info or parameters 24193 * to mmd_addpdesc, which must not happen. 24194 * 24195 * EINVAL is a result of failure on boundary checks 24196 * against the pdesc info contents. It should not 24197 * happen, and we panic because either there's 24198 * horrible heap corruption, and/or programming 24199 * mistake. 24200 */ 24201 if (error != ENOMEM) { 24202 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24203 "pdesc logic error detected for " 24204 "mmd %p pinfo %p (%d)\n", 24205 (void *)mmd, (void *)&pdi, error); 24206 /* NOTREACHED */ 24207 } 24208 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24209 /* Free unattached payload message blocks as well */ 24210 md_mp->b_cont = mp->b_cont; 24211 goto free_mmd; 24212 } 24213 24214 /* Advance fragment offset. */ 24215 offset += len; 24216 24217 /* Advance to location for next header in the buffer. */ 24218 hdr_ptr += hdr_chunk_len; 24219 24220 /* Did we reach the next payload message block? */ 24221 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24222 mp = mp->b_cont; 24223 /* 24224 * Attach the next message block with payload 24225 * data to the multidata message. 24226 */ 24227 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24228 goto pbuf_panic; 24229 pld_ptr = mp->b_rptr; 24230 } 24231 } 24232 24233 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24234 ASSERT(mp->b_wptr == pld_ptr); 24235 24236 /* Update IP statistics */ 24237 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24238 24239 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24241 24242 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24243 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24244 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24245 24246 if (pkt_type == OB_PKT) { 24247 ire->ire_ob_pkt_count += pkts; 24248 if (ire->ire_ipif != NULL) 24249 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24250 } else { 24251 /* 24252 * The type is IB_PKT in the forwarding path and in 24253 * the mobile IP case when the packet is being reverse- 24254 * tunneled to the home agent. 24255 */ 24256 ire->ire_ib_pkt_count += pkts; 24257 ASSERT(!IRE_IS_LOCAL(ire)); 24258 if (ire->ire_type & IRE_BROADCAST) { 24259 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24260 } else { 24261 UPDATE_MIB(ill->ill_ip_mib, 24262 ipIfStatsHCOutForwDatagrams, pkts); 24263 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24264 } 24265 } 24266 ire->ire_last_used_time = lbolt; 24267 /* Send it down */ 24268 putnext(ire->ire_stq, md_mp); 24269 return; 24270 24271 pbuf_panic: 24272 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24273 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24274 pbuf_idx); 24275 /* NOTREACHED */ 24276 } 24277 24278 /* 24279 * Outbound IP fragmentation routine. 24280 * 24281 * NOTE : This routine does not ire_refrele the ire that is passed in 24282 * as the argument. 24283 */ 24284 static void 24285 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24286 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24287 { 24288 int i1; 24289 mblk_t *ll_hdr_mp; 24290 int ll_hdr_len; 24291 int hdr_len; 24292 mblk_t *hdr_mp; 24293 ipha_t *ipha; 24294 int ip_data_end; 24295 int len; 24296 mblk_t *mp = mp_orig, *mp1; 24297 int offset; 24298 queue_t *q; 24299 uint32_t v_hlen_tos_len; 24300 mblk_t *first_mp; 24301 boolean_t mctl_present; 24302 ill_t *ill; 24303 ill_t *out_ill; 24304 mblk_t *xmit_mp; 24305 mblk_t *carve_mp; 24306 ire_t *ire1 = NULL; 24307 ire_t *save_ire = NULL; 24308 mblk_t *next_mp = NULL; 24309 boolean_t last_frag = B_FALSE; 24310 boolean_t multirt_send = B_FALSE; 24311 ire_t *first_ire = NULL; 24312 irb_t *irb = NULL; 24313 mib2_ipIfStatsEntry_t *mibptr = NULL; 24314 24315 ill = ire_to_ill(ire); 24316 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24317 24318 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24319 24320 if (max_frag == 0) { 24321 ip1dbg(("ip_wput_frag: ire frag size is 0" 24322 " - dropping packet\n")); 24323 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24324 freemsg(mp); 24325 return; 24326 } 24327 24328 /* 24329 * IPSEC does not allow hw accelerated packets to be fragmented 24330 * This check is made in ip_wput_ipsec_out prior to coming here 24331 * via ip_wput_ire_fragmentit. 24332 * 24333 * If at this point we have an ire whose ARP request has not 24334 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24335 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24336 * This packet and all fragmentable packets for this ire will 24337 * continue to get dropped while ire_nce->nce_state remains in 24338 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24339 * ND_REACHABLE, all subsquent large packets for this ire will 24340 * get fragemented and sent out by this function. 24341 */ 24342 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24343 /* If nce_state is ND_INITIAL, trigger ARP query */ 24344 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24345 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24346 " - dropping packet\n")); 24347 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24348 freemsg(mp); 24349 return; 24350 } 24351 24352 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24353 "ip_wput_frag_start:"); 24354 24355 if (mp->b_datap->db_type == M_CTL) { 24356 first_mp = mp; 24357 mp_orig = mp = mp->b_cont; 24358 mctl_present = B_TRUE; 24359 } else { 24360 first_mp = mp; 24361 mctl_present = B_FALSE; 24362 } 24363 24364 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24365 ipha = (ipha_t *)mp->b_rptr; 24366 24367 /* 24368 * If the Don't Fragment flag is on, generate an ICMP destination 24369 * unreachable, fragmentation needed. 24370 */ 24371 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24372 if (offset & IPH_DF) { 24373 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24374 if (is_system_labeled()) { 24375 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24376 ire->ire_max_frag - max_frag, AF_INET); 24377 } 24378 /* 24379 * Need to compute hdr checksum if called from ip_wput_ire. 24380 * Note that ip_rput_forward verifies the checksum before 24381 * calling this routine so in that case this is a noop. 24382 */ 24383 ipha->ipha_hdr_checksum = 0; 24384 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24385 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24386 ipst); 24387 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24388 "ip_wput_frag_end:(%S)", 24389 "don't fragment"); 24390 return; 24391 } 24392 /* 24393 * Labeled systems adjust max_frag if they add a label 24394 * to send the correct path mtu. We need the real mtu since we 24395 * are fragmenting the packet after label adjustment. 24396 */ 24397 if (is_system_labeled()) 24398 max_frag = ire->ire_max_frag; 24399 if (mctl_present) 24400 freeb(first_mp); 24401 /* 24402 * Establish the starting offset. May not be zero if we are fragging 24403 * a fragment that is being forwarded. 24404 */ 24405 offset = offset & IPH_OFFSET; 24406 24407 /* TODO why is this test needed? */ 24408 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24409 if (((max_frag - LENGTH) & ~7) < 8) { 24410 /* TODO: notify ulp somehow */ 24411 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24412 freemsg(mp); 24413 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24414 "ip_wput_frag_end:(%S)", 24415 "len < 8"); 24416 return; 24417 } 24418 24419 hdr_len = (V_HLEN & 0xF) << 2; 24420 24421 ipha->ipha_hdr_checksum = 0; 24422 24423 /* 24424 * Establish the number of bytes maximum per frag, after putting 24425 * in the header. 24426 */ 24427 len = (max_frag - hdr_len) & ~7; 24428 24429 /* Check if we can use MDT to send out the frags. */ 24430 ASSERT(!IRE_IS_LOCAL(ire)); 24431 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24432 ipst->ips_ip_multidata_outbound && 24433 !(ire->ire_flags & RTF_MULTIRT) && 24434 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24435 ill != NULL && ILL_MDT_CAPABLE(ill) && 24436 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24437 ASSERT(ill->ill_mdt_capab != NULL); 24438 if (!ill->ill_mdt_capab->ill_mdt_on) { 24439 /* 24440 * If MDT has been previously turned off in the past, 24441 * and we currently can do MDT (due to IPQoS policy 24442 * removal, etc.) then enable it for this interface. 24443 */ 24444 ill->ill_mdt_capab->ill_mdt_on = 1; 24445 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24446 ill->ill_name)); 24447 } 24448 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24449 offset); 24450 return; 24451 } 24452 24453 /* Get a copy of the header for the trailing frags */ 24454 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24455 if (!hdr_mp) { 24456 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24457 freemsg(mp); 24458 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24459 "ip_wput_frag_end:(%S)", 24460 "couldn't copy hdr"); 24461 return; 24462 } 24463 if (DB_CRED(mp) != NULL) 24464 mblk_setcred(hdr_mp, DB_CRED(mp)); 24465 24466 /* Store the starting offset, with the MoreFrags flag. */ 24467 i1 = offset | IPH_MF | frag_flag; 24468 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24469 24470 /* Establish the ending byte offset, based on the starting offset. */ 24471 offset <<= 3; 24472 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24473 24474 /* Store the length of the first fragment in the IP header. */ 24475 i1 = len + hdr_len; 24476 ASSERT(i1 <= IP_MAXPACKET); 24477 ipha->ipha_length = htons((uint16_t)i1); 24478 24479 /* 24480 * Compute the IP header checksum for the first frag. We have to 24481 * watch out that we stop at the end of the header. 24482 */ 24483 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24484 24485 /* 24486 * Now carve off the first frag. Note that this will include the 24487 * original IP header. 24488 */ 24489 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24490 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24491 freeb(hdr_mp); 24492 freemsg(mp_orig); 24493 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24494 "ip_wput_frag_end:(%S)", 24495 "couldn't carve first"); 24496 return; 24497 } 24498 24499 /* 24500 * Multirouting case. Each fragment is replicated 24501 * via all non-condemned RTF_MULTIRT routes 24502 * currently resolved. 24503 * We ensure that first_ire is the first RTF_MULTIRT 24504 * ire in the bucket. 24505 */ 24506 if (ire->ire_flags & RTF_MULTIRT) { 24507 irb = ire->ire_bucket; 24508 ASSERT(irb != NULL); 24509 24510 multirt_send = B_TRUE; 24511 24512 /* Make sure we do not omit any multiroute ire. */ 24513 IRB_REFHOLD(irb); 24514 for (first_ire = irb->irb_ire; 24515 first_ire != NULL; 24516 first_ire = first_ire->ire_next) { 24517 if ((first_ire->ire_flags & RTF_MULTIRT) && 24518 (first_ire->ire_addr == ire->ire_addr) && 24519 !(first_ire->ire_marks & 24520 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24521 break; 24522 } 24523 } 24524 24525 if (first_ire != NULL) { 24526 if (first_ire != ire) { 24527 IRE_REFHOLD(first_ire); 24528 /* 24529 * Do not release the ire passed in 24530 * as the argument. 24531 */ 24532 ire = first_ire; 24533 } else { 24534 first_ire = NULL; 24535 } 24536 } 24537 IRB_REFRELE(irb); 24538 24539 /* 24540 * Save the first ire; we will need to restore it 24541 * for the trailing frags. 24542 * We REFHOLD save_ire, as each iterated ire will be 24543 * REFRELEd. 24544 */ 24545 save_ire = ire; 24546 IRE_REFHOLD(save_ire); 24547 } 24548 24549 /* 24550 * First fragment emission loop. 24551 * In most cases, the emission loop below is entered only 24552 * once. Only in the case where the ire holds the RTF_MULTIRT 24553 * flag, do we loop to process all RTF_MULTIRT ires in the 24554 * bucket, and send the fragment through all crossed 24555 * RTF_MULTIRT routes. 24556 */ 24557 do { 24558 if (ire->ire_flags & RTF_MULTIRT) { 24559 /* 24560 * We are in a multiple send case, need to get 24561 * the next ire and make a copy of the packet. 24562 * ire1 holds here the next ire to process in the 24563 * bucket. If multirouting is expected, 24564 * any non-RTF_MULTIRT ire that has the 24565 * right destination address is ignored. 24566 * 24567 * We have to take into account the MTU of 24568 * each walked ire. max_frag is set by the 24569 * the caller and generally refers to 24570 * the primary ire entry. Here we ensure that 24571 * no route with a lower MTU will be used, as 24572 * fragments are carved once for all ires, 24573 * then replicated. 24574 */ 24575 ASSERT(irb != NULL); 24576 IRB_REFHOLD(irb); 24577 for (ire1 = ire->ire_next; 24578 ire1 != NULL; 24579 ire1 = ire1->ire_next) { 24580 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24581 continue; 24582 if (ire1->ire_addr != ire->ire_addr) 24583 continue; 24584 if (ire1->ire_marks & 24585 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24586 continue; 24587 /* 24588 * Ensure we do not exceed the MTU 24589 * of the next route. 24590 */ 24591 if (ire1->ire_max_frag < max_frag) { 24592 ip_multirt_bad_mtu(ire1, max_frag); 24593 continue; 24594 } 24595 24596 /* Got one. */ 24597 IRE_REFHOLD(ire1); 24598 break; 24599 } 24600 IRB_REFRELE(irb); 24601 24602 if (ire1 != NULL) { 24603 next_mp = copyb(mp); 24604 if ((next_mp == NULL) || 24605 ((mp->b_cont != NULL) && 24606 ((next_mp->b_cont = 24607 dupmsg(mp->b_cont)) == NULL))) { 24608 freemsg(next_mp); 24609 next_mp = NULL; 24610 ire_refrele(ire1); 24611 ire1 = NULL; 24612 } 24613 } 24614 24615 /* Last multiroute ire; don't loop anymore. */ 24616 if (ire1 == NULL) { 24617 multirt_send = B_FALSE; 24618 } 24619 } 24620 24621 ll_hdr_len = 0; 24622 LOCK_IRE_FP_MP(ire); 24623 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24624 if (ll_hdr_mp != NULL) { 24625 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24626 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24627 } else { 24628 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24629 } 24630 24631 /* If there is a transmit header, get a copy for this frag. */ 24632 /* 24633 * TODO: should check db_ref before calling ip_carve_mp since 24634 * it might give us a dup. 24635 */ 24636 if (!ll_hdr_mp) { 24637 /* No xmit header. */ 24638 xmit_mp = mp; 24639 24640 /* We have a link-layer header that can fit in our mblk. */ 24641 } else if (mp->b_datap->db_ref == 1 && 24642 ll_hdr_len != 0 && 24643 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24644 /* M_DATA fastpath */ 24645 mp->b_rptr -= ll_hdr_len; 24646 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24647 xmit_mp = mp; 24648 24649 /* Corner case if copyb has failed */ 24650 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24651 UNLOCK_IRE_FP_MP(ire); 24652 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24653 freeb(hdr_mp); 24654 freemsg(mp); 24655 freemsg(mp_orig); 24656 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24657 "ip_wput_frag_end:(%S)", 24658 "discard"); 24659 24660 if (multirt_send) { 24661 ASSERT(ire1); 24662 ASSERT(next_mp); 24663 24664 freemsg(next_mp); 24665 ire_refrele(ire1); 24666 } 24667 if (save_ire != NULL) 24668 IRE_REFRELE(save_ire); 24669 24670 if (first_ire != NULL) 24671 ire_refrele(first_ire); 24672 return; 24673 24674 /* 24675 * Case of res_mp OR the fastpath mp can't fit 24676 * in the mblk 24677 */ 24678 } else { 24679 xmit_mp->b_cont = mp; 24680 if (DB_CRED(mp) != NULL) 24681 mblk_setcred(xmit_mp, DB_CRED(mp)); 24682 /* 24683 * Get priority marking, if any. 24684 * We propagate the CoS marking from the 24685 * original packet that went to QoS processing 24686 * in ip_wput_ire to the newly carved mp. 24687 */ 24688 if (DB_TYPE(xmit_mp) == M_DATA) 24689 xmit_mp->b_band = mp->b_band; 24690 } 24691 UNLOCK_IRE_FP_MP(ire); 24692 24693 q = ire->ire_stq; 24694 out_ill = (ill_t *)q->q_ptr; 24695 24696 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24697 24698 DTRACE_PROBE4(ip4__physical__out__start, 24699 ill_t *, NULL, ill_t *, out_ill, 24700 ipha_t *, ipha, mblk_t *, xmit_mp); 24701 24702 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24703 ipst->ips_ipv4firewall_physical_out, 24704 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24705 24706 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24707 24708 if (xmit_mp != NULL) { 24709 putnext(q, xmit_mp); 24710 24711 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24712 UPDATE_MIB(out_ill->ill_ip_mib, 24713 ipIfStatsHCOutOctets, i1); 24714 24715 if (pkt_type != OB_PKT) { 24716 /* 24717 * Update the packet count and MIB stats 24718 * of trailing RTF_MULTIRT ires. 24719 */ 24720 UPDATE_OB_PKT_COUNT(ire); 24721 BUMP_MIB(out_ill->ill_ip_mib, 24722 ipIfStatsOutFragReqds); 24723 } 24724 } 24725 24726 if (multirt_send) { 24727 /* 24728 * We are in a multiple send case; look for 24729 * the next ire and re-enter the loop. 24730 */ 24731 ASSERT(ire1); 24732 ASSERT(next_mp); 24733 /* REFRELE the current ire before looping */ 24734 ire_refrele(ire); 24735 ire = ire1; 24736 ire1 = NULL; 24737 mp = next_mp; 24738 next_mp = NULL; 24739 } 24740 } while (multirt_send); 24741 24742 ASSERT(ire1 == NULL); 24743 24744 /* Restore the original ire; we need it for the trailing frags */ 24745 if (save_ire != NULL) { 24746 /* REFRELE the last iterated ire */ 24747 ire_refrele(ire); 24748 /* save_ire has been REFHOLDed */ 24749 ire = save_ire; 24750 save_ire = NULL; 24751 q = ire->ire_stq; 24752 } 24753 24754 if (pkt_type == OB_PKT) { 24755 UPDATE_OB_PKT_COUNT(ire); 24756 } else { 24757 out_ill = (ill_t *)q->q_ptr; 24758 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24759 UPDATE_IB_PKT_COUNT(ire); 24760 } 24761 24762 /* Advance the offset to the second frag starting point. */ 24763 offset += len; 24764 /* 24765 * Update hdr_len from the copied header - there might be less options 24766 * in the later fragments. 24767 */ 24768 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24769 /* Loop until done. */ 24770 for (;;) { 24771 uint16_t offset_and_flags; 24772 uint16_t ip_len; 24773 24774 if (ip_data_end - offset > len) { 24775 /* 24776 * Carve off the appropriate amount from the original 24777 * datagram. 24778 */ 24779 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24780 mp = NULL; 24781 break; 24782 } 24783 /* 24784 * More frags after this one. Get another copy 24785 * of the header. 24786 */ 24787 if (carve_mp->b_datap->db_ref == 1 && 24788 hdr_mp->b_wptr - hdr_mp->b_rptr < 24789 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24790 /* Inline IP header */ 24791 carve_mp->b_rptr -= hdr_mp->b_wptr - 24792 hdr_mp->b_rptr; 24793 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24794 hdr_mp->b_wptr - hdr_mp->b_rptr); 24795 mp = carve_mp; 24796 } else { 24797 if (!(mp = copyb(hdr_mp))) { 24798 freemsg(carve_mp); 24799 break; 24800 } 24801 /* Get priority marking, if any. */ 24802 mp->b_band = carve_mp->b_band; 24803 mp->b_cont = carve_mp; 24804 } 24805 ipha = (ipha_t *)mp->b_rptr; 24806 offset_and_flags = IPH_MF; 24807 } else { 24808 /* 24809 * Last frag. Consume the header. Set len to 24810 * the length of this last piece. 24811 */ 24812 len = ip_data_end - offset; 24813 24814 /* 24815 * Carve off the appropriate amount from the original 24816 * datagram. 24817 */ 24818 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24819 mp = NULL; 24820 break; 24821 } 24822 if (carve_mp->b_datap->db_ref == 1 && 24823 hdr_mp->b_wptr - hdr_mp->b_rptr < 24824 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24825 /* Inline IP header */ 24826 carve_mp->b_rptr -= hdr_mp->b_wptr - 24827 hdr_mp->b_rptr; 24828 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24829 hdr_mp->b_wptr - hdr_mp->b_rptr); 24830 mp = carve_mp; 24831 freeb(hdr_mp); 24832 hdr_mp = mp; 24833 } else { 24834 mp = hdr_mp; 24835 /* Get priority marking, if any. */ 24836 mp->b_band = carve_mp->b_band; 24837 mp->b_cont = carve_mp; 24838 } 24839 ipha = (ipha_t *)mp->b_rptr; 24840 /* A frag of a frag might have IPH_MF non-zero */ 24841 offset_and_flags = 24842 ntohs(ipha->ipha_fragment_offset_and_flags) & 24843 IPH_MF; 24844 } 24845 offset_and_flags |= (uint16_t)(offset >> 3); 24846 offset_and_flags |= (uint16_t)frag_flag; 24847 /* Store the offset and flags in the IP header. */ 24848 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24849 24850 /* Store the length in the IP header. */ 24851 ip_len = (uint16_t)(len + hdr_len); 24852 ipha->ipha_length = htons(ip_len); 24853 24854 /* 24855 * Set the IP header checksum. Note that mp is just 24856 * the header, so this is easy to pass to ip_csum. 24857 */ 24858 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24859 24860 /* Attach a transmit header, if any, and ship it. */ 24861 if (pkt_type == OB_PKT) { 24862 UPDATE_OB_PKT_COUNT(ire); 24863 } else { 24864 out_ill = (ill_t *)q->q_ptr; 24865 BUMP_MIB(out_ill->ill_ip_mib, 24866 ipIfStatsHCOutForwDatagrams); 24867 UPDATE_IB_PKT_COUNT(ire); 24868 } 24869 24870 if (ire->ire_flags & RTF_MULTIRT) { 24871 irb = ire->ire_bucket; 24872 ASSERT(irb != NULL); 24873 24874 multirt_send = B_TRUE; 24875 24876 /* 24877 * Save the original ire; we will need to restore it 24878 * for the tailing frags. 24879 */ 24880 save_ire = ire; 24881 IRE_REFHOLD(save_ire); 24882 } 24883 /* 24884 * Emission loop for this fragment, similar 24885 * to what is done for the first fragment. 24886 */ 24887 do { 24888 if (multirt_send) { 24889 /* 24890 * We are in a multiple send case, need to get 24891 * the next ire and make a copy of the packet. 24892 */ 24893 ASSERT(irb != NULL); 24894 IRB_REFHOLD(irb); 24895 for (ire1 = ire->ire_next; 24896 ire1 != NULL; 24897 ire1 = ire1->ire_next) { 24898 if (!(ire1->ire_flags & RTF_MULTIRT)) 24899 continue; 24900 if (ire1->ire_addr != ire->ire_addr) 24901 continue; 24902 if (ire1->ire_marks & 24903 (IRE_MARK_CONDEMNED| 24904 IRE_MARK_HIDDEN)) { 24905 continue; 24906 } 24907 /* 24908 * Ensure we do not exceed the MTU 24909 * of the next route. 24910 */ 24911 if (ire1->ire_max_frag < max_frag) { 24912 ip_multirt_bad_mtu(ire1, 24913 max_frag); 24914 continue; 24915 } 24916 24917 /* Got one. */ 24918 IRE_REFHOLD(ire1); 24919 break; 24920 } 24921 IRB_REFRELE(irb); 24922 24923 if (ire1 != NULL) { 24924 next_mp = copyb(mp); 24925 if ((next_mp == NULL) || 24926 ((mp->b_cont != NULL) && 24927 ((next_mp->b_cont = 24928 dupmsg(mp->b_cont)) == NULL))) { 24929 freemsg(next_mp); 24930 next_mp = NULL; 24931 ire_refrele(ire1); 24932 ire1 = NULL; 24933 } 24934 } 24935 24936 /* Last multiroute ire; don't loop anymore. */ 24937 if (ire1 == NULL) { 24938 multirt_send = B_FALSE; 24939 } 24940 } 24941 24942 /* Update transmit header */ 24943 ll_hdr_len = 0; 24944 LOCK_IRE_FP_MP(ire); 24945 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24946 if (ll_hdr_mp != NULL) { 24947 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24948 ll_hdr_len = MBLKL(ll_hdr_mp); 24949 } else { 24950 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24951 } 24952 24953 if (!ll_hdr_mp) { 24954 xmit_mp = mp; 24955 24956 /* 24957 * We have link-layer header that can fit in 24958 * our mblk. 24959 */ 24960 } else if (mp->b_datap->db_ref == 1 && 24961 ll_hdr_len != 0 && 24962 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24963 /* M_DATA fastpath */ 24964 mp->b_rptr -= ll_hdr_len; 24965 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24966 ll_hdr_len); 24967 xmit_mp = mp; 24968 24969 /* 24970 * Case of res_mp OR the fastpath mp can't fit 24971 * in the mblk 24972 */ 24973 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24974 xmit_mp->b_cont = mp; 24975 if (DB_CRED(mp) != NULL) 24976 mblk_setcred(xmit_mp, DB_CRED(mp)); 24977 /* Get priority marking, if any. */ 24978 if (DB_TYPE(xmit_mp) == M_DATA) 24979 xmit_mp->b_band = mp->b_band; 24980 24981 /* Corner case if copyb failed */ 24982 } else { 24983 /* 24984 * Exit both the replication and 24985 * fragmentation loops. 24986 */ 24987 UNLOCK_IRE_FP_MP(ire); 24988 goto drop_pkt; 24989 } 24990 UNLOCK_IRE_FP_MP(ire); 24991 24992 mp1 = mp; 24993 out_ill = (ill_t *)q->q_ptr; 24994 24995 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24996 24997 DTRACE_PROBE4(ip4__physical__out__start, 24998 ill_t *, NULL, ill_t *, out_ill, 24999 ipha_t *, ipha, mblk_t *, xmit_mp); 25000 25001 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25002 ipst->ips_ipv4firewall_physical_out, 25003 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25004 25005 DTRACE_PROBE1(ip4__physical__out__end, 25006 mblk_t *, xmit_mp); 25007 25008 if (mp != mp1 && hdr_mp == mp1) 25009 hdr_mp = mp; 25010 if (mp != mp1 && mp_orig == mp1) 25011 mp_orig = mp; 25012 25013 if (xmit_mp != NULL) { 25014 putnext(q, xmit_mp); 25015 25016 BUMP_MIB(out_ill->ill_ip_mib, 25017 ipIfStatsHCOutTransmits); 25018 UPDATE_MIB(out_ill->ill_ip_mib, 25019 ipIfStatsHCOutOctets, ip_len); 25020 25021 if (pkt_type != OB_PKT) { 25022 /* 25023 * Update the packet count of trailing 25024 * RTF_MULTIRT ires. 25025 */ 25026 UPDATE_OB_PKT_COUNT(ire); 25027 } 25028 } 25029 25030 /* All done if we just consumed the hdr_mp. */ 25031 if (mp == hdr_mp) { 25032 last_frag = B_TRUE; 25033 BUMP_MIB(out_ill->ill_ip_mib, 25034 ipIfStatsOutFragOKs); 25035 } 25036 25037 if (multirt_send) { 25038 /* 25039 * We are in a multiple send case; look for 25040 * the next ire and re-enter the loop. 25041 */ 25042 ASSERT(ire1); 25043 ASSERT(next_mp); 25044 /* REFRELE the current ire before looping */ 25045 ire_refrele(ire); 25046 ire = ire1; 25047 ire1 = NULL; 25048 q = ire->ire_stq; 25049 mp = next_mp; 25050 next_mp = NULL; 25051 } 25052 } while (multirt_send); 25053 /* 25054 * Restore the original ire; we need it for the 25055 * trailing frags 25056 */ 25057 if (save_ire != NULL) { 25058 ASSERT(ire1 == NULL); 25059 /* REFRELE the last iterated ire */ 25060 ire_refrele(ire); 25061 /* save_ire has been REFHOLDed */ 25062 ire = save_ire; 25063 q = ire->ire_stq; 25064 save_ire = NULL; 25065 } 25066 25067 if (last_frag) { 25068 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25069 "ip_wput_frag_end:(%S)", 25070 "consumed hdr_mp"); 25071 25072 if (first_ire != NULL) 25073 ire_refrele(first_ire); 25074 return; 25075 } 25076 /* Otherwise, advance and loop. */ 25077 offset += len; 25078 } 25079 25080 drop_pkt: 25081 /* Clean up following allocation failure. */ 25082 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25083 freemsg(mp); 25084 if (mp != hdr_mp) 25085 freeb(hdr_mp); 25086 if (mp != mp_orig) 25087 freemsg(mp_orig); 25088 25089 if (save_ire != NULL) 25090 IRE_REFRELE(save_ire); 25091 if (first_ire != NULL) 25092 ire_refrele(first_ire); 25093 25094 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25095 "ip_wput_frag_end:(%S)", 25096 "end--alloc failure"); 25097 } 25098 25099 /* 25100 * Copy the header plus those options which have the copy bit set 25101 */ 25102 static mblk_t * 25103 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25104 { 25105 mblk_t *mp; 25106 uchar_t *up; 25107 25108 /* 25109 * Quick check if we need to look for options without the copy bit 25110 * set 25111 */ 25112 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25113 if (!mp) 25114 return (mp); 25115 mp->b_rptr += ipst->ips_ip_wroff_extra; 25116 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25117 bcopy(rptr, mp->b_rptr, hdr_len); 25118 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25119 return (mp); 25120 } 25121 up = mp->b_rptr; 25122 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25123 up += IP_SIMPLE_HDR_LENGTH; 25124 rptr += IP_SIMPLE_HDR_LENGTH; 25125 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25126 while (hdr_len > 0) { 25127 uint32_t optval; 25128 uint32_t optlen; 25129 25130 optval = *rptr; 25131 if (optval == IPOPT_EOL) 25132 break; 25133 if (optval == IPOPT_NOP) 25134 optlen = 1; 25135 else 25136 optlen = rptr[1]; 25137 if (optval & IPOPT_COPY) { 25138 bcopy(rptr, up, optlen); 25139 up += optlen; 25140 } 25141 rptr += optlen; 25142 hdr_len -= optlen; 25143 } 25144 /* 25145 * Make sure that we drop an even number of words by filling 25146 * with EOL to the next word boundary. 25147 */ 25148 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25149 hdr_len & 0x3; hdr_len++) 25150 *up++ = IPOPT_EOL; 25151 mp->b_wptr = up; 25152 /* Update header length */ 25153 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25154 return (mp); 25155 } 25156 25157 /* 25158 * Delivery to local recipients including fanout to multiple recipients. 25159 * Does not do checksumming of UDP/TCP. 25160 * Note: q should be the read side queue for either the ill or conn. 25161 * Note: rq should be the read side q for the lower (ill) stream. 25162 * We don't send packets to IPPF processing, thus the last argument 25163 * to all the fanout calls are B_FALSE. 25164 */ 25165 void 25166 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25167 int fanout_flags, zoneid_t zoneid) 25168 { 25169 uint32_t protocol; 25170 mblk_t *first_mp; 25171 boolean_t mctl_present; 25172 int ire_type; 25173 #define rptr ((uchar_t *)ipha) 25174 ip_stack_t *ipst = ill->ill_ipst; 25175 25176 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25177 "ip_wput_local_start: q %p", q); 25178 25179 if (ire != NULL) { 25180 ire_type = ire->ire_type; 25181 } else { 25182 /* 25183 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25184 * packet is not multicast, we can't tell the ire type. 25185 */ 25186 ASSERT(CLASSD(ipha->ipha_dst)); 25187 ire_type = IRE_BROADCAST; 25188 } 25189 25190 first_mp = mp; 25191 if (first_mp->b_datap->db_type == M_CTL) { 25192 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25193 if (!io->ipsec_out_secure) { 25194 /* 25195 * This ipsec_out_t was allocated in ip_wput 25196 * for multicast packets to store the ill_index. 25197 * As this is being delivered locally, we don't 25198 * need this anymore. 25199 */ 25200 mp = first_mp->b_cont; 25201 freeb(first_mp); 25202 first_mp = mp; 25203 mctl_present = B_FALSE; 25204 } else { 25205 /* 25206 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25207 * security properties for the looped-back packet. 25208 */ 25209 mctl_present = B_TRUE; 25210 mp = first_mp->b_cont; 25211 ASSERT(mp != NULL); 25212 ipsec_out_to_in(first_mp); 25213 } 25214 } else { 25215 mctl_present = B_FALSE; 25216 } 25217 25218 DTRACE_PROBE4(ip4__loopback__in__start, 25219 ill_t *, ill, ill_t *, NULL, 25220 ipha_t *, ipha, mblk_t *, first_mp); 25221 25222 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25223 ipst->ips_ipv4firewall_loopback_in, 25224 ill, NULL, ipha, first_mp, mp, ipst); 25225 25226 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25227 25228 if (first_mp == NULL) 25229 return; 25230 25231 ipst->ips_loopback_packets++; 25232 25233 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25234 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25235 if (!IS_SIMPLE_IPH(ipha)) { 25236 ip_wput_local_options(ipha, ipst); 25237 } 25238 25239 protocol = ipha->ipha_protocol; 25240 switch (protocol) { 25241 case IPPROTO_ICMP: { 25242 ire_t *ire_zone; 25243 ilm_t *ilm; 25244 mblk_t *mp1; 25245 zoneid_t last_zoneid; 25246 25247 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25248 ASSERT(ire_type == IRE_BROADCAST); 25249 /* 25250 * In the multicast case, applications may have joined 25251 * the group from different zones, so we need to deliver 25252 * the packet to each of them. Loop through the 25253 * multicast memberships structures (ilm) on the receive 25254 * ill and send a copy of the packet up each matching 25255 * one. However, we don't do this for multicasts sent on 25256 * the loopback interface (PHYI_LOOPBACK flag set) as 25257 * they must stay in the sender's zone. 25258 * 25259 * ilm_add_v6() ensures that ilms in the same zone are 25260 * contiguous in the ill_ilm list. We use this property 25261 * to avoid sending duplicates needed when two 25262 * applications in the same zone join the same group on 25263 * different logical interfaces: we ignore the ilm if 25264 * it's zoneid is the same as the last matching one. 25265 * In addition, the sending of the packet for 25266 * ire_zoneid is delayed until all of the other ilms 25267 * have been exhausted. 25268 */ 25269 last_zoneid = -1; 25270 ILM_WALKER_HOLD(ill); 25271 for (ilm = ill->ill_ilm; ilm != NULL; 25272 ilm = ilm->ilm_next) { 25273 if ((ilm->ilm_flags & ILM_DELETED) || 25274 ipha->ipha_dst != ilm->ilm_addr || 25275 ilm->ilm_zoneid == last_zoneid || 25276 ilm->ilm_zoneid == zoneid || 25277 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25278 continue; 25279 mp1 = ip_copymsg(first_mp); 25280 if (mp1 == NULL) 25281 continue; 25282 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25283 mctl_present, B_FALSE, ill, 25284 ilm->ilm_zoneid); 25285 last_zoneid = ilm->ilm_zoneid; 25286 } 25287 ILM_WALKER_RELE(ill); 25288 /* 25289 * Loopback case: the sending endpoint has 25290 * IP_MULTICAST_LOOP disabled, therefore we don't 25291 * dispatch the multicast packet to the sending zone. 25292 */ 25293 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25294 freemsg(first_mp); 25295 return; 25296 } 25297 } else if (ire_type == IRE_BROADCAST) { 25298 /* 25299 * In the broadcast case, there may be many zones 25300 * which need a copy of the packet delivered to them. 25301 * There is one IRE_BROADCAST per broadcast address 25302 * and per zone; we walk those using a helper function. 25303 * In addition, the sending of the packet for zoneid is 25304 * delayed until all of the other ires have been 25305 * processed. 25306 */ 25307 IRB_REFHOLD(ire->ire_bucket); 25308 ire_zone = NULL; 25309 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25310 ire)) != NULL) { 25311 mp1 = ip_copymsg(first_mp); 25312 if (mp1 == NULL) 25313 continue; 25314 25315 UPDATE_IB_PKT_COUNT(ire_zone); 25316 ire_zone->ire_last_used_time = lbolt; 25317 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25318 mctl_present, B_FALSE, ill, 25319 ire_zone->ire_zoneid); 25320 } 25321 IRB_REFRELE(ire->ire_bucket); 25322 } 25323 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25324 0, mctl_present, B_FALSE, ill, zoneid); 25325 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25326 "ip_wput_local_end: q %p (%S)", 25327 q, "icmp"); 25328 return; 25329 } 25330 case IPPROTO_IGMP: 25331 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25332 /* Bad packet - discarded by igmp_input */ 25333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25334 "ip_wput_local_end: q %p (%S)", 25335 q, "igmp_input--bad packet"); 25336 if (mctl_present) 25337 freeb(first_mp); 25338 return; 25339 } 25340 /* 25341 * igmp_input() may have returned the pulled up message. 25342 * So first_mp and ipha need to be reinitialized. 25343 */ 25344 ipha = (ipha_t *)mp->b_rptr; 25345 if (mctl_present) 25346 first_mp->b_cont = mp; 25347 else 25348 first_mp = mp; 25349 /* deliver to local raw users */ 25350 break; 25351 case IPPROTO_ENCAP: 25352 /* 25353 * This case is covered by either ip_fanout_proto, or by 25354 * the above security processing for self-tunneled packets. 25355 */ 25356 break; 25357 case IPPROTO_UDP: { 25358 uint16_t *up; 25359 uint32_t ports; 25360 25361 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25362 UDP_PORTS_OFFSET); 25363 /* Force a 'valid' checksum. */ 25364 up[3] = 0; 25365 25366 ports = *(uint32_t *)up; 25367 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25368 (ire_type == IRE_BROADCAST), 25369 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25370 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25371 ill, zoneid); 25372 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25373 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25374 return; 25375 } 25376 case IPPROTO_TCP: { 25377 25378 /* 25379 * For TCP, discard broadcast packets. 25380 */ 25381 if ((ushort_t)ire_type == IRE_BROADCAST) { 25382 freemsg(first_mp); 25383 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25384 ip2dbg(("ip_wput_local: discard broadcast\n")); 25385 return; 25386 } 25387 25388 if (mp->b_datap->db_type == M_DATA) { 25389 /* 25390 * M_DATA mblk, so init mblk (chain) for no struio(). 25391 */ 25392 mblk_t *mp1 = mp; 25393 25394 do { 25395 mp1->b_datap->db_struioflag = 0; 25396 } while ((mp1 = mp1->b_cont) != NULL); 25397 } 25398 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25399 <= mp->b_wptr); 25400 ip_fanout_tcp(q, first_mp, ill, ipha, 25401 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25402 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25403 mctl_present, B_FALSE, zoneid); 25404 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25405 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25406 return; 25407 } 25408 case IPPROTO_SCTP: 25409 { 25410 uint32_t ports; 25411 25412 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25413 ip_fanout_sctp(first_mp, ill, ipha, ports, 25414 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25415 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25416 return; 25417 } 25418 25419 default: 25420 break; 25421 } 25422 /* 25423 * Find a client for some other protocol. We give 25424 * copies to multiple clients, if more than one is 25425 * bound. 25426 */ 25427 ip_fanout_proto(q, first_mp, ill, ipha, 25428 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25429 mctl_present, B_FALSE, ill, zoneid); 25430 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25431 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25432 #undef rptr 25433 } 25434 25435 /* 25436 * Update any source route, record route, or timestamp options. 25437 * Check that we are at end of strict source route. 25438 * The options have been sanity checked by ip_wput_options(). 25439 */ 25440 static void 25441 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25442 { 25443 ipoptp_t opts; 25444 uchar_t *opt; 25445 uint8_t optval; 25446 uint8_t optlen; 25447 ipaddr_t dst; 25448 uint32_t ts; 25449 ire_t *ire; 25450 timestruc_t now; 25451 25452 ip2dbg(("ip_wput_local_options\n")); 25453 for (optval = ipoptp_first(&opts, ipha); 25454 optval != IPOPT_EOL; 25455 optval = ipoptp_next(&opts)) { 25456 opt = opts.ipoptp_cur; 25457 optlen = opts.ipoptp_len; 25458 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25459 switch (optval) { 25460 uint32_t off; 25461 case IPOPT_SSRR: 25462 case IPOPT_LSRR: 25463 off = opt[IPOPT_OFFSET]; 25464 off--; 25465 if (optlen < IP_ADDR_LEN || 25466 off > optlen - IP_ADDR_LEN) { 25467 /* End of source route */ 25468 break; 25469 } 25470 /* 25471 * This will only happen if two consecutive entries 25472 * in the source route contains our address or if 25473 * it is a packet with a loose source route which 25474 * reaches us before consuming the whole source route 25475 */ 25476 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25477 if (optval == IPOPT_SSRR) { 25478 return; 25479 } 25480 /* 25481 * Hack: instead of dropping the packet truncate the 25482 * source route to what has been used by filling the 25483 * rest with IPOPT_NOP. 25484 */ 25485 opt[IPOPT_OLEN] = (uint8_t)off; 25486 while (off < optlen) { 25487 opt[off++] = IPOPT_NOP; 25488 } 25489 break; 25490 case IPOPT_RR: 25491 off = opt[IPOPT_OFFSET]; 25492 off--; 25493 if (optlen < IP_ADDR_LEN || 25494 off > optlen - IP_ADDR_LEN) { 25495 /* No more room - ignore */ 25496 ip1dbg(( 25497 "ip_wput_forward_options: end of RR\n")); 25498 break; 25499 } 25500 dst = htonl(INADDR_LOOPBACK); 25501 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25502 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25503 break; 25504 case IPOPT_TS: 25505 /* Insert timestamp if there is romm */ 25506 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25507 case IPOPT_TS_TSONLY: 25508 off = IPOPT_TS_TIMELEN; 25509 break; 25510 case IPOPT_TS_PRESPEC: 25511 case IPOPT_TS_PRESPEC_RFC791: 25512 /* Verify that the address matched */ 25513 off = opt[IPOPT_OFFSET] - 1; 25514 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25515 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25516 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25517 ipst); 25518 if (ire == NULL) { 25519 /* Not for us */ 25520 break; 25521 } 25522 ire_refrele(ire); 25523 /* FALLTHRU */ 25524 case IPOPT_TS_TSANDADDR: 25525 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25526 break; 25527 default: 25528 /* 25529 * ip_*put_options should have already 25530 * dropped this packet. 25531 */ 25532 cmn_err(CE_PANIC, "ip_wput_local_options: " 25533 "unknown IT - bug in ip_wput_options?\n"); 25534 return; /* Keep "lint" happy */ 25535 } 25536 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25537 /* Increase overflow counter */ 25538 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25539 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25540 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25541 (off << 4); 25542 break; 25543 } 25544 off = opt[IPOPT_OFFSET] - 1; 25545 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25546 case IPOPT_TS_PRESPEC: 25547 case IPOPT_TS_PRESPEC_RFC791: 25548 case IPOPT_TS_TSANDADDR: 25549 dst = htonl(INADDR_LOOPBACK); 25550 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25551 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25552 /* FALLTHRU */ 25553 case IPOPT_TS_TSONLY: 25554 off = opt[IPOPT_OFFSET] - 1; 25555 /* Compute # of milliseconds since midnight */ 25556 gethrestime(&now); 25557 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25558 now.tv_nsec / (NANOSEC / MILLISEC); 25559 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25560 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25561 break; 25562 } 25563 break; 25564 } 25565 } 25566 } 25567 25568 /* 25569 * Send out a multicast packet on interface ipif. 25570 * The sender does not have an conn. 25571 * Caller verifies that this isn't a PHYI_LOOPBACK. 25572 */ 25573 void 25574 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25575 { 25576 ipha_t *ipha; 25577 ire_t *ire; 25578 ipaddr_t dst; 25579 mblk_t *first_mp; 25580 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25581 25582 /* igmp_sendpkt always allocates a ipsec_out_t */ 25583 ASSERT(mp->b_datap->db_type == M_CTL); 25584 ASSERT(!ipif->ipif_isv6); 25585 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25586 25587 first_mp = mp; 25588 mp = first_mp->b_cont; 25589 ASSERT(mp->b_datap->db_type == M_DATA); 25590 ipha = (ipha_t *)mp->b_rptr; 25591 25592 /* 25593 * Find an IRE which matches the destination and the outgoing 25594 * queue (i.e. the outgoing interface.) 25595 */ 25596 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25597 dst = ipif->ipif_pp_dst_addr; 25598 else 25599 dst = ipha->ipha_dst; 25600 /* 25601 * The source address has already been initialized by the 25602 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25603 * be sufficient rather than MATCH_IRE_IPIF. 25604 * 25605 * This function is used for sending IGMP packets. We need 25606 * to make sure that we send the packet out of the interface 25607 * (ipif->ipif_ill) where we joined the group. This is to 25608 * prevent from switches doing IGMP snooping to send us multicast 25609 * packets for a given group on the interface we have joined. 25610 * If we can't find an ire, igmp_sendpkt has already initialized 25611 * ipsec_out_attach_if so that this will not be load spread in 25612 * ip_newroute_ipif. 25613 */ 25614 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25615 MATCH_IRE_ILL, ipst); 25616 if (!ire) { 25617 /* 25618 * Mark this packet to make it be delivered to 25619 * ip_wput_ire after the new ire has been 25620 * created. 25621 */ 25622 mp->b_prev = NULL; 25623 mp->b_next = NULL; 25624 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25625 zoneid, &zero_info); 25626 return; 25627 } 25628 25629 /* 25630 * Honor the RTF_SETSRC flag; this is the only case 25631 * where we force this addr whatever the current src addr is, 25632 * because this address is set by igmp_sendpkt(), and 25633 * cannot be specified by any user. 25634 */ 25635 if (ire->ire_flags & RTF_SETSRC) { 25636 ipha->ipha_src = ire->ire_src_addr; 25637 } 25638 25639 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25640 } 25641 25642 /* 25643 * NOTE : This function does not ire_refrele the ire argument passed in. 25644 * 25645 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25646 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25647 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25648 * the ire_lock to access the nce_fp_mp in this case. 25649 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25650 * prepending a fastpath message IPQoS processing must precede it, we also set 25651 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25652 * (IPQoS might have set the b_band for CoS marking). 25653 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25654 * must follow it so that IPQoS can mark the dl_priority field for CoS 25655 * marking, if needed. 25656 */ 25657 static mblk_t * 25658 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25659 { 25660 uint_t hlen; 25661 ipha_t *ipha; 25662 mblk_t *mp1; 25663 boolean_t qos_done = B_FALSE; 25664 uchar_t *ll_hdr; 25665 ip_stack_t *ipst = ire->ire_ipst; 25666 25667 #define rptr ((uchar_t *)ipha) 25668 25669 ipha = (ipha_t *)mp->b_rptr; 25670 hlen = 0; 25671 LOCK_IRE_FP_MP(ire); 25672 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25673 ASSERT(DB_TYPE(mp1) == M_DATA); 25674 /* Initiate IPPF processing */ 25675 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25676 UNLOCK_IRE_FP_MP(ire); 25677 ip_process(proc, &mp, ill_index); 25678 if (mp == NULL) 25679 return (NULL); 25680 25681 ipha = (ipha_t *)mp->b_rptr; 25682 LOCK_IRE_FP_MP(ire); 25683 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25684 qos_done = B_TRUE; 25685 goto no_fp_mp; 25686 } 25687 ASSERT(DB_TYPE(mp1) == M_DATA); 25688 } 25689 hlen = MBLKL(mp1); 25690 /* 25691 * Check if we have enough room to prepend fastpath 25692 * header 25693 */ 25694 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25695 ll_hdr = rptr - hlen; 25696 bcopy(mp1->b_rptr, ll_hdr, hlen); 25697 /* 25698 * Set the b_rptr to the start of the link layer 25699 * header 25700 */ 25701 mp->b_rptr = ll_hdr; 25702 mp1 = mp; 25703 } else { 25704 mp1 = copyb(mp1); 25705 if (mp1 == NULL) 25706 goto unlock_err; 25707 mp1->b_band = mp->b_band; 25708 mp1->b_cont = mp; 25709 /* 25710 * certain system generated traffic may not 25711 * have cred/label in ip header block. This 25712 * is true even for a labeled system. But for 25713 * labeled traffic, inherit the label in the 25714 * new header. 25715 */ 25716 if (DB_CRED(mp) != NULL) 25717 mblk_setcred(mp1, DB_CRED(mp)); 25718 /* 25719 * XXX disable ICK_VALID and compute checksum 25720 * here; can happen if nce_fp_mp changes and 25721 * it can't be copied now due to insufficient 25722 * space. (unlikely, fp mp can change, but it 25723 * does not increase in length) 25724 */ 25725 } 25726 UNLOCK_IRE_FP_MP(ire); 25727 } else { 25728 no_fp_mp: 25729 mp1 = copyb(ire->ire_nce->nce_res_mp); 25730 if (mp1 == NULL) { 25731 unlock_err: 25732 UNLOCK_IRE_FP_MP(ire); 25733 freemsg(mp); 25734 return (NULL); 25735 } 25736 UNLOCK_IRE_FP_MP(ire); 25737 mp1->b_cont = mp; 25738 /* 25739 * certain system generated traffic may not 25740 * have cred/label in ip header block. This 25741 * is true even for a labeled system. But for 25742 * labeled traffic, inherit the label in the 25743 * new header. 25744 */ 25745 if (DB_CRED(mp) != NULL) 25746 mblk_setcred(mp1, DB_CRED(mp)); 25747 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25748 ip_process(proc, &mp1, ill_index); 25749 if (mp1 == NULL) 25750 return (NULL); 25751 } 25752 } 25753 return (mp1); 25754 #undef rptr 25755 } 25756 25757 /* 25758 * Finish the outbound IPsec processing for an IPv6 packet. This function 25759 * is called from ipsec_out_process() if the IPsec packet was processed 25760 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25761 * asynchronously. 25762 */ 25763 void 25764 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25765 ire_t *ire_arg) 25766 { 25767 in6_addr_t *v6dstp; 25768 ire_t *ire; 25769 mblk_t *mp; 25770 ip6_t *ip6h1; 25771 uint_t ill_index; 25772 ipsec_out_t *io; 25773 boolean_t attach_if, hwaccel; 25774 uint32_t flags = IP6_NO_IPPOLICY; 25775 int match_flags; 25776 zoneid_t zoneid; 25777 boolean_t ill_need_rele = B_FALSE; 25778 boolean_t ire_need_rele = B_FALSE; 25779 ip_stack_t *ipst; 25780 25781 mp = ipsec_mp->b_cont; 25782 ip6h1 = (ip6_t *)mp->b_rptr; 25783 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25784 ASSERT(io->ipsec_out_ns != NULL); 25785 ipst = io->ipsec_out_ns->netstack_ip; 25786 ill_index = io->ipsec_out_ill_index; 25787 if (io->ipsec_out_reachable) { 25788 flags |= IPV6_REACHABILITY_CONFIRMATION; 25789 } 25790 attach_if = io->ipsec_out_attach_if; 25791 hwaccel = io->ipsec_out_accelerated; 25792 zoneid = io->ipsec_out_zoneid; 25793 ASSERT(zoneid != ALL_ZONES); 25794 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25795 /* Multicast addresses should have non-zero ill_index. */ 25796 v6dstp = &ip6h->ip6_dst; 25797 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25798 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25799 ASSERT(!attach_if || ill_index != 0); 25800 if (ill_index != 0) { 25801 if (ill == NULL) { 25802 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25803 B_TRUE, ipst); 25804 25805 /* Failure case frees things for us. */ 25806 if (ill == NULL) 25807 return; 25808 25809 ill_need_rele = B_TRUE; 25810 } 25811 /* 25812 * If this packet needs to go out on a particular interface 25813 * honor it. 25814 */ 25815 if (attach_if) { 25816 match_flags = MATCH_IRE_ILL; 25817 25818 /* 25819 * Check if we need an ire that will not be 25820 * looked up by anybody else i.e. HIDDEN. 25821 */ 25822 if (ill_is_probeonly(ill)) { 25823 match_flags |= MATCH_IRE_MARK_HIDDEN; 25824 } 25825 } 25826 } 25827 ASSERT(mp != NULL); 25828 25829 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25830 boolean_t unspec_src; 25831 ipif_t *ipif; 25832 25833 /* 25834 * Use the ill_index to get the right ill. 25835 */ 25836 unspec_src = io->ipsec_out_unspec_src; 25837 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25838 if (ipif == NULL) { 25839 if (ill_need_rele) 25840 ill_refrele(ill); 25841 freemsg(ipsec_mp); 25842 return; 25843 } 25844 25845 if (ire_arg != NULL) { 25846 ire = ire_arg; 25847 } else { 25848 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25849 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25850 ire_need_rele = B_TRUE; 25851 } 25852 if (ire != NULL) { 25853 ipif_refrele(ipif); 25854 /* 25855 * XXX Do the multicast forwarding now, as the IPSEC 25856 * processing has been done. 25857 */ 25858 goto send; 25859 } 25860 25861 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25862 mp->b_prev = NULL; 25863 mp->b_next = NULL; 25864 25865 /* 25866 * If the IPsec packet was processed asynchronously, 25867 * drop it now. 25868 */ 25869 if (q == NULL) { 25870 if (ill_need_rele) 25871 ill_refrele(ill); 25872 freemsg(ipsec_mp); 25873 return; 25874 } 25875 25876 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25877 unspec_src, zoneid); 25878 ipif_refrele(ipif); 25879 } else { 25880 if (attach_if) { 25881 ipif_t *ipif; 25882 25883 ipif = ipif_get_next_ipif(NULL, ill); 25884 if (ipif == NULL) { 25885 if (ill_need_rele) 25886 ill_refrele(ill); 25887 freemsg(ipsec_mp); 25888 return; 25889 } 25890 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25891 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25892 ire_need_rele = B_TRUE; 25893 ipif_refrele(ipif); 25894 } else { 25895 if (ire_arg != NULL) { 25896 ire = ire_arg; 25897 } else { 25898 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25899 ipst); 25900 ire_need_rele = B_TRUE; 25901 } 25902 } 25903 if (ire != NULL) 25904 goto send; 25905 /* 25906 * ire disappeared underneath. 25907 * 25908 * What we need to do here is the ip_newroute 25909 * logic to get the ire without doing the IPSEC 25910 * processing. Follow the same old path. But this 25911 * time, ip_wput or ire_add_then_send will call us 25912 * directly as all the IPSEC operations are done. 25913 */ 25914 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25915 mp->b_prev = NULL; 25916 mp->b_next = NULL; 25917 25918 /* 25919 * If the IPsec packet was processed asynchronously, 25920 * drop it now. 25921 */ 25922 if (q == NULL) { 25923 if (ill_need_rele) 25924 ill_refrele(ill); 25925 freemsg(ipsec_mp); 25926 return; 25927 } 25928 25929 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25930 zoneid, ipst); 25931 } 25932 if (ill != NULL && ill_need_rele) 25933 ill_refrele(ill); 25934 return; 25935 send: 25936 if (ill != NULL && ill_need_rele) 25937 ill_refrele(ill); 25938 25939 /* Local delivery */ 25940 if (ire->ire_stq == NULL) { 25941 ill_t *out_ill; 25942 ASSERT(q != NULL); 25943 25944 /* PFHooks: LOOPBACK_OUT */ 25945 out_ill = ire->ire_ipif->ipif_ill; 25946 25947 DTRACE_PROBE4(ip6__loopback__out__start, 25948 ill_t *, NULL, ill_t *, out_ill, 25949 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25950 25951 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25952 ipst->ips_ipv6firewall_loopback_out, 25953 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25954 25955 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25956 25957 if (ipsec_mp != NULL) 25958 ip_wput_local_v6(RD(q), out_ill, 25959 ip6h, ipsec_mp, ire, 0); 25960 if (ire_need_rele) 25961 ire_refrele(ire); 25962 return; 25963 } 25964 /* 25965 * Everything is done. Send it out on the wire. 25966 * We force the insertion of a fragment header using the 25967 * IPH_FRAG_HDR flag in two cases: 25968 * - after reception of an ICMPv6 "packet too big" message 25969 * with a MTU < 1280 (cf. RFC 2460 section 5) 25970 * - for multirouted IPv6 packets, so that the receiver can 25971 * discard duplicates according to their fragment identifier 25972 */ 25973 /* XXX fix flow control problems. */ 25974 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25975 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25976 if (hwaccel) { 25977 /* 25978 * hardware acceleration does not handle these 25979 * "slow path" cases. 25980 */ 25981 /* IPsec KSTATS: should bump bean counter here. */ 25982 if (ire_need_rele) 25983 ire_refrele(ire); 25984 freemsg(ipsec_mp); 25985 return; 25986 } 25987 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25988 (mp->b_cont ? msgdsize(mp) : 25989 mp->b_wptr - (uchar_t *)ip6h)) { 25990 /* IPsec KSTATS: should bump bean counter here. */ 25991 ip0dbg(("Packet length mismatch: %d, %ld\n", 25992 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25993 msgdsize(mp))); 25994 if (ire_need_rele) 25995 ire_refrele(ire); 25996 freemsg(ipsec_mp); 25997 return; 25998 } 25999 ASSERT(mp->b_prev == NULL); 26000 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26001 ntohs(ip6h->ip6_plen) + 26002 IPV6_HDR_LEN, ire->ire_max_frag)); 26003 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26004 ire->ire_max_frag); 26005 } else { 26006 UPDATE_OB_PKT_COUNT(ire); 26007 ire->ire_last_used_time = lbolt; 26008 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26009 } 26010 if (ire_need_rele) 26011 ire_refrele(ire); 26012 freeb(ipsec_mp); 26013 } 26014 26015 void 26016 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26017 { 26018 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26019 da_ipsec_t *hada; /* data attributes */ 26020 ill_t *ill = (ill_t *)q->q_ptr; 26021 26022 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26023 26024 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26025 /* IPsec KSTATS: Bump lose counter here! */ 26026 freemsg(mp); 26027 return; 26028 } 26029 26030 /* 26031 * It's an IPsec packet that must be 26032 * accelerated by the Provider, and the 26033 * outbound ill is IPsec acceleration capable. 26034 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26035 * to the ill. 26036 * IPsec KSTATS: should bump packet counter here. 26037 */ 26038 26039 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26040 if (hada_mp == NULL) { 26041 /* IPsec KSTATS: should bump packet counter here. */ 26042 freemsg(mp); 26043 return; 26044 } 26045 26046 hada_mp->b_datap->db_type = M_CTL; 26047 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26048 hada_mp->b_cont = mp; 26049 26050 hada = (da_ipsec_t *)hada_mp->b_rptr; 26051 bzero(hada, sizeof (da_ipsec_t)); 26052 hada->da_type = IPHADA_M_CTL; 26053 26054 putnext(q, hada_mp); 26055 } 26056 26057 /* 26058 * Finish the outbound IPsec processing. This function is called from 26059 * ipsec_out_process() if the IPsec packet was processed 26060 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26061 * asynchronously. 26062 */ 26063 void 26064 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26065 ire_t *ire_arg) 26066 { 26067 uint32_t v_hlen_tos_len; 26068 ipaddr_t dst; 26069 ipif_t *ipif = NULL; 26070 ire_t *ire; 26071 ire_t *ire1 = NULL; 26072 mblk_t *next_mp = NULL; 26073 uint32_t max_frag; 26074 boolean_t multirt_send = B_FALSE; 26075 mblk_t *mp; 26076 mblk_t *mp1; 26077 ipha_t *ipha1; 26078 uint_t ill_index; 26079 ipsec_out_t *io; 26080 boolean_t attach_if; 26081 int match_flags, offset; 26082 irb_t *irb = NULL; 26083 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26084 zoneid_t zoneid; 26085 uint32_t cksum; 26086 uint16_t *up; 26087 ipxmit_state_t pktxmit_state; 26088 ip_stack_t *ipst; 26089 26090 #ifdef _BIG_ENDIAN 26091 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26092 #else 26093 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26094 #endif 26095 26096 mp = ipsec_mp->b_cont; 26097 ipha1 = (ipha_t *)mp->b_rptr; 26098 ASSERT(mp != NULL); 26099 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26100 dst = ipha->ipha_dst; 26101 26102 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26103 ill_index = io->ipsec_out_ill_index; 26104 attach_if = io->ipsec_out_attach_if; 26105 zoneid = io->ipsec_out_zoneid; 26106 ASSERT(zoneid != ALL_ZONES); 26107 ipst = io->ipsec_out_ns->netstack_ip; 26108 ASSERT(io->ipsec_out_ns != NULL); 26109 26110 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26111 if (ill_index != 0) { 26112 if (ill == NULL) { 26113 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26114 ill_index, B_FALSE, ipst); 26115 26116 /* Failure case frees things for us. */ 26117 if (ill == NULL) 26118 return; 26119 26120 ill_need_rele = B_TRUE; 26121 } 26122 /* 26123 * If this packet needs to go out on a particular interface 26124 * honor it. 26125 */ 26126 if (attach_if) { 26127 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26128 26129 /* 26130 * Check if we need an ire that will not be 26131 * looked up by anybody else i.e. HIDDEN. 26132 */ 26133 if (ill_is_probeonly(ill)) { 26134 match_flags |= MATCH_IRE_MARK_HIDDEN; 26135 } 26136 } 26137 } 26138 26139 if (CLASSD(dst)) { 26140 boolean_t conn_dontroute; 26141 /* 26142 * Use the ill_index to get the right ipif. 26143 */ 26144 conn_dontroute = io->ipsec_out_dontroute; 26145 if (ill_index == 0) 26146 ipif = ipif_lookup_group(dst, zoneid, ipst); 26147 else 26148 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26149 if (ipif == NULL) { 26150 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26151 " multicast\n")); 26152 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26153 freemsg(ipsec_mp); 26154 goto done; 26155 } 26156 /* 26157 * ipha_src has already been intialized with the 26158 * value of the ipif in ip_wput. All we need now is 26159 * an ire to send this downstream. 26160 */ 26161 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26162 MBLK_GETLABEL(mp), match_flags, ipst); 26163 if (ire != NULL) { 26164 ill_t *ill1; 26165 /* 26166 * Do the multicast forwarding now, as the IPSEC 26167 * processing has been done. 26168 */ 26169 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26170 (ill1 = ire_to_ill(ire))) { 26171 if (ip_mforward(ill1, ipha, mp)) { 26172 freemsg(ipsec_mp); 26173 ip1dbg(("ip_wput_ipsec_out: mforward " 26174 "failed\n")); 26175 ire_refrele(ire); 26176 goto done; 26177 } 26178 } 26179 goto send; 26180 } 26181 26182 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26183 mp->b_prev = NULL; 26184 mp->b_next = NULL; 26185 26186 /* 26187 * If the IPsec packet was processed asynchronously, 26188 * drop it now. 26189 */ 26190 if (q == NULL) { 26191 freemsg(ipsec_mp); 26192 goto done; 26193 } 26194 26195 /* 26196 * We may be using a wrong ipif to create the ire. 26197 * But it is okay as the source address is assigned 26198 * for the packet already. Next outbound packet would 26199 * create the IRE with the right IPIF in ip_wput. 26200 * 26201 * Also handle RTF_MULTIRT routes. 26202 */ 26203 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26204 zoneid, &zero_info); 26205 } else { 26206 if (attach_if) { 26207 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26208 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26209 } else { 26210 if (ire_arg != NULL) { 26211 ire = ire_arg; 26212 ire_need_rele = B_FALSE; 26213 } else { 26214 ire = ire_cache_lookup(dst, zoneid, 26215 MBLK_GETLABEL(mp), ipst); 26216 } 26217 } 26218 if (ire != NULL) { 26219 goto send; 26220 } 26221 26222 /* 26223 * ire disappeared underneath. 26224 * 26225 * What we need to do here is the ip_newroute 26226 * logic to get the ire without doing the IPSEC 26227 * processing. Follow the same old path. But this 26228 * time, ip_wput or ire_add_then_put will call us 26229 * directly as all the IPSEC operations are done. 26230 */ 26231 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26232 mp->b_prev = NULL; 26233 mp->b_next = NULL; 26234 26235 /* 26236 * If the IPsec packet was processed asynchronously, 26237 * drop it now. 26238 */ 26239 if (q == NULL) { 26240 freemsg(ipsec_mp); 26241 goto done; 26242 } 26243 26244 /* 26245 * Since we're going through ip_newroute() again, we 26246 * need to make sure we don't: 26247 * 26248 * 1.) Trigger the ASSERT() with the ipha_ident 26249 * overloading. 26250 * 2.) Redo transport-layer checksumming, since we've 26251 * already done all that to get this far. 26252 * 26253 * The easiest way not do either of the above is to set 26254 * the ipha_ident field to IP_HDR_INCLUDED. 26255 */ 26256 ipha->ipha_ident = IP_HDR_INCLUDED; 26257 ip_newroute(q, ipsec_mp, dst, NULL, 26258 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26259 } 26260 goto done; 26261 send: 26262 if (ipha->ipha_protocol == IPPROTO_UDP && 26263 udp_compute_checksum(ipst->ips_netstack)) { 26264 /* 26265 * ESP NAT-Traversal packet. 26266 * 26267 * Just do software checksum for now. 26268 */ 26269 26270 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26271 IP_STAT(ipst, ip_out_sw_cksum); 26272 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26273 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26274 #define iphs ((uint16_t *)ipha) 26275 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26276 iphs[9] + ntohs(htons(ipha->ipha_length) - 26277 IP_SIMPLE_HDR_LENGTH); 26278 #undef iphs 26279 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26280 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26281 if (mp1->b_wptr - mp1->b_rptr >= 26282 offset + sizeof (uint16_t)) { 26283 up = (uint16_t *)(mp1->b_rptr + offset); 26284 *up = cksum; 26285 break; /* out of for loop */ 26286 } else { 26287 offset -= (mp->b_wptr - mp->b_rptr); 26288 } 26289 } /* Otherwise, just keep the all-zero checksum. */ 26290 26291 if (ire->ire_stq == NULL) { 26292 ill_t *out_ill; 26293 /* 26294 * Loopbacks go through ip_wput_local except for one case. 26295 * We come here if we generate a icmp_frag_needed message 26296 * after IPSEC processing is over. When this function calls 26297 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26298 * icmp_frag_needed. The message generated comes back here 26299 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26300 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26301 * source address as it is usually set in ip_wput_ire. As 26302 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26303 * and we end up here. We can't enter ip_wput_ire once the 26304 * IPSEC processing is over and hence we need to do it here. 26305 */ 26306 ASSERT(q != NULL); 26307 UPDATE_OB_PKT_COUNT(ire); 26308 ire->ire_last_used_time = lbolt; 26309 if (ipha->ipha_src == 0) 26310 ipha->ipha_src = ire->ire_src_addr; 26311 26312 /* PFHooks: LOOPBACK_OUT */ 26313 out_ill = ire->ire_ipif->ipif_ill; 26314 26315 DTRACE_PROBE4(ip4__loopback__out__start, 26316 ill_t *, NULL, ill_t *, out_ill, 26317 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26318 26319 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26320 ipst->ips_ipv4firewall_loopback_out, 26321 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26322 26323 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26324 26325 if (ipsec_mp != NULL) 26326 ip_wput_local(RD(q), out_ill, 26327 ipha, ipsec_mp, ire, 0, zoneid); 26328 if (ire_need_rele) 26329 ire_refrele(ire); 26330 goto done; 26331 } 26332 26333 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26334 /* 26335 * We are through with IPSEC processing. 26336 * Fragment this and send it on the wire. 26337 */ 26338 if (io->ipsec_out_accelerated) { 26339 /* 26340 * The packet has been accelerated but must 26341 * be fragmented. This should not happen 26342 * since AH and ESP must not accelerate 26343 * packets that need fragmentation, however 26344 * the configuration could have changed 26345 * since the AH or ESP processing. 26346 * Drop packet. 26347 * IPsec KSTATS: bump bean counter here. 26348 */ 26349 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26350 "fragmented accelerated packet!\n")); 26351 freemsg(ipsec_mp); 26352 } else { 26353 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26354 } 26355 if (ire_need_rele) 26356 ire_refrele(ire); 26357 goto done; 26358 } 26359 26360 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26361 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26362 (void *)ire->ire_ipif, (void *)ipif)); 26363 26364 /* 26365 * Multiroute the secured packet, unless IPsec really 26366 * requires the packet to go out only through a particular 26367 * interface. 26368 */ 26369 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26370 ire_t *first_ire; 26371 irb = ire->ire_bucket; 26372 ASSERT(irb != NULL); 26373 /* 26374 * This ire has been looked up as the one that 26375 * goes through the given ipif; 26376 * make sure we do not omit any other multiroute ire 26377 * that may be present in the bucket before this one. 26378 */ 26379 IRB_REFHOLD(irb); 26380 for (first_ire = irb->irb_ire; 26381 first_ire != NULL; 26382 first_ire = first_ire->ire_next) { 26383 if ((first_ire->ire_flags & RTF_MULTIRT) && 26384 (first_ire->ire_addr == ire->ire_addr) && 26385 !(first_ire->ire_marks & 26386 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26387 break; 26388 } 26389 } 26390 26391 if ((first_ire != NULL) && (first_ire != ire)) { 26392 /* 26393 * Don't change the ire if the packet must 26394 * be fragmented if sent via this new one. 26395 */ 26396 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26397 IRE_REFHOLD(first_ire); 26398 if (ire_need_rele) 26399 ire_refrele(ire); 26400 else 26401 ire_need_rele = B_TRUE; 26402 ire = first_ire; 26403 } 26404 } 26405 IRB_REFRELE(irb); 26406 26407 multirt_send = B_TRUE; 26408 max_frag = ire->ire_max_frag; 26409 } else { 26410 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26411 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26412 "flag, attach_if %d\n", attach_if)); 26413 } 26414 } 26415 26416 /* 26417 * In most cases, the emission loop below is entered only once. 26418 * Only in the case where the ire holds the RTF_MULTIRT 26419 * flag, we loop to process all RTF_MULTIRT ires in the 26420 * bucket, and send the packet through all crossed 26421 * RTF_MULTIRT routes. 26422 */ 26423 do { 26424 if (multirt_send) { 26425 /* 26426 * ire1 holds here the next ire to process in the 26427 * bucket. If multirouting is expected, 26428 * any non-RTF_MULTIRT ire that has the 26429 * right destination address is ignored. 26430 */ 26431 ASSERT(irb != NULL); 26432 IRB_REFHOLD(irb); 26433 for (ire1 = ire->ire_next; 26434 ire1 != NULL; 26435 ire1 = ire1->ire_next) { 26436 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26437 continue; 26438 if (ire1->ire_addr != ire->ire_addr) 26439 continue; 26440 if (ire1->ire_marks & 26441 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26442 continue; 26443 /* No loopback here */ 26444 if (ire1->ire_stq == NULL) 26445 continue; 26446 /* 26447 * Ensure we do not exceed the MTU 26448 * of the next route. 26449 */ 26450 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26451 ip_multirt_bad_mtu(ire1, max_frag); 26452 continue; 26453 } 26454 26455 IRE_REFHOLD(ire1); 26456 break; 26457 } 26458 IRB_REFRELE(irb); 26459 if (ire1 != NULL) { 26460 /* 26461 * We are in a multiple send case, need to 26462 * make a copy of the packet. 26463 */ 26464 next_mp = copymsg(ipsec_mp); 26465 if (next_mp == NULL) { 26466 ire_refrele(ire1); 26467 ire1 = NULL; 26468 } 26469 } 26470 } 26471 /* 26472 * Everything is done. Send it out on the wire 26473 * 26474 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26475 * either send it on the wire or, in the case of 26476 * HW acceleration, call ipsec_hw_putnext. 26477 */ 26478 if (ire->ire_nce && 26479 ire->ire_nce->nce_state != ND_REACHABLE) { 26480 DTRACE_PROBE2(ip__wput__ipsec__bail, 26481 (ire_t *), ire, (mblk_t *), ipsec_mp); 26482 /* 26483 * If ire's link-layer is unresolved (this 26484 * would only happen if the incomplete ire 26485 * was added to cachetable via forwarding path) 26486 * don't bother going to ip_xmit_v4. Just drop the 26487 * packet. 26488 * There is a slight risk here, in that, if we 26489 * have the forwarding path create an incomplete 26490 * IRE, then until the IRE is completed, any 26491 * transmitted IPSEC packets will be dropped 26492 * instead of being queued waiting for resolution. 26493 * 26494 * But the likelihood of a forwarding packet and a wput 26495 * packet sending to the same dst at the same time 26496 * and there not yet be an ARP entry for it is small. 26497 * Furthermore, if this actually happens, it might 26498 * be likely that wput would generate multiple 26499 * packets (and forwarding would also have a train 26500 * of packets) for that destination. If this is 26501 * the case, some of them would have been dropped 26502 * anyway, since ARP only queues a few packets while 26503 * waiting for resolution 26504 * 26505 * NOTE: We should really call ip_xmit_v4, 26506 * and let it queue the packet and send the 26507 * ARP query and have ARP come back thus: 26508 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26509 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26510 * hw accel work. But it's too complex to get 26511 * the IPsec hw acceleration approach to fit 26512 * well with ip_xmit_v4 doing ARP without 26513 * doing IPSEC simplification. For now, we just 26514 * poke ip_xmit_v4 to trigger the arp resolve, so 26515 * that we can continue with the send on the next 26516 * attempt. 26517 * 26518 * XXX THis should be revisited, when 26519 * the IPsec/IP interaction is cleaned up 26520 */ 26521 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26522 " - dropping packet\n")); 26523 freemsg(ipsec_mp); 26524 /* 26525 * Call ip_xmit_v4() to trigger ARP query 26526 * in case the nce_state is ND_INITIAL 26527 */ 26528 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26529 goto drop_pkt; 26530 } 26531 26532 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26533 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26534 mblk_t *, ipsec_mp); 26535 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26536 ipst->ips_ipv4firewall_physical_out, 26537 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26538 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26539 if (ipsec_mp == NULL) 26540 goto drop_pkt; 26541 26542 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26543 pktxmit_state = ip_xmit_v4(mp, ire, 26544 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26545 26546 if ((pktxmit_state == SEND_FAILED) || 26547 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26548 26549 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26550 drop_pkt: 26551 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26552 ipIfStatsOutDiscards); 26553 if (ire_need_rele) 26554 ire_refrele(ire); 26555 if (ire1 != NULL) { 26556 ire_refrele(ire1); 26557 freemsg(next_mp); 26558 } 26559 goto done; 26560 } 26561 26562 freeb(ipsec_mp); 26563 if (ire_need_rele) 26564 ire_refrele(ire); 26565 26566 if (ire1 != NULL) { 26567 ire = ire1; 26568 ire_need_rele = B_TRUE; 26569 ASSERT(next_mp); 26570 ipsec_mp = next_mp; 26571 mp = ipsec_mp->b_cont; 26572 ire1 = NULL; 26573 next_mp = NULL; 26574 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26575 } else { 26576 multirt_send = B_FALSE; 26577 } 26578 } while (multirt_send); 26579 done: 26580 if (ill != NULL && ill_need_rele) 26581 ill_refrele(ill); 26582 if (ipif != NULL) 26583 ipif_refrele(ipif); 26584 } 26585 26586 /* 26587 * Get the ill corresponding to the specified ire, and compare its 26588 * capabilities with the protocol and algorithms specified by the 26589 * the SA obtained from ipsec_out. If they match, annotate the 26590 * ipsec_out structure to indicate that the packet needs acceleration. 26591 * 26592 * 26593 * A packet is eligible for outbound hardware acceleration if the 26594 * following conditions are satisfied: 26595 * 26596 * 1. the packet will not be fragmented 26597 * 2. the provider supports the algorithm 26598 * 3. there is no pending control message being exchanged 26599 * 4. snoop is not attached 26600 * 5. the destination address is not a broadcast or multicast address. 26601 * 26602 * Rationale: 26603 * - Hardware drivers do not support fragmentation with 26604 * the current interface. 26605 * - snoop, multicast, and broadcast may result in exposure of 26606 * a cleartext datagram. 26607 * We check all five of these conditions here. 26608 * 26609 * XXX would like to nuke "ire_t *" parameter here; problem is that 26610 * IRE is only way to figure out if a v4 address is a broadcast and 26611 * thus ineligible for acceleration... 26612 */ 26613 static void 26614 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26615 { 26616 ipsec_out_t *io; 26617 mblk_t *data_mp; 26618 uint_t plen, overhead; 26619 ip_stack_t *ipst; 26620 26621 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26622 return; 26623 26624 if (ill == NULL) 26625 return; 26626 ipst = ill->ill_ipst; 26627 /* 26628 * Destination address is a broadcast or multicast. Punt. 26629 */ 26630 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26631 IRE_LOCAL))) 26632 return; 26633 26634 data_mp = ipsec_mp->b_cont; 26635 26636 if (ill->ill_isv6) { 26637 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26638 26639 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26640 return; 26641 26642 plen = ip6h->ip6_plen; 26643 } else { 26644 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26645 26646 if (CLASSD(ipha->ipha_dst)) 26647 return; 26648 26649 plen = ipha->ipha_length; 26650 } 26651 /* 26652 * Is there a pending DLPI control message being exchanged 26653 * between IP/IPsec and the DLS Provider? If there is, it 26654 * could be a SADB update, and the state of the DLS Provider 26655 * SADB might not be in sync with the SADB maintained by 26656 * IPsec. To avoid dropping packets or using the wrong keying 26657 * material, we do not accelerate this packet. 26658 */ 26659 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26660 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26661 "ill_dlpi_pending! don't accelerate packet\n")); 26662 return; 26663 } 26664 26665 /* 26666 * Is the Provider in promiscous mode? If it does, we don't 26667 * accelerate the packet since it will bounce back up to the 26668 * listeners in the clear. 26669 */ 26670 if (ill->ill_promisc_on_phys) { 26671 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26672 "ill in promiscous mode, don't accelerate packet\n")); 26673 return; 26674 } 26675 26676 /* 26677 * Will the packet require fragmentation? 26678 */ 26679 26680 /* 26681 * IPsec ESP note: this is a pessimistic estimate, but the same 26682 * as is used elsewhere. 26683 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26684 * + 2-byte trailer 26685 */ 26686 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26687 IPSEC_BASE_ESP_HDR_SIZE(sa); 26688 26689 if ((plen + overhead) > ill->ill_max_mtu) 26690 return; 26691 26692 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26693 26694 /* 26695 * Can the ill accelerate this IPsec protocol and algorithm 26696 * specified by the SA? 26697 */ 26698 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26699 ill->ill_isv6, sa, ipst->ips_netstack)) { 26700 return; 26701 } 26702 26703 /* 26704 * Tell AH or ESP that the outbound ill is capable of 26705 * accelerating this packet. 26706 */ 26707 io->ipsec_out_is_capab_ill = B_TRUE; 26708 } 26709 26710 /* 26711 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26712 * 26713 * If this function returns B_TRUE, the requested SA's have been filled 26714 * into the ipsec_out_*_sa pointers. 26715 * 26716 * If the function returns B_FALSE, the packet has been "consumed", most 26717 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26718 * 26719 * The SA references created by the protocol-specific "select" 26720 * function will be released when the ipsec_mp is freed, thanks to the 26721 * ipsec_out_free destructor -- see spd.c. 26722 */ 26723 static boolean_t 26724 ipsec_out_select_sa(mblk_t *ipsec_mp) 26725 { 26726 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26727 ipsec_out_t *io; 26728 ipsec_policy_t *pp; 26729 ipsec_action_t *ap; 26730 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26731 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26732 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26733 26734 if (!io->ipsec_out_secure) { 26735 /* 26736 * We came here by mistake. 26737 * Don't bother with ipsec processing 26738 * We should "discourage" this path in the future. 26739 */ 26740 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26741 return (B_FALSE); 26742 } 26743 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26744 ASSERT((io->ipsec_out_policy != NULL) || 26745 (io->ipsec_out_act != NULL)); 26746 26747 ASSERT(io->ipsec_out_failed == B_FALSE); 26748 26749 /* 26750 * IPSEC processing has started. 26751 */ 26752 io->ipsec_out_proc_begin = B_TRUE; 26753 ap = io->ipsec_out_act; 26754 if (ap == NULL) { 26755 pp = io->ipsec_out_policy; 26756 ASSERT(pp != NULL); 26757 ap = pp->ipsp_act; 26758 ASSERT(ap != NULL); 26759 } 26760 26761 /* 26762 * We have an action. now, let's select SA's. 26763 * (In the future, we can cache this in the conn_t..) 26764 */ 26765 if (ap->ipa_want_esp) { 26766 if (io->ipsec_out_esp_sa == NULL) { 26767 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26768 IPPROTO_ESP); 26769 } 26770 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26771 } 26772 26773 if (ap->ipa_want_ah) { 26774 if (io->ipsec_out_ah_sa == NULL) { 26775 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26776 IPPROTO_AH); 26777 } 26778 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26779 /* 26780 * The ESP and AH processing order needs to be preserved 26781 * when both protocols are required (ESP should be applied 26782 * before AH for an outbound packet). Force an ESP ACQUIRE 26783 * when both ESP and AH are required, and an AH ACQUIRE 26784 * is needed. 26785 */ 26786 if (ap->ipa_want_esp && need_ah_acquire) 26787 need_esp_acquire = B_TRUE; 26788 } 26789 26790 /* 26791 * Send an ACQUIRE (extended, regular, or both) if we need one. 26792 * Release SAs that got referenced, but will not be used until we 26793 * acquire _all_ of the SAs we need. 26794 */ 26795 if (need_ah_acquire || need_esp_acquire) { 26796 if (io->ipsec_out_ah_sa != NULL) { 26797 IPSA_REFRELE(io->ipsec_out_ah_sa); 26798 io->ipsec_out_ah_sa = NULL; 26799 } 26800 if (io->ipsec_out_esp_sa != NULL) { 26801 IPSA_REFRELE(io->ipsec_out_esp_sa); 26802 io->ipsec_out_esp_sa = NULL; 26803 } 26804 26805 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26806 return (B_FALSE); 26807 } 26808 26809 return (B_TRUE); 26810 } 26811 26812 /* 26813 * Process an IPSEC_OUT message and see what you can 26814 * do with it. 26815 * IPQoS Notes: 26816 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26817 * IPSec. 26818 * XXX would like to nuke ire_t. 26819 * XXX ill_index better be "real" 26820 */ 26821 void 26822 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26823 { 26824 ipsec_out_t *io; 26825 ipsec_policy_t *pp; 26826 ipsec_action_t *ap; 26827 ipha_t *ipha; 26828 ip6_t *ip6h; 26829 mblk_t *mp; 26830 ill_t *ill; 26831 zoneid_t zoneid; 26832 ipsec_status_t ipsec_rc; 26833 boolean_t ill_need_rele = B_FALSE; 26834 ip_stack_t *ipst; 26835 ipsec_stack_t *ipss; 26836 26837 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26838 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26839 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26840 ipst = io->ipsec_out_ns->netstack_ip; 26841 mp = ipsec_mp->b_cont; 26842 26843 /* 26844 * Initiate IPPF processing. We do it here to account for packets 26845 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26846 * We can check for ipsec_out_proc_begin even for such packets, as 26847 * they will always be false (asserted below). 26848 */ 26849 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26850 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26851 io->ipsec_out_ill_index : ill_index); 26852 if (mp == NULL) { 26853 ip2dbg(("ipsec_out_process: packet dropped "\ 26854 "during IPPF processing\n")); 26855 freeb(ipsec_mp); 26856 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26857 return; 26858 } 26859 } 26860 26861 if (!io->ipsec_out_secure) { 26862 /* 26863 * We came here by mistake. 26864 * Don't bother with ipsec processing 26865 * Should "discourage" this path in the future. 26866 */ 26867 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26868 goto done; 26869 } 26870 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26871 ASSERT((io->ipsec_out_policy != NULL) || 26872 (io->ipsec_out_act != NULL)); 26873 ASSERT(io->ipsec_out_failed == B_FALSE); 26874 26875 ipss = ipst->ips_netstack->netstack_ipsec; 26876 if (!ipsec_loaded(ipss)) { 26877 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26878 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26879 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26880 } else { 26881 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26882 } 26883 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26884 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26885 &ipss->ipsec_dropper); 26886 return; 26887 } 26888 26889 /* 26890 * IPSEC processing has started. 26891 */ 26892 io->ipsec_out_proc_begin = B_TRUE; 26893 ap = io->ipsec_out_act; 26894 if (ap == NULL) { 26895 pp = io->ipsec_out_policy; 26896 ASSERT(pp != NULL); 26897 ap = pp->ipsp_act; 26898 ASSERT(ap != NULL); 26899 } 26900 26901 /* 26902 * Save the outbound ill index. When the packet comes back 26903 * from IPsec, we make sure the ill hasn't changed or disappeared 26904 * before sending it the accelerated packet. 26905 */ 26906 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26907 int ifindex; 26908 ill = ire_to_ill(ire); 26909 ifindex = ill->ill_phyint->phyint_ifindex; 26910 io->ipsec_out_capab_ill_index = ifindex; 26911 } 26912 26913 /* 26914 * The order of processing is first insert a IP header if needed. 26915 * Then insert the ESP header and then the AH header. 26916 */ 26917 if ((io->ipsec_out_se_done == B_FALSE) && 26918 (ap->ipa_want_se)) { 26919 /* 26920 * First get the outer IP header before sending 26921 * it to ESP. 26922 */ 26923 ipha_t *oipha, *iipha; 26924 mblk_t *outer_mp, *inner_mp; 26925 26926 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26927 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26928 "ipsec_out_process: " 26929 "Self-Encapsulation failed: Out of memory\n"); 26930 freemsg(ipsec_mp); 26931 if (ill != NULL) { 26932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26933 } else { 26934 BUMP_MIB(&ipst->ips_ip_mib, 26935 ipIfStatsOutDiscards); 26936 } 26937 return; 26938 } 26939 inner_mp = ipsec_mp->b_cont; 26940 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26941 oipha = (ipha_t *)outer_mp->b_rptr; 26942 iipha = (ipha_t *)inner_mp->b_rptr; 26943 *oipha = *iipha; 26944 outer_mp->b_wptr += sizeof (ipha_t); 26945 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26946 sizeof (ipha_t)); 26947 oipha->ipha_protocol = IPPROTO_ENCAP; 26948 oipha->ipha_version_and_hdr_length = 26949 IP_SIMPLE_HDR_VERSION; 26950 oipha->ipha_hdr_checksum = 0; 26951 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26952 outer_mp->b_cont = inner_mp; 26953 ipsec_mp->b_cont = outer_mp; 26954 26955 io->ipsec_out_se_done = B_TRUE; 26956 io->ipsec_out_tunnel = B_TRUE; 26957 } 26958 26959 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26960 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26961 !ipsec_out_select_sa(ipsec_mp)) 26962 return; 26963 26964 /* 26965 * By now, we know what SA's to use. Toss over to ESP & AH 26966 * to do the heavy lifting. 26967 */ 26968 zoneid = io->ipsec_out_zoneid; 26969 ASSERT(zoneid != ALL_ZONES); 26970 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26971 ASSERT(io->ipsec_out_esp_sa != NULL); 26972 io->ipsec_out_esp_done = B_TRUE; 26973 /* 26974 * Note that since hw accel can only apply one transform, 26975 * not two, we skip hw accel for ESP if we also have AH 26976 * This is an design limitation of the interface 26977 * which should be revisited. 26978 */ 26979 ASSERT(ire != NULL); 26980 if (io->ipsec_out_ah_sa == NULL) { 26981 ill = (ill_t *)ire->ire_stq->q_ptr; 26982 ipsec_out_is_accelerated(ipsec_mp, 26983 io->ipsec_out_esp_sa, ill, ire); 26984 } 26985 26986 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26987 switch (ipsec_rc) { 26988 case IPSEC_STATUS_SUCCESS: 26989 break; 26990 case IPSEC_STATUS_FAILED: 26991 if (ill != NULL) { 26992 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26993 } else { 26994 BUMP_MIB(&ipst->ips_ip_mib, 26995 ipIfStatsOutDiscards); 26996 } 26997 /* FALLTHRU */ 26998 case IPSEC_STATUS_PENDING: 26999 return; 27000 } 27001 } 27002 27003 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27004 ASSERT(io->ipsec_out_ah_sa != NULL); 27005 io->ipsec_out_ah_done = B_TRUE; 27006 if (ire == NULL) { 27007 int idx = io->ipsec_out_capab_ill_index; 27008 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27009 NULL, NULL, NULL, NULL, ipst); 27010 ill_need_rele = B_TRUE; 27011 } else { 27012 ill = (ill_t *)ire->ire_stq->q_ptr; 27013 } 27014 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27015 ire); 27016 27017 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27018 switch (ipsec_rc) { 27019 case IPSEC_STATUS_SUCCESS: 27020 break; 27021 case IPSEC_STATUS_FAILED: 27022 if (ill != NULL) { 27023 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27024 } else { 27025 BUMP_MIB(&ipst->ips_ip_mib, 27026 ipIfStatsOutDiscards); 27027 } 27028 /* FALLTHRU */ 27029 case IPSEC_STATUS_PENDING: 27030 if (ill != NULL && ill_need_rele) 27031 ill_refrele(ill); 27032 return; 27033 } 27034 } 27035 /* 27036 * We are done with IPSEC processing. Send it over 27037 * the wire. 27038 */ 27039 done: 27040 mp = ipsec_mp->b_cont; 27041 ipha = (ipha_t *)mp->b_rptr; 27042 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27043 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27044 } else { 27045 ip6h = (ip6_t *)ipha; 27046 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27047 } 27048 if (ill != NULL && ill_need_rele) 27049 ill_refrele(ill); 27050 } 27051 27052 /* ARGSUSED */ 27053 void 27054 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27055 { 27056 opt_restart_t *or; 27057 int err; 27058 conn_t *connp; 27059 27060 ASSERT(CONN_Q(q)); 27061 connp = Q_TO_CONN(q); 27062 27063 ASSERT(first_mp->b_datap->db_type == M_CTL); 27064 or = (opt_restart_t *)first_mp->b_rptr; 27065 /* 27066 * We don't need to pass any credentials here since this is just 27067 * a restart. The credentials are passed in when svr4_optcom_req 27068 * is called the first time (from ip_wput_nondata). 27069 */ 27070 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27071 err = svr4_optcom_req(q, first_mp, NULL, 27072 &ip_opt_obj); 27073 } else { 27074 ASSERT(or->or_type == T_OPTMGMT_REQ); 27075 err = tpi_optcom_req(q, first_mp, NULL, 27076 &ip_opt_obj); 27077 } 27078 if (err != EINPROGRESS) { 27079 /* operation is done */ 27080 CONN_OPER_PENDING_DONE(connp); 27081 } 27082 } 27083 27084 /* 27085 * ioctls that go through a down/up sequence may need to wait for the down 27086 * to complete. This involves waiting for the ire and ipif refcnts to go down 27087 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27088 */ 27089 /* ARGSUSED */ 27090 void 27091 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27092 { 27093 struct iocblk *iocp; 27094 mblk_t *mp1; 27095 ip_ioctl_cmd_t *ipip; 27096 int err; 27097 sin_t *sin; 27098 struct lifreq *lifr; 27099 struct ifreq *ifr; 27100 27101 iocp = (struct iocblk *)mp->b_rptr; 27102 ASSERT(ipsq != NULL); 27103 /* Existence of mp1 verified in ip_wput_nondata */ 27104 mp1 = mp->b_cont->b_cont; 27105 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27106 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27107 /* 27108 * Special case where ipsq_current_ipif is not set: 27109 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27110 * ill could also have become part of a ipmp group in the 27111 * process, we are here as were not able to complete the 27112 * operation in ipif_set_values because we could not become 27113 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27114 * will not be set so we need to set it. 27115 */ 27116 ill_t *ill = q->q_ptr; 27117 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27118 } 27119 ASSERT(ipsq->ipsq_current_ipif != NULL); 27120 27121 if (ipip->ipi_cmd_type == IF_CMD) { 27122 /* This a old style SIOC[GS]IF* command */ 27123 ifr = (struct ifreq *)mp1->b_rptr; 27124 sin = (sin_t *)&ifr->ifr_addr; 27125 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27126 /* This a new style SIOC[GS]LIF* command */ 27127 lifr = (struct lifreq *)mp1->b_rptr; 27128 sin = (sin_t *)&lifr->lifr_addr; 27129 } else { 27130 sin = NULL; 27131 } 27132 27133 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27134 ipip, mp1->b_rptr); 27135 27136 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27137 } 27138 27139 /* 27140 * ioctl processing 27141 * 27142 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27143 * the ioctl command in the ioctl tables and determines the copyin data size 27144 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27145 * size. 27146 * 27147 * ioctl processing then continues when the M_IOCDATA makes its way down. 27148 * Now the ioctl is looked up again in the ioctl table, and its properties are 27149 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27150 * and the general ioctl processing function ip_process_ioctl is called. 27151 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27152 * so goes thru the serialization primitive ipsq_try_enter. Then the 27153 * appropriate function to handle the ioctl is called based on the entry in 27154 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27155 * which also refreleases the 'conn' that was refheld at the start of the 27156 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27157 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27158 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27159 * 27160 * Many exclusive ioctls go thru an internal down up sequence as part of 27161 * the operation. For example an attempt to change the IP address of an 27162 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27163 * does all the cleanup such as deleting all ires that use this address. 27164 * Then we need to wait till all references to the interface go away. 27165 */ 27166 void 27167 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27168 { 27169 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27170 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27171 cmd_info_t ci; 27172 int err; 27173 boolean_t entered_ipsq = B_FALSE; 27174 27175 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27176 27177 if (ipip == NULL) 27178 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27179 27180 /* 27181 * SIOCLIFADDIF needs to go thru a special path since the 27182 * ill may not exist yet. This happens in the case of lo0 27183 * which is created using this ioctl. 27184 */ 27185 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27186 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27187 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27188 return; 27189 } 27190 27191 ci.ci_ipif = NULL; 27192 switch (ipip->ipi_cmd_type) { 27193 case IF_CMD: 27194 case LIF_CMD: 27195 /* 27196 * ioctls that pass in a [l]ifreq appear here. 27197 * ip_extract_lifreq_cmn returns a refheld ipif in 27198 * ci.ci_ipif 27199 */ 27200 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27201 ipip->ipi_flags, &ci, ip_process_ioctl); 27202 if (err != 0) { 27203 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27204 return; 27205 } 27206 ASSERT(ci.ci_ipif != NULL); 27207 break; 27208 27209 case TUN_CMD: 27210 /* 27211 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27212 * a refheld ipif in ci.ci_ipif 27213 */ 27214 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27215 if (err != 0) { 27216 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27217 return; 27218 } 27219 ASSERT(ci.ci_ipif != NULL); 27220 break; 27221 27222 case MISC_CMD: 27223 /* 27224 * ioctls that neither pass in [l]ifreq or iftun_req come here 27225 * For eg. SIOCGLIFCONF will appear here. 27226 */ 27227 switch (ipip->ipi_cmd) { 27228 case IF_UNITSEL: 27229 /* ioctl comes down the ill */ 27230 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27231 ipif_refhold(ci.ci_ipif); 27232 break; 27233 case SIOCGMSFILTER: 27234 case SIOCSMSFILTER: 27235 case SIOCGIPMSFILTER: 27236 case SIOCSIPMSFILTER: 27237 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27238 ip_process_ioctl); 27239 if (err != 0) { 27240 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27241 NULL); 27242 } 27243 break; 27244 } 27245 err = 0; 27246 ci.ci_sin = NULL; 27247 ci.ci_sin6 = NULL; 27248 ci.ci_lifr = NULL; 27249 break; 27250 } 27251 27252 /* 27253 * If ipsq is non-null, we are already being called exclusively 27254 */ 27255 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27256 if (!(ipip->ipi_flags & IPI_WR)) { 27257 /* 27258 * A return value of EINPROGRESS means the ioctl is 27259 * either queued and waiting for some reason or has 27260 * already completed. 27261 */ 27262 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27263 ci.ci_lifr); 27264 if (ci.ci_ipif != NULL) 27265 ipif_refrele(ci.ci_ipif); 27266 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27267 return; 27268 } 27269 27270 ASSERT(ci.ci_ipif != NULL); 27271 27272 if (ipsq == NULL) { 27273 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27274 ip_process_ioctl, NEW_OP, B_TRUE); 27275 entered_ipsq = B_TRUE; 27276 } 27277 /* 27278 * Release the ipif so that ipif_down and friends that wait for 27279 * references to go away are not misled about the current ipif_refcnt 27280 * values. We are writer so we can access the ipif even after releasing 27281 * the ipif. 27282 */ 27283 ipif_refrele(ci.ci_ipif); 27284 if (ipsq == NULL) 27285 return; 27286 27287 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27288 27289 /* 27290 * For most set ioctls that come here, this serves as a single point 27291 * where we set the IPIF_CHANGING flag. This ensures that there won't 27292 * be any new references to the ipif. This helps functions that go 27293 * through this path and end up trying to wait for the refcnts 27294 * associated with the ipif to go down to zero. Some exceptions are 27295 * Failover, Failback, and Groupname commands that operate on more than 27296 * just the ci.ci_ipif. These commands internally determine the 27297 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27298 * flags on that set. Another exception is the Removeif command that 27299 * sets the IPIF_CONDEMNED flag internally after identifying the right 27300 * ipif to operate on. 27301 */ 27302 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27303 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27304 ipip->ipi_cmd != SIOCLIFFAILOVER && 27305 ipip->ipi_cmd != SIOCLIFFAILBACK && 27306 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27307 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27308 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27309 27310 /* 27311 * A return value of EINPROGRESS means the ioctl is 27312 * either queued and waiting for some reason or has 27313 * already completed. 27314 */ 27315 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27316 27317 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27318 27319 if (entered_ipsq) 27320 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27321 } 27322 27323 /* 27324 * Complete the ioctl. Typically ioctls use the mi package and need to 27325 * do mi_copyout/mi_copy_done. 27326 */ 27327 void 27328 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27329 { 27330 conn_t *connp = NULL; 27331 27332 if (err == EINPROGRESS) 27333 return; 27334 27335 if (CONN_Q(q)) { 27336 connp = Q_TO_CONN(q); 27337 ASSERT(connp->conn_ref >= 2); 27338 } 27339 27340 switch (mode) { 27341 case COPYOUT: 27342 if (err == 0) 27343 mi_copyout(q, mp); 27344 else 27345 mi_copy_done(q, mp, err); 27346 break; 27347 27348 case NO_COPYOUT: 27349 mi_copy_done(q, mp, err); 27350 break; 27351 27352 default: 27353 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27354 break; 27355 } 27356 27357 /* 27358 * The refhold placed at the start of the ioctl is released here. 27359 */ 27360 if (connp != NULL) 27361 CONN_OPER_PENDING_DONE(connp); 27362 27363 if (ipsq != NULL) 27364 ipsq_current_finish(ipsq); 27365 } 27366 27367 /* 27368 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27369 */ 27370 /* ARGSUSED */ 27371 void 27372 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27373 { 27374 conn_t *connp = arg; 27375 tcp_t *tcp; 27376 27377 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27378 tcp = connp->conn_tcp; 27379 27380 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27381 freemsg(mp); 27382 else 27383 tcp_rput_other(tcp, mp); 27384 CONN_OPER_PENDING_DONE(connp); 27385 } 27386 27387 /* Called from ip_wput for all non data messages */ 27388 /* ARGSUSED */ 27389 void 27390 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27391 { 27392 mblk_t *mp1; 27393 ire_t *ire, *fake_ire; 27394 ill_t *ill; 27395 struct iocblk *iocp; 27396 ip_ioctl_cmd_t *ipip; 27397 cred_t *cr; 27398 conn_t *connp; 27399 int cmd, err; 27400 nce_t *nce; 27401 ipif_t *ipif; 27402 ip_stack_t *ipst; 27403 char *proto_str; 27404 27405 if (CONN_Q(q)) { 27406 connp = Q_TO_CONN(q); 27407 ipst = connp->conn_netstack->netstack_ip; 27408 } else { 27409 connp = NULL; 27410 ipst = ILLQ_TO_IPST(q); 27411 } 27412 27413 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27414 27415 /* Check if it is a queue to /dev/sctp. */ 27416 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27417 connp->conn_rq == NULL) { 27418 sctp_wput(q, mp); 27419 return; 27420 } 27421 27422 switch (DB_TYPE(mp)) { 27423 case M_IOCTL: 27424 /* 27425 * IOCTL processing begins in ip_sioctl_copyin_setup which 27426 * will arrange to copy in associated control structures. 27427 */ 27428 ip_sioctl_copyin_setup(q, mp); 27429 return; 27430 case M_IOCDATA: 27431 /* 27432 * Ensure that this is associated with one of our trans- 27433 * parent ioctls. If it's not ours, discard it if we're 27434 * running as a driver, or pass it on if we're a module. 27435 */ 27436 iocp = (struct iocblk *)mp->b_rptr; 27437 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27438 if (ipip == NULL) { 27439 if (q->q_next == NULL) { 27440 goto nak; 27441 } else { 27442 putnext(q, mp); 27443 } 27444 return; 27445 } else if ((q->q_next != NULL) && 27446 !(ipip->ipi_flags & IPI_MODOK)) { 27447 /* 27448 * the ioctl is one we recognise, but is not 27449 * consumed by IP as a module, pass M_IOCDATA 27450 * for processing downstream, but only for 27451 * common Streams ioctls. 27452 */ 27453 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27454 putnext(q, mp); 27455 return; 27456 } else { 27457 goto nak; 27458 } 27459 } 27460 27461 /* IOCTL continuation following copyin or copyout. */ 27462 if (mi_copy_state(q, mp, NULL) == -1) { 27463 /* 27464 * The copy operation failed. mi_copy_state already 27465 * cleaned up, so we're out of here. 27466 */ 27467 return; 27468 } 27469 /* 27470 * If we just completed a copy in, we become writer and 27471 * continue processing in ip_sioctl_copyin_done. If it 27472 * was a copy out, we call mi_copyout again. If there is 27473 * nothing more to copy out, it will complete the IOCTL. 27474 */ 27475 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27476 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27477 mi_copy_done(q, mp, EPROTO); 27478 return; 27479 } 27480 /* 27481 * Check for cases that need more copying. A return 27482 * value of 0 means a second copyin has been started, 27483 * so we return; a return value of 1 means no more 27484 * copying is needed, so we continue. 27485 */ 27486 cmd = iocp->ioc_cmd; 27487 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27488 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27489 MI_COPY_COUNT(mp) == 1) { 27490 if (ip_copyin_msfilter(q, mp) == 0) 27491 return; 27492 } 27493 /* 27494 * Refhold the conn, till the ioctl completes. This is 27495 * needed in case the ioctl ends up in the pending mp 27496 * list. Every mp in the ill_pending_mp list and 27497 * the ipsq_pending_mp must have a refhold on the conn 27498 * to resume processing. The refhold is released when 27499 * the ioctl completes. (normally or abnormally) 27500 * In all cases ip_ioctl_finish is called to finish 27501 * the ioctl. 27502 */ 27503 if (connp != NULL) { 27504 /* This is not a reentry */ 27505 ASSERT(ipsq == NULL); 27506 CONN_INC_REF(connp); 27507 } else { 27508 if (!(ipip->ipi_flags & IPI_MODOK)) { 27509 mi_copy_done(q, mp, EINVAL); 27510 return; 27511 } 27512 } 27513 27514 ip_process_ioctl(ipsq, q, mp, ipip); 27515 27516 } else { 27517 mi_copyout(q, mp); 27518 } 27519 return; 27520 nak: 27521 iocp->ioc_error = EINVAL; 27522 mp->b_datap->db_type = M_IOCNAK; 27523 iocp->ioc_count = 0; 27524 qreply(q, mp); 27525 return; 27526 27527 case M_IOCNAK: 27528 /* 27529 * The only way we could get here is if a resolver didn't like 27530 * an IOCTL we sent it. This shouldn't happen. 27531 */ 27532 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27533 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27534 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27535 freemsg(mp); 27536 return; 27537 case M_IOCACK: 27538 /* /dev/ip shouldn't see this */ 27539 if (CONN_Q(q)) 27540 goto nak; 27541 27542 /* Finish socket ioctls passed through to ARP. */ 27543 ip_sioctl_iocack(q, mp); 27544 return; 27545 case M_FLUSH: 27546 if (*mp->b_rptr & FLUSHW) 27547 flushq(q, FLUSHALL); 27548 if (q->q_next) { 27549 putnext(q, mp); 27550 return; 27551 } 27552 if (*mp->b_rptr & FLUSHR) { 27553 *mp->b_rptr &= ~FLUSHW; 27554 qreply(q, mp); 27555 return; 27556 } 27557 freemsg(mp); 27558 return; 27559 case IRE_DB_REQ_TYPE: 27560 if (connp == NULL) { 27561 proto_str = "IRE_DB_REQ_TYPE"; 27562 goto protonak; 27563 } 27564 /* An Upper Level Protocol wants a copy of an IRE. */ 27565 ip_ire_req(q, mp); 27566 return; 27567 case M_CTL: 27568 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27569 break; 27570 27571 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27572 TUN_HELLO) { 27573 ASSERT(connp != NULL); 27574 connp->conn_flags |= IPCL_IPTUN; 27575 freeb(mp); 27576 return; 27577 } 27578 27579 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27580 IP_ULP_OUT_LABELED) { 27581 out_labeled_t *olp; 27582 27583 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27584 break; 27585 olp = (out_labeled_t *)mp->b_rptr; 27586 connp->conn_ulp_labeled = olp->out_qnext == q; 27587 freemsg(mp); 27588 return; 27589 } 27590 27591 /* M_CTL messages are used by ARP to tell us things. */ 27592 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27593 break; 27594 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27595 case AR_ENTRY_SQUERY: 27596 ip_wput_ctl(q, mp); 27597 return; 27598 case AR_CLIENT_NOTIFY: 27599 ip_arp_news(q, mp); 27600 return; 27601 case AR_DLPIOP_DONE: 27602 ASSERT(q->q_next != NULL); 27603 ill = (ill_t *)q->q_ptr; 27604 /* qwriter_ip releases the refhold */ 27605 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27606 ill_refhold(ill); 27607 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27608 return; 27609 case AR_ARP_CLOSING: 27610 /* 27611 * ARP (above us) is closing. If no ARP bringup is 27612 * currently pending, ack the message so that ARP 27613 * can complete its close. Also mark ill_arp_closing 27614 * so that new ARP bringups will fail. If any 27615 * ARP bringup is currently in progress, we will 27616 * ack this when the current ARP bringup completes. 27617 */ 27618 ASSERT(q->q_next != NULL); 27619 ill = (ill_t *)q->q_ptr; 27620 mutex_enter(&ill->ill_lock); 27621 ill->ill_arp_closing = 1; 27622 if (!ill->ill_arp_bringup_pending) { 27623 mutex_exit(&ill->ill_lock); 27624 qreply(q, mp); 27625 } else { 27626 mutex_exit(&ill->ill_lock); 27627 freemsg(mp); 27628 } 27629 return; 27630 case AR_ARP_EXTEND: 27631 /* 27632 * The ARP module above us is capable of duplicate 27633 * address detection. Old ATM drivers will not send 27634 * this message. 27635 */ 27636 ASSERT(q->q_next != NULL); 27637 ill = (ill_t *)q->q_ptr; 27638 ill->ill_arp_extend = B_TRUE; 27639 freemsg(mp); 27640 return; 27641 default: 27642 break; 27643 } 27644 break; 27645 case M_PROTO: 27646 case M_PCPROTO: 27647 /* 27648 * The only PROTO messages we expect are ULP binds and 27649 * copies of option negotiation acknowledgements. 27650 */ 27651 switch (((union T_primitives *)mp->b_rptr)->type) { 27652 case O_T_BIND_REQ: 27653 case T_BIND_REQ: { 27654 /* Request can get queued in bind */ 27655 if (connp == NULL) { 27656 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27657 goto protonak; 27658 } 27659 /* 27660 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27661 * instead of going through this path. We only get 27662 * here in the following cases: 27663 * 27664 * a. Bind retries, where ipsq is non-NULL. 27665 * b. T_BIND_REQ is issued from non TCP/UDP 27666 * transport, e.g. icmp for raw socket, 27667 * in which case ipsq will be NULL. 27668 */ 27669 ASSERT(ipsq != NULL || 27670 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27671 27672 /* Don't increment refcnt if this is a re-entry */ 27673 if (ipsq == NULL) 27674 CONN_INC_REF(connp); 27675 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27676 connp, NULL) : ip_bind_v4(q, mp, connp); 27677 if (mp == NULL) 27678 return; 27679 if (IPCL_IS_TCP(connp)) { 27680 /* 27681 * In the case of TCP endpoint we 27682 * come here only for bind retries 27683 */ 27684 ASSERT(ipsq != NULL); 27685 CONN_INC_REF(connp); 27686 squeue_fill(connp->conn_sqp, mp, 27687 ip_resume_tcp_bind, connp, 27688 SQTAG_BIND_RETRY); 27689 return; 27690 } else if (IPCL_IS_UDP(connp)) { 27691 /* 27692 * In the case of UDP endpoint we 27693 * come here only for bind retries 27694 */ 27695 ASSERT(ipsq != NULL); 27696 udp_resume_bind(connp, mp); 27697 return; 27698 } 27699 qreply(q, mp); 27700 CONN_OPER_PENDING_DONE(connp); 27701 return; 27702 } 27703 case T_SVR4_OPTMGMT_REQ: 27704 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27705 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27706 27707 if (connp == NULL) { 27708 proto_str = "T_SVR4_OPTMGMT_REQ"; 27709 goto protonak; 27710 } 27711 27712 if (!snmpcom_req(q, mp, ip_snmp_set, 27713 ip_snmp_get, cr)) { 27714 /* 27715 * Call svr4_optcom_req so that it can 27716 * generate the ack. We don't come here 27717 * if this operation is being restarted. 27718 * ip_restart_optmgmt will drop the conn ref. 27719 * In the case of ipsec option after the ipsec 27720 * load is complete conn_restart_ipsec_waiter 27721 * drops the conn ref. 27722 */ 27723 ASSERT(ipsq == NULL); 27724 CONN_INC_REF(connp); 27725 if (ip_check_for_ipsec_opt(q, mp)) 27726 return; 27727 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27728 if (err != EINPROGRESS) { 27729 /* Operation is done */ 27730 CONN_OPER_PENDING_DONE(connp); 27731 } 27732 } 27733 return; 27734 case T_OPTMGMT_REQ: 27735 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27736 /* 27737 * Note: No snmpcom_req support through new 27738 * T_OPTMGMT_REQ. 27739 * Call tpi_optcom_req so that it can 27740 * generate the ack. 27741 */ 27742 if (connp == NULL) { 27743 proto_str = "T_OPTMGMT_REQ"; 27744 goto protonak; 27745 } 27746 27747 ASSERT(ipsq == NULL); 27748 /* 27749 * We don't come here for restart. ip_restart_optmgmt 27750 * will drop the conn ref. In the case of ipsec option 27751 * after the ipsec load is complete 27752 * conn_restart_ipsec_waiter drops the conn ref. 27753 */ 27754 CONN_INC_REF(connp); 27755 if (ip_check_for_ipsec_opt(q, mp)) 27756 return; 27757 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27758 if (err != EINPROGRESS) { 27759 /* Operation is done */ 27760 CONN_OPER_PENDING_DONE(connp); 27761 } 27762 return; 27763 case T_UNBIND_REQ: 27764 if (connp == NULL) { 27765 proto_str = "T_UNBIND_REQ"; 27766 goto protonak; 27767 } 27768 mp = ip_unbind(q, mp); 27769 qreply(q, mp); 27770 return; 27771 default: 27772 /* 27773 * Have to drop any DLPI messages coming down from 27774 * arp (such as an info_req which would cause ip 27775 * to receive an extra info_ack if it was passed 27776 * through. 27777 */ 27778 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27779 (int)*(uint_t *)mp->b_rptr)); 27780 freemsg(mp); 27781 return; 27782 } 27783 /* NOTREACHED */ 27784 case IRE_DB_TYPE: { 27785 nce_t *nce; 27786 ill_t *ill; 27787 in6_addr_t gw_addr_v6; 27788 27789 27790 /* 27791 * This is a response back from a resolver. It 27792 * consists of a message chain containing: 27793 * IRE_MBLK-->LL_HDR_MBLK->pkt 27794 * The IRE_MBLK is the one we allocated in ip_newroute. 27795 * The LL_HDR_MBLK is the DLPI header to use to get 27796 * the attached packet, and subsequent ones for the 27797 * same destination, transmitted. 27798 */ 27799 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27800 break; 27801 /* 27802 * First, check to make sure the resolution succeeded. 27803 * If it failed, the second mblk will be empty. 27804 * If it is, free the chain, dropping the packet. 27805 * (We must ire_delete the ire; that frees the ire mblk) 27806 * We're doing this now to support PVCs for ATM; it's 27807 * a partial xresolv implementation. When we fully implement 27808 * xresolv interfaces, instead of freeing everything here 27809 * we'll initiate neighbor discovery. 27810 * 27811 * For v4 (ARP and other external resolvers) the resolver 27812 * frees the message, so no check is needed. This check 27813 * is required, though, for a full xresolve implementation. 27814 * Including this code here now both shows how external 27815 * resolvers can NACK a resolution request using an 27816 * existing design that has no specific provisions for NACKs, 27817 * and also takes into account that the current non-ARP 27818 * external resolver has been coded to use this method of 27819 * NACKing for all IPv6 (xresolv) cases, 27820 * whether our xresolv implementation is complete or not. 27821 * 27822 */ 27823 ire = (ire_t *)mp->b_rptr; 27824 ill = ire_to_ill(ire); 27825 mp1 = mp->b_cont; /* dl_unitdata_req */ 27826 if (mp1->b_rptr == mp1->b_wptr) { 27827 if (ire->ire_ipversion == IPV6_VERSION) { 27828 /* 27829 * XRESOLV interface. 27830 */ 27831 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27832 mutex_enter(&ire->ire_lock); 27833 gw_addr_v6 = ire->ire_gateway_addr_v6; 27834 mutex_exit(&ire->ire_lock); 27835 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27836 nce = ndp_lookup_v6(ill, 27837 &ire->ire_addr_v6, B_FALSE); 27838 } else { 27839 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27840 B_FALSE); 27841 } 27842 if (nce != NULL) { 27843 nce_resolv_failed(nce); 27844 ndp_delete(nce); 27845 NCE_REFRELE(nce); 27846 } 27847 } 27848 mp->b_cont = NULL; 27849 freemsg(mp1); /* frees the pkt as well */ 27850 ASSERT(ire->ire_nce == NULL); 27851 ire_delete((ire_t *)mp->b_rptr); 27852 return; 27853 } 27854 27855 /* 27856 * Split them into IRE_MBLK and pkt and feed it into 27857 * ire_add_then_send. Then in ire_add_then_send 27858 * the IRE will be added, and then the packet will be 27859 * run back through ip_wput. This time it will make 27860 * it to the wire. 27861 */ 27862 mp->b_cont = NULL; 27863 mp = mp1->b_cont; /* now, mp points to pkt */ 27864 mp1->b_cont = NULL; 27865 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27866 if (ire->ire_ipversion == IPV6_VERSION) { 27867 /* 27868 * XRESOLV interface. Find the nce and put a copy 27869 * of the dl_unitdata_req in nce_res_mp 27870 */ 27871 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27872 mutex_enter(&ire->ire_lock); 27873 gw_addr_v6 = ire->ire_gateway_addr_v6; 27874 mutex_exit(&ire->ire_lock); 27875 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27876 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27877 B_FALSE); 27878 } else { 27879 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27880 } 27881 if (nce != NULL) { 27882 /* 27883 * We have to protect nce_res_mp here 27884 * from being accessed by other threads 27885 * while we change the mblk pointer. 27886 * Other functions will also lock the nce when 27887 * accessing nce_res_mp. 27888 * 27889 * The reason we change the mblk pointer 27890 * here rather than copying the resolved address 27891 * into the template is that, unlike with 27892 * ethernet, we have no guarantee that the 27893 * resolved address length will be 27894 * smaller than or equal to the lla length 27895 * with which the template was allocated, 27896 * (for ethernet, they're equal) 27897 * so we have to use the actual resolved 27898 * address mblk - which holds the real 27899 * dl_unitdata_req with the resolved address. 27900 * 27901 * Doing this is the same behavior as was 27902 * previously used in the v4 ARP case. 27903 */ 27904 mutex_enter(&nce->nce_lock); 27905 if (nce->nce_res_mp != NULL) 27906 freemsg(nce->nce_res_mp); 27907 nce->nce_res_mp = mp1; 27908 mutex_exit(&nce->nce_lock); 27909 /* 27910 * We do a fastpath probe here because 27911 * we have resolved the address without 27912 * using Neighbor Discovery. 27913 * In the non-XRESOLV v6 case, the fastpath 27914 * probe is done right after neighbor 27915 * discovery completes. 27916 */ 27917 if (nce->nce_res_mp != NULL) { 27918 int res; 27919 nce_fastpath_list_add(nce); 27920 res = ill_fastpath_probe(ill, 27921 nce->nce_res_mp); 27922 if (res != 0 && res != EAGAIN) 27923 nce_fastpath_list_delete(nce); 27924 } 27925 27926 ire_add_then_send(q, ire, mp); 27927 /* 27928 * Now we have to clean out any packets 27929 * that may have been queued on the nce 27930 * while it was waiting for address resolution 27931 * to complete. 27932 */ 27933 mutex_enter(&nce->nce_lock); 27934 mp1 = nce->nce_qd_mp; 27935 nce->nce_qd_mp = NULL; 27936 mutex_exit(&nce->nce_lock); 27937 while (mp1 != NULL) { 27938 mblk_t *nxt_mp; 27939 queue_t *fwdq = NULL; 27940 ill_t *inbound_ill; 27941 uint_t ifindex; 27942 27943 nxt_mp = mp1->b_next; 27944 mp1->b_next = NULL; 27945 /* 27946 * Retrieve ifindex stored in 27947 * ip_rput_data_v6() 27948 */ 27949 ifindex = 27950 (uint_t)(uintptr_t)mp1->b_prev; 27951 inbound_ill = 27952 ill_lookup_on_ifindex(ifindex, 27953 B_TRUE, NULL, NULL, NULL, 27954 NULL, ipst); 27955 mp1->b_prev = NULL; 27956 if (inbound_ill != NULL) 27957 fwdq = inbound_ill->ill_rq; 27958 27959 if (fwdq != NULL) { 27960 put(fwdq, mp1); 27961 ill_refrele(inbound_ill); 27962 } else 27963 put(WR(ill->ill_rq), mp1); 27964 mp1 = nxt_mp; 27965 } 27966 NCE_REFRELE(nce); 27967 } else { /* nce is NULL; clean up */ 27968 ire_delete(ire); 27969 freemsg(mp); 27970 freemsg(mp1); 27971 return; 27972 } 27973 } else { 27974 nce_t *arpce; 27975 /* 27976 * Link layer resolution succeeded. Recompute the 27977 * ire_nce. 27978 */ 27979 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27980 if ((arpce = ndp_lookup_v4(ill, 27981 (ire->ire_gateway_addr != INADDR_ANY ? 27982 &ire->ire_gateway_addr : &ire->ire_addr), 27983 B_FALSE)) == NULL) { 27984 freeb(ire->ire_mp); 27985 freeb(mp1); 27986 freemsg(mp); 27987 return; 27988 } 27989 mutex_enter(&arpce->nce_lock); 27990 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27991 if (arpce->nce_state == ND_REACHABLE) { 27992 /* 27993 * Someone resolved this before us; 27994 * cleanup the res_mp. Since ire has 27995 * not been added yet, the call to ire_add_v4 27996 * from ire_add_then_send (when a dup is 27997 * detected) will clean up the ire. 27998 */ 27999 freeb(mp1); 28000 } else { 28001 ASSERT(arpce->nce_res_mp == NULL); 28002 arpce->nce_res_mp = mp1; 28003 arpce->nce_state = ND_REACHABLE; 28004 } 28005 mutex_exit(&arpce->nce_lock); 28006 if (ire->ire_marks & IRE_MARK_NOADD) { 28007 /* 28008 * this ire will not be added to the ire 28009 * cache table, so we can set the ire_nce 28010 * here, as there are no atomicity constraints. 28011 */ 28012 ire->ire_nce = arpce; 28013 /* 28014 * We are associating this nce with the ire 28015 * so change the nce ref taken in 28016 * ndp_lookup_v4() from 28017 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28018 */ 28019 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28020 } else { 28021 NCE_REFRELE(arpce); 28022 } 28023 ire_add_then_send(q, ire, mp); 28024 } 28025 return; /* All is well, the packet has been sent. */ 28026 } 28027 case IRE_ARPRESOLVE_TYPE: { 28028 28029 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28030 break; 28031 mp1 = mp->b_cont; /* dl_unitdata_req */ 28032 mp->b_cont = NULL; 28033 /* 28034 * First, check to make sure the resolution succeeded. 28035 * If it failed, the second mblk will be empty. 28036 */ 28037 if (mp1->b_rptr == mp1->b_wptr) { 28038 /* cleanup the incomplete ire, free queued packets */ 28039 freemsg(mp); /* fake ire */ 28040 freeb(mp1); /* dl_unitdata response */ 28041 return; 28042 } 28043 28044 /* 28045 * update any incomplete nce_t found. we lookup the ctable 28046 * and find the nce from the ire->ire_nce because we need 28047 * to pass the ire to ip_xmit_v4 later, and can find both 28048 * ire and nce in one lookup from the ctable. 28049 */ 28050 fake_ire = (ire_t *)mp->b_rptr; 28051 /* 28052 * By the time we come back here from ARP 28053 * the logical outgoing interface of the incomplete ire 28054 * we added in ire_forward could have disappeared, 28055 * causing the incomplete ire to also have 28056 * dissapeared. So we need to retreive the 28057 * proper ipif for the ire before looking 28058 * in ctable; do the ctablelookup based on ire_ipif_seqid 28059 */ 28060 ill = q->q_ptr; 28061 28062 /* Get the outgoing ipif */ 28063 mutex_enter(&ill->ill_lock); 28064 if (ill->ill_state_flags & ILL_CONDEMNED) { 28065 mutex_exit(&ill->ill_lock); 28066 freemsg(mp); /* fake ire */ 28067 freeb(mp1); /* dl_unitdata response */ 28068 return; 28069 } 28070 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28071 28072 if (ipif == NULL) { 28073 mutex_exit(&ill->ill_lock); 28074 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28075 freemsg(mp); 28076 freeb(mp1); 28077 return; 28078 } 28079 ipif_refhold_locked(ipif); 28080 mutex_exit(&ill->ill_lock); 28081 ire = ire_ctable_lookup(fake_ire->ire_addr, 28082 fake_ire->ire_gateway_addr, IRE_CACHE, 28083 ipif, fake_ire->ire_zoneid, NULL, 28084 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28085 ipif_refrele(ipif); 28086 if (ire == NULL) { 28087 /* 28088 * no ire was found; check if there is an nce 28089 * for this lookup; if it has no ire's pointing at it 28090 * cleanup. 28091 */ 28092 if ((nce = ndp_lookup_v4(ill, 28093 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28094 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28095 B_FALSE)) != NULL) { 28096 /* 28097 * cleanup: 28098 * We check for refcnt 2 (one for the nce 28099 * hash list + 1 for the ref taken by 28100 * ndp_lookup_v4) to check that there are 28101 * no ire's pointing at the nce. 28102 */ 28103 if (nce->nce_refcnt == 2) 28104 ndp_delete(nce); 28105 NCE_REFRELE(nce); 28106 } 28107 freeb(mp1); /* dl_unitdata response */ 28108 freemsg(mp); /* fake ire */ 28109 return; 28110 } 28111 nce = ire->ire_nce; 28112 DTRACE_PROBE2(ire__arpresolve__type, 28113 ire_t *, ire, nce_t *, nce); 28114 ASSERT(nce->nce_state != ND_INITIAL); 28115 mutex_enter(&nce->nce_lock); 28116 nce->nce_last = TICK_TO_MSEC(lbolt64); 28117 if (nce->nce_state == ND_REACHABLE) { 28118 /* 28119 * Someone resolved this before us; 28120 * our response is not needed any more. 28121 */ 28122 mutex_exit(&nce->nce_lock); 28123 freeb(mp1); /* dl_unitdata response */ 28124 } else { 28125 ASSERT(nce->nce_res_mp == NULL); 28126 nce->nce_res_mp = mp1; 28127 nce->nce_state = ND_REACHABLE; 28128 mutex_exit(&nce->nce_lock); 28129 nce_fastpath(nce); 28130 } 28131 /* 28132 * The cached nce_t has been updated to be reachable; 28133 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28134 */ 28135 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28136 freemsg(mp); 28137 /* 28138 * send out queued packets. 28139 */ 28140 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28141 28142 IRE_REFRELE(ire); 28143 return; 28144 } 28145 default: 28146 break; 28147 } 28148 if (q->q_next) { 28149 putnext(q, mp); 28150 } else 28151 freemsg(mp); 28152 return; 28153 28154 protonak: 28155 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28156 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28157 qreply(q, mp); 28158 } 28159 28160 /* 28161 * Process IP options in an outbound packet. Modify the destination if there 28162 * is a source route option. 28163 * Returns non-zero if something fails in which case an ICMP error has been 28164 * sent and mp freed. 28165 */ 28166 static int 28167 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28168 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28169 { 28170 ipoptp_t opts; 28171 uchar_t *opt; 28172 uint8_t optval; 28173 uint8_t optlen; 28174 ipaddr_t dst; 28175 intptr_t code = 0; 28176 mblk_t *mp; 28177 ire_t *ire = NULL; 28178 28179 ip2dbg(("ip_wput_options\n")); 28180 mp = ipsec_mp; 28181 if (mctl_present) { 28182 mp = ipsec_mp->b_cont; 28183 } 28184 28185 dst = ipha->ipha_dst; 28186 for (optval = ipoptp_first(&opts, ipha); 28187 optval != IPOPT_EOL; 28188 optval = ipoptp_next(&opts)) { 28189 opt = opts.ipoptp_cur; 28190 optlen = opts.ipoptp_len; 28191 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28192 optval, optlen)); 28193 switch (optval) { 28194 uint32_t off; 28195 case IPOPT_SSRR: 28196 case IPOPT_LSRR: 28197 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28198 ip1dbg(( 28199 "ip_wput_options: bad option offset\n")); 28200 code = (char *)&opt[IPOPT_OLEN] - 28201 (char *)ipha; 28202 goto param_prob; 28203 } 28204 off = opt[IPOPT_OFFSET]; 28205 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28206 ntohl(dst))); 28207 /* 28208 * For strict: verify that dst is directly 28209 * reachable. 28210 */ 28211 if (optval == IPOPT_SSRR) { 28212 ire = ire_ftable_lookup(dst, 0, 0, 28213 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28214 MBLK_GETLABEL(mp), 28215 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28216 if (ire == NULL) { 28217 ip1dbg(("ip_wput_options: SSRR not" 28218 " directly reachable: 0x%x\n", 28219 ntohl(dst))); 28220 goto bad_src_route; 28221 } 28222 ire_refrele(ire); 28223 } 28224 break; 28225 case IPOPT_RR: 28226 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28227 ip1dbg(( 28228 "ip_wput_options: bad option offset\n")); 28229 code = (char *)&opt[IPOPT_OLEN] - 28230 (char *)ipha; 28231 goto param_prob; 28232 } 28233 break; 28234 case IPOPT_TS: 28235 /* 28236 * Verify that length >=5 and that there is either 28237 * room for another timestamp or that the overflow 28238 * counter is not maxed out. 28239 */ 28240 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28241 if (optlen < IPOPT_MINLEN_IT) { 28242 goto param_prob; 28243 } 28244 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28245 ip1dbg(( 28246 "ip_wput_options: bad option offset\n")); 28247 code = (char *)&opt[IPOPT_OFFSET] - 28248 (char *)ipha; 28249 goto param_prob; 28250 } 28251 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28252 case IPOPT_TS_TSONLY: 28253 off = IPOPT_TS_TIMELEN; 28254 break; 28255 case IPOPT_TS_TSANDADDR: 28256 case IPOPT_TS_PRESPEC: 28257 case IPOPT_TS_PRESPEC_RFC791: 28258 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28259 break; 28260 default: 28261 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28262 (char *)ipha; 28263 goto param_prob; 28264 } 28265 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28266 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28267 /* 28268 * No room and the overflow counter is 15 28269 * already. 28270 */ 28271 goto param_prob; 28272 } 28273 break; 28274 } 28275 } 28276 28277 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28278 return (0); 28279 28280 ip1dbg(("ip_wput_options: error processing IP options.")); 28281 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28282 28283 param_prob: 28284 /* 28285 * Since ip_wput() isn't close to finished, we fill 28286 * in enough of the header for credible error reporting. 28287 */ 28288 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28289 /* Failed */ 28290 freemsg(ipsec_mp); 28291 return (-1); 28292 } 28293 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28294 return (-1); 28295 28296 bad_src_route: 28297 /* 28298 * Since ip_wput() isn't close to finished, we fill 28299 * in enough of the header for credible error reporting. 28300 */ 28301 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28302 /* Failed */ 28303 freemsg(ipsec_mp); 28304 return (-1); 28305 } 28306 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28307 return (-1); 28308 } 28309 28310 /* 28311 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28312 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28313 * thru /etc/system. 28314 */ 28315 #define CONN_MAXDRAINCNT 64 28316 28317 static void 28318 conn_drain_init(ip_stack_t *ipst) 28319 { 28320 int i; 28321 28322 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28323 28324 if ((ipst->ips_conn_drain_list_cnt == 0) || 28325 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28326 /* 28327 * Default value of the number of drainers is the 28328 * number of cpus, subject to maximum of 8 drainers. 28329 */ 28330 if (boot_max_ncpus != -1) 28331 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28332 else 28333 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28334 } 28335 28336 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28337 sizeof (idl_t), KM_SLEEP); 28338 28339 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28340 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28341 MUTEX_DEFAULT, NULL); 28342 } 28343 } 28344 28345 static void 28346 conn_drain_fini(ip_stack_t *ipst) 28347 { 28348 int i; 28349 28350 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28351 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28352 kmem_free(ipst->ips_conn_drain_list, 28353 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28354 ipst->ips_conn_drain_list = NULL; 28355 } 28356 28357 /* 28358 * Note: For an overview of how flowcontrol is handled in IP please see the 28359 * IP Flowcontrol notes at the top of this file. 28360 * 28361 * Flow control has blocked us from proceeding. Insert the given conn in one 28362 * of the conn drain lists. These conn wq's will be qenabled later on when 28363 * STREAMS flow control does a backenable. conn_walk_drain will enable 28364 * the first conn in each of these drain lists. Each of these qenabled conns 28365 * in turn enables the next in the list, after it runs, or when it closes, 28366 * thus sustaining the drain process. 28367 * 28368 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28369 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28370 * running at any time, on a given conn, since there can be only 1 service proc 28371 * running on a queue at any time. 28372 */ 28373 void 28374 conn_drain_insert(conn_t *connp) 28375 { 28376 idl_t *idl; 28377 uint_t index; 28378 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28379 28380 mutex_enter(&connp->conn_lock); 28381 if (connp->conn_state_flags & CONN_CLOSING) { 28382 /* 28383 * The conn is closing as a result of which CONN_CLOSING 28384 * is set. Return. 28385 */ 28386 mutex_exit(&connp->conn_lock); 28387 return; 28388 } else if (connp->conn_idl == NULL) { 28389 /* 28390 * Assign the next drain list round robin. We dont' use 28391 * a lock, and thus it may not be strictly round robin. 28392 * Atomicity of load/stores is enough to make sure that 28393 * conn_drain_list_index is always within bounds. 28394 */ 28395 index = ipst->ips_conn_drain_list_index; 28396 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28397 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28398 index++; 28399 if (index == ipst->ips_conn_drain_list_cnt) 28400 index = 0; 28401 ipst->ips_conn_drain_list_index = index; 28402 } 28403 mutex_exit(&connp->conn_lock); 28404 28405 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28406 if ((connp->conn_drain_prev != NULL) || 28407 (connp->conn_state_flags & CONN_CLOSING)) { 28408 /* 28409 * The conn is already in the drain list, OR 28410 * the conn is closing. We need to check again for 28411 * the closing case again since close can happen 28412 * after we drop the conn_lock, and before we 28413 * acquire the CONN_DRAIN_LIST_LOCK. 28414 */ 28415 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28416 return; 28417 } else { 28418 idl = connp->conn_idl; 28419 } 28420 28421 /* 28422 * The conn is not in the drain list. Insert it at the 28423 * tail of the drain list. The drain list is circular 28424 * and doubly linked. idl_conn points to the 1st element 28425 * in the list. 28426 */ 28427 if (idl->idl_conn == NULL) { 28428 idl->idl_conn = connp; 28429 connp->conn_drain_next = connp; 28430 connp->conn_drain_prev = connp; 28431 } else { 28432 conn_t *head = idl->idl_conn; 28433 28434 connp->conn_drain_next = head; 28435 connp->conn_drain_prev = head->conn_drain_prev; 28436 head->conn_drain_prev->conn_drain_next = connp; 28437 head->conn_drain_prev = connp; 28438 } 28439 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28440 } 28441 28442 /* 28443 * This conn is closing, and we are called from ip_close. OR 28444 * This conn has been serviced by ip_wsrv, and we need to do the tail 28445 * processing. 28446 * If this conn is part of the drain list, we may need to sustain the drain 28447 * process by qenabling the next conn in the drain list. We may also need to 28448 * remove this conn from the list, if it is done. 28449 */ 28450 static void 28451 conn_drain_tail(conn_t *connp, boolean_t closing) 28452 { 28453 idl_t *idl; 28454 28455 /* 28456 * connp->conn_idl is stable at this point, and no lock is needed 28457 * to check it. If we are called from ip_close, close has already 28458 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28459 * called us only because conn_idl is non-null. If we are called thru 28460 * service, conn_idl could be null, but it cannot change because 28461 * service is single-threaded per queue, and there cannot be another 28462 * instance of service trying to call conn_drain_insert on this conn 28463 * now. 28464 */ 28465 ASSERT(!closing || (connp->conn_idl != NULL)); 28466 28467 /* 28468 * If connp->conn_idl is null, the conn has not been inserted into any 28469 * drain list even once since creation of the conn. Just return. 28470 */ 28471 if (connp->conn_idl == NULL) 28472 return; 28473 28474 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28475 28476 if (connp->conn_drain_prev == NULL) { 28477 /* This conn is currently not in the drain list. */ 28478 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28479 return; 28480 } 28481 idl = connp->conn_idl; 28482 if (idl->idl_conn_draining == connp) { 28483 /* 28484 * This conn is the current drainer. If this is the last conn 28485 * in the drain list, we need to do more checks, in the 'if' 28486 * below. Otherwwise we need to just qenable the next conn, 28487 * to sustain the draining, and is handled in the 'else' 28488 * below. 28489 */ 28490 if (connp->conn_drain_next == idl->idl_conn) { 28491 /* 28492 * This conn is the last in this list. This round 28493 * of draining is complete. If idl_repeat is set, 28494 * it means another flow enabling has happened from 28495 * the driver/streams and we need to another round 28496 * of draining. 28497 * If there are more than 2 conns in the drain list, 28498 * do a left rotate by 1, so that all conns except the 28499 * conn at the head move towards the head by 1, and the 28500 * the conn at the head goes to the tail. This attempts 28501 * a more even share for all queues that are being 28502 * drained. 28503 */ 28504 if ((connp->conn_drain_next != connp) && 28505 (idl->idl_conn->conn_drain_next != connp)) { 28506 idl->idl_conn = idl->idl_conn->conn_drain_next; 28507 } 28508 if (idl->idl_repeat) { 28509 qenable(idl->idl_conn->conn_wq); 28510 idl->idl_conn_draining = idl->idl_conn; 28511 idl->idl_repeat = 0; 28512 } else { 28513 idl->idl_conn_draining = NULL; 28514 } 28515 } else { 28516 /* 28517 * If the next queue that we are now qenable'ing, 28518 * is closing, it will remove itself from this list 28519 * and qenable the subsequent queue in ip_close(). 28520 * Serialization is acheived thru idl_lock. 28521 */ 28522 qenable(connp->conn_drain_next->conn_wq); 28523 idl->idl_conn_draining = connp->conn_drain_next; 28524 } 28525 } 28526 if (!connp->conn_did_putbq || closing) { 28527 /* 28528 * Remove ourself from the drain list, if we did not do 28529 * a putbq, or if the conn is closing. 28530 * Note: It is possible that q->q_first is non-null. It means 28531 * that these messages landed after we did a enableok() in 28532 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28533 * service them. 28534 */ 28535 if (connp->conn_drain_next == connp) { 28536 /* Singleton in the list */ 28537 ASSERT(connp->conn_drain_prev == connp); 28538 idl->idl_conn = NULL; 28539 idl->idl_conn_draining = NULL; 28540 } else { 28541 connp->conn_drain_prev->conn_drain_next = 28542 connp->conn_drain_next; 28543 connp->conn_drain_next->conn_drain_prev = 28544 connp->conn_drain_prev; 28545 if (idl->idl_conn == connp) 28546 idl->idl_conn = connp->conn_drain_next; 28547 ASSERT(idl->idl_conn_draining != connp); 28548 28549 } 28550 connp->conn_drain_next = NULL; 28551 connp->conn_drain_prev = NULL; 28552 } 28553 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28554 } 28555 28556 /* 28557 * Write service routine. Shared perimeter entry point. 28558 * ip_wsrv can be called in any of the following ways. 28559 * 1. The device queue's messages has fallen below the low water mark 28560 * and STREAMS has backenabled the ill_wq. We walk thru all the 28561 * the drain lists and backenable the first conn in each list. 28562 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28563 * qenabled non-tcp upper layers. We start dequeing messages and call 28564 * ip_wput for each message. 28565 */ 28566 28567 void 28568 ip_wsrv(queue_t *q) 28569 { 28570 conn_t *connp; 28571 ill_t *ill; 28572 mblk_t *mp; 28573 28574 if (q->q_next) { 28575 ill = (ill_t *)q->q_ptr; 28576 if (ill->ill_state_flags == 0) { 28577 /* 28578 * The device flow control has opened up. 28579 * Walk through conn drain lists and qenable the 28580 * first conn in each list. This makes sense only 28581 * if the stream is fully plumbed and setup. 28582 * Hence the if check above. 28583 */ 28584 ip1dbg(("ip_wsrv: walking\n")); 28585 conn_walk_drain(ill->ill_ipst); 28586 } 28587 return; 28588 } 28589 28590 connp = Q_TO_CONN(q); 28591 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28592 28593 /* 28594 * 1. Set conn_draining flag to signal that service is active. 28595 * 28596 * 2. ip_output determines whether it has been called from service, 28597 * based on the last parameter. If it is IP_WSRV it concludes it 28598 * has been called from service. 28599 * 28600 * 3. Message ordering is preserved by the following logic. 28601 * i. A directly called ip_output (i.e. not thru service) will queue 28602 * the message at the tail, if conn_draining is set (i.e. service 28603 * is running) or if q->q_first is non-null. 28604 * 28605 * ii. If ip_output is called from service, and if ip_output cannot 28606 * putnext due to flow control, it does a putbq. 28607 * 28608 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28609 * (causing an infinite loop). 28610 */ 28611 ASSERT(!connp->conn_did_putbq); 28612 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28613 connp->conn_draining = 1; 28614 noenable(q); 28615 while ((mp = getq(q)) != NULL) { 28616 ASSERT(CONN_Q(q)); 28617 28618 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28619 if (connp->conn_did_putbq) { 28620 /* ip_wput did a putbq */ 28621 break; 28622 } 28623 } 28624 /* 28625 * At this point, a thread coming down from top, calling 28626 * ip_wput, may end up queueing the message. We have not yet 28627 * enabled the queue, so ip_wsrv won't be called again. 28628 * To avoid this race, check q->q_first again (in the loop) 28629 * If the other thread queued the message before we call 28630 * enableok(), we will catch it in the q->q_first check. 28631 * If the other thread queues the message after we call 28632 * enableok(), ip_wsrv will be called again by STREAMS. 28633 */ 28634 connp->conn_draining = 0; 28635 enableok(q); 28636 } 28637 28638 /* Enable the next conn for draining */ 28639 conn_drain_tail(connp, B_FALSE); 28640 28641 connp->conn_did_putbq = 0; 28642 } 28643 28644 /* 28645 * Walk the list of all conn's calling the function provided with the 28646 * specified argument for each. Note that this only walks conn's that 28647 * have been bound. 28648 * Applies to both IPv4 and IPv6. 28649 */ 28650 static void 28651 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28652 { 28653 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28654 ipst->ips_ipcl_udp_fanout_size, 28655 func, arg, zoneid); 28656 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28657 ipst->ips_ipcl_conn_fanout_size, 28658 func, arg, zoneid); 28659 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28660 ipst->ips_ipcl_bind_fanout_size, 28661 func, arg, zoneid); 28662 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28663 IPPROTO_MAX, func, arg, zoneid); 28664 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28665 IPPROTO_MAX, func, arg, zoneid); 28666 } 28667 28668 /* 28669 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28670 * of conns that need to be drained, check if drain is already in progress. 28671 * If so set the idl_repeat bit, indicating that the last conn in the list 28672 * needs to reinitiate the drain once again, for the list. If drain is not 28673 * in progress for the list, initiate the draining, by qenabling the 1st 28674 * conn in the list. The drain is self-sustaining, each qenabled conn will 28675 * in turn qenable the next conn, when it is done/blocked/closing. 28676 */ 28677 static void 28678 conn_walk_drain(ip_stack_t *ipst) 28679 { 28680 int i; 28681 idl_t *idl; 28682 28683 IP_STAT(ipst, ip_conn_walk_drain); 28684 28685 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28686 idl = &ipst->ips_conn_drain_list[i]; 28687 mutex_enter(&idl->idl_lock); 28688 if (idl->idl_conn == NULL) { 28689 mutex_exit(&idl->idl_lock); 28690 continue; 28691 } 28692 /* 28693 * If this list is not being drained currently by 28694 * an ip_wsrv thread, start the process. 28695 */ 28696 if (idl->idl_conn_draining == NULL) { 28697 ASSERT(idl->idl_repeat == 0); 28698 qenable(idl->idl_conn->conn_wq); 28699 idl->idl_conn_draining = idl->idl_conn; 28700 } else { 28701 idl->idl_repeat = 1; 28702 } 28703 mutex_exit(&idl->idl_lock); 28704 } 28705 } 28706 28707 /* 28708 * Walk an conn hash table of `count' buckets, calling func for each entry. 28709 */ 28710 static void 28711 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28712 zoneid_t zoneid) 28713 { 28714 conn_t *connp; 28715 28716 while (count-- > 0) { 28717 mutex_enter(&connfp->connf_lock); 28718 for (connp = connfp->connf_head; connp != NULL; 28719 connp = connp->conn_next) { 28720 if (zoneid == GLOBAL_ZONEID || 28721 zoneid == connp->conn_zoneid) { 28722 CONN_INC_REF(connp); 28723 mutex_exit(&connfp->connf_lock); 28724 (*func)(connp, arg); 28725 mutex_enter(&connfp->connf_lock); 28726 CONN_DEC_REF(connp); 28727 } 28728 } 28729 mutex_exit(&connfp->connf_lock); 28730 connfp++; 28731 } 28732 } 28733 28734 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28735 static void 28736 conn_report1(conn_t *connp, void *mp) 28737 { 28738 char buf1[INET6_ADDRSTRLEN]; 28739 char buf2[INET6_ADDRSTRLEN]; 28740 uint_t print_len, buf_len; 28741 28742 ASSERT(connp != NULL); 28743 28744 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28745 if (buf_len <= 0) 28746 return; 28747 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28748 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28749 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28750 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28751 "%5d %s/%05d %s/%05d\n", 28752 (void *)connp, (void *)CONNP_TO_RQ(connp), 28753 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28754 buf1, connp->conn_lport, 28755 buf2, connp->conn_fport); 28756 if (print_len < buf_len) { 28757 ((mblk_t *)mp)->b_wptr += print_len; 28758 } else { 28759 ((mblk_t *)mp)->b_wptr += buf_len; 28760 } 28761 } 28762 28763 /* 28764 * Named Dispatch routine to produce a formatted report on all conns 28765 * that are listed in one of the fanout tables. 28766 * This report is accessed by using the ndd utility to "get" ND variable 28767 * "ip_conn_status". 28768 */ 28769 /* ARGSUSED */ 28770 static int 28771 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28772 { 28773 conn_t *connp = Q_TO_CONN(q); 28774 28775 (void) mi_mpprintf(mp, 28776 "CONN " MI_COL_HDRPAD_STR 28777 "rfq " MI_COL_HDRPAD_STR 28778 "stq " MI_COL_HDRPAD_STR 28779 " zone local remote"); 28780 28781 /* 28782 * Because of the ndd constraint, at most we can have 64K buffer 28783 * to put in all conn info. So to be more efficient, just 28784 * allocate a 64K buffer here, assuming we need that large buffer. 28785 * This should be OK as only privileged processes can do ndd /dev/ip. 28786 */ 28787 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28788 /* The following may work even if we cannot get a large buf. */ 28789 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28790 return (0); 28791 } 28792 28793 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28794 connp->conn_netstack->netstack_ip); 28795 return (0); 28796 } 28797 28798 /* 28799 * Determine if the ill and multicast aspects of that packets 28800 * "matches" the conn. 28801 */ 28802 boolean_t 28803 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28804 zoneid_t zoneid) 28805 { 28806 ill_t *in_ill; 28807 boolean_t found; 28808 ipif_t *ipif; 28809 ire_t *ire; 28810 ipaddr_t dst, src; 28811 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28812 28813 dst = ipha->ipha_dst; 28814 src = ipha->ipha_src; 28815 28816 /* 28817 * conn_incoming_ill is set by IP_BOUND_IF which limits 28818 * unicast, broadcast and multicast reception to 28819 * conn_incoming_ill. conn_wantpacket itself is called 28820 * only for BROADCAST and multicast. 28821 * 28822 * 1) ip_rput supresses duplicate broadcasts if the ill 28823 * is part of a group. Hence, we should be receiving 28824 * just one copy of broadcast for the whole group. 28825 * Thus, if it is part of the group the packet could 28826 * come on any ill of the group and hence we need a 28827 * match on the group. Otherwise, match on ill should 28828 * be sufficient. 28829 * 28830 * 2) ip_rput does not suppress duplicate multicast packets. 28831 * If there are two interfaces in a ill group and we have 28832 * 2 applications (conns) joined a multicast group G on 28833 * both the interfaces, ilm_lookup_ill filter in ip_rput 28834 * will give us two packets because we join G on both the 28835 * interfaces rather than nominating just one interface 28836 * for receiving multicast like broadcast above. So, 28837 * we have to call ilg_lookup_ill to filter out duplicate 28838 * copies, if ill is part of a group. 28839 */ 28840 in_ill = connp->conn_incoming_ill; 28841 if (in_ill != NULL) { 28842 if (in_ill->ill_group == NULL) { 28843 if (in_ill != ill) 28844 return (B_FALSE); 28845 } else if (in_ill->ill_group != ill->ill_group) { 28846 return (B_FALSE); 28847 } 28848 } 28849 28850 if (!CLASSD(dst)) { 28851 if (IPCL_ZONE_MATCH(connp, zoneid)) 28852 return (B_TRUE); 28853 /* 28854 * The conn is in a different zone; we need to check that this 28855 * broadcast address is configured in the application's zone and 28856 * on one ill in the group. 28857 */ 28858 ipif = ipif_get_next_ipif(NULL, ill); 28859 if (ipif == NULL) 28860 return (B_FALSE); 28861 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28862 connp->conn_zoneid, NULL, 28863 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28864 ipif_refrele(ipif); 28865 if (ire != NULL) { 28866 ire_refrele(ire); 28867 return (B_TRUE); 28868 } else { 28869 return (B_FALSE); 28870 } 28871 } 28872 28873 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28874 connp->conn_zoneid == zoneid) { 28875 /* 28876 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28877 * disabled, therefore we don't dispatch the multicast packet to 28878 * the sending zone. 28879 */ 28880 return (B_FALSE); 28881 } 28882 28883 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28884 /* 28885 * Multicast packet on the loopback interface: we only match 28886 * conns who joined the group in the specified zone. 28887 */ 28888 return (B_FALSE); 28889 } 28890 28891 if (connp->conn_multi_router) { 28892 /* multicast packet and multicast router socket: send up */ 28893 return (B_TRUE); 28894 } 28895 28896 mutex_enter(&connp->conn_lock); 28897 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28898 mutex_exit(&connp->conn_lock); 28899 return (found); 28900 } 28901 28902 /* 28903 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28904 */ 28905 /* ARGSUSED */ 28906 static void 28907 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28908 { 28909 ill_t *ill = (ill_t *)q->q_ptr; 28910 mblk_t *mp1, *mp2; 28911 ipif_t *ipif; 28912 int err = 0; 28913 conn_t *connp = NULL; 28914 ipsq_t *ipsq; 28915 arc_t *arc; 28916 28917 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28918 28919 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28920 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28921 28922 ASSERT(IAM_WRITER_ILL(ill)); 28923 mp2 = mp->b_cont; 28924 mp->b_cont = NULL; 28925 28926 /* 28927 * We have now received the arp bringup completion message 28928 * from ARP. Mark the arp bringup as done. Also if the arp 28929 * stream has already started closing, send up the AR_ARP_CLOSING 28930 * ack now since ARP is waiting in close for this ack. 28931 */ 28932 mutex_enter(&ill->ill_lock); 28933 ill->ill_arp_bringup_pending = 0; 28934 if (ill->ill_arp_closing) { 28935 mutex_exit(&ill->ill_lock); 28936 /* Let's reuse the mp for sending the ack */ 28937 arc = (arc_t *)mp->b_rptr; 28938 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28939 arc->arc_cmd = AR_ARP_CLOSING; 28940 qreply(q, mp); 28941 } else { 28942 mutex_exit(&ill->ill_lock); 28943 freeb(mp); 28944 } 28945 28946 ipsq = ill->ill_phyint->phyint_ipsq; 28947 ipif = ipsq->ipsq_pending_ipif; 28948 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28949 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28950 if (mp1 == NULL) { 28951 /* bringup was aborted by the user */ 28952 freemsg(mp2); 28953 return; 28954 } 28955 28956 /* 28957 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28958 * must have an associated conn_t. Otherwise, we're bringing this 28959 * interface back up as part of handling an asynchronous event (e.g., 28960 * physical address change). 28961 */ 28962 if (ipsq->ipsq_current_ioctl != 0) { 28963 ASSERT(connp != NULL); 28964 q = CONNP_TO_WQ(connp); 28965 } else { 28966 ASSERT(connp == NULL); 28967 q = ill->ill_rq; 28968 } 28969 28970 /* 28971 * If the DL_BIND_REQ fails, it is noted 28972 * in arc_name_offset. 28973 */ 28974 err = *((int *)mp2->b_rptr); 28975 if (err == 0) { 28976 if (ipif->ipif_isv6) { 28977 if ((err = ipif_up_done_v6(ipif)) != 0) 28978 ip0dbg(("ip_arp_done: init failed\n")); 28979 } else { 28980 if ((err = ipif_up_done(ipif)) != 0) 28981 ip0dbg(("ip_arp_done: init failed\n")); 28982 } 28983 } else { 28984 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28985 } 28986 28987 freemsg(mp2); 28988 28989 if ((err == 0) && (ill->ill_up_ipifs)) { 28990 err = ill_up_ipifs(ill, q, mp1); 28991 if (err == EINPROGRESS) 28992 return; 28993 } 28994 28995 if (ill->ill_up_ipifs) 28996 ill_group_cleanup(ill); 28997 28998 /* 28999 * The operation must complete without EINPROGRESS since 29000 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29001 * Otherwise, the operation will be stuck forever in the ipsq. 29002 */ 29003 ASSERT(err != EINPROGRESS); 29004 if (ipsq->ipsq_current_ioctl != 0) 29005 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29006 else 29007 ipsq_current_finish(ipsq); 29008 } 29009 29010 /* Allocate the private structure */ 29011 static int 29012 ip_priv_alloc(void **bufp) 29013 { 29014 void *buf; 29015 29016 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29017 return (ENOMEM); 29018 29019 *bufp = buf; 29020 return (0); 29021 } 29022 29023 /* Function to delete the private structure */ 29024 void 29025 ip_priv_free(void *buf) 29026 { 29027 ASSERT(buf != NULL); 29028 kmem_free(buf, sizeof (ip_priv_t)); 29029 } 29030 29031 /* 29032 * The entry point for IPPF processing. 29033 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29034 * routine just returns. 29035 * 29036 * When called, ip_process generates an ipp_packet_t structure 29037 * which holds the state information for this packet and invokes the 29038 * the classifier (via ipp_packet_process). The classification, depending on 29039 * configured filters, results in a list of actions for this packet. Invoking 29040 * an action may cause the packet to be dropped, in which case the resulting 29041 * mblk (*mpp) is NULL. proc indicates the callout position for 29042 * this packet and ill_index is the interface this packet on or will leave 29043 * on (inbound and outbound resp.). 29044 */ 29045 void 29046 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29047 { 29048 mblk_t *mp; 29049 ip_priv_t *priv; 29050 ipp_action_id_t aid; 29051 int rc = 0; 29052 ipp_packet_t *pp; 29053 #define IP_CLASS "ip" 29054 29055 /* If the classifier is not loaded, return */ 29056 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29057 return; 29058 } 29059 29060 mp = *mpp; 29061 ASSERT(mp != NULL); 29062 29063 /* Allocate the packet structure */ 29064 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29065 if (rc != 0) { 29066 *mpp = NULL; 29067 freemsg(mp); 29068 return; 29069 } 29070 29071 /* Allocate the private structure */ 29072 rc = ip_priv_alloc((void **)&priv); 29073 if (rc != 0) { 29074 *mpp = NULL; 29075 freemsg(mp); 29076 ipp_packet_free(pp); 29077 return; 29078 } 29079 priv->proc = proc; 29080 priv->ill_index = ill_index; 29081 ipp_packet_set_private(pp, priv, ip_priv_free); 29082 ipp_packet_set_data(pp, mp); 29083 29084 /* Invoke the classifier */ 29085 rc = ipp_packet_process(&pp); 29086 if (pp != NULL) { 29087 mp = ipp_packet_get_data(pp); 29088 ipp_packet_free(pp); 29089 if (rc != 0) { 29090 freemsg(mp); 29091 *mpp = NULL; 29092 } 29093 } else { 29094 *mpp = NULL; 29095 } 29096 #undef IP_CLASS 29097 } 29098 29099 /* 29100 * Propagate a multicast group membership operation (add/drop) on 29101 * all the interfaces crossed by the related multirt routes. 29102 * The call is considered successful if the operation succeeds 29103 * on at least one interface. 29104 */ 29105 static int 29106 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29107 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29108 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29109 mblk_t *first_mp) 29110 { 29111 ire_t *ire_gw; 29112 irb_t *irb; 29113 int error = 0; 29114 opt_restart_t *or; 29115 ip_stack_t *ipst = ire->ire_ipst; 29116 29117 irb = ire->ire_bucket; 29118 ASSERT(irb != NULL); 29119 29120 ASSERT(DB_TYPE(first_mp) == M_CTL); 29121 29122 or = (opt_restart_t *)first_mp->b_rptr; 29123 IRB_REFHOLD(irb); 29124 for (; ire != NULL; ire = ire->ire_next) { 29125 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29126 continue; 29127 if (ire->ire_addr != group) 29128 continue; 29129 29130 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29131 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29132 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29133 /* No resolver exists for the gateway; skip this ire. */ 29134 if (ire_gw == NULL) 29135 continue; 29136 29137 /* 29138 * This function can return EINPROGRESS. If so the operation 29139 * will be restarted from ip_restart_optmgmt which will 29140 * call ip_opt_set and option processing will restart for 29141 * this option. So we may end up calling 'fn' more than once. 29142 * This requires that 'fn' is idempotent except for the 29143 * return value. The operation is considered a success if 29144 * it succeeds at least once on any one interface. 29145 */ 29146 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29147 NULL, fmode, src, first_mp); 29148 if (error == 0) 29149 or->or_private = CGTP_MCAST_SUCCESS; 29150 29151 if (ip_debug > 0) { 29152 ulong_t off; 29153 char *ksym; 29154 ksym = kobj_getsymname((uintptr_t)fn, &off); 29155 ip2dbg(("ip_multirt_apply_membership: " 29156 "called %s, multirt group 0x%08x via itf 0x%08x, " 29157 "error %d [success %u]\n", 29158 ksym ? ksym : "?", 29159 ntohl(group), ntohl(ire_gw->ire_src_addr), 29160 error, or->or_private)); 29161 } 29162 29163 ire_refrele(ire_gw); 29164 if (error == EINPROGRESS) { 29165 IRB_REFRELE(irb); 29166 return (error); 29167 } 29168 } 29169 IRB_REFRELE(irb); 29170 /* 29171 * Consider the call as successful if we succeeded on at least 29172 * one interface. Otherwise, return the last encountered error. 29173 */ 29174 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29175 } 29176 29177 29178 /* 29179 * Issue a warning regarding a route crossing an interface with an 29180 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29181 * amount of time is logged. 29182 */ 29183 static void 29184 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29185 { 29186 hrtime_t current = gethrtime(); 29187 char buf[INET_ADDRSTRLEN]; 29188 ip_stack_t *ipst = ire->ire_ipst; 29189 29190 /* Convert interval in ms to hrtime in ns */ 29191 if (ipst->ips_multirt_bad_mtu_last_time + 29192 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29193 current) { 29194 cmn_err(CE_WARN, "ip: ignoring multiroute " 29195 "to %s, incorrect MTU %u (expected %u)\n", 29196 ip_dot_addr(ire->ire_addr, buf), 29197 ire->ire_max_frag, max_frag); 29198 29199 ipst->ips_multirt_bad_mtu_last_time = current; 29200 } 29201 } 29202 29203 29204 /* 29205 * Get the CGTP (multirouting) filtering status. 29206 * If 0, the CGTP hooks are transparent. 29207 */ 29208 /* ARGSUSED */ 29209 static int 29210 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29211 { 29212 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29213 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29214 29215 /* 29216 * Only applies to the shared stack since the filter_ops 29217 * do not carry an ip_stack_t or zoneid. 29218 */ 29219 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29220 return (ENOTSUP); 29221 29222 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29223 return (0); 29224 } 29225 29226 29227 /* 29228 * Set the CGTP (multirouting) filtering status. 29229 * If the status is changed from active to transparent 29230 * or from transparent to active, forward the new status 29231 * to the filtering module (if loaded). 29232 */ 29233 /* ARGSUSED */ 29234 static int 29235 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29236 cred_t *ioc_cr) 29237 { 29238 long new_value; 29239 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29240 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29241 29242 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29243 return (EPERM); 29244 29245 /* 29246 * Only applies to the shared stack since the filter_ops 29247 * do not carry an ip_stack_t or zoneid. 29248 */ 29249 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29250 return (ENOTSUP); 29251 29252 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29253 new_value < 0 || new_value > 1) { 29254 return (EINVAL); 29255 } 29256 29257 /* 29258 * Do not enable CGTP filtering - thus preventing the hooks 29259 * from being invoked - if the version number of the 29260 * filtering module hooks does not match. 29261 */ 29262 if ((ip_cgtp_filter_ops != NULL) && 29263 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29264 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29265 "(module hooks version %d, expecting %d)\n", 29266 ip_cgtp_filter_ops->cfo_filter_rev, 29267 CGTP_FILTER_REV); 29268 return (ENOTSUP); 29269 } 29270 29271 if ((!*ip_cgtp_filter_value) && new_value) { 29272 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29273 ip_cgtp_filter_ops == NULL ? 29274 " (module not loaded)" : ""); 29275 } 29276 if (*ip_cgtp_filter_value && (!new_value)) { 29277 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29278 ip_cgtp_filter_ops == NULL ? 29279 " (module not loaded)" : ""); 29280 } 29281 29282 if (ip_cgtp_filter_ops != NULL) { 29283 int res; 29284 29285 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29286 if (res) 29287 return (res); 29288 } 29289 29290 *ip_cgtp_filter_value = (boolean_t)new_value; 29291 29292 return (0); 29293 } 29294 29295 29296 /* 29297 * Return the expected CGTP hooks version number. 29298 */ 29299 int 29300 ip_cgtp_filter_supported(void) 29301 { 29302 ip_stack_t *ipst; 29303 int ret; 29304 29305 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29306 if (ipst == NULL) 29307 return (-1); 29308 ret = ip_cgtp_filter_rev; 29309 netstack_rele(ipst->ips_netstack); 29310 return (ret); 29311 } 29312 29313 29314 /* 29315 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29316 * or by invoking this function. In the first case, the version number 29317 * of the registered structure is checked at hooks activation time 29318 * in ip_cgtp_filter_set(). 29319 * 29320 * Only applies to the shared stack since the filter_ops 29321 * do not carry an ip_stack_t or zoneid. 29322 */ 29323 int 29324 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29325 { 29326 ip_stack_t *ipst; 29327 29328 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29329 return (ENOTSUP); 29330 29331 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29332 if (ipst == NULL) 29333 return (EINVAL); 29334 29335 ip_cgtp_filter_ops = ops; 29336 netstack_rele(ipst->ips_netstack); 29337 return (0); 29338 } 29339 29340 static squeue_func_t 29341 ip_squeue_switch(int val) 29342 { 29343 squeue_func_t rval = squeue_fill; 29344 29345 switch (val) { 29346 case IP_SQUEUE_ENTER_NODRAIN: 29347 rval = squeue_enter_nodrain; 29348 break; 29349 case IP_SQUEUE_ENTER: 29350 rval = squeue_enter; 29351 break; 29352 default: 29353 break; 29354 } 29355 return (rval); 29356 } 29357 29358 /* ARGSUSED */ 29359 static int 29360 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29361 caddr_t addr, cred_t *cr) 29362 { 29363 int *v = (int *)addr; 29364 long new_value; 29365 29366 if (secpolicy_net_config(cr, B_FALSE) != 0) 29367 return (EPERM); 29368 29369 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29370 return (EINVAL); 29371 29372 ip_input_proc = ip_squeue_switch(new_value); 29373 *v = new_value; 29374 return (0); 29375 } 29376 29377 /* ARGSUSED */ 29378 static int 29379 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29380 caddr_t addr, cred_t *cr) 29381 { 29382 int *v = (int *)addr; 29383 long new_value; 29384 29385 if (secpolicy_net_config(cr, B_FALSE) != 0) 29386 return (EPERM); 29387 29388 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29389 return (EINVAL); 29390 29391 *v = new_value; 29392 return (0); 29393 } 29394 29395 /* 29396 * Handle changes to ipmp_hook_emulation ndd variable. 29397 * Need to update phyint_hook_ifindex. 29398 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29399 */ 29400 static void 29401 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29402 { 29403 phyint_t *phyi; 29404 phyint_t *phyi_tmp; 29405 char *groupname; 29406 int namelen; 29407 ill_t *ill; 29408 boolean_t new_group; 29409 29410 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29411 /* 29412 * Group indicies are stored in the phyint - a common structure 29413 * to both IPv4 and IPv6. 29414 */ 29415 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29416 for (; phyi != NULL; 29417 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29418 phyi, AVL_AFTER)) { 29419 /* Ignore the ones that do not have a group */ 29420 if (phyi->phyint_groupname_len == 0) 29421 continue; 29422 29423 /* 29424 * Look for other phyint in group. 29425 * Clear name/namelen so the lookup doesn't find ourselves. 29426 */ 29427 namelen = phyi->phyint_groupname_len; 29428 groupname = phyi->phyint_groupname; 29429 phyi->phyint_groupname_len = 0; 29430 phyi->phyint_groupname = NULL; 29431 29432 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29433 /* Restore */ 29434 phyi->phyint_groupname_len = namelen; 29435 phyi->phyint_groupname = groupname; 29436 29437 new_group = B_FALSE; 29438 if (ipst->ips_ipmp_hook_emulation) { 29439 /* 29440 * If the group already exists and has already 29441 * been assigned a group ifindex, we use the existing 29442 * group_ifindex, otherwise we pick a new group_ifindex 29443 * here. 29444 */ 29445 if (phyi_tmp != NULL && 29446 phyi_tmp->phyint_group_ifindex != 0) { 29447 phyi->phyint_group_ifindex = 29448 phyi_tmp->phyint_group_ifindex; 29449 } else { 29450 /* XXX We need a recovery strategy here. */ 29451 if (!ip_assign_ifindex( 29452 &phyi->phyint_group_ifindex, ipst)) 29453 cmn_err(CE_PANIC, 29454 "ip_assign_ifindex() failed"); 29455 new_group = B_TRUE; 29456 } 29457 } else { 29458 phyi->phyint_group_ifindex = 0; 29459 } 29460 if (ipst->ips_ipmp_hook_emulation) 29461 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29462 else 29463 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29464 29465 /* 29466 * For IP Filter to find out the relationship between 29467 * names and interface indicies, we need to generate 29468 * a NE_PLUMB event when a new group can appear. 29469 * We always generate events when a new interface appears 29470 * (even when ipmp_hook_emulation is set) so there 29471 * is no need to generate NE_PLUMB events when 29472 * ipmp_hook_emulation is turned off. 29473 * And since it isn't critical for IP Filter to get 29474 * the NE_UNPLUMB events we skip those here. 29475 */ 29476 if (new_group) { 29477 /* 29478 * First phyint in group - generate group PLUMB event. 29479 * Since we are not running inside the ipsq we do 29480 * the dispatch immediately. 29481 */ 29482 if (phyi->phyint_illv4 != NULL) 29483 ill = phyi->phyint_illv4; 29484 else 29485 ill = phyi->phyint_illv6; 29486 29487 if (ill != NULL) { 29488 mutex_enter(&ill->ill_lock); 29489 ill_nic_info_plumb(ill, B_TRUE); 29490 ill_nic_info_dispatch(ill); 29491 mutex_exit(&ill->ill_lock); 29492 } 29493 } 29494 } 29495 rw_exit(&ipst->ips_ill_g_lock); 29496 } 29497 29498 /* ARGSUSED */ 29499 static int 29500 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29501 caddr_t addr, cred_t *cr) 29502 { 29503 int *v = (int *)addr; 29504 long new_value; 29505 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29506 29507 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29508 return (EINVAL); 29509 29510 if (*v != new_value) { 29511 *v = new_value; 29512 ipmp_hook_emulation_changed(ipst); 29513 } 29514 return (0); 29515 } 29516 29517 static void * 29518 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29519 { 29520 kstat_t *ksp; 29521 29522 ip_stat_t template = { 29523 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29524 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29525 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29526 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29527 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29528 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29529 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29530 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29531 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29532 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29533 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29534 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29535 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29536 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29537 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29538 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29539 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29540 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29541 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29542 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29543 { "ip_opt", KSTAT_DATA_UINT64 }, 29544 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29545 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29546 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29547 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29548 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29549 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29550 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29551 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29552 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29553 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29554 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29555 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29556 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29557 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29558 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29559 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29560 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29561 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29562 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29563 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29564 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29565 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29566 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29567 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29568 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29569 }; 29570 29571 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29572 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29573 KSTAT_FLAG_VIRTUAL, stackid); 29574 29575 if (ksp == NULL) 29576 return (NULL); 29577 29578 bcopy(&template, ip_statisticsp, sizeof (template)); 29579 ksp->ks_data = (void *)ip_statisticsp; 29580 ksp->ks_private = (void *)(uintptr_t)stackid; 29581 29582 kstat_install(ksp); 29583 return (ksp); 29584 } 29585 29586 static void 29587 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29588 { 29589 if (ksp != NULL) { 29590 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29591 kstat_delete_netstack(ksp, stackid); 29592 } 29593 } 29594 29595 static void * 29596 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29597 { 29598 kstat_t *ksp; 29599 29600 ip_named_kstat_t template = { 29601 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29602 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29603 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29604 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29605 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29606 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29607 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29608 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29609 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29610 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29611 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29612 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29613 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29614 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29615 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29616 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29617 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29618 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29619 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29620 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29621 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29622 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29623 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29624 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29625 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29626 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29627 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29628 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29629 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29630 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29631 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29632 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29633 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29634 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29635 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29636 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29637 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29638 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29639 }; 29640 29641 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29642 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29643 if (ksp == NULL || ksp->ks_data == NULL) 29644 return (NULL); 29645 29646 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29647 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29648 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29649 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29650 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29651 29652 template.netToMediaEntrySize.value.i32 = 29653 sizeof (mib2_ipNetToMediaEntry_t); 29654 29655 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29656 29657 bcopy(&template, ksp->ks_data, sizeof (template)); 29658 ksp->ks_update = ip_kstat_update; 29659 ksp->ks_private = (void *)(uintptr_t)stackid; 29660 29661 kstat_install(ksp); 29662 return (ksp); 29663 } 29664 29665 static void 29666 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29667 { 29668 if (ksp != NULL) { 29669 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29670 kstat_delete_netstack(ksp, stackid); 29671 } 29672 } 29673 29674 static int 29675 ip_kstat_update(kstat_t *kp, int rw) 29676 { 29677 ip_named_kstat_t *ipkp; 29678 mib2_ipIfStatsEntry_t ipmib; 29679 ill_walk_context_t ctx; 29680 ill_t *ill; 29681 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29682 netstack_t *ns; 29683 ip_stack_t *ipst; 29684 29685 if (kp == NULL || kp->ks_data == NULL) 29686 return (EIO); 29687 29688 if (rw == KSTAT_WRITE) 29689 return (EACCES); 29690 29691 ns = netstack_find_by_stackid(stackid); 29692 if (ns == NULL) 29693 return (-1); 29694 ipst = ns->netstack_ip; 29695 if (ipst == NULL) { 29696 netstack_rele(ns); 29697 return (-1); 29698 } 29699 ipkp = (ip_named_kstat_t *)kp->ks_data; 29700 29701 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29702 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29703 ill = ILL_START_WALK_V4(&ctx, ipst); 29704 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29705 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29706 rw_exit(&ipst->ips_ill_g_lock); 29707 29708 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29709 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29710 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29711 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29712 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29713 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29714 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29715 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29716 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29717 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29718 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29719 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29720 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29721 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29722 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29723 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29724 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29725 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29726 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29727 29728 ipkp->routingDiscards.value.ui32 = 0; 29729 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29730 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29731 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29732 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29733 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29734 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29735 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29736 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29737 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29738 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29739 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29740 29741 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29742 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29743 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29744 29745 netstack_rele(ns); 29746 29747 return (0); 29748 } 29749 29750 static void * 29751 icmp_kstat_init(netstackid_t stackid) 29752 { 29753 kstat_t *ksp; 29754 29755 icmp_named_kstat_t template = { 29756 { "inMsgs", KSTAT_DATA_UINT32 }, 29757 { "inErrors", KSTAT_DATA_UINT32 }, 29758 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29759 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29760 { "inParmProbs", KSTAT_DATA_UINT32 }, 29761 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29762 { "inRedirects", KSTAT_DATA_UINT32 }, 29763 { "inEchos", KSTAT_DATA_UINT32 }, 29764 { "inEchoReps", KSTAT_DATA_UINT32 }, 29765 { "inTimestamps", KSTAT_DATA_UINT32 }, 29766 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29767 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29768 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29769 { "outMsgs", KSTAT_DATA_UINT32 }, 29770 { "outErrors", KSTAT_DATA_UINT32 }, 29771 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29772 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29773 { "outParmProbs", KSTAT_DATA_UINT32 }, 29774 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29775 { "outRedirects", KSTAT_DATA_UINT32 }, 29776 { "outEchos", KSTAT_DATA_UINT32 }, 29777 { "outEchoReps", KSTAT_DATA_UINT32 }, 29778 { "outTimestamps", KSTAT_DATA_UINT32 }, 29779 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29780 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29781 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29782 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29783 { "inUnknowns", KSTAT_DATA_UINT32 }, 29784 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29785 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29786 { "outDrops", KSTAT_DATA_UINT32 }, 29787 { "inOverFlows", KSTAT_DATA_UINT32 }, 29788 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29789 }; 29790 29791 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29792 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29793 if (ksp == NULL || ksp->ks_data == NULL) 29794 return (NULL); 29795 29796 bcopy(&template, ksp->ks_data, sizeof (template)); 29797 29798 ksp->ks_update = icmp_kstat_update; 29799 ksp->ks_private = (void *)(uintptr_t)stackid; 29800 29801 kstat_install(ksp); 29802 return (ksp); 29803 } 29804 29805 static void 29806 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29807 { 29808 if (ksp != NULL) { 29809 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29810 kstat_delete_netstack(ksp, stackid); 29811 } 29812 } 29813 29814 static int 29815 icmp_kstat_update(kstat_t *kp, int rw) 29816 { 29817 icmp_named_kstat_t *icmpkp; 29818 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29819 netstack_t *ns; 29820 ip_stack_t *ipst; 29821 29822 if ((kp == NULL) || (kp->ks_data == NULL)) 29823 return (EIO); 29824 29825 if (rw == KSTAT_WRITE) 29826 return (EACCES); 29827 29828 ns = netstack_find_by_stackid(stackid); 29829 if (ns == NULL) 29830 return (-1); 29831 ipst = ns->netstack_ip; 29832 if (ipst == NULL) { 29833 netstack_rele(ns); 29834 return (-1); 29835 } 29836 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29837 29838 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29839 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29840 icmpkp->inDestUnreachs.value.ui32 = 29841 ipst->ips_icmp_mib.icmpInDestUnreachs; 29842 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29843 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29844 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29845 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29846 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29847 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29848 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29849 icmpkp->inTimestampReps.value.ui32 = 29850 ipst->ips_icmp_mib.icmpInTimestampReps; 29851 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29852 icmpkp->inAddrMaskReps.value.ui32 = 29853 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29854 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29855 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29856 icmpkp->outDestUnreachs.value.ui32 = 29857 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29858 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29859 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29860 icmpkp->outSrcQuenchs.value.ui32 = 29861 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29862 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29863 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29864 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29865 icmpkp->outTimestamps.value.ui32 = 29866 ipst->ips_icmp_mib.icmpOutTimestamps; 29867 icmpkp->outTimestampReps.value.ui32 = 29868 ipst->ips_icmp_mib.icmpOutTimestampReps; 29869 icmpkp->outAddrMasks.value.ui32 = 29870 ipst->ips_icmp_mib.icmpOutAddrMasks; 29871 icmpkp->outAddrMaskReps.value.ui32 = 29872 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29873 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29874 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29875 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29876 icmpkp->outFragNeeded.value.ui32 = 29877 ipst->ips_icmp_mib.icmpOutFragNeeded; 29878 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29879 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29880 icmpkp->inBadRedirects.value.ui32 = 29881 ipst->ips_icmp_mib.icmpInBadRedirects; 29882 29883 netstack_rele(ns); 29884 return (0); 29885 } 29886 29887 /* 29888 * This is the fanout function for raw socket opened for SCTP. Note 29889 * that it is called after SCTP checks that there is no socket which 29890 * wants a packet. Then before SCTP handles this out of the blue packet, 29891 * this function is called to see if there is any raw socket for SCTP. 29892 * If there is and it is bound to the correct address, the packet will 29893 * be sent to that socket. Note that only one raw socket can be bound to 29894 * a port. This is assured in ipcl_sctp_hash_insert(); 29895 */ 29896 void 29897 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29898 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29899 zoneid_t zoneid) 29900 { 29901 conn_t *connp; 29902 queue_t *rq; 29903 mblk_t *first_mp; 29904 boolean_t secure; 29905 ip6_t *ip6h; 29906 ip_stack_t *ipst = recv_ill->ill_ipst; 29907 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29908 29909 first_mp = mp; 29910 if (mctl_present) { 29911 mp = first_mp->b_cont; 29912 secure = ipsec_in_is_secure(first_mp); 29913 ASSERT(mp != NULL); 29914 } else { 29915 secure = B_FALSE; 29916 } 29917 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29918 29919 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29920 if (connp == NULL) { 29921 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29922 return; 29923 } 29924 rq = connp->conn_rq; 29925 if (!canputnext(rq)) { 29926 CONN_DEC_REF(connp); 29927 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29928 freemsg(first_mp); 29929 return; 29930 } 29931 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29932 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29933 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29934 (isv4 ? ipha : NULL), ip6h, mctl_present); 29935 if (first_mp == NULL) { 29936 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29937 CONN_DEC_REF(connp); 29938 return; 29939 } 29940 } 29941 /* 29942 * We probably should not send M_CTL message up to 29943 * raw socket. 29944 */ 29945 if (mctl_present) 29946 freeb(first_mp); 29947 29948 /* Initiate IPPF processing here if needed. */ 29949 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29950 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29951 ip_process(IPP_LOCAL_IN, &mp, 29952 recv_ill->ill_phyint->phyint_ifindex); 29953 if (mp == NULL) { 29954 CONN_DEC_REF(connp); 29955 return; 29956 } 29957 } 29958 29959 if (connp->conn_recvif || connp->conn_recvslla || 29960 ((connp->conn_ip_recvpktinfo || 29961 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29962 (flags & IP_FF_IPINFO))) { 29963 int in_flags = 0; 29964 29965 /* 29966 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29967 * IPF_RECVIF. 29968 */ 29969 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29970 in_flags = IPF_RECVIF; 29971 } 29972 if (connp->conn_recvslla) { 29973 in_flags |= IPF_RECVSLLA; 29974 } 29975 if (isv4) { 29976 mp = ip_add_info(mp, recv_ill, in_flags, 29977 IPCL_ZONEID(connp), ipst); 29978 } else { 29979 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29980 if (mp == NULL) { 29981 BUMP_MIB(recv_ill->ill_ip_mib, 29982 ipIfStatsInDiscards); 29983 CONN_DEC_REF(connp); 29984 return; 29985 } 29986 } 29987 } 29988 29989 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29990 /* 29991 * We are sending the IPSEC_IN message also up. Refer 29992 * to comments above this function. 29993 */ 29994 putnext(rq, mp); 29995 CONN_DEC_REF(connp); 29996 } 29997 29998 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29999 { \ 30000 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30001 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30002 } 30003 /* 30004 * This function should be called only if all packet processing 30005 * including fragmentation is complete. Callers of this function 30006 * must set mp->b_prev to one of these values: 30007 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30008 * prior to handing over the mp as first argument to this function. 30009 * 30010 * If the ire passed by caller is incomplete, this function 30011 * queues the packet and if necessary, sends ARP request and bails. 30012 * If the ire passed is fully resolved, we simply prepend 30013 * the link-layer header to the packet, do ipsec hw acceleration 30014 * work if necessary, and send the packet out on the wire. 30015 * 30016 * NOTE: IPSEC will only call this function with fully resolved 30017 * ires if hw acceleration is involved. 30018 * TODO list : 30019 * a Handle M_MULTIDATA so that 30020 * tcp_multisend->tcp_multisend_data can 30021 * call ip_xmit_v4 directly 30022 * b Handle post-ARP work for fragments so that 30023 * ip_wput_frag can call this function. 30024 */ 30025 ipxmit_state_t 30026 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30027 { 30028 nce_t *arpce; 30029 queue_t *q; 30030 int ill_index; 30031 mblk_t *nxt_mp, *first_mp; 30032 boolean_t xmit_drop = B_FALSE; 30033 ip_proc_t proc; 30034 ill_t *out_ill; 30035 int pkt_len; 30036 30037 arpce = ire->ire_nce; 30038 ASSERT(arpce != NULL); 30039 30040 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30041 30042 mutex_enter(&arpce->nce_lock); 30043 switch (arpce->nce_state) { 30044 case ND_REACHABLE: 30045 /* If there are other queued packets, queue this packet */ 30046 if (arpce->nce_qd_mp != NULL) { 30047 if (mp != NULL) 30048 nce_queue_mp_common(arpce, mp, B_FALSE); 30049 mp = arpce->nce_qd_mp; 30050 } 30051 arpce->nce_qd_mp = NULL; 30052 mutex_exit(&arpce->nce_lock); 30053 30054 /* 30055 * Flush the queue. In the common case, where the 30056 * ARP is already resolved, it will go through the 30057 * while loop only once. 30058 */ 30059 while (mp != NULL) { 30060 30061 nxt_mp = mp->b_next; 30062 mp->b_next = NULL; 30063 ASSERT(mp->b_datap->db_type != M_CTL); 30064 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30065 /* 30066 * This info is needed for IPQOS to do COS marking 30067 * in ip_wput_attach_llhdr->ip_process. 30068 */ 30069 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30070 mp->b_prev = NULL; 30071 30072 /* set up ill index for outbound qos processing */ 30073 out_ill = ire->ire_ipif->ipif_ill; 30074 ill_index = out_ill->ill_phyint->phyint_ifindex; 30075 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30076 ill_index); 30077 if (first_mp == NULL) { 30078 xmit_drop = B_TRUE; 30079 BUMP_MIB(out_ill->ill_ip_mib, 30080 ipIfStatsOutDiscards); 30081 goto next_mp; 30082 } 30083 /* non-ipsec hw accel case */ 30084 if (io == NULL || !io->ipsec_out_accelerated) { 30085 /* send it */ 30086 q = ire->ire_stq; 30087 if (proc == IPP_FWD_OUT) { 30088 UPDATE_IB_PKT_COUNT(ire); 30089 } else { 30090 UPDATE_OB_PKT_COUNT(ire); 30091 } 30092 ire->ire_last_used_time = lbolt; 30093 30094 if (flow_ctl_enabled || canputnext(q)) { 30095 if (proc == IPP_FWD_OUT) { 30096 30097 BUMP_MIB(out_ill->ill_ip_mib, 30098 ipIfStatsHCOutForwDatagrams); 30099 30100 } 30101 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30102 pkt_len); 30103 30104 putnext(q, first_mp); 30105 } else { 30106 BUMP_MIB(out_ill->ill_ip_mib, 30107 ipIfStatsOutDiscards); 30108 xmit_drop = B_TRUE; 30109 freemsg(first_mp); 30110 } 30111 } else { 30112 /* 30113 * Safety Pup says: make sure this 30114 * is going to the right interface! 30115 */ 30116 ill_t *ill1 = 30117 (ill_t *)ire->ire_stq->q_ptr; 30118 int ifindex = 30119 ill1->ill_phyint->phyint_ifindex; 30120 if (ifindex != 30121 io->ipsec_out_capab_ill_index) { 30122 xmit_drop = B_TRUE; 30123 freemsg(mp); 30124 } else { 30125 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30126 pkt_len); 30127 ipsec_hw_putnext(ire->ire_stq, mp); 30128 } 30129 } 30130 next_mp: 30131 mp = nxt_mp; 30132 } /* while (mp != NULL) */ 30133 if (xmit_drop) 30134 return (SEND_FAILED); 30135 else 30136 return (SEND_PASSED); 30137 30138 case ND_INITIAL: 30139 case ND_INCOMPLETE: 30140 30141 /* 30142 * While we do send off packets to dests that 30143 * use fully-resolved CGTP routes, we do not 30144 * handle unresolved CGTP routes. 30145 */ 30146 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30147 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30148 30149 if (mp != NULL) { 30150 /* queue the packet */ 30151 nce_queue_mp_common(arpce, mp, B_FALSE); 30152 } 30153 30154 if (arpce->nce_state == ND_INCOMPLETE) { 30155 mutex_exit(&arpce->nce_lock); 30156 DTRACE_PROBE3(ip__xmit__incomplete, 30157 (ire_t *), ire, (mblk_t *), mp, 30158 (ipsec_out_t *), io); 30159 return (LOOKUP_IN_PROGRESS); 30160 } 30161 30162 arpce->nce_state = ND_INCOMPLETE; 30163 mutex_exit(&arpce->nce_lock); 30164 /* 30165 * Note that ire_add() (called from ire_forward()) 30166 * holds a ref on the ire until ARP is completed. 30167 */ 30168 30169 ire_arpresolve(ire, ire_to_ill(ire)); 30170 return (LOOKUP_IN_PROGRESS); 30171 default: 30172 ASSERT(0); 30173 mutex_exit(&arpce->nce_lock); 30174 return (LLHDR_RESLV_FAILED); 30175 } 30176 } 30177 30178 #undef UPDATE_IP_MIB_OB_COUNTERS 30179 30180 /* 30181 * Return B_TRUE if the buffers differ in length or content. 30182 * This is used for comparing extension header buffers. 30183 * Note that an extension header would be declared different 30184 * even if all that changed was the next header value in that header i.e. 30185 * what really changed is the next extension header. 30186 */ 30187 boolean_t 30188 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30189 uint_t blen) 30190 { 30191 if (!b_valid) 30192 blen = 0; 30193 30194 if (alen != blen) 30195 return (B_TRUE); 30196 if (alen == 0) 30197 return (B_FALSE); /* Both zero length */ 30198 return (bcmp(abuf, bbuf, alen)); 30199 } 30200 30201 /* 30202 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30203 * Return B_FALSE if memory allocation fails - don't change any state! 30204 */ 30205 boolean_t 30206 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30207 const void *src, uint_t srclen) 30208 { 30209 void *dst; 30210 30211 if (!src_valid) 30212 srclen = 0; 30213 30214 ASSERT(*dstlenp == 0); 30215 if (src != NULL && srclen != 0) { 30216 dst = mi_alloc(srclen, BPRI_MED); 30217 if (dst == NULL) 30218 return (B_FALSE); 30219 } else { 30220 dst = NULL; 30221 } 30222 if (*dstp != NULL) 30223 mi_free(*dstp); 30224 *dstp = dst; 30225 *dstlenp = dst == NULL ? 0 : srclen; 30226 return (B_TRUE); 30227 } 30228 30229 /* 30230 * Replace what is in *dst, *dstlen with the source. 30231 * Assumes ip_allocbuf has already been called. 30232 */ 30233 void 30234 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30235 const void *src, uint_t srclen) 30236 { 30237 if (!src_valid) 30238 srclen = 0; 30239 30240 ASSERT(*dstlenp == srclen); 30241 if (src != NULL && srclen != 0) 30242 bcopy(src, *dstp, srclen); 30243 } 30244 30245 /* 30246 * Free the storage pointed to by the members of an ip6_pkt_t. 30247 */ 30248 void 30249 ip6_pkt_free(ip6_pkt_t *ipp) 30250 { 30251 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30252 30253 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30254 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30255 ipp->ipp_hopopts = NULL; 30256 ipp->ipp_hopoptslen = 0; 30257 } 30258 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30259 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30260 ipp->ipp_rtdstopts = NULL; 30261 ipp->ipp_rtdstoptslen = 0; 30262 } 30263 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30264 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30265 ipp->ipp_dstopts = NULL; 30266 ipp->ipp_dstoptslen = 0; 30267 } 30268 if (ipp->ipp_fields & IPPF_RTHDR) { 30269 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30270 ipp->ipp_rthdr = NULL; 30271 ipp->ipp_rthdrlen = 0; 30272 } 30273 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30274 IPPF_RTHDR); 30275 } 30276