1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPSEC notes : 400 * 401 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPSEC code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 605 606 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 607 ip_stack_t *); 608 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 609 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 610 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 611 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 612 mblk_t *, int, ip_stack_t *); 613 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 614 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 615 ill_t *, zoneid_t); 616 static void icmp_options_update(ipha_t *); 617 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 618 ip_stack_t *); 619 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 620 zoneid_t zoneid, ip_stack_t *); 621 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 622 static void icmp_redirect(ill_t *, mblk_t *); 623 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 624 ip_stack_t *); 625 626 static void ip_arp_news(queue_t *, mblk_t *); 627 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 628 ip_stack_t *); 629 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 630 char *ip_dot_addr(ipaddr_t, char *); 631 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 632 int ip_close(queue_t *, int); 633 static char *ip_dot_saddr(uchar_t *, char *); 634 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 635 boolean_t, boolean_t, ill_t *, zoneid_t); 636 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 637 boolean_t, boolean_t, zoneid_t); 638 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 639 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_lrput(queue_t *, mblk_t *); 641 ipaddr_t ip_net_mask(ipaddr_t); 642 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 643 ip_stack_t *); 644 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 645 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 646 char *ip_nv_lookup(nv_t *, int); 647 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 648 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 649 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 650 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 651 ipndp_t *, size_t); 652 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 653 void ip_rput(queue_t *, mblk_t *); 654 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 655 void *dummy_arg); 656 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 657 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 658 ip_stack_t *); 659 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 660 ire_t *, ip_stack_t *); 661 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 662 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 663 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 664 ip_stack_t *); 665 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 666 uint16_t *); 667 int ip_snmp_get(queue_t *, mblk_t *); 668 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 669 mib2_ipIfStatsEntry_t *, ip_stack_t *); 670 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 671 ip_stack_t *); 672 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 674 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 675 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 676 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 678 ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 680 ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 698 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 699 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 700 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 701 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 702 static boolean_t ip_source_route_included(ipha_t *); 703 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 704 705 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 706 zoneid_t, ip_stack_t *); 707 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 708 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 709 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 710 zoneid_t, ip_stack_t *); 711 712 static void conn_drain_init(ip_stack_t *); 713 static void conn_drain_fini(ip_stack_t *); 714 static void conn_drain_tail(conn_t *connp, boolean_t closing); 715 716 static void conn_walk_drain(ip_stack_t *); 717 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 718 zoneid_t); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 725 zoneid_t); 726 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 727 void *dummy_arg); 728 729 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 730 731 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 732 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 733 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 734 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 735 736 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 737 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 738 caddr_t, cred_t *); 739 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 740 caddr_t cp, cred_t *cr); 741 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 742 cred_t *); 743 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 748 cred_t *); 749 static squeue_func_t ip_squeue_switch(int); 750 751 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 752 static void ip_kstat_fini(netstackid_t, kstat_t *); 753 static int ip_kstat_update(kstat_t *kp, int rw); 754 static void *icmp_kstat_init(netstackid_t); 755 static void icmp_kstat_fini(netstackid_t, kstat_t *); 756 static int icmp_kstat_update(kstat_t *kp, int rw); 757 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 758 static void ip_kstat2_fini(netstackid_t, kstat_t *); 759 760 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 766 ipha_t *, ill_t *, boolean_t); 767 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 768 769 /* How long, in seconds, we allow frags to hang around. */ 770 #define IP_FRAG_TIMEOUT 60 771 772 /* 773 * Threshold which determines whether MDT should be used when 774 * generating IP fragments; payload size must be greater than 775 * this threshold for MDT to take place. 776 */ 777 #define IP_WPUT_FRAG_MDT_MIN 32768 778 779 /* Setable in /etc/system only */ 780 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 781 782 static long ip_rput_pullups; 783 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 784 785 vmem_t *ip_minor_arena; 786 787 int ip_debug; 788 789 #ifdef DEBUG 790 uint32_t ipsechw_debug = 0; 791 #endif 792 793 /* 794 * Multirouting/CGTP stuff 795 */ 796 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 797 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 798 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 799 800 /* 801 * XXX following really should only be in a header. Would need more 802 * header and .c clean up first. 803 */ 804 extern optdb_obj_t ip_opt_obj; 805 806 ulong_t ip_squeue_enter_unbound = 0; 807 808 /* 809 * Named Dispatch Parameter Table. 810 * All of these are alterable, within the min/max values given, at run time. 811 */ 812 static ipparam_t lcl_param_arr[] = { 813 /* min max value name */ 814 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 815 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 817 { 0, 1, 0, "ip_respond_to_timestamp"}, 818 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 819 { 0, 1, 1, "ip_send_redirects"}, 820 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 821 { 0, 10, 0, "ip_debug"}, 822 { 0, 10, 0, "ip_mrtdebug"}, 823 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 824 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 825 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 826 { 1, 255, 255, "ip_def_ttl" }, 827 { 0, 1, 0, "ip_forward_src_routed"}, 828 { 0, 256, 32, "ip_wroff_extra" }, 829 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 830 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 831 { 0, 1, 1, "ip_path_mtu_discovery" }, 832 { 0, 240, 30, "ip_ignore_delete_time" }, 833 { 0, 1, 0, "ip_ignore_redirect" }, 834 { 0, 1, 1, "ip_output_queue" }, 835 { 1, 254, 1, "ip_broadcast_ttl" }, 836 { 0, 99999, 100, "ip_icmp_err_interval" }, 837 { 1, 99999, 10, "ip_icmp_err_burst" }, 838 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 839 { 0, 1, 0, "ip_strict_dst_multihoming" }, 840 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 841 { 0, 1, 0, "ipsec_override_persocket_policy" }, 842 { 0, 1, 1, "icmp_accept_clear_messages" }, 843 { 0, 1, 1, "igmp_accept_clear_messages" }, 844 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 845 "ip_ndp_delay_first_probe_time"}, 846 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 847 "ip_ndp_max_unicast_solicit"}, 848 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 849 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 850 { 0, 1, 0, "ip6_forward_src_routed"}, 851 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 852 { 0, 1, 1, "ip6_send_redirects"}, 853 { 0, 1, 0, "ip6_ignore_redirect" }, 854 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 855 856 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 857 858 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 859 860 { 0, 1, 1, "pim_accept_clear_messages" }, 861 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 862 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 863 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 864 { 0, 15, 0, "ip_policy_mask" }, 865 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 866 { 0, 255, 1, "ip_multirt_ttl" }, 867 { 0, 1, 1, "ip_multidata_outbound" }, 868 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 869 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 870 { 0, 1000, 1, "ip_max_temp_defend" }, 871 { 0, 1000, 3, "ip_max_defend" }, 872 { 0, 999999, 30, "ip_defend_interval" }, 873 { 0, 3600000, 300000, "ip_dup_recovery" }, 874 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 875 { 0, 1, 1, "ip_lso_outbound" }, 876 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 877 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 878 #ifdef DEBUG 879 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 880 #else 881 { 0, 0, 0, "" }, 882 #endif 883 }; 884 885 /* 886 * Extended NDP table 887 * The addresses for the first two are filled in to be ips_ip_g_forward 888 * and ips_ipv6_forward at init time. 889 */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 #define IPNDP_IP_FORWARDING_OFFSET 0 893 { ip_param_generic_get, ip_forward_set, NULL, 894 "ip_forwarding" }, 895 #define IPNDP_IP6_FORWARDING_OFFSET 1 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip6_forwarding" }, 898 { ip_ill_report, NULL, NULL, 899 "ip_ill_status" }, 900 { ip_ipif_report, NULL, NULL, 901 "ip_ipif_status" }, 902 { ip_ire_report, NULL, NULL, 903 "ipv4_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 #define IPNDP_CGTP_FILTER_OFFSET 14 923 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 924 "ip_cgtp_filter" }, 925 { ip_param_generic_get, ip_int_set, 926 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 927 #define IPNDP_IPMP_HOOK_OFFSET 16 928 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 929 "ipmp_hook_emulation" }, 930 }; 931 932 /* 933 * Table of IP ioctls encoding the various properties of the ioctl and 934 * indexed based on the last byte of the ioctl command. Occasionally there 935 * is a clash, and there is more than 1 ioctl with the same last byte. 936 * In such a case 1 ioctl is encoded in the ndx table and the remaining 937 * ioctls are encoded in the misc table. An entry in the ndx table is 938 * retrieved by indexing on the last byte of the ioctl command and comparing 939 * the ioctl command with the value in the ndx table. In the event of a 940 * mismatch the misc table is then searched sequentially for the desired 941 * ioctl command. 942 * 943 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 944 */ 945 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 946 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 957 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 958 MISC_CMD, ip_siocaddrt, NULL }, 959 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 960 MISC_CMD, ip_siocdelrt, NULL }, 961 962 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 963 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 964 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 965 IF_CMD, ip_sioctl_get_addr, NULL }, 966 967 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 968 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 969 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 970 IPI_GET_CMD | IPI_REPL, 971 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 972 973 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 974 IPI_PRIV | IPI_WR | IPI_REPL, 975 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 976 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 977 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 978 IF_CMD, ip_sioctl_get_flags, NULL }, 979 980 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 981 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 982 983 /* copyin size cannot be coded for SIOCGIFCONF */ 984 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 985 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 986 987 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 988 IF_CMD, ip_sioctl_mtu, NULL }, 989 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_mtu, NULL }, 991 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 992 IPI_GET_CMD | IPI_REPL, 993 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 994 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 995 IF_CMD, ip_sioctl_brdaddr, NULL }, 996 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 997 IPI_GET_CMD | IPI_REPL, 998 IF_CMD, ip_sioctl_get_netmask, NULL }, 999 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1000 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1001 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1002 IPI_GET_CMD | IPI_REPL, 1003 IF_CMD, ip_sioctl_get_metric, NULL }, 1004 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1005 IF_CMD, ip_sioctl_metric, NULL }, 1006 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1007 1008 /* See 166-168 below for extended SIOC*XARP ioctls */ 1009 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1010 MISC_CMD, ip_sioctl_arp, NULL }, 1011 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1012 MISC_CMD, ip_sioctl_arp, NULL }, 1013 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1014 MISC_CMD, ip_sioctl_arp, NULL }, 1015 1016 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1039 MISC_CMD, if_unitsel, if_unitsel_restart }, 1040 1041 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1061 IPI_PRIV | IPI_WR | IPI_MODOK, 1062 IF_CMD, ip_sioctl_sifname, NULL }, 1063 1064 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1079 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1080 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1081 IF_CMD, ip_sioctl_get_muxid, NULL }, 1082 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1083 IPI_PRIV | IPI_WR | IPI_REPL, 1084 IF_CMD, ip_sioctl_muxid, NULL }, 1085 1086 /* Both if and lif variants share same func */ 1087 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1089 /* Both if and lif variants share same func */ 1090 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1091 IPI_PRIV | IPI_WR | IPI_REPL, 1092 IF_CMD, ip_sioctl_slifindex, NULL }, 1093 1094 /* copyin size cannot be coded for SIOCGIFCONF */ 1095 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1096 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1097 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 1115 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1116 IPI_PRIV | IPI_WR | IPI_REPL, 1117 LIF_CMD, ip_sioctl_removeif, 1118 ip_sioctl_removeif_restart }, 1119 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1120 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1121 LIF_CMD, ip_sioctl_addif, NULL }, 1122 #define SIOCLIFADDR_NDX 112 1123 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1124 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1125 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1126 IPI_GET_CMD | IPI_REPL, 1127 LIF_CMD, ip_sioctl_get_addr, NULL }, 1128 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1129 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1130 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1131 IPI_GET_CMD | IPI_REPL, 1132 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1133 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1134 IPI_PRIV | IPI_WR | IPI_REPL, 1135 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1136 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1137 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1138 LIF_CMD, ip_sioctl_get_flags, NULL }, 1139 1140 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 1143 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1144 ip_sioctl_get_lifconf, NULL }, 1145 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1146 LIF_CMD, ip_sioctl_mtu, NULL }, 1147 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1148 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1149 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1150 IPI_GET_CMD | IPI_REPL, 1151 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1152 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1153 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1154 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1155 IPI_GET_CMD | IPI_REPL, 1156 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1157 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1158 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1159 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1160 IPI_GET_CMD | IPI_REPL, 1161 LIF_CMD, ip_sioctl_get_metric, NULL }, 1162 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1163 LIF_CMD, ip_sioctl_metric, NULL }, 1164 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1165 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1166 LIF_CMD, ip_sioctl_slifname, 1167 ip_sioctl_slifname_restart }, 1168 1169 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1170 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1171 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1172 IPI_GET_CMD | IPI_REPL, 1173 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1174 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1175 IPI_PRIV | IPI_WR | IPI_REPL, 1176 LIF_CMD, ip_sioctl_muxid, NULL }, 1177 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1178 IPI_GET_CMD | IPI_REPL, 1179 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1180 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1181 IPI_PRIV | IPI_WR | IPI_REPL, 1182 LIF_CMD, ip_sioctl_slifindex, 0 }, 1183 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1184 LIF_CMD, ip_sioctl_token, NULL }, 1185 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1186 IPI_GET_CMD | IPI_REPL, 1187 LIF_CMD, ip_sioctl_get_token, NULL }, 1188 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1189 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1190 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1191 IPI_GET_CMD | IPI_REPL, 1192 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1193 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1194 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1195 1196 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1197 IPI_GET_CMD | IPI_REPL, 1198 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1199 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1200 LIF_CMD, ip_siocdelndp_v6, NULL }, 1201 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1202 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1203 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1204 LIF_CMD, ip_siocsetndp_v6, NULL }, 1205 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1206 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1207 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1208 MISC_CMD, ip_sioctl_tonlink, NULL }, 1209 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1210 MISC_CMD, ip_sioctl_tmysite, NULL }, 1211 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1212 TUN_CMD, ip_sioctl_tunparam, NULL }, 1213 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1214 IPI_PRIV | IPI_WR, 1215 TUN_CMD, ip_sioctl_tunparam, NULL }, 1216 1217 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1218 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 1223 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1224 IPI_PRIV | IPI_WR | IPI_REPL, 1225 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1226 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1227 IPI_PRIV | IPI_WR | IPI_REPL, 1228 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1229 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1230 IPI_PRIV | IPI_WR, 1231 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1232 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1235 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1236 IPI_GET_CMD | IPI_REPL, 1237 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1238 1239 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1240 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 1244 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1245 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1246 1247 /* These are handled in ip_sioctl_copyin_setup itself */ 1248 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1249 MISC_CMD, NULL, NULL }, 1250 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1251 MISC_CMD, NULL, NULL }, 1252 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1253 1254 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1255 ip_sioctl_get_lifconf, NULL }, 1256 1257 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1258 MISC_CMD, ip_sioctl_xarp, NULL }, 1259 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1260 MISC_CMD, ip_sioctl_xarp, NULL }, 1261 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1262 MISC_CMD, ip_sioctl_xarp, NULL }, 1263 1264 /* SIOCPOPSOCKFS is not handled by IP */ 1265 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1266 1267 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1268 IPI_GET_CMD | IPI_REPL, 1269 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1270 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1271 IPI_PRIV | IPI_WR | IPI_REPL, 1272 LIF_CMD, ip_sioctl_slifzone, 1273 ip_sioctl_slifzone_restart }, 1274 /* 172-174 are SCTP ioctls and not handled by IP */ 1275 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1279 IPI_GET_CMD, LIF_CMD, 1280 ip_sioctl_get_lifusesrc, 0 }, 1281 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1282 IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_slifusesrc, 1284 NULL }, 1285 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1286 ip_sioctl_get_lifsrcof, NULL }, 1287 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1288 MISC_CMD, ip_sioctl_msfilter, NULL }, 1289 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1290 MISC_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1292 MISC_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1294 MISC_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1296 ip_sioctl_set_ipmpfailback, NULL } 1297 }; 1298 1299 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1300 1301 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1302 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1303 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1304 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1305 TUN_CMD, ip_sioctl_tunparam, NULL }, 1306 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1313 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1314 MISC_CMD, mrt_ioctl}, 1315 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1316 MISC_CMD, mrt_ioctl}, 1317 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl} 1319 }; 1320 1321 int ip_misc_ioctl_count = 1322 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1323 1324 int conn_drain_nthreads; /* Number of drainers reqd. */ 1325 /* Settable in /etc/system */ 1326 /* Defined in ip_ire.c */ 1327 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1328 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1329 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1330 1331 static nv_t ire_nv_arr[] = { 1332 { IRE_BROADCAST, "BROADCAST" }, 1333 { IRE_LOCAL, "LOCAL" }, 1334 { IRE_LOOPBACK, "LOOPBACK" }, 1335 { IRE_CACHE, "CACHE" }, 1336 { IRE_DEFAULT, "DEFAULT" }, 1337 { IRE_PREFIX, "PREFIX" }, 1338 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1339 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1340 { IRE_HOST, "HOST" }, 1341 { 0 } 1342 }; 1343 1344 nv_t *ire_nv_tbl = ire_nv_arr; 1345 1346 /* Defined in ip_netinfo.c */ 1347 extern ddi_taskq_t *eventq_queue_nic; 1348 1349 /* Simple ICMP IP Header Template */ 1350 static ipha_t icmp_ipha = { 1351 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1352 }; 1353 1354 struct module_info ip_mod_info = { 1355 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1356 }; 1357 1358 /* 1359 * Duplicate static symbols within a module confuses mdb; so we avoid the 1360 * problem by making the symbols here distinct from those in udp.c. 1361 */ 1362 1363 static struct qinit iprinit = { 1364 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1365 &ip_mod_info 1366 }; 1367 1368 static struct qinit ipwinit = { 1369 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1370 &ip_mod_info 1371 }; 1372 1373 static struct qinit iplrinit = { 1374 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1375 &ip_mod_info 1376 }; 1377 1378 static struct qinit iplwinit = { 1379 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1380 &ip_mod_info 1381 }; 1382 1383 struct streamtab ipinfo = { 1384 &iprinit, &ipwinit, &iplrinit, &iplwinit 1385 }; 1386 1387 #ifdef DEBUG 1388 static boolean_t skip_sctp_cksum = B_FALSE; 1389 #endif 1390 1391 /* 1392 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1393 * ip_rput_v6(), ip_output(), etc. If the message 1394 * block already has a M_CTL at the front of it, then simply set the zoneid 1395 * appropriately. 1396 */ 1397 mblk_t * 1398 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1399 { 1400 mblk_t *first_mp; 1401 ipsec_out_t *io; 1402 1403 ASSERT(zoneid != ALL_ZONES); 1404 if (mp->b_datap->db_type == M_CTL) { 1405 io = (ipsec_out_t *)mp->b_rptr; 1406 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1407 io->ipsec_out_zoneid = zoneid; 1408 return (mp); 1409 } 1410 1411 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1412 if (first_mp == NULL) 1413 return (NULL); 1414 io = (ipsec_out_t *)first_mp->b_rptr; 1415 /* This is not a secure packet */ 1416 io->ipsec_out_secure = B_FALSE; 1417 io->ipsec_out_zoneid = zoneid; 1418 first_mp->b_cont = mp; 1419 return (first_mp); 1420 } 1421 1422 /* 1423 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1424 */ 1425 mblk_t * 1426 ip_copymsg(mblk_t *mp) 1427 { 1428 mblk_t *nmp; 1429 ipsec_info_t *in; 1430 1431 if (mp->b_datap->db_type != M_CTL) 1432 return (copymsg(mp)); 1433 1434 in = (ipsec_info_t *)mp->b_rptr; 1435 1436 /* 1437 * Note that M_CTL is also used for delivering ICMP error messages 1438 * upstream to transport layers. 1439 */ 1440 if (in->ipsec_info_type != IPSEC_OUT && 1441 in->ipsec_info_type != IPSEC_IN) 1442 return (copymsg(mp)); 1443 1444 nmp = copymsg(mp->b_cont); 1445 1446 if (in->ipsec_info_type == IPSEC_OUT) { 1447 return (ipsec_out_tag(mp, nmp, 1448 ((ipsec_out_t *)in)->ipsec_out_ns)); 1449 } else { 1450 return (ipsec_in_tag(mp, nmp, 1451 ((ipsec_in_t *)in)->ipsec_in_ns)); 1452 } 1453 } 1454 1455 /* Generate an ICMP fragmentation needed message. */ 1456 static void 1457 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1458 ip_stack_t *ipst) 1459 { 1460 icmph_t icmph; 1461 mblk_t *first_mp; 1462 boolean_t mctl_present; 1463 1464 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1465 1466 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1467 if (mctl_present) 1468 freeb(first_mp); 1469 return; 1470 } 1471 1472 bzero(&icmph, sizeof (icmph_t)); 1473 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1474 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1475 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1476 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1477 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1478 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1479 ipst); 1480 } 1481 1482 /* 1483 * icmp_inbound deals with ICMP messages in the following ways. 1484 * 1485 * 1) It needs to send a reply back and possibly delivering it 1486 * to the "interested" upper clients. 1487 * 2) It needs to send it to the upper clients only. 1488 * 3) It needs to change some values in IP only. 1489 * 4) It needs to change some values in IP and upper layers e.g TCP. 1490 * 1491 * We need to accomodate icmp messages coming in clear until we get 1492 * everything secure from the wire. If icmp_accept_clear_messages 1493 * is zero we check with the global policy and act accordingly. If 1494 * it is non-zero, we accept the message without any checks. But 1495 * *this does not mean* that this will be delivered to the upper 1496 * clients. By accepting we might send replies back, change our MTU 1497 * value etc. but delivery to the ULP/clients depends on their policy 1498 * dispositions. 1499 * 1500 * We handle the above 4 cases in the context of IPSEC in the 1501 * following way : 1502 * 1503 * 1) Send the reply back in the same way as the request came in. 1504 * If it came in encrypted, it goes out encrypted. If it came in 1505 * clear, it goes out in clear. Thus, this will prevent chosen 1506 * plain text attack. 1507 * 2) The client may or may not expect things to come in secure. 1508 * If it comes in secure, the policy constraints are checked 1509 * before delivering it to the upper layers. If it comes in 1510 * clear, ipsec_inbound_accept_clear will decide whether to 1511 * accept this in clear or not. In both the cases, if the returned 1512 * message (IP header + 8 bytes) that caused the icmp message has 1513 * AH/ESP headers, it is sent up to AH/ESP for validation before 1514 * sending up. If there are only 8 bytes of returned message, then 1515 * upper client will not be notified. 1516 * 3) Check with global policy to see whether it matches the constaints. 1517 * But this will be done only if icmp_accept_messages_in_clear is 1518 * zero. 1519 * 4) If we need to change both in IP and ULP, then the decision taken 1520 * while affecting the values in IP and while delivering up to TCP 1521 * should be the same. 1522 * 1523 * There are two cases. 1524 * 1525 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1526 * failed), we will not deliver it to the ULP, even though they 1527 * are *willing* to accept in *clear*. This is fine as our global 1528 * disposition to icmp messages asks us reject the datagram. 1529 * 1530 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1531 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1532 * to deliver it to ULP (policy failed), it can lead to 1533 * consistency problems. The cases known at this time are 1534 * ICMP_DESTINATION_UNREACHABLE messages with following code 1535 * values : 1536 * 1537 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1538 * and Upper layer rejects. Then the communication will 1539 * come to a stop. This is solved by making similar decisions 1540 * at both levels. Currently, when we are unable to deliver 1541 * to the Upper Layer (due to policy failures) while IP has 1542 * adjusted ire_max_frag, the next outbound datagram would 1543 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1544 * will be with the right level of protection. Thus the right 1545 * value will be communicated even if we are not able to 1546 * communicate when we get from the wire initially. But this 1547 * assumes there would be at least one outbound datagram after 1548 * IP has adjusted its ire_max_frag value. To make things 1549 * simpler, we accept in clear after the validation of 1550 * AH/ESP headers. 1551 * 1552 * - Other ICMP ERRORS : We may not be able to deliver it to the 1553 * upper layer depending on the level of protection the upper 1554 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1555 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1556 * should be accepted in clear when the Upper layer expects secure. 1557 * Thus the communication may get aborted by some bad ICMP 1558 * packets. 1559 * 1560 * IPQoS Notes: 1561 * The only instance when a packet is sent for processing is when there 1562 * isn't an ICMP client and if we are interested in it. 1563 * If there is a client, IPPF processing will take place in the 1564 * ip_fanout_proto routine. 1565 * 1566 * Zones notes: 1567 * The packet is only processed in the context of the specified zone: typically 1568 * only this zone will reply to an echo request, and only interested clients in 1569 * this zone will receive a copy of the packet. This means that the caller must 1570 * call icmp_inbound() for each relevant zone. 1571 */ 1572 static void 1573 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1574 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1575 ill_t *recv_ill, zoneid_t zoneid) 1576 { 1577 icmph_t *icmph; 1578 ipha_t *ipha; 1579 int iph_hdr_length; 1580 int hdr_length; 1581 boolean_t interested; 1582 uint32_t ts; 1583 uchar_t *wptr; 1584 ipif_t *ipif; 1585 mblk_t *first_mp; 1586 ipsec_in_t *ii; 1587 ire_t *src_ire; 1588 boolean_t onlink; 1589 timestruc_t now; 1590 uint32_t ill_index; 1591 ip_stack_t *ipst; 1592 1593 ASSERT(ill != NULL); 1594 ipst = ill->ill_ipst; 1595 1596 first_mp = mp; 1597 if (mctl_present) { 1598 mp = first_mp->b_cont; 1599 ASSERT(mp != NULL); 1600 } 1601 1602 ipha = (ipha_t *)mp->b_rptr; 1603 if (ipst->ips_icmp_accept_clear_messages == 0) { 1604 first_mp = ipsec_check_global_policy(first_mp, NULL, 1605 ipha, NULL, mctl_present, ipst->ips_netstack); 1606 if (first_mp == NULL) 1607 return; 1608 } 1609 1610 /* 1611 * On a labeled system, we have to check whether the zone itself is 1612 * permitted to receive raw traffic. 1613 */ 1614 if (is_system_labeled()) { 1615 if (zoneid == ALL_ZONES) 1616 zoneid = tsol_packet_to_zoneid(mp); 1617 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1618 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1619 zoneid)); 1620 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1621 freemsg(first_mp); 1622 return; 1623 } 1624 } 1625 1626 /* 1627 * We have accepted the ICMP message. It means that we will 1628 * respond to the packet if needed. It may not be delivered 1629 * to the upper client depending on the policy constraints 1630 * and the disposition in ipsec_inbound_accept_clear. 1631 */ 1632 1633 ASSERT(ill != NULL); 1634 1635 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1636 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1637 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1638 /* Last chance to get real. */ 1639 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1640 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1641 freemsg(first_mp); 1642 return; 1643 } 1644 /* Refresh iph following the pullup. */ 1645 ipha = (ipha_t *)mp->b_rptr; 1646 } 1647 /* ICMP header checksum, including checksum field, should be zero. */ 1648 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1649 IP_CSUM(mp, iph_hdr_length, 0)) { 1650 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1651 freemsg(first_mp); 1652 return; 1653 } 1654 /* The IP header will always be a multiple of four bytes */ 1655 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1656 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1657 icmph->icmph_code)); 1658 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1659 /* We will set "interested" to "true" if we want a copy */ 1660 interested = B_FALSE; 1661 switch (icmph->icmph_type) { 1662 case ICMP_ECHO_REPLY: 1663 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1664 break; 1665 case ICMP_DEST_UNREACHABLE: 1666 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1668 interested = B_TRUE; /* Pass up to transport */ 1669 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1670 break; 1671 case ICMP_SOURCE_QUENCH: 1672 interested = B_TRUE; /* Pass up to transport */ 1673 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1674 break; 1675 case ICMP_REDIRECT: 1676 if (!ipst->ips_ip_ignore_redirect) 1677 interested = B_TRUE; 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1679 break; 1680 case ICMP_ECHO_REQUEST: 1681 /* 1682 * Whether to respond to echo requests that come in as IP 1683 * broadcasts or as IP multicast is subject to debate 1684 * (what isn't?). We aim to please, you pick it. 1685 * Default is do it. 1686 */ 1687 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1688 /* unicast: always respond */ 1689 interested = B_TRUE; 1690 } else if (CLASSD(ipha->ipha_dst)) { 1691 /* multicast: respond based on tunable */ 1692 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1693 } else if (broadcast) { 1694 /* broadcast: respond based on tunable */ 1695 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1696 } 1697 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1698 break; 1699 case ICMP_ROUTER_ADVERTISEMENT: 1700 case ICMP_ROUTER_SOLICITATION: 1701 break; 1702 case ICMP_TIME_EXCEEDED: 1703 interested = B_TRUE; /* Pass up to transport */ 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1705 break; 1706 case ICMP_PARAM_PROBLEM: 1707 interested = B_TRUE; /* Pass up to transport */ 1708 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1709 break; 1710 case ICMP_TIME_STAMP_REQUEST: 1711 /* Response to Time Stamp Requests is local policy. */ 1712 if (ipst->ips_ip_g_resp_to_timestamp && 1713 /* So is whether to respond if it was an IP broadcast. */ 1714 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1715 int tstamp_len = 3 * sizeof (uint32_t); 1716 1717 if (wptr + tstamp_len > mp->b_wptr) { 1718 if (!pullupmsg(mp, wptr + tstamp_len - 1719 mp->b_rptr)) { 1720 BUMP_MIB(ill->ill_ip_mib, 1721 ipIfStatsInDiscards); 1722 freemsg(first_mp); 1723 return; 1724 } 1725 /* Refresh ipha following the pullup. */ 1726 ipha = (ipha_t *)mp->b_rptr; 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1729 } 1730 interested = B_TRUE; 1731 } 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1733 break; 1734 case ICMP_TIME_STAMP_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1736 break; 1737 case ICMP_INFO_REQUEST: 1738 /* Per RFC 1122 3.2.2.7, ignore this. */ 1739 case ICMP_INFO_REPLY: 1740 break; 1741 case ICMP_ADDRESS_MASK_REQUEST: 1742 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1743 !broadcast) && 1744 /* TODO m_pullup of complete header? */ 1745 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1746 interested = B_TRUE; 1747 } 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1749 break; 1750 case ICMP_ADDRESS_MASK_REPLY: 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1752 break; 1753 default: 1754 interested = B_TRUE; /* Pass up to transport */ 1755 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1756 break; 1757 } 1758 /* See if there is an ICMP client. */ 1759 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1760 /* If there is an ICMP client and we want one too, copy it. */ 1761 mblk_t *first_mp1; 1762 1763 if (!interested) { 1764 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1765 ip_policy, recv_ill, zoneid); 1766 return; 1767 } 1768 first_mp1 = ip_copymsg(first_mp); 1769 if (first_mp1 != NULL) { 1770 ip_fanout_proto(q, first_mp1, ill, ipha, 1771 0, mctl_present, ip_policy, recv_ill, zoneid); 1772 } 1773 } else if (!interested) { 1774 freemsg(first_mp); 1775 return; 1776 } else { 1777 /* 1778 * Initiate policy processing for this packet if ip_policy 1779 * is true. 1780 */ 1781 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1782 ill_index = ill->ill_phyint->phyint_ifindex; 1783 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1784 if (mp == NULL) { 1785 if (mctl_present) { 1786 freeb(first_mp); 1787 } 1788 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1789 return; 1790 } 1791 } 1792 } 1793 /* We want to do something with it. */ 1794 /* Check db_ref to make sure we can modify the packet. */ 1795 if (mp->b_datap->db_ref > 1) { 1796 mblk_t *first_mp1; 1797 1798 first_mp1 = ip_copymsg(first_mp); 1799 freemsg(first_mp); 1800 if (!first_mp1) { 1801 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1802 return; 1803 } 1804 first_mp = first_mp1; 1805 if (mctl_present) { 1806 mp = first_mp->b_cont; 1807 ASSERT(mp != NULL); 1808 } else { 1809 mp = first_mp; 1810 } 1811 ipha = (ipha_t *)mp->b_rptr; 1812 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1813 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1814 } 1815 switch (icmph->icmph_type) { 1816 case ICMP_ADDRESS_MASK_REQUEST: 1817 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1818 if (ipif == NULL) { 1819 freemsg(first_mp); 1820 return; 1821 } 1822 /* 1823 * outging interface must be IPv4 1824 */ 1825 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1826 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1827 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1828 ipif_refrele(ipif); 1829 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1830 break; 1831 case ICMP_ECHO_REQUEST: 1832 icmph->icmph_type = ICMP_ECHO_REPLY; 1833 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1834 break; 1835 case ICMP_TIME_STAMP_REQUEST: { 1836 uint32_t *tsp; 1837 1838 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1839 tsp = (uint32_t *)wptr; 1840 tsp++; /* Skip past 'originate time' */ 1841 /* Compute # of milliseconds since midnight */ 1842 gethrestime(&now); 1843 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1844 now.tv_nsec / (NANOSEC / MILLISEC); 1845 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1846 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1847 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1848 break; 1849 } 1850 default: 1851 ipha = (ipha_t *)&icmph[1]; 1852 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1853 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1854 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1855 freemsg(first_mp); 1856 return; 1857 } 1858 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1859 ipha = (ipha_t *)&icmph[1]; 1860 } 1861 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1863 freemsg(first_mp); 1864 return; 1865 } 1866 hdr_length = IPH_HDR_LENGTH(ipha); 1867 if (hdr_length < sizeof (ipha_t)) { 1868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1869 freemsg(first_mp); 1870 return; 1871 } 1872 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1873 if (!pullupmsg(mp, 1874 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1876 freemsg(first_mp); 1877 return; 1878 } 1879 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1880 ipha = (ipha_t *)&icmph[1]; 1881 } 1882 switch (icmph->icmph_type) { 1883 case ICMP_REDIRECT: 1884 /* 1885 * As there is no upper client to deliver, we don't 1886 * need the first_mp any more. 1887 */ 1888 if (mctl_present) { 1889 freeb(first_mp); 1890 } 1891 icmp_redirect(ill, mp); 1892 return; 1893 case ICMP_DEST_UNREACHABLE: 1894 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1895 if (!icmp_inbound_too_big(icmph, ipha, ill, 1896 zoneid, mp, iph_hdr_length, ipst)) { 1897 freemsg(first_mp); 1898 return; 1899 } 1900 /* 1901 * icmp_inbound_too_big() may alter mp. 1902 * Resynch ipha and icmph accordingly. 1903 */ 1904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1905 ipha = (ipha_t *)&icmph[1]; 1906 } 1907 /* FALLTHRU */ 1908 default : 1909 /* 1910 * IPQoS notes: Since we have already done IPQoS 1911 * processing we don't want to do it again in 1912 * the fanout routines called by 1913 * icmp_inbound_error_fanout, hence the last 1914 * argument, ip_policy, is B_FALSE. 1915 */ 1916 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1917 ipha, iph_hdr_length, hdr_length, mctl_present, 1918 B_FALSE, recv_ill, zoneid); 1919 } 1920 return; 1921 } 1922 /* Send out an ICMP packet */ 1923 icmph->icmph_checksum = 0; 1924 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1925 if (broadcast || CLASSD(ipha->ipha_dst)) { 1926 ipif_t *ipif_chosen; 1927 /* 1928 * Make it look like it was directed to us, so we don't look 1929 * like a fool with a broadcast or multicast source address. 1930 */ 1931 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1932 /* 1933 * Make sure that we haven't grabbed an interface that's DOWN. 1934 */ 1935 if (ipif != NULL) { 1936 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1937 ipha->ipha_src, zoneid); 1938 if (ipif_chosen != NULL) { 1939 ipif_refrele(ipif); 1940 ipif = ipif_chosen; 1941 } 1942 } 1943 if (ipif == NULL) { 1944 ip0dbg(("icmp_inbound: " 1945 "No source for broadcast/multicast:\n" 1946 "\tsrc 0x%x dst 0x%x ill %p " 1947 "ipif_lcl_addr 0x%x\n", 1948 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1949 (void *)ill, 1950 ill->ill_ipif->ipif_lcl_addr)); 1951 freemsg(first_mp); 1952 return; 1953 } 1954 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1955 ipha->ipha_dst = ipif->ipif_src_addr; 1956 ipif_refrele(ipif); 1957 } 1958 /* Reset time to live. */ 1959 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1960 { 1961 /* Swap source and destination addresses */ 1962 ipaddr_t tmp; 1963 1964 tmp = ipha->ipha_src; 1965 ipha->ipha_src = ipha->ipha_dst; 1966 ipha->ipha_dst = tmp; 1967 } 1968 ipha->ipha_ident = 0; 1969 if (!IS_SIMPLE_IPH(ipha)) 1970 icmp_options_update(ipha); 1971 1972 /* 1973 * ICMP echo replies should go out on the same interface 1974 * the request came on as probes used by in.mpathd for detecting 1975 * NIC failures are ECHO packets. We turn-off load spreading 1976 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1977 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1978 * function. This is in turn handled by ip_wput and ip_newroute 1979 * to make sure that the packet goes out on the interface it came 1980 * in on. If we don't turnoff load spreading, the packets might get 1981 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1982 * to go out and in.mpathd would wrongly detect a failure or 1983 * mis-detect a NIC failure for link failure. As load spreading 1984 * can happen only if ill_group is not NULL, we do only for 1985 * that case and this does not affect the normal case. 1986 * 1987 * We turn off load spreading only on echo packets that came from 1988 * on-link hosts. If the interface route has been deleted, this will 1989 * not be enforced as we can't do much. For off-link hosts, as the 1990 * default routes in IPv4 does not typically have an ire_ipif 1991 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 1992 * Moreover, expecting a default route through this interface may 1993 * not be correct. We use ipha_dst because of the swap above. 1994 */ 1995 onlink = B_FALSE; 1996 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 1997 /* 1998 * First, we need to make sure that it is not one of our 1999 * local addresses. If we set onlink when it is one of 2000 * our local addresses, we will end up creating IRE_CACHES 2001 * for one of our local addresses. Then, we will never 2002 * accept packets for them afterwards. 2003 */ 2004 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2005 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2006 if (src_ire == NULL) { 2007 ipif = ipif_get_next_ipif(NULL, ill); 2008 if (ipif == NULL) { 2009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2010 freemsg(mp); 2011 return; 2012 } 2013 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2014 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2015 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2016 ipif_refrele(ipif); 2017 if (src_ire != NULL) { 2018 onlink = B_TRUE; 2019 ire_refrele(src_ire); 2020 } 2021 } else { 2022 ire_refrele(src_ire); 2023 } 2024 } 2025 if (!mctl_present) { 2026 /* 2027 * This packet should go out the same way as it 2028 * came in i.e in clear. To make sure that global 2029 * policy will not be applied to this in ip_wput_ire, 2030 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2031 */ 2032 ASSERT(first_mp == mp); 2033 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2034 if (first_mp == NULL) { 2035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2036 freemsg(mp); 2037 return; 2038 } 2039 ii = (ipsec_in_t *)first_mp->b_rptr; 2040 2041 /* This is not a secure packet */ 2042 ii->ipsec_in_secure = B_FALSE; 2043 if (onlink) { 2044 ii->ipsec_in_attach_if = B_TRUE; 2045 ii->ipsec_in_ill_index = 2046 ill->ill_phyint->phyint_ifindex; 2047 ii->ipsec_in_rill_index = 2048 recv_ill->ill_phyint->phyint_ifindex; 2049 } 2050 first_mp->b_cont = mp; 2051 } else if (onlink) { 2052 ii = (ipsec_in_t *)first_mp->b_rptr; 2053 ii->ipsec_in_attach_if = B_TRUE; 2054 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2055 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2056 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2057 } else { 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2060 } 2061 ii->ipsec_in_zoneid = zoneid; 2062 ASSERT(zoneid != ALL_ZONES); 2063 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2065 return; 2066 } 2067 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2068 put(WR(q), first_mp); 2069 } 2070 2071 static ipaddr_t 2072 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2073 { 2074 conn_t *connp; 2075 connf_t *connfp; 2076 ipaddr_t nexthop_addr = INADDR_ANY; 2077 int hdr_length = IPH_HDR_LENGTH(ipha); 2078 uint16_t *up; 2079 uint32_t ports; 2080 ip_stack_t *ipst = ill->ill_ipst; 2081 2082 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2083 switch (ipha->ipha_protocol) { 2084 case IPPROTO_TCP: 2085 { 2086 tcph_t *tcph; 2087 2088 /* do a reverse lookup */ 2089 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2090 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2091 TCPS_LISTEN, ipst); 2092 break; 2093 } 2094 case IPPROTO_UDP: 2095 { 2096 uint32_t dstport, srcport; 2097 2098 ((uint16_t *)&ports)[0] = up[1]; 2099 ((uint16_t *)&ports)[1] = up[0]; 2100 2101 /* Extract ports in net byte order */ 2102 dstport = htons(ntohl(ports) & 0xFFFF); 2103 srcport = htons(ntohl(ports) >> 16); 2104 2105 connfp = &ipst->ips_ipcl_udp_fanout[ 2106 IPCL_UDP_HASH(dstport, ipst)]; 2107 mutex_enter(&connfp->connf_lock); 2108 connp = connfp->connf_head; 2109 2110 /* do a reverse lookup */ 2111 while ((connp != NULL) && 2112 (!IPCL_UDP_MATCH(connp, dstport, 2113 ipha->ipha_src, srcport, ipha->ipha_dst) || 2114 !IPCL_ZONE_MATCH(connp, zoneid))) { 2115 connp = connp->conn_next; 2116 } 2117 if (connp != NULL) 2118 CONN_INC_REF(connp); 2119 mutex_exit(&connfp->connf_lock); 2120 break; 2121 } 2122 case IPPROTO_SCTP: 2123 { 2124 in6_addr_t map_src, map_dst; 2125 2126 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2127 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2128 ((uint16_t *)&ports)[0] = up[1]; 2129 ((uint16_t *)&ports)[1] = up[0]; 2130 2131 connp = sctp_find_conn(&map_src, &map_dst, ports, 2132 zoneid, ipst->ips_netstack->netstack_sctp); 2133 if (connp == NULL) { 2134 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2135 zoneid, ports, ipha, ipst); 2136 } else { 2137 CONN_INC_REF(connp); 2138 SCTP_REFRELE(CONN2SCTP(connp)); 2139 } 2140 break; 2141 } 2142 default: 2143 { 2144 ipha_t ripha; 2145 2146 ripha.ipha_src = ipha->ipha_dst; 2147 ripha.ipha_dst = ipha->ipha_src; 2148 ripha.ipha_protocol = ipha->ipha_protocol; 2149 2150 connfp = &ipst->ips_ipcl_proto_fanout[ 2151 ipha->ipha_protocol]; 2152 mutex_enter(&connfp->connf_lock); 2153 connp = connfp->connf_head; 2154 for (connp = connfp->connf_head; connp != NULL; 2155 connp = connp->conn_next) { 2156 if (IPCL_PROTO_MATCH(connp, 2157 ipha->ipha_protocol, &ripha, ill, 2158 0, zoneid)) { 2159 CONN_INC_REF(connp); 2160 break; 2161 } 2162 } 2163 mutex_exit(&connfp->connf_lock); 2164 } 2165 } 2166 if (connp != NULL) { 2167 if (connp->conn_nexthop_set) 2168 nexthop_addr = connp->conn_nexthop_v4; 2169 CONN_DEC_REF(connp); 2170 } 2171 return (nexthop_addr); 2172 } 2173 2174 /* Table from RFC 1191 */ 2175 static int icmp_frag_size_table[] = 2176 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2177 2178 /* 2179 * Process received ICMP Packet too big. 2180 * After updating any IRE it does the fanout to any matching transport streams. 2181 * Assumes the message has been pulled up till the IP header that caused 2182 * the error. 2183 * 2184 * Returns B_FALSE on failure and B_TRUE on success. 2185 */ 2186 static boolean_t 2187 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2188 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2189 ip_stack_t *ipst) 2190 { 2191 ire_t *ire, *first_ire; 2192 int mtu; 2193 int hdr_length; 2194 ipaddr_t nexthop_addr; 2195 2196 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2197 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2198 ASSERT(ill != NULL); 2199 2200 hdr_length = IPH_HDR_LENGTH(ipha); 2201 2202 /* Drop if the original packet contained a source route */ 2203 if (ip_source_route_included(ipha)) { 2204 return (B_FALSE); 2205 } 2206 /* 2207 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2208 * header. 2209 */ 2210 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2211 mp->b_wptr) { 2212 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2213 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2214 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2215 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2216 return (B_FALSE); 2217 } 2218 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2219 ipha = (ipha_t *)&icmph[1]; 2220 } 2221 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2222 if (nexthop_addr != INADDR_ANY) { 2223 /* nexthop set */ 2224 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2225 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2226 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2227 } else { 2228 /* nexthop not set */ 2229 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2230 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2231 } 2232 2233 if (!first_ire) { 2234 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2235 ntohl(ipha->ipha_dst))); 2236 return (B_FALSE); 2237 } 2238 /* Check for MTU discovery advice as described in RFC 1191 */ 2239 mtu = ntohs(icmph->icmph_du_mtu); 2240 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2241 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2242 ire = ire->ire_next) { 2243 /* 2244 * Look for the connection to which this ICMP message is 2245 * directed. If it has the IP_NEXTHOP option set, then the 2246 * search is limited to IREs with the MATCH_IRE_PRIVATE 2247 * option. Else the search is limited to regular IREs. 2248 */ 2249 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2250 (nexthop_addr != ire->ire_gateway_addr)) || 2251 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2252 (nexthop_addr != INADDR_ANY))) 2253 continue; 2254 2255 mutex_enter(&ire->ire_lock); 2256 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2257 /* Reduce the IRE max frag value as advised. */ 2258 ip1dbg(("Received mtu from router: %d (was %d)\n", 2259 mtu, ire->ire_max_frag)); 2260 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2261 } else { 2262 uint32_t length; 2263 int i; 2264 2265 /* 2266 * Use the table from RFC 1191 to figure out 2267 * the next "plateau" based on the length in 2268 * the original IP packet. 2269 */ 2270 length = ntohs(ipha->ipha_length); 2271 if (ire->ire_max_frag <= length && 2272 ire->ire_max_frag >= length - hdr_length) { 2273 /* 2274 * Handle broken BSD 4.2 systems that 2275 * return the wrong iph_length in ICMP 2276 * errors. 2277 */ 2278 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2279 length, ire->ire_max_frag)); 2280 length -= hdr_length; 2281 } 2282 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2283 if (length > icmp_frag_size_table[i]) 2284 break; 2285 } 2286 if (i == A_CNT(icmp_frag_size_table)) { 2287 /* Smaller than 68! */ 2288 ip1dbg(("Too big for packet size %d\n", 2289 length)); 2290 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2291 ire->ire_frag_flag = 0; 2292 } else { 2293 mtu = icmp_frag_size_table[i]; 2294 ip1dbg(("Calculated mtu %d, packet size %d, " 2295 "before %d", mtu, length, 2296 ire->ire_max_frag)); 2297 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2298 ip1dbg((", after %d\n", ire->ire_max_frag)); 2299 } 2300 /* Record the new max frag size for the ULP. */ 2301 icmph->icmph_du_zero = 0; 2302 icmph->icmph_du_mtu = 2303 htons((uint16_t)ire->ire_max_frag); 2304 } 2305 mutex_exit(&ire->ire_lock); 2306 } 2307 rw_exit(&first_ire->ire_bucket->irb_lock); 2308 ire_refrele(first_ire); 2309 return (B_TRUE); 2310 } 2311 2312 /* 2313 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2314 * calls this function. 2315 */ 2316 static mblk_t * 2317 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2318 { 2319 ipha_t *ipha; 2320 icmph_t *icmph; 2321 ipha_t *in_ipha; 2322 int length; 2323 2324 ASSERT(mp->b_datap->db_type == M_DATA); 2325 2326 /* 2327 * For Self-encapsulated packets, we added an extra IP header 2328 * without the options. Inner IP header is the one from which 2329 * the outer IP header was formed. Thus, we need to remove the 2330 * outer IP header. To do this, we pullup the whole message 2331 * and overlay whatever follows the outer IP header over the 2332 * outer IP header. 2333 */ 2334 2335 if (!pullupmsg(mp, -1)) 2336 return (NULL); 2337 2338 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2339 ipha = (ipha_t *)&icmph[1]; 2340 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2341 2342 /* 2343 * The length that we want to overlay is following the inner 2344 * IP header. Subtracting the IP header + icmp header + outer 2345 * IP header's length should give us the length that we want to 2346 * overlay. 2347 */ 2348 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2349 hdr_length; 2350 /* 2351 * Overlay whatever follows the inner header over the 2352 * outer header. 2353 */ 2354 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2355 2356 /* Set the wptr to account for the outer header */ 2357 mp->b_wptr -= hdr_length; 2358 return (mp); 2359 } 2360 2361 /* 2362 * Try to pass the ICMP message upstream in case the ULP cares. 2363 * 2364 * If the packet that caused the ICMP error is secure, we send 2365 * it to AH/ESP to make sure that the attached packet has a 2366 * valid association. ipha in the code below points to the 2367 * IP header of the packet that caused the error. 2368 * 2369 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2370 * in the context of IPSEC. Normally we tell the upper layer 2371 * whenever we send the ire (including ip_bind), the IPSEC header 2372 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2373 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2374 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2375 * same thing. As TCP has the IPSEC options size that needs to be 2376 * adjusted, we just pass the MTU unchanged. 2377 * 2378 * IFN could have been generated locally or by some router. 2379 * 2380 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2381 * This happens because IP adjusted its value of MTU on an 2382 * earlier IFN message and could not tell the upper layer, 2383 * the new adjusted value of MTU e.g. Packet was encrypted 2384 * or there was not enough information to fanout to upper 2385 * layers. Thus on the next outbound datagram, ip_wput_ire 2386 * generates the IFN, where IPSEC processing has *not* been 2387 * done. 2388 * 2389 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2390 * could have generated this. This happens because ire_max_frag 2391 * value in IP was set to a new value, while the IPSEC processing 2392 * was being done and after we made the fragmentation check in 2393 * ip_wput_ire. Thus on return from IPSEC processing, 2394 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2395 * and generates the IFN. As IPSEC processing is over, we fanout 2396 * to AH/ESP to remove the header. 2397 * 2398 * In both these cases, ipsec_in_loopback will be set indicating 2399 * that IFN was generated locally. 2400 * 2401 * ROUTER : IFN could be secure or non-secure. 2402 * 2403 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2404 * packet in error has AH/ESP headers to validate the AH/ESP 2405 * headers. AH/ESP will verify whether there is a valid SA or 2406 * not and send it back. We will fanout again if we have more 2407 * data in the packet. 2408 * 2409 * If the packet in error does not have AH/ESP, we handle it 2410 * like any other case. 2411 * 2412 * * NON_SECURE : If the packet in error has AH/ESP headers, 2413 * we attach a dummy ipsec_in and send it up to AH/ESP 2414 * for validation. AH/ESP will verify whether there is a 2415 * valid SA or not and send it back. We will fanout again if 2416 * we have more data in the packet. 2417 * 2418 * If the packet in error does not have AH/ESP, we handle it 2419 * like any other case. 2420 */ 2421 static void 2422 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2423 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2424 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2425 zoneid_t zoneid) 2426 { 2427 uint16_t *up; /* Pointer to ports in ULP header */ 2428 uint32_t ports; /* reversed ports for fanout */ 2429 ipha_t ripha; /* With reversed addresses */ 2430 mblk_t *first_mp; 2431 ipsec_in_t *ii; 2432 tcph_t *tcph; 2433 conn_t *connp; 2434 ip_stack_t *ipst; 2435 2436 ASSERT(ill != NULL); 2437 2438 ASSERT(recv_ill != NULL); 2439 ipst = recv_ill->ill_ipst; 2440 2441 first_mp = mp; 2442 if (mctl_present) { 2443 mp = first_mp->b_cont; 2444 ASSERT(mp != NULL); 2445 2446 ii = (ipsec_in_t *)first_mp->b_rptr; 2447 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2448 } else { 2449 ii = NULL; 2450 } 2451 2452 switch (ipha->ipha_protocol) { 2453 case IPPROTO_UDP: 2454 /* 2455 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2456 * transport header. 2457 */ 2458 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2459 mp->b_wptr) { 2460 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2461 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2462 goto discard_pkt; 2463 } 2464 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2465 ipha = (ipha_t *)&icmph[1]; 2466 } 2467 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2468 2469 /* 2470 * Attempt to find a client stream based on port. 2471 * Note that we do a reverse lookup since the header is 2472 * in the form we sent it out. 2473 * The ripha header is only used for the IP_UDP_MATCH and we 2474 * only set the src and dst addresses and protocol. 2475 */ 2476 ripha.ipha_src = ipha->ipha_dst; 2477 ripha.ipha_dst = ipha->ipha_src; 2478 ripha.ipha_protocol = ipha->ipha_protocol; 2479 ((uint16_t *)&ports)[0] = up[1]; 2480 ((uint16_t *)&ports)[1] = up[0]; 2481 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2482 ntohl(ipha->ipha_src), ntohs(up[0]), 2483 ntohl(ipha->ipha_dst), ntohs(up[1]), 2484 icmph->icmph_type, icmph->icmph_code)); 2485 2486 /* Have to change db_type after any pullupmsg */ 2487 DB_TYPE(mp) = M_CTL; 2488 2489 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2490 mctl_present, ip_policy, recv_ill, zoneid); 2491 return; 2492 2493 case IPPROTO_TCP: 2494 /* 2495 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2496 * transport header. 2497 */ 2498 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2499 mp->b_wptr) { 2500 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2501 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2502 goto discard_pkt; 2503 } 2504 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2505 ipha = (ipha_t *)&icmph[1]; 2506 } 2507 /* 2508 * Find a TCP client stream for this packet. 2509 * Note that we do a reverse lookup since the header is 2510 * in the form we sent it out. 2511 */ 2512 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2513 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2514 ipst); 2515 if (connp == NULL) 2516 goto discard_pkt; 2517 2518 /* Have to change db_type after any pullupmsg */ 2519 DB_TYPE(mp) = M_CTL; 2520 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2521 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2522 return; 2523 2524 case IPPROTO_SCTP: 2525 /* 2526 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2527 * transport header. 2528 */ 2529 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2530 mp->b_wptr) { 2531 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2532 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2533 goto discard_pkt; 2534 } 2535 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2536 ipha = (ipha_t *)&icmph[1]; 2537 } 2538 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2539 /* 2540 * Find a SCTP client stream for this packet. 2541 * Note that we do a reverse lookup since the header is 2542 * in the form we sent it out. 2543 * The ripha header is only used for the matching and we 2544 * only set the src and dst addresses, protocol, and version. 2545 */ 2546 ripha.ipha_src = ipha->ipha_dst; 2547 ripha.ipha_dst = ipha->ipha_src; 2548 ripha.ipha_protocol = ipha->ipha_protocol; 2549 ripha.ipha_version_and_hdr_length = 2550 ipha->ipha_version_and_hdr_length; 2551 ((uint16_t *)&ports)[0] = up[1]; 2552 ((uint16_t *)&ports)[1] = up[0]; 2553 2554 /* Have to change db_type after any pullupmsg */ 2555 DB_TYPE(mp) = M_CTL; 2556 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2557 mctl_present, ip_policy, zoneid); 2558 return; 2559 2560 case IPPROTO_ESP: 2561 case IPPROTO_AH: { 2562 int ipsec_rc; 2563 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2564 2565 /* 2566 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2567 * We will re-use the IPSEC_IN if it is already present as 2568 * AH/ESP will not affect any fields in the IPSEC_IN for 2569 * ICMP errors. If there is no IPSEC_IN, allocate a new 2570 * one and attach it in the front. 2571 */ 2572 if (ii != NULL) { 2573 /* 2574 * ip_fanout_proto_again converts the ICMP errors 2575 * that come back from AH/ESP to M_DATA so that 2576 * if it is non-AH/ESP and we do a pullupmsg in 2577 * this function, it would work. Convert it back 2578 * to M_CTL before we send up as this is a ICMP 2579 * error. This could have been generated locally or 2580 * by some router. Validate the inner IPSEC 2581 * headers. 2582 * 2583 * NOTE : ill_index is used by ip_fanout_proto_again 2584 * to locate the ill. 2585 */ 2586 ASSERT(ill != NULL); 2587 ii->ipsec_in_ill_index = 2588 ill->ill_phyint->phyint_ifindex; 2589 ii->ipsec_in_rill_index = 2590 recv_ill->ill_phyint->phyint_ifindex; 2591 DB_TYPE(first_mp->b_cont) = M_CTL; 2592 } else { 2593 /* 2594 * IPSEC_IN is not present. We attach a ipsec_in 2595 * message and send up to IPSEC for validating 2596 * and removing the IPSEC headers. Clear 2597 * ipsec_in_secure so that when we return 2598 * from IPSEC, we don't mistakenly think that this 2599 * is a secure packet came from the network. 2600 * 2601 * NOTE : ill_index is used by ip_fanout_proto_again 2602 * to locate the ill. 2603 */ 2604 ASSERT(first_mp == mp); 2605 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2606 if (first_mp == NULL) { 2607 freemsg(mp); 2608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2609 return; 2610 } 2611 ii = (ipsec_in_t *)first_mp->b_rptr; 2612 2613 /* This is not a secure packet */ 2614 ii->ipsec_in_secure = B_FALSE; 2615 first_mp->b_cont = mp; 2616 DB_TYPE(mp) = M_CTL; 2617 ASSERT(ill != NULL); 2618 ii->ipsec_in_ill_index = 2619 ill->ill_phyint->phyint_ifindex; 2620 ii->ipsec_in_rill_index = 2621 recv_ill->ill_phyint->phyint_ifindex; 2622 } 2623 ip2dbg(("icmp_inbound_error: ipsec\n")); 2624 2625 if (!ipsec_loaded(ipss)) { 2626 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2627 return; 2628 } 2629 2630 if (ipha->ipha_protocol == IPPROTO_ESP) 2631 ipsec_rc = ipsecesp_icmp_error(first_mp); 2632 else 2633 ipsec_rc = ipsecah_icmp_error(first_mp); 2634 if (ipsec_rc == IPSEC_STATUS_FAILED) 2635 return; 2636 2637 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2638 return; 2639 } 2640 default: 2641 /* 2642 * The ripha header is only used for the lookup and we 2643 * only set the src and dst addresses and protocol. 2644 */ 2645 ripha.ipha_src = ipha->ipha_dst; 2646 ripha.ipha_dst = ipha->ipha_src; 2647 ripha.ipha_protocol = ipha->ipha_protocol; 2648 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2649 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2650 ntohl(ipha->ipha_dst), 2651 icmph->icmph_type, icmph->icmph_code)); 2652 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2653 ipha_t *in_ipha; 2654 2655 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2656 mp->b_wptr) { 2657 if (!pullupmsg(mp, (uchar_t *)ipha + 2658 hdr_length + sizeof (ipha_t) - 2659 mp->b_rptr)) { 2660 goto discard_pkt; 2661 } 2662 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2663 ipha = (ipha_t *)&icmph[1]; 2664 } 2665 /* 2666 * Caller has verified that length has to be 2667 * at least the size of IP header. 2668 */ 2669 ASSERT(hdr_length >= sizeof (ipha_t)); 2670 /* 2671 * Check the sanity of the inner IP header like 2672 * we did for the outer header. 2673 */ 2674 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2675 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2676 goto discard_pkt; 2677 } 2678 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2679 goto discard_pkt; 2680 } 2681 /* Check for Self-encapsulated tunnels */ 2682 if (in_ipha->ipha_src == ipha->ipha_src && 2683 in_ipha->ipha_dst == ipha->ipha_dst) { 2684 2685 mp = icmp_inbound_self_encap_error(mp, 2686 iph_hdr_length, hdr_length); 2687 if (mp == NULL) 2688 goto discard_pkt; 2689 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2690 ipha = (ipha_t *)&icmph[1]; 2691 hdr_length = IPH_HDR_LENGTH(ipha); 2692 /* 2693 * The packet in error is self-encapsualted. 2694 * And we are finding it further encapsulated 2695 * which we could not have possibly generated. 2696 */ 2697 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2698 goto discard_pkt; 2699 } 2700 icmp_inbound_error_fanout(q, ill, first_mp, 2701 icmph, ipha, iph_hdr_length, hdr_length, 2702 mctl_present, ip_policy, recv_ill, zoneid); 2703 return; 2704 } 2705 } 2706 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2707 ipha->ipha_protocol == IPPROTO_IPV6) && 2708 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2709 ii != NULL && 2710 ii->ipsec_in_loopback && 2711 ii->ipsec_in_secure) { 2712 /* 2713 * For IP tunnels that get a looped-back 2714 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2715 * reported new MTU to take into account the IPsec 2716 * headers protecting this configured tunnel. 2717 * 2718 * This allows the tunnel module (tun.c) to blindly 2719 * accept the MTU reported in an ICMP "too big" 2720 * message. 2721 * 2722 * Non-looped back ICMP messages will just be 2723 * handled by the security protocols (if needed), 2724 * and the first subsequent packet will hit this 2725 * path. 2726 */ 2727 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2728 ipsec_in_extra_length(first_mp)); 2729 } 2730 /* Have to change db_type after any pullupmsg */ 2731 DB_TYPE(mp) = M_CTL; 2732 2733 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2734 ip_policy, recv_ill, zoneid); 2735 return; 2736 } 2737 /* NOTREACHED */ 2738 discard_pkt: 2739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2740 drop_pkt:; 2741 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2742 freemsg(first_mp); 2743 } 2744 2745 /* 2746 * Common IP options parser. 2747 * 2748 * Setup routine: fill in *optp with options-parsing state, then 2749 * tail-call ipoptp_next to return the first option. 2750 */ 2751 uint8_t 2752 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2753 { 2754 uint32_t totallen; /* total length of all options */ 2755 2756 totallen = ipha->ipha_version_and_hdr_length - 2757 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2758 totallen <<= 2; 2759 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2760 optp->ipoptp_end = optp->ipoptp_next + totallen; 2761 optp->ipoptp_flags = 0; 2762 return (ipoptp_next(optp)); 2763 } 2764 2765 /* 2766 * Common IP options parser: extract next option. 2767 */ 2768 uint8_t 2769 ipoptp_next(ipoptp_t *optp) 2770 { 2771 uint8_t *end = optp->ipoptp_end; 2772 uint8_t *cur = optp->ipoptp_next; 2773 uint8_t opt, len, pointer; 2774 2775 /* 2776 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2777 * has been corrupted. 2778 */ 2779 ASSERT(cur <= end); 2780 2781 if (cur == end) 2782 return (IPOPT_EOL); 2783 2784 opt = cur[IPOPT_OPTVAL]; 2785 2786 /* 2787 * Skip any NOP options. 2788 */ 2789 while (opt == IPOPT_NOP) { 2790 cur++; 2791 if (cur == end) 2792 return (IPOPT_EOL); 2793 opt = cur[IPOPT_OPTVAL]; 2794 } 2795 2796 if (opt == IPOPT_EOL) 2797 return (IPOPT_EOL); 2798 2799 /* 2800 * Option requiring a length. 2801 */ 2802 if ((cur + 1) >= end) { 2803 optp->ipoptp_flags |= IPOPTP_ERROR; 2804 return (IPOPT_EOL); 2805 } 2806 len = cur[IPOPT_OLEN]; 2807 if (len < 2) { 2808 optp->ipoptp_flags |= IPOPTP_ERROR; 2809 return (IPOPT_EOL); 2810 } 2811 optp->ipoptp_cur = cur; 2812 optp->ipoptp_len = len; 2813 optp->ipoptp_next = cur + len; 2814 if (cur + len > end) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 2819 /* 2820 * For the options which require a pointer field, make sure 2821 * its there, and make sure it points to either something 2822 * inside this option, or the end of the option. 2823 */ 2824 switch (opt) { 2825 case IPOPT_RR: 2826 case IPOPT_TS: 2827 case IPOPT_LSRR: 2828 case IPOPT_SSRR: 2829 if (len <= IPOPT_OFFSET) { 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 return (opt); 2832 } 2833 pointer = cur[IPOPT_OFFSET]; 2834 if (pointer - 1 > len) { 2835 optp->ipoptp_flags |= IPOPTP_ERROR; 2836 return (opt); 2837 } 2838 break; 2839 } 2840 2841 /* 2842 * Sanity check the pointer field based on the type of the 2843 * option. 2844 */ 2845 switch (opt) { 2846 case IPOPT_RR: 2847 case IPOPT_SSRR: 2848 case IPOPT_LSRR: 2849 if (pointer < IPOPT_MINOFF_SR) 2850 optp->ipoptp_flags |= IPOPTP_ERROR; 2851 break; 2852 case IPOPT_TS: 2853 if (pointer < IPOPT_MINOFF_IT) 2854 optp->ipoptp_flags |= IPOPTP_ERROR; 2855 /* 2856 * Note that the Internet Timestamp option also 2857 * contains two four bit fields (the Overflow field, 2858 * and the Flag field), which follow the pointer 2859 * field. We don't need to check that these fields 2860 * fall within the length of the option because this 2861 * was implicitely done above. We've checked that the 2862 * pointer value is at least IPOPT_MINOFF_IT, and that 2863 * it falls within the option. Since IPOPT_MINOFF_IT > 2864 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2865 */ 2866 ASSERT(len > IPOPT_POS_OV_FLG); 2867 break; 2868 } 2869 2870 return (opt); 2871 } 2872 2873 /* 2874 * Use the outgoing IP header to create an IP_OPTIONS option the way 2875 * it was passed down from the application. 2876 */ 2877 int 2878 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2879 { 2880 ipoptp_t opts; 2881 const uchar_t *opt; 2882 uint8_t optval; 2883 uint8_t optlen; 2884 uint32_t len = 0; 2885 uchar_t *buf1 = buf; 2886 2887 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2888 len += IP_ADDR_LEN; 2889 bzero(buf1, IP_ADDR_LEN); 2890 2891 /* 2892 * OK to cast away const here, as we don't store through the returned 2893 * opts.ipoptp_cur pointer. 2894 */ 2895 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2896 optval != IPOPT_EOL; 2897 optval = ipoptp_next(&opts)) { 2898 int off; 2899 2900 opt = opts.ipoptp_cur; 2901 optlen = opts.ipoptp_len; 2902 switch (optval) { 2903 case IPOPT_SSRR: 2904 case IPOPT_LSRR: 2905 2906 /* 2907 * Insert ipha_dst as the first entry in the source 2908 * route and move down the entries on step. 2909 * The last entry gets placed at buf1. 2910 */ 2911 buf[IPOPT_OPTVAL] = optval; 2912 buf[IPOPT_OLEN] = optlen; 2913 buf[IPOPT_OFFSET] = optlen; 2914 2915 off = optlen - IP_ADDR_LEN; 2916 if (off < 0) { 2917 /* No entries in source route */ 2918 break; 2919 } 2920 /* Last entry in source route */ 2921 bcopy(opt + off, buf1, IP_ADDR_LEN); 2922 off -= IP_ADDR_LEN; 2923 2924 while (off > 0) { 2925 bcopy(opt + off, 2926 buf + off + IP_ADDR_LEN, 2927 IP_ADDR_LEN); 2928 off -= IP_ADDR_LEN; 2929 } 2930 /* ipha_dst into first slot */ 2931 bcopy(&ipha->ipha_dst, 2932 buf + off + IP_ADDR_LEN, 2933 IP_ADDR_LEN); 2934 buf += optlen; 2935 len += optlen; 2936 break; 2937 2938 case IPOPT_COMSEC: 2939 case IPOPT_SECURITY: 2940 /* if passing up a label is not ok, then remove */ 2941 if (is_system_labeled()) 2942 break; 2943 /* FALLTHROUGH */ 2944 default: 2945 bcopy(opt, buf, optlen); 2946 buf += optlen; 2947 len += optlen; 2948 break; 2949 } 2950 } 2951 done: 2952 /* Pad the resulting options */ 2953 while (len & 0x3) { 2954 *buf++ = IPOPT_EOL; 2955 len++; 2956 } 2957 return (len); 2958 } 2959 2960 /* 2961 * Update any record route or timestamp options to include this host. 2962 * Reverse any source route option. 2963 * This routine assumes that the options are well formed i.e. that they 2964 * have already been checked. 2965 */ 2966 static void 2967 icmp_options_update(ipha_t *ipha) 2968 { 2969 ipoptp_t opts; 2970 uchar_t *opt; 2971 uint8_t optval; 2972 ipaddr_t src; /* Our local address */ 2973 ipaddr_t dst; 2974 2975 ip2dbg(("icmp_options_update\n")); 2976 src = ipha->ipha_src; 2977 dst = ipha->ipha_dst; 2978 2979 for (optval = ipoptp_first(&opts, ipha); 2980 optval != IPOPT_EOL; 2981 optval = ipoptp_next(&opts)) { 2982 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2983 opt = opts.ipoptp_cur; 2984 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2985 optval, opts.ipoptp_len)); 2986 switch (optval) { 2987 int off1, off2; 2988 case IPOPT_SSRR: 2989 case IPOPT_LSRR: 2990 /* 2991 * Reverse the source route. The first entry 2992 * should be the next to last one in the current 2993 * source route (the last entry is our address). 2994 * The last entry should be the final destination. 2995 */ 2996 off1 = IPOPT_MINOFF_SR - 1; 2997 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2998 if (off2 < 0) { 2999 /* No entries in source route */ 3000 ip1dbg(( 3001 "icmp_options_update: bad src route\n")); 3002 break; 3003 } 3004 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3005 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3006 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3007 off2 -= IP_ADDR_LEN; 3008 3009 while (off1 < off2) { 3010 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3011 bcopy((char *)opt + off2, (char *)opt + off1, 3012 IP_ADDR_LEN); 3013 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3014 off1 += IP_ADDR_LEN; 3015 off2 -= IP_ADDR_LEN; 3016 } 3017 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3018 break; 3019 } 3020 } 3021 } 3022 3023 /* 3024 * Process received ICMP Redirect messages. 3025 */ 3026 static void 3027 icmp_redirect(ill_t *ill, mblk_t *mp) 3028 { 3029 ipha_t *ipha; 3030 int iph_hdr_length; 3031 icmph_t *icmph; 3032 ipha_t *ipha_err; 3033 ire_t *ire; 3034 ire_t *prev_ire; 3035 ire_t *save_ire; 3036 ipaddr_t src, dst, gateway; 3037 iulp_t ulp_info = { 0 }; 3038 int error; 3039 ip_stack_t *ipst; 3040 3041 ASSERT(ill != NULL); 3042 ipst = ill->ill_ipst; 3043 3044 ipha = (ipha_t *)mp->b_rptr; 3045 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3046 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3047 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3048 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3049 freemsg(mp); 3050 return; 3051 } 3052 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3053 ipha_err = (ipha_t *)&icmph[1]; 3054 src = ipha->ipha_src; 3055 dst = ipha_err->ipha_dst; 3056 gateway = icmph->icmph_rd_gateway; 3057 /* Make sure the new gateway is reachable somehow. */ 3058 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3059 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3060 /* 3061 * Make sure we had a route for the dest in question and that 3062 * that route was pointing to the old gateway (the source of the 3063 * redirect packet.) 3064 */ 3065 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3066 NULL, MATCH_IRE_GW, ipst); 3067 /* 3068 * Check that 3069 * the redirect was not from ourselves 3070 * the new gateway and the old gateway are directly reachable 3071 */ 3072 if (!prev_ire || 3073 !ire || 3074 ire->ire_type == IRE_LOCAL) { 3075 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3076 freemsg(mp); 3077 if (ire != NULL) 3078 ire_refrele(ire); 3079 if (prev_ire != NULL) 3080 ire_refrele(prev_ire); 3081 return; 3082 } 3083 3084 /* 3085 * Should we use the old ULP info to create the new gateway? From 3086 * a user's perspective, we should inherit the info so that it 3087 * is a "smooth" transition. If we do not do that, then new 3088 * connections going thru the new gateway will have no route metrics, 3089 * which is counter-intuitive to user. From a network point of 3090 * view, this may or may not make sense even though the new gateway 3091 * is still directly connected to us so the route metrics should not 3092 * change much. 3093 * 3094 * But if the old ire_uinfo is not initialized, we do another 3095 * recursive lookup on the dest using the new gateway. There may 3096 * be a route to that. If so, use it to initialize the redirect 3097 * route. 3098 */ 3099 if (prev_ire->ire_uinfo.iulp_set) { 3100 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3101 } else { 3102 ire_t *tmp_ire; 3103 ire_t *sire; 3104 3105 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3106 ALL_ZONES, 0, NULL, 3107 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3108 ipst); 3109 if (sire != NULL) { 3110 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3111 /* 3112 * If sire != NULL, ire_ftable_lookup() should not 3113 * return a NULL value. 3114 */ 3115 ASSERT(tmp_ire != NULL); 3116 ire_refrele(tmp_ire); 3117 ire_refrele(sire); 3118 } else if (tmp_ire != NULL) { 3119 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3120 sizeof (iulp_t)); 3121 ire_refrele(tmp_ire); 3122 } 3123 } 3124 if (prev_ire->ire_type == IRE_CACHE) 3125 ire_delete(prev_ire); 3126 ire_refrele(prev_ire); 3127 /* 3128 * TODO: more precise handling for cases 0, 2, 3, the latter two 3129 * require TOS routing 3130 */ 3131 switch (icmph->icmph_code) { 3132 case 0: 3133 case 1: 3134 /* TODO: TOS specificity for cases 2 and 3 */ 3135 case 2: 3136 case 3: 3137 break; 3138 default: 3139 freemsg(mp); 3140 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3141 ire_refrele(ire); 3142 return; 3143 } 3144 /* 3145 * Create a Route Association. This will allow us to remember that 3146 * someone we believe told us to use the particular gateway. 3147 */ 3148 save_ire = ire; 3149 ire = ire_create( 3150 (uchar_t *)&dst, /* dest addr */ 3151 (uchar_t *)&ip_g_all_ones, /* mask */ 3152 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3153 (uchar_t *)&gateway, /* gateway addr */ 3154 &save_ire->ire_max_frag, /* max frag */ 3155 NULL, /* no src nce */ 3156 NULL, /* no rfq */ 3157 NULL, /* no stq */ 3158 IRE_HOST, 3159 NULL, /* ipif */ 3160 0, /* cmask */ 3161 0, /* phandle */ 3162 0, /* ihandle */ 3163 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3164 &ulp_info, 3165 NULL, /* tsol_gc_t */ 3166 NULL, /* gcgrp */ 3167 ipst); 3168 3169 if (ire == NULL) { 3170 freemsg(mp); 3171 ire_refrele(save_ire); 3172 return; 3173 } 3174 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3175 ire_refrele(save_ire); 3176 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3177 3178 if (error == 0) { 3179 ire_refrele(ire); /* Held in ire_add_v4 */ 3180 /* tell routing sockets that we received a redirect */ 3181 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3182 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3183 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3184 } 3185 3186 /* 3187 * Delete any existing IRE_HOST type redirect ires for this destination. 3188 * This together with the added IRE has the effect of 3189 * modifying an existing redirect. 3190 */ 3191 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3192 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3193 if (prev_ire != NULL) { 3194 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3195 ire_delete(prev_ire); 3196 ire_refrele(prev_ire); 3197 } 3198 3199 freemsg(mp); 3200 } 3201 3202 /* 3203 * Generate an ICMP parameter problem message. 3204 */ 3205 static void 3206 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3207 ip_stack_t *ipst) 3208 { 3209 icmph_t icmph; 3210 boolean_t mctl_present; 3211 mblk_t *first_mp; 3212 3213 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3214 3215 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3216 if (mctl_present) 3217 freeb(first_mp); 3218 return; 3219 } 3220 3221 bzero(&icmph, sizeof (icmph_t)); 3222 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3223 icmph.icmph_pp_ptr = ptr; 3224 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3225 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3226 ipst); 3227 } 3228 3229 /* 3230 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3231 * the ICMP header pointed to by "stuff". (May be called as writer.) 3232 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3233 * an icmp error packet can be sent. 3234 * Assigns an appropriate source address to the packet. If ipha_dst is 3235 * one of our addresses use it for source. Otherwise pick a source based 3236 * on a route lookup back to ipha_src. 3237 * Note that ipha_src must be set here since the 3238 * packet is likely to arrive on an ill queue in ip_wput() which will 3239 * not set a source address. 3240 */ 3241 static void 3242 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3243 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3244 { 3245 ipaddr_t dst; 3246 icmph_t *icmph; 3247 ipha_t *ipha; 3248 uint_t len_needed; 3249 size_t msg_len; 3250 mblk_t *mp1; 3251 ipaddr_t src; 3252 ire_t *ire; 3253 mblk_t *ipsec_mp; 3254 ipsec_out_t *io = NULL; 3255 3256 if (mctl_present) { 3257 /* 3258 * If it is : 3259 * 3260 * 1) a IPSEC_OUT, then this is caused by outbound 3261 * datagram originating on this host. IPSEC processing 3262 * may or may not have been done. Refer to comments above 3263 * icmp_inbound_error_fanout for details. 3264 * 3265 * 2) a IPSEC_IN if we are generating a icmp_message 3266 * for an incoming datagram destined for us i.e called 3267 * from ip_fanout_send_icmp. 3268 */ 3269 ipsec_info_t *in; 3270 ipsec_mp = mp; 3271 mp = ipsec_mp->b_cont; 3272 3273 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3274 ipha = (ipha_t *)mp->b_rptr; 3275 3276 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3277 in->ipsec_info_type == IPSEC_IN); 3278 3279 if (in->ipsec_info_type == IPSEC_IN) { 3280 /* 3281 * Convert the IPSEC_IN to IPSEC_OUT. 3282 */ 3283 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3284 BUMP_MIB(&ipst->ips_ip_mib, 3285 ipIfStatsOutDiscards); 3286 return; 3287 } 3288 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3289 } else { 3290 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3291 io = (ipsec_out_t *)in; 3292 /* 3293 * Clear out ipsec_out_proc_begin, so we do a fresh 3294 * ire lookup. 3295 */ 3296 io->ipsec_out_proc_begin = B_FALSE; 3297 } 3298 ASSERT(zoneid == io->ipsec_out_zoneid); 3299 ASSERT(zoneid != ALL_ZONES); 3300 } else { 3301 /* 3302 * This is in clear. The icmp message we are building 3303 * here should go out in clear. 3304 * 3305 * Pardon the convolution of it all, but it's easier to 3306 * allocate a "use cleartext" IPSEC_IN message and convert 3307 * it than it is to allocate a new one. 3308 */ 3309 ipsec_in_t *ii; 3310 ASSERT(DB_TYPE(mp) == M_DATA); 3311 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3312 if (ipsec_mp == NULL) { 3313 freemsg(mp); 3314 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3315 return; 3316 } 3317 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3318 3319 /* This is not a secure packet */ 3320 ii->ipsec_in_secure = B_FALSE; 3321 /* 3322 * For trusted extensions using a shared IP address we can 3323 * send using any zoneid. 3324 */ 3325 if (zoneid == ALL_ZONES) 3326 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3327 else 3328 ii->ipsec_in_zoneid = zoneid; 3329 ipsec_mp->b_cont = mp; 3330 ipha = (ipha_t *)mp->b_rptr; 3331 /* 3332 * Convert the IPSEC_IN to IPSEC_OUT. 3333 */ 3334 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3335 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3336 return; 3337 } 3338 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3339 } 3340 3341 /* Remember our eventual destination */ 3342 dst = ipha->ipha_src; 3343 3344 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3345 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3346 if (ire != NULL && 3347 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3348 src = ipha->ipha_dst; 3349 } else { 3350 if (ire != NULL) 3351 ire_refrele(ire); 3352 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3353 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3354 ipst); 3355 if (ire == NULL) { 3356 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3357 freemsg(ipsec_mp); 3358 return; 3359 } 3360 src = ire->ire_src_addr; 3361 } 3362 3363 if (ire != NULL) 3364 ire_refrele(ire); 3365 3366 /* 3367 * Check if we can send back more then 8 bytes in addition to 3368 * the IP header. We try to send 64 bytes of data and the internal 3369 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3370 */ 3371 len_needed = IPH_HDR_LENGTH(ipha); 3372 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3373 ipha->ipha_protocol == IPPROTO_IPV6) { 3374 3375 if (!pullupmsg(mp, -1)) { 3376 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3377 freemsg(ipsec_mp); 3378 return; 3379 } 3380 ipha = (ipha_t *)mp->b_rptr; 3381 3382 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3383 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3384 len_needed)); 3385 } else { 3386 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3387 3388 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3389 len_needed += ip_hdr_length_v6(mp, ip6h); 3390 } 3391 } 3392 len_needed += ipst->ips_ip_icmp_return; 3393 msg_len = msgdsize(mp); 3394 if (msg_len > len_needed) { 3395 (void) adjmsg(mp, len_needed - msg_len); 3396 msg_len = len_needed; 3397 } 3398 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3399 if (mp1 == NULL) { 3400 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3401 freemsg(ipsec_mp); 3402 return; 3403 } 3404 mp1->b_cont = mp; 3405 mp = mp1; 3406 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3407 ipsec_mp->b_rptr == (uint8_t *)io && 3408 io->ipsec_out_type == IPSEC_OUT); 3409 ipsec_mp->b_cont = mp; 3410 3411 /* 3412 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3413 * node generates be accepted in peace by all on-host destinations. 3414 * If we do NOT assume that all on-host destinations trust 3415 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3416 * (Look for ipsec_out_icmp_loopback). 3417 */ 3418 io->ipsec_out_icmp_loopback = B_TRUE; 3419 3420 ipha = (ipha_t *)mp->b_rptr; 3421 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3422 *ipha = icmp_ipha; 3423 ipha->ipha_src = src; 3424 ipha->ipha_dst = dst; 3425 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3426 msg_len += sizeof (icmp_ipha) + len; 3427 if (msg_len > IP_MAXPACKET) { 3428 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3429 msg_len = IP_MAXPACKET; 3430 } 3431 ipha->ipha_length = htons((uint16_t)msg_len); 3432 icmph = (icmph_t *)&ipha[1]; 3433 bcopy(stuff, icmph, len); 3434 icmph->icmph_checksum = 0; 3435 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3436 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3437 put(q, ipsec_mp); 3438 } 3439 3440 /* 3441 * Determine if an ICMP error packet can be sent given the rate limit. 3442 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3443 * in milliseconds) and a burst size. Burst size number of packets can 3444 * be sent arbitrarely closely spaced. 3445 * The state is tracked using two variables to implement an approximate 3446 * token bucket filter: 3447 * icmp_pkt_err_last - lbolt value when the last burst started 3448 * icmp_pkt_err_sent - number of packets sent in current burst 3449 */ 3450 boolean_t 3451 icmp_err_rate_limit(ip_stack_t *ipst) 3452 { 3453 clock_t now = TICK_TO_MSEC(lbolt); 3454 uint_t refilled; /* Number of packets refilled in tbf since last */ 3455 /* Guard against changes by loading into local variable */ 3456 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3457 3458 if (err_interval == 0) 3459 return (B_FALSE); 3460 3461 if (ipst->ips_icmp_pkt_err_last > now) { 3462 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3463 ipst->ips_icmp_pkt_err_last = 0; 3464 ipst->ips_icmp_pkt_err_sent = 0; 3465 } 3466 /* 3467 * If we are in a burst update the token bucket filter. 3468 * Update the "last" time to be close to "now" but make sure 3469 * we don't loose precision. 3470 */ 3471 if (ipst->ips_icmp_pkt_err_sent != 0) { 3472 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3473 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3474 ipst->ips_icmp_pkt_err_sent = 0; 3475 } else { 3476 ipst->ips_icmp_pkt_err_sent -= refilled; 3477 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3478 } 3479 } 3480 if (ipst->ips_icmp_pkt_err_sent == 0) { 3481 /* Start of new burst */ 3482 ipst->ips_icmp_pkt_err_last = now; 3483 } 3484 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3485 ipst->ips_icmp_pkt_err_sent++; 3486 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3487 ipst->ips_icmp_pkt_err_sent)); 3488 return (B_FALSE); 3489 } 3490 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3491 return (B_TRUE); 3492 } 3493 3494 /* 3495 * Check if it is ok to send an IPv4 ICMP error packet in 3496 * response to the IPv4 packet in mp. 3497 * Free the message and return null if no 3498 * ICMP error packet should be sent. 3499 */ 3500 static mblk_t * 3501 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3502 { 3503 icmph_t *icmph; 3504 ipha_t *ipha; 3505 uint_t len_needed; 3506 ire_t *src_ire; 3507 ire_t *dst_ire; 3508 3509 if (!mp) 3510 return (NULL); 3511 ipha = (ipha_t *)mp->b_rptr; 3512 if (ip_csum_hdr(ipha)) { 3513 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3514 freemsg(mp); 3515 return (NULL); 3516 } 3517 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3518 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3519 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3520 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3521 if (src_ire != NULL || dst_ire != NULL || 3522 CLASSD(ipha->ipha_dst) || 3523 CLASSD(ipha->ipha_src) || 3524 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3525 /* Note: only errors to the fragment with offset 0 */ 3526 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3527 freemsg(mp); 3528 if (src_ire != NULL) 3529 ire_refrele(src_ire); 3530 if (dst_ire != NULL) 3531 ire_refrele(dst_ire); 3532 return (NULL); 3533 } 3534 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3535 /* 3536 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3537 * errors in response to any ICMP errors. 3538 */ 3539 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3540 if (mp->b_wptr - mp->b_rptr < len_needed) { 3541 if (!pullupmsg(mp, len_needed)) { 3542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3543 freemsg(mp); 3544 return (NULL); 3545 } 3546 ipha = (ipha_t *)mp->b_rptr; 3547 } 3548 icmph = (icmph_t *) 3549 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3550 switch (icmph->icmph_type) { 3551 case ICMP_DEST_UNREACHABLE: 3552 case ICMP_SOURCE_QUENCH: 3553 case ICMP_TIME_EXCEEDED: 3554 case ICMP_PARAM_PROBLEM: 3555 case ICMP_REDIRECT: 3556 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3557 freemsg(mp); 3558 return (NULL); 3559 default: 3560 break; 3561 } 3562 } 3563 /* 3564 * If this is a labeled system, then check to see if we're allowed to 3565 * send a response to this particular sender. If not, then just drop. 3566 */ 3567 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3568 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3569 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3570 freemsg(mp); 3571 return (NULL); 3572 } 3573 if (icmp_err_rate_limit(ipst)) { 3574 /* 3575 * Only send ICMP error packets every so often. 3576 * This should be done on a per port/source basis, 3577 * but for now this will suffice. 3578 */ 3579 freemsg(mp); 3580 return (NULL); 3581 } 3582 return (mp); 3583 } 3584 3585 /* 3586 * Generate an ICMP redirect message. 3587 */ 3588 static void 3589 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3590 { 3591 icmph_t icmph; 3592 3593 /* 3594 * We are called from ip_rput where we could 3595 * not have attached an IPSEC_IN. 3596 */ 3597 ASSERT(mp->b_datap->db_type == M_DATA); 3598 3599 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3600 return; 3601 } 3602 3603 bzero(&icmph, sizeof (icmph_t)); 3604 icmph.icmph_type = ICMP_REDIRECT; 3605 icmph.icmph_code = 1; 3606 icmph.icmph_rd_gateway = gateway; 3607 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3608 /* Redirects sent by router, and router is global zone */ 3609 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3610 } 3611 3612 /* 3613 * Generate an ICMP time exceeded message. 3614 */ 3615 void 3616 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3617 ip_stack_t *ipst) 3618 { 3619 icmph_t icmph; 3620 boolean_t mctl_present; 3621 mblk_t *first_mp; 3622 3623 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3624 3625 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3626 if (mctl_present) 3627 freeb(first_mp); 3628 return; 3629 } 3630 3631 bzero(&icmph, sizeof (icmph_t)); 3632 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3633 icmph.icmph_code = code; 3634 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3635 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3636 ipst); 3637 } 3638 3639 /* 3640 * Generate an ICMP unreachable message. 3641 */ 3642 void 3643 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3644 ip_stack_t *ipst) 3645 { 3646 icmph_t icmph; 3647 mblk_t *first_mp; 3648 boolean_t mctl_present; 3649 3650 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3651 3652 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3653 if (mctl_present) 3654 freeb(first_mp); 3655 return; 3656 } 3657 3658 bzero(&icmph, sizeof (icmph_t)); 3659 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3660 icmph.icmph_code = code; 3661 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3662 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3663 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3664 zoneid, ipst); 3665 } 3666 3667 /* 3668 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3669 * duplicate. As long as someone else holds the address, the interface will 3670 * stay down. When that conflict goes away, the interface is brought back up. 3671 * This is done so that accidental shutdowns of addresses aren't made 3672 * permanent. Your server will recover from a failure. 3673 * 3674 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3675 * user space process (dhcpagent). 3676 * 3677 * Recovery completes if ARP reports that the address is now ours (via 3678 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3679 * 3680 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3681 */ 3682 static void 3683 ipif_dup_recovery(void *arg) 3684 { 3685 ipif_t *ipif = arg; 3686 ill_t *ill = ipif->ipif_ill; 3687 mblk_t *arp_add_mp; 3688 mblk_t *arp_del_mp; 3689 area_t *area; 3690 ip_stack_t *ipst = ill->ill_ipst; 3691 3692 ipif->ipif_recovery_id = 0; 3693 3694 /* 3695 * No lock needed for moving or condemned check, as this is just an 3696 * optimization. 3697 */ 3698 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3699 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3700 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3701 /* No reason to try to bring this address back. */ 3702 return; 3703 } 3704 3705 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3706 goto alloc_fail; 3707 3708 if (ipif->ipif_arp_del_mp == NULL) { 3709 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3710 goto alloc_fail; 3711 ipif->ipif_arp_del_mp = arp_del_mp; 3712 } 3713 3714 /* Setting the 'unverified' flag restarts DAD */ 3715 area = (area_t *)arp_add_mp->b_rptr; 3716 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3717 ACE_F_UNVERIFIED; 3718 putnext(ill->ill_rq, arp_add_mp); 3719 return; 3720 3721 alloc_fail: 3722 /* 3723 * On allocation failure, just restart the timer. Note that the ipif 3724 * is down here, so no other thread could be trying to start a recovery 3725 * timer. The ill_lock protects the condemned flag and the recovery 3726 * timer ID. 3727 */ 3728 freemsg(arp_add_mp); 3729 mutex_enter(&ill->ill_lock); 3730 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3731 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3732 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3733 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3734 } 3735 mutex_exit(&ill->ill_lock); 3736 } 3737 3738 /* 3739 * This is for exclusive changes due to ARP. Either tear down an interface due 3740 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3741 */ 3742 /* ARGSUSED */ 3743 static void 3744 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3745 { 3746 ill_t *ill = rq->q_ptr; 3747 arh_t *arh; 3748 ipaddr_t src; 3749 ipif_t *ipif; 3750 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3751 char hbuf[MAC_STR_LEN]; 3752 char sbuf[INET_ADDRSTRLEN]; 3753 const char *failtype; 3754 boolean_t bring_up; 3755 ip_stack_t *ipst = ill->ill_ipst; 3756 3757 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3758 case AR_CN_READY: 3759 failtype = NULL; 3760 bring_up = B_TRUE; 3761 break; 3762 case AR_CN_FAILED: 3763 failtype = "in use"; 3764 bring_up = B_FALSE; 3765 break; 3766 default: 3767 failtype = "claimed"; 3768 bring_up = B_FALSE; 3769 break; 3770 } 3771 3772 arh = (arh_t *)mp->b_cont->b_rptr; 3773 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3774 3775 /* Handle failures due to probes */ 3776 if (src == 0) { 3777 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3778 IP_ADDR_LEN); 3779 } 3780 3781 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3782 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3783 sizeof (hbuf)); 3784 (void) ip_dot_addr(src, sbuf); 3785 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3786 3787 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3788 ipif->ipif_lcl_addr != src) { 3789 continue; 3790 } 3791 3792 /* 3793 * If we failed on a recovery probe, then restart the timer to 3794 * try again later. 3795 */ 3796 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3797 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3798 ill->ill_net_type == IRE_IF_RESOLVER && 3799 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3800 ipst->ips_ip_dup_recovery > 0 && 3801 ipif->ipif_recovery_id == 0) { 3802 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3803 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3804 continue; 3805 } 3806 3807 /* 3808 * If what we're trying to do has already been done, then do 3809 * nothing. 3810 */ 3811 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3812 continue; 3813 3814 if (ipif->ipif_id != 0) { 3815 (void) snprintf(ibuf + ill->ill_name_length - 1, 3816 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3817 ipif->ipif_id); 3818 } 3819 if (failtype == NULL) { 3820 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3821 ibuf); 3822 } else { 3823 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3824 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3825 } 3826 3827 if (bring_up) { 3828 ASSERT(ill->ill_dl_up); 3829 /* 3830 * Free up the ARP delete message so we can allocate 3831 * a fresh one through the normal path. 3832 */ 3833 freemsg(ipif->ipif_arp_del_mp); 3834 ipif->ipif_arp_del_mp = NULL; 3835 if (ipif_resolver_up(ipif, Res_act_initial) != 3836 EINPROGRESS) { 3837 ipif->ipif_addr_ready = 1; 3838 (void) ipif_up_done(ipif); 3839 } 3840 continue; 3841 } 3842 3843 mutex_enter(&ill->ill_lock); 3844 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3845 ipif->ipif_flags |= IPIF_DUPLICATE; 3846 ill->ill_ipif_dup_count++; 3847 mutex_exit(&ill->ill_lock); 3848 /* 3849 * Already exclusive on the ill; no need to handle deferred 3850 * processing here. 3851 */ 3852 (void) ipif_down(ipif, NULL, NULL); 3853 ipif_down_tail(ipif); 3854 mutex_enter(&ill->ill_lock); 3855 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3856 ill->ill_net_type == IRE_IF_RESOLVER && 3857 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3858 ipst->ips_ip_dup_recovery > 0) { 3859 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3860 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3861 } 3862 mutex_exit(&ill->ill_lock); 3863 } 3864 freemsg(mp); 3865 } 3866 3867 /* ARGSUSED */ 3868 static void 3869 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3870 { 3871 ill_t *ill = rq->q_ptr; 3872 arh_t *arh; 3873 ipaddr_t src; 3874 ipif_t *ipif; 3875 3876 arh = (arh_t *)mp->b_cont->b_rptr; 3877 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3878 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3879 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3880 (void) ipif_resolver_up(ipif, Res_act_defend); 3881 } 3882 freemsg(mp); 3883 } 3884 3885 /* 3886 * News from ARP. ARP sends notification of interesting events down 3887 * to its clients using M_CTL messages with the interesting ARP packet 3888 * attached via b_cont. 3889 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3890 * queue as opposed to ARP sending the message to all the clients, i.e. all 3891 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3892 * table if a cache IRE is found to delete all the entries for the address in 3893 * the packet. 3894 */ 3895 static void 3896 ip_arp_news(queue_t *q, mblk_t *mp) 3897 { 3898 arcn_t *arcn; 3899 arh_t *arh; 3900 ire_t *ire = NULL; 3901 char hbuf[MAC_STR_LEN]; 3902 char sbuf[INET_ADDRSTRLEN]; 3903 ipaddr_t src; 3904 in6_addr_t v6src; 3905 boolean_t isv6 = B_FALSE; 3906 ipif_t *ipif; 3907 ill_t *ill; 3908 ip_stack_t *ipst; 3909 3910 if (CONN_Q(q)) { 3911 conn_t *connp = Q_TO_CONN(q); 3912 3913 ipst = connp->conn_netstack->netstack_ip; 3914 } else { 3915 ill_t *ill = (ill_t *)q->q_ptr; 3916 3917 ipst = ill->ill_ipst; 3918 } 3919 3920 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3921 if (q->q_next) { 3922 putnext(q, mp); 3923 } else 3924 freemsg(mp); 3925 return; 3926 } 3927 arh = (arh_t *)mp->b_cont->b_rptr; 3928 /* Is it one we are interested in? */ 3929 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3930 isv6 = B_TRUE; 3931 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3932 IPV6_ADDR_LEN); 3933 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3934 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3935 IP_ADDR_LEN); 3936 } else { 3937 freemsg(mp); 3938 return; 3939 } 3940 3941 ill = q->q_ptr; 3942 3943 arcn = (arcn_t *)mp->b_rptr; 3944 switch (arcn->arcn_code) { 3945 case AR_CN_BOGON: 3946 /* 3947 * Someone is sending ARP packets with a source protocol 3948 * address that we have published and for which we believe our 3949 * entry is authoritative and (when ill_arp_extend is set) 3950 * verified to be unique on the network. 3951 * 3952 * The ARP module internally handles the cases where the sender 3953 * is just probing (for DAD) and where the hardware address of 3954 * a non-authoritative entry has changed. Thus, these are the 3955 * real conflicts, and we have to do resolution. 3956 * 3957 * We back away quickly from the address if it's from DHCP or 3958 * otherwise temporary and hasn't been used recently (or at 3959 * all). We'd like to include "deprecated" addresses here as 3960 * well (as there's no real reason to defend something we're 3961 * discarding), but IPMP "reuses" this flag to mean something 3962 * other than the standard meaning. 3963 * 3964 * If the ARP module above is not extended (meaning that it 3965 * doesn't know how to defend the address), then we just log 3966 * the problem as we always did and continue on. It's not 3967 * right, but there's little else we can do, and those old ATM 3968 * users are going away anyway. 3969 */ 3970 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3971 hbuf, sizeof (hbuf)); 3972 (void) ip_dot_addr(src, sbuf); 3973 if (isv6) { 3974 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3975 ipst); 3976 } else { 3977 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3978 } 3979 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3980 uint32_t now; 3981 uint32_t maxage; 3982 clock_t lused; 3983 uint_t maxdefense; 3984 uint_t defs; 3985 3986 /* 3987 * First, figure out if this address hasn't been used 3988 * in a while. If it hasn't, then it's a better 3989 * candidate for abandoning. 3990 */ 3991 ipif = ire->ire_ipif; 3992 ASSERT(ipif != NULL); 3993 now = gethrestime_sec(); 3994 maxage = now - ire->ire_create_time; 3995 if (maxage > ipst->ips_ip_max_temp_idle) 3996 maxage = ipst->ips_ip_max_temp_idle; 3997 lused = drv_hztousec(ddi_get_lbolt() - 3998 ire->ire_last_used_time) / MICROSEC + 1; 3999 if (lused >= maxage && (ipif->ipif_flags & 4000 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4001 maxdefense = ipst->ips_ip_max_temp_defend; 4002 else 4003 maxdefense = ipst->ips_ip_max_defend; 4004 4005 /* 4006 * Now figure out how many times we've defended 4007 * ourselves. Ignore defenses that happened long in 4008 * the past. 4009 */ 4010 mutex_enter(&ire->ire_lock); 4011 if ((defs = ire->ire_defense_count) > 0 && 4012 now - ire->ire_defense_time > 4013 ipst->ips_ip_defend_interval) { 4014 ire->ire_defense_count = defs = 0; 4015 } 4016 ire->ire_defense_count++; 4017 ire->ire_defense_time = now; 4018 mutex_exit(&ire->ire_lock); 4019 ill_refhold(ill); 4020 ire_refrele(ire); 4021 4022 /* 4023 * If we've defended ourselves too many times already, 4024 * then give up and tear down the interface(s) using 4025 * this address. Otherwise, defend by sending out a 4026 * gratuitous ARP. 4027 */ 4028 if (defs >= maxdefense && ill->ill_arp_extend) { 4029 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4030 B_FALSE); 4031 } else { 4032 cmn_err(CE_WARN, 4033 "node %s is using our IP address %s on %s", 4034 hbuf, sbuf, ill->ill_name); 4035 /* 4036 * If this is an old (ATM) ARP module, then 4037 * don't try to defend the address. Remain 4038 * compatible with the old behavior. Defend 4039 * only with new ARP. 4040 */ 4041 if (ill->ill_arp_extend) { 4042 qwriter_ip(ill, q, mp, ip_arp_defend, 4043 NEW_OP, B_FALSE); 4044 } else { 4045 ill_refrele(ill); 4046 } 4047 } 4048 return; 4049 } 4050 cmn_err(CE_WARN, 4051 "proxy ARP problem? Node '%s' is using %s on %s", 4052 hbuf, sbuf, ill->ill_name); 4053 if (ire != NULL) 4054 ire_refrele(ire); 4055 break; 4056 case AR_CN_ANNOUNCE: 4057 if (isv6) { 4058 /* 4059 * For XRESOLV interfaces. 4060 * Delete the IRE cache entry and NCE for this 4061 * v6 address 4062 */ 4063 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4064 /* 4065 * If v6src is a non-zero, it's a router address 4066 * as below. Do the same sort of thing to clean 4067 * out off-net IRE_CACHE entries that go through 4068 * the router. 4069 */ 4070 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4071 ire_walk_v6(ire_delete_cache_gw_v6, 4072 (char *)&v6src, ALL_ZONES, ipst); 4073 } 4074 } else { 4075 nce_hw_map_t hwm; 4076 4077 /* 4078 * ARP gives us a copy of any packet where it thinks 4079 * the address has changed, so that we can update our 4080 * caches. We're responsible for caching known answers 4081 * in the current design. We check whether the 4082 * hardware address really has changed in all of our 4083 * entries that have cached this mapping, and if so, we 4084 * blow them away. This way we will immediately pick 4085 * up the rare case of a host changing hardware 4086 * address. 4087 */ 4088 if (src == 0) 4089 break; 4090 hwm.hwm_addr = src; 4091 hwm.hwm_hwlen = arh->arh_hlen; 4092 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4093 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4094 ndp_walk_common(ipst->ips_ndp4, NULL, 4095 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4096 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4097 } 4098 break; 4099 case AR_CN_READY: 4100 /* No external v6 resolver has a contract to use this */ 4101 if (isv6) 4102 break; 4103 /* If the link is down, we'll retry this later */ 4104 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4105 break; 4106 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4107 NULL, NULL, ipst); 4108 if (ipif != NULL) { 4109 /* 4110 * If this is a duplicate recovery, then we now need to 4111 * go exclusive to bring this thing back up. 4112 */ 4113 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4114 IPIF_DUPLICATE) { 4115 ipif_refrele(ipif); 4116 ill_refhold(ill); 4117 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4118 B_FALSE); 4119 return; 4120 } 4121 /* 4122 * If this is the first notice that this address is 4123 * ready, then let the user know now. 4124 */ 4125 if ((ipif->ipif_flags & IPIF_UP) && 4126 !ipif->ipif_addr_ready) { 4127 ipif_mask_reply(ipif); 4128 ip_rts_ifmsg(ipif); 4129 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4130 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4131 } 4132 ipif->ipif_addr_ready = 1; 4133 ipif_refrele(ipif); 4134 } 4135 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4136 if (ire != NULL) { 4137 ire->ire_defense_count = 0; 4138 ire_refrele(ire); 4139 } 4140 break; 4141 case AR_CN_FAILED: 4142 /* No external v6 resolver has a contract to use this */ 4143 if (isv6) 4144 break; 4145 ill_refhold(ill); 4146 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4147 return; 4148 } 4149 freemsg(mp); 4150 } 4151 4152 /* 4153 * Create a mblk suitable for carrying the interface index and/or source link 4154 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4155 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4156 * application. 4157 */ 4158 mblk_t * 4159 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4160 ip_stack_t *ipst) 4161 { 4162 mblk_t *mp; 4163 ip_pktinfo_t *pinfo; 4164 ipha_t *ipha; 4165 struct ether_header *pether; 4166 4167 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4168 if (mp == NULL) { 4169 ip1dbg(("ip_add_info: allocation failure.\n")); 4170 return (data_mp); 4171 } 4172 4173 ipha = (ipha_t *)data_mp->b_rptr; 4174 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4175 bzero(pinfo, sizeof (ip_pktinfo_t)); 4176 pinfo->ip_pkt_flags = (uchar_t)flags; 4177 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4178 4179 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4180 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4181 if (flags & IPF_RECVADDR) { 4182 ipif_t *ipif; 4183 ire_t *ire; 4184 4185 /* 4186 * Only valid for V4 4187 */ 4188 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4189 (IPV4_VERSION << 4)); 4190 4191 ipif = ipif_get_next_ipif(NULL, ill); 4192 if (ipif != NULL) { 4193 /* 4194 * Since a decision has already been made to deliver the 4195 * packet, there is no need to test for SECATTR and 4196 * ZONEONLY. 4197 * When a multicast packet is transmitted 4198 * a cache entry is created for the multicast address. 4199 * When delivering a copy of the packet or when new 4200 * packets are received we do not want to match on the 4201 * cached entry so explicitly match on 4202 * IRE_LOCAL and IRE_LOOPBACK 4203 */ 4204 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4205 IRE_LOCAL | IRE_LOOPBACK, 4206 ipif, zoneid, NULL, 4207 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4208 if (ire == NULL) { 4209 /* 4210 * packet must have come on a different 4211 * interface. 4212 * Since a decision has already been made to 4213 * deliver the packet, there is no need to test 4214 * for SECATTR and ZONEONLY. 4215 * Only match on local and broadcast ire's. 4216 * See detailed comment above. 4217 */ 4218 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4219 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4220 NULL, MATCH_IRE_TYPE, ipst); 4221 } 4222 4223 if (ire == NULL) { 4224 /* 4225 * This is either a multicast packet or 4226 * the address has been removed since 4227 * the packet was received. 4228 * Return INADDR_ANY so that normal source 4229 * selection occurs for the response. 4230 */ 4231 4232 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4233 } else { 4234 pinfo->ip_pkt_match_addr.s_addr = 4235 ire->ire_src_addr; 4236 ire_refrele(ire); 4237 } 4238 ipif_refrele(ipif); 4239 } else { 4240 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4241 } 4242 } 4243 4244 pether = (struct ether_header *)((char *)ipha 4245 - sizeof (struct ether_header)); 4246 /* 4247 * Make sure the interface is an ethernet type, since this option 4248 * is currently supported only on this type of interface. Also make 4249 * sure we are pointing correctly above db_base. 4250 */ 4251 4252 if ((flags & IPF_RECVSLLA) && 4253 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4254 (ill->ill_type == IFT_ETHER) && 4255 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4256 4257 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4258 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4259 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4260 } else { 4261 /* 4262 * Clear the bit. Indicate to upper layer that IP is not 4263 * sending this ancillary info. 4264 */ 4265 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4266 } 4267 4268 mp->b_datap->db_type = M_CTL; 4269 mp->b_wptr += sizeof (ip_pktinfo_t); 4270 mp->b_cont = data_mp; 4271 4272 return (mp); 4273 } 4274 4275 /* 4276 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4277 * part of the bind request. 4278 */ 4279 4280 boolean_t 4281 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4282 { 4283 ipsec_in_t *ii; 4284 4285 ASSERT(policy_mp != NULL); 4286 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4287 4288 ii = (ipsec_in_t *)policy_mp->b_rptr; 4289 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4290 4291 connp->conn_policy = ii->ipsec_in_policy; 4292 ii->ipsec_in_policy = NULL; 4293 4294 if (ii->ipsec_in_action != NULL) { 4295 if (connp->conn_latch == NULL) { 4296 connp->conn_latch = iplatch_create(); 4297 if (connp->conn_latch == NULL) 4298 return (B_FALSE); 4299 } 4300 ipsec_latch_inbound(connp->conn_latch, ii); 4301 } 4302 return (B_TRUE); 4303 } 4304 4305 /* 4306 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4307 * and to arrange for power-fanout assist. The ULP is identified by 4308 * adding a single byte at the end of the original bind message. 4309 * A ULP other than UDP or TCP that wishes to be recognized passes 4310 * down a bind with a zero length address. 4311 * 4312 * The binding works as follows: 4313 * - A zero byte address means just bind to the protocol. 4314 * - A four byte address is treated as a request to validate 4315 * that the address is a valid local address, appropriate for 4316 * an application to bind to. This does not affect any fanout 4317 * information in IP. 4318 * - A sizeof sin_t byte address is used to bind to only the local address 4319 * and port. 4320 * - A sizeof ipa_conn_t byte address contains complete fanout information 4321 * consisting of local and remote addresses and ports. In 4322 * this case, the addresses are both validated as appropriate 4323 * for this operation, and, if so, the information is retained 4324 * for use in the inbound fanout. 4325 * 4326 * The ULP (except in the zero-length bind) can append an 4327 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4328 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4329 * a copy of the source or destination IRE (source for local bind; 4330 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4331 * policy information contained should be copied on to the conn. 4332 * 4333 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4334 */ 4335 mblk_t * 4336 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4337 { 4338 ssize_t len; 4339 struct T_bind_req *tbr; 4340 sin_t *sin; 4341 ipa_conn_t *ac; 4342 uchar_t *ucp; 4343 mblk_t *mp1; 4344 boolean_t ire_requested; 4345 boolean_t ipsec_policy_set = B_FALSE; 4346 int error = 0; 4347 int protocol; 4348 ipa_conn_x_t *acx; 4349 4350 ASSERT(!connp->conn_af_isv6); 4351 connp->conn_pkt_isv6 = B_FALSE; 4352 4353 len = MBLKL(mp); 4354 if (len < (sizeof (*tbr) + 1)) { 4355 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4356 "ip_bind: bogus msg, len %ld", len); 4357 /* XXX: Need to return something better */ 4358 goto bad_addr; 4359 } 4360 /* Back up and extract the protocol identifier. */ 4361 mp->b_wptr--; 4362 protocol = *mp->b_wptr & 0xFF; 4363 tbr = (struct T_bind_req *)mp->b_rptr; 4364 /* Reset the message type in preparation for shipping it back. */ 4365 DB_TYPE(mp) = M_PCPROTO; 4366 4367 connp->conn_ulp = (uint8_t)protocol; 4368 4369 /* 4370 * Check for a zero length address. This is from a protocol that 4371 * wants to register to receive all packets of its type. 4372 */ 4373 if (tbr->ADDR_length == 0) { 4374 /* 4375 * These protocols are now intercepted in ip_bind_v6(). 4376 * Reject protocol-level binds here for now. 4377 * 4378 * For SCTP raw socket, ICMP sends down a bind with sin_t 4379 * so that the protocol type cannot be SCTP. 4380 */ 4381 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4382 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4383 goto bad_addr; 4384 } 4385 4386 /* 4387 * 4388 * The udp module never sends down a zero-length address, 4389 * and allowing this on a labeled system will break MLP 4390 * functionality. 4391 */ 4392 if (is_system_labeled() && protocol == IPPROTO_UDP) 4393 goto bad_addr; 4394 4395 if (connp->conn_mac_exempt) 4396 goto bad_addr; 4397 4398 /* No hash here really. The table is big enough. */ 4399 connp->conn_srcv6 = ipv6_all_zeros; 4400 4401 ipcl_proto_insert(connp, protocol); 4402 4403 tbr->PRIM_type = T_BIND_ACK; 4404 return (mp); 4405 } 4406 4407 /* Extract the address pointer from the message. */ 4408 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4409 tbr->ADDR_length); 4410 if (ucp == NULL) { 4411 ip1dbg(("ip_bind: no address\n")); 4412 goto bad_addr; 4413 } 4414 if (!OK_32PTR(ucp)) { 4415 ip1dbg(("ip_bind: unaligned address\n")); 4416 goto bad_addr; 4417 } 4418 /* 4419 * Check for trailing mps. 4420 */ 4421 4422 mp1 = mp->b_cont; 4423 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4424 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4425 4426 switch (tbr->ADDR_length) { 4427 default: 4428 ip1dbg(("ip_bind: bad address length %d\n", 4429 (int)tbr->ADDR_length)); 4430 goto bad_addr; 4431 4432 case IP_ADDR_LEN: 4433 /* Verification of local address only */ 4434 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4435 ire_requested, ipsec_policy_set, B_FALSE); 4436 break; 4437 4438 case sizeof (sin_t): 4439 sin = (sin_t *)ucp; 4440 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4441 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4442 break; 4443 4444 case sizeof (ipa_conn_t): 4445 ac = (ipa_conn_t *)ucp; 4446 /* For raw socket, the local port is not set. */ 4447 if (ac->ac_lport == 0) 4448 ac->ac_lport = connp->conn_lport; 4449 /* Always verify destination reachability. */ 4450 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4451 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4452 ipsec_policy_set, B_TRUE, B_TRUE); 4453 break; 4454 4455 case sizeof (ipa_conn_x_t): 4456 acx = (ipa_conn_x_t *)ucp; 4457 /* 4458 * Whether or not to verify destination reachability depends 4459 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4460 */ 4461 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4462 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4463 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4464 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4465 break; 4466 } 4467 if (error == EINPROGRESS) 4468 return (NULL); 4469 else if (error != 0) 4470 goto bad_addr; 4471 /* 4472 * Pass the IPSEC headers size in ire_ipsec_overhead. 4473 * We can't do this in ip_bind_insert_ire because the policy 4474 * may not have been inherited at that point in time and hence 4475 * conn_out_enforce_policy may not be set. 4476 */ 4477 mp1 = mp->b_cont; 4478 if (ire_requested && connp->conn_out_enforce_policy && 4479 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4480 ire_t *ire = (ire_t *)mp1->b_rptr; 4481 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4482 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4483 } 4484 4485 /* Send it home. */ 4486 mp->b_datap->db_type = M_PCPROTO; 4487 tbr->PRIM_type = T_BIND_ACK; 4488 return (mp); 4489 4490 bad_addr: 4491 /* 4492 * If error = -1 then we generate a TBADADDR - otherwise error is 4493 * a unix errno. 4494 */ 4495 if (error > 0) 4496 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4497 else 4498 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4499 return (mp); 4500 } 4501 4502 /* 4503 * Here address is verified to be a valid local address. 4504 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4505 * address is also considered a valid local address. 4506 * In the case of a broadcast/multicast address, however, the 4507 * upper protocol is expected to reset the src address 4508 * to 0 if it sees a IRE_BROADCAST type returned so that 4509 * no packets are emitted with broadcast/multicast address as 4510 * source address (that violates hosts requirements RFC1122) 4511 * The addresses valid for bind are: 4512 * (1) - INADDR_ANY (0) 4513 * (2) - IP address of an UP interface 4514 * (3) - IP address of a DOWN interface 4515 * (4) - valid local IP broadcast addresses. In this case 4516 * the conn will only receive packets destined to 4517 * the specified broadcast address. 4518 * (5) - a multicast address. In this case 4519 * the conn will only receive packets destined to 4520 * the specified multicast address. Note: the 4521 * application still has to issue an 4522 * IP_ADD_MEMBERSHIP socket option. 4523 * 4524 * On error, return -1 for TBADADDR otherwise pass the 4525 * errno with TSYSERR reply. 4526 * 4527 * In all the above cases, the bound address must be valid in the current zone. 4528 * When the address is loopback, multicast or broadcast, there might be many 4529 * matching IREs so bind has to look up based on the zone. 4530 * 4531 * Note: lport is in network byte order. 4532 */ 4533 int 4534 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4535 boolean_t ire_requested, boolean_t ipsec_policy_set, 4536 boolean_t fanout_insert) 4537 { 4538 int error = 0; 4539 ire_t *src_ire; 4540 mblk_t *policy_mp; 4541 ipif_t *ipif; 4542 zoneid_t zoneid; 4543 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4544 4545 if (ipsec_policy_set) { 4546 policy_mp = mp->b_cont; 4547 } 4548 4549 /* 4550 * If it was previously connected, conn_fully_bound would have 4551 * been set. 4552 */ 4553 connp->conn_fully_bound = B_FALSE; 4554 4555 src_ire = NULL; 4556 ipif = NULL; 4557 4558 zoneid = IPCL_ZONEID(connp); 4559 4560 if (src_addr) { 4561 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4562 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4563 /* 4564 * If an address other than 0.0.0.0 is requested, 4565 * we verify that it is a valid address for bind 4566 * Note: Following code is in if-else-if form for 4567 * readability compared to a condition check. 4568 */ 4569 /* LINTED - statement has no consequent */ 4570 if (IRE_IS_LOCAL(src_ire)) { 4571 /* 4572 * (2) Bind to address of local UP interface 4573 */ 4574 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4575 /* 4576 * (4) Bind to broadcast address 4577 * Note: permitted only from transports that 4578 * request IRE 4579 */ 4580 if (!ire_requested) 4581 error = EADDRNOTAVAIL; 4582 } else { 4583 /* 4584 * (3) Bind to address of local DOWN interface 4585 * (ipif_lookup_addr() looks up all interfaces 4586 * but we do not get here for UP interfaces 4587 * - case (2) above) 4588 * We put the protocol byte back into the mblk 4589 * since we may come back via ip_wput_nondata() 4590 * later with this mblk if ipif_lookup_addr chooses 4591 * to defer processing. 4592 */ 4593 *mp->b_wptr++ = (char)connp->conn_ulp; 4594 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4595 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4596 &error, ipst)) != NULL) { 4597 ipif_refrele(ipif); 4598 } else if (error == EINPROGRESS) { 4599 if (src_ire != NULL) 4600 ire_refrele(src_ire); 4601 return (EINPROGRESS); 4602 } else if (CLASSD(src_addr)) { 4603 error = 0; 4604 if (src_ire != NULL) 4605 ire_refrele(src_ire); 4606 /* 4607 * (5) bind to multicast address. 4608 * Fake out the IRE returned to upper 4609 * layer to be a broadcast IRE. 4610 */ 4611 src_ire = ire_ctable_lookup( 4612 INADDR_BROADCAST, INADDR_ANY, 4613 IRE_BROADCAST, NULL, zoneid, NULL, 4614 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4615 ipst); 4616 if (src_ire == NULL || !ire_requested) 4617 error = EADDRNOTAVAIL; 4618 } else { 4619 /* 4620 * Not a valid address for bind 4621 */ 4622 error = EADDRNOTAVAIL; 4623 } 4624 /* 4625 * Just to keep it consistent with the processing in 4626 * ip_bind_v4() 4627 */ 4628 mp->b_wptr--; 4629 } 4630 if (error) { 4631 /* Red Alert! Attempting to be a bogon! */ 4632 ip1dbg(("ip_bind: bad src address 0x%x\n", 4633 ntohl(src_addr))); 4634 goto bad_addr; 4635 } 4636 } 4637 4638 /* 4639 * Allow setting new policies. For example, disconnects come 4640 * down as ipa_t bind. As we would have set conn_policy_cached 4641 * to B_TRUE before, we should set it to B_FALSE, so that policy 4642 * can change after the disconnect. 4643 */ 4644 connp->conn_policy_cached = B_FALSE; 4645 4646 /* 4647 * If not fanout_insert this was just an address verification 4648 */ 4649 if (fanout_insert) { 4650 /* 4651 * The addresses have been verified. Time to insert in 4652 * the correct fanout list. 4653 */ 4654 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4655 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4656 connp->conn_lport = lport; 4657 connp->conn_fport = 0; 4658 /* 4659 * Do we need to add a check to reject Multicast packets 4660 * 4661 * We need to make sure that the conn_recv is set to a non-null 4662 * value before we insert the conn into the classifier table. 4663 * This is to avoid a race with an incoming packet which does an 4664 * ipcl_classify(). 4665 */ 4666 if (*mp->b_wptr == IPPROTO_TCP) 4667 connp->conn_recv = tcp_conn_request; 4668 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4669 } 4670 4671 if (error == 0) { 4672 if (ire_requested) { 4673 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4674 error = -1; 4675 /* Falls through to bad_addr */ 4676 } 4677 } else if (ipsec_policy_set) { 4678 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4679 error = -1; 4680 /* Falls through to bad_addr */ 4681 } 4682 } 4683 } else if (connp->conn_ulp == IPPROTO_TCP) { 4684 connp->conn_recv = tcp_input; 4685 } 4686 bad_addr: 4687 if (error != 0) { 4688 if (connp->conn_anon_port) { 4689 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4690 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4691 B_FALSE); 4692 } 4693 connp->conn_mlp_type = mlptSingle; 4694 } 4695 if (src_ire != NULL) 4696 IRE_REFRELE(src_ire); 4697 if (ipsec_policy_set) { 4698 ASSERT(policy_mp == mp->b_cont); 4699 ASSERT(policy_mp != NULL); 4700 freeb(policy_mp); 4701 /* 4702 * As of now assume that nothing else accompanies 4703 * IPSEC_POLICY_SET. 4704 */ 4705 mp->b_cont = NULL; 4706 } 4707 return (error); 4708 } 4709 4710 /* 4711 * Verify that both the source and destination addresses 4712 * are valid. If verify_dst is false, then the destination address may be 4713 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4714 * destination reachability, while tunnels do not. 4715 * Note that we allow connect to broadcast and multicast 4716 * addresses when ire_requested is set. Thus the ULP 4717 * has to check for IRE_BROADCAST and multicast. 4718 * 4719 * Returns zero if ok. 4720 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4721 * (for use with TSYSERR reply). 4722 * 4723 * Note: lport and fport are in network byte order. 4724 */ 4725 int 4726 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4727 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4728 boolean_t ire_requested, boolean_t ipsec_policy_set, 4729 boolean_t fanout_insert, boolean_t verify_dst) 4730 { 4731 ire_t *src_ire; 4732 ire_t *dst_ire; 4733 int error = 0; 4734 int protocol; 4735 mblk_t *policy_mp; 4736 ire_t *sire = NULL; 4737 ire_t *md_dst_ire = NULL; 4738 ire_t *lso_dst_ire = NULL; 4739 ill_t *ill = NULL; 4740 zoneid_t zoneid; 4741 ipaddr_t src_addr = *src_addrp; 4742 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4743 4744 src_ire = dst_ire = NULL; 4745 protocol = *mp->b_wptr & 0xFF; 4746 4747 /* 4748 * If we never got a disconnect before, clear it now. 4749 */ 4750 connp->conn_fully_bound = B_FALSE; 4751 4752 if (ipsec_policy_set) { 4753 policy_mp = mp->b_cont; 4754 } 4755 4756 zoneid = IPCL_ZONEID(connp); 4757 4758 if (CLASSD(dst_addr)) { 4759 /* Pick up an IRE_BROADCAST */ 4760 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4761 NULL, zoneid, MBLK_GETLABEL(mp), 4762 (MATCH_IRE_RECURSIVE | 4763 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4764 MATCH_IRE_SECATTR), ipst); 4765 } else { 4766 /* 4767 * If conn_dontroute is set or if conn_nexthop_set is set, 4768 * and onlink ipif is not found set ENETUNREACH error. 4769 */ 4770 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4771 ipif_t *ipif; 4772 4773 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4774 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4775 if (ipif == NULL) { 4776 error = ENETUNREACH; 4777 goto bad_addr; 4778 } 4779 ipif_refrele(ipif); 4780 } 4781 4782 if (connp->conn_nexthop_set) { 4783 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4784 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4785 MATCH_IRE_SECATTR, ipst); 4786 } else { 4787 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4788 &sire, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4790 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR), ipst); 4792 } 4793 } 4794 /* 4795 * dst_ire can't be a broadcast when not ire_requested. 4796 * We also prevent ire's with src address INADDR_ANY to 4797 * be used, which are created temporarily for 4798 * sending out packets from endpoints that have 4799 * conn_unspec_src set. If verify_dst is true, the destination must be 4800 * reachable. If verify_dst is false, the destination needn't be 4801 * reachable. 4802 * 4803 * If we match on a reject or black hole, then we've got a 4804 * local failure. May as well fail out the connect() attempt, 4805 * since it's never going to succeed. 4806 */ 4807 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4808 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4809 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4810 /* 4811 * If we're verifying destination reachability, we always want 4812 * to complain here. 4813 * 4814 * If we're not verifying destination reachability but the 4815 * destination has a route, we still want to fail on the 4816 * temporary address and broadcast address tests. 4817 */ 4818 if (verify_dst || (dst_ire != NULL)) { 4819 if (ip_debug > 2) { 4820 pr_addr_dbg("ip_bind_connected: bad connected " 4821 "dst %s\n", AF_INET, &dst_addr); 4822 } 4823 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4824 error = ENETUNREACH; 4825 else 4826 error = EHOSTUNREACH; 4827 goto bad_addr; 4828 } 4829 } 4830 4831 /* 4832 * We now know that routing will allow us to reach the destination. 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (dst_ire != NULL && is_system_labeled() && 4847 !IPCL_IS_TCP(connp) && 4848 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4849 connp->conn_mac_exempt, ipst) != 0) { 4850 error = EHOSTUNREACH; 4851 if (ip_debug > 2) { 4852 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * If the app does a connect(), it means that it will most likely 4860 * send more than 1 packet to the destination. It makes sense 4861 * to clear the temporary flag. 4862 */ 4863 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4864 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4865 irb_t *irb = dst_ire->ire_bucket; 4866 4867 rw_enter(&irb->irb_lock, RW_WRITER); 4868 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4869 irb->irb_tmp_ire_cnt--; 4870 rw_exit(&irb->irb_lock); 4871 } 4872 4873 /* 4874 * See if we should notify ULP about LSO/MDT; we do this whether or not 4875 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4876 * eligibility tests for passive connects are handled separately 4877 * through tcp_adapt_ire(). We do this before the source address 4878 * selection, because dst_ire may change after a call to 4879 * ipif_select_source(). This is a best-effort check, as the 4880 * packet for this connection may not actually go through 4881 * dst_ire->ire_stq, and the exact IRE can only be known after 4882 * calling ip_newroute(). This is why we further check on the 4883 * IRE during LSO/Multidata packet transmission in 4884 * tcp_lsosend()/tcp_multisend(). 4885 */ 4886 if (!ipsec_policy_set && dst_ire != NULL && 4887 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4888 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4889 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4890 lso_dst_ire = dst_ire; 4891 IRE_REFHOLD(lso_dst_ire); 4892 } else if (ipst->ips_ip_multidata_outbound && 4893 ILL_MDT_CAPABLE(ill)) { 4894 md_dst_ire = dst_ire; 4895 IRE_REFHOLD(md_dst_ire); 4896 } 4897 } 4898 4899 if (dst_ire != NULL && 4900 dst_ire->ire_type == IRE_LOCAL && 4901 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4902 /* 4903 * If the IRE belongs to a different zone, look for a matching 4904 * route in the forwarding table and use the source address from 4905 * that route. 4906 */ 4907 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4908 zoneid, 0, NULL, 4909 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4910 MATCH_IRE_RJ_BHOLE, ipst); 4911 if (src_ire == NULL) { 4912 error = EHOSTUNREACH; 4913 goto bad_addr; 4914 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4915 if (!(src_ire->ire_type & IRE_HOST)) 4916 error = ENETUNREACH; 4917 else 4918 error = EHOSTUNREACH; 4919 goto bad_addr; 4920 } 4921 if (src_addr == INADDR_ANY) 4922 src_addr = src_ire->ire_src_addr; 4923 ire_refrele(src_ire); 4924 src_ire = NULL; 4925 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4926 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4927 src_addr = sire->ire_src_addr; 4928 ire_refrele(dst_ire); 4929 dst_ire = sire; 4930 sire = NULL; 4931 } else { 4932 /* 4933 * Pick a source address so that a proper inbound 4934 * load spreading would happen. 4935 */ 4936 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4937 ipif_t *src_ipif = NULL; 4938 ire_t *ipif_ire; 4939 4940 /* 4941 * Supply a local source address such that inbound 4942 * load spreading happens. 4943 * 4944 * Determine the best source address on this ill for 4945 * the destination. 4946 * 4947 * 1) For broadcast, we should return a broadcast ire 4948 * found above so that upper layers know that the 4949 * destination address is a broadcast address. 4950 * 4951 * 2) If this is part of a group, select a better 4952 * source address so that better inbound load 4953 * balancing happens. Do the same if the ipif 4954 * is DEPRECATED. 4955 * 4956 * 3) If the outgoing interface is part of a usesrc 4957 * group, then try selecting a source address from 4958 * the usesrc ILL. 4959 */ 4960 if ((dst_ire->ire_zoneid != zoneid && 4961 dst_ire->ire_zoneid != ALL_ZONES) || 4962 (!(dst_ire->ire_type & IRE_BROADCAST) && 4963 ((dst_ill->ill_group != NULL) || 4964 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4965 (dst_ill->ill_usesrc_ifindex != 0)))) { 4966 /* 4967 * If the destination is reachable via a 4968 * given gateway, the selected source address 4969 * should be in the same subnet as the gateway. 4970 * Otherwise, the destination is not reachable. 4971 * 4972 * If there are no interfaces on the same subnet 4973 * as the destination, ipif_select_source gives 4974 * first non-deprecated interface which might be 4975 * on a different subnet than the gateway. 4976 * This is not desirable. Hence pass the dst_ire 4977 * source address to ipif_select_source. 4978 * It is sure that the destination is reachable 4979 * with the dst_ire source address subnet. 4980 * So passing dst_ire source address to 4981 * ipif_select_source will make sure that the 4982 * selected source will be on the same subnet 4983 * as dst_ire source address. 4984 */ 4985 ipaddr_t saddr = 4986 dst_ire->ire_ipif->ipif_src_addr; 4987 src_ipif = ipif_select_source(dst_ill, 4988 saddr, zoneid); 4989 if (src_ipif != NULL) { 4990 if (IS_VNI(src_ipif->ipif_ill)) { 4991 /* 4992 * For VNI there is no 4993 * interface route 4994 */ 4995 src_addr = 4996 src_ipif->ipif_src_addr; 4997 } else { 4998 ipif_ire = 4999 ipif_to_ire(src_ipif); 5000 if (ipif_ire != NULL) { 5001 IRE_REFRELE(dst_ire); 5002 dst_ire = ipif_ire; 5003 } 5004 src_addr = 5005 dst_ire->ire_src_addr; 5006 } 5007 ipif_refrele(src_ipif); 5008 } else { 5009 src_addr = dst_ire->ire_src_addr; 5010 } 5011 } else { 5012 src_addr = dst_ire->ire_src_addr; 5013 } 5014 } 5015 } 5016 5017 /* 5018 * We do ire_route_lookup() here (and not 5019 * interface lookup as we assert that 5020 * src_addr should only come from an 5021 * UP interface for hard binding. 5022 */ 5023 ASSERT(src_ire == NULL); 5024 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5025 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5026 /* src_ire must be a local|loopback */ 5027 if (!IRE_IS_LOCAL(src_ire)) { 5028 if (ip_debug > 2) { 5029 pr_addr_dbg("ip_bind_connected: bad connected " 5030 "src %s\n", AF_INET, &src_addr); 5031 } 5032 error = EADDRNOTAVAIL; 5033 goto bad_addr; 5034 } 5035 5036 /* 5037 * If the source address is a loopback address, the 5038 * destination had best be local or multicast. 5039 * The transports that can't handle multicast will reject 5040 * those addresses. 5041 */ 5042 if (src_ire->ire_type == IRE_LOOPBACK && 5043 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5044 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5045 error = -1; 5046 goto bad_addr; 5047 } 5048 5049 /* 5050 * Allow setting new policies. For example, disconnects come 5051 * down as ipa_t bind. As we would have set conn_policy_cached 5052 * to B_TRUE before, we should set it to B_FALSE, so that policy 5053 * can change after the disconnect. 5054 */ 5055 connp->conn_policy_cached = B_FALSE; 5056 5057 /* 5058 * Set the conn addresses/ports immediately, so the IPsec policy calls 5059 * can handle their passed-in conn's. 5060 */ 5061 5062 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5063 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5064 connp->conn_lport = lport; 5065 connp->conn_fport = fport; 5066 *src_addrp = src_addr; 5067 5068 ASSERT(!(ipsec_policy_set && ire_requested)); 5069 if (ire_requested) { 5070 iulp_t *ulp_info = NULL; 5071 5072 /* 5073 * Note that sire will not be NULL if this is an off-link 5074 * connection and there is not cache for that dest yet. 5075 * 5076 * XXX Because of an existing bug, if there are multiple 5077 * default routes, the IRE returned now may not be the actual 5078 * default route used (default routes are chosen in a 5079 * round robin fashion). So if the metrics for different 5080 * default routes are different, we may return the wrong 5081 * metrics. This will not be a problem if the existing 5082 * bug is fixed. 5083 */ 5084 if (sire != NULL) { 5085 ulp_info = &(sire->ire_uinfo); 5086 } 5087 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5088 error = -1; 5089 goto bad_addr; 5090 } 5091 } else if (ipsec_policy_set) { 5092 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5093 error = -1; 5094 goto bad_addr; 5095 } 5096 } 5097 5098 /* 5099 * Cache IPsec policy in this conn. If we have per-socket policy, 5100 * we'll cache that. If we don't, we'll inherit global policy. 5101 * 5102 * We can't insert until the conn reflects the policy. Note that 5103 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5104 * connections where we don't have a policy. This is to prevent 5105 * global policy lookups in the inbound path. 5106 * 5107 * If we insert before we set conn_policy_cached, 5108 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5109 * because global policy cound be non-empty. We normally call 5110 * ipsec_check_policy() for conn_policy_cached connections only if 5111 * ipc_in_enforce_policy is set. But in this case, 5112 * conn_policy_cached can get set anytime since we made the 5113 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5114 * called, which will make the above assumption false. Thus, we 5115 * need to insert after we set conn_policy_cached. 5116 */ 5117 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5118 goto bad_addr; 5119 5120 if (fanout_insert) { 5121 /* 5122 * The addresses have been verified. Time to insert in 5123 * the correct fanout list. 5124 * We need to make sure that the conn_recv is set to a non-null 5125 * value before we insert into the classifier table to avoid a 5126 * race with an incoming packet which does an ipcl_classify(). 5127 */ 5128 if (protocol == IPPROTO_TCP) 5129 connp->conn_recv = tcp_input; 5130 error = ipcl_conn_insert(connp, protocol, src_addr, 5131 dst_addr, connp->conn_ports); 5132 } 5133 5134 if (error == 0) { 5135 connp->conn_fully_bound = B_TRUE; 5136 /* 5137 * Our initial checks for LSO/MDT have passed; the IRE is not 5138 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5139 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5140 * ip_xxinfo_return(), which performs further checks 5141 * against them and upon success, returns the LSO/MDT info 5142 * mblk which we will attach to the bind acknowledgment. 5143 */ 5144 if (lso_dst_ire != NULL) { 5145 mblk_t *lsoinfo_mp; 5146 5147 ASSERT(ill->ill_lso_capab != NULL); 5148 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5149 ill->ill_name, ill->ill_lso_capab)) != NULL) 5150 linkb(mp, lsoinfo_mp); 5151 } else if (md_dst_ire != NULL) { 5152 mblk_t *mdinfo_mp; 5153 5154 ASSERT(ill->ill_mdt_capab != NULL); 5155 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5156 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5157 linkb(mp, mdinfo_mp); 5158 } 5159 } 5160 bad_addr: 5161 if (ipsec_policy_set) { 5162 ASSERT(policy_mp == mp->b_cont); 5163 ASSERT(policy_mp != NULL); 5164 freeb(policy_mp); 5165 /* 5166 * As of now assume that nothing else accompanies 5167 * IPSEC_POLICY_SET. 5168 */ 5169 mp->b_cont = NULL; 5170 } 5171 if (src_ire != NULL) 5172 IRE_REFRELE(src_ire); 5173 if (dst_ire != NULL) 5174 IRE_REFRELE(dst_ire); 5175 if (sire != NULL) 5176 IRE_REFRELE(sire); 5177 if (md_dst_ire != NULL) 5178 IRE_REFRELE(md_dst_ire); 5179 if (lso_dst_ire != NULL) 5180 IRE_REFRELE(lso_dst_ire); 5181 return (error); 5182 } 5183 5184 /* 5185 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5186 * Prefers dst_ire over src_ire. 5187 */ 5188 static boolean_t 5189 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5190 { 5191 mblk_t *mp1; 5192 ire_t *ret_ire = NULL; 5193 5194 mp1 = mp->b_cont; 5195 ASSERT(mp1 != NULL); 5196 5197 if (ire != NULL) { 5198 /* 5199 * mp1 initialized above to IRE_DB_REQ_TYPE 5200 * appended mblk. Its <upper protocol>'s 5201 * job to make sure there is room. 5202 */ 5203 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5204 return (0); 5205 5206 mp1->b_datap->db_type = IRE_DB_TYPE; 5207 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5208 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5209 ret_ire = (ire_t *)mp1->b_rptr; 5210 /* 5211 * Pass the latest setting of the ip_path_mtu_discovery and 5212 * copy the ulp info if any. 5213 */ 5214 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5215 IPH_DF : 0; 5216 if (ulp_info != NULL) { 5217 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5218 sizeof (iulp_t)); 5219 } 5220 ret_ire->ire_mp = mp1; 5221 } else { 5222 /* 5223 * No IRE was found. Remove IRE mblk. 5224 */ 5225 mp->b_cont = mp1->b_cont; 5226 freeb(mp1); 5227 } 5228 5229 return (1); 5230 } 5231 5232 /* 5233 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5234 * the final piece where we don't. Return a pointer to the first mblk in the 5235 * result, and update the pointer to the next mblk to chew on. If anything 5236 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5237 * NULL pointer. 5238 */ 5239 mblk_t * 5240 ip_carve_mp(mblk_t **mpp, ssize_t len) 5241 { 5242 mblk_t *mp0; 5243 mblk_t *mp1; 5244 mblk_t *mp2; 5245 5246 if (!len || !mpp || !(mp0 = *mpp)) 5247 return (NULL); 5248 /* If we aren't going to consume the first mblk, we need a dup. */ 5249 if (mp0->b_wptr - mp0->b_rptr > len) { 5250 mp1 = dupb(mp0); 5251 if (mp1) { 5252 /* Partition the data between the two mblks. */ 5253 mp1->b_wptr = mp1->b_rptr + len; 5254 mp0->b_rptr = mp1->b_wptr; 5255 /* 5256 * after adjustments if mblk not consumed is now 5257 * unaligned, try to align it. If this fails free 5258 * all messages and let upper layer recover. 5259 */ 5260 if (!OK_32PTR(mp0->b_rptr)) { 5261 if (!pullupmsg(mp0, -1)) { 5262 freemsg(mp0); 5263 freemsg(mp1); 5264 *mpp = NULL; 5265 return (NULL); 5266 } 5267 } 5268 } 5269 return (mp1); 5270 } 5271 /* Eat through as many mblks as we need to get len bytes. */ 5272 len -= mp0->b_wptr - mp0->b_rptr; 5273 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5274 if (mp2->b_wptr - mp2->b_rptr > len) { 5275 /* 5276 * We won't consume the entire last mblk. Like 5277 * above, dup and partition it. 5278 */ 5279 mp1->b_cont = dupb(mp2); 5280 mp1 = mp1->b_cont; 5281 if (!mp1) { 5282 /* 5283 * Trouble. Rather than go to a lot of 5284 * trouble to clean up, we free the messages. 5285 * This won't be any worse than losing it on 5286 * the wire. 5287 */ 5288 freemsg(mp0); 5289 freemsg(mp2); 5290 *mpp = NULL; 5291 return (NULL); 5292 } 5293 mp1->b_wptr = mp1->b_rptr + len; 5294 mp2->b_rptr = mp1->b_wptr; 5295 /* 5296 * after adjustments if mblk not consumed is now 5297 * unaligned, try to align it. If this fails free 5298 * all messages and let upper layer recover. 5299 */ 5300 if (!OK_32PTR(mp2->b_rptr)) { 5301 if (!pullupmsg(mp2, -1)) { 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 } 5308 *mpp = mp2; 5309 return (mp0); 5310 } 5311 /* Decrement len by the amount we just got. */ 5312 len -= mp2->b_wptr - mp2->b_rptr; 5313 } 5314 /* 5315 * len should be reduced to zero now. If not our caller has 5316 * screwed up. 5317 */ 5318 if (len) { 5319 /* Shouldn't happen! */ 5320 freemsg(mp0); 5321 *mpp = NULL; 5322 return (NULL); 5323 } 5324 /* 5325 * We consumed up to exactly the end of an mblk. Detach the part 5326 * we are returning from the rest of the chain. 5327 */ 5328 mp1->b_cont = NULL; 5329 *mpp = mp2; 5330 return (mp0); 5331 } 5332 5333 /* The ill stream is being unplumbed. Called from ip_close */ 5334 int 5335 ip_modclose(ill_t *ill) 5336 { 5337 boolean_t success; 5338 ipsq_t *ipsq; 5339 ipif_t *ipif; 5340 queue_t *q = ill->ill_rq; 5341 ip_stack_t *ipst = ill->ill_ipst; 5342 clock_t timeout; 5343 5344 /* 5345 * Wait for the ACKs of all deferred control messages to be processed. 5346 * In particular, we wait for a potential capability reset initiated 5347 * in ip_sioctl_plink() to complete before proceeding. 5348 * 5349 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5350 * in case the driver never replies. 5351 */ 5352 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5353 mutex_enter(&ill->ill_lock); 5354 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5355 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5356 /* Timeout */ 5357 break; 5358 } 5359 } 5360 mutex_exit(&ill->ill_lock); 5361 5362 /* 5363 * Forcibly enter the ipsq after some delay. This is to take 5364 * care of the case when some ioctl does not complete because 5365 * we sent a control message to the driver and it did not 5366 * send us a reply. We want to be able to at least unplumb 5367 * and replumb rather than force the user to reboot the system. 5368 */ 5369 success = ipsq_enter(ill, B_FALSE); 5370 5371 /* 5372 * Open/close/push/pop is guaranteed to be single threaded 5373 * per stream by STREAMS. FS guarantees that all references 5374 * from top are gone before close is called. So there can't 5375 * be another close thread that has set CONDEMNED on this ill. 5376 * and cause ipsq_enter to return failure. 5377 */ 5378 ASSERT(success); 5379 ipsq = ill->ill_phyint->phyint_ipsq; 5380 5381 /* 5382 * Mark it condemned. No new reference will be made to this ill. 5383 * Lookup functions will return an error. Threads that try to 5384 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5385 * that the refcnt will drop down to zero. 5386 */ 5387 mutex_enter(&ill->ill_lock); 5388 ill->ill_state_flags |= ILL_CONDEMNED; 5389 for (ipif = ill->ill_ipif; ipif != NULL; 5390 ipif = ipif->ipif_next) { 5391 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5392 } 5393 /* 5394 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5395 * returns error if ILL_CONDEMNED is set 5396 */ 5397 cv_broadcast(&ill->ill_cv); 5398 mutex_exit(&ill->ill_lock); 5399 5400 /* 5401 * Send all the deferred DLPI messages downstream which came in 5402 * during the small window right before ipsq_enter(). We do this 5403 * without waiting for the ACKs because all the ACKs for M_PROTO 5404 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5405 */ 5406 ill_dlpi_send_deferred(ill); 5407 5408 /* 5409 * Shut down fragmentation reassembly. 5410 * ill_frag_timer won't start a timer again. 5411 * Now cancel any existing timer 5412 */ 5413 (void) untimeout(ill->ill_frag_timer_id); 5414 (void) ill_frag_timeout(ill, 0); 5415 5416 /* 5417 * If MOVE was in progress, clear the 5418 * move_in_progress fields also. 5419 */ 5420 if (ill->ill_move_in_progress) { 5421 ILL_CLEAR_MOVE(ill); 5422 } 5423 5424 /* 5425 * Call ill_delete to bring down the ipifs, ilms and ill on 5426 * this ill. Then wait for the refcnts to drop to zero. 5427 * ill_is_quiescent checks whether the ill is really quiescent. 5428 * Then make sure that threads that are waiting to enter the 5429 * ipsq have seen the error returned by ipsq_enter and have 5430 * gone away. Then we call ill_delete_tail which does the 5431 * DL_UNBIND_REQ with the driver and then qprocsoff. 5432 */ 5433 ill_delete(ill); 5434 mutex_enter(&ill->ill_lock); 5435 while (!ill_is_quiescent(ill)) 5436 cv_wait(&ill->ill_cv, &ill->ill_lock); 5437 while (ill->ill_waiters) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 5440 mutex_exit(&ill->ill_lock); 5441 5442 /* 5443 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5444 * it held until the end of the function since the cleanup 5445 * below needs to be able to use the ip_stack_t. 5446 */ 5447 netstack_hold(ipst->ips_netstack); 5448 5449 /* qprocsoff is called in ill_delete_tail */ 5450 ill_delete_tail(ill); 5451 ASSERT(ill->ill_ipst == NULL); 5452 5453 /* 5454 * Walk through all upper (conn) streams and qenable 5455 * those that have queued data. 5456 * close synchronization needs this to 5457 * be done to ensure that all upper layers blocked 5458 * due to flow control to the closing device 5459 * get unblocked. 5460 */ 5461 ip1dbg(("ip_wsrv: walking\n")); 5462 conn_walk_drain(ipst); 5463 5464 mutex_enter(&ipst->ips_ip_mi_lock); 5465 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5466 mutex_exit(&ipst->ips_ip_mi_lock); 5467 5468 /* 5469 * credp could be null if the open didn't succeed and ip_modopen 5470 * itself calls ip_close. 5471 */ 5472 if (ill->ill_credp != NULL) 5473 crfree(ill->ill_credp); 5474 5475 mutex_enter(&ill->ill_lock); 5476 ill_nic_info_dispatch(ill); 5477 mutex_exit(&ill->ill_lock); 5478 5479 /* 5480 * Now we are done with the module close pieces that 5481 * need the netstack_t. 5482 */ 5483 netstack_rele(ipst->ips_netstack); 5484 5485 mi_close_free((IDP)ill); 5486 q->q_ptr = WR(q)->q_ptr = NULL; 5487 5488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5489 5490 return (0); 5491 } 5492 5493 /* 5494 * This is called as part of close() for both IP and UDP 5495 * in order to quiesce the conn. 5496 */ 5497 void 5498 ip_quiesce_conn(conn_t *connp) 5499 { 5500 boolean_t drain_cleanup_reqd = B_FALSE; 5501 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5502 boolean_t ilg_cleanup_reqd = B_FALSE; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(!IPCL_IS_TCP(connp)); 5506 ipst = connp->conn_netstack->netstack_ip; 5507 5508 /* 5509 * Mark the conn as closing, and this conn must not be 5510 * inserted in future into any list. Eg. conn_drain_insert(), 5511 * won't insert this conn into the conn_drain_list. 5512 * Similarly ill_pending_mp_add() will not add any mp to 5513 * the pending mp list, after this conn has started closing. 5514 * 5515 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5516 * cannot get set henceforth. 5517 */ 5518 mutex_enter(&connp->conn_lock); 5519 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5520 connp->conn_state_flags |= CONN_CLOSING; 5521 if (connp->conn_idl != NULL) 5522 drain_cleanup_reqd = B_TRUE; 5523 if (connp->conn_oper_pending_ill != NULL) 5524 conn_ioctl_cleanup_reqd = B_TRUE; 5525 if (connp->conn_ilg_inuse != 0) 5526 ilg_cleanup_reqd = B_TRUE; 5527 mutex_exit(&connp->conn_lock); 5528 5529 if (IPCL_IS_UDP(connp)) 5530 udp_quiesce_conn(connp); 5531 5532 if (conn_ioctl_cleanup_reqd) 5533 conn_ioctl_cleanup(connp); 5534 5535 if (is_system_labeled() && connp->conn_anon_port) { 5536 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5537 connp->conn_mlp_type, connp->conn_ulp, 5538 ntohs(connp->conn_lport), B_FALSE); 5539 connp->conn_anon_port = 0; 5540 } 5541 connp->conn_mlp_type = mlptSingle; 5542 5543 /* 5544 * Remove this conn from any fanout list it is on. 5545 * and then wait for any threads currently operating 5546 * on this endpoint to finish 5547 */ 5548 ipcl_hash_remove(connp); 5549 5550 /* 5551 * Remove this conn from the drain list, and do 5552 * any other cleanup that may be required. 5553 * (Only non-tcp streams may have a non-null conn_idl. 5554 * TCP streams are never flow controlled, and 5555 * conn_idl will be null) 5556 */ 5557 if (drain_cleanup_reqd) 5558 conn_drain_tail(connp, B_TRUE); 5559 5560 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5561 connp->conn_wq == ipst->ips_ip_g_mrouter) 5562 (void) ip_mrouter_done(NULL, ipst); 5563 5564 if (ilg_cleanup_reqd) 5565 ilg_delete_all(connp); 5566 5567 conn_delete_ire(connp, NULL); 5568 5569 /* 5570 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5571 * callers from write side can't be there now because close 5572 * is in progress. The only other caller is ipcl_walk 5573 * which checks for the condemned flag. 5574 */ 5575 mutex_enter(&connp->conn_lock); 5576 connp->conn_state_flags |= CONN_CONDEMNED; 5577 while (connp->conn_ref != 1) 5578 cv_wait(&connp->conn_cv, &connp->conn_lock); 5579 connp->conn_state_flags |= CONN_QUIESCED; 5580 mutex_exit(&connp->conn_lock); 5581 } 5582 5583 /* ARGSUSED */ 5584 int 5585 ip_close(queue_t *q, int flags) 5586 { 5587 conn_t *connp; 5588 5589 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5590 5591 /* 5592 * Call the appropriate delete routine depending on whether this is 5593 * a module or device. 5594 */ 5595 if (WR(q)->q_next != NULL) { 5596 /* This is a module close */ 5597 return (ip_modclose((ill_t *)q->q_ptr)); 5598 } 5599 5600 connp = q->q_ptr; 5601 ip_quiesce_conn(connp); 5602 5603 qprocsoff(q); 5604 5605 /* 5606 * Now we are truly single threaded on this stream, and can 5607 * delete the things hanging off the connp, and finally the connp. 5608 * We removed this connp from the fanout list, it cannot be 5609 * accessed thru the fanouts, and we already waited for the 5610 * conn_ref to drop to 0. We are already in close, so 5611 * there cannot be any other thread from the top. qprocsoff 5612 * has completed, and service has completed or won't run in 5613 * future. 5614 */ 5615 ASSERT(connp->conn_ref == 1); 5616 5617 /* 5618 * A conn which was previously marked as IPCL_UDP cannot 5619 * retain the flag because it would have been cleared by 5620 * udp_close(). 5621 */ 5622 ASSERT(!IPCL_IS_UDP(connp)); 5623 5624 if (connp->conn_latch != NULL) { 5625 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5626 connp->conn_latch = NULL; 5627 } 5628 if (connp->conn_policy != NULL) { 5629 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5630 connp->conn_policy = NULL; 5631 } 5632 if (connp->conn_ipsec_opt_mp != NULL) { 5633 freemsg(connp->conn_ipsec_opt_mp); 5634 connp->conn_ipsec_opt_mp = NULL; 5635 } 5636 5637 inet_minor_free(ip_minor_arena, connp->conn_dev); 5638 5639 connp->conn_ref--; 5640 ipcl_conn_destroy(connp); 5641 5642 q->q_ptr = WR(q)->q_ptr = NULL; 5643 return (0); 5644 } 5645 5646 int 5647 ip_snmpmod_close(queue_t *q) 5648 { 5649 conn_t *connp = Q_TO_CONN(q); 5650 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5651 5652 qprocsoff(q); 5653 5654 if (connp->conn_flags & IPCL_UDPMOD) 5655 udp_close_free(connp); 5656 5657 if (connp->conn_cred != NULL) { 5658 crfree(connp->conn_cred); 5659 connp->conn_cred = NULL; 5660 } 5661 CONN_DEC_REF(connp); 5662 q->q_ptr = WR(q)->q_ptr = NULL; 5663 return (0); 5664 } 5665 5666 /* 5667 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5668 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5669 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5670 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5671 * queues as we never enqueue messages there and we don't handle any ioctls. 5672 * Everything else is freed. 5673 */ 5674 void 5675 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5676 { 5677 conn_t *connp = q->q_ptr; 5678 pfi_t setfn; 5679 pfi_t getfn; 5680 5681 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5682 5683 switch (DB_TYPE(mp)) { 5684 case M_PROTO: 5685 case M_PCPROTO: 5686 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5687 ((((union T_primitives *)mp->b_rptr)->type == 5688 T_SVR4_OPTMGMT_REQ) || 5689 (((union T_primitives *)mp->b_rptr)->type == 5690 T_OPTMGMT_REQ))) { 5691 /* 5692 * This is the only TPI primitive supported. Its 5693 * handling does not require tcp_t, but it does require 5694 * conn_t to check permissions. 5695 */ 5696 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5697 5698 if (connp->conn_flags & IPCL_TCPMOD) { 5699 setfn = tcp_snmp_set; 5700 getfn = tcp_snmp_get; 5701 } else { 5702 setfn = udp_snmp_set; 5703 getfn = udp_snmp_get; 5704 } 5705 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5706 freemsg(mp); 5707 return; 5708 } 5709 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5710 != NULL) 5711 qreply(q, mp); 5712 break; 5713 case M_FLUSH: 5714 case M_IOCTL: 5715 putnext(q, mp); 5716 break; 5717 default: 5718 freemsg(mp); 5719 break; 5720 } 5721 } 5722 5723 /* Return the IP checksum for the IP header at "iph". */ 5724 uint16_t 5725 ip_csum_hdr(ipha_t *ipha) 5726 { 5727 uint16_t *uph; 5728 uint32_t sum; 5729 int opt_len; 5730 5731 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5732 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5733 uph = (uint16_t *)ipha; 5734 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5735 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5736 if (opt_len > 0) { 5737 do { 5738 sum += uph[10]; 5739 sum += uph[11]; 5740 uph += 2; 5741 } while (--opt_len); 5742 } 5743 sum = (sum & 0xFFFF) + (sum >> 16); 5744 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5745 if (sum == 0xffff) 5746 sum = 0; 5747 return ((uint16_t)sum); 5748 } 5749 5750 /* 5751 * Called when the module is about to be unloaded 5752 */ 5753 void 5754 ip_ddi_destroy(void) 5755 { 5756 tnet_fini(); 5757 5758 sctp_ddi_g_destroy(); 5759 tcp_ddi_g_destroy(); 5760 ipsec_policy_g_destroy(); 5761 ipcl_g_destroy(); 5762 ip_net_g_destroy(); 5763 ip_ire_g_fini(); 5764 inet_minor_destroy(ip_minor_arena); 5765 5766 netstack_unregister(NS_IP); 5767 } 5768 5769 /* 5770 * First step in cleanup. 5771 */ 5772 /* ARGSUSED */ 5773 static void 5774 ip_stack_shutdown(netstackid_t stackid, void *arg) 5775 { 5776 ip_stack_t *ipst = (ip_stack_t *)arg; 5777 5778 #ifdef NS_DEBUG 5779 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5780 #endif 5781 5782 /* Get rid of loopback interfaces and their IREs */ 5783 ip_loopback_cleanup(ipst); 5784 } 5785 5786 /* 5787 * Free the IP stack instance. 5788 */ 5789 static void 5790 ip_stack_fini(netstackid_t stackid, void *arg) 5791 { 5792 ip_stack_t *ipst = (ip_stack_t *)arg; 5793 int ret; 5794 5795 #ifdef NS_DEBUG 5796 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5797 #endif 5798 ipv4_hook_destroy(ipst); 5799 ipv6_hook_destroy(ipst); 5800 ip_net_destroy(ipst); 5801 5802 rw_destroy(&ipst->ips_srcid_lock); 5803 5804 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5805 ipst->ips_ip_mibkp = NULL; 5806 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5807 ipst->ips_icmp_mibkp = NULL; 5808 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5809 ipst->ips_ip_kstat = NULL; 5810 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5811 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5812 ipst->ips_ip6_kstat = NULL; 5813 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5814 5815 nd_free(&ipst->ips_ip_g_nd); 5816 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5817 ipst->ips_param_arr = NULL; 5818 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5819 ipst->ips_ndp_arr = NULL; 5820 5821 ip_mrouter_stack_destroy(ipst); 5822 5823 mutex_destroy(&ipst->ips_ip_mi_lock); 5824 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5825 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5826 rw_destroy(&ipst->ips_ip_g_nd_lock); 5827 5828 ret = untimeout(ipst->ips_igmp_timeout_id); 5829 if (ret == -1) { 5830 ASSERT(ipst->ips_igmp_timeout_id == 0); 5831 } else { 5832 ASSERT(ipst->ips_igmp_timeout_id != 0); 5833 ipst->ips_igmp_timeout_id = 0; 5834 } 5835 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5836 if (ret == -1) { 5837 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5838 } else { 5839 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5840 ipst->ips_igmp_slowtimeout_id = 0; 5841 } 5842 ret = untimeout(ipst->ips_mld_timeout_id); 5843 if (ret == -1) { 5844 ASSERT(ipst->ips_mld_timeout_id == 0); 5845 } else { 5846 ASSERT(ipst->ips_mld_timeout_id != 0); 5847 ipst->ips_mld_timeout_id = 0; 5848 } 5849 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5850 if (ret == -1) { 5851 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5852 } else { 5853 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5854 ipst->ips_mld_slowtimeout_id = 0; 5855 } 5856 ret = untimeout(ipst->ips_ip_ire_expire_id); 5857 if (ret == -1) { 5858 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5859 } else { 5860 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5861 ipst->ips_ip_ire_expire_id = 0; 5862 } 5863 5864 mutex_destroy(&ipst->ips_igmp_timer_lock); 5865 mutex_destroy(&ipst->ips_mld_timer_lock); 5866 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5867 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5868 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5869 rw_destroy(&ipst->ips_ill_g_lock); 5870 5871 ip_ire_fini(ipst); 5872 ip6_asp_free(ipst); 5873 conn_drain_fini(ipst); 5874 ipcl_destroy(ipst); 5875 5876 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5877 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5878 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5879 ipst->ips_ndp4 = NULL; 5880 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5881 ipst->ips_ndp6 = NULL; 5882 5883 if (ipst->ips_loopback_ksp != NULL) { 5884 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5885 ipst->ips_loopback_ksp = NULL; 5886 } 5887 5888 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5889 ipst->ips_phyint_g_list = NULL; 5890 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5891 ipst->ips_ill_g_heads = NULL; 5892 5893 kmem_free(ipst, sizeof (*ipst)); 5894 } 5895 5896 /* 5897 * Called when the IP kernel module is loaded into the kernel 5898 */ 5899 void 5900 ip_ddi_init(void) 5901 { 5902 TCP6_MAJ = ddi_name_to_major(TCP6); 5903 TCP_MAJ = ddi_name_to_major(TCP); 5904 SCTP_MAJ = ddi_name_to_major(SCTP); 5905 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5906 5907 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5908 5909 /* 5910 * For IP and TCP the minor numbers should start from 2 since we have 4 5911 * initial devices: ip, ip6, tcp, tcp6. 5912 */ 5913 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5914 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5915 cmn_err(CE_PANIC, 5916 "ip_ddi_init: ip_minor_arena creation failed\n"); 5917 } 5918 5919 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5920 5921 ipcl_g_init(); 5922 ip_ire_g_init(); 5923 ip_net_g_init(); 5924 5925 #ifdef ILL_DEBUG 5926 /* Default cleanup function */ 5927 ip_cleanup_func = ip_thread_exit; 5928 #endif 5929 5930 /* 5931 * We want to be informed each time a stack is created or 5932 * destroyed in the kernel, so we can maintain the 5933 * set of udp_stack_t's. 5934 */ 5935 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5936 ip_stack_fini); 5937 5938 ipsec_policy_g_init(); 5939 tcp_ddi_g_init(); 5940 sctp_ddi_g_init(); 5941 5942 tnet_init(); 5943 } 5944 5945 /* 5946 * Initialize the IP stack instance. 5947 */ 5948 static void * 5949 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5950 { 5951 ip_stack_t *ipst; 5952 ipparam_t *pa; 5953 ipndp_t *na; 5954 5955 #ifdef NS_DEBUG 5956 printf("ip_stack_init(stack %d)\n", stackid); 5957 #endif 5958 5959 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5960 ipst->ips_netstack = ns; 5961 5962 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5963 KM_SLEEP); 5964 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5965 KM_SLEEP); 5966 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5967 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5968 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5969 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5970 5971 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5973 ipst->ips_igmp_deferred_next = INFINITY; 5974 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5975 ipst->ips_mld_deferred_next = INFINITY; 5976 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5977 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5978 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5979 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5980 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5981 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5982 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5983 5984 ipcl_init(ipst); 5985 ip_ire_init(ipst); 5986 ip6_asp_init(ipst); 5987 ipif_init(ipst); 5988 conn_drain_init(ipst); 5989 ip_mrouter_stack_init(ipst); 5990 5991 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5992 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5993 5994 ipst->ips_ip_multirt_log_interval = 1000; 5995 5996 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5997 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5998 ipst->ips_ill_index = 1; 5999 6000 ipst->ips_saved_ip_g_forward = -1; 6001 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6002 6003 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6004 ipst->ips_param_arr = pa; 6005 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6006 6007 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6008 ipst->ips_ndp_arr = na; 6009 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6010 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6011 (caddr_t)&ipst->ips_ip_g_forward; 6012 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6013 (caddr_t)&ipst->ips_ipv6_forward; 6014 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6015 "ip_cgtp_filter") == 0); 6016 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6017 (caddr_t)&ip_cgtp_filter; 6018 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6019 "ipmp_hook_emulation") == 0); 6020 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6021 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6022 6023 (void) ip_param_register(&ipst->ips_ip_g_nd, 6024 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6025 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6026 6027 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6028 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6029 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6030 ipst->ips_ip6_kstat = 6031 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6032 6033 ipst->ips_ipmp_enable_failback = B_TRUE; 6034 6035 ipst->ips_ip_src_id = 1; 6036 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6037 6038 ip_net_init(ipst, ns); 6039 ipv4_hook_init(ipst); 6040 ipv6_hook_init(ipst); 6041 6042 return (ipst); 6043 } 6044 6045 /* 6046 * Allocate and initialize a DLPI template of the specified length. (May be 6047 * called as writer.) 6048 */ 6049 mblk_t * 6050 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6051 { 6052 mblk_t *mp; 6053 6054 mp = allocb(len, BPRI_MED); 6055 if (!mp) 6056 return (NULL); 6057 6058 /* 6059 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6060 * of which we don't seem to use) are sent with M_PCPROTO, and 6061 * that other DLPI are M_PROTO. 6062 */ 6063 if (prim == DL_INFO_REQ) { 6064 mp->b_datap->db_type = M_PCPROTO; 6065 } else { 6066 mp->b_datap->db_type = M_PROTO; 6067 } 6068 6069 mp->b_wptr = mp->b_rptr + len; 6070 bzero(mp->b_rptr, len); 6071 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6072 return (mp); 6073 } 6074 6075 const char * 6076 dlpi_prim_str(int prim) 6077 { 6078 switch (prim) { 6079 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6080 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6081 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6082 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6083 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6084 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6085 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6086 case DL_OK_ACK: return ("DL_OK_ACK"); 6087 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6088 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6089 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6090 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6091 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6092 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6093 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6094 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6095 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6096 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6097 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6098 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6099 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6100 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6101 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6102 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6103 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6104 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6105 default: return ("<unknown primitive>"); 6106 } 6107 } 6108 6109 const char * 6110 dlpi_err_str(int err) 6111 { 6112 switch (err) { 6113 case DL_ACCESS: return ("DL_ACCESS"); 6114 case DL_BADADDR: return ("DL_BADADDR"); 6115 case DL_BADCORR: return ("DL_BADCORR"); 6116 case DL_BADDATA: return ("DL_BADDATA"); 6117 case DL_BADPPA: return ("DL_BADPPA"); 6118 case DL_BADPRIM: return ("DL_BADPRIM"); 6119 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6120 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6121 case DL_BADSAP: return ("DL_BADSAP"); 6122 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6123 case DL_BOUND: return ("DL_BOUND"); 6124 case DL_INITFAILED: return ("DL_INITFAILED"); 6125 case DL_NOADDR: return ("DL_NOADDR"); 6126 case DL_NOTINIT: return ("DL_NOTINIT"); 6127 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6128 case DL_SYSERR: return ("DL_SYSERR"); 6129 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6130 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6131 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6132 case DL_TOOMANY: return ("DL_TOOMANY"); 6133 case DL_NOTENAB: return ("DL_NOTENAB"); 6134 case DL_BUSY: return ("DL_BUSY"); 6135 case DL_NOAUTO: return ("DL_NOAUTO"); 6136 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6137 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6138 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6139 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6140 case DL_PENDING: return ("DL_PENDING"); 6141 default: return ("<unknown error>"); 6142 } 6143 } 6144 6145 /* 6146 * Debug formatting routine. Returns a character string representation of the 6147 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6148 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6149 * 6150 * Once the ndd table-printing interfaces are removed, this can be changed to 6151 * standard dotted-decimal form. 6152 */ 6153 char * 6154 ip_dot_addr(ipaddr_t addr, char *buf) 6155 { 6156 uint8_t *ap = (uint8_t *)&addr; 6157 6158 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6159 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6160 return (buf); 6161 } 6162 6163 /* 6164 * Write the given MAC address as a printable string in the usual colon- 6165 * separated format. 6166 */ 6167 const char * 6168 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6169 { 6170 char *bp; 6171 6172 if (alen == 0 || buflen < 4) 6173 return ("?"); 6174 bp = buf; 6175 for (;;) { 6176 /* 6177 * If there are more MAC address bytes available, but we won't 6178 * have any room to print them, then add "..." to the string 6179 * instead. See below for the 'magic number' explanation. 6180 */ 6181 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6182 (void) strcpy(bp, "..."); 6183 break; 6184 } 6185 (void) sprintf(bp, "%02x", *addr++); 6186 bp += 2; 6187 if (--alen == 0) 6188 break; 6189 *bp++ = ':'; 6190 buflen -= 3; 6191 /* 6192 * At this point, based on the first 'if' statement above, 6193 * either alen == 1 and buflen >= 3, or alen > 1 and 6194 * buflen >= 4. The first case leaves room for the final "xx" 6195 * number and trailing NUL byte. The second leaves room for at 6196 * least "...". Thus the apparently 'magic' numbers chosen for 6197 * that statement. 6198 */ 6199 } 6200 return (buf); 6201 } 6202 6203 /* 6204 * Send an ICMP error after patching up the packet appropriately. Returns 6205 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6206 */ 6207 static boolean_t 6208 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6209 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6210 zoneid_t zoneid, ip_stack_t *ipst) 6211 { 6212 ipha_t *ipha; 6213 mblk_t *first_mp; 6214 boolean_t secure; 6215 unsigned char db_type; 6216 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6217 6218 first_mp = mp; 6219 if (mctl_present) { 6220 mp = mp->b_cont; 6221 secure = ipsec_in_is_secure(first_mp); 6222 ASSERT(mp != NULL); 6223 } else { 6224 /* 6225 * If this is an ICMP error being reported - which goes 6226 * up as M_CTLs, we need to convert them to M_DATA till 6227 * we finish checking with global policy because 6228 * ipsec_check_global_policy() assumes M_DATA as clear 6229 * and M_CTL as secure. 6230 */ 6231 db_type = DB_TYPE(mp); 6232 DB_TYPE(mp) = M_DATA; 6233 secure = B_FALSE; 6234 } 6235 /* 6236 * We are generating an icmp error for some inbound packet. 6237 * Called from all ip_fanout_(udp, tcp, proto) functions. 6238 * Before we generate an error, check with global policy 6239 * to see whether this is allowed to enter the system. As 6240 * there is no "conn", we are checking with global policy. 6241 */ 6242 ipha = (ipha_t *)mp->b_rptr; 6243 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6244 first_mp = ipsec_check_global_policy(first_mp, NULL, 6245 ipha, NULL, mctl_present, ipst->ips_netstack); 6246 if (first_mp == NULL) 6247 return (B_FALSE); 6248 } 6249 6250 if (!mctl_present) 6251 DB_TYPE(mp) = db_type; 6252 6253 if (flags & IP_FF_SEND_ICMP) { 6254 if (flags & IP_FF_HDR_COMPLETE) { 6255 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6256 freemsg(first_mp); 6257 return (B_TRUE); 6258 } 6259 } 6260 if (flags & IP_FF_CKSUM) { 6261 /* 6262 * Have to correct checksum since 6263 * the packet might have been 6264 * fragmented and the reassembly code in ip_rput 6265 * does not restore the IP checksum. 6266 */ 6267 ipha->ipha_hdr_checksum = 0; 6268 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6269 } 6270 switch (icmp_type) { 6271 case ICMP_DEST_UNREACHABLE: 6272 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6273 ipst); 6274 break; 6275 default: 6276 freemsg(first_mp); 6277 break; 6278 } 6279 } else { 6280 freemsg(first_mp); 6281 return (B_FALSE); 6282 } 6283 6284 return (B_TRUE); 6285 } 6286 6287 /* 6288 * Used to send an ICMP error message when a packet is received for 6289 * a protocol that is not supported. The mblk passed as argument 6290 * is consumed by this function. 6291 */ 6292 void 6293 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6294 ip_stack_t *ipst) 6295 { 6296 mblk_t *mp; 6297 ipha_t *ipha; 6298 ill_t *ill; 6299 ipsec_in_t *ii; 6300 6301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6303 6304 mp = ipsec_mp->b_cont; 6305 ipsec_mp->b_cont = NULL; 6306 ipha = (ipha_t *)mp->b_rptr; 6307 /* Get ill from index in ipsec_in_t. */ 6308 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6309 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6310 ipst); 6311 if (ill != NULL) { 6312 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6313 if (ip_fanout_send_icmp(q, mp, flags, 6314 ICMP_DEST_UNREACHABLE, 6315 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6316 BUMP_MIB(ill->ill_ip_mib, 6317 ipIfStatsInUnknownProtos); 6318 } 6319 } else { 6320 if (ip_fanout_send_icmp_v6(q, mp, flags, 6321 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6322 0, B_FALSE, zoneid, ipst)) { 6323 BUMP_MIB(ill->ill_ip_mib, 6324 ipIfStatsInUnknownProtos); 6325 } 6326 } 6327 ill_refrele(ill); 6328 } else { /* re-link for the freemsg() below. */ 6329 ipsec_mp->b_cont = mp; 6330 } 6331 6332 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6333 freemsg(ipsec_mp); 6334 } 6335 6336 /* 6337 * See if the inbound datagram has had IPsec processing applied to it. 6338 */ 6339 boolean_t 6340 ipsec_in_is_secure(mblk_t *ipsec_mp) 6341 { 6342 ipsec_in_t *ii; 6343 6344 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6345 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6346 6347 if (ii->ipsec_in_loopback) { 6348 return (ii->ipsec_in_secure); 6349 } else { 6350 return (ii->ipsec_in_ah_sa != NULL || 6351 ii->ipsec_in_esp_sa != NULL || 6352 ii->ipsec_in_decaps); 6353 } 6354 } 6355 6356 /* 6357 * Handle protocols with which IP is less intimate. There 6358 * can be more than one stream bound to a particular 6359 * protocol. When this is the case, normally each one gets a copy 6360 * of any incoming packets. 6361 * 6362 * IPSEC NOTE : 6363 * 6364 * Don't allow a secure packet going up a non-secure connection. 6365 * We don't allow this because 6366 * 6367 * 1) Reply might go out in clear which will be dropped at 6368 * the sending side. 6369 * 2) If the reply goes out in clear it will give the 6370 * adversary enough information for getting the key in 6371 * most of the cases. 6372 * 6373 * Moreover getting a secure packet when we expect clear 6374 * implies that SA's were added without checking for 6375 * policy on both ends. This should not happen once ISAKMP 6376 * is used to negotiate SAs as SAs will be added only after 6377 * verifying the policy. 6378 * 6379 * NOTE : If the packet was tunneled and not multicast we only send 6380 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6381 * back to delivering packets to AF_INET6 raw sockets. 6382 * 6383 * IPQoS Notes: 6384 * Once we have determined the client, invoke IPPF processing. 6385 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6386 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6387 * ip_policy will be false. 6388 * 6389 * Zones notes: 6390 * Currently only applications in the global zone can create raw sockets for 6391 * protocols other than ICMP. So unlike the broadcast / multicast case of 6392 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6393 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6394 */ 6395 static void 6396 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6397 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6398 zoneid_t zoneid) 6399 { 6400 queue_t *rq; 6401 mblk_t *mp1, *first_mp1; 6402 uint_t protocol = ipha->ipha_protocol; 6403 ipaddr_t dst; 6404 boolean_t one_only; 6405 mblk_t *first_mp = mp; 6406 boolean_t secure; 6407 uint32_t ill_index; 6408 conn_t *connp, *first_connp, *next_connp; 6409 connf_t *connfp; 6410 boolean_t shared_addr; 6411 mib2_ipIfStatsEntry_t *mibptr; 6412 ip_stack_t *ipst = recv_ill->ill_ipst; 6413 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6414 6415 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6416 if (mctl_present) { 6417 mp = first_mp->b_cont; 6418 secure = ipsec_in_is_secure(first_mp); 6419 ASSERT(mp != NULL); 6420 } else { 6421 secure = B_FALSE; 6422 } 6423 dst = ipha->ipha_dst; 6424 /* 6425 * If the packet was tunneled and not multicast we only send to it 6426 * the first match. 6427 */ 6428 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6429 !CLASSD(dst)); 6430 6431 shared_addr = (zoneid == ALL_ZONES); 6432 if (shared_addr) { 6433 /* 6434 * We don't allow multilevel ports for raw IP, so no need to 6435 * check for that here. 6436 */ 6437 zoneid = tsol_packet_to_zoneid(mp); 6438 } 6439 6440 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6441 mutex_enter(&connfp->connf_lock); 6442 connp = connfp->connf_head; 6443 for (connp = connfp->connf_head; connp != NULL; 6444 connp = connp->conn_next) { 6445 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6446 zoneid) && 6447 (!is_system_labeled() || 6448 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6449 connp))) { 6450 break; 6451 } 6452 } 6453 6454 if (connp == NULL || connp->conn_upq == NULL) { 6455 /* 6456 * No one bound to these addresses. Is 6457 * there a client that wants all 6458 * unclaimed datagrams? 6459 */ 6460 mutex_exit(&connfp->connf_lock); 6461 /* 6462 * Check for IPPROTO_ENCAP... 6463 */ 6464 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6465 /* 6466 * If an IPsec mblk is here on a multicast 6467 * tunnel (using ip_mroute stuff), check policy here, 6468 * THEN ship off to ip_mroute_decap(). 6469 * 6470 * BTW, If I match a configured IP-in-IP 6471 * tunnel, this path will not be reached, and 6472 * ip_mroute_decap will never be called. 6473 */ 6474 first_mp = ipsec_check_global_policy(first_mp, connp, 6475 ipha, NULL, mctl_present, ipst->ips_netstack); 6476 if (first_mp != NULL) { 6477 if (mctl_present) 6478 freeb(first_mp); 6479 ip_mroute_decap(q, mp, ill); 6480 } /* Else we already freed everything! */ 6481 } else { 6482 /* 6483 * Otherwise send an ICMP protocol unreachable. 6484 */ 6485 if (ip_fanout_send_icmp(q, first_mp, flags, 6486 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6487 mctl_present, zoneid, ipst)) { 6488 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6489 } 6490 } 6491 return; 6492 } 6493 CONN_INC_REF(connp); 6494 first_connp = connp; 6495 6496 /* 6497 * Only send message to one tunnel driver by immediately 6498 * terminating the loop. 6499 */ 6500 connp = one_only ? NULL : connp->conn_next; 6501 6502 for (;;) { 6503 while (connp != NULL) { 6504 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6505 flags, zoneid) && 6506 (!is_system_labeled() || 6507 tsol_receive_local(mp, &dst, IPV4_VERSION, 6508 shared_addr, connp))) 6509 break; 6510 connp = connp->conn_next; 6511 } 6512 6513 /* 6514 * Copy the packet. 6515 */ 6516 if (connp == NULL || connp->conn_upq == NULL || 6517 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6518 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6519 /* 6520 * No more interested clients or memory 6521 * allocation failed 6522 */ 6523 connp = first_connp; 6524 break; 6525 } 6526 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6527 CONN_INC_REF(connp); 6528 mutex_exit(&connfp->connf_lock); 6529 rq = connp->conn_rq; 6530 if (!canputnext(rq)) { 6531 if (flags & IP_FF_RAWIP) { 6532 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6533 } else { 6534 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6535 } 6536 6537 freemsg(first_mp1); 6538 } else { 6539 /* 6540 * Don't enforce here if we're an actual tunnel - 6541 * let "tun" do it instead. 6542 */ 6543 if (!IPCL_IS_IPTUN(connp) && 6544 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6545 secure)) { 6546 first_mp1 = ipsec_check_inbound_policy 6547 (first_mp1, connp, ipha, NULL, 6548 mctl_present); 6549 } 6550 if (first_mp1 != NULL) { 6551 int in_flags = 0; 6552 /* 6553 * ip_fanout_proto also gets called from 6554 * icmp_inbound_error_fanout, in which case 6555 * the msg type is M_CTL. Don't add info 6556 * in this case for the time being. In future 6557 * when there is a need for knowing the 6558 * inbound iface index for ICMP error msgs, 6559 * then this can be changed. 6560 */ 6561 if (connp->conn_recvif) 6562 in_flags = IPF_RECVIF; 6563 /* 6564 * The ULP may support IP_RECVPKTINFO for both 6565 * IP v4 and v6 so pass the appropriate argument 6566 * based on conn IP version. 6567 */ 6568 if (connp->conn_ip_recvpktinfo) { 6569 if (connp->conn_af_isv6) { 6570 /* 6571 * V6 only needs index 6572 */ 6573 in_flags |= IPF_RECVIF; 6574 } else { 6575 /* 6576 * V4 needs index + 6577 * matching address. 6578 */ 6579 in_flags |= IPF_RECVADDR; 6580 } 6581 } 6582 if ((in_flags != 0) && 6583 (mp->b_datap->db_type != M_CTL)) { 6584 /* 6585 * the actual data will be 6586 * contained in b_cont upon 6587 * successful return of the 6588 * following call else 6589 * original mblk is returned 6590 */ 6591 ASSERT(recv_ill != NULL); 6592 mp1 = ip_add_info(mp1, recv_ill, 6593 in_flags, IPCL_ZONEID(connp), ipst); 6594 } 6595 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6596 if (mctl_present) 6597 freeb(first_mp1); 6598 putnext(rq, mp1); 6599 } 6600 } 6601 mutex_enter(&connfp->connf_lock); 6602 /* Follow the next pointer before releasing the conn. */ 6603 next_connp = connp->conn_next; 6604 CONN_DEC_REF(connp); 6605 connp = next_connp; 6606 } 6607 6608 /* Last one. Send it upstream. */ 6609 mutex_exit(&connfp->connf_lock); 6610 6611 /* 6612 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6613 * will be set to false. 6614 */ 6615 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6616 ill_index = ill->ill_phyint->phyint_ifindex; 6617 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6618 if (mp == NULL) { 6619 CONN_DEC_REF(connp); 6620 if (mctl_present) { 6621 freeb(first_mp); 6622 } 6623 return; 6624 } 6625 } 6626 6627 rq = connp->conn_rq; 6628 if (!canputnext(rq)) { 6629 if (flags & IP_FF_RAWIP) { 6630 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6631 } else { 6632 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6633 } 6634 6635 freemsg(first_mp); 6636 } else { 6637 if (IPCL_IS_IPTUN(connp)) { 6638 /* 6639 * Tunneled packet. We enforce policy in the tunnel 6640 * module itself. 6641 * 6642 * Send the WHOLE packet up (incl. IPSEC_IN) without 6643 * a policy check. 6644 */ 6645 putnext(rq, first_mp); 6646 CONN_DEC_REF(connp); 6647 return; 6648 } 6649 6650 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6651 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6652 ipha, NULL, mctl_present); 6653 } 6654 6655 if (first_mp != NULL) { 6656 int in_flags = 0; 6657 6658 /* 6659 * ip_fanout_proto also gets called 6660 * from icmp_inbound_error_fanout, in 6661 * which case the msg type is M_CTL. 6662 * Don't add info in this case for time 6663 * being. In future when there is a 6664 * need for knowing the inbound iface 6665 * index for ICMP error msgs, then this 6666 * can be changed 6667 */ 6668 if (connp->conn_recvif) 6669 in_flags = IPF_RECVIF; 6670 if (connp->conn_ip_recvpktinfo) { 6671 if (connp->conn_af_isv6) { 6672 /* 6673 * V6 only needs index 6674 */ 6675 in_flags |= IPF_RECVIF; 6676 } else { 6677 /* 6678 * V4 needs index + 6679 * matching address. 6680 */ 6681 in_flags |= IPF_RECVADDR; 6682 } 6683 } 6684 if ((in_flags != 0) && 6685 (mp->b_datap->db_type != M_CTL)) { 6686 6687 /* 6688 * the actual data will be contained in 6689 * b_cont upon successful return 6690 * of the following call else original 6691 * mblk is returned 6692 */ 6693 ASSERT(recv_ill != NULL); 6694 mp = ip_add_info(mp, recv_ill, 6695 in_flags, IPCL_ZONEID(connp), ipst); 6696 } 6697 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6698 putnext(rq, mp); 6699 if (mctl_present) 6700 freeb(first_mp); 6701 } 6702 } 6703 CONN_DEC_REF(connp); 6704 } 6705 6706 /* 6707 * Fanout for TCP packets 6708 * The caller puts <fport, lport> in the ports parameter. 6709 * 6710 * IPQoS Notes 6711 * Before sending it to the client, invoke IPPF processing. 6712 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6713 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6714 * ip_policy is false. 6715 */ 6716 static void 6717 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6718 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6719 { 6720 mblk_t *first_mp; 6721 boolean_t secure; 6722 uint32_t ill_index; 6723 int ip_hdr_len; 6724 tcph_t *tcph; 6725 boolean_t syn_present = B_FALSE; 6726 conn_t *connp; 6727 ip_stack_t *ipst = recv_ill->ill_ipst; 6728 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6729 6730 ASSERT(recv_ill != NULL); 6731 6732 first_mp = mp; 6733 if (mctl_present) { 6734 ASSERT(first_mp->b_datap->db_type == M_CTL); 6735 mp = first_mp->b_cont; 6736 secure = ipsec_in_is_secure(first_mp); 6737 ASSERT(mp != NULL); 6738 } else { 6739 secure = B_FALSE; 6740 } 6741 6742 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6743 6744 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6745 zoneid, ipst)) == NULL) { 6746 /* 6747 * No connected connection or listener. Send a 6748 * TH_RST via tcp_xmit_listeners_reset. 6749 */ 6750 6751 /* Initiate IPPf processing, if needed. */ 6752 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6753 uint32_t ill_index; 6754 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6755 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6756 if (first_mp == NULL) 6757 return; 6758 } 6759 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6760 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6761 zoneid)); 6762 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6763 ipst->ips_netstack->netstack_tcp); 6764 return; 6765 } 6766 6767 /* 6768 * Allocate the SYN for the TCP connection here itself 6769 */ 6770 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6771 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6772 if (IPCL_IS_TCP(connp)) { 6773 squeue_t *sqp; 6774 6775 /* 6776 * For fused tcp loopback, assign the eager's 6777 * squeue to be that of the active connect's. 6778 * Note that we don't check for IP_FF_LOOPBACK 6779 * here since this routine gets called only 6780 * for loopback (unlike the IPv6 counterpart). 6781 */ 6782 ASSERT(Q_TO_CONN(q) != NULL); 6783 if (do_tcp_fusion && 6784 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6785 !secure && 6786 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6787 IPCL_IS_TCP(Q_TO_CONN(q))) { 6788 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6789 sqp = Q_TO_CONN(q)->conn_sqp; 6790 } else { 6791 sqp = IP_SQUEUE_GET(lbolt); 6792 } 6793 6794 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6795 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6796 syn_present = B_TRUE; 6797 } 6798 } 6799 6800 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6801 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6802 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6803 if ((flags & TH_RST) || (flags & TH_URG)) { 6804 CONN_DEC_REF(connp); 6805 freemsg(first_mp); 6806 return; 6807 } 6808 if (flags & TH_ACK) { 6809 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6810 ipst->ips_netstack->netstack_tcp); 6811 CONN_DEC_REF(connp); 6812 return; 6813 } 6814 6815 CONN_DEC_REF(connp); 6816 freemsg(first_mp); 6817 return; 6818 } 6819 6820 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6821 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6822 NULL, mctl_present); 6823 if (first_mp == NULL) { 6824 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6825 CONN_DEC_REF(connp); 6826 return; 6827 } 6828 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6829 ASSERT(syn_present); 6830 if (mctl_present) { 6831 ASSERT(first_mp != mp); 6832 first_mp->b_datap->db_struioflag |= 6833 STRUIO_POLICY; 6834 } else { 6835 ASSERT(first_mp == mp); 6836 mp->b_datap->db_struioflag &= 6837 ~STRUIO_EAGER; 6838 mp->b_datap->db_struioflag |= 6839 STRUIO_POLICY; 6840 } 6841 } else { 6842 /* 6843 * Discard first_mp early since we're dealing with a 6844 * fully-connected conn_t and tcp doesn't do policy in 6845 * this case. 6846 */ 6847 if (mctl_present) { 6848 freeb(first_mp); 6849 mctl_present = B_FALSE; 6850 } 6851 first_mp = mp; 6852 } 6853 } 6854 6855 /* 6856 * Initiate policy processing here if needed. If we get here from 6857 * icmp_inbound_error_fanout, ip_policy is false. 6858 */ 6859 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6860 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6861 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6862 if (mp == NULL) { 6863 CONN_DEC_REF(connp); 6864 if (mctl_present) 6865 freeb(first_mp); 6866 return; 6867 } else if (mctl_present) { 6868 ASSERT(first_mp != mp); 6869 first_mp->b_cont = mp; 6870 } else { 6871 first_mp = mp; 6872 } 6873 } 6874 6875 6876 6877 /* Handle socket options. */ 6878 if (!syn_present && 6879 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6880 /* Add header */ 6881 ASSERT(recv_ill != NULL); 6882 /* 6883 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6884 * IPF_RECVIF. 6885 */ 6886 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6887 ipst); 6888 if (mp == NULL) { 6889 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6890 CONN_DEC_REF(connp); 6891 if (mctl_present) 6892 freeb(first_mp); 6893 return; 6894 } else if (mctl_present) { 6895 /* 6896 * ip_add_info might return a new mp. 6897 */ 6898 ASSERT(first_mp != mp); 6899 first_mp->b_cont = mp; 6900 } else { 6901 first_mp = mp; 6902 } 6903 } 6904 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6905 if (IPCL_IS_TCP(connp)) { 6906 /* do not drain, certain use cases can blow the stack */ 6907 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6908 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6909 } else { 6910 putnext(connp->conn_rq, first_mp); 6911 CONN_DEC_REF(connp); 6912 } 6913 } 6914 6915 /* 6916 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6917 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6918 * Caller is responsible for dropping references to the conn, and freeing 6919 * first_mp. 6920 * 6921 * IPQoS Notes 6922 * Before sending it to the client, invoke IPPF processing. Policy processing 6923 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6924 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6925 * ip_wput_local, ip_policy is false. 6926 */ 6927 static void 6928 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6929 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6930 boolean_t ip_policy) 6931 { 6932 boolean_t mctl_present = (first_mp != NULL); 6933 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6934 uint32_t ill_index; 6935 ip_stack_t *ipst = recv_ill->ill_ipst; 6936 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6937 6938 ASSERT(ill != NULL); 6939 6940 if (mctl_present) 6941 first_mp->b_cont = mp; 6942 else 6943 first_mp = mp; 6944 6945 if (CONN_UDP_FLOWCTLD(connp)) { 6946 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6947 freemsg(first_mp); 6948 return; 6949 } 6950 6951 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6952 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6953 NULL, mctl_present); 6954 if (first_mp == NULL) { 6955 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6956 return; /* Freed by ipsec_check_inbound_policy(). */ 6957 } 6958 } 6959 if (mctl_present) 6960 freeb(first_mp); 6961 6962 /* Handle options. */ 6963 if (connp->conn_recvif) 6964 in_flags = IPF_RECVIF; 6965 /* 6966 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6967 * passed to ip_add_info is based on IP version of connp. 6968 */ 6969 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6970 if (connp->conn_af_isv6) { 6971 /* 6972 * V6 only needs index 6973 */ 6974 in_flags |= IPF_RECVIF; 6975 } else { 6976 /* 6977 * V4 needs index + matching address. 6978 */ 6979 in_flags |= IPF_RECVADDR; 6980 } 6981 } 6982 6983 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6984 in_flags |= IPF_RECVSLLA; 6985 6986 /* 6987 * Initiate IPPF processing here, if needed. Note first_mp won't be 6988 * freed if the packet is dropped. The caller will do so. 6989 */ 6990 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6991 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6992 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6993 if (mp == NULL) { 6994 return; 6995 } 6996 } 6997 if ((in_flags != 0) && 6998 (mp->b_datap->db_type != M_CTL)) { 6999 /* 7000 * The actual data will be contained in b_cont 7001 * upon successful return of the following call 7002 * else original mblk is returned 7003 */ 7004 ASSERT(recv_ill != NULL); 7005 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7006 ipst); 7007 } 7008 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7009 /* Send it upstream */ 7010 CONN_UDP_RECV(connp, mp); 7011 } 7012 7013 /* 7014 * Fanout for UDP packets. 7015 * The caller puts <fport, lport> in the ports parameter. 7016 * 7017 * If SO_REUSEADDR is set all multicast and broadcast packets 7018 * will be delivered to all streams bound to the same port. 7019 * 7020 * Zones notes: 7021 * Multicast and broadcast packets will be distributed to streams in all zones. 7022 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7023 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7024 * packets. To maintain this behavior with multiple zones, the conns are grouped 7025 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7026 * each zone. If unset, all the following conns in the same zone are skipped. 7027 */ 7028 static void 7029 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7030 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7031 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7032 { 7033 uint32_t dstport, srcport; 7034 ipaddr_t dst; 7035 mblk_t *first_mp; 7036 boolean_t secure; 7037 in6_addr_t v6src; 7038 conn_t *connp; 7039 connf_t *connfp; 7040 conn_t *first_connp; 7041 conn_t *next_connp; 7042 mblk_t *mp1, *first_mp1; 7043 ipaddr_t src; 7044 zoneid_t last_zoneid; 7045 boolean_t reuseaddr; 7046 boolean_t shared_addr; 7047 ip_stack_t *ipst; 7048 7049 ASSERT(recv_ill != NULL); 7050 ipst = recv_ill->ill_ipst; 7051 7052 first_mp = mp; 7053 if (mctl_present) { 7054 mp = first_mp->b_cont; 7055 first_mp->b_cont = NULL; 7056 secure = ipsec_in_is_secure(first_mp); 7057 ASSERT(mp != NULL); 7058 } else { 7059 first_mp = NULL; 7060 secure = B_FALSE; 7061 } 7062 7063 /* Extract ports in net byte order */ 7064 dstport = htons(ntohl(ports) & 0xFFFF); 7065 srcport = htons(ntohl(ports) >> 16); 7066 dst = ipha->ipha_dst; 7067 src = ipha->ipha_src; 7068 7069 shared_addr = (zoneid == ALL_ZONES); 7070 if (shared_addr) { 7071 /* 7072 * No need to handle exclusive-stack zones since ALL_ZONES 7073 * only applies to the shared stack. 7074 */ 7075 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7076 if (zoneid == ALL_ZONES) 7077 zoneid = tsol_packet_to_zoneid(mp); 7078 } 7079 7080 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7081 mutex_enter(&connfp->connf_lock); 7082 connp = connfp->connf_head; 7083 if (!broadcast && !CLASSD(dst)) { 7084 /* 7085 * Not broadcast or multicast. Send to the one (first) 7086 * client we find. No need to check conn_wantpacket() 7087 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7088 * IPv4 unicast packets. 7089 */ 7090 while ((connp != NULL) && 7091 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7092 !IPCL_ZONE_MATCH(connp, zoneid))) { 7093 connp = connp->conn_next; 7094 } 7095 7096 if (connp == NULL || connp->conn_upq == NULL) 7097 goto notfound; 7098 7099 if (is_system_labeled() && 7100 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7101 connp)) 7102 goto notfound; 7103 7104 CONN_INC_REF(connp); 7105 mutex_exit(&connfp->connf_lock); 7106 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7107 flags, recv_ill, ip_policy); 7108 IP_STAT(ipst, ip_udp_fannorm); 7109 CONN_DEC_REF(connp); 7110 return; 7111 } 7112 7113 /* 7114 * Broadcast and multicast case 7115 * 7116 * Need to check conn_wantpacket(). 7117 * If SO_REUSEADDR has been set on the first we send the 7118 * packet to all clients that have joined the group and 7119 * match the port. 7120 */ 7121 7122 while (connp != NULL) { 7123 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7124 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7125 (!is_system_labeled() || 7126 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7127 connp))) 7128 break; 7129 connp = connp->conn_next; 7130 } 7131 7132 if (connp == NULL || connp->conn_upq == NULL) 7133 goto notfound; 7134 7135 first_connp = connp; 7136 /* 7137 * When SO_REUSEADDR is not set, send the packet only to the first 7138 * matching connection in its zone by keeping track of the zoneid. 7139 */ 7140 reuseaddr = first_connp->conn_reuseaddr; 7141 last_zoneid = first_connp->conn_zoneid; 7142 7143 CONN_INC_REF(connp); 7144 connp = connp->conn_next; 7145 for (;;) { 7146 while (connp != NULL) { 7147 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7148 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7149 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7150 (!is_system_labeled() || 7151 tsol_receive_local(mp, &dst, IPV4_VERSION, 7152 shared_addr, connp))) 7153 break; 7154 connp = connp->conn_next; 7155 } 7156 /* 7157 * Just copy the data part alone. The mctl part is 7158 * needed just for verifying policy and it is never 7159 * sent up. 7160 */ 7161 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7162 ((mp1 = copymsg(mp)) == NULL))) { 7163 /* 7164 * No more interested clients or memory 7165 * allocation failed 7166 */ 7167 connp = first_connp; 7168 break; 7169 } 7170 if (connp->conn_zoneid != last_zoneid) { 7171 /* 7172 * Update the zoneid so that the packet isn't sent to 7173 * any more conns in the same zone unless SO_REUSEADDR 7174 * is set. 7175 */ 7176 reuseaddr = connp->conn_reuseaddr; 7177 last_zoneid = connp->conn_zoneid; 7178 } 7179 if (first_mp != NULL) { 7180 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7181 ipsec_info_type == IPSEC_IN); 7182 first_mp1 = ipsec_in_tag(first_mp, NULL, 7183 ipst->ips_netstack); 7184 if (first_mp1 == NULL) { 7185 freemsg(mp1); 7186 connp = first_connp; 7187 break; 7188 } 7189 } else { 7190 first_mp1 = NULL; 7191 } 7192 CONN_INC_REF(connp); 7193 mutex_exit(&connfp->connf_lock); 7194 /* 7195 * IPQoS notes: We don't send the packet for policy 7196 * processing here, will do it for the last one (below). 7197 * i.e. we do it per-packet now, but if we do policy 7198 * processing per-conn, then we would need to do it 7199 * here too. 7200 */ 7201 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7202 ipha, flags, recv_ill, B_FALSE); 7203 mutex_enter(&connfp->connf_lock); 7204 /* Follow the next pointer before releasing the conn. */ 7205 next_connp = connp->conn_next; 7206 IP_STAT(ipst, ip_udp_fanmb); 7207 CONN_DEC_REF(connp); 7208 connp = next_connp; 7209 } 7210 7211 /* Last one. Send it upstream. */ 7212 mutex_exit(&connfp->connf_lock); 7213 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7214 recv_ill, ip_policy); 7215 IP_STAT(ipst, ip_udp_fanmb); 7216 CONN_DEC_REF(connp); 7217 return; 7218 7219 notfound: 7220 7221 mutex_exit(&connfp->connf_lock); 7222 IP_STAT(ipst, ip_udp_fanothers); 7223 /* 7224 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7225 * have already been matched above, since they live in the IPv4 7226 * fanout tables. This implies we only need to 7227 * check for IPv6 in6addr_any endpoints here. 7228 * Thus we compare using ipv6_all_zeros instead of the destination 7229 * address, except for the multicast group membership lookup which 7230 * uses the IPv4 destination. 7231 */ 7232 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7233 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7234 mutex_enter(&connfp->connf_lock); 7235 connp = connfp->connf_head; 7236 if (!broadcast && !CLASSD(dst)) { 7237 while (connp != NULL) { 7238 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7239 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7240 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7241 !connp->conn_ipv6_v6only) 7242 break; 7243 connp = connp->conn_next; 7244 } 7245 7246 if (connp != NULL && is_system_labeled() && 7247 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7248 connp)) 7249 connp = NULL; 7250 7251 if (connp == NULL || connp->conn_upq == NULL) { 7252 /* 7253 * No one bound to this port. Is 7254 * there a client that wants all 7255 * unclaimed datagrams? 7256 */ 7257 mutex_exit(&connfp->connf_lock); 7258 7259 if (mctl_present) 7260 first_mp->b_cont = mp; 7261 else 7262 first_mp = mp; 7263 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7264 connf_head != NULL) { 7265 ip_fanout_proto(q, first_mp, ill, ipha, 7266 flags | IP_FF_RAWIP, mctl_present, 7267 ip_policy, recv_ill, zoneid); 7268 } else { 7269 if (ip_fanout_send_icmp(q, first_mp, flags, 7270 ICMP_DEST_UNREACHABLE, 7271 ICMP_PORT_UNREACHABLE, 7272 mctl_present, zoneid, ipst)) { 7273 BUMP_MIB(ill->ill_ip_mib, 7274 udpIfStatsNoPorts); 7275 } 7276 } 7277 return; 7278 } 7279 7280 CONN_INC_REF(connp); 7281 mutex_exit(&connfp->connf_lock); 7282 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7283 flags, recv_ill, ip_policy); 7284 CONN_DEC_REF(connp); 7285 return; 7286 } 7287 /* 7288 * IPv4 multicast packet being delivered to an AF_INET6 7289 * in6addr_any endpoint. 7290 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7291 * and not conn_wantpacket_v6() since any multicast membership is 7292 * for an IPv4-mapped multicast address. 7293 * The packet is sent to all clients in all zones that have joined the 7294 * group and match the port. 7295 */ 7296 while (connp != NULL) { 7297 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7298 srcport, v6src) && 7299 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7300 (!is_system_labeled() || 7301 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7302 connp))) 7303 break; 7304 connp = connp->conn_next; 7305 } 7306 7307 if (connp == NULL || connp->conn_upq == NULL) { 7308 /* 7309 * No one bound to this port. Is 7310 * there a client that wants all 7311 * unclaimed datagrams? 7312 */ 7313 mutex_exit(&connfp->connf_lock); 7314 7315 if (mctl_present) 7316 first_mp->b_cont = mp; 7317 else 7318 first_mp = mp; 7319 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7320 NULL) { 7321 ip_fanout_proto(q, first_mp, ill, ipha, 7322 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7323 recv_ill, zoneid); 7324 } else { 7325 /* 7326 * We used to attempt to send an icmp error here, but 7327 * since this is known to be a multicast packet 7328 * and we don't send icmp errors in response to 7329 * multicast, just drop the packet and give up sooner. 7330 */ 7331 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7332 freemsg(first_mp); 7333 } 7334 return; 7335 } 7336 7337 first_connp = connp; 7338 7339 CONN_INC_REF(connp); 7340 connp = connp->conn_next; 7341 for (;;) { 7342 while (connp != NULL) { 7343 if (IPCL_UDP_MATCH_V6(connp, dstport, 7344 ipv6_all_zeros, srcport, v6src) && 7345 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7346 (!is_system_labeled() || 7347 tsol_receive_local(mp, &dst, IPV4_VERSION, 7348 shared_addr, connp))) 7349 break; 7350 connp = connp->conn_next; 7351 } 7352 /* 7353 * Just copy the data part alone. The mctl part is 7354 * needed just for verifying policy and it is never 7355 * sent up. 7356 */ 7357 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7358 ((mp1 = copymsg(mp)) == NULL))) { 7359 /* 7360 * No more intested clients or memory 7361 * allocation failed 7362 */ 7363 connp = first_connp; 7364 break; 7365 } 7366 if (first_mp != NULL) { 7367 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7368 ipsec_info_type == IPSEC_IN); 7369 first_mp1 = ipsec_in_tag(first_mp, NULL, 7370 ipst->ips_netstack); 7371 if (first_mp1 == NULL) { 7372 freemsg(mp1); 7373 connp = first_connp; 7374 break; 7375 } 7376 } else { 7377 first_mp1 = NULL; 7378 } 7379 CONN_INC_REF(connp); 7380 mutex_exit(&connfp->connf_lock); 7381 /* 7382 * IPQoS notes: We don't send the packet for policy 7383 * processing here, will do it for the last one (below). 7384 * i.e. we do it per-packet now, but if we do policy 7385 * processing per-conn, then we would need to do it 7386 * here too. 7387 */ 7388 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7389 ipha, flags, recv_ill, B_FALSE); 7390 mutex_enter(&connfp->connf_lock); 7391 /* Follow the next pointer before releasing the conn. */ 7392 next_connp = connp->conn_next; 7393 CONN_DEC_REF(connp); 7394 connp = next_connp; 7395 } 7396 7397 /* Last one. Send it upstream. */ 7398 mutex_exit(&connfp->connf_lock); 7399 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7400 recv_ill, ip_policy); 7401 CONN_DEC_REF(connp); 7402 } 7403 7404 /* 7405 * Complete the ip_wput header so that it 7406 * is possible to generate ICMP 7407 * errors. 7408 */ 7409 int 7410 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7411 { 7412 ire_t *ire; 7413 7414 if (ipha->ipha_src == INADDR_ANY) { 7415 ire = ire_lookup_local(zoneid, ipst); 7416 if (ire == NULL) { 7417 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7418 return (1); 7419 } 7420 ipha->ipha_src = ire->ire_addr; 7421 ire_refrele(ire); 7422 } 7423 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7424 ipha->ipha_hdr_checksum = 0; 7425 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7426 return (0); 7427 } 7428 7429 /* 7430 * Nobody should be sending 7431 * packets up this stream 7432 */ 7433 static void 7434 ip_lrput(queue_t *q, mblk_t *mp) 7435 { 7436 mblk_t *mp1; 7437 7438 switch (mp->b_datap->db_type) { 7439 case M_FLUSH: 7440 /* Turn around */ 7441 if (*mp->b_rptr & FLUSHW) { 7442 *mp->b_rptr &= ~FLUSHR; 7443 qreply(q, mp); 7444 return; 7445 } 7446 break; 7447 } 7448 /* Could receive messages that passed through ar_rput */ 7449 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7450 mp1->b_prev = mp1->b_next = NULL; 7451 freemsg(mp); 7452 } 7453 7454 /* Nobody should be sending packets down this stream */ 7455 /* ARGSUSED */ 7456 void 7457 ip_lwput(queue_t *q, mblk_t *mp) 7458 { 7459 freemsg(mp); 7460 } 7461 7462 /* 7463 * Move the first hop in any source route to ipha_dst and remove that part of 7464 * the source route. Called by other protocols. Errors in option formatting 7465 * are ignored - will be handled by ip_wput_options Return the final 7466 * destination (either ipha_dst or the last entry in a source route.) 7467 */ 7468 ipaddr_t 7469 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7470 { 7471 ipoptp_t opts; 7472 uchar_t *opt; 7473 uint8_t optval; 7474 uint8_t optlen; 7475 ipaddr_t dst; 7476 int i; 7477 ire_t *ire; 7478 ip_stack_t *ipst = ns->netstack_ip; 7479 7480 ip2dbg(("ip_massage_options\n")); 7481 dst = ipha->ipha_dst; 7482 for (optval = ipoptp_first(&opts, ipha); 7483 optval != IPOPT_EOL; 7484 optval = ipoptp_next(&opts)) { 7485 opt = opts.ipoptp_cur; 7486 switch (optval) { 7487 uint8_t off; 7488 case IPOPT_SSRR: 7489 case IPOPT_LSRR: 7490 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7491 ip1dbg(("ip_massage_options: bad src route\n")); 7492 break; 7493 } 7494 optlen = opts.ipoptp_len; 7495 off = opt[IPOPT_OFFSET]; 7496 off--; 7497 redo_srr: 7498 if (optlen < IP_ADDR_LEN || 7499 off > optlen - IP_ADDR_LEN) { 7500 /* End of source route */ 7501 ip1dbg(("ip_massage_options: end of SR\n")); 7502 break; 7503 } 7504 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7505 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7506 ntohl(dst))); 7507 /* 7508 * Check if our address is present more than 7509 * once as consecutive hops in source route. 7510 * XXX verify per-interface ip_forwarding 7511 * for source route? 7512 */ 7513 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7514 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7515 if (ire != NULL) { 7516 ire_refrele(ire); 7517 off += IP_ADDR_LEN; 7518 goto redo_srr; 7519 } 7520 if (dst == htonl(INADDR_LOOPBACK)) { 7521 ip1dbg(("ip_massage_options: loopback addr in " 7522 "source route!\n")); 7523 break; 7524 } 7525 /* 7526 * Update ipha_dst to be the first hop and remove the 7527 * first hop from the source route (by overwriting 7528 * part of the option with NOP options). 7529 */ 7530 ipha->ipha_dst = dst; 7531 /* Put the last entry in dst */ 7532 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7533 3; 7534 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7535 7536 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7537 ntohl(dst))); 7538 /* Move down and overwrite */ 7539 opt[IP_ADDR_LEN] = opt[0]; 7540 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7541 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7542 for (i = 0; i < IP_ADDR_LEN; i++) 7543 opt[i] = IPOPT_NOP; 7544 break; 7545 } 7546 } 7547 return (dst); 7548 } 7549 7550 /* 7551 * Return the network mask 7552 * associated with the specified address. 7553 */ 7554 ipaddr_t 7555 ip_net_mask(ipaddr_t addr) 7556 { 7557 uchar_t *up = (uchar_t *)&addr; 7558 ipaddr_t mask = 0; 7559 uchar_t *maskp = (uchar_t *)&mask; 7560 7561 #if defined(__i386) || defined(__amd64) 7562 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7563 #endif 7564 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7565 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7566 #endif 7567 if (CLASSD(addr)) { 7568 maskp[0] = 0xF0; 7569 return (mask); 7570 } 7571 if (addr == 0) 7572 return (0); 7573 maskp[0] = 0xFF; 7574 if ((up[0] & 0x80) == 0) 7575 return (mask); 7576 7577 maskp[1] = 0xFF; 7578 if ((up[0] & 0xC0) == 0x80) 7579 return (mask); 7580 7581 maskp[2] = 0xFF; 7582 if ((up[0] & 0xE0) == 0xC0) 7583 return (mask); 7584 7585 /* Must be experimental or multicast, indicate as much */ 7586 return ((ipaddr_t)0); 7587 } 7588 7589 /* 7590 * Select an ill for the packet by considering load spreading across 7591 * a different ill in the group if dst_ill is part of some group. 7592 */ 7593 ill_t * 7594 ip_newroute_get_dst_ill(ill_t *dst_ill) 7595 { 7596 ill_t *ill; 7597 7598 /* 7599 * We schedule irrespective of whether the source address is 7600 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7601 */ 7602 ill = illgrp_scheduler(dst_ill); 7603 if (ill == NULL) 7604 return (NULL); 7605 7606 /* 7607 * For groups with names ip_sioctl_groupname ensures that all 7608 * ills are of same type. For groups without names, ifgrp_insert 7609 * ensures this. 7610 */ 7611 ASSERT(dst_ill->ill_type == ill->ill_type); 7612 7613 return (ill); 7614 } 7615 7616 /* 7617 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7618 */ 7619 ill_t * 7620 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7621 ip_stack_t *ipst) 7622 { 7623 ill_t *ret_ill; 7624 7625 ASSERT(ifindex != 0); 7626 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7627 ipst); 7628 if (ret_ill == NULL || 7629 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7630 if (isv6) { 7631 if (ill != NULL) { 7632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7633 } else { 7634 BUMP_MIB(&ipst->ips_ip6_mib, 7635 ipIfStatsOutDiscards); 7636 } 7637 ip1dbg(("ip_grab_attach_ill (IPv6): " 7638 "bad ifindex %d.\n", ifindex)); 7639 } else { 7640 if (ill != NULL) { 7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7642 } else { 7643 BUMP_MIB(&ipst->ips_ip_mib, 7644 ipIfStatsOutDiscards); 7645 } 7646 ip1dbg(("ip_grab_attach_ill (IPv4): " 7647 "bad ifindex %d.\n", ifindex)); 7648 } 7649 if (ret_ill != NULL) 7650 ill_refrele(ret_ill); 7651 freemsg(first_mp); 7652 return (NULL); 7653 } 7654 7655 return (ret_ill); 7656 } 7657 7658 /* 7659 * IPv4 - 7660 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7661 * out a packet to a destination address for which we do not have specific 7662 * (or sufficient) routing information. 7663 * 7664 * NOTE : These are the scopes of some of the variables that point at IRE, 7665 * which needs to be followed while making any future modifications 7666 * to avoid memory leaks. 7667 * 7668 * - ire and sire are the entries looked up initially by 7669 * ire_ftable_lookup. 7670 * - ipif_ire is used to hold the interface ire associated with 7671 * the new cache ire. But it's scope is limited, so we always REFRELE 7672 * it before branching out to error paths. 7673 * - save_ire is initialized before ire_create, so that ire returned 7674 * by ire_create will not over-write the ire. We REFRELE save_ire 7675 * before breaking out of the switch. 7676 * 7677 * Thus on failures, we have to REFRELE only ire and sire, if they 7678 * are not NULL. 7679 */ 7680 void 7681 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7682 zoneid_t zoneid, ip_stack_t *ipst) 7683 { 7684 areq_t *areq; 7685 ipaddr_t gw = 0; 7686 ire_t *ire = NULL; 7687 mblk_t *res_mp; 7688 ipaddr_t *addrp; 7689 ipaddr_t nexthop_addr; 7690 ipif_t *src_ipif = NULL; 7691 ill_t *dst_ill = NULL; 7692 ipha_t *ipha; 7693 ire_t *sire = NULL; 7694 mblk_t *first_mp; 7695 ire_t *save_ire; 7696 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7697 ushort_t ire_marks = 0; 7698 boolean_t mctl_present; 7699 ipsec_out_t *io; 7700 mblk_t *saved_mp; 7701 ire_t *first_sire = NULL; 7702 mblk_t *copy_mp = NULL; 7703 mblk_t *xmit_mp = NULL; 7704 ipaddr_t save_dst; 7705 uint32_t multirt_flags = 7706 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7707 boolean_t multirt_is_resolvable; 7708 boolean_t multirt_resolve_next; 7709 boolean_t do_attach_ill = B_FALSE; 7710 boolean_t ip_nexthop = B_FALSE; 7711 tsol_ire_gw_secattr_t *attrp = NULL; 7712 tsol_gcgrp_t *gcgrp = NULL; 7713 tsol_gcgrp_addr_t ga; 7714 7715 if (ip_debug > 2) { 7716 /* ip1dbg */ 7717 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7718 } 7719 7720 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7721 if (mctl_present) { 7722 io = (ipsec_out_t *)first_mp->b_rptr; 7723 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7724 ASSERT(zoneid == io->ipsec_out_zoneid); 7725 ASSERT(zoneid != ALL_ZONES); 7726 } 7727 7728 ipha = (ipha_t *)mp->b_rptr; 7729 7730 /* All multicast lookups come through ip_newroute_ipif() */ 7731 if (CLASSD(dst)) { 7732 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7733 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7734 freemsg(first_mp); 7735 return; 7736 } 7737 7738 if (mctl_present && io->ipsec_out_attach_if) { 7739 /* ip_grab_attach_ill returns a held ill */ 7740 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7741 io->ipsec_out_ill_index, B_FALSE, ipst); 7742 7743 /* Failure case frees things for us. */ 7744 if (attach_ill == NULL) 7745 return; 7746 7747 /* 7748 * Check if we need an ire that will not be 7749 * looked up by anybody else i.e. HIDDEN. 7750 */ 7751 if (ill_is_probeonly(attach_ill)) 7752 ire_marks = IRE_MARK_HIDDEN; 7753 } 7754 if (mctl_present && io->ipsec_out_ip_nexthop) { 7755 ip_nexthop = B_TRUE; 7756 nexthop_addr = io->ipsec_out_nexthop_addr; 7757 } 7758 /* 7759 * If this IRE is created for forwarding or it is not for 7760 * traffic for congestion controlled protocols, mark it as temporary. 7761 */ 7762 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7763 ire_marks |= IRE_MARK_TEMPORARY; 7764 7765 /* 7766 * Get what we can from ire_ftable_lookup which will follow an IRE 7767 * chain until it gets the most specific information available. 7768 * For example, we know that there is no IRE_CACHE for this dest, 7769 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7770 * ire_ftable_lookup will look up the gateway, etc. 7771 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7772 * to the destination, of equal netmask length in the forward table, 7773 * will be recursively explored. If no information is available 7774 * for the final gateway of that route, we force the returned ire 7775 * to be equal to sire using MATCH_IRE_PARENT. 7776 * At least, in this case we have a starting point (in the buckets) 7777 * to look for other routes to the destination in the forward table. 7778 * This is actually used only for multirouting, where a list 7779 * of routes has to be processed in sequence. 7780 * 7781 * In the process of coming up with the most specific information, 7782 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7783 * for the gateway (i.e., one for which the ire_nce->nce_state is 7784 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7785 * Two caveats when handling incomplete ire's in ip_newroute: 7786 * - we should be careful when accessing its ire_nce (specifically 7787 * the nce_res_mp) ast it might change underneath our feet, and, 7788 * - not all legacy code path callers are prepared to handle 7789 * incomplete ire's, so we should not create/add incomplete 7790 * ire_cache entries here. (See discussion about temporary solution 7791 * further below). 7792 * 7793 * In order to minimize packet dropping, and to preserve existing 7794 * behavior, we treat this case as if there were no IRE_CACHE for the 7795 * gateway, and instead use the IF_RESOLVER ire to send out 7796 * another request to ARP (this is achieved by passing the 7797 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7798 * arp response comes back in ip_wput_nondata, we will create 7799 * a per-dst ire_cache that has an ND_COMPLETE ire. 7800 * 7801 * Note that this is a temporary solution; the correct solution is 7802 * to create an incomplete per-dst ire_cache entry, and send the 7803 * packet out when the gw's nce is resolved. In order to achieve this, 7804 * all packet processing must have been completed prior to calling 7805 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7806 * to be modified to accomodate this solution. 7807 */ 7808 if (ip_nexthop) { 7809 /* 7810 * The first time we come here, we look for an IRE_INTERFACE 7811 * entry for the specified nexthop, set the dst to be the 7812 * nexthop address and create an IRE_CACHE entry for the 7813 * nexthop. The next time around, we are able to find an 7814 * IRE_CACHE entry for the nexthop, set the gateway to be the 7815 * nexthop address and create an IRE_CACHE entry for the 7816 * destination address via the specified nexthop. 7817 */ 7818 ire = ire_cache_lookup(nexthop_addr, zoneid, 7819 MBLK_GETLABEL(mp), ipst); 7820 if (ire != NULL) { 7821 gw = nexthop_addr; 7822 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7823 } else { 7824 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7825 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7826 MBLK_GETLABEL(mp), 7827 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7828 ipst); 7829 if (ire != NULL) { 7830 dst = nexthop_addr; 7831 } 7832 } 7833 } else if (attach_ill == NULL) { 7834 ire = ire_ftable_lookup(dst, 0, 0, 0, 7835 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7836 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7837 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7838 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7839 ipst); 7840 } else { 7841 /* 7842 * attach_ill is set only for communicating with 7843 * on-link hosts. So, don't look for DEFAULT. 7844 */ 7845 ipif_t *attach_ipif; 7846 7847 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7848 if (attach_ipif == NULL) { 7849 ill_refrele(attach_ill); 7850 goto icmp_err_ret; 7851 } 7852 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7853 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7854 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7855 MATCH_IRE_SECATTR, ipst); 7856 ipif_refrele(attach_ipif); 7857 } 7858 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7859 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7860 7861 /* 7862 * This loop is run only once in most cases. 7863 * We loop to resolve further routes only when the destination 7864 * can be reached through multiple RTF_MULTIRT-flagged ires. 7865 */ 7866 do { 7867 /* Clear the previous iteration's values */ 7868 if (src_ipif != NULL) { 7869 ipif_refrele(src_ipif); 7870 src_ipif = NULL; 7871 } 7872 if (dst_ill != NULL) { 7873 ill_refrele(dst_ill); 7874 dst_ill = NULL; 7875 } 7876 7877 multirt_resolve_next = B_FALSE; 7878 /* 7879 * We check if packets have to be multirouted. 7880 * In this case, given the current <ire, sire> couple, 7881 * we look for the next suitable <ire, sire>. 7882 * This check is done in ire_multirt_lookup(), 7883 * which applies various criteria to find the next route 7884 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7885 * unchanged if it detects it has not been tried yet. 7886 */ 7887 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7888 ip3dbg(("ip_newroute: starting next_resolution " 7889 "with first_mp %p, tag %d\n", 7890 (void *)first_mp, 7891 MULTIRT_DEBUG_TAGGED(first_mp))); 7892 7893 ASSERT(sire != NULL); 7894 multirt_is_resolvable = 7895 ire_multirt_lookup(&ire, &sire, multirt_flags, 7896 MBLK_GETLABEL(mp), ipst); 7897 7898 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7899 "ire %p, sire %p\n", 7900 multirt_is_resolvable, 7901 (void *)ire, (void *)sire)); 7902 7903 if (!multirt_is_resolvable) { 7904 /* 7905 * No more multirt route to resolve; give up 7906 * (all routes resolved or no more 7907 * resolvable routes). 7908 */ 7909 if (ire != NULL) { 7910 ire_refrele(ire); 7911 ire = NULL; 7912 } 7913 } else { 7914 ASSERT(sire != NULL); 7915 ASSERT(ire != NULL); 7916 /* 7917 * We simply use first_sire as a flag that 7918 * indicates if a resolvable multirt route 7919 * has already been found. 7920 * If it is not the case, we may have to send 7921 * an ICMP error to report that the 7922 * destination is unreachable. 7923 * We do not IRE_REFHOLD first_sire. 7924 */ 7925 if (first_sire == NULL) { 7926 first_sire = sire; 7927 } 7928 } 7929 } 7930 if (ire == NULL) { 7931 if (ip_debug > 3) { 7932 /* ip2dbg */ 7933 pr_addr_dbg("ip_newroute: " 7934 "can't resolve %s\n", AF_INET, &dst); 7935 } 7936 ip3dbg(("ip_newroute: " 7937 "ire %p, sire %p, first_sire %p\n", 7938 (void *)ire, (void *)sire, (void *)first_sire)); 7939 7940 if (sire != NULL) { 7941 ire_refrele(sire); 7942 sire = NULL; 7943 } 7944 7945 if (first_sire != NULL) { 7946 /* 7947 * At least one multirt route has been found 7948 * in the same call to ip_newroute(); 7949 * there is no need to report an ICMP error. 7950 * first_sire was not IRE_REFHOLDed. 7951 */ 7952 MULTIRT_DEBUG_UNTAG(first_mp); 7953 freemsg(first_mp); 7954 return; 7955 } 7956 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7957 RTA_DST, ipst); 7958 if (attach_ill != NULL) 7959 ill_refrele(attach_ill); 7960 goto icmp_err_ret; 7961 } 7962 7963 /* 7964 * Verify that the returned IRE does not have either 7965 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7966 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7967 */ 7968 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7969 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7970 if (attach_ill != NULL) 7971 ill_refrele(attach_ill); 7972 goto icmp_err_ret; 7973 } 7974 /* 7975 * Increment the ire_ob_pkt_count field for ire if it is an 7976 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7977 * increment the same for the parent IRE, sire, if it is some 7978 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 7979 */ 7980 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7981 UPDATE_OB_PKT_COUNT(ire); 7982 ire->ire_last_used_time = lbolt; 7983 } 7984 7985 if (sire != NULL) { 7986 gw = sire->ire_gateway_addr; 7987 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7988 IRE_INTERFACE)) == 0); 7989 UPDATE_OB_PKT_COUNT(sire); 7990 sire->ire_last_used_time = lbolt; 7991 } 7992 /* 7993 * We have a route to reach the destination. 7994 * 7995 * 1) If the interface is part of ill group, try to get a new 7996 * ill taking load spreading into account. 7997 * 7998 * 2) After selecting the ill, get a source address that 7999 * might create good inbound load spreading. 8000 * ipif_select_source does this for us. 8001 * 8002 * If the application specified the ill (ifindex), we still 8003 * load spread. Only if the packets needs to go out 8004 * specifically on a given ill e.g. binding to 8005 * IPIF_NOFAILOVER address, then we don't try to use a 8006 * different ill for load spreading. 8007 */ 8008 if (attach_ill == NULL) { 8009 /* 8010 * Don't perform outbound load spreading in the 8011 * case of an RTF_MULTIRT route, as we actually 8012 * typically want to replicate outgoing packets 8013 * through particular interfaces. 8014 */ 8015 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8016 dst_ill = ire->ire_ipif->ipif_ill; 8017 /* for uniformity */ 8018 ill_refhold(dst_ill); 8019 } else { 8020 /* 8021 * If we are here trying to create an IRE_CACHE 8022 * for an offlink destination and have the 8023 * IRE_CACHE for the next hop and the latter is 8024 * using virtual IP source address selection i.e 8025 * it's ire->ire_ipif is pointing to a virtual 8026 * network interface (vni) then 8027 * ip_newroute_get_dst_ll() will return the vni 8028 * interface as the dst_ill. Since the vni is 8029 * virtual i.e not associated with any physical 8030 * interface, it cannot be the dst_ill, hence 8031 * in such a case call ip_newroute_get_dst_ll() 8032 * with the stq_ill instead of the ire_ipif ILL. 8033 * The function returns a refheld ill. 8034 */ 8035 if ((ire->ire_type == IRE_CACHE) && 8036 IS_VNI(ire->ire_ipif->ipif_ill)) 8037 dst_ill = ip_newroute_get_dst_ill( 8038 ire->ire_stq->q_ptr); 8039 else 8040 dst_ill = ip_newroute_get_dst_ill( 8041 ire->ire_ipif->ipif_ill); 8042 } 8043 if (dst_ill == NULL) { 8044 if (ip_debug > 2) { 8045 pr_addr_dbg("ip_newroute: " 8046 "no dst ill for dst" 8047 " %s\n", AF_INET, &dst); 8048 } 8049 goto icmp_err_ret; 8050 } 8051 } else { 8052 dst_ill = ire->ire_ipif->ipif_ill; 8053 /* for uniformity */ 8054 ill_refhold(dst_ill); 8055 /* 8056 * We should have found a route matching ill as we 8057 * called ire_ftable_lookup with MATCH_IRE_ILL. 8058 * Rather than asserting, when there is a mismatch, 8059 * we just drop the packet. 8060 */ 8061 if (dst_ill != attach_ill) { 8062 ip0dbg(("ip_newroute: Packet dropped as " 8063 "IPIF_NOFAILOVER ill is %s, " 8064 "ire->ire_ipif->ipif_ill is %s\n", 8065 attach_ill->ill_name, 8066 dst_ill->ill_name)); 8067 ill_refrele(attach_ill); 8068 goto icmp_err_ret; 8069 } 8070 } 8071 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8072 if (attach_ill != NULL) { 8073 ill_refrele(attach_ill); 8074 attach_ill = NULL; 8075 do_attach_ill = B_TRUE; 8076 } 8077 ASSERT(dst_ill != NULL); 8078 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8079 8080 /* 8081 * Pick the best source address from dst_ill. 8082 * 8083 * 1) If it is part of a multipathing group, we would 8084 * like to spread the inbound packets across different 8085 * interfaces. ipif_select_source picks a random source 8086 * across the different ills in the group. 8087 * 8088 * 2) If it is not part of a multipathing group, we try 8089 * to pick the source address from the destination 8090 * route. Clustering assumes that when we have multiple 8091 * prefixes hosted on an interface, the prefix of the 8092 * source address matches the prefix of the destination 8093 * route. We do this only if the address is not 8094 * DEPRECATED. 8095 * 8096 * 3) If the conn is in a different zone than the ire, we 8097 * need to pick a source address from the right zone. 8098 * 8099 * NOTE : If we hit case (1) above, the prefix of the source 8100 * address picked may not match the prefix of the 8101 * destination routes prefix as ipif_select_source 8102 * does not look at "dst" while picking a source 8103 * address. 8104 * If we want the same behavior as (2), we will need 8105 * to change the behavior of ipif_select_source. 8106 */ 8107 ASSERT(src_ipif == NULL); 8108 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8109 /* 8110 * The RTF_SETSRC flag is set in the parent ire (sire). 8111 * Check that the ipif matching the requested source 8112 * address still exists. 8113 */ 8114 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8115 zoneid, NULL, NULL, NULL, NULL, ipst); 8116 } 8117 if (src_ipif == NULL) { 8118 ire_marks |= IRE_MARK_USESRC_CHECK; 8119 if ((dst_ill->ill_group != NULL) || 8120 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8121 (connp != NULL && ire->ire_zoneid != zoneid && 8122 ire->ire_zoneid != ALL_ZONES) || 8123 (dst_ill->ill_usesrc_ifindex != 0)) { 8124 /* 8125 * If the destination is reachable via a 8126 * given gateway, the selected source address 8127 * should be in the same subnet as the gateway. 8128 * Otherwise, the destination is not reachable. 8129 * 8130 * If there are no interfaces on the same subnet 8131 * as the destination, ipif_select_source gives 8132 * first non-deprecated interface which might be 8133 * on a different subnet than the gateway. 8134 * This is not desirable. Hence pass the dst_ire 8135 * source address to ipif_select_source. 8136 * It is sure that the destination is reachable 8137 * with the dst_ire source address subnet. 8138 * So passing dst_ire source address to 8139 * ipif_select_source will make sure that the 8140 * selected source will be on the same subnet 8141 * as dst_ire source address. 8142 */ 8143 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8144 src_ipif = ipif_select_source(dst_ill, saddr, 8145 zoneid); 8146 if (src_ipif == NULL) { 8147 if (ip_debug > 2) { 8148 pr_addr_dbg("ip_newroute: " 8149 "no src for dst %s ", 8150 AF_INET, &dst); 8151 printf("through interface %s\n", 8152 dst_ill->ill_name); 8153 } 8154 goto icmp_err_ret; 8155 } 8156 } else { 8157 src_ipif = ire->ire_ipif; 8158 ASSERT(src_ipif != NULL); 8159 /* hold src_ipif for uniformity */ 8160 ipif_refhold(src_ipif); 8161 } 8162 } 8163 8164 /* 8165 * Assign a source address while we have the conn. 8166 * We can't have ip_wput_ire pick a source address when the 8167 * packet returns from arp since we need to look at 8168 * conn_unspec_src and conn_zoneid, and we lose the conn when 8169 * going through arp. 8170 * 8171 * NOTE : ip_newroute_v6 does not have this piece of code as 8172 * it uses ip6i to store this information. 8173 */ 8174 if (ipha->ipha_src == INADDR_ANY && 8175 (connp == NULL || !connp->conn_unspec_src)) { 8176 ipha->ipha_src = src_ipif->ipif_src_addr; 8177 } 8178 if (ip_debug > 3) { 8179 /* ip2dbg */ 8180 pr_addr_dbg("ip_newroute: first hop %s\n", 8181 AF_INET, &gw); 8182 } 8183 ip2dbg(("\tire type %s (%d)\n", 8184 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8185 8186 /* 8187 * The TTL of multirouted packets is bounded by the 8188 * ip_multirt_ttl ndd variable. 8189 */ 8190 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8191 /* Force TTL of multirouted packets */ 8192 if ((ipst->ips_ip_multirt_ttl > 0) && 8193 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8194 ip2dbg(("ip_newroute: forcing multirt TTL " 8195 "to %d (was %d), dst 0x%08x\n", 8196 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8197 ntohl(sire->ire_addr))); 8198 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8199 } 8200 } 8201 /* 8202 * At this point in ip_newroute(), ire is either the 8203 * IRE_CACHE of the next-hop gateway for an off-subnet 8204 * destination or an IRE_INTERFACE type that should be used 8205 * to resolve an on-subnet destination or an on-subnet 8206 * next-hop gateway. 8207 * 8208 * In the IRE_CACHE case, we have the following : 8209 * 8210 * 1) src_ipif - used for getting a source address. 8211 * 8212 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8213 * means packets using this IRE_CACHE will go out on 8214 * dst_ill. 8215 * 8216 * 3) The IRE sire will point to the prefix that is the 8217 * longest matching route for the destination. These 8218 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8219 * 8220 * The newly created IRE_CACHE entry for the off-subnet 8221 * destination is tied to both the prefix route and the 8222 * interface route used to resolve the next-hop gateway 8223 * via the ire_phandle and ire_ihandle fields, 8224 * respectively. 8225 * 8226 * In the IRE_INTERFACE case, we have the following : 8227 * 8228 * 1) src_ipif - used for getting a source address. 8229 * 8230 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8231 * means packets using the IRE_CACHE that we will build 8232 * here will go out on dst_ill. 8233 * 8234 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8235 * to be created will only be tied to the IRE_INTERFACE 8236 * that was derived from the ire_ihandle field. 8237 * 8238 * If sire is non-NULL, it means the destination is 8239 * off-link and we will first create the IRE_CACHE for the 8240 * gateway. Next time through ip_newroute, we will create 8241 * the IRE_CACHE for the final destination as described 8242 * above. 8243 * 8244 * In both cases, after the current resolution has been 8245 * completed (or possibly initialised, in the IRE_INTERFACE 8246 * case), the loop may be re-entered to attempt the resolution 8247 * of another RTF_MULTIRT route. 8248 * 8249 * When an IRE_CACHE entry for the off-subnet destination is 8250 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8251 * for further processing in emission loops. 8252 */ 8253 save_ire = ire; 8254 switch (ire->ire_type) { 8255 case IRE_CACHE: { 8256 ire_t *ipif_ire; 8257 8258 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8259 if (gw == 0) 8260 gw = ire->ire_gateway_addr; 8261 /* 8262 * We need 3 ire's to create a new cache ire for an 8263 * off-link destination from the cache ire of the 8264 * gateway. 8265 * 8266 * 1. The prefix ire 'sire' (Note that this does 8267 * not apply to the conn_nexthop_set case) 8268 * 2. The cache ire of the gateway 'ire' 8269 * 3. The interface ire 'ipif_ire' 8270 * 8271 * We have (1) and (2). We lookup (3) below. 8272 * 8273 * If there is no interface route to the gateway, 8274 * it is a race condition, where we found the cache 8275 * but the interface route has been deleted. 8276 */ 8277 if (ip_nexthop) { 8278 ipif_ire = ire_ihandle_lookup_onlink(ire); 8279 } else { 8280 ipif_ire = 8281 ire_ihandle_lookup_offlink(ire, sire); 8282 } 8283 if (ipif_ire == NULL) { 8284 ip1dbg(("ip_newroute: " 8285 "ire_ihandle_lookup_offlink failed\n")); 8286 goto icmp_err_ret; 8287 } 8288 8289 /* 8290 * Check cached gateway IRE for any security 8291 * attributes; if found, associate the gateway 8292 * credentials group to the destination IRE. 8293 */ 8294 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8295 mutex_enter(&attrp->igsa_lock); 8296 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8297 GCGRP_REFHOLD(gcgrp); 8298 mutex_exit(&attrp->igsa_lock); 8299 } 8300 8301 /* 8302 * XXX For the source of the resolver mp, 8303 * we are using the same DL_UNITDATA_REQ 8304 * (from save_ire->ire_nce->nce_res_mp) 8305 * though the save_ire is not pointing at the same ill. 8306 * This is incorrect. We need to send it up to the 8307 * resolver to get the right res_mp. For ethernets 8308 * this may be okay (ill_type == DL_ETHER). 8309 */ 8310 8311 ire = ire_create( 8312 (uchar_t *)&dst, /* dest address */ 8313 (uchar_t *)&ip_g_all_ones, /* mask */ 8314 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8315 (uchar_t *)&gw, /* gateway address */ 8316 &save_ire->ire_max_frag, 8317 save_ire->ire_nce, /* src nce */ 8318 dst_ill->ill_rq, /* recv-from queue */ 8319 dst_ill->ill_wq, /* send-to queue */ 8320 IRE_CACHE, /* IRE type */ 8321 src_ipif, 8322 (sire != NULL) ? 8323 sire->ire_mask : 0, /* Parent mask */ 8324 (sire != NULL) ? 8325 sire->ire_phandle : 0, /* Parent handle */ 8326 ipif_ire->ire_ihandle, /* Interface handle */ 8327 (sire != NULL) ? (sire->ire_flags & 8328 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8329 (sire != NULL) ? 8330 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8331 NULL, 8332 gcgrp, 8333 ipst); 8334 8335 if (ire == NULL) { 8336 if (gcgrp != NULL) { 8337 GCGRP_REFRELE(gcgrp); 8338 gcgrp = NULL; 8339 } 8340 ire_refrele(ipif_ire); 8341 ire_refrele(save_ire); 8342 break; 8343 } 8344 8345 /* reference now held by IRE */ 8346 gcgrp = NULL; 8347 8348 ire->ire_marks |= ire_marks; 8349 8350 /* 8351 * Prevent sire and ipif_ire from getting deleted. 8352 * The newly created ire is tied to both of them via 8353 * the phandle and ihandle respectively. 8354 */ 8355 if (sire != NULL) { 8356 IRB_REFHOLD(sire->ire_bucket); 8357 /* Has it been removed already ? */ 8358 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8359 IRB_REFRELE(sire->ire_bucket); 8360 ire_refrele(ipif_ire); 8361 ire_refrele(save_ire); 8362 break; 8363 } 8364 } 8365 8366 IRB_REFHOLD(ipif_ire->ire_bucket); 8367 /* Has it been removed already ? */ 8368 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8369 IRB_REFRELE(ipif_ire->ire_bucket); 8370 if (sire != NULL) 8371 IRB_REFRELE(sire->ire_bucket); 8372 ire_refrele(ipif_ire); 8373 ire_refrele(save_ire); 8374 break; 8375 } 8376 8377 xmit_mp = first_mp; 8378 /* 8379 * In the case of multirouting, a copy 8380 * of the packet is done before its sending. 8381 * The copy is used to attempt another 8382 * route resolution, in a next loop. 8383 */ 8384 if (ire->ire_flags & RTF_MULTIRT) { 8385 copy_mp = copymsg(first_mp); 8386 if (copy_mp != NULL) { 8387 xmit_mp = copy_mp; 8388 MULTIRT_DEBUG_TAG(first_mp); 8389 } 8390 } 8391 ire_add_then_send(q, ire, xmit_mp); 8392 ire_refrele(save_ire); 8393 8394 /* Assert that sire is not deleted yet. */ 8395 if (sire != NULL) { 8396 ASSERT(sire->ire_ptpn != NULL); 8397 IRB_REFRELE(sire->ire_bucket); 8398 } 8399 8400 /* Assert that ipif_ire is not deleted yet. */ 8401 ASSERT(ipif_ire->ire_ptpn != NULL); 8402 IRB_REFRELE(ipif_ire->ire_bucket); 8403 ire_refrele(ipif_ire); 8404 8405 /* 8406 * If copy_mp is not NULL, multirouting was 8407 * requested. We loop to initiate a next 8408 * route resolution attempt, starting from sire. 8409 */ 8410 if (copy_mp != NULL) { 8411 /* 8412 * Search for the next unresolved 8413 * multirt route. 8414 */ 8415 copy_mp = NULL; 8416 ipif_ire = NULL; 8417 ire = NULL; 8418 multirt_resolve_next = B_TRUE; 8419 continue; 8420 } 8421 if (sire != NULL) 8422 ire_refrele(sire); 8423 ipif_refrele(src_ipif); 8424 ill_refrele(dst_ill); 8425 return; 8426 } 8427 case IRE_IF_NORESOLVER: { 8428 8429 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8430 dst_ill->ill_resolver_mp == NULL) { 8431 ip1dbg(("ip_newroute: dst_ill %p " 8432 "for IRE_IF_NORESOLVER ire %p has " 8433 "no ill_resolver_mp\n", 8434 (void *)dst_ill, (void *)ire)); 8435 break; 8436 } 8437 8438 /* 8439 * TSol note: We are creating the ire cache for the 8440 * destination 'dst'. If 'dst' is offlink, going 8441 * through the first hop 'gw', the security attributes 8442 * of 'dst' must be set to point to the gateway 8443 * credentials of gateway 'gw'. If 'dst' is onlink, it 8444 * is possible that 'dst' is a potential gateway that is 8445 * referenced by some route that has some security 8446 * attributes. Thus in the former case, we need to do a 8447 * gcgrp_lookup of 'gw' while in the latter case we 8448 * need to do gcgrp_lookup of 'dst' itself. 8449 */ 8450 ga.ga_af = AF_INET; 8451 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8452 &ga.ga_addr); 8453 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8454 8455 ire = ire_create( 8456 (uchar_t *)&dst, /* dest address */ 8457 (uchar_t *)&ip_g_all_ones, /* mask */ 8458 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8459 (uchar_t *)&gw, /* gateway address */ 8460 &save_ire->ire_max_frag, 8461 NULL, /* no src nce */ 8462 dst_ill->ill_rq, /* recv-from queue */ 8463 dst_ill->ill_wq, /* send-to queue */ 8464 IRE_CACHE, 8465 src_ipif, 8466 save_ire->ire_mask, /* Parent mask */ 8467 (sire != NULL) ? /* Parent handle */ 8468 sire->ire_phandle : 0, 8469 save_ire->ire_ihandle, /* Interface handle */ 8470 (sire != NULL) ? sire->ire_flags & 8471 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8472 &(save_ire->ire_uinfo), 8473 NULL, 8474 gcgrp, 8475 ipst); 8476 8477 if (ire == NULL) { 8478 if (gcgrp != NULL) { 8479 GCGRP_REFRELE(gcgrp); 8480 gcgrp = NULL; 8481 } 8482 ire_refrele(save_ire); 8483 break; 8484 } 8485 8486 /* reference now held by IRE */ 8487 gcgrp = NULL; 8488 8489 ire->ire_marks |= ire_marks; 8490 8491 /* Prevent save_ire from getting deleted */ 8492 IRB_REFHOLD(save_ire->ire_bucket); 8493 /* Has it been removed already ? */ 8494 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8495 IRB_REFRELE(save_ire->ire_bucket); 8496 ire_refrele(save_ire); 8497 break; 8498 } 8499 8500 /* 8501 * In the case of multirouting, a copy 8502 * of the packet is made before it is sent. 8503 * The copy is used in the next 8504 * loop to attempt another resolution. 8505 */ 8506 xmit_mp = first_mp; 8507 if ((sire != NULL) && 8508 (sire->ire_flags & RTF_MULTIRT)) { 8509 copy_mp = copymsg(first_mp); 8510 if (copy_mp != NULL) { 8511 xmit_mp = copy_mp; 8512 MULTIRT_DEBUG_TAG(first_mp); 8513 } 8514 } 8515 ire_add_then_send(q, ire, xmit_mp); 8516 8517 /* Assert that it is not deleted yet. */ 8518 ASSERT(save_ire->ire_ptpn != NULL); 8519 IRB_REFRELE(save_ire->ire_bucket); 8520 ire_refrele(save_ire); 8521 8522 if (copy_mp != NULL) { 8523 /* 8524 * If we found a (no)resolver, we ignore any 8525 * trailing top priority IRE_CACHE in further 8526 * loops. This ensures that we do not omit any 8527 * (no)resolver. 8528 * This IRE_CACHE, if any, will be processed 8529 * by another thread entering ip_newroute(). 8530 * IRE_CACHE entries, if any, will be processed 8531 * by another thread entering ip_newroute(), 8532 * (upon resolver response, for instance). 8533 * This aims to force parallel multirt 8534 * resolutions as soon as a packet must be sent. 8535 * In the best case, after the tx of only one 8536 * packet, all reachable routes are resolved. 8537 * Otherwise, the resolution of all RTF_MULTIRT 8538 * routes would require several emissions. 8539 */ 8540 multirt_flags &= ~MULTIRT_CACHEGW; 8541 8542 /* 8543 * Search for the next unresolved multirt 8544 * route. 8545 */ 8546 copy_mp = NULL; 8547 save_ire = NULL; 8548 ire = NULL; 8549 multirt_resolve_next = B_TRUE; 8550 continue; 8551 } 8552 8553 /* 8554 * Don't need sire anymore 8555 */ 8556 if (sire != NULL) 8557 ire_refrele(sire); 8558 8559 ipif_refrele(src_ipif); 8560 ill_refrele(dst_ill); 8561 return; 8562 } 8563 case IRE_IF_RESOLVER: 8564 /* 8565 * We can't build an IRE_CACHE yet, but at least we 8566 * found a resolver that can help. 8567 */ 8568 res_mp = dst_ill->ill_resolver_mp; 8569 if (!OK_RESOLVER_MP(res_mp)) 8570 break; 8571 8572 /* 8573 * To be at this point in the code with a non-zero gw 8574 * means that dst is reachable through a gateway that 8575 * we have never resolved. By changing dst to the gw 8576 * addr we resolve the gateway first. 8577 * When ire_add_then_send() tries to put the IP dg 8578 * to dst, it will reenter ip_newroute() at which 8579 * time we will find the IRE_CACHE for the gw and 8580 * create another IRE_CACHE in case IRE_CACHE above. 8581 */ 8582 if (gw != INADDR_ANY) { 8583 /* 8584 * The source ipif that was determined above was 8585 * relative to the destination address, not the 8586 * gateway's. If src_ipif was not taken out of 8587 * the IRE_IF_RESOLVER entry, we'll need to call 8588 * ipif_select_source() again. 8589 */ 8590 if (src_ipif != ire->ire_ipif) { 8591 ipif_refrele(src_ipif); 8592 src_ipif = ipif_select_source(dst_ill, 8593 gw, zoneid); 8594 if (src_ipif == NULL) { 8595 if (ip_debug > 2) { 8596 pr_addr_dbg( 8597 "ip_newroute: no " 8598 "src for gw %s ", 8599 AF_INET, &gw); 8600 printf("through " 8601 "interface %s\n", 8602 dst_ill->ill_name); 8603 } 8604 goto icmp_err_ret; 8605 } 8606 } 8607 save_dst = dst; 8608 dst = gw; 8609 gw = INADDR_ANY; 8610 } 8611 8612 /* 8613 * We obtain a partial IRE_CACHE which we will pass 8614 * along with the resolver query. When the response 8615 * comes back it will be there ready for us to add. 8616 * The ire_max_frag is atomically set under the 8617 * irebucket lock in ire_add_v[46]. 8618 */ 8619 8620 ire = ire_create_mp( 8621 (uchar_t *)&dst, /* dest address */ 8622 (uchar_t *)&ip_g_all_ones, /* mask */ 8623 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8624 (uchar_t *)&gw, /* gateway address */ 8625 NULL, /* ire_max_frag */ 8626 NULL, /* no src nce */ 8627 dst_ill->ill_rq, /* recv-from queue */ 8628 dst_ill->ill_wq, /* send-to queue */ 8629 IRE_CACHE, 8630 src_ipif, /* Interface ipif */ 8631 save_ire->ire_mask, /* Parent mask */ 8632 0, 8633 save_ire->ire_ihandle, /* Interface handle */ 8634 0, /* flags if any */ 8635 &(save_ire->ire_uinfo), 8636 NULL, 8637 NULL, 8638 ipst); 8639 8640 if (ire == NULL) { 8641 ire_refrele(save_ire); 8642 break; 8643 } 8644 8645 if ((sire != NULL) && 8646 (sire->ire_flags & RTF_MULTIRT)) { 8647 copy_mp = copymsg(first_mp); 8648 if (copy_mp != NULL) 8649 MULTIRT_DEBUG_TAG(copy_mp); 8650 } 8651 8652 ire->ire_marks |= ire_marks; 8653 8654 /* 8655 * Construct message chain for the resolver 8656 * of the form: 8657 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8658 * Packet could contain a IPSEC_OUT mp. 8659 * 8660 * NOTE : ire will be added later when the response 8661 * comes back from ARP. If the response does not 8662 * come back, ARP frees the packet. For this reason, 8663 * we can't REFHOLD the bucket of save_ire to prevent 8664 * deletions. We may not be able to REFRELE the bucket 8665 * if the response never comes back. Thus, before 8666 * adding the ire, ire_add_v4 will make sure that the 8667 * interface route does not get deleted. This is the 8668 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8669 * where we can always prevent deletions because of 8670 * the synchronous nature of adding IRES i.e 8671 * ire_add_then_send is called after creating the IRE. 8672 */ 8673 ASSERT(ire->ire_mp != NULL); 8674 ire->ire_mp->b_cont = first_mp; 8675 /* Have saved_mp handy, for cleanup if canput fails */ 8676 saved_mp = mp; 8677 mp = copyb(res_mp); 8678 if (mp == NULL) { 8679 /* Prepare for cleanup */ 8680 mp = saved_mp; /* pkt */ 8681 ire_delete(ire); /* ire_mp */ 8682 ire = NULL; 8683 ire_refrele(save_ire); 8684 if (copy_mp != NULL) { 8685 MULTIRT_DEBUG_UNTAG(copy_mp); 8686 freemsg(copy_mp); 8687 copy_mp = NULL; 8688 } 8689 break; 8690 } 8691 linkb(mp, ire->ire_mp); 8692 8693 /* 8694 * Fill in the source and dest addrs for the resolver. 8695 * NOTE: this depends on memory layouts imposed by 8696 * ill_init(). 8697 */ 8698 areq = (areq_t *)mp->b_rptr; 8699 addrp = (ipaddr_t *)((char *)areq + 8700 areq->areq_sender_addr_offset); 8701 if (do_attach_ill) { 8702 /* 8703 * This is bind to no failover case. 8704 * arp packet also must go out on attach_ill. 8705 */ 8706 ASSERT(ipha->ipha_src != NULL); 8707 *addrp = ipha->ipha_src; 8708 } else { 8709 *addrp = save_ire->ire_src_addr; 8710 } 8711 8712 ire_refrele(save_ire); 8713 addrp = (ipaddr_t *)((char *)areq + 8714 areq->areq_target_addr_offset); 8715 *addrp = dst; 8716 /* Up to the resolver. */ 8717 if (canputnext(dst_ill->ill_rq) && 8718 !(dst_ill->ill_arp_closing)) { 8719 putnext(dst_ill->ill_rq, mp); 8720 ire = NULL; 8721 if (copy_mp != NULL) { 8722 /* 8723 * If we found a resolver, we ignore 8724 * any trailing top priority IRE_CACHE 8725 * in the further loops. This ensures 8726 * that we do not omit any resolver. 8727 * IRE_CACHE entries, if any, will be 8728 * processed next time we enter 8729 * ip_newroute(). 8730 */ 8731 multirt_flags &= ~MULTIRT_CACHEGW; 8732 /* 8733 * Search for the next unresolved 8734 * multirt route. 8735 */ 8736 first_mp = copy_mp; 8737 copy_mp = NULL; 8738 /* Prepare the next resolution loop. */ 8739 mp = first_mp; 8740 EXTRACT_PKT_MP(mp, first_mp, 8741 mctl_present); 8742 if (mctl_present) 8743 io = (ipsec_out_t *) 8744 first_mp->b_rptr; 8745 ipha = (ipha_t *)mp->b_rptr; 8746 8747 ASSERT(sire != NULL); 8748 8749 dst = save_dst; 8750 multirt_resolve_next = B_TRUE; 8751 continue; 8752 } 8753 8754 if (sire != NULL) 8755 ire_refrele(sire); 8756 8757 /* 8758 * The response will come back in ip_wput 8759 * with db_type IRE_DB_TYPE. 8760 */ 8761 ipif_refrele(src_ipif); 8762 ill_refrele(dst_ill); 8763 return; 8764 } else { 8765 /* Prepare for cleanup */ 8766 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8767 mp); 8768 mp->b_cont = NULL; 8769 freeb(mp); /* areq */ 8770 /* 8771 * this is an ire that is not added to the 8772 * cache. ire_freemblk will handle the release 8773 * of any resources associated with the ire. 8774 */ 8775 ire_delete(ire); /* ire_mp */ 8776 mp = saved_mp; /* pkt */ 8777 ire = NULL; 8778 if (copy_mp != NULL) { 8779 MULTIRT_DEBUG_UNTAG(copy_mp); 8780 freemsg(copy_mp); 8781 copy_mp = NULL; 8782 } 8783 break; 8784 } 8785 default: 8786 break; 8787 } 8788 } while (multirt_resolve_next); 8789 8790 ip1dbg(("ip_newroute: dropped\n")); 8791 /* Did this packet originate externally? */ 8792 if (mp->b_prev) { 8793 mp->b_next = NULL; 8794 mp->b_prev = NULL; 8795 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8796 } else { 8797 if (dst_ill != NULL) { 8798 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8799 } else { 8800 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8801 } 8802 } 8803 ASSERT(copy_mp == NULL); 8804 MULTIRT_DEBUG_UNTAG(first_mp); 8805 freemsg(first_mp); 8806 if (ire != NULL) 8807 ire_refrele(ire); 8808 if (sire != NULL) 8809 ire_refrele(sire); 8810 if (src_ipif != NULL) 8811 ipif_refrele(src_ipif); 8812 if (dst_ill != NULL) 8813 ill_refrele(dst_ill); 8814 return; 8815 8816 icmp_err_ret: 8817 ip1dbg(("ip_newroute: no route\n")); 8818 if (src_ipif != NULL) 8819 ipif_refrele(src_ipif); 8820 if (dst_ill != NULL) 8821 ill_refrele(dst_ill); 8822 if (sire != NULL) 8823 ire_refrele(sire); 8824 /* Did this packet originate externally? */ 8825 if (mp->b_prev) { 8826 mp->b_next = NULL; 8827 mp->b_prev = NULL; 8828 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8829 q = WR(q); 8830 } else { 8831 /* 8832 * There is no outgoing ill, so just increment the 8833 * system MIB. 8834 */ 8835 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8836 /* 8837 * Since ip_wput() isn't close to finished, we fill 8838 * in enough of the header for credible error reporting. 8839 */ 8840 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8841 /* Failed */ 8842 MULTIRT_DEBUG_UNTAG(first_mp); 8843 freemsg(first_mp); 8844 if (ire != NULL) 8845 ire_refrele(ire); 8846 return; 8847 } 8848 } 8849 8850 /* 8851 * At this point we will have ire only if RTF_BLACKHOLE 8852 * or RTF_REJECT flags are set on the IRE. It will not 8853 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8854 */ 8855 if (ire != NULL) { 8856 if (ire->ire_flags & RTF_BLACKHOLE) { 8857 ire_refrele(ire); 8858 MULTIRT_DEBUG_UNTAG(first_mp); 8859 freemsg(first_mp); 8860 return; 8861 } 8862 ire_refrele(ire); 8863 } 8864 if (ip_source_routed(ipha, ipst)) { 8865 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8866 zoneid, ipst); 8867 return; 8868 } 8869 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8870 } 8871 8872 ip_opt_info_t zero_info; 8873 8874 /* 8875 * IPv4 - 8876 * ip_newroute_ipif is called by ip_wput_multicast and 8877 * ip_rput_forward_multicast whenever we need to send 8878 * out a packet to a destination address for which we do not have specific 8879 * routing information. It is used when the packet will be sent out 8880 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8881 * socket option is set or icmp error message wants to go out on a particular 8882 * interface for a unicast packet. 8883 * 8884 * In most cases, the destination address is resolved thanks to the ipif 8885 * intrinsic resolver. However, there are some cases where the call to 8886 * ip_newroute_ipif must take into account the potential presence of 8887 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8888 * that uses the interface. This is specified through flags, 8889 * which can be a combination of: 8890 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8891 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8892 * and flags. Additionally, the packet source address has to be set to 8893 * the specified address. The caller is thus expected to set this flag 8894 * if the packet has no specific source address yet. 8895 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8896 * flag, the resulting ire will inherit the flag. All unresolved routes 8897 * to the destination must be explored in the same call to 8898 * ip_newroute_ipif(). 8899 */ 8900 static void 8901 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8902 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8903 { 8904 areq_t *areq; 8905 ire_t *ire = NULL; 8906 mblk_t *res_mp; 8907 ipaddr_t *addrp; 8908 mblk_t *first_mp; 8909 ire_t *save_ire = NULL; 8910 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8911 ipif_t *src_ipif = NULL; 8912 ushort_t ire_marks = 0; 8913 ill_t *dst_ill = NULL; 8914 boolean_t mctl_present; 8915 ipsec_out_t *io; 8916 ipha_t *ipha; 8917 int ihandle = 0; 8918 mblk_t *saved_mp; 8919 ire_t *fire = NULL; 8920 mblk_t *copy_mp = NULL; 8921 boolean_t multirt_resolve_next; 8922 ipaddr_t ipha_dst; 8923 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8924 8925 /* 8926 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8927 * here for uniformity 8928 */ 8929 ipif_refhold(ipif); 8930 8931 /* 8932 * This loop is run only once in most cases. 8933 * We loop to resolve further routes only when the destination 8934 * can be reached through multiple RTF_MULTIRT-flagged ires. 8935 */ 8936 do { 8937 if (dst_ill != NULL) { 8938 ill_refrele(dst_ill); 8939 dst_ill = NULL; 8940 } 8941 if (src_ipif != NULL) { 8942 ipif_refrele(src_ipif); 8943 src_ipif = NULL; 8944 } 8945 multirt_resolve_next = B_FALSE; 8946 8947 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8948 ipif->ipif_ill->ill_name)); 8949 8950 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8951 if (mctl_present) 8952 io = (ipsec_out_t *)first_mp->b_rptr; 8953 8954 ipha = (ipha_t *)mp->b_rptr; 8955 8956 /* 8957 * Save the packet destination address, we may need it after 8958 * the packet has been consumed. 8959 */ 8960 ipha_dst = ipha->ipha_dst; 8961 8962 /* 8963 * If the interface is a pt-pt interface we look for an 8964 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8965 * local_address and the pt-pt destination address. Otherwise 8966 * we just match the local address. 8967 * NOTE: dst could be different than ipha->ipha_dst in case 8968 * of sending igmp multicast packets over a point-to-point 8969 * connection. 8970 * Thus we must be careful enough to check ipha_dst to be a 8971 * multicast address, otherwise it will take xmit_if path for 8972 * multicast packets resulting into kernel stack overflow by 8973 * repeated calls to ip_newroute_ipif from ire_send(). 8974 */ 8975 if (CLASSD(ipha_dst) && 8976 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8977 goto err_ret; 8978 } 8979 8980 /* 8981 * We check if an IRE_OFFSUBNET for the addr that goes through 8982 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8983 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8984 * propagate its flags to the new ire. 8985 */ 8986 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8987 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8988 ip2dbg(("ip_newroute_ipif: " 8989 "ipif_lookup_multi_ire(" 8990 "ipif %p, dst %08x) = fire %p\n", 8991 (void *)ipif, ntohl(dst), (void *)fire)); 8992 } 8993 8994 if (mctl_present && io->ipsec_out_attach_if) { 8995 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8996 io->ipsec_out_ill_index, B_FALSE, ipst); 8997 8998 /* Failure case frees things for us. */ 8999 if (attach_ill == NULL) { 9000 ipif_refrele(ipif); 9001 if (fire != NULL) 9002 ire_refrele(fire); 9003 return; 9004 } 9005 9006 /* 9007 * Check if we need an ire that will not be 9008 * looked up by anybody else i.e. HIDDEN. 9009 */ 9010 if (ill_is_probeonly(attach_ill)) { 9011 ire_marks = IRE_MARK_HIDDEN; 9012 } 9013 /* 9014 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9015 * case. 9016 */ 9017 dst_ill = ipif->ipif_ill; 9018 /* attach_ill has been refheld by ip_grab_attach_ill */ 9019 ASSERT(dst_ill == attach_ill); 9020 } else { 9021 /* 9022 * If this is set by IP_XMIT_IF, then make sure that 9023 * ipif is pointing to the same ill as the IP_XMIT_IF 9024 * specified ill. 9025 */ 9026 ASSERT((connp == NULL) || 9027 (connp->conn_xmit_if_ill == NULL) || 9028 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9029 /* 9030 * If the interface belongs to an interface group, 9031 * make sure the next possible interface in the group 9032 * is used. This encourages load spreading among 9033 * peers in an interface group. 9034 * Note: load spreading is disabled for RTF_MULTIRT 9035 * routes. 9036 */ 9037 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9038 (fire->ire_flags & RTF_MULTIRT)) { 9039 /* 9040 * Don't perform outbound load spreading 9041 * in the case of an RTF_MULTIRT issued route, 9042 * we actually typically want to replicate 9043 * outgoing packets through particular 9044 * interfaces. 9045 */ 9046 dst_ill = ipif->ipif_ill; 9047 ill_refhold(dst_ill); 9048 } else { 9049 dst_ill = ip_newroute_get_dst_ill( 9050 ipif->ipif_ill); 9051 } 9052 if (dst_ill == NULL) { 9053 if (ip_debug > 2) { 9054 pr_addr_dbg("ip_newroute_ipif: " 9055 "no dst ill for dst %s\n", 9056 AF_INET, &dst); 9057 } 9058 goto err_ret; 9059 } 9060 } 9061 9062 /* 9063 * Pick a source address preferring non-deprecated ones. 9064 * Unlike ip_newroute, we don't do any source address 9065 * selection here since for multicast it really does not help 9066 * in inbound load spreading as in the unicast case. 9067 */ 9068 if ((flags & RTF_SETSRC) && (fire != NULL) && 9069 (fire->ire_flags & RTF_SETSRC)) { 9070 /* 9071 * As requested by flags, an IRE_OFFSUBNET was looked up 9072 * on that interface. This ire has RTF_SETSRC flag, so 9073 * the source address of the packet must be changed. 9074 * Check that the ipif matching the requested source 9075 * address still exists. 9076 */ 9077 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9078 zoneid, NULL, NULL, NULL, NULL, ipst); 9079 } 9080 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9081 (connp != NULL && ipif->ipif_zoneid != zoneid && 9082 ipif->ipif_zoneid != ALL_ZONES)) && 9083 (src_ipif == NULL)) { 9084 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9085 if (src_ipif == NULL) { 9086 if (ip_debug > 2) { 9087 /* ip1dbg */ 9088 pr_addr_dbg("ip_newroute_ipif: " 9089 "no src for dst %s", 9090 AF_INET, &dst); 9091 } 9092 ip1dbg((" through interface %s\n", 9093 dst_ill->ill_name)); 9094 goto err_ret; 9095 } 9096 ipif_refrele(ipif); 9097 ipif = src_ipif; 9098 ipif_refhold(ipif); 9099 } 9100 if (src_ipif == NULL) { 9101 src_ipif = ipif; 9102 ipif_refhold(src_ipif); 9103 } 9104 9105 /* 9106 * Assign a source address while we have the conn. 9107 * We can't have ip_wput_ire pick a source address when the 9108 * packet returns from arp since conn_unspec_src might be set 9109 * and we loose the conn when going through arp. 9110 */ 9111 if (ipha->ipha_src == INADDR_ANY && 9112 (connp == NULL || !connp->conn_unspec_src)) { 9113 ipha->ipha_src = src_ipif->ipif_src_addr; 9114 } 9115 9116 /* 9117 * In the case of IP_XMIT_IF, it is possible that the 9118 * outgoing interface does not have an interface ire. 9119 */ 9120 if (CLASSD(ipha_dst) && (connp == NULL || 9121 connp->conn_xmit_if_ill == NULL) && 9122 infop->ip_opt_ill_index == 0) { 9123 /* ipif_to_ire returns an held ire */ 9124 ire = ipif_to_ire(ipif); 9125 if (ire == NULL) 9126 goto err_ret; 9127 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9128 goto err_ret; 9129 /* 9130 * ihandle is needed when the ire is added to 9131 * cache table. 9132 */ 9133 save_ire = ire; 9134 ihandle = save_ire->ire_ihandle; 9135 9136 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9137 "flags %04x\n", 9138 (void *)ire, (void *)ipif, flags)); 9139 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9140 (fire->ire_flags & RTF_MULTIRT)) { 9141 /* 9142 * As requested by flags, an IRE_OFFSUBNET was 9143 * looked up on that interface. This ire has 9144 * RTF_MULTIRT flag, so the resolution loop will 9145 * be re-entered to resolve additional routes on 9146 * other interfaces. For that purpose, a copy of 9147 * the packet is performed at this point. 9148 */ 9149 fire->ire_last_used_time = lbolt; 9150 copy_mp = copymsg(first_mp); 9151 if (copy_mp) { 9152 MULTIRT_DEBUG_TAG(copy_mp); 9153 } 9154 } 9155 if ((flags & RTF_SETSRC) && (fire != NULL) && 9156 (fire->ire_flags & RTF_SETSRC)) { 9157 /* 9158 * As requested by flags, an IRE_OFFSUBET was 9159 * looked up on that interface. This ire has 9160 * RTF_SETSRC flag, so the source address of the 9161 * packet must be changed. 9162 */ 9163 ipha->ipha_src = fire->ire_src_addr; 9164 } 9165 } else { 9166 ASSERT((connp == NULL) || 9167 (connp->conn_xmit_if_ill != NULL) || 9168 (connp->conn_dontroute) || 9169 infop->ip_opt_ill_index != 0); 9170 /* 9171 * The only ways we can come here are: 9172 * 1) IP_XMIT_IF socket option is set 9173 * 2) SO_DONTROUTE socket option is set 9174 * 3) IP_PKTINFO option is passed in as ancillary data. 9175 * In all cases, the new ire will not be added 9176 * into cache table. 9177 */ 9178 ire_marks |= IRE_MARK_NOADD; 9179 } 9180 9181 switch (ipif->ipif_net_type) { 9182 case IRE_IF_NORESOLVER: { 9183 /* We have what we need to build an IRE_CACHE. */ 9184 9185 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9186 (dst_ill->ill_resolver_mp == NULL)) { 9187 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9188 "for IRE_IF_NORESOLVER ire %p has " 9189 "no ill_resolver_mp\n", 9190 (void *)dst_ill, (void *)ire)); 9191 break; 9192 } 9193 9194 /* 9195 * The new ire inherits the IRE_OFFSUBNET flags 9196 * and source address, if this was requested. 9197 */ 9198 ire = ire_create( 9199 (uchar_t *)&dst, /* dest address */ 9200 (uchar_t *)&ip_g_all_ones, /* mask */ 9201 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9202 NULL, /* gateway address */ 9203 &ipif->ipif_mtu, 9204 NULL, /* no src nce */ 9205 dst_ill->ill_rq, /* recv-from queue */ 9206 dst_ill->ill_wq, /* send-to queue */ 9207 IRE_CACHE, 9208 src_ipif, 9209 (save_ire != NULL ? save_ire->ire_mask : 0), 9210 (fire != NULL) ? /* Parent handle */ 9211 fire->ire_phandle : 0, 9212 ihandle, /* Interface handle */ 9213 (fire != NULL) ? 9214 (fire->ire_flags & 9215 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9216 (save_ire == NULL ? &ire_uinfo_null : 9217 &save_ire->ire_uinfo), 9218 NULL, 9219 NULL, 9220 ipst); 9221 9222 if (ire == NULL) { 9223 if (save_ire != NULL) 9224 ire_refrele(save_ire); 9225 break; 9226 } 9227 9228 ire->ire_marks |= ire_marks; 9229 9230 /* 9231 * If IRE_MARK_NOADD is set then we need to convert 9232 * the max_fragp to a useable value now. This is 9233 * normally done in ire_add_v[46]. We also need to 9234 * associate the ire with an nce (normally would be 9235 * done in ip_wput_nondata()). 9236 * 9237 * Note that IRE_MARK_NOADD packets created here 9238 * do not have a non-null ire_mp pointer. The null 9239 * value of ire_bucket indicates that they were 9240 * never added. 9241 */ 9242 if (ire->ire_marks & IRE_MARK_NOADD) { 9243 uint_t max_frag; 9244 9245 max_frag = *ire->ire_max_fragp; 9246 ire->ire_max_fragp = NULL; 9247 ire->ire_max_frag = max_frag; 9248 9249 if ((ire->ire_nce = ndp_lookup_v4( 9250 ire_to_ill(ire), 9251 (ire->ire_gateway_addr != INADDR_ANY ? 9252 &ire->ire_gateway_addr : &ire->ire_addr), 9253 B_FALSE)) == NULL) { 9254 if (save_ire != NULL) 9255 ire_refrele(save_ire); 9256 break; 9257 } 9258 ASSERT(ire->ire_nce->nce_state == 9259 ND_REACHABLE); 9260 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9261 } 9262 9263 /* Prevent save_ire from getting deleted */ 9264 if (save_ire != NULL) { 9265 IRB_REFHOLD(save_ire->ire_bucket); 9266 /* Has it been removed already ? */ 9267 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9268 IRB_REFRELE(save_ire->ire_bucket); 9269 ire_refrele(save_ire); 9270 break; 9271 } 9272 } 9273 9274 ire_add_then_send(q, ire, first_mp); 9275 9276 /* Assert that save_ire is not deleted yet. */ 9277 if (save_ire != NULL) { 9278 ASSERT(save_ire->ire_ptpn != NULL); 9279 IRB_REFRELE(save_ire->ire_bucket); 9280 ire_refrele(save_ire); 9281 save_ire = NULL; 9282 } 9283 if (fire != NULL) { 9284 ire_refrele(fire); 9285 fire = NULL; 9286 } 9287 9288 /* 9289 * the resolution loop is re-entered if this 9290 * was requested through flags and if we 9291 * actually are in a multirouting case. 9292 */ 9293 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9294 boolean_t need_resolve = 9295 ire_multirt_need_resolve(ipha_dst, 9296 MBLK_GETLABEL(copy_mp), ipst); 9297 if (!need_resolve) { 9298 MULTIRT_DEBUG_UNTAG(copy_mp); 9299 freemsg(copy_mp); 9300 copy_mp = NULL; 9301 } else { 9302 /* 9303 * ipif_lookup_group() calls 9304 * ire_lookup_multi() that uses 9305 * ire_ftable_lookup() to find 9306 * an IRE_INTERFACE for the group. 9307 * In the multirt case, 9308 * ire_lookup_multi() then invokes 9309 * ire_multirt_lookup() to find 9310 * the next resolvable ire. 9311 * As a result, we obtain an new 9312 * interface, derived from the 9313 * next ire. 9314 */ 9315 ipif_refrele(ipif); 9316 ipif = ipif_lookup_group(ipha_dst, 9317 zoneid, ipst); 9318 ip2dbg(("ip_newroute_ipif: " 9319 "multirt dst %08x, ipif %p\n", 9320 htonl(dst), (void *)ipif)); 9321 if (ipif != NULL) { 9322 mp = copy_mp; 9323 copy_mp = NULL; 9324 multirt_resolve_next = B_TRUE; 9325 continue; 9326 } else { 9327 freemsg(copy_mp); 9328 } 9329 } 9330 } 9331 if (ipif != NULL) 9332 ipif_refrele(ipif); 9333 ill_refrele(dst_ill); 9334 ipif_refrele(src_ipif); 9335 return; 9336 } 9337 case IRE_IF_RESOLVER: 9338 /* 9339 * We can't build an IRE_CACHE yet, but at least 9340 * we found a resolver that can help. 9341 */ 9342 res_mp = dst_ill->ill_resolver_mp; 9343 if (!OK_RESOLVER_MP(res_mp)) 9344 break; 9345 9346 /* 9347 * We obtain a partial IRE_CACHE which we will pass 9348 * along with the resolver query. When the response 9349 * comes back it will be there ready for us to add. 9350 * The new ire inherits the IRE_OFFSUBNET flags 9351 * and source address, if this was requested. 9352 * The ire_max_frag is atomically set under the 9353 * irebucket lock in ire_add_v[46]. Only in the 9354 * case of IRE_MARK_NOADD, we set it here itself. 9355 */ 9356 ire = ire_create_mp( 9357 (uchar_t *)&dst, /* dest address */ 9358 (uchar_t *)&ip_g_all_ones, /* mask */ 9359 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9360 NULL, /* gateway address */ 9361 (ire_marks & IRE_MARK_NOADD) ? 9362 ipif->ipif_mtu : 0, /* max_frag */ 9363 NULL, /* no src nce */ 9364 dst_ill->ill_rq, /* recv-from queue */ 9365 dst_ill->ill_wq, /* send-to queue */ 9366 IRE_CACHE, 9367 src_ipif, 9368 (save_ire != NULL ? save_ire->ire_mask : 0), 9369 (fire != NULL) ? /* Parent handle */ 9370 fire->ire_phandle : 0, 9371 ihandle, /* Interface handle */ 9372 (fire != NULL) ? /* flags if any */ 9373 (fire->ire_flags & 9374 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9375 (save_ire == NULL ? &ire_uinfo_null : 9376 &save_ire->ire_uinfo), 9377 NULL, 9378 NULL, 9379 ipst); 9380 9381 if (save_ire != NULL) { 9382 ire_refrele(save_ire); 9383 save_ire = NULL; 9384 } 9385 if (ire == NULL) 9386 break; 9387 9388 ire->ire_marks |= ire_marks; 9389 /* 9390 * Construct message chain for the resolver of the 9391 * form: 9392 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9393 * 9394 * NOTE : ire will be added later when the response 9395 * comes back from ARP. If the response does not 9396 * come back, ARP frees the packet. For this reason, 9397 * we can't REFHOLD the bucket of save_ire to prevent 9398 * deletions. We may not be able to REFRELE the 9399 * bucket if the response never comes back. 9400 * Thus, before adding the ire, ire_add_v4 will make 9401 * sure that the interface route does not get deleted. 9402 * This is the only case unlike ip_newroute_v6, 9403 * ip_newroute_ipif_v6 where we can always prevent 9404 * deletions because ire_add_then_send is called after 9405 * creating the IRE. 9406 * If IRE_MARK_NOADD is set, then ire_add_then_send 9407 * does not add this IRE into the IRE CACHE. 9408 */ 9409 ASSERT(ire->ire_mp != NULL); 9410 ire->ire_mp->b_cont = first_mp; 9411 /* Have saved_mp handy, for cleanup if canput fails */ 9412 saved_mp = mp; 9413 mp = copyb(res_mp); 9414 if (mp == NULL) { 9415 /* Prepare for cleanup */ 9416 mp = saved_mp; /* pkt */ 9417 ire_delete(ire); /* ire_mp */ 9418 ire = NULL; 9419 if (copy_mp != NULL) { 9420 MULTIRT_DEBUG_UNTAG(copy_mp); 9421 freemsg(copy_mp); 9422 copy_mp = NULL; 9423 } 9424 break; 9425 } 9426 linkb(mp, ire->ire_mp); 9427 9428 /* 9429 * Fill in the source and dest addrs for the resolver. 9430 * NOTE: this depends on memory layouts imposed by 9431 * ill_init(). 9432 */ 9433 areq = (areq_t *)mp->b_rptr; 9434 addrp = (ipaddr_t *)((char *)areq + 9435 areq->areq_sender_addr_offset); 9436 *addrp = ire->ire_src_addr; 9437 addrp = (ipaddr_t *)((char *)areq + 9438 areq->areq_target_addr_offset); 9439 *addrp = dst; 9440 /* Up to the resolver. */ 9441 if (canputnext(dst_ill->ill_rq) && 9442 !(dst_ill->ill_arp_closing)) { 9443 putnext(dst_ill->ill_rq, mp); 9444 /* 9445 * The response will come back in ip_wput 9446 * with db_type IRE_DB_TYPE. 9447 */ 9448 } else { 9449 mp->b_cont = NULL; 9450 freeb(mp); /* areq */ 9451 ire_delete(ire); /* ire_mp */ 9452 saved_mp->b_next = NULL; 9453 saved_mp->b_prev = NULL; 9454 freemsg(first_mp); /* pkt */ 9455 ip2dbg(("ip_newroute_ipif: dropped\n")); 9456 } 9457 9458 if (fire != NULL) { 9459 ire_refrele(fire); 9460 fire = NULL; 9461 } 9462 9463 9464 /* 9465 * The resolution loop is re-entered if this was 9466 * requested through flags and we actually are 9467 * in a multirouting case. 9468 */ 9469 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9470 boolean_t need_resolve = 9471 ire_multirt_need_resolve(ipha_dst, 9472 MBLK_GETLABEL(copy_mp), ipst); 9473 if (!need_resolve) { 9474 MULTIRT_DEBUG_UNTAG(copy_mp); 9475 freemsg(copy_mp); 9476 copy_mp = NULL; 9477 } else { 9478 /* 9479 * ipif_lookup_group() calls 9480 * ire_lookup_multi() that uses 9481 * ire_ftable_lookup() to find 9482 * an IRE_INTERFACE for the group. 9483 * In the multirt case, 9484 * ire_lookup_multi() then invokes 9485 * ire_multirt_lookup() to find 9486 * the next resolvable ire. 9487 * As a result, we obtain an new 9488 * interface, derived from the 9489 * next ire. 9490 */ 9491 ipif_refrele(ipif); 9492 ipif = ipif_lookup_group(ipha_dst, 9493 zoneid, ipst); 9494 if (ipif != NULL) { 9495 mp = copy_mp; 9496 copy_mp = NULL; 9497 multirt_resolve_next = B_TRUE; 9498 continue; 9499 } else { 9500 freemsg(copy_mp); 9501 } 9502 } 9503 } 9504 if (ipif != NULL) 9505 ipif_refrele(ipif); 9506 ill_refrele(dst_ill); 9507 ipif_refrele(src_ipif); 9508 return; 9509 default: 9510 break; 9511 } 9512 } while (multirt_resolve_next); 9513 9514 err_ret: 9515 ip2dbg(("ip_newroute_ipif: dropped\n")); 9516 if (fire != NULL) 9517 ire_refrele(fire); 9518 ipif_refrele(ipif); 9519 /* Did this packet originate externally? */ 9520 if (dst_ill != NULL) 9521 ill_refrele(dst_ill); 9522 if (src_ipif != NULL) 9523 ipif_refrele(src_ipif); 9524 if (mp->b_prev || mp->b_next) { 9525 mp->b_next = NULL; 9526 mp->b_prev = NULL; 9527 } else { 9528 /* 9529 * Since ip_wput() isn't close to finished, we fill 9530 * in enough of the header for credible error reporting. 9531 */ 9532 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9533 /* Failed */ 9534 freemsg(first_mp); 9535 if (ire != NULL) 9536 ire_refrele(ire); 9537 return; 9538 } 9539 } 9540 /* 9541 * At this point we will have ire only if RTF_BLACKHOLE 9542 * or RTF_REJECT flags are set on the IRE. It will not 9543 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9544 */ 9545 if (ire != NULL) { 9546 if (ire->ire_flags & RTF_BLACKHOLE) { 9547 ire_refrele(ire); 9548 freemsg(first_mp); 9549 return; 9550 } 9551 ire_refrele(ire); 9552 } 9553 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9554 } 9555 9556 /* Name/Value Table Lookup Routine */ 9557 char * 9558 ip_nv_lookup(nv_t *nv, int value) 9559 { 9560 if (!nv) 9561 return (NULL); 9562 for (; nv->nv_name; nv++) { 9563 if (nv->nv_value == value) 9564 return (nv->nv_name); 9565 } 9566 return ("unknown"); 9567 } 9568 9569 /* 9570 * This is a module open, i.e. this is a control stream for access 9571 * to a DLPI device. We allocate an ill_t as the instance data in 9572 * this case. 9573 */ 9574 int 9575 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9576 { 9577 ill_t *ill; 9578 int err; 9579 zoneid_t zoneid; 9580 netstack_t *ns; 9581 ip_stack_t *ipst; 9582 9583 /* 9584 * Prevent unprivileged processes from pushing IP so that 9585 * they can't send raw IP. 9586 */ 9587 if (secpolicy_net_rawaccess(credp) != 0) 9588 return (EPERM); 9589 9590 ns = netstack_find_by_cred(credp); 9591 ASSERT(ns != NULL); 9592 ipst = ns->netstack_ip; 9593 ASSERT(ipst != NULL); 9594 9595 /* 9596 * For exclusive stacks we set the zoneid to zero 9597 * to make IP operate as if in the global zone. 9598 */ 9599 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9600 zoneid = GLOBAL_ZONEID; 9601 else 9602 zoneid = crgetzoneid(credp); 9603 9604 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9605 q->q_ptr = WR(q)->q_ptr = ill; 9606 ill->ill_ipst = ipst; 9607 ill->ill_zoneid = zoneid; 9608 9609 /* 9610 * ill_init initializes the ill fields and then sends down 9611 * down a DL_INFO_REQ after calling qprocson. 9612 */ 9613 err = ill_init(q, ill); 9614 if (err != 0) { 9615 mi_free(ill); 9616 netstack_rele(ipst->ips_netstack); 9617 q->q_ptr = NULL; 9618 WR(q)->q_ptr = NULL; 9619 return (err); 9620 } 9621 9622 /* ill_init initializes the ipsq marking this thread as writer */ 9623 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9624 /* Wait for the DL_INFO_ACK */ 9625 mutex_enter(&ill->ill_lock); 9626 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9627 /* 9628 * Return value of 0 indicates a pending signal. 9629 */ 9630 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9631 if (err == 0) { 9632 mutex_exit(&ill->ill_lock); 9633 (void) ip_close(q, 0); 9634 return (EINTR); 9635 } 9636 } 9637 mutex_exit(&ill->ill_lock); 9638 9639 /* 9640 * ip_rput_other could have set an error in ill_error on 9641 * receipt of M_ERROR. 9642 */ 9643 9644 err = ill->ill_error; 9645 if (err != 0) { 9646 (void) ip_close(q, 0); 9647 return (err); 9648 } 9649 9650 ill->ill_credp = credp; 9651 crhold(credp); 9652 9653 mutex_enter(&ipst->ips_ip_mi_lock); 9654 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9655 credp); 9656 mutex_exit(&ipst->ips_ip_mi_lock); 9657 if (err) { 9658 (void) ip_close(q, 0); 9659 return (err); 9660 } 9661 return (0); 9662 } 9663 9664 /* IP open routine. */ 9665 int 9666 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9667 { 9668 conn_t *connp; 9669 major_t maj; 9670 zoneid_t zoneid; 9671 netstack_t *ns; 9672 ip_stack_t *ipst; 9673 9674 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9675 9676 /* Allow reopen. */ 9677 if (q->q_ptr != NULL) 9678 return (0); 9679 9680 if (sflag & MODOPEN) { 9681 /* This is a module open */ 9682 return (ip_modopen(q, devp, flag, sflag, credp)); 9683 } 9684 9685 ns = netstack_find_by_cred(credp); 9686 ASSERT(ns != NULL); 9687 ipst = ns->netstack_ip; 9688 ASSERT(ipst != NULL); 9689 9690 /* 9691 * For exclusive stacks we set the zoneid to zero 9692 * to make IP operate as if in the global zone. 9693 */ 9694 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9695 zoneid = GLOBAL_ZONEID; 9696 else 9697 zoneid = crgetzoneid(credp); 9698 9699 /* 9700 * We are opening as a device. This is an IP client stream, and we 9701 * allocate an conn_t as the instance data. 9702 */ 9703 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9704 9705 /* 9706 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9707 * done by netstack_find_by_cred() 9708 */ 9709 netstack_rele(ipst->ips_netstack); 9710 9711 connp->conn_zoneid = zoneid; 9712 9713 connp->conn_upq = q; 9714 q->q_ptr = WR(q)->q_ptr = connp; 9715 9716 if (flag & SO_SOCKSTR) 9717 connp->conn_flags |= IPCL_SOCKET; 9718 9719 /* Minor tells us which /dev entry was opened */ 9720 if (geteminor(*devp) == IPV6_MINOR) { 9721 connp->conn_flags |= IPCL_ISV6; 9722 connp->conn_af_isv6 = B_TRUE; 9723 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 9724 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9725 } else { 9726 connp->conn_af_isv6 = B_FALSE; 9727 connp->conn_pkt_isv6 = B_FALSE; 9728 } 9729 9730 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9731 /* CONN_DEC_REF takes care of netstack_rele() */ 9732 q->q_ptr = WR(q)->q_ptr = NULL; 9733 CONN_DEC_REF(connp); 9734 return (EBUSY); 9735 } 9736 9737 maj = getemajor(*devp); 9738 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9739 9740 /* 9741 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9742 */ 9743 connp->conn_cred = credp; 9744 crhold(connp->conn_cred); 9745 9746 /* 9747 * If the caller has the process-wide flag set, then default to MAC 9748 * exempt mode. This allows read-down to unlabeled hosts. 9749 */ 9750 if (getpflags(NET_MAC_AWARE, credp) != 0) 9751 connp->conn_mac_exempt = B_TRUE; 9752 9753 /* 9754 * This should only happen for ndd, netstat, raw socket or other SCTP 9755 * administrative ops. In these cases, we just need a normal conn_t 9756 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9757 * an error will be returned. 9758 */ 9759 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9760 connp->conn_rq = q; 9761 connp->conn_wq = WR(q); 9762 } else { 9763 connp->conn_ulp = IPPROTO_SCTP; 9764 connp->conn_rq = connp->conn_wq = NULL; 9765 } 9766 /* Non-zero default values */ 9767 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9768 9769 /* 9770 * Make the conn globally visible to walkers 9771 */ 9772 mutex_enter(&connp->conn_lock); 9773 connp->conn_state_flags &= ~CONN_INCIPIENT; 9774 mutex_exit(&connp->conn_lock); 9775 ASSERT(connp->conn_ref == 1); 9776 9777 qprocson(q); 9778 9779 return (0); 9780 } 9781 9782 /* 9783 * Change q_qinfo based on the value of isv6. 9784 * This can not called on an ill queue. 9785 * Note that there is no race since either q_qinfo works for conn queues - it 9786 * is just an optimization to enter the best wput routine directly. 9787 */ 9788 void 9789 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 9790 { 9791 ASSERT(q->q_flag & QREADR); 9792 ASSERT(WR(q)->q_next == NULL); 9793 ASSERT(q->q_ptr != NULL); 9794 9795 if (minor == IPV6_MINOR) { 9796 if (bump_mib) { 9797 BUMP_MIB(&ipst->ips_ip6_mib, 9798 ipIfStatsOutSwitchIPVersion); 9799 } 9800 q->q_qinfo = &rinit_ipv6; 9801 WR(q)->q_qinfo = &winit_ipv6; 9802 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9803 } else { 9804 if (bump_mib) { 9805 BUMP_MIB(&ipst->ips_ip_mib, 9806 ipIfStatsOutSwitchIPVersion); 9807 } 9808 q->q_qinfo = &iprinit; 9809 WR(q)->q_qinfo = &ipwinit; 9810 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9811 } 9812 9813 } 9814 9815 /* 9816 * See if IPsec needs loading because of the options in mp. 9817 */ 9818 static boolean_t 9819 ipsec_opt_present(mblk_t *mp) 9820 { 9821 uint8_t *optcp, *next_optcp, *opt_endcp; 9822 struct opthdr *opt; 9823 struct T_opthdr *topt; 9824 int opthdr_len; 9825 t_uscalar_t optname, optlevel; 9826 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9827 ipsec_req_t *ipsr; 9828 9829 /* 9830 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9831 * return TRUE. 9832 */ 9833 9834 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9835 opt_endcp = optcp + tor->OPT_length; 9836 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9837 opthdr_len = sizeof (struct T_opthdr); 9838 } else { /* O_OPTMGMT_REQ */ 9839 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9840 opthdr_len = sizeof (struct opthdr); 9841 } 9842 for (; optcp < opt_endcp; optcp = next_optcp) { 9843 if (optcp + opthdr_len > opt_endcp) 9844 return (B_FALSE); /* Not enough option header. */ 9845 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9846 topt = (struct T_opthdr *)optcp; 9847 optlevel = topt->level; 9848 optname = topt->name; 9849 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9850 } else { 9851 opt = (struct opthdr *)optcp; 9852 optlevel = opt->level; 9853 optname = opt->name; 9854 next_optcp = optcp + opthdr_len + 9855 _TPI_ALIGN_OPT(opt->len); 9856 } 9857 if ((next_optcp < optcp) || /* wraparound pointer space */ 9858 ((next_optcp >= opt_endcp) && /* last option bad len */ 9859 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9860 return (B_FALSE); /* bad option buffer */ 9861 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9862 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9863 /* 9864 * Check to see if it's an all-bypass or all-zeroes 9865 * IPsec request. Don't bother loading IPsec if 9866 * the socket doesn't want to use it. (A good example 9867 * is a bypass request.) 9868 * 9869 * Basically, if any of the non-NEVER bits are set, 9870 * load IPsec. 9871 */ 9872 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9873 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9874 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9875 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9876 != 0) 9877 return (B_TRUE); 9878 } 9879 } 9880 return (B_FALSE); 9881 } 9882 9883 /* 9884 * If conn is is waiting for ipsec to finish loading, kick it. 9885 */ 9886 /* ARGSUSED */ 9887 static void 9888 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9889 { 9890 t_scalar_t optreq_prim; 9891 mblk_t *mp; 9892 cred_t *cr; 9893 int err = 0; 9894 9895 /* 9896 * This function is called, after ipsec loading is complete. 9897 * Since IP checks exclusively and atomically (i.e it prevents 9898 * ipsec load from completing until ip_optcom_req completes) 9899 * whether ipsec load is complete, there cannot be a race with IP 9900 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9901 */ 9902 mutex_enter(&connp->conn_lock); 9903 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9904 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9905 mp = connp->conn_ipsec_opt_mp; 9906 connp->conn_ipsec_opt_mp = NULL; 9907 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9908 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9909 mutex_exit(&connp->conn_lock); 9910 9911 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9912 9913 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9914 if (optreq_prim == T_OPTMGMT_REQ) { 9915 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9916 &ip_opt_obj); 9917 } else { 9918 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9919 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9920 &ip_opt_obj); 9921 } 9922 if (err != EINPROGRESS) 9923 CONN_OPER_PENDING_DONE(connp); 9924 return; 9925 } 9926 mutex_exit(&connp->conn_lock); 9927 } 9928 9929 /* 9930 * Called from the ipsec_loader thread, outside any perimeter, to tell 9931 * ip qenable any of the queues waiting for the ipsec loader to 9932 * complete. 9933 */ 9934 void 9935 ip_ipsec_load_complete(ipsec_stack_t *ipss) 9936 { 9937 netstack_t *ns = ipss->ipsec_netstack; 9938 9939 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 9940 } 9941 9942 /* 9943 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9944 * determines the grp on which it has to become exclusive, queues the mp 9945 * and sq draining restarts the optmgmt 9946 */ 9947 static boolean_t 9948 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9949 { 9950 conn_t *connp = Q_TO_CONN(q); 9951 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 9952 9953 /* 9954 * Take IPsec requests and treat them special. 9955 */ 9956 if (ipsec_opt_present(mp)) { 9957 /* First check if IPsec is loaded. */ 9958 mutex_enter(&ipss->ipsec_loader_lock); 9959 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 9960 mutex_exit(&ipss->ipsec_loader_lock); 9961 return (B_FALSE); 9962 } 9963 mutex_enter(&connp->conn_lock); 9964 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9965 9966 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9967 connp->conn_ipsec_opt_mp = mp; 9968 mutex_exit(&connp->conn_lock); 9969 mutex_exit(&ipss->ipsec_loader_lock); 9970 9971 ipsec_loader_loadnow(ipss); 9972 return (B_TRUE); 9973 } 9974 return (B_FALSE); 9975 } 9976 9977 /* 9978 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9979 * all of them are copied to the conn_t. If the req is "zero", the policy is 9980 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9981 * fields. 9982 * We keep only the latest setting of the policy and thus policy setting 9983 * is not incremental/cumulative. 9984 * 9985 * Requests to set policies with multiple alternative actions will 9986 * go through a different API. 9987 */ 9988 int 9989 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9990 { 9991 uint_t ah_req = 0; 9992 uint_t esp_req = 0; 9993 uint_t se_req = 0; 9994 ipsec_selkey_t sel; 9995 ipsec_act_t *actp = NULL; 9996 uint_t nact; 9997 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9998 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9999 ipsec_policy_root_t *pr; 10000 ipsec_policy_head_t *ph; 10001 int fam; 10002 boolean_t is_pol_reset; 10003 int error = 0; 10004 netstack_t *ns = connp->conn_netstack; 10005 ip_stack_t *ipst = ns->netstack_ip; 10006 ipsec_stack_t *ipss = ns->netstack_ipsec; 10007 10008 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10009 10010 /* 10011 * The IP_SEC_OPT option does not allow variable length parameters, 10012 * hence a request cannot be NULL. 10013 */ 10014 if (req == NULL) 10015 return (EINVAL); 10016 10017 ah_req = req->ipsr_ah_req; 10018 esp_req = req->ipsr_esp_req; 10019 se_req = req->ipsr_self_encap_req; 10020 10021 /* 10022 * Are we dealing with a request to reset the policy (i.e. 10023 * zero requests). 10024 */ 10025 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10026 (esp_req & REQ_MASK) == 0 && 10027 (se_req & REQ_MASK) == 0); 10028 10029 if (!is_pol_reset) { 10030 /* 10031 * If we couldn't load IPsec, fail with "protocol 10032 * not supported". 10033 * IPsec may not have been loaded for a request with zero 10034 * policies, so we don't fail in this case. 10035 */ 10036 mutex_enter(&ipss->ipsec_loader_lock); 10037 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10038 mutex_exit(&ipss->ipsec_loader_lock); 10039 return (EPROTONOSUPPORT); 10040 } 10041 mutex_exit(&ipss->ipsec_loader_lock); 10042 10043 /* 10044 * Test for valid requests. Invalid algorithms 10045 * need to be tested by IPSEC code because new 10046 * algorithms can be added dynamically. 10047 */ 10048 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10049 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10050 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10051 return (EINVAL); 10052 } 10053 10054 /* 10055 * Only privileged users can issue these 10056 * requests. 10057 */ 10058 if (((ah_req & IPSEC_PREF_NEVER) || 10059 (esp_req & IPSEC_PREF_NEVER) || 10060 (se_req & IPSEC_PREF_NEVER)) && 10061 secpolicy_ip_config(cr, B_FALSE) != 0) { 10062 return (EPERM); 10063 } 10064 10065 /* 10066 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10067 * are mutually exclusive. 10068 */ 10069 if (((ah_req & REQ_MASK) == REQ_MASK) || 10070 ((esp_req & REQ_MASK) == REQ_MASK) || 10071 ((se_req & REQ_MASK) == REQ_MASK)) { 10072 /* Both of them are set */ 10073 return (EINVAL); 10074 } 10075 } 10076 10077 mutex_enter(&connp->conn_lock); 10078 10079 /* 10080 * If we have already cached policies in ip_bind_connected*(), don't 10081 * let them change now. We cache policies for connections 10082 * whose src,dst [addr, port] is known. 10083 */ 10084 if (connp->conn_policy_cached) { 10085 mutex_exit(&connp->conn_lock); 10086 return (EINVAL); 10087 } 10088 10089 /* 10090 * We have a zero policies, reset the connection policy if already 10091 * set. This will cause the connection to inherit the 10092 * global policy, if any. 10093 */ 10094 if (is_pol_reset) { 10095 if (connp->conn_policy != NULL) { 10096 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10097 connp->conn_policy = NULL; 10098 } 10099 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10100 connp->conn_in_enforce_policy = B_FALSE; 10101 connp->conn_out_enforce_policy = B_FALSE; 10102 mutex_exit(&connp->conn_lock); 10103 return (0); 10104 } 10105 10106 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10107 ipst->ips_netstack); 10108 if (ph == NULL) 10109 goto enomem; 10110 10111 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10112 if (actp == NULL) 10113 goto enomem; 10114 10115 /* 10116 * Always allocate IPv4 policy entries, since they can also 10117 * apply to ipv6 sockets being used in ipv4-compat mode. 10118 */ 10119 bzero(&sel, sizeof (sel)); 10120 sel.ipsl_valid = IPSL_IPV4; 10121 10122 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10123 ipst->ips_netstack); 10124 if (pin4 == NULL) 10125 goto enomem; 10126 10127 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10128 ipst->ips_netstack); 10129 if (pout4 == NULL) 10130 goto enomem; 10131 10132 if (connp->conn_pkt_isv6) { 10133 /* 10134 * We're looking at a v6 socket, also allocate the 10135 * v6-specific entries... 10136 */ 10137 sel.ipsl_valid = IPSL_IPV6; 10138 pin6 = ipsec_policy_create(&sel, actp, nact, 10139 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10140 if (pin6 == NULL) 10141 goto enomem; 10142 10143 pout6 = ipsec_policy_create(&sel, actp, nact, 10144 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10145 if (pout6 == NULL) 10146 goto enomem; 10147 10148 /* 10149 * .. and file them away in the right place. 10150 */ 10151 fam = IPSEC_AF_V6; 10152 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10153 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10154 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10155 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10156 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10157 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10158 } 10159 10160 ipsec_actvec_free(actp, nact); 10161 10162 /* 10163 * File the v4 policies. 10164 */ 10165 fam = IPSEC_AF_V4; 10166 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10167 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10168 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10169 10170 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10171 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10172 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10173 10174 /* 10175 * If the requests need security, set enforce_policy. 10176 * If the requests are IPSEC_PREF_NEVER, one should 10177 * still set conn_out_enforce_policy so that an ipsec_out 10178 * gets attached in ip_wput. This is needed so that 10179 * for connections that we don't cache policy in ip_bind, 10180 * if global policy matches in ip_wput_attach_policy, we 10181 * don't wrongly inherit global policy. Similarly, we need 10182 * to set conn_in_enforce_policy also so that we don't verify 10183 * policy wrongly. 10184 */ 10185 if ((ah_req & REQ_MASK) != 0 || 10186 (esp_req & REQ_MASK) != 0 || 10187 (se_req & REQ_MASK) != 0) { 10188 connp->conn_in_enforce_policy = B_TRUE; 10189 connp->conn_out_enforce_policy = B_TRUE; 10190 connp->conn_flags |= IPCL_CHECK_POLICY; 10191 } 10192 10193 mutex_exit(&connp->conn_lock); 10194 return (error); 10195 #undef REQ_MASK 10196 10197 /* 10198 * Common memory-allocation-failure exit path. 10199 */ 10200 enomem: 10201 mutex_exit(&connp->conn_lock); 10202 if (actp != NULL) 10203 ipsec_actvec_free(actp, nact); 10204 if (pin4 != NULL) 10205 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10206 if (pout4 != NULL) 10207 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10208 if (pin6 != NULL) 10209 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10210 if (pout6 != NULL) 10211 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10212 return (ENOMEM); 10213 } 10214 10215 /* 10216 * Only for options that pass in an IP addr. Currently only V4 options 10217 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10218 * So this function assumes level is IPPROTO_IP 10219 */ 10220 int 10221 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10222 mblk_t *first_mp) 10223 { 10224 ipif_t *ipif = NULL; 10225 int error; 10226 ill_t *ill; 10227 int zoneid; 10228 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10229 10230 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10231 10232 if (addr != INADDR_ANY || checkonly) { 10233 ASSERT(connp != NULL); 10234 zoneid = IPCL_ZONEID(connp); 10235 if (option == IP_NEXTHOP) { 10236 ipif = ipif_lookup_onlink_addr(addr, 10237 connp->conn_zoneid, ipst); 10238 } else { 10239 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10240 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10241 &error, ipst); 10242 } 10243 if (ipif == NULL) { 10244 if (error == EINPROGRESS) 10245 return (error); 10246 else if ((option == IP_MULTICAST_IF) || 10247 (option == IP_NEXTHOP)) 10248 return (EHOSTUNREACH); 10249 else 10250 return (EINVAL); 10251 } else if (checkonly) { 10252 if (option == IP_MULTICAST_IF) { 10253 ill = ipif->ipif_ill; 10254 /* not supported by the virtual network iface */ 10255 if (IS_VNI(ill)) { 10256 ipif_refrele(ipif); 10257 return (EINVAL); 10258 } 10259 } 10260 ipif_refrele(ipif); 10261 return (0); 10262 } 10263 ill = ipif->ipif_ill; 10264 mutex_enter(&connp->conn_lock); 10265 mutex_enter(&ill->ill_lock); 10266 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10267 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10268 mutex_exit(&ill->ill_lock); 10269 mutex_exit(&connp->conn_lock); 10270 ipif_refrele(ipif); 10271 return (option == IP_MULTICAST_IF ? 10272 EHOSTUNREACH : EINVAL); 10273 } 10274 } else { 10275 mutex_enter(&connp->conn_lock); 10276 } 10277 10278 /* None of the options below are supported on the VNI */ 10279 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10280 mutex_exit(&ill->ill_lock); 10281 mutex_exit(&connp->conn_lock); 10282 ipif_refrele(ipif); 10283 return (EINVAL); 10284 } 10285 10286 switch (option) { 10287 case IP_DONTFAILOVER_IF: 10288 /* 10289 * This option is used by in.mpathd to ensure 10290 * that IPMP probe packets only go out on the 10291 * test interfaces. in.mpathd sets this option 10292 * on the non-failover interfaces. 10293 * For backward compatibility, this option 10294 * implicitly sets IP_MULTICAST_IF, as used 10295 * be done in bind(), so that ip_wput gets 10296 * this ipif to send mcast packets. 10297 */ 10298 if (ipif != NULL) { 10299 ASSERT(addr != INADDR_ANY); 10300 connp->conn_nofailover_ill = ipif->ipif_ill; 10301 connp->conn_multicast_ipif = ipif; 10302 } else { 10303 ASSERT(addr == INADDR_ANY); 10304 connp->conn_nofailover_ill = NULL; 10305 connp->conn_multicast_ipif = NULL; 10306 } 10307 break; 10308 10309 case IP_MULTICAST_IF: 10310 connp->conn_multicast_ipif = ipif; 10311 break; 10312 case IP_NEXTHOP: 10313 connp->conn_nexthop_v4 = addr; 10314 connp->conn_nexthop_set = B_TRUE; 10315 break; 10316 } 10317 10318 if (ipif != NULL) { 10319 mutex_exit(&ill->ill_lock); 10320 mutex_exit(&connp->conn_lock); 10321 ipif_refrele(ipif); 10322 return (0); 10323 } 10324 mutex_exit(&connp->conn_lock); 10325 /* We succeded in cleared the option */ 10326 return (0); 10327 } 10328 10329 /* 10330 * For options that pass in an ifindex specifying the ill. V6 options always 10331 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10332 */ 10333 int 10334 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10335 int level, int option, mblk_t *first_mp) 10336 { 10337 ill_t *ill = NULL; 10338 int error = 0; 10339 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10340 10341 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10342 if (ifindex != 0) { 10343 ASSERT(connp != NULL); 10344 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10345 first_mp, ip_restart_optmgmt, &error, ipst); 10346 if (ill != NULL) { 10347 if (checkonly) { 10348 /* not supported by the virtual network iface */ 10349 if (IS_VNI(ill)) { 10350 ill_refrele(ill); 10351 return (EINVAL); 10352 } 10353 ill_refrele(ill); 10354 return (0); 10355 } 10356 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10357 0, NULL)) { 10358 ill_refrele(ill); 10359 ill = NULL; 10360 mutex_enter(&connp->conn_lock); 10361 goto setit; 10362 } 10363 mutex_enter(&connp->conn_lock); 10364 mutex_enter(&ill->ill_lock); 10365 if (ill->ill_state_flags & ILL_CONDEMNED) { 10366 mutex_exit(&ill->ill_lock); 10367 mutex_exit(&connp->conn_lock); 10368 ill_refrele(ill); 10369 ill = NULL; 10370 mutex_enter(&connp->conn_lock); 10371 } 10372 goto setit; 10373 } else if (error == EINPROGRESS) { 10374 return (error); 10375 } else { 10376 error = 0; 10377 } 10378 } 10379 mutex_enter(&connp->conn_lock); 10380 setit: 10381 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10382 10383 /* 10384 * The options below assume that the ILL (if any) transmits and/or 10385 * receives traffic. Neither of which is true for the virtual network 10386 * interface, so fail setting these on a VNI. 10387 */ 10388 if (IS_VNI(ill)) { 10389 ASSERT(ill != NULL); 10390 mutex_exit(&ill->ill_lock); 10391 mutex_exit(&connp->conn_lock); 10392 ill_refrele(ill); 10393 return (EINVAL); 10394 } 10395 10396 if (level == IPPROTO_IP) { 10397 switch (option) { 10398 case IP_BOUND_IF: 10399 connp->conn_incoming_ill = ill; 10400 connp->conn_outgoing_ill = ill; 10401 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10402 0 : ifindex; 10403 break; 10404 10405 case IP_XMIT_IF: 10406 /* 10407 * Similar to IP_BOUND_IF, but this only 10408 * determines the outgoing interface for 10409 * unicast packets. Also no IRE_CACHE entry 10410 * is added for the destination of the 10411 * outgoing packets. 10412 */ 10413 connp->conn_xmit_if_ill = ill; 10414 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10415 0 : ifindex; 10416 break; 10417 10418 case IP_MULTICAST_IF: 10419 /* 10420 * This option is an internal special. The socket 10421 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10422 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10423 * specifies an ifindex and we try first on V6 ill's. 10424 * If we don't find one, we they try using on v4 ill's 10425 * intenally and we come here. 10426 */ 10427 if (!checkonly && ill != NULL) { 10428 ipif_t *ipif; 10429 ipif = ill->ill_ipif; 10430 10431 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10432 mutex_exit(&ill->ill_lock); 10433 mutex_exit(&connp->conn_lock); 10434 ill_refrele(ill); 10435 ill = NULL; 10436 mutex_enter(&connp->conn_lock); 10437 } else { 10438 connp->conn_multicast_ipif = ipif; 10439 } 10440 } 10441 break; 10442 } 10443 } else { 10444 switch (option) { 10445 case IPV6_BOUND_IF: 10446 connp->conn_incoming_ill = ill; 10447 connp->conn_outgoing_ill = ill; 10448 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10449 0 : ifindex; 10450 break; 10451 10452 case IPV6_BOUND_PIF: 10453 /* 10454 * Limit all transmit to this ill. 10455 * Unlike IPV6_BOUND_IF, using this option 10456 * prevents load spreading and failover from 10457 * happening when the interface is part of the 10458 * group. That's why we don't need to remember 10459 * the ifindex in orig_bound_ifindex as in 10460 * IPV6_BOUND_IF. 10461 */ 10462 connp->conn_outgoing_pill = ill; 10463 break; 10464 10465 case IPV6_DONTFAILOVER_IF: 10466 /* 10467 * This option is used by in.mpathd to ensure 10468 * that IPMP probe packets only go out on the 10469 * test interfaces. in.mpathd sets this option 10470 * on the non-failover interfaces. 10471 */ 10472 connp->conn_nofailover_ill = ill; 10473 /* 10474 * For backward compatibility, this option 10475 * implicitly sets ip_multicast_ill as used in 10476 * IP_MULTICAST_IF so that ip_wput gets 10477 * this ipif to send mcast packets. 10478 */ 10479 connp->conn_multicast_ill = ill; 10480 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10481 0 : ifindex; 10482 break; 10483 10484 case IPV6_MULTICAST_IF: 10485 /* 10486 * Set conn_multicast_ill to be the IPv6 ill. 10487 * Set conn_multicast_ipif to be an IPv4 ipif 10488 * for ifindex to make IPv4 mapped addresses 10489 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10490 * Even if no IPv6 ill exists for the ifindex 10491 * we need to check for an IPv4 ifindex in order 10492 * for this to work with mapped addresses. In that 10493 * case only set conn_multicast_ipif. 10494 */ 10495 if (!checkonly) { 10496 if (ifindex == 0) { 10497 connp->conn_multicast_ill = NULL; 10498 connp->conn_orig_multicast_ifindex = 0; 10499 connp->conn_multicast_ipif = NULL; 10500 } else if (ill != NULL) { 10501 connp->conn_multicast_ill = ill; 10502 connp->conn_orig_multicast_ifindex = 10503 ifindex; 10504 } 10505 } 10506 break; 10507 } 10508 } 10509 10510 if (ill != NULL) { 10511 mutex_exit(&ill->ill_lock); 10512 mutex_exit(&connp->conn_lock); 10513 ill_refrele(ill); 10514 return (0); 10515 } 10516 mutex_exit(&connp->conn_lock); 10517 /* 10518 * We succeeded in clearing the option (ifindex == 0) or failed to 10519 * locate the ill and could not set the option (ifindex != 0) 10520 */ 10521 return (ifindex == 0 ? 0 : EINVAL); 10522 } 10523 10524 /* This routine sets socket options. */ 10525 /* ARGSUSED */ 10526 int 10527 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10528 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10529 void *dummy, cred_t *cr, mblk_t *first_mp) 10530 { 10531 int *i1 = (int *)invalp; 10532 conn_t *connp = Q_TO_CONN(q); 10533 int error = 0; 10534 boolean_t checkonly; 10535 ire_t *ire; 10536 boolean_t found; 10537 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10538 10539 switch (optset_context) { 10540 10541 case SETFN_OPTCOM_CHECKONLY: 10542 checkonly = B_TRUE; 10543 /* 10544 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10545 * inlen != 0 implies value supplied and 10546 * we have to "pretend" to set it. 10547 * inlen == 0 implies that there is no 10548 * value part in T_CHECK request and just validation 10549 * done elsewhere should be enough, we just return here. 10550 */ 10551 if (inlen == 0) { 10552 *outlenp = 0; 10553 return (0); 10554 } 10555 break; 10556 case SETFN_OPTCOM_NEGOTIATE: 10557 case SETFN_UD_NEGOTIATE: 10558 case SETFN_CONN_NEGOTIATE: 10559 checkonly = B_FALSE; 10560 break; 10561 default: 10562 /* 10563 * We should never get here 10564 */ 10565 *outlenp = 0; 10566 return (EINVAL); 10567 } 10568 10569 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10570 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10571 10572 /* 10573 * For fixed length options, no sanity check 10574 * of passed in length is done. It is assumed *_optcom_req() 10575 * routines do the right thing. 10576 */ 10577 10578 switch (level) { 10579 case SOL_SOCKET: 10580 /* 10581 * conn_lock protects the bitfields, and is used to 10582 * set the fields atomically. 10583 */ 10584 switch (name) { 10585 case SO_BROADCAST: 10586 if (!checkonly) { 10587 /* TODO: use value someplace? */ 10588 mutex_enter(&connp->conn_lock); 10589 connp->conn_broadcast = *i1 ? 1 : 0; 10590 mutex_exit(&connp->conn_lock); 10591 } 10592 break; /* goto sizeof (int) option return */ 10593 case SO_USELOOPBACK: 10594 if (!checkonly) { 10595 /* TODO: use value someplace? */ 10596 mutex_enter(&connp->conn_lock); 10597 connp->conn_loopback = *i1 ? 1 : 0; 10598 mutex_exit(&connp->conn_lock); 10599 } 10600 break; /* goto sizeof (int) option return */ 10601 case SO_DONTROUTE: 10602 if (!checkonly) { 10603 mutex_enter(&connp->conn_lock); 10604 connp->conn_dontroute = *i1 ? 1 : 0; 10605 mutex_exit(&connp->conn_lock); 10606 } 10607 break; /* goto sizeof (int) option return */ 10608 case SO_REUSEADDR: 10609 if (!checkonly) { 10610 mutex_enter(&connp->conn_lock); 10611 connp->conn_reuseaddr = *i1 ? 1 : 0; 10612 mutex_exit(&connp->conn_lock); 10613 } 10614 break; /* goto sizeof (int) option return */ 10615 case SO_PROTOTYPE: 10616 if (!checkonly) { 10617 mutex_enter(&connp->conn_lock); 10618 connp->conn_proto = *i1; 10619 mutex_exit(&connp->conn_lock); 10620 } 10621 break; /* goto sizeof (int) option return */ 10622 case SO_ALLZONES: 10623 if (!checkonly) { 10624 mutex_enter(&connp->conn_lock); 10625 if (IPCL_IS_BOUND(connp)) { 10626 mutex_exit(&connp->conn_lock); 10627 return (EINVAL); 10628 } 10629 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10630 mutex_exit(&connp->conn_lock); 10631 } 10632 break; /* goto sizeof (int) option return */ 10633 case SO_ANON_MLP: 10634 if (!checkonly) { 10635 mutex_enter(&connp->conn_lock); 10636 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10637 mutex_exit(&connp->conn_lock); 10638 } 10639 break; /* goto sizeof (int) option return */ 10640 case SO_MAC_EXEMPT: 10641 if (secpolicy_net_mac_aware(cr) != 0 || 10642 IPCL_IS_BOUND(connp)) 10643 return (EACCES); 10644 if (!checkonly) { 10645 mutex_enter(&connp->conn_lock); 10646 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10647 mutex_exit(&connp->conn_lock); 10648 } 10649 break; /* goto sizeof (int) option return */ 10650 default: 10651 /* 10652 * "soft" error (negative) 10653 * option not handled at this level 10654 * Note: Do not modify *outlenp 10655 */ 10656 return (-EINVAL); 10657 } 10658 break; 10659 case IPPROTO_IP: 10660 switch (name) { 10661 case IP_NEXTHOP: 10662 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10663 return (EPERM); 10664 /* FALLTHRU */ 10665 case IP_MULTICAST_IF: 10666 case IP_DONTFAILOVER_IF: { 10667 ipaddr_t addr = *i1; 10668 10669 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10670 first_mp); 10671 if (error != 0) 10672 return (error); 10673 break; /* goto sizeof (int) option return */ 10674 } 10675 10676 case IP_MULTICAST_TTL: 10677 /* Recorded in transport above IP */ 10678 *outvalp = *invalp; 10679 *outlenp = sizeof (uchar_t); 10680 return (0); 10681 case IP_MULTICAST_LOOP: 10682 if (!checkonly) { 10683 mutex_enter(&connp->conn_lock); 10684 connp->conn_multicast_loop = *invalp ? 1 : 0; 10685 mutex_exit(&connp->conn_lock); 10686 } 10687 *outvalp = *invalp; 10688 *outlenp = sizeof (uchar_t); 10689 return (0); 10690 case IP_ADD_MEMBERSHIP: 10691 case MCAST_JOIN_GROUP: 10692 case IP_DROP_MEMBERSHIP: 10693 case MCAST_LEAVE_GROUP: { 10694 struct ip_mreq *mreqp; 10695 struct group_req *greqp; 10696 ire_t *ire; 10697 boolean_t done = B_FALSE; 10698 ipaddr_t group, ifaddr; 10699 struct sockaddr_in *sin; 10700 uint32_t *ifindexp; 10701 boolean_t mcast_opt = B_TRUE; 10702 mcast_record_t fmode; 10703 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10704 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10705 10706 switch (name) { 10707 case IP_ADD_MEMBERSHIP: 10708 mcast_opt = B_FALSE; 10709 /* FALLTHRU */ 10710 case MCAST_JOIN_GROUP: 10711 fmode = MODE_IS_EXCLUDE; 10712 optfn = ip_opt_add_group; 10713 break; 10714 10715 case IP_DROP_MEMBERSHIP: 10716 mcast_opt = B_FALSE; 10717 /* FALLTHRU */ 10718 case MCAST_LEAVE_GROUP: 10719 fmode = MODE_IS_INCLUDE; 10720 optfn = ip_opt_delete_group; 10721 break; 10722 } 10723 10724 if (mcast_opt) { 10725 greqp = (struct group_req *)i1; 10726 sin = (struct sockaddr_in *)&greqp->gr_group; 10727 if (sin->sin_family != AF_INET) { 10728 *outlenp = 0; 10729 return (ENOPROTOOPT); 10730 } 10731 group = (ipaddr_t)sin->sin_addr.s_addr; 10732 ifaddr = INADDR_ANY; 10733 ifindexp = &greqp->gr_interface; 10734 } else { 10735 mreqp = (struct ip_mreq *)i1; 10736 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10737 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10738 ifindexp = NULL; 10739 } 10740 10741 /* 10742 * In the multirouting case, we need to replicate 10743 * the request on all interfaces that will take part 10744 * in replication. We do so because multirouting is 10745 * reflective, thus we will probably receive multi- 10746 * casts on those interfaces. 10747 * The ip_multirt_apply_membership() succeeds if the 10748 * operation succeeds on at least one interface. 10749 */ 10750 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10751 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10752 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10753 if (ire != NULL) { 10754 if (ire->ire_flags & RTF_MULTIRT) { 10755 error = ip_multirt_apply_membership( 10756 optfn, ire, connp, checkonly, group, 10757 fmode, INADDR_ANY, first_mp); 10758 done = B_TRUE; 10759 } 10760 ire_refrele(ire); 10761 } 10762 if (!done) { 10763 error = optfn(connp, checkonly, group, ifaddr, 10764 ifindexp, fmode, INADDR_ANY, first_mp); 10765 } 10766 if (error) { 10767 /* 10768 * EINPROGRESS is a soft error, needs retry 10769 * so don't make *outlenp zero. 10770 */ 10771 if (error != EINPROGRESS) 10772 *outlenp = 0; 10773 return (error); 10774 } 10775 /* OK return - copy input buffer into output buffer */ 10776 if (invalp != outvalp) { 10777 /* don't trust bcopy for identical src/dst */ 10778 bcopy(invalp, outvalp, inlen); 10779 } 10780 *outlenp = inlen; 10781 return (0); 10782 } 10783 case IP_BLOCK_SOURCE: 10784 case IP_UNBLOCK_SOURCE: 10785 case IP_ADD_SOURCE_MEMBERSHIP: 10786 case IP_DROP_SOURCE_MEMBERSHIP: 10787 case MCAST_BLOCK_SOURCE: 10788 case MCAST_UNBLOCK_SOURCE: 10789 case MCAST_JOIN_SOURCE_GROUP: 10790 case MCAST_LEAVE_SOURCE_GROUP: { 10791 struct ip_mreq_source *imreqp; 10792 struct group_source_req *gsreqp; 10793 in_addr_t grp, src, ifaddr = INADDR_ANY; 10794 uint32_t ifindex = 0; 10795 mcast_record_t fmode; 10796 struct sockaddr_in *sin; 10797 ire_t *ire; 10798 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10799 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10800 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10801 10802 switch (name) { 10803 case IP_BLOCK_SOURCE: 10804 mcast_opt = B_FALSE; 10805 /* FALLTHRU */ 10806 case MCAST_BLOCK_SOURCE: 10807 fmode = MODE_IS_EXCLUDE; 10808 optfn = ip_opt_add_group; 10809 break; 10810 10811 case IP_UNBLOCK_SOURCE: 10812 mcast_opt = B_FALSE; 10813 /* FALLTHRU */ 10814 case MCAST_UNBLOCK_SOURCE: 10815 fmode = MODE_IS_EXCLUDE; 10816 optfn = ip_opt_delete_group; 10817 break; 10818 10819 case IP_ADD_SOURCE_MEMBERSHIP: 10820 mcast_opt = B_FALSE; 10821 /* FALLTHRU */ 10822 case MCAST_JOIN_SOURCE_GROUP: 10823 fmode = MODE_IS_INCLUDE; 10824 optfn = ip_opt_add_group; 10825 break; 10826 10827 case IP_DROP_SOURCE_MEMBERSHIP: 10828 mcast_opt = B_FALSE; 10829 /* FALLTHRU */ 10830 case MCAST_LEAVE_SOURCE_GROUP: 10831 fmode = MODE_IS_INCLUDE; 10832 optfn = ip_opt_delete_group; 10833 break; 10834 } 10835 10836 if (mcast_opt) { 10837 gsreqp = (struct group_source_req *)i1; 10838 if (gsreqp->gsr_group.ss_family != AF_INET) { 10839 *outlenp = 0; 10840 return (ENOPROTOOPT); 10841 } 10842 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10843 grp = (ipaddr_t)sin->sin_addr.s_addr; 10844 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10845 src = (ipaddr_t)sin->sin_addr.s_addr; 10846 ifindex = gsreqp->gsr_interface; 10847 } else { 10848 imreqp = (struct ip_mreq_source *)i1; 10849 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10850 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10851 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10852 } 10853 10854 /* 10855 * In the multirouting case, we need to replicate 10856 * the request as noted in the mcast cases above. 10857 */ 10858 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10859 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10860 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10861 if (ire != NULL) { 10862 if (ire->ire_flags & RTF_MULTIRT) { 10863 error = ip_multirt_apply_membership( 10864 optfn, ire, connp, checkonly, grp, 10865 fmode, src, first_mp); 10866 done = B_TRUE; 10867 } 10868 ire_refrele(ire); 10869 } 10870 if (!done) { 10871 error = optfn(connp, checkonly, grp, ifaddr, 10872 &ifindex, fmode, src, first_mp); 10873 } 10874 if (error != 0) { 10875 /* 10876 * EINPROGRESS is a soft error, needs retry 10877 * so don't make *outlenp zero. 10878 */ 10879 if (error != EINPROGRESS) 10880 *outlenp = 0; 10881 return (error); 10882 } 10883 /* OK return - copy input buffer into output buffer */ 10884 if (invalp != outvalp) { 10885 bcopy(invalp, outvalp, inlen); 10886 } 10887 *outlenp = inlen; 10888 return (0); 10889 } 10890 case IP_SEC_OPT: 10891 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10892 if (error != 0) { 10893 *outlenp = 0; 10894 return (error); 10895 } 10896 break; 10897 case IP_HDRINCL: 10898 case IP_OPTIONS: 10899 case T_IP_OPTIONS: 10900 case IP_TOS: 10901 case T_IP_TOS: 10902 case IP_TTL: 10903 case IP_RECVDSTADDR: 10904 case IP_RECVOPTS: 10905 /* OK return - copy input buffer into output buffer */ 10906 if (invalp != outvalp) { 10907 /* don't trust bcopy for identical src/dst */ 10908 bcopy(invalp, outvalp, inlen); 10909 } 10910 *outlenp = inlen; 10911 return (0); 10912 case IP_RECVIF: 10913 /* Retrieve the inbound interface index */ 10914 if (!checkonly) { 10915 mutex_enter(&connp->conn_lock); 10916 connp->conn_recvif = *i1 ? 1 : 0; 10917 mutex_exit(&connp->conn_lock); 10918 } 10919 break; /* goto sizeof (int) option return */ 10920 case IP_RECVPKTINFO: 10921 if (!checkonly) { 10922 mutex_enter(&connp->conn_lock); 10923 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10924 mutex_exit(&connp->conn_lock); 10925 } 10926 break; /* goto sizeof (int) option return */ 10927 case IP_RECVSLLA: 10928 /* Retrieve the source link layer address */ 10929 if (!checkonly) { 10930 mutex_enter(&connp->conn_lock); 10931 connp->conn_recvslla = *i1 ? 1 : 0; 10932 mutex_exit(&connp->conn_lock); 10933 } 10934 break; /* goto sizeof (int) option return */ 10935 case MRT_INIT: 10936 case MRT_DONE: 10937 case MRT_ADD_VIF: 10938 case MRT_DEL_VIF: 10939 case MRT_ADD_MFC: 10940 case MRT_DEL_MFC: 10941 case MRT_ASSERT: 10942 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10943 *outlenp = 0; 10944 return (error); 10945 } 10946 error = ip_mrouter_set((int)name, q, checkonly, 10947 (uchar_t *)invalp, inlen, first_mp); 10948 if (error) { 10949 *outlenp = 0; 10950 return (error); 10951 } 10952 /* OK return - copy input buffer into output buffer */ 10953 if (invalp != outvalp) { 10954 /* don't trust bcopy for identical src/dst */ 10955 bcopy(invalp, outvalp, inlen); 10956 } 10957 *outlenp = inlen; 10958 return (0); 10959 case IP_BOUND_IF: 10960 case IP_XMIT_IF: 10961 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10962 level, name, first_mp); 10963 if (error != 0) 10964 return (error); 10965 break; /* goto sizeof (int) option return */ 10966 10967 case IP_UNSPEC_SRC: 10968 /* Allow sending with a zero source address */ 10969 if (!checkonly) { 10970 mutex_enter(&connp->conn_lock); 10971 connp->conn_unspec_src = *i1 ? 1 : 0; 10972 mutex_exit(&connp->conn_lock); 10973 } 10974 break; /* goto sizeof (int) option return */ 10975 default: 10976 /* 10977 * "soft" error (negative) 10978 * option not handled at this level 10979 * Note: Do not modify *outlenp 10980 */ 10981 return (-EINVAL); 10982 } 10983 break; 10984 case IPPROTO_IPV6: 10985 switch (name) { 10986 case IPV6_BOUND_IF: 10987 case IPV6_BOUND_PIF: 10988 case IPV6_DONTFAILOVER_IF: 10989 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10990 level, name, first_mp); 10991 if (error != 0) 10992 return (error); 10993 break; /* goto sizeof (int) option return */ 10994 10995 case IPV6_MULTICAST_IF: 10996 /* 10997 * The only possible errors are EINPROGRESS and 10998 * EINVAL. EINPROGRESS will be restarted and is not 10999 * a hard error. We call this option on both V4 and V6 11000 * If both return EINVAL, then this call returns 11001 * EINVAL. If at least one of them succeeds we 11002 * return success. 11003 */ 11004 found = B_FALSE; 11005 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11006 level, name, first_mp); 11007 if (error == EINPROGRESS) 11008 return (error); 11009 if (error == 0) 11010 found = B_TRUE; 11011 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11012 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11013 if (error == 0) 11014 found = B_TRUE; 11015 if (!found) 11016 return (error); 11017 break; /* goto sizeof (int) option return */ 11018 11019 case IPV6_MULTICAST_HOPS: 11020 /* Recorded in transport above IP */ 11021 break; /* goto sizeof (int) option return */ 11022 case IPV6_MULTICAST_LOOP: 11023 if (!checkonly) { 11024 mutex_enter(&connp->conn_lock); 11025 connp->conn_multicast_loop = *i1; 11026 mutex_exit(&connp->conn_lock); 11027 } 11028 break; /* goto sizeof (int) option return */ 11029 case IPV6_JOIN_GROUP: 11030 case MCAST_JOIN_GROUP: 11031 case IPV6_LEAVE_GROUP: 11032 case MCAST_LEAVE_GROUP: { 11033 struct ipv6_mreq *ip_mreqp; 11034 struct group_req *greqp; 11035 ire_t *ire; 11036 boolean_t done = B_FALSE; 11037 in6_addr_t groupv6; 11038 uint32_t ifindex; 11039 boolean_t mcast_opt = B_TRUE; 11040 mcast_record_t fmode; 11041 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11042 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11043 11044 switch (name) { 11045 case IPV6_JOIN_GROUP: 11046 mcast_opt = B_FALSE; 11047 /* FALLTHRU */ 11048 case MCAST_JOIN_GROUP: 11049 fmode = MODE_IS_EXCLUDE; 11050 optfn = ip_opt_add_group_v6; 11051 break; 11052 11053 case IPV6_LEAVE_GROUP: 11054 mcast_opt = B_FALSE; 11055 /* FALLTHRU */ 11056 case MCAST_LEAVE_GROUP: 11057 fmode = MODE_IS_INCLUDE; 11058 optfn = ip_opt_delete_group_v6; 11059 break; 11060 } 11061 11062 if (mcast_opt) { 11063 struct sockaddr_in *sin; 11064 struct sockaddr_in6 *sin6; 11065 greqp = (struct group_req *)i1; 11066 if (greqp->gr_group.ss_family == AF_INET) { 11067 sin = (struct sockaddr_in *) 11068 &(greqp->gr_group); 11069 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11070 &groupv6); 11071 } else { 11072 sin6 = (struct sockaddr_in6 *) 11073 &(greqp->gr_group); 11074 groupv6 = sin6->sin6_addr; 11075 } 11076 ifindex = greqp->gr_interface; 11077 } else { 11078 ip_mreqp = (struct ipv6_mreq *)i1; 11079 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11080 ifindex = ip_mreqp->ipv6mr_interface; 11081 } 11082 /* 11083 * In the multirouting case, we need to replicate 11084 * the request on all interfaces that will take part 11085 * in replication. We do so because multirouting is 11086 * reflective, thus we will probably receive multi- 11087 * casts on those interfaces. 11088 * The ip_multirt_apply_membership_v6() succeeds if 11089 * the operation succeeds on at least one interface. 11090 */ 11091 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11092 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11093 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11094 if (ire != NULL) { 11095 if (ire->ire_flags & RTF_MULTIRT) { 11096 error = ip_multirt_apply_membership_v6( 11097 optfn, ire, connp, checkonly, 11098 &groupv6, fmode, &ipv6_all_zeros, 11099 first_mp); 11100 done = B_TRUE; 11101 } 11102 ire_refrele(ire); 11103 } 11104 if (!done) { 11105 error = optfn(connp, checkonly, &groupv6, 11106 ifindex, fmode, &ipv6_all_zeros, first_mp); 11107 } 11108 if (error) { 11109 /* 11110 * EINPROGRESS is a soft error, needs retry 11111 * so don't make *outlenp zero. 11112 */ 11113 if (error != EINPROGRESS) 11114 *outlenp = 0; 11115 return (error); 11116 } 11117 /* OK return - copy input buffer into output buffer */ 11118 if (invalp != outvalp) { 11119 /* don't trust bcopy for identical src/dst */ 11120 bcopy(invalp, outvalp, inlen); 11121 } 11122 *outlenp = inlen; 11123 return (0); 11124 } 11125 case MCAST_BLOCK_SOURCE: 11126 case MCAST_UNBLOCK_SOURCE: 11127 case MCAST_JOIN_SOURCE_GROUP: 11128 case MCAST_LEAVE_SOURCE_GROUP: { 11129 struct group_source_req *gsreqp; 11130 in6_addr_t v6grp, v6src; 11131 uint32_t ifindex; 11132 mcast_record_t fmode; 11133 ire_t *ire; 11134 boolean_t done = B_FALSE; 11135 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11136 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11137 11138 switch (name) { 11139 case MCAST_BLOCK_SOURCE: 11140 fmode = MODE_IS_EXCLUDE; 11141 optfn = ip_opt_add_group_v6; 11142 break; 11143 case MCAST_UNBLOCK_SOURCE: 11144 fmode = MODE_IS_EXCLUDE; 11145 optfn = ip_opt_delete_group_v6; 11146 break; 11147 case MCAST_JOIN_SOURCE_GROUP: 11148 fmode = MODE_IS_INCLUDE; 11149 optfn = ip_opt_add_group_v6; 11150 break; 11151 case MCAST_LEAVE_SOURCE_GROUP: 11152 fmode = MODE_IS_INCLUDE; 11153 optfn = ip_opt_delete_group_v6; 11154 break; 11155 } 11156 11157 gsreqp = (struct group_source_req *)i1; 11158 ifindex = gsreqp->gsr_interface; 11159 if (gsreqp->gsr_group.ss_family == AF_INET) { 11160 struct sockaddr_in *s; 11161 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11162 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11163 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11164 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11165 } else { 11166 struct sockaddr_in6 *s6; 11167 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11168 v6grp = s6->sin6_addr; 11169 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11170 v6src = s6->sin6_addr; 11171 } 11172 11173 /* 11174 * In the multirouting case, we need to replicate 11175 * the request as noted in the mcast cases above. 11176 */ 11177 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11178 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11179 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11180 if (ire != NULL) { 11181 if (ire->ire_flags & RTF_MULTIRT) { 11182 error = ip_multirt_apply_membership_v6( 11183 optfn, ire, connp, checkonly, 11184 &v6grp, fmode, &v6src, first_mp); 11185 done = B_TRUE; 11186 } 11187 ire_refrele(ire); 11188 } 11189 if (!done) { 11190 error = optfn(connp, checkonly, &v6grp, 11191 ifindex, fmode, &v6src, first_mp); 11192 } 11193 if (error != 0) { 11194 /* 11195 * EINPROGRESS is a soft error, needs retry 11196 * so don't make *outlenp zero. 11197 */ 11198 if (error != EINPROGRESS) 11199 *outlenp = 0; 11200 return (error); 11201 } 11202 /* OK return - copy input buffer into output buffer */ 11203 if (invalp != outvalp) { 11204 bcopy(invalp, outvalp, inlen); 11205 } 11206 *outlenp = inlen; 11207 return (0); 11208 } 11209 case IPV6_UNICAST_HOPS: 11210 /* Recorded in transport above IP */ 11211 break; /* goto sizeof (int) option return */ 11212 case IPV6_UNSPEC_SRC: 11213 /* Allow sending with a zero source address */ 11214 if (!checkonly) { 11215 mutex_enter(&connp->conn_lock); 11216 connp->conn_unspec_src = *i1 ? 1 : 0; 11217 mutex_exit(&connp->conn_lock); 11218 } 11219 break; /* goto sizeof (int) option return */ 11220 case IPV6_RECVPKTINFO: 11221 if (!checkonly) { 11222 mutex_enter(&connp->conn_lock); 11223 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11224 mutex_exit(&connp->conn_lock); 11225 } 11226 break; /* goto sizeof (int) option return */ 11227 case IPV6_RECVTCLASS: 11228 if (!checkonly) { 11229 if (*i1 < 0 || *i1 > 1) { 11230 return (EINVAL); 11231 } 11232 mutex_enter(&connp->conn_lock); 11233 connp->conn_ipv6_recvtclass = *i1; 11234 mutex_exit(&connp->conn_lock); 11235 } 11236 break; 11237 case IPV6_RECVPATHMTU: 11238 if (!checkonly) { 11239 if (*i1 < 0 || *i1 > 1) { 11240 return (EINVAL); 11241 } 11242 mutex_enter(&connp->conn_lock); 11243 connp->conn_ipv6_recvpathmtu = *i1; 11244 mutex_exit(&connp->conn_lock); 11245 } 11246 break; 11247 case IPV6_RECVHOPLIMIT: 11248 if (!checkonly) { 11249 mutex_enter(&connp->conn_lock); 11250 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11251 mutex_exit(&connp->conn_lock); 11252 } 11253 break; /* goto sizeof (int) option return */ 11254 case IPV6_RECVHOPOPTS: 11255 if (!checkonly) { 11256 mutex_enter(&connp->conn_lock); 11257 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11258 mutex_exit(&connp->conn_lock); 11259 } 11260 break; /* goto sizeof (int) option return */ 11261 case IPV6_RECVDSTOPTS: 11262 if (!checkonly) { 11263 mutex_enter(&connp->conn_lock); 11264 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11265 mutex_exit(&connp->conn_lock); 11266 } 11267 break; /* goto sizeof (int) option return */ 11268 case IPV6_RECVRTHDR: 11269 if (!checkonly) { 11270 mutex_enter(&connp->conn_lock); 11271 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11272 mutex_exit(&connp->conn_lock); 11273 } 11274 break; /* goto sizeof (int) option return */ 11275 case IPV6_RECVRTHDRDSTOPTS: 11276 if (!checkonly) { 11277 mutex_enter(&connp->conn_lock); 11278 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11279 mutex_exit(&connp->conn_lock); 11280 } 11281 break; /* goto sizeof (int) option return */ 11282 case IPV6_PKTINFO: 11283 if (inlen == 0) 11284 return (-EINVAL); /* clearing option */ 11285 error = ip6_set_pktinfo(cr, connp, 11286 (struct in6_pktinfo *)invalp, first_mp); 11287 if (error != 0) 11288 *outlenp = 0; 11289 else 11290 *outlenp = inlen; 11291 return (error); 11292 case IPV6_NEXTHOP: { 11293 struct sockaddr_in6 *sin6; 11294 11295 /* Verify that the nexthop is reachable */ 11296 if (inlen == 0) 11297 return (-EINVAL); /* clearing option */ 11298 11299 sin6 = (struct sockaddr_in6 *)invalp; 11300 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11301 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11302 NULL, MATCH_IRE_DEFAULT, ipst); 11303 11304 if (ire == NULL) { 11305 *outlenp = 0; 11306 return (EHOSTUNREACH); 11307 } 11308 ire_refrele(ire); 11309 return (-EINVAL); 11310 } 11311 case IPV6_SEC_OPT: 11312 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11313 if (error != 0) { 11314 *outlenp = 0; 11315 return (error); 11316 } 11317 break; 11318 case IPV6_SRC_PREFERENCES: { 11319 /* 11320 * This is implemented strictly in the ip module 11321 * (here and in tcp_opt_*() to accomodate tcp 11322 * sockets). Modules above ip pass this option 11323 * down here since ip is the only one that needs to 11324 * be aware of source address preferences. 11325 * 11326 * This socket option only affects connected 11327 * sockets that haven't already bound to a specific 11328 * IPv6 address. In other words, sockets that 11329 * don't call bind() with an address other than the 11330 * unspecified address and that call connect(). 11331 * ip_bind_connected_v6() passes these preferences 11332 * to the ipif_select_source_v6() function. 11333 */ 11334 if (inlen != sizeof (uint32_t)) 11335 return (EINVAL); 11336 error = ip6_set_src_preferences(connp, 11337 *(uint32_t *)invalp); 11338 if (error != 0) { 11339 *outlenp = 0; 11340 return (error); 11341 } else { 11342 *outlenp = sizeof (uint32_t); 11343 } 11344 break; 11345 } 11346 case IPV6_V6ONLY: 11347 if (*i1 < 0 || *i1 > 1) { 11348 return (EINVAL); 11349 } 11350 mutex_enter(&connp->conn_lock); 11351 connp->conn_ipv6_v6only = *i1; 11352 mutex_exit(&connp->conn_lock); 11353 break; 11354 default: 11355 return (-EINVAL); 11356 } 11357 break; 11358 default: 11359 /* 11360 * "soft" error (negative) 11361 * option not handled at this level 11362 * Note: Do not modify *outlenp 11363 */ 11364 return (-EINVAL); 11365 } 11366 /* 11367 * Common case of return from an option that is sizeof (int) 11368 */ 11369 *(int *)outvalp = *i1; 11370 *outlenp = sizeof (int); 11371 return (0); 11372 } 11373 11374 /* 11375 * This routine gets default values of certain options whose default 11376 * values are maintained by protocol specific code 11377 */ 11378 /* ARGSUSED */ 11379 int 11380 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11381 { 11382 int *i1 = (int *)ptr; 11383 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11384 11385 switch (level) { 11386 case IPPROTO_IP: 11387 switch (name) { 11388 case IP_MULTICAST_TTL: 11389 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11390 return (sizeof (uchar_t)); 11391 case IP_MULTICAST_LOOP: 11392 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11393 return (sizeof (uchar_t)); 11394 default: 11395 return (-1); 11396 } 11397 case IPPROTO_IPV6: 11398 switch (name) { 11399 case IPV6_UNICAST_HOPS: 11400 *i1 = ipst->ips_ipv6_def_hops; 11401 return (sizeof (int)); 11402 case IPV6_MULTICAST_HOPS: 11403 *i1 = IP_DEFAULT_MULTICAST_TTL; 11404 return (sizeof (int)); 11405 case IPV6_MULTICAST_LOOP: 11406 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11407 return (sizeof (int)); 11408 case IPV6_V6ONLY: 11409 *i1 = 1; 11410 return (sizeof (int)); 11411 default: 11412 return (-1); 11413 } 11414 default: 11415 return (-1); 11416 } 11417 /* NOTREACHED */ 11418 } 11419 11420 /* 11421 * Given a destination address and a pointer to where to put the information 11422 * this routine fills in the mtuinfo. 11423 */ 11424 int 11425 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11426 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11427 { 11428 ire_t *ire; 11429 ip_stack_t *ipst = ns->netstack_ip; 11430 11431 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11432 return (-1); 11433 11434 bzero(mtuinfo, sizeof (*mtuinfo)); 11435 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11436 mtuinfo->ip6m_addr.sin6_port = port; 11437 mtuinfo->ip6m_addr.sin6_addr = *in6; 11438 11439 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11440 if (ire != NULL) { 11441 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11442 ire_refrele(ire); 11443 } else { 11444 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11445 } 11446 return (sizeof (struct ip6_mtuinfo)); 11447 } 11448 11449 /* 11450 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11451 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11452 * isn't. This doesn't matter as the error checking is done properly for the 11453 * other MRT options coming in through ip_opt_set. 11454 */ 11455 int 11456 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11457 { 11458 conn_t *connp = Q_TO_CONN(q); 11459 ipsec_req_t *req = (ipsec_req_t *)ptr; 11460 11461 switch (level) { 11462 case IPPROTO_IP: 11463 switch (name) { 11464 case MRT_VERSION: 11465 case MRT_ASSERT: 11466 (void) ip_mrouter_get(name, q, ptr); 11467 return (sizeof (int)); 11468 case IP_SEC_OPT: 11469 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11470 case IP_NEXTHOP: 11471 if (connp->conn_nexthop_set) { 11472 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11473 return (sizeof (ipaddr_t)); 11474 } else 11475 return (0); 11476 case IP_RECVPKTINFO: 11477 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11478 return (sizeof (int)); 11479 default: 11480 break; 11481 } 11482 break; 11483 case IPPROTO_IPV6: 11484 switch (name) { 11485 case IPV6_SEC_OPT: 11486 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11487 case IPV6_SRC_PREFERENCES: { 11488 return (ip6_get_src_preferences(connp, 11489 (uint32_t *)ptr)); 11490 } 11491 case IPV6_V6ONLY: 11492 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11493 return (sizeof (int)); 11494 case IPV6_PATHMTU: 11495 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11496 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11497 default: 11498 break; 11499 } 11500 break; 11501 default: 11502 break; 11503 } 11504 return (-1); 11505 } 11506 11507 /* Named Dispatch routine to get a current value out of our parameter table. */ 11508 /* ARGSUSED */ 11509 static int 11510 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11511 { 11512 ipparam_t *ippa = (ipparam_t *)cp; 11513 11514 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11515 return (0); 11516 } 11517 11518 /* ARGSUSED */ 11519 static int 11520 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11521 { 11522 11523 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11524 return (0); 11525 } 11526 11527 /* 11528 * Set ip{,6}_forwarding values. This means walking through all of the 11529 * ill's and toggling their forwarding values. 11530 */ 11531 /* ARGSUSED */ 11532 static int 11533 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11534 { 11535 long new_value; 11536 int *forwarding_value = (int *)cp; 11537 ill_t *ill; 11538 boolean_t isv6; 11539 ill_walk_context_t ctx; 11540 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11541 11542 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11543 11544 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11545 new_value < 0 || new_value > 1) { 11546 return (EINVAL); 11547 } 11548 11549 *forwarding_value = new_value; 11550 11551 /* 11552 * Regardless of the current value of ip_forwarding, set all per-ill 11553 * values of ip_forwarding to the value being set. 11554 * 11555 * Bring all the ill's up to date with the new global value. 11556 */ 11557 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11558 11559 if (isv6) 11560 ill = ILL_START_WALK_V6(&ctx, ipst); 11561 else 11562 ill = ILL_START_WALK_V4(&ctx, ipst); 11563 11564 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11565 (void) ill_forward_set(ill, new_value != 0); 11566 11567 rw_exit(&ipst->ips_ill_g_lock); 11568 return (0); 11569 } 11570 11571 /* 11572 * Walk through the param array specified registering each element with the 11573 * Named Dispatch handler. This is called only during init. So it is ok 11574 * not to acquire any locks 11575 */ 11576 static boolean_t 11577 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11578 ipndp_t *ipnd, size_t ipnd_cnt) 11579 { 11580 for (; ippa_cnt-- > 0; ippa++) { 11581 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11582 if (!nd_load(ndp, ippa->ip_param_name, 11583 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11584 nd_free(ndp); 11585 return (B_FALSE); 11586 } 11587 } 11588 } 11589 11590 for (; ipnd_cnt-- > 0; ipnd++) { 11591 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11592 if (!nd_load(ndp, ipnd->ip_ndp_name, 11593 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11594 ipnd->ip_ndp_data)) { 11595 nd_free(ndp); 11596 return (B_FALSE); 11597 } 11598 } 11599 } 11600 11601 return (B_TRUE); 11602 } 11603 11604 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11605 /* ARGSUSED */ 11606 static int 11607 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11608 { 11609 long new_value; 11610 ipparam_t *ippa = (ipparam_t *)cp; 11611 11612 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11613 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11614 return (EINVAL); 11615 } 11616 ippa->ip_param_value = new_value; 11617 return (0); 11618 } 11619 11620 /* 11621 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11622 * When an ipf is passed here for the first time, if 11623 * we already have in-order fragments on the queue, we convert from the fast- 11624 * path reassembly scheme to the hard-case scheme. From then on, additional 11625 * fragments are reassembled here. We keep track of the start and end offsets 11626 * of each piece, and the number of holes in the chain. When the hole count 11627 * goes to zero, we are done! 11628 * 11629 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11630 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11631 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11632 * after the call to ip_reassemble(). 11633 */ 11634 int 11635 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11636 size_t msg_len) 11637 { 11638 uint_t end; 11639 mblk_t *next_mp; 11640 mblk_t *mp1; 11641 uint_t offset; 11642 boolean_t incr_dups = B_TRUE; 11643 boolean_t offset_zero_seen = B_FALSE; 11644 boolean_t pkt_boundary_checked = B_FALSE; 11645 11646 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11647 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11648 11649 /* Add in byte count */ 11650 ipf->ipf_count += msg_len; 11651 if (ipf->ipf_end) { 11652 /* 11653 * We were part way through in-order reassembly, but now there 11654 * is a hole. We walk through messages already queued, and 11655 * mark them for hard case reassembly. We know that up till 11656 * now they were in order starting from offset zero. 11657 */ 11658 offset = 0; 11659 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11660 IP_REASS_SET_START(mp1, offset); 11661 if (offset == 0) { 11662 ASSERT(ipf->ipf_nf_hdr_len != 0); 11663 offset = -ipf->ipf_nf_hdr_len; 11664 } 11665 offset += mp1->b_wptr - mp1->b_rptr; 11666 IP_REASS_SET_END(mp1, offset); 11667 } 11668 /* One hole at the end. */ 11669 ipf->ipf_hole_cnt = 1; 11670 /* Brand it as a hard case, forever. */ 11671 ipf->ipf_end = 0; 11672 } 11673 /* Walk through all the new pieces. */ 11674 do { 11675 end = start + (mp->b_wptr - mp->b_rptr); 11676 /* 11677 * If start is 0, decrease 'end' only for the first mblk of 11678 * the fragment. Otherwise 'end' can get wrong value in the 11679 * second pass of the loop if first mblk is exactly the 11680 * size of ipf_nf_hdr_len. 11681 */ 11682 if (start == 0 && !offset_zero_seen) { 11683 /* First segment */ 11684 ASSERT(ipf->ipf_nf_hdr_len != 0); 11685 end -= ipf->ipf_nf_hdr_len; 11686 offset_zero_seen = B_TRUE; 11687 } 11688 next_mp = mp->b_cont; 11689 /* 11690 * We are checking to see if there is any interesing data 11691 * to process. If there isn't and the mblk isn't the 11692 * one which carries the unfragmentable header then we 11693 * drop it. It's possible to have just the unfragmentable 11694 * header come through without any data. That needs to be 11695 * saved. 11696 * 11697 * If the assert at the top of this function holds then the 11698 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11699 * is infrequently traveled enough that the test is left in 11700 * to protect against future code changes which break that 11701 * invariant. 11702 */ 11703 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11704 /* Empty. Blast it. */ 11705 IP_REASS_SET_START(mp, 0); 11706 IP_REASS_SET_END(mp, 0); 11707 /* 11708 * If the ipf points to the mblk we are about to free, 11709 * update ipf to point to the next mblk (or NULL 11710 * if none). 11711 */ 11712 if (ipf->ipf_mp->b_cont == mp) 11713 ipf->ipf_mp->b_cont = next_mp; 11714 freeb(mp); 11715 continue; 11716 } 11717 mp->b_cont = NULL; 11718 IP_REASS_SET_START(mp, start); 11719 IP_REASS_SET_END(mp, end); 11720 if (!ipf->ipf_tail_mp) { 11721 ipf->ipf_tail_mp = mp; 11722 ipf->ipf_mp->b_cont = mp; 11723 if (start == 0 || !more) { 11724 ipf->ipf_hole_cnt = 1; 11725 /* 11726 * if the first fragment comes in more than one 11727 * mblk, this loop will be executed for each 11728 * mblk. Need to adjust hole count so exiting 11729 * this routine will leave hole count at 1. 11730 */ 11731 if (next_mp) 11732 ipf->ipf_hole_cnt++; 11733 } else 11734 ipf->ipf_hole_cnt = 2; 11735 continue; 11736 } else if (ipf->ipf_last_frag_seen && !more && 11737 !pkt_boundary_checked) { 11738 /* 11739 * We check datagram boundary only if this fragment 11740 * claims to be the last fragment and we have seen a 11741 * last fragment in the past too. We do this only 11742 * once for a given fragment. 11743 * 11744 * start cannot be 0 here as fragments with start=0 11745 * and MF=0 gets handled as a complete packet. These 11746 * fragments should not reach here. 11747 */ 11748 11749 if (start + msgdsize(mp) != 11750 IP_REASS_END(ipf->ipf_tail_mp)) { 11751 /* 11752 * We have two fragments both of which claim 11753 * to be the last fragment but gives conflicting 11754 * information about the whole datagram size. 11755 * Something fishy is going on. Drop the 11756 * fragment and free up the reassembly list. 11757 */ 11758 return (IP_REASS_FAILED); 11759 } 11760 11761 /* 11762 * We shouldn't come to this code block again for this 11763 * particular fragment. 11764 */ 11765 pkt_boundary_checked = B_TRUE; 11766 } 11767 11768 /* New stuff at or beyond tail? */ 11769 offset = IP_REASS_END(ipf->ipf_tail_mp); 11770 if (start >= offset) { 11771 if (ipf->ipf_last_frag_seen) { 11772 /* current fragment is beyond last fragment */ 11773 return (IP_REASS_FAILED); 11774 } 11775 /* Link it on end. */ 11776 ipf->ipf_tail_mp->b_cont = mp; 11777 ipf->ipf_tail_mp = mp; 11778 if (more) { 11779 if (start != offset) 11780 ipf->ipf_hole_cnt++; 11781 } else if (start == offset && next_mp == NULL) 11782 ipf->ipf_hole_cnt--; 11783 continue; 11784 } 11785 mp1 = ipf->ipf_mp->b_cont; 11786 offset = IP_REASS_START(mp1); 11787 /* New stuff at the front? */ 11788 if (start < offset) { 11789 if (start == 0) { 11790 if (end >= offset) { 11791 /* Nailed the hole at the begining. */ 11792 ipf->ipf_hole_cnt--; 11793 } 11794 } else if (end < offset) { 11795 /* 11796 * A hole, stuff, and a hole where there used 11797 * to be just a hole. 11798 */ 11799 ipf->ipf_hole_cnt++; 11800 } 11801 mp->b_cont = mp1; 11802 /* Check for overlap. */ 11803 while (end > offset) { 11804 if (end < IP_REASS_END(mp1)) { 11805 mp->b_wptr -= end - offset; 11806 IP_REASS_SET_END(mp, offset); 11807 BUMP_MIB(ill->ill_ip_mib, 11808 ipIfStatsReasmPartDups); 11809 break; 11810 } 11811 /* Did we cover another hole? */ 11812 if ((mp1->b_cont && 11813 IP_REASS_END(mp1) != 11814 IP_REASS_START(mp1->b_cont) && 11815 end >= IP_REASS_START(mp1->b_cont)) || 11816 (!ipf->ipf_last_frag_seen && !more)) { 11817 ipf->ipf_hole_cnt--; 11818 } 11819 /* Clip out mp1. */ 11820 if ((mp->b_cont = mp1->b_cont) == NULL) { 11821 /* 11822 * After clipping out mp1, this guy 11823 * is now hanging off the end. 11824 */ 11825 ipf->ipf_tail_mp = mp; 11826 } 11827 IP_REASS_SET_START(mp1, 0); 11828 IP_REASS_SET_END(mp1, 0); 11829 /* Subtract byte count */ 11830 ipf->ipf_count -= mp1->b_datap->db_lim - 11831 mp1->b_datap->db_base; 11832 freeb(mp1); 11833 BUMP_MIB(ill->ill_ip_mib, 11834 ipIfStatsReasmPartDups); 11835 mp1 = mp->b_cont; 11836 if (!mp1) 11837 break; 11838 offset = IP_REASS_START(mp1); 11839 } 11840 ipf->ipf_mp->b_cont = mp; 11841 continue; 11842 } 11843 /* 11844 * The new piece starts somewhere between the start of the head 11845 * and before the end of the tail. 11846 */ 11847 for (; mp1; mp1 = mp1->b_cont) { 11848 offset = IP_REASS_END(mp1); 11849 if (start < offset) { 11850 if (end <= offset) { 11851 /* Nothing new. */ 11852 IP_REASS_SET_START(mp, 0); 11853 IP_REASS_SET_END(mp, 0); 11854 /* Subtract byte count */ 11855 ipf->ipf_count -= mp->b_datap->db_lim - 11856 mp->b_datap->db_base; 11857 if (incr_dups) { 11858 ipf->ipf_num_dups++; 11859 incr_dups = B_FALSE; 11860 } 11861 freeb(mp); 11862 BUMP_MIB(ill->ill_ip_mib, 11863 ipIfStatsReasmDuplicates); 11864 break; 11865 } 11866 /* 11867 * Trim redundant stuff off beginning of new 11868 * piece. 11869 */ 11870 IP_REASS_SET_START(mp, offset); 11871 mp->b_rptr += offset - start; 11872 BUMP_MIB(ill->ill_ip_mib, 11873 ipIfStatsReasmPartDups); 11874 start = offset; 11875 if (!mp1->b_cont) { 11876 /* 11877 * After trimming, this guy is now 11878 * hanging off the end. 11879 */ 11880 mp1->b_cont = mp; 11881 ipf->ipf_tail_mp = mp; 11882 if (!more) { 11883 ipf->ipf_hole_cnt--; 11884 } 11885 break; 11886 } 11887 } 11888 if (start >= IP_REASS_START(mp1->b_cont)) 11889 continue; 11890 /* Fill a hole */ 11891 if (start > offset) 11892 ipf->ipf_hole_cnt++; 11893 mp->b_cont = mp1->b_cont; 11894 mp1->b_cont = mp; 11895 mp1 = mp->b_cont; 11896 offset = IP_REASS_START(mp1); 11897 if (end >= offset) { 11898 ipf->ipf_hole_cnt--; 11899 /* Check for overlap. */ 11900 while (end > offset) { 11901 if (end < IP_REASS_END(mp1)) { 11902 mp->b_wptr -= end - offset; 11903 IP_REASS_SET_END(mp, offset); 11904 /* 11905 * TODO we might bump 11906 * this up twice if there is 11907 * overlap at both ends. 11908 */ 11909 BUMP_MIB(ill->ill_ip_mib, 11910 ipIfStatsReasmPartDups); 11911 break; 11912 } 11913 /* Did we cover another hole? */ 11914 if ((mp1->b_cont && 11915 IP_REASS_END(mp1) 11916 != IP_REASS_START(mp1->b_cont) && 11917 end >= 11918 IP_REASS_START(mp1->b_cont)) || 11919 (!ipf->ipf_last_frag_seen && 11920 !more)) { 11921 ipf->ipf_hole_cnt--; 11922 } 11923 /* Clip out mp1. */ 11924 if ((mp->b_cont = mp1->b_cont) == 11925 NULL) { 11926 /* 11927 * After clipping out mp1, 11928 * this guy is now hanging 11929 * off the end. 11930 */ 11931 ipf->ipf_tail_mp = mp; 11932 } 11933 IP_REASS_SET_START(mp1, 0); 11934 IP_REASS_SET_END(mp1, 0); 11935 /* Subtract byte count */ 11936 ipf->ipf_count -= 11937 mp1->b_datap->db_lim - 11938 mp1->b_datap->db_base; 11939 freeb(mp1); 11940 BUMP_MIB(ill->ill_ip_mib, 11941 ipIfStatsReasmPartDups); 11942 mp1 = mp->b_cont; 11943 if (!mp1) 11944 break; 11945 offset = IP_REASS_START(mp1); 11946 } 11947 } 11948 break; 11949 } 11950 } while (start = end, mp = next_mp); 11951 11952 /* Fragment just processed could be the last one. Remember this fact */ 11953 if (!more) 11954 ipf->ipf_last_frag_seen = B_TRUE; 11955 11956 /* Still got holes? */ 11957 if (ipf->ipf_hole_cnt) 11958 return (IP_REASS_PARTIAL); 11959 /* Clean up overloaded fields to avoid upstream disasters. */ 11960 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11961 IP_REASS_SET_START(mp1, 0); 11962 IP_REASS_SET_END(mp1, 0); 11963 } 11964 return (IP_REASS_COMPLETE); 11965 } 11966 11967 /* 11968 * ipsec processing for the fast path, used for input UDP Packets 11969 */ 11970 static boolean_t 11971 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11972 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11973 { 11974 uint32_t ill_index; 11975 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11976 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11977 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11978 11979 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11980 /* The ill_index of the incoming ILL */ 11981 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11982 11983 /* pass packet up to the transport */ 11984 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11985 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11986 NULL, mctl_present); 11987 if (*first_mpp == NULL) { 11988 return (B_FALSE); 11989 } 11990 } 11991 11992 /* Initiate IPPF processing for fastpath UDP */ 11993 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11994 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11995 if (*mpp == NULL) { 11996 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11997 "deferred/dropped during IPPF processing\n")); 11998 return (B_FALSE); 11999 } 12000 } 12001 /* 12002 * We make the checks as below since we are in the fast path 12003 * and want to minimize the number of checks if the IP_RECVIF and/or 12004 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12005 */ 12006 if (connp->conn_recvif || connp->conn_recvslla || 12007 connp->conn_ip_recvpktinfo) { 12008 if (connp->conn_recvif) { 12009 in_flags = IPF_RECVIF; 12010 } 12011 /* 12012 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12013 * so the flag passed to ip_add_info is based on IP version 12014 * of connp. 12015 */ 12016 if (connp->conn_ip_recvpktinfo) { 12017 if (connp->conn_af_isv6) { 12018 /* 12019 * V6 only needs index 12020 */ 12021 in_flags |= IPF_RECVIF; 12022 } else { 12023 /* 12024 * V4 needs index + matching address. 12025 */ 12026 in_flags |= IPF_RECVADDR; 12027 } 12028 } 12029 if (connp->conn_recvslla) { 12030 in_flags |= IPF_RECVSLLA; 12031 } 12032 /* 12033 * since in_flags are being set ill will be 12034 * referenced in ip_add_info, so it better not 12035 * be NULL. 12036 */ 12037 /* 12038 * the actual data will be contained in b_cont 12039 * upon successful return of the following call. 12040 * If the call fails then the original mblk is 12041 * returned. 12042 */ 12043 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12044 ipst); 12045 } 12046 12047 return (B_TRUE); 12048 } 12049 12050 /* 12051 * Fragmentation reassembly. Each ILL has a hash table for 12052 * queuing packets undergoing reassembly for all IPIFs 12053 * associated with the ILL. The hash is based on the packet 12054 * IP ident field. The ILL frag hash table was allocated 12055 * as a timer block at the time the ILL was created. Whenever 12056 * there is anything on the reassembly queue, the timer will 12057 * be running. Returns B_TRUE if successful else B_FALSE; 12058 * frees mp on failure. 12059 */ 12060 static boolean_t 12061 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12062 uint32_t *cksum_val, uint16_t *cksum_flags) 12063 { 12064 uint32_t frag_offset_flags; 12065 ill_t *ill = (ill_t *)q->q_ptr; 12066 mblk_t *mp = *mpp; 12067 mblk_t *t_mp; 12068 ipaddr_t dst; 12069 uint8_t proto = ipha->ipha_protocol; 12070 uint32_t sum_val; 12071 uint16_t sum_flags; 12072 ipf_t *ipf; 12073 ipf_t **ipfp; 12074 ipfb_t *ipfb; 12075 uint16_t ident; 12076 uint32_t offset; 12077 ipaddr_t src; 12078 uint_t hdr_length; 12079 uint32_t end; 12080 mblk_t *mp1; 12081 mblk_t *tail_mp; 12082 size_t count; 12083 size_t msg_len; 12084 uint8_t ecn_info = 0; 12085 uint32_t packet_size; 12086 boolean_t pruned = B_FALSE; 12087 ip_stack_t *ipst = ill->ill_ipst; 12088 12089 if (cksum_val != NULL) 12090 *cksum_val = 0; 12091 if (cksum_flags != NULL) 12092 *cksum_flags = 0; 12093 12094 /* 12095 * Drop the fragmented as early as possible, if 12096 * we don't have resource(s) to re-assemble. 12097 */ 12098 if (ipst->ips_ip_reass_queue_bytes == 0) { 12099 freemsg(mp); 12100 return (B_FALSE); 12101 } 12102 12103 /* Check for fragmentation offset; return if there's none */ 12104 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12105 (IPH_MF | IPH_OFFSET)) == 0) 12106 return (B_TRUE); 12107 12108 /* 12109 * We utilize hardware computed checksum info only for UDP since 12110 * IP fragmentation is a normal occurence for the protocol. In 12111 * addition, checksum offload support for IP fragments carrying 12112 * UDP payload is commonly implemented across network adapters. 12113 */ 12114 ASSERT(ill != NULL); 12115 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12116 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12117 mblk_t *mp1 = mp->b_cont; 12118 int32_t len; 12119 12120 /* Record checksum information from the packet */ 12121 sum_val = (uint32_t)DB_CKSUM16(mp); 12122 sum_flags = DB_CKSUMFLAGS(mp); 12123 12124 /* IP payload offset from beginning of mblk */ 12125 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12126 12127 if ((sum_flags & HCK_PARTIALCKSUM) && 12128 (mp1 == NULL || mp1->b_cont == NULL) && 12129 offset >= DB_CKSUMSTART(mp) && 12130 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12131 uint32_t adj; 12132 /* 12133 * Partial checksum has been calculated by hardware 12134 * and attached to the packet; in addition, any 12135 * prepended extraneous data is even byte aligned. 12136 * If any such data exists, we adjust the checksum; 12137 * this would also handle any postpended data. 12138 */ 12139 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12140 mp, mp1, len, adj); 12141 12142 /* One's complement subtract extraneous checksum */ 12143 if (adj >= sum_val) 12144 sum_val = ~(adj - sum_val) & 0xFFFF; 12145 else 12146 sum_val -= adj; 12147 } 12148 } else { 12149 sum_val = 0; 12150 sum_flags = 0; 12151 } 12152 12153 /* Clear hardware checksumming flag */ 12154 DB_CKSUMFLAGS(mp) = 0; 12155 12156 ident = ipha->ipha_ident; 12157 offset = (frag_offset_flags << 3) & 0xFFFF; 12158 src = ipha->ipha_src; 12159 dst = ipha->ipha_dst; 12160 hdr_length = IPH_HDR_LENGTH(ipha); 12161 end = ntohs(ipha->ipha_length) - hdr_length; 12162 12163 /* If end == 0 then we have a packet with no data, so just free it */ 12164 if (end == 0) { 12165 freemsg(mp); 12166 return (B_FALSE); 12167 } 12168 12169 /* Record the ECN field info. */ 12170 ecn_info = (ipha->ipha_type_of_service & 0x3); 12171 if (offset != 0) { 12172 /* 12173 * If this isn't the first piece, strip the header, and 12174 * add the offset to the end value. 12175 */ 12176 mp->b_rptr += hdr_length; 12177 end += offset; 12178 } 12179 12180 msg_len = MBLKSIZE(mp); 12181 tail_mp = mp; 12182 while (tail_mp->b_cont != NULL) { 12183 tail_mp = tail_mp->b_cont; 12184 msg_len += MBLKSIZE(tail_mp); 12185 } 12186 12187 /* If the reassembly list for this ILL will get too big, prune it */ 12188 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12189 ipst->ips_ip_reass_queue_bytes) { 12190 ill_frag_prune(ill, 12191 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12192 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12193 pruned = B_TRUE; 12194 } 12195 12196 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12197 mutex_enter(&ipfb->ipfb_lock); 12198 12199 ipfp = &ipfb->ipfb_ipf; 12200 /* Try to find an existing fragment queue for this packet. */ 12201 for (;;) { 12202 ipf = ipfp[0]; 12203 if (ipf != NULL) { 12204 /* 12205 * It has to match on ident and src/dst address. 12206 */ 12207 if (ipf->ipf_ident == ident && 12208 ipf->ipf_src == src && 12209 ipf->ipf_dst == dst && 12210 ipf->ipf_protocol == proto) { 12211 /* 12212 * If we have received too many 12213 * duplicate fragments for this packet 12214 * free it. 12215 */ 12216 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12217 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12218 freemsg(mp); 12219 mutex_exit(&ipfb->ipfb_lock); 12220 return (B_FALSE); 12221 } 12222 /* Found it. */ 12223 break; 12224 } 12225 ipfp = &ipf->ipf_hash_next; 12226 continue; 12227 } 12228 12229 /* 12230 * If we pruned the list, do we want to store this new 12231 * fragment?. We apply an optimization here based on the 12232 * fact that most fragments will be received in order. 12233 * So if the offset of this incoming fragment is zero, 12234 * it is the first fragment of a new packet. We will 12235 * keep it. Otherwise drop the fragment, as we have 12236 * probably pruned the packet already (since the 12237 * packet cannot be found). 12238 */ 12239 if (pruned && offset != 0) { 12240 mutex_exit(&ipfb->ipfb_lock); 12241 freemsg(mp); 12242 return (B_FALSE); 12243 } 12244 12245 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12246 /* 12247 * Too many fragmented packets in this hash 12248 * bucket. Free the oldest. 12249 */ 12250 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12251 } 12252 12253 /* New guy. Allocate a frag message. */ 12254 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12255 if (mp1 == NULL) { 12256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12257 freemsg(mp); 12258 reass_done: 12259 mutex_exit(&ipfb->ipfb_lock); 12260 return (B_FALSE); 12261 } 12262 12263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12264 mp1->b_cont = mp; 12265 12266 /* Initialize the fragment header. */ 12267 ipf = (ipf_t *)mp1->b_rptr; 12268 ipf->ipf_mp = mp1; 12269 ipf->ipf_ptphn = ipfp; 12270 ipfp[0] = ipf; 12271 ipf->ipf_hash_next = NULL; 12272 ipf->ipf_ident = ident; 12273 ipf->ipf_protocol = proto; 12274 ipf->ipf_src = src; 12275 ipf->ipf_dst = dst; 12276 ipf->ipf_nf_hdr_len = 0; 12277 /* Record reassembly start time. */ 12278 ipf->ipf_timestamp = gethrestime_sec(); 12279 /* Record ipf generation and account for frag header */ 12280 ipf->ipf_gen = ill->ill_ipf_gen++; 12281 ipf->ipf_count = MBLKSIZE(mp1); 12282 ipf->ipf_last_frag_seen = B_FALSE; 12283 ipf->ipf_ecn = ecn_info; 12284 ipf->ipf_num_dups = 0; 12285 ipfb->ipfb_frag_pkts++; 12286 ipf->ipf_checksum = 0; 12287 ipf->ipf_checksum_flags = 0; 12288 12289 /* Store checksum value in fragment header */ 12290 if (sum_flags != 0) { 12291 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12292 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12293 ipf->ipf_checksum = sum_val; 12294 ipf->ipf_checksum_flags = sum_flags; 12295 } 12296 12297 /* 12298 * We handle reassembly two ways. In the easy case, 12299 * where all the fragments show up in order, we do 12300 * minimal bookkeeping, and just clip new pieces on 12301 * the end. If we ever see a hole, then we go off 12302 * to ip_reassemble which has to mark the pieces and 12303 * keep track of the number of holes, etc. Obviously, 12304 * the point of having both mechanisms is so we can 12305 * handle the easy case as efficiently as possible. 12306 */ 12307 if (offset == 0) { 12308 /* Easy case, in-order reassembly so far. */ 12309 ipf->ipf_count += msg_len; 12310 ipf->ipf_tail_mp = tail_mp; 12311 /* 12312 * Keep track of next expected offset in 12313 * ipf_end. 12314 */ 12315 ipf->ipf_end = end; 12316 ipf->ipf_nf_hdr_len = hdr_length; 12317 } else { 12318 /* Hard case, hole at the beginning. */ 12319 ipf->ipf_tail_mp = NULL; 12320 /* 12321 * ipf_end == 0 means that we have given up 12322 * on easy reassembly. 12323 */ 12324 ipf->ipf_end = 0; 12325 12326 /* Forget checksum offload from now on */ 12327 ipf->ipf_checksum_flags = 0; 12328 12329 /* 12330 * ipf_hole_cnt is set by ip_reassemble. 12331 * ipf_count is updated by ip_reassemble. 12332 * No need to check for return value here 12333 * as we don't expect reassembly to complete 12334 * or fail for the first fragment itself. 12335 */ 12336 (void) ip_reassemble(mp, ipf, 12337 (frag_offset_flags & IPH_OFFSET) << 3, 12338 (frag_offset_flags & IPH_MF), ill, msg_len); 12339 } 12340 /* Update per ipfb and ill byte counts */ 12341 ipfb->ipfb_count += ipf->ipf_count; 12342 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12343 ill->ill_frag_count += ipf->ipf_count; 12344 /* If the frag timer wasn't already going, start it. */ 12345 mutex_enter(&ill->ill_lock); 12346 ill_frag_timer_start(ill); 12347 mutex_exit(&ill->ill_lock); 12348 goto reass_done; 12349 } 12350 12351 /* 12352 * If the packet's flag has changed (it could be coming up 12353 * from an interface different than the previous, therefore 12354 * possibly different checksum capability), then forget about 12355 * any stored checksum states. Otherwise add the value to 12356 * the existing one stored in the fragment header. 12357 */ 12358 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12359 sum_val += ipf->ipf_checksum; 12360 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12361 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12362 ipf->ipf_checksum = sum_val; 12363 } else if (ipf->ipf_checksum_flags != 0) { 12364 /* Forget checksum offload from now on */ 12365 ipf->ipf_checksum_flags = 0; 12366 } 12367 12368 /* 12369 * We have a new piece of a datagram which is already being 12370 * reassembled. Update the ECN info if all IP fragments 12371 * are ECN capable. If there is one which is not, clear 12372 * all the info. If there is at least one which has CE 12373 * code point, IP needs to report that up to transport. 12374 */ 12375 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12376 if (ecn_info == IPH_ECN_CE) 12377 ipf->ipf_ecn = IPH_ECN_CE; 12378 } else { 12379 ipf->ipf_ecn = IPH_ECN_NECT; 12380 } 12381 if (offset && ipf->ipf_end == offset) { 12382 /* The new fragment fits at the end */ 12383 ipf->ipf_tail_mp->b_cont = mp; 12384 /* Update the byte count */ 12385 ipf->ipf_count += msg_len; 12386 /* Update per ipfb and ill byte counts */ 12387 ipfb->ipfb_count += msg_len; 12388 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12389 ill->ill_frag_count += msg_len; 12390 if (frag_offset_flags & IPH_MF) { 12391 /* More to come. */ 12392 ipf->ipf_end = end; 12393 ipf->ipf_tail_mp = tail_mp; 12394 goto reass_done; 12395 } 12396 } else { 12397 /* Go do the hard cases. */ 12398 int ret; 12399 12400 if (offset == 0) 12401 ipf->ipf_nf_hdr_len = hdr_length; 12402 12403 /* Save current byte count */ 12404 count = ipf->ipf_count; 12405 ret = ip_reassemble(mp, ipf, 12406 (frag_offset_flags & IPH_OFFSET) << 3, 12407 (frag_offset_flags & IPH_MF), ill, msg_len); 12408 /* Count of bytes added and subtracted (freeb()ed) */ 12409 count = ipf->ipf_count - count; 12410 if (count) { 12411 /* Update per ipfb and ill byte counts */ 12412 ipfb->ipfb_count += count; 12413 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12414 ill->ill_frag_count += count; 12415 } 12416 if (ret == IP_REASS_PARTIAL) { 12417 goto reass_done; 12418 } else if (ret == IP_REASS_FAILED) { 12419 /* Reassembly failed. Free up all resources */ 12420 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12421 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12422 IP_REASS_SET_START(t_mp, 0); 12423 IP_REASS_SET_END(t_mp, 0); 12424 } 12425 freemsg(mp); 12426 goto reass_done; 12427 } 12428 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12429 } 12430 /* 12431 * We have completed reassembly. Unhook the frag header from 12432 * the reassembly list. 12433 * 12434 * Before we free the frag header, record the ECN info 12435 * to report back to the transport. 12436 */ 12437 ecn_info = ipf->ipf_ecn; 12438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12439 ipfp = ipf->ipf_ptphn; 12440 12441 /* We need to supply these to caller */ 12442 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12443 sum_val = ipf->ipf_checksum; 12444 else 12445 sum_val = 0; 12446 12447 mp1 = ipf->ipf_mp; 12448 count = ipf->ipf_count; 12449 ipf = ipf->ipf_hash_next; 12450 if (ipf != NULL) 12451 ipf->ipf_ptphn = ipfp; 12452 ipfp[0] = ipf; 12453 ill->ill_frag_count -= count; 12454 ASSERT(ipfb->ipfb_count >= count); 12455 ipfb->ipfb_count -= count; 12456 ipfb->ipfb_frag_pkts--; 12457 mutex_exit(&ipfb->ipfb_lock); 12458 /* Ditch the frag header. */ 12459 mp = mp1->b_cont; 12460 12461 freeb(mp1); 12462 12463 /* Restore original IP length in header. */ 12464 packet_size = (uint32_t)msgdsize(mp); 12465 if (packet_size > IP_MAXPACKET) { 12466 freemsg(mp); 12467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12468 return (B_FALSE); 12469 } 12470 12471 if (DB_REF(mp) > 1) { 12472 mblk_t *mp2 = copymsg(mp); 12473 12474 freemsg(mp); 12475 if (mp2 == NULL) { 12476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12477 return (B_FALSE); 12478 } 12479 mp = mp2; 12480 } 12481 ipha = (ipha_t *)mp->b_rptr; 12482 12483 ipha->ipha_length = htons((uint16_t)packet_size); 12484 /* We're now complete, zip the frag state */ 12485 ipha->ipha_fragment_offset_and_flags = 0; 12486 /* Record the ECN info. */ 12487 ipha->ipha_type_of_service &= 0xFC; 12488 ipha->ipha_type_of_service |= ecn_info; 12489 *mpp = mp; 12490 12491 /* Reassembly is successful; return checksum information if needed */ 12492 if (cksum_val != NULL) 12493 *cksum_val = sum_val; 12494 if (cksum_flags != NULL) 12495 *cksum_flags = sum_flags; 12496 12497 return (B_TRUE); 12498 } 12499 12500 /* 12501 * Perform ip header check sum update local options. 12502 * return B_TRUE if all is well, else return B_FALSE and release 12503 * the mp. caller is responsible for decrementing ire ref cnt. 12504 */ 12505 static boolean_t 12506 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12507 ip_stack_t *ipst) 12508 { 12509 mblk_t *first_mp; 12510 boolean_t mctl_present; 12511 uint16_t sum; 12512 12513 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12514 /* 12515 * Don't do the checksum if it has gone through AH/ESP 12516 * processing. 12517 */ 12518 if (!mctl_present) { 12519 sum = ip_csum_hdr(ipha); 12520 if (sum != 0) { 12521 if (ill != NULL) { 12522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12523 } else { 12524 BUMP_MIB(&ipst->ips_ip_mib, 12525 ipIfStatsInCksumErrs); 12526 } 12527 freemsg(first_mp); 12528 return (B_FALSE); 12529 } 12530 } 12531 12532 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12533 if (mctl_present) 12534 freeb(first_mp); 12535 return (B_FALSE); 12536 } 12537 12538 return (B_TRUE); 12539 } 12540 12541 /* 12542 * All udp packet are delivered to the local host via this routine. 12543 */ 12544 void 12545 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12546 ill_t *recv_ill) 12547 { 12548 uint32_t sum; 12549 uint32_t u1; 12550 boolean_t mctl_present; 12551 conn_t *connp; 12552 mblk_t *first_mp; 12553 uint16_t *up; 12554 ill_t *ill = (ill_t *)q->q_ptr; 12555 uint16_t reass_hck_flags = 0; 12556 ip_stack_t *ipst; 12557 12558 ASSERT(recv_ill != NULL); 12559 ipst = recv_ill->ill_ipst; 12560 12561 #define rptr ((uchar_t *)ipha) 12562 12563 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12564 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12565 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12566 ASSERT(ill != NULL); 12567 12568 /* 12569 * FAST PATH for udp packets 12570 */ 12571 12572 /* u1 is # words of IP options */ 12573 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12574 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12575 12576 /* IP options present */ 12577 if (u1 != 0) 12578 goto ipoptions; 12579 12580 /* Check the IP header checksum. */ 12581 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12582 /* Clear the IP header h/w cksum flag */ 12583 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12584 } else { 12585 #define uph ((uint16_t *)ipha) 12586 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12587 uph[6] + uph[7] + uph[8] + uph[9]; 12588 #undef uph 12589 /* finish doing IP checksum */ 12590 sum = (sum & 0xFFFF) + (sum >> 16); 12591 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12592 /* 12593 * Don't verify header checksum if this packet is coming 12594 * back from AH/ESP as we already did it. 12595 */ 12596 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12598 freemsg(first_mp); 12599 return; 12600 } 12601 } 12602 12603 /* 12604 * Count for SNMP of inbound packets for ire. 12605 * if mctl is present this might be a secure packet and 12606 * has already been counted for in ip_proto_input(). 12607 */ 12608 if (!mctl_present) { 12609 UPDATE_IB_PKT_COUNT(ire); 12610 ire->ire_last_used_time = lbolt; 12611 } 12612 12613 /* packet part of fragmented IP packet? */ 12614 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12615 if (u1 & (IPH_MF | IPH_OFFSET)) { 12616 goto fragmented; 12617 } 12618 12619 /* u1 = IP header length (20 bytes) */ 12620 u1 = IP_SIMPLE_HDR_LENGTH; 12621 12622 /* packet does not contain complete IP & UDP headers */ 12623 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12624 goto udppullup; 12625 12626 /* up points to UDP header */ 12627 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12628 #define iphs ((uint16_t *)ipha) 12629 12630 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12631 if (up[3] != 0) { 12632 mblk_t *mp1 = mp->b_cont; 12633 boolean_t cksum_err; 12634 uint16_t hck_flags = 0; 12635 12636 /* Pseudo-header checksum */ 12637 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12638 iphs[9] + up[2]; 12639 12640 /* 12641 * Revert to software checksum calculation if the interface 12642 * isn't capable of checksum offload or if IPsec is present. 12643 */ 12644 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12645 hck_flags = DB_CKSUMFLAGS(mp); 12646 12647 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12648 IP_STAT(ipst, ip_in_sw_cksum); 12649 12650 IP_CKSUM_RECV(hck_flags, u1, 12651 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12652 (int32_t)((uchar_t *)up - rptr), 12653 mp, mp1, cksum_err); 12654 12655 if (cksum_err) { 12656 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12657 if (hck_flags & HCK_FULLCKSUM) 12658 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12659 else if (hck_flags & HCK_PARTIALCKSUM) 12660 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12661 else 12662 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12663 12664 freemsg(first_mp); 12665 return; 12666 } 12667 } 12668 12669 /* Non-fragmented broadcast or multicast packet? */ 12670 if (ire->ire_type == IRE_BROADCAST) 12671 goto udpslowpath; 12672 12673 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12674 ire->ire_zoneid, ipst)) != NULL) { 12675 ASSERT(connp->conn_upq != NULL); 12676 IP_STAT(ipst, ip_udp_fast_path); 12677 12678 if (CONN_UDP_FLOWCTLD(connp)) { 12679 freemsg(mp); 12680 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12681 } else { 12682 if (!mctl_present) { 12683 BUMP_MIB(ill->ill_ip_mib, 12684 ipIfStatsHCInDelivers); 12685 } 12686 /* 12687 * mp and first_mp can change. 12688 */ 12689 if (ip_udp_check(q, connp, recv_ill, 12690 ipha, &mp, &first_mp, mctl_present)) { 12691 /* Send it upstream */ 12692 CONN_UDP_RECV(connp, mp); 12693 } 12694 } 12695 /* 12696 * freeb() cannot deal with null mblk being passed 12697 * in and first_mp can be set to null in the call 12698 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12699 */ 12700 if (mctl_present && first_mp != NULL) { 12701 freeb(first_mp); 12702 } 12703 CONN_DEC_REF(connp); 12704 return; 12705 } 12706 12707 /* 12708 * if we got here we know the packet is not fragmented and 12709 * has no options. The classifier could not find a conn_t and 12710 * most likely its an icmp packet so send it through slow path. 12711 */ 12712 12713 goto udpslowpath; 12714 12715 ipoptions: 12716 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12717 goto slow_done; 12718 } 12719 12720 UPDATE_IB_PKT_COUNT(ire); 12721 ire->ire_last_used_time = lbolt; 12722 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12723 if (u1 & (IPH_MF | IPH_OFFSET)) { 12724 fragmented: 12725 /* 12726 * "sum" and "reass_hck_flags" are non-zero if the 12727 * reassembled packet has a valid hardware computed 12728 * checksum information associated with it. 12729 */ 12730 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12731 goto slow_done; 12732 /* 12733 * Make sure that first_mp points back to mp as 12734 * the mp we came in with could have changed in 12735 * ip_rput_fragment(). 12736 */ 12737 ASSERT(!mctl_present); 12738 ipha = (ipha_t *)mp->b_rptr; 12739 first_mp = mp; 12740 } 12741 12742 /* Now we have a complete datagram, destined for this machine. */ 12743 u1 = IPH_HDR_LENGTH(ipha); 12744 /* Pull up the UDP header, if necessary. */ 12745 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12746 udppullup: 12747 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12749 freemsg(first_mp); 12750 goto slow_done; 12751 } 12752 ipha = (ipha_t *)mp->b_rptr; 12753 } 12754 12755 /* 12756 * Validate the checksum for the reassembled packet; for the 12757 * pullup case we calculate the payload checksum in software. 12758 */ 12759 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12760 if (up[3] != 0) { 12761 boolean_t cksum_err; 12762 12763 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12764 IP_STAT(ipst, ip_in_sw_cksum); 12765 12766 IP_CKSUM_RECV_REASS(reass_hck_flags, 12767 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12768 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12769 iphs[9] + up[2], sum, cksum_err); 12770 12771 if (cksum_err) { 12772 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12773 12774 if (reass_hck_flags & HCK_FULLCKSUM) 12775 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12776 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12777 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12778 else 12779 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12780 12781 freemsg(first_mp); 12782 goto slow_done; 12783 } 12784 } 12785 udpslowpath: 12786 12787 /* Clear hardware checksum flag to be safe */ 12788 DB_CKSUMFLAGS(mp) = 0; 12789 12790 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12791 (ire->ire_type == IRE_BROADCAST), 12792 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12793 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12794 12795 slow_done: 12796 IP_STAT(ipst, ip_udp_slow_path); 12797 return; 12798 12799 #undef iphs 12800 #undef rptr 12801 } 12802 12803 /* ARGSUSED */ 12804 static mblk_t * 12805 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12806 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12807 ill_rx_ring_t *ill_ring) 12808 { 12809 conn_t *connp; 12810 uint32_t sum; 12811 uint32_t u1; 12812 uint16_t *up; 12813 int offset; 12814 ssize_t len; 12815 mblk_t *mp1; 12816 boolean_t syn_present = B_FALSE; 12817 tcph_t *tcph; 12818 uint_t ip_hdr_len; 12819 ill_t *ill = (ill_t *)q->q_ptr; 12820 zoneid_t zoneid = ire->ire_zoneid; 12821 boolean_t cksum_err; 12822 uint16_t hck_flags = 0; 12823 ip_stack_t *ipst = recv_ill->ill_ipst; 12824 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12825 12826 #define rptr ((uchar_t *)ipha) 12827 12828 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12829 ASSERT(ill != NULL); 12830 12831 /* 12832 * FAST PATH for tcp packets 12833 */ 12834 12835 /* u1 is # words of IP options */ 12836 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12837 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12838 12839 /* IP options present */ 12840 if (u1) { 12841 goto ipoptions; 12842 } else { 12843 /* Check the IP header checksum. */ 12844 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12845 /* Clear the IP header h/w cksum flag */ 12846 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12847 } else { 12848 #define uph ((uint16_t *)ipha) 12849 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12850 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12851 #undef uph 12852 /* finish doing IP checksum */ 12853 sum = (sum & 0xFFFF) + (sum >> 16); 12854 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12855 /* 12856 * Don't verify header checksum if this packet 12857 * is coming back from AH/ESP as we already did it. 12858 */ 12859 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12860 BUMP_MIB(ill->ill_ip_mib, 12861 ipIfStatsInCksumErrs); 12862 goto error; 12863 } 12864 } 12865 } 12866 12867 if (!mctl_present) { 12868 UPDATE_IB_PKT_COUNT(ire); 12869 ire->ire_last_used_time = lbolt; 12870 } 12871 12872 /* packet part of fragmented IP packet? */ 12873 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12874 if (u1 & (IPH_MF | IPH_OFFSET)) { 12875 goto fragmented; 12876 } 12877 12878 /* u1 = IP header length (20 bytes) */ 12879 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12880 12881 /* does packet contain IP+TCP headers? */ 12882 len = mp->b_wptr - rptr; 12883 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12884 IP_STAT(ipst, ip_tcppullup); 12885 goto tcppullup; 12886 } 12887 12888 /* TCP options present? */ 12889 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12890 12891 /* 12892 * If options need to be pulled up, then goto tcpoptions. 12893 * otherwise we are still in the fast path 12894 */ 12895 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12896 IP_STAT(ipst, ip_tcpoptions); 12897 goto tcpoptions; 12898 } 12899 12900 /* multiple mblks of tcp data? */ 12901 if ((mp1 = mp->b_cont) != NULL) { 12902 /* more then two? */ 12903 if (mp1->b_cont != NULL) { 12904 IP_STAT(ipst, ip_multipkttcp); 12905 goto multipkttcp; 12906 } 12907 len += mp1->b_wptr - mp1->b_rptr; 12908 } 12909 12910 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12911 12912 /* part of pseudo checksum */ 12913 12914 /* TCP datagram length */ 12915 u1 = len - IP_SIMPLE_HDR_LENGTH; 12916 12917 #define iphs ((uint16_t *)ipha) 12918 12919 #ifdef _BIG_ENDIAN 12920 u1 += IPPROTO_TCP; 12921 #else 12922 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12923 #endif 12924 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12925 12926 /* 12927 * Revert to software checksum calculation if the interface 12928 * isn't capable of checksum offload or if IPsec is present. 12929 */ 12930 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12931 hck_flags = DB_CKSUMFLAGS(mp); 12932 12933 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12934 IP_STAT(ipst, ip_in_sw_cksum); 12935 12936 IP_CKSUM_RECV(hck_flags, u1, 12937 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12938 (int32_t)((uchar_t *)up - rptr), 12939 mp, mp1, cksum_err); 12940 12941 if (cksum_err) { 12942 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12943 12944 if (hck_flags & HCK_FULLCKSUM) 12945 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12946 else if (hck_flags & HCK_PARTIALCKSUM) 12947 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12948 else 12949 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12950 12951 goto error; 12952 } 12953 12954 try_again: 12955 12956 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12957 zoneid, ipst)) == NULL) { 12958 /* Send the TH_RST */ 12959 goto no_conn; 12960 } 12961 12962 /* 12963 * TCP FAST PATH for AF_INET socket. 12964 * 12965 * TCP fast path to avoid extra work. An AF_INET socket type 12966 * does not have facility to receive extra information via 12967 * ip_process or ip_add_info. Also, when the connection was 12968 * established, we made a check if this connection is impacted 12969 * by any global IPSec policy or per connection policy (a 12970 * policy that comes in effect later will not apply to this 12971 * connection). Since all this can be determined at the 12972 * connection establishment time, a quick check of flags 12973 * can avoid extra work. 12974 */ 12975 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12976 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12977 ASSERT(first_mp == mp); 12978 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12979 SET_SQUEUE(mp, tcp_rput_data, connp); 12980 return (mp); 12981 } 12982 12983 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12984 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12985 if (IPCL_IS_TCP(connp)) { 12986 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12987 DB_CKSUMSTART(mp) = 12988 (intptr_t)ip_squeue_get(ill_ring); 12989 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12990 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12991 BUMP_MIB(ill->ill_ip_mib, 12992 ipIfStatsHCInDelivers); 12993 SET_SQUEUE(mp, connp->conn_recv, connp); 12994 return (mp); 12995 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12996 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12997 BUMP_MIB(ill->ill_ip_mib, 12998 ipIfStatsHCInDelivers); 12999 ip_squeue_enter_unbound++; 13000 SET_SQUEUE(mp, tcp_conn_request_unbound, 13001 connp); 13002 return (mp); 13003 } 13004 syn_present = B_TRUE; 13005 } 13006 13007 } 13008 13009 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13010 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13011 13012 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13013 /* No need to send this packet to TCP */ 13014 if ((flags & TH_RST) || (flags & TH_URG)) { 13015 CONN_DEC_REF(connp); 13016 freemsg(first_mp); 13017 return (NULL); 13018 } 13019 if (flags & TH_ACK) { 13020 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13021 ipst->ips_netstack->netstack_tcp); 13022 CONN_DEC_REF(connp); 13023 return (NULL); 13024 } 13025 13026 CONN_DEC_REF(connp); 13027 freemsg(first_mp); 13028 return (NULL); 13029 } 13030 13031 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13032 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13033 ipha, NULL, mctl_present); 13034 if (first_mp == NULL) { 13035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13036 CONN_DEC_REF(connp); 13037 return (NULL); 13038 } 13039 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13040 ASSERT(syn_present); 13041 if (mctl_present) { 13042 ASSERT(first_mp != mp); 13043 first_mp->b_datap->db_struioflag |= 13044 STRUIO_POLICY; 13045 } else { 13046 ASSERT(first_mp == mp); 13047 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13048 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13049 } 13050 } else { 13051 /* 13052 * Discard first_mp early since we're dealing with a 13053 * fully-connected conn_t and tcp doesn't do policy in 13054 * this case. 13055 */ 13056 if (mctl_present) { 13057 freeb(first_mp); 13058 mctl_present = B_FALSE; 13059 } 13060 first_mp = mp; 13061 } 13062 } 13063 13064 /* Initiate IPPF processing for fastpath */ 13065 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13066 uint32_t ill_index; 13067 13068 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13069 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13070 if (mp == NULL) { 13071 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13072 "deferred/dropped during IPPF processing\n")); 13073 CONN_DEC_REF(connp); 13074 if (mctl_present) 13075 freeb(first_mp); 13076 return (NULL); 13077 } else if (mctl_present) { 13078 /* 13079 * ip_process might return a new mp. 13080 */ 13081 ASSERT(first_mp != mp); 13082 first_mp->b_cont = mp; 13083 } else { 13084 first_mp = mp; 13085 } 13086 13087 } 13088 13089 if (!syn_present && connp->conn_ip_recvpktinfo) { 13090 /* 13091 * TCP does not support IP_RECVPKTINFO for v4 so lets 13092 * make sure IPF_RECVIF is passed to ip_add_info. 13093 */ 13094 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13095 IPCL_ZONEID(connp), ipst); 13096 if (mp == NULL) { 13097 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13098 CONN_DEC_REF(connp); 13099 if (mctl_present) 13100 freeb(first_mp); 13101 return (NULL); 13102 } else if (mctl_present) { 13103 /* 13104 * ip_add_info might return a new mp. 13105 */ 13106 ASSERT(first_mp != mp); 13107 first_mp->b_cont = mp; 13108 } else { 13109 first_mp = mp; 13110 } 13111 } 13112 13113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13114 if (IPCL_IS_TCP(connp)) { 13115 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13116 return (first_mp); 13117 } else { 13118 putnext(connp->conn_rq, first_mp); 13119 CONN_DEC_REF(connp); 13120 return (NULL); 13121 } 13122 13123 no_conn: 13124 /* Initiate IPPf processing, if needed. */ 13125 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13126 uint32_t ill_index; 13127 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13128 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13129 if (first_mp == NULL) { 13130 return (NULL); 13131 } 13132 } 13133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13134 13135 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13136 ipst->ips_netstack->netstack_tcp); 13137 return (NULL); 13138 ipoptions: 13139 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13140 goto slow_done; 13141 } 13142 13143 UPDATE_IB_PKT_COUNT(ire); 13144 ire->ire_last_used_time = lbolt; 13145 13146 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13147 if (u1 & (IPH_MF | IPH_OFFSET)) { 13148 fragmented: 13149 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13150 if (mctl_present) 13151 freeb(first_mp); 13152 goto slow_done; 13153 } 13154 /* 13155 * Make sure that first_mp points back to mp as 13156 * the mp we came in with could have changed in 13157 * ip_rput_fragment(). 13158 */ 13159 ASSERT(!mctl_present); 13160 ipha = (ipha_t *)mp->b_rptr; 13161 first_mp = mp; 13162 } 13163 13164 /* Now we have a complete datagram, destined for this machine. */ 13165 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13166 13167 len = mp->b_wptr - mp->b_rptr; 13168 /* Pull up a minimal TCP header, if necessary. */ 13169 if (len < (u1 + 20)) { 13170 tcppullup: 13171 if (!pullupmsg(mp, u1 + 20)) { 13172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13173 goto error; 13174 } 13175 ipha = (ipha_t *)mp->b_rptr; 13176 len = mp->b_wptr - mp->b_rptr; 13177 } 13178 13179 /* 13180 * Extract the offset field from the TCP header. As usual, we 13181 * try to help the compiler more than the reader. 13182 */ 13183 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13184 if (offset != 5) { 13185 tcpoptions: 13186 if (offset < 5) { 13187 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13188 goto error; 13189 } 13190 /* 13191 * There must be TCP options. 13192 * Make sure we can grab them. 13193 */ 13194 offset <<= 2; 13195 offset += u1; 13196 if (len < offset) { 13197 if (!pullupmsg(mp, offset)) { 13198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13199 goto error; 13200 } 13201 ipha = (ipha_t *)mp->b_rptr; 13202 len = mp->b_wptr - rptr; 13203 } 13204 } 13205 13206 /* Get the total packet length in len, including headers. */ 13207 if (mp->b_cont) { 13208 multipkttcp: 13209 len = msgdsize(mp); 13210 } 13211 13212 /* 13213 * Check the TCP checksum by pulling together the pseudo- 13214 * header checksum, and passing it to ip_csum to be added in 13215 * with the TCP datagram. 13216 * 13217 * Since we are not using the hwcksum if available we must 13218 * clear the flag. We may come here via tcppullup or tcpoptions. 13219 * If either of these fails along the way the mblk is freed. 13220 * If this logic ever changes and mblk is reused to say send 13221 * ICMP's back, then this flag may need to be cleared in 13222 * other places as well. 13223 */ 13224 DB_CKSUMFLAGS(mp) = 0; 13225 13226 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13227 13228 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13229 #ifdef _BIG_ENDIAN 13230 u1 += IPPROTO_TCP; 13231 #else 13232 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13233 #endif 13234 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13235 /* 13236 * Not M_DATA mblk or its a dup, so do the checksum now. 13237 */ 13238 IP_STAT(ipst, ip_in_sw_cksum); 13239 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13240 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13241 goto error; 13242 } 13243 13244 IP_STAT(ipst, ip_tcp_slow_path); 13245 goto try_again; 13246 #undef iphs 13247 #undef rptr 13248 13249 error: 13250 freemsg(first_mp); 13251 slow_done: 13252 return (NULL); 13253 } 13254 13255 /* ARGSUSED */ 13256 static void 13257 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13258 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13259 { 13260 conn_t *connp; 13261 uint32_t sum; 13262 uint32_t u1; 13263 ssize_t len; 13264 sctp_hdr_t *sctph; 13265 zoneid_t zoneid = ire->ire_zoneid; 13266 uint32_t pktsum; 13267 uint32_t calcsum; 13268 uint32_t ports; 13269 in6_addr_t map_src, map_dst; 13270 ill_t *ill = (ill_t *)q->q_ptr; 13271 ip_stack_t *ipst; 13272 sctp_stack_t *sctps; 13273 13274 ASSERT(recv_ill != NULL); 13275 ipst = recv_ill->ill_ipst; 13276 sctps = ipst->ips_netstack->netstack_sctp; 13277 13278 #define rptr ((uchar_t *)ipha) 13279 13280 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13281 ASSERT(ill != NULL); 13282 13283 /* u1 is # words of IP options */ 13284 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13285 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13286 13287 /* IP options present */ 13288 if (u1 > 0) { 13289 goto ipoptions; 13290 } else { 13291 /* Check the IP header checksum. */ 13292 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13293 #define uph ((uint16_t *)ipha) 13294 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13295 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13296 #undef uph 13297 /* finish doing IP checksum */ 13298 sum = (sum & 0xFFFF) + (sum >> 16); 13299 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13300 /* 13301 * Don't verify header checksum if this packet 13302 * is coming back from AH/ESP as we already did it. 13303 */ 13304 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13306 goto error; 13307 } 13308 } 13309 /* 13310 * Since there is no SCTP h/w cksum support yet, just 13311 * clear the flag. 13312 */ 13313 DB_CKSUMFLAGS(mp) = 0; 13314 } 13315 13316 /* 13317 * Don't verify header checksum if this packet is coming 13318 * back from AH/ESP as we already did it. 13319 */ 13320 if (!mctl_present) { 13321 UPDATE_IB_PKT_COUNT(ire); 13322 ire->ire_last_used_time = lbolt; 13323 } 13324 13325 /* packet part of fragmented IP packet? */ 13326 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13327 if (u1 & (IPH_MF | IPH_OFFSET)) 13328 goto fragmented; 13329 13330 /* u1 = IP header length (20 bytes) */ 13331 u1 = IP_SIMPLE_HDR_LENGTH; 13332 13333 find_sctp_client: 13334 /* Pullup if we don't have the sctp common header. */ 13335 len = MBLKL(mp); 13336 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13337 if (mp->b_cont == NULL || 13338 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13340 goto error; 13341 } 13342 ipha = (ipha_t *)mp->b_rptr; 13343 len = MBLKL(mp); 13344 } 13345 13346 sctph = (sctp_hdr_t *)(rptr + u1); 13347 #ifdef DEBUG 13348 if (!skip_sctp_cksum) { 13349 #endif 13350 pktsum = sctph->sh_chksum; 13351 sctph->sh_chksum = 0; 13352 calcsum = sctp_cksum(mp, u1); 13353 if (calcsum != pktsum) { 13354 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13355 goto error; 13356 } 13357 sctph->sh_chksum = pktsum; 13358 #ifdef DEBUG /* skip_sctp_cksum */ 13359 } 13360 #endif 13361 /* get the ports */ 13362 ports = *(uint32_t *)&sctph->sh_sport; 13363 13364 IRE_REFRELE(ire); 13365 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13366 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13367 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13368 sctps)) == NULL) { 13369 /* Check for raw socket or OOTB handling */ 13370 goto no_conn; 13371 } 13372 13373 /* Found a client; up it goes */ 13374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13375 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13376 return; 13377 13378 no_conn: 13379 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13380 ports, mctl_present, flags, B_TRUE, zoneid); 13381 return; 13382 13383 ipoptions: 13384 DB_CKSUMFLAGS(mp) = 0; 13385 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13386 goto slow_done; 13387 13388 UPDATE_IB_PKT_COUNT(ire); 13389 ire->ire_last_used_time = lbolt; 13390 13391 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13392 if (u1 & (IPH_MF | IPH_OFFSET)) { 13393 fragmented: 13394 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13395 goto slow_done; 13396 /* 13397 * Make sure that first_mp points back to mp as 13398 * the mp we came in with could have changed in 13399 * ip_rput_fragment(). 13400 */ 13401 ASSERT(!mctl_present); 13402 ipha = (ipha_t *)mp->b_rptr; 13403 first_mp = mp; 13404 } 13405 13406 /* Now we have a complete datagram, destined for this machine. */ 13407 u1 = IPH_HDR_LENGTH(ipha); 13408 goto find_sctp_client; 13409 #undef iphs 13410 #undef rptr 13411 13412 error: 13413 freemsg(first_mp); 13414 slow_done: 13415 IRE_REFRELE(ire); 13416 } 13417 13418 #define VER_BITS 0xF0 13419 #define VERSION_6 0x60 13420 13421 static boolean_t 13422 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13423 ipaddr_t *dstp, ip_stack_t *ipst) 13424 { 13425 uint_t opt_len; 13426 ipha_t *ipha; 13427 ssize_t len; 13428 uint_t pkt_len; 13429 13430 ASSERT(ill != NULL); 13431 IP_STAT(ipst, ip_ipoptions); 13432 ipha = *iphapp; 13433 13434 #define rptr ((uchar_t *)ipha) 13435 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13436 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13437 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13438 freemsg(mp); 13439 return (B_FALSE); 13440 } 13441 13442 /* multiple mblk or too short */ 13443 pkt_len = ntohs(ipha->ipha_length); 13444 13445 /* Get the number of words of IP options in the IP header. */ 13446 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13447 if (opt_len) { 13448 /* IP Options present! Validate and process. */ 13449 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13451 goto done; 13452 } 13453 /* 13454 * Recompute complete header length and make sure we 13455 * have access to all of it. 13456 */ 13457 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13458 if (len > (mp->b_wptr - rptr)) { 13459 if (len > pkt_len) { 13460 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13461 goto done; 13462 } 13463 if (!pullupmsg(mp, len)) { 13464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13465 goto done; 13466 } 13467 ipha = (ipha_t *)mp->b_rptr; 13468 } 13469 /* 13470 * Go off to ip_rput_options which returns the next hop 13471 * destination address, which may have been affected 13472 * by source routing. 13473 */ 13474 IP_STAT(ipst, ip_opt); 13475 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13477 return (B_FALSE); 13478 } 13479 } 13480 *iphapp = ipha; 13481 return (B_TRUE); 13482 done: 13483 /* clear b_prev - used by ip_mroute_decap */ 13484 mp->b_prev = NULL; 13485 freemsg(mp); 13486 return (B_FALSE); 13487 #undef rptr 13488 } 13489 13490 /* 13491 * Deal with the fact that there is no ire for the destination. 13492 */ 13493 static ire_t * 13494 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13495 { 13496 ipha_t *ipha; 13497 ill_t *ill; 13498 ire_t *ire; 13499 boolean_t check_multirt = B_FALSE; 13500 ip_stack_t *ipst; 13501 13502 ipha = (ipha_t *)mp->b_rptr; 13503 ill = (ill_t *)q->q_ptr; 13504 13505 ASSERT(ill != NULL); 13506 ipst = ill->ill_ipst; 13507 13508 /* 13509 * No IRE for this destination, so it can't be for us. 13510 * Unless we are forwarding, drop the packet. 13511 * We have to let source routed packets through 13512 * since we don't yet know if they are 'ping -l' 13513 * packets i.e. if they will go out over the 13514 * same interface as they came in on. 13515 */ 13516 if (ll_multicast) { 13517 freemsg(mp); 13518 return (NULL); 13519 } 13520 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13522 freemsg(mp); 13523 return (NULL); 13524 } 13525 13526 /* 13527 * Mark this packet as having originated externally. 13528 * 13529 * For non-forwarding code path, ire_send later double 13530 * checks this interface to see if it is still exists 13531 * post-ARP resolution. 13532 * 13533 * Also, IPQOS uses this to differentiate between 13534 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13535 * QOS packet processing in ip_wput_attach_llhdr(). 13536 * The QoS module can mark the b_band for a fastpath message 13537 * or the dl_priority field in a unitdata_req header for 13538 * CoS marking. This info can only be found in 13539 * ip_wput_attach_llhdr(). 13540 */ 13541 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13542 /* 13543 * Clear the indication that this may have a hardware checksum 13544 * as we are not using it 13545 */ 13546 DB_CKSUMFLAGS(mp) = 0; 13547 13548 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13549 MBLK_GETLABEL(mp), ipst); 13550 13551 if (ire == NULL && check_multirt) { 13552 /* Let ip_newroute handle CGTP */ 13553 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13554 return (NULL); 13555 } 13556 13557 if (ire != NULL) 13558 return (ire); 13559 13560 mp->b_prev = mp->b_next = 0; 13561 /* send icmp unreachable */ 13562 q = WR(q); 13563 /* Sent by forwarding path, and router is global zone */ 13564 if (ip_source_routed(ipha, ipst)) { 13565 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13566 GLOBAL_ZONEID, ipst); 13567 } else { 13568 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13569 ipst); 13570 } 13571 13572 return (NULL); 13573 13574 } 13575 13576 /* 13577 * check ip header length and align it. 13578 */ 13579 static boolean_t 13580 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13581 { 13582 ssize_t len; 13583 ill_t *ill; 13584 ipha_t *ipha; 13585 13586 len = MBLKL(mp); 13587 13588 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13589 ill = (ill_t *)q->q_ptr; 13590 13591 if (!OK_32PTR(mp->b_rptr)) 13592 IP_STAT(ipst, ip_notaligned1); 13593 else 13594 IP_STAT(ipst, ip_notaligned2); 13595 /* Guard against bogus device drivers */ 13596 if (len < 0) { 13597 /* clear b_prev - used by ip_mroute_decap */ 13598 mp->b_prev = NULL; 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13600 freemsg(mp); 13601 return (B_FALSE); 13602 } 13603 13604 if (ip_rput_pullups++ == 0) { 13605 ipha = (ipha_t *)mp->b_rptr; 13606 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13607 "ip_check_and_align_header: %s forced us to " 13608 " pullup pkt, hdr len %ld, hdr addr %p", 13609 ill->ill_name, len, ipha); 13610 } 13611 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13612 /* clear b_prev - used by ip_mroute_decap */ 13613 mp->b_prev = NULL; 13614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13615 freemsg(mp); 13616 return (B_FALSE); 13617 } 13618 } 13619 return (B_TRUE); 13620 } 13621 13622 ire_t * 13623 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13624 { 13625 ire_t *new_ire; 13626 ill_t *ire_ill; 13627 uint_t ifindex; 13628 ip_stack_t *ipst = ill->ill_ipst; 13629 boolean_t strict_check = B_FALSE; 13630 13631 /* 13632 * This packet came in on an interface other than the one associated 13633 * with the first ire we found for the destination address. We do 13634 * another ire lookup here, using the ingress ill, to see if the 13635 * interface is in an interface group. 13636 * As long as the ills belong to the same group, we don't consider 13637 * them to be arriving on the wrong interface. Thus, if the switch 13638 * is doing inbound load spreading, we won't drop packets when the 13639 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13640 * for 'usesrc groups' where the destination address may belong to 13641 * another interface to allow multipathing to happen. 13642 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13643 * where the local address may not be unique. In this case we were 13644 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13645 * actually returned. The new lookup, which is more specific, should 13646 * only find the IRE_LOCAL associated with the ingress ill if one 13647 * exists. 13648 */ 13649 13650 if (ire->ire_ipversion == IPV4_VERSION) { 13651 if (ipst->ips_ip_strict_dst_multihoming) 13652 strict_check = B_TRUE; 13653 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13654 ill->ill_ipif, ALL_ZONES, NULL, 13655 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13656 } else { 13657 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13658 if (ipst->ips_ipv6_strict_dst_multihoming) 13659 strict_check = B_TRUE; 13660 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13661 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13662 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13663 } 13664 /* 13665 * If the same ire that was returned in ip_input() is found then this 13666 * is an indication that interface groups are in use. The packet 13667 * arrived on a different ill in the group than the one associated with 13668 * the destination address. If a different ire was found then the same 13669 * IP address must be hosted on multiple ills. This is possible with 13670 * unnumbered point2point interfaces. We switch to use this new ire in 13671 * order to have accurate interface statistics. 13672 */ 13673 if (new_ire != NULL) { 13674 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13675 ire_refrele(ire); 13676 ire = new_ire; 13677 } else { 13678 ire_refrele(new_ire); 13679 } 13680 return (ire); 13681 } else if ((ire->ire_rfq == NULL) && 13682 (ire->ire_ipversion == IPV4_VERSION)) { 13683 /* 13684 * The best match could have been the original ire which 13685 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13686 * the strict multihoming checks are irrelevant as we consider 13687 * local addresses hosted on lo0 to be interface agnostic. We 13688 * only expect a null ire_rfq on IREs which are associated with 13689 * lo0 hence we can return now. 13690 */ 13691 return (ire); 13692 } 13693 13694 /* 13695 * Chase pointers once and store locally. 13696 */ 13697 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13698 (ill_t *)(ire->ire_rfq->q_ptr); 13699 ifindex = ill->ill_usesrc_ifindex; 13700 13701 /* 13702 * Check if it's a legal address on the 'usesrc' interface. 13703 */ 13704 if ((ifindex != 0) && (ire_ill != NULL) && 13705 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13706 return (ire); 13707 } 13708 13709 /* 13710 * If the ip*_strict_dst_multihoming switch is on then we can 13711 * only accept this packet if the interface is marked as routing. 13712 */ 13713 if (!(strict_check)) 13714 return (ire); 13715 13716 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13717 ILLF_ROUTER) != 0) { 13718 return (ire); 13719 } 13720 13721 ire_refrele(ire); 13722 return (NULL); 13723 } 13724 13725 ire_t * 13726 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13727 { 13728 ipha_t *ipha; 13729 ipaddr_t ip_dst, ip_src; 13730 ire_t *src_ire = NULL; 13731 ill_t *stq_ill; 13732 uint_t hlen; 13733 uint_t pkt_len; 13734 uint32_t sum; 13735 queue_t *dev_q; 13736 boolean_t check_multirt = B_FALSE; 13737 ip_stack_t *ipst = ill->ill_ipst; 13738 13739 ipha = (ipha_t *)mp->b_rptr; 13740 13741 /* 13742 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13743 * The loopback address check for both src and dst has already 13744 * been checked in ip_input 13745 */ 13746 ip_dst = ntohl(dst); 13747 ip_src = ntohl(ipha->ipha_src); 13748 13749 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13750 IN_CLASSD(ip_src)) { 13751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13752 goto drop; 13753 } 13754 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13755 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13756 13757 if (src_ire != NULL) { 13758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13759 goto drop; 13760 } 13761 13762 13763 /* No ire cache of nexthop. So first create one */ 13764 if (ire == NULL) { 13765 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13766 /* 13767 * We only come to ip_fast_forward if ip_cgtp_filter is 13768 * is not set. So upon return from ire_forward 13769 * check_multirt should remain as false. 13770 */ 13771 ASSERT(!check_multirt); 13772 if (ire == NULL) { 13773 /* An attempt was made to forward the packet */ 13774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13776 mp->b_prev = mp->b_next = 0; 13777 /* send icmp unreachable */ 13778 /* Sent by forwarding path, and router is global zone */ 13779 if (ip_source_routed(ipha, ipst)) { 13780 icmp_unreachable(ill->ill_wq, mp, 13781 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13782 ipst); 13783 } else { 13784 icmp_unreachable(ill->ill_wq, mp, 13785 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13786 ipst); 13787 } 13788 return (ire); 13789 } 13790 } 13791 13792 /* 13793 * Forwarding fastpath exception case: 13794 * If either of the follwoing case is true, we take 13795 * the slowpath 13796 * o forwarding is not enabled 13797 * o incoming and outgoing interface are the same, or the same 13798 * IPMP group 13799 * o corresponding ire is in incomplete state 13800 * o packet needs fragmentation 13801 * 13802 * The codeflow from here on is thus: 13803 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13804 */ 13805 pkt_len = ntohs(ipha->ipha_length); 13806 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13807 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13808 !(ill->ill_flags & ILLF_ROUTER) || 13809 (ill == stq_ill) || 13810 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13811 (ire->ire_nce == NULL) || 13812 (ire->ire_nce->nce_state != ND_REACHABLE) || 13813 (pkt_len > ire->ire_max_frag) || 13814 ipha->ipha_ttl <= 1) { 13815 ip_rput_process_forward(ill->ill_rq, mp, ire, 13816 ipha, ill, B_FALSE); 13817 return (ire); 13818 } 13819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13820 13821 DTRACE_PROBE4(ip4__forwarding__start, 13822 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13823 13824 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13825 ipst->ips_ipv4firewall_forwarding, 13826 ill, stq_ill, ipha, mp, mp, ipst); 13827 13828 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13829 13830 if (mp == NULL) 13831 goto drop; 13832 13833 mp->b_datap->db_struioun.cksum.flags = 0; 13834 /* Adjust the checksum to reflect the ttl decrement. */ 13835 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13836 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13837 ipha->ipha_ttl--; 13838 13839 dev_q = ire->ire_stq->q_next; 13840 if ((dev_q->q_next != NULL || 13841 dev_q->q_first != NULL) && !canput(dev_q)) { 13842 goto indiscard; 13843 } 13844 13845 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13846 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13847 13848 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13849 mblk_t *mpip = mp; 13850 13851 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13852 if (mp != NULL) { 13853 DTRACE_PROBE4(ip4__physical__out__start, 13854 ill_t *, NULL, ill_t *, stq_ill, 13855 ipha_t *, ipha, mblk_t *, mp); 13856 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13857 ipst->ips_ipv4firewall_physical_out, 13858 NULL, stq_ill, ipha, mp, mpip, ipst); 13859 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13860 mp); 13861 if (mp == NULL) 13862 goto drop; 13863 13864 UPDATE_IB_PKT_COUNT(ire); 13865 ire->ire_last_used_time = lbolt; 13866 BUMP_MIB(stq_ill->ill_ip_mib, 13867 ipIfStatsHCOutForwDatagrams); 13868 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13869 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13870 pkt_len); 13871 putnext(ire->ire_stq, mp); 13872 return (ire); 13873 } 13874 } 13875 13876 indiscard: 13877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13878 drop: 13879 if (mp != NULL) 13880 freemsg(mp); 13881 if (src_ire != NULL) 13882 ire_refrele(src_ire); 13883 return (ire); 13884 13885 } 13886 13887 /* 13888 * This function is called in the forwarding slowpath, when 13889 * either the ire lacks the link-layer address, or the packet needs 13890 * further processing(eg. fragmentation), before transmission. 13891 */ 13892 13893 static void 13894 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13895 ill_t *ill, boolean_t ll_multicast) 13896 { 13897 ill_group_t *ill_group; 13898 ill_group_t *ire_group; 13899 queue_t *dev_q; 13900 ire_t *src_ire; 13901 ip_stack_t *ipst = ill->ill_ipst; 13902 13903 ASSERT(ire->ire_stq != NULL); 13904 13905 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13906 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13907 13908 if (ll_multicast != 0) { 13909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13910 goto drop_pkt; 13911 } 13912 13913 /* 13914 * check if ipha_src is a broadcast address. Note that this 13915 * check is redundant when we get here from ip_fast_forward() 13916 * which has already done this check. However, since we can 13917 * also get here from ip_rput_process_broadcast() or, for 13918 * for the slow path through ip_fast_forward(), we perform 13919 * the check again for code-reusability 13920 */ 13921 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13922 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13923 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13924 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13925 if (src_ire != NULL) 13926 ire_refrele(src_ire); 13927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13928 ip2dbg(("ip_rput_process_forward: Received packet with" 13929 " bad src/dst address on %s\n", ill->ill_name)); 13930 goto drop_pkt; 13931 } 13932 13933 ill_group = ill->ill_group; 13934 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13935 /* 13936 * Check if we want to forward this one at this time. 13937 * We allow source routed packets on a host provided that 13938 * they go out the same interface or same interface group 13939 * as they came in on. 13940 * 13941 * XXX To be quicker, we may wish to not chase pointers to 13942 * get the ILLF_ROUTER flag and instead store the 13943 * forwarding policy in the ire. An unfortunate 13944 * side-effect of that would be requiring an ire flush 13945 * whenever the ILLF_ROUTER flag changes. 13946 */ 13947 if (((ill->ill_flags & 13948 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13949 ILLF_ROUTER) == 0) && 13950 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 13951 (ill_group != NULL && ill_group == ire_group)))) { 13952 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13953 if (ip_source_routed(ipha, ipst)) { 13954 q = WR(q); 13955 /* 13956 * Clear the indication that this may have 13957 * hardware checksum as we are not using it. 13958 */ 13959 DB_CKSUMFLAGS(mp) = 0; 13960 /* Sent by forwarding path, and router is global zone */ 13961 icmp_unreachable(q, mp, 13962 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 13963 return; 13964 } 13965 goto drop_pkt; 13966 } 13967 13968 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13969 13970 /* Packet is being forwarded. Turning off hwcksum flag. */ 13971 DB_CKSUMFLAGS(mp) = 0; 13972 if (ipst->ips_ip_g_send_redirects) { 13973 /* 13974 * Check whether the incoming interface and outgoing 13975 * interface is part of the same group. If so, 13976 * send redirects. 13977 * 13978 * Check the source address to see if it originated 13979 * on the same logical subnet it is going back out on. 13980 * If so, we should be able to send it a redirect. 13981 * Avoid sending a redirect if the destination 13982 * is directly connected (i.e., ipha_dst is the same 13983 * as ire_gateway_addr or the ire_addr of the 13984 * nexthop IRE_CACHE ), or if the packet was source 13985 * routed out this interface. 13986 */ 13987 ipaddr_t src, nhop; 13988 mblk_t *mp1; 13989 ire_t *nhop_ire = NULL; 13990 13991 /* 13992 * Check whether ire_rfq and q are from the same ill 13993 * or if they are not same, they at least belong 13994 * to the same group. If so, send redirects. 13995 */ 13996 if ((ire->ire_rfq == q || 13997 (ill_group != NULL && ill_group == ire_group)) && 13998 !ip_source_routed(ipha, ipst)) { 13999 14000 nhop = (ire->ire_gateway_addr != 0 ? 14001 ire->ire_gateway_addr : ire->ire_addr); 14002 14003 if (ipha->ipha_dst == nhop) { 14004 /* 14005 * We avoid sending a redirect if the 14006 * destination is directly connected 14007 * because it is possible that multiple 14008 * IP subnets may have been configured on 14009 * the link, and the source may not 14010 * be on the same subnet as ip destination, 14011 * even though they are on the same 14012 * physical link. 14013 */ 14014 goto sendit; 14015 } 14016 14017 src = ipha->ipha_src; 14018 14019 /* 14020 * We look up the interface ire for the nexthop, 14021 * to see if ipha_src is in the same subnet 14022 * as the nexthop. 14023 * 14024 * Note that, if, in the future, IRE_CACHE entries 14025 * are obsoleted, this lookup will not be needed, 14026 * as the ire passed to this function will be the 14027 * same as the nhop_ire computed below. 14028 */ 14029 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14030 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14031 0, NULL, MATCH_IRE_TYPE, ipst); 14032 14033 if (nhop_ire != NULL) { 14034 if ((src & nhop_ire->ire_mask) == 14035 (nhop & nhop_ire->ire_mask)) { 14036 /* 14037 * The source is directly connected. 14038 * Just copy the ip header (which is 14039 * in the first mblk) 14040 */ 14041 mp1 = copyb(mp); 14042 if (mp1 != NULL) { 14043 icmp_send_redirect(WR(q), mp1, 14044 nhop, ipst); 14045 } 14046 } 14047 ire_refrele(nhop_ire); 14048 } 14049 } 14050 } 14051 sendit: 14052 dev_q = ire->ire_stq->q_next; 14053 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14055 freemsg(mp); 14056 return; 14057 } 14058 14059 ip_rput_forward(ire, ipha, mp, ill); 14060 return; 14061 14062 drop_pkt: 14063 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14064 freemsg(mp); 14065 } 14066 14067 ire_t * 14068 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14069 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14070 { 14071 queue_t *q; 14072 uint16_t hcksumflags; 14073 ip_stack_t *ipst = ill->ill_ipst; 14074 14075 q = *qp; 14076 14077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14078 14079 /* 14080 * Clear the indication that this may have hardware 14081 * checksum as we are not using it for forwarding. 14082 */ 14083 hcksumflags = DB_CKSUMFLAGS(mp); 14084 DB_CKSUMFLAGS(mp) = 0; 14085 14086 /* 14087 * Directed broadcast forwarding: if the packet came in over a 14088 * different interface then it is routed out over we can forward it. 14089 */ 14090 if (ipha->ipha_protocol == IPPROTO_TCP) { 14091 ire_refrele(ire); 14092 freemsg(mp); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14094 return (NULL); 14095 } 14096 /* 14097 * For multicast we have set dst to be INADDR_BROADCAST 14098 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14099 * only for broadcast packets. 14100 */ 14101 if (!CLASSD(ipha->ipha_dst)) { 14102 ire_t *new_ire; 14103 ipif_t *ipif; 14104 /* 14105 * For ill groups, as the switch duplicates broadcasts 14106 * across all the ports, we need to filter out and 14107 * send up only one copy. There is one copy for every 14108 * broadcast address on each ill. Thus, we look for a 14109 * specific IRE on this ill and look at IRE_MARK_NORECV 14110 * later to see whether this ill is eligible to receive 14111 * them or not. ill_nominate_bcast_rcv() nominates only 14112 * one set of IREs for receiving. 14113 */ 14114 14115 ipif = ipif_get_next_ipif(NULL, ill); 14116 if (ipif == NULL) { 14117 ire_refrele(ire); 14118 freemsg(mp); 14119 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14120 return (NULL); 14121 } 14122 new_ire = ire_ctable_lookup(dst, 0, 0, 14123 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14124 ipif_refrele(ipif); 14125 14126 if (new_ire != NULL) { 14127 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14128 ire_refrele(ire); 14129 ire_refrele(new_ire); 14130 freemsg(mp); 14131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14132 return (NULL); 14133 } 14134 /* 14135 * In the special case of multirouted broadcast 14136 * packets, we unconditionally need to "gateway" 14137 * them to the appropriate interface here. 14138 * In the normal case, this cannot happen, because 14139 * there is no broadcast IRE tagged with the 14140 * RTF_MULTIRT flag. 14141 */ 14142 if (new_ire->ire_flags & RTF_MULTIRT) { 14143 ire_refrele(new_ire); 14144 if (ire->ire_rfq != NULL) { 14145 q = ire->ire_rfq; 14146 *qp = q; 14147 } 14148 } else { 14149 ire_refrele(ire); 14150 ire = new_ire; 14151 } 14152 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14153 if (!ipst->ips_ip_g_forward_directed_bcast) { 14154 /* 14155 * Free the message if 14156 * ip_g_forward_directed_bcast is turned 14157 * off for non-local broadcast. 14158 */ 14159 ire_refrele(ire); 14160 freemsg(mp); 14161 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14162 return (NULL); 14163 } 14164 } else { 14165 /* 14166 * This CGTP packet successfully passed the 14167 * CGTP filter, but the related CGTP 14168 * broadcast IRE has not been found, 14169 * meaning that the redundant ipif is 14170 * probably down. However, if we discarded 14171 * this packet, its duplicate would be 14172 * filtered out by the CGTP filter so none 14173 * of them would get through. So we keep 14174 * going with this one. 14175 */ 14176 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14177 if (ire->ire_rfq != NULL) { 14178 q = ire->ire_rfq; 14179 *qp = q; 14180 } 14181 } 14182 } 14183 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14184 /* 14185 * Verify that there are not more then one 14186 * IRE_BROADCAST with this broadcast address which 14187 * has ire_stq set. 14188 * TODO: simplify, loop over all IRE's 14189 */ 14190 ire_t *ire1; 14191 int num_stq = 0; 14192 mblk_t *mp1; 14193 14194 /* Find the first one with ire_stq set */ 14195 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14196 for (ire1 = ire; ire1 && 14197 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14198 ire1 = ire1->ire_next) 14199 ; 14200 if (ire1) { 14201 ire_refrele(ire); 14202 ire = ire1; 14203 IRE_REFHOLD(ire); 14204 } 14205 14206 /* Check if there are additional ones with stq set */ 14207 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14208 if (ire->ire_addr != ire1->ire_addr) 14209 break; 14210 if (ire1->ire_stq) { 14211 num_stq++; 14212 break; 14213 } 14214 } 14215 rw_exit(&ire->ire_bucket->irb_lock); 14216 if (num_stq == 1 && ire->ire_stq != NULL) { 14217 ip1dbg(("ip_rput_process_broadcast: directed " 14218 "broadcast to 0x%x\n", 14219 ntohl(ire->ire_addr))); 14220 mp1 = copymsg(mp); 14221 if (mp1) { 14222 switch (ipha->ipha_protocol) { 14223 case IPPROTO_UDP: 14224 ip_udp_input(q, mp1, ipha, ire, ill); 14225 break; 14226 default: 14227 ip_proto_input(q, mp1, ipha, ire, ill); 14228 break; 14229 } 14230 } 14231 /* 14232 * Adjust ttl to 2 (1+1 - the forward engine 14233 * will decrement it by one. 14234 */ 14235 if (ip_csum_hdr(ipha)) { 14236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14237 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14238 freemsg(mp); 14239 ire_refrele(ire); 14240 return (NULL); 14241 } 14242 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14243 ipha->ipha_hdr_checksum = 0; 14244 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14245 ip_rput_process_forward(q, mp, ire, ipha, 14246 ill, ll_multicast); 14247 ire_refrele(ire); 14248 return (NULL); 14249 } 14250 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14251 ntohl(ire->ire_addr))); 14252 } 14253 14254 14255 /* Restore any hardware checksum flags */ 14256 DB_CKSUMFLAGS(mp) = hcksumflags; 14257 return (ire); 14258 } 14259 14260 /* ARGSUSED */ 14261 static boolean_t 14262 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14263 int *ll_multicast, ipaddr_t *dstp) 14264 { 14265 ip_stack_t *ipst = ill->ill_ipst; 14266 14267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14268 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14269 ntohs(ipha->ipha_length)); 14270 14271 /* 14272 * Forward packets only if we have joined the allmulti 14273 * group on this interface. 14274 */ 14275 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14276 int retval; 14277 14278 /* 14279 * Clear the indication that this may have hardware 14280 * checksum as we are not using it. 14281 */ 14282 DB_CKSUMFLAGS(mp) = 0; 14283 retval = ip_mforward(ill, ipha, mp); 14284 /* ip_mforward updates mib variables if needed */ 14285 /* clear b_prev - used by ip_mroute_decap */ 14286 mp->b_prev = NULL; 14287 14288 switch (retval) { 14289 case 0: 14290 /* 14291 * pkt is okay and arrived on phyint. 14292 * 14293 * If we are running as a multicast router 14294 * we need to see all IGMP and/or PIM packets. 14295 */ 14296 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14297 (ipha->ipha_protocol == IPPROTO_PIM)) { 14298 goto done; 14299 } 14300 break; 14301 case -1: 14302 /* pkt is mal-formed, toss it */ 14303 goto drop_pkt; 14304 case 1: 14305 /* pkt is okay and arrived on a tunnel */ 14306 /* 14307 * If we are running a multicast router 14308 * we need to see all igmp packets. 14309 */ 14310 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14311 *dstp = INADDR_BROADCAST; 14312 *ll_multicast = 1; 14313 return (B_FALSE); 14314 } 14315 14316 goto drop_pkt; 14317 } 14318 } 14319 14320 ILM_WALKER_HOLD(ill); 14321 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14322 /* 14323 * This might just be caused by the fact that 14324 * multiple IP Multicast addresses map to the same 14325 * link layer multicast - no need to increment counter! 14326 */ 14327 ILM_WALKER_RELE(ill); 14328 freemsg(mp); 14329 return (B_TRUE); 14330 } 14331 ILM_WALKER_RELE(ill); 14332 done: 14333 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14334 /* 14335 * This assumes the we deliver to all streams for multicast 14336 * and broadcast packets. 14337 */ 14338 *dstp = INADDR_BROADCAST; 14339 *ll_multicast = 1; 14340 return (B_FALSE); 14341 drop_pkt: 14342 ip2dbg(("ip_rput: drop pkt\n")); 14343 freemsg(mp); 14344 return (B_TRUE); 14345 } 14346 14347 static boolean_t 14348 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14349 int *ll_multicast, mblk_t **mpp) 14350 { 14351 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14352 boolean_t must_copy = B_FALSE; 14353 struct iocblk *iocp; 14354 ipha_t *ipha; 14355 ip_stack_t *ipst = ill->ill_ipst; 14356 14357 #define rptr ((uchar_t *)ipha) 14358 14359 first_mp = *first_mpp; 14360 mp = *mpp; 14361 14362 ASSERT(first_mp == mp); 14363 14364 /* 14365 * if db_ref > 1 then copymsg and free original. Packet may be 14366 * changed and do not want other entity who has a reference to this 14367 * message to trip over the changes. This is a blind change because 14368 * trying to catch all places that might change packet is too 14369 * difficult (since it may be a module above this one) 14370 * 14371 * This corresponds to the non-fast path case. We walk down the full 14372 * chain in this case, and check the db_ref count of all the dblks, 14373 * and do a copymsg if required. It is possible that the db_ref counts 14374 * of the data blocks in the mblk chain can be different. 14375 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14376 * count of 1, followed by a M_DATA block with a ref count of 2, if 14377 * 'snoop' is running. 14378 */ 14379 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14380 if (mp1->b_datap->db_ref > 1) { 14381 must_copy = B_TRUE; 14382 break; 14383 } 14384 } 14385 14386 if (must_copy) { 14387 mp1 = copymsg(mp); 14388 if (mp1 == NULL) { 14389 for (mp1 = mp; mp1 != NULL; 14390 mp1 = mp1->b_cont) { 14391 mp1->b_next = NULL; 14392 mp1->b_prev = NULL; 14393 } 14394 freemsg(mp); 14395 if (ill != NULL) { 14396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14397 } else { 14398 BUMP_MIB(&ipst->ips_ip_mib, 14399 ipIfStatsInDiscards); 14400 } 14401 return (B_TRUE); 14402 } 14403 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14404 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14405 /* Copy b_prev - used by ip_mroute_decap */ 14406 to_mp->b_prev = from_mp->b_prev; 14407 from_mp->b_prev = NULL; 14408 } 14409 *first_mpp = first_mp = mp1; 14410 freemsg(mp); 14411 mp = mp1; 14412 *mpp = mp1; 14413 } 14414 14415 ipha = (ipha_t *)mp->b_rptr; 14416 14417 /* 14418 * previous code has a case for M_DATA. 14419 * We want to check how that happens. 14420 */ 14421 ASSERT(first_mp->b_datap->db_type != M_DATA); 14422 switch (first_mp->b_datap->db_type) { 14423 case M_PROTO: 14424 case M_PCPROTO: 14425 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14426 DL_UNITDATA_IND) { 14427 /* Go handle anything other than data elsewhere. */ 14428 ip_rput_dlpi(q, mp); 14429 return (B_TRUE); 14430 } 14431 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14432 /* Ditch the DLPI header. */ 14433 mp1 = mp->b_cont; 14434 ASSERT(first_mp == mp); 14435 *first_mpp = mp1; 14436 freeb(mp); 14437 *mpp = mp1; 14438 return (B_FALSE); 14439 case M_IOCACK: 14440 ip1dbg(("got iocack ")); 14441 iocp = (struct iocblk *)mp->b_rptr; 14442 switch (iocp->ioc_cmd) { 14443 case DL_IOC_HDR_INFO: 14444 ill = (ill_t *)q->q_ptr; 14445 ill_fastpath_ack(ill, mp); 14446 return (B_TRUE); 14447 case SIOCSTUNPARAM: 14448 case OSIOCSTUNPARAM: 14449 /* Go through qwriter_ip */ 14450 break; 14451 case SIOCGTUNPARAM: 14452 case OSIOCGTUNPARAM: 14453 ip_rput_other(NULL, q, mp, NULL); 14454 return (B_TRUE); 14455 default: 14456 putnext(q, mp); 14457 return (B_TRUE); 14458 } 14459 /* FALLTHRU */ 14460 case M_ERROR: 14461 case M_HANGUP: 14462 /* 14463 * Since this is on the ill stream we unconditionally 14464 * bump up the refcount 14465 */ 14466 ill_refhold(ill); 14467 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14468 return (B_TRUE); 14469 case M_CTL: 14470 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14471 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14472 IPHADA_M_CTL)) { 14473 /* 14474 * It's an IPsec accelerated packet. 14475 * Make sure that the ill from which we received the 14476 * packet has enabled IPsec hardware acceleration. 14477 */ 14478 if (!(ill->ill_capabilities & 14479 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14480 /* IPsec kstats: bean counter */ 14481 freemsg(mp); 14482 return (B_TRUE); 14483 } 14484 14485 /* 14486 * Make mp point to the mblk following the M_CTL, 14487 * then process according to type of mp. 14488 * After this processing, first_mp will point to 14489 * the data-attributes and mp to the pkt following 14490 * the M_CTL. 14491 */ 14492 mp = first_mp->b_cont; 14493 if (mp == NULL) { 14494 freemsg(first_mp); 14495 return (B_TRUE); 14496 } 14497 /* 14498 * A Hardware Accelerated packet can only be M_DATA 14499 * ESP or AH packet. 14500 */ 14501 if (mp->b_datap->db_type != M_DATA) { 14502 /* non-M_DATA IPsec accelerated packet */ 14503 IPSECHW_DEBUG(IPSECHW_PKT, 14504 ("non-M_DATA IPsec accelerated pkt\n")); 14505 freemsg(first_mp); 14506 return (B_TRUE); 14507 } 14508 ipha = (ipha_t *)mp->b_rptr; 14509 if (ipha->ipha_protocol != IPPROTO_AH && 14510 ipha->ipha_protocol != IPPROTO_ESP) { 14511 IPSECHW_DEBUG(IPSECHW_PKT, 14512 ("non-M_DATA IPsec accelerated pkt\n")); 14513 freemsg(first_mp); 14514 return (B_TRUE); 14515 } 14516 *mpp = mp; 14517 return (B_FALSE); 14518 } 14519 putnext(q, mp); 14520 return (B_TRUE); 14521 case M_IOCNAK: 14522 ip1dbg(("got iocnak ")); 14523 iocp = (struct iocblk *)mp->b_rptr; 14524 switch (iocp->ioc_cmd) { 14525 case SIOCSTUNPARAM: 14526 case OSIOCSTUNPARAM: 14527 /* 14528 * Since this is on the ill stream we unconditionally 14529 * bump up the refcount 14530 */ 14531 ill_refhold(ill); 14532 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14533 return (B_TRUE); 14534 case DL_IOC_HDR_INFO: 14535 case SIOCGTUNPARAM: 14536 case OSIOCGTUNPARAM: 14537 ip_rput_other(NULL, q, mp, NULL); 14538 return (B_TRUE); 14539 default: 14540 break; 14541 } 14542 /* FALLTHRU */ 14543 default: 14544 putnext(q, mp); 14545 return (B_TRUE); 14546 } 14547 } 14548 14549 /* Read side put procedure. Packets coming from the wire arrive here. */ 14550 void 14551 ip_rput(queue_t *q, mblk_t *mp) 14552 { 14553 ill_t *ill = (ill_t *)q->q_ptr; 14554 ip_stack_t *ipst = ill->ill_ipst; 14555 union DL_primitives *dl; 14556 14557 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14558 14559 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14560 /* 14561 * If things are opening or closing, only accept high-priority 14562 * DLPI messages. (On open ill->ill_ipif has not yet been 14563 * created; on close, things hanging off the ill may have been 14564 * freed already.) 14565 */ 14566 dl = (union DL_primitives *)mp->b_rptr; 14567 if (DB_TYPE(mp) != M_PCPROTO || 14568 dl->dl_primitive == DL_UNITDATA_IND) { 14569 /* 14570 * SIOC[GS]TUNPARAM ioctls can come here. 14571 */ 14572 inet_freemsg(mp); 14573 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14574 "ip_rput_end: q %p (%S)", q, "uninit"); 14575 return; 14576 } 14577 } 14578 14579 /* 14580 * if db_ref > 1 then copymsg and free original. Packet may be 14581 * changed and we do not want the other entity who has a reference to 14582 * this message to trip over the changes. This is a blind change because 14583 * trying to catch all places that might change the packet is too 14584 * difficult. 14585 * 14586 * This corresponds to the fast path case, where we have a chain of 14587 * M_DATA mblks. We check the db_ref count of only the 1st data block 14588 * in the mblk chain. There doesn't seem to be a reason why a device 14589 * driver would send up data with varying db_ref counts in the mblk 14590 * chain. In any case the Fast path is a private interface, and our 14591 * drivers don't do such a thing. Given the above assumption, there is 14592 * no need to walk down the entire mblk chain (which could have a 14593 * potential performance problem) 14594 */ 14595 if (mp->b_datap->db_ref > 1) { 14596 mblk_t *mp1; 14597 boolean_t adjusted = B_FALSE; 14598 IP_STAT(ipst, ip_db_ref); 14599 14600 /* 14601 * The IP_RECVSLLA option depends on having the link layer 14602 * header. First check that: 14603 * a> the underlying device is of type ether, since this 14604 * option is currently supported only over ethernet. 14605 * b> there is enough room to copy over the link layer header. 14606 * 14607 * Once the checks are done, adjust rptr so that the link layer 14608 * header will be copied via copymsg. Note that, IFT_ETHER may 14609 * be returned by some non-ethernet drivers but in this case the 14610 * second check will fail. 14611 */ 14612 if (ill->ill_type == IFT_ETHER && 14613 (mp->b_rptr - mp->b_datap->db_base) >= 14614 sizeof (struct ether_header)) { 14615 mp->b_rptr -= sizeof (struct ether_header); 14616 adjusted = B_TRUE; 14617 } 14618 mp1 = copymsg(mp); 14619 if (mp1 == NULL) { 14620 mp->b_next = NULL; 14621 /* clear b_prev - used by ip_mroute_decap */ 14622 mp->b_prev = NULL; 14623 freemsg(mp); 14624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14625 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14626 "ip_rput_end: q %p (%S)", q, "copymsg"); 14627 return; 14628 } 14629 if (adjusted) { 14630 /* 14631 * Copy is done. Restore the pointer in the _new_ mblk 14632 */ 14633 mp1->b_rptr += sizeof (struct ether_header); 14634 } 14635 /* Copy b_prev - used by ip_mroute_decap */ 14636 mp1->b_prev = mp->b_prev; 14637 mp->b_prev = NULL; 14638 freemsg(mp); 14639 mp = mp1; 14640 } 14641 14642 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14643 "ip_rput_end: q %p (%S)", q, "end"); 14644 14645 ip_input(ill, NULL, mp, NULL); 14646 } 14647 14648 /* 14649 * Direct read side procedure capable of dealing with chains. GLDv3 based 14650 * drivers call this function directly with mblk chains while STREAMS 14651 * read side procedure ip_rput() calls this for single packet with ip_ring 14652 * set to NULL to process one packet at a time. 14653 * 14654 * The ill will always be valid if this function is called directly from 14655 * the driver. 14656 * 14657 * If ip_input() is called from GLDv3: 14658 * 14659 * - This must be a non-VLAN IP stream. 14660 * - 'mp' is either an untagged or a special priority-tagged packet. 14661 * - Any VLAN tag that was in the MAC header has been stripped. 14662 * 14663 * If the IP header in packet is not 32-bit aligned, every message in the 14664 * chain will be aligned before further operations. This is required on SPARC 14665 * platform. 14666 */ 14667 /* ARGSUSED */ 14668 void 14669 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14670 struct mac_header_info_s *mhip) 14671 { 14672 ipaddr_t dst = NULL; 14673 ipaddr_t prev_dst; 14674 ire_t *ire = NULL; 14675 ipha_t *ipha; 14676 uint_t pkt_len; 14677 ssize_t len; 14678 uint_t opt_len; 14679 int ll_multicast; 14680 int cgtp_flt_pkt; 14681 queue_t *q = ill->ill_rq; 14682 squeue_t *curr_sqp = NULL; 14683 mblk_t *head = NULL; 14684 mblk_t *tail = NULL; 14685 mblk_t *first_mp; 14686 mblk_t *mp; 14687 mblk_t *dmp; 14688 int cnt = 0; 14689 ip_stack_t *ipst = ill->ill_ipst; 14690 14691 ASSERT(mp_chain != NULL); 14692 ASSERT(ill != NULL); 14693 14694 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14695 14696 #define rptr ((uchar_t *)ipha) 14697 14698 while (mp_chain != NULL) { 14699 first_mp = mp = mp_chain; 14700 mp_chain = mp_chain->b_next; 14701 mp->b_next = NULL; 14702 ll_multicast = 0; 14703 14704 /* 14705 * We do ire caching from one iteration to 14706 * another. In the event the packet chain contains 14707 * all packets from the same dst, this caching saves 14708 * an ire_cache_lookup for each of the succeeding 14709 * packets in a packet chain. 14710 */ 14711 prev_dst = dst; 14712 14713 /* 14714 * Check and align the IP header. 14715 */ 14716 if (DB_TYPE(mp) == M_DATA) { 14717 dmp = mp; 14718 } else if (DB_TYPE(mp) == M_PROTO && 14719 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14720 dmp = mp->b_cont; 14721 } else { 14722 dmp = NULL; 14723 } 14724 if (dmp != NULL) { 14725 /* 14726 * IP header ptr not aligned? 14727 * OR IP header not complete in first mblk 14728 */ 14729 if (!OK_32PTR(dmp->b_rptr) || 14730 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14731 if (!ip_check_and_align_header(q, dmp, ipst)) 14732 continue; 14733 } 14734 } 14735 14736 /* 14737 * ip_input fast path 14738 */ 14739 14740 /* mblk type is not M_DATA */ 14741 if (DB_TYPE(mp) != M_DATA) { 14742 if (ip_rput_process_notdata(q, &first_mp, ill, 14743 &ll_multicast, &mp)) 14744 continue; 14745 } 14746 14747 /* Make sure its an M_DATA and that its aligned */ 14748 ASSERT(DB_TYPE(mp) == M_DATA); 14749 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14750 14751 ipha = (ipha_t *)mp->b_rptr; 14752 len = mp->b_wptr - rptr; 14753 pkt_len = ntohs(ipha->ipha_length); 14754 14755 /* 14756 * We must count all incoming packets, even if they end 14757 * up being dropped later on. 14758 */ 14759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14760 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14761 14762 /* multiple mblk or too short */ 14763 len -= pkt_len; 14764 if (len != 0) { 14765 /* 14766 * Make sure we have data length consistent 14767 * with the IP header. 14768 */ 14769 if (mp->b_cont == NULL) { 14770 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14771 BUMP_MIB(ill->ill_ip_mib, 14772 ipIfStatsInHdrErrors); 14773 ip2dbg(("ip_input: drop pkt\n")); 14774 freemsg(mp); 14775 continue; 14776 } 14777 mp->b_wptr = rptr + pkt_len; 14778 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14779 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14780 BUMP_MIB(ill->ill_ip_mib, 14781 ipIfStatsInHdrErrors); 14782 ip2dbg(("ip_input: drop pkt\n")); 14783 freemsg(mp); 14784 continue; 14785 } 14786 (void) adjmsg(mp, -len); 14787 IP_STAT(ipst, ip_multimblk3); 14788 } 14789 } 14790 14791 /* Obtain the dst of the current packet */ 14792 dst = ipha->ipha_dst; 14793 14794 if (IP_LOOPBACK_ADDR(dst) || 14795 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14797 cmn_err(CE_CONT, "dst %X src %X\n", 14798 dst, ipha->ipha_src); 14799 freemsg(mp); 14800 continue; 14801 } 14802 14803 /* 14804 * The event for packets being received from a 'physical' 14805 * interface is placed after validation of the source and/or 14806 * destination address as being local so that packets can be 14807 * redirected to loopback addresses using ipnat. 14808 */ 14809 DTRACE_PROBE4(ip4__physical__in__start, 14810 ill_t *, ill, ill_t *, NULL, 14811 ipha_t *, ipha, mblk_t *, first_mp); 14812 14813 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14814 ipst->ips_ipv4firewall_physical_in, 14815 ill, NULL, ipha, first_mp, mp, ipst); 14816 14817 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14818 14819 if (first_mp == NULL) { 14820 continue; 14821 } 14822 dst = ipha->ipha_dst; 14823 14824 /* 14825 * Attach any necessary label information to 14826 * this packet 14827 */ 14828 if (is_system_labeled() && 14829 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14830 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14831 freemsg(mp); 14832 continue; 14833 } 14834 14835 /* 14836 * Reuse the cached ire only if the ipha_dst of the previous 14837 * packet is the same as the current packet AND it is not 14838 * INADDR_ANY. 14839 */ 14840 if (!(dst == prev_dst && dst != INADDR_ANY) && 14841 (ire != NULL)) { 14842 ire_refrele(ire); 14843 ire = NULL; 14844 } 14845 opt_len = ipha->ipha_version_and_hdr_length - 14846 IP_SIMPLE_HDR_VERSION; 14847 14848 /* 14849 * Check to see if we can take the fastpath. 14850 * That is possible if the following conditions are met 14851 * o Tsol disabled 14852 * o CGTP disabled 14853 * o ipp_action_count is 0 14854 * o no options in the packet 14855 * o not a RSVP packet 14856 * o not a multicast packet 14857 */ 14858 if (!is_system_labeled() && 14859 !ip_cgtp_filter && ipp_action_count == 0 && 14860 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14861 !ll_multicast && !CLASSD(dst)) { 14862 if (ire == NULL) 14863 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 14864 ipst); 14865 14866 /* incoming packet is for forwarding */ 14867 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14868 ire = ip_fast_forward(ire, dst, ill, mp); 14869 continue; 14870 } 14871 /* incoming packet is for local consumption */ 14872 if (ire->ire_type & IRE_LOCAL) 14873 goto local; 14874 } 14875 14876 /* 14877 * Disable ire caching for anything more complex 14878 * than the simple fast path case we checked for above. 14879 */ 14880 if (ire != NULL) { 14881 ire_refrele(ire); 14882 ire = NULL; 14883 } 14884 14885 /* Full-blown slow path */ 14886 if (opt_len != 0) { 14887 if (len != 0) 14888 IP_STAT(ipst, ip_multimblk4); 14889 else 14890 IP_STAT(ipst, ip_ipoptions); 14891 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 14892 &dst, ipst)) 14893 continue; 14894 } 14895 14896 /* 14897 * Invoke the CGTP (multirouting) filtering module to process 14898 * the incoming packet. Packets identified as duplicates 14899 * must be discarded. Filtering is active only if the 14900 * the ip_cgtp_filter ndd variable is non-zero. 14901 * 14902 * Only applies to the shared stack since the filter_ops 14903 * do not carry an ip_stack_t or zoneid. 14904 */ 14905 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14906 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 14907 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 14908 cgtp_flt_pkt = 14909 ip_cgtp_filter_ops->cfo_filter(q, mp); 14910 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14911 freemsg(first_mp); 14912 continue; 14913 } 14914 } 14915 14916 /* 14917 * If rsvpd is running, let RSVP daemon handle its processing 14918 * and forwarding of RSVP multicast/unicast packets. 14919 * If rsvpd is not running but mrouted is running, RSVP 14920 * multicast packets are forwarded as multicast traffic 14921 * and RSVP unicast packets are forwarded by unicast router. 14922 * If neither rsvpd nor mrouted is running, RSVP multicast 14923 * packets are not forwarded, but the unicast packets are 14924 * forwarded like unicast traffic. 14925 */ 14926 if (ipha->ipha_protocol == IPPROTO_RSVP && 14927 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 14928 NULL) { 14929 /* RSVP packet and rsvpd running. Treat as ours */ 14930 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14931 /* 14932 * This assumes that we deliver to all streams for 14933 * multicast and broadcast packets. 14934 * We have to force ll_multicast to 1 to handle the 14935 * M_DATA messages passed in from ip_mroute_decap. 14936 */ 14937 dst = INADDR_BROADCAST; 14938 ll_multicast = 1; 14939 } else if (CLASSD(dst)) { 14940 /* packet is multicast */ 14941 mp->b_next = NULL; 14942 if (ip_rput_process_multicast(q, mp, ill, ipha, 14943 &ll_multicast, &dst)) 14944 continue; 14945 } 14946 14947 if (ire == NULL) { 14948 ire = ire_cache_lookup(dst, ALL_ZONES, 14949 MBLK_GETLABEL(mp), ipst); 14950 } 14951 14952 if (ire == NULL) { 14953 /* 14954 * No IRE for this destination, so it can't be for us. 14955 * Unless we are forwarding, drop the packet. 14956 * We have to let source routed packets through 14957 * since we don't yet know if they are 'ping -l' 14958 * packets i.e. if they will go out over the 14959 * same interface as they came in on. 14960 */ 14961 ire = ip_rput_noire(q, mp, ll_multicast, dst); 14962 if (ire == NULL) 14963 continue; 14964 } 14965 14966 /* 14967 * Broadcast IRE may indicate either broadcast or 14968 * multicast packet 14969 */ 14970 if (ire->ire_type == IRE_BROADCAST) { 14971 /* 14972 * Skip broadcast checks if packet is UDP multicast; 14973 * we'd rather not enter ip_rput_process_broadcast() 14974 * unless the packet is broadcast for real, since 14975 * that routine is a no-op for multicast. 14976 */ 14977 if (ipha->ipha_protocol != IPPROTO_UDP || 14978 !CLASSD(ipha->ipha_dst)) { 14979 ire = ip_rput_process_broadcast(&q, mp, 14980 ire, ipha, ill, dst, cgtp_flt_pkt, 14981 ll_multicast); 14982 if (ire == NULL) 14983 continue; 14984 } 14985 } else if (ire->ire_stq != NULL) { 14986 /* fowarding? */ 14987 ip_rput_process_forward(q, mp, ire, ipha, ill, 14988 ll_multicast); 14989 /* ip_rput_process_forward consumed the packet */ 14990 continue; 14991 } 14992 14993 local: 14994 /* 14995 * If the queue in the ire is different to the ingress queue 14996 * then we need to check to see if we can accept the packet. 14997 * Note that for multicast packets and broadcast packets sent 14998 * to a broadcast address which is shared between multiple 14999 * interfaces we should not do this since we just got a random 15000 * broadcast ire. 15001 */ 15002 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15003 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15004 ill)) == NULL) { 15005 /* Drop packet */ 15006 BUMP_MIB(ill->ill_ip_mib, 15007 ipIfStatsForwProhibits); 15008 freemsg(mp); 15009 continue; 15010 } 15011 if (ire->ire_rfq != NULL) 15012 q = ire->ire_rfq; 15013 } 15014 15015 switch (ipha->ipha_protocol) { 15016 case IPPROTO_TCP: 15017 ASSERT(first_mp == mp); 15018 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15019 mp, 0, q, ip_ring)) != NULL) { 15020 if (curr_sqp == NULL) { 15021 curr_sqp = GET_SQUEUE(mp); 15022 ASSERT(cnt == 0); 15023 cnt++; 15024 head = tail = mp; 15025 } else if (curr_sqp == GET_SQUEUE(mp)) { 15026 ASSERT(tail != NULL); 15027 cnt++; 15028 tail->b_next = mp; 15029 tail = mp; 15030 } else { 15031 /* 15032 * A different squeue. Send the 15033 * chain for the previous squeue on 15034 * its way. This shouldn't happen 15035 * often unless interrupt binding 15036 * changes. 15037 */ 15038 IP_STAT(ipst, ip_input_multi_squeue); 15039 squeue_enter_chain(curr_sqp, head, 15040 tail, cnt, SQTAG_IP_INPUT); 15041 curr_sqp = GET_SQUEUE(mp); 15042 head = mp; 15043 tail = mp; 15044 cnt = 1; 15045 } 15046 } 15047 continue; 15048 case IPPROTO_UDP: 15049 ASSERT(first_mp == mp); 15050 ip_udp_input(q, mp, ipha, ire, ill); 15051 continue; 15052 case IPPROTO_SCTP: 15053 ASSERT(first_mp == mp); 15054 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15055 q, dst); 15056 /* ire has been released by ip_sctp_input */ 15057 ire = NULL; 15058 continue; 15059 default: 15060 ip_proto_input(q, first_mp, ipha, ire, ill); 15061 continue; 15062 } 15063 } 15064 15065 if (ire != NULL) 15066 ire_refrele(ire); 15067 15068 if (head != NULL) 15069 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15070 15071 /* 15072 * This code is there just to make netperf/ttcp look good. 15073 * 15074 * Its possible that after being in polling mode (and having cleared 15075 * the backlog), squeues have turned the interrupt frequency higher 15076 * to improve latency at the expense of more CPU utilization (less 15077 * packets per interrupts or more number of interrupts). Workloads 15078 * like ttcp/netperf do manage to tickle polling once in a while 15079 * but for the remaining time, stay in higher interrupt mode since 15080 * their packet arrival rate is pretty uniform and this shows up 15081 * as higher CPU utilization. Since people care about CPU utilization 15082 * while running netperf/ttcp, turn the interrupt frequency back to 15083 * normal/default if polling has not been used in ip_poll_normal_ticks. 15084 */ 15085 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15086 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15087 ip_ring->rr_poll_state &= ~ILL_POLLING; 15088 ip_ring->rr_blank(ip_ring->rr_handle, 15089 ip_ring->rr_normal_blank_time, 15090 ip_ring->rr_normal_pkt_cnt); 15091 } 15092 } 15093 15094 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15095 "ip_input_end: q %p (%S)", q, "end"); 15096 #undef rptr 15097 } 15098 15099 static void 15100 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15101 t_uscalar_t err) 15102 { 15103 if (dl_err == DL_SYSERR) { 15104 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15105 "%s: %s failed: DL_SYSERR (errno %u)\n", 15106 ill->ill_name, dlpi_prim_str(prim), err); 15107 return; 15108 } 15109 15110 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15111 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15112 dlpi_err_str(dl_err)); 15113 } 15114 15115 /* 15116 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15117 * than DL_UNITDATA_IND messages. If we need to process this message 15118 * exclusively, we call qwriter_ip, in which case we also need to call 15119 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15120 */ 15121 void 15122 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15123 { 15124 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15125 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15126 ill_t *ill = (ill_t *)q->q_ptr; 15127 boolean_t pending; 15128 15129 ip1dbg(("ip_rput_dlpi")); 15130 if (dloa->dl_primitive == DL_ERROR_ACK) { 15131 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15132 "%s (0x%x), unix %u\n", ill->ill_name, 15133 dlpi_prim_str(dlea->dl_error_primitive), 15134 dlea->dl_error_primitive, 15135 dlpi_err_str(dlea->dl_errno), 15136 dlea->dl_errno, 15137 dlea->dl_unix_errno)); 15138 } 15139 15140 /* 15141 * If we received an ACK but didn't send a request for it, then it 15142 * can't be part of any pending operation; discard up-front. 15143 */ 15144 switch (dloa->dl_primitive) { 15145 case DL_NOTIFY_IND: 15146 pending = B_TRUE; 15147 break; 15148 case DL_ERROR_ACK: 15149 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15150 break; 15151 case DL_OK_ACK: 15152 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15153 break; 15154 case DL_INFO_ACK: 15155 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15156 break; 15157 case DL_BIND_ACK: 15158 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15159 break; 15160 case DL_PHYS_ADDR_ACK: 15161 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15162 break; 15163 case DL_NOTIFY_ACK: 15164 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15165 break; 15166 case DL_CONTROL_ACK: 15167 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15168 break; 15169 case DL_CAPABILITY_ACK: 15170 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15171 break; 15172 default: 15173 /* Not a DLPI message we support or were expecting */ 15174 freemsg(mp); 15175 return; 15176 } 15177 15178 if (!pending) { 15179 freemsg(mp); 15180 return; 15181 } 15182 15183 switch (dloa->dl_primitive) { 15184 case DL_ERROR_ACK: 15185 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15186 mutex_enter(&ill->ill_lock); 15187 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15188 cv_signal(&ill->ill_cv); 15189 mutex_exit(&ill->ill_lock); 15190 } 15191 break; 15192 15193 case DL_OK_ACK: 15194 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15195 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15196 switch (dloa->dl_correct_primitive) { 15197 case DL_UNBIND_REQ: 15198 mutex_enter(&ill->ill_lock); 15199 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15200 cv_signal(&ill->ill_cv); 15201 mutex_exit(&ill->ill_lock); 15202 break; 15203 15204 case DL_ENABMULTI_REQ: 15205 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15206 ill->ill_dlpi_multicast_state = IDS_OK; 15207 break; 15208 } 15209 break; 15210 default: 15211 break; 15212 } 15213 15214 /* 15215 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15216 * and we need to become writer to continue to process it. If it's not 15217 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15218 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15219 * some work as part of the current exclusive operation that actually 15220 * is not part of it -- which is wrong, but better than the 15221 * alternative of deadlock (if NEW_OP is always used). Someday, we 15222 * should track which DLPI requests have ACKs that we wait on 15223 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15224 * 15225 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15226 * Since this is on the ill stream we unconditionally bump up the 15227 * refcount without doing ILL_CAN_LOOKUP(). 15228 */ 15229 ill_refhold(ill); 15230 if (dloa->dl_primitive == DL_NOTIFY_IND) 15231 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15232 else 15233 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15234 } 15235 15236 /* 15237 * Handling of DLPI messages that require exclusive access to the ipsq. 15238 * 15239 * Need to do ill_pending_mp_release on ioctl completion, which could 15240 * happen here. (along with mi_copy_done) 15241 */ 15242 /* ARGSUSED */ 15243 static void 15244 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15245 { 15246 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15247 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15248 int err = 0; 15249 ill_t *ill; 15250 ipif_t *ipif = NULL; 15251 mblk_t *mp1 = NULL; 15252 conn_t *connp = NULL; 15253 t_uscalar_t paddrreq; 15254 mblk_t *mp_hw; 15255 boolean_t success; 15256 boolean_t ioctl_aborted = B_FALSE; 15257 boolean_t log = B_TRUE; 15258 hook_nic_event_t *info; 15259 ip_stack_t *ipst; 15260 15261 ip1dbg(("ip_rput_dlpi_writer ..")); 15262 ill = (ill_t *)q->q_ptr; 15263 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15264 15265 ASSERT(IAM_WRITER_ILL(ill)); 15266 15267 ipst = ill->ill_ipst; 15268 15269 /* 15270 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15271 * both are null or non-null. However we can assert that only 15272 * after grabbing the ipsq_lock. So we don't make any assertion 15273 * here and in other places in the code. 15274 */ 15275 ipif = ipsq->ipsq_pending_ipif; 15276 /* 15277 * The current ioctl could have been aborted by the user and a new 15278 * ioctl to bring up another ill could have started. We could still 15279 * get a response from the driver later. 15280 */ 15281 if (ipif != NULL && ipif->ipif_ill != ill) 15282 ioctl_aborted = B_TRUE; 15283 15284 switch (dloa->dl_primitive) { 15285 case DL_ERROR_ACK: 15286 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15287 dlpi_prim_str(dlea->dl_error_primitive))); 15288 15289 switch (dlea->dl_error_primitive) { 15290 case DL_PROMISCON_REQ: 15291 case DL_PROMISCOFF_REQ: 15292 case DL_DISABMULTI_REQ: 15293 case DL_UNBIND_REQ: 15294 case DL_ATTACH_REQ: 15295 case DL_INFO_REQ: 15296 ill_dlpi_done(ill, dlea->dl_error_primitive); 15297 break; 15298 case DL_NOTIFY_REQ: 15299 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15300 log = B_FALSE; 15301 break; 15302 case DL_PHYS_ADDR_REQ: 15303 /* 15304 * For IPv6 only, there are two additional 15305 * phys_addr_req's sent to the driver to get the 15306 * IPv6 token and lla. This allows IP to acquire 15307 * the hardware address format for a given interface 15308 * without having built in knowledge of the hardware 15309 * address. ill_phys_addr_pend keeps track of the last 15310 * DL_PAR sent so we know which response we are 15311 * dealing with. ill_dlpi_done will update 15312 * ill_phys_addr_pend when it sends the next req. 15313 * We don't complete the IOCTL until all three DL_PARs 15314 * have been attempted, so set *_len to 0 and break. 15315 */ 15316 paddrreq = ill->ill_phys_addr_pend; 15317 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15318 if (paddrreq == DL_IPV6_TOKEN) { 15319 ill->ill_token_length = 0; 15320 log = B_FALSE; 15321 break; 15322 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15323 ill->ill_nd_lla_len = 0; 15324 log = B_FALSE; 15325 break; 15326 } 15327 /* 15328 * Something went wrong with the DL_PHYS_ADDR_REQ. 15329 * We presumably have an IOCTL hanging out waiting 15330 * for completion. Find it and complete the IOCTL 15331 * with the error noted. 15332 * However, ill_dl_phys was called on an ill queue 15333 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15334 * set. But the ioctl is known to be pending on ill_wq. 15335 */ 15336 if (!ill->ill_ifname_pending) 15337 break; 15338 ill->ill_ifname_pending = 0; 15339 if (!ioctl_aborted) 15340 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15341 if (mp1 != NULL) { 15342 /* 15343 * This operation (SIOCSLIFNAME) must have 15344 * happened on the ill. Assert there is no conn 15345 */ 15346 ASSERT(connp == NULL); 15347 q = ill->ill_wq; 15348 } 15349 break; 15350 case DL_BIND_REQ: 15351 ill_dlpi_done(ill, DL_BIND_REQ); 15352 if (ill->ill_ifname_pending) 15353 break; 15354 /* 15355 * Something went wrong with the bind. We presumably 15356 * have an IOCTL hanging out waiting for completion. 15357 * Find it, take down the interface that was coming 15358 * up, and complete the IOCTL with the error noted. 15359 */ 15360 if (!ioctl_aborted) 15361 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15362 if (mp1 != NULL) { 15363 /* 15364 * This operation (SIOCSLIFFLAGS) must have 15365 * happened from a conn. 15366 */ 15367 ASSERT(connp != NULL); 15368 q = CONNP_TO_WQ(connp); 15369 if (ill->ill_move_in_progress) { 15370 ILL_CLEAR_MOVE(ill); 15371 } 15372 (void) ipif_down(ipif, NULL, NULL); 15373 /* error is set below the switch */ 15374 } 15375 break; 15376 case DL_ENABMULTI_REQ: 15377 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15378 15379 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15380 ill->ill_dlpi_multicast_state = IDS_FAILED; 15381 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15382 ipif_t *ipif; 15383 15384 printf("ip: joining multicasts failed (%d)" 15385 " on %s - will use link layer " 15386 "broadcasts for multicast\n", 15387 dlea->dl_errno, ill->ill_name); 15388 15389 /* 15390 * Set up the multicast mapping alone. 15391 * writer, so ok to access ill->ill_ipif 15392 * without any lock. 15393 */ 15394 ipif = ill->ill_ipif; 15395 mutex_enter(&ill->ill_phyint->phyint_lock); 15396 ill->ill_phyint->phyint_flags |= 15397 PHYI_MULTI_BCAST; 15398 mutex_exit(&ill->ill_phyint->phyint_lock); 15399 15400 if (!ill->ill_isv6) { 15401 (void) ipif_arp_setup_multicast(ipif, 15402 NULL); 15403 } else { 15404 (void) ipif_ndp_setup_multicast(ipif, 15405 NULL); 15406 } 15407 } 15408 freemsg(mp); /* Don't want to pass this up */ 15409 return; 15410 15411 case DL_CAPABILITY_REQ: 15412 case DL_CONTROL_REQ: 15413 ill_dlpi_done(ill, dlea->dl_error_primitive); 15414 ill->ill_dlpi_capab_state = IDS_FAILED; 15415 freemsg(mp); 15416 return; 15417 } 15418 /* 15419 * Note the error for IOCTL completion (mp1 is set when 15420 * ready to complete ioctl). If ill_ifname_pending_err is 15421 * set, an error occured during plumbing (ill_ifname_pending), 15422 * so we want to report that error. 15423 * 15424 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15425 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15426 * expected to get errack'd if the driver doesn't support 15427 * these flags (e.g. ethernet). log will be set to B_FALSE 15428 * if these error conditions are encountered. 15429 */ 15430 if (mp1 != NULL) { 15431 if (ill->ill_ifname_pending_err != 0) { 15432 err = ill->ill_ifname_pending_err; 15433 ill->ill_ifname_pending_err = 0; 15434 } else { 15435 err = dlea->dl_unix_errno ? 15436 dlea->dl_unix_errno : ENXIO; 15437 } 15438 /* 15439 * If we're plumbing an interface and an error hasn't already 15440 * been saved, set ill_ifname_pending_err to the error passed 15441 * up. Ignore the error if log is B_FALSE (see comment above). 15442 */ 15443 } else if (log && ill->ill_ifname_pending && 15444 ill->ill_ifname_pending_err == 0) { 15445 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15446 dlea->dl_unix_errno : ENXIO; 15447 } 15448 15449 if (log) 15450 ip_dlpi_error(ill, dlea->dl_error_primitive, 15451 dlea->dl_errno, dlea->dl_unix_errno); 15452 break; 15453 case DL_CAPABILITY_ACK: { 15454 boolean_t reneg_flag = B_FALSE; 15455 /* Call a routine to handle this one. */ 15456 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15457 /* 15458 * Check if the ACK is due to renegotiation case since we 15459 * will need to send a new CAPABILITY_REQ later. 15460 */ 15461 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15462 /* This is the ack for a renogiation case */ 15463 reneg_flag = B_TRUE; 15464 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15465 } 15466 ill_capability_ack(ill, mp); 15467 if (reneg_flag) 15468 ill_capability_probe(ill); 15469 break; 15470 } 15471 case DL_CONTROL_ACK: 15472 /* We treat all of these as "fire and forget" */ 15473 ill_dlpi_done(ill, DL_CONTROL_REQ); 15474 break; 15475 case DL_INFO_ACK: 15476 /* Call a routine to handle this one. */ 15477 ill_dlpi_done(ill, DL_INFO_REQ); 15478 ip_ll_subnet_defaults(ill, mp); 15479 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15480 return; 15481 case DL_BIND_ACK: 15482 /* 15483 * We should have an IOCTL waiting on this unless 15484 * sent by ill_dl_phys, in which case just return 15485 */ 15486 ill_dlpi_done(ill, DL_BIND_REQ); 15487 if (ill->ill_ifname_pending) 15488 break; 15489 15490 if (!ioctl_aborted) 15491 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15492 if (mp1 == NULL) 15493 break; 15494 /* 15495 * Because mp1 was added by ill_dl_up(), and it always 15496 * passes a valid connp, connp must be valid here. 15497 */ 15498 ASSERT(connp != NULL); 15499 q = CONNP_TO_WQ(connp); 15500 15501 /* 15502 * We are exclusive. So nothing can change even after 15503 * we get the pending mp. If need be we can put it back 15504 * and restart, as in calling ipif_arp_up() below. 15505 */ 15506 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15507 15508 mutex_enter(&ill->ill_lock); 15509 15510 ill->ill_dl_up = 1; 15511 15512 if ((info = ill->ill_nic_event_info) != NULL) { 15513 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15514 "attached for %s\n", info->hne_event, 15515 ill->ill_name)); 15516 if (info->hne_data != NULL) 15517 kmem_free(info->hne_data, info->hne_datalen); 15518 kmem_free(info, sizeof (hook_nic_event_t)); 15519 } 15520 15521 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15522 if (info != NULL) { 15523 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15524 info->hne_lif = 0; 15525 info->hne_event = NE_UP; 15526 info->hne_data = NULL; 15527 info->hne_datalen = 0; 15528 info->hne_family = ill->ill_isv6 ? 15529 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15530 } else 15531 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15532 "event information for %s (ENOMEM)\n", 15533 ill->ill_name)); 15534 15535 ill->ill_nic_event_info = info; 15536 15537 mutex_exit(&ill->ill_lock); 15538 15539 /* 15540 * Now bring up the resolver; when that is complete, we'll 15541 * create IREs. Note that we intentionally mirror what 15542 * ipif_up() would have done, because we got here by way of 15543 * ill_dl_up(), which stopped ipif_up()'s processing. 15544 */ 15545 if (ill->ill_isv6) { 15546 /* 15547 * v6 interfaces. 15548 * Unlike ARP which has to do another bind 15549 * and attach, once we get here we are 15550 * done with NDP. Except in the case of 15551 * ILLF_XRESOLV, in which case we send an 15552 * AR_INTERFACE_UP to the external resolver. 15553 * If all goes well, the ioctl will complete 15554 * in ip_rput(). If there's an error, we 15555 * complete it here. 15556 */ 15557 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15558 if (err == 0) { 15559 if (ill->ill_flags & ILLF_XRESOLV) { 15560 mutex_enter(&connp->conn_lock); 15561 mutex_enter(&ill->ill_lock); 15562 success = ipsq_pending_mp_add( 15563 connp, ipif, q, mp1, 0); 15564 mutex_exit(&ill->ill_lock); 15565 mutex_exit(&connp->conn_lock); 15566 if (success) { 15567 err = ipif_resolver_up(ipif, 15568 Res_act_initial); 15569 if (err == EINPROGRESS) { 15570 freemsg(mp); 15571 return; 15572 } 15573 ASSERT(err != 0); 15574 mp1 = ipsq_pending_mp_get(ipsq, 15575 &connp); 15576 ASSERT(mp1 != NULL); 15577 } else { 15578 /* conn has started closing */ 15579 err = EINTR; 15580 } 15581 } else { /* Non XRESOLV interface */ 15582 (void) ipif_resolver_up(ipif, 15583 Res_act_initial); 15584 err = ipif_up_done_v6(ipif); 15585 } 15586 } 15587 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15588 /* 15589 * ARP and other v4 external resolvers. 15590 * Leave the pending mblk intact so that 15591 * the ioctl completes in ip_rput(). 15592 */ 15593 mutex_enter(&connp->conn_lock); 15594 mutex_enter(&ill->ill_lock); 15595 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15596 mutex_exit(&ill->ill_lock); 15597 mutex_exit(&connp->conn_lock); 15598 if (success) { 15599 err = ipif_resolver_up(ipif, Res_act_initial); 15600 if (err == EINPROGRESS) { 15601 freemsg(mp); 15602 return; 15603 } 15604 ASSERT(err != 0); 15605 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15606 } else { 15607 /* The conn has started closing */ 15608 err = EINTR; 15609 } 15610 } else { 15611 /* 15612 * This one is complete. Reply to pending ioctl. 15613 */ 15614 (void) ipif_resolver_up(ipif, Res_act_initial); 15615 err = ipif_up_done(ipif); 15616 } 15617 15618 if ((err == 0) && (ill->ill_up_ipifs)) { 15619 err = ill_up_ipifs(ill, q, mp1); 15620 if (err == EINPROGRESS) { 15621 freemsg(mp); 15622 return; 15623 } 15624 } 15625 15626 if (ill->ill_up_ipifs) { 15627 ill_group_cleanup(ill); 15628 } 15629 15630 break; 15631 case DL_NOTIFY_IND: { 15632 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15633 ire_t *ire; 15634 boolean_t need_ire_walk_v4 = B_FALSE; 15635 boolean_t need_ire_walk_v6 = B_FALSE; 15636 15637 switch (notify->dl_notification) { 15638 case DL_NOTE_PHYS_ADDR: 15639 err = ill_set_phys_addr(ill, mp); 15640 break; 15641 15642 case DL_NOTE_FASTPATH_FLUSH: 15643 ill_fastpath_flush(ill); 15644 break; 15645 15646 case DL_NOTE_SDU_SIZE: 15647 /* 15648 * Change the MTU size of the interface, of all 15649 * attached ipif's, and of all relevant ire's. The 15650 * new value's a uint32_t at notify->dl_data. 15651 * Mtu change Vs. new ire creation - protocol below. 15652 * 15653 * a Mark the ipif as IPIF_CHANGING. 15654 * b Set the new mtu in the ipif. 15655 * c Change the ire_max_frag on all affected ires 15656 * d Unmark the IPIF_CHANGING 15657 * 15658 * To see how the protocol works, assume an interface 15659 * route is also being added simultaneously by 15660 * ip_rt_add and let 'ipif' be the ipif referenced by 15661 * the ire. If the ire is created before step a, 15662 * it will be cleaned up by step c. If the ire is 15663 * created after step d, it will see the new value of 15664 * ipif_mtu. Any attempt to create the ire between 15665 * steps a to d will fail because of the IPIF_CHANGING 15666 * flag. Note that ire_create() is passed a pointer to 15667 * the ipif_mtu, and not the value. During ire_add 15668 * under the bucket lock, the ire_max_frag of the 15669 * new ire being created is set from the ipif/ire from 15670 * which it is being derived. 15671 */ 15672 mutex_enter(&ill->ill_lock); 15673 ill->ill_max_frag = (uint_t)notify->dl_data; 15674 15675 /* 15676 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15677 * leave it alone 15678 */ 15679 if (ill->ill_mtu_userspecified) { 15680 mutex_exit(&ill->ill_lock); 15681 break; 15682 } 15683 ill->ill_max_mtu = ill->ill_max_frag; 15684 if (ill->ill_isv6) { 15685 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15686 ill->ill_max_mtu = IPV6_MIN_MTU; 15687 } else { 15688 if (ill->ill_max_mtu < IP_MIN_MTU) 15689 ill->ill_max_mtu = IP_MIN_MTU; 15690 } 15691 for (ipif = ill->ill_ipif; ipif != NULL; 15692 ipif = ipif->ipif_next) { 15693 /* 15694 * Don't override the mtu if the user 15695 * has explicitly set it. 15696 */ 15697 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15698 continue; 15699 ipif->ipif_mtu = (uint_t)notify->dl_data; 15700 if (ipif->ipif_isv6) 15701 ire = ipif_to_ire_v6(ipif); 15702 else 15703 ire = ipif_to_ire(ipif); 15704 if (ire != NULL) { 15705 ire->ire_max_frag = ipif->ipif_mtu; 15706 ire_refrele(ire); 15707 } 15708 if (ipif->ipif_flags & IPIF_UP) { 15709 if (ill->ill_isv6) 15710 need_ire_walk_v6 = B_TRUE; 15711 else 15712 need_ire_walk_v4 = B_TRUE; 15713 } 15714 } 15715 mutex_exit(&ill->ill_lock); 15716 if (need_ire_walk_v4) 15717 ire_walk_v4(ill_mtu_change, (char *)ill, 15718 ALL_ZONES, ipst); 15719 if (need_ire_walk_v6) 15720 ire_walk_v6(ill_mtu_change, (char *)ill, 15721 ALL_ZONES, ipst); 15722 break; 15723 case DL_NOTE_LINK_UP: 15724 case DL_NOTE_LINK_DOWN: { 15725 /* 15726 * We are writer. ill / phyint / ipsq assocs stable. 15727 * The RUNNING flag reflects the state of the link. 15728 */ 15729 phyint_t *phyint = ill->ill_phyint; 15730 uint64_t new_phyint_flags; 15731 boolean_t changed = B_FALSE; 15732 boolean_t went_up; 15733 15734 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15735 mutex_enter(&phyint->phyint_lock); 15736 new_phyint_flags = went_up ? 15737 phyint->phyint_flags | PHYI_RUNNING : 15738 phyint->phyint_flags & ~PHYI_RUNNING; 15739 if (new_phyint_flags != phyint->phyint_flags) { 15740 phyint->phyint_flags = new_phyint_flags; 15741 changed = B_TRUE; 15742 } 15743 mutex_exit(&phyint->phyint_lock); 15744 /* 15745 * ill_restart_dad handles the DAD restart and routing 15746 * socket notification logic. 15747 */ 15748 if (changed) { 15749 ill_restart_dad(phyint->phyint_illv4, went_up); 15750 ill_restart_dad(phyint->phyint_illv6, went_up); 15751 } 15752 break; 15753 } 15754 case DL_NOTE_PROMISC_ON_PHYS: 15755 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15756 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15757 mutex_enter(&ill->ill_lock); 15758 ill->ill_promisc_on_phys = B_TRUE; 15759 mutex_exit(&ill->ill_lock); 15760 break; 15761 case DL_NOTE_PROMISC_OFF_PHYS: 15762 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15763 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15764 mutex_enter(&ill->ill_lock); 15765 ill->ill_promisc_on_phys = B_FALSE; 15766 mutex_exit(&ill->ill_lock); 15767 break; 15768 case DL_NOTE_CAPAB_RENEG: 15769 /* 15770 * Something changed on the driver side. 15771 * It wants us to renegotiate the capabilities 15772 * on this ill. The most likely cause is the 15773 * aggregation interface under us where a 15774 * port got added or went away. 15775 * 15776 * We reset the capabilities and set the 15777 * state to IDS_RENG so that when the ack 15778 * comes back, we can start the 15779 * renegotiation process. 15780 */ 15781 ill_capability_reset(ill); 15782 ill->ill_dlpi_capab_state = IDS_RENEG; 15783 break; 15784 default: 15785 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15786 "type 0x%x for DL_NOTIFY_IND\n", 15787 notify->dl_notification)); 15788 break; 15789 } 15790 15791 /* 15792 * As this is an asynchronous operation, we 15793 * should not call ill_dlpi_done 15794 */ 15795 break; 15796 } 15797 case DL_NOTIFY_ACK: { 15798 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15799 15800 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15801 ill->ill_note_link = 1; 15802 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15803 break; 15804 } 15805 case DL_PHYS_ADDR_ACK: { 15806 /* 15807 * As part of plumbing the interface via SIOCSLIFNAME, 15808 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15809 * whose answers we receive here. As each answer is received, 15810 * we call ill_dlpi_done() to dispatch the next request as 15811 * we're processing the current one. Once all answers have 15812 * been received, we use ipsq_pending_mp_get() to dequeue the 15813 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15814 * is invoked from an ill queue, conn_oper_pending_ill is not 15815 * available, but we know the ioctl is pending on ill_wq.) 15816 */ 15817 uint_t paddrlen, paddroff; 15818 15819 paddrreq = ill->ill_phys_addr_pend; 15820 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 15821 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 15822 15823 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15824 if (paddrreq == DL_IPV6_TOKEN) { 15825 /* 15826 * bcopy to low-order bits of ill_token 15827 * 15828 * XXX Temporary hack - currently, all known tokens 15829 * are 64 bits, so I'll cheat for the moment. 15830 */ 15831 bcopy(mp->b_rptr + paddroff, 15832 &ill->ill_token.s6_addr32[2], paddrlen); 15833 ill->ill_token_length = paddrlen; 15834 break; 15835 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15836 ASSERT(ill->ill_nd_lla_mp == NULL); 15837 ill_set_ndmp(ill, mp, paddroff, paddrlen); 15838 mp = NULL; 15839 break; 15840 } 15841 15842 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 15843 ASSERT(ill->ill_phys_addr_mp == NULL); 15844 if (!ill->ill_ifname_pending) 15845 break; 15846 ill->ill_ifname_pending = 0; 15847 if (!ioctl_aborted) 15848 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15849 if (mp1 != NULL) { 15850 ASSERT(connp == NULL); 15851 q = ill->ill_wq; 15852 } 15853 /* 15854 * If any error acks received during the plumbing sequence, 15855 * ill_ifname_pending_err will be set. Break out and send up 15856 * the error to the pending ioctl. 15857 */ 15858 if (ill->ill_ifname_pending_err != 0) { 15859 err = ill->ill_ifname_pending_err; 15860 ill->ill_ifname_pending_err = 0; 15861 break; 15862 } 15863 15864 ill->ill_phys_addr_mp = mp; 15865 ill->ill_phys_addr = mp->b_rptr + paddroff; 15866 mp = NULL; 15867 15868 /* 15869 * If paddrlen is zero, the DLPI provider doesn't support 15870 * physical addresses. The other two tests were historical 15871 * workarounds for bugs in our former PPP implementation, but 15872 * now other things have grown dependencies on them -- e.g., 15873 * the tun module specifies a dl_addr_length of zero in its 15874 * DL_BIND_ACK, but then specifies an incorrect value in its 15875 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 15876 * but only after careful testing ensures that all dependent 15877 * broken DLPI providers have been fixed. 15878 */ 15879 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 15880 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15881 ill->ill_phys_addr = NULL; 15882 } else if (paddrlen != ill->ill_phys_addr_length) { 15883 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 15884 paddrlen, ill->ill_phys_addr_length)); 15885 err = EINVAL; 15886 break; 15887 } 15888 15889 if (ill->ill_nd_lla_mp == NULL) { 15890 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 15891 err = ENOMEM; 15892 break; 15893 } 15894 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 15895 } 15896 15897 /* 15898 * Set the interface token. If the zeroth interface address 15899 * is unspecified, then set it to the link local address. 15900 */ 15901 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15902 (void) ill_setdefaulttoken(ill); 15903 15904 ASSERT(ill->ill_ipif->ipif_id == 0); 15905 if (ipif != NULL && 15906 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 15907 (void) ipif_setlinklocal(ipif); 15908 } 15909 break; 15910 } 15911 case DL_OK_ACK: 15912 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15913 dlpi_prim_str((int)dloa->dl_correct_primitive), 15914 dloa->dl_correct_primitive)); 15915 switch (dloa->dl_correct_primitive) { 15916 case DL_PROMISCON_REQ: 15917 case DL_PROMISCOFF_REQ: 15918 case DL_ENABMULTI_REQ: 15919 case DL_DISABMULTI_REQ: 15920 case DL_UNBIND_REQ: 15921 case DL_ATTACH_REQ: 15922 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15923 break; 15924 } 15925 break; 15926 default: 15927 break; 15928 } 15929 15930 freemsg(mp); 15931 if (mp1 != NULL) { 15932 /* 15933 * The operation must complete without EINPROGRESS 15934 * since ipsq_pending_mp_get() has removed the mblk 15935 * from ipsq_pending_mp. Otherwise, the operation 15936 * will be stuck forever in the ipsq. 15937 */ 15938 ASSERT(err != EINPROGRESS); 15939 15940 switch (ipsq->ipsq_current_ioctl) { 15941 case 0: 15942 ipsq_current_finish(ipsq); 15943 break; 15944 15945 case SIOCLIFADDIF: 15946 case SIOCSLIFNAME: 15947 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 15948 break; 15949 15950 default: 15951 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 15952 break; 15953 } 15954 } 15955 } 15956 15957 /* 15958 * ip_rput_other is called by ip_rput to handle messages modifying the global 15959 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15960 */ 15961 /* ARGSUSED */ 15962 void 15963 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15964 { 15965 ill_t *ill; 15966 struct iocblk *iocp; 15967 mblk_t *mp1; 15968 conn_t *connp = NULL; 15969 15970 ip1dbg(("ip_rput_other ")); 15971 ill = (ill_t *)q->q_ptr; 15972 /* 15973 * This routine is not a writer in the case of SIOCGTUNPARAM 15974 * in which case ipsq is NULL. 15975 */ 15976 if (ipsq != NULL) { 15977 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15978 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15979 } 15980 15981 switch (mp->b_datap->db_type) { 15982 case M_ERROR: 15983 case M_HANGUP: 15984 /* 15985 * The device has a problem. We force the ILL down. It can 15986 * be brought up again manually using SIOCSIFFLAGS (via 15987 * ifconfig or equivalent). 15988 */ 15989 ASSERT(ipsq != NULL); 15990 if (mp->b_rptr < mp->b_wptr) 15991 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15992 if (ill->ill_error == 0) 15993 ill->ill_error = ENXIO; 15994 if (!ill_down_start(q, mp)) 15995 return; 15996 ipif_all_down_tail(ipsq, q, mp, NULL); 15997 break; 15998 case M_IOCACK: 15999 iocp = (struct iocblk *)mp->b_rptr; 16000 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16001 switch (iocp->ioc_cmd) { 16002 case SIOCSTUNPARAM: 16003 case OSIOCSTUNPARAM: 16004 ASSERT(ipsq != NULL); 16005 /* 16006 * Finish socket ioctl passed through to tun. 16007 * We should have an IOCTL waiting on this. 16008 */ 16009 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16010 if (ill->ill_isv6) { 16011 struct iftun_req *ta; 16012 16013 /* 16014 * if a source or destination is 16015 * being set, try and set the link 16016 * local address for the tunnel 16017 */ 16018 ta = (struct iftun_req *)mp->b_cont-> 16019 b_cont->b_rptr; 16020 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16021 ipif_set_tun_llink(ill, ta); 16022 } 16023 16024 } 16025 if (mp1 != NULL) { 16026 /* 16027 * Now copy back the b_next/b_prev used by 16028 * mi code for the mi_copy* functions. 16029 * See ip_sioctl_tunparam() for the reason. 16030 * Also protect against missing b_cont. 16031 */ 16032 if (mp->b_cont != NULL) { 16033 mp->b_cont->b_next = 16034 mp1->b_cont->b_next; 16035 mp->b_cont->b_prev = 16036 mp1->b_cont->b_prev; 16037 } 16038 inet_freemsg(mp1); 16039 ASSERT(connp != NULL); 16040 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16041 iocp->ioc_error, NO_COPYOUT, ipsq); 16042 } else { 16043 ASSERT(connp == NULL); 16044 putnext(q, mp); 16045 } 16046 break; 16047 case SIOCGTUNPARAM: 16048 case OSIOCGTUNPARAM: 16049 /* 16050 * This is really M_IOCDATA from the tunnel driver. 16051 * convert back and complete the ioctl. 16052 * We should have an IOCTL waiting on this. 16053 */ 16054 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16055 if (mp1) { 16056 /* 16057 * Now copy back the b_next/b_prev used by 16058 * mi code for the mi_copy* functions. 16059 * See ip_sioctl_tunparam() for the reason. 16060 * Also protect against missing b_cont. 16061 */ 16062 if (mp->b_cont != NULL) { 16063 mp->b_cont->b_next = 16064 mp1->b_cont->b_next; 16065 mp->b_cont->b_prev = 16066 mp1->b_cont->b_prev; 16067 } 16068 inet_freemsg(mp1); 16069 if (iocp->ioc_error == 0) 16070 mp->b_datap->db_type = M_IOCDATA; 16071 ASSERT(connp != NULL); 16072 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16073 iocp->ioc_error, COPYOUT, NULL); 16074 } else { 16075 ASSERT(connp == NULL); 16076 putnext(q, mp); 16077 } 16078 break; 16079 default: 16080 break; 16081 } 16082 break; 16083 case M_IOCNAK: 16084 iocp = (struct iocblk *)mp->b_rptr; 16085 16086 switch (iocp->ioc_cmd) { 16087 int mode; 16088 16089 case DL_IOC_HDR_INFO: 16090 /* 16091 * If this was the first attempt turn of the 16092 * fastpath probing. 16093 */ 16094 mutex_enter(&ill->ill_lock); 16095 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16096 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16097 mutex_exit(&ill->ill_lock); 16098 ill_fastpath_nack(ill); 16099 ip1dbg(("ip_rput: DLPI fastpath off on " 16100 "interface %s\n", 16101 ill->ill_name)); 16102 } else { 16103 mutex_exit(&ill->ill_lock); 16104 } 16105 freemsg(mp); 16106 break; 16107 case SIOCSTUNPARAM: 16108 case OSIOCSTUNPARAM: 16109 ASSERT(ipsq != NULL); 16110 /* 16111 * Finish socket ioctl passed through to tun 16112 * We should have an IOCTL waiting on this. 16113 */ 16114 /* FALLTHRU */ 16115 case SIOCGTUNPARAM: 16116 case OSIOCGTUNPARAM: 16117 /* 16118 * This is really M_IOCDATA from the tunnel driver. 16119 * convert back and complete the ioctl. 16120 * We should have an IOCTL waiting on this. 16121 */ 16122 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16123 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16124 mp1 = ill_pending_mp_get(ill, &connp, 16125 iocp->ioc_id); 16126 mode = COPYOUT; 16127 ipsq = NULL; 16128 } else { 16129 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16130 mode = NO_COPYOUT; 16131 } 16132 if (mp1 != NULL) { 16133 /* 16134 * Now copy back the b_next/b_prev used by 16135 * mi code for the mi_copy* functions. 16136 * See ip_sioctl_tunparam() for the reason. 16137 * Also protect against missing b_cont. 16138 */ 16139 if (mp->b_cont != NULL) { 16140 mp->b_cont->b_next = 16141 mp1->b_cont->b_next; 16142 mp->b_cont->b_prev = 16143 mp1->b_cont->b_prev; 16144 } 16145 inet_freemsg(mp1); 16146 if (iocp->ioc_error == 0) 16147 iocp->ioc_error = EINVAL; 16148 ASSERT(connp != NULL); 16149 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16150 iocp->ioc_error, mode, ipsq); 16151 } else { 16152 ASSERT(connp == NULL); 16153 putnext(q, mp); 16154 } 16155 break; 16156 default: 16157 break; 16158 } 16159 default: 16160 break; 16161 } 16162 } 16163 16164 /* 16165 * NOTE : This function does not ire_refrele the ire argument passed in. 16166 * 16167 * IPQoS notes 16168 * IP policy is invoked twice for a forwarded packet, once on the read side 16169 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16170 * enabled. An additional parameter, in_ill, has been added for this purpose. 16171 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16172 * because ip_mroute drops this information. 16173 * 16174 */ 16175 void 16176 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16177 { 16178 uint32_t old_pkt_len; 16179 uint32_t pkt_len; 16180 queue_t *q; 16181 uint32_t sum; 16182 #define rptr ((uchar_t *)ipha) 16183 uint32_t max_frag; 16184 uint32_t ill_index; 16185 ill_t *out_ill; 16186 mib2_ipIfStatsEntry_t *mibptr; 16187 ip_stack_t *ipst = in_ill->ill_ipst; 16188 16189 /* Get the ill_index of the incoming ILL */ 16190 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16191 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16192 16193 /* Initiate Read side IPPF processing */ 16194 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16195 ip_process(IPP_FWD_IN, &mp, ill_index); 16196 if (mp == NULL) { 16197 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16198 "during IPPF processing\n")); 16199 return; 16200 } 16201 } 16202 16203 /* Adjust the checksum to reflect the ttl decrement. */ 16204 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16205 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16206 16207 if (ipha->ipha_ttl-- <= 1) { 16208 if (ip_csum_hdr(ipha)) { 16209 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16210 goto drop_pkt; 16211 } 16212 /* 16213 * Note: ire_stq this will be NULL for multicast 16214 * datagrams using the long path through arp (the IRE 16215 * is not an IRE_CACHE). This should not cause 16216 * problems since we don't generate ICMP errors for 16217 * multicast packets. 16218 */ 16219 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16220 q = ire->ire_stq; 16221 if (q != NULL) { 16222 /* Sent by forwarding path, and router is global zone */ 16223 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16224 GLOBAL_ZONEID, ipst); 16225 } else 16226 freemsg(mp); 16227 return; 16228 } 16229 16230 /* 16231 * Don't forward if the interface is down 16232 */ 16233 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16234 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16235 ip2dbg(("ip_rput_forward:interface is down\n")); 16236 goto drop_pkt; 16237 } 16238 16239 /* Get the ill_index of the outgoing ILL */ 16240 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16241 16242 out_ill = ire->ire_ipif->ipif_ill; 16243 16244 DTRACE_PROBE4(ip4__forwarding__start, 16245 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16246 16247 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16248 ipst->ips_ipv4firewall_forwarding, 16249 in_ill, out_ill, ipha, mp, mp, ipst); 16250 16251 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16252 16253 if (mp == NULL) 16254 return; 16255 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16256 16257 if (is_system_labeled()) { 16258 mblk_t *mp1; 16259 16260 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16261 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16262 goto drop_pkt; 16263 } 16264 /* Size may have changed */ 16265 mp = mp1; 16266 ipha = (ipha_t *)mp->b_rptr; 16267 pkt_len = ntohs(ipha->ipha_length); 16268 } 16269 16270 /* Check if there are options to update */ 16271 if (!IS_SIMPLE_IPH(ipha)) { 16272 if (ip_csum_hdr(ipha)) { 16273 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16274 goto drop_pkt; 16275 } 16276 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16277 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16278 return; 16279 } 16280 16281 ipha->ipha_hdr_checksum = 0; 16282 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16283 } 16284 max_frag = ire->ire_max_frag; 16285 if (pkt_len > max_frag) { 16286 /* 16287 * It needs fragging on its way out. We haven't 16288 * verified the header checksum yet. Since we 16289 * are going to put a surely good checksum in the 16290 * outgoing header, we have to make sure that it 16291 * was good coming in. 16292 */ 16293 if (ip_csum_hdr(ipha)) { 16294 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16295 goto drop_pkt; 16296 } 16297 /* Initiate Write side IPPF processing */ 16298 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16299 ip_process(IPP_FWD_OUT, &mp, ill_index); 16300 if (mp == NULL) { 16301 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16302 " during IPPF processing\n")); 16303 return; 16304 } 16305 } 16306 /* 16307 * Handle labeled packet resizing. 16308 * 16309 * If we have added a label, inform ip_wput_frag() of its 16310 * effect on the MTU for ICMP messages. 16311 */ 16312 if (pkt_len > old_pkt_len) { 16313 uint32_t secopt_size; 16314 16315 secopt_size = pkt_len - old_pkt_len; 16316 if (secopt_size < max_frag) 16317 max_frag -= secopt_size; 16318 } 16319 16320 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16321 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16322 return; 16323 } 16324 16325 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16326 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16327 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16328 ipst->ips_ipv4firewall_physical_out, 16329 NULL, out_ill, ipha, mp, mp, ipst); 16330 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16331 if (mp == NULL) 16332 return; 16333 16334 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16335 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16336 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16337 /* ip_xmit_v4 always consumes the packet */ 16338 return; 16339 16340 drop_pkt:; 16341 ip1dbg(("ip_rput_forward: drop pkt\n")); 16342 freemsg(mp); 16343 #undef rptr 16344 } 16345 16346 void 16347 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16348 { 16349 ire_t *ire; 16350 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16351 16352 ASSERT(!ipif->ipif_isv6); 16353 /* 16354 * Find an IRE which matches the destination and the outgoing 16355 * queue in the cache table. All we need is an IRE_CACHE which 16356 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16357 * then it is enough to have some IRE_CACHE in the group. 16358 */ 16359 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16360 dst = ipif->ipif_pp_dst_addr; 16361 16362 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16363 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16364 if (ire == NULL) { 16365 /* 16366 * Mark this packet to make it be delivered to 16367 * ip_rput_forward after the new ire has been 16368 * created. 16369 */ 16370 mp->b_prev = NULL; 16371 mp->b_next = mp; 16372 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16373 NULL, 0, GLOBAL_ZONEID, &zero_info); 16374 } else { 16375 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16376 IRE_REFRELE(ire); 16377 } 16378 } 16379 16380 /* Update any source route, record route or timestamp options */ 16381 static int 16382 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16383 { 16384 ipoptp_t opts; 16385 uchar_t *opt; 16386 uint8_t optval; 16387 uint8_t optlen; 16388 ipaddr_t dst; 16389 uint32_t ts; 16390 ire_t *dst_ire = NULL; 16391 ire_t *tmp_ire = NULL; 16392 timestruc_t now; 16393 16394 ip2dbg(("ip_rput_forward_options\n")); 16395 dst = ipha->ipha_dst; 16396 for (optval = ipoptp_first(&opts, ipha); 16397 optval != IPOPT_EOL; 16398 optval = ipoptp_next(&opts)) { 16399 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16400 opt = opts.ipoptp_cur; 16401 optlen = opts.ipoptp_len; 16402 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16403 optval, opts.ipoptp_len)); 16404 switch (optval) { 16405 uint32_t off; 16406 case IPOPT_SSRR: 16407 case IPOPT_LSRR: 16408 /* Check if adminstratively disabled */ 16409 if (!ipst->ips_ip_forward_src_routed) { 16410 if (ire->ire_stq != NULL) { 16411 /* 16412 * Sent by forwarding path, and router 16413 * is global zone 16414 */ 16415 icmp_unreachable(ire->ire_stq, mp, 16416 ICMP_SOURCE_ROUTE_FAILED, 16417 GLOBAL_ZONEID, ipst); 16418 } else { 16419 ip0dbg(("ip_rput_forward_options: " 16420 "unable to send unreach\n")); 16421 freemsg(mp); 16422 } 16423 return (-1); 16424 } 16425 16426 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16427 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16428 if (dst_ire == NULL) { 16429 /* 16430 * Must be partial since ip_rput_options 16431 * checked for strict. 16432 */ 16433 break; 16434 } 16435 off = opt[IPOPT_OFFSET]; 16436 off--; 16437 redo_srr: 16438 if (optlen < IP_ADDR_LEN || 16439 off > optlen - IP_ADDR_LEN) { 16440 /* End of source route */ 16441 ip1dbg(( 16442 "ip_rput_forward_options: end of SR\n")); 16443 ire_refrele(dst_ire); 16444 break; 16445 } 16446 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16447 bcopy(&ire->ire_src_addr, (char *)opt + off, 16448 IP_ADDR_LEN); 16449 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16450 ntohl(dst))); 16451 16452 /* 16453 * Check if our address is present more than 16454 * once as consecutive hops in source route. 16455 */ 16456 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16457 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16458 if (tmp_ire != NULL) { 16459 ire_refrele(tmp_ire); 16460 off += IP_ADDR_LEN; 16461 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16462 goto redo_srr; 16463 } 16464 ipha->ipha_dst = dst; 16465 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16466 ire_refrele(dst_ire); 16467 break; 16468 case IPOPT_RR: 16469 off = opt[IPOPT_OFFSET]; 16470 off--; 16471 if (optlen < IP_ADDR_LEN || 16472 off > optlen - IP_ADDR_LEN) { 16473 /* No more room - ignore */ 16474 ip1dbg(( 16475 "ip_rput_forward_options: end of RR\n")); 16476 break; 16477 } 16478 bcopy(&ire->ire_src_addr, (char *)opt + off, 16479 IP_ADDR_LEN); 16480 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16481 break; 16482 case IPOPT_TS: 16483 /* Insert timestamp if there is room */ 16484 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16485 case IPOPT_TS_TSONLY: 16486 off = IPOPT_TS_TIMELEN; 16487 break; 16488 case IPOPT_TS_PRESPEC: 16489 case IPOPT_TS_PRESPEC_RFC791: 16490 /* Verify that the address matched */ 16491 off = opt[IPOPT_OFFSET] - 1; 16492 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16493 dst_ire = ire_ctable_lookup(dst, 0, 16494 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16495 MATCH_IRE_TYPE, ipst); 16496 if (dst_ire == NULL) { 16497 /* Not for us */ 16498 break; 16499 } 16500 ire_refrele(dst_ire); 16501 /* FALLTHRU */ 16502 case IPOPT_TS_TSANDADDR: 16503 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16504 break; 16505 default: 16506 /* 16507 * ip_*put_options should have already 16508 * dropped this packet. 16509 */ 16510 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16511 "unknown IT - bug in ip_rput_options?\n"); 16512 return (0); /* Keep "lint" happy */ 16513 } 16514 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16515 /* Increase overflow counter */ 16516 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16517 opt[IPOPT_POS_OV_FLG] = 16518 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16519 (off << 4)); 16520 break; 16521 } 16522 off = opt[IPOPT_OFFSET] - 1; 16523 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16524 case IPOPT_TS_PRESPEC: 16525 case IPOPT_TS_PRESPEC_RFC791: 16526 case IPOPT_TS_TSANDADDR: 16527 bcopy(&ire->ire_src_addr, 16528 (char *)opt + off, IP_ADDR_LEN); 16529 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16530 /* FALLTHRU */ 16531 case IPOPT_TS_TSONLY: 16532 off = opt[IPOPT_OFFSET] - 1; 16533 /* Compute # of milliseconds since midnight */ 16534 gethrestime(&now); 16535 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16536 now.tv_nsec / (NANOSEC / MILLISEC); 16537 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16538 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16539 break; 16540 } 16541 break; 16542 } 16543 } 16544 return (0); 16545 } 16546 16547 /* 16548 * This is called after processing at least one of AH/ESP headers. 16549 * 16550 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16551 * the actual, physical interface on which the packet was received, 16552 * but, when ip_strict_dst_multihoming is set to 1, could be the 16553 * interface which had the ipha_dst configured when the packet went 16554 * through ip_rput. The ill_index corresponding to the recv_ill 16555 * is saved in ipsec_in_rill_index 16556 * 16557 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16558 * cannot assume "ire" points to valid data for any IPv6 cases. 16559 */ 16560 void 16561 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16562 { 16563 mblk_t *mp; 16564 ipaddr_t dst; 16565 in6_addr_t *v6dstp; 16566 ipha_t *ipha; 16567 ip6_t *ip6h; 16568 ipsec_in_t *ii; 16569 boolean_t ill_need_rele = B_FALSE; 16570 boolean_t rill_need_rele = B_FALSE; 16571 boolean_t ire_need_rele = B_FALSE; 16572 netstack_t *ns; 16573 ip_stack_t *ipst; 16574 16575 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16576 ASSERT(ii->ipsec_in_ill_index != 0); 16577 ns = ii->ipsec_in_ns; 16578 ASSERT(ii->ipsec_in_ns != NULL); 16579 ipst = ns->netstack_ip; 16580 16581 mp = ipsec_mp->b_cont; 16582 ASSERT(mp != NULL); 16583 16584 16585 if (ill == NULL) { 16586 ASSERT(recv_ill == NULL); 16587 /* 16588 * We need to get the original queue on which ip_rput_local 16589 * or ip_rput_data_v6 was called. 16590 */ 16591 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16592 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16593 ill_need_rele = B_TRUE; 16594 16595 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16596 recv_ill = ill_lookup_on_ifindex( 16597 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16598 NULL, NULL, NULL, NULL, ipst); 16599 rill_need_rele = B_TRUE; 16600 } else { 16601 recv_ill = ill; 16602 } 16603 16604 if ((ill == NULL) || (recv_ill == NULL)) { 16605 ip0dbg(("ip_fanout_proto_again: interface " 16606 "disappeared\n")); 16607 if (ill != NULL) 16608 ill_refrele(ill); 16609 if (recv_ill != NULL) 16610 ill_refrele(recv_ill); 16611 freemsg(ipsec_mp); 16612 return; 16613 } 16614 } 16615 16616 ASSERT(ill != NULL && recv_ill != NULL); 16617 16618 if (mp->b_datap->db_type == M_CTL) { 16619 /* 16620 * AH/ESP is returning the ICMP message after 16621 * removing their headers. Fanout again till 16622 * it gets to the right protocol. 16623 */ 16624 if (ii->ipsec_in_v4) { 16625 icmph_t *icmph; 16626 int iph_hdr_length; 16627 int hdr_length; 16628 16629 ipha = (ipha_t *)mp->b_rptr; 16630 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16631 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16632 ipha = (ipha_t *)&icmph[1]; 16633 hdr_length = IPH_HDR_LENGTH(ipha); 16634 /* 16635 * icmp_inbound_error_fanout may need to do pullupmsg. 16636 * Reset the type to M_DATA. 16637 */ 16638 mp->b_datap->db_type = M_DATA; 16639 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16640 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16641 B_FALSE, ill, ii->ipsec_in_zoneid); 16642 } else { 16643 icmp6_t *icmp6; 16644 int hdr_length; 16645 16646 ip6h = (ip6_t *)mp->b_rptr; 16647 /* Don't call hdr_length_v6() unless you have to. */ 16648 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16649 hdr_length = ip_hdr_length_v6(mp, ip6h); 16650 else 16651 hdr_length = IPV6_HDR_LEN; 16652 16653 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16654 /* 16655 * icmp_inbound_error_fanout_v6 may need to do 16656 * pullupmsg. Reset the type to M_DATA. 16657 */ 16658 mp->b_datap->db_type = M_DATA; 16659 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16660 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16661 } 16662 if (ill_need_rele) 16663 ill_refrele(ill); 16664 if (rill_need_rele) 16665 ill_refrele(recv_ill); 16666 return; 16667 } 16668 16669 if (ii->ipsec_in_v4) { 16670 ipha = (ipha_t *)mp->b_rptr; 16671 dst = ipha->ipha_dst; 16672 if (CLASSD(dst)) { 16673 /* 16674 * Multicast has to be delivered to all streams. 16675 */ 16676 dst = INADDR_BROADCAST; 16677 } 16678 16679 if (ire == NULL) { 16680 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16681 MBLK_GETLABEL(mp), ipst); 16682 if (ire == NULL) { 16683 if (ill_need_rele) 16684 ill_refrele(ill); 16685 if (rill_need_rele) 16686 ill_refrele(recv_ill); 16687 ip1dbg(("ip_fanout_proto_again: " 16688 "IRE not found")); 16689 freemsg(ipsec_mp); 16690 return; 16691 } 16692 ire_need_rele = B_TRUE; 16693 } 16694 16695 switch (ipha->ipha_protocol) { 16696 case IPPROTO_UDP: 16697 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16698 recv_ill); 16699 if (ire_need_rele) 16700 ire_refrele(ire); 16701 break; 16702 case IPPROTO_TCP: 16703 if (!ire_need_rele) 16704 IRE_REFHOLD(ire); 16705 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16706 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16707 IRE_REFRELE(ire); 16708 if (mp != NULL) 16709 squeue_enter_chain(GET_SQUEUE(mp), mp, 16710 mp, 1, SQTAG_IP_PROTO_AGAIN); 16711 break; 16712 case IPPROTO_SCTP: 16713 if (!ire_need_rele) 16714 IRE_REFHOLD(ire); 16715 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16716 ipsec_mp, 0, ill->ill_rq, dst); 16717 break; 16718 default: 16719 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16720 recv_ill); 16721 if (ire_need_rele) 16722 ire_refrele(ire); 16723 break; 16724 } 16725 } else { 16726 uint32_t rput_flags = 0; 16727 16728 ip6h = (ip6_t *)mp->b_rptr; 16729 v6dstp = &ip6h->ip6_dst; 16730 /* 16731 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16732 * address. 16733 * 16734 * Currently, we don't store that state in the IPSEC_IN 16735 * message, and we may need to. 16736 */ 16737 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16738 IP6_IN_LLMCAST : 0); 16739 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16740 NULL, NULL); 16741 } 16742 if (ill_need_rele) 16743 ill_refrele(ill); 16744 if (rill_need_rele) 16745 ill_refrele(recv_ill); 16746 } 16747 16748 /* 16749 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16750 * returns 'true' if there are still fragments left on the queue, in 16751 * which case we restart the timer. 16752 */ 16753 void 16754 ill_frag_timer(void *arg) 16755 { 16756 ill_t *ill = (ill_t *)arg; 16757 boolean_t frag_pending; 16758 ip_stack_t *ipst = ill->ill_ipst; 16759 16760 mutex_enter(&ill->ill_lock); 16761 ASSERT(!ill->ill_fragtimer_executing); 16762 if (ill->ill_state_flags & ILL_CONDEMNED) { 16763 ill->ill_frag_timer_id = 0; 16764 mutex_exit(&ill->ill_lock); 16765 return; 16766 } 16767 ill->ill_fragtimer_executing = 1; 16768 mutex_exit(&ill->ill_lock); 16769 16770 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16771 16772 /* 16773 * Restart the timer, if we have fragments pending or if someone 16774 * wanted us to be scheduled again. 16775 */ 16776 mutex_enter(&ill->ill_lock); 16777 ill->ill_fragtimer_executing = 0; 16778 ill->ill_frag_timer_id = 0; 16779 if (frag_pending || ill->ill_fragtimer_needrestart) 16780 ill_frag_timer_start(ill); 16781 mutex_exit(&ill->ill_lock); 16782 } 16783 16784 void 16785 ill_frag_timer_start(ill_t *ill) 16786 { 16787 ip_stack_t *ipst = ill->ill_ipst; 16788 16789 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16790 16791 /* If the ill is closing or opening don't proceed */ 16792 if (ill->ill_state_flags & ILL_CONDEMNED) 16793 return; 16794 16795 if (ill->ill_fragtimer_executing) { 16796 /* 16797 * ill_frag_timer is currently executing. Just record the 16798 * the fact that we want the timer to be restarted. 16799 * ill_frag_timer will post a timeout before it returns, 16800 * ensuring it will be called again. 16801 */ 16802 ill->ill_fragtimer_needrestart = 1; 16803 return; 16804 } 16805 16806 if (ill->ill_frag_timer_id == 0) { 16807 /* 16808 * The timer is neither running nor is the timeout handler 16809 * executing. Post a timeout so that ill_frag_timer will be 16810 * called 16811 */ 16812 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16813 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 16814 ill->ill_fragtimer_needrestart = 0; 16815 } 16816 } 16817 16818 /* 16819 * This routine is needed for loopback when forwarding multicasts. 16820 * 16821 * IPQoS Notes: 16822 * IPPF processing is done in fanout routines. 16823 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16824 * processing for IPSec packets is done when it comes back in clear. 16825 * NOTE : The callers of this function need to do the ire_refrele for the 16826 * ire that is being passed in. 16827 */ 16828 void 16829 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16830 ill_t *recv_ill) 16831 { 16832 ill_t *ill = (ill_t *)q->q_ptr; 16833 uint32_t sum; 16834 uint32_t u1; 16835 uint32_t u2; 16836 int hdr_length; 16837 boolean_t mctl_present; 16838 mblk_t *first_mp = mp; 16839 mblk_t *hada_mp = NULL; 16840 ipha_t *inner_ipha; 16841 ip_stack_t *ipst; 16842 16843 ASSERT(recv_ill != NULL); 16844 ipst = recv_ill->ill_ipst; 16845 16846 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16847 "ip_rput_locl_start: q %p", q); 16848 16849 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16850 ASSERT(ill != NULL); 16851 16852 16853 #define rptr ((uchar_t *)ipha) 16854 #define iphs ((uint16_t *)ipha) 16855 16856 /* 16857 * no UDP or TCP packet should come here anymore. 16858 */ 16859 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16860 (ipha->ipha_protocol != IPPROTO_UDP)); 16861 16862 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16863 if (mctl_present && 16864 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16865 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16866 16867 /* 16868 * It's an IPsec accelerated packet. 16869 * Keep a pointer to the data attributes around until 16870 * we allocate the ipsec_info_t. 16871 */ 16872 IPSECHW_DEBUG(IPSECHW_PKT, 16873 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16874 hada_mp = first_mp; 16875 hada_mp->b_cont = NULL; 16876 /* 16877 * Since it is accelerated, it comes directly from 16878 * the ill and the data attributes is followed by 16879 * the packet data. 16880 */ 16881 ASSERT(mp->b_datap->db_type != M_CTL); 16882 first_mp = mp; 16883 mctl_present = B_FALSE; 16884 } 16885 16886 /* 16887 * IF M_CTL is not present, then ipsec_in_is_secure 16888 * should return B_TRUE. There is a case where loopback 16889 * packets has an M_CTL in the front with all the 16890 * IPSEC options set to IPSEC_PREF_NEVER - which means 16891 * ipsec_in_is_secure will return B_FALSE. As loopback 16892 * packets never comes here, it is safe to ASSERT the 16893 * following. 16894 */ 16895 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16896 16897 16898 /* u1 is # words of IP options */ 16899 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16900 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16901 16902 if (u1) { 16903 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 16904 if (hada_mp != NULL) 16905 freemsg(hada_mp); 16906 return; 16907 } 16908 } else { 16909 /* Check the IP header checksum. */ 16910 #define uph ((uint16_t *)ipha) 16911 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16912 uph[6] + uph[7] + uph[8] + uph[9]; 16913 #undef uph 16914 /* finish doing IP checksum */ 16915 sum = (sum & 0xFFFF) + (sum >> 16); 16916 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16917 /* 16918 * Don't verify header checksum if this packet is coming 16919 * back from AH/ESP as we already did it. 16920 */ 16921 if (!mctl_present && (sum && sum != 0xFFFF)) { 16922 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 16923 goto drop_pkt; 16924 } 16925 } 16926 16927 /* 16928 * Count for SNMP of inbound packets for ire. As ip_proto_input 16929 * might be called more than once for secure packets, count only 16930 * the first time. 16931 */ 16932 if (!mctl_present) { 16933 UPDATE_IB_PKT_COUNT(ire); 16934 ire->ire_last_used_time = lbolt; 16935 } 16936 16937 /* Check for fragmentation offset. */ 16938 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16939 u1 = u2 & (IPH_MF | IPH_OFFSET); 16940 if (u1) { 16941 /* 16942 * We re-assemble fragments before we do the AH/ESP 16943 * processing. Thus, M_CTL should not be present 16944 * while we are re-assembling. 16945 */ 16946 ASSERT(!mctl_present); 16947 ASSERT(first_mp == mp); 16948 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16949 return; 16950 } 16951 /* 16952 * Make sure that first_mp points back to mp as 16953 * the mp we came in with could have changed in 16954 * ip_rput_fragment(). 16955 */ 16956 ipha = (ipha_t *)mp->b_rptr; 16957 first_mp = mp; 16958 } 16959 16960 /* 16961 * Clear hardware checksumming flag as it is currently only 16962 * used by TCP and UDP. 16963 */ 16964 DB_CKSUMFLAGS(mp) = 0; 16965 16966 /* Now we have a complete datagram, destined for this machine. */ 16967 u1 = IPH_HDR_LENGTH(ipha); 16968 switch (ipha->ipha_protocol) { 16969 case IPPROTO_ICMP: { 16970 ire_t *ire_zone; 16971 ilm_t *ilm; 16972 mblk_t *mp1; 16973 zoneid_t last_zoneid; 16974 16975 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 16976 ASSERT(ire->ire_type == IRE_BROADCAST); 16977 /* 16978 * In the multicast case, applications may have joined 16979 * the group from different zones, so we need to deliver 16980 * the packet to each of them. Loop through the 16981 * multicast memberships structures (ilm) on the receive 16982 * ill and send a copy of the packet up each matching 16983 * one. However, we don't do this for multicasts sent on 16984 * the loopback interface (PHYI_LOOPBACK flag set) as 16985 * they must stay in the sender's zone. 16986 * 16987 * ilm_add_v6() ensures that ilms in the same zone are 16988 * contiguous in the ill_ilm list. We use this property 16989 * to avoid sending duplicates needed when two 16990 * applications in the same zone join the same group on 16991 * different logical interfaces: we ignore the ilm if 16992 * its zoneid is the same as the last matching one. 16993 * In addition, the sending of the packet for 16994 * ire_zoneid is delayed until all of the other ilms 16995 * have been exhausted. 16996 */ 16997 last_zoneid = -1; 16998 ILM_WALKER_HOLD(recv_ill); 16999 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17000 ilm = ilm->ilm_next) { 17001 if ((ilm->ilm_flags & ILM_DELETED) || 17002 ipha->ipha_dst != ilm->ilm_addr || 17003 ilm->ilm_zoneid == last_zoneid || 17004 ilm->ilm_zoneid == ire->ire_zoneid || 17005 ilm->ilm_zoneid == ALL_ZONES || 17006 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17007 continue; 17008 mp1 = ip_copymsg(first_mp); 17009 if (mp1 == NULL) 17010 continue; 17011 icmp_inbound(q, mp1, B_TRUE, ill, 17012 0, sum, mctl_present, B_TRUE, 17013 recv_ill, ilm->ilm_zoneid); 17014 last_zoneid = ilm->ilm_zoneid; 17015 } 17016 ILM_WALKER_RELE(recv_ill); 17017 } else if (ire->ire_type == IRE_BROADCAST) { 17018 /* 17019 * In the broadcast case, there may be many zones 17020 * which need a copy of the packet delivered to them. 17021 * There is one IRE_BROADCAST per broadcast address 17022 * and per zone; we walk those using a helper function. 17023 * In addition, the sending of the packet for ire is 17024 * delayed until all of the other ires have been 17025 * processed. 17026 */ 17027 IRB_REFHOLD(ire->ire_bucket); 17028 ire_zone = NULL; 17029 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17030 ire)) != NULL) { 17031 mp1 = ip_copymsg(first_mp); 17032 if (mp1 == NULL) 17033 continue; 17034 17035 UPDATE_IB_PKT_COUNT(ire_zone); 17036 ire_zone->ire_last_used_time = lbolt; 17037 icmp_inbound(q, mp1, B_TRUE, ill, 17038 0, sum, mctl_present, B_TRUE, 17039 recv_ill, ire_zone->ire_zoneid); 17040 } 17041 IRB_REFRELE(ire->ire_bucket); 17042 } 17043 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17044 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17045 ire->ire_zoneid); 17046 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17047 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17048 return; 17049 } 17050 case IPPROTO_IGMP: 17051 /* 17052 * If we are not willing to accept IGMP packets in clear, 17053 * then check with global policy. 17054 */ 17055 if (ipst->ips_igmp_accept_clear_messages == 0) { 17056 first_mp = ipsec_check_global_policy(first_mp, NULL, 17057 ipha, NULL, mctl_present, ipst->ips_netstack); 17058 if (first_mp == NULL) 17059 return; 17060 } 17061 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17062 freemsg(first_mp); 17063 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17065 return; 17066 } 17067 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17068 /* Bad packet - discarded by igmp_input */ 17069 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17070 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17071 if (mctl_present) 17072 freeb(first_mp); 17073 return; 17074 } 17075 /* 17076 * igmp_input() may have returned the pulled up message. 17077 * So first_mp and ipha need to be reinitialized. 17078 */ 17079 ipha = (ipha_t *)mp->b_rptr; 17080 if (mctl_present) 17081 first_mp->b_cont = mp; 17082 else 17083 first_mp = mp; 17084 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17085 connf_head != NULL) { 17086 /* No user-level listener for IGMP packets */ 17087 goto drop_pkt; 17088 } 17089 /* deliver to local raw users */ 17090 break; 17091 case IPPROTO_PIM: 17092 /* 17093 * If we are not willing to accept PIM packets in clear, 17094 * then check with global policy. 17095 */ 17096 if (ipst->ips_pim_accept_clear_messages == 0) { 17097 first_mp = ipsec_check_global_policy(first_mp, NULL, 17098 ipha, NULL, mctl_present, ipst->ips_netstack); 17099 if (first_mp == NULL) 17100 return; 17101 } 17102 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17103 freemsg(first_mp); 17104 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17106 return; 17107 } 17108 if (pim_input(q, mp, ill) != 0) { 17109 /* Bad packet - discarded by pim_input */ 17110 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17111 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17112 if (mctl_present) 17113 freeb(first_mp); 17114 return; 17115 } 17116 17117 /* 17118 * pim_input() may have pulled up the message so ipha needs to 17119 * be reinitialized. 17120 */ 17121 ipha = (ipha_t *)mp->b_rptr; 17122 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17123 connf_head != NULL) { 17124 /* No user-level listener for PIM packets */ 17125 goto drop_pkt; 17126 } 17127 /* deliver to local raw users */ 17128 break; 17129 case IPPROTO_ENCAP: 17130 /* 17131 * Handle self-encapsulated packets (IP-in-IP where 17132 * the inner addresses == the outer addresses). 17133 */ 17134 hdr_length = IPH_HDR_LENGTH(ipha); 17135 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17136 mp->b_wptr) { 17137 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17138 sizeof (ipha_t) - mp->b_rptr)) { 17139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17140 freemsg(first_mp); 17141 return; 17142 } 17143 ipha = (ipha_t *)mp->b_rptr; 17144 } 17145 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17146 /* 17147 * Check the sanity of the inner IP header. 17148 */ 17149 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17150 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17151 freemsg(first_mp); 17152 return; 17153 } 17154 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17156 freemsg(first_mp); 17157 return; 17158 } 17159 if (inner_ipha->ipha_src == ipha->ipha_src && 17160 inner_ipha->ipha_dst == ipha->ipha_dst) { 17161 ipsec_in_t *ii; 17162 17163 /* 17164 * Self-encapsulated tunnel packet. Remove 17165 * the outer IP header and fanout again. 17166 * We also need to make sure that the inner 17167 * header is pulled up until options. 17168 */ 17169 mp->b_rptr = (uchar_t *)inner_ipha; 17170 ipha = inner_ipha; 17171 hdr_length = IPH_HDR_LENGTH(ipha); 17172 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17173 if (!pullupmsg(mp, (uchar_t *)ipha + 17174 + hdr_length - mp->b_rptr)) { 17175 freemsg(first_mp); 17176 return; 17177 } 17178 ipha = (ipha_t *)mp->b_rptr; 17179 } 17180 if (!mctl_present) { 17181 ASSERT(first_mp == mp); 17182 /* 17183 * This means that somebody is sending 17184 * Self-encapsualted packets without AH/ESP. 17185 * If AH/ESP was present, we would have already 17186 * allocated the first_mp. 17187 */ 17188 first_mp = ipsec_in_alloc(B_TRUE, 17189 ipst->ips_netstack); 17190 if (first_mp == NULL) { 17191 ip1dbg(("ip_proto_input: IPSEC_IN " 17192 "allocation failure.\n")); 17193 BUMP_MIB(ill->ill_ip_mib, 17194 ipIfStatsInDiscards); 17195 freemsg(mp); 17196 return; 17197 } 17198 first_mp->b_cont = mp; 17199 } 17200 /* 17201 * We generally store the ill_index if we need to 17202 * do IPSEC processing as we lose the ill queue when 17203 * we come back. But in this case, we never should 17204 * have to store the ill_index here as it should have 17205 * been stored previously when we processed the 17206 * AH/ESP header in this routine or for non-ipsec 17207 * cases, we still have the queue. But for some bad 17208 * packets from the wire, we can get to IPSEC after 17209 * this and we better store the index for that case. 17210 */ 17211 ill = (ill_t *)q->q_ptr; 17212 ii = (ipsec_in_t *)first_mp->b_rptr; 17213 ii->ipsec_in_ill_index = 17214 ill->ill_phyint->phyint_ifindex; 17215 ii->ipsec_in_rill_index = 17216 recv_ill->ill_phyint->phyint_ifindex; 17217 if (ii->ipsec_in_decaps) { 17218 /* 17219 * This packet is self-encapsulated multiple 17220 * times. We don't want to recurse infinitely. 17221 * To keep it simple, drop the packet. 17222 */ 17223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17224 freemsg(first_mp); 17225 return; 17226 } 17227 ii->ipsec_in_decaps = B_TRUE; 17228 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17229 ire); 17230 return; 17231 } 17232 break; 17233 case IPPROTO_AH: 17234 case IPPROTO_ESP: { 17235 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17236 17237 /* 17238 * Fast path for AH/ESP. If this is the first time 17239 * we are sending a datagram to AH/ESP, allocate 17240 * a IPSEC_IN message and prepend it. Otherwise, 17241 * just fanout. 17242 */ 17243 17244 int ipsec_rc; 17245 ipsec_in_t *ii; 17246 netstack_t *ns = ipst->ips_netstack; 17247 17248 IP_STAT(ipst, ipsec_proto_ahesp); 17249 if (!mctl_present) { 17250 ASSERT(first_mp == mp); 17251 first_mp = ipsec_in_alloc(B_TRUE, ns); 17252 if (first_mp == NULL) { 17253 ip1dbg(("ip_proto_input: IPSEC_IN " 17254 "allocation failure.\n")); 17255 freemsg(hada_mp); /* okay ifnull */ 17256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17257 freemsg(mp); 17258 return; 17259 } 17260 /* 17261 * Store the ill_index so that when we come back 17262 * from IPSEC we ride on the same queue. 17263 */ 17264 ill = (ill_t *)q->q_ptr; 17265 ii = (ipsec_in_t *)first_mp->b_rptr; 17266 ii->ipsec_in_ill_index = 17267 ill->ill_phyint->phyint_ifindex; 17268 ii->ipsec_in_rill_index = 17269 recv_ill->ill_phyint->phyint_ifindex; 17270 first_mp->b_cont = mp; 17271 /* 17272 * Cache hardware acceleration info. 17273 */ 17274 if (hada_mp != NULL) { 17275 IPSECHW_DEBUG(IPSECHW_PKT, 17276 ("ip_rput_local: caching data attr.\n")); 17277 ii->ipsec_in_accelerated = B_TRUE; 17278 ii->ipsec_in_da = hada_mp; 17279 hada_mp = NULL; 17280 } 17281 } else { 17282 ii = (ipsec_in_t *)first_mp->b_rptr; 17283 } 17284 17285 if (!ipsec_loaded(ipss)) { 17286 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17287 ire->ire_zoneid, ipst); 17288 return; 17289 } 17290 17291 ns = ipst->ips_netstack; 17292 /* select inbound SA and have IPsec process the pkt */ 17293 if (ipha->ipha_protocol == IPPROTO_ESP) { 17294 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17295 if (esph == NULL) 17296 return; 17297 ASSERT(ii->ipsec_in_esp_sa != NULL); 17298 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17299 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17300 first_mp, esph); 17301 } else { 17302 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17303 if (ah == NULL) 17304 return; 17305 ASSERT(ii->ipsec_in_ah_sa != NULL); 17306 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17307 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17308 first_mp, ah); 17309 } 17310 17311 switch (ipsec_rc) { 17312 case IPSEC_STATUS_SUCCESS: 17313 break; 17314 case IPSEC_STATUS_FAILED: 17315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17316 /* FALLTHRU */ 17317 case IPSEC_STATUS_PENDING: 17318 return; 17319 } 17320 /* we're done with IPsec processing, send it up */ 17321 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17322 return; 17323 } 17324 default: 17325 break; 17326 } 17327 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17328 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17329 ire->ire_zoneid)); 17330 goto drop_pkt; 17331 } 17332 /* 17333 * Handle protocols with which IP is less intimate. There 17334 * can be more than one stream bound to a particular 17335 * protocol. When this is the case, each one gets a copy 17336 * of any incoming packets. 17337 */ 17338 ip_fanout_proto(q, first_mp, ill, ipha, 17339 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17340 B_TRUE, recv_ill, ire->ire_zoneid); 17341 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17342 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17343 return; 17344 17345 drop_pkt: 17346 freemsg(first_mp); 17347 if (hada_mp != NULL) 17348 freeb(hada_mp); 17349 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17350 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17351 #undef rptr 17352 #undef iphs 17353 17354 } 17355 17356 /* 17357 * Update any source route, record route or timestamp options. 17358 * Check that we are at end of strict source route. 17359 * The options have already been checked for sanity in ip_rput_options(). 17360 */ 17361 static boolean_t 17362 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17363 ip_stack_t *ipst) 17364 { 17365 ipoptp_t opts; 17366 uchar_t *opt; 17367 uint8_t optval; 17368 uint8_t optlen; 17369 ipaddr_t dst; 17370 uint32_t ts; 17371 ire_t *dst_ire; 17372 timestruc_t now; 17373 zoneid_t zoneid; 17374 ill_t *ill; 17375 17376 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17377 17378 ip2dbg(("ip_rput_local_options\n")); 17379 17380 for (optval = ipoptp_first(&opts, ipha); 17381 optval != IPOPT_EOL; 17382 optval = ipoptp_next(&opts)) { 17383 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17384 opt = opts.ipoptp_cur; 17385 optlen = opts.ipoptp_len; 17386 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17387 optval, optlen)); 17388 switch (optval) { 17389 uint32_t off; 17390 case IPOPT_SSRR: 17391 case IPOPT_LSRR: 17392 off = opt[IPOPT_OFFSET]; 17393 off--; 17394 if (optlen < IP_ADDR_LEN || 17395 off > optlen - IP_ADDR_LEN) { 17396 /* End of source route */ 17397 ip1dbg(("ip_rput_local_options: end of SR\n")); 17398 break; 17399 } 17400 /* 17401 * This will only happen if two consecutive entries 17402 * in the source route contains our address or if 17403 * it is a packet with a loose source route which 17404 * reaches us before consuming the whole source route 17405 */ 17406 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17407 if (optval == IPOPT_SSRR) { 17408 goto bad_src_route; 17409 } 17410 /* 17411 * Hack: instead of dropping the packet truncate the 17412 * source route to what has been used by filling the 17413 * rest with IPOPT_NOP. 17414 */ 17415 opt[IPOPT_OLEN] = (uint8_t)off; 17416 while (off < optlen) { 17417 opt[off++] = IPOPT_NOP; 17418 } 17419 break; 17420 case IPOPT_RR: 17421 off = opt[IPOPT_OFFSET]; 17422 off--; 17423 if (optlen < IP_ADDR_LEN || 17424 off > optlen - IP_ADDR_LEN) { 17425 /* No more room - ignore */ 17426 ip1dbg(( 17427 "ip_rput_local_options: end of RR\n")); 17428 break; 17429 } 17430 bcopy(&ire->ire_src_addr, (char *)opt + off, 17431 IP_ADDR_LEN); 17432 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17433 break; 17434 case IPOPT_TS: 17435 /* Insert timestamp if there is romm */ 17436 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17437 case IPOPT_TS_TSONLY: 17438 off = IPOPT_TS_TIMELEN; 17439 break; 17440 case IPOPT_TS_PRESPEC: 17441 case IPOPT_TS_PRESPEC_RFC791: 17442 /* Verify that the address matched */ 17443 off = opt[IPOPT_OFFSET] - 1; 17444 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17445 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17446 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17447 ipst); 17448 if (dst_ire == NULL) { 17449 /* Not for us */ 17450 break; 17451 } 17452 ire_refrele(dst_ire); 17453 /* FALLTHRU */ 17454 case IPOPT_TS_TSANDADDR: 17455 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17456 break; 17457 default: 17458 /* 17459 * ip_*put_options should have already 17460 * dropped this packet. 17461 */ 17462 cmn_err(CE_PANIC, "ip_rput_local_options: " 17463 "unknown IT - bug in ip_rput_options?\n"); 17464 return (B_TRUE); /* Keep "lint" happy */ 17465 } 17466 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17467 /* Increase overflow counter */ 17468 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17469 opt[IPOPT_POS_OV_FLG] = 17470 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17471 (off << 4)); 17472 break; 17473 } 17474 off = opt[IPOPT_OFFSET] - 1; 17475 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17476 case IPOPT_TS_PRESPEC: 17477 case IPOPT_TS_PRESPEC_RFC791: 17478 case IPOPT_TS_TSANDADDR: 17479 bcopy(&ire->ire_src_addr, (char *)opt + off, 17480 IP_ADDR_LEN); 17481 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17482 /* FALLTHRU */ 17483 case IPOPT_TS_TSONLY: 17484 off = opt[IPOPT_OFFSET] - 1; 17485 /* Compute # of milliseconds since midnight */ 17486 gethrestime(&now); 17487 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17488 now.tv_nsec / (NANOSEC / MILLISEC); 17489 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17490 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17491 break; 17492 } 17493 break; 17494 } 17495 } 17496 return (B_TRUE); 17497 17498 bad_src_route: 17499 q = WR(q); 17500 if (q->q_next != NULL) 17501 ill = q->q_ptr; 17502 else 17503 ill = NULL; 17504 17505 /* make sure we clear any indication of a hardware checksum */ 17506 DB_CKSUMFLAGS(mp) = 0; 17507 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17508 if (zoneid == ALL_ZONES) 17509 freemsg(mp); 17510 else 17511 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17512 return (B_FALSE); 17513 17514 } 17515 17516 /* 17517 * Process IP options in an inbound packet. If an option affects the 17518 * effective destination address, return the next hop address via dstp. 17519 * Returns -1 if something fails in which case an ICMP error has been sent 17520 * and mp freed. 17521 */ 17522 static int 17523 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17524 ip_stack_t *ipst) 17525 { 17526 ipoptp_t opts; 17527 uchar_t *opt; 17528 uint8_t optval; 17529 uint8_t optlen; 17530 ipaddr_t dst; 17531 intptr_t code = 0; 17532 ire_t *ire = NULL; 17533 zoneid_t zoneid; 17534 ill_t *ill; 17535 17536 ip2dbg(("ip_rput_options\n")); 17537 dst = ipha->ipha_dst; 17538 for (optval = ipoptp_first(&opts, ipha); 17539 optval != IPOPT_EOL; 17540 optval = ipoptp_next(&opts)) { 17541 opt = opts.ipoptp_cur; 17542 optlen = opts.ipoptp_len; 17543 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17544 optval, optlen)); 17545 /* 17546 * Note: we need to verify the checksum before we 17547 * modify anything thus this routine only extracts the next 17548 * hop dst from any source route. 17549 */ 17550 switch (optval) { 17551 uint32_t off; 17552 case IPOPT_SSRR: 17553 case IPOPT_LSRR: 17554 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17555 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17556 if (ire == NULL) { 17557 if (optval == IPOPT_SSRR) { 17558 ip1dbg(("ip_rput_options: not next" 17559 " strict source route 0x%x\n", 17560 ntohl(dst))); 17561 code = (char *)&ipha->ipha_dst - 17562 (char *)ipha; 17563 goto param_prob; /* RouterReq's */ 17564 } 17565 ip2dbg(("ip_rput_options: " 17566 "not next source route 0x%x\n", 17567 ntohl(dst))); 17568 break; 17569 } 17570 ire_refrele(ire); 17571 17572 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17573 ip1dbg(( 17574 "ip_rput_options: bad option offset\n")); 17575 code = (char *)&opt[IPOPT_OLEN] - 17576 (char *)ipha; 17577 goto param_prob; 17578 } 17579 off = opt[IPOPT_OFFSET]; 17580 off--; 17581 redo_srr: 17582 if (optlen < IP_ADDR_LEN || 17583 off > optlen - IP_ADDR_LEN) { 17584 /* End of source route */ 17585 ip1dbg(("ip_rput_options: end of SR\n")); 17586 break; 17587 } 17588 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17589 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17590 ntohl(dst))); 17591 17592 /* 17593 * Check if our address is present more than 17594 * once as consecutive hops in source route. 17595 * XXX verify per-interface ip_forwarding 17596 * for source route? 17597 */ 17598 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17599 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17600 17601 if (ire != NULL) { 17602 ire_refrele(ire); 17603 off += IP_ADDR_LEN; 17604 goto redo_srr; 17605 } 17606 17607 if (dst == htonl(INADDR_LOOPBACK)) { 17608 ip1dbg(("ip_rput_options: loopback addr in " 17609 "source route!\n")); 17610 goto bad_src_route; 17611 } 17612 /* 17613 * For strict: verify that dst is directly 17614 * reachable. 17615 */ 17616 if (optval == IPOPT_SSRR) { 17617 ire = ire_ftable_lookup(dst, 0, 0, 17618 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17619 MBLK_GETLABEL(mp), 17620 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17621 if (ire == NULL) { 17622 ip1dbg(("ip_rput_options: SSRR not " 17623 "directly reachable: 0x%x\n", 17624 ntohl(dst))); 17625 goto bad_src_route; 17626 } 17627 ire_refrele(ire); 17628 } 17629 /* 17630 * Defer update of the offset and the record route 17631 * until the packet is forwarded. 17632 */ 17633 break; 17634 case IPOPT_RR: 17635 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17636 ip1dbg(( 17637 "ip_rput_options: bad option offset\n")); 17638 code = (char *)&opt[IPOPT_OLEN] - 17639 (char *)ipha; 17640 goto param_prob; 17641 } 17642 break; 17643 case IPOPT_TS: 17644 /* 17645 * Verify that length >= 5 and that there is either 17646 * room for another timestamp or that the overflow 17647 * counter is not maxed out. 17648 */ 17649 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17650 if (optlen < IPOPT_MINLEN_IT) { 17651 goto param_prob; 17652 } 17653 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17654 ip1dbg(( 17655 "ip_rput_options: bad option offset\n")); 17656 code = (char *)&opt[IPOPT_OFFSET] - 17657 (char *)ipha; 17658 goto param_prob; 17659 } 17660 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17661 case IPOPT_TS_TSONLY: 17662 off = IPOPT_TS_TIMELEN; 17663 break; 17664 case IPOPT_TS_TSANDADDR: 17665 case IPOPT_TS_PRESPEC: 17666 case IPOPT_TS_PRESPEC_RFC791: 17667 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17668 break; 17669 default: 17670 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17671 (char *)ipha; 17672 goto param_prob; 17673 } 17674 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17675 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17676 /* 17677 * No room and the overflow counter is 15 17678 * already. 17679 */ 17680 goto param_prob; 17681 } 17682 break; 17683 } 17684 } 17685 17686 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17687 *dstp = dst; 17688 return (0); 17689 } 17690 17691 ip1dbg(("ip_rput_options: error processing IP options.")); 17692 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17693 17694 param_prob: 17695 q = WR(q); 17696 if (q->q_next != NULL) 17697 ill = q->q_ptr; 17698 else 17699 ill = NULL; 17700 17701 /* make sure we clear any indication of a hardware checksum */ 17702 DB_CKSUMFLAGS(mp) = 0; 17703 /* Don't know whether this is for non-global or global/forwarding */ 17704 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17705 if (zoneid == ALL_ZONES) 17706 freemsg(mp); 17707 else 17708 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17709 return (-1); 17710 17711 bad_src_route: 17712 q = WR(q); 17713 if (q->q_next != NULL) 17714 ill = q->q_ptr; 17715 else 17716 ill = NULL; 17717 17718 /* make sure we clear any indication of a hardware checksum */ 17719 DB_CKSUMFLAGS(mp) = 0; 17720 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17721 if (zoneid == ALL_ZONES) 17722 freemsg(mp); 17723 else 17724 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17725 return (-1); 17726 } 17727 17728 /* 17729 * IP & ICMP info in >=14 msg's ... 17730 * - ip fixed part (mib2_ip_t) 17731 * - icmp fixed part (mib2_icmp_t) 17732 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17733 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17734 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17735 * - ipRouteAttributeTable (ip 102) labeled routes 17736 * - ip multicast membership (ip_member_t) 17737 * - ip multicast source filtering (ip_grpsrc_t) 17738 * - igmp fixed part (struct igmpstat) 17739 * - multicast routing stats (struct mrtstat) 17740 * - multicast routing vifs (array of struct vifctl) 17741 * - multicast routing routes (array of struct mfcctl) 17742 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17743 * One per ill plus one generic 17744 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17745 * One per ill plus one generic 17746 * - ipv6RouteEntry all IPv6 IREs 17747 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17748 * - ipv6NetToMediaEntry all Neighbor Cache entries 17749 * - ipv6AddrEntry all IPv6 ipifs 17750 * - ipv6 multicast membership (ipv6_member_t) 17751 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17752 * 17753 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17754 * 17755 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17756 * already filled in by the caller. 17757 * Return value of 0 indicates that no messages were sent and caller 17758 * should free mpctl. 17759 */ 17760 int 17761 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17762 { 17763 ip_stack_t *ipst; 17764 sctp_stack_t *sctps; 17765 17766 17767 if (q->q_next != NULL) { 17768 ipst = ILLQ_TO_IPST(q); 17769 } else { 17770 ipst = CONNQ_TO_IPST(q); 17771 } 17772 ASSERT(ipst != NULL); 17773 sctps = ipst->ips_netstack->netstack_sctp; 17774 17775 if (mpctl == NULL || mpctl->b_cont == NULL) { 17776 return (0); 17777 } 17778 17779 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 17780 ipst)) == NULL) { 17781 return (1); 17782 } 17783 17784 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 17785 return (1); 17786 } 17787 17788 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 17789 return (1); 17790 } 17791 17792 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 17793 return (1); 17794 } 17795 17796 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 17797 return (1); 17798 } 17799 17800 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 17801 return (1); 17802 } 17803 17804 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 17805 return (1); 17806 } 17807 17808 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 17809 return (1); 17810 } 17811 17812 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 17813 return (1); 17814 } 17815 17816 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 17817 return (1); 17818 } 17819 17820 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 17821 return (1); 17822 } 17823 17824 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 17825 return (1); 17826 } 17827 17828 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 17829 return (1); 17830 } 17831 17832 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 17833 return (1); 17834 } 17835 17836 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 17837 return (1); 17838 } 17839 17840 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 17841 if (mpctl == NULL) { 17842 return (1); 17843 } 17844 17845 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 17846 return (1); 17847 } 17848 freemsg(mpctl); 17849 return (1); 17850 } 17851 17852 17853 /* Get global (legacy) IPv4 statistics */ 17854 static mblk_t * 17855 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 17856 ip_stack_t *ipst) 17857 { 17858 mib2_ip_t old_ip_mib; 17859 struct opthdr *optp; 17860 mblk_t *mp2ctl; 17861 17862 /* 17863 * make a copy of the original message 17864 */ 17865 mp2ctl = copymsg(mpctl); 17866 17867 /* fixed length IP structure... */ 17868 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17869 optp->level = MIB2_IP; 17870 optp->name = 0; 17871 SET_MIB(old_ip_mib.ipForwarding, 17872 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 17873 SET_MIB(old_ip_mib.ipDefaultTTL, 17874 (uint32_t)ipst->ips_ip_def_ttl); 17875 SET_MIB(old_ip_mib.ipReasmTimeout, 17876 ipst->ips_ip_g_frag_timeout); 17877 SET_MIB(old_ip_mib.ipAddrEntrySize, 17878 sizeof (mib2_ipAddrEntry_t)); 17879 SET_MIB(old_ip_mib.ipRouteEntrySize, 17880 sizeof (mib2_ipRouteEntry_t)); 17881 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 17882 sizeof (mib2_ipNetToMediaEntry_t)); 17883 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17884 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17885 SET_MIB(old_ip_mib.ipRouteAttributeSize, 17886 sizeof (mib2_ipAttributeEntry_t)); 17887 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17888 17889 /* 17890 * Grab the statistics from the new IP MIB 17891 */ 17892 SET_MIB(old_ip_mib.ipInReceives, 17893 (uint32_t)ipmib->ipIfStatsHCInReceives); 17894 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 17895 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 17896 SET_MIB(old_ip_mib.ipForwDatagrams, 17897 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 17898 SET_MIB(old_ip_mib.ipInUnknownProtos, 17899 ipmib->ipIfStatsInUnknownProtos); 17900 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 17901 SET_MIB(old_ip_mib.ipInDelivers, 17902 (uint32_t)ipmib->ipIfStatsHCInDelivers); 17903 SET_MIB(old_ip_mib.ipOutRequests, 17904 (uint32_t)ipmib->ipIfStatsHCOutRequests); 17905 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 17906 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 17907 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 17908 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 17909 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 17910 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 17911 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 17912 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 17913 17914 /* ipRoutingDiscards is not being used */ 17915 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 17916 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 17917 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 17918 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 17919 SET_MIB(old_ip_mib.ipReasmDuplicates, 17920 ipmib->ipIfStatsReasmDuplicates); 17921 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 17922 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 17923 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 17924 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 17925 SET_MIB(old_ip_mib.rawipInOverflows, 17926 ipmib->rawipIfStatsInOverflows); 17927 17928 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 17929 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 17930 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 17931 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 17932 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 17933 ipmib->ipIfStatsOutSwitchIPVersion); 17934 17935 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 17936 (int)sizeof (old_ip_mib))) { 17937 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17938 (uint_t)sizeof (old_ip_mib))); 17939 } 17940 17941 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17942 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17943 (int)optp->level, (int)optp->name, (int)optp->len)); 17944 qreply(q, mpctl); 17945 return (mp2ctl); 17946 } 17947 17948 /* Per interface IPv4 statistics */ 17949 static mblk_t * 17950 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 17951 { 17952 struct opthdr *optp; 17953 mblk_t *mp2ctl; 17954 ill_t *ill; 17955 ill_walk_context_t ctx; 17956 mblk_t *mp_tail = NULL; 17957 mib2_ipIfStatsEntry_t global_ip_mib; 17958 17959 /* 17960 * Make a copy of the original message 17961 */ 17962 mp2ctl = copymsg(mpctl); 17963 17964 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17965 optp->level = MIB2_IP; 17966 optp->name = MIB2_IP_TRAFFIC_STATS; 17967 /* Include "unknown interface" ip_mib */ 17968 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 17969 ipst->ips_ip_mib.ipIfStatsIfIndex = 17970 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 17971 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 17972 (ipst->ips_ip_g_forward ? 1 : 2)); 17973 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 17974 (uint32_t)ipst->ips_ip_def_ttl); 17975 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 17976 sizeof (mib2_ipIfStatsEntry_t)); 17977 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 17978 sizeof (mib2_ipAddrEntry_t)); 17979 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 17980 sizeof (mib2_ipRouteEntry_t)); 17981 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 17982 sizeof (mib2_ipNetToMediaEntry_t)); 17983 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 17984 sizeof (ip_member_t)); 17985 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 17986 sizeof (ip_grpsrc_t)); 17987 17988 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17989 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 17990 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 17991 "failed to allocate %u bytes\n", 17992 (uint_t)sizeof (ipst->ips_ip_mib))); 17993 } 17994 17995 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 17996 17997 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17998 ill = ILL_START_WALK_V4(&ctx, ipst); 17999 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18000 ill->ill_ip_mib->ipIfStatsIfIndex = 18001 ill->ill_phyint->phyint_ifindex; 18002 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18003 (ipst->ips_ip_g_forward ? 1 : 2)); 18004 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18005 (uint32_t)ipst->ips_ip_def_ttl); 18006 18007 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18008 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18009 (char *)ill->ill_ip_mib, 18010 (int)sizeof (*ill->ill_ip_mib))) { 18011 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18012 "failed to allocate %u bytes\n", 18013 (uint_t)sizeof (*ill->ill_ip_mib))); 18014 } 18015 } 18016 rw_exit(&ipst->ips_ill_g_lock); 18017 18018 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18019 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18020 "level %d, name %d, len %d\n", 18021 (int)optp->level, (int)optp->name, (int)optp->len)); 18022 qreply(q, mpctl); 18023 18024 if (mp2ctl == NULL) 18025 return (NULL); 18026 18027 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18028 } 18029 18030 /* Global IPv4 ICMP statistics */ 18031 static mblk_t * 18032 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18033 { 18034 struct opthdr *optp; 18035 mblk_t *mp2ctl; 18036 18037 /* 18038 * Make a copy of the original message 18039 */ 18040 mp2ctl = copymsg(mpctl); 18041 18042 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18043 optp->level = MIB2_ICMP; 18044 optp->name = 0; 18045 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18046 (int)sizeof (ipst->ips_icmp_mib))) { 18047 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18048 (uint_t)sizeof (ipst->ips_icmp_mib))); 18049 } 18050 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18051 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18052 (int)optp->level, (int)optp->name, (int)optp->len)); 18053 qreply(q, mpctl); 18054 return (mp2ctl); 18055 } 18056 18057 /* Global IPv4 IGMP statistics */ 18058 static mblk_t * 18059 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18060 { 18061 struct opthdr *optp; 18062 mblk_t *mp2ctl; 18063 18064 /* 18065 * make a copy of the original message 18066 */ 18067 mp2ctl = copymsg(mpctl); 18068 18069 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18070 optp->level = EXPER_IGMP; 18071 optp->name = 0; 18072 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18073 (int)sizeof (ipst->ips_igmpstat))) { 18074 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18075 (uint_t)sizeof (ipst->ips_igmpstat))); 18076 } 18077 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18078 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18079 (int)optp->level, (int)optp->name, (int)optp->len)); 18080 qreply(q, mpctl); 18081 return (mp2ctl); 18082 } 18083 18084 /* Global IPv4 Multicast Routing statistics */ 18085 static mblk_t * 18086 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18087 { 18088 struct opthdr *optp; 18089 mblk_t *mp2ctl; 18090 18091 /* 18092 * make a copy of the original message 18093 */ 18094 mp2ctl = copymsg(mpctl); 18095 18096 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18097 optp->level = EXPER_DVMRP; 18098 optp->name = 0; 18099 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18100 ip0dbg(("ip_mroute_stats: failed\n")); 18101 } 18102 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18103 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18104 (int)optp->level, (int)optp->name, (int)optp->len)); 18105 qreply(q, mpctl); 18106 return (mp2ctl); 18107 } 18108 18109 /* IPv4 address information */ 18110 static mblk_t * 18111 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18112 { 18113 struct opthdr *optp; 18114 mblk_t *mp2ctl; 18115 mblk_t *mp_tail = NULL; 18116 ill_t *ill; 18117 ipif_t *ipif; 18118 uint_t bitval; 18119 mib2_ipAddrEntry_t mae; 18120 zoneid_t zoneid; 18121 ill_walk_context_t ctx; 18122 18123 /* 18124 * make a copy of the original message 18125 */ 18126 mp2ctl = copymsg(mpctl); 18127 18128 /* ipAddrEntryTable */ 18129 18130 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18131 optp->level = MIB2_IP; 18132 optp->name = MIB2_IP_ADDR; 18133 zoneid = Q_TO_CONN(q)->conn_zoneid; 18134 18135 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18136 ill = ILL_START_WALK_V4(&ctx, ipst); 18137 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18138 for (ipif = ill->ill_ipif; ipif != NULL; 18139 ipif = ipif->ipif_next) { 18140 if (ipif->ipif_zoneid != zoneid && 18141 ipif->ipif_zoneid != ALL_ZONES) 18142 continue; 18143 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18144 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18145 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18146 18147 (void) ipif_get_name(ipif, 18148 mae.ipAdEntIfIndex.o_bytes, 18149 OCTET_LENGTH); 18150 mae.ipAdEntIfIndex.o_length = 18151 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18152 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18153 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18154 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18155 mae.ipAdEntInfo.ae_subnet_len = 18156 ip_mask_to_plen(ipif->ipif_net_mask); 18157 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18158 for (bitval = 1; 18159 bitval && 18160 !(bitval & ipif->ipif_brd_addr); 18161 bitval <<= 1) 18162 noop; 18163 mae.ipAdEntBcastAddr = bitval; 18164 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18165 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18166 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18167 mae.ipAdEntInfo.ae_broadcast_addr = 18168 ipif->ipif_brd_addr; 18169 mae.ipAdEntInfo.ae_pp_dst_addr = 18170 ipif->ipif_pp_dst_addr; 18171 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18172 ill->ill_flags | ill->ill_phyint->phyint_flags; 18173 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18174 18175 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18176 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18177 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18178 "allocate %u bytes\n", 18179 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18180 } 18181 } 18182 } 18183 rw_exit(&ipst->ips_ill_g_lock); 18184 18185 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18186 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18187 (int)optp->level, (int)optp->name, (int)optp->len)); 18188 qreply(q, mpctl); 18189 return (mp2ctl); 18190 } 18191 18192 /* IPv6 address information */ 18193 static mblk_t * 18194 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18195 { 18196 struct opthdr *optp; 18197 mblk_t *mp2ctl; 18198 mblk_t *mp_tail = NULL; 18199 ill_t *ill; 18200 ipif_t *ipif; 18201 mib2_ipv6AddrEntry_t mae6; 18202 zoneid_t zoneid; 18203 ill_walk_context_t ctx; 18204 18205 /* 18206 * make a copy of the original message 18207 */ 18208 mp2ctl = copymsg(mpctl); 18209 18210 /* ipv6AddrEntryTable */ 18211 18212 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18213 optp->level = MIB2_IP6; 18214 optp->name = MIB2_IP6_ADDR; 18215 zoneid = Q_TO_CONN(q)->conn_zoneid; 18216 18217 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18218 ill = ILL_START_WALK_V6(&ctx, ipst); 18219 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18220 for (ipif = ill->ill_ipif; ipif != NULL; 18221 ipif = ipif->ipif_next) { 18222 if (ipif->ipif_zoneid != zoneid && 18223 ipif->ipif_zoneid != ALL_ZONES) 18224 continue; 18225 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18226 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18227 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18228 18229 (void) ipif_get_name(ipif, 18230 mae6.ipv6AddrIfIndex.o_bytes, 18231 OCTET_LENGTH); 18232 mae6.ipv6AddrIfIndex.o_length = 18233 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18234 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18235 mae6.ipv6AddrPfxLength = 18236 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18237 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18238 mae6.ipv6AddrInfo.ae_subnet_len = 18239 mae6.ipv6AddrPfxLength; 18240 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18241 18242 /* Type: stateless(1), stateful(2), unknown(3) */ 18243 if (ipif->ipif_flags & IPIF_ADDRCONF) 18244 mae6.ipv6AddrType = 1; 18245 else 18246 mae6.ipv6AddrType = 2; 18247 /* Anycast: true(1), false(2) */ 18248 if (ipif->ipif_flags & IPIF_ANYCAST) 18249 mae6.ipv6AddrAnycastFlag = 1; 18250 else 18251 mae6.ipv6AddrAnycastFlag = 2; 18252 18253 /* 18254 * Address status: preferred(1), deprecated(2), 18255 * invalid(3), inaccessible(4), unknown(5) 18256 */ 18257 if (ipif->ipif_flags & IPIF_NOLOCAL) 18258 mae6.ipv6AddrStatus = 3; 18259 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18260 mae6.ipv6AddrStatus = 2; 18261 else 18262 mae6.ipv6AddrStatus = 1; 18263 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18264 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18265 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18266 ipif->ipif_v6pp_dst_addr; 18267 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18268 ill->ill_flags | ill->ill_phyint->phyint_flags; 18269 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18270 mae6.ipv6AddrIdentifier = ill->ill_token; 18271 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18272 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18273 mae6.ipv6AddrRetransmitTime = 18274 ill->ill_reachable_retrans_time; 18275 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18276 (char *)&mae6, 18277 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18278 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18279 "allocate %u bytes\n", 18280 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18281 } 18282 } 18283 } 18284 rw_exit(&ipst->ips_ill_g_lock); 18285 18286 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18287 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18288 (int)optp->level, (int)optp->name, (int)optp->len)); 18289 qreply(q, mpctl); 18290 return (mp2ctl); 18291 } 18292 18293 /* IPv4 multicast group membership. */ 18294 static mblk_t * 18295 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18296 { 18297 struct opthdr *optp; 18298 mblk_t *mp2ctl; 18299 ill_t *ill; 18300 ipif_t *ipif; 18301 ilm_t *ilm; 18302 ip_member_t ipm; 18303 mblk_t *mp_tail = NULL; 18304 ill_walk_context_t ctx; 18305 zoneid_t zoneid; 18306 18307 /* 18308 * make a copy of the original message 18309 */ 18310 mp2ctl = copymsg(mpctl); 18311 zoneid = Q_TO_CONN(q)->conn_zoneid; 18312 18313 /* ipGroupMember table */ 18314 optp = (struct opthdr *)&mpctl->b_rptr[ 18315 sizeof (struct T_optmgmt_ack)]; 18316 optp->level = MIB2_IP; 18317 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18318 18319 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18320 ill = ILL_START_WALK_V4(&ctx, ipst); 18321 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18322 ILM_WALKER_HOLD(ill); 18323 for (ipif = ill->ill_ipif; ipif != NULL; 18324 ipif = ipif->ipif_next) { 18325 if (ipif->ipif_zoneid != zoneid && 18326 ipif->ipif_zoneid != ALL_ZONES) 18327 continue; /* not this zone */ 18328 (void) ipif_get_name(ipif, 18329 ipm.ipGroupMemberIfIndex.o_bytes, 18330 OCTET_LENGTH); 18331 ipm.ipGroupMemberIfIndex.o_length = 18332 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18333 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18334 ASSERT(ilm->ilm_ipif != NULL); 18335 ASSERT(ilm->ilm_ill == NULL); 18336 if (ilm->ilm_ipif != ipif) 18337 continue; 18338 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18339 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18340 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18341 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18342 (char *)&ipm, (int)sizeof (ipm))) { 18343 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18344 "failed to allocate %u bytes\n", 18345 (uint_t)sizeof (ipm))); 18346 } 18347 } 18348 } 18349 ILM_WALKER_RELE(ill); 18350 } 18351 rw_exit(&ipst->ips_ill_g_lock); 18352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18353 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18354 (int)optp->level, (int)optp->name, (int)optp->len)); 18355 qreply(q, mpctl); 18356 return (mp2ctl); 18357 } 18358 18359 /* IPv6 multicast group membership. */ 18360 static mblk_t * 18361 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18362 { 18363 struct opthdr *optp; 18364 mblk_t *mp2ctl; 18365 ill_t *ill; 18366 ilm_t *ilm; 18367 ipv6_member_t ipm6; 18368 mblk_t *mp_tail = NULL; 18369 ill_walk_context_t ctx; 18370 zoneid_t zoneid; 18371 18372 /* 18373 * make a copy of the original message 18374 */ 18375 mp2ctl = copymsg(mpctl); 18376 zoneid = Q_TO_CONN(q)->conn_zoneid; 18377 18378 /* ip6GroupMember table */ 18379 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18380 optp->level = MIB2_IP6; 18381 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18382 18383 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18384 ill = ILL_START_WALK_V6(&ctx, ipst); 18385 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18386 ILM_WALKER_HOLD(ill); 18387 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18388 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18389 ASSERT(ilm->ilm_ipif == NULL); 18390 ASSERT(ilm->ilm_ill != NULL); 18391 if (ilm->ilm_zoneid != zoneid) 18392 continue; /* not this zone */ 18393 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18394 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18395 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18396 if (!snmp_append_data2(mpctl->b_cont, 18397 &mp_tail, 18398 (char *)&ipm6, (int)sizeof (ipm6))) { 18399 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18400 "failed to allocate %u bytes\n", 18401 (uint_t)sizeof (ipm6))); 18402 } 18403 } 18404 ILM_WALKER_RELE(ill); 18405 } 18406 rw_exit(&ipst->ips_ill_g_lock); 18407 18408 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18409 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18410 (int)optp->level, (int)optp->name, (int)optp->len)); 18411 qreply(q, mpctl); 18412 return (mp2ctl); 18413 } 18414 18415 /* IP multicast filtered sources */ 18416 static mblk_t * 18417 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18418 { 18419 struct opthdr *optp; 18420 mblk_t *mp2ctl; 18421 ill_t *ill; 18422 ipif_t *ipif; 18423 ilm_t *ilm; 18424 ip_grpsrc_t ips; 18425 mblk_t *mp_tail = NULL; 18426 ill_walk_context_t ctx; 18427 zoneid_t zoneid; 18428 int i; 18429 slist_t *sl; 18430 18431 /* 18432 * make a copy of the original message 18433 */ 18434 mp2ctl = copymsg(mpctl); 18435 zoneid = Q_TO_CONN(q)->conn_zoneid; 18436 18437 /* ipGroupSource table */ 18438 optp = (struct opthdr *)&mpctl->b_rptr[ 18439 sizeof (struct T_optmgmt_ack)]; 18440 optp->level = MIB2_IP; 18441 optp->name = EXPER_IP_GROUP_SOURCES; 18442 18443 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18444 ill = ILL_START_WALK_V4(&ctx, ipst); 18445 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18446 ILM_WALKER_HOLD(ill); 18447 for (ipif = ill->ill_ipif; ipif != NULL; 18448 ipif = ipif->ipif_next) { 18449 if (ipif->ipif_zoneid != zoneid) 18450 continue; /* not this zone */ 18451 (void) ipif_get_name(ipif, 18452 ips.ipGroupSourceIfIndex.o_bytes, 18453 OCTET_LENGTH); 18454 ips.ipGroupSourceIfIndex.o_length = 18455 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18456 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18457 ASSERT(ilm->ilm_ipif != NULL); 18458 ASSERT(ilm->ilm_ill == NULL); 18459 sl = ilm->ilm_filter; 18460 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18461 continue; 18462 ips.ipGroupSourceGroup = ilm->ilm_addr; 18463 for (i = 0; i < sl->sl_numsrc; i++) { 18464 if (!IN6_IS_ADDR_V4MAPPED( 18465 &sl->sl_addr[i])) 18466 continue; 18467 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18468 ips.ipGroupSourceAddress); 18469 if (snmp_append_data2(mpctl->b_cont, 18470 &mp_tail, (char *)&ips, 18471 (int)sizeof (ips)) == 0) { 18472 ip1dbg(("ip_snmp_get_mib2_" 18473 "ip_group_src: failed to " 18474 "allocate %u bytes\n", 18475 (uint_t)sizeof (ips))); 18476 } 18477 } 18478 } 18479 } 18480 ILM_WALKER_RELE(ill); 18481 } 18482 rw_exit(&ipst->ips_ill_g_lock); 18483 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18484 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18485 (int)optp->level, (int)optp->name, (int)optp->len)); 18486 qreply(q, mpctl); 18487 return (mp2ctl); 18488 } 18489 18490 /* IPv6 multicast filtered sources. */ 18491 static mblk_t * 18492 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18493 { 18494 struct opthdr *optp; 18495 mblk_t *mp2ctl; 18496 ill_t *ill; 18497 ilm_t *ilm; 18498 ipv6_grpsrc_t ips6; 18499 mblk_t *mp_tail = NULL; 18500 ill_walk_context_t ctx; 18501 zoneid_t zoneid; 18502 int i; 18503 slist_t *sl; 18504 18505 /* 18506 * make a copy of the original message 18507 */ 18508 mp2ctl = copymsg(mpctl); 18509 zoneid = Q_TO_CONN(q)->conn_zoneid; 18510 18511 /* ip6GroupMember table */ 18512 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18513 optp->level = MIB2_IP6; 18514 optp->name = EXPER_IP6_GROUP_SOURCES; 18515 18516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18517 ill = ILL_START_WALK_V6(&ctx, ipst); 18518 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18519 ILM_WALKER_HOLD(ill); 18520 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18521 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18522 ASSERT(ilm->ilm_ipif == NULL); 18523 ASSERT(ilm->ilm_ill != NULL); 18524 sl = ilm->ilm_filter; 18525 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18526 continue; 18527 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18528 for (i = 0; i < sl->sl_numsrc; i++) { 18529 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18530 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18531 (char *)&ips6, (int)sizeof (ips6))) { 18532 ip1dbg(("ip_snmp_get_mib2_ip6_" 18533 "group_src: failed to allocate " 18534 "%u bytes\n", 18535 (uint_t)sizeof (ips6))); 18536 } 18537 } 18538 } 18539 ILM_WALKER_RELE(ill); 18540 } 18541 rw_exit(&ipst->ips_ill_g_lock); 18542 18543 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18544 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18545 (int)optp->level, (int)optp->name, (int)optp->len)); 18546 qreply(q, mpctl); 18547 return (mp2ctl); 18548 } 18549 18550 /* Multicast routing virtual interface table. */ 18551 static mblk_t * 18552 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18553 { 18554 struct opthdr *optp; 18555 mblk_t *mp2ctl; 18556 18557 /* 18558 * make a copy of the original message 18559 */ 18560 mp2ctl = copymsg(mpctl); 18561 18562 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18563 optp->level = EXPER_DVMRP; 18564 optp->name = EXPER_DVMRP_VIF; 18565 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18566 ip0dbg(("ip_mroute_vif: failed\n")); 18567 } 18568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18569 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18570 (int)optp->level, (int)optp->name, (int)optp->len)); 18571 qreply(q, mpctl); 18572 return (mp2ctl); 18573 } 18574 18575 /* Multicast routing table. */ 18576 static mblk_t * 18577 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18578 { 18579 struct opthdr *optp; 18580 mblk_t *mp2ctl; 18581 18582 /* 18583 * make a copy of the original message 18584 */ 18585 mp2ctl = copymsg(mpctl); 18586 18587 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18588 optp->level = EXPER_DVMRP; 18589 optp->name = EXPER_DVMRP_MRT; 18590 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18591 ip0dbg(("ip_mroute_mrt: failed\n")); 18592 } 18593 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18594 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18595 (int)optp->level, (int)optp->name, (int)optp->len)); 18596 qreply(q, mpctl); 18597 return (mp2ctl); 18598 } 18599 18600 /* 18601 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18602 * in one IRE walk. 18603 */ 18604 static mblk_t * 18605 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18606 { 18607 struct opthdr *optp; 18608 mblk_t *mp2ctl; /* Returned */ 18609 mblk_t *mp3ctl; /* nettomedia */ 18610 mblk_t *mp4ctl; /* routeattrs */ 18611 iproutedata_t ird; 18612 zoneid_t zoneid; 18613 18614 /* 18615 * make copies of the original message 18616 * - mp2ctl is returned unchanged to the caller for his use 18617 * - mpctl is sent upstream as ipRouteEntryTable 18618 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18619 * - mp4ctl is sent upstream as ipRouteAttributeTable 18620 */ 18621 mp2ctl = copymsg(mpctl); 18622 mp3ctl = copymsg(mpctl); 18623 mp4ctl = copymsg(mpctl); 18624 if (mp3ctl == NULL || mp4ctl == NULL) { 18625 freemsg(mp4ctl); 18626 freemsg(mp3ctl); 18627 freemsg(mp2ctl); 18628 freemsg(mpctl); 18629 return (NULL); 18630 } 18631 18632 bzero(&ird, sizeof (ird)); 18633 18634 ird.ird_route.lp_head = mpctl->b_cont; 18635 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18636 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18637 18638 zoneid = Q_TO_CONN(q)->conn_zoneid; 18639 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18640 18641 /* ipRouteEntryTable in mpctl */ 18642 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18643 optp->level = MIB2_IP; 18644 optp->name = MIB2_IP_ROUTE; 18645 optp->len = msgdsize(ird.ird_route.lp_head); 18646 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18647 (int)optp->level, (int)optp->name, (int)optp->len)); 18648 qreply(q, mpctl); 18649 18650 /* ipNetToMediaEntryTable in mp3ctl */ 18651 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18652 optp->level = MIB2_IP; 18653 optp->name = MIB2_IP_MEDIA; 18654 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18655 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18656 (int)optp->level, (int)optp->name, (int)optp->len)); 18657 qreply(q, mp3ctl); 18658 18659 /* ipRouteAttributeTable in mp4ctl */ 18660 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18661 optp->level = MIB2_IP; 18662 optp->name = EXPER_IP_RTATTR; 18663 optp->len = msgdsize(ird.ird_attrs.lp_head); 18664 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18665 (int)optp->level, (int)optp->name, (int)optp->len)); 18666 if (optp->len == 0) 18667 freemsg(mp4ctl); 18668 else 18669 qreply(q, mp4ctl); 18670 18671 return (mp2ctl); 18672 } 18673 18674 /* 18675 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18676 * ipv6NetToMediaEntryTable in an NDP walk. 18677 */ 18678 static mblk_t * 18679 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18680 { 18681 struct opthdr *optp; 18682 mblk_t *mp2ctl; /* Returned */ 18683 mblk_t *mp3ctl; /* nettomedia */ 18684 mblk_t *mp4ctl; /* routeattrs */ 18685 iproutedata_t ird; 18686 zoneid_t zoneid; 18687 18688 /* 18689 * make copies of the original message 18690 * - mp2ctl is returned unchanged to the caller for his use 18691 * - mpctl is sent upstream as ipv6RouteEntryTable 18692 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18693 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18694 */ 18695 mp2ctl = copymsg(mpctl); 18696 mp3ctl = copymsg(mpctl); 18697 mp4ctl = copymsg(mpctl); 18698 if (mp3ctl == NULL || mp4ctl == NULL) { 18699 freemsg(mp4ctl); 18700 freemsg(mp3ctl); 18701 freemsg(mp2ctl); 18702 freemsg(mpctl); 18703 return (NULL); 18704 } 18705 18706 bzero(&ird, sizeof (ird)); 18707 18708 ird.ird_route.lp_head = mpctl->b_cont; 18709 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18710 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18711 18712 zoneid = Q_TO_CONN(q)->conn_zoneid; 18713 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18714 18715 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18716 optp->level = MIB2_IP6; 18717 optp->name = MIB2_IP6_ROUTE; 18718 optp->len = msgdsize(ird.ird_route.lp_head); 18719 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18720 (int)optp->level, (int)optp->name, (int)optp->len)); 18721 qreply(q, mpctl); 18722 18723 /* ipv6NetToMediaEntryTable in mp3ctl */ 18724 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18725 18726 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18727 optp->level = MIB2_IP6; 18728 optp->name = MIB2_IP6_MEDIA; 18729 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18730 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18731 (int)optp->level, (int)optp->name, (int)optp->len)); 18732 qreply(q, mp3ctl); 18733 18734 /* ipv6RouteAttributeTable in mp4ctl */ 18735 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18736 optp->level = MIB2_IP6; 18737 optp->name = EXPER_IP_RTATTR; 18738 optp->len = msgdsize(ird.ird_attrs.lp_head); 18739 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18740 (int)optp->level, (int)optp->name, (int)optp->len)); 18741 if (optp->len == 0) 18742 freemsg(mp4ctl); 18743 else 18744 qreply(q, mp4ctl); 18745 18746 return (mp2ctl); 18747 } 18748 18749 /* 18750 * IPv6 mib: One per ill 18751 */ 18752 static mblk_t * 18753 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18754 { 18755 struct opthdr *optp; 18756 mblk_t *mp2ctl; 18757 ill_t *ill; 18758 ill_walk_context_t ctx; 18759 mblk_t *mp_tail = NULL; 18760 18761 /* 18762 * Make a copy of the original message 18763 */ 18764 mp2ctl = copymsg(mpctl); 18765 18766 /* fixed length IPv6 structure ... */ 18767 18768 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18769 optp->level = MIB2_IP6; 18770 optp->name = 0; 18771 /* Include "unknown interface" ip6_mib */ 18772 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18773 ipst->ips_ip6_mib.ipIfStatsIfIndex = 18774 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18775 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 18776 ipst->ips_ipv6_forward ? 1 : 2); 18777 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 18778 ipst->ips_ipv6_def_hops); 18779 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 18780 sizeof (mib2_ipIfStatsEntry_t)); 18781 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 18782 sizeof (mib2_ipv6AddrEntry_t)); 18783 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 18784 sizeof (mib2_ipv6RouteEntry_t)); 18785 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 18786 sizeof (mib2_ipv6NetToMediaEntry_t)); 18787 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 18788 sizeof (ipv6_member_t)); 18789 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 18790 sizeof (ipv6_grpsrc_t)); 18791 18792 /* 18793 * Synchronize 64- and 32-bit counters 18794 */ 18795 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 18796 ipIfStatsHCInReceives); 18797 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 18798 ipIfStatsHCInDelivers); 18799 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 18800 ipIfStatsHCOutRequests); 18801 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 18802 ipIfStatsHCOutForwDatagrams); 18803 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 18804 ipIfStatsHCOutMcastPkts); 18805 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 18806 ipIfStatsHCInMcastPkts); 18807 18808 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18809 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 18810 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18811 (uint_t)sizeof (ipst->ips_ip6_mib))); 18812 } 18813 18814 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18815 ill = ILL_START_WALK_V6(&ctx, ipst); 18816 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18817 ill->ill_ip_mib->ipIfStatsIfIndex = 18818 ill->ill_phyint->phyint_ifindex; 18819 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18820 ipst->ips_ipv6_forward ? 1 : 2); 18821 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 18822 ill->ill_max_hops); 18823 18824 /* 18825 * Synchronize 64- and 32-bit counters 18826 */ 18827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 18828 ipIfStatsHCInReceives); 18829 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 18830 ipIfStatsHCInDelivers); 18831 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 18832 ipIfStatsHCOutRequests); 18833 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 18834 ipIfStatsHCOutForwDatagrams); 18835 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 18836 ipIfStatsHCOutMcastPkts); 18837 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 18838 ipIfStatsHCInMcastPkts); 18839 18840 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18841 (char *)ill->ill_ip_mib, 18842 (int)sizeof (*ill->ill_ip_mib))) { 18843 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18844 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 18845 } 18846 } 18847 rw_exit(&ipst->ips_ill_g_lock); 18848 18849 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18850 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18851 (int)optp->level, (int)optp->name, (int)optp->len)); 18852 qreply(q, mpctl); 18853 return (mp2ctl); 18854 } 18855 18856 /* 18857 * ICMPv6 mib: One per ill 18858 */ 18859 static mblk_t * 18860 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18861 { 18862 struct opthdr *optp; 18863 mblk_t *mp2ctl; 18864 ill_t *ill; 18865 ill_walk_context_t ctx; 18866 mblk_t *mp_tail = NULL; 18867 /* 18868 * Make a copy of the original message 18869 */ 18870 mp2ctl = copymsg(mpctl); 18871 18872 /* fixed length ICMPv6 structure ... */ 18873 18874 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18875 optp->level = MIB2_ICMP6; 18876 optp->name = 0; 18877 /* Include "unknown interface" icmp6_mib */ 18878 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 18879 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 18880 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 18881 sizeof (mib2_ipv6IfIcmpEntry_t); 18882 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18883 (char *)&ipst->ips_icmp6_mib, 18884 (int)sizeof (ipst->ips_icmp6_mib))) { 18885 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18886 (uint_t)sizeof (ipst->ips_icmp6_mib))); 18887 } 18888 18889 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18890 ill = ILL_START_WALK_V6(&ctx, ipst); 18891 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18892 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18893 ill->ill_phyint->phyint_ifindex; 18894 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18895 (char *)ill->ill_icmp6_mib, 18896 (int)sizeof (*ill->ill_icmp6_mib))) { 18897 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18898 "%u bytes\n", 18899 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18900 } 18901 } 18902 rw_exit(&ipst->ips_ill_g_lock); 18903 18904 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18905 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18906 (int)optp->level, (int)optp->name, (int)optp->len)); 18907 qreply(q, mpctl); 18908 return (mp2ctl); 18909 } 18910 18911 /* 18912 * ire_walk routine to create both ipRouteEntryTable and 18913 * ipRouteAttributeTable in one IRE walk 18914 */ 18915 static void 18916 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18917 { 18918 ill_t *ill; 18919 ipif_t *ipif; 18920 mib2_ipRouteEntry_t *re; 18921 mib2_ipAttributeEntry_t *iae, *iaeptr; 18922 ipaddr_t gw_addr; 18923 tsol_ire_gw_secattr_t *attrp; 18924 tsol_gc_t *gc = NULL; 18925 tsol_gcgrp_t *gcgrp = NULL; 18926 uint_t sacnt = 0; 18927 int i; 18928 18929 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18930 18931 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18932 return; 18933 18934 if ((attrp = ire->ire_gw_secattr) != NULL) { 18935 mutex_enter(&attrp->igsa_lock); 18936 if ((gc = attrp->igsa_gc) != NULL) { 18937 gcgrp = gc->gc_grp; 18938 ASSERT(gcgrp != NULL); 18939 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18940 sacnt = 1; 18941 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18942 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18943 gc = gcgrp->gcgrp_head; 18944 sacnt = gcgrp->gcgrp_count; 18945 } 18946 mutex_exit(&attrp->igsa_lock); 18947 18948 /* do nothing if there's no gc to report */ 18949 if (gc == NULL) { 18950 ASSERT(sacnt == 0); 18951 if (gcgrp != NULL) { 18952 /* we might as well drop the lock now */ 18953 rw_exit(&gcgrp->gcgrp_rwlock); 18954 gcgrp = NULL; 18955 } 18956 attrp = NULL; 18957 } 18958 18959 ASSERT(gc == NULL || (gcgrp != NULL && 18960 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18961 } 18962 ASSERT(sacnt == 0 || gc != NULL); 18963 18964 if (sacnt != 0 && 18965 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18966 kmem_free(re, sizeof (*re)); 18967 rw_exit(&gcgrp->gcgrp_rwlock); 18968 return; 18969 } 18970 18971 /* 18972 * Return all IRE types for route table... let caller pick and choose 18973 */ 18974 re->ipRouteDest = ire->ire_addr; 18975 ipif = ire->ire_ipif; 18976 re->ipRouteIfIndex.o_length = 0; 18977 if (ire->ire_type == IRE_CACHE) { 18978 ill = (ill_t *)ire->ire_stq->q_ptr; 18979 re->ipRouteIfIndex.o_length = 18980 ill->ill_name_length == 0 ? 0 : 18981 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18982 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18983 re->ipRouteIfIndex.o_length); 18984 } else if (ipif != NULL) { 18985 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18986 OCTET_LENGTH); 18987 re->ipRouteIfIndex.o_length = 18988 mi_strlen(re->ipRouteIfIndex.o_bytes); 18989 } 18990 re->ipRouteMetric1 = -1; 18991 re->ipRouteMetric2 = -1; 18992 re->ipRouteMetric3 = -1; 18993 re->ipRouteMetric4 = -1; 18994 18995 gw_addr = ire->ire_gateway_addr; 18996 18997 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18998 re->ipRouteNextHop = ire->ire_src_addr; 18999 else 19000 re->ipRouteNextHop = gw_addr; 19001 /* indirect(4), direct(3), or invalid(2) */ 19002 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19003 re->ipRouteType = 2; 19004 else 19005 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19006 re->ipRouteProto = -1; 19007 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19008 re->ipRouteMask = ire->ire_mask; 19009 re->ipRouteMetric5 = -1; 19010 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19011 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19012 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19013 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19014 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19015 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19016 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19017 re->ipRouteInfo.re_flags = ire->ire_flags; 19018 19019 if (ire->ire_flags & RTF_DYNAMIC) { 19020 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19021 } else { 19022 re->ipRouteInfo.re_ire_type = ire->ire_type; 19023 } 19024 19025 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19026 (char *)re, (int)sizeof (*re))) { 19027 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19028 (uint_t)sizeof (*re))); 19029 } 19030 19031 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19032 iaeptr->iae_routeidx = ird->ird_idx; 19033 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19034 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19035 } 19036 19037 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19038 (char *)iae, sacnt * sizeof (*iae))) { 19039 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19040 (unsigned)(sacnt * sizeof (*iae)))); 19041 } 19042 19043 /* bump route index for next pass */ 19044 ird->ird_idx++; 19045 19046 kmem_free(re, sizeof (*re)); 19047 if (sacnt != 0) 19048 kmem_free(iae, sacnt * sizeof (*iae)); 19049 19050 if (gcgrp != NULL) 19051 rw_exit(&gcgrp->gcgrp_rwlock); 19052 } 19053 19054 /* 19055 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19056 */ 19057 static void 19058 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19059 { 19060 ill_t *ill; 19061 ipif_t *ipif; 19062 mib2_ipv6RouteEntry_t *re; 19063 mib2_ipAttributeEntry_t *iae, *iaeptr; 19064 in6_addr_t gw_addr_v6; 19065 tsol_ire_gw_secattr_t *attrp; 19066 tsol_gc_t *gc = NULL; 19067 tsol_gcgrp_t *gcgrp = NULL; 19068 uint_t sacnt = 0; 19069 int i; 19070 19071 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19072 19073 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19074 return; 19075 19076 if ((attrp = ire->ire_gw_secattr) != NULL) { 19077 mutex_enter(&attrp->igsa_lock); 19078 if ((gc = attrp->igsa_gc) != NULL) { 19079 gcgrp = gc->gc_grp; 19080 ASSERT(gcgrp != NULL); 19081 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19082 sacnt = 1; 19083 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19084 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19085 gc = gcgrp->gcgrp_head; 19086 sacnt = gcgrp->gcgrp_count; 19087 } 19088 mutex_exit(&attrp->igsa_lock); 19089 19090 /* do nothing if there's no gc to report */ 19091 if (gc == NULL) { 19092 ASSERT(sacnt == 0); 19093 if (gcgrp != NULL) { 19094 /* we might as well drop the lock now */ 19095 rw_exit(&gcgrp->gcgrp_rwlock); 19096 gcgrp = NULL; 19097 } 19098 attrp = NULL; 19099 } 19100 19101 ASSERT(gc == NULL || (gcgrp != NULL && 19102 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19103 } 19104 ASSERT(sacnt == 0 || gc != NULL); 19105 19106 if (sacnt != 0 && 19107 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19108 kmem_free(re, sizeof (*re)); 19109 rw_exit(&gcgrp->gcgrp_rwlock); 19110 return; 19111 } 19112 19113 /* 19114 * Return all IRE types for route table... let caller pick and choose 19115 */ 19116 re->ipv6RouteDest = ire->ire_addr_v6; 19117 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19118 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19119 re->ipv6RouteIfIndex.o_length = 0; 19120 ipif = ire->ire_ipif; 19121 if (ire->ire_type == IRE_CACHE) { 19122 ill = (ill_t *)ire->ire_stq->q_ptr; 19123 re->ipv6RouteIfIndex.o_length = 19124 ill->ill_name_length == 0 ? 0 : 19125 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19126 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19127 re->ipv6RouteIfIndex.o_length); 19128 } else if (ipif != NULL) { 19129 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19130 OCTET_LENGTH); 19131 re->ipv6RouteIfIndex.o_length = 19132 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19133 } 19134 19135 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19136 19137 mutex_enter(&ire->ire_lock); 19138 gw_addr_v6 = ire->ire_gateway_addr_v6; 19139 mutex_exit(&ire->ire_lock); 19140 19141 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19142 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19143 else 19144 re->ipv6RouteNextHop = gw_addr_v6; 19145 19146 /* remote(4), local(3), or discard(2) */ 19147 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19148 re->ipv6RouteType = 2; 19149 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19150 re->ipv6RouteType = 3; 19151 else 19152 re->ipv6RouteType = 4; 19153 19154 re->ipv6RouteProtocol = -1; 19155 re->ipv6RoutePolicy = 0; 19156 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19157 re->ipv6RouteNextHopRDI = 0; 19158 re->ipv6RouteWeight = 0; 19159 re->ipv6RouteMetric = 0; 19160 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19161 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19162 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19163 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19164 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19165 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19166 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19167 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19168 19169 if (ire->ire_flags & RTF_DYNAMIC) { 19170 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19171 } else { 19172 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19173 } 19174 19175 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19176 (char *)re, (int)sizeof (*re))) { 19177 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19178 (uint_t)sizeof (*re))); 19179 } 19180 19181 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19182 iaeptr->iae_routeidx = ird->ird_idx; 19183 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19184 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19185 } 19186 19187 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19188 (char *)iae, sacnt * sizeof (*iae))) { 19189 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19190 (unsigned)(sacnt * sizeof (*iae)))); 19191 } 19192 19193 /* bump route index for next pass */ 19194 ird->ird_idx++; 19195 19196 kmem_free(re, sizeof (*re)); 19197 if (sacnt != 0) 19198 kmem_free(iae, sacnt * sizeof (*iae)); 19199 19200 if (gcgrp != NULL) 19201 rw_exit(&gcgrp->gcgrp_rwlock); 19202 } 19203 19204 /* 19205 * ndp_walk routine to create ipv6NetToMediaEntryTable 19206 */ 19207 static int 19208 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19209 { 19210 ill_t *ill; 19211 mib2_ipv6NetToMediaEntry_t ntme; 19212 dl_unitdata_req_t *dl; 19213 19214 ill = nce->nce_ill; 19215 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19216 return (0); 19217 19218 /* 19219 * Neighbor cache entry attached to IRE with on-link 19220 * destination. 19221 */ 19222 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19223 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19224 if ((ill->ill_flags & ILLF_XRESOLV) && 19225 (nce->nce_res_mp != NULL)) { 19226 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19227 ntme.ipv6NetToMediaPhysAddress.o_length = 19228 dl->dl_dest_addr_length; 19229 } else { 19230 ntme.ipv6NetToMediaPhysAddress.o_length = 19231 ill->ill_phys_addr_length; 19232 } 19233 if (nce->nce_res_mp != NULL) { 19234 bcopy((char *)nce->nce_res_mp->b_rptr + 19235 NCE_LL_ADDR_OFFSET(ill), 19236 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19237 ntme.ipv6NetToMediaPhysAddress.o_length); 19238 } else { 19239 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19240 ill->ill_phys_addr_length); 19241 } 19242 /* 19243 * Note: Returns ND_* states. Should be: 19244 * reachable(1), stale(2), delay(3), probe(4), 19245 * invalid(5), unknown(6) 19246 */ 19247 ntme.ipv6NetToMediaState = nce->nce_state; 19248 ntme.ipv6NetToMediaLastUpdated = 0; 19249 19250 /* other(1), dynamic(2), static(3), local(4) */ 19251 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19252 ntme.ipv6NetToMediaType = 4; 19253 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19254 ntme.ipv6NetToMediaType = 1; 19255 } else { 19256 ntme.ipv6NetToMediaType = 2; 19257 } 19258 19259 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19260 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19261 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19262 (uint_t)sizeof (ntme))); 19263 } 19264 return (0); 19265 } 19266 19267 /* 19268 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19269 */ 19270 /* ARGSUSED */ 19271 int 19272 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19273 { 19274 switch (level) { 19275 case MIB2_IP: 19276 case MIB2_ICMP: 19277 switch (name) { 19278 default: 19279 break; 19280 } 19281 return (1); 19282 default: 19283 return (1); 19284 } 19285 } 19286 19287 /* 19288 * When there exists both a 64- and 32-bit counter of a particular type 19289 * (i.e., InReceives), only the 64-bit counters are added. 19290 */ 19291 void 19292 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19293 { 19294 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19295 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19296 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19297 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19298 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19299 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19300 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19301 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19302 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19303 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19304 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19305 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19306 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19307 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19308 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19309 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19310 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19311 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19312 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19313 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19314 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19315 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19316 o2->ipIfStatsInWrongIPVersion); 19317 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19318 o2->ipIfStatsInWrongIPVersion); 19319 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19320 o2->ipIfStatsOutSwitchIPVersion); 19321 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19322 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19323 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19324 o2->ipIfStatsHCInForwDatagrams); 19325 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19326 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19327 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19328 o2->ipIfStatsHCOutForwDatagrams); 19329 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19330 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19331 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19332 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19333 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19334 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19335 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19336 o2->ipIfStatsHCOutMcastOctets); 19337 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19338 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19339 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19340 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19341 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19342 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19343 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19344 } 19345 19346 void 19347 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19348 { 19349 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19350 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19351 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19352 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19353 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19354 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19355 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19356 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19357 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19358 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19359 o2->ipv6IfIcmpInRouterSolicits); 19360 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19361 o2->ipv6IfIcmpInRouterAdvertisements); 19362 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19363 o2->ipv6IfIcmpInNeighborSolicits); 19364 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19365 o2->ipv6IfIcmpInNeighborAdvertisements); 19366 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19367 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19368 o2->ipv6IfIcmpInGroupMembQueries); 19369 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19370 o2->ipv6IfIcmpInGroupMembResponses); 19371 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19372 o2->ipv6IfIcmpInGroupMembReductions); 19373 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19374 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19375 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19376 o2->ipv6IfIcmpOutDestUnreachs); 19377 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19378 o2->ipv6IfIcmpOutAdminProhibs); 19379 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19380 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19381 o2->ipv6IfIcmpOutParmProblems); 19382 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19383 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19384 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19385 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19386 o2->ipv6IfIcmpOutRouterSolicits); 19387 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19388 o2->ipv6IfIcmpOutRouterAdvertisements); 19389 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19390 o2->ipv6IfIcmpOutNeighborSolicits); 19391 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19392 o2->ipv6IfIcmpOutNeighborAdvertisements); 19393 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19394 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19395 o2->ipv6IfIcmpOutGroupMembQueries); 19396 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19397 o2->ipv6IfIcmpOutGroupMembResponses); 19398 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19399 o2->ipv6IfIcmpOutGroupMembReductions); 19400 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19401 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19402 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19403 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19404 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19405 o2->ipv6IfIcmpInBadNeighborSolicitations); 19406 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19407 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19408 o2->ipv6IfIcmpInGroupMembTotal); 19409 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19410 o2->ipv6IfIcmpInGroupMembBadQueries); 19411 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19412 o2->ipv6IfIcmpInGroupMembBadReports); 19413 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19414 o2->ipv6IfIcmpInGroupMembOurReports); 19415 } 19416 19417 /* 19418 * Called before the options are updated to check if this packet will 19419 * be source routed from here. 19420 * This routine assumes that the options are well formed i.e. that they 19421 * have already been checked. 19422 */ 19423 static boolean_t 19424 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19425 { 19426 ipoptp_t opts; 19427 uchar_t *opt; 19428 uint8_t optval; 19429 uint8_t optlen; 19430 ipaddr_t dst; 19431 ire_t *ire; 19432 19433 if (IS_SIMPLE_IPH(ipha)) { 19434 ip2dbg(("not source routed\n")); 19435 return (B_FALSE); 19436 } 19437 dst = ipha->ipha_dst; 19438 for (optval = ipoptp_first(&opts, ipha); 19439 optval != IPOPT_EOL; 19440 optval = ipoptp_next(&opts)) { 19441 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19442 opt = opts.ipoptp_cur; 19443 optlen = opts.ipoptp_len; 19444 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19445 optval, optlen)); 19446 switch (optval) { 19447 uint32_t off; 19448 case IPOPT_SSRR: 19449 case IPOPT_LSRR: 19450 /* 19451 * If dst is one of our addresses and there are some 19452 * entries left in the source route return (true). 19453 */ 19454 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19455 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19456 if (ire == NULL) { 19457 ip2dbg(("ip_source_routed: not next" 19458 " source route 0x%x\n", 19459 ntohl(dst))); 19460 return (B_FALSE); 19461 } 19462 ire_refrele(ire); 19463 off = opt[IPOPT_OFFSET]; 19464 off--; 19465 if (optlen < IP_ADDR_LEN || 19466 off > optlen - IP_ADDR_LEN) { 19467 /* End of source route */ 19468 ip1dbg(("ip_source_routed: end of SR\n")); 19469 return (B_FALSE); 19470 } 19471 return (B_TRUE); 19472 } 19473 } 19474 ip2dbg(("not source routed\n")); 19475 return (B_FALSE); 19476 } 19477 19478 /* 19479 * Check if the packet contains any source route. 19480 */ 19481 static boolean_t 19482 ip_source_route_included(ipha_t *ipha) 19483 { 19484 ipoptp_t opts; 19485 uint8_t optval; 19486 19487 if (IS_SIMPLE_IPH(ipha)) 19488 return (B_FALSE); 19489 for (optval = ipoptp_first(&opts, ipha); 19490 optval != IPOPT_EOL; 19491 optval = ipoptp_next(&opts)) { 19492 switch (optval) { 19493 case IPOPT_SSRR: 19494 case IPOPT_LSRR: 19495 return (B_TRUE); 19496 } 19497 } 19498 return (B_FALSE); 19499 } 19500 19501 /* 19502 * Called when the IRE expiration timer fires. 19503 */ 19504 void 19505 ip_trash_timer_expire(void *args) 19506 { 19507 int flush_flag = 0; 19508 ire_expire_arg_t iea; 19509 ip_stack_t *ipst = (ip_stack_t *)args; 19510 19511 iea.iea_ipst = ipst; /* No netstack_hold */ 19512 19513 /* 19514 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19515 * This lock makes sure that a new invocation of this function 19516 * that occurs due to an almost immediate timer firing will not 19517 * progress beyond this point until the current invocation is done 19518 */ 19519 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19520 ipst->ips_ip_ire_expire_id = 0; 19521 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19522 19523 /* Periodic timer */ 19524 if (ipst->ips_ip_ire_arp_time_elapsed >= 19525 ipst->ips_ip_ire_arp_interval) { 19526 /* 19527 * Remove all IRE_CACHE entries since they might 19528 * contain arp information. 19529 */ 19530 flush_flag |= FLUSH_ARP_TIME; 19531 ipst->ips_ip_ire_arp_time_elapsed = 0; 19532 IP_STAT(ipst, ip_ire_arp_timer_expired); 19533 } 19534 if (ipst->ips_ip_ire_rd_time_elapsed >= 19535 ipst->ips_ip_ire_redir_interval) { 19536 /* Remove all redirects */ 19537 flush_flag |= FLUSH_REDIRECT_TIME; 19538 ipst->ips_ip_ire_rd_time_elapsed = 0; 19539 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19540 } 19541 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19542 ipst->ips_ip_ire_pathmtu_interval) { 19543 /* Increase path mtu */ 19544 flush_flag |= FLUSH_MTU_TIME; 19545 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19546 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19547 } 19548 19549 /* 19550 * Optimize for the case when there are no redirects in the 19551 * ftable, that is, no need to walk the ftable in that case. 19552 */ 19553 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19554 iea.iea_flush_flag = flush_flag; 19555 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19556 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19557 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19558 NULL, ALL_ZONES, ipst); 19559 } 19560 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19561 ipst->ips_ip_redirect_cnt > 0) { 19562 iea.iea_flush_flag = flush_flag; 19563 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19564 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19565 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19566 } 19567 if (flush_flag & FLUSH_MTU_TIME) { 19568 /* 19569 * Walk all IPv6 IRE's and update them 19570 * Note that ARP and redirect timers are not 19571 * needed since NUD handles stale entries. 19572 */ 19573 flush_flag = FLUSH_MTU_TIME; 19574 iea.iea_flush_flag = flush_flag; 19575 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19576 ALL_ZONES, ipst); 19577 } 19578 19579 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19580 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19581 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19582 19583 /* 19584 * Hold the lock to serialize timeout calls and prevent 19585 * stale values in ip_ire_expire_id. Otherwise it is possible 19586 * for the timer to fire and a new invocation of this function 19587 * to start before the return value of timeout has been stored 19588 * in ip_ire_expire_id by the current invocation. 19589 */ 19590 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19591 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19592 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19593 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19594 } 19595 19596 /* 19597 * Called by the memory allocator subsystem directly, when the system 19598 * is running low on memory. 19599 */ 19600 /* ARGSUSED */ 19601 void 19602 ip_trash_ire_reclaim(void *args) 19603 { 19604 netstack_handle_t nh; 19605 netstack_t *ns; 19606 19607 netstack_next_init(&nh); 19608 while ((ns = netstack_next(&nh)) != NULL) { 19609 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19610 netstack_rele(ns); 19611 } 19612 netstack_next_fini(&nh); 19613 } 19614 19615 static void 19616 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19617 { 19618 ire_cache_count_t icc; 19619 ire_cache_reclaim_t icr; 19620 ncc_cache_count_t ncc; 19621 nce_cache_reclaim_t ncr; 19622 uint_t delete_cnt; 19623 /* 19624 * Memory reclaim call back. 19625 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19626 * Then, with a target of freeing 1/Nth of IRE_CACHE 19627 * entries, determine what fraction to free for 19628 * each category of IRE_CACHE entries giving absolute priority 19629 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19630 * entry will be freed unless all offlink entries are freed). 19631 */ 19632 icc.icc_total = 0; 19633 icc.icc_unused = 0; 19634 icc.icc_offlink = 0; 19635 icc.icc_pmtu = 0; 19636 icc.icc_onlink = 0; 19637 ire_walk(ire_cache_count, (char *)&icc, ipst); 19638 19639 /* 19640 * Free NCEs for IPv6 like the onlink ires. 19641 */ 19642 ncc.ncc_total = 0; 19643 ncc.ncc_host = 0; 19644 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19645 19646 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19647 icc.icc_pmtu + icc.icc_onlink); 19648 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19649 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19650 if (delete_cnt == 0) 19651 return; 19652 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19653 /* Always delete all unused offlink entries */ 19654 icr.icr_ipst = ipst; 19655 icr.icr_unused = 1; 19656 if (delete_cnt <= icc.icc_unused) { 19657 /* 19658 * Only need to free unused entries. In other words, 19659 * there are enough unused entries to free to meet our 19660 * target number of freed ire cache entries. 19661 */ 19662 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19663 ncr.ncr_host = 0; 19664 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19665 /* 19666 * Only need to free unused entries, plus a fraction of offlink 19667 * entries. It follows from the first if statement that 19668 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19669 */ 19670 delete_cnt -= icc.icc_unused; 19671 /* Round up # deleted by truncating fraction */ 19672 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19673 icr.icr_pmtu = icr.icr_onlink = 0; 19674 ncr.ncr_host = 0; 19675 } else if (delete_cnt <= 19676 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19677 /* 19678 * Free all unused and offlink entries, plus a fraction of 19679 * pmtu entries. It follows from the previous if statement 19680 * that icc_pmtu is non-zero, and that 19681 * delete_cnt != icc_unused + icc_offlink. 19682 */ 19683 icr.icr_offlink = 1; 19684 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19685 /* Round up # deleted by truncating fraction */ 19686 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19687 icr.icr_onlink = 0; 19688 ncr.ncr_host = 0; 19689 } else { 19690 /* 19691 * Free all unused, offlink, and pmtu entries, plus a fraction 19692 * of onlink entries. If we're here, then we know that 19693 * icc_onlink is non-zero, and that 19694 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19695 */ 19696 icr.icr_offlink = icr.icr_pmtu = 1; 19697 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19698 icc.icc_pmtu; 19699 /* Round up # deleted by truncating fraction */ 19700 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19701 /* Using the same delete fraction as for onlink IREs */ 19702 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19703 } 19704 #ifdef DEBUG 19705 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19706 "fractions %d/%d/%d/%d\n", 19707 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19708 icc.icc_unused, icc.icc_offlink, 19709 icc.icc_pmtu, icc.icc_onlink, 19710 icr.icr_unused, icr.icr_offlink, 19711 icr.icr_pmtu, icr.icr_onlink)); 19712 #endif 19713 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19714 if (ncr.ncr_host != 0) 19715 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19716 (uchar_t *)&ncr, ipst); 19717 #ifdef DEBUG 19718 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19719 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19720 ire_walk(ire_cache_count, (char *)&icc, ipst); 19721 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19722 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19723 icc.icc_pmtu, icc.icc_onlink)); 19724 #endif 19725 } 19726 19727 /* 19728 * ip_unbind is called when a copy of an unbind request is received from the 19729 * upper level protocol. We remove this conn from any fanout hash list it is 19730 * on, and zero out the bind information. No reply is expected up above. 19731 */ 19732 mblk_t * 19733 ip_unbind(queue_t *q, mblk_t *mp) 19734 { 19735 conn_t *connp = Q_TO_CONN(q); 19736 19737 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19738 19739 if (is_system_labeled() && connp->conn_anon_port) { 19740 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19741 connp->conn_mlp_type, connp->conn_ulp, 19742 ntohs(connp->conn_lport), B_FALSE); 19743 connp->conn_anon_port = 0; 19744 } 19745 connp->conn_mlp_type = mlptSingle; 19746 19747 ipcl_hash_remove(connp); 19748 19749 ASSERT(mp->b_cont == NULL); 19750 /* 19751 * Convert mp into a T_OK_ACK 19752 */ 19753 mp = mi_tpi_ok_ack_alloc(mp); 19754 19755 /* 19756 * should not happen in practice... T_OK_ACK is smaller than the 19757 * original message. 19758 */ 19759 if (mp == NULL) 19760 return (NULL); 19761 19762 /* 19763 * Don't bzero the ports if its TCP since TCP still needs the 19764 * lport to remove it from its own bind hash. TCP will do the 19765 * cleanup. 19766 */ 19767 if (!IPCL_IS_TCP(connp)) 19768 bzero(&connp->u_port, sizeof (connp->u_port)); 19769 19770 return (mp); 19771 } 19772 19773 /* 19774 * Write side put procedure. Outbound data, IOCTLs, responses from 19775 * resolvers, etc, come down through here. 19776 * 19777 * arg2 is always a queue_t *. 19778 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19779 * the zoneid. 19780 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19781 */ 19782 void 19783 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19784 { 19785 ip_output_options(arg, mp, arg2, caller, &zero_info); 19786 } 19787 19788 void 19789 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19790 ip_opt_info_t *infop) 19791 { 19792 conn_t *connp = NULL; 19793 queue_t *q = (queue_t *)arg2; 19794 ipha_t *ipha; 19795 #define rptr ((uchar_t *)ipha) 19796 ire_t *ire = NULL; 19797 ire_t *sctp_ire = NULL; 19798 uint32_t v_hlen_tos_len; 19799 ipaddr_t dst; 19800 mblk_t *first_mp = NULL; 19801 boolean_t mctl_present; 19802 ipsec_out_t *io; 19803 int match_flags; 19804 ill_t *attach_ill = NULL; 19805 /* Bind to IPIF_NOFAILOVER ill etc. */ 19806 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19807 ipif_t *dst_ipif; 19808 boolean_t multirt_need_resolve = B_FALSE; 19809 mblk_t *copy_mp = NULL; 19810 int err; 19811 zoneid_t zoneid; 19812 int adjust; 19813 uint16_t iplen; 19814 boolean_t need_decref = B_FALSE; 19815 boolean_t ignore_dontroute = B_FALSE; 19816 boolean_t ignore_nexthop = B_FALSE; 19817 boolean_t ip_nexthop = B_FALSE; 19818 ipaddr_t nexthop_addr; 19819 ip_stack_t *ipst; 19820 19821 #ifdef _BIG_ENDIAN 19822 #define V_HLEN (v_hlen_tos_len >> 24) 19823 #else 19824 #define V_HLEN (v_hlen_tos_len & 0xFF) 19825 #endif 19826 19827 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19828 "ip_wput_start: q %p", q); 19829 19830 /* 19831 * ip_wput fast path 19832 */ 19833 19834 /* is packet from ARP ? */ 19835 if (q->q_next != NULL) { 19836 zoneid = (zoneid_t)(uintptr_t)arg; 19837 goto qnext; 19838 } 19839 19840 connp = (conn_t *)arg; 19841 ASSERT(connp != NULL); 19842 zoneid = connp->conn_zoneid; 19843 ipst = connp->conn_netstack->netstack_ip; 19844 19845 /* is queue flow controlled? */ 19846 if ((q->q_first != NULL || connp->conn_draining) && 19847 (caller == IP_WPUT)) { 19848 ASSERT(!need_decref); 19849 (void) putq(q, mp); 19850 return; 19851 } 19852 19853 /* Multidata transmit? */ 19854 if (DB_TYPE(mp) == M_MULTIDATA) { 19855 /* 19856 * We should never get here, since all Multidata messages 19857 * originating from tcp should have been directed over to 19858 * tcp_multisend() in the first place. 19859 */ 19860 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19861 freemsg(mp); 19862 return; 19863 } else if (DB_TYPE(mp) != M_DATA) 19864 goto notdata; 19865 19866 if (mp->b_flag & MSGHASREF) { 19867 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19868 mp->b_flag &= ~MSGHASREF; 19869 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19870 need_decref = B_TRUE; 19871 } 19872 ipha = (ipha_t *)mp->b_rptr; 19873 19874 /* is IP header non-aligned or mblk smaller than basic IP header */ 19875 #ifndef SAFETY_BEFORE_SPEED 19876 if (!OK_32PTR(rptr) || 19877 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19878 goto hdrtoosmall; 19879 #endif 19880 19881 ASSERT(OK_32PTR(ipha)); 19882 19883 /* 19884 * This function assumes that mp points to an IPv4 packet. If it's the 19885 * wrong version, we'll catch it again in ip_output_v6. 19886 * 19887 * Note that this is *only* locally-generated output here, and never 19888 * forwarded data, and that we need to deal only with transports that 19889 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19890 * label.) 19891 */ 19892 if (is_system_labeled() && 19893 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19894 !connp->conn_ulp_labeled) { 19895 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19896 connp->conn_mac_exempt, ipst); 19897 ipha = (ipha_t *)mp->b_rptr; 19898 if (err != 0) { 19899 first_mp = mp; 19900 if (err == EINVAL) 19901 goto icmp_parameter_problem; 19902 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19903 goto discard_pkt; 19904 } 19905 iplen = ntohs(ipha->ipha_length) + adjust; 19906 ipha->ipha_length = htons(iplen); 19907 } 19908 19909 ASSERT(infop != NULL); 19910 19911 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 19912 /* 19913 * IP_PKTINFO ancillary option is present. 19914 * IPCL_ZONEID is used to honor IP_ALLZONES option which 19915 * allows using address of any zone as the source address. 19916 */ 19917 ire = ire_ctable_lookup(ipha->ipha_src, 0, 19918 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 19919 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 19920 if (ire == NULL) 19921 goto drop_pkt; 19922 ire_refrele(ire); 19923 ire = NULL; 19924 } 19925 19926 /* 19927 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 19928 * ill index passed in IP_PKTINFO. 19929 */ 19930 if (infop->ip_opt_ill_index != 0 && 19931 connp->conn_xmit_if_ill == NULL && 19932 connp->conn_nofailover_ill == NULL) { 19933 19934 xmit_ill = ill_lookup_on_ifindex( 19935 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 19936 ipst); 19937 19938 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 19939 goto drop_pkt; 19940 /* 19941 * check that there is an ipif belonging 19942 * to our zone. IPCL_ZONEID is not used because 19943 * IP_ALLZONES option is valid only when the ill is 19944 * accessible from all zones i.e has a valid ipif in 19945 * all zones. 19946 */ 19947 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 19948 goto drop_pkt; 19949 } 19950 } 19951 19952 /* 19953 * If there is a policy, try to attach an ipsec_out in 19954 * the front. At the end, first_mp either points to a 19955 * M_DATA message or IPSEC_OUT message linked to a 19956 * M_DATA message. We have to do it now as we might 19957 * lose the "conn" if we go through ip_newroute. 19958 */ 19959 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19960 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 19961 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 19962 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19963 if (need_decref) 19964 CONN_DEC_REF(connp); 19965 return; 19966 } else { 19967 ASSERT(mp->b_datap->db_type == M_CTL); 19968 first_mp = mp; 19969 mp = mp->b_cont; 19970 mctl_present = B_TRUE; 19971 } 19972 } else { 19973 first_mp = mp; 19974 mctl_present = B_FALSE; 19975 } 19976 19977 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19978 19979 /* is wrong version or IP options present */ 19980 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19981 goto version_hdrlen_check; 19982 dst = ipha->ipha_dst; 19983 19984 if (connp->conn_nofailover_ill != NULL) { 19985 attach_ill = conn_get_held_ill(connp, 19986 &connp->conn_nofailover_ill, &err); 19987 if (err == ILL_LOOKUP_FAILED) { 19988 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19989 if (need_decref) 19990 CONN_DEC_REF(connp); 19991 freemsg(first_mp); 19992 return; 19993 } 19994 } 19995 19996 19997 /* is packet multicast? */ 19998 if (CLASSD(dst)) 19999 goto multicast; 20000 20001 /* 20002 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20003 * takes precedence over conn_dontroute and conn_nexthop_set 20004 */ 20005 if (xmit_ill != NULL) { 20006 goto send_from_ill; 20007 } 20008 20009 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20010 (connp->conn_nexthop_set)) { 20011 /* 20012 * If the destination is a broadcast or a loopback 20013 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20014 * through the standard path. But in the case of local 20015 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20016 * the standard path not IP_XMIT_IF. 20017 */ 20018 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20019 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20020 (ire->ire_type != IRE_LOOPBACK))) { 20021 if ((connp->conn_dontroute || 20022 connp->conn_nexthop_set) && (ire != NULL) && 20023 (ire->ire_type == IRE_LOCAL)) 20024 goto standard_path; 20025 20026 if (ire != NULL) { 20027 ire_refrele(ire); 20028 /* No more access to ire */ 20029 ire = NULL; 20030 } 20031 /* 20032 * bypass routing checks and go directly to 20033 * interface. 20034 */ 20035 if (connp->conn_dontroute) { 20036 goto dontroute; 20037 } else if (connp->conn_nexthop_set) { 20038 ip_nexthop = B_TRUE; 20039 nexthop_addr = connp->conn_nexthop_v4; 20040 goto send_from_ill; 20041 } 20042 20043 /* 20044 * If IP_XMIT_IF socket option is set, 20045 * then we allow unicast and multicast 20046 * packets to go through the ill. It is 20047 * quite possible that the destination 20048 * is not in the ire cache table and we 20049 * do not want to go to ip_newroute() 20050 * instead we call ip_newroute_ipif. 20051 */ 20052 xmit_ill = conn_get_held_ill(connp, 20053 &connp->conn_xmit_if_ill, &err); 20054 if (err == ILL_LOOKUP_FAILED) { 20055 BUMP_MIB(&ipst->ips_ip_mib, 20056 ipIfStatsOutDiscards); 20057 if (attach_ill != NULL) 20058 ill_refrele(attach_ill); 20059 if (need_decref) 20060 CONN_DEC_REF(connp); 20061 freemsg(first_mp); 20062 return; 20063 } 20064 goto send_from_ill; 20065 } 20066 standard_path: 20067 /* Must be a broadcast, a loopback or a local ire */ 20068 if (ire != NULL) { 20069 ire_refrele(ire); 20070 /* No more access to ire */ 20071 ire = NULL; 20072 } 20073 } 20074 20075 if (attach_ill != NULL) 20076 goto send_from_ill; 20077 20078 /* 20079 * We cache IRE_CACHEs to avoid lookups. We don't do 20080 * this for the tcp global queue and listen end point 20081 * as it does not really have a real destination to 20082 * talk to. This is also true for SCTP. 20083 */ 20084 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20085 !connp->conn_fully_bound) { 20086 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20087 if (ire == NULL) 20088 goto noirefound; 20089 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20090 "ip_wput_end: q %p (%S)", q, "end"); 20091 20092 /* 20093 * Check if the ire has the RTF_MULTIRT flag, inherited 20094 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20095 */ 20096 if (ire->ire_flags & RTF_MULTIRT) { 20097 20098 /* 20099 * Force the TTL of multirouted packets if required. 20100 * The TTL of such packets is bounded by the 20101 * ip_multirt_ttl ndd variable. 20102 */ 20103 if ((ipst->ips_ip_multirt_ttl > 0) && 20104 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20105 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20106 "(was %d), dst 0x%08x\n", 20107 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20108 ntohl(ire->ire_addr))); 20109 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20110 } 20111 /* 20112 * We look at this point if there are pending 20113 * unresolved routes. ire_multirt_resolvable() 20114 * checks in O(n) that all IRE_OFFSUBNET ire 20115 * entries for the packet's destination and 20116 * flagged RTF_MULTIRT are currently resolved. 20117 * If some remain unresolved, we make a copy 20118 * of the current message. It will be used 20119 * to initiate additional route resolutions. 20120 */ 20121 multirt_need_resolve = 20122 ire_multirt_need_resolve(ire->ire_addr, 20123 MBLK_GETLABEL(first_mp), ipst); 20124 ip2dbg(("ip_wput[TCP]: ire %p, " 20125 "multirt_need_resolve %d, first_mp %p\n", 20126 (void *)ire, multirt_need_resolve, 20127 (void *)first_mp)); 20128 if (multirt_need_resolve) { 20129 copy_mp = copymsg(first_mp); 20130 if (copy_mp != NULL) { 20131 MULTIRT_DEBUG_TAG(copy_mp); 20132 } 20133 } 20134 } 20135 20136 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20137 20138 /* 20139 * Try to resolve another multiroute if 20140 * ire_multirt_need_resolve() deemed it necessary. 20141 */ 20142 if (copy_mp != NULL) 20143 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20144 if (need_decref) 20145 CONN_DEC_REF(connp); 20146 return; 20147 } 20148 20149 /* 20150 * Access to conn_ire_cache. (protected by conn_lock) 20151 * 20152 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20153 * the ire bucket lock here to check for CONDEMNED as it is okay to 20154 * send a packet or two with the IRE_CACHE that is going away. 20155 * Access to the ire requires an ire refhold on the ire prior to 20156 * its use since an interface unplumb thread may delete the cached 20157 * ire and release the refhold at any time. 20158 * 20159 * Caching an ire in the conn_ire_cache 20160 * 20161 * o Caching an ire pointer in the conn requires a strict check for 20162 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20163 * ires before cleaning up the conns. So the caching of an ire pointer 20164 * in the conn is done after making sure under the bucket lock that the 20165 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20166 * caching an ire after the unplumb thread has cleaned up the conn. 20167 * If the conn does not send a packet subsequently the unplumb thread 20168 * will be hanging waiting for the ire count to drop to zero. 20169 * 20170 * o We also need to atomically test for a null conn_ire_cache and 20171 * set the conn_ire_cache under the the protection of the conn_lock 20172 * to avoid races among concurrent threads trying to simultaneously 20173 * cache an ire in the conn_ire_cache. 20174 */ 20175 mutex_enter(&connp->conn_lock); 20176 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20177 20178 if (ire != NULL && ire->ire_addr == dst && 20179 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20180 20181 IRE_REFHOLD(ire); 20182 mutex_exit(&connp->conn_lock); 20183 20184 } else { 20185 boolean_t cached = B_FALSE; 20186 connp->conn_ire_cache = NULL; 20187 mutex_exit(&connp->conn_lock); 20188 /* Release the old ire */ 20189 if (ire != NULL && sctp_ire == NULL) 20190 IRE_REFRELE_NOTR(ire); 20191 20192 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20193 if (ire == NULL) 20194 goto noirefound; 20195 IRE_REFHOLD_NOTR(ire); 20196 20197 mutex_enter(&connp->conn_lock); 20198 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20199 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20200 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20201 if (connp->conn_ulp == IPPROTO_TCP) 20202 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20203 connp->conn_ire_cache = ire; 20204 cached = B_TRUE; 20205 } 20206 rw_exit(&ire->ire_bucket->irb_lock); 20207 } 20208 mutex_exit(&connp->conn_lock); 20209 20210 /* 20211 * We can continue to use the ire but since it was 20212 * not cached, we should drop the extra reference. 20213 */ 20214 if (!cached) 20215 IRE_REFRELE_NOTR(ire); 20216 } 20217 20218 20219 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20220 "ip_wput_end: q %p (%S)", q, "end"); 20221 20222 /* 20223 * Check if the ire has the RTF_MULTIRT flag, inherited 20224 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20225 */ 20226 if (ire->ire_flags & RTF_MULTIRT) { 20227 20228 /* 20229 * Force the TTL of multirouted packets if required. 20230 * The TTL of such packets is bounded by the 20231 * ip_multirt_ttl ndd variable. 20232 */ 20233 if ((ipst->ips_ip_multirt_ttl > 0) && 20234 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20235 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20236 "(was %d), dst 0x%08x\n", 20237 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20238 ntohl(ire->ire_addr))); 20239 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20240 } 20241 20242 /* 20243 * At this point, we check to see if there are any pending 20244 * unresolved routes. ire_multirt_resolvable() 20245 * checks in O(n) that all IRE_OFFSUBNET ire 20246 * entries for the packet's destination and 20247 * flagged RTF_MULTIRT are currently resolved. 20248 * If some remain unresolved, we make a copy 20249 * of the current message. It will be used 20250 * to initiate additional route resolutions. 20251 */ 20252 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20253 MBLK_GETLABEL(first_mp), ipst); 20254 ip2dbg(("ip_wput[not TCP]: ire %p, " 20255 "multirt_need_resolve %d, first_mp %p\n", 20256 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20257 if (multirt_need_resolve) { 20258 copy_mp = copymsg(first_mp); 20259 if (copy_mp != NULL) { 20260 MULTIRT_DEBUG_TAG(copy_mp); 20261 } 20262 } 20263 } 20264 20265 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20266 20267 /* 20268 * Try to resolve another multiroute if 20269 * ire_multirt_resolvable() deemed it necessary 20270 */ 20271 if (copy_mp != NULL) 20272 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20273 if (need_decref) 20274 CONN_DEC_REF(connp); 20275 return; 20276 20277 qnext: 20278 /* 20279 * Upper Level Protocols pass down complete IP datagrams 20280 * as M_DATA messages. Everything else is a sideshow. 20281 * 20282 * 1) We could be re-entering ip_wput because of ip_neworute 20283 * in which case we could have a IPSEC_OUT message. We 20284 * need to pass through ip_wput like other datagrams and 20285 * hence cannot branch to ip_wput_nondata. 20286 * 20287 * 2) ARP, AH, ESP, and other clients who are on the module 20288 * instance of IP stream, give us something to deal with. 20289 * We will handle AH and ESP here and rest in ip_wput_nondata. 20290 * 20291 * 3) ICMP replies also could come here. 20292 */ 20293 ipst = ILLQ_TO_IPST(q); 20294 20295 if (DB_TYPE(mp) != M_DATA) { 20296 notdata: 20297 if (DB_TYPE(mp) == M_CTL) { 20298 /* 20299 * M_CTL messages are used by ARP, AH and ESP to 20300 * communicate with IP. We deal with IPSEC_IN and 20301 * IPSEC_OUT here. ip_wput_nondata handles other 20302 * cases. 20303 */ 20304 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20305 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20306 first_mp = mp->b_cont; 20307 first_mp->b_flag &= ~MSGHASREF; 20308 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20309 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20310 CONN_DEC_REF(connp); 20311 connp = NULL; 20312 } 20313 if (ii->ipsec_info_type == IPSEC_IN) { 20314 /* 20315 * Either this message goes back to 20316 * IPSEC for further processing or to 20317 * ULP after policy checks. 20318 */ 20319 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20320 return; 20321 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20322 io = (ipsec_out_t *)ii; 20323 if (io->ipsec_out_proc_begin) { 20324 /* 20325 * IPSEC processing has already started. 20326 * Complete it. 20327 * IPQoS notes: We don't care what is 20328 * in ipsec_out_ill_index since this 20329 * won't be processed for IPQoS policies 20330 * in ipsec_out_process. 20331 */ 20332 ipsec_out_process(q, mp, NULL, 20333 io->ipsec_out_ill_index); 20334 return; 20335 } else { 20336 connp = (q->q_next != NULL) ? 20337 NULL : Q_TO_CONN(q); 20338 first_mp = mp; 20339 mp = mp->b_cont; 20340 mctl_present = B_TRUE; 20341 } 20342 zoneid = io->ipsec_out_zoneid; 20343 ASSERT(zoneid != ALL_ZONES); 20344 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20345 /* 20346 * It's an IPsec control message requesting 20347 * an SADB update to be sent to the IPsec 20348 * hardware acceleration capable ills. 20349 */ 20350 ipsec_ctl_t *ipsec_ctl = 20351 (ipsec_ctl_t *)mp->b_rptr; 20352 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20353 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20354 mblk_t *cmp = mp->b_cont; 20355 20356 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20357 ASSERT(cmp != NULL); 20358 20359 freeb(mp); 20360 ill_ipsec_capab_send_all(satype, cmp, sa, 20361 ipst->ips_netstack); 20362 return; 20363 } else { 20364 /* 20365 * This must be ARP or special TSOL signaling. 20366 */ 20367 ip_wput_nondata(NULL, q, mp, NULL); 20368 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20369 "ip_wput_end: q %p (%S)", q, "nondata"); 20370 return; 20371 } 20372 } else { 20373 /* 20374 * This must be non-(ARP/AH/ESP) messages. 20375 */ 20376 ASSERT(!need_decref); 20377 ip_wput_nondata(NULL, q, mp, NULL); 20378 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20379 "ip_wput_end: q %p (%S)", q, "nondata"); 20380 return; 20381 } 20382 } else { 20383 first_mp = mp; 20384 mctl_present = B_FALSE; 20385 } 20386 20387 ASSERT(first_mp != NULL); 20388 /* 20389 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20390 * to make sure that this packet goes out on the same interface it 20391 * came in. We handle that here. 20392 */ 20393 if (mctl_present) { 20394 uint_t ifindex; 20395 20396 io = (ipsec_out_t *)first_mp->b_rptr; 20397 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20398 /* 20399 * We may have lost the conn context if we are 20400 * coming here from ip_newroute(). Copy the 20401 * nexthop information. 20402 */ 20403 if (io->ipsec_out_ip_nexthop) { 20404 ip_nexthop = B_TRUE; 20405 nexthop_addr = io->ipsec_out_nexthop_addr; 20406 20407 ipha = (ipha_t *)mp->b_rptr; 20408 dst = ipha->ipha_dst; 20409 goto send_from_ill; 20410 } else { 20411 ASSERT(io->ipsec_out_ill_index != 0); 20412 ifindex = io->ipsec_out_ill_index; 20413 attach_ill = ill_lookup_on_ifindex(ifindex, 20414 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20415 if (attach_ill == NULL) { 20416 ASSERT(xmit_ill == NULL); 20417 ip1dbg(("ip_output: bad ifindex for " 20418 "(BIND TO IPIF_NOFAILOVER) %d\n", 20419 ifindex)); 20420 freemsg(first_mp); 20421 BUMP_MIB(&ipst->ips_ip_mib, 20422 ipIfStatsOutDiscards); 20423 ASSERT(!need_decref); 20424 return; 20425 } 20426 } 20427 } 20428 } 20429 20430 ASSERT(xmit_ill == NULL); 20431 20432 /* We have a complete IP datagram heading outbound. */ 20433 ipha = (ipha_t *)mp->b_rptr; 20434 20435 #ifndef SPEED_BEFORE_SAFETY 20436 /* 20437 * Make sure we have a full-word aligned message and that at least 20438 * a simple IP header is accessible in the first message. If not, 20439 * try a pullup. 20440 */ 20441 if (!OK_32PTR(rptr) || 20442 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20443 hdrtoosmall: 20444 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20445 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20446 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20447 if (first_mp == NULL) 20448 first_mp = mp; 20449 goto discard_pkt; 20450 } 20451 20452 /* This function assumes that mp points to an IPv4 packet. */ 20453 if (is_system_labeled() && q->q_next == NULL && 20454 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20455 !connp->conn_ulp_labeled) { 20456 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20457 &adjust, connp->conn_mac_exempt, ipst); 20458 ipha = (ipha_t *)mp->b_rptr; 20459 if (first_mp != NULL) 20460 first_mp->b_cont = mp; 20461 if (err != 0) { 20462 if (first_mp == NULL) 20463 first_mp = mp; 20464 if (err == EINVAL) 20465 goto icmp_parameter_problem; 20466 ip2dbg(("ip_wput: label check failed (%d)\n", 20467 err)); 20468 goto discard_pkt; 20469 } 20470 iplen = ntohs(ipha->ipha_length) + adjust; 20471 ipha->ipha_length = htons(iplen); 20472 } 20473 20474 ipha = (ipha_t *)mp->b_rptr; 20475 if (first_mp == NULL) { 20476 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20477 /* 20478 * If we got here because of "goto hdrtoosmall" 20479 * We need to attach a IPSEC_OUT. 20480 */ 20481 if (connp->conn_out_enforce_policy) { 20482 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20483 NULL, ipha->ipha_protocol, 20484 ipst->ips_netstack)) == NULL)) { 20485 BUMP_MIB(&ipst->ips_ip_mib, 20486 ipIfStatsOutDiscards); 20487 if (need_decref) 20488 CONN_DEC_REF(connp); 20489 return; 20490 } else { 20491 ASSERT(mp->b_datap->db_type == M_CTL); 20492 first_mp = mp; 20493 mp = mp->b_cont; 20494 mctl_present = B_TRUE; 20495 } 20496 } else { 20497 first_mp = mp; 20498 mctl_present = B_FALSE; 20499 } 20500 } 20501 } 20502 #endif 20503 20504 /* Most of the code below is written for speed, not readability */ 20505 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20506 20507 /* 20508 * If ip_newroute() fails, we're going to need a full 20509 * header for the icmp wraparound. 20510 */ 20511 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20512 uint_t v_hlen; 20513 version_hdrlen_check: 20514 ASSERT(first_mp != NULL); 20515 v_hlen = V_HLEN; 20516 /* 20517 * siphon off IPv6 packets coming down from transport 20518 * layer modules here. 20519 * Note: high-order bit carries NUD reachability confirmation 20520 */ 20521 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20522 /* 20523 * XXX implement a IPv4 and IPv6 packet counter per 20524 * conn and switch when ratio exceeds e.g. 10:1 20525 */ 20526 #ifdef notyet 20527 if (q->q_next == NULL) /* Avoid ill queue */ 20528 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 20529 #endif 20530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20531 ASSERT(xmit_ill == NULL); 20532 if (attach_ill != NULL) 20533 ill_refrele(attach_ill); 20534 if (need_decref) 20535 mp->b_flag |= MSGHASREF; 20536 (void) ip_output_v6(arg, first_mp, arg2, caller); 20537 return; 20538 } 20539 20540 if ((v_hlen >> 4) != IP_VERSION) { 20541 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20542 "ip_wput_end: q %p (%S)", q, "badvers"); 20543 goto discard_pkt; 20544 } 20545 /* 20546 * Is the header length at least 20 bytes? 20547 * 20548 * Are there enough bytes accessible in the header? If 20549 * not, try a pullup. 20550 */ 20551 v_hlen &= 0xF; 20552 v_hlen <<= 2; 20553 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20554 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20555 "ip_wput_end: q %p (%S)", q, "badlen"); 20556 goto discard_pkt; 20557 } 20558 if (v_hlen > (mp->b_wptr - rptr)) { 20559 if (!pullupmsg(mp, v_hlen)) { 20560 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20561 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20562 goto discard_pkt; 20563 } 20564 ipha = (ipha_t *)mp->b_rptr; 20565 } 20566 /* 20567 * Move first entry from any source route into ipha_dst and 20568 * verify the options 20569 */ 20570 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20571 zoneid, ipst)) { 20572 ASSERT(xmit_ill == NULL); 20573 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20574 if (attach_ill != NULL) 20575 ill_refrele(attach_ill); 20576 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20577 "ip_wput_end: q %p (%S)", q, "badopts"); 20578 if (need_decref) 20579 CONN_DEC_REF(connp); 20580 return; 20581 } 20582 } 20583 dst = ipha->ipha_dst; 20584 20585 /* 20586 * Try to get an IRE_CACHE for the destination address. If we can't, 20587 * we have to run the packet through ip_newroute which will take 20588 * the appropriate action to arrange for an IRE_CACHE, such as querying 20589 * a resolver, or assigning a default gateway, etc. 20590 */ 20591 if (CLASSD(dst)) { 20592 ipif_t *ipif; 20593 uint32_t setsrc = 0; 20594 20595 multicast: 20596 ASSERT(first_mp != NULL); 20597 ip2dbg(("ip_wput: CLASSD\n")); 20598 if (connp == NULL) { 20599 /* 20600 * Use the first good ipif on the ill. 20601 * XXX Should this ever happen? (Appears 20602 * to show up with just ppp and no ethernet due 20603 * to in.rdisc.) 20604 * However, ire_send should be able to 20605 * call ip_wput_ire directly. 20606 * 20607 * XXX Also, this can happen for ICMP and other packets 20608 * with multicast source addresses. Perhaps we should 20609 * fix things so that we drop the packet in question, 20610 * but for now, just run with it. 20611 */ 20612 ill_t *ill = (ill_t *)q->q_ptr; 20613 20614 /* 20615 * Don't honor attach_if for this case. If ill 20616 * is part of the group, ipif could belong to 20617 * any ill and we cannot maintain attach_ill 20618 * and ipif_ill same anymore and the assert 20619 * below would fail. 20620 */ 20621 if (mctl_present && io->ipsec_out_attach_if) { 20622 io->ipsec_out_ill_index = 0; 20623 io->ipsec_out_attach_if = B_FALSE; 20624 ASSERT(attach_ill != NULL); 20625 ill_refrele(attach_ill); 20626 attach_ill = NULL; 20627 } 20628 20629 ASSERT(attach_ill == NULL); 20630 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20631 if (ipif == NULL) { 20632 if (need_decref) 20633 CONN_DEC_REF(connp); 20634 freemsg(first_mp); 20635 return; 20636 } 20637 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20638 ntohl(dst), ill->ill_name)); 20639 } else { 20640 /* 20641 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20642 * and IP_MULTICAST_IF. 20643 * Block comment above this function explains the 20644 * locking mechanism used here 20645 */ 20646 if (xmit_ill == NULL) { 20647 xmit_ill = conn_get_held_ill(connp, 20648 &connp->conn_xmit_if_ill, &err); 20649 if (err == ILL_LOOKUP_FAILED) { 20650 ip1dbg(("ip_wput: No ill for " 20651 "IP_XMIT_IF\n")); 20652 BUMP_MIB(&ipst->ips_ip_mib, 20653 ipIfStatsOutNoRoutes); 20654 goto drop_pkt; 20655 } 20656 } 20657 20658 if (xmit_ill == NULL) { 20659 ipif = conn_get_held_ipif(connp, 20660 &connp->conn_multicast_ipif, &err); 20661 if (err == IPIF_LOOKUP_FAILED) { 20662 ip1dbg(("ip_wput: No ipif for " 20663 "multicast\n")); 20664 BUMP_MIB(&ipst->ips_ip_mib, 20665 ipIfStatsOutNoRoutes); 20666 goto drop_pkt; 20667 } 20668 } 20669 if (xmit_ill != NULL) { 20670 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20671 if (ipif == NULL) { 20672 ip1dbg(("ip_wput: No ipif for " 20673 "IP_XMIT_IF\n")); 20674 BUMP_MIB(&ipst->ips_ip_mib, 20675 ipIfStatsOutNoRoutes); 20676 goto drop_pkt; 20677 } 20678 } else if (ipif == NULL || ipif->ipif_isv6) { 20679 /* 20680 * We must do this ipif determination here 20681 * else we could pass through ip_newroute 20682 * and come back here without the conn context. 20683 * 20684 * Note: we do late binding i.e. we bind to 20685 * the interface when the first packet is sent. 20686 * For performance reasons we do not rebind on 20687 * each packet but keep the binding until the 20688 * next IP_MULTICAST_IF option. 20689 * 20690 * conn_multicast_{ipif,ill} are shared between 20691 * IPv4 and IPv6 and AF_INET6 sockets can 20692 * send both IPv4 and IPv6 packets. Hence 20693 * we have to check that "isv6" matches above. 20694 */ 20695 if (ipif != NULL) 20696 ipif_refrele(ipif); 20697 ipif = ipif_lookup_group(dst, zoneid, ipst); 20698 if (ipif == NULL) { 20699 ip1dbg(("ip_wput: No ipif for " 20700 "multicast\n")); 20701 BUMP_MIB(&ipst->ips_ip_mib, 20702 ipIfStatsOutNoRoutes); 20703 goto drop_pkt; 20704 } 20705 err = conn_set_held_ipif(connp, 20706 &connp->conn_multicast_ipif, ipif); 20707 if (err == IPIF_LOOKUP_FAILED) { 20708 ipif_refrele(ipif); 20709 ip1dbg(("ip_wput: No ipif for " 20710 "multicast\n")); 20711 BUMP_MIB(&ipst->ips_ip_mib, 20712 ipIfStatsOutNoRoutes); 20713 goto drop_pkt; 20714 } 20715 } 20716 } 20717 ASSERT(!ipif->ipif_isv6); 20718 /* 20719 * As we may lose the conn by the time we reach ip_wput_ire, 20720 * we copy conn_multicast_loop and conn_dontroute on to an 20721 * ipsec_out. In case if this datagram goes out secure, 20722 * we need the ill_index also. Copy that also into the 20723 * ipsec_out. 20724 */ 20725 if (mctl_present) { 20726 io = (ipsec_out_t *)first_mp->b_rptr; 20727 ASSERT(first_mp->b_datap->db_type == M_CTL); 20728 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20729 } else { 20730 ASSERT(mp == first_mp); 20731 if ((first_mp = allocb(sizeof (ipsec_info_t), 20732 BPRI_HI)) == NULL) { 20733 ipif_refrele(ipif); 20734 first_mp = mp; 20735 goto discard_pkt; 20736 } 20737 first_mp->b_datap->db_type = M_CTL; 20738 first_mp->b_wptr += sizeof (ipsec_info_t); 20739 /* ipsec_out_secure is B_FALSE now */ 20740 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20741 io = (ipsec_out_t *)first_mp->b_rptr; 20742 io->ipsec_out_type = IPSEC_OUT; 20743 io->ipsec_out_len = sizeof (ipsec_out_t); 20744 io->ipsec_out_use_global_policy = B_TRUE; 20745 io->ipsec_out_ns = ipst->ips_netstack; 20746 first_mp->b_cont = mp; 20747 mctl_present = B_TRUE; 20748 } 20749 if (attach_ill != NULL) { 20750 ASSERT(attach_ill == ipif->ipif_ill); 20751 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20752 20753 /* 20754 * Check if we need an ire that will not be 20755 * looked up by anybody else i.e. HIDDEN. 20756 */ 20757 if (ill_is_probeonly(attach_ill)) { 20758 match_flags |= MATCH_IRE_MARK_HIDDEN; 20759 } 20760 io->ipsec_out_ill_index = 20761 attach_ill->ill_phyint->phyint_ifindex; 20762 io->ipsec_out_attach_if = B_TRUE; 20763 } else { 20764 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20765 io->ipsec_out_ill_index = 20766 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20767 } 20768 if (connp != NULL) { 20769 io->ipsec_out_multicast_loop = 20770 connp->conn_multicast_loop; 20771 io->ipsec_out_dontroute = connp->conn_dontroute; 20772 io->ipsec_out_zoneid = connp->conn_zoneid; 20773 } 20774 /* 20775 * If the application uses IP_MULTICAST_IF with 20776 * different logical addresses of the same ILL, we 20777 * need to make sure that the soruce address of 20778 * the packet matches the logical IP address used 20779 * in the option. We do it by initializing ipha_src 20780 * here. This should keep IPSEC also happy as 20781 * when we return from IPSEC processing, we don't 20782 * have to worry about getting the right address on 20783 * the packet. Thus it is sufficient to look for 20784 * IRE_CACHE using MATCH_IRE_ILL rathen than 20785 * MATCH_IRE_IPIF. 20786 * 20787 * NOTE : We need to do it for non-secure case also as 20788 * this might go out secure if there is a global policy 20789 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20790 * address, the source should be initialized already and 20791 * hence we won't be initializing here. 20792 * 20793 * As we do not have the ire yet, it is possible that 20794 * we set the source address here and then later discover 20795 * that the ire implies the source address to be assigned 20796 * through the RTF_SETSRC flag. 20797 * In that case, the setsrc variable will remind us 20798 * that overwritting the source address by the one 20799 * of the RTF_SETSRC-flagged ire is allowed. 20800 */ 20801 if (ipha->ipha_src == INADDR_ANY && 20802 (connp == NULL || !connp->conn_unspec_src)) { 20803 ipha->ipha_src = ipif->ipif_src_addr; 20804 setsrc = RTF_SETSRC; 20805 } 20806 /* 20807 * Find an IRE which matches the destination and the outgoing 20808 * queue (i.e. the outgoing interface.) 20809 * For loopback use a unicast IP address for 20810 * the ire lookup. 20811 */ 20812 if (IS_LOOPBACK(ipif->ipif_ill)) 20813 dst = ipif->ipif_lcl_addr; 20814 20815 /* 20816 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20817 * We don't need to lookup ire in ctable as the packet 20818 * needs to be sent to the destination through the specified 20819 * ill irrespective of ires in the cache table. 20820 */ 20821 ire = NULL; 20822 if (xmit_ill == NULL) { 20823 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20824 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 20825 } 20826 20827 /* 20828 * refrele attach_ill as its not needed anymore. 20829 */ 20830 if (attach_ill != NULL) { 20831 ill_refrele(attach_ill); 20832 attach_ill = NULL; 20833 } 20834 20835 if (ire == NULL) { 20836 /* 20837 * Multicast loopback and multicast forwarding is 20838 * done in ip_wput_ire. 20839 * 20840 * Mark this packet to make it be delivered to 20841 * ip_wput_ire after the new ire has been 20842 * created. 20843 * 20844 * The call to ip_newroute_ipif takes into account 20845 * the setsrc reminder. In any case, we take care 20846 * of the RTF_MULTIRT flag. 20847 */ 20848 mp->b_prev = mp->b_next = NULL; 20849 if (xmit_ill == NULL || 20850 xmit_ill->ill_ipif_up_count > 0) { 20851 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20852 setsrc | RTF_MULTIRT, zoneid, infop); 20853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20854 "ip_wput_end: q %p (%S)", q, "noire"); 20855 } else { 20856 freemsg(first_mp); 20857 } 20858 ipif_refrele(ipif); 20859 if (xmit_ill != NULL) 20860 ill_refrele(xmit_ill); 20861 if (need_decref) 20862 CONN_DEC_REF(connp); 20863 return; 20864 } 20865 20866 ipif_refrele(ipif); 20867 ipif = NULL; 20868 ASSERT(xmit_ill == NULL); 20869 20870 /* 20871 * Honor the RTF_SETSRC flag for multicast packets, 20872 * if allowed by the setsrc reminder. 20873 */ 20874 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20875 ipha->ipha_src = ire->ire_src_addr; 20876 } 20877 20878 /* 20879 * Unconditionally force the TTL to 1 for 20880 * multirouted multicast packets: 20881 * multirouted multicast should not cross 20882 * multicast routers. 20883 */ 20884 if (ire->ire_flags & RTF_MULTIRT) { 20885 if (ipha->ipha_ttl > 1) { 20886 ip2dbg(("ip_wput: forcing multicast " 20887 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20888 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20889 ipha->ipha_ttl = 1; 20890 } 20891 } 20892 } else { 20893 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20894 if ((ire != NULL) && (ire->ire_type & 20895 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20896 ignore_dontroute = B_TRUE; 20897 ignore_nexthop = B_TRUE; 20898 } 20899 if (ire != NULL) { 20900 ire_refrele(ire); 20901 ire = NULL; 20902 } 20903 /* 20904 * Guard against coming in from arp in which case conn is NULL. 20905 * Also guard against non M_DATA with dontroute set but 20906 * destined to local, loopback or broadcast addresses. 20907 */ 20908 if (connp != NULL && connp->conn_dontroute && 20909 !ignore_dontroute) { 20910 dontroute: 20911 /* 20912 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20913 * routing protocols from seeing false direct 20914 * connectivity. 20915 */ 20916 ipha->ipha_ttl = 1; 20917 /* 20918 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20919 * along with SO_DONTROUTE, higher precedence is 20920 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20921 */ 20922 if (connp->conn_xmit_if_ill == NULL) { 20923 /* If suitable ipif not found, drop packet */ 20924 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 20925 ipst); 20926 if (dst_ipif == NULL) { 20927 ip1dbg(("ip_wput: no route for " 20928 "dst using SO_DONTROUTE\n")); 20929 BUMP_MIB(&ipst->ips_ip_mib, 20930 ipIfStatsOutNoRoutes); 20931 mp->b_prev = mp->b_next = NULL; 20932 if (first_mp == NULL) 20933 first_mp = mp; 20934 goto drop_pkt; 20935 } else { 20936 /* 20937 * If suitable ipif has been found, set 20938 * xmit_ill to the corresponding 20939 * ipif_ill because we'll be following 20940 * the IP_XMIT_IF logic. 20941 */ 20942 ASSERT(xmit_ill == NULL); 20943 xmit_ill = dst_ipif->ipif_ill; 20944 mutex_enter(&xmit_ill->ill_lock); 20945 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20946 mutex_exit(&xmit_ill->ill_lock); 20947 xmit_ill = NULL; 20948 ipif_refrele(dst_ipif); 20949 ip1dbg(("ip_wput: no route for" 20950 " dst using" 20951 " SO_DONTROUTE\n")); 20952 BUMP_MIB(&ipst->ips_ip_mib, 20953 ipIfStatsOutNoRoutes); 20954 mp->b_prev = mp->b_next = NULL; 20955 if (first_mp == NULL) 20956 first_mp = mp; 20957 goto drop_pkt; 20958 } 20959 ill_refhold_locked(xmit_ill); 20960 mutex_exit(&xmit_ill->ill_lock); 20961 ipif_refrele(dst_ipif); 20962 } 20963 } 20964 20965 } 20966 /* 20967 * If we are bound to IPIF_NOFAILOVER address, look for 20968 * an IRE_CACHE matching the ill. 20969 */ 20970 send_from_ill: 20971 if (attach_ill != NULL) { 20972 ipif_t *attach_ipif; 20973 20974 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20975 20976 /* 20977 * Check if we need an ire that will not be 20978 * looked up by anybody else i.e. HIDDEN. 20979 */ 20980 if (ill_is_probeonly(attach_ill)) { 20981 match_flags |= MATCH_IRE_MARK_HIDDEN; 20982 } 20983 20984 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20985 if (attach_ipif == NULL) { 20986 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20987 goto discard_pkt; 20988 } 20989 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20990 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 20991 ipif_refrele(attach_ipif); 20992 } else if (xmit_ill != NULL || (connp != NULL && 20993 connp->conn_xmit_if_ill != NULL)) { 20994 /* 20995 * Mark this packet as originated locally 20996 */ 20997 mp->b_prev = mp->b_next = NULL; 20998 /* 20999 * xmit_ill could be NULL if SO_DONTROUTE 21000 * is also set. 21001 */ 21002 if (xmit_ill == NULL) { 21003 xmit_ill = conn_get_held_ill(connp, 21004 &connp->conn_xmit_if_ill, &err); 21005 if (err == ILL_LOOKUP_FAILED) { 21006 BUMP_MIB(&ipst->ips_ip_mib, 21007 ipIfStatsOutDiscards); 21008 if (need_decref) 21009 CONN_DEC_REF(connp); 21010 freemsg(first_mp); 21011 return; 21012 } 21013 if (xmit_ill == NULL) { 21014 if (connp->conn_dontroute) 21015 goto dontroute; 21016 goto send_from_ill; 21017 } 21018 } 21019 /* 21020 * Could be SO_DONTROUTE case also. 21021 * check at least one interface is UP as 21022 * specified by this ILL 21023 */ 21024 if (xmit_ill->ill_ipif_up_count > 0) { 21025 ipif_t *ipif; 21026 21027 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21028 if (ipif == NULL) { 21029 ip1dbg(("ip_output: " 21030 "xmit_ill NULL ipif\n")); 21031 goto drop_pkt; 21032 } 21033 /* 21034 * Look for a ire that is part of the group, 21035 * if found use it else call ip_newroute_ipif. 21036 * IPCL_ZONEID is not used for matching because 21037 * IP_ALLZONES option is valid only when the 21038 * ill is accessible from all zones i.e has a 21039 * valid ipif in all zones. 21040 */ 21041 match_flags = MATCH_IRE_ILL_GROUP | 21042 MATCH_IRE_SECATTR; 21043 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21044 MBLK_GETLABEL(mp), match_flags, ipst); 21045 /* 21046 * If an ire exists use it or else create 21047 * an ire but don't add it to the cache. 21048 * Adding an ire may cause issues with 21049 * asymmetric routing. 21050 * In case of multiroute always act as if 21051 * ire does not exist. 21052 */ 21053 if (ire == NULL || 21054 ire->ire_flags & RTF_MULTIRT) { 21055 if (ire != NULL) 21056 ire_refrele(ire); 21057 ip_newroute_ipif(q, first_mp, ipif, 21058 dst, connp, 0, zoneid, infop); 21059 ipif_refrele(ipif); 21060 ip1dbg(("ip_wput: ip_unicast_if\n")); 21061 ill_refrele(xmit_ill); 21062 if (need_decref) 21063 CONN_DEC_REF(connp); 21064 return; 21065 } 21066 ipif_refrele(ipif); 21067 } else { 21068 goto drop_pkt; 21069 } 21070 } else if (ip_nexthop || (connp != NULL && 21071 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21072 if (!ip_nexthop) { 21073 ip_nexthop = B_TRUE; 21074 nexthop_addr = connp->conn_nexthop_v4; 21075 } 21076 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21077 MATCH_IRE_GW; 21078 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21079 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21080 } else { 21081 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21082 ipst); 21083 } 21084 if (!ire) { 21085 /* 21086 * Make sure we don't load spread if this 21087 * is IPIF_NOFAILOVER case. 21088 */ 21089 if ((attach_ill != NULL) || 21090 (ip_nexthop && !ignore_nexthop)) { 21091 if (mctl_present) { 21092 io = (ipsec_out_t *)first_mp->b_rptr; 21093 ASSERT(first_mp->b_datap->db_type == 21094 M_CTL); 21095 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21096 } else { 21097 ASSERT(mp == first_mp); 21098 first_mp = allocb( 21099 sizeof (ipsec_info_t), BPRI_HI); 21100 if (first_mp == NULL) { 21101 first_mp = mp; 21102 goto discard_pkt; 21103 } 21104 first_mp->b_datap->db_type = M_CTL; 21105 first_mp->b_wptr += 21106 sizeof (ipsec_info_t); 21107 /* ipsec_out_secure is B_FALSE now */ 21108 bzero(first_mp->b_rptr, 21109 sizeof (ipsec_info_t)); 21110 io = (ipsec_out_t *)first_mp->b_rptr; 21111 io->ipsec_out_type = IPSEC_OUT; 21112 io->ipsec_out_len = 21113 sizeof (ipsec_out_t); 21114 io->ipsec_out_use_global_policy = 21115 B_TRUE; 21116 io->ipsec_out_ns = ipst->ips_netstack; 21117 first_mp->b_cont = mp; 21118 mctl_present = B_TRUE; 21119 } 21120 if (attach_ill != NULL) { 21121 io->ipsec_out_ill_index = attach_ill-> 21122 ill_phyint->phyint_ifindex; 21123 io->ipsec_out_attach_if = B_TRUE; 21124 } else { 21125 io->ipsec_out_ip_nexthop = ip_nexthop; 21126 io->ipsec_out_nexthop_addr = 21127 nexthop_addr; 21128 } 21129 } 21130 noirefound: 21131 /* 21132 * Mark this packet as having originated on 21133 * this machine. This will be noted in 21134 * ire_add_then_send, which needs to know 21135 * whether to run it back through ip_wput or 21136 * ip_rput following successful resolution. 21137 */ 21138 mp->b_prev = NULL; 21139 mp->b_next = NULL; 21140 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21141 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21142 "ip_wput_end: q %p (%S)", q, "newroute"); 21143 if (attach_ill != NULL) 21144 ill_refrele(attach_ill); 21145 if (xmit_ill != NULL) 21146 ill_refrele(xmit_ill); 21147 if (need_decref) 21148 CONN_DEC_REF(connp); 21149 return; 21150 } 21151 } 21152 21153 /* We now know where we are going with it. */ 21154 21155 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21156 "ip_wput_end: q %p (%S)", q, "end"); 21157 21158 /* 21159 * Check if the ire has the RTF_MULTIRT flag, inherited 21160 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21161 */ 21162 if (ire->ire_flags & RTF_MULTIRT) { 21163 /* 21164 * Force the TTL of multirouted packets if required. 21165 * The TTL of such packets is bounded by the 21166 * ip_multirt_ttl ndd variable. 21167 */ 21168 if ((ipst->ips_ip_multirt_ttl > 0) && 21169 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21170 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21171 "(was %d), dst 0x%08x\n", 21172 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21173 ntohl(ire->ire_addr))); 21174 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21175 } 21176 /* 21177 * At this point, we check to see if there are any pending 21178 * unresolved routes. ire_multirt_resolvable() 21179 * checks in O(n) that all IRE_OFFSUBNET ire 21180 * entries for the packet's destination and 21181 * flagged RTF_MULTIRT are currently resolved. 21182 * If some remain unresolved, we make a copy 21183 * of the current message. It will be used 21184 * to initiate additional route resolutions. 21185 */ 21186 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21187 MBLK_GETLABEL(first_mp), ipst); 21188 ip2dbg(("ip_wput[noirefound]: ire %p, " 21189 "multirt_need_resolve %d, first_mp %p\n", 21190 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21191 if (multirt_need_resolve) { 21192 copy_mp = copymsg(first_mp); 21193 if (copy_mp != NULL) { 21194 MULTIRT_DEBUG_TAG(copy_mp); 21195 } 21196 } 21197 } 21198 21199 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21200 /* 21201 * Try to resolve another multiroute if 21202 * ire_multirt_resolvable() deemed it necessary. 21203 * At this point, we need to distinguish 21204 * multicasts from other packets. For multicasts, 21205 * we call ip_newroute_ipif() and request that both 21206 * multirouting and setsrc flags are checked. 21207 */ 21208 if (copy_mp != NULL) { 21209 if (CLASSD(dst)) { 21210 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21211 if (ipif) { 21212 ASSERT(infop->ip_opt_ill_index == 0); 21213 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21214 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21215 ipif_refrele(ipif); 21216 } else { 21217 MULTIRT_DEBUG_UNTAG(copy_mp); 21218 freemsg(copy_mp); 21219 copy_mp = NULL; 21220 } 21221 } else { 21222 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21223 } 21224 } 21225 if (attach_ill != NULL) 21226 ill_refrele(attach_ill); 21227 if (xmit_ill != NULL) 21228 ill_refrele(xmit_ill); 21229 if (need_decref) 21230 CONN_DEC_REF(connp); 21231 return; 21232 21233 icmp_parameter_problem: 21234 /* could not have originated externally */ 21235 ASSERT(mp->b_prev == NULL); 21236 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21237 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21238 /* it's the IP header length that's in trouble */ 21239 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21240 first_mp = NULL; 21241 } 21242 21243 discard_pkt: 21244 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21245 drop_pkt: 21246 ip1dbg(("ip_wput: dropped packet\n")); 21247 if (ire != NULL) 21248 ire_refrele(ire); 21249 if (need_decref) 21250 CONN_DEC_REF(connp); 21251 freemsg(first_mp); 21252 if (attach_ill != NULL) 21253 ill_refrele(attach_ill); 21254 if (xmit_ill != NULL) 21255 ill_refrele(xmit_ill); 21256 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21257 "ip_wput_end: q %p (%S)", q, "droppkt"); 21258 } 21259 21260 /* 21261 * If this is a conn_t queue, then we pass in the conn. This includes the 21262 * zoneid. 21263 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21264 * in which case we use the global zoneid since those are all part of 21265 * the global zone. 21266 */ 21267 void 21268 ip_wput(queue_t *q, mblk_t *mp) 21269 { 21270 if (CONN_Q(q)) 21271 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21272 else 21273 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21274 } 21275 21276 /* 21277 * 21278 * The following rules must be observed when accessing any ipif or ill 21279 * that has been cached in the conn. Typically conn_nofailover_ill, 21280 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21281 * 21282 * Access: The ipif or ill pointed to from the conn can be accessed under 21283 * the protection of the conn_lock or after it has been refheld under the 21284 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21285 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21286 * The reason for this is that a concurrent unplumb could actually be 21287 * cleaning up these cached pointers by walking the conns and might have 21288 * finished cleaning up the conn in question. The macros check that an 21289 * unplumb has not yet started on the ipif or ill. 21290 * 21291 * Caching: An ipif or ill pointer may be cached in the conn only after 21292 * making sure that an unplumb has not started. So the caching is done 21293 * while holding both the conn_lock and the ill_lock and after using the 21294 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21295 * flag before starting the cleanup of conns. 21296 * 21297 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21298 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21299 * or a reference to the ipif or a reference to an ire that references the 21300 * ipif. An ipif does not change its ill except for failover/failback. Since 21301 * failover/failback happens only after bringing down the ipif and making sure 21302 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21303 * the above holds. 21304 */ 21305 ipif_t * 21306 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21307 { 21308 ipif_t *ipif; 21309 ill_t *ill; 21310 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21311 21312 *err = 0; 21313 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21314 mutex_enter(&connp->conn_lock); 21315 ipif = *ipifp; 21316 if (ipif != NULL) { 21317 ill = ipif->ipif_ill; 21318 mutex_enter(&ill->ill_lock); 21319 if (IPIF_CAN_LOOKUP(ipif)) { 21320 ipif_refhold_locked(ipif); 21321 mutex_exit(&ill->ill_lock); 21322 mutex_exit(&connp->conn_lock); 21323 rw_exit(&ipst->ips_ill_g_lock); 21324 return (ipif); 21325 } else { 21326 *err = IPIF_LOOKUP_FAILED; 21327 } 21328 mutex_exit(&ill->ill_lock); 21329 } 21330 mutex_exit(&connp->conn_lock); 21331 rw_exit(&ipst->ips_ill_g_lock); 21332 return (NULL); 21333 } 21334 21335 ill_t * 21336 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21337 { 21338 ill_t *ill; 21339 21340 *err = 0; 21341 mutex_enter(&connp->conn_lock); 21342 ill = *illp; 21343 if (ill != NULL) { 21344 mutex_enter(&ill->ill_lock); 21345 if (ILL_CAN_LOOKUP(ill)) { 21346 ill_refhold_locked(ill); 21347 mutex_exit(&ill->ill_lock); 21348 mutex_exit(&connp->conn_lock); 21349 return (ill); 21350 } else { 21351 *err = ILL_LOOKUP_FAILED; 21352 } 21353 mutex_exit(&ill->ill_lock); 21354 } 21355 mutex_exit(&connp->conn_lock); 21356 return (NULL); 21357 } 21358 21359 static int 21360 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21361 { 21362 ill_t *ill; 21363 21364 ill = ipif->ipif_ill; 21365 mutex_enter(&connp->conn_lock); 21366 mutex_enter(&ill->ill_lock); 21367 if (IPIF_CAN_LOOKUP(ipif)) { 21368 *ipifp = ipif; 21369 mutex_exit(&ill->ill_lock); 21370 mutex_exit(&connp->conn_lock); 21371 return (0); 21372 } 21373 mutex_exit(&ill->ill_lock); 21374 mutex_exit(&connp->conn_lock); 21375 return (IPIF_LOOKUP_FAILED); 21376 } 21377 21378 /* 21379 * This is called if the outbound datagram needs fragmentation. 21380 * 21381 * NOTE : This function does not ire_refrele the ire argument passed in. 21382 */ 21383 static void 21384 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21385 ip_stack_t *ipst) 21386 { 21387 ipha_t *ipha; 21388 mblk_t *mp; 21389 uint32_t v_hlen_tos_len; 21390 uint32_t max_frag; 21391 uint32_t frag_flag; 21392 boolean_t dont_use; 21393 21394 if (ipsec_mp->b_datap->db_type == M_CTL) { 21395 mp = ipsec_mp->b_cont; 21396 } else { 21397 mp = ipsec_mp; 21398 } 21399 21400 ipha = (ipha_t *)mp->b_rptr; 21401 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21402 21403 #ifdef _BIG_ENDIAN 21404 #define V_HLEN (v_hlen_tos_len >> 24) 21405 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21406 #else 21407 #define V_HLEN (v_hlen_tos_len & 0xFF) 21408 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21409 #endif 21410 21411 #ifndef SPEED_BEFORE_SAFETY 21412 /* 21413 * Check that ipha_length is consistent with 21414 * the mblk length 21415 */ 21416 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21417 ip0dbg(("Packet length mismatch: %d, %ld\n", 21418 LENGTH, msgdsize(mp))); 21419 freemsg(ipsec_mp); 21420 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21421 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21422 "packet length mismatch"); 21423 return; 21424 } 21425 #endif 21426 /* 21427 * Don't use frag_flag if pre-built packet or source 21428 * routed or if multicast (since multicast packets do not solicit 21429 * ICMP "packet too big" messages). Get the values of 21430 * max_frag and frag_flag atomically by acquiring the 21431 * ire_lock. 21432 */ 21433 mutex_enter(&ire->ire_lock); 21434 max_frag = ire->ire_max_frag; 21435 frag_flag = ire->ire_frag_flag; 21436 mutex_exit(&ire->ire_lock); 21437 21438 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21439 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21440 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21441 21442 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21443 (dont_use ? 0 : frag_flag), zoneid, ipst); 21444 } 21445 21446 /* 21447 * Used for deciding the MSS size for the upper layer. Thus 21448 * we need to check the outbound policy values in the conn. 21449 */ 21450 int 21451 conn_ipsec_length(conn_t *connp) 21452 { 21453 ipsec_latch_t *ipl; 21454 21455 ipl = connp->conn_latch; 21456 if (ipl == NULL) 21457 return (0); 21458 21459 if (ipl->ipl_out_policy == NULL) 21460 return (0); 21461 21462 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21463 } 21464 21465 /* 21466 * Returns an estimate of the IPSEC headers size. This is used if 21467 * we don't want to call into IPSEC to get the exact size. 21468 */ 21469 int 21470 ipsec_out_extra_length(mblk_t *ipsec_mp) 21471 { 21472 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21473 ipsec_action_t *a; 21474 21475 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21476 if (!io->ipsec_out_secure) 21477 return (0); 21478 21479 a = io->ipsec_out_act; 21480 21481 if (a == NULL) { 21482 ASSERT(io->ipsec_out_policy != NULL); 21483 a = io->ipsec_out_policy->ipsp_act; 21484 } 21485 ASSERT(a != NULL); 21486 21487 return (a->ipa_ovhd); 21488 } 21489 21490 /* 21491 * Returns an estimate of the IPSEC headers size. This is used if 21492 * we don't want to call into IPSEC to get the exact size. 21493 */ 21494 int 21495 ipsec_in_extra_length(mblk_t *ipsec_mp) 21496 { 21497 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21498 ipsec_action_t *a; 21499 21500 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21501 21502 a = ii->ipsec_in_action; 21503 return (a == NULL ? 0 : a->ipa_ovhd); 21504 } 21505 21506 /* 21507 * If there are any source route options, return the true final 21508 * destination. Otherwise, return the destination. 21509 */ 21510 ipaddr_t 21511 ip_get_dst(ipha_t *ipha) 21512 { 21513 ipoptp_t opts; 21514 uchar_t *opt; 21515 uint8_t optval; 21516 uint8_t optlen; 21517 ipaddr_t dst; 21518 uint32_t off; 21519 21520 dst = ipha->ipha_dst; 21521 21522 if (IS_SIMPLE_IPH(ipha)) 21523 return (dst); 21524 21525 for (optval = ipoptp_first(&opts, ipha); 21526 optval != IPOPT_EOL; 21527 optval = ipoptp_next(&opts)) { 21528 opt = opts.ipoptp_cur; 21529 optlen = opts.ipoptp_len; 21530 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21531 switch (optval) { 21532 case IPOPT_SSRR: 21533 case IPOPT_LSRR: 21534 off = opt[IPOPT_OFFSET]; 21535 /* 21536 * If one of the conditions is true, it means 21537 * end of options and dst already has the right 21538 * value. 21539 */ 21540 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21541 off = optlen - IP_ADDR_LEN; 21542 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21543 } 21544 return (dst); 21545 default: 21546 break; 21547 } 21548 } 21549 21550 return (dst); 21551 } 21552 21553 mblk_t * 21554 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21555 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21556 { 21557 ipsec_out_t *io; 21558 mblk_t *first_mp; 21559 boolean_t policy_present; 21560 ip_stack_t *ipst; 21561 ipsec_stack_t *ipss; 21562 21563 ASSERT(ire != NULL); 21564 ipst = ire->ire_ipst; 21565 ipss = ipst->ips_netstack->netstack_ipsec; 21566 21567 first_mp = mp; 21568 if (mp->b_datap->db_type == M_CTL) { 21569 io = (ipsec_out_t *)first_mp->b_rptr; 21570 /* 21571 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21572 * 21573 * 1) There is per-socket policy (including cached global 21574 * policy) or a policy on the IP-in-IP tunnel. 21575 * 2) There is no per-socket policy, but it is 21576 * a multicast packet that needs to go out 21577 * on a specific interface. This is the case 21578 * where (ip_wput and ip_wput_multicast) attaches 21579 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21580 * 21581 * In case (2) we check with global policy to 21582 * see if there is a match and set the ill_index 21583 * appropriately so that we can lookup the ire 21584 * properly in ip_wput_ipsec_out. 21585 */ 21586 21587 /* 21588 * ipsec_out_use_global_policy is set to B_FALSE 21589 * in ipsec_in_to_out(). Refer to that function for 21590 * details. 21591 */ 21592 if ((io->ipsec_out_latch == NULL) && 21593 (io->ipsec_out_use_global_policy)) { 21594 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21595 ire, connp, unspec_src, zoneid)); 21596 } 21597 if (!io->ipsec_out_secure) { 21598 /* 21599 * If this is not a secure packet, drop 21600 * the IPSEC_OUT mp and treat it as a clear 21601 * packet. This happens when we are sending 21602 * a ICMP reply back to a clear packet. See 21603 * ipsec_in_to_out() for details. 21604 */ 21605 mp = first_mp->b_cont; 21606 freeb(first_mp); 21607 } 21608 return (mp); 21609 } 21610 /* 21611 * See whether we need to attach a global policy here. We 21612 * don't depend on the conn (as it could be null) for deciding 21613 * what policy this datagram should go through because it 21614 * should have happened in ip_wput if there was some 21615 * policy. This normally happens for connections which are not 21616 * fully bound preventing us from caching policies in 21617 * ip_bind. Packets coming from the TCP listener/global queue 21618 * - which are non-hard_bound - could also be affected by 21619 * applying policy here. 21620 * 21621 * If this packet is coming from tcp global queue or listener, 21622 * we will be applying policy here. This may not be *right* 21623 * if these packets are coming from the detached connection as 21624 * it could have gone in clear before. This happens only if a 21625 * TCP connection started when there is no policy and somebody 21626 * added policy before it became detached. Thus packets of the 21627 * detached connection could go out secure and the other end 21628 * would drop it because it will be expecting in clear. The 21629 * converse is not true i.e if somebody starts a TCP 21630 * connection and deletes the policy, all the packets will 21631 * still go out with the policy that existed before deleting 21632 * because ip_unbind sends up policy information which is used 21633 * by TCP on subsequent ip_wputs. The right solution is to fix 21634 * TCP to attach a dummy IPSEC_OUT and set 21635 * ipsec_out_use_global_policy to B_FALSE. As this might 21636 * affect performance for normal cases, we are not doing it. 21637 * Thus, set policy before starting any TCP connections. 21638 * 21639 * NOTE - We might apply policy even for a hard bound connection 21640 * - for which we cached policy in ip_bind - if somebody added 21641 * global policy after we inherited the policy in ip_bind. 21642 * This means that the packets that were going out in clear 21643 * previously would start going secure and hence get dropped 21644 * on the other side. To fix this, TCP attaches a dummy 21645 * ipsec_out and make sure that we don't apply global policy. 21646 */ 21647 if (ipha != NULL) 21648 policy_present = ipss->ipsec_outbound_v4_policy_present; 21649 else 21650 policy_present = ipss->ipsec_outbound_v6_policy_present; 21651 if (!policy_present) 21652 return (mp); 21653 21654 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21655 zoneid)); 21656 } 21657 21658 ire_t * 21659 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21660 { 21661 ipaddr_t addr; 21662 ire_t *save_ire; 21663 irb_t *irb; 21664 ill_group_t *illgrp; 21665 int err; 21666 21667 save_ire = ire; 21668 addr = ire->ire_addr; 21669 21670 ASSERT(ire->ire_type == IRE_BROADCAST); 21671 21672 illgrp = connp->conn_outgoing_ill->ill_group; 21673 if (illgrp == NULL) { 21674 *conn_outgoing_ill = conn_get_held_ill(connp, 21675 &connp->conn_outgoing_ill, &err); 21676 if (err == ILL_LOOKUP_FAILED) { 21677 ire_refrele(save_ire); 21678 return (NULL); 21679 } 21680 return (save_ire); 21681 } 21682 /* 21683 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21684 * If it is part of the group, we need to send on the ire 21685 * that has been cleared of IRE_MARK_NORECV and that belongs 21686 * to this group. This is okay as IP_BOUND_IF really means 21687 * any ill in the group. We depend on the fact that the 21688 * first ire in the group is always cleared of IRE_MARK_NORECV 21689 * if such an ire exists. This is possible only if you have 21690 * at least one ill in the group that has not failed. 21691 * 21692 * First get to the ire that matches the address and group. 21693 * 21694 * We don't look for an ire with a matching zoneid because a given zone 21695 * won't always have broadcast ires on all ills in the group. 21696 */ 21697 irb = ire->ire_bucket; 21698 rw_enter(&irb->irb_lock, RW_READER); 21699 if (ire->ire_marks & IRE_MARK_NORECV) { 21700 /* 21701 * If the current zone only has an ire broadcast for this 21702 * address marked NORECV, the ire we want is ahead in the 21703 * bucket, so we look it up deliberately ignoring the zoneid. 21704 */ 21705 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21706 if (ire->ire_addr != addr) 21707 continue; 21708 /* skip over deleted ires */ 21709 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21710 continue; 21711 } 21712 } 21713 while (ire != NULL) { 21714 /* 21715 * If a new interface is coming up, we could end up 21716 * seeing the loopback ire and the non-loopback ire 21717 * may not have been added yet. So check for ire_stq 21718 */ 21719 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21720 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21721 break; 21722 } 21723 ire = ire->ire_next; 21724 } 21725 if (ire != NULL && ire->ire_addr == addr && 21726 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21727 IRE_REFHOLD(ire); 21728 rw_exit(&irb->irb_lock); 21729 ire_refrele(save_ire); 21730 *conn_outgoing_ill = ire_to_ill(ire); 21731 /* 21732 * Refhold the ill to make the conn_outgoing_ill 21733 * independent of the ire. ip_wput_ire goes in a loop 21734 * and may refrele the ire. Since we have an ire at this 21735 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21736 */ 21737 ill_refhold(*conn_outgoing_ill); 21738 return (ire); 21739 } 21740 rw_exit(&irb->irb_lock); 21741 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21742 /* 21743 * If we can't find a suitable ire, return the original ire. 21744 */ 21745 return (save_ire); 21746 } 21747 21748 /* 21749 * This function does the ire_refrele of the ire passed in as the 21750 * argument. As this function looks up more ires i.e broadcast ires, 21751 * it needs to REFRELE them. Currently, for simplicity we don't 21752 * differentiate the one passed in and looked up here. We always 21753 * REFRELE. 21754 * IPQoS Notes: 21755 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21756 * IPSec packets are done in ipsec_out_process. 21757 * 21758 */ 21759 void 21760 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21761 zoneid_t zoneid) 21762 { 21763 ipha_t *ipha; 21764 #define rptr ((uchar_t *)ipha) 21765 queue_t *stq; 21766 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21767 uint32_t v_hlen_tos_len; 21768 uint32_t ttl_protocol; 21769 ipaddr_t src; 21770 ipaddr_t dst; 21771 uint32_t cksum; 21772 ipaddr_t orig_src; 21773 ire_t *ire1; 21774 mblk_t *next_mp; 21775 uint_t hlen; 21776 uint16_t *up; 21777 uint32_t max_frag = ire->ire_max_frag; 21778 ill_t *ill = ire_to_ill(ire); 21779 int clusterwide; 21780 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21781 int ipsec_len; 21782 mblk_t *first_mp; 21783 ipsec_out_t *io; 21784 boolean_t conn_dontroute; /* conn value for multicast */ 21785 boolean_t conn_multicast_loop; /* conn value for multicast */ 21786 boolean_t multicast_forward; /* Should we forward ? */ 21787 boolean_t unspec_src; 21788 ill_t *conn_outgoing_ill = NULL; 21789 ill_t *ire_ill; 21790 ill_t *ire1_ill; 21791 ill_t *out_ill; 21792 uint32_t ill_index = 0; 21793 boolean_t multirt_send = B_FALSE; 21794 int err; 21795 ipxmit_state_t pktxmit_state; 21796 ip_stack_t *ipst = ire->ire_ipst; 21797 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21798 21799 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21800 "ip_wput_ire_start: q %p", q); 21801 21802 multicast_forward = B_FALSE; 21803 unspec_src = (connp != NULL && connp->conn_unspec_src); 21804 21805 if (ire->ire_flags & RTF_MULTIRT) { 21806 /* 21807 * Multirouting case. The bucket where ire is stored 21808 * probably holds other RTF_MULTIRT flagged ire 21809 * to the destination. In this call to ip_wput_ire, 21810 * we attempt to send the packet through all 21811 * those ires. Thus, we first ensure that ire is the 21812 * first RTF_MULTIRT ire in the bucket, 21813 * before walking the ire list. 21814 */ 21815 ire_t *first_ire; 21816 irb_t *irb = ire->ire_bucket; 21817 ASSERT(irb != NULL); 21818 21819 /* Make sure we do not omit any multiroute ire. */ 21820 IRB_REFHOLD(irb); 21821 for (first_ire = irb->irb_ire; 21822 first_ire != NULL; 21823 first_ire = first_ire->ire_next) { 21824 if ((first_ire->ire_flags & RTF_MULTIRT) && 21825 (first_ire->ire_addr == ire->ire_addr) && 21826 !(first_ire->ire_marks & 21827 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 21828 break; 21829 } 21830 } 21831 21832 if ((first_ire != NULL) && (first_ire != ire)) { 21833 IRE_REFHOLD(first_ire); 21834 ire_refrele(ire); 21835 ire = first_ire; 21836 ill = ire_to_ill(ire); 21837 } 21838 IRB_REFRELE(irb); 21839 } 21840 21841 /* 21842 * conn_outgoing_ill is used only in the broadcast loop. 21843 * for performance we don't grab the mutexs in the fastpath 21844 */ 21845 if ((connp != NULL) && 21846 (connp->conn_xmit_if_ill == NULL) && 21847 (ire->ire_type == IRE_BROADCAST) && 21848 ((connp->conn_nofailover_ill != NULL) || 21849 (connp->conn_outgoing_ill != NULL))) { 21850 /* 21851 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21852 * option. So, see if this endpoint is bound to a 21853 * IPIF_NOFAILOVER address. If so, honor it. This implies 21854 * that if the interface is failed, we will still send 21855 * the packet on the same ill which is what we want. 21856 */ 21857 conn_outgoing_ill = conn_get_held_ill(connp, 21858 &connp->conn_nofailover_ill, &err); 21859 if (err == ILL_LOOKUP_FAILED) { 21860 ire_refrele(ire); 21861 freemsg(mp); 21862 return; 21863 } 21864 if (conn_outgoing_ill == NULL) { 21865 /* 21866 * Choose a good ill in the group to send the 21867 * packets on. 21868 */ 21869 ire = conn_set_outgoing_ill(connp, ire, 21870 &conn_outgoing_ill); 21871 if (ire == NULL) { 21872 freemsg(mp); 21873 return; 21874 } 21875 } 21876 } 21877 21878 if (mp->b_datap->db_type != M_CTL) { 21879 ipha = (ipha_t *)mp->b_rptr; 21880 } else { 21881 io = (ipsec_out_t *)mp->b_rptr; 21882 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21883 ASSERT(zoneid == io->ipsec_out_zoneid); 21884 ASSERT(zoneid != ALL_ZONES); 21885 ipha = (ipha_t *)mp->b_cont->b_rptr; 21886 dst = ipha->ipha_dst; 21887 /* 21888 * For the multicast case, ipsec_out carries conn_dontroute and 21889 * conn_multicast_loop as conn may not be available here. We 21890 * need this for multicast loopback and forwarding which is done 21891 * later in the code. 21892 */ 21893 if (CLASSD(dst)) { 21894 conn_dontroute = io->ipsec_out_dontroute; 21895 conn_multicast_loop = io->ipsec_out_multicast_loop; 21896 /* 21897 * If conn_dontroute is not set or conn_multicast_loop 21898 * is set, we need to do forwarding/loopback. For 21899 * datagrams from ip_wput_multicast, conn_dontroute is 21900 * set to B_TRUE and conn_multicast_loop is set to 21901 * B_FALSE so that we neither do forwarding nor 21902 * loopback. 21903 */ 21904 if (!conn_dontroute || conn_multicast_loop) 21905 multicast_forward = B_TRUE; 21906 } 21907 } 21908 21909 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21910 ire->ire_zoneid != ALL_ZONES) { 21911 /* 21912 * When a zone sends a packet to another zone, we try to deliver 21913 * the packet under the same conditions as if the destination 21914 * was a real node on the network. To do so, we look for a 21915 * matching route in the forwarding table. 21916 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21917 * ip_newroute() does. 21918 * Note that IRE_LOCAL are special, since they are used 21919 * when the zoneid doesn't match in some cases. This means that 21920 * we need to handle ipha_src differently since ire_src_addr 21921 * belongs to the receiving zone instead of the sending zone. 21922 * When ip_restrict_interzone_loopback is set, then 21923 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21924 * for loopback between zones when the logical "Ethernet" would 21925 * have looped them back. 21926 */ 21927 ire_t *src_ire; 21928 21929 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21930 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21931 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 21932 if (src_ire != NULL && 21933 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21934 (!ipst->ips_ip_restrict_interzone_loopback || 21935 ire_local_same_ill_group(ire, src_ire))) { 21936 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21937 ipha->ipha_src = src_ire->ire_src_addr; 21938 ire_refrele(src_ire); 21939 } else { 21940 ire_refrele(ire); 21941 if (conn_outgoing_ill != NULL) 21942 ill_refrele(conn_outgoing_ill); 21943 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21944 if (src_ire != NULL) { 21945 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21946 ire_refrele(src_ire); 21947 freemsg(mp); 21948 return; 21949 } 21950 ire_refrele(src_ire); 21951 } 21952 if (ip_hdr_complete(ipha, zoneid, ipst)) { 21953 /* Failed */ 21954 freemsg(mp); 21955 return; 21956 } 21957 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 21958 ipst); 21959 return; 21960 } 21961 } 21962 21963 if (mp->b_datap->db_type == M_CTL || 21964 ipss->ipsec_outbound_v4_policy_present) { 21965 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21966 unspec_src, zoneid); 21967 if (mp == NULL) { 21968 ire_refrele(ire); 21969 if (conn_outgoing_ill != NULL) 21970 ill_refrele(conn_outgoing_ill); 21971 return; 21972 } 21973 } 21974 21975 first_mp = mp; 21976 ipsec_len = 0; 21977 21978 if (first_mp->b_datap->db_type == M_CTL) { 21979 io = (ipsec_out_t *)first_mp->b_rptr; 21980 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21981 mp = first_mp->b_cont; 21982 ipsec_len = ipsec_out_extra_length(first_mp); 21983 ASSERT(ipsec_len >= 0); 21984 /* We already picked up the zoneid from the M_CTL above */ 21985 ASSERT(zoneid == io->ipsec_out_zoneid); 21986 ASSERT(zoneid != ALL_ZONES); 21987 21988 /* 21989 * Drop M_CTL here if IPsec processing is not needed. 21990 * (Non-IPsec use of M_CTL extracted any information it 21991 * needed above). 21992 */ 21993 if (ipsec_len == 0) { 21994 freeb(first_mp); 21995 first_mp = mp; 21996 } 21997 } 21998 21999 /* 22000 * Fast path for ip_wput_ire 22001 */ 22002 22003 ipha = (ipha_t *)mp->b_rptr; 22004 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22005 dst = ipha->ipha_dst; 22006 22007 /* 22008 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22009 * if the socket is a SOCK_RAW type. The transport checksum should 22010 * be provided in the pre-built packet, so we don't need to compute it. 22011 * Also, other application set flags, like DF, should not be altered. 22012 * Other transport MUST pass down zero. 22013 */ 22014 ip_hdr_included = ipha->ipha_ident; 22015 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22016 22017 if (CLASSD(dst)) { 22018 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22019 ntohl(dst), 22020 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22021 ntohl(ire->ire_addr))); 22022 } 22023 22024 /* Macros to extract header fields from data already in registers */ 22025 #ifdef _BIG_ENDIAN 22026 #define V_HLEN (v_hlen_tos_len >> 24) 22027 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22028 #define PROTO (ttl_protocol & 0xFF) 22029 #else 22030 #define V_HLEN (v_hlen_tos_len & 0xFF) 22031 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22032 #define PROTO (ttl_protocol >> 8) 22033 #endif 22034 22035 22036 orig_src = src = ipha->ipha_src; 22037 /* (The loop back to "another" is explained down below.) */ 22038 another:; 22039 /* 22040 * Assign an ident value for this packet. We assign idents on 22041 * a per destination basis out of the IRE. There could be 22042 * other threads targeting the same destination, so we have to 22043 * arrange for a atomic increment. Note that we use a 32-bit 22044 * atomic add because it has better performance than its 22045 * 16-bit sibling. 22046 * 22047 * If running in cluster mode and if the source address 22048 * belongs to a replicated service then vector through 22049 * cl_inet_ipident vector to allocate ip identifier 22050 * NOTE: This is a contract private interface with the 22051 * clustering group. 22052 */ 22053 clusterwide = 0; 22054 if (cl_inet_ipident) { 22055 ASSERT(cl_inet_isclusterwide); 22056 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22057 AF_INET, (uint8_t *)(uintptr_t)src)) { 22058 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22059 AF_INET, (uint8_t *)(uintptr_t)src, 22060 (uint8_t *)(uintptr_t)dst); 22061 clusterwide = 1; 22062 } 22063 } 22064 if (!clusterwide) { 22065 ipha->ipha_ident = 22066 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22067 } 22068 22069 #ifndef _BIG_ENDIAN 22070 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22071 #endif 22072 22073 /* 22074 * Set source address unless sent on an ill or conn_unspec_src is set. 22075 * This is needed to obey conn_unspec_src when packets go through 22076 * ip_newroute + arp. 22077 * Assumes ip_newroute{,_multi} sets the source address as well. 22078 */ 22079 if (src == INADDR_ANY && !unspec_src) { 22080 /* 22081 * Assign the appropriate source address from the IRE if none 22082 * was specified. 22083 */ 22084 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22085 22086 /* 22087 * With IP multipathing, broadcast packets are sent on the ire 22088 * that has been cleared of IRE_MARK_NORECV and that belongs to 22089 * the group. However, this ire might not be in the same zone so 22090 * we can't always use its source address. We look for a 22091 * broadcast ire in the same group and in the right zone. 22092 */ 22093 if (ire->ire_type == IRE_BROADCAST && 22094 ire->ire_zoneid != zoneid) { 22095 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22096 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22097 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22098 if (src_ire != NULL) { 22099 src = src_ire->ire_src_addr; 22100 ire_refrele(src_ire); 22101 } else { 22102 ire_refrele(ire); 22103 if (conn_outgoing_ill != NULL) 22104 ill_refrele(conn_outgoing_ill); 22105 freemsg(first_mp); 22106 if (ill != NULL) { 22107 BUMP_MIB(ill->ill_ip_mib, 22108 ipIfStatsOutDiscards); 22109 } else { 22110 BUMP_MIB(&ipst->ips_ip_mib, 22111 ipIfStatsOutDiscards); 22112 } 22113 return; 22114 } 22115 } else { 22116 src = ire->ire_src_addr; 22117 } 22118 22119 if (connp == NULL) { 22120 ip1dbg(("ip_wput_ire: no connp and no src " 22121 "address for dst 0x%x, using src 0x%x\n", 22122 ntohl(dst), 22123 ntohl(src))); 22124 } 22125 ipha->ipha_src = src; 22126 } 22127 stq = ire->ire_stq; 22128 22129 /* 22130 * We only allow ire chains for broadcasts since there will 22131 * be multiple IRE_CACHE entries for the same multicast 22132 * address (one per ipif). 22133 */ 22134 next_mp = NULL; 22135 22136 /* broadcast packet */ 22137 if (ire->ire_type == IRE_BROADCAST) 22138 goto broadcast; 22139 22140 /* loopback ? */ 22141 if (stq == NULL) 22142 goto nullstq; 22143 22144 /* The ill_index for outbound ILL */ 22145 ill_index = Q_TO_INDEX(stq); 22146 22147 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22148 ttl_protocol = ((uint16_t *)ipha)[4]; 22149 22150 /* pseudo checksum (do it in parts for IP header checksum) */ 22151 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22152 22153 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22154 queue_t *dev_q = stq->q_next; 22155 22156 /* flow controlled */ 22157 if ((dev_q->q_next || dev_q->q_first) && 22158 !canput(dev_q)) 22159 goto blocked; 22160 if ((PROTO == IPPROTO_UDP) && 22161 (ip_hdr_included != IP_HDR_INCLUDED)) { 22162 hlen = (V_HLEN & 0xF) << 2; 22163 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22164 if (*up != 0) { 22165 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22166 hlen, LENGTH, max_frag, ipsec_len, cksum); 22167 /* Software checksum? */ 22168 if (DB_CKSUMFLAGS(mp) == 0) { 22169 IP_STAT(ipst, ip_out_sw_cksum); 22170 IP_STAT_UPDATE(ipst, 22171 ip_udp_out_sw_cksum_bytes, 22172 LENGTH - hlen); 22173 } 22174 } 22175 } 22176 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22177 hlen = (V_HLEN & 0xF) << 2; 22178 if (PROTO == IPPROTO_TCP) { 22179 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22180 /* 22181 * The packet header is processed once and for all, even 22182 * in the multirouting case. We disable hardware 22183 * checksum if the packet is multirouted, as it will be 22184 * replicated via several interfaces, and not all of 22185 * them may have this capability. 22186 */ 22187 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22188 LENGTH, max_frag, ipsec_len, cksum); 22189 /* Software checksum? */ 22190 if (DB_CKSUMFLAGS(mp) == 0) { 22191 IP_STAT(ipst, ip_out_sw_cksum); 22192 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22193 LENGTH - hlen); 22194 } 22195 } else { 22196 sctp_hdr_t *sctph; 22197 22198 ASSERT(PROTO == IPPROTO_SCTP); 22199 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22200 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22201 /* 22202 * Zero out the checksum field to ensure proper 22203 * checksum calculation. 22204 */ 22205 sctph->sh_chksum = 0; 22206 #ifdef DEBUG 22207 if (!skip_sctp_cksum) 22208 #endif 22209 sctph->sh_chksum = sctp_cksum(mp, hlen); 22210 } 22211 } 22212 22213 /* 22214 * If this is a multicast packet and originated from ip_wput 22215 * we need to do loopback and forwarding checks. If it comes 22216 * from ip_wput_multicast, we SHOULD not do this. 22217 */ 22218 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22219 22220 /* checksum */ 22221 cksum += ttl_protocol; 22222 22223 /* fragment the packet */ 22224 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22225 goto fragmentit; 22226 /* 22227 * Don't use frag_flag if packet is pre-built or source 22228 * routed or if multicast (since multicast packets do 22229 * not solicit ICMP "packet too big" messages). 22230 */ 22231 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22232 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22233 !ip_source_route_included(ipha)) && 22234 !CLASSD(ipha->ipha_dst)) 22235 ipha->ipha_fragment_offset_and_flags |= 22236 htons(ire->ire_frag_flag); 22237 22238 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22239 /* calculate IP header checksum */ 22240 cksum += ipha->ipha_ident; 22241 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22242 cksum += ipha->ipha_fragment_offset_and_flags; 22243 22244 /* IP options present */ 22245 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22246 if (hlen) 22247 goto checksumoptions; 22248 22249 /* calculate hdr checksum */ 22250 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22251 cksum = ~(cksum + (cksum >> 16)); 22252 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22253 } 22254 if (ipsec_len != 0) { 22255 /* 22256 * We will do the rest of the processing after 22257 * we come back from IPSEC in ip_wput_ipsec_out(). 22258 */ 22259 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22260 22261 io = (ipsec_out_t *)first_mp->b_rptr; 22262 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22263 ill_phyint->phyint_ifindex; 22264 22265 ipsec_out_process(q, first_mp, ire, ill_index); 22266 ire_refrele(ire); 22267 if (conn_outgoing_ill != NULL) 22268 ill_refrele(conn_outgoing_ill); 22269 return; 22270 } 22271 22272 /* 22273 * In most cases, the emission loop below is entered only 22274 * once. Only in the case where the ire holds the 22275 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22276 * flagged ires in the bucket, and send the packet 22277 * through all crossed RTF_MULTIRT routes. 22278 */ 22279 if (ire->ire_flags & RTF_MULTIRT) { 22280 multirt_send = B_TRUE; 22281 } 22282 do { 22283 if (multirt_send) { 22284 irb_t *irb; 22285 /* 22286 * We are in a multiple send case, need to get 22287 * the next ire and make a duplicate of the packet. 22288 * ire1 holds here the next ire to process in the 22289 * bucket. If multirouting is expected, 22290 * any non-RTF_MULTIRT ire that has the 22291 * right destination address is ignored. 22292 */ 22293 irb = ire->ire_bucket; 22294 ASSERT(irb != NULL); 22295 22296 IRB_REFHOLD(irb); 22297 for (ire1 = ire->ire_next; 22298 ire1 != NULL; 22299 ire1 = ire1->ire_next) { 22300 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22301 continue; 22302 if (ire1->ire_addr != ire->ire_addr) 22303 continue; 22304 if (ire1->ire_marks & 22305 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22306 continue; 22307 22308 /* Got one */ 22309 IRE_REFHOLD(ire1); 22310 break; 22311 } 22312 IRB_REFRELE(irb); 22313 22314 if (ire1 != NULL) { 22315 next_mp = copyb(mp); 22316 if ((next_mp == NULL) || 22317 ((mp->b_cont != NULL) && 22318 ((next_mp->b_cont = 22319 dupmsg(mp->b_cont)) == NULL))) { 22320 freemsg(next_mp); 22321 next_mp = NULL; 22322 ire_refrele(ire1); 22323 ire1 = NULL; 22324 } 22325 } 22326 22327 /* Last multiroute ire; don't loop anymore. */ 22328 if (ire1 == NULL) { 22329 multirt_send = B_FALSE; 22330 } 22331 } 22332 22333 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22334 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22335 mblk_t *, mp); 22336 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22337 ipst->ips_ipv4firewall_physical_out, 22338 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22339 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22340 if (mp == NULL) 22341 goto release_ire_and_ill; 22342 22343 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22344 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22345 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22346 if ((pktxmit_state == SEND_FAILED) || 22347 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22348 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22349 "- packet dropped\n")); 22350 release_ire_and_ill: 22351 ire_refrele(ire); 22352 if (next_mp != NULL) { 22353 freemsg(next_mp); 22354 ire_refrele(ire1); 22355 } 22356 if (conn_outgoing_ill != NULL) 22357 ill_refrele(conn_outgoing_ill); 22358 return; 22359 } 22360 22361 if (CLASSD(dst)) { 22362 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22363 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22364 LENGTH); 22365 } 22366 22367 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22368 "ip_wput_ire_end: q %p (%S)", 22369 q, "last copy out"); 22370 IRE_REFRELE(ire); 22371 22372 if (multirt_send) { 22373 ASSERT(ire1); 22374 /* 22375 * Proceed with the next RTF_MULTIRT ire, 22376 * Also set up the send-to queue accordingly. 22377 */ 22378 ire = ire1; 22379 ire1 = NULL; 22380 stq = ire->ire_stq; 22381 mp = next_mp; 22382 next_mp = NULL; 22383 ipha = (ipha_t *)mp->b_rptr; 22384 ill_index = Q_TO_INDEX(stq); 22385 ill = (ill_t *)stq->q_ptr; 22386 } 22387 } while (multirt_send); 22388 if (conn_outgoing_ill != NULL) 22389 ill_refrele(conn_outgoing_ill); 22390 return; 22391 22392 /* 22393 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22394 */ 22395 broadcast: 22396 { 22397 /* 22398 * Avoid broadcast storms by setting the ttl to 1 22399 * for broadcasts. This parameter can be set 22400 * via ndd, so make sure that for the SO_DONTROUTE 22401 * case that ipha_ttl is always set to 1. 22402 * In the event that we are replying to incoming 22403 * ICMP packets, conn could be NULL. 22404 */ 22405 if ((connp != NULL) && connp->conn_dontroute) 22406 ipha->ipha_ttl = 1; 22407 else 22408 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22409 22410 /* 22411 * Note that we are not doing a IRB_REFHOLD here. 22412 * Actually we don't care if the list changes i.e 22413 * if somebody deletes an IRE from the list while 22414 * we drop the lock, the next time we come around 22415 * ire_next will be NULL and hence we won't send 22416 * out multiple copies which is fine. 22417 */ 22418 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22419 ire1 = ire->ire_next; 22420 if (conn_outgoing_ill != NULL) { 22421 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22422 ASSERT(ire1 == ire->ire_next); 22423 if (ire1 != NULL && ire1->ire_addr == dst) { 22424 ire_refrele(ire); 22425 ire = ire1; 22426 IRE_REFHOLD(ire); 22427 ire1 = ire->ire_next; 22428 continue; 22429 } 22430 rw_exit(&ire->ire_bucket->irb_lock); 22431 /* Did not find a matching ill */ 22432 ip1dbg(("ip_wput_ire: broadcast with no " 22433 "matching IP_BOUND_IF ill %s\n", 22434 conn_outgoing_ill->ill_name)); 22435 freemsg(first_mp); 22436 if (ire != NULL) 22437 ire_refrele(ire); 22438 ill_refrele(conn_outgoing_ill); 22439 return; 22440 } 22441 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22442 /* 22443 * If the next IRE has the same address and is not one 22444 * of the two copies that we need to send, try to see 22445 * whether this copy should be sent at all. This 22446 * assumes that we insert loopbacks first and then 22447 * non-loopbacks. This is acheived by inserting the 22448 * loopback always before non-loopback. 22449 * This is used to send a single copy of a broadcast 22450 * packet out all physical interfaces that have an 22451 * matching IRE_BROADCAST while also looping 22452 * back one copy (to ip_wput_local) for each 22453 * matching physical interface. However, we avoid 22454 * sending packets out different logical that match by 22455 * having ipif_up/ipif_down supress duplicate 22456 * IRE_BROADCASTS. 22457 * 22458 * This feature is currently used to get broadcasts 22459 * sent to multiple interfaces, when the broadcast 22460 * address being used applies to multiple interfaces. 22461 * For example, a whole net broadcast will be 22462 * replicated on every connected subnet of 22463 * the target net. 22464 * 22465 * Each zone has its own set of IRE_BROADCASTs, so that 22466 * we're able to distribute inbound packets to multiple 22467 * zones who share a broadcast address. We avoid looping 22468 * back outbound packets in different zones but on the 22469 * same ill, as the application would see duplicates. 22470 * 22471 * If the interfaces are part of the same group, 22472 * we would want to send only one copy out for 22473 * whole group. 22474 * 22475 * This logic assumes that ire_add_v4() groups the 22476 * IRE_BROADCAST entries so that those with the same 22477 * ire_addr and ill_group are kept together. 22478 */ 22479 ire_ill = ire->ire_ipif->ipif_ill; 22480 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22481 if (ire_ill->ill_group != NULL && 22482 (ire->ire_marks & IRE_MARK_NORECV)) { 22483 /* 22484 * If the current zone only has an ire 22485 * broadcast for this address marked 22486 * NORECV, the ire we want is ahead in 22487 * the bucket, so we look it up 22488 * deliberately ignoring the zoneid. 22489 */ 22490 for (ire1 = ire->ire_bucket->irb_ire; 22491 ire1 != NULL; 22492 ire1 = ire1->ire_next) { 22493 ire1_ill = 22494 ire1->ire_ipif->ipif_ill; 22495 if (ire1->ire_addr != dst) 22496 continue; 22497 /* skip over the current ire */ 22498 if (ire1 == ire) 22499 continue; 22500 /* skip over deleted ires */ 22501 if (ire1->ire_marks & 22502 IRE_MARK_CONDEMNED) 22503 continue; 22504 /* 22505 * non-loopback ire in our 22506 * group: use it for the next 22507 * pass in the loop 22508 */ 22509 if (ire1->ire_stq != NULL && 22510 ire1_ill->ill_group == 22511 ire_ill->ill_group) 22512 break; 22513 } 22514 } 22515 } else { 22516 while (ire1 != NULL && ire1->ire_addr == dst) { 22517 ire1_ill = ire1->ire_ipif->ipif_ill; 22518 /* 22519 * We can have two broadcast ires on the 22520 * same ill in different zones; here 22521 * we'll send a copy of the packet on 22522 * each ill and the fanout code will 22523 * call conn_wantpacket() to check that 22524 * the zone has the broadcast address 22525 * configured on the ill. If the two 22526 * ires are in the same group we only 22527 * send one copy up. 22528 */ 22529 if (ire1_ill != ire_ill && 22530 (ire1_ill->ill_group == NULL || 22531 ire_ill->ill_group == NULL || 22532 ire1_ill->ill_group != 22533 ire_ill->ill_group)) { 22534 break; 22535 } 22536 ire1 = ire1->ire_next; 22537 } 22538 } 22539 } 22540 ASSERT(multirt_send == B_FALSE); 22541 if (ire1 != NULL && ire1->ire_addr == dst) { 22542 if ((ire->ire_flags & RTF_MULTIRT) && 22543 (ire1->ire_flags & RTF_MULTIRT)) { 22544 /* 22545 * We are in the multirouting case. 22546 * The message must be sent at least 22547 * on both ires. These ires have been 22548 * inserted AFTER the standard ones 22549 * in ip_rt_add(). There are thus no 22550 * other ire entries for the destination 22551 * address in the rest of the bucket 22552 * that do not have the RTF_MULTIRT 22553 * flag. We don't process a copy 22554 * of the message here. This will be 22555 * done in the final sending loop. 22556 */ 22557 multirt_send = B_TRUE; 22558 } else { 22559 next_mp = ip_copymsg(first_mp); 22560 if (next_mp != NULL) 22561 IRE_REFHOLD(ire1); 22562 } 22563 } 22564 rw_exit(&ire->ire_bucket->irb_lock); 22565 } 22566 22567 if (stq) { 22568 /* 22569 * A non-NULL send-to queue means this packet is going 22570 * out of this machine. 22571 */ 22572 out_ill = (ill_t *)stq->q_ptr; 22573 22574 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22575 ttl_protocol = ((uint16_t *)ipha)[4]; 22576 /* 22577 * We accumulate the pseudo header checksum in cksum. 22578 * This is pretty hairy code, so watch close. One 22579 * thing to keep in mind is that UDP and TCP have 22580 * stored their respective datagram lengths in their 22581 * checksum fields. This lines things up real nice. 22582 */ 22583 cksum = (dst >> 16) + (dst & 0xFFFF) + 22584 (src >> 16) + (src & 0xFFFF); 22585 /* 22586 * We assume the udp checksum field contains the 22587 * length, so to compute the pseudo header checksum, 22588 * all we need is the protocol number and src/dst. 22589 */ 22590 /* Provide the checksums for UDP and TCP. */ 22591 if ((PROTO == IPPROTO_TCP) && 22592 (ip_hdr_included != IP_HDR_INCLUDED)) { 22593 /* hlen gets the number of uchar_ts in the IP header */ 22594 hlen = (V_HLEN & 0xF) << 2; 22595 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22596 IP_STAT(ipst, ip_out_sw_cksum); 22597 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22598 LENGTH - hlen); 22599 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22600 } else if (PROTO == IPPROTO_SCTP && 22601 (ip_hdr_included != IP_HDR_INCLUDED)) { 22602 sctp_hdr_t *sctph; 22603 22604 hlen = (V_HLEN & 0xF) << 2; 22605 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22606 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22607 sctph->sh_chksum = 0; 22608 #ifdef DEBUG 22609 if (!skip_sctp_cksum) 22610 #endif 22611 sctph->sh_chksum = sctp_cksum(mp, hlen); 22612 } else { 22613 queue_t *dev_q = stq->q_next; 22614 22615 if ((dev_q->q_next || dev_q->q_first) && 22616 !canput(dev_q)) { 22617 blocked: 22618 ipha->ipha_ident = ip_hdr_included; 22619 /* 22620 * If we don't have a conn to apply 22621 * backpressure, free the message. 22622 * In the ire_send path, we don't know 22623 * the position to requeue the packet. Rather 22624 * than reorder packets, we just drop this 22625 * packet. 22626 */ 22627 if (ipst->ips_ip_output_queue && 22628 connp != NULL && 22629 caller != IRE_SEND) { 22630 if (caller == IP_WSRV) { 22631 connp->conn_did_putbq = 1; 22632 (void) putbq(connp->conn_wq, 22633 first_mp); 22634 conn_drain_insert(connp); 22635 /* 22636 * This is the service thread, 22637 * and the queue is already 22638 * noenabled. The check for 22639 * canput and the putbq is not 22640 * atomic. So we need to check 22641 * again. 22642 */ 22643 if (canput(stq->q_next)) 22644 connp->conn_did_putbq 22645 = 0; 22646 IP_STAT(ipst, ip_conn_flputbq); 22647 } else { 22648 /* 22649 * We are not the service proc. 22650 * ip_wsrv will be scheduled or 22651 * is already running. 22652 */ 22653 (void) putq(connp->conn_wq, 22654 first_mp); 22655 } 22656 } else { 22657 out_ill = (ill_t *)stq->q_ptr; 22658 BUMP_MIB(out_ill->ill_ip_mib, 22659 ipIfStatsOutDiscards); 22660 freemsg(first_mp); 22661 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22662 "ip_wput_ire_end: q %p (%S)", 22663 q, "discard"); 22664 } 22665 ire_refrele(ire); 22666 if (next_mp) { 22667 ire_refrele(ire1); 22668 freemsg(next_mp); 22669 } 22670 if (conn_outgoing_ill != NULL) 22671 ill_refrele(conn_outgoing_ill); 22672 return; 22673 } 22674 if ((PROTO == IPPROTO_UDP) && 22675 (ip_hdr_included != IP_HDR_INCLUDED)) { 22676 /* 22677 * hlen gets the number of uchar_ts in the 22678 * IP header 22679 */ 22680 hlen = (V_HLEN & 0xF) << 2; 22681 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22682 max_frag = ire->ire_max_frag; 22683 if (*up != 0) { 22684 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22685 up, PROTO, hlen, LENGTH, max_frag, 22686 ipsec_len, cksum); 22687 /* Software checksum? */ 22688 if (DB_CKSUMFLAGS(mp) == 0) { 22689 IP_STAT(ipst, ip_out_sw_cksum); 22690 IP_STAT_UPDATE(ipst, 22691 ip_udp_out_sw_cksum_bytes, 22692 LENGTH - hlen); 22693 } 22694 } 22695 } 22696 } 22697 /* 22698 * Need to do this even when fragmenting. The local 22699 * loopback can be done without computing checksums 22700 * but forwarding out other interface must be done 22701 * after the IP checksum (and ULP checksums) have been 22702 * computed. 22703 * 22704 * NOTE : multicast_forward is set only if this packet 22705 * originated from ip_wput. For packets originating from 22706 * ip_wput_multicast, it is not set. 22707 */ 22708 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22709 multi_loopback: 22710 ip2dbg(("ip_wput: multicast, loop %d\n", 22711 conn_multicast_loop)); 22712 22713 /* Forget header checksum offload */ 22714 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22715 22716 /* 22717 * Local loopback of multicasts? Check the 22718 * ill. 22719 * 22720 * Note that the loopback function will not come 22721 * in through ip_rput - it will only do the 22722 * client fanout thus we need to do an mforward 22723 * as well. The is different from the BSD 22724 * logic. 22725 */ 22726 if (ill != NULL) { 22727 ilm_t *ilm; 22728 22729 ILM_WALKER_HOLD(ill); 22730 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22731 ALL_ZONES); 22732 ILM_WALKER_RELE(ill); 22733 if (ilm != NULL) { 22734 /* 22735 * Pass along the virtual output q. 22736 * ip_wput_local() will distribute the 22737 * packet to all the matching zones, 22738 * except the sending zone when 22739 * IP_MULTICAST_LOOP is false. 22740 */ 22741 ip_multicast_loopback(q, ill, first_mp, 22742 conn_multicast_loop ? 0 : 22743 IP_FF_NO_MCAST_LOOP, zoneid); 22744 } 22745 } 22746 if (ipha->ipha_ttl == 0) { 22747 /* 22748 * 0 => only to this host i.e. we are 22749 * done. We are also done if this was the 22750 * loopback interface since it is sufficient 22751 * to loopback one copy of a multicast packet. 22752 */ 22753 freemsg(first_mp); 22754 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22755 "ip_wput_ire_end: q %p (%S)", 22756 q, "loopback"); 22757 ire_refrele(ire); 22758 if (conn_outgoing_ill != NULL) 22759 ill_refrele(conn_outgoing_ill); 22760 return; 22761 } 22762 /* 22763 * ILLF_MULTICAST is checked in ip_newroute 22764 * i.e. we don't need to check it here since 22765 * all IRE_CACHEs come from ip_newroute. 22766 * For multicast traffic, SO_DONTROUTE is interpreted 22767 * to mean only send the packet out the interface 22768 * (optionally specified with IP_MULTICAST_IF) 22769 * and do not forward it out additional interfaces. 22770 * RSVP and the rsvp daemon is an example of a 22771 * protocol and user level process that 22772 * handles it's own routing. Hence, it uses the 22773 * SO_DONTROUTE option to accomplish this. 22774 */ 22775 22776 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22777 ill != NULL) { 22778 /* Unconditionally redo the checksum */ 22779 ipha->ipha_hdr_checksum = 0; 22780 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22781 22782 /* 22783 * If this needs to go out secure, we need 22784 * to wait till we finish the IPSEC 22785 * processing. 22786 */ 22787 if (ipsec_len == 0 && 22788 ip_mforward(ill, ipha, mp)) { 22789 freemsg(first_mp); 22790 ip1dbg(("ip_wput: mforward failed\n")); 22791 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22792 "ip_wput_ire_end: q %p (%S)", 22793 q, "mforward failed"); 22794 ire_refrele(ire); 22795 if (conn_outgoing_ill != NULL) 22796 ill_refrele(conn_outgoing_ill); 22797 return; 22798 } 22799 } 22800 } 22801 max_frag = ire->ire_max_frag; 22802 cksum += ttl_protocol; 22803 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22804 /* No fragmentation required for this one. */ 22805 /* 22806 * Don't use frag_flag if packet is pre-built or source 22807 * routed or if multicast (since multicast packets do 22808 * not solicit ICMP "packet too big" messages). 22809 */ 22810 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22811 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22812 !ip_source_route_included(ipha)) && 22813 !CLASSD(ipha->ipha_dst)) 22814 ipha->ipha_fragment_offset_and_flags |= 22815 htons(ire->ire_frag_flag); 22816 22817 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22818 /* Complete the IP header checksum. */ 22819 cksum += ipha->ipha_ident; 22820 cksum += (v_hlen_tos_len >> 16)+ 22821 (v_hlen_tos_len & 0xFFFF); 22822 cksum += ipha->ipha_fragment_offset_and_flags; 22823 hlen = (V_HLEN & 0xF) - 22824 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22825 if (hlen) { 22826 checksumoptions: 22827 /* 22828 * Account for the IP Options in the IP 22829 * header checksum. 22830 */ 22831 up = (uint16_t *)(rptr+ 22832 IP_SIMPLE_HDR_LENGTH); 22833 do { 22834 cksum += up[0]; 22835 cksum += up[1]; 22836 up += 2; 22837 } while (--hlen); 22838 } 22839 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22840 cksum = ~(cksum + (cksum >> 16)); 22841 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22842 } 22843 if (ipsec_len != 0) { 22844 ipsec_out_process(q, first_mp, ire, ill_index); 22845 if (!next_mp) { 22846 ire_refrele(ire); 22847 if (conn_outgoing_ill != NULL) 22848 ill_refrele(conn_outgoing_ill); 22849 return; 22850 } 22851 goto next; 22852 } 22853 22854 /* 22855 * multirt_send has already been handled 22856 * for broadcast, but not yet for multicast 22857 * or IP options. 22858 */ 22859 if (next_mp == NULL) { 22860 if (ire->ire_flags & RTF_MULTIRT) { 22861 multirt_send = B_TRUE; 22862 } 22863 } 22864 22865 /* 22866 * In most cases, the emission loop below is 22867 * entered only once. Only in the case where 22868 * the ire holds the RTF_MULTIRT flag, do we loop 22869 * to process all RTF_MULTIRT ires in the bucket, 22870 * and send the packet through all crossed 22871 * RTF_MULTIRT routes. 22872 */ 22873 do { 22874 if (multirt_send) { 22875 irb_t *irb; 22876 22877 irb = ire->ire_bucket; 22878 ASSERT(irb != NULL); 22879 /* 22880 * We are in a multiple send case, 22881 * need to get the next IRE and make 22882 * a duplicate of the packet. 22883 */ 22884 IRB_REFHOLD(irb); 22885 for (ire1 = ire->ire_next; 22886 ire1 != NULL; 22887 ire1 = ire1->ire_next) { 22888 if (!(ire1->ire_flags & 22889 RTF_MULTIRT)) { 22890 continue; 22891 } 22892 if (ire1->ire_addr != 22893 ire->ire_addr) { 22894 continue; 22895 } 22896 if (ire1->ire_marks & 22897 (IRE_MARK_CONDEMNED| 22898 IRE_MARK_HIDDEN)) { 22899 continue; 22900 } 22901 22902 /* Got one */ 22903 IRE_REFHOLD(ire1); 22904 break; 22905 } 22906 IRB_REFRELE(irb); 22907 22908 if (ire1 != NULL) { 22909 next_mp = copyb(mp); 22910 if ((next_mp == NULL) || 22911 ((mp->b_cont != NULL) && 22912 ((next_mp->b_cont = 22913 dupmsg(mp->b_cont)) 22914 == NULL))) { 22915 freemsg(next_mp); 22916 next_mp = NULL; 22917 ire_refrele(ire1); 22918 ire1 = NULL; 22919 } 22920 } 22921 22922 /* 22923 * Last multiroute ire; don't loop 22924 * anymore. The emission is over 22925 * and next_mp is NULL. 22926 */ 22927 if (ire1 == NULL) { 22928 multirt_send = B_FALSE; 22929 } 22930 } 22931 22932 out_ill = ire->ire_ipif->ipif_ill; 22933 DTRACE_PROBE4(ip4__physical__out__start, 22934 ill_t *, NULL, 22935 ill_t *, out_ill, 22936 ipha_t *, ipha, mblk_t *, mp); 22937 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22938 ipst->ips_ipv4firewall_physical_out, 22939 NULL, out_ill, ipha, mp, mp, ipst); 22940 DTRACE_PROBE1(ip4__physical__out__end, 22941 mblk_t *, mp); 22942 if (mp == NULL) 22943 goto release_ire_and_ill_2; 22944 22945 ASSERT(ipsec_len == 0); 22946 mp->b_prev = 22947 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22948 DTRACE_PROBE2(ip__xmit__2, 22949 mblk_t *, mp, ire_t *, ire); 22950 pktxmit_state = ip_xmit_v4(mp, ire, 22951 NULL, B_TRUE); 22952 if ((pktxmit_state == SEND_FAILED) || 22953 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22954 release_ire_and_ill_2: 22955 if (next_mp) { 22956 freemsg(next_mp); 22957 ire_refrele(ire1); 22958 } 22959 ire_refrele(ire); 22960 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22961 "ip_wput_ire_end: q %p (%S)", 22962 q, "discard MDATA"); 22963 if (conn_outgoing_ill != NULL) 22964 ill_refrele(conn_outgoing_ill); 22965 return; 22966 } 22967 22968 if (CLASSD(dst)) { 22969 BUMP_MIB(out_ill->ill_ip_mib, 22970 ipIfStatsHCOutMcastPkts); 22971 UPDATE_MIB(out_ill->ill_ip_mib, 22972 ipIfStatsHCOutMcastOctets, 22973 LENGTH); 22974 } else if (ire->ire_type == IRE_BROADCAST) { 22975 BUMP_MIB(out_ill->ill_ip_mib, 22976 ipIfStatsHCOutBcastPkts); 22977 } 22978 22979 if (multirt_send) { 22980 /* 22981 * We are in a multiple send case, 22982 * need to re-enter the sending loop 22983 * using the next ire. 22984 */ 22985 ire_refrele(ire); 22986 ire = ire1; 22987 stq = ire->ire_stq; 22988 mp = next_mp; 22989 next_mp = NULL; 22990 ipha = (ipha_t *)mp->b_rptr; 22991 ill_index = Q_TO_INDEX(stq); 22992 } 22993 } while (multirt_send); 22994 22995 if (!next_mp) { 22996 /* 22997 * Last copy going out (the ultra-common 22998 * case). Note that we intentionally replicate 22999 * the putnext rather than calling it before 23000 * the next_mp check in hopes of a little 23001 * tail-call action out of the compiler. 23002 */ 23003 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23004 "ip_wput_ire_end: q %p (%S)", 23005 q, "last copy out(1)"); 23006 ire_refrele(ire); 23007 if (conn_outgoing_ill != NULL) 23008 ill_refrele(conn_outgoing_ill); 23009 return; 23010 } 23011 /* More copies going out below. */ 23012 } else { 23013 int offset; 23014 fragmentit: 23015 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23016 /* 23017 * If this would generate a icmp_frag_needed message, 23018 * we need to handle it before we do the IPSEC 23019 * processing. Otherwise, we need to strip the IPSEC 23020 * headers before we send up the message to the ULPs 23021 * which becomes messy and difficult. 23022 */ 23023 if (ipsec_len != 0) { 23024 if ((max_frag < (unsigned int)(LENGTH + 23025 ipsec_len)) && (offset & IPH_DF)) { 23026 out_ill = (ill_t *)stq->q_ptr; 23027 BUMP_MIB(out_ill->ill_ip_mib, 23028 ipIfStatsOutFragFails); 23029 BUMP_MIB(out_ill->ill_ip_mib, 23030 ipIfStatsOutFragReqds); 23031 ipha->ipha_hdr_checksum = 0; 23032 ipha->ipha_hdr_checksum = 23033 (uint16_t)ip_csum_hdr(ipha); 23034 icmp_frag_needed(ire->ire_stq, first_mp, 23035 max_frag, zoneid, ipst); 23036 if (!next_mp) { 23037 ire_refrele(ire); 23038 if (conn_outgoing_ill != NULL) { 23039 ill_refrele( 23040 conn_outgoing_ill); 23041 } 23042 return; 23043 } 23044 } else { 23045 /* 23046 * This won't cause a icmp_frag_needed 23047 * message. to be generated. Send it on 23048 * the wire. Note that this could still 23049 * cause fragmentation and all we 23050 * do is the generation of the message 23051 * to the ULP if needed before IPSEC. 23052 */ 23053 if (!next_mp) { 23054 ipsec_out_process(q, first_mp, 23055 ire, ill_index); 23056 TRACE_2(TR_FAC_IP, 23057 TR_IP_WPUT_IRE_END, 23058 "ip_wput_ire_end: q %p " 23059 "(%S)", q, 23060 "last ipsec_out_process"); 23061 ire_refrele(ire); 23062 if (conn_outgoing_ill != NULL) { 23063 ill_refrele( 23064 conn_outgoing_ill); 23065 } 23066 return; 23067 } 23068 ipsec_out_process(q, first_mp, 23069 ire, ill_index); 23070 } 23071 } else { 23072 /* 23073 * Initiate IPPF processing. For 23074 * fragmentable packets we finish 23075 * all QOS packet processing before 23076 * calling: 23077 * ip_wput_ire_fragmentit->ip_wput_frag 23078 */ 23079 23080 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23081 ip_process(IPP_LOCAL_OUT, &mp, 23082 ill_index); 23083 if (mp == NULL) { 23084 out_ill = (ill_t *)stq->q_ptr; 23085 BUMP_MIB(out_ill->ill_ip_mib, 23086 ipIfStatsOutDiscards); 23087 if (next_mp != NULL) { 23088 freemsg(next_mp); 23089 ire_refrele(ire1); 23090 } 23091 ire_refrele(ire); 23092 TRACE_2(TR_FAC_IP, 23093 TR_IP_WPUT_IRE_END, 23094 "ip_wput_ire: q %p (%S)", 23095 q, "discard MDATA"); 23096 if (conn_outgoing_ill != NULL) { 23097 ill_refrele( 23098 conn_outgoing_ill); 23099 } 23100 return; 23101 } 23102 } 23103 if (!next_mp) { 23104 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23105 "ip_wput_ire_end: q %p (%S)", 23106 q, "last fragmentation"); 23107 ip_wput_ire_fragmentit(mp, ire, 23108 zoneid, ipst); 23109 ire_refrele(ire); 23110 if (conn_outgoing_ill != NULL) 23111 ill_refrele(conn_outgoing_ill); 23112 return; 23113 } 23114 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23115 } 23116 } 23117 } else { 23118 nullstq: 23119 /* A NULL stq means the destination address is local. */ 23120 UPDATE_OB_PKT_COUNT(ire); 23121 ire->ire_last_used_time = lbolt; 23122 ASSERT(ire->ire_ipif != NULL); 23123 if (!next_mp) { 23124 /* 23125 * Is there an "in" and "out" for traffic local 23126 * to a host (loopback)? The code in Solaris doesn't 23127 * explicitly draw a line in its code for in vs out, 23128 * so we've had to draw a line in the sand: ip_wput_ire 23129 * is considered to be the "output" side and 23130 * ip_wput_local to be the "input" side. 23131 */ 23132 out_ill = ire->ire_ipif->ipif_ill; 23133 23134 DTRACE_PROBE4(ip4__loopback__out__start, 23135 ill_t *, NULL, ill_t *, out_ill, 23136 ipha_t *, ipha, mblk_t *, first_mp); 23137 23138 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23139 ipst->ips_ipv4firewall_loopback_out, 23140 NULL, out_ill, ipha, first_mp, mp, ipst); 23141 23142 DTRACE_PROBE1(ip4__loopback__out_end, 23143 mblk_t *, first_mp); 23144 23145 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23146 "ip_wput_ire_end: q %p (%S)", 23147 q, "local address"); 23148 23149 if (first_mp != NULL) 23150 ip_wput_local(q, out_ill, ipha, 23151 first_mp, ire, 0, ire->ire_zoneid); 23152 ire_refrele(ire); 23153 if (conn_outgoing_ill != NULL) 23154 ill_refrele(conn_outgoing_ill); 23155 return; 23156 } 23157 23158 out_ill = ire->ire_ipif->ipif_ill; 23159 23160 DTRACE_PROBE4(ip4__loopback__out__start, 23161 ill_t *, NULL, ill_t *, out_ill, 23162 ipha_t *, ipha, mblk_t *, first_mp); 23163 23164 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23165 ipst->ips_ipv4firewall_loopback_out, 23166 NULL, out_ill, ipha, first_mp, mp, ipst); 23167 23168 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23169 23170 if (first_mp != NULL) 23171 ip_wput_local(q, out_ill, ipha, 23172 first_mp, ire, 0, ire->ire_zoneid); 23173 } 23174 next: 23175 /* 23176 * More copies going out to additional interfaces. 23177 * ire1 has already been held. We don't need the 23178 * "ire" anymore. 23179 */ 23180 ire_refrele(ire); 23181 ire = ire1; 23182 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23183 mp = next_mp; 23184 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23185 ill = ire_to_ill(ire); 23186 first_mp = mp; 23187 if (ipsec_len != 0) { 23188 ASSERT(first_mp->b_datap->db_type == M_CTL); 23189 mp = mp->b_cont; 23190 } 23191 dst = ire->ire_addr; 23192 ipha = (ipha_t *)mp->b_rptr; 23193 /* 23194 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23195 * Restore ipha_ident "no checksum" flag. 23196 */ 23197 src = orig_src; 23198 ipha->ipha_ident = ip_hdr_included; 23199 goto another; 23200 23201 #undef rptr 23202 #undef Q_TO_INDEX 23203 } 23204 23205 /* 23206 * Routine to allocate a message that is used to notify the ULP about MDT. 23207 * The caller may provide a pointer to the link-layer MDT capabilities, 23208 * or NULL if MDT is to be disabled on the stream. 23209 */ 23210 mblk_t * 23211 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23212 { 23213 mblk_t *mp; 23214 ip_mdt_info_t *mdti; 23215 ill_mdt_capab_t *idst; 23216 23217 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23218 DB_TYPE(mp) = M_CTL; 23219 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23220 mdti = (ip_mdt_info_t *)mp->b_rptr; 23221 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23222 idst = &(mdti->mdt_capab); 23223 23224 /* 23225 * If the caller provides us with the capability, copy 23226 * it over into our notification message; otherwise 23227 * we zero out the capability portion. 23228 */ 23229 if (isrc != NULL) 23230 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23231 else 23232 bzero((caddr_t)idst, sizeof (*idst)); 23233 } 23234 return (mp); 23235 } 23236 23237 /* 23238 * Routine which determines whether MDT can be enabled on the destination 23239 * IRE and IPC combination, and if so, allocates and returns the MDT 23240 * notification mblk that may be used by ULP. We also check if we need to 23241 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23242 * MDT usage in the past have been lifted. This gets called during IP 23243 * and ULP binding. 23244 */ 23245 mblk_t * 23246 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23247 ill_mdt_capab_t *mdt_cap) 23248 { 23249 mblk_t *mp; 23250 boolean_t rc = B_FALSE; 23251 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23252 23253 ASSERT(dst_ire != NULL); 23254 ASSERT(connp != NULL); 23255 ASSERT(mdt_cap != NULL); 23256 23257 /* 23258 * Currently, we only support simple TCP/{IPv4,IPv6} with 23259 * Multidata, which is handled in tcp_multisend(). This 23260 * is the reason why we do all these checks here, to ensure 23261 * that we don't enable Multidata for the cases which we 23262 * can't handle at the moment. 23263 */ 23264 do { 23265 /* Only do TCP at the moment */ 23266 if (connp->conn_ulp != IPPROTO_TCP) 23267 break; 23268 23269 /* 23270 * IPSEC outbound policy present? Note that we get here 23271 * after calling ipsec_conn_cache_policy() where the global 23272 * policy checking is performed. conn_latch will be 23273 * non-NULL as long as there's a policy defined, 23274 * i.e. conn_out_enforce_policy may be NULL in such case 23275 * when the connection is non-secure, and hence we check 23276 * further if the latch refers to an outbound policy. 23277 */ 23278 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23279 break; 23280 23281 /* CGTP (multiroute) is enabled? */ 23282 if (dst_ire->ire_flags & RTF_MULTIRT) 23283 break; 23284 23285 /* Outbound IPQoS enabled? */ 23286 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23287 /* 23288 * In this case, we disable MDT for this and all 23289 * future connections going over the interface. 23290 */ 23291 mdt_cap->ill_mdt_on = 0; 23292 break; 23293 } 23294 23295 /* socket option(s) present? */ 23296 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23297 break; 23298 23299 rc = B_TRUE; 23300 /* CONSTCOND */ 23301 } while (0); 23302 23303 /* Remember the result */ 23304 connp->conn_mdt_ok = rc; 23305 23306 if (!rc) 23307 return (NULL); 23308 else if (!mdt_cap->ill_mdt_on) { 23309 /* 23310 * If MDT has been previously turned off in the past, and we 23311 * currently can do MDT (due to IPQoS policy removal, etc.) 23312 * then enable it for this interface. 23313 */ 23314 mdt_cap->ill_mdt_on = 1; 23315 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23316 "interface %s\n", ill_name)); 23317 } 23318 23319 /* Allocate the MDT info mblk */ 23320 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23321 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23322 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23323 return (NULL); 23324 } 23325 return (mp); 23326 } 23327 23328 /* 23329 * Routine to allocate a message that is used to notify the ULP about LSO. 23330 * The caller may provide a pointer to the link-layer LSO capabilities, 23331 * or NULL if LSO is to be disabled on the stream. 23332 */ 23333 mblk_t * 23334 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23335 { 23336 mblk_t *mp; 23337 ip_lso_info_t *lsoi; 23338 ill_lso_capab_t *idst; 23339 23340 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23341 DB_TYPE(mp) = M_CTL; 23342 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23343 lsoi = (ip_lso_info_t *)mp->b_rptr; 23344 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23345 idst = &(lsoi->lso_capab); 23346 23347 /* 23348 * If the caller provides us with the capability, copy 23349 * it over into our notification message; otherwise 23350 * we zero out the capability portion. 23351 */ 23352 if (isrc != NULL) 23353 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23354 else 23355 bzero((caddr_t)idst, sizeof (*idst)); 23356 } 23357 return (mp); 23358 } 23359 23360 /* 23361 * Routine which determines whether LSO can be enabled on the destination 23362 * IRE and IPC combination, and if so, allocates and returns the LSO 23363 * notification mblk that may be used by ULP. We also check if we need to 23364 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23365 * LSO usage in the past have been lifted. This gets called during IP 23366 * and ULP binding. 23367 */ 23368 mblk_t * 23369 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23370 ill_lso_capab_t *lso_cap) 23371 { 23372 mblk_t *mp; 23373 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23374 23375 ASSERT(dst_ire != NULL); 23376 ASSERT(connp != NULL); 23377 ASSERT(lso_cap != NULL); 23378 23379 connp->conn_lso_ok = B_TRUE; 23380 23381 if ((connp->conn_ulp != IPPROTO_TCP) || 23382 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23383 (dst_ire->ire_flags & RTF_MULTIRT) || 23384 !CONN_IS_LSO_MD_FASTPATH(connp) || 23385 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23386 connp->conn_lso_ok = B_FALSE; 23387 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23388 /* 23389 * Disable LSO for this and all future connections going 23390 * over the interface. 23391 */ 23392 lso_cap->ill_lso_on = 0; 23393 } 23394 } 23395 23396 if (!connp->conn_lso_ok) 23397 return (NULL); 23398 else if (!lso_cap->ill_lso_on) { 23399 /* 23400 * If LSO has been previously turned off in the past, and we 23401 * currently can do LSO (due to IPQoS policy removal, etc.) 23402 * then enable it for this interface. 23403 */ 23404 lso_cap->ill_lso_on = 1; 23405 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23406 ill_name)); 23407 } 23408 23409 /* Allocate the LSO info mblk */ 23410 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23411 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23412 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23413 23414 return (mp); 23415 } 23416 23417 /* 23418 * Create destination address attribute, and fill it with the physical 23419 * destination address and SAP taken from the template DL_UNITDATA_REQ 23420 * message block. 23421 */ 23422 boolean_t 23423 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23424 { 23425 dl_unitdata_req_t *dlurp; 23426 pattr_t *pa; 23427 pattrinfo_t pa_info; 23428 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23429 uint_t das_len, das_off; 23430 23431 ASSERT(dlmp != NULL); 23432 23433 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23434 das_len = dlurp->dl_dest_addr_length; 23435 das_off = dlurp->dl_dest_addr_offset; 23436 23437 pa_info.type = PATTR_DSTADDRSAP; 23438 pa_info.len = sizeof (**das) + das_len - 1; 23439 23440 /* create and associate the attribute */ 23441 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23442 if (pa != NULL) { 23443 ASSERT(*das != NULL); 23444 (*das)->addr_is_group = 0; 23445 (*das)->addr_len = (uint8_t)das_len; 23446 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23447 } 23448 23449 return (pa != NULL); 23450 } 23451 23452 /* 23453 * Create hardware checksum attribute and fill it with the values passed. 23454 */ 23455 boolean_t 23456 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23457 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23458 { 23459 pattr_t *pa; 23460 pattrinfo_t pa_info; 23461 23462 ASSERT(mmd != NULL); 23463 23464 pa_info.type = PATTR_HCKSUM; 23465 pa_info.len = sizeof (pattr_hcksum_t); 23466 23467 /* create and associate the attribute */ 23468 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23469 if (pa != NULL) { 23470 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23471 23472 hck->hcksum_start_offset = start_offset; 23473 hck->hcksum_stuff_offset = stuff_offset; 23474 hck->hcksum_end_offset = end_offset; 23475 hck->hcksum_flags = flags; 23476 } 23477 return (pa != NULL); 23478 } 23479 23480 /* 23481 * Create zerocopy attribute and fill it with the specified flags 23482 */ 23483 boolean_t 23484 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23485 { 23486 pattr_t *pa; 23487 pattrinfo_t pa_info; 23488 23489 ASSERT(mmd != NULL); 23490 pa_info.type = PATTR_ZCOPY; 23491 pa_info.len = sizeof (pattr_zcopy_t); 23492 23493 /* create and associate the attribute */ 23494 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23495 if (pa != NULL) { 23496 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23497 23498 zcopy->zcopy_flags = flags; 23499 } 23500 return (pa != NULL); 23501 } 23502 23503 /* 23504 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23505 * block chain. We could rewrite to handle arbitrary message block chains but 23506 * that would make the code complicated and slow. Right now there three 23507 * restrictions: 23508 * 23509 * 1. The first message block must contain the complete IP header and 23510 * at least 1 byte of payload data. 23511 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23512 * so that we can use a single Multidata message. 23513 * 3. No frag must be distributed over two or more message blocks so 23514 * that we don't need more than two packet descriptors per frag. 23515 * 23516 * The above restrictions allow us to support userland applications (which 23517 * will send down a single message block) and NFS over UDP (which will 23518 * send down a chain of at most three message blocks). 23519 * 23520 * We also don't use MDT for payloads with less than or equal to 23521 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23522 */ 23523 boolean_t 23524 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23525 { 23526 int blocks; 23527 ssize_t total, missing, size; 23528 23529 ASSERT(mp != NULL); 23530 ASSERT(hdr_len > 0); 23531 23532 size = MBLKL(mp) - hdr_len; 23533 if (size <= 0) 23534 return (B_FALSE); 23535 23536 /* The first mblk contains the header and some payload. */ 23537 blocks = 1; 23538 total = size; 23539 size %= len; 23540 missing = (size == 0) ? 0 : (len - size); 23541 mp = mp->b_cont; 23542 23543 while (mp != NULL) { 23544 /* 23545 * Give up if we encounter a zero length message block. 23546 * In practice, this should rarely happen and therefore 23547 * not worth the trouble of freeing and re-linking the 23548 * mblk from the chain to handle such case. 23549 */ 23550 if ((size = MBLKL(mp)) == 0) 23551 return (B_FALSE); 23552 23553 /* Too many payload buffers for a single Multidata message? */ 23554 if (++blocks > MULTIDATA_MAX_PBUFS) 23555 return (B_FALSE); 23556 23557 total += size; 23558 /* Is a frag distributed over two or more message blocks? */ 23559 if (missing > size) 23560 return (B_FALSE); 23561 size -= missing; 23562 23563 size %= len; 23564 missing = (size == 0) ? 0 : (len - size); 23565 23566 mp = mp->b_cont; 23567 } 23568 23569 return (total > ip_wput_frag_mdt_min); 23570 } 23571 23572 /* 23573 * Outbound IPv4 fragmentation routine using MDT. 23574 */ 23575 static void 23576 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23577 uint32_t frag_flag, int offset) 23578 { 23579 ipha_t *ipha_orig; 23580 int i1, ip_data_end; 23581 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23582 mblk_t *hdr_mp, *md_mp = NULL; 23583 unsigned char *hdr_ptr, *pld_ptr; 23584 multidata_t *mmd; 23585 ip_pdescinfo_t pdi; 23586 ill_t *ill; 23587 ip_stack_t *ipst = ire->ire_ipst; 23588 23589 ASSERT(DB_TYPE(mp) == M_DATA); 23590 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23591 23592 ill = ire_to_ill(ire); 23593 ASSERT(ill != NULL); 23594 23595 ipha_orig = (ipha_t *)mp->b_rptr; 23596 mp->b_rptr += sizeof (ipha_t); 23597 23598 /* Calculate how many packets we will send out */ 23599 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23600 pkts = (i1 + len - 1) / len; 23601 ASSERT(pkts > 1); 23602 23603 /* Allocate a message block which will hold all the IP Headers. */ 23604 wroff = ipst->ips_ip_wroff_extra; 23605 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23606 23607 i1 = pkts * hdr_chunk_len; 23608 /* 23609 * Create the header buffer, Multidata and destination address 23610 * and SAP attribute that should be associated with it. 23611 */ 23612 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23613 ((hdr_mp->b_wptr += i1), 23614 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23615 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23616 freemsg(mp); 23617 if (md_mp == NULL) { 23618 freemsg(hdr_mp); 23619 } else { 23620 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23621 freemsg(md_mp); 23622 } 23623 IP_STAT(ipst, ip_frag_mdt_allocfail); 23624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23625 return; 23626 } 23627 IP_STAT(ipst, ip_frag_mdt_allocd); 23628 23629 /* 23630 * Add a payload buffer to the Multidata; this operation must not 23631 * fail, or otherwise our logic in this routine is broken. There 23632 * is no memory allocation done by the routine, so any returned 23633 * failure simply tells us that we've done something wrong. 23634 * 23635 * A failure tells us that either we're adding the same payload 23636 * buffer more than once, or we're trying to add more buffers than 23637 * allowed. None of the above cases should happen, and we panic 23638 * because either there's horrible heap corruption, and/or 23639 * programming mistake. 23640 */ 23641 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23642 goto pbuf_panic; 23643 23644 hdr_ptr = hdr_mp->b_rptr; 23645 pld_ptr = mp->b_rptr; 23646 23647 /* Establish the ending byte offset, based on the starting offset. */ 23648 offset <<= 3; 23649 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23650 IP_SIMPLE_HDR_LENGTH; 23651 23652 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23653 23654 while (pld_ptr < mp->b_wptr) { 23655 ipha_t *ipha; 23656 uint16_t offset_and_flags; 23657 uint16_t ip_len; 23658 int error; 23659 23660 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23661 ipha = (ipha_t *)(hdr_ptr + wroff); 23662 ASSERT(OK_32PTR(ipha)); 23663 *ipha = *ipha_orig; 23664 23665 if (ip_data_end - offset > len) { 23666 offset_and_flags = IPH_MF; 23667 } else { 23668 /* 23669 * Last frag. Set len to the length of this last piece. 23670 */ 23671 len = ip_data_end - offset; 23672 /* A frag of a frag might have IPH_MF non-zero */ 23673 offset_and_flags = 23674 ntohs(ipha->ipha_fragment_offset_and_flags) & 23675 IPH_MF; 23676 } 23677 offset_and_flags |= (uint16_t)(offset >> 3); 23678 offset_and_flags |= (uint16_t)frag_flag; 23679 /* Store the offset and flags in the IP header. */ 23680 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23681 23682 /* Store the length in the IP header. */ 23683 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23684 ipha->ipha_length = htons(ip_len); 23685 23686 /* 23687 * Set the IP header checksum. Note that mp is just 23688 * the header, so this is easy to pass to ip_csum. 23689 */ 23690 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23691 23692 /* 23693 * Record offset and size of header and data of the next packet 23694 * in the multidata message. 23695 */ 23696 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23697 PDESC_PLD_INIT(&pdi); 23698 i1 = MIN(mp->b_wptr - pld_ptr, len); 23699 ASSERT(i1 > 0); 23700 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23701 if (i1 == len) { 23702 pld_ptr += len; 23703 } else { 23704 i1 = len - i1; 23705 mp = mp->b_cont; 23706 ASSERT(mp != NULL); 23707 ASSERT(MBLKL(mp) >= i1); 23708 /* 23709 * Attach the next payload message block to the 23710 * multidata message. 23711 */ 23712 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23713 goto pbuf_panic; 23714 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23715 pld_ptr = mp->b_rptr + i1; 23716 } 23717 23718 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23719 KM_NOSLEEP)) == NULL) { 23720 /* 23721 * Any failure other than ENOMEM indicates that we 23722 * have passed in invalid pdesc info or parameters 23723 * to mmd_addpdesc, which must not happen. 23724 * 23725 * EINVAL is a result of failure on boundary checks 23726 * against the pdesc info contents. It should not 23727 * happen, and we panic because either there's 23728 * horrible heap corruption, and/or programming 23729 * mistake. 23730 */ 23731 if (error != ENOMEM) { 23732 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23733 "pdesc logic error detected for " 23734 "mmd %p pinfo %p (%d)\n", 23735 (void *)mmd, (void *)&pdi, error); 23736 /* NOTREACHED */ 23737 } 23738 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23739 /* Free unattached payload message blocks as well */ 23740 md_mp->b_cont = mp->b_cont; 23741 goto free_mmd; 23742 } 23743 23744 /* Advance fragment offset. */ 23745 offset += len; 23746 23747 /* Advance to location for next header in the buffer. */ 23748 hdr_ptr += hdr_chunk_len; 23749 23750 /* Did we reach the next payload message block? */ 23751 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23752 mp = mp->b_cont; 23753 /* 23754 * Attach the next message block with payload 23755 * data to the multidata message. 23756 */ 23757 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23758 goto pbuf_panic; 23759 pld_ptr = mp->b_rptr; 23760 } 23761 } 23762 23763 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23764 ASSERT(mp->b_wptr == pld_ptr); 23765 23766 /* Update IP statistics */ 23767 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23768 23769 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23771 23772 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23773 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23774 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23775 23776 if (pkt_type == OB_PKT) { 23777 ire->ire_ob_pkt_count += pkts; 23778 if (ire->ire_ipif != NULL) 23779 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23780 } else { 23781 /* The type is IB_PKT in the forwarding path. */ 23782 ire->ire_ib_pkt_count += pkts; 23783 ASSERT(!IRE_IS_LOCAL(ire)); 23784 if (ire->ire_type & IRE_BROADCAST) { 23785 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23786 } else { 23787 UPDATE_MIB(ill->ill_ip_mib, 23788 ipIfStatsHCOutForwDatagrams, pkts); 23789 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23790 } 23791 } 23792 ire->ire_last_used_time = lbolt; 23793 /* Send it down */ 23794 putnext(ire->ire_stq, md_mp); 23795 return; 23796 23797 pbuf_panic: 23798 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23799 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23800 pbuf_idx); 23801 /* NOTREACHED */ 23802 } 23803 23804 /* 23805 * Outbound IP fragmentation routine. 23806 * 23807 * NOTE : This routine does not ire_refrele the ire that is passed in 23808 * as the argument. 23809 */ 23810 static void 23811 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23812 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23813 { 23814 int i1; 23815 mblk_t *ll_hdr_mp; 23816 int ll_hdr_len; 23817 int hdr_len; 23818 mblk_t *hdr_mp; 23819 ipha_t *ipha; 23820 int ip_data_end; 23821 int len; 23822 mblk_t *mp = mp_orig, *mp1; 23823 int offset; 23824 queue_t *q; 23825 uint32_t v_hlen_tos_len; 23826 mblk_t *first_mp; 23827 boolean_t mctl_present; 23828 ill_t *ill; 23829 ill_t *out_ill; 23830 mblk_t *xmit_mp; 23831 mblk_t *carve_mp; 23832 ire_t *ire1 = NULL; 23833 ire_t *save_ire = NULL; 23834 mblk_t *next_mp = NULL; 23835 boolean_t last_frag = B_FALSE; 23836 boolean_t multirt_send = B_FALSE; 23837 ire_t *first_ire = NULL; 23838 irb_t *irb = NULL; 23839 mib2_ipIfStatsEntry_t *mibptr = NULL; 23840 23841 ill = ire_to_ill(ire); 23842 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23843 23844 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23845 23846 if (max_frag == 0) { 23847 ip1dbg(("ip_wput_frag: ire frag size is 0" 23848 " - dropping packet\n")); 23849 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23850 freemsg(mp); 23851 return; 23852 } 23853 23854 /* 23855 * IPSEC does not allow hw accelerated packets to be fragmented 23856 * This check is made in ip_wput_ipsec_out prior to coming here 23857 * via ip_wput_ire_fragmentit. 23858 * 23859 * If at this point we have an ire whose ARP request has not 23860 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23861 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23862 * This packet and all fragmentable packets for this ire will 23863 * continue to get dropped while ire_nce->nce_state remains in 23864 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23865 * ND_REACHABLE, all subsquent large packets for this ire will 23866 * get fragemented and sent out by this function. 23867 */ 23868 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23869 /* If nce_state is ND_INITIAL, trigger ARP query */ 23870 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23871 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23872 " - dropping packet\n")); 23873 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23874 freemsg(mp); 23875 return; 23876 } 23877 23878 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23879 "ip_wput_frag_start:"); 23880 23881 if (mp->b_datap->db_type == M_CTL) { 23882 first_mp = mp; 23883 mp_orig = mp = mp->b_cont; 23884 mctl_present = B_TRUE; 23885 } else { 23886 first_mp = mp; 23887 mctl_present = B_FALSE; 23888 } 23889 23890 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23891 ipha = (ipha_t *)mp->b_rptr; 23892 23893 /* 23894 * If the Don't Fragment flag is on, generate an ICMP destination 23895 * unreachable, fragmentation needed. 23896 */ 23897 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23898 if (offset & IPH_DF) { 23899 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23900 if (is_system_labeled()) { 23901 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 23902 ire->ire_max_frag - max_frag, AF_INET); 23903 } 23904 /* 23905 * Need to compute hdr checksum if called from ip_wput_ire. 23906 * Note that ip_rput_forward verifies the checksum before 23907 * calling this routine so in that case this is a noop. 23908 */ 23909 ipha->ipha_hdr_checksum = 0; 23910 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23911 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 23912 ipst); 23913 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23914 "ip_wput_frag_end:(%S)", 23915 "don't fragment"); 23916 return; 23917 } 23918 /* 23919 * Labeled systems adjust max_frag if they add a label 23920 * to send the correct path mtu. We need the real mtu since we 23921 * are fragmenting the packet after label adjustment. 23922 */ 23923 if (is_system_labeled()) 23924 max_frag = ire->ire_max_frag; 23925 if (mctl_present) 23926 freeb(first_mp); 23927 /* 23928 * Establish the starting offset. May not be zero if we are fragging 23929 * a fragment that is being forwarded. 23930 */ 23931 offset = offset & IPH_OFFSET; 23932 23933 /* TODO why is this test needed? */ 23934 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23935 if (((max_frag - LENGTH) & ~7) < 8) { 23936 /* TODO: notify ulp somehow */ 23937 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23938 freemsg(mp); 23939 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23940 "ip_wput_frag_end:(%S)", 23941 "len < 8"); 23942 return; 23943 } 23944 23945 hdr_len = (V_HLEN & 0xF) << 2; 23946 23947 ipha->ipha_hdr_checksum = 0; 23948 23949 /* 23950 * Establish the number of bytes maximum per frag, after putting 23951 * in the header. 23952 */ 23953 len = (max_frag - hdr_len) & ~7; 23954 23955 /* Check if we can use MDT to send out the frags. */ 23956 ASSERT(!IRE_IS_LOCAL(ire)); 23957 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 23958 ipst->ips_ip_multidata_outbound && 23959 !(ire->ire_flags & RTF_MULTIRT) && 23960 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 23961 ill != NULL && ILL_MDT_CAPABLE(ill) && 23962 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23963 ASSERT(ill->ill_mdt_capab != NULL); 23964 if (!ill->ill_mdt_capab->ill_mdt_on) { 23965 /* 23966 * If MDT has been previously turned off in the past, 23967 * and we currently can do MDT (due to IPQoS policy 23968 * removal, etc.) then enable it for this interface. 23969 */ 23970 ill->ill_mdt_capab->ill_mdt_on = 1; 23971 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23972 ill->ill_name)); 23973 } 23974 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23975 offset); 23976 return; 23977 } 23978 23979 /* Get a copy of the header for the trailing frags */ 23980 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 23981 if (!hdr_mp) { 23982 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23983 freemsg(mp); 23984 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23985 "ip_wput_frag_end:(%S)", 23986 "couldn't copy hdr"); 23987 return; 23988 } 23989 if (DB_CRED(mp) != NULL) 23990 mblk_setcred(hdr_mp, DB_CRED(mp)); 23991 23992 /* Store the starting offset, with the MoreFrags flag. */ 23993 i1 = offset | IPH_MF | frag_flag; 23994 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23995 23996 /* Establish the ending byte offset, based on the starting offset. */ 23997 offset <<= 3; 23998 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23999 24000 /* Store the length of the first fragment in the IP header. */ 24001 i1 = len + hdr_len; 24002 ASSERT(i1 <= IP_MAXPACKET); 24003 ipha->ipha_length = htons((uint16_t)i1); 24004 24005 /* 24006 * Compute the IP header checksum for the first frag. We have to 24007 * watch out that we stop at the end of the header. 24008 */ 24009 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24010 24011 /* 24012 * Now carve off the first frag. Note that this will include the 24013 * original IP header. 24014 */ 24015 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24016 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24017 freeb(hdr_mp); 24018 freemsg(mp_orig); 24019 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24020 "ip_wput_frag_end:(%S)", 24021 "couldn't carve first"); 24022 return; 24023 } 24024 24025 /* 24026 * Multirouting case. Each fragment is replicated 24027 * via all non-condemned RTF_MULTIRT routes 24028 * currently resolved. 24029 * We ensure that first_ire is the first RTF_MULTIRT 24030 * ire in the bucket. 24031 */ 24032 if (ire->ire_flags & RTF_MULTIRT) { 24033 irb = ire->ire_bucket; 24034 ASSERT(irb != NULL); 24035 24036 multirt_send = B_TRUE; 24037 24038 /* Make sure we do not omit any multiroute ire. */ 24039 IRB_REFHOLD(irb); 24040 for (first_ire = irb->irb_ire; 24041 first_ire != NULL; 24042 first_ire = first_ire->ire_next) { 24043 if ((first_ire->ire_flags & RTF_MULTIRT) && 24044 (first_ire->ire_addr == ire->ire_addr) && 24045 !(first_ire->ire_marks & 24046 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24047 break; 24048 } 24049 } 24050 24051 if (first_ire != NULL) { 24052 if (first_ire != ire) { 24053 IRE_REFHOLD(first_ire); 24054 /* 24055 * Do not release the ire passed in 24056 * as the argument. 24057 */ 24058 ire = first_ire; 24059 } else { 24060 first_ire = NULL; 24061 } 24062 } 24063 IRB_REFRELE(irb); 24064 24065 /* 24066 * Save the first ire; we will need to restore it 24067 * for the trailing frags. 24068 * We REFHOLD save_ire, as each iterated ire will be 24069 * REFRELEd. 24070 */ 24071 save_ire = ire; 24072 IRE_REFHOLD(save_ire); 24073 } 24074 24075 /* 24076 * First fragment emission loop. 24077 * In most cases, the emission loop below is entered only 24078 * once. Only in the case where the ire holds the RTF_MULTIRT 24079 * flag, do we loop to process all RTF_MULTIRT ires in the 24080 * bucket, and send the fragment through all crossed 24081 * RTF_MULTIRT routes. 24082 */ 24083 do { 24084 if (ire->ire_flags & RTF_MULTIRT) { 24085 /* 24086 * We are in a multiple send case, need to get 24087 * the next ire and make a copy of the packet. 24088 * ire1 holds here the next ire to process in the 24089 * bucket. If multirouting is expected, 24090 * any non-RTF_MULTIRT ire that has the 24091 * right destination address is ignored. 24092 * 24093 * We have to take into account the MTU of 24094 * each walked ire. max_frag is set by the 24095 * the caller and generally refers to 24096 * the primary ire entry. Here we ensure that 24097 * no route with a lower MTU will be used, as 24098 * fragments are carved once for all ires, 24099 * then replicated. 24100 */ 24101 ASSERT(irb != NULL); 24102 IRB_REFHOLD(irb); 24103 for (ire1 = ire->ire_next; 24104 ire1 != NULL; 24105 ire1 = ire1->ire_next) { 24106 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24107 continue; 24108 if (ire1->ire_addr != ire->ire_addr) 24109 continue; 24110 if (ire1->ire_marks & 24111 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24112 continue; 24113 /* 24114 * Ensure we do not exceed the MTU 24115 * of the next route. 24116 */ 24117 if (ire1->ire_max_frag < max_frag) { 24118 ip_multirt_bad_mtu(ire1, max_frag); 24119 continue; 24120 } 24121 24122 /* Got one. */ 24123 IRE_REFHOLD(ire1); 24124 break; 24125 } 24126 IRB_REFRELE(irb); 24127 24128 if (ire1 != NULL) { 24129 next_mp = copyb(mp); 24130 if ((next_mp == NULL) || 24131 ((mp->b_cont != NULL) && 24132 ((next_mp->b_cont = 24133 dupmsg(mp->b_cont)) == NULL))) { 24134 freemsg(next_mp); 24135 next_mp = NULL; 24136 ire_refrele(ire1); 24137 ire1 = NULL; 24138 } 24139 } 24140 24141 /* Last multiroute ire; don't loop anymore. */ 24142 if (ire1 == NULL) { 24143 multirt_send = B_FALSE; 24144 } 24145 } 24146 24147 ll_hdr_len = 0; 24148 LOCK_IRE_FP_MP(ire); 24149 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24150 if (ll_hdr_mp != NULL) { 24151 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24152 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24153 } else { 24154 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24155 } 24156 24157 /* If there is a transmit header, get a copy for this frag. */ 24158 /* 24159 * TODO: should check db_ref before calling ip_carve_mp since 24160 * it might give us a dup. 24161 */ 24162 if (!ll_hdr_mp) { 24163 /* No xmit header. */ 24164 xmit_mp = mp; 24165 24166 /* We have a link-layer header that can fit in our mblk. */ 24167 } else if (mp->b_datap->db_ref == 1 && 24168 ll_hdr_len != 0 && 24169 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24170 /* M_DATA fastpath */ 24171 mp->b_rptr -= ll_hdr_len; 24172 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24173 xmit_mp = mp; 24174 24175 /* Corner case if copyb has failed */ 24176 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24177 UNLOCK_IRE_FP_MP(ire); 24178 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24179 freeb(hdr_mp); 24180 freemsg(mp); 24181 freemsg(mp_orig); 24182 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24183 "ip_wput_frag_end:(%S)", 24184 "discard"); 24185 24186 if (multirt_send) { 24187 ASSERT(ire1); 24188 ASSERT(next_mp); 24189 24190 freemsg(next_mp); 24191 ire_refrele(ire1); 24192 } 24193 if (save_ire != NULL) 24194 IRE_REFRELE(save_ire); 24195 24196 if (first_ire != NULL) 24197 ire_refrele(first_ire); 24198 return; 24199 24200 /* 24201 * Case of res_mp OR the fastpath mp can't fit 24202 * in the mblk 24203 */ 24204 } else { 24205 xmit_mp->b_cont = mp; 24206 if (DB_CRED(mp) != NULL) 24207 mblk_setcred(xmit_mp, DB_CRED(mp)); 24208 /* 24209 * Get priority marking, if any. 24210 * We propagate the CoS marking from the 24211 * original packet that went to QoS processing 24212 * in ip_wput_ire to the newly carved mp. 24213 */ 24214 if (DB_TYPE(xmit_mp) == M_DATA) 24215 xmit_mp->b_band = mp->b_band; 24216 } 24217 UNLOCK_IRE_FP_MP(ire); 24218 24219 q = ire->ire_stq; 24220 out_ill = (ill_t *)q->q_ptr; 24221 24222 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24223 24224 DTRACE_PROBE4(ip4__physical__out__start, 24225 ill_t *, NULL, ill_t *, out_ill, 24226 ipha_t *, ipha, mblk_t *, xmit_mp); 24227 24228 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24229 ipst->ips_ipv4firewall_physical_out, 24230 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24231 24232 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24233 24234 if (xmit_mp != NULL) { 24235 putnext(q, xmit_mp); 24236 24237 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24238 UPDATE_MIB(out_ill->ill_ip_mib, 24239 ipIfStatsHCOutOctets, i1); 24240 24241 if (pkt_type != OB_PKT) { 24242 /* 24243 * Update the packet count and MIB stats 24244 * of trailing RTF_MULTIRT ires. 24245 */ 24246 UPDATE_OB_PKT_COUNT(ire); 24247 BUMP_MIB(out_ill->ill_ip_mib, 24248 ipIfStatsOutFragReqds); 24249 } 24250 } 24251 24252 if (multirt_send) { 24253 /* 24254 * We are in a multiple send case; look for 24255 * the next ire and re-enter the loop. 24256 */ 24257 ASSERT(ire1); 24258 ASSERT(next_mp); 24259 /* REFRELE the current ire before looping */ 24260 ire_refrele(ire); 24261 ire = ire1; 24262 ire1 = NULL; 24263 mp = next_mp; 24264 next_mp = NULL; 24265 } 24266 } while (multirt_send); 24267 24268 ASSERT(ire1 == NULL); 24269 24270 /* Restore the original ire; we need it for the trailing frags */ 24271 if (save_ire != NULL) { 24272 /* REFRELE the last iterated ire */ 24273 ire_refrele(ire); 24274 /* save_ire has been REFHOLDed */ 24275 ire = save_ire; 24276 save_ire = NULL; 24277 q = ire->ire_stq; 24278 } 24279 24280 if (pkt_type == OB_PKT) { 24281 UPDATE_OB_PKT_COUNT(ire); 24282 } else { 24283 out_ill = (ill_t *)q->q_ptr; 24284 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24285 UPDATE_IB_PKT_COUNT(ire); 24286 } 24287 24288 /* Advance the offset to the second frag starting point. */ 24289 offset += len; 24290 /* 24291 * Update hdr_len from the copied header - there might be less options 24292 * in the later fragments. 24293 */ 24294 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24295 /* Loop until done. */ 24296 for (;;) { 24297 uint16_t offset_and_flags; 24298 uint16_t ip_len; 24299 24300 if (ip_data_end - offset > len) { 24301 /* 24302 * Carve off the appropriate amount from the original 24303 * datagram. 24304 */ 24305 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24306 mp = NULL; 24307 break; 24308 } 24309 /* 24310 * More frags after this one. Get another copy 24311 * of the header. 24312 */ 24313 if (carve_mp->b_datap->db_ref == 1 && 24314 hdr_mp->b_wptr - hdr_mp->b_rptr < 24315 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24316 /* Inline IP header */ 24317 carve_mp->b_rptr -= hdr_mp->b_wptr - 24318 hdr_mp->b_rptr; 24319 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24320 hdr_mp->b_wptr - hdr_mp->b_rptr); 24321 mp = carve_mp; 24322 } else { 24323 if (!(mp = copyb(hdr_mp))) { 24324 freemsg(carve_mp); 24325 break; 24326 } 24327 /* Get priority marking, if any. */ 24328 mp->b_band = carve_mp->b_band; 24329 mp->b_cont = carve_mp; 24330 } 24331 ipha = (ipha_t *)mp->b_rptr; 24332 offset_and_flags = IPH_MF; 24333 } else { 24334 /* 24335 * Last frag. Consume the header. Set len to 24336 * the length of this last piece. 24337 */ 24338 len = ip_data_end - offset; 24339 24340 /* 24341 * Carve off the appropriate amount from the original 24342 * datagram. 24343 */ 24344 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24345 mp = NULL; 24346 break; 24347 } 24348 if (carve_mp->b_datap->db_ref == 1 && 24349 hdr_mp->b_wptr - hdr_mp->b_rptr < 24350 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24351 /* Inline IP header */ 24352 carve_mp->b_rptr -= hdr_mp->b_wptr - 24353 hdr_mp->b_rptr; 24354 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24355 hdr_mp->b_wptr - hdr_mp->b_rptr); 24356 mp = carve_mp; 24357 freeb(hdr_mp); 24358 hdr_mp = mp; 24359 } else { 24360 mp = hdr_mp; 24361 /* Get priority marking, if any. */ 24362 mp->b_band = carve_mp->b_band; 24363 mp->b_cont = carve_mp; 24364 } 24365 ipha = (ipha_t *)mp->b_rptr; 24366 /* A frag of a frag might have IPH_MF non-zero */ 24367 offset_and_flags = 24368 ntohs(ipha->ipha_fragment_offset_and_flags) & 24369 IPH_MF; 24370 } 24371 offset_and_flags |= (uint16_t)(offset >> 3); 24372 offset_and_flags |= (uint16_t)frag_flag; 24373 /* Store the offset and flags in the IP header. */ 24374 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24375 24376 /* Store the length in the IP header. */ 24377 ip_len = (uint16_t)(len + hdr_len); 24378 ipha->ipha_length = htons(ip_len); 24379 24380 /* 24381 * Set the IP header checksum. Note that mp is just 24382 * the header, so this is easy to pass to ip_csum. 24383 */ 24384 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24385 24386 /* Attach a transmit header, if any, and ship it. */ 24387 if (pkt_type == OB_PKT) { 24388 UPDATE_OB_PKT_COUNT(ire); 24389 } else { 24390 out_ill = (ill_t *)q->q_ptr; 24391 BUMP_MIB(out_ill->ill_ip_mib, 24392 ipIfStatsHCOutForwDatagrams); 24393 UPDATE_IB_PKT_COUNT(ire); 24394 } 24395 24396 if (ire->ire_flags & RTF_MULTIRT) { 24397 irb = ire->ire_bucket; 24398 ASSERT(irb != NULL); 24399 24400 multirt_send = B_TRUE; 24401 24402 /* 24403 * Save the original ire; we will need to restore it 24404 * for the tailing frags. 24405 */ 24406 save_ire = ire; 24407 IRE_REFHOLD(save_ire); 24408 } 24409 /* 24410 * Emission loop for this fragment, similar 24411 * to what is done for the first fragment. 24412 */ 24413 do { 24414 if (multirt_send) { 24415 /* 24416 * We are in a multiple send case, need to get 24417 * the next ire and make a copy of the packet. 24418 */ 24419 ASSERT(irb != NULL); 24420 IRB_REFHOLD(irb); 24421 for (ire1 = ire->ire_next; 24422 ire1 != NULL; 24423 ire1 = ire1->ire_next) { 24424 if (!(ire1->ire_flags & RTF_MULTIRT)) 24425 continue; 24426 if (ire1->ire_addr != ire->ire_addr) 24427 continue; 24428 if (ire1->ire_marks & 24429 (IRE_MARK_CONDEMNED| 24430 IRE_MARK_HIDDEN)) { 24431 continue; 24432 } 24433 /* 24434 * Ensure we do not exceed the MTU 24435 * of the next route. 24436 */ 24437 if (ire1->ire_max_frag < max_frag) { 24438 ip_multirt_bad_mtu(ire1, 24439 max_frag); 24440 continue; 24441 } 24442 24443 /* Got one. */ 24444 IRE_REFHOLD(ire1); 24445 break; 24446 } 24447 IRB_REFRELE(irb); 24448 24449 if (ire1 != NULL) { 24450 next_mp = copyb(mp); 24451 if ((next_mp == NULL) || 24452 ((mp->b_cont != NULL) && 24453 ((next_mp->b_cont = 24454 dupmsg(mp->b_cont)) == NULL))) { 24455 freemsg(next_mp); 24456 next_mp = NULL; 24457 ire_refrele(ire1); 24458 ire1 = NULL; 24459 } 24460 } 24461 24462 /* Last multiroute ire; don't loop anymore. */ 24463 if (ire1 == NULL) { 24464 multirt_send = B_FALSE; 24465 } 24466 } 24467 24468 /* Update transmit header */ 24469 ll_hdr_len = 0; 24470 LOCK_IRE_FP_MP(ire); 24471 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24472 if (ll_hdr_mp != NULL) { 24473 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24474 ll_hdr_len = MBLKL(ll_hdr_mp); 24475 } else { 24476 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24477 } 24478 24479 if (!ll_hdr_mp) { 24480 xmit_mp = mp; 24481 24482 /* 24483 * We have link-layer header that can fit in 24484 * our mblk. 24485 */ 24486 } else if (mp->b_datap->db_ref == 1 && 24487 ll_hdr_len != 0 && 24488 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24489 /* M_DATA fastpath */ 24490 mp->b_rptr -= ll_hdr_len; 24491 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24492 ll_hdr_len); 24493 xmit_mp = mp; 24494 24495 /* 24496 * Case of res_mp OR the fastpath mp can't fit 24497 * in the mblk 24498 */ 24499 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24500 xmit_mp->b_cont = mp; 24501 if (DB_CRED(mp) != NULL) 24502 mblk_setcred(xmit_mp, DB_CRED(mp)); 24503 /* Get priority marking, if any. */ 24504 if (DB_TYPE(xmit_mp) == M_DATA) 24505 xmit_mp->b_band = mp->b_band; 24506 24507 /* Corner case if copyb failed */ 24508 } else { 24509 /* 24510 * Exit both the replication and 24511 * fragmentation loops. 24512 */ 24513 UNLOCK_IRE_FP_MP(ire); 24514 goto drop_pkt; 24515 } 24516 UNLOCK_IRE_FP_MP(ire); 24517 24518 mp1 = mp; 24519 out_ill = (ill_t *)q->q_ptr; 24520 24521 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24522 24523 DTRACE_PROBE4(ip4__physical__out__start, 24524 ill_t *, NULL, ill_t *, out_ill, 24525 ipha_t *, ipha, mblk_t *, xmit_mp); 24526 24527 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24528 ipst->ips_ipv4firewall_physical_out, 24529 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24530 24531 DTRACE_PROBE1(ip4__physical__out__end, 24532 mblk_t *, xmit_mp); 24533 24534 if (mp != mp1 && hdr_mp == mp1) 24535 hdr_mp = mp; 24536 if (mp != mp1 && mp_orig == mp1) 24537 mp_orig = mp; 24538 24539 if (xmit_mp != NULL) { 24540 putnext(q, xmit_mp); 24541 24542 BUMP_MIB(out_ill->ill_ip_mib, 24543 ipIfStatsHCOutTransmits); 24544 UPDATE_MIB(out_ill->ill_ip_mib, 24545 ipIfStatsHCOutOctets, ip_len); 24546 24547 if (pkt_type != OB_PKT) { 24548 /* 24549 * Update the packet count of trailing 24550 * RTF_MULTIRT ires. 24551 */ 24552 UPDATE_OB_PKT_COUNT(ire); 24553 } 24554 } 24555 24556 /* All done if we just consumed the hdr_mp. */ 24557 if (mp == hdr_mp) { 24558 last_frag = B_TRUE; 24559 BUMP_MIB(out_ill->ill_ip_mib, 24560 ipIfStatsOutFragOKs); 24561 } 24562 24563 if (multirt_send) { 24564 /* 24565 * We are in a multiple send case; look for 24566 * the next ire and re-enter the loop. 24567 */ 24568 ASSERT(ire1); 24569 ASSERT(next_mp); 24570 /* REFRELE the current ire before looping */ 24571 ire_refrele(ire); 24572 ire = ire1; 24573 ire1 = NULL; 24574 q = ire->ire_stq; 24575 mp = next_mp; 24576 next_mp = NULL; 24577 } 24578 } while (multirt_send); 24579 /* 24580 * Restore the original ire; we need it for the 24581 * trailing frags 24582 */ 24583 if (save_ire != NULL) { 24584 ASSERT(ire1 == NULL); 24585 /* REFRELE the last iterated ire */ 24586 ire_refrele(ire); 24587 /* save_ire has been REFHOLDed */ 24588 ire = save_ire; 24589 q = ire->ire_stq; 24590 save_ire = NULL; 24591 } 24592 24593 if (last_frag) { 24594 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24595 "ip_wput_frag_end:(%S)", 24596 "consumed hdr_mp"); 24597 24598 if (first_ire != NULL) 24599 ire_refrele(first_ire); 24600 return; 24601 } 24602 /* Otherwise, advance and loop. */ 24603 offset += len; 24604 } 24605 24606 drop_pkt: 24607 /* Clean up following allocation failure. */ 24608 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24609 freemsg(mp); 24610 if (mp != hdr_mp) 24611 freeb(hdr_mp); 24612 if (mp != mp_orig) 24613 freemsg(mp_orig); 24614 24615 if (save_ire != NULL) 24616 IRE_REFRELE(save_ire); 24617 if (first_ire != NULL) 24618 ire_refrele(first_ire); 24619 24620 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24621 "ip_wput_frag_end:(%S)", 24622 "end--alloc failure"); 24623 } 24624 24625 /* 24626 * Copy the header plus those options which have the copy bit set 24627 */ 24628 static mblk_t * 24629 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24630 { 24631 mblk_t *mp; 24632 uchar_t *up; 24633 24634 /* 24635 * Quick check if we need to look for options without the copy bit 24636 * set 24637 */ 24638 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24639 if (!mp) 24640 return (mp); 24641 mp->b_rptr += ipst->ips_ip_wroff_extra; 24642 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24643 bcopy(rptr, mp->b_rptr, hdr_len); 24644 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24645 return (mp); 24646 } 24647 up = mp->b_rptr; 24648 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24649 up += IP_SIMPLE_HDR_LENGTH; 24650 rptr += IP_SIMPLE_HDR_LENGTH; 24651 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24652 while (hdr_len > 0) { 24653 uint32_t optval; 24654 uint32_t optlen; 24655 24656 optval = *rptr; 24657 if (optval == IPOPT_EOL) 24658 break; 24659 if (optval == IPOPT_NOP) 24660 optlen = 1; 24661 else 24662 optlen = rptr[1]; 24663 if (optval & IPOPT_COPY) { 24664 bcopy(rptr, up, optlen); 24665 up += optlen; 24666 } 24667 rptr += optlen; 24668 hdr_len -= optlen; 24669 } 24670 /* 24671 * Make sure that we drop an even number of words by filling 24672 * with EOL to the next word boundary. 24673 */ 24674 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24675 hdr_len & 0x3; hdr_len++) 24676 *up++ = IPOPT_EOL; 24677 mp->b_wptr = up; 24678 /* Update header length */ 24679 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24680 return (mp); 24681 } 24682 24683 /* 24684 * Delivery to local recipients including fanout to multiple recipients. 24685 * Does not do checksumming of UDP/TCP. 24686 * Note: q should be the read side queue for either the ill or conn. 24687 * Note: rq should be the read side q for the lower (ill) stream. 24688 * We don't send packets to IPPF processing, thus the last argument 24689 * to all the fanout calls are B_FALSE. 24690 */ 24691 void 24692 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24693 int fanout_flags, zoneid_t zoneid) 24694 { 24695 uint32_t protocol; 24696 mblk_t *first_mp; 24697 boolean_t mctl_present; 24698 int ire_type; 24699 #define rptr ((uchar_t *)ipha) 24700 ip_stack_t *ipst = ill->ill_ipst; 24701 24702 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24703 "ip_wput_local_start: q %p", q); 24704 24705 if (ire != NULL) { 24706 ire_type = ire->ire_type; 24707 } else { 24708 /* 24709 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24710 * packet is not multicast, we can't tell the ire type. 24711 */ 24712 ASSERT(CLASSD(ipha->ipha_dst)); 24713 ire_type = IRE_BROADCAST; 24714 } 24715 24716 first_mp = mp; 24717 if (first_mp->b_datap->db_type == M_CTL) { 24718 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24719 if (!io->ipsec_out_secure) { 24720 /* 24721 * This ipsec_out_t was allocated in ip_wput 24722 * for multicast packets to store the ill_index. 24723 * As this is being delivered locally, we don't 24724 * need this anymore. 24725 */ 24726 mp = first_mp->b_cont; 24727 freeb(first_mp); 24728 first_mp = mp; 24729 mctl_present = B_FALSE; 24730 } else { 24731 /* 24732 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24733 * security properties for the looped-back packet. 24734 */ 24735 mctl_present = B_TRUE; 24736 mp = first_mp->b_cont; 24737 ASSERT(mp != NULL); 24738 ipsec_out_to_in(first_mp); 24739 } 24740 } else { 24741 mctl_present = B_FALSE; 24742 } 24743 24744 DTRACE_PROBE4(ip4__loopback__in__start, 24745 ill_t *, ill, ill_t *, NULL, 24746 ipha_t *, ipha, mblk_t *, first_mp); 24747 24748 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24749 ipst->ips_ipv4firewall_loopback_in, 24750 ill, NULL, ipha, first_mp, mp, ipst); 24751 24752 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24753 24754 if (first_mp == NULL) 24755 return; 24756 24757 ipst->ips_loopback_packets++; 24758 24759 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24760 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24761 if (!IS_SIMPLE_IPH(ipha)) { 24762 ip_wput_local_options(ipha, ipst); 24763 } 24764 24765 protocol = ipha->ipha_protocol; 24766 switch (protocol) { 24767 case IPPROTO_ICMP: { 24768 ire_t *ire_zone; 24769 ilm_t *ilm; 24770 mblk_t *mp1; 24771 zoneid_t last_zoneid; 24772 24773 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24774 ASSERT(ire_type == IRE_BROADCAST); 24775 /* 24776 * In the multicast case, applications may have joined 24777 * the group from different zones, so we need to deliver 24778 * the packet to each of them. Loop through the 24779 * multicast memberships structures (ilm) on the receive 24780 * ill and send a copy of the packet up each matching 24781 * one. However, we don't do this for multicasts sent on 24782 * the loopback interface (PHYI_LOOPBACK flag set) as 24783 * they must stay in the sender's zone. 24784 * 24785 * ilm_add_v6() ensures that ilms in the same zone are 24786 * contiguous in the ill_ilm list. We use this property 24787 * to avoid sending duplicates needed when two 24788 * applications in the same zone join the same group on 24789 * different logical interfaces: we ignore the ilm if 24790 * it's zoneid is the same as the last matching one. 24791 * In addition, the sending of the packet for 24792 * ire_zoneid is delayed until all of the other ilms 24793 * have been exhausted. 24794 */ 24795 last_zoneid = -1; 24796 ILM_WALKER_HOLD(ill); 24797 for (ilm = ill->ill_ilm; ilm != NULL; 24798 ilm = ilm->ilm_next) { 24799 if ((ilm->ilm_flags & ILM_DELETED) || 24800 ipha->ipha_dst != ilm->ilm_addr || 24801 ilm->ilm_zoneid == last_zoneid || 24802 ilm->ilm_zoneid == zoneid || 24803 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24804 continue; 24805 mp1 = ip_copymsg(first_mp); 24806 if (mp1 == NULL) 24807 continue; 24808 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24809 mctl_present, B_FALSE, ill, 24810 ilm->ilm_zoneid); 24811 last_zoneid = ilm->ilm_zoneid; 24812 } 24813 ILM_WALKER_RELE(ill); 24814 /* 24815 * Loopback case: the sending endpoint has 24816 * IP_MULTICAST_LOOP disabled, therefore we don't 24817 * dispatch the multicast packet to the sending zone. 24818 */ 24819 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24820 freemsg(first_mp); 24821 return; 24822 } 24823 } else if (ire_type == IRE_BROADCAST) { 24824 /* 24825 * In the broadcast case, there may be many zones 24826 * which need a copy of the packet delivered to them. 24827 * There is one IRE_BROADCAST per broadcast address 24828 * and per zone; we walk those using a helper function. 24829 * In addition, the sending of the packet for zoneid is 24830 * delayed until all of the other ires have been 24831 * processed. 24832 */ 24833 IRB_REFHOLD(ire->ire_bucket); 24834 ire_zone = NULL; 24835 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24836 ire)) != NULL) { 24837 mp1 = ip_copymsg(first_mp); 24838 if (mp1 == NULL) 24839 continue; 24840 24841 UPDATE_IB_PKT_COUNT(ire_zone); 24842 ire_zone->ire_last_used_time = lbolt; 24843 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24844 mctl_present, B_FALSE, ill, 24845 ire_zone->ire_zoneid); 24846 } 24847 IRB_REFRELE(ire->ire_bucket); 24848 } 24849 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24850 0, mctl_present, B_FALSE, ill, zoneid); 24851 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24852 "ip_wput_local_end: q %p (%S)", 24853 q, "icmp"); 24854 return; 24855 } 24856 case IPPROTO_IGMP: 24857 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24858 /* Bad packet - discarded by igmp_input */ 24859 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24860 "ip_wput_local_end: q %p (%S)", 24861 q, "igmp_input--bad packet"); 24862 if (mctl_present) 24863 freeb(first_mp); 24864 return; 24865 } 24866 /* 24867 * igmp_input() may have returned the pulled up message. 24868 * So first_mp and ipha need to be reinitialized. 24869 */ 24870 ipha = (ipha_t *)mp->b_rptr; 24871 if (mctl_present) 24872 first_mp->b_cont = mp; 24873 else 24874 first_mp = mp; 24875 /* deliver to local raw users */ 24876 break; 24877 case IPPROTO_ENCAP: 24878 /* 24879 * This case is covered by either ip_fanout_proto, or by 24880 * the above security processing for self-tunneled packets. 24881 */ 24882 break; 24883 case IPPROTO_UDP: { 24884 uint16_t *up; 24885 uint32_t ports; 24886 24887 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24888 UDP_PORTS_OFFSET); 24889 /* Force a 'valid' checksum. */ 24890 up[3] = 0; 24891 24892 ports = *(uint32_t *)up; 24893 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24894 (ire_type == IRE_BROADCAST), 24895 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24896 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 24897 ill, zoneid); 24898 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24899 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24900 return; 24901 } 24902 case IPPROTO_TCP: { 24903 24904 /* 24905 * For TCP, discard broadcast packets. 24906 */ 24907 if ((ushort_t)ire_type == IRE_BROADCAST) { 24908 freemsg(first_mp); 24909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 24910 ip2dbg(("ip_wput_local: discard broadcast\n")); 24911 return; 24912 } 24913 24914 if (mp->b_datap->db_type == M_DATA) { 24915 /* 24916 * M_DATA mblk, so init mblk (chain) for no struio(). 24917 */ 24918 mblk_t *mp1 = mp; 24919 24920 do { 24921 mp1->b_datap->db_struioflag = 0; 24922 } while ((mp1 = mp1->b_cont) != NULL); 24923 } 24924 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24925 <= mp->b_wptr); 24926 ip_fanout_tcp(q, first_mp, ill, ipha, 24927 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24928 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 24929 mctl_present, B_FALSE, zoneid); 24930 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24931 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24932 return; 24933 } 24934 case IPPROTO_SCTP: 24935 { 24936 uint32_t ports; 24937 24938 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24939 ip_fanout_sctp(first_mp, ill, ipha, ports, 24940 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24941 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 24942 return; 24943 } 24944 24945 default: 24946 break; 24947 } 24948 /* 24949 * Find a client for some other protocol. We give 24950 * copies to multiple clients, if more than one is 24951 * bound. 24952 */ 24953 ip_fanout_proto(q, first_mp, ill, ipha, 24954 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24955 mctl_present, B_FALSE, ill, zoneid); 24956 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24957 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24958 #undef rptr 24959 } 24960 24961 /* 24962 * Update any source route, record route, or timestamp options. 24963 * Check that we are at end of strict source route. 24964 * The options have been sanity checked by ip_wput_options(). 24965 */ 24966 static void 24967 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 24968 { 24969 ipoptp_t opts; 24970 uchar_t *opt; 24971 uint8_t optval; 24972 uint8_t optlen; 24973 ipaddr_t dst; 24974 uint32_t ts; 24975 ire_t *ire; 24976 timestruc_t now; 24977 24978 ip2dbg(("ip_wput_local_options\n")); 24979 for (optval = ipoptp_first(&opts, ipha); 24980 optval != IPOPT_EOL; 24981 optval = ipoptp_next(&opts)) { 24982 opt = opts.ipoptp_cur; 24983 optlen = opts.ipoptp_len; 24984 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24985 switch (optval) { 24986 uint32_t off; 24987 case IPOPT_SSRR: 24988 case IPOPT_LSRR: 24989 off = opt[IPOPT_OFFSET]; 24990 off--; 24991 if (optlen < IP_ADDR_LEN || 24992 off > optlen - IP_ADDR_LEN) { 24993 /* End of source route */ 24994 break; 24995 } 24996 /* 24997 * This will only happen if two consecutive entries 24998 * in the source route contains our address or if 24999 * it is a packet with a loose source route which 25000 * reaches us before consuming the whole source route 25001 */ 25002 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25003 if (optval == IPOPT_SSRR) { 25004 return; 25005 } 25006 /* 25007 * Hack: instead of dropping the packet truncate the 25008 * source route to what has been used by filling the 25009 * rest with IPOPT_NOP. 25010 */ 25011 opt[IPOPT_OLEN] = (uint8_t)off; 25012 while (off < optlen) { 25013 opt[off++] = IPOPT_NOP; 25014 } 25015 break; 25016 case IPOPT_RR: 25017 off = opt[IPOPT_OFFSET]; 25018 off--; 25019 if (optlen < IP_ADDR_LEN || 25020 off > optlen - IP_ADDR_LEN) { 25021 /* No more room - ignore */ 25022 ip1dbg(( 25023 "ip_wput_forward_options: end of RR\n")); 25024 break; 25025 } 25026 dst = htonl(INADDR_LOOPBACK); 25027 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25028 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25029 break; 25030 case IPOPT_TS: 25031 /* Insert timestamp if there is romm */ 25032 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25033 case IPOPT_TS_TSONLY: 25034 off = IPOPT_TS_TIMELEN; 25035 break; 25036 case IPOPT_TS_PRESPEC: 25037 case IPOPT_TS_PRESPEC_RFC791: 25038 /* Verify that the address matched */ 25039 off = opt[IPOPT_OFFSET] - 1; 25040 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25041 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25042 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25043 ipst); 25044 if (ire == NULL) { 25045 /* Not for us */ 25046 break; 25047 } 25048 ire_refrele(ire); 25049 /* FALLTHRU */ 25050 case IPOPT_TS_TSANDADDR: 25051 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25052 break; 25053 default: 25054 /* 25055 * ip_*put_options should have already 25056 * dropped this packet. 25057 */ 25058 cmn_err(CE_PANIC, "ip_wput_local_options: " 25059 "unknown IT - bug in ip_wput_options?\n"); 25060 return; /* Keep "lint" happy */ 25061 } 25062 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25063 /* Increase overflow counter */ 25064 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25065 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25066 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25067 (off << 4); 25068 break; 25069 } 25070 off = opt[IPOPT_OFFSET] - 1; 25071 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25072 case IPOPT_TS_PRESPEC: 25073 case IPOPT_TS_PRESPEC_RFC791: 25074 case IPOPT_TS_TSANDADDR: 25075 dst = htonl(INADDR_LOOPBACK); 25076 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25077 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25078 /* FALLTHRU */ 25079 case IPOPT_TS_TSONLY: 25080 off = opt[IPOPT_OFFSET] - 1; 25081 /* Compute # of milliseconds since midnight */ 25082 gethrestime(&now); 25083 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25084 now.tv_nsec / (NANOSEC / MILLISEC); 25085 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25086 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25087 break; 25088 } 25089 break; 25090 } 25091 } 25092 } 25093 25094 /* 25095 * Send out a multicast packet on interface ipif. 25096 * The sender does not have an conn. 25097 * Caller verifies that this isn't a PHYI_LOOPBACK. 25098 */ 25099 void 25100 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25101 { 25102 ipha_t *ipha; 25103 ire_t *ire; 25104 ipaddr_t dst; 25105 mblk_t *first_mp; 25106 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25107 25108 /* igmp_sendpkt always allocates a ipsec_out_t */ 25109 ASSERT(mp->b_datap->db_type == M_CTL); 25110 ASSERT(!ipif->ipif_isv6); 25111 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25112 25113 first_mp = mp; 25114 mp = first_mp->b_cont; 25115 ASSERT(mp->b_datap->db_type == M_DATA); 25116 ipha = (ipha_t *)mp->b_rptr; 25117 25118 /* 25119 * Find an IRE which matches the destination and the outgoing 25120 * queue (i.e. the outgoing interface.) 25121 */ 25122 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25123 dst = ipif->ipif_pp_dst_addr; 25124 else 25125 dst = ipha->ipha_dst; 25126 /* 25127 * The source address has already been initialized by the 25128 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25129 * be sufficient rather than MATCH_IRE_IPIF. 25130 * 25131 * This function is used for sending IGMP packets. We need 25132 * to make sure that we send the packet out of the interface 25133 * (ipif->ipif_ill) where we joined the group. This is to 25134 * prevent from switches doing IGMP snooping to send us multicast 25135 * packets for a given group on the interface we have joined. 25136 * If we can't find an ire, igmp_sendpkt has already initialized 25137 * ipsec_out_attach_if so that this will not be load spread in 25138 * ip_newroute_ipif. 25139 */ 25140 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25141 MATCH_IRE_ILL, ipst); 25142 if (!ire) { 25143 /* 25144 * Mark this packet to make it be delivered to 25145 * ip_wput_ire after the new ire has been 25146 * created. 25147 */ 25148 mp->b_prev = NULL; 25149 mp->b_next = NULL; 25150 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25151 zoneid, &zero_info); 25152 return; 25153 } 25154 25155 /* 25156 * Honor the RTF_SETSRC flag; this is the only case 25157 * where we force this addr whatever the current src addr is, 25158 * because this address is set by igmp_sendpkt(), and 25159 * cannot be specified by any user. 25160 */ 25161 if (ire->ire_flags & RTF_SETSRC) { 25162 ipha->ipha_src = ire->ire_src_addr; 25163 } 25164 25165 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25166 } 25167 25168 /* 25169 * NOTE : This function does not ire_refrele the ire argument passed in. 25170 * 25171 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25172 * failure. The nce_fp_mp can vanish any time in the case of 25173 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25174 * the ire_lock to access the nce_fp_mp in this case. 25175 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25176 * prepending a fastpath message IPQoS processing must precede it, we also set 25177 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25178 * (IPQoS might have set the b_band for CoS marking). 25179 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25180 * must follow it so that IPQoS can mark the dl_priority field for CoS 25181 * marking, if needed. 25182 */ 25183 static mblk_t * 25184 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25185 { 25186 uint_t hlen; 25187 ipha_t *ipha; 25188 mblk_t *mp1; 25189 boolean_t qos_done = B_FALSE; 25190 uchar_t *ll_hdr; 25191 ip_stack_t *ipst = ire->ire_ipst; 25192 25193 #define rptr ((uchar_t *)ipha) 25194 25195 ipha = (ipha_t *)mp->b_rptr; 25196 hlen = 0; 25197 LOCK_IRE_FP_MP(ire); 25198 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25199 ASSERT(DB_TYPE(mp1) == M_DATA); 25200 /* Initiate IPPF processing */ 25201 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25202 UNLOCK_IRE_FP_MP(ire); 25203 ip_process(proc, &mp, ill_index); 25204 if (mp == NULL) 25205 return (NULL); 25206 25207 ipha = (ipha_t *)mp->b_rptr; 25208 LOCK_IRE_FP_MP(ire); 25209 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25210 qos_done = B_TRUE; 25211 goto no_fp_mp; 25212 } 25213 ASSERT(DB_TYPE(mp1) == M_DATA); 25214 } 25215 hlen = MBLKL(mp1); 25216 /* 25217 * Check if we have enough room to prepend fastpath 25218 * header 25219 */ 25220 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25221 ll_hdr = rptr - hlen; 25222 bcopy(mp1->b_rptr, ll_hdr, hlen); 25223 /* 25224 * Set the b_rptr to the start of the link layer 25225 * header 25226 */ 25227 mp->b_rptr = ll_hdr; 25228 mp1 = mp; 25229 } else { 25230 mp1 = copyb(mp1); 25231 if (mp1 == NULL) 25232 goto unlock_err; 25233 mp1->b_band = mp->b_band; 25234 mp1->b_cont = mp; 25235 /* 25236 * certain system generated traffic may not 25237 * have cred/label in ip header block. This 25238 * is true even for a labeled system. But for 25239 * labeled traffic, inherit the label in the 25240 * new header. 25241 */ 25242 if (DB_CRED(mp) != NULL) 25243 mblk_setcred(mp1, DB_CRED(mp)); 25244 /* 25245 * XXX disable ICK_VALID and compute checksum 25246 * here; can happen if nce_fp_mp changes and 25247 * it can't be copied now due to insufficient 25248 * space. (unlikely, fp mp can change, but it 25249 * does not increase in length) 25250 */ 25251 } 25252 UNLOCK_IRE_FP_MP(ire); 25253 } else { 25254 no_fp_mp: 25255 mp1 = copyb(ire->ire_nce->nce_res_mp); 25256 if (mp1 == NULL) { 25257 unlock_err: 25258 UNLOCK_IRE_FP_MP(ire); 25259 freemsg(mp); 25260 return (NULL); 25261 } 25262 UNLOCK_IRE_FP_MP(ire); 25263 mp1->b_cont = mp; 25264 /* 25265 * certain system generated traffic may not 25266 * have cred/label in ip header block. This 25267 * is true even for a labeled system. But for 25268 * labeled traffic, inherit the label in the 25269 * new header. 25270 */ 25271 if (DB_CRED(mp) != NULL) 25272 mblk_setcred(mp1, DB_CRED(mp)); 25273 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25274 ip_process(proc, &mp1, ill_index); 25275 if (mp1 == NULL) 25276 return (NULL); 25277 } 25278 } 25279 return (mp1); 25280 #undef rptr 25281 } 25282 25283 /* 25284 * Finish the outbound IPsec processing for an IPv6 packet. This function 25285 * is called from ipsec_out_process() if the IPsec packet was processed 25286 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25287 * asynchronously. 25288 */ 25289 void 25290 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25291 ire_t *ire_arg) 25292 { 25293 in6_addr_t *v6dstp; 25294 ire_t *ire; 25295 mblk_t *mp; 25296 ip6_t *ip6h1; 25297 uint_t ill_index; 25298 ipsec_out_t *io; 25299 boolean_t attach_if, hwaccel; 25300 uint32_t flags = IP6_NO_IPPOLICY; 25301 int match_flags; 25302 zoneid_t zoneid; 25303 boolean_t ill_need_rele = B_FALSE; 25304 boolean_t ire_need_rele = B_FALSE; 25305 ip_stack_t *ipst; 25306 25307 mp = ipsec_mp->b_cont; 25308 ip6h1 = (ip6_t *)mp->b_rptr; 25309 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25310 ASSERT(io->ipsec_out_ns != NULL); 25311 ipst = io->ipsec_out_ns->netstack_ip; 25312 ill_index = io->ipsec_out_ill_index; 25313 if (io->ipsec_out_reachable) { 25314 flags |= IPV6_REACHABILITY_CONFIRMATION; 25315 } 25316 attach_if = io->ipsec_out_attach_if; 25317 hwaccel = io->ipsec_out_accelerated; 25318 zoneid = io->ipsec_out_zoneid; 25319 ASSERT(zoneid != ALL_ZONES); 25320 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25321 /* Multicast addresses should have non-zero ill_index. */ 25322 v6dstp = &ip6h->ip6_dst; 25323 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25324 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25325 ASSERT(!attach_if || ill_index != 0); 25326 if (ill_index != 0) { 25327 if (ill == NULL) { 25328 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25329 B_TRUE, ipst); 25330 25331 /* Failure case frees things for us. */ 25332 if (ill == NULL) 25333 return; 25334 25335 ill_need_rele = B_TRUE; 25336 } 25337 /* 25338 * If this packet needs to go out on a particular interface 25339 * honor it. 25340 */ 25341 if (attach_if) { 25342 match_flags = MATCH_IRE_ILL; 25343 25344 /* 25345 * Check if we need an ire that will not be 25346 * looked up by anybody else i.e. HIDDEN. 25347 */ 25348 if (ill_is_probeonly(ill)) { 25349 match_flags |= MATCH_IRE_MARK_HIDDEN; 25350 } 25351 } 25352 } 25353 ASSERT(mp != NULL); 25354 25355 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25356 boolean_t unspec_src; 25357 ipif_t *ipif; 25358 25359 /* 25360 * Use the ill_index to get the right ill. 25361 */ 25362 unspec_src = io->ipsec_out_unspec_src; 25363 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25364 if (ipif == NULL) { 25365 if (ill_need_rele) 25366 ill_refrele(ill); 25367 freemsg(ipsec_mp); 25368 return; 25369 } 25370 25371 if (ire_arg != NULL) { 25372 ire = ire_arg; 25373 } else { 25374 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25375 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25376 ire_need_rele = B_TRUE; 25377 } 25378 if (ire != NULL) { 25379 ipif_refrele(ipif); 25380 /* 25381 * XXX Do the multicast forwarding now, as the IPSEC 25382 * processing has been done. 25383 */ 25384 goto send; 25385 } 25386 25387 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25388 mp->b_prev = NULL; 25389 mp->b_next = NULL; 25390 25391 /* 25392 * If the IPsec packet was processed asynchronously, 25393 * drop it now. 25394 */ 25395 if (q == NULL) { 25396 if (ill_need_rele) 25397 ill_refrele(ill); 25398 freemsg(ipsec_mp); 25399 return; 25400 } 25401 25402 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25403 unspec_src, zoneid); 25404 ipif_refrele(ipif); 25405 } else { 25406 if (attach_if) { 25407 ipif_t *ipif; 25408 25409 ipif = ipif_get_next_ipif(NULL, ill); 25410 if (ipif == NULL) { 25411 if (ill_need_rele) 25412 ill_refrele(ill); 25413 freemsg(ipsec_mp); 25414 return; 25415 } 25416 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25417 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25418 ire_need_rele = B_TRUE; 25419 ipif_refrele(ipif); 25420 } else { 25421 if (ire_arg != NULL) { 25422 ire = ire_arg; 25423 } else { 25424 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25425 ipst); 25426 ire_need_rele = B_TRUE; 25427 } 25428 } 25429 if (ire != NULL) 25430 goto send; 25431 /* 25432 * ire disappeared underneath. 25433 * 25434 * What we need to do here is the ip_newroute 25435 * logic to get the ire without doing the IPSEC 25436 * processing. Follow the same old path. But this 25437 * time, ip_wput or ire_add_then_send will call us 25438 * directly as all the IPSEC operations are done. 25439 */ 25440 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25441 mp->b_prev = NULL; 25442 mp->b_next = NULL; 25443 25444 /* 25445 * If the IPsec packet was processed asynchronously, 25446 * drop it now. 25447 */ 25448 if (q == NULL) { 25449 if (ill_need_rele) 25450 ill_refrele(ill); 25451 freemsg(ipsec_mp); 25452 return; 25453 } 25454 25455 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25456 zoneid, ipst); 25457 } 25458 if (ill != NULL && ill_need_rele) 25459 ill_refrele(ill); 25460 return; 25461 send: 25462 if (ill != NULL && ill_need_rele) 25463 ill_refrele(ill); 25464 25465 /* Local delivery */ 25466 if (ire->ire_stq == NULL) { 25467 ill_t *out_ill; 25468 ASSERT(q != NULL); 25469 25470 /* PFHooks: LOOPBACK_OUT */ 25471 out_ill = ire->ire_ipif->ipif_ill; 25472 25473 DTRACE_PROBE4(ip6__loopback__out__start, 25474 ill_t *, NULL, ill_t *, out_ill, 25475 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25476 25477 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25478 ipst->ips_ipv6firewall_loopback_out, 25479 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25480 25481 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25482 25483 if (ipsec_mp != NULL) 25484 ip_wput_local_v6(RD(q), out_ill, 25485 ip6h, ipsec_mp, ire, 0); 25486 if (ire_need_rele) 25487 ire_refrele(ire); 25488 return; 25489 } 25490 /* 25491 * Everything is done. Send it out on the wire. 25492 * We force the insertion of a fragment header using the 25493 * IPH_FRAG_HDR flag in two cases: 25494 * - after reception of an ICMPv6 "packet too big" message 25495 * with a MTU < 1280 (cf. RFC 2460 section 5) 25496 * - for multirouted IPv6 packets, so that the receiver can 25497 * discard duplicates according to their fragment identifier 25498 */ 25499 /* XXX fix flow control problems. */ 25500 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25501 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25502 if (hwaccel) { 25503 /* 25504 * hardware acceleration does not handle these 25505 * "slow path" cases. 25506 */ 25507 /* IPsec KSTATS: should bump bean counter here. */ 25508 if (ire_need_rele) 25509 ire_refrele(ire); 25510 freemsg(ipsec_mp); 25511 return; 25512 } 25513 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25514 (mp->b_cont ? msgdsize(mp) : 25515 mp->b_wptr - (uchar_t *)ip6h)) { 25516 /* IPsec KSTATS: should bump bean counter here. */ 25517 ip0dbg(("Packet length mismatch: %d, %ld\n", 25518 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25519 msgdsize(mp))); 25520 if (ire_need_rele) 25521 ire_refrele(ire); 25522 freemsg(ipsec_mp); 25523 return; 25524 } 25525 ASSERT(mp->b_prev == NULL); 25526 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25527 ntohs(ip6h->ip6_plen) + 25528 IPV6_HDR_LEN, ire->ire_max_frag)); 25529 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25530 ire->ire_max_frag); 25531 } else { 25532 UPDATE_OB_PKT_COUNT(ire); 25533 ire->ire_last_used_time = lbolt; 25534 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25535 } 25536 if (ire_need_rele) 25537 ire_refrele(ire); 25538 freeb(ipsec_mp); 25539 } 25540 25541 void 25542 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25543 { 25544 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25545 da_ipsec_t *hada; /* data attributes */ 25546 ill_t *ill = (ill_t *)q->q_ptr; 25547 25548 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25549 25550 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25551 /* IPsec KSTATS: Bump lose counter here! */ 25552 freemsg(mp); 25553 return; 25554 } 25555 25556 /* 25557 * It's an IPsec packet that must be 25558 * accelerated by the Provider, and the 25559 * outbound ill is IPsec acceleration capable. 25560 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25561 * to the ill. 25562 * IPsec KSTATS: should bump packet counter here. 25563 */ 25564 25565 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25566 if (hada_mp == NULL) { 25567 /* IPsec KSTATS: should bump packet counter here. */ 25568 freemsg(mp); 25569 return; 25570 } 25571 25572 hada_mp->b_datap->db_type = M_CTL; 25573 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25574 hada_mp->b_cont = mp; 25575 25576 hada = (da_ipsec_t *)hada_mp->b_rptr; 25577 bzero(hada, sizeof (da_ipsec_t)); 25578 hada->da_type = IPHADA_M_CTL; 25579 25580 putnext(q, hada_mp); 25581 } 25582 25583 /* 25584 * Finish the outbound IPsec processing. This function is called from 25585 * ipsec_out_process() if the IPsec packet was processed 25586 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25587 * asynchronously. 25588 */ 25589 void 25590 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25591 ire_t *ire_arg) 25592 { 25593 uint32_t v_hlen_tos_len; 25594 ipaddr_t dst; 25595 ipif_t *ipif = NULL; 25596 ire_t *ire; 25597 ire_t *ire1 = NULL; 25598 mblk_t *next_mp = NULL; 25599 uint32_t max_frag; 25600 boolean_t multirt_send = B_FALSE; 25601 mblk_t *mp; 25602 mblk_t *mp1; 25603 ipha_t *ipha1; 25604 uint_t ill_index; 25605 ipsec_out_t *io; 25606 boolean_t attach_if; 25607 int match_flags, offset; 25608 irb_t *irb = NULL; 25609 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25610 zoneid_t zoneid; 25611 uint32_t cksum; 25612 uint16_t *up; 25613 ipxmit_state_t pktxmit_state; 25614 ip_stack_t *ipst; 25615 25616 #ifdef _BIG_ENDIAN 25617 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25618 #else 25619 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25620 #endif 25621 25622 mp = ipsec_mp->b_cont; 25623 ipha1 = (ipha_t *)mp->b_rptr; 25624 ASSERT(mp != NULL); 25625 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25626 dst = ipha->ipha_dst; 25627 25628 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25629 ill_index = io->ipsec_out_ill_index; 25630 attach_if = io->ipsec_out_attach_if; 25631 zoneid = io->ipsec_out_zoneid; 25632 ASSERT(zoneid != ALL_ZONES); 25633 ipst = io->ipsec_out_ns->netstack_ip; 25634 ASSERT(io->ipsec_out_ns != NULL); 25635 25636 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25637 if (ill_index != 0) { 25638 if (ill == NULL) { 25639 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25640 ill_index, B_FALSE, ipst); 25641 25642 /* Failure case frees things for us. */ 25643 if (ill == NULL) 25644 return; 25645 25646 ill_need_rele = B_TRUE; 25647 } 25648 /* 25649 * If this packet needs to go out on a particular interface 25650 * honor it. 25651 */ 25652 if (attach_if) { 25653 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25654 25655 /* 25656 * Check if we need an ire that will not be 25657 * looked up by anybody else i.e. HIDDEN. 25658 */ 25659 if (ill_is_probeonly(ill)) { 25660 match_flags |= MATCH_IRE_MARK_HIDDEN; 25661 } 25662 } 25663 } 25664 25665 if (CLASSD(dst)) { 25666 boolean_t conn_dontroute; 25667 /* 25668 * Use the ill_index to get the right ipif. 25669 */ 25670 conn_dontroute = io->ipsec_out_dontroute; 25671 if (ill_index == 0) 25672 ipif = ipif_lookup_group(dst, zoneid, ipst); 25673 else 25674 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25675 if (ipif == NULL) { 25676 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25677 " multicast\n")); 25678 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25679 freemsg(ipsec_mp); 25680 goto done; 25681 } 25682 /* 25683 * ipha_src has already been intialized with the 25684 * value of the ipif in ip_wput. All we need now is 25685 * an ire to send this downstream. 25686 */ 25687 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25688 MBLK_GETLABEL(mp), match_flags, ipst); 25689 if (ire != NULL) { 25690 ill_t *ill1; 25691 /* 25692 * Do the multicast forwarding now, as the IPSEC 25693 * processing has been done. 25694 */ 25695 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25696 (ill1 = ire_to_ill(ire))) { 25697 if (ip_mforward(ill1, ipha, mp)) { 25698 freemsg(ipsec_mp); 25699 ip1dbg(("ip_wput_ipsec_out: mforward " 25700 "failed\n")); 25701 ire_refrele(ire); 25702 goto done; 25703 } 25704 } 25705 goto send; 25706 } 25707 25708 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25709 mp->b_prev = NULL; 25710 mp->b_next = NULL; 25711 25712 /* 25713 * If the IPsec packet was processed asynchronously, 25714 * drop it now. 25715 */ 25716 if (q == NULL) { 25717 freemsg(ipsec_mp); 25718 goto done; 25719 } 25720 25721 /* 25722 * We may be using a wrong ipif to create the ire. 25723 * But it is okay as the source address is assigned 25724 * for the packet already. Next outbound packet would 25725 * create the IRE with the right IPIF in ip_wput. 25726 * 25727 * Also handle RTF_MULTIRT routes. 25728 */ 25729 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25730 zoneid, &zero_info); 25731 } else { 25732 if (attach_if) { 25733 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25734 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25735 } else { 25736 if (ire_arg != NULL) { 25737 ire = ire_arg; 25738 ire_need_rele = B_FALSE; 25739 } else { 25740 ire = ire_cache_lookup(dst, zoneid, 25741 MBLK_GETLABEL(mp), ipst); 25742 } 25743 } 25744 if (ire != NULL) { 25745 goto send; 25746 } 25747 25748 /* 25749 * ire disappeared underneath. 25750 * 25751 * What we need to do here is the ip_newroute 25752 * logic to get the ire without doing the IPSEC 25753 * processing. Follow the same old path. But this 25754 * time, ip_wput or ire_add_then_put will call us 25755 * directly as all the IPSEC operations are done. 25756 */ 25757 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25758 mp->b_prev = NULL; 25759 mp->b_next = NULL; 25760 25761 /* 25762 * If the IPsec packet was processed asynchronously, 25763 * drop it now. 25764 */ 25765 if (q == NULL) { 25766 freemsg(ipsec_mp); 25767 goto done; 25768 } 25769 25770 /* 25771 * Since we're going through ip_newroute() again, we 25772 * need to make sure we don't: 25773 * 25774 * 1.) Trigger the ASSERT() with the ipha_ident 25775 * overloading. 25776 * 2.) Redo transport-layer checksumming, since we've 25777 * already done all that to get this far. 25778 * 25779 * The easiest way not do either of the above is to set 25780 * the ipha_ident field to IP_HDR_INCLUDED. 25781 */ 25782 ipha->ipha_ident = IP_HDR_INCLUDED; 25783 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25784 zoneid, ipst); 25785 } 25786 goto done; 25787 send: 25788 if (ipha->ipha_protocol == IPPROTO_UDP && 25789 udp_compute_checksum(ipst->ips_netstack)) { 25790 /* 25791 * ESP NAT-Traversal packet. 25792 * 25793 * Just do software checksum for now. 25794 */ 25795 25796 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25797 IP_STAT(ipst, ip_out_sw_cksum); 25798 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 25799 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25800 #define iphs ((uint16_t *)ipha) 25801 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25802 iphs[9] + ntohs(htons(ipha->ipha_length) - 25803 IP_SIMPLE_HDR_LENGTH); 25804 #undef iphs 25805 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 25806 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25807 if (mp1->b_wptr - mp1->b_rptr >= 25808 offset + sizeof (uint16_t)) { 25809 up = (uint16_t *)(mp1->b_rptr + offset); 25810 *up = cksum; 25811 break; /* out of for loop */ 25812 } else { 25813 offset -= (mp->b_wptr - mp->b_rptr); 25814 } 25815 } /* Otherwise, just keep the all-zero checksum. */ 25816 25817 if (ire->ire_stq == NULL) { 25818 ill_t *out_ill; 25819 /* 25820 * Loopbacks go through ip_wput_local except for one case. 25821 * We come here if we generate a icmp_frag_needed message 25822 * after IPSEC processing is over. When this function calls 25823 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25824 * icmp_frag_needed. The message generated comes back here 25825 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25826 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25827 * source address as it is usually set in ip_wput_ire. As 25828 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25829 * and we end up here. We can't enter ip_wput_ire once the 25830 * IPSEC processing is over and hence we need to do it here. 25831 */ 25832 ASSERT(q != NULL); 25833 UPDATE_OB_PKT_COUNT(ire); 25834 ire->ire_last_used_time = lbolt; 25835 if (ipha->ipha_src == 0) 25836 ipha->ipha_src = ire->ire_src_addr; 25837 25838 /* PFHooks: LOOPBACK_OUT */ 25839 out_ill = ire->ire_ipif->ipif_ill; 25840 25841 DTRACE_PROBE4(ip4__loopback__out__start, 25842 ill_t *, NULL, ill_t *, out_ill, 25843 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25844 25845 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25846 ipst->ips_ipv4firewall_loopback_out, 25847 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25848 25849 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25850 25851 if (ipsec_mp != NULL) 25852 ip_wput_local(RD(q), out_ill, 25853 ipha, ipsec_mp, ire, 0, zoneid); 25854 if (ire_need_rele) 25855 ire_refrele(ire); 25856 goto done; 25857 } 25858 25859 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25860 /* 25861 * We are through with IPSEC processing. 25862 * Fragment this and send it on the wire. 25863 */ 25864 if (io->ipsec_out_accelerated) { 25865 /* 25866 * The packet has been accelerated but must 25867 * be fragmented. This should not happen 25868 * since AH and ESP must not accelerate 25869 * packets that need fragmentation, however 25870 * the configuration could have changed 25871 * since the AH or ESP processing. 25872 * Drop packet. 25873 * IPsec KSTATS: bump bean counter here. 25874 */ 25875 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25876 "fragmented accelerated packet!\n")); 25877 freemsg(ipsec_mp); 25878 } else { 25879 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 25880 } 25881 if (ire_need_rele) 25882 ire_refrele(ire); 25883 goto done; 25884 } 25885 25886 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25887 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25888 (void *)ire->ire_ipif, (void *)ipif)); 25889 25890 /* 25891 * Multiroute the secured packet, unless IPsec really 25892 * requires the packet to go out only through a particular 25893 * interface. 25894 */ 25895 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25896 ire_t *first_ire; 25897 irb = ire->ire_bucket; 25898 ASSERT(irb != NULL); 25899 /* 25900 * This ire has been looked up as the one that 25901 * goes through the given ipif; 25902 * make sure we do not omit any other multiroute ire 25903 * that may be present in the bucket before this one. 25904 */ 25905 IRB_REFHOLD(irb); 25906 for (first_ire = irb->irb_ire; 25907 first_ire != NULL; 25908 first_ire = first_ire->ire_next) { 25909 if ((first_ire->ire_flags & RTF_MULTIRT) && 25910 (first_ire->ire_addr == ire->ire_addr) && 25911 !(first_ire->ire_marks & 25912 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 25913 break; 25914 } 25915 } 25916 25917 if ((first_ire != NULL) && (first_ire != ire)) { 25918 /* 25919 * Don't change the ire if the packet must 25920 * be fragmented if sent via this new one. 25921 */ 25922 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25923 IRE_REFHOLD(first_ire); 25924 if (ire_need_rele) 25925 ire_refrele(ire); 25926 else 25927 ire_need_rele = B_TRUE; 25928 ire = first_ire; 25929 } 25930 } 25931 IRB_REFRELE(irb); 25932 25933 multirt_send = B_TRUE; 25934 max_frag = ire->ire_max_frag; 25935 } else { 25936 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25937 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25938 "flag, attach_if %d\n", attach_if)); 25939 } 25940 } 25941 25942 /* 25943 * In most cases, the emission loop below is entered only once. 25944 * Only in the case where the ire holds the RTF_MULTIRT 25945 * flag, we loop to process all RTF_MULTIRT ires in the 25946 * bucket, and send the packet through all crossed 25947 * RTF_MULTIRT routes. 25948 */ 25949 do { 25950 if (multirt_send) { 25951 /* 25952 * ire1 holds here the next ire to process in the 25953 * bucket. If multirouting is expected, 25954 * any non-RTF_MULTIRT ire that has the 25955 * right destination address is ignored. 25956 */ 25957 ASSERT(irb != NULL); 25958 IRB_REFHOLD(irb); 25959 for (ire1 = ire->ire_next; 25960 ire1 != NULL; 25961 ire1 = ire1->ire_next) { 25962 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25963 continue; 25964 if (ire1->ire_addr != ire->ire_addr) 25965 continue; 25966 if (ire1->ire_marks & 25967 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25968 continue; 25969 /* No loopback here */ 25970 if (ire1->ire_stq == NULL) 25971 continue; 25972 /* 25973 * Ensure we do not exceed the MTU 25974 * of the next route. 25975 */ 25976 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25977 ip_multirt_bad_mtu(ire1, max_frag); 25978 continue; 25979 } 25980 25981 IRE_REFHOLD(ire1); 25982 break; 25983 } 25984 IRB_REFRELE(irb); 25985 if (ire1 != NULL) { 25986 /* 25987 * We are in a multiple send case, need to 25988 * make a copy of the packet. 25989 */ 25990 next_mp = copymsg(ipsec_mp); 25991 if (next_mp == NULL) { 25992 ire_refrele(ire1); 25993 ire1 = NULL; 25994 } 25995 } 25996 } 25997 /* 25998 * Everything is done. Send it out on the wire 25999 * 26000 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26001 * either send it on the wire or, in the case of 26002 * HW acceleration, call ipsec_hw_putnext. 26003 */ 26004 if (ire->ire_nce && 26005 ire->ire_nce->nce_state != ND_REACHABLE) { 26006 DTRACE_PROBE2(ip__wput__ipsec__bail, 26007 (ire_t *), ire, (mblk_t *), ipsec_mp); 26008 /* 26009 * If ire's link-layer is unresolved (this 26010 * would only happen if the incomplete ire 26011 * was added to cachetable via forwarding path) 26012 * don't bother going to ip_xmit_v4. Just drop the 26013 * packet. 26014 * There is a slight risk here, in that, if we 26015 * have the forwarding path create an incomplete 26016 * IRE, then until the IRE is completed, any 26017 * transmitted IPSEC packets will be dropped 26018 * instead of being queued waiting for resolution. 26019 * 26020 * But the likelihood of a forwarding packet and a wput 26021 * packet sending to the same dst at the same time 26022 * and there not yet be an ARP entry for it is small. 26023 * Furthermore, if this actually happens, it might 26024 * be likely that wput would generate multiple 26025 * packets (and forwarding would also have a train 26026 * of packets) for that destination. If this is 26027 * the case, some of them would have been dropped 26028 * anyway, since ARP only queues a few packets while 26029 * waiting for resolution 26030 * 26031 * NOTE: We should really call ip_xmit_v4, 26032 * and let it queue the packet and send the 26033 * ARP query and have ARP come back thus: 26034 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26035 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26036 * hw accel work. But it's too complex to get 26037 * the IPsec hw acceleration approach to fit 26038 * well with ip_xmit_v4 doing ARP without 26039 * doing IPSEC simplification. For now, we just 26040 * poke ip_xmit_v4 to trigger the arp resolve, so 26041 * that we can continue with the send on the next 26042 * attempt. 26043 * 26044 * XXX THis should be revisited, when 26045 * the IPsec/IP interaction is cleaned up 26046 */ 26047 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26048 " - dropping packet\n")); 26049 freemsg(ipsec_mp); 26050 /* 26051 * Call ip_xmit_v4() to trigger ARP query 26052 * in case the nce_state is ND_INITIAL 26053 */ 26054 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26055 goto drop_pkt; 26056 } 26057 26058 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26059 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26060 mblk_t *, ipsec_mp); 26061 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26062 ipst->ips_ipv4firewall_physical_out, 26063 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26064 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26065 if (ipsec_mp == NULL) 26066 goto drop_pkt; 26067 26068 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26069 pktxmit_state = ip_xmit_v4(mp, ire, 26070 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26071 26072 if ((pktxmit_state == SEND_FAILED) || 26073 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26074 26075 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26076 drop_pkt: 26077 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26078 ipIfStatsOutDiscards); 26079 if (ire_need_rele) 26080 ire_refrele(ire); 26081 if (ire1 != NULL) { 26082 ire_refrele(ire1); 26083 freemsg(next_mp); 26084 } 26085 goto done; 26086 } 26087 26088 freeb(ipsec_mp); 26089 if (ire_need_rele) 26090 ire_refrele(ire); 26091 26092 if (ire1 != NULL) { 26093 ire = ire1; 26094 ire_need_rele = B_TRUE; 26095 ASSERT(next_mp); 26096 ipsec_mp = next_mp; 26097 mp = ipsec_mp->b_cont; 26098 ire1 = NULL; 26099 next_mp = NULL; 26100 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26101 } else { 26102 multirt_send = B_FALSE; 26103 } 26104 } while (multirt_send); 26105 done: 26106 if (ill != NULL && ill_need_rele) 26107 ill_refrele(ill); 26108 if (ipif != NULL) 26109 ipif_refrele(ipif); 26110 } 26111 26112 /* 26113 * Get the ill corresponding to the specified ire, and compare its 26114 * capabilities with the protocol and algorithms specified by the 26115 * the SA obtained from ipsec_out. If they match, annotate the 26116 * ipsec_out structure to indicate that the packet needs acceleration. 26117 * 26118 * 26119 * A packet is eligible for outbound hardware acceleration if the 26120 * following conditions are satisfied: 26121 * 26122 * 1. the packet will not be fragmented 26123 * 2. the provider supports the algorithm 26124 * 3. there is no pending control message being exchanged 26125 * 4. snoop is not attached 26126 * 5. the destination address is not a broadcast or multicast address. 26127 * 26128 * Rationale: 26129 * - Hardware drivers do not support fragmentation with 26130 * the current interface. 26131 * - snoop, multicast, and broadcast may result in exposure of 26132 * a cleartext datagram. 26133 * We check all five of these conditions here. 26134 * 26135 * XXX would like to nuke "ire_t *" parameter here; problem is that 26136 * IRE is only way to figure out if a v4 address is a broadcast and 26137 * thus ineligible for acceleration... 26138 */ 26139 static void 26140 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26141 { 26142 ipsec_out_t *io; 26143 mblk_t *data_mp; 26144 uint_t plen, overhead; 26145 ip_stack_t *ipst; 26146 26147 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26148 return; 26149 26150 if (ill == NULL) 26151 return; 26152 ipst = ill->ill_ipst; 26153 /* 26154 * Destination address is a broadcast or multicast. Punt. 26155 */ 26156 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26157 IRE_LOCAL))) 26158 return; 26159 26160 data_mp = ipsec_mp->b_cont; 26161 26162 if (ill->ill_isv6) { 26163 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26164 26165 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26166 return; 26167 26168 plen = ip6h->ip6_plen; 26169 } else { 26170 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26171 26172 if (CLASSD(ipha->ipha_dst)) 26173 return; 26174 26175 plen = ipha->ipha_length; 26176 } 26177 /* 26178 * Is there a pending DLPI control message being exchanged 26179 * between IP/IPsec and the DLS Provider? If there is, it 26180 * could be a SADB update, and the state of the DLS Provider 26181 * SADB might not be in sync with the SADB maintained by 26182 * IPsec. To avoid dropping packets or using the wrong keying 26183 * material, we do not accelerate this packet. 26184 */ 26185 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26186 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26187 "ill_dlpi_pending! don't accelerate packet\n")); 26188 return; 26189 } 26190 26191 /* 26192 * Is the Provider in promiscous mode? If it does, we don't 26193 * accelerate the packet since it will bounce back up to the 26194 * listeners in the clear. 26195 */ 26196 if (ill->ill_promisc_on_phys) { 26197 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26198 "ill in promiscous mode, don't accelerate packet\n")); 26199 return; 26200 } 26201 26202 /* 26203 * Will the packet require fragmentation? 26204 */ 26205 26206 /* 26207 * IPsec ESP note: this is a pessimistic estimate, but the same 26208 * as is used elsewhere. 26209 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26210 * + 2-byte trailer 26211 */ 26212 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26213 IPSEC_BASE_ESP_HDR_SIZE(sa); 26214 26215 if ((plen + overhead) > ill->ill_max_mtu) 26216 return; 26217 26218 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26219 26220 /* 26221 * Can the ill accelerate this IPsec protocol and algorithm 26222 * specified by the SA? 26223 */ 26224 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26225 ill->ill_isv6, sa, ipst->ips_netstack)) { 26226 return; 26227 } 26228 26229 /* 26230 * Tell AH or ESP that the outbound ill is capable of 26231 * accelerating this packet. 26232 */ 26233 io->ipsec_out_is_capab_ill = B_TRUE; 26234 } 26235 26236 /* 26237 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26238 * 26239 * If this function returns B_TRUE, the requested SA's have been filled 26240 * into the ipsec_out_*_sa pointers. 26241 * 26242 * If the function returns B_FALSE, the packet has been "consumed", most 26243 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26244 * 26245 * The SA references created by the protocol-specific "select" 26246 * function will be released when the ipsec_mp is freed, thanks to the 26247 * ipsec_out_free destructor -- see spd.c. 26248 */ 26249 static boolean_t 26250 ipsec_out_select_sa(mblk_t *ipsec_mp) 26251 { 26252 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26253 ipsec_out_t *io; 26254 ipsec_policy_t *pp; 26255 ipsec_action_t *ap; 26256 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26257 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26258 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26259 26260 if (!io->ipsec_out_secure) { 26261 /* 26262 * We came here by mistake. 26263 * Don't bother with ipsec processing 26264 * We should "discourage" this path in the future. 26265 */ 26266 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26267 return (B_FALSE); 26268 } 26269 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26270 ASSERT((io->ipsec_out_policy != NULL) || 26271 (io->ipsec_out_act != NULL)); 26272 26273 ASSERT(io->ipsec_out_failed == B_FALSE); 26274 26275 /* 26276 * IPSEC processing has started. 26277 */ 26278 io->ipsec_out_proc_begin = B_TRUE; 26279 ap = io->ipsec_out_act; 26280 if (ap == NULL) { 26281 pp = io->ipsec_out_policy; 26282 ASSERT(pp != NULL); 26283 ap = pp->ipsp_act; 26284 ASSERT(ap != NULL); 26285 } 26286 26287 /* 26288 * We have an action. now, let's select SA's. 26289 * (In the future, we can cache this in the conn_t..) 26290 */ 26291 if (ap->ipa_want_esp) { 26292 if (io->ipsec_out_esp_sa == NULL) { 26293 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26294 IPPROTO_ESP); 26295 } 26296 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26297 } 26298 26299 if (ap->ipa_want_ah) { 26300 if (io->ipsec_out_ah_sa == NULL) { 26301 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26302 IPPROTO_AH); 26303 } 26304 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26305 /* 26306 * The ESP and AH processing order needs to be preserved 26307 * when both protocols are required (ESP should be applied 26308 * before AH for an outbound packet). Force an ESP ACQUIRE 26309 * when both ESP and AH are required, and an AH ACQUIRE 26310 * is needed. 26311 */ 26312 if (ap->ipa_want_esp && need_ah_acquire) 26313 need_esp_acquire = B_TRUE; 26314 } 26315 26316 /* 26317 * Send an ACQUIRE (extended, regular, or both) if we need one. 26318 * Release SAs that got referenced, but will not be used until we 26319 * acquire _all_ of the SAs we need. 26320 */ 26321 if (need_ah_acquire || need_esp_acquire) { 26322 if (io->ipsec_out_ah_sa != NULL) { 26323 IPSA_REFRELE(io->ipsec_out_ah_sa); 26324 io->ipsec_out_ah_sa = NULL; 26325 } 26326 if (io->ipsec_out_esp_sa != NULL) { 26327 IPSA_REFRELE(io->ipsec_out_esp_sa); 26328 io->ipsec_out_esp_sa = NULL; 26329 } 26330 26331 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26332 return (B_FALSE); 26333 } 26334 26335 return (B_TRUE); 26336 } 26337 26338 /* 26339 * Process an IPSEC_OUT message and see what you can 26340 * do with it. 26341 * IPQoS Notes: 26342 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26343 * IPSec. 26344 * XXX would like to nuke ire_t. 26345 * XXX ill_index better be "real" 26346 */ 26347 void 26348 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26349 { 26350 ipsec_out_t *io; 26351 ipsec_policy_t *pp; 26352 ipsec_action_t *ap; 26353 ipha_t *ipha; 26354 ip6_t *ip6h; 26355 mblk_t *mp; 26356 ill_t *ill; 26357 zoneid_t zoneid; 26358 ipsec_status_t ipsec_rc; 26359 boolean_t ill_need_rele = B_FALSE; 26360 ip_stack_t *ipst; 26361 ipsec_stack_t *ipss; 26362 26363 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26364 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26365 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26366 ipst = io->ipsec_out_ns->netstack_ip; 26367 mp = ipsec_mp->b_cont; 26368 26369 /* 26370 * Initiate IPPF processing. We do it here to account for packets 26371 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26372 * We can check for ipsec_out_proc_begin even for such packets, as 26373 * they will always be false (asserted below). 26374 */ 26375 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26376 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26377 io->ipsec_out_ill_index : ill_index); 26378 if (mp == NULL) { 26379 ip2dbg(("ipsec_out_process: packet dropped "\ 26380 "during IPPF processing\n")); 26381 freeb(ipsec_mp); 26382 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26383 return; 26384 } 26385 } 26386 26387 if (!io->ipsec_out_secure) { 26388 /* 26389 * We came here by mistake. 26390 * Don't bother with ipsec processing 26391 * Should "discourage" this path in the future. 26392 */ 26393 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26394 goto done; 26395 } 26396 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26397 ASSERT((io->ipsec_out_policy != NULL) || 26398 (io->ipsec_out_act != NULL)); 26399 ASSERT(io->ipsec_out_failed == B_FALSE); 26400 26401 ipss = ipst->ips_netstack->netstack_ipsec; 26402 if (!ipsec_loaded(ipss)) { 26403 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26404 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26405 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26406 } else { 26407 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26408 } 26409 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26410 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26411 &ipss->ipsec_dropper); 26412 return; 26413 } 26414 26415 /* 26416 * IPSEC processing has started. 26417 */ 26418 io->ipsec_out_proc_begin = B_TRUE; 26419 ap = io->ipsec_out_act; 26420 if (ap == NULL) { 26421 pp = io->ipsec_out_policy; 26422 ASSERT(pp != NULL); 26423 ap = pp->ipsp_act; 26424 ASSERT(ap != NULL); 26425 } 26426 26427 /* 26428 * Save the outbound ill index. When the packet comes back 26429 * from IPsec, we make sure the ill hasn't changed or disappeared 26430 * before sending it the accelerated packet. 26431 */ 26432 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26433 int ifindex; 26434 ill = ire_to_ill(ire); 26435 ifindex = ill->ill_phyint->phyint_ifindex; 26436 io->ipsec_out_capab_ill_index = ifindex; 26437 } 26438 26439 /* 26440 * The order of processing is first insert a IP header if needed. 26441 * Then insert the ESP header and then the AH header. 26442 */ 26443 if ((io->ipsec_out_se_done == B_FALSE) && 26444 (ap->ipa_want_se)) { 26445 /* 26446 * First get the outer IP header before sending 26447 * it to ESP. 26448 */ 26449 ipha_t *oipha, *iipha; 26450 mblk_t *outer_mp, *inner_mp; 26451 26452 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26453 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26454 "ipsec_out_process: " 26455 "Self-Encapsulation failed: Out of memory\n"); 26456 freemsg(ipsec_mp); 26457 if (ill != NULL) { 26458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26459 } else { 26460 BUMP_MIB(&ipst->ips_ip_mib, 26461 ipIfStatsOutDiscards); 26462 } 26463 return; 26464 } 26465 inner_mp = ipsec_mp->b_cont; 26466 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26467 oipha = (ipha_t *)outer_mp->b_rptr; 26468 iipha = (ipha_t *)inner_mp->b_rptr; 26469 *oipha = *iipha; 26470 outer_mp->b_wptr += sizeof (ipha_t); 26471 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26472 sizeof (ipha_t)); 26473 oipha->ipha_protocol = IPPROTO_ENCAP; 26474 oipha->ipha_version_and_hdr_length = 26475 IP_SIMPLE_HDR_VERSION; 26476 oipha->ipha_hdr_checksum = 0; 26477 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26478 outer_mp->b_cont = inner_mp; 26479 ipsec_mp->b_cont = outer_mp; 26480 26481 io->ipsec_out_se_done = B_TRUE; 26482 io->ipsec_out_tunnel = B_TRUE; 26483 } 26484 26485 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26486 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26487 !ipsec_out_select_sa(ipsec_mp)) 26488 return; 26489 26490 /* 26491 * By now, we know what SA's to use. Toss over to ESP & AH 26492 * to do the heavy lifting. 26493 */ 26494 zoneid = io->ipsec_out_zoneid; 26495 ASSERT(zoneid != ALL_ZONES); 26496 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26497 ASSERT(io->ipsec_out_esp_sa != NULL); 26498 io->ipsec_out_esp_done = B_TRUE; 26499 /* 26500 * Note that since hw accel can only apply one transform, 26501 * not two, we skip hw accel for ESP if we also have AH 26502 * This is an design limitation of the interface 26503 * which should be revisited. 26504 */ 26505 ASSERT(ire != NULL); 26506 if (io->ipsec_out_ah_sa == NULL) { 26507 ill = (ill_t *)ire->ire_stq->q_ptr; 26508 ipsec_out_is_accelerated(ipsec_mp, 26509 io->ipsec_out_esp_sa, ill, ire); 26510 } 26511 26512 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26513 switch (ipsec_rc) { 26514 case IPSEC_STATUS_SUCCESS: 26515 break; 26516 case IPSEC_STATUS_FAILED: 26517 if (ill != NULL) { 26518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26519 } else { 26520 BUMP_MIB(&ipst->ips_ip_mib, 26521 ipIfStatsOutDiscards); 26522 } 26523 /* FALLTHRU */ 26524 case IPSEC_STATUS_PENDING: 26525 return; 26526 } 26527 } 26528 26529 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26530 ASSERT(io->ipsec_out_ah_sa != NULL); 26531 io->ipsec_out_ah_done = B_TRUE; 26532 if (ire == NULL) { 26533 int idx = io->ipsec_out_capab_ill_index; 26534 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26535 NULL, NULL, NULL, NULL, ipst); 26536 ill_need_rele = B_TRUE; 26537 } else { 26538 ill = (ill_t *)ire->ire_stq->q_ptr; 26539 } 26540 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26541 ire); 26542 26543 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26544 switch (ipsec_rc) { 26545 case IPSEC_STATUS_SUCCESS: 26546 break; 26547 case IPSEC_STATUS_FAILED: 26548 if (ill != NULL) { 26549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26550 } else { 26551 BUMP_MIB(&ipst->ips_ip_mib, 26552 ipIfStatsOutDiscards); 26553 } 26554 /* FALLTHRU */ 26555 case IPSEC_STATUS_PENDING: 26556 if (ill != NULL && ill_need_rele) 26557 ill_refrele(ill); 26558 return; 26559 } 26560 } 26561 /* 26562 * We are done with IPSEC processing. Send it over 26563 * the wire. 26564 */ 26565 done: 26566 mp = ipsec_mp->b_cont; 26567 ipha = (ipha_t *)mp->b_rptr; 26568 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26569 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26570 } else { 26571 ip6h = (ip6_t *)ipha; 26572 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26573 } 26574 if (ill != NULL && ill_need_rele) 26575 ill_refrele(ill); 26576 } 26577 26578 /* ARGSUSED */ 26579 void 26580 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26581 { 26582 opt_restart_t *or; 26583 int err; 26584 conn_t *connp; 26585 26586 ASSERT(CONN_Q(q)); 26587 connp = Q_TO_CONN(q); 26588 26589 ASSERT(first_mp->b_datap->db_type == M_CTL); 26590 or = (opt_restart_t *)first_mp->b_rptr; 26591 /* 26592 * We don't need to pass any credentials here since this is just 26593 * a restart. The credentials are passed in when svr4_optcom_req 26594 * is called the first time (from ip_wput_nondata). 26595 */ 26596 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26597 err = svr4_optcom_req(q, first_mp, NULL, 26598 &ip_opt_obj); 26599 } else { 26600 ASSERT(or->or_type == T_OPTMGMT_REQ); 26601 err = tpi_optcom_req(q, first_mp, NULL, 26602 &ip_opt_obj); 26603 } 26604 if (err != EINPROGRESS) { 26605 /* operation is done */ 26606 CONN_OPER_PENDING_DONE(connp); 26607 } 26608 } 26609 26610 /* 26611 * ioctls that go through a down/up sequence may need to wait for the down 26612 * to complete. This involves waiting for the ire and ipif refcnts to go down 26613 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26614 */ 26615 /* ARGSUSED */ 26616 void 26617 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26618 { 26619 struct iocblk *iocp; 26620 mblk_t *mp1; 26621 ip_ioctl_cmd_t *ipip; 26622 int err; 26623 sin_t *sin; 26624 struct lifreq *lifr; 26625 struct ifreq *ifr; 26626 26627 iocp = (struct iocblk *)mp->b_rptr; 26628 ASSERT(ipsq != NULL); 26629 /* Existence of mp1 verified in ip_wput_nondata */ 26630 mp1 = mp->b_cont->b_cont; 26631 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26632 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26633 /* 26634 * Special case where ipsq_current_ipif is not set: 26635 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26636 * ill could also have become part of a ipmp group in the 26637 * process, we are here as were not able to complete the 26638 * operation in ipif_set_values because we could not become 26639 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26640 * will not be set so we need to set it. 26641 */ 26642 ill_t *ill = q->q_ptr; 26643 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26644 } 26645 ASSERT(ipsq->ipsq_current_ipif != NULL); 26646 26647 if (ipip->ipi_cmd_type == IF_CMD) { 26648 /* This a old style SIOC[GS]IF* command */ 26649 ifr = (struct ifreq *)mp1->b_rptr; 26650 sin = (sin_t *)&ifr->ifr_addr; 26651 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26652 /* This a new style SIOC[GS]LIF* command */ 26653 lifr = (struct lifreq *)mp1->b_rptr; 26654 sin = (sin_t *)&lifr->lifr_addr; 26655 } else { 26656 sin = NULL; 26657 } 26658 26659 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26660 ipip, mp1->b_rptr); 26661 26662 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26663 } 26664 26665 /* 26666 * ioctl processing 26667 * 26668 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26669 * the ioctl command in the ioctl tables and determines the copyin data size 26670 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26671 * size. 26672 * 26673 * ioctl processing then continues when the M_IOCDATA makes its way down. 26674 * Now the ioctl is looked up again in the ioctl table, and its properties are 26675 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26676 * and the general ioctl processing function ip_process_ioctl is called. 26677 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26678 * so goes thru the serialization primitive ipsq_try_enter. Then the 26679 * appropriate function to handle the ioctl is called based on the entry in 26680 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26681 * which also refreleases the 'conn' that was refheld at the start of the 26682 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26683 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26684 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26685 * 26686 * Many exclusive ioctls go thru an internal down up sequence as part of 26687 * the operation. For example an attempt to change the IP address of an 26688 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26689 * does all the cleanup such as deleting all ires that use this address. 26690 * Then we need to wait till all references to the interface go away. 26691 */ 26692 void 26693 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26694 { 26695 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26696 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26697 cmd_info_t ci; 26698 int err; 26699 boolean_t entered_ipsq = B_FALSE; 26700 26701 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26702 26703 if (ipip == NULL) 26704 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26705 26706 /* 26707 * SIOCLIFADDIF needs to go thru a special path since the 26708 * ill may not exist yet. This happens in the case of lo0 26709 * which is created using this ioctl. 26710 */ 26711 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26712 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26713 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26714 return; 26715 } 26716 26717 ci.ci_ipif = NULL; 26718 switch (ipip->ipi_cmd_type) { 26719 case IF_CMD: 26720 case LIF_CMD: 26721 /* 26722 * ioctls that pass in a [l]ifreq appear here. 26723 * ip_extract_lifreq_cmn returns a refheld ipif in 26724 * ci.ci_ipif 26725 */ 26726 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26727 ipip->ipi_flags, &ci, ip_process_ioctl); 26728 if (err != 0) { 26729 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26730 return; 26731 } 26732 ASSERT(ci.ci_ipif != NULL); 26733 break; 26734 26735 case TUN_CMD: 26736 /* 26737 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26738 * a refheld ipif in ci.ci_ipif 26739 */ 26740 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26741 if (err != 0) { 26742 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26743 return; 26744 } 26745 ASSERT(ci.ci_ipif != NULL); 26746 break; 26747 26748 case MISC_CMD: 26749 /* 26750 * ioctls that neither pass in [l]ifreq or iftun_req come here 26751 * For eg. SIOCGLIFCONF will appear here. 26752 */ 26753 switch (ipip->ipi_cmd) { 26754 case IF_UNITSEL: 26755 /* ioctl comes down the ill */ 26756 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26757 ipif_refhold(ci.ci_ipif); 26758 break; 26759 case SIOCGMSFILTER: 26760 case SIOCSMSFILTER: 26761 case SIOCGIPMSFILTER: 26762 case SIOCSIPMSFILTER: 26763 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26764 ip_process_ioctl); 26765 if (err != 0) { 26766 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 26767 NULL); 26768 } 26769 break; 26770 } 26771 err = 0; 26772 ci.ci_sin = NULL; 26773 ci.ci_sin6 = NULL; 26774 ci.ci_lifr = NULL; 26775 break; 26776 } 26777 26778 /* 26779 * If ipsq is non-null, we are already being called exclusively 26780 */ 26781 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26782 if (!(ipip->ipi_flags & IPI_WR)) { 26783 /* 26784 * A return value of EINPROGRESS means the ioctl is 26785 * either queued and waiting for some reason or has 26786 * already completed. 26787 */ 26788 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26789 ci.ci_lifr); 26790 if (ci.ci_ipif != NULL) 26791 ipif_refrele(ci.ci_ipif); 26792 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26793 return; 26794 } 26795 26796 ASSERT(ci.ci_ipif != NULL); 26797 26798 if (ipsq == NULL) { 26799 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26800 ip_process_ioctl, NEW_OP, B_TRUE); 26801 entered_ipsq = B_TRUE; 26802 } 26803 /* 26804 * Release the ipif so that ipif_down and friends that wait for 26805 * references to go away are not misled about the current ipif_refcnt 26806 * values. We are writer so we can access the ipif even after releasing 26807 * the ipif. 26808 */ 26809 ipif_refrele(ci.ci_ipif); 26810 if (ipsq == NULL) 26811 return; 26812 26813 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26814 26815 /* 26816 * For most set ioctls that come here, this serves as a single point 26817 * where we set the IPIF_CHANGING flag. This ensures that there won't 26818 * be any new references to the ipif. This helps functions that go 26819 * through this path and end up trying to wait for the refcnts 26820 * associated with the ipif to go down to zero. Some exceptions are 26821 * Failover, Failback, and Groupname commands that operate on more than 26822 * just the ci.ci_ipif. These commands internally determine the 26823 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26824 * flags on that set. Another exception is the Removeif command that 26825 * sets the IPIF_CONDEMNED flag internally after identifying the right 26826 * ipif to operate on. 26827 */ 26828 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26829 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26830 ipip->ipi_cmd != SIOCLIFFAILOVER && 26831 ipip->ipi_cmd != SIOCLIFFAILBACK && 26832 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26833 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26834 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26835 26836 /* 26837 * A return value of EINPROGRESS means the ioctl is 26838 * either queued and waiting for some reason or has 26839 * already completed. 26840 */ 26841 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26842 26843 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26844 26845 if (entered_ipsq) 26846 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26847 } 26848 26849 /* 26850 * Complete the ioctl. Typically ioctls use the mi package and need to 26851 * do mi_copyout/mi_copy_done. 26852 */ 26853 void 26854 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26855 { 26856 conn_t *connp = NULL; 26857 26858 if (err == EINPROGRESS) 26859 return; 26860 26861 if (CONN_Q(q)) { 26862 connp = Q_TO_CONN(q); 26863 ASSERT(connp->conn_ref >= 2); 26864 } 26865 26866 switch (mode) { 26867 case COPYOUT: 26868 if (err == 0) 26869 mi_copyout(q, mp); 26870 else 26871 mi_copy_done(q, mp, err); 26872 break; 26873 26874 case NO_COPYOUT: 26875 mi_copy_done(q, mp, err); 26876 break; 26877 26878 default: 26879 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26880 break; 26881 } 26882 26883 /* 26884 * The refhold placed at the start of the ioctl is released here. 26885 */ 26886 if (connp != NULL) 26887 CONN_OPER_PENDING_DONE(connp); 26888 26889 if (ipsq != NULL) 26890 ipsq_current_finish(ipsq); 26891 } 26892 26893 /* 26894 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26895 */ 26896 /* ARGSUSED */ 26897 void 26898 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26899 { 26900 conn_t *connp = arg; 26901 tcp_t *tcp; 26902 26903 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26904 tcp = connp->conn_tcp; 26905 26906 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26907 freemsg(mp); 26908 else 26909 tcp_rput_other(tcp, mp); 26910 CONN_OPER_PENDING_DONE(connp); 26911 } 26912 26913 /* Called from ip_wput for all non data messages */ 26914 /* ARGSUSED */ 26915 void 26916 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26917 { 26918 mblk_t *mp1; 26919 ire_t *ire, *fake_ire; 26920 ill_t *ill; 26921 struct iocblk *iocp; 26922 ip_ioctl_cmd_t *ipip; 26923 cred_t *cr; 26924 conn_t *connp; 26925 int cmd, err; 26926 nce_t *nce; 26927 ipif_t *ipif; 26928 ip_stack_t *ipst; 26929 char *proto_str; 26930 26931 if (CONN_Q(q)) { 26932 connp = Q_TO_CONN(q); 26933 ipst = connp->conn_netstack->netstack_ip; 26934 } else { 26935 connp = NULL; 26936 ipst = ILLQ_TO_IPST(q); 26937 } 26938 26939 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26940 26941 /* Check if it is a queue to /dev/sctp. */ 26942 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26943 connp->conn_rq == NULL) { 26944 sctp_wput(q, mp); 26945 return; 26946 } 26947 26948 switch (DB_TYPE(mp)) { 26949 case M_IOCTL: 26950 /* 26951 * IOCTL processing begins in ip_sioctl_copyin_setup which 26952 * will arrange to copy in associated control structures. 26953 */ 26954 ip_sioctl_copyin_setup(q, mp); 26955 return; 26956 case M_IOCDATA: 26957 /* 26958 * Ensure that this is associated with one of our trans- 26959 * parent ioctls. If it's not ours, discard it if we're 26960 * running as a driver, or pass it on if we're a module. 26961 */ 26962 iocp = (struct iocblk *)mp->b_rptr; 26963 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26964 if (ipip == NULL) { 26965 if (q->q_next == NULL) { 26966 goto nak; 26967 } else { 26968 putnext(q, mp); 26969 } 26970 return; 26971 } else if ((q->q_next != NULL) && 26972 !(ipip->ipi_flags & IPI_MODOK)) { 26973 /* 26974 * the ioctl is one we recognise, but is not 26975 * consumed by IP as a module, pass M_IOCDATA 26976 * for processing downstream, but only for 26977 * common Streams ioctls. 26978 */ 26979 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26980 putnext(q, mp); 26981 return; 26982 } else { 26983 goto nak; 26984 } 26985 } 26986 26987 /* IOCTL continuation following copyin or copyout. */ 26988 if (mi_copy_state(q, mp, NULL) == -1) { 26989 /* 26990 * The copy operation failed. mi_copy_state already 26991 * cleaned up, so we're out of here. 26992 */ 26993 return; 26994 } 26995 /* 26996 * If we just completed a copy in, we become writer and 26997 * continue processing in ip_sioctl_copyin_done. If it 26998 * was a copy out, we call mi_copyout again. If there is 26999 * nothing more to copy out, it will complete the IOCTL. 27000 */ 27001 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27002 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27003 mi_copy_done(q, mp, EPROTO); 27004 return; 27005 } 27006 /* 27007 * Check for cases that need more copying. A return 27008 * value of 0 means a second copyin has been started, 27009 * so we return; a return value of 1 means no more 27010 * copying is needed, so we continue. 27011 */ 27012 cmd = iocp->ioc_cmd; 27013 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27014 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27015 MI_COPY_COUNT(mp) == 1) { 27016 if (ip_copyin_msfilter(q, mp) == 0) 27017 return; 27018 } 27019 /* 27020 * Refhold the conn, till the ioctl completes. This is 27021 * needed in case the ioctl ends up in the pending mp 27022 * list. Every mp in the ill_pending_mp list and 27023 * the ipsq_pending_mp must have a refhold on the conn 27024 * to resume processing. The refhold is released when 27025 * the ioctl completes. (normally or abnormally) 27026 * In all cases ip_ioctl_finish is called to finish 27027 * the ioctl. 27028 */ 27029 if (connp != NULL) { 27030 /* This is not a reentry */ 27031 ASSERT(ipsq == NULL); 27032 CONN_INC_REF(connp); 27033 } else { 27034 if (!(ipip->ipi_flags & IPI_MODOK)) { 27035 mi_copy_done(q, mp, EINVAL); 27036 return; 27037 } 27038 } 27039 27040 ip_process_ioctl(ipsq, q, mp, ipip); 27041 27042 } else { 27043 mi_copyout(q, mp); 27044 } 27045 return; 27046 nak: 27047 iocp->ioc_error = EINVAL; 27048 mp->b_datap->db_type = M_IOCNAK; 27049 iocp->ioc_count = 0; 27050 qreply(q, mp); 27051 return; 27052 27053 case M_IOCNAK: 27054 /* 27055 * The only way we could get here is if a resolver didn't like 27056 * an IOCTL we sent it. This shouldn't happen. 27057 */ 27058 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27059 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27060 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27061 freemsg(mp); 27062 return; 27063 case M_IOCACK: 27064 /* /dev/ip shouldn't see this */ 27065 if (CONN_Q(q)) 27066 goto nak; 27067 27068 /* Finish socket ioctls passed through to ARP. */ 27069 ip_sioctl_iocack(q, mp); 27070 return; 27071 case M_FLUSH: 27072 if (*mp->b_rptr & FLUSHW) 27073 flushq(q, FLUSHALL); 27074 if (q->q_next) { 27075 putnext(q, mp); 27076 return; 27077 } 27078 if (*mp->b_rptr & FLUSHR) { 27079 *mp->b_rptr &= ~FLUSHW; 27080 qreply(q, mp); 27081 return; 27082 } 27083 freemsg(mp); 27084 return; 27085 case IRE_DB_REQ_TYPE: 27086 if (connp == NULL) { 27087 proto_str = "IRE_DB_REQ_TYPE"; 27088 goto protonak; 27089 } 27090 /* An Upper Level Protocol wants a copy of an IRE. */ 27091 ip_ire_req(q, mp); 27092 return; 27093 case M_CTL: 27094 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27095 break; 27096 27097 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27098 TUN_HELLO) { 27099 ASSERT(connp != NULL); 27100 connp->conn_flags |= IPCL_IPTUN; 27101 freeb(mp); 27102 return; 27103 } 27104 27105 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27106 IP_ULP_OUT_LABELED) { 27107 out_labeled_t *olp; 27108 27109 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27110 break; 27111 olp = (out_labeled_t *)mp->b_rptr; 27112 connp->conn_ulp_labeled = olp->out_qnext == q; 27113 freemsg(mp); 27114 return; 27115 } 27116 27117 /* M_CTL messages are used by ARP to tell us things. */ 27118 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27119 break; 27120 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27121 case AR_ENTRY_SQUERY: 27122 ip_wput_ctl(q, mp); 27123 return; 27124 case AR_CLIENT_NOTIFY: 27125 ip_arp_news(q, mp); 27126 return; 27127 case AR_DLPIOP_DONE: 27128 ASSERT(q->q_next != NULL); 27129 ill = (ill_t *)q->q_ptr; 27130 /* qwriter_ip releases the refhold */ 27131 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27132 ill_refhold(ill); 27133 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27134 return; 27135 case AR_ARP_CLOSING: 27136 /* 27137 * ARP (above us) is closing. If no ARP bringup is 27138 * currently pending, ack the message so that ARP 27139 * can complete its close. Also mark ill_arp_closing 27140 * so that new ARP bringups will fail. If any 27141 * ARP bringup is currently in progress, we will 27142 * ack this when the current ARP bringup completes. 27143 */ 27144 ASSERT(q->q_next != NULL); 27145 ill = (ill_t *)q->q_ptr; 27146 mutex_enter(&ill->ill_lock); 27147 ill->ill_arp_closing = 1; 27148 if (!ill->ill_arp_bringup_pending) { 27149 mutex_exit(&ill->ill_lock); 27150 qreply(q, mp); 27151 } else { 27152 mutex_exit(&ill->ill_lock); 27153 freemsg(mp); 27154 } 27155 return; 27156 case AR_ARP_EXTEND: 27157 /* 27158 * The ARP module above us is capable of duplicate 27159 * address detection. Old ATM drivers will not send 27160 * this message. 27161 */ 27162 ASSERT(q->q_next != NULL); 27163 ill = (ill_t *)q->q_ptr; 27164 ill->ill_arp_extend = B_TRUE; 27165 freemsg(mp); 27166 return; 27167 default: 27168 break; 27169 } 27170 break; 27171 case M_PROTO: 27172 case M_PCPROTO: 27173 /* 27174 * The only PROTO messages we expect are ULP binds and 27175 * copies of option negotiation acknowledgements. 27176 */ 27177 switch (((union T_primitives *)mp->b_rptr)->type) { 27178 case O_T_BIND_REQ: 27179 case T_BIND_REQ: { 27180 /* Request can get queued in bind */ 27181 if (connp == NULL) { 27182 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27183 goto protonak; 27184 } 27185 /* 27186 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27187 * instead of going through this path. We only get 27188 * here in the following cases: 27189 * 27190 * a. Bind retries, where ipsq is non-NULL. 27191 * b. T_BIND_REQ is issued from non TCP/UDP 27192 * transport, e.g. icmp for raw socket, 27193 * in which case ipsq will be NULL. 27194 */ 27195 ASSERT(ipsq != NULL || 27196 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27197 27198 /* Don't increment refcnt if this is a re-entry */ 27199 if (ipsq == NULL) 27200 CONN_INC_REF(connp); 27201 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27202 connp, NULL) : ip_bind_v4(q, mp, connp); 27203 if (mp == NULL) 27204 return; 27205 if (IPCL_IS_TCP(connp)) { 27206 /* 27207 * In the case of TCP endpoint we 27208 * come here only for bind retries 27209 */ 27210 ASSERT(ipsq != NULL); 27211 CONN_INC_REF(connp); 27212 squeue_fill(connp->conn_sqp, mp, 27213 ip_resume_tcp_bind, connp, 27214 SQTAG_BIND_RETRY); 27215 return; 27216 } else if (IPCL_IS_UDP(connp)) { 27217 /* 27218 * In the case of UDP endpoint we 27219 * come here only for bind retries 27220 */ 27221 ASSERT(ipsq != NULL); 27222 udp_resume_bind(connp, mp); 27223 return; 27224 } 27225 qreply(q, mp); 27226 CONN_OPER_PENDING_DONE(connp); 27227 return; 27228 } 27229 case T_SVR4_OPTMGMT_REQ: 27230 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27231 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27232 27233 if (connp == NULL) { 27234 proto_str = "T_SVR4_OPTMGMT_REQ"; 27235 goto protonak; 27236 } 27237 27238 if (!snmpcom_req(q, mp, ip_snmp_set, 27239 ip_snmp_get, cr)) { 27240 /* 27241 * Call svr4_optcom_req so that it can 27242 * generate the ack. We don't come here 27243 * if this operation is being restarted. 27244 * ip_restart_optmgmt will drop the conn ref. 27245 * In the case of ipsec option after the ipsec 27246 * load is complete conn_restart_ipsec_waiter 27247 * drops the conn ref. 27248 */ 27249 ASSERT(ipsq == NULL); 27250 CONN_INC_REF(connp); 27251 if (ip_check_for_ipsec_opt(q, mp)) 27252 return; 27253 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27254 if (err != EINPROGRESS) { 27255 /* Operation is done */ 27256 CONN_OPER_PENDING_DONE(connp); 27257 } 27258 } 27259 return; 27260 case T_OPTMGMT_REQ: 27261 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27262 /* 27263 * Note: No snmpcom_req support through new 27264 * T_OPTMGMT_REQ. 27265 * Call tpi_optcom_req so that it can 27266 * generate the ack. 27267 */ 27268 if (connp == NULL) { 27269 proto_str = "T_OPTMGMT_REQ"; 27270 goto protonak; 27271 } 27272 27273 ASSERT(ipsq == NULL); 27274 /* 27275 * We don't come here for restart. ip_restart_optmgmt 27276 * will drop the conn ref. In the case of ipsec option 27277 * after the ipsec load is complete 27278 * conn_restart_ipsec_waiter drops the conn ref. 27279 */ 27280 CONN_INC_REF(connp); 27281 if (ip_check_for_ipsec_opt(q, mp)) 27282 return; 27283 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27284 if (err != EINPROGRESS) { 27285 /* Operation is done */ 27286 CONN_OPER_PENDING_DONE(connp); 27287 } 27288 return; 27289 case T_UNBIND_REQ: 27290 if (connp == NULL) { 27291 proto_str = "T_UNBIND_REQ"; 27292 goto protonak; 27293 } 27294 mp = ip_unbind(q, mp); 27295 qreply(q, mp); 27296 return; 27297 default: 27298 /* 27299 * Have to drop any DLPI messages coming down from 27300 * arp (such as an info_req which would cause ip 27301 * to receive an extra info_ack if it was passed 27302 * through. 27303 */ 27304 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27305 (int)*(uint_t *)mp->b_rptr)); 27306 freemsg(mp); 27307 return; 27308 } 27309 /* NOTREACHED */ 27310 case IRE_DB_TYPE: { 27311 nce_t *nce; 27312 ill_t *ill; 27313 in6_addr_t gw_addr_v6; 27314 27315 27316 /* 27317 * This is a response back from a resolver. It 27318 * consists of a message chain containing: 27319 * IRE_MBLK-->LL_HDR_MBLK->pkt 27320 * The IRE_MBLK is the one we allocated in ip_newroute. 27321 * The LL_HDR_MBLK is the DLPI header to use to get 27322 * the attached packet, and subsequent ones for the 27323 * same destination, transmitted. 27324 */ 27325 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27326 break; 27327 /* 27328 * First, check to make sure the resolution succeeded. 27329 * If it failed, the second mblk will be empty. 27330 * If it is, free the chain, dropping the packet. 27331 * (We must ire_delete the ire; that frees the ire mblk) 27332 * We're doing this now to support PVCs for ATM; it's 27333 * a partial xresolv implementation. When we fully implement 27334 * xresolv interfaces, instead of freeing everything here 27335 * we'll initiate neighbor discovery. 27336 * 27337 * For v4 (ARP and other external resolvers) the resolver 27338 * frees the message, so no check is needed. This check 27339 * is required, though, for a full xresolve implementation. 27340 * Including this code here now both shows how external 27341 * resolvers can NACK a resolution request using an 27342 * existing design that has no specific provisions for NACKs, 27343 * and also takes into account that the current non-ARP 27344 * external resolver has been coded to use this method of 27345 * NACKing for all IPv6 (xresolv) cases, 27346 * whether our xresolv implementation is complete or not. 27347 * 27348 */ 27349 ire = (ire_t *)mp->b_rptr; 27350 ill = ire_to_ill(ire); 27351 mp1 = mp->b_cont; /* dl_unitdata_req */ 27352 if (mp1->b_rptr == mp1->b_wptr) { 27353 if (ire->ire_ipversion == IPV6_VERSION) { 27354 /* 27355 * XRESOLV interface. 27356 */ 27357 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27358 mutex_enter(&ire->ire_lock); 27359 gw_addr_v6 = ire->ire_gateway_addr_v6; 27360 mutex_exit(&ire->ire_lock); 27361 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27362 nce = ndp_lookup_v6(ill, 27363 &ire->ire_addr_v6, B_FALSE); 27364 } else { 27365 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27366 B_FALSE); 27367 } 27368 if (nce != NULL) { 27369 nce_resolv_failed(nce); 27370 ndp_delete(nce); 27371 NCE_REFRELE(nce); 27372 } 27373 } 27374 mp->b_cont = NULL; 27375 freemsg(mp1); /* frees the pkt as well */ 27376 ASSERT(ire->ire_nce == NULL); 27377 ire_delete((ire_t *)mp->b_rptr); 27378 return; 27379 } 27380 27381 /* 27382 * Split them into IRE_MBLK and pkt and feed it into 27383 * ire_add_then_send. Then in ire_add_then_send 27384 * the IRE will be added, and then the packet will be 27385 * run back through ip_wput. This time it will make 27386 * it to the wire. 27387 */ 27388 mp->b_cont = NULL; 27389 mp = mp1->b_cont; /* now, mp points to pkt */ 27390 mp1->b_cont = NULL; 27391 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27392 if (ire->ire_ipversion == IPV6_VERSION) { 27393 /* 27394 * XRESOLV interface. Find the nce and put a copy 27395 * of the dl_unitdata_req in nce_res_mp 27396 */ 27397 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27398 mutex_enter(&ire->ire_lock); 27399 gw_addr_v6 = ire->ire_gateway_addr_v6; 27400 mutex_exit(&ire->ire_lock); 27401 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27402 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27403 B_FALSE); 27404 } else { 27405 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27406 } 27407 if (nce != NULL) { 27408 /* 27409 * We have to protect nce_res_mp here 27410 * from being accessed by other threads 27411 * while we change the mblk pointer. 27412 * Other functions will also lock the nce when 27413 * accessing nce_res_mp. 27414 * 27415 * The reason we change the mblk pointer 27416 * here rather than copying the resolved address 27417 * into the template is that, unlike with 27418 * ethernet, we have no guarantee that the 27419 * resolved address length will be 27420 * smaller than or equal to the lla length 27421 * with which the template was allocated, 27422 * (for ethernet, they're equal) 27423 * so we have to use the actual resolved 27424 * address mblk - which holds the real 27425 * dl_unitdata_req with the resolved address. 27426 * 27427 * Doing this is the same behavior as was 27428 * previously used in the v4 ARP case. 27429 */ 27430 mutex_enter(&nce->nce_lock); 27431 if (nce->nce_res_mp != NULL) 27432 freemsg(nce->nce_res_mp); 27433 nce->nce_res_mp = mp1; 27434 mutex_exit(&nce->nce_lock); 27435 /* 27436 * We do a fastpath probe here because 27437 * we have resolved the address without 27438 * using Neighbor Discovery. 27439 * In the non-XRESOLV v6 case, the fastpath 27440 * probe is done right after neighbor 27441 * discovery completes. 27442 */ 27443 if (nce->nce_res_mp != NULL) { 27444 int res; 27445 nce_fastpath_list_add(nce); 27446 res = ill_fastpath_probe(ill, 27447 nce->nce_res_mp); 27448 if (res != 0 && res != EAGAIN) 27449 nce_fastpath_list_delete(nce); 27450 } 27451 27452 ire_add_then_send(q, ire, mp); 27453 /* 27454 * Now we have to clean out any packets 27455 * that may have been queued on the nce 27456 * while it was waiting for address resolution 27457 * to complete. 27458 */ 27459 mutex_enter(&nce->nce_lock); 27460 mp1 = nce->nce_qd_mp; 27461 nce->nce_qd_mp = NULL; 27462 mutex_exit(&nce->nce_lock); 27463 while (mp1 != NULL) { 27464 mblk_t *nxt_mp; 27465 queue_t *fwdq = NULL; 27466 ill_t *inbound_ill; 27467 uint_t ifindex; 27468 27469 nxt_mp = mp1->b_next; 27470 mp1->b_next = NULL; 27471 /* 27472 * Retrieve ifindex stored in 27473 * ip_rput_data_v6() 27474 */ 27475 ifindex = 27476 (uint_t)(uintptr_t)mp1->b_prev; 27477 inbound_ill = 27478 ill_lookup_on_ifindex(ifindex, 27479 B_TRUE, NULL, NULL, NULL, 27480 NULL, ipst); 27481 mp1->b_prev = NULL; 27482 if (inbound_ill != NULL) 27483 fwdq = inbound_ill->ill_rq; 27484 27485 if (fwdq != NULL) { 27486 put(fwdq, mp1); 27487 ill_refrele(inbound_ill); 27488 } else 27489 put(WR(ill->ill_rq), mp1); 27490 mp1 = nxt_mp; 27491 } 27492 NCE_REFRELE(nce); 27493 } else { /* nce is NULL; clean up */ 27494 ire_delete(ire); 27495 freemsg(mp); 27496 freemsg(mp1); 27497 return; 27498 } 27499 } else { 27500 nce_t *arpce; 27501 /* 27502 * Link layer resolution succeeded. Recompute the 27503 * ire_nce. 27504 */ 27505 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27506 if ((arpce = ndp_lookup_v4(ill, 27507 (ire->ire_gateway_addr != INADDR_ANY ? 27508 &ire->ire_gateway_addr : &ire->ire_addr), 27509 B_FALSE)) == NULL) { 27510 freeb(ire->ire_mp); 27511 freeb(mp1); 27512 freemsg(mp); 27513 return; 27514 } 27515 mutex_enter(&arpce->nce_lock); 27516 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27517 if (arpce->nce_state == ND_REACHABLE) { 27518 /* 27519 * Someone resolved this before us; 27520 * cleanup the res_mp. Since ire has 27521 * not been added yet, the call to ire_add_v4 27522 * from ire_add_then_send (when a dup is 27523 * detected) will clean up the ire. 27524 */ 27525 freeb(mp1); 27526 } else { 27527 ASSERT(arpce->nce_res_mp == NULL); 27528 arpce->nce_res_mp = mp1; 27529 arpce->nce_state = ND_REACHABLE; 27530 } 27531 mutex_exit(&arpce->nce_lock); 27532 if (ire->ire_marks & IRE_MARK_NOADD) { 27533 /* 27534 * this ire will not be added to the ire 27535 * cache table, so we can set the ire_nce 27536 * here, as there are no atomicity constraints. 27537 */ 27538 ire->ire_nce = arpce; 27539 /* 27540 * We are associating this nce with the ire 27541 * so change the nce ref taken in 27542 * ndp_lookup_v4() from 27543 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27544 */ 27545 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27546 } else { 27547 NCE_REFRELE(arpce); 27548 } 27549 ire_add_then_send(q, ire, mp); 27550 } 27551 return; /* All is well, the packet has been sent. */ 27552 } 27553 case IRE_ARPRESOLVE_TYPE: { 27554 27555 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27556 break; 27557 mp1 = mp->b_cont; /* dl_unitdata_req */ 27558 mp->b_cont = NULL; 27559 /* 27560 * First, check to make sure the resolution succeeded. 27561 * If it failed, the second mblk will be empty. 27562 */ 27563 if (mp1->b_rptr == mp1->b_wptr) { 27564 /* cleanup the incomplete ire, free queued packets */ 27565 freemsg(mp); /* fake ire */ 27566 freeb(mp1); /* dl_unitdata response */ 27567 return; 27568 } 27569 27570 /* 27571 * update any incomplete nce_t found. we lookup the ctable 27572 * and find the nce from the ire->ire_nce because we need 27573 * to pass the ire to ip_xmit_v4 later, and can find both 27574 * ire and nce in one lookup from the ctable. 27575 */ 27576 fake_ire = (ire_t *)mp->b_rptr; 27577 /* 27578 * By the time we come back here from ARP 27579 * the logical outgoing interface of the incomplete ire 27580 * we added in ire_forward could have disappeared, 27581 * causing the incomplete ire to also have 27582 * dissapeared. So we need to retreive the 27583 * proper ipif for the ire before looking 27584 * in ctable; do the ctablelookup based on ire_ipif_seqid 27585 */ 27586 ill = q->q_ptr; 27587 27588 /* Get the outgoing ipif */ 27589 mutex_enter(&ill->ill_lock); 27590 if (ill->ill_state_flags & ILL_CONDEMNED) { 27591 mutex_exit(&ill->ill_lock); 27592 freemsg(mp); /* fake ire */ 27593 freeb(mp1); /* dl_unitdata response */ 27594 return; 27595 } 27596 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27597 27598 if (ipif == NULL) { 27599 mutex_exit(&ill->ill_lock); 27600 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27601 freemsg(mp); 27602 freeb(mp1); 27603 return; 27604 } 27605 ipif_refhold_locked(ipif); 27606 mutex_exit(&ill->ill_lock); 27607 ire = ire_ctable_lookup(fake_ire->ire_addr, 27608 fake_ire->ire_gateway_addr, IRE_CACHE, 27609 ipif, fake_ire->ire_zoneid, NULL, 27610 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27611 ipif_refrele(ipif); 27612 if (ire == NULL) { 27613 /* 27614 * no ire was found; check if there is an nce 27615 * for this lookup; if it has no ire's pointing at it 27616 * cleanup. 27617 */ 27618 if ((nce = ndp_lookup_v4(ill, 27619 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27620 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27621 B_FALSE)) != NULL) { 27622 /* 27623 * cleanup: 27624 * We check for refcnt 2 (one for the nce 27625 * hash list + 1 for the ref taken by 27626 * ndp_lookup_v4) to check that there are 27627 * no ire's pointing at the nce. 27628 */ 27629 if (nce->nce_refcnt == 2) 27630 ndp_delete(nce); 27631 NCE_REFRELE(nce); 27632 } 27633 freeb(mp1); /* dl_unitdata response */ 27634 freemsg(mp); /* fake ire */ 27635 return; 27636 } 27637 nce = ire->ire_nce; 27638 DTRACE_PROBE2(ire__arpresolve__type, 27639 ire_t *, ire, nce_t *, nce); 27640 ASSERT(nce->nce_state != ND_INITIAL); 27641 mutex_enter(&nce->nce_lock); 27642 nce->nce_last = TICK_TO_MSEC(lbolt64); 27643 if (nce->nce_state == ND_REACHABLE) { 27644 /* 27645 * Someone resolved this before us; 27646 * our response is not needed any more. 27647 */ 27648 mutex_exit(&nce->nce_lock); 27649 freeb(mp1); /* dl_unitdata response */ 27650 } else { 27651 ASSERT(nce->nce_res_mp == NULL); 27652 nce->nce_res_mp = mp1; 27653 nce->nce_state = ND_REACHABLE; 27654 mutex_exit(&nce->nce_lock); 27655 nce_fastpath(nce); 27656 } 27657 /* 27658 * The cached nce_t has been updated to be reachable; 27659 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27660 */ 27661 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27662 freemsg(mp); 27663 /* 27664 * send out queued packets. 27665 */ 27666 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27667 27668 IRE_REFRELE(ire); 27669 return; 27670 } 27671 default: 27672 break; 27673 } 27674 if (q->q_next) { 27675 putnext(q, mp); 27676 } else 27677 freemsg(mp); 27678 return; 27679 27680 protonak: 27681 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27682 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27683 qreply(q, mp); 27684 } 27685 27686 /* 27687 * Process IP options in an outbound packet. Modify the destination if there 27688 * is a source route option. 27689 * Returns non-zero if something fails in which case an ICMP error has been 27690 * sent and mp freed. 27691 */ 27692 static int 27693 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27694 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27695 { 27696 ipoptp_t opts; 27697 uchar_t *opt; 27698 uint8_t optval; 27699 uint8_t optlen; 27700 ipaddr_t dst; 27701 intptr_t code = 0; 27702 mblk_t *mp; 27703 ire_t *ire = NULL; 27704 27705 ip2dbg(("ip_wput_options\n")); 27706 mp = ipsec_mp; 27707 if (mctl_present) { 27708 mp = ipsec_mp->b_cont; 27709 } 27710 27711 dst = ipha->ipha_dst; 27712 for (optval = ipoptp_first(&opts, ipha); 27713 optval != IPOPT_EOL; 27714 optval = ipoptp_next(&opts)) { 27715 opt = opts.ipoptp_cur; 27716 optlen = opts.ipoptp_len; 27717 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27718 optval, optlen)); 27719 switch (optval) { 27720 uint32_t off; 27721 case IPOPT_SSRR: 27722 case IPOPT_LSRR: 27723 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27724 ip1dbg(( 27725 "ip_wput_options: bad option offset\n")); 27726 code = (char *)&opt[IPOPT_OLEN] - 27727 (char *)ipha; 27728 goto param_prob; 27729 } 27730 off = opt[IPOPT_OFFSET]; 27731 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27732 ntohl(dst))); 27733 /* 27734 * For strict: verify that dst is directly 27735 * reachable. 27736 */ 27737 if (optval == IPOPT_SSRR) { 27738 ire = ire_ftable_lookup(dst, 0, 0, 27739 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27740 MBLK_GETLABEL(mp), 27741 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27742 if (ire == NULL) { 27743 ip1dbg(("ip_wput_options: SSRR not" 27744 " directly reachable: 0x%x\n", 27745 ntohl(dst))); 27746 goto bad_src_route; 27747 } 27748 ire_refrele(ire); 27749 } 27750 break; 27751 case IPOPT_RR: 27752 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27753 ip1dbg(( 27754 "ip_wput_options: bad option offset\n")); 27755 code = (char *)&opt[IPOPT_OLEN] - 27756 (char *)ipha; 27757 goto param_prob; 27758 } 27759 break; 27760 case IPOPT_TS: 27761 /* 27762 * Verify that length >=5 and that there is either 27763 * room for another timestamp or that the overflow 27764 * counter is not maxed out. 27765 */ 27766 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27767 if (optlen < IPOPT_MINLEN_IT) { 27768 goto param_prob; 27769 } 27770 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27771 ip1dbg(( 27772 "ip_wput_options: bad option offset\n")); 27773 code = (char *)&opt[IPOPT_OFFSET] - 27774 (char *)ipha; 27775 goto param_prob; 27776 } 27777 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27778 case IPOPT_TS_TSONLY: 27779 off = IPOPT_TS_TIMELEN; 27780 break; 27781 case IPOPT_TS_TSANDADDR: 27782 case IPOPT_TS_PRESPEC: 27783 case IPOPT_TS_PRESPEC_RFC791: 27784 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27785 break; 27786 default: 27787 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27788 (char *)ipha; 27789 goto param_prob; 27790 } 27791 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27792 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27793 /* 27794 * No room and the overflow counter is 15 27795 * already. 27796 */ 27797 goto param_prob; 27798 } 27799 break; 27800 } 27801 } 27802 27803 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27804 return (0); 27805 27806 ip1dbg(("ip_wput_options: error processing IP options.")); 27807 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27808 27809 param_prob: 27810 /* 27811 * Since ip_wput() isn't close to finished, we fill 27812 * in enough of the header for credible error reporting. 27813 */ 27814 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27815 /* Failed */ 27816 freemsg(ipsec_mp); 27817 return (-1); 27818 } 27819 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27820 return (-1); 27821 27822 bad_src_route: 27823 /* 27824 * Since ip_wput() isn't close to finished, we fill 27825 * in enough of the header for credible error reporting. 27826 */ 27827 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27828 /* Failed */ 27829 freemsg(ipsec_mp); 27830 return (-1); 27831 } 27832 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27833 return (-1); 27834 } 27835 27836 /* 27837 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27838 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27839 * thru /etc/system. 27840 */ 27841 #define CONN_MAXDRAINCNT 64 27842 27843 static void 27844 conn_drain_init(ip_stack_t *ipst) 27845 { 27846 int i; 27847 27848 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27849 27850 if ((ipst->ips_conn_drain_list_cnt == 0) || 27851 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27852 /* 27853 * Default value of the number of drainers is the 27854 * number of cpus, subject to maximum of 8 drainers. 27855 */ 27856 if (boot_max_ncpus != -1) 27857 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27858 else 27859 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27860 } 27861 27862 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27863 sizeof (idl_t), KM_SLEEP); 27864 27865 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27866 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27867 MUTEX_DEFAULT, NULL); 27868 } 27869 } 27870 27871 static void 27872 conn_drain_fini(ip_stack_t *ipst) 27873 { 27874 int i; 27875 27876 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27877 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27878 kmem_free(ipst->ips_conn_drain_list, 27879 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27880 ipst->ips_conn_drain_list = NULL; 27881 } 27882 27883 /* 27884 * Note: For an overview of how flowcontrol is handled in IP please see the 27885 * IP Flowcontrol notes at the top of this file. 27886 * 27887 * Flow control has blocked us from proceeding. Insert the given conn in one 27888 * of the conn drain lists. These conn wq's will be qenabled later on when 27889 * STREAMS flow control does a backenable. conn_walk_drain will enable 27890 * the first conn in each of these drain lists. Each of these qenabled conns 27891 * in turn enables the next in the list, after it runs, or when it closes, 27892 * thus sustaining the drain process. 27893 * 27894 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27895 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27896 * running at any time, on a given conn, since there can be only 1 service proc 27897 * running on a queue at any time. 27898 */ 27899 void 27900 conn_drain_insert(conn_t *connp) 27901 { 27902 idl_t *idl; 27903 uint_t index; 27904 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27905 27906 mutex_enter(&connp->conn_lock); 27907 if (connp->conn_state_flags & CONN_CLOSING) { 27908 /* 27909 * The conn is closing as a result of which CONN_CLOSING 27910 * is set. Return. 27911 */ 27912 mutex_exit(&connp->conn_lock); 27913 return; 27914 } else if (connp->conn_idl == NULL) { 27915 /* 27916 * Assign the next drain list round robin. We dont' use 27917 * a lock, and thus it may not be strictly round robin. 27918 * Atomicity of load/stores is enough to make sure that 27919 * conn_drain_list_index is always within bounds. 27920 */ 27921 index = ipst->ips_conn_drain_list_index; 27922 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27923 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 27924 index++; 27925 if (index == ipst->ips_conn_drain_list_cnt) 27926 index = 0; 27927 ipst->ips_conn_drain_list_index = index; 27928 } 27929 mutex_exit(&connp->conn_lock); 27930 27931 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27932 if ((connp->conn_drain_prev != NULL) || 27933 (connp->conn_state_flags & CONN_CLOSING)) { 27934 /* 27935 * The conn is already in the drain list, OR 27936 * the conn is closing. We need to check again for 27937 * the closing case again since close can happen 27938 * after we drop the conn_lock, and before we 27939 * acquire the CONN_DRAIN_LIST_LOCK. 27940 */ 27941 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27942 return; 27943 } else { 27944 idl = connp->conn_idl; 27945 } 27946 27947 /* 27948 * The conn is not in the drain list. Insert it at the 27949 * tail of the drain list. The drain list is circular 27950 * and doubly linked. idl_conn points to the 1st element 27951 * in the list. 27952 */ 27953 if (idl->idl_conn == NULL) { 27954 idl->idl_conn = connp; 27955 connp->conn_drain_next = connp; 27956 connp->conn_drain_prev = connp; 27957 } else { 27958 conn_t *head = idl->idl_conn; 27959 27960 connp->conn_drain_next = head; 27961 connp->conn_drain_prev = head->conn_drain_prev; 27962 head->conn_drain_prev->conn_drain_next = connp; 27963 head->conn_drain_prev = connp; 27964 } 27965 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27966 } 27967 27968 /* 27969 * This conn is closing, and we are called from ip_close. OR 27970 * This conn has been serviced by ip_wsrv, and we need to do the tail 27971 * processing. 27972 * If this conn is part of the drain list, we may need to sustain the drain 27973 * process by qenabling the next conn in the drain list. We may also need to 27974 * remove this conn from the list, if it is done. 27975 */ 27976 static void 27977 conn_drain_tail(conn_t *connp, boolean_t closing) 27978 { 27979 idl_t *idl; 27980 27981 /* 27982 * connp->conn_idl is stable at this point, and no lock is needed 27983 * to check it. If we are called from ip_close, close has already 27984 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27985 * called us only because conn_idl is non-null. If we are called thru 27986 * service, conn_idl could be null, but it cannot change because 27987 * service is single-threaded per queue, and there cannot be another 27988 * instance of service trying to call conn_drain_insert on this conn 27989 * now. 27990 */ 27991 ASSERT(!closing || (connp->conn_idl != NULL)); 27992 27993 /* 27994 * If connp->conn_idl is null, the conn has not been inserted into any 27995 * drain list even once since creation of the conn. Just return. 27996 */ 27997 if (connp->conn_idl == NULL) 27998 return; 27999 28000 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28001 28002 if (connp->conn_drain_prev == NULL) { 28003 /* This conn is currently not in the drain list. */ 28004 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28005 return; 28006 } 28007 idl = connp->conn_idl; 28008 if (idl->idl_conn_draining == connp) { 28009 /* 28010 * This conn is the current drainer. If this is the last conn 28011 * in the drain list, we need to do more checks, in the 'if' 28012 * below. Otherwwise we need to just qenable the next conn, 28013 * to sustain the draining, and is handled in the 'else' 28014 * below. 28015 */ 28016 if (connp->conn_drain_next == idl->idl_conn) { 28017 /* 28018 * This conn is the last in this list. This round 28019 * of draining is complete. If idl_repeat is set, 28020 * it means another flow enabling has happened from 28021 * the driver/streams and we need to another round 28022 * of draining. 28023 * If there are more than 2 conns in the drain list, 28024 * do a left rotate by 1, so that all conns except the 28025 * conn at the head move towards the head by 1, and the 28026 * the conn at the head goes to the tail. This attempts 28027 * a more even share for all queues that are being 28028 * drained. 28029 */ 28030 if ((connp->conn_drain_next != connp) && 28031 (idl->idl_conn->conn_drain_next != connp)) { 28032 idl->idl_conn = idl->idl_conn->conn_drain_next; 28033 } 28034 if (idl->idl_repeat) { 28035 qenable(idl->idl_conn->conn_wq); 28036 idl->idl_conn_draining = idl->idl_conn; 28037 idl->idl_repeat = 0; 28038 } else { 28039 idl->idl_conn_draining = NULL; 28040 } 28041 } else { 28042 /* 28043 * If the next queue that we are now qenable'ing, 28044 * is closing, it will remove itself from this list 28045 * and qenable the subsequent queue in ip_close(). 28046 * Serialization is acheived thru idl_lock. 28047 */ 28048 qenable(connp->conn_drain_next->conn_wq); 28049 idl->idl_conn_draining = connp->conn_drain_next; 28050 } 28051 } 28052 if (!connp->conn_did_putbq || closing) { 28053 /* 28054 * Remove ourself from the drain list, if we did not do 28055 * a putbq, or if the conn is closing. 28056 * Note: It is possible that q->q_first is non-null. It means 28057 * that these messages landed after we did a enableok() in 28058 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28059 * service them. 28060 */ 28061 if (connp->conn_drain_next == connp) { 28062 /* Singleton in the list */ 28063 ASSERT(connp->conn_drain_prev == connp); 28064 idl->idl_conn = NULL; 28065 idl->idl_conn_draining = NULL; 28066 } else { 28067 connp->conn_drain_prev->conn_drain_next = 28068 connp->conn_drain_next; 28069 connp->conn_drain_next->conn_drain_prev = 28070 connp->conn_drain_prev; 28071 if (idl->idl_conn == connp) 28072 idl->idl_conn = connp->conn_drain_next; 28073 ASSERT(idl->idl_conn_draining != connp); 28074 28075 } 28076 connp->conn_drain_next = NULL; 28077 connp->conn_drain_prev = NULL; 28078 } 28079 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28080 } 28081 28082 /* 28083 * Write service routine. Shared perimeter entry point. 28084 * ip_wsrv can be called in any of the following ways. 28085 * 1. The device queue's messages has fallen below the low water mark 28086 * and STREAMS has backenabled the ill_wq. We walk thru all the 28087 * the drain lists and backenable the first conn in each list. 28088 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28089 * qenabled non-tcp upper layers. We start dequeing messages and call 28090 * ip_wput for each message. 28091 */ 28092 28093 void 28094 ip_wsrv(queue_t *q) 28095 { 28096 conn_t *connp; 28097 ill_t *ill; 28098 mblk_t *mp; 28099 28100 if (q->q_next) { 28101 ill = (ill_t *)q->q_ptr; 28102 if (ill->ill_state_flags == 0) { 28103 /* 28104 * The device flow control has opened up. 28105 * Walk through conn drain lists and qenable the 28106 * first conn in each list. This makes sense only 28107 * if the stream is fully plumbed and setup. 28108 * Hence the if check above. 28109 */ 28110 ip1dbg(("ip_wsrv: walking\n")); 28111 conn_walk_drain(ill->ill_ipst); 28112 } 28113 return; 28114 } 28115 28116 connp = Q_TO_CONN(q); 28117 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28118 28119 /* 28120 * 1. Set conn_draining flag to signal that service is active. 28121 * 28122 * 2. ip_output determines whether it has been called from service, 28123 * based on the last parameter. If it is IP_WSRV it concludes it 28124 * has been called from service. 28125 * 28126 * 3. Message ordering is preserved by the following logic. 28127 * i. A directly called ip_output (i.e. not thru service) will queue 28128 * the message at the tail, if conn_draining is set (i.e. service 28129 * is running) or if q->q_first is non-null. 28130 * 28131 * ii. If ip_output is called from service, and if ip_output cannot 28132 * putnext due to flow control, it does a putbq. 28133 * 28134 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28135 * (causing an infinite loop). 28136 */ 28137 ASSERT(!connp->conn_did_putbq); 28138 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28139 connp->conn_draining = 1; 28140 noenable(q); 28141 while ((mp = getq(q)) != NULL) { 28142 ASSERT(CONN_Q(q)); 28143 28144 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28145 if (connp->conn_did_putbq) { 28146 /* ip_wput did a putbq */ 28147 break; 28148 } 28149 } 28150 /* 28151 * At this point, a thread coming down from top, calling 28152 * ip_wput, may end up queueing the message. We have not yet 28153 * enabled the queue, so ip_wsrv won't be called again. 28154 * To avoid this race, check q->q_first again (in the loop) 28155 * If the other thread queued the message before we call 28156 * enableok(), we will catch it in the q->q_first check. 28157 * If the other thread queues the message after we call 28158 * enableok(), ip_wsrv will be called again by STREAMS. 28159 */ 28160 connp->conn_draining = 0; 28161 enableok(q); 28162 } 28163 28164 /* Enable the next conn for draining */ 28165 conn_drain_tail(connp, B_FALSE); 28166 28167 connp->conn_did_putbq = 0; 28168 } 28169 28170 /* 28171 * Walk the list of all conn's calling the function provided with the 28172 * specified argument for each. Note that this only walks conn's that 28173 * have been bound. 28174 * Applies to both IPv4 and IPv6. 28175 */ 28176 static void 28177 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28178 { 28179 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28180 ipst->ips_ipcl_udp_fanout_size, 28181 func, arg, zoneid); 28182 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28183 ipst->ips_ipcl_conn_fanout_size, 28184 func, arg, zoneid); 28185 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28186 ipst->ips_ipcl_bind_fanout_size, 28187 func, arg, zoneid); 28188 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28189 IPPROTO_MAX, func, arg, zoneid); 28190 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28191 IPPROTO_MAX, func, arg, zoneid); 28192 } 28193 28194 /* 28195 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28196 * of conns that need to be drained, check if drain is already in progress. 28197 * If so set the idl_repeat bit, indicating that the last conn in the list 28198 * needs to reinitiate the drain once again, for the list. If drain is not 28199 * in progress for the list, initiate the draining, by qenabling the 1st 28200 * conn in the list. The drain is self-sustaining, each qenabled conn will 28201 * in turn qenable the next conn, when it is done/blocked/closing. 28202 */ 28203 static void 28204 conn_walk_drain(ip_stack_t *ipst) 28205 { 28206 int i; 28207 idl_t *idl; 28208 28209 IP_STAT(ipst, ip_conn_walk_drain); 28210 28211 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28212 idl = &ipst->ips_conn_drain_list[i]; 28213 mutex_enter(&idl->idl_lock); 28214 if (idl->idl_conn == NULL) { 28215 mutex_exit(&idl->idl_lock); 28216 continue; 28217 } 28218 /* 28219 * If this list is not being drained currently by 28220 * an ip_wsrv thread, start the process. 28221 */ 28222 if (idl->idl_conn_draining == NULL) { 28223 ASSERT(idl->idl_repeat == 0); 28224 qenable(idl->idl_conn->conn_wq); 28225 idl->idl_conn_draining = idl->idl_conn; 28226 } else { 28227 idl->idl_repeat = 1; 28228 } 28229 mutex_exit(&idl->idl_lock); 28230 } 28231 } 28232 28233 /* 28234 * Walk an conn hash table of `count' buckets, calling func for each entry. 28235 */ 28236 static void 28237 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28238 zoneid_t zoneid) 28239 { 28240 conn_t *connp; 28241 28242 while (count-- > 0) { 28243 mutex_enter(&connfp->connf_lock); 28244 for (connp = connfp->connf_head; connp != NULL; 28245 connp = connp->conn_next) { 28246 if (zoneid == GLOBAL_ZONEID || 28247 zoneid == connp->conn_zoneid) { 28248 CONN_INC_REF(connp); 28249 mutex_exit(&connfp->connf_lock); 28250 (*func)(connp, arg); 28251 mutex_enter(&connfp->connf_lock); 28252 CONN_DEC_REF(connp); 28253 } 28254 } 28255 mutex_exit(&connfp->connf_lock); 28256 connfp++; 28257 } 28258 } 28259 28260 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28261 static void 28262 conn_report1(conn_t *connp, void *mp) 28263 { 28264 char buf1[INET6_ADDRSTRLEN]; 28265 char buf2[INET6_ADDRSTRLEN]; 28266 uint_t print_len, buf_len; 28267 28268 ASSERT(connp != NULL); 28269 28270 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28271 if (buf_len <= 0) 28272 return; 28273 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28274 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28275 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28276 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28277 "%5d %s/%05d %s/%05d\n", 28278 (void *)connp, (void *)CONNP_TO_RQ(connp), 28279 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28280 buf1, connp->conn_lport, 28281 buf2, connp->conn_fport); 28282 if (print_len < buf_len) { 28283 ((mblk_t *)mp)->b_wptr += print_len; 28284 } else { 28285 ((mblk_t *)mp)->b_wptr += buf_len; 28286 } 28287 } 28288 28289 /* 28290 * Named Dispatch routine to produce a formatted report on all conns 28291 * that are listed in one of the fanout tables. 28292 * This report is accessed by using the ndd utility to "get" ND variable 28293 * "ip_conn_status". 28294 */ 28295 /* ARGSUSED */ 28296 static int 28297 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28298 { 28299 conn_t *connp = Q_TO_CONN(q); 28300 28301 (void) mi_mpprintf(mp, 28302 "CONN " MI_COL_HDRPAD_STR 28303 "rfq " MI_COL_HDRPAD_STR 28304 "stq " MI_COL_HDRPAD_STR 28305 " zone local remote"); 28306 28307 /* 28308 * Because of the ndd constraint, at most we can have 64K buffer 28309 * to put in all conn info. So to be more efficient, just 28310 * allocate a 64K buffer here, assuming we need that large buffer. 28311 * This should be OK as only privileged processes can do ndd /dev/ip. 28312 */ 28313 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28314 /* The following may work even if we cannot get a large buf. */ 28315 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28316 return (0); 28317 } 28318 28319 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28320 connp->conn_netstack->netstack_ip); 28321 return (0); 28322 } 28323 28324 /* 28325 * Determine if the ill and multicast aspects of that packets 28326 * "matches" the conn. 28327 */ 28328 boolean_t 28329 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28330 zoneid_t zoneid) 28331 { 28332 ill_t *in_ill; 28333 boolean_t found; 28334 ipif_t *ipif; 28335 ire_t *ire; 28336 ipaddr_t dst, src; 28337 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28338 28339 dst = ipha->ipha_dst; 28340 src = ipha->ipha_src; 28341 28342 /* 28343 * conn_incoming_ill is set by IP_BOUND_IF which limits 28344 * unicast, broadcast and multicast reception to 28345 * conn_incoming_ill. conn_wantpacket itself is called 28346 * only for BROADCAST and multicast. 28347 * 28348 * 1) ip_rput supresses duplicate broadcasts if the ill 28349 * is part of a group. Hence, we should be receiving 28350 * just one copy of broadcast for the whole group. 28351 * Thus, if it is part of the group the packet could 28352 * come on any ill of the group and hence we need a 28353 * match on the group. Otherwise, match on ill should 28354 * be sufficient. 28355 * 28356 * 2) ip_rput does not suppress duplicate multicast packets. 28357 * If there are two interfaces in a ill group and we have 28358 * 2 applications (conns) joined a multicast group G on 28359 * both the interfaces, ilm_lookup_ill filter in ip_rput 28360 * will give us two packets because we join G on both the 28361 * interfaces rather than nominating just one interface 28362 * for receiving multicast like broadcast above. So, 28363 * we have to call ilg_lookup_ill to filter out duplicate 28364 * copies, if ill is part of a group. 28365 */ 28366 in_ill = connp->conn_incoming_ill; 28367 if (in_ill != NULL) { 28368 if (in_ill->ill_group == NULL) { 28369 if (in_ill != ill) 28370 return (B_FALSE); 28371 } else if (in_ill->ill_group != ill->ill_group) { 28372 return (B_FALSE); 28373 } 28374 } 28375 28376 if (!CLASSD(dst)) { 28377 if (IPCL_ZONE_MATCH(connp, zoneid)) 28378 return (B_TRUE); 28379 /* 28380 * The conn is in a different zone; we need to check that this 28381 * broadcast address is configured in the application's zone and 28382 * on one ill in the group. 28383 */ 28384 ipif = ipif_get_next_ipif(NULL, ill); 28385 if (ipif == NULL) 28386 return (B_FALSE); 28387 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28388 connp->conn_zoneid, NULL, 28389 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28390 ipif_refrele(ipif); 28391 if (ire != NULL) { 28392 ire_refrele(ire); 28393 return (B_TRUE); 28394 } else { 28395 return (B_FALSE); 28396 } 28397 } 28398 28399 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28400 connp->conn_zoneid == zoneid) { 28401 /* 28402 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28403 * disabled, therefore we don't dispatch the multicast packet to 28404 * the sending zone. 28405 */ 28406 return (B_FALSE); 28407 } 28408 28409 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28410 /* 28411 * Multicast packet on the loopback interface: we only match 28412 * conns who joined the group in the specified zone. 28413 */ 28414 return (B_FALSE); 28415 } 28416 28417 if (connp->conn_multi_router) { 28418 /* multicast packet and multicast router socket: send up */ 28419 return (B_TRUE); 28420 } 28421 28422 mutex_enter(&connp->conn_lock); 28423 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28424 mutex_exit(&connp->conn_lock); 28425 return (found); 28426 } 28427 28428 /* 28429 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28430 */ 28431 /* ARGSUSED */ 28432 static void 28433 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28434 { 28435 ill_t *ill = (ill_t *)q->q_ptr; 28436 mblk_t *mp1, *mp2; 28437 ipif_t *ipif; 28438 int err = 0; 28439 conn_t *connp = NULL; 28440 ipsq_t *ipsq; 28441 arc_t *arc; 28442 28443 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28444 28445 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28446 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28447 28448 ASSERT(IAM_WRITER_ILL(ill)); 28449 mp2 = mp->b_cont; 28450 mp->b_cont = NULL; 28451 28452 /* 28453 * We have now received the arp bringup completion message 28454 * from ARP. Mark the arp bringup as done. Also if the arp 28455 * stream has already started closing, send up the AR_ARP_CLOSING 28456 * ack now since ARP is waiting in close for this ack. 28457 */ 28458 mutex_enter(&ill->ill_lock); 28459 ill->ill_arp_bringup_pending = 0; 28460 if (ill->ill_arp_closing) { 28461 mutex_exit(&ill->ill_lock); 28462 /* Let's reuse the mp for sending the ack */ 28463 arc = (arc_t *)mp->b_rptr; 28464 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28465 arc->arc_cmd = AR_ARP_CLOSING; 28466 qreply(q, mp); 28467 } else { 28468 mutex_exit(&ill->ill_lock); 28469 freeb(mp); 28470 } 28471 28472 ipsq = ill->ill_phyint->phyint_ipsq; 28473 ipif = ipsq->ipsq_pending_ipif; 28474 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28475 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28476 if (mp1 == NULL) { 28477 /* bringup was aborted by the user */ 28478 freemsg(mp2); 28479 return; 28480 } 28481 28482 /* 28483 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28484 * must have an associated conn_t. Otherwise, we're bringing this 28485 * interface back up as part of handling an asynchronous event (e.g., 28486 * physical address change). 28487 */ 28488 if (ipsq->ipsq_current_ioctl != 0) { 28489 ASSERT(connp != NULL); 28490 q = CONNP_TO_WQ(connp); 28491 } else { 28492 ASSERT(connp == NULL); 28493 q = ill->ill_rq; 28494 } 28495 28496 /* 28497 * If the DL_BIND_REQ fails, it is noted 28498 * in arc_name_offset. 28499 */ 28500 err = *((int *)mp2->b_rptr); 28501 if (err == 0) { 28502 if (ipif->ipif_isv6) { 28503 if ((err = ipif_up_done_v6(ipif)) != 0) 28504 ip0dbg(("ip_arp_done: init failed\n")); 28505 } else { 28506 if ((err = ipif_up_done(ipif)) != 0) 28507 ip0dbg(("ip_arp_done: init failed\n")); 28508 } 28509 } else { 28510 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28511 } 28512 28513 freemsg(mp2); 28514 28515 if ((err == 0) && (ill->ill_up_ipifs)) { 28516 err = ill_up_ipifs(ill, q, mp1); 28517 if (err == EINPROGRESS) 28518 return; 28519 } 28520 28521 if (ill->ill_up_ipifs) 28522 ill_group_cleanup(ill); 28523 28524 /* 28525 * The operation must complete without EINPROGRESS since 28526 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28527 * Otherwise, the operation will be stuck forever in the ipsq. 28528 */ 28529 ASSERT(err != EINPROGRESS); 28530 if (ipsq->ipsq_current_ioctl != 0) 28531 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28532 else 28533 ipsq_current_finish(ipsq); 28534 } 28535 28536 /* Allocate the private structure */ 28537 static int 28538 ip_priv_alloc(void **bufp) 28539 { 28540 void *buf; 28541 28542 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28543 return (ENOMEM); 28544 28545 *bufp = buf; 28546 return (0); 28547 } 28548 28549 /* Function to delete the private structure */ 28550 void 28551 ip_priv_free(void *buf) 28552 { 28553 ASSERT(buf != NULL); 28554 kmem_free(buf, sizeof (ip_priv_t)); 28555 } 28556 28557 /* 28558 * The entry point for IPPF processing. 28559 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28560 * routine just returns. 28561 * 28562 * When called, ip_process generates an ipp_packet_t structure 28563 * which holds the state information for this packet and invokes the 28564 * the classifier (via ipp_packet_process). The classification, depending on 28565 * configured filters, results in a list of actions for this packet. Invoking 28566 * an action may cause the packet to be dropped, in which case the resulting 28567 * mblk (*mpp) is NULL. proc indicates the callout position for 28568 * this packet and ill_index is the interface this packet on or will leave 28569 * on (inbound and outbound resp.). 28570 */ 28571 void 28572 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28573 { 28574 mblk_t *mp; 28575 ip_priv_t *priv; 28576 ipp_action_id_t aid; 28577 int rc = 0; 28578 ipp_packet_t *pp; 28579 #define IP_CLASS "ip" 28580 28581 /* If the classifier is not loaded, return */ 28582 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28583 return; 28584 } 28585 28586 mp = *mpp; 28587 ASSERT(mp != NULL); 28588 28589 /* Allocate the packet structure */ 28590 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28591 if (rc != 0) { 28592 *mpp = NULL; 28593 freemsg(mp); 28594 return; 28595 } 28596 28597 /* Allocate the private structure */ 28598 rc = ip_priv_alloc((void **)&priv); 28599 if (rc != 0) { 28600 *mpp = NULL; 28601 freemsg(mp); 28602 ipp_packet_free(pp); 28603 return; 28604 } 28605 priv->proc = proc; 28606 priv->ill_index = ill_index; 28607 ipp_packet_set_private(pp, priv, ip_priv_free); 28608 ipp_packet_set_data(pp, mp); 28609 28610 /* Invoke the classifier */ 28611 rc = ipp_packet_process(&pp); 28612 if (pp != NULL) { 28613 mp = ipp_packet_get_data(pp); 28614 ipp_packet_free(pp); 28615 if (rc != 0) { 28616 freemsg(mp); 28617 *mpp = NULL; 28618 } 28619 } else { 28620 *mpp = NULL; 28621 } 28622 #undef IP_CLASS 28623 } 28624 28625 /* 28626 * Propagate a multicast group membership operation (add/drop) on 28627 * all the interfaces crossed by the related multirt routes. 28628 * The call is considered successful if the operation succeeds 28629 * on at least one interface. 28630 */ 28631 static int 28632 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28633 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28634 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28635 mblk_t *first_mp) 28636 { 28637 ire_t *ire_gw; 28638 irb_t *irb; 28639 int error = 0; 28640 opt_restart_t *or; 28641 ip_stack_t *ipst = ire->ire_ipst; 28642 28643 irb = ire->ire_bucket; 28644 ASSERT(irb != NULL); 28645 28646 ASSERT(DB_TYPE(first_mp) == M_CTL); 28647 28648 or = (opt_restart_t *)first_mp->b_rptr; 28649 IRB_REFHOLD(irb); 28650 for (; ire != NULL; ire = ire->ire_next) { 28651 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28652 continue; 28653 if (ire->ire_addr != group) 28654 continue; 28655 28656 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28657 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28658 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28659 /* No resolver exists for the gateway; skip this ire. */ 28660 if (ire_gw == NULL) 28661 continue; 28662 28663 /* 28664 * This function can return EINPROGRESS. If so the operation 28665 * will be restarted from ip_restart_optmgmt which will 28666 * call ip_opt_set and option processing will restart for 28667 * this option. So we may end up calling 'fn' more than once. 28668 * This requires that 'fn' is idempotent except for the 28669 * return value. The operation is considered a success if 28670 * it succeeds at least once on any one interface. 28671 */ 28672 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28673 NULL, fmode, src, first_mp); 28674 if (error == 0) 28675 or->or_private = CGTP_MCAST_SUCCESS; 28676 28677 if (ip_debug > 0) { 28678 ulong_t off; 28679 char *ksym; 28680 ksym = kobj_getsymname((uintptr_t)fn, &off); 28681 ip2dbg(("ip_multirt_apply_membership: " 28682 "called %s, multirt group 0x%08x via itf 0x%08x, " 28683 "error %d [success %u]\n", 28684 ksym ? ksym : "?", 28685 ntohl(group), ntohl(ire_gw->ire_src_addr), 28686 error, or->or_private)); 28687 } 28688 28689 ire_refrele(ire_gw); 28690 if (error == EINPROGRESS) { 28691 IRB_REFRELE(irb); 28692 return (error); 28693 } 28694 } 28695 IRB_REFRELE(irb); 28696 /* 28697 * Consider the call as successful if we succeeded on at least 28698 * one interface. Otherwise, return the last encountered error. 28699 */ 28700 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28701 } 28702 28703 28704 /* 28705 * Issue a warning regarding a route crossing an interface with an 28706 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28707 * amount of time is logged. 28708 */ 28709 static void 28710 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28711 { 28712 hrtime_t current = gethrtime(); 28713 char buf[INET_ADDRSTRLEN]; 28714 ip_stack_t *ipst = ire->ire_ipst; 28715 28716 /* Convert interval in ms to hrtime in ns */ 28717 if (ipst->ips_multirt_bad_mtu_last_time + 28718 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28719 current) { 28720 cmn_err(CE_WARN, "ip: ignoring multiroute " 28721 "to %s, incorrect MTU %u (expected %u)\n", 28722 ip_dot_addr(ire->ire_addr, buf), 28723 ire->ire_max_frag, max_frag); 28724 28725 ipst->ips_multirt_bad_mtu_last_time = current; 28726 } 28727 } 28728 28729 28730 /* 28731 * Get the CGTP (multirouting) filtering status. 28732 * If 0, the CGTP hooks are transparent. 28733 */ 28734 /* ARGSUSED */ 28735 static int 28736 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28737 { 28738 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28739 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28740 28741 /* 28742 * Only applies to the shared stack since the filter_ops 28743 * do not carry an ip_stack_t or zoneid. 28744 */ 28745 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 28746 return (ENOTSUP); 28747 28748 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28749 return (0); 28750 } 28751 28752 28753 /* 28754 * Set the CGTP (multirouting) filtering status. 28755 * If the status is changed from active to transparent 28756 * or from transparent to active, forward the new status 28757 * to the filtering module (if loaded). 28758 */ 28759 /* ARGSUSED */ 28760 static int 28761 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28762 cred_t *ioc_cr) 28763 { 28764 long new_value; 28765 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28766 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28767 28768 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 28769 return (EPERM); 28770 28771 /* 28772 * Only applies to the shared stack since the filter_ops 28773 * do not carry an ip_stack_t or zoneid. 28774 */ 28775 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 28776 return (ENOTSUP); 28777 28778 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28779 new_value < 0 || new_value > 1) { 28780 return (EINVAL); 28781 } 28782 28783 /* 28784 * Do not enable CGTP filtering - thus preventing the hooks 28785 * from being invoked - if the version number of the 28786 * filtering module hooks does not match. 28787 */ 28788 if ((ip_cgtp_filter_ops != NULL) && 28789 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28790 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28791 "(module hooks version %d, expecting %d)\n", 28792 ip_cgtp_filter_ops->cfo_filter_rev, 28793 CGTP_FILTER_REV); 28794 return (ENOTSUP); 28795 } 28796 28797 if ((!*ip_cgtp_filter_value) && new_value) { 28798 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28799 ip_cgtp_filter_ops == NULL ? 28800 " (module not loaded)" : ""); 28801 } 28802 if (*ip_cgtp_filter_value && (!new_value)) { 28803 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28804 ip_cgtp_filter_ops == NULL ? 28805 " (module not loaded)" : ""); 28806 } 28807 28808 if (ip_cgtp_filter_ops != NULL) { 28809 int res; 28810 28811 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 28812 if (res) 28813 return (res); 28814 } 28815 28816 *ip_cgtp_filter_value = (boolean_t)new_value; 28817 28818 return (0); 28819 } 28820 28821 28822 /* 28823 * Return the expected CGTP hooks version number. 28824 */ 28825 int 28826 ip_cgtp_filter_supported(void) 28827 { 28828 ip_stack_t *ipst; 28829 int ret; 28830 28831 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 28832 if (ipst == NULL) 28833 return (-1); 28834 ret = ip_cgtp_filter_rev; 28835 netstack_rele(ipst->ips_netstack); 28836 return (ret); 28837 } 28838 28839 28840 /* 28841 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28842 * or by invoking this function. In the first case, the version number 28843 * of the registered structure is checked at hooks activation time 28844 * in ip_cgtp_filter_set(). 28845 * 28846 * Only applies to the shared stack since the filter_ops 28847 * do not carry an ip_stack_t or zoneid. 28848 */ 28849 int 28850 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28851 { 28852 ip_stack_t *ipst; 28853 28854 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28855 return (ENOTSUP); 28856 28857 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 28858 if (ipst == NULL) 28859 return (EINVAL); 28860 28861 ip_cgtp_filter_ops = ops; 28862 netstack_rele(ipst->ips_netstack); 28863 return (0); 28864 } 28865 28866 static squeue_func_t 28867 ip_squeue_switch(int val) 28868 { 28869 squeue_func_t rval = squeue_fill; 28870 28871 switch (val) { 28872 case IP_SQUEUE_ENTER_NODRAIN: 28873 rval = squeue_enter_nodrain; 28874 break; 28875 case IP_SQUEUE_ENTER: 28876 rval = squeue_enter; 28877 break; 28878 default: 28879 break; 28880 } 28881 return (rval); 28882 } 28883 28884 /* ARGSUSED */ 28885 static int 28886 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28887 caddr_t addr, cred_t *cr) 28888 { 28889 int *v = (int *)addr; 28890 long new_value; 28891 28892 if (secpolicy_net_config(cr, B_FALSE) != 0) 28893 return (EPERM); 28894 28895 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28896 return (EINVAL); 28897 28898 ip_input_proc = ip_squeue_switch(new_value); 28899 *v = new_value; 28900 return (0); 28901 } 28902 28903 /* ARGSUSED */ 28904 static int 28905 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28906 caddr_t addr, cred_t *cr) 28907 { 28908 int *v = (int *)addr; 28909 long new_value; 28910 28911 if (secpolicy_net_config(cr, B_FALSE) != 0) 28912 return (EPERM); 28913 28914 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28915 return (EINVAL); 28916 28917 *v = new_value; 28918 return (0); 28919 } 28920 28921 /* 28922 * Handle changes to ipmp_hook_emulation ndd variable. 28923 * Need to update phyint_hook_ifindex. 28924 * Also generate a nic plumb event should a new ifidex be assigned to a group. 28925 */ 28926 static void 28927 ipmp_hook_emulation_changed(ip_stack_t *ipst) 28928 { 28929 phyint_t *phyi; 28930 phyint_t *phyi_tmp; 28931 char *groupname; 28932 int namelen; 28933 ill_t *ill; 28934 boolean_t new_group; 28935 28936 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 28937 /* 28938 * Group indicies are stored in the phyint - a common structure 28939 * to both IPv4 and IPv6. 28940 */ 28941 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 28942 for (; phyi != NULL; 28943 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 28944 phyi, AVL_AFTER)) { 28945 /* Ignore the ones that do not have a group */ 28946 if (phyi->phyint_groupname_len == 0) 28947 continue; 28948 28949 /* 28950 * Look for other phyint in group. 28951 * Clear name/namelen so the lookup doesn't find ourselves. 28952 */ 28953 namelen = phyi->phyint_groupname_len; 28954 groupname = phyi->phyint_groupname; 28955 phyi->phyint_groupname_len = 0; 28956 phyi->phyint_groupname = NULL; 28957 28958 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 28959 /* Restore */ 28960 phyi->phyint_groupname_len = namelen; 28961 phyi->phyint_groupname = groupname; 28962 28963 new_group = B_FALSE; 28964 if (ipst->ips_ipmp_hook_emulation) { 28965 /* 28966 * If the group already exists and has already 28967 * been assigned a group ifindex, we use the existing 28968 * group_ifindex, otherwise we pick a new group_ifindex 28969 * here. 28970 */ 28971 if (phyi_tmp != NULL && 28972 phyi_tmp->phyint_group_ifindex != 0) { 28973 phyi->phyint_group_ifindex = 28974 phyi_tmp->phyint_group_ifindex; 28975 } else { 28976 /* XXX We need a recovery strategy here. */ 28977 if (!ip_assign_ifindex( 28978 &phyi->phyint_group_ifindex, ipst)) 28979 cmn_err(CE_PANIC, 28980 "ip_assign_ifindex() failed"); 28981 new_group = B_TRUE; 28982 } 28983 } else { 28984 phyi->phyint_group_ifindex = 0; 28985 } 28986 if (ipst->ips_ipmp_hook_emulation) 28987 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 28988 else 28989 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 28990 28991 /* 28992 * For IP Filter to find out the relationship between 28993 * names and interface indicies, we need to generate 28994 * a NE_PLUMB event when a new group can appear. 28995 * We always generate events when a new interface appears 28996 * (even when ipmp_hook_emulation is set) so there 28997 * is no need to generate NE_PLUMB events when 28998 * ipmp_hook_emulation is turned off. 28999 * And since it isn't critical for IP Filter to get 29000 * the NE_UNPLUMB events we skip those here. 29001 */ 29002 if (new_group) { 29003 /* 29004 * First phyint in group - generate group PLUMB event. 29005 * Since we are not running inside the ipsq we do 29006 * the dispatch immediately. 29007 */ 29008 if (phyi->phyint_illv4 != NULL) 29009 ill = phyi->phyint_illv4; 29010 else 29011 ill = phyi->phyint_illv6; 29012 29013 if (ill != NULL) { 29014 mutex_enter(&ill->ill_lock); 29015 ill_nic_info_plumb(ill, B_TRUE); 29016 ill_nic_info_dispatch(ill); 29017 mutex_exit(&ill->ill_lock); 29018 } 29019 } 29020 } 29021 rw_exit(&ipst->ips_ill_g_lock); 29022 } 29023 29024 /* ARGSUSED */ 29025 static int 29026 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29027 caddr_t addr, cred_t *cr) 29028 { 29029 int *v = (int *)addr; 29030 long new_value; 29031 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29032 29033 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29034 return (EINVAL); 29035 29036 if (*v != new_value) { 29037 *v = new_value; 29038 ipmp_hook_emulation_changed(ipst); 29039 } 29040 return (0); 29041 } 29042 29043 static void * 29044 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29045 { 29046 kstat_t *ksp; 29047 29048 ip_stat_t template = { 29049 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29050 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29051 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29052 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29053 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29054 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29055 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29056 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29057 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29058 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29059 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29060 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29061 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29062 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29063 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29064 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29065 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29066 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29067 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29068 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29069 { "ip_opt", KSTAT_DATA_UINT64 }, 29070 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29071 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29072 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29073 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29074 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29075 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29076 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29077 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29078 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29079 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29080 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29081 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29082 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29083 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29084 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29085 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29086 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29087 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29088 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29089 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29090 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29091 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29092 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29093 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29094 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29095 }; 29096 29097 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29098 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29099 KSTAT_FLAG_VIRTUAL, stackid); 29100 29101 if (ksp == NULL) 29102 return (NULL); 29103 29104 bcopy(&template, ip_statisticsp, sizeof (template)); 29105 ksp->ks_data = (void *)ip_statisticsp; 29106 ksp->ks_private = (void *)(uintptr_t)stackid; 29107 29108 kstat_install(ksp); 29109 return (ksp); 29110 } 29111 29112 static void 29113 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29114 { 29115 if (ksp != NULL) { 29116 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29117 kstat_delete_netstack(ksp, stackid); 29118 } 29119 } 29120 29121 static void * 29122 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29123 { 29124 kstat_t *ksp; 29125 29126 ip_named_kstat_t template = { 29127 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29128 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29129 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29130 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29131 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29132 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29133 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29134 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29135 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29136 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29137 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29138 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29139 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29140 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29141 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29142 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29143 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29144 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29145 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29146 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29147 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29148 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29149 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29150 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29151 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29152 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29153 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29154 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29155 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29156 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29157 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29158 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29159 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29160 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29161 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29162 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29163 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29164 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29165 }; 29166 29167 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29168 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29169 if (ksp == NULL || ksp->ks_data == NULL) 29170 return (NULL); 29171 29172 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29173 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29174 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29175 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29176 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29177 29178 template.netToMediaEntrySize.value.i32 = 29179 sizeof (mib2_ipNetToMediaEntry_t); 29180 29181 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29182 29183 bcopy(&template, ksp->ks_data, sizeof (template)); 29184 ksp->ks_update = ip_kstat_update; 29185 ksp->ks_private = (void *)(uintptr_t)stackid; 29186 29187 kstat_install(ksp); 29188 return (ksp); 29189 } 29190 29191 static void 29192 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29193 { 29194 if (ksp != NULL) { 29195 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29196 kstat_delete_netstack(ksp, stackid); 29197 } 29198 } 29199 29200 static int 29201 ip_kstat_update(kstat_t *kp, int rw) 29202 { 29203 ip_named_kstat_t *ipkp; 29204 mib2_ipIfStatsEntry_t ipmib; 29205 ill_walk_context_t ctx; 29206 ill_t *ill; 29207 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29208 netstack_t *ns; 29209 ip_stack_t *ipst; 29210 29211 if (kp == NULL || kp->ks_data == NULL) 29212 return (EIO); 29213 29214 if (rw == KSTAT_WRITE) 29215 return (EACCES); 29216 29217 ns = netstack_find_by_stackid(stackid); 29218 if (ns == NULL) 29219 return (-1); 29220 ipst = ns->netstack_ip; 29221 if (ipst == NULL) { 29222 netstack_rele(ns); 29223 return (-1); 29224 } 29225 ipkp = (ip_named_kstat_t *)kp->ks_data; 29226 29227 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29228 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29229 ill = ILL_START_WALK_V4(&ctx, ipst); 29230 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29231 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29232 rw_exit(&ipst->ips_ill_g_lock); 29233 29234 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29235 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29236 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29237 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29238 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29239 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29240 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29241 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29242 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29243 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29244 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29245 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29246 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29247 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29248 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29249 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29250 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29251 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29252 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29253 29254 ipkp->routingDiscards.value.ui32 = 0; 29255 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29256 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29257 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29258 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29259 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29260 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29261 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29262 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29263 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29264 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29265 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29266 29267 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29268 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29269 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29270 29271 netstack_rele(ns); 29272 29273 return (0); 29274 } 29275 29276 static void * 29277 icmp_kstat_init(netstackid_t stackid) 29278 { 29279 kstat_t *ksp; 29280 29281 icmp_named_kstat_t template = { 29282 { "inMsgs", KSTAT_DATA_UINT32 }, 29283 { "inErrors", KSTAT_DATA_UINT32 }, 29284 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29285 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29286 { "inParmProbs", KSTAT_DATA_UINT32 }, 29287 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29288 { "inRedirects", KSTAT_DATA_UINT32 }, 29289 { "inEchos", KSTAT_DATA_UINT32 }, 29290 { "inEchoReps", KSTAT_DATA_UINT32 }, 29291 { "inTimestamps", KSTAT_DATA_UINT32 }, 29292 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29293 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29294 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29295 { "outMsgs", KSTAT_DATA_UINT32 }, 29296 { "outErrors", KSTAT_DATA_UINT32 }, 29297 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29298 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29299 { "outParmProbs", KSTAT_DATA_UINT32 }, 29300 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29301 { "outRedirects", KSTAT_DATA_UINT32 }, 29302 { "outEchos", KSTAT_DATA_UINT32 }, 29303 { "outEchoReps", KSTAT_DATA_UINT32 }, 29304 { "outTimestamps", KSTAT_DATA_UINT32 }, 29305 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29306 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29307 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29308 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29309 { "inUnknowns", KSTAT_DATA_UINT32 }, 29310 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29311 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29312 { "outDrops", KSTAT_DATA_UINT32 }, 29313 { "inOverFlows", KSTAT_DATA_UINT32 }, 29314 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29315 }; 29316 29317 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29318 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29319 if (ksp == NULL || ksp->ks_data == NULL) 29320 return (NULL); 29321 29322 bcopy(&template, ksp->ks_data, sizeof (template)); 29323 29324 ksp->ks_update = icmp_kstat_update; 29325 ksp->ks_private = (void *)(uintptr_t)stackid; 29326 29327 kstat_install(ksp); 29328 return (ksp); 29329 } 29330 29331 static void 29332 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29333 { 29334 if (ksp != NULL) { 29335 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29336 kstat_delete_netstack(ksp, stackid); 29337 } 29338 } 29339 29340 static int 29341 icmp_kstat_update(kstat_t *kp, int rw) 29342 { 29343 icmp_named_kstat_t *icmpkp; 29344 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29345 netstack_t *ns; 29346 ip_stack_t *ipst; 29347 29348 if ((kp == NULL) || (kp->ks_data == NULL)) 29349 return (EIO); 29350 29351 if (rw == KSTAT_WRITE) 29352 return (EACCES); 29353 29354 ns = netstack_find_by_stackid(stackid); 29355 if (ns == NULL) 29356 return (-1); 29357 ipst = ns->netstack_ip; 29358 if (ipst == NULL) { 29359 netstack_rele(ns); 29360 return (-1); 29361 } 29362 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29363 29364 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29365 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29366 icmpkp->inDestUnreachs.value.ui32 = 29367 ipst->ips_icmp_mib.icmpInDestUnreachs; 29368 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29369 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29370 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29371 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29372 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29373 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29374 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29375 icmpkp->inTimestampReps.value.ui32 = 29376 ipst->ips_icmp_mib.icmpInTimestampReps; 29377 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29378 icmpkp->inAddrMaskReps.value.ui32 = 29379 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29380 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29381 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29382 icmpkp->outDestUnreachs.value.ui32 = 29383 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29384 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29385 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29386 icmpkp->outSrcQuenchs.value.ui32 = 29387 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29388 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29389 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29390 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29391 icmpkp->outTimestamps.value.ui32 = 29392 ipst->ips_icmp_mib.icmpOutTimestamps; 29393 icmpkp->outTimestampReps.value.ui32 = 29394 ipst->ips_icmp_mib.icmpOutTimestampReps; 29395 icmpkp->outAddrMasks.value.ui32 = 29396 ipst->ips_icmp_mib.icmpOutAddrMasks; 29397 icmpkp->outAddrMaskReps.value.ui32 = 29398 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29399 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29400 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29401 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29402 icmpkp->outFragNeeded.value.ui32 = 29403 ipst->ips_icmp_mib.icmpOutFragNeeded; 29404 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29405 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29406 icmpkp->inBadRedirects.value.ui32 = 29407 ipst->ips_icmp_mib.icmpInBadRedirects; 29408 29409 netstack_rele(ns); 29410 return (0); 29411 } 29412 29413 /* 29414 * This is the fanout function for raw socket opened for SCTP. Note 29415 * that it is called after SCTP checks that there is no socket which 29416 * wants a packet. Then before SCTP handles this out of the blue packet, 29417 * this function is called to see if there is any raw socket for SCTP. 29418 * If there is and it is bound to the correct address, the packet will 29419 * be sent to that socket. Note that only one raw socket can be bound to 29420 * a port. This is assured in ipcl_sctp_hash_insert(); 29421 */ 29422 void 29423 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29424 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29425 zoneid_t zoneid) 29426 { 29427 conn_t *connp; 29428 queue_t *rq; 29429 mblk_t *first_mp; 29430 boolean_t secure; 29431 ip6_t *ip6h; 29432 ip_stack_t *ipst = recv_ill->ill_ipst; 29433 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29434 29435 first_mp = mp; 29436 if (mctl_present) { 29437 mp = first_mp->b_cont; 29438 secure = ipsec_in_is_secure(first_mp); 29439 ASSERT(mp != NULL); 29440 } else { 29441 secure = B_FALSE; 29442 } 29443 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29444 29445 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29446 if (connp == NULL) { 29447 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29448 return; 29449 } 29450 rq = connp->conn_rq; 29451 if (!canputnext(rq)) { 29452 CONN_DEC_REF(connp); 29453 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29454 freemsg(first_mp); 29455 return; 29456 } 29457 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29458 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29459 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29460 (isv4 ? ipha : NULL), ip6h, mctl_present); 29461 if (first_mp == NULL) { 29462 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29463 CONN_DEC_REF(connp); 29464 return; 29465 } 29466 } 29467 /* 29468 * We probably should not send M_CTL message up to 29469 * raw socket. 29470 */ 29471 if (mctl_present) 29472 freeb(first_mp); 29473 29474 /* Initiate IPPF processing here if needed. */ 29475 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29476 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29477 ip_process(IPP_LOCAL_IN, &mp, 29478 recv_ill->ill_phyint->phyint_ifindex); 29479 if (mp == NULL) { 29480 CONN_DEC_REF(connp); 29481 return; 29482 } 29483 } 29484 29485 if (connp->conn_recvif || connp->conn_recvslla || 29486 ((connp->conn_ip_recvpktinfo || 29487 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29488 (flags & IP_FF_IPINFO))) { 29489 int in_flags = 0; 29490 29491 /* 29492 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29493 * IPF_RECVIF. 29494 */ 29495 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29496 in_flags = IPF_RECVIF; 29497 } 29498 if (connp->conn_recvslla) { 29499 in_flags |= IPF_RECVSLLA; 29500 } 29501 if (isv4) { 29502 mp = ip_add_info(mp, recv_ill, in_flags, 29503 IPCL_ZONEID(connp), ipst); 29504 } else { 29505 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29506 if (mp == NULL) { 29507 BUMP_MIB(recv_ill->ill_ip_mib, 29508 ipIfStatsInDiscards); 29509 CONN_DEC_REF(connp); 29510 return; 29511 } 29512 } 29513 } 29514 29515 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29516 /* 29517 * We are sending the IPSEC_IN message also up. Refer 29518 * to comments above this function. 29519 */ 29520 putnext(rq, mp); 29521 CONN_DEC_REF(connp); 29522 } 29523 29524 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29525 { \ 29526 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29527 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29528 } 29529 /* 29530 * This function should be called only if all packet processing 29531 * including fragmentation is complete. Callers of this function 29532 * must set mp->b_prev to one of these values: 29533 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29534 * prior to handing over the mp as first argument to this function. 29535 * 29536 * If the ire passed by caller is incomplete, this function 29537 * queues the packet and if necessary, sends ARP request and bails. 29538 * If the ire passed is fully resolved, we simply prepend 29539 * the link-layer header to the packet, do ipsec hw acceleration 29540 * work if necessary, and send the packet out on the wire. 29541 * 29542 * NOTE: IPSEC will only call this function with fully resolved 29543 * ires if hw acceleration is involved. 29544 * TODO list : 29545 * a Handle M_MULTIDATA so that 29546 * tcp_multisend->tcp_multisend_data can 29547 * call ip_xmit_v4 directly 29548 * b Handle post-ARP work for fragments so that 29549 * ip_wput_frag can call this function. 29550 */ 29551 ipxmit_state_t 29552 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29553 { 29554 nce_t *arpce; 29555 queue_t *q; 29556 int ill_index; 29557 mblk_t *nxt_mp, *first_mp; 29558 boolean_t xmit_drop = B_FALSE; 29559 ip_proc_t proc; 29560 ill_t *out_ill; 29561 int pkt_len; 29562 29563 arpce = ire->ire_nce; 29564 ASSERT(arpce != NULL); 29565 29566 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29567 29568 mutex_enter(&arpce->nce_lock); 29569 switch (arpce->nce_state) { 29570 case ND_REACHABLE: 29571 /* If there are other queued packets, queue this packet */ 29572 if (arpce->nce_qd_mp != NULL) { 29573 if (mp != NULL) 29574 nce_queue_mp_common(arpce, mp, B_FALSE); 29575 mp = arpce->nce_qd_mp; 29576 } 29577 arpce->nce_qd_mp = NULL; 29578 mutex_exit(&arpce->nce_lock); 29579 29580 /* 29581 * Flush the queue. In the common case, where the 29582 * ARP is already resolved, it will go through the 29583 * while loop only once. 29584 */ 29585 while (mp != NULL) { 29586 29587 nxt_mp = mp->b_next; 29588 mp->b_next = NULL; 29589 ASSERT(mp->b_datap->db_type != M_CTL); 29590 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29591 /* 29592 * This info is needed for IPQOS to do COS marking 29593 * in ip_wput_attach_llhdr->ip_process. 29594 */ 29595 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29596 mp->b_prev = NULL; 29597 29598 /* set up ill index for outbound qos processing */ 29599 out_ill = ire->ire_ipif->ipif_ill; 29600 ill_index = out_ill->ill_phyint->phyint_ifindex; 29601 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29602 ill_index); 29603 if (first_mp == NULL) { 29604 xmit_drop = B_TRUE; 29605 BUMP_MIB(out_ill->ill_ip_mib, 29606 ipIfStatsOutDiscards); 29607 goto next_mp; 29608 } 29609 /* non-ipsec hw accel case */ 29610 if (io == NULL || !io->ipsec_out_accelerated) { 29611 /* send it */ 29612 q = ire->ire_stq; 29613 if (proc == IPP_FWD_OUT) { 29614 UPDATE_IB_PKT_COUNT(ire); 29615 } else { 29616 UPDATE_OB_PKT_COUNT(ire); 29617 } 29618 ire->ire_last_used_time = lbolt; 29619 29620 if (flow_ctl_enabled || canputnext(q)) { 29621 if (proc == IPP_FWD_OUT) { 29622 29623 BUMP_MIB(out_ill->ill_ip_mib, 29624 ipIfStatsHCOutForwDatagrams); 29625 29626 } 29627 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29628 pkt_len); 29629 29630 putnext(q, first_mp); 29631 } else { 29632 BUMP_MIB(out_ill->ill_ip_mib, 29633 ipIfStatsOutDiscards); 29634 xmit_drop = B_TRUE; 29635 freemsg(first_mp); 29636 } 29637 } else { 29638 /* 29639 * Safety Pup says: make sure this 29640 * is going to the right interface! 29641 */ 29642 ill_t *ill1 = 29643 (ill_t *)ire->ire_stq->q_ptr; 29644 int ifindex = 29645 ill1->ill_phyint->phyint_ifindex; 29646 if (ifindex != 29647 io->ipsec_out_capab_ill_index) { 29648 xmit_drop = B_TRUE; 29649 freemsg(mp); 29650 } else { 29651 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29652 pkt_len); 29653 ipsec_hw_putnext(ire->ire_stq, mp); 29654 } 29655 } 29656 next_mp: 29657 mp = nxt_mp; 29658 } /* while (mp != NULL) */ 29659 if (xmit_drop) 29660 return (SEND_FAILED); 29661 else 29662 return (SEND_PASSED); 29663 29664 case ND_INITIAL: 29665 case ND_INCOMPLETE: 29666 29667 /* 29668 * While we do send off packets to dests that 29669 * use fully-resolved CGTP routes, we do not 29670 * handle unresolved CGTP routes. 29671 */ 29672 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29673 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29674 29675 if (mp != NULL) { 29676 /* queue the packet */ 29677 nce_queue_mp_common(arpce, mp, B_FALSE); 29678 } 29679 29680 if (arpce->nce_state == ND_INCOMPLETE) { 29681 mutex_exit(&arpce->nce_lock); 29682 DTRACE_PROBE3(ip__xmit__incomplete, 29683 (ire_t *), ire, (mblk_t *), mp, 29684 (ipsec_out_t *), io); 29685 return (LOOKUP_IN_PROGRESS); 29686 } 29687 29688 arpce->nce_state = ND_INCOMPLETE; 29689 mutex_exit(&arpce->nce_lock); 29690 /* 29691 * Note that ire_add() (called from ire_forward()) 29692 * holds a ref on the ire until ARP is completed. 29693 */ 29694 29695 ire_arpresolve(ire, ire_to_ill(ire)); 29696 return (LOOKUP_IN_PROGRESS); 29697 default: 29698 ASSERT(0); 29699 mutex_exit(&arpce->nce_lock); 29700 return (LLHDR_RESLV_FAILED); 29701 } 29702 } 29703 29704 #undef UPDATE_IP_MIB_OB_COUNTERS 29705 29706 /* 29707 * Return B_TRUE if the buffers differ in length or content. 29708 * This is used for comparing extension header buffers. 29709 * Note that an extension header would be declared different 29710 * even if all that changed was the next header value in that header i.e. 29711 * what really changed is the next extension header. 29712 */ 29713 boolean_t 29714 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29715 uint_t blen) 29716 { 29717 if (!b_valid) 29718 blen = 0; 29719 29720 if (alen != blen) 29721 return (B_TRUE); 29722 if (alen == 0) 29723 return (B_FALSE); /* Both zero length */ 29724 return (bcmp(abuf, bbuf, alen)); 29725 } 29726 29727 /* 29728 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29729 * Return B_FALSE if memory allocation fails - don't change any state! 29730 */ 29731 boolean_t 29732 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29733 const void *src, uint_t srclen) 29734 { 29735 void *dst; 29736 29737 if (!src_valid) 29738 srclen = 0; 29739 29740 ASSERT(*dstlenp == 0); 29741 if (src != NULL && srclen != 0) { 29742 dst = mi_alloc(srclen, BPRI_MED); 29743 if (dst == NULL) 29744 return (B_FALSE); 29745 } else { 29746 dst = NULL; 29747 } 29748 if (*dstp != NULL) 29749 mi_free(*dstp); 29750 *dstp = dst; 29751 *dstlenp = dst == NULL ? 0 : srclen; 29752 return (B_TRUE); 29753 } 29754 29755 /* 29756 * Replace what is in *dst, *dstlen with the source. 29757 * Assumes ip_allocbuf has already been called. 29758 */ 29759 void 29760 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29761 const void *src, uint_t srclen) 29762 { 29763 if (!src_valid) 29764 srclen = 0; 29765 29766 ASSERT(*dstlenp == srclen); 29767 if (src != NULL && srclen != 0) 29768 bcopy(src, *dstp, srclen); 29769 } 29770 29771 /* 29772 * Free the storage pointed to by the members of an ip6_pkt_t. 29773 */ 29774 void 29775 ip6_pkt_free(ip6_pkt_t *ipp) 29776 { 29777 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29778 29779 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29780 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29781 ipp->ipp_hopopts = NULL; 29782 ipp->ipp_hopoptslen = 0; 29783 } 29784 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29785 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29786 ipp->ipp_rtdstopts = NULL; 29787 ipp->ipp_rtdstoptslen = 0; 29788 } 29789 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29790 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29791 ipp->ipp_dstopts = NULL; 29792 ipp->ipp_dstoptslen = 0; 29793 } 29794 if (ipp->ipp_fields & IPPF_RTHDR) { 29795 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29796 ipp->ipp_rthdr = NULL; 29797 ipp->ipp_rthdrlen = 0; 29798 } 29799 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29800 IPPF_RTHDR); 29801 } 29802