1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 typedef struct ip_stat { 140 kstat_named_t ipsec_fanout_proto; 141 kstat_named_t ip_udp_fannorm; 142 kstat_named_t ip_udp_fanmb; 143 kstat_named_t ip_udp_fanothers; 144 kstat_named_t ip_udp_fast_path; 145 kstat_named_t ip_udp_slow_path; 146 kstat_named_t ip_udp_input_err; 147 kstat_named_t ip_tcppullup; 148 kstat_named_t ip_tcpoptions; 149 kstat_named_t ip_multipkttcp; 150 kstat_named_t ip_tcp_fast_path; 151 kstat_named_t ip_tcp_slow_path; 152 kstat_named_t ip_tcp_input_error; 153 kstat_named_t ip_db_ref; 154 kstat_named_t ip_notaligned1; 155 kstat_named_t ip_notaligned2; 156 kstat_named_t ip_multimblk3; 157 kstat_named_t ip_multimblk4; 158 kstat_named_t ip_ipoptions; 159 kstat_named_t ip_classify_fail; 160 kstat_named_t ip_opt; 161 kstat_named_t ip_udp_rput_local; 162 kstat_named_t ipsec_proto_ahesp; 163 kstat_named_t ip_conn_flputbq; 164 kstat_named_t ip_conn_walk_drain; 165 kstat_named_t ip_out_sw_cksum; 166 kstat_named_t ip_in_sw_cksum; 167 kstat_named_t ip_trash_ire_reclaim_calls; 168 kstat_named_t ip_trash_ire_reclaim_success; 169 kstat_named_t ip_ire_arp_timer_expired; 170 kstat_named_t ip_ire_redirect_timer_expired; 171 kstat_named_t ip_ire_pmtu_timer_expired; 172 kstat_named_t ip_input_multi_squeue; 173 kstat_named_t ip_tcp_in_full_hw_cksum_err; 174 kstat_named_t ip_tcp_in_part_hw_cksum_err; 175 kstat_named_t ip_tcp_in_sw_cksum_err; 176 kstat_named_t ip_tcp_out_sw_cksum_bytes; 177 kstat_named_t ip_udp_in_full_hw_cksum_err; 178 kstat_named_t ip_udp_in_part_hw_cksum_err; 179 kstat_named_t ip_udp_in_sw_cksum_err; 180 kstat_named_t ip_udp_out_sw_cksum_bytes; 181 kstat_named_t ip_frag_mdt_pkt_out; 182 kstat_named_t ip_frag_mdt_discarded; 183 kstat_named_t ip_frag_mdt_allocfail; 184 kstat_named_t ip_frag_mdt_addpdescfail; 185 kstat_named_t ip_frag_mdt_allocd; 186 } ip_stat_t; 187 188 static ip_stat_t ip_statistics = { 189 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 195 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 196 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 197 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 198 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 201 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 202 { "ip_db_ref", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 204 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 206 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 207 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 208 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 209 { "ip_opt", KSTAT_DATA_UINT64 }, 210 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 211 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 212 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 213 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 214 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 217 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 218 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 221 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 229 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 235 }; 236 237 static kstat_t *ip_kstat; 238 239 #define TCP6 "tcp6" 240 #define TCP "tcp" 241 #define SCTP "sctp" 242 #define SCTP6 "sctp6" 243 244 major_t TCP6_MAJ; 245 major_t TCP_MAJ; 246 major_t SCTP_MAJ; 247 major_t SCTP6_MAJ; 248 249 int ip_poll_normal_ms = 100; 250 int ip_poll_normal_ticks = 0; 251 252 /* 253 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 254 */ 255 256 struct listptr_s { 257 mblk_t *lp_head; /* pointer to the head of the list */ 258 mblk_t *lp_tail; /* pointer to the tail of the list */ 259 }; 260 261 typedef struct listptr_s listptr_t; 262 263 /* 264 * This is used by ip_snmp_get_mib2_ip_route_media and 265 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 266 */ 267 typedef struct iproutedata_s { 268 uint_t ird_idx; 269 listptr_t ird_route; /* ipRouteEntryTable */ 270 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 271 listptr_t ird_attrs; /* ipRouteAttributeTable */ 272 } iproutedata_t; 273 274 /* 275 * Cluster specific hooks. These should be NULL when booted as a non-cluster 276 */ 277 278 /* 279 * Hook functions to enable cluster networking 280 * On non-clustered systems these vectors must always be NULL. 281 * 282 * Hook function to Check ip specified ip address is a shared ip address 283 * in the cluster 284 * 285 */ 286 int (*cl_inet_isclusterwide)(uint8_t protocol, 287 sa_family_t addr_family, uint8_t *laddrp) = NULL; 288 289 /* 290 * Hook function to generate cluster wide ip fragment identifier 291 */ 292 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 293 uint8_t *laddrp, uint8_t *faddrp) = NULL; 294 295 /* 296 * Synchronization notes: 297 * 298 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 299 * MT level protection given by STREAMS. IP uses a combination of its own 300 * internal serialization mechanism and standard Solaris locking techniques. 301 * The internal serialization is per phyint (no IPMP) or per IPMP group. 302 * This is used to serialize plumbing operations, IPMP operations, certain 303 * multicast operations, most set ioctls, igmp/mld timers etc. 304 * 305 * Plumbing is a long sequence of operations involving message 306 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 307 * involved in plumbing operations. A natural model is to serialize these 308 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 309 * parallel without any interference. But various set ioctls on hme0 are best 310 * serialized. However if the system uses IPMP, the operations are easier if 311 * they are serialized on a per IPMP group basis since IPMP operations 312 * happen across ill's of a group. Thus the lowest common denominator is to 313 * serialize most set ioctls, multicast join/leave operations, IPMP operations 314 * igmp/mld timer operations, and processing of DLPI control messages received 315 * from drivers on a per IPMP group basis. If the system does not employ 316 * IPMP the serialization is on a per phyint basis. This serialization is 317 * provided by the ipsq_t and primitives operating on this. Details can 318 * be found in ip_if.c above the core primitives operating on ipsq_t. 319 * 320 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 321 * Simiarly lookup of an ire by a thread also returns a refheld ire. 322 * In addition ipif's and ill's referenced by the ire are also indirectly 323 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 324 * the ipif's address or netmask change as long as an ipif is refheld 325 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 326 * address of an ipif has to go through the ipsq_t. This ensures that only 327 * 1 such exclusive operation proceeds at any time on the ipif. It then 328 * deletes all ires associated with this ipif, and waits for all refcnts 329 * associated with this ipif to come down to zero. The address is changed 330 * only after the ipif has been quiesced. Then the ipif is brought up again. 331 * More details are described above the comment in ip_sioctl_flags. 332 * 333 * Packet processing is based mostly on IREs and are fully multi-threaded 334 * using standard Solaris MT techniques. 335 * 336 * There are explicit locks in IP to handle: 337 * - The ip_g_head list maintained by mi_open_link() and friends. 338 * 339 * - The reassembly data structures (one lock per hash bucket) 340 * 341 * - conn_lock is meant to protect conn_t fields. The fields actually 342 * protected by conn_lock are documented in the conn_t definition. 343 * 344 * - ire_lock to protect some of the fields of the ire, IRE tables 345 * (one lock per hash bucket). Refer to ip_ire.c for details. 346 * 347 * - ndp_g_lock and nce_lock for protecting NCEs. 348 * 349 * - ill_lock protects fields of the ill and ipif. Details in ip.h 350 * 351 * - ill_g_lock: This is a global reader/writer lock. Protects the following 352 * * The AVL tree based global multi list of all ills. 353 * * The linked list of all ipifs of an ill 354 * * The <ill-ipsq> mapping 355 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 356 * * The illgroup list threaded by ill_group_next. 357 * * <ill-phyint> association 358 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 359 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 360 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 361 * will all have to hold the ill_g_lock as writer for the actual duration 362 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 363 * may be found in the IPMP section. 364 * 365 * - ill_lock: This is a per ill mutex. 366 * It protects some members of the ill and is documented below. 367 * It also protects the <ill-ipsq> mapping 368 * It also protects the illgroup list threaded by ill_group_next. 369 * It also protects the <ill-phyint> assoc. 370 * It also protects the list of ipifs hanging off the ill. 371 * 372 * - ipsq_lock: This is a per ipsq_t mutex lock. 373 * This protects all the other members of the ipsq struct except 374 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 375 * 376 * - illgrp_lock: This is a per ill_group mutex lock. 377 * The only thing it protects is the illgrp_ill_schednext member of ill_group 378 * which dictates which is the next ill in an ill_group that is to be chosen 379 * for sending outgoing packets, through creation of an IRE_CACHE that 380 * references this ill. 381 * 382 * - phyint_lock: This is a per phyint mutex lock. Protects just the 383 * phyint_flags 384 * 385 * - ip_g_nd_lock: This is a global reader/writer lock. 386 * Any call to nd_load to load a new parameter to the ND table must hold the 387 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 388 * as reader. 389 * 390 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 391 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 392 * uniqueness check also done atomically. 393 * 394 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 395 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 396 * as a writer when adding or deleting elements from these lists, and 397 * as a reader when walking these lists to send a SADB update to the 398 * IPsec capable ills. 399 * 400 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 401 * group list linked by ill_usesrc_grp_next. It also protects the 402 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 403 * group is being added or deleted. This lock is taken as a reader when 404 * walking the list/group(eg: to get the number of members in a usesrc group). 405 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 406 * field is changing state i.e from NULL to non-NULL or vice-versa. For 407 * example, it is not necessary to take this lock in the initial portion 408 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 409 * ip_sioctl_flags since the these operations are executed exclusively and 410 * that ensures that the "usesrc group state" cannot change. The "usesrc 411 * group state" change can happen only in the latter part of 412 * ip_sioctl_slifusesrc and in ill_delete. 413 * 414 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 415 * 416 * To change the <ill-phyint> association, the ill_g_lock must be held 417 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 418 * must be held. 419 * 420 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 421 * and the ill_lock of the ill in question must be held. 422 * 423 * To change the <ill-illgroup> association the ill_g_lock must be held as 424 * writer and the ill_lock of the ill in question must be held. 425 * 426 * To add or delete an ipif from the list of ipifs hanging off the ill, 427 * ill_g_lock (writer) and ill_lock must be held and the thread must be 428 * a writer on the associated ipsq,. 429 * 430 * To add or delete an ill to the system, the ill_g_lock must be held as 431 * writer and the thread must be a writer on the associated ipsq. 432 * 433 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 434 * must be a writer on the associated ipsq. 435 * 436 * Lock hierarchy 437 * 438 * Some lock hierarchy scenarios are listed below. 439 * 440 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 441 * ill_g_lock -> illgrp_lock -> ill_lock 442 * ill_g_lock -> ill_lock(s) -> phyint_lock 443 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 444 * ill_g_lock -> ip_addr_avail_lock 445 * conn_lock -> irb_lock -> ill_lock -> ire_lock 446 * ill_g_lock -> ip_g_nd_lock 447 * 448 * When more than 1 ill lock is needed to be held, all ill lock addresses 449 * are sorted on address and locked starting from highest addressed lock 450 * downward. 451 * 452 * Mobile-IP scenarios 453 * 454 * irb_lock -> ill_lock -> ire_mrtun_lock 455 * irb_lock -> ill_lock -> ire_srcif_table_lock 456 * 457 * IPsec scenarios 458 * 459 * ipsa_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 461 * ipsec_capab_ills_lock -> ipsa_lock 462 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 463 * 464 * Trusted Solaris scenarios 465 * 466 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 467 * igsa_lock -> gcdb_lock 468 * gcgrp_rwlock -> ire_lock 469 * gcgrp_rwlock -> gcdb_lock 470 * 471 * 472 * Routing/forwarding table locking notes: 473 * 474 * Lock acquisition order: Radix tree lock, irb_lock. 475 * Requirements: 476 * i. Walker must not hold any locks during the walker callback. 477 * ii Walker must not see a truncated tree during the walk because of any node 478 * deletion. 479 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 480 * in many places in the code to walk the irb list. Thus even if all the 481 * ires in a bucket have been deleted, we still can't free the radix node 482 * until the ires have actually been inactive'd (freed). 483 * 484 * Tree traversal - Need to hold the global tree lock in read mode. 485 * Before dropping the global tree lock, need to either increment the ire_refcnt 486 * to ensure that the radix node can't be deleted. 487 * 488 * Tree add - Need to hold the global tree lock in write mode to add a 489 * radix node. To prevent the node from being deleted, increment the 490 * irb_refcnt, after the node is added to the tree. The ire itself is 491 * added later while holding the irb_lock, but not the tree lock. 492 * 493 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 494 * All associated ires must be inactive (i.e. freed), and irb_refcnt 495 * must be zero. 496 * 497 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 498 * global tree lock (read mode) for traversal. 499 * 500 * IPSEC notes : 501 * 502 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 503 * in front of the actual packet. For outbound datagrams, the M_CTL 504 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 505 * information used by the IPSEC code for applying the right level of 506 * protection. The information initialized by IP in the ipsec_out_t 507 * is determined by the per-socket policy or global policy in the system. 508 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 509 * ipsec_info.h) which starts out with nothing in it. It gets filled 510 * with the right information if it goes through the AH/ESP code, which 511 * happens if the incoming packet is secure. The information initialized 512 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 513 * the policy requirements needed by per-socket policy or global policy 514 * is met or not. 515 * 516 * If there is both per-socket policy (set using setsockopt) and there 517 * is also global policy match for the 5 tuples of the socket, 518 * ipsec_override_policy() makes the decision of which one to use. 519 * 520 * For fully connected sockets i.e dst, src [addr, port] is known, 521 * conn_policy_cached is set indicating that policy has been cached. 522 * conn_in_enforce_policy may or may not be set depending on whether 523 * there is a global policy match or per-socket policy match. 524 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 525 * Once the right policy is set on the conn_t, policy cannot change for 526 * this socket. This makes life simpler for TCP (UDP ?) where 527 * re-transmissions go out with the same policy. For symmetry, policy 528 * is cached for fully connected UDP sockets also. Thus if policy is cached, 529 * it also implies that policy is latched i.e policy cannot change 530 * on these sockets. As we have the right policy on the conn, we don't 531 * have to lookup global policy for every outbound and inbound datagram 532 * and thus serving as an optimization. Note that a global policy change 533 * does not affect fully connected sockets if they have policy. If fully 534 * connected sockets did not have any policy associated with it, global 535 * policy change may affect them. 536 * 537 * IP Flow control notes: 538 * 539 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 540 * cannot be sent down to the driver by IP, because of a canput failure, IP 541 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 542 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 543 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 544 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 545 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 546 * the queued messages, and removes the conn from the drain list, if all 547 * messages were drained. It also qenables the next conn in the drain list to 548 * continue the drain process. 549 * 550 * In reality the drain list is not a single list, but a configurable number 551 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 552 * list. If the ip_wsrv of the next qenabled conn does not run, because the 553 * stream closes, ip_close takes responsibility to qenable the next conn in 554 * the drain list. The directly called ip_wput path always does a putq, if 555 * it cannot putnext. Thus synchronization problems are handled between 556 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 557 * functions that manipulate this drain list. Furthermore conn_drain_insert 558 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 559 * running on a queue at any time. conn_drain_tail can be simultaneously called 560 * from both ip_wsrv and ip_close. 561 * 562 * IPQOS notes: 563 * 564 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 565 * and IPQoS modules. IPPF includes hooks in IP at different control points 566 * (callout positions) which direct packets to IPQoS modules for policy 567 * processing. Policies, if present, are global. 568 * 569 * The callout positions are located in the following paths: 570 * o local_in (packets destined for this host) 571 * o local_out (packets orginating from this host ) 572 * o fwd_in (packets forwarded by this m/c - inbound) 573 * o fwd_out (packets forwarded by this m/c - outbound) 574 * Hooks at these callout points can be enabled/disabled using the ndd variable 575 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 576 * By default all the callout positions are enabled. 577 * 578 * Outbound (local_out) 579 * Hooks are placed in ip_wput_ire and ipsec_out_process. 580 * 581 * Inbound (local_in) 582 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 583 * TCP and UDP fanout routines. 584 * 585 * Forwarding (in and out) 586 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 587 * 588 * IP Policy Framework processing (IPPF processing) 589 * Policy processing for a packet is initiated by ip_process, which ascertains 590 * that the classifier (ipgpc) is loaded and configured, failing which the 591 * packet resumes normal processing in IP. If the clasifier is present, the 592 * packet is acted upon by one or more IPQoS modules (action instances), per 593 * filters configured in ipgpc and resumes normal IP processing thereafter. 594 * An action instance can drop a packet in course of its processing. 595 * 596 * A boolean variable, ip_policy, is used in all the fanout routines that can 597 * invoke ip_process for a packet. This variable indicates if the packet should 598 * to be sent for policy processing. The variable is set to B_TRUE by default, 599 * i.e. when the routines are invoked in the normal ip procesing path for a 600 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 601 * ip_policy is set to B_FALSE for all the routines called in these two 602 * functions because, in the former case, we don't process loopback traffic 603 * currently while in the latter, the packets have already been processed in 604 * icmp_inbound. 605 * 606 * Zones notes: 607 * 608 * The partitioning rules for networking are as follows: 609 * 1) Packets coming from a zone must have a source address belonging to that 610 * zone. 611 * 2) Packets coming from a zone can only be sent on a physical interface on 612 * which the zone has an IP address. 613 * 3) Between two zones on the same machine, packet delivery is only allowed if 614 * there's a matching route for the destination and zone in the forwarding 615 * table. 616 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 617 * different zones can bind to the same port with the wildcard address 618 * (INADDR_ANY). 619 * 620 * The granularity of interface partitioning is at the logical interface level. 621 * Therefore, every zone has its own IP addresses, and incoming packets can be 622 * attributed to a zone unambiguously. A logical interface is placed into a zone 623 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 624 * structure. Rule (1) is implemented by modifying the source address selection 625 * algorithm so that the list of eligible addresses is filtered based on the 626 * sending process zone. 627 * 628 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 629 * across all zones, depending on their type. Here is the break-up: 630 * 631 * IRE type Shared/exclusive 632 * -------- ---------------- 633 * IRE_BROADCAST Exclusive 634 * IRE_DEFAULT (default routes) Shared (*) 635 * IRE_LOCAL Exclusive 636 * IRE_LOOPBACK Exclusive 637 * IRE_PREFIX (net routes) Shared (*) 638 * IRE_CACHE Exclusive 639 * IRE_IF_NORESOLVER (interface routes) Exclusive 640 * IRE_IF_RESOLVER (interface routes) Exclusive 641 * IRE_HOST (host routes) Shared (*) 642 * 643 * (*) A zone can only use a default or off-subnet route if the gateway is 644 * directly reachable from the zone, that is, if the gateway's address matches 645 * one of the zone's logical interfaces. 646 * 647 * Multiple zones can share a common broadcast address; typically all zones 648 * share the 255.255.255.255 address. Incoming as well as locally originated 649 * broadcast packets must be dispatched to all the zones on the broadcast 650 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 651 * since some zones may not be on the 10.16.72/24 network. To handle this, each 652 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 653 * sent to every zone that has an IRE_BROADCAST entry for the destination 654 * address on the input ill, see conn_wantpacket(). 655 * 656 * Applications in different zones can join the same multicast group address. 657 * For IPv4, group memberships are per-logical interface, so they're already 658 * inherently part of a zone. For IPv6, group memberships are per-physical 659 * interface, so we distinguish IPv6 group memberships based on group address, 660 * interface and zoneid. In both cases, received multicast packets are sent to 661 * every zone for which a group membership entry exists. On IPv6 we need to 662 * check that the target zone still has an address on the receiving physical 663 * interface; it could have been removed since the application issued the 664 * IPV6_JOIN_GROUP. 665 */ 666 667 /* 668 * Squeue Fanout flags: 669 * 0: No fanout. 670 * 1: Fanout across all squeues 671 */ 672 boolean_t ip_squeue_fanout = 0; 673 674 /* 675 * Maximum dups allowed per packet. 676 */ 677 uint_t ip_max_frag_dups = 10; 678 679 #define IS_SIMPLE_IPH(ipha) \ 680 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 681 682 /* RFC1122 Conformance */ 683 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 684 685 #define ILL_MAX_NAMELEN LIFNAMSIZ 686 687 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 688 689 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 690 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 691 692 static void icmp_frag_needed(queue_t *, mblk_t *, int); 693 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 694 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 696 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 697 mblk_t *, int); 698 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 699 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 700 ill_t *, zoneid_t); 701 static void icmp_options_update(ipha_t *); 702 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 703 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 704 static mblk_t *icmp_pkt_err_ok(mblk_t *); 705 static void icmp_redirect(mblk_t *); 706 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 707 708 static void ip_arp_news(queue_t *, mblk_t *); 709 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 710 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 711 char *ip_dot_addr(ipaddr_t, char *); 712 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 713 int ip_close(queue_t *, int); 714 static char *ip_dot_saddr(uchar_t *, char *); 715 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 716 boolean_t, boolean_t, ill_t *, zoneid_t); 717 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 718 boolean_t, boolean_t, zoneid_t); 719 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 720 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 721 static void ip_lrput(queue_t *, mblk_t *); 722 ipaddr_t ip_massage_options(ipha_t *); 723 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 724 ipaddr_t ip_net_mask(ipaddr_t); 725 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 726 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 727 conn_t *, uint32_t); 728 char *ip_nv_lookup(nv_t *, int); 729 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 730 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 731 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 732 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 733 size_t); 734 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 735 void ip_rput(queue_t *, mblk_t *); 736 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 737 void *dummy_arg); 738 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 739 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 740 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 741 ire_t *); 742 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 743 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 744 uint16_t *); 745 int ip_snmp_get(queue_t *, mblk_t *); 746 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 747 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 748 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 749 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 750 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 751 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 752 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 753 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 754 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 755 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 756 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 757 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 758 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 759 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 760 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 761 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 762 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 763 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 764 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 765 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 766 static boolean_t ip_source_routed(ipha_t *); 767 static boolean_t ip_source_route_included(ipha_t *); 768 769 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 770 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 771 static void ip_wput_local_options(ipha_t *); 772 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 773 zoneid_t); 774 775 static void conn_drain_init(void); 776 static void conn_drain_fini(void); 777 static void conn_drain_tail(conn_t *connp, boolean_t closing); 778 779 static void conn_walk_drain(void); 780 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 781 zoneid_t); 782 783 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 784 zoneid_t); 785 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 786 void *dummy_arg); 787 788 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 789 790 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 791 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 792 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 793 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 794 795 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 796 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 797 caddr_t, cred_t *); 798 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 799 caddr_t cp, cred_t *cr); 800 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 801 cred_t *); 802 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 803 caddr_t cp, cred_t *cr); 804 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 805 cred_t *); 806 static squeue_func_t ip_squeue_switch(int); 807 808 static void ip_kstat_init(void); 809 static void ip_kstat_fini(void); 810 static int ip_kstat_update(kstat_t *kp, int rw); 811 static void icmp_kstat_init(void); 812 static void icmp_kstat_fini(void); 813 static int icmp_kstat_update(kstat_t *kp, int rw); 814 815 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 816 817 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 818 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 819 820 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 821 822 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 823 ipha_t *, ill_t *, boolean_t); 824 825 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 826 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 827 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 828 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 829 830 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 831 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 832 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 833 834 /* How long, in seconds, we allow frags to hang around. */ 835 #define IP_FRAG_TIMEOUT 60 836 837 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 838 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 839 840 /* 841 * Threshold which determines whether MDT should be used when 842 * generating IP fragments; payload size must be greater than 843 * this threshold for MDT to take place. 844 */ 845 #define IP_WPUT_FRAG_MDT_MIN 32768 846 847 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 848 849 /* Protected by ip_mi_lock */ 850 static void *ip_g_head; /* Instance Data List Head */ 851 kmutex_t ip_mi_lock; /* Lock for list of instances */ 852 853 /* Only modified during _init and _fini thus no locking is needed. */ 854 caddr_t ip_g_nd; /* Named Dispatch List Head */ 855 856 857 static long ip_rput_pullups; 858 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 859 860 vmem_t *ip_minor_arena; 861 862 /* 863 * MIB-2 stuff for SNMP (both IP and ICMP) 864 */ 865 mib2_ip_t ip_mib; 866 mib2_icmp_t icmp_mib; 867 868 #ifdef DEBUG 869 uint32_t ipsechw_debug = 0; 870 #endif 871 872 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 873 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 874 875 uint_t loopback_packets = 0; 876 877 /* 878 * Multirouting/CGTP stuff 879 */ 880 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 881 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 882 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 883 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 884 hrtime_t ip_multirt_log_interval = 1000; 885 /* Time since last warning issued. */ 886 static hrtime_t multirt_bad_mtu_last_time = 0; 887 888 kmutex_t ip_trash_timer_lock; 889 krwlock_t ip_g_nd_lock; 890 891 /* 892 * XXX following really should only be in a header. Would need more 893 * header and .c clean up first. 894 */ 895 extern optdb_obj_t ip_opt_obj; 896 897 ulong_t ip_squeue_enter_unbound = 0; 898 899 /* 900 * Named Dispatch Parameter Table. 901 * All of these are alterable, within the min/max values given, at run time. 902 */ 903 static ipparam_t lcl_param_arr[] = { 904 /* min max value name */ 905 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 906 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 907 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 908 { 0, 1, 0, "ip_respond_to_timestamp"}, 909 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 910 { 0, 1, 1, "ip_send_redirects"}, 911 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 912 { 0, 10, 0, "ip_debug"}, 913 { 0, 10, 0, "ip_mrtdebug"}, 914 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 915 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 916 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 917 { 1, 255, 255, "ip_def_ttl" }, 918 { 0, 1, 0, "ip_forward_src_routed"}, 919 { 0, 256, 32, "ip_wroff_extra" }, 920 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 921 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 922 { 0, 1, 1, "ip_path_mtu_discovery" }, 923 { 0, 240, 30, "ip_ignore_delete_time" }, 924 { 0, 1, 0, "ip_ignore_redirect" }, 925 { 0, 1, 1, "ip_output_queue" }, 926 { 1, 254, 1, "ip_broadcast_ttl" }, 927 { 0, 99999, 100, "ip_icmp_err_interval" }, 928 { 1, 99999, 10, "ip_icmp_err_burst" }, 929 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 930 { 0, 1, 0, "ip_strict_dst_multihoming" }, 931 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 932 { 0, 1, 0, "ipsec_override_persocket_policy" }, 933 { 0, 1, 1, "icmp_accept_clear_messages" }, 934 { 0, 1, 1, "igmp_accept_clear_messages" }, 935 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 936 "ip_ndp_delay_first_probe_time"}, 937 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 938 "ip_ndp_max_unicast_solicit"}, 939 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 940 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 941 { 0, 1, 0, "ip6_forward_src_routed"}, 942 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 943 { 0, 1, 1, "ip6_send_redirects"}, 944 { 0, 1, 0, "ip6_ignore_redirect" }, 945 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 946 947 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 948 949 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 950 951 { 0, 1, 1, "pim_accept_clear_messages" }, 952 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 953 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 954 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 955 { 0, 15, 0, "ip_policy_mask" }, 956 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 957 { 0, 255, 1, "ip_multirt_ttl" }, 958 { 0, 1, 1, "ip_multidata_outbound" }, 959 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 960 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 961 { 0, 1000, 1, "ip_max_temp_defend" }, 962 { 0, 1000, 3, "ip_max_defend" }, 963 { 0, 999999, 30, "ip_defend_interval" }, 964 { 0, 3600000, 300000, "ip_dup_recovery" }, 965 #ifdef DEBUG 966 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 967 #endif 968 }; 969 970 ipparam_t *ip_param_arr = lcl_param_arr; 971 972 /* Extended NDP table */ 973 static ipndp_t lcl_ndp_arr[] = { 974 /* getf setf data name */ 975 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 976 "ip_forwarding" }, 977 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 978 "ip6_forwarding" }, 979 { ip_ill_report, NULL, NULL, 980 "ip_ill_status" }, 981 { ip_ipif_report, NULL, NULL, 982 "ip_ipif_status" }, 983 { ip_ire_report, NULL, NULL, 984 "ipv4_ire_status" }, 985 { ip_ire_report_mrtun, NULL, NULL, 986 "ipv4_mrtun_ire_status" }, 987 { ip_ire_report_srcif, NULL, NULL, 988 "ipv4_srcif_ire_status" }, 989 { ip_ire_report_v6, NULL, NULL, 990 "ipv6_ire_status" }, 991 { ip_conn_report, NULL, NULL, 992 "ip_conn_status" }, 993 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 994 "ip_rput_pullups" }, 995 { ndp_report, NULL, NULL, 996 "ip_ndp_cache_report" }, 997 { ip_srcid_report, NULL, NULL, 998 "ip_srcid_status" }, 999 { ip_param_generic_get, ip_squeue_profile_set, 1000 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1001 { ip_param_generic_get, ip_squeue_bind_set, 1002 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1003 { ip_param_generic_get, ip_input_proc_set, 1004 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1005 { ip_param_generic_get, ip_int_set, 1006 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1007 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1008 "ip_cgtp_filter" }, 1009 { ip_param_generic_get, ip_int_set, 1010 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1011 }; 1012 1013 /* 1014 * ip_g_forward controls IP forwarding. It takes two values: 1015 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1016 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1017 * 1018 * RFC1122 says there must be a configuration switch to control forwarding, 1019 * but that the default MUST be to not forward packets ever. Implicit 1020 * control based on configuration of multiple interfaces MUST NOT be 1021 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1022 * and, in fact, it was the default. That capability is now provided in the 1023 * /etc/rc2.d/S69inet script. 1024 */ 1025 int ip_g_forward = IP_FORWARD_DEFAULT; 1026 1027 /* It also has an IPv6 counterpart. */ 1028 1029 int ipv6_forward = IP_FORWARD_DEFAULT; 1030 1031 /* 1032 * Table of IP ioctls encoding the various properties of the ioctl and 1033 * indexed based on the last byte of the ioctl command. Occasionally there 1034 * is a clash, and there is more than 1 ioctl with the same last byte. 1035 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1036 * ioctls are encoded in the misc table. An entry in the ndx table is 1037 * retrieved by indexing on the last byte of the ioctl command and comparing 1038 * the ioctl command with the value in the ndx table. In the event of a 1039 * mismatch the misc table is then searched sequentially for the desired 1040 * ioctl command. 1041 * 1042 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1043 */ 1044 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1045 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1057 MISC_CMD, ip_siocaddrt, NULL }, 1058 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1059 MISC_CMD, ip_siocdelrt, NULL }, 1060 1061 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1062 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1063 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1064 IF_CMD, ip_sioctl_get_addr, NULL }, 1065 1066 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1067 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1068 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1069 IPI_GET_CMD | IPI_REPL, 1070 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1071 1072 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1073 IPI_PRIV | IPI_WR | IPI_REPL, 1074 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1075 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1076 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1077 IF_CMD, ip_sioctl_get_flags, NULL }, 1078 1079 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* copyin size cannot be coded for SIOCGIFCONF */ 1083 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1084 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1085 1086 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1087 IF_CMD, ip_sioctl_mtu, NULL }, 1088 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1089 IF_CMD, ip_sioctl_get_mtu, NULL }, 1090 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1091 IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1093 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1094 IF_CMD, ip_sioctl_brdaddr, NULL }, 1095 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1096 IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_netmask, NULL }, 1098 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1099 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1100 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1101 IPI_GET_CMD | IPI_REPL, 1102 IF_CMD, ip_sioctl_get_metric, NULL }, 1103 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1104 IF_CMD, ip_sioctl_metric, NULL }, 1105 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 1107 /* See 166-168 below for extended SIOC*XARP ioctls */ 1108 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1109 MISC_CMD, ip_sioctl_arp, NULL }, 1110 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1111 MISC_CMD, ip_sioctl_arp, NULL }, 1112 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1113 MISC_CMD, ip_sioctl_arp, NULL }, 1114 1115 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 1137 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1138 MISC_CMD, if_unitsel, if_unitsel_restart }, 1139 1140 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 1159 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1160 IPI_PRIV | IPI_WR | IPI_MODOK, 1161 IF_CMD, ip_sioctl_sifname, NULL }, 1162 1163 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 1177 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1178 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1179 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1180 IF_CMD, ip_sioctl_get_muxid, NULL }, 1181 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1182 IPI_PRIV | IPI_WR | IPI_REPL, 1183 IF_CMD, ip_sioctl_muxid, NULL }, 1184 1185 /* Both if and lif variants share same func */ 1186 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1187 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1188 /* Both if and lif variants share same func */ 1189 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 IF_CMD, ip_sioctl_slifindex, NULL }, 1192 1193 /* copyin size cannot be coded for SIOCGIFCONF */ 1194 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1195 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1196 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1213 1214 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1215 IPI_PRIV | IPI_WR | IPI_REPL, 1216 LIF_CMD, ip_sioctl_removeif, 1217 ip_sioctl_removeif_restart }, 1218 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1219 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1220 LIF_CMD, ip_sioctl_addif, NULL }, 1221 #define SIOCLIFADDR_NDX 112 1222 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1223 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1224 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1225 IPI_GET_CMD | IPI_REPL, 1226 LIF_CMD, ip_sioctl_get_addr, NULL }, 1227 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1228 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1229 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1230 IPI_GET_CMD | IPI_REPL, 1231 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1232 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1235 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1236 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1237 LIF_CMD, ip_sioctl_get_flags, NULL }, 1238 1239 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 1242 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1243 ip_sioctl_get_lifconf, NULL }, 1244 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1245 LIF_CMD, ip_sioctl_mtu, NULL }, 1246 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1247 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1248 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1249 IPI_GET_CMD | IPI_REPL, 1250 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1251 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1252 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1253 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1254 IPI_GET_CMD | IPI_REPL, 1255 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1256 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1257 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1258 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1259 IPI_GET_CMD | IPI_REPL, 1260 LIF_CMD, ip_sioctl_get_metric, NULL }, 1261 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1262 LIF_CMD, ip_sioctl_metric, NULL }, 1263 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1264 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1265 LIF_CMD, ip_sioctl_slifname, 1266 ip_sioctl_slifname_restart }, 1267 1268 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1270 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1271 IPI_GET_CMD | IPI_REPL, 1272 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1273 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1274 IPI_PRIV | IPI_WR | IPI_REPL, 1275 LIF_CMD, ip_sioctl_muxid, NULL }, 1276 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1279 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifindex, 0 }, 1282 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_token, NULL }, 1284 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1285 IPI_GET_CMD | IPI_REPL, 1286 LIF_CMD, ip_sioctl_get_token, NULL }, 1287 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1289 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1292 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1293 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1294 1295 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1296 IPI_GET_CMD | IPI_REPL, 1297 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1298 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1299 LIF_CMD, ip_siocdelndp_v6, NULL }, 1300 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1301 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1302 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1303 LIF_CMD, ip_siocsetndp_v6, NULL }, 1304 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1305 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1306 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1307 MISC_CMD, ip_sioctl_tonlink, NULL }, 1308 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1309 MISC_CMD, ip_sioctl_tmysite, NULL }, 1310 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1311 TUN_CMD, ip_sioctl_tunparam, NULL }, 1312 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1313 IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 1316 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1317 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1318 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1319 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1320 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1321 1322 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1323 IPI_PRIV | IPI_WR | IPI_REPL, 1324 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1325 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1326 IPI_PRIV | IPI_WR | IPI_REPL, 1327 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1328 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1329 IPI_PRIV | IPI_WR, 1330 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1331 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1332 IPI_GET_CMD | IPI_REPL, 1333 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1334 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1335 IPI_GET_CMD | IPI_REPL, 1336 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1337 1338 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1339 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1340 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1341 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1342 1343 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1344 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1345 1346 /* These are handled in ip_sioctl_copyin_setup itself */ 1347 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1348 MISC_CMD, NULL, NULL }, 1349 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1350 MISC_CMD, NULL, NULL }, 1351 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1352 1353 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1354 ip_sioctl_get_lifconf, NULL }, 1355 1356 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1357 MISC_CMD, ip_sioctl_xarp, NULL }, 1358 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1359 MISC_CMD, ip_sioctl_xarp, NULL }, 1360 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1361 MISC_CMD, ip_sioctl_xarp, NULL }, 1362 1363 /* SIOCPOPSOCKFS is not handled by IP */ 1364 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1365 1366 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1367 IPI_GET_CMD | IPI_REPL, 1368 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1369 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1370 IPI_PRIV | IPI_WR | IPI_REPL, 1371 LIF_CMD, ip_sioctl_slifzone, 1372 ip_sioctl_slifzone_restart }, 1373 /* 172-174 are SCTP ioctls and not handled by IP */ 1374 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1375 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1376 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1377 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1378 IPI_GET_CMD, LIF_CMD, 1379 ip_sioctl_get_lifusesrc, 0 }, 1380 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1381 IPI_PRIV | IPI_WR, 1382 LIF_CMD, ip_sioctl_slifusesrc, 1383 NULL }, 1384 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1385 ip_sioctl_get_lifsrcof, NULL }, 1386 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1387 MISC_CMD, ip_sioctl_msfilter, NULL }, 1388 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1389 MISC_CMD, ip_sioctl_msfilter, NULL }, 1390 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1391 MISC_CMD, ip_sioctl_msfilter, NULL }, 1392 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1393 MISC_CMD, ip_sioctl_msfilter, NULL }, 1394 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1395 ip_sioctl_set_ipmpfailback, NULL } 1396 }; 1397 1398 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1399 1400 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1401 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1402 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1403 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1404 TUN_CMD, ip_sioctl_tunparam, NULL }, 1405 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1406 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1407 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1408 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1409 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1410 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1411 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1412 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1413 MISC_CMD, mrt_ioctl}, 1414 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1415 MISC_CMD, mrt_ioctl}, 1416 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1417 MISC_CMD, mrt_ioctl} 1418 }; 1419 1420 int ip_misc_ioctl_count = 1421 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1422 1423 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1424 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1425 static int conn_drain_list_index; /* Next drain_list to be used */ 1426 int conn_drain_nthreads; /* Number of drainers reqd. */ 1427 /* Settable in /etc/system */ 1428 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1429 1430 /* Defined in ip_ire.c */ 1431 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1432 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1433 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1434 1435 static nv_t ire_nv_arr[] = { 1436 { IRE_BROADCAST, "BROADCAST" }, 1437 { IRE_LOCAL, "LOCAL" }, 1438 { IRE_LOOPBACK, "LOOPBACK" }, 1439 { IRE_CACHE, "CACHE" }, 1440 { IRE_DEFAULT, "DEFAULT" }, 1441 { IRE_PREFIX, "PREFIX" }, 1442 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1443 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1444 { IRE_HOST, "HOST" }, 1445 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1446 { 0 } 1447 }; 1448 1449 nv_t *ire_nv_tbl = ire_nv_arr; 1450 1451 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1452 extern krwlock_t ipsec_capab_ills_lock; 1453 1454 /* Packet dropper for IP IPsec processing failures */ 1455 ipdropper_t ip_dropper; 1456 1457 /* Simple ICMP IP Header Template */ 1458 static ipha_t icmp_ipha = { 1459 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1460 }; 1461 1462 struct module_info ip_mod_info = { 1463 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1464 }; 1465 1466 /* 1467 * Duplicate static symbols within a module confuses mdb; so we avoid the 1468 * problem by making the symbols here distinct from those in udp.c. 1469 */ 1470 1471 static struct qinit iprinit = { 1472 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1473 &ip_mod_info 1474 }; 1475 1476 static struct qinit ipwinit = { 1477 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1478 &ip_mod_info 1479 }; 1480 1481 static struct qinit iplrinit = { 1482 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1483 &ip_mod_info 1484 }; 1485 1486 static struct qinit iplwinit = { 1487 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1488 &ip_mod_info 1489 }; 1490 1491 struct streamtab ipinfo = { 1492 &iprinit, &ipwinit, &iplrinit, &iplwinit 1493 }; 1494 1495 #ifdef DEBUG 1496 static boolean_t skip_sctp_cksum = B_FALSE; 1497 #endif 1498 /* 1499 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1500 */ 1501 mblk_t * 1502 ip_copymsg(mblk_t *mp) 1503 { 1504 mblk_t *nmp; 1505 ipsec_info_t *in; 1506 1507 if (mp->b_datap->db_type != M_CTL) 1508 return (copymsg(mp)); 1509 1510 in = (ipsec_info_t *)mp->b_rptr; 1511 1512 /* 1513 * Note that M_CTL is also used for delivering ICMP error messages 1514 * upstream to transport layers. 1515 */ 1516 if (in->ipsec_info_type != IPSEC_OUT && 1517 in->ipsec_info_type != IPSEC_IN) 1518 return (copymsg(mp)); 1519 1520 nmp = copymsg(mp->b_cont); 1521 1522 if (in->ipsec_info_type == IPSEC_OUT) 1523 return (ipsec_out_tag(mp, nmp)); 1524 else 1525 return (ipsec_in_tag(mp, nmp)); 1526 } 1527 1528 /* Generate an ICMP fragmentation needed message. */ 1529 static void 1530 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1531 { 1532 icmph_t icmph; 1533 mblk_t *first_mp; 1534 boolean_t mctl_present; 1535 1536 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1537 1538 if (!(mp = icmp_pkt_err_ok(mp))) { 1539 if (mctl_present) 1540 freeb(first_mp); 1541 return; 1542 } 1543 1544 bzero(&icmph, sizeof (icmph_t)); 1545 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1546 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1547 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1548 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1549 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1550 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1551 } 1552 1553 /* 1554 * icmp_inbound deals with ICMP messages in the following ways. 1555 * 1556 * 1) It needs to send a reply back and possibly delivering it 1557 * to the "interested" upper clients. 1558 * 2) It needs to send it to the upper clients only. 1559 * 3) It needs to change some values in IP only. 1560 * 4) It needs to change some values in IP and upper layers e.g TCP. 1561 * 1562 * We need to accomodate icmp messages coming in clear until we get 1563 * everything secure from the wire. If icmp_accept_clear_messages 1564 * is zero we check with the global policy and act accordingly. If 1565 * it is non-zero, we accept the message without any checks. But 1566 * *this does not mean* that this will be delivered to the upper 1567 * clients. By accepting we might send replies back, change our MTU 1568 * value etc. but delivery to the ULP/clients depends on their policy 1569 * dispositions. 1570 * 1571 * We handle the above 4 cases in the context of IPSEC in the 1572 * following way : 1573 * 1574 * 1) Send the reply back in the same way as the request came in. 1575 * If it came in encrypted, it goes out encrypted. If it came in 1576 * clear, it goes out in clear. Thus, this will prevent chosen 1577 * plain text attack. 1578 * 2) The client may or may not expect things to come in secure. 1579 * If it comes in secure, the policy constraints are checked 1580 * before delivering it to the upper layers. If it comes in 1581 * clear, ipsec_inbound_accept_clear will decide whether to 1582 * accept this in clear or not. In both the cases, if the returned 1583 * message (IP header + 8 bytes) that caused the icmp message has 1584 * AH/ESP headers, it is sent up to AH/ESP for validation before 1585 * sending up. If there are only 8 bytes of returned message, then 1586 * upper client will not be notified. 1587 * 3) Check with global policy to see whether it matches the constaints. 1588 * But this will be done only if icmp_accept_messages_in_clear is 1589 * zero. 1590 * 4) If we need to change both in IP and ULP, then the decision taken 1591 * while affecting the values in IP and while delivering up to TCP 1592 * should be the same. 1593 * 1594 * There are two cases. 1595 * 1596 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1597 * failed), we will not deliver it to the ULP, even though they 1598 * are *willing* to accept in *clear*. This is fine as our global 1599 * disposition to icmp messages asks us reject the datagram. 1600 * 1601 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1602 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1603 * to deliver it to ULP (policy failed), it can lead to 1604 * consistency problems. The cases known at this time are 1605 * ICMP_DESTINATION_UNREACHABLE messages with following code 1606 * values : 1607 * 1608 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1609 * and Upper layer rejects. Then the communication will 1610 * come to a stop. This is solved by making similar decisions 1611 * at both levels. Currently, when we are unable to deliver 1612 * to the Upper Layer (due to policy failures) while IP has 1613 * adjusted ire_max_frag, the next outbound datagram would 1614 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1615 * will be with the right level of protection. Thus the right 1616 * value will be communicated even if we are not able to 1617 * communicate when we get from the wire initially. But this 1618 * assumes there would be at least one outbound datagram after 1619 * IP has adjusted its ire_max_frag value. To make things 1620 * simpler, we accept in clear after the validation of 1621 * AH/ESP headers. 1622 * 1623 * - Other ICMP ERRORS : We may not be able to deliver it to the 1624 * upper layer depending on the level of protection the upper 1625 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1626 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1627 * should be accepted in clear when the Upper layer expects secure. 1628 * Thus the communication may get aborted by some bad ICMP 1629 * packets. 1630 * 1631 * IPQoS Notes: 1632 * The only instance when a packet is sent for processing is when there 1633 * isn't an ICMP client and if we are interested in it. 1634 * If there is a client, IPPF processing will take place in the 1635 * ip_fanout_proto routine. 1636 * 1637 * Zones notes: 1638 * The packet is only processed in the context of the specified zone: typically 1639 * only this zone will reply to an echo request, and only interested clients in 1640 * this zone will receive a copy of the packet. This means that the caller must 1641 * call icmp_inbound() for each relevant zone. 1642 */ 1643 static void 1644 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1645 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1646 ill_t *recv_ill, zoneid_t zoneid) 1647 { 1648 icmph_t *icmph; 1649 ipha_t *ipha; 1650 int iph_hdr_length; 1651 int hdr_length; 1652 boolean_t interested; 1653 uint32_t ts; 1654 uchar_t *wptr; 1655 ipif_t *ipif; 1656 mblk_t *first_mp; 1657 ipsec_in_t *ii; 1658 ire_t *src_ire; 1659 boolean_t onlink; 1660 timestruc_t now; 1661 uint32_t ill_index; 1662 1663 ASSERT(ill != NULL); 1664 1665 first_mp = mp; 1666 if (mctl_present) { 1667 mp = first_mp->b_cont; 1668 ASSERT(mp != NULL); 1669 } 1670 1671 ipha = (ipha_t *)mp->b_rptr; 1672 if (icmp_accept_clear_messages == 0) { 1673 first_mp = ipsec_check_global_policy(first_mp, NULL, 1674 ipha, NULL, mctl_present); 1675 if (first_mp == NULL) 1676 return; 1677 } 1678 1679 /* 1680 * On a labeled system, we have to check whether the zone itself is 1681 * permitted to receive raw traffic. 1682 */ 1683 if (is_system_labeled()) { 1684 if (zoneid == ALL_ZONES) 1685 zoneid = tsol_packet_to_zoneid(mp); 1686 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1687 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1688 zoneid)); 1689 BUMP_MIB(&icmp_mib, icmpInErrors); 1690 freemsg(first_mp); 1691 return; 1692 } 1693 } 1694 1695 /* 1696 * We have accepted the ICMP message. It means that we will 1697 * respond to the packet if needed. It may not be delivered 1698 * to the upper client depending on the policy constraints 1699 * and the disposition in ipsec_inbound_accept_clear. 1700 */ 1701 1702 ASSERT(ill != NULL); 1703 1704 BUMP_MIB(&icmp_mib, icmpInMsgs); 1705 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1706 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1707 /* Last chance to get real. */ 1708 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1709 BUMP_MIB(&icmp_mib, icmpInErrors); 1710 freemsg(first_mp); 1711 return; 1712 } 1713 /* Refresh iph following the pullup. */ 1714 ipha = (ipha_t *)mp->b_rptr; 1715 } 1716 /* ICMP header checksum, including checksum field, should be zero. */ 1717 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1718 IP_CSUM(mp, iph_hdr_length, 0)) { 1719 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1720 freemsg(first_mp); 1721 return; 1722 } 1723 /* The IP header will always be a multiple of four bytes */ 1724 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1725 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1726 icmph->icmph_code)); 1727 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1728 /* We will set "interested" to "true" if we want a copy */ 1729 interested = B_FALSE; 1730 switch (icmph->icmph_type) { 1731 case ICMP_ECHO_REPLY: 1732 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1733 break; 1734 case ICMP_DEST_UNREACHABLE: 1735 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1736 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1737 interested = B_TRUE; /* Pass up to transport */ 1738 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1739 break; 1740 case ICMP_SOURCE_QUENCH: 1741 interested = B_TRUE; /* Pass up to transport */ 1742 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1743 break; 1744 case ICMP_REDIRECT: 1745 if (!ip_ignore_redirect) 1746 interested = B_TRUE; 1747 BUMP_MIB(&icmp_mib, icmpInRedirects); 1748 break; 1749 case ICMP_ECHO_REQUEST: 1750 /* 1751 * Whether to respond to echo requests that come in as IP 1752 * broadcasts or as IP multicast is subject to debate 1753 * (what isn't?). We aim to please, you pick it. 1754 * Default is do it. 1755 */ 1756 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1757 /* unicast: always respond */ 1758 interested = B_TRUE; 1759 } else if (CLASSD(ipha->ipha_dst)) { 1760 /* multicast: respond based on tunable */ 1761 interested = ip_g_resp_to_echo_mcast; 1762 } else if (broadcast) { 1763 /* broadcast: respond based on tunable */ 1764 interested = ip_g_resp_to_echo_bcast; 1765 } 1766 BUMP_MIB(&icmp_mib, icmpInEchos); 1767 break; 1768 case ICMP_ROUTER_ADVERTISEMENT: 1769 case ICMP_ROUTER_SOLICITATION: 1770 break; 1771 case ICMP_TIME_EXCEEDED: 1772 interested = B_TRUE; /* Pass up to transport */ 1773 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1774 break; 1775 case ICMP_PARAM_PROBLEM: 1776 interested = B_TRUE; /* Pass up to transport */ 1777 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1778 break; 1779 case ICMP_TIME_STAMP_REQUEST: 1780 /* Response to Time Stamp Requests is local policy. */ 1781 if (ip_g_resp_to_timestamp && 1782 /* So is whether to respond if it was an IP broadcast. */ 1783 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1784 int tstamp_len = 3 * sizeof (uint32_t); 1785 1786 if (wptr + tstamp_len > mp->b_wptr) { 1787 if (!pullupmsg(mp, wptr + tstamp_len - 1788 mp->b_rptr)) { 1789 BUMP_MIB(&ip_mib, ipInDiscards); 1790 freemsg(first_mp); 1791 return; 1792 } 1793 /* Refresh ipha following the pullup. */ 1794 ipha = (ipha_t *)mp->b_rptr; 1795 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1796 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1797 } 1798 interested = B_TRUE; 1799 } 1800 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1801 break; 1802 case ICMP_TIME_STAMP_REPLY: 1803 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1804 break; 1805 case ICMP_INFO_REQUEST: 1806 /* Per RFC 1122 3.2.2.7, ignore this. */ 1807 case ICMP_INFO_REPLY: 1808 break; 1809 case ICMP_ADDRESS_MASK_REQUEST: 1810 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1811 /* TODO m_pullup of complete header? */ 1812 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1813 interested = B_TRUE; 1814 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1815 break; 1816 case ICMP_ADDRESS_MASK_REPLY: 1817 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1818 break; 1819 default: 1820 interested = B_TRUE; /* Pass up to transport */ 1821 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1822 break; 1823 } 1824 /* See if there is an ICMP client. */ 1825 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1826 /* If there is an ICMP client and we want one too, copy it. */ 1827 mblk_t *first_mp1; 1828 1829 if (!interested) { 1830 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1831 ip_policy, recv_ill, zoneid); 1832 return; 1833 } 1834 first_mp1 = ip_copymsg(first_mp); 1835 if (first_mp1 != NULL) { 1836 ip_fanout_proto(q, first_mp1, ill, ipha, 1837 0, mctl_present, ip_policy, recv_ill, zoneid); 1838 } 1839 } else if (!interested) { 1840 freemsg(first_mp); 1841 return; 1842 } else { 1843 /* 1844 * Initiate policy processing for this packet if ip_policy 1845 * is true. 1846 */ 1847 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1848 ill_index = ill->ill_phyint->phyint_ifindex; 1849 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1850 if (mp == NULL) { 1851 if (mctl_present) { 1852 freeb(first_mp); 1853 } 1854 BUMP_MIB(&icmp_mib, icmpInErrors); 1855 return; 1856 } 1857 } 1858 } 1859 /* We want to do something with it. */ 1860 /* Check db_ref to make sure we can modify the packet. */ 1861 if (mp->b_datap->db_ref > 1) { 1862 mblk_t *first_mp1; 1863 1864 first_mp1 = ip_copymsg(first_mp); 1865 freemsg(first_mp); 1866 if (!first_mp1) { 1867 BUMP_MIB(&icmp_mib, icmpOutDrops); 1868 return; 1869 } 1870 first_mp = first_mp1; 1871 if (mctl_present) { 1872 mp = first_mp->b_cont; 1873 ASSERT(mp != NULL); 1874 } else { 1875 mp = first_mp; 1876 } 1877 ipha = (ipha_t *)mp->b_rptr; 1878 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1879 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1880 } 1881 switch (icmph->icmph_type) { 1882 case ICMP_ADDRESS_MASK_REQUEST: 1883 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1884 if (ipif == NULL) { 1885 freemsg(first_mp); 1886 return; 1887 } 1888 /* 1889 * outging interface must be IPv4 1890 */ 1891 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1892 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1893 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1894 ipif_refrele(ipif); 1895 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1896 break; 1897 case ICMP_ECHO_REQUEST: 1898 icmph->icmph_type = ICMP_ECHO_REPLY; 1899 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1900 break; 1901 case ICMP_TIME_STAMP_REQUEST: { 1902 uint32_t *tsp; 1903 1904 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1905 tsp = (uint32_t *)wptr; 1906 tsp++; /* Skip past 'originate time' */ 1907 /* Compute # of milliseconds since midnight */ 1908 gethrestime(&now); 1909 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1910 now.tv_nsec / (NANOSEC / MILLISEC); 1911 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1912 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1913 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1914 break; 1915 } 1916 default: 1917 ipha = (ipha_t *)&icmph[1]; 1918 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1919 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1920 BUMP_MIB(&ip_mib, ipInDiscards); 1921 freemsg(first_mp); 1922 return; 1923 } 1924 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1925 ipha = (ipha_t *)&icmph[1]; 1926 } 1927 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1928 BUMP_MIB(&ip_mib, ipInDiscards); 1929 freemsg(first_mp); 1930 return; 1931 } 1932 hdr_length = IPH_HDR_LENGTH(ipha); 1933 if (hdr_length < sizeof (ipha_t)) { 1934 BUMP_MIB(&ip_mib, ipInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1939 if (!pullupmsg(mp, 1940 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1941 BUMP_MIB(&ip_mib, ipInDiscards); 1942 freemsg(first_mp); 1943 return; 1944 } 1945 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1946 ipha = (ipha_t *)&icmph[1]; 1947 } 1948 switch (icmph->icmph_type) { 1949 case ICMP_REDIRECT: 1950 /* 1951 * As there is no upper client to deliver, we don't 1952 * need the first_mp any more. 1953 */ 1954 if (mctl_present) { 1955 freeb(first_mp); 1956 } 1957 icmp_redirect(mp); 1958 return; 1959 case ICMP_DEST_UNREACHABLE: 1960 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1961 if (!icmp_inbound_too_big(icmph, ipha, ill, 1962 zoneid, mp, iph_hdr_length)) { 1963 freemsg(first_mp); 1964 return; 1965 } 1966 /* 1967 * icmp_inbound_too_big() may alter mp. 1968 * Resynch ipha and icmph accordingly. 1969 */ 1970 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1971 ipha = (ipha_t *)&icmph[1]; 1972 } 1973 /* FALLTHRU */ 1974 default : 1975 /* 1976 * IPQoS notes: Since we have already done IPQoS 1977 * processing we don't want to do it again in 1978 * the fanout routines called by 1979 * icmp_inbound_error_fanout, hence the last 1980 * argument, ip_policy, is B_FALSE. 1981 */ 1982 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1983 ipha, iph_hdr_length, hdr_length, mctl_present, 1984 B_FALSE, recv_ill, zoneid); 1985 } 1986 return; 1987 } 1988 /* Send out an ICMP packet */ 1989 icmph->icmph_checksum = 0; 1990 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1991 if (icmph->icmph_checksum == 0) 1992 icmph->icmph_checksum = 0xFFFF; 1993 if (broadcast || CLASSD(ipha->ipha_dst)) { 1994 ipif_t *ipif_chosen; 1995 /* 1996 * Make it look like it was directed to us, so we don't look 1997 * like a fool with a broadcast or multicast source address. 1998 */ 1999 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2000 /* 2001 * Make sure that we haven't grabbed an interface that's DOWN. 2002 */ 2003 if (ipif != NULL) { 2004 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2005 ipha->ipha_src, zoneid); 2006 if (ipif_chosen != NULL) { 2007 ipif_refrele(ipif); 2008 ipif = ipif_chosen; 2009 } 2010 } 2011 if (ipif == NULL) { 2012 ip0dbg(("icmp_inbound: " 2013 "No source for broadcast/multicast:\n" 2014 "\tsrc 0x%x dst 0x%x ill %p " 2015 "ipif_lcl_addr 0x%x\n", 2016 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2017 (void *)ill, 2018 ill->ill_ipif->ipif_lcl_addr)); 2019 freemsg(first_mp); 2020 return; 2021 } 2022 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2023 ipha->ipha_dst = ipif->ipif_src_addr; 2024 ipif_refrele(ipif); 2025 } 2026 /* Reset time to live. */ 2027 ipha->ipha_ttl = ip_def_ttl; 2028 { 2029 /* Swap source and destination addresses */ 2030 ipaddr_t tmp; 2031 2032 tmp = ipha->ipha_src; 2033 ipha->ipha_src = ipha->ipha_dst; 2034 ipha->ipha_dst = tmp; 2035 } 2036 ipha->ipha_ident = 0; 2037 if (!IS_SIMPLE_IPH(ipha)) 2038 icmp_options_update(ipha); 2039 2040 /* 2041 * ICMP echo replies should go out on the same interface 2042 * the request came on as probes used by in.mpathd for detecting 2043 * NIC failures are ECHO packets. We turn-off load spreading 2044 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2045 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2046 * function. This is in turn handled by ip_wput and ip_newroute 2047 * to make sure that the packet goes out on the interface it came 2048 * in on. If we don't turnoff load spreading, the packets might get 2049 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2050 * to go out and in.mpathd would wrongly detect a failure or 2051 * mis-detect a NIC failure for link failure. As load spreading 2052 * can happen only if ill_group is not NULL, we do only for 2053 * that case and this does not affect the normal case. 2054 * 2055 * We turn off load spreading only on echo packets that came from 2056 * on-link hosts. If the interface route has been deleted, this will 2057 * not be enforced as we can't do much. For off-link hosts, as the 2058 * default routes in IPv4 does not typically have an ire_ipif 2059 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2060 * Moreover, expecting a default route through this interface may 2061 * not be correct. We use ipha_dst because of the swap above. 2062 */ 2063 onlink = B_FALSE; 2064 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2065 /* 2066 * First, we need to make sure that it is not one of our 2067 * local addresses. If we set onlink when it is one of 2068 * our local addresses, we will end up creating IRE_CACHES 2069 * for one of our local addresses. Then, we will never 2070 * accept packets for them afterwards. 2071 */ 2072 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2073 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2074 if (src_ire == NULL) { 2075 ipif = ipif_get_next_ipif(NULL, ill); 2076 if (ipif == NULL) { 2077 BUMP_MIB(&ip_mib, ipInDiscards); 2078 freemsg(mp); 2079 return; 2080 } 2081 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2082 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2083 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2084 ipif_refrele(ipif); 2085 if (src_ire != NULL) { 2086 onlink = B_TRUE; 2087 ire_refrele(src_ire); 2088 } 2089 } else { 2090 ire_refrele(src_ire); 2091 } 2092 } 2093 if (!mctl_present) { 2094 /* 2095 * This packet should go out the same way as it 2096 * came in i.e in clear. To make sure that global 2097 * policy will not be applied to this in ip_wput_ire, 2098 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2099 */ 2100 ASSERT(first_mp == mp); 2101 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2102 BUMP_MIB(&ip_mib, ipInDiscards); 2103 freemsg(mp); 2104 return; 2105 } 2106 ii = (ipsec_in_t *)first_mp->b_rptr; 2107 2108 /* This is not a secure packet */ 2109 ii->ipsec_in_secure = B_FALSE; 2110 if (onlink) { 2111 ii->ipsec_in_attach_if = B_TRUE; 2112 ii->ipsec_in_ill_index = 2113 ill->ill_phyint->phyint_ifindex; 2114 ii->ipsec_in_rill_index = 2115 recv_ill->ill_phyint->phyint_ifindex; 2116 } 2117 first_mp->b_cont = mp; 2118 } else if (onlink) { 2119 ii = (ipsec_in_t *)first_mp->b_rptr; 2120 ii->ipsec_in_attach_if = B_TRUE; 2121 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2122 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2123 } else { 2124 ii = (ipsec_in_t *)first_mp->b_rptr; 2125 } 2126 ii->ipsec_in_zoneid = zoneid; 2127 ASSERT(zoneid != ALL_ZONES); 2128 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2129 BUMP_MIB(&ip_mib, ipInDiscards); 2130 return; 2131 } 2132 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2133 put(WR(q), first_mp); 2134 } 2135 2136 static ipaddr_t 2137 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2138 { 2139 conn_t *connp; 2140 connf_t *connfp; 2141 ipaddr_t nexthop_addr = INADDR_ANY; 2142 int hdr_length = IPH_HDR_LENGTH(ipha); 2143 uint16_t *up; 2144 uint32_t ports; 2145 2146 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2147 switch (ipha->ipha_protocol) { 2148 case IPPROTO_TCP: 2149 { 2150 tcph_t *tcph; 2151 2152 /* do a reverse lookup */ 2153 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2154 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2155 TCPS_LISTEN); 2156 break; 2157 } 2158 case IPPROTO_UDP: 2159 { 2160 uint32_t dstport, srcport; 2161 2162 ((uint16_t *)&ports)[0] = up[1]; 2163 ((uint16_t *)&ports)[1] = up[0]; 2164 2165 /* Extract ports in net byte order */ 2166 dstport = htons(ntohl(ports) & 0xFFFF); 2167 srcport = htons(ntohl(ports) >> 16); 2168 2169 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2170 mutex_enter(&connfp->connf_lock); 2171 connp = connfp->connf_head; 2172 2173 /* do a reverse lookup */ 2174 while ((connp != NULL) && 2175 (!IPCL_UDP_MATCH(connp, dstport, 2176 ipha->ipha_src, srcport, ipha->ipha_dst) || 2177 connp->conn_zoneid != zoneid)) { 2178 connp = connp->conn_next; 2179 } 2180 if (connp != NULL) 2181 CONN_INC_REF(connp); 2182 mutex_exit(&connfp->connf_lock); 2183 break; 2184 } 2185 case IPPROTO_SCTP: 2186 { 2187 in6_addr_t map_src, map_dst; 2188 2189 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2190 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2191 ((uint16_t *)&ports)[0] = up[1]; 2192 ((uint16_t *)&ports)[1] = up[0]; 2193 2194 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2195 0, zoneid)) == NULL) { 2196 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2197 zoneid, ports, ipha); 2198 } else { 2199 CONN_INC_REF(connp); 2200 SCTP_REFRELE(CONN2SCTP(connp)); 2201 } 2202 break; 2203 } 2204 default: 2205 { 2206 ipha_t ripha; 2207 2208 ripha.ipha_src = ipha->ipha_dst; 2209 ripha.ipha_dst = ipha->ipha_src; 2210 ripha.ipha_protocol = ipha->ipha_protocol; 2211 2212 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2213 mutex_enter(&connfp->connf_lock); 2214 connp = connfp->connf_head; 2215 for (connp = connfp->connf_head; connp != NULL; 2216 connp = connp->conn_next) { 2217 if (IPCL_PROTO_MATCH(connp, 2218 ipha->ipha_protocol, &ripha, ill, 2219 0, zoneid)) { 2220 CONN_INC_REF(connp); 2221 break; 2222 } 2223 } 2224 mutex_exit(&connfp->connf_lock); 2225 } 2226 } 2227 if (connp != NULL) { 2228 if (connp->conn_nexthop_set) 2229 nexthop_addr = connp->conn_nexthop_v4; 2230 CONN_DEC_REF(connp); 2231 } 2232 return (nexthop_addr); 2233 } 2234 2235 /* Table from RFC 1191 */ 2236 static int icmp_frag_size_table[] = 2237 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2238 2239 /* 2240 * Process received ICMP Packet too big. 2241 * After updating any IRE it does the fanout to any matching transport streams. 2242 * Assumes the message has been pulled up till the IP header that caused 2243 * the error. 2244 * 2245 * Returns B_FALSE on failure and B_TRUE on success. 2246 */ 2247 static boolean_t 2248 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2249 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2250 { 2251 ire_t *ire, *first_ire; 2252 int mtu; 2253 int hdr_length; 2254 ipaddr_t nexthop_addr; 2255 2256 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2257 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2258 2259 hdr_length = IPH_HDR_LENGTH(ipha); 2260 2261 /* Drop if the original packet contained a source route */ 2262 if (ip_source_route_included(ipha)) { 2263 return (B_FALSE); 2264 } 2265 /* 2266 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2267 * header. 2268 */ 2269 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2270 mp->b_wptr) { 2271 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2272 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2273 BUMP_MIB(&ip_mib, ipInDiscards); 2274 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2275 return (B_FALSE); 2276 } 2277 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2278 ipha = (ipha_t *)&icmph[1]; 2279 } 2280 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2281 if (nexthop_addr != INADDR_ANY) { 2282 /* nexthop set */ 2283 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2284 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2285 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2286 } else { 2287 /* nexthop not set */ 2288 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2289 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2290 } 2291 2292 if (!first_ire) { 2293 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2294 ntohl(ipha->ipha_dst))); 2295 return (B_FALSE); 2296 } 2297 /* Check for MTU discovery advice as described in RFC 1191 */ 2298 mtu = ntohs(icmph->icmph_du_mtu); 2299 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2300 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2301 ire = ire->ire_next) { 2302 /* 2303 * Look for the connection to which this ICMP message is 2304 * directed. If it has the IP_NEXTHOP option set, then the 2305 * search is limited to IREs with the MATCH_IRE_PRIVATE 2306 * option. Else the search is limited to regular IREs. 2307 */ 2308 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2309 (nexthop_addr != ire->ire_gateway_addr)) || 2310 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2311 (nexthop_addr != INADDR_ANY))) 2312 continue; 2313 2314 mutex_enter(&ire->ire_lock); 2315 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2316 /* Reduce the IRE max frag value as advised. */ 2317 ip1dbg(("Received mtu from router: %d (was %d)\n", 2318 mtu, ire->ire_max_frag)); 2319 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2320 } else { 2321 uint32_t length; 2322 int i; 2323 2324 /* 2325 * Use the table from RFC 1191 to figure out 2326 * the next "plateau" based on the length in 2327 * the original IP packet. 2328 */ 2329 length = ntohs(ipha->ipha_length); 2330 if (ire->ire_max_frag <= length && 2331 ire->ire_max_frag >= length - hdr_length) { 2332 /* 2333 * Handle broken BSD 4.2 systems that 2334 * return the wrong iph_length in ICMP 2335 * errors. 2336 */ 2337 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2338 length, ire->ire_max_frag)); 2339 length -= hdr_length; 2340 } 2341 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2342 if (length > icmp_frag_size_table[i]) 2343 break; 2344 } 2345 if (i == A_CNT(icmp_frag_size_table)) { 2346 /* Smaller than 68! */ 2347 ip1dbg(("Too big for packet size %d\n", 2348 length)); 2349 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2350 ire->ire_frag_flag = 0; 2351 } else { 2352 mtu = icmp_frag_size_table[i]; 2353 ip1dbg(("Calculated mtu %d, packet size %d, " 2354 "before %d", mtu, length, 2355 ire->ire_max_frag)); 2356 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2357 ip1dbg((", after %d\n", ire->ire_max_frag)); 2358 } 2359 /* Record the new max frag size for the ULP. */ 2360 icmph->icmph_du_zero = 0; 2361 icmph->icmph_du_mtu = 2362 htons((uint16_t)ire->ire_max_frag); 2363 } 2364 mutex_exit(&ire->ire_lock); 2365 } 2366 rw_exit(&first_ire->ire_bucket->irb_lock); 2367 ire_refrele(first_ire); 2368 return (B_TRUE); 2369 } 2370 2371 /* 2372 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2373 * calls this function. 2374 */ 2375 static mblk_t * 2376 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2377 { 2378 ipha_t *ipha; 2379 icmph_t *icmph; 2380 ipha_t *in_ipha; 2381 int length; 2382 2383 ASSERT(mp->b_datap->db_type == M_DATA); 2384 2385 /* 2386 * For Self-encapsulated packets, we added an extra IP header 2387 * without the options. Inner IP header is the one from which 2388 * the outer IP header was formed. Thus, we need to remove the 2389 * outer IP header. To do this, we pullup the whole message 2390 * and overlay whatever follows the outer IP header over the 2391 * outer IP header. 2392 */ 2393 2394 if (!pullupmsg(mp, -1)) { 2395 BUMP_MIB(&ip_mib, ipInDiscards); 2396 return (NULL); 2397 } 2398 2399 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2400 ipha = (ipha_t *)&icmph[1]; 2401 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2402 2403 /* 2404 * The length that we want to overlay is following the inner 2405 * IP header. Subtracting the IP header + icmp header + outer 2406 * IP header's length should give us the length that we want to 2407 * overlay. 2408 */ 2409 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2410 hdr_length; 2411 /* 2412 * Overlay whatever follows the inner header over the 2413 * outer header. 2414 */ 2415 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2416 2417 /* Set the wptr to account for the outer header */ 2418 mp->b_wptr -= hdr_length; 2419 return (mp); 2420 } 2421 2422 /* 2423 * Try to pass the ICMP message upstream in case the ULP cares. 2424 * 2425 * If the packet that caused the ICMP error is secure, we send 2426 * it to AH/ESP to make sure that the attached packet has a 2427 * valid association. ipha in the code below points to the 2428 * IP header of the packet that caused the error. 2429 * 2430 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2431 * in the context of IPSEC. Normally we tell the upper layer 2432 * whenever we send the ire (including ip_bind), the IPSEC header 2433 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2434 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2435 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2436 * same thing. As TCP has the IPSEC options size that needs to be 2437 * adjusted, we just pass the MTU unchanged. 2438 * 2439 * IFN could have been generated locally or by some router. 2440 * 2441 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2442 * This happens because IP adjusted its value of MTU on an 2443 * earlier IFN message and could not tell the upper layer, 2444 * the new adjusted value of MTU e.g. Packet was encrypted 2445 * or there was not enough information to fanout to upper 2446 * layers. Thus on the next outbound datagram, ip_wput_ire 2447 * generates the IFN, where IPSEC processing has *not* been 2448 * done. 2449 * 2450 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2451 * could have generated this. This happens because ire_max_frag 2452 * value in IP was set to a new value, while the IPSEC processing 2453 * was being done and after we made the fragmentation check in 2454 * ip_wput_ire. Thus on return from IPSEC processing, 2455 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2456 * and generates the IFN. As IPSEC processing is over, we fanout 2457 * to AH/ESP to remove the header. 2458 * 2459 * In both these cases, ipsec_in_loopback will be set indicating 2460 * that IFN was generated locally. 2461 * 2462 * ROUTER : IFN could be secure or non-secure. 2463 * 2464 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2465 * packet in error has AH/ESP headers to validate the AH/ESP 2466 * headers. AH/ESP will verify whether there is a valid SA or 2467 * not and send it back. We will fanout again if we have more 2468 * data in the packet. 2469 * 2470 * If the packet in error does not have AH/ESP, we handle it 2471 * like any other case. 2472 * 2473 * * NON_SECURE : If the packet in error has AH/ESP headers, 2474 * we attach a dummy ipsec_in and send it up to AH/ESP 2475 * for validation. AH/ESP will verify whether there is a 2476 * valid SA or not and send it back. We will fanout again if 2477 * we have more data in the packet. 2478 * 2479 * If the packet in error does not have AH/ESP, we handle it 2480 * like any other case. 2481 */ 2482 static void 2483 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2484 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2485 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2486 zoneid_t zoneid) 2487 { 2488 uint16_t *up; /* Pointer to ports in ULP header */ 2489 uint32_t ports; /* reversed ports for fanout */ 2490 ipha_t ripha; /* With reversed addresses */ 2491 mblk_t *first_mp; 2492 ipsec_in_t *ii; 2493 tcph_t *tcph; 2494 conn_t *connp; 2495 2496 first_mp = mp; 2497 if (mctl_present) { 2498 mp = first_mp->b_cont; 2499 ASSERT(mp != NULL); 2500 2501 ii = (ipsec_in_t *)first_mp->b_rptr; 2502 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2503 } else { 2504 ii = NULL; 2505 } 2506 2507 switch (ipha->ipha_protocol) { 2508 case IPPROTO_UDP: 2509 /* 2510 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2511 * transport header. 2512 */ 2513 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2514 mp->b_wptr) { 2515 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2516 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2517 BUMP_MIB(&ip_mib, ipInDiscards); 2518 goto drop_pkt; 2519 } 2520 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2521 ipha = (ipha_t *)&icmph[1]; 2522 } 2523 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2524 2525 /* 2526 * Attempt to find a client stream based on port. 2527 * Note that we do a reverse lookup since the header is 2528 * in the form we sent it out. 2529 * The ripha header is only used for the IP_UDP_MATCH and we 2530 * only set the src and dst addresses and protocol. 2531 */ 2532 ripha.ipha_src = ipha->ipha_dst; 2533 ripha.ipha_dst = ipha->ipha_src; 2534 ripha.ipha_protocol = ipha->ipha_protocol; 2535 ((uint16_t *)&ports)[0] = up[1]; 2536 ((uint16_t *)&ports)[1] = up[0]; 2537 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2538 ntohl(ipha->ipha_src), ntohs(up[0]), 2539 ntohl(ipha->ipha_dst), ntohs(up[1]), 2540 icmph->icmph_type, icmph->icmph_code)); 2541 2542 /* Have to change db_type after any pullupmsg */ 2543 DB_TYPE(mp) = M_CTL; 2544 2545 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2546 mctl_present, ip_policy, recv_ill, zoneid); 2547 return; 2548 2549 case IPPROTO_TCP: 2550 /* 2551 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2552 * transport header. 2553 */ 2554 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2555 mp->b_wptr) { 2556 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2557 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2558 BUMP_MIB(&ip_mib, ipInDiscards); 2559 goto drop_pkt; 2560 } 2561 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2562 ipha = (ipha_t *)&icmph[1]; 2563 } 2564 /* 2565 * Find a TCP client stream for this packet. 2566 * Note that we do a reverse lookup since the header is 2567 * in the form we sent it out. 2568 */ 2569 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2570 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2571 if (connp == NULL) { 2572 BUMP_MIB(&ip_mib, ipInDiscards); 2573 goto drop_pkt; 2574 } 2575 2576 /* Have to change db_type after any pullupmsg */ 2577 DB_TYPE(mp) = M_CTL; 2578 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2579 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2580 return; 2581 2582 case IPPROTO_SCTP: 2583 /* 2584 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2585 * transport header. 2586 */ 2587 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2588 mp->b_wptr) { 2589 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2590 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2591 BUMP_MIB(&ip_mib, ipInDiscards); 2592 goto drop_pkt; 2593 } 2594 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2595 ipha = (ipha_t *)&icmph[1]; 2596 } 2597 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2598 /* 2599 * Find a SCTP client stream for this packet. 2600 * Note that we do a reverse lookup since the header is 2601 * in the form we sent it out. 2602 * The ripha header is only used for the matching and we 2603 * only set the src and dst addresses, protocol, and version. 2604 */ 2605 ripha.ipha_src = ipha->ipha_dst; 2606 ripha.ipha_dst = ipha->ipha_src; 2607 ripha.ipha_protocol = ipha->ipha_protocol; 2608 ripha.ipha_version_and_hdr_length = 2609 ipha->ipha_version_and_hdr_length; 2610 ((uint16_t *)&ports)[0] = up[1]; 2611 ((uint16_t *)&ports)[1] = up[0]; 2612 2613 /* Have to change db_type after any pullupmsg */ 2614 DB_TYPE(mp) = M_CTL; 2615 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2616 mctl_present, ip_policy, 0, zoneid); 2617 return; 2618 2619 case IPPROTO_ESP: 2620 case IPPROTO_AH: { 2621 int ipsec_rc; 2622 2623 /* 2624 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2625 * We will re-use the IPSEC_IN if it is already present as 2626 * AH/ESP will not affect any fields in the IPSEC_IN for 2627 * ICMP errors. If there is no IPSEC_IN, allocate a new 2628 * one and attach it in the front. 2629 */ 2630 if (ii != NULL) { 2631 /* 2632 * ip_fanout_proto_again converts the ICMP errors 2633 * that come back from AH/ESP to M_DATA so that 2634 * if it is non-AH/ESP and we do a pullupmsg in 2635 * this function, it would work. Convert it back 2636 * to M_CTL before we send up as this is a ICMP 2637 * error. This could have been generated locally or 2638 * by some router. Validate the inner IPSEC 2639 * headers. 2640 * 2641 * NOTE : ill_index is used by ip_fanout_proto_again 2642 * to locate the ill. 2643 */ 2644 ASSERT(ill != NULL); 2645 ii->ipsec_in_ill_index = 2646 ill->ill_phyint->phyint_ifindex; 2647 ii->ipsec_in_rill_index = 2648 recv_ill->ill_phyint->phyint_ifindex; 2649 DB_TYPE(first_mp->b_cont) = M_CTL; 2650 } else { 2651 /* 2652 * IPSEC_IN is not present. We attach a ipsec_in 2653 * message and send up to IPSEC for validating 2654 * and removing the IPSEC headers. Clear 2655 * ipsec_in_secure so that when we return 2656 * from IPSEC, we don't mistakenly think that this 2657 * is a secure packet came from the network. 2658 * 2659 * NOTE : ill_index is used by ip_fanout_proto_again 2660 * to locate the ill. 2661 */ 2662 ASSERT(first_mp == mp); 2663 first_mp = ipsec_in_alloc(B_TRUE); 2664 if (first_mp == NULL) { 2665 freemsg(mp); 2666 BUMP_MIB(&ip_mib, ipInDiscards); 2667 return; 2668 } 2669 ii = (ipsec_in_t *)first_mp->b_rptr; 2670 2671 /* This is not a secure packet */ 2672 ii->ipsec_in_secure = B_FALSE; 2673 first_mp->b_cont = mp; 2674 DB_TYPE(mp) = M_CTL; 2675 ASSERT(ill != NULL); 2676 ii->ipsec_in_ill_index = 2677 ill->ill_phyint->phyint_ifindex; 2678 ii->ipsec_in_rill_index = 2679 recv_ill->ill_phyint->phyint_ifindex; 2680 } 2681 ip2dbg(("icmp_inbound_error: ipsec\n")); 2682 2683 if (!ipsec_loaded()) { 2684 ip_proto_not_sup(q, first_mp, 0, zoneid); 2685 return; 2686 } 2687 2688 if (ipha->ipha_protocol == IPPROTO_ESP) 2689 ipsec_rc = ipsecesp_icmp_error(first_mp); 2690 else 2691 ipsec_rc = ipsecah_icmp_error(first_mp); 2692 if (ipsec_rc == IPSEC_STATUS_FAILED) 2693 return; 2694 2695 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2696 return; 2697 } 2698 default: 2699 /* 2700 * The ripha header is only used for the lookup and we 2701 * only set the src and dst addresses and protocol. 2702 */ 2703 ripha.ipha_src = ipha->ipha_dst; 2704 ripha.ipha_dst = ipha->ipha_src; 2705 ripha.ipha_protocol = ipha->ipha_protocol; 2706 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2707 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2708 ntohl(ipha->ipha_dst), 2709 icmph->icmph_type, icmph->icmph_code)); 2710 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2711 ipha_t *in_ipha; 2712 2713 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2714 mp->b_wptr) { 2715 if (!pullupmsg(mp, (uchar_t *)ipha + 2716 hdr_length + sizeof (ipha_t) - 2717 mp->b_rptr)) { 2718 2719 BUMP_MIB(&ip_mib, ipInDiscards); 2720 goto drop_pkt; 2721 } 2722 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2723 ipha = (ipha_t *)&icmph[1]; 2724 } 2725 /* 2726 * Caller has verified that length has to be 2727 * at least the size of IP header. 2728 */ 2729 ASSERT(hdr_length >= sizeof (ipha_t)); 2730 /* 2731 * Check the sanity of the inner IP header like 2732 * we did for the outer header. 2733 */ 2734 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2735 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2736 BUMP_MIB(&ip_mib, ipInDiscards); 2737 goto drop_pkt; 2738 } 2739 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2740 BUMP_MIB(&ip_mib, ipInDiscards); 2741 goto drop_pkt; 2742 } 2743 /* Check for Self-encapsulated tunnels */ 2744 if (in_ipha->ipha_src == ipha->ipha_src && 2745 in_ipha->ipha_dst == ipha->ipha_dst) { 2746 2747 mp = icmp_inbound_self_encap_error(mp, 2748 iph_hdr_length, hdr_length); 2749 if (mp == NULL) 2750 goto drop_pkt; 2751 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2752 ipha = (ipha_t *)&icmph[1]; 2753 hdr_length = IPH_HDR_LENGTH(ipha); 2754 /* 2755 * The packet in error is self-encapsualted. 2756 * And we are finding it further encapsulated 2757 * which we could not have possibly generated. 2758 */ 2759 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2760 BUMP_MIB(&ip_mib, ipInDiscards); 2761 goto drop_pkt; 2762 } 2763 icmp_inbound_error_fanout(q, ill, first_mp, 2764 icmph, ipha, iph_hdr_length, hdr_length, 2765 mctl_present, ip_policy, recv_ill, zoneid); 2766 return; 2767 } 2768 } 2769 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2770 ipha->ipha_protocol == IPPROTO_IPV6) && 2771 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2772 ii != NULL && 2773 ii->ipsec_in_loopback && 2774 ii->ipsec_in_secure) { 2775 /* 2776 * For IP tunnels that get a looped-back 2777 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2778 * reported new MTU to take into account the IPsec 2779 * headers protecting this configured tunnel. 2780 * 2781 * This allows the tunnel module (tun.c) to blindly 2782 * accept the MTU reported in an ICMP "too big" 2783 * message. 2784 * 2785 * Non-looped back ICMP messages will just be 2786 * handled by the security protocols (if needed), 2787 * and the first subsequent packet will hit this 2788 * path. 2789 */ 2790 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2791 ipsec_in_extra_length(first_mp)); 2792 } 2793 /* Have to change db_type after any pullupmsg */ 2794 DB_TYPE(mp) = M_CTL; 2795 2796 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2797 ip_policy, recv_ill, zoneid); 2798 return; 2799 } 2800 /* NOTREACHED */ 2801 drop_pkt:; 2802 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2803 freemsg(first_mp); 2804 } 2805 2806 /* 2807 * Common IP options parser. 2808 * 2809 * Setup routine: fill in *optp with options-parsing state, then 2810 * tail-call ipoptp_next to return the first option. 2811 */ 2812 uint8_t 2813 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2814 { 2815 uint32_t totallen; /* total length of all options */ 2816 2817 totallen = ipha->ipha_version_and_hdr_length - 2818 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2819 totallen <<= 2; 2820 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2821 optp->ipoptp_end = optp->ipoptp_next + totallen; 2822 optp->ipoptp_flags = 0; 2823 return (ipoptp_next(optp)); 2824 } 2825 2826 /* 2827 * Common IP options parser: extract next option. 2828 */ 2829 uint8_t 2830 ipoptp_next(ipoptp_t *optp) 2831 { 2832 uint8_t *end = optp->ipoptp_end; 2833 uint8_t *cur = optp->ipoptp_next; 2834 uint8_t opt, len, pointer; 2835 2836 /* 2837 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2838 * has been corrupted. 2839 */ 2840 ASSERT(cur <= end); 2841 2842 if (cur == end) 2843 return (IPOPT_EOL); 2844 2845 opt = cur[IPOPT_OPTVAL]; 2846 2847 /* 2848 * Skip any NOP options. 2849 */ 2850 while (opt == IPOPT_NOP) { 2851 cur++; 2852 if (cur == end) 2853 return (IPOPT_EOL); 2854 opt = cur[IPOPT_OPTVAL]; 2855 } 2856 2857 if (opt == IPOPT_EOL) 2858 return (IPOPT_EOL); 2859 2860 /* 2861 * Option requiring a length. 2862 */ 2863 if ((cur + 1) >= end) { 2864 optp->ipoptp_flags |= IPOPTP_ERROR; 2865 return (IPOPT_EOL); 2866 } 2867 len = cur[IPOPT_OLEN]; 2868 if (len < 2) { 2869 optp->ipoptp_flags |= IPOPTP_ERROR; 2870 return (IPOPT_EOL); 2871 } 2872 optp->ipoptp_cur = cur; 2873 optp->ipoptp_len = len; 2874 optp->ipoptp_next = cur + len; 2875 if (cur + len > end) { 2876 optp->ipoptp_flags |= IPOPTP_ERROR; 2877 return (IPOPT_EOL); 2878 } 2879 2880 /* 2881 * For the options which require a pointer field, make sure 2882 * its there, and make sure it points to either something 2883 * inside this option, or the end of the option. 2884 */ 2885 switch (opt) { 2886 case IPOPT_RR: 2887 case IPOPT_TS: 2888 case IPOPT_LSRR: 2889 case IPOPT_SSRR: 2890 if (len <= IPOPT_OFFSET) { 2891 optp->ipoptp_flags |= IPOPTP_ERROR; 2892 return (opt); 2893 } 2894 pointer = cur[IPOPT_OFFSET]; 2895 if (pointer - 1 > len) { 2896 optp->ipoptp_flags |= IPOPTP_ERROR; 2897 return (opt); 2898 } 2899 break; 2900 } 2901 2902 /* 2903 * Sanity check the pointer field based on the type of the 2904 * option. 2905 */ 2906 switch (opt) { 2907 case IPOPT_RR: 2908 case IPOPT_SSRR: 2909 case IPOPT_LSRR: 2910 if (pointer < IPOPT_MINOFF_SR) 2911 optp->ipoptp_flags |= IPOPTP_ERROR; 2912 break; 2913 case IPOPT_TS: 2914 if (pointer < IPOPT_MINOFF_IT) 2915 optp->ipoptp_flags |= IPOPTP_ERROR; 2916 /* 2917 * Note that the Internet Timestamp option also 2918 * contains two four bit fields (the Overflow field, 2919 * and the Flag field), which follow the pointer 2920 * field. We don't need to check that these fields 2921 * fall within the length of the option because this 2922 * was implicitely done above. We've checked that the 2923 * pointer value is at least IPOPT_MINOFF_IT, and that 2924 * it falls within the option. Since IPOPT_MINOFF_IT > 2925 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2926 */ 2927 ASSERT(len > IPOPT_POS_OV_FLG); 2928 break; 2929 } 2930 2931 return (opt); 2932 } 2933 2934 /* 2935 * Use the outgoing IP header to create an IP_OPTIONS option the way 2936 * it was passed down from the application. 2937 */ 2938 int 2939 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2940 { 2941 ipoptp_t opts; 2942 const uchar_t *opt; 2943 uint8_t optval; 2944 uint8_t optlen; 2945 uint32_t len = 0; 2946 uchar_t *buf1 = buf; 2947 2948 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2949 len += IP_ADDR_LEN; 2950 bzero(buf1, IP_ADDR_LEN); 2951 2952 /* 2953 * OK to cast away const here, as we don't store through the returned 2954 * opts.ipoptp_cur pointer. 2955 */ 2956 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2957 optval != IPOPT_EOL; 2958 optval = ipoptp_next(&opts)) { 2959 int off; 2960 2961 opt = opts.ipoptp_cur; 2962 optlen = opts.ipoptp_len; 2963 switch (optval) { 2964 case IPOPT_SSRR: 2965 case IPOPT_LSRR: 2966 2967 /* 2968 * Insert ipha_dst as the first entry in the source 2969 * route and move down the entries on step. 2970 * The last entry gets placed at buf1. 2971 */ 2972 buf[IPOPT_OPTVAL] = optval; 2973 buf[IPOPT_OLEN] = optlen; 2974 buf[IPOPT_OFFSET] = optlen; 2975 2976 off = optlen - IP_ADDR_LEN; 2977 if (off < 0) { 2978 /* No entries in source route */ 2979 break; 2980 } 2981 /* Last entry in source route */ 2982 bcopy(opt + off, buf1, IP_ADDR_LEN); 2983 off -= IP_ADDR_LEN; 2984 2985 while (off > 0) { 2986 bcopy(opt + off, 2987 buf + off + IP_ADDR_LEN, 2988 IP_ADDR_LEN); 2989 off -= IP_ADDR_LEN; 2990 } 2991 /* ipha_dst into first slot */ 2992 bcopy(&ipha->ipha_dst, 2993 buf + off + IP_ADDR_LEN, 2994 IP_ADDR_LEN); 2995 buf += optlen; 2996 len += optlen; 2997 break; 2998 2999 case IPOPT_COMSEC: 3000 case IPOPT_SECURITY: 3001 /* if passing up a label is not ok, then remove */ 3002 if (is_system_labeled()) 3003 break; 3004 /* FALLTHROUGH */ 3005 default: 3006 bcopy(opt, buf, optlen); 3007 buf += optlen; 3008 len += optlen; 3009 break; 3010 } 3011 } 3012 done: 3013 /* Pad the resulting options */ 3014 while (len & 0x3) { 3015 *buf++ = IPOPT_EOL; 3016 len++; 3017 } 3018 return (len); 3019 } 3020 3021 /* 3022 * Update any record route or timestamp options to include this host. 3023 * Reverse any source route option. 3024 * This routine assumes that the options are well formed i.e. that they 3025 * have already been checked. 3026 */ 3027 static void 3028 icmp_options_update(ipha_t *ipha) 3029 { 3030 ipoptp_t opts; 3031 uchar_t *opt; 3032 uint8_t optval; 3033 ipaddr_t src; /* Our local address */ 3034 ipaddr_t dst; 3035 3036 ip2dbg(("icmp_options_update\n")); 3037 src = ipha->ipha_src; 3038 dst = ipha->ipha_dst; 3039 3040 for (optval = ipoptp_first(&opts, ipha); 3041 optval != IPOPT_EOL; 3042 optval = ipoptp_next(&opts)) { 3043 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3044 opt = opts.ipoptp_cur; 3045 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3046 optval, opts.ipoptp_len)); 3047 switch (optval) { 3048 int off1, off2; 3049 case IPOPT_SSRR: 3050 case IPOPT_LSRR: 3051 /* 3052 * Reverse the source route. The first entry 3053 * should be the next to last one in the current 3054 * source route (the last entry is our address). 3055 * The last entry should be the final destination. 3056 */ 3057 off1 = IPOPT_MINOFF_SR - 1; 3058 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3059 if (off2 < 0) { 3060 /* No entries in source route */ 3061 ip1dbg(( 3062 "icmp_options_update: bad src route\n")); 3063 break; 3064 } 3065 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3066 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3067 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3068 off2 -= IP_ADDR_LEN; 3069 3070 while (off1 < off2) { 3071 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3072 bcopy((char *)opt + off2, (char *)opt + off1, 3073 IP_ADDR_LEN); 3074 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3075 off1 += IP_ADDR_LEN; 3076 off2 -= IP_ADDR_LEN; 3077 } 3078 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3079 break; 3080 } 3081 } 3082 } 3083 3084 /* 3085 * Process received ICMP Redirect messages. 3086 */ 3087 /* ARGSUSED */ 3088 static void 3089 icmp_redirect(mblk_t *mp) 3090 { 3091 ipha_t *ipha; 3092 int iph_hdr_length; 3093 icmph_t *icmph; 3094 ipha_t *ipha_err; 3095 ire_t *ire; 3096 ire_t *prev_ire; 3097 ire_t *save_ire; 3098 ipaddr_t src, dst, gateway; 3099 iulp_t ulp_info = { 0 }; 3100 int error; 3101 3102 ipha = (ipha_t *)mp->b_rptr; 3103 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3104 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3105 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3106 BUMP_MIB(&icmp_mib, icmpInErrors); 3107 freemsg(mp); 3108 return; 3109 } 3110 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3111 ipha_err = (ipha_t *)&icmph[1]; 3112 src = ipha->ipha_src; 3113 dst = ipha_err->ipha_dst; 3114 gateway = icmph->icmph_rd_gateway; 3115 /* Make sure the new gateway is reachable somehow. */ 3116 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3117 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3118 /* 3119 * Make sure we had a route for the dest in question and that 3120 * that route was pointing to the old gateway (the source of the 3121 * redirect packet.) 3122 */ 3123 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3124 NULL, MATCH_IRE_GW); 3125 /* 3126 * Check that 3127 * the redirect was not from ourselves 3128 * the new gateway and the old gateway are directly reachable 3129 */ 3130 if (!prev_ire || 3131 !ire || 3132 ire->ire_type == IRE_LOCAL) { 3133 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3134 freemsg(mp); 3135 if (ire != NULL) 3136 ire_refrele(ire); 3137 if (prev_ire != NULL) 3138 ire_refrele(prev_ire); 3139 return; 3140 } 3141 3142 /* 3143 * Should we use the old ULP info to create the new gateway? From 3144 * a user's perspective, we should inherit the info so that it 3145 * is a "smooth" transition. If we do not do that, then new 3146 * connections going thru the new gateway will have no route metrics, 3147 * which is counter-intuitive to user. From a network point of 3148 * view, this may or may not make sense even though the new gateway 3149 * is still directly connected to us so the route metrics should not 3150 * change much. 3151 * 3152 * But if the old ire_uinfo is not initialized, we do another 3153 * recursive lookup on the dest using the new gateway. There may 3154 * be a route to that. If so, use it to initialize the redirect 3155 * route. 3156 */ 3157 if (prev_ire->ire_uinfo.iulp_set) { 3158 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3159 } else { 3160 ire_t *tmp_ire; 3161 ire_t *sire; 3162 3163 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3164 ALL_ZONES, 0, NULL, 3165 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3166 if (sire != NULL) { 3167 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3168 /* 3169 * If sire != NULL, ire_ftable_lookup() should not 3170 * return a NULL value. 3171 */ 3172 ASSERT(tmp_ire != NULL); 3173 ire_refrele(tmp_ire); 3174 ire_refrele(sire); 3175 } else if (tmp_ire != NULL) { 3176 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3177 sizeof (iulp_t)); 3178 ire_refrele(tmp_ire); 3179 } 3180 } 3181 if (prev_ire->ire_type == IRE_CACHE) 3182 ire_delete(prev_ire); 3183 ire_refrele(prev_ire); 3184 /* 3185 * TODO: more precise handling for cases 0, 2, 3, the latter two 3186 * require TOS routing 3187 */ 3188 switch (icmph->icmph_code) { 3189 case 0: 3190 case 1: 3191 /* TODO: TOS specificity for cases 2 and 3 */ 3192 case 2: 3193 case 3: 3194 break; 3195 default: 3196 freemsg(mp); 3197 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3198 ire_refrele(ire); 3199 return; 3200 } 3201 /* 3202 * Create a Route Association. This will allow us to remember that 3203 * someone we believe told us to use the particular gateway. 3204 */ 3205 save_ire = ire; 3206 ire = ire_create( 3207 (uchar_t *)&dst, /* dest addr */ 3208 (uchar_t *)&ip_g_all_ones, /* mask */ 3209 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3210 (uchar_t *)&gateway, /* gateway addr */ 3211 NULL, /* no in_srcaddr */ 3212 &save_ire->ire_max_frag, /* max frag */ 3213 NULL, /* Fast Path header */ 3214 NULL, /* no rfq */ 3215 NULL, /* no stq */ 3216 IRE_HOST_REDIRECT, 3217 NULL, 3218 NULL, 3219 NULL, 3220 0, 3221 0, 3222 0, 3223 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3224 &ulp_info, 3225 NULL, 3226 NULL); 3227 3228 if (ire == NULL) { 3229 freemsg(mp); 3230 ire_refrele(save_ire); 3231 return; 3232 } 3233 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3234 ire_refrele(save_ire); 3235 atomic_inc_32(&ip_redirect_cnt); 3236 3237 if (error == 0) { 3238 ire_refrele(ire); /* Held in ire_add_v4 */ 3239 /* tell routing sockets that we received a redirect */ 3240 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3241 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3242 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3243 } 3244 3245 /* 3246 * Delete any existing IRE_HOST_REDIRECT for this destination. 3247 * This together with the added IRE has the effect of 3248 * modifying an existing redirect. 3249 */ 3250 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3251 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3252 if (prev_ire) { 3253 ire_delete(prev_ire); 3254 ire_refrele(prev_ire); 3255 } 3256 3257 freemsg(mp); 3258 } 3259 3260 /* 3261 * Generate an ICMP parameter problem message. 3262 */ 3263 static void 3264 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3265 { 3266 icmph_t icmph; 3267 boolean_t mctl_present; 3268 mblk_t *first_mp; 3269 3270 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3271 3272 if (!(mp = icmp_pkt_err_ok(mp))) { 3273 if (mctl_present) 3274 freeb(first_mp); 3275 return; 3276 } 3277 3278 bzero(&icmph, sizeof (icmph_t)); 3279 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3280 icmph.icmph_pp_ptr = ptr; 3281 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3282 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3283 } 3284 3285 /* 3286 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3287 * the ICMP header pointed to by "stuff". (May be called as writer.) 3288 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3289 * an icmp error packet can be sent. 3290 * Assigns an appropriate source address to the packet. If ipha_dst is 3291 * one of our addresses use it for source. Otherwise pick a source based 3292 * on a route lookup back to ipha_src. 3293 * Note that ipha_src must be set here since the 3294 * packet is likely to arrive on an ill queue in ip_wput() which will 3295 * not set a source address. 3296 */ 3297 static void 3298 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3299 boolean_t mctl_present) 3300 { 3301 ipaddr_t dst; 3302 icmph_t *icmph; 3303 ipha_t *ipha; 3304 uint_t len_needed; 3305 size_t msg_len; 3306 mblk_t *mp1; 3307 ipaddr_t src; 3308 ire_t *ire; 3309 mblk_t *ipsec_mp; 3310 ipsec_out_t *io = NULL; 3311 boolean_t xmit_if_on = B_FALSE; 3312 zoneid_t zoneid; 3313 3314 if (mctl_present) { 3315 /* 3316 * If it is : 3317 * 3318 * 1) a IPSEC_OUT, then this is caused by outbound 3319 * datagram originating on this host. IPSEC processing 3320 * may or may not have been done. Refer to comments above 3321 * icmp_inbound_error_fanout for details. 3322 * 3323 * 2) a IPSEC_IN if we are generating a icmp_message 3324 * for an incoming datagram destined for us i.e called 3325 * from ip_fanout_send_icmp. 3326 */ 3327 ipsec_info_t *in; 3328 ipsec_mp = mp; 3329 mp = ipsec_mp->b_cont; 3330 3331 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3332 ipha = (ipha_t *)mp->b_rptr; 3333 3334 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3335 in->ipsec_info_type == IPSEC_IN); 3336 3337 if (in->ipsec_info_type == IPSEC_IN) { 3338 /* 3339 * Convert the IPSEC_IN to IPSEC_OUT. 3340 */ 3341 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3342 BUMP_MIB(&ip_mib, ipOutDiscards); 3343 return; 3344 } 3345 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3346 } else { 3347 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3348 io = (ipsec_out_t *)in; 3349 if (io->ipsec_out_xmit_if) 3350 xmit_if_on = B_TRUE; 3351 /* 3352 * Clear out ipsec_out_proc_begin, so we do a fresh 3353 * ire lookup. 3354 */ 3355 io->ipsec_out_proc_begin = B_FALSE; 3356 } 3357 zoneid = io->ipsec_out_zoneid; 3358 ASSERT(zoneid != ALL_ZONES); 3359 } else { 3360 /* 3361 * This is in clear. The icmp message we are building 3362 * here should go out in clear. 3363 * 3364 * Pardon the convolution of it all, but it's easier to 3365 * allocate a "use cleartext" IPSEC_IN message and convert 3366 * it than it is to allocate a new one. 3367 */ 3368 ipsec_in_t *ii; 3369 ASSERT(DB_TYPE(mp) == M_DATA); 3370 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3371 freemsg(mp); 3372 BUMP_MIB(&ip_mib, ipOutDiscards); 3373 return; 3374 } 3375 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3376 3377 /* This is not a secure packet */ 3378 ii->ipsec_in_secure = B_FALSE; 3379 if (CONN_Q(q)) { 3380 zoneid = Q_TO_CONN(q)->conn_zoneid; 3381 } else { 3382 zoneid = GLOBAL_ZONEID; 3383 } 3384 ii->ipsec_in_zoneid = zoneid; 3385 ASSERT(zoneid != ALL_ZONES); 3386 ipsec_mp->b_cont = mp; 3387 ipha = (ipha_t *)mp->b_rptr; 3388 /* 3389 * Convert the IPSEC_IN to IPSEC_OUT. 3390 */ 3391 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3392 BUMP_MIB(&ip_mib, ipOutDiscards); 3393 return; 3394 } 3395 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3396 } 3397 3398 /* Remember our eventual destination */ 3399 dst = ipha->ipha_src; 3400 3401 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3402 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3403 if (ire != NULL && 3404 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3405 src = ipha->ipha_dst; 3406 } else if (!xmit_if_on) { 3407 if (ire != NULL) 3408 ire_refrele(ire); 3409 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3410 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3411 if (ire == NULL) { 3412 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3413 freemsg(ipsec_mp); 3414 return; 3415 } 3416 src = ire->ire_src_addr; 3417 } else { 3418 ipif_t *ipif = NULL; 3419 ill_t *ill; 3420 /* 3421 * This must be an ICMP error coming from 3422 * ip_mrtun_forward(). The src addr should 3423 * be equal to the IP-addr of the outgoing 3424 * interface. 3425 */ 3426 if (io == NULL) { 3427 /* This is not a IPSEC_OUT type control msg */ 3428 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3429 freemsg(ipsec_mp); 3430 return; 3431 } 3432 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3433 NULL, NULL, NULL, NULL); 3434 if (ill != NULL) { 3435 ipif = ipif_get_next_ipif(NULL, ill); 3436 ill_refrele(ill); 3437 } 3438 if (ipif == NULL) { 3439 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3440 freemsg(ipsec_mp); 3441 return; 3442 } 3443 src = ipif->ipif_src_addr; 3444 ipif_refrele(ipif); 3445 } 3446 3447 if (ire != NULL) 3448 ire_refrele(ire); 3449 3450 /* 3451 * Check if we can send back more then 8 bytes in addition 3452 * to the IP header. We will include as much as 64 bytes. 3453 */ 3454 len_needed = IPH_HDR_LENGTH(ipha); 3455 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3456 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3457 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3458 } 3459 len_needed += ip_icmp_return; 3460 msg_len = msgdsize(mp); 3461 if (msg_len > len_needed) { 3462 (void) adjmsg(mp, len_needed - msg_len); 3463 msg_len = len_needed; 3464 } 3465 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3466 if (mp1 == NULL) { 3467 BUMP_MIB(&icmp_mib, icmpOutErrors); 3468 freemsg(ipsec_mp); 3469 return; 3470 } 3471 /* 3472 * On an unlabeled system, dblks don't necessarily have creds. 3473 */ 3474 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3475 if (DB_CRED(mp) != NULL) 3476 mblk_setcred(mp1, DB_CRED(mp)); 3477 mp1->b_cont = mp; 3478 mp = mp1; 3479 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3480 ipsec_mp->b_rptr == (uint8_t *)io && 3481 io->ipsec_out_type == IPSEC_OUT); 3482 ipsec_mp->b_cont = mp; 3483 3484 /* 3485 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3486 * node generates be accepted in peace by all on-host destinations. 3487 * If we do NOT assume that all on-host destinations trust 3488 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3489 * (Look for ipsec_out_icmp_loopback). 3490 */ 3491 io->ipsec_out_icmp_loopback = B_TRUE; 3492 3493 ipha = (ipha_t *)mp->b_rptr; 3494 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3495 *ipha = icmp_ipha; 3496 ipha->ipha_src = src; 3497 ipha->ipha_dst = dst; 3498 ipha->ipha_ttl = ip_def_ttl; 3499 msg_len += sizeof (icmp_ipha) + len; 3500 if (msg_len > IP_MAXPACKET) { 3501 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3502 msg_len = IP_MAXPACKET; 3503 } 3504 ipha->ipha_length = htons((uint16_t)msg_len); 3505 icmph = (icmph_t *)&ipha[1]; 3506 bcopy(stuff, icmph, len); 3507 icmph->icmph_checksum = 0; 3508 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3509 if (icmph->icmph_checksum == 0) 3510 icmph->icmph_checksum = 0xFFFF; 3511 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3512 put(q, ipsec_mp); 3513 } 3514 3515 /* 3516 * Determine if an ICMP error packet can be sent given the rate limit. 3517 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3518 * in milliseconds) and a burst size. Burst size number of packets can 3519 * be sent arbitrarely closely spaced. 3520 * The state is tracked using two variables to implement an approximate 3521 * token bucket filter: 3522 * icmp_pkt_err_last - lbolt value when the last burst started 3523 * icmp_pkt_err_sent - number of packets sent in current burst 3524 */ 3525 boolean_t 3526 icmp_err_rate_limit(void) 3527 { 3528 clock_t now = TICK_TO_MSEC(lbolt); 3529 uint_t refilled; /* Number of packets refilled in tbf since last */ 3530 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3531 3532 if (err_interval == 0) 3533 return (B_FALSE); 3534 3535 if (icmp_pkt_err_last > now) { 3536 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3537 icmp_pkt_err_last = 0; 3538 icmp_pkt_err_sent = 0; 3539 } 3540 /* 3541 * If we are in a burst update the token bucket filter. 3542 * Update the "last" time to be close to "now" but make sure 3543 * we don't loose precision. 3544 */ 3545 if (icmp_pkt_err_sent != 0) { 3546 refilled = (now - icmp_pkt_err_last)/err_interval; 3547 if (refilled > icmp_pkt_err_sent) { 3548 icmp_pkt_err_sent = 0; 3549 } else { 3550 icmp_pkt_err_sent -= refilled; 3551 icmp_pkt_err_last += refilled * err_interval; 3552 } 3553 } 3554 if (icmp_pkt_err_sent == 0) { 3555 /* Start of new burst */ 3556 icmp_pkt_err_last = now; 3557 } 3558 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3559 icmp_pkt_err_sent++; 3560 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3561 icmp_pkt_err_sent)); 3562 return (B_FALSE); 3563 } 3564 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3565 return (B_TRUE); 3566 } 3567 3568 /* 3569 * Check if it is ok to send an IPv4 ICMP error packet in 3570 * response to the IPv4 packet in mp. 3571 * Free the message and return null if no 3572 * ICMP error packet should be sent. 3573 */ 3574 static mblk_t * 3575 icmp_pkt_err_ok(mblk_t *mp) 3576 { 3577 icmph_t *icmph; 3578 ipha_t *ipha; 3579 uint_t len_needed; 3580 ire_t *src_ire; 3581 ire_t *dst_ire; 3582 3583 if (!mp) 3584 return (NULL); 3585 ipha = (ipha_t *)mp->b_rptr; 3586 if (ip_csum_hdr(ipha)) { 3587 BUMP_MIB(&ip_mib, ipInCksumErrs); 3588 freemsg(mp); 3589 return (NULL); 3590 } 3591 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3592 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3593 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3594 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3595 if (src_ire != NULL || dst_ire != NULL || 3596 CLASSD(ipha->ipha_dst) || 3597 CLASSD(ipha->ipha_src) || 3598 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3599 /* Note: only errors to the fragment with offset 0 */ 3600 BUMP_MIB(&icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 if (src_ire != NULL) 3603 ire_refrele(src_ire); 3604 if (dst_ire != NULL) 3605 ire_refrele(dst_ire); 3606 return (NULL); 3607 } 3608 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3609 /* 3610 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3611 * errors in response to any ICMP errors. 3612 */ 3613 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3614 if (mp->b_wptr - mp->b_rptr < len_needed) { 3615 if (!pullupmsg(mp, len_needed)) { 3616 BUMP_MIB(&icmp_mib, icmpInErrors); 3617 freemsg(mp); 3618 return (NULL); 3619 } 3620 ipha = (ipha_t *)mp->b_rptr; 3621 } 3622 icmph = (icmph_t *) 3623 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3624 switch (icmph->icmph_type) { 3625 case ICMP_DEST_UNREACHABLE: 3626 case ICMP_SOURCE_QUENCH: 3627 case ICMP_TIME_EXCEEDED: 3628 case ICMP_PARAM_PROBLEM: 3629 case ICMP_REDIRECT: 3630 BUMP_MIB(&icmp_mib, icmpOutDrops); 3631 freemsg(mp); 3632 return (NULL); 3633 default: 3634 break; 3635 } 3636 } 3637 /* 3638 * If this is a labeled system, then check to see if we're allowed to 3639 * send a response to this particular sender. If not, then just drop. 3640 */ 3641 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3642 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3643 BUMP_MIB(&icmp_mib, icmpOutDrops); 3644 freemsg(mp); 3645 return (NULL); 3646 } 3647 if (icmp_err_rate_limit()) { 3648 /* 3649 * Only send ICMP error packets every so often. 3650 * This should be done on a per port/source basis, 3651 * but for now this will suffice. 3652 */ 3653 freemsg(mp); 3654 return (NULL); 3655 } 3656 return (mp); 3657 } 3658 3659 /* 3660 * Generate an ICMP redirect message. 3661 */ 3662 static void 3663 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3664 { 3665 icmph_t icmph; 3666 3667 /* 3668 * We are called from ip_rput where we could 3669 * not have attached an IPSEC_IN. 3670 */ 3671 ASSERT(mp->b_datap->db_type == M_DATA); 3672 3673 if (!(mp = icmp_pkt_err_ok(mp))) { 3674 return; 3675 } 3676 3677 bzero(&icmph, sizeof (icmph_t)); 3678 icmph.icmph_type = ICMP_REDIRECT; 3679 icmph.icmph_code = 1; 3680 icmph.icmph_rd_gateway = gateway; 3681 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3682 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3683 } 3684 3685 /* 3686 * Generate an ICMP time exceeded message. 3687 */ 3688 void 3689 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3690 { 3691 icmph_t icmph; 3692 boolean_t mctl_present; 3693 mblk_t *first_mp; 3694 3695 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3696 3697 if (!(mp = icmp_pkt_err_ok(mp))) { 3698 if (mctl_present) 3699 freeb(first_mp); 3700 return; 3701 } 3702 3703 bzero(&icmph, sizeof (icmph_t)); 3704 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3705 icmph.icmph_code = code; 3706 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3707 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3708 } 3709 3710 /* 3711 * Generate an ICMP unreachable message. 3712 */ 3713 void 3714 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3715 { 3716 icmph_t icmph; 3717 mblk_t *first_mp; 3718 boolean_t mctl_present; 3719 3720 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3721 3722 if (!(mp = icmp_pkt_err_ok(mp))) { 3723 if (mctl_present) 3724 freeb(first_mp); 3725 return; 3726 } 3727 3728 bzero(&icmph, sizeof (icmph_t)); 3729 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3730 icmph.icmph_code = code; 3731 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3732 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3733 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3734 } 3735 3736 /* 3737 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3738 * duplicate. As long as someone else holds the address, the interface will 3739 * stay down. When that conflict goes away, the interface is brought back up. 3740 * This is done so that accidental shutdowns of addresses aren't made 3741 * permanent. Your server will recover from a failure. 3742 * 3743 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3744 * user space process (dhcpagent). 3745 * 3746 * Recovery completes if ARP reports that the address is now ours (via 3747 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3748 * 3749 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3750 */ 3751 static void 3752 ipif_dup_recovery(void *arg) 3753 { 3754 ipif_t *ipif = arg; 3755 ill_t *ill = ipif->ipif_ill; 3756 mblk_t *arp_add_mp; 3757 mblk_t *arp_del_mp; 3758 area_t *area; 3759 3760 ipif->ipif_recovery_id = 0; 3761 3762 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3763 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3764 /* No reason to try to bring this address back. */ 3765 return; 3766 } 3767 3768 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3769 goto alloc_fail; 3770 3771 if (ipif->ipif_arp_del_mp == NULL) { 3772 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3773 goto alloc_fail; 3774 ipif->ipif_arp_del_mp = arp_del_mp; 3775 } 3776 3777 /* Setting the 'unverified' flag restarts DAD */ 3778 area = (area_t *)arp_add_mp->b_rptr; 3779 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3780 ACE_F_UNVERIFIED; 3781 putnext(ill->ill_rq, arp_add_mp); 3782 return; 3783 3784 alloc_fail: 3785 /* On allocation failure, just restart the timer */ 3786 freemsg(arp_add_mp); 3787 if (ip_dup_recovery > 0) { 3788 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3789 MSEC_TO_TICK(ip_dup_recovery)); 3790 } 3791 } 3792 3793 /* 3794 * This is for exclusive changes due to ARP. Either tear down an interface due 3795 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3796 */ 3797 /* ARGSUSED */ 3798 static void 3799 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3800 { 3801 ill_t *ill = rq->q_ptr; 3802 arh_t *arh; 3803 ipaddr_t src; 3804 ipif_t *ipif; 3805 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3806 char hbuf[MAC_STR_LEN]; 3807 char sbuf[INET_ADDRSTRLEN]; 3808 const char *failtype; 3809 boolean_t bring_up; 3810 3811 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3812 case AR_CN_READY: 3813 failtype = NULL; 3814 bring_up = B_TRUE; 3815 break; 3816 case AR_CN_FAILED: 3817 failtype = "in use"; 3818 bring_up = B_FALSE; 3819 break; 3820 default: 3821 failtype = "claimed"; 3822 bring_up = B_FALSE; 3823 break; 3824 } 3825 3826 arh = (arh_t *)mp->b_cont->b_rptr; 3827 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3828 3829 /* Handle failures due to probes */ 3830 if (src == 0) { 3831 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3832 IP_ADDR_LEN); 3833 } 3834 3835 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3836 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3837 sizeof (hbuf)); 3838 (void) ip_dot_addr(src, sbuf); 3839 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3840 3841 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3842 ipif->ipif_lcl_addr != src) { 3843 continue; 3844 } 3845 3846 /* 3847 * If we failed on a recovery probe, then restart the timer to 3848 * try again later. 3849 */ 3850 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3851 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3852 ill->ill_net_type == IRE_IF_RESOLVER && 3853 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3854 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3855 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3856 continue; 3857 } 3858 3859 /* 3860 * If what we're trying to do has already been done, then do 3861 * nothing. 3862 */ 3863 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3864 continue; 3865 3866 if (ipif->ipif_id != 0) { 3867 (void) snprintf(ibuf + ill->ill_name_length - 1, 3868 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3869 ipif->ipif_id); 3870 } 3871 if (failtype == NULL) { 3872 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3873 ibuf); 3874 } else { 3875 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3876 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3877 } 3878 3879 if (bring_up) { 3880 ASSERT(ill->ill_dl_up); 3881 /* 3882 * Free up the ARP delete message so we can allocate 3883 * a fresh one through the normal path. 3884 */ 3885 freemsg(ipif->ipif_arp_del_mp); 3886 ipif->ipif_arp_del_mp = NULL; 3887 if (ipif_resolver_up(ipif, Res_act_initial) != 3888 EINPROGRESS) { 3889 ipif->ipif_addr_ready = 1; 3890 (void) ipif_up_done(ipif); 3891 } 3892 continue; 3893 } 3894 3895 mutex_enter(&ill->ill_lock); 3896 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3897 ipif->ipif_flags |= IPIF_DUPLICATE; 3898 ill->ill_ipif_dup_count++; 3899 mutex_exit(&ill->ill_lock); 3900 /* 3901 * Already exclusive on the ill; no need to handle deferred 3902 * processing here. 3903 */ 3904 (void) ipif_down(ipif, NULL, NULL); 3905 ipif_down_tail(ipif); 3906 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3907 ill->ill_net_type == IRE_IF_RESOLVER && 3908 ip_dup_recovery > 0) { 3909 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3910 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3911 } 3912 } 3913 freemsg(mp); 3914 } 3915 3916 /* ARGSUSED */ 3917 static void 3918 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3919 { 3920 ill_t *ill = rq->q_ptr; 3921 arh_t *arh; 3922 ipaddr_t src; 3923 ipif_t *ipif; 3924 3925 arh = (arh_t *)mp->b_cont->b_rptr; 3926 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3927 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3928 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3929 (void) ipif_resolver_up(ipif, Res_act_defend); 3930 } 3931 freemsg(mp); 3932 } 3933 3934 /* 3935 * News from ARP. ARP sends notification of interesting events down 3936 * to its clients using M_CTL messages with the interesting ARP packet 3937 * attached via b_cont. 3938 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3939 * queue as opposed to ARP sending the message to all the clients, i.e. all 3940 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3941 * table if a cache IRE is found to delete all the entries for the address in 3942 * the packet. 3943 */ 3944 static void 3945 ip_arp_news(queue_t *q, mblk_t *mp) 3946 { 3947 arcn_t *arcn; 3948 arh_t *arh; 3949 ire_t *ire = NULL; 3950 char hbuf[MAC_STR_LEN]; 3951 char sbuf[INET_ADDRSTRLEN]; 3952 ipaddr_t src; 3953 in6_addr_t v6src; 3954 boolean_t isv6 = B_FALSE; 3955 ipif_t *ipif; 3956 ill_t *ill; 3957 3958 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3959 if (q->q_next) { 3960 putnext(q, mp); 3961 } else 3962 freemsg(mp); 3963 return; 3964 } 3965 arh = (arh_t *)mp->b_cont->b_rptr; 3966 /* Is it one we are interested in? */ 3967 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3968 isv6 = B_TRUE; 3969 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3970 IPV6_ADDR_LEN); 3971 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3972 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3973 IP_ADDR_LEN); 3974 } else { 3975 freemsg(mp); 3976 return; 3977 } 3978 3979 ill = q->q_ptr; 3980 3981 arcn = (arcn_t *)mp->b_rptr; 3982 switch (arcn->arcn_code) { 3983 case AR_CN_BOGON: 3984 /* 3985 * Someone is sending ARP packets with a source protocol 3986 * address that we have published and for which we believe our 3987 * entry is authoritative and (when ill_arp_extend is set) 3988 * verified to be unique on the network. 3989 * 3990 * The ARP module internally handles the cases where the sender 3991 * is just probing (for DAD) and where the hardware address of 3992 * a non-authoritative entry has changed. Thus, these are the 3993 * real conflicts, and we have to do resolution. 3994 * 3995 * We back away quickly from the address if it's from DHCP or 3996 * otherwise temporary and hasn't been used recently (or at 3997 * all). We'd like to include "deprecated" addresses here as 3998 * well (as there's no real reason to defend something we're 3999 * discarding), but IPMP "reuses" this flag to mean something 4000 * other than the standard meaning. 4001 * 4002 * If the ARP module above is not extended (meaning that it 4003 * doesn't know how to defend the address), then we just log 4004 * the problem as we always did and continue on. It's not 4005 * right, but there's little else we can do, and those old ATM 4006 * users are going away anyway. 4007 */ 4008 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4009 hbuf, sizeof (hbuf)); 4010 (void) ip_dot_addr(src, sbuf); 4011 if (isv6) 4012 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4013 else 4014 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4015 4016 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4017 uint32_t now; 4018 uint32_t maxage; 4019 clock_t lused; 4020 uint_t maxdefense; 4021 uint_t defs; 4022 4023 /* 4024 * First, figure out if this address hasn't been used 4025 * in a while. If it hasn't, then it's a better 4026 * candidate for abandoning. 4027 */ 4028 ipif = ire->ire_ipif; 4029 ASSERT(ipif != NULL); 4030 now = gethrestime_sec(); 4031 maxage = now - ire->ire_create_time; 4032 if (maxage > ip_max_temp_idle) 4033 maxage = ip_max_temp_idle; 4034 lused = drv_hztousec(ddi_get_lbolt() - 4035 ire->ire_last_used_time) / MICROSEC + 1; 4036 if (lused >= maxage && (ipif->ipif_flags & 4037 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4038 maxdefense = ip_max_temp_defend; 4039 else 4040 maxdefense = ip_max_defend; 4041 4042 /* 4043 * Now figure out how many times we've defended 4044 * ourselves. Ignore defenses that happened long in 4045 * the past. 4046 */ 4047 mutex_enter(&ire->ire_lock); 4048 if ((defs = ire->ire_defense_count) > 0 && 4049 now - ire->ire_defense_time > ip_defend_interval) { 4050 ire->ire_defense_count = defs = 0; 4051 } 4052 ire->ire_defense_count++; 4053 ire->ire_defense_time = now; 4054 mutex_exit(&ire->ire_lock); 4055 ill_refhold(ill); 4056 ire_refrele(ire); 4057 4058 /* 4059 * If we've defended ourselves too many times already, 4060 * then give up and tear down the interface(s) using 4061 * this address. Otherwise, defend by sending out a 4062 * gratuitous ARP. 4063 */ 4064 if (defs >= maxdefense && ill->ill_arp_extend) { 4065 (void) qwriter_ip(NULL, ill, q, mp, 4066 ip_arp_excl, CUR_OP, B_FALSE); 4067 } else { 4068 cmn_err(CE_WARN, 4069 "node %s is using our IP address %s on %s", 4070 hbuf, sbuf, ill->ill_name); 4071 /* 4072 * If this is an old (ATM) ARP module, then 4073 * don't try to defend the address. Remain 4074 * compatible with the old behavior. Defend 4075 * only with new ARP. 4076 */ 4077 if (ill->ill_arp_extend) { 4078 (void) qwriter_ip(NULL, ill, q, mp, 4079 ip_arp_defend, CUR_OP, B_FALSE); 4080 } else { 4081 ill_refrele(ill); 4082 } 4083 } 4084 return; 4085 } 4086 cmn_err(CE_WARN, 4087 "proxy ARP problem? Node '%s' is using %s on %s", 4088 hbuf, sbuf, ill->ill_name); 4089 if (ire != NULL) 4090 ire_refrele(ire); 4091 break; 4092 case AR_CN_ANNOUNCE: 4093 if (isv6) { 4094 /* 4095 * For XRESOLV interfaces. 4096 * Delete the IRE cache entry and NCE for this 4097 * v6 address 4098 */ 4099 ip_ire_clookup_and_delete_v6(&v6src); 4100 /* 4101 * If v6src is a non-zero, it's a router address 4102 * as below. Do the same sort of thing to clean 4103 * out off-net IRE_CACHE entries that go through 4104 * the router. 4105 */ 4106 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4107 ire_walk_v6(ire_delete_cache_gw_v6, 4108 (char *)&v6src, ALL_ZONES); 4109 } 4110 } else { 4111 nce_hw_map_t hwm; 4112 4113 /* 4114 * ARP gives us a copy of any packet where it thinks 4115 * the address has changed, so that we can update our 4116 * caches. We're responsible for caching known answers 4117 * in the current design. We check whether the 4118 * hardware address really has changed in all of our 4119 * entries that have cached this mapping, and if so, we 4120 * blow them away. This way we will immediately pick 4121 * up the rare case of a host changing hardware 4122 * address. 4123 */ 4124 if (src == 0) 4125 break; 4126 hwm.hwm_addr = src; 4127 hwm.hwm_hwlen = arh->arh_hlen; 4128 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4129 ndp_walk_common(&ndp4, NULL, 4130 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4131 } 4132 break; 4133 case AR_CN_READY: 4134 /* No external v6 resolver has a contract to use this */ 4135 if (isv6) 4136 break; 4137 /* If the link is down, we'll retry this later */ 4138 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4139 break; 4140 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4141 NULL, NULL); 4142 if (ipif != NULL) { 4143 /* 4144 * If this is a duplicate recovery, then we now need to 4145 * go exclusive to bring this thing back up. 4146 */ 4147 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4148 IPIF_DUPLICATE) { 4149 ipif_refrele(ipif); 4150 ill_refhold(ill); 4151 (void) qwriter_ip(NULL, ill, q, mp, 4152 ip_arp_excl, CUR_OP, B_FALSE); 4153 return; 4154 } 4155 /* 4156 * If this is the first notice that this address is 4157 * ready, then let the user know now. 4158 */ 4159 if ((ipif->ipif_flags & IPIF_UP) && 4160 !ipif->ipif_addr_ready) { 4161 ipif_mask_reply(ipif); 4162 ip_rts_ifmsg(ipif); 4163 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4164 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4165 } 4166 ipif->ipif_addr_ready = 1; 4167 ipif_refrele(ipif); 4168 } 4169 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4170 if (ire != NULL) { 4171 ire->ire_defense_count = 0; 4172 ire_refrele(ire); 4173 } 4174 break; 4175 case AR_CN_FAILED: 4176 /* No external v6 resolver has a contract to use this */ 4177 if (isv6) 4178 break; 4179 ill_refhold(ill); 4180 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4181 B_FALSE); 4182 return; 4183 } 4184 freemsg(mp); 4185 } 4186 4187 /* 4188 * Create a mblk suitable for carrying the interface index and/or source link 4189 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4190 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4191 * application. 4192 */ 4193 mblk_t * 4194 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4195 { 4196 mblk_t *mp; 4197 in_pktinfo_t *pinfo; 4198 ipha_t *ipha; 4199 struct ether_header *pether; 4200 4201 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4202 if (mp == NULL) { 4203 ip1dbg(("ip_add_info: allocation failure.\n")); 4204 return (data_mp); 4205 } 4206 4207 ipha = (ipha_t *)data_mp->b_rptr; 4208 pinfo = (in_pktinfo_t *)mp->b_rptr; 4209 bzero(pinfo, sizeof (in_pktinfo_t)); 4210 pinfo->in_pkt_flags = (uchar_t)flags; 4211 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4212 4213 if (flags & IPF_RECVIF) 4214 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4215 4216 pether = (struct ether_header *)((char *)ipha 4217 - sizeof (struct ether_header)); 4218 /* 4219 * Make sure the interface is an ethernet type, since this option 4220 * is currently supported only on this type of interface. Also make 4221 * sure we are pointing correctly above db_base. 4222 */ 4223 4224 if ((flags & IPF_RECVSLLA) && 4225 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4226 (ill->ill_type == IFT_ETHER) && 4227 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4228 4229 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4230 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4231 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4232 } else { 4233 /* 4234 * Clear the bit. Indicate to upper layer that IP is not 4235 * sending this ancillary info. 4236 */ 4237 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4238 } 4239 4240 mp->b_datap->db_type = M_CTL; 4241 mp->b_wptr += sizeof (in_pktinfo_t); 4242 mp->b_cont = data_mp; 4243 4244 return (mp); 4245 } 4246 4247 /* 4248 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4249 * part of the bind request. 4250 */ 4251 4252 boolean_t 4253 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4254 { 4255 ipsec_in_t *ii; 4256 4257 ASSERT(policy_mp != NULL); 4258 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4259 4260 ii = (ipsec_in_t *)policy_mp->b_rptr; 4261 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4262 4263 connp->conn_policy = ii->ipsec_in_policy; 4264 ii->ipsec_in_policy = NULL; 4265 4266 if (ii->ipsec_in_action != NULL) { 4267 if (connp->conn_latch == NULL) { 4268 connp->conn_latch = iplatch_create(); 4269 if (connp->conn_latch == NULL) 4270 return (B_FALSE); 4271 } 4272 ipsec_latch_inbound(connp->conn_latch, ii); 4273 } 4274 return (B_TRUE); 4275 } 4276 4277 /* 4278 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4279 * and to arrange for power-fanout assist. The ULP is identified by 4280 * adding a single byte at the end of the original bind message. 4281 * A ULP other than UDP or TCP that wishes to be recognized passes 4282 * down a bind with a zero length address. 4283 * 4284 * The binding works as follows: 4285 * - A zero byte address means just bind to the protocol. 4286 * - A four byte address is treated as a request to validate 4287 * that the address is a valid local address, appropriate for 4288 * an application to bind to. This does not affect any fanout 4289 * information in IP. 4290 * - A sizeof sin_t byte address is used to bind to only the local address 4291 * and port. 4292 * - A sizeof ipa_conn_t byte address contains complete fanout information 4293 * consisting of local and remote addresses and ports. In 4294 * this case, the addresses are both validated as appropriate 4295 * for this operation, and, if so, the information is retained 4296 * for use in the inbound fanout. 4297 * 4298 * The ULP (except in the zero-length bind) can append an 4299 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4300 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4301 * a copy of the source or destination IRE (source for local bind; 4302 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4303 * policy information contained should be copied on to the conn. 4304 * 4305 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4306 */ 4307 mblk_t * 4308 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4309 { 4310 ssize_t len; 4311 struct T_bind_req *tbr; 4312 sin_t *sin; 4313 ipa_conn_t *ac; 4314 uchar_t *ucp; 4315 mblk_t *mp1; 4316 boolean_t ire_requested; 4317 boolean_t ipsec_policy_set = B_FALSE; 4318 int error = 0; 4319 int protocol; 4320 ipa_conn_x_t *acx; 4321 4322 ASSERT(!connp->conn_af_isv6); 4323 connp->conn_pkt_isv6 = B_FALSE; 4324 4325 len = MBLKL(mp); 4326 if (len < (sizeof (*tbr) + 1)) { 4327 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4328 "ip_bind: bogus msg, len %ld", len); 4329 /* XXX: Need to return something better */ 4330 goto bad_addr; 4331 } 4332 /* Back up and extract the protocol identifier. */ 4333 mp->b_wptr--; 4334 protocol = *mp->b_wptr & 0xFF; 4335 tbr = (struct T_bind_req *)mp->b_rptr; 4336 /* Reset the message type in preparation for shipping it back. */ 4337 DB_TYPE(mp) = M_PCPROTO; 4338 4339 connp->conn_ulp = (uint8_t)protocol; 4340 4341 /* 4342 * Check for a zero length address. This is from a protocol that 4343 * wants to register to receive all packets of its type. 4344 */ 4345 if (tbr->ADDR_length == 0) { 4346 /* 4347 * These protocols are now intercepted in ip_bind_v6(). 4348 * Reject protocol-level binds here for now. 4349 * 4350 * For SCTP raw socket, ICMP sends down a bind with sin_t 4351 * so that the protocol type cannot be SCTP. 4352 */ 4353 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4354 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4355 goto bad_addr; 4356 } 4357 4358 /* 4359 * 4360 * The udp module never sends down a zero-length address, 4361 * and allowing this on a labeled system will break MLP 4362 * functionality. 4363 */ 4364 if (is_system_labeled() && protocol == IPPROTO_UDP) 4365 goto bad_addr; 4366 4367 if (connp->conn_mac_exempt) 4368 goto bad_addr; 4369 4370 /* No hash here really. The table is big enough. */ 4371 connp->conn_srcv6 = ipv6_all_zeros; 4372 4373 ipcl_proto_insert(connp, protocol); 4374 4375 tbr->PRIM_type = T_BIND_ACK; 4376 return (mp); 4377 } 4378 4379 /* Extract the address pointer from the message. */ 4380 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4381 tbr->ADDR_length); 4382 if (ucp == NULL) { 4383 ip1dbg(("ip_bind: no address\n")); 4384 goto bad_addr; 4385 } 4386 if (!OK_32PTR(ucp)) { 4387 ip1dbg(("ip_bind: unaligned address\n")); 4388 goto bad_addr; 4389 } 4390 /* 4391 * Check for trailing mps. 4392 */ 4393 4394 mp1 = mp->b_cont; 4395 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4396 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4397 4398 switch (tbr->ADDR_length) { 4399 default: 4400 ip1dbg(("ip_bind: bad address length %d\n", 4401 (int)tbr->ADDR_length)); 4402 goto bad_addr; 4403 4404 case IP_ADDR_LEN: 4405 /* Verification of local address only */ 4406 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4407 ire_requested, ipsec_policy_set, B_FALSE); 4408 break; 4409 4410 case sizeof (sin_t): 4411 sin = (sin_t *)ucp; 4412 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4413 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4414 if (protocol == IPPROTO_TCP) 4415 connp->conn_recv = tcp_conn_request; 4416 break; 4417 4418 case sizeof (ipa_conn_t): 4419 ac = (ipa_conn_t *)ucp; 4420 /* For raw socket, the local port is not set. */ 4421 if (ac->ac_lport == 0) 4422 ac->ac_lport = connp->conn_lport; 4423 /* Always verify destination reachability. */ 4424 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4425 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4426 ipsec_policy_set, B_TRUE, B_TRUE); 4427 if (protocol == IPPROTO_TCP) 4428 connp->conn_recv = tcp_input; 4429 break; 4430 4431 case sizeof (ipa_conn_x_t): 4432 acx = (ipa_conn_x_t *)ucp; 4433 /* 4434 * Whether or not to verify destination reachability depends 4435 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4436 */ 4437 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4438 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4439 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4440 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4441 if (protocol == IPPROTO_TCP) 4442 connp->conn_recv = tcp_input; 4443 break; 4444 } 4445 if (error == EINPROGRESS) 4446 return (NULL); 4447 else if (error != 0) 4448 goto bad_addr; 4449 /* 4450 * Pass the IPSEC headers size in ire_ipsec_overhead. 4451 * We can't do this in ip_bind_insert_ire because the policy 4452 * may not have been inherited at that point in time and hence 4453 * conn_out_enforce_policy may not be set. 4454 */ 4455 mp1 = mp->b_cont; 4456 if (ire_requested && connp->conn_out_enforce_policy && 4457 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4458 ire_t *ire = (ire_t *)mp1->b_rptr; 4459 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4460 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4461 } 4462 4463 /* Send it home. */ 4464 mp->b_datap->db_type = M_PCPROTO; 4465 tbr->PRIM_type = T_BIND_ACK; 4466 return (mp); 4467 4468 bad_addr: 4469 /* 4470 * If error = -1 then we generate a TBADADDR - otherwise error is 4471 * a unix errno. 4472 */ 4473 if (error > 0) 4474 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4475 else 4476 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4477 return (mp); 4478 } 4479 4480 /* 4481 * Here address is verified to be a valid local address. 4482 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4483 * address is also considered a valid local address. 4484 * In the case of a broadcast/multicast address, however, the 4485 * upper protocol is expected to reset the src address 4486 * to 0 if it sees a IRE_BROADCAST type returned so that 4487 * no packets are emitted with broadcast/multicast address as 4488 * source address (that violates hosts requirements RFC1122) 4489 * The addresses valid for bind are: 4490 * (1) - INADDR_ANY (0) 4491 * (2) - IP address of an UP interface 4492 * (3) - IP address of a DOWN interface 4493 * (4) - valid local IP broadcast addresses. In this case 4494 * the conn will only receive packets destined to 4495 * the specified broadcast address. 4496 * (5) - a multicast address. In this case 4497 * the conn will only receive packets destined to 4498 * the specified multicast address. Note: the 4499 * application still has to issue an 4500 * IP_ADD_MEMBERSHIP socket option. 4501 * 4502 * On error, return -1 for TBADADDR otherwise pass the 4503 * errno with TSYSERR reply. 4504 * 4505 * In all the above cases, the bound address must be valid in the current zone. 4506 * When the address is loopback, multicast or broadcast, there might be many 4507 * matching IREs so bind has to look up based on the zone. 4508 * 4509 * Note: lport is in network byte order. 4510 */ 4511 int 4512 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4513 boolean_t ire_requested, boolean_t ipsec_policy_set, 4514 boolean_t fanout_insert) 4515 { 4516 int error = 0; 4517 ire_t *src_ire; 4518 mblk_t *policy_mp; 4519 ipif_t *ipif; 4520 zoneid_t zoneid; 4521 4522 if (ipsec_policy_set) { 4523 policy_mp = mp->b_cont; 4524 } 4525 4526 /* 4527 * If it was previously connected, conn_fully_bound would have 4528 * been set. 4529 */ 4530 connp->conn_fully_bound = B_FALSE; 4531 4532 src_ire = NULL; 4533 ipif = NULL; 4534 4535 zoneid = IPCL_ZONEID(connp); 4536 4537 if (src_addr) { 4538 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4539 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4540 /* 4541 * If an address other than 0.0.0.0 is requested, 4542 * we verify that it is a valid address for bind 4543 * Note: Following code is in if-else-if form for 4544 * readability compared to a condition check. 4545 */ 4546 /* LINTED - statement has no consequent */ 4547 if (IRE_IS_LOCAL(src_ire)) { 4548 /* 4549 * (2) Bind to address of local UP interface 4550 */ 4551 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4552 /* 4553 * (4) Bind to broadcast address 4554 * Note: permitted only from transports that 4555 * request IRE 4556 */ 4557 if (!ire_requested) 4558 error = EADDRNOTAVAIL; 4559 } else { 4560 /* 4561 * (3) Bind to address of local DOWN interface 4562 * (ipif_lookup_addr() looks up all interfaces 4563 * but we do not get here for UP interfaces 4564 * - case (2) above) 4565 * We put the protocol byte back into the mblk 4566 * since we may come back via ip_wput_nondata() 4567 * later with this mblk if ipif_lookup_addr chooses 4568 * to defer processing. 4569 */ 4570 *mp->b_wptr++ = (char)connp->conn_ulp; 4571 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4572 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4573 &error)) != NULL) { 4574 ipif_refrele(ipif); 4575 } else if (error == EINPROGRESS) { 4576 if (src_ire != NULL) 4577 ire_refrele(src_ire); 4578 return (EINPROGRESS); 4579 } else if (CLASSD(src_addr)) { 4580 error = 0; 4581 if (src_ire != NULL) 4582 ire_refrele(src_ire); 4583 /* 4584 * (5) bind to multicast address. 4585 * Fake out the IRE returned to upper 4586 * layer to be a broadcast IRE. 4587 */ 4588 src_ire = ire_ctable_lookup( 4589 INADDR_BROADCAST, INADDR_ANY, 4590 IRE_BROADCAST, NULL, zoneid, NULL, 4591 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4592 if (src_ire == NULL || !ire_requested) 4593 error = EADDRNOTAVAIL; 4594 } else { 4595 /* 4596 * Not a valid address for bind 4597 */ 4598 error = EADDRNOTAVAIL; 4599 } 4600 /* 4601 * Just to keep it consistent with the processing in 4602 * ip_bind_v4() 4603 */ 4604 mp->b_wptr--; 4605 } 4606 if (error) { 4607 /* Red Alert! Attempting to be a bogon! */ 4608 ip1dbg(("ip_bind: bad src address 0x%x\n", 4609 ntohl(src_addr))); 4610 goto bad_addr; 4611 } 4612 } 4613 4614 /* 4615 * Allow setting new policies. For example, disconnects come 4616 * down as ipa_t bind. As we would have set conn_policy_cached 4617 * to B_TRUE before, we should set it to B_FALSE, so that policy 4618 * can change after the disconnect. 4619 */ 4620 connp->conn_policy_cached = B_FALSE; 4621 4622 /* 4623 * If not fanout_insert this was just an address verification 4624 */ 4625 if (fanout_insert) { 4626 /* 4627 * The addresses have been verified. Time to insert in 4628 * the correct fanout list. 4629 */ 4630 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4631 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4632 connp->conn_lport = lport; 4633 connp->conn_fport = 0; 4634 /* 4635 * Do we need to add a check to reject Multicast packets 4636 */ 4637 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4638 } 4639 4640 if (error == 0) { 4641 if (ire_requested) { 4642 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4643 error = -1; 4644 /* Falls through to bad_addr */ 4645 } 4646 } else if (ipsec_policy_set) { 4647 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4648 error = -1; 4649 /* Falls through to bad_addr */ 4650 } 4651 } 4652 } 4653 bad_addr: 4654 if (error != 0) { 4655 if (connp->conn_anon_port) { 4656 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4657 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4658 B_FALSE); 4659 } 4660 connp->conn_mlp_type = mlptSingle; 4661 } 4662 if (src_ire != NULL) 4663 IRE_REFRELE(src_ire); 4664 if (ipsec_policy_set) { 4665 ASSERT(policy_mp == mp->b_cont); 4666 ASSERT(policy_mp != NULL); 4667 freeb(policy_mp); 4668 /* 4669 * As of now assume that nothing else accompanies 4670 * IPSEC_POLICY_SET. 4671 */ 4672 mp->b_cont = NULL; 4673 } 4674 return (error); 4675 } 4676 4677 /* 4678 * Verify that both the source and destination addresses 4679 * are valid. If verify_dst is false, then the destination address may be 4680 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4681 * destination reachability, while tunnels do not. 4682 * Note that we allow connect to broadcast and multicast 4683 * addresses when ire_requested is set. Thus the ULP 4684 * has to check for IRE_BROADCAST and multicast. 4685 * 4686 * Returns zero if ok. 4687 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4688 * (for use with TSYSERR reply). 4689 * 4690 * Note: lport and fport are in network byte order. 4691 */ 4692 int 4693 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4694 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4695 boolean_t ire_requested, boolean_t ipsec_policy_set, 4696 boolean_t fanout_insert, boolean_t verify_dst) 4697 { 4698 ire_t *src_ire; 4699 ire_t *dst_ire; 4700 int error = 0; 4701 int protocol; 4702 mblk_t *policy_mp; 4703 ire_t *sire = NULL; 4704 ire_t *md_dst_ire = NULL; 4705 ill_t *md_ill = NULL; 4706 zoneid_t zoneid; 4707 ipaddr_t src_addr = *src_addrp; 4708 4709 src_ire = dst_ire = NULL; 4710 protocol = *mp->b_wptr & 0xFF; 4711 4712 /* 4713 * If we never got a disconnect before, clear it now. 4714 */ 4715 connp->conn_fully_bound = B_FALSE; 4716 4717 if (ipsec_policy_set) { 4718 policy_mp = mp->b_cont; 4719 } 4720 4721 zoneid = IPCL_ZONEID(connp); 4722 4723 if (CLASSD(dst_addr)) { 4724 /* Pick up an IRE_BROADCAST */ 4725 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4726 NULL, zoneid, MBLK_GETLABEL(mp), 4727 (MATCH_IRE_RECURSIVE | 4728 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4729 MATCH_IRE_SECATTR)); 4730 } else { 4731 /* 4732 * If conn_dontroute is set or if conn_nexthop_set is set, 4733 * and onlink ipif is not found set ENETUNREACH error. 4734 */ 4735 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4736 ipif_t *ipif; 4737 4738 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4739 dst_addr : connp->conn_nexthop_v4, zoneid); 4740 if (ipif == NULL) { 4741 error = ENETUNREACH; 4742 goto bad_addr; 4743 } 4744 ipif_refrele(ipif); 4745 } 4746 4747 if (connp->conn_nexthop_set) { 4748 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4749 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4750 MATCH_IRE_SECATTR); 4751 } else { 4752 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4753 &sire, zoneid, MBLK_GETLABEL(mp), 4754 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4755 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4756 MATCH_IRE_SECATTR)); 4757 } 4758 } 4759 /* 4760 * dst_ire can't be a broadcast when not ire_requested. 4761 * We also prevent ire's with src address INADDR_ANY to 4762 * be used, which are created temporarily for 4763 * sending out packets from endpoints that have 4764 * conn_unspec_src set. If verify_dst is true, the destination must be 4765 * reachable. If verify_dst is false, the destination needn't be 4766 * reachable. 4767 * 4768 * If we match on a reject or black hole, then we've got a 4769 * local failure. May as well fail out the connect() attempt, 4770 * since it's never going to succeed. 4771 */ 4772 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4773 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4774 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4775 /* 4776 * If we're verifying destination reachability, we always want 4777 * to complain here. 4778 * 4779 * If we're not verifying destination reachability but the 4780 * destination has a route, we still want to fail on the 4781 * temporary address and broadcast address tests. 4782 */ 4783 if (verify_dst || (dst_ire != NULL)) { 4784 if (ip_debug > 2) { 4785 pr_addr_dbg("ip_bind_connected: bad connected " 4786 "dst %s\n", AF_INET, &dst_addr); 4787 } 4788 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4789 error = ENETUNREACH; 4790 else 4791 error = EHOSTUNREACH; 4792 goto bad_addr; 4793 } 4794 } 4795 4796 /* 4797 * We now know that routing will allow us to reach the destination. 4798 * Check whether Trusted Solaris policy allows communication with this 4799 * host, and pretend that the destination is unreachable if not. 4800 * 4801 * This is never a problem for TCP, since that transport is known to 4802 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4803 * handling. If the remote is unreachable, it will be detected at that 4804 * point, so there's no reason to check it here. 4805 * 4806 * Note that for sendto (and other datagram-oriented friends), this 4807 * check is done as part of the data path label computation instead. 4808 * The check here is just to make non-TCP connect() report the right 4809 * error. 4810 */ 4811 if (dst_ire != NULL && is_system_labeled() && 4812 !IPCL_IS_TCP(connp) && 4813 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4814 connp->conn_mac_exempt) != 0) { 4815 error = EHOSTUNREACH; 4816 if (ip_debug > 2) { 4817 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4818 AF_INET, &dst_addr); 4819 } 4820 goto bad_addr; 4821 } 4822 4823 /* 4824 * If the app does a connect(), it means that it will most likely 4825 * send more than 1 packet to the destination. It makes sense 4826 * to clear the temporary flag. 4827 */ 4828 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4829 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4830 irb_t *irb = dst_ire->ire_bucket; 4831 4832 rw_enter(&irb->irb_lock, RW_WRITER); 4833 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4834 irb->irb_tmp_ire_cnt--; 4835 rw_exit(&irb->irb_lock); 4836 } 4837 4838 /* 4839 * See if we should notify ULP about MDT; we do this whether or not 4840 * ire_requested is TRUE, in order to handle active connects; MDT 4841 * eligibility tests for passive connects are handled separately 4842 * through tcp_adapt_ire(). We do this before the source address 4843 * selection, because dst_ire may change after a call to 4844 * ipif_select_source(). This is a best-effort check, as the 4845 * packet for this connection may not actually go through 4846 * dst_ire->ire_stq, and the exact IRE can only be known after 4847 * calling ip_newroute(). This is why we further check on the 4848 * IRE during Multidata packet transmission in tcp_multisend(). 4849 */ 4850 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4851 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4852 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4853 ILL_MDT_CAPABLE(md_ill)) { 4854 md_dst_ire = dst_ire; 4855 IRE_REFHOLD(md_dst_ire); 4856 } 4857 4858 if (dst_ire != NULL && 4859 dst_ire->ire_type == IRE_LOCAL && 4860 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4861 /* 4862 * If the IRE belongs to a different zone, look for a matching 4863 * route in the forwarding table and use the source address from 4864 * that route. 4865 */ 4866 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4867 zoneid, 0, NULL, 4868 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4869 MATCH_IRE_RJ_BHOLE); 4870 if (src_ire == NULL) { 4871 error = EHOSTUNREACH; 4872 goto bad_addr; 4873 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4874 if (!(src_ire->ire_type & IRE_HOST)) 4875 error = ENETUNREACH; 4876 else 4877 error = EHOSTUNREACH; 4878 goto bad_addr; 4879 } 4880 if (src_addr == INADDR_ANY) 4881 src_addr = src_ire->ire_src_addr; 4882 ire_refrele(src_ire); 4883 src_ire = NULL; 4884 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4885 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4886 src_addr = sire->ire_src_addr; 4887 ire_refrele(dst_ire); 4888 dst_ire = sire; 4889 sire = NULL; 4890 } else { 4891 /* 4892 * Pick a source address so that a proper inbound 4893 * load spreading would happen. 4894 */ 4895 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4896 ipif_t *src_ipif = NULL; 4897 ire_t *ipif_ire; 4898 4899 /* 4900 * Supply a local source address such that inbound 4901 * load spreading happens. 4902 * 4903 * Determine the best source address on this ill for 4904 * the destination. 4905 * 4906 * 1) For broadcast, we should return a broadcast ire 4907 * found above so that upper layers know that the 4908 * destination address is a broadcast address. 4909 * 4910 * 2) If this is part of a group, select a better 4911 * source address so that better inbound load 4912 * balancing happens. Do the same if the ipif 4913 * is DEPRECATED. 4914 * 4915 * 3) If the outgoing interface is part of a usesrc 4916 * group, then try selecting a source address from 4917 * the usesrc ILL. 4918 */ 4919 if ((dst_ire->ire_zoneid != zoneid && 4920 dst_ire->ire_zoneid != ALL_ZONES) || 4921 (!(dst_ire->ire_type & IRE_BROADCAST) && 4922 ((dst_ill->ill_group != NULL) || 4923 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4924 (dst_ill->ill_usesrc_ifindex != 0)))) { 4925 /* 4926 * If the destination is reachable via a 4927 * given gateway, the selected source address 4928 * should be in the same subnet as the gateway. 4929 * Otherwise, the destination is not reachable. 4930 * 4931 * If there are no interfaces on the same subnet 4932 * as the destination, ipif_select_source gives 4933 * first non-deprecated interface which might be 4934 * on a different subnet than the gateway. 4935 * This is not desirable. Hence pass the dst_ire 4936 * source address to ipif_select_source. 4937 * It is sure that the destination is reachable 4938 * with the dst_ire source address subnet. 4939 * So passing dst_ire source address to 4940 * ipif_select_source will make sure that the 4941 * selected source will be on the same subnet 4942 * as dst_ire source address. 4943 */ 4944 ipaddr_t saddr = 4945 dst_ire->ire_ipif->ipif_src_addr; 4946 src_ipif = ipif_select_source(dst_ill, 4947 saddr, zoneid); 4948 if (src_ipif != NULL) { 4949 if (IS_VNI(src_ipif->ipif_ill)) { 4950 /* 4951 * For VNI there is no 4952 * interface route 4953 */ 4954 src_addr = 4955 src_ipif->ipif_src_addr; 4956 } else { 4957 ipif_ire = 4958 ipif_to_ire(src_ipif); 4959 if (ipif_ire != NULL) { 4960 IRE_REFRELE(dst_ire); 4961 dst_ire = ipif_ire; 4962 } 4963 src_addr = 4964 dst_ire->ire_src_addr; 4965 } 4966 ipif_refrele(src_ipif); 4967 } else { 4968 src_addr = dst_ire->ire_src_addr; 4969 } 4970 } else { 4971 src_addr = dst_ire->ire_src_addr; 4972 } 4973 } 4974 } 4975 4976 /* 4977 * We do ire_route_lookup() here (and not 4978 * interface lookup as we assert that 4979 * src_addr should only come from an 4980 * UP interface for hard binding. 4981 */ 4982 ASSERT(src_ire == NULL); 4983 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4984 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4985 /* src_ire must be a local|loopback */ 4986 if (!IRE_IS_LOCAL(src_ire)) { 4987 if (ip_debug > 2) { 4988 pr_addr_dbg("ip_bind_connected: bad connected " 4989 "src %s\n", AF_INET, &src_addr); 4990 } 4991 error = EADDRNOTAVAIL; 4992 goto bad_addr; 4993 } 4994 4995 /* 4996 * If the source address is a loopback address, the 4997 * destination had best be local or multicast. 4998 * The transports that can't handle multicast will reject 4999 * those addresses. 5000 */ 5001 if (src_ire->ire_type == IRE_LOOPBACK && 5002 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5003 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5004 error = -1; 5005 goto bad_addr; 5006 } 5007 5008 /* 5009 * Allow setting new policies. For example, disconnects come 5010 * down as ipa_t bind. As we would have set conn_policy_cached 5011 * to B_TRUE before, we should set it to B_FALSE, so that policy 5012 * can change after the disconnect. 5013 */ 5014 connp->conn_policy_cached = B_FALSE; 5015 5016 /* 5017 * Set the conn addresses/ports immediately, so the IPsec policy calls 5018 * can handle their passed-in conn's. 5019 */ 5020 5021 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5022 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5023 connp->conn_lport = lport; 5024 connp->conn_fport = fport; 5025 *src_addrp = src_addr; 5026 5027 ASSERT(!(ipsec_policy_set && ire_requested)); 5028 if (ire_requested) { 5029 iulp_t *ulp_info = NULL; 5030 5031 /* 5032 * Note that sire will not be NULL if this is an off-link 5033 * connection and there is not cache for that dest yet. 5034 * 5035 * XXX Because of an existing bug, if there are multiple 5036 * default routes, the IRE returned now may not be the actual 5037 * default route used (default routes are chosen in a 5038 * round robin fashion). So if the metrics for different 5039 * default routes are different, we may return the wrong 5040 * metrics. This will not be a problem if the existing 5041 * bug is fixed. 5042 */ 5043 if (sire != NULL) { 5044 ulp_info = &(sire->ire_uinfo); 5045 } 5046 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5047 error = -1; 5048 goto bad_addr; 5049 } 5050 } else if (ipsec_policy_set) { 5051 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5052 error = -1; 5053 goto bad_addr; 5054 } 5055 } 5056 5057 /* 5058 * Cache IPsec policy in this conn. If we have per-socket policy, 5059 * we'll cache that. If we don't, we'll inherit global policy. 5060 * 5061 * We can't insert until the conn reflects the policy. Note that 5062 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5063 * connections where we don't have a policy. This is to prevent 5064 * global policy lookups in the inbound path. 5065 * 5066 * If we insert before we set conn_policy_cached, 5067 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5068 * because global policy cound be non-empty. We normally call 5069 * ipsec_check_policy() for conn_policy_cached connections only if 5070 * ipc_in_enforce_policy is set. But in this case, 5071 * conn_policy_cached can get set anytime since we made the 5072 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5073 * called, which will make the above assumption false. Thus, we 5074 * need to insert after we set conn_policy_cached. 5075 */ 5076 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5077 goto bad_addr; 5078 5079 if (fanout_insert) { 5080 /* 5081 * The addresses have been verified. Time to insert in 5082 * the correct fanout list. 5083 */ 5084 error = ipcl_conn_insert(connp, protocol, src_addr, 5085 dst_addr, connp->conn_ports); 5086 } 5087 5088 if (error == 0) { 5089 connp->conn_fully_bound = B_TRUE; 5090 /* 5091 * Our initial checks for MDT have passed; the IRE is not 5092 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5093 * be supporting MDT. Pass the IRE, IPC and ILL into 5094 * ip_mdinfo_return(), which performs further checks 5095 * against them and upon success, returns the MDT info 5096 * mblk which we will attach to the bind acknowledgment. 5097 */ 5098 if (md_dst_ire != NULL) { 5099 mblk_t *mdinfo_mp; 5100 5101 ASSERT(md_ill != NULL); 5102 ASSERT(md_ill->ill_mdt_capab != NULL); 5103 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5104 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5105 linkb(mp, mdinfo_mp); 5106 } 5107 } 5108 bad_addr: 5109 if (ipsec_policy_set) { 5110 ASSERT(policy_mp == mp->b_cont); 5111 ASSERT(policy_mp != NULL); 5112 freeb(policy_mp); 5113 /* 5114 * As of now assume that nothing else accompanies 5115 * IPSEC_POLICY_SET. 5116 */ 5117 mp->b_cont = NULL; 5118 } 5119 if (src_ire != NULL) 5120 IRE_REFRELE(src_ire); 5121 if (dst_ire != NULL) 5122 IRE_REFRELE(dst_ire); 5123 if (sire != NULL) 5124 IRE_REFRELE(sire); 5125 if (md_dst_ire != NULL) 5126 IRE_REFRELE(md_dst_ire); 5127 return (error); 5128 } 5129 5130 /* 5131 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5132 * Prefers dst_ire over src_ire. 5133 */ 5134 static boolean_t 5135 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5136 { 5137 mblk_t *mp1; 5138 ire_t *ret_ire = NULL; 5139 5140 mp1 = mp->b_cont; 5141 ASSERT(mp1 != NULL); 5142 5143 if (ire != NULL) { 5144 /* 5145 * mp1 initialized above to IRE_DB_REQ_TYPE 5146 * appended mblk. Its <upper protocol>'s 5147 * job to make sure there is room. 5148 */ 5149 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5150 return (0); 5151 5152 mp1->b_datap->db_type = IRE_DB_TYPE; 5153 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5154 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5155 ret_ire = (ire_t *)mp1->b_rptr; 5156 /* 5157 * Pass the latest setting of the ip_path_mtu_discovery and 5158 * copy the ulp info if any. 5159 */ 5160 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5161 IPH_DF : 0; 5162 if (ulp_info != NULL) { 5163 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5164 sizeof (iulp_t)); 5165 } 5166 ret_ire->ire_mp = mp1; 5167 } else { 5168 /* 5169 * No IRE was found. Remove IRE mblk. 5170 */ 5171 mp->b_cont = mp1->b_cont; 5172 freeb(mp1); 5173 } 5174 5175 return (1); 5176 } 5177 5178 /* 5179 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5180 * the final piece where we don't. Return a pointer to the first mblk in the 5181 * result, and update the pointer to the next mblk to chew on. If anything 5182 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5183 * NULL pointer. 5184 */ 5185 mblk_t * 5186 ip_carve_mp(mblk_t **mpp, ssize_t len) 5187 { 5188 mblk_t *mp0; 5189 mblk_t *mp1; 5190 mblk_t *mp2; 5191 5192 if (!len || !mpp || !(mp0 = *mpp)) 5193 return (NULL); 5194 /* If we aren't going to consume the first mblk, we need a dup. */ 5195 if (mp0->b_wptr - mp0->b_rptr > len) { 5196 mp1 = dupb(mp0); 5197 if (mp1) { 5198 /* Partition the data between the two mblks. */ 5199 mp1->b_wptr = mp1->b_rptr + len; 5200 mp0->b_rptr = mp1->b_wptr; 5201 /* 5202 * after adjustments if mblk not consumed is now 5203 * unaligned, try to align it. If this fails free 5204 * all messages and let upper layer recover. 5205 */ 5206 if (!OK_32PTR(mp0->b_rptr)) { 5207 if (!pullupmsg(mp0, -1)) { 5208 freemsg(mp0); 5209 freemsg(mp1); 5210 *mpp = NULL; 5211 return (NULL); 5212 } 5213 } 5214 } 5215 return (mp1); 5216 } 5217 /* Eat through as many mblks as we need to get len bytes. */ 5218 len -= mp0->b_wptr - mp0->b_rptr; 5219 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5220 if (mp2->b_wptr - mp2->b_rptr > len) { 5221 /* 5222 * We won't consume the entire last mblk. Like 5223 * above, dup and partition it. 5224 */ 5225 mp1->b_cont = dupb(mp2); 5226 mp1 = mp1->b_cont; 5227 if (!mp1) { 5228 /* 5229 * Trouble. Rather than go to a lot of 5230 * trouble to clean up, we free the messages. 5231 * This won't be any worse than losing it on 5232 * the wire. 5233 */ 5234 freemsg(mp0); 5235 freemsg(mp2); 5236 *mpp = NULL; 5237 return (NULL); 5238 } 5239 mp1->b_wptr = mp1->b_rptr + len; 5240 mp2->b_rptr = mp1->b_wptr; 5241 /* 5242 * after adjustments if mblk not consumed is now 5243 * unaligned, try to align it. If this fails free 5244 * all messages and let upper layer recover. 5245 */ 5246 if (!OK_32PTR(mp2->b_rptr)) { 5247 if (!pullupmsg(mp2, -1)) { 5248 freemsg(mp0); 5249 freemsg(mp2); 5250 *mpp = NULL; 5251 return (NULL); 5252 } 5253 } 5254 *mpp = mp2; 5255 return (mp0); 5256 } 5257 /* Decrement len by the amount we just got. */ 5258 len -= mp2->b_wptr - mp2->b_rptr; 5259 } 5260 /* 5261 * len should be reduced to zero now. If not our caller has 5262 * screwed up. 5263 */ 5264 if (len) { 5265 /* Shouldn't happen! */ 5266 freemsg(mp0); 5267 *mpp = NULL; 5268 return (NULL); 5269 } 5270 /* 5271 * We consumed up to exactly the end of an mblk. Detach the part 5272 * we are returning from the rest of the chain. 5273 */ 5274 mp1->b_cont = NULL; 5275 *mpp = mp2; 5276 return (mp0); 5277 } 5278 5279 /* The ill stream is being unplumbed. Called from ip_close */ 5280 int 5281 ip_modclose(ill_t *ill) 5282 { 5283 5284 boolean_t success; 5285 ipsq_t *ipsq; 5286 ipif_t *ipif; 5287 queue_t *q = ill->ill_rq; 5288 5289 /* 5290 * Forcibly enter the ipsq after some delay. This is to take 5291 * care of the case when some ioctl does not complete because 5292 * we sent a control message to the driver and it did not 5293 * send us a reply. We want to be able to at least unplumb 5294 * and replumb rather than force the user to reboot the system. 5295 */ 5296 success = ipsq_enter(ill, B_FALSE); 5297 5298 /* 5299 * Open/close/push/pop is guaranteed to be single threaded 5300 * per stream by STREAMS. FS guarantees that all references 5301 * from top are gone before close is called. So there can't 5302 * be another close thread that has set CONDEMNED on this ill. 5303 * and cause ipsq_enter to return failure. 5304 */ 5305 ASSERT(success); 5306 ipsq = ill->ill_phyint->phyint_ipsq; 5307 5308 /* 5309 * Mark it condemned. No new reference will be made to this ill. 5310 * Lookup functions will return an error. Threads that try to 5311 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5312 * that the refcnt will drop down to zero. 5313 */ 5314 mutex_enter(&ill->ill_lock); 5315 ill->ill_state_flags |= ILL_CONDEMNED; 5316 for (ipif = ill->ill_ipif; ipif != NULL; 5317 ipif = ipif->ipif_next) { 5318 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5319 } 5320 /* 5321 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5322 * returns error if ILL_CONDEMNED is set 5323 */ 5324 cv_broadcast(&ill->ill_cv); 5325 mutex_exit(&ill->ill_lock); 5326 5327 /* 5328 * Shut down fragmentation reassembly. 5329 * ill_frag_timer won't start a timer again. 5330 * Now cancel any existing timer 5331 */ 5332 (void) untimeout(ill->ill_frag_timer_id); 5333 (void) ill_frag_timeout(ill, 0); 5334 5335 /* 5336 * If MOVE was in progress, clear the 5337 * move_in_progress fields also. 5338 */ 5339 if (ill->ill_move_in_progress) { 5340 ILL_CLEAR_MOVE(ill); 5341 } 5342 5343 /* 5344 * Call ill_delete to bring down the ipifs, ilms and ill on 5345 * this ill. Then wait for the refcnts to drop to zero. 5346 * ill_is_quiescent checks whether the ill is really quiescent. 5347 * Then make sure that threads that are waiting to enter the 5348 * ipsq have seen the error returned by ipsq_enter and have 5349 * gone away. Then we call ill_delete_tail which does the 5350 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5351 */ 5352 ill_delete(ill); 5353 mutex_enter(&ill->ill_lock); 5354 while (!ill_is_quiescent(ill)) 5355 cv_wait(&ill->ill_cv, &ill->ill_lock); 5356 while (ill->ill_waiters) 5357 cv_wait(&ill->ill_cv, &ill->ill_lock); 5358 5359 mutex_exit(&ill->ill_lock); 5360 5361 /* qprocsoff is called in ill_delete_tail */ 5362 ill_delete_tail(ill); 5363 5364 /* 5365 * Walk through all upper (conn) streams and qenable 5366 * those that have queued data. 5367 * close synchronization needs this to 5368 * be done to ensure that all upper layers blocked 5369 * due to flow control to the closing device 5370 * get unblocked. 5371 */ 5372 ip1dbg(("ip_wsrv: walking\n")); 5373 conn_walk_drain(); 5374 5375 mutex_enter(&ip_mi_lock); 5376 mi_close_unlink(&ip_g_head, (IDP)ill); 5377 mutex_exit(&ip_mi_lock); 5378 5379 /* 5380 * credp could be null if the open didn't succeed and ip_modopen 5381 * itself calls ip_close. 5382 */ 5383 if (ill->ill_credp != NULL) 5384 crfree(ill->ill_credp); 5385 5386 mi_close_free((IDP)ill); 5387 q->q_ptr = WR(q)->q_ptr = NULL; 5388 5389 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5390 5391 return (0); 5392 } 5393 5394 /* 5395 * This is called as part of close() for both IP and UDP 5396 * in order to quiesce the conn. 5397 */ 5398 void 5399 ip_quiesce_conn(conn_t *connp) 5400 { 5401 boolean_t drain_cleanup_reqd = B_FALSE; 5402 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5403 boolean_t ilg_cleanup_reqd = B_FALSE; 5404 5405 ASSERT(!IPCL_IS_TCP(connp)); 5406 5407 /* 5408 * Mark the conn as closing, and this conn must not be 5409 * inserted in future into any list. Eg. conn_drain_insert(), 5410 * won't insert this conn into the conn_drain_list. 5411 * Similarly ill_pending_mp_add() will not add any mp to 5412 * the pending mp list, after this conn has started closing. 5413 * 5414 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5415 * cannot get set henceforth. 5416 */ 5417 mutex_enter(&connp->conn_lock); 5418 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5419 connp->conn_state_flags |= CONN_CLOSING; 5420 if (connp->conn_idl != NULL) 5421 drain_cleanup_reqd = B_TRUE; 5422 if (connp->conn_oper_pending_ill != NULL) 5423 conn_ioctl_cleanup_reqd = B_TRUE; 5424 if (connp->conn_ilg_inuse != 0) 5425 ilg_cleanup_reqd = B_TRUE; 5426 mutex_exit(&connp->conn_lock); 5427 5428 if (IPCL_IS_UDP(connp)) 5429 udp_quiesce_conn(connp); 5430 5431 if (conn_ioctl_cleanup_reqd) 5432 conn_ioctl_cleanup(connp); 5433 5434 if (is_system_labeled() && connp->conn_anon_port) { 5435 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5436 connp->conn_mlp_type, connp->conn_ulp, 5437 ntohs(connp->conn_lport), B_FALSE); 5438 connp->conn_anon_port = 0; 5439 } 5440 connp->conn_mlp_type = mlptSingle; 5441 5442 /* 5443 * Remove this conn from any fanout list it is on. 5444 * and then wait for any threads currently operating 5445 * on this endpoint to finish 5446 */ 5447 ipcl_hash_remove(connp); 5448 5449 /* 5450 * Remove this conn from the drain list, and do 5451 * any other cleanup that may be required. 5452 * (Only non-tcp streams may have a non-null conn_idl. 5453 * TCP streams are never flow controlled, and 5454 * conn_idl will be null) 5455 */ 5456 if (drain_cleanup_reqd) 5457 conn_drain_tail(connp, B_TRUE); 5458 5459 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5460 (void) ip_mrouter_done(NULL); 5461 5462 if (ilg_cleanup_reqd) 5463 ilg_delete_all(connp); 5464 5465 conn_delete_ire(connp, NULL); 5466 5467 /* 5468 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5469 * callers from write side can't be there now because close 5470 * is in progress. The only other caller is ipcl_walk 5471 * which checks for the condemned flag. 5472 */ 5473 mutex_enter(&connp->conn_lock); 5474 connp->conn_state_flags |= CONN_CONDEMNED; 5475 while (connp->conn_ref != 1) 5476 cv_wait(&connp->conn_cv, &connp->conn_lock); 5477 connp->conn_state_flags |= CONN_QUIESCED; 5478 mutex_exit(&connp->conn_lock); 5479 } 5480 5481 /* ARGSUSED */ 5482 int 5483 ip_close(queue_t *q, int flags) 5484 { 5485 conn_t *connp; 5486 5487 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5488 5489 /* 5490 * Call the appropriate delete routine depending on whether this is 5491 * a module or device. 5492 */ 5493 if (WR(q)->q_next != NULL) { 5494 /* This is a module close */ 5495 return (ip_modclose((ill_t *)q->q_ptr)); 5496 } 5497 5498 connp = q->q_ptr; 5499 ip_quiesce_conn(connp); 5500 5501 qprocsoff(q); 5502 5503 /* 5504 * Now we are truly single threaded on this stream, and can 5505 * delete the things hanging off the connp, and finally the connp. 5506 * We removed this connp from the fanout list, it cannot be 5507 * accessed thru the fanouts, and we already waited for the 5508 * conn_ref to drop to 0. We are already in close, so 5509 * there cannot be any other thread from the top. qprocsoff 5510 * has completed, and service has completed or won't run in 5511 * future. 5512 */ 5513 ASSERT(connp->conn_ref == 1); 5514 5515 /* 5516 * A conn which was previously marked as IPCL_UDP cannot 5517 * retain the flag because it would have been cleared by 5518 * udp_close(). 5519 */ 5520 ASSERT(!IPCL_IS_UDP(connp)); 5521 5522 if (connp->conn_latch != NULL) { 5523 IPLATCH_REFRELE(connp->conn_latch); 5524 connp->conn_latch = NULL; 5525 } 5526 if (connp->conn_policy != NULL) { 5527 IPPH_REFRELE(connp->conn_policy); 5528 connp->conn_policy = NULL; 5529 } 5530 if (connp->conn_ipsec_opt_mp != NULL) { 5531 freemsg(connp->conn_ipsec_opt_mp); 5532 connp->conn_ipsec_opt_mp = NULL; 5533 } 5534 5535 inet_minor_free(ip_minor_arena, connp->conn_dev); 5536 5537 connp->conn_ref--; 5538 ipcl_conn_destroy(connp); 5539 5540 q->q_ptr = WR(q)->q_ptr = NULL; 5541 return (0); 5542 } 5543 5544 int 5545 ip_snmpmod_close(queue_t *q) 5546 { 5547 conn_t *connp = Q_TO_CONN(q); 5548 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5549 5550 qprocsoff(q); 5551 5552 if (connp->conn_flags & IPCL_UDPMOD) 5553 udp_close_free(connp); 5554 5555 if (connp->conn_cred != NULL) { 5556 crfree(connp->conn_cred); 5557 connp->conn_cred = NULL; 5558 } 5559 CONN_DEC_REF(connp); 5560 q->q_ptr = WR(q)->q_ptr = NULL; 5561 return (0); 5562 } 5563 5564 /* 5565 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5566 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5567 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5568 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5569 * queues as we never enqueue messages there and we don't handle any ioctls. 5570 * Everything else is freed. 5571 */ 5572 void 5573 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5574 { 5575 conn_t *connp = q->q_ptr; 5576 pfi_t setfn; 5577 pfi_t getfn; 5578 5579 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5580 5581 switch (DB_TYPE(mp)) { 5582 case M_PROTO: 5583 case M_PCPROTO: 5584 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5585 ((((union T_primitives *)mp->b_rptr)->type == 5586 T_SVR4_OPTMGMT_REQ) || 5587 (((union T_primitives *)mp->b_rptr)->type == 5588 T_OPTMGMT_REQ))) { 5589 /* 5590 * This is the only TPI primitive supported. Its 5591 * handling does not require tcp_t, but it does require 5592 * conn_t to check permissions. 5593 */ 5594 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5595 5596 if (connp->conn_flags & IPCL_TCPMOD) { 5597 setfn = tcp_snmp_set; 5598 getfn = tcp_snmp_get; 5599 } else { 5600 setfn = udp_snmp_set; 5601 getfn = udp_snmp_get; 5602 } 5603 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5604 freemsg(mp); 5605 return; 5606 } 5607 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5608 != NULL) 5609 qreply(q, mp); 5610 break; 5611 case M_FLUSH: 5612 case M_IOCTL: 5613 putnext(q, mp); 5614 break; 5615 default: 5616 freemsg(mp); 5617 break; 5618 } 5619 } 5620 5621 /* Return the IP checksum for the IP header at "iph". */ 5622 uint16_t 5623 ip_csum_hdr(ipha_t *ipha) 5624 { 5625 uint16_t *uph; 5626 uint32_t sum; 5627 int opt_len; 5628 5629 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5630 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5631 uph = (uint16_t *)ipha; 5632 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5633 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5634 if (opt_len > 0) { 5635 do { 5636 sum += uph[10]; 5637 sum += uph[11]; 5638 uph += 2; 5639 } while (--opt_len); 5640 } 5641 sum = (sum & 0xFFFF) + (sum >> 16); 5642 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5643 if (sum == 0xffff) 5644 sum = 0; 5645 return ((uint16_t)sum); 5646 } 5647 5648 void 5649 ip_ddi_destroy(void) 5650 { 5651 tnet_fini(); 5652 tcp_ddi_destroy(); 5653 sctp_ddi_destroy(); 5654 ipsec_loader_destroy(); 5655 ipsec_policy_destroy(); 5656 ipsec_kstat_destroy(); 5657 nd_free(&ip_g_nd); 5658 mutex_destroy(&igmp_timer_lock); 5659 mutex_destroy(&mld_timer_lock); 5660 mutex_destroy(&igmp_slowtimeout_lock); 5661 mutex_destroy(&mld_slowtimeout_lock); 5662 mutex_destroy(&ip_mi_lock); 5663 mutex_destroy(&rts_clients.connf_lock); 5664 ip_ire_fini(); 5665 ip6_asp_free(); 5666 conn_drain_fini(); 5667 ipcl_destroy(); 5668 inet_minor_destroy(ip_minor_arena); 5669 icmp_kstat_fini(); 5670 ip_kstat_fini(); 5671 rw_destroy(&ipsec_capab_ills_lock); 5672 rw_destroy(&ill_g_usesrc_lock); 5673 ip_drop_unregister(&ip_dropper); 5674 } 5675 5676 5677 void 5678 ip_ddi_init(void) 5679 { 5680 TCP6_MAJ = ddi_name_to_major(TCP6); 5681 TCP_MAJ = ddi_name_to_major(TCP); 5682 SCTP_MAJ = ddi_name_to_major(SCTP); 5683 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5684 5685 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5686 5687 /* IP's IPsec code calls the packet dropper */ 5688 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5689 5690 if (!ip_g_nd) { 5691 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5692 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5693 nd_free(&ip_g_nd); 5694 } 5695 } 5696 5697 ipsec_loader_init(); 5698 ipsec_policy_init(); 5699 ipsec_kstat_init(); 5700 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5701 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5702 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5703 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5704 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5705 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5706 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5707 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5708 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5709 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5710 5711 /* 5712 * For IP and TCP the minor numbers should start from 2 since we have 4 5713 * initial devices: ip, ip6, tcp, tcp6. 5714 */ 5715 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5716 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5717 cmn_err(CE_PANIC, 5718 "ip_ddi_init: ip_minor_arena creation failed\n"); 5719 } 5720 5721 ipcl_init(); 5722 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5723 ip_ire_init(); 5724 ip6_asp_init(); 5725 ipif_init(); 5726 conn_drain_init(); 5727 tcp_ddi_init(); 5728 sctp_ddi_init(); 5729 5730 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5731 5732 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5733 "net", KSTAT_TYPE_NAMED, 5734 sizeof (ip_statistics) / sizeof (kstat_named_t), 5735 KSTAT_FLAG_VIRTUAL)) != NULL) { 5736 ip_kstat->ks_data = &ip_statistics; 5737 kstat_install(ip_kstat); 5738 } 5739 ip_kstat_init(); 5740 ip6_kstat_init(); 5741 icmp_kstat_init(); 5742 ipsec_loader_start(); 5743 tnet_init(); 5744 } 5745 5746 /* 5747 * Allocate and initialize a DLPI template of the specified length. (May be 5748 * called as writer.) 5749 */ 5750 mblk_t * 5751 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5752 { 5753 mblk_t *mp; 5754 5755 mp = allocb(len, BPRI_MED); 5756 if (!mp) 5757 return (NULL); 5758 5759 /* 5760 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5761 * of which we don't seem to use) are sent with M_PCPROTO, and 5762 * that other DLPI are M_PROTO. 5763 */ 5764 if (prim == DL_INFO_REQ) { 5765 mp->b_datap->db_type = M_PCPROTO; 5766 } else { 5767 mp->b_datap->db_type = M_PROTO; 5768 } 5769 5770 mp->b_wptr = mp->b_rptr + len; 5771 bzero(mp->b_rptr, len); 5772 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5773 return (mp); 5774 } 5775 5776 const char * 5777 dlpi_prim_str(int prim) 5778 { 5779 switch (prim) { 5780 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5781 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5782 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5783 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5784 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5785 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5786 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5787 case DL_OK_ACK: return ("DL_OK_ACK"); 5788 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5789 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5790 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5791 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5792 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5793 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5794 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5795 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5796 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5797 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5798 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5799 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5800 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5801 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5802 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5803 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5804 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5805 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5806 default: return ("<unknown primitive>"); 5807 } 5808 } 5809 5810 const char * 5811 dlpi_err_str(int err) 5812 { 5813 switch (err) { 5814 case DL_ACCESS: return ("DL_ACCESS"); 5815 case DL_BADADDR: return ("DL_BADADDR"); 5816 case DL_BADCORR: return ("DL_BADCORR"); 5817 case DL_BADDATA: return ("DL_BADDATA"); 5818 case DL_BADPPA: return ("DL_BADPPA"); 5819 case DL_BADPRIM: return ("DL_BADPRIM"); 5820 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5821 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5822 case DL_BADSAP: return ("DL_BADSAP"); 5823 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5824 case DL_BOUND: return ("DL_BOUND"); 5825 case DL_INITFAILED: return ("DL_INITFAILED"); 5826 case DL_NOADDR: return ("DL_NOADDR"); 5827 case DL_NOTINIT: return ("DL_NOTINIT"); 5828 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5829 case DL_SYSERR: return ("DL_SYSERR"); 5830 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5831 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5832 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5833 case DL_TOOMANY: return ("DL_TOOMANY"); 5834 case DL_NOTENAB: return ("DL_NOTENAB"); 5835 case DL_BUSY: return ("DL_BUSY"); 5836 case DL_NOAUTO: return ("DL_NOAUTO"); 5837 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5838 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5839 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5840 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5841 case DL_PENDING: return ("DL_PENDING"); 5842 default: return ("<unknown error>"); 5843 } 5844 } 5845 5846 /* 5847 * Debug formatting routine. Returns a character string representation of the 5848 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5849 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5850 * 5851 * Once the ndd table-printing interfaces are removed, this can be changed to 5852 * standard dotted-decimal form. 5853 */ 5854 char * 5855 ip_dot_addr(ipaddr_t addr, char *buf) 5856 { 5857 uint8_t *ap = (uint8_t *)&addr; 5858 5859 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5860 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5861 return (buf); 5862 } 5863 5864 /* 5865 * Write the given MAC address as a printable string in the usual colon- 5866 * separated format. 5867 */ 5868 const char * 5869 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5870 { 5871 char *bp; 5872 5873 if (alen == 0 || buflen < 4) 5874 return ("?"); 5875 bp = buf; 5876 for (;;) { 5877 /* 5878 * If there are more MAC address bytes available, but we won't 5879 * have any room to print them, then add "..." to the string 5880 * instead. See below for the 'magic number' explanation. 5881 */ 5882 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5883 (void) strcpy(bp, "..."); 5884 break; 5885 } 5886 (void) sprintf(bp, "%02x", *addr++); 5887 bp += 2; 5888 if (--alen == 0) 5889 break; 5890 *bp++ = ':'; 5891 buflen -= 3; 5892 /* 5893 * At this point, based on the first 'if' statement above, 5894 * either alen == 1 and buflen >= 3, or alen > 1 and 5895 * buflen >= 4. The first case leaves room for the final "xx" 5896 * number and trailing NUL byte. The second leaves room for at 5897 * least "...". Thus the apparently 'magic' numbers chosen for 5898 * that statement. 5899 */ 5900 } 5901 return (buf); 5902 } 5903 5904 /* 5905 * Send an ICMP error after patching up the packet appropriately. Returns 5906 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5907 */ 5908 static boolean_t 5909 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5910 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5911 { 5912 ipha_t *ipha; 5913 mblk_t *first_mp; 5914 boolean_t secure; 5915 unsigned char db_type; 5916 5917 first_mp = mp; 5918 if (mctl_present) { 5919 mp = mp->b_cont; 5920 secure = ipsec_in_is_secure(first_mp); 5921 ASSERT(mp != NULL); 5922 } else { 5923 /* 5924 * If this is an ICMP error being reported - which goes 5925 * up as M_CTLs, we need to convert them to M_DATA till 5926 * we finish checking with global policy because 5927 * ipsec_check_global_policy() assumes M_DATA as clear 5928 * and M_CTL as secure. 5929 */ 5930 db_type = DB_TYPE(mp); 5931 DB_TYPE(mp) = M_DATA; 5932 secure = B_FALSE; 5933 } 5934 /* 5935 * We are generating an icmp error for some inbound packet. 5936 * Called from all ip_fanout_(udp, tcp, proto) functions. 5937 * Before we generate an error, check with global policy 5938 * to see whether this is allowed to enter the system. As 5939 * there is no "conn", we are checking with global policy. 5940 */ 5941 ipha = (ipha_t *)mp->b_rptr; 5942 if (secure || ipsec_inbound_v4_policy_present) { 5943 first_mp = ipsec_check_global_policy(first_mp, NULL, 5944 ipha, NULL, mctl_present); 5945 if (first_mp == NULL) 5946 return (B_FALSE); 5947 } 5948 5949 if (!mctl_present) 5950 DB_TYPE(mp) = db_type; 5951 5952 if (flags & IP_FF_SEND_ICMP) { 5953 if (flags & IP_FF_HDR_COMPLETE) { 5954 if (ip_hdr_complete(ipha, zoneid)) { 5955 freemsg(first_mp); 5956 return (B_TRUE); 5957 } 5958 } 5959 if (flags & IP_FF_CKSUM) { 5960 /* 5961 * Have to correct checksum since 5962 * the packet might have been 5963 * fragmented and the reassembly code in ip_rput 5964 * does not restore the IP checksum. 5965 */ 5966 ipha->ipha_hdr_checksum = 0; 5967 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5968 } 5969 switch (icmp_type) { 5970 case ICMP_DEST_UNREACHABLE: 5971 icmp_unreachable(WR(q), first_mp, icmp_code); 5972 break; 5973 default: 5974 freemsg(first_mp); 5975 break; 5976 } 5977 } else { 5978 freemsg(first_mp); 5979 return (B_FALSE); 5980 } 5981 5982 return (B_TRUE); 5983 } 5984 5985 /* 5986 * Used to send an ICMP error message when a packet is received for 5987 * a protocol that is not supported. The mblk passed as argument 5988 * is consumed by this function. 5989 */ 5990 void 5991 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5992 { 5993 mblk_t *mp; 5994 ipha_t *ipha; 5995 ill_t *ill; 5996 ipsec_in_t *ii; 5997 5998 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5999 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6000 6001 mp = ipsec_mp->b_cont; 6002 ipsec_mp->b_cont = NULL; 6003 ipha = (ipha_t *)mp->b_rptr; 6004 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6005 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6006 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6007 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6008 } 6009 } else { 6010 /* Get ill from index in ipsec_in_t. */ 6011 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6012 B_TRUE, NULL, NULL, NULL, NULL); 6013 if (ill != NULL) { 6014 if (ip_fanout_send_icmp_v6(q, mp, flags, 6015 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6016 0, B_FALSE, zoneid)) { 6017 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6018 } 6019 6020 ill_refrele(ill); 6021 } else { /* re-link for the freemsg() below. */ 6022 ipsec_mp->b_cont = mp; 6023 } 6024 } 6025 6026 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6027 freemsg(ipsec_mp); 6028 } 6029 6030 /* 6031 * See if the inbound datagram has had IPsec processing applied to it. 6032 */ 6033 boolean_t 6034 ipsec_in_is_secure(mblk_t *ipsec_mp) 6035 { 6036 ipsec_in_t *ii; 6037 6038 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6039 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6040 6041 if (ii->ipsec_in_loopback) { 6042 return (ii->ipsec_in_secure); 6043 } else { 6044 return (ii->ipsec_in_ah_sa != NULL || 6045 ii->ipsec_in_esp_sa != NULL || 6046 ii->ipsec_in_decaps); 6047 } 6048 } 6049 6050 /* 6051 * Handle protocols with which IP is less intimate. There 6052 * can be more than one stream bound to a particular 6053 * protocol. When this is the case, normally each one gets a copy 6054 * of any incoming packets. 6055 * 6056 * IPSEC NOTE : 6057 * 6058 * Don't allow a secure packet going up a non-secure connection. 6059 * We don't allow this because 6060 * 6061 * 1) Reply might go out in clear which will be dropped at 6062 * the sending side. 6063 * 2) If the reply goes out in clear it will give the 6064 * adversary enough information for getting the key in 6065 * most of the cases. 6066 * 6067 * Moreover getting a secure packet when we expect clear 6068 * implies that SA's were added without checking for 6069 * policy on both ends. This should not happen once ISAKMP 6070 * is used to negotiate SAs as SAs will be added only after 6071 * verifying the policy. 6072 * 6073 * NOTE : If the packet was tunneled and not multicast we only send 6074 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6075 * back to delivering packets to AF_INET6 raw sockets. 6076 * 6077 * IPQoS Notes: 6078 * Once we have determined the client, invoke IPPF processing. 6079 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6080 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6081 * ip_policy will be false. 6082 * 6083 * Zones notes: 6084 * Currently only applications in the global zone can create raw sockets for 6085 * protocols other than ICMP. So unlike the broadcast / multicast case of 6086 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6087 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6088 */ 6089 static void 6090 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6091 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6092 zoneid_t zoneid) 6093 { 6094 queue_t *rq; 6095 mblk_t *mp1, *first_mp1; 6096 uint_t protocol = ipha->ipha_protocol; 6097 ipaddr_t dst; 6098 boolean_t one_only; 6099 mblk_t *first_mp = mp; 6100 boolean_t secure; 6101 uint32_t ill_index; 6102 conn_t *connp, *first_connp, *next_connp; 6103 connf_t *connfp; 6104 boolean_t shared_addr; 6105 6106 if (mctl_present) { 6107 mp = first_mp->b_cont; 6108 secure = ipsec_in_is_secure(first_mp); 6109 ASSERT(mp != NULL); 6110 } else { 6111 secure = B_FALSE; 6112 } 6113 dst = ipha->ipha_dst; 6114 /* 6115 * If the packet was tunneled and not multicast we only send to it 6116 * the first match. 6117 */ 6118 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6119 !CLASSD(dst)); 6120 6121 shared_addr = (zoneid == ALL_ZONES); 6122 if (shared_addr) { 6123 /* 6124 * We don't allow multilevel ports for raw IP, so no need to 6125 * check for that here. 6126 */ 6127 zoneid = tsol_packet_to_zoneid(mp); 6128 } 6129 6130 connfp = &ipcl_proto_fanout[protocol]; 6131 mutex_enter(&connfp->connf_lock); 6132 connp = connfp->connf_head; 6133 for (connp = connfp->connf_head; connp != NULL; 6134 connp = connp->conn_next) { 6135 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6136 zoneid) && 6137 (!is_system_labeled() || 6138 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6139 connp))) 6140 break; 6141 } 6142 6143 if (connp == NULL || connp->conn_upq == NULL) { 6144 /* 6145 * No one bound to these addresses. Is 6146 * there a client that wants all 6147 * unclaimed datagrams? 6148 */ 6149 mutex_exit(&connfp->connf_lock); 6150 /* 6151 * Check for IPPROTO_ENCAP... 6152 */ 6153 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6154 /* 6155 * XXX If an IPsec mblk is here on a multicast 6156 * tunnel (using ip_mroute stuff), what should 6157 * I do? 6158 * 6159 * For now, just free the IPsec mblk before 6160 * passing it up to the multicast routing 6161 * stuff. 6162 * 6163 * BTW, If I match a configured IP-in-IP 6164 * tunnel, ip_mroute_decap will never be 6165 * called. 6166 */ 6167 if (mp != first_mp) 6168 freeb(first_mp); 6169 ip_mroute_decap(q, mp); 6170 } else { 6171 /* 6172 * Otherwise send an ICMP protocol unreachable. 6173 */ 6174 if (ip_fanout_send_icmp(q, first_mp, flags, 6175 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6176 mctl_present, zoneid)) { 6177 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6178 } 6179 } 6180 return; 6181 } 6182 CONN_INC_REF(connp); 6183 first_connp = connp; 6184 6185 /* 6186 * Only send message to one tunnel driver by immediately 6187 * terminating the loop. 6188 */ 6189 connp = one_only ? NULL : connp->conn_next; 6190 6191 for (;;) { 6192 while (connp != NULL) { 6193 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6194 flags, zoneid) && 6195 (!is_system_labeled() || 6196 tsol_receive_local(mp, &dst, IPV4_VERSION, 6197 shared_addr, connp))) 6198 break; 6199 connp = connp->conn_next; 6200 } 6201 6202 /* 6203 * Copy the packet. 6204 */ 6205 if (connp == NULL || connp->conn_upq == NULL || 6206 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6207 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6208 /* 6209 * No more interested clients or memory 6210 * allocation failed 6211 */ 6212 connp = first_connp; 6213 break; 6214 } 6215 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6216 CONN_INC_REF(connp); 6217 mutex_exit(&connfp->connf_lock); 6218 rq = connp->conn_rq; 6219 if (!canputnext(rq)) { 6220 if (flags & IP_FF_RAWIP) { 6221 BUMP_MIB(&ip_mib, rawipInOverflows); 6222 } else { 6223 BUMP_MIB(&icmp_mib, icmpInOverflows); 6224 } 6225 6226 freemsg(first_mp1); 6227 } else { 6228 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6229 first_mp1 = ipsec_check_inbound_policy 6230 (first_mp1, connp, ipha, NULL, 6231 mctl_present); 6232 } 6233 if (first_mp1 != NULL) { 6234 /* 6235 * ip_fanout_proto also gets called from 6236 * icmp_inbound_error_fanout, in which case 6237 * the msg type is M_CTL. Don't add info 6238 * in this case for the time being. In future 6239 * when there is a need for knowing the 6240 * inbound iface index for ICMP error msgs, 6241 * then this can be changed. 6242 */ 6243 if ((connp->conn_recvif != 0) && 6244 (mp->b_datap->db_type != M_CTL)) { 6245 /* 6246 * the actual data will be 6247 * contained in b_cont upon 6248 * successful return of the 6249 * following call else 6250 * original mblk is returned 6251 */ 6252 ASSERT(recv_ill != NULL); 6253 mp1 = ip_add_info(mp1, recv_ill, 6254 IPF_RECVIF); 6255 } 6256 BUMP_MIB(&ip_mib, ipInDelivers); 6257 if (mctl_present) 6258 freeb(first_mp1); 6259 putnext(rq, mp1); 6260 } 6261 } 6262 mutex_enter(&connfp->connf_lock); 6263 /* Follow the next pointer before releasing the conn. */ 6264 next_connp = connp->conn_next; 6265 CONN_DEC_REF(connp); 6266 connp = next_connp; 6267 } 6268 6269 /* Last one. Send it upstream. */ 6270 mutex_exit(&connfp->connf_lock); 6271 6272 /* 6273 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6274 * will be set to false. 6275 */ 6276 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6277 ill_index = ill->ill_phyint->phyint_ifindex; 6278 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6279 if (mp == NULL) { 6280 CONN_DEC_REF(connp); 6281 if (mctl_present) { 6282 freeb(first_mp); 6283 } 6284 return; 6285 } 6286 } 6287 6288 rq = connp->conn_rq; 6289 if (!canputnext(rq)) { 6290 if (flags & IP_FF_RAWIP) { 6291 BUMP_MIB(&ip_mib, rawipInOverflows); 6292 } else { 6293 BUMP_MIB(&icmp_mib, icmpInOverflows); 6294 } 6295 6296 freemsg(first_mp); 6297 } else { 6298 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6299 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6300 ipha, NULL, mctl_present); 6301 } 6302 if (first_mp != NULL) { 6303 /* 6304 * ip_fanout_proto also gets called 6305 * from icmp_inbound_error_fanout, in 6306 * which case the msg type is M_CTL. 6307 * Don't add info in this case for time 6308 * being. In future when there is a 6309 * need for knowing the inbound iface 6310 * index for ICMP error msgs, then this 6311 * can be changed 6312 */ 6313 if ((connp->conn_recvif != 0) && 6314 (mp->b_datap->db_type != M_CTL)) { 6315 /* 6316 * the actual data will be contained in 6317 * b_cont upon successful return 6318 * of the following call else original 6319 * mblk is returned 6320 */ 6321 ASSERT(recv_ill != NULL); 6322 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6323 } 6324 BUMP_MIB(&ip_mib, ipInDelivers); 6325 putnext(rq, mp); 6326 if (mctl_present) 6327 freeb(first_mp); 6328 } 6329 } 6330 CONN_DEC_REF(connp); 6331 } 6332 6333 /* 6334 * Fanout for TCP packets 6335 * The caller puts <fport, lport> in the ports parameter. 6336 * 6337 * IPQoS Notes 6338 * Before sending it to the client, invoke IPPF processing. 6339 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6340 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6341 * ip_policy is false. 6342 */ 6343 static void 6344 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6345 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6346 { 6347 mblk_t *first_mp; 6348 boolean_t secure; 6349 uint32_t ill_index; 6350 int ip_hdr_len; 6351 tcph_t *tcph; 6352 boolean_t syn_present = B_FALSE; 6353 conn_t *connp; 6354 6355 first_mp = mp; 6356 if (mctl_present) { 6357 ASSERT(first_mp->b_datap->db_type == M_CTL); 6358 mp = first_mp->b_cont; 6359 secure = ipsec_in_is_secure(first_mp); 6360 ASSERT(mp != NULL); 6361 } else { 6362 secure = B_FALSE; 6363 } 6364 6365 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6366 6367 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6368 NULL) { 6369 /* 6370 * No connected connection or listener. Send a 6371 * TH_RST via tcp_xmit_listeners_reset. 6372 */ 6373 6374 /* Initiate IPPf processing, if needed. */ 6375 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6376 uint32_t ill_index; 6377 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6378 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6379 if (first_mp == NULL) 6380 return; 6381 } 6382 BUMP_MIB(&ip_mib, ipInDelivers); 6383 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6384 zoneid)); 6385 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6386 return; 6387 } 6388 6389 /* 6390 * Allocate the SYN for the TCP connection here itself 6391 */ 6392 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6393 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6394 if (IPCL_IS_TCP(connp)) { 6395 squeue_t *sqp; 6396 6397 /* 6398 * For fused tcp loopback, assign the eager's 6399 * squeue to be that of the active connect's. 6400 * Note that we don't check for IP_FF_LOOPBACK 6401 * here since this routine gets called only 6402 * for loopback (unlike the IPv6 counterpart). 6403 */ 6404 ASSERT(Q_TO_CONN(q) != NULL); 6405 if (do_tcp_fusion && 6406 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6407 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6408 IPCL_IS_TCP(Q_TO_CONN(q))) { 6409 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6410 sqp = Q_TO_CONN(q)->conn_sqp; 6411 } else { 6412 sqp = IP_SQUEUE_GET(lbolt); 6413 } 6414 6415 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6416 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6417 syn_present = B_TRUE; 6418 } 6419 } 6420 6421 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6422 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6423 if ((flags & TH_RST) || (flags & TH_URG)) { 6424 CONN_DEC_REF(connp); 6425 freemsg(first_mp); 6426 return; 6427 } 6428 if (flags & TH_ACK) { 6429 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6430 CONN_DEC_REF(connp); 6431 return; 6432 } 6433 6434 CONN_DEC_REF(connp); 6435 freemsg(first_mp); 6436 return; 6437 } 6438 6439 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6440 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6441 NULL, mctl_present); 6442 if (first_mp == NULL) { 6443 CONN_DEC_REF(connp); 6444 return; 6445 } 6446 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6447 ASSERT(syn_present); 6448 if (mctl_present) { 6449 ASSERT(first_mp != mp); 6450 first_mp->b_datap->db_struioflag |= 6451 STRUIO_POLICY; 6452 } else { 6453 ASSERT(first_mp == mp); 6454 mp->b_datap->db_struioflag &= 6455 ~STRUIO_EAGER; 6456 mp->b_datap->db_struioflag |= 6457 STRUIO_POLICY; 6458 } 6459 } else { 6460 /* 6461 * Discard first_mp early since we're dealing with a 6462 * fully-connected conn_t and tcp doesn't do policy in 6463 * this case. 6464 */ 6465 if (mctl_present) { 6466 freeb(first_mp); 6467 mctl_present = B_FALSE; 6468 } 6469 first_mp = mp; 6470 } 6471 } 6472 6473 /* 6474 * Initiate policy processing here if needed. If we get here from 6475 * icmp_inbound_error_fanout, ip_policy is false. 6476 */ 6477 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6478 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6479 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6480 if (mp == NULL) { 6481 CONN_DEC_REF(connp); 6482 if (mctl_present) 6483 freeb(first_mp); 6484 return; 6485 } else if (mctl_present) { 6486 ASSERT(first_mp != mp); 6487 first_mp->b_cont = mp; 6488 } else { 6489 first_mp = mp; 6490 } 6491 } 6492 6493 6494 6495 /* Handle IPv6 socket options. */ 6496 if (!syn_present && 6497 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6498 /* Add header */ 6499 ASSERT(recv_ill != NULL); 6500 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6501 if (mp == NULL) { 6502 CONN_DEC_REF(connp); 6503 if (mctl_present) 6504 freeb(first_mp); 6505 return; 6506 } else if (mctl_present) { 6507 /* 6508 * ip_add_info might return a new mp. 6509 */ 6510 ASSERT(first_mp != mp); 6511 first_mp->b_cont = mp; 6512 } else { 6513 first_mp = mp; 6514 } 6515 } 6516 6517 BUMP_MIB(&ip_mib, ipInDelivers); 6518 if (IPCL_IS_TCP(connp)) { 6519 (*ip_input_proc)(connp->conn_sqp, first_mp, 6520 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6521 } else { 6522 putnext(connp->conn_rq, first_mp); 6523 CONN_DEC_REF(connp); 6524 } 6525 } 6526 6527 /* 6528 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6529 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6530 * Caller is responsible for dropping references to the conn, and freeing 6531 * first_mp. 6532 * 6533 * IPQoS Notes 6534 * Before sending it to the client, invoke IPPF processing. Policy processing 6535 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6536 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6537 * ip_wput_local, ip_policy is false. 6538 */ 6539 static void 6540 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6541 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6542 boolean_t ip_policy) 6543 { 6544 boolean_t mctl_present = (first_mp != NULL); 6545 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6546 uint32_t ill_index; 6547 6548 if (mctl_present) 6549 first_mp->b_cont = mp; 6550 else 6551 first_mp = mp; 6552 6553 if (CONN_UDP_FLOWCTLD(connp)) { 6554 BUMP_MIB(&ip_mib, udpInOverflows); 6555 freemsg(first_mp); 6556 return; 6557 } 6558 6559 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6560 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6561 NULL, mctl_present); 6562 if (first_mp == NULL) 6563 return; /* Freed by ipsec_check_inbound_policy(). */ 6564 } 6565 if (mctl_present) 6566 freeb(first_mp); 6567 6568 if (connp->conn_recvif) 6569 in_flags = IPF_RECVIF; 6570 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6571 in_flags |= IPF_RECVSLLA; 6572 6573 /* Handle IPv6 options. */ 6574 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6575 in_flags |= IPF_RECVIF; 6576 6577 /* 6578 * Initiate IPPF processing here, if needed. Note first_mp won't be 6579 * freed if the packet is dropped. The caller will do so. 6580 */ 6581 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6582 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6583 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6584 if (mp == NULL) { 6585 return; 6586 } 6587 } 6588 if ((in_flags != 0) && 6589 (mp->b_datap->db_type != M_CTL)) { 6590 /* 6591 * The actual data will be contained in b_cont 6592 * upon successful return of the following call 6593 * else original mblk is returned 6594 */ 6595 ASSERT(recv_ill != NULL); 6596 mp = ip_add_info(mp, recv_ill, in_flags); 6597 } 6598 BUMP_MIB(&ip_mib, ipInDelivers); 6599 6600 /* Send it upstream */ 6601 CONN_UDP_RECV(connp, mp); 6602 } 6603 6604 /* 6605 * Fanout for UDP packets. 6606 * The caller puts <fport, lport> in the ports parameter. 6607 * 6608 * If SO_REUSEADDR is set all multicast and broadcast packets 6609 * will be delivered to all streams bound to the same port. 6610 * 6611 * Zones notes: 6612 * Multicast and broadcast packets will be distributed to streams in all zones. 6613 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6614 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6615 * packets. To maintain this behavior with multiple zones, the conns are grouped 6616 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6617 * each zone. If unset, all the following conns in the same zone are skipped. 6618 */ 6619 static void 6620 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6621 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6622 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6623 { 6624 uint32_t dstport, srcport; 6625 ipaddr_t dst; 6626 mblk_t *first_mp; 6627 boolean_t secure; 6628 in6_addr_t v6src; 6629 conn_t *connp; 6630 connf_t *connfp; 6631 conn_t *first_connp; 6632 conn_t *next_connp; 6633 mblk_t *mp1, *first_mp1; 6634 ipaddr_t src; 6635 zoneid_t last_zoneid; 6636 boolean_t reuseaddr; 6637 boolean_t shared_addr; 6638 6639 first_mp = mp; 6640 if (mctl_present) { 6641 mp = first_mp->b_cont; 6642 first_mp->b_cont = NULL; 6643 secure = ipsec_in_is_secure(first_mp); 6644 ASSERT(mp != NULL); 6645 } else { 6646 first_mp = NULL; 6647 secure = B_FALSE; 6648 } 6649 6650 /* Extract ports in net byte order */ 6651 dstport = htons(ntohl(ports) & 0xFFFF); 6652 srcport = htons(ntohl(ports) >> 16); 6653 dst = ipha->ipha_dst; 6654 src = ipha->ipha_src; 6655 6656 shared_addr = (zoneid == ALL_ZONES); 6657 if (shared_addr) { 6658 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6659 if (zoneid == ALL_ZONES) 6660 zoneid = tsol_packet_to_zoneid(mp); 6661 } 6662 6663 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6664 mutex_enter(&connfp->connf_lock); 6665 connp = connfp->connf_head; 6666 if (!broadcast && !CLASSD(dst)) { 6667 /* 6668 * Not broadcast or multicast. Send to the one (first) 6669 * client we find. No need to check conn_wantpacket() 6670 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6671 * IPv4 unicast packets. 6672 */ 6673 while ((connp != NULL) && 6674 (!IPCL_UDP_MATCH(connp, dstport, dst, 6675 srcport, src) || 6676 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6677 connp = connp->conn_next; 6678 } 6679 6680 if (connp == NULL || connp->conn_upq == NULL) 6681 goto notfound; 6682 6683 if (is_system_labeled() && 6684 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6685 connp)) 6686 goto notfound; 6687 6688 CONN_INC_REF(connp); 6689 mutex_exit(&connfp->connf_lock); 6690 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6691 recv_ill, ip_policy); 6692 IP_STAT(ip_udp_fannorm); 6693 CONN_DEC_REF(connp); 6694 return; 6695 } 6696 6697 /* 6698 * Broadcast and multicast case 6699 * 6700 * Need to check conn_wantpacket(). 6701 * If SO_REUSEADDR has been set on the first we send the 6702 * packet to all clients that have joined the group and 6703 * match the port. 6704 */ 6705 6706 while (connp != NULL) { 6707 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6708 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6709 (!is_system_labeled() || 6710 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6711 connp))) 6712 break; 6713 connp = connp->conn_next; 6714 } 6715 6716 if (connp == NULL || connp->conn_upq == NULL) 6717 goto notfound; 6718 6719 first_connp = connp; 6720 /* 6721 * When SO_REUSEADDR is not set, send the packet only to the first 6722 * matching connection in its zone by keeping track of the zoneid. 6723 */ 6724 reuseaddr = first_connp->conn_reuseaddr; 6725 last_zoneid = first_connp->conn_zoneid; 6726 6727 CONN_INC_REF(connp); 6728 connp = connp->conn_next; 6729 for (;;) { 6730 while (connp != NULL) { 6731 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6732 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6733 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6734 (!is_system_labeled() || 6735 tsol_receive_local(mp, &dst, IPV4_VERSION, 6736 shared_addr, connp))) 6737 break; 6738 connp = connp->conn_next; 6739 } 6740 /* 6741 * Just copy the data part alone. The mctl part is 6742 * needed just for verifying policy and it is never 6743 * sent up. 6744 */ 6745 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6746 ((mp1 = copymsg(mp)) == NULL))) { 6747 /* 6748 * No more interested clients or memory 6749 * allocation failed 6750 */ 6751 connp = first_connp; 6752 break; 6753 } 6754 if (connp->conn_zoneid != last_zoneid) { 6755 /* 6756 * Update the zoneid so that the packet isn't sent to 6757 * any more conns in the same zone unless SO_REUSEADDR 6758 * is set. 6759 */ 6760 reuseaddr = connp->conn_reuseaddr; 6761 last_zoneid = connp->conn_zoneid; 6762 } 6763 if (first_mp != NULL) { 6764 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6765 ipsec_info_type == IPSEC_IN); 6766 first_mp1 = ipsec_in_tag(first_mp, NULL); 6767 if (first_mp1 == NULL) { 6768 freemsg(mp1); 6769 connp = first_connp; 6770 break; 6771 } 6772 } else { 6773 first_mp1 = NULL; 6774 } 6775 CONN_INC_REF(connp); 6776 mutex_exit(&connfp->connf_lock); 6777 /* 6778 * IPQoS notes: We don't send the packet for policy 6779 * processing here, will do it for the last one (below). 6780 * i.e. we do it per-packet now, but if we do policy 6781 * processing per-conn, then we would need to do it 6782 * here too. 6783 */ 6784 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6785 ipha, flags, recv_ill, B_FALSE); 6786 mutex_enter(&connfp->connf_lock); 6787 /* Follow the next pointer before releasing the conn. */ 6788 next_connp = connp->conn_next; 6789 IP_STAT(ip_udp_fanmb); 6790 CONN_DEC_REF(connp); 6791 connp = next_connp; 6792 } 6793 6794 /* Last one. Send it upstream. */ 6795 mutex_exit(&connfp->connf_lock); 6796 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6797 ip_policy); 6798 IP_STAT(ip_udp_fanmb); 6799 CONN_DEC_REF(connp); 6800 return; 6801 6802 notfound: 6803 6804 mutex_exit(&connfp->connf_lock); 6805 IP_STAT(ip_udp_fanothers); 6806 /* 6807 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6808 * have already been matched above, since they live in the IPv4 6809 * fanout tables. This implies we only need to 6810 * check for IPv6 in6addr_any endpoints here. 6811 * Thus we compare using ipv6_all_zeros instead of the destination 6812 * address, except for the multicast group membership lookup which 6813 * uses the IPv4 destination. 6814 */ 6815 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6816 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6817 mutex_enter(&connfp->connf_lock); 6818 connp = connfp->connf_head; 6819 if (!broadcast && !CLASSD(dst)) { 6820 while (connp != NULL) { 6821 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6822 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6823 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6824 !connp->conn_ipv6_v6only) 6825 break; 6826 connp = connp->conn_next; 6827 } 6828 6829 if (connp != NULL && is_system_labeled() && 6830 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6831 connp)) 6832 connp = NULL; 6833 6834 if (connp == NULL || connp->conn_upq == NULL) { 6835 /* 6836 * No one bound to this port. Is 6837 * there a client that wants all 6838 * unclaimed datagrams? 6839 */ 6840 mutex_exit(&connfp->connf_lock); 6841 6842 if (mctl_present) 6843 first_mp->b_cont = mp; 6844 else 6845 first_mp = mp; 6846 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6847 ip_fanout_proto(q, first_mp, ill, ipha, 6848 flags | IP_FF_RAWIP, mctl_present, 6849 ip_policy, recv_ill, zoneid); 6850 } else { 6851 if (ip_fanout_send_icmp(q, first_mp, flags, 6852 ICMP_DEST_UNREACHABLE, 6853 ICMP_PORT_UNREACHABLE, 6854 mctl_present, zoneid)) { 6855 BUMP_MIB(&ip_mib, udpNoPorts); 6856 } 6857 } 6858 return; 6859 } 6860 6861 CONN_INC_REF(connp); 6862 mutex_exit(&connfp->connf_lock); 6863 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6864 recv_ill, ip_policy); 6865 CONN_DEC_REF(connp); 6866 return; 6867 } 6868 /* 6869 * IPv4 multicast packet being delivered to an AF_INET6 6870 * in6addr_any endpoint. 6871 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6872 * and not conn_wantpacket_v6() since any multicast membership is 6873 * for an IPv4-mapped multicast address. 6874 * The packet is sent to all clients in all zones that have joined the 6875 * group and match the port. 6876 */ 6877 while (connp != NULL) { 6878 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6879 srcport, v6src) && 6880 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6881 (!is_system_labeled() || 6882 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6883 connp))) 6884 break; 6885 connp = connp->conn_next; 6886 } 6887 6888 if (connp == NULL || connp->conn_upq == NULL) { 6889 /* 6890 * No one bound to this port. Is 6891 * there a client that wants all 6892 * unclaimed datagrams? 6893 */ 6894 mutex_exit(&connfp->connf_lock); 6895 6896 if (mctl_present) 6897 first_mp->b_cont = mp; 6898 else 6899 first_mp = mp; 6900 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6901 ip_fanout_proto(q, first_mp, ill, ipha, 6902 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6903 recv_ill, zoneid); 6904 } else { 6905 /* 6906 * We used to attempt to send an icmp error here, but 6907 * since this is known to be a multicast packet 6908 * and we don't send icmp errors in response to 6909 * multicast, just drop the packet and give up sooner. 6910 */ 6911 BUMP_MIB(&ip_mib, udpNoPorts); 6912 freemsg(first_mp); 6913 } 6914 return; 6915 } 6916 6917 first_connp = connp; 6918 6919 CONN_INC_REF(connp); 6920 connp = connp->conn_next; 6921 for (;;) { 6922 while (connp != NULL) { 6923 if (IPCL_UDP_MATCH_V6(connp, dstport, 6924 ipv6_all_zeros, srcport, v6src) && 6925 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6926 (!is_system_labeled() || 6927 tsol_receive_local(mp, &dst, IPV4_VERSION, 6928 shared_addr, connp))) 6929 break; 6930 connp = connp->conn_next; 6931 } 6932 /* 6933 * Just copy the data part alone. The mctl part is 6934 * needed just for verifying policy and it is never 6935 * sent up. 6936 */ 6937 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6938 ((mp1 = copymsg(mp)) == NULL))) { 6939 /* 6940 * No more intested clients or memory 6941 * allocation failed 6942 */ 6943 connp = first_connp; 6944 break; 6945 } 6946 if (first_mp != NULL) { 6947 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6948 ipsec_info_type == IPSEC_IN); 6949 first_mp1 = ipsec_in_tag(first_mp, NULL); 6950 if (first_mp1 == NULL) { 6951 freemsg(mp1); 6952 connp = first_connp; 6953 break; 6954 } 6955 } else { 6956 first_mp1 = NULL; 6957 } 6958 CONN_INC_REF(connp); 6959 mutex_exit(&connfp->connf_lock); 6960 /* 6961 * IPQoS notes: We don't send the packet for policy 6962 * processing here, will do it for the last one (below). 6963 * i.e. we do it per-packet now, but if we do policy 6964 * processing per-conn, then we would need to do it 6965 * here too. 6966 */ 6967 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6968 ipha, flags, recv_ill, B_FALSE); 6969 mutex_enter(&connfp->connf_lock); 6970 /* Follow the next pointer before releasing the conn. */ 6971 next_connp = connp->conn_next; 6972 CONN_DEC_REF(connp); 6973 connp = next_connp; 6974 } 6975 6976 /* Last one. Send it upstream. */ 6977 mutex_exit(&connfp->connf_lock); 6978 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6979 ip_policy); 6980 CONN_DEC_REF(connp); 6981 } 6982 6983 /* 6984 * Complete the ip_wput header so that it 6985 * is possible to generate ICMP 6986 * errors. 6987 */ 6988 int 6989 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6990 { 6991 ire_t *ire; 6992 6993 if (ipha->ipha_src == INADDR_ANY) { 6994 ire = ire_lookup_local(zoneid); 6995 if (ire == NULL) { 6996 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6997 return (1); 6998 } 6999 ipha->ipha_src = ire->ire_addr; 7000 ire_refrele(ire); 7001 } 7002 ipha->ipha_ttl = ip_def_ttl; 7003 ipha->ipha_hdr_checksum = 0; 7004 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7005 return (0); 7006 } 7007 7008 /* 7009 * Nobody should be sending 7010 * packets up this stream 7011 */ 7012 static void 7013 ip_lrput(queue_t *q, mblk_t *mp) 7014 { 7015 mblk_t *mp1; 7016 7017 switch (mp->b_datap->db_type) { 7018 case M_FLUSH: 7019 /* Turn around */ 7020 if (*mp->b_rptr & FLUSHW) { 7021 *mp->b_rptr &= ~FLUSHR; 7022 qreply(q, mp); 7023 return; 7024 } 7025 break; 7026 } 7027 /* Could receive messages that passed through ar_rput */ 7028 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7029 mp1->b_prev = mp1->b_next = NULL; 7030 freemsg(mp); 7031 } 7032 7033 /* Nobody should be sending packets down this stream */ 7034 /* ARGSUSED */ 7035 void 7036 ip_lwput(queue_t *q, mblk_t *mp) 7037 { 7038 freemsg(mp); 7039 } 7040 7041 /* 7042 * Move the first hop in any source route to ipha_dst and remove that part of 7043 * the source route. Called by other protocols. Errors in option formatting 7044 * are ignored - will be handled by ip_wput_options Return the final 7045 * destination (either ipha_dst or the last entry in a source route.) 7046 */ 7047 ipaddr_t 7048 ip_massage_options(ipha_t *ipha) 7049 { 7050 ipoptp_t opts; 7051 uchar_t *opt; 7052 uint8_t optval; 7053 uint8_t optlen; 7054 ipaddr_t dst; 7055 int i; 7056 ire_t *ire; 7057 7058 ip2dbg(("ip_massage_options\n")); 7059 dst = ipha->ipha_dst; 7060 for (optval = ipoptp_first(&opts, ipha); 7061 optval != IPOPT_EOL; 7062 optval = ipoptp_next(&opts)) { 7063 opt = opts.ipoptp_cur; 7064 switch (optval) { 7065 uint8_t off; 7066 case IPOPT_SSRR: 7067 case IPOPT_LSRR: 7068 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7069 ip1dbg(("ip_massage_options: bad src route\n")); 7070 break; 7071 } 7072 optlen = opts.ipoptp_len; 7073 off = opt[IPOPT_OFFSET]; 7074 off--; 7075 redo_srr: 7076 if (optlen < IP_ADDR_LEN || 7077 off > optlen - IP_ADDR_LEN) { 7078 /* End of source route */ 7079 ip1dbg(("ip_massage_options: end of SR\n")); 7080 break; 7081 } 7082 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7083 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7084 ntohl(dst))); 7085 /* 7086 * Check if our address is present more than 7087 * once as consecutive hops in source route. 7088 * XXX verify per-interface ip_forwarding 7089 * for source route? 7090 */ 7091 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7092 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7093 if (ire != NULL) { 7094 ire_refrele(ire); 7095 off += IP_ADDR_LEN; 7096 goto redo_srr; 7097 } 7098 if (dst == htonl(INADDR_LOOPBACK)) { 7099 ip1dbg(("ip_massage_options: loopback addr in " 7100 "source route!\n")); 7101 break; 7102 } 7103 /* 7104 * Update ipha_dst to be the first hop and remove the 7105 * first hop from the source route (by overwriting 7106 * part of the option with NOP options). 7107 */ 7108 ipha->ipha_dst = dst; 7109 /* Put the last entry in dst */ 7110 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7111 3; 7112 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7113 7114 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7115 ntohl(dst))); 7116 /* Move down and overwrite */ 7117 opt[IP_ADDR_LEN] = opt[0]; 7118 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7119 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7120 for (i = 0; i < IP_ADDR_LEN; i++) 7121 opt[i] = IPOPT_NOP; 7122 break; 7123 } 7124 } 7125 return (dst); 7126 } 7127 7128 /* 7129 * This function's job is to forward data to the reverse tunnel (FA->HA) 7130 * after doing a few checks. It is assumed that the incoming interface 7131 * of the packet is always different than the outgoing interface and the 7132 * ire_type of the found ire has to be a non-resolver type. 7133 * 7134 * IPQoS notes 7135 * IP policy is invoked twice for a forwarded packet, once on the read side 7136 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7137 * enabled. 7138 */ 7139 static void 7140 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7141 { 7142 ipha_t *ipha; 7143 queue_t *q; 7144 uint32_t pkt_len; 7145 #define rptr ((uchar_t *)ipha) 7146 uint32_t sum; 7147 uint32_t max_frag; 7148 mblk_t *first_mp; 7149 uint32_t ill_index; 7150 ipxmit_state_t pktxmit_state; 7151 7152 ASSERT(ire != NULL); 7153 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7154 ASSERT(ire->ire_stq != NULL); 7155 7156 /* Initiate read side IPPF processing */ 7157 if (IPP_ENABLED(IPP_FWD_IN)) { 7158 ill_index = in_ill->ill_phyint->phyint_ifindex; 7159 ip_process(IPP_FWD_IN, &mp, ill_index); 7160 if (mp == NULL) { 7161 ip2dbg(("ip_mrtun_forward: inbound pkt " 7162 "dropped during IPPF processing\n")); 7163 return; 7164 } 7165 } 7166 7167 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7168 ILLF_ROUTER) == 0) || 7169 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7170 BUMP_MIB(&ip_mib, ipForwProhibits); 7171 ip0dbg(("ip_mrtun_forward: Can't forward :" 7172 "forwarding is not turned on\n")); 7173 goto drop_pkt; 7174 } 7175 7176 /* 7177 * Don't forward if the interface is down 7178 */ 7179 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7180 BUMP_MIB(&ip_mib, ipInDiscards); 7181 goto drop_pkt; 7182 } 7183 7184 ipha = (ipha_t *)mp->b_rptr; 7185 pkt_len = ntohs(ipha->ipha_length); 7186 /* Adjust the checksum to reflect the ttl decrement. */ 7187 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7188 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7189 if (ipha->ipha_ttl-- <= 1) { 7190 if (ip_csum_hdr(ipha)) { 7191 BUMP_MIB(&ip_mib, ipInCksumErrs); 7192 goto drop_pkt; 7193 } 7194 q = ire->ire_stq; 7195 if ((first_mp = allocb(sizeof (ipsec_info_t), 7196 BPRI_HI)) == NULL) { 7197 goto drop_pkt; 7198 } 7199 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7200 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 7201 7202 return; 7203 } 7204 7205 /* Get the ill_index of the ILL */ 7206 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7207 7208 /* 7209 * ip_mrtun_forward is only used by foreign agent to reverse 7210 * tunnel the incoming packet. So it does not do any option 7211 * processing for source routing. 7212 */ 7213 max_frag = ire->ire_max_frag; 7214 if (pkt_len > max_frag) { 7215 /* 7216 * It needs fragging on its way out. We haven't 7217 * verified the header checksum yet. Since we 7218 * are going to put a surely good checksum in the 7219 * outgoing header, we have to make sure that it 7220 * was good coming in. 7221 */ 7222 if (ip_csum_hdr(ipha)) { 7223 BUMP_MIB(&ip_mib, ipInCksumErrs); 7224 goto drop_pkt; 7225 } 7226 7227 /* Initiate write side IPPF processing */ 7228 if (IPP_ENABLED(IPP_FWD_OUT)) { 7229 ip_process(IPP_FWD_OUT, &mp, ill_index); 7230 if (mp == NULL) { 7231 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7232 "dropped/deferred during ip policy "\ 7233 "processing\n")); 7234 return; 7235 } 7236 } 7237 if ((first_mp = allocb(sizeof (ipsec_info_t), 7238 BPRI_HI)) == NULL) { 7239 goto drop_pkt; 7240 } 7241 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7242 mp = first_mp; 7243 7244 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 7245 return; 7246 } 7247 7248 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7249 7250 ASSERT(ire->ire_ipif != NULL); 7251 7252 /* Now send the packet to the tunnel interface */ 7253 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7254 q = ire->ire_stq; 7255 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7256 if ((pktxmit_state == SEND_FAILED) || 7257 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7258 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7259 q->q_ptr)); 7260 } 7261 7262 return; 7263 7264 drop_pkt:; 7265 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7266 freemsg(mp); 7267 #undef rptr 7268 } 7269 7270 /* 7271 * Fills the ipsec_out_t data structure with appropriate fields and 7272 * prepends it to mp which contains the IP hdr + data that was meant 7273 * to be forwarded. Please note that ipsec_out_info data structure 7274 * is used here to communicate the outgoing ill path at ip_wput() 7275 * for the ICMP error packet. This has nothing to do with ipsec IP 7276 * security. ipsec_out_t is really used to pass the info to the module 7277 * IP where this information cannot be extracted from conn. 7278 * This functions is called by ip_mrtun_forward(). 7279 */ 7280 void 7281 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7282 { 7283 ipsec_out_t *io; 7284 7285 ASSERT(xmit_ill != NULL); 7286 first_mp->b_datap->db_type = M_CTL; 7287 first_mp->b_wptr += sizeof (ipsec_info_t); 7288 /* 7289 * This is to pass info to ip_wput in absence of conn. 7290 * ipsec_out_secure will be B_FALSE because of this. 7291 * Thus ipsec_out_secure being B_FALSE indicates that 7292 * this is not IPSEC security related information. 7293 */ 7294 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7295 io = (ipsec_out_t *)first_mp->b_rptr; 7296 io->ipsec_out_type = IPSEC_OUT; 7297 io->ipsec_out_len = sizeof (ipsec_out_t); 7298 first_mp->b_cont = mp; 7299 io->ipsec_out_ill_index = 7300 xmit_ill->ill_phyint->phyint_ifindex; 7301 io->ipsec_out_xmit_if = B_TRUE; 7302 } 7303 7304 /* 7305 * Return the network mask 7306 * associated with the specified address. 7307 */ 7308 ipaddr_t 7309 ip_net_mask(ipaddr_t addr) 7310 { 7311 uchar_t *up = (uchar_t *)&addr; 7312 ipaddr_t mask = 0; 7313 uchar_t *maskp = (uchar_t *)&mask; 7314 7315 #if defined(__i386) || defined(__amd64) 7316 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7317 #endif 7318 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7319 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7320 #endif 7321 if (CLASSD(addr)) { 7322 maskp[0] = 0xF0; 7323 return (mask); 7324 } 7325 if (addr == 0) 7326 return (0); 7327 maskp[0] = 0xFF; 7328 if ((up[0] & 0x80) == 0) 7329 return (mask); 7330 7331 maskp[1] = 0xFF; 7332 if ((up[0] & 0xC0) == 0x80) 7333 return (mask); 7334 7335 maskp[2] = 0xFF; 7336 if ((up[0] & 0xE0) == 0xC0) 7337 return (mask); 7338 7339 /* Must be experimental or multicast, indicate as much */ 7340 return ((ipaddr_t)0); 7341 } 7342 7343 /* 7344 * Select an ill for the packet by considering load spreading across 7345 * a different ill in the group if dst_ill is part of some group. 7346 */ 7347 ill_t * 7348 ip_newroute_get_dst_ill(ill_t *dst_ill) 7349 { 7350 ill_t *ill; 7351 7352 /* 7353 * We schedule irrespective of whether the source address is 7354 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7355 */ 7356 ill = illgrp_scheduler(dst_ill); 7357 if (ill == NULL) 7358 return (NULL); 7359 7360 /* 7361 * For groups with names ip_sioctl_groupname ensures that all 7362 * ills are of same type. For groups without names, ifgrp_insert 7363 * ensures this. 7364 */ 7365 ASSERT(dst_ill->ill_type == ill->ill_type); 7366 7367 return (ill); 7368 } 7369 7370 /* 7371 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7372 */ 7373 ill_t * 7374 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7375 { 7376 ill_t *ret_ill; 7377 7378 ASSERT(ifindex != 0); 7379 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7380 if (ret_ill == NULL || 7381 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7382 if (isv6) { 7383 if (ill != NULL) { 7384 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7385 } else { 7386 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7387 } 7388 ip1dbg(("ip_grab_attach_ill (IPv6): " 7389 "bad ifindex %d.\n", ifindex)); 7390 } else { 7391 BUMP_MIB(&ip_mib, ipOutDiscards); 7392 ip1dbg(("ip_grab_attach_ill (IPv4): " 7393 "bad ifindex %d.\n", ifindex)); 7394 } 7395 if (ret_ill != NULL) 7396 ill_refrele(ret_ill); 7397 freemsg(first_mp); 7398 return (NULL); 7399 } 7400 7401 return (ret_ill); 7402 } 7403 7404 /* 7405 * IPv4 - 7406 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7407 * out a packet to a destination address for which we do not have specific 7408 * (or sufficient) routing information. 7409 * 7410 * NOTE : These are the scopes of some of the variables that point at IRE, 7411 * which needs to be followed while making any future modifications 7412 * to avoid memory leaks. 7413 * 7414 * - ire and sire are the entries looked up initially by 7415 * ire_ftable_lookup. 7416 * - ipif_ire is used to hold the interface ire associated with 7417 * the new cache ire. But it's scope is limited, so we always REFRELE 7418 * it before branching out to error paths. 7419 * - save_ire is initialized before ire_create, so that ire returned 7420 * by ire_create will not over-write the ire. We REFRELE save_ire 7421 * before breaking out of the switch. 7422 * 7423 * Thus on failures, we have to REFRELE only ire and sire, if they 7424 * are not NULL. 7425 */ 7426 void 7427 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7428 { 7429 areq_t *areq; 7430 ipaddr_t gw = 0; 7431 ire_t *ire = NULL; 7432 mblk_t *res_mp; 7433 ipaddr_t *addrp; 7434 ipaddr_t nexthop_addr; 7435 ipif_t *src_ipif = NULL; 7436 ill_t *dst_ill = NULL; 7437 ipha_t *ipha; 7438 ire_t *sire = NULL; 7439 mblk_t *first_mp; 7440 ire_t *save_ire; 7441 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7442 ushort_t ire_marks = 0; 7443 boolean_t mctl_present; 7444 ipsec_out_t *io; 7445 mblk_t *saved_mp; 7446 ire_t *first_sire = NULL; 7447 mblk_t *copy_mp = NULL; 7448 mblk_t *xmit_mp = NULL; 7449 ipaddr_t save_dst; 7450 uint32_t multirt_flags = 7451 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7452 boolean_t multirt_is_resolvable; 7453 boolean_t multirt_resolve_next; 7454 boolean_t do_attach_ill = B_FALSE; 7455 boolean_t ip_nexthop = B_FALSE; 7456 zoneid_t zoneid; 7457 tsol_ire_gw_secattr_t *attrp = NULL; 7458 tsol_gcgrp_t *gcgrp = NULL; 7459 tsol_gcgrp_addr_t ga; 7460 7461 if (ip_debug > 2) { 7462 /* ip1dbg */ 7463 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7464 } 7465 7466 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7467 if (mctl_present) { 7468 io = (ipsec_out_t *)first_mp->b_rptr; 7469 zoneid = io->ipsec_out_zoneid; 7470 ASSERT(zoneid != ALL_ZONES); 7471 } else if (connp != NULL) { 7472 zoneid = connp->conn_zoneid; 7473 } else { 7474 zoneid = GLOBAL_ZONEID; 7475 } 7476 7477 ipha = (ipha_t *)mp->b_rptr; 7478 7479 /* All multicast lookups come through ip_newroute_ipif() */ 7480 if (CLASSD(dst)) { 7481 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7482 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7483 freemsg(first_mp); 7484 return; 7485 } 7486 7487 if (mctl_present && io->ipsec_out_attach_if) { 7488 /* ip_grab_attach_ill returns a held ill */ 7489 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7490 io->ipsec_out_ill_index, B_FALSE); 7491 7492 /* Failure case frees things for us. */ 7493 if (attach_ill == NULL) 7494 return; 7495 7496 /* 7497 * Check if we need an ire that will not be 7498 * looked up by anybody else i.e. HIDDEN. 7499 */ 7500 if (ill_is_probeonly(attach_ill)) 7501 ire_marks = IRE_MARK_HIDDEN; 7502 } 7503 if (mctl_present && io->ipsec_out_ip_nexthop) { 7504 ip_nexthop = B_TRUE; 7505 nexthop_addr = io->ipsec_out_nexthop_addr; 7506 } 7507 /* 7508 * If this IRE is created for forwarding or it is not for 7509 * traffic for congestion controlled protocols, mark it as temporary. 7510 */ 7511 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7512 ire_marks |= IRE_MARK_TEMPORARY; 7513 7514 /* 7515 * Get what we can from ire_ftable_lookup which will follow an IRE 7516 * chain until it gets the most specific information available. 7517 * For example, we know that there is no IRE_CACHE for this dest, 7518 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7519 * ire_ftable_lookup will look up the gateway, etc. 7520 * Check if in_ill != NULL. If it is true, the packet must be 7521 * from an incoming interface where RTA_SRCIFP is set. 7522 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7523 * to the destination, of equal netmask length in the forward table, 7524 * will be recursively explored. If no information is available 7525 * for the final gateway of that route, we force the returned ire 7526 * to be equal to sire using MATCH_IRE_PARENT. 7527 * At least, in this case we have a starting point (in the buckets) 7528 * to look for other routes to the destination in the forward table. 7529 * This is actually used only for multirouting, where a list 7530 * of routes has to be processed in sequence. 7531 * 7532 * In the process of coming up with the most specific information, 7533 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7534 * for the gateway (i.e., one for which the ire_nce->nce_state is 7535 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7536 * Two caveats when handling incomplete ire's in ip_newroute: 7537 * - we should be careful when accessing its ire_nce (specifically 7538 * the nce_res_mp) ast it might change underneath our feet, and, 7539 * - not all legacy code path callers are prepared to handle 7540 * incomplete ire's, so we should not create/add incomplete 7541 * ire_cache entries here. (See discussion about temporary solution 7542 * further below). 7543 * 7544 * In order to minimize packet dropping, and to preserve existing 7545 * behavior, we treat this case as if there were no IRE_CACHE for the 7546 * gateway, and instead use the IF_RESOLVER ire to send out 7547 * another request to ARP (this is achieved by passing the 7548 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7549 * arp response comes back in ip_wput_nondata, we will create 7550 * a per-dst ire_cache that has an ND_COMPLETE ire. 7551 * 7552 * Note that this is a temporary solution; the correct solution is 7553 * to create an incomplete per-dst ire_cache entry, and send the 7554 * packet out when the gw's nce is resolved. In order to achieve this, 7555 * all packet processing must have been completed prior to calling 7556 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7557 * to be modified to accomodate this solution. 7558 */ 7559 if (in_ill != NULL) { 7560 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7561 in_ill, MATCH_IRE_TYPE); 7562 } else if (ip_nexthop) { 7563 /* 7564 * The first time we come here, we look for an IRE_INTERFACE 7565 * entry for the specified nexthop, set the dst to be the 7566 * nexthop address and create an IRE_CACHE entry for the 7567 * nexthop. The next time around, we are able to find an 7568 * IRE_CACHE entry for the nexthop, set the gateway to be the 7569 * nexthop address and create an IRE_CACHE entry for the 7570 * destination address via the specified nexthop. 7571 */ 7572 ire = ire_cache_lookup(nexthop_addr, zoneid, 7573 MBLK_GETLABEL(mp)); 7574 if (ire != NULL) { 7575 gw = nexthop_addr; 7576 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7577 } else { 7578 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7579 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7580 MBLK_GETLABEL(mp), 7581 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7582 if (ire != NULL) { 7583 dst = nexthop_addr; 7584 } 7585 } 7586 } else if (attach_ill == NULL) { 7587 ire = ire_ftable_lookup(dst, 0, 0, 0, 7588 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7589 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7590 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7591 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7592 } else { 7593 /* 7594 * attach_ill is set only for communicating with 7595 * on-link hosts. So, don't look for DEFAULT. 7596 */ 7597 ipif_t *attach_ipif; 7598 7599 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7600 if (attach_ipif == NULL) { 7601 ill_refrele(attach_ill); 7602 goto icmp_err_ret; 7603 } 7604 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7605 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7606 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7607 MATCH_IRE_SECATTR); 7608 ipif_refrele(attach_ipif); 7609 } 7610 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7611 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7612 7613 /* 7614 * This loop is run only once in most cases. 7615 * We loop to resolve further routes only when the destination 7616 * can be reached through multiple RTF_MULTIRT-flagged ires. 7617 */ 7618 do { 7619 /* Clear the previous iteration's values */ 7620 if (src_ipif != NULL) { 7621 ipif_refrele(src_ipif); 7622 src_ipif = NULL; 7623 } 7624 if (dst_ill != NULL) { 7625 ill_refrele(dst_ill); 7626 dst_ill = NULL; 7627 } 7628 7629 multirt_resolve_next = B_FALSE; 7630 /* 7631 * We check if packets have to be multirouted. 7632 * In this case, given the current <ire, sire> couple, 7633 * we look for the next suitable <ire, sire>. 7634 * This check is done in ire_multirt_lookup(), 7635 * which applies various criteria to find the next route 7636 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7637 * unchanged if it detects it has not been tried yet. 7638 */ 7639 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7640 ip3dbg(("ip_newroute: starting next_resolution " 7641 "with first_mp %p, tag %d\n", 7642 (void *)first_mp, 7643 MULTIRT_DEBUG_TAGGED(first_mp))); 7644 7645 ASSERT(sire != NULL); 7646 multirt_is_resolvable = 7647 ire_multirt_lookup(&ire, &sire, multirt_flags, 7648 MBLK_GETLABEL(mp)); 7649 7650 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7651 "ire %p, sire %p\n", 7652 multirt_is_resolvable, 7653 (void *)ire, (void *)sire)); 7654 7655 if (!multirt_is_resolvable) { 7656 /* 7657 * No more multirt route to resolve; give up 7658 * (all routes resolved or no more 7659 * resolvable routes). 7660 */ 7661 if (ire != NULL) { 7662 ire_refrele(ire); 7663 ire = NULL; 7664 } 7665 } else { 7666 ASSERT(sire != NULL); 7667 ASSERT(ire != NULL); 7668 /* 7669 * We simply use first_sire as a flag that 7670 * indicates if a resolvable multirt route 7671 * has already been found. 7672 * If it is not the case, we may have to send 7673 * an ICMP error to report that the 7674 * destination is unreachable. 7675 * We do not IRE_REFHOLD first_sire. 7676 */ 7677 if (first_sire == NULL) { 7678 first_sire = sire; 7679 } 7680 } 7681 } 7682 if (ire == NULL) { 7683 if (ip_debug > 3) { 7684 /* ip2dbg */ 7685 pr_addr_dbg("ip_newroute: " 7686 "can't resolve %s\n", AF_INET, &dst); 7687 } 7688 ip3dbg(("ip_newroute: " 7689 "ire %p, sire %p, first_sire %p\n", 7690 (void *)ire, (void *)sire, (void *)first_sire)); 7691 7692 if (sire != NULL) { 7693 ire_refrele(sire); 7694 sire = NULL; 7695 } 7696 7697 if (first_sire != NULL) { 7698 /* 7699 * At least one multirt route has been found 7700 * in the same call to ip_newroute(); 7701 * there is no need to report an ICMP error. 7702 * first_sire was not IRE_REFHOLDed. 7703 */ 7704 MULTIRT_DEBUG_UNTAG(first_mp); 7705 freemsg(first_mp); 7706 return; 7707 } 7708 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7709 RTA_DST); 7710 if (attach_ill != NULL) 7711 ill_refrele(attach_ill); 7712 goto icmp_err_ret; 7713 } 7714 7715 /* 7716 * When RTA_SRCIFP is used to add a route, then an interface 7717 * route is added in the source interface's routing table. 7718 * If the outgoing interface of this route is of type 7719 * IRE_IF_RESOLVER, then upon creation of the ire, 7720 * ire_nce->nce_res_mp is set to NULL. 7721 * Later, when this route is first used for forwarding 7722 * a packet, ip_newroute() is called 7723 * to resolve the hardware address of the outgoing ipif. 7724 * We do not come here for IRE_IF_NORESOLVER entries in the 7725 * source interface based table. We only come here if the 7726 * outgoing interface is a resolver interface and we don't 7727 * have the ire_nce->nce_res_mp information yet. 7728 * If in_ill is not null that means it is called from 7729 * ip_rput. 7730 */ 7731 7732 ASSERT(ire->ire_in_ill == NULL || 7733 (ire->ire_type == IRE_IF_RESOLVER && 7734 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7735 7736 /* 7737 * Verify that the returned IRE does not have either 7738 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7739 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7740 */ 7741 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7742 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7743 if (attach_ill != NULL) 7744 ill_refrele(attach_ill); 7745 goto icmp_err_ret; 7746 } 7747 /* 7748 * Increment the ire_ob_pkt_count field for ire if it is an 7749 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7750 * increment the same for the parent IRE, sire, if it is some 7751 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7752 * and HOST_REDIRECT). 7753 */ 7754 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7755 UPDATE_OB_PKT_COUNT(ire); 7756 ire->ire_last_used_time = lbolt; 7757 } 7758 7759 if (sire != NULL) { 7760 gw = sire->ire_gateway_addr; 7761 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7762 IRE_INTERFACE)) == 0); 7763 UPDATE_OB_PKT_COUNT(sire); 7764 sire->ire_last_used_time = lbolt; 7765 } 7766 /* 7767 * We have a route to reach the destination. 7768 * 7769 * 1) If the interface is part of ill group, try to get a new 7770 * ill taking load spreading into account. 7771 * 7772 * 2) After selecting the ill, get a source address that 7773 * might create good inbound load spreading. 7774 * ipif_select_source does this for us. 7775 * 7776 * If the application specified the ill (ifindex), we still 7777 * load spread. Only if the packets needs to go out 7778 * specifically on a given ill e.g. binding to 7779 * IPIF_NOFAILOVER address, then we don't try to use a 7780 * different ill for load spreading. 7781 */ 7782 if (attach_ill == NULL) { 7783 /* 7784 * Don't perform outbound load spreading in the 7785 * case of an RTF_MULTIRT route, as we actually 7786 * typically want to replicate outgoing packets 7787 * through particular interfaces. 7788 */ 7789 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7790 dst_ill = ire->ire_ipif->ipif_ill; 7791 /* for uniformity */ 7792 ill_refhold(dst_ill); 7793 } else { 7794 /* 7795 * If we are here trying to create an IRE_CACHE 7796 * for an offlink destination and have the 7797 * IRE_CACHE for the next hop and the latter is 7798 * using virtual IP source address selection i.e 7799 * it's ire->ire_ipif is pointing to a virtual 7800 * network interface (vni) then 7801 * ip_newroute_get_dst_ll() will return the vni 7802 * interface as the dst_ill. Since the vni is 7803 * virtual i.e not associated with any physical 7804 * interface, it cannot be the dst_ill, hence 7805 * in such a case call ip_newroute_get_dst_ll() 7806 * with the stq_ill instead of the ire_ipif ILL. 7807 * The function returns a refheld ill. 7808 */ 7809 if ((ire->ire_type == IRE_CACHE) && 7810 IS_VNI(ire->ire_ipif->ipif_ill)) 7811 dst_ill = ip_newroute_get_dst_ill( 7812 ire->ire_stq->q_ptr); 7813 else 7814 dst_ill = ip_newroute_get_dst_ill( 7815 ire->ire_ipif->ipif_ill); 7816 } 7817 if (dst_ill == NULL) { 7818 if (ip_debug > 2) { 7819 pr_addr_dbg("ip_newroute: " 7820 "no dst ill for dst" 7821 " %s\n", AF_INET, &dst); 7822 } 7823 goto icmp_err_ret; 7824 } 7825 } else { 7826 dst_ill = ire->ire_ipif->ipif_ill; 7827 /* for uniformity */ 7828 ill_refhold(dst_ill); 7829 /* 7830 * We should have found a route matching ill as we 7831 * called ire_ftable_lookup with MATCH_IRE_ILL. 7832 * Rather than asserting, when there is a mismatch, 7833 * we just drop the packet. 7834 */ 7835 if (dst_ill != attach_ill) { 7836 ip0dbg(("ip_newroute: Packet dropped as " 7837 "IPIF_NOFAILOVER ill is %s, " 7838 "ire->ire_ipif->ipif_ill is %s\n", 7839 attach_ill->ill_name, 7840 dst_ill->ill_name)); 7841 ill_refrele(attach_ill); 7842 goto icmp_err_ret; 7843 } 7844 } 7845 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7846 if (attach_ill != NULL) { 7847 ill_refrele(attach_ill); 7848 attach_ill = NULL; 7849 do_attach_ill = B_TRUE; 7850 } 7851 ASSERT(dst_ill != NULL); 7852 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7853 7854 /* 7855 * Pick the best source address from dst_ill. 7856 * 7857 * 1) If it is part of a multipathing group, we would 7858 * like to spread the inbound packets across different 7859 * interfaces. ipif_select_source picks a random source 7860 * across the different ills in the group. 7861 * 7862 * 2) If it is not part of a multipathing group, we try 7863 * to pick the source address from the destination 7864 * route. Clustering assumes that when we have multiple 7865 * prefixes hosted on an interface, the prefix of the 7866 * source address matches the prefix of the destination 7867 * route. We do this only if the address is not 7868 * DEPRECATED. 7869 * 7870 * 3) If the conn is in a different zone than the ire, we 7871 * need to pick a source address from the right zone. 7872 * 7873 * NOTE : If we hit case (1) above, the prefix of the source 7874 * address picked may not match the prefix of the 7875 * destination routes prefix as ipif_select_source 7876 * does not look at "dst" while picking a source 7877 * address. 7878 * If we want the same behavior as (2), we will need 7879 * to change the behavior of ipif_select_source. 7880 */ 7881 ASSERT(src_ipif == NULL); 7882 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7883 /* 7884 * The RTF_SETSRC flag is set in the parent ire (sire). 7885 * Check that the ipif matching the requested source 7886 * address still exists. 7887 */ 7888 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7889 zoneid, NULL, NULL, NULL, NULL); 7890 } 7891 if (src_ipif == NULL) { 7892 ire_marks |= IRE_MARK_USESRC_CHECK; 7893 if ((dst_ill->ill_group != NULL) || 7894 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7895 (connp != NULL && ire->ire_zoneid != zoneid && 7896 ire->ire_zoneid != ALL_ZONES) || 7897 (dst_ill->ill_usesrc_ifindex != 0)) { 7898 /* 7899 * If the destination is reachable via a 7900 * given gateway, the selected source address 7901 * should be in the same subnet as the gateway. 7902 * Otherwise, the destination is not reachable. 7903 * 7904 * If there are no interfaces on the same subnet 7905 * as the destination, ipif_select_source gives 7906 * first non-deprecated interface which might be 7907 * on a different subnet than the gateway. 7908 * This is not desirable. Hence pass the dst_ire 7909 * source address to ipif_select_source. 7910 * It is sure that the destination is reachable 7911 * with the dst_ire source address subnet. 7912 * So passing dst_ire source address to 7913 * ipif_select_source will make sure that the 7914 * selected source will be on the same subnet 7915 * as dst_ire source address. 7916 */ 7917 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7918 src_ipif = ipif_select_source(dst_ill, saddr, 7919 zoneid); 7920 if (src_ipif == NULL) { 7921 if (ip_debug > 2) { 7922 pr_addr_dbg("ip_newroute: " 7923 "no src for dst %s ", 7924 AF_INET, &dst); 7925 printf("through interface %s\n", 7926 dst_ill->ill_name); 7927 } 7928 goto icmp_err_ret; 7929 } 7930 } else { 7931 src_ipif = ire->ire_ipif; 7932 ASSERT(src_ipif != NULL); 7933 /* hold src_ipif for uniformity */ 7934 ipif_refhold(src_ipif); 7935 } 7936 } 7937 7938 /* 7939 * Assign a source address while we have the conn. 7940 * We can't have ip_wput_ire pick a source address when the 7941 * packet returns from arp since we need to look at 7942 * conn_unspec_src and conn_zoneid, and we lose the conn when 7943 * going through arp. 7944 * 7945 * NOTE : ip_newroute_v6 does not have this piece of code as 7946 * it uses ip6i to store this information. 7947 */ 7948 if (ipha->ipha_src == INADDR_ANY && 7949 (connp == NULL || !connp->conn_unspec_src)) { 7950 ipha->ipha_src = src_ipif->ipif_src_addr; 7951 } 7952 if (ip_debug > 3) { 7953 /* ip2dbg */ 7954 pr_addr_dbg("ip_newroute: first hop %s\n", 7955 AF_INET, &gw); 7956 } 7957 ip2dbg(("\tire type %s (%d)\n", 7958 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7959 7960 /* 7961 * The TTL of multirouted packets is bounded by the 7962 * ip_multirt_ttl ndd variable. 7963 */ 7964 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7965 /* Force TTL of multirouted packets */ 7966 if ((ip_multirt_ttl > 0) && 7967 (ipha->ipha_ttl > ip_multirt_ttl)) { 7968 ip2dbg(("ip_newroute: forcing multirt TTL " 7969 "to %d (was %d), dst 0x%08x\n", 7970 ip_multirt_ttl, ipha->ipha_ttl, 7971 ntohl(sire->ire_addr))); 7972 ipha->ipha_ttl = ip_multirt_ttl; 7973 } 7974 } 7975 /* 7976 * At this point in ip_newroute(), ire is either the 7977 * IRE_CACHE of the next-hop gateway for an off-subnet 7978 * destination or an IRE_INTERFACE type that should be used 7979 * to resolve an on-subnet destination or an on-subnet 7980 * next-hop gateway. 7981 * 7982 * In the IRE_CACHE case, we have the following : 7983 * 7984 * 1) src_ipif - used for getting a source address. 7985 * 7986 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7987 * means packets using this IRE_CACHE will go out on 7988 * dst_ill. 7989 * 7990 * 3) The IRE sire will point to the prefix that is the 7991 * longest matching route for the destination. These 7992 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7993 * and IRE_HOST_REDIRECT. 7994 * 7995 * The newly created IRE_CACHE entry for the off-subnet 7996 * destination is tied to both the prefix route and the 7997 * interface route used to resolve the next-hop gateway 7998 * via the ire_phandle and ire_ihandle fields, 7999 * respectively. 8000 * 8001 * In the IRE_INTERFACE case, we have the following : 8002 * 8003 * 1) src_ipif - used for getting a source address. 8004 * 8005 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8006 * means packets using the IRE_CACHE that we will build 8007 * here will go out on dst_ill. 8008 * 8009 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8010 * to be created will only be tied to the IRE_INTERFACE 8011 * that was derived from the ire_ihandle field. 8012 * 8013 * If sire is non-NULL, it means the destination is 8014 * off-link and we will first create the IRE_CACHE for the 8015 * gateway. Next time through ip_newroute, we will create 8016 * the IRE_CACHE for the final destination as described 8017 * above. 8018 * 8019 * In both cases, after the current resolution has been 8020 * completed (or possibly initialised, in the IRE_INTERFACE 8021 * case), the loop may be re-entered to attempt the resolution 8022 * of another RTF_MULTIRT route. 8023 * 8024 * When an IRE_CACHE entry for the off-subnet destination is 8025 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8026 * for further processing in emission loops. 8027 */ 8028 save_ire = ire; 8029 switch (ire->ire_type) { 8030 case IRE_CACHE: { 8031 ire_t *ipif_ire; 8032 mblk_t *ire_fp_mp; 8033 8034 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8035 if (gw == 0) 8036 gw = ire->ire_gateway_addr; 8037 /* 8038 * We need 3 ire's to create a new cache ire for an 8039 * off-link destination from the cache ire of the 8040 * gateway. 8041 * 8042 * 1. The prefix ire 'sire' (Note that this does 8043 * not apply to the conn_nexthop_set case) 8044 * 2. The cache ire of the gateway 'ire' 8045 * 3. The interface ire 'ipif_ire' 8046 * 8047 * We have (1) and (2). We lookup (3) below. 8048 * 8049 * If there is no interface route to the gateway, 8050 * it is a race condition, where we found the cache 8051 * but the interface route has been deleted. 8052 */ 8053 if (ip_nexthop) { 8054 ipif_ire = ire_ihandle_lookup_onlink(ire); 8055 } else { 8056 ipif_ire = 8057 ire_ihandle_lookup_offlink(ire, sire); 8058 } 8059 if (ipif_ire == NULL) { 8060 ip1dbg(("ip_newroute: " 8061 "ire_ihandle_lookup_offlink failed\n")); 8062 goto icmp_err_ret; 8063 } 8064 /* 8065 * XXX We are using the same res_mp 8066 * (DL_UNITDATA_REQ) though the save_ire is not 8067 * pointing at the same ill. 8068 * This is incorrect. We need to send it up to the 8069 * resolver to get the right res_mp. For ethernets 8070 * this may be okay (ill_type == DL_ETHER). 8071 */ 8072 res_mp = save_ire->ire_nce->nce_res_mp; 8073 ire_fp_mp = NULL; 8074 /* 8075 * save_ire's nce_fp_mp can't change since it is 8076 * not an IRE_MIPRTUN or IRE_BROADCAST 8077 * LOCK_IRE_FP_MP does not do any useful work in 8078 * the case of IRE_CACHE. So we don't use it below. 8079 */ 8080 if (save_ire->ire_stq == dst_ill->ill_wq) 8081 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8082 8083 /* 8084 * Check cached gateway IRE for any security 8085 * attributes; if found, associate the gateway 8086 * credentials group to the destination IRE. 8087 */ 8088 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8089 mutex_enter(&attrp->igsa_lock); 8090 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8091 GCGRP_REFHOLD(gcgrp); 8092 mutex_exit(&attrp->igsa_lock); 8093 } 8094 8095 ire = ire_create( 8096 (uchar_t *)&dst, /* dest address */ 8097 (uchar_t *)&ip_g_all_ones, /* mask */ 8098 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8099 (uchar_t *)&gw, /* gateway address */ 8100 NULL, 8101 &save_ire->ire_max_frag, 8102 ire_fp_mp, /* Fast Path header */ 8103 dst_ill->ill_rq, /* recv-from queue */ 8104 dst_ill->ill_wq, /* send-to queue */ 8105 IRE_CACHE, /* IRE type */ 8106 res_mp, 8107 src_ipif, 8108 in_ill, /* incoming ill */ 8109 (sire != NULL) ? 8110 sire->ire_mask : 0, /* Parent mask */ 8111 (sire != NULL) ? 8112 sire->ire_phandle : 0, /* Parent handle */ 8113 ipif_ire->ire_ihandle, /* Interface handle */ 8114 (sire != NULL) ? (sire->ire_flags & 8115 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8116 (sire != NULL) ? 8117 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8118 NULL, 8119 gcgrp); 8120 8121 if (ire == NULL) { 8122 if (gcgrp != NULL) { 8123 GCGRP_REFRELE(gcgrp); 8124 gcgrp = NULL; 8125 } 8126 ire_refrele(ipif_ire); 8127 ire_refrele(save_ire); 8128 break; 8129 } 8130 8131 /* reference now held by IRE */ 8132 gcgrp = NULL; 8133 8134 ire->ire_marks |= ire_marks; 8135 8136 /* 8137 * Prevent sire and ipif_ire from getting deleted. 8138 * The newly created ire is tied to both of them via 8139 * the phandle and ihandle respectively. 8140 */ 8141 if (sire != NULL) { 8142 IRB_REFHOLD(sire->ire_bucket); 8143 /* Has it been removed already ? */ 8144 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8145 IRB_REFRELE(sire->ire_bucket); 8146 ire_refrele(ipif_ire); 8147 ire_refrele(save_ire); 8148 break; 8149 } 8150 } 8151 8152 IRB_REFHOLD(ipif_ire->ire_bucket); 8153 /* Has it been removed already ? */ 8154 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8155 IRB_REFRELE(ipif_ire->ire_bucket); 8156 if (sire != NULL) 8157 IRB_REFRELE(sire->ire_bucket); 8158 ire_refrele(ipif_ire); 8159 ire_refrele(save_ire); 8160 break; 8161 } 8162 8163 xmit_mp = first_mp; 8164 /* 8165 * In the case of multirouting, a copy 8166 * of the packet is done before its sending. 8167 * The copy is used to attempt another 8168 * route resolution, in a next loop. 8169 */ 8170 if (ire->ire_flags & RTF_MULTIRT) { 8171 copy_mp = copymsg(first_mp); 8172 if (copy_mp != NULL) { 8173 xmit_mp = copy_mp; 8174 MULTIRT_DEBUG_TAG(first_mp); 8175 } 8176 } 8177 ire_add_then_send(q, ire, xmit_mp); 8178 ire_refrele(save_ire); 8179 8180 /* Assert that sire is not deleted yet. */ 8181 if (sire != NULL) { 8182 ASSERT(sire->ire_ptpn != NULL); 8183 IRB_REFRELE(sire->ire_bucket); 8184 } 8185 8186 /* Assert that ipif_ire is not deleted yet. */ 8187 ASSERT(ipif_ire->ire_ptpn != NULL); 8188 IRB_REFRELE(ipif_ire->ire_bucket); 8189 ire_refrele(ipif_ire); 8190 8191 /* 8192 * If copy_mp is not NULL, multirouting was 8193 * requested. We loop to initiate a next 8194 * route resolution attempt, starting from sire. 8195 */ 8196 if (copy_mp != NULL) { 8197 /* 8198 * Search for the next unresolved 8199 * multirt route. 8200 */ 8201 copy_mp = NULL; 8202 ipif_ire = NULL; 8203 ire = NULL; 8204 multirt_resolve_next = B_TRUE; 8205 continue; 8206 } 8207 if (sire != NULL) 8208 ire_refrele(sire); 8209 ipif_refrele(src_ipif); 8210 ill_refrele(dst_ill); 8211 return; 8212 } 8213 case IRE_IF_NORESOLVER: { 8214 /* 8215 * We have what we need to build an IRE_CACHE. 8216 * 8217 * Create a new res_mp with the IP gateway address 8218 * in destination address in the DLPI hdr if the 8219 * physical length is exactly 4 bytes. 8220 */ 8221 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8222 uchar_t *addr; 8223 8224 if (gw) 8225 addr = (uchar_t *)&gw; 8226 else 8227 addr = (uchar_t *)&dst; 8228 8229 res_mp = ill_dlur_gen(addr, 8230 dst_ill->ill_phys_addr_length, 8231 dst_ill->ill_sap, 8232 dst_ill->ill_sap_length); 8233 8234 if (res_mp == NULL) { 8235 ip1dbg(("ip_newroute: res_mp NULL\n")); 8236 break; 8237 } 8238 } else { 8239 res_mp = NULL; 8240 } 8241 8242 /* 8243 * TSol note: We are creating the ire cache for the 8244 * destination 'dst'. If 'dst' is offlink, going 8245 * through the first hop 'gw', the security attributes 8246 * of 'dst' must be set to point to the gateway 8247 * credentials of gateway 'gw'. If 'dst' is onlink, it 8248 * is possible that 'dst' is a potential gateway that is 8249 * referenced by some route that has some security 8250 * attributes. Thus in the former case, we need to do a 8251 * gcgrp_lookup of 'gw' while in the latter case we 8252 * need to do gcgrp_lookup of 'dst' itself. 8253 */ 8254 ga.ga_af = AF_INET; 8255 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8256 &ga.ga_addr); 8257 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8258 8259 ire = ire_create( 8260 (uchar_t *)&dst, /* dest address */ 8261 (uchar_t *)&ip_g_all_ones, /* mask */ 8262 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8263 (uchar_t *)&gw, /* gateway address */ 8264 NULL, 8265 &save_ire->ire_max_frag, 8266 NULL, /* Fast Path header */ 8267 dst_ill->ill_rq, /* recv-from queue */ 8268 dst_ill->ill_wq, /* send-to queue */ 8269 IRE_CACHE, 8270 res_mp, 8271 src_ipif, 8272 in_ill, /* Incoming ill */ 8273 save_ire->ire_mask, /* Parent mask */ 8274 (sire != NULL) ? /* Parent handle */ 8275 sire->ire_phandle : 0, 8276 save_ire->ire_ihandle, /* Interface handle */ 8277 (sire != NULL) ? sire->ire_flags & 8278 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8279 &(save_ire->ire_uinfo), 8280 NULL, 8281 gcgrp); 8282 8283 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8284 freeb(res_mp); 8285 8286 if (ire == NULL) { 8287 if (gcgrp != NULL) { 8288 GCGRP_REFRELE(gcgrp); 8289 gcgrp = NULL; 8290 } 8291 ire_refrele(save_ire); 8292 break; 8293 } 8294 8295 /* reference now held by IRE */ 8296 gcgrp = NULL; 8297 8298 ire->ire_marks |= ire_marks; 8299 8300 /* Prevent save_ire from getting deleted */ 8301 IRB_REFHOLD(save_ire->ire_bucket); 8302 /* Has it been removed already ? */ 8303 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8304 IRB_REFRELE(save_ire->ire_bucket); 8305 ire_refrele(save_ire); 8306 break; 8307 } 8308 8309 /* 8310 * In the case of multirouting, a copy 8311 * of the packet is made before it is sent. 8312 * The copy is used in the next 8313 * loop to attempt another resolution. 8314 */ 8315 xmit_mp = first_mp; 8316 if ((sire != NULL) && 8317 (sire->ire_flags & RTF_MULTIRT)) { 8318 copy_mp = copymsg(first_mp); 8319 if (copy_mp != NULL) { 8320 xmit_mp = copy_mp; 8321 MULTIRT_DEBUG_TAG(first_mp); 8322 } 8323 } 8324 ire_add_then_send(q, ire, xmit_mp); 8325 8326 /* Assert that it is not deleted yet. */ 8327 ASSERT(save_ire->ire_ptpn != NULL); 8328 IRB_REFRELE(save_ire->ire_bucket); 8329 ire_refrele(save_ire); 8330 8331 if (copy_mp != NULL) { 8332 /* 8333 * If we found a (no)resolver, we ignore any 8334 * trailing top priority IRE_CACHE in further 8335 * loops. This ensures that we do not omit any 8336 * (no)resolver. 8337 * This IRE_CACHE, if any, will be processed 8338 * by another thread entering ip_newroute(). 8339 * IRE_CACHE entries, if any, will be processed 8340 * by another thread entering ip_newroute(), 8341 * (upon resolver response, for instance). 8342 * This aims to force parallel multirt 8343 * resolutions as soon as a packet must be sent. 8344 * In the best case, after the tx of only one 8345 * packet, all reachable routes are resolved. 8346 * Otherwise, the resolution of all RTF_MULTIRT 8347 * routes would require several emissions. 8348 */ 8349 multirt_flags &= ~MULTIRT_CACHEGW; 8350 8351 /* 8352 * Search for the next unresolved multirt 8353 * route. 8354 */ 8355 copy_mp = NULL; 8356 save_ire = NULL; 8357 ire = NULL; 8358 multirt_resolve_next = B_TRUE; 8359 continue; 8360 } 8361 8362 /* 8363 * Don't need sire anymore 8364 */ 8365 if (sire != NULL) 8366 ire_refrele(sire); 8367 8368 ipif_refrele(src_ipif); 8369 ill_refrele(dst_ill); 8370 return; 8371 } 8372 case IRE_IF_RESOLVER: 8373 /* 8374 * We can't build an IRE_CACHE yet, but at least we 8375 * found a resolver that can help. 8376 */ 8377 res_mp = dst_ill->ill_resolver_mp; 8378 if (!OK_RESOLVER_MP(res_mp)) 8379 break; 8380 8381 /* 8382 * To be at this point in the code with a non-zero gw 8383 * means that dst is reachable through a gateway that 8384 * we have never resolved. By changing dst to the gw 8385 * addr we resolve the gateway first. 8386 * When ire_add_then_send() tries to put the IP dg 8387 * to dst, it will reenter ip_newroute() at which 8388 * time we will find the IRE_CACHE for the gw and 8389 * create another IRE_CACHE in case IRE_CACHE above. 8390 */ 8391 if (gw != INADDR_ANY) { 8392 /* 8393 * The source ipif that was determined above was 8394 * relative to the destination address, not the 8395 * gateway's. If src_ipif was not taken out of 8396 * the IRE_IF_RESOLVER entry, we'll need to call 8397 * ipif_select_source() again. 8398 */ 8399 if (src_ipif != ire->ire_ipif) { 8400 ipif_refrele(src_ipif); 8401 src_ipif = ipif_select_source(dst_ill, 8402 gw, zoneid); 8403 if (src_ipif == NULL) { 8404 if (ip_debug > 2) { 8405 pr_addr_dbg( 8406 "ip_newroute: no " 8407 "src for gw %s ", 8408 AF_INET, &gw); 8409 printf("through " 8410 "interface %s\n", 8411 dst_ill->ill_name); 8412 } 8413 goto icmp_err_ret; 8414 } 8415 } 8416 save_dst = dst; 8417 dst = gw; 8418 gw = INADDR_ANY; 8419 } 8420 8421 /* 8422 * We obtain a partial IRE_CACHE which we will pass 8423 * along with the resolver query. When the response 8424 * comes back it will be there ready for us to add. 8425 * The ire_max_frag is atomically set under the 8426 * irebucket lock in ire_add_v[46]. 8427 */ 8428 8429 ire = ire_create_mp( 8430 (uchar_t *)&dst, /* dest address */ 8431 (uchar_t *)&ip_g_all_ones, /* mask */ 8432 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8433 (uchar_t *)&gw, /* gateway address */ 8434 NULL, /* no in_src_addr */ 8435 NULL, /* ire_max_frag */ 8436 NULL, /* Fast Path header */ 8437 dst_ill->ill_rq, /* recv-from queue */ 8438 dst_ill->ill_wq, /* send-to queue */ 8439 IRE_CACHE, 8440 NULL, 8441 src_ipif, /* Interface ipif */ 8442 in_ill, /* Incoming ILL */ 8443 save_ire->ire_mask, /* Parent mask */ 8444 0, 8445 save_ire->ire_ihandle, /* Interface handle */ 8446 0, /* flags if any */ 8447 &(save_ire->ire_uinfo), 8448 NULL, 8449 NULL); 8450 8451 if (ire == NULL) { 8452 ire_refrele(save_ire); 8453 break; 8454 } 8455 8456 if ((sire != NULL) && 8457 (sire->ire_flags & RTF_MULTIRT)) { 8458 copy_mp = copymsg(first_mp); 8459 if (copy_mp != NULL) 8460 MULTIRT_DEBUG_TAG(copy_mp); 8461 } 8462 8463 ire->ire_marks |= ire_marks; 8464 8465 /* 8466 * Construct message chain for the resolver 8467 * of the form: 8468 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8469 * Packet could contain a IPSEC_OUT mp. 8470 * 8471 * NOTE : ire will be added later when the response 8472 * comes back from ARP. If the response does not 8473 * come back, ARP frees the packet. For this reason, 8474 * we can't REFHOLD the bucket of save_ire to prevent 8475 * deletions. We may not be able to REFRELE the bucket 8476 * if the response never comes back. Thus, before 8477 * adding the ire, ire_add_v4 will make sure that the 8478 * interface route does not get deleted. This is the 8479 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8480 * where we can always prevent deletions because of 8481 * the synchronous nature of adding IRES i.e 8482 * ire_add_then_send is called after creating the IRE. 8483 */ 8484 ASSERT(ire->ire_mp != NULL); 8485 ire->ire_mp->b_cont = first_mp; 8486 /* Have saved_mp handy, for cleanup if canput fails */ 8487 saved_mp = mp; 8488 mp = copyb(res_mp); 8489 ASSERT(mp != NULL); 8490 linkb(mp, ire->ire_mp); 8491 8492 8493 /* 8494 * Fill in the source and dest addrs for the resolver. 8495 * NOTE: this depends on memory layouts imposed by 8496 * ill_init(). 8497 */ 8498 areq = (areq_t *)mp->b_rptr; 8499 addrp = (ipaddr_t *)((char *)areq + 8500 areq->areq_sender_addr_offset); 8501 if (do_attach_ill) { 8502 /* 8503 * This is bind to no failover case. 8504 * arp packet also must go out on attach_ill. 8505 */ 8506 ASSERT(ipha->ipha_src != NULL); 8507 *addrp = ipha->ipha_src; 8508 } else { 8509 *addrp = save_ire->ire_src_addr; 8510 } 8511 8512 ire_refrele(save_ire); 8513 addrp = (ipaddr_t *)((char *)areq + 8514 areq->areq_target_addr_offset); 8515 *addrp = dst; 8516 /* Up to the resolver. */ 8517 if (canputnext(dst_ill->ill_rq) && 8518 !(dst_ill->ill_arp_closing)) { 8519 putnext(dst_ill->ill_rq, mp); 8520 ire = NULL; 8521 if (copy_mp != NULL) { 8522 /* 8523 * If we found a resolver, we ignore 8524 * any trailing top priority IRE_CACHE 8525 * in the further loops. This ensures 8526 * that we do not omit any resolver. 8527 * IRE_CACHE entries, if any, will be 8528 * processed next time we enter 8529 * ip_newroute(). 8530 */ 8531 multirt_flags &= ~MULTIRT_CACHEGW; 8532 /* 8533 * Search for the next unresolved 8534 * multirt route. 8535 */ 8536 first_mp = copy_mp; 8537 copy_mp = NULL; 8538 /* Prepare the next resolution loop. */ 8539 mp = first_mp; 8540 EXTRACT_PKT_MP(mp, first_mp, 8541 mctl_present); 8542 if (mctl_present) 8543 io = (ipsec_out_t *) 8544 first_mp->b_rptr; 8545 ipha = (ipha_t *)mp->b_rptr; 8546 8547 ASSERT(sire != NULL); 8548 8549 dst = save_dst; 8550 multirt_resolve_next = B_TRUE; 8551 continue; 8552 } 8553 8554 if (sire != NULL) 8555 ire_refrele(sire); 8556 8557 /* 8558 * The response will come back in ip_wput 8559 * with db_type IRE_DB_TYPE. 8560 */ 8561 ipif_refrele(src_ipif); 8562 ill_refrele(dst_ill); 8563 return; 8564 } else { 8565 /* Prepare for cleanup */ 8566 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8567 mp); 8568 mp->b_cont = NULL; 8569 freeb(mp); /* areq */ 8570 /* 8571 * this is an ire that is not added to the 8572 * cache. ire_freemblk will handle the release 8573 * of any resources associated with the ire. 8574 */ 8575 ire_delete(ire); /* ire_mp */ 8576 mp = saved_mp; /* pkt */ 8577 ire = NULL; 8578 if (copy_mp != NULL) { 8579 MULTIRT_DEBUG_UNTAG(copy_mp); 8580 freemsg(copy_mp); 8581 copy_mp = NULL; 8582 } 8583 break; 8584 } 8585 default: 8586 break; 8587 } 8588 } while (multirt_resolve_next); 8589 8590 ip1dbg(("ip_newroute: dropped\n")); 8591 /* Did this packet originate externally? */ 8592 if (mp->b_prev) { 8593 mp->b_next = NULL; 8594 mp->b_prev = NULL; 8595 BUMP_MIB(&ip_mib, ipInDiscards); 8596 } else { 8597 BUMP_MIB(&ip_mib, ipOutDiscards); 8598 } 8599 ASSERT(copy_mp == NULL); 8600 MULTIRT_DEBUG_UNTAG(first_mp); 8601 freemsg(first_mp); 8602 if (ire != NULL) 8603 ire_refrele(ire); 8604 if (sire != NULL) 8605 ire_refrele(sire); 8606 if (src_ipif != NULL) 8607 ipif_refrele(src_ipif); 8608 if (dst_ill != NULL) 8609 ill_refrele(dst_ill); 8610 return; 8611 8612 icmp_err_ret: 8613 ip1dbg(("ip_newroute: no route\n")); 8614 if (src_ipif != NULL) 8615 ipif_refrele(src_ipif); 8616 if (dst_ill != NULL) 8617 ill_refrele(dst_ill); 8618 if (sire != NULL) 8619 ire_refrele(sire); 8620 /* Did this packet originate externally? */ 8621 if (mp->b_prev) { 8622 mp->b_next = NULL; 8623 mp->b_prev = NULL; 8624 /* XXX ipInNoRoutes */ 8625 q = WR(q); 8626 } else { 8627 /* 8628 * Since ip_wput() isn't close to finished, we fill 8629 * in enough of the header for credible error reporting. 8630 */ 8631 if (ip_hdr_complete(ipha, zoneid)) { 8632 /* Failed */ 8633 MULTIRT_DEBUG_UNTAG(first_mp); 8634 freemsg(first_mp); 8635 if (ire != NULL) 8636 ire_refrele(ire); 8637 return; 8638 } 8639 } 8640 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8641 8642 /* 8643 * At this point we will have ire only if RTF_BLACKHOLE 8644 * or RTF_REJECT flags are set on the IRE. It will not 8645 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8646 */ 8647 if (ire != NULL) { 8648 if (ire->ire_flags & RTF_BLACKHOLE) { 8649 ire_refrele(ire); 8650 MULTIRT_DEBUG_UNTAG(first_mp); 8651 freemsg(first_mp); 8652 return; 8653 } 8654 ire_refrele(ire); 8655 } 8656 if (ip_source_routed(ipha)) { 8657 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8658 return; 8659 } 8660 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8661 } 8662 8663 /* 8664 * IPv4 - 8665 * ip_newroute_ipif is called by ip_wput_multicast and 8666 * ip_rput_forward_multicast whenever we need to send 8667 * out a packet to a destination address for which we do not have specific 8668 * routing information. It is used when the packet will be sent out 8669 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8670 * socket option is set or icmp error message wants to go out on a particular 8671 * interface for a unicast packet. 8672 * 8673 * In most cases, the destination address is resolved thanks to the ipif 8674 * intrinsic resolver. However, there are some cases where the call to 8675 * ip_newroute_ipif must take into account the potential presence of 8676 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8677 * that uses the interface. This is specified through flags, 8678 * which can be a combination of: 8679 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8680 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8681 * and flags. Additionally, the packet source address has to be set to 8682 * the specified address. The caller is thus expected to set this flag 8683 * if the packet has no specific source address yet. 8684 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8685 * flag, the resulting ire will inherit the flag. All unresolved routes 8686 * to the destination must be explored in the same call to 8687 * ip_newroute_ipif(). 8688 */ 8689 static void 8690 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8691 conn_t *connp, uint32_t flags) 8692 { 8693 areq_t *areq; 8694 ire_t *ire = NULL; 8695 mblk_t *res_mp; 8696 ipaddr_t *addrp; 8697 mblk_t *first_mp; 8698 ire_t *save_ire = NULL; 8699 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8700 ipif_t *src_ipif = NULL; 8701 ushort_t ire_marks = 0; 8702 ill_t *dst_ill = NULL; 8703 boolean_t mctl_present; 8704 ipsec_out_t *io; 8705 ipha_t *ipha; 8706 int ihandle = 0; 8707 mblk_t *saved_mp; 8708 ire_t *fire = NULL; 8709 mblk_t *copy_mp = NULL; 8710 boolean_t multirt_resolve_next; 8711 ipaddr_t ipha_dst; 8712 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8713 8714 /* 8715 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8716 * here for uniformity 8717 */ 8718 ipif_refhold(ipif); 8719 8720 /* 8721 * This loop is run only once in most cases. 8722 * We loop to resolve further routes only when the destination 8723 * can be reached through multiple RTF_MULTIRT-flagged ires. 8724 */ 8725 do { 8726 if (dst_ill != NULL) { 8727 ill_refrele(dst_ill); 8728 dst_ill = NULL; 8729 } 8730 if (src_ipif != NULL) { 8731 ipif_refrele(src_ipif); 8732 src_ipif = NULL; 8733 } 8734 multirt_resolve_next = B_FALSE; 8735 8736 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8737 ipif->ipif_ill->ill_name)); 8738 8739 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8740 if (mctl_present) 8741 io = (ipsec_out_t *)first_mp->b_rptr; 8742 8743 ipha = (ipha_t *)mp->b_rptr; 8744 8745 /* 8746 * Save the packet destination address, we may need it after 8747 * the packet has been consumed. 8748 */ 8749 ipha_dst = ipha->ipha_dst; 8750 8751 /* 8752 * If the interface is a pt-pt interface we look for an 8753 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8754 * local_address and the pt-pt destination address. Otherwise 8755 * we just match the local address. 8756 * NOTE: dst could be different than ipha->ipha_dst in case 8757 * of sending igmp multicast packets over a point-to-point 8758 * connection. 8759 * Thus we must be careful enough to check ipha_dst to be a 8760 * multicast address, otherwise it will take xmit_if path for 8761 * multicast packets resulting into kernel stack overflow by 8762 * repeated calls to ip_newroute_ipif from ire_send(). 8763 */ 8764 if (CLASSD(ipha_dst) && 8765 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8766 goto err_ret; 8767 } 8768 8769 /* 8770 * We check if an IRE_OFFSUBNET for the addr that goes through 8771 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8772 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8773 * propagate its flags to the new ire. 8774 */ 8775 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8776 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8777 ip2dbg(("ip_newroute_ipif: " 8778 "ipif_lookup_multi_ire(" 8779 "ipif %p, dst %08x) = fire %p\n", 8780 (void *)ipif, ntohl(dst), (void *)fire)); 8781 } 8782 8783 if (mctl_present && io->ipsec_out_attach_if) { 8784 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8785 io->ipsec_out_ill_index, B_FALSE); 8786 8787 /* Failure case frees things for us. */ 8788 if (attach_ill == NULL) { 8789 ipif_refrele(ipif); 8790 if (fire != NULL) 8791 ire_refrele(fire); 8792 return; 8793 } 8794 8795 /* 8796 * Check if we need an ire that will not be 8797 * looked up by anybody else i.e. HIDDEN. 8798 */ 8799 if (ill_is_probeonly(attach_ill)) { 8800 ire_marks = IRE_MARK_HIDDEN; 8801 } 8802 /* 8803 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8804 * case. 8805 */ 8806 dst_ill = ipif->ipif_ill; 8807 /* attach_ill has been refheld by ip_grab_attach_ill */ 8808 ASSERT(dst_ill == attach_ill); 8809 } else { 8810 /* 8811 * If this is set by IP_XMIT_IF, then make sure that 8812 * ipif is pointing to the same ill as the IP_XMIT_IF 8813 * specified ill. 8814 */ 8815 ASSERT((connp == NULL) || 8816 (connp->conn_xmit_if_ill == NULL) || 8817 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8818 /* 8819 * If the interface belongs to an interface group, 8820 * make sure the next possible interface in the group 8821 * is used. This encourages load spreading among 8822 * peers in an interface group. 8823 * Note: load spreading is disabled for RTF_MULTIRT 8824 * routes. 8825 */ 8826 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8827 (fire->ire_flags & RTF_MULTIRT)) { 8828 /* 8829 * Don't perform outbound load spreading 8830 * in the case of an RTF_MULTIRT issued route, 8831 * we actually typically want to replicate 8832 * outgoing packets through particular 8833 * interfaces. 8834 */ 8835 dst_ill = ipif->ipif_ill; 8836 ill_refhold(dst_ill); 8837 } else { 8838 dst_ill = ip_newroute_get_dst_ill( 8839 ipif->ipif_ill); 8840 } 8841 if (dst_ill == NULL) { 8842 if (ip_debug > 2) { 8843 pr_addr_dbg("ip_newroute_ipif: " 8844 "no dst ill for dst %s\n", 8845 AF_INET, &dst); 8846 } 8847 goto err_ret; 8848 } 8849 } 8850 8851 /* 8852 * Pick a source address preferring non-deprecated ones. 8853 * Unlike ip_newroute, we don't do any source address 8854 * selection here since for multicast it really does not help 8855 * in inbound load spreading as in the unicast case. 8856 */ 8857 if ((flags & RTF_SETSRC) && (fire != NULL) && 8858 (fire->ire_flags & RTF_SETSRC)) { 8859 /* 8860 * As requested by flags, an IRE_OFFSUBNET was looked up 8861 * on that interface. This ire has RTF_SETSRC flag, so 8862 * the source address of the packet must be changed. 8863 * Check that the ipif matching the requested source 8864 * address still exists. 8865 */ 8866 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8867 zoneid, NULL, NULL, NULL, NULL); 8868 } 8869 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8870 (connp != NULL && ipif->ipif_zoneid != zoneid && 8871 ipif->ipif_zoneid != ALL_ZONES)) && 8872 (src_ipif == NULL)) { 8873 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8874 if (src_ipif == NULL) { 8875 if (ip_debug > 2) { 8876 /* ip1dbg */ 8877 pr_addr_dbg("ip_newroute_ipif: " 8878 "no src for dst %s", 8879 AF_INET, &dst); 8880 } 8881 ip1dbg((" through interface %s\n", 8882 dst_ill->ill_name)); 8883 goto err_ret; 8884 } 8885 ipif_refrele(ipif); 8886 ipif = src_ipif; 8887 ipif_refhold(ipif); 8888 } 8889 if (src_ipif == NULL) { 8890 src_ipif = ipif; 8891 ipif_refhold(src_ipif); 8892 } 8893 8894 /* 8895 * Assign a source address while we have the conn. 8896 * We can't have ip_wput_ire pick a source address when the 8897 * packet returns from arp since conn_unspec_src might be set 8898 * and we loose the conn when going through arp. 8899 */ 8900 if (ipha->ipha_src == INADDR_ANY && 8901 (connp == NULL || !connp->conn_unspec_src)) { 8902 ipha->ipha_src = src_ipif->ipif_src_addr; 8903 } 8904 8905 /* 8906 * In case of IP_XMIT_IF, it is possible that the outgoing 8907 * interface does not have an interface ire. 8908 * Example: Thousands of mobileip PPP interfaces to mobile 8909 * nodes. We don't want to create interface ires because 8910 * packets from other mobile nodes must not take the route 8911 * via interface ires to the visiting mobile node without 8912 * going through the home agent, in absence of mobileip 8913 * route optimization. 8914 */ 8915 if (CLASSD(ipha_dst) && (connp == NULL || 8916 connp->conn_xmit_if_ill == NULL)) { 8917 /* ipif_to_ire returns an held ire */ 8918 ire = ipif_to_ire(ipif); 8919 if (ire == NULL) 8920 goto err_ret; 8921 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8922 goto err_ret; 8923 /* 8924 * ihandle is needed when the ire is added to 8925 * cache table. 8926 */ 8927 save_ire = ire; 8928 ihandle = save_ire->ire_ihandle; 8929 8930 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8931 "flags %04x\n", 8932 (void *)ire, (void *)ipif, flags)); 8933 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8934 (fire->ire_flags & RTF_MULTIRT)) { 8935 /* 8936 * As requested by flags, an IRE_OFFSUBNET was 8937 * looked up on that interface. This ire has 8938 * RTF_MULTIRT flag, so the resolution loop will 8939 * be re-entered to resolve additional routes on 8940 * other interfaces. For that purpose, a copy of 8941 * the packet is performed at this point. 8942 */ 8943 fire->ire_last_used_time = lbolt; 8944 copy_mp = copymsg(first_mp); 8945 if (copy_mp) { 8946 MULTIRT_DEBUG_TAG(copy_mp); 8947 } 8948 } 8949 if ((flags & RTF_SETSRC) && (fire != NULL) && 8950 (fire->ire_flags & RTF_SETSRC)) { 8951 /* 8952 * As requested by flags, an IRE_OFFSUBET was 8953 * looked up on that interface. This ire has 8954 * RTF_SETSRC flag, so the source address of the 8955 * packet must be changed. 8956 */ 8957 ipha->ipha_src = fire->ire_src_addr; 8958 } 8959 } else { 8960 ASSERT((connp == NULL) || 8961 (connp->conn_xmit_if_ill != NULL) || 8962 (connp->conn_dontroute)); 8963 /* 8964 * The only ways we can come here are: 8965 * 1) IP_XMIT_IF socket option is set 8966 * 2) ICMP error message generated from 8967 * ip_mrtun_forward() routine and it needs 8968 * to go through the specified ill. 8969 * 3) SO_DONTROUTE socket option is set 8970 * In all cases, the new ire will not be added 8971 * into cache table. 8972 */ 8973 ire_marks |= IRE_MARK_NOADD; 8974 } 8975 8976 switch (ipif->ipif_net_type) { 8977 case IRE_IF_NORESOLVER: { 8978 /* We have what we need to build an IRE_CACHE. */ 8979 mblk_t *res_mp; 8980 8981 /* 8982 * Create a new res_mp with the 8983 * IP gateway address as destination address in the 8984 * DLPI hdr if the physical length is exactly 4 bytes. 8985 */ 8986 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8987 res_mp = ill_dlur_gen((uchar_t *)&dst, 8988 dst_ill->ill_phys_addr_length, 8989 dst_ill->ill_sap, 8990 dst_ill->ill_sap_length); 8991 } else { 8992 /* use the value set in ip_ll_subnet_defaults */ 8993 res_mp = ill_dlur_gen(NULL, 8994 dst_ill->ill_phys_addr_length, 8995 dst_ill->ill_sap, 8996 dst_ill->ill_sap_length); 8997 } 8998 8999 if (res_mp == NULL) 9000 break; 9001 /* 9002 * The new ire inherits the IRE_OFFSUBNET flags 9003 * and source address, if this was requested. 9004 */ 9005 ire = ire_create( 9006 (uchar_t *)&dst, /* dest address */ 9007 (uchar_t *)&ip_g_all_ones, /* mask */ 9008 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9009 NULL, /* gateway address */ 9010 NULL, 9011 &ipif->ipif_mtu, 9012 NULL, /* Fast Path header */ 9013 dst_ill->ill_rq, /* recv-from queue */ 9014 dst_ill->ill_wq, /* send-to queue */ 9015 IRE_CACHE, 9016 res_mp, 9017 src_ipif, 9018 NULL, 9019 (save_ire != NULL ? save_ire->ire_mask : 0), 9020 (fire != NULL) ? /* Parent handle */ 9021 fire->ire_phandle : 0, 9022 ihandle, /* Interface handle */ 9023 (fire != NULL) ? 9024 (fire->ire_flags & 9025 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9026 (save_ire == NULL ? &ire_uinfo_null : 9027 &save_ire->ire_uinfo), 9028 NULL, 9029 NULL); 9030 9031 freeb(res_mp); 9032 9033 if (ire == NULL) { 9034 if (save_ire != NULL) 9035 ire_refrele(save_ire); 9036 break; 9037 } 9038 9039 ire->ire_marks |= ire_marks; 9040 9041 /* 9042 * If IRE_MARK_NOADD is set then we need to convert 9043 * the max_fragp to a useable value now. This is 9044 * normally done in ire_add_v[46]. We also need to 9045 * associate the ire with an nce (normally would be 9046 * done in ip_wput_nondata()). 9047 * 9048 * Note that IRE_MARK_NOADD packets created here 9049 * do not have a non-null ire_mp pointer. The null 9050 * value of ire_bucket indicates that they were 9051 * never added. 9052 */ 9053 if (ire->ire_marks & IRE_MARK_NOADD) { 9054 uint_t max_frag; 9055 9056 max_frag = *ire->ire_max_fragp; 9057 ire->ire_max_fragp = NULL; 9058 ire->ire_max_frag = max_frag; 9059 9060 if ((ire->ire_nce = ndp_lookup_v4( 9061 ire_to_ill(ire), 9062 (ire->ire_gateway_addr != INADDR_ANY ? 9063 &ire->ire_gateway_addr : &ire->ire_addr), 9064 B_FALSE)) == NULL) { 9065 if (save_ire != NULL) 9066 ire_refrele(save_ire); 9067 break; 9068 } 9069 ASSERT(ire->ire_nce->nce_state == 9070 ND_REACHABLE); 9071 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9072 } 9073 9074 /* Prevent save_ire from getting deleted */ 9075 if (save_ire != NULL) { 9076 IRB_REFHOLD(save_ire->ire_bucket); 9077 /* Has it been removed already ? */ 9078 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9079 IRB_REFRELE(save_ire->ire_bucket); 9080 ire_refrele(save_ire); 9081 break; 9082 } 9083 } 9084 9085 ire_add_then_send(q, ire, first_mp); 9086 9087 /* Assert that save_ire is not deleted yet. */ 9088 if (save_ire != NULL) { 9089 ASSERT(save_ire->ire_ptpn != NULL); 9090 IRB_REFRELE(save_ire->ire_bucket); 9091 ire_refrele(save_ire); 9092 save_ire = NULL; 9093 } 9094 if (fire != NULL) { 9095 ire_refrele(fire); 9096 fire = NULL; 9097 } 9098 9099 /* 9100 * the resolution loop is re-entered if this 9101 * was requested through flags and if we 9102 * actually are in a multirouting case. 9103 */ 9104 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9105 boolean_t need_resolve = 9106 ire_multirt_need_resolve(ipha_dst, 9107 MBLK_GETLABEL(copy_mp)); 9108 if (!need_resolve) { 9109 MULTIRT_DEBUG_UNTAG(copy_mp); 9110 freemsg(copy_mp); 9111 copy_mp = NULL; 9112 } else { 9113 /* 9114 * ipif_lookup_group() calls 9115 * ire_lookup_multi() that uses 9116 * ire_ftable_lookup() to find 9117 * an IRE_INTERFACE for the group. 9118 * In the multirt case, 9119 * ire_lookup_multi() then invokes 9120 * ire_multirt_lookup() to find 9121 * the next resolvable ire. 9122 * As a result, we obtain an new 9123 * interface, derived from the 9124 * next ire. 9125 */ 9126 ipif_refrele(ipif); 9127 ipif = ipif_lookup_group(ipha_dst, 9128 zoneid); 9129 ip2dbg(("ip_newroute_ipif: " 9130 "multirt dst %08x, ipif %p\n", 9131 htonl(dst), (void *)ipif)); 9132 if (ipif != NULL) { 9133 mp = copy_mp; 9134 copy_mp = NULL; 9135 multirt_resolve_next = B_TRUE; 9136 continue; 9137 } else { 9138 freemsg(copy_mp); 9139 } 9140 } 9141 } 9142 if (ipif != NULL) 9143 ipif_refrele(ipif); 9144 ill_refrele(dst_ill); 9145 ipif_refrele(src_ipif); 9146 return; 9147 } 9148 case IRE_IF_RESOLVER: 9149 /* 9150 * We can't build an IRE_CACHE yet, but at least 9151 * we found a resolver that can help. 9152 */ 9153 res_mp = dst_ill->ill_resolver_mp; 9154 if (!OK_RESOLVER_MP(res_mp)) 9155 break; 9156 9157 /* 9158 * We obtain a partial IRE_CACHE which we will pass 9159 * along with the resolver query. When the response 9160 * comes back it will be there ready for us to add. 9161 * The new ire inherits the IRE_OFFSUBNET flags 9162 * and source address, if this was requested. 9163 * The ire_max_frag is atomically set under the 9164 * irebucket lock in ire_add_v[46]. Only in the 9165 * case of IRE_MARK_NOADD, we set it here itself. 9166 */ 9167 ire = ire_create_mp( 9168 (uchar_t *)&dst, /* dest address */ 9169 (uchar_t *)&ip_g_all_ones, /* mask */ 9170 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9171 NULL, /* gateway address */ 9172 NULL, /* no in_src_addr */ 9173 (ire_marks & IRE_MARK_NOADD) ? 9174 ipif->ipif_mtu : 0, /* max_frag */ 9175 NULL, /* Fast path header */ 9176 dst_ill->ill_rq, /* recv-from queue */ 9177 dst_ill->ill_wq, /* send-to queue */ 9178 IRE_CACHE, 9179 NULL, /* let ire_nce_init figure res_mp out */ 9180 src_ipif, 9181 NULL, 9182 (save_ire != NULL ? save_ire->ire_mask : 0), 9183 (fire != NULL) ? /* Parent handle */ 9184 fire->ire_phandle : 0, 9185 ihandle, /* Interface handle */ 9186 (fire != NULL) ? /* flags if any */ 9187 (fire->ire_flags & 9188 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9189 (save_ire == NULL ? &ire_uinfo_null : 9190 &save_ire->ire_uinfo), 9191 NULL, 9192 NULL); 9193 9194 if (save_ire != NULL) { 9195 ire_refrele(save_ire); 9196 save_ire = NULL; 9197 } 9198 if (ire == NULL) 9199 break; 9200 9201 ire->ire_marks |= ire_marks; 9202 /* 9203 * Construct message chain for the resolver of the 9204 * form: 9205 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9206 * 9207 * NOTE : ire will be added later when the response 9208 * comes back from ARP. If the response does not 9209 * come back, ARP frees the packet. For this reason, 9210 * we can't REFHOLD the bucket of save_ire to prevent 9211 * deletions. We may not be able to REFRELE the 9212 * bucket if the response never comes back. 9213 * Thus, before adding the ire, ire_add_v4 will make 9214 * sure that the interface route does not get deleted. 9215 * This is the only case unlike ip_newroute_v6, 9216 * ip_newroute_ipif_v6 where we can always prevent 9217 * deletions because ire_add_then_send is called after 9218 * creating the IRE. 9219 * If IRE_MARK_NOADD is set, then ire_add_then_send 9220 * does not add this IRE into the IRE CACHE. 9221 */ 9222 ASSERT(ire->ire_mp != NULL); 9223 ire->ire_mp->b_cont = first_mp; 9224 /* Have saved_mp handy, for cleanup if canput fails */ 9225 saved_mp = mp; 9226 mp = copyb(res_mp); 9227 ASSERT(mp != NULL); 9228 linkb(mp, ire->ire_mp); 9229 9230 /* 9231 * Fill in the source and dest addrs for the resolver. 9232 * NOTE: this depends on memory layouts imposed by 9233 * ill_init(). 9234 */ 9235 areq = (areq_t *)mp->b_rptr; 9236 addrp = (ipaddr_t *)((char *)areq + 9237 areq->areq_sender_addr_offset); 9238 *addrp = ire->ire_src_addr; 9239 addrp = (ipaddr_t *)((char *)areq + 9240 areq->areq_target_addr_offset); 9241 *addrp = dst; 9242 /* Up to the resolver. */ 9243 if (canputnext(dst_ill->ill_rq) && 9244 !(dst_ill->ill_arp_closing)) { 9245 putnext(dst_ill->ill_rq, mp); 9246 /* 9247 * The response will come back in ip_wput 9248 * with db_type IRE_DB_TYPE. 9249 */ 9250 } else { 9251 mp->b_cont = NULL; 9252 freeb(mp); /* areq */ 9253 ire_delete(ire); /* ire_mp */ 9254 saved_mp->b_next = NULL; 9255 saved_mp->b_prev = NULL; 9256 freemsg(first_mp); /* pkt */ 9257 ip2dbg(("ip_newroute_ipif: dropped\n")); 9258 } 9259 9260 if (fire != NULL) { 9261 ire_refrele(fire); 9262 fire = NULL; 9263 } 9264 9265 9266 /* 9267 * The resolution loop is re-entered if this was 9268 * requested through flags and we actually are 9269 * in a multirouting case. 9270 */ 9271 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9272 boolean_t need_resolve = 9273 ire_multirt_need_resolve(ipha_dst, 9274 MBLK_GETLABEL(copy_mp)); 9275 if (!need_resolve) { 9276 MULTIRT_DEBUG_UNTAG(copy_mp); 9277 freemsg(copy_mp); 9278 copy_mp = NULL; 9279 } else { 9280 /* 9281 * ipif_lookup_group() calls 9282 * ire_lookup_multi() that uses 9283 * ire_ftable_lookup() to find 9284 * an IRE_INTERFACE for the group. 9285 * In the multirt case, 9286 * ire_lookup_multi() then invokes 9287 * ire_multirt_lookup() to find 9288 * the next resolvable ire. 9289 * As a result, we obtain an new 9290 * interface, derived from the 9291 * next ire. 9292 */ 9293 ipif_refrele(ipif); 9294 ipif = ipif_lookup_group(ipha_dst, 9295 zoneid); 9296 if (ipif != NULL) { 9297 mp = copy_mp; 9298 copy_mp = NULL; 9299 multirt_resolve_next = B_TRUE; 9300 continue; 9301 } else { 9302 freemsg(copy_mp); 9303 } 9304 } 9305 } 9306 if (ipif != NULL) 9307 ipif_refrele(ipif); 9308 ill_refrele(dst_ill); 9309 ipif_refrele(src_ipif); 9310 return; 9311 default: 9312 break; 9313 } 9314 } while (multirt_resolve_next); 9315 9316 err_ret: 9317 ip2dbg(("ip_newroute_ipif: dropped\n")); 9318 if (fire != NULL) 9319 ire_refrele(fire); 9320 ipif_refrele(ipif); 9321 /* Did this packet originate externally? */ 9322 if (dst_ill != NULL) 9323 ill_refrele(dst_ill); 9324 if (src_ipif != NULL) 9325 ipif_refrele(src_ipif); 9326 if (mp->b_prev || mp->b_next) { 9327 mp->b_next = NULL; 9328 mp->b_prev = NULL; 9329 } else { 9330 /* 9331 * Since ip_wput() isn't close to finished, we fill 9332 * in enough of the header for credible error reporting. 9333 */ 9334 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9335 /* Failed */ 9336 freemsg(first_mp); 9337 if (ire != NULL) 9338 ire_refrele(ire); 9339 return; 9340 } 9341 } 9342 /* 9343 * At this point we will have ire only if RTF_BLACKHOLE 9344 * or RTF_REJECT flags are set on the IRE. It will not 9345 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9346 */ 9347 if (ire != NULL) { 9348 if (ire->ire_flags & RTF_BLACKHOLE) { 9349 ire_refrele(ire); 9350 freemsg(first_mp); 9351 return; 9352 } 9353 ire_refrele(ire); 9354 } 9355 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 9356 } 9357 9358 /* Name/Value Table Lookup Routine */ 9359 char * 9360 ip_nv_lookup(nv_t *nv, int value) 9361 { 9362 if (!nv) 9363 return (NULL); 9364 for (; nv->nv_name; nv++) { 9365 if (nv->nv_value == value) 9366 return (nv->nv_name); 9367 } 9368 return ("unknown"); 9369 } 9370 9371 /* 9372 * one day it can be patched to 1 from /etc/system for machines that have few 9373 * fast network interfaces feeding multiple cpus. 9374 */ 9375 int ill_stream_putlocks = 0; 9376 9377 /* 9378 * This is a module open, i.e. this is a control stream for access 9379 * to a DLPI device. We allocate an ill_t as the instance data in 9380 * this case. 9381 */ 9382 int 9383 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9384 { 9385 uint32_t mem_cnt; 9386 uint32_t cpu_cnt; 9387 uint32_t min_cnt; 9388 pgcnt_t mem_avail; 9389 ill_t *ill; 9390 int err; 9391 9392 /* 9393 * Prevent unprivileged processes from pushing IP so that 9394 * they can't send raw IP. 9395 */ 9396 if (secpolicy_net_rawaccess(credp) != 0) 9397 return (EPERM); 9398 9399 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9400 q->q_ptr = WR(q)->q_ptr = ill; 9401 9402 /* 9403 * ill_init initializes the ill fields and then sends down 9404 * down a DL_INFO_REQ after calling qprocson. 9405 */ 9406 err = ill_init(q, ill); 9407 if (err != 0) { 9408 mi_free(ill); 9409 q->q_ptr = NULL; 9410 WR(q)->q_ptr = NULL; 9411 return (err); 9412 } 9413 9414 /* ill_init initializes the ipsq marking this thread as writer */ 9415 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9416 /* Wait for the DL_INFO_ACK */ 9417 mutex_enter(&ill->ill_lock); 9418 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9419 /* 9420 * Return value of 0 indicates a pending signal. 9421 */ 9422 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9423 if (err == 0) { 9424 mutex_exit(&ill->ill_lock); 9425 (void) ip_close(q, 0); 9426 return (EINTR); 9427 } 9428 } 9429 mutex_exit(&ill->ill_lock); 9430 9431 /* 9432 * ip_rput_other could have set an error in ill_error on 9433 * receipt of M_ERROR. 9434 */ 9435 9436 err = ill->ill_error; 9437 if (err != 0) { 9438 (void) ip_close(q, 0); 9439 return (err); 9440 } 9441 9442 /* 9443 * ip_ire_max_bucket_cnt is sized below based on the memory 9444 * size and the cpu speed of the machine. This is upper 9445 * bounded by the compile time value of ip_ire_max_bucket_cnt 9446 * and is lower bounded by the compile time value of 9447 * ip_ire_min_bucket_cnt. Similar logic applies to 9448 * ip6_ire_max_bucket_cnt. 9449 */ 9450 mem_avail = kmem_avail(); 9451 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9452 ip_cache_table_size / sizeof (ire_t); 9453 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9454 9455 min_cnt = MIN(cpu_cnt, mem_cnt); 9456 if (min_cnt < ip_ire_min_bucket_cnt) 9457 min_cnt = ip_ire_min_bucket_cnt; 9458 if (ip_ire_max_bucket_cnt > min_cnt) { 9459 ip_ire_max_bucket_cnt = min_cnt; 9460 } 9461 9462 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9463 ip6_cache_table_size / sizeof (ire_t); 9464 min_cnt = MIN(cpu_cnt, mem_cnt); 9465 if (min_cnt < ip6_ire_min_bucket_cnt) 9466 min_cnt = ip6_ire_min_bucket_cnt; 9467 if (ip6_ire_max_bucket_cnt > min_cnt) { 9468 ip6_ire_max_bucket_cnt = min_cnt; 9469 } 9470 9471 ill->ill_credp = credp; 9472 crhold(credp); 9473 9474 mutex_enter(&ip_mi_lock); 9475 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9476 mutex_exit(&ip_mi_lock); 9477 if (err) { 9478 (void) ip_close(q, 0); 9479 return (err); 9480 } 9481 return (0); 9482 } 9483 9484 /* IP open routine. */ 9485 int 9486 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9487 { 9488 conn_t *connp; 9489 major_t maj; 9490 9491 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9492 9493 /* Allow reopen. */ 9494 if (q->q_ptr != NULL) 9495 return (0); 9496 9497 if (sflag & MODOPEN) { 9498 /* This is a module open */ 9499 return (ip_modopen(q, devp, flag, sflag, credp)); 9500 } 9501 9502 /* 9503 * We are opening as a device. This is an IP client stream, and we 9504 * allocate an conn_t as the instance data. 9505 */ 9506 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9507 connp->conn_upq = q; 9508 q->q_ptr = WR(q)->q_ptr = connp; 9509 9510 if (flag & SO_SOCKSTR) 9511 connp->conn_flags |= IPCL_SOCKET; 9512 9513 /* Minor tells us which /dev entry was opened */ 9514 if (geteminor(*devp) == IPV6_MINOR) { 9515 connp->conn_flags |= IPCL_ISV6; 9516 connp->conn_af_isv6 = B_TRUE; 9517 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9518 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9519 } else { 9520 connp->conn_af_isv6 = B_FALSE; 9521 connp->conn_pkt_isv6 = B_FALSE; 9522 } 9523 9524 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9525 q->q_ptr = WR(q)->q_ptr = NULL; 9526 CONN_DEC_REF(connp); 9527 return (EBUSY); 9528 } 9529 9530 maj = getemajor(*devp); 9531 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9532 9533 /* 9534 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9535 */ 9536 connp->conn_cred = credp; 9537 crhold(connp->conn_cred); 9538 9539 /* 9540 * If the caller has the process-wide flag set, then default to MAC 9541 * exempt mode. This allows read-down to unlabeled hosts. 9542 */ 9543 if (getpflags(NET_MAC_AWARE, credp) != 0) 9544 connp->conn_mac_exempt = B_TRUE; 9545 9546 connp->conn_zoneid = getzoneid(); 9547 9548 /* 9549 * This should only happen for ndd, netstat, raw socket or other SCTP 9550 * administrative ops. In these cases, we just need a normal conn_t 9551 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9552 * an error will be returned. 9553 */ 9554 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9555 connp->conn_rq = q; 9556 connp->conn_wq = WR(q); 9557 } else { 9558 connp->conn_ulp = IPPROTO_SCTP; 9559 connp->conn_rq = connp->conn_wq = NULL; 9560 } 9561 /* Non-zero default values */ 9562 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9563 9564 /* 9565 * Make the conn globally visible to walkers 9566 */ 9567 mutex_enter(&connp->conn_lock); 9568 connp->conn_state_flags &= ~CONN_INCIPIENT; 9569 mutex_exit(&connp->conn_lock); 9570 ASSERT(connp->conn_ref == 1); 9571 9572 qprocson(q); 9573 9574 return (0); 9575 } 9576 9577 /* 9578 * Change q_qinfo based on the value of isv6. 9579 * This can not called on an ill queue. 9580 * Note that there is no race since either q_qinfo works for conn queues - it 9581 * is just an optimization to enter the best wput routine directly. 9582 */ 9583 void 9584 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9585 { 9586 ASSERT(q->q_flag & QREADR); 9587 ASSERT(WR(q)->q_next == NULL); 9588 ASSERT(q->q_ptr != NULL); 9589 9590 if (minor == IPV6_MINOR) { 9591 if (bump_mib) 9592 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9593 q->q_qinfo = &rinit_ipv6; 9594 WR(q)->q_qinfo = &winit_ipv6; 9595 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9596 } else { 9597 if (bump_mib) 9598 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9599 q->q_qinfo = &iprinit; 9600 WR(q)->q_qinfo = &ipwinit; 9601 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9602 } 9603 9604 } 9605 9606 /* 9607 * See if IPsec needs loading because of the options in mp. 9608 */ 9609 static boolean_t 9610 ipsec_opt_present(mblk_t *mp) 9611 { 9612 uint8_t *optcp, *next_optcp, *opt_endcp; 9613 struct opthdr *opt; 9614 struct T_opthdr *topt; 9615 int opthdr_len; 9616 t_uscalar_t optname, optlevel; 9617 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9618 ipsec_req_t *ipsr; 9619 9620 /* 9621 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9622 * return TRUE. 9623 */ 9624 9625 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9626 opt_endcp = optcp + tor->OPT_length; 9627 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9628 opthdr_len = sizeof (struct T_opthdr); 9629 } else { /* O_OPTMGMT_REQ */ 9630 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9631 opthdr_len = sizeof (struct opthdr); 9632 } 9633 for (; optcp < opt_endcp; optcp = next_optcp) { 9634 if (optcp + opthdr_len > opt_endcp) 9635 return (B_FALSE); /* Not enough option header. */ 9636 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9637 topt = (struct T_opthdr *)optcp; 9638 optlevel = topt->level; 9639 optname = topt->name; 9640 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9641 } else { 9642 opt = (struct opthdr *)optcp; 9643 optlevel = opt->level; 9644 optname = opt->name; 9645 next_optcp = optcp + opthdr_len + 9646 _TPI_ALIGN_OPT(opt->len); 9647 } 9648 if ((next_optcp < optcp) || /* wraparound pointer space */ 9649 ((next_optcp >= opt_endcp) && /* last option bad len */ 9650 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9651 return (B_FALSE); /* bad option buffer */ 9652 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9653 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9654 /* 9655 * Check to see if it's an all-bypass or all-zeroes 9656 * IPsec request. Don't bother loading IPsec if 9657 * the socket doesn't want to use it. (A good example 9658 * is a bypass request.) 9659 * 9660 * Basically, if any of the non-NEVER bits are set, 9661 * load IPsec. 9662 */ 9663 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9664 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9665 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9666 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9667 != 0) 9668 return (B_TRUE); 9669 } 9670 } 9671 return (B_FALSE); 9672 } 9673 9674 /* 9675 * If conn is is waiting for ipsec to finish loading, kick it. 9676 */ 9677 /* ARGSUSED */ 9678 static void 9679 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9680 { 9681 t_scalar_t optreq_prim; 9682 mblk_t *mp; 9683 cred_t *cr; 9684 int err = 0; 9685 9686 /* 9687 * This function is called, after ipsec loading is complete. 9688 * Since IP checks exclusively and atomically (i.e it prevents 9689 * ipsec load from completing until ip_optcom_req completes) 9690 * whether ipsec load is complete, there cannot be a race with IP 9691 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9692 */ 9693 mutex_enter(&connp->conn_lock); 9694 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9695 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9696 mp = connp->conn_ipsec_opt_mp; 9697 connp->conn_ipsec_opt_mp = NULL; 9698 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9699 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9700 mutex_exit(&connp->conn_lock); 9701 9702 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9703 9704 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9705 if (optreq_prim == T_OPTMGMT_REQ) { 9706 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9707 &ip_opt_obj); 9708 } else { 9709 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9710 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9711 &ip_opt_obj); 9712 } 9713 if (err != EINPROGRESS) 9714 CONN_OPER_PENDING_DONE(connp); 9715 return; 9716 } 9717 mutex_exit(&connp->conn_lock); 9718 } 9719 9720 /* 9721 * Called from the ipsec_loader thread, outside any perimeter, to tell 9722 * ip qenable any of the queues waiting for the ipsec loader to 9723 * complete. 9724 * 9725 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9726 * are done with this lock held, so it's guaranteed that none of the 9727 * links will change along the way. 9728 */ 9729 void 9730 ip_ipsec_load_complete() 9731 { 9732 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9733 } 9734 9735 /* 9736 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9737 * determines the grp on which it has to become exclusive, queues the mp 9738 * and sq draining restarts the optmgmt 9739 */ 9740 static boolean_t 9741 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9742 { 9743 conn_t *connp; 9744 9745 /* 9746 * Take IPsec requests and treat them special. 9747 */ 9748 if (ipsec_opt_present(mp)) { 9749 /* First check if IPsec is loaded. */ 9750 mutex_enter(&ipsec_loader_lock); 9751 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9752 mutex_exit(&ipsec_loader_lock); 9753 return (B_FALSE); 9754 } 9755 connp = Q_TO_CONN(q); 9756 mutex_enter(&connp->conn_lock); 9757 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9758 9759 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9760 connp->conn_ipsec_opt_mp = mp; 9761 mutex_exit(&connp->conn_lock); 9762 mutex_exit(&ipsec_loader_lock); 9763 9764 ipsec_loader_loadnow(); 9765 return (B_TRUE); 9766 } 9767 return (B_FALSE); 9768 } 9769 9770 /* 9771 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9772 * all of them are copied to the conn_t. If the req is "zero", the policy is 9773 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9774 * fields. 9775 * We keep only the latest setting of the policy and thus policy setting 9776 * is not incremental/cumulative. 9777 * 9778 * Requests to set policies with multiple alternative actions will 9779 * go through a different API. 9780 */ 9781 int 9782 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9783 { 9784 uint_t ah_req = 0; 9785 uint_t esp_req = 0; 9786 uint_t se_req = 0; 9787 ipsec_selkey_t sel; 9788 ipsec_act_t *actp = NULL; 9789 uint_t nact; 9790 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9791 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9792 ipsec_policy_root_t *pr; 9793 ipsec_policy_head_t *ph; 9794 int fam; 9795 boolean_t is_pol_reset; 9796 int error = 0; 9797 9798 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9799 9800 /* 9801 * The IP_SEC_OPT option does not allow variable length parameters, 9802 * hence a request cannot be NULL. 9803 */ 9804 if (req == NULL) 9805 return (EINVAL); 9806 9807 ah_req = req->ipsr_ah_req; 9808 esp_req = req->ipsr_esp_req; 9809 se_req = req->ipsr_self_encap_req; 9810 9811 /* 9812 * Are we dealing with a request to reset the policy (i.e. 9813 * zero requests). 9814 */ 9815 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9816 (esp_req & REQ_MASK) == 0 && 9817 (se_req & REQ_MASK) == 0); 9818 9819 if (!is_pol_reset) { 9820 /* 9821 * If we couldn't load IPsec, fail with "protocol 9822 * not supported". 9823 * IPsec may not have been loaded for a request with zero 9824 * policies, so we don't fail in this case. 9825 */ 9826 mutex_enter(&ipsec_loader_lock); 9827 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9828 mutex_exit(&ipsec_loader_lock); 9829 return (EPROTONOSUPPORT); 9830 } 9831 mutex_exit(&ipsec_loader_lock); 9832 9833 /* 9834 * Test for valid requests. Invalid algorithms 9835 * need to be tested by IPSEC code because new 9836 * algorithms can be added dynamically. 9837 */ 9838 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9839 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9840 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9841 return (EINVAL); 9842 } 9843 9844 /* 9845 * Only privileged users can issue these 9846 * requests. 9847 */ 9848 if (((ah_req & IPSEC_PREF_NEVER) || 9849 (esp_req & IPSEC_PREF_NEVER) || 9850 (se_req & IPSEC_PREF_NEVER)) && 9851 secpolicy_net_config(cr, B_FALSE) != 0) { 9852 return (EPERM); 9853 } 9854 9855 /* 9856 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9857 * are mutually exclusive. 9858 */ 9859 if (((ah_req & REQ_MASK) == REQ_MASK) || 9860 ((esp_req & REQ_MASK) == REQ_MASK) || 9861 ((se_req & REQ_MASK) == REQ_MASK)) { 9862 /* Both of them are set */ 9863 return (EINVAL); 9864 } 9865 } 9866 9867 mutex_enter(&connp->conn_lock); 9868 9869 /* 9870 * If we have already cached policies in ip_bind_connected*(), don't 9871 * let them change now. We cache policies for connections 9872 * whose src,dst [addr, port] is known. The exception to this is 9873 * tunnels. Tunnels are allowed to change policies after having 9874 * become fully bound. 9875 */ 9876 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9877 mutex_exit(&connp->conn_lock); 9878 return (EINVAL); 9879 } 9880 9881 /* 9882 * We have a zero policies, reset the connection policy if already 9883 * set. This will cause the connection to inherit the 9884 * global policy, if any. 9885 */ 9886 if (is_pol_reset) { 9887 if (connp->conn_policy != NULL) { 9888 IPPH_REFRELE(connp->conn_policy); 9889 connp->conn_policy = NULL; 9890 } 9891 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9892 connp->conn_in_enforce_policy = B_FALSE; 9893 connp->conn_out_enforce_policy = B_FALSE; 9894 mutex_exit(&connp->conn_lock); 9895 return (0); 9896 } 9897 9898 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9899 if (ph == NULL) 9900 goto enomem; 9901 9902 ipsec_actvec_from_req(req, &actp, &nact); 9903 if (actp == NULL) 9904 goto enomem; 9905 9906 /* 9907 * Always allocate IPv4 policy entries, since they can also 9908 * apply to ipv6 sockets being used in ipv4-compat mode. 9909 */ 9910 bzero(&sel, sizeof (sel)); 9911 sel.ipsl_valid = IPSL_IPV4; 9912 9913 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9914 if (pin4 == NULL) 9915 goto enomem; 9916 9917 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9918 if (pout4 == NULL) 9919 goto enomem; 9920 9921 if (connp->conn_pkt_isv6) { 9922 /* 9923 * We're looking at a v6 socket, also allocate the 9924 * v6-specific entries... 9925 */ 9926 sel.ipsl_valid = IPSL_IPV6; 9927 pin6 = ipsec_policy_create(&sel, actp, nact, 9928 IPSEC_PRIO_SOCKET); 9929 if (pin6 == NULL) 9930 goto enomem; 9931 9932 pout6 = ipsec_policy_create(&sel, actp, nact, 9933 IPSEC_PRIO_SOCKET); 9934 if (pout6 == NULL) 9935 goto enomem; 9936 9937 /* 9938 * .. and file them away in the right place. 9939 */ 9940 fam = IPSEC_AF_V6; 9941 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9942 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9943 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9944 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9945 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9946 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9947 } 9948 9949 ipsec_actvec_free(actp, nact); 9950 9951 /* 9952 * File the v4 policies. 9953 */ 9954 fam = IPSEC_AF_V4; 9955 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9956 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9957 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9958 9959 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9960 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9961 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9962 9963 /* 9964 * If the requests need security, set enforce_policy. 9965 * If the requests are IPSEC_PREF_NEVER, one should 9966 * still set conn_out_enforce_policy so that an ipsec_out 9967 * gets attached in ip_wput. This is needed so that 9968 * for connections that we don't cache policy in ip_bind, 9969 * if global policy matches in ip_wput_attach_policy, we 9970 * don't wrongly inherit global policy. Similarly, we need 9971 * to set conn_in_enforce_policy also so that we don't verify 9972 * policy wrongly. 9973 */ 9974 if ((ah_req & REQ_MASK) != 0 || 9975 (esp_req & REQ_MASK) != 0 || 9976 (se_req & REQ_MASK) != 0) { 9977 connp->conn_in_enforce_policy = B_TRUE; 9978 connp->conn_out_enforce_policy = B_TRUE; 9979 connp->conn_flags |= IPCL_CHECK_POLICY; 9980 } 9981 9982 /* 9983 * Tunnels are allowed to set policy after having been fully bound. 9984 * If that's the case, cache policy here. 9985 */ 9986 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9987 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9988 9989 mutex_exit(&connp->conn_lock); 9990 return (error); 9991 #undef REQ_MASK 9992 9993 /* 9994 * Common memory-allocation-failure exit path. 9995 */ 9996 enomem: 9997 mutex_exit(&connp->conn_lock); 9998 if (actp != NULL) 9999 ipsec_actvec_free(actp, nact); 10000 if (pin4 != NULL) 10001 IPPOL_REFRELE(pin4); 10002 if (pout4 != NULL) 10003 IPPOL_REFRELE(pout4); 10004 if (pin6 != NULL) 10005 IPPOL_REFRELE(pin6); 10006 if (pout6 != NULL) 10007 IPPOL_REFRELE(pout6); 10008 return (ENOMEM); 10009 } 10010 10011 /* 10012 * Only for options that pass in an IP addr. Currently only V4 options 10013 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10014 * So this function assumes level is IPPROTO_IP 10015 */ 10016 int 10017 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10018 mblk_t *first_mp) 10019 { 10020 ipif_t *ipif = NULL; 10021 int error; 10022 ill_t *ill; 10023 int zoneid; 10024 10025 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10026 10027 if (addr != INADDR_ANY || checkonly) { 10028 ASSERT(connp != NULL); 10029 zoneid = IPCL_ZONEID(connp); 10030 if (option == IP_NEXTHOP) { 10031 ipif = ipif_lookup_onlink_addr(addr, zoneid); 10032 } else { 10033 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10034 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10035 &error); 10036 } 10037 if (ipif == NULL) { 10038 if (error == EINPROGRESS) 10039 return (error); 10040 else if ((option == IP_MULTICAST_IF) || 10041 (option == IP_NEXTHOP)) 10042 return (EHOSTUNREACH); 10043 else 10044 return (EINVAL); 10045 } else if (checkonly) { 10046 if (option == IP_MULTICAST_IF) { 10047 ill = ipif->ipif_ill; 10048 /* not supported by the virtual network iface */ 10049 if (IS_VNI(ill)) { 10050 ipif_refrele(ipif); 10051 return (EINVAL); 10052 } 10053 } 10054 ipif_refrele(ipif); 10055 return (0); 10056 } 10057 ill = ipif->ipif_ill; 10058 mutex_enter(&connp->conn_lock); 10059 mutex_enter(&ill->ill_lock); 10060 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10061 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10062 mutex_exit(&ill->ill_lock); 10063 mutex_exit(&connp->conn_lock); 10064 ipif_refrele(ipif); 10065 return (option == IP_MULTICAST_IF ? 10066 EHOSTUNREACH : EINVAL); 10067 } 10068 } else { 10069 mutex_enter(&connp->conn_lock); 10070 } 10071 10072 /* None of the options below are supported on the VNI */ 10073 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10074 mutex_exit(&ill->ill_lock); 10075 mutex_exit(&connp->conn_lock); 10076 ipif_refrele(ipif); 10077 return (EINVAL); 10078 } 10079 10080 switch (option) { 10081 case IP_DONTFAILOVER_IF: 10082 /* 10083 * This option is used by in.mpathd to ensure 10084 * that IPMP probe packets only go out on the 10085 * test interfaces. in.mpathd sets this option 10086 * on the non-failover interfaces. 10087 * For backward compatibility, this option 10088 * implicitly sets IP_MULTICAST_IF, as used 10089 * be done in bind(), so that ip_wput gets 10090 * this ipif to send mcast packets. 10091 */ 10092 if (ipif != NULL) { 10093 ASSERT(addr != INADDR_ANY); 10094 connp->conn_nofailover_ill = ipif->ipif_ill; 10095 connp->conn_multicast_ipif = ipif; 10096 } else { 10097 ASSERT(addr == INADDR_ANY); 10098 connp->conn_nofailover_ill = NULL; 10099 connp->conn_multicast_ipif = NULL; 10100 } 10101 break; 10102 10103 case IP_MULTICAST_IF: 10104 connp->conn_multicast_ipif = ipif; 10105 break; 10106 case IP_NEXTHOP: 10107 connp->conn_nexthop_v4 = addr; 10108 connp->conn_nexthop_set = B_TRUE; 10109 break; 10110 } 10111 10112 if (ipif != NULL) { 10113 mutex_exit(&ill->ill_lock); 10114 mutex_exit(&connp->conn_lock); 10115 ipif_refrele(ipif); 10116 return (0); 10117 } 10118 mutex_exit(&connp->conn_lock); 10119 /* We succeded in cleared the option */ 10120 return (0); 10121 } 10122 10123 /* 10124 * For options that pass in an ifindex specifying the ill. V6 options always 10125 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10126 */ 10127 int 10128 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10129 int level, int option, mblk_t *first_mp) 10130 { 10131 ill_t *ill = NULL; 10132 int error = 0; 10133 10134 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10135 if (ifindex != 0) { 10136 ASSERT(connp != NULL); 10137 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10138 first_mp, ip_restart_optmgmt, &error); 10139 if (ill != NULL) { 10140 if (checkonly) { 10141 /* not supported by the virtual network iface */ 10142 if (IS_VNI(ill)) { 10143 ill_refrele(ill); 10144 return (EINVAL); 10145 } 10146 ill_refrele(ill); 10147 return (0); 10148 } 10149 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10150 0, NULL)) { 10151 ill_refrele(ill); 10152 ill = NULL; 10153 mutex_enter(&connp->conn_lock); 10154 goto setit; 10155 } 10156 mutex_enter(&connp->conn_lock); 10157 mutex_enter(&ill->ill_lock); 10158 if (ill->ill_state_flags & ILL_CONDEMNED) { 10159 mutex_exit(&ill->ill_lock); 10160 mutex_exit(&connp->conn_lock); 10161 ill_refrele(ill); 10162 ill = NULL; 10163 mutex_enter(&connp->conn_lock); 10164 } 10165 goto setit; 10166 } else if (error == EINPROGRESS) { 10167 return (error); 10168 } else { 10169 error = 0; 10170 } 10171 } 10172 mutex_enter(&connp->conn_lock); 10173 setit: 10174 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10175 10176 /* 10177 * The options below assume that the ILL (if any) transmits and/or 10178 * receives traffic. Neither of which is true for the virtual network 10179 * interface, so fail setting these on a VNI. 10180 */ 10181 if (IS_VNI(ill)) { 10182 ASSERT(ill != NULL); 10183 mutex_exit(&ill->ill_lock); 10184 mutex_exit(&connp->conn_lock); 10185 ill_refrele(ill); 10186 return (EINVAL); 10187 } 10188 10189 if (level == IPPROTO_IP) { 10190 switch (option) { 10191 case IP_BOUND_IF: 10192 connp->conn_incoming_ill = ill; 10193 connp->conn_outgoing_ill = ill; 10194 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10195 0 : ifindex; 10196 break; 10197 10198 case IP_XMIT_IF: 10199 /* 10200 * Similar to IP_BOUND_IF, but this only 10201 * determines the outgoing interface for 10202 * unicast packets. Also no IRE_CACHE entry 10203 * is added for the destination of the 10204 * outgoing packets. This feature is needed 10205 * for mobile IP. 10206 */ 10207 connp->conn_xmit_if_ill = ill; 10208 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10209 0 : ifindex; 10210 break; 10211 10212 case IP_MULTICAST_IF: 10213 /* 10214 * This option is an internal special. The socket 10215 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10216 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10217 * specifies an ifindex and we try first on V6 ill's. 10218 * If we don't find one, we they try using on v4 ill's 10219 * intenally and we come here. 10220 */ 10221 if (!checkonly && ill != NULL) { 10222 ipif_t *ipif; 10223 ipif = ill->ill_ipif; 10224 10225 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10226 mutex_exit(&ill->ill_lock); 10227 mutex_exit(&connp->conn_lock); 10228 ill_refrele(ill); 10229 ill = NULL; 10230 mutex_enter(&connp->conn_lock); 10231 } else { 10232 connp->conn_multicast_ipif = ipif; 10233 } 10234 } 10235 break; 10236 } 10237 } else { 10238 switch (option) { 10239 case IPV6_BOUND_IF: 10240 connp->conn_incoming_ill = ill; 10241 connp->conn_outgoing_ill = ill; 10242 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10243 0 : ifindex; 10244 break; 10245 10246 case IPV6_BOUND_PIF: 10247 /* 10248 * Limit all transmit to this ill. 10249 * Unlike IPV6_BOUND_IF, using this option 10250 * prevents load spreading and failover from 10251 * happening when the interface is part of the 10252 * group. That's why we don't need to remember 10253 * the ifindex in orig_bound_ifindex as in 10254 * IPV6_BOUND_IF. 10255 */ 10256 connp->conn_outgoing_pill = ill; 10257 break; 10258 10259 case IPV6_DONTFAILOVER_IF: 10260 /* 10261 * This option is used by in.mpathd to ensure 10262 * that IPMP probe packets only go out on the 10263 * test interfaces. in.mpathd sets this option 10264 * on the non-failover interfaces. 10265 */ 10266 connp->conn_nofailover_ill = ill; 10267 /* 10268 * For backward compatibility, this option 10269 * implicitly sets ip_multicast_ill as used in 10270 * IP_MULTICAST_IF so that ip_wput gets 10271 * this ipif to send mcast packets. 10272 */ 10273 connp->conn_multicast_ill = ill; 10274 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10275 0 : ifindex; 10276 break; 10277 10278 case IPV6_MULTICAST_IF: 10279 /* 10280 * Set conn_multicast_ill to be the IPv6 ill. 10281 * Set conn_multicast_ipif to be an IPv4 ipif 10282 * for ifindex to make IPv4 mapped addresses 10283 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10284 * Even if no IPv6 ill exists for the ifindex 10285 * we need to check for an IPv4 ifindex in order 10286 * for this to work with mapped addresses. In that 10287 * case only set conn_multicast_ipif. 10288 */ 10289 if (!checkonly) { 10290 if (ifindex == 0) { 10291 connp->conn_multicast_ill = NULL; 10292 connp->conn_orig_multicast_ifindex = 0; 10293 connp->conn_multicast_ipif = NULL; 10294 } else if (ill != NULL) { 10295 connp->conn_multicast_ill = ill; 10296 connp->conn_orig_multicast_ifindex = 10297 ifindex; 10298 } 10299 } 10300 break; 10301 } 10302 } 10303 10304 if (ill != NULL) { 10305 mutex_exit(&ill->ill_lock); 10306 mutex_exit(&connp->conn_lock); 10307 ill_refrele(ill); 10308 return (0); 10309 } 10310 mutex_exit(&connp->conn_lock); 10311 /* 10312 * We succeeded in clearing the option (ifindex == 0) or failed to 10313 * locate the ill and could not set the option (ifindex != 0) 10314 */ 10315 return (ifindex == 0 ? 0 : EINVAL); 10316 } 10317 10318 /* This routine sets socket options. */ 10319 /* ARGSUSED */ 10320 int 10321 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10322 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10323 void *dummy, cred_t *cr, mblk_t *first_mp) 10324 { 10325 int *i1 = (int *)invalp; 10326 conn_t *connp = Q_TO_CONN(q); 10327 int error = 0; 10328 boolean_t checkonly; 10329 ire_t *ire; 10330 boolean_t found; 10331 10332 switch (optset_context) { 10333 10334 case SETFN_OPTCOM_CHECKONLY: 10335 checkonly = B_TRUE; 10336 /* 10337 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10338 * inlen != 0 implies value supplied and 10339 * we have to "pretend" to set it. 10340 * inlen == 0 implies that there is no 10341 * value part in T_CHECK request and just validation 10342 * done elsewhere should be enough, we just return here. 10343 */ 10344 if (inlen == 0) { 10345 *outlenp = 0; 10346 return (0); 10347 } 10348 break; 10349 case SETFN_OPTCOM_NEGOTIATE: 10350 case SETFN_UD_NEGOTIATE: 10351 case SETFN_CONN_NEGOTIATE: 10352 checkonly = B_FALSE; 10353 break; 10354 default: 10355 /* 10356 * We should never get here 10357 */ 10358 *outlenp = 0; 10359 return (EINVAL); 10360 } 10361 10362 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10363 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10364 10365 /* 10366 * For fixed length options, no sanity check 10367 * of passed in length is done. It is assumed *_optcom_req() 10368 * routines do the right thing. 10369 */ 10370 10371 switch (level) { 10372 case SOL_SOCKET: 10373 /* 10374 * conn_lock protects the bitfields, and is used to 10375 * set the fields atomically. 10376 */ 10377 switch (name) { 10378 case SO_BROADCAST: 10379 if (!checkonly) { 10380 /* TODO: use value someplace? */ 10381 mutex_enter(&connp->conn_lock); 10382 connp->conn_broadcast = *i1 ? 1 : 0; 10383 mutex_exit(&connp->conn_lock); 10384 } 10385 break; /* goto sizeof (int) option return */ 10386 case SO_USELOOPBACK: 10387 if (!checkonly) { 10388 /* TODO: use value someplace? */ 10389 mutex_enter(&connp->conn_lock); 10390 connp->conn_loopback = *i1 ? 1 : 0; 10391 mutex_exit(&connp->conn_lock); 10392 } 10393 break; /* goto sizeof (int) option return */ 10394 case SO_DONTROUTE: 10395 if (!checkonly) { 10396 mutex_enter(&connp->conn_lock); 10397 connp->conn_dontroute = *i1 ? 1 : 0; 10398 mutex_exit(&connp->conn_lock); 10399 } 10400 break; /* goto sizeof (int) option return */ 10401 case SO_REUSEADDR: 10402 if (!checkonly) { 10403 mutex_enter(&connp->conn_lock); 10404 connp->conn_reuseaddr = *i1 ? 1 : 0; 10405 mutex_exit(&connp->conn_lock); 10406 } 10407 break; /* goto sizeof (int) option return */ 10408 case SO_PROTOTYPE: 10409 if (!checkonly) { 10410 mutex_enter(&connp->conn_lock); 10411 connp->conn_proto = *i1; 10412 mutex_exit(&connp->conn_lock); 10413 } 10414 break; /* goto sizeof (int) option return */ 10415 case SO_ALLZONES: 10416 if (!checkonly) { 10417 mutex_enter(&connp->conn_lock); 10418 if (IPCL_IS_BOUND(connp)) { 10419 mutex_exit(&connp->conn_lock); 10420 return (EINVAL); 10421 } 10422 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10423 mutex_exit(&connp->conn_lock); 10424 } 10425 break; /* goto sizeof (int) option return */ 10426 case SO_ANON_MLP: 10427 if (!checkonly) { 10428 mutex_enter(&connp->conn_lock); 10429 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10430 mutex_exit(&connp->conn_lock); 10431 } 10432 break; /* goto sizeof (int) option return */ 10433 case SO_MAC_EXEMPT: 10434 if (secpolicy_net_mac_aware(cr) != 0 || 10435 IPCL_IS_BOUND(connp)) 10436 return (EACCES); 10437 if (!checkonly) { 10438 mutex_enter(&connp->conn_lock); 10439 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10440 mutex_exit(&connp->conn_lock); 10441 } 10442 break; /* goto sizeof (int) option return */ 10443 default: 10444 /* 10445 * "soft" error (negative) 10446 * option not handled at this level 10447 * Note: Do not modify *outlenp 10448 */ 10449 return (-EINVAL); 10450 } 10451 break; 10452 case IPPROTO_IP: 10453 switch (name) { 10454 case IP_NEXTHOP: 10455 if (secpolicy_net_config(cr, B_FALSE) != 0) 10456 return (EPERM); 10457 /* FALLTHRU */ 10458 case IP_MULTICAST_IF: 10459 case IP_DONTFAILOVER_IF: { 10460 ipaddr_t addr = *i1; 10461 10462 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10463 first_mp); 10464 if (error != 0) 10465 return (error); 10466 break; /* goto sizeof (int) option return */ 10467 } 10468 10469 case IP_MULTICAST_TTL: 10470 /* Recorded in transport above IP */ 10471 *outvalp = *invalp; 10472 *outlenp = sizeof (uchar_t); 10473 return (0); 10474 case IP_MULTICAST_LOOP: 10475 if (!checkonly) { 10476 mutex_enter(&connp->conn_lock); 10477 connp->conn_multicast_loop = *invalp ? 1 : 0; 10478 mutex_exit(&connp->conn_lock); 10479 } 10480 *outvalp = *invalp; 10481 *outlenp = sizeof (uchar_t); 10482 return (0); 10483 case IP_ADD_MEMBERSHIP: 10484 case MCAST_JOIN_GROUP: 10485 case IP_DROP_MEMBERSHIP: 10486 case MCAST_LEAVE_GROUP: { 10487 struct ip_mreq *mreqp; 10488 struct group_req *greqp; 10489 ire_t *ire; 10490 boolean_t done = B_FALSE; 10491 ipaddr_t group, ifaddr; 10492 struct sockaddr_in *sin; 10493 uint32_t *ifindexp; 10494 boolean_t mcast_opt = B_TRUE; 10495 mcast_record_t fmode; 10496 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10497 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10498 10499 switch (name) { 10500 case IP_ADD_MEMBERSHIP: 10501 mcast_opt = B_FALSE; 10502 /* FALLTHRU */ 10503 case MCAST_JOIN_GROUP: 10504 fmode = MODE_IS_EXCLUDE; 10505 optfn = ip_opt_add_group; 10506 break; 10507 10508 case IP_DROP_MEMBERSHIP: 10509 mcast_opt = B_FALSE; 10510 /* FALLTHRU */ 10511 case MCAST_LEAVE_GROUP: 10512 fmode = MODE_IS_INCLUDE; 10513 optfn = ip_opt_delete_group; 10514 break; 10515 } 10516 10517 if (mcast_opt) { 10518 greqp = (struct group_req *)i1; 10519 sin = (struct sockaddr_in *)&greqp->gr_group; 10520 if (sin->sin_family != AF_INET) { 10521 *outlenp = 0; 10522 return (ENOPROTOOPT); 10523 } 10524 group = (ipaddr_t)sin->sin_addr.s_addr; 10525 ifaddr = INADDR_ANY; 10526 ifindexp = &greqp->gr_interface; 10527 } else { 10528 mreqp = (struct ip_mreq *)i1; 10529 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10530 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10531 ifindexp = NULL; 10532 } 10533 10534 /* 10535 * In the multirouting case, we need to replicate 10536 * the request on all interfaces that will take part 10537 * in replication. We do so because multirouting is 10538 * reflective, thus we will probably receive multi- 10539 * casts on those interfaces. 10540 * The ip_multirt_apply_membership() succeeds if the 10541 * operation succeeds on at least one interface. 10542 */ 10543 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10544 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10545 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10546 if (ire != NULL) { 10547 if (ire->ire_flags & RTF_MULTIRT) { 10548 error = ip_multirt_apply_membership( 10549 optfn, ire, connp, checkonly, group, 10550 fmode, INADDR_ANY, first_mp); 10551 done = B_TRUE; 10552 } 10553 ire_refrele(ire); 10554 } 10555 if (!done) { 10556 error = optfn(connp, checkonly, group, ifaddr, 10557 ifindexp, fmode, INADDR_ANY, first_mp); 10558 } 10559 if (error) { 10560 /* 10561 * EINPROGRESS is a soft error, needs retry 10562 * so don't make *outlenp zero. 10563 */ 10564 if (error != EINPROGRESS) 10565 *outlenp = 0; 10566 return (error); 10567 } 10568 /* OK return - copy input buffer into output buffer */ 10569 if (invalp != outvalp) { 10570 /* don't trust bcopy for identical src/dst */ 10571 bcopy(invalp, outvalp, inlen); 10572 } 10573 *outlenp = inlen; 10574 return (0); 10575 } 10576 case IP_BLOCK_SOURCE: 10577 case IP_UNBLOCK_SOURCE: 10578 case IP_ADD_SOURCE_MEMBERSHIP: 10579 case IP_DROP_SOURCE_MEMBERSHIP: 10580 case MCAST_BLOCK_SOURCE: 10581 case MCAST_UNBLOCK_SOURCE: 10582 case MCAST_JOIN_SOURCE_GROUP: 10583 case MCAST_LEAVE_SOURCE_GROUP: { 10584 struct ip_mreq_source *imreqp; 10585 struct group_source_req *gsreqp; 10586 in_addr_t grp, src, ifaddr = INADDR_ANY; 10587 uint32_t ifindex = 0; 10588 mcast_record_t fmode; 10589 struct sockaddr_in *sin; 10590 ire_t *ire; 10591 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10592 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10593 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10594 10595 switch (name) { 10596 case IP_BLOCK_SOURCE: 10597 mcast_opt = B_FALSE; 10598 /* FALLTHRU */ 10599 case MCAST_BLOCK_SOURCE: 10600 fmode = MODE_IS_EXCLUDE; 10601 optfn = ip_opt_add_group; 10602 break; 10603 10604 case IP_UNBLOCK_SOURCE: 10605 mcast_opt = B_FALSE; 10606 /* FALLTHRU */ 10607 case MCAST_UNBLOCK_SOURCE: 10608 fmode = MODE_IS_EXCLUDE; 10609 optfn = ip_opt_delete_group; 10610 break; 10611 10612 case IP_ADD_SOURCE_MEMBERSHIP: 10613 mcast_opt = B_FALSE; 10614 /* FALLTHRU */ 10615 case MCAST_JOIN_SOURCE_GROUP: 10616 fmode = MODE_IS_INCLUDE; 10617 optfn = ip_opt_add_group; 10618 break; 10619 10620 case IP_DROP_SOURCE_MEMBERSHIP: 10621 mcast_opt = B_FALSE; 10622 /* FALLTHRU */ 10623 case MCAST_LEAVE_SOURCE_GROUP: 10624 fmode = MODE_IS_INCLUDE; 10625 optfn = ip_opt_delete_group; 10626 break; 10627 } 10628 10629 if (mcast_opt) { 10630 gsreqp = (struct group_source_req *)i1; 10631 if (gsreqp->gsr_group.ss_family != AF_INET) { 10632 *outlenp = 0; 10633 return (ENOPROTOOPT); 10634 } 10635 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10636 grp = (ipaddr_t)sin->sin_addr.s_addr; 10637 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10638 src = (ipaddr_t)sin->sin_addr.s_addr; 10639 ifindex = gsreqp->gsr_interface; 10640 } else { 10641 imreqp = (struct ip_mreq_source *)i1; 10642 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10643 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10644 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10645 } 10646 10647 /* 10648 * In the multirouting case, we need to replicate 10649 * the request as noted in the mcast cases above. 10650 */ 10651 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10652 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10653 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10654 if (ire != NULL) { 10655 if (ire->ire_flags & RTF_MULTIRT) { 10656 error = ip_multirt_apply_membership( 10657 optfn, ire, connp, checkonly, grp, 10658 fmode, src, first_mp); 10659 done = B_TRUE; 10660 } 10661 ire_refrele(ire); 10662 } 10663 if (!done) { 10664 error = optfn(connp, checkonly, grp, ifaddr, 10665 &ifindex, fmode, src, first_mp); 10666 } 10667 if (error != 0) { 10668 /* 10669 * EINPROGRESS is a soft error, needs retry 10670 * so don't make *outlenp zero. 10671 */ 10672 if (error != EINPROGRESS) 10673 *outlenp = 0; 10674 return (error); 10675 } 10676 /* OK return - copy input buffer into output buffer */ 10677 if (invalp != outvalp) { 10678 bcopy(invalp, outvalp, inlen); 10679 } 10680 *outlenp = inlen; 10681 return (0); 10682 } 10683 case IP_SEC_OPT: 10684 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10685 if (error != 0) { 10686 *outlenp = 0; 10687 return (error); 10688 } 10689 break; 10690 case IP_HDRINCL: 10691 case IP_OPTIONS: 10692 case T_IP_OPTIONS: 10693 case IP_TOS: 10694 case T_IP_TOS: 10695 case IP_TTL: 10696 case IP_RECVDSTADDR: 10697 case IP_RECVOPTS: 10698 /* OK return - copy input buffer into output buffer */ 10699 if (invalp != outvalp) { 10700 /* don't trust bcopy for identical src/dst */ 10701 bcopy(invalp, outvalp, inlen); 10702 } 10703 *outlenp = inlen; 10704 return (0); 10705 case IP_RECVIF: 10706 /* Retrieve the inbound interface index */ 10707 if (!checkonly) { 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_recvif = *i1 ? 1 : 0; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 case IP_RECVSLLA: 10714 /* Retrieve the source link layer address */ 10715 if (!checkonly) { 10716 mutex_enter(&connp->conn_lock); 10717 connp->conn_recvslla = *i1 ? 1 : 0; 10718 mutex_exit(&connp->conn_lock); 10719 } 10720 break; /* goto sizeof (int) option return */ 10721 case MRT_INIT: 10722 case MRT_DONE: 10723 case MRT_ADD_VIF: 10724 case MRT_DEL_VIF: 10725 case MRT_ADD_MFC: 10726 case MRT_DEL_MFC: 10727 case MRT_ASSERT: 10728 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10729 *outlenp = 0; 10730 return (error); 10731 } 10732 error = ip_mrouter_set((int)name, q, checkonly, 10733 (uchar_t *)invalp, inlen, first_mp); 10734 if (error) { 10735 *outlenp = 0; 10736 return (error); 10737 } 10738 /* OK return - copy input buffer into output buffer */ 10739 if (invalp != outvalp) { 10740 /* don't trust bcopy for identical src/dst */ 10741 bcopy(invalp, outvalp, inlen); 10742 } 10743 *outlenp = inlen; 10744 return (0); 10745 case IP_BOUND_IF: 10746 case IP_XMIT_IF: 10747 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10748 level, name, first_mp); 10749 if (error != 0) 10750 return (error); 10751 break; /* goto sizeof (int) option return */ 10752 10753 case IP_UNSPEC_SRC: 10754 /* Allow sending with a zero source address */ 10755 if (!checkonly) { 10756 mutex_enter(&connp->conn_lock); 10757 connp->conn_unspec_src = *i1 ? 1 : 0; 10758 mutex_exit(&connp->conn_lock); 10759 } 10760 break; /* goto sizeof (int) option return */ 10761 default: 10762 /* 10763 * "soft" error (negative) 10764 * option not handled at this level 10765 * Note: Do not modify *outlenp 10766 */ 10767 return (-EINVAL); 10768 } 10769 break; 10770 case IPPROTO_IPV6: 10771 switch (name) { 10772 case IPV6_BOUND_IF: 10773 case IPV6_BOUND_PIF: 10774 case IPV6_DONTFAILOVER_IF: 10775 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10776 level, name, first_mp); 10777 if (error != 0) 10778 return (error); 10779 break; /* goto sizeof (int) option return */ 10780 10781 case IPV6_MULTICAST_IF: 10782 /* 10783 * The only possible errors are EINPROGRESS and 10784 * EINVAL. EINPROGRESS will be restarted and is not 10785 * a hard error. We call this option on both V4 and V6 10786 * If both return EINVAL, then this call returns 10787 * EINVAL. If at least one of them succeeds we 10788 * return success. 10789 */ 10790 found = B_FALSE; 10791 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10792 level, name, first_mp); 10793 if (error == EINPROGRESS) 10794 return (error); 10795 if (error == 0) 10796 found = B_TRUE; 10797 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10798 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10799 if (error == 0) 10800 found = B_TRUE; 10801 if (!found) 10802 return (error); 10803 break; /* goto sizeof (int) option return */ 10804 10805 case IPV6_MULTICAST_HOPS: 10806 /* Recorded in transport above IP */ 10807 break; /* goto sizeof (int) option return */ 10808 case IPV6_MULTICAST_LOOP: 10809 if (!checkonly) { 10810 mutex_enter(&connp->conn_lock); 10811 connp->conn_multicast_loop = *i1; 10812 mutex_exit(&connp->conn_lock); 10813 } 10814 break; /* goto sizeof (int) option return */ 10815 case IPV6_JOIN_GROUP: 10816 case MCAST_JOIN_GROUP: 10817 case IPV6_LEAVE_GROUP: 10818 case MCAST_LEAVE_GROUP: { 10819 struct ipv6_mreq *ip_mreqp; 10820 struct group_req *greqp; 10821 ire_t *ire; 10822 boolean_t done = B_FALSE; 10823 in6_addr_t groupv6; 10824 uint32_t ifindex; 10825 boolean_t mcast_opt = B_TRUE; 10826 mcast_record_t fmode; 10827 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10828 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10829 10830 switch (name) { 10831 case IPV6_JOIN_GROUP: 10832 mcast_opt = B_FALSE; 10833 /* FALLTHRU */ 10834 case MCAST_JOIN_GROUP: 10835 fmode = MODE_IS_EXCLUDE; 10836 optfn = ip_opt_add_group_v6; 10837 break; 10838 10839 case IPV6_LEAVE_GROUP: 10840 mcast_opt = B_FALSE; 10841 /* FALLTHRU */ 10842 case MCAST_LEAVE_GROUP: 10843 fmode = MODE_IS_INCLUDE; 10844 optfn = ip_opt_delete_group_v6; 10845 break; 10846 } 10847 10848 if (mcast_opt) { 10849 struct sockaddr_in *sin; 10850 struct sockaddr_in6 *sin6; 10851 greqp = (struct group_req *)i1; 10852 if (greqp->gr_group.ss_family == AF_INET) { 10853 sin = (struct sockaddr_in *) 10854 &(greqp->gr_group); 10855 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10856 &groupv6); 10857 } else { 10858 sin6 = (struct sockaddr_in6 *) 10859 &(greqp->gr_group); 10860 groupv6 = sin6->sin6_addr; 10861 } 10862 ifindex = greqp->gr_interface; 10863 } else { 10864 ip_mreqp = (struct ipv6_mreq *)i1; 10865 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10866 ifindex = ip_mreqp->ipv6mr_interface; 10867 } 10868 /* 10869 * In the multirouting case, we need to replicate 10870 * the request on all interfaces that will take part 10871 * in replication. We do so because multirouting is 10872 * reflective, thus we will probably receive multi- 10873 * casts on those interfaces. 10874 * The ip_multirt_apply_membership_v6() succeeds if 10875 * the operation succeeds on at least one interface. 10876 */ 10877 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10878 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10879 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10880 if (ire != NULL) { 10881 if (ire->ire_flags & RTF_MULTIRT) { 10882 error = ip_multirt_apply_membership_v6( 10883 optfn, ire, connp, checkonly, 10884 &groupv6, fmode, &ipv6_all_zeros, 10885 first_mp); 10886 done = B_TRUE; 10887 } 10888 ire_refrele(ire); 10889 } 10890 if (!done) { 10891 error = optfn(connp, checkonly, &groupv6, 10892 ifindex, fmode, &ipv6_all_zeros, first_mp); 10893 } 10894 if (error) { 10895 /* 10896 * EINPROGRESS is a soft error, needs retry 10897 * so don't make *outlenp zero. 10898 */ 10899 if (error != EINPROGRESS) 10900 *outlenp = 0; 10901 return (error); 10902 } 10903 /* OK return - copy input buffer into output buffer */ 10904 if (invalp != outvalp) { 10905 /* don't trust bcopy for identical src/dst */ 10906 bcopy(invalp, outvalp, inlen); 10907 } 10908 *outlenp = inlen; 10909 return (0); 10910 } 10911 case MCAST_BLOCK_SOURCE: 10912 case MCAST_UNBLOCK_SOURCE: 10913 case MCAST_JOIN_SOURCE_GROUP: 10914 case MCAST_LEAVE_SOURCE_GROUP: { 10915 struct group_source_req *gsreqp; 10916 in6_addr_t v6grp, v6src; 10917 uint32_t ifindex; 10918 mcast_record_t fmode; 10919 ire_t *ire; 10920 boolean_t done = B_FALSE; 10921 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10922 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10923 10924 switch (name) { 10925 case MCAST_BLOCK_SOURCE: 10926 fmode = MODE_IS_EXCLUDE; 10927 optfn = ip_opt_add_group_v6; 10928 break; 10929 case MCAST_UNBLOCK_SOURCE: 10930 fmode = MODE_IS_EXCLUDE; 10931 optfn = ip_opt_delete_group_v6; 10932 break; 10933 case MCAST_JOIN_SOURCE_GROUP: 10934 fmode = MODE_IS_INCLUDE; 10935 optfn = ip_opt_add_group_v6; 10936 break; 10937 case MCAST_LEAVE_SOURCE_GROUP: 10938 fmode = MODE_IS_INCLUDE; 10939 optfn = ip_opt_delete_group_v6; 10940 break; 10941 } 10942 10943 gsreqp = (struct group_source_req *)i1; 10944 ifindex = gsreqp->gsr_interface; 10945 if (gsreqp->gsr_group.ss_family == AF_INET) { 10946 struct sockaddr_in *s; 10947 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10948 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10949 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10950 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10951 } else { 10952 struct sockaddr_in6 *s6; 10953 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10954 v6grp = s6->sin6_addr; 10955 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10956 v6src = s6->sin6_addr; 10957 } 10958 10959 /* 10960 * In the multirouting case, we need to replicate 10961 * the request as noted in the mcast cases above. 10962 */ 10963 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10964 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10965 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10966 if (ire != NULL) { 10967 if (ire->ire_flags & RTF_MULTIRT) { 10968 error = ip_multirt_apply_membership_v6( 10969 optfn, ire, connp, checkonly, 10970 &v6grp, fmode, &v6src, first_mp); 10971 done = B_TRUE; 10972 } 10973 ire_refrele(ire); 10974 } 10975 if (!done) { 10976 error = optfn(connp, checkonly, &v6grp, 10977 ifindex, fmode, &v6src, first_mp); 10978 } 10979 if (error != 0) { 10980 /* 10981 * EINPROGRESS is a soft error, needs retry 10982 * so don't make *outlenp zero. 10983 */ 10984 if (error != EINPROGRESS) 10985 *outlenp = 0; 10986 return (error); 10987 } 10988 /* OK return - copy input buffer into output buffer */ 10989 if (invalp != outvalp) { 10990 bcopy(invalp, outvalp, inlen); 10991 } 10992 *outlenp = inlen; 10993 return (0); 10994 } 10995 case IPV6_UNICAST_HOPS: 10996 /* Recorded in transport above IP */ 10997 break; /* goto sizeof (int) option return */ 10998 case IPV6_UNSPEC_SRC: 10999 /* Allow sending with a zero source address */ 11000 if (!checkonly) { 11001 mutex_enter(&connp->conn_lock); 11002 connp->conn_unspec_src = *i1 ? 1 : 0; 11003 mutex_exit(&connp->conn_lock); 11004 } 11005 break; /* goto sizeof (int) option return */ 11006 case IPV6_RECVPKTINFO: 11007 if (!checkonly) { 11008 mutex_enter(&connp->conn_lock); 11009 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11010 mutex_exit(&connp->conn_lock); 11011 } 11012 break; /* goto sizeof (int) option return */ 11013 case IPV6_RECVTCLASS: 11014 if (!checkonly) { 11015 if (*i1 < 0 || *i1 > 1) { 11016 return (EINVAL); 11017 } 11018 mutex_enter(&connp->conn_lock); 11019 connp->conn_ipv6_recvtclass = *i1; 11020 mutex_exit(&connp->conn_lock); 11021 } 11022 break; 11023 case IPV6_RECVPATHMTU: 11024 if (!checkonly) { 11025 if (*i1 < 0 || *i1 > 1) { 11026 return (EINVAL); 11027 } 11028 mutex_enter(&connp->conn_lock); 11029 connp->conn_ipv6_recvpathmtu = *i1; 11030 mutex_exit(&connp->conn_lock); 11031 } 11032 break; 11033 case IPV6_RECVHOPLIMIT: 11034 if (!checkonly) { 11035 mutex_enter(&connp->conn_lock); 11036 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11037 mutex_exit(&connp->conn_lock); 11038 } 11039 break; /* goto sizeof (int) option return */ 11040 case IPV6_RECVHOPOPTS: 11041 if (!checkonly) { 11042 mutex_enter(&connp->conn_lock); 11043 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11044 mutex_exit(&connp->conn_lock); 11045 } 11046 break; /* goto sizeof (int) option return */ 11047 case IPV6_RECVDSTOPTS: 11048 if (!checkonly) { 11049 mutex_enter(&connp->conn_lock); 11050 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11051 mutex_exit(&connp->conn_lock); 11052 } 11053 break; /* goto sizeof (int) option return */ 11054 case IPV6_RECVRTHDR: 11055 if (!checkonly) { 11056 mutex_enter(&connp->conn_lock); 11057 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11058 mutex_exit(&connp->conn_lock); 11059 } 11060 break; /* goto sizeof (int) option return */ 11061 case IPV6_RECVRTHDRDSTOPTS: 11062 if (!checkonly) { 11063 mutex_enter(&connp->conn_lock); 11064 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11065 mutex_exit(&connp->conn_lock); 11066 } 11067 break; /* goto sizeof (int) option return */ 11068 case IPV6_PKTINFO: 11069 if (inlen == 0) 11070 return (-EINVAL); /* clearing option */ 11071 error = ip6_set_pktinfo(cr, connp, 11072 (struct in6_pktinfo *)invalp, first_mp); 11073 if (error != 0) 11074 *outlenp = 0; 11075 else 11076 *outlenp = inlen; 11077 return (error); 11078 case IPV6_NEXTHOP: { 11079 struct sockaddr_in6 *sin6; 11080 11081 /* Verify that the nexthop is reachable */ 11082 if (inlen == 0) 11083 return (-EINVAL); /* clearing option */ 11084 11085 sin6 = (struct sockaddr_in6 *)invalp; 11086 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11087 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11088 NULL, MATCH_IRE_DEFAULT); 11089 11090 if (ire == NULL) { 11091 *outlenp = 0; 11092 return (EHOSTUNREACH); 11093 } 11094 ire_refrele(ire); 11095 return (-EINVAL); 11096 } 11097 case IPV6_SEC_OPT: 11098 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11099 if (error != 0) { 11100 *outlenp = 0; 11101 return (error); 11102 } 11103 break; 11104 case IPV6_SRC_PREFERENCES: { 11105 /* 11106 * This is implemented strictly in the ip module 11107 * (here and in tcp_opt_*() to accomodate tcp 11108 * sockets). Modules above ip pass this option 11109 * down here since ip is the only one that needs to 11110 * be aware of source address preferences. 11111 * 11112 * This socket option only affects connected 11113 * sockets that haven't already bound to a specific 11114 * IPv6 address. In other words, sockets that 11115 * don't call bind() with an address other than the 11116 * unspecified address and that call connect(). 11117 * ip_bind_connected_v6() passes these preferences 11118 * to the ipif_select_source_v6() function. 11119 */ 11120 if (inlen != sizeof (uint32_t)) 11121 return (EINVAL); 11122 error = ip6_set_src_preferences(connp, 11123 *(uint32_t *)invalp); 11124 if (error != 0) { 11125 *outlenp = 0; 11126 return (error); 11127 } else { 11128 *outlenp = sizeof (uint32_t); 11129 } 11130 break; 11131 } 11132 case IPV6_V6ONLY: 11133 if (*i1 < 0 || *i1 > 1) { 11134 return (EINVAL); 11135 } 11136 mutex_enter(&connp->conn_lock); 11137 connp->conn_ipv6_v6only = *i1; 11138 mutex_exit(&connp->conn_lock); 11139 break; 11140 default: 11141 return (-EINVAL); 11142 } 11143 break; 11144 default: 11145 /* 11146 * "soft" error (negative) 11147 * option not handled at this level 11148 * Note: Do not modify *outlenp 11149 */ 11150 return (-EINVAL); 11151 } 11152 /* 11153 * Common case of return from an option that is sizeof (int) 11154 */ 11155 *(int *)outvalp = *i1; 11156 *outlenp = sizeof (int); 11157 return (0); 11158 } 11159 11160 /* 11161 * This routine gets default values of certain options whose default 11162 * values are maintained by protocol specific code 11163 */ 11164 /* ARGSUSED */ 11165 int 11166 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11167 { 11168 int *i1 = (int *)ptr; 11169 11170 switch (level) { 11171 case IPPROTO_IP: 11172 switch (name) { 11173 case IP_MULTICAST_TTL: 11174 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11175 return (sizeof (uchar_t)); 11176 case IP_MULTICAST_LOOP: 11177 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11178 return (sizeof (uchar_t)); 11179 default: 11180 return (-1); 11181 } 11182 case IPPROTO_IPV6: 11183 switch (name) { 11184 case IPV6_UNICAST_HOPS: 11185 *i1 = ipv6_def_hops; 11186 return (sizeof (int)); 11187 case IPV6_MULTICAST_HOPS: 11188 *i1 = IP_DEFAULT_MULTICAST_TTL; 11189 return (sizeof (int)); 11190 case IPV6_MULTICAST_LOOP: 11191 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11192 return (sizeof (int)); 11193 case IPV6_V6ONLY: 11194 *i1 = 1; 11195 return (sizeof (int)); 11196 default: 11197 return (-1); 11198 } 11199 default: 11200 return (-1); 11201 } 11202 /* NOTREACHED */ 11203 } 11204 11205 /* 11206 * Given a destination address and a pointer to where to put the information 11207 * this routine fills in the mtuinfo. 11208 */ 11209 int 11210 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11211 struct ip6_mtuinfo *mtuinfo) 11212 { 11213 ire_t *ire; 11214 11215 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11216 return (-1); 11217 11218 bzero(mtuinfo, sizeof (*mtuinfo)); 11219 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11220 mtuinfo->ip6m_addr.sin6_port = port; 11221 mtuinfo->ip6m_addr.sin6_addr = *in6; 11222 11223 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11224 if (ire != NULL) { 11225 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11226 ire_refrele(ire); 11227 } else { 11228 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11229 } 11230 return (sizeof (struct ip6_mtuinfo)); 11231 } 11232 11233 /* 11234 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11235 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11236 * isn't. This doesn't matter as the error checking is done properly for the 11237 * other MRT options coming in through ip_opt_set. 11238 */ 11239 int 11240 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11241 { 11242 conn_t *connp = Q_TO_CONN(q); 11243 ipsec_req_t *req = (ipsec_req_t *)ptr; 11244 11245 switch (level) { 11246 case IPPROTO_IP: 11247 switch (name) { 11248 case MRT_VERSION: 11249 case MRT_ASSERT: 11250 (void) ip_mrouter_get(name, q, ptr); 11251 return (sizeof (int)); 11252 case IP_SEC_OPT: 11253 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11254 case IP_NEXTHOP: 11255 if (connp->conn_nexthop_set) { 11256 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11257 return (sizeof (ipaddr_t)); 11258 } else 11259 return (0); 11260 default: 11261 break; 11262 } 11263 break; 11264 case IPPROTO_IPV6: 11265 switch (name) { 11266 case IPV6_SEC_OPT: 11267 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11268 case IPV6_SRC_PREFERENCES: { 11269 return (ip6_get_src_preferences(connp, 11270 (uint32_t *)ptr)); 11271 } 11272 case IPV6_V6ONLY: 11273 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11274 return (sizeof (int)); 11275 case IPV6_PATHMTU: 11276 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11277 (struct ip6_mtuinfo *)ptr)); 11278 default: 11279 break; 11280 } 11281 break; 11282 default: 11283 break; 11284 } 11285 return (-1); 11286 } 11287 11288 /* Named Dispatch routine to get a current value out of our parameter table. */ 11289 /* ARGSUSED */ 11290 static int 11291 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11292 { 11293 ipparam_t *ippa = (ipparam_t *)cp; 11294 11295 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11296 return (0); 11297 } 11298 11299 /* ARGSUSED */ 11300 static int 11301 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11302 { 11303 11304 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11305 return (0); 11306 } 11307 11308 /* 11309 * Set ip{,6}_forwarding values. This means walking through all of the 11310 * ill's and toggling their forwarding values. 11311 */ 11312 /* ARGSUSED */ 11313 static int 11314 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11315 { 11316 long new_value; 11317 int *forwarding_value = (int *)cp; 11318 ill_t *walker; 11319 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11320 ill_walk_context_t ctx; 11321 11322 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11323 new_value < 0 || new_value > 1) { 11324 return (EINVAL); 11325 } 11326 11327 *forwarding_value = new_value; 11328 11329 /* 11330 * Regardless of the current value of ip_forwarding, set all per-ill 11331 * values of ip_forwarding to the value being set. 11332 * 11333 * Bring all the ill's up to date with the new global value. 11334 */ 11335 rw_enter(&ill_g_lock, RW_READER); 11336 11337 if (isv6) 11338 walker = ILL_START_WALK_V6(&ctx); 11339 else 11340 walker = ILL_START_WALK_V4(&ctx); 11341 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11342 (void) ill_forward_set(q, mp, (new_value != 0), 11343 (caddr_t)walker); 11344 } 11345 rw_exit(&ill_g_lock); 11346 11347 return (0); 11348 } 11349 11350 /* 11351 * Walk through the param array specified registering each element with the 11352 * Named Dispatch handler. This is called only during init. So it is ok 11353 * not to acquire any locks 11354 */ 11355 static boolean_t 11356 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11357 ipndp_t *ipnd, size_t ipnd_cnt) 11358 { 11359 for (; ippa_cnt-- > 0; ippa++) { 11360 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11361 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11362 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11363 nd_free(&ip_g_nd); 11364 return (B_FALSE); 11365 } 11366 } 11367 } 11368 11369 for (; ipnd_cnt-- > 0; ipnd++) { 11370 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11371 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11372 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11373 ipnd->ip_ndp_data)) { 11374 nd_free(&ip_g_nd); 11375 return (B_FALSE); 11376 } 11377 } 11378 } 11379 11380 return (B_TRUE); 11381 } 11382 11383 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11384 /* ARGSUSED */ 11385 static int 11386 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11387 { 11388 long new_value; 11389 ipparam_t *ippa = (ipparam_t *)cp; 11390 11391 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11392 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11393 return (EINVAL); 11394 } 11395 ippa->ip_param_value = new_value; 11396 return (0); 11397 } 11398 11399 /* 11400 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11401 * When an ipf is passed here for the first time, if 11402 * we already have in-order fragments on the queue, we convert from the fast- 11403 * path reassembly scheme to the hard-case scheme. From then on, additional 11404 * fragments are reassembled here. We keep track of the start and end offsets 11405 * of each piece, and the number of holes in the chain. When the hole count 11406 * goes to zero, we are done! 11407 * 11408 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11409 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11410 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11411 * after the call to ip_reassemble(). 11412 */ 11413 int 11414 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11415 size_t msg_len) 11416 { 11417 uint_t end; 11418 mblk_t *next_mp; 11419 mblk_t *mp1; 11420 uint_t offset; 11421 boolean_t incr_dups = B_TRUE; 11422 boolean_t offset_zero_seen = B_FALSE; 11423 boolean_t pkt_boundary_checked = B_FALSE; 11424 11425 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11426 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11427 11428 /* Add in byte count */ 11429 ipf->ipf_count += msg_len; 11430 if (ipf->ipf_end) { 11431 /* 11432 * We were part way through in-order reassembly, but now there 11433 * is a hole. We walk through messages already queued, and 11434 * mark them for hard case reassembly. We know that up till 11435 * now they were in order starting from offset zero. 11436 */ 11437 offset = 0; 11438 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11439 IP_REASS_SET_START(mp1, offset); 11440 if (offset == 0) { 11441 ASSERT(ipf->ipf_nf_hdr_len != 0); 11442 offset = -ipf->ipf_nf_hdr_len; 11443 } 11444 offset += mp1->b_wptr - mp1->b_rptr; 11445 IP_REASS_SET_END(mp1, offset); 11446 } 11447 /* One hole at the end. */ 11448 ipf->ipf_hole_cnt = 1; 11449 /* Brand it as a hard case, forever. */ 11450 ipf->ipf_end = 0; 11451 } 11452 /* Walk through all the new pieces. */ 11453 do { 11454 end = start + (mp->b_wptr - mp->b_rptr); 11455 /* 11456 * If start is 0, decrease 'end' only for the first mblk of 11457 * the fragment. Otherwise 'end' can get wrong value in the 11458 * second pass of the loop if first mblk is exactly the 11459 * size of ipf_nf_hdr_len. 11460 */ 11461 if (start == 0 && !offset_zero_seen) { 11462 /* First segment */ 11463 ASSERT(ipf->ipf_nf_hdr_len != 0); 11464 end -= ipf->ipf_nf_hdr_len; 11465 offset_zero_seen = B_TRUE; 11466 } 11467 next_mp = mp->b_cont; 11468 /* 11469 * We are checking to see if there is any interesing data 11470 * to process. If there isn't and the mblk isn't the 11471 * one which carries the unfragmentable header then we 11472 * drop it. It's possible to have just the unfragmentable 11473 * header come through without any data. That needs to be 11474 * saved. 11475 * 11476 * If the assert at the top of this function holds then the 11477 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11478 * is infrequently traveled enough that the test is left in 11479 * to protect against future code changes which break that 11480 * invariant. 11481 */ 11482 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11483 /* Empty. Blast it. */ 11484 IP_REASS_SET_START(mp, 0); 11485 IP_REASS_SET_END(mp, 0); 11486 /* 11487 * If the ipf points to the mblk we are about to free, 11488 * update ipf to point to the next mblk (or NULL 11489 * if none). 11490 */ 11491 if (ipf->ipf_mp->b_cont == mp) 11492 ipf->ipf_mp->b_cont = next_mp; 11493 freeb(mp); 11494 continue; 11495 } 11496 mp->b_cont = NULL; 11497 IP_REASS_SET_START(mp, start); 11498 IP_REASS_SET_END(mp, end); 11499 if (!ipf->ipf_tail_mp) { 11500 ipf->ipf_tail_mp = mp; 11501 ipf->ipf_mp->b_cont = mp; 11502 if (start == 0 || !more) { 11503 ipf->ipf_hole_cnt = 1; 11504 /* 11505 * if the first fragment comes in more than one 11506 * mblk, this loop will be executed for each 11507 * mblk. Need to adjust hole count so exiting 11508 * this routine will leave hole count at 1. 11509 */ 11510 if (next_mp) 11511 ipf->ipf_hole_cnt++; 11512 } else 11513 ipf->ipf_hole_cnt = 2; 11514 continue; 11515 } else if (ipf->ipf_last_frag_seen && !more && 11516 !pkt_boundary_checked) { 11517 /* 11518 * We check datagram boundary only if this fragment 11519 * claims to be the last fragment and we have seen a 11520 * last fragment in the past too. We do this only 11521 * once for a given fragment. 11522 * 11523 * start cannot be 0 here as fragments with start=0 11524 * and MF=0 gets handled as a complete packet. These 11525 * fragments should not reach here. 11526 */ 11527 11528 if (start + msgdsize(mp) != 11529 IP_REASS_END(ipf->ipf_tail_mp)) { 11530 /* 11531 * We have two fragments both of which claim 11532 * to be the last fragment but gives conflicting 11533 * information about the whole datagram size. 11534 * Something fishy is going on. Drop the 11535 * fragment and free up the reassembly list. 11536 */ 11537 return (IP_REASS_FAILED); 11538 } 11539 11540 /* 11541 * We shouldn't come to this code block again for this 11542 * particular fragment. 11543 */ 11544 pkt_boundary_checked = B_TRUE; 11545 } 11546 11547 /* New stuff at or beyond tail? */ 11548 offset = IP_REASS_END(ipf->ipf_tail_mp); 11549 if (start >= offset) { 11550 if (ipf->ipf_last_frag_seen) { 11551 /* current fragment is beyond last fragment */ 11552 return (IP_REASS_FAILED); 11553 } 11554 /* Link it on end. */ 11555 ipf->ipf_tail_mp->b_cont = mp; 11556 ipf->ipf_tail_mp = mp; 11557 if (more) { 11558 if (start != offset) 11559 ipf->ipf_hole_cnt++; 11560 } else if (start == offset && next_mp == NULL) 11561 ipf->ipf_hole_cnt--; 11562 continue; 11563 } 11564 mp1 = ipf->ipf_mp->b_cont; 11565 offset = IP_REASS_START(mp1); 11566 /* New stuff at the front? */ 11567 if (start < offset) { 11568 if (start == 0) { 11569 if (end >= offset) { 11570 /* Nailed the hole at the begining. */ 11571 ipf->ipf_hole_cnt--; 11572 } 11573 } else if (end < offset) { 11574 /* 11575 * A hole, stuff, and a hole where there used 11576 * to be just a hole. 11577 */ 11578 ipf->ipf_hole_cnt++; 11579 } 11580 mp->b_cont = mp1; 11581 /* Check for overlap. */ 11582 while (end > offset) { 11583 if (end < IP_REASS_END(mp1)) { 11584 mp->b_wptr -= end - offset; 11585 IP_REASS_SET_END(mp, offset); 11586 if (ill->ill_isv6) { 11587 BUMP_MIB(ill->ill_ip6_mib, 11588 ipv6ReasmPartDups); 11589 } else { 11590 BUMP_MIB(&ip_mib, 11591 ipReasmPartDups); 11592 } 11593 break; 11594 } 11595 /* Did we cover another hole? */ 11596 if ((mp1->b_cont && 11597 IP_REASS_END(mp1) != 11598 IP_REASS_START(mp1->b_cont) && 11599 end >= IP_REASS_START(mp1->b_cont)) || 11600 (!ipf->ipf_last_frag_seen && !more)) { 11601 ipf->ipf_hole_cnt--; 11602 } 11603 /* Clip out mp1. */ 11604 if ((mp->b_cont = mp1->b_cont) == NULL) { 11605 /* 11606 * After clipping out mp1, this guy 11607 * is now hanging off the end. 11608 */ 11609 ipf->ipf_tail_mp = mp; 11610 } 11611 IP_REASS_SET_START(mp1, 0); 11612 IP_REASS_SET_END(mp1, 0); 11613 /* Subtract byte count */ 11614 ipf->ipf_count -= mp1->b_datap->db_lim - 11615 mp1->b_datap->db_base; 11616 freeb(mp1); 11617 if (ill->ill_isv6) { 11618 BUMP_MIB(ill->ill_ip6_mib, 11619 ipv6ReasmPartDups); 11620 } else { 11621 BUMP_MIB(&ip_mib, ipReasmPartDups); 11622 } 11623 mp1 = mp->b_cont; 11624 if (!mp1) 11625 break; 11626 offset = IP_REASS_START(mp1); 11627 } 11628 ipf->ipf_mp->b_cont = mp; 11629 continue; 11630 } 11631 /* 11632 * The new piece starts somewhere between the start of the head 11633 * and before the end of the tail. 11634 */ 11635 for (; mp1; mp1 = mp1->b_cont) { 11636 offset = IP_REASS_END(mp1); 11637 if (start < offset) { 11638 if (end <= offset) { 11639 /* Nothing new. */ 11640 IP_REASS_SET_START(mp, 0); 11641 IP_REASS_SET_END(mp, 0); 11642 /* Subtract byte count */ 11643 ipf->ipf_count -= mp->b_datap->db_lim - 11644 mp->b_datap->db_base; 11645 if (incr_dups) { 11646 ipf->ipf_num_dups++; 11647 incr_dups = B_FALSE; 11648 } 11649 freeb(mp); 11650 if (ill->ill_isv6) { 11651 BUMP_MIB(ill->ill_ip6_mib, 11652 ipv6ReasmDuplicates); 11653 } else { 11654 BUMP_MIB(&ip_mib, 11655 ipReasmDuplicates); 11656 } 11657 break; 11658 } 11659 /* 11660 * Trim redundant stuff off beginning of new 11661 * piece. 11662 */ 11663 IP_REASS_SET_START(mp, offset); 11664 mp->b_rptr += offset - start; 11665 if (ill->ill_isv6) { 11666 BUMP_MIB(ill->ill_ip6_mib, 11667 ipv6ReasmPartDups); 11668 } else { 11669 BUMP_MIB(&ip_mib, ipReasmPartDups); 11670 } 11671 start = offset; 11672 if (!mp1->b_cont) { 11673 /* 11674 * After trimming, this guy is now 11675 * hanging off the end. 11676 */ 11677 mp1->b_cont = mp; 11678 ipf->ipf_tail_mp = mp; 11679 if (!more) { 11680 ipf->ipf_hole_cnt--; 11681 } 11682 break; 11683 } 11684 } 11685 if (start >= IP_REASS_START(mp1->b_cont)) 11686 continue; 11687 /* Fill a hole */ 11688 if (start > offset) 11689 ipf->ipf_hole_cnt++; 11690 mp->b_cont = mp1->b_cont; 11691 mp1->b_cont = mp; 11692 mp1 = mp->b_cont; 11693 offset = IP_REASS_START(mp1); 11694 if (end >= offset) { 11695 ipf->ipf_hole_cnt--; 11696 /* Check for overlap. */ 11697 while (end > offset) { 11698 if (end < IP_REASS_END(mp1)) { 11699 mp->b_wptr -= end - offset; 11700 IP_REASS_SET_END(mp, offset); 11701 /* 11702 * TODO we might bump 11703 * this up twice if there is 11704 * overlap at both ends. 11705 */ 11706 if (ill->ill_isv6) { 11707 BUMP_MIB( 11708 ill->ill_ip6_mib, 11709 ipv6ReasmPartDups); 11710 } else { 11711 BUMP_MIB(&ip_mib, 11712 ipReasmPartDups); 11713 } 11714 break; 11715 } 11716 /* Did we cover another hole? */ 11717 if ((mp1->b_cont && 11718 IP_REASS_END(mp1) 11719 != IP_REASS_START(mp1->b_cont) && 11720 end >= 11721 IP_REASS_START(mp1->b_cont)) || 11722 (!ipf->ipf_last_frag_seen && 11723 !more)) { 11724 ipf->ipf_hole_cnt--; 11725 } 11726 /* Clip out mp1. */ 11727 if ((mp->b_cont = mp1->b_cont) == 11728 NULL) { 11729 /* 11730 * After clipping out mp1, 11731 * this guy is now hanging 11732 * off the end. 11733 */ 11734 ipf->ipf_tail_mp = mp; 11735 } 11736 IP_REASS_SET_START(mp1, 0); 11737 IP_REASS_SET_END(mp1, 0); 11738 /* Subtract byte count */ 11739 ipf->ipf_count -= 11740 mp1->b_datap->db_lim - 11741 mp1->b_datap->db_base; 11742 freeb(mp1); 11743 if (ill->ill_isv6) { 11744 BUMP_MIB(ill->ill_ip6_mib, 11745 ipv6ReasmPartDups); 11746 } else { 11747 BUMP_MIB(&ip_mib, 11748 ipReasmPartDups); 11749 } 11750 mp1 = mp->b_cont; 11751 if (!mp1) 11752 break; 11753 offset = IP_REASS_START(mp1); 11754 } 11755 } 11756 break; 11757 } 11758 } while (start = end, mp = next_mp); 11759 11760 /* Fragment just processed could be the last one. Remember this fact */ 11761 if (!more) 11762 ipf->ipf_last_frag_seen = B_TRUE; 11763 11764 /* Still got holes? */ 11765 if (ipf->ipf_hole_cnt) 11766 return (IP_REASS_PARTIAL); 11767 /* Clean up overloaded fields to avoid upstream disasters. */ 11768 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11769 IP_REASS_SET_START(mp1, 0); 11770 IP_REASS_SET_END(mp1, 0); 11771 } 11772 return (IP_REASS_COMPLETE); 11773 } 11774 11775 /* 11776 * ipsec processing for the fast path, used for input UDP Packets 11777 */ 11778 static boolean_t 11779 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11780 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11781 { 11782 uint32_t ill_index; 11783 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11784 11785 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11786 /* The ill_index of the incoming ILL */ 11787 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11788 11789 /* pass packet up to the transport */ 11790 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11791 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11792 NULL, mctl_present); 11793 if (*first_mpp == NULL) { 11794 return (B_FALSE); 11795 } 11796 } 11797 11798 /* Initiate IPPF processing for fastpath UDP */ 11799 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11800 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11801 if (*mpp == NULL) { 11802 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11803 "deferred/dropped during IPPF processing\n")); 11804 return (B_FALSE); 11805 } 11806 } 11807 /* 11808 * We make the checks as below since we are in the fast path 11809 * and want to minimize the number of checks if the IP_RECVIF and/or 11810 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11811 */ 11812 if (connp->conn_recvif || connp->conn_recvslla || 11813 connp->conn_ipv6_recvpktinfo) { 11814 if (connp->conn_recvif || 11815 connp->conn_ipv6_recvpktinfo) { 11816 in_flags = IPF_RECVIF; 11817 } 11818 if (connp->conn_recvslla) { 11819 in_flags |= IPF_RECVSLLA; 11820 } 11821 /* 11822 * since in_flags are being set ill will be 11823 * referenced in ip_add_info, so it better not 11824 * be NULL. 11825 */ 11826 /* 11827 * the actual data will be contained in b_cont 11828 * upon successful return of the following call. 11829 * If the call fails then the original mblk is 11830 * returned. 11831 */ 11832 *mpp = ip_add_info(*mpp, ill, in_flags); 11833 } 11834 11835 return (B_TRUE); 11836 } 11837 11838 /* 11839 * Fragmentation reassembly. Each ILL has a hash table for 11840 * queuing packets undergoing reassembly for all IPIFs 11841 * associated with the ILL. The hash is based on the packet 11842 * IP ident field. The ILL frag hash table was allocated 11843 * as a timer block at the time the ILL was created. Whenever 11844 * there is anything on the reassembly queue, the timer will 11845 * be running. Returns B_TRUE if successful else B_FALSE; 11846 * frees mp on failure. 11847 */ 11848 static boolean_t 11849 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11850 uint32_t *cksum_val, uint16_t *cksum_flags) 11851 { 11852 uint32_t frag_offset_flags; 11853 ill_t *ill = (ill_t *)q->q_ptr; 11854 mblk_t *mp = *mpp; 11855 mblk_t *t_mp; 11856 ipaddr_t dst; 11857 uint8_t proto = ipha->ipha_protocol; 11858 uint32_t sum_val; 11859 uint16_t sum_flags; 11860 ipf_t *ipf; 11861 ipf_t **ipfp; 11862 ipfb_t *ipfb; 11863 uint16_t ident; 11864 uint32_t offset; 11865 ipaddr_t src; 11866 uint_t hdr_length; 11867 uint32_t end; 11868 mblk_t *mp1; 11869 mblk_t *tail_mp; 11870 size_t count; 11871 size_t msg_len; 11872 uint8_t ecn_info = 0; 11873 uint32_t packet_size; 11874 boolean_t pruned = B_FALSE; 11875 11876 if (cksum_val != NULL) 11877 *cksum_val = 0; 11878 if (cksum_flags != NULL) 11879 *cksum_flags = 0; 11880 11881 /* 11882 * Drop the fragmented as early as possible, if 11883 * we don't have resource(s) to re-assemble. 11884 */ 11885 if (ip_reass_queue_bytes == 0) { 11886 freemsg(mp); 11887 return (B_FALSE); 11888 } 11889 11890 /* Check for fragmentation offset; return if there's none */ 11891 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11892 (IPH_MF | IPH_OFFSET)) == 0) 11893 return (B_TRUE); 11894 11895 /* 11896 * We utilize hardware computed checksum info only for UDP since 11897 * IP fragmentation is a normal occurence for the protocol. In 11898 * addition, checksum offload support for IP fragments carrying 11899 * UDP payload is commonly implemented across network adapters. 11900 */ 11901 ASSERT(ill != NULL); 11902 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11903 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11904 mblk_t *mp1 = mp->b_cont; 11905 int32_t len; 11906 11907 /* Record checksum information from the packet */ 11908 sum_val = (uint32_t)DB_CKSUM16(mp); 11909 sum_flags = DB_CKSUMFLAGS(mp); 11910 11911 /* IP payload offset from beginning of mblk */ 11912 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11913 11914 if ((sum_flags & HCK_PARTIALCKSUM) && 11915 (mp1 == NULL || mp1->b_cont == NULL) && 11916 offset >= DB_CKSUMSTART(mp) && 11917 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11918 uint32_t adj; 11919 /* 11920 * Partial checksum has been calculated by hardware 11921 * and attached to the packet; in addition, any 11922 * prepended extraneous data is even byte aligned. 11923 * If any such data exists, we adjust the checksum; 11924 * this would also handle any postpended data. 11925 */ 11926 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11927 mp, mp1, len, adj); 11928 11929 /* One's complement subtract extraneous checksum */ 11930 if (adj >= sum_val) 11931 sum_val = ~(adj - sum_val) & 0xFFFF; 11932 else 11933 sum_val -= adj; 11934 } 11935 } else { 11936 sum_val = 0; 11937 sum_flags = 0; 11938 } 11939 11940 /* Clear hardware checksumming flag */ 11941 DB_CKSUMFLAGS(mp) = 0; 11942 11943 ident = ipha->ipha_ident; 11944 offset = (frag_offset_flags << 3) & 0xFFFF; 11945 src = ipha->ipha_src; 11946 dst = ipha->ipha_dst; 11947 hdr_length = IPH_HDR_LENGTH(ipha); 11948 end = ntohs(ipha->ipha_length) - hdr_length; 11949 11950 /* If end == 0 then we have a packet with no data, so just free it */ 11951 if (end == 0) { 11952 freemsg(mp); 11953 return (B_FALSE); 11954 } 11955 11956 /* Record the ECN field info. */ 11957 ecn_info = (ipha->ipha_type_of_service & 0x3); 11958 if (offset != 0) { 11959 /* 11960 * If this isn't the first piece, strip the header, and 11961 * add the offset to the end value. 11962 */ 11963 mp->b_rptr += hdr_length; 11964 end += offset; 11965 } 11966 11967 msg_len = MBLKSIZE(mp); 11968 tail_mp = mp; 11969 while (tail_mp->b_cont != NULL) { 11970 tail_mp = tail_mp->b_cont; 11971 msg_len += MBLKSIZE(tail_mp); 11972 } 11973 11974 /* If the reassembly list for this ILL will get too big, prune it */ 11975 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11976 ip_reass_queue_bytes) { 11977 ill_frag_prune(ill, 11978 (ip_reass_queue_bytes < msg_len) ? 0 : 11979 (ip_reass_queue_bytes - msg_len)); 11980 pruned = B_TRUE; 11981 } 11982 11983 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11984 mutex_enter(&ipfb->ipfb_lock); 11985 11986 ipfp = &ipfb->ipfb_ipf; 11987 /* Try to find an existing fragment queue for this packet. */ 11988 for (;;) { 11989 ipf = ipfp[0]; 11990 if (ipf != NULL) { 11991 /* 11992 * It has to match on ident and src/dst address. 11993 */ 11994 if (ipf->ipf_ident == ident && 11995 ipf->ipf_src == src && 11996 ipf->ipf_dst == dst && 11997 ipf->ipf_protocol == proto) { 11998 /* 11999 * If we have received too many 12000 * duplicate fragments for this packet 12001 * free it. 12002 */ 12003 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12004 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12005 freemsg(mp); 12006 mutex_exit(&ipfb->ipfb_lock); 12007 return (B_FALSE); 12008 } 12009 /* Found it. */ 12010 break; 12011 } 12012 ipfp = &ipf->ipf_hash_next; 12013 continue; 12014 } 12015 12016 /* 12017 * If we pruned the list, do we want to store this new 12018 * fragment?. We apply an optimization here based on the 12019 * fact that most fragments will be received in order. 12020 * So if the offset of this incoming fragment is zero, 12021 * it is the first fragment of a new packet. We will 12022 * keep it. Otherwise drop the fragment, as we have 12023 * probably pruned the packet already (since the 12024 * packet cannot be found). 12025 */ 12026 if (pruned && offset != 0) { 12027 mutex_exit(&ipfb->ipfb_lock); 12028 freemsg(mp); 12029 return (B_FALSE); 12030 } 12031 12032 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12033 /* 12034 * Too many fragmented packets in this hash 12035 * bucket. Free the oldest. 12036 */ 12037 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12038 } 12039 12040 /* New guy. Allocate a frag message. */ 12041 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12042 if (mp1 == NULL) { 12043 BUMP_MIB(&ip_mib, ipInDiscards); 12044 freemsg(mp); 12045 reass_done: 12046 mutex_exit(&ipfb->ipfb_lock); 12047 return (B_FALSE); 12048 } 12049 12050 12051 BUMP_MIB(&ip_mib, ipReasmReqds); 12052 mp1->b_cont = mp; 12053 12054 /* Initialize the fragment header. */ 12055 ipf = (ipf_t *)mp1->b_rptr; 12056 ipf->ipf_mp = mp1; 12057 ipf->ipf_ptphn = ipfp; 12058 ipfp[0] = ipf; 12059 ipf->ipf_hash_next = NULL; 12060 ipf->ipf_ident = ident; 12061 ipf->ipf_protocol = proto; 12062 ipf->ipf_src = src; 12063 ipf->ipf_dst = dst; 12064 ipf->ipf_nf_hdr_len = 0; 12065 /* Record reassembly start time. */ 12066 ipf->ipf_timestamp = gethrestime_sec(); 12067 /* Record ipf generation and account for frag header */ 12068 ipf->ipf_gen = ill->ill_ipf_gen++; 12069 ipf->ipf_count = MBLKSIZE(mp1); 12070 ipf->ipf_last_frag_seen = B_FALSE; 12071 ipf->ipf_ecn = ecn_info; 12072 ipf->ipf_num_dups = 0; 12073 ipfb->ipfb_frag_pkts++; 12074 ipf->ipf_checksum = 0; 12075 ipf->ipf_checksum_flags = 0; 12076 12077 /* Store checksum value in fragment header */ 12078 if (sum_flags != 0) { 12079 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12080 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12081 ipf->ipf_checksum = sum_val; 12082 ipf->ipf_checksum_flags = sum_flags; 12083 } 12084 12085 /* 12086 * We handle reassembly two ways. In the easy case, 12087 * where all the fragments show up in order, we do 12088 * minimal bookkeeping, and just clip new pieces on 12089 * the end. If we ever see a hole, then we go off 12090 * to ip_reassemble which has to mark the pieces and 12091 * keep track of the number of holes, etc. Obviously, 12092 * the point of having both mechanisms is so we can 12093 * handle the easy case as efficiently as possible. 12094 */ 12095 if (offset == 0) { 12096 /* Easy case, in-order reassembly so far. */ 12097 ipf->ipf_count += msg_len; 12098 ipf->ipf_tail_mp = tail_mp; 12099 /* 12100 * Keep track of next expected offset in 12101 * ipf_end. 12102 */ 12103 ipf->ipf_end = end; 12104 ipf->ipf_nf_hdr_len = hdr_length; 12105 } else { 12106 /* Hard case, hole at the beginning. */ 12107 ipf->ipf_tail_mp = NULL; 12108 /* 12109 * ipf_end == 0 means that we have given up 12110 * on easy reassembly. 12111 */ 12112 ipf->ipf_end = 0; 12113 12114 /* Forget checksum offload from now on */ 12115 ipf->ipf_checksum_flags = 0; 12116 12117 /* 12118 * ipf_hole_cnt is set by ip_reassemble. 12119 * ipf_count is updated by ip_reassemble. 12120 * No need to check for return value here 12121 * as we don't expect reassembly to complete 12122 * or fail for the first fragment itself. 12123 */ 12124 (void) ip_reassemble(mp, ipf, 12125 (frag_offset_flags & IPH_OFFSET) << 3, 12126 (frag_offset_flags & IPH_MF), ill, msg_len); 12127 } 12128 /* Update per ipfb and ill byte counts */ 12129 ipfb->ipfb_count += ipf->ipf_count; 12130 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12131 ill->ill_frag_count += ipf->ipf_count; 12132 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12133 /* If the frag timer wasn't already going, start it. */ 12134 mutex_enter(&ill->ill_lock); 12135 ill_frag_timer_start(ill); 12136 mutex_exit(&ill->ill_lock); 12137 goto reass_done; 12138 } 12139 12140 /* 12141 * If the packet's flag has changed (it could be coming up 12142 * from an interface different than the previous, therefore 12143 * possibly different checksum capability), then forget about 12144 * any stored checksum states. Otherwise add the value to 12145 * the existing one stored in the fragment header. 12146 */ 12147 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12148 sum_val += ipf->ipf_checksum; 12149 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12150 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12151 ipf->ipf_checksum = sum_val; 12152 } else if (ipf->ipf_checksum_flags != 0) { 12153 /* Forget checksum offload from now on */ 12154 ipf->ipf_checksum_flags = 0; 12155 } 12156 12157 /* 12158 * We have a new piece of a datagram which is already being 12159 * reassembled. Update the ECN info if all IP fragments 12160 * are ECN capable. If there is one which is not, clear 12161 * all the info. If there is at least one which has CE 12162 * code point, IP needs to report that up to transport. 12163 */ 12164 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12165 if (ecn_info == IPH_ECN_CE) 12166 ipf->ipf_ecn = IPH_ECN_CE; 12167 } else { 12168 ipf->ipf_ecn = IPH_ECN_NECT; 12169 } 12170 if (offset && ipf->ipf_end == offset) { 12171 /* The new fragment fits at the end */ 12172 ipf->ipf_tail_mp->b_cont = mp; 12173 /* Update the byte count */ 12174 ipf->ipf_count += msg_len; 12175 /* Update per ipfb and ill byte counts */ 12176 ipfb->ipfb_count += msg_len; 12177 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12178 ill->ill_frag_count += msg_len; 12179 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12180 if (frag_offset_flags & IPH_MF) { 12181 /* More to come. */ 12182 ipf->ipf_end = end; 12183 ipf->ipf_tail_mp = tail_mp; 12184 goto reass_done; 12185 } 12186 } else { 12187 /* Go do the hard cases. */ 12188 int ret; 12189 12190 if (offset == 0) 12191 ipf->ipf_nf_hdr_len = hdr_length; 12192 12193 /* Save current byte count */ 12194 count = ipf->ipf_count; 12195 ret = ip_reassemble(mp, ipf, 12196 (frag_offset_flags & IPH_OFFSET) << 3, 12197 (frag_offset_flags & IPH_MF), ill, msg_len); 12198 /* Count of bytes added and subtracted (freeb()ed) */ 12199 count = ipf->ipf_count - count; 12200 if (count) { 12201 /* Update per ipfb and ill byte counts */ 12202 ipfb->ipfb_count += count; 12203 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12204 ill->ill_frag_count += count; 12205 ASSERT(ill->ill_frag_count > 0); 12206 } 12207 if (ret == IP_REASS_PARTIAL) { 12208 goto reass_done; 12209 } else if (ret == IP_REASS_FAILED) { 12210 /* Reassembly failed. Free up all resources */ 12211 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12212 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12213 IP_REASS_SET_START(t_mp, 0); 12214 IP_REASS_SET_END(t_mp, 0); 12215 } 12216 freemsg(mp); 12217 goto reass_done; 12218 } 12219 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12220 } 12221 /* 12222 * We have completed reassembly. Unhook the frag header from 12223 * the reassembly list. 12224 * 12225 * Before we free the frag header, record the ECN info 12226 * to report back to the transport. 12227 */ 12228 ecn_info = ipf->ipf_ecn; 12229 BUMP_MIB(&ip_mib, ipReasmOKs); 12230 ipfp = ipf->ipf_ptphn; 12231 12232 /* We need to supply these to caller */ 12233 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12234 sum_val = ipf->ipf_checksum; 12235 else 12236 sum_val = 0; 12237 12238 mp1 = ipf->ipf_mp; 12239 count = ipf->ipf_count; 12240 ipf = ipf->ipf_hash_next; 12241 if (ipf != NULL) 12242 ipf->ipf_ptphn = ipfp; 12243 ipfp[0] = ipf; 12244 ill->ill_frag_count -= count; 12245 ASSERT(ipfb->ipfb_count >= count); 12246 ipfb->ipfb_count -= count; 12247 ipfb->ipfb_frag_pkts--; 12248 mutex_exit(&ipfb->ipfb_lock); 12249 /* Ditch the frag header. */ 12250 mp = mp1->b_cont; 12251 12252 freeb(mp1); 12253 12254 /* Restore original IP length in header. */ 12255 packet_size = (uint32_t)msgdsize(mp); 12256 if (packet_size > IP_MAXPACKET) { 12257 freemsg(mp); 12258 BUMP_MIB(&ip_mib, ipInHdrErrors); 12259 return (B_FALSE); 12260 } 12261 12262 if (DB_REF(mp) > 1) { 12263 mblk_t *mp2 = copymsg(mp); 12264 12265 freemsg(mp); 12266 if (mp2 == NULL) { 12267 BUMP_MIB(&ip_mib, ipInDiscards); 12268 return (B_FALSE); 12269 } 12270 mp = mp2; 12271 } 12272 ipha = (ipha_t *)mp->b_rptr; 12273 12274 ipha->ipha_length = htons((uint16_t)packet_size); 12275 /* We're now complete, zip the frag state */ 12276 ipha->ipha_fragment_offset_and_flags = 0; 12277 /* Record the ECN info. */ 12278 ipha->ipha_type_of_service &= 0xFC; 12279 ipha->ipha_type_of_service |= ecn_info; 12280 *mpp = mp; 12281 12282 /* Reassembly is successful; return checksum information if needed */ 12283 if (cksum_val != NULL) 12284 *cksum_val = sum_val; 12285 if (cksum_flags != NULL) 12286 *cksum_flags = sum_flags; 12287 12288 return (B_TRUE); 12289 } 12290 12291 /* 12292 * Perform ip header check sum update local options. 12293 * return B_TRUE if all is well, else return B_FALSE and release 12294 * the mp. caller is responsible for decrementing ire ref cnt. 12295 */ 12296 static boolean_t 12297 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12298 { 12299 mblk_t *first_mp; 12300 boolean_t mctl_present; 12301 uint16_t sum; 12302 12303 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12304 /* 12305 * Don't do the checksum if it has gone through AH/ESP 12306 * processing. 12307 */ 12308 if (!mctl_present) { 12309 sum = ip_csum_hdr(ipha); 12310 if (sum != 0) { 12311 BUMP_MIB(&ip_mib, ipInCksumErrs); 12312 freemsg(first_mp); 12313 return (B_FALSE); 12314 } 12315 } 12316 12317 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12318 if (mctl_present) 12319 freeb(first_mp); 12320 return (B_FALSE); 12321 } 12322 12323 return (B_TRUE); 12324 } 12325 12326 /* 12327 * All udp packet are delivered to the local host via this routine. 12328 */ 12329 void 12330 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12331 ill_t *recv_ill) 12332 { 12333 uint32_t sum; 12334 uint32_t u1; 12335 boolean_t mctl_present; 12336 conn_t *connp; 12337 mblk_t *first_mp; 12338 uint16_t *up; 12339 ill_t *ill = (ill_t *)q->q_ptr; 12340 uint16_t reass_hck_flags = 0; 12341 12342 #define rptr ((uchar_t *)ipha) 12343 12344 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12345 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12346 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12347 12348 /* 12349 * FAST PATH for udp packets 12350 */ 12351 12352 /* u1 is # words of IP options */ 12353 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12354 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12355 12356 /* IP options present */ 12357 if (u1 != 0) 12358 goto ipoptions; 12359 12360 /* Check the IP header checksum. */ 12361 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12362 /* Clear the IP header h/w cksum flag */ 12363 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12364 } else { 12365 #define uph ((uint16_t *)ipha) 12366 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12367 uph[6] + uph[7] + uph[8] + uph[9]; 12368 #undef uph 12369 /* finish doing IP checksum */ 12370 sum = (sum & 0xFFFF) + (sum >> 16); 12371 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12372 /* 12373 * Don't verify header checksum if this packet is coming 12374 * back from AH/ESP as we already did it. 12375 */ 12376 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12377 BUMP_MIB(&ip_mib, ipInCksumErrs); 12378 freemsg(first_mp); 12379 return; 12380 } 12381 } 12382 12383 /* 12384 * Count for SNMP of inbound packets for ire. 12385 * if mctl is present this might be a secure packet and 12386 * has already been counted for in ip_proto_input(). 12387 */ 12388 if (!mctl_present) { 12389 UPDATE_IB_PKT_COUNT(ire); 12390 ire->ire_last_used_time = lbolt; 12391 } 12392 12393 /* packet part of fragmented IP packet? */ 12394 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12395 if (u1 & (IPH_MF | IPH_OFFSET)) { 12396 goto fragmented; 12397 } 12398 12399 /* u1 = IP header length (20 bytes) */ 12400 u1 = IP_SIMPLE_HDR_LENGTH; 12401 12402 /* packet does not contain complete IP & UDP headers */ 12403 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12404 goto udppullup; 12405 12406 /* up points to UDP header */ 12407 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12408 #define iphs ((uint16_t *)ipha) 12409 12410 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12411 if (up[3] != 0) { 12412 mblk_t *mp1 = mp->b_cont; 12413 boolean_t cksum_err; 12414 uint16_t hck_flags = 0; 12415 12416 /* Pseudo-header checksum */ 12417 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12418 iphs[9] + up[2]; 12419 12420 /* 12421 * Revert to software checksum calculation if the interface 12422 * isn't capable of checksum offload or if IPsec is present. 12423 */ 12424 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12425 hck_flags = DB_CKSUMFLAGS(mp); 12426 12427 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12428 IP_STAT(ip_in_sw_cksum); 12429 12430 IP_CKSUM_RECV(hck_flags, u1, 12431 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12432 (int32_t)((uchar_t *)up - rptr), 12433 mp, mp1, cksum_err); 12434 12435 if (cksum_err) { 12436 BUMP_MIB(&ip_mib, udpInCksumErrs); 12437 12438 if (hck_flags & HCK_FULLCKSUM) 12439 IP_STAT(ip_udp_in_full_hw_cksum_err); 12440 else if (hck_flags & HCK_PARTIALCKSUM) 12441 IP_STAT(ip_udp_in_part_hw_cksum_err); 12442 else 12443 IP_STAT(ip_udp_in_sw_cksum_err); 12444 12445 freemsg(first_mp); 12446 return; 12447 } 12448 } 12449 12450 /* Non-fragmented broadcast or multicast packet? */ 12451 if (ire->ire_type == IRE_BROADCAST) 12452 goto udpslowpath; 12453 12454 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12455 ire->ire_zoneid)) != NULL) { 12456 ASSERT(connp->conn_upq != NULL); 12457 IP_STAT(ip_udp_fast_path); 12458 12459 if (CONN_UDP_FLOWCTLD(connp)) { 12460 freemsg(mp); 12461 BUMP_MIB(&ip_mib, udpInOverflows); 12462 } else { 12463 if (!mctl_present) { 12464 BUMP_MIB(&ip_mib, ipInDelivers); 12465 } 12466 /* 12467 * mp and first_mp can change. 12468 */ 12469 if (ip_udp_check(q, connp, recv_ill, 12470 ipha, &mp, &first_mp, mctl_present)) { 12471 /* Send it upstream */ 12472 CONN_UDP_RECV(connp, mp); 12473 } 12474 } 12475 /* 12476 * freeb() cannot deal with null mblk being passed 12477 * in and first_mp can be set to null in the call 12478 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12479 */ 12480 if (mctl_present && first_mp != NULL) { 12481 freeb(first_mp); 12482 } 12483 CONN_DEC_REF(connp); 12484 return; 12485 } 12486 12487 /* 12488 * if we got here we know the packet is not fragmented and 12489 * has no options. The classifier could not find a conn_t and 12490 * most likely its an icmp packet so send it through slow path. 12491 */ 12492 12493 goto udpslowpath; 12494 12495 ipoptions: 12496 if (!ip_options_cksum(q, mp, ipha, ire)) { 12497 goto slow_done; 12498 } 12499 12500 UPDATE_IB_PKT_COUNT(ire); 12501 ire->ire_last_used_time = lbolt; 12502 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12503 if (u1 & (IPH_MF | IPH_OFFSET)) { 12504 fragmented: 12505 /* 12506 * "sum" and "reass_hck_flags" are non-zero if the 12507 * reassembled packet has a valid hardware computed 12508 * checksum information associated with it. 12509 */ 12510 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12511 goto slow_done; 12512 /* 12513 * Make sure that first_mp points back to mp as 12514 * the mp we came in with could have changed in 12515 * ip_rput_fragment(). 12516 */ 12517 ASSERT(!mctl_present); 12518 ipha = (ipha_t *)mp->b_rptr; 12519 first_mp = mp; 12520 } 12521 12522 /* Now we have a complete datagram, destined for this machine. */ 12523 u1 = IPH_HDR_LENGTH(ipha); 12524 /* Pull up the UDP header, if necessary. */ 12525 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12526 udppullup: 12527 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12528 BUMP_MIB(&ip_mib, ipInDiscards); 12529 freemsg(first_mp); 12530 goto slow_done; 12531 } 12532 ipha = (ipha_t *)mp->b_rptr; 12533 } 12534 12535 /* 12536 * Validate the checksum for the reassembled packet; for the 12537 * pullup case we calculate the payload checksum in software. 12538 */ 12539 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12540 if (up[3] != 0) { 12541 boolean_t cksum_err; 12542 12543 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12544 IP_STAT(ip_in_sw_cksum); 12545 12546 IP_CKSUM_RECV_REASS(reass_hck_flags, 12547 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12548 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12549 iphs[9] + up[2], sum, cksum_err); 12550 12551 if (cksum_err) { 12552 BUMP_MIB(&ip_mib, udpInCksumErrs); 12553 12554 if (reass_hck_flags & HCK_FULLCKSUM) 12555 IP_STAT(ip_udp_in_full_hw_cksum_err); 12556 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12557 IP_STAT(ip_udp_in_part_hw_cksum_err); 12558 else 12559 IP_STAT(ip_udp_in_sw_cksum_err); 12560 12561 freemsg(first_mp); 12562 goto slow_done; 12563 } 12564 } 12565 udpslowpath: 12566 12567 /* Clear hardware checksum flag to be safe */ 12568 DB_CKSUMFLAGS(mp) = 0; 12569 12570 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12571 (ire->ire_type == IRE_BROADCAST), 12572 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12573 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12574 12575 slow_done: 12576 IP_STAT(ip_udp_slow_path); 12577 return; 12578 12579 #undef iphs 12580 #undef rptr 12581 } 12582 12583 /* ARGSUSED */ 12584 static mblk_t * 12585 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12586 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12587 ill_rx_ring_t *ill_ring) 12588 { 12589 conn_t *connp; 12590 uint32_t sum; 12591 uint32_t u1; 12592 uint16_t *up; 12593 int offset; 12594 ssize_t len; 12595 mblk_t *mp1; 12596 boolean_t syn_present = B_FALSE; 12597 tcph_t *tcph; 12598 uint_t ip_hdr_len; 12599 ill_t *ill = (ill_t *)q->q_ptr; 12600 zoneid_t zoneid = ire->ire_zoneid; 12601 boolean_t cksum_err; 12602 uint16_t hck_flags = 0; 12603 12604 #define rptr ((uchar_t *)ipha) 12605 12606 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12607 12608 /* 12609 * FAST PATH for tcp packets 12610 */ 12611 12612 /* u1 is # words of IP options */ 12613 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12614 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12615 12616 /* IP options present */ 12617 if (u1) { 12618 goto ipoptions; 12619 } else { 12620 /* Check the IP header checksum. */ 12621 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12622 /* Clear the IP header h/w cksum flag */ 12623 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12624 } else { 12625 #define uph ((uint16_t *)ipha) 12626 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12627 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12628 #undef uph 12629 /* finish doing IP checksum */ 12630 sum = (sum & 0xFFFF) + (sum >> 16); 12631 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12632 /* 12633 * Don't verify header checksum if this packet 12634 * is coming back from AH/ESP as we already did it. 12635 */ 12636 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12637 BUMP_MIB(&ip_mib, ipInCksumErrs); 12638 goto error; 12639 } 12640 } 12641 } 12642 12643 if (!mctl_present) { 12644 UPDATE_IB_PKT_COUNT(ire); 12645 ire->ire_last_used_time = lbolt; 12646 } 12647 12648 /* packet part of fragmented IP packet? */ 12649 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12650 if (u1 & (IPH_MF | IPH_OFFSET)) { 12651 goto fragmented; 12652 } 12653 12654 /* u1 = IP header length (20 bytes) */ 12655 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12656 12657 /* does packet contain IP+TCP headers? */ 12658 len = mp->b_wptr - rptr; 12659 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12660 IP_STAT(ip_tcppullup); 12661 goto tcppullup; 12662 } 12663 12664 /* TCP options present? */ 12665 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12666 12667 /* 12668 * If options need to be pulled up, then goto tcpoptions. 12669 * otherwise we are still in the fast path 12670 */ 12671 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12672 IP_STAT(ip_tcpoptions); 12673 goto tcpoptions; 12674 } 12675 12676 /* multiple mblks of tcp data? */ 12677 if ((mp1 = mp->b_cont) != NULL) { 12678 /* more then two? */ 12679 if (mp1->b_cont != NULL) { 12680 IP_STAT(ip_multipkttcp); 12681 goto multipkttcp; 12682 } 12683 len += mp1->b_wptr - mp1->b_rptr; 12684 } 12685 12686 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12687 12688 /* part of pseudo checksum */ 12689 12690 /* TCP datagram length */ 12691 u1 = len - IP_SIMPLE_HDR_LENGTH; 12692 12693 #define iphs ((uint16_t *)ipha) 12694 12695 #ifdef _BIG_ENDIAN 12696 u1 += IPPROTO_TCP; 12697 #else 12698 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12699 #endif 12700 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12701 12702 /* 12703 * Revert to software checksum calculation if the interface 12704 * isn't capable of checksum offload or if IPsec is present. 12705 */ 12706 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12707 hck_flags = DB_CKSUMFLAGS(mp); 12708 12709 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12710 IP_STAT(ip_in_sw_cksum); 12711 12712 IP_CKSUM_RECV(hck_flags, u1, 12713 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12714 (int32_t)((uchar_t *)up - rptr), 12715 mp, mp1, cksum_err); 12716 12717 if (cksum_err) { 12718 BUMP_MIB(&ip_mib, tcpInErrs); 12719 12720 if (hck_flags & HCK_FULLCKSUM) 12721 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12722 else if (hck_flags & HCK_PARTIALCKSUM) 12723 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12724 else 12725 IP_STAT(ip_tcp_in_sw_cksum_err); 12726 12727 goto error; 12728 } 12729 12730 try_again: 12731 12732 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12733 NULL) { 12734 /* Send the TH_RST */ 12735 goto no_conn; 12736 } 12737 12738 /* 12739 * TCP FAST PATH for AF_INET socket. 12740 * 12741 * TCP fast path to avoid extra work. An AF_INET socket type 12742 * does not have facility to receive extra information via 12743 * ip_process or ip_add_info. Also, when the connection was 12744 * established, we made a check if this connection is impacted 12745 * by any global IPSec policy or per connection policy (a 12746 * policy that comes in effect later will not apply to this 12747 * connection). Since all this can be determined at the 12748 * connection establishment time, a quick check of flags 12749 * can avoid extra work. 12750 */ 12751 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12752 !IPP_ENABLED(IPP_LOCAL_IN)) { 12753 ASSERT(first_mp == mp); 12754 SET_SQUEUE(mp, tcp_rput_data, connp); 12755 return (mp); 12756 } 12757 12758 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12759 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12760 if (IPCL_IS_TCP(connp)) { 12761 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12762 DB_CKSUMSTART(mp) = 12763 (intptr_t)ip_squeue_get(ill_ring); 12764 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12765 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12766 SET_SQUEUE(mp, connp->conn_recv, connp); 12767 return (mp); 12768 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12769 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12770 ip_squeue_enter_unbound++; 12771 SET_SQUEUE(mp, tcp_conn_request_unbound, 12772 connp); 12773 return (mp); 12774 } 12775 syn_present = B_TRUE; 12776 } 12777 12778 } 12779 12780 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12781 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12782 12783 /* No need to send this packet to TCP */ 12784 if ((flags & TH_RST) || (flags & TH_URG)) { 12785 CONN_DEC_REF(connp); 12786 freemsg(first_mp); 12787 return (NULL); 12788 } 12789 if (flags & TH_ACK) { 12790 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12791 CONN_DEC_REF(connp); 12792 return (NULL); 12793 } 12794 12795 CONN_DEC_REF(connp); 12796 freemsg(first_mp); 12797 return (NULL); 12798 } 12799 12800 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12801 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12802 ipha, NULL, mctl_present); 12803 if (first_mp == NULL) { 12804 CONN_DEC_REF(connp); 12805 return (NULL); 12806 } 12807 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12808 ASSERT(syn_present); 12809 if (mctl_present) { 12810 ASSERT(first_mp != mp); 12811 first_mp->b_datap->db_struioflag |= 12812 STRUIO_POLICY; 12813 } else { 12814 ASSERT(first_mp == mp); 12815 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12816 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12817 } 12818 } else { 12819 /* 12820 * Discard first_mp early since we're dealing with a 12821 * fully-connected conn_t and tcp doesn't do policy in 12822 * this case. 12823 */ 12824 if (mctl_present) { 12825 freeb(first_mp); 12826 mctl_present = B_FALSE; 12827 } 12828 first_mp = mp; 12829 } 12830 } 12831 12832 /* Initiate IPPF processing for fastpath */ 12833 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12834 uint32_t ill_index; 12835 12836 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12837 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12838 if (mp == NULL) { 12839 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12840 "deferred/dropped during IPPF processing\n")); 12841 CONN_DEC_REF(connp); 12842 if (mctl_present) 12843 freeb(first_mp); 12844 return (NULL); 12845 } else if (mctl_present) { 12846 /* 12847 * ip_process might return a new mp. 12848 */ 12849 ASSERT(first_mp != mp); 12850 first_mp->b_cont = mp; 12851 } else { 12852 first_mp = mp; 12853 } 12854 12855 } 12856 12857 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12858 mp = ip_add_info(mp, recv_ill, flags); 12859 if (mp == NULL) { 12860 CONN_DEC_REF(connp); 12861 if (mctl_present) 12862 freeb(first_mp); 12863 return (NULL); 12864 } else if (mctl_present) { 12865 /* 12866 * ip_add_info might return a new mp. 12867 */ 12868 ASSERT(first_mp != mp); 12869 first_mp->b_cont = mp; 12870 } else { 12871 first_mp = mp; 12872 } 12873 } 12874 12875 if (IPCL_IS_TCP(connp)) { 12876 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12877 return (first_mp); 12878 } else { 12879 putnext(connp->conn_rq, first_mp); 12880 CONN_DEC_REF(connp); 12881 return (NULL); 12882 } 12883 12884 no_conn: 12885 /* Initiate IPPf processing, if needed. */ 12886 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12887 uint32_t ill_index; 12888 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12889 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12890 if (first_mp == NULL) { 12891 return (NULL); 12892 } 12893 } 12894 BUMP_MIB(&ip_mib, ipInDelivers); 12895 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12896 return (NULL); 12897 ipoptions: 12898 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12899 goto slow_done; 12900 } 12901 12902 UPDATE_IB_PKT_COUNT(ire); 12903 ire->ire_last_used_time = lbolt; 12904 12905 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12906 if (u1 & (IPH_MF | IPH_OFFSET)) { 12907 fragmented: 12908 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12909 if (mctl_present) 12910 freeb(first_mp); 12911 goto slow_done; 12912 } 12913 /* 12914 * Make sure that first_mp points back to mp as 12915 * the mp we came in with could have changed in 12916 * ip_rput_fragment(). 12917 */ 12918 ASSERT(!mctl_present); 12919 ipha = (ipha_t *)mp->b_rptr; 12920 first_mp = mp; 12921 } 12922 12923 /* Now we have a complete datagram, destined for this machine. */ 12924 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12925 12926 len = mp->b_wptr - mp->b_rptr; 12927 /* Pull up a minimal TCP header, if necessary. */ 12928 if (len < (u1 + 20)) { 12929 tcppullup: 12930 if (!pullupmsg(mp, u1 + 20)) { 12931 BUMP_MIB(&ip_mib, ipInDiscards); 12932 goto error; 12933 } 12934 ipha = (ipha_t *)mp->b_rptr; 12935 len = mp->b_wptr - mp->b_rptr; 12936 } 12937 12938 /* 12939 * Extract the offset field from the TCP header. As usual, we 12940 * try to help the compiler more than the reader. 12941 */ 12942 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12943 if (offset != 5) { 12944 tcpoptions: 12945 if (offset < 5) { 12946 BUMP_MIB(&ip_mib, ipInDiscards); 12947 goto error; 12948 } 12949 /* 12950 * There must be TCP options. 12951 * Make sure we can grab them. 12952 */ 12953 offset <<= 2; 12954 offset += u1; 12955 if (len < offset) { 12956 if (!pullupmsg(mp, offset)) { 12957 BUMP_MIB(&ip_mib, ipInDiscards); 12958 goto error; 12959 } 12960 ipha = (ipha_t *)mp->b_rptr; 12961 len = mp->b_wptr - rptr; 12962 } 12963 } 12964 12965 /* Get the total packet length in len, including headers. */ 12966 if (mp->b_cont) { 12967 multipkttcp: 12968 len = msgdsize(mp); 12969 } 12970 12971 /* 12972 * Check the TCP checksum by pulling together the pseudo- 12973 * header checksum, and passing it to ip_csum to be added in 12974 * with the TCP datagram. 12975 * 12976 * Since we are not using the hwcksum if available we must 12977 * clear the flag. We may come here via tcppullup or tcpoptions. 12978 * If either of these fails along the way the mblk is freed. 12979 * If this logic ever changes and mblk is reused to say send 12980 * ICMP's back, then this flag may need to be cleared in 12981 * other places as well. 12982 */ 12983 DB_CKSUMFLAGS(mp) = 0; 12984 12985 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12986 12987 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12988 #ifdef _BIG_ENDIAN 12989 u1 += IPPROTO_TCP; 12990 #else 12991 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12992 #endif 12993 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12994 /* 12995 * Not M_DATA mblk or its a dup, so do the checksum now. 12996 */ 12997 IP_STAT(ip_in_sw_cksum); 12998 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12999 BUMP_MIB(&ip_mib, tcpInErrs); 13000 goto error; 13001 } 13002 13003 IP_STAT(ip_tcp_slow_path); 13004 goto try_again; 13005 #undef iphs 13006 #undef rptr 13007 13008 error: 13009 freemsg(first_mp); 13010 slow_done: 13011 return (NULL); 13012 } 13013 13014 /* ARGSUSED */ 13015 static void 13016 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13017 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13018 { 13019 conn_t *connp; 13020 uint32_t sum; 13021 uint32_t u1; 13022 ssize_t len; 13023 sctp_hdr_t *sctph; 13024 zoneid_t zoneid = ire->ire_zoneid; 13025 uint32_t pktsum; 13026 uint32_t calcsum; 13027 uint32_t ports; 13028 uint_t ipif_seqid; 13029 in6_addr_t map_src, map_dst; 13030 ill_t *ill = (ill_t *)q->q_ptr; 13031 13032 #define rptr ((uchar_t *)ipha) 13033 13034 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13035 13036 /* u1 is # words of IP options */ 13037 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13038 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13039 13040 /* IP options present */ 13041 if (u1 > 0) { 13042 goto ipoptions; 13043 } else { 13044 /* Check the IP header checksum. */ 13045 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13046 #define uph ((uint16_t *)ipha) 13047 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13048 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13049 #undef uph 13050 /* finish doing IP checksum */ 13051 sum = (sum & 0xFFFF) + (sum >> 16); 13052 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13053 /* 13054 * Don't verify header checksum if this packet 13055 * is coming back from AH/ESP as we already did it. 13056 */ 13057 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13058 BUMP_MIB(&ip_mib, ipInCksumErrs); 13059 goto error; 13060 } 13061 } 13062 /* 13063 * Since there is no SCTP h/w cksum support yet, just 13064 * clear the flag. 13065 */ 13066 DB_CKSUMFLAGS(mp) = 0; 13067 } 13068 13069 /* 13070 * Don't verify header checksum if this packet is coming 13071 * back from AH/ESP as we already did it. 13072 */ 13073 if (!mctl_present) { 13074 UPDATE_IB_PKT_COUNT(ire); 13075 ire->ire_last_used_time = lbolt; 13076 } 13077 13078 /* packet part of fragmented IP packet? */ 13079 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13080 if (u1 & (IPH_MF | IPH_OFFSET)) 13081 goto fragmented; 13082 13083 /* u1 = IP header length (20 bytes) */ 13084 u1 = IP_SIMPLE_HDR_LENGTH; 13085 13086 find_sctp_client: 13087 /* Pullup if we don't have the sctp common header. */ 13088 len = MBLKL(mp); 13089 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13090 if (mp->b_cont == NULL || 13091 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13092 BUMP_MIB(&ip_mib, ipInDiscards); 13093 goto error; 13094 } 13095 ipha = (ipha_t *)mp->b_rptr; 13096 len = MBLKL(mp); 13097 } 13098 13099 sctph = (sctp_hdr_t *)(rptr + u1); 13100 #ifdef DEBUG 13101 if (!skip_sctp_cksum) { 13102 #endif 13103 pktsum = sctph->sh_chksum; 13104 sctph->sh_chksum = 0; 13105 calcsum = sctp_cksum(mp, u1); 13106 if (calcsum != pktsum) { 13107 BUMP_MIB(&sctp_mib, sctpChecksumError); 13108 goto error; 13109 } 13110 sctph->sh_chksum = pktsum; 13111 #ifdef DEBUG /* skip_sctp_cksum */ 13112 } 13113 #endif 13114 /* get the ports */ 13115 ports = *(uint32_t *)&sctph->sh_sport; 13116 13117 ipif_seqid = ire->ire_ipif->ipif_seqid; 13118 IRE_REFRELE(ire); 13119 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13120 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13121 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13122 mp)) == NULL) { 13123 /* Check for raw socket or OOTB handling */ 13124 goto no_conn; 13125 } 13126 13127 /* Found a client; up it goes */ 13128 BUMP_MIB(&ip_mib, ipInDelivers); 13129 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13130 return; 13131 13132 no_conn: 13133 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13134 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13135 return; 13136 13137 ipoptions: 13138 DB_CKSUMFLAGS(mp) = 0; 13139 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13140 goto slow_done; 13141 13142 UPDATE_IB_PKT_COUNT(ire); 13143 ire->ire_last_used_time = lbolt; 13144 13145 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13146 if (u1 & (IPH_MF | IPH_OFFSET)) { 13147 fragmented: 13148 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13149 goto slow_done; 13150 /* 13151 * Make sure that first_mp points back to mp as 13152 * the mp we came in with could have changed in 13153 * ip_rput_fragment(). 13154 */ 13155 ASSERT(!mctl_present); 13156 ipha = (ipha_t *)mp->b_rptr; 13157 first_mp = mp; 13158 } 13159 13160 /* Now we have a complete datagram, destined for this machine. */ 13161 u1 = IPH_HDR_LENGTH(ipha); 13162 goto find_sctp_client; 13163 #undef iphs 13164 #undef rptr 13165 13166 error: 13167 freemsg(first_mp); 13168 slow_done: 13169 IRE_REFRELE(ire); 13170 } 13171 13172 #define VER_BITS 0xF0 13173 #define VERSION_6 0x60 13174 13175 static boolean_t 13176 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13177 ipaddr_t *dstp) 13178 { 13179 uint_t opt_len; 13180 ipha_t *ipha; 13181 ssize_t len; 13182 uint_t pkt_len; 13183 13184 IP_STAT(ip_ipoptions); 13185 ipha = *iphapp; 13186 13187 #define rptr ((uchar_t *)ipha) 13188 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13189 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13190 BUMP_MIB(&ip_mib, ipInIPv6); 13191 freemsg(mp); 13192 return (B_FALSE); 13193 } 13194 13195 /* multiple mblk or too short */ 13196 pkt_len = ntohs(ipha->ipha_length); 13197 13198 /* Get the number of words of IP options in the IP header. */ 13199 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13200 if (opt_len) { 13201 /* IP Options present! Validate and process. */ 13202 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13203 BUMP_MIB(&ip_mib, ipInHdrErrors); 13204 goto done; 13205 } 13206 /* 13207 * Recompute complete header length and make sure we 13208 * have access to all of it. 13209 */ 13210 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13211 if (len > (mp->b_wptr - rptr)) { 13212 if (len > pkt_len) { 13213 BUMP_MIB(&ip_mib, ipInHdrErrors); 13214 goto done; 13215 } 13216 if (!pullupmsg(mp, len)) { 13217 BUMP_MIB(&ip_mib, ipInDiscards); 13218 goto done; 13219 } 13220 ipha = (ipha_t *)mp->b_rptr; 13221 } 13222 /* 13223 * Go off to ip_rput_options which returns the next hop 13224 * destination address, which may have been affected 13225 * by source routing. 13226 */ 13227 IP_STAT(ip_opt); 13228 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13229 return (B_FALSE); 13230 } 13231 } 13232 *iphapp = ipha; 13233 return (B_TRUE); 13234 done: 13235 /* clear b_prev - used by ip_mroute_decap */ 13236 mp->b_prev = NULL; 13237 freemsg(mp); 13238 return (B_FALSE); 13239 #undef rptr 13240 } 13241 13242 /* 13243 * Deal with the fact that there is no ire for the destination. 13244 * The incoming ill (in_ill) is passed in to ip_newroute only 13245 * in the case of packets coming from mobile ip forward tunnel. 13246 * It must be null otherwise. 13247 */ 13248 static ire_t * 13249 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13250 ipaddr_t dst) 13251 { 13252 ipha_t *ipha; 13253 ill_t *ill; 13254 ire_t *ire; 13255 boolean_t check_multirt = B_FALSE; 13256 13257 ipha = (ipha_t *)mp->b_rptr; 13258 ill = (ill_t *)q->q_ptr; 13259 13260 ASSERT(ill != NULL); 13261 /* 13262 * No IRE for this destination, so it can't be for us. 13263 * Unless we are forwarding, drop the packet. 13264 * We have to let source routed packets through 13265 * since we don't yet know if they are 'ping -l' 13266 * packets i.e. if they will go out over the 13267 * same interface as they came in on. 13268 */ 13269 if (ll_multicast) { 13270 freemsg(mp); 13271 return (NULL); 13272 } 13273 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13274 BUMP_MIB(&ip_mib, ipForwProhibits); 13275 freemsg(mp); 13276 return (NULL); 13277 } 13278 13279 /* 13280 * Mark this packet as having originated externally. 13281 * 13282 * For non-forwarding code path, ire_send later double 13283 * checks this interface to see if it is still exists 13284 * post-ARP resolution. 13285 * 13286 * Also, IPQOS uses this to differentiate between 13287 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13288 * QOS packet processing in ip_wput_attach_llhdr(). 13289 * The QoS module can mark the b_band for a fastpath message 13290 * or the dl_priority field in a unitdata_req header for 13291 * CoS marking. This info can only be found in 13292 * ip_wput_attach_llhdr(). 13293 */ 13294 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13295 /* 13296 * Clear the indication that this may have a hardware checksum 13297 * as we are not using it 13298 */ 13299 DB_CKSUMFLAGS(mp) = 0; 13300 13301 if (in_ill != NULL) { 13302 /* 13303 * Now hand the packet to ip_newroute. 13304 */ 13305 ip_newroute(q, mp, dst, in_ill, NULL); 13306 return (NULL); 13307 } 13308 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13309 MBLK_GETLABEL(mp)); 13310 13311 if (ire == NULL && check_multirt) { 13312 /* Let ip_newroute handle CGTP */ 13313 ip_newroute(q, mp, dst, in_ill, NULL); 13314 return (NULL); 13315 } 13316 13317 if (ire != NULL) 13318 return (ire); 13319 13320 mp->b_prev = mp->b_next = 0; 13321 /* send icmp unreachable */ 13322 q = WR(q); 13323 if (ip_source_routed(ipha)) 13324 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 13325 else 13326 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 13327 13328 return (NULL); 13329 13330 } 13331 13332 /* 13333 * check ip header length and align it. 13334 */ 13335 static boolean_t 13336 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13337 { 13338 ssize_t len; 13339 ill_t *ill; 13340 ipha_t *ipha; 13341 13342 len = MBLKL(mp); 13343 13344 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13345 if (!OK_32PTR(mp->b_rptr)) 13346 IP_STAT(ip_notaligned1); 13347 else 13348 IP_STAT(ip_notaligned2); 13349 /* Guard against bogus device drivers */ 13350 if (len < 0) { 13351 /* clear b_prev - used by ip_mroute_decap */ 13352 mp->b_prev = NULL; 13353 BUMP_MIB(&ip_mib, ipInHdrErrors); 13354 freemsg(mp); 13355 return (B_FALSE); 13356 } 13357 13358 if (ip_rput_pullups++ == 0) { 13359 ill = (ill_t *)q->q_ptr; 13360 ipha = (ipha_t *)mp->b_rptr; 13361 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13362 "ip_check_and_align_header: %s forced us to " 13363 " pullup pkt, hdr len %ld, hdr addr %p", 13364 ill->ill_name, len, ipha); 13365 } 13366 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13367 /* clear b_prev - used by ip_mroute_decap */ 13368 mp->b_prev = NULL; 13369 BUMP_MIB(&ip_mib, ipInDiscards); 13370 freemsg(mp); 13371 return (B_FALSE); 13372 } 13373 } 13374 return (B_TRUE); 13375 } 13376 13377 static boolean_t 13378 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13379 { 13380 ill_group_t *ill_group; 13381 ill_group_t *ire_group; 13382 queue_t *q; 13383 ill_t *ire_ill; 13384 uint_t ill_ifindex; 13385 13386 q = *qp; 13387 /* 13388 * We need to check to make sure the packet came in 13389 * on the queue associated with the destination IRE. 13390 * Note that for multicast packets and broadcast packets sent to 13391 * a broadcast address which is shared between multiple interfaces 13392 * we should not do this since we just got a random broadcast ire. 13393 */ 13394 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13395 boolean_t check_multi = B_TRUE; 13396 13397 /* 13398 * This packet came in on an interface other than the 13399 * one associated with the destination address. 13400 * "Gateway" it to the appropriate interface here. 13401 * As long as the ills belong to the same group, 13402 * we don't consider them to arriving on the wrong 13403 * interface. Thus, when the switch is doing inbound 13404 * load spreading, we won't drop packets when we 13405 * are doing strict multihoming checks. Note, the 13406 * same holds true for 'usesrc groups' where the 13407 * destination address may belong to another interface 13408 * to allow multipathing to happen 13409 */ 13410 ill_group = ill->ill_group; 13411 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13412 ill_ifindex = ill->ill_usesrc_ifindex; 13413 ire_group = ire_ill->ill_group; 13414 13415 /* 13416 * If it's part of the same IPMP group, or if it's a legal 13417 * address on the 'usesrc' interface, then bypass strict 13418 * checks. 13419 */ 13420 if (ill_group != NULL && ill_group == ire_group) { 13421 check_multi = B_FALSE; 13422 } else if (ill_ifindex != 0 && 13423 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13424 check_multi = B_FALSE; 13425 } 13426 13427 if (check_multi && 13428 ip_strict_dst_multihoming && 13429 ((ill->ill_flags & 13430 ire->ire_ipif->ipif_ill->ill_flags & 13431 ILLF_ROUTER) == 0)) { 13432 /* Drop packet */ 13433 BUMP_MIB(&ip_mib, ipForwProhibits); 13434 freemsg(mp); 13435 return (B_TRUE); 13436 } 13437 13438 /* 13439 * Change the queue (for non-virtual destination network 13440 * interfaces) and ip_rput_local will be called with the right 13441 * queue 13442 */ 13443 q = ire->ire_rfq; 13444 } 13445 /* Must be broadcast. We'll take it. */ 13446 *qp = q; 13447 return (B_FALSE); 13448 } 13449 13450 #define SEND_PKT(ire, mp) \ 13451 { \ 13452 UPDATE_IB_PKT_COUNT(ire); \ 13453 (ire)->ire_last_used_time = lbolt; \ 13454 BUMP_MIB(&ip_mib, ipForwDatagrams); \ 13455 putnext((ire)->ire_stq, mp); \ 13456 } 13457 13458 ire_t * 13459 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13460 { 13461 ipha_t *ipha; 13462 ipaddr_t ip_dst, ip_src; 13463 ire_t *src_ire = NULL; 13464 ill_t *stq_ill; 13465 uint_t hlen; 13466 uint32_t sum; 13467 queue_t *dev_q; 13468 boolean_t check_multirt = B_FALSE; 13469 13470 13471 ipha = (ipha_t *)mp->b_rptr; 13472 13473 /* 13474 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13475 * The loopback address check for both src and dst has already 13476 * been checked in ip_input 13477 */ 13478 ip_dst = ntohl(dst); 13479 ip_src = ntohl(ipha->ipha_src); 13480 13481 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13482 IN_CLASSD(ip_src)) { 13483 BUMP_MIB(&ip_mib, ipForwProhibits); 13484 goto drop; 13485 } 13486 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13487 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13488 13489 if (src_ire != NULL) { 13490 BUMP_MIB(&ip_mib, ipForwProhibits); 13491 goto drop; 13492 } 13493 13494 /* No ire cache of nexthop. So first create one */ 13495 if (ire == NULL) { 13496 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13497 /* 13498 * We only come to ip_fast_forward if ip_cgtp_filter is 13499 * is not set. So upon return from ire_forward 13500 * check_multirt should remain as false. 13501 */ 13502 ASSERT(!check_multirt); 13503 if (ire == NULL) { 13504 BUMP_MIB(&ip_mib, ipInDiscards); 13505 mp->b_prev = mp->b_next = 0; 13506 /* send icmp unreachable */ 13507 if (ip_source_routed(ipha)) { 13508 icmp_unreachable(ill->ill_wq, mp, 13509 ICMP_SOURCE_ROUTE_FAILED); 13510 } else { 13511 icmp_unreachable(ill->ill_wq, mp, 13512 ICMP_HOST_UNREACHABLE); 13513 } 13514 return (ire); 13515 } 13516 } 13517 13518 /* 13519 * Forwarding fastpath exception case: 13520 * If either of the follwoing case is true, we take 13521 * the slowpath 13522 * o forwarding is not enabled 13523 * o IPMP is enabled 13524 * o corresponding ire is in incomplete state 13525 * o packet needs fragmentation 13526 * 13527 * The codeflow from here on is thus: 13528 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13529 */ 13530 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13531 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13532 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13533 (ire->ire_nce == NULL) || 13534 (ire->ire_nce->nce_state != ND_REACHABLE) || 13535 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13536 ipha->ipha_ttl <= 1) { 13537 ip_rput_process_forward(ill->ill_rq, mp, ire, 13538 ipha, ill, B_FALSE); 13539 return (ire); 13540 } 13541 13542 mp->b_datap->db_struioun.cksum.flags = 0; 13543 /* Adjust the checksum to reflect the ttl decrement. */ 13544 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13545 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13546 ipha->ipha_ttl--; 13547 13548 dev_q = ire->ire_stq->q_next; 13549 if ((dev_q->q_next != NULL || 13550 dev_q->q_first != NULL) && !canput(dev_q)) { 13551 goto indiscard; 13552 } 13553 13554 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13555 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13556 13557 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13558 mp = ip_wput_attach_llhdr(mp, ire, 0, 0); 13559 if (mp != NULL) { 13560 SEND_PKT(ire, mp); 13561 return (ire); 13562 } 13563 } 13564 13565 indiscard: 13566 BUMP_MIB(&ip_mib, ipInDiscards); 13567 drop: 13568 if (mp != NULL) 13569 freemsg(mp); 13570 if (src_ire != NULL) 13571 ire_refrele(src_ire); 13572 return (ire); 13573 13574 } 13575 13576 /* 13577 * This function is called in the forwarding slowpath, when 13578 * either the ire lacks the link-layer address, or the packet needs 13579 * further processing(eg. fragmentation), before transmission. 13580 */ 13581 static void 13582 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13583 ill_t *ill, boolean_t ll_multicast) 13584 { 13585 ill_group_t *ill_group; 13586 ill_group_t *ire_group; 13587 queue_t *dev_q; 13588 ire_t *src_ire; 13589 13590 ASSERT(ire->ire_stq != NULL); 13591 13592 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13593 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13594 13595 if (ll_multicast != 0) 13596 goto drop_pkt; 13597 13598 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13599 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13600 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13601 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13602 if (src_ire != NULL) 13603 ire_refrele(src_ire); 13604 BUMP_MIB(&ip_mib, ipForwProhibits); 13605 ip2dbg(("ip_rput_process_forward: Received packet with" 13606 " bad src/dst address on %s\n", ill->ill_name)); 13607 } 13608 13609 ill_group = ill->ill_group; 13610 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13611 /* 13612 * Check if we want to forward this one at this time. 13613 * We allow source routed packets on a host provided that 13614 * they go out the same interface or same interface group 13615 * as they came in on. 13616 * 13617 * XXX To be quicker, we may wish to not chase pointers to 13618 * get the ILLF_ROUTER flag and instead store the 13619 * forwarding policy in the ire. An unfortunate 13620 * side-effect of that would be requiring an ire flush 13621 * whenever the ILLF_ROUTER flag changes. 13622 */ 13623 if (((ill->ill_flags & 13624 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13625 ILLF_ROUTER) == 0) && 13626 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13627 (ill_group != NULL && ill_group == ire_group)))) { 13628 BUMP_MIB(&ip_mib, ipForwProhibits); 13629 if (ip_source_routed(ipha)) { 13630 q = WR(q); 13631 /* 13632 * Clear the indication that this may have 13633 * hardware checksum as we are not using it. 13634 */ 13635 DB_CKSUMFLAGS(mp) = 0; 13636 icmp_unreachable(q, mp, 13637 ICMP_SOURCE_ROUTE_FAILED); 13638 return; 13639 } 13640 goto drop_pkt; 13641 } 13642 13643 /* Packet is being forwarded. Turning off hwcksum flag. */ 13644 DB_CKSUMFLAGS(mp) = 0; 13645 if (ip_g_send_redirects) { 13646 /* 13647 * Check whether the incoming interface and outgoing 13648 * interface is part of the same group. If so, 13649 * send redirects. 13650 * 13651 * Check the source address to see if it originated 13652 * on the same logical subnet it is going back out on. 13653 * If so, we should be able to send it a redirect. 13654 * Avoid sending a redirect if the destination 13655 * is directly connected (gw_addr == 0), 13656 * or if the packet was source routed out this 13657 * interface. 13658 */ 13659 ipaddr_t src; 13660 mblk_t *mp1; 13661 ire_t *src_ire = NULL; 13662 13663 /* 13664 * Check whether ire_rfq and q are from the same ill 13665 * or if they are not same, they at least belong 13666 * to the same group. If so, send redirects. 13667 */ 13668 if ((ire->ire_rfq == q || 13669 (ill_group != NULL && ill_group == ire_group)) && 13670 (ire->ire_gateway_addr != 0) && 13671 !ip_source_routed(ipha)) { 13672 13673 src = ipha->ipha_src; 13674 src_ire = ire_ftable_lookup(src, 0, 0, 13675 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13676 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13677 13678 if (src_ire != NULL) { 13679 /* 13680 * The source is directly connected. 13681 * Just copy the ip header (which is 13682 * in the first mblk) 13683 */ 13684 mp1 = copyb(mp); 13685 if (mp1 != NULL) { 13686 icmp_send_redirect(WR(q), mp1, 13687 ire->ire_gateway_addr); 13688 } 13689 ire_refrele(src_ire); 13690 } 13691 } 13692 } 13693 13694 dev_q = ire->ire_stq->q_next; 13695 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13696 BUMP_MIB(&ip_mib, ipInDiscards); 13697 freemsg(mp); 13698 return; 13699 } 13700 13701 ip_rput_forward(ire, ipha, mp, ill); 13702 return; 13703 13704 drop_pkt: 13705 ip2dbg(("ip_rput_forward: drop pkt\n")); 13706 freemsg(mp); 13707 } 13708 13709 ire_t * 13710 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13711 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13712 { 13713 queue_t *q; 13714 uint16_t hcksumflags; 13715 13716 q = *qp; 13717 13718 /* 13719 * Clear the indication that this may have hardware 13720 * checksum as we are not using it for forwarding. 13721 */ 13722 hcksumflags = DB_CKSUMFLAGS(mp); 13723 DB_CKSUMFLAGS(mp) = 0; 13724 13725 /* 13726 * Directed broadcast forwarding: if the packet came in over a 13727 * different interface then it is routed out over we can forward it. 13728 */ 13729 if (ipha->ipha_protocol == IPPROTO_TCP) { 13730 ire_refrele(ire); 13731 freemsg(mp); 13732 BUMP_MIB(&ip_mib, ipInDiscards); 13733 return (NULL); 13734 } 13735 /* 13736 * For multicast we have set dst to be INADDR_BROADCAST 13737 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13738 * only for broadcast packets. 13739 */ 13740 if (!CLASSD(ipha->ipha_dst)) { 13741 ire_t *new_ire; 13742 ipif_t *ipif; 13743 /* 13744 * For ill groups, as the switch duplicates broadcasts 13745 * across all the ports, we need to filter out and 13746 * send up only one copy. There is one copy for every 13747 * broadcast address on each ill. Thus, we look for a 13748 * specific IRE on this ill and look at IRE_MARK_NORECV 13749 * later to see whether this ill is eligible to receive 13750 * them or not. ill_nominate_bcast_rcv() nominates only 13751 * one set of IREs for receiving. 13752 */ 13753 13754 ipif = ipif_get_next_ipif(NULL, ill); 13755 if (ipif == NULL) { 13756 ire_refrele(ire); 13757 freemsg(mp); 13758 BUMP_MIB(&ip_mib, ipInDiscards); 13759 return (NULL); 13760 } 13761 new_ire = ire_ctable_lookup(dst, 0, 0, 13762 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13763 ipif_refrele(ipif); 13764 13765 if (new_ire != NULL) { 13766 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13767 ire_refrele(ire); 13768 ire_refrele(new_ire); 13769 freemsg(mp); 13770 BUMP_MIB(&ip_mib, ipInDiscards); 13771 return (NULL); 13772 } 13773 /* 13774 * In the special case of multirouted broadcast 13775 * packets, we unconditionally need to "gateway" 13776 * them to the appropriate interface here. 13777 * In the normal case, this cannot happen, because 13778 * there is no broadcast IRE tagged with the 13779 * RTF_MULTIRT flag. 13780 */ 13781 if (new_ire->ire_flags & RTF_MULTIRT) { 13782 ire_refrele(new_ire); 13783 if (ire->ire_rfq != NULL) { 13784 q = ire->ire_rfq; 13785 *qp = q; 13786 } 13787 } else { 13788 ire_refrele(ire); 13789 ire = new_ire; 13790 } 13791 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13792 if (!ip_g_forward_directed_bcast) { 13793 /* 13794 * Free the message if 13795 * ip_g_forward_directed_bcast is turned 13796 * off for non-local broadcast. 13797 */ 13798 ire_refrele(ire); 13799 freemsg(mp); 13800 BUMP_MIB(&ip_mib, ipInDiscards); 13801 return (NULL); 13802 } 13803 } else { 13804 /* 13805 * This CGTP packet successfully passed the 13806 * CGTP filter, but the related CGTP 13807 * broadcast IRE has not been found, 13808 * meaning that the redundant ipif is 13809 * probably down. However, if we discarded 13810 * this packet, its duplicate would be 13811 * filtered out by the CGTP filter so none 13812 * of them would get through. So we keep 13813 * going with this one. 13814 */ 13815 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13816 if (ire->ire_rfq != NULL) { 13817 q = ire->ire_rfq; 13818 *qp = q; 13819 } 13820 } 13821 } 13822 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13823 /* 13824 * Verify that there are not more then one 13825 * IRE_BROADCAST with this broadcast address which 13826 * has ire_stq set. 13827 * TODO: simplify, loop over all IRE's 13828 */ 13829 ire_t *ire1; 13830 int num_stq = 0; 13831 mblk_t *mp1; 13832 13833 /* Find the first one with ire_stq set */ 13834 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13835 for (ire1 = ire; ire1 && 13836 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13837 ire1 = ire1->ire_next) 13838 ; 13839 if (ire1) { 13840 ire_refrele(ire); 13841 ire = ire1; 13842 IRE_REFHOLD(ire); 13843 } 13844 13845 /* Check if there are additional ones with stq set */ 13846 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13847 if (ire->ire_addr != ire1->ire_addr) 13848 break; 13849 if (ire1->ire_stq) { 13850 num_stq++; 13851 break; 13852 } 13853 } 13854 rw_exit(&ire->ire_bucket->irb_lock); 13855 if (num_stq == 1 && ire->ire_stq != NULL) { 13856 ip1dbg(("ip_rput_process_broadcast: directed " 13857 "broadcast to 0x%x\n", 13858 ntohl(ire->ire_addr))); 13859 mp1 = copymsg(mp); 13860 if (mp1) { 13861 switch (ipha->ipha_protocol) { 13862 case IPPROTO_UDP: 13863 ip_udp_input(q, mp1, ipha, ire, ill); 13864 break; 13865 default: 13866 ip_proto_input(q, mp1, ipha, ire, ill); 13867 break; 13868 } 13869 } 13870 /* 13871 * Adjust ttl to 2 (1+1 - the forward engine 13872 * will decrement it by one. 13873 */ 13874 if (ip_csum_hdr(ipha)) { 13875 BUMP_MIB(&ip_mib, ipInCksumErrs); 13876 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13877 freemsg(mp); 13878 ire_refrele(ire); 13879 return (NULL); 13880 } 13881 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13882 ipha->ipha_hdr_checksum = 0; 13883 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13884 ip_rput_process_forward(q, mp, ire, ipha, 13885 ill, ll_multicast); 13886 ire_refrele(ire); 13887 return (NULL); 13888 } 13889 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13890 ntohl(ire->ire_addr))); 13891 } 13892 13893 13894 /* Restore any hardware checksum flags */ 13895 DB_CKSUMFLAGS(mp) = hcksumflags; 13896 return (ire); 13897 } 13898 13899 /* ARGSUSED */ 13900 static boolean_t 13901 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13902 int *ll_multicast, ipaddr_t *dstp) 13903 { 13904 /* 13905 * Forward packets only if we have joined the allmulti 13906 * group on this interface. 13907 */ 13908 if (ip_g_mrouter && ill->ill_join_allmulti) { 13909 int retval; 13910 13911 /* 13912 * Clear the indication that this may have hardware 13913 * checksum as we are not using it. 13914 */ 13915 DB_CKSUMFLAGS(mp) = 0; 13916 retval = ip_mforward(ill, ipha, mp); 13917 /* ip_mforward updates mib variables if needed */ 13918 /* clear b_prev - used by ip_mroute_decap */ 13919 mp->b_prev = NULL; 13920 13921 switch (retval) { 13922 case 0: 13923 /* 13924 * pkt is okay and arrived on phyint. 13925 * 13926 * If we are running as a multicast router 13927 * we need to see all IGMP and/or PIM packets. 13928 */ 13929 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13930 (ipha->ipha_protocol == IPPROTO_PIM)) { 13931 goto done; 13932 } 13933 break; 13934 case -1: 13935 /* pkt is mal-formed, toss it */ 13936 goto drop_pkt; 13937 case 1: 13938 /* pkt is okay and arrived on a tunnel */ 13939 /* 13940 * If we are running a multicast router 13941 * we need to see all igmp packets. 13942 */ 13943 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13944 *dstp = INADDR_BROADCAST; 13945 *ll_multicast = 1; 13946 return (B_FALSE); 13947 } 13948 13949 goto drop_pkt; 13950 } 13951 } 13952 13953 ILM_WALKER_HOLD(ill); 13954 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13955 /* 13956 * This might just be caused by the fact that 13957 * multiple IP Multicast addresses map to the same 13958 * link layer multicast - no need to increment counter! 13959 */ 13960 ILM_WALKER_RELE(ill); 13961 freemsg(mp); 13962 return (B_TRUE); 13963 } 13964 ILM_WALKER_RELE(ill); 13965 done: 13966 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13967 /* 13968 * This assumes the we deliver to all streams for multicast 13969 * and broadcast packets. 13970 */ 13971 *dstp = INADDR_BROADCAST; 13972 *ll_multicast = 1; 13973 return (B_FALSE); 13974 drop_pkt: 13975 ip2dbg(("ip_rput: drop pkt\n")); 13976 freemsg(mp); 13977 return (B_TRUE); 13978 } 13979 13980 static boolean_t 13981 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13982 int *ll_multicast, mblk_t **mpp) 13983 { 13984 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13985 boolean_t must_copy = B_FALSE; 13986 struct iocblk *iocp; 13987 ipha_t *ipha; 13988 13989 #define rptr ((uchar_t *)ipha) 13990 13991 first_mp = *first_mpp; 13992 mp = *mpp; 13993 13994 ASSERT(first_mp == mp); 13995 13996 /* 13997 * if db_ref > 1 then copymsg and free original. Packet may be 13998 * changed and do not want other entity who has a reference to this 13999 * message to trip over the changes. This is a blind change because 14000 * trying to catch all places that might change packet is too 14001 * difficult (since it may be a module above this one) 14002 * 14003 * This corresponds to the non-fast path case. We walk down the full 14004 * chain in this case, and check the db_ref count of all the dblks, 14005 * and do a copymsg if required. It is possible that the db_ref counts 14006 * of the data blocks in the mblk chain can be different. 14007 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14008 * count of 1, followed by a M_DATA block with a ref count of 2, if 14009 * 'snoop' is running. 14010 */ 14011 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14012 if (mp1->b_datap->db_ref > 1) { 14013 must_copy = B_TRUE; 14014 break; 14015 } 14016 } 14017 14018 if (must_copy) { 14019 mp1 = copymsg(mp); 14020 if (mp1 == NULL) { 14021 for (mp1 = mp; mp1 != NULL; 14022 mp1 = mp1->b_cont) { 14023 mp1->b_next = NULL; 14024 mp1->b_prev = NULL; 14025 } 14026 freemsg(mp); 14027 BUMP_MIB(&ip_mib, ipInDiscards); 14028 return (B_TRUE); 14029 } 14030 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14031 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14032 /* Copy b_prev - used by ip_mroute_decap */ 14033 to_mp->b_prev = from_mp->b_prev; 14034 from_mp->b_prev = NULL; 14035 } 14036 *first_mpp = first_mp = mp1; 14037 freemsg(mp); 14038 mp = mp1; 14039 *mpp = mp1; 14040 } 14041 14042 ipha = (ipha_t *)mp->b_rptr; 14043 14044 /* 14045 * previous code has a case for M_DATA. 14046 * We want to check how that happens. 14047 */ 14048 ASSERT(first_mp->b_datap->db_type != M_DATA); 14049 switch (first_mp->b_datap->db_type) { 14050 case M_PROTO: 14051 case M_PCPROTO: 14052 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14053 DL_UNITDATA_IND) { 14054 /* Go handle anything other than data elsewhere. */ 14055 ip_rput_dlpi(q, mp); 14056 return (B_TRUE); 14057 } 14058 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14059 /* Ditch the DLPI header. */ 14060 mp1 = mp->b_cont; 14061 ASSERT(first_mp == mp); 14062 *first_mpp = mp1; 14063 freeb(mp); 14064 *mpp = mp1; 14065 return (B_FALSE); 14066 case M_IOCACK: 14067 ip1dbg(("got iocack ")); 14068 iocp = (struct iocblk *)mp->b_rptr; 14069 switch (iocp->ioc_cmd) { 14070 case DL_IOC_HDR_INFO: 14071 ill = (ill_t *)q->q_ptr; 14072 ill_fastpath_ack(ill, mp); 14073 return (B_TRUE); 14074 case SIOCSTUNPARAM: 14075 case OSIOCSTUNPARAM: 14076 /* Go through qwriter_ip */ 14077 break; 14078 case SIOCGTUNPARAM: 14079 case OSIOCGTUNPARAM: 14080 ip_rput_other(NULL, q, mp, NULL); 14081 return (B_TRUE); 14082 default: 14083 putnext(q, mp); 14084 return (B_TRUE); 14085 } 14086 /* FALLTHRU */ 14087 case M_ERROR: 14088 case M_HANGUP: 14089 /* 14090 * Since this is on the ill stream we unconditionally 14091 * bump up the refcount 14092 */ 14093 ill_refhold(ill); 14094 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14095 B_FALSE); 14096 return (B_TRUE); 14097 case M_CTL: 14098 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14099 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14100 IPHADA_M_CTL)) { 14101 /* 14102 * It's an IPsec accelerated packet. 14103 * Make sure that the ill from which we received the 14104 * packet has enabled IPsec hardware acceleration. 14105 */ 14106 if (!(ill->ill_capabilities & 14107 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14108 /* IPsec kstats: bean counter */ 14109 freemsg(mp); 14110 return (B_TRUE); 14111 } 14112 14113 /* 14114 * Make mp point to the mblk following the M_CTL, 14115 * then process according to type of mp. 14116 * After this processing, first_mp will point to 14117 * the data-attributes and mp to the pkt following 14118 * the M_CTL. 14119 */ 14120 mp = first_mp->b_cont; 14121 if (mp == NULL) { 14122 freemsg(first_mp); 14123 return (B_TRUE); 14124 } 14125 /* 14126 * A Hardware Accelerated packet can only be M_DATA 14127 * ESP or AH packet. 14128 */ 14129 if (mp->b_datap->db_type != M_DATA) { 14130 /* non-M_DATA IPsec accelerated packet */ 14131 IPSECHW_DEBUG(IPSECHW_PKT, 14132 ("non-M_DATA IPsec accelerated pkt\n")); 14133 freemsg(first_mp); 14134 return (B_TRUE); 14135 } 14136 ipha = (ipha_t *)mp->b_rptr; 14137 if (ipha->ipha_protocol != IPPROTO_AH && 14138 ipha->ipha_protocol != IPPROTO_ESP) { 14139 IPSECHW_DEBUG(IPSECHW_PKT, 14140 ("non-M_DATA IPsec accelerated pkt\n")); 14141 freemsg(first_mp); 14142 return (B_TRUE); 14143 } 14144 *mpp = mp; 14145 return (B_FALSE); 14146 } 14147 putnext(q, mp); 14148 return (B_TRUE); 14149 case M_FLUSH: 14150 if (*mp->b_rptr & FLUSHW) { 14151 *mp->b_rptr &= ~FLUSHR; 14152 qreply(q, mp); 14153 return (B_TRUE); 14154 } 14155 freemsg(mp); 14156 return (B_TRUE); 14157 case M_IOCNAK: 14158 ip1dbg(("got iocnak ")); 14159 iocp = (struct iocblk *)mp->b_rptr; 14160 switch (iocp->ioc_cmd) { 14161 case DL_IOC_HDR_INFO: 14162 case SIOCSTUNPARAM: 14163 case OSIOCSTUNPARAM: 14164 /* 14165 * Since this is on the ill stream we unconditionally 14166 * bump up the refcount 14167 */ 14168 ill_refhold(ill); 14169 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14170 CUR_OP, B_FALSE); 14171 return (B_TRUE); 14172 case SIOCGTUNPARAM: 14173 case OSIOCGTUNPARAM: 14174 ip_rput_other(NULL, q, mp, NULL); 14175 return (B_TRUE); 14176 default: 14177 break; 14178 } 14179 /* FALLTHRU */ 14180 default: 14181 putnext(q, mp); 14182 return (B_TRUE); 14183 } 14184 } 14185 14186 /* Read side put procedure. Packets coming from the wire arrive here. */ 14187 void 14188 ip_rput(queue_t *q, mblk_t *mp) 14189 { 14190 ill_t *ill; 14191 mblk_t *dmp = NULL; 14192 14193 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14194 14195 ill = (ill_t *)q->q_ptr; 14196 14197 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14198 union DL_primitives *dl; 14199 14200 /* 14201 * Things are opening or closing. Only accept DLPI control 14202 * messages. In the open case, the ill->ill_ipif has not yet 14203 * been created. In the close case, things hanging off the 14204 * ill could have been freed already. In either case it 14205 * may not be safe to proceed further. 14206 */ 14207 14208 dl = (union DL_primitives *)mp->b_rptr; 14209 if ((mp->b_datap->db_type != M_PCPROTO) || 14210 (dl->dl_primitive == DL_UNITDATA_IND)) { 14211 /* 14212 * Also SIOC[GS]TUN* ioctls can come here. 14213 */ 14214 inet_freemsg(mp); 14215 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14216 "ip_input_end: q %p (%S)", q, "uninit"); 14217 return; 14218 } 14219 } 14220 14221 /* 14222 * if db_ref > 1 then copymsg and free original. Packet may be 14223 * changed and we do not want the other entity who has a reference to 14224 * this message to trip over the changes. This is a blind change because 14225 * trying to catch all places that might change the packet is too 14226 * difficult. 14227 * 14228 * This corresponds to the fast path case, where we have a chain of 14229 * M_DATA mblks. We check the db_ref count of only the 1st data block 14230 * in the mblk chain. There doesn't seem to be a reason why a device 14231 * driver would send up data with varying db_ref counts in the mblk 14232 * chain. In any case the Fast path is a private interface, and our 14233 * drivers don't do such a thing. Given the above assumption, there is 14234 * no need to walk down the entire mblk chain (which could have a 14235 * potential performance problem) 14236 */ 14237 if (mp->b_datap->db_ref > 1) { 14238 mblk_t *mp1; 14239 boolean_t adjusted = B_FALSE; 14240 IP_STAT(ip_db_ref); 14241 14242 /* 14243 * The IP_RECVSLLA option depends on having the link layer 14244 * header. First check that: 14245 * a> the underlying device is of type ether, since this 14246 * option is currently supported only over ethernet. 14247 * b> there is enough room to copy over the link layer header. 14248 * 14249 * Once the checks are done, adjust rptr so that the link layer 14250 * header will be copied via copymsg. Note that, IFT_ETHER may 14251 * be returned by some non-ethernet drivers but in this case the 14252 * second check will fail. 14253 */ 14254 if (ill->ill_type == IFT_ETHER && 14255 (mp->b_rptr - mp->b_datap->db_base) >= 14256 sizeof (struct ether_header)) { 14257 mp->b_rptr -= sizeof (struct ether_header); 14258 adjusted = B_TRUE; 14259 } 14260 mp1 = copymsg(mp); 14261 if (mp1 == NULL) { 14262 mp->b_next = NULL; 14263 /* clear b_prev - used by ip_mroute_decap */ 14264 mp->b_prev = NULL; 14265 freemsg(mp); 14266 BUMP_MIB(&ip_mib, ipInDiscards); 14267 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14268 "ip_rput_end: q %p (%S)", q, "copymsg"); 14269 return; 14270 } 14271 if (adjusted) { 14272 /* 14273 * Copy is done. Restore the pointer in the _new_ mblk 14274 */ 14275 mp1->b_rptr += sizeof (struct ether_header); 14276 } 14277 /* Copy b_prev - used by ip_mroute_decap */ 14278 mp1->b_prev = mp->b_prev; 14279 mp->b_prev = NULL; 14280 freemsg(mp); 14281 mp = mp1; 14282 } 14283 if (DB_TYPE(mp) == M_DATA) { 14284 dmp = mp; 14285 } else if (DB_TYPE(mp) == M_PROTO && 14286 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14287 dmp = mp->b_cont; 14288 } 14289 if (dmp != NULL) { 14290 /* 14291 * IP header ptr not aligned? 14292 * OR IP header not complete in first mblk 14293 */ 14294 if (!OK_32PTR(dmp->b_rptr) || 14295 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14296 if (!ip_check_and_align_header(q, dmp)) 14297 return; 14298 } 14299 } 14300 14301 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14302 "ip_rput_end: q %p (%S)", q, "end"); 14303 14304 ip_input(ill, NULL, mp, 0); 14305 } 14306 14307 /* 14308 * Direct read side procedure capable of dealing with chains. GLDv3 based 14309 * drivers call this function directly with mblk chains while STREAMS 14310 * read side procedure ip_rput() calls this for single packet with ip_ring 14311 * set to NULL to process one packet at a time. 14312 * 14313 * The ill will always be valid if this function is called directly from 14314 * the driver. 14315 */ 14316 /* ARGSUSED */ 14317 void 14318 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 14319 { 14320 ipaddr_t dst = NULL; 14321 ipaddr_t prev_dst; 14322 ire_t *ire = NULL; 14323 ipha_t *ipha; 14324 uint_t pkt_len; 14325 ssize_t len; 14326 uint_t opt_len; 14327 int ll_multicast; 14328 int cgtp_flt_pkt; 14329 queue_t *q = ill->ill_rq; 14330 squeue_t *curr_sqp = NULL; 14331 mblk_t *head = NULL; 14332 mblk_t *tail = NULL; 14333 mblk_t *first_mp; 14334 mblk_t *mp; 14335 int cnt = 0; 14336 14337 ASSERT(mp_chain != NULL); 14338 ASSERT(ill != NULL); 14339 14340 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14341 14342 #define rptr ((uchar_t *)ipha) 14343 14344 while (mp_chain != NULL) { 14345 first_mp = mp = mp_chain; 14346 mp_chain = mp_chain->b_next; 14347 mp->b_next = NULL; 14348 ll_multicast = 0; 14349 14350 /* 14351 * We do ire caching from one iteration to 14352 * another. In the event the packet chain contains 14353 * all packets from the same dst, this caching saves 14354 * an ire_cache_lookup for each of the succeeding 14355 * packets in a packet chain. 14356 */ 14357 prev_dst = dst; 14358 14359 /* 14360 * ip_input fast path 14361 */ 14362 14363 /* mblk type is not M_DATA */ 14364 if (mp->b_datap->db_type != M_DATA) { 14365 if (ip_rput_process_notdata(q, &first_mp, ill, 14366 &ll_multicast, &mp)) 14367 continue; 14368 } 14369 14370 /* Make sure its an M_DATA and that its aligned */ 14371 ASSERT(mp->b_datap->db_type == M_DATA); 14372 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14373 14374 ipha = (ipha_t *)mp->b_rptr; 14375 len = mp->b_wptr - rptr; 14376 14377 BUMP_MIB(&ip_mib, ipInReceives); 14378 14379 14380 /* multiple mblk or too short */ 14381 pkt_len = ntohs(ipha->ipha_length); 14382 len -= pkt_len; 14383 if (len != 0) { 14384 /* 14385 * Make sure we have data length consistent 14386 * with the IP header. 14387 */ 14388 if (mp->b_cont == NULL) { 14389 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14390 BUMP_MIB(&ip_mib, ipInHdrErrors); 14391 ip2dbg(("ip_input: drop pkt\n")); 14392 freemsg(mp); 14393 continue; 14394 } 14395 mp->b_wptr = rptr + pkt_len; 14396 } else if (len += msgdsize(mp->b_cont)) { 14397 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14398 BUMP_MIB(&ip_mib, ipInHdrErrors); 14399 ip2dbg(("ip_input: drop pkt\n")); 14400 freemsg(mp); 14401 continue; 14402 } 14403 (void) adjmsg(mp, -len); 14404 IP_STAT(ip_multimblk3); 14405 } 14406 } 14407 14408 /* Obtain the dst of the current packet */ 14409 dst = ipha->ipha_dst; 14410 14411 if (IP_LOOPBACK_ADDR(dst) || 14412 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14413 BUMP_MIB(&ip_mib, ipInAddrErrors); 14414 cmn_err(CE_CONT, "dst %X src %X\n", 14415 dst, ipha->ipha_src); 14416 freemsg(mp); 14417 continue; 14418 } 14419 14420 /* 14421 * Attach any necessary label information to 14422 * this packet 14423 */ 14424 if (is_system_labeled() && 14425 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14426 BUMP_MIB(&ip_mib, ipInDiscards); 14427 freemsg(mp); 14428 continue; 14429 } 14430 14431 /* 14432 * Reuse the cached ire only if the ipha_dst of the previous 14433 * packet is the same as the current packet AND it is not 14434 * INADDR_ANY. 14435 */ 14436 if (!(dst == prev_dst && dst != INADDR_ANY) && 14437 (ire != NULL)) { 14438 ire_refrele(ire); 14439 ire = NULL; 14440 } 14441 opt_len = ipha->ipha_version_and_hdr_length - 14442 IP_SIMPLE_HDR_VERSION; 14443 14444 /* 14445 * Check to see if we can take the fastpath. 14446 * That is possible if the following conditions are met 14447 * o Tsol disabled 14448 * o CGTP disabled 14449 * o ipp_action_count is 0 14450 * o Mobile IP not running 14451 * o no options in the packet 14452 * o not a RSVP packet 14453 * o not a multicast packet 14454 */ 14455 if (!is_system_labeled() && 14456 !ip_cgtp_filter && ipp_action_count == 0 && 14457 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14458 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14459 !ll_multicast && !CLASSD(dst)) { 14460 if (ire == NULL) 14461 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14462 14463 /* incoming packet is for forwarding */ 14464 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14465 ire = ip_fast_forward(ire, dst, ill, mp); 14466 continue; 14467 } 14468 /* incoming packet is for local consumption */ 14469 if (ire->ire_type & IRE_LOCAL) 14470 goto local; 14471 } 14472 14473 /* 14474 * Disable ire caching for anything more complex 14475 * than the simple fast path case we checked for above. 14476 */ 14477 if (ire != NULL) { 14478 ire_refrele(ire); 14479 ire = NULL; 14480 } 14481 14482 /* Full-blown slow path */ 14483 if (opt_len != 0) { 14484 if (len != 0) 14485 IP_STAT(ip_multimblk4); 14486 else 14487 IP_STAT(ip_ipoptions); 14488 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14489 continue; 14490 } 14491 14492 /* 14493 * Invoke the CGTP (multirouting) filtering module to process 14494 * the incoming packet. Packets identified as duplicates 14495 * must be discarded. Filtering is active only if the 14496 * the ip_cgtp_filter ndd variable is non-zero. 14497 */ 14498 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14499 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14500 cgtp_flt_pkt = 14501 ip_cgtp_filter_ops->cfo_filter(q, mp); 14502 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14503 freemsg(first_mp); 14504 continue; 14505 } 14506 } 14507 14508 /* 14509 * If rsvpd is running, let RSVP daemon handle its processing 14510 * and forwarding of RSVP multicast/unicast packets. 14511 * If rsvpd is not running but mrouted is running, RSVP 14512 * multicast packets are forwarded as multicast traffic 14513 * and RSVP unicast packets are forwarded by unicast router. 14514 * If neither rsvpd nor mrouted is running, RSVP multicast 14515 * packets are not forwarded, but the unicast packets are 14516 * forwarded like unicast traffic. 14517 */ 14518 if (ipha->ipha_protocol == IPPROTO_RSVP && 14519 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14520 /* RSVP packet and rsvpd running. Treat as ours */ 14521 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14522 /* 14523 * This assumes that we deliver to all streams for 14524 * multicast and broadcast packets. 14525 * We have to force ll_multicast to 1 to handle the 14526 * M_DATA messages passed in from ip_mroute_decap. 14527 */ 14528 dst = INADDR_BROADCAST; 14529 ll_multicast = 1; 14530 } else if (CLASSD(dst)) { 14531 /* packet is multicast */ 14532 mp->b_next = NULL; 14533 if (ip_rput_process_multicast(q, mp, ill, ipha, 14534 &ll_multicast, &dst)) 14535 continue; 14536 } 14537 14538 14539 /* 14540 * Check if the packet is coming from the Mobile IP 14541 * forward tunnel interface 14542 */ 14543 if (ill->ill_srcif_refcnt > 0) { 14544 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14545 NULL, ill, MATCH_IRE_TYPE); 14546 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14547 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14548 14549 /* We need to resolve the link layer info */ 14550 ire_refrele(ire); 14551 ire = NULL; 14552 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14553 ll_multicast, dst); 14554 continue; 14555 } 14556 } 14557 14558 if (ire == NULL) { 14559 ire = ire_cache_lookup(dst, ALL_ZONES, 14560 MBLK_GETLABEL(mp)); 14561 } 14562 14563 /* 14564 * If mipagent is running and reverse tunnel is created as per 14565 * mobile node request, then any packet coming through the 14566 * incoming interface from the mobile-node, should be reverse 14567 * tunneled to it's home agent except those that are destined 14568 * to foreign agent only. 14569 * This needs source address based ire lookup. The routing 14570 * entries for source address based lookup are only created by 14571 * mipagent program only when a reverse tunnel is created. 14572 * Reference : RFC2002, RFC2344 14573 */ 14574 if (ill->ill_mrtun_refcnt > 0) { 14575 ipaddr_t srcaddr; 14576 ire_t *tmp_ire; 14577 14578 tmp_ire = ire; /* Save, we might need it later */ 14579 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14580 ire->ire_type != IRE_BROADCAST)) { 14581 srcaddr = ipha->ipha_src; 14582 ire = ire_mrtun_lookup(srcaddr, ill); 14583 if (ire != NULL) { 14584 /* 14585 * Should not be getting iphada packet 14586 * here. we should only get those for 14587 * IRE_LOCAL traffic, excluded above. 14588 * Fail-safe (drop packet) in the event 14589 * hardware is misbehaving. 14590 */ 14591 if (first_mp != mp) { 14592 /* IPsec KSTATS: beancount me */ 14593 freemsg(first_mp); 14594 } else { 14595 /* 14596 * This packet must be forwarded 14597 * to Reverse Tunnel 14598 */ 14599 ip_mrtun_forward(ire, ill, mp); 14600 } 14601 ire_refrele(ire); 14602 ire = NULL; 14603 if (tmp_ire != NULL) { 14604 ire_refrele(tmp_ire); 14605 tmp_ire = NULL; 14606 } 14607 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14608 "ip_input_end: q %p (%S)", 14609 q, "uninit"); 14610 continue; 14611 } 14612 } 14613 /* 14614 * If this packet is from a non-mobilenode or a 14615 * mobile-node which does not request reverse 14616 * tunnel service 14617 */ 14618 ire = tmp_ire; 14619 } 14620 14621 14622 /* 14623 * If we reach here that means the incoming packet satisfies 14624 * one of the following conditions: 14625 * - packet is from a mobile node which does not request 14626 * reverse tunnel 14627 * - packet is from a non-mobile node, which is the most 14628 * common case 14629 * - packet is from a reverse tunnel enabled mobile node 14630 * and destined to foreign agent only 14631 */ 14632 14633 if (ire == NULL) { 14634 /* 14635 * No IRE for this destination, so it can't be for us. 14636 * Unless we are forwarding, drop the packet. 14637 * We have to let source routed packets through 14638 * since we don't yet know if they are 'ping -l' 14639 * packets i.e. if they will go out over the 14640 * same interface as they came in on. 14641 */ 14642 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14643 if (ire == NULL) 14644 continue; 14645 } 14646 14647 /* 14648 * Broadcast IRE may indicate either broadcast or 14649 * multicast packet 14650 */ 14651 if (ire->ire_type == IRE_BROADCAST) { 14652 /* 14653 * Skip broadcast checks if packet is UDP multicast; 14654 * we'd rather not enter ip_rput_process_broadcast() 14655 * unless the packet is broadcast for real, since 14656 * that routine is a no-op for multicast. 14657 */ 14658 if (ipha->ipha_protocol != IPPROTO_UDP || 14659 !CLASSD(ipha->ipha_dst)) { 14660 ire = ip_rput_process_broadcast(&q, mp, 14661 ire, ipha, ill, dst, cgtp_flt_pkt, 14662 ll_multicast); 14663 if (ire == NULL) 14664 continue; 14665 } 14666 } else if (ire->ire_stq != NULL) { 14667 /* fowarding? */ 14668 ip_rput_process_forward(q, mp, ire, ipha, ill, 14669 ll_multicast); 14670 /* ip_rput_process_forward consumed the packet */ 14671 continue; 14672 } 14673 14674 local: 14675 /* packet not for us */ 14676 if (ire->ire_rfq != q) { 14677 if (ip_rput_notforus(&q, mp, ire, ill)) 14678 continue; 14679 } 14680 14681 switch (ipha->ipha_protocol) { 14682 case IPPROTO_TCP: 14683 ASSERT(first_mp == mp); 14684 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14685 mp, 0, q, ip_ring)) != NULL) { 14686 if (curr_sqp == NULL) { 14687 curr_sqp = GET_SQUEUE(mp); 14688 ASSERT(cnt == 0); 14689 cnt++; 14690 head = tail = mp; 14691 } else if (curr_sqp == GET_SQUEUE(mp)) { 14692 ASSERT(tail != NULL); 14693 cnt++; 14694 tail->b_next = mp; 14695 tail = mp; 14696 } else { 14697 /* 14698 * A different squeue. Send the 14699 * chain for the previous squeue on 14700 * its way. This shouldn't happen 14701 * often unless interrupt binding 14702 * changes. 14703 */ 14704 IP_STAT(ip_input_multi_squeue); 14705 squeue_enter_chain(curr_sqp, head, 14706 tail, cnt, SQTAG_IP_INPUT); 14707 curr_sqp = GET_SQUEUE(mp); 14708 head = mp; 14709 tail = mp; 14710 cnt = 1; 14711 } 14712 } 14713 continue; 14714 case IPPROTO_UDP: 14715 ASSERT(first_mp == mp); 14716 ip_udp_input(q, mp, ipha, ire, ill); 14717 continue; 14718 case IPPROTO_SCTP: 14719 ASSERT(first_mp == mp); 14720 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14721 q, dst); 14722 /* ire has been released by ip_sctp_input */ 14723 ire = NULL; 14724 continue; 14725 default: 14726 ip_proto_input(q, first_mp, ipha, ire, ill); 14727 continue; 14728 } 14729 } 14730 14731 if (ire != NULL) 14732 ire_refrele(ire); 14733 14734 if (head != NULL) 14735 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14736 14737 /* 14738 * This code is there just to make netperf/ttcp look good. 14739 * 14740 * Its possible that after being in polling mode (and having cleared 14741 * the backlog), squeues have turned the interrupt frequency higher 14742 * to improve latency at the expense of more CPU utilization (less 14743 * packets per interrupts or more number of interrupts). Workloads 14744 * like ttcp/netperf do manage to tickle polling once in a while 14745 * but for the remaining time, stay in higher interrupt mode since 14746 * their packet arrival rate is pretty uniform and this shows up 14747 * as higher CPU utilization. Since people care about CPU utilization 14748 * while running netperf/ttcp, turn the interrupt frequency back to 14749 * normal/default if polling has not been used in ip_poll_normal_ticks. 14750 */ 14751 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14752 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14753 ip_ring->rr_poll_state &= ~ILL_POLLING; 14754 ip_ring->rr_blank(ip_ring->rr_handle, 14755 ip_ring->rr_normal_blank_time, 14756 ip_ring->rr_normal_pkt_cnt); 14757 } 14758 } 14759 14760 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14761 "ip_input_end: q %p (%S)", q, "end"); 14762 #undef rptr 14763 } 14764 14765 static void 14766 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14767 t_uscalar_t err) 14768 { 14769 if (dl_err == DL_SYSERR) { 14770 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14771 "%s: %s failed: DL_SYSERR (errno %u)\n", 14772 ill->ill_name, dlpi_prim_str(prim), err); 14773 return; 14774 } 14775 14776 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14777 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14778 dlpi_err_str(dl_err)); 14779 } 14780 14781 /* 14782 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14783 * than DL_UNITDATA_IND messages. If we need to process this message 14784 * exclusively, we call qwriter_ip, in which case we also need to call 14785 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14786 */ 14787 void 14788 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14789 { 14790 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14791 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14792 ill_t *ill; 14793 14794 ip1dbg(("ip_rput_dlpi")); 14795 ill = (ill_t *)q->q_ptr; 14796 switch (dloa->dl_primitive) { 14797 case DL_ERROR_ACK: 14798 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14799 "%s (0x%x), unix %u\n", ill->ill_name, 14800 dlpi_prim_str(dlea->dl_error_primitive), 14801 dlea->dl_error_primitive, 14802 dlpi_err_str(dlea->dl_errno), 14803 dlea->dl_errno, 14804 dlea->dl_unix_errno)); 14805 switch (dlea->dl_error_primitive) { 14806 case DL_UNBIND_REQ: 14807 mutex_enter(&ill->ill_lock); 14808 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14809 cv_signal(&ill->ill_cv); 14810 mutex_exit(&ill->ill_lock); 14811 /* FALLTHRU */ 14812 case DL_NOTIFY_REQ: 14813 case DL_ATTACH_REQ: 14814 case DL_DETACH_REQ: 14815 case DL_INFO_REQ: 14816 case DL_BIND_REQ: 14817 case DL_ENABMULTI_REQ: 14818 case DL_PHYS_ADDR_REQ: 14819 case DL_CAPABILITY_REQ: 14820 case DL_CONTROL_REQ: 14821 /* 14822 * Refhold the ill to match qwriter_ip which does a 14823 * refrele. Since this is on the ill stream we 14824 * unconditionally bump up the refcount without 14825 * checking for ILL_CAN_LOOKUP 14826 */ 14827 ill_refhold(ill); 14828 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14829 CUR_OP, B_FALSE); 14830 return; 14831 case DL_DISABMULTI_REQ: 14832 freemsg(mp); /* Don't want to pass this up */ 14833 return; 14834 default: 14835 break; 14836 } 14837 ip_dlpi_error(ill, dlea->dl_error_primitive, 14838 dlea->dl_errno, dlea->dl_unix_errno); 14839 freemsg(mp); 14840 return; 14841 case DL_INFO_ACK: 14842 case DL_BIND_ACK: 14843 case DL_PHYS_ADDR_ACK: 14844 case DL_NOTIFY_ACK: 14845 case DL_CAPABILITY_ACK: 14846 case DL_CONTROL_ACK: 14847 /* 14848 * Refhold the ill to match qwriter_ip which does a refrele 14849 * Since this is on the ill stream we unconditionally 14850 * bump up the refcount without doing ILL_CAN_LOOKUP. 14851 */ 14852 ill_refhold(ill); 14853 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14854 CUR_OP, B_FALSE); 14855 return; 14856 case DL_NOTIFY_IND: 14857 ill_refhold(ill); 14858 /* 14859 * The DL_NOTIFY_IND is an asynchronous message that has no 14860 * relation to the current ioctl in progress (if any). Hence we 14861 * pass in NEW_OP in this case. 14862 */ 14863 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14864 NEW_OP, B_FALSE); 14865 return; 14866 case DL_OK_ACK: 14867 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14868 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14869 switch (dloa->dl_correct_primitive) { 14870 case DL_UNBIND_REQ: 14871 mutex_enter(&ill->ill_lock); 14872 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14873 cv_signal(&ill->ill_cv); 14874 mutex_exit(&ill->ill_lock); 14875 /* FALLTHRU */ 14876 case DL_ATTACH_REQ: 14877 case DL_DETACH_REQ: 14878 /* 14879 * Refhold the ill to match qwriter_ip which does a 14880 * refrele. Since this is on the ill stream we 14881 * unconditionally bump up the refcount 14882 */ 14883 ill_refhold(ill); 14884 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14885 CUR_OP, B_FALSE); 14886 return; 14887 case DL_ENABMULTI_REQ: 14888 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14889 ill->ill_dlpi_multicast_state = IDMS_OK; 14890 break; 14891 14892 } 14893 break; 14894 default: 14895 break; 14896 } 14897 freemsg(mp); 14898 } 14899 14900 /* 14901 * Handling of DLPI messages that require exclusive access to the ipsq. 14902 * 14903 * Need to do ill_pending_mp_release on ioctl completion, which could 14904 * happen here. (along with mi_copy_done) 14905 */ 14906 /* ARGSUSED */ 14907 static void 14908 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14909 { 14910 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14911 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14912 int err = 0; 14913 ill_t *ill; 14914 ipif_t *ipif = NULL; 14915 mblk_t *mp1 = NULL; 14916 conn_t *connp = NULL; 14917 t_uscalar_t physaddr_req; 14918 mblk_t *mp_hw; 14919 union DL_primitives *dlp; 14920 boolean_t success; 14921 boolean_t ioctl_aborted = B_FALSE; 14922 boolean_t log = B_TRUE; 14923 14924 ip1dbg(("ip_rput_dlpi_writer ..")); 14925 ill = (ill_t *)q->q_ptr; 14926 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14927 14928 ASSERT(IAM_WRITER_ILL(ill)); 14929 14930 /* 14931 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14932 * both are null or non-null. However we can assert that only 14933 * after grabbing the ipsq_lock. So we don't make any assertion 14934 * here and in other places in the code. 14935 */ 14936 ipif = ipsq->ipsq_pending_ipif; 14937 /* 14938 * The current ioctl could have been aborted by the user and a new 14939 * ioctl to bring up another ill could have started. We could still 14940 * get a response from the driver later. 14941 */ 14942 if (ipif != NULL && ipif->ipif_ill != ill) 14943 ioctl_aborted = B_TRUE; 14944 14945 switch (dloa->dl_primitive) { 14946 case DL_ERROR_ACK: 14947 switch (dlea->dl_error_primitive) { 14948 case DL_UNBIND_REQ: 14949 case DL_ATTACH_REQ: 14950 case DL_DETACH_REQ: 14951 case DL_INFO_REQ: 14952 ill_dlpi_done(ill, dlea->dl_error_primitive); 14953 break; 14954 case DL_NOTIFY_REQ: 14955 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14956 log = B_FALSE; 14957 break; 14958 case DL_PHYS_ADDR_REQ: 14959 /* 14960 * For IPv6 only, there are two additional 14961 * phys_addr_req's sent to the driver to get the 14962 * IPv6 token and lla. This allows IP to acquire 14963 * the hardware address format for a given interface 14964 * without having built in knowledge of the hardware 14965 * address. ill_phys_addr_pend keeps track of the last 14966 * DL_PAR sent so we know which response we are 14967 * dealing with. ill_dlpi_done will update 14968 * ill_phys_addr_pend when it sends the next req. 14969 * We don't complete the IOCTL until all three DL_PARs 14970 * have been attempted, so set *_len to 0 and break. 14971 */ 14972 physaddr_req = ill->ill_phys_addr_pend; 14973 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14974 if (physaddr_req == DL_IPV6_TOKEN) { 14975 ill->ill_token_length = 0; 14976 log = B_FALSE; 14977 break; 14978 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14979 ill->ill_nd_lla_len = 0; 14980 log = B_FALSE; 14981 break; 14982 } 14983 /* 14984 * Something went wrong with the DL_PHYS_ADDR_REQ. 14985 * We presumably have an IOCTL hanging out waiting 14986 * for completion. Find it and complete the IOCTL 14987 * with the error noted. 14988 * However, ill_dl_phys was called on an ill queue 14989 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14990 * set. But the ioctl is known to be pending on ill_wq. 14991 */ 14992 if (!ill->ill_ifname_pending) 14993 break; 14994 ill->ill_ifname_pending = 0; 14995 if (!ioctl_aborted) 14996 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14997 if (mp1 != NULL) { 14998 /* 14999 * This operation (SIOCSLIFNAME) must have 15000 * happened on the ill. Assert there is no conn 15001 */ 15002 ASSERT(connp == NULL); 15003 q = ill->ill_wq; 15004 } 15005 break; 15006 case DL_BIND_REQ: 15007 ill_dlpi_done(ill, DL_BIND_REQ); 15008 if (ill->ill_ifname_pending) 15009 break; 15010 /* 15011 * Something went wrong with the bind. We presumably 15012 * have an IOCTL hanging out waiting for completion. 15013 * Find it, take down the interface that was coming 15014 * up, and complete the IOCTL with the error noted. 15015 */ 15016 if (!ioctl_aborted) 15017 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15018 if (mp1 != NULL) { 15019 /* 15020 * This operation (SIOCSLIFFLAGS) must have 15021 * happened from a conn. 15022 */ 15023 ASSERT(connp != NULL); 15024 q = CONNP_TO_WQ(connp); 15025 if (ill->ill_move_in_progress) { 15026 ILL_CLEAR_MOVE(ill); 15027 } 15028 (void) ipif_down(ipif, NULL, NULL); 15029 /* error is set below the switch */ 15030 } 15031 break; 15032 case DL_ENABMULTI_REQ: 15033 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15034 15035 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 15036 ill->ill_dlpi_multicast_state = IDMS_FAILED; 15037 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 15038 ipif_t *ipif; 15039 15040 log = B_FALSE; 15041 printf("ip: joining multicasts failed (%d)" 15042 " on %s - will use link layer " 15043 "broadcasts for multicast\n", 15044 dlea->dl_errno, ill->ill_name); 15045 15046 /* 15047 * Set up the multicast mapping alone. 15048 * writer, so ok to access ill->ill_ipif 15049 * without any lock. 15050 */ 15051 ipif = ill->ill_ipif; 15052 mutex_enter(&ill->ill_phyint->phyint_lock); 15053 ill->ill_phyint->phyint_flags |= 15054 PHYI_MULTI_BCAST; 15055 mutex_exit(&ill->ill_phyint->phyint_lock); 15056 15057 if (!ill->ill_isv6) { 15058 (void) ipif_arp_setup_multicast(ipif, 15059 NULL); 15060 } else { 15061 (void) ipif_ndp_setup_multicast(ipif, 15062 NULL); 15063 } 15064 } 15065 freemsg(mp); /* Don't want to pass this up */ 15066 return; 15067 case DL_CAPABILITY_REQ: 15068 case DL_CONTROL_REQ: 15069 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15070 "DL_CAPABILITY/CONTROL REQ\n")); 15071 ill_dlpi_done(ill, dlea->dl_error_primitive); 15072 ill->ill_capab_state = IDMS_FAILED; 15073 freemsg(mp); 15074 return; 15075 } 15076 /* 15077 * Note the error for IOCTL completion (mp1 is set when 15078 * ready to complete ioctl). If ill_ifname_pending_err is 15079 * set, an error occured during plumbing (ill_ifname_pending), 15080 * so we want to report that error. 15081 * 15082 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15083 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15084 * expected to get errack'd if the driver doesn't support 15085 * these flags (e.g. ethernet). log will be set to B_FALSE 15086 * if these error conditions are encountered. 15087 */ 15088 if (mp1 != NULL) { 15089 if (ill->ill_ifname_pending_err != 0) { 15090 err = ill->ill_ifname_pending_err; 15091 ill->ill_ifname_pending_err = 0; 15092 } else { 15093 err = dlea->dl_unix_errno ? 15094 dlea->dl_unix_errno : ENXIO; 15095 } 15096 /* 15097 * If we're plumbing an interface and an error hasn't already 15098 * been saved, set ill_ifname_pending_err to the error passed 15099 * up. Ignore the error if log is B_FALSE (see comment above). 15100 */ 15101 } else if (log && ill->ill_ifname_pending && 15102 ill->ill_ifname_pending_err == 0) { 15103 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15104 dlea->dl_unix_errno : ENXIO; 15105 } 15106 15107 if (log) 15108 ip_dlpi_error(ill, dlea->dl_error_primitive, 15109 dlea->dl_errno, dlea->dl_unix_errno); 15110 break; 15111 case DL_CAPABILITY_ACK: { 15112 boolean_t reneg_flag = B_FALSE; 15113 /* Call a routine to handle this one. */ 15114 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15115 /* 15116 * Check if the ACK is due to renegotiation case since we 15117 * will need to send a new CAPABILITY_REQ later. 15118 */ 15119 if (ill->ill_capab_state == IDMS_RENEG) { 15120 /* This is the ack for a renogiation case */ 15121 reneg_flag = B_TRUE; 15122 ill->ill_capab_state = IDMS_UNKNOWN; 15123 } 15124 ill_capability_ack(ill, mp); 15125 if (reneg_flag) 15126 ill_capability_probe(ill); 15127 break; 15128 } 15129 case DL_CONTROL_ACK: 15130 /* We treat all of these as "fire and forget" */ 15131 ill_dlpi_done(ill, DL_CONTROL_REQ); 15132 break; 15133 case DL_INFO_ACK: 15134 /* Call a routine to handle this one. */ 15135 ill_dlpi_done(ill, DL_INFO_REQ); 15136 ip_ll_subnet_defaults(ill, mp); 15137 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15138 return; 15139 case DL_BIND_ACK: 15140 /* 15141 * We should have an IOCTL waiting on this unless 15142 * sent by ill_dl_phys, in which case just return 15143 */ 15144 ill_dlpi_done(ill, DL_BIND_REQ); 15145 if (ill->ill_ifname_pending) 15146 break; 15147 15148 if (!ioctl_aborted) 15149 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15150 if (mp1 == NULL) 15151 break; 15152 ASSERT(connp != NULL); 15153 q = CONNP_TO_WQ(connp); 15154 15155 /* 15156 * We are exclusive. So nothing can change even after 15157 * we get the pending mp. If need be we can put it back 15158 * and restart, as in calling ipif_arp_up() below. 15159 */ 15160 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15161 15162 mutex_enter(&ill->ill_lock); 15163 ill->ill_dl_up = 1; 15164 mutex_exit(&ill->ill_lock); 15165 15166 /* 15167 * Now bring up the resolver; when that is complete, we'll 15168 * create IREs. Note that we intentionally mirror what 15169 * ipif_up() would have done, because we got here by way of 15170 * ill_dl_up(), which stopped ipif_up()'s processing. 15171 */ 15172 if (ill->ill_isv6) { 15173 /* 15174 * v6 interfaces. 15175 * Unlike ARP which has to do another bind 15176 * and attach, once we get here we are 15177 * done with NDP. Except in the case of 15178 * ILLF_XRESOLV, in which case we send an 15179 * AR_INTERFACE_UP to the external resolver. 15180 * If all goes well, the ioctl will complete 15181 * in ip_rput(). If there's an error, we 15182 * complete it here. 15183 */ 15184 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15185 B_FALSE); 15186 if (err == 0) { 15187 if (ill->ill_flags & ILLF_XRESOLV) { 15188 mutex_enter(&connp->conn_lock); 15189 mutex_enter(&ill->ill_lock); 15190 success = ipsq_pending_mp_add( 15191 connp, ipif, q, mp1, 0); 15192 mutex_exit(&ill->ill_lock); 15193 mutex_exit(&connp->conn_lock); 15194 if (success) { 15195 err = ipif_resolver_up(ipif, 15196 Res_act_initial); 15197 if (err == EINPROGRESS) { 15198 freemsg(mp); 15199 return; 15200 } 15201 ASSERT(err != 0); 15202 mp1 = ipsq_pending_mp_get(ipsq, 15203 &connp); 15204 ASSERT(mp1 != NULL); 15205 } else { 15206 /* conn has started closing */ 15207 err = EINTR; 15208 } 15209 } else { /* Non XRESOLV interface */ 15210 (void) ipif_resolver_up(ipif, 15211 Res_act_initial); 15212 err = ipif_up_done_v6(ipif); 15213 } 15214 } 15215 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15216 /* 15217 * ARP and other v4 external resolvers. 15218 * Leave the pending mblk intact so that 15219 * the ioctl completes in ip_rput(). 15220 */ 15221 mutex_enter(&connp->conn_lock); 15222 mutex_enter(&ill->ill_lock); 15223 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15224 mutex_exit(&ill->ill_lock); 15225 mutex_exit(&connp->conn_lock); 15226 if (success) { 15227 err = ipif_resolver_up(ipif, Res_act_initial); 15228 if (err == EINPROGRESS) { 15229 freemsg(mp); 15230 return; 15231 } 15232 ASSERT(err != 0); 15233 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15234 } else { 15235 /* The conn has started closing */ 15236 err = EINTR; 15237 } 15238 } else { 15239 /* 15240 * This one is complete. Reply to pending ioctl. 15241 */ 15242 (void) ipif_resolver_up(ipif, Res_act_initial); 15243 err = ipif_up_done(ipif); 15244 } 15245 15246 if ((err == 0) && (ill->ill_up_ipifs)) { 15247 err = ill_up_ipifs(ill, q, mp1); 15248 if (err == EINPROGRESS) { 15249 freemsg(mp); 15250 return; 15251 } 15252 } 15253 15254 if (ill->ill_up_ipifs) { 15255 ill_group_cleanup(ill); 15256 } 15257 15258 break; 15259 case DL_NOTIFY_IND: { 15260 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15261 ire_t *ire; 15262 boolean_t need_ire_walk_v4 = B_FALSE; 15263 boolean_t need_ire_walk_v6 = B_FALSE; 15264 15265 /* 15266 * Change the address everywhere we need to. 15267 * What we're getting here is a link-level addr or phys addr. 15268 * The new addr is at notify + notify->dl_addr_offset 15269 * The address length is notify->dl_addr_length; 15270 */ 15271 switch (notify->dl_notification) { 15272 case DL_NOTE_PHYS_ADDR: 15273 mp_hw = copyb(mp); 15274 if (mp_hw == NULL) { 15275 err = ENOMEM; 15276 break; 15277 } 15278 dlp = (union DL_primitives *)mp_hw->b_rptr; 15279 /* 15280 * We currently don't support changing 15281 * the token via DL_NOTIFY_IND. 15282 * When we do support it, we have to consider 15283 * what the implications are with respect to 15284 * the token and the link local address. 15285 */ 15286 mutex_enter(&ill->ill_lock); 15287 if (dlp->notify_ind.dl_data == 15288 DL_IPV6_LINK_LAYER_ADDR) { 15289 if (ill->ill_nd_lla_mp != NULL) 15290 freemsg(ill->ill_nd_lla_mp); 15291 ill->ill_nd_lla_mp = mp_hw; 15292 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15293 dlp->notify_ind.dl_addr_offset; 15294 ill->ill_nd_lla_len = 15295 dlp->notify_ind.dl_addr_length - 15296 ABS(ill->ill_sap_length); 15297 mutex_exit(&ill->ill_lock); 15298 break; 15299 } else if (dlp->notify_ind.dl_data == 15300 DL_CURR_PHYS_ADDR) { 15301 if (ill->ill_phys_addr_mp != NULL) 15302 freemsg(ill->ill_phys_addr_mp); 15303 ill->ill_phys_addr_mp = mp_hw; 15304 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15305 dlp->notify_ind.dl_addr_offset; 15306 ill->ill_phys_addr_length = 15307 dlp->notify_ind.dl_addr_length - 15308 ABS(ill->ill_sap_length); 15309 if (ill->ill_isv6 && 15310 !(ill->ill_flags & ILLF_XRESOLV)) { 15311 if (ill->ill_nd_lla_mp != NULL) 15312 freemsg(ill->ill_nd_lla_mp); 15313 ill->ill_nd_lla_mp = copyb(mp_hw); 15314 ill->ill_nd_lla = (uchar_t *) 15315 ill->ill_nd_lla_mp->b_rptr + 15316 dlp->notify_ind.dl_addr_offset; 15317 ill->ill_nd_lla_len = 15318 ill->ill_phys_addr_length; 15319 } 15320 } 15321 mutex_exit(&ill->ill_lock); 15322 /* 15323 * Send out gratuitous arp request for our new 15324 * hardware address. 15325 */ 15326 for (ipif = ill->ill_ipif; ipif != NULL; 15327 ipif = ipif->ipif_next) { 15328 if (!(ipif->ipif_flags & IPIF_UP)) 15329 continue; 15330 if (ill->ill_isv6) { 15331 ipif_ndp_down(ipif); 15332 /* 15333 * Set B_TRUE to enable 15334 * ipif_ndp_up() to send out 15335 * unsolicited advertisements. 15336 */ 15337 err = ipif_ndp_up(ipif, 15338 &ipif->ipif_v6lcl_addr, 15339 B_TRUE); 15340 if (err) { 15341 ip1dbg(( 15342 "ip_rput_dlpi_writer: " 15343 "Failed to update ndp " 15344 "err %d\n", err)); 15345 } 15346 } else { 15347 /* 15348 * IPv4 ARP case 15349 * 15350 * Set Res_act_move, as we only want 15351 * ipif_resolver_up to send an 15352 * AR_ENTRY_ADD request up to 15353 * ARP. 15354 */ 15355 err = ipif_resolver_up(ipif, 15356 Res_act_move); 15357 if (err) { 15358 ip1dbg(( 15359 "ip_rput_dlpi_writer: " 15360 "Failed to update arp " 15361 "err %d\n", err)); 15362 } 15363 } 15364 } 15365 /* 15366 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15367 * case so that all old fastpath information can be 15368 * purged from IRE caches. 15369 */ 15370 /* FALLTHRU */ 15371 case DL_NOTE_FASTPATH_FLUSH: 15372 /* 15373 * Any fastpath probe sent henceforth will get the 15374 * new fp mp. So we first delete any ires that are 15375 * waiting for the fastpath. Then walk all ires and 15376 * delete the ire or delete the fp mp. In the case of 15377 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15378 * recreate the ire's without going through a complex 15379 * ipif up/down dance. So we don't delete the ire 15380 * itself, but just the nce_fp_mp for these 2 ire's 15381 * In the case of the other ire's we delete the ire's 15382 * themselves. Access to nce_fp_mp is completely 15383 * protected by ire_lock for IRE_MIPRTUN and 15384 * IRE_BROADCAST. Deleting the ire is preferable in the 15385 * other cases for performance. 15386 */ 15387 if (ill->ill_isv6) { 15388 nce_fastpath_list_dispatch(ill, NULL, NULL); 15389 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15390 NULL); 15391 } else { 15392 ire_fastpath_list_dispatch(ill, NULL, NULL); 15393 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15394 IRE_CACHE | IRE_BROADCAST, 15395 ire_fastpath_flush, NULL, ill); 15396 mutex_enter(&ire_mrtun_lock); 15397 if (ire_mrtun_count != 0) { 15398 mutex_exit(&ire_mrtun_lock); 15399 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15400 IRE_MIPRTUN, ire_fastpath_flush, 15401 NULL, ill); 15402 } else { 15403 mutex_exit(&ire_mrtun_lock); 15404 } 15405 } 15406 break; 15407 case DL_NOTE_SDU_SIZE: 15408 /* 15409 * Change the MTU size of the interface, of all 15410 * attached ipif's, and of all relevant ire's. The 15411 * new value's a uint32_t at notify->dl_data. 15412 * Mtu change Vs. new ire creation - protocol below. 15413 * 15414 * a Mark the ipif as IPIF_CHANGING. 15415 * b Set the new mtu in the ipif. 15416 * c Change the ire_max_frag on all affected ires 15417 * d Unmark the IPIF_CHANGING 15418 * 15419 * To see how the protocol works, assume an interface 15420 * route is also being added simultaneously by 15421 * ip_rt_add and let 'ipif' be the ipif referenced by 15422 * the ire. If the ire is created before step a, 15423 * it will be cleaned up by step c. If the ire is 15424 * created after step d, it will see the new value of 15425 * ipif_mtu. Any attempt to create the ire between 15426 * steps a to d will fail because of the IPIF_CHANGING 15427 * flag. Note that ire_create() is passed a pointer to 15428 * the ipif_mtu, and not the value. During ire_add 15429 * under the bucket lock, the ire_max_frag of the 15430 * new ire being created is set from the ipif/ire from 15431 * which it is being derived. 15432 */ 15433 mutex_enter(&ill->ill_lock); 15434 ill->ill_max_frag = (uint_t)notify->dl_data; 15435 15436 /* 15437 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15438 * leave it alone 15439 */ 15440 if (ill->ill_mtu_userspecified) { 15441 mutex_exit(&ill->ill_lock); 15442 break; 15443 } 15444 ill->ill_max_mtu = ill->ill_max_frag; 15445 if (ill->ill_isv6) { 15446 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15447 ill->ill_max_mtu = IPV6_MIN_MTU; 15448 } else { 15449 if (ill->ill_max_mtu < IP_MIN_MTU) 15450 ill->ill_max_mtu = IP_MIN_MTU; 15451 } 15452 for (ipif = ill->ill_ipif; ipif != NULL; 15453 ipif = ipif->ipif_next) { 15454 /* 15455 * Don't override the mtu if the user 15456 * has explicitly set it. 15457 */ 15458 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15459 continue; 15460 ipif->ipif_mtu = (uint_t)notify->dl_data; 15461 if (ipif->ipif_isv6) 15462 ire = ipif_to_ire_v6(ipif); 15463 else 15464 ire = ipif_to_ire(ipif); 15465 if (ire != NULL) { 15466 ire->ire_max_frag = ipif->ipif_mtu; 15467 ire_refrele(ire); 15468 } 15469 if (ipif->ipif_flags & IPIF_UP) { 15470 if (ill->ill_isv6) 15471 need_ire_walk_v6 = B_TRUE; 15472 else 15473 need_ire_walk_v4 = B_TRUE; 15474 } 15475 } 15476 mutex_exit(&ill->ill_lock); 15477 if (need_ire_walk_v4) 15478 ire_walk_v4(ill_mtu_change, (char *)ill, 15479 ALL_ZONES); 15480 if (need_ire_walk_v6) 15481 ire_walk_v6(ill_mtu_change, (char *)ill, 15482 ALL_ZONES); 15483 break; 15484 case DL_NOTE_LINK_UP: 15485 case DL_NOTE_LINK_DOWN: { 15486 /* 15487 * We are writer. ill / phyint / ipsq assocs stable. 15488 * The RUNNING flag reflects the state of the link. 15489 */ 15490 phyint_t *phyint = ill->ill_phyint; 15491 uint64_t new_phyint_flags; 15492 boolean_t changed = B_FALSE; 15493 boolean_t went_up; 15494 15495 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15496 mutex_enter(&phyint->phyint_lock); 15497 new_phyint_flags = went_up ? 15498 phyint->phyint_flags | PHYI_RUNNING : 15499 phyint->phyint_flags & ~PHYI_RUNNING; 15500 if (new_phyint_flags != phyint->phyint_flags) { 15501 phyint->phyint_flags = new_phyint_flags; 15502 changed = B_TRUE; 15503 } 15504 mutex_exit(&phyint->phyint_lock); 15505 /* 15506 * ill_restart_dad handles the DAD restart and routing 15507 * socket notification logic. 15508 */ 15509 if (changed) { 15510 ill_restart_dad(phyint->phyint_illv4, went_up); 15511 ill_restart_dad(phyint->phyint_illv6, went_up); 15512 } 15513 break; 15514 } 15515 case DL_NOTE_PROMISC_ON_PHYS: 15516 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15517 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15518 mutex_enter(&ill->ill_lock); 15519 ill->ill_promisc_on_phys = B_TRUE; 15520 mutex_exit(&ill->ill_lock); 15521 break; 15522 case DL_NOTE_PROMISC_OFF_PHYS: 15523 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15524 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15525 mutex_enter(&ill->ill_lock); 15526 ill->ill_promisc_on_phys = B_FALSE; 15527 mutex_exit(&ill->ill_lock); 15528 break; 15529 case DL_NOTE_CAPAB_RENEG: 15530 /* 15531 * Something changed on the driver side. 15532 * It wants us to renegotiate the capabilities 15533 * on this ill. The most likely cause is the 15534 * aggregation interface under us where a 15535 * port got added or went away. 15536 * 15537 * We reset the capabilities and set the 15538 * state to IDMS_RENG so that when the ack 15539 * comes back, we can start the 15540 * renegotiation process. 15541 */ 15542 ill_capability_reset(ill); 15543 ill->ill_capab_state = IDMS_RENEG; 15544 break; 15545 default: 15546 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15547 "type 0x%x for DL_NOTIFY_IND\n", 15548 notify->dl_notification)); 15549 break; 15550 } 15551 15552 /* 15553 * As this is an asynchronous operation, we 15554 * should not call ill_dlpi_done 15555 */ 15556 break; 15557 } 15558 case DL_NOTIFY_ACK: { 15559 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15560 15561 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15562 ill->ill_note_link = 1; 15563 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15564 break; 15565 } 15566 case DL_PHYS_ADDR_ACK: { 15567 /* 15568 * We should have an IOCTL waiting on this when request 15569 * sent by ill_dl_phys. 15570 * However, ill_dl_phys was called on an ill queue (from 15571 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15572 * ioctl is known to be pending on ill_wq. 15573 * There are two additional phys_addr_req's sent to the 15574 * driver to get the token and lla. ill_phys_addr_pend 15575 * keeps track of the last one sent so we know which 15576 * response we are dealing with. ill_dlpi_done will 15577 * update ill_phys_addr_pend when it sends the next req. 15578 * We don't complete the IOCTL until all three DL_PARs 15579 * have been attempted. 15580 * 15581 * We don't need any lock to update ill_nd_lla* fields, 15582 * since the ill is not yet up, We grab the lock just 15583 * for uniformity with other code that accesses ill_nd_lla. 15584 */ 15585 physaddr_req = ill->ill_phys_addr_pend; 15586 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15587 if (physaddr_req == DL_IPV6_TOKEN || 15588 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15589 if (physaddr_req == DL_IPV6_TOKEN) { 15590 /* 15591 * bcopy to low-order bits of ill_token 15592 * 15593 * XXX Temporary hack - currently, 15594 * all known tokens are 64 bits, 15595 * so I'll cheat for the moment. 15596 */ 15597 dlp = (union DL_primitives *)mp->b_rptr; 15598 15599 mutex_enter(&ill->ill_lock); 15600 bcopy((uchar_t *)(mp->b_rptr + 15601 dlp->physaddr_ack.dl_addr_offset), 15602 (void *)&ill->ill_token.s6_addr32[2], 15603 dlp->physaddr_ack.dl_addr_length); 15604 ill->ill_token_length = 15605 dlp->physaddr_ack.dl_addr_length; 15606 mutex_exit(&ill->ill_lock); 15607 } else { 15608 ASSERT(ill->ill_nd_lla_mp == NULL); 15609 mp_hw = copyb(mp); 15610 if (mp_hw == NULL) { 15611 err = ENOMEM; 15612 break; 15613 } 15614 dlp = (union DL_primitives *)mp_hw->b_rptr; 15615 mutex_enter(&ill->ill_lock); 15616 ill->ill_nd_lla_mp = mp_hw; 15617 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15618 dlp->physaddr_ack.dl_addr_offset; 15619 ill->ill_nd_lla_len = 15620 dlp->physaddr_ack.dl_addr_length; 15621 mutex_exit(&ill->ill_lock); 15622 } 15623 break; 15624 } 15625 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15626 ASSERT(ill->ill_phys_addr_mp == NULL); 15627 if (!ill->ill_ifname_pending) 15628 break; 15629 ill->ill_ifname_pending = 0; 15630 if (!ioctl_aborted) 15631 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15632 if (mp1 != NULL) { 15633 ASSERT(connp == NULL); 15634 q = ill->ill_wq; 15635 } 15636 /* 15637 * If any error acks received during the plumbing sequence, 15638 * ill_ifname_pending_err will be set. Break out and send up 15639 * the error to the pending ioctl. 15640 */ 15641 if (ill->ill_ifname_pending_err != 0) { 15642 err = ill->ill_ifname_pending_err; 15643 ill->ill_ifname_pending_err = 0; 15644 break; 15645 } 15646 /* 15647 * Get the interface token. If the zeroth interface 15648 * address is zero then set the address to the link local 15649 * address 15650 */ 15651 mp_hw = copyb(mp); 15652 if (mp_hw == NULL) { 15653 err = ENOMEM; 15654 break; 15655 } 15656 dlp = (union DL_primitives *)mp_hw->b_rptr; 15657 ill->ill_phys_addr_mp = mp_hw; 15658 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15659 dlp->physaddr_ack.dl_addr_offset; 15660 if (dlp->physaddr_ack.dl_addr_length == 0 || 15661 ill->ill_phys_addr_length == 0 || 15662 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15663 /* 15664 * Compatibility: atun driver returns a length of 0. 15665 * ipdptp has an ill_phys_addr_length of zero(from 15666 * DL_BIND_ACK) but a non-zero length here. 15667 * ipd has an ill_phys_addr_length of 4(from 15668 * DL_BIND_ACK) but a non-zero length here. 15669 */ 15670 ill->ill_phys_addr = NULL; 15671 } else if (dlp->physaddr_ack.dl_addr_length != 15672 ill->ill_phys_addr_length) { 15673 ip0dbg(("DL_PHYS_ADDR_ACK: " 15674 "Address length mismatch %d %d\n", 15675 dlp->physaddr_ack.dl_addr_length, 15676 ill->ill_phys_addr_length)); 15677 err = EINVAL; 15678 break; 15679 } 15680 mutex_enter(&ill->ill_lock); 15681 if (ill->ill_nd_lla_mp == NULL) { 15682 ill->ill_nd_lla_mp = copyb(mp_hw); 15683 if (ill->ill_nd_lla_mp == NULL) { 15684 err = ENOMEM; 15685 mutex_exit(&ill->ill_lock); 15686 break; 15687 } 15688 ill->ill_nd_lla = 15689 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15690 dlp->physaddr_ack.dl_addr_offset; 15691 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15692 } 15693 mutex_exit(&ill->ill_lock); 15694 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15695 (void) ill_setdefaulttoken(ill); 15696 15697 /* 15698 * If the ill zero interface has a zero address assign 15699 * it the proper link local address. 15700 */ 15701 ASSERT(ill->ill_ipif->ipif_id == 0); 15702 if (ipif != NULL && 15703 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15704 (void) ipif_setlinklocal(ipif); 15705 break; 15706 } 15707 case DL_OK_ACK: 15708 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15709 dlpi_prim_str((int)dloa->dl_correct_primitive), 15710 dloa->dl_correct_primitive)); 15711 switch (dloa->dl_correct_primitive) { 15712 case DL_UNBIND_REQ: 15713 case DL_ATTACH_REQ: 15714 case DL_DETACH_REQ: 15715 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15716 break; 15717 } 15718 break; 15719 default: 15720 break; 15721 } 15722 15723 freemsg(mp); 15724 if (mp1) { 15725 struct iocblk *iocp; 15726 int mode; 15727 15728 /* 15729 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15730 * SIOCSLIFNAME do a copyout. 15731 */ 15732 iocp = (struct iocblk *)mp1->b_rptr; 15733 15734 if (iocp->ioc_cmd == SIOCLIFADDIF || 15735 iocp->ioc_cmd == SIOCSLIFNAME) 15736 mode = COPYOUT; 15737 else 15738 mode = NO_COPYOUT; 15739 /* 15740 * The ioctl must complete now without EINPROGRESS 15741 * since ipsq_pending_mp_get has removed the ioctl mblk 15742 * from ipsq_pending_mp. Otherwise the ioctl will be 15743 * stuck for ever in the ipsq. 15744 */ 15745 ASSERT(err != EINPROGRESS); 15746 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15747 15748 } 15749 } 15750 15751 /* 15752 * ip_rput_other is called by ip_rput to handle messages modifying the global 15753 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15754 */ 15755 /* ARGSUSED */ 15756 void 15757 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15758 { 15759 ill_t *ill; 15760 struct iocblk *iocp; 15761 mblk_t *mp1; 15762 conn_t *connp = NULL; 15763 15764 ip1dbg(("ip_rput_other ")); 15765 ill = (ill_t *)q->q_ptr; 15766 /* 15767 * This routine is not a writer in the case of SIOCGTUNPARAM 15768 * in which case ipsq is NULL. 15769 */ 15770 if (ipsq != NULL) { 15771 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15772 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15773 } 15774 15775 switch (mp->b_datap->db_type) { 15776 case M_ERROR: 15777 case M_HANGUP: 15778 /* 15779 * The device has a problem. We force the ILL down. It can 15780 * be brought up again manually using SIOCSIFFLAGS (via 15781 * ifconfig or equivalent). 15782 */ 15783 ASSERT(ipsq != NULL); 15784 if (mp->b_rptr < mp->b_wptr) 15785 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15786 if (ill->ill_error == 0) 15787 ill->ill_error = ENXIO; 15788 if (!ill_down_start(q, mp)) 15789 return; 15790 ipif_all_down_tail(ipsq, q, mp, NULL); 15791 break; 15792 case M_IOCACK: 15793 iocp = (struct iocblk *)mp->b_rptr; 15794 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15795 switch (iocp->ioc_cmd) { 15796 case SIOCSTUNPARAM: 15797 case OSIOCSTUNPARAM: 15798 ASSERT(ipsq != NULL); 15799 /* 15800 * Finish socket ioctl passed through to tun. 15801 * We should have an IOCTL waiting on this. 15802 */ 15803 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15804 if (ill->ill_isv6) { 15805 struct iftun_req *ta; 15806 15807 /* 15808 * if a source or destination is 15809 * being set, try and set the link 15810 * local address for the tunnel 15811 */ 15812 ta = (struct iftun_req *)mp->b_cont-> 15813 b_cont->b_rptr; 15814 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15815 ipif_set_tun_llink(ill, ta); 15816 } 15817 15818 } 15819 if (mp1 != NULL) { 15820 /* 15821 * Now copy back the b_next/b_prev used by 15822 * mi code for the mi_copy* functions. 15823 * See ip_sioctl_tunparam() for the reason. 15824 * Also protect against missing b_cont. 15825 */ 15826 if (mp->b_cont != NULL) { 15827 mp->b_cont->b_next = 15828 mp1->b_cont->b_next; 15829 mp->b_cont->b_prev = 15830 mp1->b_cont->b_prev; 15831 } 15832 inet_freemsg(mp1); 15833 ASSERT(ipsq->ipsq_current_ipif != NULL); 15834 ASSERT(connp != NULL); 15835 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15836 iocp->ioc_error, NO_COPYOUT, 15837 ipsq->ipsq_current_ipif, ipsq); 15838 } else { 15839 ASSERT(connp == NULL); 15840 putnext(q, mp); 15841 } 15842 break; 15843 case SIOCGTUNPARAM: 15844 case OSIOCGTUNPARAM: 15845 /* 15846 * This is really M_IOCDATA from the tunnel driver. 15847 * convert back and complete the ioctl. 15848 * We should have an IOCTL waiting on this. 15849 */ 15850 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15851 if (mp1) { 15852 /* 15853 * Now copy back the b_next/b_prev used by 15854 * mi code for the mi_copy* functions. 15855 * See ip_sioctl_tunparam() for the reason. 15856 * Also protect against missing b_cont. 15857 */ 15858 if (mp->b_cont != NULL) { 15859 mp->b_cont->b_next = 15860 mp1->b_cont->b_next; 15861 mp->b_cont->b_prev = 15862 mp1->b_cont->b_prev; 15863 } 15864 inet_freemsg(mp1); 15865 if (iocp->ioc_error == 0) 15866 mp->b_datap->db_type = M_IOCDATA; 15867 ASSERT(connp != NULL); 15868 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15869 iocp->ioc_error, COPYOUT, NULL, NULL); 15870 } else { 15871 ASSERT(connp == NULL); 15872 putnext(q, mp); 15873 } 15874 break; 15875 default: 15876 break; 15877 } 15878 break; 15879 case M_IOCNAK: 15880 iocp = (struct iocblk *)mp->b_rptr; 15881 15882 switch (iocp->ioc_cmd) { 15883 int mode; 15884 ipif_t *ipif; 15885 15886 case DL_IOC_HDR_INFO: 15887 /* 15888 * If this was the first attempt turn of the 15889 * fastpath probing. 15890 */ 15891 mutex_enter(&ill->ill_lock); 15892 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15893 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15894 mutex_exit(&ill->ill_lock); 15895 ill_fastpath_nack(ill); 15896 ip1dbg(("ip_rput: DLPI fastpath off on " 15897 "interface %s\n", 15898 ill->ill_name)); 15899 } else { 15900 mutex_exit(&ill->ill_lock); 15901 } 15902 freemsg(mp); 15903 break; 15904 case SIOCSTUNPARAM: 15905 case OSIOCSTUNPARAM: 15906 ASSERT(ipsq != NULL); 15907 /* 15908 * Finish socket ioctl passed through to tun 15909 * We should have an IOCTL waiting on this. 15910 */ 15911 /* FALLTHRU */ 15912 case SIOCGTUNPARAM: 15913 case OSIOCGTUNPARAM: 15914 /* 15915 * This is really M_IOCDATA from the tunnel driver. 15916 * convert back and complete the ioctl. 15917 * We should have an IOCTL waiting on this. 15918 */ 15919 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15920 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15921 mp1 = ill_pending_mp_get(ill, &connp, 15922 iocp->ioc_id); 15923 mode = COPYOUT; 15924 ipsq = NULL; 15925 ipif = NULL; 15926 } else { 15927 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15928 mode = NO_COPYOUT; 15929 ASSERT(ipsq->ipsq_current_ipif != NULL); 15930 ipif = ipsq->ipsq_current_ipif; 15931 } 15932 if (mp1 != NULL) { 15933 /* 15934 * Now copy back the b_next/b_prev used by 15935 * mi code for the mi_copy* functions. 15936 * See ip_sioctl_tunparam() for the reason. 15937 * Also protect against missing b_cont. 15938 */ 15939 if (mp->b_cont != NULL) { 15940 mp->b_cont->b_next = 15941 mp1->b_cont->b_next; 15942 mp->b_cont->b_prev = 15943 mp1->b_cont->b_prev; 15944 } 15945 inet_freemsg(mp1); 15946 if (iocp->ioc_error == 0) 15947 iocp->ioc_error = EINVAL; 15948 ASSERT(connp != NULL); 15949 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15950 iocp->ioc_error, mode, ipif, ipsq); 15951 } else { 15952 ASSERT(connp == NULL); 15953 putnext(q, mp); 15954 } 15955 break; 15956 default: 15957 break; 15958 } 15959 default: 15960 break; 15961 } 15962 } 15963 15964 /* 15965 * NOTE : This function does not ire_refrele the ire argument passed in. 15966 * 15967 * IPQoS notes 15968 * IP policy is invoked twice for a forwarded packet, once on the read side 15969 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15970 * enabled. An additional parameter, in_ill, has been added for this purpose. 15971 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15972 * because ip_mroute drops this information. 15973 * 15974 */ 15975 void 15976 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15977 { 15978 uint32_t pkt_len; 15979 queue_t *q; 15980 uint32_t sum; 15981 #define rptr ((uchar_t *)ipha) 15982 uint32_t max_frag; 15983 uint32_t ill_index; 15984 15985 /* Get the ill_index of the incoming ILL */ 15986 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15987 15988 /* Initiate Read side IPPF processing */ 15989 if (IPP_ENABLED(IPP_FWD_IN)) { 15990 ip_process(IPP_FWD_IN, &mp, ill_index); 15991 if (mp == NULL) { 15992 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15993 "during IPPF processing\n")); 15994 return; 15995 } 15996 } 15997 15998 pkt_len = ntohs(ipha->ipha_length); 15999 16000 /* Adjust the checksum to reflect the ttl decrement. */ 16001 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16002 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16003 16004 if (ipha->ipha_ttl-- <= 1) { 16005 if (ip_csum_hdr(ipha)) { 16006 BUMP_MIB(&ip_mib, ipInCksumErrs); 16007 goto drop_pkt; 16008 } 16009 /* 16010 * Note: ire_stq this will be NULL for multicast 16011 * datagrams using the long path through arp (the IRE 16012 * is not an IRE_CACHE). This should not cause 16013 * problems since we don't generate ICMP errors for 16014 * multicast packets. 16015 */ 16016 q = ire->ire_stq; 16017 if (q) 16018 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 16019 else 16020 freemsg(mp); 16021 return; 16022 } 16023 16024 /* 16025 * Don't forward if the interface is down 16026 */ 16027 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16028 BUMP_MIB(&ip_mib, ipInDiscards); 16029 ip2dbg(("ip_rput_forward:interface is down\n")); 16030 goto drop_pkt; 16031 } 16032 16033 /* Get the ill_index of the outgoing ILL */ 16034 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16035 16036 if (is_system_labeled()) { 16037 mblk_t *mp1; 16038 16039 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16040 BUMP_MIB(&ip_mib, ipForwProhibits); 16041 goto drop_pkt; 16042 } 16043 /* Size may have changed */ 16044 mp = mp1; 16045 ipha = (ipha_t *)mp->b_rptr; 16046 pkt_len = ntohs(ipha->ipha_length); 16047 } 16048 16049 /* Check if there are options to update */ 16050 if (!IS_SIMPLE_IPH(ipha)) { 16051 if (ip_csum_hdr(ipha)) { 16052 BUMP_MIB(&ip_mib, ipInCksumErrs); 16053 goto drop_pkt; 16054 } 16055 if (ip_rput_forward_options(mp, ipha, ire)) { 16056 return; 16057 } 16058 16059 ipha->ipha_hdr_checksum = 0; 16060 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16061 } 16062 max_frag = ire->ire_max_frag; 16063 if (pkt_len > max_frag) { 16064 /* 16065 * It needs fragging on its way out. We haven't 16066 * verified the header checksum yet. Since we 16067 * are going to put a surely good checksum in the 16068 * outgoing header, we have to make sure that it 16069 * was good coming in. 16070 */ 16071 if (ip_csum_hdr(ipha)) { 16072 BUMP_MIB(&ip_mib, ipInCksumErrs); 16073 goto drop_pkt; 16074 } 16075 /* Initiate Write side IPPF processing */ 16076 if (IPP_ENABLED(IPP_FWD_OUT)) { 16077 ip_process(IPP_FWD_OUT, &mp, ill_index); 16078 if (mp == NULL) { 16079 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16080 " during IPPF processing\n")); 16081 return; 16082 } 16083 } 16084 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 16085 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16086 return; 16087 } 16088 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16089 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16090 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16091 /* ip_xmit_v4 always consumes the packet */ 16092 return; 16093 16094 drop_pkt:; 16095 ip1dbg(("ip_rput_forward: drop pkt\n")); 16096 freemsg(mp); 16097 #undef rptr 16098 } 16099 16100 void 16101 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16102 { 16103 ire_t *ire; 16104 16105 ASSERT(!ipif->ipif_isv6); 16106 /* 16107 * Find an IRE which matches the destination and the outgoing 16108 * queue in the cache table. All we need is an IRE_CACHE which 16109 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16110 * then it is enough to have some IRE_CACHE in the group. 16111 */ 16112 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16113 dst = ipif->ipif_pp_dst_addr; 16114 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16115 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16116 if (ire == NULL) { 16117 /* 16118 * Mark this packet to make it be delivered to 16119 * ip_rput_forward after the new ire has been 16120 * created. 16121 */ 16122 mp->b_prev = NULL; 16123 mp->b_next = mp; 16124 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16125 NULL, 0); 16126 } else { 16127 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16128 IRE_REFRELE(ire); 16129 } 16130 } 16131 16132 /* Update any source route, record route or timestamp options */ 16133 static int 16134 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16135 { 16136 ipoptp_t opts; 16137 uchar_t *opt; 16138 uint8_t optval; 16139 uint8_t optlen; 16140 ipaddr_t dst; 16141 uint32_t ts; 16142 ire_t *dst_ire = NULL; 16143 ire_t *tmp_ire = NULL; 16144 timestruc_t now; 16145 16146 ip2dbg(("ip_rput_forward_options\n")); 16147 dst = ipha->ipha_dst; 16148 for (optval = ipoptp_first(&opts, ipha); 16149 optval != IPOPT_EOL; 16150 optval = ipoptp_next(&opts)) { 16151 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16152 opt = opts.ipoptp_cur; 16153 optlen = opts.ipoptp_len; 16154 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16155 optval, opts.ipoptp_len)); 16156 switch (optval) { 16157 uint32_t off; 16158 case IPOPT_SSRR: 16159 case IPOPT_LSRR: 16160 /* Check if adminstratively disabled */ 16161 if (!ip_forward_src_routed) { 16162 BUMP_MIB(&ip_mib, ipForwProhibits); 16163 if (ire->ire_stq) 16164 icmp_unreachable(ire->ire_stq, mp, 16165 ICMP_SOURCE_ROUTE_FAILED); 16166 else { 16167 ip0dbg(("ip_rput_forward_options: " 16168 "unable to send unreach\n")); 16169 freemsg(mp); 16170 } 16171 return (-1); 16172 } 16173 16174 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16175 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16176 if (dst_ire == NULL) { 16177 /* 16178 * Must be partial since ip_rput_options 16179 * checked for strict. 16180 */ 16181 break; 16182 } 16183 off = opt[IPOPT_OFFSET]; 16184 off--; 16185 redo_srr: 16186 if (optlen < IP_ADDR_LEN || 16187 off > optlen - IP_ADDR_LEN) { 16188 /* End of source route */ 16189 ip1dbg(( 16190 "ip_rput_forward_options: end of SR\n")); 16191 ire_refrele(dst_ire); 16192 break; 16193 } 16194 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16195 bcopy(&ire->ire_src_addr, (char *)opt + off, 16196 IP_ADDR_LEN); 16197 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16198 ntohl(dst))); 16199 16200 /* 16201 * Check if our address is present more than 16202 * once as consecutive hops in source route. 16203 */ 16204 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16205 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16206 if (tmp_ire != NULL) { 16207 ire_refrele(tmp_ire); 16208 off += IP_ADDR_LEN; 16209 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16210 goto redo_srr; 16211 } 16212 ipha->ipha_dst = dst; 16213 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16214 ire_refrele(dst_ire); 16215 break; 16216 case IPOPT_RR: 16217 off = opt[IPOPT_OFFSET]; 16218 off--; 16219 if (optlen < IP_ADDR_LEN || 16220 off > optlen - IP_ADDR_LEN) { 16221 /* No more room - ignore */ 16222 ip1dbg(( 16223 "ip_rput_forward_options: end of RR\n")); 16224 break; 16225 } 16226 bcopy(&ire->ire_src_addr, (char *)opt + off, 16227 IP_ADDR_LEN); 16228 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16229 break; 16230 case IPOPT_TS: 16231 /* Insert timestamp if there is room */ 16232 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16233 case IPOPT_TS_TSONLY: 16234 off = IPOPT_TS_TIMELEN; 16235 break; 16236 case IPOPT_TS_PRESPEC: 16237 case IPOPT_TS_PRESPEC_RFC791: 16238 /* Verify that the address matched */ 16239 off = opt[IPOPT_OFFSET] - 1; 16240 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16241 dst_ire = ire_ctable_lookup(dst, 0, 16242 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16243 MATCH_IRE_TYPE); 16244 16245 if (dst_ire == NULL) { 16246 /* Not for us */ 16247 break; 16248 } 16249 ire_refrele(dst_ire); 16250 /* FALLTHRU */ 16251 case IPOPT_TS_TSANDADDR: 16252 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16253 break; 16254 default: 16255 /* 16256 * ip_*put_options should have already 16257 * dropped this packet. 16258 */ 16259 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16260 "unknown IT - bug in ip_rput_options?\n"); 16261 return (0); /* Keep "lint" happy */ 16262 } 16263 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16264 /* Increase overflow counter */ 16265 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16266 opt[IPOPT_POS_OV_FLG] = 16267 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16268 (off << 4)); 16269 break; 16270 } 16271 off = opt[IPOPT_OFFSET] - 1; 16272 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16273 case IPOPT_TS_PRESPEC: 16274 case IPOPT_TS_PRESPEC_RFC791: 16275 case IPOPT_TS_TSANDADDR: 16276 bcopy(&ire->ire_src_addr, 16277 (char *)opt + off, IP_ADDR_LEN); 16278 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16279 /* FALLTHRU */ 16280 case IPOPT_TS_TSONLY: 16281 off = opt[IPOPT_OFFSET] - 1; 16282 /* Compute # of milliseconds since midnight */ 16283 gethrestime(&now); 16284 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16285 now.tv_nsec / (NANOSEC / MILLISEC); 16286 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16287 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16288 break; 16289 } 16290 break; 16291 } 16292 } 16293 return (0); 16294 } 16295 16296 /* 16297 * This is called after processing at least one of AH/ESP headers. 16298 * 16299 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16300 * the actual, physical interface on which the packet was received, 16301 * but, when ip_strict_dst_multihoming is set to 1, could be the 16302 * interface which had the ipha_dst configured when the packet went 16303 * through ip_rput. The ill_index corresponding to the recv_ill 16304 * is saved in ipsec_in_rill_index 16305 */ 16306 void 16307 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16308 { 16309 mblk_t *mp; 16310 ipaddr_t dst; 16311 in6_addr_t *v6dstp; 16312 ipha_t *ipha; 16313 ip6_t *ip6h; 16314 ipsec_in_t *ii; 16315 boolean_t ill_need_rele = B_FALSE; 16316 boolean_t rill_need_rele = B_FALSE; 16317 boolean_t ire_need_rele = B_FALSE; 16318 16319 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16320 ASSERT(ii->ipsec_in_ill_index != 0); 16321 16322 mp = ipsec_mp->b_cont; 16323 ASSERT(mp != NULL); 16324 16325 16326 if (ill == NULL) { 16327 ASSERT(recv_ill == NULL); 16328 /* 16329 * We need to get the original queue on which ip_rput_local 16330 * or ip_rput_data_v6 was called. 16331 */ 16332 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16333 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16334 ill_need_rele = B_TRUE; 16335 16336 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16337 recv_ill = ill_lookup_on_ifindex( 16338 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16339 NULL, NULL, NULL, NULL); 16340 rill_need_rele = B_TRUE; 16341 } else { 16342 recv_ill = ill; 16343 } 16344 16345 if ((ill == NULL) || (recv_ill == NULL)) { 16346 ip0dbg(("ip_fanout_proto_again: interface " 16347 "disappeared\n")); 16348 if (ill != NULL) 16349 ill_refrele(ill); 16350 if (recv_ill != NULL) 16351 ill_refrele(recv_ill); 16352 freemsg(ipsec_mp); 16353 return; 16354 } 16355 } 16356 16357 ASSERT(ill != NULL && recv_ill != NULL); 16358 16359 if (mp->b_datap->db_type == M_CTL) { 16360 /* 16361 * AH/ESP is returning the ICMP message after 16362 * removing their headers. Fanout again till 16363 * it gets to the right protocol. 16364 */ 16365 if (ii->ipsec_in_v4) { 16366 icmph_t *icmph; 16367 int iph_hdr_length; 16368 int hdr_length; 16369 16370 ipha = (ipha_t *)mp->b_rptr; 16371 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16372 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16373 ipha = (ipha_t *)&icmph[1]; 16374 hdr_length = IPH_HDR_LENGTH(ipha); 16375 /* 16376 * icmp_inbound_error_fanout may need to do pullupmsg. 16377 * Reset the type to M_DATA. 16378 */ 16379 mp->b_datap->db_type = M_DATA; 16380 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16381 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16382 B_FALSE, ill, ii->ipsec_in_zoneid); 16383 } else { 16384 icmp6_t *icmp6; 16385 int hdr_length; 16386 16387 ip6h = (ip6_t *)mp->b_rptr; 16388 /* Don't call hdr_length_v6() unless you have to. */ 16389 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16390 hdr_length = ip_hdr_length_v6(mp, ip6h); 16391 else 16392 hdr_length = IPV6_HDR_LEN; 16393 16394 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16395 /* 16396 * icmp_inbound_error_fanout_v6 may need to do 16397 * pullupmsg. Reset the type to M_DATA. 16398 */ 16399 mp->b_datap->db_type = M_DATA; 16400 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16401 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16402 } 16403 if (ill_need_rele) 16404 ill_refrele(ill); 16405 if (rill_need_rele) 16406 ill_refrele(recv_ill); 16407 return; 16408 } 16409 16410 if (ii->ipsec_in_v4) { 16411 ipha = (ipha_t *)mp->b_rptr; 16412 dst = ipha->ipha_dst; 16413 if (CLASSD(dst)) { 16414 /* 16415 * Multicast has to be delivered to all streams. 16416 */ 16417 dst = INADDR_BROADCAST; 16418 } 16419 16420 if (ire == NULL) { 16421 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16422 MBLK_GETLABEL(mp)); 16423 if (ire == NULL) { 16424 if (ill_need_rele) 16425 ill_refrele(ill); 16426 if (rill_need_rele) 16427 ill_refrele(recv_ill); 16428 ip1dbg(("ip_fanout_proto_again: " 16429 "IRE not found")); 16430 freemsg(ipsec_mp); 16431 return; 16432 } 16433 ire_need_rele = B_TRUE; 16434 } 16435 16436 switch (ipha->ipha_protocol) { 16437 case IPPROTO_UDP: 16438 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16439 recv_ill); 16440 if (ire_need_rele) 16441 ire_refrele(ire); 16442 break; 16443 case IPPROTO_TCP: 16444 if (!ire_need_rele) 16445 IRE_REFHOLD(ire); 16446 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16447 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16448 IRE_REFRELE(ire); 16449 if (mp != NULL) 16450 squeue_enter_chain(GET_SQUEUE(mp), mp, 16451 mp, 1, SQTAG_IP_PROTO_AGAIN); 16452 break; 16453 case IPPROTO_SCTP: 16454 if (!ire_need_rele) 16455 IRE_REFHOLD(ire); 16456 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16457 ipsec_mp, 0, ill->ill_rq, dst); 16458 break; 16459 default: 16460 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16461 recv_ill); 16462 if (ire_need_rele) 16463 ire_refrele(ire); 16464 break; 16465 } 16466 } else { 16467 uint32_t rput_flags = 0; 16468 16469 ip6h = (ip6_t *)mp->b_rptr; 16470 v6dstp = &ip6h->ip6_dst; 16471 /* 16472 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16473 * address. 16474 * 16475 * Currently, we don't store that state in the IPSEC_IN 16476 * message, and we may need to. 16477 */ 16478 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16479 IP6_IN_LLMCAST : 0); 16480 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16481 NULL, NULL); 16482 } 16483 if (ill_need_rele) 16484 ill_refrele(ill); 16485 if (rill_need_rele) 16486 ill_refrele(recv_ill); 16487 } 16488 16489 /* 16490 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16491 * returns 'true' if there are still fragments left on the queue, in 16492 * which case we restart the timer. 16493 */ 16494 void 16495 ill_frag_timer(void *arg) 16496 { 16497 ill_t *ill = (ill_t *)arg; 16498 boolean_t frag_pending; 16499 16500 mutex_enter(&ill->ill_lock); 16501 ASSERT(!ill->ill_fragtimer_executing); 16502 if (ill->ill_state_flags & ILL_CONDEMNED) { 16503 ill->ill_frag_timer_id = 0; 16504 mutex_exit(&ill->ill_lock); 16505 return; 16506 } 16507 ill->ill_fragtimer_executing = 1; 16508 mutex_exit(&ill->ill_lock); 16509 16510 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16511 16512 /* 16513 * Restart the timer, if we have fragments pending or if someone 16514 * wanted us to be scheduled again. 16515 */ 16516 mutex_enter(&ill->ill_lock); 16517 ill->ill_fragtimer_executing = 0; 16518 ill->ill_frag_timer_id = 0; 16519 if (frag_pending || ill->ill_fragtimer_needrestart) 16520 ill_frag_timer_start(ill); 16521 mutex_exit(&ill->ill_lock); 16522 } 16523 16524 void 16525 ill_frag_timer_start(ill_t *ill) 16526 { 16527 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16528 16529 /* If the ill is closing or opening don't proceed */ 16530 if (ill->ill_state_flags & ILL_CONDEMNED) 16531 return; 16532 16533 if (ill->ill_fragtimer_executing) { 16534 /* 16535 * ill_frag_timer is currently executing. Just record the 16536 * the fact that we want the timer to be restarted. 16537 * ill_frag_timer will post a timeout before it returns, 16538 * ensuring it will be called again. 16539 */ 16540 ill->ill_fragtimer_needrestart = 1; 16541 return; 16542 } 16543 16544 if (ill->ill_frag_timer_id == 0) { 16545 /* 16546 * The timer is neither running nor is the timeout handler 16547 * executing. Post a timeout so that ill_frag_timer will be 16548 * called 16549 */ 16550 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16551 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16552 ill->ill_fragtimer_needrestart = 0; 16553 } 16554 } 16555 16556 /* 16557 * This routine is needed for loopback when forwarding multicasts. 16558 * 16559 * IPQoS Notes: 16560 * IPPF processing is done in fanout routines. 16561 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16562 * processing for IPSec packets is done when it comes back in clear. 16563 * NOTE : The callers of this function need to do the ire_refrele for the 16564 * ire that is being passed in. 16565 */ 16566 void 16567 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16568 ill_t *recv_ill) 16569 { 16570 ill_t *ill = (ill_t *)q->q_ptr; 16571 uint32_t sum; 16572 uint32_t u1; 16573 uint32_t u2; 16574 int hdr_length; 16575 boolean_t mctl_present; 16576 mblk_t *first_mp = mp; 16577 mblk_t *hada_mp = NULL; 16578 ipha_t *inner_ipha; 16579 16580 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16581 "ip_rput_locl_start: q %p", q); 16582 16583 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16584 16585 16586 #define rptr ((uchar_t *)ipha) 16587 #define iphs ((uint16_t *)ipha) 16588 16589 /* 16590 * no UDP or TCP packet should come here anymore. 16591 */ 16592 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16593 (ipha->ipha_protocol != IPPROTO_UDP)); 16594 16595 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16596 if (mctl_present && 16597 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16598 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16599 16600 /* 16601 * It's an IPsec accelerated packet. 16602 * Keep a pointer to the data attributes around until 16603 * we allocate the ipsec_info_t. 16604 */ 16605 IPSECHW_DEBUG(IPSECHW_PKT, 16606 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16607 hada_mp = first_mp; 16608 hada_mp->b_cont = NULL; 16609 /* 16610 * Since it is accelerated, it comes directly from 16611 * the ill and the data attributes is followed by 16612 * the packet data. 16613 */ 16614 ASSERT(mp->b_datap->db_type != M_CTL); 16615 first_mp = mp; 16616 mctl_present = B_FALSE; 16617 } 16618 16619 /* 16620 * IF M_CTL is not present, then ipsec_in_is_secure 16621 * should return B_TRUE. There is a case where loopback 16622 * packets has an M_CTL in the front with all the 16623 * IPSEC options set to IPSEC_PREF_NEVER - which means 16624 * ipsec_in_is_secure will return B_FALSE. As loopback 16625 * packets never comes here, it is safe to ASSERT the 16626 * following. 16627 */ 16628 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16629 16630 16631 /* u1 is # words of IP options */ 16632 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16633 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16634 16635 if (u1) { 16636 if (!ip_options_cksum(q, mp, ipha, ire)) { 16637 if (hada_mp != NULL) 16638 freemsg(hada_mp); 16639 return; 16640 } 16641 } else { 16642 /* Check the IP header checksum. */ 16643 #define uph ((uint16_t *)ipha) 16644 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16645 uph[6] + uph[7] + uph[8] + uph[9]; 16646 #undef uph 16647 /* finish doing IP checksum */ 16648 sum = (sum & 0xFFFF) + (sum >> 16); 16649 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16650 /* 16651 * Don't verify header checksum if this packet is coming 16652 * back from AH/ESP as we already did it. 16653 */ 16654 if (!mctl_present && (sum && sum != 0xFFFF)) { 16655 BUMP_MIB(&ip_mib, ipInCksumErrs); 16656 goto drop_pkt; 16657 } 16658 } 16659 16660 /* 16661 * Count for SNMP of inbound packets for ire. As ip_proto_input 16662 * might be called more than once for secure packets, count only 16663 * the first time. 16664 */ 16665 if (!mctl_present) { 16666 UPDATE_IB_PKT_COUNT(ire); 16667 ire->ire_last_used_time = lbolt; 16668 } 16669 16670 /* Check for fragmentation offset. */ 16671 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16672 u1 = u2 & (IPH_MF | IPH_OFFSET); 16673 if (u1) { 16674 /* 16675 * We re-assemble fragments before we do the AH/ESP 16676 * processing. Thus, M_CTL should not be present 16677 * while we are re-assembling. 16678 */ 16679 ASSERT(!mctl_present); 16680 ASSERT(first_mp == mp); 16681 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16682 return; 16683 } 16684 /* 16685 * Make sure that first_mp points back to mp as 16686 * the mp we came in with could have changed in 16687 * ip_rput_fragment(). 16688 */ 16689 ipha = (ipha_t *)mp->b_rptr; 16690 first_mp = mp; 16691 } 16692 16693 /* 16694 * Clear hardware checksumming flag as it is currently only 16695 * used by TCP and UDP. 16696 */ 16697 DB_CKSUMFLAGS(mp) = 0; 16698 16699 /* Now we have a complete datagram, destined for this machine. */ 16700 u1 = IPH_HDR_LENGTH(ipha); 16701 switch (ipha->ipha_protocol) { 16702 case IPPROTO_ICMP: { 16703 ire_t *ire_zone; 16704 ilm_t *ilm; 16705 mblk_t *mp1; 16706 zoneid_t last_zoneid; 16707 16708 if (CLASSD(ipha->ipha_dst) && 16709 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16710 ASSERT(ire->ire_type == IRE_BROADCAST); 16711 /* 16712 * In the multicast case, applications may have joined 16713 * the group from different zones, so we need to deliver 16714 * the packet to each of them. Loop through the 16715 * multicast memberships structures (ilm) on the receive 16716 * ill and send a copy of the packet up each matching 16717 * one. However, we don't do this for multicasts sent on 16718 * the loopback interface (PHYI_LOOPBACK flag set) as 16719 * they must stay in the sender's zone. 16720 * 16721 * ilm_add_v6() ensures that ilms in the same zone are 16722 * contiguous in the ill_ilm list. We use this property 16723 * to avoid sending duplicates needed when two 16724 * applications in the same zone join the same group on 16725 * different logical interfaces: we ignore the ilm if 16726 * its zoneid is the same as the last matching one. 16727 * In addition, the sending of the packet for 16728 * ire_zoneid is delayed until all of the other ilms 16729 * have been exhausted. 16730 */ 16731 last_zoneid = -1; 16732 ILM_WALKER_HOLD(recv_ill); 16733 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16734 ilm = ilm->ilm_next) { 16735 if ((ilm->ilm_flags & ILM_DELETED) || 16736 ipha->ipha_dst != ilm->ilm_addr || 16737 ilm->ilm_zoneid == last_zoneid || 16738 ilm->ilm_zoneid == ire->ire_zoneid || 16739 ilm->ilm_zoneid == ALL_ZONES || 16740 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16741 continue; 16742 mp1 = ip_copymsg(first_mp); 16743 if (mp1 == NULL) 16744 continue; 16745 icmp_inbound(q, mp1, B_TRUE, ill, 16746 0, sum, mctl_present, B_TRUE, 16747 recv_ill, ilm->ilm_zoneid); 16748 last_zoneid = ilm->ilm_zoneid; 16749 } 16750 ILM_WALKER_RELE(recv_ill); 16751 } else if (ire->ire_type == IRE_BROADCAST) { 16752 /* 16753 * In the broadcast case, there may be many zones 16754 * which need a copy of the packet delivered to them. 16755 * There is one IRE_BROADCAST per broadcast address 16756 * and per zone; we walk those using a helper function. 16757 * In addition, the sending of the packet for ire is 16758 * delayed until all of the other ires have been 16759 * processed. 16760 */ 16761 IRB_REFHOLD(ire->ire_bucket); 16762 ire_zone = NULL; 16763 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16764 ire)) != NULL) { 16765 mp1 = ip_copymsg(first_mp); 16766 if (mp1 == NULL) 16767 continue; 16768 16769 UPDATE_IB_PKT_COUNT(ire_zone); 16770 ire_zone->ire_last_used_time = lbolt; 16771 icmp_inbound(q, mp1, B_TRUE, ill, 16772 0, sum, mctl_present, B_TRUE, 16773 recv_ill, ire_zone->ire_zoneid); 16774 } 16775 IRB_REFRELE(ire->ire_bucket); 16776 } 16777 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16778 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16779 ire->ire_zoneid); 16780 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16781 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16782 return; 16783 } 16784 case IPPROTO_IGMP: 16785 /* 16786 * If we are not willing to accept IGMP packets in clear, 16787 * then check with global policy. 16788 */ 16789 if (igmp_accept_clear_messages == 0) { 16790 first_mp = ipsec_check_global_policy(first_mp, NULL, 16791 ipha, NULL, mctl_present); 16792 if (first_mp == NULL) 16793 return; 16794 } 16795 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16796 freemsg(first_mp); 16797 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16798 BUMP_MIB(&ip_mib, ipInDiscards); 16799 return; 16800 } 16801 if (igmp_input(q, mp, ill)) { 16802 /* Bad packet - discarded by igmp_input */ 16803 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16804 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16805 if (mctl_present) 16806 freeb(first_mp); 16807 return; 16808 } 16809 /* 16810 * igmp_input() may have pulled up the message so ipha needs to 16811 * be reinitialized. 16812 */ 16813 ipha = (ipha_t *)mp->b_rptr; 16814 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16815 /* No user-level listener for IGMP packets */ 16816 goto drop_pkt; 16817 } 16818 /* deliver to local raw users */ 16819 break; 16820 case IPPROTO_PIM: 16821 /* 16822 * If we are not willing to accept PIM packets in clear, 16823 * then check with global policy. 16824 */ 16825 if (pim_accept_clear_messages == 0) { 16826 first_mp = ipsec_check_global_policy(first_mp, NULL, 16827 ipha, NULL, mctl_present); 16828 if (first_mp == NULL) 16829 return; 16830 } 16831 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16832 freemsg(first_mp); 16833 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16834 BUMP_MIB(&ip_mib, ipInDiscards); 16835 return; 16836 } 16837 if (pim_input(q, mp) != 0) { 16838 /* Bad packet - discarded by pim_input */ 16839 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16840 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16841 if (mctl_present) 16842 freeb(first_mp); 16843 return; 16844 } 16845 16846 /* 16847 * pim_input() may have pulled up the message so ipha needs to 16848 * be reinitialized. 16849 */ 16850 ipha = (ipha_t *)mp->b_rptr; 16851 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16852 /* No user-level listener for PIM packets */ 16853 goto drop_pkt; 16854 } 16855 /* deliver to local raw users */ 16856 break; 16857 case IPPROTO_ENCAP: 16858 /* 16859 * Handle self-encapsulated packets (IP-in-IP where 16860 * the inner addresses == the outer addresses). 16861 */ 16862 hdr_length = IPH_HDR_LENGTH(ipha); 16863 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16864 mp->b_wptr) { 16865 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16866 sizeof (ipha_t) - mp->b_rptr)) { 16867 BUMP_MIB(&ip_mib, ipInDiscards); 16868 freemsg(first_mp); 16869 return; 16870 } 16871 ipha = (ipha_t *)mp->b_rptr; 16872 } 16873 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16874 /* 16875 * Check the sanity of the inner IP header. 16876 */ 16877 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16878 BUMP_MIB(&ip_mib, ipInDiscards); 16879 freemsg(first_mp); 16880 return; 16881 } 16882 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16883 BUMP_MIB(&ip_mib, ipInDiscards); 16884 freemsg(first_mp); 16885 return; 16886 } 16887 if (inner_ipha->ipha_src == ipha->ipha_src && 16888 inner_ipha->ipha_dst == ipha->ipha_dst) { 16889 ipsec_in_t *ii; 16890 16891 /* 16892 * Self-encapsulated tunnel packet. Remove 16893 * the outer IP header and fanout again. 16894 * We also need to make sure that the inner 16895 * header is pulled up until options. 16896 */ 16897 mp->b_rptr = (uchar_t *)inner_ipha; 16898 ipha = inner_ipha; 16899 hdr_length = IPH_HDR_LENGTH(ipha); 16900 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16901 if (!pullupmsg(mp, (uchar_t *)ipha + 16902 + hdr_length - mp->b_rptr)) { 16903 freemsg(first_mp); 16904 return; 16905 } 16906 ipha = (ipha_t *)mp->b_rptr; 16907 } 16908 if (!mctl_present) { 16909 ASSERT(first_mp == mp); 16910 /* 16911 * This means that somebody is sending 16912 * Self-encapsualted packets without AH/ESP. 16913 * If AH/ESP was present, we would have already 16914 * allocated the first_mp. 16915 */ 16916 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16917 NULL) { 16918 ip1dbg(("ip_proto_input: IPSEC_IN " 16919 "allocation failure.\n")); 16920 BUMP_MIB(&ip_mib, ipInDiscards); 16921 freemsg(mp); 16922 return; 16923 } 16924 first_mp->b_cont = mp; 16925 } 16926 /* 16927 * We generally store the ill_index if we need to 16928 * do IPSEC processing as we lose the ill queue when 16929 * we come back. But in this case, we never should 16930 * have to store the ill_index here as it should have 16931 * been stored previously when we processed the 16932 * AH/ESP header in this routine or for non-ipsec 16933 * cases, we still have the queue. But for some bad 16934 * packets from the wire, we can get to IPSEC after 16935 * this and we better store the index for that case. 16936 */ 16937 ill = (ill_t *)q->q_ptr; 16938 ii = (ipsec_in_t *)first_mp->b_rptr; 16939 ii->ipsec_in_ill_index = 16940 ill->ill_phyint->phyint_ifindex; 16941 ii->ipsec_in_rill_index = 16942 recv_ill->ill_phyint->phyint_ifindex; 16943 if (ii->ipsec_in_decaps) { 16944 /* 16945 * This packet is self-encapsulated multiple 16946 * times. We don't want to recurse infinitely. 16947 * To keep it simple, drop the packet. 16948 */ 16949 BUMP_MIB(&ip_mib, ipInDiscards); 16950 freemsg(first_mp); 16951 return; 16952 } 16953 ii->ipsec_in_decaps = B_TRUE; 16954 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16955 return; 16956 } 16957 break; 16958 case IPPROTO_AH: 16959 case IPPROTO_ESP: { 16960 /* 16961 * Fast path for AH/ESP. If this is the first time 16962 * we are sending a datagram to AH/ESP, allocate 16963 * a IPSEC_IN message and prepend it. Otherwise, 16964 * just fanout. 16965 */ 16966 16967 int ipsec_rc; 16968 ipsec_in_t *ii; 16969 16970 IP_STAT(ipsec_proto_ahesp); 16971 if (!mctl_present) { 16972 ASSERT(first_mp == mp); 16973 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16974 ip1dbg(("ip_proto_input: IPSEC_IN " 16975 "allocation failure.\n")); 16976 freemsg(hada_mp); /* okay ifnull */ 16977 BUMP_MIB(&ip_mib, ipInDiscards); 16978 freemsg(mp); 16979 return; 16980 } 16981 /* 16982 * Store the ill_index so that when we come back 16983 * from IPSEC we ride on the same queue. 16984 */ 16985 ill = (ill_t *)q->q_ptr; 16986 ii = (ipsec_in_t *)first_mp->b_rptr; 16987 ii->ipsec_in_ill_index = 16988 ill->ill_phyint->phyint_ifindex; 16989 ii->ipsec_in_rill_index = 16990 recv_ill->ill_phyint->phyint_ifindex; 16991 first_mp->b_cont = mp; 16992 /* 16993 * Cache hardware acceleration info. 16994 */ 16995 if (hada_mp != NULL) { 16996 IPSECHW_DEBUG(IPSECHW_PKT, 16997 ("ip_rput_local: caching data attr.\n")); 16998 ii->ipsec_in_accelerated = B_TRUE; 16999 ii->ipsec_in_da = hada_mp; 17000 hada_mp = NULL; 17001 } 17002 } else { 17003 ii = (ipsec_in_t *)first_mp->b_rptr; 17004 } 17005 17006 if (!ipsec_loaded()) { 17007 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17008 ire->ire_zoneid); 17009 return; 17010 } 17011 17012 /* select inbound SA and have IPsec process the pkt */ 17013 if (ipha->ipha_protocol == IPPROTO_ESP) { 17014 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17015 if (esph == NULL) 17016 return; 17017 ASSERT(ii->ipsec_in_esp_sa != NULL); 17018 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17019 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17020 first_mp, esph); 17021 } else { 17022 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17023 if (ah == NULL) 17024 return; 17025 ASSERT(ii->ipsec_in_ah_sa != NULL); 17026 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17027 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17028 first_mp, ah); 17029 } 17030 17031 switch (ipsec_rc) { 17032 case IPSEC_STATUS_SUCCESS: 17033 break; 17034 case IPSEC_STATUS_FAILED: 17035 BUMP_MIB(&ip_mib, ipInDiscards); 17036 /* FALLTHRU */ 17037 case IPSEC_STATUS_PENDING: 17038 return; 17039 } 17040 /* we're done with IPsec processing, send it up */ 17041 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17042 return; 17043 } 17044 default: 17045 break; 17046 } 17047 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17048 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17049 ire->ire_zoneid)); 17050 goto drop_pkt; 17051 } 17052 /* 17053 * Handle protocols with which IP is less intimate. There 17054 * can be more than one stream bound to a particular 17055 * protocol. When this is the case, each one gets a copy 17056 * of any incoming packets. 17057 */ 17058 ip_fanout_proto(q, first_mp, ill, ipha, 17059 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17060 B_TRUE, recv_ill, ire->ire_zoneid); 17061 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17062 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17063 return; 17064 17065 drop_pkt: 17066 freemsg(first_mp); 17067 if (hada_mp != NULL) 17068 freeb(hada_mp); 17069 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17070 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17071 #undef rptr 17072 #undef iphs 17073 17074 } 17075 17076 /* 17077 * Update any source route, record route or timestamp options. 17078 * Check that we are at end of strict source route. 17079 * The options have already been checked for sanity in ip_rput_options(). 17080 */ 17081 static boolean_t 17082 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17083 { 17084 ipoptp_t opts; 17085 uchar_t *opt; 17086 uint8_t optval; 17087 uint8_t optlen; 17088 ipaddr_t dst; 17089 uint32_t ts; 17090 ire_t *dst_ire; 17091 timestruc_t now; 17092 17093 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17094 17095 ip2dbg(("ip_rput_local_options\n")); 17096 17097 for (optval = ipoptp_first(&opts, ipha); 17098 optval != IPOPT_EOL; 17099 optval = ipoptp_next(&opts)) { 17100 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17101 opt = opts.ipoptp_cur; 17102 optlen = opts.ipoptp_len; 17103 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17104 optval, optlen)); 17105 switch (optval) { 17106 uint32_t off; 17107 case IPOPT_SSRR: 17108 case IPOPT_LSRR: 17109 off = opt[IPOPT_OFFSET]; 17110 off--; 17111 if (optlen < IP_ADDR_LEN || 17112 off > optlen - IP_ADDR_LEN) { 17113 /* End of source route */ 17114 ip1dbg(("ip_rput_local_options: end of SR\n")); 17115 break; 17116 } 17117 /* 17118 * This will only happen if two consecutive entries 17119 * in the source route contains our address or if 17120 * it is a packet with a loose source route which 17121 * reaches us before consuming the whole source route 17122 */ 17123 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17124 if (optval == IPOPT_SSRR) { 17125 goto bad_src_route; 17126 } 17127 /* 17128 * Hack: instead of dropping the packet truncate the 17129 * source route to what has been used by filling the 17130 * rest with IPOPT_NOP. 17131 */ 17132 opt[IPOPT_OLEN] = (uint8_t)off; 17133 while (off < optlen) { 17134 opt[off++] = IPOPT_NOP; 17135 } 17136 break; 17137 case IPOPT_RR: 17138 off = opt[IPOPT_OFFSET]; 17139 off--; 17140 if (optlen < IP_ADDR_LEN || 17141 off > optlen - IP_ADDR_LEN) { 17142 /* No more room - ignore */ 17143 ip1dbg(( 17144 "ip_rput_local_options: end of RR\n")); 17145 break; 17146 } 17147 bcopy(&ire->ire_src_addr, (char *)opt + off, 17148 IP_ADDR_LEN); 17149 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17150 break; 17151 case IPOPT_TS: 17152 /* Insert timestamp if there is romm */ 17153 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17154 case IPOPT_TS_TSONLY: 17155 off = IPOPT_TS_TIMELEN; 17156 break; 17157 case IPOPT_TS_PRESPEC: 17158 case IPOPT_TS_PRESPEC_RFC791: 17159 /* Verify that the address matched */ 17160 off = opt[IPOPT_OFFSET] - 1; 17161 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17162 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17163 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17164 if (dst_ire == NULL) { 17165 /* Not for us */ 17166 break; 17167 } 17168 ire_refrele(dst_ire); 17169 /* FALLTHRU */ 17170 case IPOPT_TS_TSANDADDR: 17171 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17172 break; 17173 default: 17174 /* 17175 * ip_*put_options should have already 17176 * dropped this packet. 17177 */ 17178 cmn_err(CE_PANIC, "ip_rput_local_options: " 17179 "unknown IT - bug in ip_rput_options?\n"); 17180 return (B_TRUE); /* Keep "lint" happy */ 17181 } 17182 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17183 /* Increase overflow counter */ 17184 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17185 opt[IPOPT_POS_OV_FLG] = 17186 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17187 (off << 4)); 17188 break; 17189 } 17190 off = opt[IPOPT_OFFSET] - 1; 17191 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17192 case IPOPT_TS_PRESPEC: 17193 case IPOPT_TS_PRESPEC_RFC791: 17194 case IPOPT_TS_TSANDADDR: 17195 bcopy(&ire->ire_src_addr, (char *)opt + off, 17196 IP_ADDR_LEN); 17197 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17198 /* FALLTHRU */ 17199 case IPOPT_TS_TSONLY: 17200 off = opt[IPOPT_OFFSET] - 1; 17201 /* Compute # of milliseconds since midnight */ 17202 gethrestime(&now); 17203 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17204 now.tv_nsec / (NANOSEC / MILLISEC); 17205 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17206 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17207 break; 17208 } 17209 break; 17210 } 17211 } 17212 return (B_TRUE); 17213 17214 bad_src_route: 17215 q = WR(q); 17216 /* make sure we clear any indication of a hardware checksum */ 17217 DB_CKSUMFLAGS(mp) = 0; 17218 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 17219 return (B_FALSE); 17220 17221 } 17222 17223 /* 17224 * Process IP options in an inbound packet. If an option affects the 17225 * effective destination address, return the next hop address via dstp. 17226 * Returns -1 if something fails in which case an ICMP error has been sent 17227 * and mp freed. 17228 */ 17229 static int 17230 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17231 { 17232 ipoptp_t opts; 17233 uchar_t *opt; 17234 uint8_t optval; 17235 uint8_t optlen; 17236 ipaddr_t dst; 17237 intptr_t code = 0; 17238 ire_t *ire = NULL; 17239 17240 ip2dbg(("ip_rput_options\n")); 17241 dst = ipha->ipha_dst; 17242 for (optval = ipoptp_first(&opts, ipha); 17243 optval != IPOPT_EOL; 17244 optval = ipoptp_next(&opts)) { 17245 opt = opts.ipoptp_cur; 17246 optlen = opts.ipoptp_len; 17247 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17248 optval, optlen)); 17249 /* 17250 * Note: we need to verify the checksum before we 17251 * modify anything thus this routine only extracts the next 17252 * hop dst from any source route. 17253 */ 17254 switch (optval) { 17255 uint32_t off; 17256 case IPOPT_SSRR: 17257 case IPOPT_LSRR: 17258 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17259 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17260 if (ire == NULL) { 17261 if (optval == IPOPT_SSRR) { 17262 ip1dbg(("ip_rput_options: not next" 17263 " strict source route 0x%x\n", 17264 ntohl(dst))); 17265 code = (char *)&ipha->ipha_dst - 17266 (char *)ipha; 17267 goto param_prob; /* RouterReq's */ 17268 } 17269 ip2dbg(("ip_rput_options: " 17270 "not next source route 0x%x\n", 17271 ntohl(dst))); 17272 break; 17273 } 17274 ire_refrele(ire); 17275 17276 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17277 ip1dbg(( 17278 "ip_rput_options: bad option offset\n")); 17279 code = (char *)&opt[IPOPT_OLEN] - 17280 (char *)ipha; 17281 goto param_prob; 17282 } 17283 off = opt[IPOPT_OFFSET]; 17284 off--; 17285 redo_srr: 17286 if (optlen < IP_ADDR_LEN || 17287 off > optlen - IP_ADDR_LEN) { 17288 /* End of source route */ 17289 ip1dbg(("ip_rput_options: end of SR\n")); 17290 break; 17291 } 17292 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17293 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17294 ntohl(dst))); 17295 17296 /* 17297 * Check if our address is present more than 17298 * once as consecutive hops in source route. 17299 * XXX verify per-interface ip_forwarding 17300 * for source route? 17301 */ 17302 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17303 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17304 17305 if (ire != NULL) { 17306 ire_refrele(ire); 17307 off += IP_ADDR_LEN; 17308 goto redo_srr; 17309 } 17310 17311 if (dst == htonl(INADDR_LOOPBACK)) { 17312 ip1dbg(("ip_rput_options: loopback addr in " 17313 "source route!\n")); 17314 goto bad_src_route; 17315 } 17316 /* 17317 * For strict: verify that dst is directly 17318 * reachable. 17319 */ 17320 if (optval == IPOPT_SSRR) { 17321 ire = ire_ftable_lookup(dst, 0, 0, 17322 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17323 MBLK_GETLABEL(mp), 17324 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17325 if (ire == NULL) { 17326 ip1dbg(("ip_rput_options: SSRR not " 17327 "directly reachable: 0x%x\n", 17328 ntohl(dst))); 17329 goto bad_src_route; 17330 } 17331 ire_refrele(ire); 17332 } 17333 /* 17334 * Defer update of the offset and the record route 17335 * until the packet is forwarded. 17336 */ 17337 break; 17338 case IPOPT_RR: 17339 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17340 ip1dbg(( 17341 "ip_rput_options: bad option offset\n")); 17342 code = (char *)&opt[IPOPT_OLEN] - 17343 (char *)ipha; 17344 goto param_prob; 17345 } 17346 break; 17347 case IPOPT_TS: 17348 /* 17349 * Verify that length >= 5 and that there is either 17350 * room for another timestamp or that the overflow 17351 * counter is not maxed out. 17352 */ 17353 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17354 if (optlen < IPOPT_MINLEN_IT) { 17355 goto param_prob; 17356 } 17357 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17358 ip1dbg(( 17359 "ip_rput_options: bad option offset\n")); 17360 code = (char *)&opt[IPOPT_OFFSET] - 17361 (char *)ipha; 17362 goto param_prob; 17363 } 17364 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17365 case IPOPT_TS_TSONLY: 17366 off = IPOPT_TS_TIMELEN; 17367 break; 17368 case IPOPT_TS_TSANDADDR: 17369 case IPOPT_TS_PRESPEC: 17370 case IPOPT_TS_PRESPEC_RFC791: 17371 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17372 break; 17373 default: 17374 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17375 (char *)ipha; 17376 goto param_prob; 17377 } 17378 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17379 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17380 /* 17381 * No room and the overflow counter is 15 17382 * already. 17383 */ 17384 goto param_prob; 17385 } 17386 break; 17387 } 17388 } 17389 17390 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17391 *dstp = dst; 17392 return (0); 17393 } 17394 17395 ip1dbg(("ip_rput_options: error processing IP options.")); 17396 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17397 17398 param_prob: 17399 q = WR(q); 17400 /* make sure we clear any indication of a hardware checksum */ 17401 DB_CKSUMFLAGS(mp) = 0; 17402 icmp_param_problem(q, mp, (uint8_t)code); 17403 return (-1); 17404 17405 bad_src_route: 17406 q = WR(q); 17407 /* make sure we clear any indication of a hardware checksum */ 17408 DB_CKSUMFLAGS(mp) = 0; 17409 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 17410 return (-1); 17411 } 17412 17413 /* 17414 * IP & ICMP info in >=14 msg's ... 17415 * - ip fixed part (mib2_ip_t) 17416 * - icmp fixed part (mib2_icmp_t) 17417 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17418 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17419 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17420 * - ipRouteAttributeTable (ip 102) labeled routes 17421 * - ip multicast membership (ip_member_t) 17422 * - ip multicast source filtering (ip_grpsrc_t) 17423 * - igmp fixed part (struct igmpstat) 17424 * - multicast routing stats (struct mrtstat) 17425 * - multicast routing vifs (array of struct vifctl) 17426 * - multicast routing routes (array of struct mfcctl) 17427 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17428 * One per ill plus one generic 17429 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17430 * One per ill plus one generic 17431 * - ipv6RouteEntry all IPv6 IREs 17432 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17433 * - ipv6NetToMediaEntry all Neighbor Cache entries 17434 * - ipv6AddrEntry all IPv6 ipifs 17435 * - ipv6 multicast membership (ipv6_member_t) 17436 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17437 * 17438 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17439 * already present. 17440 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17441 * already filled in by the caller. 17442 * Return value of 0 indicates that no messages were sent and caller 17443 * should free mpctl. 17444 */ 17445 int 17446 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17447 { 17448 17449 if (mpctl == NULL || mpctl->b_cont == NULL) { 17450 return (0); 17451 } 17452 17453 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17454 return (1); 17455 } 17456 17457 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17458 return (1); 17459 } 17460 17461 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17462 return (1); 17463 } 17464 17465 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17466 return (1); 17467 } 17468 17469 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17470 return (1); 17471 } 17472 17473 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17474 return (1); 17475 } 17476 17477 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17478 return (1); 17479 } 17480 17481 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17482 return (1); 17483 } 17484 17485 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17486 return (1); 17487 } 17488 17489 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17490 return (1); 17491 } 17492 17493 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17494 return (1); 17495 } 17496 17497 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17498 return (1); 17499 } 17500 17501 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17502 return (1); 17503 } 17504 17505 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17506 return (1); 17507 } 17508 17509 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17510 return (1); 17511 } 17512 17513 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17514 return (1); 17515 } 17516 17517 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17518 return (1); 17519 } 17520 freemsg(mpctl); 17521 return (1); 17522 } 17523 17524 17525 /* Get global IPv4 statistics */ 17526 static mblk_t * 17527 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17528 { 17529 struct opthdr *optp; 17530 mblk_t *mp2ctl; 17531 17532 /* 17533 * make a copy of the original message 17534 */ 17535 mp2ctl = copymsg(mpctl); 17536 17537 /* fixed length IP structure... */ 17538 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17539 optp->level = MIB2_IP; 17540 optp->name = 0; 17541 SET_MIB(ip_mib.ipForwarding, 17542 (WE_ARE_FORWARDING ? 1 : 2)); 17543 SET_MIB(ip_mib.ipDefaultTTL, 17544 (uint32_t)ip_def_ttl); 17545 SET_MIB(ip_mib.ipReasmTimeout, 17546 ip_g_frag_timeout); 17547 SET_MIB(ip_mib.ipAddrEntrySize, 17548 sizeof (mib2_ipAddrEntry_t)); 17549 SET_MIB(ip_mib.ipRouteEntrySize, 17550 sizeof (mib2_ipRouteEntry_t)); 17551 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17552 sizeof (mib2_ipNetToMediaEntry_t)); 17553 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17554 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17555 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17556 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17557 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17558 (int)sizeof (ip_mib))) { 17559 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17560 (uint_t)sizeof (ip_mib))); 17561 } 17562 17563 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17564 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17565 (int)optp->level, (int)optp->name, (int)optp->len)); 17566 qreply(q, mpctl); 17567 return (mp2ctl); 17568 } 17569 17570 /* Global IPv4 ICMP statistics */ 17571 static mblk_t * 17572 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17573 { 17574 struct opthdr *optp; 17575 mblk_t *mp2ctl; 17576 17577 /* 17578 * Make a copy of the original message 17579 */ 17580 mp2ctl = copymsg(mpctl); 17581 17582 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17583 optp->level = MIB2_ICMP; 17584 optp->name = 0; 17585 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17586 (int)sizeof (icmp_mib))) { 17587 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17588 (uint_t)sizeof (icmp_mib))); 17589 } 17590 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17591 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17592 (int)optp->level, (int)optp->name, (int)optp->len)); 17593 qreply(q, mpctl); 17594 return (mp2ctl); 17595 } 17596 17597 /* Global IPv4 IGMP statistics */ 17598 static mblk_t * 17599 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17600 { 17601 struct opthdr *optp; 17602 mblk_t *mp2ctl; 17603 17604 /* 17605 * make a copy of the original message 17606 */ 17607 mp2ctl = copymsg(mpctl); 17608 17609 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17610 optp->level = EXPER_IGMP; 17611 optp->name = 0; 17612 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17613 (int)sizeof (igmpstat))) { 17614 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17615 (uint_t)sizeof (igmpstat))); 17616 } 17617 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17618 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17619 (int)optp->level, (int)optp->name, (int)optp->len)); 17620 qreply(q, mpctl); 17621 return (mp2ctl); 17622 } 17623 17624 /* Global IPv4 Multicast Routing statistics */ 17625 static mblk_t * 17626 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17627 { 17628 struct opthdr *optp; 17629 mblk_t *mp2ctl; 17630 17631 /* 17632 * make a copy of the original message 17633 */ 17634 mp2ctl = copymsg(mpctl); 17635 17636 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17637 optp->level = EXPER_DVMRP; 17638 optp->name = 0; 17639 if (!ip_mroute_stats(mpctl->b_cont)) { 17640 ip0dbg(("ip_mroute_stats: failed\n")); 17641 } 17642 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17643 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17644 (int)optp->level, (int)optp->name, (int)optp->len)); 17645 qreply(q, mpctl); 17646 return (mp2ctl); 17647 } 17648 17649 /* IPv4 address information */ 17650 static mblk_t * 17651 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17652 { 17653 struct opthdr *optp; 17654 mblk_t *mp2ctl; 17655 mblk_t *mp_tail = NULL; 17656 ill_t *ill; 17657 ipif_t *ipif; 17658 uint_t bitval; 17659 mib2_ipAddrEntry_t mae; 17660 zoneid_t zoneid; 17661 ill_walk_context_t ctx; 17662 17663 /* 17664 * make a copy of the original message 17665 */ 17666 mp2ctl = copymsg(mpctl); 17667 17668 /* ipAddrEntryTable */ 17669 17670 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17671 optp->level = MIB2_IP; 17672 optp->name = MIB2_IP_ADDR; 17673 zoneid = Q_TO_CONN(q)->conn_zoneid; 17674 17675 rw_enter(&ill_g_lock, RW_READER); 17676 ill = ILL_START_WALK_V4(&ctx); 17677 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17678 for (ipif = ill->ill_ipif; ipif != NULL; 17679 ipif = ipif->ipif_next) { 17680 if (ipif->ipif_zoneid != zoneid && 17681 ipif->ipif_zoneid != ALL_ZONES) 17682 continue; 17683 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17684 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17685 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17686 17687 (void) ipif_get_name(ipif, 17688 mae.ipAdEntIfIndex.o_bytes, 17689 OCTET_LENGTH); 17690 mae.ipAdEntIfIndex.o_length = 17691 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17692 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17693 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17694 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17695 mae.ipAdEntInfo.ae_subnet_len = 17696 ip_mask_to_plen(ipif->ipif_net_mask); 17697 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17698 for (bitval = 1; 17699 bitval && 17700 !(bitval & ipif->ipif_brd_addr); 17701 bitval <<= 1) 17702 noop; 17703 mae.ipAdEntBcastAddr = bitval; 17704 mae.ipAdEntReasmMaxSize = 65535; 17705 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17706 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17707 mae.ipAdEntInfo.ae_broadcast_addr = 17708 ipif->ipif_brd_addr; 17709 mae.ipAdEntInfo.ae_pp_dst_addr = 17710 ipif->ipif_pp_dst_addr; 17711 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17712 ill->ill_flags | ill->ill_phyint->phyint_flags; 17713 17714 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17715 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17716 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17717 "allocate %u bytes\n", 17718 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17719 } 17720 } 17721 } 17722 rw_exit(&ill_g_lock); 17723 17724 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17725 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17726 (int)optp->level, (int)optp->name, (int)optp->len)); 17727 qreply(q, mpctl); 17728 return (mp2ctl); 17729 } 17730 17731 /* IPv6 address information */ 17732 static mblk_t * 17733 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17734 { 17735 struct opthdr *optp; 17736 mblk_t *mp2ctl; 17737 mblk_t *mp_tail = NULL; 17738 ill_t *ill; 17739 ipif_t *ipif; 17740 mib2_ipv6AddrEntry_t mae6; 17741 zoneid_t zoneid; 17742 ill_walk_context_t ctx; 17743 17744 /* 17745 * make a copy of the original message 17746 */ 17747 mp2ctl = copymsg(mpctl); 17748 17749 /* ipv6AddrEntryTable */ 17750 17751 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17752 optp->level = MIB2_IP6; 17753 optp->name = MIB2_IP6_ADDR; 17754 zoneid = Q_TO_CONN(q)->conn_zoneid; 17755 17756 rw_enter(&ill_g_lock, RW_READER); 17757 ill = ILL_START_WALK_V6(&ctx); 17758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17759 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17760 if (ipif->ipif_zoneid != zoneid && 17761 ipif->ipif_zoneid != ALL_ZONES) 17762 continue; 17763 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17764 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17765 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17766 17767 (void) ipif_get_name(ipif, 17768 mae6.ipv6AddrIfIndex.o_bytes, 17769 OCTET_LENGTH); 17770 mae6.ipv6AddrIfIndex.o_length = 17771 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17772 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17773 mae6.ipv6AddrPfxLength = 17774 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17775 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17776 mae6.ipv6AddrInfo.ae_subnet_len = 17777 mae6.ipv6AddrPfxLength; 17778 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17779 17780 /* Type: stateless(1), stateful(2), unknown(3) */ 17781 if (ipif->ipif_flags & IPIF_ADDRCONF) 17782 mae6.ipv6AddrType = 1; 17783 else 17784 mae6.ipv6AddrType = 2; 17785 /* Anycast: true(1), false(2) */ 17786 if (ipif->ipif_flags & IPIF_ANYCAST) 17787 mae6.ipv6AddrAnycastFlag = 1; 17788 else 17789 mae6.ipv6AddrAnycastFlag = 2; 17790 17791 /* 17792 * Address status: preferred(1), deprecated(2), 17793 * invalid(3), inaccessible(4), unknown(5) 17794 */ 17795 if (ipif->ipif_flags & IPIF_NOLOCAL) 17796 mae6.ipv6AddrStatus = 3; 17797 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17798 mae6.ipv6AddrStatus = 2; 17799 else 17800 mae6.ipv6AddrStatus = 1; 17801 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17802 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17803 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17804 ipif->ipif_v6pp_dst_addr; 17805 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17806 ill->ill_flags | ill->ill_phyint->phyint_flags; 17807 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17808 (char *)&mae6, 17809 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17810 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17811 "allocate %u bytes\n", 17812 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17813 } 17814 } 17815 } 17816 rw_exit(&ill_g_lock); 17817 17818 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17819 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17820 (int)optp->level, (int)optp->name, (int)optp->len)); 17821 qreply(q, mpctl); 17822 return (mp2ctl); 17823 } 17824 17825 /* IPv4 multicast group membership. */ 17826 static mblk_t * 17827 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17828 { 17829 struct opthdr *optp; 17830 mblk_t *mp2ctl; 17831 ill_t *ill; 17832 ipif_t *ipif; 17833 ilm_t *ilm; 17834 ip_member_t ipm; 17835 mblk_t *mp_tail = NULL; 17836 ill_walk_context_t ctx; 17837 zoneid_t zoneid; 17838 17839 /* 17840 * make a copy of the original message 17841 */ 17842 mp2ctl = copymsg(mpctl); 17843 zoneid = Q_TO_CONN(q)->conn_zoneid; 17844 17845 /* ipGroupMember table */ 17846 optp = (struct opthdr *)&mpctl->b_rptr[ 17847 sizeof (struct T_optmgmt_ack)]; 17848 optp->level = MIB2_IP; 17849 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17850 17851 rw_enter(&ill_g_lock, RW_READER); 17852 ill = ILL_START_WALK_V4(&ctx); 17853 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17854 ILM_WALKER_HOLD(ill); 17855 for (ipif = ill->ill_ipif; ipif != NULL; 17856 ipif = ipif->ipif_next) { 17857 if (ipif->ipif_zoneid != zoneid && 17858 ipif->ipif_zoneid != ALL_ZONES) 17859 continue; /* not this zone */ 17860 (void) ipif_get_name(ipif, 17861 ipm.ipGroupMemberIfIndex.o_bytes, 17862 OCTET_LENGTH); 17863 ipm.ipGroupMemberIfIndex.o_length = 17864 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17865 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17866 ASSERT(ilm->ilm_ipif != NULL); 17867 ASSERT(ilm->ilm_ill == NULL); 17868 if (ilm->ilm_ipif != ipif) 17869 continue; 17870 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17871 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17872 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17873 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17874 (char *)&ipm, (int)sizeof (ipm))) { 17875 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17876 "failed to allocate %u bytes\n", 17877 (uint_t)sizeof (ipm))); 17878 } 17879 } 17880 } 17881 ILM_WALKER_RELE(ill); 17882 } 17883 rw_exit(&ill_g_lock); 17884 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17885 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17886 (int)optp->level, (int)optp->name, (int)optp->len)); 17887 qreply(q, mpctl); 17888 return (mp2ctl); 17889 } 17890 17891 /* IPv6 multicast group membership. */ 17892 static mblk_t * 17893 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17894 { 17895 struct opthdr *optp; 17896 mblk_t *mp2ctl; 17897 ill_t *ill; 17898 ilm_t *ilm; 17899 ipv6_member_t ipm6; 17900 mblk_t *mp_tail = NULL; 17901 ill_walk_context_t ctx; 17902 zoneid_t zoneid; 17903 17904 /* 17905 * make a copy of the original message 17906 */ 17907 mp2ctl = copymsg(mpctl); 17908 zoneid = Q_TO_CONN(q)->conn_zoneid; 17909 17910 /* ip6GroupMember table */ 17911 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17912 optp->level = MIB2_IP6; 17913 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17914 17915 rw_enter(&ill_g_lock, RW_READER); 17916 ill = ILL_START_WALK_V6(&ctx); 17917 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17918 ILM_WALKER_HOLD(ill); 17919 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17920 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17921 ASSERT(ilm->ilm_ipif == NULL); 17922 ASSERT(ilm->ilm_ill != NULL); 17923 if (ilm->ilm_zoneid != zoneid) 17924 continue; /* not this zone */ 17925 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17926 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17927 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17928 if (!snmp_append_data2(mpctl->b_cont, 17929 &mp_tail, 17930 (char *)&ipm6, (int)sizeof (ipm6))) { 17931 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17932 "failed to allocate %u bytes\n", 17933 (uint_t)sizeof (ipm6))); 17934 } 17935 } 17936 ILM_WALKER_RELE(ill); 17937 } 17938 rw_exit(&ill_g_lock); 17939 17940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17941 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17942 (int)optp->level, (int)optp->name, (int)optp->len)); 17943 qreply(q, mpctl); 17944 return (mp2ctl); 17945 } 17946 17947 /* IP multicast filtered sources */ 17948 static mblk_t * 17949 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17950 { 17951 struct opthdr *optp; 17952 mblk_t *mp2ctl; 17953 ill_t *ill; 17954 ipif_t *ipif; 17955 ilm_t *ilm; 17956 ip_grpsrc_t ips; 17957 mblk_t *mp_tail = NULL; 17958 ill_walk_context_t ctx; 17959 zoneid_t zoneid; 17960 int i; 17961 slist_t *sl; 17962 17963 /* 17964 * make a copy of the original message 17965 */ 17966 mp2ctl = copymsg(mpctl); 17967 zoneid = Q_TO_CONN(q)->conn_zoneid; 17968 17969 /* ipGroupSource table */ 17970 optp = (struct opthdr *)&mpctl->b_rptr[ 17971 sizeof (struct T_optmgmt_ack)]; 17972 optp->level = MIB2_IP; 17973 optp->name = EXPER_IP_GROUP_SOURCES; 17974 17975 rw_enter(&ill_g_lock, RW_READER); 17976 ill = ILL_START_WALK_V4(&ctx); 17977 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17978 ILM_WALKER_HOLD(ill); 17979 for (ipif = ill->ill_ipif; ipif != NULL; 17980 ipif = ipif->ipif_next) { 17981 if (ipif->ipif_zoneid != zoneid) 17982 continue; /* not this zone */ 17983 (void) ipif_get_name(ipif, 17984 ips.ipGroupSourceIfIndex.o_bytes, 17985 OCTET_LENGTH); 17986 ips.ipGroupSourceIfIndex.o_length = 17987 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17988 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17989 ASSERT(ilm->ilm_ipif != NULL); 17990 ASSERT(ilm->ilm_ill == NULL); 17991 sl = ilm->ilm_filter; 17992 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17993 continue; 17994 ips.ipGroupSourceGroup = ilm->ilm_addr; 17995 for (i = 0; i < sl->sl_numsrc; i++) { 17996 if (!IN6_IS_ADDR_V4MAPPED( 17997 &sl->sl_addr[i])) 17998 continue; 17999 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18000 ips.ipGroupSourceAddress); 18001 if (snmp_append_data2(mpctl->b_cont, 18002 &mp_tail, (char *)&ips, 18003 (int)sizeof (ips)) == 0) { 18004 ip1dbg(("ip_snmp_get_mib2_" 18005 "ip_group_src: failed to " 18006 "allocate %u bytes\n", 18007 (uint_t)sizeof (ips))); 18008 } 18009 } 18010 } 18011 } 18012 ILM_WALKER_RELE(ill); 18013 } 18014 rw_exit(&ill_g_lock); 18015 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18016 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18017 (int)optp->level, (int)optp->name, (int)optp->len)); 18018 qreply(q, mpctl); 18019 return (mp2ctl); 18020 } 18021 18022 /* IPv6 multicast filtered sources. */ 18023 static mblk_t * 18024 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18025 { 18026 struct opthdr *optp; 18027 mblk_t *mp2ctl; 18028 ill_t *ill; 18029 ilm_t *ilm; 18030 ipv6_grpsrc_t ips6; 18031 mblk_t *mp_tail = NULL; 18032 ill_walk_context_t ctx; 18033 zoneid_t zoneid; 18034 int i; 18035 slist_t *sl; 18036 18037 /* 18038 * make a copy of the original message 18039 */ 18040 mp2ctl = copymsg(mpctl); 18041 zoneid = Q_TO_CONN(q)->conn_zoneid; 18042 18043 /* ip6GroupMember table */ 18044 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18045 optp->level = MIB2_IP6; 18046 optp->name = EXPER_IP6_GROUP_SOURCES; 18047 18048 rw_enter(&ill_g_lock, RW_READER); 18049 ill = ILL_START_WALK_V6(&ctx); 18050 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18051 ILM_WALKER_HOLD(ill); 18052 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18053 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18054 ASSERT(ilm->ilm_ipif == NULL); 18055 ASSERT(ilm->ilm_ill != NULL); 18056 sl = ilm->ilm_filter; 18057 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18058 continue; 18059 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18060 for (i = 0; i < sl->sl_numsrc; i++) { 18061 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18062 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18063 (char *)&ips6, (int)sizeof (ips6))) { 18064 ip1dbg(("ip_snmp_get_mib2_ip6_" 18065 "group_src: failed to allocate " 18066 "%u bytes\n", 18067 (uint_t)sizeof (ips6))); 18068 } 18069 } 18070 } 18071 ILM_WALKER_RELE(ill); 18072 } 18073 rw_exit(&ill_g_lock); 18074 18075 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18076 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18077 (int)optp->level, (int)optp->name, (int)optp->len)); 18078 qreply(q, mpctl); 18079 return (mp2ctl); 18080 } 18081 18082 /* Multicast routing virtual interface table. */ 18083 static mblk_t * 18084 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18085 { 18086 struct opthdr *optp; 18087 mblk_t *mp2ctl; 18088 18089 /* 18090 * make a copy of the original message 18091 */ 18092 mp2ctl = copymsg(mpctl); 18093 18094 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18095 optp->level = EXPER_DVMRP; 18096 optp->name = EXPER_DVMRP_VIF; 18097 if (!ip_mroute_vif(mpctl->b_cont)) { 18098 ip0dbg(("ip_mroute_vif: failed\n")); 18099 } 18100 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18101 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18102 (int)optp->level, (int)optp->name, (int)optp->len)); 18103 qreply(q, mpctl); 18104 return (mp2ctl); 18105 } 18106 18107 /* Multicast routing table. */ 18108 static mblk_t * 18109 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18110 { 18111 struct opthdr *optp; 18112 mblk_t *mp2ctl; 18113 18114 /* 18115 * make a copy of the original message 18116 */ 18117 mp2ctl = copymsg(mpctl); 18118 18119 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18120 optp->level = EXPER_DVMRP; 18121 optp->name = EXPER_DVMRP_MRT; 18122 if (!ip_mroute_mrt(mpctl->b_cont)) { 18123 ip0dbg(("ip_mroute_mrt: failed\n")); 18124 } 18125 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18126 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18127 (int)optp->level, (int)optp->name, (int)optp->len)); 18128 qreply(q, mpctl); 18129 return (mp2ctl); 18130 } 18131 18132 /* 18133 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18134 * in one IRE walk. 18135 */ 18136 static mblk_t * 18137 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18138 { 18139 struct opthdr *optp; 18140 mblk_t *mp2ctl; /* Returned */ 18141 mblk_t *mp3ctl; /* nettomedia */ 18142 mblk_t *mp4ctl; /* routeattrs */ 18143 iproutedata_t ird; 18144 zoneid_t zoneid; 18145 18146 /* 18147 * make copies of the original message 18148 * - mp2ctl is returned unchanged to the caller for his use 18149 * - mpctl is sent upstream as ipRouteEntryTable 18150 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18151 * - mp4ctl is sent upstream as ipRouteAttributeTable 18152 */ 18153 mp2ctl = copymsg(mpctl); 18154 mp3ctl = copymsg(mpctl); 18155 mp4ctl = copymsg(mpctl); 18156 if (mp3ctl == NULL || mp4ctl == NULL) { 18157 freemsg(mp4ctl); 18158 freemsg(mp3ctl); 18159 freemsg(mp2ctl); 18160 freemsg(mpctl); 18161 return (NULL); 18162 } 18163 18164 bzero(&ird, sizeof (ird)); 18165 18166 ird.ird_route.lp_head = mpctl->b_cont; 18167 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18168 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18169 18170 zoneid = Q_TO_CONN(q)->conn_zoneid; 18171 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18172 if (zoneid == GLOBAL_ZONEID) { 18173 /* 18174 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18175 * the sys_net_config privilege, it can only run in the global 18176 * zone, so we don't display these IREs in the other zones. 18177 */ 18178 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18179 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18180 } 18181 18182 /* ipRouteEntryTable in mpctl */ 18183 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18184 optp->level = MIB2_IP; 18185 optp->name = MIB2_IP_ROUTE; 18186 optp->len = msgdsize(ird.ird_route.lp_head); 18187 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18188 (int)optp->level, (int)optp->name, (int)optp->len)); 18189 qreply(q, mpctl); 18190 18191 /* ipNetToMediaEntryTable in mp3ctl */ 18192 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18193 optp->level = MIB2_IP; 18194 optp->name = MIB2_IP_MEDIA; 18195 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18196 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18197 (int)optp->level, (int)optp->name, (int)optp->len)); 18198 qreply(q, mp3ctl); 18199 18200 /* ipRouteAttributeTable in mp4ctl */ 18201 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18202 optp->level = MIB2_IP; 18203 optp->name = EXPER_IP_RTATTR; 18204 optp->len = msgdsize(ird.ird_attrs.lp_head); 18205 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18206 (int)optp->level, (int)optp->name, (int)optp->len)); 18207 if (optp->len == 0) 18208 freemsg(mp4ctl); 18209 else 18210 qreply(q, mp4ctl); 18211 18212 return (mp2ctl); 18213 } 18214 18215 /* 18216 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18217 * ipv6NetToMediaEntryTable in an NDP walk. 18218 */ 18219 static mblk_t * 18220 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18221 { 18222 struct opthdr *optp; 18223 mblk_t *mp2ctl; /* Returned */ 18224 mblk_t *mp3ctl; /* nettomedia */ 18225 mblk_t *mp4ctl; /* routeattrs */ 18226 iproutedata_t ird; 18227 zoneid_t zoneid; 18228 18229 /* 18230 * make copies of the original message 18231 * - mp2ctl is returned unchanged to the caller for his use 18232 * - mpctl is sent upstream as ipv6RouteEntryTable 18233 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18234 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18235 */ 18236 mp2ctl = copymsg(mpctl); 18237 mp3ctl = copymsg(mpctl); 18238 mp4ctl = copymsg(mpctl); 18239 if (mp3ctl == NULL || mp4ctl == NULL) { 18240 freemsg(mp4ctl); 18241 freemsg(mp3ctl); 18242 freemsg(mp2ctl); 18243 freemsg(mpctl); 18244 return (NULL); 18245 } 18246 18247 bzero(&ird, sizeof (ird)); 18248 18249 ird.ird_route.lp_head = mpctl->b_cont; 18250 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18251 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18252 18253 zoneid = Q_TO_CONN(q)->conn_zoneid; 18254 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18255 18256 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18257 optp->level = MIB2_IP6; 18258 optp->name = MIB2_IP6_ROUTE; 18259 optp->len = msgdsize(ird.ird_route.lp_head); 18260 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18261 (int)optp->level, (int)optp->name, (int)optp->len)); 18262 qreply(q, mpctl); 18263 18264 /* ipv6NetToMediaEntryTable in mp3ctl */ 18265 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18266 18267 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18268 optp->level = MIB2_IP6; 18269 optp->name = MIB2_IP6_MEDIA; 18270 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18271 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18272 (int)optp->level, (int)optp->name, (int)optp->len)); 18273 qreply(q, mp3ctl); 18274 18275 /* ipv6RouteAttributeTable in mp4ctl */ 18276 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18277 optp->level = MIB2_IP6; 18278 optp->name = EXPER_IP_RTATTR; 18279 optp->len = msgdsize(ird.ird_attrs.lp_head); 18280 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18281 (int)optp->level, (int)optp->name, (int)optp->len)); 18282 if (optp->len == 0) 18283 freemsg(mp4ctl); 18284 else 18285 qreply(q, mp4ctl); 18286 18287 return (mp2ctl); 18288 } 18289 18290 /* 18291 * ICMPv6 mib: One per ill 18292 */ 18293 static mblk_t * 18294 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18295 { 18296 struct opthdr *optp; 18297 mblk_t *mp2ctl; 18298 ill_t *ill; 18299 ill_walk_context_t ctx; 18300 mblk_t *mp_tail = NULL; 18301 18302 /* 18303 * Make a copy of the original message 18304 */ 18305 mp2ctl = copymsg(mpctl); 18306 18307 /* fixed length IPv6 structure ... */ 18308 18309 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18310 optp->level = MIB2_IP6; 18311 optp->name = 0; 18312 /* Include "unknown interface" ip6_mib */ 18313 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18314 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18315 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18316 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18317 sizeof (mib2_ipv6IfStatsEntry_t)); 18318 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18319 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18320 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18321 sizeof (mib2_ipv6NetToMediaEntry_t)); 18322 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18323 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18324 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18325 (int)sizeof (ip6_mib))) { 18326 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18327 (uint_t)sizeof (ip6_mib))); 18328 } 18329 18330 rw_enter(&ill_g_lock, RW_READER); 18331 ill = ILL_START_WALK_V6(&ctx); 18332 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18333 ill->ill_ip6_mib->ipv6IfIndex = 18334 ill->ill_phyint->phyint_ifindex; 18335 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18336 ipv6_forward ? 1 : 2); 18337 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18338 ill->ill_max_hops); 18339 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18340 sizeof (mib2_ipv6IfStatsEntry_t)); 18341 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18342 sizeof (mib2_ipv6AddrEntry_t)); 18343 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18344 sizeof (mib2_ipv6RouteEntry_t)); 18345 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18346 sizeof (mib2_ipv6NetToMediaEntry_t)); 18347 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18348 sizeof (ipv6_member_t)); 18349 18350 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18351 (char *)ill->ill_ip6_mib, 18352 (int)sizeof (*ill->ill_ip6_mib))) { 18353 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18354 "%u bytes\n", 18355 (uint_t)sizeof (*ill->ill_ip6_mib))); 18356 } 18357 } 18358 rw_exit(&ill_g_lock); 18359 18360 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18361 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18362 (int)optp->level, (int)optp->name, (int)optp->len)); 18363 qreply(q, mpctl); 18364 return (mp2ctl); 18365 } 18366 18367 /* 18368 * ICMPv6 mib: One per ill 18369 */ 18370 static mblk_t * 18371 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18372 { 18373 struct opthdr *optp; 18374 mblk_t *mp2ctl; 18375 ill_t *ill; 18376 ill_walk_context_t ctx; 18377 mblk_t *mp_tail = NULL; 18378 /* 18379 * Make a copy of the original message 18380 */ 18381 mp2ctl = copymsg(mpctl); 18382 18383 /* fixed length ICMPv6 structure ... */ 18384 18385 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18386 optp->level = MIB2_ICMP6; 18387 optp->name = 0; 18388 /* Include "unknown interface" icmp6_mib */ 18389 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18390 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18391 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18392 (int)sizeof (icmp6_mib))) { 18393 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18394 (uint_t)sizeof (icmp6_mib))); 18395 } 18396 18397 rw_enter(&ill_g_lock, RW_READER); 18398 ill = ILL_START_WALK_V6(&ctx); 18399 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18400 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18401 ill->ill_phyint->phyint_ifindex; 18402 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18403 sizeof (mib2_ipv6IfIcmpEntry_t); 18404 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18405 (char *)ill->ill_icmp6_mib, 18406 (int)sizeof (*ill->ill_icmp6_mib))) { 18407 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18408 "%u bytes\n", 18409 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18410 } 18411 } 18412 rw_exit(&ill_g_lock); 18413 18414 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18415 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18416 (int)optp->level, (int)optp->name, (int)optp->len)); 18417 qreply(q, mpctl); 18418 return (mp2ctl); 18419 } 18420 18421 /* 18422 * ire_walk routine to create both ipRouteEntryTable and 18423 * ipNetToMediaEntryTable in one IRE walk 18424 */ 18425 static void 18426 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18427 { 18428 ill_t *ill; 18429 ipif_t *ipif; 18430 mblk_t *llmp; 18431 dl_unitdata_req_t *dlup; 18432 mib2_ipRouteEntry_t *re; 18433 mib2_ipNetToMediaEntry_t ntme; 18434 mib2_ipAttributeEntry_t *iae, *iaeptr; 18435 ipaddr_t gw_addr; 18436 tsol_ire_gw_secattr_t *attrp; 18437 tsol_gc_t *gc = NULL; 18438 tsol_gcgrp_t *gcgrp = NULL; 18439 uint_t sacnt = 0; 18440 int i; 18441 18442 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18443 18444 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18445 return; 18446 18447 if ((attrp = ire->ire_gw_secattr) != NULL) { 18448 mutex_enter(&attrp->igsa_lock); 18449 if ((gc = attrp->igsa_gc) != NULL) { 18450 gcgrp = gc->gc_grp; 18451 ASSERT(gcgrp != NULL); 18452 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18453 sacnt = 1; 18454 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18455 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18456 gc = gcgrp->gcgrp_head; 18457 sacnt = gcgrp->gcgrp_count; 18458 } 18459 mutex_exit(&attrp->igsa_lock); 18460 18461 /* do nothing if there's no gc to report */ 18462 if (gc == NULL) { 18463 ASSERT(sacnt == 0); 18464 if (gcgrp != NULL) { 18465 /* we might as well drop the lock now */ 18466 rw_exit(&gcgrp->gcgrp_rwlock); 18467 gcgrp = NULL; 18468 } 18469 attrp = NULL; 18470 } 18471 18472 ASSERT(gc == NULL || (gcgrp != NULL && 18473 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18474 } 18475 ASSERT(sacnt == 0 || gc != NULL); 18476 18477 if (sacnt != 0 && 18478 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18479 kmem_free(re, sizeof (*re)); 18480 rw_exit(&gcgrp->gcgrp_rwlock); 18481 return; 18482 } 18483 18484 /* 18485 * Return all IRE types for route table... let caller pick and choose 18486 */ 18487 re->ipRouteDest = ire->ire_addr; 18488 ipif = ire->ire_ipif; 18489 re->ipRouteIfIndex.o_length = 0; 18490 if (ire->ire_type == IRE_CACHE) { 18491 ill = (ill_t *)ire->ire_stq->q_ptr; 18492 re->ipRouteIfIndex.o_length = 18493 ill->ill_name_length == 0 ? 0 : 18494 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18495 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18496 re->ipRouteIfIndex.o_length); 18497 } else if (ipif != NULL) { 18498 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18499 OCTET_LENGTH); 18500 re->ipRouteIfIndex.o_length = 18501 mi_strlen(re->ipRouteIfIndex.o_bytes); 18502 } 18503 re->ipRouteMetric1 = -1; 18504 re->ipRouteMetric2 = -1; 18505 re->ipRouteMetric3 = -1; 18506 re->ipRouteMetric4 = -1; 18507 18508 gw_addr = ire->ire_gateway_addr; 18509 18510 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18511 re->ipRouteNextHop = ire->ire_src_addr; 18512 else 18513 re->ipRouteNextHop = gw_addr; 18514 /* indirect(4), direct(3), or invalid(2) */ 18515 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18516 re->ipRouteType = 2; 18517 else 18518 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18519 re->ipRouteProto = -1; 18520 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18521 re->ipRouteMask = ire->ire_mask; 18522 re->ipRouteMetric5 = -1; 18523 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18524 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18525 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18526 if (ire->ire_nce && 18527 ire->ire_nce->nce_state == ND_REACHABLE) 18528 llmp = ire->ire_nce->nce_res_mp; 18529 else 18530 llmp = NULL; 18531 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18532 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18533 re->ipRouteInfo.re_ire_type = ire->ire_type; 18534 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18535 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18536 re->ipRouteInfo.re_flags = ire->ire_flags; 18537 re->ipRouteInfo.re_in_ill.o_length = 0; 18538 if (ire->ire_in_ill != NULL) { 18539 re->ipRouteInfo.re_in_ill.o_length = 18540 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18541 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18542 bcopy(ire->ire_in_ill->ill_name, 18543 re->ipRouteInfo.re_in_ill.o_bytes, 18544 re->ipRouteInfo.re_in_ill.o_length); 18545 } 18546 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18547 18548 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18549 (char *)re, (int)sizeof (*re))) { 18550 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18551 (uint_t)sizeof (*re))); 18552 } 18553 18554 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18555 iaeptr->iae_routeidx = ird->ird_idx; 18556 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18557 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18558 } 18559 18560 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18561 (char *)iae, sacnt * sizeof (*iae))) { 18562 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18563 (unsigned)(sacnt * sizeof (*iae)))); 18564 } 18565 18566 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18567 goto done; 18568 /* 18569 * only IRE_CACHE entries that are for a directly connected subnet 18570 * get appended to net -> phys addr table 18571 * (others in arp) 18572 */ 18573 ntme.ipNetToMediaIfIndex.o_length = 0; 18574 ill = ire_to_ill(ire); 18575 ASSERT(ill != NULL); 18576 ntme.ipNetToMediaIfIndex.o_length = 18577 ill->ill_name_length == 0 ? 0 : 18578 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18579 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18580 ntme.ipNetToMediaIfIndex.o_length); 18581 18582 ntme.ipNetToMediaPhysAddress.o_length = 0; 18583 if (llmp) { 18584 uchar_t *addr; 18585 18586 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18587 /* Remove sap from address */ 18588 if (ill->ill_sap_length < 0) 18589 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18590 else 18591 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18592 ill->ill_sap_length; 18593 18594 ntme.ipNetToMediaPhysAddress.o_length = 18595 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18596 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18597 ntme.ipNetToMediaPhysAddress.o_length); 18598 } 18599 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18600 /* assume dynamic (may be changed in arp) */ 18601 ntme.ipNetToMediaType = 3; 18602 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18603 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18604 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18605 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18606 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18607 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18608 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18609 (uint_t)sizeof (ntme))); 18610 } 18611 done: 18612 /* bump route index for next pass */ 18613 ird->ird_idx++; 18614 18615 kmem_free(re, sizeof (*re)); 18616 if (sacnt != 0) 18617 kmem_free(iae, sacnt * sizeof (*iae)); 18618 18619 if (gcgrp != NULL) 18620 rw_exit(&gcgrp->gcgrp_rwlock); 18621 } 18622 18623 /* 18624 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18625 */ 18626 static void 18627 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18628 { 18629 ill_t *ill; 18630 ipif_t *ipif; 18631 mib2_ipv6RouteEntry_t *re; 18632 mib2_ipAttributeEntry_t *iae, *iaeptr; 18633 in6_addr_t gw_addr_v6; 18634 tsol_ire_gw_secattr_t *attrp; 18635 tsol_gc_t *gc = NULL; 18636 tsol_gcgrp_t *gcgrp = NULL; 18637 uint_t sacnt = 0; 18638 int i; 18639 18640 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18641 18642 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18643 return; 18644 18645 if ((attrp = ire->ire_gw_secattr) != NULL) { 18646 mutex_enter(&attrp->igsa_lock); 18647 if ((gc = attrp->igsa_gc) != NULL) { 18648 gcgrp = gc->gc_grp; 18649 ASSERT(gcgrp != NULL); 18650 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18651 sacnt = 1; 18652 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18653 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18654 gc = gcgrp->gcgrp_head; 18655 sacnt = gcgrp->gcgrp_count; 18656 } 18657 mutex_exit(&attrp->igsa_lock); 18658 18659 /* do nothing if there's no gc to report */ 18660 if (gc == NULL) { 18661 ASSERT(sacnt == 0); 18662 if (gcgrp != NULL) { 18663 /* we might as well drop the lock now */ 18664 rw_exit(&gcgrp->gcgrp_rwlock); 18665 gcgrp = NULL; 18666 } 18667 attrp = NULL; 18668 } 18669 18670 ASSERT(gc == NULL || (gcgrp != NULL && 18671 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18672 } 18673 ASSERT(sacnt == 0 || gc != NULL); 18674 18675 if (sacnt != 0 && 18676 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18677 kmem_free(re, sizeof (*re)); 18678 rw_exit(&gcgrp->gcgrp_rwlock); 18679 return; 18680 } 18681 18682 /* 18683 * Return all IRE types for route table... let caller pick and choose 18684 */ 18685 re->ipv6RouteDest = ire->ire_addr_v6; 18686 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18687 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18688 re->ipv6RouteIfIndex.o_length = 0; 18689 ipif = ire->ire_ipif; 18690 if (ire->ire_type == IRE_CACHE) { 18691 ill = (ill_t *)ire->ire_stq->q_ptr; 18692 re->ipv6RouteIfIndex.o_length = 18693 ill->ill_name_length == 0 ? 0 : 18694 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18695 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18696 re->ipv6RouteIfIndex.o_length); 18697 } else if (ipif != NULL) { 18698 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18699 OCTET_LENGTH); 18700 re->ipv6RouteIfIndex.o_length = 18701 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18702 } 18703 18704 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18705 18706 mutex_enter(&ire->ire_lock); 18707 gw_addr_v6 = ire->ire_gateway_addr_v6; 18708 mutex_exit(&ire->ire_lock); 18709 18710 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18711 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18712 else 18713 re->ipv6RouteNextHop = gw_addr_v6; 18714 18715 /* remote(4), local(3), or discard(2) */ 18716 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18717 re->ipv6RouteType = 2; 18718 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18719 re->ipv6RouteType = 3; 18720 else 18721 re->ipv6RouteType = 4; 18722 18723 re->ipv6RouteProtocol = -1; 18724 re->ipv6RoutePolicy = 0; 18725 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18726 re->ipv6RouteNextHopRDI = 0; 18727 re->ipv6RouteWeight = 0; 18728 re->ipv6RouteMetric = 0; 18729 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18730 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18731 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18732 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18733 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18734 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18735 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18736 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18737 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18738 18739 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18740 (char *)re, (int)sizeof (*re))) { 18741 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18742 (uint_t)sizeof (*re))); 18743 } 18744 18745 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18746 iaeptr->iae_routeidx = ird->ird_idx; 18747 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18748 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18749 } 18750 18751 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18752 (char *)iae, sacnt * sizeof (*iae))) { 18753 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18754 (unsigned)(sacnt * sizeof (*iae)))); 18755 } 18756 18757 /* bump route index for next pass */ 18758 ird->ird_idx++; 18759 18760 kmem_free(re, sizeof (*re)); 18761 if (sacnt != 0) 18762 kmem_free(iae, sacnt * sizeof (*iae)); 18763 18764 if (gcgrp != NULL) 18765 rw_exit(&gcgrp->gcgrp_rwlock); 18766 } 18767 18768 /* 18769 * ndp_walk routine to create ipv6NetToMediaEntryTable 18770 */ 18771 static int 18772 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18773 { 18774 ill_t *ill; 18775 mib2_ipv6NetToMediaEntry_t ntme; 18776 dl_unitdata_req_t *dl; 18777 18778 ill = nce->nce_ill; 18779 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 18780 return (0); 18781 18782 /* 18783 * Neighbor cache entry attached to IRE with on-link 18784 * destination. 18785 */ 18786 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18787 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18788 if ((ill->ill_flags & ILLF_XRESOLV) && 18789 (nce->nce_res_mp != NULL)) { 18790 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18791 ntme.ipv6NetToMediaPhysAddress.o_length = 18792 dl->dl_dest_addr_length; 18793 } else { 18794 ntme.ipv6NetToMediaPhysAddress.o_length = 18795 ill->ill_phys_addr_length; 18796 } 18797 if (nce->nce_res_mp != NULL) { 18798 bcopy((char *)nce->nce_res_mp->b_rptr + 18799 NCE_LL_ADDR_OFFSET(ill), 18800 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18801 ntme.ipv6NetToMediaPhysAddress.o_length); 18802 } else { 18803 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18804 ill->ill_phys_addr_length); 18805 } 18806 /* 18807 * Note: Returns ND_* states. Should be: 18808 * reachable(1), stale(2), delay(3), probe(4), 18809 * invalid(5), unknown(6) 18810 */ 18811 ntme.ipv6NetToMediaState = nce->nce_state; 18812 ntme.ipv6NetToMediaLastUpdated = 0; 18813 18814 /* other(1), dynamic(2), static(3), local(4) */ 18815 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18816 ntme.ipv6NetToMediaType = 4; 18817 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18818 ntme.ipv6NetToMediaType = 1; 18819 } else { 18820 ntme.ipv6NetToMediaType = 2; 18821 } 18822 18823 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18824 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18825 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18826 (uint_t)sizeof (ntme))); 18827 } 18828 return (0); 18829 } 18830 18831 /* 18832 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18833 */ 18834 /* ARGSUSED */ 18835 int 18836 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18837 { 18838 switch (level) { 18839 case MIB2_IP: 18840 case MIB2_ICMP: 18841 switch (name) { 18842 default: 18843 break; 18844 } 18845 return (1); 18846 default: 18847 return (1); 18848 } 18849 } 18850 18851 /* 18852 * Called before the options are updated to check if this packet will 18853 * be source routed from here. 18854 * This routine assumes that the options are well formed i.e. that they 18855 * have already been checked. 18856 */ 18857 static boolean_t 18858 ip_source_routed(ipha_t *ipha) 18859 { 18860 ipoptp_t opts; 18861 uchar_t *opt; 18862 uint8_t optval; 18863 uint8_t optlen; 18864 ipaddr_t dst; 18865 ire_t *ire; 18866 18867 if (IS_SIMPLE_IPH(ipha)) { 18868 ip2dbg(("not source routed\n")); 18869 return (B_FALSE); 18870 } 18871 dst = ipha->ipha_dst; 18872 for (optval = ipoptp_first(&opts, ipha); 18873 optval != IPOPT_EOL; 18874 optval = ipoptp_next(&opts)) { 18875 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18876 opt = opts.ipoptp_cur; 18877 optlen = opts.ipoptp_len; 18878 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18879 optval, optlen)); 18880 switch (optval) { 18881 uint32_t off; 18882 case IPOPT_SSRR: 18883 case IPOPT_LSRR: 18884 /* 18885 * If dst is one of our addresses and there are some 18886 * entries left in the source route return (true). 18887 */ 18888 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18889 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18890 if (ire == NULL) { 18891 ip2dbg(("ip_source_routed: not next" 18892 " source route 0x%x\n", 18893 ntohl(dst))); 18894 return (B_FALSE); 18895 } 18896 ire_refrele(ire); 18897 off = opt[IPOPT_OFFSET]; 18898 off--; 18899 if (optlen < IP_ADDR_LEN || 18900 off > optlen - IP_ADDR_LEN) { 18901 /* End of source route */ 18902 ip1dbg(("ip_source_routed: end of SR\n")); 18903 return (B_FALSE); 18904 } 18905 return (B_TRUE); 18906 } 18907 } 18908 ip2dbg(("not source routed\n")); 18909 return (B_FALSE); 18910 } 18911 18912 /* 18913 * Check if the packet contains any source route. 18914 */ 18915 static boolean_t 18916 ip_source_route_included(ipha_t *ipha) 18917 { 18918 ipoptp_t opts; 18919 uint8_t optval; 18920 18921 if (IS_SIMPLE_IPH(ipha)) 18922 return (B_FALSE); 18923 for (optval = ipoptp_first(&opts, ipha); 18924 optval != IPOPT_EOL; 18925 optval = ipoptp_next(&opts)) { 18926 switch (optval) { 18927 case IPOPT_SSRR: 18928 case IPOPT_LSRR: 18929 return (B_TRUE); 18930 } 18931 } 18932 return (B_FALSE); 18933 } 18934 18935 /* 18936 * Called when the IRE expiration timer fires. 18937 */ 18938 /* ARGSUSED */ 18939 void 18940 ip_trash_timer_expire(void *args) 18941 { 18942 int flush_flag = 0; 18943 18944 /* 18945 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18946 * This lock makes sure that a new invocation of this function 18947 * that occurs due to an almost immediate timer firing will not 18948 * progress beyond this point until the current invocation is done 18949 */ 18950 mutex_enter(&ip_trash_timer_lock); 18951 ip_ire_expire_id = 0; 18952 mutex_exit(&ip_trash_timer_lock); 18953 18954 /* Periodic timer */ 18955 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18956 /* 18957 * Remove all IRE_CACHE entries since they might 18958 * contain arp information. 18959 */ 18960 flush_flag |= FLUSH_ARP_TIME; 18961 ip_ire_arp_time_elapsed = 0; 18962 IP_STAT(ip_ire_arp_timer_expired); 18963 } 18964 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18965 /* Remove all redirects */ 18966 flush_flag |= FLUSH_REDIRECT_TIME; 18967 ip_ire_rd_time_elapsed = 0; 18968 IP_STAT(ip_ire_redirect_timer_expired); 18969 } 18970 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18971 /* Increase path mtu */ 18972 flush_flag |= FLUSH_MTU_TIME; 18973 ip_ire_pmtu_time_elapsed = 0; 18974 IP_STAT(ip_ire_pmtu_timer_expired); 18975 } 18976 18977 /* 18978 * Optimize for the case when there are no redirects in the 18979 * ftable, that is, no need to walk the ftable in that case. 18980 */ 18981 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 18982 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 18983 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 18984 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 18985 } 18986 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 18987 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 18988 ire_expire, (char *)(uintptr_t)flush_flag, 18989 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 18990 } 18991 if (flush_flag & FLUSH_MTU_TIME) { 18992 /* 18993 * Walk all IPv6 IRE's and update them 18994 * Note that ARP and redirect timers are not 18995 * needed since NUD handles stale entries. 18996 */ 18997 flush_flag = FLUSH_MTU_TIME; 18998 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18999 ALL_ZONES); 19000 } 19001 19002 ip_ire_arp_time_elapsed += ip_timer_interval; 19003 ip_ire_rd_time_elapsed += ip_timer_interval; 19004 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19005 19006 /* 19007 * Hold the lock to serialize timeout calls and prevent 19008 * stale values in ip_ire_expire_id. Otherwise it is possible 19009 * for the timer to fire and a new invocation of this function 19010 * to start before the return value of timeout has been stored 19011 * in ip_ire_expire_id by the current invocation. 19012 */ 19013 mutex_enter(&ip_trash_timer_lock); 19014 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19015 MSEC_TO_TICK(ip_timer_interval)); 19016 mutex_exit(&ip_trash_timer_lock); 19017 } 19018 19019 /* 19020 * Called by the memory allocator subsystem directly, when the system 19021 * is running low on memory. 19022 */ 19023 /* ARGSUSED */ 19024 void 19025 ip_trash_ire_reclaim(void *args) 19026 { 19027 ire_cache_count_t icc; 19028 ire_cache_reclaim_t icr; 19029 ncc_cache_count_t ncc; 19030 nce_cache_reclaim_t ncr; 19031 uint_t delete_cnt; 19032 /* 19033 * Memory reclaim call back. 19034 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19035 * Then, with a target of freeing 1/Nth of IRE_CACHE 19036 * entries, determine what fraction to free for 19037 * each category of IRE_CACHE entries giving absolute priority 19038 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19039 * entry will be freed unless all offlink entries are freed). 19040 */ 19041 icc.icc_total = 0; 19042 icc.icc_unused = 0; 19043 icc.icc_offlink = 0; 19044 icc.icc_pmtu = 0; 19045 icc.icc_onlink = 0; 19046 ire_walk(ire_cache_count, (char *)&icc); 19047 19048 /* 19049 * Free NCEs for IPv6 like the onlink ires. 19050 */ 19051 ncc.ncc_total = 0; 19052 ncc.ncc_host = 0; 19053 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19054 19055 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19056 icc.icc_pmtu + icc.icc_onlink); 19057 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19058 IP_STAT(ip_trash_ire_reclaim_calls); 19059 if (delete_cnt == 0) 19060 return; 19061 IP_STAT(ip_trash_ire_reclaim_success); 19062 /* Always delete all unused offlink entries */ 19063 icr.icr_unused = 1; 19064 if (delete_cnt <= icc.icc_unused) { 19065 /* 19066 * Only need to free unused entries. In other words, 19067 * there are enough unused entries to free to meet our 19068 * target number of freed ire cache entries. 19069 */ 19070 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19071 ncr.ncr_host = 0; 19072 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19073 /* 19074 * Only need to free unused entries, plus a fraction of offlink 19075 * entries. It follows from the first if statement that 19076 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19077 */ 19078 delete_cnt -= icc.icc_unused; 19079 /* Round up # deleted by truncating fraction */ 19080 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19081 icr.icr_pmtu = icr.icr_onlink = 0; 19082 ncr.ncr_host = 0; 19083 } else if (delete_cnt <= 19084 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19085 /* 19086 * Free all unused and offlink entries, plus a fraction of 19087 * pmtu entries. It follows from the previous if statement 19088 * that icc_pmtu is non-zero, and that 19089 * delete_cnt != icc_unused + icc_offlink. 19090 */ 19091 icr.icr_offlink = 1; 19092 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19093 /* Round up # deleted by truncating fraction */ 19094 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19095 icr.icr_onlink = 0; 19096 ncr.ncr_host = 0; 19097 } else { 19098 /* 19099 * Free all unused, offlink, and pmtu entries, plus a fraction 19100 * of onlink entries. If we're here, then we know that 19101 * icc_onlink is non-zero, and that 19102 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19103 */ 19104 icr.icr_offlink = icr.icr_pmtu = 1; 19105 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19106 icc.icc_pmtu; 19107 /* Round up # deleted by truncating fraction */ 19108 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19109 /* Using the same delete fraction as for onlink IREs */ 19110 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19111 } 19112 #ifdef DEBUG 19113 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19114 "fractions %d/%d/%d/%d\n", 19115 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19116 icc.icc_unused, icc.icc_offlink, 19117 icc.icc_pmtu, icc.icc_onlink, 19118 icr.icr_unused, icr.icr_offlink, 19119 icr.icr_pmtu, icr.icr_onlink)); 19120 #endif 19121 ire_walk(ire_cache_reclaim, (char *)&icr); 19122 if (ncr.ncr_host != 0) 19123 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19124 (uchar_t *)&ncr); 19125 #ifdef DEBUG 19126 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19127 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19128 ire_walk(ire_cache_count, (char *)&icc); 19129 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19130 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19131 icc.icc_pmtu, icc.icc_onlink)); 19132 #endif 19133 } 19134 19135 /* 19136 * ip_unbind is called when a copy of an unbind request is received from the 19137 * upper level protocol. We remove this conn from any fanout hash list it is 19138 * on, and zero out the bind information. No reply is expected up above. 19139 */ 19140 mblk_t * 19141 ip_unbind(queue_t *q, mblk_t *mp) 19142 { 19143 conn_t *connp = Q_TO_CONN(q); 19144 19145 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19146 19147 if (is_system_labeled() && connp->conn_anon_port) { 19148 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19149 connp->conn_mlp_type, connp->conn_ulp, 19150 ntohs(connp->conn_lport), B_FALSE); 19151 connp->conn_anon_port = 0; 19152 } 19153 connp->conn_mlp_type = mlptSingle; 19154 19155 ipcl_hash_remove(connp); 19156 19157 ASSERT(mp->b_cont == NULL); 19158 /* 19159 * Convert mp into a T_OK_ACK 19160 */ 19161 mp = mi_tpi_ok_ack_alloc(mp); 19162 19163 /* 19164 * should not happen in practice... T_OK_ACK is smaller than the 19165 * original message. 19166 */ 19167 if (mp == NULL) 19168 return (NULL); 19169 19170 /* 19171 * Don't bzero the ports if its TCP since TCP still needs the 19172 * lport to remove it from its own bind hash. TCP will do the 19173 * cleanup. 19174 */ 19175 if (!IPCL_IS_TCP(connp)) 19176 bzero(&connp->u_port, sizeof (connp->u_port)); 19177 19178 return (mp); 19179 } 19180 19181 /* 19182 * Write side put procedure. Outbound data, IOCTLs, responses from 19183 * resolvers, etc, come down through here. 19184 */ 19185 void 19186 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19187 { 19188 conn_t *connp = NULL; 19189 queue_t *q = (queue_t *)arg2; 19190 ipha_t *ipha; 19191 #define rptr ((uchar_t *)ipha) 19192 ire_t *ire = NULL; 19193 ire_t *sctp_ire = NULL; 19194 uint32_t v_hlen_tos_len; 19195 ipaddr_t dst; 19196 mblk_t *first_mp = NULL; 19197 boolean_t mctl_present; 19198 ipsec_out_t *io; 19199 int match_flags; 19200 ill_t *attach_ill = NULL; 19201 /* Bind to IPIF_NOFAILOVER ill etc. */ 19202 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19203 ipif_t *dst_ipif; 19204 boolean_t multirt_need_resolve = B_FALSE; 19205 mblk_t *copy_mp = NULL; 19206 int err; 19207 zoneid_t zoneid; 19208 int adjust; 19209 uint16_t iplen; 19210 boolean_t need_decref = B_FALSE; 19211 boolean_t ignore_dontroute = B_FALSE; 19212 boolean_t ignore_nexthop = B_FALSE; 19213 boolean_t ip_nexthop = B_FALSE; 19214 ipaddr_t nexthop_addr; 19215 19216 #ifdef _BIG_ENDIAN 19217 #define V_HLEN (v_hlen_tos_len >> 24) 19218 #else 19219 #define V_HLEN (v_hlen_tos_len & 0xFF) 19220 #endif 19221 19222 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19223 "ip_wput_start: q %p", q); 19224 19225 /* 19226 * ip_wput fast path 19227 */ 19228 19229 /* is packet from ARP ? */ 19230 if (q->q_next != NULL) 19231 goto qnext; 19232 19233 connp = (conn_t *)arg; 19234 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19235 19236 /* is queue flow controlled? */ 19237 if ((q->q_first != NULL || connp->conn_draining) && 19238 (caller == IP_WPUT)) { 19239 ASSERT(!need_decref); 19240 (void) putq(q, mp); 19241 return; 19242 } 19243 19244 /* Multidata transmit? */ 19245 if (DB_TYPE(mp) == M_MULTIDATA) { 19246 /* 19247 * We should never get here, since all Multidata messages 19248 * originating from tcp should have been directed over to 19249 * tcp_multisend() in the first place. 19250 */ 19251 BUMP_MIB(&ip_mib, ipOutDiscards); 19252 freemsg(mp); 19253 return; 19254 } else if (DB_TYPE(mp) != M_DATA) 19255 goto notdata; 19256 19257 if (mp->b_flag & MSGHASREF) { 19258 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19259 mp->b_flag &= ~MSGHASREF; 19260 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19261 need_decref = B_TRUE; 19262 } 19263 ipha = (ipha_t *)mp->b_rptr; 19264 19265 /* is IP header non-aligned or mblk smaller than basic IP header */ 19266 #ifndef SAFETY_BEFORE_SPEED 19267 if (!OK_32PTR(rptr) || 19268 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19269 goto hdrtoosmall; 19270 #endif 19271 19272 ASSERT(OK_32PTR(ipha)); 19273 19274 /* 19275 * This function assumes that mp points to an IPv4 packet. If it's the 19276 * wrong version, we'll catch it again in ip_output_v6. 19277 * 19278 * Note that this is *only* locally-generated output here, and never 19279 * forwarded data, and that we need to deal only with transports that 19280 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19281 * label.) 19282 */ 19283 if (is_system_labeled() && 19284 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19285 !connp->conn_ulp_labeled) { 19286 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19287 connp->conn_mac_exempt); 19288 ipha = (ipha_t *)mp->b_rptr; 19289 if (err != 0) { 19290 first_mp = mp; 19291 if (err == EINVAL) 19292 goto icmp_parameter_problem; 19293 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19294 goto drop_pkt; 19295 } 19296 iplen = ntohs(ipha->ipha_length) + adjust; 19297 ipha->ipha_length = htons(iplen); 19298 } 19299 19300 /* 19301 * If there is a policy, try to attach an ipsec_out in 19302 * the front. At the end, first_mp either points to a 19303 * M_DATA message or IPSEC_OUT message linked to a 19304 * M_DATA message. We have to do it now as we might 19305 * lose the "conn" if we go through ip_newroute. 19306 */ 19307 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19308 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19309 ipha->ipha_protocol)) == NULL)) { 19310 if (need_decref) 19311 CONN_DEC_REF(connp); 19312 return; 19313 } else { 19314 ASSERT(mp->b_datap->db_type == M_CTL); 19315 first_mp = mp; 19316 mp = mp->b_cont; 19317 mctl_present = B_TRUE; 19318 } 19319 } else { 19320 first_mp = mp; 19321 mctl_present = B_FALSE; 19322 } 19323 19324 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19325 19326 /* is wrong version or IP options present */ 19327 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19328 goto version_hdrlen_check; 19329 dst = ipha->ipha_dst; 19330 19331 if (connp->conn_nofailover_ill != NULL) { 19332 attach_ill = conn_get_held_ill(connp, 19333 &connp->conn_nofailover_ill, &err); 19334 if (err == ILL_LOOKUP_FAILED) { 19335 if (need_decref) 19336 CONN_DEC_REF(connp); 19337 freemsg(first_mp); 19338 return; 19339 } 19340 } 19341 19342 /* is packet multicast? */ 19343 if (CLASSD(dst)) 19344 goto multicast; 19345 19346 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19347 (connp->conn_nexthop_set)) { 19348 /* 19349 * If the destination is a broadcast or a loopback 19350 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19351 * through the standard path. But in the case of local 19352 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19353 * the standard path not IP_XMIT_IF. 19354 */ 19355 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19356 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19357 (ire->ire_type != IRE_LOOPBACK))) { 19358 if ((connp->conn_dontroute || 19359 connp->conn_nexthop_set) && (ire != NULL) && 19360 (ire->ire_type == IRE_LOCAL)) 19361 goto standard_path; 19362 19363 if (ire != NULL) { 19364 ire_refrele(ire); 19365 /* No more access to ire */ 19366 ire = NULL; 19367 } 19368 /* 19369 * bypass routing checks and go directly to 19370 * interface. 19371 */ 19372 if (connp->conn_dontroute) { 19373 goto dontroute; 19374 } else if (connp->conn_nexthop_set) { 19375 ip_nexthop = B_TRUE; 19376 nexthop_addr = connp->conn_nexthop_v4; 19377 goto send_from_ill; 19378 } 19379 19380 /* 19381 * If IP_XMIT_IF socket option is set, 19382 * then we allow unicast and multicast 19383 * packets to go through the ill. It is 19384 * quite possible that the destination 19385 * is not in the ire cache table and we 19386 * do not want to go to ip_newroute() 19387 * instead we call ip_newroute_ipif. 19388 */ 19389 xmit_ill = conn_get_held_ill(connp, 19390 &connp->conn_xmit_if_ill, &err); 19391 if (err == ILL_LOOKUP_FAILED) { 19392 if (attach_ill != NULL) 19393 ill_refrele(attach_ill); 19394 if (need_decref) 19395 CONN_DEC_REF(connp); 19396 freemsg(first_mp); 19397 return; 19398 } 19399 goto send_from_ill; 19400 } 19401 standard_path: 19402 /* Must be a broadcast, a loopback or a local ire */ 19403 if (ire != NULL) { 19404 ire_refrele(ire); 19405 /* No more access to ire */ 19406 ire = NULL; 19407 } 19408 } 19409 19410 if (attach_ill != NULL) 19411 goto send_from_ill; 19412 19413 /* 19414 * We cache IRE_CACHEs to avoid lookups. We don't do 19415 * this for the tcp global queue and listen end point 19416 * as it does not really have a real destination to 19417 * talk to. This is also true for SCTP. 19418 */ 19419 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19420 !connp->conn_fully_bound) { 19421 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19422 if (ire == NULL) 19423 goto noirefound; 19424 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19425 "ip_wput_end: q %p (%S)", q, "end"); 19426 19427 /* 19428 * Check if the ire has the RTF_MULTIRT flag, inherited 19429 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19430 */ 19431 if (ire->ire_flags & RTF_MULTIRT) { 19432 19433 /* 19434 * Force the TTL of multirouted packets if required. 19435 * The TTL of such packets is bounded by the 19436 * ip_multirt_ttl ndd variable. 19437 */ 19438 if ((ip_multirt_ttl > 0) && 19439 (ipha->ipha_ttl > ip_multirt_ttl)) { 19440 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19441 "(was %d), dst 0x%08x\n", 19442 ip_multirt_ttl, ipha->ipha_ttl, 19443 ntohl(ire->ire_addr))); 19444 ipha->ipha_ttl = ip_multirt_ttl; 19445 } 19446 /* 19447 * We look at this point if there are pending 19448 * unresolved routes. ire_multirt_resolvable() 19449 * checks in O(n) that all IRE_OFFSUBNET ire 19450 * entries for the packet's destination and 19451 * flagged RTF_MULTIRT are currently resolved. 19452 * If some remain unresolved, we make a copy 19453 * of the current message. It will be used 19454 * to initiate additional route resolutions. 19455 */ 19456 multirt_need_resolve = 19457 ire_multirt_need_resolve(ire->ire_addr, 19458 MBLK_GETLABEL(first_mp)); 19459 ip2dbg(("ip_wput[TCP]: ire %p, " 19460 "multirt_need_resolve %d, first_mp %p\n", 19461 (void *)ire, multirt_need_resolve, 19462 (void *)first_mp)); 19463 if (multirt_need_resolve) { 19464 copy_mp = copymsg(first_mp); 19465 if (copy_mp != NULL) { 19466 MULTIRT_DEBUG_TAG(copy_mp); 19467 } 19468 } 19469 } 19470 19471 ip_wput_ire(q, first_mp, ire, connp, caller); 19472 19473 /* 19474 * Try to resolve another multiroute if 19475 * ire_multirt_need_resolve() deemed it necessary. 19476 */ 19477 if (copy_mp != NULL) { 19478 ip_newroute(q, copy_mp, dst, NULL, connp); 19479 } 19480 if (need_decref) 19481 CONN_DEC_REF(connp); 19482 return; 19483 } 19484 19485 /* 19486 * Access to conn_ire_cache. (protected by conn_lock) 19487 * 19488 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19489 * the ire bucket lock here to check for CONDEMNED as it is okay to 19490 * send a packet or two with the IRE_CACHE that is going away. 19491 * Access to the ire requires an ire refhold on the ire prior to 19492 * its use since an interface unplumb thread may delete the cached 19493 * ire and release the refhold at any time. 19494 * 19495 * Caching an ire in the conn_ire_cache 19496 * 19497 * o Caching an ire pointer in the conn requires a strict check for 19498 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19499 * ires before cleaning up the conns. So the caching of an ire pointer 19500 * in the conn is done after making sure under the bucket lock that the 19501 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19502 * caching an ire after the unplumb thread has cleaned up the conn. 19503 * If the conn does not send a packet subsequently the unplumb thread 19504 * will be hanging waiting for the ire count to drop to zero. 19505 * 19506 * o We also need to atomically test for a null conn_ire_cache and 19507 * set the conn_ire_cache under the the protection of the conn_lock 19508 * to avoid races among concurrent threads trying to simultaneously 19509 * cache an ire in the conn_ire_cache. 19510 */ 19511 mutex_enter(&connp->conn_lock); 19512 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19513 19514 if (ire != NULL && ire->ire_addr == dst && 19515 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19516 19517 IRE_REFHOLD(ire); 19518 mutex_exit(&connp->conn_lock); 19519 19520 } else { 19521 boolean_t cached = B_FALSE; 19522 connp->conn_ire_cache = NULL; 19523 mutex_exit(&connp->conn_lock); 19524 /* Release the old ire */ 19525 if (ire != NULL && sctp_ire == NULL) 19526 IRE_REFRELE_NOTR(ire); 19527 19528 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19529 if (ire == NULL) 19530 goto noirefound; 19531 IRE_REFHOLD_NOTR(ire); 19532 19533 mutex_enter(&connp->conn_lock); 19534 if (!(connp->conn_state_flags & CONN_CLOSING) && 19535 connp->conn_ire_cache == NULL) { 19536 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19537 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19538 connp->conn_ire_cache = ire; 19539 cached = B_TRUE; 19540 } 19541 rw_exit(&ire->ire_bucket->irb_lock); 19542 } 19543 mutex_exit(&connp->conn_lock); 19544 19545 /* 19546 * We can continue to use the ire but since it was 19547 * not cached, we should drop the extra reference. 19548 */ 19549 if (!cached) 19550 IRE_REFRELE_NOTR(ire); 19551 } 19552 19553 19554 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19555 "ip_wput_end: q %p (%S)", q, "end"); 19556 19557 /* 19558 * Check if the ire has the RTF_MULTIRT flag, inherited 19559 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19560 */ 19561 if (ire->ire_flags & RTF_MULTIRT) { 19562 19563 /* 19564 * Force the TTL of multirouted packets if required. 19565 * The TTL of such packets is bounded by the 19566 * ip_multirt_ttl ndd variable. 19567 */ 19568 if ((ip_multirt_ttl > 0) && 19569 (ipha->ipha_ttl > ip_multirt_ttl)) { 19570 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19571 "(was %d), dst 0x%08x\n", 19572 ip_multirt_ttl, ipha->ipha_ttl, 19573 ntohl(ire->ire_addr))); 19574 ipha->ipha_ttl = ip_multirt_ttl; 19575 } 19576 19577 /* 19578 * At this point, we check to see if there are any pending 19579 * unresolved routes. ire_multirt_resolvable() 19580 * checks in O(n) that all IRE_OFFSUBNET ire 19581 * entries for the packet's destination and 19582 * flagged RTF_MULTIRT are currently resolved. 19583 * If some remain unresolved, we make a copy 19584 * of the current message. It will be used 19585 * to initiate additional route resolutions. 19586 */ 19587 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19588 MBLK_GETLABEL(first_mp)); 19589 ip2dbg(("ip_wput[not TCP]: ire %p, " 19590 "multirt_need_resolve %d, first_mp %p\n", 19591 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19592 if (multirt_need_resolve) { 19593 copy_mp = copymsg(first_mp); 19594 if (copy_mp != NULL) { 19595 MULTIRT_DEBUG_TAG(copy_mp); 19596 } 19597 } 19598 } 19599 19600 ip_wput_ire(q, first_mp, ire, connp, caller); 19601 19602 /* 19603 * Try to resolve another multiroute if 19604 * ire_multirt_resolvable() deemed it necessary 19605 */ 19606 if (copy_mp != NULL) { 19607 ip_newroute(q, copy_mp, dst, NULL, connp); 19608 } 19609 if (need_decref) 19610 CONN_DEC_REF(connp); 19611 return; 19612 19613 qnext: 19614 /* 19615 * Upper Level Protocols pass down complete IP datagrams 19616 * as M_DATA messages. Everything else is a sideshow. 19617 * 19618 * 1) We could be re-entering ip_wput because of ip_neworute 19619 * in which case we could have a IPSEC_OUT message. We 19620 * need to pass through ip_wput like other datagrams and 19621 * hence cannot branch to ip_wput_nondata. 19622 * 19623 * 2) ARP, AH, ESP, and other clients who are on the module 19624 * instance of IP stream, give us something to deal with. 19625 * We will handle AH and ESP here and rest in ip_wput_nondata. 19626 * 19627 * 3) ICMP replies also could come here. 19628 */ 19629 if (DB_TYPE(mp) != M_DATA) { 19630 notdata: 19631 if (DB_TYPE(mp) == M_CTL) { 19632 /* 19633 * M_CTL messages are used by ARP, AH and ESP to 19634 * communicate with IP. We deal with IPSEC_IN and 19635 * IPSEC_OUT here. ip_wput_nondata handles other 19636 * cases. 19637 */ 19638 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19639 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19640 first_mp = mp->b_cont; 19641 first_mp->b_flag &= ~MSGHASREF; 19642 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19643 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19644 CONN_DEC_REF(connp); 19645 connp = NULL; 19646 } 19647 if (ii->ipsec_info_type == IPSEC_IN) { 19648 /* 19649 * Either this message goes back to 19650 * IPSEC for further processing or to 19651 * ULP after policy checks. 19652 */ 19653 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19654 return; 19655 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19656 io = (ipsec_out_t *)ii; 19657 if (io->ipsec_out_proc_begin) { 19658 /* 19659 * IPSEC processing has already started. 19660 * Complete it. 19661 * IPQoS notes: We don't care what is 19662 * in ipsec_out_ill_index since this 19663 * won't be processed for IPQoS policies 19664 * in ipsec_out_process. 19665 */ 19666 ipsec_out_process(q, mp, NULL, 19667 io->ipsec_out_ill_index); 19668 return; 19669 } else { 19670 connp = (q->q_next != NULL) ? 19671 NULL : Q_TO_CONN(q); 19672 first_mp = mp; 19673 mp = mp->b_cont; 19674 mctl_present = B_TRUE; 19675 } 19676 zoneid = io->ipsec_out_zoneid; 19677 ASSERT(zoneid != ALL_ZONES); 19678 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19679 /* 19680 * It's an IPsec control message requesting 19681 * an SADB update to be sent to the IPsec 19682 * hardware acceleration capable ills. 19683 */ 19684 ipsec_ctl_t *ipsec_ctl = 19685 (ipsec_ctl_t *)mp->b_rptr; 19686 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19687 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19688 mblk_t *cmp = mp->b_cont; 19689 19690 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19691 ASSERT(cmp != NULL); 19692 19693 freeb(mp); 19694 ill_ipsec_capab_send_all(satype, cmp, sa); 19695 return; 19696 } else { 19697 /* 19698 * This must be ARP or special TSOL signaling. 19699 */ 19700 ip_wput_nondata(NULL, q, mp, NULL); 19701 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19702 "ip_wput_end: q %p (%S)", q, "nondata"); 19703 return; 19704 } 19705 } else { 19706 /* 19707 * This must be non-(ARP/AH/ESP) messages. 19708 */ 19709 ASSERT(!need_decref); 19710 ip_wput_nondata(NULL, q, mp, NULL); 19711 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19712 "ip_wput_end: q %p (%S)", q, "nondata"); 19713 return; 19714 } 19715 } else { 19716 first_mp = mp; 19717 mctl_present = B_FALSE; 19718 } 19719 19720 ASSERT(first_mp != NULL); 19721 /* 19722 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19723 * to make sure that this packet goes out on the same interface it 19724 * came in. We handle that here. 19725 */ 19726 if (mctl_present) { 19727 uint_t ifindex; 19728 19729 io = (ipsec_out_t *)first_mp->b_rptr; 19730 if (io->ipsec_out_attach_if || 19731 io->ipsec_out_xmit_if || 19732 io->ipsec_out_ip_nexthop) { 19733 ill_t *ill; 19734 19735 /* 19736 * We may have lost the conn context if we are 19737 * coming here from ip_newroute(). Copy the 19738 * nexthop information. 19739 */ 19740 if (io->ipsec_out_ip_nexthop) { 19741 ip_nexthop = B_TRUE; 19742 nexthop_addr = io->ipsec_out_nexthop_addr; 19743 19744 ipha = (ipha_t *)mp->b_rptr; 19745 dst = ipha->ipha_dst; 19746 goto send_from_ill; 19747 } else { 19748 ASSERT(io->ipsec_out_ill_index != 0); 19749 ifindex = io->ipsec_out_ill_index; 19750 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19751 NULL, NULL, NULL, NULL); 19752 /* 19753 * ipsec_out_xmit_if bit is used to tell 19754 * ip_wput to use the ill to send outgoing data 19755 * as we have no conn when data comes from ICMP 19756 * error msg routines. Currently this feature is 19757 * only used by ip_mrtun_forward routine. 19758 */ 19759 if (io->ipsec_out_xmit_if) { 19760 xmit_ill = ill; 19761 if (xmit_ill == NULL) { 19762 ip1dbg(("ip_output:bad ifindex " 19763 "for xmit_ill %d\n", 19764 ifindex)); 19765 freemsg(first_mp); 19766 BUMP_MIB(&ip_mib, 19767 ipOutDiscards); 19768 ASSERT(!need_decref); 19769 return; 19770 } 19771 /* Free up the ipsec_out_t mblk */ 19772 ASSERT(first_mp->b_cont == mp); 19773 first_mp->b_cont = NULL; 19774 freeb(first_mp); 19775 /* Just send the IP header+ICMP+data */ 19776 first_mp = mp; 19777 ipha = (ipha_t *)mp->b_rptr; 19778 dst = ipha->ipha_dst; 19779 goto send_from_ill; 19780 } else { 19781 attach_ill = ill; 19782 } 19783 19784 if (attach_ill == NULL) { 19785 ASSERT(xmit_ill == NULL); 19786 ip1dbg(("ip_output: bad ifindex for " 19787 "(BIND TO IPIF_NOFAILOVER) %d\n", 19788 ifindex)); 19789 freemsg(first_mp); 19790 BUMP_MIB(&ip_mib, ipOutDiscards); 19791 ASSERT(!need_decref); 19792 return; 19793 } 19794 } 19795 } 19796 } 19797 19798 ASSERT(xmit_ill == NULL); 19799 19800 /* We have a complete IP datagram heading outbound. */ 19801 ipha = (ipha_t *)mp->b_rptr; 19802 19803 #ifndef SPEED_BEFORE_SAFETY 19804 /* 19805 * Make sure we have a full-word aligned message and that at least 19806 * a simple IP header is accessible in the first message. If not, 19807 * try a pullup. 19808 */ 19809 if (!OK_32PTR(rptr) || 19810 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19811 hdrtoosmall: 19812 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19813 BUMP_MIB(&ip_mib, ipOutDiscards); 19814 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19815 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19816 if (first_mp == NULL) 19817 first_mp = mp; 19818 goto drop_pkt; 19819 } 19820 19821 /* This function assumes that mp points to an IPv4 packet. */ 19822 if (is_system_labeled() && q->q_next == NULL && 19823 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19824 !connp->conn_ulp_labeled) { 19825 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19826 &adjust, connp->conn_mac_exempt); 19827 ipha = (ipha_t *)mp->b_rptr; 19828 if (first_mp != NULL) 19829 first_mp->b_cont = mp; 19830 if (err != 0) { 19831 if (first_mp == NULL) 19832 first_mp = mp; 19833 if (err == EINVAL) 19834 goto icmp_parameter_problem; 19835 ip2dbg(("ip_wput: label check failed (%d)\n", 19836 err)); 19837 goto drop_pkt; 19838 } 19839 iplen = ntohs(ipha->ipha_length) + adjust; 19840 ipha->ipha_length = htons(iplen); 19841 } 19842 19843 ipha = (ipha_t *)mp->b_rptr; 19844 if (first_mp == NULL) { 19845 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19846 /* 19847 * If we got here because of "goto hdrtoosmall" 19848 * We need to attach a IPSEC_OUT. 19849 */ 19850 if (connp->conn_out_enforce_policy) { 19851 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19852 NULL, ipha->ipha_protocol)) == NULL)) { 19853 if (need_decref) 19854 CONN_DEC_REF(connp); 19855 return; 19856 } else { 19857 ASSERT(mp->b_datap->db_type == M_CTL); 19858 first_mp = mp; 19859 mp = mp->b_cont; 19860 mctl_present = B_TRUE; 19861 } 19862 } else { 19863 first_mp = mp; 19864 mctl_present = B_FALSE; 19865 } 19866 } 19867 } 19868 #endif 19869 19870 /* Most of the code below is written for speed, not readability */ 19871 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19872 19873 /* 19874 * If ip_newroute() fails, we're going to need a full 19875 * header for the icmp wraparound. 19876 */ 19877 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19878 uint_t v_hlen; 19879 version_hdrlen_check: 19880 ASSERT(first_mp != NULL); 19881 v_hlen = V_HLEN; 19882 /* 19883 * siphon off IPv6 packets coming down from transport 19884 * layer modules here. 19885 * Note: high-order bit carries NUD reachability confirmation 19886 */ 19887 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19888 /* 19889 * XXX implement a IPv4 and IPv6 packet counter per 19890 * conn and switch when ratio exceeds e.g. 10:1 19891 */ 19892 #ifdef notyet 19893 if (q->q_next == NULL) /* Avoid ill queue */ 19894 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19895 #endif 19896 BUMP_MIB(&ip_mib, ipOutIPv6); 19897 ASSERT(xmit_ill == NULL); 19898 if (attach_ill != NULL) 19899 ill_refrele(attach_ill); 19900 if (need_decref) 19901 mp->b_flag |= MSGHASREF; 19902 (void) ip_output_v6(connp, first_mp, q, caller); 19903 return; 19904 } 19905 19906 if ((v_hlen >> 4) != IP_VERSION) { 19907 BUMP_MIB(&ip_mib, ipOutDiscards); 19908 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19909 "ip_wput_end: q %p (%S)", q, "badvers"); 19910 goto drop_pkt; 19911 } 19912 /* 19913 * Is the header length at least 20 bytes? 19914 * 19915 * Are there enough bytes accessible in the header? If 19916 * not, try a pullup. 19917 */ 19918 v_hlen &= 0xF; 19919 v_hlen <<= 2; 19920 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19921 BUMP_MIB(&ip_mib, ipOutDiscards); 19922 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19923 "ip_wput_end: q %p (%S)", q, "badlen"); 19924 goto drop_pkt; 19925 } 19926 if (v_hlen > (mp->b_wptr - rptr)) { 19927 if (!pullupmsg(mp, v_hlen)) { 19928 BUMP_MIB(&ip_mib, ipOutDiscards); 19929 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19930 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19931 goto drop_pkt; 19932 } 19933 ipha = (ipha_t *)mp->b_rptr; 19934 } 19935 /* 19936 * Move first entry from any source route into ipha_dst and 19937 * verify the options 19938 */ 19939 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19940 ASSERT(xmit_ill == NULL); 19941 if (attach_ill != NULL) 19942 ill_refrele(attach_ill); 19943 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19944 "ip_wput_end: q %p (%S)", q, "badopts"); 19945 if (need_decref) 19946 CONN_DEC_REF(connp); 19947 return; 19948 } 19949 } 19950 dst = ipha->ipha_dst; 19951 19952 /* 19953 * Try to get an IRE_CACHE for the destination address. If we can't, 19954 * we have to run the packet through ip_newroute which will take 19955 * the appropriate action to arrange for an IRE_CACHE, such as querying 19956 * a resolver, or assigning a default gateway, etc. 19957 */ 19958 if (CLASSD(dst)) { 19959 ipif_t *ipif; 19960 uint32_t setsrc = 0; 19961 19962 multicast: 19963 ASSERT(first_mp != NULL); 19964 ASSERT(xmit_ill == NULL); 19965 ip2dbg(("ip_wput: CLASSD\n")); 19966 if (connp == NULL) { 19967 /* 19968 * Use the first good ipif on the ill. 19969 * XXX Should this ever happen? (Appears 19970 * to show up with just ppp and no ethernet due 19971 * to in.rdisc.) 19972 * However, ire_send should be able to 19973 * call ip_wput_ire directly. 19974 * 19975 * XXX Also, this can happen for ICMP and other packets 19976 * with multicast source addresses. Perhaps we should 19977 * fix things so that we drop the packet in question, 19978 * but for now, just run with it. 19979 */ 19980 ill_t *ill = (ill_t *)q->q_ptr; 19981 19982 /* 19983 * Don't honor attach_if for this case. If ill 19984 * is part of the group, ipif could belong to 19985 * any ill and we cannot maintain attach_ill 19986 * and ipif_ill same anymore and the assert 19987 * below would fail. 19988 */ 19989 if (mctl_present) { 19990 io->ipsec_out_ill_index = 0; 19991 io->ipsec_out_attach_if = B_FALSE; 19992 ASSERT(attach_ill != NULL); 19993 ill_refrele(attach_ill); 19994 attach_ill = NULL; 19995 } 19996 19997 ASSERT(attach_ill == NULL); 19998 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19999 if (ipif == NULL) { 20000 if (need_decref) 20001 CONN_DEC_REF(connp); 20002 freemsg(first_mp); 20003 return; 20004 } 20005 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20006 ntohl(dst), ill->ill_name)); 20007 } else { 20008 /* 20009 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20010 * IP_XMIT_IF is honoured. 20011 * Block comment above this function explains the 20012 * locking mechanism used here 20013 */ 20014 xmit_ill = conn_get_held_ill(connp, 20015 &connp->conn_xmit_if_ill, &err); 20016 if (err == ILL_LOOKUP_FAILED) { 20017 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20018 goto drop_pkt; 20019 } 20020 if (xmit_ill == NULL) { 20021 ipif = conn_get_held_ipif(connp, 20022 &connp->conn_multicast_ipif, &err); 20023 if (err == IPIF_LOOKUP_FAILED) { 20024 ip1dbg(("ip_wput: No ipif for " 20025 "multicast\n")); 20026 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20027 goto drop_pkt; 20028 } 20029 } 20030 if (xmit_ill != NULL) { 20031 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20032 if (ipif == NULL) { 20033 ip1dbg(("ip_wput: No ipif for " 20034 "IP_XMIT_IF\n")); 20035 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20036 goto drop_pkt; 20037 } 20038 } else if (ipif == NULL || ipif->ipif_isv6) { 20039 /* 20040 * We must do this ipif determination here 20041 * else we could pass through ip_newroute 20042 * and come back here without the conn context. 20043 * 20044 * Note: we do late binding i.e. we bind to 20045 * the interface when the first packet is sent. 20046 * For performance reasons we do not rebind on 20047 * each packet but keep the binding until the 20048 * next IP_MULTICAST_IF option. 20049 * 20050 * conn_multicast_{ipif,ill} are shared between 20051 * IPv4 and IPv6 and AF_INET6 sockets can 20052 * send both IPv4 and IPv6 packets. Hence 20053 * we have to check that "isv6" matches above. 20054 */ 20055 if (ipif != NULL) 20056 ipif_refrele(ipif); 20057 ipif = ipif_lookup_group(dst, zoneid); 20058 if (ipif == NULL) { 20059 ip1dbg(("ip_wput: No ipif for " 20060 "multicast\n")); 20061 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20062 goto drop_pkt; 20063 } 20064 err = conn_set_held_ipif(connp, 20065 &connp->conn_multicast_ipif, ipif); 20066 if (err == IPIF_LOOKUP_FAILED) { 20067 ipif_refrele(ipif); 20068 ip1dbg(("ip_wput: No ipif for " 20069 "multicast\n")); 20070 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20071 goto drop_pkt; 20072 } 20073 } 20074 } 20075 ASSERT(!ipif->ipif_isv6); 20076 /* 20077 * As we may lose the conn by the time we reach ip_wput_ire, 20078 * we copy conn_multicast_loop and conn_dontroute on to an 20079 * ipsec_out. In case if this datagram goes out secure, 20080 * we need the ill_index also. Copy that also into the 20081 * ipsec_out. 20082 */ 20083 if (mctl_present) { 20084 io = (ipsec_out_t *)first_mp->b_rptr; 20085 ASSERT(first_mp->b_datap->db_type == M_CTL); 20086 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20087 } else { 20088 ASSERT(mp == first_mp); 20089 if ((first_mp = allocb(sizeof (ipsec_info_t), 20090 BPRI_HI)) == NULL) { 20091 ipif_refrele(ipif); 20092 first_mp = mp; 20093 goto drop_pkt; 20094 } 20095 first_mp->b_datap->db_type = M_CTL; 20096 first_mp->b_wptr += sizeof (ipsec_info_t); 20097 /* ipsec_out_secure is B_FALSE now */ 20098 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20099 io = (ipsec_out_t *)first_mp->b_rptr; 20100 io->ipsec_out_type = IPSEC_OUT; 20101 io->ipsec_out_len = sizeof (ipsec_out_t); 20102 io->ipsec_out_use_global_policy = B_TRUE; 20103 first_mp->b_cont = mp; 20104 mctl_present = B_TRUE; 20105 } 20106 if (attach_ill != NULL) { 20107 ASSERT(attach_ill == ipif->ipif_ill); 20108 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20109 20110 /* 20111 * Check if we need an ire that will not be 20112 * looked up by anybody else i.e. HIDDEN. 20113 */ 20114 if (ill_is_probeonly(attach_ill)) { 20115 match_flags |= MATCH_IRE_MARK_HIDDEN; 20116 } 20117 io->ipsec_out_ill_index = 20118 attach_ill->ill_phyint->phyint_ifindex; 20119 io->ipsec_out_attach_if = B_TRUE; 20120 } else { 20121 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20122 io->ipsec_out_ill_index = 20123 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20124 } 20125 if (connp != NULL) { 20126 io->ipsec_out_multicast_loop = 20127 connp->conn_multicast_loop; 20128 io->ipsec_out_dontroute = connp->conn_dontroute; 20129 io->ipsec_out_zoneid = connp->conn_zoneid; 20130 } 20131 /* 20132 * If the application uses IP_MULTICAST_IF with 20133 * different logical addresses of the same ILL, we 20134 * need to make sure that the soruce address of 20135 * the packet matches the logical IP address used 20136 * in the option. We do it by initializing ipha_src 20137 * here. This should keep IPSEC also happy as 20138 * when we return from IPSEC processing, we don't 20139 * have to worry about getting the right address on 20140 * the packet. Thus it is sufficient to look for 20141 * IRE_CACHE using MATCH_IRE_ILL rathen than 20142 * MATCH_IRE_IPIF. 20143 * 20144 * NOTE : We need to do it for non-secure case also as 20145 * this might go out secure if there is a global policy 20146 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20147 * address, the source should be initialized already and 20148 * hence we won't be initializing here. 20149 * 20150 * As we do not have the ire yet, it is possible that 20151 * we set the source address here and then later discover 20152 * that the ire implies the source address to be assigned 20153 * through the RTF_SETSRC flag. 20154 * In that case, the setsrc variable will remind us 20155 * that overwritting the source address by the one 20156 * of the RTF_SETSRC-flagged ire is allowed. 20157 */ 20158 if (ipha->ipha_src == INADDR_ANY && 20159 (connp == NULL || !connp->conn_unspec_src)) { 20160 ipha->ipha_src = ipif->ipif_src_addr; 20161 setsrc = RTF_SETSRC; 20162 } 20163 /* 20164 * Find an IRE which matches the destination and the outgoing 20165 * queue (i.e. the outgoing interface.) 20166 * For loopback use a unicast IP address for 20167 * the ire lookup. 20168 */ 20169 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20170 PHYI_LOOPBACK) { 20171 dst = ipif->ipif_lcl_addr; 20172 } 20173 /* 20174 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20175 * We don't need to lookup ire in ctable as the packet 20176 * needs to be sent to the destination through the specified 20177 * ill irrespective of ires in the cache table. 20178 */ 20179 ire = NULL; 20180 if (xmit_ill == NULL) { 20181 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20182 zoneid, MBLK_GETLABEL(mp), match_flags); 20183 } 20184 20185 /* 20186 * refrele attach_ill as its not needed anymore. 20187 */ 20188 if (attach_ill != NULL) { 20189 ill_refrele(attach_ill); 20190 attach_ill = NULL; 20191 } 20192 20193 if (ire == NULL) { 20194 /* 20195 * Multicast loopback and multicast forwarding is 20196 * done in ip_wput_ire. 20197 * 20198 * Mark this packet to make it be delivered to 20199 * ip_wput_ire after the new ire has been 20200 * created. 20201 * 20202 * The call to ip_newroute_ipif takes into account 20203 * the setsrc reminder. In any case, we take care 20204 * of the RTF_MULTIRT flag. 20205 */ 20206 mp->b_prev = mp->b_next = NULL; 20207 if (xmit_ill == NULL || 20208 xmit_ill->ill_ipif_up_count > 0) { 20209 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20210 setsrc | RTF_MULTIRT); 20211 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20212 "ip_wput_end: q %p (%S)", q, "noire"); 20213 } else { 20214 freemsg(first_mp); 20215 } 20216 ipif_refrele(ipif); 20217 if (xmit_ill != NULL) 20218 ill_refrele(xmit_ill); 20219 if (need_decref) 20220 CONN_DEC_REF(connp); 20221 return; 20222 } 20223 20224 ipif_refrele(ipif); 20225 ipif = NULL; 20226 ASSERT(xmit_ill == NULL); 20227 20228 /* 20229 * Honor the RTF_SETSRC flag for multicast packets, 20230 * if allowed by the setsrc reminder. 20231 */ 20232 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20233 ipha->ipha_src = ire->ire_src_addr; 20234 } 20235 20236 /* 20237 * Unconditionally force the TTL to 1 for 20238 * multirouted multicast packets: 20239 * multirouted multicast should not cross 20240 * multicast routers. 20241 */ 20242 if (ire->ire_flags & RTF_MULTIRT) { 20243 if (ipha->ipha_ttl > 1) { 20244 ip2dbg(("ip_wput: forcing multicast " 20245 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20246 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20247 ipha->ipha_ttl = 1; 20248 } 20249 } 20250 } else { 20251 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20252 if ((ire != NULL) && (ire->ire_type & 20253 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20254 ignore_dontroute = B_TRUE; 20255 ignore_nexthop = B_TRUE; 20256 } 20257 if (ire != NULL) { 20258 ire_refrele(ire); 20259 ire = NULL; 20260 } 20261 /* 20262 * Guard against coming in from arp in which case conn is NULL. 20263 * Also guard against non M_DATA with dontroute set but 20264 * destined to local, loopback or broadcast addresses. 20265 */ 20266 if (connp != NULL && connp->conn_dontroute && 20267 !ignore_dontroute) { 20268 dontroute: 20269 /* 20270 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20271 * routing protocols from seeing false direct 20272 * connectivity. 20273 */ 20274 ipha->ipha_ttl = 1; 20275 /* 20276 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20277 * along with SO_DONTROUTE, higher precedence is 20278 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20279 */ 20280 if (connp->conn_xmit_if_ill == NULL) { 20281 /* If suitable ipif not found, drop packet */ 20282 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20283 if (dst_ipif == NULL) { 20284 ip1dbg(("ip_wput: no route for " 20285 "dst using SO_DONTROUTE\n")); 20286 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20287 mp->b_prev = mp->b_next = NULL; 20288 if (first_mp == NULL) 20289 first_mp = mp; 20290 goto drop_pkt; 20291 } else { 20292 /* 20293 * If suitable ipif has been found, set 20294 * xmit_ill to the corresponding 20295 * ipif_ill because we'll be following 20296 * the IP_XMIT_IF logic. 20297 */ 20298 ASSERT(xmit_ill == NULL); 20299 xmit_ill = dst_ipif->ipif_ill; 20300 mutex_enter(&xmit_ill->ill_lock); 20301 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20302 mutex_exit(&xmit_ill->ill_lock); 20303 xmit_ill = NULL; 20304 ipif_refrele(dst_ipif); 20305 ip1dbg(("ip_wput: no route for" 20306 " dst using" 20307 " SO_DONTROUTE\n")); 20308 BUMP_MIB(&ip_mib, 20309 ipOutNoRoutes); 20310 mp->b_prev = mp->b_next = NULL; 20311 if (first_mp == NULL) 20312 first_mp = mp; 20313 goto drop_pkt; 20314 } 20315 ill_refhold_locked(xmit_ill); 20316 mutex_exit(&xmit_ill->ill_lock); 20317 ipif_refrele(dst_ipif); 20318 } 20319 } 20320 20321 } 20322 /* 20323 * If we are bound to IPIF_NOFAILOVER address, look for 20324 * an IRE_CACHE matching the ill. 20325 */ 20326 send_from_ill: 20327 if (attach_ill != NULL) { 20328 ipif_t *attach_ipif; 20329 20330 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20331 20332 /* 20333 * Check if we need an ire that will not be 20334 * looked up by anybody else i.e. HIDDEN. 20335 */ 20336 if (ill_is_probeonly(attach_ill)) { 20337 match_flags |= MATCH_IRE_MARK_HIDDEN; 20338 } 20339 20340 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20341 if (attach_ipif == NULL) { 20342 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20343 goto drop_pkt; 20344 } 20345 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20346 zoneid, MBLK_GETLABEL(mp), match_flags); 20347 ipif_refrele(attach_ipif); 20348 } else if (xmit_ill != NULL || (connp != NULL && 20349 connp->conn_xmit_if_ill != NULL)) { 20350 /* 20351 * Mark this packet as originated locally 20352 */ 20353 mp->b_prev = mp->b_next = NULL; 20354 /* 20355 * xmit_ill could be NULL if SO_DONTROUTE 20356 * is also set. 20357 */ 20358 if (xmit_ill == NULL) { 20359 xmit_ill = conn_get_held_ill(connp, 20360 &connp->conn_xmit_if_ill, &err); 20361 if (err == ILL_LOOKUP_FAILED) { 20362 if (need_decref) 20363 CONN_DEC_REF(connp); 20364 freemsg(first_mp); 20365 return; 20366 } 20367 if (xmit_ill == NULL) { 20368 if (connp->conn_dontroute) 20369 goto dontroute; 20370 goto send_from_ill; 20371 } 20372 } 20373 /* 20374 * could be SO_DONTROUTE case also. 20375 * check at least one interface is UP as 20376 * spcified by this ILL, and then call 20377 * ip_newroute_ipif() 20378 */ 20379 if (xmit_ill->ill_ipif_up_count > 0) { 20380 ipif_t *ipif; 20381 20382 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20383 if (ipif != NULL) { 20384 ip_newroute_ipif(q, first_mp, ipif, 20385 dst, connp, 0); 20386 ipif_refrele(ipif); 20387 ip1dbg(("ip_wput: ip_unicast_if\n")); 20388 } 20389 } else { 20390 freemsg(first_mp); 20391 } 20392 ill_refrele(xmit_ill); 20393 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20394 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20395 if (need_decref) 20396 CONN_DEC_REF(connp); 20397 return; 20398 } else if (ip_nexthop || (connp != NULL && 20399 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20400 if (!ip_nexthop) { 20401 ip_nexthop = B_TRUE; 20402 nexthop_addr = connp->conn_nexthop_v4; 20403 } 20404 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20405 MATCH_IRE_GW; 20406 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20407 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20408 } else { 20409 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20410 } 20411 if (!ire) { 20412 /* 20413 * Make sure we don't load spread if this 20414 * is IPIF_NOFAILOVER case. 20415 */ 20416 if ((attach_ill != NULL) || 20417 (ip_nexthop && !ignore_nexthop)) { 20418 if (mctl_present) { 20419 io = (ipsec_out_t *)first_mp->b_rptr; 20420 ASSERT(first_mp->b_datap->db_type == 20421 M_CTL); 20422 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20423 } else { 20424 ASSERT(mp == first_mp); 20425 first_mp = allocb( 20426 sizeof (ipsec_info_t), BPRI_HI); 20427 if (first_mp == NULL) { 20428 first_mp = mp; 20429 goto drop_pkt; 20430 } 20431 first_mp->b_datap->db_type = M_CTL; 20432 first_mp->b_wptr += 20433 sizeof (ipsec_info_t); 20434 /* ipsec_out_secure is B_FALSE now */ 20435 bzero(first_mp->b_rptr, 20436 sizeof (ipsec_info_t)); 20437 io = (ipsec_out_t *)first_mp->b_rptr; 20438 io->ipsec_out_type = IPSEC_OUT; 20439 io->ipsec_out_len = 20440 sizeof (ipsec_out_t); 20441 io->ipsec_out_use_global_policy = 20442 B_TRUE; 20443 first_mp->b_cont = mp; 20444 mctl_present = B_TRUE; 20445 } 20446 if (attach_ill != NULL) { 20447 io->ipsec_out_ill_index = attach_ill-> 20448 ill_phyint->phyint_ifindex; 20449 io->ipsec_out_attach_if = B_TRUE; 20450 } else { 20451 io->ipsec_out_ip_nexthop = ip_nexthop; 20452 io->ipsec_out_nexthop_addr = 20453 nexthop_addr; 20454 } 20455 } 20456 noirefound: 20457 /* 20458 * Mark this packet as having originated on 20459 * this machine. This will be noted in 20460 * ire_add_then_send, which needs to know 20461 * whether to run it back through ip_wput or 20462 * ip_rput following successful resolution. 20463 */ 20464 mp->b_prev = NULL; 20465 mp->b_next = NULL; 20466 ip_newroute(q, first_mp, dst, NULL, connp); 20467 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20468 "ip_wput_end: q %p (%S)", q, "newroute"); 20469 if (attach_ill != NULL) 20470 ill_refrele(attach_ill); 20471 if (xmit_ill != NULL) 20472 ill_refrele(xmit_ill); 20473 if (need_decref) 20474 CONN_DEC_REF(connp); 20475 return; 20476 } 20477 } 20478 20479 /* We now know where we are going with it. */ 20480 20481 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20482 "ip_wput_end: q %p (%S)", q, "end"); 20483 20484 /* 20485 * Check if the ire has the RTF_MULTIRT flag, inherited 20486 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20487 */ 20488 if (ire->ire_flags & RTF_MULTIRT) { 20489 /* 20490 * Force the TTL of multirouted packets if required. 20491 * The TTL of such packets is bounded by the 20492 * ip_multirt_ttl ndd variable. 20493 */ 20494 if ((ip_multirt_ttl > 0) && 20495 (ipha->ipha_ttl > ip_multirt_ttl)) { 20496 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20497 "(was %d), dst 0x%08x\n", 20498 ip_multirt_ttl, ipha->ipha_ttl, 20499 ntohl(ire->ire_addr))); 20500 ipha->ipha_ttl = ip_multirt_ttl; 20501 } 20502 /* 20503 * At this point, we check to see if there are any pending 20504 * unresolved routes. ire_multirt_resolvable() 20505 * checks in O(n) that all IRE_OFFSUBNET ire 20506 * entries for the packet's destination and 20507 * flagged RTF_MULTIRT are currently resolved. 20508 * If some remain unresolved, we make a copy 20509 * of the current message. It will be used 20510 * to initiate additional route resolutions. 20511 */ 20512 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20513 MBLK_GETLABEL(first_mp)); 20514 ip2dbg(("ip_wput[noirefound]: ire %p, " 20515 "multirt_need_resolve %d, first_mp %p\n", 20516 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20517 if (multirt_need_resolve) { 20518 copy_mp = copymsg(first_mp); 20519 if (copy_mp != NULL) { 20520 MULTIRT_DEBUG_TAG(copy_mp); 20521 } 20522 } 20523 } 20524 20525 ip_wput_ire(q, first_mp, ire, connp, caller); 20526 /* 20527 * Try to resolve another multiroute if 20528 * ire_multirt_resolvable() deemed it necessary. 20529 * At this point, we need to distinguish 20530 * multicasts from other packets. For multicasts, 20531 * we call ip_newroute_ipif() and request that both 20532 * multirouting and setsrc flags are checked. 20533 */ 20534 if (copy_mp != NULL) { 20535 if (CLASSD(dst)) { 20536 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20537 if (ipif) { 20538 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20539 RTF_SETSRC | RTF_MULTIRT); 20540 ipif_refrele(ipif); 20541 } else { 20542 MULTIRT_DEBUG_UNTAG(copy_mp); 20543 freemsg(copy_mp); 20544 copy_mp = NULL; 20545 } 20546 } else { 20547 ip_newroute(q, copy_mp, dst, NULL, connp); 20548 } 20549 } 20550 if (attach_ill != NULL) 20551 ill_refrele(attach_ill); 20552 if (xmit_ill != NULL) 20553 ill_refrele(xmit_ill); 20554 if (need_decref) 20555 CONN_DEC_REF(connp); 20556 return; 20557 20558 icmp_parameter_problem: 20559 /* could not have originated externally */ 20560 ASSERT(mp->b_prev == NULL); 20561 if (ip_hdr_complete(ipha, zoneid) == 0) { 20562 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20563 /* it's the IP header length that's in trouble */ 20564 icmp_param_problem(q, first_mp, 0); 20565 first_mp = NULL; 20566 } 20567 20568 drop_pkt: 20569 ip1dbg(("ip_wput: dropped packet\n")); 20570 if (ire != NULL) 20571 ire_refrele(ire); 20572 if (need_decref) 20573 CONN_DEC_REF(connp); 20574 freemsg(first_mp); 20575 if (attach_ill != NULL) 20576 ill_refrele(attach_ill); 20577 if (xmit_ill != NULL) 20578 ill_refrele(xmit_ill); 20579 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20580 "ip_wput_end: q %p (%S)", q, "droppkt"); 20581 } 20582 20583 void 20584 ip_wput(queue_t *q, mblk_t *mp) 20585 { 20586 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20587 } 20588 20589 /* 20590 * 20591 * The following rules must be observed when accessing any ipif or ill 20592 * that has been cached in the conn. Typically conn_nofailover_ill, 20593 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20594 * 20595 * Access: The ipif or ill pointed to from the conn can be accessed under 20596 * the protection of the conn_lock or after it has been refheld under the 20597 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20598 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20599 * The reason for this is that a concurrent unplumb could actually be 20600 * cleaning up these cached pointers by walking the conns and might have 20601 * finished cleaning up the conn in question. The macros check that an 20602 * unplumb has not yet started on the ipif or ill. 20603 * 20604 * Caching: An ipif or ill pointer may be cached in the conn only after 20605 * making sure that an unplumb has not started. So the caching is done 20606 * while holding both the conn_lock and the ill_lock and after using the 20607 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20608 * flag before starting the cleanup of conns. 20609 * 20610 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20611 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20612 * or a reference to the ipif or a reference to an ire that references the 20613 * ipif. An ipif does not change its ill except for failover/failback. Since 20614 * failover/failback happens only after bringing down the ipif and making sure 20615 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20616 * the above holds. 20617 */ 20618 ipif_t * 20619 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20620 { 20621 ipif_t *ipif; 20622 ill_t *ill; 20623 20624 *err = 0; 20625 rw_enter(&ill_g_lock, RW_READER); 20626 mutex_enter(&connp->conn_lock); 20627 ipif = *ipifp; 20628 if (ipif != NULL) { 20629 ill = ipif->ipif_ill; 20630 mutex_enter(&ill->ill_lock); 20631 if (IPIF_CAN_LOOKUP(ipif)) { 20632 ipif_refhold_locked(ipif); 20633 mutex_exit(&ill->ill_lock); 20634 mutex_exit(&connp->conn_lock); 20635 rw_exit(&ill_g_lock); 20636 return (ipif); 20637 } else { 20638 *err = IPIF_LOOKUP_FAILED; 20639 } 20640 mutex_exit(&ill->ill_lock); 20641 } 20642 mutex_exit(&connp->conn_lock); 20643 rw_exit(&ill_g_lock); 20644 return (NULL); 20645 } 20646 20647 ill_t * 20648 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20649 { 20650 ill_t *ill; 20651 20652 *err = 0; 20653 mutex_enter(&connp->conn_lock); 20654 ill = *illp; 20655 if (ill != NULL) { 20656 mutex_enter(&ill->ill_lock); 20657 if (ILL_CAN_LOOKUP(ill)) { 20658 ill_refhold_locked(ill); 20659 mutex_exit(&ill->ill_lock); 20660 mutex_exit(&connp->conn_lock); 20661 return (ill); 20662 } else { 20663 *err = ILL_LOOKUP_FAILED; 20664 } 20665 mutex_exit(&ill->ill_lock); 20666 } 20667 mutex_exit(&connp->conn_lock); 20668 return (NULL); 20669 } 20670 20671 static int 20672 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20673 { 20674 ill_t *ill; 20675 20676 ill = ipif->ipif_ill; 20677 mutex_enter(&connp->conn_lock); 20678 mutex_enter(&ill->ill_lock); 20679 if (IPIF_CAN_LOOKUP(ipif)) { 20680 *ipifp = ipif; 20681 mutex_exit(&ill->ill_lock); 20682 mutex_exit(&connp->conn_lock); 20683 return (0); 20684 } 20685 mutex_exit(&ill->ill_lock); 20686 mutex_exit(&connp->conn_lock); 20687 return (IPIF_LOOKUP_FAILED); 20688 } 20689 20690 /* 20691 * This is called if the outbound datagram needs fragmentation. 20692 * 20693 * NOTE : This function does not ire_refrele the ire argument passed in. 20694 */ 20695 static void 20696 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20697 { 20698 ipha_t *ipha; 20699 mblk_t *mp; 20700 uint32_t v_hlen_tos_len; 20701 uint32_t max_frag; 20702 uint32_t frag_flag; 20703 boolean_t dont_use; 20704 20705 if (ipsec_mp->b_datap->db_type == M_CTL) { 20706 mp = ipsec_mp->b_cont; 20707 } else { 20708 mp = ipsec_mp; 20709 } 20710 20711 ipha = (ipha_t *)mp->b_rptr; 20712 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20713 20714 #ifdef _BIG_ENDIAN 20715 #define V_HLEN (v_hlen_tos_len >> 24) 20716 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20717 #else 20718 #define V_HLEN (v_hlen_tos_len & 0xFF) 20719 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20720 #endif 20721 20722 #ifndef SPEED_BEFORE_SAFETY 20723 /* 20724 * Check that ipha_length is consistent with 20725 * the mblk length 20726 */ 20727 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20728 ip0dbg(("Packet length mismatch: %d, %ld\n", 20729 LENGTH, msgdsize(mp))); 20730 freemsg(ipsec_mp); 20731 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20732 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20733 "packet length mismatch"); 20734 return; 20735 } 20736 #endif 20737 /* 20738 * Don't use frag_flag if pre-built packet or source 20739 * routed or if multicast (since multicast packets do not solicit 20740 * ICMP "packet too big" messages). Get the values of 20741 * max_frag and frag_flag atomically by acquiring the 20742 * ire_lock. 20743 */ 20744 mutex_enter(&ire->ire_lock); 20745 max_frag = ire->ire_max_frag; 20746 frag_flag = ire->ire_frag_flag; 20747 mutex_exit(&ire->ire_lock); 20748 20749 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20750 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20751 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20752 20753 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20754 (dont_use ? 0 : frag_flag)); 20755 } 20756 20757 /* 20758 * Used for deciding the MSS size for the upper layer. Thus 20759 * we need to check the outbound policy values in the conn. 20760 */ 20761 int 20762 conn_ipsec_length(conn_t *connp) 20763 { 20764 ipsec_latch_t *ipl; 20765 20766 ipl = connp->conn_latch; 20767 if (ipl == NULL) 20768 return (0); 20769 20770 if (ipl->ipl_out_policy == NULL) 20771 return (0); 20772 20773 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20774 } 20775 20776 /* 20777 * Returns an estimate of the IPSEC headers size. This is used if 20778 * we don't want to call into IPSEC to get the exact size. 20779 */ 20780 int 20781 ipsec_out_extra_length(mblk_t *ipsec_mp) 20782 { 20783 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20784 ipsec_action_t *a; 20785 20786 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20787 if (!io->ipsec_out_secure) 20788 return (0); 20789 20790 a = io->ipsec_out_act; 20791 20792 if (a == NULL) { 20793 ASSERT(io->ipsec_out_policy != NULL); 20794 a = io->ipsec_out_policy->ipsp_act; 20795 } 20796 ASSERT(a != NULL); 20797 20798 return (a->ipa_ovhd); 20799 } 20800 20801 /* 20802 * Returns an estimate of the IPSEC headers size. This is used if 20803 * we don't want to call into IPSEC to get the exact size. 20804 */ 20805 int 20806 ipsec_in_extra_length(mblk_t *ipsec_mp) 20807 { 20808 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20809 ipsec_action_t *a; 20810 20811 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20812 20813 a = ii->ipsec_in_action; 20814 return (a == NULL ? 0 : a->ipa_ovhd); 20815 } 20816 20817 /* 20818 * If there are any source route options, return the true final 20819 * destination. Otherwise, return the destination. 20820 */ 20821 ipaddr_t 20822 ip_get_dst(ipha_t *ipha) 20823 { 20824 ipoptp_t opts; 20825 uchar_t *opt; 20826 uint8_t optval; 20827 uint8_t optlen; 20828 ipaddr_t dst; 20829 uint32_t off; 20830 20831 dst = ipha->ipha_dst; 20832 20833 if (IS_SIMPLE_IPH(ipha)) 20834 return (dst); 20835 20836 for (optval = ipoptp_first(&opts, ipha); 20837 optval != IPOPT_EOL; 20838 optval = ipoptp_next(&opts)) { 20839 opt = opts.ipoptp_cur; 20840 optlen = opts.ipoptp_len; 20841 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20842 switch (optval) { 20843 case IPOPT_SSRR: 20844 case IPOPT_LSRR: 20845 off = opt[IPOPT_OFFSET]; 20846 /* 20847 * If one of the conditions is true, it means 20848 * end of options and dst already has the right 20849 * value. 20850 */ 20851 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20852 off = optlen - IP_ADDR_LEN; 20853 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20854 } 20855 return (dst); 20856 default: 20857 break; 20858 } 20859 } 20860 20861 return (dst); 20862 } 20863 20864 mblk_t * 20865 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20866 conn_t *connp, boolean_t unspec_src) 20867 { 20868 ipsec_out_t *io; 20869 mblk_t *first_mp; 20870 boolean_t policy_present; 20871 20872 first_mp = mp; 20873 if (mp->b_datap->db_type == M_CTL) { 20874 io = (ipsec_out_t *)first_mp->b_rptr; 20875 /* 20876 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20877 * 20878 * 1) There is per-socket policy (including cached global 20879 * policy). 20880 * 2) There is no per-socket policy, but it is 20881 * a multicast packet that needs to go out 20882 * on a specific interface. This is the case 20883 * where (ip_wput and ip_wput_multicast) attaches 20884 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20885 * 20886 * In case (2) we check with global policy to 20887 * see if there is a match and set the ill_index 20888 * appropriately so that we can lookup the ire 20889 * properly in ip_wput_ipsec_out. 20890 */ 20891 20892 /* 20893 * ipsec_out_use_global_policy is set to B_FALSE 20894 * in ipsec_in_to_out(). Refer to that function for 20895 * details. 20896 */ 20897 if ((io->ipsec_out_latch == NULL) && 20898 (io->ipsec_out_use_global_policy)) { 20899 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20900 ire, connp, unspec_src)); 20901 } 20902 if (!io->ipsec_out_secure) { 20903 /* 20904 * If this is not a secure packet, drop 20905 * the IPSEC_OUT mp and treat it as a clear 20906 * packet. This happens when we are sending 20907 * a ICMP reply back to a clear packet. See 20908 * ipsec_in_to_out() for details. 20909 */ 20910 mp = first_mp->b_cont; 20911 freeb(first_mp); 20912 } 20913 return (mp); 20914 } 20915 /* 20916 * See whether we need to attach a global policy here. We 20917 * don't depend on the conn (as it could be null) for deciding 20918 * what policy this datagram should go through because it 20919 * should have happened in ip_wput if there was some 20920 * policy. This normally happens for connections which are not 20921 * fully bound preventing us from caching policies in 20922 * ip_bind. Packets coming from the TCP listener/global queue 20923 * - which are non-hard_bound - could also be affected by 20924 * applying policy here. 20925 * 20926 * If this packet is coming from tcp global queue or listener, 20927 * we will be applying policy here. This may not be *right* 20928 * if these packets are coming from the detached connection as 20929 * it could have gone in clear before. This happens only if a 20930 * TCP connection started when there is no policy and somebody 20931 * added policy before it became detached. Thus packets of the 20932 * detached connection could go out secure and the other end 20933 * would drop it because it will be expecting in clear. The 20934 * converse is not true i.e if somebody starts a TCP 20935 * connection and deletes the policy, all the packets will 20936 * still go out with the policy that existed before deleting 20937 * because ip_unbind sends up policy information which is used 20938 * by TCP on subsequent ip_wputs. The right solution is to fix 20939 * TCP to attach a dummy IPSEC_OUT and set 20940 * ipsec_out_use_global_policy to B_FALSE. As this might 20941 * affect performance for normal cases, we are not doing it. 20942 * Thus, set policy before starting any TCP connections. 20943 * 20944 * NOTE - We might apply policy even for a hard bound connection 20945 * - for which we cached policy in ip_bind - if somebody added 20946 * global policy after we inherited the policy in ip_bind. 20947 * This means that the packets that were going out in clear 20948 * previously would start going secure and hence get dropped 20949 * on the other side. To fix this, TCP attaches a dummy 20950 * ipsec_out and make sure that we don't apply global policy. 20951 */ 20952 if (ipha != NULL) 20953 policy_present = ipsec_outbound_v4_policy_present; 20954 else 20955 policy_present = ipsec_outbound_v6_policy_present; 20956 if (!policy_present) 20957 return (mp); 20958 20959 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20960 } 20961 20962 ire_t * 20963 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20964 { 20965 ipaddr_t addr; 20966 ire_t *save_ire; 20967 irb_t *irb; 20968 ill_group_t *illgrp; 20969 int err; 20970 20971 save_ire = ire; 20972 addr = ire->ire_addr; 20973 20974 ASSERT(ire->ire_type == IRE_BROADCAST); 20975 20976 illgrp = connp->conn_outgoing_ill->ill_group; 20977 if (illgrp == NULL) { 20978 *conn_outgoing_ill = conn_get_held_ill(connp, 20979 &connp->conn_outgoing_ill, &err); 20980 if (err == ILL_LOOKUP_FAILED) { 20981 ire_refrele(save_ire); 20982 return (NULL); 20983 } 20984 return (save_ire); 20985 } 20986 /* 20987 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20988 * If it is part of the group, we need to send on the ire 20989 * that has been cleared of IRE_MARK_NORECV and that belongs 20990 * to this group. This is okay as IP_BOUND_IF really means 20991 * any ill in the group. We depend on the fact that the 20992 * first ire in the group is always cleared of IRE_MARK_NORECV 20993 * if such an ire exists. This is possible only if you have 20994 * at least one ill in the group that has not failed. 20995 * 20996 * First get to the ire that matches the address and group. 20997 * 20998 * We don't look for an ire with a matching zoneid because a given zone 20999 * won't always have broadcast ires on all ills in the group. 21000 */ 21001 irb = ire->ire_bucket; 21002 rw_enter(&irb->irb_lock, RW_READER); 21003 if (ire->ire_marks & IRE_MARK_NORECV) { 21004 /* 21005 * If the current zone only has an ire broadcast for this 21006 * address marked NORECV, the ire we want is ahead in the 21007 * bucket, so we look it up deliberately ignoring the zoneid. 21008 */ 21009 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21010 if (ire->ire_addr != addr) 21011 continue; 21012 /* skip over deleted ires */ 21013 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21014 continue; 21015 } 21016 } 21017 while (ire != NULL) { 21018 /* 21019 * If a new interface is coming up, we could end up 21020 * seeing the loopback ire and the non-loopback ire 21021 * may not have been added yet. So check for ire_stq 21022 */ 21023 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21024 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21025 break; 21026 } 21027 ire = ire->ire_next; 21028 } 21029 if (ire != NULL && ire->ire_addr == addr && 21030 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21031 IRE_REFHOLD(ire); 21032 rw_exit(&irb->irb_lock); 21033 ire_refrele(save_ire); 21034 *conn_outgoing_ill = ire_to_ill(ire); 21035 /* 21036 * Refhold the ill to make the conn_outgoing_ill 21037 * independent of the ire. ip_wput_ire goes in a loop 21038 * and may refrele the ire. Since we have an ire at this 21039 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21040 */ 21041 ill_refhold(*conn_outgoing_ill); 21042 return (ire); 21043 } 21044 rw_exit(&irb->irb_lock); 21045 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21046 /* 21047 * If we can't find a suitable ire, return the original ire. 21048 */ 21049 return (save_ire); 21050 } 21051 21052 /* 21053 * This function does the ire_refrele of the ire passed in as the 21054 * argument. As this function looks up more ires i.e broadcast ires, 21055 * it needs to REFRELE them. Currently, for simplicity we don't 21056 * differentiate the one passed in and looked up here. We always 21057 * REFRELE. 21058 * IPQoS Notes: 21059 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21060 * IPSec packets are done in ipsec_out_process. 21061 * 21062 */ 21063 void 21064 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 21065 { 21066 ipha_t *ipha; 21067 #define rptr ((uchar_t *)ipha) 21068 queue_t *stq; 21069 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21070 uint32_t v_hlen_tos_len; 21071 uint32_t ttl_protocol; 21072 ipaddr_t src; 21073 ipaddr_t dst; 21074 uint32_t cksum; 21075 ipaddr_t orig_src; 21076 ire_t *ire1; 21077 mblk_t *next_mp; 21078 uint_t hlen; 21079 uint16_t *up; 21080 uint32_t max_frag = ire->ire_max_frag; 21081 ill_t *ill = ire_to_ill(ire); 21082 int clusterwide; 21083 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21084 int ipsec_len; 21085 mblk_t *first_mp; 21086 ipsec_out_t *io; 21087 boolean_t conn_dontroute; /* conn value for multicast */ 21088 boolean_t conn_multicast_loop; /* conn value for multicast */ 21089 boolean_t multicast_forward; /* Should we forward ? */ 21090 boolean_t unspec_src; 21091 ill_t *conn_outgoing_ill = NULL; 21092 ill_t *ire_ill; 21093 ill_t *ire1_ill; 21094 uint32_t ill_index = 0; 21095 boolean_t multirt_send = B_FALSE; 21096 int err; 21097 zoneid_t zoneid; 21098 ipxmit_state_t pktxmit_state; 21099 21100 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21101 "ip_wput_ire_start: q %p", q); 21102 21103 multicast_forward = B_FALSE; 21104 unspec_src = (connp != NULL && connp->conn_unspec_src); 21105 21106 if (ire->ire_flags & RTF_MULTIRT) { 21107 /* 21108 * Multirouting case. The bucket where ire is stored 21109 * probably holds other RTF_MULTIRT flagged ire 21110 * to the destination. In this call to ip_wput_ire, 21111 * we attempt to send the packet through all 21112 * those ires. Thus, we first ensure that ire is the 21113 * first RTF_MULTIRT ire in the bucket, 21114 * before walking the ire list. 21115 */ 21116 ire_t *first_ire; 21117 irb_t *irb = ire->ire_bucket; 21118 ASSERT(irb != NULL); 21119 21120 /* Make sure we do not omit any multiroute ire. */ 21121 IRB_REFHOLD(irb); 21122 for (first_ire = irb->irb_ire; 21123 first_ire != NULL; 21124 first_ire = first_ire->ire_next) { 21125 if ((first_ire->ire_flags & RTF_MULTIRT) && 21126 (first_ire->ire_addr == ire->ire_addr) && 21127 !(first_ire->ire_marks & 21128 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21129 break; 21130 } 21131 21132 if ((first_ire != NULL) && (first_ire != ire)) { 21133 IRE_REFHOLD(first_ire); 21134 ire_refrele(ire); 21135 ire = first_ire; 21136 ill = ire_to_ill(ire); 21137 } 21138 IRB_REFRELE(irb); 21139 } 21140 21141 /* 21142 * conn_outgoing_ill is used only in the broadcast loop. 21143 * for performance we don't grab the mutexs in the fastpath 21144 */ 21145 if ((connp != NULL) && 21146 (connp->conn_xmit_if_ill == NULL) && 21147 (ire->ire_type == IRE_BROADCAST) && 21148 ((connp->conn_nofailover_ill != NULL) || 21149 (connp->conn_outgoing_ill != NULL))) { 21150 /* 21151 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21152 * option. So, see if this endpoint is bound to a 21153 * IPIF_NOFAILOVER address. If so, honor it. This implies 21154 * that if the interface is failed, we will still send 21155 * the packet on the same ill which is what we want. 21156 */ 21157 conn_outgoing_ill = conn_get_held_ill(connp, 21158 &connp->conn_nofailover_ill, &err); 21159 if (err == ILL_LOOKUP_FAILED) { 21160 ire_refrele(ire); 21161 freemsg(mp); 21162 return; 21163 } 21164 if (conn_outgoing_ill == NULL) { 21165 /* 21166 * Choose a good ill in the group to send the 21167 * packets on. 21168 */ 21169 ire = conn_set_outgoing_ill(connp, ire, 21170 &conn_outgoing_ill); 21171 if (ire == NULL) { 21172 freemsg(mp); 21173 return; 21174 } 21175 } 21176 } 21177 21178 if (mp->b_datap->db_type != M_CTL) { 21179 ipha = (ipha_t *)mp->b_rptr; 21180 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 21181 } else { 21182 io = (ipsec_out_t *)mp->b_rptr; 21183 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21184 zoneid = io->ipsec_out_zoneid; 21185 ASSERT(zoneid != ALL_ZONES); 21186 ipha = (ipha_t *)mp->b_cont->b_rptr; 21187 dst = ipha->ipha_dst; 21188 /* 21189 * For the multicast case, ipsec_out carries conn_dontroute and 21190 * conn_multicast_loop as conn may not be available here. We 21191 * need this for multicast loopback and forwarding which is done 21192 * later in the code. 21193 */ 21194 if (CLASSD(dst)) { 21195 conn_dontroute = io->ipsec_out_dontroute; 21196 conn_multicast_loop = io->ipsec_out_multicast_loop; 21197 /* 21198 * If conn_dontroute is not set or conn_multicast_loop 21199 * is set, we need to do forwarding/loopback. For 21200 * datagrams from ip_wput_multicast, conn_dontroute is 21201 * set to B_TRUE and conn_multicast_loop is set to 21202 * B_FALSE so that we neither do forwarding nor 21203 * loopback. 21204 */ 21205 if (!conn_dontroute || conn_multicast_loop) 21206 multicast_forward = B_TRUE; 21207 } 21208 } 21209 21210 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21211 ire->ire_zoneid != ALL_ZONES) { 21212 /* 21213 * When a zone sends a packet to another zone, we try to deliver 21214 * the packet under the same conditions as if the destination 21215 * was a real node on the network. To do so, we look for a 21216 * matching route in the forwarding table. 21217 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21218 * ip_newroute() does. 21219 */ 21220 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21221 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21222 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21223 if (src_ire != NULL && 21224 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 21225 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21226 ipha->ipha_src = src_ire->ire_src_addr; 21227 ire_refrele(src_ire); 21228 } else { 21229 ire_refrele(ire); 21230 if (conn_outgoing_ill != NULL) 21231 ill_refrele(conn_outgoing_ill); 21232 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21233 if (src_ire != NULL) { 21234 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21235 ire_refrele(src_ire); 21236 freemsg(mp); 21237 return; 21238 } 21239 ire_refrele(src_ire); 21240 } 21241 if (ip_hdr_complete(ipha, zoneid)) { 21242 /* Failed */ 21243 freemsg(mp); 21244 return; 21245 } 21246 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 21247 return; 21248 } 21249 } 21250 21251 if (mp->b_datap->db_type == M_CTL || 21252 ipsec_outbound_v4_policy_present) { 21253 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21254 unspec_src); 21255 if (mp == NULL) { 21256 ire_refrele(ire); 21257 if (conn_outgoing_ill != NULL) 21258 ill_refrele(conn_outgoing_ill); 21259 return; 21260 } 21261 } 21262 21263 first_mp = mp; 21264 ipsec_len = 0; 21265 21266 if (first_mp->b_datap->db_type == M_CTL) { 21267 io = (ipsec_out_t *)first_mp->b_rptr; 21268 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21269 mp = first_mp->b_cont; 21270 ipsec_len = ipsec_out_extra_length(first_mp); 21271 ASSERT(ipsec_len >= 0); 21272 zoneid = io->ipsec_out_zoneid; 21273 ASSERT(zoneid != ALL_ZONES); 21274 21275 /* 21276 * Drop M_CTL here if IPsec processing is not needed. 21277 * (Non-IPsec use of M_CTL extracted any information it 21278 * needed above). 21279 */ 21280 if (ipsec_len == 0) { 21281 freeb(first_mp); 21282 first_mp = mp; 21283 } 21284 } 21285 21286 /* 21287 * Fast path for ip_wput_ire 21288 */ 21289 21290 ipha = (ipha_t *)mp->b_rptr; 21291 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21292 dst = ipha->ipha_dst; 21293 21294 /* 21295 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21296 * if the socket is a SOCK_RAW type. The transport checksum should 21297 * be provided in the pre-built packet, so we don't need to compute it. 21298 * Also, other application set flags, like DF, should not be altered. 21299 * Other transport MUST pass down zero. 21300 */ 21301 ip_hdr_included = ipha->ipha_ident; 21302 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21303 21304 if (CLASSD(dst)) { 21305 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21306 ntohl(dst), 21307 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21308 ntohl(ire->ire_addr))); 21309 } 21310 21311 /* Macros to extract header fields from data already in registers */ 21312 #ifdef _BIG_ENDIAN 21313 #define V_HLEN (v_hlen_tos_len >> 24) 21314 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21315 #define PROTO (ttl_protocol & 0xFF) 21316 #else 21317 #define V_HLEN (v_hlen_tos_len & 0xFF) 21318 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21319 #define PROTO (ttl_protocol >> 8) 21320 #endif 21321 21322 21323 orig_src = src = ipha->ipha_src; 21324 /* (The loop back to "another" is explained down below.) */ 21325 another:; 21326 /* 21327 * Assign an ident value for this packet. We assign idents on 21328 * a per destination basis out of the IRE. There could be 21329 * other threads targeting the same destination, so we have to 21330 * arrange for a atomic increment. Note that we use a 32-bit 21331 * atomic add because it has better performance than its 21332 * 16-bit sibling. 21333 * 21334 * If running in cluster mode and if the source address 21335 * belongs to a replicated service then vector through 21336 * cl_inet_ipident vector to allocate ip identifier 21337 * NOTE: This is a contract private interface with the 21338 * clustering group. 21339 */ 21340 clusterwide = 0; 21341 if (cl_inet_ipident) { 21342 ASSERT(cl_inet_isclusterwide); 21343 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21344 AF_INET, (uint8_t *)(uintptr_t)src)) { 21345 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21346 AF_INET, (uint8_t *)(uintptr_t)src, 21347 (uint8_t *)(uintptr_t)dst); 21348 clusterwide = 1; 21349 } 21350 } 21351 if (!clusterwide) { 21352 ipha->ipha_ident = 21353 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21354 } 21355 21356 #ifndef _BIG_ENDIAN 21357 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21358 #endif 21359 21360 /* 21361 * Set source address unless sent on an ill or conn_unspec_src is set. 21362 * This is needed to obey conn_unspec_src when packets go through 21363 * ip_newroute + arp. 21364 * Assumes ip_newroute{,_multi} sets the source address as well. 21365 */ 21366 if (src == INADDR_ANY && !unspec_src) { 21367 /* 21368 * Assign the appropriate source address from the IRE if none 21369 * was specified. 21370 */ 21371 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21372 21373 /* 21374 * With IP multipathing, broadcast packets are sent on the ire 21375 * that has been cleared of IRE_MARK_NORECV and that belongs to 21376 * the group. However, this ire might not be in the same zone so 21377 * we can't always use its source address. We look for a 21378 * broadcast ire in the same group and in the right zone. 21379 */ 21380 if (ire->ire_type == IRE_BROADCAST && 21381 ire->ire_zoneid != zoneid) { 21382 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21383 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21384 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21385 if (src_ire != NULL) { 21386 src = src_ire->ire_src_addr; 21387 ire_refrele(src_ire); 21388 } else { 21389 ire_refrele(ire); 21390 if (conn_outgoing_ill != NULL) 21391 ill_refrele(conn_outgoing_ill); 21392 freemsg(first_mp); 21393 BUMP_MIB(&ip_mib, ipOutDiscards); 21394 return; 21395 } 21396 } else { 21397 src = ire->ire_src_addr; 21398 } 21399 21400 if (connp == NULL) { 21401 ip1dbg(("ip_wput_ire: no connp and no src " 21402 "address for dst 0x%x, using src 0x%x\n", 21403 ntohl(dst), 21404 ntohl(src))); 21405 } 21406 ipha->ipha_src = src; 21407 } 21408 stq = ire->ire_stq; 21409 21410 /* 21411 * We only allow ire chains for broadcasts since there will 21412 * be multiple IRE_CACHE entries for the same multicast 21413 * address (one per ipif). 21414 */ 21415 next_mp = NULL; 21416 21417 /* broadcast packet */ 21418 if (ire->ire_type == IRE_BROADCAST) 21419 goto broadcast; 21420 21421 /* loopback ? */ 21422 if (stq == NULL) 21423 goto nullstq; 21424 21425 /* The ill_index for outbound ILL */ 21426 ill_index = Q_TO_INDEX(stq); 21427 21428 BUMP_MIB(&ip_mib, ipOutRequests); 21429 ttl_protocol = ((uint16_t *)ipha)[4]; 21430 21431 /* pseudo checksum (do it in parts for IP header checksum) */ 21432 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21433 21434 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21435 queue_t *dev_q = stq->q_next; 21436 21437 /* flow controlled */ 21438 if ((dev_q->q_next || dev_q->q_first) && 21439 !canput(dev_q)) 21440 goto blocked; 21441 if ((PROTO == IPPROTO_UDP) && 21442 (ip_hdr_included != IP_HDR_INCLUDED)) { 21443 hlen = (V_HLEN & 0xF) << 2; 21444 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21445 if (*up != 0) { 21446 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21447 hlen, LENGTH, max_frag, ipsec_len, cksum); 21448 /* Software checksum? */ 21449 if (DB_CKSUMFLAGS(mp) == 0) { 21450 IP_STAT(ip_out_sw_cksum); 21451 IP_STAT_UPDATE( 21452 ip_udp_out_sw_cksum_bytes, 21453 LENGTH - hlen); 21454 } 21455 } 21456 } 21457 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21458 hlen = (V_HLEN & 0xF) << 2; 21459 if (PROTO == IPPROTO_TCP) { 21460 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21461 /* 21462 * The packet header is processed once and for all, even 21463 * in the multirouting case. We disable hardware 21464 * checksum if the packet is multirouted, as it will be 21465 * replicated via several interfaces, and not all of 21466 * them may have this capability. 21467 */ 21468 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21469 LENGTH, max_frag, ipsec_len, cksum); 21470 /* Software checksum? */ 21471 if (DB_CKSUMFLAGS(mp) == 0) { 21472 IP_STAT(ip_out_sw_cksum); 21473 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21474 LENGTH - hlen); 21475 } 21476 } else { 21477 sctp_hdr_t *sctph; 21478 21479 ASSERT(PROTO == IPPROTO_SCTP); 21480 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21481 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21482 /* 21483 * Zero out the checksum field to ensure proper 21484 * checksum calculation. 21485 */ 21486 sctph->sh_chksum = 0; 21487 #ifdef DEBUG 21488 if (!skip_sctp_cksum) 21489 #endif 21490 sctph->sh_chksum = sctp_cksum(mp, hlen); 21491 } 21492 } 21493 21494 /* 21495 * If this is a multicast packet and originated from ip_wput 21496 * we need to do loopback and forwarding checks. If it comes 21497 * from ip_wput_multicast, we SHOULD not do this. 21498 */ 21499 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21500 21501 /* checksum */ 21502 cksum += ttl_protocol; 21503 21504 /* fragment the packet */ 21505 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21506 goto fragmentit; 21507 /* 21508 * Don't use frag_flag if packet is pre-built or source 21509 * routed or if multicast (since multicast packets do 21510 * not solicit ICMP "packet too big" messages). 21511 */ 21512 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21513 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21514 !ip_source_route_included(ipha)) && 21515 !CLASSD(ipha->ipha_dst)) 21516 ipha->ipha_fragment_offset_and_flags |= 21517 htons(ire->ire_frag_flag); 21518 21519 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21520 /* calculate IP header checksum */ 21521 cksum += ipha->ipha_ident; 21522 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21523 cksum += ipha->ipha_fragment_offset_and_flags; 21524 21525 /* IP options present */ 21526 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21527 if (hlen) 21528 goto checksumoptions; 21529 21530 /* calculate hdr checksum */ 21531 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21532 cksum = ~(cksum + (cksum >> 16)); 21533 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21534 } 21535 if (ipsec_len != 0) { 21536 /* 21537 * We will do the rest of the processing after 21538 * we come back from IPSEC in ip_wput_ipsec_out(). 21539 */ 21540 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21541 21542 io = (ipsec_out_t *)first_mp->b_rptr; 21543 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21544 ill_phyint->phyint_ifindex; 21545 21546 ipsec_out_process(q, first_mp, ire, ill_index); 21547 ire_refrele(ire); 21548 if (conn_outgoing_ill != NULL) 21549 ill_refrele(conn_outgoing_ill); 21550 return; 21551 } 21552 21553 /* 21554 * In most cases, the emission loop below is entered only 21555 * once. Only in the case where the ire holds the 21556 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21557 * flagged ires in the bucket, and send the packet 21558 * through all crossed RTF_MULTIRT routes. 21559 */ 21560 if (ire->ire_flags & RTF_MULTIRT) { 21561 multirt_send = B_TRUE; 21562 } 21563 do { 21564 if (multirt_send) { 21565 irb_t *irb; 21566 /* 21567 * We are in a multiple send case, need to get 21568 * the next ire and make a duplicate of the packet. 21569 * ire1 holds here the next ire to process in the 21570 * bucket. If multirouting is expected, 21571 * any non-RTF_MULTIRT ire that has the 21572 * right destination address is ignored. 21573 */ 21574 irb = ire->ire_bucket; 21575 ASSERT(irb != NULL); 21576 21577 IRB_REFHOLD(irb); 21578 for (ire1 = ire->ire_next; 21579 ire1 != NULL; 21580 ire1 = ire1->ire_next) { 21581 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21582 continue; 21583 if (ire1->ire_addr != ire->ire_addr) 21584 continue; 21585 if (ire1->ire_marks & 21586 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21587 continue; 21588 21589 /* Got one */ 21590 IRE_REFHOLD(ire1); 21591 break; 21592 } 21593 IRB_REFRELE(irb); 21594 21595 if (ire1 != NULL) { 21596 next_mp = copyb(mp); 21597 if ((next_mp == NULL) || 21598 ((mp->b_cont != NULL) && 21599 ((next_mp->b_cont = 21600 dupmsg(mp->b_cont)) == NULL))) { 21601 freemsg(next_mp); 21602 next_mp = NULL; 21603 ire_refrele(ire1); 21604 ire1 = NULL; 21605 } 21606 } 21607 21608 /* Last multiroute ire; don't loop anymore. */ 21609 if (ire1 == NULL) { 21610 multirt_send = B_FALSE; 21611 } 21612 } 21613 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21614 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21615 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21616 if ((pktxmit_state == SEND_FAILED) || 21617 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21618 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21619 "- packet dropped\n")); 21620 ire_refrele(ire); 21621 if (next_mp != NULL) { 21622 freemsg(next_mp); 21623 ire_refrele(ire1); 21624 } 21625 if (conn_outgoing_ill != NULL) 21626 ill_refrele(conn_outgoing_ill); 21627 return; 21628 } 21629 21630 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21631 "ip_wput_ire_end: q %p (%S)", 21632 q, "last copy out"); 21633 IRE_REFRELE(ire); 21634 21635 if (multirt_send) { 21636 ASSERT(ire1); 21637 /* 21638 * Proceed with the next RTF_MULTIRT ire, 21639 * Also set up the send-to queue accordingly. 21640 */ 21641 ire = ire1; 21642 ire1 = NULL; 21643 stq = ire->ire_stq; 21644 mp = next_mp; 21645 next_mp = NULL; 21646 ipha = (ipha_t *)mp->b_rptr; 21647 ill_index = Q_TO_INDEX(stq); 21648 } 21649 } while (multirt_send); 21650 if (conn_outgoing_ill != NULL) 21651 ill_refrele(conn_outgoing_ill); 21652 return; 21653 21654 /* 21655 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21656 */ 21657 broadcast: 21658 { 21659 /* 21660 * Avoid broadcast storms by setting the ttl to 1 21661 * for broadcasts. This parameter can be set 21662 * via ndd, so make sure that for the SO_DONTROUTE 21663 * case that ipha_ttl is always set to 1. 21664 * In the event that we are replying to incoming 21665 * ICMP packets, conn could be NULL. 21666 */ 21667 if ((connp != NULL) && connp->conn_dontroute) 21668 ipha->ipha_ttl = 1; 21669 else 21670 ipha->ipha_ttl = ip_broadcast_ttl; 21671 21672 /* 21673 * Note that we are not doing a IRB_REFHOLD here. 21674 * Actually we don't care if the list changes i.e 21675 * if somebody deletes an IRE from the list while 21676 * we drop the lock, the next time we come around 21677 * ire_next will be NULL and hence we won't send 21678 * out multiple copies which is fine. 21679 */ 21680 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21681 ire1 = ire->ire_next; 21682 if (conn_outgoing_ill != NULL) { 21683 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21684 ASSERT(ire1 == ire->ire_next); 21685 if (ire1 != NULL && ire1->ire_addr == dst) { 21686 ire_refrele(ire); 21687 ire = ire1; 21688 IRE_REFHOLD(ire); 21689 ire1 = ire->ire_next; 21690 continue; 21691 } 21692 rw_exit(&ire->ire_bucket->irb_lock); 21693 /* Did not find a matching ill */ 21694 ip1dbg(("ip_wput_ire: broadcast with no " 21695 "matching IP_BOUND_IF ill %s\n", 21696 conn_outgoing_ill->ill_name)); 21697 freemsg(first_mp); 21698 if (ire != NULL) 21699 ire_refrele(ire); 21700 ill_refrele(conn_outgoing_ill); 21701 return; 21702 } 21703 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21704 /* 21705 * If the next IRE has the same address and is not one 21706 * of the two copies that we need to send, try to see 21707 * whether this copy should be sent at all. This 21708 * assumes that we insert loopbacks first and then 21709 * non-loopbacks. This is acheived by inserting the 21710 * loopback always before non-loopback. 21711 * This is used to send a single copy of a broadcast 21712 * packet out all physical interfaces that have an 21713 * matching IRE_BROADCAST while also looping 21714 * back one copy (to ip_wput_local) for each 21715 * matching physical interface. However, we avoid 21716 * sending packets out different logical that match by 21717 * having ipif_up/ipif_down supress duplicate 21718 * IRE_BROADCASTS. 21719 * 21720 * This feature is currently used to get broadcasts 21721 * sent to multiple interfaces, when the broadcast 21722 * address being used applies to multiple interfaces. 21723 * For example, a whole net broadcast will be 21724 * replicated on every connected subnet of 21725 * the target net. 21726 * 21727 * Each zone has its own set of IRE_BROADCASTs, so that 21728 * we're able to distribute inbound packets to multiple 21729 * zones who share a broadcast address. We avoid looping 21730 * back outbound packets in different zones but on the 21731 * same ill, as the application would see duplicates. 21732 * 21733 * If the interfaces are part of the same group, 21734 * we would want to send only one copy out for 21735 * whole group. 21736 * 21737 * This logic assumes that ire_add_v4() groups the 21738 * IRE_BROADCAST entries so that those with the same 21739 * ire_addr and ill_group are kept together. 21740 */ 21741 ire_ill = ire->ire_ipif->ipif_ill; 21742 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21743 if (ire_ill->ill_group != NULL && 21744 (ire->ire_marks & IRE_MARK_NORECV)) { 21745 /* 21746 * If the current zone only has an ire 21747 * broadcast for this address marked 21748 * NORECV, the ire we want is ahead in 21749 * the bucket, so we look it up 21750 * deliberately ignoring the zoneid. 21751 */ 21752 for (ire1 = ire->ire_bucket->irb_ire; 21753 ire1 != NULL; 21754 ire1 = ire1->ire_next) { 21755 ire1_ill = 21756 ire1->ire_ipif->ipif_ill; 21757 if (ire1->ire_addr != dst) 21758 continue; 21759 /* skip over the current ire */ 21760 if (ire1 == ire) 21761 continue; 21762 /* skip over deleted ires */ 21763 if (ire1->ire_marks & 21764 IRE_MARK_CONDEMNED) 21765 continue; 21766 /* 21767 * non-loopback ire in our 21768 * group: use it for the next 21769 * pass in the loop 21770 */ 21771 if (ire1->ire_stq != NULL && 21772 ire1_ill->ill_group == 21773 ire_ill->ill_group) 21774 break; 21775 } 21776 } 21777 } else { 21778 while (ire1 != NULL && ire1->ire_addr == dst) { 21779 ire1_ill = ire1->ire_ipif->ipif_ill; 21780 /* 21781 * We can have two broadcast ires on the 21782 * same ill in different zones; here 21783 * we'll send a copy of the packet on 21784 * each ill and the fanout code will 21785 * call conn_wantpacket() to check that 21786 * the zone has the broadcast address 21787 * configured on the ill. If the two 21788 * ires are in the same group we only 21789 * send one copy up. 21790 */ 21791 if (ire1_ill != ire_ill && 21792 (ire1_ill->ill_group == NULL || 21793 ire_ill->ill_group == NULL || 21794 ire1_ill->ill_group != 21795 ire_ill->ill_group)) { 21796 break; 21797 } 21798 ire1 = ire1->ire_next; 21799 } 21800 } 21801 } 21802 ASSERT(multirt_send == B_FALSE); 21803 if (ire1 != NULL && ire1->ire_addr == dst) { 21804 if ((ire->ire_flags & RTF_MULTIRT) && 21805 (ire1->ire_flags & RTF_MULTIRT)) { 21806 /* 21807 * We are in the multirouting case. 21808 * The message must be sent at least 21809 * on both ires. These ires have been 21810 * inserted AFTER the standard ones 21811 * in ip_rt_add(). There are thus no 21812 * other ire entries for the destination 21813 * address in the rest of the bucket 21814 * that do not have the RTF_MULTIRT 21815 * flag. We don't process a copy 21816 * of the message here. This will be 21817 * done in the final sending loop. 21818 */ 21819 multirt_send = B_TRUE; 21820 } else { 21821 next_mp = ip_copymsg(first_mp); 21822 if (next_mp != NULL) 21823 IRE_REFHOLD(ire1); 21824 } 21825 } 21826 rw_exit(&ire->ire_bucket->irb_lock); 21827 } 21828 21829 if (stq) { 21830 /* 21831 * A non-NULL send-to queue means this packet is going 21832 * out of this machine. 21833 */ 21834 21835 BUMP_MIB(&ip_mib, ipOutRequests); 21836 ttl_protocol = ((uint16_t *)ipha)[4]; 21837 /* 21838 * We accumulate the pseudo header checksum in cksum. 21839 * This is pretty hairy code, so watch close. One 21840 * thing to keep in mind is that UDP and TCP have 21841 * stored their respective datagram lengths in their 21842 * checksum fields. This lines things up real nice. 21843 */ 21844 cksum = (dst >> 16) + (dst & 0xFFFF) + 21845 (src >> 16) + (src & 0xFFFF); 21846 /* 21847 * We assume the udp checksum field contains the 21848 * length, so to compute the pseudo header checksum, 21849 * all we need is the protocol number and src/dst. 21850 */ 21851 /* Provide the checksums for UDP and TCP. */ 21852 if ((PROTO == IPPROTO_TCP) && 21853 (ip_hdr_included != IP_HDR_INCLUDED)) { 21854 /* hlen gets the number of uchar_ts in the IP header */ 21855 hlen = (V_HLEN & 0xF) << 2; 21856 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21857 IP_STAT(ip_out_sw_cksum); 21858 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21859 LENGTH - hlen); 21860 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21861 if (*up == 0) 21862 *up = 0xFFFF; 21863 } else if (PROTO == IPPROTO_SCTP && 21864 (ip_hdr_included != IP_HDR_INCLUDED)) { 21865 sctp_hdr_t *sctph; 21866 21867 hlen = (V_HLEN & 0xF) << 2; 21868 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21869 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21870 sctph->sh_chksum = 0; 21871 #ifdef DEBUG 21872 if (!skip_sctp_cksum) 21873 #endif 21874 sctph->sh_chksum = sctp_cksum(mp, hlen); 21875 } else { 21876 queue_t *dev_q = stq->q_next; 21877 21878 if ((dev_q->q_next || dev_q->q_first) && 21879 !canput(dev_q)) { 21880 blocked: 21881 ipha->ipha_ident = ip_hdr_included; 21882 /* 21883 * If we don't have a conn to apply 21884 * backpressure, free the message. 21885 * In the ire_send path, we don't know 21886 * the position to requeue the packet. Rather 21887 * than reorder packets, we just drop this 21888 * packet. 21889 */ 21890 if (ip_output_queue && connp != NULL && 21891 caller != IRE_SEND) { 21892 if (caller == IP_WSRV) { 21893 connp->conn_did_putbq = 1; 21894 (void) putbq(connp->conn_wq, 21895 first_mp); 21896 conn_drain_insert(connp); 21897 /* 21898 * This is the service thread, 21899 * and the queue is already 21900 * noenabled. The check for 21901 * canput and the putbq is not 21902 * atomic. So we need to check 21903 * again. 21904 */ 21905 if (canput(stq->q_next)) 21906 connp->conn_did_putbq 21907 = 0; 21908 IP_STAT(ip_conn_flputbq); 21909 } else { 21910 /* 21911 * We are not the service proc. 21912 * ip_wsrv will be scheduled or 21913 * is already running. 21914 */ 21915 (void) putq(connp->conn_wq, 21916 first_mp); 21917 } 21918 } else { 21919 BUMP_MIB(&ip_mib, ipOutDiscards); 21920 freemsg(first_mp); 21921 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21922 "ip_wput_ire_end: q %p (%S)", 21923 q, "discard"); 21924 } 21925 ire_refrele(ire); 21926 if (next_mp) { 21927 ire_refrele(ire1); 21928 freemsg(next_mp); 21929 } 21930 if (conn_outgoing_ill != NULL) 21931 ill_refrele(conn_outgoing_ill); 21932 return; 21933 } 21934 if ((PROTO == IPPROTO_UDP) && 21935 (ip_hdr_included != IP_HDR_INCLUDED)) { 21936 /* 21937 * hlen gets the number of uchar_ts in the 21938 * IP header 21939 */ 21940 hlen = (V_HLEN & 0xF) << 2; 21941 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21942 max_frag = ire->ire_max_frag; 21943 if (*up != 0) { 21944 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21945 up, PROTO, hlen, LENGTH, max_frag, 21946 ipsec_len, cksum); 21947 /* Software checksum? */ 21948 if (DB_CKSUMFLAGS(mp) == 0) { 21949 IP_STAT(ip_out_sw_cksum); 21950 IP_STAT_UPDATE( 21951 ip_udp_out_sw_cksum_bytes, 21952 LENGTH - hlen); 21953 } 21954 } 21955 } 21956 } 21957 /* 21958 * Need to do this even when fragmenting. The local 21959 * loopback can be done without computing checksums 21960 * but forwarding out other interface must be done 21961 * after the IP checksum (and ULP checksums) have been 21962 * computed. 21963 * 21964 * NOTE : multicast_forward is set only if this packet 21965 * originated from ip_wput. For packets originating from 21966 * ip_wput_multicast, it is not set. 21967 */ 21968 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21969 multi_loopback: 21970 ip2dbg(("ip_wput: multicast, loop %d\n", 21971 conn_multicast_loop)); 21972 21973 /* Forget header checksum offload */ 21974 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21975 21976 /* 21977 * Local loopback of multicasts? Check the 21978 * ill. 21979 * 21980 * Note that the loopback function will not come 21981 * in through ip_rput - it will only do the 21982 * client fanout thus we need to do an mforward 21983 * as well. The is different from the BSD 21984 * logic. 21985 */ 21986 if (ill != NULL) { 21987 ilm_t *ilm; 21988 21989 ILM_WALKER_HOLD(ill); 21990 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21991 ALL_ZONES); 21992 ILM_WALKER_RELE(ill); 21993 if (ilm != NULL) { 21994 /* 21995 * Pass along the virtual output q. 21996 * ip_wput_local() will distribute the 21997 * packet to all the matching zones, 21998 * except the sending zone when 21999 * IP_MULTICAST_LOOP is false. 22000 */ 22001 ip_multicast_loopback(q, ill, first_mp, 22002 conn_multicast_loop ? 0 : 22003 IP_FF_NO_MCAST_LOOP, zoneid); 22004 } 22005 } 22006 if (ipha->ipha_ttl == 0) { 22007 /* 22008 * 0 => only to this host i.e. we are 22009 * done. We are also done if this was the 22010 * loopback interface since it is sufficient 22011 * to loopback one copy of a multicast packet. 22012 */ 22013 freemsg(first_mp); 22014 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22015 "ip_wput_ire_end: q %p (%S)", 22016 q, "loopback"); 22017 ire_refrele(ire); 22018 if (conn_outgoing_ill != NULL) 22019 ill_refrele(conn_outgoing_ill); 22020 return; 22021 } 22022 /* 22023 * ILLF_MULTICAST is checked in ip_newroute 22024 * i.e. we don't need to check it here since 22025 * all IRE_CACHEs come from ip_newroute. 22026 * For multicast traffic, SO_DONTROUTE is interpreted 22027 * to mean only send the packet out the interface 22028 * (optionally specified with IP_MULTICAST_IF) 22029 * and do not forward it out additional interfaces. 22030 * RSVP and the rsvp daemon is an example of a 22031 * protocol and user level process that 22032 * handles it's own routing. Hence, it uses the 22033 * SO_DONTROUTE option to accomplish this. 22034 */ 22035 22036 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22037 /* Unconditionally redo the checksum */ 22038 ipha->ipha_hdr_checksum = 0; 22039 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22040 22041 /* 22042 * If this needs to go out secure, we need 22043 * to wait till we finish the IPSEC 22044 * processing. 22045 */ 22046 if (ipsec_len == 0 && 22047 ip_mforward(ill, ipha, mp)) { 22048 freemsg(first_mp); 22049 ip1dbg(("ip_wput: mforward failed\n")); 22050 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22051 "ip_wput_ire_end: q %p (%S)", 22052 q, "mforward failed"); 22053 ire_refrele(ire); 22054 if (conn_outgoing_ill != NULL) 22055 ill_refrele(conn_outgoing_ill); 22056 return; 22057 } 22058 } 22059 } 22060 max_frag = ire->ire_max_frag; 22061 cksum += ttl_protocol; 22062 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22063 /* No fragmentation required for this one. */ 22064 /* 22065 * Don't use frag_flag if packet is pre-built or source 22066 * routed or if multicast (since multicast packets do 22067 * not solicit ICMP "packet too big" messages). 22068 */ 22069 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22070 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22071 !ip_source_route_included(ipha)) && 22072 !CLASSD(ipha->ipha_dst)) 22073 ipha->ipha_fragment_offset_and_flags |= 22074 htons(ire->ire_frag_flag); 22075 22076 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22077 /* Complete the IP header checksum. */ 22078 cksum += ipha->ipha_ident; 22079 cksum += (v_hlen_tos_len >> 16)+ 22080 (v_hlen_tos_len & 0xFFFF); 22081 cksum += ipha->ipha_fragment_offset_and_flags; 22082 hlen = (V_HLEN & 0xF) - 22083 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22084 if (hlen) { 22085 checksumoptions: 22086 /* 22087 * Account for the IP Options in the IP 22088 * header checksum. 22089 */ 22090 up = (uint16_t *)(rptr+ 22091 IP_SIMPLE_HDR_LENGTH); 22092 do { 22093 cksum += up[0]; 22094 cksum += up[1]; 22095 up += 2; 22096 } while (--hlen); 22097 } 22098 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22099 cksum = ~(cksum + (cksum >> 16)); 22100 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22101 } 22102 if (ipsec_len != 0) { 22103 ipsec_out_process(q, first_mp, ire, ill_index); 22104 if (!next_mp) { 22105 ire_refrele(ire); 22106 if (conn_outgoing_ill != NULL) 22107 ill_refrele(conn_outgoing_ill); 22108 return; 22109 } 22110 goto next; 22111 } 22112 22113 /* 22114 * multirt_send has already been handled 22115 * for broadcast, but not yet for multicast 22116 * or IP options. 22117 */ 22118 if (next_mp == NULL) { 22119 if (ire->ire_flags & RTF_MULTIRT) { 22120 multirt_send = B_TRUE; 22121 } 22122 } 22123 22124 /* 22125 * In most cases, the emission loop below is 22126 * entered only once. Only in the case where 22127 * the ire holds the RTF_MULTIRT flag, do we loop 22128 * to process all RTF_MULTIRT ires in the bucket, 22129 * and send the packet through all crossed 22130 * RTF_MULTIRT routes. 22131 */ 22132 do { 22133 if (multirt_send) { 22134 irb_t *irb; 22135 22136 irb = ire->ire_bucket; 22137 ASSERT(irb != NULL); 22138 /* 22139 * We are in a multiple send case, 22140 * need to get the next IRE and make 22141 * a duplicate of the packet. 22142 */ 22143 IRB_REFHOLD(irb); 22144 for (ire1 = ire->ire_next; 22145 ire1 != NULL; 22146 ire1 = ire1->ire_next) { 22147 if (!(ire1->ire_flags & 22148 RTF_MULTIRT)) 22149 continue; 22150 if (ire1->ire_addr != 22151 ire->ire_addr) 22152 continue; 22153 if (ire1->ire_marks & 22154 (IRE_MARK_CONDEMNED| 22155 IRE_MARK_HIDDEN)) 22156 continue; 22157 22158 /* Got one */ 22159 IRE_REFHOLD(ire1); 22160 break; 22161 } 22162 IRB_REFRELE(irb); 22163 22164 if (ire1 != NULL) { 22165 next_mp = copyb(mp); 22166 if ((next_mp == NULL) || 22167 ((mp->b_cont != NULL) && 22168 ((next_mp->b_cont = 22169 dupmsg(mp->b_cont)) 22170 == NULL))) { 22171 freemsg(next_mp); 22172 next_mp = NULL; 22173 ire_refrele(ire1); 22174 ire1 = NULL; 22175 } 22176 } 22177 22178 /* 22179 * Last multiroute ire; don't loop 22180 * anymore. The emission is over 22181 * and next_mp is NULL. 22182 */ 22183 if (ire1 == NULL) { 22184 multirt_send = B_FALSE; 22185 } 22186 } 22187 22188 ASSERT(ipsec_len == 0); 22189 mp->b_prev = 22190 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22191 DTRACE_PROBE2(ip__xmit__2, 22192 mblk_t *, mp, ire_t *, ire); 22193 pktxmit_state = ip_xmit_v4(mp, ire, 22194 NULL, B_TRUE); 22195 if ((pktxmit_state == SEND_FAILED) || 22196 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22197 if (next_mp) { 22198 freemsg(next_mp); 22199 ire_refrele(ire1); 22200 } 22201 ire_refrele(ire); 22202 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22203 "ip_wput_ire_end: q %p (%S)", 22204 q, "discard MDATA"); 22205 if (conn_outgoing_ill != NULL) 22206 ill_refrele(conn_outgoing_ill); 22207 return; 22208 } 22209 22210 if (multirt_send) { 22211 /* 22212 * We are in a multiple send case, 22213 * need to re-enter the sending loop 22214 * using the next ire. 22215 */ 22216 ire_refrele(ire); 22217 ire = ire1; 22218 stq = ire->ire_stq; 22219 mp = next_mp; 22220 next_mp = NULL; 22221 ipha = (ipha_t *)mp->b_rptr; 22222 ill_index = Q_TO_INDEX(stq); 22223 } 22224 } while (multirt_send); 22225 22226 if (!next_mp) { 22227 /* 22228 * Last copy going out (the ultra-common 22229 * case). Note that we intentionally replicate 22230 * the putnext rather than calling it before 22231 * the next_mp check in hopes of a little 22232 * tail-call action out of the compiler. 22233 */ 22234 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22235 "ip_wput_ire_end: q %p (%S)", 22236 q, "last copy out(1)"); 22237 ire_refrele(ire); 22238 if (conn_outgoing_ill != NULL) 22239 ill_refrele(conn_outgoing_ill); 22240 return; 22241 } 22242 /* More copies going out below. */ 22243 } else { 22244 int offset; 22245 fragmentit: 22246 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22247 /* 22248 * If this would generate a icmp_frag_needed message, 22249 * we need to handle it before we do the IPSEC 22250 * processing. Otherwise, we need to strip the IPSEC 22251 * headers before we send up the message to the ULPs 22252 * which becomes messy and difficult. 22253 */ 22254 if (ipsec_len != 0) { 22255 if ((max_frag < (unsigned int)(LENGTH + 22256 ipsec_len)) && (offset & IPH_DF)) { 22257 22258 BUMP_MIB(&ip_mib, ipFragFails); 22259 ipha->ipha_hdr_checksum = 0; 22260 ipha->ipha_hdr_checksum = 22261 (uint16_t)ip_csum_hdr(ipha); 22262 icmp_frag_needed(ire->ire_stq, first_mp, 22263 max_frag); 22264 if (!next_mp) { 22265 ire_refrele(ire); 22266 if (conn_outgoing_ill != NULL) { 22267 ill_refrele( 22268 conn_outgoing_ill); 22269 } 22270 return; 22271 } 22272 } else { 22273 /* 22274 * This won't cause a icmp_frag_needed 22275 * message. to be gnerated. Send it on 22276 * the wire. Note that this could still 22277 * cause fragmentation and all we 22278 * do is the generation of the message 22279 * to the ULP if needed before IPSEC. 22280 */ 22281 if (!next_mp) { 22282 ipsec_out_process(q, first_mp, 22283 ire, ill_index); 22284 TRACE_2(TR_FAC_IP, 22285 TR_IP_WPUT_IRE_END, 22286 "ip_wput_ire_end: q %p " 22287 "(%S)", q, 22288 "last ipsec_out_process"); 22289 ire_refrele(ire); 22290 if (conn_outgoing_ill != NULL) { 22291 ill_refrele( 22292 conn_outgoing_ill); 22293 } 22294 return; 22295 } 22296 ipsec_out_process(q, first_mp, 22297 ire, ill_index); 22298 } 22299 } else { 22300 /* 22301 * Initiate IPPF processing. For 22302 * fragmentable packets we finish 22303 * all QOS packet processing before 22304 * calling: 22305 * ip_wput_ire_fragmentit->ip_wput_frag 22306 */ 22307 22308 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22309 ip_process(IPP_LOCAL_OUT, &mp, 22310 ill_index); 22311 if (mp == NULL) { 22312 BUMP_MIB(&ip_mib, 22313 ipOutDiscards); 22314 if (next_mp != NULL) { 22315 freemsg(next_mp); 22316 ire_refrele(ire1); 22317 } 22318 ire_refrele(ire); 22319 TRACE_2(TR_FAC_IP, 22320 TR_IP_WPUT_IRE_END, 22321 "ip_wput_ire: q %p (%S)", 22322 q, "discard MDATA"); 22323 if (conn_outgoing_ill != NULL) { 22324 ill_refrele( 22325 conn_outgoing_ill); 22326 } 22327 return; 22328 } 22329 } 22330 if (!next_mp) { 22331 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22332 "ip_wput_ire_end: q %p (%S)", 22333 q, "last fragmentation"); 22334 ip_wput_ire_fragmentit(mp, ire); 22335 ire_refrele(ire); 22336 if (conn_outgoing_ill != NULL) 22337 ill_refrele(conn_outgoing_ill); 22338 return; 22339 } 22340 ip_wput_ire_fragmentit(mp, ire); 22341 } 22342 } 22343 } else { 22344 nullstq: 22345 /* A NULL stq means the destination address is local. */ 22346 UPDATE_OB_PKT_COUNT(ire); 22347 ire->ire_last_used_time = lbolt; 22348 ASSERT(ire->ire_ipif != NULL); 22349 if (!next_mp) { 22350 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22351 "ip_wput_ire_end: q %p (%S)", 22352 q, "local address"); 22353 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 22354 first_mp, ire, 0, ire->ire_zoneid); 22355 ire_refrele(ire); 22356 if (conn_outgoing_ill != NULL) 22357 ill_refrele(conn_outgoing_ill); 22358 return; 22359 } 22360 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 22361 ire, 0, ire->ire_zoneid); 22362 } 22363 next: 22364 /* 22365 * More copies going out to additional interfaces. 22366 * ire1 has already been held. We don't need the 22367 * "ire" anymore. 22368 */ 22369 ire_refrele(ire); 22370 ire = ire1; 22371 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22372 mp = next_mp; 22373 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22374 ill = ire_to_ill(ire); 22375 first_mp = mp; 22376 if (ipsec_len != 0) { 22377 ASSERT(first_mp->b_datap->db_type == M_CTL); 22378 mp = mp->b_cont; 22379 } 22380 dst = ire->ire_addr; 22381 ipha = (ipha_t *)mp->b_rptr; 22382 /* 22383 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22384 * Restore ipha_ident "no checksum" flag. 22385 */ 22386 src = orig_src; 22387 ipha->ipha_ident = ip_hdr_included; 22388 goto another; 22389 22390 #undef rptr 22391 #undef Q_TO_INDEX 22392 } 22393 22394 /* 22395 * Routine to allocate a message that is used to notify the ULP about MDT. 22396 * The caller may provide a pointer to the link-layer MDT capabilities, 22397 * or NULL if MDT is to be disabled on the stream. 22398 */ 22399 mblk_t * 22400 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22401 { 22402 mblk_t *mp; 22403 ip_mdt_info_t *mdti; 22404 ill_mdt_capab_t *idst; 22405 22406 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22407 DB_TYPE(mp) = M_CTL; 22408 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22409 mdti = (ip_mdt_info_t *)mp->b_rptr; 22410 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22411 idst = &(mdti->mdt_capab); 22412 22413 /* 22414 * If the caller provides us with the capability, copy 22415 * it over into our notification message; otherwise 22416 * we zero out the capability portion. 22417 */ 22418 if (isrc != NULL) 22419 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22420 else 22421 bzero((caddr_t)idst, sizeof (*idst)); 22422 } 22423 return (mp); 22424 } 22425 22426 /* 22427 * Routine which determines whether MDT can be enabled on the destination 22428 * IRE and IPC combination, and if so, allocates and returns the MDT 22429 * notification mblk that may be used by ULP. We also check if we need to 22430 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22431 * MDT usage in the past have been lifted. This gets called during IP 22432 * and ULP binding. 22433 */ 22434 mblk_t * 22435 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22436 ill_mdt_capab_t *mdt_cap) 22437 { 22438 mblk_t *mp; 22439 boolean_t rc = B_FALSE; 22440 22441 ASSERT(dst_ire != NULL); 22442 ASSERT(connp != NULL); 22443 ASSERT(mdt_cap != NULL); 22444 22445 /* 22446 * Currently, we only support simple TCP/{IPv4,IPv6} with 22447 * Multidata, which is handled in tcp_multisend(). This 22448 * is the reason why we do all these checks here, to ensure 22449 * that we don't enable Multidata for the cases which we 22450 * can't handle at the moment. 22451 */ 22452 do { 22453 /* Only do TCP at the moment */ 22454 if (connp->conn_ulp != IPPROTO_TCP) 22455 break; 22456 22457 /* 22458 * IPSEC outbound policy present? Note that we get here 22459 * after calling ipsec_conn_cache_policy() where the global 22460 * policy checking is performed. conn_latch will be 22461 * non-NULL as long as there's a policy defined, 22462 * i.e. conn_out_enforce_policy may be NULL in such case 22463 * when the connection is non-secure, and hence we check 22464 * further if the latch refers to an outbound policy. 22465 */ 22466 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22467 break; 22468 22469 /* CGTP (multiroute) is enabled? */ 22470 if (dst_ire->ire_flags & RTF_MULTIRT) 22471 break; 22472 22473 /* Outbound IPQoS enabled? */ 22474 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22475 /* 22476 * In this case, we disable MDT for this and all 22477 * future connections going over the interface. 22478 */ 22479 mdt_cap->ill_mdt_on = 0; 22480 break; 22481 } 22482 22483 /* socket option(s) present? */ 22484 if (!CONN_IS_MD_FASTPATH(connp)) 22485 break; 22486 22487 rc = B_TRUE; 22488 /* CONSTCOND */ 22489 } while (0); 22490 22491 /* Remember the result */ 22492 connp->conn_mdt_ok = rc; 22493 22494 if (!rc) 22495 return (NULL); 22496 else if (!mdt_cap->ill_mdt_on) { 22497 /* 22498 * If MDT has been previously turned off in the past, and we 22499 * currently can do MDT (due to IPQoS policy removal, etc.) 22500 * then enable it for this interface. 22501 */ 22502 mdt_cap->ill_mdt_on = 1; 22503 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22504 "interface %s\n", ill_name)); 22505 } 22506 22507 /* Allocate the MDT info mblk */ 22508 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22509 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22510 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22511 return (NULL); 22512 } 22513 return (mp); 22514 } 22515 22516 /* 22517 * Create destination address attribute, and fill it with the physical 22518 * destination address and SAP taken from the template DL_UNITDATA_REQ 22519 * message block. 22520 */ 22521 boolean_t 22522 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22523 { 22524 dl_unitdata_req_t *dlurp; 22525 pattr_t *pa; 22526 pattrinfo_t pa_info; 22527 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22528 uint_t das_len, das_off; 22529 22530 ASSERT(dlmp != NULL); 22531 22532 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22533 das_len = dlurp->dl_dest_addr_length; 22534 das_off = dlurp->dl_dest_addr_offset; 22535 22536 pa_info.type = PATTR_DSTADDRSAP; 22537 pa_info.len = sizeof (**das) + das_len - 1; 22538 22539 /* create and associate the attribute */ 22540 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22541 if (pa != NULL) { 22542 ASSERT(*das != NULL); 22543 (*das)->addr_is_group = 0; 22544 (*das)->addr_len = (uint8_t)das_len; 22545 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22546 } 22547 22548 return (pa != NULL); 22549 } 22550 22551 /* 22552 * Create hardware checksum attribute and fill it with the values passed. 22553 */ 22554 boolean_t 22555 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22556 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22557 { 22558 pattr_t *pa; 22559 pattrinfo_t pa_info; 22560 22561 ASSERT(mmd != NULL); 22562 22563 pa_info.type = PATTR_HCKSUM; 22564 pa_info.len = sizeof (pattr_hcksum_t); 22565 22566 /* create and associate the attribute */ 22567 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22568 if (pa != NULL) { 22569 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22570 22571 hck->hcksum_start_offset = start_offset; 22572 hck->hcksum_stuff_offset = stuff_offset; 22573 hck->hcksum_end_offset = end_offset; 22574 hck->hcksum_flags = flags; 22575 } 22576 return (pa != NULL); 22577 } 22578 22579 /* 22580 * Create zerocopy attribute and fill it with the specified flags 22581 */ 22582 boolean_t 22583 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22584 { 22585 pattr_t *pa; 22586 pattrinfo_t pa_info; 22587 22588 ASSERT(mmd != NULL); 22589 pa_info.type = PATTR_ZCOPY; 22590 pa_info.len = sizeof (pattr_zcopy_t); 22591 22592 /* create and associate the attribute */ 22593 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22594 if (pa != NULL) { 22595 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22596 22597 zcopy->zcopy_flags = flags; 22598 } 22599 return (pa != NULL); 22600 } 22601 22602 /* 22603 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22604 * block chain. We could rewrite to handle arbitrary message block chains but 22605 * that would make the code complicated and slow. Right now there three 22606 * restrictions: 22607 * 22608 * 1. The first message block must contain the complete IP header and 22609 * at least 1 byte of payload data. 22610 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22611 * so that we can use a single Multidata message. 22612 * 3. No frag must be distributed over two or more message blocks so 22613 * that we don't need more than two packet descriptors per frag. 22614 * 22615 * The above restrictions allow us to support userland applications (which 22616 * will send down a single message block) and NFS over UDP (which will 22617 * send down a chain of at most three message blocks). 22618 * 22619 * We also don't use MDT for payloads with less than or equal to 22620 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22621 */ 22622 boolean_t 22623 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22624 { 22625 int blocks; 22626 ssize_t total, missing, size; 22627 22628 ASSERT(mp != NULL); 22629 ASSERT(hdr_len > 0); 22630 22631 size = MBLKL(mp) - hdr_len; 22632 if (size <= 0) 22633 return (B_FALSE); 22634 22635 /* The first mblk contains the header and some payload. */ 22636 blocks = 1; 22637 total = size; 22638 size %= len; 22639 missing = (size == 0) ? 0 : (len - size); 22640 mp = mp->b_cont; 22641 22642 while (mp != NULL) { 22643 /* 22644 * Give up if we encounter a zero length message block. 22645 * In practice, this should rarely happen and therefore 22646 * not worth the trouble of freeing and re-linking the 22647 * mblk from the chain to handle such case. 22648 */ 22649 if ((size = MBLKL(mp)) == 0) 22650 return (B_FALSE); 22651 22652 /* Too many payload buffers for a single Multidata message? */ 22653 if (++blocks > MULTIDATA_MAX_PBUFS) 22654 return (B_FALSE); 22655 22656 total += size; 22657 /* Is a frag distributed over two or more message blocks? */ 22658 if (missing > size) 22659 return (B_FALSE); 22660 size -= missing; 22661 22662 size %= len; 22663 missing = (size == 0) ? 0 : (len - size); 22664 22665 mp = mp->b_cont; 22666 } 22667 22668 return (total > ip_wput_frag_mdt_min); 22669 } 22670 22671 /* 22672 * Outbound IPv4 fragmentation routine using MDT. 22673 */ 22674 static void 22675 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22676 uint32_t frag_flag, int offset) 22677 { 22678 ipha_t *ipha_orig; 22679 int i1, ip_data_end; 22680 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22681 mblk_t *hdr_mp, *md_mp = NULL; 22682 unsigned char *hdr_ptr, *pld_ptr; 22683 multidata_t *mmd; 22684 ip_pdescinfo_t pdi; 22685 22686 ASSERT(DB_TYPE(mp) == M_DATA); 22687 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22688 22689 ipha_orig = (ipha_t *)mp->b_rptr; 22690 mp->b_rptr += sizeof (ipha_t); 22691 22692 /* Calculate how many packets we will send out */ 22693 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22694 pkts = (i1 + len - 1) / len; 22695 ASSERT(pkts > 1); 22696 22697 /* Allocate a message block which will hold all the IP Headers. */ 22698 wroff = ip_wroff_extra; 22699 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22700 22701 i1 = pkts * hdr_chunk_len; 22702 /* 22703 * Create the header buffer, Multidata and destination address 22704 * and SAP attribute that should be associated with it. 22705 */ 22706 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22707 ((hdr_mp->b_wptr += i1), 22708 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22709 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 22710 freemsg(mp); 22711 if (md_mp == NULL) { 22712 freemsg(hdr_mp); 22713 } else { 22714 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22715 freemsg(md_mp); 22716 } 22717 IP_STAT(ip_frag_mdt_allocfail); 22718 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22719 return; 22720 } 22721 IP_STAT(ip_frag_mdt_allocd); 22722 22723 /* 22724 * Add a payload buffer to the Multidata; this operation must not 22725 * fail, or otherwise our logic in this routine is broken. There 22726 * is no memory allocation done by the routine, so any returned 22727 * failure simply tells us that we've done something wrong. 22728 * 22729 * A failure tells us that either we're adding the same payload 22730 * buffer more than once, or we're trying to add more buffers than 22731 * allowed. None of the above cases should happen, and we panic 22732 * because either there's horrible heap corruption, and/or 22733 * programming mistake. 22734 */ 22735 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22736 goto pbuf_panic; 22737 22738 hdr_ptr = hdr_mp->b_rptr; 22739 pld_ptr = mp->b_rptr; 22740 22741 /* Establish the ending byte offset, based on the starting offset. */ 22742 offset <<= 3; 22743 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22744 IP_SIMPLE_HDR_LENGTH; 22745 22746 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22747 22748 while (pld_ptr < mp->b_wptr) { 22749 ipha_t *ipha; 22750 uint16_t offset_and_flags; 22751 uint16_t ip_len; 22752 int error; 22753 22754 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22755 ipha = (ipha_t *)(hdr_ptr + wroff); 22756 ASSERT(OK_32PTR(ipha)); 22757 *ipha = *ipha_orig; 22758 22759 if (ip_data_end - offset > len) { 22760 offset_and_flags = IPH_MF; 22761 } else { 22762 /* 22763 * Last frag. Set len to the length of this last piece. 22764 */ 22765 len = ip_data_end - offset; 22766 /* A frag of a frag might have IPH_MF non-zero */ 22767 offset_and_flags = 22768 ntohs(ipha->ipha_fragment_offset_and_flags) & 22769 IPH_MF; 22770 } 22771 offset_and_flags |= (uint16_t)(offset >> 3); 22772 offset_and_flags |= (uint16_t)frag_flag; 22773 /* Store the offset and flags in the IP header. */ 22774 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22775 22776 /* Store the length in the IP header. */ 22777 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22778 ipha->ipha_length = htons(ip_len); 22779 22780 /* 22781 * Set the IP header checksum. Note that mp is just 22782 * the header, so this is easy to pass to ip_csum. 22783 */ 22784 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22785 22786 /* 22787 * Record offset and size of header and data of the next packet 22788 * in the multidata message. 22789 */ 22790 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22791 PDESC_PLD_INIT(&pdi); 22792 i1 = MIN(mp->b_wptr - pld_ptr, len); 22793 ASSERT(i1 > 0); 22794 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22795 if (i1 == len) { 22796 pld_ptr += len; 22797 } else { 22798 i1 = len - i1; 22799 mp = mp->b_cont; 22800 ASSERT(mp != NULL); 22801 ASSERT(MBLKL(mp) >= i1); 22802 /* 22803 * Attach the next payload message block to the 22804 * multidata message. 22805 */ 22806 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22807 goto pbuf_panic; 22808 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22809 pld_ptr = mp->b_rptr + i1; 22810 } 22811 22812 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22813 KM_NOSLEEP)) == NULL) { 22814 /* 22815 * Any failure other than ENOMEM indicates that we 22816 * have passed in invalid pdesc info or parameters 22817 * to mmd_addpdesc, which must not happen. 22818 * 22819 * EINVAL is a result of failure on boundary checks 22820 * against the pdesc info contents. It should not 22821 * happen, and we panic because either there's 22822 * horrible heap corruption, and/or programming 22823 * mistake. 22824 */ 22825 if (error != ENOMEM) { 22826 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22827 "pdesc logic error detected for " 22828 "mmd %p pinfo %p (%d)\n", 22829 (void *)mmd, (void *)&pdi, error); 22830 /* NOTREACHED */ 22831 } 22832 IP_STAT(ip_frag_mdt_addpdescfail); 22833 /* Free unattached payload message blocks as well */ 22834 md_mp->b_cont = mp->b_cont; 22835 goto free_mmd; 22836 } 22837 22838 /* Advance fragment offset. */ 22839 offset += len; 22840 22841 /* Advance to location for next header in the buffer. */ 22842 hdr_ptr += hdr_chunk_len; 22843 22844 /* Did we reach the next payload message block? */ 22845 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22846 mp = mp->b_cont; 22847 /* 22848 * Attach the next message block with payload 22849 * data to the multidata message. 22850 */ 22851 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22852 goto pbuf_panic; 22853 pld_ptr = mp->b_rptr; 22854 } 22855 } 22856 22857 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22858 ASSERT(mp->b_wptr == pld_ptr); 22859 22860 /* Update IP statistics */ 22861 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22862 BUMP_MIB(&ip_mib, ipFragOKs); 22863 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22864 22865 if (pkt_type == OB_PKT) { 22866 ire->ire_ob_pkt_count += pkts; 22867 if (ire->ire_ipif != NULL) 22868 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22869 } else { 22870 /* 22871 * The type is IB_PKT in the forwarding path and in 22872 * the mobile IP case when the packet is being reverse- 22873 * tunneled to the home agent. 22874 */ 22875 ire->ire_ib_pkt_count += pkts; 22876 ASSERT(!IRE_IS_LOCAL(ire)); 22877 if (ire->ire_type & IRE_BROADCAST) 22878 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22879 else 22880 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22881 } 22882 ire->ire_last_used_time = lbolt; 22883 /* Send it down */ 22884 putnext(ire->ire_stq, md_mp); 22885 return; 22886 22887 pbuf_panic: 22888 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22889 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22890 pbuf_idx); 22891 /* NOTREACHED */ 22892 } 22893 22894 /* 22895 * Outbound IP fragmentation routine. 22896 * 22897 * NOTE : This routine does not ire_refrele the ire that is passed in 22898 * as the argument. 22899 */ 22900 static void 22901 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22902 uint32_t frag_flag) 22903 { 22904 int i1; 22905 mblk_t *ll_hdr_mp; 22906 int ll_hdr_len; 22907 int hdr_len; 22908 mblk_t *hdr_mp; 22909 ipha_t *ipha; 22910 int ip_data_end; 22911 int len; 22912 mblk_t *mp = mp_orig; 22913 int offset; 22914 queue_t *q; 22915 uint32_t v_hlen_tos_len; 22916 mblk_t *first_mp; 22917 boolean_t mctl_present; 22918 ill_t *ill; 22919 mblk_t *xmit_mp; 22920 mblk_t *carve_mp; 22921 ire_t *ire1 = NULL; 22922 ire_t *save_ire = NULL; 22923 mblk_t *next_mp = NULL; 22924 boolean_t last_frag = B_FALSE; 22925 boolean_t multirt_send = B_FALSE; 22926 ire_t *first_ire = NULL; 22927 irb_t *irb = NULL; 22928 22929 /* 22930 * IPSEC does not allow hw accelerated packets to be fragmented 22931 * This check is made in ip_wput_ipsec_out prior to coming here 22932 * via ip_wput_ire_fragmentit. 22933 * 22934 * If at this point we have an ire whose ARP request has not 22935 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 22936 * sending of ARP query and change ire's state to ND_INCOMPLETE. 22937 * This packet and all fragmentable packets for this ire will 22938 * continue to get dropped while ire_nce->nce_state remains in 22939 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 22940 * ND_REACHABLE, all subsquent large packets for this ire will 22941 * get fragemented and sent out by this function. 22942 */ 22943 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 22944 /* If nce_state is ND_INITIAL, trigger ARP query */ 22945 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 22946 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 22947 " - dropping packet\n")); 22948 BUMP_MIB(&ip_mib, ipFragFails); 22949 freemsg(mp); 22950 return; 22951 } 22952 22953 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22954 "ip_wput_frag_start:"); 22955 22956 if (mp->b_datap->db_type == M_CTL) { 22957 first_mp = mp; 22958 mp_orig = mp = mp->b_cont; 22959 mctl_present = B_TRUE; 22960 } else { 22961 first_mp = mp; 22962 mctl_present = B_FALSE; 22963 } 22964 22965 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22966 ipha = (ipha_t *)mp->b_rptr; 22967 22968 /* 22969 * If the Don't Fragment flag is on, generate an ICMP destination 22970 * unreachable, fragmentation needed. 22971 */ 22972 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22973 if (offset & IPH_DF) { 22974 BUMP_MIB(&ip_mib, ipFragFails); 22975 /* 22976 * Need to compute hdr checksum if called from ip_wput_ire. 22977 * Note that ip_rput_forward verifies the checksum before 22978 * calling this routine so in that case this is a noop. 22979 */ 22980 ipha->ipha_hdr_checksum = 0; 22981 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22982 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22983 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22984 "ip_wput_frag_end:(%S)", 22985 "don't fragment"); 22986 return; 22987 } 22988 if (mctl_present) 22989 freeb(first_mp); 22990 /* 22991 * Establish the starting offset. May not be zero if we are fragging 22992 * a fragment that is being forwarded. 22993 */ 22994 offset = offset & IPH_OFFSET; 22995 22996 /* TODO why is this test needed? */ 22997 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22998 if (((max_frag - LENGTH) & ~7) < 8) { 22999 /* TODO: notify ulp somehow */ 23000 BUMP_MIB(&ip_mib, ipFragFails); 23001 freemsg(mp); 23002 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23003 "ip_wput_frag_end:(%S)", 23004 "len < 8"); 23005 return; 23006 } 23007 23008 hdr_len = (V_HLEN & 0xF) << 2; 23009 23010 ipha->ipha_hdr_checksum = 0; 23011 23012 /* 23013 * Establish the number of bytes maximum per frag, after putting 23014 * in the header. 23015 */ 23016 len = (max_frag - hdr_len) & ~7; 23017 23018 /* Check if we can use MDT to send out the frags. */ 23019 ASSERT(!IRE_IS_LOCAL(ire)); 23020 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23021 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23022 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23023 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23024 ASSERT(ill->ill_mdt_capab != NULL); 23025 if (!ill->ill_mdt_capab->ill_mdt_on) { 23026 /* 23027 * If MDT has been previously turned off in the past, 23028 * and we currently can do MDT (due to IPQoS policy 23029 * removal, etc.) then enable it for this interface. 23030 */ 23031 ill->ill_mdt_capab->ill_mdt_on = 1; 23032 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23033 ill->ill_name)); 23034 } 23035 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23036 offset); 23037 return; 23038 } 23039 23040 /* Get a copy of the header for the trailing frags */ 23041 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23042 if (!hdr_mp) { 23043 BUMP_MIB(&ip_mib, ipOutDiscards); 23044 freemsg(mp); 23045 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23046 "ip_wput_frag_end:(%S)", 23047 "couldn't copy hdr"); 23048 return; 23049 } 23050 if (DB_CRED(mp) != NULL) 23051 mblk_setcred(hdr_mp, DB_CRED(mp)); 23052 23053 /* Store the starting offset, with the MoreFrags flag. */ 23054 i1 = offset | IPH_MF | frag_flag; 23055 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23056 23057 /* Establish the ending byte offset, based on the starting offset. */ 23058 offset <<= 3; 23059 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23060 23061 /* Store the length of the first fragment in the IP header. */ 23062 i1 = len + hdr_len; 23063 ASSERT(i1 <= IP_MAXPACKET); 23064 ipha->ipha_length = htons((uint16_t)i1); 23065 23066 /* 23067 * Compute the IP header checksum for the first frag. We have to 23068 * watch out that we stop at the end of the header. 23069 */ 23070 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23071 23072 /* 23073 * Now carve off the first frag. Note that this will include the 23074 * original IP header. 23075 */ 23076 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23077 BUMP_MIB(&ip_mib, ipOutDiscards); 23078 freeb(hdr_mp); 23079 freemsg(mp_orig); 23080 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23081 "ip_wput_frag_end:(%S)", 23082 "couldn't carve first"); 23083 return; 23084 } 23085 23086 /* 23087 * Multirouting case. Each fragment is replicated 23088 * via all non-condemned RTF_MULTIRT routes 23089 * currently resolved. 23090 * We ensure that first_ire is the first RTF_MULTIRT 23091 * ire in the bucket. 23092 */ 23093 if (ire->ire_flags & RTF_MULTIRT) { 23094 irb = ire->ire_bucket; 23095 ASSERT(irb != NULL); 23096 23097 multirt_send = B_TRUE; 23098 23099 /* Make sure we do not omit any multiroute ire. */ 23100 IRB_REFHOLD(irb); 23101 for (first_ire = irb->irb_ire; 23102 first_ire != NULL; 23103 first_ire = first_ire->ire_next) { 23104 if ((first_ire->ire_flags & RTF_MULTIRT) && 23105 (first_ire->ire_addr == ire->ire_addr) && 23106 !(first_ire->ire_marks & 23107 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23108 break; 23109 } 23110 23111 if (first_ire != NULL) { 23112 if (first_ire != ire) { 23113 IRE_REFHOLD(first_ire); 23114 /* 23115 * Do not release the ire passed in 23116 * as the argument. 23117 */ 23118 ire = first_ire; 23119 } else { 23120 first_ire = NULL; 23121 } 23122 } 23123 IRB_REFRELE(irb); 23124 23125 /* 23126 * Save the first ire; we will need to restore it 23127 * for the trailing frags. 23128 * We REFHOLD save_ire, as each iterated ire will be 23129 * REFRELEd. 23130 */ 23131 save_ire = ire; 23132 IRE_REFHOLD(save_ire); 23133 } 23134 23135 /* 23136 * First fragment emission loop. 23137 * In most cases, the emission loop below is entered only 23138 * once. Only in the case where the ire holds the RTF_MULTIRT 23139 * flag, do we loop to process all RTF_MULTIRT ires in the 23140 * bucket, and send the fragment through all crossed 23141 * RTF_MULTIRT routes. 23142 */ 23143 do { 23144 if (ire->ire_flags & RTF_MULTIRT) { 23145 /* 23146 * We are in a multiple send case, need to get 23147 * the next ire and make a copy of the packet. 23148 * ire1 holds here the next ire to process in the 23149 * bucket. If multirouting is expected, 23150 * any non-RTF_MULTIRT ire that has the 23151 * right destination address is ignored. 23152 * 23153 * We have to take into account the MTU of 23154 * each walked ire. max_frag is set by the 23155 * the caller and generally refers to 23156 * the primary ire entry. Here we ensure that 23157 * no route with a lower MTU will be used, as 23158 * fragments are carved once for all ires, 23159 * then replicated. 23160 */ 23161 ASSERT(irb != NULL); 23162 IRB_REFHOLD(irb); 23163 for (ire1 = ire->ire_next; 23164 ire1 != NULL; 23165 ire1 = ire1->ire_next) { 23166 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23167 continue; 23168 if (ire1->ire_addr != ire->ire_addr) 23169 continue; 23170 if (ire1->ire_marks & 23171 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23172 continue; 23173 /* 23174 * Ensure we do not exceed the MTU 23175 * of the next route. 23176 */ 23177 if (ire1->ire_max_frag < max_frag) { 23178 ip_multirt_bad_mtu(ire1, max_frag); 23179 continue; 23180 } 23181 23182 /* Got one. */ 23183 IRE_REFHOLD(ire1); 23184 break; 23185 } 23186 IRB_REFRELE(irb); 23187 23188 if (ire1 != NULL) { 23189 next_mp = copyb(mp); 23190 if ((next_mp == NULL) || 23191 ((mp->b_cont != NULL) && 23192 ((next_mp->b_cont = 23193 dupmsg(mp->b_cont)) == NULL))) { 23194 freemsg(next_mp); 23195 next_mp = NULL; 23196 ire_refrele(ire1); 23197 ire1 = NULL; 23198 } 23199 } 23200 23201 /* Last multiroute ire; don't loop anymore. */ 23202 if (ire1 == NULL) { 23203 multirt_send = B_FALSE; 23204 } 23205 } 23206 23207 ll_hdr_len = 0; 23208 LOCK_IRE_FP_MP(ire); 23209 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23210 if (ll_hdr_mp != NULL) { 23211 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23212 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23213 } else { 23214 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23215 } 23216 23217 /* If there is a transmit header, get a copy for this frag. */ 23218 /* 23219 * TODO: should check db_ref before calling ip_carve_mp since 23220 * it might give us a dup. 23221 */ 23222 if (!ll_hdr_mp) { 23223 /* No xmit header. */ 23224 xmit_mp = mp; 23225 23226 /* We have a link-layer header that can fit in our mblk. */ 23227 } else if (mp->b_datap->db_ref == 1 && 23228 ll_hdr_len != 0 && 23229 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23230 /* M_DATA fastpath */ 23231 mp->b_rptr -= ll_hdr_len; 23232 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23233 xmit_mp = mp; 23234 23235 /* Corner case if copyb has failed */ 23236 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23237 UNLOCK_IRE_FP_MP(ire); 23238 BUMP_MIB(&ip_mib, ipOutDiscards); 23239 freeb(hdr_mp); 23240 freemsg(mp); 23241 freemsg(mp_orig); 23242 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23243 "ip_wput_frag_end:(%S)", 23244 "discard"); 23245 23246 if (multirt_send) { 23247 ASSERT(ire1); 23248 ASSERT(next_mp); 23249 23250 freemsg(next_mp); 23251 ire_refrele(ire1); 23252 } 23253 if (save_ire != NULL) 23254 IRE_REFRELE(save_ire); 23255 23256 if (first_ire != NULL) 23257 ire_refrele(first_ire); 23258 return; 23259 23260 /* 23261 * Case of res_mp OR the fastpath mp can't fit 23262 * in the mblk 23263 */ 23264 } else { 23265 xmit_mp->b_cont = mp; 23266 if (DB_CRED(mp) != NULL) 23267 mblk_setcred(xmit_mp, DB_CRED(mp)); 23268 /* 23269 * Get priority marking, if any. 23270 * We propagate the CoS marking from the 23271 * original packet that went to QoS processing 23272 * in ip_wput_ire to the newly carved mp. 23273 */ 23274 if (DB_TYPE(xmit_mp) == M_DATA) 23275 xmit_mp->b_band = mp->b_band; 23276 } 23277 UNLOCK_IRE_FP_MP(ire); 23278 q = ire->ire_stq; 23279 BUMP_MIB(&ip_mib, ipFragCreates); 23280 putnext(q, xmit_mp); 23281 if (pkt_type != OB_PKT) { 23282 /* 23283 * Update the packet count of trailing 23284 * RTF_MULTIRT ires. 23285 */ 23286 UPDATE_OB_PKT_COUNT(ire); 23287 } 23288 23289 if (multirt_send) { 23290 /* 23291 * We are in a multiple send case; look for 23292 * the next ire and re-enter the loop. 23293 */ 23294 ASSERT(ire1); 23295 ASSERT(next_mp); 23296 /* REFRELE the current ire before looping */ 23297 ire_refrele(ire); 23298 ire = ire1; 23299 ire1 = NULL; 23300 mp = next_mp; 23301 next_mp = NULL; 23302 } 23303 } while (multirt_send); 23304 23305 ASSERT(ire1 == NULL); 23306 23307 /* Restore the original ire; we need it for the trailing frags */ 23308 if (save_ire != NULL) { 23309 /* REFRELE the last iterated ire */ 23310 ire_refrele(ire); 23311 /* save_ire has been REFHOLDed */ 23312 ire = save_ire; 23313 save_ire = NULL; 23314 q = ire->ire_stq; 23315 } 23316 23317 if (pkt_type == OB_PKT) { 23318 UPDATE_OB_PKT_COUNT(ire); 23319 } else { 23320 UPDATE_IB_PKT_COUNT(ire); 23321 } 23322 23323 /* Advance the offset to the second frag starting point. */ 23324 offset += len; 23325 /* 23326 * Update hdr_len from the copied header - there might be less options 23327 * in the later fragments. 23328 */ 23329 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23330 /* Loop until done. */ 23331 for (;;) { 23332 uint16_t offset_and_flags; 23333 uint16_t ip_len; 23334 23335 if (ip_data_end - offset > len) { 23336 /* 23337 * Carve off the appropriate amount from the original 23338 * datagram. 23339 */ 23340 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23341 mp = NULL; 23342 break; 23343 } 23344 /* 23345 * More frags after this one. Get another copy 23346 * of the header. 23347 */ 23348 if (carve_mp->b_datap->db_ref == 1 && 23349 hdr_mp->b_wptr - hdr_mp->b_rptr < 23350 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23351 /* Inline IP header */ 23352 carve_mp->b_rptr -= hdr_mp->b_wptr - 23353 hdr_mp->b_rptr; 23354 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23355 hdr_mp->b_wptr - hdr_mp->b_rptr); 23356 mp = carve_mp; 23357 } else { 23358 if (!(mp = copyb(hdr_mp))) { 23359 freemsg(carve_mp); 23360 break; 23361 } 23362 /* Get priority marking, if any. */ 23363 mp->b_band = carve_mp->b_band; 23364 mp->b_cont = carve_mp; 23365 } 23366 ipha = (ipha_t *)mp->b_rptr; 23367 offset_and_flags = IPH_MF; 23368 } else { 23369 /* 23370 * Last frag. Consume the header. Set len to 23371 * the length of this last piece. 23372 */ 23373 len = ip_data_end - offset; 23374 23375 /* 23376 * Carve off the appropriate amount from the original 23377 * datagram. 23378 */ 23379 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23380 mp = NULL; 23381 break; 23382 } 23383 if (carve_mp->b_datap->db_ref == 1 && 23384 hdr_mp->b_wptr - hdr_mp->b_rptr < 23385 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23386 /* Inline IP header */ 23387 carve_mp->b_rptr -= hdr_mp->b_wptr - 23388 hdr_mp->b_rptr; 23389 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23390 hdr_mp->b_wptr - hdr_mp->b_rptr); 23391 mp = carve_mp; 23392 freeb(hdr_mp); 23393 hdr_mp = mp; 23394 } else { 23395 mp = hdr_mp; 23396 /* Get priority marking, if any. */ 23397 mp->b_band = carve_mp->b_band; 23398 mp->b_cont = carve_mp; 23399 } 23400 ipha = (ipha_t *)mp->b_rptr; 23401 /* A frag of a frag might have IPH_MF non-zero */ 23402 offset_and_flags = 23403 ntohs(ipha->ipha_fragment_offset_and_flags) & 23404 IPH_MF; 23405 } 23406 offset_and_flags |= (uint16_t)(offset >> 3); 23407 offset_and_flags |= (uint16_t)frag_flag; 23408 /* Store the offset and flags in the IP header. */ 23409 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23410 23411 /* Store the length in the IP header. */ 23412 ip_len = (uint16_t)(len + hdr_len); 23413 ipha->ipha_length = htons(ip_len); 23414 23415 /* 23416 * Set the IP header checksum. Note that mp is just 23417 * the header, so this is easy to pass to ip_csum. 23418 */ 23419 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23420 23421 /* Attach a transmit header, if any, and ship it. */ 23422 if (pkt_type == OB_PKT) { 23423 UPDATE_OB_PKT_COUNT(ire); 23424 } else { 23425 UPDATE_IB_PKT_COUNT(ire); 23426 } 23427 23428 if (ire->ire_flags & RTF_MULTIRT) { 23429 irb = ire->ire_bucket; 23430 ASSERT(irb != NULL); 23431 23432 multirt_send = B_TRUE; 23433 23434 /* 23435 * Save the original ire; we will need to restore it 23436 * for the tailing frags. 23437 */ 23438 save_ire = ire; 23439 IRE_REFHOLD(save_ire); 23440 } 23441 /* 23442 * Emission loop for this fragment, similar 23443 * to what is done for the first fragment. 23444 */ 23445 do { 23446 if (multirt_send) { 23447 /* 23448 * We are in a multiple send case, need to get 23449 * the next ire and make a copy of the packet. 23450 */ 23451 ASSERT(irb != NULL); 23452 IRB_REFHOLD(irb); 23453 for (ire1 = ire->ire_next; 23454 ire1 != NULL; 23455 ire1 = ire1->ire_next) { 23456 if (!(ire1->ire_flags & RTF_MULTIRT)) 23457 continue; 23458 if (ire1->ire_addr != ire->ire_addr) 23459 continue; 23460 if (ire1->ire_marks & 23461 (IRE_MARK_CONDEMNED| 23462 IRE_MARK_HIDDEN)) 23463 continue; 23464 /* 23465 * Ensure we do not exceed the MTU 23466 * of the next route. 23467 */ 23468 if (ire1->ire_max_frag < max_frag) { 23469 ip_multirt_bad_mtu(ire1, 23470 max_frag); 23471 continue; 23472 } 23473 23474 /* Got one. */ 23475 IRE_REFHOLD(ire1); 23476 break; 23477 } 23478 IRB_REFRELE(irb); 23479 23480 if (ire1 != NULL) { 23481 next_mp = copyb(mp); 23482 if ((next_mp == NULL) || 23483 ((mp->b_cont != NULL) && 23484 ((next_mp->b_cont = 23485 dupmsg(mp->b_cont)) == NULL))) { 23486 freemsg(next_mp); 23487 next_mp = NULL; 23488 ire_refrele(ire1); 23489 ire1 = NULL; 23490 } 23491 } 23492 23493 /* Last multiroute ire; don't loop anymore. */ 23494 if (ire1 == NULL) { 23495 multirt_send = B_FALSE; 23496 } 23497 } 23498 23499 /* Update transmit header */ 23500 ll_hdr_len = 0; 23501 LOCK_IRE_FP_MP(ire); 23502 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23503 if (ll_hdr_mp != NULL) { 23504 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23505 ll_hdr_len = MBLKL(ll_hdr_mp); 23506 } else { 23507 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23508 } 23509 23510 if (!ll_hdr_mp) { 23511 xmit_mp = mp; 23512 23513 /* 23514 * We have link-layer header that can fit in 23515 * our mblk. 23516 */ 23517 } else if (mp->b_datap->db_ref == 1 && 23518 ll_hdr_len != 0 && 23519 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23520 /* M_DATA fastpath */ 23521 mp->b_rptr -= ll_hdr_len; 23522 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23523 ll_hdr_len); 23524 xmit_mp = mp; 23525 23526 /* 23527 * Case of res_mp OR the fastpath mp can't fit 23528 * in the mblk 23529 */ 23530 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23531 xmit_mp->b_cont = mp; 23532 if (DB_CRED(mp) != NULL) 23533 mblk_setcred(xmit_mp, DB_CRED(mp)); 23534 /* Get priority marking, if any. */ 23535 if (DB_TYPE(xmit_mp) == M_DATA) 23536 xmit_mp->b_band = mp->b_band; 23537 23538 /* Corner case if copyb failed */ 23539 } else { 23540 /* 23541 * Exit both the replication and 23542 * fragmentation loops. 23543 */ 23544 UNLOCK_IRE_FP_MP(ire); 23545 goto drop_pkt; 23546 } 23547 UNLOCK_IRE_FP_MP(ire); 23548 BUMP_MIB(&ip_mib, ipFragCreates); 23549 putnext(q, xmit_mp); 23550 23551 if (pkt_type != OB_PKT) { 23552 /* 23553 * Update the packet count of trailing 23554 * RTF_MULTIRT ires. 23555 */ 23556 UPDATE_OB_PKT_COUNT(ire); 23557 } 23558 23559 /* All done if we just consumed the hdr_mp. */ 23560 if (mp == hdr_mp) { 23561 last_frag = B_TRUE; 23562 } 23563 23564 if (multirt_send) { 23565 /* 23566 * We are in a multiple send case; look for 23567 * the next ire and re-enter the loop. 23568 */ 23569 ASSERT(ire1); 23570 ASSERT(next_mp); 23571 /* REFRELE the current ire before looping */ 23572 ire_refrele(ire); 23573 ire = ire1; 23574 ire1 = NULL; 23575 q = ire->ire_stq; 23576 mp = next_mp; 23577 next_mp = NULL; 23578 } 23579 } while (multirt_send); 23580 /* 23581 * Restore the original ire; we need it for the 23582 * trailing frags 23583 */ 23584 if (save_ire != NULL) { 23585 ASSERT(ire1 == NULL); 23586 /* REFRELE the last iterated ire */ 23587 ire_refrele(ire); 23588 /* save_ire has been REFHOLDed */ 23589 ire = save_ire; 23590 q = ire->ire_stq; 23591 save_ire = NULL; 23592 } 23593 23594 if (last_frag) { 23595 BUMP_MIB(&ip_mib, ipFragOKs); 23596 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23597 "ip_wput_frag_end:(%S)", 23598 "consumed hdr_mp"); 23599 23600 if (first_ire != NULL) 23601 ire_refrele(first_ire); 23602 return; 23603 } 23604 /* Otherwise, advance and loop. */ 23605 offset += len; 23606 } 23607 23608 drop_pkt: 23609 /* Clean up following allocation failure. */ 23610 BUMP_MIB(&ip_mib, ipOutDiscards); 23611 freemsg(mp); 23612 if (mp != hdr_mp) 23613 freeb(hdr_mp); 23614 if (mp != mp_orig) 23615 freemsg(mp_orig); 23616 23617 if (save_ire != NULL) 23618 IRE_REFRELE(save_ire); 23619 if (first_ire != NULL) 23620 ire_refrele(first_ire); 23621 23622 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23623 "ip_wput_frag_end:(%S)", 23624 "end--alloc failure"); 23625 } 23626 23627 /* 23628 * Copy the header plus those options which have the copy bit set 23629 */ 23630 static mblk_t * 23631 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 23632 { 23633 mblk_t *mp; 23634 uchar_t *up; 23635 23636 /* 23637 * Quick check if we need to look for options without the copy bit 23638 * set 23639 */ 23640 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23641 if (!mp) 23642 return (mp); 23643 mp->b_rptr += ip_wroff_extra; 23644 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23645 bcopy(rptr, mp->b_rptr, hdr_len); 23646 mp->b_wptr += hdr_len + ip_wroff_extra; 23647 return (mp); 23648 } 23649 up = mp->b_rptr; 23650 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23651 up += IP_SIMPLE_HDR_LENGTH; 23652 rptr += IP_SIMPLE_HDR_LENGTH; 23653 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23654 while (hdr_len > 0) { 23655 uint32_t optval; 23656 uint32_t optlen; 23657 23658 optval = *rptr; 23659 if (optval == IPOPT_EOL) 23660 break; 23661 if (optval == IPOPT_NOP) 23662 optlen = 1; 23663 else 23664 optlen = rptr[1]; 23665 if (optval & IPOPT_COPY) { 23666 bcopy(rptr, up, optlen); 23667 up += optlen; 23668 } 23669 rptr += optlen; 23670 hdr_len -= optlen; 23671 } 23672 /* 23673 * Make sure that we drop an even number of words by filling 23674 * with EOL to the next word boundary. 23675 */ 23676 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23677 hdr_len & 0x3; hdr_len++) 23678 *up++ = IPOPT_EOL; 23679 mp->b_wptr = up; 23680 /* Update header length */ 23681 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23682 return (mp); 23683 } 23684 23685 /* 23686 * Delivery to local recipients including fanout to multiple recipients. 23687 * Does not do checksumming of UDP/TCP. 23688 * Note: q should be the read side queue for either the ill or conn. 23689 * Note: rq should be the read side q for the lower (ill) stream. 23690 * We don't send packets to IPPF processing, thus the last argument 23691 * to all the fanout calls are B_FALSE. 23692 */ 23693 void 23694 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23695 int fanout_flags, zoneid_t zoneid) 23696 { 23697 uint32_t protocol; 23698 mblk_t *first_mp; 23699 boolean_t mctl_present; 23700 int ire_type; 23701 #define rptr ((uchar_t *)ipha) 23702 23703 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23704 "ip_wput_local_start: q %p", q); 23705 23706 if (ire != NULL) { 23707 ire_type = ire->ire_type; 23708 } else { 23709 /* 23710 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23711 * packet is not multicast, we can't tell the ire type. 23712 */ 23713 ASSERT(CLASSD(ipha->ipha_dst)); 23714 ire_type = IRE_BROADCAST; 23715 } 23716 23717 first_mp = mp; 23718 if (first_mp->b_datap->db_type == M_CTL) { 23719 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23720 if (!io->ipsec_out_secure) { 23721 /* 23722 * This ipsec_out_t was allocated in ip_wput 23723 * for multicast packets to store the ill_index. 23724 * As this is being delivered locally, we don't 23725 * need this anymore. 23726 */ 23727 mp = first_mp->b_cont; 23728 freeb(first_mp); 23729 first_mp = mp; 23730 mctl_present = B_FALSE; 23731 } else { 23732 mctl_present = B_TRUE; 23733 mp = first_mp->b_cont; 23734 ASSERT(mp != NULL); 23735 ipsec_out_to_in(first_mp); 23736 } 23737 } else { 23738 mctl_present = B_FALSE; 23739 } 23740 23741 loopback_packets++; 23742 23743 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23744 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23745 if (!IS_SIMPLE_IPH(ipha)) { 23746 ip_wput_local_options(ipha); 23747 } 23748 23749 protocol = ipha->ipha_protocol; 23750 switch (protocol) { 23751 case IPPROTO_ICMP: { 23752 ire_t *ire_zone; 23753 ilm_t *ilm; 23754 mblk_t *mp1; 23755 zoneid_t last_zoneid; 23756 23757 if (CLASSD(ipha->ipha_dst) && 23758 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23759 ASSERT(ire_type == IRE_BROADCAST); 23760 /* 23761 * In the multicast case, applications may have joined 23762 * the group from different zones, so we need to deliver 23763 * the packet to each of them. Loop through the 23764 * multicast memberships structures (ilm) on the receive 23765 * ill and send a copy of the packet up each matching 23766 * one. However, we don't do this for multicasts sent on 23767 * the loopback interface (PHYI_LOOPBACK flag set) as 23768 * they must stay in the sender's zone. 23769 * 23770 * ilm_add_v6() ensures that ilms in the same zone are 23771 * contiguous in the ill_ilm list. We use this property 23772 * to avoid sending duplicates needed when two 23773 * applications in the same zone join the same group on 23774 * different logical interfaces: we ignore the ilm if 23775 * it's zoneid is the same as the last matching one. 23776 * In addition, the sending of the packet for 23777 * ire_zoneid is delayed until all of the other ilms 23778 * have been exhausted. 23779 */ 23780 last_zoneid = -1; 23781 ILM_WALKER_HOLD(ill); 23782 for (ilm = ill->ill_ilm; ilm != NULL; 23783 ilm = ilm->ilm_next) { 23784 if ((ilm->ilm_flags & ILM_DELETED) || 23785 ipha->ipha_dst != ilm->ilm_addr || 23786 ilm->ilm_zoneid == last_zoneid || 23787 ilm->ilm_zoneid == zoneid || 23788 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23789 continue; 23790 mp1 = ip_copymsg(first_mp); 23791 if (mp1 == NULL) 23792 continue; 23793 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23794 mctl_present, B_FALSE, ill, 23795 ilm->ilm_zoneid); 23796 last_zoneid = ilm->ilm_zoneid; 23797 } 23798 ILM_WALKER_RELE(ill); 23799 /* 23800 * Loopback case: the sending endpoint has 23801 * IP_MULTICAST_LOOP disabled, therefore we don't 23802 * dispatch the multicast packet to the sending zone. 23803 */ 23804 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23805 freemsg(first_mp); 23806 return; 23807 } 23808 } else if (ire_type == IRE_BROADCAST) { 23809 /* 23810 * In the broadcast case, there may be many zones 23811 * which need a copy of the packet delivered to them. 23812 * There is one IRE_BROADCAST per broadcast address 23813 * and per zone; we walk those using a helper function. 23814 * In addition, the sending of the packet for zoneid is 23815 * delayed until all of the other ires have been 23816 * processed. 23817 */ 23818 IRB_REFHOLD(ire->ire_bucket); 23819 ire_zone = NULL; 23820 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23821 ire)) != NULL) { 23822 mp1 = ip_copymsg(first_mp); 23823 if (mp1 == NULL) 23824 continue; 23825 23826 UPDATE_IB_PKT_COUNT(ire_zone); 23827 ire_zone->ire_last_used_time = lbolt; 23828 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23829 mctl_present, B_FALSE, ill, 23830 ire_zone->ire_zoneid); 23831 } 23832 IRB_REFRELE(ire->ire_bucket); 23833 } 23834 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23835 0, mctl_present, B_FALSE, ill, zoneid); 23836 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23837 "ip_wput_local_end: q %p (%S)", 23838 q, "icmp"); 23839 return; 23840 } 23841 case IPPROTO_IGMP: 23842 if (igmp_input(q, mp, ill)) { 23843 /* Bad packet - discarded by igmp_input */ 23844 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23845 "ip_wput_local_end: q %p (%S)", 23846 q, "igmp_input--bad packet"); 23847 if (mctl_present) 23848 freeb(first_mp); 23849 return; 23850 } 23851 /* 23852 * igmp_input() may have pulled up the message so ipha needs to 23853 * be reinitialized. 23854 */ 23855 ipha = (ipha_t *)mp->b_rptr; 23856 /* deliver to local raw users */ 23857 break; 23858 case IPPROTO_ENCAP: 23859 /* 23860 * This case is covered by either ip_fanout_proto, or by 23861 * the above security processing for self-tunneled packets. 23862 */ 23863 break; 23864 case IPPROTO_UDP: { 23865 uint16_t *up; 23866 uint32_t ports; 23867 23868 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23869 UDP_PORTS_OFFSET); 23870 /* Force a 'valid' checksum. */ 23871 up[3] = 0; 23872 23873 ports = *(uint32_t *)up; 23874 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23875 (ire_type == IRE_BROADCAST), 23876 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23877 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23878 ill, zoneid); 23879 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23880 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23881 return; 23882 } 23883 case IPPROTO_TCP: { 23884 23885 /* 23886 * For TCP, discard broadcast packets. 23887 */ 23888 if ((ushort_t)ire_type == IRE_BROADCAST) { 23889 freemsg(first_mp); 23890 BUMP_MIB(&ip_mib, ipInDiscards); 23891 ip2dbg(("ip_wput_local: discard broadcast\n")); 23892 return; 23893 } 23894 23895 if (mp->b_datap->db_type == M_DATA) { 23896 /* 23897 * M_DATA mblk, so init mblk (chain) for no struio(). 23898 */ 23899 mblk_t *mp1 = mp; 23900 23901 do 23902 mp1->b_datap->db_struioflag = 0; 23903 while ((mp1 = mp1->b_cont) != NULL); 23904 } 23905 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23906 <= mp->b_wptr); 23907 ip_fanout_tcp(q, first_mp, ill, ipha, 23908 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23909 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23910 mctl_present, B_FALSE, zoneid); 23911 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23912 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23913 return; 23914 } 23915 case IPPROTO_SCTP: 23916 { 23917 uint32_t ports; 23918 23919 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23920 ip_fanout_sctp(first_mp, ill, ipha, ports, 23921 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23922 IP_FF_IP6INFO, 23923 mctl_present, B_FALSE, 0, zoneid); 23924 return; 23925 } 23926 23927 default: 23928 break; 23929 } 23930 /* 23931 * Find a client for some other protocol. We give 23932 * copies to multiple clients, if more than one is 23933 * bound. 23934 */ 23935 ip_fanout_proto(q, first_mp, ill, ipha, 23936 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23937 mctl_present, B_FALSE, ill, zoneid); 23938 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23939 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23940 #undef rptr 23941 } 23942 23943 /* 23944 * Update any source route, record route, or timestamp options. 23945 * Check that we are at end of strict source route. 23946 * The options have been sanity checked by ip_wput_options(). 23947 */ 23948 static void 23949 ip_wput_local_options(ipha_t *ipha) 23950 { 23951 ipoptp_t opts; 23952 uchar_t *opt; 23953 uint8_t optval; 23954 uint8_t optlen; 23955 ipaddr_t dst; 23956 uint32_t ts; 23957 ire_t *ire; 23958 timestruc_t now; 23959 23960 ip2dbg(("ip_wput_local_options\n")); 23961 for (optval = ipoptp_first(&opts, ipha); 23962 optval != IPOPT_EOL; 23963 optval = ipoptp_next(&opts)) { 23964 opt = opts.ipoptp_cur; 23965 optlen = opts.ipoptp_len; 23966 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23967 switch (optval) { 23968 uint32_t off; 23969 case IPOPT_SSRR: 23970 case IPOPT_LSRR: 23971 off = opt[IPOPT_OFFSET]; 23972 off--; 23973 if (optlen < IP_ADDR_LEN || 23974 off > optlen - IP_ADDR_LEN) { 23975 /* End of source route */ 23976 break; 23977 } 23978 /* 23979 * This will only happen if two consecutive entries 23980 * in the source route contains our address or if 23981 * it is a packet with a loose source route which 23982 * reaches us before consuming the whole source route 23983 */ 23984 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23985 if (optval == IPOPT_SSRR) { 23986 return; 23987 } 23988 /* 23989 * Hack: instead of dropping the packet truncate the 23990 * source route to what has been used by filling the 23991 * rest with IPOPT_NOP. 23992 */ 23993 opt[IPOPT_OLEN] = (uint8_t)off; 23994 while (off < optlen) { 23995 opt[off++] = IPOPT_NOP; 23996 } 23997 break; 23998 case IPOPT_RR: 23999 off = opt[IPOPT_OFFSET]; 24000 off--; 24001 if (optlen < IP_ADDR_LEN || 24002 off > optlen - IP_ADDR_LEN) { 24003 /* No more room - ignore */ 24004 ip1dbg(( 24005 "ip_wput_forward_options: end of RR\n")); 24006 break; 24007 } 24008 dst = htonl(INADDR_LOOPBACK); 24009 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24010 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24011 break; 24012 case IPOPT_TS: 24013 /* Insert timestamp if there is romm */ 24014 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24015 case IPOPT_TS_TSONLY: 24016 off = IPOPT_TS_TIMELEN; 24017 break; 24018 case IPOPT_TS_PRESPEC: 24019 case IPOPT_TS_PRESPEC_RFC791: 24020 /* Verify that the address matched */ 24021 off = opt[IPOPT_OFFSET] - 1; 24022 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24023 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24025 if (ire == NULL) { 24026 /* Not for us */ 24027 break; 24028 } 24029 ire_refrele(ire); 24030 /* FALLTHRU */ 24031 case IPOPT_TS_TSANDADDR: 24032 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24033 break; 24034 default: 24035 /* 24036 * ip_*put_options should have already 24037 * dropped this packet. 24038 */ 24039 cmn_err(CE_PANIC, "ip_wput_local_options: " 24040 "unknown IT - bug in ip_wput_options?\n"); 24041 return; /* Keep "lint" happy */ 24042 } 24043 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24044 /* Increase overflow counter */ 24045 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24046 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24047 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24048 (off << 4); 24049 break; 24050 } 24051 off = opt[IPOPT_OFFSET] - 1; 24052 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24053 case IPOPT_TS_PRESPEC: 24054 case IPOPT_TS_PRESPEC_RFC791: 24055 case IPOPT_TS_TSANDADDR: 24056 dst = htonl(INADDR_LOOPBACK); 24057 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24058 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24059 /* FALLTHRU */ 24060 case IPOPT_TS_TSONLY: 24061 off = opt[IPOPT_OFFSET] - 1; 24062 /* Compute # of milliseconds since midnight */ 24063 gethrestime(&now); 24064 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24065 now.tv_nsec / (NANOSEC / MILLISEC); 24066 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24067 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24068 break; 24069 } 24070 break; 24071 } 24072 } 24073 } 24074 24075 /* 24076 * Send out a multicast packet on interface ipif. 24077 * The sender does not have an conn. 24078 * Caller verifies that this isn't a PHYI_LOOPBACK. 24079 */ 24080 void 24081 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 24082 { 24083 ipha_t *ipha; 24084 ire_t *ire; 24085 ipaddr_t dst; 24086 mblk_t *first_mp; 24087 24088 /* igmp_sendpkt always allocates a ipsec_out_t */ 24089 ASSERT(mp->b_datap->db_type == M_CTL); 24090 ASSERT(!ipif->ipif_isv6); 24091 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24092 24093 first_mp = mp; 24094 mp = first_mp->b_cont; 24095 ASSERT(mp->b_datap->db_type == M_DATA); 24096 ipha = (ipha_t *)mp->b_rptr; 24097 24098 /* 24099 * Find an IRE which matches the destination and the outgoing 24100 * queue (i.e. the outgoing interface.) 24101 */ 24102 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24103 dst = ipif->ipif_pp_dst_addr; 24104 else 24105 dst = ipha->ipha_dst; 24106 /* 24107 * The source address has already been initialized by the 24108 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24109 * be sufficient rather than MATCH_IRE_IPIF. 24110 * 24111 * This function is used for sending IGMP packets. We need 24112 * to make sure that we send the packet out of the interface 24113 * (ipif->ipif_ill) where we joined the group. This is to 24114 * prevent from switches doing IGMP snooping to send us multicast 24115 * packets for a given group on the interface we have joined. 24116 * If we can't find an ire, igmp_sendpkt has already initialized 24117 * ipsec_out_attach_if so that this will not be load spread in 24118 * ip_newroute_ipif. 24119 */ 24120 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 24121 MATCH_IRE_ILL); 24122 if (!ire) { 24123 /* 24124 * Mark this packet to make it be delivered to 24125 * ip_wput_ire after the new ire has been 24126 * created. 24127 */ 24128 mp->b_prev = NULL; 24129 mp->b_next = NULL; 24130 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 24131 return; 24132 } 24133 24134 /* 24135 * Honor the RTF_SETSRC flag; this is the only case 24136 * where we force this addr whatever the current src addr is, 24137 * because this address is set by igmp_sendpkt(), and 24138 * cannot be specified by any user. 24139 */ 24140 if (ire->ire_flags & RTF_SETSRC) { 24141 ipha->ipha_src = ire->ire_src_addr; 24142 } 24143 24144 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 24145 } 24146 24147 /* 24148 * NOTE : This function does not ire_refrele the ire argument passed in. 24149 * 24150 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24151 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24152 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24153 * the ire_lock to access the nce_fp_mp in this case. 24154 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24155 * prepending a fastpath message IPQoS processing must precede it, we also set 24156 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24157 * (IPQoS might have set the b_band for CoS marking). 24158 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24159 * must follow it so that IPQoS can mark the dl_priority field for CoS 24160 * marking, if needed. 24161 */ 24162 static mblk_t * 24163 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24164 { 24165 uint_t hlen; 24166 ipha_t *ipha; 24167 mblk_t *mp1; 24168 boolean_t qos_done = B_FALSE; 24169 uchar_t *ll_hdr; 24170 24171 #define rptr ((uchar_t *)ipha) 24172 24173 ipha = (ipha_t *)mp->b_rptr; 24174 hlen = 0; 24175 LOCK_IRE_FP_MP(ire); 24176 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24177 ASSERT(DB_TYPE(mp1) == M_DATA); 24178 /* Initiate IPPF processing */ 24179 if ((proc != 0) && IPP_ENABLED(proc)) { 24180 UNLOCK_IRE_FP_MP(ire); 24181 ip_process(proc, &mp, ill_index); 24182 if (mp == NULL) 24183 return (NULL); 24184 24185 ipha = (ipha_t *)mp->b_rptr; 24186 LOCK_IRE_FP_MP(ire); 24187 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24188 qos_done = B_TRUE; 24189 goto no_fp_mp; 24190 } 24191 ASSERT(DB_TYPE(mp1) == M_DATA); 24192 } 24193 hlen = MBLKL(mp1); 24194 /* 24195 * Check if we have enough room to prepend fastpath 24196 * header 24197 */ 24198 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24199 ll_hdr = rptr - hlen; 24200 bcopy(mp1->b_rptr, ll_hdr, hlen); 24201 /* 24202 * Set the b_rptr to the start of the link layer 24203 * header 24204 */ 24205 mp->b_rptr = ll_hdr; 24206 mp1 = mp; 24207 } else { 24208 mp1 = copyb(mp1); 24209 if (mp1 == NULL) 24210 goto unlock_err; 24211 mp1->b_band = mp->b_band; 24212 mp1->b_cont = mp; 24213 /* 24214 * certain system generated traffic may not 24215 * have cred/label in ip header block. This 24216 * is true even for a labeled system. But for 24217 * labeled traffic, inherit the label in the 24218 * new header. 24219 */ 24220 if (DB_CRED(mp) != NULL) 24221 mblk_setcred(mp1, DB_CRED(mp)); 24222 /* 24223 * XXX disable ICK_VALID and compute checksum 24224 * here; can happen if nce_fp_mp changes and 24225 * it can't be copied now due to insufficient 24226 * space. (unlikely, fp mp can change, but it 24227 * does not increase in length) 24228 */ 24229 } 24230 UNLOCK_IRE_FP_MP(ire); 24231 } else { 24232 no_fp_mp: 24233 mp1 = copyb(ire->ire_nce->nce_res_mp); 24234 if (mp1 == NULL) { 24235 unlock_err: 24236 UNLOCK_IRE_FP_MP(ire); 24237 freemsg(mp); 24238 return (NULL); 24239 } 24240 UNLOCK_IRE_FP_MP(ire); 24241 mp1->b_cont = mp; 24242 /* 24243 * certain system generated traffic may not 24244 * have cred/label in ip header block. This 24245 * is true even for a labeled system. But for 24246 * labeled traffic, inherit the label in the 24247 * new header. 24248 */ 24249 if (DB_CRED(mp) != NULL) 24250 mblk_setcred(mp1, DB_CRED(mp)); 24251 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24252 ip_process(proc, &mp1, ill_index); 24253 if (mp1 == NULL) 24254 return (NULL); 24255 } 24256 } 24257 return (mp1); 24258 #undef rptr 24259 } 24260 24261 /* 24262 * Finish the outbound IPsec processing for an IPv6 packet. This function 24263 * is called from ipsec_out_process() if the IPsec packet was processed 24264 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24265 * asynchronously. 24266 */ 24267 void 24268 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24269 ire_t *ire_arg) 24270 { 24271 in6_addr_t *v6dstp; 24272 ire_t *ire; 24273 mblk_t *mp; 24274 uint_t ill_index; 24275 ipsec_out_t *io; 24276 boolean_t attach_if, hwaccel; 24277 uint32_t flags = IP6_NO_IPPOLICY; 24278 int match_flags; 24279 zoneid_t zoneid; 24280 boolean_t ill_need_rele = B_FALSE; 24281 boolean_t ire_need_rele = B_FALSE; 24282 24283 mp = ipsec_mp->b_cont; 24284 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24285 ill_index = io->ipsec_out_ill_index; 24286 if (io->ipsec_out_reachable) { 24287 flags |= IPV6_REACHABILITY_CONFIRMATION; 24288 } 24289 attach_if = io->ipsec_out_attach_if; 24290 hwaccel = io->ipsec_out_accelerated; 24291 zoneid = io->ipsec_out_zoneid; 24292 ASSERT(zoneid != ALL_ZONES); 24293 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24294 /* Multicast addresses should have non-zero ill_index. */ 24295 v6dstp = &ip6h->ip6_dst; 24296 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24297 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24298 ASSERT(!attach_if || ill_index != 0); 24299 if (ill_index != 0) { 24300 if (ill == NULL) { 24301 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24302 B_TRUE); 24303 24304 /* Failure case frees things for us. */ 24305 if (ill == NULL) 24306 return; 24307 24308 ill_need_rele = B_TRUE; 24309 } 24310 /* 24311 * If this packet needs to go out on a particular interface 24312 * honor it. 24313 */ 24314 if (attach_if) { 24315 match_flags = MATCH_IRE_ILL; 24316 24317 /* 24318 * Check if we need an ire that will not be 24319 * looked up by anybody else i.e. HIDDEN. 24320 */ 24321 if (ill_is_probeonly(ill)) { 24322 match_flags |= MATCH_IRE_MARK_HIDDEN; 24323 } 24324 } 24325 } 24326 ASSERT(mp != NULL); 24327 24328 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24329 boolean_t unspec_src; 24330 ipif_t *ipif; 24331 24332 /* 24333 * Use the ill_index to get the right ill. 24334 */ 24335 unspec_src = io->ipsec_out_unspec_src; 24336 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24337 if (ipif == NULL) { 24338 if (ill_need_rele) 24339 ill_refrele(ill); 24340 freemsg(ipsec_mp); 24341 return; 24342 } 24343 24344 if (ire_arg != NULL) { 24345 ire = ire_arg; 24346 } else { 24347 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24348 zoneid, MBLK_GETLABEL(mp), match_flags); 24349 ire_need_rele = B_TRUE; 24350 } 24351 if (ire != NULL) { 24352 ipif_refrele(ipif); 24353 /* 24354 * XXX Do the multicast forwarding now, as the IPSEC 24355 * processing has been done. 24356 */ 24357 goto send; 24358 } 24359 24360 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24361 mp->b_prev = NULL; 24362 mp->b_next = NULL; 24363 24364 /* 24365 * If the IPsec packet was processed asynchronously, 24366 * drop it now. 24367 */ 24368 if (q == NULL) { 24369 if (ill_need_rele) 24370 ill_refrele(ill); 24371 freemsg(ipsec_mp); 24372 return; 24373 } 24374 24375 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24376 unspec_src, zoneid); 24377 ipif_refrele(ipif); 24378 } else { 24379 if (attach_if) { 24380 ipif_t *ipif; 24381 24382 ipif = ipif_get_next_ipif(NULL, ill); 24383 if (ipif == NULL) { 24384 if (ill_need_rele) 24385 ill_refrele(ill); 24386 freemsg(ipsec_mp); 24387 return; 24388 } 24389 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24390 zoneid, MBLK_GETLABEL(mp), match_flags); 24391 ire_need_rele = B_TRUE; 24392 ipif_refrele(ipif); 24393 } else { 24394 if (ire_arg != NULL) { 24395 ire = ire_arg; 24396 } else { 24397 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24398 ire_need_rele = B_TRUE; 24399 } 24400 } 24401 if (ire != NULL) 24402 goto send; 24403 /* 24404 * ire disappeared underneath. 24405 * 24406 * What we need to do here is the ip_newroute 24407 * logic to get the ire without doing the IPSEC 24408 * processing. Follow the same old path. But this 24409 * time, ip_wput or ire_add_then_send will call us 24410 * directly as all the IPSEC operations are done. 24411 */ 24412 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24413 mp->b_prev = NULL; 24414 mp->b_next = NULL; 24415 24416 /* 24417 * If the IPsec packet was processed asynchronously, 24418 * drop it now. 24419 */ 24420 if (q == NULL) { 24421 if (ill_need_rele) 24422 ill_refrele(ill); 24423 freemsg(ipsec_mp); 24424 return; 24425 } 24426 24427 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24428 zoneid); 24429 } 24430 if (ill != NULL && ill_need_rele) 24431 ill_refrele(ill); 24432 return; 24433 send: 24434 if (ill != NULL && ill_need_rele) 24435 ill_refrele(ill); 24436 24437 /* Local delivery */ 24438 if (ire->ire_stq == NULL) { 24439 ASSERT(q != NULL); 24440 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 24441 ire, 0); 24442 if (ire_need_rele) 24443 ire_refrele(ire); 24444 return; 24445 } 24446 /* 24447 * Everything is done. Send it out on the wire. 24448 * We force the insertion of a fragment header using the 24449 * IPH_FRAG_HDR flag in two cases: 24450 * - after reception of an ICMPv6 "packet too big" message 24451 * with a MTU < 1280 (cf. RFC 2460 section 5) 24452 * - for multirouted IPv6 packets, so that the receiver can 24453 * discard duplicates according to their fragment identifier 24454 */ 24455 /* XXX fix flow control problems. */ 24456 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24457 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24458 if (hwaccel) { 24459 /* 24460 * hardware acceleration does not handle these 24461 * "slow path" cases. 24462 */ 24463 /* IPsec KSTATS: should bump bean counter here. */ 24464 if (ire_need_rele) 24465 ire_refrele(ire); 24466 freemsg(ipsec_mp); 24467 return; 24468 } 24469 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24470 (mp->b_cont ? msgdsize(mp) : 24471 mp->b_wptr - (uchar_t *)ip6h)) { 24472 /* IPsec KSTATS: should bump bean counter here. */ 24473 ip0dbg(("Packet length mismatch: %d, %ld\n", 24474 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24475 msgdsize(mp))); 24476 if (ire_need_rele) 24477 ire_refrele(ire); 24478 freemsg(ipsec_mp); 24479 return; 24480 } 24481 ASSERT(mp->b_prev == NULL); 24482 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24483 ntohs(ip6h->ip6_plen) + 24484 IPV6_HDR_LEN, ire->ire_max_frag)); 24485 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24486 ire->ire_max_frag); 24487 } else { 24488 UPDATE_OB_PKT_COUNT(ire); 24489 ire->ire_last_used_time = lbolt; 24490 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24491 } 24492 if (ire_need_rele) 24493 ire_refrele(ire); 24494 freeb(ipsec_mp); 24495 } 24496 24497 void 24498 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24499 { 24500 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24501 da_ipsec_t *hada; /* data attributes */ 24502 ill_t *ill = (ill_t *)q->q_ptr; 24503 24504 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24505 24506 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24507 /* IPsec KSTATS: Bump lose counter here! */ 24508 freemsg(mp); 24509 return; 24510 } 24511 24512 /* 24513 * It's an IPsec packet that must be 24514 * accelerated by the Provider, and the 24515 * outbound ill is IPsec acceleration capable. 24516 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24517 * to the ill. 24518 * IPsec KSTATS: should bump packet counter here. 24519 */ 24520 24521 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24522 if (hada_mp == NULL) { 24523 /* IPsec KSTATS: should bump packet counter here. */ 24524 freemsg(mp); 24525 return; 24526 } 24527 24528 hada_mp->b_datap->db_type = M_CTL; 24529 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24530 hada_mp->b_cont = mp; 24531 24532 hada = (da_ipsec_t *)hada_mp->b_rptr; 24533 bzero(hada, sizeof (da_ipsec_t)); 24534 hada->da_type = IPHADA_M_CTL; 24535 24536 putnext(q, hada_mp); 24537 } 24538 24539 /* 24540 * Finish the outbound IPsec processing. This function is called from 24541 * ipsec_out_process() if the IPsec packet was processed 24542 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24543 * asynchronously. 24544 */ 24545 void 24546 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 24547 ire_t *ire_arg) 24548 { 24549 uint32_t v_hlen_tos_len; 24550 ipaddr_t dst; 24551 ipif_t *ipif = NULL; 24552 ire_t *ire; 24553 ire_t *ire1 = NULL; 24554 mblk_t *next_mp = NULL; 24555 uint32_t max_frag; 24556 boolean_t multirt_send = B_FALSE; 24557 mblk_t *mp; 24558 mblk_t *mp1; 24559 uint_t ill_index; 24560 ipsec_out_t *io; 24561 boolean_t attach_if; 24562 int match_flags, offset; 24563 irb_t *irb = NULL; 24564 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 24565 zoneid_t zoneid; 24566 uint32_t cksum; 24567 uint16_t *up; 24568 ipxmit_state_t pktxmit_state; 24569 #ifdef _BIG_ENDIAN 24570 #define LENGTH (v_hlen_tos_len & 0xFFFF) 24571 #else 24572 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 24573 #endif 24574 24575 mp = ipsec_mp->b_cont; 24576 ASSERT(mp != NULL); 24577 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24578 dst = ipha->ipha_dst; 24579 24580 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24581 ill_index = io->ipsec_out_ill_index; 24582 attach_if = io->ipsec_out_attach_if; 24583 zoneid = io->ipsec_out_zoneid; 24584 ASSERT(zoneid != ALL_ZONES); 24585 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24586 if (ill_index != 0) { 24587 if (ill == NULL) { 24588 ill = ip_grab_attach_ill(NULL, ipsec_mp, 24589 ill_index, B_FALSE); 24590 24591 /* Failure case frees things for us. */ 24592 if (ill == NULL) 24593 return; 24594 24595 ill_need_rele = B_TRUE; 24596 } 24597 /* 24598 * If this packet needs to go out on a particular interface 24599 * honor it. 24600 */ 24601 if (attach_if) { 24602 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 24603 24604 /* 24605 * Check if we need an ire that will not be 24606 * looked up by anybody else i.e. HIDDEN. 24607 */ 24608 if (ill_is_probeonly(ill)) { 24609 match_flags |= MATCH_IRE_MARK_HIDDEN; 24610 } 24611 } 24612 } 24613 24614 if (CLASSD(dst)) { 24615 boolean_t conn_dontroute; 24616 /* 24617 * Use the ill_index to get the right ipif. 24618 */ 24619 conn_dontroute = io->ipsec_out_dontroute; 24620 if (ill_index == 0) 24621 ipif = ipif_lookup_group(dst, zoneid); 24622 else 24623 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24624 if (ipif == NULL) { 24625 ip1dbg(("ip_wput_ipsec_out: No ipif for" 24626 " multicast\n")); 24627 BUMP_MIB(&ip_mib, ipOutNoRoutes); 24628 freemsg(ipsec_mp); 24629 goto done; 24630 } 24631 /* 24632 * ipha_src has already been intialized with the 24633 * value of the ipif in ip_wput. All we need now is 24634 * an ire to send this downstream. 24635 */ 24636 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 24637 MBLK_GETLABEL(mp), match_flags); 24638 if (ire != NULL) { 24639 ill_t *ill1; 24640 /* 24641 * Do the multicast forwarding now, as the IPSEC 24642 * processing has been done. 24643 */ 24644 if (ip_g_mrouter && !conn_dontroute && 24645 (ill1 = ire_to_ill(ire))) { 24646 if (ip_mforward(ill1, ipha, mp)) { 24647 freemsg(ipsec_mp); 24648 ip1dbg(("ip_wput_ipsec_out: mforward " 24649 "failed\n")); 24650 ire_refrele(ire); 24651 goto done; 24652 } 24653 } 24654 goto send; 24655 } 24656 24657 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24658 mp->b_prev = NULL; 24659 mp->b_next = NULL; 24660 24661 /* 24662 * If the IPsec packet was processed asynchronously, 24663 * drop it now. 24664 */ 24665 if (q == NULL) { 24666 freemsg(ipsec_mp); 24667 goto done; 24668 } 24669 24670 /* 24671 * We may be using a wrong ipif to create the ire. 24672 * But it is okay as the source address is assigned 24673 * for the packet already. Next outbound packet would 24674 * create the IRE with the right IPIF in ip_wput. 24675 * 24676 * Also handle RTF_MULTIRT routes. 24677 */ 24678 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24679 } else { 24680 if (attach_if) { 24681 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24682 zoneid, MBLK_GETLABEL(mp), match_flags); 24683 } else { 24684 if (ire_arg != NULL) { 24685 ire = ire_arg; 24686 ire_need_rele = B_FALSE; 24687 } else { 24688 ire = ire_cache_lookup(dst, zoneid, 24689 MBLK_GETLABEL(mp)); 24690 } 24691 } 24692 if (ire != NULL) { 24693 goto send; 24694 } 24695 24696 /* 24697 * ire disappeared underneath. 24698 * 24699 * What we need to do here is the ip_newroute 24700 * logic to get the ire without doing the IPSEC 24701 * processing. Follow the same old path. But this 24702 * time, ip_wput or ire_add_then_put will call us 24703 * directly as all the IPSEC operations are done. 24704 */ 24705 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24706 mp->b_prev = NULL; 24707 mp->b_next = NULL; 24708 24709 /* 24710 * If the IPsec packet was processed asynchronously, 24711 * drop it now. 24712 */ 24713 if (q == NULL) { 24714 freemsg(ipsec_mp); 24715 goto done; 24716 } 24717 24718 /* 24719 * Since we're going through ip_newroute() again, we 24720 * need to make sure we don't: 24721 * 24722 * 1.) Trigger the ASSERT() with the ipha_ident 24723 * overloading. 24724 * 2.) Redo transport-layer checksumming, since we've 24725 * already done all that to get this far. 24726 * 24727 * The easiest way not do either of the above is to set 24728 * the ipha_ident field to IP_HDR_INCLUDED. 24729 */ 24730 ipha->ipha_ident = IP_HDR_INCLUDED; 24731 ip_newroute(q, ipsec_mp, dst, NULL, 24732 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24733 } 24734 goto done; 24735 send: 24736 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24737 /* 24738 * ESP NAT-Traversal packet. 24739 * 24740 * Just do software checksum for now. 24741 */ 24742 24743 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24744 IP_STAT(ip_out_sw_cksum); 24745 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24746 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24747 #define iphs ((uint16_t *)ipha) 24748 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24749 iphs[9] + ntohs(htons(ipha->ipha_length) - 24750 IP_SIMPLE_HDR_LENGTH); 24751 #undef iphs 24752 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24753 cksum = 0xFFFF; 24754 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24755 if (mp1->b_wptr - mp1->b_rptr >= 24756 offset + sizeof (uint16_t)) { 24757 up = (uint16_t *)(mp1->b_rptr + offset); 24758 *up = cksum; 24759 break; /* out of for loop */ 24760 } else { 24761 offset -= (mp->b_wptr - mp->b_rptr); 24762 } 24763 } /* Otherwise, just keep the all-zero checksum. */ 24764 24765 if (ire->ire_stq == NULL) { 24766 /* 24767 * Loopbacks go through ip_wput_local except for one case. 24768 * We come here if we generate a icmp_frag_needed message 24769 * after IPSEC processing is over. When this function calls 24770 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24771 * icmp_frag_needed. The message generated comes back here 24772 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24773 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24774 * source address as it is usually set in ip_wput_ire. As 24775 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24776 * and we end up here. We can't enter ip_wput_ire once the 24777 * IPSEC processing is over and hence we need to do it here. 24778 */ 24779 ASSERT(q != NULL); 24780 UPDATE_OB_PKT_COUNT(ire); 24781 ire->ire_last_used_time = lbolt; 24782 if (ipha->ipha_src == 0) 24783 ipha->ipha_src = ire->ire_src_addr; 24784 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24785 ire, 0, zoneid); 24786 if (ire_need_rele) 24787 ire_refrele(ire); 24788 goto done; 24789 } 24790 24791 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24792 /* 24793 * We are through with IPSEC processing. 24794 * Fragment this and send it on the wire. 24795 */ 24796 if (io->ipsec_out_accelerated) { 24797 /* 24798 * The packet has been accelerated but must 24799 * be fragmented. This should not happen 24800 * since AH and ESP must not accelerate 24801 * packets that need fragmentation, however 24802 * the configuration could have changed 24803 * since the AH or ESP processing. 24804 * Drop packet. 24805 * IPsec KSTATS: bump bean counter here. 24806 */ 24807 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24808 "fragmented accelerated packet!\n")); 24809 freemsg(ipsec_mp); 24810 } else { 24811 ip_wput_ire_fragmentit(ipsec_mp, ire); 24812 } 24813 if (ire_need_rele) 24814 ire_refrele(ire); 24815 goto done; 24816 } 24817 24818 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24819 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24820 (void *)ire->ire_ipif, (void *)ipif)); 24821 24822 /* 24823 * Multiroute the secured packet, unless IPsec really 24824 * requires the packet to go out only through a particular 24825 * interface. 24826 */ 24827 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24828 ire_t *first_ire; 24829 irb = ire->ire_bucket; 24830 ASSERT(irb != NULL); 24831 /* 24832 * This ire has been looked up as the one that 24833 * goes through the given ipif; 24834 * make sure we do not omit any other multiroute ire 24835 * that may be present in the bucket before this one. 24836 */ 24837 IRB_REFHOLD(irb); 24838 for (first_ire = irb->irb_ire; 24839 first_ire != NULL; 24840 first_ire = first_ire->ire_next) { 24841 if ((first_ire->ire_flags & RTF_MULTIRT) && 24842 (first_ire->ire_addr == ire->ire_addr) && 24843 !(first_ire->ire_marks & 24844 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24845 break; 24846 } 24847 24848 if ((first_ire != NULL) && (first_ire != ire)) { 24849 /* 24850 * Don't change the ire if the packet must 24851 * be fragmented if sent via this new one. 24852 */ 24853 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24854 IRE_REFHOLD(first_ire); 24855 if (ire_need_rele) 24856 ire_refrele(ire); 24857 else 24858 ire_need_rele = B_TRUE; 24859 ire = first_ire; 24860 } 24861 } 24862 IRB_REFRELE(irb); 24863 24864 multirt_send = B_TRUE; 24865 max_frag = ire->ire_max_frag; 24866 } else { 24867 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24868 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24869 "flag, attach_if %d\n", attach_if)); 24870 } 24871 } 24872 24873 /* 24874 * In most cases, the emission loop below is entered only once. 24875 * Only in the case where the ire holds the RTF_MULTIRT 24876 * flag, we loop to process all RTF_MULTIRT ires in the 24877 * bucket, and send the packet through all crossed 24878 * RTF_MULTIRT routes. 24879 */ 24880 do { 24881 if (multirt_send) { 24882 /* 24883 * ire1 holds here the next ire to process in the 24884 * bucket. If multirouting is expected, 24885 * any non-RTF_MULTIRT ire that has the 24886 * right destination address is ignored. 24887 */ 24888 ASSERT(irb != NULL); 24889 IRB_REFHOLD(irb); 24890 for (ire1 = ire->ire_next; 24891 ire1 != NULL; 24892 ire1 = ire1->ire_next) { 24893 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24894 continue; 24895 if (ire1->ire_addr != ire->ire_addr) 24896 continue; 24897 if (ire1->ire_marks & 24898 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24899 continue; 24900 /* No loopback here */ 24901 if (ire1->ire_stq == NULL) 24902 continue; 24903 /* 24904 * Ensure we do not exceed the MTU 24905 * of the next route. 24906 */ 24907 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24908 ip_multirt_bad_mtu(ire1, max_frag); 24909 continue; 24910 } 24911 24912 IRE_REFHOLD(ire1); 24913 break; 24914 } 24915 IRB_REFRELE(irb); 24916 if (ire1 != NULL) { 24917 /* 24918 * We are in a multiple send case, need to 24919 * make a copy of the packet. 24920 */ 24921 next_mp = copymsg(ipsec_mp); 24922 if (next_mp == NULL) { 24923 ire_refrele(ire1); 24924 ire1 = NULL; 24925 } 24926 } 24927 } 24928 /* 24929 * Everything is done. Send it out on the wire 24930 * 24931 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 24932 * either send it on the wire or, in the case of 24933 * HW acceleration, call ipsec_hw_putnext. 24934 */ 24935 if (ire->ire_nce && 24936 ire->ire_nce->nce_state != ND_REACHABLE) { 24937 DTRACE_PROBE2(ip__wput__ipsec__bail, 24938 (ire_t *), ire, (mblk_t *), ipsec_mp); 24939 /* 24940 * If ire's link-layer is unresolved (this 24941 * would only happen if the incomplete ire 24942 * was added to cachetable via forwarding path) 24943 * don't bother going to ip_xmit_v4. Just drop the 24944 * packet. 24945 * There is a slight risk here, in that, if we 24946 * have the forwarding path create an incomplete 24947 * IRE, then until the IRE is completed, any 24948 * transmitted IPSEC packets will be dropped 24949 * instead of being queued waiting for resolution. 24950 * 24951 * But the likelihood of a forwarding packet and a wput 24952 * packet sending to the same dst at the same time 24953 * and there not yet be an ARP entry for it is small. 24954 * Furthermore, if this actually happens, it might 24955 * be likely that wput would generate multiple 24956 * packets (and forwarding would also have a train 24957 * of packets) for that destination. If this is 24958 * the case, some of them would have been dropped 24959 * anyway, since ARP only queues a few packets while 24960 * waiting for resolution 24961 * 24962 * NOTE: We should really call ip_xmit_v4, 24963 * and let it queue the packet and send the 24964 * ARP query and have ARP come back thus: 24965 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 24966 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 24967 * hw accel work. But it's too complex to get 24968 * the IPsec hw acceleration approach to fit 24969 * well with ip_xmit_v4 doing ARP without 24970 * doing IPSEC simplification. For now, we just 24971 * poke ip_xmit_v4 to trigger the arp resolve, so 24972 * that we can continue with the send on the next 24973 * attempt. 24974 * 24975 * XXX THis should be revisited, when 24976 * the IPsec/IP interaction is cleaned up 24977 */ 24978 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 24979 " - dropping packet\n")); 24980 freemsg(ipsec_mp); 24981 /* 24982 * Call ip_xmit_v4() to trigger ARP query 24983 * in case the nce_state is ND_INITIAL 24984 */ 24985 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24986 goto drop_pkt; 24987 } 24988 24989 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 24990 pktxmit_state = ip_xmit_v4(mp, ire, 24991 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 24992 24993 if ((pktxmit_state == SEND_FAILED) || 24994 (pktxmit_state == LLHDR_RESLV_FAILED)) { 24995 24996 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 24997 drop_pkt: 24998 BUMP_MIB(&ip_mib, ipOutDiscards); 24999 if (ire_need_rele) 25000 ire_refrele(ire); 25001 if (ire1 != NULL) { 25002 ire_refrele(ire1); 25003 freemsg(next_mp); 25004 } 25005 goto done; 25006 } 25007 25008 freeb(ipsec_mp); 25009 if (ire_need_rele) 25010 ire_refrele(ire); 25011 25012 if (ire1 != NULL) { 25013 ire = ire1; 25014 ire_need_rele = B_TRUE; 25015 ASSERT(next_mp); 25016 ipsec_mp = next_mp; 25017 mp = ipsec_mp->b_cont; 25018 ire1 = NULL; 25019 next_mp = NULL; 25020 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25021 } else { 25022 multirt_send = B_FALSE; 25023 } 25024 } while (multirt_send); 25025 done: 25026 if (ill != NULL && ill_need_rele) 25027 ill_refrele(ill); 25028 if (ipif != NULL) 25029 ipif_refrele(ipif); 25030 } 25031 25032 /* 25033 * Get the ill corresponding to the specified ire, and compare its 25034 * capabilities with the protocol and algorithms specified by the 25035 * the SA obtained from ipsec_out. If they match, annotate the 25036 * ipsec_out structure to indicate that the packet needs acceleration. 25037 * 25038 * 25039 * A packet is eligible for outbound hardware acceleration if the 25040 * following conditions are satisfied: 25041 * 25042 * 1. the packet will not be fragmented 25043 * 2. the provider supports the algorithm 25044 * 3. there is no pending control message being exchanged 25045 * 4. snoop is not attached 25046 * 5. the destination address is not a broadcast or multicast address. 25047 * 25048 * Rationale: 25049 * - Hardware drivers do not support fragmentation with 25050 * the current interface. 25051 * - snoop, multicast, and broadcast may result in exposure of 25052 * a cleartext datagram. 25053 * We check all five of these conditions here. 25054 * 25055 * XXX would like to nuke "ire_t *" parameter here; problem is that 25056 * IRE is only way to figure out if a v4 address is a broadcast and 25057 * thus ineligible for acceleration... 25058 */ 25059 static void 25060 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25061 { 25062 ipsec_out_t *io; 25063 mblk_t *data_mp; 25064 uint_t plen, overhead; 25065 25066 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25067 return; 25068 25069 if (ill == NULL) 25070 return; 25071 25072 /* 25073 * Destination address is a broadcast or multicast. Punt. 25074 */ 25075 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25076 IRE_LOCAL))) 25077 return; 25078 25079 data_mp = ipsec_mp->b_cont; 25080 25081 if (ill->ill_isv6) { 25082 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25083 25084 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25085 return; 25086 25087 plen = ip6h->ip6_plen; 25088 } else { 25089 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25090 25091 if (CLASSD(ipha->ipha_dst)) 25092 return; 25093 25094 plen = ipha->ipha_length; 25095 } 25096 /* 25097 * Is there a pending DLPI control message being exchanged 25098 * between IP/IPsec and the DLS Provider? If there is, it 25099 * could be a SADB update, and the state of the DLS Provider 25100 * SADB might not be in sync with the SADB maintained by 25101 * IPsec. To avoid dropping packets or using the wrong keying 25102 * material, we do not accelerate this packet. 25103 */ 25104 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25105 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25106 "ill_dlpi_pending! don't accelerate packet\n")); 25107 return; 25108 } 25109 25110 /* 25111 * Is the Provider in promiscous mode? If it does, we don't 25112 * accelerate the packet since it will bounce back up to the 25113 * listeners in the clear. 25114 */ 25115 if (ill->ill_promisc_on_phys) { 25116 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25117 "ill in promiscous mode, don't accelerate packet\n")); 25118 return; 25119 } 25120 25121 /* 25122 * Will the packet require fragmentation? 25123 */ 25124 25125 /* 25126 * IPsec ESP note: this is a pessimistic estimate, but the same 25127 * as is used elsewhere. 25128 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25129 * + 2-byte trailer 25130 */ 25131 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25132 IPSEC_BASE_ESP_HDR_SIZE(sa); 25133 25134 if ((plen + overhead) > ill->ill_max_mtu) 25135 return; 25136 25137 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25138 25139 /* 25140 * Can the ill accelerate this IPsec protocol and algorithm 25141 * specified by the SA? 25142 */ 25143 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25144 ill->ill_isv6, sa)) { 25145 return; 25146 } 25147 25148 /* 25149 * Tell AH or ESP that the outbound ill is capable of 25150 * accelerating this packet. 25151 */ 25152 io->ipsec_out_is_capab_ill = B_TRUE; 25153 } 25154 25155 /* 25156 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25157 * 25158 * If this function returns B_TRUE, the requested SA's have been filled 25159 * into the ipsec_out_*_sa pointers. 25160 * 25161 * If the function returns B_FALSE, the packet has been "consumed", most 25162 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25163 * 25164 * The SA references created by the protocol-specific "select" 25165 * function will be released when the ipsec_mp is freed, thanks to the 25166 * ipsec_out_free destructor -- see spd.c. 25167 */ 25168 static boolean_t 25169 ipsec_out_select_sa(mblk_t *ipsec_mp) 25170 { 25171 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25172 ipsec_out_t *io; 25173 ipsec_policy_t *pp; 25174 ipsec_action_t *ap; 25175 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25176 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25177 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25178 25179 if (!io->ipsec_out_secure) { 25180 /* 25181 * We came here by mistake. 25182 * Don't bother with ipsec processing 25183 * We should "discourage" this path in the future. 25184 */ 25185 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25186 return (B_FALSE); 25187 } 25188 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25189 ASSERT((io->ipsec_out_policy != NULL) || 25190 (io->ipsec_out_act != NULL)); 25191 25192 ASSERT(io->ipsec_out_failed == B_FALSE); 25193 25194 /* 25195 * IPSEC processing has started. 25196 */ 25197 io->ipsec_out_proc_begin = B_TRUE; 25198 ap = io->ipsec_out_act; 25199 if (ap == NULL) { 25200 pp = io->ipsec_out_policy; 25201 ASSERT(pp != NULL); 25202 ap = pp->ipsp_act; 25203 ASSERT(ap != NULL); 25204 } 25205 25206 /* 25207 * We have an action. now, let's select SA's. 25208 * (In the future, we can cache this in the conn_t..) 25209 */ 25210 if (ap->ipa_want_esp) { 25211 if (io->ipsec_out_esp_sa == NULL) { 25212 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25213 IPPROTO_ESP); 25214 } 25215 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25216 } 25217 25218 if (ap->ipa_want_ah) { 25219 if (io->ipsec_out_ah_sa == NULL) { 25220 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25221 IPPROTO_AH); 25222 } 25223 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25224 /* 25225 * The ESP and AH processing order needs to be preserved 25226 * when both protocols are required (ESP should be applied 25227 * before AH for an outbound packet). Force an ESP ACQUIRE 25228 * when both ESP and AH are required, and an AH ACQUIRE 25229 * is needed. 25230 */ 25231 if (ap->ipa_want_esp && need_ah_acquire) 25232 need_esp_acquire = B_TRUE; 25233 } 25234 25235 /* 25236 * Send an ACQUIRE (extended, regular, or both) if we need one. 25237 * Release SAs that got referenced, but will not be used until we 25238 * acquire _all_ of the SAs we need. 25239 */ 25240 if (need_ah_acquire || need_esp_acquire) { 25241 if (io->ipsec_out_ah_sa != NULL) { 25242 IPSA_REFRELE(io->ipsec_out_ah_sa); 25243 io->ipsec_out_ah_sa = NULL; 25244 } 25245 if (io->ipsec_out_esp_sa != NULL) { 25246 IPSA_REFRELE(io->ipsec_out_esp_sa); 25247 io->ipsec_out_esp_sa = NULL; 25248 } 25249 25250 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25251 return (B_FALSE); 25252 } 25253 25254 return (B_TRUE); 25255 } 25256 25257 /* 25258 * Process an IPSEC_OUT message and see what you can 25259 * do with it. 25260 * IPQoS Notes: 25261 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25262 * IPSec. 25263 * XXX would like to nuke ire_t. 25264 * XXX ill_index better be "real" 25265 */ 25266 void 25267 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25268 { 25269 ipsec_out_t *io; 25270 ipsec_policy_t *pp; 25271 ipsec_action_t *ap; 25272 ipha_t *ipha; 25273 ip6_t *ip6h; 25274 mblk_t *mp; 25275 ill_t *ill; 25276 zoneid_t zoneid; 25277 ipsec_status_t ipsec_rc; 25278 boolean_t ill_need_rele = B_FALSE; 25279 25280 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25281 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25282 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25283 mp = ipsec_mp->b_cont; 25284 25285 /* 25286 * Initiate IPPF processing. We do it here to account for packets 25287 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25288 * We can check for ipsec_out_proc_begin even for such packets, as 25289 * they will always be false (asserted below). 25290 */ 25291 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25292 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25293 io->ipsec_out_ill_index : ill_index); 25294 if (mp == NULL) { 25295 ip2dbg(("ipsec_out_process: packet dropped "\ 25296 "during IPPF processing\n")); 25297 freeb(ipsec_mp); 25298 BUMP_MIB(&ip_mib, ipOutDiscards); 25299 return; 25300 } 25301 } 25302 25303 if (!io->ipsec_out_secure) { 25304 /* 25305 * We came here by mistake. 25306 * Don't bother with ipsec processing 25307 * Should "discourage" this path in the future. 25308 */ 25309 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25310 goto done; 25311 } 25312 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25313 ASSERT((io->ipsec_out_policy != NULL) || 25314 (io->ipsec_out_act != NULL)); 25315 ASSERT(io->ipsec_out_failed == B_FALSE); 25316 25317 if (!ipsec_loaded()) { 25318 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25319 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25320 BUMP_MIB(&ip_mib, ipOutDiscards); 25321 } else { 25322 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25323 } 25324 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25325 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25326 return; 25327 } 25328 25329 /* 25330 * IPSEC processing has started. 25331 */ 25332 io->ipsec_out_proc_begin = B_TRUE; 25333 ap = io->ipsec_out_act; 25334 if (ap == NULL) { 25335 pp = io->ipsec_out_policy; 25336 ASSERT(pp != NULL); 25337 ap = pp->ipsp_act; 25338 ASSERT(ap != NULL); 25339 } 25340 25341 /* 25342 * Save the outbound ill index. When the packet comes back 25343 * from IPsec, we make sure the ill hasn't changed or disappeared 25344 * before sending it the accelerated packet. 25345 */ 25346 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25347 int ifindex; 25348 ill = ire_to_ill(ire); 25349 ifindex = ill->ill_phyint->phyint_ifindex; 25350 io->ipsec_out_capab_ill_index = ifindex; 25351 } 25352 25353 /* 25354 * The order of processing is first insert a IP header if needed. 25355 * Then insert the ESP header and then the AH header. 25356 */ 25357 if ((io->ipsec_out_se_done == B_FALSE) && 25358 (ap->ipa_want_se)) { 25359 /* 25360 * First get the outer IP header before sending 25361 * it to ESP. 25362 */ 25363 ipha_t *oipha, *iipha; 25364 mblk_t *outer_mp, *inner_mp; 25365 25366 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25367 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25368 "ipsec_out_process: " 25369 "Self-Encapsulation failed: Out of memory\n"); 25370 freemsg(ipsec_mp); 25371 BUMP_MIB(&ip_mib, ipOutDiscards); 25372 return; 25373 } 25374 inner_mp = ipsec_mp->b_cont; 25375 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25376 oipha = (ipha_t *)outer_mp->b_rptr; 25377 iipha = (ipha_t *)inner_mp->b_rptr; 25378 *oipha = *iipha; 25379 outer_mp->b_wptr += sizeof (ipha_t); 25380 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25381 sizeof (ipha_t)); 25382 oipha->ipha_protocol = IPPROTO_ENCAP; 25383 oipha->ipha_version_and_hdr_length = 25384 IP_SIMPLE_HDR_VERSION; 25385 oipha->ipha_hdr_checksum = 0; 25386 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25387 outer_mp->b_cont = inner_mp; 25388 ipsec_mp->b_cont = outer_mp; 25389 25390 io->ipsec_out_se_done = B_TRUE; 25391 io->ipsec_out_encaps = B_TRUE; 25392 } 25393 25394 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25395 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25396 !ipsec_out_select_sa(ipsec_mp)) 25397 return; 25398 25399 /* 25400 * By now, we know what SA's to use. Toss over to ESP & AH 25401 * to do the heavy lifting. 25402 */ 25403 zoneid = io->ipsec_out_zoneid; 25404 ASSERT(zoneid != ALL_ZONES); 25405 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25406 ASSERT(io->ipsec_out_esp_sa != NULL); 25407 io->ipsec_out_esp_done = B_TRUE; 25408 /* 25409 * Note that since hw accel can only apply one transform, 25410 * not two, we skip hw accel for ESP if we also have AH 25411 * This is an design limitation of the interface 25412 * which should be revisited. 25413 */ 25414 ASSERT(ire != NULL); 25415 if (io->ipsec_out_ah_sa == NULL) { 25416 ill = (ill_t *)ire->ire_stq->q_ptr; 25417 ipsec_out_is_accelerated(ipsec_mp, 25418 io->ipsec_out_esp_sa, ill, ire); 25419 } 25420 25421 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25422 switch (ipsec_rc) { 25423 case IPSEC_STATUS_SUCCESS: 25424 break; 25425 case IPSEC_STATUS_FAILED: 25426 BUMP_MIB(&ip_mib, ipOutDiscards); 25427 /* FALLTHRU */ 25428 case IPSEC_STATUS_PENDING: 25429 return; 25430 } 25431 } 25432 25433 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25434 ASSERT(io->ipsec_out_ah_sa != NULL); 25435 io->ipsec_out_ah_done = B_TRUE; 25436 if (ire == NULL) { 25437 int idx = io->ipsec_out_capab_ill_index; 25438 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25439 NULL, NULL, NULL, NULL); 25440 ill_need_rele = B_TRUE; 25441 } else { 25442 ill = (ill_t *)ire->ire_stq->q_ptr; 25443 } 25444 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25445 ire); 25446 25447 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25448 switch (ipsec_rc) { 25449 case IPSEC_STATUS_SUCCESS: 25450 break; 25451 case IPSEC_STATUS_FAILED: 25452 BUMP_MIB(&ip_mib, ipOutDiscards); 25453 /* FALLTHRU */ 25454 case IPSEC_STATUS_PENDING: 25455 if (ill != NULL && ill_need_rele) 25456 ill_refrele(ill); 25457 return; 25458 } 25459 } 25460 /* 25461 * We are done with IPSEC processing. Send it over 25462 * the wire. 25463 */ 25464 done: 25465 mp = ipsec_mp->b_cont; 25466 ipha = (ipha_t *)mp->b_rptr; 25467 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25468 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25469 } else { 25470 ip6h = (ip6_t *)ipha; 25471 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25472 } 25473 if (ill != NULL && ill_need_rele) 25474 ill_refrele(ill); 25475 } 25476 25477 /* ARGSUSED */ 25478 void 25479 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25480 { 25481 opt_restart_t *or; 25482 int err; 25483 conn_t *connp; 25484 25485 ASSERT(CONN_Q(q)); 25486 connp = Q_TO_CONN(q); 25487 25488 ASSERT(first_mp->b_datap->db_type == M_CTL); 25489 or = (opt_restart_t *)first_mp->b_rptr; 25490 /* 25491 * We don't need to pass any credentials here since this is just 25492 * a restart. The credentials are passed in when svr4_optcom_req 25493 * is called the first time (from ip_wput_nondata). 25494 */ 25495 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25496 err = svr4_optcom_req(q, first_mp, NULL, 25497 &ip_opt_obj); 25498 } else { 25499 ASSERT(or->or_type == T_OPTMGMT_REQ); 25500 err = tpi_optcom_req(q, first_mp, NULL, 25501 &ip_opt_obj); 25502 } 25503 if (err != EINPROGRESS) { 25504 /* operation is done */ 25505 CONN_OPER_PENDING_DONE(connp); 25506 } 25507 } 25508 25509 /* 25510 * ioctls that go through a down/up sequence may need to wait for the down 25511 * to complete. This involves waiting for the ire and ipif refcnts to go down 25512 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 25513 */ 25514 /* ARGSUSED */ 25515 void 25516 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25517 { 25518 struct iocblk *iocp; 25519 mblk_t *mp1; 25520 ipif_t *ipif; 25521 ip_ioctl_cmd_t *ipip; 25522 int err; 25523 sin_t *sin; 25524 struct lifreq *lifr; 25525 struct ifreq *ifr; 25526 25527 iocp = (struct iocblk *)mp->b_rptr; 25528 ASSERT(ipsq != NULL); 25529 /* Existence of mp1 verified in ip_wput_nondata */ 25530 mp1 = mp->b_cont->b_cont; 25531 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25532 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 25533 ill_t *ill; 25534 /* 25535 * Special case where ipsq_current_ipif may not be set. 25536 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 25537 * ill could also have become part of a ipmp group in the 25538 * process, we are here as were not able to complete the 25539 * operation in ipif_set_values because we could not become 25540 * exclusive on the new ipsq, In such a case ipsq_current_ipif 25541 * will not be set so we need to set it. 25542 */ 25543 ill = (ill_t *)q->q_ptr; 25544 ipsq->ipsq_current_ipif = ill->ill_ipif; 25545 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25546 } 25547 25548 ipif = ipsq->ipsq_current_ipif; 25549 ASSERT(ipif != NULL); 25550 if (ipip->ipi_cmd_type == IF_CMD) { 25551 /* This a old style SIOC[GS]IF* command */ 25552 ifr = (struct ifreq *)mp1->b_rptr; 25553 sin = (sin_t *)&ifr->ifr_addr; 25554 } else if (ipip->ipi_cmd_type == LIF_CMD) { 25555 /* This a new style SIOC[GS]LIF* command */ 25556 lifr = (struct lifreq *)mp1->b_rptr; 25557 sin = (sin_t *)&lifr->lifr_addr; 25558 } else { 25559 sin = NULL; 25560 } 25561 25562 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 25563 (void *)mp1->b_rptr); 25564 25565 /* SIOCLIFREMOVEIF could have removed the ipif */ 25566 ip_ioctl_finish(q, mp, err, 25567 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25568 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 25569 } 25570 25571 /* 25572 * ioctl processing 25573 * 25574 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 25575 * the ioctl command in the ioctl tables and determines the copyin data size 25576 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 25577 * size. 25578 * 25579 * ioctl processing then continues when the M_IOCDATA makes its way down. 25580 * Now the ioctl is looked up again in the ioctl table, and its properties are 25581 * extracted. The associated 'conn' is then refheld till the end of the ioctl 25582 * and the general ioctl processing function ip_process_ioctl is called. 25583 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 25584 * so goes thru the serialization primitive ipsq_try_enter. Then the 25585 * appropriate function to handle the ioctl is called based on the entry in 25586 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 25587 * which also refreleases the 'conn' that was refheld at the start of the 25588 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 25589 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 25590 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 25591 * 25592 * Many exclusive ioctls go thru an internal down up sequence as part of 25593 * the operation. For example an attempt to change the IP address of an 25594 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 25595 * does all the cleanup such as deleting all ires that use this address. 25596 * Then we need to wait till all references to the interface go away. 25597 */ 25598 void 25599 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 25600 { 25601 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 25602 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 25603 cmd_info_t ci; 25604 int err; 25605 boolean_t entered_ipsq = B_FALSE; 25606 25607 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 25608 25609 if (ipip == NULL) 25610 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25611 25612 /* 25613 * SIOCLIFADDIF needs to go thru a special path since the 25614 * ill may not exist yet. This happens in the case of lo0 25615 * which is created using this ioctl. 25616 */ 25617 if (ipip->ipi_cmd == SIOCLIFADDIF) { 25618 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 25619 ip_ioctl_finish(q, mp, err, 25620 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25621 NULL, NULL); 25622 return; 25623 } 25624 25625 ci.ci_ipif = NULL; 25626 switch (ipip->ipi_cmd_type) { 25627 case IF_CMD: 25628 case LIF_CMD: 25629 /* 25630 * ioctls that pass in a [l]ifreq appear here. 25631 * ip_extract_lifreq_cmn returns a refheld ipif in 25632 * ci.ci_ipif 25633 */ 25634 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 25635 ipip->ipi_flags, &ci, ip_process_ioctl); 25636 if (err != 0) { 25637 ip_ioctl_finish(q, mp, err, 25638 ipip->ipi_flags & IPI_GET_CMD ? 25639 COPYOUT : NO_COPYOUT, NULL, NULL); 25640 return; 25641 } 25642 ASSERT(ci.ci_ipif != NULL); 25643 break; 25644 25645 case TUN_CMD: 25646 /* 25647 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 25648 * a refheld ipif in ci.ci_ipif 25649 */ 25650 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 25651 if (err != 0) { 25652 ip_ioctl_finish(q, mp, err, 25653 ipip->ipi_flags & IPI_GET_CMD ? 25654 COPYOUT : NO_COPYOUT, NULL, NULL); 25655 return; 25656 } 25657 ASSERT(ci.ci_ipif != NULL); 25658 break; 25659 25660 case MISC_CMD: 25661 /* 25662 * ioctls that neither pass in [l]ifreq or iftun_req come here 25663 * For eg. SIOCGLIFCONF will appear here. 25664 */ 25665 switch (ipip->ipi_cmd) { 25666 case IF_UNITSEL: 25667 /* ioctl comes down the ill */ 25668 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 25669 ipif_refhold(ci.ci_ipif); 25670 break; 25671 case SIOCGMSFILTER: 25672 case SIOCSMSFILTER: 25673 case SIOCGIPMSFILTER: 25674 case SIOCSIPMSFILTER: 25675 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 25676 ip_process_ioctl); 25677 if (err != 0) { 25678 ip_ioctl_finish(q, mp, err, 25679 ipip->ipi_flags & IPI_GET_CMD ? 25680 COPYOUT : NO_COPYOUT, NULL, NULL); 25681 return; 25682 } 25683 break; 25684 } 25685 err = 0; 25686 ci.ci_sin = NULL; 25687 ci.ci_sin6 = NULL; 25688 ci.ci_lifr = NULL; 25689 break; 25690 } 25691 25692 /* 25693 * If ipsq is non-null, we are already being called exclusively 25694 */ 25695 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25696 if (!(ipip->ipi_flags & IPI_WR)) { 25697 /* 25698 * A return value of EINPROGRESS means the ioctl is 25699 * either queued and waiting for some reason or has 25700 * already completed. 25701 */ 25702 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25703 ci.ci_lifr); 25704 if (ci.ci_ipif != NULL) 25705 ipif_refrele(ci.ci_ipif); 25706 ip_ioctl_finish(q, mp, err, 25707 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25708 NULL, NULL); 25709 return; 25710 } 25711 25712 ASSERT(ci.ci_ipif != NULL); 25713 25714 if (ipsq == NULL) { 25715 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25716 ip_process_ioctl, NEW_OP, B_TRUE); 25717 entered_ipsq = B_TRUE; 25718 } 25719 /* 25720 * Release the ipif so that ipif_down and friends that wait for 25721 * references to go away are not misled about the current ipif_refcnt 25722 * values. We are writer so we can access the ipif even after releasing 25723 * the ipif. 25724 */ 25725 ipif_refrele(ci.ci_ipif); 25726 if (ipsq == NULL) 25727 return; 25728 25729 mutex_enter(&ipsq->ipsq_lock); 25730 ASSERT(ipsq->ipsq_current_ipif == NULL); 25731 ipsq->ipsq_current_ipif = ci.ci_ipif; 25732 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25733 mutex_exit(&ipsq->ipsq_lock); 25734 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25735 /* 25736 * For most set ioctls that come here, this serves as a single point 25737 * where we set the IPIF_CHANGING flag. This ensures that there won't 25738 * be any new references to the ipif. This helps functions that go 25739 * through this path and end up trying to wait for the refcnts 25740 * associated with the ipif to go down to zero. Some exceptions are 25741 * Failover, Failback, and Groupname commands that operate on more than 25742 * just the ci.ci_ipif. These commands internally determine the 25743 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25744 * flags on that set. Another exception is the Removeif command that 25745 * sets the IPIF_CONDEMNED flag internally after identifying the right 25746 * ipif to operate on. 25747 */ 25748 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25749 ipip->ipi_cmd != SIOCLIFFAILOVER && 25750 ipip->ipi_cmd != SIOCLIFFAILBACK && 25751 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25752 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25753 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25754 25755 /* 25756 * A return value of EINPROGRESS means the ioctl is 25757 * either queued and waiting for some reason or has 25758 * already completed. 25759 */ 25760 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25761 ci.ci_lifr); 25762 25763 /* SIOCLIFREMOVEIF could have removed the ipif */ 25764 ip_ioctl_finish(q, mp, err, 25765 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25766 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25767 25768 if (entered_ipsq) 25769 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25770 } 25771 25772 /* 25773 * Complete the ioctl. Typically ioctls use the mi package and need to 25774 * do mi_copyout/mi_copy_done. 25775 */ 25776 void 25777 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25778 ipif_t *ipif, ipsq_t *ipsq) 25779 { 25780 conn_t *connp = NULL; 25781 25782 if (err == EINPROGRESS) 25783 return; 25784 25785 if (CONN_Q(q)) { 25786 connp = Q_TO_CONN(q); 25787 ASSERT(connp->conn_ref >= 2); 25788 } 25789 25790 switch (mode) { 25791 case COPYOUT: 25792 if (err == 0) 25793 mi_copyout(q, mp); 25794 else 25795 mi_copy_done(q, mp, err); 25796 break; 25797 25798 case NO_COPYOUT: 25799 mi_copy_done(q, mp, err); 25800 break; 25801 25802 default: 25803 /* An ioctl aborted through a conn close would take this path */ 25804 break; 25805 } 25806 25807 /* 25808 * The refhold placed at the start of the ioctl is released here. 25809 */ 25810 if (connp != NULL) 25811 CONN_OPER_PENDING_DONE(connp); 25812 25813 /* 25814 * If the ioctl were an exclusive ioctl it would have set 25815 * IPIF_CHANGING at the start of the ioctl which is undone here. 25816 */ 25817 if (ipif != NULL) { 25818 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25819 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25820 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25821 } 25822 25823 /* 25824 * Clear the current ipif in the ipsq at the completion of the ioctl. 25825 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25826 * entering the ipsq 25827 */ 25828 if (ipsq != NULL) { 25829 mutex_enter(&ipsq->ipsq_lock); 25830 ipsq->ipsq_current_ipif = NULL; 25831 mutex_exit(&ipsq->ipsq_lock); 25832 } 25833 } 25834 25835 /* 25836 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25837 */ 25838 /* ARGSUSED */ 25839 void 25840 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25841 { 25842 conn_t *connp = arg; 25843 tcp_t *tcp; 25844 25845 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25846 tcp = connp->conn_tcp; 25847 25848 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25849 freemsg(mp); 25850 else 25851 tcp_rput_other(tcp, mp); 25852 CONN_OPER_PENDING_DONE(connp); 25853 } 25854 25855 /* Called from ip_wput for all non data messages */ 25856 /* ARGSUSED */ 25857 void 25858 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25859 { 25860 mblk_t *mp1; 25861 ire_t *ire, *fake_ire; 25862 ill_t *ill; 25863 struct iocblk *iocp; 25864 ip_ioctl_cmd_t *ipip; 25865 cred_t *cr; 25866 conn_t *connp = NULL; 25867 int cmd, err; 25868 nce_t *nce; 25869 ipif_t *ipif; 25870 25871 if (CONN_Q(q)) 25872 connp = Q_TO_CONN(q); 25873 25874 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25875 25876 /* Check if it is a queue to /dev/sctp. */ 25877 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25878 connp->conn_rq == NULL) { 25879 sctp_wput(q, mp); 25880 return; 25881 } 25882 25883 switch (DB_TYPE(mp)) { 25884 case M_IOCTL: 25885 /* 25886 * IOCTL processing begins in ip_sioctl_copyin_setup which 25887 * will arrange to copy in associated control structures. 25888 */ 25889 ip_sioctl_copyin_setup(q, mp); 25890 return; 25891 case M_IOCDATA: 25892 /* 25893 * Ensure that this is associated with one of our trans- 25894 * parent ioctls. If it's not ours, discard it if we're 25895 * running as a driver, or pass it on if we're a module. 25896 */ 25897 iocp = (struct iocblk *)mp->b_rptr; 25898 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25899 if (ipip == NULL) { 25900 if (q->q_next == NULL) { 25901 goto nak; 25902 } else { 25903 putnext(q, mp); 25904 } 25905 return; 25906 } else if ((q->q_next != NULL) && 25907 !(ipip->ipi_flags & IPI_MODOK)) { 25908 /* 25909 * the ioctl is one we recognise, but is not 25910 * consumed by IP as a module, pass M_IOCDATA 25911 * for processing downstream, but only for 25912 * common Streams ioctls. 25913 */ 25914 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25915 putnext(q, mp); 25916 return; 25917 } else { 25918 goto nak; 25919 } 25920 } 25921 25922 /* IOCTL continuation following copyin or copyout. */ 25923 if (mi_copy_state(q, mp, NULL) == -1) { 25924 /* 25925 * The copy operation failed. mi_copy_state already 25926 * cleaned up, so we're out of here. 25927 */ 25928 return; 25929 } 25930 /* 25931 * If we just completed a copy in, we become writer and 25932 * continue processing in ip_sioctl_copyin_done. If it 25933 * was a copy out, we call mi_copyout again. If there is 25934 * nothing more to copy out, it will complete the IOCTL. 25935 */ 25936 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25937 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25938 mi_copy_done(q, mp, EPROTO); 25939 return; 25940 } 25941 /* 25942 * Check for cases that need more copying. A return 25943 * value of 0 means a second copyin has been started, 25944 * so we return; a return value of 1 means no more 25945 * copying is needed, so we continue. 25946 */ 25947 cmd = iocp->ioc_cmd; 25948 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25949 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25950 MI_COPY_COUNT(mp) == 1) { 25951 if (ip_copyin_msfilter(q, mp) == 0) 25952 return; 25953 } 25954 /* 25955 * Refhold the conn, till the ioctl completes. This is 25956 * needed in case the ioctl ends up in the pending mp 25957 * list. Every mp in the ill_pending_mp list and 25958 * the ipsq_pending_mp must have a refhold on the conn 25959 * to resume processing. The refhold is released when 25960 * the ioctl completes. (normally or abnormally) 25961 * In all cases ip_ioctl_finish is called to finish 25962 * the ioctl. 25963 */ 25964 if (connp != NULL) { 25965 /* This is not a reentry */ 25966 ASSERT(ipsq == NULL); 25967 CONN_INC_REF(connp); 25968 } else { 25969 if (!(ipip->ipi_flags & IPI_MODOK)) { 25970 mi_copy_done(q, mp, EINVAL); 25971 return; 25972 } 25973 } 25974 25975 ip_process_ioctl(ipsq, q, mp, ipip); 25976 25977 } else { 25978 mi_copyout(q, mp); 25979 } 25980 return; 25981 nak: 25982 iocp->ioc_error = EINVAL; 25983 mp->b_datap->db_type = M_IOCNAK; 25984 iocp->ioc_count = 0; 25985 qreply(q, mp); 25986 return; 25987 25988 case M_IOCNAK: 25989 /* 25990 * The only way we could get here is if a resolver didn't like 25991 * an IOCTL we sent it. This shouldn't happen. 25992 */ 25993 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25994 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25995 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25996 freemsg(mp); 25997 return; 25998 case M_IOCACK: 25999 /* Finish socket ioctls passed through to ARP. */ 26000 ip_sioctl_iocack(q, mp); 26001 return; 26002 case M_FLUSH: 26003 if (*mp->b_rptr & FLUSHW) 26004 flushq(q, FLUSHALL); 26005 if (q->q_next) { 26006 /* 26007 * M_FLUSH is sent up to IP by some drivers during 26008 * unbind. ip_rput has already replied to it. We are 26009 * here for the M_FLUSH that we originated in IP 26010 * before sending the unbind request to the driver. 26011 * Just free it as we don't queue packets in IP 26012 * on the write side of the device instance. 26013 */ 26014 freemsg(mp); 26015 return; 26016 } 26017 if (*mp->b_rptr & FLUSHR) { 26018 *mp->b_rptr &= ~FLUSHW; 26019 qreply(q, mp); 26020 return; 26021 } 26022 freemsg(mp); 26023 return; 26024 case IRE_DB_REQ_TYPE: 26025 /* An Upper Level Protocol wants a copy of an IRE. */ 26026 ip_ire_req(q, mp); 26027 return; 26028 case M_CTL: 26029 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26030 break; 26031 26032 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26033 IP_ULP_OUT_LABELED) { 26034 out_labeled_t *olp; 26035 26036 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26037 break; 26038 olp = (out_labeled_t *)mp->b_rptr; 26039 connp->conn_ulp_labeled = olp->out_qnext == q; 26040 freemsg(mp); 26041 return; 26042 } 26043 26044 /* M_CTL messages are used by ARP to tell us things. */ 26045 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26046 break; 26047 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26048 case AR_ENTRY_SQUERY: 26049 ip_wput_ctl(q, mp); 26050 return; 26051 case AR_CLIENT_NOTIFY: 26052 ip_arp_news(q, mp); 26053 return; 26054 case AR_DLPIOP_DONE: 26055 ASSERT(q->q_next != NULL); 26056 ill = (ill_t *)q->q_ptr; 26057 /* qwriter_ip releases the refhold */ 26058 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26059 ill_refhold(ill); 26060 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26061 CUR_OP, B_FALSE); 26062 return; 26063 case AR_ARP_CLOSING: 26064 /* 26065 * ARP (above us) is closing. If no ARP bringup is 26066 * currently pending, ack the message so that ARP 26067 * can complete its close. Also mark ill_arp_closing 26068 * so that new ARP bringups will fail. If any 26069 * ARP bringup is currently in progress, we will 26070 * ack this when the current ARP bringup completes. 26071 */ 26072 ASSERT(q->q_next != NULL); 26073 ill = (ill_t *)q->q_ptr; 26074 mutex_enter(&ill->ill_lock); 26075 ill->ill_arp_closing = 1; 26076 if (!ill->ill_arp_bringup_pending) { 26077 mutex_exit(&ill->ill_lock); 26078 qreply(q, mp); 26079 } else { 26080 mutex_exit(&ill->ill_lock); 26081 freemsg(mp); 26082 } 26083 return; 26084 case AR_ARP_EXTEND: 26085 /* 26086 * The ARP module above us is capable of duplicate 26087 * address detection. Old ATM drivers will not send 26088 * this message. 26089 */ 26090 ASSERT(q->q_next != NULL); 26091 ill = (ill_t *)q->q_ptr; 26092 ill->ill_arp_extend = B_TRUE; 26093 freemsg(mp); 26094 return; 26095 default: 26096 break; 26097 } 26098 break; 26099 case M_PROTO: 26100 case M_PCPROTO: 26101 /* 26102 * The only PROTO messages we expect are ULP binds and 26103 * copies of option negotiation acknowledgements. 26104 */ 26105 switch (((union T_primitives *)mp->b_rptr)->type) { 26106 case O_T_BIND_REQ: 26107 case T_BIND_REQ: { 26108 /* Request can get queued in bind */ 26109 ASSERT(connp != NULL); 26110 /* 26111 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26112 * instead of going through this path. We only get 26113 * here in the following cases: 26114 * 26115 * a. Bind retries, where ipsq is non-NULL. 26116 * b. T_BIND_REQ is issued from non TCP/UDP 26117 * transport, e.g. icmp for raw socket, 26118 * in which case ipsq will be NULL. 26119 */ 26120 ASSERT(ipsq != NULL || 26121 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26122 26123 /* Don't increment refcnt if this is a re-entry */ 26124 if (ipsq == NULL) 26125 CONN_INC_REF(connp); 26126 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26127 connp, NULL) : ip_bind_v4(q, mp, connp); 26128 if (mp == NULL) 26129 return; 26130 if (IPCL_IS_TCP(connp)) { 26131 /* 26132 * In the case of TCP endpoint we 26133 * come here only for bind retries 26134 */ 26135 ASSERT(ipsq != NULL); 26136 CONN_INC_REF(connp); 26137 squeue_fill(connp->conn_sqp, mp, 26138 ip_resume_tcp_bind, connp, 26139 SQTAG_BIND_RETRY); 26140 return; 26141 } else if (IPCL_IS_UDP(connp)) { 26142 /* 26143 * In the case of UDP endpoint we 26144 * come here only for bind retries 26145 */ 26146 ASSERT(ipsq != NULL); 26147 udp_resume_bind(connp, mp); 26148 return; 26149 } 26150 qreply(q, mp); 26151 CONN_OPER_PENDING_DONE(connp); 26152 return; 26153 } 26154 case T_SVR4_OPTMGMT_REQ: 26155 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26156 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26157 26158 ASSERT(connp != NULL); 26159 if (!snmpcom_req(q, mp, ip_snmp_set, 26160 ip_snmp_get, cr)) { 26161 /* 26162 * Call svr4_optcom_req so that it can 26163 * generate the ack. We don't come here 26164 * if this operation is being restarted. 26165 * ip_restart_optmgmt will drop the conn ref. 26166 * In the case of ipsec option after the ipsec 26167 * load is complete conn_restart_ipsec_waiter 26168 * drops the conn ref. 26169 */ 26170 ASSERT(ipsq == NULL); 26171 CONN_INC_REF(connp); 26172 if (ip_check_for_ipsec_opt(q, mp)) 26173 return; 26174 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26175 if (err != EINPROGRESS) { 26176 /* Operation is done */ 26177 CONN_OPER_PENDING_DONE(connp); 26178 } 26179 } 26180 return; 26181 case T_OPTMGMT_REQ: 26182 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26183 /* 26184 * Note: No snmpcom_req support through new 26185 * T_OPTMGMT_REQ. 26186 * Call tpi_optcom_req so that it can 26187 * generate the ack. 26188 */ 26189 ASSERT(connp != NULL); 26190 ASSERT(ipsq == NULL); 26191 /* 26192 * We don't come here for restart. ip_restart_optmgmt 26193 * will drop the conn ref. In the case of ipsec option 26194 * after the ipsec load is complete 26195 * conn_restart_ipsec_waiter drops the conn ref. 26196 */ 26197 CONN_INC_REF(connp); 26198 if (ip_check_for_ipsec_opt(q, mp)) 26199 return; 26200 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26201 if (err != EINPROGRESS) { 26202 /* Operation is done */ 26203 CONN_OPER_PENDING_DONE(connp); 26204 } 26205 return; 26206 case T_UNBIND_REQ: 26207 mp = ip_unbind(q, mp); 26208 qreply(q, mp); 26209 return; 26210 default: 26211 /* 26212 * Have to drop any DLPI messages coming down from 26213 * arp (such as an info_req which would cause ip 26214 * to receive an extra info_ack if it was passed 26215 * through. 26216 */ 26217 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26218 (int)*(uint_t *)mp->b_rptr)); 26219 freemsg(mp); 26220 return; 26221 } 26222 /* NOTREACHED */ 26223 case IRE_DB_TYPE: { 26224 nce_t *nce; 26225 ill_t *ill; 26226 in6_addr_t gw_addr_v6; 26227 26228 26229 /* 26230 * This is a response back from a resolver. It 26231 * consists of a message chain containing: 26232 * IRE_MBLK-->LL_HDR_MBLK->pkt 26233 * The IRE_MBLK is the one we allocated in ip_newroute. 26234 * The LL_HDR_MBLK is the DLPI header to use to get 26235 * the attached packet, and subsequent ones for the 26236 * same destination, transmitted. 26237 */ 26238 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26239 break; 26240 /* 26241 * First, check to make sure the resolution succeeded. 26242 * If it failed, the second mblk will be empty. 26243 * If it is, free the chain, dropping the packet. 26244 * (We must ire_delete the ire; that frees the ire mblk) 26245 * We're doing this now to support PVCs for ATM; it's 26246 * a partial xresolv implementation. When we fully implement 26247 * xresolv interfaces, instead of freeing everything here 26248 * we'll initiate neighbor discovery. 26249 * 26250 * For v4 (ARP and other external resolvers) the resolver 26251 * frees the message, so no check is needed. This check 26252 * is required, though, for a full xresolve implementation. 26253 * Including this code here now both shows how external 26254 * resolvers can NACK a resolution request using an 26255 * existing design that has no specific provisions for NACKs, 26256 * and also takes into account that the current non-ARP 26257 * external resolver has been coded to use this method of 26258 * NACKing for all IPv6 (xresolv) cases, 26259 * whether our xresolv implementation is complete or not. 26260 * 26261 */ 26262 ire = (ire_t *)mp->b_rptr; 26263 ill = ire_to_ill(ire); 26264 mp1 = mp->b_cont; /* dl_unitdata_req */ 26265 if (mp1->b_rptr == mp1->b_wptr) { 26266 if (ire->ire_ipversion == IPV6_VERSION) { 26267 /* 26268 * XRESOLV interface. 26269 */ 26270 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26271 mutex_enter(&ire->ire_lock); 26272 gw_addr_v6 = ire->ire_gateway_addr_v6; 26273 mutex_exit(&ire->ire_lock); 26274 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26275 nce = ndp_lookup_v6(ill, 26276 &ire->ire_addr_v6, B_FALSE); 26277 } else { 26278 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26279 B_FALSE); 26280 } 26281 if (nce != NULL) { 26282 nce_resolv_failed(nce); 26283 ndp_delete(nce); 26284 NCE_REFRELE(nce); 26285 } 26286 } 26287 mp->b_cont = NULL; 26288 freemsg(mp1); /* frees the pkt as well */ 26289 ASSERT(ire->ire_nce == NULL); 26290 ire_delete((ire_t *)mp->b_rptr); 26291 return; 26292 } 26293 26294 /* 26295 * Split them into IRE_MBLK and pkt and feed it into 26296 * ire_add_then_send. Then in ire_add_then_send 26297 * the IRE will be added, and then the packet will be 26298 * run back through ip_wput. This time it will make 26299 * it to the wire. 26300 */ 26301 mp->b_cont = NULL; 26302 mp = mp1->b_cont; /* now, mp points to pkt */ 26303 mp1->b_cont = NULL; 26304 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26305 if (ire->ire_ipversion == IPV6_VERSION) { 26306 /* 26307 * XRESOLV interface. Find the nce and put a copy 26308 * of the dl_unitdata_req in nce_res_mp 26309 */ 26310 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26311 mutex_enter(&ire->ire_lock); 26312 gw_addr_v6 = ire->ire_gateway_addr_v6; 26313 mutex_exit(&ire->ire_lock); 26314 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26315 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26316 B_FALSE); 26317 } else { 26318 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26319 } 26320 if (nce != NULL) { 26321 /* 26322 * We have to protect nce_res_mp here 26323 * from being accessed by other threads 26324 * while we change the mblk pointer. 26325 * Other functions will also lock the nce when 26326 * accessing nce_res_mp. 26327 * 26328 * The reason we change the mblk pointer 26329 * here rather than copying the resolved address 26330 * into the template is that, unlike with 26331 * ethernet, we have no guarantee that the 26332 * resolved address length will be 26333 * smaller than or equal to the lla length 26334 * with which the template was allocated, 26335 * (for ethernet, they're equal) 26336 * so we have to use the actual resolved 26337 * address mblk - which holds the real 26338 * dl_unitdata_req with the resolved address. 26339 * 26340 * Doing this is the same behavior as was 26341 * previously used in the v4 ARP case. 26342 */ 26343 mutex_enter(&nce->nce_lock); 26344 if (nce->nce_res_mp != NULL) 26345 freemsg(nce->nce_res_mp); 26346 nce->nce_res_mp = mp1; 26347 mutex_exit(&nce->nce_lock); 26348 /* 26349 * We do a fastpath probe here because 26350 * we have resolved the address without 26351 * using Neighbor Discovery. 26352 * In the non-XRESOLV v6 case, the fastpath 26353 * probe is done right after neighbor 26354 * discovery completes. 26355 */ 26356 if (nce->nce_res_mp != NULL) { 26357 int res; 26358 nce_fastpath_list_add(nce); 26359 res = ill_fastpath_probe(ill, 26360 nce->nce_res_mp); 26361 if (res != 0 && res != EAGAIN) 26362 nce_fastpath_list_delete(nce); 26363 } 26364 26365 ire_add_then_send(q, ire, mp); 26366 /* 26367 * Now we have to clean out any packets 26368 * that may have been queued on the nce 26369 * while it was waiting for address resolution 26370 * to complete. 26371 */ 26372 mutex_enter(&nce->nce_lock); 26373 mp1 = nce->nce_qd_mp; 26374 nce->nce_qd_mp = NULL; 26375 mutex_exit(&nce->nce_lock); 26376 while (mp1 != NULL) { 26377 mblk_t *nxt_mp; 26378 queue_t *fwdq = NULL; 26379 ill_t *inbound_ill; 26380 uint_t ifindex; 26381 26382 nxt_mp = mp1->b_next; 26383 mp1->b_next = NULL; 26384 /* 26385 * Retrieve ifindex stored in 26386 * ip_rput_data_v6() 26387 */ 26388 ifindex = 26389 (uint_t)(uintptr_t)mp1->b_prev; 26390 inbound_ill = 26391 ill_lookup_on_ifindex(ifindex, 26392 B_TRUE, NULL, NULL, NULL, 26393 NULL); 26394 mp1->b_prev = NULL; 26395 if (inbound_ill != NULL) 26396 fwdq = inbound_ill->ill_rq; 26397 26398 if (fwdq != NULL) { 26399 put(fwdq, mp1); 26400 ill_refrele(inbound_ill); 26401 } else 26402 put(WR(ill->ill_rq), mp1); 26403 mp1 = nxt_mp; 26404 } 26405 NCE_REFRELE(nce); 26406 } else { /* nce is NULL; clean up */ 26407 ire_delete(ire); 26408 freemsg(mp); 26409 freemsg(mp1); 26410 return; 26411 } 26412 } else { 26413 nce_t *arpce; 26414 /* 26415 * Link layer resolution succeeded. Recompute the 26416 * ire_nce. 26417 */ 26418 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26419 if ((arpce = ndp_lookup_v4(ill, 26420 (ire->ire_gateway_addr != INADDR_ANY ? 26421 &ire->ire_gateway_addr : &ire->ire_addr), 26422 B_FALSE)) == NULL) { 26423 freeb(ire->ire_mp); 26424 freeb(mp1); 26425 freemsg(mp); 26426 return; 26427 } 26428 mutex_enter(&arpce->nce_lock); 26429 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26430 if (arpce->nce_state == ND_REACHABLE) { 26431 /* 26432 * Someone resolved this before us; 26433 * cleanup the res_mp. Since ire has 26434 * not been added yet, the call to ire_add_v4 26435 * from ire_add_then_send (when a dup is 26436 * detected) will clean up the ire. 26437 */ 26438 freeb(mp1); 26439 } else { 26440 if (arpce->nce_res_mp != NULL) 26441 freemsg(arpce->nce_res_mp); 26442 arpce->nce_res_mp = mp1; 26443 arpce->nce_state = ND_REACHABLE; 26444 } 26445 mutex_exit(&arpce->nce_lock); 26446 if (ire->ire_marks & IRE_MARK_NOADD) { 26447 /* 26448 * this ire will not be added to the ire 26449 * cache table, so we can set the ire_nce 26450 * here, as there are no atomicity constraints. 26451 */ 26452 ire->ire_nce = arpce; 26453 /* 26454 * We are associating this nce with the ire 26455 * so change the nce ref taken in 26456 * ndp_lookup_v4() from 26457 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26458 */ 26459 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26460 } else { 26461 NCE_REFRELE(arpce); 26462 } 26463 ire_add_then_send(q, ire, mp); 26464 } 26465 return; /* All is well, the packet has been sent. */ 26466 } 26467 case IRE_ARPRESOLVE_TYPE: { 26468 26469 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26470 break; 26471 mp1 = mp->b_cont; /* dl_unitdata_req */ 26472 mp->b_cont = NULL; 26473 /* 26474 * First, check to make sure the resolution succeeded. 26475 * If it failed, the second mblk will be empty. 26476 */ 26477 if (mp1->b_rptr == mp1->b_wptr) { 26478 /* cleanup the incomplete ire, free queued packets */ 26479 freemsg(mp); /* fake ire */ 26480 freeb(mp1); /* dl_unitdata response */ 26481 return; 26482 } 26483 26484 /* 26485 * update any incomplete nce_t found. we lookup the ctable 26486 * and find the nce from the ire->ire_nce because we need 26487 * to pass the ire to ip_xmit_v4 later, and can find both 26488 * ire and nce in one lookup from the ctable. 26489 */ 26490 fake_ire = (ire_t *)mp->b_rptr; 26491 /* 26492 * By the time we come back here from ARP 26493 * the logical outgoing interface of the incomplete ire 26494 * we added in ire_forward could have disappeared, 26495 * causing the incomplete ire to also have 26496 * dissapeared. So we need to retreive the 26497 * proper ipif for the ire before looking 26498 * in ctable; do the ctablelookup based on ire_ipif_seqid 26499 */ 26500 ill = q->q_ptr; 26501 26502 /* Get the outgoing ipif */ 26503 mutex_enter(&ill->ill_lock); 26504 if (ill->ill_state_flags & ILL_CONDEMNED) { 26505 mutex_exit(&ill->ill_lock); 26506 freemsg(mp); /* fake ire */ 26507 freeb(mp1); /* dl_unitdata response */ 26508 return; 26509 } 26510 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 26511 26512 if (ipif == NULL) { 26513 mutex_exit(&ill->ill_lock); 26514 ip1dbg(("logical intrf to incomplete ire vanished\n")); 26515 freemsg(mp); 26516 freeb(mp1); 26517 return; 26518 } 26519 ipif_refhold_locked(ipif); 26520 mutex_exit(&ill->ill_lock); 26521 ire = ire_ctable_lookup(fake_ire->ire_addr, 26522 fake_ire->ire_gateway_addr, IRE_CACHE, 26523 ipif, fake_ire->ire_zoneid, NULL, 26524 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 26525 ipif_refrele(ipif); 26526 if (ire == NULL) { 26527 /* 26528 * no ire was found; check if there is an nce 26529 * for this lookup; if it has no ire's pointing at it 26530 * cleanup. 26531 */ 26532 if ((nce = ndp_lookup_v4(ill, 26533 (fake_ire->ire_gateway_addr != INADDR_ANY ? 26534 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 26535 B_FALSE)) != NULL) { 26536 /* 26537 * cleanup: just reset nce. 26538 * We check for refcnt 2 (one for the nce 26539 * hash list + 1 for the ref taken by 26540 * ndp_lookup_v4) to ensure that there are 26541 * no ire's pointing at the nce. 26542 */ 26543 if (nce->nce_refcnt == 2) { 26544 nce = nce_reinit(nce); 26545 } 26546 if (nce != NULL) 26547 NCE_REFRELE(nce); 26548 } 26549 freeb(mp1); /* dl_unitdata response */ 26550 freemsg(mp); /* fake ire */ 26551 return; 26552 } 26553 nce = ire->ire_nce; 26554 DTRACE_PROBE2(ire__arpresolve__type, 26555 ire_t *, ire, nce_t *, nce); 26556 ASSERT(nce->nce_state != ND_INITIAL); 26557 mutex_enter(&nce->nce_lock); 26558 nce->nce_last = TICK_TO_MSEC(lbolt64); 26559 if (nce->nce_state == ND_REACHABLE) { 26560 /* 26561 * Someone resolved this before us; 26562 * our response is not needed any more. 26563 */ 26564 mutex_exit(&nce->nce_lock); 26565 freeb(mp1); /* dl_unitdata response */ 26566 } else { 26567 if (nce->nce_res_mp != NULL) { 26568 freemsg(nce->nce_res_mp); 26569 /* existing dl_unitdata template */ 26570 } 26571 nce->nce_res_mp = mp1; 26572 nce->nce_state = ND_REACHABLE; 26573 mutex_exit(&nce->nce_lock); 26574 ire_fastpath(ire); 26575 } 26576 /* 26577 * The cached nce_t has been updated to be reachable; 26578 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 26579 */ 26580 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 26581 freemsg(mp); 26582 /* 26583 * send out queued packets. 26584 */ 26585 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26586 26587 IRE_REFRELE(ire); 26588 return; 26589 } 26590 default: 26591 break; 26592 } 26593 if (q->q_next) { 26594 putnext(q, mp); 26595 } else 26596 freemsg(mp); 26597 } 26598 26599 /* 26600 * Process IP options in an outbound packet. Modify the destination if there 26601 * is a source route option. 26602 * Returns non-zero if something fails in which case an ICMP error has been 26603 * sent and mp freed. 26604 */ 26605 static int 26606 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 26607 boolean_t mctl_present, zoneid_t zoneid) 26608 { 26609 ipoptp_t opts; 26610 uchar_t *opt; 26611 uint8_t optval; 26612 uint8_t optlen; 26613 ipaddr_t dst; 26614 intptr_t code = 0; 26615 mblk_t *mp; 26616 ire_t *ire = NULL; 26617 26618 ip2dbg(("ip_wput_options\n")); 26619 mp = ipsec_mp; 26620 if (mctl_present) { 26621 mp = ipsec_mp->b_cont; 26622 } 26623 26624 dst = ipha->ipha_dst; 26625 for (optval = ipoptp_first(&opts, ipha); 26626 optval != IPOPT_EOL; 26627 optval = ipoptp_next(&opts)) { 26628 opt = opts.ipoptp_cur; 26629 optlen = opts.ipoptp_len; 26630 ip2dbg(("ip_wput_options: opt %d, len %d\n", 26631 optval, optlen)); 26632 switch (optval) { 26633 uint32_t off; 26634 case IPOPT_SSRR: 26635 case IPOPT_LSRR: 26636 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26637 ip1dbg(( 26638 "ip_wput_options: bad option offset\n")); 26639 code = (char *)&opt[IPOPT_OLEN] - 26640 (char *)ipha; 26641 goto param_prob; 26642 } 26643 off = opt[IPOPT_OFFSET]; 26644 ip1dbg(("ip_wput_options: next hop 0x%x\n", 26645 ntohl(dst))); 26646 /* 26647 * For strict: verify that dst is directly 26648 * reachable. 26649 */ 26650 if (optval == IPOPT_SSRR) { 26651 ire = ire_ftable_lookup(dst, 0, 0, 26652 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 26653 MBLK_GETLABEL(mp), 26654 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 26655 if (ire == NULL) { 26656 ip1dbg(("ip_wput_options: SSRR not" 26657 " directly reachable: 0x%x\n", 26658 ntohl(dst))); 26659 goto bad_src_route; 26660 } 26661 ire_refrele(ire); 26662 } 26663 break; 26664 case IPOPT_RR: 26665 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26666 ip1dbg(( 26667 "ip_wput_options: bad option offset\n")); 26668 code = (char *)&opt[IPOPT_OLEN] - 26669 (char *)ipha; 26670 goto param_prob; 26671 } 26672 break; 26673 case IPOPT_TS: 26674 /* 26675 * Verify that length >=5 and that there is either 26676 * room for another timestamp or that the overflow 26677 * counter is not maxed out. 26678 */ 26679 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 26680 if (optlen < IPOPT_MINLEN_IT) { 26681 goto param_prob; 26682 } 26683 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26684 ip1dbg(( 26685 "ip_wput_options: bad option offset\n")); 26686 code = (char *)&opt[IPOPT_OFFSET] - 26687 (char *)ipha; 26688 goto param_prob; 26689 } 26690 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 26691 case IPOPT_TS_TSONLY: 26692 off = IPOPT_TS_TIMELEN; 26693 break; 26694 case IPOPT_TS_TSANDADDR: 26695 case IPOPT_TS_PRESPEC: 26696 case IPOPT_TS_PRESPEC_RFC791: 26697 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 26698 break; 26699 default: 26700 code = (char *)&opt[IPOPT_POS_OV_FLG] - 26701 (char *)ipha; 26702 goto param_prob; 26703 } 26704 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 26705 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 26706 /* 26707 * No room and the overflow counter is 15 26708 * already. 26709 */ 26710 goto param_prob; 26711 } 26712 break; 26713 } 26714 } 26715 26716 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 26717 return (0); 26718 26719 ip1dbg(("ip_wput_options: error processing IP options.")); 26720 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 26721 26722 param_prob: 26723 /* 26724 * Since ip_wput() isn't close to finished, we fill 26725 * in enough of the header for credible error reporting. 26726 */ 26727 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26728 /* Failed */ 26729 freemsg(ipsec_mp); 26730 return (-1); 26731 } 26732 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 26733 return (-1); 26734 26735 bad_src_route: 26736 /* 26737 * Since ip_wput() isn't close to finished, we fill 26738 * in enough of the header for credible error reporting. 26739 */ 26740 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26741 /* Failed */ 26742 freemsg(ipsec_mp); 26743 return (-1); 26744 } 26745 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 26746 return (-1); 26747 } 26748 26749 /* 26750 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 26751 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 26752 * thru /etc/system. 26753 */ 26754 #define CONN_MAXDRAINCNT 64 26755 26756 static void 26757 conn_drain_init(void) 26758 { 26759 int i; 26760 26761 conn_drain_list_cnt = conn_drain_nthreads; 26762 26763 if ((conn_drain_list_cnt == 0) || 26764 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 26765 /* 26766 * Default value of the number of drainers is the 26767 * number of cpus, subject to maximum of 8 drainers. 26768 */ 26769 if (boot_max_ncpus != -1) 26770 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 26771 else 26772 conn_drain_list_cnt = MIN(max_ncpus, 8); 26773 } 26774 26775 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 26776 KM_SLEEP); 26777 26778 for (i = 0; i < conn_drain_list_cnt; i++) { 26779 mutex_init(&conn_drain_list[i].idl_lock, NULL, 26780 MUTEX_DEFAULT, NULL); 26781 } 26782 } 26783 26784 static void 26785 conn_drain_fini(void) 26786 { 26787 int i; 26788 26789 for (i = 0; i < conn_drain_list_cnt; i++) 26790 mutex_destroy(&conn_drain_list[i].idl_lock); 26791 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 26792 conn_drain_list = NULL; 26793 } 26794 26795 /* 26796 * Note: For an overview of how flowcontrol is handled in IP please see the 26797 * IP Flowcontrol notes at the top of this file. 26798 * 26799 * Flow control has blocked us from proceeding. Insert the given conn in one 26800 * of the conn drain lists. These conn wq's will be qenabled later on when 26801 * STREAMS flow control does a backenable. conn_walk_drain will enable 26802 * the first conn in each of these drain lists. Each of these qenabled conns 26803 * in turn enables the next in the list, after it runs, or when it closes, 26804 * thus sustaining the drain process. 26805 * 26806 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 26807 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 26808 * running at any time, on a given conn, since there can be only 1 service proc 26809 * running on a queue at any time. 26810 */ 26811 void 26812 conn_drain_insert(conn_t *connp) 26813 { 26814 idl_t *idl; 26815 uint_t index; 26816 26817 mutex_enter(&connp->conn_lock); 26818 if (connp->conn_state_flags & CONN_CLOSING) { 26819 /* 26820 * The conn is closing as a result of which CONN_CLOSING 26821 * is set. Return. 26822 */ 26823 mutex_exit(&connp->conn_lock); 26824 return; 26825 } else if (connp->conn_idl == NULL) { 26826 /* 26827 * Assign the next drain list round robin. We dont' use 26828 * a lock, and thus it may not be strictly round robin. 26829 * Atomicity of load/stores is enough to make sure that 26830 * conn_drain_list_index is always within bounds. 26831 */ 26832 index = conn_drain_list_index; 26833 ASSERT(index < conn_drain_list_cnt); 26834 connp->conn_idl = &conn_drain_list[index]; 26835 index++; 26836 if (index == conn_drain_list_cnt) 26837 index = 0; 26838 conn_drain_list_index = index; 26839 } 26840 mutex_exit(&connp->conn_lock); 26841 26842 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26843 if ((connp->conn_drain_prev != NULL) || 26844 (connp->conn_state_flags & CONN_CLOSING)) { 26845 /* 26846 * The conn is already in the drain list, OR 26847 * the conn is closing. We need to check again for 26848 * the closing case again since close can happen 26849 * after we drop the conn_lock, and before we 26850 * acquire the CONN_DRAIN_LIST_LOCK. 26851 */ 26852 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26853 return; 26854 } else { 26855 idl = connp->conn_idl; 26856 } 26857 26858 /* 26859 * The conn is not in the drain list. Insert it at the 26860 * tail of the drain list. The drain list is circular 26861 * and doubly linked. idl_conn points to the 1st element 26862 * in the list. 26863 */ 26864 if (idl->idl_conn == NULL) { 26865 idl->idl_conn = connp; 26866 connp->conn_drain_next = connp; 26867 connp->conn_drain_prev = connp; 26868 } else { 26869 conn_t *head = idl->idl_conn; 26870 26871 connp->conn_drain_next = head; 26872 connp->conn_drain_prev = head->conn_drain_prev; 26873 head->conn_drain_prev->conn_drain_next = connp; 26874 head->conn_drain_prev = connp; 26875 } 26876 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26877 } 26878 26879 /* 26880 * This conn is closing, and we are called from ip_close. OR 26881 * This conn has been serviced by ip_wsrv, and we need to do the tail 26882 * processing. 26883 * If this conn is part of the drain list, we may need to sustain the drain 26884 * process by qenabling the next conn in the drain list. We may also need to 26885 * remove this conn from the list, if it is done. 26886 */ 26887 static void 26888 conn_drain_tail(conn_t *connp, boolean_t closing) 26889 { 26890 idl_t *idl; 26891 26892 /* 26893 * connp->conn_idl is stable at this point, and no lock is needed 26894 * to check it. If we are called from ip_close, close has already 26895 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26896 * called us only because conn_idl is non-null. If we are called thru 26897 * service, conn_idl could be null, but it cannot change because 26898 * service is single-threaded per queue, and there cannot be another 26899 * instance of service trying to call conn_drain_insert on this conn 26900 * now. 26901 */ 26902 ASSERT(!closing || (connp->conn_idl != NULL)); 26903 26904 /* 26905 * If connp->conn_idl is null, the conn has not been inserted into any 26906 * drain list even once since creation of the conn. Just return. 26907 */ 26908 if (connp->conn_idl == NULL) 26909 return; 26910 26911 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26912 26913 if (connp->conn_drain_prev == NULL) { 26914 /* This conn is currently not in the drain list. */ 26915 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26916 return; 26917 } 26918 idl = connp->conn_idl; 26919 if (idl->idl_conn_draining == connp) { 26920 /* 26921 * This conn is the current drainer. If this is the last conn 26922 * in the drain list, we need to do more checks, in the 'if' 26923 * below. Otherwwise we need to just qenable the next conn, 26924 * to sustain the draining, and is handled in the 'else' 26925 * below. 26926 */ 26927 if (connp->conn_drain_next == idl->idl_conn) { 26928 /* 26929 * This conn is the last in this list. This round 26930 * of draining is complete. If idl_repeat is set, 26931 * it means another flow enabling has happened from 26932 * the driver/streams and we need to another round 26933 * of draining. 26934 * If there are more than 2 conns in the drain list, 26935 * do a left rotate by 1, so that all conns except the 26936 * conn at the head move towards the head by 1, and the 26937 * the conn at the head goes to the tail. This attempts 26938 * a more even share for all queues that are being 26939 * drained. 26940 */ 26941 if ((connp->conn_drain_next != connp) && 26942 (idl->idl_conn->conn_drain_next != connp)) { 26943 idl->idl_conn = idl->idl_conn->conn_drain_next; 26944 } 26945 if (idl->idl_repeat) { 26946 qenable(idl->idl_conn->conn_wq); 26947 idl->idl_conn_draining = idl->idl_conn; 26948 idl->idl_repeat = 0; 26949 } else { 26950 idl->idl_conn_draining = NULL; 26951 } 26952 } else { 26953 /* 26954 * If the next queue that we are now qenable'ing, 26955 * is closing, it will remove itself from this list 26956 * and qenable the subsequent queue in ip_close(). 26957 * Serialization is acheived thru idl_lock. 26958 */ 26959 qenable(connp->conn_drain_next->conn_wq); 26960 idl->idl_conn_draining = connp->conn_drain_next; 26961 } 26962 } 26963 if (!connp->conn_did_putbq || closing) { 26964 /* 26965 * Remove ourself from the drain list, if we did not do 26966 * a putbq, or if the conn is closing. 26967 * Note: It is possible that q->q_first is non-null. It means 26968 * that these messages landed after we did a enableok() in 26969 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26970 * service them. 26971 */ 26972 if (connp->conn_drain_next == connp) { 26973 /* Singleton in the list */ 26974 ASSERT(connp->conn_drain_prev == connp); 26975 idl->idl_conn = NULL; 26976 idl->idl_conn_draining = NULL; 26977 } else { 26978 connp->conn_drain_prev->conn_drain_next = 26979 connp->conn_drain_next; 26980 connp->conn_drain_next->conn_drain_prev = 26981 connp->conn_drain_prev; 26982 if (idl->idl_conn == connp) 26983 idl->idl_conn = connp->conn_drain_next; 26984 ASSERT(idl->idl_conn_draining != connp); 26985 26986 } 26987 connp->conn_drain_next = NULL; 26988 connp->conn_drain_prev = NULL; 26989 } 26990 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26991 } 26992 26993 /* 26994 * Write service routine. Shared perimeter entry point. 26995 * ip_wsrv can be called in any of the following ways. 26996 * 1. The device queue's messages has fallen below the low water mark 26997 * and STREAMS has backenabled the ill_wq. We walk thru all the 26998 * the drain lists and backenable the first conn in each list. 26999 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27000 * qenabled non-tcp upper layers. We start dequeing messages and call 27001 * ip_wput for each message. 27002 */ 27003 27004 void 27005 ip_wsrv(queue_t *q) 27006 { 27007 conn_t *connp; 27008 ill_t *ill; 27009 mblk_t *mp; 27010 27011 if (q->q_next) { 27012 ill = (ill_t *)q->q_ptr; 27013 if (ill->ill_state_flags == 0) { 27014 /* 27015 * The device flow control has opened up. 27016 * Walk through conn drain lists and qenable the 27017 * first conn in each list. This makes sense only 27018 * if the stream is fully plumbed and setup. 27019 * Hence the if check above. 27020 */ 27021 ip1dbg(("ip_wsrv: walking\n")); 27022 conn_walk_drain(); 27023 } 27024 return; 27025 } 27026 27027 connp = Q_TO_CONN(q); 27028 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27029 27030 /* 27031 * 1. Set conn_draining flag to signal that service is active. 27032 * 27033 * 2. ip_output determines whether it has been called from service, 27034 * based on the last parameter. If it is IP_WSRV it concludes it 27035 * has been called from service. 27036 * 27037 * 3. Message ordering is preserved by the following logic. 27038 * i. A directly called ip_output (i.e. not thru service) will queue 27039 * the message at the tail, if conn_draining is set (i.e. service 27040 * is running) or if q->q_first is non-null. 27041 * 27042 * ii. If ip_output is called from service, and if ip_output cannot 27043 * putnext due to flow control, it does a putbq. 27044 * 27045 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27046 * (causing an infinite loop). 27047 */ 27048 ASSERT(!connp->conn_did_putbq); 27049 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27050 connp->conn_draining = 1; 27051 noenable(q); 27052 while ((mp = getq(q)) != NULL) { 27053 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27054 if (connp->conn_did_putbq) { 27055 /* ip_wput did a putbq */ 27056 break; 27057 } 27058 } 27059 /* 27060 * At this point, a thread coming down from top, calling 27061 * ip_wput, may end up queueing the message. We have not yet 27062 * enabled the queue, so ip_wsrv won't be called again. 27063 * To avoid this race, check q->q_first again (in the loop) 27064 * If the other thread queued the message before we call 27065 * enableok(), we will catch it in the q->q_first check. 27066 * If the other thread queues the message after we call 27067 * enableok(), ip_wsrv will be called again by STREAMS. 27068 */ 27069 connp->conn_draining = 0; 27070 enableok(q); 27071 } 27072 27073 /* Enable the next conn for draining */ 27074 conn_drain_tail(connp, B_FALSE); 27075 27076 connp->conn_did_putbq = 0; 27077 } 27078 27079 /* 27080 * Walk the list of all conn's calling the function provided with the 27081 * specified argument for each. Note that this only walks conn's that 27082 * have been bound. 27083 * Applies to both IPv4 and IPv6. 27084 */ 27085 static void 27086 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27087 { 27088 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27089 func, arg, zoneid); 27090 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27091 func, arg, zoneid); 27092 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27093 func, arg, zoneid); 27094 conn_walk_fanout_table(ipcl_proto_fanout, 27095 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27096 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27097 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27098 } 27099 27100 /* 27101 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27102 * of conns that need to be drained, check if drain is already in progress. 27103 * If so set the idl_repeat bit, indicating that the last conn in the list 27104 * needs to reinitiate the drain once again, for the list. If drain is not 27105 * in progress for the list, initiate the draining, by qenabling the 1st 27106 * conn in the list. The drain is self-sustaining, each qenabled conn will 27107 * in turn qenable the next conn, when it is done/blocked/closing. 27108 */ 27109 static void 27110 conn_walk_drain(void) 27111 { 27112 int i; 27113 idl_t *idl; 27114 27115 IP_STAT(ip_conn_walk_drain); 27116 27117 for (i = 0; i < conn_drain_list_cnt; i++) { 27118 idl = &conn_drain_list[i]; 27119 mutex_enter(&idl->idl_lock); 27120 if (idl->idl_conn == NULL) { 27121 mutex_exit(&idl->idl_lock); 27122 continue; 27123 } 27124 /* 27125 * If this list is not being drained currently by 27126 * an ip_wsrv thread, start the process. 27127 */ 27128 if (idl->idl_conn_draining == NULL) { 27129 ASSERT(idl->idl_repeat == 0); 27130 qenable(idl->idl_conn->conn_wq); 27131 idl->idl_conn_draining = idl->idl_conn; 27132 } else { 27133 idl->idl_repeat = 1; 27134 } 27135 mutex_exit(&idl->idl_lock); 27136 } 27137 } 27138 27139 /* 27140 * Walk an conn hash table of `count' buckets, calling func for each entry. 27141 */ 27142 static void 27143 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27144 zoneid_t zoneid) 27145 { 27146 conn_t *connp; 27147 27148 while (count-- > 0) { 27149 mutex_enter(&connfp->connf_lock); 27150 for (connp = connfp->connf_head; connp != NULL; 27151 connp = connp->conn_next) { 27152 if (zoneid == GLOBAL_ZONEID || 27153 zoneid == connp->conn_zoneid) { 27154 CONN_INC_REF(connp); 27155 mutex_exit(&connfp->connf_lock); 27156 (*func)(connp, arg); 27157 mutex_enter(&connfp->connf_lock); 27158 CONN_DEC_REF(connp); 27159 } 27160 } 27161 mutex_exit(&connfp->connf_lock); 27162 connfp++; 27163 } 27164 } 27165 27166 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27167 static void 27168 conn_report1(conn_t *connp, void *mp) 27169 { 27170 char buf1[INET6_ADDRSTRLEN]; 27171 char buf2[INET6_ADDRSTRLEN]; 27172 uint_t print_len, buf_len; 27173 27174 ASSERT(connp != NULL); 27175 27176 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27177 if (buf_len <= 0) 27178 return; 27179 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27180 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27181 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27182 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27183 "%5d %s/%05d %s/%05d\n", 27184 (void *)connp, (void *)CONNP_TO_RQ(connp), 27185 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27186 buf1, connp->conn_lport, 27187 buf2, connp->conn_fport); 27188 if (print_len < buf_len) { 27189 ((mblk_t *)mp)->b_wptr += print_len; 27190 } else { 27191 ((mblk_t *)mp)->b_wptr += buf_len; 27192 } 27193 } 27194 27195 /* 27196 * Named Dispatch routine to produce a formatted report on all conns 27197 * that are listed in one of the fanout tables. 27198 * This report is accessed by using the ndd utility to "get" ND variable 27199 * "ip_conn_status". 27200 */ 27201 /* ARGSUSED */ 27202 static int 27203 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27204 { 27205 (void) mi_mpprintf(mp, 27206 "CONN " MI_COL_HDRPAD_STR 27207 "rfq " MI_COL_HDRPAD_STR 27208 "stq " MI_COL_HDRPAD_STR 27209 " zone local remote"); 27210 27211 /* 27212 * Because of the ndd constraint, at most we can have 64K buffer 27213 * to put in all conn info. So to be more efficient, just 27214 * allocate a 64K buffer here, assuming we need that large buffer. 27215 * This should be OK as only privileged processes can do ndd /dev/ip. 27216 */ 27217 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27218 /* The following may work even if we cannot get a large buf. */ 27219 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27220 return (0); 27221 } 27222 27223 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27224 return (0); 27225 } 27226 27227 /* 27228 * Determine if the ill and multicast aspects of that packets 27229 * "matches" the conn. 27230 */ 27231 boolean_t 27232 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27233 zoneid_t zoneid) 27234 { 27235 ill_t *in_ill; 27236 boolean_t found; 27237 ipif_t *ipif; 27238 ire_t *ire; 27239 ipaddr_t dst, src; 27240 27241 dst = ipha->ipha_dst; 27242 src = ipha->ipha_src; 27243 27244 /* 27245 * conn_incoming_ill is set by IP_BOUND_IF which limits 27246 * unicast, broadcast and multicast reception to 27247 * conn_incoming_ill. conn_wantpacket itself is called 27248 * only for BROADCAST and multicast. 27249 * 27250 * 1) ip_rput supresses duplicate broadcasts if the ill 27251 * is part of a group. Hence, we should be receiving 27252 * just one copy of broadcast for the whole group. 27253 * Thus, if it is part of the group the packet could 27254 * come on any ill of the group and hence we need a 27255 * match on the group. Otherwise, match on ill should 27256 * be sufficient. 27257 * 27258 * 2) ip_rput does not suppress duplicate multicast packets. 27259 * If there are two interfaces in a ill group and we have 27260 * 2 applications (conns) joined a multicast group G on 27261 * both the interfaces, ilm_lookup_ill filter in ip_rput 27262 * will give us two packets because we join G on both the 27263 * interfaces rather than nominating just one interface 27264 * for receiving multicast like broadcast above. So, 27265 * we have to call ilg_lookup_ill to filter out duplicate 27266 * copies, if ill is part of a group. 27267 */ 27268 in_ill = connp->conn_incoming_ill; 27269 if (in_ill != NULL) { 27270 if (in_ill->ill_group == NULL) { 27271 if (in_ill != ill) 27272 return (B_FALSE); 27273 } else if (in_ill->ill_group != ill->ill_group) { 27274 return (B_FALSE); 27275 } 27276 } 27277 27278 if (!CLASSD(dst)) { 27279 if (IPCL_ZONE_MATCH(connp, zoneid)) 27280 return (B_TRUE); 27281 /* 27282 * The conn is in a different zone; we need to check that this 27283 * broadcast address is configured in the application's zone and 27284 * on one ill in the group. 27285 */ 27286 ipif = ipif_get_next_ipif(NULL, ill); 27287 if (ipif == NULL) 27288 return (B_FALSE); 27289 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27290 connp->conn_zoneid, NULL, 27291 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27292 ipif_refrele(ipif); 27293 if (ire != NULL) { 27294 ire_refrele(ire); 27295 return (B_TRUE); 27296 } else { 27297 return (B_FALSE); 27298 } 27299 } 27300 27301 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27302 connp->conn_zoneid == zoneid) { 27303 /* 27304 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27305 * disabled, therefore we don't dispatch the multicast packet to 27306 * the sending zone. 27307 */ 27308 return (B_FALSE); 27309 } 27310 27311 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27312 connp->conn_zoneid != zoneid) { 27313 /* 27314 * Multicast packet on the loopback interface: we only match 27315 * conns who joined the group in the specified zone. 27316 */ 27317 return (B_FALSE); 27318 } 27319 27320 if (connp->conn_multi_router) { 27321 /* multicast packet and multicast router socket: send up */ 27322 return (B_TRUE); 27323 } 27324 27325 mutex_enter(&connp->conn_lock); 27326 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27327 mutex_exit(&connp->conn_lock); 27328 return (found); 27329 } 27330 27331 /* 27332 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27333 */ 27334 /* ARGSUSED */ 27335 static void 27336 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27337 { 27338 ill_t *ill = (ill_t *)q->q_ptr; 27339 mblk_t *mp1, *mp2; 27340 ipif_t *ipif; 27341 int err = 0; 27342 conn_t *connp = NULL; 27343 ipsq_t *ipsq; 27344 arc_t *arc; 27345 27346 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27347 27348 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27349 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27350 27351 ASSERT(IAM_WRITER_ILL(ill)); 27352 mp2 = mp->b_cont; 27353 mp->b_cont = NULL; 27354 27355 /* 27356 * We have now received the arp bringup completion message 27357 * from ARP. Mark the arp bringup as done. Also if the arp 27358 * stream has already started closing, send up the AR_ARP_CLOSING 27359 * ack now since ARP is waiting in close for this ack. 27360 */ 27361 mutex_enter(&ill->ill_lock); 27362 ill->ill_arp_bringup_pending = 0; 27363 if (ill->ill_arp_closing) { 27364 mutex_exit(&ill->ill_lock); 27365 /* Let's reuse the mp for sending the ack */ 27366 arc = (arc_t *)mp->b_rptr; 27367 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27368 arc->arc_cmd = AR_ARP_CLOSING; 27369 qreply(q, mp); 27370 } else { 27371 mutex_exit(&ill->ill_lock); 27372 freeb(mp); 27373 } 27374 27375 /* We should have an IOCTL waiting on this. */ 27376 ipsq = ill->ill_phyint->phyint_ipsq; 27377 ipif = ipsq->ipsq_pending_ipif; 27378 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27379 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27380 if (mp1 == NULL) { 27381 /* bringup was aborted by the user */ 27382 freemsg(mp2); 27383 return; 27384 } 27385 ASSERT(connp != NULL); 27386 q = CONNP_TO_WQ(connp); 27387 /* 27388 * If the DL_BIND_REQ fails, it is noted 27389 * in arc_name_offset. 27390 */ 27391 err = *((int *)mp2->b_rptr); 27392 if (err == 0) { 27393 if (ipif->ipif_isv6) { 27394 if ((err = ipif_up_done_v6(ipif)) != 0) 27395 ip0dbg(("ip_arp_done: init failed\n")); 27396 } else { 27397 if ((err = ipif_up_done(ipif)) != 0) 27398 ip0dbg(("ip_arp_done: init failed\n")); 27399 } 27400 } else { 27401 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27402 } 27403 27404 freemsg(mp2); 27405 27406 if ((err == 0) && (ill->ill_up_ipifs)) { 27407 err = ill_up_ipifs(ill, q, mp1); 27408 if (err == EINPROGRESS) 27409 return; 27410 } 27411 27412 if (ill->ill_up_ipifs) { 27413 ill_group_cleanup(ill); 27414 } 27415 27416 /* 27417 * The ioctl must complete now without EINPROGRESS 27418 * since ipsq_pending_mp_get has removed the ioctl mblk 27419 * from ipsq_pending_mp. Otherwise the ioctl will be 27420 * stuck for ever in the ipsq. 27421 */ 27422 ASSERT(err != EINPROGRESS); 27423 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27424 } 27425 27426 /* Allocate the private structure */ 27427 static int 27428 ip_priv_alloc(void **bufp) 27429 { 27430 void *buf; 27431 27432 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27433 return (ENOMEM); 27434 27435 *bufp = buf; 27436 return (0); 27437 } 27438 27439 /* Function to delete the private structure */ 27440 void 27441 ip_priv_free(void *buf) 27442 { 27443 ASSERT(buf != NULL); 27444 kmem_free(buf, sizeof (ip_priv_t)); 27445 } 27446 27447 /* 27448 * The entry point for IPPF processing. 27449 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27450 * routine just returns. 27451 * 27452 * When called, ip_process generates an ipp_packet_t structure 27453 * which holds the state information for this packet and invokes the 27454 * the classifier (via ipp_packet_process). The classification, depending on 27455 * configured filters, results in a list of actions for this packet. Invoking 27456 * an action may cause the packet to be dropped, in which case the resulting 27457 * mblk (*mpp) is NULL. proc indicates the callout position for 27458 * this packet and ill_index is the interface this packet on or will leave 27459 * on (inbound and outbound resp.). 27460 */ 27461 void 27462 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27463 { 27464 mblk_t *mp; 27465 ip_priv_t *priv; 27466 ipp_action_id_t aid; 27467 int rc = 0; 27468 ipp_packet_t *pp; 27469 #define IP_CLASS "ip" 27470 27471 /* If the classifier is not loaded, return */ 27472 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27473 return; 27474 } 27475 27476 mp = *mpp; 27477 ASSERT(mp != NULL); 27478 27479 /* Allocate the packet structure */ 27480 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27481 if (rc != 0) { 27482 *mpp = NULL; 27483 freemsg(mp); 27484 return; 27485 } 27486 27487 /* Allocate the private structure */ 27488 rc = ip_priv_alloc((void **)&priv); 27489 if (rc != 0) { 27490 *mpp = NULL; 27491 freemsg(mp); 27492 ipp_packet_free(pp); 27493 return; 27494 } 27495 priv->proc = proc; 27496 priv->ill_index = ill_index; 27497 ipp_packet_set_private(pp, priv, ip_priv_free); 27498 ipp_packet_set_data(pp, mp); 27499 27500 /* Invoke the classifier */ 27501 rc = ipp_packet_process(&pp); 27502 if (pp != NULL) { 27503 mp = ipp_packet_get_data(pp); 27504 ipp_packet_free(pp); 27505 if (rc != 0) { 27506 freemsg(mp); 27507 *mpp = NULL; 27508 } 27509 } else { 27510 *mpp = NULL; 27511 } 27512 #undef IP_CLASS 27513 } 27514 27515 /* 27516 * Propagate a multicast group membership operation (add/drop) on 27517 * all the interfaces crossed by the related multirt routes. 27518 * The call is considered successful if the operation succeeds 27519 * on at least one interface. 27520 */ 27521 static int 27522 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 27523 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 27524 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 27525 mblk_t *first_mp) 27526 { 27527 ire_t *ire_gw; 27528 irb_t *irb; 27529 int error = 0; 27530 opt_restart_t *or; 27531 27532 irb = ire->ire_bucket; 27533 ASSERT(irb != NULL); 27534 27535 ASSERT(DB_TYPE(first_mp) == M_CTL); 27536 27537 or = (opt_restart_t *)first_mp->b_rptr; 27538 IRB_REFHOLD(irb); 27539 for (; ire != NULL; ire = ire->ire_next) { 27540 if ((ire->ire_flags & RTF_MULTIRT) == 0) 27541 continue; 27542 if (ire->ire_addr != group) 27543 continue; 27544 27545 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 27546 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 27547 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 27548 /* No resolver exists for the gateway; skip this ire. */ 27549 if (ire_gw == NULL) 27550 continue; 27551 27552 /* 27553 * This function can return EINPROGRESS. If so the operation 27554 * will be restarted from ip_restart_optmgmt which will 27555 * call ip_opt_set and option processing will restart for 27556 * this option. So we may end up calling 'fn' more than once. 27557 * This requires that 'fn' is idempotent except for the 27558 * return value. The operation is considered a success if 27559 * it succeeds at least once on any one interface. 27560 */ 27561 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 27562 NULL, fmode, src, first_mp); 27563 if (error == 0) 27564 or->or_private = CGTP_MCAST_SUCCESS; 27565 27566 if (ip_debug > 0) { 27567 ulong_t off; 27568 char *ksym; 27569 ksym = kobj_getsymname((uintptr_t)fn, &off); 27570 ip2dbg(("ip_multirt_apply_membership: " 27571 "called %s, multirt group 0x%08x via itf 0x%08x, " 27572 "error %d [success %u]\n", 27573 ksym ? ksym : "?", 27574 ntohl(group), ntohl(ire_gw->ire_src_addr), 27575 error, or->or_private)); 27576 } 27577 27578 ire_refrele(ire_gw); 27579 if (error == EINPROGRESS) { 27580 IRB_REFRELE(irb); 27581 return (error); 27582 } 27583 } 27584 IRB_REFRELE(irb); 27585 /* 27586 * Consider the call as successful if we succeeded on at least 27587 * one interface. Otherwise, return the last encountered error. 27588 */ 27589 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 27590 } 27591 27592 27593 /* 27594 * Issue a warning regarding a route crossing an interface with an 27595 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 27596 * amount of time is logged. 27597 */ 27598 static void 27599 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 27600 { 27601 hrtime_t current = gethrtime(); 27602 char buf[INET_ADDRSTRLEN]; 27603 27604 /* Convert interval in ms to hrtime in ns */ 27605 if (multirt_bad_mtu_last_time + 27606 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 27607 current) { 27608 cmn_err(CE_WARN, "ip: ignoring multiroute " 27609 "to %s, incorrect MTU %u (expected %u)\n", 27610 ip_dot_addr(ire->ire_addr, buf), 27611 ire->ire_max_frag, max_frag); 27612 27613 multirt_bad_mtu_last_time = current; 27614 } 27615 } 27616 27617 27618 /* 27619 * Get the CGTP (multirouting) filtering status. 27620 * If 0, the CGTP hooks are transparent. 27621 */ 27622 /* ARGSUSED */ 27623 static int 27624 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 27625 { 27626 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27627 27628 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 27629 return (0); 27630 } 27631 27632 27633 /* 27634 * Set the CGTP (multirouting) filtering status. 27635 * If the status is changed from active to transparent 27636 * or from transparent to active, forward the new status 27637 * to the filtering module (if loaded). 27638 */ 27639 /* ARGSUSED */ 27640 static int 27641 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 27642 cred_t *ioc_cr) 27643 { 27644 long new_value; 27645 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27646 27647 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 27648 new_value < 0 || new_value > 1) { 27649 return (EINVAL); 27650 } 27651 27652 /* 27653 * Do not enable CGTP filtering - thus preventing the hooks 27654 * from being invoked - if the version number of the 27655 * filtering module hooks does not match. 27656 */ 27657 if ((ip_cgtp_filter_ops != NULL) && 27658 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 27659 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 27660 "(module hooks version %d, expecting %d)\n", 27661 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 27662 return (ENOTSUP); 27663 } 27664 27665 if ((!*ip_cgtp_filter_value) && new_value) { 27666 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 27667 ip_cgtp_filter_ops == NULL ? 27668 " (module not loaded)" : ""); 27669 } 27670 if (*ip_cgtp_filter_value && (!new_value)) { 27671 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 27672 ip_cgtp_filter_ops == NULL ? 27673 " (module not loaded)" : ""); 27674 } 27675 27676 if (ip_cgtp_filter_ops != NULL) { 27677 int res; 27678 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 27679 return (res); 27680 } 27681 } 27682 27683 *ip_cgtp_filter_value = (boolean_t)new_value; 27684 27685 return (0); 27686 } 27687 27688 27689 /* 27690 * Return the expected CGTP hooks version number. 27691 */ 27692 int 27693 ip_cgtp_filter_supported(void) 27694 { 27695 return (ip_cgtp_filter_rev); 27696 } 27697 27698 27699 /* 27700 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 27701 * or by invoking this function. In the first case, the version number 27702 * of the registered structure is checked at hooks activation time 27703 * in ip_cgtp_filter_set(). 27704 */ 27705 int 27706 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 27707 { 27708 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 27709 return (ENOTSUP); 27710 27711 ip_cgtp_filter_ops = ops; 27712 return (0); 27713 } 27714 27715 static squeue_func_t 27716 ip_squeue_switch(int val) 27717 { 27718 squeue_func_t rval = squeue_fill; 27719 27720 switch (val) { 27721 case IP_SQUEUE_ENTER_NODRAIN: 27722 rval = squeue_enter_nodrain; 27723 break; 27724 case IP_SQUEUE_ENTER: 27725 rval = squeue_enter; 27726 break; 27727 default: 27728 break; 27729 } 27730 return (rval); 27731 } 27732 27733 /* ARGSUSED */ 27734 static int 27735 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 27736 caddr_t addr, cred_t *cr) 27737 { 27738 int *v = (int *)addr; 27739 long new_value; 27740 27741 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27742 return (EINVAL); 27743 27744 ip_input_proc = ip_squeue_switch(new_value); 27745 *v = new_value; 27746 return (0); 27747 } 27748 27749 /* ARGSUSED */ 27750 static int 27751 ip_int_set(queue_t *q, mblk_t *mp, char *value, 27752 caddr_t addr, cred_t *cr) 27753 { 27754 int *v = (int *)addr; 27755 long new_value; 27756 27757 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27758 return (EINVAL); 27759 27760 *v = new_value; 27761 return (0); 27762 } 27763 27764 static void 27765 ip_kstat_init(void) 27766 { 27767 ip_named_kstat_t template = { 27768 { "forwarding", KSTAT_DATA_UINT32, 0 }, 27769 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 27770 { "inReceives", KSTAT_DATA_UINT32, 0 }, 27771 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 27772 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 27773 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 27774 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 27775 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 27776 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 27777 { "outRequests", KSTAT_DATA_UINT32, 0 }, 27778 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 27779 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 27780 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 27781 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 27782 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 27783 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 27784 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 27785 { "fragFails", KSTAT_DATA_UINT32, 0 }, 27786 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 27787 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 27788 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 27789 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 27790 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 27791 { "inErrs", KSTAT_DATA_UINT32, 0 }, 27792 { "noPorts", KSTAT_DATA_UINT32, 0 }, 27793 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 27794 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 27795 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 27796 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 27797 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 27798 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 27799 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 27800 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 27801 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 27802 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 27803 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 27804 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 27805 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 27806 }; 27807 27808 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 27809 NUM_OF_FIELDS(ip_named_kstat_t), 27810 0); 27811 if (!ip_mibkp) 27812 return; 27813 27814 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 27815 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 27816 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 27817 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 27818 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 27819 27820 template.netToMediaEntrySize.value.i32 = 27821 sizeof (mib2_ipNetToMediaEntry_t); 27822 27823 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 27824 27825 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 27826 27827 ip_mibkp->ks_update = ip_kstat_update; 27828 27829 kstat_install(ip_mibkp); 27830 } 27831 27832 static void 27833 ip_kstat_fini(void) 27834 { 27835 27836 if (ip_mibkp != NULL) { 27837 kstat_delete(ip_mibkp); 27838 ip_mibkp = NULL; 27839 } 27840 } 27841 27842 static int 27843 ip_kstat_update(kstat_t *kp, int rw) 27844 { 27845 ip_named_kstat_t *ipkp; 27846 27847 if (!kp || !kp->ks_data) 27848 return (EIO); 27849 27850 if (rw == KSTAT_WRITE) 27851 return (EACCES); 27852 27853 ipkp = (ip_named_kstat_t *)kp->ks_data; 27854 27855 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 27856 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 27857 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 27858 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 27859 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 27860 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 27861 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 27862 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 27863 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 27864 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 27865 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 27866 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 27867 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 27868 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 27869 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 27870 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 27871 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 27872 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 27873 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 27874 27875 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 27876 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 27877 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 27878 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 27879 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 27880 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 27881 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 27882 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 27883 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 27884 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 27885 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 27886 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 27887 27888 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27889 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27890 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27891 27892 return (0); 27893 } 27894 27895 static void 27896 icmp_kstat_init(void) 27897 { 27898 icmp_named_kstat_t template = { 27899 { "inMsgs", KSTAT_DATA_UINT32 }, 27900 { "inErrors", KSTAT_DATA_UINT32 }, 27901 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27902 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27903 { "inParmProbs", KSTAT_DATA_UINT32 }, 27904 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27905 { "inRedirects", KSTAT_DATA_UINT32 }, 27906 { "inEchos", KSTAT_DATA_UINT32 }, 27907 { "inEchoReps", KSTAT_DATA_UINT32 }, 27908 { "inTimestamps", KSTAT_DATA_UINT32 }, 27909 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27910 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27911 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27912 { "outMsgs", KSTAT_DATA_UINT32 }, 27913 { "outErrors", KSTAT_DATA_UINT32 }, 27914 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27915 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27916 { "outParmProbs", KSTAT_DATA_UINT32 }, 27917 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27918 { "outRedirects", KSTAT_DATA_UINT32 }, 27919 { "outEchos", KSTAT_DATA_UINT32 }, 27920 { "outEchoReps", KSTAT_DATA_UINT32 }, 27921 { "outTimestamps", KSTAT_DATA_UINT32 }, 27922 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27923 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27924 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27925 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27926 { "inUnknowns", KSTAT_DATA_UINT32 }, 27927 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27928 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27929 { "outDrops", KSTAT_DATA_UINT32 }, 27930 { "inOverFlows", KSTAT_DATA_UINT32 }, 27931 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27932 }; 27933 27934 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27935 NUM_OF_FIELDS(icmp_named_kstat_t), 27936 0); 27937 if (icmp_mibkp == NULL) 27938 return; 27939 27940 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27941 27942 icmp_mibkp->ks_update = icmp_kstat_update; 27943 27944 kstat_install(icmp_mibkp); 27945 } 27946 27947 static void 27948 icmp_kstat_fini(void) 27949 { 27950 27951 if (icmp_mibkp != NULL) { 27952 kstat_delete(icmp_mibkp); 27953 icmp_mibkp = NULL; 27954 } 27955 } 27956 27957 static int 27958 icmp_kstat_update(kstat_t *kp, int rw) 27959 { 27960 icmp_named_kstat_t *icmpkp; 27961 27962 if ((kp == NULL) || (kp->ks_data == NULL)) 27963 return (EIO); 27964 27965 if (rw == KSTAT_WRITE) 27966 return (EACCES); 27967 27968 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27969 27970 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27971 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27972 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27973 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27974 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27975 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27976 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27977 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27978 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27979 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27980 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27981 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27982 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27983 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27984 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27985 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27986 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27987 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27988 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27989 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27990 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27991 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27992 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27993 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27994 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27995 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27996 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27997 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27998 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27999 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28000 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28001 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28002 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28003 28004 return (0); 28005 } 28006 28007 /* 28008 * This is the fanout function for raw socket opened for SCTP. Note 28009 * that it is called after SCTP checks that there is no socket which 28010 * wants a packet. Then before SCTP handles this out of the blue packet, 28011 * this function is called to see if there is any raw socket for SCTP. 28012 * If there is and it is bound to the correct address, the packet will 28013 * be sent to that socket. Note that only one raw socket can be bound to 28014 * a port. This is assured in ipcl_sctp_hash_insert(); 28015 */ 28016 void 28017 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28018 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28019 uint_t ipif_seqid, zoneid_t zoneid) 28020 { 28021 conn_t *connp; 28022 queue_t *rq; 28023 mblk_t *first_mp; 28024 boolean_t secure; 28025 ip6_t *ip6h; 28026 28027 first_mp = mp; 28028 if (mctl_present) { 28029 mp = first_mp->b_cont; 28030 secure = ipsec_in_is_secure(first_mp); 28031 ASSERT(mp != NULL); 28032 } else { 28033 secure = B_FALSE; 28034 } 28035 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28036 28037 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28038 if (connp == NULL) { 28039 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28040 mctl_present); 28041 return; 28042 } 28043 rq = connp->conn_rq; 28044 if (!canputnext(rq)) { 28045 CONN_DEC_REF(connp); 28046 BUMP_MIB(&ip_mib, rawipInOverflows); 28047 freemsg(first_mp); 28048 return; 28049 } 28050 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28051 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28052 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28053 (isv4 ? ipha : NULL), ip6h, mctl_present); 28054 if (first_mp == NULL) { 28055 CONN_DEC_REF(connp); 28056 return; 28057 } 28058 } 28059 /* 28060 * We probably should not send M_CTL message up to 28061 * raw socket. 28062 */ 28063 if (mctl_present) 28064 freeb(first_mp); 28065 28066 /* Initiate IPPF processing here if needed. */ 28067 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28068 (!isv4 && IP6_IN_IPP(flags))) { 28069 ip_process(IPP_LOCAL_IN, &mp, 28070 recv_ill->ill_phyint->phyint_ifindex); 28071 if (mp == NULL) { 28072 CONN_DEC_REF(connp); 28073 return; 28074 } 28075 } 28076 28077 if (connp->conn_recvif || connp->conn_recvslla || 28078 ((connp->conn_ipv6_recvpktinfo || 28079 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28080 (flags & IP_FF_IP6INFO))) { 28081 int in_flags = 0; 28082 28083 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28084 in_flags = IPF_RECVIF; 28085 } 28086 if (connp->conn_recvslla) { 28087 in_flags |= IPF_RECVSLLA; 28088 } 28089 if (isv4) { 28090 mp = ip_add_info(mp, recv_ill, in_flags); 28091 } else { 28092 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28093 if (mp == NULL) { 28094 CONN_DEC_REF(connp); 28095 return; 28096 } 28097 } 28098 } 28099 28100 BUMP_MIB(&ip_mib, ipInDelivers); 28101 /* 28102 * We are sending the IPSEC_IN message also up. Refer 28103 * to comments above this function. 28104 */ 28105 putnext(rq, mp); 28106 CONN_DEC_REF(connp); 28107 } 28108 28109 /* 28110 * This function should be called only if all packet processing 28111 * including fragmentation is complete. Callers of this function 28112 * must set mp->b_prev to one of these values: 28113 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28114 * prior to handing over the mp as first argument to this function. 28115 * 28116 * If the ire passed by caller is incomplete, this function 28117 * queues the packet and if necessary, sends ARP request and bails. 28118 * If the ire passed is fully resolved, we simply prepend 28119 * the link-layer header to the packet, do ipsec hw acceleration 28120 * work if necessary, and send the packet out on the wire. 28121 * 28122 * NOTE: IPSEC will only call this function with fully resolved 28123 * ires if hw acceleration is involved. 28124 * TODO list : 28125 * a Handle M_MULTIDATA so that 28126 * tcp_multisend->tcp_multisend_data can 28127 * call ip_xmit_v4 directly 28128 * b Handle post-ARP work for fragments so that 28129 * ip_wput_frag can call this function. 28130 */ 28131 ipxmit_state_t 28132 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28133 { 28134 nce_t *arpce; 28135 queue_t *q; 28136 int ill_index; 28137 mblk_t *nxt_mp; 28138 boolean_t xmit_drop = B_FALSE; 28139 ip_proc_t proc; 28140 28141 arpce = ire->ire_nce; 28142 ASSERT(arpce != NULL); 28143 28144 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28145 28146 mutex_enter(&arpce->nce_lock); 28147 switch (arpce->nce_state) { 28148 case ND_REACHABLE: 28149 /* If there are other queued packets, queue this packet */ 28150 if (arpce->nce_qd_mp != NULL) { 28151 if (mp != NULL) 28152 nce_queue_mp_common(arpce, mp, B_FALSE); 28153 mp = arpce->nce_qd_mp; 28154 } 28155 arpce->nce_qd_mp = NULL; 28156 mutex_exit(&arpce->nce_lock); 28157 28158 /* 28159 * Flush the queue. In the common case, where the 28160 * ARP is already resolved, it will go through the 28161 * while loop only once. 28162 */ 28163 while (mp != NULL) { 28164 28165 nxt_mp = mp->b_next; 28166 mp->b_next = NULL; 28167 /* 28168 * This info is needed for IPQOS to do COS marking 28169 * in ip_wput_attach_llhdr->ip_process. 28170 */ 28171 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28172 mp->b_prev = NULL; 28173 28174 /* set up ill index for outbound qos processing */ 28175 ill_index = 28176 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 28177 mp = ip_wput_attach_llhdr(mp, ire, proc, ill_index); 28178 if (mp == NULL) { 28179 xmit_drop = B_TRUE; 28180 if (proc == IPP_FWD_OUT) { 28181 BUMP_MIB(&ip_mib, ipInDiscards); 28182 } else { 28183 BUMP_MIB(&ip_mib, ipOutDiscards); 28184 } 28185 goto next_mp; 28186 } 28187 /* non-ipsec hw accel case */ 28188 if (io == NULL || !io->ipsec_out_accelerated) { 28189 /* send it */ 28190 q = ire->ire_stq; 28191 if (proc == IPP_FWD_OUT) { 28192 UPDATE_IB_PKT_COUNT(ire); 28193 } else { 28194 UPDATE_OB_PKT_COUNT(ire); 28195 } 28196 ire->ire_last_used_time = lbolt; 28197 28198 if (flow_ctl_enabled) { 28199 /* 28200 * We are here from ip_wout_ire 28201 * which has already done canput 28202 * check and has enabled flow 28203 * control, so skip the canputnext 28204 * check. 28205 */ 28206 putnext(q, mp); 28207 goto next_mp; 28208 } 28209 if (canputnext(q)) { 28210 if (proc == IPP_FWD_OUT) { 28211 BUMP_MIB(&ip_mib, 28212 ipForwDatagrams); 28213 } 28214 putnext(q, mp); 28215 } else { 28216 BUMP_MIB(&ip_mib, 28217 ipOutDiscards); 28218 xmit_drop = B_TRUE; 28219 freemsg(mp); 28220 } 28221 } else { 28222 /* 28223 * Safety Pup says: make sure this 28224 * is going to the right interface! 28225 */ 28226 ill_t *ill1 = 28227 (ill_t *)ire->ire_stq->q_ptr; 28228 int ifindex = 28229 ill1->ill_phyint->phyint_ifindex; 28230 if (ifindex != 28231 io->ipsec_out_capab_ill_index) { 28232 xmit_drop = B_TRUE; 28233 freemsg(mp); 28234 } else { 28235 ipsec_hw_putnext(ire->ire_stq, 28236 mp); 28237 } 28238 } 28239 next_mp: 28240 mp = nxt_mp; 28241 } /* while (mp != NULL) */ 28242 if (xmit_drop) 28243 return (SEND_FAILED); 28244 else 28245 return (SEND_PASSED); 28246 28247 case ND_INITIAL: 28248 case ND_INCOMPLETE: 28249 28250 /* 28251 * While we do send off packets to dests that 28252 * use fully-resolved CGTP routes, we do not 28253 * handle unresolved CGTP routes. 28254 */ 28255 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28256 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28257 28258 if (mp != NULL) { 28259 /* queue the packet */ 28260 nce_queue_mp_common(arpce, mp, B_FALSE); 28261 } 28262 28263 if (arpce->nce_state == ND_INCOMPLETE) { 28264 mutex_exit(&arpce->nce_lock); 28265 DTRACE_PROBE3(ip__xmit__incomplete, 28266 (ire_t *), ire, (mblk_t *), mp, 28267 (ipsec_out_t *), io); 28268 return (LOOKUP_IN_PROGRESS); 28269 } 28270 28271 arpce->nce_state = ND_INCOMPLETE; 28272 mutex_exit(&arpce->nce_lock); 28273 /* 28274 * Note that ire_add() (called from ire_forward()) 28275 * holds a ref on the ire until ARP is completed. 28276 */ 28277 28278 ire_arpresolve(ire, ire->ire_ipif->ipif_ill); 28279 return (LOOKUP_IN_PROGRESS); 28280 default: 28281 ASSERT(0); 28282 mutex_exit(&arpce->nce_lock); 28283 return (LLHDR_RESLV_FAILED); 28284 } 28285 } 28286 28287 /* 28288 * Return B_TRUE if the buffers differ in length or content. 28289 * This is used for comparing extension header buffers. 28290 * Note that an extension header would be declared different 28291 * even if all that changed was the next header value in that header i.e. 28292 * what really changed is the next extension header. 28293 */ 28294 boolean_t 28295 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28296 uint_t blen) 28297 { 28298 if (!b_valid) 28299 blen = 0; 28300 28301 if (alen != blen) 28302 return (B_TRUE); 28303 if (alen == 0) 28304 return (B_FALSE); /* Both zero length */ 28305 return (bcmp(abuf, bbuf, alen)); 28306 } 28307 28308 /* 28309 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28310 * Return B_FALSE if memory allocation fails - don't change any state! 28311 */ 28312 boolean_t 28313 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28314 const void *src, uint_t srclen) 28315 { 28316 void *dst; 28317 28318 if (!src_valid) 28319 srclen = 0; 28320 28321 ASSERT(*dstlenp == 0); 28322 if (src != NULL && srclen != 0) { 28323 dst = mi_alloc(srclen, BPRI_MED); 28324 if (dst == NULL) 28325 return (B_FALSE); 28326 } else { 28327 dst = NULL; 28328 } 28329 if (*dstp != NULL) 28330 mi_free(*dstp); 28331 *dstp = dst; 28332 *dstlenp = dst == NULL ? 0 : srclen; 28333 return (B_TRUE); 28334 } 28335 28336 /* 28337 * Replace what is in *dst, *dstlen with the source. 28338 * Assumes ip_allocbuf has already been called. 28339 */ 28340 void 28341 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28342 const void *src, uint_t srclen) 28343 { 28344 if (!src_valid) 28345 srclen = 0; 28346 28347 ASSERT(*dstlenp == srclen); 28348 if (src != NULL && srclen != 0) 28349 bcopy(src, *dstp, srclen); 28350 } 28351 28352 /* 28353 * Free the storage pointed to by the members of an ip6_pkt_t. 28354 */ 28355 void 28356 ip6_pkt_free(ip6_pkt_t *ipp) 28357 { 28358 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28359 28360 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28361 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28362 ipp->ipp_hopopts = NULL; 28363 ipp->ipp_hopoptslen = 0; 28364 } 28365 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28366 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28367 ipp->ipp_rtdstopts = NULL; 28368 ipp->ipp_rtdstoptslen = 0; 28369 } 28370 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28371 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28372 ipp->ipp_dstopts = NULL; 28373 ipp->ipp_dstoptslen = 0; 28374 } 28375 if (ipp->ipp_fields & IPPF_RTHDR) { 28376 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28377 ipp->ipp_rthdr = NULL; 28378 ipp->ipp_rthdrlen = 0; 28379 } 28380 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28381 IPPF_RTHDR); 28382 } 28383