1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 138 typedef struct ip_stat { 139 kstat_named_t ipsec_fanout_proto; 140 kstat_named_t ip_udp_fannorm; 141 kstat_named_t ip_udp_fanmb; 142 kstat_named_t ip_udp_fanothers; 143 kstat_named_t ip_udp_fast_path; 144 kstat_named_t ip_udp_slow_path; 145 kstat_named_t ip_udp_input_err; 146 kstat_named_t ip_tcppullup; 147 kstat_named_t ip_tcpoptions; 148 kstat_named_t ip_multipkttcp; 149 kstat_named_t ip_tcp_fast_path; 150 kstat_named_t ip_tcp_slow_path; 151 kstat_named_t ip_tcp_input_error; 152 kstat_named_t ip_db_ref; 153 kstat_named_t ip_notaligned1; 154 kstat_named_t ip_notaligned2; 155 kstat_named_t ip_multimblk3; 156 kstat_named_t ip_multimblk4; 157 kstat_named_t ip_ipoptions; 158 kstat_named_t ip_classify_fail; 159 kstat_named_t ip_opt; 160 kstat_named_t ip_udp_rput_local; 161 kstat_named_t ipsec_proto_ahesp; 162 kstat_named_t ip_conn_flputbq; 163 kstat_named_t ip_conn_walk_drain; 164 kstat_named_t ip_out_sw_cksum; 165 kstat_named_t ip_in_sw_cksum; 166 kstat_named_t ip_trash_ire_reclaim_calls; 167 kstat_named_t ip_trash_ire_reclaim_success; 168 kstat_named_t ip_ire_arp_timer_expired; 169 kstat_named_t ip_ire_redirect_timer_expired; 170 kstat_named_t ip_ire_pmtu_timer_expired; 171 kstat_named_t ip_input_multi_squeue; 172 kstat_named_t ip_tcp_in_full_hw_cksum_err; 173 kstat_named_t ip_tcp_in_part_hw_cksum_err; 174 kstat_named_t ip_tcp_in_sw_cksum_err; 175 kstat_named_t ip_tcp_out_sw_cksum_bytes; 176 kstat_named_t ip_udp_in_full_hw_cksum_err; 177 kstat_named_t ip_udp_in_part_hw_cksum_err; 178 kstat_named_t ip_udp_in_sw_cksum_err; 179 kstat_named_t ip_udp_out_sw_cksum_bytes; 180 kstat_named_t ip_frag_mdt_pkt_out; 181 kstat_named_t ip_frag_mdt_discarded; 182 kstat_named_t ip_frag_mdt_allocfail; 183 kstat_named_t ip_frag_mdt_addpdescfail; 184 kstat_named_t ip_frag_mdt_allocd; 185 } ip_stat_t; 186 187 static ip_stat_t ip_statistics = { 188 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 189 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 193 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 195 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 196 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 197 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 198 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 201 { "ip_db_ref", KSTAT_DATA_UINT64 }, 202 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 204 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 206 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 207 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 208 { "ip_opt", KSTAT_DATA_UINT64 }, 209 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 210 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 211 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 212 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 213 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 214 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 217 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 218 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 221 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 225 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 234 }; 235 236 static kstat_t *ip_kstat; 237 238 #define TCP6 "tcp6" 239 #define TCP "tcp" 240 #define SCTP "sctp" 241 #define SCTP6 "sctp6" 242 243 major_t TCP6_MAJ; 244 major_t TCP_MAJ; 245 major_t SCTP_MAJ; 246 major_t SCTP6_MAJ; 247 248 int ip_poll_normal_ms = 100; 249 int ip_poll_normal_ticks = 0; 250 251 /* 252 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 253 */ 254 255 struct listptr_s { 256 mblk_t *lp_head; /* pointer to the head of the list */ 257 mblk_t *lp_tail; /* pointer to the tail of the list */ 258 }; 259 260 typedef struct listptr_s listptr_t; 261 262 /* 263 * This is used by ip_snmp_get_mib2_ip_route_media and 264 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 265 */ 266 typedef struct iproutedata_s { 267 uint_t ird_idx; 268 listptr_t ird_route; /* ipRouteEntryTable */ 269 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 270 listptr_t ird_attrs; /* ipRouteAttributeTable */ 271 } iproutedata_t; 272 273 /* 274 * Cluster specific hooks. These should be NULL when booted as a non-cluster 275 */ 276 277 /* 278 * Hook functions to enable cluster networking 279 * On non-clustered systems these vectors must always be NULL. 280 * 281 * Hook function to Check ip specified ip address is a shared ip address 282 * in the cluster 283 * 284 */ 285 int (*cl_inet_isclusterwide)(uint8_t protocol, 286 sa_family_t addr_family, uint8_t *laddrp) = NULL; 287 288 /* 289 * Hook function to generate cluster wide ip fragment identifier 290 */ 291 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 292 uint8_t *laddrp, uint8_t *faddrp) = NULL; 293 294 /* 295 * Synchronization notes: 296 * 297 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 298 * MT level protection given by STREAMS. IP uses a combination of its own 299 * internal serialization mechanism and standard Solaris locking techniques. 300 * The internal serialization is per phyint (no IPMP) or per IPMP group. 301 * This is used to serialize plumbing operations, IPMP operations, certain 302 * multicast operations, most set ioctls, igmp/mld timers etc. 303 * 304 * Plumbing is a long sequence of operations involving message 305 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 306 * involved in plumbing operations. A natural model is to serialize these 307 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 308 * parallel without any interference. But various set ioctls on hme0 are best 309 * serialized. However if the system uses IPMP, the operations are easier if 310 * they are serialized on a per IPMP group basis since IPMP operations 311 * happen across ill's of a group. Thus the lowest common denominator is to 312 * serialize most set ioctls, multicast join/leave operations, IPMP operations 313 * igmp/mld timer operations, and processing of DLPI control messages received 314 * from drivers on a per IPMP group basis. If the system does not employ 315 * IPMP the serialization is on a per phyint basis. This serialization is 316 * provided by the ipsq_t and primitives operating on this. Details can 317 * be found in ip_if.c above the core primitives operating on ipsq_t. 318 * 319 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 320 * Simiarly lookup of an ire by a thread also returns a refheld ire. 321 * In addition ipif's and ill's referenced by the ire are also indirectly 322 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 323 * the ipif's address or netmask change as long as an ipif is refheld 324 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 325 * address of an ipif has to go through the ipsq_t. This ensures that only 326 * 1 such exclusive operation proceeds at any time on the ipif. It then 327 * deletes all ires associated with this ipif, and waits for all refcnts 328 * associated with this ipif to come down to zero. The address is changed 329 * only after the ipif has been quiesced. Then the ipif is brought up again. 330 * More details are described above the comment in ip_sioctl_flags. 331 * 332 * Packet processing is based mostly on IREs and are fully multi-threaded 333 * using standard Solaris MT techniques. 334 * 335 * There are explicit locks in IP to handle: 336 * - The ip_g_head list maintained by mi_open_link() and friends. 337 * 338 * - The reassembly data structures (one lock per hash bucket) 339 * 340 * - conn_lock is meant to protect conn_t fields. The fields actually 341 * protected by conn_lock are documented in the conn_t definition. 342 * 343 * - ire_lock to protect some of the fields of the ire, IRE tables 344 * (one lock per hash bucket). Refer to ip_ire.c for details. 345 * 346 * - ndp_g_lock and nce_lock for protecting NCEs. 347 * 348 * - ill_lock protects fields of the ill and ipif. Details in ip.h 349 * 350 * - ill_g_lock: This is a global reader/writer lock. Protects the following 351 * * The AVL tree based global multi list of all ills. 352 * * The linked list of all ipifs of an ill 353 * * The <ill-ipsq> mapping 354 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 355 * * The illgroup list threaded by ill_group_next. 356 * * <ill-phyint> association 357 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 358 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 359 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 360 * will all have to hold the ill_g_lock as writer for the actual duration 361 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 362 * may be found in the IPMP section. 363 * 364 * - ill_lock: This is a per ill mutex. 365 * It protects some members of the ill and is documented below. 366 * It also protects the <ill-ipsq> mapping 367 * It also protects the illgroup list threaded by ill_group_next. 368 * It also protects the <ill-phyint> assoc. 369 * It also protects the list of ipifs hanging off the ill. 370 * 371 * - ipsq_lock: This is a per ipsq_t mutex lock. 372 * This protects all the other members of the ipsq struct except 373 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 374 * 375 * - illgrp_lock: This is a per ill_group mutex lock. 376 * The only thing it protects is the illgrp_ill_schednext member of ill_group 377 * which dictates which is the next ill in an ill_group that is to be chosen 378 * for sending outgoing packets, through creation of an IRE_CACHE that 379 * references this ill. 380 * 381 * - phyint_lock: This is a per phyint mutex lock. Protects just the 382 * phyint_flags 383 * 384 * - ip_g_nd_lock: This is a global reader/writer lock. 385 * Any call to nd_load to load a new parameter to the ND table must hold the 386 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 387 * as reader. 388 * 389 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 390 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 391 * uniqueness check also done atomically. 392 * 393 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 394 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 395 * as a writer when adding or deleting elements from these lists, and 396 * as a reader when walking these lists to send a SADB update to the 397 * IPsec capable ills. 398 * 399 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 400 * group list linked by ill_usesrc_grp_next. It also protects the 401 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 402 * group is being added or deleted. This lock is taken as a reader when 403 * walking the list/group(eg: to get the number of members in a usesrc group). 404 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 405 * field is changing state i.e from NULL to non-NULL or vice-versa. For 406 * example, it is not necessary to take this lock in the initial portion 407 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 408 * ip_sioctl_flags since the these operations are executed exclusively and 409 * that ensures that the "usesrc group state" cannot change. The "usesrc 410 * group state" change can happen only in the latter part of 411 * ip_sioctl_slifusesrc and in ill_delete. 412 * 413 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 414 * 415 * To change the <ill-phyint> association, the ill_g_lock must be held 416 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 417 * must be held. 418 * 419 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 420 * and the ill_lock of the ill in question must be held. 421 * 422 * To change the <ill-illgroup> association the ill_g_lock must be held as 423 * writer and the ill_lock of the ill in question must be held. 424 * 425 * To add or delete an ipif from the list of ipifs hanging off the ill, 426 * ill_g_lock (writer) and ill_lock must be held and the thread must be 427 * a writer on the associated ipsq,. 428 * 429 * To add or delete an ill to the system, the ill_g_lock must be held as 430 * writer and the thread must be a writer on the associated ipsq. 431 * 432 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 433 * must be a writer on the associated ipsq. 434 * 435 * Lock hierarchy 436 * 437 * Some lock hierarchy scenarios are listed below. 438 * 439 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 440 * ill_g_lock -> illgrp_lock -> ill_lock 441 * ill_g_lock -> ill_lock(s) -> phyint_lock 442 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 443 * ill_g_lock -> ip_addr_avail_lock 444 * conn_lock -> irb_lock -> ill_lock -> ire_lock 445 * ill_g_lock -> ip_g_nd_lock 446 * 447 * When more than 1 ill lock is needed to be held, all ill lock addresses 448 * are sorted on address and locked starting from highest addressed lock 449 * downward. 450 * 451 * Mobile-IP scenarios 452 * 453 * irb_lock -> ill_lock -> ire_mrtun_lock 454 * irb_lock -> ill_lock -> ire_srcif_table_lock 455 * 456 * IPsec scenarios 457 * 458 * ipsa_lock -> ill_g_lock -> ill_lock 459 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ipsa_lock 461 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 462 * 463 * Trusted Solaris scenarios 464 * 465 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 466 * igsa_lock -> gcdb_lock 467 * gcgrp_rwlock -> ire_lock 468 * gcgrp_rwlock -> gcdb_lock 469 * 470 * IPSEC notes : 471 * 472 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 473 * in front of the actual packet. For outbound datagrams, the M_CTL 474 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 475 * information used by the IPSEC code for applying the right level of 476 * protection. The information initialized by IP in the ipsec_out_t 477 * is determined by the per-socket policy or global policy in the system. 478 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 479 * ipsec_info.h) which starts out with nothing in it. It gets filled 480 * with the right information if it goes through the AH/ESP code, which 481 * happens if the incoming packet is secure. The information initialized 482 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 483 * the policy requirements needed by per-socket policy or global policy 484 * is met or not. 485 * 486 * If there is both per-socket policy (set using setsockopt) and there 487 * is also global policy match for the 5 tuples of the socket, 488 * ipsec_override_policy() makes the decision of which one to use. 489 * 490 * For fully connected sockets i.e dst, src [addr, port] is known, 491 * conn_policy_cached is set indicating that policy has been cached. 492 * conn_in_enforce_policy may or may not be set depending on whether 493 * there is a global policy match or per-socket policy match. 494 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 495 * Once the right policy is set on the conn_t, policy cannot change for 496 * this socket. This makes life simpler for TCP (UDP ?) where 497 * re-transmissions go out with the same policy. For symmetry, policy 498 * is cached for fully connected UDP sockets also. Thus if policy is cached, 499 * it also implies that policy is latched i.e policy cannot change 500 * on these sockets. As we have the right policy on the conn, we don't 501 * have to lookup global policy for every outbound and inbound datagram 502 * and thus serving as an optimization. Note that a global policy change 503 * does not affect fully connected sockets if they have policy. If fully 504 * connected sockets did not have any policy associated with it, global 505 * policy change may affect them. 506 * 507 * IP Flow control notes: 508 * 509 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 510 * cannot be sent down to the driver by IP, because of a canput failure, IP 511 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 512 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 513 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 514 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 515 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 516 * the queued messages, and removes the conn from the drain list, if all 517 * messages were drained. It also qenables the next conn in the drain list to 518 * continue the drain process. 519 * 520 * In reality the drain list is not a single list, but a configurable number 521 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 522 * list. If the ip_wsrv of the next qenabled conn does not run, because the 523 * stream closes, ip_close takes responsibility to qenable the next conn in 524 * the drain list. The directly called ip_wput path always does a putq, if 525 * it cannot putnext. Thus synchronization problems are handled between 526 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 527 * functions that manipulate this drain list. Furthermore conn_drain_insert 528 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 529 * running on a queue at any time. conn_drain_tail can be simultaneously called 530 * from both ip_wsrv and ip_close. 531 * 532 * IPQOS notes: 533 * 534 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 535 * and IPQoS modules. IPPF includes hooks in IP at different control points 536 * (callout positions) which direct packets to IPQoS modules for policy 537 * processing. Policies, if present, are global. 538 * 539 * The callout positions are located in the following paths: 540 * o local_in (packets destined for this host) 541 * o local_out (packets orginating from this host ) 542 * o fwd_in (packets forwarded by this m/c - inbound) 543 * o fwd_out (packets forwarded by this m/c - outbound) 544 * Hooks at these callout points can be enabled/disabled using the ndd variable 545 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 546 * By default all the callout positions are enabled. 547 * 548 * Outbound (local_out) 549 * Hooks are placed in ip_wput_ire and ipsec_out_process. 550 * 551 * Inbound (local_in) 552 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 553 * TCP and UDP fanout routines. 554 * 555 * Forwarding (in and out) 556 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 557 * 558 * IP Policy Framework processing (IPPF processing) 559 * Policy processing for a packet is initiated by ip_process, which ascertains 560 * that the classifier (ipgpc) is loaded and configured, failing which the 561 * packet resumes normal processing in IP. If the clasifier is present, the 562 * packet is acted upon by one or more IPQoS modules (action instances), per 563 * filters configured in ipgpc and resumes normal IP processing thereafter. 564 * An action instance can drop a packet in course of its processing. 565 * 566 * A boolean variable, ip_policy, is used in all the fanout routines that can 567 * invoke ip_process for a packet. This variable indicates if the packet should 568 * to be sent for policy processing. The variable is set to B_TRUE by default, 569 * i.e. when the routines are invoked in the normal ip procesing path for a 570 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 571 * ip_policy is set to B_FALSE for all the routines called in these two 572 * functions because, in the former case, we don't process loopback traffic 573 * currently while in the latter, the packets have already been processed in 574 * icmp_inbound. 575 * 576 * Zones notes: 577 * 578 * The partitioning rules for networking are as follows: 579 * 1) Packets coming from a zone must have a source address belonging to that 580 * zone. 581 * 2) Packets coming from a zone can only be sent on a physical interface on 582 * which the zone has an IP address. 583 * 3) Between two zones on the same machine, packet delivery is only allowed if 584 * there's a matching route for the destination and zone in the forwarding 585 * table. 586 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 587 * different zones can bind to the same port with the wildcard address 588 * (INADDR_ANY). 589 * 590 * The granularity of interface partitioning is at the logical interface level. 591 * Therefore, every zone has its own IP addresses, and incoming packets can be 592 * attributed to a zone unambiguously. A logical interface is placed into a zone 593 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 594 * structure. Rule (1) is implemented by modifying the source address selection 595 * algorithm so that the list of eligible addresses is filtered based on the 596 * sending process zone. 597 * 598 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 599 * across all zones, depending on their type. Here is the break-up: 600 * 601 * IRE type Shared/exclusive 602 * -------- ---------------- 603 * IRE_BROADCAST Exclusive 604 * IRE_DEFAULT (default routes) Shared (*) 605 * IRE_LOCAL Exclusive 606 * IRE_LOOPBACK Exclusive 607 * IRE_PREFIX (net routes) Shared (*) 608 * IRE_CACHE Exclusive 609 * IRE_IF_NORESOLVER (interface routes) Exclusive 610 * IRE_IF_RESOLVER (interface routes) Exclusive 611 * IRE_HOST (host routes) Shared (*) 612 * 613 * (*) A zone can only use a default or off-subnet route if the gateway is 614 * directly reachable from the zone, that is, if the gateway's address matches 615 * one of the zone's logical interfaces. 616 * 617 * Multiple zones can share a common broadcast address; typically all zones 618 * share the 255.255.255.255 address. Incoming as well as locally originated 619 * broadcast packets must be dispatched to all the zones on the broadcast 620 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 621 * since some zones may not be on the 10.16.72/24 network. To handle this, each 622 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 623 * sent to every zone that has an IRE_BROADCAST entry for the destination 624 * address on the input ill, see conn_wantpacket(). 625 * 626 * Applications in different zones can join the same multicast group address. 627 * For IPv4, group memberships are per-logical interface, so they're already 628 * inherently part of a zone. For IPv6, group memberships are per-physical 629 * interface, so we distinguish IPv6 group memberships based on group address, 630 * interface and zoneid. In both cases, received multicast packets are sent to 631 * every zone for which a group membership entry exists. On IPv6 we need to 632 * check that the target zone still has an address on the receiving physical 633 * interface; it could have been removed since the application issued the 634 * IPV6_JOIN_GROUP. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 #define IS_SIMPLE_IPH(ipha) \ 650 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 651 652 /* RFC1122 Conformance */ 653 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 654 655 #define ILL_MAX_NAMELEN LIFNAMSIZ 656 657 /* Leave room for ip_newroute to tack on the src and target addresses */ 658 #define OK_RESOLVER_MP(mp) \ 659 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 660 661 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 662 663 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 664 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 665 666 static void icmp_frag_needed(queue_t *, mblk_t *, int); 667 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 668 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 669 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 670 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 671 mblk_t *, int); 672 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 673 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 674 ill_t *, zoneid_t); 675 static void icmp_options_update(ipha_t *); 676 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 677 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 678 static mblk_t *icmp_pkt_err_ok(mblk_t *); 679 static void icmp_redirect(mblk_t *); 680 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 681 682 static void ip_arp_news(queue_t *, mblk_t *); 683 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 684 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 685 char *ip_dot_addr(ipaddr_t, char *); 686 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 687 int ip_close(queue_t *, int); 688 static char *ip_dot_saddr(uchar_t *, char *); 689 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 690 boolean_t, boolean_t, ill_t *, zoneid_t); 691 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 692 boolean_t, boolean_t, zoneid_t); 693 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 694 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static void ip_lrput(queue_t *, mblk_t *); 696 ipaddr_t ip_massage_options(ipha_t *); 697 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 698 ipaddr_t ip_net_mask(ipaddr_t); 699 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 700 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 701 conn_t *, uint32_t); 702 static int ip_hdr_complete(ipha_t *, zoneid_t); 703 char *ip_nv_lookup(nv_t *, int); 704 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 705 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 706 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 707 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 708 size_t); 709 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 710 void ip_rput(queue_t *, mblk_t *); 711 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 712 void *dummy_arg); 713 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 714 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 715 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 716 ire_t *); 717 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 718 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 719 uint16_t *); 720 int ip_snmp_get(queue_t *, mblk_t *); 721 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 722 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 723 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 724 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 725 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 726 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 727 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 728 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 729 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 730 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 731 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 732 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 733 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 734 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 735 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 736 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 737 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 738 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 739 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 740 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 741 static boolean_t ip_source_routed(ipha_t *); 742 static boolean_t ip_source_route_included(ipha_t *); 743 744 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 745 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 746 static void ip_wput_local_options(ipha_t *); 747 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 748 zoneid_t); 749 750 static void conn_drain_init(void); 751 static void conn_drain_fini(void); 752 static void conn_drain_tail(conn_t *connp, boolean_t closing); 753 754 static void conn_walk_drain(void); 755 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 756 zoneid_t); 757 758 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 759 zoneid_t); 760 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 761 void *dummy_arg); 762 763 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 764 765 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 766 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 767 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 768 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 769 770 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 771 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 772 caddr_t, cred_t *); 773 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 774 caddr_t cp, cred_t *cr); 775 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 776 cred_t *); 777 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 778 caddr_t cp, cred_t *cr); 779 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 780 cred_t *); 781 static squeue_func_t ip_squeue_switch(int); 782 783 static void ip_kstat_init(void); 784 static void ip_kstat_fini(void); 785 static int ip_kstat_update(kstat_t *kp, int rw); 786 static void icmp_kstat_init(void); 787 static void icmp_kstat_fini(void); 788 static int icmp_kstat_update(kstat_t *kp, int rw); 789 790 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 791 792 static boolean_t ip_no_forward(ipha_t *, ill_t *); 793 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 794 795 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 796 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 797 798 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 799 800 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 801 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 802 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 803 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 804 805 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 806 uint_t ip_ire_default_index; /* Walking index used to mod in */ 807 808 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 809 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 810 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 811 812 /* How long, in seconds, we allow frags to hang around. */ 813 #define IP_FRAG_TIMEOUT 60 814 815 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 816 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 817 818 /* 819 * Threshold which determines whether MDT should be used when 820 * generating IP fragments; payload size must be greater than 821 * this threshold for MDT to take place. 822 */ 823 #define IP_WPUT_FRAG_MDT_MIN 32768 824 825 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 826 827 /* Protected by ip_mi_lock */ 828 static void *ip_g_head; /* Instance Data List Head */ 829 kmutex_t ip_mi_lock; /* Lock for list of instances */ 830 831 /* Only modified during _init and _fini thus no locking is needed. */ 832 caddr_t ip_g_nd; /* Named Dispatch List Head */ 833 834 835 static long ip_rput_pullups; 836 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 837 838 vmem_t *ip_minor_arena; 839 840 /* 841 * MIB-2 stuff for SNMP (both IP and ICMP) 842 */ 843 mib2_ip_t ip_mib; 844 mib2_icmp_t icmp_mib; 845 846 #ifdef DEBUG 847 uint32_t ipsechw_debug = 0; 848 #endif 849 850 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 851 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 852 853 uint_t loopback_packets = 0; 854 855 /* 856 * Multirouting/CGTP stuff 857 */ 858 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 859 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 860 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 861 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 862 hrtime_t ip_multirt_log_interval = 1000; 863 /* Time since last warning issued. */ 864 static hrtime_t multirt_bad_mtu_last_time = 0; 865 866 kmutex_t ip_trash_timer_lock; 867 krwlock_t ip_g_nd_lock; 868 869 /* 870 * XXX following really should only be in a header. Would need more 871 * header and .c clean up first. 872 */ 873 extern optdb_obj_t ip_opt_obj; 874 875 ulong_t ip_squeue_enter_unbound = 0; 876 877 /* 878 * Named Dispatch Parameter Table. 879 * All of these are alterable, within the min/max values given, at run time. 880 */ 881 static ipparam_t lcl_param_arr[] = { 882 /* min max value name */ 883 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 884 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 885 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 886 { 0, 1, 0, "ip_respond_to_timestamp"}, 887 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 888 { 0, 1, 1, "ip_send_redirects"}, 889 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 890 { 0, 10, 0, "ip_debug"}, 891 { 0, 10, 0, "ip_mrtdebug"}, 892 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 893 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 894 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 895 { 1, 255, 255, "ip_def_ttl" }, 896 { 0, 1, 0, "ip_forward_src_routed"}, 897 { 0, 256, 32, "ip_wroff_extra" }, 898 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 899 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 900 { 0, 1, 1, "ip_path_mtu_discovery" }, 901 { 0, 240, 30, "ip_ignore_delete_time" }, 902 { 0, 1, 0, "ip_ignore_redirect" }, 903 { 0, 1, 1, "ip_output_queue" }, 904 { 1, 254, 1, "ip_broadcast_ttl" }, 905 { 0, 99999, 100, "ip_icmp_err_interval" }, 906 { 1, 99999, 10, "ip_icmp_err_burst" }, 907 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 908 { 0, 1, 0, "ip_strict_dst_multihoming" }, 909 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 910 { 0, 1, 0, "ipsec_override_persocket_policy" }, 911 { 0, 1, 1, "icmp_accept_clear_messages" }, 912 { 0, 1, 1, "igmp_accept_clear_messages" }, 913 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 914 "ip_ndp_delay_first_probe_time"}, 915 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 916 "ip_ndp_max_unicast_solicit"}, 917 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 918 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 919 { 0, 1, 0, "ip6_forward_src_routed"}, 920 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 921 { 0, 1, 1, "ip6_send_redirects"}, 922 { 0, 1, 0, "ip6_ignore_redirect" }, 923 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 924 925 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 926 927 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 928 929 { 0, 1, 1, "pim_accept_clear_messages" }, 930 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 931 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 932 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 933 { 0, 15, 0, "ip_policy_mask" }, 934 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 935 { 0, 255, 1, "ip_multirt_ttl" }, 936 { 0, 1, 1, "ip_multidata_outbound" }, 937 #ifdef DEBUG 938 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 939 #endif 940 }; 941 942 ipparam_t *ip_param_arr = lcl_param_arr; 943 944 /* Extended NDP table */ 945 static ipndp_t lcl_ndp_arr[] = { 946 /* getf setf data name */ 947 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 948 "ip_forwarding" }, 949 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 950 "ip6_forwarding" }, 951 { ip_ill_report, NULL, NULL, 952 "ip_ill_status" }, 953 { ip_ipif_report, NULL, NULL, 954 "ip_ipif_status" }, 955 { ip_ire_report, NULL, NULL, 956 "ipv4_ire_status" }, 957 { ip_ire_report_mrtun, NULL, NULL, 958 "ipv4_mrtun_ire_status" }, 959 { ip_ire_report_srcif, NULL, NULL, 960 "ipv4_srcif_ire_status" }, 961 { ip_ire_report_v6, NULL, NULL, 962 "ipv6_ire_status" }, 963 { ip_conn_report, NULL, NULL, 964 "ip_conn_status" }, 965 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 966 "ip_rput_pullups" }, 967 { ndp_report, NULL, NULL, 968 "ip_ndp_cache_report" }, 969 { ip_srcid_report, NULL, NULL, 970 "ip_srcid_status" }, 971 { ip_param_generic_get, ip_squeue_profile_set, 972 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 973 { ip_param_generic_get, ip_squeue_bind_set, 974 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 975 { ip_param_generic_get, ip_input_proc_set, 976 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 977 { ip_param_generic_get, ip_int_set, 978 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 979 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 980 "ip_cgtp_filter" }, 981 { ip_param_generic_get, ip_int_set, 982 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 983 }; 984 985 /* 986 * ip_g_forward controls IP forwarding. It takes two values: 987 * 0: IP_FORWARD_NEVER Don't forward packets ever. 988 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 989 * 990 * RFC1122 says there must be a configuration switch to control forwarding, 991 * but that the default MUST be to not forward packets ever. Implicit 992 * control based on configuration of multiple interfaces MUST NOT be 993 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 994 * and, in fact, it was the default. That capability is now provided in the 995 * /etc/rc2.d/S69inet script. 996 */ 997 int ip_g_forward = IP_FORWARD_DEFAULT; 998 999 /* It also has an IPv6 counterpart. */ 1000 1001 int ipv6_forward = IP_FORWARD_DEFAULT; 1002 1003 /* Following line is external, and in ip.h. Normally marked with * *. */ 1004 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 1005 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 1006 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 1007 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 1008 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 1009 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 1010 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 1011 #define ip_debug ip_param_arr[7].ip_param_value /* */ 1012 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 1013 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 1014 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 1015 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 1016 #define ip_def_ttl ip_param_arr[12].ip_param_value 1017 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 1018 #define ip_wroff_extra ip_param_arr[14].ip_param_value 1019 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 1020 #define ip_icmp_return ip_param_arr[16].ip_param_value 1021 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 1022 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 1023 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 1024 #define ip_output_queue ip_param_arr[20].ip_param_value 1025 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 1026 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 1027 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 1028 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 1029 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 1030 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 1031 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 1032 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1033 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1034 1035 /* IPv6 configuration knobs */ 1036 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1037 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1038 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1039 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1040 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1041 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1042 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1043 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1044 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1045 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1046 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1047 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1048 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1049 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1050 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1051 #define ip_policy_mask ip_param_arr[45].ip_param_value 1052 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1053 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1054 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1055 #ifdef DEBUG 1056 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1057 #else 1058 #define ipv6_drop_inbound_icmpv6 0 1059 #endif 1060 1061 1062 /* 1063 * Table of IP ioctls encoding the various properties of the ioctl and 1064 * indexed based on the last byte of the ioctl command. Occasionally there 1065 * is a clash, and there is more than 1 ioctl with the same last byte. 1066 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1067 * ioctls are encoded in the misc table. An entry in the ndx table is 1068 * retrieved by indexing on the last byte of the ioctl command and comparing 1069 * the ioctl command with the value in the ndx table. In the event of a 1070 * mismatch the misc table is then searched sequentially for the desired 1071 * ioctl command. 1072 * 1073 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1074 */ 1075 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1076 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1088 MISC_CMD, ip_siocaddrt, NULL }, 1089 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1090 MISC_CMD, ip_siocdelrt, NULL }, 1091 1092 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1093 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1094 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_addr, NULL }, 1096 1097 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1098 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1099 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1100 IPI_GET_CMD | IPI_REPL, 1101 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1102 1103 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1104 IPI_PRIV | IPI_WR | IPI_REPL, 1105 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1106 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1107 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1108 IF_CMD, ip_sioctl_get_flags, NULL }, 1109 1110 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* copyin size cannot be coded for SIOCGIFCONF */ 1114 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1115 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1116 1117 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1118 IF_CMD, ip_sioctl_mtu, NULL }, 1119 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_mtu, NULL }, 1121 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1124 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1125 IF_CMD, ip_sioctl_brdaddr, NULL }, 1126 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 IF_CMD, ip_sioctl_get_netmask, NULL }, 1129 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1130 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1131 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 IF_CMD, ip_sioctl_get_metric, NULL }, 1134 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1135 IF_CMD, ip_sioctl_metric, NULL }, 1136 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* See 166-168 below for extended SIOC*XARP ioctls */ 1139 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1142 MISC_CMD, ip_sioctl_arp, NULL }, 1143 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1144 MISC_CMD, ip_sioctl_arp, NULL }, 1145 1146 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 1168 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1169 MISC_CMD, if_unitsel, if_unitsel_restart }, 1170 1171 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 1190 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1191 IPI_PRIV | IPI_WR | IPI_MODOK, 1192 IF_CMD, ip_sioctl_sifname, NULL }, 1193 1194 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 1208 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1209 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1210 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1211 IF_CMD, ip_sioctl_get_muxid, NULL }, 1212 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 IF_CMD, ip_sioctl_muxid, NULL }, 1215 1216 /* Both if and lif variants share same func */ 1217 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1218 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1219 /* Both if and lif variants share same func */ 1220 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 IF_CMD, ip_sioctl_slifindex, NULL }, 1223 1224 /* copyin size cannot be coded for SIOCGIFCONF */ 1225 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1226 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1227 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_removeif, 1248 ip_sioctl_removeif_restart }, 1249 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1251 LIF_CMD, ip_sioctl_addif, NULL }, 1252 #define SIOCLIFADDR_NDX 112 1253 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1255 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_addr, NULL }, 1258 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1259 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1260 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1261 IPI_GET_CMD | IPI_REPL, 1262 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1263 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1264 IPI_PRIV | IPI_WR | IPI_REPL, 1265 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1266 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_flags, NULL }, 1269 1270 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1271 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 1273 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1274 ip_sioctl_get_lifconf, NULL }, 1275 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1276 LIF_CMD, ip_sioctl_mtu, NULL }, 1277 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1279 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1282 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1284 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1285 IPI_GET_CMD | IPI_REPL, 1286 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1287 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1289 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_metric, NULL }, 1292 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1293 LIF_CMD, ip_sioctl_metric, NULL }, 1294 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1296 LIF_CMD, ip_sioctl_slifname, 1297 ip_sioctl_slifname_restart }, 1298 1299 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1300 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1301 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1302 IPI_GET_CMD | IPI_REPL, 1303 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1304 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1305 IPI_PRIV | IPI_WR | IPI_REPL, 1306 LIF_CMD, ip_sioctl_muxid, NULL }, 1307 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1310 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1311 IPI_PRIV | IPI_WR | IPI_REPL, 1312 LIF_CMD, ip_sioctl_slifindex, 0 }, 1313 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_token, NULL }, 1315 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1316 IPI_GET_CMD | IPI_REPL, 1317 LIF_CMD, ip_sioctl_get_token, NULL }, 1318 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1319 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1320 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1321 IPI_GET_CMD | IPI_REPL, 1322 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1323 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1324 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1325 1326 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1327 IPI_GET_CMD | IPI_REPL, 1328 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1329 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocdelndp_v6, NULL }, 1331 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1332 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1333 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1334 LIF_CMD, ip_siocsetndp_v6, NULL }, 1335 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1336 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1337 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1338 MISC_CMD, ip_sioctl_tonlink, NULL }, 1339 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1340 MISC_CMD, ip_sioctl_tmysite, NULL }, 1341 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1342 TUN_CMD, ip_sioctl_tunparam, NULL }, 1343 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1344 IPI_PRIV | IPI_WR, 1345 TUN_CMD, ip_sioctl_tunparam, NULL }, 1346 1347 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1348 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1349 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1350 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1351 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1352 1353 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1354 IPI_PRIV | IPI_WR | IPI_REPL, 1355 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1356 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1357 IPI_PRIV | IPI_WR | IPI_REPL, 1358 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1359 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1360 IPI_PRIV | IPI_WR, 1361 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1362 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1365 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1366 IPI_GET_CMD | IPI_REPL, 1367 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1368 1369 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1370 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 1374 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1375 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1376 1377 /* These are handled in ip_sioctl_copyin_setup itself */ 1378 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1379 MISC_CMD, NULL, NULL }, 1380 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1381 MISC_CMD, NULL, NULL }, 1382 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1383 1384 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1385 ip_sioctl_get_lifconf, NULL }, 1386 1387 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1390 MISC_CMD, ip_sioctl_xarp, NULL }, 1391 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1392 MISC_CMD, ip_sioctl_xarp, NULL }, 1393 1394 /* SIOCPOPSOCKFS is not handled by IP */ 1395 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1396 1397 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1398 IPI_GET_CMD | IPI_REPL, 1399 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1400 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1401 IPI_PRIV | IPI_WR | IPI_REPL, 1402 LIF_CMD, ip_sioctl_slifzone, 1403 ip_sioctl_slifzone_restart }, 1404 /* 172-174 are SCTP ioctls and not handled by IP */ 1405 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1406 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1407 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1408 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1409 IPI_GET_CMD, LIF_CMD, 1410 ip_sioctl_get_lifusesrc, 0 }, 1411 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1412 IPI_PRIV | IPI_WR, 1413 LIF_CMD, ip_sioctl_slifusesrc, 1414 NULL }, 1415 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1416 ip_sioctl_get_lifsrcof, NULL }, 1417 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1422 MISC_CMD, ip_sioctl_msfilter, NULL }, 1423 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1424 MISC_CMD, ip_sioctl_msfilter, NULL }, 1425 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1426 ip_sioctl_set_ipmpfailback, NULL } 1427 }; 1428 1429 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1430 1431 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1432 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1433 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1434 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1435 TUN_CMD, ip_sioctl_tunparam, NULL }, 1436 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1439 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1440 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1441 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1442 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1443 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl}, 1445 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1446 MISC_CMD, mrt_ioctl}, 1447 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1448 MISC_CMD, mrt_ioctl} 1449 }; 1450 1451 int ip_misc_ioctl_count = 1452 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1453 1454 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1455 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1456 static int conn_drain_list_index; /* Next drain_list to be used */ 1457 int conn_drain_nthreads; /* Number of drainers reqd. */ 1458 /* Settable in /etc/system */ 1459 1460 /* Defined in ip_ire.c */ 1461 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1462 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1463 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1464 1465 static nv_t ire_nv_arr[] = { 1466 { IRE_BROADCAST, "BROADCAST" }, 1467 { IRE_LOCAL, "LOCAL" }, 1468 { IRE_LOOPBACK, "LOOPBACK" }, 1469 { IRE_CACHE, "CACHE" }, 1470 { IRE_DEFAULT, "DEFAULT" }, 1471 { IRE_PREFIX, "PREFIX" }, 1472 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1473 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1474 { IRE_HOST, "HOST" }, 1475 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1476 { 0 } 1477 }; 1478 1479 nv_t *ire_nv_tbl = ire_nv_arr; 1480 1481 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1482 extern krwlock_t ipsec_capab_ills_lock; 1483 1484 /* Packet dropper for IP IPsec processing failures */ 1485 ipdropper_t ip_dropper; 1486 1487 /* Simple ICMP IP Header Template */ 1488 static ipha_t icmp_ipha = { 1489 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1490 }; 1491 1492 struct module_info ip_mod_info = { 1493 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1494 }; 1495 1496 static struct qinit rinit = { 1497 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit winit = { 1502 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit lrinit = { 1507 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 static struct qinit lwinit = { 1512 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1513 &ip_mod_info 1514 }; 1515 1516 struct streamtab ipinfo = { 1517 &rinit, &winit, &lrinit, &lwinit 1518 }; 1519 1520 #ifdef DEBUG 1521 static boolean_t skip_sctp_cksum = B_FALSE; 1522 #endif 1523 /* 1524 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1525 */ 1526 mblk_t * 1527 ip_copymsg(mblk_t *mp) 1528 { 1529 mblk_t *nmp; 1530 ipsec_info_t *in; 1531 1532 if (mp->b_datap->db_type != M_CTL) 1533 return (copymsg(mp)); 1534 1535 in = (ipsec_info_t *)mp->b_rptr; 1536 1537 /* 1538 * Note that M_CTL is also used for delivering ICMP error messages 1539 * upstream to transport layers. 1540 */ 1541 if (in->ipsec_info_type != IPSEC_OUT && 1542 in->ipsec_info_type != IPSEC_IN) 1543 return (copymsg(mp)); 1544 1545 nmp = copymsg(mp->b_cont); 1546 1547 if (in->ipsec_info_type == IPSEC_OUT) 1548 return (ipsec_out_tag(mp, nmp)); 1549 else 1550 return (ipsec_in_tag(mp, nmp)); 1551 } 1552 1553 /* Generate an ICMP fragmentation needed message. */ 1554 static void 1555 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1556 { 1557 icmph_t icmph; 1558 mblk_t *first_mp; 1559 boolean_t mctl_present; 1560 1561 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1562 1563 if (!(mp = icmp_pkt_err_ok(mp))) { 1564 if (mctl_present) 1565 freeb(first_mp); 1566 return; 1567 } 1568 1569 bzero(&icmph, sizeof (icmph_t)); 1570 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1571 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1572 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1573 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1574 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1575 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1576 } 1577 1578 /* 1579 * icmp_inbound deals with ICMP messages in the following ways. 1580 * 1581 * 1) It needs to send a reply back and possibly delivering it 1582 * to the "interested" upper clients. 1583 * 2) It needs to send it to the upper clients only. 1584 * 3) It needs to change some values in IP only. 1585 * 4) It needs to change some values in IP and upper layers e.g TCP. 1586 * 1587 * We need to accomodate icmp messages coming in clear until we get 1588 * everything secure from the wire. If icmp_accept_clear_messages 1589 * is zero we check with the global policy and act accordingly. If 1590 * it is non-zero, we accept the message without any checks. But 1591 * *this does not mean* that this will be delivered to the upper 1592 * clients. By accepting we might send replies back, change our MTU 1593 * value etc. but delivery to the ULP/clients depends on their policy 1594 * dispositions. 1595 * 1596 * We handle the above 4 cases in the context of IPSEC in the 1597 * following way : 1598 * 1599 * 1) Send the reply back in the same way as the request came in. 1600 * If it came in encrypted, it goes out encrypted. If it came in 1601 * clear, it goes out in clear. Thus, this will prevent chosen 1602 * plain text attack. 1603 * 2) The client may or may not expect things to come in secure. 1604 * If it comes in secure, the policy constraints are checked 1605 * before delivering it to the upper layers. If it comes in 1606 * clear, ipsec_inbound_accept_clear will decide whether to 1607 * accept this in clear or not. In both the cases, if the returned 1608 * message (IP header + 8 bytes) that caused the icmp message has 1609 * AH/ESP headers, it is sent up to AH/ESP for validation before 1610 * sending up. If there are only 8 bytes of returned message, then 1611 * upper client will not be notified. 1612 * 3) Check with global policy to see whether it matches the constaints. 1613 * But this will be done only if icmp_accept_messages_in_clear is 1614 * zero. 1615 * 4) If we need to change both in IP and ULP, then the decision taken 1616 * while affecting the values in IP and while delivering up to TCP 1617 * should be the same. 1618 * 1619 * There are two cases. 1620 * 1621 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1622 * failed), we will not deliver it to the ULP, even though they 1623 * are *willing* to accept in *clear*. This is fine as our global 1624 * disposition to icmp messages asks us reject the datagram. 1625 * 1626 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1627 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1628 * to deliver it to ULP (policy failed), it can lead to 1629 * consistency problems. The cases known at this time are 1630 * ICMP_DESTINATION_UNREACHABLE messages with following code 1631 * values : 1632 * 1633 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1634 * and Upper layer rejects. Then the communication will 1635 * come to a stop. This is solved by making similar decisions 1636 * at both levels. Currently, when we are unable to deliver 1637 * to the Upper Layer (due to policy failures) while IP has 1638 * adjusted ire_max_frag, the next outbound datagram would 1639 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1640 * will be with the right level of protection. Thus the right 1641 * value will be communicated even if we are not able to 1642 * communicate when we get from the wire initially. But this 1643 * assumes there would be at least one outbound datagram after 1644 * IP has adjusted its ire_max_frag value. To make things 1645 * simpler, we accept in clear after the validation of 1646 * AH/ESP headers. 1647 * 1648 * - Other ICMP ERRORS : We may not be able to deliver it to the 1649 * upper layer depending on the level of protection the upper 1650 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1651 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1652 * should be accepted in clear when the Upper layer expects secure. 1653 * Thus the communication may get aborted by some bad ICMP 1654 * packets. 1655 * 1656 * IPQoS Notes: 1657 * The only instance when a packet is sent for processing is when there 1658 * isn't an ICMP client and if we are interested in it. 1659 * If there is a client, IPPF processing will take place in the 1660 * ip_fanout_proto routine. 1661 * 1662 * Zones notes: 1663 * The packet is only processed in the context of the specified zone: typically 1664 * only this zone will reply to an echo request, and only interested clients in 1665 * this zone will receive a copy of the packet. This means that the caller must 1666 * call icmp_inbound() for each relevant zone. 1667 */ 1668 static void 1669 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1670 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1671 ill_t *recv_ill, zoneid_t zoneid) 1672 { 1673 icmph_t *icmph; 1674 ipha_t *ipha; 1675 int iph_hdr_length; 1676 int hdr_length; 1677 boolean_t interested; 1678 uint32_t ts; 1679 uchar_t *wptr; 1680 ipif_t *ipif; 1681 mblk_t *first_mp; 1682 ipsec_in_t *ii; 1683 ire_t *src_ire; 1684 boolean_t onlink; 1685 timestruc_t now; 1686 uint32_t ill_index; 1687 1688 ASSERT(ill != NULL); 1689 1690 first_mp = mp; 1691 if (mctl_present) { 1692 mp = first_mp->b_cont; 1693 ASSERT(mp != NULL); 1694 } 1695 1696 ipha = (ipha_t *)mp->b_rptr; 1697 if (icmp_accept_clear_messages == 0) { 1698 first_mp = ipsec_check_global_policy(first_mp, NULL, 1699 ipha, NULL, mctl_present); 1700 if (first_mp == NULL) 1701 return; 1702 } 1703 1704 /* 1705 * On a labeled system, we have to check whether the zone itself is 1706 * permitted to receive raw traffic. 1707 */ 1708 if (is_system_labeled()) { 1709 if (zoneid == ALL_ZONES) 1710 zoneid = tsol_packet_to_zoneid(mp); 1711 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1712 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1713 zoneid)); 1714 BUMP_MIB(&icmp_mib, icmpInErrors); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 } 1719 1720 /* 1721 * We have accepted the ICMP message. It means that we will 1722 * respond to the packet if needed. It may not be delivered 1723 * to the upper client depending on the policy constraints 1724 * and the disposition in ipsec_inbound_accept_clear. 1725 */ 1726 1727 ASSERT(ill != NULL); 1728 1729 BUMP_MIB(&icmp_mib, icmpInMsgs); 1730 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1731 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1732 /* Last chance to get real. */ 1733 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1734 BUMP_MIB(&icmp_mib, icmpInErrors); 1735 freemsg(first_mp); 1736 return; 1737 } 1738 /* Refresh iph following the pullup. */ 1739 ipha = (ipha_t *)mp->b_rptr; 1740 } 1741 /* ICMP header checksum, including checksum field, should be zero. */ 1742 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1743 IP_CSUM(mp, iph_hdr_length, 0)) { 1744 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 /* The IP header will always be a multiple of four bytes */ 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1751 icmph->icmph_code)); 1752 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1753 /* We will set "interested" to "true" if we want a copy */ 1754 interested = B_FALSE; 1755 switch (icmph->icmph_type) { 1756 case ICMP_ECHO_REPLY: 1757 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1758 break; 1759 case ICMP_DEST_UNREACHABLE: 1760 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1761 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1764 break; 1765 case ICMP_SOURCE_QUENCH: 1766 interested = B_TRUE; /* Pass up to transport */ 1767 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1768 break; 1769 case ICMP_REDIRECT: 1770 if (!ip_ignore_redirect) 1771 interested = B_TRUE; 1772 BUMP_MIB(&icmp_mib, icmpInRedirects); 1773 break; 1774 case ICMP_ECHO_REQUEST: 1775 /* 1776 * Whether to respond to echo requests that come in as IP 1777 * broadcasts or as IP multicast is subject to debate 1778 * (what isn't?). We aim to please, you pick it. 1779 * Default is do it. 1780 */ 1781 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1782 /* unicast: always respond */ 1783 interested = B_TRUE; 1784 } else if (CLASSD(ipha->ipha_dst)) { 1785 /* multicast: respond based on tunable */ 1786 interested = ip_g_resp_to_echo_mcast; 1787 } else if (broadcast) { 1788 /* broadcast: respond based on tunable */ 1789 interested = ip_g_resp_to_echo_bcast; 1790 } 1791 BUMP_MIB(&icmp_mib, icmpInEchos); 1792 break; 1793 case ICMP_ROUTER_ADVERTISEMENT: 1794 case ICMP_ROUTER_SOLICITATION: 1795 break; 1796 case ICMP_TIME_EXCEEDED: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1799 break; 1800 case ICMP_PARAM_PROBLEM: 1801 interested = B_TRUE; /* Pass up to transport */ 1802 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1803 break; 1804 case ICMP_TIME_STAMP_REQUEST: 1805 /* Response to Time Stamp Requests is local policy. */ 1806 if (ip_g_resp_to_timestamp && 1807 /* So is whether to respond if it was an IP broadcast. */ 1808 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1809 int tstamp_len = 3 * sizeof (uint32_t); 1810 1811 if (wptr + tstamp_len > mp->b_wptr) { 1812 if (!pullupmsg(mp, wptr + tstamp_len - 1813 mp->b_rptr)) { 1814 BUMP_MIB(&ip_mib, ipInDiscards); 1815 freemsg(first_mp); 1816 return; 1817 } 1818 /* Refresh ipha following the pullup. */ 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 interested = B_TRUE; 1824 } 1825 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1826 break; 1827 case ICMP_TIME_STAMP_REPLY: 1828 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1829 break; 1830 case ICMP_INFO_REQUEST: 1831 /* Per RFC 1122 3.2.2.7, ignore this. */ 1832 case ICMP_INFO_REPLY: 1833 break; 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1836 /* TODO m_pullup of complete header? */ 1837 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1838 interested = B_TRUE; 1839 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1840 break; 1841 case ICMP_ADDRESS_MASK_REPLY: 1842 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1843 break; 1844 default: 1845 interested = B_TRUE; /* Pass up to transport */ 1846 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1847 break; 1848 } 1849 /* See if there is an ICMP client. */ 1850 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1851 /* If there is an ICMP client and we want one too, copy it. */ 1852 mblk_t *first_mp1; 1853 1854 if (!interested) { 1855 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1856 ip_policy, recv_ill, zoneid); 1857 return; 1858 } 1859 first_mp1 = ip_copymsg(first_mp); 1860 if (first_mp1 != NULL) { 1861 ip_fanout_proto(q, first_mp1, ill, ipha, 1862 0, mctl_present, ip_policy, recv_ill, zoneid); 1863 } 1864 } else if (!interested) { 1865 freemsg(first_mp); 1866 return; 1867 } else { 1868 /* 1869 * Initiate policy processing for this packet if ip_policy 1870 * is true. 1871 */ 1872 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1873 ill_index = ill->ill_phyint->phyint_ifindex; 1874 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1875 if (mp == NULL) { 1876 if (mctl_present) { 1877 freeb(first_mp); 1878 } 1879 BUMP_MIB(&icmp_mib, icmpInErrors); 1880 return; 1881 } 1882 } 1883 } 1884 /* We want to do something with it. */ 1885 /* Check db_ref to make sure we can modify the packet. */ 1886 if (mp->b_datap->db_ref > 1) { 1887 mblk_t *first_mp1; 1888 1889 first_mp1 = ip_copymsg(first_mp); 1890 freemsg(first_mp); 1891 if (!first_mp1) { 1892 BUMP_MIB(&icmp_mib, icmpOutDrops); 1893 return; 1894 } 1895 first_mp = first_mp1; 1896 if (mctl_present) { 1897 mp = first_mp->b_cont; 1898 ASSERT(mp != NULL); 1899 } else { 1900 mp = first_mp; 1901 } 1902 ipha = (ipha_t *)mp->b_rptr; 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1905 } 1906 switch (icmph->icmph_type) { 1907 case ICMP_ADDRESS_MASK_REQUEST: 1908 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1909 if (ipif == NULL) { 1910 freemsg(first_mp); 1911 return; 1912 } 1913 /* 1914 * outging interface must be IPv4 1915 */ 1916 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1917 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1918 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1919 ipif_refrele(ipif); 1920 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1921 break; 1922 case ICMP_ECHO_REQUEST: 1923 icmph->icmph_type = ICMP_ECHO_REPLY; 1924 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1925 break; 1926 case ICMP_TIME_STAMP_REQUEST: { 1927 uint32_t *tsp; 1928 1929 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1930 tsp = (uint32_t *)wptr; 1931 tsp++; /* Skip past 'originate time' */ 1932 /* Compute # of milliseconds since midnight */ 1933 gethrestime(&now); 1934 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1935 now.tv_nsec / (NANOSEC / MILLISEC); 1936 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1937 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1938 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1939 break; 1940 } 1941 default: 1942 ipha = (ipha_t *)&icmph[1]; 1943 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1944 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1945 BUMP_MIB(&ip_mib, ipInDiscards); 1946 freemsg(first_mp); 1947 return; 1948 } 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1953 BUMP_MIB(&ip_mib, ipInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 hdr_length = IPH_HDR_LENGTH(ipha); 1958 if (hdr_length < sizeof (ipha_t)) { 1959 BUMP_MIB(&ip_mib, ipInDiscards); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1964 if (!pullupmsg(mp, 1965 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1966 BUMP_MIB(&ip_mib, ipInDiscards); 1967 freemsg(first_mp); 1968 return; 1969 } 1970 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1971 ipha = (ipha_t *)&icmph[1]; 1972 } 1973 switch (icmph->icmph_type) { 1974 case ICMP_REDIRECT: 1975 /* 1976 * As there is no upper client to deliver, we don't 1977 * need the first_mp any more. 1978 */ 1979 if (mctl_present) { 1980 freeb(first_mp); 1981 } 1982 icmp_redirect(mp); 1983 return; 1984 case ICMP_DEST_UNREACHABLE: 1985 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1986 if (!icmp_inbound_too_big(icmph, ipha, ill, 1987 zoneid, mp, iph_hdr_length)) { 1988 freemsg(first_mp); 1989 return; 1990 } 1991 /* 1992 * icmp_inbound_too_big() may alter mp. 1993 * Resynch ipha and icmph accordingly. 1994 */ 1995 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1996 ipha = (ipha_t *)&icmph[1]; 1997 } 1998 /* FALLTHRU */ 1999 default : 2000 /* 2001 * IPQoS notes: Since we have already done IPQoS 2002 * processing we don't want to do it again in 2003 * the fanout routines called by 2004 * icmp_inbound_error_fanout, hence the last 2005 * argument, ip_policy, is B_FALSE. 2006 */ 2007 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2008 ipha, iph_hdr_length, hdr_length, mctl_present, 2009 B_FALSE, recv_ill, zoneid); 2010 } 2011 return; 2012 } 2013 /* Send out an ICMP packet */ 2014 icmph->icmph_checksum = 0; 2015 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2016 if (icmph->icmph_checksum == 0) 2017 icmph->icmph_checksum = 0xFFFF; 2018 if (broadcast || CLASSD(ipha->ipha_dst)) { 2019 ipif_t *ipif_chosen; 2020 /* 2021 * Make it look like it was directed to us, so we don't look 2022 * like a fool with a broadcast or multicast source address. 2023 */ 2024 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2025 /* 2026 * Make sure that we haven't grabbed an interface that's DOWN. 2027 */ 2028 if (ipif != NULL) { 2029 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2030 ipha->ipha_src, zoneid); 2031 if (ipif_chosen != NULL) { 2032 ipif_refrele(ipif); 2033 ipif = ipif_chosen; 2034 } 2035 } 2036 if (ipif == NULL) { 2037 ip0dbg(("icmp_inbound: " 2038 "No source for broadcast/multicast:\n" 2039 "\tsrc 0x%x dst 0x%x ill %p " 2040 "ipif_lcl_addr 0x%x\n", 2041 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2042 (void *)ill, 2043 ill->ill_ipif->ipif_lcl_addr)); 2044 freemsg(first_mp); 2045 return; 2046 } 2047 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2048 ipha->ipha_dst = ipif->ipif_src_addr; 2049 ipif_refrele(ipif); 2050 } 2051 /* Reset time to live. */ 2052 ipha->ipha_ttl = ip_def_ttl; 2053 { 2054 /* Swap source and destination addresses */ 2055 ipaddr_t tmp; 2056 2057 tmp = ipha->ipha_src; 2058 ipha->ipha_src = ipha->ipha_dst; 2059 ipha->ipha_dst = tmp; 2060 } 2061 ipha->ipha_ident = 0; 2062 if (!IS_SIMPLE_IPH(ipha)) 2063 icmp_options_update(ipha); 2064 2065 /* 2066 * ICMP echo replies should go out on the same interface 2067 * the request came on as probes used by in.mpathd for detecting 2068 * NIC failures are ECHO packets. We turn-off load spreading 2069 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2070 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2071 * function. This is in turn handled by ip_wput and ip_newroute 2072 * to make sure that the packet goes out on the interface it came 2073 * in on. If we don't turnoff load spreading, the packets might get 2074 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2075 * to go out and in.mpathd would wrongly detect a failure or 2076 * mis-detect a NIC failure for link failure. As load spreading 2077 * can happen only if ill_group is not NULL, we do only for 2078 * that case and this does not affect the normal case. 2079 * 2080 * We turn off load spreading only on echo packets that came from 2081 * on-link hosts. If the interface route has been deleted, this will 2082 * not be enforced as we can't do much. For off-link hosts, as the 2083 * default routes in IPv4 does not typically have an ire_ipif 2084 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2085 * Moreover, expecting a default route through this interface may 2086 * not be correct. We use ipha_dst because of the swap above. 2087 */ 2088 onlink = B_FALSE; 2089 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2090 /* 2091 * First, we need to make sure that it is not one of our 2092 * local addresses. If we set onlink when it is one of 2093 * our local addresses, we will end up creating IRE_CACHES 2094 * for one of our local addresses. Then, we will never 2095 * accept packets for them afterwards. 2096 */ 2097 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2098 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2099 if (src_ire == NULL) { 2100 ipif = ipif_get_next_ipif(NULL, ill); 2101 if (ipif == NULL) { 2102 BUMP_MIB(&ip_mib, ipInDiscards); 2103 freemsg(mp); 2104 return; 2105 } 2106 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2107 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2108 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2109 ipif_refrele(ipif); 2110 if (src_ire != NULL) { 2111 onlink = B_TRUE; 2112 ire_refrele(src_ire); 2113 } 2114 } else { 2115 ire_refrele(src_ire); 2116 } 2117 } 2118 if (!mctl_present) { 2119 /* 2120 * This packet should go out the same way as it 2121 * came in i.e in clear. To make sure that global 2122 * policy will not be applied to this in ip_wput_ire, 2123 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2124 */ 2125 ASSERT(first_mp == mp); 2126 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2127 BUMP_MIB(&ip_mib, ipInDiscards); 2128 freemsg(mp); 2129 return; 2130 } 2131 ii = (ipsec_in_t *)first_mp->b_rptr; 2132 2133 /* This is not a secure packet */ 2134 ii->ipsec_in_secure = B_FALSE; 2135 if (onlink) { 2136 ii->ipsec_in_attach_if = B_TRUE; 2137 ii->ipsec_in_ill_index = 2138 ill->ill_phyint->phyint_ifindex; 2139 ii->ipsec_in_rill_index = 2140 recv_ill->ill_phyint->phyint_ifindex; 2141 } 2142 first_mp->b_cont = mp; 2143 } else if (onlink) { 2144 ii = (ipsec_in_t *)first_mp->b_rptr; 2145 ii->ipsec_in_attach_if = B_TRUE; 2146 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2147 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2148 } else { 2149 ii = (ipsec_in_t *)first_mp->b_rptr; 2150 } 2151 ii->ipsec_in_zoneid = zoneid; 2152 ASSERT(zoneid != ALL_ZONES); 2153 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2154 BUMP_MIB(&ip_mib, ipInDiscards); 2155 return; 2156 } 2157 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2158 put(WR(q), first_mp); 2159 } 2160 2161 static ipaddr_t 2162 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2163 { 2164 conn_t *connp; 2165 connf_t *connfp; 2166 ipaddr_t nexthop_addr = INADDR_ANY; 2167 int hdr_length = IPH_HDR_LENGTH(ipha); 2168 uint16_t *up; 2169 uint32_t ports; 2170 2171 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2172 switch (ipha->ipha_protocol) { 2173 case IPPROTO_TCP: 2174 { 2175 tcph_t *tcph; 2176 2177 /* do a reverse lookup */ 2178 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2179 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2180 TCPS_LISTEN); 2181 break; 2182 } 2183 case IPPROTO_UDP: 2184 { 2185 uint32_t dstport, srcport; 2186 2187 ((uint16_t *)&ports)[0] = up[1]; 2188 ((uint16_t *)&ports)[1] = up[0]; 2189 2190 /* Extract ports in net byte order */ 2191 dstport = htons(ntohl(ports) & 0xFFFF); 2192 srcport = htons(ntohl(ports) >> 16); 2193 2194 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2195 mutex_enter(&connfp->connf_lock); 2196 connp = connfp->connf_head; 2197 2198 /* do a reverse lookup */ 2199 while ((connp != NULL) && 2200 (!IPCL_UDP_MATCH(connp, dstport, 2201 ipha->ipha_src, srcport, ipha->ipha_dst) || 2202 connp->conn_zoneid != zoneid)) { 2203 connp = connp->conn_next; 2204 } 2205 if (connp != NULL) 2206 CONN_INC_REF(connp); 2207 mutex_exit(&connfp->connf_lock); 2208 break; 2209 } 2210 case IPPROTO_SCTP: 2211 { 2212 in6_addr_t map_src, map_dst; 2213 2214 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2215 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2216 ((uint16_t *)&ports)[0] = up[1]; 2217 ((uint16_t *)&ports)[1] = up[0]; 2218 2219 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2220 0, zoneid)) == NULL) { 2221 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2222 zoneid, ports, ipha); 2223 } else { 2224 CONN_INC_REF(connp); 2225 SCTP_REFRELE(CONN2SCTP(connp)); 2226 } 2227 break; 2228 } 2229 default: 2230 { 2231 ipha_t ripha; 2232 2233 ripha.ipha_src = ipha->ipha_dst; 2234 ripha.ipha_dst = ipha->ipha_src; 2235 ripha.ipha_protocol = ipha->ipha_protocol; 2236 2237 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2238 mutex_enter(&connfp->connf_lock); 2239 connp = connfp->connf_head; 2240 for (connp = connfp->connf_head; connp != NULL; 2241 connp = connp->conn_next) { 2242 if (IPCL_PROTO_MATCH(connp, 2243 ipha->ipha_protocol, &ripha, ill, 2244 0, zoneid)) { 2245 CONN_INC_REF(connp); 2246 break; 2247 } 2248 } 2249 mutex_exit(&connfp->connf_lock); 2250 } 2251 } 2252 if (connp != NULL) { 2253 if (connp->conn_nexthop_set) 2254 nexthop_addr = connp->conn_nexthop_v4; 2255 CONN_DEC_REF(connp); 2256 } 2257 return (nexthop_addr); 2258 } 2259 2260 /* Table from RFC 1191 */ 2261 static int icmp_frag_size_table[] = 2262 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2263 2264 /* 2265 * Process received ICMP Packet too big. 2266 * After updating any IRE it does the fanout to any matching transport streams. 2267 * Assumes the message has been pulled up till the IP header that caused 2268 * the error. 2269 * 2270 * Returns B_FALSE on failure and B_TRUE on success. 2271 */ 2272 static boolean_t 2273 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2274 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2275 { 2276 ire_t *ire, *first_ire; 2277 int mtu; 2278 int hdr_length; 2279 ipaddr_t nexthop_addr; 2280 2281 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2282 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2283 2284 hdr_length = IPH_HDR_LENGTH(ipha); 2285 2286 /* Drop if the original packet contained a source route */ 2287 if (ip_source_route_included(ipha)) { 2288 return (B_FALSE); 2289 } 2290 /* 2291 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2292 * header. 2293 */ 2294 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2295 mp->b_wptr) { 2296 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2297 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2298 BUMP_MIB(&ip_mib, ipInDiscards); 2299 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2300 return (B_FALSE); 2301 } 2302 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2303 ipha = (ipha_t *)&icmph[1]; 2304 } 2305 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2306 if (nexthop_addr != INADDR_ANY) { 2307 /* nexthop set */ 2308 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2309 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2310 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2311 } else { 2312 /* nexthop not set */ 2313 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2314 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2315 } 2316 2317 if (!first_ire) { 2318 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2319 ntohl(ipha->ipha_dst))); 2320 return (B_FALSE); 2321 } 2322 /* Check for MTU discovery advice as described in RFC 1191 */ 2323 mtu = ntohs(icmph->icmph_du_mtu); 2324 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2325 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2326 ire = ire->ire_next) { 2327 /* 2328 * Look for the connection to which this ICMP message is 2329 * directed. If it has the IP_NEXTHOP option set, then the 2330 * search is limited to IREs with the MATCH_IRE_PRIVATE 2331 * option. Else the search is limited to regular IREs. 2332 */ 2333 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2334 (nexthop_addr != ire->ire_gateway_addr)) || 2335 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2336 (nexthop_addr != INADDR_ANY))) 2337 continue; 2338 2339 mutex_enter(&ire->ire_lock); 2340 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2341 /* Reduce the IRE max frag value as advised. */ 2342 ip1dbg(("Received mtu from router: %d (was %d)\n", 2343 mtu, ire->ire_max_frag)); 2344 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2345 } else { 2346 uint32_t length; 2347 int i; 2348 2349 /* 2350 * Use the table from RFC 1191 to figure out 2351 * the next "plateau" based on the length in 2352 * the original IP packet. 2353 */ 2354 length = ntohs(ipha->ipha_length); 2355 if (ire->ire_max_frag <= length && 2356 ire->ire_max_frag >= length - hdr_length) { 2357 /* 2358 * Handle broken BSD 4.2 systems that 2359 * return the wrong iph_length in ICMP 2360 * errors. 2361 */ 2362 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2363 length, ire->ire_max_frag)); 2364 length -= hdr_length; 2365 } 2366 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2367 if (length > icmp_frag_size_table[i]) 2368 break; 2369 } 2370 if (i == A_CNT(icmp_frag_size_table)) { 2371 /* Smaller than 68! */ 2372 ip1dbg(("Too big for packet size %d\n", 2373 length)); 2374 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2375 ire->ire_frag_flag = 0; 2376 } else { 2377 mtu = icmp_frag_size_table[i]; 2378 ip1dbg(("Calculated mtu %d, packet size %d, " 2379 "before %d", mtu, length, 2380 ire->ire_max_frag)); 2381 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2382 ip1dbg((", after %d\n", ire->ire_max_frag)); 2383 } 2384 /* Record the new max frag size for the ULP. */ 2385 icmph->icmph_du_zero = 0; 2386 icmph->icmph_du_mtu = 2387 htons((uint16_t)ire->ire_max_frag); 2388 } 2389 mutex_exit(&ire->ire_lock); 2390 } 2391 rw_exit(&first_ire->ire_bucket->irb_lock); 2392 ire_refrele(first_ire); 2393 return (B_TRUE); 2394 } 2395 2396 /* 2397 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2398 * calls this function. 2399 */ 2400 static mblk_t * 2401 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2402 { 2403 ipha_t *ipha; 2404 icmph_t *icmph; 2405 ipha_t *in_ipha; 2406 int length; 2407 2408 ASSERT(mp->b_datap->db_type == M_DATA); 2409 2410 /* 2411 * For Self-encapsulated packets, we added an extra IP header 2412 * without the options. Inner IP header is the one from which 2413 * the outer IP header was formed. Thus, we need to remove the 2414 * outer IP header. To do this, we pullup the whole message 2415 * and overlay whatever follows the outer IP header over the 2416 * outer IP header. 2417 */ 2418 2419 if (!pullupmsg(mp, -1)) { 2420 BUMP_MIB(&ip_mib, ipInDiscards); 2421 return (NULL); 2422 } 2423 2424 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2425 ipha = (ipha_t *)&icmph[1]; 2426 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2427 2428 /* 2429 * The length that we want to overlay is following the inner 2430 * IP header. Subtracting the IP header + icmp header + outer 2431 * IP header's length should give us the length that we want to 2432 * overlay. 2433 */ 2434 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2435 hdr_length; 2436 /* 2437 * Overlay whatever follows the inner header over the 2438 * outer header. 2439 */ 2440 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2441 2442 /* Set the wptr to account for the outer header */ 2443 mp->b_wptr -= hdr_length; 2444 return (mp); 2445 } 2446 2447 /* 2448 * Try to pass the ICMP message upstream in case the ULP cares. 2449 * 2450 * If the packet that caused the ICMP error is secure, we send 2451 * it to AH/ESP to make sure that the attached packet has a 2452 * valid association. ipha in the code below points to the 2453 * IP header of the packet that caused the error. 2454 * 2455 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2456 * in the context of IPSEC. Normally we tell the upper layer 2457 * whenever we send the ire (including ip_bind), the IPSEC header 2458 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2459 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2460 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2461 * same thing. As TCP has the IPSEC options size that needs to be 2462 * adjusted, we just pass the MTU unchanged. 2463 * 2464 * IFN could have been generated locally or by some router. 2465 * 2466 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2467 * This happens because IP adjusted its value of MTU on an 2468 * earlier IFN message and could not tell the upper layer, 2469 * the new adjusted value of MTU e.g. Packet was encrypted 2470 * or there was not enough information to fanout to upper 2471 * layers. Thus on the next outbound datagram, ip_wput_ire 2472 * generates the IFN, where IPSEC processing has *not* been 2473 * done. 2474 * 2475 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2476 * could have generated this. This happens because ire_max_frag 2477 * value in IP was set to a new value, while the IPSEC processing 2478 * was being done and after we made the fragmentation check in 2479 * ip_wput_ire. Thus on return from IPSEC processing, 2480 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2481 * and generates the IFN. As IPSEC processing is over, we fanout 2482 * to AH/ESP to remove the header. 2483 * 2484 * In both these cases, ipsec_in_loopback will be set indicating 2485 * that IFN was generated locally. 2486 * 2487 * ROUTER : IFN could be secure or non-secure. 2488 * 2489 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2490 * packet in error has AH/ESP headers to validate the AH/ESP 2491 * headers. AH/ESP will verify whether there is a valid SA or 2492 * not and send it back. We will fanout again if we have more 2493 * data in the packet. 2494 * 2495 * If the packet in error does not have AH/ESP, we handle it 2496 * like any other case. 2497 * 2498 * * NON_SECURE : If the packet in error has AH/ESP headers, 2499 * we attach a dummy ipsec_in and send it up to AH/ESP 2500 * for validation. AH/ESP will verify whether there is a 2501 * valid SA or not and send it back. We will fanout again if 2502 * we have more data in the packet. 2503 * 2504 * If the packet in error does not have AH/ESP, we handle it 2505 * like any other case. 2506 */ 2507 static void 2508 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2509 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2510 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2511 zoneid_t zoneid) 2512 { 2513 uint16_t *up; /* Pointer to ports in ULP header */ 2514 uint32_t ports; /* reversed ports for fanout */ 2515 ipha_t ripha; /* With reversed addresses */ 2516 mblk_t *first_mp; 2517 ipsec_in_t *ii; 2518 tcph_t *tcph; 2519 conn_t *connp; 2520 2521 first_mp = mp; 2522 if (mctl_present) { 2523 mp = first_mp->b_cont; 2524 ASSERT(mp != NULL); 2525 2526 ii = (ipsec_in_t *)first_mp->b_rptr; 2527 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2528 } else { 2529 ii = NULL; 2530 } 2531 2532 switch (ipha->ipha_protocol) { 2533 case IPPROTO_UDP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2546 ipha = (ipha_t *)&icmph[1]; 2547 } 2548 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2549 2550 /* 2551 * Attempt to find a client stream based on port. 2552 * Note that we do a reverse lookup since the header is 2553 * in the form we sent it out. 2554 * The ripha header is only used for the IP_UDP_MATCH and we 2555 * only set the src and dst addresses and protocol. 2556 */ 2557 ripha.ipha_src = ipha->ipha_dst; 2558 ripha.ipha_dst = ipha->ipha_src; 2559 ripha.ipha_protocol = ipha->ipha_protocol; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2563 ntohl(ipha->ipha_src), ntohs(up[0]), 2564 ntohl(ipha->ipha_dst), ntohs(up[1]), 2565 icmph->icmph_type, icmph->icmph_code)); 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 2570 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2571 mctl_present, ip_policy, recv_ill, zoneid); 2572 return; 2573 2574 case IPPROTO_TCP: 2575 /* 2576 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2577 * transport header. 2578 */ 2579 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2580 mp->b_wptr) { 2581 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2582 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2583 BUMP_MIB(&ip_mib, ipInDiscards); 2584 goto drop_pkt; 2585 } 2586 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2587 ipha = (ipha_t *)&icmph[1]; 2588 } 2589 /* 2590 * Find a TCP client stream for this packet. 2591 * Note that we do a reverse lookup since the header is 2592 * in the form we sent it out. 2593 */ 2594 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2595 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2596 if (connp == NULL) { 2597 BUMP_MIB(&ip_mib, ipInDiscards); 2598 goto drop_pkt; 2599 } 2600 2601 /* Have to change db_type after any pullupmsg */ 2602 DB_TYPE(mp) = M_CTL; 2603 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2604 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2605 return; 2606 2607 case IPPROTO_SCTP: 2608 /* 2609 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2610 * transport header. 2611 */ 2612 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2613 mp->b_wptr) { 2614 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2615 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2616 BUMP_MIB(&ip_mib, ipInDiscards); 2617 goto drop_pkt; 2618 } 2619 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2620 ipha = (ipha_t *)&icmph[1]; 2621 } 2622 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2623 /* 2624 * Find a SCTP client stream for this packet. 2625 * Note that we do a reverse lookup since the header is 2626 * in the form we sent it out. 2627 * The ripha header is only used for the matching and we 2628 * only set the src and dst addresses, protocol, and version. 2629 */ 2630 ripha.ipha_src = ipha->ipha_dst; 2631 ripha.ipha_dst = ipha->ipha_src; 2632 ripha.ipha_protocol = ipha->ipha_protocol; 2633 ripha.ipha_version_and_hdr_length = 2634 ipha->ipha_version_and_hdr_length; 2635 ((uint16_t *)&ports)[0] = up[1]; 2636 ((uint16_t *)&ports)[1] = up[0]; 2637 2638 /* Have to change db_type after any pullupmsg */ 2639 DB_TYPE(mp) = M_CTL; 2640 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2641 mctl_present, ip_policy, 0, zoneid); 2642 return; 2643 2644 case IPPROTO_ESP: 2645 case IPPROTO_AH: { 2646 int ipsec_rc; 2647 2648 /* 2649 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2650 * We will re-use the IPSEC_IN if it is already present as 2651 * AH/ESP will not affect any fields in the IPSEC_IN for 2652 * ICMP errors. If there is no IPSEC_IN, allocate a new 2653 * one and attach it in the front. 2654 */ 2655 if (ii != NULL) { 2656 /* 2657 * ip_fanout_proto_again converts the ICMP errors 2658 * that come back from AH/ESP to M_DATA so that 2659 * if it is non-AH/ESP and we do a pullupmsg in 2660 * this function, it would work. Convert it back 2661 * to M_CTL before we send up as this is a ICMP 2662 * error. This could have been generated locally or 2663 * by some router. Validate the inner IPSEC 2664 * headers. 2665 * 2666 * NOTE : ill_index is used by ip_fanout_proto_again 2667 * to locate the ill. 2668 */ 2669 ASSERT(ill != NULL); 2670 ii->ipsec_in_ill_index = 2671 ill->ill_phyint->phyint_ifindex; 2672 ii->ipsec_in_rill_index = 2673 recv_ill->ill_phyint->phyint_ifindex; 2674 DB_TYPE(first_mp->b_cont) = M_CTL; 2675 } else { 2676 /* 2677 * IPSEC_IN is not present. We attach a ipsec_in 2678 * message and send up to IPSEC for validating 2679 * and removing the IPSEC headers. Clear 2680 * ipsec_in_secure so that when we return 2681 * from IPSEC, we don't mistakenly think that this 2682 * is a secure packet came from the network. 2683 * 2684 * NOTE : ill_index is used by ip_fanout_proto_again 2685 * to locate the ill. 2686 */ 2687 ASSERT(first_mp == mp); 2688 first_mp = ipsec_in_alloc(B_TRUE); 2689 if (first_mp == NULL) { 2690 freemsg(mp); 2691 BUMP_MIB(&ip_mib, ipInDiscards); 2692 return; 2693 } 2694 ii = (ipsec_in_t *)first_mp->b_rptr; 2695 2696 /* This is not a secure packet */ 2697 ii->ipsec_in_secure = B_FALSE; 2698 first_mp->b_cont = mp; 2699 DB_TYPE(mp) = M_CTL; 2700 ASSERT(ill != NULL); 2701 ii->ipsec_in_ill_index = 2702 ill->ill_phyint->phyint_ifindex; 2703 ii->ipsec_in_rill_index = 2704 recv_ill->ill_phyint->phyint_ifindex; 2705 } 2706 ip2dbg(("icmp_inbound_error: ipsec\n")); 2707 2708 if (!ipsec_loaded()) { 2709 ip_proto_not_sup(q, first_mp, 0, zoneid); 2710 return; 2711 } 2712 2713 if (ipha->ipha_protocol == IPPROTO_ESP) 2714 ipsec_rc = ipsecesp_icmp_error(first_mp); 2715 else 2716 ipsec_rc = ipsecah_icmp_error(first_mp); 2717 if (ipsec_rc == IPSEC_STATUS_FAILED) 2718 return; 2719 2720 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2721 return; 2722 } 2723 default: 2724 /* 2725 * The ripha header is only used for the lookup and we 2726 * only set the src and dst addresses and protocol. 2727 */ 2728 ripha.ipha_src = ipha->ipha_dst; 2729 ripha.ipha_dst = ipha->ipha_src; 2730 ripha.ipha_protocol = ipha->ipha_protocol; 2731 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2732 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2733 ntohl(ipha->ipha_dst), 2734 icmph->icmph_type, icmph->icmph_code)); 2735 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2736 ipha_t *in_ipha; 2737 2738 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2739 mp->b_wptr) { 2740 if (!pullupmsg(mp, (uchar_t *)ipha + 2741 hdr_length + sizeof (ipha_t) - 2742 mp->b_rptr)) { 2743 2744 BUMP_MIB(&ip_mib, ipInDiscards); 2745 goto drop_pkt; 2746 } 2747 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2748 ipha = (ipha_t *)&icmph[1]; 2749 } 2750 /* 2751 * Caller has verified that length has to be 2752 * at least the size of IP header. 2753 */ 2754 ASSERT(hdr_length >= sizeof (ipha_t)); 2755 /* 2756 * Check the sanity of the inner IP header like 2757 * we did for the outer header. 2758 */ 2759 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2760 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2761 BUMP_MIB(&ip_mib, ipInDiscards); 2762 goto drop_pkt; 2763 } 2764 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2765 BUMP_MIB(&ip_mib, ipInDiscards); 2766 goto drop_pkt; 2767 } 2768 /* Check for Self-encapsulated tunnels */ 2769 if (in_ipha->ipha_src == ipha->ipha_src && 2770 in_ipha->ipha_dst == ipha->ipha_dst) { 2771 2772 mp = icmp_inbound_self_encap_error(mp, 2773 iph_hdr_length, hdr_length); 2774 if (mp == NULL) 2775 goto drop_pkt; 2776 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2777 ipha = (ipha_t *)&icmph[1]; 2778 hdr_length = IPH_HDR_LENGTH(ipha); 2779 /* 2780 * The packet in error is self-encapsualted. 2781 * And we are finding it further encapsulated 2782 * which we could not have possibly generated. 2783 */ 2784 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2785 BUMP_MIB(&ip_mib, ipInDiscards); 2786 goto drop_pkt; 2787 } 2788 icmp_inbound_error_fanout(q, ill, first_mp, 2789 icmph, ipha, iph_hdr_length, hdr_length, 2790 mctl_present, ip_policy, recv_ill, zoneid); 2791 return; 2792 } 2793 } 2794 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2795 ipha->ipha_protocol == IPPROTO_IPV6) && 2796 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2797 ii != NULL && 2798 ii->ipsec_in_loopback && 2799 ii->ipsec_in_secure) { 2800 /* 2801 * For IP tunnels that get a looped-back 2802 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2803 * reported new MTU to take into account the IPsec 2804 * headers protecting this configured tunnel. 2805 * 2806 * This allows the tunnel module (tun.c) to blindly 2807 * accept the MTU reported in an ICMP "too big" 2808 * message. 2809 * 2810 * Non-looped back ICMP messages will just be 2811 * handled by the security protocols (if needed), 2812 * and the first subsequent packet will hit this 2813 * path. 2814 */ 2815 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2816 ipsec_in_extra_length(first_mp)); 2817 } 2818 /* Have to change db_type after any pullupmsg */ 2819 DB_TYPE(mp) = M_CTL; 2820 2821 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2822 ip_policy, recv_ill, zoneid); 2823 return; 2824 } 2825 /* NOTREACHED */ 2826 drop_pkt:; 2827 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2828 freemsg(first_mp); 2829 } 2830 2831 /* 2832 * Common IP options parser. 2833 * 2834 * Setup routine: fill in *optp with options-parsing state, then 2835 * tail-call ipoptp_next to return the first option. 2836 */ 2837 uint8_t 2838 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2839 { 2840 uint32_t totallen; /* total length of all options */ 2841 2842 totallen = ipha->ipha_version_and_hdr_length - 2843 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2844 totallen <<= 2; 2845 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2846 optp->ipoptp_end = optp->ipoptp_next + totallen; 2847 optp->ipoptp_flags = 0; 2848 return (ipoptp_next(optp)); 2849 } 2850 2851 /* 2852 * Common IP options parser: extract next option. 2853 */ 2854 uint8_t 2855 ipoptp_next(ipoptp_t *optp) 2856 { 2857 uint8_t *end = optp->ipoptp_end; 2858 uint8_t *cur = optp->ipoptp_next; 2859 uint8_t opt, len, pointer; 2860 2861 /* 2862 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2863 * has been corrupted. 2864 */ 2865 ASSERT(cur <= end); 2866 2867 if (cur == end) 2868 return (IPOPT_EOL); 2869 2870 opt = cur[IPOPT_OPTVAL]; 2871 2872 /* 2873 * Skip any NOP options. 2874 */ 2875 while (opt == IPOPT_NOP) { 2876 cur++; 2877 if (cur == end) 2878 return (IPOPT_EOL); 2879 opt = cur[IPOPT_OPTVAL]; 2880 } 2881 2882 if (opt == IPOPT_EOL) 2883 return (IPOPT_EOL); 2884 2885 /* 2886 * Option requiring a length. 2887 */ 2888 if ((cur + 1) >= end) { 2889 optp->ipoptp_flags |= IPOPTP_ERROR; 2890 return (IPOPT_EOL); 2891 } 2892 len = cur[IPOPT_OLEN]; 2893 if (len < 2) { 2894 optp->ipoptp_flags |= IPOPTP_ERROR; 2895 return (IPOPT_EOL); 2896 } 2897 optp->ipoptp_cur = cur; 2898 optp->ipoptp_len = len; 2899 optp->ipoptp_next = cur + len; 2900 if (cur + len > end) { 2901 optp->ipoptp_flags |= IPOPTP_ERROR; 2902 return (IPOPT_EOL); 2903 } 2904 2905 /* 2906 * For the options which require a pointer field, make sure 2907 * its there, and make sure it points to either something 2908 * inside this option, or the end of the option. 2909 */ 2910 switch (opt) { 2911 case IPOPT_RR: 2912 case IPOPT_TS: 2913 case IPOPT_LSRR: 2914 case IPOPT_SSRR: 2915 if (len <= IPOPT_OFFSET) { 2916 optp->ipoptp_flags |= IPOPTP_ERROR; 2917 return (opt); 2918 } 2919 pointer = cur[IPOPT_OFFSET]; 2920 if (pointer - 1 > len) { 2921 optp->ipoptp_flags |= IPOPTP_ERROR; 2922 return (opt); 2923 } 2924 break; 2925 } 2926 2927 /* 2928 * Sanity check the pointer field based on the type of the 2929 * option. 2930 */ 2931 switch (opt) { 2932 case IPOPT_RR: 2933 case IPOPT_SSRR: 2934 case IPOPT_LSRR: 2935 if (pointer < IPOPT_MINOFF_SR) 2936 optp->ipoptp_flags |= IPOPTP_ERROR; 2937 break; 2938 case IPOPT_TS: 2939 if (pointer < IPOPT_MINOFF_IT) 2940 optp->ipoptp_flags |= IPOPTP_ERROR; 2941 /* 2942 * Note that the Internet Timestamp option also 2943 * contains two four bit fields (the Overflow field, 2944 * and the Flag field), which follow the pointer 2945 * field. We don't need to check that these fields 2946 * fall within the length of the option because this 2947 * was implicitely done above. We've checked that the 2948 * pointer value is at least IPOPT_MINOFF_IT, and that 2949 * it falls within the option. Since IPOPT_MINOFF_IT > 2950 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2951 */ 2952 ASSERT(len > IPOPT_POS_OV_FLG); 2953 break; 2954 } 2955 2956 return (opt); 2957 } 2958 2959 /* 2960 * Use the outgoing IP header to create an IP_OPTIONS option the way 2961 * it was passed down from the application. 2962 */ 2963 int 2964 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2965 { 2966 ipoptp_t opts; 2967 const uchar_t *opt; 2968 uint8_t optval; 2969 uint8_t optlen; 2970 uint32_t len = 0; 2971 uchar_t *buf1 = buf; 2972 2973 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2974 len += IP_ADDR_LEN; 2975 bzero(buf1, IP_ADDR_LEN); 2976 2977 /* 2978 * OK to cast away const here, as we don't store through the returned 2979 * opts.ipoptp_cur pointer. 2980 */ 2981 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2982 optval != IPOPT_EOL; 2983 optval = ipoptp_next(&opts)) { 2984 int off; 2985 2986 opt = opts.ipoptp_cur; 2987 optlen = opts.ipoptp_len; 2988 switch (optval) { 2989 case IPOPT_SSRR: 2990 case IPOPT_LSRR: 2991 2992 /* 2993 * Insert ipha_dst as the first entry in the source 2994 * route and move down the entries on step. 2995 * The last entry gets placed at buf1. 2996 */ 2997 buf[IPOPT_OPTVAL] = optval; 2998 buf[IPOPT_OLEN] = optlen; 2999 buf[IPOPT_OFFSET] = optlen; 3000 3001 off = optlen - IP_ADDR_LEN; 3002 if (off < 0) { 3003 /* No entries in source route */ 3004 break; 3005 } 3006 /* Last entry in source route */ 3007 bcopy(opt + off, buf1, IP_ADDR_LEN); 3008 off -= IP_ADDR_LEN; 3009 3010 while (off > 0) { 3011 bcopy(opt + off, 3012 buf + off + IP_ADDR_LEN, 3013 IP_ADDR_LEN); 3014 off -= IP_ADDR_LEN; 3015 } 3016 /* ipha_dst into first slot */ 3017 bcopy(&ipha->ipha_dst, 3018 buf + off + IP_ADDR_LEN, 3019 IP_ADDR_LEN); 3020 buf += optlen; 3021 len += optlen; 3022 break; 3023 3024 case IPOPT_COMSEC: 3025 case IPOPT_SECURITY: 3026 /* if passing up a label is not ok, then remove */ 3027 if (is_system_labeled()) 3028 break; 3029 /* FALLTHROUGH */ 3030 default: 3031 bcopy(opt, buf, optlen); 3032 buf += optlen; 3033 len += optlen; 3034 break; 3035 } 3036 } 3037 done: 3038 /* Pad the resulting options */ 3039 while (len & 0x3) { 3040 *buf++ = IPOPT_EOL; 3041 len++; 3042 } 3043 return (len); 3044 } 3045 3046 /* 3047 * Update any record route or timestamp options to include this host. 3048 * Reverse any source route option. 3049 * This routine assumes that the options are well formed i.e. that they 3050 * have already been checked. 3051 */ 3052 static void 3053 icmp_options_update(ipha_t *ipha) 3054 { 3055 ipoptp_t opts; 3056 uchar_t *opt; 3057 uint8_t optval; 3058 ipaddr_t src; /* Our local address */ 3059 ipaddr_t dst; 3060 3061 ip2dbg(("icmp_options_update\n")); 3062 src = ipha->ipha_src; 3063 dst = ipha->ipha_dst; 3064 3065 for (optval = ipoptp_first(&opts, ipha); 3066 optval != IPOPT_EOL; 3067 optval = ipoptp_next(&opts)) { 3068 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3069 opt = opts.ipoptp_cur; 3070 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3071 optval, opts.ipoptp_len)); 3072 switch (optval) { 3073 int off1, off2; 3074 case IPOPT_SSRR: 3075 case IPOPT_LSRR: 3076 /* 3077 * Reverse the source route. The first entry 3078 * should be the next to last one in the current 3079 * source route (the last entry is our address). 3080 * The last entry should be the final destination. 3081 */ 3082 off1 = IPOPT_MINOFF_SR - 1; 3083 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3084 if (off2 < 0) { 3085 /* No entries in source route */ 3086 ip1dbg(( 3087 "icmp_options_update: bad src route\n")); 3088 break; 3089 } 3090 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3091 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3092 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3093 off2 -= IP_ADDR_LEN; 3094 3095 while (off1 < off2) { 3096 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3097 bcopy((char *)opt + off2, (char *)opt + off1, 3098 IP_ADDR_LEN); 3099 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3100 off1 += IP_ADDR_LEN; 3101 off2 -= IP_ADDR_LEN; 3102 } 3103 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3104 break; 3105 } 3106 } 3107 } 3108 3109 /* 3110 * Process received ICMP Redirect messages. 3111 */ 3112 /* ARGSUSED */ 3113 static void 3114 icmp_redirect(mblk_t *mp) 3115 { 3116 ipha_t *ipha; 3117 int iph_hdr_length; 3118 icmph_t *icmph; 3119 ipha_t *ipha_err; 3120 ire_t *ire; 3121 ire_t *prev_ire; 3122 ire_t *save_ire; 3123 ipaddr_t src, dst, gateway; 3124 iulp_t ulp_info = { 0 }; 3125 int error; 3126 3127 ipha = (ipha_t *)mp->b_rptr; 3128 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3129 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3130 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3131 BUMP_MIB(&icmp_mib, icmpInErrors); 3132 freemsg(mp); 3133 return; 3134 } 3135 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3136 ipha_err = (ipha_t *)&icmph[1]; 3137 src = ipha->ipha_src; 3138 dst = ipha_err->ipha_dst; 3139 gateway = icmph->icmph_rd_gateway; 3140 /* Make sure the new gateway is reachable somehow. */ 3141 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3142 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3143 /* 3144 * Make sure we had a route for the dest in question and that 3145 * that route was pointing to the old gateway (the source of the 3146 * redirect packet.) 3147 */ 3148 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3149 NULL, MATCH_IRE_GW); 3150 /* 3151 * Check that 3152 * the redirect was not from ourselves 3153 * the new gateway and the old gateway are directly reachable 3154 */ 3155 if (!prev_ire || 3156 !ire || 3157 ire->ire_type == IRE_LOCAL) { 3158 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3159 freemsg(mp); 3160 if (ire != NULL) 3161 ire_refrele(ire); 3162 if (prev_ire != NULL) 3163 ire_refrele(prev_ire); 3164 return; 3165 } 3166 3167 /* 3168 * Should we use the old ULP info to create the new gateway? From 3169 * a user's perspective, we should inherit the info so that it 3170 * is a "smooth" transition. If we do not do that, then new 3171 * connections going thru the new gateway will have no route metrics, 3172 * which is counter-intuitive to user. From a network point of 3173 * view, this may or may not make sense even though the new gateway 3174 * is still directly connected to us so the route metrics should not 3175 * change much. 3176 * 3177 * But if the old ire_uinfo is not initialized, we do another 3178 * recursive lookup on the dest using the new gateway. There may 3179 * be a route to that. If so, use it to initialize the redirect 3180 * route. 3181 */ 3182 if (prev_ire->ire_uinfo.iulp_set) { 3183 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3184 } else { 3185 ire_t *tmp_ire; 3186 ire_t *sire; 3187 3188 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3189 ALL_ZONES, 0, NULL, 3190 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3191 if (sire != NULL) { 3192 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3193 /* 3194 * If sire != NULL, ire_ftable_lookup() should not 3195 * return a NULL value. 3196 */ 3197 ASSERT(tmp_ire != NULL); 3198 ire_refrele(tmp_ire); 3199 ire_refrele(sire); 3200 } else if (tmp_ire != NULL) { 3201 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3202 sizeof (iulp_t)); 3203 ire_refrele(tmp_ire); 3204 } 3205 } 3206 if (prev_ire->ire_type == IRE_CACHE) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 /* 3210 * TODO: more precise handling for cases 0, 2, 3, the latter two 3211 * require TOS routing 3212 */ 3213 switch (icmph->icmph_code) { 3214 case 0: 3215 case 1: 3216 /* TODO: TOS specificity for cases 2 and 3 */ 3217 case 2: 3218 case 3: 3219 break; 3220 default: 3221 freemsg(mp); 3222 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3223 ire_refrele(ire); 3224 return; 3225 } 3226 /* 3227 * Create a Route Association. This will allow us to remember that 3228 * someone we believe told us to use the particular gateway. 3229 */ 3230 save_ire = ire; 3231 ire = ire_create( 3232 (uchar_t *)&dst, /* dest addr */ 3233 (uchar_t *)&ip_g_all_ones, /* mask */ 3234 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3235 (uchar_t *)&gateway, /* gateway addr */ 3236 NULL, /* no in_srcaddr */ 3237 &save_ire->ire_max_frag, /* max frag */ 3238 NULL, /* Fast Path header */ 3239 NULL, /* no rfq */ 3240 NULL, /* no stq */ 3241 IRE_HOST_REDIRECT, 3242 NULL, 3243 NULL, 3244 NULL, 3245 0, 3246 0, 3247 0, 3248 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3249 &ulp_info, 3250 NULL, 3251 NULL); 3252 3253 if (ire == NULL) { 3254 freemsg(mp); 3255 ire_refrele(save_ire); 3256 return; 3257 } 3258 error = ire_add(&ire, NULL, NULL, NULL); 3259 ire_refrele(save_ire); 3260 if (error == 0) { 3261 ire_refrele(ire); /* Held in ire_add_v4 */ 3262 /* tell routing sockets that we received a redirect */ 3263 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3264 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3265 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3266 } 3267 3268 /* 3269 * Delete any existing IRE_HOST_REDIRECT for this destination. 3270 * This together with the added IRE has the effect of 3271 * modifying an existing redirect. 3272 */ 3273 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3274 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3275 if (prev_ire) { 3276 ire_delete(prev_ire); 3277 ire_refrele(prev_ire); 3278 } 3279 3280 freemsg(mp); 3281 } 3282 3283 /* 3284 * Generate an ICMP parameter problem message. 3285 */ 3286 static void 3287 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3288 { 3289 icmph_t icmph; 3290 boolean_t mctl_present; 3291 mblk_t *first_mp; 3292 3293 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3294 3295 if (!(mp = icmp_pkt_err_ok(mp))) { 3296 if (mctl_present) 3297 freeb(first_mp); 3298 return; 3299 } 3300 3301 bzero(&icmph, sizeof (icmph_t)); 3302 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3303 icmph.icmph_pp_ptr = ptr; 3304 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3305 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3306 } 3307 3308 /* 3309 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3310 * the ICMP header pointed to by "stuff". (May be called as writer.) 3311 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3312 * an icmp error packet can be sent. 3313 * Assigns an appropriate source address to the packet. If ipha_dst is 3314 * one of our addresses use it for source. Otherwise pick a source based 3315 * on a route lookup back to ipha_src. 3316 * Note that ipha_src must be set here since the 3317 * packet is likely to arrive on an ill queue in ip_wput() which will 3318 * not set a source address. 3319 */ 3320 static void 3321 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3322 boolean_t mctl_present) 3323 { 3324 ipaddr_t dst; 3325 icmph_t *icmph; 3326 ipha_t *ipha; 3327 uint_t len_needed; 3328 size_t msg_len; 3329 mblk_t *mp1; 3330 ipaddr_t src; 3331 ire_t *ire; 3332 mblk_t *ipsec_mp; 3333 ipsec_out_t *io = NULL; 3334 boolean_t xmit_if_on = B_FALSE; 3335 zoneid_t zoneid; 3336 3337 if (mctl_present) { 3338 /* 3339 * If it is : 3340 * 3341 * 1) a IPSEC_OUT, then this is caused by outbound 3342 * datagram originating on this host. IPSEC processing 3343 * may or may not have been done. Refer to comments above 3344 * icmp_inbound_error_fanout for details. 3345 * 3346 * 2) a IPSEC_IN if we are generating a icmp_message 3347 * for an incoming datagram destined for us i.e called 3348 * from ip_fanout_send_icmp. 3349 */ 3350 ipsec_info_t *in; 3351 ipsec_mp = mp; 3352 mp = ipsec_mp->b_cont; 3353 3354 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 3357 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3358 in->ipsec_info_type == IPSEC_IN); 3359 3360 if (in->ipsec_info_type == IPSEC_IN) { 3361 /* 3362 * Convert the IPSEC_IN to IPSEC_OUT. 3363 */ 3364 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3365 BUMP_MIB(&ip_mib, ipOutDiscards); 3366 return; 3367 } 3368 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3369 } else { 3370 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3371 io = (ipsec_out_t *)in; 3372 if (io->ipsec_out_xmit_if) 3373 xmit_if_on = B_TRUE; 3374 /* 3375 * Clear out ipsec_out_proc_begin, so we do a fresh 3376 * ire lookup. 3377 */ 3378 io->ipsec_out_proc_begin = B_FALSE; 3379 } 3380 zoneid = io->ipsec_out_zoneid; 3381 ASSERT(zoneid != ALL_ZONES); 3382 } else { 3383 /* 3384 * This is in clear. The icmp message we are building 3385 * here should go out in clear. 3386 * 3387 * Pardon the convolution of it all, but it's easier to 3388 * allocate a "use cleartext" IPSEC_IN message and convert 3389 * it than it is to allocate a new one. 3390 */ 3391 ipsec_in_t *ii; 3392 ASSERT(DB_TYPE(mp) == M_DATA); 3393 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3394 freemsg(mp); 3395 BUMP_MIB(&ip_mib, ipOutDiscards); 3396 return; 3397 } 3398 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3399 3400 /* This is not a secure packet */ 3401 ii->ipsec_in_secure = B_FALSE; 3402 if (CONN_Q(q)) { 3403 zoneid = Q_TO_CONN(q)->conn_zoneid; 3404 } else { 3405 zoneid = GLOBAL_ZONEID; 3406 } 3407 ii->ipsec_in_zoneid = zoneid; 3408 ASSERT(zoneid != ALL_ZONES); 3409 ipsec_mp->b_cont = mp; 3410 ipha = (ipha_t *)mp->b_rptr; 3411 /* 3412 * Convert the IPSEC_IN to IPSEC_OUT. 3413 */ 3414 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3415 BUMP_MIB(&ip_mib, ipOutDiscards); 3416 return; 3417 } 3418 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3419 } 3420 3421 /* Remember our eventual destination */ 3422 dst = ipha->ipha_src; 3423 3424 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3425 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3426 if (ire != NULL && 3427 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3428 src = ipha->ipha_dst; 3429 } else if (!xmit_if_on) { 3430 if (ire != NULL) 3431 ire_refrele(ire); 3432 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3433 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3434 if (ire == NULL) { 3435 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3436 freemsg(ipsec_mp); 3437 return; 3438 } 3439 src = ire->ire_src_addr; 3440 } else { 3441 ipif_t *ipif = NULL; 3442 ill_t *ill; 3443 /* 3444 * This must be an ICMP error coming from 3445 * ip_mrtun_forward(). The src addr should 3446 * be equal to the IP-addr of the outgoing 3447 * interface. 3448 */ 3449 if (io == NULL) { 3450 /* This is not a IPSEC_OUT type control msg */ 3451 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3452 freemsg(ipsec_mp); 3453 return; 3454 } 3455 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3456 NULL, NULL, NULL, NULL); 3457 if (ill != NULL) { 3458 ipif = ipif_get_next_ipif(NULL, ill); 3459 ill_refrele(ill); 3460 } 3461 if (ipif == NULL) { 3462 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3463 freemsg(ipsec_mp); 3464 return; 3465 } 3466 src = ipif->ipif_src_addr; 3467 ipif_refrele(ipif); 3468 } 3469 3470 if (ire != NULL) 3471 ire_refrele(ire); 3472 3473 /* 3474 * Check if we can send back more then 8 bytes in addition 3475 * to the IP header. We will include as much as 64 bytes. 3476 */ 3477 len_needed = IPH_HDR_LENGTH(ipha); 3478 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3479 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3480 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3481 } 3482 len_needed += ip_icmp_return; 3483 msg_len = msgdsize(mp); 3484 if (msg_len > len_needed) { 3485 (void) adjmsg(mp, len_needed - msg_len); 3486 msg_len = len_needed; 3487 } 3488 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3489 if (mp1 == NULL) { 3490 BUMP_MIB(&icmp_mib, icmpOutErrors); 3491 freemsg(ipsec_mp); 3492 return; 3493 } 3494 /* 3495 * On an unlabeled system, dblks don't necessarily have creds. 3496 */ 3497 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3498 if (DB_CRED(mp) != NULL) 3499 mblk_setcred(mp1, DB_CRED(mp)); 3500 mp1->b_cont = mp; 3501 mp = mp1; 3502 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3503 ipsec_mp->b_rptr == (uint8_t *)io && 3504 io->ipsec_out_type == IPSEC_OUT); 3505 ipsec_mp->b_cont = mp; 3506 3507 /* 3508 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3509 * node generates be accepted in peace by all on-host destinations. 3510 * If we do NOT assume that all on-host destinations trust 3511 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3512 * (Look for ipsec_out_icmp_loopback). 3513 */ 3514 io->ipsec_out_icmp_loopback = B_TRUE; 3515 3516 ipha = (ipha_t *)mp->b_rptr; 3517 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3518 *ipha = icmp_ipha; 3519 ipha->ipha_src = src; 3520 ipha->ipha_dst = dst; 3521 ipha->ipha_ttl = ip_def_ttl; 3522 msg_len += sizeof (icmp_ipha) + len; 3523 if (msg_len > IP_MAXPACKET) { 3524 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3525 msg_len = IP_MAXPACKET; 3526 } 3527 ipha->ipha_length = htons((uint16_t)msg_len); 3528 icmph = (icmph_t *)&ipha[1]; 3529 bcopy(stuff, icmph, len); 3530 icmph->icmph_checksum = 0; 3531 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3532 if (icmph->icmph_checksum == 0) 3533 icmph->icmph_checksum = 0xFFFF; 3534 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3535 put(q, ipsec_mp); 3536 } 3537 3538 /* 3539 * Determine if an ICMP error packet can be sent given the rate limit. 3540 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3541 * in milliseconds) and a burst size. Burst size number of packets can 3542 * be sent arbitrarely closely spaced. 3543 * The state is tracked using two variables to implement an approximate 3544 * token bucket filter: 3545 * icmp_pkt_err_last - lbolt value when the last burst started 3546 * icmp_pkt_err_sent - number of packets sent in current burst 3547 */ 3548 boolean_t 3549 icmp_err_rate_limit(void) 3550 { 3551 clock_t now = TICK_TO_MSEC(lbolt); 3552 uint_t refilled; /* Number of packets refilled in tbf since last */ 3553 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3554 3555 if (err_interval == 0) 3556 return (B_FALSE); 3557 3558 if (icmp_pkt_err_last > now) { 3559 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3560 icmp_pkt_err_last = 0; 3561 icmp_pkt_err_sent = 0; 3562 } 3563 /* 3564 * If we are in a burst update the token bucket filter. 3565 * Update the "last" time to be close to "now" but make sure 3566 * we don't loose precision. 3567 */ 3568 if (icmp_pkt_err_sent != 0) { 3569 refilled = (now - icmp_pkt_err_last)/err_interval; 3570 if (refilled > icmp_pkt_err_sent) { 3571 icmp_pkt_err_sent = 0; 3572 } else { 3573 icmp_pkt_err_sent -= refilled; 3574 icmp_pkt_err_last += refilled * err_interval; 3575 } 3576 } 3577 if (icmp_pkt_err_sent == 0) { 3578 /* Start of new burst */ 3579 icmp_pkt_err_last = now; 3580 } 3581 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3582 icmp_pkt_err_sent++; 3583 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3584 icmp_pkt_err_sent)); 3585 return (B_FALSE); 3586 } 3587 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3588 return (B_TRUE); 3589 } 3590 3591 /* 3592 * Check if it is ok to send an IPv4 ICMP error packet in 3593 * response to the IPv4 packet in mp. 3594 * Free the message and return null if no 3595 * ICMP error packet should be sent. 3596 */ 3597 static mblk_t * 3598 icmp_pkt_err_ok(mblk_t *mp) 3599 { 3600 icmph_t *icmph; 3601 ipha_t *ipha; 3602 uint_t len_needed; 3603 ire_t *src_ire; 3604 ire_t *dst_ire; 3605 3606 if (!mp) 3607 return (NULL); 3608 ipha = (ipha_t *)mp->b_rptr; 3609 if (ip_csum_hdr(ipha)) { 3610 BUMP_MIB(&ip_mib, ipInCksumErrs); 3611 freemsg(mp); 3612 return (NULL); 3613 } 3614 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3615 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3616 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3617 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3618 if (src_ire != NULL || dst_ire != NULL || 3619 CLASSD(ipha->ipha_dst) || 3620 CLASSD(ipha->ipha_src) || 3621 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3622 /* Note: only errors to the fragment with offset 0 */ 3623 BUMP_MIB(&icmp_mib, icmpOutDrops); 3624 freemsg(mp); 3625 if (src_ire != NULL) 3626 ire_refrele(src_ire); 3627 if (dst_ire != NULL) 3628 ire_refrele(dst_ire); 3629 return (NULL); 3630 } 3631 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3632 /* 3633 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3634 * errors in response to any ICMP errors. 3635 */ 3636 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3637 if (mp->b_wptr - mp->b_rptr < len_needed) { 3638 if (!pullupmsg(mp, len_needed)) { 3639 BUMP_MIB(&icmp_mib, icmpInErrors); 3640 freemsg(mp); 3641 return (NULL); 3642 } 3643 ipha = (ipha_t *)mp->b_rptr; 3644 } 3645 icmph = (icmph_t *) 3646 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3647 switch (icmph->icmph_type) { 3648 case ICMP_DEST_UNREACHABLE: 3649 case ICMP_SOURCE_QUENCH: 3650 case ICMP_TIME_EXCEEDED: 3651 case ICMP_PARAM_PROBLEM: 3652 case ICMP_REDIRECT: 3653 BUMP_MIB(&icmp_mib, icmpOutDrops); 3654 freemsg(mp); 3655 return (NULL); 3656 default: 3657 break; 3658 } 3659 } 3660 /* 3661 * If this is a labeled system, then check to see if we're allowed to 3662 * send a response to this particular sender. If not, then just drop. 3663 */ 3664 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3665 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3666 BUMP_MIB(&icmp_mib, icmpOutDrops); 3667 freemsg(mp); 3668 return (NULL); 3669 } 3670 if (icmp_err_rate_limit()) { 3671 /* 3672 * Only send ICMP error packets every so often. 3673 * This should be done on a per port/source basis, 3674 * but for now this will suffice. 3675 */ 3676 freemsg(mp); 3677 return (NULL); 3678 } 3679 return (mp); 3680 } 3681 3682 /* 3683 * Generate an ICMP redirect message. 3684 */ 3685 static void 3686 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3687 { 3688 icmph_t icmph; 3689 3690 /* 3691 * We are called from ip_rput where we could 3692 * not have attached an IPSEC_IN. 3693 */ 3694 ASSERT(mp->b_datap->db_type == M_DATA); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp))) { 3697 return; 3698 } 3699 3700 bzero(&icmph, sizeof (icmph_t)); 3701 icmph.icmph_type = ICMP_REDIRECT; 3702 icmph.icmph_code = 1; 3703 icmph.icmph_rd_gateway = gateway; 3704 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3705 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3706 } 3707 3708 /* 3709 * Generate an ICMP time exceeded message. 3710 */ 3711 void 3712 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3713 { 3714 icmph_t icmph; 3715 boolean_t mctl_present; 3716 mblk_t *first_mp; 3717 3718 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3719 3720 if (!(mp = icmp_pkt_err_ok(mp))) { 3721 if (mctl_present) 3722 freeb(first_mp); 3723 return; 3724 } 3725 3726 bzero(&icmph, sizeof (icmph_t)); 3727 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3728 icmph.icmph_code = code; 3729 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3730 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3731 } 3732 3733 /* 3734 * Generate an ICMP unreachable message. 3735 */ 3736 void 3737 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3738 { 3739 icmph_t icmph; 3740 mblk_t *first_mp; 3741 boolean_t mctl_present; 3742 3743 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3744 3745 if (!(mp = icmp_pkt_err_ok(mp))) { 3746 if (mctl_present) 3747 freeb(first_mp); 3748 return; 3749 } 3750 3751 bzero(&icmph, sizeof (icmph_t)); 3752 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3753 icmph.icmph_code = code; 3754 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3755 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3756 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3757 } 3758 3759 /* 3760 * News from ARP. ARP sends notification of interesting events down 3761 * to its clients using M_CTL messages with the interesting ARP packet 3762 * attached via b_cont. 3763 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3764 * queue as opposed to ARP sending the message to all the clients, i.e. all 3765 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3766 * table if a cache IRE is found to delete all the entries for the address in 3767 * the packet. 3768 */ 3769 static void 3770 ip_arp_news(queue_t *q, mblk_t *mp) 3771 { 3772 arcn_t *arcn; 3773 arh_t *arh; 3774 char *cp1; 3775 uchar_t *cp2; 3776 ire_t *ire = NULL; 3777 int i1; 3778 char hbuf[128]; 3779 char sbuf[16]; 3780 ipaddr_t src; 3781 in6_addr_t v6src; 3782 boolean_t isv6 = B_FALSE; 3783 3784 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3785 if (q->q_next) { 3786 putnext(q, mp); 3787 } else 3788 freemsg(mp); 3789 return; 3790 } 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 /* Is it one we are interested in? */ 3793 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3794 isv6 = B_TRUE; 3795 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3796 IPV6_ADDR_LEN); 3797 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3798 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3799 IP_ADDR_LEN); 3800 } else { 3801 freemsg(mp); 3802 return; 3803 } 3804 3805 arcn = (arcn_t *)mp->b_rptr; 3806 switch (arcn->arcn_code) { 3807 case AR_CN_BOGON: 3808 /* 3809 * Someone is sending ARP packets with a source protocol 3810 * address which we have published. Either they are 3811 * pretending to be us, or we have been asked to proxy 3812 * for a machine that can do fine for itself, or two 3813 * different machines are providing proxy service for the 3814 * same protocol address, or something. We try and do 3815 * something appropriate here. 3816 */ 3817 cp2 = (uchar_t *)&arh[1]; 3818 cp1 = hbuf; 3819 *cp1 = '\0'; 3820 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3821 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3822 if (cp1 != hbuf) 3823 cp1[-1] = '\0'; 3824 (void) ip_dot_addr(src, sbuf); 3825 if (isv6) 3826 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 3827 else 3828 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 3829 3830 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3831 cmn_err(CE_WARN, 3832 "IP: Hardware address '%s' trying" 3833 " to be our address %s!", 3834 hbuf, sbuf); 3835 } else { 3836 cmn_err(CE_WARN, 3837 "IP: Proxy ARP problem? " 3838 "Hardware address '%s' thinks it is %s", 3839 hbuf, sbuf); 3840 } 3841 if (ire != NULL) 3842 ire_refrele(ire); 3843 break; 3844 case AR_CN_ANNOUNCE: 3845 if (isv6) { 3846 /* 3847 * For XRESOLV interfaces. 3848 * Delete the IRE cache entry and NCE for this 3849 * v6 address 3850 */ 3851 ip_ire_clookup_and_delete_v6(&v6src); 3852 /* 3853 * If v6src is a non-zero, it's a router address 3854 * as below. Do the same sort of thing to clean 3855 * out off-net IRE_CACHE entries that go through 3856 * the router. 3857 */ 3858 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3859 ire_walk_v6(ire_delete_cache_gw_v6, 3860 (char *)&v6src, ALL_ZONES); 3861 } 3862 break; 3863 } 3864 /* 3865 * ARP gives us a copy of any broadcast packet with identical 3866 * sender and receiver protocol address, in 3867 * case we want to intuit something from it. Such a packet 3868 * usually means that a machine has just come up on the net. 3869 * If we have an IRE_CACHE, we blow it away. This way we will 3870 * immediately pick up the rare case of a host changing 3871 * hardware address. ip_ire_clookup_and_delete achieves this. 3872 * 3873 * The address in "src" may be an entry for a router. 3874 * (Default router, or non-default router.) If 3875 * that's true, then any off-net IRE_CACHE entries 3876 * that go through the router with address "src" 3877 * must be clobbered. Use ire_walk to achieve this 3878 * goal. 3879 * 3880 * It should be possible to determine if the address 3881 * in src is or is not for a router. This way, 3882 * the ire_walk() isn't called all of the time here. 3883 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3884 * as it would remove all IRE_CACHE entries for onlink 3885 * destinations. All onlink destinations have 3886 * ire_gateway_addr == 0. 3887 */ 3888 if ((ip_ire_clookup_and_delete(src, NULL) || 3889 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3890 0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3891 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3892 ALL_ZONES); 3893 } 3894 /* From ire_ftable_lookup */ 3895 if (ire != NULL) 3896 ire_refrele(ire); 3897 break; 3898 default: 3899 if (ire != NULL) 3900 ire_refrele(ire); 3901 break; 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * Create a mblk suitable for carrying the interface index and/or source link 3908 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3909 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3910 * application. 3911 */ 3912 mblk_t * 3913 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3914 { 3915 mblk_t *mp; 3916 in_pktinfo_t *pinfo; 3917 ipha_t *ipha; 3918 struct ether_header *pether; 3919 3920 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3921 if (mp == NULL) { 3922 ip1dbg(("ip_add_info: allocation failure.\n")); 3923 return (data_mp); 3924 } 3925 3926 ipha = (ipha_t *)data_mp->b_rptr; 3927 pinfo = (in_pktinfo_t *)mp->b_rptr; 3928 bzero(pinfo, sizeof (in_pktinfo_t)); 3929 pinfo->in_pkt_flags = (uchar_t)flags; 3930 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3931 3932 if (flags & IPF_RECVIF) 3933 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3934 3935 pether = (struct ether_header *)((char *)ipha 3936 - sizeof (struct ether_header)); 3937 /* 3938 * Make sure the interface is an ethernet type, since this option 3939 * is currently supported only on this type of interface. Also make 3940 * sure we are pointing correctly above db_base. 3941 */ 3942 3943 if ((flags & IPF_RECVSLLA) && 3944 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3945 (ill->ill_type == IFT_ETHER) && 3946 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3947 3948 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3949 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3950 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3951 } else { 3952 /* 3953 * Clear the bit. Indicate to upper layer that IP is not 3954 * sending this ancillary info. 3955 */ 3956 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3957 } 3958 3959 mp->b_datap->db_type = M_CTL; 3960 mp->b_wptr += sizeof (in_pktinfo_t); 3961 mp->b_cont = data_mp; 3962 3963 return (mp); 3964 } 3965 3966 /* 3967 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3968 * part of the bind request. 3969 */ 3970 3971 boolean_t 3972 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3973 { 3974 ipsec_in_t *ii; 3975 3976 ASSERT(policy_mp != NULL); 3977 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3978 3979 ii = (ipsec_in_t *)policy_mp->b_rptr; 3980 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3981 3982 connp->conn_policy = ii->ipsec_in_policy; 3983 ii->ipsec_in_policy = NULL; 3984 3985 if (ii->ipsec_in_action != NULL) { 3986 if (connp->conn_latch == NULL) { 3987 connp->conn_latch = iplatch_create(); 3988 if (connp->conn_latch == NULL) 3989 return (B_FALSE); 3990 } 3991 ipsec_latch_inbound(connp->conn_latch, ii); 3992 } 3993 return (B_TRUE); 3994 } 3995 3996 /* 3997 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3998 * and to arrange for power-fanout assist. The ULP is identified by 3999 * adding a single byte at the end of the original bind message. 4000 * A ULP other than UDP or TCP that wishes to be recognized passes 4001 * down a bind with a zero length address. 4002 * 4003 * The binding works as follows: 4004 * - A zero byte address means just bind to the protocol. 4005 * - A four byte address is treated as a request to validate 4006 * that the address is a valid local address, appropriate for 4007 * an application to bind to. This does not affect any fanout 4008 * information in IP. 4009 * - A sizeof sin_t byte address is used to bind to only the local address 4010 * and port. 4011 * - A sizeof ipa_conn_t byte address contains complete fanout information 4012 * consisting of local and remote addresses and ports. In 4013 * this case, the addresses are both validated as appropriate 4014 * for this operation, and, if so, the information is retained 4015 * for use in the inbound fanout. 4016 * 4017 * The ULP (except in the zero-length bind) can append an 4018 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4019 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4020 * a copy of the source or destination IRE (source for local bind; 4021 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4022 * policy information contained should be copied on to the conn. 4023 * 4024 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4025 */ 4026 mblk_t * 4027 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4028 { 4029 ssize_t len; 4030 struct T_bind_req *tbr; 4031 sin_t *sin; 4032 ipa_conn_t *ac; 4033 uchar_t *ucp; 4034 mblk_t *mp1; 4035 boolean_t ire_requested; 4036 boolean_t ipsec_policy_set = B_FALSE; 4037 int error = 0; 4038 int protocol; 4039 ipa_conn_x_t *acx; 4040 4041 ASSERT(!connp->conn_af_isv6); 4042 connp->conn_pkt_isv6 = B_FALSE; 4043 4044 len = MBLKL(mp); 4045 if (len < (sizeof (*tbr) + 1)) { 4046 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4047 "ip_bind: bogus msg, len %ld", len); 4048 /* XXX: Need to return something better */ 4049 goto bad_addr; 4050 } 4051 /* Back up and extract the protocol identifier. */ 4052 mp->b_wptr--; 4053 protocol = *mp->b_wptr & 0xFF; 4054 tbr = (struct T_bind_req *)mp->b_rptr; 4055 /* Reset the message type in preparation for shipping it back. */ 4056 DB_TYPE(mp) = M_PCPROTO; 4057 4058 connp->conn_ulp = (uint8_t)protocol; 4059 4060 /* 4061 * Check for a zero length address. This is from a protocol that 4062 * wants to register to receive all packets of its type. 4063 */ 4064 if (tbr->ADDR_length == 0) { 4065 /* 4066 * These protocols are now intercepted in ip_bind_v6(). 4067 * Reject protocol-level binds here for now. 4068 * 4069 * For SCTP raw socket, ICMP sends down a bind with sin_t 4070 * so that the protocol type cannot be SCTP. 4071 */ 4072 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4073 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4074 goto bad_addr; 4075 } 4076 4077 /* 4078 * 4079 * The udp module never sends down a zero-length address, 4080 * and allowing this on a labeled system will break MLP 4081 * functionality. 4082 */ 4083 if (is_system_labeled() && protocol == IPPROTO_UDP) 4084 goto bad_addr; 4085 4086 if (connp->conn_mac_exempt) 4087 goto bad_addr; 4088 4089 /* No hash here really. The table is big enough. */ 4090 connp->conn_srcv6 = ipv6_all_zeros; 4091 4092 ipcl_proto_insert(connp, protocol); 4093 4094 tbr->PRIM_type = T_BIND_ACK; 4095 return (mp); 4096 } 4097 4098 /* Extract the address pointer from the message. */ 4099 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4100 tbr->ADDR_length); 4101 if (ucp == NULL) { 4102 ip1dbg(("ip_bind: no address\n")); 4103 goto bad_addr; 4104 } 4105 if (!OK_32PTR(ucp)) { 4106 ip1dbg(("ip_bind: unaligned address\n")); 4107 goto bad_addr; 4108 } 4109 /* 4110 * Check for trailing mps. 4111 */ 4112 4113 mp1 = mp->b_cont; 4114 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4115 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4116 4117 switch (tbr->ADDR_length) { 4118 default: 4119 ip1dbg(("ip_bind: bad address length %d\n", 4120 (int)tbr->ADDR_length)); 4121 goto bad_addr; 4122 4123 case IP_ADDR_LEN: 4124 /* Verification of local address only */ 4125 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4126 ire_requested, ipsec_policy_set, B_FALSE); 4127 break; 4128 4129 case sizeof (sin_t): 4130 sin = (sin_t *)ucp; 4131 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4132 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4133 if (protocol == IPPROTO_TCP) 4134 connp->conn_recv = tcp_conn_request; 4135 break; 4136 4137 case sizeof (ipa_conn_t): 4138 ac = (ipa_conn_t *)ucp; 4139 /* For raw socket, the local port is not set. */ 4140 if (ac->ac_lport == 0) 4141 ac->ac_lport = connp->conn_lport; 4142 /* Always verify destination reachability. */ 4143 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4144 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4145 ipsec_policy_set, B_TRUE, B_TRUE); 4146 if (protocol == IPPROTO_TCP) 4147 connp->conn_recv = tcp_input; 4148 break; 4149 4150 case sizeof (ipa_conn_x_t): 4151 acx = (ipa_conn_x_t *)ucp; 4152 /* 4153 * Whether or not to verify destination reachability depends 4154 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4155 */ 4156 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4157 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4158 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4159 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4160 if (protocol == IPPROTO_TCP) 4161 connp->conn_recv = tcp_input; 4162 break; 4163 } 4164 if (error == EINPROGRESS) 4165 return (NULL); 4166 else if (error != 0) 4167 goto bad_addr; 4168 /* 4169 * Pass the IPSEC headers size in ire_ipsec_overhead. 4170 * We can't do this in ip_bind_insert_ire because the policy 4171 * may not have been inherited at that point in time and hence 4172 * conn_out_enforce_policy may not be set. 4173 */ 4174 mp1 = mp->b_cont; 4175 if (ire_requested && connp->conn_out_enforce_policy && 4176 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4177 ire_t *ire = (ire_t *)mp1->b_rptr; 4178 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4179 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4180 } 4181 4182 /* Send it home. */ 4183 mp->b_datap->db_type = M_PCPROTO; 4184 tbr->PRIM_type = T_BIND_ACK; 4185 return (mp); 4186 4187 bad_addr: 4188 /* 4189 * If error = -1 then we generate a TBADADDR - otherwise error is 4190 * a unix errno. 4191 */ 4192 if (error > 0) 4193 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4194 else 4195 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4196 return (mp); 4197 } 4198 4199 /* 4200 * Here address is verified to be a valid local address. 4201 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4202 * address is also considered a valid local address. 4203 * In the case of a broadcast/multicast address, however, the 4204 * upper protocol is expected to reset the src address 4205 * to 0 if it sees a IRE_BROADCAST type returned so that 4206 * no packets are emitted with broadcast/multicast address as 4207 * source address (that violates hosts requirements RFC1122) 4208 * The addresses valid for bind are: 4209 * (1) - INADDR_ANY (0) 4210 * (2) - IP address of an UP interface 4211 * (3) - IP address of a DOWN interface 4212 * (4) - valid local IP broadcast addresses. In this case 4213 * the conn will only receive packets destined to 4214 * the specified broadcast address. 4215 * (5) - a multicast address. In this case 4216 * the conn will only receive packets destined to 4217 * the specified multicast address. Note: the 4218 * application still has to issue an 4219 * IP_ADD_MEMBERSHIP socket option. 4220 * 4221 * On error, return -1 for TBADADDR otherwise pass the 4222 * errno with TSYSERR reply. 4223 * 4224 * In all the above cases, the bound address must be valid in the current zone. 4225 * When the address is loopback, multicast or broadcast, there might be many 4226 * matching IREs so bind has to look up based on the zone. 4227 * 4228 * Note: lport is in network byte order. 4229 */ 4230 int 4231 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4232 boolean_t ire_requested, boolean_t ipsec_policy_set, 4233 boolean_t fanout_insert) 4234 { 4235 int error = 0; 4236 ire_t *src_ire; 4237 mblk_t *policy_mp; 4238 ipif_t *ipif; 4239 zoneid_t zoneid; 4240 4241 if (ipsec_policy_set) { 4242 policy_mp = mp->b_cont; 4243 } 4244 4245 /* 4246 * If it was previously connected, conn_fully_bound would have 4247 * been set. 4248 */ 4249 connp->conn_fully_bound = B_FALSE; 4250 4251 src_ire = NULL; 4252 ipif = NULL; 4253 4254 zoneid = IPCL_ZONEID(connp); 4255 4256 if (src_addr) { 4257 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4258 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4259 /* 4260 * If an address other than 0.0.0.0 is requested, 4261 * we verify that it is a valid address for bind 4262 * Note: Following code is in if-else-if form for 4263 * readability compared to a condition check. 4264 */ 4265 /* LINTED - statement has no consequent */ 4266 if (IRE_IS_LOCAL(src_ire)) { 4267 /* 4268 * (2) Bind to address of local UP interface 4269 */ 4270 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4271 /* 4272 * (4) Bind to broadcast address 4273 * Note: permitted only from transports that 4274 * request IRE 4275 */ 4276 if (!ire_requested) 4277 error = EADDRNOTAVAIL; 4278 } else { 4279 /* 4280 * (3) Bind to address of local DOWN interface 4281 * (ipif_lookup_addr() looks up all interfaces 4282 * but we do not get here for UP interfaces 4283 * - case (2) above) 4284 * We put the protocol byte back into the mblk 4285 * since we may come back via ip_wput_nondata() 4286 * later with this mblk if ipif_lookup_addr chooses 4287 * to defer processing. 4288 */ 4289 *mp->b_wptr++ = (char)connp->conn_ulp; 4290 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4291 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4292 &error)) != NULL) { 4293 ipif_refrele(ipif); 4294 } else if (error == EINPROGRESS) { 4295 if (src_ire != NULL) 4296 ire_refrele(src_ire); 4297 return (EINPROGRESS); 4298 } else if (CLASSD(src_addr)) { 4299 error = 0; 4300 if (src_ire != NULL) 4301 ire_refrele(src_ire); 4302 /* 4303 * (5) bind to multicast address. 4304 * Fake out the IRE returned to upper 4305 * layer to be a broadcast IRE. 4306 */ 4307 src_ire = ire_ctable_lookup( 4308 INADDR_BROADCAST, INADDR_ANY, 4309 IRE_BROADCAST, NULL, zoneid, NULL, 4310 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4311 if (src_ire == NULL || !ire_requested) 4312 error = EADDRNOTAVAIL; 4313 } else { 4314 /* 4315 * Not a valid address for bind 4316 */ 4317 error = EADDRNOTAVAIL; 4318 } 4319 /* 4320 * Just to keep it consistent with the processing in 4321 * ip_bind_v4() 4322 */ 4323 mp->b_wptr--; 4324 } 4325 if (error) { 4326 /* Red Alert! Attempting to be a bogon! */ 4327 ip1dbg(("ip_bind: bad src address 0x%x\n", 4328 ntohl(src_addr))); 4329 goto bad_addr; 4330 } 4331 } 4332 4333 /* 4334 * Allow setting new policies. For example, disconnects come 4335 * down as ipa_t bind. As we would have set conn_policy_cached 4336 * to B_TRUE before, we should set it to B_FALSE, so that policy 4337 * can change after the disconnect. 4338 */ 4339 connp->conn_policy_cached = B_FALSE; 4340 4341 /* 4342 * If not fanout_insert this was just an address verification 4343 */ 4344 if (fanout_insert) { 4345 /* 4346 * The addresses have been verified. Time to insert in 4347 * the correct fanout list. 4348 */ 4349 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4350 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4351 connp->conn_lport = lport; 4352 connp->conn_fport = 0; 4353 /* 4354 * Do we need to add a check to reject Multicast packets 4355 */ 4356 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4357 } 4358 4359 if (error == 0) { 4360 if (ire_requested) { 4361 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4362 error = -1; 4363 /* Falls through to bad_addr */ 4364 } 4365 } else if (ipsec_policy_set) { 4366 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4367 error = -1; 4368 /* Falls through to bad_addr */ 4369 } 4370 } 4371 } 4372 bad_addr: 4373 if (error != 0) { 4374 if (connp->conn_anon_port) { 4375 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4376 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4377 B_FALSE); 4378 } 4379 connp->conn_mlp_type = mlptSingle; 4380 } 4381 if (src_ire != NULL) 4382 IRE_REFRELE(src_ire); 4383 if (ipsec_policy_set) { 4384 ASSERT(policy_mp == mp->b_cont); 4385 ASSERT(policy_mp != NULL); 4386 freeb(policy_mp); 4387 /* 4388 * As of now assume that nothing else accompanies 4389 * IPSEC_POLICY_SET. 4390 */ 4391 mp->b_cont = NULL; 4392 } 4393 return (error); 4394 } 4395 4396 /* 4397 * Verify that both the source and destination addresses 4398 * are valid. If verify_dst is false, then the destination address may be 4399 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4400 * destination reachability, while tunnels do not. 4401 * Note that we allow connect to broadcast and multicast 4402 * addresses when ire_requested is set. Thus the ULP 4403 * has to check for IRE_BROADCAST and multicast. 4404 * 4405 * Returns zero if ok. 4406 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4407 * (for use with TSYSERR reply). 4408 * 4409 * Note: lport and fport are in network byte order. 4410 */ 4411 int 4412 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4413 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4414 boolean_t ire_requested, boolean_t ipsec_policy_set, 4415 boolean_t fanout_insert, boolean_t verify_dst) 4416 { 4417 ire_t *src_ire; 4418 ire_t *dst_ire; 4419 int error = 0; 4420 int protocol; 4421 mblk_t *policy_mp; 4422 ire_t *sire = NULL; 4423 ire_t *md_dst_ire = NULL; 4424 ill_t *md_ill = NULL; 4425 zoneid_t zoneid; 4426 ipaddr_t src_addr = *src_addrp; 4427 4428 src_ire = dst_ire = NULL; 4429 protocol = *mp->b_wptr & 0xFF; 4430 4431 /* 4432 * If we never got a disconnect before, clear it now. 4433 */ 4434 connp->conn_fully_bound = B_FALSE; 4435 4436 if (ipsec_policy_set) { 4437 policy_mp = mp->b_cont; 4438 } 4439 4440 zoneid = IPCL_ZONEID(connp); 4441 4442 if (CLASSD(dst_addr)) { 4443 /* Pick up an IRE_BROADCAST */ 4444 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4445 NULL, zoneid, MBLK_GETLABEL(mp), 4446 (MATCH_IRE_RECURSIVE | 4447 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4448 MATCH_IRE_SECATTR)); 4449 } else { 4450 /* 4451 * If conn_dontroute is set or if conn_nexthop_set is set, 4452 * and onlink ipif is not found set ENETUNREACH error. 4453 */ 4454 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4455 ipif_t *ipif; 4456 4457 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4458 dst_addr : connp->conn_nexthop_v4, zoneid); 4459 if (ipif == NULL) { 4460 error = ENETUNREACH; 4461 goto bad_addr; 4462 } 4463 ipif_refrele(ipif); 4464 } 4465 4466 if (connp->conn_nexthop_set) { 4467 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4468 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4469 MATCH_IRE_SECATTR); 4470 } else { 4471 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4472 &sire, zoneid, MBLK_GETLABEL(mp), 4473 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4474 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4475 MATCH_IRE_SECATTR)); 4476 } 4477 } 4478 /* 4479 * dst_ire can't be a broadcast when not ire_requested. 4480 * We also prevent ire's with src address INADDR_ANY to 4481 * be used, which are created temporarily for 4482 * sending out packets from endpoints that have 4483 * conn_unspec_src set. If verify_dst is true, the destination must be 4484 * reachable. If verify_dst is false, the destination needn't be 4485 * reachable. 4486 * 4487 * If we match on a reject or black hole, then we've got a 4488 * local failure. May as well fail out the connect() attempt, 4489 * since it's never going to succeed. 4490 */ 4491 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4492 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4493 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4494 /* 4495 * If we're verifying destination reachability, we always want 4496 * to complain here. 4497 * 4498 * If we're not verifying destination reachability but the 4499 * destination has a route, we still want to fail on the 4500 * temporary address and broadcast address tests. 4501 */ 4502 if (verify_dst || (dst_ire != NULL)) { 4503 if (ip_debug > 2) { 4504 pr_addr_dbg("ip_bind_connected: bad connected " 4505 "dst %s\n", AF_INET, &dst_addr); 4506 } 4507 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4508 error = ENETUNREACH; 4509 else 4510 error = EHOSTUNREACH; 4511 goto bad_addr; 4512 } 4513 } 4514 4515 /* 4516 * We now know that routing will allow us to reach the destination. 4517 * Check whether Trusted Solaris policy allows communication with this 4518 * host, and pretend that the destination is unreachable if not. 4519 * 4520 * This is never a problem for TCP, since that transport is known to 4521 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4522 * handling. If the remote is unreachable, it will be detected at that 4523 * point, so there's no reason to check it here. 4524 * 4525 * Note that for sendto (and other datagram-oriented friends), this 4526 * check is done as part of the data path label computation instead. 4527 * The check here is just to make non-TCP connect() report the right 4528 * error. 4529 */ 4530 if (dst_ire != NULL && is_system_labeled() && 4531 !IPCL_IS_TCP(connp) && 4532 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4533 connp->conn_mac_exempt) != 0) { 4534 error = EHOSTUNREACH; 4535 if (ip_debug > 2) { 4536 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4537 AF_INET, &dst_addr); 4538 } 4539 goto bad_addr; 4540 } 4541 4542 /* 4543 * If the app does a connect(), it means that it will most likely 4544 * send more than 1 packet to the destination. It makes sense 4545 * to clear the temporary flag. 4546 */ 4547 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4548 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4549 irb_t *irb = dst_ire->ire_bucket; 4550 4551 rw_enter(&irb->irb_lock, RW_WRITER); 4552 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4553 irb->irb_tmp_ire_cnt--; 4554 rw_exit(&irb->irb_lock); 4555 } 4556 4557 /* 4558 * See if we should notify ULP about MDT; we do this whether or not 4559 * ire_requested is TRUE, in order to handle active connects; MDT 4560 * eligibility tests for passive connects are handled separately 4561 * through tcp_adapt_ire(). We do this before the source address 4562 * selection, because dst_ire may change after a call to 4563 * ipif_select_source(). This is a best-effort check, as the 4564 * packet for this connection may not actually go through 4565 * dst_ire->ire_stq, and the exact IRE can only be known after 4566 * calling ip_newroute(). This is why we further check on the 4567 * IRE during Multidata packet transmission in tcp_multisend(). 4568 */ 4569 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4570 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4571 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4572 ILL_MDT_CAPABLE(md_ill)) { 4573 md_dst_ire = dst_ire; 4574 IRE_REFHOLD(md_dst_ire); 4575 } 4576 4577 if (dst_ire != NULL && 4578 dst_ire->ire_type == IRE_LOCAL && 4579 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4580 /* 4581 * If the IRE belongs to a different zone, look for a matching 4582 * route in the forwarding table and use the source address from 4583 * that route. 4584 */ 4585 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4586 zoneid, 0, NULL, 4587 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4588 MATCH_IRE_RJ_BHOLE); 4589 if (src_ire == NULL) { 4590 error = EHOSTUNREACH; 4591 goto bad_addr; 4592 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4593 if (!(src_ire->ire_type & IRE_HOST)) 4594 error = ENETUNREACH; 4595 else 4596 error = EHOSTUNREACH; 4597 goto bad_addr; 4598 } 4599 if (src_addr == INADDR_ANY) 4600 src_addr = src_ire->ire_src_addr; 4601 ire_refrele(src_ire); 4602 src_ire = NULL; 4603 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4604 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4605 src_addr = sire->ire_src_addr; 4606 ire_refrele(dst_ire); 4607 dst_ire = sire; 4608 sire = NULL; 4609 } else { 4610 /* 4611 * Pick a source address so that a proper inbound 4612 * load spreading would happen. 4613 */ 4614 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4615 ipif_t *src_ipif = NULL; 4616 ire_t *ipif_ire; 4617 4618 /* 4619 * Supply a local source address such that inbound 4620 * load spreading happens. 4621 * 4622 * Determine the best source address on this ill for 4623 * the destination. 4624 * 4625 * 1) For broadcast, we should return a broadcast ire 4626 * found above so that upper layers know that the 4627 * destination address is a broadcast address. 4628 * 4629 * 2) If this is part of a group, select a better 4630 * source address so that better inbound load 4631 * balancing happens. Do the same if the ipif 4632 * is DEPRECATED. 4633 * 4634 * 3) If the outgoing interface is part of a usesrc 4635 * group, then try selecting a source address from 4636 * the usesrc ILL. 4637 */ 4638 if ((dst_ire->ire_zoneid != zoneid && 4639 dst_ire->ire_zoneid != ALL_ZONES) || 4640 (!(dst_ire->ire_type & IRE_BROADCAST) && 4641 ((dst_ill->ill_group != NULL) || 4642 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4643 (dst_ill->ill_usesrc_ifindex != 0)))) { 4644 /* 4645 * If the destination is reachable via a 4646 * given gateway, the selected source address 4647 * should be in the same subnet as the gateway. 4648 * Otherwise, the destination is not reachable. 4649 * 4650 * If there are no interfaces on the same subnet 4651 * as the destination, ipif_select_source gives 4652 * first non-deprecated interface which might be 4653 * on a different subnet than the gateway. 4654 * This is not desirable. Hence pass the dst_ire 4655 * source address to ipif_select_source. 4656 * It is sure that the destination is reachable 4657 * with the dst_ire source address subnet. 4658 * So passing dst_ire source address to 4659 * ipif_select_source will make sure that the 4660 * selected source will be on the same subnet 4661 * as dst_ire source address. 4662 */ 4663 ipaddr_t saddr = 4664 dst_ire->ire_ipif->ipif_src_addr; 4665 src_ipif = ipif_select_source(dst_ill, 4666 saddr, zoneid); 4667 if (src_ipif != NULL) { 4668 if (IS_VNI(src_ipif->ipif_ill)) { 4669 /* 4670 * For VNI there is no 4671 * interface route 4672 */ 4673 src_addr = 4674 src_ipif->ipif_src_addr; 4675 } else { 4676 ipif_ire = 4677 ipif_to_ire(src_ipif); 4678 if (ipif_ire != NULL) { 4679 IRE_REFRELE(dst_ire); 4680 dst_ire = ipif_ire; 4681 } 4682 src_addr = 4683 dst_ire->ire_src_addr; 4684 } 4685 ipif_refrele(src_ipif); 4686 } else { 4687 src_addr = dst_ire->ire_src_addr; 4688 } 4689 } else { 4690 src_addr = dst_ire->ire_src_addr; 4691 } 4692 } 4693 } 4694 4695 /* 4696 * We do ire_route_lookup() here (and not 4697 * interface lookup as we assert that 4698 * src_addr should only come from an 4699 * UP interface for hard binding. 4700 */ 4701 ASSERT(src_ire == NULL); 4702 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4703 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4704 /* src_ire must be a local|loopback */ 4705 if (!IRE_IS_LOCAL(src_ire)) { 4706 if (ip_debug > 2) { 4707 pr_addr_dbg("ip_bind_connected: bad connected " 4708 "src %s\n", AF_INET, &src_addr); 4709 } 4710 error = EADDRNOTAVAIL; 4711 goto bad_addr; 4712 } 4713 4714 /* 4715 * If the source address is a loopback address, the 4716 * destination had best be local or multicast. 4717 * The transports that can't handle multicast will reject 4718 * those addresses. 4719 */ 4720 if (src_ire->ire_type == IRE_LOOPBACK && 4721 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4722 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4723 error = -1; 4724 goto bad_addr; 4725 } 4726 4727 /* 4728 * Allow setting new policies. For example, disconnects come 4729 * down as ipa_t bind. As we would have set conn_policy_cached 4730 * to B_TRUE before, we should set it to B_FALSE, so that policy 4731 * can change after the disconnect. 4732 */ 4733 connp->conn_policy_cached = B_FALSE; 4734 4735 /* 4736 * Set the conn addresses/ports immediately, so the IPsec policy calls 4737 * can handle their passed-in conn's. 4738 */ 4739 4740 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4741 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4742 connp->conn_lport = lport; 4743 connp->conn_fport = fport; 4744 *src_addrp = src_addr; 4745 4746 ASSERT(!(ipsec_policy_set && ire_requested)); 4747 if (ire_requested) { 4748 iulp_t *ulp_info = NULL; 4749 4750 /* 4751 * Note that sire will not be NULL if this is an off-link 4752 * connection and there is not cache for that dest yet. 4753 * 4754 * XXX Because of an existing bug, if there are multiple 4755 * default routes, the IRE returned now may not be the actual 4756 * default route used (default routes are chosen in a 4757 * round robin fashion). So if the metrics for different 4758 * default routes are different, we may return the wrong 4759 * metrics. This will not be a problem if the existing 4760 * bug is fixed. 4761 */ 4762 if (sire != NULL) { 4763 ulp_info = &(sire->ire_uinfo); 4764 } 4765 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4766 error = -1; 4767 goto bad_addr; 4768 } 4769 } else if (ipsec_policy_set) { 4770 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4771 error = -1; 4772 goto bad_addr; 4773 } 4774 } 4775 4776 /* 4777 * Cache IPsec policy in this conn. If we have per-socket policy, 4778 * we'll cache that. If we don't, we'll inherit global policy. 4779 * 4780 * We can't insert until the conn reflects the policy. Note that 4781 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4782 * connections where we don't have a policy. This is to prevent 4783 * global policy lookups in the inbound path. 4784 * 4785 * If we insert before we set conn_policy_cached, 4786 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4787 * because global policy cound be non-empty. We normally call 4788 * ipsec_check_policy() for conn_policy_cached connections only if 4789 * ipc_in_enforce_policy is set. But in this case, 4790 * conn_policy_cached can get set anytime since we made the 4791 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4792 * called, which will make the above assumption false. Thus, we 4793 * need to insert after we set conn_policy_cached. 4794 */ 4795 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4796 goto bad_addr; 4797 4798 if (fanout_insert) { 4799 /* 4800 * The addresses have been verified. Time to insert in 4801 * the correct fanout list. 4802 */ 4803 error = ipcl_conn_insert(connp, protocol, src_addr, 4804 dst_addr, connp->conn_ports); 4805 } 4806 4807 if (error == 0) { 4808 connp->conn_fully_bound = B_TRUE; 4809 /* 4810 * Our initial checks for MDT have passed; the IRE is not 4811 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4812 * be supporting MDT. Pass the IRE, IPC and ILL into 4813 * ip_mdinfo_return(), which performs further checks 4814 * against them and upon success, returns the MDT info 4815 * mblk which we will attach to the bind acknowledgment. 4816 */ 4817 if (md_dst_ire != NULL) { 4818 mblk_t *mdinfo_mp; 4819 4820 ASSERT(md_ill != NULL); 4821 ASSERT(md_ill->ill_mdt_capab != NULL); 4822 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4823 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4824 linkb(mp, mdinfo_mp); 4825 } 4826 } 4827 bad_addr: 4828 if (ipsec_policy_set) { 4829 ASSERT(policy_mp == mp->b_cont); 4830 ASSERT(policy_mp != NULL); 4831 freeb(policy_mp); 4832 /* 4833 * As of now assume that nothing else accompanies 4834 * IPSEC_POLICY_SET. 4835 */ 4836 mp->b_cont = NULL; 4837 } 4838 if (src_ire != NULL) 4839 IRE_REFRELE(src_ire); 4840 if (dst_ire != NULL) 4841 IRE_REFRELE(dst_ire); 4842 if (sire != NULL) 4843 IRE_REFRELE(sire); 4844 if (md_dst_ire != NULL) 4845 IRE_REFRELE(md_dst_ire); 4846 return (error); 4847 } 4848 4849 /* 4850 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4851 * Prefers dst_ire over src_ire. 4852 */ 4853 static boolean_t 4854 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4855 { 4856 mblk_t *mp1; 4857 ire_t *ret_ire = NULL; 4858 4859 mp1 = mp->b_cont; 4860 ASSERT(mp1 != NULL); 4861 4862 if (ire != NULL) { 4863 /* 4864 * mp1 initialized above to IRE_DB_REQ_TYPE 4865 * appended mblk. Its <upper protocol>'s 4866 * job to make sure there is room. 4867 */ 4868 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4869 return (0); 4870 4871 mp1->b_datap->db_type = IRE_DB_TYPE; 4872 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4873 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4874 ret_ire = (ire_t *)mp1->b_rptr; 4875 /* 4876 * Pass the latest setting of the ip_path_mtu_discovery and 4877 * copy the ulp info if any. 4878 */ 4879 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4880 IPH_DF : 0; 4881 if (ulp_info != NULL) { 4882 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4883 sizeof (iulp_t)); 4884 } 4885 ret_ire->ire_mp = mp1; 4886 } else { 4887 /* 4888 * No IRE was found. Remove IRE mblk. 4889 */ 4890 mp->b_cont = mp1->b_cont; 4891 freeb(mp1); 4892 } 4893 4894 return (1); 4895 } 4896 4897 /* 4898 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4899 * the final piece where we don't. Return a pointer to the first mblk in the 4900 * result, and update the pointer to the next mblk to chew on. If anything 4901 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4902 * NULL pointer. 4903 */ 4904 mblk_t * 4905 ip_carve_mp(mblk_t **mpp, ssize_t len) 4906 { 4907 mblk_t *mp0; 4908 mblk_t *mp1; 4909 mblk_t *mp2; 4910 4911 if (!len || !mpp || !(mp0 = *mpp)) 4912 return (NULL); 4913 /* If we aren't going to consume the first mblk, we need a dup. */ 4914 if (mp0->b_wptr - mp0->b_rptr > len) { 4915 mp1 = dupb(mp0); 4916 if (mp1) { 4917 /* Partition the data between the two mblks. */ 4918 mp1->b_wptr = mp1->b_rptr + len; 4919 mp0->b_rptr = mp1->b_wptr; 4920 /* 4921 * after adjustments if mblk not consumed is now 4922 * unaligned, try to align it. If this fails free 4923 * all messages and let upper layer recover. 4924 */ 4925 if (!OK_32PTR(mp0->b_rptr)) { 4926 if (!pullupmsg(mp0, -1)) { 4927 freemsg(mp0); 4928 freemsg(mp1); 4929 *mpp = NULL; 4930 return (NULL); 4931 } 4932 } 4933 } 4934 return (mp1); 4935 } 4936 /* Eat through as many mblks as we need to get len bytes. */ 4937 len -= mp0->b_wptr - mp0->b_rptr; 4938 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4939 if (mp2->b_wptr - mp2->b_rptr > len) { 4940 /* 4941 * We won't consume the entire last mblk. Like 4942 * above, dup and partition it. 4943 */ 4944 mp1->b_cont = dupb(mp2); 4945 mp1 = mp1->b_cont; 4946 if (!mp1) { 4947 /* 4948 * Trouble. Rather than go to a lot of 4949 * trouble to clean up, we free the messages. 4950 * This won't be any worse than losing it on 4951 * the wire. 4952 */ 4953 freemsg(mp0); 4954 freemsg(mp2); 4955 *mpp = NULL; 4956 return (NULL); 4957 } 4958 mp1->b_wptr = mp1->b_rptr + len; 4959 mp2->b_rptr = mp1->b_wptr; 4960 /* 4961 * after adjustments if mblk not consumed is now 4962 * unaligned, try to align it. If this fails free 4963 * all messages and let upper layer recover. 4964 */ 4965 if (!OK_32PTR(mp2->b_rptr)) { 4966 if (!pullupmsg(mp2, -1)) { 4967 freemsg(mp0); 4968 freemsg(mp2); 4969 *mpp = NULL; 4970 return (NULL); 4971 } 4972 } 4973 *mpp = mp2; 4974 return (mp0); 4975 } 4976 /* Decrement len by the amount we just got. */ 4977 len -= mp2->b_wptr - mp2->b_rptr; 4978 } 4979 /* 4980 * len should be reduced to zero now. If not our caller has 4981 * screwed up. 4982 */ 4983 if (len) { 4984 /* Shouldn't happen! */ 4985 freemsg(mp0); 4986 *mpp = NULL; 4987 return (NULL); 4988 } 4989 /* 4990 * We consumed up to exactly the end of an mblk. Detach the part 4991 * we are returning from the rest of the chain. 4992 */ 4993 mp1->b_cont = NULL; 4994 *mpp = mp2; 4995 return (mp0); 4996 } 4997 4998 /* The ill stream is being unplumbed. Called from ip_close */ 4999 int 5000 ip_modclose(ill_t *ill) 5001 { 5002 5003 boolean_t success; 5004 ipsq_t *ipsq; 5005 ipif_t *ipif; 5006 queue_t *q = ill->ill_rq; 5007 5008 /* 5009 * Forcibly enter the ipsq after some delay. This is to take 5010 * care of the case when some ioctl does not complete because 5011 * we sent a control message to the driver and it did not 5012 * send us a reply. We want to be able to at least unplumb 5013 * and replumb rather than force the user to reboot the system. 5014 */ 5015 success = ipsq_enter(ill, B_FALSE); 5016 5017 /* 5018 * Open/close/push/pop is guaranteed to be single threaded 5019 * per stream by STREAMS. FS guarantees that all references 5020 * from top are gone before close is called. So there can't 5021 * be another close thread that has set CONDEMNED on this ill. 5022 * and cause ipsq_enter to return failure. 5023 */ 5024 ASSERT(success); 5025 ipsq = ill->ill_phyint->phyint_ipsq; 5026 5027 /* 5028 * Mark it condemned. No new reference will be made to this ill. 5029 * Lookup functions will return an error. Threads that try to 5030 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5031 * that the refcnt will drop down to zero. 5032 */ 5033 mutex_enter(&ill->ill_lock); 5034 ill->ill_state_flags |= ILL_CONDEMNED; 5035 for (ipif = ill->ill_ipif; ipif != NULL; 5036 ipif = ipif->ipif_next) { 5037 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5038 } 5039 /* 5040 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5041 * returns error if ILL_CONDEMNED is set 5042 */ 5043 cv_broadcast(&ill->ill_cv); 5044 mutex_exit(&ill->ill_lock); 5045 5046 /* 5047 * Shut down fragmentation reassembly. 5048 * ill_frag_timer won't start a timer again. 5049 * Now cancel any existing timer 5050 */ 5051 (void) untimeout(ill->ill_frag_timer_id); 5052 (void) ill_frag_timeout(ill, 0); 5053 5054 /* 5055 * If MOVE was in progress, clear the 5056 * move_in_progress fields also. 5057 */ 5058 if (ill->ill_move_in_progress) { 5059 ILL_CLEAR_MOVE(ill); 5060 } 5061 5062 /* 5063 * Call ill_delete to bring down the ipifs, ilms and ill on 5064 * this ill. Then wait for the refcnts to drop to zero. 5065 * ill_is_quiescent checks whether the ill is really quiescent. 5066 * Then make sure that threads that are waiting to enter the 5067 * ipsq have seen the error returned by ipsq_enter and have 5068 * gone away. Then we call ill_delete_tail which does the 5069 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5070 */ 5071 ill_delete(ill); 5072 mutex_enter(&ill->ill_lock); 5073 while (!ill_is_quiescent(ill)) 5074 cv_wait(&ill->ill_cv, &ill->ill_lock); 5075 while (ill->ill_waiters) 5076 cv_wait(&ill->ill_cv, &ill->ill_lock); 5077 5078 mutex_exit(&ill->ill_lock); 5079 5080 /* qprocsoff is called in ill_delete_tail */ 5081 ill_delete_tail(ill); 5082 5083 /* 5084 * Walk through all upper (conn) streams and qenable 5085 * those that have queued data. 5086 * close synchronization needs this to 5087 * be done to ensure that all upper layers blocked 5088 * due to flow control to the closing device 5089 * get unblocked. 5090 */ 5091 ip1dbg(("ip_wsrv: walking\n")); 5092 conn_walk_drain(); 5093 5094 mutex_enter(&ip_mi_lock); 5095 mi_close_unlink(&ip_g_head, (IDP)ill); 5096 mutex_exit(&ip_mi_lock); 5097 5098 /* 5099 * credp could be null if the open didn't succeed and ip_modopen 5100 * itself calls ip_close. 5101 */ 5102 if (ill->ill_credp != NULL) 5103 crfree(ill->ill_credp); 5104 5105 mi_close_free((IDP)ill); 5106 q->q_ptr = WR(q)->q_ptr = NULL; 5107 5108 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5109 5110 return (0); 5111 } 5112 5113 /* 5114 * This is called as part of close() for both IP and UDP 5115 * in order to quiesce the conn. 5116 */ 5117 void 5118 ip_quiesce_conn(conn_t *connp) 5119 { 5120 boolean_t drain_cleanup_reqd = B_FALSE; 5121 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5122 boolean_t ilg_cleanup_reqd = B_FALSE; 5123 5124 ASSERT(!IPCL_IS_TCP(connp)); 5125 5126 /* 5127 * Mark the conn as closing, and this conn must not be 5128 * inserted in future into any list. Eg. conn_drain_insert(), 5129 * won't insert this conn into the conn_drain_list. 5130 * Similarly ill_pending_mp_add() will not add any mp to 5131 * the pending mp list, after this conn has started closing. 5132 * 5133 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5134 * cannot get set henceforth. 5135 */ 5136 mutex_enter(&connp->conn_lock); 5137 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5138 connp->conn_state_flags |= CONN_CLOSING; 5139 if (connp->conn_idl != NULL) 5140 drain_cleanup_reqd = B_TRUE; 5141 if (connp->conn_oper_pending_ill != NULL) 5142 conn_ioctl_cleanup_reqd = B_TRUE; 5143 if (connp->conn_ilg_inuse != 0) 5144 ilg_cleanup_reqd = B_TRUE; 5145 mutex_exit(&connp->conn_lock); 5146 5147 if (IPCL_IS_UDP(connp)) 5148 udp_quiesce_conn(connp); 5149 5150 if (conn_ioctl_cleanup_reqd) 5151 conn_ioctl_cleanup(connp); 5152 5153 if (is_system_labeled() && connp->conn_anon_port) { 5154 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5155 connp->conn_mlp_type, connp->conn_ulp, 5156 ntohs(connp->conn_lport), B_FALSE); 5157 connp->conn_anon_port = 0; 5158 } 5159 connp->conn_mlp_type = mlptSingle; 5160 5161 /* 5162 * Remove this conn from any fanout list it is on. 5163 * and then wait for any threads currently operating 5164 * on this endpoint to finish 5165 */ 5166 ipcl_hash_remove(connp); 5167 5168 /* 5169 * Remove this conn from the drain list, and do 5170 * any other cleanup that may be required. 5171 * (Only non-tcp streams may have a non-null conn_idl. 5172 * TCP streams are never flow controlled, and 5173 * conn_idl will be null) 5174 */ 5175 if (drain_cleanup_reqd) 5176 conn_drain_tail(connp, B_TRUE); 5177 5178 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5179 (void) ip_mrouter_done(NULL); 5180 5181 if (ilg_cleanup_reqd) 5182 ilg_delete_all(connp); 5183 5184 conn_delete_ire(connp, NULL); 5185 5186 /* 5187 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5188 * callers from write side can't be there now because close 5189 * is in progress. The only other caller is ipcl_walk 5190 * which checks for the condemned flag. 5191 */ 5192 mutex_enter(&connp->conn_lock); 5193 connp->conn_state_flags |= CONN_CONDEMNED; 5194 while (connp->conn_ref != 1) 5195 cv_wait(&connp->conn_cv, &connp->conn_lock); 5196 connp->conn_state_flags |= CONN_QUIESCED; 5197 mutex_exit(&connp->conn_lock); 5198 } 5199 5200 /* ARGSUSED */ 5201 int 5202 ip_close(queue_t *q, int flags) 5203 { 5204 conn_t *connp; 5205 5206 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5207 5208 /* 5209 * Call the appropriate delete routine depending on whether this is 5210 * a module or device. 5211 */ 5212 if (WR(q)->q_next != NULL) { 5213 /* This is a module close */ 5214 return (ip_modclose((ill_t *)q->q_ptr)); 5215 } 5216 5217 connp = q->q_ptr; 5218 ip_quiesce_conn(connp); 5219 5220 qprocsoff(q); 5221 5222 /* 5223 * Now we are truly single threaded on this stream, and can 5224 * delete the things hanging off the connp, and finally the connp. 5225 * We removed this connp from the fanout list, it cannot be 5226 * accessed thru the fanouts, and we already waited for the 5227 * conn_ref to drop to 0. We are already in close, so 5228 * there cannot be any other thread from the top. qprocsoff 5229 * has completed, and service has completed or won't run in 5230 * future. 5231 */ 5232 ASSERT(connp->conn_ref == 1); 5233 5234 /* 5235 * A conn which was previously marked as IPCL_UDP cannot 5236 * retain the flag because it would have been cleared by 5237 * udp_close(). 5238 */ 5239 ASSERT(!IPCL_IS_UDP(connp)); 5240 5241 if (connp->conn_latch != NULL) { 5242 IPLATCH_REFRELE(connp->conn_latch); 5243 connp->conn_latch = NULL; 5244 } 5245 if (connp->conn_policy != NULL) { 5246 IPPH_REFRELE(connp->conn_policy); 5247 connp->conn_policy = NULL; 5248 } 5249 if (connp->conn_ipsec_opt_mp != NULL) { 5250 freemsg(connp->conn_ipsec_opt_mp); 5251 connp->conn_ipsec_opt_mp = NULL; 5252 } 5253 5254 inet_minor_free(ip_minor_arena, connp->conn_dev); 5255 5256 connp->conn_ref--; 5257 ipcl_conn_destroy(connp); 5258 5259 q->q_ptr = WR(q)->q_ptr = NULL; 5260 return (0); 5261 } 5262 5263 int 5264 ip_snmpmod_close(queue_t *q) 5265 { 5266 conn_t *connp = Q_TO_CONN(q); 5267 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5268 5269 qprocsoff(q); 5270 5271 if (connp->conn_flags & IPCL_UDPMOD) 5272 udp_close_free(connp); 5273 5274 if (connp->conn_cred != NULL) { 5275 crfree(connp->conn_cred); 5276 connp->conn_cred = NULL; 5277 } 5278 CONN_DEC_REF(connp); 5279 q->q_ptr = WR(q)->q_ptr = NULL; 5280 return (0); 5281 } 5282 5283 /* 5284 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5285 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5286 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5287 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5288 * queues as we never enqueue messages there and we don't handle any ioctls. 5289 * Everything else is freed. 5290 */ 5291 void 5292 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5293 { 5294 conn_t *connp = q->q_ptr; 5295 pfi_t setfn; 5296 pfi_t getfn; 5297 5298 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5299 5300 switch (DB_TYPE(mp)) { 5301 case M_PROTO: 5302 case M_PCPROTO: 5303 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5304 ((((union T_primitives *)mp->b_rptr)->type == 5305 T_SVR4_OPTMGMT_REQ) || 5306 (((union T_primitives *)mp->b_rptr)->type == 5307 T_OPTMGMT_REQ))) { 5308 /* 5309 * This is the only TPI primitive supported. Its 5310 * handling does not require tcp_t, but it does require 5311 * conn_t to check permissions. 5312 */ 5313 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5314 5315 if (connp->conn_flags & IPCL_TCPMOD) { 5316 setfn = tcp_snmp_set; 5317 getfn = tcp_snmp_get; 5318 } else { 5319 setfn = udp_snmp_set; 5320 getfn = udp_snmp_get; 5321 } 5322 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5323 freemsg(mp); 5324 return; 5325 } 5326 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5327 != NULL) 5328 qreply(q, mp); 5329 break; 5330 case M_FLUSH: 5331 case M_IOCTL: 5332 putnext(q, mp); 5333 break; 5334 default: 5335 freemsg(mp); 5336 break; 5337 } 5338 } 5339 5340 /* Return the IP checksum for the IP header at "iph". */ 5341 uint16_t 5342 ip_csum_hdr(ipha_t *ipha) 5343 { 5344 uint16_t *uph; 5345 uint32_t sum; 5346 int opt_len; 5347 5348 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5349 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5350 uph = (uint16_t *)ipha; 5351 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5352 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5353 if (opt_len > 0) { 5354 do { 5355 sum += uph[10]; 5356 sum += uph[11]; 5357 uph += 2; 5358 } while (--opt_len); 5359 } 5360 sum = (sum & 0xFFFF) + (sum >> 16); 5361 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5362 if (sum == 0xffff) 5363 sum = 0; 5364 return ((uint16_t)sum); 5365 } 5366 5367 void 5368 ip_ddi_destroy(void) 5369 { 5370 tnet_fini(); 5371 tcp_ddi_destroy(); 5372 sctp_ddi_destroy(); 5373 ipsec_loader_destroy(); 5374 ipsec_policy_destroy(); 5375 ipsec_kstat_destroy(); 5376 nd_free(&ip_g_nd); 5377 mutex_destroy(&igmp_timer_lock); 5378 mutex_destroy(&mld_timer_lock); 5379 mutex_destroy(&igmp_slowtimeout_lock); 5380 mutex_destroy(&mld_slowtimeout_lock); 5381 mutex_destroy(&ip_mi_lock); 5382 mutex_destroy(&rts_clients.connf_lock); 5383 ip_ire_fini(); 5384 ip6_asp_free(); 5385 conn_drain_fini(); 5386 ipcl_destroy(); 5387 inet_minor_destroy(ip_minor_arena); 5388 icmp_kstat_fini(); 5389 ip_kstat_fini(); 5390 rw_destroy(&ipsec_capab_ills_lock); 5391 rw_destroy(&ill_g_usesrc_lock); 5392 ip_drop_unregister(&ip_dropper); 5393 } 5394 5395 5396 void 5397 ip_ddi_init(void) 5398 { 5399 TCP6_MAJ = ddi_name_to_major(TCP6); 5400 TCP_MAJ = ddi_name_to_major(TCP); 5401 SCTP_MAJ = ddi_name_to_major(SCTP); 5402 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5403 5404 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5405 5406 /* IP's IPsec code calls the packet dropper */ 5407 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5408 5409 if (!ip_g_nd) { 5410 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5411 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5412 nd_free(&ip_g_nd); 5413 } 5414 } 5415 5416 ipsec_loader_init(); 5417 ipsec_policy_init(); 5418 ipsec_kstat_init(); 5419 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5420 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5421 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5422 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5423 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5424 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5425 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5426 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5427 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5428 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5429 5430 /* 5431 * For IP and TCP the minor numbers should start from 2 since we have 4 5432 * initial devices: ip, ip6, tcp, tcp6. 5433 */ 5434 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5435 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5436 cmn_err(CE_PANIC, 5437 "ip_ddi_init: ip_minor_arena creation failed\n"); 5438 } 5439 5440 ipcl_init(); 5441 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5442 ip_ire_init(); 5443 ip6_asp_init(); 5444 ipif_init(); 5445 conn_drain_init(); 5446 tcp_ddi_init(); 5447 sctp_ddi_init(); 5448 5449 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5450 5451 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5452 "net", KSTAT_TYPE_NAMED, 5453 sizeof (ip_statistics) / sizeof (kstat_named_t), 5454 KSTAT_FLAG_VIRTUAL)) != NULL) { 5455 ip_kstat->ks_data = &ip_statistics; 5456 kstat_install(ip_kstat); 5457 } 5458 ip_kstat_init(); 5459 ip6_kstat_init(); 5460 icmp_kstat_init(); 5461 ipsec_loader_start(); 5462 tnet_init(); 5463 } 5464 5465 /* 5466 * Allocate and initialize a DLPI template of the specified length. (May be 5467 * called as writer.) 5468 */ 5469 mblk_t * 5470 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5471 { 5472 mblk_t *mp; 5473 5474 mp = allocb(len, BPRI_MED); 5475 if (!mp) 5476 return (NULL); 5477 5478 /* 5479 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5480 * of which we don't seem to use) are sent with M_PCPROTO, and 5481 * that other DLPI are M_PROTO. 5482 */ 5483 if (prim == DL_INFO_REQ) { 5484 mp->b_datap->db_type = M_PCPROTO; 5485 } else { 5486 mp->b_datap->db_type = M_PROTO; 5487 } 5488 5489 mp->b_wptr = mp->b_rptr + len; 5490 bzero(mp->b_rptr, len); 5491 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5492 return (mp); 5493 } 5494 5495 const char * 5496 dlpi_prim_str(int prim) 5497 { 5498 switch (prim) { 5499 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5500 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5501 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5502 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5503 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5504 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5505 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5506 case DL_OK_ACK: return ("DL_OK_ACK"); 5507 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5508 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5509 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5510 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5511 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5512 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5513 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5514 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5515 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5516 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5517 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5518 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5519 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5520 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5521 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5522 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5523 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5524 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5525 default: return ("<unknown primitive>"); 5526 } 5527 } 5528 5529 const char * 5530 dlpi_err_str(int err) 5531 { 5532 switch (err) { 5533 case DL_ACCESS: return ("DL_ACCESS"); 5534 case DL_BADADDR: return ("DL_BADADDR"); 5535 case DL_BADCORR: return ("DL_BADCORR"); 5536 case DL_BADDATA: return ("DL_BADDATA"); 5537 case DL_BADPPA: return ("DL_BADPPA"); 5538 case DL_BADPRIM: return ("DL_BADPRIM"); 5539 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5540 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5541 case DL_BADSAP: return ("DL_BADSAP"); 5542 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5543 case DL_BOUND: return ("DL_BOUND"); 5544 case DL_INITFAILED: return ("DL_INITFAILED"); 5545 case DL_NOADDR: return ("DL_NOADDR"); 5546 case DL_NOTINIT: return ("DL_NOTINIT"); 5547 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5548 case DL_SYSERR: return ("DL_SYSERR"); 5549 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5550 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5551 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5552 case DL_TOOMANY: return ("DL_TOOMANY"); 5553 case DL_NOTENAB: return ("DL_NOTENAB"); 5554 case DL_BUSY: return ("DL_BUSY"); 5555 case DL_NOAUTO: return ("DL_NOAUTO"); 5556 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5557 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5558 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5559 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5560 case DL_PENDING: return ("DL_PENDING"); 5561 default: return ("<unknown error>"); 5562 } 5563 } 5564 5565 /* 5566 * Debug formatting routine. Returns a character string representation of the 5567 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5568 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5569 */ 5570 char * 5571 ip_dot_addr(ipaddr_t addr, char *buf) 5572 { 5573 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5574 } 5575 5576 /* 5577 * Debug formatting routine. Returns a character string representation of the 5578 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5579 * as a pointer. The "xxx" parts including left zero padding so the final 5580 * string will fit easily in tables. It would be nice to take a padding 5581 * length argument instead. 5582 */ 5583 static char * 5584 ip_dot_saddr(uchar_t *addr, char *buf) 5585 { 5586 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5587 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5588 return (buf); 5589 } 5590 5591 /* 5592 * Send an ICMP error after patching up the packet appropriately. Returns 5593 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5594 */ 5595 static boolean_t 5596 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5597 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5598 { 5599 ipha_t *ipha; 5600 mblk_t *first_mp; 5601 boolean_t secure; 5602 unsigned char db_type; 5603 5604 first_mp = mp; 5605 if (mctl_present) { 5606 mp = mp->b_cont; 5607 secure = ipsec_in_is_secure(first_mp); 5608 ASSERT(mp != NULL); 5609 } else { 5610 /* 5611 * If this is an ICMP error being reported - which goes 5612 * up as M_CTLs, we need to convert them to M_DATA till 5613 * we finish checking with global policy because 5614 * ipsec_check_global_policy() assumes M_DATA as clear 5615 * and M_CTL as secure. 5616 */ 5617 db_type = DB_TYPE(mp); 5618 DB_TYPE(mp) = M_DATA; 5619 secure = B_FALSE; 5620 } 5621 /* 5622 * We are generating an icmp error for some inbound packet. 5623 * Called from all ip_fanout_(udp, tcp, proto) functions. 5624 * Before we generate an error, check with global policy 5625 * to see whether this is allowed to enter the system. As 5626 * there is no "conn", we are checking with global policy. 5627 */ 5628 ipha = (ipha_t *)mp->b_rptr; 5629 if (secure || ipsec_inbound_v4_policy_present) { 5630 first_mp = ipsec_check_global_policy(first_mp, NULL, 5631 ipha, NULL, mctl_present); 5632 if (first_mp == NULL) 5633 return (B_FALSE); 5634 } 5635 5636 if (!mctl_present) 5637 DB_TYPE(mp) = db_type; 5638 5639 if (flags & IP_FF_SEND_ICMP) { 5640 if (flags & IP_FF_HDR_COMPLETE) { 5641 if (ip_hdr_complete(ipha, zoneid)) { 5642 freemsg(first_mp); 5643 return (B_TRUE); 5644 } 5645 } 5646 if (flags & IP_FF_CKSUM) { 5647 /* 5648 * Have to correct checksum since 5649 * the packet might have been 5650 * fragmented and the reassembly code in ip_rput 5651 * does not restore the IP checksum. 5652 */ 5653 ipha->ipha_hdr_checksum = 0; 5654 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5655 } 5656 switch (icmp_type) { 5657 case ICMP_DEST_UNREACHABLE: 5658 icmp_unreachable(WR(q), first_mp, icmp_code); 5659 break; 5660 default: 5661 freemsg(first_mp); 5662 break; 5663 } 5664 } else { 5665 freemsg(first_mp); 5666 return (B_FALSE); 5667 } 5668 5669 return (B_TRUE); 5670 } 5671 5672 /* 5673 * Used to send an ICMP error message when a packet is received for 5674 * a protocol that is not supported. The mblk passed as argument 5675 * is consumed by this function. 5676 */ 5677 void 5678 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5679 { 5680 mblk_t *mp; 5681 ipha_t *ipha; 5682 ill_t *ill; 5683 ipsec_in_t *ii; 5684 5685 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5686 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5687 5688 mp = ipsec_mp->b_cont; 5689 ipsec_mp->b_cont = NULL; 5690 ipha = (ipha_t *)mp->b_rptr; 5691 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5692 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5693 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5694 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5695 } 5696 } else { 5697 /* Get ill from index in ipsec_in_t. */ 5698 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5699 B_TRUE, NULL, NULL, NULL, NULL); 5700 if (ill != NULL) { 5701 if (ip_fanout_send_icmp_v6(q, mp, flags, 5702 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5703 0, B_FALSE, zoneid)) { 5704 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5705 } 5706 5707 ill_refrele(ill); 5708 } else { /* re-link for the freemsg() below. */ 5709 ipsec_mp->b_cont = mp; 5710 } 5711 } 5712 5713 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5714 freemsg(ipsec_mp); 5715 } 5716 5717 /* 5718 * See if the inbound datagram has had IPsec processing applied to it. 5719 */ 5720 boolean_t 5721 ipsec_in_is_secure(mblk_t *ipsec_mp) 5722 { 5723 ipsec_in_t *ii; 5724 5725 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5726 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5727 5728 if (ii->ipsec_in_loopback) { 5729 return (ii->ipsec_in_secure); 5730 } else { 5731 return (ii->ipsec_in_ah_sa != NULL || 5732 ii->ipsec_in_esp_sa != NULL || 5733 ii->ipsec_in_decaps); 5734 } 5735 } 5736 5737 /* 5738 * Handle protocols with which IP is less intimate. There 5739 * can be more than one stream bound to a particular 5740 * protocol. When this is the case, normally each one gets a copy 5741 * of any incoming packets. 5742 * 5743 * IPSEC NOTE : 5744 * 5745 * Don't allow a secure packet going up a non-secure connection. 5746 * We don't allow this because 5747 * 5748 * 1) Reply might go out in clear which will be dropped at 5749 * the sending side. 5750 * 2) If the reply goes out in clear it will give the 5751 * adversary enough information for getting the key in 5752 * most of the cases. 5753 * 5754 * Moreover getting a secure packet when we expect clear 5755 * implies that SA's were added without checking for 5756 * policy on both ends. This should not happen once ISAKMP 5757 * is used to negotiate SAs as SAs will be added only after 5758 * verifying the policy. 5759 * 5760 * NOTE : If the packet was tunneled and not multicast we only send 5761 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5762 * back to delivering packets to AF_INET6 raw sockets. 5763 * 5764 * IPQoS Notes: 5765 * Once we have determined the client, invoke IPPF processing. 5766 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5767 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5768 * ip_policy will be false. 5769 * 5770 * Zones notes: 5771 * Currently only applications in the global zone can create raw sockets for 5772 * protocols other than ICMP. So unlike the broadcast / multicast case of 5773 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5774 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5775 */ 5776 static void 5777 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5778 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5779 zoneid_t zoneid) 5780 { 5781 queue_t *rq; 5782 mblk_t *mp1, *first_mp1; 5783 uint_t protocol = ipha->ipha_protocol; 5784 ipaddr_t dst; 5785 boolean_t one_only; 5786 mblk_t *first_mp = mp; 5787 boolean_t secure; 5788 uint32_t ill_index; 5789 conn_t *connp, *first_connp, *next_connp; 5790 connf_t *connfp; 5791 boolean_t shared_addr; 5792 5793 if (mctl_present) { 5794 mp = first_mp->b_cont; 5795 secure = ipsec_in_is_secure(first_mp); 5796 ASSERT(mp != NULL); 5797 } else { 5798 secure = B_FALSE; 5799 } 5800 dst = ipha->ipha_dst; 5801 /* 5802 * If the packet was tunneled and not multicast we only send to it 5803 * the first match. 5804 */ 5805 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5806 !CLASSD(dst)); 5807 5808 shared_addr = (zoneid == ALL_ZONES); 5809 if (shared_addr) { 5810 /* 5811 * We don't allow multilevel ports for raw IP, so no need to 5812 * check for that here. 5813 */ 5814 zoneid = tsol_packet_to_zoneid(mp); 5815 } 5816 5817 connfp = &ipcl_proto_fanout[protocol]; 5818 mutex_enter(&connfp->connf_lock); 5819 connp = connfp->connf_head; 5820 for (connp = connfp->connf_head; connp != NULL; 5821 connp = connp->conn_next) { 5822 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 5823 zoneid) && 5824 (!is_system_labeled() || 5825 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 5826 connp))) 5827 break; 5828 } 5829 5830 if (connp == NULL || connp->conn_upq == NULL) { 5831 /* 5832 * No one bound to these addresses. Is 5833 * there a client that wants all 5834 * unclaimed datagrams? 5835 */ 5836 mutex_exit(&connfp->connf_lock); 5837 /* 5838 * Check for IPPROTO_ENCAP... 5839 */ 5840 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5841 /* 5842 * XXX If an IPsec mblk is here on a multicast 5843 * tunnel (using ip_mroute stuff), what should 5844 * I do? 5845 * 5846 * For now, just free the IPsec mblk before 5847 * passing it up to the multicast routing 5848 * stuff. 5849 * 5850 * BTW, If I match a configured IP-in-IP 5851 * tunnel, ip_mroute_decap will never be 5852 * called. 5853 */ 5854 if (mp != first_mp) 5855 freeb(first_mp); 5856 ip_mroute_decap(q, mp); 5857 } else { 5858 /* 5859 * Otherwise send an ICMP protocol unreachable. 5860 */ 5861 if (ip_fanout_send_icmp(q, first_mp, flags, 5862 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5863 mctl_present, zoneid)) { 5864 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5865 } 5866 } 5867 return; 5868 } 5869 CONN_INC_REF(connp); 5870 first_connp = connp; 5871 5872 /* 5873 * Only send message to one tunnel driver by immediately 5874 * terminating the loop. 5875 */ 5876 connp = one_only ? NULL : connp->conn_next; 5877 5878 for (;;) { 5879 while (connp != NULL) { 5880 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5881 flags, zoneid) && 5882 (!is_system_labeled() || 5883 tsol_receive_local(mp, &dst, IPV4_VERSION, 5884 shared_addr, connp))) 5885 break; 5886 connp = connp->conn_next; 5887 } 5888 5889 /* 5890 * Copy the packet. 5891 */ 5892 if (connp == NULL || connp->conn_upq == NULL || 5893 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5894 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5895 /* 5896 * No more interested clients or memory 5897 * allocation failed 5898 */ 5899 connp = first_connp; 5900 break; 5901 } 5902 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5903 CONN_INC_REF(connp); 5904 mutex_exit(&connfp->connf_lock); 5905 rq = connp->conn_rq; 5906 if (!canputnext(rq)) { 5907 if (flags & IP_FF_RAWIP) { 5908 BUMP_MIB(&ip_mib, rawipInOverflows); 5909 } else { 5910 BUMP_MIB(&icmp_mib, icmpInOverflows); 5911 } 5912 5913 freemsg(first_mp1); 5914 } else { 5915 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5916 first_mp1 = ipsec_check_inbound_policy 5917 (first_mp1, connp, ipha, NULL, 5918 mctl_present); 5919 } 5920 if (first_mp1 != NULL) { 5921 /* 5922 * ip_fanout_proto also gets called from 5923 * icmp_inbound_error_fanout, in which case 5924 * the msg type is M_CTL. Don't add info 5925 * in this case for the time being. In future 5926 * when there is a need for knowing the 5927 * inbound iface index for ICMP error msgs, 5928 * then this can be changed. 5929 */ 5930 if ((connp->conn_recvif != 0) && 5931 (mp->b_datap->db_type != M_CTL)) { 5932 /* 5933 * the actual data will be 5934 * contained in b_cont upon 5935 * successful return of the 5936 * following call else 5937 * original mblk is returned 5938 */ 5939 ASSERT(recv_ill != NULL); 5940 mp1 = ip_add_info(mp1, recv_ill, 5941 IPF_RECVIF); 5942 } 5943 BUMP_MIB(&ip_mib, ipInDelivers); 5944 if (mctl_present) 5945 freeb(first_mp1); 5946 putnext(rq, mp1); 5947 } 5948 } 5949 mutex_enter(&connfp->connf_lock); 5950 /* Follow the next pointer before releasing the conn. */ 5951 next_connp = connp->conn_next; 5952 CONN_DEC_REF(connp); 5953 connp = next_connp; 5954 } 5955 5956 /* Last one. Send it upstream. */ 5957 mutex_exit(&connfp->connf_lock); 5958 5959 /* 5960 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5961 * will be set to false. 5962 */ 5963 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5964 ill_index = ill->ill_phyint->phyint_ifindex; 5965 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5966 if (mp == NULL) { 5967 CONN_DEC_REF(connp); 5968 if (mctl_present) { 5969 freeb(first_mp); 5970 } 5971 return; 5972 } 5973 } 5974 5975 rq = connp->conn_rq; 5976 if (!canputnext(rq)) { 5977 if (flags & IP_FF_RAWIP) { 5978 BUMP_MIB(&ip_mib, rawipInOverflows); 5979 } else { 5980 BUMP_MIB(&icmp_mib, icmpInOverflows); 5981 } 5982 5983 freemsg(first_mp); 5984 } else { 5985 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5986 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5987 ipha, NULL, mctl_present); 5988 } 5989 if (first_mp != NULL) { 5990 /* 5991 * ip_fanout_proto also gets called 5992 * from icmp_inbound_error_fanout, in 5993 * which case the msg type is M_CTL. 5994 * Don't add info in this case for time 5995 * being. In future when there is a 5996 * need for knowing the inbound iface 5997 * index for ICMP error msgs, then this 5998 * can be changed 5999 */ 6000 if ((connp->conn_recvif != 0) && 6001 (mp->b_datap->db_type != M_CTL)) { 6002 /* 6003 * the actual data will be contained in 6004 * b_cont upon successful return 6005 * of the following call else original 6006 * mblk is returned 6007 */ 6008 ASSERT(recv_ill != NULL); 6009 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6010 } 6011 BUMP_MIB(&ip_mib, ipInDelivers); 6012 putnext(rq, mp); 6013 if (mctl_present) 6014 freeb(first_mp); 6015 } 6016 } 6017 CONN_DEC_REF(connp); 6018 } 6019 6020 /* 6021 * Fanout for TCP packets 6022 * The caller puts <fport, lport> in the ports parameter. 6023 * 6024 * IPQoS Notes 6025 * Before sending it to the client, invoke IPPF processing. 6026 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6027 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6028 * ip_policy is false. 6029 */ 6030 static void 6031 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6032 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6033 { 6034 mblk_t *first_mp; 6035 boolean_t secure; 6036 uint32_t ill_index; 6037 int ip_hdr_len; 6038 tcph_t *tcph; 6039 boolean_t syn_present = B_FALSE; 6040 conn_t *connp; 6041 6042 first_mp = mp; 6043 if (mctl_present) { 6044 ASSERT(first_mp->b_datap->db_type == M_CTL); 6045 mp = first_mp->b_cont; 6046 secure = ipsec_in_is_secure(first_mp); 6047 ASSERT(mp != NULL); 6048 } else { 6049 secure = B_FALSE; 6050 } 6051 6052 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6053 6054 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6055 NULL) { 6056 /* 6057 * No connected connection or listener. Send a 6058 * TH_RST via tcp_xmit_listeners_reset. 6059 */ 6060 6061 /* Initiate IPPf processing, if needed. */ 6062 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6063 uint32_t ill_index; 6064 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6065 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6066 if (first_mp == NULL) 6067 return; 6068 } 6069 BUMP_MIB(&ip_mib, ipInDelivers); 6070 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6071 zoneid)); 6072 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6073 return; 6074 } 6075 6076 /* 6077 * Allocate the SYN for the TCP connection here itself 6078 */ 6079 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6080 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6081 if (IPCL_IS_TCP(connp)) { 6082 squeue_t *sqp; 6083 6084 /* 6085 * For fused tcp loopback, assign the eager's 6086 * squeue to be that of the active connect's. 6087 * Note that we don't check for IP_FF_LOOPBACK 6088 * here since this routine gets called only 6089 * for loopback (unlike the IPv6 counterpart). 6090 */ 6091 ASSERT(Q_TO_CONN(q) != NULL); 6092 if (do_tcp_fusion && 6093 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6094 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6095 IPCL_IS_TCP(Q_TO_CONN(q))) { 6096 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6097 sqp = Q_TO_CONN(q)->conn_sqp; 6098 } else { 6099 sqp = IP_SQUEUE_GET(lbolt); 6100 } 6101 6102 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6103 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6104 syn_present = B_TRUE; 6105 } 6106 } 6107 6108 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6109 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6110 if ((flags & TH_RST) || (flags & TH_URG)) { 6111 CONN_DEC_REF(connp); 6112 freemsg(first_mp); 6113 return; 6114 } 6115 if (flags & TH_ACK) { 6116 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6117 CONN_DEC_REF(connp); 6118 return; 6119 } 6120 6121 CONN_DEC_REF(connp); 6122 freemsg(first_mp); 6123 return; 6124 } 6125 6126 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6127 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6128 NULL, mctl_present); 6129 if (first_mp == NULL) { 6130 CONN_DEC_REF(connp); 6131 return; 6132 } 6133 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6134 ASSERT(syn_present); 6135 if (mctl_present) { 6136 ASSERT(first_mp != mp); 6137 first_mp->b_datap->db_struioflag |= 6138 STRUIO_POLICY; 6139 } else { 6140 ASSERT(first_mp == mp); 6141 mp->b_datap->db_struioflag &= 6142 ~STRUIO_EAGER; 6143 mp->b_datap->db_struioflag |= 6144 STRUIO_POLICY; 6145 } 6146 } else { 6147 /* 6148 * Discard first_mp early since we're dealing with a 6149 * fully-connected conn_t and tcp doesn't do policy in 6150 * this case. 6151 */ 6152 if (mctl_present) { 6153 freeb(first_mp); 6154 mctl_present = B_FALSE; 6155 } 6156 first_mp = mp; 6157 } 6158 } 6159 6160 /* 6161 * Initiate policy processing here if needed. If we get here from 6162 * icmp_inbound_error_fanout, ip_policy is false. 6163 */ 6164 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6165 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6166 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6167 if (mp == NULL) { 6168 CONN_DEC_REF(connp); 6169 if (mctl_present) 6170 freeb(first_mp); 6171 return; 6172 } else if (mctl_present) { 6173 ASSERT(first_mp != mp); 6174 first_mp->b_cont = mp; 6175 } else { 6176 first_mp = mp; 6177 } 6178 } 6179 6180 6181 6182 /* Handle IPv6 socket options. */ 6183 if (!syn_present && 6184 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6185 /* Add header */ 6186 ASSERT(recv_ill != NULL); 6187 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6188 if (mp == NULL) { 6189 CONN_DEC_REF(connp); 6190 if (mctl_present) 6191 freeb(first_mp); 6192 return; 6193 } else if (mctl_present) { 6194 /* 6195 * ip_add_info might return a new mp. 6196 */ 6197 ASSERT(first_mp != mp); 6198 first_mp->b_cont = mp; 6199 } else { 6200 first_mp = mp; 6201 } 6202 } 6203 6204 BUMP_MIB(&ip_mib, ipInDelivers); 6205 if (IPCL_IS_TCP(connp)) { 6206 (*ip_input_proc)(connp->conn_sqp, first_mp, 6207 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6208 } else { 6209 putnext(connp->conn_rq, first_mp); 6210 CONN_DEC_REF(connp); 6211 } 6212 } 6213 6214 /* 6215 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6216 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6217 * Caller is responsible for dropping references to the conn, and freeing 6218 * first_mp. 6219 * 6220 * IPQoS Notes 6221 * Before sending it to the client, invoke IPPF processing. Policy processing 6222 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6223 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6224 * ip_wput_local, ip_policy is false. 6225 */ 6226 static void 6227 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6228 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6229 boolean_t ip_policy) 6230 { 6231 boolean_t mctl_present = (first_mp != NULL); 6232 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6233 uint32_t ill_index; 6234 6235 if (mctl_present) 6236 first_mp->b_cont = mp; 6237 else 6238 first_mp = mp; 6239 6240 if (CONN_UDP_FLOWCTLD(connp)) { 6241 BUMP_MIB(&ip_mib, udpInOverflows); 6242 freemsg(first_mp); 6243 return; 6244 } 6245 6246 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6247 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6248 NULL, mctl_present); 6249 if (first_mp == NULL) 6250 return; /* Freed by ipsec_check_inbound_policy(). */ 6251 } 6252 if (mctl_present) 6253 freeb(first_mp); 6254 6255 if (connp->conn_recvif) 6256 in_flags = IPF_RECVIF; 6257 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6258 in_flags |= IPF_RECVSLLA; 6259 6260 /* Handle IPv6 options. */ 6261 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6262 in_flags |= IPF_RECVIF; 6263 6264 /* 6265 * Initiate IPPF processing here, if needed. Note first_mp won't be 6266 * freed if the packet is dropped. The caller will do so. 6267 */ 6268 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6269 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6270 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6271 if (mp == NULL) { 6272 return; 6273 } 6274 } 6275 if ((in_flags != 0) && 6276 (mp->b_datap->db_type != M_CTL)) { 6277 /* 6278 * The actual data will be contained in b_cont 6279 * upon successful return of the following call 6280 * else original mblk is returned 6281 */ 6282 ASSERT(recv_ill != NULL); 6283 mp = ip_add_info(mp, recv_ill, in_flags); 6284 } 6285 BUMP_MIB(&ip_mib, ipInDelivers); 6286 6287 /* Send it upstream */ 6288 CONN_UDP_RECV(connp, mp); 6289 } 6290 6291 /* 6292 * Fanout for UDP packets. 6293 * The caller puts <fport, lport> in the ports parameter. 6294 * 6295 * If SO_REUSEADDR is set all multicast and broadcast packets 6296 * will be delivered to all streams bound to the same port. 6297 * 6298 * Zones notes: 6299 * Multicast and broadcast packets will be distributed to streams in all zones. 6300 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6301 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6302 * packets. To maintain this behavior with multiple zones, the conns are grouped 6303 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6304 * each zone. If unset, all the following conns in the same zone are skipped. 6305 */ 6306 static void 6307 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6308 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6309 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6310 { 6311 uint32_t dstport, srcport; 6312 ipaddr_t dst; 6313 mblk_t *first_mp; 6314 boolean_t secure; 6315 in6_addr_t v6src; 6316 conn_t *connp; 6317 connf_t *connfp; 6318 conn_t *first_connp; 6319 conn_t *next_connp; 6320 mblk_t *mp1, *first_mp1; 6321 ipaddr_t src; 6322 zoneid_t last_zoneid; 6323 boolean_t reuseaddr; 6324 boolean_t shared_addr; 6325 6326 first_mp = mp; 6327 if (mctl_present) { 6328 mp = first_mp->b_cont; 6329 first_mp->b_cont = NULL; 6330 secure = ipsec_in_is_secure(first_mp); 6331 ASSERT(mp != NULL); 6332 } else { 6333 first_mp = NULL; 6334 secure = B_FALSE; 6335 } 6336 6337 /* Extract ports in net byte order */ 6338 dstport = htons(ntohl(ports) & 0xFFFF); 6339 srcport = htons(ntohl(ports) >> 16); 6340 dst = ipha->ipha_dst; 6341 src = ipha->ipha_src; 6342 6343 shared_addr = (zoneid == ALL_ZONES); 6344 if (shared_addr) { 6345 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6346 if (zoneid == ALL_ZONES) 6347 zoneid = tsol_packet_to_zoneid(mp); 6348 } 6349 6350 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6351 mutex_enter(&connfp->connf_lock); 6352 connp = connfp->connf_head; 6353 if (!broadcast && !CLASSD(dst)) { 6354 /* 6355 * Not broadcast or multicast. Send to the one (first) 6356 * client we find. No need to check conn_wantpacket() 6357 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6358 * IPv4 unicast packets. 6359 */ 6360 while ((connp != NULL) && 6361 (!IPCL_UDP_MATCH(connp, dstport, dst, 6362 srcport, src) || 6363 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6364 connp = connp->conn_next; 6365 } 6366 6367 if (connp == NULL || connp->conn_upq == NULL) 6368 goto notfound; 6369 6370 if (is_system_labeled() && 6371 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6372 connp)) 6373 goto notfound; 6374 6375 CONN_INC_REF(connp); 6376 mutex_exit(&connfp->connf_lock); 6377 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6378 recv_ill, ip_policy); 6379 IP_STAT(ip_udp_fannorm); 6380 CONN_DEC_REF(connp); 6381 return; 6382 } 6383 6384 /* 6385 * Broadcast and multicast case 6386 * 6387 * Need to check conn_wantpacket(). 6388 * If SO_REUSEADDR has been set on the first we send the 6389 * packet to all clients that have joined the group and 6390 * match the port. 6391 */ 6392 6393 while (connp != NULL) { 6394 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6395 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6396 (!is_system_labeled() || 6397 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6398 connp))) 6399 break; 6400 connp = connp->conn_next; 6401 } 6402 6403 if (connp == NULL || connp->conn_upq == NULL) 6404 goto notfound; 6405 6406 first_connp = connp; 6407 /* 6408 * When SO_REUSEADDR is not set, send the packet only to the first 6409 * matching connection in its zone by keeping track of the zoneid. 6410 */ 6411 reuseaddr = first_connp->conn_reuseaddr; 6412 last_zoneid = first_connp->conn_zoneid; 6413 6414 CONN_INC_REF(connp); 6415 connp = connp->conn_next; 6416 for (;;) { 6417 while (connp != NULL) { 6418 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6419 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6420 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6421 (!is_system_labeled() || 6422 tsol_receive_local(mp, &dst, IPV4_VERSION, 6423 shared_addr, connp))) 6424 break; 6425 connp = connp->conn_next; 6426 } 6427 /* 6428 * Just copy the data part alone. The mctl part is 6429 * needed just for verifying policy and it is never 6430 * sent up. 6431 */ 6432 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6433 ((mp1 = copymsg(mp)) == NULL))) { 6434 /* 6435 * No more interested clients or memory 6436 * allocation failed 6437 */ 6438 connp = first_connp; 6439 break; 6440 } 6441 if (connp->conn_zoneid != last_zoneid) { 6442 /* 6443 * Update the zoneid so that the packet isn't sent to 6444 * any more conns in the same zone unless SO_REUSEADDR 6445 * is set. 6446 */ 6447 reuseaddr = connp->conn_reuseaddr; 6448 last_zoneid = connp->conn_zoneid; 6449 } 6450 if (first_mp != NULL) { 6451 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6452 ipsec_info_type == IPSEC_IN); 6453 first_mp1 = ipsec_in_tag(first_mp, NULL); 6454 if (first_mp1 == NULL) { 6455 freemsg(mp1); 6456 connp = first_connp; 6457 break; 6458 } 6459 } else { 6460 first_mp1 = NULL; 6461 } 6462 CONN_INC_REF(connp); 6463 mutex_exit(&connfp->connf_lock); 6464 /* 6465 * IPQoS notes: We don't send the packet for policy 6466 * processing here, will do it for the last one (below). 6467 * i.e. we do it per-packet now, but if we do policy 6468 * processing per-conn, then we would need to do it 6469 * here too. 6470 */ 6471 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6472 ipha, flags, recv_ill, B_FALSE); 6473 mutex_enter(&connfp->connf_lock); 6474 /* Follow the next pointer before releasing the conn. */ 6475 next_connp = connp->conn_next; 6476 IP_STAT(ip_udp_fanmb); 6477 CONN_DEC_REF(connp); 6478 connp = next_connp; 6479 } 6480 6481 /* Last one. Send it upstream. */ 6482 mutex_exit(&connfp->connf_lock); 6483 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6484 ip_policy); 6485 IP_STAT(ip_udp_fanmb); 6486 CONN_DEC_REF(connp); 6487 return; 6488 6489 notfound: 6490 6491 mutex_exit(&connfp->connf_lock); 6492 IP_STAT(ip_udp_fanothers); 6493 /* 6494 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6495 * have already been matched above, since they live in the IPv4 6496 * fanout tables. This implies we only need to 6497 * check for IPv6 in6addr_any endpoints here. 6498 * Thus we compare using ipv6_all_zeros instead of the destination 6499 * address, except for the multicast group membership lookup which 6500 * uses the IPv4 destination. 6501 */ 6502 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6503 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6504 mutex_enter(&connfp->connf_lock); 6505 connp = connfp->connf_head; 6506 if (!broadcast && !CLASSD(dst)) { 6507 while (connp != NULL) { 6508 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6509 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6510 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6511 !connp->conn_ipv6_v6only) 6512 break; 6513 connp = connp->conn_next; 6514 } 6515 6516 if (connp != NULL && is_system_labeled() && 6517 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6518 connp)) 6519 connp = NULL; 6520 6521 if (connp == NULL || connp->conn_upq == NULL) { 6522 /* 6523 * No one bound to this port. Is 6524 * there a client that wants all 6525 * unclaimed datagrams? 6526 */ 6527 mutex_exit(&connfp->connf_lock); 6528 6529 if (mctl_present) 6530 first_mp->b_cont = mp; 6531 else 6532 first_mp = mp; 6533 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6534 ip_fanout_proto(q, first_mp, ill, ipha, 6535 flags | IP_FF_RAWIP, mctl_present, 6536 ip_policy, recv_ill, zoneid); 6537 } else { 6538 if (ip_fanout_send_icmp(q, first_mp, flags, 6539 ICMP_DEST_UNREACHABLE, 6540 ICMP_PORT_UNREACHABLE, 6541 mctl_present, zoneid)) { 6542 BUMP_MIB(&ip_mib, udpNoPorts); 6543 } 6544 } 6545 return; 6546 } 6547 6548 CONN_INC_REF(connp); 6549 mutex_exit(&connfp->connf_lock); 6550 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6551 recv_ill, ip_policy); 6552 CONN_DEC_REF(connp); 6553 return; 6554 } 6555 /* 6556 * IPv4 multicast packet being delivered to an AF_INET6 6557 * in6addr_any endpoint. 6558 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6559 * and not conn_wantpacket_v6() since any multicast membership is 6560 * for an IPv4-mapped multicast address. 6561 * The packet is sent to all clients in all zones that have joined the 6562 * group and match the port. 6563 */ 6564 while (connp != NULL) { 6565 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6566 srcport, v6src) && 6567 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6568 (!is_system_labeled() || 6569 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6570 connp))) 6571 break; 6572 connp = connp->conn_next; 6573 } 6574 6575 if (connp == NULL || connp->conn_upq == NULL) { 6576 /* 6577 * No one bound to this port. Is 6578 * there a client that wants all 6579 * unclaimed datagrams? 6580 */ 6581 mutex_exit(&connfp->connf_lock); 6582 6583 if (mctl_present) 6584 first_mp->b_cont = mp; 6585 else 6586 first_mp = mp; 6587 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6588 ip_fanout_proto(q, first_mp, ill, ipha, 6589 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6590 recv_ill, zoneid); 6591 } else { 6592 /* 6593 * We used to attempt to send an icmp error here, but 6594 * since this is known to be a multicast packet 6595 * and we don't send icmp errors in response to 6596 * multicast, just drop the packet and give up sooner. 6597 */ 6598 BUMP_MIB(&ip_mib, udpNoPorts); 6599 freemsg(first_mp); 6600 } 6601 return; 6602 } 6603 6604 first_connp = connp; 6605 6606 CONN_INC_REF(connp); 6607 connp = connp->conn_next; 6608 for (;;) { 6609 while (connp != NULL) { 6610 if (IPCL_UDP_MATCH_V6(connp, dstport, 6611 ipv6_all_zeros, srcport, v6src) && 6612 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6613 (!is_system_labeled() || 6614 tsol_receive_local(mp, &dst, IPV4_VERSION, 6615 shared_addr, connp))) 6616 break; 6617 connp = connp->conn_next; 6618 } 6619 /* 6620 * Just copy the data part alone. The mctl part is 6621 * needed just for verifying policy and it is never 6622 * sent up. 6623 */ 6624 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6625 ((mp1 = copymsg(mp)) == NULL))) { 6626 /* 6627 * No more intested clients or memory 6628 * allocation failed 6629 */ 6630 connp = first_connp; 6631 break; 6632 } 6633 if (first_mp != NULL) { 6634 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6635 ipsec_info_type == IPSEC_IN); 6636 first_mp1 = ipsec_in_tag(first_mp, NULL); 6637 if (first_mp1 == NULL) { 6638 freemsg(mp1); 6639 connp = first_connp; 6640 break; 6641 } 6642 } else { 6643 first_mp1 = NULL; 6644 } 6645 CONN_INC_REF(connp); 6646 mutex_exit(&connfp->connf_lock); 6647 /* 6648 * IPQoS notes: We don't send the packet for policy 6649 * processing here, will do it for the last one (below). 6650 * i.e. we do it per-packet now, but if we do policy 6651 * processing per-conn, then we would need to do it 6652 * here too. 6653 */ 6654 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6655 ipha, flags, recv_ill, B_FALSE); 6656 mutex_enter(&connfp->connf_lock); 6657 /* Follow the next pointer before releasing the conn. */ 6658 next_connp = connp->conn_next; 6659 CONN_DEC_REF(connp); 6660 connp = next_connp; 6661 } 6662 6663 /* Last one. Send it upstream. */ 6664 mutex_exit(&connfp->connf_lock); 6665 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6666 ip_policy); 6667 CONN_DEC_REF(connp); 6668 } 6669 6670 /* 6671 * Complete the ip_wput header so that it 6672 * is possible to generate ICMP 6673 * errors. 6674 */ 6675 static int 6676 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6677 { 6678 ire_t *ire; 6679 6680 if (ipha->ipha_src == INADDR_ANY) { 6681 ire = ire_lookup_local(zoneid); 6682 if (ire == NULL) { 6683 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6684 return (1); 6685 } 6686 ipha->ipha_src = ire->ire_addr; 6687 ire_refrele(ire); 6688 } 6689 ipha->ipha_ttl = ip_def_ttl; 6690 ipha->ipha_hdr_checksum = 0; 6691 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6692 return (0); 6693 } 6694 6695 /* 6696 * Nobody should be sending 6697 * packets up this stream 6698 */ 6699 static void 6700 ip_lrput(queue_t *q, mblk_t *mp) 6701 { 6702 mblk_t *mp1; 6703 6704 switch (mp->b_datap->db_type) { 6705 case M_FLUSH: 6706 /* Turn around */ 6707 if (*mp->b_rptr & FLUSHW) { 6708 *mp->b_rptr &= ~FLUSHR; 6709 qreply(q, mp); 6710 return; 6711 } 6712 break; 6713 } 6714 /* Could receive messages that passed through ar_rput */ 6715 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6716 mp1->b_prev = mp1->b_next = NULL; 6717 freemsg(mp); 6718 } 6719 6720 /* Nobody should be sending packets down this stream */ 6721 /* ARGSUSED */ 6722 void 6723 ip_lwput(queue_t *q, mblk_t *mp) 6724 { 6725 freemsg(mp); 6726 } 6727 6728 /* 6729 * Move the first hop in any source route to ipha_dst and remove that part of 6730 * the source route. Called by other protocols. Errors in option formatting 6731 * are ignored - will be handled by ip_wput_options Return the final 6732 * destination (either ipha_dst or the last entry in a source route.) 6733 */ 6734 ipaddr_t 6735 ip_massage_options(ipha_t *ipha) 6736 { 6737 ipoptp_t opts; 6738 uchar_t *opt; 6739 uint8_t optval; 6740 uint8_t optlen; 6741 ipaddr_t dst; 6742 int i; 6743 ire_t *ire; 6744 6745 ip2dbg(("ip_massage_options\n")); 6746 dst = ipha->ipha_dst; 6747 for (optval = ipoptp_first(&opts, ipha); 6748 optval != IPOPT_EOL; 6749 optval = ipoptp_next(&opts)) { 6750 opt = opts.ipoptp_cur; 6751 switch (optval) { 6752 uint8_t off; 6753 case IPOPT_SSRR: 6754 case IPOPT_LSRR: 6755 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6756 ip1dbg(("ip_massage_options: bad src route\n")); 6757 break; 6758 } 6759 optlen = opts.ipoptp_len; 6760 off = opt[IPOPT_OFFSET]; 6761 off--; 6762 redo_srr: 6763 if (optlen < IP_ADDR_LEN || 6764 off > optlen - IP_ADDR_LEN) { 6765 /* End of source route */ 6766 ip1dbg(("ip_massage_options: end of SR\n")); 6767 break; 6768 } 6769 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6770 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6771 ntohl(dst))); 6772 /* 6773 * Check if our address is present more than 6774 * once as consecutive hops in source route. 6775 * XXX verify per-interface ip_forwarding 6776 * for source route? 6777 */ 6778 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6779 ALL_ZONES, NULL, MATCH_IRE_TYPE); 6780 if (ire != NULL) { 6781 ire_refrele(ire); 6782 off += IP_ADDR_LEN; 6783 goto redo_srr; 6784 } 6785 if (dst == htonl(INADDR_LOOPBACK)) { 6786 ip1dbg(("ip_massage_options: loopback addr in " 6787 "source route!\n")); 6788 break; 6789 } 6790 /* 6791 * Update ipha_dst to be the first hop and remove the 6792 * first hop from the source route (by overwriting 6793 * part of the option with NOP options). 6794 */ 6795 ipha->ipha_dst = dst; 6796 /* Put the last entry in dst */ 6797 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6798 3; 6799 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6800 6801 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6802 ntohl(dst))); 6803 /* Move down and overwrite */ 6804 opt[IP_ADDR_LEN] = opt[0]; 6805 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6806 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6807 for (i = 0; i < IP_ADDR_LEN; i++) 6808 opt[i] = IPOPT_NOP; 6809 break; 6810 } 6811 } 6812 return (dst); 6813 } 6814 6815 /* 6816 * This function's job is to forward data to the reverse tunnel (FA->HA) 6817 * after doing a few checks. It is assumed that the incoming interface 6818 * of the packet is always different than the outgoing interface and the 6819 * ire_type of the found ire has to be a non-resolver type. 6820 * 6821 * IPQoS notes 6822 * IP policy is invoked twice for a forwarded packet, once on the read side 6823 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6824 * enabled. 6825 */ 6826 static void 6827 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6828 { 6829 ipha_t *ipha; 6830 queue_t *q; 6831 uint32_t pkt_len; 6832 #define rptr ((uchar_t *)ipha) 6833 uint32_t sum; 6834 uint32_t max_frag; 6835 mblk_t *first_mp; 6836 uint32_t ill_index; 6837 6838 ASSERT(ire != NULL); 6839 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6840 ASSERT(ire->ire_stq != NULL); 6841 6842 /* Initiate read side IPPF processing */ 6843 if (IPP_ENABLED(IPP_FWD_IN)) { 6844 ill_index = in_ill->ill_phyint->phyint_ifindex; 6845 ip_process(IPP_FWD_IN, &mp, ill_index); 6846 if (mp == NULL) { 6847 ip2dbg(("ip_mrtun_forward: inbound pkt " 6848 "dropped during IPPF processing\n")); 6849 return; 6850 } 6851 } 6852 6853 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6854 ILLF_ROUTER) == 0) || 6855 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6856 BUMP_MIB(&ip_mib, ipForwProhibits); 6857 ip0dbg(("ip_mrtun_forward: Can't forward :" 6858 "forwarding is not turned on\n")); 6859 goto drop_pkt; 6860 } 6861 6862 /* 6863 * Don't forward if the interface is down 6864 */ 6865 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6866 BUMP_MIB(&ip_mib, ipInDiscards); 6867 goto drop_pkt; 6868 } 6869 6870 ipha = (ipha_t *)mp->b_rptr; 6871 pkt_len = ntohs(ipha->ipha_length); 6872 /* Adjust the checksum to reflect the ttl decrement. */ 6873 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6874 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6875 if (ipha->ipha_ttl-- <= 1) { 6876 if (ip_csum_hdr(ipha)) { 6877 BUMP_MIB(&ip_mib, ipInCksumErrs); 6878 goto drop_pkt; 6879 } 6880 q = ire->ire_stq; 6881 if ((first_mp = allocb(sizeof (ipsec_info_t), 6882 BPRI_HI)) == NULL) { 6883 goto drop_pkt; 6884 } 6885 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6886 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6887 6888 return; 6889 } 6890 6891 /* Get the ill_index of the ILL */ 6892 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6893 6894 /* 6895 * ip_mrtun_forward is only used by foreign agent to reverse 6896 * tunnel the incoming packet. So it does not do any option 6897 * processing for source routing. 6898 */ 6899 max_frag = ire->ire_max_frag; 6900 if (pkt_len > max_frag) { 6901 /* 6902 * It needs fragging on its way out. We haven't 6903 * verified the header checksum yet. Since we 6904 * are going to put a surely good checksum in the 6905 * outgoing header, we have to make sure that it 6906 * was good coming in. 6907 */ 6908 if (ip_csum_hdr(ipha)) { 6909 BUMP_MIB(&ip_mib, ipInCksumErrs); 6910 goto drop_pkt; 6911 } 6912 6913 /* Initiate write side IPPF processing */ 6914 if (IPP_ENABLED(IPP_FWD_OUT)) { 6915 ip_process(IPP_FWD_OUT, &mp, ill_index); 6916 if (mp == NULL) { 6917 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6918 "dropped/deferred during ip policy "\ 6919 "processing\n")); 6920 return; 6921 } 6922 } 6923 if ((first_mp = allocb(sizeof (ipsec_info_t), 6924 BPRI_HI)) == NULL) { 6925 goto drop_pkt; 6926 } 6927 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6928 mp = first_mp; 6929 6930 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6931 return; 6932 } 6933 6934 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6935 6936 ASSERT(ire->ire_ipif != NULL); 6937 6938 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6939 if (mp == NULL) { 6940 BUMP_MIB(&ip_mib, ipInDiscards); 6941 return; 6942 } 6943 6944 /* Now send the packet to the tunnel interface */ 6945 q = ire->ire_stq; 6946 UPDATE_IB_PKT_COUNT(ire); 6947 ire->ire_last_used_time = lbolt; 6948 BUMP_MIB(&ip_mib, ipForwDatagrams); 6949 putnext(q, mp); 6950 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6951 return; 6952 6953 drop_pkt:; 6954 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6955 freemsg(mp); 6956 #undef rptr 6957 } 6958 6959 /* 6960 * Fills the ipsec_out_t data structure with appropriate fields and 6961 * prepends it to mp which contains the IP hdr + data that was meant 6962 * to be forwarded. Please note that ipsec_out_info data structure 6963 * is used here to communicate the outgoing ill path at ip_wput() 6964 * for the ICMP error packet. This has nothing to do with ipsec IP 6965 * security. ipsec_out_t is really used to pass the info to the module 6966 * IP where this information cannot be extracted from conn. 6967 * This functions is called by ip_mrtun_forward(). 6968 */ 6969 void 6970 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6971 { 6972 ipsec_out_t *io; 6973 6974 ASSERT(xmit_ill != NULL); 6975 first_mp->b_datap->db_type = M_CTL; 6976 first_mp->b_wptr += sizeof (ipsec_info_t); 6977 /* 6978 * This is to pass info to ip_wput in absence of conn. 6979 * ipsec_out_secure will be B_FALSE because of this. 6980 * Thus ipsec_out_secure being B_FALSE indicates that 6981 * this is not IPSEC security related information. 6982 */ 6983 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6984 io = (ipsec_out_t *)first_mp->b_rptr; 6985 io->ipsec_out_type = IPSEC_OUT; 6986 io->ipsec_out_len = sizeof (ipsec_out_t); 6987 first_mp->b_cont = mp; 6988 io->ipsec_out_ill_index = 6989 xmit_ill->ill_phyint->phyint_ifindex; 6990 io->ipsec_out_xmit_if = B_TRUE; 6991 } 6992 6993 /* 6994 * Return the network mask 6995 * associated with the specified address. 6996 */ 6997 ipaddr_t 6998 ip_net_mask(ipaddr_t addr) 6999 { 7000 uchar_t *up = (uchar_t *)&addr; 7001 ipaddr_t mask = 0; 7002 uchar_t *maskp = (uchar_t *)&mask; 7003 7004 #if defined(__i386) || defined(__amd64) 7005 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7006 #endif 7007 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7008 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7009 #endif 7010 if (CLASSD(addr)) { 7011 maskp[0] = 0xF0; 7012 return (mask); 7013 } 7014 if (addr == 0) 7015 return (0); 7016 maskp[0] = 0xFF; 7017 if ((up[0] & 0x80) == 0) 7018 return (mask); 7019 7020 maskp[1] = 0xFF; 7021 if ((up[0] & 0xC0) == 0x80) 7022 return (mask); 7023 7024 maskp[2] = 0xFF; 7025 if ((up[0] & 0xE0) == 0xC0) 7026 return (mask); 7027 7028 /* Must be experimental or multicast, indicate as much */ 7029 return ((ipaddr_t)0); 7030 } 7031 7032 /* 7033 * Select an ill for the packet by considering load spreading across 7034 * a different ill in the group if dst_ill is part of some group. 7035 */ 7036 static ill_t * 7037 ip_newroute_get_dst_ill(ill_t *dst_ill) 7038 { 7039 ill_t *ill; 7040 7041 /* 7042 * We schedule irrespective of whether the source address is 7043 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7044 */ 7045 ill = illgrp_scheduler(dst_ill); 7046 if (ill == NULL) 7047 return (NULL); 7048 7049 /* 7050 * For groups with names ip_sioctl_groupname ensures that all 7051 * ills are of same type. For groups without names, ifgrp_insert 7052 * ensures this. 7053 */ 7054 ASSERT(dst_ill->ill_type == ill->ill_type); 7055 7056 return (ill); 7057 } 7058 7059 /* 7060 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7061 */ 7062 ill_t * 7063 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7064 { 7065 ill_t *ret_ill; 7066 7067 ASSERT(ifindex != 0); 7068 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7069 if (ret_ill == NULL || 7070 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7071 if (isv6) { 7072 if (ill != NULL) { 7073 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7074 } else { 7075 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7076 } 7077 ip1dbg(("ip_grab_attach_ill (IPv6): " 7078 "bad ifindex %d.\n", ifindex)); 7079 } else { 7080 BUMP_MIB(&ip_mib, ipOutDiscards); 7081 ip1dbg(("ip_grab_attach_ill (IPv4): " 7082 "bad ifindex %d.\n", ifindex)); 7083 } 7084 if (ret_ill != NULL) 7085 ill_refrele(ret_ill); 7086 freemsg(first_mp); 7087 return (NULL); 7088 } 7089 7090 return (ret_ill); 7091 } 7092 7093 /* 7094 * IPv4 - 7095 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7096 * out a packet to a destination address for which we do not have specific 7097 * (or sufficient) routing information. 7098 * 7099 * NOTE : These are the scopes of some of the variables that point at IRE, 7100 * which needs to be followed while making any future modifications 7101 * to avoid memory leaks. 7102 * 7103 * - ire and sire are the entries looked up initially by 7104 * ire_ftable_lookup. 7105 * - ipif_ire is used to hold the interface ire associated with 7106 * the new cache ire. But it's scope is limited, so we always REFRELE 7107 * it before branching out to error paths. 7108 * - save_ire is initialized before ire_create, so that ire returned 7109 * by ire_create will not over-write the ire. We REFRELE save_ire 7110 * before breaking out of the switch. 7111 * 7112 * Thus on failures, we have to REFRELE only ire and sire, if they 7113 * are not NULL. 7114 */ 7115 void 7116 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7117 { 7118 areq_t *areq; 7119 ipaddr_t gw = 0; 7120 ire_t *ire = NULL; 7121 mblk_t *res_mp; 7122 ipaddr_t *addrp; 7123 ipaddr_t nexthop_addr; 7124 ipif_t *src_ipif = NULL; 7125 ill_t *dst_ill = NULL; 7126 ipha_t *ipha; 7127 ire_t *sire = NULL; 7128 mblk_t *first_mp; 7129 ire_t *save_ire; 7130 mblk_t *dlureq_mp; 7131 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7132 ushort_t ire_marks = 0; 7133 boolean_t mctl_present; 7134 ipsec_out_t *io; 7135 mblk_t *saved_mp; 7136 ire_t *first_sire = NULL; 7137 mblk_t *copy_mp = NULL; 7138 mblk_t *xmit_mp = NULL; 7139 ipaddr_t save_dst; 7140 uint32_t multirt_flags = 7141 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7142 boolean_t multirt_is_resolvable; 7143 boolean_t multirt_resolve_next; 7144 boolean_t do_attach_ill = B_FALSE; 7145 boolean_t ip_nexthop = B_FALSE; 7146 zoneid_t zoneid; 7147 tsol_ire_gw_secattr_t *attrp = NULL; 7148 tsol_gcgrp_t *gcgrp = NULL; 7149 tsol_gcgrp_addr_t ga; 7150 7151 if (ip_debug > 2) { 7152 /* ip1dbg */ 7153 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7154 } 7155 7156 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7157 if (mctl_present) { 7158 io = (ipsec_out_t *)first_mp->b_rptr; 7159 zoneid = io->ipsec_out_zoneid; 7160 ASSERT(zoneid != ALL_ZONES); 7161 } else if (connp != NULL) { 7162 zoneid = connp->conn_zoneid; 7163 } else { 7164 zoneid = GLOBAL_ZONEID; 7165 } 7166 7167 ipha = (ipha_t *)mp->b_rptr; 7168 7169 /* All multicast lookups come through ip_newroute_ipif() */ 7170 if (CLASSD(dst)) { 7171 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7172 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7173 freemsg(first_mp); 7174 return; 7175 } 7176 7177 if (ip_loopback_src_or_dst(ipha, NULL)) { 7178 goto icmp_err_ret; 7179 } 7180 7181 if (mctl_present && io->ipsec_out_attach_if) { 7182 /* ip_grab_attach_ill returns a held ill */ 7183 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7184 io->ipsec_out_ill_index, B_FALSE); 7185 7186 /* Failure case frees things for us. */ 7187 if (attach_ill == NULL) 7188 return; 7189 7190 /* 7191 * Check if we need an ire that will not be 7192 * looked up by anybody else i.e. HIDDEN. 7193 */ 7194 if (ill_is_probeonly(attach_ill)) 7195 ire_marks = IRE_MARK_HIDDEN; 7196 } 7197 if (mctl_present && io->ipsec_out_ip_nexthop) { 7198 ip_nexthop = B_TRUE; 7199 nexthop_addr = io->ipsec_out_nexthop_addr; 7200 } 7201 /* 7202 * If this IRE is created for forwarding or it is not for 7203 * traffic for congestion controlled protocols, mark it as temporary. 7204 */ 7205 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7206 ire_marks |= IRE_MARK_TEMPORARY; 7207 7208 /* 7209 * Get what we can from ire_ftable_lookup which will follow an IRE 7210 * chain until it gets the most specific information available. 7211 * For example, we know that there is no IRE_CACHE for this dest, 7212 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7213 * ire_ftable_lookup will look up the gateway, etc. 7214 * Check if in_ill != NULL. If it is true, the packet must be 7215 * from an incoming interface where RTA_SRCIFP is set. 7216 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7217 * to the destination, of equal netmask length in the forward table, 7218 * will be recursively explored. If no information is available 7219 * for the final gateway of that route, we force the returned ire 7220 * to be equal to sire using MATCH_IRE_PARENT. 7221 * At least, in this case we have a starting point (in the buckets) 7222 * to look for other routes to the destination in the forward table. 7223 * This is actually used only for multirouting, where a list 7224 * of routes has to be processed in sequence. 7225 */ 7226 if (in_ill != NULL) { 7227 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7228 in_ill, MATCH_IRE_TYPE); 7229 } else if (ip_nexthop) { 7230 /* 7231 * The first time we come here, we look for an IRE_INTERFACE 7232 * entry for the specified nexthop, set the dst to be the 7233 * nexthop address and create an IRE_CACHE entry for the 7234 * nexthop. The next time around, we are able to find an 7235 * IRE_CACHE entry for the nexthop, set the gateway to be the 7236 * nexthop address and create an IRE_CACHE entry for the 7237 * destination address via the specified nexthop. 7238 */ 7239 ire = ire_cache_lookup(nexthop_addr, zoneid, 7240 MBLK_GETLABEL(mp)); 7241 if (ire != NULL) { 7242 gw = nexthop_addr; 7243 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7244 } else { 7245 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7246 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7247 MBLK_GETLABEL(mp), 7248 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7249 if (ire != NULL) { 7250 dst = nexthop_addr; 7251 } 7252 } 7253 } else if (attach_ill == NULL) { 7254 ire = ire_ftable_lookup(dst, 0, 0, 0, 7255 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7256 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7257 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7258 MATCH_IRE_SECATTR); 7259 } else { 7260 /* 7261 * attach_ill is set only for communicating with 7262 * on-link hosts. So, don't look for DEFAULT. 7263 */ 7264 ipif_t *attach_ipif; 7265 7266 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7267 if (attach_ipif == NULL) { 7268 ill_refrele(attach_ill); 7269 goto icmp_err_ret; 7270 } 7271 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7272 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7273 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7274 MATCH_IRE_SECATTR); 7275 ipif_refrele(attach_ipif); 7276 } 7277 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7278 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7279 7280 /* 7281 * This loop is run only once in most cases. 7282 * We loop to resolve further routes only when the destination 7283 * can be reached through multiple RTF_MULTIRT-flagged ires. 7284 */ 7285 do { 7286 /* Clear the previous iteration's values */ 7287 if (src_ipif != NULL) { 7288 ipif_refrele(src_ipif); 7289 src_ipif = NULL; 7290 } 7291 if (dst_ill != NULL) { 7292 ill_refrele(dst_ill); 7293 dst_ill = NULL; 7294 } 7295 7296 multirt_resolve_next = B_FALSE; 7297 /* 7298 * We check if packets have to be multirouted. 7299 * In this case, given the current <ire, sire> couple, 7300 * we look for the next suitable <ire, sire>. 7301 * This check is done in ire_multirt_lookup(), 7302 * which applies various criteria to find the next route 7303 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7304 * unchanged if it detects it has not been tried yet. 7305 */ 7306 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7307 ip3dbg(("ip_newroute: starting next_resolution " 7308 "with first_mp %p, tag %d\n", 7309 (void *)first_mp, 7310 MULTIRT_DEBUG_TAGGED(first_mp))); 7311 7312 ASSERT(sire != NULL); 7313 multirt_is_resolvable = 7314 ire_multirt_lookup(&ire, &sire, multirt_flags, 7315 MBLK_GETLABEL(mp)); 7316 7317 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7318 "ire %p, sire %p\n", 7319 multirt_is_resolvable, 7320 (void *)ire, (void *)sire)); 7321 7322 if (!multirt_is_resolvable) { 7323 /* 7324 * No more multirt route to resolve; give up 7325 * (all routes resolved or no more 7326 * resolvable routes). 7327 */ 7328 if (ire != NULL) { 7329 ire_refrele(ire); 7330 ire = NULL; 7331 } 7332 } else { 7333 ASSERT(sire != NULL); 7334 ASSERT(ire != NULL); 7335 /* 7336 * We simply use first_sire as a flag that 7337 * indicates if a resolvable multirt route 7338 * has already been found. 7339 * If it is not the case, we may have to send 7340 * an ICMP error to report that the 7341 * destination is unreachable. 7342 * We do not IRE_REFHOLD first_sire. 7343 */ 7344 if (first_sire == NULL) { 7345 first_sire = sire; 7346 } 7347 } 7348 } 7349 if (ire == NULL) { 7350 if (ip_debug > 3) { 7351 /* ip2dbg */ 7352 pr_addr_dbg("ip_newroute: " 7353 "can't resolve %s\n", AF_INET, &dst); 7354 } 7355 ip3dbg(("ip_newroute: " 7356 "ire %p, sire %p, first_sire %p\n", 7357 (void *)ire, (void *)sire, (void *)first_sire)); 7358 7359 if (sire != NULL) { 7360 ire_refrele(sire); 7361 sire = NULL; 7362 } 7363 7364 if (first_sire != NULL) { 7365 /* 7366 * At least one multirt route has been found 7367 * in the same call to ip_newroute(); 7368 * there is no need to report an ICMP error. 7369 * first_sire was not IRE_REFHOLDed. 7370 */ 7371 MULTIRT_DEBUG_UNTAG(first_mp); 7372 freemsg(first_mp); 7373 return; 7374 } 7375 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7376 RTA_DST); 7377 if (attach_ill != NULL) 7378 ill_refrele(attach_ill); 7379 goto icmp_err_ret; 7380 } 7381 7382 /* 7383 * When RTA_SRCIFP is used to add a route, then an interface 7384 * route is added in the source interface's routing table. 7385 * If the outgoing interface of this route is of type 7386 * IRE_IF_RESOLVER, then upon creation of the ire, 7387 * ire_dlureq_mp is set to NULL. Later, when this route is 7388 * first used for forwarding packet, ip_newroute() is called 7389 * to resolve the hardware address of the outgoing ipif. 7390 * We do not come here for IRE_IF_NORESOLVER entries in the 7391 * source interface based table. We only come here if the 7392 * outgoing interface is a resolver interface and we don't 7393 * have the ire_dlureq_mp information yet. 7394 * If in_ill is not null that means it is called from 7395 * ip_rput. 7396 */ 7397 7398 ASSERT(ire->ire_in_ill == NULL || 7399 (ire->ire_type == IRE_IF_RESOLVER && 7400 ire->ire_dlureq_mp == NULL)); 7401 7402 /* 7403 * Verify that the returned IRE does not have either 7404 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7405 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7406 */ 7407 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7408 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7409 if (attach_ill != NULL) 7410 ill_refrele(attach_ill); 7411 goto icmp_err_ret; 7412 } 7413 /* 7414 * Increment the ire_ob_pkt_count field for ire if it is an 7415 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7416 * increment the same for the parent IRE, sire, if it is some 7417 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7418 * and HOST_REDIRECT). 7419 */ 7420 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7421 UPDATE_OB_PKT_COUNT(ire); 7422 ire->ire_last_used_time = lbolt; 7423 } 7424 7425 if (sire != NULL) { 7426 gw = sire->ire_gateway_addr; 7427 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7428 IRE_INTERFACE)) == 0); 7429 UPDATE_OB_PKT_COUNT(sire); 7430 sire->ire_last_used_time = lbolt; 7431 } 7432 /* 7433 * We have a route to reach the destination. 7434 * 7435 * 1) If the interface is part of ill group, try to get a new 7436 * ill taking load spreading into account. 7437 * 7438 * 2) After selecting the ill, get a source address that 7439 * might create good inbound load spreading. 7440 * ipif_select_source does this for us. 7441 * 7442 * If the application specified the ill (ifindex), we still 7443 * load spread. Only if the packets needs to go out 7444 * specifically on a given ill e.g. binding to 7445 * IPIF_NOFAILOVER address, then we don't try to use a 7446 * different ill for load spreading. 7447 */ 7448 if (attach_ill == NULL) { 7449 /* 7450 * Don't perform outbound load spreading in the 7451 * case of an RTF_MULTIRT route, as we actually 7452 * typically want to replicate outgoing packets 7453 * through particular interfaces. 7454 */ 7455 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7456 dst_ill = ire->ire_ipif->ipif_ill; 7457 /* for uniformity */ 7458 ill_refhold(dst_ill); 7459 } else { 7460 /* 7461 * If we are here trying to create an IRE_CACHE 7462 * for an offlink destination and have the 7463 * IRE_CACHE for the next hop and the latter is 7464 * using virtual IP source address selection i.e 7465 * it's ire->ire_ipif is pointing to a virtual 7466 * network interface (vni) then 7467 * ip_newroute_get_dst_ll() will return the vni 7468 * interface as the dst_ill. Since the vni is 7469 * virtual i.e not associated with any physical 7470 * interface, it cannot be the dst_ill, hence 7471 * in such a case call ip_newroute_get_dst_ll() 7472 * with the stq_ill instead of the ire_ipif ILL. 7473 * The function returns a refheld ill. 7474 */ 7475 if ((ire->ire_type == IRE_CACHE) && 7476 IS_VNI(ire->ire_ipif->ipif_ill)) 7477 dst_ill = ip_newroute_get_dst_ill( 7478 ire->ire_stq->q_ptr); 7479 else 7480 dst_ill = ip_newroute_get_dst_ill( 7481 ire->ire_ipif->ipif_ill); 7482 } 7483 if (dst_ill == NULL) { 7484 if (ip_debug > 2) { 7485 pr_addr_dbg("ip_newroute: " 7486 "no dst ill for dst" 7487 " %s\n", AF_INET, &dst); 7488 } 7489 goto icmp_err_ret; 7490 } 7491 } else { 7492 dst_ill = ire->ire_ipif->ipif_ill; 7493 /* for uniformity */ 7494 ill_refhold(dst_ill); 7495 /* 7496 * We should have found a route matching ill as we 7497 * called ire_ftable_lookup with MATCH_IRE_ILL. 7498 * Rather than asserting, when there is a mismatch, 7499 * we just drop the packet. 7500 */ 7501 if (dst_ill != attach_ill) { 7502 ip0dbg(("ip_newroute: Packet dropped as " 7503 "IPIF_NOFAILOVER ill is %s, " 7504 "ire->ire_ipif->ipif_ill is %s\n", 7505 attach_ill->ill_name, 7506 dst_ill->ill_name)); 7507 ill_refrele(attach_ill); 7508 goto icmp_err_ret; 7509 } 7510 } 7511 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7512 if (attach_ill != NULL) { 7513 ill_refrele(attach_ill); 7514 attach_ill = NULL; 7515 do_attach_ill = B_TRUE; 7516 } 7517 ASSERT(dst_ill != NULL); 7518 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7519 7520 /* 7521 * Pick the best source address from dst_ill. 7522 * 7523 * 1) If it is part of a multipathing group, we would 7524 * like to spread the inbound packets across different 7525 * interfaces. ipif_select_source picks a random source 7526 * across the different ills in the group. 7527 * 7528 * 2) If it is not part of a multipathing group, we try 7529 * to pick the source address from the destination 7530 * route. Clustering assumes that when we have multiple 7531 * prefixes hosted on an interface, the prefix of the 7532 * source address matches the prefix of the destination 7533 * route. We do this only if the address is not 7534 * DEPRECATED. 7535 * 7536 * 3) If the conn is in a different zone than the ire, we 7537 * need to pick a source address from the right zone. 7538 * 7539 * NOTE : If we hit case (1) above, the prefix of the source 7540 * address picked may not match the prefix of the 7541 * destination routes prefix as ipif_select_source 7542 * does not look at "dst" while picking a source 7543 * address. 7544 * If we want the same behavior as (2), we will need 7545 * to change the behavior of ipif_select_source. 7546 */ 7547 ASSERT(src_ipif == NULL); 7548 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7549 /* 7550 * The RTF_SETSRC flag is set in the parent ire (sire). 7551 * Check that the ipif matching the requested source 7552 * address still exists. 7553 */ 7554 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7555 zoneid, NULL, NULL, NULL, NULL); 7556 } 7557 if (src_ipif == NULL) { 7558 ire_marks |= IRE_MARK_USESRC_CHECK; 7559 if ((dst_ill->ill_group != NULL) || 7560 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7561 (connp != NULL && ire->ire_zoneid != zoneid && 7562 ire->ire_zoneid != ALL_ZONES) || 7563 (dst_ill->ill_usesrc_ifindex != 0)) { 7564 /* 7565 * If the destination is reachable via a 7566 * given gateway, the selected source address 7567 * should be in the same subnet as the gateway. 7568 * Otherwise, the destination is not reachable. 7569 * 7570 * If there are no interfaces on the same subnet 7571 * as the destination, ipif_select_source gives 7572 * first non-deprecated interface which might be 7573 * on a different subnet than the gateway. 7574 * This is not desirable. Hence pass the dst_ire 7575 * source address to ipif_select_source. 7576 * It is sure that the destination is reachable 7577 * with the dst_ire source address subnet. 7578 * So passing dst_ire source address to 7579 * ipif_select_source will make sure that the 7580 * selected source will be on the same subnet 7581 * as dst_ire source address. 7582 */ 7583 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7584 src_ipif = ipif_select_source(dst_ill, saddr, 7585 zoneid); 7586 if (src_ipif == NULL) { 7587 if (ip_debug > 2) { 7588 pr_addr_dbg("ip_newroute: " 7589 "no src for dst %s ", 7590 AF_INET, &dst); 7591 printf("through interface %s\n", 7592 dst_ill->ill_name); 7593 } 7594 goto icmp_err_ret; 7595 } 7596 } else { 7597 src_ipif = ire->ire_ipif; 7598 ASSERT(src_ipif != NULL); 7599 /* hold src_ipif for uniformity */ 7600 ipif_refhold(src_ipif); 7601 } 7602 } 7603 7604 /* 7605 * Assign a source address while we have the conn. 7606 * We can't have ip_wput_ire pick a source address when the 7607 * packet returns from arp since we need to look at 7608 * conn_unspec_src and conn_zoneid, and we lose the conn when 7609 * going through arp. 7610 * 7611 * NOTE : ip_newroute_v6 does not have this piece of code as 7612 * it uses ip6i to store this information. 7613 */ 7614 if (ipha->ipha_src == INADDR_ANY && 7615 (connp == NULL || !connp->conn_unspec_src)) { 7616 ipha->ipha_src = src_ipif->ipif_src_addr; 7617 } 7618 if (ip_debug > 3) { 7619 /* ip2dbg */ 7620 pr_addr_dbg("ip_newroute: first hop %s\n", 7621 AF_INET, &gw); 7622 } 7623 ip2dbg(("\tire type %s (%d)\n", 7624 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7625 7626 /* 7627 * The TTL of multirouted packets is bounded by the 7628 * ip_multirt_ttl ndd variable. 7629 */ 7630 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7631 /* Force TTL of multirouted packets */ 7632 if ((ip_multirt_ttl > 0) && 7633 (ipha->ipha_ttl > ip_multirt_ttl)) { 7634 ip2dbg(("ip_newroute: forcing multirt TTL " 7635 "to %d (was %d), dst 0x%08x\n", 7636 ip_multirt_ttl, ipha->ipha_ttl, 7637 ntohl(sire->ire_addr))); 7638 ipha->ipha_ttl = ip_multirt_ttl; 7639 } 7640 } 7641 /* 7642 * At this point in ip_newroute(), ire is either the 7643 * IRE_CACHE of the next-hop gateway for an off-subnet 7644 * destination or an IRE_INTERFACE type that should be used 7645 * to resolve an on-subnet destination or an on-subnet 7646 * next-hop gateway. 7647 * 7648 * In the IRE_CACHE case, we have the following : 7649 * 7650 * 1) src_ipif - used for getting a source address. 7651 * 7652 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7653 * means packets using this IRE_CACHE will go out on 7654 * dst_ill. 7655 * 7656 * 3) The IRE sire will point to the prefix that is the 7657 * longest matching route for the destination. These 7658 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7659 * and IRE_HOST_REDIRECT. 7660 * 7661 * The newly created IRE_CACHE entry for the off-subnet 7662 * destination is tied to both the prefix route and the 7663 * interface route used to resolve the next-hop gateway 7664 * via the ire_phandle and ire_ihandle fields, 7665 * respectively. 7666 * 7667 * In the IRE_INTERFACE case, we have the following : 7668 * 7669 * 1) src_ipif - used for getting a source address. 7670 * 7671 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7672 * means packets using the IRE_CACHE that we will build 7673 * here will go out on dst_ill. 7674 * 7675 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7676 * to be created will only be tied to the IRE_INTERFACE 7677 * that was derived from the ire_ihandle field. 7678 * 7679 * If sire is non-NULL, it means the destination is 7680 * off-link and we will first create the IRE_CACHE for the 7681 * gateway. Next time through ip_newroute, we will create 7682 * the IRE_CACHE for the final destination as described 7683 * above. 7684 * 7685 * In both cases, after the current resolution has been 7686 * completed (or possibly initialised, in the IRE_INTERFACE 7687 * case), the loop may be re-entered to attempt the resolution 7688 * of another RTF_MULTIRT route. 7689 * 7690 * When an IRE_CACHE entry for the off-subnet destination is 7691 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7692 * for further processing in emission loops. 7693 */ 7694 save_ire = ire; 7695 switch (ire->ire_type) { 7696 case IRE_CACHE: { 7697 ire_t *ipif_ire; 7698 mblk_t *ire_fp_mp; 7699 7700 if (gw == 0) 7701 gw = ire->ire_gateway_addr; 7702 /* 7703 * We need 3 ire's to create a new cache ire for an 7704 * off-link destination from the cache ire of the 7705 * gateway. 7706 * 7707 * 1. The prefix ire 'sire' (Note that this does 7708 * not apply to the conn_nexthop_set case) 7709 * 2. The cache ire of the gateway 'ire' 7710 * 3. The interface ire 'ipif_ire' 7711 * 7712 * We have (1) and (2). We lookup (3) below. 7713 * 7714 * If there is no interface route to the gateway, 7715 * it is a race condition, where we found the cache 7716 * but the interface route has been deleted. 7717 */ 7718 if (ip_nexthop) { 7719 ipif_ire = ire_ihandle_lookup_onlink(ire); 7720 } else { 7721 ipif_ire = 7722 ire_ihandle_lookup_offlink(ire, sire); 7723 } 7724 if (ipif_ire == NULL) { 7725 ip1dbg(("ip_newroute: " 7726 "ire_ihandle_lookup_offlink failed\n")); 7727 goto icmp_err_ret; 7728 } 7729 /* 7730 * XXX We are using the same dlureq_mp 7731 * (DL_UNITDATA_REQ) though the save_ire is not 7732 * pointing at the same ill. 7733 * This is incorrect. We need to send it up to the 7734 * resolver to get the right dlureq_mp. For ethernets 7735 * this may be okay (ill_type == DL_ETHER). 7736 */ 7737 dlureq_mp = save_ire->ire_dlureq_mp; 7738 ire_fp_mp = NULL; 7739 /* 7740 * save_ire's ire_fp_mp can't change since it is 7741 * not an IRE_MIPRTUN or IRE_BROADCAST 7742 * LOCK_IRE_FP_MP does not do any useful work in 7743 * the case of IRE_CACHE. So we don't use it below. 7744 */ 7745 if (save_ire->ire_stq == dst_ill->ill_wq) 7746 ire_fp_mp = save_ire->ire_fp_mp; 7747 7748 /* 7749 * Check cached gateway IRE for any security 7750 * attributes; if found, associate the gateway 7751 * credentials group to the destination IRE. 7752 */ 7753 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 7754 mutex_enter(&attrp->igsa_lock); 7755 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 7756 GCGRP_REFHOLD(gcgrp); 7757 mutex_exit(&attrp->igsa_lock); 7758 } 7759 7760 ire = ire_create( 7761 (uchar_t *)&dst, /* dest address */ 7762 (uchar_t *)&ip_g_all_ones, /* mask */ 7763 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7764 (uchar_t *)&gw, /* gateway address */ 7765 NULL, 7766 &save_ire->ire_max_frag, 7767 ire_fp_mp, /* Fast Path header */ 7768 dst_ill->ill_rq, /* recv-from queue */ 7769 dst_ill->ill_wq, /* send-to queue */ 7770 IRE_CACHE, /* IRE type */ 7771 save_ire->ire_dlureq_mp, 7772 src_ipif, 7773 in_ill, /* incoming ill */ 7774 (sire != NULL) ? 7775 sire->ire_mask : 0, /* Parent mask */ 7776 (sire != NULL) ? 7777 sire->ire_phandle : 0, /* Parent handle */ 7778 ipif_ire->ire_ihandle, /* Interface handle */ 7779 (sire != NULL) ? (sire->ire_flags & 7780 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7781 (sire != NULL) ? 7782 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 7783 NULL, 7784 gcgrp); 7785 7786 if (ire == NULL) { 7787 if (gcgrp != NULL) { 7788 GCGRP_REFRELE(gcgrp); 7789 gcgrp = NULL; 7790 } 7791 ire_refrele(ipif_ire); 7792 ire_refrele(save_ire); 7793 break; 7794 } 7795 7796 /* reference now held by IRE */ 7797 gcgrp = NULL; 7798 7799 ire->ire_marks |= ire_marks; 7800 7801 /* 7802 * Prevent sire and ipif_ire from getting deleted. 7803 * The newly created ire is tied to both of them via 7804 * the phandle and ihandle respectively. 7805 */ 7806 if (sire != NULL) { 7807 IRB_REFHOLD(sire->ire_bucket); 7808 /* Has it been removed already ? */ 7809 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7810 IRB_REFRELE(sire->ire_bucket); 7811 ire_refrele(ipif_ire); 7812 ire_refrele(save_ire); 7813 break; 7814 } 7815 } 7816 7817 IRB_REFHOLD(ipif_ire->ire_bucket); 7818 /* Has it been removed already ? */ 7819 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7820 IRB_REFRELE(ipif_ire->ire_bucket); 7821 if (sire != NULL) 7822 IRB_REFRELE(sire->ire_bucket); 7823 ire_refrele(ipif_ire); 7824 ire_refrele(save_ire); 7825 break; 7826 } 7827 7828 xmit_mp = first_mp; 7829 /* 7830 * In the case of multirouting, a copy 7831 * of the packet is done before its sending. 7832 * The copy is used to attempt another 7833 * route resolution, in a next loop. 7834 */ 7835 if (ire->ire_flags & RTF_MULTIRT) { 7836 copy_mp = copymsg(first_mp); 7837 if (copy_mp != NULL) { 7838 xmit_mp = copy_mp; 7839 MULTIRT_DEBUG_TAG(first_mp); 7840 } 7841 } 7842 ire_add_then_send(q, ire, xmit_mp); 7843 ire_refrele(save_ire); 7844 7845 /* Assert that sire is not deleted yet. */ 7846 if (sire != NULL) { 7847 ASSERT(sire->ire_ptpn != NULL); 7848 IRB_REFRELE(sire->ire_bucket); 7849 } 7850 7851 /* Assert that ipif_ire is not deleted yet. */ 7852 ASSERT(ipif_ire->ire_ptpn != NULL); 7853 IRB_REFRELE(ipif_ire->ire_bucket); 7854 ire_refrele(ipif_ire); 7855 7856 /* 7857 * If copy_mp is not NULL, multirouting was 7858 * requested. We loop to initiate a next 7859 * route resolution attempt, starting from sire. 7860 */ 7861 if (copy_mp != NULL) { 7862 /* 7863 * Search for the next unresolved 7864 * multirt route. 7865 */ 7866 copy_mp = NULL; 7867 ipif_ire = NULL; 7868 ire = NULL; 7869 multirt_resolve_next = B_TRUE; 7870 continue; 7871 } 7872 if (sire != NULL) 7873 ire_refrele(sire); 7874 ipif_refrele(src_ipif); 7875 ill_refrele(dst_ill); 7876 return; 7877 } 7878 case IRE_IF_NORESOLVER: { 7879 /* 7880 * We have what we need to build an IRE_CACHE. 7881 * 7882 * Create a new dlureq_mp with the IP gateway address 7883 * in destination address in the DLPI hdr if the 7884 * physical length is exactly 4 bytes. 7885 */ 7886 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7887 uchar_t *addr; 7888 7889 if (gw) 7890 addr = (uchar_t *)&gw; 7891 else 7892 addr = (uchar_t *)&dst; 7893 7894 dlureq_mp = ill_dlur_gen(addr, 7895 dst_ill->ill_phys_addr_length, 7896 dst_ill->ill_sap, 7897 dst_ill->ill_sap_length); 7898 } else { 7899 dlureq_mp = ire->ire_dlureq_mp; 7900 } 7901 7902 if (dlureq_mp == NULL) { 7903 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7904 break; 7905 } 7906 7907 /* 7908 * TSol note: We are creating the ire cache for the 7909 * destination 'dst'. If 'dst' is offlink, going 7910 * through the first hop 'gw', the security attributes 7911 * of 'dst' must be set to point to the gateway 7912 * credentials of gateway 'gw'. If 'dst' is onlink, it 7913 * is possible that 'dst' is a potential gateway that is 7914 * referenced by some route that has some security 7915 * attributes. Thus in the former case, we need to do a 7916 * gcgrp_lookup of 'gw' while in the latter case we 7917 * need to do gcgrp_lookup of 'dst' itself. 7918 */ 7919 ga.ga_af = AF_INET; 7920 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 7921 &ga.ga_addr); 7922 gcgrp = gcgrp_lookup(&ga, B_FALSE); 7923 7924 ire = ire_create( 7925 (uchar_t *)&dst, /* dest address */ 7926 (uchar_t *)&ip_g_all_ones, /* mask */ 7927 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7928 (uchar_t *)&gw, /* gateway address */ 7929 NULL, 7930 &save_ire->ire_max_frag, 7931 NULL, /* Fast Path header */ 7932 dst_ill->ill_rq, /* recv-from queue */ 7933 dst_ill->ill_wq, /* send-to queue */ 7934 IRE_CACHE, 7935 dlureq_mp, 7936 src_ipif, 7937 in_ill, /* Incoming ill */ 7938 save_ire->ire_mask, /* Parent mask */ 7939 (sire != NULL) ? /* Parent handle */ 7940 sire->ire_phandle : 0, 7941 save_ire->ire_ihandle, /* Interface handle */ 7942 (sire != NULL) ? sire->ire_flags & 7943 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7944 &(save_ire->ire_uinfo), 7945 NULL, 7946 gcgrp); 7947 7948 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7949 freeb(dlureq_mp); 7950 7951 if (ire == NULL) { 7952 if (gcgrp != NULL) { 7953 GCGRP_REFRELE(gcgrp); 7954 gcgrp = NULL; 7955 } 7956 ire_refrele(save_ire); 7957 break; 7958 } 7959 7960 /* reference now held by IRE */ 7961 gcgrp = NULL; 7962 7963 ire->ire_marks |= ire_marks; 7964 7965 /* Prevent save_ire from getting deleted */ 7966 IRB_REFHOLD(save_ire->ire_bucket); 7967 /* Has it been removed already ? */ 7968 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7969 IRB_REFRELE(save_ire->ire_bucket); 7970 ire_refrele(save_ire); 7971 break; 7972 } 7973 7974 /* 7975 * In the case of multirouting, a copy 7976 * of the packet is made before it is sent. 7977 * The copy is used in the next 7978 * loop to attempt another resolution. 7979 */ 7980 xmit_mp = first_mp; 7981 if ((sire != NULL) && 7982 (sire->ire_flags & RTF_MULTIRT)) { 7983 copy_mp = copymsg(first_mp); 7984 if (copy_mp != NULL) { 7985 xmit_mp = copy_mp; 7986 MULTIRT_DEBUG_TAG(first_mp); 7987 } 7988 } 7989 ire_add_then_send(q, ire, xmit_mp); 7990 7991 /* Assert that it is not deleted yet. */ 7992 ASSERT(save_ire->ire_ptpn != NULL); 7993 IRB_REFRELE(save_ire->ire_bucket); 7994 ire_refrele(save_ire); 7995 7996 if (copy_mp != NULL) { 7997 /* 7998 * If we found a (no)resolver, we ignore any 7999 * trailing top priority IRE_CACHE in further 8000 * loops. This ensures that we do not omit any 8001 * (no)resolver. 8002 * This IRE_CACHE, if any, will be processed 8003 * by another thread entering ip_newroute(). 8004 * IRE_CACHE entries, if any, will be processed 8005 * by another thread entering ip_newroute(), 8006 * (upon resolver response, for instance). 8007 * This aims to force parallel multirt 8008 * resolutions as soon as a packet must be sent. 8009 * In the best case, after the tx of only one 8010 * packet, all reachable routes are resolved. 8011 * Otherwise, the resolution of all RTF_MULTIRT 8012 * routes would require several emissions. 8013 */ 8014 multirt_flags &= ~MULTIRT_CACHEGW; 8015 8016 /* 8017 * Search for the next unresolved multirt 8018 * route. 8019 */ 8020 copy_mp = NULL; 8021 save_ire = NULL; 8022 ire = NULL; 8023 multirt_resolve_next = B_TRUE; 8024 continue; 8025 } 8026 8027 /* 8028 * Don't need sire anymore 8029 */ 8030 if (sire != NULL) 8031 ire_refrele(sire); 8032 8033 ipif_refrele(src_ipif); 8034 ill_refrele(dst_ill); 8035 return; 8036 } 8037 case IRE_IF_RESOLVER: 8038 /* 8039 * We can't build an IRE_CACHE yet, but at least we 8040 * found a resolver that can help. 8041 */ 8042 res_mp = dst_ill->ill_resolver_mp; 8043 if (!OK_RESOLVER_MP(res_mp)) 8044 break; 8045 8046 /* 8047 * To be at this point in the code with a non-zero gw 8048 * means that dst is reachable through a gateway that 8049 * we have never resolved. By changing dst to the gw 8050 * addr we resolve the gateway first. 8051 * When ire_add_then_send() tries to put the IP dg 8052 * to dst, it will reenter ip_newroute() at which 8053 * time we will find the IRE_CACHE for the gw and 8054 * create another IRE_CACHE in case IRE_CACHE above. 8055 */ 8056 if (gw != INADDR_ANY) { 8057 /* 8058 * The source ipif that was determined above was 8059 * relative to the destination address, not the 8060 * gateway's. If src_ipif was not taken out of 8061 * the IRE_IF_RESOLVER entry, we'll need to call 8062 * ipif_select_source() again. 8063 */ 8064 if (src_ipif != ire->ire_ipif) { 8065 ipif_refrele(src_ipif); 8066 src_ipif = ipif_select_source(dst_ill, 8067 gw, zoneid); 8068 if (src_ipif == NULL) { 8069 if (ip_debug > 2) { 8070 pr_addr_dbg( 8071 "ip_newroute: no " 8072 "src for gw %s ", 8073 AF_INET, &gw); 8074 printf("through " 8075 "interface %s\n", 8076 dst_ill->ill_name); 8077 } 8078 goto icmp_err_ret; 8079 } 8080 } 8081 save_dst = dst; 8082 dst = gw; 8083 gw = INADDR_ANY; 8084 } 8085 8086 /* 8087 * We obtain a partial IRE_CACHE which we will pass 8088 * along with the resolver query. When the response 8089 * comes back it will be there ready for us to add. 8090 * The ire_max_frag is atomically set under the 8091 * irebucket lock in ire_add_v[46]. 8092 */ 8093 ire = ire_create_mp( 8094 (uchar_t *)&dst, /* dest address */ 8095 (uchar_t *)&ip_g_all_ones, /* mask */ 8096 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8097 (uchar_t *)&gw, /* gateway address */ 8098 NULL, /* no in_src_addr */ 8099 NULL, /* ire_max_frag */ 8100 NULL, /* Fast Path header */ 8101 dst_ill->ill_rq, /* recv-from queue */ 8102 dst_ill->ill_wq, /* send-to queue */ 8103 IRE_CACHE, 8104 res_mp, 8105 src_ipif, /* Interface ipif */ 8106 in_ill, /* Incoming ILL */ 8107 save_ire->ire_mask, /* Parent mask */ 8108 0, 8109 save_ire->ire_ihandle, /* Interface handle */ 8110 0, /* flags if any */ 8111 &(save_ire->ire_uinfo), 8112 NULL, 8113 NULL); 8114 8115 if (ire == NULL) { 8116 ire_refrele(save_ire); 8117 break; 8118 } 8119 8120 if ((sire != NULL) && 8121 (sire->ire_flags & RTF_MULTIRT)) { 8122 copy_mp = copymsg(first_mp); 8123 if (copy_mp != NULL) 8124 MULTIRT_DEBUG_TAG(copy_mp); 8125 } 8126 8127 ire->ire_marks |= ire_marks; 8128 8129 /* 8130 * Construct message chain for the resolver 8131 * of the form: 8132 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8133 * Packet could contain a IPSEC_OUT mp. 8134 * 8135 * NOTE : ire will be added later when the response 8136 * comes back from ARP. If the response does not 8137 * come back, ARP frees the packet. For this reason, 8138 * we can't REFHOLD the bucket of save_ire to prevent 8139 * deletions. We may not be able to REFRELE the bucket 8140 * if the response never comes back. Thus, before 8141 * adding the ire, ire_add_v4 will make sure that the 8142 * interface route does not get deleted. This is the 8143 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8144 * where we can always prevent deletions because of 8145 * the synchronous nature of adding IRES i.e 8146 * ire_add_then_send is called after creating the IRE. 8147 */ 8148 ASSERT(ire->ire_mp != NULL); 8149 ire->ire_mp->b_cont = first_mp; 8150 /* Have saved_mp handy, for cleanup if canput fails */ 8151 saved_mp = mp; 8152 mp = ire->ire_dlureq_mp; 8153 ASSERT(mp != NULL); 8154 ire->ire_dlureq_mp = NULL; 8155 linkb(mp, ire->ire_mp); 8156 8157 8158 /* 8159 * Fill in the source and dest addrs for the resolver. 8160 * NOTE: this depends on memory layouts imposed by 8161 * ill_init(). 8162 */ 8163 areq = (areq_t *)mp->b_rptr; 8164 addrp = (ipaddr_t *)((char *)areq + 8165 areq->areq_sender_addr_offset); 8166 if (do_attach_ill) { 8167 /* 8168 * This is bind to no failover case. 8169 * arp packet also must go out on attach_ill. 8170 */ 8171 ASSERT(ipha->ipha_src != NULL); 8172 *addrp = ipha->ipha_src; 8173 } else { 8174 *addrp = save_ire->ire_src_addr; 8175 } 8176 8177 ire_refrele(save_ire); 8178 addrp = (ipaddr_t *)((char *)areq + 8179 areq->areq_target_addr_offset); 8180 *addrp = dst; 8181 /* Up to the resolver. */ 8182 if (canputnext(dst_ill->ill_rq)) { 8183 putnext(dst_ill->ill_rq, mp); 8184 ire = NULL; 8185 if (copy_mp != NULL) { 8186 /* 8187 * If we found a resolver, we ignore 8188 * any trailing top priority IRE_CACHE 8189 * in the further loops. This ensures 8190 * that we do not omit any resolver. 8191 * IRE_CACHE entries, if any, will be 8192 * processed next time we enter 8193 * ip_newroute(). 8194 */ 8195 multirt_flags &= ~MULTIRT_CACHEGW; 8196 /* 8197 * Search for the next unresolved 8198 * multirt route. 8199 */ 8200 first_mp = copy_mp; 8201 copy_mp = NULL; 8202 /* Prepare the next resolution loop. */ 8203 mp = first_mp; 8204 EXTRACT_PKT_MP(mp, first_mp, 8205 mctl_present); 8206 if (mctl_present) 8207 io = (ipsec_out_t *) 8208 first_mp->b_rptr; 8209 ipha = (ipha_t *)mp->b_rptr; 8210 8211 ASSERT(sire != NULL); 8212 8213 dst = save_dst; 8214 multirt_resolve_next = B_TRUE; 8215 continue; 8216 } 8217 8218 if (sire != NULL) 8219 ire_refrele(sire); 8220 8221 /* 8222 * The response will come back in ip_wput 8223 * with db_type IRE_DB_TYPE. 8224 */ 8225 ipif_refrele(src_ipif); 8226 ill_refrele(dst_ill); 8227 return; 8228 } else { 8229 /* Prepare for cleanup */ 8230 ire->ire_dlureq_mp = mp; 8231 mp->b_cont = NULL; 8232 ire_delete(ire); 8233 mp = saved_mp; 8234 ire = NULL; 8235 if (copy_mp != NULL) { 8236 MULTIRT_DEBUG_UNTAG(copy_mp); 8237 freemsg(copy_mp); 8238 copy_mp = NULL; 8239 } 8240 break; 8241 } 8242 default: 8243 break; 8244 } 8245 } while (multirt_resolve_next); 8246 8247 ip1dbg(("ip_newroute: dropped\n")); 8248 /* Did this packet originate externally? */ 8249 if (mp->b_prev) { 8250 mp->b_next = NULL; 8251 mp->b_prev = NULL; 8252 BUMP_MIB(&ip_mib, ipInDiscards); 8253 } else { 8254 BUMP_MIB(&ip_mib, ipOutDiscards); 8255 } 8256 ASSERT(copy_mp == NULL); 8257 MULTIRT_DEBUG_UNTAG(first_mp); 8258 freemsg(first_mp); 8259 if (ire != NULL) 8260 ire_refrele(ire); 8261 if (sire != NULL) 8262 ire_refrele(sire); 8263 if (src_ipif != NULL) 8264 ipif_refrele(src_ipif); 8265 if (dst_ill != NULL) 8266 ill_refrele(dst_ill); 8267 return; 8268 8269 icmp_err_ret: 8270 ip1dbg(("ip_newroute: no route\n")); 8271 if (src_ipif != NULL) 8272 ipif_refrele(src_ipif); 8273 if (dst_ill != NULL) 8274 ill_refrele(dst_ill); 8275 if (sire != NULL) 8276 ire_refrele(sire); 8277 /* Did this packet originate externally? */ 8278 if (mp->b_prev) { 8279 mp->b_next = NULL; 8280 mp->b_prev = NULL; 8281 /* XXX ipInNoRoutes */ 8282 q = WR(q); 8283 } else { 8284 /* 8285 * Since ip_wput() isn't close to finished, we fill 8286 * in enough of the header for credible error reporting. 8287 */ 8288 if (ip_hdr_complete(ipha, zoneid)) { 8289 /* Failed */ 8290 MULTIRT_DEBUG_UNTAG(first_mp); 8291 freemsg(first_mp); 8292 if (ire != NULL) 8293 ire_refrele(ire); 8294 return; 8295 } 8296 } 8297 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8298 8299 /* 8300 * At this point we will have ire only if RTF_BLACKHOLE 8301 * or RTF_REJECT flags are set on the IRE. It will not 8302 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8303 */ 8304 if (ire != NULL) { 8305 if (ire->ire_flags & RTF_BLACKHOLE) { 8306 ire_refrele(ire); 8307 MULTIRT_DEBUG_UNTAG(first_mp); 8308 freemsg(first_mp); 8309 return; 8310 } 8311 ire_refrele(ire); 8312 } 8313 if (ip_source_routed(ipha)) { 8314 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8315 return; 8316 } 8317 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8318 } 8319 8320 /* 8321 * IPv4 - 8322 * ip_newroute_ipif is called by ip_wput_multicast and 8323 * ip_rput_forward_multicast whenever we need to send 8324 * out a packet to a destination address for which we do not have specific 8325 * routing information. It is used when the packet will be sent out 8326 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8327 * socket option is set or icmp error message wants to go out on a particular 8328 * interface for a unicast packet. 8329 * 8330 * In most cases, the destination address is resolved thanks to the ipif 8331 * intrinsic resolver. However, there are some cases where the call to 8332 * ip_newroute_ipif must take into account the potential presence of 8333 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8334 * that uses the interface. This is specified through flags, 8335 * which can be a combination of: 8336 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8337 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8338 * and flags. Additionally, the packet source address has to be set to 8339 * the specified address. The caller is thus expected to set this flag 8340 * if the packet has no specific source address yet. 8341 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8342 * flag, the resulting ire will inherit the flag. All unresolved routes 8343 * to the destination must be explored in the same call to 8344 * ip_newroute_ipif(). 8345 */ 8346 static void 8347 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8348 conn_t *connp, uint32_t flags) 8349 { 8350 areq_t *areq; 8351 ire_t *ire = NULL; 8352 mblk_t *res_mp; 8353 ipaddr_t *addrp; 8354 mblk_t *first_mp; 8355 ire_t *save_ire = NULL; 8356 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8357 ipif_t *src_ipif = NULL; 8358 ushort_t ire_marks = 0; 8359 ill_t *dst_ill = NULL; 8360 boolean_t mctl_present; 8361 ipsec_out_t *io; 8362 ipha_t *ipha; 8363 int ihandle = 0; 8364 mblk_t *saved_mp; 8365 ire_t *fire = NULL; 8366 mblk_t *copy_mp = NULL; 8367 boolean_t multirt_resolve_next; 8368 ipaddr_t ipha_dst; 8369 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8370 8371 /* 8372 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8373 * here for uniformity 8374 */ 8375 ipif_refhold(ipif); 8376 8377 /* 8378 * This loop is run only once in most cases. 8379 * We loop to resolve further routes only when the destination 8380 * can be reached through multiple RTF_MULTIRT-flagged ires. 8381 */ 8382 do { 8383 if (dst_ill != NULL) { 8384 ill_refrele(dst_ill); 8385 dst_ill = NULL; 8386 } 8387 if (src_ipif != NULL) { 8388 ipif_refrele(src_ipif); 8389 src_ipif = NULL; 8390 } 8391 multirt_resolve_next = B_FALSE; 8392 8393 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8394 ipif->ipif_ill->ill_name)); 8395 8396 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8397 if (mctl_present) 8398 io = (ipsec_out_t *)first_mp->b_rptr; 8399 8400 ipha = (ipha_t *)mp->b_rptr; 8401 8402 /* 8403 * Save the packet destination address, we may need it after 8404 * the packet has been consumed. 8405 */ 8406 ipha_dst = ipha->ipha_dst; 8407 8408 /* 8409 * If the interface is a pt-pt interface we look for an 8410 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8411 * local_address and the pt-pt destination address. Otherwise 8412 * we just match the local address. 8413 * NOTE: dst could be different than ipha->ipha_dst in case 8414 * of sending igmp multicast packets over a point-to-point 8415 * connection. 8416 * Thus we must be careful enough to check ipha_dst to be a 8417 * multicast address, otherwise it will take xmit_if path for 8418 * multicast packets resulting into kernel stack overflow by 8419 * repeated calls to ip_newroute_ipif from ire_send(). 8420 */ 8421 if (CLASSD(ipha_dst) && 8422 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8423 goto err_ret; 8424 } 8425 8426 /* 8427 * We check if an IRE_OFFSUBNET for the addr that goes through 8428 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8429 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8430 * propagate its flags to the new ire. 8431 */ 8432 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8433 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8434 ip2dbg(("ip_newroute_ipif: " 8435 "ipif_lookup_multi_ire(" 8436 "ipif %p, dst %08x) = fire %p\n", 8437 (void *)ipif, ntohl(dst), (void *)fire)); 8438 } 8439 8440 if (mctl_present && io->ipsec_out_attach_if) { 8441 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8442 io->ipsec_out_ill_index, B_FALSE); 8443 8444 /* Failure case frees things for us. */ 8445 if (attach_ill == NULL) { 8446 ipif_refrele(ipif); 8447 if (fire != NULL) 8448 ire_refrele(fire); 8449 return; 8450 } 8451 8452 /* 8453 * Check if we need an ire that will not be 8454 * looked up by anybody else i.e. HIDDEN. 8455 */ 8456 if (ill_is_probeonly(attach_ill)) { 8457 ire_marks = IRE_MARK_HIDDEN; 8458 } 8459 /* 8460 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8461 * case. 8462 */ 8463 dst_ill = ipif->ipif_ill; 8464 /* attach_ill has been refheld by ip_grab_attach_ill */ 8465 ASSERT(dst_ill == attach_ill); 8466 } else { 8467 /* 8468 * If this is set by IP_XMIT_IF, then make sure that 8469 * ipif is pointing to the same ill as the IP_XMIT_IF 8470 * specified ill. 8471 */ 8472 ASSERT((connp == NULL) || 8473 (connp->conn_xmit_if_ill == NULL) || 8474 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8475 /* 8476 * If the interface belongs to an interface group, 8477 * make sure the next possible interface in the group 8478 * is used. This encourages load spreading among 8479 * peers in an interface group. 8480 * Note: load spreading is disabled for RTF_MULTIRT 8481 * routes. 8482 */ 8483 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8484 (fire->ire_flags & RTF_MULTIRT)) { 8485 /* 8486 * Don't perform outbound load spreading 8487 * in the case of an RTF_MULTIRT issued route, 8488 * we actually typically want to replicate 8489 * outgoing packets through particular 8490 * interfaces. 8491 */ 8492 dst_ill = ipif->ipif_ill; 8493 ill_refhold(dst_ill); 8494 } else { 8495 dst_ill = ip_newroute_get_dst_ill( 8496 ipif->ipif_ill); 8497 } 8498 if (dst_ill == NULL) { 8499 if (ip_debug > 2) { 8500 pr_addr_dbg("ip_newroute_ipif: " 8501 "no dst ill for dst %s\n", 8502 AF_INET, &dst); 8503 } 8504 goto err_ret; 8505 } 8506 } 8507 8508 /* 8509 * Pick a source address preferring non-deprecated ones. 8510 * Unlike ip_newroute, we don't do any source address 8511 * selection here since for multicast it really does not help 8512 * in inbound load spreading as in the unicast case. 8513 */ 8514 if ((flags & RTF_SETSRC) && (fire != NULL) && 8515 (fire->ire_flags & RTF_SETSRC)) { 8516 /* 8517 * As requested by flags, an IRE_OFFSUBNET was looked up 8518 * on that interface. This ire has RTF_SETSRC flag, so 8519 * the source address of the packet must be changed. 8520 * Check that the ipif matching the requested source 8521 * address still exists. 8522 */ 8523 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8524 zoneid, NULL, NULL, NULL, NULL); 8525 } 8526 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8527 (connp != NULL && ipif->ipif_zoneid != zoneid && 8528 ipif->ipif_zoneid != ALL_ZONES)) && 8529 (src_ipif == NULL)) { 8530 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8531 if (src_ipif == NULL) { 8532 if (ip_debug > 2) { 8533 /* ip1dbg */ 8534 pr_addr_dbg("ip_newroute_ipif: " 8535 "no src for dst %s", 8536 AF_INET, &dst); 8537 } 8538 ip1dbg((" through interface %s\n", 8539 dst_ill->ill_name)); 8540 goto err_ret; 8541 } 8542 ipif_refrele(ipif); 8543 ipif = src_ipif; 8544 ipif_refhold(ipif); 8545 } 8546 if (src_ipif == NULL) { 8547 src_ipif = ipif; 8548 ipif_refhold(src_ipif); 8549 } 8550 8551 /* 8552 * Assign a source address while we have the conn. 8553 * We can't have ip_wput_ire pick a source address when the 8554 * packet returns from arp since conn_unspec_src might be set 8555 * and we loose the conn when going through arp. 8556 */ 8557 if (ipha->ipha_src == INADDR_ANY && 8558 (connp == NULL || !connp->conn_unspec_src)) { 8559 ipha->ipha_src = src_ipif->ipif_src_addr; 8560 } 8561 8562 /* 8563 * In case of IP_XMIT_IF, it is possible that the outgoing 8564 * interface does not have an interface ire. 8565 * Example: Thousands of mobileip PPP interfaces to mobile 8566 * nodes. We don't want to create interface ires because 8567 * packets from other mobile nodes must not take the route 8568 * via interface ires to the visiting mobile node without 8569 * going through the home agent, in absence of mobileip 8570 * route optimization. 8571 */ 8572 if (CLASSD(ipha_dst) && (connp == NULL || 8573 connp->conn_xmit_if_ill == NULL)) { 8574 /* ipif_to_ire returns an held ire */ 8575 ire = ipif_to_ire(ipif); 8576 if (ire == NULL) 8577 goto err_ret; 8578 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8579 goto err_ret; 8580 /* 8581 * ihandle is needed when the ire is added to 8582 * cache table. 8583 */ 8584 save_ire = ire; 8585 ihandle = save_ire->ire_ihandle; 8586 8587 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8588 "flags %04x\n", 8589 (void *)ire, (void *)ipif, flags)); 8590 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8591 (fire->ire_flags & RTF_MULTIRT)) { 8592 /* 8593 * As requested by flags, an IRE_OFFSUBNET was 8594 * looked up on that interface. This ire has 8595 * RTF_MULTIRT flag, so the resolution loop will 8596 * be re-entered to resolve additional routes on 8597 * other interfaces. For that purpose, a copy of 8598 * the packet is performed at this point. 8599 */ 8600 fire->ire_last_used_time = lbolt; 8601 copy_mp = copymsg(first_mp); 8602 if (copy_mp) { 8603 MULTIRT_DEBUG_TAG(copy_mp); 8604 } 8605 } 8606 if ((flags & RTF_SETSRC) && (fire != NULL) && 8607 (fire->ire_flags & RTF_SETSRC)) { 8608 /* 8609 * As requested by flags, an IRE_OFFSUBET was 8610 * looked up on that interface. This ire has 8611 * RTF_SETSRC flag, so the source address of the 8612 * packet must be changed. 8613 */ 8614 ipha->ipha_src = fire->ire_src_addr; 8615 } 8616 } else { 8617 ASSERT((connp == NULL) || 8618 (connp->conn_xmit_if_ill != NULL) || 8619 (connp->conn_dontroute)); 8620 /* 8621 * The only ways we can come here are: 8622 * 1) IP_XMIT_IF socket option is set 8623 * 2) ICMP error message generated from 8624 * ip_mrtun_forward() routine and it needs 8625 * to go through the specified ill. 8626 * 3) SO_DONTROUTE socket option is set 8627 * In all cases, the new ire will not be added 8628 * into cache table. 8629 */ 8630 ire_marks |= IRE_MARK_NOADD; 8631 } 8632 8633 switch (ipif->ipif_net_type) { 8634 case IRE_IF_NORESOLVER: { 8635 /* We have what we need to build an IRE_CACHE. */ 8636 mblk_t *dlureq_mp; 8637 8638 /* 8639 * Create a new dlureq_mp with the 8640 * IP gateway address as destination address in the 8641 * DLPI hdr if the physical length is exactly 4 bytes. 8642 */ 8643 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8644 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8645 dst_ill->ill_phys_addr_length, 8646 dst_ill->ill_sap, 8647 dst_ill->ill_sap_length); 8648 } else { 8649 /* use the value set in ip_ll_subnet_defaults */ 8650 dlureq_mp = ill_dlur_gen(NULL, 8651 dst_ill->ill_phys_addr_length, 8652 dst_ill->ill_sap, 8653 dst_ill->ill_sap_length); 8654 } 8655 8656 if (dlureq_mp == NULL) 8657 break; 8658 /* 8659 * The new ire inherits the IRE_OFFSUBNET flags 8660 * and source address, if this was requested. 8661 */ 8662 ire = ire_create( 8663 (uchar_t *)&dst, /* dest address */ 8664 (uchar_t *)&ip_g_all_ones, /* mask */ 8665 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8666 NULL, /* gateway address */ 8667 NULL, 8668 &ipif->ipif_mtu, 8669 NULL, /* Fast Path header */ 8670 dst_ill->ill_rq, /* recv-from queue */ 8671 dst_ill->ill_wq, /* send-to queue */ 8672 IRE_CACHE, 8673 dlureq_mp, 8674 src_ipif, 8675 NULL, 8676 (save_ire != NULL ? save_ire->ire_mask : 0), 8677 (fire != NULL) ? /* Parent handle */ 8678 fire->ire_phandle : 0, 8679 ihandle, /* Interface handle */ 8680 (fire != NULL) ? 8681 (fire->ire_flags & 8682 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8683 (save_ire == NULL ? &ire_uinfo_null : 8684 &save_ire->ire_uinfo), 8685 NULL, 8686 NULL); 8687 8688 freeb(dlureq_mp); 8689 8690 if (ire == NULL) { 8691 if (save_ire != NULL) 8692 ire_refrele(save_ire); 8693 break; 8694 } 8695 8696 ire->ire_marks |= ire_marks; 8697 8698 /* 8699 * If IRE_MARK_NOADD is set then we need to convert 8700 * the max_fragp to a useable value now. This is 8701 * normally done in ire_add_v[46]. 8702 */ 8703 if (ire->ire_marks & IRE_MARK_NOADD) { 8704 uint_t max_frag; 8705 8706 max_frag = *ire->ire_max_fragp; 8707 ire->ire_max_fragp = NULL; 8708 ire->ire_max_frag = max_frag; 8709 } 8710 8711 /* Prevent save_ire from getting deleted */ 8712 if (save_ire != NULL) { 8713 IRB_REFHOLD(save_ire->ire_bucket); 8714 /* Has it been removed already ? */ 8715 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8716 IRB_REFRELE(save_ire->ire_bucket); 8717 ire_refrele(save_ire); 8718 break; 8719 } 8720 } 8721 8722 ire_add_then_send(q, ire, first_mp); 8723 8724 /* Assert that save_ire is not deleted yet. */ 8725 if (save_ire != NULL) { 8726 ASSERT(save_ire->ire_ptpn != NULL); 8727 IRB_REFRELE(save_ire->ire_bucket); 8728 ire_refrele(save_ire); 8729 save_ire = NULL; 8730 } 8731 if (fire != NULL) { 8732 ire_refrele(fire); 8733 fire = NULL; 8734 } 8735 8736 /* 8737 * the resolution loop is re-entered if this 8738 * was requested through flags and if we 8739 * actually are in a multirouting case. 8740 */ 8741 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8742 boolean_t need_resolve = 8743 ire_multirt_need_resolve(ipha_dst, 8744 MBLK_GETLABEL(copy_mp)); 8745 if (!need_resolve) { 8746 MULTIRT_DEBUG_UNTAG(copy_mp); 8747 freemsg(copy_mp); 8748 copy_mp = NULL; 8749 } else { 8750 /* 8751 * ipif_lookup_group() calls 8752 * ire_lookup_multi() that uses 8753 * ire_ftable_lookup() to find 8754 * an IRE_INTERFACE for the group. 8755 * In the multirt case, 8756 * ire_lookup_multi() then invokes 8757 * ire_multirt_lookup() to find 8758 * the next resolvable ire. 8759 * As a result, we obtain an new 8760 * interface, derived from the 8761 * next ire. 8762 */ 8763 ipif_refrele(ipif); 8764 ipif = ipif_lookup_group(ipha_dst, 8765 zoneid); 8766 ip2dbg(("ip_newroute_ipif: " 8767 "multirt dst %08x, ipif %p\n", 8768 htonl(dst), (void *)ipif)); 8769 if (ipif != NULL) { 8770 mp = copy_mp; 8771 copy_mp = NULL; 8772 multirt_resolve_next = B_TRUE; 8773 continue; 8774 } else { 8775 freemsg(copy_mp); 8776 } 8777 } 8778 } 8779 if (ipif != NULL) 8780 ipif_refrele(ipif); 8781 ill_refrele(dst_ill); 8782 ipif_refrele(src_ipif); 8783 return; 8784 } 8785 case IRE_IF_RESOLVER: 8786 /* 8787 * We can't build an IRE_CACHE yet, but at least 8788 * we found a resolver that can help. 8789 */ 8790 res_mp = dst_ill->ill_resolver_mp; 8791 if (!OK_RESOLVER_MP(res_mp)) 8792 break; 8793 8794 /* 8795 * We obtain a partial IRE_CACHE which we will pass 8796 * along with the resolver query. When the response 8797 * comes back it will be there ready for us to add. 8798 * The new ire inherits the IRE_OFFSUBNET flags 8799 * and source address, if this was requested. 8800 * The ire_max_frag is atomically set under the 8801 * irebucket lock in ire_add_v[46]. Only in the 8802 * case of IRE_MARK_NOADD, we set it here itself. 8803 */ 8804 ire = ire_create_mp( 8805 (uchar_t *)&dst, /* dest address */ 8806 (uchar_t *)&ip_g_all_ones, /* mask */ 8807 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8808 NULL, /* gateway address */ 8809 NULL, /* no in_src_addr */ 8810 (ire_marks & IRE_MARK_NOADD) ? 8811 ipif->ipif_mtu : 0, /* max_frag */ 8812 NULL, /* Fast path header */ 8813 dst_ill->ill_rq, /* recv-from queue */ 8814 dst_ill->ill_wq, /* send-to queue */ 8815 IRE_CACHE, 8816 res_mp, 8817 src_ipif, 8818 NULL, 8819 (save_ire != NULL ? save_ire->ire_mask : 0), 8820 (fire != NULL) ? /* Parent handle */ 8821 fire->ire_phandle : 0, 8822 ihandle, /* Interface handle */ 8823 (fire != NULL) ? /* flags if any */ 8824 (fire->ire_flags & 8825 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8826 (save_ire == NULL ? &ire_uinfo_null : 8827 &save_ire->ire_uinfo), 8828 NULL, 8829 NULL); 8830 8831 if (save_ire != NULL) { 8832 ire_refrele(save_ire); 8833 save_ire = NULL; 8834 } 8835 if (ire == NULL) 8836 break; 8837 8838 ire->ire_marks |= ire_marks; 8839 /* 8840 * Construct message chain for the resolver of the 8841 * form: 8842 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8843 * 8844 * NOTE : ire will be added later when the response 8845 * comes back from ARP. If the response does not 8846 * come back, ARP frees the packet. For this reason, 8847 * we can't REFHOLD the bucket of save_ire to prevent 8848 * deletions. We may not be able to REFRELE the 8849 * bucket if the response never comes back. 8850 * Thus, before adding the ire, ire_add_v4 will make 8851 * sure that the interface route does not get deleted. 8852 * This is the only case unlike ip_newroute_v6, 8853 * ip_newroute_ipif_v6 where we can always prevent 8854 * deletions because ire_add_then_send is called after 8855 * creating the IRE. 8856 * If IRE_MARK_NOADD is set, then ire_add_then_send 8857 * does not add this IRE into the IRE CACHE. 8858 */ 8859 ASSERT(ire->ire_mp != NULL); 8860 ire->ire_mp->b_cont = first_mp; 8861 /* Have saved_mp handy, for cleanup if canput fails */ 8862 saved_mp = mp; 8863 mp = ire->ire_dlureq_mp; 8864 ASSERT(mp != NULL); 8865 ire->ire_dlureq_mp = NULL; 8866 linkb(mp, ire->ire_mp); 8867 8868 /* 8869 * Fill in the source and dest addrs for the resolver. 8870 * NOTE: this depends on memory layouts imposed by 8871 * ill_init(). 8872 */ 8873 areq = (areq_t *)mp->b_rptr; 8874 addrp = (ipaddr_t *)((char *)areq + 8875 areq->areq_sender_addr_offset); 8876 *addrp = ire->ire_src_addr; 8877 addrp = (ipaddr_t *)((char *)areq + 8878 areq->areq_target_addr_offset); 8879 *addrp = dst; 8880 /* Up to the resolver. */ 8881 if (canputnext(dst_ill->ill_rq)) { 8882 putnext(dst_ill->ill_rq, mp); 8883 /* 8884 * The response will come back in ip_wput 8885 * with db_type IRE_DB_TYPE. 8886 */ 8887 } else { 8888 ire->ire_dlureq_mp = mp; 8889 mp->b_cont = NULL; 8890 ire_delete(ire); 8891 saved_mp->b_next = NULL; 8892 saved_mp->b_prev = NULL; 8893 freemsg(first_mp); 8894 ip2dbg(("ip_newroute_ipif: dropped\n")); 8895 } 8896 8897 if (fire != NULL) { 8898 ire_refrele(fire); 8899 fire = NULL; 8900 } 8901 8902 8903 /* 8904 * The resolution loop is re-entered if this was 8905 * requested through flags and we actually are 8906 * in a multirouting case. 8907 */ 8908 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8909 boolean_t need_resolve = 8910 ire_multirt_need_resolve(ipha_dst, 8911 MBLK_GETLABEL(copy_mp)); 8912 if (!need_resolve) { 8913 MULTIRT_DEBUG_UNTAG(copy_mp); 8914 freemsg(copy_mp); 8915 copy_mp = NULL; 8916 } else { 8917 /* 8918 * ipif_lookup_group() calls 8919 * ire_lookup_multi() that uses 8920 * ire_ftable_lookup() to find 8921 * an IRE_INTERFACE for the group. 8922 * In the multirt case, 8923 * ire_lookup_multi() then invokes 8924 * ire_multirt_lookup() to find 8925 * the next resolvable ire. 8926 * As a result, we obtain an new 8927 * interface, derived from the 8928 * next ire. 8929 */ 8930 ipif_refrele(ipif); 8931 ipif = ipif_lookup_group(ipha_dst, 8932 zoneid); 8933 if (ipif != NULL) { 8934 mp = copy_mp; 8935 copy_mp = NULL; 8936 multirt_resolve_next = B_TRUE; 8937 continue; 8938 } else { 8939 freemsg(copy_mp); 8940 } 8941 } 8942 } 8943 if (ipif != NULL) 8944 ipif_refrele(ipif); 8945 ill_refrele(dst_ill); 8946 ipif_refrele(src_ipif); 8947 return; 8948 default: 8949 break; 8950 } 8951 } while (multirt_resolve_next); 8952 8953 err_ret: 8954 ip2dbg(("ip_newroute_ipif: dropped\n")); 8955 if (fire != NULL) 8956 ire_refrele(fire); 8957 ipif_refrele(ipif); 8958 /* Did this packet originate externally? */ 8959 if (dst_ill != NULL) 8960 ill_refrele(dst_ill); 8961 if (src_ipif != NULL) 8962 ipif_refrele(src_ipif); 8963 if (mp->b_prev || mp->b_next) { 8964 mp->b_next = NULL; 8965 mp->b_prev = NULL; 8966 } else { 8967 /* 8968 * Since ip_wput() isn't close to finished, we fill 8969 * in enough of the header for credible error reporting. 8970 */ 8971 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8972 /* Failed */ 8973 freemsg(first_mp); 8974 if (ire != NULL) 8975 ire_refrele(ire); 8976 return; 8977 } 8978 } 8979 /* 8980 * At this point we will have ire only if RTF_BLACKHOLE 8981 * or RTF_REJECT flags are set on the IRE. It will not 8982 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8983 */ 8984 if (ire != NULL) { 8985 if (ire->ire_flags & RTF_BLACKHOLE) { 8986 ire_refrele(ire); 8987 freemsg(first_mp); 8988 return; 8989 } 8990 ire_refrele(ire); 8991 } 8992 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8993 } 8994 8995 /* Name/Value Table Lookup Routine */ 8996 char * 8997 ip_nv_lookup(nv_t *nv, int value) 8998 { 8999 if (!nv) 9000 return (NULL); 9001 for (; nv->nv_name; nv++) { 9002 if (nv->nv_value == value) 9003 return (nv->nv_name); 9004 } 9005 return ("unknown"); 9006 } 9007 9008 /* 9009 * one day it can be patched to 1 from /etc/system for machines that have few 9010 * fast network interfaces feeding multiple cpus. 9011 */ 9012 int ill_stream_putlocks = 0; 9013 9014 /* 9015 * This is a module open, i.e. this is a control stream for access 9016 * to a DLPI device. We allocate an ill_t as the instance data in 9017 * this case. 9018 */ 9019 int 9020 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9021 { 9022 uint32_t mem_cnt; 9023 uint32_t cpu_cnt; 9024 uint32_t min_cnt; 9025 pgcnt_t mem_avail; 9026 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 9027 ill_t *ill; 9028 int err; 9029 9030 /* 9031 * Prevent unprivileged processes from pushing IP so that 9032 * they can't send raw IP. 9033 */ 9034 if (secpolicy_net_rawaccess(credp) != 0) 9035 return (EPERM); 9036 9037 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9038 q->q_ptr = WR(q)->q_ptr = ill; 9039 9040 /* 9041 * ill_init initializes the ill fields and then sends down 9042 * down a DL_INFO_REQ after calling qprocson. 9043 */ 9044 err = ill_init(q, ill); 9045 if (err != 0) { 9046 mi_free(ill); 9047 q->q_ptr = NULL; 9048 WR(q)->q_ptr = NULL; 9049 return (err); 9050 } 9051 9052 /* ill_init initializes the ipsq marking this thread as writer */ 9053 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9054 /* Wait for the DL_INFO_ACK */ 9055 mutex_enter(&ill->ill_lock); 9056 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9057 /* 9058 * Return value of 0 indicates a pending signal. 9059 */ 9060 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9061 if (err == 0) { 9062 mutex_exit(&ill->ill_lock); 9063 (void) ip_close(q, 0); 9064 return (EINTR); 9065 } 9066 } 9067 mutex_exit(&ill->ill_lock); 9068 9069 /* 9070 * ip_rput_other could have set an error in ill_error on 9071 * receipt of M_ERROR. 9072 */ 9073 9074 err = ill->ill_error; 9075 if (err != 0) { 9076 (void) ip_close(q, 0); 9077 return (err); 9078 } 9079 9080 /* 9081 * ip_ire_max_bucket_cnt is sized below based on the memory 9082 * size and the cpu speed of the machine. This is upper 9083 * bounded by the compile time value of ip_ire_max_bucket_cnt 9084 * and is lower bounded by the compile time value of 9085 * ip_ire_min_bucket_cnt. Similar logic applies to 9086 * ip6_ire_max_bucket_cnt. 9087 */ 9088 mem_avail = kmem_avail(); 9089 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9090 ip_cache_table_size / sizeof (ire_t); 9091 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9092 9093 min_cnt = MIN(cpu_cnt, mem_cnt); 9094 if (min_cnt < ip_ire_min_bucket_cnt) 9095 min_cnt = ip_ire_min_bucket_cnt; 9096 if (ip_ire_max_bucket_cnt > min_cnt) { 9097 ip_ire_max_bucket_cnt = min_cnt; 9098 } 9099 9100 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9101 ip6_cache_table_size / sizeof (ire_t); 9102 min_cnt = MIN(cpu_cnt, mem_cnt); 9103 if (min_cnt < ip6_ire_min_bucket_cnt) 9104 min_cnt = ip6_ire_min_bucket_cnt; 9105 if (ip6_ire_max_bucket_cnt > min_cnt) { 9106 ip6_ire_max_bucket_cnt = min_cnt; 9107 } 9108 9109 ill->ill_credp = credp; 9110 crhold(credp); 9111 9112 mutex_enter(&ip_mi_lock); 9113 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9114 mutex_exit(&ip_mi_lock); 9115 if (err) { 9116 (void) ip_close(q, 0); 9117 return (err); 9118 } 9119 return (0); 9120 } 9121 9122 /* IP open routine. */ 9123 int 9124 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9125 { 9126 conn_t *connp; 9127 major_t maj; 9128 9129 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9130 9131 /* Allow reopen. */ 9132 if (q->q_ptr != NULL) 9133 return (0); 9134 9135 if (sflag & MODOPEN) { 9136 /* This is a module open */ 9137 return (ip_modopen(q, devp, flag, sflag, credp)); 9138 } 9139 9140 /* 9141 * We are opening as a device. This is an IP client stream, and we 9142 * allocate an conn_t as the instance data. 9143 */ 9144 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9145 connp->conn_upq = q; 9146 q->q_ptr = WR(q)->q_ptr = connp; 9147 9148 if (flag & SO_SOCKSTR) 9149 connp->conn_flags |= IPCL_SOCKET; 9150 9151 /* Minor tells us which /dev entry was opened */ 9152 if (geteminor(*devp) == IPV6_MINOR) { 9153 connp->conn_flags |= IPCL_ISV6; 9154 connp->conn_af_isv6 = B_TRUE; 9155 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9156 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9157 } else { 9158 connp->conn_af_isv6 = B_FALSE; 9159 connp->conn_pkt_isv6 = B_FALSE; 9160 } 9161 9162 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9163 q->q_ptr = WR(q)->q_ptr = NULL; 9164 CONN_DEC_REF(connp); 9165 return (EBUSY); 9166 } 9167 9168 maj = getemajor(*devp); 9169 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9170 9171 /* 9172 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9173 */ 9174 connp->conn_cred = credp; 9175 crhold(connp->conn_cred); 9176 9177 /* 9178 * If the caller has the process-wide flag set, then default to MAC 9179 * exempt mode. This allows read-down to unlabeled hosts. 9180 */ 9181 if (getpflags(NET_MAC_AWARE, credp) != 0) 9182 connp->conn_mac_exempt = B_TRUE; 9183 9184 connp->conn_zoneid = getzoneid(); 9185 9186 /* 9187 * This should only happen for ndd, netstat, raw socket or other SCTP 9188 * administrative ops. In these cases, we just need a normal conn_t 9189 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9190 * an error will be returned. 9191 */ 9192 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9193 connp->conn_rq = q; 9194 connp->conn_wq = WR(q); 9195 } else { 9196 connp->conn_ulp = IPPROTO_SCTP; 9197 connp->conn_rq = connp->conn_wq = NULL; 9198 } 9199 /* Non-zero default values */ 9200 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9201 9202 /* 9203 * Make the conn globally visible to walkers 9204 */ 9205 mutex_enter(&connp->conn_lock); 9206 connp->conn_state_flags &= ~CONN_INCIPIENT; 9207 mutex_exit(&connp->conn_lock); 9208 ASSERT(connp->conn_ref == 1); 9209 9210 qprocson(q); 9211 9212 return (0); 9213 } 9214 9215 /* 9216 * Change q_qinfo based on the value of isv6. 9217 * This can not called on an ill queue. 9218 * Note that there is no race since either q_qinfo works for conn queues - it 9219 * is just an optimization to enter the best wput routine directly. 9220 */ 9221 void 9222 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9223 { 9224 ASSERT(q->q_flag & QREADR); 9225 ASSERT(WR(q)->q_next == NULL); 9226 ASSERT(q->q_ptr != NULL); 9227 9228 if (minor == IPV6_MINOR) { 9229 if (bump_mib) 9230 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9231 q->q_qinfo = &rinit_ipv6; 9232 WR(q)->q_qinfo = &winit_ipv6; 9233 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9234 } else { 9235 if (bump_mib) 9236 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9237 q->q_qinfo = &rinit; 9238 WR(q)->q_qinfo = &winit; 9239 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9240 } 9241 9242 } 9243 9244 /* 9245 * See if IPsec needs loading because of the options in mp. 9246 */ 9247 static boolean_t 9248 ipsec_opt_present(mblk_t *mp) 9249 { 9250 uint8_t *optcp, *next_optcp, *opt_endcp; 9251 struct opthdr *opt; 9252 struct T_opthdr *topt; 9253 int opthdr_len; 9254 t_uscalar_t optname, optlevel; 9255 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9256 ipsec_req_t *ipsr; 9257 9258 /* 9259 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9260 * return TRUE. 9261 */ 9262 9263 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9264 opt_endcp = optcp + tor->OPT_length; 9265 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9266 opthdr_len = sizeof (struct T_opthdr); 9267 } else { /* O_OPTMGMT_REQ */ 9268 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9269 opthdr_len = sizeof (struct opthdr); 9270 } 9271 for (; optcp < opt_endcp; optcp = next_optcp) { 9272 if (optcp + opthdr_len > opt_endcp) 9273 return (B_FALSE); /* Not enough option header. */ 9274 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9275 topt = (struct T_opthdr *)optcp; 9276 optlevel = topt->level; 9277 optname = topt->name; 9278 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9279 } else { 9280 opt = (struct opthdr *)optcp; 9281 optlevel = opt->level; 9282 optname = opt->name; 9283 next_optcp = optcp + opthdr_len + 9284 _TPI_ALIGN_OPT(opt->len); 9285 } 9286 if ((next_optcp < optcp) || /* wraparound pointer space */ 9287 ((next_optcp >= opt_endcp) && /* last option bad len */ 9288 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9289 return (B_FALSE); /* bad option buffer */ 9290 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9291 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9292 /* 9293 * Check to see if it's an all-bypass or all-zeroes 9294 * IPsec request. Don't bother loading IPsec if 9295 * the socket doesn't want to use it. (A good example 9296 * is a bypass request.) 9297 * 9298 * Basically, if any of the non-NEVER bits are set, 9299 * load IPsec. 9300 */ 9301 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9302 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9303 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9304 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9305 != 0) 9306 return (B_TRUE); 9307 } 9308 } 9309 return (B_FALSE); 9310 } 9311 9312 /* 9313 * If conn is is waiting for ipsec to finish loading, kick it. 9314 */ 9315 /* ARGSUSED */ 9316 static void 9317 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9318 { 9319 t_scalar_t optreq_prim; 9320 mblk_t *mp; 9321 cred_t *cr; 9322 int err = 0; 9323 9324 /* 9325 * This function is called, after ipsec loading is complete. 9326 * Since IP checks exclusively and atomically (i.e it prevents 9327 * ipsec load from completing until ip_optcom_req completes) 9328 * whether ipsec load is complete, there cannot be a race with IP 9329 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9330 */ 9331 mutex_enter(&connp->conn_lock); 9332 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9333 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9334 mp = connp->conn_ipsec_opt_mp; 9335 connp->conn_ipsec_opt_mp = NULL; 9336 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9337 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9338 mutex_exit(&connp->conn_lock); 9339 9340 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9341 9342 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9343 if (optreq_prim == T_OPTMGMT_REQ) { 9344 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9345 &ip_opt_obj); 9346 } else { 9347 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9348 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9349 &ip_opt_obj); 9350 } 9351 if (err != EINPROGRESS) 9352 CONN_OPER_PENDING_DONE(connp); 9353 return; 9354 } 9355 mutex_exit(&connp->conn_lock); 9356 } 9357 9358 /* 9359 * Called from the ipsec_loader thread, outside any perimeter, to tell 9360 * ip qenable any of the queues waiting for the ipsec loader to 9361 * complete. 9362 * 9363 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9364 * are done with this lock held, so it's guaranteed that none of the 9365 * links will change along the way. 9366 */ 9367 void 9368 ip_ipsec_load_complete() 9369 { 9370 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9371 } 9372 9373 /* 9374 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9375 * determines the grp on which it has to become exclusive, queues the mp 9376 * and sq draining restarts the optmgmt 9377 */ 9378 static boolean_t 9379 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9380 { 9381 conn_t *connp; 9382 9383 /* 9384 * Take IPsec requests and treat them special. 9385 */ 9386 if (ipsec_opt_present(mp)) { 9387 /* First check if IPsec is loaded. */ 9388 mutex_enter(&ipsec_loader_lock); 9389 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9390 mutex_exit(&ipsec_loader_lock); 9391 return (B_FALSE); 9392 } 9393 connp = Q_TO_CONN(q); 9394 mutex_enter(&connp->conn_lock); 9395 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9396 9397 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9398 connp->conn_ipsec_opt_mp = mp; 9399 mutex_exit(&connp->conn_lock); 9400 mutex_exit(&ipsec_loader_lock); 9401 9402 ipsec_loader_loadnow(); 9403 return (B_TRUE); 9404 } 9405 return (B_FALSE); 9406 } 9407 9408 /* 9409 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9410 * all of them are copied to the conn_t. If the req is "zero", the policy is 9411 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9412 * fields. 9413 * We keep only the latest setting of the policy and thus policy setting 9414 * is not incremental/cumulative. 9415 * 9416 * Requests to set policies with multiple alternative actions will 9417 * go through a different API. 9418 */ 9419 int 9420 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9421 { 9422 uint_t ah_req = 0; 9423 uint_t esp_req = 0; 9424 uint_t se_req = 0; 9425 ipsec_selkey_t sel; 9426 ipsec_act_t *actp = NULL; 9427 uint_t nact; 9428 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9429 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9430 ipsec_policy_root_t *pr; 9431 ipsec_policy_head_t *ph; 9432 int fam; 9433 boolean_t is_pol_reset; 9434 int error = 0; 9435 9436 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9437 9438 /* 9439 * The IP_SEC_OPT option does not allow variable length parameters, 9440 * hence a request cannot be NULL. 9441 */ 9442 if (req == NULL) 9443 return (EINVAL); 9444 9445 ah_req = req->ipsr_ah_req; 9446 esp_req = req->ipsr_esp_req; 9447 se_req = req->ipsr_self_encap_req; 9448 9449 /* 9450 * Are we dealing with a request to reset the policy (i.e. 9451 * zero requests). 9452 */ 9453 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9454 (esp_req & REQ_MASK) == 0 && 9455 (se_req & REQ_MASK) == 0); 9456 9457 if (!is_pol_reset) { 9458 /* 9459 * If we couldn't load IPsec, fail with "protocol 9460 * not supported". 9461 * IPsec may not have been loaded for a request with zero 9462 * policies, so we don't fail in this case. 9463 */ 9464 mutex_enter(&ipsec_loader_lock); 9465 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9466 mutex_exit(&ipsec_loader_lock); 9467 return (EPROTONOSUPPORT); 9468 } 9469 mutex_exit(&ipsec_loader_lock); 9470 9471 /* 9472 * Test for valid requests. Invalid algorithms 9473 * need to be tested by IPSEC code because new 9474 * algorithms can be added dynamically. 9475 */ 9476 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9477 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9478 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9479 return (EINVAL); 9480 } 9481 9482 /* 9483 * Only privileged users can issue these 9484 * requests. 9485 */ 9486 if (((ah_req & IPSEC_PREF_NEVER) || 9487 (esp_req & IPSEC_PREF_NEVER) || 9488 (se_req & IPSEC_PREF_NEVER)) && 9489 secpolicy_net_config(cr, B_FALSE) != 0) { 9490 return (EPERM); 9491 } 9492 9493 /* 9494 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9495 * are mutually exclusive. 9496 */ 9497 if (((ah_req & REQ_MASK) == REQ_MASK) || 9498 ((esp_req & REQ_MASK) == REQ_MASK) || 9499 ((se_req & REQ_MASK) == REQ_MASK)) { 9500 /* Both of them are set */ 9501 return (EINVAL); 9502 } 9503 } 9504 9505 mutex_enter(&connp->conn_lock); 9506 9507 /* 9508 * If we have already cached policies in ip_bind_connected*(), don't 9509 * let them change now. We cache policies for connections 9510 * whose src,dst [addr, port] is known. The exception to this is 9511 * tunnels. Tunnels are allowed to change policies after having 9512 * become fully bound. 9513 */ 9514 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9515 mutex_exit(&connp->conn_lock); 9516 return (EINVAL); 9517 } 9518 9519 /* 9520 * We have a zero policies, reset the connection policy if already 9521 * set. This will cause the connection to inherit the 9522 * global policy, if any. 9523 */ 9524 if (is_pol_reset) { 9525 if (connp->conn_policy != NULL) { 9526 IPPH_REFRELE(connp->conn_policy); 9527 connp->conn_policy = NULL; 9528 } 9529 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9530 connp->conn_in_enforce_policy = B_FALSE; 9531 connp->conn_out_enforce_policy = B_FALSE; 9532 mutex_exit(&connp->conn_lock); 9533 return (0); 9534 } 9535 9536 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9537 if (ph == NULL) 9538 goto enomem; 9539 9540 ipsec_actvec_from_req(req, &actp, &nact); 9541 if (actp == NULL) 9542 goto enomem; 9543 9544 /* 9545 * Always allocate IPv4 policy entries, since they can also 9546 * apply to ipv6 sockets being used in ipv4-compat mode. 9547 */ 9548 bzero(&sel, sizeof (sel)); 9549 sel.ipsl_valid = IPSL_IPV4; 9550 9551 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9552 if (pin4 == NULL) 9553 goto enomem; 9554 9555 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9556 if (pout4 == NULL) 9557 goto enomem; 9558 9559 if (connp->conn_pkt_isv6) { 9560 /* 9561 * We're looking at a v6 socket, also allocate the 9562 * v6-specific entries... 9563 */ 9564 sel.ipsl_valid = IPSL_IPV6; 9565 pin6 = ipsec_policy_create(&sel, actp, nact, 9566 IPSEC_PRIO_SOCKET); 9567 if (pin6 == NULL) 9568 goto enomem; 9569 9570 pout6 = ipsec_policy_create(&sel, actp, nact, 9571 IPSEC_PRIO_SOCKET); 9572 if (pout6 == NULL) 9573 goto enomem; 9574 9575 /* 9576 * .. and file them away in the right place. 9577 */ 9578 fam = IPSEC_AF_V6; 9579 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9580 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9581 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9582 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9583 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9584 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9585 } 9586 9587 ipsec_actvec_free(actp, nact); 9588 9589 /* 9590 * File the v4 policies. 9591 */ 9592 fam = IPSEC_AF_V4; 9593 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9594 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9595 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9596 9597 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9598 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9599 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9600 9601 /* 9602 * If the requests need security, set enforce_policy. 9603 * If the requests are IPSEC_PREF_NEVER, one should 9604 * still set conn_out_enforce_policy so that an ipsec_out 9605 * gets attached in ip_wput. This is needed so that 9606 * for connections that we don't cache policy in ip_bind, 9607 * if global policy matches in ip_wput_attach_policy, we 9608 * don't wrongly inherit global policy. Similarly, we need 9609 * to set conn_in_enforce_policy also so that we don't verify 9610 * policy wrongly. 9611 */ 9612 if ((ah_req & REQ_MASK) != 0 || 9613 (esp_req & REQ_MASK) != 0 || 9614 (se_req & REQ_MASK) != 0) { 9615 connp->conn_in_enforce_policy = B_TRUE; 9616 connp->conn_out_enforce_policy = B_TRUE; 9617 connp->conn_flags |= IPCL_CHECK_POLICY; 9618 } 9619 9620 /* 9621 * Tunnels are allowed to set policy after having been fully bound. 9622 * If that's the case, cache policy here. 9623 */ 9624 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9625 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9626 9627 mutex_exit(&connp->conn_lock); 9628 return (error); 9629 #undef REQ_MASK 9630 9631 /* 9632 * Common memory-allocation-failure exit path. 9633 */ 9634 enomem: 9635 mutex_exit(&connp->conn_lock); 9636 if (actp != NULL) 9637 ipsec_actvec_free(actp, nact); 9638 if (pin4 != NULL) 9639 IPPOL_REFRELE(pin4); 9640 if (pout4 != NULL) 9641 IPPOL_REFRELE(pout4); 9642 if (pin6 != NULL) 9643 IPPOL_REFRELE(pin6); 9644 if (pout6 != NULL) 9645 IPPOL_REFRELE(pout6); 9646 return (ENOMEM); 9647 } 9648 9649 /* 9650 * Only for options that pass in an IP addr. Currently only V4 options 9651 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9652 * So this function assumes level is IPPROTO_IP 9653 */ 9654 int 9655 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9656 mblk_t *first_mp) 9657 { 9658 ipif_t *ipif = NULL; 9659 int error; 9660 ill_t *ill; 9661 int zoneid; 9662 9663 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9664 9665 if (addr != INADDR_ANY || checkonly) { 9666 ASSERT(connp != NULL); 9667 zoneid = IPCL_ZONEID(connp); 9668 if (option == IP_NEXTHOP) { 9669 ipif = ipif_lookup_onlink_addr(addr, zoneid); 9670 } else { 9671 ipif = ipif_lookup_addr(addr, NULL, zoneid, 9672 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9673 &error); 9674 } 9675 if (ipif == NULL) { 9676 if (error == EINPROGRESS) 9677 return (error); 9678 else if ((option == IP_MULTICAST_IF) || 9679 (option == IP_NEXTHOP)) 9680 return (EHOSTUNREACH); 9681 else 9682 return (EINVAL); 9683 } else if (checkonly) { 9684 if (option == IP_MULTICAST_IF) { 9685 ill = ipif->ipif_ill; 9686 /* not supported by the virtual network iface */ 9687 if (IS_VNI(ill)) { 9688 ipif_refrele(ipif); 9689 return (EINVAL); 9690 } 9691 } 9692 ipif_refrele(ipif); 9693 return (0); 9694 } 9695 ill = ipif->ipif_ill; 9696 mutex_enter(&connp->conn_lock); 9697 mutex_enter(&ill->ill_lock); 9698 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9699 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9700 mutex_exit(&ill->ill_lock); 9701 mutex_exit(&connp->conn_lock); 9702 ipif_refrele(ipif); 9703 return (option == IP_MULTICAST_IF ? 9704 EHOSTUNREACH : EINVAL); 9705 } 9706 } else { 9707 mutex_enter(&connp->conn_lock); 9708 } 9709 9710 /* None of the options below are supported on the VNI */ 9711 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9712 mutex_exit(&ill->ill_lock); 9713 mutex_exit(&connp->conn_lock); 9714 ipif_refrele(ipif); 9715 return (EINVAL); 9716 } 9717 9718 switch (option) { 9719 case IP_DONTFAILOVER_IF: 9720 /* 9721 * This option is used by in.mpathd to ensure 9722 * that IPMP probe packets only go out on the 9723 * test interfaces. in.mpathd sets this option 9724 * on the non-failover interfaces. 9725 * For backward compatibility, this option 9726 * implicitly sets IP_MULTICAST_IF, as used 9727 * be done in bind(), so that ip_wput gets 9728 * this ipif to send mcast packets. 9729 */ 9730 if (ipif != NULL) { 9731 ASSERT(addr != INADDR_ANY); 9732 connp->conn_nofailover_ill = ipif->ipif_ill; 9733 connp->conn_multicast_ipif = ipif; 9734 } else { 9735 ASSERT(addr == INADDR_ANY); 9736 connp->conn_nofailover_ill = NULL; 9737 connp->conn_multicast_ipif = NULL; 9738 } 9739 break; 9740 9741 case IP_MULTICAST_IF: 9742 connp->conn_multicast_ipif = ipif; 9743 break; 9744 case IP_NEXTHOP: 9745 connp->conn_nexthop_v4 = addr; 9746 connp->conn_nexthop_set = B_TRUE; 9747 break; 9748 } 9749 9750 if (ipif != NULL) { 9751 mutex_exit(&ill->ill_lock); 9752 mutex_exit(&connp->conn_lock); 9753 ipif_refrele(ipif); 9754 return (0); 9755 } 9756 mutex_exit(&connp->conn_lock); 9757 /* We succeded in cleared the option */ 9758 return (0); 9759 } 9760 9761 /* 9762 * For options that pass in an ifindex specifying the ill. V6 options always 9763 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9764 */ 9765 int 9766 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9767 int level, int option, mblk_t *first_mp) 9768 { 9769 ill_t *ill = NULL; 9770 int error = 0; 9771 9772 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9773 if (ifindex != 0) { 9774 ASSERT(connp != NULL); 9775 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9776 first_mp, ip_restart_optmgmt, &error); 9777 if (ill != NULL) { 9778 if (checkonly) { 9779 /* not supported by the virtual network iface */ 9780 if (IS_VNI(ill)) { 9781 ill_refrele(ill); 9782 return (EINVAL); 9783 } 9784 ill_refrele(ill); 9785 return (0); 9786 } 9787 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9788 0, NULL)) { 9789 ill_refrele(ill); 9790 ill = NULL; 9791 mutex_enter(&connp->conn_lock); 9792 goto setit; 9793 } 9794 mutex_enter(&connp->conn_lock); 9795 mutex_enter(&ill->ill_lock); 9796 if (ill->ill_state_flags & ILL_CONDEMNED) { 9797 mutex_exit(&ill->ill_lock); 9798 mutex_exit(&connp->conn_lock); 9799 ill_refrele(ill); 9800 ill = NULL; 9801 mutex_enter(&connp->conn_lock); 9802 } 9803 goto setit; 9804 } else if (error == EINPROGRESS) { 9805 return (error); 9806 } else { 9807 error = 0; 9808 } 9809 } 9810 mutex_enter(&connp->conn_lock); 9811 setit: 9812 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9813 9814 /* 9815 * The options below assume that the ILL (if any) transmits and/or 9816 * receives traffic. Neither of which is true for the virtual network 9817 * interface, so fail setting these on a VNI. 9818 */ 9819 if (IS_VNI(ill)) { 9820 ASSERT(ill != NULL); 9821 mutex_exit(&ill->ill_lock); 9822 mutex_exit(&connp->conn_lock); 9823 ill_refrele(ill); 9824 return (EINVAL); 9825 } 9826 9827 if (level == IPPROTO_IP) { 9828 switch (option) { 9829 case IP_BOUND_IF: 9830 connp->conn_incoming_ill = ill; 9831 connp->conn_outgoing_ill = ill; 9832 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9833 0 : ifindex; 9834 break; 9835 9836 case IP_XMIT_IF: 9837 /* 9838 * Similar to IP_BOUND_IF, but this only 9839 * determines the outgoing interface for 9840 * unicast packets. Also no IRE_CACHE entry 9841 * is added for the destination of the 9842 * outgoing packets. This feature is needed 9843 * for mobile IP. 9844 */ 9845 connp->conn_xmit_if_ill = ill; 9846 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9847 0 : ifindex; 9848 break; 9849 9850 case IP_MULTICAST_IF: 9851 /* 9852 * This option is an internal special. The socket 9853 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9854 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9855 * specifies an ifindex and we try first on V6 ill's. 9856 * If we don't find one, we they try using on v4 ill's 9857 * intenally and we come here. 9858 */ 9859 if (!checkonly && ill != NULL) { 9860 ipif_t *ipif; 9861 ipif = ill->ill_ipif; 9862 9863 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9864 mutex_exit(&ill->ill_lock); 9865 mutex_exit(&connp->conn_lock); 9866 ill_refrele(ill); 9867 ill = NULL; 9868 mutex_enter(&connp->conn_lock); 9869 } else { 9870 connp->conn_multicast_ipif = ipif; 9871 } 9872 } 9873 break; 9874 } 9875 } else { 9876 switch (option) { 9877 case IPV6_BOUND_IF: 9878 connp->conn_incoming_ill = ill; 9879 connp->conn_outgoing_ill = ill; 9880 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9881 0 : ifindex; 9882 break; 9883 9884 case IPV6_BOUND_PIF: 9885 /* 9886 * Limit all transmit to this ill. 9887 * Unlike IPV6_BOUND_IF, using this option 9888 * prevents load spreading and failover from 9889 * happening when the interface is part of the 9890 * group. That's why we don't need to remember 9891 * the ifindex in orig_bound_ifindex as in 9892 * IPV6_BOUND_IF. 9893 */ 9894 connp->conn_outgoing_pill = ill; 9895 break; 9896 9897 case IPV6_DONTFAILOVER_IF: 9898 /* 9899 * This option is used by in.mpathd to ensure 9900 * that IPMP probe packets only go out on the 9901 * test interfaces. in.mpathd sets this option 9902 * on the non-failover interfaces. 9903 */ 9904 connp->conn_nofailover_ill = ill; 9905 /* 9906 * For backward compatibility, this option 9907 * implicitly sets ip_multicast_ill as used in 9908 * IP_MULTICAST_IF so that ip_wput gets 9909 * this ipif to send mcast packets. 9910 */ 9911 connp->conn_multicast_ill = ill; 9912 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9913 0 : ifindex; 9914 break; 9915 9916 case IPV6_MULTICAST_IF: 9917 /* 9918 * Set conn_multicast_ill to be the IPv6 ill. 9919 * Set conn_multicast_ipif to be an IPv4 ipif 9920 * for ifindex to make IPv4 mapped addresses 9921 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9922 * Even if no IPv6 ill exists for the ifindex 9923 * we need to check for an IPv4 ifindex in order 9924 * for this to work with mapped addresses. In that 9925 * case only set conn_multicast_ipif. 9926 */ 9927 if (!checkonly) { 9928 if (ifindex == 0) { 9929 connp->conn_multicast_ill = NULL; 9930 connp->conn_orig_multicast_ifindex = 0; 9931 connp->conn_multicast_ipif = NULL; 9932 } else if (ill != NULL) { 9933 connp->conn_multicast_ill = ill; 9934 connp->conn_orig_multicast_ifindex = 9935 ifindex; 9936 } 9937 } 9938 break; 9939 } 9940 } 9941 9942 if (ill != NULL) { 9943 mutex_exit(&ill->ill_lock); 9944 mutex_exit(&connp->conn_lock); 9945 ill_refrele(ill); 9946 return (0); 9947 } 9948 mutex_exit(&connp->conn_lock); 9949 /* 9950 * We succeeded in clearing the option (ifindex == 0) or failed to 9951 * locate the ill and could not set the option (ifindex != 0) 9952 */ 9953 return (ifindex == 0 ? 0 : EINVAL); 9954 } 9955 9956 /* This routine sets socket options. */ 9957 /* ARGSUSED */ 9958 int 9959 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9960 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9961 void *dummy, cred_t *cr, mblk_t *first_mp) 9962 { 9963 int *i1 = (int *)invalp; 9964 conn_t *connp = Q_TO_CONN(q); 9965 int error = 0; 9966 boolean_t checkonly; 9967 ire_t *ire; 9968 boolean_t found; 9969 9970 switch (optset_context) { 9971 9972 case SETFN_OPTCOM_CHECKONLY: 9973 checkonly = B_TRUE; 9974 /* 9975 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9976 * inlen != 0 implies value supplied and 9977 * we have to "pretend" to set it. 9978 * inlen == 0 implies that there is no 9979 * value part in T_CHECK request and just validation 9980 * done elsewhere should be enough, we just return here. 9981 */ 9982 if (inlen == 0) { 9983 *outlenp = 0; 9984 return (0); 9985 } 9986 break; 9987 case SETFN_OPTCOM_NEGOTIATE: 9988 case SETFN_UD_NEGOTIATE: 9989 case SETFN_CONN_NEGOTIATE: 9990 checkonly = B_FALSE; 9991 break; 9992 default: 9993 /* 9994 * We should never get here 9995 */ 9996 *outlenp = 0; 9997 return (EINVAL); 9998 } 9999 10000 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10001 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10002 10003 /* 10004 * For fixed length options, no sanity check 10005 * of passed in length is done. It is assumed *_optcom_req() 10006 * routines do the right thing. 10007 */ 10008 10009 switch (level) { 10010 case SOL_SOCKET: 10011 /* 10012 * conn_lock protects the bitfields, and is used to 10013 * set the fields atomically. 10014 */ 10015 switch (name) { 10016 case SO_BROADCAST: 10017 if (!checkonly) { 10018 /* TODO: use value someplace? */ 10019 mutex_enter(&connp->conn_lock); 10020 connp->conn_broadcast = *i1 ? 1 : 0; 10021 mutex_exit(&connp->conn_lock); 10022 } 10023 break; /* goto sizeof (int) option return */ 10024 case SO_USELOOPBACK: 10025 if (!checkonly) { 10026 /* TODO: use value someplace? */ 10027 mutex_enter(&connp->conn_lock); 10028 connp->conn_loopback = *i1 ? 1 : 0; 10029 mutex_exit(&connp->conn_lock); 10030 } 10031 break; /* goto sizeof (int) option return */ 10032 case SO_DONTROUTE: 10033 if (!checkonly) { 10034 mutex_enter(&connp->conn_lock); 10035 connp->conn_dontroute = *i1 ? 1 : 0; 10036 mutex_exit(&connp->conn_lock); 10037 } 10038 break; /* goto sizeof (int) option return */ 10039 case SO_REUSEADDR: 10040 if (!checkonly) { 10041 mutex_enter(&connp->conn_lock); 10042 connp->conn_reuseaddr = *i1 ? 1 : 0; 10043 mutex_exit(&connp->conn_lock); 10044 } 10045 break; /* goto sizeof (int) option return */ 10046 case SO_PROTOTYPE: 10047 if (!checkonly) { 10048 mutex_enter(&connp->conn_lock); 10049 connp->conn_proto = *i1; 10050 mutex_exit(&connp->conn_lock); 10051 } 10052 break; /* goto sizeof (int) option return */ 10053 case SO_ALLZONES: 10054 if (!checkonly) { 10055 mutex_enter(&connp->conn_lock); 10056 if (IPCL_IS_BOUND(connp)) { 10057 mutex_exit(&connp->conn_lock); 10058 return (EINVAL); 10059 } 10060 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10061 mutex_exit(&connp->conn_lock); 10062 } 10063 break; /* goto sizeof (int) option return */ 10064 case SO_ANON_MLP: 10065 if (!checkonly) { 10066 mutex_enter(&connp->conn_lock); 10067 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10068 mutex_exit(&connp->conn_lock); 10069 } 10070 break; /* goto sizeof (int) option return */ 10071 case SO_MAC_EXEMPT: 10072 if (secpolicy_net_mac_aware(cr) != 0 || 10073 IPCL_IS_BOUND(connp)) 10074 return (EACCES); 10075 if (!checkonly) { 10076 mutex_enter(&connp->conn_lock); 10077 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10078 mutex_exit(&connp->conn_lock); 10079 } 10080 break; /* goto sizeof (int) option return */ 10081 default: 10082 /* 10083 * "soft" error (negative) 10084 * option not handled at this level 10085 * Note: Do not modify *outlenp 10086 */ 10087 return (-EINVAL); 10088 } 10089 break; 10090 case IPPROTO_IP: 10091 switch (name) { 10092 case IP_NEXTHOP: 10093 if (secpolicy_net_config(cr, B_FALSE) != 0) 10094 return (EPERM); 10095 /* FALLTHRU */ 10096 case IP_MULTICAST_IF: 10097 case IP_DONTFAILOVER_IF: { 10098 ipaddr_t addr = *i1; 10099 10100 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10101 first_mp); 10102 if (error != 0) 10103 return (error); 10104 break; /* goto sizeof (int) option return */ 10105 } 10106 10107 case IP_MULTICAST_TTL: 10108 /* Recorded in transport above IP */ 10109 *outvalp = *invalp; 10110 *outlenp = sizeof (uchar_t); 10111 return (0); 10112 case IP_MULTICAST_LOOP: 10113 if (!checkonly) { 10114 mutex_enter(&connp->conn_lock); 10115 connp->conn_multicast_loop = *invalp ? 1 : 0; 10116 mutex_exit(&connp->conn_lock); 10117 } 10118 *outvalp = *invalp; 10119 *outlenp = sizeof (uchar_t); 10120 return (0); 10121 case IP_ADD_MEMBERSHIP: 10122 case MCAST_JOIN_GROUP: 10123 case IP_DROP_MEMBERSHIP: 10124 case MCAST_LEAVE_GROUP: { 10125 struct ip_mreq *mreqp; 10126 struct group_req *greqp; 10127 ire_t *ire; 10128 boolean_t done = B_FALSE; 10129 ipaddr_t group, ifaddr; 10130 struct sockaddr_in *sin; 10131 uint32_t *ifindexp; 10132 boolean_t mcast_opt = B_TRUE; 10133 mcast_record_t fmode; 10134 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10135 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10136 10137 switch (name) { 10138 case IP_ADD_MEMBERSHIP: 10139 mcast_opt = B_FALSE; 10140 /* FALLTHRU */ 10141 case MCAST_JOIN_GROUP: 10142 fmode = MODE_IS_EXCLUDE; 10143 optfn = ip_opt_add_group; 10144 break; 10145 10146 case IP_DROP_MEMBERSHIP: 10147 mcast_opt = B_FALSE; 10148 /* FALLTHRU */ 10149 case MCAST_LEAVE_GROUP: 10150 fmode = MODE_IS_INCLUDE; 10151 optfn = ip_opt_delete_group; 10152 break; 10153 } 10154 10155 if (mcast_opt) { 10156 greqp = (struct group_req *)i1; 10157 sin = (struct sockaddr_in *)&greqp->gr_group; 10158 if (sin->sin_family != AF_INET) { 10159 *outlenp = 0; 10160 return (ENOPROTOOPT); 10161 } 10162 group = (ipaddr_t)sin->sin_addr.s_addr; 10163 ifaddr = INADDR_ANY; 10164 ifindexp = &greqp->gr_interface; 10165 } else { 10166 mreqp = (struct ip_mreq *)i1; 10167 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10168 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10169 ifindexp = NULL; 10170 } 10171 10172 /* 10173 * In the multirouting case, we need to replicate 10174 * the request on all interfaces that will take part 10175 * in replication. We do so because multirouting is 10176 * reflective, thus we will probably receive multi- 10177 * casts on those interfaces. 10178 * The ip_multirt_apply_membership() succeeds if the 10179 * operation succeeds on at least one interface. 10180 */ 10181 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10182 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10183 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10184 if (ire != NULL) { 10185 if (ire->ire_flags & RTF_MULTIRT) { 10186 error = ip_multirt_apply_membership( 10187 optfn, ire, connp, checkonly, group, 10188 fmode, INADDR_ANY, first_mp); 10189 done = B_TRUE; 10190 } 10191 ire_refrele(ire); 10192 } 10193 if (!done) { 10194 error = optfn(connp, checkonly, group, ifaddr, 10195 ifindexp, fmode, INADDR_ANY, first_mp); 10196 } 10197 if (error) { 10198 /* 10199 * EINPROGRESS is a soft error, needs retry 10200 * so don't make *outlenp zero. 10201 */ 10202 if (error != EINPROGRESS) 10203 *outlenp = 0; 10204 return (error); 10205 } 10206 /* OK return - copy input buffer into output buffer */ 10207 if (invalp != outvalp) { 10208 /* don't trust bcopy for identical src/dst */ 10209 bcopy(invalp, outvalp, inlen); 10210 } 10211 *outlenp = inlen; 10212 return (0); 10213 } 10214 case IP_BLOCK_SOURCE: 10215 case IP_UNBLOCK_SOURCE: 10216 case IP_ADD_SOURCE_MEMBERSHIP: 10217 case IP_DROP_SOURCE_MEMBERSHIP: 10218 case MCAST_BLOCK_SOURCE: 10219 case MCAST_UNBLOCK_SOURCE: 10220 case MCAST_JOIN_SOURCE_GROUP: 10221 case MCAST_LEAVE_SOURCE_GROUP: { 10222 struct ip_mreq_source *imreqp; 10223 struct group_source_req *gsreqp; 10224 in_addr_t grp, src, ifaddr = INADDR_ANY; 10225 uint32_t ifindex = 0; 10226 mcast_record_t fmode; 10227 struct sockaddr_in *sin; 10228 ire_t *ire; 10229 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10230 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10231 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10232 10233 switch (name) { 10234 case IP_BLOCK_SOURCE: 10235 mcast_opt = B_FALSE; 10236 /* FALLTHRU */ 10237 case MCAST_BLOCK_SOURCE: 10238 fmode = MODE_IS_EXCLUDE; 10239 optfn = ip_opt_add_group; 10240 break; 10241 10242 case IP_UNBLOCK_SOURCE: 10243 mcast_opt = B_FALSE; 10244 /* FALLTHRU */ 10245 case MCAST_UNBLOCK_SOURCE: 10246 fmode = MODE_IS_EXCLUDE; 10247 optfn = ip_opt_delete_group; 10248 break; 10249 10250 case IP_ADD_SOURCE_MEMBERSHIP: 10251 mcast_opt = B_FALSE; 10252 /* FALLTHRU */ 10253 case MCAST_JOIN_SOURCE_GROUP: 10254 fmode = MODE_IS_INCLUDE; 10255 optfn = ip_opt_add_group; 10256 break; 10257 10258 case IP_DROP_SOURCE_MEMBERSHIP: 10259 mcast_opt = B_FALSE; 10260 /* FALLTHRU */ 10261 case MCAST_LEAVE_SOURCE_GROUP: 10262 fmode = MODE_IS_INCLUDE; 10263 optfn = ip_opt_delete_group; 10264 break; 10265 } 10266 10267 if (mcast_opt) { 10268 gsreqp = (struct group_source_req *)i1; 10269 if (gsreqp->gsr_group.ss_family != AF_INET) { 10270 *outlenp = 0; 10271 return (ENOPROTOOPT); 10272 } 10273 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10274 grp = (ipaddr_t)sin->sin_addr.s_addr; 10275 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10276 src = (ipaddr_t)sin->sin_addr.s_addr; 10277 ifindex = gsreqp->gsr_interface; 10278 } else { 10279 imreqp = (struct ip_mreq_source *)i1; 10280 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10281 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10282 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10283 } 10284 10285 /* 10286 * In the multirouting case, we need to replicate 10287 * the request as noted in the mcast cases above. 10288 */ 10289 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10290 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10291 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10292 if (ire != NULL) { 10293 if (ire->ire_flags & RTF_MULTIRT) { 10294 error = ip_multirt_apply_membership( 10295 optfn, ire, connp, checkonly, grp, 10296 fmode, src, first_mp); 10297 done = B_TRUE; 10298 } 10299 ire_refrele(ire); 10300 } 10301 if (!done) { 10302 error = optfn(connp, checkonly, grp, ifaddr, 10303 &ifindex, fmode, src, first_mp); 10304 } 10305 if (error != 0) { 10306 /* 10307 * EINPROGRESS is a soft error, needs retry 10308 * so don't make *outlenp zero. 10309 */ 10310 if (error != EINPROGRESS) 10311 *outlenp = 0; 10312 return (error); 10313 } 10314 /* OK return - copy input buffer into output buffer */ 10315 if (invalp != outvalp) { 10316 bcopy(invalp, outvalp, inlen); 10317 } 10318 *outlenp = inlen; 10319 return (0); 10320 } 10321 case IP_SEC_OPT: 10322 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10323 if (error != 0) { 10324 *outlenp = 0; 10325 return (error); 10326 } 10327 break; 10328 case IP_HDRINCL: 10329 case IP_OPTIONS: 10330 case T_IP_OPTIONS: 10331 case IP_TOS: 10332 case T_IP_TOS: 10333 case IP_TTL: 10334 case IP_RECVDSTADDR: 10335 case IP_RECVOPTS: 10336 /* OK return - copy input buffer into output buffer */ 10337 if (invalp != outvalp) { 10338 /* don't trust bcopy for identical src/dst */ 10339 bcopy(invalp, outvalp, inlen); 10340 } 10341 *outlenp = inlen; 10342 return (0); 10343 case IP_RECVIF: 10344 /* Retrieve the inbound interface index */ 10345 if (!checkonly) { 10346 mutex_enter(&connp->conn_lock); 10347 connp->conn_recvif = *i1 ? 1 : 0; 10348 mutex_exit(&connp->conn_lock); 10349 } 10350 break; /* goto sizeof (int) option return */ 10351 case IP_RECVSLLA: 10352 /* Retrieve the source link layer address */ 10353 if (!checkonly) { 10354 mutex_enter(&connp->conn_lock); 10355 connp->conn_recvslla = *i1 ? 1 : 0; 10356 mutex_exit(&connp->conn_lock); 10357 } 10358 break; /* goto sizeof (int) option return */ 10359 case MRT_INIT: 10360 case MRT_DONE: 10361 case MRT_ADD_VIF: 10362 case MRT_DEL_VIF: 10363 case MRT_ADD_MFC: 10364 case MRT_DEL_MFC: 10365 case MRT_ASSERT: 10366 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10367 *outlenp = 0; 10368 return (error); 10369 } 10370 error = ip_mrouter_set((int)name, q, checkonly, 10371 (uchar_t *)invalp, inlen, first_mp); 10372 if (error) { 10373 *outlenp = 0; 10374 return (error); 10375 } 10376 /* OK return - copy input buffer into output buffer */ 10377 if (invalp != outvalp) { 10378 /* don't trust bcopy for identical src/dst */ 10379 bcopy(invalp, outvalp, inlen); 10380 } 10381 *outlenp = inlen; 10382 return (0); 10383 case IP_BOUND_IF: 10384 case IP_XMIT_IF: 10385 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10386 level, name, first_mp); 10387 if (error != 0) 10388 return (error); 10389 break; /* goto sizeof (int) option return */ 10390 10391 case IP_UNSPEC_SRC: 10392 /* Allow sending with a zero source address */ 10393 if (!checkonly) { 10394 mutex_enter(&connp->conn_lock); 10395 connp->conn_unspec_src = *i1 ? 1 : 0; 10396 mutex_exit(&connp->conn_lock); 10397 } 10398 break; /* goto sizeof (int) option return */ 10399 default: 10400 /* 10401 * "soft" error (negative) 10402 * option not handled at this level 10403 * Note: Do not modify *outlenp 10404 */ 10405 return (-EINVAL); 10406 } 10407 break; 10408 case IPPROTO_IPV6: 10409 switch (name) { 10410 case IPV6_BOUND_IF: 10411 case IPV6_BOUND_PIF: 10412 case IPV6_DONTFAILOVER_IF: 10413 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10414 level, name, first_mp); 10415 if (error != 0) 10416 return (error); 10417 break; /* goto sizeof (int) option return */ 10418 10419 case IPV6_MULTICAST_IF: 10420 /* 10421 * The only possible errors are EINPROGRESS and 10422 * EINVAL. EINPROGRESS will be restarted and is not 10423 * a hard error. We call this option on both V4 and V6 10424 * If both return EINVAL, then this call returns 10425 * EINVAL. If at least one of them succeeds we 10426 * return success. 10427 */ 10428 found = B_FALSE; 10429 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10430 level, name, first_mp); 10431 if (error == EINPROGRESS) 10432 return (error); 10433 if (error == 0) 10434 found = B_TRUE; 10435 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10436 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10437 if (error == 0) 10438 found = B_TRUE; 10439 if (!found) 10440 return (error); 10441 break; /* goto sizeof (int) option return */ 10442 10443 case IPV6_MULTICAST_HOPS: 10444 /* Recorded in transport above IP */ 10445 break; /* goto sizeof (int) option return */ 10446 case IPV6_MULTICAST_LOOP: 10447 if (!checkonly) { 10448 mutex_enter(&connp->conn_lock); 10449 connp->conn_multicast_loop = *i1; 10450 mutex_exit(&connp->conn_lock); 10451 } 10452 break; /* goto sizeof (int) option return */ 10453 case IPV6_JOIN_GROUP: 10454 case MCAST_JOIN_GROUP: 10455 case IPV6_LEAVE_GROUP: 10456 case MCAST_LEAVE_GROUP: { 10457 struct ipv6_mreq *ip_mreqp; 10458 struct group_req *greqp; 10459 ire_t *ire; 10460 boolean_t done = B_FALSE; 10461 in6_addr_t groupv6; 10462 uint32_t ifindex; 10463 boolean_t mcast_opt = B_TRUE; 10464 mcast_record_t fmode; 10465 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10466 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10467 10468 switch (name) { 10469 case IPV6_JOIN_GROUP: 10470 mcast_opt = B_FALSE; 10471 /* FALLTHRU */ 10472 case MCAST_JOIN_GROUP: 10473 fmode = MODE_IS_EXCLUDE; 10474 optfn = ip_opt_add_group_v6; 10475 break; 10476 10477 case IPV6_LEAVE_GROUP: 10478 mcast_opt = B_FALSE; 10479 /* FALLTHRU */ 10480 case MCAST_LEAVE_GROUP: 10481 fmode = MODE_IS_INCLUDE; 10482 optfn = ip_opt_delete_group_v6; 10483 break; 10484 } 10485 10486 if (mcast_opt) { 10487 struct sockaddr_in *sin; 10488 struct sockaddr_in6 *sin6; 10489 greqp = (struct group_req *)i1; 10490 if (greqp->gr_group.ss_family == AF_INET) { 10491 sin = (struct sockaddr_in *) 10492 &(greqp->gr_group); 10493 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10494 &groupv6); 10495 } else { 10496 sin6 = (struct sockaddr_in6 *) 10497 &(greqp->gr_group); 10498 groupv6 = sin6->sin6_addr; 10499 } 10500 ifindex = greqp->gr_interface; 10501 } else { 10502 ip_mreqp = (struct ipv6_mreq *)i1; 10503 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10504 ifindex = ip_mreqp->ipv6mr_interface; 10505 } 10506 /* 10507 * In the multirouting case, we need to replicate 10508 * the request on all interfaces that will take part 10509 * in replication. We do so because multirouting is 10510 * reflective, thus we will probably receive multi- 10511 * casts on those interfaces. 10512 * The ip_multirt_apply_membership_v6() succeeds if 10513 * the operation succeeds on at least one interface. 10514 */ 10515 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10516 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10517 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10518 if (ire != NULL) { 10519 if (ire->ire_flags & RTF_MULTIRT) { 10520 error = ip_multirt_apply_membership_v6( 10521 optfn, ire, connp, checkonly, 10522 &groupv6, fmode, &ipv6_all_zeros, 10523 first_mp); 10524 done = B_TRUE; 10525 } 10526 ire_refrele(ire); 10527 } 10528 if (!done) { 10529 error = optfn(connp, checkonly, &groupv6, 10530 ifindex, fmode, &ipv6_all_zeros, first_mp); 10531 } 10532 if (error) { 10533 /* 10534 * EINPROGRESS is a soft error, needs retry 10535 * so don't make *outlenp zero. 10536 */ 10537 if (error != EINPROGRESS) 10538 *outlenp = 0; 10539 return (error); 10540 } 10541 /* OK return - copy input buffer into output buffer */ 10542 if (invalp != outvalp) { 10543 /* don't trust bcopy for identical src/dst */ 10544 bcopy(invalp, outvalp, inlen); 10545 } 10546 *outlenp = inlen; 10547 return (0); 10548 } 10549 case MCAST_BLOCK_SOURCE: 10550 case MCAST_UNBLOCK_SOURCE: 10551 case MCAST_JOIN_SOURCE_GROUP: 10552 case MCAST_LEAVE_SOURCE_GROUP: { 10553 struct group_source_req *gsreqp; 10554 in6_addr_t v6grp, v6src; 10555 uint32_t ifindex; 10556 mcast_record_t fmode; 10557 ire_t *ire; 10558 boolean_t done = B_FALSE; 10559 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10560 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10561 10562 switch (name) { 10563 case MCAST_BLOCK_SOURCE: 10564 fmode = MODE_IS_EXCLUDE; 10565 optfn = ip_opt_add_group_v6; 10566 break; 10567 case MCAST_UNBLOCK_SOURCE: 10568 fmode = MODE_IS_EXCLUDE; 10569 optfn = ip_opt_delete_group_v6; 10570 break; 10571 case MCAST_JOIN_SOURCE_GROUP: 10572 fmode = MODE_IS_INCLUDE; 10573 optfn = ip_opt_add_group_v6; 10574 break; 10575 case MCAST_LEAVE_SOURCE_GROUP: 10576 fmode = MODE_IS_INCLUDE; 10577 optfn = ip_opt_delete_group_v6; 10578 break; 10579 } 10580 10581 gsreqp = (struct group_source_req *)i1; 10582 ifindex = gsreqp->gsr_interface; 10583 if (gsreqp->gsr_group.ss_family == AF_INET) { 10584 struct sockaddr_in *s; 10585 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10586 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10587 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10588 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10589 } else { 10590 struct sockaddr_in6 *s6; 10591 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10592 v6grp = s6->sin6_addr; 10593 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10594 v6src = s6->sin6_addr; 10595 } 10596 10597 /* 10598 * In the multirouting case, we need to replicate 10599 * the request as noted in the mcast cases above. 10600 */ 10601 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10602 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10603 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10604 if (ire != NULL) { 10605 if (ire->ire_flags & RTF_MULTIRT) { 10606 error = ip_multirt_apply_membership_v6( 10607 optfn, ire, connp, checkonly, 10608 &v6grp, fmode, &v6src, first_mp); 10609 done = B_TRUE; 10610 } 10611 ire_refrele(ire); 10612 } 10613 if (!done) { 10614 error = optfn(connp, checkonly, &v6grp, 10615 ifindex, fmode, &v6src, first_mp); 10616 } 10617 if (error != 0) { 10618 /* 10619 * EINPROGRESS is a soft error, needs retry 10620 * so don't make *outlenp zero. 10621 */ 10622 if (error != EINPROGRESS) 10623 *outlenp = 0; 10624 return (error); 10625 } 10626 /* OK return - copy input buffer into output buffer */ 10627 if (invalp != outvalp) { 10628 bcopy(invalp, outvalp, inlen); 10629 } 10630 *outlenp = inlen; 10631 return (0); 10632 } 10633 case IPV6_UNICAST_HOPS: 10634 /* Recorded in transport above IP */ 10635 break; /* goto sizeof (int) option return */ 10636 case IPV6_UNSPEC_SRC: 10637 /* Allow sending with a zero source address */ 10638 if (!checkonly) { 10639 mutex_enter(&connp->conn_lock); 10640 connp->conn_unspec_src = *i1 ? 1 : 0; 10641 mutex_exit(&connp->conn_lock); 10642 } 10643 break; /* goto sizeof (int) option return */ 10644 case IPV6_RECVPKTINFO: 10645 if (!checkonly) { 10646 mutex_enter(&connp->conn_lock); 10647 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10648 mutex_exit(&connp->conn_lock); 10649 } 10650 break; /* goto sizeof (int) option return */ 10651 case IPV6_RECVTCLASS: 10652 if (!checkonly) { 10653 if (*i1 < 0 || *i1 > 1) { 10654 return (EINVAL); 10655 } 10656 mutex_enter(&connp->conn_lock); 10657 connp->conn_ipv6_recvtclass = *i1; 10658 mutex_exit(&connp->conn_lock); 10659 } 10660 break; 10661 case IPV6_RECVPATHMTU: 10662 if (!checkonly) { 10663 if (*i1 < 0 || *i1 > 1) { 10664 return (EINVAL); 10665 } 10666 mutex_enter(&connp->conn_lock); 10667 connp->conn_ipv6_recvpathmtu = *i1; 10668 mutex_exit(&connp->conn_lock); 10669 } 10670 break; 10671 case IPV6_RECVHOPLIMIT: 10672 if (!checkonly) { 10673 mutex_enter(&connp->conn_lock); 10674 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10675 mutex_exit(&connp->conn_lock); 10676 } 10677 break; /* goto sizeof (int) option return */ 10678 case IPV6_RECVHOPOPTS: 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 break; /* goto sizeof (int) option return */ 10685 case IPV6_RECVDSTOPTS: 10686 if (!checkonly) { 10687 mutex_enter(&connp->conn_lock); 10688 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10689 mutex_exit(&connp->conn_lock); 10690 } 10691 break; /* goto sizeof (int) option return */ 10692 case IPV6_RECVRTHDR: 10693 if (!checkonly) { 10694 mutex_enter(&connp->conn_lock); 10695 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10696 mutex_exit(&connp->conn_lock); 10697 } 10698 break; /* goto sizeof (int) option return */ 10699 case IPV6_RECVRTHDRDSTOPTS: 10700 if (!checkonly) { 10701 mutex_enter(&connp->conn_lock); 10702 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10703 mutex_exit(&connp->conn_lock); 10704 } 10705 break; /* goto sizeof (int) option return */ 10706 case IPV6_PKTINFO: 10707 if (inlen == 0) 10708 return (-EINVAL); /* clearing option */ 10709 error = ip6_set_pktinfo(cr, connp, 10710 (struct in6_pktinfo *)invalp, first_mp); 10711 if (error != 0) 10712 *outlenp = 0; 10713 else 10714 *outlenp = inlen; 10715 return (error); 10716 case IPV6_NEXTHOP: { 10717 struct sockaddr_in6 *sin6; 10718 10719 /* Verify that the nexthop is reachable */ 10720 if (inlen == 0) 10721 return (-EINVAL); /* clearing option */ 10722 10723 sin6 = (struct sockaddr_in6 *)invalp; 10724 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10725 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10726 NULL, MATCH_IRE_DEFAULT); 10727 10728 if (ire == NULL) { 10729 *outlenp = 0; 10730 return (EHOSTUNREACH); 10731 } 10732 ire_refrele(ire); 10733 return (-EINVAL); 10734 } 10735 case IPV6_SEC_OPT: 10736 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10737 if (error != 0) { 10738 *outlenp = 0; 10739 return (error); 10740 } 10741 break; 10742 case IPV6_SRC_PREFERENCES: { 10743 /* 10744 * This is implemented strictly in the ip module 10745 * (here and in tcp_opt_*() to accomodate tcp 10746 * sockets). Modules above ip pass this option 10747 * down here since ip is the only one that needs to 10748 * be aware of source address preferences. 10749 * 10750 * This socket option only affects connected 10751 * sockets that haven't already bound to a specific 10752 * IPv6 address. In other words, sockets that 10753 * don't call bind() with an address other than the 10754 * unspecified address and that call connect(). 10755 * ip_bind_connected_v6() passes these preferences 10756 * to the ipif_select_source_v6() function. 10757 */ 10758 if (inlen != sizeof (uint32_t)) 10759 return (EINVAL); 10760 error = ip6_set_src_preferences(connp, 10761 *(uint32_t *)invalp); 10762 if (error != 0) { 10763 *outlenp = 0; 10764 return (error); 10765 } else { 10766 *outlenp = sizeof (uint32_t); 10767 } 10768 break; 10769 } 10770 case IPV6_V6ONLY: 10771 if (*i1 < 0 || *i1 > 1) { 10772 return (EINVAL); 10773 } 10774 mutex_enter(&connp->conn_lock); 10775 connp->conn_ipv6_v6only = *i1; 10776 mutex_exit(&connp->conn_lock); 10777 break; 10778 default: 10779 return (-EINVAL); 10780 } 10781 break; 10782 default: 10783 /* 10784 * "soft" error (negative) 10785 * option not handled at this level 10786 * Note: Do not modify *outlenp 10787 */ 10788 return (-EINVAL); 10789 } 10790 /* 10791 * Common case of return from an option that is sizeof (int) 10792 */ 10793 *(int *)outvalp = *i1; 10794 *outlenp = sizeof (int); 10795 return (0); 10796 } 10797 10798 /* 10799 * This routine gets default values of certain options whose default 10800 * values are maintained by protocol specific code 10801 */ 10802 /* ARGSUSED */ 10803 int 10804 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10805 { 10806 int *i1 = (int *)ptr; 10807 10808 switch (level) { 10809 case IPPROTO_IP: 10810 switch (name) { 10811 case IP_MULTICAST_TTL: 10812 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10813 return (sizeof (uchar_t)); 10814 case IP_MULTICAST_LOOP: 10815 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10816 return (sizeof (uchar_t)); 10817 default: 10818 return (-1); 10819 } 10820 case IPPROTO_IPV6: 10821 switch (name) { 10822 case IPV6_UNICAST_HOPS: 10823 *i1 = ipv6_def_hops; 10824 return (sizeof (int)); 10825 case IPV6_MULTICAST_HOPS: 10826 *i1 = IP_DEFAULT_MULTICAST_TTL; 10827 return (sizeof (int)); 10828 case IPV6_MULTICAST_LOOP: 10829 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10830 return (sizeof (int)); 10831 case IPV6_V6ONLY: 10832 *i1 = 1; 10833 return (sizeof (int)); 10834 default: 10835 return (-1); 10836 } 10837 default: 10838 return (-1); 10839 } 10840 /* NOTREACHED */ 10841 } 10842 10843 /* 10844 * Given a destination address and a pointer to where to put the information 10845 * this routine fills in the mtuinfo. 10846 */ 10847 int 10848 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10849 struct ip6_mtuinfo *mtuinfo) 10850 { 10851 ire_t *ire; 10852 10853 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10854 return (-1); 10855 10856 bzero(mtuinfo, sizeof (*mtuinfo)); 10857 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10858 mtuinfo->ip6m_addr.sin6_port = port; 10859 mtuinfo->ip6m_addr.sin6_addr = *in6; 10860 10861 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 10862 if (ire != NULL) { 10863 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10864 ire_refrele(ire); 10865 } else { 10866 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10867 } 10868 return (sizeof (struct ip6_mtuinfo)); 10869 } 10870 10871 /* 10872 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10873 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10874 * isn't. This doesn't matter as the error checking is done properly for the 10875 * other MRT options coming in through ip_opt_set. 10876 */ 10877 int 10878 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10879 { 10880 conn_t *connp = Q_TO_CONN(q); 10881 ipsec_req_t *req = (ipsec_req_t *)ptr; 10882 10883 switch (level) { 10884 case IPPROTO_IP: 10885 switch (name) { 10886 case MRT_VERSION: 10887 case MRT_ASSERT: 10888 (void) ip_mrouter_get(name, q, ptr); 10889 return (sizeof (int)); 10890 case IP_SEC_OPT: 10891 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10892 case IP_NEXTHOP: 10893 if (connp->conn_nexthop_set) { 10894 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10895 return (sizeof (ipaddr_t)); 10896 } else 10897 return (0); 10898 default: 10899 break; 10900 } 10901 break; 10902 case IPPROTO_IPV6: 10903 switch (name) { 10904 case IPV6_SEC_OPT: 10905 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10906 case IPV6_SRC_PREFERENCES: { 10907 return (ip6_get_src_preferences(connp, 10908 (uint32_t *)ptr)); 10909 } 10910 case IPV6_V6ONLY: 10911 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10912 return (sizeof (int)); 10913 case IPV6_PATHMTU: 10914 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10915 (struct ip6_mtuinfo *)ptr)); 10916 default: 10917 break; 10918 } 10919 break; 10920 default: 10921 break; 10922 } 10923 return (-1); 10924 } 10925 10926 /* Named Dispatch routine to get a current value out of our parameter table. */ 10927 /* ARGSUSED */ 10928 static int 10929 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10930 { 10931 ipparam_t *ippa = (ipparam_t *)cp; 10932 10933 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10934 return (0); 10935 } 10936 10937 /* ARGSUSED */ 10938 static int 10939 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10940 { 10941 10942 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10943 return (0); 10944 } 10945 10946 /* 10947 * Set ip{,6}_forwarding values. This means walking through all of the 10948 * ill's and toggling their forwarding values. 10949 */ 10950 /* ARGSUSED */ 10951 static int 10952 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10953 { 10954 long new_value; 10955 int *forwarding_value = (int *)cp; 10956 ill_t *walker; 10957 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10958 ill_walk_context_t ctx; 10959 10960 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10961 new_value < 0 || new_value > 1) { 10962 return (EINVAL); 10963 } 10964 10965 *forwarding_value = new_value; 10966 10967 /* 10968 * Regardless of the current value of ip_forwarding, set all per-ill 10969 * values of ip_forwarding to the value being set. 10970 * 10971 * Bring all the ill's up to date with the new global value. 10972 */ 10973 rw_enter(&ill_g_lock, RW_READER); 10974 10975 if (isv6) 10976 walker = ILL_START_WALK_V6(&ctx); 10977 else 10978 walker = ILL_START_WALK_V4(&ctx); 10979 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10980 (void) ill_forward_set(q, mp, (new_value != 0), 10981 (caddr_t)walker); 10982 } 10983 rw_exit(&ill_g_lock); 10984 10985 return (0); 10986 } 10987 10988 /* 10989 * Walk through the param array specified registering each element with the 10990 * Named Dispatch handler. This is called only during init. So it is ok 10991 * not to acquire any locks 10992 */ 10993 static boolean_t 10994 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10995 ipndp_t *ipnd, size_t ipnd_cnt) 10996 { 10997 for (; ippa_cnt-- > 0; ippa++) { 10998 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10999 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11000 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11001 nd_free(&ip_g_nd); 11002 return (B_FALSE); 11003 } 11004 } 11005 } 11006 11007 for (; ipnd_cnt-- > 0; ipnd++) { 11008 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11009 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11010 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11011 ipnd->ip_ndp_data)) { 11012 nd_free(&ip_g_nd); 11013 return (B_FALSE); 11014 } 11015 } 11016 } 11017 11018 return (B_TRUE); 11019 } 11020 11021 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11022 /* ARGSUSED */ 11023 static int 11024 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11025 { 11026 long new_value; 11027 ipparam_t *ippa = (ipparam_t *)cp; 11028 11029 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11030 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11031 return (EINVAL); 11032 } 11033 ippa->ip_param_value = new_value; 11034 return (0); 11035 } 11036 11037 /* 11038 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11039 * When an ipf is passed here for the first time, if 11040 * we already have in-order fragments on the queue, we convert from the fast- 11041 * path reassembly scheme to the hard-case scheme. From then on, additional 11042 * fragments are reassembled here. We keep track of the start and end offsets 11043 * of each piece, and the number of holes in the chain. When the hole count 11044 * goes to zero, we are done! 11045 * 11046 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11047 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11048 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11049 * after the call to ip_reassemble(). 11050 */ 11051 int 11052 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11053 size_t msg_len) 11054 { 11055 uint_t end; 11056 mblk_t *next_mp; 11057 mblk_t *mp1; 11058 uint_t offset; 11059 boolean_t incr_dups = B_TRUE; 11060 boolean_t offset_zero_seen = B_FALSE; 11061 boolean_t pkt_boundary_checked = B_FALSE; 11062 11063 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11064 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11065 11066 /* Add in byte count */ 11067 ipf->ipf_count += msg_len; 11068 if (ipf->ipf_end) { 11069 /* 11070 * We were part way through in-order reassembly, but now there 11071 * is a hole. We walk through messages already queued, and 11072 * mark them for hard case reassembly. We know that up till 11073 * now they were in order starting from offset zero. 11074 */ 11075 offset = 0; 11076 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11077 IP_REASS_SET_START(mp1, offset); 11078 if (offset == 0) { 11079 ASSERT(ipf->ipf_nf_hdr_len != 0); 11080 offset = -ipf->ipf_nf_hdr_len; 11081 } 11082 offset += mp1->b_wptr - mp1->b_rptr; 11083 IP_REASS_SET_END(mp1, offset); 11084 } 11085 /* One hole at the end. */ 11086 ipf->ipf_hole_cnt = 1; 11087 /* Brand it as a hard case, forever. */ 11088 ipf->ipf_end = 0; 11089 } 11090 /* Walk through all the new pieces. */ 11091 do { 11092 end = start + (mp->b_wptr - mp->b_rptr); 11093 /* 11094 * If start is 0, decrease 'end' only for the first mblk of 11095 * the fragment. Otherwise 'end' can get wrong value in the 11096 * second pass of the loop if first mblk is exactly the 11097 * size of ipf_nf_hdr_len. 11098 */ 11099 if (start == 0 && !offset_zero_seen) { 11100 /* First segment */ 11101 ASSERT(ipf->ipf_nf_hdr_len != 0); 11102 end -= ipf->ipf_nf_hdr_len; 11103 offset_zero_seen = B_TRUE; 11104 } 11105 next_mp = mp->b_cont; 11106 /* 11107 * We are checking to see if there is any interesing data 11108 * to process. If there isn't and the mblk isn't the 11109 * one which carries the unfragmentable header then we 11110 * drop it. It's possible to have just the unfragmentable 11111 * header come through without any data. That needs to be 11112 * saved. 11113 * 11114 * If the assert at the top of this function holds then the 11115 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11116 * is infrequently traveled enough that the test is left in 11117 * to protect against future code changes which break that 11118 * invariant. 11119 */ 11120 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11121 /* Empty. Blast it. */ 11122 IP_REASS_SET_START(mp, 0); 11123 IP_REASS_SET_END(mp, 0); 11124 /* 11125 * If the ipf points to the mblk we are about to free, 11126 * update ipf to point to the next mblk (or NULL 11127 * if none). 11128 */ 11129 if (ipf->ipf_mp->b_cont == mp) 11130 ipf->ipf_mp->b_cont = next_mp; 11131 freeb(mp); 11132 continue; 11133 } 11134 mp->b_cont = NULL; 11135 IP_REASS_SET_START(mp, start); 11136 IP_REASS_SET_END(mp, end); 11137 if (!ipf->ipf_tail_mp) { 11138 ipf->ipf_tail_mp = mp; 11139 ipf->ipf_mp->b_cont = mp; 11140 if (start == 0 || !more) { 11141 ipf->ipf_hole_cnt = 1; 11142 /* 11143 * if the first fragment comes in more than one 11144 * mblk, this loop will be executed for each 11145 * mblk. Need to adjust hole count so exiting 11146 * this routine will leave hole count at 1. 11147 */ 11148 if (next_mp) 11149 ipf->ipf_hole_cnt++; 11150 } else 11151 ipf->ipf_hole_cnt = 2; 11152 continue; 11153 } else if (ipf->ipf_last_frag_seen && !more && 11154 !pkt_boundary_checked) { 11155 /* 11156 * We check datagram boundary only if this fragment 11157 * claims to be the last fragment and we have seen a 11158 * last fragment in the past too. We do this only 11159 * once for a given fragment. 11160 * 11161 * start cannot be 0 here as fragments with start=0 11162 * and MF=0 gets handled as a complete packet. These 11163 * fragments should not reach here. 11164 */ 11165 11166 if (start + msgdsize(mp) != 11167 IP_REASS_END(ipf->ipf_tail_mp)) { 11168 /* 11169 * We have two fragments both of which claim 11170 * to be the last fragment but gives conflicting 11171 * information about the whole datagram size. 11172 * Something fishy is going on. Drop the 11173 * fragment and free up the reassembly list. 11174 */ 11175 return (IP_REASS_FAILED); 11176 } 11177 11178 /* 11179 * We shouldn't come to this code block again for this 11180 * particular fragment. 11181 */ 11182 pkt_boundary_checked = B_TRUE; 11183 } 11184 11185 /* New stuff at or beyond tail? */ 11186 offset = IP_REASS_END(ipf->ipf_tail_mp); 11187 if (start >= offset) { 11188 if (ipf->ipf_last_frag_seen) { 11189 /* current fragment is beyond last fragment */ 11190 return (IP_REASS_FAILED); 11191 } 11192 /* Link it on end. */ 11193 ipf->ipf_tail_mp->b_cont = mp; 11194 ipf->ipf_tail_mp = mp; 11195 if (more) { 11196 if (start != offset) 11197 ipf->ipf_hole_cnt++; 11198 } else if (start == offset && next_mp == NULL) 11199 ipf->ipf_hole_cnt--; 11200 continue; 11201 } 11202 mp1 = ipf->ipf_mp->b_cont; 11203 offset = IP_REASS_START(mp1); 11204 /* New stuff at the front? */ 11205 if (start < offset) { 11206 if (start == 0) { 11207 if (end >= offset) { 11208 /* Nailed the hole at the begining. */ 11209 ipf->ipf_hole_cnt--; 11210 } 11211 } else if (end < offset) { 11212 /* 11213 * A hole, stuff, and a hole where there used 11214 * to be just a hole. 11215 */ 11216 ipf->ipf_hole_cnt++; 11217 } 11218 mp->b_cont = mp1; 11219 /* Check for overlap. */ 11220 while (end > offset) { 11221 if (end < IP_REASS_END(mp1)) { 11222 mp->b_wptr -= end - offset; 11223 IP_REASS_SET_END(mp, offset); 11224 if (ill->ill_isv6) { 11225 BUMP_MIB(ill->ill_ip6_mib, 11226 ipv6ReasmPartDups); 11227 } else { 11228 BUMP_MIB(&ip_mib, 11229 ipReasmPartDups); 11230 } 11231 break; 11232 } 11233 /* Did we cover another hole? */ 11234 if ((mp1->b_cont && 11235 IP_REASS_END(mp1) != 11236 IP_REASS_START(mp1->b_cont) && 11237 end >= IP_REASS_START(mp1->b_cont)) || 11238 (!ipf->ipf_last_frag_seen && !more)) { 11239 ipf->ipf_hole_cnt--; 11240 } 11241 /* Clip out mp1. */ 11242 if ((mp->b_cont = mp1->b_cont) == NULL) { 11243 /* 11244 * After clipping out mp1, this guy 11245 * is now hanging off the end. 11246 */ 11247 ipf->ipf_tail_mp = mp; 11248 } 11249 IP_REASS_SET_START(mp1, 0); 11250 IP_REASS_SET_END(mp1, 0); 11251 /* Subtract byte count */ 11252 ipf->ipf_count -= mp1->b_datap->db_lim - 11253 mp1->b_datap->db_base; 11254 freeb(mp1); 11255 if (ill->ill_isv6) { 11256 BUMP_MIB(ill->ill_ip6_mib, 11257 ipv6ReasmPartDups); 11258 } else { 11259 BUMP_MIB(&ip_mib, ipReasmPartDups); 11260 } 11261 mp1 = mp->b_cont; 11262 if (!mp1) 11263 break; 11264 offset = IP_REASS_START(mp1); 11265 } 11266 ipf->ipf_mp->b_cont = mp; 11267 continue; 11268 } 11269 /* 11270 * The new piece starts somewhere between the start of the head 11271 * and before the end of the tail. 11272 */ 11273 for (; mp1; mp1 = mp1->b_cont) { 11274 offset = IP_REASS_END(mp1); 11275 if (start < offset) { 11276 if (end <= offset) { 11277 /* Nothing new. */ 11278 IP_REASS_SET_START(mp, 0); 11279 IP_REASS_SET_END(mp, 0); 11280 /* Subtract byte count */ 11281 ipf->ipf_count -= mp->b_datap->db_lim - 11282 mp->b_datap->db_base; 11283 if (incr_dups) { 11284 ipf->ipf_num_dups++; 11285 incr_dups = B_FALSE; 11286 } 11287 freeb(mp); 11288 if (ill->ill_isv6) { 11289 BUMP_MIB(ill->ill_ip6_mib, 11290 ipv6ReasmDuplicates); 11291 } else { 11292 BUMP_MIB(&ip_mib, 11293 ipReasmDuplicates); 11294 } 11295 break; 11296 } 11297 /* 11298 * Trim redundant stuff off beginning of new 11299 * piece. 11300 */ 11301 IP_REASS_SET_START(mp, offset); 11302 mp->b_rptr += offset - start; 11303 if (ill->ill_isv6) { 11304 BUMP_MIB(ill->ill_ip6_mib, 11305 ipv6ReasmPartDups); 11306 } else { 11307 BUMP_MIB(&ip_mib, ipReasmPartDups); 11308 } 11309 start = offset; 11310 if (!mp1->b_cont) { 11311 /* 11312 * After trimming, this guy is now 11313 * hanging off the end. 11314 */ 11315 mp1->b_cont = mp; 11316 ipf->ipf_tail_mp = mp; 11317 if (!more) { 11318 ipf->ipf_hole_cnt--; 11319 } 11320 break; 11321 } 11322 } 11323 if (start >= IP_REASS_START(mp1->b_cont)) 11324 continue; 11325 /* Fill a hole */ 11326 if (start > offset) 11327 ipf->ipf_hole_cnt++; 11328 mp->b_cont = mp1->b_cont; 11329 mp1->b_cont = mp; 11330 mp1 = mp->b_cont; 11331 offset = IP_REASS_START(mp1); 11332 if (end >= offset) { 11333 ipf->ipf_hole_cnt--; 11334 /* Check for overlap. */ 11335 while (end > offset) { 11336 if (end < IP_REASS_END(mp1)) { 11337 mp->b_wptr -= end - offset; 11338 IP_REASS_SET_END(mp, offset); 11339 /* 11340 * TODO we might bump 11341 * this up twice if there is 11342 * overlap at both ends. 11343 */ 11344 if (ill->ill_isv6) { 11345 BUMP_MIB( 11346 ill->ill_ip6_mib, 11347 ipv6ReasmPartDups); 11348 } else { 11349 BUMP_MIB(&ip_mib, 11350 ipReasmPartDups); 11351 } 11352 break; 11353 } 11354 /* Did we cover another hole? */ 11355 if ((mp1->b_cont && 11356 IP_REASS_END(mp1) 11357 != IP_REASS_START(mp1->b_cont) && 11358 end >= 11359 IP_REASS_START(mp1->b_cont)) || 11360 (!ipf->ipf_last_frag_seen && 11361 !more)) { 11362 ipf->ipf_hole_cnt--; 11363 } 11364 /* Clip out mp1. */ 11365 if ((mp->b_cont = mp1->b_cont) == 11366 NULL) { 11367 /* 11368 * After clipping out mp1, 11369 * this guy is now hanging 11370 * off the end. 11371 */ 11372 ipf->ipf_tail_mp = mp; 11373 } 11374 IP_REASS_SET_START(mp1, 0); 11375 IP_REASS_SET_END(mp1, 0); 11376 /* Subtract byte count */ 11377 ipf->ipf_count -= 11378 mp1->b_datap->db_lim - 11379 mp1->b_datap->db_base; 11380 freeb(mp1); 11381 if (ill->ill_isv6) { 11382 BUMP_MIB(ill->ill_ip6_mib, 11383 ipv6ReasmPartDups); 11384 } else { 11385 BUMP_MIB(&ip_mib, 11386 ipReasmPartDups); 11387 } 11388 mp1 = mp->b_cont; 11389 if (!mp1) 11390 break; 11391 offset = IP_REASS_START(mp1); 11392 } 11393 } 11394 break; 11395 } 11396 } while (start = end, mp = next_mp); 11397 11398 /* Fragment just processed could be the last one. Remember this fact */ 11399 if (!more) 11400 ipf->ipf_last_frag_seen = B_TRUE; 11401 11402 /* Still got holes? */ 11403 if (ipf->ipf_hole_cnt) 11404 return (IP_REASS_PARTIAL); 11405 /* Clean up overloaded fields to avoid upstream disasters. */ 11406 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11407 IP_REASS_SET_START(mp1, 0); 11408 IP_REASS_SET_END(mp1, 0); 11409 } 11410 return (IP_REASS_COMPLETE); 11411 } 11412 11413 /* 11414 * ipsec processing for the fast path, used for input UDP Packets 11415 */ 11416 static boolean_t 11417 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11418 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11419 { 11420 uint32_t ill_index; 11421 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11422 11423 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11424 /* The ill_index of the incoming ILL */ 11425 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11426 11427 /* pass packet up to the transport */ 11428 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11429 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11430 NULL, mctl_present); 11431 if (*first_mpp == NULL) { 11432 return (B_FALSE); 11433 } 11434 } 11435 11436 /* Initiate IPPF processing for fastpath UDP */ 11437 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11438 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11439 if (*mpp == NULL) { 11440 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11441 "deferred/dropped during IPPF processing\n")); 11442 return (B_FALSE); 11443 } 11444 } 11445 /* 11446 * We make the checks as below since we are in the fast path 11447 * and want to minimize the number of checks if the IP_RECVIF and/or 11448 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11449 */ 11450 if (connp->conn_recvif || connp->conn_recvslla || 11451 connp->conn_ipv6_recvpktinfo) { 11452 if (connp->conn_recvif || 11453 connp->conn_ipv6_recvpktinfo) { 11454 in_flags = IPF_RECVIF; 11455 } 11456 if (connp->conn_recvslla) { 11457 in_flags |= IPF_RECVSLLA; 11458 } 11459 /* 11460 * since in_flags are being set ill will be 11461 * referenced in ip_add_info, so it better not 11462 * be NULL. 11463 */ 11464 /* 11465 * the actual data will be contained in b_cont 11466 * upon successful return of the following call. 11467 * If the call fails then the original mblk is 11468 * returned. 11469 */ 11470 *mpp = ip_add_info(*mpp, ill, in_flags); 11471 } 11472 11473 return (B_TRUE); 11474 } 11475 11476 /* 11477 * Fragmentation reassembly. Each ILL has a hash table for 11478 * queuing packets undergoing reassembly for all IPIFs 11479 * associated with the ILL. The hash is based on the packet 11480 * IP ident field. The ILL frag hash table was allocated 11481 * as a timer block at the time the ILL was created. Whenever 11482 * there is anything on the reassembly queue, the timer will 11483 * be running. Returns B_TRUE if successful else B_FALSE; 11484 * frees mp on failure. 11485 */ 11486 static boolean_t 11487 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11488 uint32_t *cksum_val, uint16_t *cksum_flags) 11489 { 11490 uint32_t frag_offset_flags; 11491 ill_t *ill = (ill_t *)q->q_ptr; 11492 mblk_t *mp = *mpp; 11493 mblk_t *t_mp; 11494 ipaddr_t dst; 11495 uint8_t proto = ipha->ipha_protocol; 11496 uint32_t sum_val; 11497 uint16_t sum_flags; 11498 ipf_t *ipf; 11499 ipf_t **ipfp; 11500 ipfb_t *ipfb; 11501 uint16_t ident; 11502 uint32_t offset; 11503 ipaddr_t src; 11504 uint_t hdr_length; 11505 uint32_t end; 11506 mblk_t *mp1; 11507 mblk_t *tail_mp; 11508 size_t count; 11509 size_t msg_len; 11510 uint8_t ecn_info = 0; 11511 uint32_t packet_size; 11512 boolean_t pruned = B_FALSE; 11513 11514 if (cksum_val != NULL) 11515 *cksum_val = 0; 11516 if (cksum_flags != NULL) 11517 *cksum_flags = 0; 11518 11519 /* 11520 * Drop the fragmented as early as possible, if 11521 * we don't have resource(s) to re-assemble. 11522 */ 11523 if (ip_reass_queue_bytes == 0) { 11524 freemsg(mp); 11525 return (B_FALSE); 11526 } 11527 11528 /* Check for fragmentation offset; return if there's none */ 11529 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11530 (IPH_MF | IPH_OFFSET)) == 0) 11531 return (B_TRUE); 11532 11533 /* 11534 * We utilize hardware computed checksum info only for UDP since 11535 * IP fragmentation is a normal occurence for the protocol. In 11536 * addition, checksum offload support for IP fragments carrying 11537 * UDP payload is commonly implemented across network adapters. 11538 */ 11539 ASSERT(ill != NULL); 11540 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11541 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11542 mblk_t *mp1 = mp->b_cont; 11543 int32_t len; 11544 11545 /* Record checksum information from the packet */ 11546 sum_val = (uint32_t)DB_CKSUM16(mp); 11547 sum_flags = DB_CKSUMFLAGS(mp); 11548 11549 /* IP payload offset from beginning of mblk */ 11550 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11551 11552 if ((sum_flags & HCK_PARTIALCKSUM) && 11553 (mp1 == NULL || mp1->b_cont == NULL) && 11554 offset >= DB_CKSUMSTART(mp) && 11555 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11556 uint32_t adj; 11557 /* 11558 * Partial checksum has been calculated by hardware 11559 * and attached to the packet; in addition, any 11560 * prepended extraneous data is even byte aligned. 11561 * If any such data exists, we adjust the checksum; 11562 * this would also handle any postpended data. 11563 */ 11564 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11565 mp, mp1, len, adj); 11566 11567 /* One's complement subtract extraneous checksum */ 11568 if (adj >= sum_val) 11569 sum_val = ~(adj - sum_val) & 0xFFFF; 11570 else 11571 sum_val -= adj; 11572 } 11573 } else { 11574 sum_val = 0; 11575 sum_flags = 0; 11576 } 11577 11578 /* Clear hardware checksumming flag */ 11579 DB_CKSUMFLAGS(mp) = 0; 11580 11581 ident = ipha->ipha_ident; 11582 offset = (frag_offset_flags << 3) & 0xFFFF; 11583 src = ipha->ipha_src; 11584 dst = ipha->ipha_dst; 11585 hdr_length = IPH_HDR_LENGTH(ipha); 11586 end = ntohs(ipha->ipha_length) - hdr_length; 11587 11588 /* If end == 0 then we have a packet with no data, so just free it */ 11589 if (end == 0) { 11590 freemsg(mp); 11591 return (B_FALSE); 11592 } 11593 11594 /* Record the ECN field info. */ 11595 ecn_info = (ipha->ipha_type_of_service & 0x3); 11596 if (offset != 0) { 11597 /* 11598 * If this isn't the first piece, strip the header, and 11599 * add the offset to the end value. 11600 */ 11601 mp->b_rptr += hdr_length; 11602 end += offset; 11603 } 11604 11605 msg_len = MBLKSIZE(mp); 11606 tail_mp = mp; 11607 while (tail_mp->b_cont != NULL) { 11608 tail_mp = tail_mp->b_cont; 11609 msg_len += MBLKSIZE(tail_mp); 11610 } 11611 11612 /* If the reassembly list for this ILL will get too big, prune it */ 11613 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11614 ip_reass_queue_bytes) { 11615 ill_frag_prune(ill, 11616 (ip_reass_queue_bytes < msg_len) ? 0 : 11617 (ip_reass_queue_bytes - msg_len)); 11618 pruned = B_TRUE; 11619 } 11620 11621 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11622 mutex_enter(&ipfb->ipfb_lock); 11623 11624 ipfp = &ipfb->ipfb_ipf; 11625 /* Try to find an existing fragment queue for this packet. */ 11626 for (;;) { 11627 ipf = ipfp[0]; 11628 if (ipf != NULL) { 11629 /* 11630 * It has to match on ident and src/dst address. 11631 */ 11632 if (ipf->ipf_ident == ident && 11633 ipf->ipf_src == src && 11634 ipf->ipf_dst == dst && 11635 ipf->ipf_protocol == proto) { 11636 /* 11637 * If we have received too many 11638 * duplicate fragments for this packet 11639 * free it. 11640 */ 11641 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11642 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11643 freemsg(mp); 11644 mutex_exit(&ipfb->ipfb_lock); 11645 return (B_FALSE); 11646 } 11647 /* Found it. */ 11648 break; 11649 } 11650 ipfp = &ipf->ipf_hash_next; 11651 continue; 11652 } 11653 11654 /* 11655 * If we pruned the list, do we want to store this new 11656 * fragment?. We apply an optimization here based on the 11657 * fact that most fragments will be received in order. 11658 * So if the offset of this incoming fragment is zero, 11659 * it is the first fragment of a new packet. We will 11660 * keep it. Otherwise drop the fragment, as we have 11661 * probably pruned the packet already (since the 11662 * packet cannot be found). 11663 */ 11664 if (pruned && offset != 0) { 11665 mutex_exit(&ipfb->ipfb_lock); 11666 freemsg(mp); 11667 return (B_FALSE); 11668 } 11669 11670 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11671 /* 11672 * Too many fragmented packets in this hash 11673 * bucket. Free the oldest. 11674 */ 11675 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11676 } 11677 11678 /* New guy. Allocate a frag message. */ 11679 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11680 if (mp1 == NULL) { 11681 BUMP_MIB(&ip_mib, ipInDiscards); 11682 freemsg(mp); 11683 reass_done: 11684 mutex_exit(&ipfb->ipfb_lock); 11685 return (B_FALSE); 11686 } 11687 11688 11689 BUMP_MIB(&ip_mib, ipReasmReqds); 11690 mp1->b_cont = mp; 11691 11692 /* Initialize the fragment header. */ 11693 ipf = (ipf_t *)mp1->b_rptr; 11694 ipf->ipf_mp = mp1; 11695 ipf->ipf_ptphn = ipfp; 11696 ipfp[0] = ipf; 11697 ipf->ipf_hash_next = NULL; 11698 ipf->ipf_ident = ident; 11699 ipf->ipf_protocol = proto; 11700 ipf->ipf_src = src; 11701 ipf->ipf_dst = dst; 11702 ipf->ipf_nf_hdr_len = 0; 11703 /* Record reassembly start time. */ 11704 ipf->ipf_timestamp = gethrestime_sec(); 11705 /* Record ipf generation and account for frag header */ 11706 ipf->ipf_gen = ill->ill_ipf_gen++; 11707 ipf->ipf_count = MBLKSIZE(mp1); 11708 ipf->ipf_last_frag_seen = B_FALSE; 11709 ipf->ipf_ecn = ecn_info; 11710 ipf->ipf_num_dups = 0; 11711 ipfb->ipfb_frag_pkts++; 11712 ipf->ipf_checksum = 0; 11713 ipf->ipf_checksum_flags = 0; 11714 11715 /* Store checksum value in fragment header */ 11716 if (sum_flags != 0) { 11717 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11718 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11719 ipf->ipf_checksum = sum_val; 11720 ipf->ipf_checksum_flags = sum_flags; 11721 } 11722 11723 /* 11724 * We handle reassembly two ways. In the easy case, 11725 * where all the fragments show up in order, we do 11726 * minimal bookkeeping, and just clip new pieces on 11727 * the end. If we ever see a hole, then we go off 11728 * to ip_reassemble which has to mark the pieces and 11729 * keep track of the number of holes, etc. Obviously, 11730 * the point of having both mechanisms is so we can 11731 * handle the easy case as efficiently as possible. 11732 */ 11733 if (offset == 0) { 11734 /* Easy case, in-order reassembly so far. */ 11735 ipf->ipf_count += msg_len; 11736 ipf->ipf_tail_mp = tail_mp; 11737 /* 11738 * Keep track of next expected offset in 11739 * ipf_end. 11740 */ 11741 ipf->ipf_end = end; 11742 ipf->ipf_nf_hdr_len = hdr_length; 11743 } else { 11744 /* Hard case, hole at the beginning. */ 11745 ipf->ipf_tail_mp = NULL; 11746 /* 11747 * ipf_end == 0 means that we have given up 11748 * on easy reassembly. 11749 */ 11750 ipf->ipf_end = 0; 11751 11752 /* Forget checksum offload from now on */ 11753 ipf->ipf_checksum_flags = 0; 11754 11755 /* 11756 * ipf_hole_cnt is set by ip_reassemble. 11757 * ipf_count is updated by ip_reassemble. 11758 * No need to check for return value here 11759 * as we don't expect reassembly to complete 11760 * or fail for the first fragment itself. 11761 */ 11762 (void) ip_reassemble(mp, ipf, 11763 (frag_offset_flags & IPH_OFFSET) << 3, 11764 (frag_offset_flags & IPH_MF), ill, msg_len); 11765 } 11766 /* Update per ipfb and ill byte counts */ 11767 ipfb->ipfb_count += ipf->ipf_count; 11768 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11769 ill->ill_frag_count += ipf->ipf_count; 11770 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11771 /* If the frag timer wasn't already going, start it. */ 11772 mutex_enter(&ill->ill_lock); 11773 ill_frag_timer_start(ill); 11774 mutex_exit(&ill->ill_lock); 11775 goto reass_done; 11776 } 11777 11778 /* 11779 * If the packet's flag has changed (it could be coming up 11780 * from an interface different than the previous, therefore 11781 * possibly different checksum capability), then forget about 11782 * any stored checksum states. Otherwise add the value to 11783 * the existing one stored in the fragment header. 11784 */ 11785 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11786 sum_val += ipf->ipf_checksum; 11787 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11788 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11789 ipf->ipf_checksum = sum_val; 11790 } else if (ipf->ipf_checksum_flags != 0) { 11791 /* Forget checksum offload from now on */ 11792 ipf->ipf_checksum_flags = 0; 11793 } 11794 11795 /* 11796 * We have a new piece of a datagram which is already being 11797 * reassembled. Update the ECN info if all IP fragments 11798 * are ECN capable. If there is one which is not, clear 11799 * all the info. If there is at least one which has CE 11800 * code point, IP needs to report that up to transport. 11801 */ 11802 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11803 if (ecn_info == IPH_ECN_CE) 11804 ipf->ipf_ecn = IPH_ECN_CE; 11805 } else { 11806 ipf->ipf_ecn = IPH_ECN_NECT; 11807 } 11808 if (offset && ipf->ipf_end == offset) { 11809 /* The new fragment fits at the end */ 11810 ipf->ipf_tail_mp->b_cont = mp; 11811 /* Update the byte count */ 11812 ipf->ipf_count += msg_len; 11813 /* Update per ipfb and ill byte counts */ 11814 ipfb->ipfb_count += msg_len; 11815 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11816 ill->ill_frag_count += msg_len; 11817 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11818 if (frag_offset_flags & IPH_MF) { 11819 /* More to come. */ 11820 ipf->ipf_end = end; 11821 ipf->ipf_tail_mp = tail_mp; 11822 goto reass_done; 11823 } 11824 } else { 11825 /* Go do the hard cases. */ 11826 int ret; 11827 11828 if (offset == 0) 11829 ipf->ipf_nf_hdr_len = hdr_length; 11830 11831 /* Save current byte count */ 11832 count = ipf->ipf_count; 11833 ret = ip_reassemble(mp, ipf, 11834 (frag_offset_flags & IPH_OFFSET) << 3, 11835 (frag_offset_flags & IPH_MF), ill, msg_len); 11836 /* Count of bytes added and subtracted (freeb()ed) */ 11837 count = ipf->ipf_count - count; 11838 if (count) { 11839 /* Update per ipfb and ill byte counts */ 11840 ipfb->ipfb_count += count; 11841 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11842 ill->ill_frag_count += count; 11843 ASSERT(ill->ill_frag_count > 0); 11844 } 11845 if (ret == IP_REASS_PARTIAL) { 11846 goto reass_done; 11847 } else if (ret == IP_REASS_FAILED) { 11848 /* Reassembly failed. Free up all resources */ 11849 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11850 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11851 IP_REASS_SET_START(t_mp, 0); 11852 IP_REASS_SET_END(t_mp, 0); 11853 } 11854 freemsg(mp); 11855 goto reass_done; 11856 } 11857 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11858 } 11859 /* 11860 * We have completed reassembly. Unhook the frag header from 11861 * the reassembly list. 11862 * 11863 * Before we free the frag header, record the ECN info 11864 * to report back to the transport. 11865 */ 11866 ecn_info = ipf->ipf_ecn; 11867 BUMP_MIB(&ip_mib, ipReasmOKs); 11868 ipfp = ipf->ipf_ptphn; 11869 11870 /* We need to supply these to caller */ 11871 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11872 sum_val = ipf->ipf_checksum; 11873 else 11874 sum_val = 0; 11875 11876 mp1 = ipf->ipf_mp; 11877 count = ipf->ipf_count; 11878 ipf = ipf->ipf_hash_next; 11879 if (ipf != NULL) 11880 ipf->ipf_ptphn = ipfp; 11881 ipfp[0] = ipf; 11882 ill->ill_frag_count -= count; 11883 ASSERT(ipfb->ipfb_count >= count); 11884 ipfb->ipfb_count -= count; 11885 ipfb->ipfb_frag_pkts--; 11886 mutex_exit(&ipfb->ipfb_lock); 11887 /* Ditch the frag header. */ 11888 mp = mp1->b_cont; 11889 11890 freeb(mp1); 11891 11892 /* Restore original IP length in header. */ 11893 packet_size = (uint32_t)msgdsize(mp); 11894 if (packet_size > IP_MAXPACKET) { 11895 freemsg(mp); 11896 BUMP_MIB(&ip_mib, ipInHdrErrors); 11897 return (B_FALSE); 11898 } 11899 11900 if (DB_REF(mp) > 1) { 11901 mblk_t *mp2 = copymsg(mp); 11902 11903 freemsg(mp); 11904 if (mp2 == NULL) { 11905 BUMP_MIB(&ip_mib, ipInDiscards); 11906 return (B_FALSE); 11907 } 11908 mp = mp2; 11909 } 11910 ipha = (ipha_t *)mp->b_rptr; 11911 11912 ipha->ipha_length = htons((uint16_t)packet_size); 11913 /* We're now complete, zip the frag state */ 11914 ipha->ipha_fragment_offset_and_flags = 0; 11915 /* Record the ECN info. */ 11916 ipha->ipha_type_of_service &= 0xFC; 11917 ipha->ipha_type_of_service |= ecn_info; 11918 *mpp = mp; 11919 11920 /* Reassembly is successful; return checksum information if needed */ 11921 if (cksum_val != NULL) 11922 *cksum_val = sum_val; 11923 if (cksum_flags != NULL) 11924 *cksum_flags = sum_flags; 11925 11926 return (B_TRUE); 11927 } 11928 11929 /* 11930 * Perform ip header check sum update local options. 11931 * return B_TRUE if all is well, else return B_FALSE and release 11932 * the mp. caller is responsible for decrementing ire ref cnt. 11933 */ 11934 static boolean_t 11935 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11936 { 11937 mblk_t *first_mp; 11938 boolean_t mctl_present; 11939 uint16_t sum; 11940 11941 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11942 /* 11943 * Don't do the checksum if it has gone through AH/ESP 11944 * processing. 11945 */ 11946 if (!mctl_present) { 11947 sum = ip_csum_hdr(ipha); 11948 if (sum != 0) { 11949 BUMP_MIB(&ip_mib, ipInCksumErrs); 11950 freemsg(first_mp); 11951 return (B_FALSE); 11952 } 11953 } 11954 11955 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11956 if (mctl_present) 11957 freeb(first_mp); 11958 return (B_FALSE); 11959 } 11960 11961 return (B_TRUE); 11962 } 11963 11964 /* 11965 * All udp packet are delivered to the local host via this routine. 11966 */ 11967 void 11968 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11969 ill_t *recv_ill) 11970 { 11971 uint32_t sum; 11972 uint32_t u1; 11973 boolean_t mctl_present; 11974 conn_t *connp; 11975 mblk_t *first_mp; 11976 uint16_t *up; 11977 ill_t *ill = (ill_t *)q->q_ptr; 11978 uint16_t reass_hck_flags = 0; 11979 11980 #define rptr ((uchar_t *)ipha) 11981 11982 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11983 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11984 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11985 11986 /* 11987 * FAST PATH for udp packets 11988 */ 11989 11990 /* u1 is # words of IP options */ 11991 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11992 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11993 11994 /* IP options present */ 11995 if (u1 != 0) 11996 goto ipoptions; 11997 11998 /* Check the IP header checksum. */ 11999 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12000 /* Clear the IP header h/w cksum flag */ 12001 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12002 } else { 12003 #define uph ((uint16_t *)ipha) 12004 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12005 uph[6] + uph[7] + uph[8] + uph[9]; 12006 #undef uph 12007 /* finish doing IP checksum */ 12008 sum = (sum & 0xFFFF) + (sum >> 16); 12009 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12010 /* 12011 * Don't verify header checksum if this packet is coming 12012 * back from AH/ESP as we already did it. 12013 */ 12014 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12015 BUMP_MIB(&ip_mib, ipInCksumErrs); 12016 freemsg(first_mp); 12017 return; 12018 } 12019 } 12020 12021 /* 12022 * Count for SNMP of inbound packets for ire. 12023 * if mctl is present this might be a secure packet and 12024 * has already been counted for in ip_proto_input(). 12025 */ 12026 if (!mctl_present) { 12027 UPDATE_IB_PKT_COUNT(ire); 12028 ire->ire_last_used_time = lbolt; 12029 } 12030 12031 /* packet part of fragmented IP packet? */ 12032 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12033 if (u1 & (IPH_MF | IPH_OFFSET)) { 12034 goto fragmented; 12035 } 12036 12037 /* u1 = IP header length (20 bytes) */ 12038 u1 = IP_SIMPLE_HDR_LENGTH; 12039 12040 /* packet does not contain complete IP & UDP headers */ 12041 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12042 goto udppullup; 12043 12044 /* up points to UDP header */ 12045 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12046 #define iphs ((uint16_t *)ipha) 12047 12048 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12049 if (up[3] != 0) { 12050 mblk_t *mp1 = mp->b_cont; 12051 boolean_t cksum_err; 12052 uint16_t hck_flags = 0; 12053 12054 /* Pseudo-header checksum */ 12055 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12056 iphs[9] + up[2]; 12057 12058 /* 12059 * Revert to software checksum calculation if the interface 12060 * isn't capable of checksum offload or if IPsec is present. 12061 */ 12062 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12063 hck_flags = DB_CKSUMFLAGS(mp); 12064 12065 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12066 IP_STAT(ip_in_sw_cksum); 12067 12068 IP_CKSUM_RECV(hck_flags, u1, 12069 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12070 (int32_t)((uchar_t *)up - rptr), 12071 mp, mp1, cksum_err); 12072 12073 if (cksum_err) { 12074 BUMP_MIB(&ip_mib, udpInCksumErrs); 12075 12076 if (hck_flags & HCK_FULLCKSUM) 12077 IP_STAT(ip_udp_in_full_hw_cksum_err); 12078 else if (hck_flags & HCK_PARTIALCKSUM) 12079 IP_STAT(ip_udp_in_part_hw_cksum_err); 12080 else 12081 IP_STAT(ip_udp_in_sw_cksum_err); 12082 12083 freemsg(first_mp); 12084 return; 12085 } 12086 } 12087 12088 /* Non-fragmented broadcast or multicast packet? */ 12089 if (ire->ire_type == IRE_BROADCAST) 12090 goto udpslowpath; 12091 12092 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12093 ire->ire_zoneid)) != NULL) { 12094 ASSERT(connp->conn_upq != NULL); 12095 IP_STAT(ip_udp_fast_path); 12096 12097 if (CONN_UDP_FLOWCTLD(connp)) { 12098 freemsg(mp); 12099 BUMP_MIB(&ip_mib, udpInOverflows); 12100 } else { 12101 if (!mctl_present) { 12102 BUMP_MIB(&ip_mib, ipInDelivers); 12103 } 12104 /* 12105 * mp and first_mp can change. 12106 */ 12107 if (ip_udp_check(q, connp, recv_ill, 12108 ipha, &mp, &first_mp, mctl_present)) { 12109 /* Send it upstream */ 12110 CONN_UDP_RECV(connp, mp); 12111 } 12112 } 12113 /* 12114 * freeb() cannot deal with null mblk being passed 12115 * in and first_mp can be set to null in the call 12116 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12117 */ 12118 if (mctl_present && first_mp != NULL) { 12119 freeb(first_mp); 12120 } 12121 CONN_DEC_REF(connp); 12122 return; 12123 } 12124 12125 /* 12126 * if we got here we know the packet is not fragmented and 12127 * has no options. The classifier could not find a conn_t and 12128 * most likely its an icmp packet so send it through slow path. 12129 */ 12130 12131 goto udpslowpath; 12132 12133 ipoptions: 12134 if (!ip_options_cksum(q, mp, ipha, ire)) { 12135 goto slow_done; 12136 } 12137 12138 UPDATE_IB_PKT_COUNT(ire); 12139 ire->ire_last_used_time = lbolt; 12140 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12141 if (u1 & (IPH_MF | IPH_OFFSET)) { 12142 fragmented: 12143 /* 12144 * "sum" and "reass_hck_flags" are non-zero if the 12145 * reassembled packet has a valid hardware computed 12146 * checksum information associated with it. 12147 */ 12148 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12149 goto slow_done; 12150 /* 12151 * Make sure that first_mp points back to mp as 12152 * the mp we came in with could have changed in 12153 * ip_rput_fragment(). 12154 */ 12155 ASSERT(!mctl_present); 12156 ipha = (ipha_t *)mp->b_rptr; 12157 first_mp = mp; 12158 } 12159 12160 /* Now we have a complete datagram, destined for this machine. */ 12161 u1 = IPH_HDR_LENGTH(ipha); 12162 /* Pull up the UDP header, if necessary. */ 12163 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12164 udppullup: 12165 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12166 BUMP_MIB(&ip_mib, ipInDiscards); 12167 freemsg(first_mp); 12168 goto slow_done; 12169 } 12170 ipha = (ipha_t *)mp->b_rptr; 12171 } 12172 12173 /* 12174 * Validate the checksum for the reassembled packet; for the 12175 * pullup case we calculate the payload checksum in software. 12176 */ 12177 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12178 if (up[3] != 0) { 12179 boolean_t cksum_err; 12180 12181 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12182 IP_STAT(ip_in_sw_cksum); 12183 12184 IP_CKSUM_RECV_REASS(reass_hck_flags, 12185 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12186 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12187 iphs[9] + up[2], sum, cksum_err); 12188 12189 if (cksum_err) { 12190 BUMP_MIB(&ip_mib, udpInCksumErrs); 12191 12192 if (reass_hck_flags & HCK_FULLCKSUM) 12193 IP_STAT(ip_udp_in_full_hw_cksum_err); 12194 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12195 IP_STAT(ip_udp_in_part_hw_cksum_err); 12196 else 12197 IP_STAT(ip_udp_in_sw_cksum_err); 12198 12199 freemsg(first_mp); 12200 goto slow_done; 12201 } 12202 } 12203 udpslowpath: 12204 12205 /* Clear hardware checksum flag to be safe */ 12206 DB_CKSUMFLAGS(mp) = 0; 12207 12208 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12209 (ire->ire_type == IRE_BROADCAST), 12210 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12211 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12212 12213 slow_done: 12214 IP_STAT(ip_udp_slow_path); 12215 return; 12216 12217 #undef iphs 12218 #undef rptr 12219 } 12220 12221 /* ARGSUSED */ 12222 static mblk_t * 12223 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12224 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12225 ill_rx_ring_t *ill_ring) 12226 { 12227 conn_t *connp; 12228 uint32_t sum; 12229 uint32_t u1; 12230 uint16_t *up; 12231 int offset; 12232 ssize_t len; 12233 mblk_t *mp1; 12234 boolean_t syn_present = B_FALSE; 12235 tcph_t *tcph; 12236 uint_t ip_hdr_len; 12237 ill_t *ill = (ill_t *)q->q_ptr; 12238 zoneid_t zoneid = ire->ire_zoneid; 12239 boolean_t cksum_err; 12240 uint16_t hck_flags = 0; 12241 12242 #define rptr ((uchar_t *)ipha) 12243 12244 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12245 12246 /* 12247 * FAST PATH for tcp packets 12248 */ 12249 12250 /* u1 is # words of IP options */ 12251 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12252 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12253 12254 /* IP options present */ 12255 if (u1) { 12256 goto ipoptions; 12257 } else { 12258 /* Check the IP header checksum. */ 12259 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12260 /* Clear the IP header h/w cksum flag */ 12261 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12262 } else { 12263 #define uph ((uint16_t *)ipha) 12264 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12265 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12266 #undef uph 12267 /* finish doing IP checksum */ 12268 sum = (sum & 0xFFFF) + (sum >> 16); 12269 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12270 /* 12271 * Don't verify header checksum if this packet 12272 * is coming back from AH/ESP as we already did it. 12273 */ 12274 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12275 BUMP_MIB(&ip_mib, ipInCksumErrs); 12276 goto error; 12277 } 12278 } 12279 } 12280 12281 if (!mctl_present) { 12282 UPDATE_IB_PKT_COUNT(ire); 12283 ire->ire_last_used_time = lbolt; 12284 } 12285 12286 /* packet part of fragmented IP packet? */ 12287 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12288 if (u1 & (IPH_MF | IPH_OFFSET)) { 12289 goto fragmented; 12290 } 12291 12292 /* u1 = IP header length (20 bytes) */ 12293 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12294 12295 /* does packet contain IP+TCP headers? */ 12296 len = mp->b_wptr - rptr; 12297 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12298 IP_STAT(ip_tcppullup); 12299 goto tcppullup; 12300 } 12301 12302 /* TCP options present? */ 12303 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12304 12305 /* 12306 * If options need to be pulled up, then goto tcpoptions. 12307 * otherwise we are still in the fast path 12308 */ 12309 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12310 IP_STAT(ip_tcpoptions); 12311 goto tcpoptions; 12312 } 12313 12314 /* multiple mblks of tcp data? */ 12315 if ((mp1 = mp->b_cont) != NULL) { 12316 /* more then two? */ 12317 if (mp1->b_cont != NULL) { 12318 IP_STAT(ip_multipkttcp); 12319 goto multipkttcp; 12320 } 12321 len += mp1->b_wptr - mp1->b_rptr; 12322 } 12323 12324 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12325 12326 /* part of pseudo checksum */ 12327 12328 /* TCP datagram length */ 12329 u1 = len - IP_SIMPLE_HDR_LENGTH; 12330 12331 #define iphs ((uint16_t *)ipha) 12332 12333 #ifdef _BIG_ENDIAN 12334 u1 += IPPROTO_TCP; 12335 #else 12336 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12337 #endif 12338 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12339 12340 /* 12341 * Revert to software checksum calculation if the interface 12342 * isn't capable of checksum offload or if IPsec is present. 12343 */ 12344 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12345 hck_flags = DB_CKSUMFLAGS(mp); 12346 12347 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12348 IP_STAT(ip_in_sw_cksum); 12349 12350 IP_CKSUM_RECV(hck_flags, u1, 12351 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12352 (int32_t)((uchar_t *)up - rptr), 12353 mp, mp1, cksum_err); 12354 12355 if (cksum_err) { 12356 BUMP_MIB(&ip_mib, tcpInErrs); 12357 12358 if (hck_flags & HCK_FULLCKSUM) 12359 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12360 else if (hck_flags & HCK_PARTIALCKSUM) 12361 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12362 else 12363 IP_STAT(ip_tcp_in_sw_cksum_err); 12364 12365 goto error; 12366 } 12367 12368 try_again: 12369 12370 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12371 NULL) { 12372 /* Send the TH_RST */ 12373 goto no_conn; 12374 } 12375 12376 /* 12377 * TCP FAST PATH for AF_INET socket. 12378 * 12379 * TCP fast path to avoid extra work. An AF_INET socket type 12380 * does not have facility to receive extra information via 12381 * ip_process or ip_add_info. Also, when the connection was 12382 * established, we made a check if this connection is impacted 12383 * by any global IPSec policy or per connection policy (a 12384 * policy that comes in effect later will not apply to this 12385 * connection). Since all this can be determined at the 12386 * connection establishment time, a quick check of flags 12387 * can avoid extra work. 12388 */ 12389 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12390 !IPP_ENABLED(IPP_LOCAL_IN)) { 12391 ASSERT(first_mp == mp); 12392 SET_SQUEUE(mp, tcp_rput_data, connp); 12393 return (mp); 12394 } 12395 12396 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12397 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12398 if (IPCL_IS_TCP(connp)) { 12399 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12400 DB_CKSUMSTART(mp) = 12401 (intptr_t)ip_squeue_get(ill_ring); 12402 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12403 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12404 SET_SQUEUE(mp, connp->conn_recv, connp); 12405 return (mp); 12406 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12407 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12408 ip_squeue_enter_unbound++; 12409 SET_SQUEUE(mp, tcp_conn_request_unbound, 12410 connp); 12411 return (mp); 12412 } 12413 syn_present = B_TRUE; 12414 } 12415 12416 } 12417 12418 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12419 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12420 12421 /* No need to send this packet to TCP */ 12422 if ((flags & TH_RST) || (flags & TH_URG)) { 12423 CONN_DEC_REF(connp); 12424 freemsg(first_mp); 12425 return (NULL); 12426 } 12427 if (flags & TH_ACK) { 12428 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12429 CONN_DEC_REF(connp); 12430 return (NULL); 12431 } 12432 12433 CONN_DEC_REF(connp); 12434 freemsg(first_mp); 12435 return (NULL); 12436 } 12437 12438 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12439 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12440 ipha, NULL, mctl_present); 12441 if (first_mp == NULL) { 12442 CONN_DEC_REF(connp); 12443 return (NULL); 12444 } 12445 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12446 ASSERT(syn_present); 12447 if (mctl_present) { 12448 ASSERT(first_mp != mp); 12449 first_mp->b_datap->db_struioflag |= 12450 STRUIO_POLICY; 12451 } else { 12452 ASSERT(first_mp == mp); 12453 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12454 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12455 } 12456 } else { 12457 /* 12458 * Discard first_mp early since we're dealing with a 12459 * fully-connected conn_t and tcp doesn't do policy in 12460 * this case. 12461 */ 12462 if (mctl_present) { 12463 freeb(first_mp); 12464 mctl_present = B_FALSE; 12465 } 12466 first_mp = mp; 12467 } 12468 } 12469 12470 /* Initiate IPPF processing for fastpath */ 12471 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12472 uint32_t ill_index; 12473 12474 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12475 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12476 if (mp == NULL) { 12477 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12478 "deferred/dropped during IPPF processing\n")); 12479 CONN_DEC_REF(connp); 12480 if (mctl_present) 12481 freeb(first_mp); 12482 return (NULL); 12483 } else if (mctl_present) { 12484 /* 12485 * ip_process might return a new mp. 12486 */ 12487 ASSERT(first_mp != mp); 12488 first_mp->b_cont = mp; 12489 } else { 12490 first_mp = mp; 12491 } 12492 12493 } 12494 12495 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12496 mp = ip_add_info(mp, recv_ill, flags); 12497 if (mp == NULL) { 12498 CONN_DEC_REF(connp); 12499 if (mctl_present) 12500 freeb(first_mp); 12501 return (NULL); 12502 } else if (mctl_present) { 12503 /* 12504 * ip_add_info might return a new mp. 12505 */ 12506 ASSERT(first_mp != mp); 12507 first_mp->b_cont = mp; 12508 } else { 12509 first_mp = mp; 12510 } 12511 } 12512 12513 if (IPCL_IS_TCP(connp)) { 12514 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12515 return (first_mp); 12516 } else { 12517 putnext(connp->conn_rq, first_mp); 12518 CONN_DEC_REF(connp); 12519 return (NULL); 12520 } 12521 12522 no_conn: 12523 /* Initiate IPPf processing, if needed. */ 12524 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12525 uint32_t ill_index; 12526 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12527 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12528 if (first_mp == NULL) { 12529 return (NULL); 12530 } 12531 } 12532 BUMP_MIB(&ip_mib, ipInDelivers); 12533 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12534 return (NULL); 12535 ipoptions: 12536 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12537 goto slow_done; 12538 } 12539 12540 UPDATE_IB_PKT_COUNT(ire); 12541 ire->ire_last_used_time = lbolt; 12542 12543 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12544 if (u1 & (IPH_MF | IPH_OFFSET)) { 12545 fragmented: 12546 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12547 if (mctl_present) 12548 freeb(first_mp); 12549 goto slow_done; 12550 } 12551 /* 12552 * Make sure that first_mp points back to mp as 12553 * the mp we came in with could have changed in 12554 * ip_rput_fragment(). 12555 */ 12556 ASSERT(!mctl_present); 12557 ipha = (ipha_t *)mp->b_rptr; 12558 first_mp = mp; 12559 } 12560 12561 /* Now we have a complete datagram, destined for this machine. */ 12562 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12563 12564 len = mp->b_wptr - mp->b_rptr; 12565 /* Pull up a minimal TCP header, if necessary. */ 12566 if (len < (u1 + 20)) { 12567 tcppullup: 12568 if (!pullupmsg(mp, u1 + 20)) { 12569 BUMP_MIB(&ip_mib, ipInDiscards); 12570 goto error; 12571 } 12572 ipha = (ipha_t *)mp->b_rptr; 12573 len = mp->b_wptr - mp->b_rptr; 12574 } 12575 12576 /* 12577 * Extract the offset field from the TCP header. As usual, we 12578 * try to help the compiler more than the reader. 12579 */ 12580 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12581 if (offset != 5) { 12582 tcpoptions: 12583 if (offset < 5) { 12584 BUMP_MIB(&ip_mib, ipInDiscards); 12585 goto error; 12586 } 12587 /* 12588 * There must be TCP options. 12589 * Make sure we can grab them. 12590 */ 12591 offset <<= 2; 12592 offset += u1; 12593 if (len < offset) { 12594 if (!pullupmsg(mp, offset)) { 12595 BUMP_MIB(&ip_mib, ipInDiscards); 12596 goto error; 12597 } 12598 ipha = (ipha_t *)mp->b_rptr; 12599 len = mp->b_wptr - rptr; 12600 } 12601 } 12602 12603 /* Get the total packet length in len, including headers. */ 12604 if (mp->b_cont) { 12605 multipkttcp: 12606 len = msgdsize(mp); 12607 } 12608 12609 /* 12610 * Check the TCP checksum by pulling together the pseudo- 12611 * header checksum, and passing it to ip_csum to be added in 12612 * with the TCP datagram. 12613 * 12614 * Since we are not using the hwcksum if available we must 12615 * clear the flag. We may come here via tcppullup or tcpoptions. 12616 * If either of these fails along the way the mblk is freed. 12617 * If this logic ever changes and mblk is reused to say send 12618 * ICMP's back, then this flag may need to be cleared in 12619 * other places as well. 12620 */ 12621 DB_CKSUMFLAGS(mp) = 0; 12622 12623 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12624 12625 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12626 #ifdef _BIG_ENDIAN 12627 u1 += IPPROTO_TCP; 12628 #else 12629 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12630 #endif 12631 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12632 /* 12633 * Not M_DATA mblk or its a dup, so do the checksum now. 12634 */ 12635 IP_STAT(ip_in_sw_cksum); 12636 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12637 BUMP_MIB(&ip_mib, tcpInErrs); 12638 goto error; 12639 } 12640 12641 IP_STAT(ip_tcp_slow_path); 12642 goto try_again; 12643 #undef iphs 12644 #undef rptr 12645 12646 error: 12647 freemsg(first_mp); 12648 slow_done: 12649 return (NULL); 12650 } 12651 12652 /* ARGSUSED */ 12653 static void 12654 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12655 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12656 { 12657 conn_t *connp; 12658 uint32_t sum; 12659 uint32_t u1; 12660 ssize_t len; 12661 sctp_hdr_t *sctph; 12662 zoneid_t zoneid = ire->ire_zoneid; 12663 uint32_t pktsum; 12664 uint32_t calcsum; 12665 uint32_t ports; 12666 uint_t ipif_seqid; 12667 in6_addr_t map_src, map_dst; 12668 ill_t *ill = (ill_t *)q->q_ptr; 12669 12670 #define rptr ((uchar_t *)ipha) 12671 12672 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12673 12674 /* u1 is # words of IP options */ 12675 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12676 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12677 12678 /* IP options present */ 12679 if (u1 > 0) { 12680 goto ipoptions; 12681 } else { 12682 /* Check the IP header checksum. */ 12683 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12684 #define uph ((uint16_t *)ipha) 12685 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12686 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12687 #undef uph 12688 /* finish doing IP checksum */ 12689 sum = (sum & 0xFFFF) + (sum >> 16); 12690 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12691 /* 12692 * Don't verify header checksum if this packet 12693 * is coming back from AH/ESP as we already did it. 12694 */ 12695 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12696 BUMP_MIB(&ip_mib, ipInCksumErrs); 12697 goto error; 12698 } 12699 } 12700 /* 12701 * Since there is no SCTP h/w cksum support yet, just 12702 * clear the flag. 12703 */ 12704 DB_CKSUMFLAGS(mp) = 0; 12705 } 12706 12707 /* 12708 * Don't verify header checksum if this packet is coming 12709 * back from AH/ESP as we already did it. 12710 */ 12711 if (!mctl_present) { 12712 UPDATE_IB_PKT_COUNT(ire); 12713 ire->ire_last_used_time = lbolt; 12714 } 12715 12716 /* packet part of fragmented IP packet? */ 12717 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12718 if (u1 & (IPH_MF | IPH_OFFSET)) 12719 goto fragmented; 12720 12721 /* u1 = IP header length (20 bytes) */ 12722 u1 = IP_SIMPLE_HDR_LENGTH; 12723 12724 find_sctp_client: 12725 /* Pullup if we don't have the sctp common header. */ 12726 len = MBLKL(mp); 12727 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12728 if (mp->b_cont == NULL || 12729 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12730 BUMP_MIB(&ip_mib, ipInDiscards); 12731 goto error; 12732 } 12733 ipha = (ipha_t *)mp->b_rptr; 12734 len = MBLKL(mp); 12735 } 12736 12737 sctph = (sctp_hdr_t *)(rptr + u1); 12738 #ifdef DEBUG 12739 if (!skip_sctp_cksum) { 12740 #endif 12741 pktsum = sctph->sh_chksum; 12742 sctph->sh_chksum = 0; 12743 calcsum = sctp_cksum(mp, u1); 12744 if (calcsum != pktsum) { 12745 BUMP_MIB(&sctp_mib, sctpChecksumError); 12746 goto error; 12747 } 12748 sctph->sh_chksum = pktsum; 12749 #ifdef DEBUG /* skip_sctp_cksum */ 12750 } 12751 #endif 12752 /* get the ports */ 12753 ports = *(uint32_t *)&sctph->sh_sport; 12754 12755 ipif_seqid = ire->ire_ipif->ipif_seqid; 12756 IRE_REFRELE(ire); 12757 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12758 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12759 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 12760 mp)) == NULL) { 12761 /* Check for raw socket or OOTB handling */ 12762 goto no_conn; 12763 } 12764 12765 /* Found a client; up it goes */ 12766 BUMP_MIB(&ip_mib, ipInDelivers); 12767 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12768 return; 12769 12770 no_conn: 12771 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12772 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12773 return; 12774 12775 ipoptions: 12776 DB_CKSUMFLAGS(mp) = 0; 12777 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12778 goto slow_done; 12779 12780 UPDATE_IB_PKT_COUNT(ire); 12781 ire->ire_last_used_time = lbolt; 12782 12783 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12784 if (u1 & (IPH_MF | IPH_OFFSET)) { 12785 fragmented: 12786 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12787 goto slow_done; 12788 /* 12789 * Make sure that first_mp points back to mp as 12790 * the mp we came in with could have changed in 12791 * ip_rput_fragment(). 12792 */ 12793 ASSERT(!mctl_present); 12794 ipha = (ipha_t *)mp->b_rptr; 12795 first_mp = mp; 12796 } 12797 12798 /* Now we have a complete datagram, destined for this machine. */ 12799 u1 = IPH_HDR_LENGTH(ipha); 12800 goto find_sctp_client; 12801 #undef iphs 12802 #undef rptr 12803 12804 error: 12805 freemsg(first_mp); 12806 slow_done: 12807 IRE_REFRELE(ire); 12808 } 12809 12810 #define VER_BITS 0xF0 12811 #define VERSION_6 0x60 12812 12813 static boolean_t 12814 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12815 ipaddr_t *dstp) 12816 { 12817 uint_t opt_len; 12818 ipha_t *ipha; 12819 ssize_t len; 12820 uint_t pkt_len; 12821 12822 IP_STAT(ip_ipoptions); 12823 ipha = *iphapp; 12824 12825 #define rptr ((uchar_t *)ipha) 12826 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12827 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12828 BUMP_MIB(&ip_mib, ipInIPv6); 12829 freemsg(mp); 12830 return (B_FALSE); 12831 } 12832 12833 /* multiple mblk or too short */ 12834 pkt_len = ntohs(ipha->ipha_length); 12835 12836 /* Get the number of words of IP options in the IP header. */ 12837 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12838 if (opt_len) { 12839 /* IP Options present! Validate and process. */ 12840 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12841 BUMP_MIB(&ip_mib, ipInHdrErrors); 12842 goto done; 12843 } 12844 /* 12845 * Recompute complete header length and make sure we 12846 * have access to all of it. 12847 */ 12848 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12849 if (len > (mp->b_wptr - rptr)) { 12850 if (len > pkt_len) { 12851 BUMP_MIB(&ip_mib, ipInHdrErrors); 12852 goto done; 12853 } 12854 if (!pullupmsg(mp, len)) { 12855 BUMP_MIB(&ip_mib, ipInDiscards); 12856 goto done; 12857 } 12858 ipha = (ipha_t *)mp->b_rptr; 12859 } 12860 /* 12861 * Go off to ip_rput_options which returns the next hop 12862 * destination address, which may have been affected 12863 * by source routing. 12864 */ 12865 IP_STAT(ip_opt); 12866 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12867 return (B_FALSE); 12868 } 12869 } 12870 *iphapp = ipha; 12871 return (B_TRUE); 12872 done: 12873 /* clear b_prev - used by ip_mroute_decap */ 12874 mp->b_prev = NULL; 12875 freemsg(mp); 12876 return (B_FALSE); 12877 #undef rptr 12878 } 12879 12880 /* 12881 * Deal with the fact that there is no ire for the destination. 12882 * The incoming ill (in_ill) is passed in to ip_newroute only 12883 * in the case of packets coming from mobile ip forward tunnel. 12884 * It must be null otherwise. 12885 */ 12886 static void 12887 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12888 ipaddr_t dst) 12889 { 12890 ipha_t *ipha; 12891 ill_t *ill; 12892 12893 ipha = (ipha_t *)mp->b_rptr; 12894 ill = (ill_t *)q->q_ptr; 12895 12896 ASSERT(ill != NULL); 12897 /* 12898 * No IRE for this destination, so it can't be for us. 12899 * Unless we are forwarding, drop the packet. 12900 * We have to let source routed packets through 12901 * since we don't yet know if they are 'ping -l' 12902 * packets i.e. if they will go out over the 12903 * same interface as they came in on. 12904 */ 12905 if (ll_multicast) { 12906 freemsg(mp); 12907 return; 12908 } 12909 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12910 BUMP_MIB(&ip_mib, ipForwProhibits); 12911 freemsg(mp); 12912 return; 12913 } 12914 12915 /* Check for Martian addresses */ 12916 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12917 freemsg(mp); 12918 return; 12919 } 12920 12921 /* Mark this packet as having originated externally */ 12922 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12923 12924 /* 12925 * Clear the indication that this may have a hardware checksum 12926 * as we are not using it 12927 */ 12928 DB_CKSUMFLAGS(mp) = 0; 12929 12930 /* 12931 * Now hand the packet to ip_newroute. 12932 */ 12933 ip_newroute(q, mp, dst, in_ill, NULL); 12934 } 12935 12936 /* 12937 * check ip header length and align it. 12938 */ 12939 static boolean_t 12940 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12941 { 12942 ssize_t len; 12943 ill_t *ill; 12944 ipha_t *ipha; 12945 12946 len = MBLKL(mp); 12947 12948 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12949 if (!OK_32PTR(mp->b_rptr)) 12950 IP_STAT(ip_notaligned1); 12951 else 12952 IP_STAT(ip_notaligned2); 12953 /* Guard against bogus device drivers */ 12954 if (len < 0) { 12955 /* clear b_prev - used by ip_mroute_decap */ 12956 mp->b_prev = NULL; 12957 BUMP_MIB(&ip_mib, ipInHdrErrors); 12958 freemsg(mp); 12959 return (B_FALSE); 12960 } 12961 12962 if (ip_rput_pullups++ == 0) { 12963 ill = (ill_t *)q->q_ptr; 12964 ipha = (ipha_t *)mp->b_rptr; 12965 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12966 "ip_check_and_align_header: %s forced us to " 12967 " pullup pkt, hdr len %ld, hdr addr %p", 12968 ill->ill_name, len, ipha); 12969 } 12970 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12971 /* clear b_prev - used by ip_mroute_decap */ 12972 mp->b_prev = NULL; 12973 BUMP_MIB(&ip_mib, ipInDiscards); 12974 freemsg(mp); 12975 return (B_FALSE); 12976 } 12977 } 12978 return (B_TRUE); 12979 } 12980 12981 static boolean_t 12982 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12983 { 12984 ill_group_t *ill_group; 12985 ill_group_t *ire_group; 12986 queue_t *q; 12987 ill_t *ire_ill; 12988 uint_t ill_ifindex; 12989 12990 q = *qp; 12991 /* 12992 * We need to check to make sure the packet came in 12993 * on the queue associated with the destination IRE. 12994 * Note that for multicast packets and broadcast packets sent to 12995 * a broadcast address which is shared between multiple interfaces 12996 * we should not do this since we just got a random broadcast ire. 12997 */ 12998 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12999 boolean_t check_multi = B_TRUE; 13000 13001 /* 13002 * This packet came in on an interface other than the 13003 * one associated with the destination address. 13004 * "Gateway" it to the appropriate interface here. 13005 * As long as the ills belong to the same group, 13006 * we don't consider them to arriving on the wrong 13007 * interface. Thus, when the switch is doing inbound 13008 * load spreading, we won't drop packets when we 13009 * are doing strict multihoming checks. Note, the 13010 * same holds true for 'usesrc groups' where the 13011 * destination address may belong to another interface 13012 * to allow multipathing to happen 13013 */ 13014 ill_group = ill->ill_group; 13015 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13016 ill_ifindex = ill->ill_usesrc_ifindex; 13017 ire_group = ire_ill->ill_group; 13018 13019 /* 13020 * If it's part of the same IPMP group, or if it's a legal 13021 * address on the 'usesrc' interface, then bypass strict 13022 * checks. 13023 */ 13024 if (ill_group != NULL && ill_group == ire_group) { 13025 check_multi = B_FALSE; 13026 } else if (ill_ifindex != 0 && 13027 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13028 check_multi = B_FALSE; 13029 } 13030 13031 if (check_multi && 13032 ip_strict_dst_multihoming && 13033 ((ill->ill_flags & 13034 ire->ire_ipif->ipif_ill->ill_flags & 13035 ILLF_ROUTER) == 0)) { 13036 /* Drop packet */ 13037 BUMP_MIB(&ip_mib, ipForwProhibits); 13038 freemsg(mp); 13039 ire_refrele(ire); 13040 return (B_TRUE); 13041 } 13042 13043 /* 13044 * Change the queue (for non-virtual destination network 13045 * interfaces) and ip_rput_local will be called with the right 13046 * queue 13047 */ 13048 q = ire->ire_rfq; 13049 } 13050 /* Must be broadcast. We'll take it. */ 13051 *qp = q; 13052 return (B_FALSE); 13053 } 13054 13055 static void 13056 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13057 ill_t *ill, int ll_multicast) 13058 { 13059 ill_group_t *ill_group; 13060 ill_group_t *ire_group; 13061 queue_t *dev_q; 13062 13063 ASSERT(ire->ire_stq != NULL); 13064 if (ll_multicast != 0) 13065 goto drop_pkt; 13066 13067 if (ip_no_forward(ipha, ill)) 13068 goto drop_pkt; 13069 13070 ill_group = ill->ill_group; 13071 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13072 /* 13073 * Check if we want to forward this one at this time. 13074 * We allow source routed packets on a host provided that 13075 * they go out the same interface or same interface group 13076 * as they came in on. 13077 * 13078 * XXX To be quicker, we may wish to not chase pointers to 13079 * get the ILLF_ROUTER flag and instead store the 13080 * forwarding policy in the ire. An unfortunate 13081 * side-effect of that would be requiring an ire flush 13082 * whenever the ILLF_ROUTER flag changes. 13083 */ 13084 if (((ill->ill_flags & 13085 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13086 ILLF_ROUTER) == 0) && 13087 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13088 (ill_group != NULL && ill_group == ire_group)))) { 13089 BUMP_MIB(&ip_mib, ipForwProhibits); 13090 if (ip_source_routed(ipha)) { 13091 q = WR(q); 13092 /* 13093 * Clear the indication that this may have 13094 * hardware checksum as we are not using it. 13095 */ 13096 DB_CKSUMFLAGS(mp) = 0; 13097 icmp_unreachable(q, mp, 13098 ICMP_SOURCE_ROUTE_FAILED); 13099 ire_refrele(ire); 13100 return; 13101 } 13102 goto drop_pkt; 13103 } 13104 13105 /* Packet is being forwarded. Turning off hwcksum flag. */ 13106 DB_CKSUMFLAGS(mp) = 0; 13107 if (ip_g_send_redirects) { 13108 /* 13109 * Check whether the incoming interface and outgoing 13110 * interface is part of the same group. If so, 13111 * send redirects. 13112 * 13113 * Check the source address to see if it originated 13114 * on the same logical subnet it is going back out on. 13115 * If so, we should be able to send it a redirect. 13116 * Avoid sending a redirect if the destination 13117 * is directly connected (gw_addr == 0), 13118 * or if the packet was source routed out this 13119 * interface. 13120 */ 13121 ipaddr_t src; 13122 mblk_t *mp1; 13123 ire_t *src_ire = NULL; 13124 13125 /* 13126 * Check whether ire_rfq and q are from the same ill 13127 * or if they are not same, they at least belong 13128 * to the same group. If so, send redirects. 13129 */ 13130 if ((ire->ire_rfq == q || 13131 (ill_group != NULL && ill_group == ire_group)) && 13132 (ire->ire_gateway_addr != 0) && 13133 !ip_source_routed(ipha)) { 13134 13135 src = ipha->ipha_src; 13136 src_ire = ire_ftable_lookup(src, 0, 0, 13137 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13138 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13139 13140 if (src_ire != NULL) { 13141 /* 13142 * The source is directly connected. 13143 * Just copy the ip header (which is 13144 * in the first mblk) 13145 */ 13146 mp1 = copyb(mp); 13147 if (mp1 != NULL) { 13148 icmp_send_redirect(WR(q), mp1, 13149 ire->ire_gateway_addr); 13150 } 13151 ire_refrele(src_ire); 13152 } 13153 } 13154 } 13155 13156 dev_q = ire->ire_stq->q_next; 13157 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13158 BUMP_MIB(&ip_mib, ipInDiscards); 13159 freemsg(mp); 13160 ire_refrele(ire); 13161 return; 13162 } 13163 13164 ip_rput_forward(ire, ipha, mp, ill); 13165 IRE_REFRELE(ire); 13166 return; 13167 13168 drop_pkt: 13169 ire_refrele(ire); 13170 ip2dbg(("ip_rput_forward: drop pkt\n")); 13171 freemsg(mp); 13172 } 13173 13174 static boolean_t 13175 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 13176 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13177 { 13178 queue_t *q; 13179 ire_t *ire; 13180 uint16_t hcksumflags; 13181 13182 q = *qp; 13183 ire = *irep; 13184 13185 /* 13186 * Clear the indication that this may have hardware 13187 * checksum as we are not using it for forwarding. 13188 */ 13189 hcksumflags = DB_CKSUMFLAGS(mp); 13190 DB_CKSUMFLAGS(mp) = 0; 13191 13192 /* 13193 * Directed broadcast forwarding: if the packet came in over a 13194 * different interface then it is routed out over we can forward it. 13195 */ 13196 if (ipha->ipha_protocol == IPPROTO_TCP) { 13197 ire_refrele(ire); 13198 freemsg(mp); 13199 BUMP_MIB(&ip_mib, ipInDiscards); 13200 return (B_TRUE); 13201 } 13202 /* 13203 * For multicast we have set dst to be INADDR_BROADCAST 13204 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13205 * only for broadcast packets. 13206 */ 13207 if (!CLASSD(ipha->ipha_dst)) { 13208 ire_t *new_ire; 13209 ipif_t *ipif; 13210 /* 13211 * For ill groups, as the switch duplicates broadcasts 13212 * across all the ports, we need to filter out and 13213 * send up only one copy. There is one copy for every 13214 * broadcast address on each ill. Thus, we look for a 13215 * specific IRE on this ill and look at IRE_MARK_NORECV 13216 * later to see whether this ill is eligible to receive 13217 * them or not. ill_nominate_bcast_rcv() nominates only 13218 * one set of IREs for receiving. 13219 */ 13220 13221 ipif = ipif_get_next_ipif(NULL, ill); 13222 if (ipif == NULL) { 13223 ire_refrele(ire); 13224 freemsg(mp); 13225 BUMP_MIB(&ip_mib, ipInDiscards); 13226 return (B_TRUE); 13227 } 13228 new_ire = ire_ctable_lookup(dst, 0, 0, 13229 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13230 ipif_refrele(ipif); 13231 13232 if (new_ire != NULL) { 13233 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13234 ire_refrele(ire); 13235 ire_refrele(new_ire); 13236 freemsg(mp); 13237 BUMP_MIB(&ip_mib, ipInDiscards); 13238 return (B_TRUE); 13239 } 13240 /* 13241 * In the special case of multirouted broadcast 13242 * packets, we unconditionally need to "gateway" 13243 * them to the appropriate interface here. 13244 * In the normal case, this cannot happen, because 13245 * there is no broadcast IRE tagged with the 13246 * RTF_MULTIRT flag. 13247 */ 13248 if (new_ire->ire_flags & RTF_MULTIRT) { 13249 ire_refrele(new_ire); 13250 if (ire->ire_rfq != NULL) { 13251 q = ire->ire_rfq; 13252 *qp = q; 13253 } 13254 } else { 13255 ire_refrele(ire); 13256 ire = new_ire; 13257 } 13258 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13259 if (!ip_g_forward_directed_bcast) { 13260 /* 13261 * Free the message if 13262 * ip_g_forward_directed_bcast is turned 13263 * off for non-local broadcast. 13264 */ 13265 ire_refrele(ire); 13266 freemsg(mp); 13267 BUMP_MIB(&ip_mib, ipInDiscards); 13268 return (B_TRUE); 13269 } 13270 } else { 13271 /* 13272 * This CGTP packet successfully passed the 13273 * CGTP filter, but the related CGTP 13274 * broadcast IRE has not been found, 13275 * meaning that the redundant ipif is 13276 * probably down. However, if we discarded 13277 * this packet, its duplicate would be 13278 * filtered out by the CGTP filter so none 13279 * of them would get through. So we keep 13280 * going with this one. 13281 */ 13282 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13283 if (ire->ire_rfq != NULL) { 13284 q = ire->ire_rfq; 13285 *qp = q; 13286 } 13287 } 13288 } 13289 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13290 /* 13291 * Verify that there are not more then one 13292 * IRE_BROADCAST with this broadcast address which 13293 * has ire_stq set. 13294 * TODO: simplify, loop over all IRE's 13295 */ 13296 ire_t *ire1; 13297 int num_stq = 0; 13298 mblk_t *mp1; 13299 13300 /* Find the first one with ire_stq set */ 13301 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13302 for (ire1 = ire; ire1 && 13303 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13304 ire1 = ire1->ire_next) 13305 ; 13306 if (ire1) { 13307 ire_refrele(ire); 13308 ire = ire1; 13309 IRE_REFHOLD(ire); 13310 } 13311 13312 /* Check if there are additional ones with stq set */ 13313 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13314 if (ire->ire_addr != ire1->ire_addr) 13315 break; 13316 if (ire1->ire_stq) { 13317 num_stq++; 13318 break; 13319 } 13320 } 13321 rw_exit(&ire->ire_bucket->irb_lock); 13322 if (num_stq == 1 && ire->ire_stq != NULL) { 13323 ip1dbg(("ip_rput_process_broadcast: directed " 13324 "broadcast to 0x%x\n", 13325 ntohl(ire->ire_addr))); 13326 mp1 = copymsg(mp); 13327 if (mp1) { 13328 switch (ipha->ipha_protocol) { 13329 case IPPROTO_UDP: 13330 ip_udp_input(q, mp1, ipha, ire, ill); 13331 break; 13332 default: 13333 ip_proto_input(q, mp1, ipha, ire, ill); 13334 break; 13335 } 13336 } 13337 /* 13338 * Adjust ttl to 2 (1+1 - the forward engine 13339 * will decrement it by one. 13340 */ 13341 if (ip_csum_hdr(ipha)) { 13342 BUMP_MIB(&ip_mib, ipInCksumErrs); 13343 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13344 freemsg(mp); 13345 ire_refrele(ire); 13346 return (B_TRUE); 13347 } 13348 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13349 ipha->ipha_hdr_checksum = 0; 13350 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13351 ip_rput_process_forward(q, mp, ire, ipha, 13352 ill, ll_multicast); 13353 return (B_TRUE); 13354 } 13355 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13356 ntohl(ire->ire_addr))); 13357 } 13358 13359 *irep = ire; 13360 13361 /* Restore any hardware checksum flags */ 13362 DB_CKSUMFLAGS(mp) = hcksumflags; 13363 return (B_FALSE); 13364 } 13365 13366 /* ARGSUSED */ 13367 static boolean_t 13368 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13369 int *ll_multicast, ipaddr_t *dstp) 13370 { 13371 /* 13372 * Forward packets only if we have joined the allmulti 13373 * group on this interface. 13374 */ 13375 if (ip_g_mrouter && ill->ill_join_allmulti) { 13376 int retval; 13377 13378 /* 13379 * Clear the indication that this may have hardware 13380 * checksum as we are not using it. 13381 */ 13382 DB_CKSUMFLAGS(mp) = 0; 13383 retval = ip_mforward(ill, ipha, mp); 13384 /* ip_mforward updates mib variables if needed */ 13385 /* clear b_prev - used by ip_mroute_decap */ 13386 mp->b_prev = NULL; 13387 13388 switch (retval) { 13389 case 0: 13390 /* 13391 * pkt is okay and arrived on phyint. 13392 * 13393 * If we are running as a multicast router 13394 * we need to see all IGMP and/or PIM packets. 13395 */ 13396 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13397 (ipha->ipha_protocol == IPPROTO_PIM)) { 13398 goto done; 13399 } 13400 break; 13401 case -1: 13402 /* pkt is mal-formed, toss it */ 13403 goto drop_pkt; 13404 case 1: 13405 /* pkt is okay and arrived on a tunnel */ 13406 /* 13407 * If we are running a multicast router 13408 * we need to see all igmp packets. 13409 */ 13410 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13411 *dstp = INADDR_BROADCAST; 13412 *ll_multicast = 1; 13413 return (B_FALSE); 13414 } 13415 13416 goto drop_pkt; 13417 } 13418 } 13419 13420 ILM_WALKER_HOLD(ill); 13421 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13422 /* 13423 * This might just be caused by the fact that 13424 * multiple IP Multicast addresses map to the same 13425 * link layer multicast - no need to increment counter! 13426 */ 13427 ILM_WALKER_RELE(ill); 13428 freemsg(mp); 13429 return (B_TRUE); 13430 } 13431 ILM_WALKER_RELE(ill); 13432 done: 13433 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13434 /* 13435 * This assumes the we deliver to all streams for multicast 13436 * and broadcast packets. 13437 */ 13438 *dstp = INADDR_BROADCAST; 13439 *ll_multicast = 1; 13440 return (B_FALSE); 13441 drop_pkt: 13442 ip2dbg(("ip_rput: drop pkt\n")); 13443 freemsg(mp); 13444 return (B_TRUE); 13445 } 13446 13447 static boolean_t 13448 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13449 int *ll_multicast, mblk_t **mpp) 13450 { 13451 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13452 boolean_t must_copy = B_FALSE; 13453 struct iocblk *iocp; 13454 ipha_t *ipha; 13455 13456 #define rptr ((uchar_t *)ipha) 13457 13458 first_mp = *first_mpp; 13459 mp = *mpp; 13460 13461 ASSERT(first_mp == mp); 13462 13463 /* 13464 * if db_ref > 1 then copymsg and free original. Packet may be 13465 * changed and do not want other entity who has a reference to this 13466 * message to trip over the changes. This is a blind change because 13467 * trying to catch all places that might change packet is too 13468 * difficult (since it may be a module above this one) 13469 * 13470 * This corresponds to the non-fast path case. We walk down the full 13471 * chain in this case, and check the db_ref count of all the dblks, 13472 * and do a copymsg if required. It is possible that the db_ref counts 13473 * of the data blocks in the mblk chain can be different. 13474 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 13475 * count of 1, followed by a M_DATA block with a ref count of 2, if 13476 * 'snoop' is running. 13477 */ 13478 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 13479 if (mp1->b_datap->db_ref > 1) { 13480 must_copy = B_TRUE; 13481 break; 13482 } 13483 } 13484 13485 if (must_copy) { 13486 mp1 = copymsg(mp); 13487 if (mp1 == NULL) { 13488 for (mp1 = mp; mp1 != NULL; 13489 mp1 = mp1->b_cont) { 13490 mp1->b_next = NULL; 13491 mp1->b_prev = NULL; 13492 } 13493 freemsg(mp); 13494 BUMP_MIB(&ip_mib, ipInDiscards); 13495 return (B_TRUE); 13496 } 13497 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 13498 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 13499 /* Copy b_next - used in M_BREAK messages */ 13500 to_mp->b_next = from_mp->b_next; 13501 from_mp->b_next = NULL; 13502 /* Copy b_prev - used by ip_mroute_decap */ 13503 to_mp->b_prev = from_mp->b_prev; 13504 from_mp->b_prev = NULL; 13505 } 13506 *first_mpp = first_mp = mp1; 13507 freemsg(mp); 13508 mp = mp1; 13509 *mpp = mp1; 13510 } 13511 13512 ipha = (ipha_t *)mp->b_rptr; 13513 13514 /* 13515 * previous code has a case for M_DATA. 13516 * We want to check how that happens. 13517 */ 13518 ASSERT(first_mp->b_datap->db_type != M_DATA); 13519 switch (first_mp->b_datap->db_type) { 13520 case M_PROTO: 13521 case M_PCPROTO: 13522 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13523 DL_UNITDATA_IND) { 13524 /* Go handle anything other than data elsewhere. */ 13525 ip_rput_dlpi(q, mp); 13526 return (B_TRUE); 13527 } 13528 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13529 /* Ditch the DLPI header. */ 13530 mp1 = mp->b_cont; 13531 ASSERT(first_mp == mp); 13532 *first_mpp = mp1; 13533 freeb(mp); 13534 *mpp = mp1; 13535 return (B_FALSE); 13536 case M_BREAK: 13537 /* 13538 * A packet arrives as M_BREAK following a cycle through 13539 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13540 * This is an IP datagram sans lower level header. 13541 * M_BREAK are also used to pass back in multicast packets 13542 * that are encapsulated with a source route. 13543 */ 13544 /* Ditch the M_BREAK mblk */ 13545 mp1 = mp->b_cont; 13546 ASSERT(first_mp == mp); 13547 *first_mpp = mp1; 13548 freeb(mp); 13549 mp = mp1; 13550 mp->b_next = NULL; 13551 *mpp = mp; 13552 *ll_multicast = 0; 13553 return (B_FALSE); 13554 case M_IOCACK: 13555 ip1dbg(("got iocack ")); 13556 iocp = (struct iocblk *)mp->b_rptr; 13557 switch (iocp->ioc_cmd) { 13558 case DL_IOC_HDR_INFO: 13559 ill = (ill_t *)q->q_ptr; 13560 ill_fastpath_ack(ill, mp); 13561 return (B_TRUE); 13562 case SIOCSTUNPARAM: 13563 case OSIOCSTUNPARAM: 13564 /* Go through qwriter_ip */ 13565 break; 13566 case SIOCGTUNPARAM: 13567 case OSIOCGTUNPARAM: 13568 ip_rput_other(NULL, q, mp, NULL); 13569 return (B_TRUE); 13570 default: 13571 putnext(q, mp); 13572 return (B_TRUE); 13573 } 13574 /* FALLTHRU */ 13575 case M_ERROR: 13576 case M_HANGUP: 13577 /* 13578 * Since this is on the ill stream we unconditionally 13579 * bump up the refcount 13580 */ 13581 ill_refhold(ill); 13582 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13583 B_FALSE); 13584 return (B_TRUE); 13585 case M_CTL: 13586 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13587 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13588 IPHADA_M_CTL)) { 13589 /* 13590 * It's an IPsec accelerated packet. 13591 * Make sure that the ill from which we received the 13592 * packet has enabled IPsec hardware acceleration. 13593 */ 13594 if (!(ill->ill_capabilities & 13595 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13596 /* IPsec kstats: bean counter */ 13597 freemsg(mp); 13598 return (B_TRUE); 13599 } 13600 13601 /* 13602 * Make mp point to the mblk following the M_CTL, 13603 * then process according to type of mp. 13604 * After this processing, first_mp will point to 13605 * the data-attributes and mp to the pkt following 13606 * the M_CTL. 13607 */ 13608 mp = first_mp->b_cont; 13609 if (mp == NULL) { 13610 freemsg(first_mp); 13611 return (B_TRUE); 13612 } 13613 /* 13614 * A Hardware Accelerated packet can only be M_DATA 13615 * ESP or AH packet. 13616 */ 13617 if (mp->b_datap->db_type != M_DATA) { 13618 /* non-M_DATA IPsec accelerated packet */ 13619 IPSECHW_DEBUG(IPSECHW_PKT, 13620 ("non-M_DATA IPsec accelerated pkt\n")); 13621 freemsg(first_mp); 13622 return (B_TRUE); 13623 } 13624 ipha = (ipha_t *)mp->b_rptr; 13625 if (ipha->ipha_protocol != IPPROTO_AH && 13626 ipha->ipha_protocol != IPPROTO_ESP) { 13627 IPSECHW_DEBUG(IPSECHW_PKT, 13628 ("non-M_DATA IPsec accelerated pkt\n")); 13629 freemsg(first_mp); 13630 return (B_TRUE); 13631 } 13632 *mpp = mp; 13633 return (B_FALSE); 13634 } 13635 putnext(q, mp); 13636 return (B_TRUE); 13637 case M_FLUSH: 13638 if (*mp->b_rptr & FLUSHW) { 13639 *mp->b_rptr &= ~FLUSHR; 13640 qreply(q, mp); 13641 return (B_TRUE); 13642 } 13643 freemsg(mp); 13644 return (B_TRUE); 13645 case M_IOCNAK: 13646 ip1dbg(("got iocnak ")); 13647 iocp = (struct iocblk *)mp->b_rptr; 13648 switch (iocp->ioc_cmd) { 13649 case DL_IOC_HDR_INFO: 13650 case SIOCSTUNPARAM: 13651 case OSIOCSTUNPARAM: 13652 /* 13653 * Since this is on the ill stream we unconditionally 13654 * bump up the refcount 13655 */ 13656 ill_refhold(ill); 13657 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13658 CUR_OP, B_FALSE); 13659 return (B_TRUE); 13660 case SIOCGTUNPARAM: 13661 case OSIOCGTUNPARAM: 13662 ip_rput_other(NULL, q, mp, NULL); 13663 return (B_TRUE); 13664 default: 13665 break; 13666 } 13667 /* FALLTHRU */ 13668 default: 13669 putnext(q, mp); 13670 return (B_TRUE); 13671 } 13672 } 13673 13674 /* Read side put procedure. Packets coming from the wire arrive here. */ 13675 void 13676 ip_rput(queue_t *q, mblk_t *mp) 13677 { 13678 ill_t *ill; 13679 13680 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13681 13682 ill = (ill_t *)q->q_ptr; 13683 13684 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13685 union DL_primitives *dl; 13686 13687 /* 13688 * Things are opening or closing. Only accept DLPI control 13689 * messages. In the open case, the ill->ill_ipif has not yet 13690 * been created. In the close case, things hanging off the 13691 * ill could have been freed already. In either case it 13692 * may not be safe to proceed further. 13693 */ 13694 13695 dl = (union DL_primitives *)mp->b_rptr; 13696 if ((mp->b_datap->db_type != M_PCPROTO) || 13697 (dl->dl_primitive == DL_UNITDATA_IND)) { 13698 /* 13699 * Also SIOC[GS]TUN* ioctls can come here. 13700 */ 13701 inet_freemsg(mp); 13702 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13703 "ip_input_end: q %p (%S)", q, "uninit"); 13704 return; 13705 } 13706 } 13707 13708 /* 13709 * if db_ref > 1 then copymsg and free original. Packet may be 13710 * changed and we do not want the other entity who has a reference to 13711 * this message to trip over the changes. This is a blind change because 13712 * trying to catch all places that might change the packet is too 13713 * difficult. 13714 * 13715 * This corresponds to the fast path case, where we have a chain of 13716 * M_DATA mblks. We check the db_ref count of only the 1st data block 13717 * in the mblk chain. There doesn't seem to be a reason why a device 13718 * driver would send up data with varying db_ref counts in the mblk 13719 * chain. In any case the Fast path is a private interface, and our 13720 * drivers don't do such a thing. Given the above assumption, there is 13721 * no need to walk down the entire mblk chain (which could have a 13722 * potential performance problem) 13723 */ 13724 if (mp->b_datap->db_ref > 1) { 13725 mblk_t *mp1; 13726 boolean_t adjusted = B_FALSE; 13727 IP_STAT(ip_db_ref); 13728 13729 /* 13730 * The IP_RECVSLLA option depends on having the link layer 13731 * header. First check that: 13732 * a> the underlying device is of type ether, since this 13733 * option is currently supported only over ethernet. 13734 * b> there is enough room to copy over the link layer header. 13735 * 13736 * Once the checks are done, adjust rptr so that the link layer 13737 * header will be copied via copymsg. Note that, IFT_ETHER may 13738 * be returned by some non-ethernet drivers but in this case the 13739 * second check will fail. 13740 */ 13741 if (ill->ill_type == IFT_ETHER && 13742 (mp->b_rptr - mp->b_datap->db_base) >= 13743 sizeof (struct ether_header)) { 13744 mp->b_rptr -= sizeof (struct ether_header); 13745 adjusted = B_TRUE; 13746 } 13747 mp1 = copymsg(mp); 13748 if (mp1 == NULL) { 13749 /* Clear b_next - used in M_BREAK messages */ 13750 mp->b_next = NULL; 13751 /* clear b_prev - used by ip_mroute_decap */ 13752 mp->b_prev = NULL; 13753 freemsg(mp); 13754 BUMP_MIB(&ip_mib, ipInDiscards); 13755 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13756 "ip_rput_end: q %p (%S)", q, "copymsg"); 13757 return; 13758 } 13759 if (adjusted) { 13760 /* 13761 * Copy is done. Restore the pointer in the _new_ mblk 13762 */ 13763 mp1->b_rptr += sizeof (struct ether_header); 13764 } 13765 /* Copy b_next - used in M_BREAK messages */ 13766 mp1->b_next = mp->b_next; 13767 mp->b_next = NULL; 13768 /* Copy b_prev - used by ip_mroute_decap */ 13769 mp1->b_prev = mp->b_prev; 13770 mp->b_prev = NULL; 13771 freemsg(mp); 13772 mp = mp1; 13773 } 13774 13775 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13776 "ip_rput_end: q %p (%S)", q, "end"); 13777 13778 ip_input(ill, NULL, mp, 0); 13779 } 13780 13781 /* 13782 * Direct read side procedure capable of dealing with chains. GLDv3 based 13783 * drivers call this function directly with mblk chains while STREAMS 13784 * read side procedure ip_rput() calls this for single packet with ip_ring 13785 * set to NULL to process one packet at a time. 13786 * 13787 * The ill will always be valid if this function is called directly from 13788 * the driver. 13789 */ 13790 /*ARGSUSED*/ 13791 void 13792 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13793 { 13794 ipaddr_t dst; 13795 ire_t *ire; 13796 ipha_t *ipha; 13797 uint_t pkt_len; 13798 ssize_t len; 13799 uint_t opt_len; 13800 int ll_multicast; 13801 int cgtp_flt_pkt; 13802 queue_t *q = ill->ill_rq; 13803 squeue_t *curr_sqp = NULL; 13804 mblk_t *head = NULL; 13805 mblk_t *tail = NULL; 13806 mblk_t *first_mp; 13807 mblk_t *mp; 13808 int cnt = 0; 13809 13810 ASSERT(mp_chain != NULL); 13811 ASSERT(ill != NULL); 13812 13813 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13814 13815 #define rptr ((uchar_t *)ipha) 13816 13817 while (mp_chain != NULL) { 13818 first_mp = mp = mp_chain; 13819 mp_chain = mp_chain->b_next; 13820 mp->b_next = NULL; 13821 ll_multicast = 0; 13822 ire = NULL; 13823 13824 /* 13825 * ip_input fast path 13826 */ 13827 13828 /* mblk type is not M_DATA */ 13829 if (mp->b_datap->db_type != M_DATA) { 13830 if (ip_rput_process_notdata(q, &first_mp, ill, 13831 &ll_multicast, &mp)) 13832 continue; 13833 } 13834 13835 ASSERT(mp->b_datap->db_type == M_DATA); 13836 ASSERT(mp->b_datap->db_ref == 1); 13837 13838 13839 ipha = (ipha_t *)mp->b_rptr; 13840 len = mp->b_wptr - rptr; 13841 13842 BUMP_MIB(&ip_mib, ipInReceives); 13843 13844 /* 13845 * IP header ptr not aligned? 13846 * OR IP header not complete in first mblk 13847 */ 13848 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13849 if (!ip_check_and_align_header(q, mp)) 13850 continue; 13851 ipha = (ipha_t *)mp->b_rptr; 13852 len = mp->b_wptr - rptr; 13853 } 13854 13855 /* multiple mblk or too short */ 13856 pkt_len = ntohs(ipha->ipha_length); 13857 len -= pkt_len; 13858 if (len != 0) { 13859 /* 13860 * Make sure we have data length consistent 13861 * with the IP header. 13862 */ 13863 if (mp->b_cont == NULL) { 13864 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13865 BUMP_MIB(&ip_mib, ipInHdrErrors); 13866 ip2dbg(("ip_input: drop pkt\n")); 13867 freemsg(mp); 13868 continue; 13869 } 13870 mp->b_wptr = rptr + pkt_len; 13871 } else if (len += msgdsize(mp->b_cont)) { 13872 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13873 BUMP_MIB(&ip_mib, ipInHdrErrors); 13874 ip2dbg(("ip_input: drop pkt\n")); 13875 freemsg(mp); 13876 continue; 13877 } 13878 (void) adjmsg(mp, -len); 13879 IP_STAT(ip_multimblk3); 13880 } 13881 } 13882 13883 if (ip_loopback_src_or_dst(ipha, ill)) { 13884 ip2dbg(("ip_input: drop pkt\n")); 13885 freemsg(mp); 13886 continue; 13887 } 13888 13889 /* 13890 * Attach any necessary label information to this packet. 13891 */ 13892 if (is_system_labeled() && 13893 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 13894 BUMP_MIB(&ip_mib, ipInDiscards); 13895 freemsg(mp); 13896 continue; 13897 } 13898 13899 opt_len = ipha->ipha_version_and_hdr_length - 13900 IP_SIMPLE_HDR_VERSION; 13901 /* IP version bad or there are IP options */ 13902 if (opt_len) { 13903 if (len != 0) 13904 IP_STAT(ip_multimblk4); 13905 else 13906 IP_STAT(ip_ipoptions); 13907 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13908 continue; 13909 } else { 13910 dst = ipha->ipha_dst; 13911 } 13912 13913 /* 13914 * Invoke the CGTP (multirouting) filtering module to process 13915 * the incoming packet. Packets identified as duplicates 13916 * must be discarded. Filtering is active only if the 13917 * the ip_cgtp_filter ndd variable is non-zero. 13918 */ 13919 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13920 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13921 cgtp_flt_pkt = 13922 ip_cgtp_filter_ops->cfo_filter(q, mp); 13923 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13924 freemsg(first_mp); 13925 continue; 13926 } 13927 } 13928 13929 /* 13930 * If rsvpd is running, let RSVP daemon handle its processing 13931 * and forwarding of RSVP multicast/unicast packets. 13932 * If rsvpd is not running but mrouted is running, RSVP 13933 * multicast packets are forwarded as multicast traffic 13934 * and RSVP unicast packets are forwarded by unicast router. 13935 * If neither rsvpd nor mrouted is running, RSVP multicast 13936 * packets are not forwarded, but the unicast packets are 13937 * forwarded like unicast traffic. 13938 */ 13939 if (ipha->ipha_protocol == IPPROTO_RSVP && 13940 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13941 /* RSVP packet and rsvpd running. Treat as ours */ 13942 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13943 /* 13944 * This assumes that we deliver to all streams for 13945 * multicast and broadcast packets. 13946 * We have to force ll_multicast to 1 to handle the 13947 * M_DATA messages passed in from ip_mroute_decap. 13948 */ 13949 dst = INADDR_BROADCAST; 13950 ll_multicast = 1; 13951 } else if (CLASSD(dst)) { 13952 /* packet is multicast */ 13953 mp->b_next = NULL; 13954 if (ip_rput_process_multicast(q, mp, ill, ipha, 13955 &ll_multicast, &dst)) 13956 continue; 13957 } 13958 13959 13960 /* 13961 * Check if the packet is coming from the Mobile IP 13962 * forward tunnel interface 13963 */ 13964 if (ill->ill_srcif_refcnt > 0) { 13965 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13966 NULL, ill, MATCH_IRE_TYPE); 13967 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13968 ire->ire_ipif->ipif_net_type == 13969 IRE_IF_RESOLVER) { 13970 /* We need to resolve the link layer info */ 13971 ire_refrele(ire); 13972 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13973 ll_multicast, dst); 13974 continue; 13975 } 13976 } 13977 13978 if (ire == NULL) { 13979 ire = ire_cache_lookup(dst, ALL_ZONES, 13980 MBLK_GETLABEL(mp)); 13981 } 13982 13983 /* 13984 * If mipagent is running and reverse tunnel is created as per 13985 * mobile node request, then any packet coming through the 13986 * incoming interface from the mobile-node, should be reverse 13987 * tunneled to it's home agent except those that are destined 13988 * to foreign agent only. 13989 * This needs source address based ire lookup. The routing 13990 * entries for source address based lookup are only created by 13991 * mipagent program only when a reverse tunnel is created. 13992 * Reference : RFC2002, RFC2344 13993 */ 13994 if (ill->ill_mrtun_refcnt > 0) { 13995 ipaddr_t srcaddr; 13996 ire_t *tmp_ire; 13997 13998 tmp_ire = ire; /* Save, we might need it later */ 13999 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14000 ire->ire_type != IRE_BROADCAST)) { 14001 srcaddr = ipha->ipha_src; 14002 ire = ire_mrtun_lookup(srcaddr, ill); 14003 if (ire != NULL) { 14004 /* 14005 * Should not be getting iphada packet 14006 * here. we should only get those for 14007 * IRE_LOCAL traffic, excluded above. 14008 * Fail-safe (drop packet) in the event 14009 * hardware is misbehaving. 14010 */ 14011 if (first_mp != mp) { 14012 /* IPsec KSTATS: beancount me */ 14013 freemsg(first_mp); 14014 } else { 14015 /* 14016 * This packet must be forwarded 14017 * to Reverse Tunnel 14018 */ 14019 ip_mrtun_forward(ire, ill, mp); 14020 } 14021 ire_refrele(ire); 14022 if (tmp_ire != NULL) 14023 ire_refrele(tmp_ire); 14024 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14025 "ip_input_end: q %p (%S)", 14026 q, "uninit"); 14027 continue; 14028 } 14029 } 14030 /* 14031 * If this packet is from a non-mobilenode or a 14032 * mobile-node which does not request reverse 14033 * tunnel service 14034 */ 14035 ire = tmp_ire; 14036 } 14037 14038 14039 /* 14040 * If we reach here that means the incoming packet satisfies 14041 * one of the following conditions: 14042 * - packet is from a mobile node which does not request 14043 * reverse tunnel 14044 * - packet is from a non-mobile node, which is the most 14045 * common case 14046 * - packet is from a reverse tunnel enabled mobile node 14047 * and destined to foreign agent only 14048 */ 14049 14050 if (ire == NULL) { 14051 /* 14052 * No IRE for this destination, so it can't be for us. 14053 * Unless we are forwarding, drop the packet. 14054 * We have to let source routed packets through 14055 * since we don't yet know if they are 'ping -l' 14056 * packets i.e. if they will go out over the 14057 * same interface as they came in on. 14058 */ 14059 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14060 continue; 14061 } 14062 14063 /* 14064 * Broadcast IRE may indicate either broadcast or 14065 * multicast packet 14066 */ 14067 if (ire->ire_type == IRE_BROADCAST) { 14068 /* 14069 * Skip broadcast checks if packet is UDP multicast; 14070 * we'd rather not enter ip_rput_process_broadcast() 14071 * unless the packet is broadcast for real, since 14072 * that routine is a no-op for multicast. 14073 */ 14074 if ((ipha->ipha_protocol != IPPROTO_UDP || 14075 !CLASSD(ipha->ipha_dst)) && 14076 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 14077 dst, cgtp_flt_pkt, ll_multicast)) { 14078 continue; 14079 } 14080 } else if (ire->ire_stq != NULL) { 14081 /* fowarding? */ 14082 ip_rput_process_forward(q, mp, ire, ipha, ill, 14083 ll_multicast); 14084 continue; 14085 } 14086 14087 /* packet not for us */ 14088 if (ire->ire_rfq != q) { 14089 if (ip_rput_notforus(&q, mp, ire, ill)) { 14090 continue; 14091 } 14092 } 14093 14094 switch (ipha->ipha_protocol) { 14095 case IPPROTO_TCP: 14096 ASSERT(first_mp == mp); 14097 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14098 mp, 0, q, ip_ring)) != NULL) { 14099 if (curr_sqp == NULL) { 14100 curr_sqp = GET_SQUEUE(mp); 14101 ASSERT(cnt == 0); 14102 cnt++; 14103 head = tail = mp; 14104 } else if (curr_sqp == GET_SQUEUE(mp)) { 14105 ASSERT(tail != NULL); 14106 cnt++; 14107 tail->b_next = mp; 14108 tail = mp; 14109 } else { 14110 /* 14111 * A different squeue. Send the 14112 * chain for the previous squeue on 14113 * its way. This shouldn't happen 14114 * often unless interrupt binding 14115 * changes. 14116 */ 14117 IP_STAT(ip_input_multi_squeue); 14118 squeue_enter_chain(curr_sqp, head, 14119 tail, cnt, SQTAG_IP_INPUT); 14120 curr_sqp = GET_SQUEUE(mp); 14121 head = mp; 14122 tail = mp; 14123 cnt = 1; 14124 } 14125 } 14126 IRE_REFRELE(ire); 14127 continue; 14128 case IPPROTO_UDP: 14129 ASSERT(first_mp == mp); 14130 ip_udp_input(q, mp, ipha, ire, ill); 14131 IRE_REFRELE(ire); 14132 continue; 14133 case IPPROTO_SCTP: 14134 ASSERT(first_mp == mp); 14135 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14136 q, dst); 14137 continue; 14138 default: 14139 ip_proto_input(q, first_mp, ipha, ire, ill); 14140 IRE_REFRELE(ire); 14141 continue; 14142 } 14143 } 14144 14145 if (head != NULL) 14146 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14147 14148 /* 14149 * This code is there just to make netperf/ttcp look good. 14150 * 14151 * Its possible that after being in polling mode (and having cleared 14152 * the backlog), squeues have turned the interrupt frequency higher 14153 * to improve latency at the expense of more CPU utilization (less 14154 * packets per interrupts or more number of interrupts). Workloads 14155 * like ttcp/netperf do manage to tickle polling once in a while 14156 * but for the remaining time, stay in higher interrupt mode since 14157 * their packet arrival rate is pretty uniform and this shows up 14158 * as higher CPU utilization. Since people care about CPU utilization 14159 * while running netperf/ttcp, turn the interrupt frequency back to 14160 * normal/default if polling has not been used in ip_poll_normal_ticks. 14161 */ 14162 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14163 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14164 ip_ring->rr_poll_state &= ~ILL_POLLING; 14165 ip_ring->rr_blank(ip_ring->rr_handle, 14166 ip_ring->rr_normal_blank_time, 14167 ip_ring->rr_normal_pkt_cnt); 14168 } 14169 } 14170 14171 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14172 "ip_input_end: q %p (%S)", q, "end"); 14173 #undef rptr 14174 } 14175 14176 static void 14177 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14178 t_uscalar_t err) 14179 { 14180 if (dl_err == DL_SYSERR) { 14181 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14182 "%s: %s failed: DL_SYSERR (errno %u)\n", 14183 ill->ill_name, dlpi_prim_str(prim), err); 14184 return; 14185 } 14186 14187 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14188 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14189 dlpi_err_str(dl_err)); 14190 } 14191 14192 /* 14193 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14194 * than DL_UNITDATA_IND messages. If we need to process this message 14195 * exclusively, we call qwriter_ip, in which case we also need to call 14196 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14197 */ 14198 void 14199 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14200 { 14201 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14202 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14203 ill_t *ill; 14204 14205 ip1dbg(("ip_rput_dlpi")); 14206 ill = (ill_t *)q->q_ptr; 14207 switch (dloa->dl_primitive) { 14208 case DL_ERROR_ACK: 14209 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14210 "%s (0x%x), unix %u\n", ill->ill_name, 14211 dlpi_prim_str(dlea->dl_error_primitive), 14212 dlea->dl_error_primitive, 14213 dlpi_err_str(dlea->dl_errno), 14214 dlea->dl_errno, 14215 dlea->dl_unix_errno)); 14216 switch (dlea->dl_error_primitive) { 14217 case DL_UNBIND_REQ: 14218 mutex_enter(&ill->ill_lock); 14219 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14220 cv_signal(&ill->ill_cv); 14221 mutex_exit(&ill->ill_lock); 14222 /* FALLTHRU */ 14223 case DL_NOTIFY_REQ: 14224 case DL_ATTACH_REQ: 14225 case DL_DETACH_REQ: 14226 case DL_INFO_REQ: 14227 case DL_BIND_REQ: 14228 case DL_ENABMULTI_REQ: 14229 case DL_PHYS_ADDR_REQ: 14230 case DL_CAPABILITY_REQ: 14231 case DL_CONTROL_REQ: 14232 /* 14233 * Refhold the ill to match qwriter_ip which does a 14234 * refrele. Since this is on the ill stream we 14235 * unconditionally bump up the refcount without 14236 * checking for ILL_CAN_LOOKUP 14237 */ 14238 ill_refhold(ill); 14239 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14240 CUR_OP, B_FALSE); 14241 return; 14242 case DL_DISABMULTI_REQ: 14243 freemsg(mp); /* Don't want to pass this up */ 14244 return; 14245 default: 14246 break; 14247 } 14248 ip_dlpi_error(ill, dlea->dl_error_primitive, 14249 dlea->dl_errno, dlea->dl_unix_errno); 14250 freemsg(mp); 14251 return; 14252 case DL_INFO_ACK: 14253 case DL_BIND_ACK: 14254 case DL_PHYS_ADDR_ACK: 14255 case DL_NOTIFY_ACK: 14256 case DL_CAPABILITY_ACK: 14257 case DL_CONTROL_ACK: 14258 /* 14259 * Refhold the ill to match qwriter_ip which does a refrele 14260 * Since this is on the ill stream we unconditionally 14261 * bump up the refcount without doing ILL_CAN_LOOKUP. 14262 */ 14263 ill_refhold(ill); 14264 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14265 CUR_OP, B_FALSE); 14266 return; 14267 case DL_NOTIFY_IND: 14268 ill_refhold(ill); 14269 /* 14270 * The DL_NOTIFY_IND is an asynchronous message that has no 14271 * relation to the current ioctl in progress (if any). Hence we 14272 * pass in NEW_OP in this case. 14273 */ 14274 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14275 NEW_OP, B_FALSE); 14276 return; 14277 case DL_OK_ACK: 14278 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14279 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14280 switch (dloa->dl_correct_primitive) { 14281 case DL_UNBIND_REQ: 14282 mutex_enter(&ill->ill_lock); 14283 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14284 cv_signal(&ill->ill_cv); 14285 mutex_exit(&ill->ill_lock); 14286 /* FALLTHRU */ 14287 case DL_ATTACH_REQ: 14288 case DL_DETACH_REQ: 14289 /* 14290 * Refhold the ill to match qwriter_ip which does a 14291 * refrele. Since this is on the ill stream we 14292 * unconditionally bump up the refcount 14293 */ 14294 ill_refhold(ill); 14295 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14296 CUR_OP, B_FALSE); 14297 return; 14298 case DL_ENABMULTI_REQ: 14299 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14300 ill->ill_dlpi_multicast_state = IDMS_OK; 14301 break; 14302 14303 } 14304 break; 14305 default: 14306 break; 14307 } 14308 freemsg(mp); 14309 } 14310 14311 /* 14312 * Handling of DLPI messages that require exclusive access to the ipsq. 14313 * 14314 * Need to do ill_pending_mp_release on ioctl completion, which could 14315 * happen here. (along with mi_copy_done) 14316 */ 14317 /* ARGSUSED */ 14318 static void 14319 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14320 { 14321 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14322 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14323 int err = 0; 14324 ill_t *ill; 14325 ipif_t *ipif = NULL; 14326 mblk_t *mp1 = NULL; 14327 conn_t *connp = NULL; 14328 t_uscalar_t physaddr_req; 14329 mblk_t *mp_hw; 14330 union DL_primitives *dlp; 14331 boolean_t success; 14332 boolean_t ioctl_aborted = B_FALSE; 14333 boolean_t log = B_TRUE; 14334 14335 ip1dbg(("ip_rput_dlpi_writer ..")); 14336 ill = (ill_t *)q->q_ptr; 14337 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14338 14339 ASSERT(IAM_WRITER_ILL(ill)); 14340 14341 /* 14342 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14343 * both are null or non-null. However we can assert that only 14344 * after grabbing the ipsq_lock. So we don't make any assertion 14345 * here and in other places in the code. 14346 */ 14347 ipif = ipsq->ipsq_pending_ipif; 14348 /* 14349 * The current ioctl could have been aborted by the user and a new 14350 * ioctl to bring up another ill could have started. We could still 14351 * get a response from the driver later. 14352 */ 14353 if (ipif != NULL && ipif->ipif_ill != ill) 14354 ioctl_aborted = B_TRUE; 14355 14356 switch (dloa->dl_primitive) { 14357 case DL_ERROR_ACK: 14358 switch (dlea->dl_error_primitive) { 14359 case DL_UNBIND_REQ: 14360 case DL_ATTACH_REQ: 14361 case DL_DETACH_REQ: 14362 case DL_INFO_REQ: 14363 ill_dlpi_done(ill, dlea->dl_error_primitive); 14364 break; 14365 case DL_NOTIFY_REQ: 14366 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14367 log = B_FALSE; 14368 break; 14369 case DL_PHYS_ADDR_REQ: 14370 /* 14371 * For IPv6 only, there are two additional 14372 * phys_addr_req's sent to the driver to get the 14373 * IPv6 token and lla. This allows IP to acquire 14374 * the hardware address format for a given interface 14375 * without having built in knowledge of the hardware 14376 * address. ill_phys_addr_pend keeps track of the last 14377 * DL_PAR sent so we know which response we are 14378 * dealing with. ill_dlpi_done will update 14379 * ill_phys_addr_pend when it sends the next req. 14380 * We don't complete the IOCTL until all three DL_PARs 14381 * have been attempted, so set *_len to 0 and break. 14382 */ 14383 physaddr_req = ill->ill_phys_addr_pend; 14384 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14385 if (physaddr_req == DL_IPV6_TOKEN) { 14386 ill->ill_token_length = 0; 14387 log = B_FALSE; 14388 break; 14389 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14390 ill->ill_nd_lla_len = 0; 14391 log = B_FALSE; 14392 break; 14393 } 14394 /* 14395 * Something went wrong with the DL_PHYS_ADDR_REQ. 14396 * We presumably have an IOCTL hanging out waiting 14397 * for completion. Find it and complete the IOCTL 14398 * with the error noted. 14399 * However, ill_dl_phys was called on an ill queue 14400 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14401 * set. But the ioctl is known to be pending on ill_wq. 14402 */ 14403 if (!ill->ill_ifname_pending) 14404 break; 14405 ill->ill_ifname_pending = 0; 14406 if (!ioctl_aborted) 14407 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14408 if (mp1 != NULL) { 14409 /* 14410 * This operation (SIOCSLIFNAME) must have 14411 * happened on the ill. Assert there is no conn 14412 */ 14413 ASSERT(connp == NULL); 14414 q = ill->ill_wq; 14415 } 14416 break; 14417 case DL_BIND_REQ: 14418 ill_dlpi_done(ill, DL_BIND_REQ); 14419 if (ill->ill_ifname_pending) 14420 break; 14421 /* 14422 * Something went wrong with the bind. We presumably 14423 * have an IOCTL hanging out waiting for completion. 14424 * Find it, take down the interface that was coming 14425 * up, and complete the IOCTL with the error noted. 14426 */ 14427 if (!ioctl_aborted) 14428 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14429 if (mp1 != NULL) { 14430 /* 14431 * This operation (SIOCSLIFFLAGS) must have 14432 * happened from a conn. 14433 */ 14434 ASSERT(connp != NULL); 14435 q = CONNP_TO_WQ(connp); 14436 if (ill->ill_move_in_progress) { 14437 ILL_CLEAR_MOVE(ill); 14438 } 14439 (void) ipif_down(ipif, NULL, NULL); 14440 /* error is set below the switch */ 14441 } 14442 break; 14443 case DL_ENABMULTI_REQ: 14444 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 14445 14446 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14447 ill->ill_dlpi_multicast_state = IDMS_FAILED; 14448 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 14449 ipif_t *ipif; 14450 14451 log = B_FALSE; 14452 printf("ip: joining multicasts failed (%d)" 14453 " on %s - will use link layer " 14454 "broadcasts for multicast\n", 14455 dlea->dl_errno, ill->ill_name); 14456 14457 /* 14458 * Set up the multicast mapping alone. 14459 * writer, so ok to access ill->ill_ipif 14460 * without any lock. 14461 */ 14462 ipif = ill->ill_ipif; 14463 mutex_enter(&ill->ill_phyint->phyint_lock); 14464 ill->ill_phyint->phyint_flags |= 14465 PHYI_MULTI_BCAST; 14466 mutex_exit(&ill->ill_phyint->phyint_lock); 14467 14468 if (!ill->ill_isv6) { 14469 (void) ipif_arp_setup_multicast(ipif, 14470 NULL); 14471 } else { 14472 (void) ipif_ndp_setup_multicast(ipif, 14473 NULL); 14474 } 14475 } 14476 freemsg(mp); /* Don't want to pass this up */ 14477 return; 14478 case DL_CAPABILITY_REQ: 14479 case DL_CONTROL_REQ: 14480 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 14481 "DL_CAPABILITY/CONTROL REQ\n")); 14482 ill_dlpi_done(ill, dlea->dl_error_primitive); 14483 ill->ill_capab_state = IDMS_FAILED; 14484 freemsg(mp); 14485 return; 14486 } 14487 /* 14488 * Note the error for IOCTL completion (mp1 is set when 14489 * ready to complete ioctl). If ill_ifname_pending_err is 14490 * set, an error occured during plumbing (ill_ifname_pending), 14491 * so we want to report that error. 14492 * 14493 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 14494 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 14495 * expected to get errack'd if the driver doesn't support 14496 * these flags (e.g. ethernet). log will be set to B_FALSE 14497 * if these error conditions are encountered. 14498 */ 14499 if (mp1 != NULL) { 14500 if (ill->ill_ifname_pending_err != 0) { 14501 err = ill->ill_ifname_pending_err; 14502 ill->ill_ifname_pending_err = 0; 14503 } else { 14504 err = dlea->dl_unix_errno ? 14505 dlea->dl_unix_errno : ENXIO; 14506 } 14507 /* 14508 * If we're plumbing an interface and an error hasn't already 14509 * been saved, set ill_ifname_pending_err to the error passed 14510 * up. Ignore the error if log is B_FALSE (see comment above). 14511 */ 14512 } else if (log && ill->ill_ifname_pending && 14513 ill->ill_ifname_pending_err == 0) { 14514 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 14515 dlea->dl_unix_errno : ENXIO; 14516 } 14517 14518 if (log) 14519 ip_dlpi_error(ill, dlea->dl_error_primitive, 14520 dlea->dl_errno, dlea->dl_unix_errno); 14521 break; 14522 case DL_CAPABILITY_ACK: { 14523 boolean_t reneg_flag = B_FALSE; 14524 /* Call a routine to handle this one. */ 14525 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14526 /* 14527 * Check if the ACK is due to renegotiation case since we 14528 * will need to send a new CAPABILITY_REQ later. 14529 */ 14530 if (ill->ill_capab_state == IDMS_RENEG) { 14531 /* This is the ack for a renogiation case */ 14532 reneg_flag = B_TRUE; 14533 ill->ill_capab_state = IDMS_UNKNOWN; 14534 } 14535 ill_capability_ack(ill, mp); 14536 if (reneg_flag) 14537 ill_capability_probe(ill); 14538 break; 14539 } 14540 case DL_CONTROL_ACK: 14541 /* We treat all of these as "fire and forget" */ 14542 ill_dlpi_done(ill, DL_CONTROL_REQ); 14543 break; 14544 case DL_INFO_ACK: 14545 /* Call a routine to handle this one. */ 14546 ill_dlpi_done(ill, DL_INFO_REQ); 14547 ip_ll_subnet_defaults(ill, mp); 14548 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14549 return; 14550 case DL_BIND_ACK: 14551 /* 14552 * We should have an IOCTL waiting on this unless 14553 * sent by ill_dl_phys, in which case just return 14554 */ 14555 ill_dlpi_done(ill, DL_BIND_REQ); 14556 if (ill->ill_ifname_pending) 14557 break; 14558 14559 if (!ioctl_aborted) 14560 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14561 if (mp1 == NULL) 14562 break; 14563 ASSERT(connp != NULL); 14564 q = CONNP_TO_WQ(connp); 14565 14566 /* 14567 * We are exclusive. So nothing can change even after 14568 * we get the pending mp. If need be we can put it back 14569 * and restart, as in calling ipif_arp_up() below. 14570 */ 14571 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14572 14573 mutex_enter(&ill->ill_lock); 14574 ill->ill_dl_up = 1; 14575 mutex_exit(&ill->ill_lock); 14576 14577 /* 14578 * Now bring up the resolver, when that is 14579 * done we'll create IREs and we are done. 14580 */ 14581 if (ill->ill_isv6) { 14582 /* 14583 * v6 interfaces. 14584 * Unlike ARP which has to do another bind 14585 * and attach, once we get here we are 14586 * done withh NDP. Except in the case of 14587 * ILLF_XRESOLV, in which case we send an 14588 * AR_INTERFACE_UP to the external resolver. 14589 * If all goes well, the ioctl will complete 14590 * in ip_rput(). If there's an error, we 14591 * complete it here. 14592 */ 14593 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14594 B_FALSE); 14595 if (err == 0) { 14596 if (ill->ill_flags & ILLF_XRESOLV) { 14597 mutex_enter(&connp->conn_lock); 14598 mutex_enter(&ill->ill_lock); 14599 success = ipsq_pending_mp_add( 14600 connp, ipif, q, mp1, 0); 14601 mutex_exit(&ill->ill_lock); 14602 mutex_exit(&connp->conn_lock); 14603 if (success) { 14604 err = ipif_resolver_up(ipif, 14605 B_FALSE); 14606 if (err == EINPROGRESS) { 14607 freemsg(mp); 14608 return; 14609 } 14610 ASSERT(err != 0); 14611 mp1 = ipsq_pending_mp_get(ipsq, 14612 &connp); 14613 ASSERT(mp1 != NULL); 14614 } else { 14615 /* conn has started closing */ 14616 err = EINTR; 14617 } 14618 } else { /* Non XRESOLV interface */ 14619 err = ipif_up_done_v6(ipif); 14620 } 14621 } 14622 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14623 /* 14624 * ARP and other v4 external resolvers. 14625 * Leave the pending mblk intact so that 14626 * the ioctl completes in ip_rput(). 14627 */ 14628 mutex_enter(&connp->conn_lock); 14629 mutex_enter(&ill->ill_lock); 14630 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14631 mutex_exit(&ill->ill_lock); 14632 mutex_exit(&connp->conn_lock); 14633 if (success) { 14634 err = ipif_resolver_up(ipif, B_FALSE); 14635 if (err == EINPROGRESS) { 14636 freemsg(mp); 14637 return; 14638 } 14639 ASSERT(err != 0); 14640 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14641 } else { 14642 /* The conn has started closing */ 14643 err = EINTR; 14644 } 14645 } else { 14646 /* 14647 * This one is complete. Reply to pending ioctl. 14648 */ 14649 err = ipif_up_done(ipif); 14650 } 14651 14652 if ((err == 0) && (ill->ill_up_ipifs)) { 14653 err = ill_up_ipifs(ill, q, mp1); 14654 if (err == EINPROGRESS) { 14655 freemsg(mp); 14656 return; 14657 } 14658 } 14659 14660 if (ill->ill_up_ipifs) { 14661 ill_group_cleanup(ill); 14662 } 14663 14664 break; 14665 case DL_NOTIFY_IND: { 14666 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14667 ire_t *ire; 14668 boolean_t need_ire_walk_v4 = B_FALSE; 14669 boolean_t need_ire_walk_v6 = B_FALSE; 14670 14671 /* 14672 * Change the address everywhere we need to. 14673 * What we're getting here is a link-level addr or phys addr. 14674 * The new addr is at notify + notify->dl_addr_offset 14675 * The address length is notify->dl_addr_length; 14676 */ 14677 switch (notify->dl_notification) { 14678 case DL_NOTE_PHYS_ADDR: 14679 mp_hw = copyb(mp); 14680 if (mp_hw == NULL) { 14681 err = ENOMEM; 14682 break; 14683 } 14684 dlp = (union DL_primitives *)mp_hw->b_rptr; 14685 /* 14686 * We currently don't support changing 14687 * the token via DL_NOTIFY_IND. 14688 * When we do support it, we have to consider 14689 * what the implications are with respect to 14690 * the token and the link local address. 14691 */ 14692 mutex_enter(&ill->ill_lock); 14693 if (dlp->notify_ind.dl_data == 14694 DL_IPV6_LINK_LAYER_ADDR) { 14695 if (ill->ill_nd_lla_mp != NULL) 14696 freemsg(ill->ill_nd_lla_mp); 14697 ill->ill_nd_lla_mp = mp_hw; 14698 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14699 dlp->notify_ind.dl_addr_offset; 14700 ill->ill_nd_lla_len = 14701 dlp->notify_ind.dl_addr_length - 14702 ABS(ill->ill_sap_length); 14703 mutex_exit(&ill->ill_lock); 14704 break; 14705 } else if (dlp->notify_ind.dl_data == 14706 DL_CURR_PHYS_ADDR) { 14707 if (ill->ill_phys_addr_mp != NULL) 14708 freemsg(ill->ill_phys_addr_mp); 14709 ill->ill_phys_addr_mp = mp_hw; 14710 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14711 dlp->notify_ind.dl_addr_offset; 14712 ill->ill_phys_addr_length = 14713 dlp->notify_ind.dl_addr_length - 14714 ABS(ill->ill_sap_length); 14715 if (ill->ill_isv6 && 14716 !(ill->ill_flags & ILLF_XRESOLV)) { 14717 if (ill->ill_nd_lla_mp != NULL) 14718 freemsg(ill->ill_nd_lla_mp); 14719 ill->ill_nd_lla_mp = copyb(mp_hw); 14720 ill->ill_nd_lla = (uchar_t *) 14721 ill->ill_nd_lla_mp->b_rptr + 14722 dlp->notify_ind.dl_addr_offset; 14723 ill->ill_nd_lla_len = 14724 ill->ill_phys_addr_length; 14725 } 14726 } 14727 mutex_exit(&ill->ill_lock); 14728 /* 14729 * Send out gratuitous arp request for our new 14730 * hardware address. 14731 */ 14732 for (ipif = ill->ill_ipif; ipif != NULL; 14733 ipif = ipif->ipif_next) { 14734 if (!(ipif->ipif_flags & IPIF_UP)) 14735 continue; 14736 if (ill->ill_isv6) { 14737 ipif_ndp_down(ipif); 14738 /* 14739 * Set B_TRUE to enable 14740 * ipif_ndp_up() to send out 14741 * unsolicited advertisements. 14742 */ 14743 err = ipif_ndp_up(ipif, 14744 &ipif->ipif_v6lcl_addr, 14745 B_TRUE); 14746 if (err) { 14747 ip1dbg(( 14748 "ip_rput_dlpi_writer: " 14749 "Failed to update ndp " 14750 "err %d\n", err)); 14751 } 14752 } else { 14753 /* 14754 * IPv4 ARP case 14755 * 14756 * Set B_TRUE, as we only want 14757 * ipif_resolver_up to send an 14758 * AR_ENTRY_ADD request up to 14759 * ARP. 14760 */ 14761 err = ipif_resolver_up(ipif, 14762 B_TRUE); 14763 if (err) { 14764 ip1dbg(( 14765 "ip_rput_dlpi_writer: " 14766 "Failed to update arp " 14767 "err %d\n", err)); 14768 } 14769 } 14770 } 14771 /* 14772 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14773 * case so that all old fastpath information can be 14774 * purged from IRE caches. 14775 */ 14776 /* FALLTHRU */ 14777 case DL_NOTE_FASTPATH_FLUSH: 14778 /* 14779 * Any fastpath probe sent henceforth will get the 14780 * new fp mp. So we first delete any ires that are 14781 * waiting for the fastpath. Then walk all ires and 14782 * delete the ire or delete the fp mp. In the case of 14783 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14784 * recreate the ire's without going through a complex 14785 * ipif up/down dance. So we don't delete the ire 14786 * itself, but just the ire_fp_mp for these 2 ire's 14787 * In the case of the other ire's we delete the ire's 14788 * themselves. Access to ire_fp_mp is completely 14789 * protected by ire_lock for IRE_MIPRTUN and 14790 * IRE_BROADCAST. Deleting the ire is preferable in the 14791 * other cases for performance. 14792 */ 14793 if (ill->ill_isv6) { 14794 nce_fastpath_list_dispatch(ill, NULL, NULL); 14795 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14796 NULL); 14797 } else { 14798 ire_fastpath_list_dispatch(ill, NULL, NULL); 14799 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14800 IRE_CACHE | IRE_BROADCAST, 14801 ire_fastpath_flush, NULL, ill); 14802 mutex_enter(&ire_mrtun_lock); 14803 if (ire_mrtun_count != 0) { 14804 mutex_exit(&ire_mrtun_lock); 14805 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14806 IRE_MIPRTUN, ire_fastpath_flush, 14807 NULL, ill); 14808 } else { 14809 mutex_exit(&ire_mrtun_lock); 14810 } 14811 } 14812 break; 14813 case DL_NOTE_SDU_SIZE: 14814 /* 14815 * Change the MTU size of the interface, of all 14816 * attached ipif's, and of all relevant ire's. The 14817 * new value's a uint32_t at notify->dl_data. 14818 * Mtu change Vs. new ire creation - protocol below. 14819 * 14820 * a Mark the ipif as IPIF_CHANGING. 14821 * b Set the new mtu in the ipif. 14822 * c Change the ire_max_frag on all affected ires 14823 * d Unmark the IPIF_CHANGING 14824 * 14825 * To see how the protocol works, assume an interface 14826 * route is also being added simultaneously by 14827 * ip_rt_add and let 'ipif' be the ipif referenced by 14828 * the ire. If the ire is created before step a, 14829 * it will be cleaned up by step c. If the ire is 14830 * created after step d, it will see the new value of 14831 * ipif_mtu. Any attempt to create the ire between 14832 * steps a to d will fail because of the IPIF_CHANGING 14833 * flag. Note that ire_create() is passed a pointer to 14834 * the ipif_mtu, and not the value. During ire_add 14835 * under the bucket lock, the ire_max_frag of the 14836 * new ire being created is set from the ipif/ire from 14837 * which it is being derived. 14838 */ 14839 mutex_enter(&ill->ill_lock); 14840 ill->ill_max_frag = (uint_t)notify->dl_data; 14841 14842 /* 14843 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14844 * leave it alone 14845 */ 14846 if (ill->ill_mtu_userspecified) { 14847 mutex_exit(&ill->ill_lock); 14848 break; 14849 } 14850 ill->ill_max_mtu = ill->ill_max_frag; 14851 if (ill->ill_isv6) { 14852 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14853 ill->ill_max_mtu = IPV6_MIN_MTU; 14854 } else { 14855 if (ill->ill_max_mtu < IP_MIN_MTU) 14856 ill->ill_max_mtu = IP_MIN_MTU; 14857 } 14858 for (ipif = ill->ill_ipif; ipif != NULL; 14859 ipif = ipif->ipif_next) { 14860 /* 14861 * Don't override the mtu if the user 14862 * has explicitly set it. 14863 */ 14864 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14865 continue; 14866 ipif->ipif_mtu = (uint_t)notify->dl_data; 14867 if (ipif->ipif_isv6) 14868 ire = ipif_to_ire_v6(ipif); 14869 else 14870 ire = ipif_to_ire(ipif); 14871 if (ire != NULL) { 14872 ire->ire_max_frag = ipif->ipif_mtu; 14873 ire_refrele(ire); 14874 } 14875 if (ipif->ipif_flags & IPIF_UP) { 14876 if (ill->ill_isv6) 14877 need_ire_walk_v6 = B_TRUE; 14878 else 14879 need_ire_walk_v4 = B_TRUE; 14880 } 14881 } 14882 mutex_exit(&ill->ill_lock); 14883 if (need_ire_walk_v4) 14884 ire_walk_v4(ill_mtu_change, (char *)ill, 14885 ALL_ZONES); 14886 if (need_ire_walk_v6) 14887 ire_walk_v6(ill_mtu_change, (char *)ill, 14888 ALL_ZONES); 14889 break; 14890 case DL_NOTE_LINK_UP: 14891 case DL_NOTE_LINK_DOWN: { 14892 /* 14893 * We are writer. ill / phyint / ipsq assocs stable. 14894 * The RUNNING flag reflects the state of the link. 14895 */ 14896 phyint_t *phyint = ill->ill_phyint; 14897 uint64_t new_phyint_flags; 14898 boolean_t changed = B_FALSE; 14899 14900 mutex_enter(&phyint->phyint_lock); 14901 new_phyint_flags = 14902 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14903 phyint->phyint_flags | PHYI_RUNNING : 14904 phyint->phyint_flags & ~PHYI_RUNNING; 14905 if (new_phyint_flags != phyint->phyint_flags) { 14906 phyint->phyint_flags = new_phyint_flags; 14907 changed = B_TRUE; 14908 } 14909 mutex_exit(&phyint->phyint_lock); 14910 /* 14911 * If the flags have changed, send a message to 14912 * the routing socket. 14913 */ 14914 if (changed) { 14915 if (phyint->phyint_illv4 != NULL) { 14916 ip_rts_ifmsg( 14917 phyint->phyint_illv4->ill_ipif); 14918 } 14919 if (phyint->phyint_illv6 != NULL) { 14920 ip_rts_ifmsg( 14921 phyint->phyint_illv6->ill_ipif); 14922 } 14923 } 14924 break; 14925 } 14926 case DL_NOTE_PROMISC_ON_PHYS: 14927 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14928 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14929 mutex_enter(&ill->ill_lock); 14930 ill->ill_promisc_on_phys = B_TRUE; 14931 mutex_exit(&ill->ill_lock); 14932 break; 14933 case DL_NOTE_PROMISC_OFF_PHYS: 14934 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14935 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14936 mutex_enter(&ill->ill_lock); 14937 ill->ill_promisc_on_phys = B_FALSE; 14938 mutex_exit(&ill->ill_lock); 14939 break; 14940 case DL_NOTE_CAPAB_RENEG: 14941 /* 14942 * Something changed on the driver side. 14943 * It wants us to renegotiate the capabilities 14944 * on this ill. The most likely cause is the 14945 * aggregation interface under us where a 14946 * port got added or went away. 14947 * 14948 * We reset the capabilities and set the 14949 * state to IDMS_RENG so that when the ack 14950 * comes back, we can start the 14951 * renegotiation process. 14952 */ 14953 ill_capability_reset(ill); 14954 ill->ill_capab_state = IDMS_RENEG; 14955 break; 14956 default: 14957 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14958 "type 0x%x for DL_NOTIFY_IND\n", 14959 notify->dl_notification)); 14960 break; 14961 } 14962 14963 /* 14964 * As this is an asynchronous operation, we 14965 * should not call ill_dlpi_done 14966 */ 14967 break; 14968 } 14969 case DL_NOTIFY_ACK: 14970 /* 14971 * Don't really need to check for what notifications 14972 * are supported; we'll process what gets sent upstream, 14973 * and we know it'll be something we support changing 14974 * based on our DL_NOTIFY_REQ. 14975 */ 14976 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14977 break; 14978 case DL_PHYS_ADDR_ACK: { 14979 /* 14980 * We should have an IOCTL waiting on this when request 14981 * sent by ill_dl_phys. 14982 * However, ill_dl_phys was called on an ill queue (from 14983 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14984 * ioctl is known to be pending on ill_wq. 14985 * There are two additional phys_addr_req's sent to the 14986 * driver to get the token and lla. ill_phys_addr_pend 14987 * keeps track of the last one sent so we know which 14988 * response we are dealing with. ill_dlpi_done will 14989 * update ill_phys_addr_pend when it sends the next req. 14990 * We don't complete the IOCTL until all three DL_PARs 14991 * have been attempted. 14992 * 14993 * We don't need any lock to update ill_nd_lla* fields, 14994 * since the ill is not yet up, We grab the lock just 14995 * for uniformity with other code that accesses ill_nd_lla. 14996 */ 14997 physaddr_req = ill->ill_phys_addr_pend; 14998 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14999 if (physaddr_req == DL_IPV6_TOKEN || 15000 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15001 if (physaddr_req == DL_IPV6_TOKEN) { 15002 /* 15003 * bcopy to low-order bits of ill_token 15004 * 15005 * XXX Temporary hack - currently, 15006 * all known tokens are 64 bits, 15007 * so I'll cheat for the moment. 15008 */ 15009 dlp = (union DL_primitives *)mp->b_rptr; 15010 15011 mutex_enter(&ill->ill_lock); 15012 bcopy((uchar_t *)(mp->b_rptr + 15013 dlp->physaddr_ack.dl_addr_offset), 15014 (void *)&ill->ill_token.s6_addr32[2], 15015 dlp->physaddr_ack.dl_addr_length); 15016 ill->ill_token_length = 15017 dlp->physaddr_ack.dl_addr_length; 15018 mutex_exit(&ill->ill_lock); 15019 } else { 15020 ASSERT(ill->ill_nd_lla_mp == NULL); 15021 mp_hw = copyb(mp); 15022 if (mp_hw == NULL) { 15023 err = ENOMEM; 15024 break; 15025 } 15026 dlp = (union DL_primitives *)mp_hw->b_rptr; 15027 mutex_enter(&ill->ill_lock); 15028 ill->ill_nd_lla_mp = mp_hw; 15029 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15030 dlp->physaddr_ack.dl_addr_offset; 15031 ill->ill_nd_lla_len = 15032 dlp->physaddr_ack.dl_addr_length; 15033 mutex_exit(&ill->ill_lock); 15034 } 15035 break; 15036 } 15037 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15038 ASSERT(ill->ill_phys_addr_mp == NULL); 15039 if (!ill->ill_ifname_pending) 15040 break; 15041 ill->ill_ifname_pending = 0; 15042 if (!ioctl_aborted) 15043 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15044 if (mp1 != NULL) { 15045 ASSERT(connp == NULL); 15046 q = ill->ill_wq; 15047 } 15048 /* 15049 * If any error acks received during the plumbing sequence, 15050 * ill_ifname_pending_err will be set. Break out and send up 15051 * the error to the pending ioctl. 15052 */ 15053 if (ill->ill_ifname_pending_err != 0) { 15054 err = ill->ill_ifname_pending_err; 15055 ill->ill_ifname_pending_err = 0; 15056 break; 15057 } 15058 /* 15059 * Get the interface token. If the zeroth interface 15060 * address is zero then set the address to the link local 15061 * address 15062 */ 15063 mp_hw = copyb(mp); 15064 if (mp_hw == NULL) { 15065 err = ENOMEM; 15066 break; 15067 } 15068 dlp = (union DL_primitives *)mp_hw->b_rptr; 15069 ill->ill_phys_addr_mp = mp_hw; 15070 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15071 dlp->physaddr_ack.dl_addr_offset; 15072 if (dlp->physaddr_ack.dl_addr_length == 0 || 15073 ill->ill_phys_addr_length == 0 || 15074 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15075 /* 15076 * Compatibility: atun driver returns a length of 0. 15077 * ipdptp has an ill_phys_addr_length of zero(from 15078 * DL_BIND_ACK) but a non-zero length here. 15079 * ipd has an ill_phys_addr_length of 4(from 15080 * DL_BIND_ACK) but a non-zero length here. 15081 */ 15082 ill->ill_phys_addr = NULL; 15083 } else if (dlp->physaddr_ack.dl_addr_length != 15084 ill->ill_phys_addr_length) { 15085 ip0dbg(("DL_PHYS_ADDR_ACK: " 15086 "Address length mismatch %d %d\n", 15087 dlp->physaddr_ack.dl_addr_length, 15088 ill->ill_phys_addr_length)); 15089 err = EINVAL; 15090 break; 15091 } 15092 mutex_enter(&ill->ill_lock); 15093 if (ill->ill_nd_lla_mp == NULL) { 15094 ill->ill_nd_lla_mp = copyb(mp_hw); 15095 if (ill->ill_nd_lla_mp == NULL) { 15096 err = ENOMEM; 15097 mutex_exit(&ill->ill_lock); 15098 break; 15099 } 15100 ill->ill_nd_lla = 15101 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15102 dlp->physaddr_ack.dl_addr_offset; 15103 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15104 } 15105 mutex_exit(&ill->ill_lock); 15106 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15107 (void) ill_setdefaulttoken(ill); 15108 15109 /* 15110 * If the ill zero interface has a zero address assign 15111 * it the proper link local address. 15112 */ 15113 ASSERT(ill->ill_ipif->ipif_id == 0); 15114 if (ipif != NULL && 15115 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15116 (void) ipif_setlinklocal(ipif); 15117 break; 15118 } 15119 case DL_OK_ACK: 15120 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15121 dlpi_prim_str((int)dloa->dl_correct_primitive), 15122 dloa->dl_correct_primitive)); 15123 switch (dloa->dl_correct_primitive) { 15124 case DL_UNBIND_REQ: 15125 case DL_ATTACH_REQ: 15126 case DL_DETACH_REQ: 15127 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15128 break; 15129 } 15130 break; 15131 default: 15132 break; 15133 } 15134 15135 freemsg(mp); 15136 if (mp1) { 15137 struct iocblk *iocp; 15138 int mode; 15139 15140 /* 15141 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15142 * SIOCSLIFNAME do a copyout. 15143 */ 15144 iocp = (struct iocblk *)mp1->b_rptr; 15145 15146 if (iocp->ioc_cmd == SIOCLIFADDIF || 15147 iocp->ioc_cmd == SIOCSLIFNAME) 15148 mode = COPYOUT; 15149 else 15150 mode = NO_COPYOUT; 15151 /* 15152 * The ioctl must complete now without EINPROGRESS 15153 * since ipsq_pending_mp_get has removed the ioctl mblk 15154 * from ipsq_pending_mp. Otherwise the ioctl will be 15155 * stuck for ever in the ipsq. 15156 */ 15157 ASSERT(err != EINPROGRESS); 15158 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15159 15160 } 15161 } 15162 15163 /* 15164 * ip_rput_other is called by ip_rput to handle messages modifying the global 15165 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15166 */ 15167 /* ARGSUSED */ 15168 void 15169 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15170 { 15171 ill_t *ill; 15172 struct iocblk *iocp; 15173 mblk_t *mp1; 15174 conn_t *connp = NULL; 15175 15176 ip1dbg(("ip_rput_other ")); 15177 ill = (ill_t *)q->q_ptr; 15178 /* 15179 * This routine is not a writer in the case of SIOCGTUNPARAM 15180 * in which case ipsq is NULL. 15181 */ 15182 if (ipsq != NULL) { 15183 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15184 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15185 } 15186 15187 switch (mp->b_datap->db_type) { 15188 case M_ERROR: 15189 case M_HANGUP: 15190 /* 15191 * The device has a problem. We force the ILL down. It can 15192 * be brought up again manually using SIOCSIFFLAGS (via 15193 * ifconfig or equivalent). 15194 */ 15195 ASSERT(ipsq != NULL); 15196 if (mp->b_rptr < mp->b_wptr) 15197 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15198 if (ill->ill_error == 0) 15199 ill->ill_error = ENXIO; 15200 if (!ill_down_start(q, mp)) 15201 return; 15202 ipif_all_down_tail(ipsq, q, mp, NULL); 15203 break; 15204 case M_IOCACK: 15205 iocp = (struct iocblk *)mp->b_rptr; 15206 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15207 switch (iocp->ioc_cmd) { 15208 case SIOCSTUNPARAM: 15209 case OSIOCSTUNPARAM: 15210 ASSERT(ipsq != NULL); 15211 /* 15212 * Finish socket ioctl passed through to tun. 15213 * We should have an IOCTL waiting on this. 15214 */ 15215 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15216 if (ill->ill_isv6) { 15217 struct iftun_req *ta; 15218 15219 /* 15220 * if a source or destination is 15221 * being set, try and set the link 15222 * local address for the tunnel 15223 */ 15224 ta = (struct iftun_req *)mp->b_cont-> 15225 b_cont->b_rptr; 15226 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15227 ipif_set_tun_llink(ill, ta); 15228 } 15229 15230 } 15231 if (mp1 != NULL) { 15232 /* 15233 * Now copy back the b_next/b_prev used by 15234 * mi code for the mi_copy* functions. 15235 * See ip_sioctl_tunparam() for the reason. 15236 * Also protect against missing b_cont. 15237 */ 15238 if (mp->b_cont != NULL) { 15239 mp->b_cont->b_next = 15240 mp1->b_cont->b_next; 15241 mp->b_cont->b_prev = 15242 mp1->b_cont->b_prev; 15243 } 15244 inet_freemsg(mp1); 15245 ASSERT(ipsq->ipsq_current_ipif != NULL); 15246 ASSERT(connp != NULL); 15247 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15248 iocp->ioc_error, NO_COPYOUT, 15249 ipsq->ipsq_current_ipif, ipsq); 15250 } else { 15251 ASSERT(connp == NULL); 15252 putnext(q, mp); 15253 } 15254 break; 15255 case SIOCGTUNPARAM: 15256 case OSIOCGTUNPARAM: 15257 /* 15258 * This is really M_IOCDATA from the tunnel driver. 15259 * convert back and complete the ioctl. 15260 * We should have an IOCTL waiting on this. 15261 */ 15262 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15263 if (mp1) { 15264 /* 15265 * Now copy back the b_next/b_prev used by 15266 * mi code for the mi_copy* functions. 15267 * See ip_sioctl_tunparam() for the reason. 15268 * Also protect against missing b_cont. 15269 */ 15270 if (mp->b_cont != NULL) { 15271 mp->b_cont->b_next = 15272 mp1->b_cont->b_next; 15273 mp->b_cont->b_prev = 15274 mp1->b_cont->b_prev; 15275 } 15276 inet_freemsg(mp1); 15277 if (iocp->ioc_error == 0) 15278 mp->b_datap->db_type = M_IOCDATA; 15279 ASSERT(connp != NULL); 15280 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15281 iocp->ioc_error, COPYOUT, NULL, NULL); 15282 } else { 15283 ASSERT(connp == NULL); 15284 putnext(q, mp); 15285 } 15286 break; 15287 default: 15288 break; 15289 } 15290 break; 15291 case M_IOCNAK: 15292 iocp = (struct iocblk *)mp->b_rptr; 15293 15294 switch (iocp->ioc_cmd) { 15295 int mode; 15296 ipif_t *ipif; 15297 15298 case DL_IOC_HDR_INFO: 15299 /* 15300 * If this was the first attempt turn of the 15301 * fastpath probing. 15302 */ 15303 mutex_enter(&ill->ill_lock); 15304 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15305 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15306 mutex_exit(&ill->ill_lock); 15307 ill_fastpath_nack(ill); 15308 ip1dbg(("ip_rput: DLPI fastpath off on " 15309 "interface %s\n", 15310 ill->ill_name)); 15311 } else { 15312 mutex_exit(&ill->ill_lock); 15313 } 15314 freemsg(mp); 15315 break; 15316 case SIOCSTUNPARAM: 15317 case OSIOCSTUNPARAM: 15318 ASSERT(ipsq != NULL); 15319 /* 15320 * Finish socket ioctl passed through to tun 15321 * We should have an IOCTL waiting on this. 15322 */ 15323 /* FALLTHRU */ 15324 case SIOCGTUNPARAM: 15325 case OSIOCGTUNPARAM: 15326 /* 15327 * This is really M_IOCDATA from the tunnel driver. 15328 * convert back and complete the ioctl. 15329 * We should have an IOCTL waiting on this. 15330 */ 15331 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15332 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15333 mp1 = ill_pending_mp_get(ill, &connp, 15334 iocp->ioc_id); 15335 mode = COPYOUT; 15336 ipsq = NULL; 15337 ipif = NULL; 15338 } else { 15339 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15340 mode = NO_COPYOUT; 15341 ASSERT(ipsq->ipsq_current_ipif != NULL); 15342 ipif = ipsq->ipsq_current_ipif; 15343 } 15344 if (mp1 != NULL) { 15345 /* 15346 * Now copy back the b_next/b_prev used by 15347 * mi code for the mi_copy* functions. 15348 * See ip_sioctl_tunparam() for the reason. 15349 * Also protect against missing b_cont. 15350 */ 15351 if (mp->b_cont != NULL) { 15352 mp->b_cont->b_next = 15353 mp1->b_cont->b_next; 15354 mp->b_cont->b_prev = 15355 mp1->b_cont->b_prev; 15356 } 15357 inet_freemsg(mp1); 15358 if (iocp->ioc_error == 0) 15359 iocp->ioc_error = EINVAL; 15360 ASSERT(connp != NULL); 15361 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15362 iocp->ioc_error, mode, ipif, ipsq); 15363 } else { 15364 ASSERT(connp == NULL); 15365 putnext(q, mp); 15366 } 15367 break; 15368 default: 15369 break; 15370 } 15371 default: 15372 break; 15373 } 15374 } 15375 15376 /* 15377 * NOTE : This function does not ire_refrele the ire argument passed in. 15378 * 15379 * IPQoS notes 15380 * IP policy is invoked twice for a forwarded packet, once on the read side 15381 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15382 * enabled. An additional parameter, in_ill, has been added for this purpose. 15383 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15384 * because ip_mroute drops this information. 15385 * 15386 */ 15387 void 15388 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15389 { 15390 uint32_t pkt_len; 15391 queue_t *q; 15392 uint32_t sum; 15393 #define rptr ((uchar_t *)ipha) 15394 uint32_t max_frag; 15395 uint32_t ill_index; 15396 15397 /* Get the ill_index of the incoming ILL */ 15398 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15399 15400 /* Initiate Read side IPPF processing */ 15401 if (IPP_ENABLED(IPP_FWD_IN)) { 15402 ip_process(IPP_FWD_IN, &mp, ill_index); 15403 if (mp == NULL) { 15404 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15405 "during IPPF processing\n")); 15406 return; 15407 } 15408 } 15409 pkt_len = ntohs(ipha->ipha_length); 15410 15411 /* Adjust the checksum to reflect the ttl decrement. */ 15412 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 15413 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 15414 15415 if (ipha->ipha_ttl-- <= 1) { 15416 if (ip_csum_hdr(ipha)) { 15417 BUMP_MIB(&ip_mib, ipInCksumErrs); 15418 goto drop_pkt; 15419 } 15420 /* 15421 * Note: ire_stq this will be NULL for multicast 15422 * datagrams using the long path through arp (the IRE 15423 * is not an IRE_CACHE). This should not cause 15424 * problems since we don't generate ICMP errors for 15425 * multicast packets. 15426 */ 15427 q = ire->ire_stq; 15428 if (q) 15429 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 15430 else 15431 freemsg(mp); 15432 return; 15433 } 15434 15435 /* 15436 * Don't forward if the interface is down 15437 */ 15438 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 15439 BUMP_MIB(&ip_mib, ipInDiscards); 15440 goto drop_pkt; 15441 } 15442 15443 /* Get the ill_index of the outgoing ILL */ 15444 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 15445 15446 if (is_system_labeled()) { 15447 mblk_t *mp1; 15448 15449 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 15450 BUMP_MIB(&ip_mib, ipForwProhibits); 15451 goto drop_pkt; 15452 } 15453 /* Size may have changed */ 15454 mp = mp1; 15455 ipha = (ipha_t *)mp->b_rptr; 15456 pkt_len = ntohs(ipha->ipha_length); 15457 } 15458 15459 /* Check if there are options to update */ 15460 if (!IS_SIMPLE_IPH(ipha)) { 15461 if (ip_csum_hdr(ipha)) { 15462 BUMP_MIB(&ip_mib, ipInCksumErrs); 15463 goto drop_pkt; 15464 } 15465 if (ip_rput_forward_options(mp, ipha, ire)) { 15466 return; 15467 } 15468 15469 ipha->ipha_hdr_checksum = 0; 15470 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 15471 } 15472 max_frag = ire->ire_max_frag; 15473 if (pkt_len > max_frag) { 15474 /* 15475 * It needs fragging on its way out. We haven't 15476 * verified the header checksum yet. Since we 15477 * are going to put a surely good checksum in the 15478 * outgoing header, we have to make sure that it 15479 * was good coming in. 15480 */ 15481 if (ip_csum_hdr(ipha)) { 15482 BUMP_MIB(&ip_mib, ipInCksumErrs); 15483 goto drop_pkt; 15484 } 15485 /* Initiate Write side IPPF processing */ 15486 if (IPP_ENABLED(IPP_FWD_OUT)) { 15487 ip_process(IPP_FWD_OUT, &mp, ill_index); 15488 if (mp == NULL) { 15489 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 15490 " during IPPF processing\n")); 15491 return; 15492 } 15493 } 15494 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 15495 return; 15496 } 15497 15498 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 15499 if (mp == NULL) { 15500 BUMP_MIB(&ip_mib, ipInDiscards); 15501 return; 15502 } 15503 15504 q = ire->ire_stq; 15505 UPDATE_IB_PKT_COUNT(ire); 15506 ire->ire_last_used_time = lbolt; 15507 BUMP_MIB(&ip_mib, ipForwDatagrams); 15508 putnext(q, mp); 15509 return; 15510 15511 drop_pkt:; 15512 ip1dbg(("ip_rput_forward: drop pkt\n")); 15513 freemsg(mp); 15514 #undef rptr 15515 } 15516 15517 void 15518 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 15519 { 15520 ire_t *ire; 15521 15522 ASSERT(!ipif->ipif_isv6); 15523 /* 15524 * Find an IRE which matches the destination and the outgoing 15525 * queue in the cache table. All we need is an IRE_CACHE which 15526 * is pointing at ipif->ipif_ill. If it is part of some ill group, 15527 * then it is enough to have some IRE_CACHE in the group. 15528 */ 15529 if (ipif->ipif_flags & IPIF_POINTOPOINT) 15530 dst = ipif->ipif_pp_dst_addr; 15531 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 15532 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 15533 if (ire == NULL) { 15534 /* 15535 * Mark this packet to make it be delivered to 15536 * ip_rput_forward after the new ire has been 15537 * created. 15538 */ 15539 mp->b_prev = NULL; 15540 mp->b_next = mp; 15541 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 15542 NULL, 0); 15543 } else { 15544 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 15545 IRE_REFRELE(ire); 15546 } 15547 } 15548 15549 /* Update any source route, record route or timestamp options */ 15550 static int 15551 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15552 { 15553 ipoptp_t opts; 15554 uchar_t *opt; 15555 uint8_t optval; 15556 uint8_t optlen; 15557 ipaddr_t dst; 15558 uint32_t ts; 15559 ire_t *dst_ire = NULL; 15560 ire_t *tmp_ire = NULL; 15561 timestruc_t now; 15562 15563 ip2dbg(("ip_rput_forward_options\n")); 15564 dst = ipha->ipha_dst; 15565 for (optval = ipoptp_first(&opts, ipha); 15566 optval != IPOPT_EOL; 15567 optval = ipoptp_next(&opts)) { 15568 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15569 opt = opts.ipoptp_cur; 15570 optlen = opts.ipoptp_len; 15571 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15572 optval, opts.ipoptp_len)); 15573 switch (optval) { 15574 uint32_t off; 15575 case IPOPT_SSRR: 15576 case IPOPT_LSRR: 15577 /* Check if adminstratively disabled */ 15578 if (!ip_forward_src_routed) { 15579 BUMP_MIB(&ip_mib, ipForwProhibits); 15580 if (ire->ire_stq) 15581 icmp_unreachable(ire->ire_stq, mp, 15582 ICMP_SOURCE_ROUTE_FAILED); 15583 else { 15584 ip0dbg(("ip_rput_forward_options: " 15585 "unable to send unreach\n")); 15586 freemsg(mp); 15587 } 15588 return (-1); 15589 } 15590 15591 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15592 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15593 if (dst_ire == NULL) { 15594 /* 15595 * Must be partial since ip_rput_options 15596 * checked for strict. 15597 */ 15598 break; 15599 } 15600 off = opt[IPOPT_OFFSET]; 15601 off--; 15602 redo_srr: 15603 if (optlen < IP_ADDR_LEN || 15604 off > optlen - IP_ADDR_LEN) { 15605 /* End of source route */ 15606 ip1dbg(( 15607 "ip_rput_forward_options: end of SR\n")); 15608 ire_refrele(dst_ire); 15609 break; 15610 } 15611 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15612 bcopy(&ire->ire_src_addr, (char *)opt + off, 15613 IP_ADDR_LEN); 15614 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15615 ntohl(dst))); 15616 15617 /* 15618 * Check if our address is present more than 15619 * once as consecutive hops in source route. 15620 */ 15621 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15622 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15623 if (tmp_ire != NULL) { 15624 ire_refrele(tmp_ire); 15625 off += IP_ADDR_LEN; 15626 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15627 goto redo_srr; 15628 } 15629 ipha->ipha_dst = dst; 15630 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15631 ire_refrele(dst_ire); 15632 break; 15633 case IPOPT_RR: 15634 off = opt[IPOPT_OFFSET]; 15635 off--; 15636 if (optlen < IP_ADDR_LEN || 15637 off > optlen - IP_ADDR_LEN) { 15638 /* No more room - ignore */ 15639 ip1dbg(( 15640 "ip_rput_forward_options: end of RR\n")); 15641 break; 15642 } 15643 bcopy(&ire->ire_src_addr, (char *)opt + off, 15644 IP_ADDR_LEN); 15645 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15646 break; 15647 case IPOPT_TS: 15648 /* Insert timestamp if there is room */ 15649 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15650 case IPOPT_TS_TSONLY: 15651 off = IPOPT_TS_TIMELEN; 15652 break; 15653 case IPOPT_TS_PRESPEC: 15654 case IPOPT_TS_PRESPEC_RFC791: 15655 /* Verify that the address matched */ 15656 off = opt[IPOPT_OFFSET] - 1; 15657 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15658 dst_ire = ire_ctable_lookup(dst, 0, 15659 IRE_LOCAL, NULL, ALL_ZONES, NULL, 15660 MATCH_IRE_TYPE); 15661 15662 if (dst_ire == NULL) { 15663 /* Not for us */ 15664 break; 15665 } 15666 ire_refrele(dst_ire); 15667 /* FALLTHRU */ 15668 case IPOPT_TS_TSANDADDR: 15669 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15670 break; 15671 default: 15672 /* 15673 * ip_*put_options should have already 15674 * dropped this packet. 15675 */ 15676 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15677 "unknown IT - bug in ip_rput_options?\n"); 15678 return (0); /* Keep "lint" happy */ 15679 } 15680 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15681 /* Increase overflow counter */ 15682 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15683 opt[IPOPT_POS_OV_FLG] = 15684 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15685 (off << 4)); 15686 break; 15687 } 15688 off = opt[IPOPT_OFFSET] - 1; 15689 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15690 case IPOPT_TS_PRESPEC: 15691 case IPOPT_TS_PRESPEC_RFC791: 15692 case IPOPT_TS_TSANDADDR: 15693 bcopy(&ire->ire_src_addr, 15694 (char *)opt + off, IP_ADDR_LEN); 15695 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15696 /* FALLTHRU */ 15697 case IPOPT_TS_TSONLY: 15698 off = opt[IPOPT_OFFSET] - 1; 15699 /* Compute # of milliseconds since midnight */ 15700 gethrestime(&now); 15701 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15702 now.tv_nsec / (NANOSEC / MILLISEC); 15703 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15704 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15705 break; 15706 } 15707 break; 15708 } 15709 } 15710 return (0); 15711 } 15712 15713 /* 15714 * This is called after processing at least one of AH/ESP headers. 15715 * 15716 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15717 * the actual, physical interface on which the packet was received, 15718 * but, when ip_strict_dst_multihoming is set to 1, could be the 15719 * interface which had the ipha_dst configured when the packet went 15720 * through ip_rput. The ill_index corresponding to the recv_ill 15721 * is saved in ipsec_in_rill_index 15722 */ 15723 void 15724 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15725 { 15726 mblk_t *mp; 15727 ipaddr_t dst; 15728 in6_addr_t *v6dstp; 15729 ipha_t *ipha; 15730 ip6_t *ip6h; 15731 ipsec_in_t *ii; 15732 boolean_t ill_need_rele = B_FALSE; 15733 boolean_t rill_need_rele = B_FALSE; 15734 boolean_t ire_need_rele = B_FALSE; 15735 15736 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15737 ASSERT(ii->ipsec_in_ill_index != 0); 15738 15739 mp = ipsec_mp->b_cont; 15740 ASSERT(mp != NULL); 15741 15742 15743 if (ill == NULL) { 15744 ASSERT(recv_ill == NULL); 15745 /* 15746 * We need to get the original queue on which ip_rput_local 15747 * or ip_rput_data_v6 was called. 15748 */ 15749 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15750 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15751 ill_need_rele = B_TRUE; 15752 15753 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15754 recv_ill = ill_lookup_on_ifindex( 15755 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15756 NULL, NULL, NULL, NULL); 15757 rill_need_rele = B_TRUE; 15758 } else { 15759 recv_ill = ill; 15760 } 15761 15762 if ((ill == NULL) || (recv_ill == NULL)) { 15763 ip0dbg(("ip_fanout_proto_again: interface " 15764 "disappeared\n")); 15765 if (ill != NULL) 15766 ill_refrele(ill); 15767 if (recv_ill != NULL) 15768 ill_refrele(recv_ill); 15769 freemsg(ipsec_mp); 15770 return; 15771 } 15772 } 15773 15774 ASSERT(ill != NULL && recv_ill != NULL); 15775 15776 if (mp->b_datap->db_type == M_CTL) { 15777 /* 15778 * AH/ESP is returning the ICMP message after 15779 * removing their headers. Fanout again till 15780 * it gets to the right protocol. 15781 */ 15782 if (ii->ipsec_in_v4) { 15783 icmph_t *icmph; 15784 int iph_hdr_length; 15785 int hdr_length; 15786 15787 ipha = (ipha_t *)mp->b_rptr; 15788 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15789 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15790 ipha = (ipha_t *)&icmph[1]; 15791 hdr_length = IPH_HDR_LENGTH(ipha); 15792 /* 15793 * icmp_inbound_error_fanout may need to do pullupmsg. 15794 * Reset the type to M_DATA. 15795 */ 15796 mp->b_datap->db_type = M_DATA; 15797 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15798 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15799 B_FALSE, ill, ii->ipsec_in_zoneid); 15800 } else { 15801 icmp6_t *icmp6; 15802 int hdr_length; 15803 15804 ip6h = (ip6_t *)mp->b_rptr; 15805 /* Don't call hdr_length_v6() unless you have to. */ 15806 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15807 hdr_length = ip_hdr_length_v6(mp, ip6h); 15808 else 15809 hdr_length = IPV6_HDR_LEN; 15810 15811 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15812 /* 15813 * icmp_inbound_error_fanout_v6 may need to do 15814 * pullupmsg. Reset the type to M_DATA. 15815 */ 15816 mp->b_datap->db_type = M_DATA; 15817 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15818 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15819 } 15820 if (ill_need_rele) 15821 ill_refrele(ill); 15822 if (rill_need_rele) 15823 ill_refrele(recv_ill); 15824 return; 15825 } 15826 15827 if (ii->ipsec_in_v4) { 15828 ipha = (ipha_t *)mp->b_rptr; 15829 dst = ipha->ipha_dst; 15830 if (CLASSD(dst)) { 15831 /* 15832 * Multicast has to be delivered to all streams. 15833 */ 15834 dst = INADDR_BROADCAST; 15835 } 15836 15837 if (ire == NULL) { 15838 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 15839 MBLK_GETLABEL(mp)); 15840 if (ire == NULL) { 15841 if (ill_need_rele) 15842 ill_refrele(ill); 15843 if (rill_need_rele) 15844 ill_refrele(recv_ill); 15845 ip1dbg(("ip_fanout_proto_again: " 15846 "IRE not found")); 15847 freemsg(ipsec_mp); 15848 return; 15849 } 15850 ire_need_rele = B_TRUE; 15851 } 15852 15853 switch (ipha->ipha_protocol) { 15854 case IPPROTO_UDP: 15855 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15856 recv_ill); 15857 if (ire_need_rele) 15858 ire_refrele(ire); 15859 break; 15860 case IPPROTO_TCP: 15861 if (!ire_need_rele) 15862 IRE_REFHOLD(ire); 15863 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15864 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15865 IRE_REFRELE(ire); 15866 if (mp != NULL) 15867 squeue_enter_chain(GET_SQUEUE(mp), mp, 15868 mp, 1, SQTAG_IP_PROTO_AGAIN); 15869 break; 15870 case IPPROTO_SCTP: 15871 if (!ire_need_rele) 15872 IRE_REFHOLD(ire); 15873 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15874 ipsec_mp, 0, ill->ill_rq, dst); 15875 break; 15876 default: 15877 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15878 recv_ill); 15879 if (ire_need_rele) 15880 ire_refrele(ire); 15881 break; 15882 } 15883 } else { 15884 uint32_t rput_flags = 0; 15885 15886 ip6h = (ip6_t *)mp->b_rptr; 15887 v6dstp = &ip6h->ip6_dst; 15888 /* 15889 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15890 * address. 15891 * 15892 * Currently, we don't store that state in the IPSEC_IN 15893 * message, and we may need to. 15894 */ 15895 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15896 IP6_IN_LLMCAST : 0); 15897 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15898 NULL); 15899 } 15900 if (ill_need_rele) 15901 ill_refrele(ill); 15902 if (rill_need_rele) 15903 ill_refrele(recv_ill); 15904 } 15905 15906 /* 15907 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15908 * returns 'true' if there are still fragments left on the queue, in 15909 * which case we restart the timer. 15910 */ 15911 void 15912 ill_frag_timer(void *arg) 15913 { 15914 ill_t *ill = (ill_t *)arg; 15915 boolean_t frag_pending; 15916 15917 mutex_enter(&ill->ill_lock); 15918 ASSERT(!ill->ill_fragtimer_executing); 15919 if (ill->ill_state_flags & ILL_CONDEMNED) { 15920 ill->ill_frag_timer_id = 0; 15921 mutex_exit(&ill->ill_lock); 15922 return; 15923 } 15924 ill->ill_fragtimer_executing = 1; 15925 mutex_exit(&ill->ill_lock); 15926 15927 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15928 15929 /* 15930 * Restart the timer, if we have fragments pending or if someone 15931 * wanted us to be scheduled again. 15932 */ 15933 mutex_enter(&ill->ill_lock); 15934 ill->ill_fragtimer_executing = 0; 15935 ill->ill_frag_timer_id = 0; 15936 if (frag_pending || ill->ill_fragtimer_needrestart) 15937 ill_frag_timer_start(ill); 15938 mutex_exit(&ill->ill_lock); 15939 } 15940 15941 void 15942 ill_frag_timer_start(ill_t *ill) 15943 { 15944 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15945 15946 /* If the ill is closing or opening don't proceed */ 15947 if (ill->ill_state_flags & ILL_CONDEMNED) 15948 return; 15949 15950 if (ill->ill_fragtimer_executing) { 15951 /* 15952 * ill_frag_timer is currently executing. Just record the 15953 * the fact that we want the timer to be restarted. 15954 * ill_frag_timer will post a timeout before it returns, 15955 * ensuring it will be called again. 15956 */ 15957 ill->ill_fragtimer_needrestart = 1; 15958 return; 15959 } 15960 15961 if (ill->ill_frag_timer_id == 0) { 15962 /* 15963 * The timer is neither running nor is the timeout handler 15964 * executing. Post a timeout so that ill_frag_timer will be 15965 * called 15966 */ 15967 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15968 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15969 ill->ill_fragtimer_needrestart = 0; 15970 } 15971 } 15972 15973 /* 15974 * This routine is needed for loopback when forwarding multicasts. 15975 * 15976 * IPQoS Notes: 15977 * IPPF processing is done in fanout routines. 15978 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15979 * processing for IPSec packets is done when it comes back in clear. 15980 * NOTE : The callers of this function need to do the ire_refrele for the 15981 * ire that is being passed in. 15982 */ 15983 void 15984 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15985 ill_t *recv_ill) 15986 { 15987 ill_t *ill = (ill_t *)q->q_ptr; 15988 uint32_t sum; 15989 uint32_t u1; 15990 uint32_t u2; 15991 int hdr_length; 15992 boolean_t mctl_present; 15993 mblk_t *first_mp = mp; 15994 mblk_t *hada_mp = NULL; 15995 ipha_t *inner_ipha; 15996 15997 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15998 "ip_rput_locl_start: q %p", q); 15999 16000 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16001 16002 16003 #define rptr ((uchar_t *)ipha) 16004 #define iphs ((uint16_t *)ipha) 16005 16006 /* 16007 * no UDP or TCP packet should come here anymore. 16008 */ 16009 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16010 (ipha->ipha_protocol != IPPROTO_UDP)); 16011 16012 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16013 if (mctl_present && 16014 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16015 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16016 16017 /* 16018 * It's an IPsec accelerated packet. 16019 * Keep a pointer to the data attributes around until 16020 * we allocate the ipsec_info_t. 16021 */ 16022 IPSECHW_DEBUG(IPSECHW_PKT, 16023 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16024 hada_mp = first_mp; 16025 hada_mp->b_cont = NULL; 16026 /* 16027 * Since it is accelerated, it comes directly from 16028 * the ill and the data attributes is followed by 16029 * the packet data. 16030 */ 16031 ASSERT(mp->b_datap->db_type != M_CTL); 16032 first_mp = mp; 16033 mctl_present = B_FALSE; 16034 } 16035 16036 /* 16037 * IF M_CTL is not present, then ipsec_in_is_secure 16038 * should return B_TRUE. There is a case where loopback 16039 * packets has an M_CTL in the front with all the 16040 * IPSEC options set to IPSEC_PREF_NEVER - which means 16041 * ipsec_in_is_secure will return B_FALSE. As loopback 16042 * packets never comes here, it is safe to ASSERT the 16043 * following. 16044 */ 16045 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16046 16047 16048 /* u1 is # words of IP options */ 16049 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16050 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16051 16052 if (u1) { 16053 if (!ip_options_cksum(q, mp, ipha, ire)) { 16054 if (hada_mp != NULL) 16055 freemsg(hada_mp); 16056 return; 16057 } 16058 } else { 16059 /* Check the IP header checksum. */ 16060 #define uph ((uint16_t *)ipha) 16061 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16062 uph[6] + uph[7] + uph[8] + uph[9]; 16063 #undef uph 16064 /* finish doing IP checksum */ 16065 sum = (sum & 0xFFFF) + (sum >> 16); 16066 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16067 /* 16068 * Don't verify header checksum if this packet is coming 16069 * back from AH/ESP as we already did it. 16070 */ 16071 if (!mctl_present && (sum && sum != 0xFFFF)) { 16072 BUMP_MIB(&ip_mib, ipInCksumErrs); 16073 goto drop_pkt; 16074 } 16075 } 16076 16077 /* 16078 * Count for SNMP of inbound packets for ire. As ip_proto_input 16079 * might be called more than once for secure packets, count only 16080 * the first time. 16081 */ 16082 if (!mctl_present) { 16083 UPDATE_IB_PKT_COUNT(ire); 16084 ire->ire_last_used_time = lbolt; 16085 } 16086 16087 /* Check for fragmentation offset. */ 16088 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16089 u1 = u2 & (IPH_MF | IPH_OFFSET); 16090 if (u1) { 16091 /* 16092 * We re-assemble fragments before we do the AH/ESP 16093 * processing. Thus, M_CTL should not be present 16094 * while we are re-assembling. 16095 */ 16096 ASSERT(!mctl_present); 16097 ASSERT(first_mp == mp); 16098 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16099 return; 16100 } 16101 /* 16102 * Make sure that first_mp points back to mp as 16103 * the mp we came in with could have changed in 16104 * ip_rput_fragment(). 16105 */ 16106 ipha = (ipha_t *)mp->b_rptr; 16107 first_mp = mp; 16108 } 16109 16110 /* 16111 * Clear hardware checksumming flag as it is currently only 16112 * used by TCP and UDP. 16113 */ 16114 DB_CKSUMFLAGS(mp) = 0; 16115 16116 /* Now we have a complete datagram, destined for this machine. */ 16117 u1 = IPH_HDR_LENGTH(ipha); 16118 switch (ipha->ipha_protocol) { 16119 case IPPROTO_ICMP: { 16120 ire_t *ire_zone; 16121 ilm_t *ilm; 16122 mblk_t *mp1; 16123 zoneid_t last_zoneid; 16124 16125 if (CLASSD(ipha->ipha_dst) && 16126 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16127 ASSERT(ire->ire_type == IRE_BROADCAST); 16128 /* 16129 * In the multicast case, applications may have joined 16130 * the group from different zones, so we need to deliver 16131 * the packet to each of them. Loop through the 16132 * multicast memberships structures (ilm) on the receive 16133 * ill and send a copy of the packet up each matching 16134 * one. However, we don't do this for multicasts sent on 16135 * the loopback interface (PHYI_LOOPBACK flag set) as 16136 * they must stay in the sender's zone. 16137 * 16138 * ilm_add_v6() ensures that ilms in the same zone are 16139 * contiguous in the ill_ilm list. We use this property 16140 * to avoid sending duplicates needed when two 16141 * applications in the same zone join the same group on 16142 * different logical interfaces: we ignore the ilm if 16143 * its zoneid is the same as the last matching one. 16144 * In addition, the sending of the packet for 16145 * ire_zoneid is delayed until all of the other ilms 16146 * have been exhausted. 16147 */ 16148 last_zoneid = -1; 16149 ILM_WALKER_HOLD(recv_ill); 16150 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16151 ilm = ilm->ilm_next) { 16152 if ((ilm->ilm_flags & ILM_DELETED) || 16153 ipha->ipha_dst != ilm->ilm_addr || 16154 ilm->ilm_zoneid == last_zoneid || 16155 ilm->ilm_zoneid == ire->ire_zoneid || 16156 ilm->ilm_zoneid == ALL_ZONES || 16157 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16158 continue; 16159 mp1 = ip_copymsg(first_mp); 16160 if (mp1 == NULL) 16161 continue; 16162 icmp_inbound(q, mp1, B_TRUE, ill, 16163 0, sum, mctl_present, B_TRUE, 16164 recv_ill, ilm->ilm_zoneid); 16165 last_zoneid = ilm->ilm_zoneid; 16166 } 16167 ILM_WALKER_RELE(recv_ill); 16168 } else if (ire->ire_type == IRE_BROADCAST) { 16169 /* 16170 * In the broadcast case, there may be many zones 16171 * which need a copy of the packet delivered to them. 16172 * There is one IRE_BROADCAST per broadcast address 16173 * and per zone; we walk those using a helper function. 16174 * In addition, the sending of the packet for ire is 16175 * delayed until all of the other ires have been 16176 * processed. 16177 */ 16178 IRB_REFHOLD(ire->ire_bucket); 16179 ire_zone = NULL; 16180 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16181 ire)) != NULL) { 16182 mp1 = ip_copymsg(first_mp); 16183 if (mp1 == NULL) 16184 continue; 16185 16186 UPDATE_IB_PKT_COUNT(ire_zone); 16187 ire_zone->ire_last_used_time = lbolt; 16188 icmp_inbound(q, mp1, B_TRUE, ill, 16189 0, sum, mctl_present, B_TRUE, 16190 recv_ill, ire_zone->ire_zoneid); 16191 } 16192 IRB_REFRELE(ire->ire_bucket); 16193 } 16194 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16195 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16196 ire->ire_zoneid); 16197 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16198 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16199 return; 16200 } 16201 case IPPROTO_IGMP: 16202 /* 16203 * If we are not willing to accept IGMP packets in clear, 16204 * then check with global policy. 16205 */ 16206 if (igmp_accept_clear_messages == 0) { 16207 first_mp = ipsec_check_global_policy(first_mp, NULL, 16208 ipha, NULL, mctl_present); 16209 if (first_mp == NULL) 16210 return; 16211 } 16212 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16213 freemsg(first_mp); 16214 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16215 BUMP_MIB(&ip_mib, ipInDiscards); 16216 return; 16217 } 16218 if (igmp_input(q, mp, ill)) { 16219 /* Bad packet - discarded by igmp_input */ 16220 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16221 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16222 if (mctl_present) 16223 freeb(first_mp); 16224 return; 16225 } 16226 /* 16227 * igmp_input() may have pulled up the message so ipha needs to 16228 * be reinitialized. 16229 */ 16230 ipha = (ipha_t *)mp->b_rptr; 16231 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16232 /* No user-level listener for IGMP packets */ 16233 goto drop_pkt; 16234 } 16235 /* deliver to local raw users */ 16236 break; 16237 case IPPROTO_PIM: 16238 /* 16239 * If we are not willing to accept PIM packets in clear, 16240 * then check with global policy. 16241 */ 16242 if (pim_accept_clear_messages == 0) { 16243 first_mp = ipsec_check_global_policy(first_mp, NULL, 16244 ipha, NULL, mctl_present); 16245 if (first_mp == NULL) 16246 return; 16247 } 16248 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16249 freemsg(first_mp); 16250 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16251 BUMP_MIB(&ip_mib, ipInDiscards); 16252 return; 16253 } 16254 if (pim_input(q, mp) != 0) { 16255 /* Bad packet - discarded by pim_input */ 16256 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16257 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16258 if (mctl_present) 16259 freeb(first_mp); 16260 return; 16261 } 16262 16263 /* 16264 * pim_input() may have pulled up the message so ipha needs to 16265 * be reinitialized. 16266 */ 16267 ipha = (ipha_t *)mp->b_rptr; 16268 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16269 /* No user-level listener for PIM packets */ 16270 goto drop_pkt; 16271 } 16272 /* deliver to local raw users */ 16273 break; 16274 case IPPROTO_ENCAP: 16275 /* 16276 * Handle self-encapsulated packets (IP-in-IP where 16277 * the inner addresses == the outer addresses). 16278 */ 16279 hdr_length = IPH_HDR_LENGTH(ipha); 16280 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16281 mp->b_wptr) { 16282 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16283 sizeof (ipha_t) - mp->b_rptr)) { 16284 BUMP_MIB(&ip_mib, ipInDiscards); 16285 freemsg(first_mp); 16286 return; 16287 } 16288 ipha = (ipha_t *)mp->b_rptr; 16289 } 16290 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16291 /* 16292 * Check the sanity of the inner IP header. 16293 */ 16294 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16295 BUMP_MIB(&ip_mib, ipInDiscards); 16296 freemsg(first_mp); 16297 return; 16298 } 16299 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16300 BUMP_MIB(&ip_mib, ipInDiscards); 16301 freemsg(first_mp); 16302 return; 16303 } 16304 if (inner_ipha->ipha_src == ipha->ipha_src && 16305 inner_ipha->ipha_dst == ipha->ipha_dst) { 16306 ipsec_in_t *ii; 16307 16308 /* 16309 * Self-encapsulated tunnel packet. Remove 16310 * the outer IP header and fanout again. 16311 * We also need to make sure that the inner 16312 * header is pulled up until options. 16313 */ 16314 mp->b_rptr = (uchar_t *)inner_ipha; 16315 ipha = inner_ipha; 16316 hdr_length = IPH_HDR_LENGTH(ipha); 16317 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16318 if (!pullupmsg(mp, (uchar_t *)ipha + 16319 + hdr_length - mp->b_rptr)) { 16320 freemsg(first_mp); 16321 return; 16322 } 16323 ipha = (ipha_t *)mp->b_rptr; 16324 } 16325 if (!mctl_present) { 16326 ASSERT(first_mp == mp); 16327 /* 16328 * This means that somebody is sending 16329 * Self-encapsualted packets without AH/ESP. 16330 * If AH/ESP was present, we would have already 16331 * allocated the first_mp. 16332 */ 16333 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16334 NULL) { 16335 ip1dbg(("ip_proto_input: IPSEC_IN " 16336 "allocation failure.\n")); 16337 BUMP_MIB(&ip_mib, ipInDiscards); 16338 freemsg(mp); 16339 return; 16340 } 16341 first_mp->b_cont = mp; 16342 } 16343 /* 16344 * We generally store the ill_index if we need to 16345 * do IPSEC processing as we lose the ill queue when 16346 * we come back. But in this case, we never should 16347 * have to store the ill_index here as it should have 16348 * been stored previously when we processed the 16349 * AH/ESP header in this routine or for non-ipsec 16350 * cases, we still have the queue. But for some bad 16351 * packets from the wire, we can get to IPSEC after 16352 * this and we better store the index for that case. 16353 */ 16354 ill = (ill_t *)q->q_ptr; 16355 ii = (ipsec_in_t *)first_mp->b_rptr; 16356 ii->ipsec_in_ill_index = 16357 ill->ill_phyint->phyint_ifindex; 16358 ii->ipsec_in_rill_index = 16359 recv_ill->ill_phyint->phyint_ifindex; 16360 if (ii->ipsec_in_decaps) { 16361 /* 16362 * This packet is self-encapsulated multiple 16363 * times. We don't want to recurse infinitely. 16364 * To keep it simple, drop the packet. 16365 */ 16366 BUMP_MIB(&ip_mib, ipInDiscards); 16367 freemsg(first_mp); 16368 return; 16369 } 16370 ii->ipsec_in_decaps = B_TRUE; 16371 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16372 return; 16373 } 16374 break; 16375 case IPPROTO_AH: 16376 case IPPROTO_ESP: { 16377 /* 16378 * Fast path for AH/ESP. If this is the first time 16379 * we are sending a datagram to AH/ESP, allocate 16380 * a IPSEC_IN message and prepend it. Otherwise, 16381 * just fanout. 16382 */ 16383 16384 int ipsec_rc; 16385 ipsec_in_t *ii; 16386 16387 IP_STAT(ipsec_proto_ahesp); 16388 if (!mctl_present) { 16389 ASSERT(first_mp == mp); 16390 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16391 ip1dbg(("ip_proto_input: IPSEC_IN " 16392 "allocation failure.\n")); 16393 freemsg(hada_mp); /* okay ifnull */ 16394 BUMP_MIB(&ip_mib, ipInDiscards); 16395 freemsg(mp); 16396 return; 16397 } 16398 /* 16399 * Store the ill_index so that when we come back 16400 * from IPSEC we ride on the same queue. 16401 */ 16402 ill = (ill_t *)q->q_ptr; 16403 ii = (ipsec_in_t *)first_mp->b_rptr; 16404 ii->ipsec_in_ill_index = 16405 ill->ill_phyint->phyint_ifindex; 16406 ii->ipsec_in_rill_index = 16407 recv_ill->ill_phyint->phyint_ifindex; 16408 first_mp->b_cont = mp; 16409 /* 16410 * Cache hardware acceleration info. 16411 */ 16412 if (hada_mp != NULL) { 16413 IPSECHW_DEBUG(IPSECHW_PKT, 16414 ("ip_rput_local: caching data attr.\n")); 16415 ii->ipsec_in_accelerated = B_TRUE; 16416 ii->ipsec_in_da = hada_mp; 16417 hada_mp = NULL; 16418 } 16419 } else { 16420 ii = (ipsec_in_t *)first_mp->b_rptr; 16421 } 16422 16423 if (!ipsec_loaded()) { 16424 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 16425 ire->ire_zoneid); 16426 return; 16427 } 16428 16429 /* select inbound SA and have IPsec process the pkt */ 16430 if (ipha->ipha_protocol == IPPROTO_ESP) { 16431 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 16432 if (esph == NULL) 16433 return; 16434 ASSERT(ii->ipsec_in_esp_sa != NULL); 16435 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 16436 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 16437 first_mp, esph); 16438 } else { 16439 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 16440 if (ah == NULL) 16441 return; 16442 ASSERT(ii->ipsec_in_ah_sa != NULL); 16443 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 16444 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 16445 first_mp, ah); 16446 } 16447 16448 switch (ipsec_rc) { 16449 case IPSEC_STATUS_SUCCESS: 16450 break; 16451 case IPSEC_STATUS_FAILED: 16452 BUMP_MIB(&ip_mib, ipInDiscards); 16453 /* FALLTHRU */ 16454 case IPSEC_STATUS_PENDING: 16455 return; 16456 } 16457 /* we're done with IPsec processing, send it up */ 16458 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 16459 return; 16460 } 16461 default: 16462 break; 16463 } 16464 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 16465 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 16466 ire->ire_zoneid)); 16467 goto drop_pkt; 16468 } 16469 /* 16470 * Handle protocols with which IP is less intimate. There 16471 * can be more than one stream bound to a particular 16472 * protocol. When this is the case, each one gets a copy 16473 * of any incoming packets. 16474 */ 16475 ip_fanout_proto(q, first_mp, ill, ipha, 16476 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 16477 B_TRUE, recv_ill, ire->ire_zoneid); 16478 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16479 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 16480 return; 16481 16482 drop_pkt: 16483 freemsg(first_mp); 16484 if (hada_mp != NULL) 16485 freeb(hada_mp); 16486 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16487 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 16488 #undef rptr 16489 #undef iphs 16490 16491 } 16492 16493 /* 16494 * Update any source route, record route or timestamp options. 16495 * Check that we are at end of strict source route. 16496 * The options have already been checked for sanity in ip_rput_options(). 16497 */ 16498 static boolean_t 16499 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 16500 { 16501 ipoptp_t opts; 16502 uchar_t *opt; 16503 uint8_t optval; 16504 uint8_t optlen; 16505 ipaddr_t dst; 16506 uint32_t ts; 16507 ire_t *dst_ire; 16508 timestruc_t now; 16509 16510 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16511 16512 ip2dbg(("ip_rput_local_options\n")); 16513 16514 for (optval = ipoptp_first(&opts, ipha); 16515 optval != IPOPT_EOL; 16516 optval = ipoptp_next(&opts)) { 16517 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16518 opt = opts.ipoptp_cur; 16519 optlen = opts.ipoptp_len; 16520 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 16521 optval, optlen)); 16522 switch (optval) { 16523 uint32_t off; 16524 case IPOPT_SSRR: 16525 case IPOPT_LSRR: 16526 off = opt[IPOPT_OFFSET]; 16527 off--; 16528 if (optlen < IP_ADDR_LEN || 16529 off > optlen - IP_ADDR_LEN) { 16530 /* End of source route */ 16531 ip1dbg(("ip_rput_local_options: end of SR\n")); 16532 break; 16533 } 16534 /* 16535 * This will only happen if two consecutive entries 16536 * in the source route contains our address or if 16537 * it is a packet with a loose source route which 16538 * reaches us before consuming the whole source route 16539 */ 16540 ip1dbg(("ip_rput_local_options: not end of SR\n")); 16541 if (optval == IPOPT_SSRR) { 16542 goto bad_src_route; 16543 } 16544 /* 16545 * Hack: instead of dropping the packet truncate the 16546 * source route to what has been used by filling the 16547 * rest with IPOPT_NOP. 16548 */ 16549 opt[IPOPT_OLEN] = (uint8_t)off; 16550 while (off < optlen) { 16551 opt[off++] = IPOPT_NOP; 16552 } 16553 break; 16554 case IPOPT_RR: 16555 off = opt[IPOPT_OFFSET]; 16556 off--; 16557 if (optlen < IP_ADDR_LEN || 16558 off > optlen - IP_ADDR_LEN) { 16559 /* No more room - ignore */ 16560 ip1dbg(( 16561 "ip_rput_local_options: end of RR\n")); 16562 break; 16563 } 16564 bcopy(&ire->ire_src_addr, (char *)opt + off, 16565 IP_ADDR_LEN); 16566 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16567 break; 16568 case IPOPT_TS: 16569 /* Insert timestamp if there is romm */ 16570 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16571 case IPOPT_TS_TSONLY: 16572 off = IPOPT_TS_TIMELEN; 16573 break; 16574 case IPOPT_TS_PRESPEC: 16575 case IPOPT_TS_PRESPEC_RFC791: 16576 /* Verify that the address matched */ 16577 off = opt[IPOPT_OFFSET] - 1; 16578 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16579 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16580 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16581 if (dst_ire == NULL) { 16582 /* Not for us */ 16583 break; 16584 } 16585 ire_refrele(dst_ire); 16586 /* FALLTHRU */ 16587 case IPOPT_TS_TSANDADDR: 16588 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16589 break; 16590 default: 16591 /* 16592 * ip_*put_options should have already 16593 * dropped this packet. 16594 */ 16595 cmn_err(CE_PANIC, "ip_rput_local_options: " 16596 "unknown IT - bug in ip_rput_options?\n"); 16597 return (B_TRUE); /* Keep "lint" happy */ 16598 } 16599 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16600 /* Increase overflow counter */ 16601 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16602 opt[IPOPT_POS_OV_FLG] = 16603 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16604 (off << 4)); 16605 break; 16606 } 16607 off = opt[IPOPT_OFFSET] - 1; 16608 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16609 case IPOPT_TS_PRESPEC: 16610 case IPOPT_TS_PRESPEC_RFC791: 16611 case IPOPT_TS_TSANDADDR: 16612 bcopy(&ire->ire_src_addr, (char *)opt + off, 16613 IP_ADDR_LEN); 16614 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16615 /* FALLTHRU */ 16616 case IPOPT_TS_TSONLY: 16617 off = opt[IPOPT_OFFSET] - 1; 16618 /* Compute # of milliseconds since midnight */ 16619 gethrestime(&now); 16620 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16621 now.tv_nsec / (NANOSEC / MILLISEC); 16622 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16623 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16624 break; 16625 } 16626 break; 16627 } 16628 } 16629 return (B_TRUE); 16630 16631 bad_src_route: 16632 q = WR(q); 16633 /* make sure we clear any indication of a hardware checksum */ 16634 DB_CKSUMFLAGS(mp) = 0; 16635 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16636 return (B_FALSE); 16637 16638 } 16639 16640 /* 16641 * Process IP options in an inbound packet. If an option affects the 16642 * effective destination address, return the next hop address via dstp. 16643 * Returns -1 if something fails in which case an ICMP error has been sent 16644 * and mp freed. 16645 */ 16646 static int 16647 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16648 { 16649 ipoptp_t opts; 16650 uchar_t *opt; 16651 uint8_t optval; 16652 uint8_t optlen; 16653 ipaddr_t dst; 16654 intptr_t code = 0; 16655 ire_t *ire = NULL; 16656 16657 ip2dbg(("ip_rput_options\n")); 16658 dst = ipha->ipha_dst; 16659 for (optval = ipoptp_first(&opts, ipha); 16660 optval != IPOPT_EOL; 16661 optval = ipoptp_next(&opts)) { 16662 opt = opts.ipoptp_cur; 16663 optlen = opts.ipoptp_len; 16664 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16665 optval, optlen)); 16666 /* 16667 * Note: we need to verify the checksum before we 16668 * modify anything thus this routine only extracts the next 16669 * hop dst from any source route. 16670 */ 16671 switch (optval) { 16672 uint32_t off; 16673 case IPOPT_SSRR: 16674 case IPOPT_LSRR: 16675 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16676 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16677 if (ire == NULL) { 16678 if (optval == IPOPT_SSRR) { 16679 ip1dbg(("ip_rput_options: not next" 16680 " strict source route 0x%x\n", 16681 ntohl(dst))); 16682 code = (char *)&ipha->ipha_dst - 16683 (char *)ipha; 16684 goto param_prob; /* RouterReq's */ 16685 } 16686 ip2dbg(("ip_rput_options: " 16687 "not next source route 0x%x\n", 16688 ntohl(dst))); 16689 break; 16690 } 16691 ire_refrele(ire); 16692 16693 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16694 ip1dbg(( 16695 "ip_rput_options: bad option offset\n")); 16696 code = (char *)&opt[IPOPT_OLEN] - 16697 (char *)ipha; 16698 goto param_prob; 16699 } 16700 off = opt[IPOPT_OFFSET]; 16701 off--; 16702 redo_srr: 16703 if (optlen < IP_ADDR_LEN || 16704 off > optlen - IP_ADDR_LEN) { 16705 /* End of source route */ 16706 ip1dbg(("ip_rput_options: end of SR\n")); 16707 break; 16708 } 16709 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16710 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16711 ntohl(dst))); 16712 16713 /* 16714 * Check if our address is present more than 16715 * once as consecutive hops in source route. 16716 * XXX verify per-interface ip_forwarding 16717 * for source route? 16718 */ 16719 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16720 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16721 16722 if (ire != NULL) { 16723 ire_refrele(ire); 16724 off += IP_ADDR_LEN; 16725 goto redo_srr; 16726 } 16727 16728 if (dst == htonl(INADDR_LOOPBACK)) { 16729 ip1dbg(("ip_rput_options: loopback addr in " 16730 "source route!\n")); 16731 goto bad_src_route; 16732 } 16733 /* 16734 * For strict: verify that dst is directly 16735 * reachable. 16736 */ 16737 if (optval == IPOPT_SSRR) { 16738 ire = ire_ftable_lookup(dst, 0, 0, 16739 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16740 MBLK_GETLABEL(mp), 16741 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 16742 if (ire == NULL) { 16743 ip1dbg(("ip_rput_options: SSRR not " 16744 "directly reachable: 0x%x\n", 16745 ntohl(dst))); 16746 goto bad_src_route; 16747 } 16748 ire_refrele(ire); 16749 } 16750 /* 16751 * Defer update of the offset and the record route 16752 * until the packet is forwarded. 16753 */ 16754 break; 16755 case IPOPT_RR: 16756 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16757 ip1dbg(( 16758 "ip_rput_options: bad option offset\n")); 16759 code = (char *)&opt[IPOPT_OLEN] - 16760 (char *)ipha; 16761 goto param_prob; 16762 } 16763 break; 16764 case IPOPT_TS: 16765 /* 16766 * Verify that length >= 5 and that there is either 16767 * room for another timestamp or that the overflow 16768 * counter is not maxed out. 16769 */ 16770 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16771 if (optlen < IPOPT_MINLEN_IT) { 16772 goto param_prob; 16773 } 16774 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16775 ip1dbg(( 16776 "ip_rput_options: bad option offset\n")); 16777 code = (char *)&opt[IPOPT_OFFSET] - 16778 (char *)ipha; 16779 goto param_prob; 16780 } 16781 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16782 case IPOPT_TS_TSONLY: 16783 off = IPOPT_TS_TIMELEN; 16784 break; 16785 case IPOPT_TS_TSANDADDR: 16786 case IPOPT_TS_PRESPEC: 16787 case IPOPT_TS_PRESPEC_RFC791: 16788 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16789 break; 16790 default: 16791 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16792 (char *)ipha; 16793 goto param_prob; 16794 } 16795 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16796 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16797 /* 16798 * No room and the overflow counter is 15 16799 * already. 16800 */ 16801 goto param_prob; 16802 } 16803 break; 16804 } 16805 } 16806 16807 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16808 *dstp = dst; 16809 return (0); 16810 } 16811 16812 ip1dbg(("ip_rput_options: error processing IP options.")); 16813 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16814 16815 param_prob: 16816 q = WR(q); 16817 /* make sure we clear any indication of a hardware checksum */ 16818 DB_CKSUMFLAGS(mp) = 0; 16819 icmp_param_problem(q, mp, (uint8_t)code); 16820 return (-1); 16821 16822 bad_src_route: 16823 q = WR(q); 16824 /* make sure we clear any indication of a hardware checksum */ 16825 DB_CKSUMFLAGS(mp) = 0; 16826 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16827 return (-1); 16828 } 16829 16830 /* 16831 * IP & ICMP info in >=14 msg's ... 16832 * - ip fixed part (mib2_ip_t) 16833 * - icmp fixed part (mib2_icmp_t) 16834 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16835 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16836 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16837 * - ipRouteAttributeTable (ip 102) labeled routes 16838 * - ip multicast membership (ip_member_t) 16839 * - ip multicast source filtering (ip_grpsrc_t) 16840 * - igmp fixed part (struct igmpstat) 16841 * - multicast routing stats (struct mrtstat) 16842 * - multicast routing vifs (array of struct vifctl) 16843 * - multicast routing routes (array of struct mfcctl) 16844 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16845 * One per ill plus one generic 16846 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16847 * One per ill plus one generic 16848 * - ipv6RouteEntry all IPv6 IREs 16849 * - ipv6RouteAttributeTable (ip6 102) labeled routes 16850 * - ipv6NetToMediaEntry all Neighbor Cache entries 16851 * - ipv6AddrEntry all IPv6 ipifs 16852 * - ipv6 multicast membership (ipv6_member_t) 16853 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16854 * 16855 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16856 * already present. 16857 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 16858 * already filled in by the caller. 16859 * Return value of 0 indicates that no messages were sent and caller 16860 * should free mpctl. 16861 */ 16862 int 16863 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16864 { 16865 16866 if (mpctl == NULL || mpctl->b_cont == NULL) { 16867 return (0); 16868 } 16869 16870 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16871 return (1); 16872 } 16873 16874 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16875 return (1); 16876 } 16877 16878 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16879 return (1); 16880 } 16881 16882 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16883 return (1); 16884 } 16885 16886 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16887 return (1); 16888 } 16889 16890 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16891 return (1); 16892 } 16893 16894 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16895 return (1); 16896 } 16897 16898 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16899 return (1); 16900 } 16901 16902 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16903 return (1); 16904 } 16905 16906 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16907 return (1); 16908 } 16909 16910 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16911 return (1); 16912 } 16913 16914 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16915 return (1); 16916 } 16917 16918 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16919 return (1); 16920 } 16921 16922 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16923 return (1); 16924 } 16925 16926 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16927 return (1); 16928 } 16929 16930 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16931 return (1); 16932 } 16933 16934 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16935 return (1); 16936 } 16937 freemsg(mpctl); 16938 return (1); 16939 } 16940 16941 16942 /* Get global IPv4 statistics */ 16943 static mblk_t * 16944 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16945 { 16946 struct opthdr *optp; 16947 mblk_t *mp2ctl; 16948 16949 /* 16950 * make a copy of the original message 16951 */ 16952 mp2ctl = copymsg(mpctl); 16953 16954 /* fixed length IP structure... */ 16955 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16956 optp->level = MIB2_IP; 16957 optp->name = 0; 16958 SET_MIB(ip_mib.ipForwarding, 16959 (WE_ARE_FORWARDING ? 1 : 2)); 16960 SET_MIB(ip_mib.ipDefaultTTL, 16961 (uint32_t)ip_def_ttl); 16962 SET_MIB(ip_mib.ipReasmTimeout, 16963 ip_g_frag_timeout); 16964 SET_MIB(ip_mib.ipAddrEntrySize, 16965 sizeof (mib2_ipAddrEntry_t)); 16966 SET_MIB(ip_mib.ipRouteEntrySize, 16967 sizeof (mib2_ipRouteEntry_t)); 16968 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16969 sizeof (mib2_ipNetToMediaEntry_t)); 16970 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16971 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16972 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 16973 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 16974 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16975 (int)sizeof (ip_mib))) { 16976 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16977 (uint_t)sizeof (ip_mib))); 16978 } 16979 16980 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16981 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16982 (int)optp->level, (int)optp->name, (int)optp->len)); 16983 qreply(q, mpctl); 16984 return (mp2ctl); 16985 } 16986 16987 /* Global IPv4 ICMP statistics */ 16988 static mblk_t * 16989 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16990 { 16991 struct opthdr *optp; 16992 mblk_t *mp2ctl; 16993 16994 /* 16995 * Make a copy of the original message 16996 */ 16997 mp2ctl = copymsg(mpctl); 16998 16999 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17000 optp->level = MIB2_ICMP; 17001 optp->name = 0; 17002 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17003 (int)sizeof (icmp_mib))) { 17004 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17005 (uint_t)sizeof (icmp_mib))); 17006 } 17007 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17008 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17009 (int)optp->level, (int)optp->name, (int)optp->len)); 17010 qreply(q, mpctl); 17011 return (mp2ctl); 17012 } 17013 17014 /* Global IPv4 IGMP statistics */ 17015 static mblk_t * 17016 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17017 { 17018 struct opthdr *optp; 17019 mblk_t *mp2ctl; 17020 17021 /* 17022 * make a copy of the original message 17023 */ 17024 mp2ctl = copymsg(mpctl); 17025 17026 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17027 optp->level = EXPER_IGMP; 17028 optp->name = 0; 17029 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17030 (int)sizeof (igmpstat))) { 17031 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17032 (uint_t)sizeof (igmpstat))); 17033 } 17034 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17035 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17036 (int)optp->level, (int)optp->name, (int)optp->len)); 17037 qreply(q, mpctl); 17038 return (mp2ctl); 17039 } 17040 17041 /* Global IPv4 Multicast Routing statistics */ 17042 static mblk_t * 17043 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17044 { 17045 struct opthdr *optp; 17046 mblk_t *mp2ctl; 17047 17048 /* 17049 * make a copy of the original message 17050 */ 17051 mp2ctl = copymsg(mpctl); 17052 17053 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17054 optp->level = EXPER_DVMRP; 17055 optp->name = 0; 17056 if (!ip_mroute_stats(mpctl->b_cont)) { 17057 ip0dbg(("ip_mroute_stats: failed\n")); 17058 } 17059 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17060 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17061 (int)optp->level, (int)optp->name, (int)optp->len)); 17062 qreply(q, mpctl); 17063 return (mp2ctl); 17064 } 17065 17066 /* IPv4 address information */ 17067 static mblk_t * 17068 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17069 { 17070 struct opthdr *optp; 17071 mblk_t *mp2ctl; 17072 mblk_t *mp_tail = NULL; 17073 ill_t *ill; 17074 ipif_t *ipif; 17075 uint_t bitval; 17076 mib2_ipAddrEntry_t mae; 17077 zoneid_t zoneid; 17078 ill_walk_context_t ctx; 17079 17080 /* 17081 * make a copy of the original message 17082 */ 17083 mp2ctl = copymsg(mpctl); 17084 17085 /* ipAddrEntryTable */ 17086 17087 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17088 optp->level = MIB2_IP; 17089 optp->name = MIB2_IP_ADDR; 17090 zoneid = Q_TO_CONN(q)->conn_zoneid; 17091 17092 rw_enter(&ill_g_lock, RW_READER); 17093 ill = ILL_START_WALK_V4(&ctx); 17094 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17095 for (ipif = ill->ill_ipif; ipif != NULL; 17096 ipif = ipif->ipif_next) { 17097 if (ipif->ipif_zoneid != zoneid && 17098 ipif->ipif_zoneid != ALL_ZONES) 17099 continue; 17100 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17101 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17102 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17103 17104 (void) ipif_get_name(ipif, 17105 mae.ipAdEntIfIndex.o_bytes, 17106 OCTET_LENGTH); 17107 mae.ipAdEntIfIndex.o_length = 17108 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17109 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17110 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17111 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17112 mae.ipAdEntInfo.ae_subnet_len = 17113 ip_mask_to_plen(ipif->ipif_net_mask); 17114 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17115 for (bitval = 1; 17116 bitval && 17117 !(bitval & ipif->ipif_brd_addr); 17118 bitval <<= 1) 17119 noop; 17120 mae.ipAdEntBcastAddr = bitval; 17121 mae.ipAdEntReasmMaxSize = 65535; 17122 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17123 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17124 mae.ipAdEntInfo.ae_broadcast_addr = 17125 ipif->ipif_brd_addr; 17126 mae.ipAdEntInfo.ae_pp_dst_addr = 17127 ipif->ipif_pp_dst_addr; 17128 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17129 ill->ill_flags | ill->ill_phyint->phyint_flags; 17130 17131 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17132 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17133 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17134 "allocate %u bytes\n", 17135 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17136 } 17137 } 17138 } 17139 rw_exit(&ill_g_lock); 17140 17141 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17142 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17143 (int)optp->level, (int)optp->name, (int)optp->len)); 17144 qreply(q, mpctl); 17145 return (mp2ctl); 17146 } 17147 17148 /* IPv6 address information */ 17149 static mblk_t * 17150 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17151 { 17152 struct opthdr *optp; 17153 mblk_t *mp2ctl; 17154 mblk_t *mp_tail = NULL; 17155 ill_t *ill; 17156 ipif_t *ipif; 17157 mib2_ipv6AddrEntry_t mae6; 17158 zoneid_t zoneid; 17159 ill_walk_context_t ctx; 17160 17161 /* 17162 * make a copy of the original message 17163 */ 17164 mp2ctl = copymsg(mpctl); 17165 17166 /* ipv6AddrEntryTable */ 17167 17168 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17169 optp->level = MIB2_IP6; 17170 optp->name = MIB2_IP6_ADDR; 17171 zoneid = Q_TO_CONN(q)->conn_zoneid; 17172 17173 rw_enter(&ill_g_lock, RW_READER); 17174 ill = ILL_START_WALK_V6(&ctx); 17175 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17176 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17177 if (ipif->ipif_zoneid != zoneid && 17178 ipif->ipif_zoneid != ALL_ZONES) 17179 continue; 17180 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17181 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17182 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17183 17184 (void) ipif_get_name(ipif, 17185 mae6.ipv6AddrIfIndex.o_bytes, 17186 OCTET_LENGTH); 17187 mae6.ipv6AddrIfIndex.o_length = 17188 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17189 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17190 mae6.ipv6AddrPfxLength = 17191 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17192 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17193 mae6.ipv6AddrInfo.ae_subnet_len = 17194 mae6.ipv6AddrPfxLength; 17195 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17196 17197 /* Type: stateless(1), stateful(2), unknown(3) */ 17198 if (ipif->ipif_flags & IPIF_ADDRCONF) 17199 mae6.ipv6AddrType = 1; 17200 else 17201 mae6.ipv6AddrType = 2; 17202 /* Anycast: true(1), false(2) */ 17203 if (ipif->ipif_flags & IPIF_ANYCAST) 17204 mae6.ipv6AddrAnycastFlag = 1; 17205 else 17206 mae6.ipv6AddrAnycastFlag = 2; 17207 17208 /* 17209 * Address status: preferred(1), deprecated(2), 17210 * invalid(3), inaccessible(4), unknown(5) 17211 */ 17212 if (ipif->ipif_flags & IPIF_NOLOCAL) 17213 mae6.ipv6AddrStatus = 3; 17214 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17215 mae6.ipv6AddrStatus = 2; 17216 else 17217 mae6.ipv6AddrStatus = 1; 17218 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17219 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17220 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17221 ipif->ipif_v6pp_dst_addr; 17222 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17223 ill->ill_flags | ill->ill_phyint->phyint_flags; 17224 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17225 (char *)&mae6, 17226 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17227 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17228 "allocate %u bytes\n", 17229 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17230 } 17231 } 17232 } 17233 rw_exit(&ill_g_lock); 17234 17235 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17236 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17237 (int)optp->level, (int)optp->name, (int)optp->len)); 17238 qreply(q, mpctl); 17239 return (mp2ctl); 17240 } 17241 17242 /* IPv4 multicast group membership. */ 17243 static mblk_t * 17244 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17245 { 17246 struct opthdr *optp; 17247 mblk_t *mp2ctl; 17248 ill_t *ill; 17249 ipif_t *ipif; 17250 ilm_t *ilm; 17251 ip_member_t ipm; 17252 mblk_t *mp_tail = NULL; 17253 ill_walk_context_t ctx; 17254 zoneid_t zoneid; 17255 17256 /* 17257 * make a copy of the original message 17258 */ 17259 mp2ctl = copymsg(mpctl); 17260 zoneid = Q_TO_CONN(q)->conn_zoneid; 17261 17262 /* ipGroupMember table */ 17263 optp = (struct opthdr *)&mpctl->b_rptr[ 17264 sizeof (struct T_optmgmt_ack)]; 17265 optp->level = MIB2_IP; 17266 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17267 17268 rw_enter(&ill_g_lock, RW_READER); 17269 ill = ILL_START_WALK_V4(&ctx); 17270 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17271 ILM_WALKER_HOLD(ill); 17272 for (ipif = ill->ill_ipif; ipif != NULL; 17273 ipif = ipif->ipif_next) { 17274 if (ipif->ipif_zoneid != zoneid && 17275 ipif->ipif_zoneid != ALL_ZONES) 17276 continue; /* not this zone */ 17277 (void) ipif_get_name(ipif, 17278 ipm.ipGroupMemberIfIndex.o_bytes, 17279 OCTET_LENGTH); 17280 ipm.ipGroupMemberIfIndex.o_length = 17281 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17282 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17283 ASSERT(ilm->ilm_ipif != NULL); 17284 ASSERT(ilm->ilm_ill == NULL); 17285 if (ilm->ilm_ipif != ipif) 17286 continue; 17287 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17288 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17289 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17290 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17291 (char *)&ipm, (int)sizeof (ipm))) { 17292 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17293 "failed to allocate %u bytes\n", 17294 (uint_t)sizeof (ipm))); 17295 } 17296 } 17297 } 17298 ILM_WALKER_RELE(ill); 17299 } 17300 rw_exit(&ill_g_lock); 17301 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17302 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17303 (int)optp->level, (int)optp->name, (int)optp->len)); 17304 qreply(q, mpctl); 17305 return (mp2ctl); 17306 } 17307 17308 /* IPv6 multicast group membership. */ 17309 static mblk_t * 17310 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17311 { 17312 struct opthdr *optp; 17313 mblk_t *mp2ctl; 17314 ill_t *ill; 17315 ilm_t *ilm; 17316 ipv6_member_t ipm6; 17317 mblk_t *mp_tail = NULL; 17318 ill_walk_context_t ctx; 17319 zoneid_t zoneid; 17320 17321 /* 17322 * make a copy of the original message 17323 */ 17324 mp2ctl = copymsg(mpctl); 17325 zoneid = Q_TO_CONN(q)->conn_zoneid; 17326 17327 /* ip6GroupMember table */ 17328 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17329 optp->level = MIB2_IP6; 17330 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17331 17332 rw_enter(&ill_g_lock, RW_READER); 17333 ill = ILL_START_WALK_V6(&ctx); 17334 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17335 ILM_WALKER_HOLD(ill); 17336 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17337 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17338 ASSERT(ilm->ilm_ipif == NULL); 17339 ASSERT(ilm->ilm_ill != NULL); 17340 if (ilm->ilm_zoneid != zoneid) 17341 continue; /* not this zone */ 17342 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17343 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17344 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17345 if (!snmp_append_data2(mpctl->b_cont, 17346 &mp_tail, 17347 (char *)&ipm6, (int)sizeof (ipm6))) { 17348 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17349 "failed to allocate %u bytes\n", 17350 (uint_t)sizeof (ipm6))); 17351 } 17352 } 17353 ILM_WALKER_RELE(ill); 17354 } 17355 rw_exit(&ill_g_lock); 17356 17357 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17358 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17359 (int)optp->level, (int)optp->name, (int)optp->len)); 17360 qreply(q, mpctl); 17361 return (mp2ctl); 17362 } 17363 17364 /* IP multicast filtered sources */ 17365 static mblk_t * 17366 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17367 { 17368 struct opthdr *optp; 17369 mblk_t *mp2ctl; 17370 ill_t *ill; 17371 ipif_t *ipif; 17372 ilm_t *ilm; 17373 ip_grpsrc_t ips; 17374 mblk_t *mp_tail = NULL; 17375 ill_walk_context_t ctx; 17376 zoneid_t zoneid; 17377 int i; 17378 slist_t *sl; 17379 17380 /* 17381 * make a copy of the original message 17382 */ 17383 mp2ctl = copymsg(mpctl); 17384 zoneid = Q_TO_CONN(q)->conn_zoneid; 17385 17386 /* ipGroupSource table */ 17387 optp = (struct opthdr *)&mpctl->b_rptr[ 17388 sizeof (struct T_optmgmt_ack)]; 17389 optp->level = MIB2_IP; 17390 optp->name = EXPER_IP_GROUP_SOURCES; 17391 17392 rw_enter(&ill_g_lock, RW_READER); 17393 ill = ILL_START_WALK_V4(&ctx); 17394 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17395 ILM_WALKER_HOLD(ill); 17396 for (ipif = ill->ill_ipif; ipif != NULL; 17397 ipif = ipif->ipif_next) { 17398 if (ipif->ipif_zoneid != zoneid) 17399 continue; /* not this zone */ 17400 (void) ipif_get_name(ipif, 17401 ips.ipGroupSourceIfIndex.o_bytes, 17402 OCTET_LENGTH); 17403 ips.ipGroupSourceIfIndex.o_length = 17404 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17405 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17406 ASSERT(ilm->ilm_ipif != NULL); 17407 ASSERT(ilm->ilm_ill == NULL); 17408 sl = ilm->ilm_filter; 17409 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17410 continue; 17411 ips.ipGroupSourceGroup = ilm->ilm_addr; 17412 for (i = 0; i < sl->sl_numsrc; i++) { 17413 if (!IN6_IS_ADDR_V4MAPPED( 17414 &sl->sl_addr[i])) 17415 continue; 17416 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 17417 ips.ipGroupSourceAddress); 17418 if (snmp_append_data2(mpctl->b_cont, 17419 &mp_tail, (char *)&ips, 17420 (int)sizeof (ips)) == 0) { 17421 ip1dbg(("ip_snmp_get_mib2_" 17422 "ip_group_src: failed to " 17423 "allocate %u bytes\n", 17424 (uint_t)sizeof (ips))); 17425 } 17426 } 17427 } 17428 } 17429 ILM_WALKER_RELE(ill); 17430 } 17431 rw_exit(&ill_g_lock); 17432 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17433 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17434 (int)optp->level, (int)optp->name, (int)optp->len)); 17435 qreply(q, mpctl); 17436 return (mp2ctl); 17437 } 17438 17439 /* IPv6 multicast filtered sources. */ 17440 static mblk_t * 17441 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 17442 { 17443 struct opthdr *optp; 17444 mblk_t *mp2ctl; 17445 ill_t *ill; 17446 ilm_t *ilm; 17447 ipv6_grpsrc_t ips6; 17448 mblk_t *mp_tail = NULL; 17449 ill_walk_context_t ctx; 17450 zoneid_t zoneid; 17451 int i; 17452 slist_t *sl; 17453 17454 /* 17455 * make a copy of the original message 17456 */ 17457 mp2ctl = copymsg(mpctl); 17458 zoneid = Q_TO_CONN(q)->conn_zoneid; 17459 17460 /* ip6GroupMember table */ 17461 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17462 optp->level = MIB2_IP6; 17463 optp->name = EXPER_IP6_GROUP_SOURCES; 17464 17465 rw_enter(&ill_g_lock, RW_READER); 17466 ill = ILL_START_WALK_V6(&ctx); 17467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17468 ILM_WALKER_HOLD(ill); 17469 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 17470 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17471 ASSERT(ilm->ilm_ipif == NULL); 17472 ASSERT(ilm->ilm_ill != NULL); 17473 sl = ilm->ilm_filter; 17474 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 17475 continue; 17476 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 17477 for (i = 0; i < sl->sl_numsrc; i++) { 17478 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 17479 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17480 (char *)&ips6, (int)sizeof (ips6))) { 17481 ip1dbg(("ip_snmp_get_mib2_ip6_" 17482 "group_src: failed to allocate " 17483 "%u bytes\n", 17484 (uint_t)sizeof (ips6))); 17485 } 17486 } 17487 } 17488 ILM_WALKER_RELE(ill); 17489 } 17490 rw_exit(&ill_g_lock); 17491 17492 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17493 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17494 (int)optp->level, (int)optp->name, (int)optp->len)); 17495 qreply(q, mpctl); 17496 return (mp2ctl); 17497 } 17498 17499 /* Multicast routing virtual interface table. */ 17500 static mblk_t * 17501 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 17502 { 17503 struct opthdr *optp; 17504 mblk_t *mp2ctl; 17505 17506 /* 17507 * make a copy of the original message 17508 */ 17509 mp2ctl = copymsg(mpctl); 17510 17511 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17512 optp->level = EXPER_DVMRP; 17513 optp->name = EXPER_DVMRP_VIF; 17514 if (!ip_mroute_vif(mpctl->b_cont)) { 17515 ip0dbg(("ip_mroute_vif: failed\n")); 17516 } 17517 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17518 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 17519 (int)optp->level, (int)optp->name, (int)optp->len)); 17520 qreply(q, mpctl); 17521 return (mp2ctl); 17522 } 17523 17524 /* Multicast routing table. */ 17525 static mblk_t * 17526 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 17527 { 17528 struct opthdr *optp; 17529 mblk_t *mp2ctl; 17530 17531 /* 17532 * make a copy of the original message 17533 */ 17534 mp2ctl = copymsg(mpctl); 17535 17536 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17537 optp->level = EXPER_DVMRP; 17538 optp->name = EXPER_DVMRP_MRT; 17539 if (!ip_mroute_mrt(mpctl->b_cont)) { 17540 ip0dbg(("ip_mroute_mrt: failed\n")); 17541 } 17542 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17543 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 17544 (int)optp->level, (int)optp->name, (int)optp->len)); 17545 qreply(q, mpctl); 17546 return (mp2ctl); 17547 } 17548 17549 /* 17550 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 17551 * in one IRE walk. 17552 */ 17553 static mblk_t * 17554 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 17555 { 17556 struct opthdr *optp; 17557 mblk_t *mp2ctl; /* Returned */ 17558 mblk_t *mp3ctl; /* nettomedia */ 17559 mblk_t *mp4ctl; /* routeattrs */ 17560 iproutedata_t ird; 17561 zoneid_t zoneid; 17562 17563 /* 17564 * make copies of the original message 17565 * - mp2ctl is returned unchanged to the caller for his use 17566 * - mpctl is sent upstream as ipRouteEntryTable 17567 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 17568 * - mp4ctl is sent upstream as ipRouteAttributeTable 17569 */ 17570 mp2ctl = copymsg(mpctl); 17571 mp3ctl = copymsg(mpctl); 17572 mp4ctl = copymsg(mpctl); 17573 if (mp3ctl == NULL || mp4ctl == NULL) { 17574 freemsg(mp4ctl); 17575 freemsg(mp3ctl); 17576 freemsg(mp2ctl); 17577 freemsg(mpctl); 17578 return (NULL); 17579 } 17580 17581 bzero(&ird, sizeof (ird)); 17582 17583 ird.ird_route.lp_head = mpctl->b_cont; 17584 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17585 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17586 17587 zoneid = Q_TO_CONN(q)->conn_zoneid; 17588 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 17589 if (zoneid == GLOBAL_ZONEID) { 17590 /* 17591 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17592 * the sys_net_config privilege, it can only run in the global 17593 * zone, so we don't display these IREs in the other zones. 17594 */ 17595 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 17596 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 17597 } 17598 17599 /* ipRouteEntryTable in mpctl */ 17600 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17601 optp->level = MIB2_IP; 17602 optp->name = MIB2_IP_ROUTE; 17603 optp->len = msgdsize(ird.ird_route.lp_head); 17604 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17605 (int)optp->level, (int)optp->name, (int)optp->len)); 17606 qreply(q, mpctl); 17607 17608 /* ipNetToMediaEntryTable in mp3ctl */ 17609 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17610 optp->level = MIB2_IP; 17611 optp->name = MIB2_IP_MEDIA; 17612 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17613 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17614 (int)optp->level, (int)optp->name, (int)optp->len)); 17615 qreply(q, mp3ctl); 17616 17617 /* ipRouteAttributeTable in mp4ctl */ 17618 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17619 optp->level = MIB2_IP; 17620 optp->name = EXPER_IP_RTATTR; 17621 optp->len = msgdsize(ird.ird_attrs.lp_head); 17622 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17623 (int)optp->level, (int)optp->name, (int)optp->len)); 17624 if (optp->len == 0) 17625 freemsg(mp4ctl); 17626 else 17627 qreply(q, mp4ctl); 17628 17629 return (mp2ctl); 17630 } 17631 17632 /* 17633 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 17634 * ipv6NetToMediaEntryTable in an NDP walk. 17635 */ 17636 static mblk_t * 17637 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17638 { 17639 struct opthdr *optp; 17640 mblk_t *mp2ctl; /* Returned */ 17641 mblk_t *mp3ctl; /* nettomedia */ 17642 mblk_t *mp4ctl; /* routeattrs */ 17643 iproutedata_t ird; 17644 zoneid_t zoneid; 17645 17646 /* 17647 * make copies of the original message 17648 * - mp2ctl is returned unchanged to the caller for his use 17649 * - mpctl is sent upstream as ipv6RouteEntryTable 17650 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 17651 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 17652 */ 17653 mp2ctl = copymsg(mpctl); 17654 mp3ctl = copymsg(mpctl); 17655 mp4ctl = copymsg(mpctl); 17656 if (mp3ctl == NULL || mp4ctl == NULL) { 17657 freemsg(mp4ctl); 17658 freemsg(mp3ctl); 17659 freemsg(mp2ctl); 17660 freemsg(mpctl); 17661 return (NULL); 17662 } 17663 17664 bzero(&ird, sizeof (ird)); 17665 17666 ird.ird_route.lp_head = mpctl->b_cont; 17667 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17668 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17669 17670 zoneid = Q_TO_CONN(q)->conn_zoneid; 17671 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 17672 17673 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17674 optp->level = MIB2_IP6; 17675 optp->name = MIB2_IP6_ROUTE; 17676 optp->len = msgdsize(ird.ird_route.lp_head); 17677 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17678 (int)optp->level, (int)optp->name, (int)optp->len)); 17679 qreply(q, mpctl); 17680 17681 /* ipv6NetToMediaEntryTable in mp3ctl */ 17682 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 17683 17684 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17685 optp->level = MIB2_IP6; 17686 optp->name = MIB2_IP6_MEDIA; 17687 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17688 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17689 (int)optp->level, (int)optp->name, (int)optp->len)); 17690 qreply(q, mp3ctl); 17691 17692 /* ipv6RouteAttributeTable in mp4ctl */ 17693 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17694 optp->level = MIB2_IP6; 17695 optp->name = EXPER_IP_RTATTR; 17696 optp->len = msgdsize(ird.ird_attrs.lp_head); 17697 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17698 (int)optp->level, (int)optp->name, (int)optp->len)); 17699 if (optp->len == 0) 17700 freemsg(mp4ctl); 17701 else 17702 qreply(q, mp4ctl); 17703 17704 return (mp2ctl); 17705 } 17706 17707 /* 17708 * ICMPv6 mib: One per ill 17709 */ 17710 static mblk_t * 17711 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17712 { 17713 struct opthdr *optp; 17714 mblk_t *mp2ctl; 17715 ill_t *ill; 17716 ill_walk_context_t ctx; 17717 mblk_t *mp_tail = NULL; 17718 17719 /* 17720 * Make a copy of the original message 17721 */ 17722 mp2ctl = copymsg(mpctl); 17723 17724 /* fixed length IPv6 structure ... */ 17725 17726 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17727 optp->level = MIB2_IP6; 17728 optp->name = 0; 17729 /* Include "unknown interface" ip6_mib */ 17730 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17731 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17732 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17733 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17734 sizeof (mib2_ipv6IfStatsEntry_t)); 17735 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17736 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17737 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17738 sizeof (mib2_ipv6NetToMediaEntry_t)); 17739 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17740 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17741 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17742 (int)sizeof (ip6_mib))) { 17743 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17744 (uint_t)sizeof (ip6_mib))); 17745 } 17746 17747 rw_enter(&ill_g_lock, RW_READER); 17748 ill = ILL_START_WALK_V6(&ctx); 17749 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17750 ill->ill_ip6_mib->ipv6IfIndex = 17751 ill->ill_phyint->phyint_ifindex; 17752 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17753 ipv6_forward ? 1 : 2); 17754 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17755 ill->ill_max_hops); 17756 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17757 sizeof (mib2_ipv6IfStatsEntry_t)); 17758 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17759 sizeof (mib2_ipv6AddrEntry_t)); 17760 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17761 sizeof (mib2_ipv6RouteEntry_t)); 17762 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17763 sizeof (mib2_ipv6NetToMediaEntry_t)); 17764 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17765 sizeof (ipv6_member_t)); 17766 17767 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17768 (char *)ill->ill_ip6_mib, 17769 (int)sizeof (*ill->ill_ip6_mib))) { 17770 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17771 "%u bytes\n", 17772 (uint_t)sizeof (*ill->ill_ip6_mib))); 17773 } 17774 } 17775 rw_exit(&ill_g_lock); 17776 17777 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17778 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17779 (int)optp->level, (int)optp->name, (int)optp->len)); 17780 qreply(q, mpctl); 17781 return (mp2ctl); 17782 } 17783 17784 /* 17785 * ICMPv6 mib: One per ill 17786 */ 17787 static mblk_t * 17788 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17789 { 17790 struct opthdr *optp; 17791 mblk_t *mp2ctl; 17792 ill_t *ill; 17793 ill_walk_context_t ctx; 17794 mblk_t *mp_tail = NULL; 17795 /* 17796 * Make a copy of the original message 17797 */ 17798 mp2ctl = copymsg(mpctl); 17799 17800 /* fixed length ICMPv6 structure ... */ 17801 17802 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17803 optp->level = MIB2_ICMP6; 17804 optp->name = 0; 17805 /* Include "unknown interface" icmp6_mib */ 17806 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17807 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17808 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17809 (int)sizeof (icmp6_mib))) { 17810 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17811 (uint_t)sizeof (icmp6_mib))); 17812 } 17813 17814 rw_enter(&ill_g_lock, RW_READER); 17815 ill = ILL_START_WALK_V6(&ctx); 17816 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17817 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17818 ill->ill_phyint->phyint_ifindex; 17819 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17820 sizeof (mib2_ipv6IfIcmpEntry_t); 17821 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17822 (char *)ill->ill_icmp6_mib, 17823 (int)sizeof (*ill->ill_icmp6_mib))) { 17824 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17825 "%u bytes\n", 17826 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17827 } 17828 } 17829 rw_exit(&ill_g_lock); 17830 17831 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17832 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17833 (int)optp->level, (int)optp->name, (int)optp->len)); 17834 qreply(q, mpctl); 17835 return (mp2ctl); 17836 } 17837 17838 /* 17839 * ire_walk routine to create both ipRouteEntryTable and 17840 * ipNetToMediaEntryTable in one IRE walk 17841 */ 17842 static void 17843 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 17844 { 17845 ill_t *ill; 17846 ipif_t *ipif; 17847 mblk_t *llmp; 17848 dl_unitdata_req_t *dlup; 17849 mib2_ipRouteEntry_t *re; 17850 mib2_ipNetToMediaEntry_t ntme; 17851 mib2_ipAttributeEntry_t *iae, *iaeptr; 17852 ipaddr_t gw_addr; 17853 tsol_ire_gw_secattr_t *attrp; 17854 tsol_gc_t *gc = NULL; 17855 tsol_gcgrp_t *gcgrp = NULL; 17856 uint_t sacnt = 0; 17857 int i; 17858 17859 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17860 17861 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 17862 return; 17863 17864 if ((attrp = ire->ire_gw_secattr) != NULL) { 17865 mutex_enter(&attrp->igsa_lock); 17866 if ((gc = attrp->igsa_gc) != NULL) { 17867 gcgrp = gc->gc_grp; 17868 ASSERT(gcgrp != NULL); 17869 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17870 sacnt = 1; 17871 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 17872 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17873 gc = gcgrp->gcgrp_head; 17874 sacnt = gcgrp->gcgrp_count; 17875 } 17876 mutex_exit(&attrp->igsa_lock); 17877 17878 /* do nothing if there's no gc to report */ 17879 if (gc == NULL) { 17880 ASSERT(sacnt == 0); 17881 if (gcgrp != NULL) { 17882 /* we might as well drop the lock now */ 17883 rw_exit(&gcgrp->gcgrp_rwlock); 17884 gcgrp = NULL; 17885 } 17886 attrp = NULL; 17887 } 17888 17889 ASSERT(gc == NULL || (gcgrp != NULL && 17890 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 17891 } 17892 ASSERT(sacnt == 0 || gc != NULL); 17893 17894 if (sacnt != 0 && 17895 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 17896 kmem_free(re, sizeof (*re)); 17897 rw_exit(&gcgrp->gcgrp_rwlock); 17898 return; 17899 } 17900 17901 /* 17902 * Return all IRE types for route table... let caller pick and choose 17903 */ 17904 re->ipRouteDest = ire->ire_addr; 17905 ipif = ire->ire_ipif; 17906 re->ipRouteIfIndex.o_length = 0; 17907 if (ire->ire_type == IRE_CACHE) { 17908 ill = (ill_t *)ire->ire_stq->q_ptr; 17909 re->ipRouteIfIndex.o_length = 17910 ill->ill_name_length == 0 ? 0 : 17911 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17912 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 17913 re->ipRouteIfIndex.o_length); 17914 } else if (ipif != NULL) { 17915 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 17916 OCTET_LENGTH); 17917 re->ipRouteIfIndex.o_length = 17918 mi_strlen(re->ipRouteIfIndex.o_bytes); 17919 } 17920 re->ipRouteMetric1 = -1; 17921 re->ipRouteMetric2 = -1; 17922 re->ipRouteMetric3 = -1; 17923 re->ipRouteMetric4 = -1; 17924 17925 gw_addr = ire->ire_gateway_addr; 17926 17927 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17928 re->ipRouteNextHop = ire->ire_src_addr; 17929 else 17930 re->ipRouteNextHop = gw_addr; 17931 /* indirect(4), direct(3), or invalid(2) */ 17932 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17933 re->ipRouteType = 2; 17934 else 17935 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 17936 re->ipRouteProto = -1; 17937 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17938 re->ipRouteMask = ire->ire_mask; 17939 re->ipRouteMetric5 = -1; 17940 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 17941 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17942 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17943 llmp = ire->ire_dlureq_mp; 17944 re->ipRouteInfo.re_ref = ire->ire_refcnt; 17945 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 17946 re->ipRouteInfo.re_ire_type = ire->ire_type; 17947 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17948 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17949 re->ipRouteInfo.re_flags = ire->ire_flags; 17950 re->ipRouteInfo.re_in_ill.o_length = 0; 17951 if (ire->ire_in_ill != NULL) { 17952 re->ipRouteInfo.re_in_ill.o_length = 17953 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17954 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17955 bcopy(ire->ire_in_ill->ill_name, 17956 re->ipRouteInfo.re_in_ill.o_bytes, 17957 re->ipRouteInfo.re_in_ill.o_length); 17958 } 17959 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17960 17961 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 17962 (char *)re, (int)sizeof (*re))) { 17963 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17964 (uint_t)sizeof (*re))); 17965 } 17966 17967 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 17968 iaeptr->iae_routeidx = ird->ird_idx; 17969 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 17970 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 17971 } 17972 17973 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 17974 (char *)iae, sacnt * sizeof (*iae))) { 17975 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17976 (unsigned)(sacnt * sizeof (*iae)))); 17977 } 17978 17979 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17980 goto done; 17981 /* 17982 * only IRE_CACHE entries that are for a directly connected subnet 17983 * get appended to net -> phys addr table 17984 * (others in arp) 17985 */ 17986 ntme.ipNetToMediaIfIndex.o_length = 0; 17987 ill = ire_to_ill(ire); 17988 ASSERT(ill != NULL); 17989 ntme.ipNetToMediaIfIndex.o_length = 17990 ill->ill_name_length == 0 ? 0 : 17991 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17992 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17993 ntme.ipNetToMediaIfIndex.o_length); 17994 17995 ntme.ipNetToMediaPhysAddress.o_length = 0; 17996 if (llmp) { 17997 uchar_t *addr; 17998 17999 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18000 /* Remove sap from address */ 18001 if (ill->ill_sap_length < 0) 18002 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18003 else 18004 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18005 ill->ill_sap_length; 18006 18007 ntme.ipNetToMediaPhysAddress.o_length = 18008 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18009 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18010 ntme.ipNetToMediaPhysAddress.o_length); 18011 } 18012 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18013 /* assume dynamic (may be changed in arp) */ 18014 ntme.ipNetToMediaType = 3; 18015 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18016 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18017 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18018 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18019 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18020 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18021 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18022 (uint_t)sizeof (ntme))); 18023 } 18024 done: 18025 /* bump route index for next pass */ 18026 ird->ird_idx++; 18027 18028 kmem_free(re, sizeof (*re)); 18029 if (sacnt != 0) 18030 kmem_free(iae, sacnt * sizeof (*iae)); 18031 18032 if (gcgrp != NULL) 18033 rw_exit(&gcgrp->gcgrp_rwlock); 18034 } 18035 18036 /* 18037 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18038 */ 18039 static void 18040 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18041 { 18042 ill_t *ill; 18043 ipif_t *ipif; 18044 mib2_ipv6RouteEntry_t *re; 18045 mib2_ipAttributeEntry_t *iae, *iaeptr; 18046 in6_addr_t gw_addr_v6; 18047 tsol_ire_gw_secattr_t *attrp; 18048 tsol_gc_t *gc = NULL; 18049 tsol_gcgrp_t *gcgrp = NULL; 18050 uint_t sacnt = 0; 18051 int i; 18052 18053 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18054 18055 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18056 return; 18057 18058 if ((attrp = ire->ire_gw_secattr) != NULL) { 18059 mutex_enter(&attrp->igsa_lock); 18060 if ((gc = attrp->igsa_gc) != NULL) { 18061 gcgrp = gc->gc_grp; 18062 ASSERT(gcgrp != NULL); 18063 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18064 sacnt = 1; 18065 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18066 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18067 gc = gcgrp->gcgrp_head; 18068 sacnt = gcgrp->gcgrp_count; 18069 } 18070 mutex_exit(&attrp->igsa_lock); 18071 18072 /* do nothing if there's no gc to report */ 18073 if (gc == NULL) { 18074 ASSERT(sacnt == 0); 18075 if (gcgrp != NULL) { 18076 /* we might as well drop the lock now */ 18077 rw_exit(&gcgrp->gcgrp_rwlock); 18078 gcgrp = NULL; 18079 } 18080 attrp = NULL; 18081 } 18082 18083 ASSERT(gc == NULL || (gcgrp != NULL && 18084 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18085 } 18086 ASSERT(sacnt == 0 || gc != NULL); 18087 18088 if (sacnt != 0 && 18089 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18090 kmem_free(re, sizeof (*re)); 18091 rw_exit(&gcgrp->gcgrp_rwlock); 18092 return; 18093 } 18094 18095 /* 18096 * Return all IRE types for route table... let caller pick and choose 18097 */ 18098 re->ipv6RouteDest = ire->ire_addr_v6; 18099 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18100 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18101 re->ipv6RouteIfIndex.o_length = 0; 18102 ipif = ire->ire_ipif; 18103 if (ire->ire_type == IRE_CACHE) { 18104 ill = (ill_t *)ire->ire_stq->q_ptr; 18105 re->ipv6RouteIfIndex.o_length = 18106 ill->ill_name_length == 0 ? 0 : 18107 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18108 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18109 re->ipv6RouteIfIndex.o_length); 18110 } else if (ipif != NULL) { 18111 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18112 OCTET_LENGTH); 18113 re->ipv6RouteIfIndex.o_length = 18114 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18115 } 18116 18117 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18118 18119 mutex_enter(&ire->ire_lock); 18120 gw_addr_v6 = ire->ire_gateway_addr_v6; 18121 mutex_exit(&ire->ire_lock); 18122 18123 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18124 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18125 else 18126 re->ipv6RouteNextHop = gw_addr_v6; 18127 18128 /* remote(4), local(3), or discard(2) */ 18129 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18130 re->ipv6RouteType = 2; 18131 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18132 re->ipv6RouteType = 3; 18133 else 18134 re->ipv6RouteType = 4; 18135 18136 re->ipv6RouteProtocol = -1; 18137 re->ipv6RoutePolicy = 0; 18138 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18139 re->ipv6RouteNextHopRDI = 0; 18140 re->ipv6RouteWeight = 0; 18141 re->ipv6RouteMetric = 0; 18142 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18143 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18144 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18145 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18146 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18147 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18148 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18149 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18150 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18151 18152 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18153 (char *)re, (int)sizeof (*re))) { 18154 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18155 (uint_t)sizeof (*re))); 18156 } 18157 18158 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18159 iaeptr->iae_routeidx = ird->ird_idx; 18160 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18161 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18162 } 18163 18164 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18165 (char *)iae, sacnt * sizeof (*iae))) { 18166 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18167 (unsigned)(sacnt * sizeof (*iae)))); 18168 } 18169 18170 /* bump route index for next pass */ 18171 ird->ird_idx++; 18172 18173 kmem_free(re, sizeof (*re)); 18174 if (sacnt != 0) 18175 kmem_free(iae, sacnt * sizeof (*iae)); 18176 18177 if (gcgrp != NULL) 18178 rw_exit(&gcgrp->gcgrp_rwlock); 18179 } 18180 18181 /* 18182 * ndp_walk routine to create ipv6NetToMediaEntryTable 18183 */ 18184 static int 18185 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18186 { 18187 ill_t *ill; 18188 mib2_ipv6NetToMediaEntry_t ntme; 18189 dl_unitdata_req_t *dl; 18190 18191 ill = nce->nce_ill; 18192 ASSERT(ill->ill_isv6); 18193 18194 /* 18195 * Neighbor cache entry attached to IRE with on-link 18196 * destination. 18197 */ 18198 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18199 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18200 if ((ill->ill_flags & ILLF_XRESOLV) && 18201 (nce->nce_res_mp != NULL)) { 18202 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18203 ntme.ipv6NetToMediaPhysAddress.o_length = 18204 dl->dl_dest_addr_length; 18205 } else { 18206 ntme.ipv6NetToMediaPhysAddress.o_length = 18207 ill->ill_phys_addr_length; 18208 } 18209 if (nce->nce_res_mp != NULL) { 18210 bcopy((char *)nce->nce_res_mp->b_rptr + 18211 NCE_LL_ADDR_OFFSET(ill), 18212 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18213 ntme.ipv6NetToMediaPhysAddress.o_length); 18214 } else { 18215 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18216 ill->ill_phys_addr_length); 18217 } 18218 /* 18219 * Note: Returns ND_* states. Should be: 18220 * reachable(1), stale(2), delay(3), probe(4), 18221 * invalid(5), unknown(6) 18222 */ 18223 ntme.ipv6NetToMediaState = nce->nce_state; 18224 ntme.ipv6NetToMediaLastUpdated = 0; 18225 18226 /* other(1), dynamic(2), static(3), local(4) */ 18227 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18228 ntme.ipv6NetToMediaType = 4; 18229 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18230 ntme.ipv6NetToMediaType = 1; 18231 } else { 18232 ntme.ipv6NetToMediaType = 2; 18233 } 18234 18235 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18236 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18237 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18238 (uint_t)sizeof (ntme))); 18239 } 18240 return (0); 18241 } 18242 18243 /* 18244 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18245 */ 18246 /* ARGSUSED */ 18247 int 18248 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18249 { 18250 switch (level) { 18251 case MIB2_IP: 18252 case MIB2_ICMP: 18253 switch (name) { 18254 default: 18255 break; 18256 } 18257 return (1); 18258 default: 18259 return (1); 18260 } 18261 } 18262 18263 /* 18264 * Called before the options are updated to check if this packet will 18265 * be source routed from here. 18266 * This routine assumes that the options are well formed i.e. that they 18267 * have already been checked. 18268 */ 18269 static boolean_t 18270 ip_source_routed(ipha_t *ipha) 18271 { 18272 ipoptp_t opts; 18273 uchar_t *opt; 18274 uint8_t optval; 18275 uint8_t optlen; 18276 ipaddr_t dst; 18277 ire_t *ire; 18278 18279 if (IS_SIMPLE_IPH(ipha)) { 18280 ip2dbg(("not source routed\n")); 18281 return (B_FALSE); 18282 } 18283 dst = ipha->ipha_dst; 18284 for (optval = ipoptp_first(&opts, ipha); 18285 optval != IPOPT_EOL; 18286 optval = ipoptp_next(&opts)) { 18287 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18288 opt = opts.ipoptp_cur; 18289 optlen = opts.ipoptp_len; 18290 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18291 optval, optlen)); 18292 switch (optval) { 18293 uint32_t off; 18294 case IPOPT_SSRR: 18295 case IPOPT_LSRR: 18296 /* 18297 * If dst is one of our addresses and there are some 18298 * entries left in the source route return (true). 18299 */ 18300 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18301 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18302 if (ire == NULL) { 18303 ip2dbg(("ip_source_routed: not next" 18304 " source route 0x%x\n", 18305 ntohl(dst))); 18306 return (B_FALSE); 18307 } 18308 ire_refrele(ire); 18309 off = opt[IPOPT_OFFSET]; 18310 off--; 18311 if (optlen < IP_ADDR_LEN || 18312 off > optlen - IP_ADDR_LEN) { 18313 /* End of source route */ 18314 ip1dbg(("ip_source_routed: end of SR\n")); 18315 return (B_FALSE); 18316 } 18317 return (B_TRUE); 18318 } 18319 } 18320 ip2dbg(("not source routed\n")); 18321 return (B_FALSE); 18322 } 18323 18324 /* 18325 * Check if the packet contains any source route. 18326 */ 18327 static boolean_t 18328 ip_source_route_included(ipha_t *ipha) 18329 { 18330 ipoptp_t opts; 18331 uint8_t optval; 18332 18333 if (IS_SIMPLE_IPH(ipha)) 18334 return (B_FALSE); 18335 for (optval = ipoptp_first(&opts, ipha); 18336 optval != IPOPT_EOL; 18337 optval = ipoptp_next(&opts)) { 18338 switch (optval) { 18339 case IPOPT_SSRR: 18340 case IPOPT_LSRR: 18341 return (B_TRUE); 18342 } 18343 } 18344 return (B_FALSE); 18345 } 18346 18347 /* 18348 * Called when the IRE expiration timer fires. 18349 */ 18350 /* ARGSUSED */ 18351 void 18352 ip_trash_timer_expire(void *args) 18353 { 18354 int flush_flag = 0; 18355 18356 /* 18357 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18358 * This lock makes sure that a new invocation of this function 18359 * that occurs due to an almost immediate timer firing will not 18360 * progress beyond this point until the current invocation is done 18361 */ 18362 mutex_enter(&ip_trash_timer_lock); 18363 ip_ire_expire_id = 0; 18364 mutex_exit(&ip_trash_timer_lock); 18365 18366 /* Periodic timer */ 18367 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18368 /* 18369 * Remove all IRE_CACHE entries since they might 18370 * contain arp information. 18371 */ 18372 flush_flag |= FLUSH_ARP_TIME; 18373 ip_ire_arp_time_elapsed = 0; 18374 IP_STAT(ip_ire_arp_timer_expired); 18375 } 18376 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18377 /* Remove all redirects */ 18378 flush_flag |= FLUSH_REDIRECT_TIME; 18379 ip_ire_rd_time_elapsed = 0; 18380 IP_STAT(ip_ire_redirect_timer_expired); 18381 } 18382 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18383 /* Increase path mtu */ 18384 flush_flag |= FLUSH_MTU_TIME; 18385 ip_ire_pmtu_time_elapsed = 0; 18386 IP_STAT(ip_ire_pmtu_timer_expired); 18387 } 18388 if (flush_flag != 0) { 18389 /* Walk all IPv4 IRE's and update them */ 18390 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 18391 ALL_ZONES); 18392 } 18393 if (flush_flag & FLUSH_MTU_TIME) { 18394 /* 18395 * Walk all IPv6 IRE's and update them 18396 * Note that ARP and redirect timers are not 18397 * needed since NUD handles stale entries. 18398 */ 18399 flush_flag = FLUSH_MTU_TIME; 18400 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18401 ALL_ZONES); 18402 } 18403 18404 ip_ire_arp_time_elapsed += ip_timer_interval; 18405 ip_ire_rd_time_elapsed += ip_timer_interval; 18406 ip_ire_pmtu_time_elapsed += ip_timer_interval; 18407 18408 /* 18409 * Hold the lock to serialize timeout calls and prevent 18410 * stale values in ip_ire_expire_id. Otherwise it is possible 18411 * for the timer to fire and a new invocation of this function 18412 * to start before the return value of timeout has been stored 18413 * in ip_ire_expire_id by the current invocation. 18414 */ 18415 mutex_enter(&ip_trash_timer_lock); 18416 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 18417 MSEC_TO_TICK(ip_timer_interval)); 18418 mutex_exit(&ip_trash_timer_lock); 18419 } 18420 18421 /* 18422 * Called by the memory allocator subsystem directly, when the system 18423 * is running low on memory. 18424 */ 18425 /* ARGSUSED */ 18426 void 18427 ip_trash_ire_reclaim(void *args) 18428 { 18429 ire_cache_count_t icc; 18430 ire_cache_reclaim_t icr; 18431 ncc_cache_count_t ncc; 18432 nce_cache_reclaim_t ncr; 18433 uint_t delete_cnt; 18434 /* 18435 * Memory reclaim call back. 18436 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 18437 * Then, with a target of freeing 1/Nth of IRE_CACHE 18438 * entries, determine what fraction to free for 18439 * each category of IRE_CACHE entries giving absolute priority 18440 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 18441 * entry will be freed unless all offlink entries are freed). 18442 */ 18443 icc.icc_total = 0; 18444 icc.icc_unused = 0; 18445 icc.icc_offlink = 0; 18446 icc.icc_pmtu = 0; 18447 icc.icc_onlink = 0; 18448 ire_walk(ire_cache_count, (char *)&icc); 18449 18450 /* 18451 * Free NCEs for IPv6 like the onlink ires. 18452 */ 18453 ncc.ncc_total = 0; 18454 ncc.ncc_host = 0; 18455 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 18456 18457 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 18458 icc.icc_pmtu + icc.icc_onlink); 18459 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 18460 IP_STAT(ip_trash_ire_reclaim_calls); 18461 if (delete_cnt == 0) 18462 return; 18463 IP_STAT(ip_trash_ire_reclaim_success); 18464 /* Always delete all unused offlink entries */ 18465 icr.icr_unused = 1; 18466 if (delete_cnt <= icc.icc_unused) { 18467 /* 18468 * Only need to free unused entries. In other words, 18469 * there are enough unused entries to free to meet our 18470 * target number of freed ire cache entries. 18471 */ 18472 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 18473 ncr.ncr_host = 0; 18474 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 18475 /* 18476 * Only need to free unused entries, plus a fraction of offlink 18477 * entries. It follows from the first if statement that 18478 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 18479 */ 18480 delete_cnt -= icc.icc_unused; 18481 /* Round up # deleted by truncating fraction */ 18482 icr.icr_offlink = icc.icc_offlink / delete_cnt; 18483 icr.icr_pmtu = icr.icr_onlink = 0; 18484 ncr.ncr_host = 0; 18485 } else if (delete_cnt <= 18486 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 18487 /* 18488 * Free all unused and offlink entries, plus a fraction of 18489 * pmtu entries. It follows from the previous if statement 18490 * that icc_pmtu is non-zero, and that 18491 * delete_cnt != icc_unused + icc_offlink. 18492 */ 18493 icr.icr_offlink = 1; 18494 delete_cnt -= icc.icc_unused + icc.icc_offlink; 18495 /* Round up # deleted by truncating fraction */ 18496 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 18497 icr.icr_onlink = 0; 18498 ncr.ncr_host = 0; 18499 } else { 18500 /* 18501 * Free all unused, offlink, and pmtu entries, plus a fraction 18502 * of onlink entries. If we're here, then we know that 18503 * icc_onlink is non-zero, and that 18504 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 18505 */ 18506 icr.icr_offlink = icr.icr_pmtu = 1; 18507 delete_cnt -= icc.icc_unused + icc.icc_offlink + 18508 icc.icc_pmtu; 18509 /* Round up # deleted by truncating fraction */ 18510 icr.icr_onlink = icc.icc_onlink / delete_cnt; 18511 /* Using the same delete fraction as for onlink IREs */ 18512 ncr.ncr_host = ncc.ncc_host / delete_cnt; 18513 } 18514 #ifdef DEBUG 18515 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 18516 "fractions %d/%d/%d/%d\n", 18517 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 18518 icc.icc_unused, icc.icc_offlink, 18519 icc.icc_pmtu, icc.icc_onlink, 18520 icr.icr_unused, icr.icr_offlink, 18521 icr.icr_pmtu, icr.icr_onlink)); 18522 #endif 18523 ire_walk(ire_cache_reclaim, (char *)&icr); 18524 if (ncr.ncr_host != 0) 18525 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 18526 (uchar_t *)&ncr); 18527 #ifdef DEBUG 18528 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 18529 icc.icc_pmtu = 0; icc.icc_onlink = 0; 18530 ire_walk(ire_cache_count, (char *)&icc); 18531 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 18532 icc.icc_total, icc.icc_unused, icc.icc_offlink, 18533 icc.icc_pmtu, icc.icc_onlink)); 18534 #endif 18535 } 18536 18537 /* 18538 * ip_unbind is called when a copy of an unbind request is received from the 18539 * upper level protocol. We remove this conn from any fanout hash list it is 18540 * on, and zero out the bind information. No reply is expected up above. 18541 */ 18542 mblk_t * 18543 ip_unbind(queue_t *q, mblk_t *mp) 18544 { 18545 conn_t *connp = Q_TO_CONN(q); 18546 18547 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 18548 18549 if (is_system_labeled() && connp->conn_anon_port) { 18550 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 18551 connp->conn_mlp_type, connp->conn_ulp, 18552 ntohs(connp->conn_lport), B_FALSE); 18553 connp->conn_anon_port = 0; 18554 } 18555 connp->conn_mlp_type = mlptSingle; 18556 18557 ipcl_hash_remove(connp); 18558 18559 ASSERT(mp->b_cont == NULL); 18560 /* 18561 * Convert mp into a T_OK_ACK 18562 */ 18563 mp = mi_tpi_ok_ack_alloc(mp); 18564 18565 /* 18566 * should not happen in practice... T_OK_ACK is smaller than the 18567 * original message. 18568 */ 18569 if (mp == NULL) 18570 return (NULL); 18571 18572 /* 18573 * Don't bzero the ports if its TCP since TCP still needs the 18574 * lport to remove it from its own bind hash. TCP will do the 18575 * cleanup. 18576 */ 18577 if (!IPCL_IS_TCP(connp)) 18578 bzero(&connp->u_port, sizeof (connp->u_port)); 18579 18580 return (mp); 18581 } 18582 18583 /* 18584 * Write side put procedure. Outbound data, IOCTLs, responses from 18585 * resolvers, etc, come down through here. 18586 */ 18587 void 18588 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 18589 { 18590 conn_t *connp = NULL; 18591 queue_t *q = (queue_t *)arg2; 18592 ipha_t *ipha; 18593 #define rptr ((uchar_t *)ipha) 18594 ire_t *ire = NULL; 18595 ire_t *sctp_ire = NULL; 18596 uint32_t v_hlen_tos_len; 18597 ipaddr_t dst; 18598 mblk_t *first_mp = NULL; 18599 boolean_t mctl_present; 18600 ipsec_out_t *io; 18601 int match_flags; 18602 ill_t *attach_ill = NULL; 18603 /* Bind to IPIF_NOFAILOVER ill etc. */ 18604 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 18605 ipif_t *dst_ipif; 18606 boolean_t multirt_need_resolve = B_FALSE; 18607 mblk_t *copy_mp = NULL; 18608 int err; 18609 zoneid_t zoneid; 18610 int adjust; 18611 uint16_t iplen; 18612 boolean_t need_decref = B_FALSE; 18613 boolean_t ignore_dontroute = B_FALSE; 18614 boolean_t ignore_nexthop = B_FALSE; 18615 boolean_t ip_nexthop = B_FALSE; 18616 ipaddr_t nexthop_addr; 18617 18618 #ifdef _BIG_ENDIAN 18619 #define V_HLEN (v_hlen_tos_len >> 24) 18620 #else 18621 #define V_HLEN (v_hlen_tos_len & 0xFF) 18622 #endif 18623 18624 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 18625 "ip_wput_start: q %p", q); 18626 18627 /* 18628 * ip_wput fast path 18629 */ 18630 18631 /* is packet from ARP ? */ 18632 if (q->q_next != NULL) 18633 goto qnext; 18634 18635 connp = (conn_t *)arg; 18636 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 18637 18638 /* is queue flow controlled? */ 18639 if ((q->q_first != NULL || connp->conn_draining) && 18640 (caller == IP_WPUT)) { 18641 ASSERT(!need_decref); 18642 (void) putq(q, mp); 18643 return; 18644 } 18645 18646 /* Multidata transmit? */ 18647 if (DB_TYPE(mp) == M_MULTIDATA) { 18648 /* 18649 * We should never get here, since all Multidata messages 18650 * originating from tcp should have been directed over to 18651 * tcp_multisend() in the first place. 18652 */ 18653 BUMP_MIB(&ip_mib, ipOutDiscards); 18654 freemsg(mp); 18655 return; 18656 } else if (DB_TYPE(mp) != M_DATA) 18657 goto notdata; 18658 18659 if (mp->b_flag & MSGHASREF) { 18660 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18661 mp->b_flag &= ~MSGHASREF; 18662 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 18663 need_decref = B_TRUE; 18664 } 18665 ipha = (ipha_t *)mp->b_rptr; 18666 18667 /* is IP header non-aligned or mblk smaller than basic IP header */ 18668 #ifndef SAFETY_BEFORE_SPEED 18669 if (!OK_32PTR(rptr) || 18670 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 18671 goto hdrtoosmall; 18672 #endif 18673 18674 ASSERT(OK_32PTR(ipha)); 18675 18676 /* 18677 * This function assumes that mp points to an IPv4 packet. If it's the 18678 * wrong version, we'll catch it again in ip_output_v6. 18679 * 18680 * Note that this is *only* locally-generated output here, and never 18681 * forwarded data, and that we need to deal only with transports that 18682 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 18683 * label.) 18684 */ 18685 if (is_system_labeled() && 18686 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 18687 !connp->conn_ulp_labeled) { 18688 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 18689 connp->conn_mac_exempt); 18690 ipha = (ipha_t *)mp->b_rptr; 18691 if (err != 0) { 18692 first_mp = mp; 18693 if (err == EINVAL) 18694 goto icmp_parameter_problem; 18695 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 18696 goto drop_pkt; 18697 } 18698 iplen = ntohs(ipha->ipha_length) + adjust; 18699 ipha->ipha_length = htons(iplen); 18700 } 18701 18702 /* 18703 * If there is a policy, try to attach an ipsec_out in 18704 * the front. At the end, first_mp either points to a 18705 * M_DATA message or IPSEC_OUT message linked to a 18706 * M_DATA message. We have to do it now as we might 18707 * lose the "conn" if we go through ip_newroute. 18708 */ 18709 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 18710 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 18711 ipha->ipha_protocol)) == NULL)) { 18712 if (need_decref) 18713 CONN_DEC_REF(connp); 18714 return; 18715 } else { 18716 ASSERT(mp->b_datap->db_type == M_CTL); 18717 first_mp = mp; 18718 mp = mp->b_cont; 18719 mctl_present = B_TRUE; 18720 } 18721 } else { 18722 first_mp = mp; 18723 mctl_present = B_FALSE; 18724 } 18725 18726 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18727 18728 /* is wrong version or IP options present */ 18729 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 18730 goto version_hdrlen_check; 18731 dst = ipha->ipha_dst; 18732 18733 if (connp->conn_nofailover_ill != NULL) { 18734 attach_ill = conn_get_held_ill(connp, 18735 &connp->conn_nofailover_ill, &err); 18736 if (err == ILL_LOOKUP_FAILED) { 18737 if (need_decref) 18738 CONN_DEC_REF(connp); 18739 freemsg(first_mp); 18740 return; 18741 } 18742 } 18743 18744 /* is packet multicast? */ 18745 if (CLASSD(dst)) 18746 goto multicast; 18747 18748 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 18749 (connp->conn_nexthop_set)) { 18750 /* 18751 * If the destination is a broadcast or a loopback 18752 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 18753 * through the standard path. But in the case of local 18754 * destination only SO_DONTROUTE and IP_NEXTHOP go through 18755 * the standard path not IP_XMIT_IF. 18756 */ 18757 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18758 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 18759 (ire->ire_type != IRE_LOOPBACK))) { 18760 if ((connp->conn_dontroute || 18761 connp->conn_nexthop_set) && (ire != NULL) && 18762 (ire->ire_type == IRE_LOCAL)) 18763 goto standard_path; 18764 18765 if (ire != NULL) { 18766 ire_refrele(ire); 18767 /* No more access to ire */ 18768 ire = NULL; 18769 } 18770 /* 18771 * bypass routing checks and go directly to 18772 * interface. 18773 */ 18774 if (connp->conn_dontroute) { 18775 goto dontroute; 18776 } else if (connp->conn_nexthop_set) { 18777 ip_nexthop = B_TRUE; 18778 nexthop_addr = connp->conn_nexthop_v4; 18779 goto send_from_ill; 18780 } 18781 18782 /* 18783 * If IP_XMIT_IF socket option is set, 18784 * then we allow unicast and multicast 18785 * packets to go through the ill. It is 18786 * quite possible that the destination 18787 * is not in the ire cache table and we 18788 * do not want to go to ip_newroute() 18789 * instead we call ip_newroute_ipif. 18790 */ 18791 xmit_ill = conn_get_held_ill(connp, 18792 &connp->conn_xmit_if_ill, &err); 18793 if (err == ILL_LOOKUP_FAILED) { 18794 if (attach_ill != NULL) 18795 ill_refrele(attach_ill); 18796 if (need_decref) 18797 CONN_DEC_REF(connp); 18798 freemsg(first_mp); 18799 return; 18800 } 18801 goto send_from_ill; 18802 } 18803 standard_path: 18804 /* Must be a broadcast, a loopback or a local ire */ 18805 if (ire != NULL) { 18806 ire_refrele(ire); 18807 /* No more access to ire */ 18808 ire = NULL; 18809 } 18810 } 18811 18812 if (attach_ill != NULL) 18813 goto send_from_ill; 18814 18815 /* 18816 * We cache IRE_CACHEs to avoid lookups. We don't do 18817 * this for the tcp global queue and listen end point 18818 * as it does not really have a real destination to 18819 * talk to. This is also true for SCTP. 18820 */ 18821 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18822 !connp->conn_fully_bound) { 18823 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18824 if (ire == NULL) 18825 goto noirefound; 18826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18827 "ip_wput_end: q %p (%S)", q, "end"); 18828 18829 /* 18830 * Check if the ire has the RTF_MULTIRT flag, inherited 18831 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18832 */ 18833 if (ire->ire_flags & RTF_MULTIRT) { 18834 18835 /* 18836 * Force the TTL of multirouted packets if required. 18837 * The TTL of such packets is bounded by the 18838 * ip_multirt_ttl ndd variable. 18839 */ 18840 if ((ip_multirt_ttl > 0) && 18841 (ipha->ipha_ttl > ip_multirt_ttl)) { 18842 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18843 "(was %d), dst 0x%08x\n", 18844 ip_multirt_ttl, ipha->ipha_ttl, 18845 ntohl(ire->ire_addr))); 18846 ipha->ipha_ttl = ip_multirt_ttl; 18847 } 18848 /* 18849 * We look at this point if there are pending 18850 * unresolved routes. ire_multirt_resolvable() 18851 * checks in O(n) that all IRE_OFFSUBNET ire 18852 * entries for the packet's destination and 18853 * flagged RTF_MULTIRT are currently resolved. 18854 * If some remain unresolved, we make a copy 18855 * of the current message. It will be used 18856 * to initiate additional route resolutions. 18857 */ 18858 multirt_need_resolve = 18859 ire_multirt_need_resolve(ire->ire_addr, 18860 MBLK_GETLABEL(first_mp)); 18861 ip2dbg(("ip_wput[TCP]: ire %p, " 18862 "multirt_need_resolve %d, first_mp %p\n", 18863 (void *)ire, multirt_need_resolve, 18864 (void *)first_mp)); 18865 if (multirt_need_resolve) { 18866 copy_mp = copymsg(first_mp); 18867 if (copy_mp != NULL) { 18868 MULTIRT_DEBUG_TAG(copy_mp); 18869 } 18870 } 18871 } 18872 18873 ip_wput_ire(q, first_mp, ire, connp, caller); 18874 18875 /* 18876 * Try to resolve another multiroute if 18877 * ire_multirt_need_resolve() deemed it necessary. 18878 */ 18879 if (copy_mp != NULL) { 18880 ip_newroute(q, copy_mp, dst, NULL, connp); 18881 } 18882 if (need_decref) 18883 CONN_DEC_REF(connp); 18884 return; 18885 } 18886 18887 /* 18888 * Access to conn_ire_cache. (protected by conn_lock) 18889 * 18890 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18891 * the ire bucket lock here to check for CONDEMNED as it is okay to 18892 * send a packet or two with the IRE_CACHE that is going away. 18893 * Access to the ire requires an ire refhold on the ire prior to 18894 * its use since an interface unplumb thread may delete the cached 18895 * ire and release the refhold at any time. 18896 * 18897 * Caching an ire in the conn_ire_cache 18898 * 18899 * o Caching an ire pointer in the conn requires a strict check for 18900 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18901 * ires before cleaning up the conns. So the caching of an ire pointer 18902 * in the conn is done after making sure under the bucket lock that the 18903 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18904 * caching an ire after the unplumb thread has cleaned up the conn. 18905 * If the conn does not send a packet subsequently the unplumb thread 18906 * will be hanging waiting for the ire count to drop to zero. 18907 * 18908 * o We also need to atomically test for a null conn_ire_cache and 18909 * set the conn_ire_cache under the the protection of the conn_lock 18910 * to avoid races among concurrent threads trying to simultaneously 18911 * cache an ire in the conn_ire_cache. 18912 */ 18913 mutex_enter(&connp->conn_lock); 18914 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18915 18916 if (ire != NULL && ire->ire_addr == dst && 18917 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18918 18919 IRE_REFHOLD(ire); 18920 mutex_exit(&connp->conn_lock); 18921 18922 } else { 18923 boolean_t cached = B_FALSE; 18924 connp->conn_ire_cache = NULL; 18925 mutex_exit(&connp->conn_lock); 18926 /* Release the old ire */ 18927 if (ire != NULL && sctp_ire == NULL) 18928 IRE_REFRELE_NOTR(ire); 18929 18930 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18931 if (ire == NULL) 18932 goto noirefound; 18933 IRE_REFHOLD_NOTR(ire); 18934 18935 mutex_enter(&connp->conn_lock); 18936 if (!(connp->conn_state_flags & CONN_CLOSING) && 18937 connp->conn_ire_cache == NULL) { 18938 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18939 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18940 connp->conn_ire_cache = ire; 18941 cached = B_TRUE; 18942 } 18943 rw_exit(&ire->ire_bucket->irb_lock); 18944 } 18945 mutex_exit(&connp->conn_lock); 18946 18947 /* 18948 * We can continue to use the ire but since it was 18949 * not cached, we should drop the extra reference. 18950 */ 18951 if (!cached) 18952 IRE_REFRELE_NOTR(ire); 18953 } 18954 18955 18956 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18957 "ip_wput_end: q %p (%S)", q, "end"); 18958 18959 /* 18960 * Check if the ire has the RTF_MULTIRT flag, inherited 18961 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18962 */ 18963 if (ire->ire_flags & RTF_MULTIRT) { 18964 18965 /* 18966 * Force the TTL of multirouted packets if required. 18967 * The TTL of such packets is bounded by the 18968 * ip_multirt_ttl ndd variable. 18969 */ 18970 if ((ip_multirt_ttl > 0) && 18971 (ipha->ipha_ttl > ip_multirt_ttl)) { 18972 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18973 "(was %d), dst 0x%08x\n", 18974 ip_multirt_ttl, ipha->ipha_ttl, 18975 ntohl(ire->ire_addr))); 18976 ipha->ipha_ttl = ip_multirt_ttl; 18977 } 18978 18979 /* 18980 * At this point, we check to see if there are any pending 18981 * unresolved routes. ire_multirt_resolvable() 18982 * checks in O(n) that all IRE_OFFSUBNET ire 18983 * entries for the packet's destination and 18984 * flagged RTF_MULTIRT are currently resolved. 18985 * If some remain unresolved, we make a copy 18986 * of the current message. It will be used 18987 * to initiate additional route resolutions. 18988 */ 18989 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 18990 MBLK_GETLABEL(first_mp)); 18991 ip2dbg(("ip_wput[not TCP]: ire %p, " 18992 "multirt_need_resolve %d, first_mp %p\n", 18993 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18994 if (multirt_need_resolve) { 18995 copy_mp = copymsg(first_mp); 18996 if (copy_mp != NULL) { 18997 MULTIRT_DEBUG_TAG(copy_mp); 18998 } 18999 } 19000 } 19001 19002 ip_wput_ire(q, first_mp, ire, connp, caller); 19003 19004 /* 19005 * Try to resolve another multiroute if 19006 * ire_multirt_resolvable() deemed it necessary 19007 */ 19008 if (copy_mp != NULL) { 19009 ip_newroute(q, copy_mp, dst, NULL, connp); 19010 } 19011 if (need_decref) 19012 CONN_DEC_REF(connp); 19013 return; 19014 19015 qnext: 19016 /* 19017 * Upper Level Protocols pass down complete IP datagrams 19018 * as M_DATA messages. Everything else is a sideshow. 19019 * 19020 * 1) We could be re-entering ip_wput because of ip_neworute 19021 * in which case we could have a IPSEC_OUT message. We 19022 * need to pass through ip_wput like other datagrams and 19023 * hence cannot branch to ip_wput_nondata. 19024 * 19025 * 2) ARP, AH, ESP, and other clients who are on the module 19026 * instance of IP stream, give us something to deal with. 19027 * We will handle AH and ESP here and rest in ip_wput_nondata. 19028 * 19029 * 3) ICMP replies also could come here. 19030 */ 19031 if (DB_TYPE(mp) != M_DATA) { 19032 notdata: 19033 if (DB_TYPE(mp) == M_CTL) { 19034 /* 19035 * M_CTL messages are used by ARP, AH and ESP to 19036 * communicate with IP. We deal with IPSEC_IN and 19037 * IPSEC_OUT here. ip_wput_nondata handles other 19038 * cases. 19039 */ 19040 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19041 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19042 first_mp = mp->b_cont; 19043 first_mp->b_flag &= ~MSGHASREF; 19044 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19045 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19046 CONN_DEC_REF(connp); 19047 connp = NULL; 19048 } 19049 if (ii->ipsec_info_type == IPSEC_IN) { 19050 /* 19051 * Either this message goes back to 19052 * IPSEC for further processing or to 19053 * ULP after policy checks. 19054 */ 19055 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19056 return; 19057 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19058 io = (ipsec_out_t *)ii; 19059 if (io->ipsec_out_proc_begin) { 19060 /* 19061 * IPSEC processing has already started. 19062 * Complete it. 19063 * IPQoS notes: We don't care what is 19064 * in ipsec_out_ill_index since this 19065 * won't be processed for IPQoS policies 19066 * in ipsec_out_process. 19067 */ 19068 ipsec_out_process(q, mp, NULL, 19069 io->ipsec_out_ill_index); 19070 return; 19071 } else { 19072 connp = (q->q_next != NULL) ? 19073 NULL : Q_TO_CONN(q); 19074 first_mp = mp; 19075 mp = mp->b_cont; 19076 mctl_present = B_TRUE; 19077 } 19078 zoneid = io->ipsec_out_zoneid; 19079 ASSERT(zoneid != ALL_ZONES); 19080 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19081 /* 19082 * It's an IPsec control message requesting 19083 * an SADB update to be sent to the IPsec 19084 * hardware acceleration capable ills. 19085 */ 19086 ipsec_ctl_t *ipsec_ctl = 19087 (ipsec_ctl_t *)mp->b_rptr; 19088 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19089 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19090 mblk_t *cmp = mp->b_cont; 19091 19092 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19093 ASSERT(cmp != NULL); 19094 19095 freeb(mp); 19096 ill_ipsec_capab_send_all(satype, cmp, sa); 19097 return; 19098 } else { 19099 /* 19100 * This must be ARP or special TSOL signaling. 19101 */ 19102 ip_wput_nondata(NULL, q, mp, NULL); 19103 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19104 "ip_wput_end: q %p (%S)", q, "nondata"); 19105 return; 19106 } 19107 } else { 19108 /* 19109 * This must be non-(ARP/AH/ESP) messages. 19110 */ 19111 ASSERT(!need_decref); 19112 ip_wput_nondata(NULL, q, mp, NULL); 19113 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19114 "ip_wput_end: q %p (%S)", q, "nondata"); 19115 return; 19116 } 19117 } else { 19118 first_mp = mp; 19119 mctl_present = B_FALSE; 19120 } 19121 19122 ASSERT(first_mp != NULL); 19123 /* 19124 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19125 * to make sure that this packet goes out on the same interface it 19126 * came in. We handle that here. 19127 */ 19128 if (mctl_present) { 19129 uint_t ifindex; 19130 19131 io = (ipsec_out_t *)first_mp->b_rptr; 19132 if (io->ipsec_out_attach_if || 19133 io->ipsec_out_xmit_if || 19134 io->ipsec_out_ip_nexthop) { 19135 ill_t *ill; 19136 19137 /* 19138 * We may have lost the conn context if we are 19139 * coming here from ip_newroute(). Copy the 19140 * nexthop information. 19141 */ 19142 if (io->ipsec_out_ip_nexthop) { 19143 ip_nexthop = B_TRUE; 19144 nexthop_addr = io->ipsec_out_nexthop_addr; 19145 19146 ipha = (ipha_t *)mp->b_rptr; 19147 dst = ipha->ipha_dst; 19148 goto send_from_ill; 19149 } else { 19150 ASSERT(io->ipsec_out_ill_index != 0); 19151 ifindex = io->ipsec_out_ill_index; 19152 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19153 NULL, NULL, NULL, NULL); 19154 /* 19155 * ipsec_out_xmit_if bit is used to tell 19156 * ip_wput to use the ill to send outgoing data 19157 * as we have no conn when data comes from ICMP 19158 * error msg routines. Currently this feature is 19159 * only used by ip_mrtun_forward routine. 19160 */ 19161 if (io->ipsec_out_xmit_if) { 19162 xmit_ill = ill; 19163 if (xmit_ill == NULL) { 19164 ip1dbg(("ip_output:bad ifindex " 19165 "for xmit_ill %d\n", 19166 ifindex)); 19167 freemsg(first_mp); 19168 BUMP_MIB(&ip_mib, 19169 ipOutDiscards); 19170 ASSERT(!need_decref); 19171 return; 19172 } 19173 /* Free up the ipsec_out_t mblk */ 19174 ASSERT(first_mp->b_cont == mp); 19175 first_mp->b_cont = NULL; 19176 freeb(first_mp); 19177 /* Just send the IP header+ICMP+data */ 19178 first_mp = mp; 19179 ipha = (ipha_t *)mp->b_rptr; 19180 dst = ipha->ipha_dst; 19181 goto send_from_ill; 19182 } else { 19183 attach_ill = ill; 19184 } 19185 19186 if (attach_ill == NULL) { 19187 ASSERT(xmit_ill == NULL); 19188 ip1dbg(("ip_output: bad ifindex for " 19189 "(BIND TO IPIF_NOFAILOVER) %d\n", 19190 ifindex)); 19191 freemsg(first_mp); 19192 BUMP_MIB(&ip_mib, ipOutDiscards); 19193 ASSERT(!need_decref); 19194 return; 19195 } 19196 } 19197 } 19198 } 19199 19200 ASSERT(xmit_ill == NULL); 19201 19202 /* We have a complete IP datagram heading outbound. */ 19203 ipha = (ipha_t *)mp->b_rptr; 19204 19205 #ifndef SPEED_BEFORE_SAFETY 19206 /* 19207 * Make sure we have a full-word aligned message and that at least 19208 * a simple IP header is accessible in the first message. If not, 19209 * try a pullup. 19210 */ 19211 if (!OK_32PTR(rptr) || 19212 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19213 hdrtoosmall: 19214 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19215 BUMP_MIB(&ip_mib, ipOutDiscards); 19216 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19217 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19218 if (first_mp == NULL) 19219 first_mp = mp; 19220 goto drop_pkt; 19221 } 19222 19223 /* This function assumes that mp points to an IPv4 packet. */ 19224 if (is_system_labeled() && q->q_next == NULL && 19225 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19226 !connp->conn_ulp_labeled) { 19227 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19228 &adjust, connp->conn_mac_exempt); 19229 ipha = (ipha_t *)mp->b_rptr; 19230 if (first_mp != NULL) 19231 first_mp->b_cont = mp; 19232 if (err != 0) { 19233 if (first_mp == NULL) 19234 first_mp = mp; 19235 if (err == EINVAL) 19236 goto icmp_parameter_problem; 19237 ip2dbg(("ip_wput: label check failed (%d)\n", 19238 err)); 19239 goto drop_pkt; 19240 } 19241 iplen = ntohs(ipha->ipha_length) + adjust; 19242 ipha->ipha_length = htons(iplen); 19243 } 19244 19245 ipha = (ipha_t *)mp->b_rptr; 19246 if (first_mp == NULL) { 19247 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19248 /* 19249 * If we got here because of "goto hdrtoosmall" 19250 * We need to attach a IPSEC_OUT. 19251 */ 19252 if (connp->conn_out_enforce_policy) { 19253 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19254 NULL, ipha->ipha_protocol)) == NULL)) { 19255 if (need_decref) 19256 CONN_DEC_REF(connp); 19257 return; 19258 } else { 19259 ASSERT(mp->b_datap->db_type == M_CTL); 19260 first_mp = mp; 19261 mp = mp->b_cont; 19262 mctl_present = B_TRUE; 19263 } 19264 } else { 19265 first_mp = mp; 19266 mctl_present = B_FALSE; 19267 } 19268 } 19269 } 19270 #endif 19271 19272 /* Most of the code below is written for speed, not readability */ 19273 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19274 19275 /* 19276 * If ip_newroute() fails, we're going to need a full 19277 * header for the icmp wraparound. 19278 */ 19279 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19280 uint_t v_hlen; 19281 version_hdrlen_check: 19282 ASSERT(first_mp != NULL); 19283 v_hlen = V_HLEN; 19284 /* 19285 * siphon off IPv6 packets coming down from transport 19286 * layer modules here. 19287 * Note: high-order bit carries NUD reachability confirmation 19288 */ 19289 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19290 /* 19291 * XXX implement a IPv4 and IPv6 packet counter per 19292 * conn and switch when ratio exceeds e.g. 10:1 19293 */ 19294 #ifdef notyet 19295 if (q->q_next == NULL) /* Avoid ill queue */ 19296 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19297 #endif 19298 BUMP_MIB(&ip_mib, ipOutIPv6); 19299 ASSERT(xmit_ill == NULL); 19300 if (attach_ill != NULL) 19301 ill_refrele(attach_ill); 19302 if (need_decref) 19303 mp->b_flag |= MSGHASREF; 19304 (void) ip_output_v6(connp, first_mp, q, caller); 19305 return; 19306 } 19307 19308 if ((v_hlen >> 4) != IP_VERSION) { 19309 BUMP_MIB(&ip_mib, ipOutDiscards); 19310 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19311 "ip_wput_end: q %p (%S)", q, "badvers"); 19312 goto drop_pkt; 19313 } 19314 /* 19315 * Is the header length at least 20 bytes? 19316 * 19317 * Are there enough bytes accessible in the header? If 19318 * not, try a pullup. 19319 */ 19320 v_hlen &= 0xF; 19321 v_hlen <<= 2; 19322 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19323 BUMP_MIB(&ip_mib, ipOutDiscards); 19324 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19325 "ip_wput_end: q %p (%S)", q, "badlen"); 19326 goto drop_pkt; 19327 } 19328 if (v_hlen > (mp->b_wptr - rptr)) { 19329 if (!pullupmsg(mp, v_hlen)) { 19330 BUMP_MIB(&ip_mib, ipOutDiscards); 19331 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19332 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19333 goto drop_pkt; 19334 } 19335 ipha = (ipha_t *)mp->b_rptr; 19336 } 19337 /* 19338 * Move first entry from any source route into ipha_dst and 19339 * verify the options 19340 */ 19341 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19342 ASSERT(xmit_ill == NULL); 19343 if (attach_ill != NULL) 19344 ill_refrele(attach_ill); 19345 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19346 "ip_wput_end: q %p (%S)", q, "badopts"); 19347 if (need_decref) 19348 CONN_DEC_REF(connp); 19349 return; 19350 } 19351 } 19352 dst = ipha->ipha_dst; 19353 19354 /* 19355 * Try to get an IRE_CACHE for the destination address. If we can't, 19356 * we have to run the packet through ip_newroute which will take 19357 * the appropriate action to arrange for an IRE_CACHE, such as querying 19358 * a resolver, or assigning a default gateway, etc. 19359 */ 19360 if (CLASSD(dst)) { 19361 ipif_t *ipif; 19362 uint32_t setsrc = 0; 19363 19364 multicast: 19365 ASSERT(first_mp != NULL); 19366 ASSERT(xmit_ill == NULL); 19367 ip2dbg(("ip_wput: CLASSD\n")); 19368 if (connp == NULL) { 19369 /* 19370 * Use the first good ipif on the ill. 19371 * XXX Should this ever happen? (Appears 19372 * to show up with just ppp and no ethernet due 19373 * to in.rdisc.) 19374 * However, ire_send should be able to 19375 * call ip_wput_ire directly. 19376 * 19377 * XXX Also, this can happen for ICMP and other packets 19378 * with multicast source addresses. Perhaps we should 19379 * fix things so that we drop the packet in question, 19380 * but for now, just run with it. 19381 */ 19382 ill_t *ill = (ill_t *)q->q_ptr; 19383 19384 /* 19385 * Don't honor attach_if for this case. If ill 19386 * is part of the group, ipif could belong to 19387 * any ill and we cannot maintain attach_ill 19388 * and ipif_ill same anymore and the assert 19389 * below would fail. 19390 */ 19391 if (mctl_present) { 19392 io->ipsec_out_ill_index = 0; 19393 io->ipsec_out_attach_if = B_FALSE; 19394 ASSERT(attach_ill != NULL); 19395 ill_refrele(attach_ill); 19396 attach_ill = NULL; 19397 } 19398 19399 ASSERT(attach_ill == NULL); 19400 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19401 if (ipif == NULL) { 19402 if (need_decref) 19403 CONN_DEC_REF(connp); 19404 freemsg(first_mp); 19405 return; 19406 } 19407 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 19408 ntohl(dst), ill->ill_name)); 19409 } else { 19410 /* 19411 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 19412 * IP_XMIT_IF is honoured. 19413 * Block comment above this function explains the 19414 * locking mechanism used here 19415 */ 19416 xmit_ill = conn_get_held_ill(connp, 19417 &connp->conn_xmit_if_ill, &err); 19418 if (err == ILL_LOOKUP_FAILED) { 19419 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 19420 goto drop_pkt; 19421 } 19422 if (xmit_ill == NULL) { 19423 ipif = conn_get_held_ipif(connp, 19424 &connp->conn_multicast_ipif, &err); 19425 if (err == IPIF_LOOKUP_FAILED) { 19426 ip1dbg(("ip_wput: No ipif for " 19427 "multicast\n")); 19428 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19429 goto drop_pkt; 19430 } 19431 } 19432 if (xmit_ill != NULL) { 19433 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19434 if (ipif == NULL) { 19435 ip1dbg(("ip_wput: No ipif for " 19436 "IP_XMIT_IF\n")); 19437 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19438 goto drop_pkt; 19439 } 19440 } else if (ipif == NULL || ipif->ipif_isv6) { 19441 /* 19442 * We must do this ipif determination here 19443 * else we could pass through ip_newroute 19444 * and come back here without the conn context. 19445 * 19446 * Note: we do late binding i.e. we bind to 19447 * the interface when the first packet is sent. 19448 * For performance reasons we do not rebind on 19449 * each packet but keep the binding until the 19450 * next IP_MULTICAST_IF option. 19451 * 19452 * conn_multicast_{ipif,ill} are shared between 19453 * IPv4 and IPv6 and AF_INET6 sockets can 19454 * send both IPv4 and IPv6 packets. Hence 19455 * we have to check that "isv6" matches above. 19456 */ 19457 if (ipif != NULL) 19458 ipif_refrele(ipif); 19459 ipif = ipif_lookup_group(dst, zoneid); 19460 if (ipif == NULL) { 19461 ip1dbg(("ip_wput: No ipif for " 19462 "multicast\n")); 19463 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19464 goto drop_pkt; 19465 } 19466 err = conn_set_held_ipif(connp, 19467 &connp->conn_multicast_ipif, ipif); 19468 if (err == IPIF_LOOKUP_FAILED) { 19469 ipif_refrele(ipif); 19470 ip1dbg(("ip_wput: No ipif for " 19471 "multicast\n")); 19472 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19473 goto drop_pkt; 19474 } 19475 } 19476 } 19477 ASSERT(!ipif->ipif_isv6); 19478 /* 19479 * As we may lose the conn by the time we reach ip_wput_ire, 19480 * we copy conn_multicast_loop and conn_dontroute on to an 19481 * ipsec_out. In case if this datagram goes out secure, 19482 * we need the ill_index also. Copy that also into the 19483 * ipsec_out. 19484 */ 19485 if (mctl_present) { 19486 io = (ipsec_out_t *)first_mp->b_rptr; 19487 ASSERT(first_mp->b_datap->db_type == M_CTL); 19488 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19489 } else { 19490 ASSERT(mp == first_mp); 19491 if ((first_mp = allocb(sizeof (ipsec_info_t), 19492 BPRI_HI)) == NULL) { 19493 ipif_refrele(ipif); 19494 first_mp = mp; 19495 goto drop_pkt; 19496 } 19497 first_mp->b_datap->db_type = M_CTL; 19498 first_mp->b_wptr += sizeof (ipsec_info_t); 19499 /* ipsec_out_secure is B_FALSE now */ 19500 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 19501 io = (ipsec_out_t *)first_mp->b_rptr; 19502 io->ipsec_out_type = IPSEC_OUT; 19503 io->ipsec_out_len = sizeof (ipsec_out_t); 19504 io->ipsec_out_use_global_policy = B_TRUE; 19505 first_mp->b_cont = mp; 19506 mctl_present = B_TRUE; 19507 } 19508 if (attach_ill != NULL) { 19509 ASSERT(attach_ill == ipif->ipif_ill); 19510 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19511 19512 /* 19513 * Check if we need an ire that will not be 19514 * looked up by anybody else i.e. HIDDEN. 19515 */ 19516 if (ill_is_probeonly(attach_ill)) { 19517 match_flags |= MATCH_IRE_MARK_HIDDEN; 19518 } 19519 io->ipsec_out_ill_index = 19520 attach_ill->ill_phyint->phyint_ifindex; 19521 io->ipsec_out_attach_if = B_TRUE; 19522 } else { 19523 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 19524 io->ipsec_out_ill_index = 19525 ipif->ipif_ill->ill_phyint->phyint_ifindex; 19526 } 19527 if (connp != NULL) { 19528 io->ipsec_out_multicast_loop = 19529 connp->conn_multicast_loop; 19530 io->ipsec_out_dontroute = connp->conn_dontroute; 19531 io->ipsec_out_zoneid = connp->conn_zoneid; 19532 } 19533 /* 19534 * If the application uses IP_MULTICAST_IF with 19535 * different logical addresses of the same ILL, we 19536 * need to make sure that the soruce address of 19537 * the packet matches the logical IP address used 19538 * in the option. We do it by initializing ipha_src 19539 * here. This should keep IPSEC also happy as 19540 * when we return from IPSEC processing, we don't 19541 * have to worry about getting the right address on 19542 * the packet. Thus it is sufficient to look for 19543 * IRE_CACHE using MATCH_IRE_ILL rathen than 19544 * MATCH_IRE_IPIF. 19545 * 19546 * NOTE : We need to do it for non-secure case also as 19547 * this might go out secure if there is a global policy 19548 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 19549 * address, the source should be initialized already and 19550 * hence we won't be initializing here. 19551 * 19552 * As we do not have the ire yet, it is possible that 19553 * we set the source address here and then later discover 19554 * that the ire implies the source address to be assigned 19555 * through the RTF_SETSRC flag. 19556 * In that case, the setsrc variable will remind us 19557 * that overwritting the source address by the one 19558 * of the RTF_SETSRC-flagged ire is allowed. 19559 */ 19560 if (ipha->ipha_src == INADDR_ANY && 19561 (connp == NULL || !connp->conn_unspec_src)) { 19562 ipha->ipha_src = ipif->ipif_src_addr; 19563 setsrc = RTF_SETSRC; 19564 } 19565 /* 19566 * Find an IRE which matches the destination and the outgoing 19567 * queue (i.e. the outgoing interface.) 19568 * For loopback use a unicast IP address for 19569 * the ire lookup. 19570 */ 19571 if (ipif->ipif_ill->ill_phyint->phyint_flags & 19572 PHYI_LOOPBACK) { 19573 dst = ipif->ipif_lcl_addr; 19574 } 19575 /* 19576 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 19577 * We don't need to lookup ire in ctable as the packet 19578 * needs to be sent to the destination through the specified 19579 * ill irrespective of ires in the cache table. 19580 */ 19581 ire = NULL; 19582 if (xmit_ill == NULL) { 19583 ire = ire_ctable_lookup(dst, 0, 0, ipif, 19584 zoneid, MBLK_GETLABEL(mp), match_flags); 19585 } 19586 19587 /* 19588 * refrele attach_ill as its not needed anymore. 19589 */ 19590 if (attach_ill != NULL) { 19591 ill_refrele(attach_ill); 19592 attach_ill = NULL; 19593 } 19594 19595 if (ire == NULL) { 19596 /* 19597 * Multicast loopback and multicast forwarding is 19598 * done in ip_wput_ire. 19599 * 19600 * Mark this packet to make it be delivered to 19601 * ip_wput_ire after the new ire has been 19602 * created. 19603 * 19604 * The call to ip_newroute_ipif takes into account 19605 * the setsrc reminder. In any case, we take care 19606 * of the RTF_MULTIRT flag. 19607 */ 19608 mp->b_prev = mp->b_next = NULL; 19609 if (xmit_ill == NULL || 19610 xmit_ill->ill_ipif_up_count > 0) { 19611 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 19612 setsrc | RTF_MULTIRT); 19613 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19614 "ip_wput_end: q %p (%S)", q, "noire"); 19615 } else { 19616 freemsg(first_mp); 19617 } 19618 ipif_refrele(ipif); 19619 if (xmit_ill != NULL) 19620 ill_refrele(xmit_ill); 19621 if (need_decref) 19622 CONN_DEC_REF(connp); 19623 return; 19624 } 19625 19626 ipif_refrele(ipif); 19627 ipif = NULL; 19628 ASSERT(xmit_ill == NULL); 19629 19630 /* 19631 * Honor the RTF_SETSRC flag for multicast packets, 19632 * if allowed by the setsrc reminder. 19633 */ 19634 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 19635 ipha->ipha_src = ire->ire_src_addr; 19636 } 19637 19638 /* 19639 * Unconditionally force the TTL to 1 for 19640 * multirouted multicast packets: 19641 * multirouted multicast should not cross 19642 * multicast routers. 19643 */ 19644 if (ire->ire_flags & RTF_MULTIRT) { 19645 if (ipha->ipha_ttl > 1) { 19646 ip2dbg(("ip_wput: forcing multicast " 19647 "multirt TTL to 1 (was %d), dst 0x%08x\n", 19648 ipha->ipha_ttl, ntohl(ire->ire_addr))); 19649 ipha->ipha_ttl = 1; 19650 } 19651 } 19652 } else { 19653 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19654 if ((ire != NULL) && (ire->ire_type & 19655 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 19656 ignore_dontroute = B_TRUE; 19657 ignore_nexthop = B_TRUE; 19658 } 19659 if (ire != NULL) { 19660 ire_refrele(ire); 19661 ire = NULL; 19662 } 19663 /* 19664 * Guard against coming in from arp in which case conn is NULL. 19665 * Also guard against non M_DATA with dontroute set but 19666 * destined to local, loopback or broadcast addresses. 19667 */ 19668 if (connp != NULL && connp->conn_dontroute && 19669 !ignore_dontroute) { 19670 dontroute: 19671 /* 19672 * Set TTL to 1 if SO_DONTROUTE is set to prevent 19673 * routing protocols from seeing false direct 19674 * connectivity. 19675 */ 19676 ipha->ipha_ttl = 1; 19677 /* 19678 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 19679 * along with SO_DONTROUTE, higher precedence is 19680 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 19681 */ 19682 if (connp->conn_xmit_if_ill == NULL) { 19683 /* If suitable ipif not found, drop packet */ 19684 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 19685 if (dst_ipif == NULL) { 19686 ip1dbg(("ip_wput: no route for " 19687 "dst using SO_DONTROUTE\n")); 19688 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19689 mp->b_prev = mp->b_next = NULL; 19690 if (first_mp == NULL) 19691 first_mp = mp; 19692 goto drop_pkt; 19693 } else { 19694 /* 19695 * If suitable ipif has been found, set 19696 * xmit_ill to the corresponding 19697 * ipif_ill because we'll be following 19698 * the IP_XMIT_IF logic. 19699 */ 19700 ASSERT(xmit_ill == NULL); 19701 xmit_ill = dst_ipif->ipif_ill; 19702 mutex_enter(&xmit_ill->ill_lock); 19703 if (!ILL_CAN_LOOKUP(xmit_ill)) { 19704 mutex_exit(&xmit_ill->ill_lock); 19705 xmit_ill = NULL; 19706 ipif_refrele(dst_ipif); 19707 ip1dbg(("ip_wput: no route for" 19708 " dst using" 19709 " SO_DONTROUTE\n")); 19710 BUMP_MIB(&ip_mib, 19711 ipOutNoRoutes); 19712 mp->b_prev = mp->b_next = NULL; 19713 if (first_mp == NULL) 19714 first_mp = mp; 19715 goto drop_pkt; 19716 } 19717 ill_refhold_locked(xmit_ill); 19718 mutex_exit(&xmit_ill->ill_lock); 19719 ipif_refrele(dst_ipif); 19720 } 19721 } 19722 19723 } 19724 /* 19725 * If we are bound to IPIF_NOFAILOVER address, look for 19726 * an IRE_CACHE matching the ill. 19727 */ 19728 send_from_ill: 19729 if (attach_ill != NULL) { 19730 ipif_t *attach_ipif; 19731 19732 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19733 19734 /* 19735 * Check if we need an ire that will not be 19736 * looked up by anybody else i.e. HIDDEN. 19737 */ 19738 if (ill_is_probeonly(attach_ill)) { 19739 match_flags |= MATCH_IRE_MARK_HIDDEN; 19740 } 19741 19742 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 19743 if (attach_ipif == NULL) { 19744 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 19745 goto drop_pkt; 19746 } 19747 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 19748 zoneid, MBLK_GETLABEL(mp), match_flags); 19749 ipif_refrele(attach_ipif); 19750 } else if (xmit_ill != NULL || (connp != NULL && 19751 connp->conn_xmit_if_ill != NULL)) { 19752 /* 19753 * Mark this packet as originated locally 19754 */ 19755 mp->b_prev = mp->b_next = NULL; 19756 /* 19757 * xmit_ill could be NULL if SO_DONTROUTE 19758 * is also set. 19759 */ 19760 if (xmit_ill == NULL) { 19761 xmit_ill = conn_get_held_ill(connp, 19762 &connp->conn_xmit_if_ill, &err); 19763 if (err == ILL_LOOKUP_FAILED) { 19764 if (need_decref) 19765 CONN_DEC_REF(connp); 19766 freemsg(first_mp); 19767 return; 19768 } 19769 if (xmit_ill == NULL) { 19770 if (connp->conn_dontroute) 19771 goto dontroute; 19772 goto send_from_ill; 19773 } 19774 } 19775 /* 19776 * could be SO_DONTROUTE case also. 19777 * check at least one interface is UP as 19778 * spcified by this ILL, and then call 19779 * ip_newroute_ipif() 19780 */ 19781 if (xmit_ill->ill_ipif_up_count > 0) { 19782 ipif_t *ipif; 19783 19784 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19785 if (ipif != NULL) { 19786 ip_newroute_ipif(q, first_mp, ipif, 19787 dst, connp, 0); 19788 ipif_refrele(ipif); 19789 ip1dbg(("ip_wput: ip_unicast_if\n")); 19790 } 19791 } else { 19792 freemsg(first_mp); 19793 } 19794 ill_refrele(xmit_ill); 19795 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19796 "ip_wput_end: q %p (%S)", q, "unicast_if"); 19797 if (need_decref) 19798 CONN_DEC_REF(connp); 19799 return; 19800 } else if (ip_nexthop || (connp != NULL && 19801 (connp->conn_nexthop_set)) && !ignore_nexthop) { 19802 if (!ip_nexthop) { 19803 ip_nexthop = B_TRUE; 19804 nexthop_addr = connp->conn_nexthop_v4; 19805 } 19806 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 19807 MATCH_IRE_GW; 19808 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19809 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 19810 } else { 19811 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19812 } 19813 if (!ire) { 19814 /* 19815 * Make sure we don't load spread if this 19816 * is IPIF_NOFAILOVER case. 19817 */ 19818 if ((attach_ill != NULL) || 19819 (ip_nexthop && !ignore_nexthop)) { 19820 if (mctl_present) { 19821 io = (ipsec_out_t *)first_mp->b_rptr; 19822 ASSERT(first_mp->b_datap->db_type == 19823 M_CTL); 19824 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19825 } else { 19826 ASSERT(mp == first_mp); 19827 first_mp = allocb( 19828 sizeof (ipsec_info_t), BPRI_HI); 19829 if (first_mp == NULL) { 19830 first_mp = mp; 19831 goto drop_pkt; 19832 } 19833 first_mp->b_datap->db_type = M_CTL; 19834 first_mp->b_wptr += 19835 sizeof (ipsec_info_t); 19836 /* ipsec_out_secure is B_FALSE now */ 19837 bzero(first_mp->b_rptr, 19838 sizeof (ipsec_info_t)); 19839 io = (ipsec_out_t *)first_mp->b_rptr; 19840 io->ipsec_out_type = IPSEC_OUT; 19841 io->ipsec_out_len = 19842 sizeof (ipsec_out_t); 19843 io->ipsec_out_use_global_policy = 19844 B_TRUE; 19845 first_mp->b_cont = mp; 19846 mctl_present = B_TRUE; 19847 } 19848 if (attach_ill != NULL) { 19849 io->ipsec_out_ill_index = attach_ill-> 19850 ill_phyint->phyint_ifindex; 19851 io->ipsec_out_attach_if = B_TRUE; 19852 } else { 19853 io->ipsec_out_ip_nexthop = ip_nexthop; 19854 io->ipsec_out_nexthop_addr = 19855 nexthop_addr; 19856 } 19857 } 19858 noirefound: 19859 /* 19860 * Mark this packet as having originated on 19861 * this machine. This will be noted in 19862 * ire_add_then_send, which needs to know 19863 * whether to run it back through ip_wput or 19864 * ip_rput following successful resolution. 19865 */ 19866 mp->b_prev = NULL; 19867 mp->b_next = NULL; 19868 ip_newroute(q, first_mp, dst, NULL, connp); 19869 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19870 "ip_wput_end: q %p (%S)", q, "newroute"); 19871 if (attach_ill != NULL) 19872 ill_refrele(attach_ill); 19873 if (xmit_ill != NULL) 19874 ill_refrele(xmit_ill); 19875 if (need_decref) 19876 CONN_DEC_REF(connp); 19877 return; 19878 } 19879 } 19880 19881 /* We now know where we are going with it. */ 19882 19883 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19884 "ip_wput_end: q %p (%S)", q, "end"); 19885 19886 /* 19887 * Check if the ire has the RTF_MULTIRT flag, inherited 19888 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19889 */ 19890 if (ire->ire_flags & RTF_MULTIRT) { 19891 /* 19892 * Force the TTL of multirouted packets if required. 19893 * The TTL of such packets is bounded by the 19894 * ip_multirt_ttl ndd variable. 19895 */ 19896 if ((ip_multirt_ttl > 0) && 19897 (ipha->ipha_ttl > ip_multirt_ttl)) { 19898 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19899 "(was %d), dst 0x%08x\n", 19900 ip_multirt_ttl, ipha->ipha_ttl, 19901 ntohl(ire->ire_addr))); 19902 ipha->ipha_ttl = ip_multirt_ttl; 19903 } 19904 /* 19905 * At this point, we check to see if there are any pending 19906 * unresolved routes. ire_multirt_resolvable() 19907 * checks in O(n) that all IRE_OFFSUBNET ire 19908 * entries for the packet's destination and 19909 * flagged RTF_MULTIRT are currently resolved. 19910 * If some remain unresolved, we make a copy 19911 * of the current message. It will be used 19912 * to initiate additional route resolutions. 19913 */ 19914 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19915 MBLK_GETLABEL(first_mp)); 19916 ip2dbg(("ip_wput[noirefound]: ire %p, " 19917 "multirt_need_resolve %d, first_mp %p\n", 19918 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19919 if (multirt_need_resolve) { 19920 copy_mp = copymsg(first_mp); 19921 if (copy_mp != NULL) { 19922 MULTIRT_DEBUG_TAG(copy_mp); 19923 } 19924 } 19925 } 19926 19927 ip_wput_ire(q, first_mp, ire, connp, caller); 19928 /* 19929 * Try to resolve another multiroute if 19930 * ire_multirt_resolvable() deemed it necessary. 19931 * At this point, we need to distinguish 19932 * multicasts from other packets. For multicasts, 19933 * we call ip_newroute_ipif() and request that both 19934 * multirouting and setsrc flags are checked. 19935 */ 19936 if (copy_mp != NULL) { 19937 if (CLASSD(dst)) { 19938 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19939 if (ipif) { 19940 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19941 RTF_SETSRC | RTF_MULTIRT); 19942 ipif_refrele(ipif); 19943 } else { 19944 MULTIRT_DEBUG_UNTAG(copy_mp); 19945 freemsg(copy_mp); 19946 copy_mp = NULL; 19947 } 19948 } else { 19949 ip_newroute(q, copy_mp, dst, NULL, connp); 19950 } 19951 } 19952 if (attach_ill != NULL) 19953 ill_refrele(attach_ill); 19954 if (xmit_ill != NULL) 19955 ill_refrele(xmit_ill); 19956 if (need_decref) 19957 CONN_DEC_REF(connp); 19958 return; 19959 19960 icmp_parameter_problem: 19961 /* could not have originated externally */ 19962 ASSERT(mp->b_prev == NULL); 19963 if (ip_hdr_complete(ipha, zoneid) == 0) { 19964 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19965 /* it's the IP header length that's in trouble */ 19966 icmp_param_problem(q, first_mp, 0); 19967 first_mp = NULL; 19968 } 19969 19970 drop_pkt: 19971 ip1dbg(("ip_wput: dropped packet\n")); 19972 if (ire != NULL) 19973 ire_refrele(ire); 19974 if (need_decref) 19975 CONN_DEC_REF(connp); 19976 freemsg(first_mp); 19977 if (attach_ill != NULL) 19978 ill_refrele(attach_ill); 19979 if (xmit_ill != NULL) 19980 ill_refrele(xmit_ill); 19981 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19982 "ip_wput_end: q %p (%S)", q, "droppkt"); 19983 } 19984 19985 void 19986 ip_wput(queue_t *q, mblk_t *mp) 19987 { 19988 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19989 } 19990 19991 /* 19992 * 19993 * The following rules must be observed when accessing any ipif or ill 19994 * that has been cached in the conn. Typically conn_nofailover_ill, 19995 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19996 * 19997 * Access: The ipif or ill pointed to from the conn can be accessed under 19998 * the protection of the conn_lock or after it has been refheld under the 19999 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20000 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20001 * The reason for this is that a concurrent unplumb could actually be 20002 * cleaning up these cached pointers by walking the conns and might have 20003 * finished cleaning up the conn in question. The macros check that an 20004 * unplumb has not yet started on the ipif or ill. 20005 * 20006 * Caching: An ipif or ill pointer may be cached in the conn only after 20007 * making sure that an unplumb has not started. So the caching is done 20008 * while holding both the conn_lock and the ill_lock and after using the 20009 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20010 * flag before starting the cleanup of conns. 20011 * 20012 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20013 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20014 * or a reference to the ipif or a reference to an ire that references the 20015 * ipif. An ipif does not change its ill except for failover/failback. Since 20016 * failover/failback happens only after bringing down the ipif and making sure 20017 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20018 * the above holds. 20019 */ 20020 ipif_t * 20021 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20022 { 20023 ipif_t *ipif; 20024 ill_t *ill; 20025 20026 *err = 0; 20027 rw_enter(&ill_g_lock, RW_READER); 20028 mutex_enter(&connp->conn_lock); 20029 ipif = *ipifp; 20030 if (ipif != NULL) { 20031 ill = ipif->ipif_ill; 20032 mutex_enter(&ill->ill_lock); 20033 if (IPIF_CAN_LOOKUP(ipif)) { 20034 ipif_refhold_locked(ipif); 20035 mutex_exit(&ill->ill_lock); 20036 mutex_exit(&connp->conn_lock); 20037 rw_exit(&ill_g_lock); 20038 return (ipif); 20039 } else { 20040 *err = IPIF_LOOKUP_FAILED; 20041 } 20042 mutex_exit(&ill->ill_lock); 20043 } 20044 mutex_exit(&connp->conn_lock); 20045 rw_exit(&ill_g_lock); 20046 return (NULL); 20047 } 20048 20049 ill_t * 20050 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20051 { 20052 ill_t *ill; 20053 20054 *err = 0; 20055 mutex_enter(&connp->conn_lock); 20056 ill = *illp; 20057 if (ill != NULL) { 20058 mutex_enter(&ill->ill_lock); 20059 if (ILL_CAN_LOOKUP(ill)) { 20060 ill_refhold_locked(ill); 20061 mutex_exit(&ill->ill_lock); 20062 mutex_exit(&connp->conn_lock); 20063 return (ill); 20064 } else { 20065 *err = ILL_LOOKUP_FAILED; 20066 } 20067 mutex_exit(&ill->ill_lock); 20068 } 20069 mutex_exit(&connp->conn_lock); 20070 return (NULL); 20071 } 20072 20073 static int 20074 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20075 { 20076 ill_t *ill; 20077 20078 ill = ipif->ipif_ill; 20079 mutex_enter(&connp->conn_lock); 20080 mutex_enter(&ill->ill_lock); 20081 if (IPIF_CAN_LOOKUP(ipif)) { 20082 *ipifp = ipif; 20083 mutex_exit(&ill->ill_lock); 20084 mutex_exit(&connp->conn_lock); 20085 return (0); 20086 } 20087 mutex_exit(&ill->ill_lock); 20088 mutex_exit(&connp->conn_lock); 20089 return (IPIF_LOOKUP_FAILED); 20090 } 20091 20092 /* 20093 * This is called if the outbound datagram needs fragmentation. 20094 * 20095 * NOTE : This function does not ire_refrele the ire argument passed in. 20096 */ 20097 static void 20098 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20099 { 20100 ipha_t *ipha; 20101 mblk_t *mp; 20102 uint32_t v_hlen_tos_len; 20103 uint32_t max_frag; 20104 uint32_t frag_flag; 20105 boolean_t dont_use; 20106 20107 if (ipsec_mp->b_datap->db_type == M_CTL) { 20108 mp = ipsec_mp->b_cont; 20109 } else { 20110 mp = ipsec_mp; 20111 } 20112 20113 ipha = (ipha_t *)mp->b_rptr; 20114 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20115 20116 #ifdef _BIG_ENDIAN 20117 #define V_HLEN (v_hlen_tos_len >> 24) 20118 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20119 #else 20120 #define V_HLEN (v_hlen_tos_len & 0xFF) 20121 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20122 #endif 20123 20124 #ifndef SPEED_BEFORE_SAFETY 20125 /* 20126 * Check that ipha_length is consistent with 20127 * the mblk length 20128 */ 20129 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20130 ip0dbg(("Packet length mismatch: %d, %ld\n", 20131 LENGTH, msgdsize(mp))); 20132 freemsg(ipsec_mp); 20133 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20134 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20135 "packet length mismatch"); 20136 return; 20137 } 20138 #endif 20139 /* 20140 * Don't use frag_flag if pre-built packet or source 20141 * routed or if multicast (since multicast packets do not solicit 20142 * ICMP "packet too big" messages). Get the values of 20143 * max_frag and frag_flag atomically by acquiring the 20144 * ire_lock. 20145 */ 20146 mutex_enter(&ire->ire_lock); 20147 max_frag = ire->ire_max_frag; 20148 frag_flag = ire->ire_frag_flag; 20149 mutex_exit(&ire->ire_lock); 20150 20151 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20152 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20153 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20154 20155 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20156 (dont_use ? 0 : frag_flag)); 20157 } 20158 20159 /* 20160 * Used for deciding the MSS size for the upper layer. Thus 20161 * we need to check the outbound policy values in the conn. 20162 */ 20163 int 20164 conn_ipsec_length(conn_t *connp) 20165 { 20166 ipsec_latch_t *ipl; 20167 20168 ipl = connp->conn_latch; 20169 if (ipl == NULL) 20170 return (0); 20171 20172 if (ipl->ipl_out_policy == NULL) 20173 return (0); 20174 20175 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20176 } 20177 20178 /* 20179 * Returns an estimate of the IPSEC headers size. This is used if 20180 * we don't want to call into IPSEC to get the exact size. 20181 */ 20182 int 20183 ipsec_out_extra_length(mblk_t *ipsec_mp) 20184 { 20185 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20186 ipsec_action_t *a; 20187 20188 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20189 if (!io->ipsec_out_secure) 20190 return (0); 20191 20192 a = io->ipsec_out_act; 20193 20194 if (a == NULL) { 20195 ASSERT(io->ipsec_out_policy != NULL); 20196 a = io->ipsec_out_policy->ipsp_act; 20197 } 20198 ASSERT(a != NULL); 20199 20200 return (a->ipa_ovhd); 20201 } 20202 20203 /* 20204 * Returns an estimate of the IPSEC headers size. This is used if 20205 * we don't want to call into IPSEC to get the exact size. 20206 */ 20207 int 20208 ipsec_in_extra_length(mblk_t *ipsec_mp) 20209 { 20210 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20211 ipsec_action_t *a; 20212 20213 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20214 20215 a = ii->ipsec_in_action; 20216 return (a == NULL ? 0 : a->ipa_ovhd); 20217 } 20218 20219 /* 20220 * If there are any source route options, return the true final 20221 * destination. Otherwise, return the destination. 20222 */ 20223 ipaddr_t 20224 ip_get_dst(ipha_t *ipha) 20225 { 20226 ipoptp_t opts; 20227 uchar_t *opt; 20228 uint8_t optval; 20229 uint8_t optlen; 20230 ipaddr_t dst; 20231 uint32_t off; 20232 20233 dst = ipha->ipha_dst; 20234 20235 if (IS_SIMPLE_IPH(ipha)) 20236 return (dst); 20237 20238 for (optval = ipoptp_first(&opts, ipha); 20239 optval != IPOPT_EOL; 20240 optval = ipoptp_next(&opts)) { 20241 opt = opts.ipoptp_cur; 20242 optlen = opts.ipoptp_len; 20243 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20244 switch (optval) { 20245 case IPOPT_SSRR: 20246 case IPOPT_LSRR: 20247 off = opt[IPOPT_OFFSET]; 20248 /* 20249 * If one of the conditions is true, it means 20250 * end of options and dst already has the right 20251 * value. 20252 */ 20253 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20254 off = optlen - IP_ADDR_LEN; 20255 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20256 } 20257 return (dst); 20258 default: 20259 break; 20260 } 20261 } 20262 20263 return (dst); 20264 } 20265 20266 mblk_t * 20267 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20268 conn_t *connp, boolean_t unspec_src) 20269 { 20270 ipsec_out_t *io; 20271 mblk_t *first_mp; 20272 boolean_t policy_present; 20273 20274 first_mp = mp; 20275 if (mp->b_datap->db_type == M_CTL) { 20276 io = (ipsec_out_t *)first_mp->b_rptr; 20277 /* 20278 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20279 * 20280 * 1) There is per-socket policy (including cached global 20281 * policy). 20282 * 2) There is no per-socket policy, but it is 20283 * a multicast packet that needs to go out 20284 * on a specific interface. This is the case 20285 * where (ip_wput and ip_wput_multicast) attaches 20286 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20287 * 20288 * In case (2) we check with global policy to 20289 * see if there is a match and set the ill_index 20290 * appropriately so that we can lookup the ire 20291 * properly in ip_wput_ipsec_out. 20292 */ 20293 20294 /* 20295 * ipsec_out_use_global_policy is set to B_FALSE 20296 * in ipsec_in_to_out(). Refer to that function for 20297 * details. 20298 */ 20299 if ((io->ipsec_out_latch == NULL) && 20300 (io->ipsec_out_use_global_policy)) { 20301 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20302 ire, connp, unspec_src)); 20303 } 20304 if (!io->ipsec_out_secure) { 20305 /* 20306 * If this is not a secure packet, drop 20307 * the IPSEC_OUT mp and treat it as a clear 20308 * packet. This happens when we are sending 20309 * a ICMP reply back to a clear packet. See 20310 * ipsec_in_to_out() for details. 20311 */ 20312 mp = first_mp->b_cont; 20313 freeb(first_mp); 20314 } 20315 return (mp); 20316 } 20317 /* 20318 * See whether we need to attach a global policy here. We 20319 * don't depend on the conn (as it could be null) for deciding 20320 * what policy this datagram should go through because it 20321 * should have happened in ip_wput if there was some 20322 * policy. This normally happens for connections which are not 20323 * fully bound preventing us from caching policies in 20324 * ip_bind. Packets coming from the TCP listener/global queue 20325 * - which are non-hard_bound - could also be affected by 20326 * applying policy here. 20327 * 20328 * If this packet is coming from tcp global queue or listener, 20329 * we will be applying policy here. This may not be *right* 20330 * if these packets are coming from the detached connection as 20331 * it could have gone in clear before. This happens only if a 20332 * TCP connection started when there is no policy and somebody 20333 * added policy before it became detached. Thus packets of the 20334 * detached connection could go out secure and the other end 20335 * would drop it because it will be expecting in clear. The 20336 * converse is not true i.e if somebody starts a TCP 20337 * connection and deletes the policy, all the packets will 20338 * still go out with the policy that existed before deleting 20339 * because ip_unbind sends up policy information which is used 20340 * by TCP on subsequent ip_wputs. The right solution is to fix 20341 * TCP to attach a dummy IPSEC_OUT and set 20342 * ipsec_out_use_global_policy to B_FALSE. As this might 20343 * affect performance for normal cases, we are not doing it. 20344 * Thus, set policy before starting any TCP connections. 20345 * 20346 * NOTE - We might apply policy even for a hard bound connection 20347 * - for which we cached policy in ip_bind - if somebody added 20348 * global policy after we inherited the policy in ip_bind. 20349 * This means that the packets that were going out in clear 20350 * previously would start going secure and hence get dropped 20351 * on the other side. To fix this, TCP attaches a dummy 20352 * ipsec_out and make sure that we don't apply global policy. 20353 */ 20354 if (ipha != NULL) 20355 policy_present = ipsec_outbound_v4_policy_present; 20356 else 20357 policy_present = ipsec_outbound_v6_policy_present; 20358 if (!policy_present) 20359 return (mp); 20360 20361 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20362 } 20363 20364 ire_t * 20365 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20366 { 20367 ipaddr_t addr; 20368 ire_t *save_ire; 20369 irb_t *irb; 20370 ill_group_t *illgrp; 20371 int err; 20372 20373 save_ire = ire; 20374 addr = ire->ire_addr; 20375 20376 ASSERT(ire->ire_type == IRE_BROADCAST); 20377 20378 illgrp = connp->conn_outgoing_ill->ill_group; 20379 if (illgrp == NULL) { 20380 *conn_outgoing_ill = conn_get_held_ill(connp, 20381 &connp->conn_outgoing_ill, &err); 20382 if (err == ILL_LOOKUP_FAILED) { 20383 ire_refrele(save_ire); 20384 return (NULL); 20385 } 20386 return (save_ire); 20387 } 20388 /* 20389 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20390 * If it is part of the group, we need to send on the ire 20391 * that has been cleared of IRE_MARK_NORECV and that belongs 20392 * to this group. This is okay as IP_BOUND_IF really means 20393 * any ill in the group. We depend on the fact that the 20394 * first ire in the group is always cleared of IRE_MARK_NORECV 20395 * if such an ire exists. This is possible only if you have 20396 * at least one ill in the group that has not failed. 20397 * 20398 * First get to the ire that matches the address and group. 20399 * 20400 * We don't look for an ire with a matching zoneid because a given zone 20401 * won't always have broadcast ires on all ills in the group. 20402 */ 20403 irb = ire->ire_bucket; 20404 rw_enter(&irb->irb_lock, RW_READER); 20405 if (ire->ire_marks & IRE_MARK_NORECV) { 20406 /* 20407 * If the current zone only has an ire broadcast for this 20408 * address marked NORECV, the ire we want is ahead in the 20409 * bucket, so we look it up deliberately ignoring the zoneid. 20410 */ 20411 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 20412 if (ire->ire_addr != addr) 20413 continue; 20414 /* skip over deleted ires */ 20415 if (ire->ire_marks & IRE_MARK_CONDEMNED) 20416 continue; 20417 } 20418 } 20419 while (ire != NULL) { 20420 /* 20421 * If a new interface is coming up, we could end up 20422 * seeing the loopback ire and the non-loopback ire 20423 * may not have been added yet. So check for ire_stq 20424 */ 20425 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 20426 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 20427 break; 20428 } 20429 ire = ire->ire_next; 20430 } 20431 if (ire != NULL && ire->ire_addr == addr && 20432 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 20433 IRE_REFHOLD(ire); 20434 rw_exit(&irb->irb_lock); 20435 ire_refrele(save_ire); 20436 *conn_outgoing_ill = ire_to_ill(ire); 20437 /* 20438 * Refhold the ill to make the conn_outgoing_ill 20439 * independent of the ire. ip_wput_ire goes in a loop 20440 * and may refrele the ire. Since we have an ire at this 20441 * point we don't need to use ILL_CAN_LOOKUP on the ill. 20442 */ 20443 ill_refhold(*conn_outgoing_ill); 20444 return (ire); 20445 } 20446 rw_exit(&irb->irb_lock); 20447 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 20448 /* 20449 * If we can't find a suitable ire, return the original ire. 20450 */ 20451 return (save_ire); 20452 } 20453 20454 /* 20455 * This function does the ire_refrele of the ire passed in as the 20456 * argument. As this function looks up more ires i.e broadcast ires, 20457 * it needs to REFRELE them. Currently, for simplicity we don't 20458 * differentiate the one passed in and looked up here. We always 20459 * REFRELE. 20460 * IPQoS Notes: 20461 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 20462 * IPSec packets are done in ipsec_out_process. 20463 * 20464 */ 20465 void 20466 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 20467 { 20468 ipha_t *ipha; 20469 #define rptr ((uchar_t *)ipha) 20470 mblk_t *mp1; 20471 queue_t *stq; 20472 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 20473 uint32_t v_hlen_tos_len; 20474 uint32_t ttl_protocol; 20475 ipaddr_t src; 20476 ipaddr_t dst; 20477 uint32_t cksum; 20478 ipaddr_t orig_src; 20479 ire_t *ire1; 20480 mblk_t *next_mp; 20481 uint_t hlen; 20482 uint16_t *up; 20483 uint32_t max_frag = ire->ire_max_frag; 20484 ill_t *ill = ire_to_ill(ire); 20485 int clusterwide; 20486 uint16_t ip_hdr_included; /* IP header included by ULP? */ 20487 int ipsec_len; 20488 mblk_t *first_mp; 20489 ipsec_out_t *io; 20490 boolean_t conn_dontroute; /* conn value for multicast */ 20491 boolean_t conn_multicast_loop; /* conn value for multicast */ 20492 boolean_t multicast_forward; /* Should we forward ? */ 20493 boolean_t unspec_src; 20494 ill_t *conn_outgoing_ill = NULL; 20495 ill_t *ire_ill; 20496 ill_t *ire1_ill; 20497 uint32_t ill_index = 0; 20498 boolean_t multirt_send = B_FALSE; 20499 int err; 20500 zoneid_t zoneid; 20501 20502 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 20503 "ip_wput_ire_start: q %p", q); 20504 20505 multicast_forward = B_FALSE; 20506 unspec_src = (connp != NULL && connp->conn_unspec_src); 20507 20508 if (ire->ire_flags & RTF_MULTIRT) { 20509 /* 20510 * Multirouting case. The bucket where ire is stored 20511 * probably holds other RTF_MULTIRT flagged ire 20512 * to the destination. In this call to ip_wput_ire, 20513 * we attempt to send the packet through all 20514 * those ires. Thus, we first ensure that ire is the 20515 * first RTF_MULTIRT ire in the bucket, 20516 * before walking the ire list. 20517 */ 20518 ire_t *first_ire; 20519 irb_t *irb = ire->ire_bucket; 20520 ASSERT(irb != NULL); 20521 20522 /* Make sure we do not omit any multiroute ire. */ 20523 IRB_REFHOLD(irb); 20524 for (first_ire = irb->irb_ire; 20525 first_ire != NULL; 20526 first_ire = first_ire->ire_next) { 20527 if ((first_ire->ire_flags & RTF_MULTIRT) && 20528 (first_ire->ire_addr == ire->ire_addr) && 20529 !(first_ire->ire_marks & 20530 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 20531 break; 20532 } 20533 20534 if ((first_ire != NULL) && (first_ire != ire)) { 20535 IRE_REFHOLD(first_ire); 20536 ire_refrele(ire); 20537 ire = first_ire; 20538 ill = ire_to_ill(ire); 20539 } 20540 IRB_REFRELE(irb); 20541 } 20542 20543 /* 20544 * conn_outgoing_ill is used only in the broadcast loop. 20545 * for performance we don't grab the mutexs in the fastpath 20546 */ 20547 if ((connp != NULL) && 20548 (connp->conn_xmit_if_ill == NULL) && 20549 (ire->ire_type == IRE_BROADCAST) && 20550 ((connp->conn_nofailover_ill != NULL) || 20551 (connp->conn_outgoing_ill != NULL))) { 20552 /* 20553 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 20554 * option. So, see if this endpoint is bound to a 20555 * IPIF_NOFAILOVER address. If so, honor it. This implies 20556 * that if the interface is failed, we will still send 20557 * the packet on the same ill which is what we want. 20558 */ 20559 conn_outgoing_ill = conn_get_held_ill(connp, 20560 &connp->conn_nofailover_ill, &err); 20561 if (err == ILL_LOOKUP_FAILED) { 20562 ire_refrele(ire); 20563 freemsg(mp); 20564 return; 20565 } 20566 if (conn_outgoing_ill == NULL) { 20567 /* 20568 * Choose a good ill in the group to send the 20569 * packets on. 20570 */ 20571 ire = conn_set_outgoing_ill(connp, ire, 20572 &conn_outgoing_ill); 20573 if (ire == NULL) { 20574 freemsg(mp); 20575 return; 20576 } 20577 } 20578 } 20579 20580 if (mp->b_datap->db_type != M_CTL) { 20581 ipha = (ipha_t *)mp->b_rptr; 20582 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 20583 } else { 20584 io = (ipsec_out_t *)mp->b_rptr; 20585 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20586 zoneid = io->ipsec_out_zoneid; 20587 ASSERT(zoneid != ALL_ZONES); 20588 ipha = (ipha_t *)mp->b_cont->b_rptr; 20589 dst = ipha->ipha_dst; 20590 /* 20591 * For the multicast case, ipsec_out carries conn_dontroute and 20592 * conn_multicast_loop as conn may not be available here. We 20593 * need this for multicast loopback and forwarding which is done 20594 * later in the code. 20595 */ 20596 if (CLASSD(dst)) { 20597 conn_dontroute = io->ipsec_out_dontroute; 20598 conn_multicast_loop = io->ipsec_out_multicast_loop; 20599 /* 20600 * If conn_dontroute is not set or conn_multicast_loop 20601 * is set, we need to do forwarding/loopback. For 20602 * datagrams from ip_wput_multicast, conn_dontroute is 20603 * set to B_TRUE and conn_multicast_loop is set to 20604 * B_FALSE so that we neither do forwarding nor 20605 * loopback. 20606 */ 20607 if (!conn_dontroute || conn_multicast_loop) 20608 multicast_forward = B_TRUE; 20609 } 20610 } 20611 20612 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 20613 ire->ire_zoneid != ALL_ZONES) { 20614 /* 20615 * When a zone sends a packet to another zone, we try to deliver 20616 * the packet under the same conditions as if the destination 20617 * was a real node on the network. To do so, we look for a 20618 * matching route in the forwarding table. 20619 * RTF_REJECT and RTF_BLACKHOLE are handled just like 20620 * ip_newroute() does. 20621 */ 20622 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 20623 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 20624 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 20625 if (src_ire != NULL && 20626 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 20627 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 20628 ipha->ipha_src = src_ire->ire_src_addr; 20629 ire_refrele(src_ire); 20630 } else { 20631 ire_refrele(ire); 20632 if (conn_outgoing_ill != NULL) 20633 ill_refrele(conn_outgoing_ill); 20634 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20635 if (src_ire != NULL) { 20636 if (src_ire->ire_flags & RTF_BLACKHOLE) { 20637 ire_refrele(src_ire); 20638 freemsg(mp); 20639 return; 20640 } 20641 ire_refrele(src_ire); 20642 } 20643 if (ip_hdr_complete(ipha, zoneid)) { 20644 /* Failed */ 20645 freemsg(mp); 20646 return; 20647 } 20648 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 20649 return; 20650 } 20651 } 20652 20653 if (mp->b_datap->db_type == M_CTL || 20654 ipsec_outbound_v4_policy_present) { 20655 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 20656 unspec_src); 20657 if (mp == NULL) { 20658 ire_refrele(ire); 20659 if (conn_outgoing_ill != NULL) 20660 ill_refrele(conn_outgoing_ill); 20661 return; 20662 } 20663 } 20664 20665 first_mp = mp; 20666 ipsec_len = 0; 20667 20668 if (first_mp->b_datap->db_type == M_CTL) { 20669 io = (ipsec_out_t *)first_mp->b_rptr; 20670 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20671 mp = first_mp->b_cont; 20672 ipsec_len = ipsec_out_extra_length(first_mp); 20673 ASSERT(ipsec_len >= 0); 20674 zoneid = io->ipsec_out_zoneid; 20675 ASSERT(zoneid != ALL_ZONES); 20676 20677 /* 20678 * Drop M_CTL here if IPsec processing is not needed. 20679 * (Non-IPsec use of M_CTL extracted any information it 20680 * needed above). 20681 */ 20682 if (ipsec_len == 0) { 20683 freeb(first_mp); 20684 first_mp = mp; 20685 } 20686 } 20687 20688 /* 20689 * Fast path for ip_wput_ire 20690 */ 20691 20692 ipha = (ipha_t *)mp->b_rptr; 20693 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20694 dst = ipha->ipha_dst; 20695 20696 /* 20697 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 20698 * if the socket is a SOCK_RAW type. The transport checksum should 20699 * be provided in the pre-built packet, so we don't need to compute it. 20700 * Also, other application set flags, like DF, should not be altered. 20701 * Other transport MUST pass down zero. 20702 */ 20703 ip_hdr_included = ipha->ipha_ident; 20704 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20705 20706 if (CLASSD(dst)) { 20707 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 20708 ntohl(dst), 20709 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 20710 ntohl(ire->ire_addr))); 20711 } 20712 20713 /* Macros to extract header fields from data already in registers */ 20714 #ifdef _BIG_ENDIAN 20715 #define V_HLEN (v_hlen_tos_len >> 24) 20716 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20717 #define PROTO (ttl_protocol & 0xFF) 20718 #else 20719 #define V_HLEN (v_hlen_tos_len & 0xFF) 20720 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20721 #define PROTO (ttl_protocol >> 8) 20722 #endif 20723 20724 20725 orig_src = src = ipha->ipha_src; 20726 /* (The loop back to "another" is explained down below.) */ 20727 another:; 20728 /* 20729 * Assign an ident value for this packet. We assign idents on 20730 * a per destination basis out of the IRE. There could be 20731 * other threads targeting the same destination, so we have to 20732 * arrange for a atomic increment. Note that we use a 32-bit 20733 * atomic add because it has better performance than its 20734 * 16-bit sibling. 20735 * 20736 * If running in cluster mode and if the source address 20737 * belongs to a replicated service then vector through 20738 * cl_inet_ipident vector to allocate ip identifier 20739 * NOTE: This is a contract private interface with the 20740 * clustering group. 20741 */ 20742 clusterwide = 0; 20743 if (cl_inet_ipident) { 20744 ASSERT(cl_inet_isclusterwide); 20745 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20746 AF_INET, (uint8_t *)(uintptr_t)src)) { 20747 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 20748 AF_INET, (uint8_t *)(uintptr_t)src, 20749 (uint8_t *)(uintptr_t)dst); 20750 clusterwide = 1; 20751 } 20752 } 20753 if (!clusterwide) { 20754 ipha->ipha_ident = 20755 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 20756 } 20757 20758 #ifndef _BIG_ENDIAN 20759 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20760 #endif 20761 20762 /* 20763 * Set source address unless sent on an ill or conn_unspec_src is set. 20764 * This is needed to obey conn_unspec_src when packets go through 20765 * ip_newroute + arp. 20766 * Assumes ip_newroute{,_multi} sets the source address as well. 20767 */ 20768 if (src == INADDR_ANY && !unspec_src) { 20769 /* 20770 * Assign the appropriate source address from the IRE if none 20771 * was specified. 20772 */ 20773 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20774 20775 /* 20776 * With IP multipathing, broadcast packets are sent on the ire 20777 * that has been cleared of IRE_MARK_NORECV and that belongs to 20778 * the group. However, this ire might not be in the same zone so 20779 * we can't always use its source address. We look for a 20780 * broadcast ire in the same group and in the right zone. 20781 */ 20782 if (ire->ire_type == IRE_BROADCAST && 20783 ire->ire_zoneid != zoneid) { 20784 ire_t *src_ire = ire_ctable_lookup(dst, 0, 20785 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 20786 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 20787 if (src_ire != NULL) { 20788 src = src_ire->ire_src_addr; 20789 ire_refrele(src_ire); 20790 } else { 20791 ire_refrele(ire); 20792 if (conn_outgoing_ill != NULL) 20793 ill_refrele(conn_outgoing_ill); 20794 freemsg(first_mp); 20795 BUMP_MIB(&ip_mib, ipOutDiscards); 20796 return; 20797 } 20798 } else { 20799 src = ire->ire_src_addr; 20800 } 20801 20802 if (connp == NULL) { 20803 ip1dbg(("ip_wput_ire: no connp and no src " 20804 "address for dst 0x%x, using src 0x%x\n", 20805 ntohl(dst), 20806 ntohl(src))); 20807 } 20808 ipha->ipha_src = src; 20809 } 20810 stq = ire->ire_stq; 20811 20812 /* 20813 * We only allow ire chains for broadcasts since there will 20814 * be multiple IRE_CACHE entries for the same multicast 20815 * address (one per ipif). 20816 */ 20817 next_mp = NULL; 20818 20819 /* broadcast packet */ 20820 if (ire->ire_type == IRE_BROADCAST) 20821 goto broadcast; 20822 20823 /* loopback ? */ 20824 if (stq == NULL) 20825 goto nullstq; 20826 20827 /* The ill_index for outbound ILL */ 20828 ill_index = Q_TO_INDEX(stq); 20829 20830 BUMP_MIB(&ip_mib, ipOutRequests); 20831 ttl_protocol = ((uint16_t *)ipha)[4]; 20832 20833 /* pseudo checksum (do it in parts for IP header checksum) */ 20834 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20835 20836 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20837 queue_t *dev_q = stq->q_next; 20838 20839 /* flow controlled */ 20840 if ((dev_q->q_next || dev_q->q_first) && 20841 !canput(dev_q)) 20842 goto blocked; 20843 if ((PROTO == IPPROTO_UDP) && 20844 (ip_hdr_included != IP_HDR_INCLUDED)) { 20845 hlen = (V_HLEN & 0xF) << 2; 20846 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20847 if (*up != 0) { 20848 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20849 hlen, LENGTH, max_frag, ipsec_len, cksum); 20850 /* Software checksum? */ 20851 if (DB_CKSUMFLAGS(mp) == 0) { 20852 IP_STAT(ip_out_sw_cksum); 20853 IP_STAT_UPDATE( 20854 ip_udp_out_sw_cksum_bytes, 20855 LENGTH - hlen); 20856 } 20857 } 20858 } 20859 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20860 hlen = (V_HLEN & 0xF) << 2; 20861 if (PROTO == IPPROTO_TCP) { 20862 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20863 /* 20864 * The packet header is processed once and for all, even 20865 * in the multirouting case. We disable hardware 20866 * checksum if the packet is multirouted, as it will be 20867 * replicated via several interfaces, and not all of 20868 * them may have this capability. 20869 */ 20870 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20871 LENGTH, max_frag, ipsec_len, cksum); 20872 /* Software checksum? */ 20873 if (DB_CKSUMFLAGS(mp) == 0) { 20874 IP_STAT(ip_out_sw_cksum); 20875 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20876 LENGTH - hlen); 20877 } 20878 } else { 20879 sctp_hdr_t *sctph; 20880 20881 ASSERT(PROTO == IPPROTO_SCTP); 20882 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20883 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20884 /* 20885 * Zero out the checksum field to ensure proper 20886 * checksum calculation. 20887 */ 20888 sctph->sh_chksum = 0; 20889 #ifdef DEBUG 20890 if (!skip_sctp_cksum) 20891 #endif 20892 sctph->sh_chksum = sctp_cksum(mp, hlen); 20893 } 20894 } 20895 20896 /* 20897 * If this is a multicast packet and originated from ip_wput 20898 * we need to do loopback and forwarding checks. If it comes 20899 * from ip_wput_multicast, we SHOULD not do this. 20900 */ 20901 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20902 20903 /* checksum */ 20904 cksum += ttl_protocol; 20905 20906 /* fragment the packet */ 20907 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20908 goto fragmentit; 20909 /* 20910 * Don't use frag_flag if packet is pre-built or source 20911 * routed or if multicast (since multicast packets do 20912 * not solicit ICMP "packet too big" messages). 20913 */ 20914 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20915 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20916 !ip_source_route_included(ipha)) && 20917 !CLASSD(ipha->ipha_dst)) 20918 ipha->ipha_fragment_offset_and_flags |= 20919 htons(ire->ire_frag_flag); 20920 20921 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20922 /* calculate IP header checksum */ 20923 cksum += ipha->ipha_ident; 20924 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20925 cksum += ipha->ipha_fragment_offset_and_flags; 20926 20927 /* IP options present */ 20928 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20929 if (hlen) 20930 goto checksumoptions; 20931 20932 /* calculate hdr checksum */ 20933 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20934 cksum = ~(cksum + (cksum >> 16)); 20935 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20936 } 20937 if (ipsec_len != 0) { 20938 /* 20939 * We will do the rest of the processing after 20940 * we come back from IPSEC in ip_wput_ipsec_out(). 20941 */ 20942 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20943 20944 io = (ipsec_out_t *)first_mp->b_rptr; 20945 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20946 ill_phyint->phyint_ifindex; 20947 20948 ipsec_out_process(q, first_mp, ire, ill_index); 20949 ire_refrele(ire); 20950 if (conn_outgoing_ill != NULL) 20951 ill_refrele(conn_outgoing_ill); 20952 return; 20953 } 20954 20955 /* 20956 * In most cases, the emission loop below is entered only 20957 * once. Only in the case where the ire holds the 20958 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20959 * flagged ires in the bucket, and send the packet 20960 * through all crossed RTF_MULTIRT routes. 20961 */ 20962 if (ire->ire_flags & RTF_MULTIRT) { 20963 multirt_send = B_TRUE; 20964 } 20965 do { 20966 if (multirt_send) { 20967 irb_t *irb; 20968 /* 20969 * We are in a multiple send case, need to get 20970 * the next ire and make a duplicate of the packet. 20971 * ire1 holds here the next ire to process in the 20972 * bucket. If multirouting is expected, 20973 * any non-RTF_MULTIRT ire that has the 20974 * right destination address is ignored. 20975 */ 20976 irb = ire->ire_bucket; 20977 ASSERT(irb != NULL); 20978 20979 IRB_REFHOLD(irb); 20980 for (ire1 = ire->ire_next; 20981 ire1 != NULL; 20982 ire1 = ire1->ire_next) { 20983 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20984 continue; 20985 if (ire1->ire_addr != ire->ire_addr) 20986 continue; 20987 if (ire1->ire_marks & 20988 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20989 continue; 20990 20991 /* Got one */ 20992 IRE_REFHOLD(ire1); 20993 break; 20994 } 20995 IRB_REFRELE(irb); 20996 20997 if (ire1 != NULL) { 20998 next_mp = copyb(mp); 20999 if ((next_mp == NULL) || 21000 ((mp->b_cont != NULL) && 21001 ((next_mp->b_cont = 21002 dupmsg(mp->b_cont)) == NULL))) { 21003 freemsg(next_mp); 21004 next_mp = NULL; 21005 ire_refrele(ire1); 21006 ire1 = NULL; 21007 } 21008 } 21009 21010 /* Last multiroute ire; don't loop anymore. */ 21011 if (ire1 == NULL) { 21012 multirt_send = B_FALSE; 21013 } 21014 } 21015 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 21016 if (mp == NULL) { 21017 BUMP_MIB(&ip_mib, ipOutDiscards); 21018 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 21019 "during IPPF processing\n")); 21020 ire_refrele(ire); 21021 if (next_mp != NULL) { 21022 freemsg(next_mp); 21023 ire_refrele(ire1); 21024 } 21025 if (conn_outgoing_ill != NULL) 21026 ill_refrele(conn_outgoing_ill); 21027 return; 21028 } 21029 UPDATE_OB_PKT_COUNT(ire); 21030 ire->ire_last_used_time = lbolt; 21031 21032 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21033 "ip_wput_ire_end: q %p (%S)", 21034 q, "last copy out"); 21035 putnext(stq, mp); 21036 IRE_REFRELE(ire); 21037 21038 if (multirt_send) { 21039 ASSERT(ire1); 21040 /* 21041 * Proceed with the next RTF_MULTIRT ire, 21042 * Also set up the send-to queue accordingly. 21043 */ 21044 ire = ire1; 21045 ire1 = NULL; 21046 stq = ire->ire_stq; 21047 mp = next_mp; 21048 next_mp = NULL; 21049 ipha = (ipha_t *)mp->b_rptr; 21050 ill_index = Q_TO_INDEX(stq); 21051 } 21052 } while (multirt_send); 21053 if (conn_outgoing_ill != NULL) 21054 ill_refrele(conn_outgoing_ill); 21055 return; 21056 21057 /* 21058 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21059 */ 21060 broadcast: 21061 { 21062 /* 21063 * Avoid broadcast storms by setting the ttl to 1 21064 * for broadcasts. This parameter can be set 21065 * via ndd, so make sure that for the SO_DONTROUTE 21066 * case that ipha_ttl is always set to 1. 21067 * In the event that we are replying to incoming 21068 * ICMP packets, conn could be NULL. 21069 */ 21070 if ((connp != NULL) && connp->conn_dontroute) 21071 ipha->ipha_ttl = 1; 21072 else 21073 ipha->ipha_ttl = ip_broadcast_ttl; 21074 21075 /* 21076 * Note that we are not doing a IRB_REFHOLD here. 21077 * Actually we don't care if the list changes i.e 21078 * if somebody deletes an IRE from the list while 21079 * we drop the lock, the next time we come around 21080 * ire_next will be NULL and hence we won't send 21081 * out multiple copies which is fine. 21082 */ 21083 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21084 ire1 = ire->ire_next; 21085 if (conn_outgoing_ill != NULL) { 21086 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21087 ASSERT(ire1 == ire->ire_next); 21088 if (ire1 != NULL && ire1->ire_addr == dst) { 21089 ire_refrele(ire); 21090 ire = ire1; 21091 IRE_REFHOLD(ire); 21092 ire1 = ire->ire_next; 21093 continue; 21094 } 21095 rw_exit(&ire->ire_bucket->irb_lock); 21096 /* Did not find a matching ill */ 21097 ip1dbg(("ip_wput_ire: broadcast with no " 21098 "matching IP_BOUND_IF ill %s\n", 21099 conn_outgoing_ill->ill_name)); 21100 freemsg(first_mp); 21101 if (ire != NULL) 21102 ire_refrele(ire); 21103 ill_refrele(conn_outgoing_ill); 21104 return; 21105 } 21106 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21107 /* 21108 * If the next IRE has the same address and is not one 21109 * of the two copies that we need to send, try to see 21110 * whether this copy should be sent at all. This 21111 * assumes that we insert loopbacks first and then 21112 * non-loopbacks. This is acheived by inserting the 21113 * loopback always before non-loopback. 21114 * This is used to send a single copy of a broadcast 21115 * packet out all physical interfaces that have an 21116 * matching IRE_BROADCAST while also looping 21117 * back one copy (to ip_wput_local) for each 21118 * matching physical interface. However, we avoid 21119 * sending packets out different logical that match by 21120 * having ipif_up/ipif_down supress duplicate 21121 * IRE_BROADCASTS. 21122 * 21123 * This feature is currently used to get broadcasts 21124 * sent to multiple interfaces, when the broadcast 21125 * address being used applies to multiple interfaces. 21126 * For example, a whole net broadcast will be 21127 * replicated on every connected subnet of 21128 * the target net. 21129 * 21130 * Each zone has its own set of IRE_BROADCASTs, so that 21131 * we're able to distribute inbound packets to multiple 21132 * zones who share a broadcast address. We avoid looping 21133 * back outbound packets in different zones but on the 21134 * same ill, as the application would see duplicates. 21135 * 21136 * If the interfaces are part of the same group, 21137 * we would want to send only one copy out for 21138 * whole group. 21139 * 21140 * This logic assumes that ire_add_v4() groups the 21141 * IRE_BROADCAST entries so that those with the same 21142 * ire_addr and ill_group are kept together. 21143 */ 21144 ire_ill = ire->ire_ipif->ipif_ill; 21145 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21146 if (ire_ill->ill_group != NULL && 21147 (ire->ire_marks & IRE_MARK_NORECV)) { 21148 /* 21149 * If the current zone only has an ire 21150 * broadcast for this address marked 21151 * NORECV, the ire we want is ahead in 21152 * the bucket, so we look it up 21153 * deliberately ignoring the zoneid. 21154 */ 21155 for (ire1 = ire->ire_bucket->irb_ire; 21156 ire1 != NULL; 21157 ire1 = ire1->ire_next) { 21158 ire1_ill = 21159 ire1->ire_ipif->ipif_ill; 21160 if (ire1->ire_addr != dst) 21161 continue; 21162 /* skip over the current ire */ 21163 if (ire1 == ire) 21164 continue; 21165 /* skip over deleted ires */ 21166 if (ire1->ire_marks & 21167 IRE_MARK_CONDEMNED) 21168 continue; 21169 /* 21170 * non-loopback ire in our 21171 * group: use it for the next 21172 * pass in the loop 21173 */ 21174 if (ire1->ire_stq != NULL && 21175 ire1_ill->ill_group == 21176 ire_ill->ill_group) 21177 break; 21178 } 21179 } 21180 } else { 21181 while (ire1 != NULL && ire1->ire_addr == dst) { 21182 ire1_ill = ire1->ire_ipif->ipif_ill; 21183 /* 21184 * We can have two broadcast ires on the 21185 * same ill in different zones; here 21186 * we'll send a copy of the packet on 21187 * each ill and the fanout code will 21188 * call conn_wantpacket() to check that 21189 * the zone has the broadcast address 21190 * configured on the ill. If the two 21191 * ires are in the same group we only 21192 * send one copy up. 21193 */ 21194 if (ire1_ill != ire_ill && 21195 (ire1_ill->ill_group == NULL || 21196 ire_ill->ill_group == NULL || 21197 ire1_ill->ill_group != 21198 ire_ill->ill_group)) { 21199 break; 21200 } 21201 ire1 = ire1->ire_next; 21202 } 21203 } 21204 } 21205 ASSERT(multirt_send == B_FALSE); 21206 if (ire1 != NULL && ire1->ire_addr == dst) { 21207 if ((ire->ire_flags & RTF_MULTIRT) && 21208 (ire1->ire_flags & RTF_MULTIRT)) { 21209 /* 21210 * We are in the multirouting case. 21211 * The message must be sent at least 21212 * on both ires. These ires have been 21213 * inserted AFTER the standard ones 21214 * in ip_rt_add(). There are thus no 21215 * other ire entries for the destination 21216 * address in the rest of the bucket 21217 * that do not have the RTF_MULTIRT 21218 * flag. We don't process a copy 21219 * of the message here. This will be 21220 * done in the final sending loop. 21221 */ 21222 multirt_send = B_TRUE; 21223 } else { 21224 next_mp = ip_copymsg(first_mp); 21225 if (next_mp != NULL) 21226 IRE_REFHOLD(ire1); 21227 } 21228 } 21229 rw_exit(&ire->ire_bucket->irb_lock); 21230 } 21231 21232 if (stq) { 21233 /* 21234 * A non-NULL send-to queue means this packet is going 21235 * out of this machine. 21236 */ 21237 21238 BUMP_MIB(&ip_mib, ipOutRequests); 21239 ttl_protocol = ((uint16_t *)ipha)[4]; 21240 /* 21241 * We accumulate the pseudo header checksum in cksum. 21242 * This is pretty hairy code, so watch close. One 21243 * thing to keep in mind is that UDP and TCP have 21244 * stored their respective datagram lengths in their 21245 * checksum fields. This lines things up real nice. 21246 */ 21247 cksum = (dst >> 16) + (dst & 0xFFFF) + 21248 (src >> 16) + (src & 0xFFFF); 21249 /* 21250 * We assume the udp checksum field contains the 21251 * length, so to compute the pseudo header checksum, 21252 * all we need is the protocol number and src/dst. 21253 */ 21254 /* Provide the checksums for UDP and TCP. */ 21255 if ((PROTO == IPPROTO_TCP) && 21256 (ip_hdr_included != IP_HDR_INCLUDED)) { 21257 /* hlen gets the number of uchar_ts in the IP header */ 21258 hlen = (V_HLEN & 0xF) << 2; 21259 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21260 IP_STAT(ip_out_sw_cksum); 21261 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21262 LENGTH - hlen); 21263 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21264 if (*up == 0) 21265 *up = 0xFFFF; 21266 } else if (PROTO == IPPROTO_SCTP && 21267 (ip_hdr_included != IP_HDR_INCLUDED)) { 21268 sctp_hdr_t *sctph; 21269 21270 hlen = (V_HLEN & 0xF) << 2; 21271 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21272 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21273 sctph->sh_chksum = 0; 21274 #ifdef DEBUG 21275 if (!skip_sctp_cksum) 21276 #endif 21277 sctph->sh_chksum = sctp_cksum(mp, hlen); 21278 } else { 21279 queue_t *dev_q = stq->q_next; 21280 21281 if ((dev_q->q_next || dev_q->q_first) && 21282 !canput(dev_q)) { 21283 blocked: 21284 ipha->ipha_ident = ip_hdr_included; 21285 /* 21286 * If we don't have a conn to apply 21287 * backpressure, free the message. 21288 * In the ire_send path, we don't know 21289 * the position to requeue the packet. Rather 21290 * than reorder packets, we just drop this 21291 * packet. 21292 */ 21293 if (ip_output_queue && connp != NULL && 21294 caller != IRE_SEND) { 21295 if (caller == IP_WSRV) { 21296 connp->conn_did_putbq = 1; 21297 (void) putbq(connp->conn_wq, 21298 first_mp); 21299 conn_drain_insert(connp); 21300 /* 21301 * This is the service thread, 21302 * and the queue is already 21303 * noenabled. The check for 21304 * canput and the putbq is not 21305 * atomic. So we need to check 21306 * again. 21307 */ 21308 if (canput(stq->q_next)) 21309 connp->conn_did_putbq 21310 = 0; 21311 IP_STAT(ip_conn_flputbq); 21312 } else { 21313 /* 21314 * We are not the service proc. 21315 * ip_wsrv will be scheduled or 21316 * is already running. 21317 */ 21318 (void) putq(connp->conn_wq, 21319 first_mp); 21320 } 21321 } else { 21322 BUMP_MIB(&ip_mib, ipOutDiscards); 21323 freemsg(first_mp); 21324 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21325 "ip_wput_ire_end: q %p (%S)", 21326 q, "discard"); 21327 } 21328 ire_refrele(ire); 21329 if (next_mp) { 21330 ire_refrele(ire1); 21331 freemsg(next_mp); 21332 } 21333 if (conn_outgoing_ill != NULL) 21334 ill_refrele(conn_outgoing_ill); 21335 return; 21336 } 21337 if ((PROTO == IPPROTO_UDP) && 21338 (ip_hdr_included != IP_HDR_INCLUDED)) { 21339 /* 21340 * hlen gets the number of uchar_ts in the 21341 * IP header 21342 */ 21343 hlen = (V_HLEN & 0xF) << 2; 21344 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21345 max_frag = ire->ire_max_frag; 21346 if (*up != 0) { 21347 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21348 up, PROTO, hlen, LENGTH, max_frag, 21349 ipsec_len, cksum); 21350 /* Software checksum? */ 21351 if (DB_CKSUMFLAGS(mp) == 0) { 21352 IP_STAT(ip_out_sw_cksum); 21353 IP_STAT_UPDATE( 21354 ip_udp_out_sw_cksum_bytes, 21355 LENGTH - hlen); 21356 } 21357 } 21358 } 21359 } 21360 /* 21361 * Need to do this even when fragmenting. The local 21362 * loopback can be done without computing checksums 21363 * but forwarding out other interface must be done 21364 * after the IP checksum (and ULP checksums) have been 21365 * computed. 21366 * 21367 * NOTE : multicast_forward is set only if this packet 21368 * originated from ip_wput. For packets originating from 21369 * ip_wput_multicast, it is not set. 21370 */ 21371 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21372 multi_loopback: 21373 ip2dbg(("ip_wput: multicast, loop %d\n", 21374 conn_multicast_loop)); 21375 21376 /* Forget header checksum offload */ 21377 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21378 21379 /* 21380 * Local loopback of multicasts? Check the 21381 * ill. 21382 * 21383 * Note that the loopback function will not come 21384 * in through ip_rput - it will only do the 21385 * client fanout thus we need to do an mforward 21386 * as well. The is different from the BSD 21387 * logic. 21388 */ 21389 if (ill != NULL) { 21390 ilm_t *ilm; 21391 21392 ILM_WALKER_HOLD(ill); 21393 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21394 ALL_ZONES); 21395 ILM_WALKER_RELE(ill); 21396 if (ilm != NULL) { 21397 /* 21398 * Pass along the virtual output q. 21399 * ip_wput_local() will distribute the 21400 * packet to all the matching zones, 21401 * except the sending zone when 21402 * IP_MULTICAST_LOOP is false. 21403 */ 21404 ip_multicast_loopback(q, ill, first_mp, 21405 conn_multicast_loop ? 0 : 21406 IP_FF_NO_MCAST_LOOP, zoneid); 21407 } 21408 } 21409 if (ipha->ipha_ttl == 0) { 21410 /* 21411 * 0 => only to this host i.e. we are 21412 * done. We are also done if this was the 21413 * loopback interface since it is sufficient 21414 * to loopback one copy of a multicast packet. 21415 */ 21416 freemsg(first_mp); 21417 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21418 "ip_wput_ire_end: q %p (%S)", 21419 q, "loopback"); 21420 ire_refrele(ire); 21421 if (conn_outgoing_ill != NULL) 21422 ill_refrele(conn_outgoing_ill); 21423 return; 21424 } 21425 /* 21426 * ILLF_MULTICAST is checked in ip_newroute 21427 * i.e. we don't need to check it here since 21428 * all IRE_CACHEs come from ip_newroute. 21429 * For multicast traffic, SO_DONTROUTE is interpreted 21430 * to mean only send the packet out the interface 21431 * (optionally specified with IP_MULTICAST_IF) 21432 * and do not forward it out additional interfaces. 21433 * RSVP and the rsvp daemon is an example of a 21434 * protocol and user level process that 21435 * handles it's own routing. Hence, it uses the 21436 * SO_DONTROUTE option to accomplish this. 21437 */ 21438 21439 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 21440 /* Unconditionally redo the checksum */ 21441 ipha->ipha_hdr_checksum = 0; 21442 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21443 21444 /* 21445 * If this needs to go out secure, we need 21446 * to wait till we finish the IPSEC 21447 * processing. 21448 */ 21449 if (ipsec_len == 0 && 21450 ip_mforward(ill, ipha, mp)) { 21451 freemsg(first_mp); 21452 ip1dbg(("ip_wput: mforward failed\n")); 21453 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21454 "ip_wput_ire_end: q %p (%S)", 21455 q, "mforward failed"); 21456 ire_refrele(ire); 21457 if (conn_outgoing_ill != NULL) 21458 ill_refrele(conn_outgoing_ill); 21459 return; 21460 } 21461 } 21462 } 21463 max_frag = ire->ire_max_frag; 21464 cksum += ttl_protocol; 21465 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 21466 /* No fragmentation required for this one. */ 21467 /* 21468 * Don't use frag_flag if packet is pre-built or source 21469 * routed or if multicast (since multicast packets do 21470 * not solicit ICMP "packet too big" messages). 21471 */ 21472 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21473 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21474 !ip_source_route_included(ipha)) && 21475 !CLASSD(ipha->ipha_dst)) 21476 ipha->ipha_fragment_offset_and_flags |= 21477 htons(ire->ire_frag_flag); 21478 21479 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21480 /* Complete the IP header checksum. */ 21481 cksum += ipha->ipha_ident; 21482 cksum += (v_hlen_tos_len >> 16)+ 21483 (v_hlen_tos_len & 0xFFFF); 21484 cksum += ipha->ipha_fragment_offset_and_flags; 21485 hlen = (V_HLEN & 0xF) - 21486 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21487 if (hlen) { 21488 checksumoptions: 21489 /* 21490 * Account for the IP Options in the IP 21491 * header checksum. 21492 */ 21493 up = (uint16_t *)(rptr+ 21494 IP_SIMPLE_HDR_LENGTH); 21495 do { 21496 cksum += up[0]; 21497 cksum += up[1]; 21498 up += 2; 21499 } while (--hlen); 21500 } 21501 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21502 cksum = ~(cksum + (cksum >> 16)); 21503 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21504 } 21505 if (ipsec_len != 0) { 21506 ipsec_out_process(q, first_mp, ire, ill_index); 21507 if (!next_mp) { 21508 ire_refrele(ire); 21509 if (conn_outgoing_ill != NULL) 21510 ill_refrele(conn_outgoing_ill); 21511 return; 21512 } 21513 goto next; 21514 } 21515 21516 /* 21517 * multirt_send has already been handled 21518 * for broadcast, but not yet for multicast 21519 * or IP options. 21520 */ 21521 if (next_mp == NULL) { 21522 if (ire->ire_flags & RTF_MULTIRT) { 21523 multirt_send = B_TRUE; 21524 } 21525 } 21526 21527 /* 21528 * In most cases, the emission loop below is 21529 * entered only once. Only in the case where 21530 * the ire holds the RTF_MULTIRT flag, do we loop 21531 * to process all RTF_MULTIRT ires in the bucket, 21532 * and send the packet through all crossed 21533 * RTF_MULTIRT routes. 21534 */ 21535 do { 21536 if (multirt_send) { 21537 irb_t *irb; 21538 21539 irb = ire->ire_bucket; 21540 ASSERT(irb != NULL); 21541 /* 21542 * We are in a multiple send case, 21543 * need to get the next IRE and make 21544 * a duplicate of the packet. 21545 */ 21546 IRB_REFHOLD(irb); 21547 for (ire1 = ire->ire_next; 21548 ire1 != NULL; 21549 ire1 = ire1->ire_next) { 21550 if (!(ire1->ire_flags & 21551 RTF_MULTIRT)) 21552 continue; 21553 if (ire1->ire_addr != 21554 ire->ire_addr) 21555 continue; 21556 if (ire1->ire_marks & 21557 (IRE_MARK_CONDEMNED| 21558 IRE_MARK_HIDDEN)) 21559 continue; 21560 21561 /* Got one */ 21562 IRE_REFHOLD(ire1); 21563 break; 21564 } 21565 IRB_REFRELE(irb); 21566 21567 if (ire1 != NULL) { 21568 next_mp = copyb(mp); 21569 if ((next_mp == NULL) || 21570 ((mp->b_cont != NULL) && 21571 ((next_mp->b_cont = 21572 dupmsg(mp->b_cont)) 21573 == NULL))) { 21574 freemsg(next_mp); 21575 next_mp = NULL; 21576 ire_refrele(ire1); 21577 ire1 = NULL; 21578 } 21579 } 21580 21581 /* 21582 * Last multiroute ire; don't loop 21583 * anymore. The emission is over 21584 * and next_mp is NULL. 21585 */ 21586 if (ire1 == NULL) { 21587 multirt_send = B_FALSE; 21588 } 21589 } 21590 21591 ASSERT(ipsec_len == 0); 21592 mp1 = ip_wput_attach_llhdr(mp, ire, 21593 IPP_LOCAL_OUT, ill_index); 21594 if (mp1 == NULL) { 21595 BUMP_MIB(&ip_mib, ipOutDiscards); 21596 if (next_mp) { 21597 freemsg(next_mp); 21598 ire_refrele(ire1); 21599 } 21600 ire_refrele(ire); 21601 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21602 "ip_wput_ire_end: q %p (%S)", 21603 q, "discard MDATA"); 21604 if (conn_outgoing_ill != NULL) 21605 ill_refrele(conn_outgoing_ill); 21606 return; 21607 } 21608 UPDATE_OB_PKT_COUNT(ire); 21609 ire->ire_last_used_time = lbolt; 21610 21611 if (multirt_send) { 21612 /* 21613 * We are in a multiple send case, 21614 * need to re-enter the sending loop 21615 * using the next ire. 21616 */ 21617 putnext(stq, mp1); 21618 ire_refrele(ire); 21619 ire = ire1; 21620 stq = ire->ire_stq; 21621 mp = next_mp; 21622 next_mp = NULL; 21623 ipha = (ipha_t *)mp->b_rptr; 21624 ill_index = Q_TO_INDEX(stq); 21625 } 21626 } while (multirt_send); 21627 21628 if (!next_mp) { 21629 /* 21630 * Last copy going out (the ultra-common 21631 * case). Note that we intentionally replicate 21632 * the putnext rather than calling it before 21633 * the next_mp check in hopes of a little 21634 * tail-call action out of the compiler. 21635 */ 21636 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21637 "ip_wput_ire_end: q %p (%S)", 21638 q, "last copy out(1)"); 21639 putnext(stq, mp1); 21640 ire_refrele(ire); 21641 if (conn_outgoing_ill != NULL) 21642 ill_refrele(conn_outgoing_ill); 21643 return; 21644 } 21645 /* More copies going out below. */ 21646 putnext(stq, mp1); 21647 } else { 21648 int offset; 21649 fragmentit: 21650 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21651 /* 21652 * If this would generate a icmp_frag_needed message, 21653 * we need to handle it before we do the IPSEC 21654 * processing. Otherwise, we need to strip the IPSEC 21655 * headers before we send up the message to the ULPs 21656 * which becomes messy and difficult. 21657 */ 21658 if (ipsec_len != 0) { 21659 if ((max_frag < (unsigned int)(LENGTH + 21660 ipsec_len)) && (offset & IPH_DF)) { 21661 21662 BUMP_MIB(&ip_mib, ipFragFails); 21663 ipha->ipha_hdr_checksum = 0; 21664 ipha->ipha_hdr_checksum = 21665 (uint16_t)ip_csum_hdr(ipha); 21666 icmp_frag_needed(ire->ire_stq, first_mp, 21667 max_frag); 21668 if (!next_mp) { 21669 ire_refrele(ire); 21670 if (conn_outgoing_ill != NULL) { 21671 ill_refrele( 21672 conn_outgoing_ill); 21673 } 21674 return; 21675 } 21676 } else { 21677 /* 21678 * This won't cause a icmp_frag_needed 21679 * message. to be gnerated. Send it on 21680 * the wire. Note that this could still 21681 * cause fragmentation and all we 21682 * do is the generation of the message 21683 * to the ULP if needed before IPSEC. 21684 */ 21685 if (!next_mp) { 21686 ipsec_out_process(q, first_mp, 21687 ire, ill_index); 21688 TRACE_2(TR_FAC_IP, 21689 TR_IP_WPUT_IRE_END, 21690 "ip_wput_ire_end: q %p " 21691 "(%S)", q, 21692 "last ipsec_out_process"); 21693 ire_refrele(ire); 21694 if (conn_outgoing_ill != NULL) { 21695 ill_refrele( 21696 conn_outgoing_ill); 21697 } 21698 return; 21699 } 21700 ipsec_out_process(q, first_mp, 21701 ire, ill_index); 21702 } 21703 } else { 21704 /* Initiate IPPF processing */ 21705 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21706 ip_process(IPP_LOCAL_OUT, &mp, 21707 ill_index); 21708 if (mp == NULL) { 21709 BUMP_MIB(&ip_mib, 21710 ipOutDiscards); 21711 if (next_mp != NULL) { 21712 freemsg(next_mp); 21713 ire_refrele(ire1); 21714 } 21715 ire_refrele(ire); 21716 TRACE_2(TR_FAC_IP, 21717 TR_IP_WPUT_IRE_END, 21718 "ip_wput_ire: q %p (%S)", 21719 q, "discard MDATA"); 21720 if (conn_outgoing_ill != NULL) { 21721 ill_refrele( 21722 conn_outgoing_ill); 21723 } 21724 return; 21725 } 21726 } 21727 if (!next_mp) { 21728 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21729 "ip_wput_ire_end: q %p (%S)", 21730 q, "last fragmentation"); 21731 ip_wput_ire_fragmentit(mp, ire); 21732 ire_refrele(ire); 21733 if (conn_outgoing_ill != NULL) 21734 ill_refrele(conn_outgoing_ill); 21735 return; 21736 } 21737 ip_wput_ire_fragmentit(mp, ire); 21738 } 21739 } 21740 } else { 21741 nullstq: 21742 /* A NULL stq means the destination address is local. */ 21743 UPDATE_OB_PKT_COUNT(ire); 21744 ire->ire_last_used_time = lbolt; 21745 ASSERT(ire->ire_ipif != NULL); 21746 if (!next_mp) { 21747 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21748 "ip_wput_ire_end: q %p (%S)", 21749 q, "local address"); 21750 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 21751 first_mp, ire, 0, ire->ire_zoneid); 21752 ire_refrele(ire); 21753 if (conn_outgoing_ill != NULL) 21754 ill_refrele(conn_outgoing_ill); 21755 return; 21756 } 21757 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 21758 ire, 0, ire->ire_zoneid); 21759 } 21760 next: 21761 /* 21762 * More copies going out to additional interfaces. 21763 * ire1 has already been held. We don't need the 21764 * "ire" anymore. 21765 */ 21766 ire_refrele(ire); 21767 ire = ire1; 21768 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 21769 mp = next_mp; 21770 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21771 ill = ire_to_ill(ire); 21772 first_mp = mp; 21773 if (ipsec_len != 0) { 21774 ASSERT(first_mp->b_datap->db_type == M_CTL); 21775 mp = mp->b_cont; 21776 } 21777 dst = ire->ire_addr; 21778 ipha = (ipha_t *)mp->b_rptr; 21779 /* 21780 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 21781 * Restore ipha_ident "no checksum" flag. 21782 */ 21783 src = orig_src; 21784 ipha->ipha_ident = ip_hdr_included; 21785 goto another; 21786 21787 #undef rptr 21788 #undef Q_TO_INDEX 21789 } 21790 21791 /* 21792 * Routine to allocate a message that is used to notify the ULP about MDT. 21793 * The caller may provide a pointer to the link-layer MDT capabilities, 21794 * or NULL if MDT is to be disabled on the stream. 21795 */ 21796 mblk_t * 21797 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 21798 { 21799 mblk_t *mp; 21800 ip_mdt_info_t *mdti; 21801 ill_mdt_capab_t *idst; 21802 21803 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 21804 DB_TYPE(mp) = M_CTL; 21805 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 21806 mdti = (ip_mdt_info_t *)mp->b_rptr; 21807 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 21808 idst = &(mdti->mdt_capab); 21809 21810 /* 21811 * If the caller provides us with the capability, copy 21812 * it over into our notification message; otherwise 21813 * we zero out the capability portion. 21814 */ 21815 if (isrc != NULL) 21816 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 21817 else 21818 bzero((caddr_t)idst, sizeof (*idst)); 21819 } 21820 return (mp); 21821 } 21822 21823 /* 21824 * Routine which determines whether MDT can be enabled on the destination 21825 * IRE and IPC combination, and if so, allocates and returns the MDT 21826 * notification mblk that may be used by ULP. We also check if we need to 21827 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21828 * MDT usage in the past have been lifted. This gets called during IP 21829 * and ULP binding. 21830 */ 21831 mblk_t * 21832 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21833 ill_mdt_capab_t *mdt_cap) 21834 { 21835 mblk_t *mp; 21836 boolean_t rc = B_FALSE; 21837 21838 ASSERT(dst_ire != NULL); 21839 ASSERT(connp != NULL); 21840 ASSERT(mdt_cap != NULL); 21841 21842 /* 21843 * Currently, we only support simple TCP/{IPv4,IPv6} with 21844 * Multidata, which is handled in tcp_multisend(). This 21845 * is the reason why we do all these checks here, to ensure 21846 * that we don't enable Multidata for the cases which we 21847 * can't handle at the moment. 21848 */ 21849 do { 21850 /* Only do TCP at the moment */ 21851 if (connp->conn_ulp != IPPROTO_TCP) 21852 break; 21853 21854 /* 21855 * IPSEC outbound policy present? Note that we get here 21856 * after calling ipsec_conn_cache_policy() where the global 21857 * policy checking is performed. conn_latch will be 21858 * non-NULL as long as there's a policy defined, 21859 * i.e. conn_out_enforce_policy may be NULL in such case 21860 * when the connection is non-secure, and hence we check 21861 * further if the latch refers to an outbound policy. 21862 */ 21863 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21864 break; 21865 21866 /* CGTP (multiroute) is enabled? */ 21867 if (dst_ire->ire_flags & RTF_MULTIRT) 21868 break; 21869 21870 /* Outbound IPQoS enabled? */ 21871 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21872 /* 21873 * In this case, we disable MDT for this and all 21874 * future connections going over the interface. 21875 */ 21876 mdt_cap->ill_mdt_on = 0; 21877 break; 21878 } 21879 21880 /* socket option(s) present? */ 21881 if (!CONN_IS_MD_FASTPATH(connp)) 21882 break; 21883 21884 rc = B_TRUE; 21885 /* CONSTCOND */ 21886 } while (0); 21887 21888 /* Remember the result */ 21889 connp->conn_mdt_ok = rc; 21890 21891 if (!rc) 21892 return (NULL); 21893 else if (!mdt_cap->ill_mdt_on) { 21894 /* 21895 * If MDT has been previously turned off in the past, and we 21896 * currently can do MDT (due to IPQoS policy removal, etc.) 21897 * then enable it for this interface. 21898 */ 21899 mdt_cap->ill_mdt_on = 1; 21900 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21901 "interface %s\n", ill_name)); 21902 } 21903 21904 /* Allocate the MDT info mblk */ 21905 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21906 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21907 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21908 return (NULL); 21909 } 21910 return (mp); 21911 } 21912 21913 /* 21914 * Create destination address attribute, and fill it with the physical 21915 * destination address and SAP taken from the template DL_UNITDATA_REQ 21916 * message block. 21917 */ 21918 boolean_t 21919 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21920 { 21921 dl_unitdata_req_t *dlurp; 21922 pattr_t *pa; 21923 pattrinfo_t pa_info; 21924 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21925 uint_t das_len, das_off; 21926 21927 ASSERT(dlmp != NULL); 21928 21929 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21930 das_len = dlurp->dl_dest_addr_length; 21931 das_off = dlurp->dl_dest_addr_offset; 21932 21933 pa_info.type = PATTR_DSTADDRSAP; 21934 pa_info.len = sizeof (**das) + das_len - 1; 21935 21936 /* create and associate the attribute */ 21937 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21938 if (pa != NULL) { 21939 ASSERT(*das != NULL); 21940 (*das)->addr_is_group = 0; 21941 (*das)->addr_len = (uint8_t)das_len; 21942 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21943 } 21944 21945 return (pa != NULL); 21946 } 21947 21948 /* 21949 * Create hardware checksum attribute and fill it with the values passed. 21950 */ 21951 boolean_t 21952 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21953 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21954 { 21955 pattr_t *pa; 21956 pattrinfo_t pa_info; 21957 21958 ASSERT(mmd != NULL); 21959 21960 pa_info.type = PATTR_HCKSUM; 21961 pa_info.len = sizeof (pattr_hcksum_t); 21962 21963 /* create and associate the attribute */ 21964 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21965 if (pa != NULL) { 21966 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21967 21968 hck->hcksum_start_offset = start_offset; 21969 hck->hcksum_stuff_offset = stuff_offset; 21970 hck->hcksum_end_offset = end_offset; 21971 hck->hcksum_flags = flags; 21972 } 21973 return (pa != NULL); 21974 } 21975 21976 /* 21977 * Create zerocopy attribute and fill it with the specified flags 21978 */ 21979 boolean_t 21980 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21981 { 21982 pattr_t *pa; 21983 pattrinfo_t pa_info; 21984 21985 ASSERT(mmd != NULL); 21986 pa_info.type = PATTR_ZCOPY; 21987 pa_info.len = sizeof (pattr_zcopy_t); 21988 21989 /* create and associate the attribute */ 21990 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21991 if (pa != NULL) { 21992 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21993 21994 zcopy->zcopy_flags = flags; 21995 } 21996 return (pa != NULL); 21997 } 21998 21999 /* 22000 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22001 * block chain. We could rewrite to handle arbitrary message block chains but 22002 * that would make the code complicated and slow. Right now there three 22003 * restrictions: 22004 * 22005 * 1. The first message block must contain the complete IP header and 22006 * at least 1 byte of payload data. 22007 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22008 * so that we can use a single Multidata message. 22009 * 3. No frag must be distributed over two or more message blocks so 22010 * that we don't need more than two packet descriptors per frag. 22011 * 22012 * The above restrictions allow us to support userland applications (which 22013 * will send down a single message block) and NFS over UDP (which will 22014 * send down a chain of at most three message blocks). 22015 * 22016 * We also don't use MDT for payloads with less than or equal to 22017 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22018 */ 22019 boolean_t 22020 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22021 { 22022 int blocks; 22023 ssize_t total, missing, size; 22024 22025 ASSERT(mp != NULL); 22026 ASSERT(hdr_len > 0); 22027 22028 size = MBLKL(mp) - hdr_len; 22029 if (size <= 0) 22030 return (B_FALSE); 22031 22032 /* The first mblk contains the header and some payload. */ 22033 blocks = 1; 22034 total = size; 22035 size %= len; 22036 missing = (size == 0) ? 0 : (len - size); 22037 mp = mp->b_cont; 22038 22039 while (mp != NULL) { 22040 /* 22041 * Give up if we encounter a zero length message block. 22042 * In practice, this should rarely happen and therefore 22043 * not worth the trouble of freeing and re-linking the 22044 * mblk from the chain to handle such case. 22045 */ 22046 if ((size = MBLKL(mp)) == 0) 22047 return (B_FALSE); 22048 22049 /* Too many payload buffers for a single Multidata message? */ 22050 if (++blocks > MULTIDATA_MAX_PBUFS) 22051 return (B_FALSE); 22052 22053 total += size; 22054 /* Is a frag distributed over two or more message blocks? */ 22055 if (missing > size) 22056 return (B_FALSE); 22057 size -= missing; 22058 22059 size %= len; 22060 missing = (size == 0) ? 0 : (len - size); 22061 22062 mp = mp->b_cont; 22063 } 22064 22065 return (total > ip_wput_frag_mdt_min); 22066 } 22067 22068 /* 22069 * Outbound IPv4 fragmentation routine using MDT. 22070 */ 22071 static void 22072 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22073 uint32_t frag_flag, int offset) 22074 { 22075 ipha_t *ipha_orig; 22076 int i1, ip_data_end; 22077 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22078 mblk_t *hdr_mp, *md_mp = NULL; 22079 unsigned char *hdr_ptr, *pld_ptr; 22080 multidata_t *mmd; 22081 ip_pdescinfo_t pdi; 22082 22083 ASSERT(DB_TYPE(mp) == M_DATA); 22084 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22085 22086 ipha_orig = (ipha_t *)mp->b_rptr; 22087 mp->b_rptr += sizeof (ipha_t); 22088 22089 /* Calculate how many packets we will send out */ 22090 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22091 pkts = (i1 + len - 1) / len; 22092 ASSERT(pkts > 1); 22093 22094 /* Allocate a message block which will hold all the IP Headers. */ 22095 wroff = ip_wroff_extra; 22096 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22097 22098 i1 = pkts * hdr_chunk_len; 22099 /* 22100 * Create the header buffer, Multidata and destination address 22101 * and SAP attribute that should be associated with it. 22102 */ 22103 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22104 ((hdr_mp->b_wptr += i1), 22105 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22106 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 22107 freemsg(mp); 22108 if (md_mp == NULL) { 22109 freemsg(hdr_mp); 22110 } else { 22111 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22112 freemsg(md_mp); 22113 } 22114 IP_STAT(ip_frag_mdt_allocfail); 22115 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22116 return; 22117 } 22118 IP_STAT(ip_frag_mdt_allocd); 22119 22120 /* 22121 * Add a payload buffer to the Multidata; this operation must not 22122 * fail, or otherwise our logic in this routine is broken. There 22123 * is no memory allocation done by the routine, so any returned 22124 * failure simply tells us that we've done something wrong. 22125 * 22126 * A failure tells us that either we're adding the same payload 22127 * buffer more than once, or we're trying to add more buffers than 22128 * allowed. None of the above cases should happen, and we panic 22129 * because either there's horrible heap corruption, and/or 22130 * programming mistake. 22131 */ 22132 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22133 goto pbuf_panic; 22134 22135 hdr_ptr = hdr_mp->b_rptr; 22136 pld_ptr = mp->b_rptr; 22137 22138 /* Establish the ending byte offset, based on the starting offset. */ 22139 offset <<= 3; 22140 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22141 IP_SIMPLE_HDR_LENGTH; 22142 22143 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22144 22145 while (pld_ptr < mp->b_wptr) { 22146 ipha_t *ipha; 22147 uint16_t offset_and_flags; 22148 uint16_t ip_len; 22149 int error; 22150 22151 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22152 ipha = (ipha_t *)(hdr_ptr + wroff); 22153 ASSERT(OK_32PTR(ipha)); 22154 *ipha = *ipha_orig; 22155 22156 if (ip_data_end - offset > len) { 22157 offset_and_flags = IPH_MF; 22158 } else { 22159 /* 22160 * Last frag. Set len to the length of this last piece. 22161 */ 22162 len = ip_data_end - offset; 22163 /* A frag of a frag might have IPH_MF non-zero */ 22164 offset_and_flags = 22165 ntohs(ipha->ipha_fragment_offset_and_flags) & 22166 IPH_MF; 22167 } 22168 offset_and_flags |= (uint16_t)(offset >> 3); 22169 offset_and_flags |= (uint16_t)frag_flag; 22170 /* Store the offset and flags in the IP header. */ 22171 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22172 22173 /* Store the length in the IP header. */ 22174 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22175 ipha->ipha_length = htons(ip_len); 22176 22177 /* 22178 * Set the IP header checksum. Note that mp is just 22179 * the header, so this is easy to pass to ip_csum. 22180 */ 22181 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22182 22183 /* 22184 * Record offset and size of header and data of the next packet 22185 * in the multidata message. 22186 */ 22187 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22188 PDESC_PLD_INIT(&pdi); 22189 i1 = MIN(mp->b_wptr - pld_ptr, len); 22190 ASSERT(i1 > 0); 22191 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22192 if (i1 == len) { 22193 pld_ptr += len; 22194 } else { 22195 i1 = len - i1; 22196 mp = mp->b_cont; 22197 ASSERT(mp != NULL); 22198 ASSERT(MBLKL(mp) >= i1); 22199 /* 22200 * Attach the next payload message block to the 22201 * multidata message. 22202 */ 22203 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22204 goto pbuf_panic; 22205 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22206 pld_ptr = mp->b_rptr + i1; 22207 } 22208 22209 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22210 KM_NOSLEEP)) == NULL) { 22211 /* 22212 * Any failure other than ENOMEM indicates that we 22213 * have passed in invalid pdesc info or parameters 22214 * to mmd_addpdesc, which must not happen. 22215 * 22216 * EINVAL is a result of failure on boundary checks 22217 * against the pdesc info contents. It should not 22218 * happen, and we panic because either there's 22219 * horrible heap corruption, and/or programming 22220 * mistake. 22221 */ 22222 if (error != ENOMEM) { 22223 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22224 "pdesc logic error detected for " 22225 "mmd %p pinfo %p (%d)\n", 22226 (void *)mmd, (void *)&pdi, error); 22227 /* NOTREACHED */ 22228 } 22229 IP_STAT(ip_frag_mdt_addpdescfail); 22230 /* Free unattached payload message blocks as well */ 22231 md_mp->b_cont = mp->b_cont; 22232 goto free_mmd; 22233 } 22234 22235 /* Advance fragment offset. */ 22236 offset += len; 22237 22238 /* Advance to location for next header in the buffer. */ 22239 hdr_ptr += hdr_chunk_len; 22240 22241 /* Did we reach the next payload message block? */ 22242 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22243 mp = mp->b_cont; 22244 /* 22245 * Attach the next message block with payload 22246 * data to the multidata message. 22247 */ 22248 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22249 goto pbuf_panic; 22250 pld_ptr = mp->b_rptr; 22251 } 22252 } 22253 22254 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22255 ASSERT(mp->b_wptr == pld_ptr); 22256 22257 /* Update IP statistics */ 22258 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22259 BUMP_MIB(&ip_mib, ipFragOKs); 22260 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22261 22262 if (pkt_type == OB_PKT) { 22263 ire->ire_ob_pkt_count += pkts; 22264 if (ire->ire_ipif != NULL) 22265 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22266 } else { 22267 /* 22268 * The type is IB_PKT in the forwarding path and in 22269 * the mobile IP case when the packet is being reverse- 22270 * tunneled to the home agent. 22271 */ 22272 ire->ire_ib_pkt_count += pkts; 22273 ASSERT(!IRE_IS_LOCAL(ire)); 22274 if (ire->ire_type & IRE_BROADCAST) 22275 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22276 else 22277 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22278 } 22279 ire->ire_last_used_time = lbolt; 22280 /* Send it down */ 22281 putnext(ire->ire_stq, md_mp); 22282 return; 22283 22284 pbuf_panic: 22285 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22286 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22287 pbuf_idx); 22288 /* NOTREACHED */ 22289 } 22290 22291 /* 22292 * Outbound IP fragmentation routine. 22293 * 22294 * NOTE : This routine does not ire_refrele the ire that is passed in 22295 * as the argument. 22296 */ 22297 static void 22298 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22299 uint32_t frag_flag) 22300 { 22301 int i1; 22302 mblk_t *ll_hdr_mp; 22303 int ll_hdr_len; 22304 int hdr_len; 22305 mblk_t *hdr_mp; 22306 ipha_t *ipha; 22307 int ip_data_end; 22308 int len; 22309 mblk_t *mp = mp_orig; 22310 int offset; 22311 queue_t *q; 22312 uint32_t v_hlen_tos_len; 22313 mblk_t *first_mp; 22314 boolean_t mctl_present; 22315 ill_t *ill; 22316 mblk_t *xmit_mp; 22317 mblk_t *carve_mp; 22318 ire_t *ire1 = NULL; 22319 ire_t *save_ire = NULL; 22320 mblk_t *next_mp = NULL; 22321 boolean_t last_frag = B_FALSE; 22322 boolean_t multirt_send = B_FALSE; 22323 ire_t *first_ire = NULL; 22324 irb_t *irb = NULL; 22325 22326 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22327 "ip_wput_frag_start:"); 22328 22329 if (mp->b_datap->db_type == M_CTL) { 22330 first_mp = mp; 22331 mp_orig = mp = mp->b_cont; 22332 mctl_present = B_TRUE; 22333 } else { 22334 first_mp = mp; 22335 mctl_present = B_FALSE; 22336 } 22337 22338 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22339 ipha = (ipha_t *)mp->b_rptr; 22340 22341 /* 22342 * If the Don't Fragment flag is on, generate an ICMP destination 22343 * unreachable, fragmentation needed. 22344 */ 22345 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22346 if (offset & IPH_DF) { 22347 BUMP_MIB(&ip_mib, ipFragFails); 22348 /* 22349 * Need to compute hdr checksum if called from ip_wput_ire. 22350 * Note that ip_rput_forward verifies the checksum before 22351 * calling this routine so in that case this is a noop. 22352 */ 22353 ipha->ipha_hdr_checksum = 0; 22354 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22355 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22356 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22357 "ip_wput_frag_end:(%S)", 22358 "don't fragment"); 22359 return; 22360 } 22361 if (mctl_present) 22362 freeb(first_mp); 22363 /* 22364 * Establish the starting offset. May not be zero if we are fragging 22365 * a fragment that is being forwarded. 22366 */ 22367 offset = offset & IPH_OFFSET; 22368 22369 /* TODO why is this test needed? */ 22370 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22371 if (((max_frag - LENGTH) & ~7) < 8) { 22372 /* TODO: notify ulp somehow */ 22373 BUMP_MIB(&ip_mib, ipFragFails); 22374 freemsg(mp); 22375 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22376 "ip_wput_frag_end:(%S)", 22377 "len < 8"); 22378 return; 22379 } 22380 22381 hdr_len = (V_HLEN & 0xF) << 2; 22382 22383 ipha->ipha_hdr_checksum = 0; 22384 22385 /* 22386 * Establish the number of bytes maximum per frag, after putting 22387 * in the header. 22388 */ 22389 len = (max_frag - hdr_len) & ~7; 22390 22391 /* Check if we can use MDT to send out the frags. */ 22392 ASSERT(!IRE_IS_LOCAL(ire)); 22393 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 22394 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 22395 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 22396 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 22397 ASSERT(ill->ill_mdt_capab != NULL); 22398 if (!ill->ill_mdt_capab->ill_mdt_on) { 22399 /* 22400 * If MDT has been previously turned off in the past, 22401 * and we currently can do MDT (due to IPQoS policy 22402 * removal, etc.) then enable it for this interface. 22403 */ 22404 ill->ill_mdt_capab->ill_mdt_on = 1; 22405 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 22406 ill->ill_name)); 22407 } 22408 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 22409 offset); 22410 return; 22411 } 22412 22413 /* Get a copy of the header for the trailing frags */ 22414 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 22415 if (!hdr_mp) { 22416 BUMP_MIB(&ip_mib, ipOutDiscards); 22417 freemsg(mp); 22418 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22419 "ip_wput_frag_end:(%S)", 22420 "couldn't copy hdr"); 22421 return; 22422 } 22423 if (DB_CRED(mp) != NULL) 22424 mblk_setcred(hdr_mp, DB_CRED(mp)); 22425 22426 /* Store the starting offset, with the MoreFrags flag. */ 22427 i1 = offset | IPH_MF | frag_flag; 22428 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 22429 22430 /* Establish the ending byte offset, based on the starting offset. */ 22431 offset <<= 3; 22432 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 22433 22434 /* Store the length of the first fragment in the IP header. */ 22435 i1 = len + hdr_len; 22436 ASSERT(i1 <= IP_MAXPACKET); 22437 ipha->ipha_length = htons((uint16_t)i1); 22438 22439 /* 22440 * Compute the IP header checksum for the first frag. We have to 22441 * watch out that we stop at the end of the header. 22442 */ 22443 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22444 22445 /* 22446 * Now carve off the first frag. Note that this will include the 22447 * original IP header. 22448 */ 22449 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 22450 BUMP_MIB(&ip_mib, ipOutDiscards); 22451 freeb(hdr_mp); 22452 freemsg(mp_orig); 22453 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22454 "ip_wput_frag_end:(%S)", 22455 "couldn't carve first"); 22456 return; 22457 } 22458 22459 /* 22460 * Multirouting case. Each fragment is replicated 22461 * via all non-condemned RTF_MULTIRT routes 22462 * currently resolved. 22463 * We ensure that first_ire is the first RTF_MULTIRT 22464 * ire in the bucket. 22465 */ 22466 if (ire->ire_flags & RTF_MULTIRT) { 22467 irb = ire->ire_bucket; 22468 ASSERT(irb != NULL); 22469 22470 multirt_send = B_TRUE; 22471 22472 /* Make sure we do not omit any multiroute ire. */ 22473 IRB_REFHOLD(irb); 22474 for (first_ire = irb->irb_ire; 22475 first_ire != NULL; 22476 first_ire = first_ire->ire_next) { 22477 if ((first_ire->ire_flags & RTF_MULTIRT) && 22478 (first_ire->ire_addr == ire->ire_addr) && 22479 !(first_ire->ire_marks & 22480 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22481 break; 22482 } 22483 22484 if (first_ire != NULL) { 22485 if (first_ire != ire) { 22486 IRE_REFHOLD(first_ire); 22487 /* 22488 * Do not release the ire passed in 22489 * as the argument. 22490 */ 22491 ire = first_ire; 22492 } else { 22493 first_ire = NULL; 22494 } 22495 } 22496 IRB_REFRELE(irb); 22497 22498 /* 22499 * Save the first ire; we will need to restore it 22500 * for the trailing frags. 22501 * We REFHOLD save_ire, as each iterated ire will be 22502 * REFRELEd. 22503 */ 22504 save_ire = ire; 22505 IRE_REFHOLD(save_ire); 22506 } 22507 22508 /* 22509 * First fragment emission loop. 22510 * In most cases, the emission loop below is entered only 22511 * once. Only in the case where the ire holds the RTF_MULTIRT 22512 * flag, do we loop to process all RTF_MULTIRT ires in the 22513 * bucket, and send the fragment through all crossed 22514 * RTF_MULTIRT routes. 22515 */ 22516 do { 22517 if (ire->ire_flags & RTF_MULTIRT) { 22518 /* 22519 * We are in a multiple send case, need to get 22520 * the next ire and make a copy of the packet. 22521 * ire1 holds here the next ire to process in the 22522 * bucket. If multirouting is expected, 22523 * any non-RTF_MULTIRT ire that has the 22524 * right destination address is ignored. 22525 * 22526 * We have to take into account the MTU of 22527 * each walked ire. max_frag is set by the 22528 * the caller and generally refers to 22529 * the primary ire entry. Here we ensure that 22530 * no route with a lower MTU will be used, as 22531 * fragments are carved once for all ires, 22532 * then replicated. 22533 */ 22534 ASSERT(irb != NULL); 22535 IRB_REFHOLD(irb); 22536 for (ire1 = ire->ire_next; 22537 ire1 != NULL; 22538 ire1 = ire1->ire_next) { 22539 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22540 continue; 22541 if (ire1->ire_addr != ire->ire_addr) 22542 continue; 22543 if (ire1->ire_marks & 22544 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22545 continue; 22546 /* 22547 * Ensure we do not exceed the MTU 22548 * of the next route. 22549 */ 22550 if (ire1->ire_max_frag < max_frag) { 22551 ip_multirt_bad_mtu(ire1, max_frag); 22552 continue; 22553 } 22554 22555 /* Got one. */ 22556 IRE_REFHOLD(ire1); 22557 break; 22558 } 22559 IRB_REFRELE(irb); 22560 22561 if (ire1 != NULL) { 22562 next_mp = copyb(mp); 22563 if ((next_mp == NULL) || 22564 ((mp->b_cont != NULL) && 22565 ((next_mp->b_cont = 22566 dupmsg(mp->b_cont)) == NULL))) { 22567 freemsg(next_mp); 22568 next_mp = NULL; 22569 ire_refrele(ire1); 22570 ire1 = NULL; 22571 } 22572 } 22573 22574 /* Last multiroute ire; don't loop anymore. */ 22575 if (ire1 == NULL) { 22576 multirt_send = B_FALSE; 22577 } 22578 } 22579 22580 ll_hdr_len = 0; 22581 LOCK_IRE_FP_MP(ire); 22582 ll_hdr_mp = ire->ire_fp_mp; 22583 if (ll_hdr_mp != NULL) { 22584 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22585 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 22586 } else { 22587 ll_hdr_mp = ire->ire_dlureq_mp; 22588 } 22589 22590 /* If there is a transmit header, get a copy for this frag. */ 22591 /* 22592 * TODO: should check db_ref before calling ip_carve_mp since 22593 * it might give us a dup. 22594 */ 22595 if (!ll_hdr_mp) { 22596 /* No xmit header. */ 22597 xmit_mp = mp; 22598 } else if (mp->b_datap->db_ref == 1 && 22599 ll_hdr_len != 0 && 22600 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22601 /* M_DATA fastpath */ 22602 mp->b_rptr -= ll_hdr_len; 22603 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 22604 xmit_mp = mp; 22605 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 22606 UNLOCK_IRE_FP_MP(ire); 22607 BUMP_MIB(&ip_mib, ipOutDiscards); 22608 freeb(hdr_mp); 22609 freemsg(mp); 22610 freemsg(mp_orig); 22611 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22612 "ip_wput_frag_end:(%S)", 22613 "discard"); 22614 22615 if (multirt_send) { 22616 ASSERT(ire1); 22617 ASSERT(next_mp); 22618 22619 freemsg(next_mp); 22620 ire_refrele(ire1); 22621 } 22622 if (save_ire != NULL) 22623 IRE_REFRELE(save_ire); 22624 22625 if (first_ire != NULL) 22626 ire_refrele(first_ire); 22627 return; 22628 } else { 22629 xmit_mp->b_cont = mp; 22630 if (DB_CRED(mp) != NULL) 22631 mblk_setcred(xmit_mp, DB_CRED(mp)); 22632 /* Get priority marking, if any. */ 22633 if (DB_TYPE(xmit_mp) == M_DATA) 22634 xmit_mp->b_band = mp->b_band; 22635 } 22636 UNLOCK_IRE_FP_MP(ire); 22637 q = ire->ire_stq; 22638 BUMP_MIB(&ip_mib, ipFragCreates); 22639 putnext(q, xmit_mp); 22640 if (pkt_type != OB_PKT) { 22641 /* 22642 * Update the packet count of trailing 22643 * RTF_MULTIRT ires. 22644 */ 22645 UPDATE_OB_PKT_COUNT(ire); 22646 } 22647 22648 if (multirt_send) { 22649 /* 22650 * We are in a multiple send case; look for 22651 * the next ire and re-enter the loop. 22652 */ 22653 ASSERT(ire1); 22654 ASSERT(next_mp); 22655 /* REFRELE the current ire before looping */ 22656 ire_refrele(ire); 22657 ire = ire1; 22658 ire1 = NULL; 22659 mp = next_mp; 22660 next_mp = NULL; 22661 } 22662 } while (multirt_send); 22663 22664 ASSERT(ire1 == NULL); 22665 22666 /* Restore the original ire; we need it for the trailing frags */ 22667 if (save_ire != NULL) { 22668 /* REFRELE the last iterated ire */ 22669 ire_refrele(ire); 22670 /* save_ire has been REFHOLDed */ 22671 ire = save_ire; 22672 save_ire = NULL; 22673 q = ire->ire_stq; 22674 } 22675 22676 if (pkt_type == OB_PKT) { 22677 UPDATE_OB_PKT_COUNT(ire); 22678 } else { 22679 UPDATE_IB_PKT_COUNT(ire); 22680 } 22681 22682 /* Advance the offset to the second frag starting point. */ 22683 offset += len; 22684 /* 22685 * Update hdr_len from the copied header - there might be less options 22686 * in the later fragments. 22687 */ 22688 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 22689 /* Loop until done. */ 22690 for (;;) { 22691 uint16_t offset_and_flags; 22692 uint16_t ip_len; 22693 22694 if (ip_data_end - offset > len) { 22695 /* 22696 * Carve off the appropriate amount from the original 22697 * datagram. 22698 */ 22699 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22700 mp = NULL; 22701 break; 22702 } 22703 /* 22704 * More frags after this one. Get another copy 22705 * of the header. 22706 */ 22707 if (carve_mp->b_datap->db_ref == 1 && 22708 hdr_mp->b_wptr - hdr_mp->b_rptr < 22709 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22710 /* Inline IP header */ 22711 carve_mp->b_rptr -= hdr_mp->b_wptr - 22712 hdr_mp->b_rptr; 22713 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22714 hdr_mp->b_wptr - hdr_mp->b_rptr); 22715 mp = carve_mp; 22716 } else { 22717 if (!(mp = copyb(hdr_mp))) { 22718 freemsg(carve_mp); 22719 break; 22720 } 22721 /* Get priority marking, if any. */ 22722 mp->b_band = carve_mp->b_band; 22723 mp->b_cont = carve_mp; 22724 } 22725 ipha = (ipha_t *)mp->b_rptr; 22726 offset_and_flags = IPH_MF; 22727 } else { 22728 /* 22729 * Last frag. Consume the header. Set len to 22730 * the length of this last piece. 22731 */ 22732 len = ip_data_end - offset; 22733 22734 /* 22735 * Carve off the appropriate amount from the original 22736 * datagram. 22737 */ 22738 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22739 mp = NULL; 22740 break; 22741 } 22742 if (carve_mp->b_datap->db_ref == 1 && 22743 hdr_mp->b_wptr - hdr_mp->b_rptr < 22744 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22745 /* Inline IP header */ 22746 carve_mp->b_rptr -= hdr_mp->b_wptr - 22747 hdr_mp->b_rptr; 22748 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22749 hdr_mp->b_wptr - hdr_mp->b_rptr); 22750 mp = carve_mp; 22751 freeb(hdr_mp); 22752 hdr_mp = mp; 22753 } else { 22754 mp = hdr_mp; 22755 /* Get priority marking, if any. */ 22756 mp->b_band = carve_mp->b_band; 22757 mp->b_cont = carve_mp; 22758 } 22759 ipha = (ipha_t *)mp->b_rptr; 22760 /* A frag of a frag might have IPH_MF non-zero */ 22761 offset_and_flags = 22762 ntohs(ipha->ipha_fragment_offset_and_flags) & 22763 IPH_MF; 22764 } 22765 offset_and_flags |= (uint16_t)(offset >> 3); 22766 offset_and_flags |= (uint16_t)frag_flag; 22767 /* Store the offset and flags in the IP header. */ 22768 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22769 22770 /* Store the length in the IP header. */ 22771 ip_len = (uint16_t)(len + hdr_len); 22772 ipha->ipha_length = htons(ip_len); 22773 22774 /* 22775 * Set the IP header checksum. Note that mp is just 22776 * the header, so this is easy to pass to ip_csum. 22777 */ 22778 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22779 22780 /* Attach a transmit header, if any, and ship it. */ 22781 if (pkt_type == OB_PKT) { 22782 UPDATE_OB_PKT_COUNT(ire); 22783 } else { 22784 UPDATE_IB_PKT_COUNT(ire); 22785 } 22786 22787 if (ire->ire_flags & RTF_MULTIRT) { 22788 irb = ire->ire_bucket; 22789 ASSERT(irb != NULL); 22790 22791 multirt_send = B_TRUE; 22792 22793 /* 22794 * Save the original ire; we will need to restore it 22795 * for the tailing frags. 22796 */ 22797 save_ire = ire; 22798 IRE_REFHOLD(save_ire); 22799 } 22800 /* 22801 * Emission loop for this fragment, similar 22802 * to what is done for the first fragment. 22803 */ 22804 do { 22805 if (multirt_send) { 22806 /* 22807 * We are in a multiple send case, need to get 22808 * the next ire and make a copy of the packet. 22809 */ 22810 ASSERT(irb != NULL); 22811 IRB_REFHOLD(irb); 22812 for (ire1 = ire->ire_next; 22813 ire1 != NULL; 22814 ire1 = ire1->ire_next) { 22815 if (!(ire1->ire_flags & RTF_MULTIRT)) 22816 continue; 22817 if (ire1->ire_addr != ire->ire_addr) 22818 continue; 22819 if (ire1->ire_marks & 22820 (IRE_MARK_CONDEMNED| 22821 IRE_MARK_HIDDEN)) 22822 continue; 22823 /* 22824 * Ensure we do not exceed the MTU 22825 * of the next route. 22826 */ 22827 if (ire1->ire_max_frag < max_frag) { 22828 ip_multirt_bad_mtu(ire1, 22829 max_frag); 22830 continue; 22831 } 22832 22833 /* Got one. */ 22834 IRE_REFHOLD(ire1); 22835 break; 22836 } 22837 IRB_REFRELE(irb); 22838 22839 if (ire1 != NULL) { 22840 next_mp = copyb(mp); 22841 if ((next_mp == NULL) || 22842 ((mp->b_cont != NULL) && 22843 ((next_mp->b_cont = 22844 dupmsg(mp->b_cont)) == NULL))) { 22845 freemsg(next_mp); 22846 next_mp = NULL; 22847 ire_refrele(ire1); 22848 ire1 = NULL; 22849 } 22850 } 22851 22852 /* Last multiroute ire; don't loop anymore. */ 22853 if (ire1 == NULL) { 22854 multirt_send = B_FALSE; 22855 } 22856 } 22857 22858 /* Update transmit header */ 22859 ll_hdr_len = 0; 22860 LOCK_IRE_FP_MP(ire); 22861 ll_hdr_mp = ire->ire_fp_mp; 22862 if (ll_hdr_mp != NULL) { 22863 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22864 ll_hdr_len = MBLKL(ll_hdr_mp); 22865 } else { 22866 ll_hdr_mp = ire->ire_dlureq_mp; 22867 } 22868 22869 if (!ll_hdr_mp) { 22870 xmit_mp = mp; 22871 } else if (mp->b_datap->db_ref == 1 && 22872 ll_hdr_len != 0 && 22873 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22874 /* M_DATA fastpath */ 22875 mp->b_rptr -= ll_hdr_len; 22876 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22877 ll_hdr_len); 22878 xmit_mp = mp; 22879 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22880 xmit_mp->b_cont = mp; 22881 if (DB_CRED(mp) != NULL) 22882 mblk_setcred(xmit_mp, DB_CRED(mp)); 22883 /* Get priority marking, if any. */ 22884 if (DB_TYPE(xmit_mp) == M_DATA) 22885 xmit_mp->b_band = mp->b_band; 22886 } else { 22887 /* 22888 * Exit both the replication and 22889 * fragmentation loops. 22890 */ 22891 UNLOCK_IRE_FP_MP(ire); 22892 goto drop_pkt; 22893 } 22894 UNLOCK_IRE_FP_MP(ire); 22895 BUMP_MIB(&ip_mib, ipFragCreates); 22896 putnext(q, xmit_mp); 22897 22898 if (pkt_type != OB_PKT) { 22899 /* 22900 * Update the packet count of trailing 22901 * RTF_MULTIRT ires. 22902 */ 22903 UPDATE_OB_PKT_COUNT(ire); 22904 } 22905 22906 /* All done if we just consumed the hdr_mp. */ 22907 if (mp == hdr_mp) { 22908 last_frag = B_TRUE; 22909 } 22910 22911 if (multirt_send) { 22912 /* 22913 * We are in a multiple send case; look for 22914 * the next ire and re-enter the loop. 22915 */ 22916 ASSERT(ire1); 22917 ASSERT(next_mp); 22918 /* REFRELE the current ire before looping */ 22919 ire_refrele(ire); 22920 ire = ire1; 22921 ire1 = NULL; 22922 q = ire->ire_stq; 22923 mp = next_mp; 22924 next_mp = NULL; 22925 } 22926 } while (multirt_send); 22927 /* 22928 * Restore the original ire; we need it for the 22929 * trailing frags 22930 */ 22931 if (save_ire != NULL) { 22932 ASSERT(ire1 == NULL); 22933 /* REFRELE the last iterated ire */ 22934 ire_refrele(ire); 22935 /* save_ire has been REFHOLDed */ 22936 ire = save_ire; 22937 q = ire->ire_stq; 22938 save_ire = NULL; 22939 } 22940 22941 if (last_frag) { 22942 BUMP_MIB(&ip_mib, ipFragOKs); 22943 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22944 "ip_wput_frag_end:(%S)", 22945 "consumed hdr_mp"); 22946 22947 if (first_ire != NULL) 22948 ire_refrele(first_ire); 22949 return; 22950 } 22951 /* Otherwise, advance and loop. */ 22952 offset += len; 22953 } 22954 22955 drop_pkt: 22956 /* Clean up following allocation failure. */ 22957 BUMP_MIB(&ip_mib, ipOutDiscards); 22958 freemsg(mp); 22959 if (mp != hdr_mp) 22960 freeb(hdr_mp); 22961 if (mp != mp_orig) 22962 freemsg(mp_orig); 22963 22964 if (save_ire != NULL) 22965 IRE_REFRELE(save_ire); 22966 if (first_ire != NULL) 22967 ire_refrele(first_ire); 22968 22969 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22970 "ip_wput_frag_end:(%S)", 22971 "end--alloc failure"); 22972 } 22973 22974 /* 22975 * Copy the header plus those options which have the copy bit set 22976 */ 22977 static mblk_t * 22978 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22979 { 22980 mblk_t *mp; 22981 uchar_t *up; 22982 22983 /* 22984 * Quick check if we need to look for options without the copy bit 22985 * set 22986 */ 22987 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22988 if (!mp) 22989 return (mp); 22990 mp->b_rptr += ip_wroff_extra; 22991 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22992 bcopy(rptr, mp->b_rptr, hdr_len); 22993 mp->b_wptr += hdr_len + ip_wroff_extra; 22994 return (mp); 22995 } 22996 up = mp->b_rptr; 22997 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22998 up += IP_SIMPLE_HDR_LENGTH; 22999 rptr += IP_SIMPLE_HDR_LENGTH; 23000 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23001 while (hdr_len > 0) { 23002 uint32_t optval; 23003 uint32_t optlen; 23004 23005 optval = *rptr; 23006 if (optval == IPOPT_EOL) 23007 break; 23008 if (optval == IPOPT_NOP) 23009 optlen = 1; 23010 else 23011 optlen = rptr[1]; 23012 if (optval & IPOPT_COPY) { 23013 bcopy(rptr, up, optlen); 23014 up += optlen; 23015 } 23016 rptr += optlen; 23017 hdr_len -= optlen; 23018 } 23019 /* 23020 * Make sure that we drop an even number of words by filling 23021 * with EOL to the next word boundary. 23022 */ 23023 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23024 hdr_len & 0x3; hdr_len++) 23025 *up++ = IPOPT_EOL; 23026 mp->b_wptr = up; 23027 /* Update header length */ 23028 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23029 return (mp); 23030 } 23031 23032 /* 23033 * Delivery to local recipients including fanout to multiple recipients. 23034 * Does not do checksumming of UDP/TCP. 23035 * Note: q should be the read side queue for either the ill or conn. 23036 * Note: rq should be the read side q for the lower (ill) stream. 23037 * We don't send packets to IPPF processing, thus the last argument 23038 * to all the fanout calls are B_FALSE. 23039 */ 23040 void 23041 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23042 int fanout_flags, zoneid_t zoneid) 23043 { 23044 uint32_t protocol; 23045 mblk_t *first_mp; 23046 boolean_t mctl_present; 23047 int ire_type; 23048 #define rptr ((uchar_t *)ipha) 23049 23050 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23051 "ip_wput_local_start: q %p", q); 23052 23053 if (ire != NULL) { 23054 ire_type = ire->ire_type; 23055 } else { 23056 /* 23057 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23058 * packet is not multicast, we can't tell the ire type. 23059 */ 23060 ASSERT(CLASSD(ipha->ipha_dst)); 23061 ire_type = IRE_BROADCAST; 23062 } 23063 23064 first_mp = mp; 23065 if (first_mp->b_datap->db_type == M_CTL) { 23066 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23067 if (!io->ipsec_out_secure) { 23068 /* 23069 * This ipsec_out_t was allocated in ip_wput 23070 * for multicast packets to store the ill_index. 23071 * As this is being delivered locally, we don't 23072 * need this anymore. 23073 */ 23074 mp = first_mp->b_cont; 23075 freeb(first_mp); 23076 first_mp = mp; 23077 mctl_present = B_FALSE; 23078 } else { 23079 mctl_present = B_TRUE; 23080 mp = first_mp->b_cont; 23081 ASSERT(mp != NULL); 23082 ipsec_out_to_in(first_mp); 23083 } 23084 } else { 23085 mctl_present = B_FALSE; 23086 } 23087 23088 loopback_packets++; 23089 23090 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23091 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23092 if (!IS_SIMPLE_IPH(ipha)) { 23093 ip_wput_local_options(ipha); 23094 } 23095 23096 protocol = ipha->ipha_protocol; 23097 switch (protocol) { 23098 case IPPROTO_ICMP: { 23099 ire_t *ire_zone; 23100 ilm_t *ilm; 23101 mblk_t *mp1; 23102 zoneid_t last_zoneid; 23103 23104 if (CLASSD(ipha->ipha_dst) && 23105 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23106 ASSERT(ire_type == IRE_BROADCAST); 23107 /* 23108 * In the multicast case, applications may have joined 23109 * the group from different zones, so we need to deliver 23110 * the packet to each of them. Loop through the 23111 * multicast memberships structures (ilm) on the receive 23112 * ill and send a copy of the packet up each matching 23113 * one. However, we don't do this for multicasts sent on 23114 * the loopback interface (PHYI_LOOPBACK flag set) as 23115 * they must stay in the sender's zone. 23116 * 23117 * ilm_add_v6() ensures that ilms in the same zone are 23118 * contiguous in the ill_ilm list. We use this property 23119 * to avoid sending duplicates needed when two 23120 * applications in the same zone join the same group on 23121 * different logical interfaces: we ignore the ilm if 23122 * its zoneid is the same as the last matching one. 23123 * In addition, the sending of the packet for 23124 * ire_zoneid is delayed until all of the other ilms 23125 * have been exhausted. 23126 */ 23127 last_zoneid = -1; 23128 ILM_WALKER_HOLD(ill); 23129 for (ilm = ill->ill_ilm; ilm != NULL; 23130 ilm = ilm->ilm_next) { 23131 if ((ilm->ilm_flags & ILM_DELETED) || 23132 ipha->ipha_dst != ilm->ilm_addr || 23133 ilm->ilm_zoneid == last_zoneid || 23134 ilm->ilm_zoneid == zoneid || 23135 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23136 continue; 23137 mp1 = ip_copymsg(first_mp); 23138 if (mp1 == NULL) 23139 continue; 23140 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23141 mctl_present, B_FALSE, ill, 23142 ilm->ilm_zoneid); 23143 last_zoneid = ilm->ilm_zoneid; 23144 } 23145 ILM_WALKER_RELE(ill); 23146 /* 23147 * Loopback case: the sending endpoint has 23148 * IP_MULTICAST_LOOP disabled, therefore we don't 23149 * dispatch the multicast packet to the sending zone. 23150 */ 23151 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23152 freemsg(first_mp); 23153 return; 23154 } 23155 } else if (ire_type == IRE_BROADCAST) { 23156 /* 23157 * In the broadcast case, there may be many zones 23158 * which need a copy of the packet delivered to them. 23159 * There is one IRE_BROADCAST per broadcast address 23160 * and per zone; we walk those using a helper function. 23161 * In addition, the sending of the packet for zoneid is 23162 * delayed until all of the other ires have been 23163 * processed. 23164 */ 23165 IRB_REFHOLD(ire->ire_bucket); 23166 ire_zone = NULL; 23167 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23168 ire)) != NULL) { 23169 mp1 = ip_copymsg(first_mp); 23170 if (mp1 == NULL) 23171 continue; 23172 23173 UPDATE_IB_PKT_COUNT(ire_zone); 23174 ire_zone->ire_last_used_time = lbolt; 23175 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23176 mctl_present, B_FALSE, ill, 23177 ire_zone->ire_zoneid); 23178 } 23179 IRB_REFRELE(ire->ire_bucket); 23180 } 23181 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23182 0, mctl_present, B_FALSE, ill, zoneid); 23183 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23184 "ip_wput_local_end: q %p (%S)", 23185 q, "icmp"); 23186 return; 23187 } 23188 case IPPROTO_IGMP: 23189 if (igmp_input(q, mp, ill)) { 23190 /* Bad packet - discarded by igmp_input */ 23191 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23192 "ip_wput_local_end: q %p (%S)", 23193 q, "igmp_input--bad packet"); 23194 if (mctl_present) 23195 freeb(first_mp); 23196 return; 23197 } 23198 /* 23199 * igmp_input() may have pulled up the message so ipha needs to 23200 * be reinitialized. 23201 */ 23202 ipha = (ipha_t *)mp->b_rptr; 23203 /* deliver to local raw users */ 23204 break; 23205 case IPPROTO_ENCAP: 23206 /* 23207 * This case is covered by either ip_fanout_proto, or by 23208 * the above security processing for self-tunneled packets. 23209 */ 23210 break; 23211 case IPPROTO_UDP: { 23212 uint16_t *up; 23213 uint32_t ports; 23214 23215 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23216 UDP_PORTS_OFFSET); 23217 /* Force a 'valid' checksum. */ 23218 up[3] = 0; 23219 23220 ports = *(uint32_t *)up; 23221 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23222 (ire_type == IRE_BROADCAST), 23223 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23224 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23225 ill, zoneid); 23226 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23227 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23228 return; 23229 } 23230 case IPPROTO_TCP: { 23231 23232 /* 23233 * For TCP, discard broadcast packets. 23234 */ 23235 if ((ushort_t)ire_type == IRE_BROADCAST) { 23236 freemsg(first_mp); 23237 BUMP_MIB(&ip_mib, ipInDiscards); 23238 ip2dbg(("ip_wput_local: discard broadcast\n")); 23239 return; 23240 } 23241 23242 if (mp->b_datap->db_type == M_DATA) { 23243 /* 23244 * M_DATA mblk, so init mblk (chain) for no struio(). 23245 */ 23246 mblk_t *mp1 = mp; 23247 23248 do 23249 mp1->b_datap->db_struioflag = 0; 23250 while ((mp1 = mp1->b_cont) != NULL); 23251 } 23252 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23253 <= mp->b_wptr); 23254 ip_fanout_tcp(q, first_mp, ill, ipha, 23255 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23256 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23257 mctl_present, B_FALSE, zoneid); 23258 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23259 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23260 return; 23261 } 23262 case IPPROTO_SCTP: 23263 { 23264 uint32_t ports; 23265 23266 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23267 ip_fanout_sctp(first_mp, ill, ipha, ports, 23268 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23269 IP_FF_IP6INFO, 23270 mctl_present, B_FALSE, 0, zoneid); 23271 return; 23272 } 23273 23274 default: 23275 break; 23276 } 23277 /* 23278 * Find a client for some other protocol. We give 23279 * copies to multiple clients, if more than one is 23280 * bound. 23281 */ 23282 ip_fanout_proto(q, first_mp, ill, ipha, 23283 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23284 mctl_present, B_FALSE, ill, zoneid); 23285 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23286 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23287 #undef rptr 23288 } 23289 23290 /* 23291 * Update any source route, record route, or timestamp options. 23292 * Check that we are at end of strict source route. 23293 * The options have been sanity checked by ip_wput_options(). 23294 */ 23295 static void 23296 ip_wput_local_options(ipha_t *ipha) 23297 { 23298 ipoptp_t opts; 23299 uchar_t *opt; 23300 uint8_t optval; 23301 uint8_t optlen; 23302 ipaddr_t dst; 23303 uint32_t ts; 23304 ire_t *ire; 23305 timestruc_t now; 23306 23307 ip2dbg(("ip_wput_local_options\n")); 23308 for (optval = ipoptp_first(&opts, ipha); 23309 optval != IPOPT_EOL; 23310 optval = ipoptp_next(&opts)) { 23311 opt = opts.ipoptp_cur; 23312 optlen = opts.ipoptp_len; 23313 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23314 switch (optval) { 23315 uint32_t off; 23316 case IPOPT_SSRR: 23317 case IPOPT_LSRR: 23318 off = opt[IPOPT_OFFSET]; 23319 off--; 23320 if (optlen < IP_ADDR_LEN || 23321 off > optlen - IP_ADDR_LEN) { 23322 /* End of source route */ 23323 break; 23324 } 23325 /* 23326 * This will only happen if two consecutive entries 23327 * in the source route contains our address or if 23328 * it is a packet with a loose source route which 23329 * reaches us before consuming the whole source route 23330 */ 23331 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23332 if (optval == IPOPT_SSRR) { 23333 return; 23334 } 23335 /* 23336 * Hack: instead of dropping the packet truncate the 23337 * source route to what has been used by filling the 23338 * rest with IPOPT_NOP. 23339 */ 23340 opt[IPOPT_OLEN] = (uint8_t)off; 23341 while (off < optlen) { 23342 opt[off++] = IPOPT_NOP; 23343 } 23344 break; 23345 case IPOPT_RR: 23346 off = opt[IPOPT_OFFSET]; 23347 off--; 23348 if (optlen < IP_ADDR_LEN || 23349 off > optlen - IP_ADDR_LEN) { 23350 /* No more room - ignore */ 23351 ip1dbg(( 23352 "ip_wput_forward_options: end of RR\n")); 23353 break; 23354 } 23355 dst = htonl(INADDR_LOOPBACK); 23356 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23357 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23358 break; 23359 case IPOPT_TS: 23360 /* Insert timestamp if there is romm */ 23361 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23362 case IPOPT_TS_TSONLY: 23363 off = IPOPT_TS_TIMELEN; 23364 break; 23365 case IPOPT_TS_PRESPEC: 23366 case IPOPT_TS_PRESPEC_RFC791: 23367 /* Verify that the address matched */ 23368 off = opt[IPOPT_OFFSET] - 1; 23369 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 23370 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 23371 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23372 if (ire == NULL) { 23373 /* Not for us */ 23374 break; 23375 } 23376 ire_refrele(ire); 23377 /* FALLTHRU */ 23378 case IPOPT_TS_TSANDADDR: 23379 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 23380 break; 23381 default: 23382 /* 23383 * ip_*put_options should have already 23384 * dropped this packet. 23385 */ 23386 cmn_err(CE_PANIC, "ip_wput_local_options: " 23387 "unknown IT - bug in ip_wput_options?\n"); 23388 return; /* Keep "lint" happy */ 23389 } 23390 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 23391 /* Increase overflow counter */ 23392 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 23393 opt[IPOPT_POS_OV_FLG] = (uint8_t) 23394 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 23395 (off << 4); 23396 break; 23397 } 23398 off = opt[IPOPT_OFFSET] - 1; 23399 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23400 case IPOPT_TS_PRESPEC: 23401 case IPOPT_TS_PRESPEC_RFC791: 23402 case IPOPT_TS_TSANDADDR: 23403 dst = htonl(INADDR_LOOPBACK); 23404 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23405 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23406 /* FALLTHRU */ 23407 case IPOPT_TS_TSONLY: 23408 off = opt[IPOPT_OFFSET] - 1; 23409 /* Compute # of milliseconds since midnight */ 23410 gethrestime(&now); 23411 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 23412 now.tv_nsec / (NANOSEC / MILLISEC); 23413 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 23414 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 23415 break; 23416 } 23417 break; 23418 } 23419 } 23420 } 23421 23422 /* 23423 * Send out a multicast packet on interface ipif. 23424 * The sender does not have an conn. 23425 * Caller verifies that this isn't a PHYI_LOOPBACK. 23426 */ 23427 void 23428 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 23429 { 23430 ipha_t *ipha; 23431 ire_t *ire; 23432 ipaddr_t dst; 23433 mblk_t *first_mp; 23434 23435 /* igmp_sendpkt always allocates a ipsec_out_t */ 23436 ASSERT(mp->b_datap->db_type == M_CTL); 23437 ASSERT(!ipif->ipif_isv6); 23438 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 23439 23440 first_mp = mp; 23441 mp = first_mp->b_cont; 23442 ASSERT(mp->b_datap->db_type == M_DATA); 23443 ipha = (ipha_t *)mp->b_rptr; 23444 23445 /* 23446 * Find an IRE which matches the destination and the outgoing 23447 * queue (i.e. the outgoing interface.) 23448 */ 23449 if (ipif->ipif_flags & IPIF_POINTOPOINT) 23450 dst = ipif->ipif_pp_dst_addr; 23451 else 23452 dst = ipha->ipha_dst; 23453 /* 23454 * The source address has already been initialized by the 23455 * caller and hence matching on ILL (MATCH_IRE_ILL) would 23456 * be sufficient rather than MATCH_IRE_IPIF. 23457 * 23458 * This function is used for sending IGMP packets. We need 23459 * to make sure that we send the packet out of the interface 23460 * (ipif->ipif_ill) where we joined the group. This is to 23461 * prevent from switches doing IGMP snooping to send us multicast 23462 * packets for a given group on the interface we have joined. 23463 * If we can't find an ire, igmp_sendpkt has already initialized 23464 * ipsec_out_attach_if so that this will not be load spread in 23465 * ip_newroute_ipif. 23466 */ 23467 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 23468 MATCH_IRE_ILL); 23469 if (!ire) { 23470 /* 23471 * Mark this packet to make it be delivered to 23472 * ip_wput_ire after the new ire has been 23473 * created. 23474 */ 23475 mp->b_prev = NULL; 23476 mp->b_next = NULL; 23477 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 23478 return; 23479 } 23480 23481 /* 23482 * Honor the RTF_SETSRC flag; this is the only case 23483 * where we force this addr whatever the current src addr is, 23484 * because this address is set by igmp_sendpkt(), and 23485 * cannot be specified by any user. 23486 */ 23487 if (ire->ire_flags & RTF_SETSRC) { 23488 ipha->ipha_src = ire->ire_src_addr; 23489 } 23490 23491 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 23492 } 23493 23494 /* 23495 * NOTE : This function does not ire_refrele the ire argument passed in. 23496 * 23497 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 23498 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 23499 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 23500 * the ire_lock to access the ire_fp_mp in this case. 23501 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 23502 * prepending a fastpath message IPQoS processing must precede it, we also set 23503 * the b_band of the fastpath message to that of the mblk returned by IPQoS 23504 * (IPQoS might have set the b_band for CoS marking). 23505 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 23506 * must follow it so that IPQoS can mark the dl_priority field for CoS 23507 * marking, if needed. 23508 */ 23509 static mblk_t * 23510 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 23511 { 23512 uint_t hlen; 23513 ipha_t *ipha; 23514 mblk_t *mp1; 23515 boolean_t qos_done = B_FALSE; 23516 uchar_t *ll_hdr; 23517 23518 #define rptr ((uchar_t *)ipha) 23519 23520 ipha = (ipha_t *)mp->b_rptr; 23521 hlen = 0; 23522 LOCK_IRE_FP_MP(ire); 23523 if ((mp1 = ire->ire_fp_mp) != NULL) { 23524 ASSERT(DB_TYPE(mp1) == M_DATA); 23525 /* Initiate IPPF processing */ 23526 if ((proc != 0) && IPP_ENABLED(proc)) { 23527 UNLOCK_IRE_FP_MP(ire); 23528 ip_process(proc, &mp, ill_index); 23529 if (mp == NULL) 23530 return (NULL); 23531 23532 ipha = (ipha_t *)mp->b_rptr; 23533 LOCK_IRE_FP_MP(ire); 23534 if ((mp1 = ire->ire_fp_mp) == NULL) { 23535 qos_done = B_TRUE; 23536 goto no_fp_mp; 23537 } 23538 ASSERT(DB_TYPE(mp1) == M_DATA); 23539 } 23540 hlen = MBLKL(mp1); 23541 /* 23542 * Check if we have enough room to prepend fastpath 23543 * header 23544 */ 23545 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 23546 ll_hdr = rptr - hlen; 23547 bcopy(mp1->b_rptr, ll_hdr, hlen); 23548 /* XXX ipha is not aligned here */ 23549 ipha = (ipha_t *)(rptr - hlen); 23550 /* 23551 * Set the b_rptr to the start of the link layer 23552 * header 23553 */ 23554 mp->b_rptr = rptr; 23555 mp1 = mp; 23556 } else { 23557 mp1 = copyb(mp1); 23558 if (mp1 == NULL) 23559 goto unlock_err; 23560 mp1->b_band = mp->b_band; 23561 mp1->b_cont = mp; 23562 /* 23563 * certain system generated traffic may not 23564 * have cred/label in ip header block. This 23565 * is true even for a labeled system. But for 23566 * labeled traffic, inherit the label in the 23567 * new header. 23568 */ 23569 if (DB_CRED(mp) != NULL) 23570 mblk_setcred(mp1, DB_CRED(mp)); 23571 /* 23572 * XXX disable ICK_VALID and compute checksum 23573 * here; can happen if ire_fp_mp changes and 23574 * it can't be copied now due to insufficient 23575 * space. (unlikely, fp mp can change, but it 23576 * does not increase in length) 23577 */ 23578 } 23579 UNLOCK_IRE_FP_MP(ire); 23580 } else { 23581 no_fp_mp: 23582 mp1 = copyb(ire->ire_dlureq_mp); 23583 if (mp1 == NULL) { 23584 unlock_err: 23585 UNLOCK_IRE_FP_MP(ire); 23586 freemsg(mp); 23587 return (NULL); 23588 } 23589 UNLOCK_IRE_FP_MP(ire); 23590 mp1->b_cont = mp; 23591 /* 23592 * certain system generated traffic may not 23593 * have cred/label in ip header block. This 23594 * is true even for a labeled system. But for 23595 * labeled traffic, inherit the label in the 23596 * new header. 23597 */ 23598 if (DB_CRED(mp) != NULL) 23599 mblk_setcred(mp1, DB_CRED(mp)); 23600 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 23601 ip_process(proc, &mp1, ill_index); 23602 if (mp1 == NULL) 23603 return (NULL); 23604 } 23605 } 23606 return (mp1); 23607 #undef rptr 23608 } 23609 23610 /* 23611 * Finish the outbound IPsec processing for an IPv6 packet. This function 23612 * is called from ipsec_out_process() if the IPsec packet was processed 23613 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23614 * asynchronously. 23615 */ 23616 void 23617 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 23618 ire_t *ire_arg) 23619 { 23620 in6_addr_t *v6dstp; 23621 ire_t *ire; 23622 mblk_t *mp; 23623 uint_t ill_index; 23624 ipsec_out_t *io; 23625 boolean_t attach_if, hwaccel; 23626 uint32_t flags = IP6_NO_IPPOLICY; 23627 int match_flags; 23628 zoneid_t zoneid; 23629 boolean_t ill_need_rele = B_FALSE; 23630 boolean_t ire_need_rele = B_FALSE; 23631 23632 mp = ipsec_mp->b_cont; 23633 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23634 ill_index = io->ipsec_out_ill_index; 23635 if (io->ipsec_out_reachable) { 23636 flags |= IPV6_REACHABILITY_CONFIRMATION; 23637 } 23638 attach_if = io->ipsec_out_attach_if; 23639 hwaccel = io->ipsec_out_accelerated; 23640 zoneid = io->ipsec_out_zoneid; 23641 ASSERT(zoneid != ALL_ZONES); 23642 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23643 /* Multicast addresses should have non-zero ill_index. */ 23644 v6dstp = &ip6h->ip6_dst; 23645 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 23646 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 23647 ASSERT(!attach_if || ill_index != 0); 23648 if (ill_index != 0) { 23649 if (ill == NULL) { 23650 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 23651 B_TRUE); 23652 23653 /* Failure case frees things for us. */ 23654 if (ill == NULL) 23655 return; 23656 23657 ill_need_rele = B_TRUE; 23658 } 23659 /* 23660 * If this packet needs to go out on a particular interface 23661 * honor it. 23662 */ 23663 if (attach_if) { 23664 match_flags = MATCH_IRE_ILL; 23665 23666 /* 23667 * Check if we need an ire that will not be 23668 * looked up by anybody else i.e. HIDDEN. 23669 */ 23670 if (ill_is_probeonly(ill)) { 23671 match_flags |= MATCH_IRE_MARK_HIDDEN; 23672 } 23673 } 23674 } 23675 ASSERT(mp != NULL); 23676 23677 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 23678 boolean_t unspec_src; 23679 ipif_t *ipif; 23680 23681 /* 23682 * Use the ill_index to get the right ill. 23683 */ 23684 unspec_src = io->ipsec_out_unspec_src; 23685 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23686 if (ipif == NULL) { 23687 if (ill_need_rele) 23688 ill_refrele(ill); 23689 freemsg(ipsec_mp); 23690 return; 23691 } 23692 23693 if (ire_arg != NULL) { 23694 ire = ire_arg; 23695 } else { 23696 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23697 zoneid, MBLK_GETLABEL(mp), match_flags); 23698 ire_need_rele = B_TRUE; 23699 } 23700 if (ire != NULL) { 23701 ipif_refrele(ipif); 23702 /* 23703 * XXX Do the multicast forwarding now, as the IPSEC 23704 * processing has been done. 23705 */ 23706 goto send; 23707 } 23708 23709 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 23710 mp->b_prev = NULL; 23711 mp->b_next = NULL; 23712 23713 /* 23714 * If the IPsec packet was processed asynchronously, 23715 * drop it now. 23716 */ 23717 if (q == NULL) { 23718 if (ill_need_rele) 23719 ill_refrele(ill); 23720 freemsg(ipsec_mp); 23721 return; 23722 } 23723 23724 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 23725 unspec_src, zoneid); 23726 ipif_refrele(ipif); 23727 } else { 23728 if (attach_if) { 23729 ipif_t *ipif; 23730 23731 ipif = ipif_get_next_ipif(NULL, ill); 23732 if (ipif == NULL) { 23733 if (ill_need_rele) 23734 ill_refrele(ill); 23735 freemsg(ipsec_mp); 23736 return; 23737 } 23738 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23739 zoneid, MBLK_GETLABEL(mp), match_flags); 23740 ire_need_rele = B_TRUE; 23741 ipif_refrele(ipif); 23742 } else { 23743 if (ire_arg != NULL) { 23744 ire = ire_arg; 23745 } else { 23746 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 23747 ire_need_rele = B_TRUE; 23748 } 23749 } 23750 if (ire != NULL) 23751 goto send; 23752 /* 23753 * ire disappeared underneath. 23754 * 23755 * What we need to do here is the ip_newroute 23756 * logic to get the ire without doing the IPSEC 23757 * processing. Follow the same old path. But this 23758 * time, ip_wput or ire_add_then_send will call us 23759 * directly as all the IPSEC operations are done. 23760 */ 23761 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 23762 mp->b_prev = NULL; 23763 mp->b_next = NULL; 23764 23765 /* 23766 * If the IPsec packet was processed asynchronously, 23767 * drop it now. 23768 */ 23769 if (q == NULL) { 23770 if (ill_need_rele) 23771 ill_refrele(ill); 23772 freemsg(ipsec_mp); 23773 return; 23774 } 23775 23776 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 23777 zoneid); 23778 } 23779 if (ill != NULL && ill_need_rele) 23780 ill_refrele(ill); 23781 return; 23782 send: 23783 if (ill != NULL && ill_need_rele) 23784 ill_refrele(ill); 23785 23786 /* Local delivery */ 23787 if (ire->ire_stq == NULL) { 23788 ASSERT(q != NULL); 23789 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 23790 ire, 0); 23791 if (ire_need_rele) 23792 ire_refrele(ire); 23793 return; 23794 } 23795 /* 23796 * Everything is done. Send it out on the wire. 23797 * We force the insertion of a fragment header using the 23798 * IPH_FRAG_HDR flag in two cases: 23799 * - after reception of an ICMPv6 "packet too big" message 23800 * with a MTU < 1280 (cf. RFC 2460 section 5) 23801 * - for multirouted IPv6 packets, so that the receiver can 23802 * discard duplicates according to their fragment identifier 23803 */ 23804 /* XXX fix flow control problems. */ 23805 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 23806 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 23807 if (hwaccel) { 23808 /* 23809 * hardware acceleration does not handle these 23810 * "slow path" cases. 23811 */ 23812 /* IPsec KSTATS: should bump bean counter here. */ 23813 if (ire_need_rele) 23814 ire_refrele(ire); 23815 freemsg(ipsec_mp); 23816 return; 23817 } 23818 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 23819 (mp->b_cont ? msgdsize(mp) : 23820 mp->b_wptr - (uchar_t *)ip6h)) { 23821 /* IPsec KSTATS: should bump bean counter here. */ 23822 ip0dbg(("Packet length mismatch: %d, %ld\n", 23823 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 23824 msgdsize(mp))); 23825 if (ire_need_rele) 23826 ire_refrele(ire); 23827 freemsg(ipsec_mp); 23828 return; 23829 } 23830 ASSERT(mp->b_prev == NULL); 23831 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 23832 ntohs(ip6h->ip6_plen) + 23833 IPV6_HDR_LEN, ire->ire_max_frag)); 23834 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 23835 ire->ire_max_frag); 23836 } else { 23837 UPDATE_OB_PKT_COUNT(ire); 23838 ire->ire_last_used_time = lbolt; 23839 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 23840 } 23841 if (ire_need_rele) 23842 ire_refrele(ire); 23843 freeb(ipsec_mp); 23844 } 23845 23846 void 23847 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23848 { 23849 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23850 da_ipsec_t *hada; /* data attributes */ 23851 ill_t *ill = (ill_t *)q->q_ptr; 23852 23853 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23854 23855 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23856 /* IPsec KSTATS: Bump lose counter here! */ 23857 freemsg(mp); 23858 return; 23859 } 23860 23861 /* 23862 * It's an IPsec packet that must be 23863 * accelerated by the Provider, and the 23864 * outbound ill is IPsec acceleration capable. 23865 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23866 * to the ill. 23867 * IPsec KSTATS: should bump packet counter here. 23868 */ 23869 23870 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23871 if (hada_mp == NULL) { 23872 /* IPsec KSTATS: should bump packet counter here. */ 23873 freemsg(mp); 23874 return; 23875 } 23876 23877 hada_mp->b_datap->db_type = M_CTL; 23878 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23879 hada_mp->b_cont = mp; 23880 23881 hada = (da_ipsec_t *)hada_mp->b_rptr; 23882 bzero(hada, sizeof (da_ipsec_t)); 23883 hada->da_type = IPHADA_M_CTL; 23884 23885 putnext(q, hada_mp); 23886 } 23887 23888 /* 23889 * Finish the outbound IPsec processing. This function is called from 23890 * ipsec_out_process() if the IPsec packet was processed 23891 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23892 * asynchronously. 23893 */ 23894 void 23895 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23896 ire_t *ire_arg) 23897 { 23898 uint32_t v_hlen_tos_len; 23899 ipaddr_t dst; 23900 ipif_t *ipif = NULL; 23901 ire_t *ire; 23902 ire_t *ire1 = NULL; 23903 mblk_t *next_mp = NULL; 23904 uint32_t max_frag; 23905 boolean_t multirt_send = B_FALSE; 23906 mblk_t *mp; 23907 mblk_t *mp1; 23908 uint_t ill_index; 23909 ipsec_out_t *io; 23910 boolean_t attach_if; 23911 int match_flags, offset; 23912 irb_t *irb = NULL; 23913 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23914 zoneid_t zoneid; 23915 uint32_t cksum; 23916 uint16_t *up; 23917 #ifdef _BIG_ENDIAN 23918 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23919 #else 23920 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23921 #endif 23922 23923 mp = ipsec_mp->b_cont; 23924 ASSERT(mp != NULL); 23925 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23926 dst = ipha->ipha_dst; 23927 23928 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23929 ill_index = io->ipsec_out_ill_index; 23930 attach_if = io->ipsec_out_attach_if; 23931 zoneid = io->ipsec_out_zoneid; 23932 ASSERT(zoneid != ALL_ZONES); 23933 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23934 if (ill_index != 0) { 23935 if (ill == NULL) { 23936 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23937 ill_index, B_FALSE); 23938 23939 /* Failure case frees things for us. */ 23940 if (ill == NULL) 23941 return; 23942 23943 ill_need_rele = B_TRUE; 23944 } 23945 /* 23946 * If this packet needs to go out on a particular interface 23947 * honor it. 23948 */ 23949 if (attach_if) { 23950 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 23951 23952 /* 23953 * Check if we need an ire that will not be 23954 * looked up by anybody else i.e. HIDDEN. 23955 */ 23956 if (ill_is_probeonly(ill)) { 23957 match_flags |= MATCH_IRE_MARK_HIDDEN; 23958 } 23959 } 23960 } 23961 23962 if (CLASSD(dst)) { 23963 boolean_t conn_dontroute; 23964 /* 23965 * Use the ill_index to get the right ipif. 23966 */ 23967 conn_dontroute = io->ipsec_out_dontroute; 23968 if (ill_index == 0) 23969 ipif = ipif_lookup_group(dst, zoneid); 23970 else 23971 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23972 if (ipif == NULL) { 23973 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23974 " multicast\n")); 23975 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23976 freemsg(ipsec_mp); 23977 goto done; 23978 } 23979 /* 23980 * ipha_src has already been intialized with the 23981 * value of the ipif in ip_wput. All we need now is 23982 * an ire to send this downstream. 23983 */ 23984 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 23985 MBLK_GETLABEL(mp), match_flags); 23986 if (ire != NULL) { 23987 ill_t *ill1; 23988 /* 23989 * Do the multicast forwarding now, as the IPSEC 23990 * processing has been done. 23991 */ 23992 if (ip_g_mrouter && !conn_dontroute && 23993 (ill1 = ire_to_ill(ire))) { 23994 if (ip_mforward(ill1, ipha, mp)) { 23995 freemsg(ipsec_mp); 23996 ip1dbg(("ip_wput_ipsec_out: mforward " 23997 "failed\n")); 23998 ire_refrele(ire); 23999 goto done; 24000 } 24001 } 24002 goto send; 24003 } 24004 24005 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24006 mp->b_prev = NULL; 24007 mp->b_next = NULL; 24008 24009 /* 24010 * If the IPsec packet was processed asynchronously, 24011 * drop it now. 24012 */ 24013 if (q == NULL) { 24014 freemsg(ipsec_mp); 24015 goto done; 24016 } 24017 24018 /* 24019 * We may be using a wrong ipif to create the ire. 24020 * But it is okay as the source address is assigned 24021 * for the packet already. Next outbound packet would 24022 * create the IRE with the right IPIF in ip_wput. 24023 * 24024 * Also handle RTF_MULTIRT routes. 24025 */ 24026 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24027 } else { 24028 if (attach_if) { 24029 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24030 zoneid, MBLK_GETLABEL(mp), match_flags); 24031 } else { 24032 if (ire_arg != NULL) { 24033 ire = ire_arg; 24034 ire_need_rele = B_FALSE; 24035 } else { 24036 ire = ire_cache_lookup(dst, zoneid, 24037 MBLK_GETLABEL(mp)); 24038 } 24039 } 24040 if (ire != NULL) { 24041 goto send; 24042 } 24043 24044 /* 24045 * ire disappeared underneath. 24046 * 24047 * What we need to do here is the ip_newroute 24048 * logic to get the ire without doing the IPSEC 24049 * processing. Follow the same old path. But this 24050 * time, ip_wput or ire_add_then_put will call us 24051 * directly as all the IPSEC operations are done. 24052 */ 24053 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24054 mp->b_prev = NULL; 24055 mp->b_next = NULL; 24056 24057 /* 24058 * If the IPsec packet was processed asynchronously, 24059 * drop it now. 24060 */ 24061 if (q == NULL) { 24062 freemsg(ipsec_mp); 24063 goto done; 24064 } 24065 24066 /* 24067 * Since we're going through ip_newroute() again, we 24068 * need to make sure we don't: 24069 * 24070 * 1.) Trigger the ASSERT() with the ipha_ident 24071 * overloading. 24072 * 2.) Redo transport-layer checksumming, since we've 24073 * already done all that to get this far. 24074 * 24075 * The easiest way not do either of the above is to set 24076 * the ipha_ident field to IP_HDR_INCLUDED. 24077 */ 24078 ipha->ipha_ident = IP_HDR_INCLUDED; 24079 ip_newroute(q, ipsec_mp, dst, NULL, 24080 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24081 } 24082 goto done; 24083 send: 24084 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24085 /* 24086 * ESP NAT-Traversal packet. 24087 * 24088 * Just do software checksum for now. 24089 */ 24090 24091 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24092 IP_STAT(ip_out_sw_cksum); 24093 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24094 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24095 #define iphs ((uint16_t *)ipha) 24096 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24097 iphs[9] + ntohs(htons(ipha->ipha_length) - 24098 IP_SIMPLE_HDR_LENGTH); 24099 #undef iphs 24100 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24101 cksum = 0xFFFF; 24102 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24103 if (mp1->b_wptr - mp1->b_rptr >= 24104 offset + sizeof (uint16_t)) { 24105 up = (uint16_t *)(mp1->b_rptr + offset); 24106 *up = cksum; 24107 break; /* out of for loop */ 24108 } else { 24109 offset -= (mp->b_wptr - mp->b_rptr); 24110 } 24111 } /* Otherwise, just keep the all-zero checksum. */ 24112 24113 if (ire->ire_stq == NULL) { 24114 /* 24115 * Loopbacks go through ip_wput_local except for one case. 24116 * We come here if we generate a icmp_frag_needed message 24117 * after IPSEC processing is over. When this function calls 24118 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24119 * icmp_frag_needed. The message generated comes back here 24120 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24121 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24122 * source address as it is usually set in ip_wput_ire. As 24123 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24124 * and we end up here. We can't enter ip_wput_ire once the 24125 * IPSEC processing is over and hence we need to do it here. 24126 */ 24127 ASSERT(q != NULL); 24128 UPDATE_OB_PKT_COUNT(ire); 24129 ire->ire_last_used_time = lbolt; 24130 if (ipha->ipha_src == 0) 24131 ipha->ipha_src = ire->ire_src_addr; 24132 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24133 ire, 0, zoneid); 24134 if (ire_need_rele) 24135 ire_refrele(ire); 24136 goto done; 24137 } 24138 24139 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24140 /* 24141 * We are through with IPSEC processing. 24142 * Fragment this and send it on the wire. 24143 */ 24144 if (io->ipsec_out_accelerated) { 24145 /* 24146 * The packet has been accelerated but must 24147 * be fragmented. This should not happen 24148 * since AH and ESP must not accelerate 24149 * packets that need fragmentation, however 24150 * the configuration could have changed 24151 * since the AH or ESP processing. 24152 * Drop packet. 24153 * IPsec KSTATS: bump bean counter here. 24154 */ 24155 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24156 "fragmented accelerated packet!\n")); 24157 freemsg(ipsec_mp); 24158 } else { 24159 ip_wput_ire_fragmentit(ipsec_mp, ire); 24160 } 24161 if (ire_need_rele) 24162 ire_refrele(ire); 24163 goto done; 24164 } 24165 24166 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24167 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24168 (void *)ire->ire_ipif, (void *)ipif)); 24169 24170 /* 24171 * Multiroute the secured packet, unless IPsec really 24172 * requires the packet to go out only through a particular 24173 * interface. 24174 */ 24175 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24176 ire_t *first_ire; 24177 irb = ire->ire_bucket; 24178 ASSERT(irb != NULL); 24179 /* 24180 * This ire has been looked up as the one that 24181 * goes through the given ipif; 24182 * make sure we do not omit any other multiroute ire 24183 * that may be present in the bucket before this one. 24184 */ 24185 IRB_REFHOLD(irb); 24186 for (first_ire = irb->irb_ire; 24187 first_ire != NULL; 24188 first_ire = first_ire->ire_next) { 24189 if ((first_ire->ire_flags & RTF_MULTIRT) && 24190 (first_ire->ire_addr == ire->ire_addr) && 24191 !(first_ire->ire_marks & 24192 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24193 break; 24194 } 24195 24196 if ((first_ire != NULL) && (first_ire != ire)) { 24197 /* 24198 * Don't change the ire if the packet must 24199 * be fragmented if sent via this new one. 24200 */ 24201 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24202 IRE_REFHOLD(first_ire); 24203 if (ire_need_rele) 24204 ire_refrele(ire); 24205 else 24206 ire_need_rele = B_TRUE; 24207 ire = first_ire; 24208 } 24209 } 24210 IRB_REFRELE(irb); 24211 24212 multirt_send = B_TRUE; 24213 max_frag = ire->ire_max_frag; 24214 } else { 24215 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24216 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24217 "flag, attach_if %d\n", attach_if)); 24218 } 24219 } 24220 24221 /* 24222 * In most cases, the emission loop below is entered only once. 24223 * Only in the case where the ire holds the RTF_MULTIRT 24224 * flag, we loop to process all RTF_MULTIRT ires in the 24225 * bucket, and send the packet through all crossed 24226 * RTF_MULTIRT routes. 24227 */ 24228 do { 24229 if (multirt_send) { 24230 /* 24231 * ire1 holds here the next ire to process in the 24232 * bucket. If multirouting is expected, 24233 * any non-RTF_MULTIRT ire that has the 24234 * right destination address is ignored. 24235 */ 24236 ASSERT(irb != NULL); 24237 IRB_REFHOLD(irb); 24238 for (ire1 = ire->ire_next; 24239 ire1 != NULL; 24240 ire1 = ire1->ire_next) { 24241 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24242 continue; 24243 if (ire1->ire_addr != ire->ire_addr) 24244 continue; 24245 if (ire1->ire_marks & 24246 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24247 continue; 24248 /* No loopback here */ 24249 if (ire1->ire_stq == NULL) 24250 continue; 24251 /* 24252 * Ensure we do not exceed the MTU 24253 * of the next route. 24254 */ 24255 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24256 ip_multirt_bad_mtu(ire1, max_frag); 24257 continue; 24258 } 24259 24260 IRE_REFHOLD(ire1); 24261 break; 24262 } 24263 IRB_REFRELE(irb); 24264 if (ire1 != NULL) { 24265 /* 24266 * We are in a multiple send case, need to 24267 * make a copy of the packet. 24268 */ 24269 next_mp = copymsg(ipsec_mp); 24270 if (next_mp == NULL) { 24271 ire_refrele(ire1); 24272 ire1 = NULL; 24273 } 24274 } 24275 } 24276 24277 /* Everything is done. Send it out on the wire */ 24278 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 24279 if (mp1 == NULL) { 24280 BUMP_MIB(&ip_mib, ipOutDiscards); 24281 freemsg(ipsec_mp); 24282 if (ire_need_rele) 24283 ire_refrele(ire); 24284 if (ire1 != NULL) { 24285 ire_refrele(ire1); 24286 freemsg(next_mp); 24287 } 24288 goto done; 24289 } 24290 UPDATE_OB_PKT_COUNT(ire); 24291 ire->ire_last_used_time = lbolt; 24292 if (!io->ipsec_out_accelerated) { 24293 putnext(ire->ire_stq, mp1); 24294 } else { 24295 /* 24296 * Safety Pup says: make sure this is going to 24297 * the right interface! 24298 */ 24299 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 24300 int ifindex = ill1->ill_phyint->phyint_ifindex; 24301 24302 if (ifindex != io->ipsec_out_capab_ill_index) { 24303 /* IPsec kstats: bump lose counter */ 24304 freemsg(mp1); 24305 } else { 24306 ipsec_hw_putnext(ire->ire_stq, mp1); 24307 } 24308 } 24309 24310 freeb(ipsec_mp); 24311 if (ire_need_rele) 24312 ire_refrele(ire); 24313 24314 if (ire1 != NULL) { 24315 ire = ire1; 24316 ire_need_rele = B_TRUE; 24317 ASSERT(next_mp); 24318 ipsec_mp = next_mp; 24319 mp = ipsec_mp->b_cont; 24320 ire1 = NULL; 24321 next_mp = NULL; 24322 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24323 } else { 24324 multirt_send = B_FALSE; 24325 } 24326 } while (multirt_send); 24327 done: 24328 if (ill != NULL && ill_need_rele) 24329 ill_refrele(ill); 24330 if (ipif != NULL) 24331 ipif_refrele(ipif); 24332 } 24333 24334 /* 24335 * Get the ill corresponding to the specified ire, and compare its 24336 * capabilities with the protocol and algorithms specified by the 24337 * the SA obtained from ipsec_out. If they match, annotate the 24338 * ipsec_out structure to indicate that the packet needs acceleration. 24339 * 24340 * 24341 * A packet is eligible for outbound hardware acceleration if the 24342 * following conditions are satisfied: 24343 * 24344 * 1. the packet will not be fragmented 24345 * 2. the provider supports the algorithm 24346 * 3. there is no pending control message being exchanged 24347 * 4. snoop is not attached 24348 * 5. the destination address is not a broadcast or multicast address. 24349 * 24350 * Rationale: 24351 * - Hardware drivers do not support fragmentation with 24352 * the current interface. 24353 * - snoop, multicast, and broadcast may result in exposure of 24354 * a cleartext datagram. 24355 * We check all five of these conditions here. 24356 * 24357 * XXX would like to nuke "ire_t *" parameter here; problem is that 24358 * IRE is only way to figure out if a v4 address is a broadcast and 24359 * thus ineligible for acceleration... 24360 */ 24361 static void 24362 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 24363 { 24364 ipsec_out_t *io; 24365 mblk_t *data_mp; 24366 uint_t plen, overhead; 24367 24368 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 24369 return; 24370 24371 if (ill == NULL) 24372 return; 24373 24374 /* 24375 * Destination address is a broadcast or multicast. Punt. 24376 */ 24377 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 24378 IRE_LOCAL))) 24379 return; 24380 24381 data_mp = ipsec_mp->b_cont; 24382 24383 if (ill->ill_isv6) { 24384 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 24385 24386 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 24387 return; 24388 24389 plen = ip6h->ip6_plen; 24390 } else { 24391 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 24392 24393 if (CLASSD(ipha->ipha_dst)) 24394 return; 24395 24396 plen = ipha->ipha_length; 24397 } 24398 /* 24399 * Is there a pending DLPI control message being exchanged 24400 * between IP/IPsec and the DLS Provider? If there is, it 24401 * could be a SADB update, and the state of the DLS Provider 24402 * SADB might not be in sync with the SADB maintained by 24403 * IPsec. To avoid dropping packets or using the wrong keying 24404 * material, we do not accelerate this packet. 24405 */ 24406 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 24407 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24408 "ill_dlpi_pending! don't accelerate packet\n")); 24409 return; 24410 } 24411 24412 /* 24413 * Is the Provider in promiscous mode? If it does, we don't 24414 * accelerate the packet since it will bounce back up to the 24415 * listeners in the clear. 24416 */ 24417 if (ill->ill_promisc_on_phys) { 24418 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24419 "ill in promiscous mode, don't accelerate packet\n")); 24420 return; 24421 } 24422 24423 /* 24424 * Will the packet require fragmentation? 24425 */ 24426 24427 /* 24428 * IPsec ESP note: this is a pessimistic estimate, but the same 24429 * as is used elsewhere. 24430 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 24431 * + 2-byte trailer 24432 */ 24433 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 24434 IPSEC_BASE_ESP_HDR_SIZE(sa); 24435 24436 if ((plen + overhead) > ill->ill_max_mtu) 24437 return; 24438 24439 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24440 24441 /* 24442 * Can the ill accelerate this IPsec protocol and algorithm 24443 * specified by the SA? 24444 */ 24445 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 24446 ill->ill_isv6, sa)) { 24447 return; 24448 } 24449 24450 /* 24451 * Tell AH or ESP that the outbound ill is capable of 24452 * accelerating this packet. 24453 */ 24454 io->ipsec_out_is_capab_ill = B_TRUE; 24455 } 24456 24457 /* 24458 * Select which AH & ESP SA's to use (if any) for the outbound packet. 24459 * 24460 * If this function returns B_TRUE, the requested SA's have been filled 24461 * into the ipsec_out_*_sa pointers. 24462 * 24463 * If the function returns B_FALSE, the packet has been "consumed", most 24464 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 24465 * 24466 * The SA references created by the protocol-specific "select" 24467 * function will be released when the ipsec_mp is freed, thanks to the 24468 * ipsec_out_free destructor -- see spd.c. 24469 */ 24470 static boolean_t 24471 ipsec_out_select_sa(mblk_t *ipsec_mp) 24472 { 24473 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 24474 ipsec_out_t *io; 24475 ipsec_policy_t *pp; 24476 ipsec_action_t *ap; 24477 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24478 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24479 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24480 24481 if (!io->ipsec_out_secure) { 24482 /* 24483 * We came here by mistake. 24484 * Don't bother with ipsec processing 24485 * We should "discourage" this path in the future. 24486 */ 24487 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24488 return (B_FALSE); 24489 } 24490 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24491 ASSERT((io->ipsec_out_policy != NULL) || 24492 (io->ipsec_out_act != NULL)); 24493 24494 ASSERT(io->ipsec_out_failed == B_FALSE); 24495 24496 /* 24497 * IPSEC processing has started. 24498 */ 24499 io->ipsec_out_proc_begin = B_TRUE; 24500 ap = io->ipsec_out_act; 24501 if (ap == NULL) { 24502 pp = io->ipsec_out_policy; 24503 ASSERT(pp != NULL); 24504 ap = pp->ipsp_act; 24505 ASSERT(ap != NULL); 24506 } 24507 24508 /* 24509 * We have an action. now, let's select SA's. 24510 * (In the future, we can cache this in the conn_t..) 24511 */ 24512 if (ap->ipa_want_esp) { 24513 if (io->ipsec_out_esp_sa == NULL) { 24514 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 24515 IPPROTO_ESP); 24516 } 24517 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 24518 } 24519 24520 if (ap->ipa_want_ah) { 24521 if (io->ipsec_out_ah_sa == NULL) { 24522 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 24523 IPPROTO_AH); 24524 } 24525 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 24526 /* 24527 * The ESP and AH processing order needs to be preserved 24528 * when both protocols are required (ESP should be applied 24529 * before AH for an outbound packet). Force an ESP ACQUIRE 24530 * when both ESP and AH are required, and an AH ACQUIRE 24531 * is needed. 24532 */ 24533 if (ap->ipa_want_esp && need_ah_acquire) 24534 need_esp_acquire = B_TRUE; 24535 } 24536 24537 /* 24538 * Send an ACQUIRE (extended, regular, or both) if we need one. 24539 * Release SAs that got referenced, but will not be used until we 24540 * acquire _all_ of the SAs we need. 24541 */ 24542 if (need_ah_acquire || need_esp_acquire) { 24543 if (io->ipsec_out_ah_sa != NULL) { 24544 IPSA_REFRELE(io->ipsec_out_ah_sa); 24545 io->ipsec_out_ah_sa = NULL; 24546 } 24547 if (io->ipsec_out_esp_sa != NULL) { 24548 IPSA_REFRELE(io->ipsec_out_esp_sa); 24549 io->ipsec_out_esp_sa = NULL; 24550 } 24551 24552 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 24553 return (B_FALSE); 24554 } 24555 24556 return (B_TRUE); 24557 } 24558 24559 /* 24560 * Process an IPSEC_OUT message and see what you can 24561 * do with it. 24562 * IPQoS Notes: 24563 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 24564 * IPSec. 24565 * XXX would like to nuke ire_t. 24566 * XXX ill_index better be "real" 24567 */ 24568 void 24569 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 24570 { 24571 ipsec_out_t *io; 24572 ipsec_policy_t *pp; 24573 ipsec_action_t *ap; 24574 ipha_t *ipha; 24575 ip6_t *ip6h; 24576 mblk_t *mp; 24577 ill_t *ill; 24578 zoneid_t zoneid; 24579 ipsec_status_t ipsec_rc; 24580 boolean_t ill_need_rele = B_FALSE; 24581 24582 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24583 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24584 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24585 mp = ipsec_mp->b_cont; 24586 24587 /* 24588 * Initiate IPPF processing. We do it here to account for packets 24589 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 24590 * We can check for ipsec_out_proc_begin even for such packets, as 24591 * they will always be false (asserted below). 24592 */ 24593 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 24594 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 24595 io->ipsec_out_ill_index : ill_index); 24596 if (mp == NULL) { 24597 ip2dbg(("ipsec_out_process: packet dropped "\ 24598 "during IPPF processing\n")); 24599 freeb(ipsec_mp); 24600 BUMP_MIB(&ip_mib, ipOutDiscards); 24601 return; 24602 } 24603 } 24604 24605 if (!io->ipsec_out_secure) { 24606 /* 24607 * We came here by mistake. 24608 * Don't bother with ipsec processing 24609 * Should "discourage" this path in the future. 24610 */ 24611 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24612 goto done; 24613 } 24614 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24615 ASSERT((io->ipsec_out_policy != NULL) || 24616 (io->ipsec_out_act != NULL)); 24617 ASSERT(io->ipsec_out_failed == B_FALSE); 24618 24619 if (!ipsec_loaded()) { 24620 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 24621 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24622 BUMP_MIB(&ip_mib, ipOutDiscards); 24623 } else { 24624 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 24625 } 24626 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 24627 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 24628 return; 24629 } 24630 24631 /* 24632 * IPSEC processing has started. 24633 */ 24634 io->ipsec_out_proc_begin = B_TRUE; 24635 ap = io->ipsec_out_act; 24636 if (ap == NULL) { 24637 pp = io->ipsec_out_policy; 24638 ASSERT(pp != NULL); 24639 ap = pp->ipsp_act; 24640 ASSERT(ap != NULL); 24641 } 24642 24643 /* 24644 * Save the outbound ill index. When the packet comes back 24645 * from IPsec, we make sure the ill hasn't changed or disappeared 24646 * before sending it the accelerated packet. 24647 */ 24648 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 24649 int ifindex; 24650 ill = ire_to_ill(ire); 24651 ifindex = ill->ill_phyint->phyint_ifindex; 24652 io->ipsec_out_capab_ill_index = ifindex; 24653 } 24654 24655 /* 24656 * The order of processing is first insert a IP header if needed. 24657 * Then insert the ESP header and then the AH header. 24658 */ 24659 if ((io->ipsec_out_se_done == B_FALSE) && 24660 (ap->ipa_want_se)) { 24661 /* 24662 * First get the outer IP header before sending 24663 * it to ESP. 24664 */ 24665 ipha_t *oipha, *iipha; 24666 mblk_t *outer_mp, *inner_mp; 24667 24668 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 24669 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 24670 "ipsec_out_process: " 24671 "Self-Encapsulation failed: Out of memory\n"); 24672 freemsg(ipsec_mp); 24673 BUMP_MIB(&ip_mib, ipOutDiscards); 24674 return; 24675 } 24676 inner_mp = ipsec_mp->b_cont; 24677 ASSERT(inner_mp->b_datap->db_type == M_DATA); 24678 oipha = (ipha_t *)outer_mp->b_rptr; 24679 iipha = (ipha_t *)inner_mp->b_rptr; 24680 *oipha = *iipha; 24681 outer_mp->b_wptr += sizeof (ipha_t); 24682 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 24683 sizeof (ipha_t)); 24684 oipha->ipha_protocol = IPPROTO_ENCAP; 24685 oipha->ipha_version_and_hdr_length = 24686 IP_SIMPLE_HDR_VERSION; 24687 oipha->ipha_hdr_checksum = 0; 24688 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 24689 outer_mp->b_cont = inner_mp; 24690 ipsec_mp->b_cont = outer_mp; 24691 24692 io->ipsec_out_se_done = B_TRUE; 24693 io->ipsec_out_encaps = B_TRUE; 24694 } 24695 24696 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 24697 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 24698 !ipsec_out_select_sa(ipsec_mp)) 24699 return; 24700 24701 /* 24702 * By now, we know what SA's to use. Toss over to ESP & AH 24703 * to do the heavy lifting. 24704 */ 24705 zoneid = io->ipsec_out_zoneid; 24706 ASSERT(zoneid != ALL_ZONES); 24707 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 24708 ASSERT(io->ipsec_out_esp_sa != NULL); 24709 io->ipsec_out_esp_done = B_TRUE; 24710 /* 24711 * Note that since hw accel can only apply one transform, 24712 * not two, we skip hw accel for ESP if we also have AH 24713 * This is an design limitation of the interface 24714 * which should be revisited. 24715 */ 24716 ASSERT(ire != NULL); 24717 if (io->ipsec_out_ah_sa == NULL) { 24718 ill = (ill_t *)ire->ire_stq->q_ptr; 24719 ipsec_out_is_accelerated(ipsec_mp, 24720 io->ipsec_out_esp_sa, ill, ire); 24721 } 24722 24723 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 24724 switch (ipsec_rc) { 24725 case IPSEC_STATUS_SUCCESS: 24726 break; 24727 case IPSEC_STATUS_FAILED: 24728 BUMP_MIB(&ip_mib, ipOutDiscards); 24729 /* FALLTHRU */ 24730 case IPSEC_STATUS_PENDING: 24731 return; 24732 } 24733 } 24734 24735 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 24736 ASSERT(io->ipsec_out_ah_sa != NULL); 24737 io->ipsec_out_ah_done = B_TRUE; 24738 if (ire == NULL) { 24739 int idx = io->ipsec_out_capab_ill_index; 24740 ill = ill_lookup_on_ifindex(idx, B_FALSE, 24741 NULL, NULL, NULL, NULL); 24742 ill_need_rele = B_TRUE; 24743 } else { 24744 ill = (ill_t *)ire->ire_stq->q_ptr; 24745 } 24746 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 24747 ire); 24748 24749 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 24750 switch (ipsec_rc) { 24751 case IPSEC_STATUS_SUCCESS: 24752 break; 24753 case IPSEC_STATUS_FAILED: 24754 BUMP_MIB(&ip_mib, ipOutDiscards); 24755 /* FALLTHRU */ 24756 case IPSEC_STATUS_PENDING: 24757 if (ill != NULL && ill_need_rele) 24758 ill_refrele(ill); 24759 return; 24760 } 24761 } 24762 /* 24763 * We are done with IPSEC processing. Send it over 24764 * the wire. 24765 */ 24766 done: 24767 mp = ipsec_mp->b_cont; 24768 ipha = (ipha_t *)mp->b_rptr; 24769 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24770 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 24771 } else { 24772 ip6h = (ip6_t *)ipha; 24773 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 24774 } 24775 if (ill != NULL && ill_need_rele) 24776 ill_refrele(ill); 24777 } 24778 24779 /* ARGSUSED */ 24780 void 24781 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 24782 { 24783 opt_restart_t *or; 24784 int err; 24785 conn_t *connp; 24786 24787 ASSERT(CONN_Q(q)); 24788 connp = Q_TO_CONN(q); 24789 24790 ASSERT(first_mp->b_datap->db_type == M_CTL); 24791 or = (opt_restart_t *)first_mp->b_rptr; 24792 /* 24793 * We don't need to pass any credentials here since this is just 24794 * a restart. The credentials are passed in when svr4_optcom_req 24795 * is called the first time (from ip_wput_nondata). 24796 */ 24797 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 24798 err = svr4_optcom_req(q, first_mp, NULL, 24799 &ip_opt_obj); 24800 } else { 24801 ASSERT(or->or_type == T_OPTMGMT_REQ); 24802 err = tpi_optcom_req(q, first_mp, NULL, 24803 &ip_opt_obj); 24804 } 24805 if (err != EINPROGRESS) { 24806 /* operation is done */ 24807 CONN_OPER_PENDING_DONE(connp); 24808 } 24809 } 24810 24811 /* 24812 * ioctls that go through a down/up sequence may need to wait for the down 24813 * to complete. This involves waiting for the ire and ipif refcnts to go down 24814 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 24815 */ 24816 /* ARGSUSED */ 24817 void 24818 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24819 { 24820 struct iocblk *iocp; 24821 mblk_t *mp1; 24822 ipif_t *ipif; 24823 ip_ioctl_cmd_t *ipip; 24824 int err; 24825 sin_t *sin; 24826 struct lifreq *lifr; 24827 struct ifreq *ifr; 24828 24829 iocp = (struct iocblk *)mp->b_rptr; 24830 ASSERT(ipsq != NULL); 24831 /* Existence of mp1 verified in ip_wput_nondata */ 24832 mp1 = mp->b_cont->b_cont; 24833 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24834 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 24835 ill_t *ill; 24836 /* 24837 * Special case where ipsq_current_ipif may not be set. 24838 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 24839 * ill could also have become part of a ipmp group in the 24840 * process, we are here as were not able to complete the 24841 * operation in ipif_set_values because we could not become 24842 * exclusive on the new ipsq, In such a case ipsq_current_ipif 24843 * will not be set so we need to set it. 24844 */ 24845 ill = (ill_t *)q->q_ptr; 24846 ipsq->ipsq_current_ipif = ill->ill_ipif; 24847 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24848 } 24849 24850 ipif = ipsq->ipsq_current_ipif; 24851 ASSERT(ipif != NULL); 24852 if (ipip->ipi_cmd_type == IF_CMD) { 24853 /* This a old style SIOC[GS]IF* command */ 24854 ifr = (struct ifreq *)mp1->b_rptr; 24855 sin = (sin_t *)&ifr->ifr_addr; 24856 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24857 /* This a new style SIOC[GS]LIF* command */ 24858 lifr = (struct lifreq *)mp1->b_rptr; 24859 sin = (sin_t *)&lifr->lifr_addr; 24860 } else { 24861 sin = NULL; 24862 } 24863 24864 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24865 (void *)mp1->b_rptr); 24866 24867 /* SIOCLIFREMOVEIF could have removed the ipif */ 24868 ip_ioctl_finish(q, mp, err, 24869 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24870 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24871 } 24872 24873 /* 24874 * ioctl processing 24875 * 24876 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24877 * the ioctl command in the ioctl tables and determines the copyin data size 24878 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24879 * size. 24880 * 24881 * ioctl processing then continues when the M_IOCDATA makes its way down. 24882 * Now the ioctl is looked up again in the ioctl table, and its properties are 24883 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24884 * and the general ioctl processing function ip_process_ioctl is called. 24885 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24886 * so goes thru the serialization primitive ipsq_try_enter. Then the 24887 * appropriate function to handle the ioctl is called based on the entry in 24888 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24889 * which also refreleases the 'conn' that was refheld at the start of the 24890 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24891 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24892 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24893 * 24894 * Many exclusive ioctls go thru an internal down up sequence as part of 24895 * the operation. For example an attempt to change the IP address of an 24896 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24897 * does all the cleanup such as deleting all ires that use this address. 24898 * Then we need to wait till all references to the interface go away. 24899 */ 24900 void 24901 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24902 { 24903 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24904 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24905 cmd_info_t ci; 24906 int err; 24907 boolean_t entered_ipsq = B_FALSE; 24908 24909 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24910 24911 if (ipip == NULL) 24912 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24913 24914 /* 24915 * SIOCLIFADDIF needs to go thru a special path since the 24916 * ill may not exist yet. This happens in the case of lo0 24917 * which is created using this ioctl. 24918 */ 24919 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24920 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24921 ip_ioctl_finish(q, mp, err, 24922 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24923 NULL, NULL); 24924 return; 24925 } 24926 24927 ci.ci_ipif = NULL; 24928 switch (ipip->ipi_cmd_type) { 24929 case IF_CMD: 24930 case LIF_CMD: 24931 /* 24932 * ioctls that pass in a [l]ifreq appear here. 24933 * ip_extract_lifreq_cmn returns a refheld ipif in 24934 * ci.ci_ipif 24935 */ 24936 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24937 ipip->ipi_flags, &ci, ip_process_ioctl); 24938 if (err != 0) { 24939 ip_ioctl_finish(q, mp, err, 24940 ipip->ipi_flags & IPI_GET_CMD ? 24941 COPYOUT : NO_COPYOUT, NULL, NULL); 24942 return; 24943 } 24944 ASSERT(ci.ci_ipif != NULL); 24945 break; 24946 24947 case TUN_CMD: 24948 /* 24949 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24950 * a refheld ipif in ci.ci_ipif 24951 */ 24952 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24953 if (err != 0) { 24954 ip_ioctl_finish(q, mp, err, 24955 ipip->ipi_flags & IPI_GET_CMD ? 24956 COPYOUT : NO_COPYOUT, NULL, NULL); 24957 return; 24958 } 24959 ASSERT(ci.ci_ipif != NULL); 24960 break; 24961 24962 case MISC_CMD: 24963 /* 24964 * ioctls that neither pass in [l]ifreq or iftun_req come here 24965 * For eg. SIOCGLIFCONF will appear here. 24966 */ 24967 switch (ipip->ipi_cmd) { 24968 case IF_UNITSEL: 24969 /* ioctl comes down the ill */ 24970 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24971 ipif_refhold(ci.ci_ipif); 24972 break; 24973 case SIOCGMSFILTER: 24974 case SIOCSMSFILTER: 24975 case SIOCGIPMSFILTER: 24976 case SIOCSIPMSFILTER: 24977 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24978 ip_process_ioctl); 24979 if (err != 0) { 24980 ip_ioctl_finish(q, mp, err, 24981 ipip->ipi_flags & IPI_GET_CMD ? 24982 COPYOUT : NO_COPYOUT, NULL, NULL); 24983 return; 24984 } 24985 break; 24986 } 24987 err = 0; 24988 ci.ci_sin = NULL; 24989 ci.ci_sin6 = NULL; 24990 ci.ci_lifr = NULL; 24991 break; 24992 } 24993 24994 /* 24995 * If ipsq is non-null, we are already being called exclusively 24996 */ 24997 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 24998 if (!(ipip->ipi_flags & IPI_WR)) { 24999 /* 25000 * A return value of EINPROGRESS means the ioctl is 25001 * either queued and waiting for some reason or has 25002 * already completed. 25003 */ 25004 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25005 ci.ci_lifr); 25006 if (ci.ci_ipif != NULL) 25007 ipif_refrele(ci.ci_ipif); 25008 ip_ioctl_finish(q, mp, err, 25009 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25010 NULL, NULL); 25011 return; 25012 } 25013 25014 ASSERT(ci.ci_ipif != NULL); 25015 25016 if (ipsq == NULL) { 25017 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25018 ip_process_ioctl, NEW_OP, B_TRUE); 25019 entered_ipsq = B_TRUE; 25020 } 25021 /* 25022 * Release the ipif so that ipif_down and friends that wait for 25023 * references to go away are not misled about the current ipif_refcnt 25024 * values. We are writer so we can access the ipif even after releasing 25025 * the ipif. 25026 */ 25027 ipif_refrele(ci.ci_ipif); 25028 if (ipsq == NULL) 25029 return; 25030 25031 mutex_enter(&ipsq->ipsq_lock); 25032 ASSERT(ipsq->ipsq_current_ipif == NULL); 25033 ipsq->ipsq_current_ipif = ci.ci_ipif; 25034 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25035 mutex_exit(&ipsq->ipsq_lock); 25036 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25037 /* 25038 * For most set ioctls that come here, this serves as a single point 25039 * where we set the IPIF_CHANGING flag. This ensures that there won't 25040 * be any new references to the ipif. This helps functions that go 25041 * through this path and end up trying to wait for the refcnts 25042 * associated with the ipif to go down to zero. Some exceptions are 25043 * Failover, Failback, and Groupname commands that operate on more than 25044 * just the ci.ci_ipif. These commands internally determine the 25045 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25046 * flags on that set. Another exception is the Removeif command that 25047 * sets the IPIF_CONDEMNED flag internally after identifying the right 25048 * ipif to operate on. 25049 */ 25050 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25051 ipip->ipi_cmd != SIOCLIFFAILOVER && 25052 ipip->ipi_cmd != SIOCLIFFAILBACK && 25053 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25054 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25055 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25056 25057 /* 25058 * A return value of EINPROGRESS means the ioctl is 25059 * either queued and waiting for some reason or has 25060 * already completed. 25061 */ 25062 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25063 ci.ci_lifr); 25064 25065 /* SIOCLIFREMOVEIF could have removed the ipif */ 25066 ip_ioctl_finish(q, mp, err, 25067 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25068 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25069 25070 if (entered_ipsq) 25071 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25072 } 25073 25074 /* 25075 * Complete the ioctl. Typically ioctls use the mi package and need to 25076 * do mi_copyout/mi_copy_done. 25077 */ 25078 void 25079 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25080 ipif_t *ipif, ipsq_t *ipsq) 25081 { 25082 conn_t *connp = NULL; 25083 25084 if (err == EINPROGRESS) 25085 return; 25086 25087 if (CONN_Q(q)) { 25088 connp = Q_TO_CONN(q); 25089 ASSERT(connp->conn_ref >= 2); 25090 } 25091 25092 switch (mode) { 25093 case COPYOUT: 25094 if (err == 0) 25095 mi_copyout(q, mp); 25096 else 25097 mi_copy_done(q, mp, err); 25098 break; 25099 25100 case NO_COPYOUT: 25101 mi_copy_done(q, mp, err); 25102 break; 25103 25104 default: 25105 /* An ioctl aborted through a conn close would take this path */ 25106 break; 25107 } 25108 25109 /* 25110 * The refhold placed at the start of the ioctl is released here. 25111 */ 25112 if (connp != NULL) 25113 CONN_OPER_PENDING_DONE(connp); 25114 25115 /* 25116 * If the ioctl were an exclusive ioctl it would have set 25117 * IPIF_CHANGING at the start of the ioctl which is undone here. 25118 */ 25119 if (ipif != NULL) { 25120 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25121 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25122 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25123 } 25124 25125 /* 25126 * Clear the current ipif in the ipsq at the completion of the ioctl. 25127 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25128 * entering the ipsq 25129 */ 25130 if (ipsq != NULL) { 25131 mutex_enter(&ipsq->ipsq_lock); 25132 ipsq->ipsq_current_ipif = NULL; 25133 mutex_exit(&ipsq->ipsq_lock); 25134 } 25135 } 25136 25137 /* 25138 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25139 */ 25140 /* ARGSUSED */ 25141 void 25142 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25143 { 25144 conn_t *connp = arg; 25145 tcp_t *tcp; 25146 25147 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25148 tcp = connp->conn_tcp; 25149 25150 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25151 freemsg(mp); 25152 else 25153 tcp_rput_other(tcp, mp); 25154 CONN_OPER_PENDING_DONE(connp); 25155 } 25156 25157 /* Called from ip_wput for all non data messages */ 25158 /* ARGSUSED */ 25159 void 25160 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25161 { 25162 mblk_t *mp1; 25163 ire_t *ire; 25164 ill_t *ill; 25165 struct iocblk *iocp; 25166 ip_ioctl_cmd_t *ipip; 25167 cred_t *cr; 25168 conn_t *connp = NULL; 25169 int cmd, err; 25170 25171 if (CONN_Q(q)) 25172 connp = Q_TO_CONN(q); 25173 25174 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25175 25176 /* Check if it is a queue to /dev/sctp. */ 25177 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25178 connp->conn_rq == NULL) { 25179 sctp_wput(q, mp); 25180 return; 25181 } 25182 25183 switch (DB_TYPE(mp)) { 25184 case M_IOCTL: 25185 /* 25186 * IOCTL processing begins in ip_sioctl_copyin_setup which 25187 * will arrange to copy in associated control structures. 25188 */ 25189 ip_sioctl_copyin_setup(q, mp); 25190 return; 25191 case M_IOCDATA: 25192 /* 25193 * Ensure that this is associated with one of our trans- 25194 * parent ioctls. If it's not ours, discard it if we're 25195 * running as a driver, or pass it on if we're a module. 25196 */ 25197 iocp = (struct iocblk *)mp->b_rptr; 25198 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25199 if (ipip == NULL) { 25200 if (q->q_next == NULL) { 25201 goto nak; 25202 } else { 25203 putnext(q, mp); 25204 } 25205 return; 25206 } else if ((q->q_next != NULL) && 25207 !(ipip->ipi_flags & IPI_MODOK)) { 25208 /* 25209 * the ioctl is one we recognise, but is not 25210 * consumed by IP as a module, pass M_IOCDATA 25211 * for processing downstream, but only for 25212 * common Streams ioctls. 25213 */ 25214 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25215 putnext(q, mp); 25216 return; 25217 } else { 25218 goto nak; 25219 } 25220 } 25221 25222 /* IOCTL continuation following copyin or copyout. */ 25223 if (mi_copy_state(q, mp, NULL) == -1) { 25224 /* 25225 * The copy operation failed. mi_copy_state already 25226 * cleaned up, so we're out of here. 25227 */ 25228 return; 25229 } 25230 /* 25231 * If we just completed a copy in, we become writer and 25232 * continue processing in ip_sioctl_copyin_done. If it 25233 * was a copy out, we call mi_copyout again. If there is 25234 * nothing more to copy out, it will complete the IOCTL. 25235 */ 25236 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25237 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25238 mi_copy_done(q, mp, EPROTO); 25239 return; 25240 } 25241 /* 25242 * Check for cases that need more copying. A return 25243 * value of 0 means a second copyin has been started, 25244 * so we return; a return value of 1 means no more 25245 * copying is needed, so we continue. 25246 */ 25247 cmd = iocp->ioc_cmd; 25248 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25249 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25250 MI_COPY_COUNT(mp) == 1) { 25251 if (ip_copyin_msfilter(q, mp) == 0) 25252 return; 25253 } 25254 /* 25255 * Refhold the conn, till the ioctl completes. This is 25256 * needed in case the ioctl ends up in the pending mp 25257 * list. Every mp in the ill_pending_mp list and 25258 * the ipsq_pending_mp must have a refhold on the conn 25259 * to resume processing. The refhold is released when 25260 * the ioctl completes. (normally or abnormally) 25261 * In all cases ip_ioctl_finish is called to finish 25262 * the ioctl. 25263 */ 25264 if (connp != NULL) { 25265 /* This is not a reentry */ 25266 ASSERT(ipsq == NULL); 25267 CONN_INC_REF(connp); 25268 } else { 25269 if (!(ipip->ipi_flags & IPI_MODOK)) { 25270 mi_copy_done(q, mp, EINVAL); 25271 return; 25272 } 25273 } 25274 25275 ip_process_ioctl(ipsq, q, mp, ipip); 25276 25277 } else { 25278 mi_copyout(q, mp); 25279 } 25280 return; 25281 nak: 25282 iocp->ioc_error = EINVAL; 25283 mp->b_datap->db_type = M_IOCNAK; 25284 iocp->ioc_count = 0; 25285 qreply(q, mp); 25286 return; 25287 25288 case M_IOCNAK: 25289 /* 25290 * The only way we could get here is if a resolver didn't like 25291 * an IOCTL we sent it. This shouldn't happen. 25292 */ 25293 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25294 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25295 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25296 freemsg(mp); 25297 return; 25298 case M_IOCACK: 25299 /* Finish socket ioctls passed through to ARP. */ 25300 ip_sioctl_iocack(q, mp); 25301 return; 25302 case M_FLUSH: 25303 if (*mp->b_rptr & FLUSHW) 25304 flushq(q, FLUSHALL); 25305 if (q->q_next) { 25306 /* 25307 * M_FLUSH is sent up to IP by some drivers during 25308 * unbind. ip_rput has already replied to it. We are 25309 * here for the M_FLUSH that we originated in IP 25310 * before sending the unbind request to the driver. 25311 * Just free it as we don't queue packets in IP 25312 * on the write side of the device instance. 25313 */ 25314 freemsg(mp); 25315 return; 25316 } 25317 if (*mp->b_rptr & FLUSHR) { 25318 *mp->b_rptr &= ~FLUSHW; 25319 qreply(q, mp); 25320 return; 25321 } 25322 freemsg(mp); 25323 return; 25324 case IRE_DB_REQ_TYPE: 25325 /* An Upper Level Protocol wants a copy of an IRE. */ 25326 ip_ire_req(q, mp); 25327 return; 25328 case M_CTL: 25329 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 25330 break; 25331 25332 if (connp != NULL && *(uint32_t *)mp->b_rptr == 25333 IP_ULP_OUT_LABELED) { 25334 out_labeled_t *olp; 25335 25336 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 25337 break; 25338 olp = (out_labeled_t *)mp->b_rptr; 25339 connp->conn_ulp_labeled = olp->out_qnext == q; 25340 freemsg(mp); 25341 return; 25342 } 25343 25344 /* M_CTL messages are used by ARP to tell us things. */ 25345 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 25346 break; 25347 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 25348 case AR_ENTRY_SQUERY: 25349 ip_wput_ctl(q, mp); 25350 return; 25351 case AR_CLIENT_NOTIFY: 25352 ip_arp_news(q, mp); 25353 return; 25354 case AR_DLPIOP_DONE: 25355 ASSERT(q->q_next != NULL); 25356 ill = (ill_t *)q->q_ptr; 25357 /* qwriter_ip releases the refhold */ 25358 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 25359 ill_refhold(ill); 25360 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 25361 CUR_OP, B_FALSE); 25362 return; 25363 case AR_ARP_CLOSING: 25364 /* 25365 * ARP (above us) is closing. If no ARP bringup is 25366 * currently pending, ack the message so that ARP 25367 * can complete its close. Also mark ill_arp_closing 25368 * so that new ARP bringups will fail. If any 25369 * ARP bringup is currently in progress, we will 25370 * ack this when the current ARP bringup completes. 25371 */ 25372 ASSERT(q->q_next != NULL); 25373 ill = (ill_t *)q->q_ptr; 25374 mutex_enter(&ill->ill_lock); 25375 ill->ill_arp_closing = 1; 25376 if (!ill->ill_arp_bringup_pending) { 25377 mutex_exit(&ill->ill_lock); 25378 qreply(q, mp); 25379 } else { 25380 mutex_exit(&ill->ill_lock); 25381 freemsg(mp); 25382 } 25383 return; 25384 default: 25385 break; 25386 } 25387 break; 25388 case M_PROTO: 25389 case M_PCPROTO: 25390 /* 25391 * The only PROTO messages we expect are ULP binds and 25392 * copies of option negotiation acknowledgements. 25393 */ 25394 switch (((union T_primitives *)mp->b_rptr)->type) { 25395 case O_T_BIND_REQ: 25396 case T_BIND_REQ: { 25397 /* Request can get queued in bind */ 25398 ASSERT(connp != NULL); 25399 /* 25400 * Both TCP and UDP call ip_bind_{v4,v6}() directly 25401 * instead of going through this path. We only get 25402 * here in the following cases: 25403 * 25404 * a. Bind retries, where ipsq is non-NULL. 25405 * b. T_BIND_REQ is issued from non TCP/UDP 25406 * transport, e.g. icmp for raw socket, 25407 * in which case ipsq will be NULL. 25408 */ 25409 ASSERT(ipsq != NULL || 25410 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 25411 25412 /* Don't increment refcnt if this is a re-entry */ 25413 if (ipsq == NULL) 25414 CONN_INC_REF(connp); 25415 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 25416 connp, NULL) : ip_bind_v4(q, mp, connp); 25417 if (mp == NULL) 25418 return; 25419 if (IPCL_IS_TCP(connp)) { 25420 /* 25421 * In the case of TCP endpoint we 25422 * come here only for bind retries 25423 */ 25424 ASSERT(ipsq != NULL); 25425 CONN_INC_REF(connp); 25426 squeue_fill(connp->conn_sqp, mp, 25427 ip_resume_tcp_bind, connp, 25428 SQTAG_BIND_RETRY); 25429 return; 25430 } else if (IPCL_IS_UDP(connp)) { 25431 /* 25432 * In the case of UDP endpoint we 25433 * come here only for bind retries 25434 */ 25435 ASSERT(ipsq != NULL); 25436 udp_resume_bind(connp, mp); 25437 return; 25438 } 25439 qreply(q, mp); 25440 CONN_OPER_PENDING_DONE(connp); 25441 return; 25442 } 25443 case T_SVR4_OPTMGMT_REQ: 25444 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 25445 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 25446 25447 ASSERT(connp != NULL); 25448 if (!snmpcom_req(q, mp, ip_snmp_set, 25449 ip_snmp_get, cr)) { 25450 /* 25451 * Call svr4_optcom_req so that it can 25452 * generate the ack. We don't come here 25453 * if this operation is being restarted. 25454 * ip_restart_optmgmt will drop the conn ref. 25455 * In the case of ipsec option after the ipsec 25456 * load is complete conn_restart_ipsec_waiter 25457 * drops the conn ref. 25458 */ 25459 ASSERT(ipsq == NULL); 25460 CONN_INC_REF(connp); 25461 if (ip_check_for_ipsec_opt(q, mp)) 25462 return; 25463 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 25464 if (err != EINPROGRESS) { 25465 /* Operation is done */ 25466 CONN_OPER_PENDING_DONE(connp); 25467 } 25468 } 25469 return; 25470 case T_OPTMGMT_REQ: 25471 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 25472 /* 25473 * Note: No snmpcom_req support through new 25474 * T_OPTMGMT_REQ. 25475 * Call tpi_optcom_req so that it can 25476 * generate the ack. 25477 */ 25478 ASSERT(connp != NULL); 25479 ASSERT(ipsq == NULL); 25480 /* 25481 * We don't come here for restart. ip_restart_optmgmt 25482 * will drop the conn ref. In the case of ipsec option 25483 * after the ipsec load is complete 25484 * conn_restart_ipsec_waiter drops the conn ref. 25485 */ 25486 CONN_INC_REF(connp); 25487 if (ip_check_for_ipsec_opt(q, mp)) 25488 return; 25489 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 25490 if (err != EINPROGRESS) { 25491 /* Operation is done */ 25492 CONN_OPER_PENDING_DONE(connp); 25493 } 25494 return; 25495 case T_UNBIND_REQ: 25496 mp = ip_unbind(q, mp); 25497 qreply(q, mp); 25498 return; 25499 default: 25500 /* 25501 * Have to drop any DLPI messages coming down from 25502 * arp (such as an info_req which would cause ip 25503 * to receive an extra info_ack if it was passed 25504 * through. 25505 */ 25506 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 25507 (int)*(uint_t *)mp->b_rptr)); 25508 freemsg(mp); 25509 return; 25510 } 25511 /* NOTREACHED */ 25512 case IRE_DB_TYPE: { 25513 nce_t *nce; 25514 ill_t *ill; 25515 in6_addr_t gw_addr_v6; 25516 25517 25518 /* 25519 * This is a response back from a resolver. It 25520 * consists of a message chain containing: 25521 * IRE_MBLK-->LL_HDR_MBLK->pkt 25522 * The IRE_MBLK is the one we allocated in ip_newroute. 25523 * The LL_HDR_MBLK is the DLPI header to use to get 25524 * the attached packet, and subsequent ones for the 25525 * same destination, transmitted. 25526 */ 25527 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 25528 break; 25529 /* 25530 * First, check to make sure the resolution succeeded. 25531 * If it failed, the second mblk will be empty. 25532 * If it is, free the chain, dropping the packet. 25533 * (We must ire_delete the ire; that frees the ire mblk) 25534 * We're doing this now to support PVCs for ATM; it's 25535 * a partial xresolv implementation. When we fully implement 25536 * xresolv interfaces, instead of freeing everything here 25537 * we'll initiate neighbor discovery. 25538 * 25539 * For v4 (ARP and other external resolvers) the resolver 25540 * frees the message, so no check is needed. This check 25541 * is required, though, for a full xresolve implementation. 25542 * Including this code here now both shows how external 25543 * resolvers can NACK a resolution request using an 25544 * existing design that has no specific provisions for NACKs, 25545 * and also takes into account that the current non-ARP 25546 * external resolver has been coded to use this method of 25547 * NACKing for all IPv6 (xresolv) cases, 25548 * whether our xresolv implementation is complete or not. 25549 * 25550 */ 25551 ire = (ire_t *)mp->b_rptr; 25552 ill = ire_to_ill(ire); 25553 mp1 = mp->b_cont; /* dl_unitdata_req */ 25554 if (mp1->b_rptr == mp1->b_wptr) { 25555 if (ire->ire_ipversion == IPV6_VERSION) { 25556 /* 25557 * XRESOLV interface. 25558 */ 25559 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25560 mutex_enter(&ire->ire_lock); 25561 gw_addr_v6 = ire->ire_gateway_addr_v6; 25562 mutex_exit(&ire->ire_lock); 25563 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25564 nce = ndp_lookup(ill, 25565 &ire->ire_addr_v6, B_FALSE); 25566 } else { 25567 nce = ndp_lookup(ill, &gw_addr_v6, 25568 B_FALSE); 25569 } 25570 if (nce != NULL) { 25571 nce_resolv_failed(nce); 25572 ndp_delete(nce); 25573 NCE_REFRELE(nce); 25574 } 25575 } 25576 mp->b_cont = NULL; 25577 freemsg(mp1); /* frees the pkt as well */ 25578 ire_delete((ire_t *)mp->b_rptr); 25579 return; 25580 } 25581 /* 25582 * Split them into IRE_MBLK and pkt and feed it into 25583 * ire_add_then_send. Then in ire_add_then_send 25584 * the IRE will be added, and then the packet will be 25585 * run back through ip_wput. This time it will make 25586 * it to the wire. 25587 */ 25588 mp->b_cont = NULL; 25589 mp = mp1->b_cont; /* now, mp points to pkt */ 25590 mp1->b_cont = NULL; 25591 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 25592 if (ire->ire_ipversion == IPV6_VERSION) { 25593 /* 25594 * XRESOLV interface. Find the nce and put a copy 25595 * of the dl_unitdata_req in nce_res_mp 25596 */ 25597 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25598 mutex_enter(&ire->ire_lock); 25599 gw_addr_v6 = ire->ire_gateway_addr_v6; 25600 mutex_exit(&ire->ire_lock); 25601 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25602 nce = ndp_lookup(ill, &ire->ire_addr_v6, 25603 B_FALSE); 25604 } else { 25605 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 25606 } 25607 if (nce != NULL) { 25608 /* 25609 * We have to protect nce_res_mp here 25610 * from being accessed by other threads 25611 * while we change the mblk pointer. 25612 * Other functions will also lock the nce when 25613 * accessing nce_res_mp. 25614 * 25615 * The reason we change the mblk pointer 25616 * here rather than copying the resolved address 25617 * into the template is that, unlike with 25618 * ethernet, we have no guarantee that the 25619 * resolved address length will be 25620 * smaller than or equal to the lla length 25621 * with which the template was allocated, 25622 * (for ethernet, they're equal) 25623 * so we have to use the actual resolved 25624 * address mblk - which holds the real 25625 * dl_unitdata_req with the resolved address. 25626 * 25627 * Doing this is the same behavior as was 25628 * previously used in the v4 ARP case. 25629 */ 25630 mutex_enter(&nce->nce_lock); 25631 if (nce->nce_res_mp != NULL) 25632 freemsg(nce->nce_res_mp); 25633 nce->nce_res_mp = mp1; 25634 mutex_exit(&nce->nce_lock); 25635 /* 25636 * We do a fastpath probe here because 25637 * we have resolved the address without 25638 * using Neighbor Discovery. 25639 * In the non-XRESOLV v6 case, the fastpath 25640 * probe is done right after neighbor 25641 * discovery completes. 25642 */ 25643 if (nce->nce_res_mp != NULL) { 25644 int res; 25645 nce_fastpath_list_add(nce); 25646 res = ill_fastpath_probe(ill, 25647 nce->nce_res_mp); 25648 if (res != 0 && res != EAGAIN) 25649 nce_fastpath_list_delete(nce); 25650 } 25651 25652 ire_add_then_send(q, ire, mp); 25653 /* 25654 * Now we have to clean out any packets 25655 * that may have been queued on the nce 25656 * while it was waiting for address resolution 25657 * to complete. 25658 */ 25659 mutex_enter(&nce->nce_lock); 25660 mp1 = nce->nce_qd_mp; 25661 nce->nce_qd_mp = NULL; 25662 mutex_exit(&nce->nce_lock); 25663 while (mp1 != NULL) { 25664 mblk_t *nxt_mp; 25665 queue_t *fwdq = NULL; 25666 ill_t *inbound_ill; 25667 uint_t ifindex; 25668 25669 nxt_mp = mp1->b_next; 25670 mp1->b_next = NULL; 25671 /* 25672 * Retrieve ifindex stored in 25673 * ip_rput_data_v6() 25674 */ 25675 ifindex = 25676 (uint_t)(uintptr_t)mp1->b_prev; 25677 inbound_ill = 25678 ill_lookup_on_ifindex(ifindex, 25679 B_TRUE, NULL, NULL, NULL, 25680 NULL); 25681 mp1->b_prev = NULL; 25682 if (inbound_ill != NULL) 25683 fwdq = inbound_ill->ill_rq; 25684 25685 if (fwdq != NULL) { 25686 put(fwdq, mp1); 25687 ill_refrele(inbound_ill); 25688 } else 25689 put(WR(ill->ill_rq), mp1); 25690 mp1 = nxt_mp; 25691 } 25692 NCE_REFRELE(nce); 25693 } else { /* nce is NULL; clean up */ 25694 ire_delete(ire); 25695 freemsg(mp); 25696 freemsg(mp1); 25697 return; 25698 } 25699 } else { 25700 ire->ire_dlureq_mp = mp1; 25701 ire_add_then_send(q, ire, mp); 25702 } 25703 return; /* All is well, the packet has been sent. */ 25704 } 25705 default: 25706 break; 25707 } 25708 if (q->q_next) { 25709 putnext(q, mp); 25710 } else 25711 freemsg(mp); 25712 } 25713 25714 /* 25715 * Process IP options in an outbound packet. Modify the destination if there 25716 * is a source route option. 25717 * Returns non-zero if something fails in which case an ICMP error has been 25718 * sent and mp freed. 25719 */ 25720 static int 25721 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 25722 boolean_t mctl_present, zoneid_t zoneid) 25723 { 25724 ipoptp_t opts; 25725 uchar_t *opt; 25726 uint8_t optval; 25727 uint8_t optlen; 25728 ipaddr_t dst; 25729 intptr_t code = 0; 25730 mblk_t *mp; 25731 ire_t *ire = NULL; 25732 25733 ip2dbg(("ip_wput_options\n")); 25734 mp = ipsec_mp; 25735 if (mctl_present) { 25736 mp = ipsec_mp->b_cont; 25737 } 25738 25739 dst = ipha->ipha_dst; 25740 for (optval = ipoptp_first(&opts, ipha); 25741 optval != IPOPT_EOL; 25742 optval = ipoptp_next(&opts)) { 25743 opt = opts.ipoptp_cur; 25744 optlen = opts.ipoptp_len; 25745 ip2dbg(("ip_wput_options: opt %d, len %d\n", 25746 optval, optlen)); 25747 switch (optval) { 25748 uint32_t off; 25749 case IPOPT_SSRR: 25750 case IPOPT_LSRR: 25751 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25752 ip1dbg(( 25753 "ip_wput_options: bad option offset\n")); 25754 code = (char *)&opt[IPOPT_OLEN] - 25755 (char *)ipha; 25756 goto param_prob; 25757 } 25758 off = opt[IPOPT_OFFSET]; 25759 ip1dbg(("ip_wput_options: next hop 0x%x\n", 25760 ntohl(dst))); 25761 /* 25762 * For strict: verify that dst is directly 25763 * reachable. 25764 */ 25765 if (optval == IPOPT_SSRR) { 25766 ire = ire_ftable_lookup(dst, 0, 0, 25767 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25768 MBLK_GETLABEL(mp), 25769 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 25770 if (ire == NULL) { 25771 ip1dbg(("ip_wput_options: SSRR not" 25772 " directly reachable: 0x%x\n", 25773 ntohl(dst))); 25774 goto bad_src_route; 25775 } 25776 ire_refrele(ire); 25777 } 25778 break; 25779 case IPOPT_RR: 25780 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25781 ip1dbg(( 25782 "ip_wput_options: bad option offset\n")); 25783 code = (char *)&opt[IPOPT_OLEN] - 25784 (char *)ipha; 25785 goto param_prob; 25786 } 25787 break; 25788 case IPOPT_TS: 25789 /* 25790 * Verify that length >=5 and that there is either 25791 * room for another timestamp or that the overflow 25792 * counter is not maxed out. 25793 */ 25794 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 25795 if (optlen < IPOPT_MINLEN_IT) { 25796 goto param_prob; 25797 } 25798 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25799 ip1dbg(( 25800 "ip_wput_options: bad option offset\n")); 25801 code = (char *)&opt[IPOPT_OFFSET] - 25802 (char *)ipha; 25803 goto param_prob; 25804 } 25805 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25806 case IPOPT_TS_TSONLY: 25807 off = IPOPT_TS_TIMELEN; 25808 break; 25809 case IPOPT_TS_TSANDADDR: 25810 case IPOPT_TS_PRESPEC: 25811 case IPOPT_TS_PRESPEC_RFC791: 25812 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25813 break; 25814 default: 25815 code = (char *)&opt[IPOPT_POS_OV_FLG] - 25816 (char *)ipha; 25817 goto param_prob; 25818 } 25819 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 25820 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 25821 /* 25822 * No room and the overflow counter is 15 25823 * already. 25824 */ 25825 goto param_prob; 25826 } 25827 break; 25828 } 25829 } 25830 25831 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 25832 return (0); 25833 25834 ip1dbg(("ip_wput_options: error processing IP options.")); 25835 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 25836 25837 param_prob: 25838 /* 25839 * Since ip_wput() isn't close to finished, we fill 25840 * in enough of the header for credible error reporting. 25841 */ 25842 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25843 /* Failed */ 25844 freemsg(ipsec_mp); 25845 return (-1); 25846 } 25847 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 25848 return (-1); 25849 25850 bad_src_route: 25851 /* 25852 * Since ip_wput() isn't close to finished, we fill 25853 * in enough of the header for credible error reporting. 25854 */ 25855 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25856 /* Failed */ 25857 freemsg(ipsec_mp); 25858 return (-1); 25859 } 25860 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 25861 return (-1); 25862 } 25863 25864 /* 25865 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25866 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25867 * thru /etc/system. 25868 */ 25869 #define CONN_MAXDRAINCNT 64 25870 25871 static void 25872 conn_drain_init(void) 25873 { 25874 int i; 25875 25876 conn_drain_list_cnt = conn_drain_nthreads; 25877 25878 if ((conn_drain_list_cnt == 0) || 25879 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25880 /* 25881 * Default value of the number of drainers is the 25882 * number of cpus, subject to maximum of 8 drainers. 25883 */ 25884 if (boot_max_ncpus != -1) 25885 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25886 else 25887 conn_drain_list_cnt = MIN(max_ncpus, 8); 25888 } 25889 25890 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25891 KM_SLEEP); 25892 25893 for (i = 0; i < conn_drain_list_cnt; i++) { 25894 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25895 MUTEX_DEFAULT, NULL); 25896 } 25897 } 25898 25899 static void 25900 conn_drain_fini(void) 25901 { 25902 int i; 25903 25904 for (i = 0; i < conn_drain_list_cnt; i++) 25905 mutex_destroy(&conn_drain_list[i].idl_lock); 25906 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25907 conn_drain_list = NULL; 25908 } 25909 25910 /* 25911 * Note: For an overview of how flowcontrol is handled in IP please see the 25912 * IP Flowcontrol notes at the top of this file. 25913 * 25914 * Flow control has blocked us from proceeding. Insert the given conn in one 25915 * of the conn drain lists. These conn wq's will be qenabled later on when 25916 * STREAMS flow control does a backenable. conn_walk_drain will enable 25917 * the first conn in each of these drain lists. Each of these qenabled conns 25918 * in turn enables the next in the list, after it runs, or when it closes, 25919 * thus sustaining the drain process. 25920 * 25921 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25922 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25923 * running at any time, on a given conn, since there can be only 1 service proc 25924 * running on a queue at any time. 25925 */ 25926 void 25927 conn_drain_insert(conn_t *connp) 25928 { 25929 idl_t *idl; 25930 uint_t index; 25931 25932 mutex_enter(&connp->conn_lock); 25933 if (connp->conn_state_flags & CONN_CLOSING) { 25934 /* 25935 * The conn is closing as a result of which CONN_CLOSING 25936 * is set. Return. 25937 */ 25938 mutex_exit(&connp->conn_lock); 25939 return; 25940 } else if (connp->conn_idl == NULL) { 25941 /* 25942 * Assign the next drain list round robin. We dont' use 25943 * a lock, and thus it may not be strictly round robin. 25944 * Atomicity of load/stores is enough to make sure that 25945 * conn_drain_list_index is always within bounds. 25946 */ 25947 index = conn_drain_list_index; 25948 ASSERT(index < conn_drain_list_cnt); 25949 connp->conn_idl = &conn_drain_list[index]; 25950 index++; 25951 if (index == conn_drain_list_cnt) 25952 index = 0; 25953 conn_drain_list_index = index; 25954 } 25955 mutex_exit(&connp->conn_lock); 25956 25957 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25958 if ((connp->conn_drain_prev != NULL) || 25959 (connp->conn_state_flags & CONN_CLOSING)) { 25960 /* 25961 * The conn is already in the drain list, OR 25962 * the conn is closing. We need to check again for 25963 * the closing case again since close can happen 25964 * after we drop the conn_lock, and before we 25965 * acquire the CONN_DRAIN_LIST_LOCK. 25966 */ 25967 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25968 return; 25969 } else { 25970 idl = connp->conn_idl; 25971 } 25972 25973 /* 25974 * The conn is not in the drain list. Insert it at the 25975 * tail of the drain list. The drain list is circular 25976 * and doubly linked. idl_conn points to the 1st element 25977 * in the list. 25978 */ 25979 if (idl->idl_conn == NULL) { 25980 idl->idl_conn = connp; 25981 connp->conn_drain_next = connp; 25982 connp->conn_drain_prev = connp; 25983 } else { 25984 conn_t *head = idl->idl_conn; 25985 25986 connp->conn_drain_next = head; 25987 connp->conn_drain_prev = head->conn_drain_prev; 25988 head->conn_drain_prev->conn_drain_next = connp; 25989 head->conn_drain_prev = connp; 25990 } 25991 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25992 } 25993 25994 /* 25995 * This conn is closing, and we are called from ip_close. OR 25996 * This conn has been serviced by ip_wsrv, and we need to do the tail 25997 * processing. 25998 * If this conn is part of the drain list, we may need to sustain the drain 25999 * process by qenabling the next conn in the drain list. We may also need to 26000 * remove this conn from the list, if it is done. 26001 */ 26002 static void 26003 conn_drain_tail(conn_t *connp, boolean_t closing) 26004 { 26005 idl_t *idl; 26006 26007 /* 26008 * connp->conn_idl is stable at this point, and no lock is needed 26009 * to check it. If we are called from ip_close, close has already 26010 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26011 * called us only because conn_idl is non-null. If we are called thru 26012 * service, conn_idl could be null, but it cannot change because 26013 * service is single-threaded per queue, and there cannot be another 26014 * instance of service trying to call conn_drain_insert on this conn 26015 * now. 26016 */ 26017 ASSERT(!closing || (connp->conn_idl != NULL)); 26018 26019 /* 26020 * If connp->conn_idl is null, the conn has not been inserted into any 26021 * drain list even once since creation of the conn. Just return. 26022 */ 26023 if (connp->conn_idl == NULL) 26024 return; 26025 26026 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26027 26028 if (connp->conn_drain_prev == NULL) { 26029 /* This conn is currently not in the drain list. */ 26030 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26031 return; 26032 } 26033 idl = connp->conn_idl; 26034 if (idl->idl_conn_draining == connp) { 26035 /* 26036 * This conn is the current drainer. If this is the last conn 26037 * in the drain list, we need to do more checks, in the 'if' 26038 * below. Otherwwise we need to just qenable the next conn, 26039 * to sustain the draining, and is handled in the 'else' 26040 * below. 26041 */ 26042 if (connp->conn_drain_next == idl->idl_conn) { 26043 /* 26044 * This conn is the last in this list. This round 26045 * of draining is complete. If idl_repeat is set, 26046 * it means another flow enabling has happened from 26047 * the driver/streams and we need to another round 26048 * of draining. 26049 * If there are more than 2 conns in the drain list, 26050 * do a left rotate by 1, so that all conns except the 26051 * conn at the head move towards the head by 1, and the 26052 * the conn at the head goes to the tail. This attempts 26053 * a more even share for all queues that are being 26054 * drained. 26055 */ 26056 if ((connp->conn_drain_next != connp) && 26057 (idl->idl_conn->conn_drain_next != connp)) { 26058 idl->idl_conn = idl->idl_conn->conn_drain_next; 26059 } 26060 if (idl->idl_repeat) { 26061 qenable(idl->idl_conn->conn_wq); 26062 idl->idl_conn_draining = idl->idl_conn; 26063 idl->idl_repeat = 0; 26064 } else { 26065 idl->idl_conn_draining = NULL; 26066 } 26067 } else { 26068 /* 26069 * If the next queue that we are now qenable'ing, 26070 * is closing, it will remove itself from this list 26071 * and qenable the subsequent queue in ip_close(). 26072 * Serialization is acheived thru idl_lock. 26073 */ 26074 qenable(connp->conn_drain_next->conn_wq); 26075 idl->idl_conn_draining = connp->conn_drain_next; 26076 } 26077 } 26078 if (!connp->conn_did_putbq || closing) { 26079 /* 26080 * Remove ourself from the drain list, if we did not do 26081 * a putbq, or if the conn is closing. 26082 * Note: It is possible that q->q_first is non-null. It means 26083 * that these messages landed after we did a enableok() in 26084 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26085 * service them. 26086 */ 26087 if (connp->conn_drain_next == connp) { 26088 /* Singleton in the list */ 26089 ASSERT(connp->conn_drain_prev == connp); 26090 idl->idl_conn = NULL; 26091 idl->idl_conn_draining = NULL; 26092 } else { 26093 connp->conn_drain_prev->conn_drain_next = 26094 connp->conn_drain_next; 26095 connp->conn_drain_next->conn_drain_prev = 26096 connp->conn_drain_prev; 26097 if (idl->idl_conn == connp) 26098 idl->idl_conn = connp->conn_drain_next; 26099 ASSERT(idl->idl_conn_draining != connp); 26100 26101 } 26102 connp->conn_drain_next = NULL; 26103 connp->conn_drain_prev = NULL; 26104 } 26105 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26106 } 26107 26108 /* 26109 * Write service routine. Shared perimeter entry point. 26110 * ip_wsrv can be called in any of the following ways. 26111 * 1. The device queue's messages has fallen below the low water mark 26112 * and STREAMS has backenabled the ill_wq. We walk thru all the 26113 * the drain lists and backenable the first conn in each list. 26114 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 26115 * qenabled non-tcp upper layers. We start dequeing messages and call 26116 * ip_wput for each message. 26117 */ 26118 26119 void 26120 ip_wsrv(queue_t *q) 26121 { 26122 conn_t *connp; 26123 ill_t *ill; 26124 mblk_t *mp; 26125 26126 if (q->q_next) { 26127 ill = (ill_t *)q->q_ptr; 26128 if (ill->ill_state_flags == 0) { 26129 /* 26130 * The device flow control has opened up. 26131 * Walk through conn drain lists and qenable the 26132 * first conn in each list. This makes sense only 26133 * if the stream is fully plumbed and setup. 26134 * Hence the if check above. 26135 */ 26136 ip1dbg(("ip_wsrv: walking\n")); 26137 conn_walk_drain(); 26138 } 26139 return; 26140 } 26141 26142 connp = Q_TO_CONN(q); 26143 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 26144 26145 /* 26146 * 1. Set conn_draining flag to signal that service is active. 26147 * 26148 * 2. ip_output determines whether it has been called from service, 26149 * based on the last parameter. If it is IP_WSRV it concludes it 26150 * has been called from service. 26151 * 26152 * 3. Message ordering is preserved by the following logic. 26153 * i. A directly called ip_output (i.e. not thru service) will queue 26154 * the message at the tail, if conn_draining is set (i.e. service 26155 * is running) or if q->q_first is non-null. 26156 * 26157 * ii. If ip_output is called from service, and if ip_output cannot 26158 * putnext due to flow control, it does a putbq. 26159 * 26160 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 26161 * (causing an infinite loop). 26162 */ 26163 ASSERT(!connp->conn_did_putbq); 26164 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 26165 connp->conn_draining = 1; 26166 noenable(q); 26167 while ((mp = getq(q)) != NULL) { 26168 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 26169 if (connp->conn_did_putbq) { 26170 /* ip_wput did a putbq */ 26171 break; 26172 } 26173 } 26174 /* 26175 * At this point, a thread coming down from top, calling 26176 * ip_wput, may end up queueing the message. We have not yet 26177 * enabled the queue, so ip_wsrv won't be called again. 26178 * To avoid this race, check q->q_first again (in the loop) 26179 * If the other thread queued the message before we call 26180 * enableok(), we will catch it in the q->q_first check. 26181 * If the other thread queues the message after we call 26182 * enableok(), ip_wsrv will be called again by STREAMS. 26183 */ 26184 connp->conn_draining = 0; 26185 enableok(q); 26186 } 26187 26188 /* Enable the next conn for draining */ 26189 conn_drain_tail(connp, B_FALSE); 26190 26191 connp->conn_did_putbq = 0; 26192 } 26193 26194 /* 26195 * Walk the list of all conn's calling the function provided with the 26196 * specified argument for each. Note that this only walks conn's that 26197 * have been bound. 26198 * Applies to both IPv4 and IPv6. 26199 */ 26200 static void 26201 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 26202 { 26203 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 26204 func, arg, zoneid); 26205 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 26206 func, arg, zoneid); 26207 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 26208 func, arg, zoneid); 26209 conn_walk_fanout_table(ipcl_proto_fanout, 26210 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 26211 conn_walk_fanout_table(ipcl_proto_fanout_v6, 26212 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 26213 } 26214 26215 /* 26216 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 26217 * of conns that need to be drained, check if drain is already in progress. 26218 * If so set the idl_repeat bit, indicating that the last conn in the list 26219 * needs to reinitiate the drain once again, for the list. If drain is not 26220 * in progress for the list, initiate the draining, by qenabling the 1st 26221 * conn in the list. The drain is self-sustaining, each qenabled conn will 26222 * in turn qenable the next conn, when it is done/blocked/closing. 26223 */ 26224 static void 26225 conn_walk_drain(void) 26226 { 26227 int i; 26228 idl_t *idl; 26229 26230 IP_STAT(ip_conn_walk_drain); 26231 26232 for (i = 0; i < conn_drain_list_cnt; i++) { 26233 idl = &conn_drain_list[i]; 26234 mutex_enter(&idl->idl_lock); 26235 if (idl->idl_conn == NULL) { 26236 mutex_exit(&idl->idl_lock); 26237 continue; 26238 } 26239 /* 26240 * If this list is not being drained currently by 26241 * an ip_wsrv thread, start the process. 26242 */ 26243 if (idl->idl_conn_draining == NULL) { 26244 ASSERT(idl->idl_repeat == 0); 26245 qenable(idl->idl_conn->conn_wq); 26246 idl->idl_conn_draining = idl->idl_conn; 26247 } else { 26248 idl->idl_repeat = 1; 26249 } 26250 mutex_exit(&idl->idl_lock); 26251 } 26252 } 26253 26254 /* 26255 * Walk an conn hash table of `count' buckets, calling func for each entry. 26256 */ 26257 static void 26258 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 26259 zoneid_t zoneid) 26260 { 26261 conn_t *connp; 26262 26263 while (count-- > 0) { 26264 mutex_enter(&connfp->connf_lock); 26265 for (connp = connfp->connf_head; connp != NULL; 26266 connp = connp->conn_next) { 26267 if (zoneid == GLOBAL_ZONEID || 26268 zoneid == connp->conn_zoneid) { 26269 CONN_INC_REF(connp); 26270 mutex_exit(&connfp->connf_lock); 26271 (*func)(connp, arg); 26272 mutex_enter(&connfp->connf_lock); 26273 CONN_DEC_REF(connp); 26274 } 26275 } 26276 mutex_exit(&connfp->connf_lock); 26277 connfp++; 26278 } 26279 } 26280 26281 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 26282 static void 26283 conn_report1(conn_t *connp, void *mp) 26284 { 26285 char buf1[INET6_ADDRSTRLEN]; 26286 char buf2[INET6_ADDRSTRLEN]; 26287 uint_t print_len, buf_len; 26288 26289 ASSERT(connp != NULL); 26290 26291 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 26292 if (buf_len <= 0) 26293 return; 26294 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 26295 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 26296 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 26297 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 26298 "%5d %s/%05d %s/%05d\n", 26299 (void *)connp, (void *)CONNP_TO_RQ(connp), 26300 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 26301 buf1, connp->conn_lport, 26302 buf2, connp->conn_fport); 26303 if (print_len < buf_len) { 26304 ((mblk_t *)mp)->b_wptr += print_len; 26305 } else { 26306 ((mblk_t *)mp)->b_wptr += buf_len; 26307 } 26308 } 26309 26310 /* 26311 * Named Dispatch routine to produce a formatted report on all conns 26312 * that are listed in one of the fanout tables. 26313 * This report is accessed by using the ndd utility to "get" ND variable 26314 * "ip_conn_status". 26315 */ 26316 /* ARGSUSED */ 26317 static int 26318 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 26319 { 26320 (void) mi_mpprintf(mp, 26321 "CONN " MI_COL_HDRPAD_STR 26322 "rfq " MI_COL_HDRPAD_STR 26323 "stq " MI_COL_HDRPAD_STR 26324 " zone local remote"); 26325 26326 /* 26327 * Because of the ndd constraint, at most we can have 64K buffer 26328 * to put in all conn info. So to be more efficient, just 26329 * allocate a 64K buffer here, assuming we need that large buffer. 26330 * This should be OK as only privileged processes can do ndd /dev/ip. 26331 */ 26332 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 26333 /* The following may work even if we cannot get a large buf. */ 26334 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 26335 return (0); 26336 } 26337 26338 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 26339 return (0); 26340 } 26341 26342 /* 26343 * Determine if the ill and multicast aspects of that packets 26344 * "matches" the conn. 26345 */ 26346 boolean_t 26347 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 26348 zoneid_t zoneid) 26349 { 26350 ill_t *in_ill; 26351 boolean_t found; 26352 ipif_t *ipif; 26353 ire_t *ire; 26354 ipaddr_t dst, src; 26355 26356 dst = ipha->ipha_dst; 26357 src = ipha->ipha_src; 26358 26359 /* 26360 * conn_incoming_ill is set by IP_BOUND_IF which limits 26361 * unicast, broadcast and multicast reception to 26362 * conn_incoming_ill. conn_wantpacket itself is called 26363 * only for BROADCAST and multicast. 26364 * 26365 * 1) ip_rput supresses duplicate broadcasts if the ill 26366 * is part of a group. Hence, we should be receiving 26367 * just one copy of broadcast for the whole group. 26368 * Thus, if it is part of the group the packet could 26369 * come on any ill of the group and hence we need a 26370 * match on the group. Otherwise, match on ill should 26371 * be sufficient. 26372 * 26373 * 2) ip_rput does not suppress duplicate multicast packets. 26374 * If there are two interfaces in a ill group and we have 26375 * 2 applications (conns) joined a multicast group G on 26376 * both the interfaces, ilm_lookup_ill filter in ip_rput 26377 * will give us two packets because we join G on both the 26378 * interfaces rather than nominating just one interface 26379 * for receiving multicast like broadcast above. So, 26380 * we have to call ilg_lookup_ill to filter out duplicate 26381 * copies, if ill is part of a group. 26382 */ 26383 in_ill = connp->conn_incoming_ill; 26384 if (in_ill != NULL) { 26385 if (in_ill->ill_group == NULL) { 26386 if (in_ill != ill) 26387 return (B_FALSE); 26388 } else if (in_ill->ill_group != ill->ill_group) { 26389 return (B_FALSE); 26390 } 26391 } 26392 26393 if (!CLASSD(dst)) { 26394 if (IPCL_ZONE_MATCH(connp, zoneid)) 26395 return (B_TRUE); 26396 /* 26397 * The conn is in a different zone; we need to check that this 26398 * broadcast address is configured in the application's zone and 26399 * on one ill in the group. 26400 */ 26401 ipif = ipif_get_next_ipif(NULL, ill); 26402 if (ipif == NULL) 26403 return (B_FALSE); 26404 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 26405 connp->conn_zoneid, NULL, 26406 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 26407 ipif_refrele(ipif); 26408 if (ire != NULL) { 26409 ire_refrele(ire); 26410 return (B_TRUE); 26411 } else { 26412 return (B_FALSE); 26413 } 26414 } 26415 26416 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 26417 connp->conn_zoneid == zoneid) { 26418 /* 26419 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 26420 * disabled, therefore we don't dispatch the multicast packet to 26421 * the sending zone. 26422 */ 26423 return (B_FALSE); 26424 } 26425 26426 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 26427 connp->conn_zoneid != zoneid) { 26428 /* 26429 * Multicast packet on the loopback interface: we only match 26430 * conns who joined the group in the specified zone. 26431 */ 26432 return (B_FALSE); 26433 } 26434 26435 if (connp->conn_multi_router) { 26436 /* multicast packet and multicast router socket: send up */ 26437 return (B_TRUE); 26438 } 26439 26440 mutex_enter(&connp->conn_lock); 26441 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 26442 mutex_exit(&connp->conn_lock); 26443 return (found); 26444 } 26445 26446 /* 26447 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 26448 */ 26449 /* ARGSUSED */ 26450 static void 26451 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 26452 { 26453 ill_t *ill = (ill_t *)q->q_ptr; 26454 mblk_t *mp1, *mp2; 26455 ipif_t *ipif; 26456 int err = 0; 26457 conn_t *connp = NULL; 26458 ipsq_t *ipsq; 26459 arc_t *arc; 26460 26461 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 26462 26463 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 26464 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 26465 26466 ASSERT(IAM_WRITER_ILL(ill)); 26467 mp2 = mp->b_cont; 26468 mp->b_cont = NULL; 26469 26470 /* 26471 * We have now received the arp bringup completion message 26472 * from ARP. Mark the arp bringup as done. Also if the arp 26473 * stream has already started closing, send up the AR_ARP_CLOSING 26474 * ack now since ARP is waiting in close for this ack. 26475 */ 26476 mutex_enter(&ill->ill_lock); 26477 ill->ill_arp_bringup_pending = 0; 26478 if (ill->ill_arp_closing) { 26479 mutex_exit(&ill->ill_lock); 26480 /* Let's reuse the mp for sending the ack */ 26481 arc = (arc_t *)mp->b_rptr; 26482 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 26483 arc->arc_cmd = AR_ARP_CLOSING; 26484 qreply(q, mp); 26485 } else { 26486 mutex_exit(&ill->ill_lock); 26487 freeb(mp); 26488 } 26489 26490 /* We should have an IOCTL waiting on this. */ 26491 ipsq = ill->ill_phyint->phyint_ipsq; 26492 ipif = ipsq->ipsq_pending_ipif; 26493 mp1 = ipsq_pending_mp_get(ipsq, &connp); 26494 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 26495 if (mp1 == NULL) { 26496 /* bringup was aborted by the user */ 26497 freemsg(mp2); 26498 return; 26499 } 26500 ASSERT(connp != NULL); 26501 q = CONNP_TO_WQ(connp); 26502 /* 26503 * If the DL_BIND_REQ fails, it is noted 26504 * in arc_name_offset. 26505 */ 26506 err = *((int *)mp2->b_rptr); 26507 if (err == 0) { 26508 if (ipif->ipif_isv6) { 26509 if ((err = ipif_up_done_v6(ipif)) != 0) 26510 ip0dbg(("ip_arp_done: init failed\n")); 26511 } else { 26512 if ((err = ipif_up_done(ipif)) != 0) 26513 ip0dbg(("ip_arp_done: init failed\n")); 26514 } 26515 } else { 26516 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 26517 } 26518 26519 freemsg(mp2); 26520 26521 if ((err == 0) && (ill->ill_up_ipifs)) { 26522 err = ill_up_ipifs(ill, q, mp1); 26523 if (err == EINPROGRESS) 26524 return; 26525 } 26526 26527 if (ill->ill_up_ipifs) { 26528 ill_group_cleanup(ill); 26529 } 26530 26531 /* 26532 * The ioctl must complete now without EINPROGRESS 26533 * since ipsq_pending_mp_get has removed the ioctl mblk 26534 * from ipsq_pending_mp. Otherwise the ioctl will be 26535 * stuck for ever in the ipsq. 26536 */ 26537 ASSERT(err != EINPROGRESS); 26538 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 26539 } 26540 26541 /* Allocate the private structure */ 26542 static int 26543 ip_priv_alloc(void **bufp) 26544 { 26545 void *buf; 26546 26547 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 26548 return (ENOMEM); 26549 26550 *bufp = buf; 26551 return (0); 26552 } 26553 26554 /* Function to delete the private structure */ 26555 void 26556 ip_priv_free(void *buf) 26557 { 26558 ASSERT(buf != NULL); 26559 kmem_free(buf, sizeof (ip_priv_t)); 26560 } 26561 26562 /* 26563 * The entry point for IPPF processing. 26564 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 26565 * routine just returns. 26566 * 26567 * When called, ip_process generates an ipp_packet_t structure 26568 * which holds the state information for this packet and invokes the 26569 * the classifier (via ipp_packet_process). The classification, depending on 26570 * configured filters, results in a list of actions for this packet. Invoking 26571 * an action may cause the packet to be dropped, in which case the resulting 26572 * mblk (*mpp) is NULL. proc indicates the callout position for 26573 * this packet and ill_index is the interface this packet on or will leave 26574 * on (inbound and outbound resp.). 26575 */ 26576 void 26577 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 26578 { 26579 mblk_t *mp; 26580 ip_priv_t *priv; 26581 ipp_action_id_t aid; 26582 int rc = 0; 26583 ipp_packet_t *pp; 26584 #define IP_CLASS "ip" 26585 26586 /* If the classifier is not loaded, return */ 26587 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 26588 return; 26589 } 26590 26591 mp = *mpp; 26592 ASSERT(mp != NULL); 26593 26594 /* Allocate the packet structure */ 26595 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 26596 if (rc != 0) { 26597 *mpp = NULL; 26598 freemsg(mp); 26599 return; 26600 } 26601 26602 /* Allocate the private structure */ 26603 rc = ip_priv_alloc((void **)&priv); 26604 if (rc != 0) { 26605 *mpp = NULL; 26606 freemsg(mp); 26607 ipp_packet_free(pp); 26608 return; 26609 } 26610 priv->proc = proc; 26611 priv->ill_index = ill_index; 26612 ipp_packet_set_private(pp, priv, ip_priv_free); 26613 ipp_packet_set_data(pp, mp); 26614 26615 /* Invoke the classifier */ 26616 rc = ipp_packet_process(&pp); 26617 if (pp != NULL) { 26618 mp = ipp_packet_get_data(pp); 26619 ipp_packet_free(pp); 26620 if (rc != 0) { 26621 freemsg(mp); 26622 *mpp = NULL; 26623 } 26624 } else { 26625 *mpp = NULL; 26626 } 26627 #undef IP_CLASS 26628 } 26629 26630 /* 26631 * Propagate a multicast group membership operation (add/drop) on 26632 * all the interfaces crossed by the related multirt routes. 26633 * The call is considered successful if the operation succeeds 26634 * on at least one interface. 26635 */ 26636 static int 26637 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 26638 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 26639 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 26640 mblk_t *first_mp) 26641 { 26642 ire_t *ire_gw; 26643 irb_t *irb; 26644 int error = 0; 26645 opt_restart_t *or; 26646 26647 irb = ire->ire_bucket; 26648 ASSERT(irb != NULL); 26649 26650 ASSERT(DB_TYPE(first_mp) == M_CTL); 26651 26652 or = (opt_restart_t *)first_mp->b_rptr; 26653 IRB_REFHOLD(irb); 26654 for (; ire != NULL; ire = ire->ire_next) { 26655 if ((ire->ire_flags & RTF_MULTIRT) == 0) 26656 continue; 26657 if (ire->ire_addr != group) 26658 continue; 26659 26660 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 26661 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 26662 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 26663 /* No resolver exists for the gateway; skip this ire. */ 26664 if (ire_gw == NULL) 26665 continue; 26666 26667 /* 26668 * This function can return EINPROGRESS. If so the operation 26669 * will be restarted from ip_restart_optmgmt which will 26670 * call ip_opt_set and option processing will restart for 26671 * this option. So we may end up calling 'fn' more than once. 26672 * This requires that 'fn' is idempotent except for the 26673 * return value. The operation is considered a success if 26674 * it succeeds at least once on any one interface. 26675 */ 26676 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 26677 NULL, fmode, src, first_mp); 26678 if (error == 0) 26679 or->or_private = CGTP_MCAST_SUCCESS; 26680 26681 if (ip_debug > 0) { 26682 ulong_t off; 26683 char *ksym; 26684 ksym = kobj_getsymname((uintptr_t)fn, &off); 26685 ip2dbg(("ip_multirt_apply_membership: " 26686 "called %s, multirt group 0x%08x via itf 0x%08x, " 26687 "error %d [success %u]\n", 26688 ksym ? ksym : "?", 26689 ntohl(group), ntohl(ire_gw->ire_src_addr), 26690 error, or->or_private)); 26691 } 26692 26693 ire_refrele(ire_gw); 26694 if (error == EINPROGRESS) { 26695 IRB_REFRELE(irb); 26696 return (error); 26697 } 26698 } 26699 IRB_REFRELE(irb); 26700 /* 26701 * Consider the call as successful if we succeeded on at least 26702 * one interface. Otherwise, return the last encountered error. 26703 */ 26704 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 26705 } 26706 26707 26708 /* 26709 * Issue a warning regarding a route crossing an interface with an 26710 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 26711 * amount of time is logged. 26712 */ 26713 static void 26714 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 26715 { 26716 hrtime_t current = gethrtime(); 26717 char buf[16]; 26718 26719 /* Convert interval in ms to hrtime in ns */ 26720 if (multirt_bad_mtu_last_time + 26721 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 26722 current) { 26723 cmn_err(CE_WARN, "ip: ignoring multiroute " 26724 "to %s, incorrect MTU %u (expected %u)\n", 26725 ip_dot_addr(ire->ire_addr, buf), 26726 ire->ire_max_frag, max_frag); 26727 26728 multirt_bad_mtu_last_time = current; 26729 } 26730 } 26731 26732 26733 /* 26734 * Get the CGTP (multirouting) filtering status. 26735 * If 0, the CGTP hooks are transparent. 26736 */ 26737 /* ARGSUSED */ 26738 static int 26739 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 26740 { 26741 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26742 26743 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 26744 return (0); 26745 } 26746 26747 26748 /* 26749 * Set the CGTP (multirouting) filtering status. 26750 * If the status is changed from active to transparent 26751 * or from transparent to active, forward the new status 26752 * to the filtering module (if loaded). 26753 */ 26754 /* ARGSUSED */ 26755 static int 26756 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 26757 cred_t *ioc_cr) 26758 { 26759 long new_value; 26760 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26761 26762 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 26763 new_value < 0 || new_value > 1) { 26764 return (EINVAL); 26765 } 26766 26767 /* 26768 * Do not enable CGTP filtering - thus preventing the hooks 26769 * from being invoked - if the version number of the 26770 * filtering module hooks does not match. 26771 */ 26772 if ((ip_cgtp_filter_ops != NULL) && 26773 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 26774 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 26775 "(module hooks version %d, expecting %d)\n", 26776 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 26777 return (ENOTSUP); 26778 } 26779 26780 if ((!*ip_cgtp_filter_value) && new_value) { 26781 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 26782 ip_cgtp_filter_ops == NULL ? 26783 " (module not loaded)" : ""); 26784 } 26785 if (*ip_cgtp_filter_value && (!new_value)) { 26786 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 26787 ip_cgtp_filter_ops == NULL ? 26788 " (module not loaded)" : ""); 26789 } 26790 26791 if (ip_cgtp_filter_ops != NULL) { 26792 int res; 26793 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 26794 return (res); 26795 } 26796 } 26797 26798 *ip_cgtp_filter_value = (boolean_t)new_value; 26799 26800 return (0); 26801 } 26802 26803 26804 /* 26805 * Return the expected CGTP hooks version number. 26806 */ 26807 int 26808 ip_cgtp_filter_supported(void) 26809 { 26810 return (ip_cgtp_filter_rev); 26811 } 26812 26813 26814 /* 26815 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 26816 * or by invoking this function. In the first case, the version number 26817 * of the registered structure is checked at hooks activation time 26818 * in ip_cgtp_filter_set(). 26819 */ 26820 int 26821 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 26822 { 26823 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 26824 return (ENOTSUP); 26825 26826 ip_cgtp_filter_ops = ops; 26827 return (0); 26828 } 26829 26830 static squeue_func_t 26831 ip_squeue_switch(int val) 26832 { 26833 squeue_func_t rval = squeue_fill; 26834 26835 switch (val) { 26836 case IP_SQUEUE_ENTER_NODRAIN: 26837 rval = squeue_enter_nodrain; 26838 break; 26839 case IP_SQUEUE_ENTER: 26840 rval = squeue_enter; 26841 break; 26842 default: 26843 break; 26844 } 26845 return (rval); 26846 } 26847 26848 /* ARGSUSED */ 26849 static int 26850 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 26851 caddr_t addr, cred_t *cr) 26852 { 26853 int *v = (int *)addr; 26854 long new_value; 26855 26856 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26857 return (EINVAL); 26858 26859 ip_input_proc = ip_squeue_switch(new_value); 26860 *v = new_value; 26861 return (0); 26862 } 26863 26864 /* ARGSUSED */ 26865 static int 26866 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26867 caddr_t addr, cred_t *cr) 26868 { 26869 int *v = (int *)addr; 26870 long new_value; 26871 26872 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26873 return (EINVAL); 26874 26875 *v = new_value; 26876 return (0); 26877 } 26878 26879 static void 26880 ip_kstat_init(void) 26881 { 26882 ip_named_kstat_t template = { 26883 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26884 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26885 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26886 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26887 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26888 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26889 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26890 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26891 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26892 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26893 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26894 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26895 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26896 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26897 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26898 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26899 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26900 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26901 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26902 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26903 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26904 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26905 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26906 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26907 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26908 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26909 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26910 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26911 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26912 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26913 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26914 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26915 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26916 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26917 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26918 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26919 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26920 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26921 }; 26922 26923 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26924 NUM_OF_FIELDS(ip_named_kstat_t), 26925 0); 26926 if (!ip_mibkp) 26927 return; 26928 26929 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26930 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26931 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26932 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26933 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26934 26935 template.netToMediaEntrySize.value.i32 = 26936 sizeof (mib2_ipNetToMediaEntry_t); 26937 26938 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26939 26940 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26941 26942 ip_mibkp->ks_update = ip_kstat_update; 26943 26944 kstat_install(ip_mibkp); 26945 } 26946 26947 static void 26948 ip_kstat_fini(void) 26949 { 26950 26951 if (ip_mibkp != NULL) { 26952 kstat_delete(ip_mibkp); 26953 ip_mibkp = NULL; 26954 } 26955 } 26956 26957 static int 26958 ip_kstat_update(kstat_t *kp, int rw) 26959 { 26960 ip_named_kstat_t *ipkp; 26961 26962 if (!kp || !kp->ks_data) 26963 return (EIO); 26964 26965 if (rw == KSTAT_WRITE) 26966 return (EACCES); 26967 26968 ipkp = (ip_named_kstat_t *)kp->ks_data; 26969 26970 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26971 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26972 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26973 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26974 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26975 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26976 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26977 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26978 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26979 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26980 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26981 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26982 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26983 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26984 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26985 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26986 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26987 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26988 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26989 26990 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26991 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26992 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26993 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 26994 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 26995 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 26996 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 26997 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 26998 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 26999 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 27000 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 27001 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 27002 27003 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27004 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27005 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27006 27007 return (0); 27008 } 27009 27010 static void 27011 icmp_kstat_init(void) 27012 { 27013 icmp_named_kstat_t template = { 27014 { "inMsgs", KSTAT_DATA_UINT32 }, 27015 { "inErrors", KSTAT_DATA_UINT32 }, 27016 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27017 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27018 { "inParmProbs", KSTAT_DATA_UINT32 }, 27019 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27020 { "inRedirects", KSTAT_DATA_UINT32 }, 27021 { "inEchos", KSTAT_DATA_UINT32 }, 27022 { "inEchoReps", KSTAT_DATA_UINT32 }, 27023 { "inTimestamps", KSTAT_DATA_UINT32 }, 27024 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27025 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27026 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27027 { "outMsgs", KSTAT_DATA_UINT32 }, 27028 { "outErrors", KSTAT_DATA_UINT32 }, 27029 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27030 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27031 { "outParmProbs", KSTAT_DATA_UINT32 }, 27032 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27033 { "outRedirects", KSTAT_DATA_UINT32 }, 27034 { "outEchos", KSTAT_DATA_UINT32 }, 27035 { "outEchoReps", KSTAT_DATA_UINT32 }, 27036 { "outTimestamps", KSTAT_DATA_UINT32 }, 27037 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27038 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27039 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27040 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27041 { "inUnknowns", KSTAT_DATA_UINT32 }, 27042 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27043 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27044 { "outDrops", KSTAT_DATA_UINT32 }, 27045 { "inOverFlows", KSTAT_DATA_UINT32 }, 27046 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27047 }; 27048 27049 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27050 NUM_OF_FIELDS(icmp_named_kstat_t), 27051 0); 27052 if (icmp_mibkp == NULL) 27053 return; 27054 27055 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27056 27057 icmp_mibkp->ks_update = icmp_kstat_update; 27058 27059 kstat_install(icmp_mibkp); 27060 } 27061 27062 static void 27063 icmp_kstat_fini(void) 27064 { 27065 27066 if (icmp_mibkp != NULL) { 27067 kstat_delete(icmp_mibkp); 27068 icmp_mibkp = NULL; 27069 } 27070 } 27071 27072 static int 27073 icmp_kstat_update(kstat_t *kp, int rw) 27074 { 27075 icmp_named_kstat_t *icmpkp; 27076 27077 if ((kp == NULL) || (kp->ks_data == NULL)) 27078 return (EIO); 27079 27080 if (rw == KSTAT_WRITE) 27081 return (EACCES); 27082 27083 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27084 27085 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27086 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27087 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27088 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27089 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27090 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27091 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27092 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27093 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27094 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27095 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27096 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27097 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27098 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27099 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27100 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27101 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27102 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27103 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27104 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27105 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27106 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27107 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27108 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27109 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27110 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27111 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27112 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27113 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27114 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 27115 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 27116 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 27117 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 27118 27119 return (0); 27120 } 27121 27122 /* 27123 * This is the fanout function for raw socket opened for SCTP. Note 27124 * that it is called after SCTP checks that there is no socket which 27125 * wants a packet. Then before SCTP handles this out of the blue packet, 27126 * this function is called to see if there is any raw socket for SCTP. 27127 * If there is and it is bound to the correct address, the packet will 27128 * be sent to that socket. Note that only one raw socket can be bound to 27129 * a port. This is assured in ipcl_sctp_hash_insert(); 27130 */ 27131 void 27132 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 27133 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 27134 uint_t ipif_seqid, zoneid_t zoneid) 27135 { 27136 conn_t *connp; 27137 queue_t *rq; 27138 mblk_t *first_mp; 27139 boolean_t secure; 27140 ip6_t *ip6h; 27141 27142 first_mp = mp; 27143 if (mctl_present) { 27144 mp = first_mp->b_cont; 27145 secure = ipsec_in_is_secure(first_mp); 27146 ASSERT(mp != NULL); 27147 } else { 27148 secure = B_FALSE; 27149 } 27150 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 27151 27152 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 27153 if (connp == NULL) { 27154 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 27155 mctl_present); 27156 return; 27157 } 27158 rq = connp->conn_rq; 27159 if (!canputnext(rq)) { 27160 CONN_DEC_REF(connp); 27161 BUMP_MIB(&ip_mib, rawipInOverflows); 27162 freemsg(first_mp); 27163 return; 27164 } 27165 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 27166 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 27167 first_mp = ipsec_check_inbound_policy(first_mp, connp, 27168 (isv4 ? ipha : NULL), ip6h, mctl_present); 27169 if (first_mp == NULL) { 27170 CONN_DEC_REF(connp); 27171 return; 27172 } 27173 } 27174 /* 27175 * We probably should not send M_CTL message up to 27176 * raw socket. 27177 */ 27178 if (mctl_present) 27179 freeb(first_mp); 27180 27181 /* Initiate IPPF processing here if needed. */ 27182 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 27183 (!isv4 && IP6_IN_IPP(flags))) { 27184 ip_process(IPP_LOCAL_IN, &mp, 27185 recv_ill->ill_phyint->phyint_ifindex); 27186 if (mp == NULL) { 27187 CONN_DEC_REF(connp); 27188 return; 27189 } 27190 } 27191 27192 if (connp->conn_recvif || connp->conn_recvslla || 27193 ((connp->conn_ipv6_recvpktinfo || 27194 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 27195 (flags & IP_FF_IP6INFO))) { 27196 int in_flags = 0; 27197 27198 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 27199 in_flags = IPF_RECVIF; 27200 } 27201 if (connp->conn_recvslla) { 27202 in_flags |= IPF_RECVSLLA; 27203 } 27204 if (isv4) { 27205 mp = ip_add_info(mp, recv_ill, in_flags); 27206 } else { 27207 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 27208 if (mp == NULL) { 27209 CONN_DEC_REF(connp); 27210 return; 27211 } 27212 } 27213 } 27214 27215 BUMP_MIB(&ip_mib, ipInDelivers); 27216 /* 27217 * We are sending the IPSEC_IN message also up. Refer 27218 * to comments above this function. 27219 */ 27220 putnext(rq, mp); 27221 CONN_DEC_REF(connp); 27222 } 27223 27224 /* 27225 * Martian Address Filtering [RFC 1812, Section 5.3.7] 27226 */ 27227 static boolean_t 27228 ip_no_forward(ipha_t *ipha, ill_t *ill) 27229 { 27230 ipaddr_t ip_src, ip_dst; 27231 ire_t *src_ire = NULL; 27232 27233 ip_src = ntohl(ipha->ipha_src); 27234 ip_dst = ntohl(ipha->ipha_dst); 27235 27236 if (ip_dst == INADDR_ANY) 27237 goto dont_forward; 27238 27239 if (IN_CLASSD(ip_src)) 27240 goto dont_forward; 27241 27242 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 27243 goto dont_forward; 27244 27245 if (IN_BADCLASS(ip_dst)) 27246 goto dont_forward; 27247 27248 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 27249 ALL_ZONES, NULL, MATCH_IRE_TYPE); 27250 if (src_ire != NULL) { 27251 ire_refrele(src_ire); 27252 goto dont_forward; 27253 } 27254 27255 return (B_FALSE); 27256 27257 dont_forward: 27258 if (ip_debug > 2) { 27259 printf("ip_no_forward: dropping packet received on %s\n", 27260 ill->ill_name); 27261 pr_addr_dbg("ip_no_forward: from src %s\n", 27262 AF_INET, &ipha->ipha_src); 27263 pr_addr_dbg("ip_no_forward: to dst %s\n", 27264 AF_INET, &ipha->ipha_dst); 27265 } 27266 BUMP_MIB(&ip_mib, ipForwProhibits); 27267 return (B_TRUE); 27268 } 27269 27270 static boolean_t 27271 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 27272 { 27273 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 27274 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 27275 if (ip_debug > 2) { 27276 if (ill != NULL) { 27277 printf("ip_loopback_src_or_dst: " 27278 "dropping packet received on %s\n", 27279 ill->ill_name); 27280 } else { 27281 printf("ip_loopback_src_or_dst: " 27282 "dropping packet\n"); 27283 } 27284 27285 pr_addr_dbg( 27286 "ip_loopback_src_or_dst: from src %s\n", 27287 AF_INET, &ipha->ipha_src); 27288 pr_addr_dbg( 27289 "ip_loopback_src_or_dst: to dst %s\n", 27290 AF_INET, &ipha->ipha_dst); 27291 } 27292 27293 BUMP_MIB(&ip_mib, ipInAddrErrors); 27294 return (B_TRUE); 27295 } 27296 return (B_FALSE); 27297 } 27298 27299 /* 27300 * Return B_TRUE if the buffers differ in length or content. 27301 * This is used for comparing extension header buffers. 27302 * Note that an extension header would be declared different 27303 * even if all that changed was the next header value in that header i.e. 27304 * what really changed is the next extension header. 27305 */ 27306 boolean_t 27307 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 27308 uint_t blen) 27309 { 27310 if (!b_valid) 27311 blen = 0; 27312 27313 if (alen != blen) 27314 return (B_TRUE); 27315 if (alen == 0) 27316 return (B_FALSE); /* Both zero length */ 27317 return (bcmp(abuf, bbuf, alen)); 27318 } 27319 27320 /* 27321 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 27322 * Return B_FALSE if memory allocation fails - don't change any state! 27323 */ 27324 boolean_t 27325 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27326 const void *src, uint_t srclen) 27327 { 27328 void *dst; 27329 27330 if (!src_valid) 27331 srclen = 0; 27332 27333 ASSERT(*dstlenp == 0); 27334 if (src != NULL && srclen != 0) { 27335 dst = mi_alloc(srclen, BPRI_MED); 27336 if (dst == NULL) 27337 return (B_FALSE); 27338 } else { 27339 dst = NULL; 27340 } 27341 if (*dstp != NULL) 27342 mi_free(*dstp); 27343 *dstp = dst; 27344 *dstlenp = dst == NULL ? 0 : srclen; 27345 return (B_TRUE); 27346 } 27347 27348 /* 27349 * Replace what is in *dst, *dstlen with the source. 27350 * Assumes ip_allocbuf has already been called. 27351 */ 27352 void 27353 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27354 const void *src, uint_t srclen) 27355 { 27356 if (!src_valid) 27357 srclen = 0; 27358 27359 ASSERT(*dstlenp == srclen); 27360 if (src != NULL && srclen != 0) 27361 bcopy(src, *dstp, srclen); 27362 } 27363 27364 /* 27365 * Free the storage pointed to by the members of an ip6_pkt_t. 27366 */ 27367 void 27368 ip6_pkt_free(ip6_pkt_t *ipp) 27369 { 27370 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 27371 27372 if (ipp->ipp_fields & IPPF_HOPOPTS) { 27373 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 27374 ipp->ipp_hopopts = NULL; 27375 ipp->ipp_hopoptslen = 0; 27376 } 27377 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 27378 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 27379 ipp->ipp_rtdstopts = NULL; 27380 ipp->ipp_rtdstoptslen = 0; 27381 } 27382 if (ipp->ipp_fields & IPPF_DSTOPTS) { 27383 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 27384 ipp->ipp_dstopts = NULL; 27385 ipp->ipp_dstoptslen = 0; 27386 } 27387 if (ipp->ipp_fields & IPPF_RTHDR) { 27388 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 27389 ipp->ipp_rthdr = NULL; 27390 ipp->ipp_rthdrlen = 0; 27391 } 27392 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 27393 IPPF_RTHDR); 27394 } 27395