1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * It would be nice to have these present only in DEBUG systems, but the 158 * current design of the global symbol checking logic requires them to be 159 * unconditionally present. 160 */ 161 uint_t ip_thread_data; /* TSD key for debug support */ 162 krwlock_t ip_thread_rwlock; 163 list_t ip_thread_list; 164 165 /* 166 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 167 */ 168 169 struct listptr_s { 170 mblk_t *lp_head; /* pointer to the head of the list */ 171 mblk_t *lp_tail; /* pointer to the tail of the list */ 172 }; 173 174 typedef struct listptr_s listptr_t; 175 176 /* 177 * This is used by ip_snmp_get_mib2_ip_route_media and 178 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 179 */ 180 typedef struct iproutedata_s { 181 uint_t ird_idx; 182 listptr_t ird_route; /* ipRouteEntryTable */ 183 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 184 listptr_t ird_attrs; /* ipRouteAttributeTable */ 185 } iproutedata_t; 186 187 /* 188 * Cluster specific hooks. These should be NULL when booted as a non-cluster 189 */ 190 191 /* 192 * Hook functions to enable cluster networking 193 * On non-clustered systems these vectors must always be NULL. 194 * 195 * Hook function to Check ip specified ip address is a shared ip address 196 * in the cluster 197 * 198 */ 199 int (*cl_inet_isclusterwide)(uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp) = NULL; 201 202 /* 203 * Hook function to generate cluster wide ip fragment identifier 204 */ 205 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 206 uint8_t *laddrp, uint8_t *faddrp) = NULL; 207 208 /* 209 * Synchronization notes: 210 * 211 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 212 * MT level protection given by STREAMS. IP uses a combination of its own 213 * internal serialization mechanism and standard Solaris locking techniques. 214 * The internal serialization is per phyint (no IPMP) or per IPMP group. 215 * This is used to serialize plumbing operations, IPMP operations, certain 216 * multicast operations, most set ioctls, igmp/mld timers etc. 217 * 218 * Plumbing is a long sequence of operations involving message 219 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 220 * involved in plumbing operations. A natural model is to serialize these 221 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 222 * parallel without any interference. But various set ioctls on hme0 are best 223 * serialized. However if the system uses IPMP, the operations are easier if 224 * they are serialized on a per IPMP group basis since IPMP operations 225 * happen across ill's of a group. Thus the lowest common denominator is to 226 * serialize most set ioctls, multicast join/leave operations, IPMP operations 227 * igmp/mld timer operations, and processing of DLPI control messages received 228 * from drivers on a per IPMP group basis. If the system does not employ 229 * IPMP the serialization is on a per phyint basis. This serialization is 230 * provided by the ipsq_t and primitives operating on this. Details can 231 * be found in ip_if.c above the core primitives operating on ipsq_t. 232 * 233 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 234 * Simiarly lookup of an ire by a thread also returns a refheld ire. 235 * In addition ipif's and ill's referenced by the ire are also indirectly 236 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 237 * the ipif's address or netmask change as long as an ipif is refheld 238 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 239 * address of an ipif has to go through the ipsq_t. This ensures that only 240 * 1 such exclusive operation proceeds at any time on the ipif. It then 241 * deletes all ires associated with this ipif, and waits for all refcnts 242 * associated with this ipif to come down to zero. The address is changed 243 * only after the ipif has been quiesced. Then the ipif is brought up again. 244 * More details are described above the comment in ip_sioctl_flags. 245 * 246 * Packet processing is based mostly on IREs and are fully multi-threaded 247 * using standard Solaris MT techniques. 248 * 249 * There are explicit locks in IP to handle: 250 * - The ip_g_head list maintained by mi_open_link() and friends. 251 * 252 * - The reassembly data structures (one lock per hash bucket) 253 * 254 * - conn_lock is meant to protect conn_t fields. The fields actually 255 * protected by conn_lock are documented in the conn_t definition. 256 * 257 * - ire_lock to protect some of the fields of the ire, IRE tables 258 * (one lock per hash bucket). Refer to ip_ire.c for details. 259 * 260 * - ndp_g_lock and nce_lock for protecting NCEs. 261 * 262 * - ill_lock protects fields of the ill and ipif. Details in ip.h 263 * 264 * - ill_g_lock: This is a global reader/writer lock. Protects the following 265 * * The AVL tree based global multi list of all ills. 266 * * The linked list of all ipifs of an ill 267 * * The <ill-ipsq> mapping 268 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 269 * * The illgroup list threaded by ill_group_next. 270 * * <ill-phyint> association 271 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 272 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 273 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 274 * will all have to hold the ill_g_lock as writer for the actual duration 275 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 276 * may be found in the IPMP section. 277 * 278 * - ill_lock: This is a per ill mutex. 279 * It protects some members of the ill and is documented below. 280 * It also protects the <ill-ipsq> mapping 281 * It also protects the illgroup list threaded by ill_group_next. 282 * It also protects the <ill-phyint> assoc. 283 * It also protects the list of ipifs hanging off the ill. 284 * 285 * - ipsq_lock: This is a per ipsq_t mutex lock. 286 * This protects all the other members of the ipsq struct except 287 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 288 * 289 * - illgrp_lock: This is a per ill_group mutex lock. 290 * The only thing it protects is the illgrp_ill_schednext member of ill_group 291 * which dictates which is the next ill in an ill_group that is to be chosen 292 * for sending outgoing packets, through creation of an IRE_CACHE that 293 * references this ill. 294 * 295 * - phyint_lock: This is a per phyint mutex lock. Protects just the 296 * phyint_flags 297 * 298 * - ip_g_nd_lock: This is a global reader/writer lock. 299 * Any call to nd_load to load a new parameter to the ND table must hold the 300 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 301 * as reader. 302 * 303 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 304 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 305 * uniqueness check also done atomically. 306 * 307 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 308 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 309 * as a writer when adding or deleting elements from these lists, and 310 * as a reader when walking these lists to send a SADB update to the 311 * IPsec capable ills. 312 * 313 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 314 * group list linked by ill_usesrc_grp_next. It also protects the 315 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 316 * group is being added or deleted. This lock is taken as a reader when 317 * walking the list/group(eg: to get the number of members in a usesrc group). 318 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 319 * field is changing state i.e from NULL to non-NULL or vice-versa. For 320 * example, it is not necessary to take this lock in the initial portion 321 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 322 * ip_sioctl_flags since the these operations are executed exclusively and 323 * that ensures that the "usesrc group state" cannot change. The "usesrc 324 * group state" change can happen only in the latter part of 325 * ip_sioctl_slifusesrc and in ill_delete. 326 * 327 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 328 * 329 * To change the <ill-phyint> association, the ill_g_lock must be held 330 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 331 * must be held. 332 * 333 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 334 * and the ill_lock of the ill in question must be held. 335 * 336 * To change the <ill-illgroup> association the ill_g_lock must be held as 337 * writer and the ill_lock of the ill in question must be held. 338 * 339 * To add or delete an ipif from the list of ipifs hanging off the ill, 340 * ill_g_lock (writer) and ill_lock must be held and the thread must be 341 * a writer on the associated ipsq,. 342 * 343 * To add or delete an ill to the system, the ill_g_lock must be held as 344 * writer and the thread must be a writer on the associated ipsq. 345 * 346 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 347 * must be a writer on the associated ipsq. 348 * 349 * Lock hierarchy 350 * 351 * Some lock hierarchy scenarios are listed below. 352 * 353 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 354 * ill_g_lock -> illgrp_lock -> ill_lock 355 * ill_g_lock -> ill_lock(s) -> phyint_lock 356 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 357 * ill_g_lock -> ip_addr_avail_lock 358 * conn_lock -> irb_lock -> ill_lock -> ire_lock 359 * ill_g_lock -> ip_g_nd_lock 360 * 361 * When more than 1 ill lock is needed to be held, all ill lock addresses 362 * are sorted on address and locked starting from highest addressed lock 363 * downward. 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 369 * ipsec_capab_ills_lock -> ipsa_lock 370 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 371 * 372 * Trusted Solaris scenarios 373 * 374 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 375 * igsa_lock -> gcdb_lock 376 * gcgrp_rwlock -> ire_lock 377 * gcgrp_rwlock -> gcdb_lock 378 * 379 * 380 * Routing/forwarding table locking notes: 381 * 382 * Lock acquisition order: Radix tree lock, irb_lock. 383 * Requirements: 384 * i. Walker must not hold any locks during the walker callback. 385 * ii Walker must not see a truncated tree during the walk because of any node 386 * deletion. 387 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 388 * in many places in the code to walk the irb list. Thus even if all the 389 * ires in a bucket have been deleted, we still can't free the radix node 390 * until the ires have actually been inactive'd (freed). 391 * 392 * Tree traversal - Need to hold the global tree lock in read mode. 393 * Before dropping the global tree lock, need to either increment the ire_refcnt 394 * to ensure that the radix node can't be deleted. 395 * 396 * Tree add - Need to hold the global tree lock in write mode to add a 397 * radix node. To prevent the node from being deleted, increment the 398 * irb_refcnt, after the node is added to the tree. The ire itself is 399 * added later while holding the irb_lock, but not the tree lock. 400 * 401 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 402 * All associated ires must be inactive (i.e. freed), and irb_refcnt 403 * must be zero. 404 * 405 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 406 * global tree lock (read mode) for traversal. 407 * 408 * IPsec notes : 409 * 410 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 411 * in front of the actual packet. For outbound datagrams, the M_CTL 412 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 413 * information used by the IPsec code for applying the right level of 414 * protection. The information initialized by IP in the ipsec_out_t 415 * is determined by the per-socket policy or global policy in the system. 416 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 417 * ipsec_info.h) which starts out with nothing in it. It gets filled 418 * with the right information if it goes through the AH/ESP code, which 419 * happens if the incoming packet is secure. The information initialized 420 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 421 * the policy requirements needed by per-socket policy or global policy 422 * is met or not. 423 * 424 * If there is both per-socket policy (set using setsockopt) and there 425 * is also global policy match for the 5 tuples of the socket, 426 * ipsec_override_policy() makes the decision of which one to use. 427 * 428 * For fully connected sockets i.e dst, src [addr, port] is known, 429 * conn_policy_cached is set indicating that policy has been cached. 430 * conn_in_enforce_policy may or may not be set depending on whether 431 * there is a global policy match or per-socket policy match. 432 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 433 * Once the right policy is set on the conn_t, policy cannot change for 434 * this socket. This makes life simpler for TCP (UDP ?) where 435 * re-transmissions go out with the same policy. For symmetry, policy 436 * is cached for fully connected UDP sockets also. Thus if policy is cached, 437 * it also implies that policy is latched i.e policy cannot change 438 * on these sockets. As we have the right policy on the conn, we don't 439 * have to lookup global policy for every outbound and inbound datagram 440 * and thus serving as an optimization. Note that a global policy change 441 * does not affect fully connected sockets if they have policy. If fully 442 * connected sockets did not have any policy associated with it, global 443 * policy change may affect them. 444 * 445 * IP Flow control notes: 446 * 447 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 448 * cannot be sent down to the driver by IP, because of a canput failure, IP 449 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 450 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 451 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 452 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 453 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 454 * the queued messages, and removes the conn from the drain list, if all 455 * messages were drained. It also qenables the next conn in the drain list to 456 * continue the drain process. 457 * 458 * In reality the drain list is not a single list, but a configurable number 459 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 460 * list. If the ip_wsrv of the next qenabled conn does not run, because the 461 * stream closes, ip_close takes responsibility to qenable the next conn in 462 * the drain list. The directly called ip_wput path always does a putq, if 463 * it cannot putnext. Thus synchronization problems are handled between 464 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 465 * functions that manipulate this drain list. Furthermore conn_drain_insert 466 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 467 * running on a queue at any time. conn_drain_tail can be simultaneously called 468 * from both ip_wsrv and ip_close. 469 * 470 * IPQOS notes: 471 * 472 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 473 * and IPQoS modules. IPPF includes hooks in IP at different control points 474 * (callout positions) which direct packets to IPQoS modules for policy 475 * processing. Policies, if present, are global. 476 * 477 * The callout positions are located in the following paths: 478 * o local_in (packets destined for this host) 479 * o local_out (packets orginating from this host ) 480 * o fwd_in (packets forwarded by this m/c - inbound) 481 * o fwd_out (packets forwarded by this m/c - outbound) 482 * Hooks at these callout points can be enabled/disabled using the ndd variable 483 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 484 * By default all the callout positions are enabled. 485 * 486 * Outbound (local_out) 487 * Hooks are placed in ip_wput_ire and ipsec_out_process. 488 * 489 * Inbound (local_in) 490 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 491 * TCP and UDP fanout routines. 492 * 493 * Forwarding (in and out) 494 * Hooks are placed in ip_rput_forward. 495 * 496 * IP Policy Framework processing (IPPF processing) 497 * Policy processing for a packet is initiated by ip_process, which ascertains 498 * that the classifier (ipgpc) is loaded and configured, failing which the 499 * packet resumes normal processing in IP. If the clasifier is present, the 500 * packet is acted upon by one or more IPQoS modules (action instances), per 501 * filters configured in ipgpc and resumes normal IP processing thereafter. 502 * An action instance can drop a packet in course of its processing. 503 * 504 * A boolean variable, ip_policy, is used in all the fanout routines that can 505 * invoke ip_process for a packet. This variable indicates if the packet should 506 * to be sent for policy processing. The variable is set to B_TRUE by default, 507 * i.e. when the routines are invoked in the normal ip procesing path for a 508 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 509 * ip_policy is set to B_FALSE for all the routines called in these two 510 * functions because, in the former case, we don't process loopback traffic 511 * currently while in the latter, the packets have already been processed in 512 * icmp_inbound. 513 * 514 * Zones notes: 515 * 516 * The partitioning rules for networking are as follows: 517 * 1) Packets coming from a zone must have a source address belonging to that 518 * zone. 519 * 2) Packets coming from a zone can only be sent on a physical interface on 520 * which the zone has an IP address. 521 * 3) Between two zones on the same machine, packet delivery is only allowed if 522 * there's a matching route for the destination and zone in the forwarding 523 * table. 524 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 525 * different zones can bind to the same port with the wildcard address 526 * (INADDR_ANY). 527 * 528 * The granularity of interface partitioning is at the logical interface level. 529 * Therefore, every zone has its own IP addresses, and incoming packets can be 530 * attributed to a zone unambiguously. A logical interface is placed into a zone 531 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 532 * structure. Rule (1) is implemented by modifying the source address selection 533 * algorithm so that the list of eligible addresses is filtered based on the 534 * sending process zone. 535 * 536 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 537 * across all zones, depending on their type. Here is the break-up: 538 * 539 * IRE type Shared/exclusive 540 * -------- ---------------- 541 * IRE_BROADCAST Exclusive 542 * IRE_DEFAULT (default routes) Shared (*) 543 * IRE_LOCAL Exclusive (x) 544 * IRE_LOOPBACK Exclusive 545 * IRE_PREFIX (net routes) Shared (*) 546 * IRE_CACHE Exclusive 547 * IRE_IF_NORESOLVER (interface routes) Exclusive 548 * IRE_IF_RESOLVER (interface routes) Exclusive 549 * IRE_HOST (host routes) Shared (*) 550 * 551 * (*) A zone can only use a default or off-subnet route if the gateway is 552 * directly reachable from the zone, that is, if the gateway's address matches 553 * one of the zone's logical interfaces. 554 * 555 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 556 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 557 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 558 * address of the zone itself (the destination). Since IRE_LOCAL is used 559 * for communication between zones, ip_wput_ire has special logic to set 560 * the right source address when sending using an IRE_LOCAL. 561 * 562 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 563 * ire_cache_lookup restricts loopback using an IRE_LOCAL 564 * between zone to the case when L2 would have conceptually looped the packet 565 * back, i.e. the loopback which is required since neither Ethernet drivers 566 * nor Ethernet hardware loops them back. This is the case when the normal 567 * routes (ignoring IREs with different zoneids) would send out the packet on 568 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 569 * associated. 570 * 571 * Multiple zones can share a common broadcast address; typically all zones 572 * share the 255.255.255.255 address. Incoming as well as locally originated 573 * broadcast packets must be dispatched to all the zones on the broadcast 574 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 575 * since some zones may not be on the 10.16.72/24 network. To handle this, each 576 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 577 * sent to every zone that has an IRE_BROADCAST entry for the destination 578 * address on the input ill, see conn_wantpacket(). 579 * 580 * Applications in different zones can join the same multicast group address. 581 * For IPv4, group memberships are per-logical interface, so they're already 582 * inherently part of a zone. For IPv6, group memberships are per-physical 583 * interface, so we distinguish IPv6 group memberships based on group address, 584 * interface and zoneid. In both cases, received multicast packets are sent to 585 * every zone for which a group membership entry exists. On IPv6 we need to 586 * check that the target zone still has an address on the receiving physical 587 * interface; it could have been removed since the application issued the 588 * IPV6_JOIN_GROUP. 589 */ 590 591 /* 592 * Squeue Fanout flags: 593 * 0: No fanout. 594 * 1: Fanout across all squeues 595 */ 596 boolean_t ip_squeue_fanout = 0; 597 598 /* 599 * Maximum dups allowed per packet. 600 */ 601 uint_t ip_max_frag_dups = 10; 602 603 #define IS_SIMPLE_IPH(ipha) \ 604 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 605 606 /* RFC1122 Conformance */ 607 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 608 609 #define ILL_MAX_NAMELEN LIFNAMSIZ 610 611 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 612 613 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 614 615 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 616 ip_stack_t *); 617 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 618 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 619 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 620 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 621 mblk_t *, int, ip_stack_t *); 622 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 623 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 624 ill_t *, zoneid_t); 625 static void icmp_options_update(ipha_t *); 626 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 627 ip_stack_t *); 628 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 629 zoneid_t zoneid, ip_stack_t *); 630 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 631 static void icmp_redirect(ill_t *, mblk_t *); 632 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 633 ip_stack_t *); 634 635 static void ip_arp_news(queue_t *, mblk_t *); 636 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 637 ip_stack_t *); 638 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 639 char *ip_dot_addr(ipaddr_t, char *); 640 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 641 int ip_close(queue_t *, int); 642 static char *ip_dot_saddr(uchar_t *, char *); 643 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 644 boolean_t, boolean_t, ill_t *, zoneid_t); 645 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 646 boolean_t, boolean_t, zoneid_t); 647 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 648 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 649 static void ip_lrput(queue_t *, mblk_t *); 650 ipaddr_t ip_net_mask(ipaddr_t); 651 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 652 ip_stack_t *); 653 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 654 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 655 char *ip_nv_lookup(nv_t *, int); 656 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 657 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 658 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 659 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 660 ipndp_t *, size_t); 661 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 662 void ip_rput(queue_t *, mblk_t *); 663 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 664 void *dummy_arg); 665 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 666 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 669 ire_t *, ip_stack_t *); 670 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 671 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 672 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 673 ip_stack_t *); 674 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 675 uint16_t *); 676 int ip_snmp_get(queue_t *, mblk_t *); 677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 678 mib2_ipIfStatsEntry_t *, ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 680 ip_stack_t *); 681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 682 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 705 ip_stack_t *ipst); 706 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 707 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 708 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 709 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 710 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 711 static boolean_t ip_source_route_included(ipha_t *); 712 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 713 714 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 715 zoneid_t, ip_stack_t *); 716 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 717 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 718 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 719 zoneid_t, ip_stack_t *); 720 721 static void conn_drain_init(ip_stack_t *); 722 static void conn_drain_fini(ip_stack_t *); 723 static void conn_drain_tail(conn_t *connp, boolean_t closing); 724 725 static void conn_walk_drain(ip_stack_t *); 726 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 727 zoneid_t); 728 729 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 730 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 731 static void ip_stack_fini(netstackid_t stackid, void *arg); 732 733 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 734 zoneid_t); 735 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 736 void *dummy_arg); 737 738 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 739 740 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 741 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 742 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 743 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 744 745 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 746 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 747 caddr_t, cred_t *); 748 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 749 caddr_t cp, cred_t *cr); 750 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 753 caddr_t cp, cred_t *cr); 754 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 757 cred_t *); 758 static squeue_func_t ip_squeue_switch(int); 759 760 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 761 static void ip_kstat_fini(netstackid_t, kstat_t *); 762 static int ip_kstat_update(kstat_t *kp, int rw); 763 static void *icmp_kstat_init(netstackid_t); 764 static void icmp_kstat_fini(netstackid_t, kstat_t *); 765 static int icmp_kstat_update(kstat_t *kp, int rw); 766 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 767 static void ip_kstat2_fini(netstackid_t, kstat_t *); 768 769 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 770 771 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 772 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 773 774 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 775 ipha_t *, ill_t *, boolean_t); 776 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 777 778 /* How long, in seconds, we allow frags to hang around. */ 779 #define IP_FRAG_TIMEOUT 60 780 781 /* 782 * Threshold which determines whether MDT should be used when 783 * generating IP fragments; payload size must be greater than 784 * this threshold for MDT to take place. 785 */ 786 #define IP_WPUT_FRAG_MDT_MIN 32768 787 788 /* Setable in /etc/system only */ 789 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 790 791 static long ip_rput_pullups; 792 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 793 794 vmem_t *ip_minor_arena; 795 796 int ip_debug; 797 798 #ifdef DEBUG 799 uint32_t ipsechw_debug = 0; 800 #endif 801 802 /* 803 * Multirouting/CGTP stuff 804 */ 805 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 884 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 885 #ifdef DEBUG 886 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 887 #else 888 { 0, 0, 0, "" }, 889 #endif 890 }; 891 892 /* 893 * Extended NDP table 894 * The addresses for the first two are filled in to be ips_ip_g_forward 895 * and ips_ipv6_forward at init time. 896 */ 897 static ipndp_t lcl_ndp_arr[] = { 898 /* getf setf data name */ 899 #define IPNDP_IP_FORWARDING_OFFSET 0 900 { ip_param_generic_get, ip_forward_set, NULL, 901 "ip_forwarding" }, 902 #define IPNDP_IP6_FORWARDING_OFFSET 1 903 { ip_param_generic_get, ip_forward_set, NULL, 904 "ip6_forwarding" }, 905 { ip_ill_report, NULL, NULL, 906 "ip_ill_status" }, 907 { ip_ipif_report, NULL, NULL, 908 "ip_ipif_status" }, 909 { ip_ire_report, NULL, NULL, 910 "ipv4_ire_status" }, 911 { ip_ire_report_v6, NULL, NULL, 912 "ipv6_ire_status" }, 913 { ip_conn_report, NULL, NULL, 914 "ip_conn_status" }, 915 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 916 "ip_rput_pullups" }, 917 { ndp_report, NULL, NULL, 918 "ip_ndp_cache_report" }, 919 { ip_srcid_report, NULL, NULL, 920 "ip_srcid_status" }, 921 { ip_param_generic_get, ip_squeue_profile_set, 922 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 923 { ip_param_generic_get, ip_squeue_bind_set, 924 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 925 { ip_param_generic_get, ip_input_proc_set, 926 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 927 { ip_param_generic_get, ip_int_set, 928 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 929 #define IPNDP_CGTP_FILTER_OFFSET 14 930 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 931 "ip_cgtp_filter" }, 932 { ip_param_generic_get, ip_int_set, 933 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 934 #define IPNDP_IPMP_HOOK_OFFSET 16 935 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 936 "ipmp_hook_emulation" }, 937 }; 938 939 /* 940 * Table of IP ioctls encoding the various properties of the ioctl and 941 * indexed based on the last byte of the ioctl command. Occasionally there 942 * is a clash, and there is more than 1 ioctl with the same last byte. 943 * In such a case 1 ioctl is encoded in the ndx table and the remaining 944 * ioctls are encoded in the misc table. An entry in the ndx table is 945 * retrieved by indexing on the last byte of the ioctl command and comparing 946 * the ioctl command with the value in the ndx table. In the event of a 947 * mismatch the misc table is then searched sequentially for the desired 948 * ioctl command. 949 * 950 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 951 */ 952 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 953 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 964 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 965 MISC_CMD, ip_siocaddrt, NULL }, 966 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocdelrt, NULL }, 968 969 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 970 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 971 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 972 IF_CMD, ip_sioctl_get_addr, NULL }, 973 974 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 975 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 976 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 977 IPI_GET_CMD | IPI_REPL, 978 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 979 980 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 981 IPI_PRIV | IPI_WR | IPI_REPL, 982 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 983 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 984 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 985 IF_CMD, ip_sioctl_get_flags, NULL }, 986 987 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 988 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 989 990 /* copyin size cannot be coded for SIOCGIFCONF */ 991 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 992 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 993 994 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 995 IF_CMD, ip_sioctl_mtu, NULL }, 996 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_mtu, NULL }, 998 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1001 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_brdaddr, NULL }, 1003 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_netmask, NULL }, 1006 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1007 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1008 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1009 IPI_GET_CMD | IPI_REPL, 1010 IF_CMD, ip_sioctl_get_metric, NULL }, 1011 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1012 IF_CMD, ip_sioctl_metric, NULL }, 1013 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1014 1015 /* See 166-168 below for extended SIOC*XARP ioctls */ 1016 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1017 ARP_CMD, ip_sioctl_arp, NULL }, 1018 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1019 ARP_CMD, ip_sioctl_arp, NULL }, 1020 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1021 ARP_CMD, ip_sioctl_arp, NULL }, 1022 1023 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 1045 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1046 MISC_CMD, if_unitsel, if_unitsel_restart }, 1047 1048 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 1067 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1068 IPI_PRIV | IPI_WR | IPI_MODOK, 1069 IF_CMD, ip_sioctl_sifname, NULL }, 1070 1071 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 1085 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1086 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1087 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_muxid, NULL }, 1089 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR | IPI_REPL, 1091 IF_CMD, ip_sioctl_muxid, NULL }, 1092 1093 /* Both if and lif variants share same func */ 1094 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1096 /* Both if and lif variants share same func */ 1097 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1098 IPI_PRIV | IPI_WR | IPI_REPL, 1099 IF_CMD, ip_sioctl_slifindex, NULL }, 1100 1101 /* copyin size cannot be coded for SIOCGIFCONF */ 1102 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1103 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1104 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 1122 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1123 IPI_PRIV | IPI_WR | IPI_REPL, 1124 LIF_CMD, ip_sioctl_removeif, 1125 ip_sioctl_removeif_restart }, 1126 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1127 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1128 LIF_CMD, ip_sioctl_addif, NULL }, 1129 #define SIOCLIFADDR_NDX 112 1130 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1132 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_REPL, 1134 LIF_CMD, ip_sioctl_get_addr, NULL }, 1135 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1136 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1137 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1138 IPI_GET_CMD | IPI_REPL, 1139 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1140 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1141 IPI_PRIV | IPI_WR | IPI_REPL, 1142 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1143 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1144 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1145 LIF_CMD, ip_sioctl_get_flags, NULL }, 1146 1147 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 1150 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1151 ip_sioctl_get_lifconf, NULL }, 1152 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1153 LIF_CMD, ip_sioctl_mtu, NULL }, 1154 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1156 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1159 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1161 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1164 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1166 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1167 IPI_GET_CMD | IPI_REPL, 1168 LIF_CMD, ip_sioctl_get_metric, NULL }, 1169 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1170 LIF_CMD, ip_sioctl_metric, NULL }, 1171 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1172 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1173 LIF_CMD, ip_sioctl_slifname, 1174 ip_sioctl_slifname_restart }, 1175 1176 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1177 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1178 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1179 IPI_GET_CMD | IPI_REPL, 1180 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1181 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1182 IPI_PRIV | IPI_WR | IPI_REPL, 1183 LIF_CMD, ip_sioctl_muxid, NULL }, 1184 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1185 IPI_GET_CMD | IPI_REPL, 1186 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1187 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1188 IPI_PRIV | IPI_WR | IPI_REPL, 1189 LIF_CMD, ip_sioctl_slifindex, 0 }, 1190 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_token, NULL }, 1192 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_token, NULL }, 1195 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1197 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1198 IPI_GET_CMD | IPI_REPL, 1199 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1200 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1201 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1202 1203 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1204 IPI_GET_CMD | IPI_REPL, 1205 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1206 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1207 LIF_CMD, ip_siocdelndp_v6, NULL }, 1208 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1209 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1210 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1211 LIF_CMD, ip_siocsetndp_v6, NULL }, 1212 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1213 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1214 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tonlink, NULL }, 1216 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1217 MISC_CMD, ip_sioctl_tmysite, NULL }, 1218 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1219 TUN_CMD, ip_sioctl_tunparam, NULL }, 1220 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1221 IPI_PRIV | IPI_WR, 1222 TUN_CMD, ip_sioctl_tunparam, NULL }, 1223 1224 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1225 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1226 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1227 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 1230 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_REPL, 1232 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1233 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1234 IPI_PRIV | IPI_WR | IPI_REPL, 1235 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1236 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1237 IPI_PRIV | IPI_WR, 1238 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1239 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1240 IPI_GET_CMD | IPI_REPL, 1241 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1242 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD | IPI_REPL, 1244 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1245 1246 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1247 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1248 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1249 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 1251 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1252 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1253 1254 /* These are handled in ip_sioctl_copyin_setup itself */ 1255 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1256 MISC_CMD, NULL, NULL }, 1257 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1260 1261 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1262 ip_sioctl_get_lifconf, NULL }, 1263 1264 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1265 XARP_CMD, ip_sioctl_arp, NULL }, 1266 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1267 XARP_CMD, ip_sioctl_arp, NULL }, 1268 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1269 XARP_CMD, ip_sioctl_arp, NULL }, 1270 1271 /* SIOCPOPSOCKFS is not handled by IP */ 1272 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1273 1274 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1275 IPI_GET_CMD | IPI_REPL, 1276 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1277 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1278 IPI_PRIV | IPI_WR | IPI_REPL, 1279 LIF_CMD, ip_sioctl_slifzone, 1280 ip_sioctl_slifzone_restart }, 1281 /* 172-174 are SCTP ioctls and not handled by IP */ 1282 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1283 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1286 IPI_GET_CMD, LIF_CMD, 1287 ip_sioctl_get_lifusesrc, 0 }, 1288 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1289 IPI_PRIV | IPI_WR, 1290 LIF_CMD, ip_sioctl_slifusesrc, 1291 NULL }, 1292 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1293 ip_sioctl_get_lifsrcof, NULL }, 1294 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1295 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1296 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1297 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1299 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1301 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1303 ip_sioctl_set_ipmpfailback, NULL } 1304 }; 1305 1306 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1307 1308 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1309 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1310 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1311 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1312 TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1320 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1321 MISC_CMD, mrt_ioctl}, 1322 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl} 1326 }; 1327 1328 int ip_misc_ioctl_count = 1329 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1330 1331 int conn_drain_nthreads; /* Number of drainers reqd. */ 1332 /* Settable in /etc/system */ 1333 /* Defined in ip_ire.c */ 1334 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1335 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1336 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1337 1338 static nv_t ire_nv_arr[] = { 1339 { IRE_BROADCAST, "BROADCAST" }, 1340 { IRE_LOCAL, "LOCAL" }, 1341 { IRE_LOOPBACK, "LOOPBACK" }, 1342 { IRE_CACHE, "CACHE" }, 1343 { IRE_DEFAULT, "DEFAULT" }, 1344 { IRE_PREFIX, "PREFIX" }, 1345 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1346 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1347 { IRE_HOST, "HOST" }, 1348 { 0 } 1349 }; 1350 1351 nv_t *ire_nv_tbl = ire_nv_arr; 1352 1353 /* Defined in ip_netinfo.c */ 1354 extern ddi_taskq_t *eventq_queue_nic; 1355 1356 /* Simple ICMP IP Header Template */ 1357 static ipha_t icmp_ipha = { 1358 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1359 }; 1360 1361 struct module_info ip_mod_info = { 1362 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1363 }; 1364 1365 /* 1366 * Duplicate static symbols within a module confuses mdb; so we avoid the 1367 * problem by making the symbols here distinct from those in udp.c. 1368 */ 1369 1370 static struct qinit iprinit = { 1371 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1372 &ip_mod_info 1373 }; 1374 1375 static struct qinit ipwinit = { 1376 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1377 &ip_mod_info 1378 }; 1379 1380 static struct qinit iplrinit = { 1381 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1382 &ip_mod_info 1383 }; 1384 1385 static struct qinit iplwinit = { 1386 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1387 &ip_mod_info 1388 }; 1389 1390 struct streamtab ipinfo = { 1391 &iprinit, &ipwinit, &iplrinit, &iplwinit 1392 }; 1393 1394 #ifdef DEBUG 1395 static boolean_t skip_sctp_cksum = B_FALSE; 1396 #endif 1397 1398 /* 1399 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1400 * ip_rput_v6(), ip_output(), etc. If the message 1401 * block already has a M_CTL at the front of it, then simply set the zoneid 1402 * appropriately. 1403 */ 1404 mblk_t * 1405 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1406 { 1407 mblk_t *first_mp; 1408 ipsec_out_t *io; 1409 1410 ASSERT(zoneid != ALL_ZONES); 1411 if (mp->b_datap->db_type == M_CTL) { 1412 io = (ipsec_out_t *)mp->b_rptr; 1413 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1414 io->ipsec_out_zoneid = zoneid; 1415 return (mp); 1416 } 1417 1418 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1419 if (first_mp == NULL) 1420 return (NULL); 1421 io = (ipsec_out_t *)first_mp->b_rptr; 1422 /* This is not a secure packet */ 1423 io->ipsec_out_secure = B_FALSE; 1424 io->ipsec_out_zoneid = zoneid; 1425 first_mp->b_cont = mp; 1426 return (first_mp); 1427 } 1428 1429 /* 1430 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1431 */ 1432 mblk_t * 1433 ip_copymsg(mblk_t *mp) 1434 { 1435 mblk_t *nmp; 1436 ipsec_info_t *in; 1437 1438 if (mp->b_datap->db_type != M_CTL) 1439 return (copymsg(mp)); 1440 1441 in = (ipsec_info_t *)mp->b_rptr; 1442 1443 /* 1444 * Note that M_CTL is also used for delivering ICMP error messages 1445 * upstream to transport layers. 1446 */ 1447 if (in->ipsec_info_type != IPSEC_OUT && 1448 in->ipsec_info_type != IPSEC_IN) 1449 return (copymsg(mp)); 1450 1451 nmp = copymsg(mp->b_cont); 1452 1453 if (in->ipsec_info_type == IPSEC_OUT) { 1454 return (ipsec_out_tag(mp, nmp, 1455 ((ipsec_out_t *)in)->ipsec_out_ns)); 1456 } else { 1457 return (ipsec_in_tag(mp, nmp, 1458 ((ipsec_in_t *)in)->ipsec_in_ns)); 1459 } 1460 } 1461 1462 /* Generate an ICMP fragmentation needed message. */ 1463 static void 1464 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1465 ip_stack_t *ipst) 1466 { 1467 icmph_t icmph; 1468 mblk_t *first_mp; 1469 boolean_t mctl_present; 1470 1471 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1472 1473 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1474 if (mctl_present) 1475 freeb(first_mp); 1476 return; 1477 } 1478 1479 bzero(&icmph, sizeof (icmph_t)); 1480 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1481 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1482 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1483 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1484 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1485 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1486 ipst); 1487 } 1488 1489 /* 1490 * icmp_inbound deals with ICMP messages in the following ways. 1491 * 1492 * 1) It needs to send a reply back and possibly delivering it 1493 * to the "interested" upper clients. 1494 * 2) It needs to send it to the upper clients only. 1495 * 3) It needs to change some values in IP only. 1496 * 4) It needs to change some values in IP and upper layers e.g TCP. 1497 * 1498 * We need to accomodate icmp messages coming in clear until we get 1499 * everything secure from the wire. If icmp_accept_clear_messages 1500 * is zero we check with the global policy and act accordingly. If 1501 * it is non-zero, we accept the message without any checks. But 1502 * *this does not mean* that this will be delivered to the upper 1503 * clients. By accepting we might send replies back, change our MTU 1504 * value etc. but delivery to the ULP/clients depends on their policy 1505 * dispositions. 1506 * 1507 * We handle the above 4 cases in the context of IPsec in the 1508 * following way : 1509 * 1510 * 1) Send the reply back in the same way as the request came in. 1511 * If it came in encrypted, it goes out encrypted. If it came in 1512 * clear, it goes out in clear. Thus, this will prevent chosen 1513 * plain text attack. 1514 * 2) The client may or may not expect things to come in secure. 1515 * If it comes in secure, the policy constraints are checked 1516 * before delivering it to the upper layers. If it comes in 1517 * clear, ipsec_inbound_accept_clear will decide whether to 1518 * accept this in clear or not. In both the cases, if the returned 1519 * message (IP header + 8 bytes) that caused the icmp message has 1520 * AH/ESP headers, it is sent up to AH/ESP for validation before 1521 * sending up. If there are only 8 bytes of returned message, then 1522 * upper client will not be notified. 1523 * 3) Check with global policy to see whether it matches the constaints. 1524 * But this will be done only if icmp_accept_messages_in_clear is 1525 * zero. 1526 * 4) If we need to change both in IP and ULP, then the decision taken 1527 * while affecting the values in IP and while delivering up to TCP 1528 * should be the same. 1529 * 1530 * There are two cases. 1531 * 1532 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1533 * failed), we will not deliver it to the ULP, even though they 1534 * are *willing* to accept in *clear*. This is fine as our global 1535 * disposition to icmp messages asks us reject the datagram. 1536 * 1537 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1538 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1539 * to deliver it to ULP (policy failed), it can lead to 1540 * consistency problems. The cases known at this time are 1541 * ICMP_DESTINATION_UNREACHABLE messages with following code 1542 * values : 1543 * 1544 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1545 * and Upper layer rejects. Then the communication will 1546 * come to a stop. This is solved by making similar decisions 1547 * at both levels. Currently, when we are unable to deliver 1548 * to the Upper Layer (due to policy failures) while IP has 1549 * adjusted ire_max_frag, the next outbound datagram would 1550 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1551 * will be with the right level of protection. Thus the right 1552 * value will be communicated even if we are not able to 1553 * communicate when we get from the wire initially. But this 1554 * assumes there would be at least one outbound datagram after 1555 * IP has adjusted its ire_max_frag value. To make things 1556 * simpler, we accept in clear after the validation of 1557 * AH/ESP headers. 1558 * 1559 * - Other ICMP ERRORS : We may not be able to deliver it to the 1560 * upper layer depending on the level of protection the upper 1561 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1562 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1563 * should be accepted in clear when the Upper layer expects secure. 1564 * Thus the communication may get aborted by some bad ICMP 1565 * packets. 1566 * 1567 * IPQoS Notes: 1568 * The only instance when a packet is sent for processing is when there 1569 * isn't an ICMP client and if we are interested in it. 1570 * If there is a client, IPPF processing will take place in the 1571 * ip_fanout_proto routine. 1572 * 1573 * Zones notes: 1574 * The packet is only processed in the context of the specified zone: typically 1575 * only this zone will reply to an echo request, and only interested clients in 1576 * this zone will receive a copy of the packet. This means that the caller must 1577 * call icmp_inbound() for each relevant zone. 1578 */ 1579 static void 1580 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1581 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1582 ill_t *recv_ill, zoneid_t zoneid) 1583 { 1584 icmph_t *icmph; 1585 ipha_t *ipha; 1586 int iph_hdr_length; 1587 int hdr_length; 1588 boolean_t interested; 1589 uint32_t ts; 1590 uchar_t *wptr; 1591 ipif_t *ipif; 1592 mblk_t *first_mp; 1593 ipsec_in_t *ii; 1594 ire_t *src_ire; 1595 boolean_t onlink; 1596 timestruc_t now; 1597 uint32_t ill_index; 1598 ip_stack_t *ipst; 1599 1600 ASSERT(ill != NULL); 1601 ipst = ill->ill_ipst; 1602 1603 first_mp = mp; 1604 if (mctl_present) { 1605 mp = first_mp->b_cont; 1606 ASSERT(mp != NULL); 1607 } 1608 1609 ipha = (ipha_t *)mp->b_rptr; 1610 if (ipst->ips_icmp_accept_clear_messages == 0) { 1611 first_mp = ipsec_check_global_policy(first_mp, NULL, 1612 ipha, NULL, mctl_present, ipst->ips_netstack); 1613 if (first_mp == NULL) 1614 return; 1615 } 1616 1617 /* 1618 * On a labeled system, we have to check whether the zone itself is 1619 * permitted to receive raw traffic. 1620 */ 1621 if (is_system_labeled()) { 1622 if (zoneid == ALL_ZONES) 1623 zoneid = tsol_packet_to_zoneid(mp); 1624 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1625 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1626 zoneid)); 1627 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1628 freemsg(first_mp); 1629 return; 1630 } 1631 } 1632 1633 /* 1634 * We have accepted the ICMP message. It means that we will 1635 * respond to the packet if needed. It may not be delivered 1636 * to the upper client depending on the policy constraints 1637 * and the disposition in ipsec_inbound_accept_clear. 1638 */ 1639 1640 ASSERT(ill != NULL); 1641 1642 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1643 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1644 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1645 /* Last chance to get real. */ 1646 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1648 freemsg(first_mp); 1649 return; 1650 } 1651 /* Refresh iph following the pullup. */ 1652 ipha = (ipha_t *)mp->b_rptr; 1653 } 1654 /* ICMP header checksum, including checksum field, should be zero. */ 1655 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1656 IP_CSUM(mp, iph_hdr_length, 0)) { 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1658 freemsg(first_mp); 1659 return; 1660 } 1661 /* The IP header will always be a multiple of four bytes */ 1662 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1663 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1664 icmph->icmph_code)); 1665 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1666 /* We will set "interested" to "true" if we want a copy */ 1667 interested = B_FALSE; 1668 switch (icmph->icmph_type) { 1669 case ICMP_ECHO_REPLY: 1670 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1671 break; 1672 case ICMP_DEST_UNREACHABLE: 1673 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1675 interested = B_TRUE; /* Pass up to transport */ 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1677 break; 1678 case ICMP_SOURCE_QUENCH: 1679 interested = B_TRUE; /* Pass up to transport */ 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1681 break; 1682 case ICMP_REDIRECT: 1683 if (!ipst->ips_ip_ignore_redirect) 1684 interested = B_TRUE; 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1686 break; 1687 case ICMP_ECHO_REQUEST: 1688 /* 1689 * Whether to respond to echo requests that come in as IP 1690 * broadcasts or as IP multicast is subject to debate 1691 * (what isn't?). We aim to please, you pick it. 1692 * Default is do it. 1693 */ 1694 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1695 /* unicast: always respond */ 1696 interested = B_TRUE; 1697 } else if (CLASSD(ipha->ipha_dst)) { 1698 /* multicast: respond based on tunable */ 1699 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1700 } else if (broadcast) { 1701 /* broadcast: respond based on tunable */ 1702 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1703 } 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1705 break; 1706 case ICMP_ROUTER_ADVERTISEMENT: 1707 case ICMP_ROUTER_SOLICITATION: 1708 break; 1709 case ICMP_TIME_EXCEEDED: 1710 interested = B_TRUE; /* Pass up to transport */ 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1712 break; 1713 case ICMP_PARAM_PROBLEM: 1714 interested = B_TRUE; /* Pass up to transport */ 1715 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1716 break; 1717 case ICMP_TIME_STAMP_REQUEST: 1718 /* Response to Time Stamp Requests is local policy. */ 1719 if (ipst->ips_ip_g_resp_to_timestamp && 1720 /* So is whether to respond if it was an IP broadcast. */ 1721 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1722 int tstamp_len = 3 * sizeof (uint32_t); 1723 1724 if (wptr + tstamp_len > mp->b_wptr) { 1725 if (!pullupmsg(mp, wptr + tstamp_len - 1726 mp->b_rptr)) { 1727 BUMP_MIB(ill->ill_ip_mib, 1728 ipIfStatsInDiscards); 1729 freemsg(first_mp); 1730 return; 1731 } 1732 /* Refresh ipha following the pullup. */ 1733 ipha = (ipha_t *)mp->b_rptr; 1734 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1735 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1736 } 1737 interested = B_TRUE; 1738 } 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1740 break; 1741 case ICMP_TIME_STAMP_REPLY: 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1743 break; 1744 case ICMP_INFO_REQUEST: 1745 /* Per RFC 1122 3.2.2.7, ignore this. */ 1746 case ICMP_INFO_REPLY: 1747 break; 1748 case ICMP_ADDRESS_MASK_REQUEST: 1749 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1750 !broadcast) && 1751 /* TODO m_pullup of complete header? */ 1752 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1753 interested = B_TRUE; 1754 } 1755 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1756 break; 1757 case ICMP_ADDRESS_MASK_REPLY: 1758 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1759 break; 1760 default: 1761 interested = B_TRUE; /* Pass up to transport */ 1762 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1763 break; 1764 } 1765 /* See if there is an ICMP client. */ 1766 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1767 /* If there is an ICMP client and we want one too, copy it. */ 1768 mblk_t *first_mp1; 1769 1770 if (!interested) { 1771 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1772 ip_policy, recv_ill, zoneid); 1773 return; 1774 } 1775 first_mp1 = ip_copymsg(first_mp); 1776 if (first_mp1 != NULL) { 1777 ip_fanout_proto(q, first_mp1, ill, ipha, 1778 0, mctl_present, ip_policy, recv_ill, zoneid); 1779 } 1780 } else if (!interested) { 1781 freemsg(first_mp); 1782 return; 1783 } else { 1784 /* 1785 * Initiate policy processing for this packet if ip_policy 1786 * is true. 1787 */ 1788 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1789 ill_index = ill->ill_phyint->phyint_ifindex; 1790 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1791 if (mp == NULL) { 1792 if (mctl_present) { 1793 freeb(first_mp); 1794 } 1795 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1796 return; 1797 } 1798 } 1799 } 1800 /* We want to do something with it. */ 1801 /* Check db_ref to make sure we can modify the packet. */ 1802 if (mp->b_datap->db_ref > 1) { 1803 mblk_t *first_mp1; 1804 1805 first_mp1 = ip_copymsg(first_mp); 1806 freemsg(first_mp); 1807 if (!first_mp1) { 1808 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1809 return; 1810 } 1811 first_mp = first_mp1; 1812 if (mctl_present) { 1813 mp = first_mp->b_cont; 1814 ASSERT(mp != NULL); 1815 } else { 1816 mp = first_mp; 1817 } 1818 ipha = (ipha_t *)mp->b_rptr; 1819 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1820 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1821 } 1822 switch (icmph->icmph_type) { 1823 case ICMP_ADDRESS_MASK_REQUEST: 1824 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1825 if (ipif == NULL) { 1826 freemsg(first_mp); 1827 return; 1828 } 1829 /* 1830 * outging interface must be IPv4 1831 */ 1832 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1833 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1834 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1835 ipif_refrele(ipif); 1836 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1837 break; 1838 case ICMP_ECHO_REQUEST: 1839 icmph->icmph_type = ICMP_ECHO_REPLY; 1840 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1841 break; 1842 case ICMP_TIME_STAMP_REQUEST: { 1843 uint32_t *tsp; 1844 1845 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1846 tsp = (uint32_t *)wptr; 1847 tsp++; /* Skip past 'originate time' */ 1848 /* Compute # of milliseconds since midnight */ 1849 gethrestime(&now); 1850 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1851 now.tv_nsec / (NANOSEC / MILLISEC); 1852 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1853 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1854 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1855 break; 1856 } 1857 default: 1858 ipha = (ipha_t *)&icmph[1]; 1859 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1860 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1862 freemsg(first_mp); 1863 return; 1864 } 1865 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1866 ipha = (ipha_t *)&icmph[1]; 1867 } 1868 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1870 freemsg(first_mp); 1871 return; 1872 } 1873 hdr_length = IPH_HDR_LENGTH(ipha); 1874 if (hdr_length < sizeof (ipha_t)) { 1875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1876 freemsg(first_mp); 1877 return; 1878 } 1879 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1880 if (!pullupmsg(mp, 1881 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1882 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1883 freemsg(first_mp); 1884 return; 1885 } 1886 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1887 ipha = (ipha_t *)&icmph[1]; 1888 } 1889 switch (icmph->icmph_type) { 1890 case ICMP_REDIRECT: 1891 /* 1892 * As there is no upper client to deliver, we don't 1893 * need the first_mp any more. 1894 */ 1895 if (mctl_present) { 1896 freeb(first_mp); 1897 } 1898 icmp_redirect(ill, mp); 1899 return; 1900 case ICMP_DEST_UNREACHABLE: 1901 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1902 if (!icmp_inbound_too_big(icmph, ipha, ill, 1903 zoneid, mp, iph_hdr_length, ipst)) { 1904 freemsg(first_mp); 1905 return; 1906 } 1907 /* 1908 * icmp_inbound_too_big() may alter mp. 1909 * Resynch ipha and icmph accordingly. 1910 */ 1911 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1912 ipha = (ipha_t *)&icmph[1]; 1913 } 1914 /* FALLTHRU */ 1915 default : 1916 /* 1917 * IPQoS notes: Since we have already done IPQoS 1918 * processing we don't want to do it again in 1919 * the fanout routines called by 1920 * icmp_inbound_error_fanout, hence the last 1921 * argument, ip_policy, is B_FALSE. 1922 */ 1923 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1924 ipha, iph_hdr_length, hdr_length, mctl_present, 1925 B_FALSE, recv_ill, zoneid); 1926 } 1927 return; 1928 } 1929 /* Send out an ICMP packet */ 1930 icmph->icmph_checksum = 0; 1931 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1932 if (broadcast || CLASSD(ipha->ipha_dst)) { 1933 ipif_t *ipif_chosen; 1934 /* 1935 * Make it look like it was directed to us, so we don't look 1936 * like a fool with a broadcast or multicast source address. 1937 */ 1938 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1939 /* 1940 * Make sure that we haven't grabbed an interface that's DOWN. 1941 */ 1942 if (ipif != NULL) { 1943 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1944 ipha->ipha_src, zoneid); 1945 if (ipif_chosen != NULL) { 1946 ipif_refrele(ipif); 1947 ipif = ipif_chosen; 1948 } 1949 } 1950 if (ipif == NULL) { 1951 ip0dbg(("icmp_inbound: " 1952 "No source for broadcast/multicast:\n" 1953 "\tsrc 0x%x dst 0x%x ill %p " 1954 "ipif_lcl_addr 0x%x\n", 1955 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1956 (void *)ill, 1957 ill->ill_ipif->ipif_lcl_addr)); 1958 freemsg(first_mp); 1959 return; 1960 } 1961 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1962 ipha->ipha_dst = ipif->ipif_src_addr; 1963 ipif_refrele(ipif); 1964 } 1965 /* Reset time to live. */ 1966 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1967 { 1968 /* Swap source and destination addresses */ 1969 ipaddr_t tmp; 1970 1971 tmp = ipha->ipha_src; 1972 ipha->ipha_src = ipha->ipha_dst; 1973 ipha->ipha_dst = tmp; 1974 } 1975 ipha->ipha_ident = 0; 1976 if (!IS_SIMPLE_IPH(ipha)) 1977 icmp_options_update(ipha); 1978 1979 /* 1980 * ICMP echo replies should go out on the same interface 1981 * the request came on as probes used by in.mpathd for detecting 1982 * NIC failures are ECHO packets. We turn-off load spreading 1983 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1984 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1985 * function. This is in turn handled by ip_wput and ip_newroute 1986 * to make sure that the packet goes out on the interface it came 1987 * in on. If we don't turnoff load spreading, the packets might get 1988 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1989 * to go out and in.mpathd would wrongly detect a failure or 1990 * mis-detect a NIC failure for link failure. As load spreading 1991 * can happen only if ill_group is not NULL, we do only for 1992 * that case and this does not affect the normal case. 1993 * 1994 * We turn off load spreading only on echo packets that came from 1995 * on-link hosts. If the interface route has been deleted, this will 1996 * not be enforced as we can't do much. For off-link hosts, as the 1997 * default routes in IPv4 does not typically have an ire_ipif 1998 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 1999 * Moreover, expecting a default route through this interface may 2000 * not be correct. We use ipha_dst because of the swap above. 2001 */ 2002 onlink = B_FALSE; 2003 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2004 /* 2005 * First, we need to make sure that it is not one of our 2006 * local addresses. If we set onlink when it is one of 2007 * our local addresses, we will end up creating IRE_CACHES 2008 * for one of our local addresses. Then, we will never 2009 * accept packets for them afterwards. 2010 */ 2011 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2012 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2013 if (src_ire == NULL) { 2014 ipif = ipif_get_next_ipif(NULL, ill); 2015 if (ipif == NULL) { 2016 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2017 freemsg(mp); 2018 return; 2019 } 2020 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2021 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2022 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2023 ipif_refrele(ipif); 2024 if (src_ire != NULL) { 2025 onlink = B_TRUE; 2026 ire_refrele(src_ire); 2027 } 2028 } else { 2029 ire_refrele(src_ire); 2030 } 2031 } 2032 if (!mctl_present) { 2033 /* 2034 * This packet should go out the same way as it 2035 * came in i.e in clear. To make sure that global 2036 * policy will not be applied to this in ip_wput_ire, 2037 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2038 */ 2039 ASSERT(first_mp == mp); 2040 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2041 if (first_mp == NULL) { 2042 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2043 freemsg(mp); 2044 return; 2045 } 2046 ii = (ipsec_in_t *)first_mp->b_rptr; 2047 2048 /* This is not a secure packet */ 2049 ii->ipsec_in_secure = B_FALSE; 2050 if (onlink) { 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = 2053 ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_rill_index = 2055 recv_ill->ill_phyint->phyint_ifindex; 2056 } 2057 first_mp->b_cont = mp; 2058 } else if (onlink) { 2059 ii = (ipsec_in_t *)first_mp->b_rptr; 2060 ii->ipsec_in_attach_if = B_TRUE; 2061 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2062 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2063 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2064 } else { 2065 ii = (ipsec_in_t *)first_mp->b_rptr; 2066 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2067 } 2068 ii->ipsec_in_zoneid = zoneid; 2069 ASSERT(zoneid != ALL_ZONES); 2070 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2072 return; 2073 } 2074 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2075 put(WR(q), first_mp); 2076 } 2077 2078 static ipaddr_t 2079 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2080 { 2081 conn_t *connp; 2082 connf_t *connfp; 2083 ipaddr_t nexthop_addr = INADDR_ANY; 2084 int hdr_length = IPH_HDR_LENGTH(ipha); 2085 uint16_t *up; 2086 uint32_t ports; 2087 ip_stack_t *ipst = ill->ill_ipst; 2088 2089 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2090 switch (ipha->ipha_protocol) { 2091 case IPPROTO_TCP: 2092 { 2093 tcph_t *tcph; 2094 2095 /* do a reverse lookup */ 2096 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2097 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2098 TCPS_LISTEN, ipst); 2099 break; 2100 } 2101 case IPPROTO_UDP: 2102 { 2103 uint32_t dstport, srcport; 2104 2105 ((uint16_t *)&ports)[0] = up[1]; 2106 ((uint16_t *)&ports)[1] = up[0]; 2107 2108 /* Extract ports in net byte order */ 2109 dstport = htons(ntohl(ports) & 0xFFFF); 2110 srcport = htons(ntohl(ports) >> 16); 2111 2112 connfp = &ipst->ips_ipcl_udp_fanout[ 2113 IPCL_UDP_HASH(dstport, ipst)]; 2114 mutex_enter(&connfp->connf_lock); 2115 connp = connfp->connf_head; 2116 2117 /* do a reverse lookup */ 2118 while ((connp != NULL) && 2119 (!IPCL_UDP_MATCH(connp, dstport, 2120 ipha->ipha_src, srcport, ipha->ipha_dst) || 2121 !IPCL_ZONE_MATCH(connp, zoneid))) { 2122 connp = connp->conn_next; 2123 } 2124 if (connp != NULL) 2125 CONN_INC_REF(connp); 2126 mutex_exit(&connfp->connf_lock); 2127 break; 2128 } 2129 case IPPROTO_SCTP: 2130 { 2131 in6_addr_t map_src, map_dst; 2132 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2134 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2135 ((uint16_t *)&ports)[0] = up[1]; 2136 ((uint16_t *)&ports)[1] = up[0]; 2137 2138 connp = sctp_find_conn(&map_src, &map_dst, ports, 2139 zoneid, ipst->ips_netstack->netstack_sctp); 2140 if (connp == NULL) { 2141 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2142 zoneid, ports, ipha, ipst); 2143 } else { 2144 CONN_INC_REF(connp); 2145 SCTP_REFRELE(CONN2SCTP(connp)); 2146 } 2147 break; 2148 } 2149 default: 2150 { 2151 ipha_t ripha; 2152 2153 ripha.ipha_src = ipha->ipha_dst; 2154 ripha.ipha_dst = ipha->ipha_src; 2155 ripha.ipha_protocol = ipha->ipha_protocol; 2156 2157 connfp = &ipst->ips_ipcl_proto_fanout[ 2158 ipha->ipha_protocol]; 2159 mutex_enter(&connfp->connf_lock); 2160 connp = connfp->connf_head; 2161 for (connp = connfp->connf_head; connp != NULL; 2162 connp = connp->conn_next) { 2163 if (IPCL_PROTO_MATCH(connp, 2164 ipha->ipha_protocol, &ripha, ill, 2165 0, zoneid)) { 2166 CONN_INC_REF(connp); 2167 break; 2168 } 2169 } 2170 mutex_exit(&connfp->connf_lock); 2171 } 2172 } 2173 if (connp != NULL) { 2174 if (connp->conn_nexthop_set) 2175 nexthop_addr = connp->conn_nexthop_v4; 2176 CONN_DEC_REF(connp); 2177 } 2178 return (nexthop_addr); 2179 } 2180 2181 /* Table from RFC 1191 */ 2182 static int icmp_frag_size_table[] = 2183 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2184 2185 /* 2186 * Process received ICMP Packet too big. 2187 * After updating any IRE it does the fanout to any matching transport streams. 2188 * Assumes the message has been pulled up till the IP header that caused 2189 * the error. 2190 * 2191 * Returns B_FALSE on failure and B_TRUE on success. 2192 */ 2193 static boolean_t 2194 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2195 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2196 ip_stack_t *ipst) 2197 { 2198 ire_t *ire, *first_ire; 2199 int mtu; 2200 int hdr_length; 2201 ipaddr_t nexthop_addr; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 /* Check for MTU discovery advice as described in RFC 1191 */ 2246 mtu = ntohs(icmph->icmph_du_mtu); 2247 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2248 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2249 ire = ire->ire_next) { 2250 /* 2251 * Look for the connection to which this ICMP message is 2252 * directed. If it has the IP_NEXTHOP option set, then the 2253 * search is limited to IREs with the MATCH_IRE_PRIVATE 2254 * option. Else the search is limited to regular IREs. 2255 */ 2256 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2257 (nexthop_addr != ire->ire_gateway_addr)) || 2258 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2259 (nexthop_addr != INADDR_ANY))) 2260 continue; 2261 2262 mutex_enter(&ire->ire_lock); 2263 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2264 /* Reduce the IRE max frag value as advised. */ 2265 ip1dbg(("Received mtu from router: %d (was %d)\n", 2266 mtu, ire->ire_max_frag)); 2267 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2268 } else { 2269 uint32_t length; 2270 int i; 2271 2272 /* 2273 * Use the table from RFC 1191 to figure out 2274 * the next "plateau" based on the length in 2275 * the original IP packet. 2276 */ 2277 length = ntohs(ipha->ipha_length); 2278 if (ire->ire_max_frag <= length && 2279 ire->ire_max_frag >= length - hdr_length) { 2280 /* 2281 * Handle broken BSD 4.2 systems that 2282 * return the wrong iph_length in ICMP 2283 * errors. 2284 */ 2285 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2286 length, ire->ire_max_frag)); 2287 length -= hdr_length; 2288 } 2289 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2290 if (length > icmp_frag_size_table[i]) 2291 break; 2292 } 2293 if (i == A_CNT(icmp_frag_size_table)) { 2294 /* Smaller than 68! */ 2295 ip1dbg(("Too big for packet size %d\n", 2296 length)); 2297 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2298 ire->ire_frag_flag = 0; 2299 } else { 2300 mtu = icmp_frag_size_table[i]; 2301 ip1dbg(("Calculated mtu %d, packet size %d, " 2302 "before %d", mtu, length, 2303 ire->ire_max_frag)); 2304 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2305 ip1dbg((", after %d\n", ire->ire_max_frag)); 2306 } 2307 /* Record the new max frag size for the ULP. */ 2308 icmph->icmph_du_zero = 0; 2309 icmph->icmph_du_mtu = 2310 htons((uint16_t)ire->ire_max_frag); 2311 } 2312 mutex_exit(&ire->ire_lock); 2313 } 2314 rw_exit(&first_ire->ire_bucket->irb_lock); 2315 ire_refrele(first_ire); 2316 return (B_TRUE); 2317 } 2318 2319 /* 2320 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2321 * calls this function. 2322 */ 2323 static mblk_t * 2324 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2325 { 2326 ipha_t *ipha; 2327 icmph_t *icmph; 2328 ipha_t *in_ipha; 2329 int length; 2330 2331 ASSERT(mp->b_datap->db_type == M_DATA); 2332 2333 /* 2334 * For Self-encapsulated packets, we added an extra IP header 2335 * without the options. Inner IP header is the one from which 2336 * the outer IP header was formed. Thus, we need to remove the 2337 * outer IP header. To do this, we pullup the whole message 2338 * and overlay whatever follows the outer IP header over the 2339 * outer IP header. 2340 */ 2341 2342 if (!pullupmsg(mp, -1)) 2343 return (NULL); 2344 2345 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2346 ipha = (ipha_t *)&icmph[1]; 2347 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2348 2349 /* 2350 * The length that we want to overlay is following the inner 2351 * IP header. Subtracting the IP header + icmp header + outer 2352 * IP header's length should give us the length that we want to 2353 * overlay. 2354 */ 2355 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2356 hdr_length; 2357 /* 2358 * Overlay whatever follows the inner header over the 2359 * outer header. 2360 */ 2361 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2362 2363 /* Set the wptr to account for the outer header */ 2364 mp->b_wptr -= hdr_length; 2365 return (mp); 2366 } 2367 2368 /* 2369 * Try to pass the ICMP message upstream in case the ULP cares. 2370 * 2371 * If the packet that caused the ICMP error is secure, we send 2372 * it to AH/ESP to make sure that the attached packet has a 2373 * valid association. ipha in the code below points to the 2374 * IP header of the packet that caused the error. 2375 * 2376 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2377 * in the context of IPsec. Normally we tell the upper layer 2378 * whenever we send the ire (including ip_bind), the IPsec header 2379 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2380 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2381 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2382 * same thing. As TCP has the IPsec options size that needs to be 2383 * adjusted, we just pass the MTU unchanged. 2384 * 2385 * IFN could have been generated locally or by some router. 2386 * 2387 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2388 * This happens because IP adjusted its value of MTU on an 2389 * earlier IFN message and could not tell the upper layer, 2390 * the new adjusted value of MTU e.g. Packet was encrypted 2391 * or there was not enough information to fanout to upper 2392 * layers. Thus on the next outbound datagram, ip_wput_ire 2393 * generates the IFN, where IPsec processing has *not* been 2394 * done. 2395 * 2396 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2397 * could have generated this. This happens because ire_max_frag 2398 * value in IP was set to a new value, while the IPsec processing 2399 * was being done and after we made the fragmentation check in 2400 * ip_wput_ire. Thus on return from IPsec processing, 2401 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2402 * and generates the IFN. As IPsec processing is over, we fanout 2403 * to AH/ESP to remove the header. 2404 * 2405 * In both these cases, ipsec_in_loopback will be set indicating 2406 * that IFN was generated locally. 2407 * 2408 * ROUTER : IFN could be secure or non-secure. 2409 * 2410 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2411 * packet in error has AH/ESP headers to validate the AH/ESP 2412 * headers. AH/ESP will verify whether there is a valid SA or 2413 * not and send it back. We will fanout again if we have more 2414 * data in the packet. 2415 * 2416 * If the packet in error does not have AH/ESP, we handle it 2417 * like any other case. 2418 * 2419 * * NON_SECURE : If the packet in error has AH/ESP headers, 2420 * we attach a dummy ipsec_in and send it up to AH/ESP 2421 * for validation. AH/ESP will verify whether there is a 2422 * valid SA or not and send it back. We will fanout again if 2423 * we have more data in the packet. 2424 * 2425 * If the packet in error does not have AH/ESP, we handle it 2426 * like any other case. 2427 */ 2428 static void 2429 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2430 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2431 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2432 zoneid_t zoneid) 2433 { 2434 uint16_t *up; /* Pointer to ports in ULP header */ 2435 uint32_t ports; /* reversed ports for fanout */ 2436 ipha_t ripha; /* With reversed addresses */ 2437 mblk_t *first_mp; 2438 ipsec_in_t *ii; 2439 tcph_t *tcph; 2440 conn_t *connp; 2441 ip_stack_t *ipst; 2442 2443 ASSERT(ill != NULL); 2444 2445 ASSERT(recv_ill != NULL); 2446 ipst = recv_ill->ill_ipst; 2447 2448 first_mp = mp; 2449 if (mctl_present) { 2450 mp = first_mp->b_cont; 2451 ASSERT(mp != NULL); 2452 2453 ii = (ipsec_in_t *)first_mp->b_rptr; 2454 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2455 } else { 2456 ii = NULL; 2457 } 2458 2459 switch (ipha->ipha_protocol) { 2460 case IPPROTO_UDP: 2461 /* 2462 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2463 * transport header. 2464 */ 2465 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2466 mp->b_wptr) { 2467 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2468 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2469 goto discard_pkt; 2470 } 2471 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2472 ipha = (ipha_t *)&icmph[1]; 2473 } 2474 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2475 2476 /* 2477 * Attempt to find a client stream based on port. 2478 * Note that we do a reverse lookup since the header is 2479 * in the form we sent it out. 2480 * The ripha header is only used for the IP_UDP_MATCH and we 2481 * only set the src and dst addresses and protocol. 2482 */ 2483 ripha.ipha_src = ipha->ipha_dst; 2484 ripha.ipha_dst = ipha->ipha_src; 2485 ripha.ipha_protocol = ipha->ipha_protocol; 2486 ((uint16_t *)&ports)[0] = up[1]; 2487 ((uint16_t *)&ports)[1] = up[0]; 2488 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2489 ntohl(ipha->ipha_src), ntohs(up[0]), 2490 ntohl(ipha->ipha_dst), ntohs(up[1]), 2491 icmph->icmph_type, icmph->icmph_code)); 2492 2493 /* Have to change db_type after any pullupmsg */ 2494 DB_TYPE(mp) = M_CTL; 2495 2496 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2497 mctl_present, ip_policy, recv_ill, zoneid); 2498 return; 2499 2500 case IPPROTO_TCP: 2501 /* 2502 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2503 * transport header. 2504 */ 2505 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2506 mp->b_wptr) { 2507 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2508 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2509 goto discard_pkt; 2510 } 2511 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2512 ipha = (ipha_t *)&icmph[1]; 2513 } 2514 /* 2515 * Find a TCP client stream for this packet. 2516 * Note that we do a reverse lookup since the header is 2517 * in the form we sent it out. 2518 */ 2519 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2520 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2521 ipst); 2522 if (connp == NULL) 2523 goto discard_pkt; 2524 2525 /* Have to change db_type after any pullupmsg */ 2526 DB_TYPE(mp) = M_CTL; 2527 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2528 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2529 return; 2530 2531 case IPPROTO_SCTP: 2532 /* 2533 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2534 * transport header. 2535 */ 2536 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2537 mp->b_wptr) { 2538 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2539 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2540 goto discard_pkt; 2541 } 2542 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2543 ipha = (ipha_t *)&icmph[1]; 2544 } 2545 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2546 /* 2547 * Find a SCTP client stream for this packet. 2548 * Note that we do a reverse lookup since the header is 2549 * in the form we sent it out. 2550 * The ripha header is only used for the matching and we 2551 * only set the src and dst addresses, protocol, and version. 2552 */ 2553 ripha.ipha_src = ipha->ipha_dst; 2554 ripha.ipha_dst = ipha->ipha_src; 2555 ripha.ipha_protocol = ipha->ipha_protocol; 2556 ripha.ipha_version_and_hdr_length = 2557 ipha->ipha_version_and_hdr_length; 2558 ((uint16_t *)&ports)[0] = up[1]; 2559 ((uint16_t *)&ports)[1] = up[0]; 2560 2561 /* Have to change db_type after any pullupmsg */ 2562 DB_TYPE(mp) = M_CTL; 2563 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2564 mctl_present, ip_policy, zoneid); 2565 return; 2566 2567 case IPPROTO_ESP: 2568 case IPPROTO_AH: { 2569 int ipsec_rc; 2570 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2571 2572 /* 2573 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2574 * We will re-use the IPSEC_IN if it is already present as 2575 * AH/ESP will not affect any fields in the IPSEC_IN for 2576 * ICMP errors. If there is no IPSEC_IN, allocate a new 2577 * one and attach it in the front. 2578 */ 2579 if (ii != NULL) { 2580 /* 2581 * ip_fanout_proto_again converts the ICMP errors 2582 * that come back from AH/ESP to M_DATA so that 2583 * if it is non-AH/ESP and we do a pullupmsg in 2584 * this function, it would work. Convert it back 2585 * to M_CTL before we send up as this is a ICMP 2586 * error. This could have been generated locally or 2587 * by some router. Validate the inner IPsec 2588 * headers. 2589 * 2590 * NOTE : ill_index is used by ip_fanout_proto_again 2591 * to locate the ill. 2592 */ 2593 ASSERT(ill != NULL); 2594 ii->ipsec_in_ill_index = 2595 ill->ill_phyint->phyint_ifindex; 2596 ii->ipsec_in_rill_index = 2597 recv_ill->ill_phyint->phyint_ifindex; 2598 DB_TYPE(first_mp->b_cont) = M_CTL; 2599 } else { 2600 /* 2601 * IPSEC_IN is not present. We attach a ipsec_in 2602 * message and send up to IPsec for validating 2603 * and removing the IPsec headers. Clear 2604 * ipsec_in_secure so that when we return 2605 * from IPsec, we don't mistakenly think that this 2606 * is a secure packet came from the network. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(first_mp == mp); 2612 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2613 if (first_mp == NULL) { 2614 freemsg(mp); 2615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2616 return; 2617 } 2618 ii = (ipsec_in_t *)first_mp->b_rptr; 2619 2620 /* This is not a secure packet */ 2621 ii->ipsec_in_secure = B_FALSE; 2622 first_mp->b_cont = mp; 2623 DB_TYPE(mp) = M_CTL; 2624 ASSERT(ill != NULL); 2625 ii->ipsec_in_ill_index = 2626 ill->ill_phyint->phyint_ifindex; 2627 ii->ipsec_in_rill_index = 2628 recv_ill->ill_phyint->phyint_ifindex; 2629 } 2630 ip2dbg(("icmp_inbound_error: ipsec\n")); 2631 2632 if (!ipsec_loaded(ipss)) { 2633 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2634 return; 2635 } 2636 2637 if (ipha->ipha_protocol == IPPROTO_ESP) 2638 ipsec_rc = ipsecesp_icmp_error(first_mp); 2639 else 2640 ipsec_rc = ipsecah_icmp_error(first_mp); 2641 if (ipsec_rc == IPSEC_STATUS_FAILED) 2642 return; 2643 2644 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2645 return; 2646 } 2647 default: 2648 /* 2649 * The ripha header is only used for the lookup and we 2650 * only set the src and dst addresses and protocol. 2651 */ 2652 ripha.ipha_src = ipha->ipha_dst; 2653 ripha.ipha_dst = ipha->ipha_src; 2654 ripha.ipha_protocol = ipha->ipha_protocol; 2655 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2656 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2657 ntohl(ipha->ipha_dst), 2658 icmph->icmph_type, icmph->icmph_code)); 2659 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2660 ipha_t *in_ipha; 2661 2662 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2663 mp->b_wptr) { 2664 if (!pullupmsg(mp, (uchar_t *)ipha + 2665 hdr_length + sizeof (ipha_t) - 2666 mp->b_rptr)) { 2667 goto discard_pkt; 2668 } 2669 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2670 ipha = (ipha_t *)&icmph[1]; 2671 } 2672 /* 2673 * Caller has verified that length has to be 2674 * at least the size of IP header. 2675 */ 2676 ASSERT(hdr_length >= sizeof (ipha_t)); 2677 /* 2678 * Check the sanity of the inner IP header like 2679 * we did for the outer header. 2680 */ 2681 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2682 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2683 goto discard_pkt; 2684 } 2685 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2686 goto discard_pkt; 2687 } 2688 /* Check for Self-encapsulated tunnels */ 2689 if (in_ipha->ipha_src == ipha->ipha_src && 2690 in_ipha->ipha_dst == ipha->ipha_dst) { 2691 2692 mp = icmp_inbound_self_encap_error(mp, 2693 iph_hdr_length, hdr_length); 2694 if (mp == NULL) 2695 goto discard_pkt; 2696 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2697 ipha = (ipha_t *)&icmph[1]; 2698 hdr_length = IPH_HDR_LENGTH(ipha); 2699 /* 2700 * The packet in error is self-encapsualted. 2701 * And we are finding it further encapsulated 2702 * which we could not have possibly generated. 2703 */ 2704 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2705 goto discard_pkt; 2706 } 2707 icmp_inbound_error_fanout(q, ill, first_mp, 2708 icmph, ipha, iph_hdr_length, hdr_length, 2709 mctl_present, ip_policy, recv_ill, zoneid); 2710 return; 2711 } 2712 } 2713 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2714 ipha->ipha_protocol == IPPROTO_IPV6) && 2715 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2716 ii != NULL && 2717 ii->ipsec_in_loopback && 2718 ii->ipsec_in_secure) { 2719 /* 2720 * For IP tunnels that get a looped-back 2721 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2722 * reported new MTU to take into account the IPsec 2723 * headers protecting this configured tunnel. 2724 * 2725 * This allows the tunnel module (tun.c) to blindly 2726 * accept the MTU reported in an ICMP "too big" 2727 * message. 2728 * 2729 * Non-looped back ICMP messages will just be 2730 * handled by the security protocols (if needed), 2731 * and the first subsequent packet will hit this 2732 * path. 2733 */ 2734 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2735 ipsec_in_extra_length(first_mp)); 2736 } 2737 /* Have to change db_type after any pullupmsg */ 2738 DB_TYPE(mp) = M_CTL; 2739 2740 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2741 ip_policy, recv_ill, zoneid); 2742 return; 2743 } 2744 /* NOTREACHED */ 2745 discard_pkt: 2746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2747 drop_pkt:; 2748 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2749 freemsg(first_mp); 2750 } 2751 2752 /* 2753 * Common IP options parser. 2754 * 2755 * Setup routine: fill in *optp with options-parsing state, then 2756 * tail-call ipoptp_next to return the first option. 2757 */ 2758 uint8_t 2759 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2760 { 2761 uint32_t totallen; /* total length of all options */ 2762 2763 totallen = ipha->ipha_version_and_hdr_length - 2764 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2765 totallen <<= 2; 2766 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2767 optp->ipoptp_end = optp->ipoptp_next + totallen; 2768 optp->ipoptp_flags = 0; 2769 return (ipoptp_next(optp)); 2770 } 2771 2772 /* 2773 * Common IP options parser: extract next option. 2774 */ 2775 uint8_t 2776 ipoptp_next(ipoptp_t *optp) 2777 { 2778 uint8_t *end = optp->ipoptp_end; 2779 uint8_t *cur = optp->ipoptp_next; 2780 uint8_t opt, len, pointer; 2781 2782 /* 2783 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2784 * has been corrupted. 2785 */ 2786 ASSERT(cur <= end); 2787 2788 if (cur == end) 2789 return (IPOPT_EOL); 2790 2791 opt = cur[IPOPT_OPTVAL]; 2792 2793 /* 2794 * Skip any NOP options. 2795 */ 2796 while (opt == IPOPT_NOP) { 2797 cur++; 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 opt = cur[IPOPT_OPTVAL]; 2801 } 2802 2803 if (opt == IPOPT_EOL) 2804 return (IPOPT_EOL); 2805 2806 /* 2807 * Option requiring a length. 2808 */ 2809 if ((cur + 1) >= end) { 2810 optp->ipoptp_flags |= IPOPTP_ERROR; 2811 return (IPOPT_EOL); 2812 } 2813 len = cur[IPOPT_OLEN]; 2814 if (len < 2) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 optp->ipoptp_cur = cur; 2819 optp->ipoptp_len = len; 2820 optp->ipoptp_next = cur + len; 2821 if (cur + len > end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 2826 /* 2827 * For the options which require a pointer field, make sure 2828 * its there, and make sure it points to either something 2829 * inside this option, or the end of the option. 2830 */ 2831 switch (opt) { 2832 case IPOPT_RR: 2833 case IPOPT_TS: 2834 case IPOPT_LSRR: 2835 case IPOPT_SSRR: 2836 if (len <= IPOPT_OFFSET) { 2837 optp->ipoptp_flags |= IPOPTP_ERROR; 2838 return (opt); 2839 } 2840 pointer = cur[IPOPT_OFFSET]; 2841 if (pointer - 1 > len) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 break; 2846 } 2847 2848 /* 2849 * Sanity check the pointer field based on the type of the 2850 * option. 2851 */ 2852 switch (opt) { 2853 case IPOPT_RR: 2854 case IPOPT_SSRR: 2855 case IPOPT_LSRR: 2856 if (pointer < IPOPT_MINOFF_SR) 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 break; 2859 case IPOPT_TS: 2860 if (pointer < IPOPT_MINOFF_IT) 2861 optp->ipoptp_flags |= IPOPTP_ERROR; 2862 /* 2863 * Note that the Internet Timestamp option also 2864 * contains two four bit fields (the Overflow field, 2865 * and the Flag field), which follow the pointer 2866 * field. We don't need to check that these fields 2867 * fall within the length of the option because this 2868 * was implicitely done above. We've checked that the 2869 * pointer value is at least IPOPT_MINOFF_IT, and that 2870 * it falls within the option. Since IPOPT_MINOFF_IT > 2871 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2872 */ 2873 ASSERT(len > IPOPT_POS_OV_FLG); 2874 break; 2875 } 2876 2877 return (opt); 2878 } 2879 2880 /* 2881 * Use the outgoing IP header to create an IP_OPTIONS option the way 2882 * it was passed down from the application. 2883 */ 2884 int 2885 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2886 { 2887 ipoptp_t opts; 2888 const uchar_t *opt; 2889 uint8_t optval; 2890 uint8_t optlen; 2891 uint32_t len = 0; 2892 uchar_t *buf1 = buf; 2893 2894 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2895 len += IP_ADDR_LEN; 2896 bzero(buf1, IP_ADDR_LEN); 2897 2898 /* 2899 * OK to cast away const here, as we don't store through the returned 2900 * opts.ipoptp_cur pointer. 2901 */ 2902 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2903 optval != IPOPT_EOL; 2904 optval = ipoptp_next(&opts)) { 2905 int off; 2906 2907 opt = opts.ipoptp_cur; 2908 optlen = opts.ipoptp_len; 2909 switch (optval) { 2910 case IPOPT_SSRR: 2911 case IPOPT_LSRR: 2912 2913 /* 2914 * Insert ipha_dst as the first entry in the source 2915 * route and move down the entries on step. 2916 * The last entry gets placed at buf1. 2917 */ 2918 buf[IPOPT_OPTVAL] = optval; 2919 buf[IPOPT_OLEN] = optlen; 2920 buf[IPOPT_OFFSET] = optlen; 2921 2922 off = optlen - IP_ADDR_LEN; 2923 if (off < 0) { 2924 /* No entries in source route */ 2925 break; 2926 } 2927 /* Last entry in source route */ 2928 bcopy(opt + off, buf1, IP_ADDR_LEN); 2929 off -= IP_ADDR_LEN; 2930 2931 while (off > 0) { 2932 bcopy(opt + off, 2933 buf + off + IP_ADDR_LEN, 2934 IP_ADDR_LEN); 2935 off -= IP_ADDR_LEN; 2936 } 2937 /* ipha_dst into first slot */ 2938 bcopy(&ipha->ipha_dst, 2939 buf + off + IP_ADDR_LEN, 2940 IP_ADDR_LEN); 2941 buf += optlen; 2942 len += optlen; 2943 break; 2944 2945 case IPOPT_COMSEC: 2946 case IPOPT_SECURITY: 2947 /* if passing up a label is not ok, then remove */ 2948 if (is_system_labeled()) 2949 break; 2950 /* FALLTHROUGH */ 2951 default: 2952 bcopy(opt, buf, optlen); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 } 2957 } 2958 done: 2959 /* Pad the resulting options */ 2960 while (len & 0x3) { 2961 *buf++ = IPOPT_EOL; 2962 len++; 2963 } 2964 return (len); 2965 } 2966 2967 /* 2968 * Update any record route or timestamp options to include this host. 2969 * Reverse any source route option. 2970 * This routine assumes that the options are well formed i.e. that they 2971 * have already been checked. 2972 */ 2973 static void 2974 icmp_options_update(ipha_t *ipha) 2975 { 2976 ipoptp_t opts; 2977 uchar_t *opt; 2978 uint8_t optval; 2979 ipaddr_t src; /* Our local address */ 2980 ipaddr_t dst; 2981 2982 ip2dbg(("icmp_options_update\n")); 2983 src = ipha->ipha_src; 2984 dst = ipha->ipha_dst; 2985 2986 for (optval = ipoptp_first(&opts, ipha); 2987 optval != IPOPT_EOL; 2988 optval = ipoptp_next(&opts)) { 2989 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2990 opt = opts.ipoptp_cur; 2991 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2992 optval, opts.ipoptp_len)); 2993 switch (optval) { 2994 int off1, off2; 2995 case IPOPT_SSRR: 2996 case IPOPT_LSRR: 2997 /* 2998 * Reverse the source route. The first entry 2999 * should be the next to last one in the current 3000 * source route (the last entry is our address). 3001 * The last entry should be the final destination. 3002 */ 3003 off1 = IPOPT_MINOFF_SR - 1; 3004 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3005 if (off2 < 0) { 3006 /* No entries in source route */ 3007 ip1dbg(( 3008 "icmp_options_update: bad src route\n")); 3009 break; 3010 } 3011 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3012 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3013 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3014 off2 -= IP_ADDR_LEN; 3015 3016 while (off1 < off2) { 3017 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3018 bcopy((char *)opt + off2, (char *)opt + off1, 3019 IP_ADDR_LEN); 3020 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3021 off1 += IP_ADDR_LEN; 3022 off2 -= IP_ADDR_LEN; 3023 } 3024 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3025 break; 3026 } 3027 } 3028 } 3029 3030 /* 3031 * Process received ICMP Redirect messages. 3032 */ 3033 static void 3034 icmp_redirect(ill_t *ill, mblk_t *mp) 3035 { 3036 ipha_t *ipha; 3037 int iph_hdr_length; 3038 icmph_t *icmph; 3039 ipha_t *ipha_err; 3040 ire_t *ire; 3041 ire_t *prev_ire; 3042 ire_t *save_ire; 3043 ipaddr_t src, dst, gateway; 3044 iulp_t ulp_info = { 0 }; 3045 int error; 3046 ip_stack_t *ipst; 3047 3048 ASSERT(ill != NULL); 3049 ipst = ill->ill_ipst; 3050 3051 ipha = (ipha_t *)mp->b_rptr; 3052 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3053 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3054 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3055 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3056 freemsg(mp); 3057 return; 3058 } 3059 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3060 ipha_err = (ipha_t *)&icmph[1]; 3061 src = ipha->ipha_src; 3062 dst = ipha_err->ipha_dst; 3063 gateway = icmph->icmph_rd_gateway; 3064 /* Make sure the new gateway is reachable somehow. */ 3065 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3066 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3067 /* 3068 * Make sure we had a route for the dest in question and that 3069 * that route was pointing to the old gateway (the source of the 3070 * redirect packet.) 3071 */ 3072 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3073 NULL, MATCH_IRE_GW, ipst); 3074 /* 3075 * Check that 3076 * the redirect was not from ourselves 3077 * the new gateway and the old gateway are directly reachable 3078 */ 3079 if (!prev_ire || 3080 !ire || 3081 ire->ire_type == IRE_LOCAL) { 3082 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3083 freemsg(mp); 3084 if (ire != NULL) 3085 ire_refrele(ire); 3086 if (prev_ire != NULL) 3087 ire_refrele(prev_ire); 3088 return; 3089 } 3090 3091 /* 3092 * Should we use the old ULP info to create the new gateway? From 3093 * a user's perspective, we should inherit the info so that it 3094 * is a "smooth" transition. If we do not do that, then new 3095 * connections going thru the new gateway will have no route metrics, 3096 * which is counter-intuitive to user. From a network point of 3097 * view, this may or may not make sense even though the new gateway 3098 * is still directly connected to us so the route metrics should not 3099 * change much. 3100 * 3101 * But if the old ire_uinfo is not initialized, we do another 3102 * recursive lookup on the dest using the new gateway. There may 3103 * be a route to that. If so, use it to initialize the redirect 3104 * route. 3105 */ 3106 if (prev_ire->ire_uinfo.iulp_set) { 3107 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3108 } else { 3109 ire_t *tmp_ire; 3110 ire_t *sire; 3111 3112 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3113 ALL_ZONES, 0, NULL, 3114 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3115 ipst); 3116 if (sire != NULL) { 3117 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 /* 3119 * If sire != NULL, ire_ftable_lookup() should not 3120 * return a NULL value. 3121 */ 3122 ASSERT(tmp_ire != NULL); 3123 ire_refrele(tmp_ire); 3124 ire_refrele(sire); 3125 } else if (tmp_ire != NULL) { 3126 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3127 sizeof (iulp_t)); 3128 ire_refrele(tmp_ire); 3129 } 3130 } 3131 if (prev_ire->ire_type == IRE_CACHE) 3132 ire_delete(prev_ire); 3133 ire_refrele(prev_ire); 3134 /* 3135 * TODO: more precise handling for cases 0, 2, 3, the latter two 3136 * require TOS routing 3137 */ 3138 switch (icmph->icmph_code) { 3139 case 0: 3140 case 1: 3141 /* TODO: TOS specificity for cases 2 and 3 */ 3142 case 2: 3143 case 3: 3144 break; 3145 default: 3146 freemsg(mp); 3147 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3148 ire_refrele(ire); 3149 return; 3150 } 3151 /* 3152 * Create a Route Association. This will allow us to remember that 3153 * someone we believe told us to use the particular gateway. 3154 */ 3155 save_ire = ire; 3156 ire = ire_create( 3157 (uchar_t *)&dst, /* dest addr */ 3158 (uchar_t *)&ip_g_all_ones, /* mask */ 3159 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3160 (uchar_t *)&gateway, /* gateway addr */ 3161 &save_ire->ire_max_frag, /* max frag */ 3162 NULL, /* no src nce */ 3163 NULL, /* no rfq */ 3164 NULL, /* no stq */ 3165 IRE_HOST, 3166 NULL, /* ipif */ 3167 0, /* cmask */ 3168 0, /* phandle */ 3169 0, /* ihandle */ 3170 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3171 &ulp_info, 3172 NULL, /* tsol_gc_t */ 3173 NULL, /* gcgrp */ 3174 ipst); 3175 3176 if (ire == NULL) { 3177 freemsg(mp); 3178 ire_refrele(save_ire); 3179 return; 3180 } 3181 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3182 ire_refrele(save_ire); 3183 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3184 3185 if (error == 0) { 3186 ire_refrele(ire); /* Held in ire_add_v4 */ 3187 /* tell routing sockets that we received a redirect */ 3188 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3189 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3190 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3191 } 3192 3193 /* 3194 * Delete any existing IRE_HOST type redirect ires for this destination. 3195 * This together with the added IRE has the effect of 3196 * modifying an existing redirect. 3197 */ 3198 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3199 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3200 if (prev_ire != NULL) { 3201 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3202 ire_delete(prev_ire); 3203 ire_refrele(prev_ire); 3204 } 3205 3206 freemsg(mp); 3207 } 3208 3209 /* 3210 * Generate an ICMP parameter problem message. 3211 */ 3212 static void 3213 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3214 ip_stack_t *ipst) 3215 { 3216 icmph_t icmph; 3217 boolean_t mctl_present; 3218 mblk_t *first_mp; 3219 3220 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3221 3222 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3223 if (mctl_present) 3224 freeb(first_mp); 3225 return; 3226 } 3227 3228 bzero(&icmph, sizeof (icmph_t)); 3229 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3230 icmph.icmph_pp_ptr = ptr; 3231 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3232 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3233 ipst); 3234 } 3235 3236 /* 3237 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3238 * the ICMP header pointed to by "stuff". (May be called as writer.) 3239 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3240 * an icmp error packet can be sent. 3241 * Assigns an appropriate source address to the packet. If ipha_dst is 3242 * one of our addresses use it for source. Otherwise pick a source based 3243 * on a route lookup back to ipha_src. 3244 * Note that ipha_src must be set here since the 3245 * packet is likely to arrive on an ill queue in ip_wput() which will 3246 * not set a source address. 3247 */ 3248 static void 3249 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3250 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3251 { 3252 ipaddr_t dst; 3253 icmph_t *icmph; 3254 ipha_t *ipha; 3255 uint_t len_needed; 3256 size_t msg_len; 3257 mblk_t *mp1; 3258 ipaddr_t src; 3259 ire_t *ire; 3260 mblk_t *ipsec_mp; 3261 ipsec_out_t *io = NULL; 3262 3263 if (mctl_present) { 3264 /* 3265 * If it is : 3266 * 3267 * 1) a IPSEC_OUT, then this is caused by outbound 3268 * datagram originating on this host. IPsec processing 3269 * may or may not have been done. Refer to comments above 3270 * icmp_inbound_error_fanout for details. 3271 * 3272 * 2) a IPSEC_IN if we are generating a icmp_message 3273 * for an incoming datagram destined for us i.e called 3274 * from ip_fanout_send_icmp. 3275 */ 3276 ipsec_info_t *in; 3277 ipsec_mp = mp; 3278 mp = ipsec_mp->b_cont; 3279 3280 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3281 ipha = (ipha_t *)mp->b_rptr; 3282 3283 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3284 in->ipsec_info_type == IPSEC_IN); 3285 3286 if (in->ipsec_info_type == IPSEC_IN) { 3287 /* 3288 * Convert the IPSEC_IN to IPSEC_OUT. 3289 */ 3290 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3291 BUMP_MIB(&ipst->ips_ip_mib, 3292 ipIfStatsOutDiscards); 3293 return; 3294 } 3295 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3296 } else { 3297 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3298 io = (ipsec_out_t *)in; 3299 /* 3300 * Clear out ipsec_out_proc_begin, so we do a fresh 3301 * ire lookup. 3302 */ 3303 io->ipsec_out_proc_begin = B_FALSE; 3304 } 3305 ASSERT(zoneid == io->ipsec_out_zoneid); 3306 ASSERT(zoneid != ALL_ZONES); 3307 } else { 3308 /* 3309 * This is in clear. The icmp message we are building 3310 * here should go out in clear. 3311 * 3312 * Pardon the convolution of it all, but it's easier to 3313 * allocate a "use cleartext" IPSEC_IN message and convert 3314 * it than it is to allocate a new one. 3315 */ 3316 ipsec_in_t *ii; 3317 ASSERT(DB_TYPE(mp) == M_DATA); 3318 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3319 if (ipsec_mp == NULL) { 3320 freemsg(mp); 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3325 3326 /* This is not a secure packet */ 3327 ii->ipsec_in_secure = B_FALSE; 3328 /* 3329 * For trusted extensions using a shared IP address we can 3330 * send using any zoneid. 3331 */ 3332 if (zoneid == ALL_ZONES) 3333 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3334 else 3335 ii->ipsec_in_zoneid = zoneid; 3336 ipsec_mp->b_cont = mp; 3337 ipha = (ipha_t *)mp->b_rptr; 3338 /* 3339 * Convert the IPSEC_IN to IPSEC_OUT. 3340 */ 3341 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3343 return; 3344 } 3345 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3346 } 3347 3348 /* Remember our eventual destination */ 3349 dst = ipha->ipha_src; 3350 3351 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3352 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3353 if (ire != NULL && 3354 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3355 src = ipha->ipha_dst; 3356 } else { 3357 if (ire != NULL) 3358 ire_refrele(ire); 3359 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3360 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3361 ipst); 3362 if (ire == NULL) { 3363 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3364 freemsg(ipsec_mp); 3365 return; 3366 } 3367 src = ire->ire_src_addr; 3368 } 3369 3370 if (ire != NULL) 3371 ire_refrele(ire); 3372 3373 /* 3374 * Check if we can send back more then 8 bytes in addition to 3375 * the IP header. We try to send 64 bytes of data and the internal 3376 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3377 */ 3378 len_needed = IPH_HDR_LENGTH(ipha); 3379 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3380 ipha->ipha_protocol == IPPROTO_IPV6) { 3381 3382 if (!pullupmsg(mp, -1)) { 3383 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3384 freemsg(ipsec_mp); 3385 return; 3386 } 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3390 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3391 len_needed)); 3392 } else { 3393 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3394 3395 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3396 len_needed += ip_hdr_length_v6(mp, ip6h); 3397 } 3398 } 3399 len_needed += ipst->ips_ip_icmp_return; 3400 msg_len = msgdsize(mp); 3401 if (msg_len > len_needed) { 3402 (void) adjmsg(mp, len_needed - msg_len); 3403 msg_len = len_needed; 3404 } 3405 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3406 if (mp1 == NULL) { 3407 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3408 freemsg(ipsec_mp); 3409 return; 3410 } 3411 mp1->b_cont = mp; 3412 mp = mp1; 3413 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3414 ipsec_mp->b_rptr == (uint8_t *)io && 3415 io->ipsec_out_type == IPSEC_OUT); 3416 ipsec_mp->b_cont = mp; 3417 3418 /* 3419 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3420 * node generates be accepted in peace by all on-host destinations. 3421 * If we do NOT assume that all on-host destinations trust 3422 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3423 * (Look for ipsec_out_icmp_loopback). 3424 */ 3425 io->ipsec_out_icmp_loopback = B_TRUE; 3426 3427 ipha = (ipha_t *)mp->b_rptr; 3428 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3429 *ipha = icmp_ipha; 3430 ipha->ipha_src = src; 3431 ipha->ipha_dst = dst; 3432 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3433 msg_len += sizeof (icmp_ipha) + len; 3434 if (msg_len > IP_MAXPACKET) { 3435 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3436 msg_len = IP_MAXPACKET; 3437 } 3438 ipha->ipha_length = htons((uint16_t)msg_len); 3439 icmph = (icmph_t *)&ipha[1]; 3440 bcopy(stuff, icmph, len); 3441 icmph->icmph_checksum = 0; 3442 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3443 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3444 put(q, ipsec_mp); 3445 } 3446 3447 /* 3448 * Determine if an ICMP error packet can be sent given the rate limit. 3449 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3450 * in milliseconds) and a burst size. Burst size number of packets can 3451 * be sent arbitrarely closely spaced. 3452 * The state is tracked using two variables to implement an approximate 3453 * token bucket filter: 3454 * icmp_pkt_err_last - lbolt value when the last burst started 3455 * icmp_pkt_err_sent - number of packets sent in current burst 3456 */ 3457 boolean_t 3458 icmp_err_rate_limit(ip_stack_t *ipst) 3459 { 3460 clock_t now = TICK_TO_MSEC(lbolt); 3461 uint_t refilled; /* Number of packets refilled in tbf since last */ 3462 /* Guard against changes by loading into local variable */ 3463 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3464 3465 if (err_interval == 0) 3466 return (B_FALSE); 3467 3468 if (ipst->ips_icmp_pkt_err_last > now) { 3469 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3470 ipst->ips_icmp_pkt_err_last = 0; 3471 ipst->ips_icmp_pkt_err_sent = 0; 3472 } 3473 /* 3474 * If we are in a burst update the token bucket filter. 3475 * Update the "last" time to be close to "now" but make sure 3476 * we don't loose precision. 3477 */ 3478 if (ipst->ips_icmp_pkt_err_sent != 0) { 3479 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3480 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } else { 3483 ipst->ips_icmp_pkt_err_sent -= refilled; 3484 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3485 } 3486 } 3487 if (ipst->ips_icmp_pkt_err_sent == 0) { 3488 /* Start of new burst */ 3489 ipst->ips_icmp_pkt_err_last = now; 3490 } 3491 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3492 ipst->ips_icmp_pkt_err_sent++; 3493 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3494 ipst->ips_icmp_pkt_err_sent)); 3495 return (B_FALSE); 3496 } 3497 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3498 return (B_TRUE); 3499 } 3500 3501 /* 3502 * Check if it is ok to send an IPv4 ICMP error packet in 3503 * response to the IPv4 packet in mp. 3504 * Free the message and return null if no 3505 * ICMP error packet should be sent. 3506 */ 3507 static mblk_t * 3508 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3509 { 3510 icmph_t *icmph; 3511 ipha_t *ipha; 3512 uint_t len_needed; 3513 ire_t *src_ire; 3514 ire_t *dst_ire; 3515 3516 if (!mp) 3517 return (NULL); 3518 ipha = (ipha_t *)mp->b_rptr; 3519 if (ip_csum_hdr(ipha)) { 3520 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3521 freemsg(mp); 3522 return (NULL); 3523 } 3524 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3525 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3526 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3527 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3528 if (src_ire != NULL || dst_ire != NULL || 3529 CLASSD(ipha->ipha_dst) || 3530 CLASSD(ipha->ipha_src) || 3531 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3532 /* Note: only errors to the fragment with offset 0 */ 3533 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3534 freemsg(mp); 3535 if (src_ire != NULL) 3536 ire_refrele(src_ire); 3537 if (dst_ire != NULL) 3538 ire_refrele(dst_ire); 3539 return (NULL); 3540 } 3541 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3542 /* 3543 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3544 * errors in response to any ICMP errors. 3545 */ 3546 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3547 if (mp->b_wptr - mp->b_rptr < len_needed) { 3548 if (!pullupmsg(mp, len_needed)) { 3549 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3550 freemsg(mp); 3551 return (NULL); 3552 } 3553 ipha = (ipha_t *)mp->b_rptr; 3554 } 3555 icmph = (icmph_t *) 3556 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3557 switch (icmph->icmph_type) { 3558 case ICMP_DEST_UNREACHABLE: 3559 case ICMP_SOURCE_QUENCH: 3560 case ICMP_TIME_EXCEEDED: 3561 case ICMP_PARAM_PROBLEM: 3562 case ICMP_REDIRECT: 3563 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3564 freemsg(mp); 3565 return (NULL); 3566 default: 3567 break; 3568 } 3569 } 3570 /* 3571 * If this is a labeled system, then check to see if we're allowed to 3572 * send a response to this particular sender. If not, then just drop. 3573 */ 3574 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3575 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3576 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3577 freemsg(mp); 3578 return (NULL); 3579 } 3580 if (icmp_err_rate_limit(ipst)) { 3581 /* 3582 * Only send ICMP error packets every so often. 3583 * This should be done on a per port/source basis, 3584 * but for now this will suffice. 3585 */ 3586 freemsg(mp); 3587 return (NULL); 3588 } 3589 return (mp); 3590 } 3591 3592 /* 3593 * Generate an ICMP redirect message. 3594 */ 3595 static void 3596 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3597 { 3598 icmph_t icmph; 3599 3600 /* 3601 * We are called from ip_rput where we could 3602 * not have attached an IPSEC_IN. 3603 */ 3604 ASSERT(mp->b_datap->db_type == M_DATA); 3605 3606 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3607 return; 3608 } 3609 3610 bzero(&icmph, sizeof (icmph_t)); 3611 icmph.icmph_type = ICMP_REDIRECT; 3612 icmph.icmph_code = 1; 3613 icmph.icmph_rd_gateway = gateway; 3614 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3615 /* Redirects sent by router, and router is global zone */ 3616 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3617 } 3618 3619 /* 3620 * Generate an ICMP time exceeded message. 3621 */ 3622 void 3623 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3624 ip_stack_t *ipst) 3625 { 3626 icmph_t icmph; 3627 boolean_t mctl_present; 3628 mblk_t *first_mp; 3629 3630 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3631 3632 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3633 if (mctl_present) 3634 freeb(first_mp); 3635 return; 3636 } 3637 3638 bzero(&icmph, sizeof (icmph_t)); 3639 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3640 icmph.icmph_code = code; 3641 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3642 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3643 ipst); 3644 } 3645 3646 /* 3647 * Generate an ICMP unreachable message. 3648 */ 3649 void 3650 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3651 ip_stack_t *ipst) 3652 { 3653 icmph_t icmph; 3654 mblk_t *first_mp; 3655 boolean_t mctl_present; 3656 3657 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3658 3659 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3660 if (mctl_present) 3661 freeb(first_mp); 3662 return; 3663 } 3664 3665 bzero(&icmph, sizeof (icmph_t)); 3666 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3667 icmph.icmph_code = code; 3668 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3669 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3670 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3671 zoneid, ipst); 3672 } 3673 3674 /* 3675 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3676 * duplicate. As long as someone else holds the address, the interface will 3677 * stay down. When that conflict goes away, the interface is brought back up. 3678 * This is done so that accidental shutdowns of addresses aren't made 3679 * permanent. Your server will recover from a failure. 3680 * 3681 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3682 * user space process (dhcpagent). 3683 * 3684 * Recovery completes if ARP reports that the address is now ours (via 3685 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3686 * 3687 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3688 */ 3689 static void 3690 ipif_dup_recovery(void *arg) 3691 { 3692 ipif_t *ipif = arg; 3693 ill_t *ill = ipif->ipif_ill; 3694 mblk_t *arp_add_mp; 3695 mblk_t *arp_del_mp; 3696 area_t *area; 3697 ip_stack_t *ipst = ill->ill_ipst; 3698 3699 ipif->ipif_recovery_id = 0; 3700 3701 /* 3702 * No lock needed for moving or condemned check, as this is just an 3703 * optimization. 3704 */ 3705 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3706 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3707 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3708 /* No reason to try to bring this address back. */ 3709 return; 3710 } 3711 3712 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3713 goto alloc_fail; 3714 3715 if (ipif->ipif_arp_del_mp == NULL) { 3716 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3717 goto alloc_fail; 3718 ipif->ipif_arp_del_mp = arp_del_mp; 3719 } 3720 3721 /* Setting the 'unverified' flag restarts DAD */ 3722 area = (area_t *)arp_add_mp->b_rptr; 3723 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3724 ACE_F_UNVERIFIED; 3725 putnext(ill->ill_rq, arp_add_mp); 3726 return; 3727 3728 alloc_fail: 3729 /* 3730 * On allocation failure, just restart the timer. Note that the ipif 3731 * is down here, so no other thread could be trying to start a recovery 3732 * timer. The ill_lock protects the condemned flag and the recovery 3733 * timer ID. 3734 */ 3735 freemsg(arp_add_mp); 3736 mutex_enter(&ill->ill_lock); 3737 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3738 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3739 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3740 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3741 } 3742 mutex_exit(&ill->ill_lock); 3743 } 3744 3745 /* 3746 * This is for exclusive changes due to ARP. Either tear down an interface due 3747 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3748 */ 3749 /* ARGSUSED */ 3750 static void 3751 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3752 { 3753 ill_t *ill = rq->q_ptr; 3754 arh_t *arh; 3755 ipaddr_t src; 3756 ipif_t *ipif; 3757 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3758 char hbuf[MAC_STR_LEN]; 3759 char sbuf[INET_ADDRSTRLEN]; 3760 const char *failtype; 3761 boolean_t bring_up; 3762 ip_stack_t *ipst = ill->ill_ipst; 3763 3764 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3765 case AR_CN_READY: 3766 failtype = NULL; 3767 bring_up = B_TRUE; 3768 break; 3769 case AR_CN_FAILED: 3770 failtype = "in use"; 3771 bring_up = B_FALSE; 3772 break; 3773 default: 3774 failtype = "claimed"; 3775 bring_up = B_FALSE; 3776 break; 3777 } 3778 3779 arh = (arh_t *)mp->b_cont->b_rptr; 3780 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3781 3782 /* Handle failures due to probes */ 3783 if (src == 0) { 3784 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3785 IP_ADDR_LEN); 3786 } 3787 3788 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3789 sizeof (hbuf)); 3790 (void) ip_dot_addr(src, sbuf); 3791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3792 3793 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3794 ipif->ipif_lcl_addr != src) { 3795 continue; 3796 } 3797 3798 /* 3799 * If we failed on a recovery probe, then restart the timer to 3800 * try again later. 3801 */ 3802 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3803 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3804 ill->ill_net_type == IRE_IF_RESOLVER && 3805 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3806 ipst->ips_ip_dup_recovery > 0 && 3807 ipif->ipif_recovery_id == 0) { 3808 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3809 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3810 continue; 3811 } 3812 3813 /* 3814 * If what we're trying to do has already been done, then do 3815 * nothing. 3816 */ 3817 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3818 continue; 3819 3820 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3821 3822 if (failtype == NULL) { 3823 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3824 ibuf); 3825 } else { 3826 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3827 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3828 } 3829 3830 if (bring_up) { 3831 ASSERT(ill->ill_dl_up); 3832 /* 3833 * Free up the ARP delete message so we can allocate 3834 * a fresh one through the normal path. 3835 */ 3836 freemsg(ipif->ipif_arp_del_mp); 3837 ipif->ipif_arp_del_mp = NULL; 3838 if (ipif_resolver_up(ipif, Res_act_initial) != 3839 EINPROGRESS) { 3840 ipif->ipif_addr_ready = 1; 3841 (void) ipif_up_done(ipif); 3842 } 3843 continue; 3844 } 3845 3846 mutex_enter(&ill->ill_lock); 3847 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3848 ipif->ipif_flags |= IPIF_DUPLICATE; 3849 ill->ill_ipif_dup_count++; 3850 mutex_exit(&ill->ill_lock); 3851 /* 3852 * Already exclusive on the ill; no need to handle deferred 3853 * processing here. 3854 */ 3855 (void) ipif_down(ipif, NULL, NULL); 3856 ipif_down_tail(ipif); 3857 mutex_enter(&ill->ill_lock); 3858 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3859 ill->ill_net_type == IRE_IF_RESOLVER && 3860 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3861 ipst->ips_ip_dup_recovery > 0) { 3862 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3863 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3864 } 3865 mutex_exit(&ill->ill_lock); 3866 } 3867 freemsg(mp); 3868 } 3869 3870 /* ARGSUSED */ 3871 static void 3872 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3873 { 3874 ill_t *ill = rq->q_ptr; 3875 arh_t *arh; 3876 ipaddr_t src; 3877 ipif_t *ipif; 3878 3879 arh = (arh_t *)mp->b_cont->b_rptr; 3880 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3881 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3882 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3883 (void) ipif_resolver_up(ipif, Res_act_defend); 3884 } 3885 freemsg(mp); 3886 } 3887 3888 /* 3889 * News from ARP. ARP sends notification of interesting events down 3890 * to its clients using M_CTL messages with the interesting ARP packet 3891 * attached via b_cont. 3892 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3893 * queue as opposed to ARP sending the message to all the clients, i.e. all 3894 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3895 * table if a cache IRE is found to delete all the entries for the address in 3896 * the packet. 3897 */ 3898 static void 3899 ip_arp_news(queue_t *q, mblk_t *mp) 3900 { 3901 arcn_t *arcn; 3902 arh_t *arh; 3903 ire_t *ire = NULL; 3904 char hbuf[MAC_STR_LEN]; 3905 char sbuf[INET_ADDRSTRLEN]; 3906 ipaddr_t src; 3907 in6_addr_t v6src; 3908 boolean_t isv6 = B_FALSE; 3909 ipif_t *ipif; 3910 ill_t *ill; 3911 ip_stack_t *ipst; 3912 3913 if (CONN_Q(q)) { 3914 conn_t *connp = Q_TO_CONN(q); 3915 3916 ipst = connp->conn_netstack->netstack_ip; 3917 } else { 3918 ill_t *ill = (ill_t *)q->q_ptr; 3919 3920 ipst = ill->ill_ipst; 3921 } 3922 3923 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3924 if (q->q_next) { 3925 putnext(q, mp); 3926 } else 3927 freemsg(mp); 3928 return; 3929 } 3930 arh = (arh_t *)mp->b_cont->b_rptr; 3931 /* Is it one we are interested in? */ 3932 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3933 isv6 = B_TRUE; 3934 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3935 IPV6_ADDR_LEN); 3936 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3937 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3938 IP_ADDR_LEN); 3939 } else { 3940 freemsg(mp); 3941 return; 3942 } 3943 3944 ill = q->q_ptr; 3945 3946 arcn = (arcn_t *)mp->b_rptr; 3947 switch (arcn->arcn_code) { 3948 case AR_CN_BOGON: 3949 /* 3950 * Someone is sending ARP packets with a source protocol 3951 * address that we have published and for which we believe our 3952 * entry is authoritative and (when ill_arp_extend is set) 3953 * verified to be unique on the network. 3954 * 3955 * The ARP module internally handles the cases where the sender 3956 * is just probing (for DAD) and where the hardware address of 3957 * a non-authoritative entry has changed. Thus, these are the 3958 * real conflicts, and we have to do resolution. 3959 * 3960 * We back away quickly from the address if it's from DHCP or 3961 * otherwise temporary and hasn't been used recently (or at 3962 * all). We'd like to include "deprecated" addresses here as 3963 * well (as there's no real reason to defend something we're 3964 * discarding), but IPMP "reuses" this flag to mean something 3965 * other than the standard meaning. 3966 * 3967 * If the ARP module above is not extended (meaning that it 3968 * doesn't know how to defend the address), then we just log 3969 * the problem as we always did and continue on. It's not 3970 * right, but there's little else we can do, and those old ATM 3971 * users are going away anyway. 3972 */ 3973 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3974 hbuf, sizeof (hbuf)); 3975 (void) ip_dot_addr(src, sbuf); 3976 if (isv6) { 3977 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3978 ipst); 3979 } else { 3980 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3981 } 3982 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3983 uint32_t now; 3984 uint32_t maxage; 3985 clock_t lused; 3986 uint_t maxdefense; 3987 uint_t defs; 3988 3989 /* 3990 * First, figure out if this address hasn't been used 3991 * in a while. If it hasn't, then it's a better 3992 * candidate for abandoning. 3993 */ 3994 ipif = ire->ire_ipif; 3995 ASSERT(ipif != NULL); 3996 now = gethrestime_sec(); 3997 maxage = now - ire->ire_create_time; 3998 if (maxage > ipst->ips_ip_max_temp_idle) 3999 maxage = ipst->ips_ip_max_temp_idle; 4000 lused = drv_hztousec(ddi_get_lbolt() - 4001 ire->ire_last_used_time) / MICROSEC + 1; 4002 if (lused >= maxage && (ipif->ipif_flags & 4003 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4004 maxdefense = ipst->ips_ip_max_temp_defend; 4005 else 4006 maxdefense = ipst->ips_ip_max_defend; 4007 4008 /* 4009 * Now figure out how many times we've defended 4010 * ourselves. Ignore defenses that happened long in 4011 * the past. 4012 */ 4013 mutex_enter(&ire->ire_lock); 4014 if ((defs = ire->ire_defense_count) > 0 && 4015 now - ire->ire_defense_time > 4016 ipst->ips_ip_defend_interval) { 4017 ire->ire_defense_count = defs = 0; 4018 } 4019 ire->ire_defense_count++; 4020 ire->ire_defense_time = now; 4021 mutex_exit(&ire->ire_lock); 4022 ill_refhold(ill); 4023 ire_refrele(ire); 4024 4025 /* 4026 * If we've defended ourselves too many times already, 4027 * then give up and tear down the interface(s) using 4028 * this address. Otherwise, defend by sending out a 4029 * gratuitous ARP. 4030 */ 4031 if (defs >= maxdefense && ill->ill_arp_extend) { 4032 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4033 B_FALSE); 4034 } else { 4035 cmn_err(CE_WARN, 4036 "node %s is using our IP address %s on %s", 4037 hbuf, sbuf, ill->ill_name); 4038 /* 4039 * If this is an old (ATM) ARP module, then 4040 * don't try to defend the address. Remain 4041 * compatible with the old behavior. Defend 4042 * only with new ARP. 4043 */ 4044 if (ill->ill_arp_extend) { 4045 qwriter_ip(ill, q, mp, ip_arp_defend, 4046 NEW_OP, B_FALSE); 4047 } else { 4048 ill_refrele(ill); 4049 } 4050 } 4051 return; 4052 } 4053 cmn_err(CE_WARN, 4054 "proxy ARP problem? Node '%s' is using %s on %s", 4055 hbuf, sbuf, ill->ill_name); 4056 if (ire != NULL) 4057 ire_refrele(ire); 4058 break; 4059 case AR_CN_ANNOUNCE: 4060 if (isv6) { 4061 /* 4062 * For XRESOLV interfaces. 4063 * Delete the IRE cache entry and NCE for this 4064 * v6 address 4065 */ 4066 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4067 /* 4068 * If v6src is a non-zero, it's a router address 4069 * as below. Do the same sort of thing to clean 4070 * out off-net IRE_CACHE entries that go through 4071 * the router. 4072 */ 4073 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4074 ire_walk_v6(ire_delete_cache_gw_v6, 4075 (char *)&v6src, ALL_ZONES, ipst); 4076 } 4077 } else { 4078 nce_hw_map_t hwm; 4079 4080 /* 4081 * ARP gives us a copy of any packet where it thinks 4082 * the address has changed, so that we can update our 4083 * caches. We're responsible for caching known answers 4084 * in the current design. We check whether the 4085 * hardware address really has changed in all of our 4086 * entries that have cached this mapping, and if so, we 4087 * blow them away. This way we will immediately pick 4088 * up the rare case of a host changing hardware 4089 * address. 4090 */ 4091 if (src == 0) 4092 break; 4093 hwm.hwm_addr = src; 4094 hwm.hwm_hwlen = arh->arh_hlen; 4095 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4096 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4097 ndp_walk_common(ipst->ips_ndp4, NULL, 4098 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4099 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4100 } 4101 break; 4102 case AR_CN_READY: 4103 /* No external v6 resolver has a contract to use this */ 4104 if (isv6) 4105 break; 4106 /* If the link is down, we'll retry this later */ 4107 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4108 break; 4109 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4110 NULL, NULL, ipst); 4111 if (ipif != NULL) { 4112 /* 4113 * If this is a duplicate recovery, then we now need to 4114 * go exclusive to bring this thing back up. 4115 */ 4116 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4117 IPIF_DUPLICATE) { 4118 ipif_refrele(ipif); 4119 ill_refhold(ill); 4120 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4121 B_FALSE); 4122 return; 4123 } 4124 /* 4125 * If this is the first notice that this address is 4126 * ready, then let the user know now. 4127 */ 4128 if ((ipif->ipif_flags & IPIF_UP) && 4129 !ipif->ipif_addr_ready) { 4130 ipif_mask_reply(ipif); 4131 ip_rts_ifmsg(ipif); 4132 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4133 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4134 } 4135 ipif->ipif_addr_ready = 1; 4136 ipif_refrele(ipif); 4137 } 4138 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4139 if (ire != NULL) { 4140 ire->ire_defense_count = 0; 4141 ire_refrele(ire); 4142 } 4143 break; 4144 case AR_CN_FAILED: 4145 /* No external v6 resolver has a contract to use this */ 4146 if (isv6) 4147 break; 4148 ill_refhold(ill); 4149 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4150 return; 4151 } 4152 freemsg(mp); 4153 } 4154 4155 /* 4156 * Create a mblk suitable for carrying the interface index and/or source link 4157 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4158 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4159 * application. 4160 */ 4161 mblk_t * 4162 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4163 ip_stack_t *ipst) 4164 { 4165 mblk_t *mp; 4166 ip_pktinfo_t *pinfo; 4167 ipha_t *ipha; 4168 struct ether_header *pether; 4169 4170 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4171 if (mp == NULL) { 4172 ip1dbg(("ip_add_info: allocation failure.\n")); 4173 return (data_mp); 4174 } 4175 4176 ipha = (ipha_t *)data_mp->b_rptr; 4177 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4178 bzero(pinfo, sizeof (ip_pktinfo_t)); 4179 pinfo->ip_pkt_flags = (uchar_t)flags; 4180 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4181 4182 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4183 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4184 if (flags & IPF_RECVADDR) { 4185 ipif_t *ipif; 4186 ire_t *ire; 4187 4188 /* 4189 * Only valid for V4 4190 */ 4191 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4192 (IPV4_VERSION << 4)); 4193 4194 ipif = ipif_get_next_ipif(NULL, ill); 4195 if (ipif != NULL) { 4196 /* 4197 * Since a decision has already been made to deliver the 4198 * packet, there is no need to test for SECATTR and 4199 * ZONEONLY. 4200 * When a multicast packet is transmitted 4201 * a cache entry is created for the multicast address. 4202 * When delivering a copy of the packet or when new 4203 * packets are received we do not want to match on the 4204 * cached entry so explicitly match on 4205 * IRE_LOCAL and IRE_LOOPBACK 4206 */ 4207 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4208 IRE_LOCAL | IRE_LOOPBACK, 4209 ipif, zoneid, NULL, 4210 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4211 if (ire == NULL) { 4212 /* 4213 * packet must have come on a different 4214 * interface. 4215 * Since a decision has already been made to 4216 * deliver the packet, there is no need to test 4217 * for SECATTR and ZONEONLY. 4218 * Only match on local and broadcast ire's. 4219 * See detailed comment above. 4220 */ 4221 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4222 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4223 NULL, MATCH_IRE_TYPE, ipst); 4224 } 4225 4226 if (ire == NULL) { 4227 /* 4228 * This is either a multicast packet or 4229 * the address has been removed since 4230 * the packet was received. 4231 * Return INADDR_ANY so that normal source 4232 * selection occurs for the response. 4233 */ 4234 4235 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4236 } else { 4237 pinfo->ip_pkt_match_addr.s_addr = 4238 ire->ire_src_addr; 4239 ire_refrele(ire); 4240 } 4241 ipif_refrele(ipif); 4242 } else { 4243 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4244 } 4245 } 4246 4247 pether = (struct ether_header *)((char *)ipha 4248 - sizeof (struct ether_header)); 4249 /* 4250 * Make sure the interface is an ethernet type, since this option 4251 * is currently supported only on this type of interface. Also make 4252 * sure we are pointing correctly above db_base. 4253 */ 4254 4255 if ((flags & IPF_RECVSLLA) && 4256 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4257 (ill->ill_type == IFT_ETHER) && 4258 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4259 4260 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4261 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4262 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4263 } else { 4264 /* 4265 * Clear the bit. Indicate to upper layer that IP is not 4266 * sending this ancillary info. 4267 */ 4268 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4269 } 4270 4271 mp->b_datap->db_type = M_CTL; 4272 mp->b_wptr += sizeof (ip_pktinfo_t); 4273 mp->b_cont = data_mp; 4274 4275 return (mp); 4276 } 4277 4278 /* 4279 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4280 * part of the bind request. 4281 */ 4282 4283 boolean_t 4284 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4285 { 4286 ipsec_in_t *ii; 4287 4288 ASSERT(policy_mp != NULL); 4289 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4290 4291 ii = (ipsec_in_t *)policy_mp->b_rptr; 4292 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4293 4294 connp->conn_policy = ii->ipsec_in_policy; 4295 ii->ipsec_in_policy = NULL; 4296 4297 if (ii->ipsec_in_action != NULL) { 4298 if (connp->conn_latch == NULL) { 4299 connp->conn_latch = iplatch_create(); 4300 if (connp->conn_latch == NULL) 4301 return (B_FALSE); 4302 } 4303 ipsec_latch_inbound(connp->conn_latch, ii); 4304 } 4305 return (B_TRUE); 4306 } 4307 4308 /* 4309 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4310 * and to arrange for power-fanout assist. The ULP is identified by 4311 * adding a single byte at the end of the original bind message. 4312 * A ULP other than UDP or TCP that wishes to be recognized passes 4313 * down a bind with a zero length address. 4314 * 4315 * The binding works as follows: 4316 * - A zero byte address means just bind to the protocol. 4317 * - A four byte address is treated as a request to validate 4318 * that the address is a valid local address, appropriate for 4319 * an application to bind to. This does not affect any fanout 4320 * information in IP. 4321 * - A sizeof sin_t byte address is used to bind to only the local address 4322 * and port. 4323 * - A sizeof ipa_conn_t byte address contains complete fanout information 4324 * consisting of local and remote addresses and ports. In 4325 * this case, the addresses are both validated as appropriate 4326 * for this operation, and, if so, the information is retained 4327 * for use in the inbound fanout. 4328 * 4329 * The ULP (except in the zero-length bind) can append an 4330 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4331 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4332 * a copy of the source or destination IRE (source for local bind; 4333 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4334 * policy information contained should be copied on to the conn. 4335 * 4336 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4337 */ 4338 mblk_t * 4339 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4340 { 4341 ssize_t len; 4342 struct T_bind_req *tbr; 4343 sin_t *sin; 4344 ipa_conn_t *ac; 4345 uchar_t *ucp; 4346 mblk_t *mp1; 4347 boolean_t ire_requested; 4348 boolean_t ipsec_policy_set = B_FALSE; 4349 int error = 0; 4350 int protocol; 4351 ipa_conn_x_t *acx; 4352 4353 ASSERT(!connp->conn_af_isv6); 4354 connp->conn_pkt_isv6 = B_FALSE; 4355 4356 len = MBLKL(mp); 4357 if (len < (sizeof (*tbr) + 1)) { 4358 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4359 "ip_bind: bogus msg, len %ld", len); 4360 /* XXX: Need to return something better */ 4361 goto bad_addr; 4362 } 4363 /* Back up and extract the protocol identifier. */ 4364 mp->b_wptr--; 4365 protocol = *mp->b_wptr & 0xFF; 4366 tbr = (struct T_bind_req *)mp->b_rptr; 4367 /* Reset the message type in preparation for shipping it back. */ 4368 DB_TYPE(mp) = M_PCPROTO; 4369 4370 connp->conn_ulp = (uint8_t)protocol; 4371 4372 /* 4373 * Check for a zero length address. This is from a protocol that 4374 * wants to register to receive all packets of its type. 4375 */ 4376 if (tbr->ADDR_length == 0) { 4377 /* 4378 * These protocols are now intercepted in ip_bind_v6(). 4379 * Reject protocol-level binds here for now. 4380 * 4381 * For SCTP raw socket, ICMP sends down a bind with sin_t 4382 * so that the protocol type cannot be SCTP. 4383 */ 4384 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4385 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4386 goto bad_addr; 4387 } 4388 4389 /* 4390 * 4391 * The udp module never sends down a zero-length address, 4392 * and allowing this on a labeled system will break MLP 4393 * functionality. 4394 */ 4395 if (is_system_labeled() && protocol == IPPROTO_UDP) 4396 goto bad_addr; 4397 4398 if (connp->conn_mac_exempt) 4399 goto bad_addr; 4400 4401 /* No hash here really. The table is big enough. */ 4402 connp->conn_srcv6 = ipv6_all_zeros; 4403 4404 ipcl_proto_insert(connp, protocol); 4405 4406 tbr->PRIM_type = T_BIND_ACK; 4407 return (mp); 4408 } 4409 4410 /* Extract the address pointer from the message. */ 4411 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4412 tbr->ADDR_length); 4413 if (ucp == NULL) { 4414 ip1dbg(("ip_bind: no address\n")); 4415 goto bad_addr; 4416 } 4417 if (!OK_32PTR(ucp)) { 4418 ip1dbg(("ip_bind: unaligned address\n")); 4419 goto bad_addr; 4420 } 4421 /* 4422 * Check for trailing mps. 4423 */ 4424 4425 mp1 = mp->b_cont; 4426 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4427 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4428 4429 switch (tbr->ADDR_length) { 4430 default: 4431 ip1dbg(("ip_bind: bad address length %d\n", 4432 (int)tbr->ADDR_length)); 4433 goto bad_addr; 4434 4435 case IP_ADDR_LEN: 4436 /* Verification of local address only */ 4437 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4438 ire_requested, ipsec_policy_set, B_FALSE); 4439 break; 4440 4441 case sizeof (sin_t): 4442 sin = (sin_t *)ucp; 4443 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4444 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4445 break; 4446 4447 case sizeof (ipa_conn_t): 4448 ac = (ipa_conn_t *)ucp; 4449 /* For raw socket, the local port is not set. */ 4450 if (ac->ac_lport == 0) 4451 ac->ac_lport = connp->conn_lport; 4452 /* Always verify destination reachability. */ 4453 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4454 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4455 ipsec_policy_set, B_TRUE, B_TRUE); 4456 break; 4457 4458 case sizeof (ipa_conn_x_t): 4459 acx = (ipa_conn_x_t *)ucp; 4460 /* 4461 * Whether or not to verify destination reachability depends 4462 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4463 */ 4464 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4465 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4466 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4467 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4468 break; 4469 } 4470 if (error == EINPROGRESS) 4471 return (NULL); 4472 else if (error != 0) 4473 goto bad_addr; 4474 /* 4475 * Pass the IPsec headers size in ire_ipsec_overhead. 4476 * We can't do this in ip_bind_insert_ire because the policy 4477 * may not have been inherited at that point in time and hence 4478 * conn_out_enforce_policy may not be set. 4479 */ 4480 mp1 = mp->b_cont; 4481 if (ire_requested && connp->conn_out_enforce_policy && 4482 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4483 ire_t *ire = (ire_t *)mp1->b_rptr; 4484 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4485 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4486 } 4487 4488 /* Send it home. */ 4489 mp->b_datap->db_type = M_PCPROTO; 4490 tbr->PRIM_type = T_BIND_ACK; 4491 return (mp); 4492 4493 bad_addr: 4494 /* 4495 * If error = -1 then we generate a TBADADDR - otherwise error is 4496 * a unix errno. 4497 */ 4498 if (error > 0) 4499 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4500 else 4501 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4502 return (mp); 4503 } 4504 4505 /* 4506 * Here address is verified to be a valid local address. 4507 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4508 * address is also considered a valid local address. 4509 * In the case of a broadcast/multicast address, however, the 4510 * upper protocol is expected to reset the src address 4511 * to 0 if it sees a IRE_BROADCAST type returned so that 4512 * no packets are emitted with broadcast/multicast address as 4513 * source address (that violates hosts requirements RFC1122) 4514 * The addresses valid for bind are: 4515 * (1) - INADDR_ANY (0) 4516 * (2) - IP address of an UP interface 4517 * (3) - IP address of a DOWN interface 4518 * (4) - valid local IP broadcast addresses. In this case 4519 * the conn will only receive packets destined to 4520 * the specified broadcast address. 4521 * (5) - a multicast address. In this case 4522 * the conn will only receive packets destined to 4523 * the specified multicast address. Note: the 4524 * application still has to issue an 4525 * IP_ADD_MEMBERSHIP socket option. 4526 * 4527 * On error, return -1 for TBADADDR otherwise pass the 4528 * errno with TSYSERR reply. 4529 * 4530 * In all the above cases, the bound address must be valid in the current zone. 4531 * When the address is loopback, multicast or broadcast, there might be many 4532 * matching IREs so bind has to look up based on the zone. 4533 * 4534 * Note: lport is in network byte order. 4535 */ 4536 int 4537 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4538 boolean_t ire_requested, boolean_t ipsec_policy_set, 4539 boolean_t fanout_insert) 4540 { 4541 int error = 0; 4542 ire_t *src_ire; 4543 mblk_t *policy_mp; 4544 ipif_t *ipif; 4545 zoneid_t zoneid; 4546 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4547 4548 if (ipsec_policy_set) { 4549 policy_mp = mp->b_cont; 4550 } 4551 4552 /* 4553 * If it was previously connected, conn_fully_bound would have 4554 * been set. 4555 */ 4556 connp->conn_fully_bound = B_FALSE; 4557 4558 src_ire = NULL; 4559 ipif = NULL; 4560 4561 zoneid = IPCL_ZONEID(connp); 4562 4563 if (src_addr) { 4564 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4565 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4566 /* 4567 * If an address other than 0.0.0.0 is requested, 4568 * we verify that it is a valid address for bind 4569 * Note: Following code is in if-else-if form for 4570 * readability compared to a condition check. 4571 */ 4572 /* LINTED - statement has no consequent */ 4573 if (IRE_IS_LOCAL(src_ire)) { 4574 /* 4575 * (2) Bind to address of local UP interface 4576 */ 4577 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4578 /* 4579 * (4) Bind to broadcast address 4580 * Note: permitted only from transports that 4581 * request IRE 4582 */ 4583 if (!ire_requested) 4584 error = EADDRNOTAVAIL; 4585 } else { 4586 /* 4587 * (3) Bind to address of local DOWN interface 4588 * (ipif_lookup_addr() looks up all interfaces 4589 * but we do not get here for UP interfaces 4590 * - case (2) above) 4591 * We put the protocol byte back into the mblk 4592 * since we may come back via ip_wput_nondata() 4593 * later with this mblk if ipif_lookup_addr chooses 4594 * to defer processing. 4595 */ 4596 *mp->b_wptr++ = (char)connp->conn_ulp; 4597 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4598 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4599 &error, ipst)) != NULL) { 4600 ipif_refrele(ipif); 4601 } else if (error == EINPROGRESS) { 4602 if (src_ire != NULL) 4603 ire_refrele(src_ire); 4604 return (EINPROGRESS); 4605 } else if (CLASSD(src_addr)) { 4606 error = 0; 4607 if (src_ire != NULL) 4608 ire_refrele(src_ire); 4609 /* 4610 * (5) bind to multicast address. 4611 * Fake out the IRE returned to upper 4612 * layer to be a broadcast IRE. 4613 */ 4614 src_ire = ire_ctable_lookup( 4615 INADDR_BROADCAST, INADDR_ANY, 4616 IRE_BROADCAST, NULL, zoneid, NULL, 4617 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4618 ipst); 4619 if (src_ire == NULL || !ire_requested) 4620 error = EADDRNOTAVAIL; 4621 } else { 4622 /* 4623 * Not a valid address for bind 4624 */ 4625 error = EADDRNOTAVAIL; 4626 } 4627 /* 4628 * Just to keep it consistent with the processing in 4629 * ip_bind_v4() 4630 */ 4631 mp->b_wptr--; 4632 } 4633 if (error) { 4634 /* Red Alert! Attempting to be a bogon! */ 4635 ip1dbg(("ip_bind: bad src address 0x%x\n", 4636 ntohl(src_addr))); 4637 goto bad_addr; 4638 } 4639 } 4640 4641 /* 4642 * Allow setting new policies. For example, disconnects come 4643 * down as ipa_t bind. As we would have set conn_policy_cached 4644 * to B_TRUE before, we should set it to B_FALSE, so that policy 4645 * can change after the disconnect. 4646 */ 4647 connp->conn_policy_cached = B_FALSE; 4648 4649 /* 4650 * If not fanout_insert this was just an address verification 4651 */ 4652 if (fanout_insert) { 4653 /* 4654 * The addresses have been verified. Time to insert in 4655 * the correct fanout list. 4656 */ 4657 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4658 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4659 connp->conn_lport = lport; 4660 connp->conn_fport = 0; 4661 /* 4662 * Do we need to add a check to reject Multicast packets 4663 * 4664 * We need to make sure that the conn_recv is set to a non-null 4665 * value before we insert the conn into the classifier table. 4666 * This is to avoid a race with an incoming packet which does an 4667 * ipcl_classify(). 4668 */ 4669 if (*mp->b_wptr == IPPROTO_TCP) 4670 connp->conn_recv = tcp_conn_request; 4671 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4672 } 4673 4674 if (error == 0) { 4675 if (ire_requested) { 4676 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4677 error = -1; 4678 /* Falls through to bad_addr */ 4679 } 4680 } else if (ipsec_policy_set) { 4681 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4682 error = -1; 4683 /* Falls through to bad_addr */ 4684 } 4685 } 4686 } else if (connp->conn_ulp == IPPROTO_TCP) { 4687 connp->conn_recv = tcp_input; 4688 } 4689 bad_addr: 4690 if (error != 0) { 4691 if (connp->conn_anon_port) { 4692 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4693 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4694 B_FALSE); 4695 } 4696 connp->conn_mlp_type = mlptSingle; 4697 } 4698 if (src_ire != NULL) 4699 IRE_REFRELE(src_ire); 4700 if (ipsec_policy_set) { 4701 ASSERT(policy_mp == mp->b_cont); 4702 ASSERT(policy_mp != NULL); 4703 freeb(policy_mp); 4704 /* 4705 * As of now assume that nothing else accompanies 4706 * IPSEC_POLICY_SET. 4707 */ 4708 mp->b_cont = NULL; 4709 } 4710 return (error); 4711 } 4712 4713 /* 4714 * Verify that both the source and destination addresses 4715 * are valid. If verify_dst is false, then the destination address may be 4716 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4717 * destination reachability, while tunnels do not. 4718 * Note that we allow connect to broadcast and multicast 4719 * addresses when ire_requested is set. Thus the ULP 4720 * has to check for IRE_BROADCAST and multicast. 4721 * 4722 * Returns zero if ok. 4723 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4724 * (for use with TSYSERR reply). 4725 * 4726 * Note: lport and fport are in network byte order. 4727 */ 4728 int 4729 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4730 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4731 boolean_t ire_requested, boolean_t ipsec_policy_set, 4732 boolean_t fanout_insert, boolean_t verify_dst) 4733 { 4734 ire_t *src_ire; 4735 ire_t *dst_ire; 4736 int error = 0; 4737 int protocol; 4738 mblk_t *policy_mp; 4739 ire_t *sire = NULL; 4740 ire_t *md_dst_ire = NULL; 4741 ire_t *lso_dst_ire = NULL; 4742 ill_t *ill = NULL; 4743 zoneid_t zoneid; 4744 ipaddr_t src_addr = *src_addrp; 4745 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4746 4747 src_ire = dst_ire = NULL; 4748 protocol = *mp->b_wptr & 0xFF; 4749 4750 /* 4751 * If we never got a disconnect before, clear it now. 4752 */ 4753 connp->conn_fully_bound = B_FALSE; 4754 4755 if (ipsec_policy_set) { 4756 policy_mp = mp->b_cont; 4757 } 4758 4759 zoneid = IPCL_ZONEID(connp); 4760 4761 if (CLASSD(dst_addr)) { 4762 /* Pick up an IRE_BROADCAST */ 4763 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4764 NULL, zoneid, MBLK_GETLABEL(mp), 4765 (MATCH_IRE_RECURSIVE | 4766 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4767 MATCH_IRE_SECATTR), ipst); 4768 } else { 4769 /* 4770 * If conn_dontroute is set or if conn_nexthop_set is set, 4771 * and onlink ipif is not found set ENETUNREACH error. 4772 */ 4773 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4774 ipif_t *ipif; 4775 4776 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4777 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4778 if (ipif == NULL) { 4779 error = ENETUNREACH; 4780 goto bad_addr; 4781 } 4782 ipif_refrele(ipif); 4783 } 4784 4785 if (connp->conn_nexthop_set) { 4786 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4787 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4788 MATCH_IRE_SECATTR, ipst); 4789 } else { 4790 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4791 &sire, zoneid, MBLK_GETLABEL(mp), 4792 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4793 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4794 MATCH_IRE_SECATTR), ipst); 4795 } 4796 } 4797 /* 4798 * dst_ire can't be a broadcast when not ire_requested. 4799 * We also prevent ire's with src address INADDR_ANY to 4800 * be used, which are created temporarily for 4801 * sending out packets from endpoints that have 4802 * conn_unspec_src set. If verify_dst is true, the destination must be 4803 * reachable. If verify_dst is false, the destination needn't be 4804 * reachable. 4805 * 4806 * If we match on a reject or black hole, then we've got a 4807 * local failure. May as well fail out the connect() attempt, 4808 * since it's never going to succeed. 4809 */ 4810 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4811 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4812 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4813 /* 4814 * If we're verifying destination reachability, we always want 4815 * to complain here. 4816 * 4817 * If we're not verifying destination reachability but the 4818 * destination has a route, we still want to fail on the 4819 * temporary address and broadcast address tests. 4820 */ 4821 if (verify_dst || (dst_ire != NULL)) { 4822 if (ip_debug > 2) { 4823 pr_addr_dbg("ip_bind_connected: bad connected " 4824 "dst %s\n", AF_INET, &dst_addr); 4825 } 4826 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4827 error = ENETUNREACH; 4828 else 4829 error = EHOSTUNREACH; 4830 goto bad_addr; 4831 } 4832 } 4833 4834 /* 4835 * We now know that routing will allow us to reach the destination. 4836 * Check whether Trusted Solaris policy allows communication with this 4837 * host, and pretend that the destination is unreachable if not. 4838 * 4839 * This is never a problem for TCP, since that transport is known to 4840 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4841 * handling. If the remote is unreachable, it will be detected at that 4842 * point, so there's no reason to check it here. 4843 * 4844 * Note that for sendto (and other datagram-oriented friends), this 4845 * check is done as part of the data path label computation instead. 4846 * The check here is just to make non-TCP connect() report the right 4847 * error. 4848 */ 4849 if (dst_ire != NULL && is_system_labeled() && 4850 !IPCL_IS_TCP(connp) && 4851 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4852 connp->conn_mac_exempt, ipst) != 0) { 4853 error = EHOSTUNREACH; 4854 if (ip_debug > 2) { 4855 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4856 AF_INET, &dst_addr); 4857 } 4858 goto bad_addr; 4859 } 4860 4861 /* 4862 * If the app does a connect(), it means that it will most likely 4863 * send more than 1 packet to the destination. It makes sense 4864 * to clear the temporary flag. 4865 */ 4866 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4867 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4868 irb_t *irb = dst_ire->ire_bucket; 4869 4870 rw_enter(&irb->irb_lock, RW_WRITER); 4871 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4872 irb->irb_tmp_ire_cnt--; 4873 rw_exit(&irb->irb_lock); 4874 } 4875 4876 /* 4877 * See if we should notify ULP about LSO/MDT; we do this whether or not 4878 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4879 * eligibility tests for passive connects are handled separately 4880 * through tcp_adapt_ire(). We do this before the source address 4881 * selection, because dst_ire may change after a call to 4882 * ipif_select_source(). This is a best-effort check, as the 4883 * packet for this connection may not actually go through 4884 * dst_ire->ire_stq, and the exact IRE can only be known after 4885 * calling ip_newroute(). This is why we further check on the 4886 * IRE during LSO/Multidata packet transmission in 4887 * tcp_lsosend()/tcp_multisend(). 4888 */ 4889 if (!ipsec_policy_set && dst_ire != NULL && 4890 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4891 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4892 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4893 lso_dst_ire = dst_ire; 4894 IRE_REFHOLD(lso_dst_ire); 4895 } else if (ipst->ips_ip_multidata_outbound && 4896 ILL_MDT_CAPABLE(ill)) { 4897 md_dst_ire = dst_ire; 4898 IRE_REFHOLD(md_dst_ire); 4899 } 4900 } 4901 4902 if (dst_ire != NULL && 4903 dst_ire->ire_type == IRE_LOCAL && 4904 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4905 /* 4906 * If the IRE belongs to a different zone, look for a matching 4907 * route in the forwarding table and use the source address from 4908 * that route. 4909 */ 4910 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4911 zoneid, 0, NULL, 4912 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4913 MATCH_IRE_RJ_BHOLE, ipst); 4914 if (src_ire == NULL) { 4915 error = EHOSTUNREACH; 4916 goto bad_addr; 4917 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4918 if (!(src_ire->ire_type & IRE_HOST)) 4919 error = ENETUNREACH; 4920 else 4921 error = EHOSTUNREACH; 4922 goto bad_addr; 4923 } 4924 if (src_addr == INADDR_ANY) 4925 src_addr = src_ire->ire_src_addr; 4926 ire_refrele(src_ire); 4927 src_ire = NULL; 4928 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4929 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4930 src_addr = sire->ire_src_addr; 4931 ire_refrele(dst_ire); 4932 dst_ire = sire; 4933 sire = NULL; 4934 } else { 4935 /* 4936 * Pick a source address so that a proper inbound 4937 * load spreading would happen. 4938 */ 4939 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4940 ipif_t *src_ipif = NULL; 4941 ire_t *ipif_ire; 4942 4943 /* 4944 * Supply a local source address such that inbound 4945 * load spreading happens. 4946 * 4947 * Determine the best source address on this ill for 4948 * the destination. 4949 * 4950 * 1) For broadcast, we should return a broadcast ire 4951 * found above so that upper layers know that the 4952 * destination address is a broadcast address. 4953 * 4954 * 2) If this is part of a group, select a better 4955 * source address so that better inbound load 4956 * balancing happens. Do the same if the ipif 4957 * is DEPRECATED. 4958 * 4959 * 3) If the outgoing interface is part of a usesrc 4960 * group, then try selecting a source address from 4961 * the usesrc ILL. 4962 */ 4963 if ((dst_ire->ire_zoneid != zoneid && 4964 dst_ire->ire_zoneid != ALL_ZONES) || 4965 (!(dst_ire->ire_type & IRE_BROADCAST) && 4966 ((dst_ill->ill_group != NULL) || 4967 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4968 (dst_ill->ill_usesrc_ifindex != 0)))) { 4969 /* 4970 * If the destination is reachable via a 4971 * given gateway, the selected source address 4972 * should be in the same subnet as the gateway. 4973 * Otherwise, the destination is not reachable. 4974 * 4975 * If there are no interfaces on the same subnet 4976 * as the destination, ipif_select_source gives 4977 * first non-deprecated interface which might be 4978 * on a different subnet than the gateway. 4979 * This is not desirable. Hence pass the dst_ire 4980 * source address to ipif_select_source. 4981 * It is sure that the destination is reachable 4982 * with the dst_ire source address subnet. 4983 * So passing dst_ire source address to 4984 * ipif_select_source will make sure that the 4985 * selected source will be on the same subnet 4986 * as dst_ire source address. 4987 */ 4988 ipaddr_t saddr = 4989 dst_ire->ire_ipif->ipif_src_addr; 4990 src_ipif = ipif_select_source(dst_ill, 4991 saddr, zoneid); 4992 if (src_ipif != NULL) { 4993 if (IS_VNI(src_ipif->ipif_ill)) { 4994 /* 4995 * For VNI there is no 4996 * interface route 4997 */ 4998 src_addr = 4999 src_ipif->ipif_src_addr; 5000 } else { 5001 ipif_ire = 5002 ipif_to_ire(src_ipif); 5003 if (ipif_ire != NULL) { 5004 IRE_REFRELE(dst_ire); 5005 dst_ire = ipif_ire; 5006 } 5007 src_addr = 5008 dst_ire->ire_src_addr; 5009 } 5010 ipif_refrele(src_ipif); 5011 } else { 5012 src_addr = dst_ire->ire_src_addr; 5013 } 5014 } else { 5015 src_addr = dst_ire->ire_src_addr; 5016 } 5017 } 5018 } 5019 5020 /* 5021 * We do ire_route_lookup() here (and not 5022 * interface lookup as we assert that 5023 * src_addr should only come from an 5024 * UP interface for hard binding. 5025 */ 5026 ASSERT(src_ire == NULL); 5027 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5028 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5029 /* src_ire must be a local|loopback */ 5030 if (!IRE_IS_LOCAL(src_ire)) { 5031 if (ip_debug > 2) { 5032 pr_addr_dbg("ip_bind_connected: bad connected " 5033 "src %s\n", AF_INET, &src_addr); 5034 } 5035 error = EADDRNOTAVAIL; 5036 goto bad_addr; 5037 } 5038 5039 /* 5040 * If the source address is a loopback address, the 5041 * destination had best be local or multicast. 5042 * The transports that can't handle multicast will reject 5043 * those addresses. 5044 */ 5045 if (src_ire->ire_type == IRE_LOOPBACK && 5046 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5047 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5048 error = -1; 5049 goto bad_addr; 5050 } 5051 5052 /* 5053 * Allow setting new policies. For example, disconnects come 5054 * down as ipa_t bind. As we would have set conn_policy_cached 5055 * to B_TRUE before, we should set it to B_FALSE, so that policy 5056 * can change after the disconnect. 5057 */ 5058 connp->conn_policy_cached = B_FALSE; 5059 5060 /* 5061 * Set the conn addresses/ports immediately, so the IPsec policy calls 5062 * can handle their passed-in conn's. 5063 */ 5064 5065 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5066 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5067 connp->conn_lport = lport; 5068 connp->conn_fport = fport; 5069 *src_addrp = src_addr; 5070 5071 ASSERT(!(ipsec_policy_set && ire_requested)); 5072 if (ire_requested) { 5073 iulp_t *ulp_info = NULL; 5074 5075 /* 5076 * Note that sire will not be NULL if this is an off-link 5077 * connection and there is not cache for that dest yet. 5078 * 5079 * XXX Because of an existing bug, if there are multiple 5080 * default routes, the IRE returned now may not be the actual 5081 * default route used (default routes are chosen in a 5082 * round robin fashion). So if the metrics for different 5083 * default routes are different, we may return the wrong 5084 * metrics. This will not be a problem if the existing 5085 * bug is fixed. 5086 */ 5087 if (sire != NULL) { 5088 ulp_info = &(sire->ire_uinfo); 5089 } 5090 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5091 error = -1; 5092 goto bad_addr; 5093 } 5094 } else if (ipsec_policy_set) { 5095 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5096 error = -1; 5097 goto bad_addr; 5098 } 5099 } 5100 5101 /* 5102 * Cache IPsec policy in this conn. If we have per-socket policy, 5103 * we'll cache that. If we don't, we'll inherit global policy. 5104 * 5105 * We can't insert until the conn reflects the policy. Note that 5106 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5107 * connections where we don't have a policy. This is to prevent 5108 * global policy lookups in the inbound path. 5109 * 5110 * If we insert before we set conn_policy_cached, 5111 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5112 * because global policy cound be non-empty. We normally call 5113 * ipsec_check_policy() for conn_policy_cached connections only if 5114 * ipc_in_enforce_policy is set. But in this case, 5115 * conn_policy_cached can get set anytime since we made the 5116 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5117 * called, which will make the above assumption false. Thus, we 5118 * need to insert after we set conn_policy_cached. 5119 */ 5120 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5121 goto bad_addr; 5122 5123 if (fanout_insert) { 5124 /* 5125 * The addresses have been verified. Time to insert in 5126 * the correct fanout list. 5127 * We need to make sure that the conn_recv is set to a non-null 5128 * value before we insert into the classifier table to avoid a 5129 * race with an incoming packet which does an ipcl_classify(). 5130 */ 5131 if (protocol == IPPROTO_TCP) 5132 connp->conn_recv = tcp_input; 5133 error = ipcl_conn_insert(connp, protocol, src_addr, 5134 dst_addr, connp->conn_ports); 5135 } 5136 5137 if (error == 0) { 5138 connp->conn_fully_bound = B_TRUE; 5139 /* 5140 * Our initial checks for LSO/MDT have passed; the IRE is not 5141 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5142 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5143 * ip_xxinfo_return(), which performs further checks 5144 * against them and upon success, returns the LSO/MDT info 5145 * mblk which we will attach to the bind acknowledgment. 5146 */ 5147 if (lso_dst_ire != NULL) { 5148 mblk_t *lsoinfo_mp; 5149 5150 ASSERT(ill->ill_lso_capab != NULL); 5151 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5152 ill->ill_name, ill->ill_lso_capab)) != NULL) 5153 linkb(mp, lsoinfo_mp); 5154 } else if (md_dst_ire != NULL) { 5155 mblk_t *mdinfo_mp; 5156 5157 ASSERT(ill->ill_mdt_capab != NULL); 5158 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5159 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5160 linkb(mp, mdinfo_mp); 5161 } 5162 } 5163 bad_addr: 5164 if (ipsec_policy_set) { 5165 ASSERT(policy_mp == mp->b_cont); 5166 ASSERT(policy_mp != NULL); 5167 freeb(policy_mp); 5168 /* 5169 * As of now assume that nothing else accompanies 5170 * IPSEC_POLICY_SET. 5171 */ 5172 mp->b_cont = NULL; 5173 } 5174 if (src_ire != NULL) 5175 IRE_REFRELE(src_ire); 5176 if (dst_ire != NULL) 5177 IRE_REFRELE(dst_ire); 5178 if (sire != NULL) 5179 IRE_REFRELE(sire); 5180 if (md_dst_ire != NULL) 5181 IRE_REFRELE(md_dst_ire); 5182 if (lso_dst_ire != NULL) 5183 IRE_REFRELE(lso_dst_ire); 5184 return (error); 5185 } 5186 5187 /* 5188 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5189 * Prefers dst_ire over src_ire. 5190 */ 5191 static boolean_t 5192 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5193 { 5194 mblk_t *mp1; 5195 ire_t *ret_ire = NULL; 5196 5197 mp1 = mp->b_cont; 5198 ASSERT(mp1 != NULL); 5199 5200 if (ire != NULL) { 5201 /* 5202 * mp1 initialized above to IRE_DB_REQ_TYPE 5203 * appended mblk. Its <upper protocol>'s 5204 * job to make sure there is room. 5205 */ 5206 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5207 return (0); 5208 5209 mp1->b_datap->db_type = IRE_DB_TYPE; 5210 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5211 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5212 ret_ire = (ire_t *)mp1->b_rptr; 5213 /* 5214 * Pass the latest setting of the ip_path_mtu_discovery and 5215 * copy the ulp info if any. 5216 */ 5217 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5218 IPH_DF : 0; 5219 if (ulp_info != NULL) { 5220 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5221 sizeof (iulp_t)); 5222 } 5223 ret_ire->ire_mp = mp1; 5224 } else { 5225 /* 5226 * No IRE was found. Remove IRE mblk. 5227 */ 5228 mp->b_cont = mp1->b_cont; 5229 freeb(mp1); 5230 } 5231 5232 return (1); 5233 } 5234 5235 /* 5236 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5237 * the final piece where we don't. Return a pointer to the first mblk in the 5238 * result, and update the pointer to the next mblk to chew on. If anything 5239 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5240 * NULL pointer. 5241 */ 5242 mblk_t * 5243 ip_carve_mp(mblk_t **mpp, ssize_t len) 5244 { 5245 mblk_t *mp0; 5246 mblk_t *mp1; 5247 mblk_t *mp2; 5248 5249 if (!len || !mpp || !(mp0 = *mpp)) 5250 return (NULL); 5251 /* If we aren't going to consume the first mblk, we need a dup. */ 5252 if (mp0->b_wptr - mp0->b_rptr > len) { 5253 mp1 = dupb(mp0); 5254 if (mp1) { 5255 /* Partition the data between the two mblks. */ 5256 mp1->b_wptr = mp1->b_rptr + len; 5257 mp0->b_rptr = mp1->b_wptr; 5258 /* 5259 * after adjustments if mblk not consumed is now 5260 * unaligned, try to align it. If this fails free 5261 * all messages and let upper layer recover. 5262 */ 5263 if (!OK_32PTR(mp0->b_rptr)) { 5264 if (!pullupmsg(mp0, -1)) { 5265 freemsg(mp0); 5266 freemsg(mp1); 5267 *mpp = NULL; 5268 return (NULL); 5269 } 5270 } 5271 } 5272 return (mp1); 5273 } 5274 /* Eat through as many mblks as we need to get len bytes. */ 5275 len -= mp0->b_wptr - mp0->b_rptr; 5276 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5277 if (mp2->b_wptr - mp2->b_rptr > len) { 5278 /* 5279 * We won't consume the entire last mblk. Like 5280 * above, dup and partition it. 5281 */ 5282 mp1->b_cont = dupb(mp2); 5283 mp1 = mp1->b_cont; 5284 if (!mp1) { 5285 /* 5286 * Trouble. Rather than go to a lot of 5287 * trouble to clean up, we free the messages. 5288 * This won't be any worse than losing it on 5289 * the wire. 5290 */ 5291 freemsg(mp0); 5292 freemsg(mp2); 5293 *mpp = NULL; 5294 return (NULL); 5295 } 5296 mp1->b_wptr = mp1->b_rptr + len; 5297 mp2->b_rptr = mp1->b_wptr; 5298 /* 5299 * after adjustments if mblk not consumed is now 5300 * unaligned, try to align it. If this fails free 5301 * all messages and let upper layer recover. 5302 */ 5303 if (!OK_32PTR(mp2->b_rptr)) { 5304 if (!pullupmsg(mp2, -1)) { 5305 freemsg(mp0); 5306 freemsg(mp2); 5307 *mpp = NULL; 5308 return (NULL); 5309 } 5310 } 5311 *mpp = mp2; 5312 return (mp0); 5313 } 5314 /* Decrement len by the amount we just got. */ 5315 len -= mp2->b_wptr - mp2->b_rptr; 5316 } 5317 /* 5318 * len should be reduced to zero now. If not our caller has 5319 * screwed up. 5320 */ 5321 if (len) { 5322 /* Shouldn't happen! */ 5323 freemsg(mp0); 5324 *mpp = NULL; 5325 return (NULL); 5326 } 5327 /* 5328 * We consumed up to exactly the end of an mblk. Detach the part 5329 * we are returning from the rest of the chain. 5330 */ 5331 mp1->b_cont = NULL; 5332 *mpp = mp2; 5333 return (mp0); 5334 } 5335 5336 /* The ill stream is being unplumbed. Called from ip_close */ 5337 int 5338 ip_modclose(ill_t *ill) 5339 { 5340 boolean_t success; 5341 ipsq_t *ipsq; 5342 ipif_t *ipif; 5343 queue_t *q = ill->ill_rq; 5344 ip_stack_t *ipst = ill->ill_ipst; 5345 clock_t timeout; 5346 5347 /* 5348 * Wait for the ACKs of all deferred control messages to be processed. 5349 * In particular, we wait for a potential capability reset initiated 5350 * in ip_sioctl_plink() to complete before proceeding. 5351 * 5352 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5353 * in case the driver never replies. 5354 */ 5355 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5356 mutex_enter(&ill->ill_lock); 5357 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5358 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5359 /* Timeout */ 5360 break; 5361 } 5362 } 5363 mutex_exit(&ill->ill_lock); 5364 5365 /* 5366 * Forcibly enter the ipsq after some delay. This is to take 5367 * care of the case when some ioctl does not complete because 5368 * we sent a control message to the driver and it did not 5369 * send us a reply. We want to be able to at least unplumb 5370 * and replumb rather than force the user to reboot the system. 5371 */ 5372 success = ipsq_enter(ill, B_FALSE); 5373 5374 /* 5375 * Open/close/push/pop is guaranteed to be single threaded 5376 * per stream by STREAMS. FS guarantees that all references 5377 * from top are gone before close is called. So there can't 5378 * be another close thread that has set CONDEMNED on this ill. 5379 * and cause ipsq_enter to return failure. 5380 */ 5381 ASSERT(success); 5382 ipsq = ill->ill_phyint->phyint_ipsq; 5383 5384 /* 5385 * Mark it condemned. No new reference will be made to this ill. 5386 * Lookup functions will return an error. Threads that try to 5387 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5388 * that the refcnt will drop down to zero. 5389 */ 5390 mutex_enter(&ill->ill_lock); 5391 ill->ill_state_flags |= ILL_CONDEMNED; 5392 for (ipif = ill->ill_ipif; ipif != NULL; 5393 ipif = ipif->ipif_next) { 5394 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5395 } 5396 /* 5397 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5398 * returns error if ILL_CONDEMNED is set 5399 */ 5400 cv_broadcast(&ill->ill_cv); 5401 mutex_exit(&ill->ill_lock); 5402 5403 /* 5404 * Send all the deferred DLPI messages downstream which came in 5405 * during the small window right before ipsq_enter(). We do this 5406 * without waiting for the ACKs because all the ACKs for M_PROTO 5407 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5408 */ 5409 ill_dlpi_send_deferred(ill); 5410 5411 /* 5412 * Shut down fragmentation reassembly. 5413 * ill_frag_timer won't start a timer again. 5414 * Now cancel any existing timer 5415 */ 5416 (void) untimeout(ill->ill_frag_timer_id); 5417 (void) ill_frag_timeout(ill, 0); 5418 5419 /* 5420 * If MOVE was in progress, clear the 5421 * move_in_progress fields also. 5422 */ 5423 if (ill->ill_move_in_progress) { 5424 ILL_CLEAR_MOVE(ill); 5425 } 5426 5427 /* 5428 * Call ill_delete to bring down the ipifs, ilms and ill on 5429 * this ill. Then wait for the refcnts to drop to zero. 5430 * ill_is_quiescent checks whether the ill is really quiescent. 5431 * Then make sure that threads that are waiting to enter the 5432 * ipsq have seen the error returned by ipsq_enter and have 5433 * gone away. Then we call ill_delete_tail which does the 5434 * DL_UNBIND_REQ with the driver and then qprocsoff. 5435 */ 5436 ill_delete(ill); 5437 mutex_enter(&ill->ill_lock); 5438 while (!ill_is_quiescent(ill)) 5439 cv_wait(&ill->ill_cv, &ill->ill_lock); 5440 while (ill->ill_waiters) 5441 cv_wait(&ill->ill_cv, &ill->ill_lock); 5442 5443 mutex_exit(&ill->ill_lock); 5444 5445 /* 5446 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5447 * it held until the end of the function since the cleanup 5448 * below needs to be able to use the ip_stack_t. 5449 */ 5450 netstack_hold(ipst->ips_netstack); 5451 5452 /* qprocsoff is called in ill_delete_tail */ 5453 ill_delete_tail(ill); 5454 ASSERT(ill->ill_ipst == NULL); 5455 5456 /* 5457 * Walk through all upper (conn) streams and qenable 5458 * those that have queued data. 5459 * close synchronization needs this to 5460 * be done to ensure that all upper layers blocked 5461 * due to flow control to the closing device 5462 * get unblocked. 5463 */ 5464 ip1dbg(("ip_wsrv: walking\n")); 5465 conn_walk_drain(ipst); 5466 5467 mutex_enter(&ipst->ips_ip_mi_lock); 5468 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5469 mutex_exit(&ipst->ips_ip_mi_lock); 5470 5471 /* 5472 * credp could be null if the open didn't succeed and ip_modopen 5473 * itself calls ip_close. 5474 */ 5475 if (ill->ill_credp != NULL) 5476 crfree(ill->ill_credp); 5477 5478 mutex_enter(&ill->ill_lock); 5479 ill_nic_info_dispatch(ill); 5480 mutex_exit(&ill->ill_lock); 5481 5482 /* 5483 * Now we are done with the module close pieces that 5484 * need the netstack_t. 5485 */ 5486 netstack_rele(ipst->ips_netstack); 5487 5488 mi_close_free((IDP)ill); 5489 q->q_ptr = WR(q)->q_ptr = NULL; 5490 5491 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5492 5493 return (0); 5494 } 5495 5496 /* 5497 * This is called as part of close() for both IP and UDP 5498 * in order to quiesce the conn. 5499 */ 5500 void 5501 ip_quiesce_conn(conn_t *connp) 5502 { 5503 boolean_t drain_cleanup_reqd = B_FALSE; 5504 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5505 boolean_t ilg_cleanup_reqd = B_FALSE; 5506 ip_stack_t *ipst; 5507 5508 ASSERT(!IPCL_IS_TCP(connp)); 5509 ipst = connp->conn_netstack->netstack_ip; 5510 5511 /* 5512 * Mark the conn as closing, and this conn must not be 5513 * inserted in future into any list. Eg. conn_drain_insert(), 5514 * won't insert this conn into the conn_drain_list. 5515 * Similarly ill_pending_mp_add() will not add any mp to 5516 * the pending mp list, after this conn has started closing. 5517 * 5518 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5519 * cannot get set henceforth. 5520 */ 5521 mutex_enter(&connp->conn_lock); 5522 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5523 connp->conn_state_flags |= CONN_CLOSING; 5524 if (connp->conn_idl != NULL) 5525 drain_cleanup_reqd = B_TRUE; 5526 if (connp->conn_oper_pending_ill != NULL) 5527 conn_ioctl_cleanup_reqd = B_TRUE; 5528 if (connp->conn_ilg_inuse != 0) 5529 ilg_cleanup_reqd = B_TRUE; 5530 mutex_exit(&connp->conn_lock); 5531 5532 if (IPCL_IS_UDP(connp)) 5533 udp_quiesce_conn(connp); 5534 5535 if (conn_ioctl_cleanup_reqd) 5536 conn_ioctl_cleanup(connp); 5537 5538 if (is_system_labeled() && connp->conn_anon_port) { 5539 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5540 connp->conn_mlp_type, connp->conn_ulp, 5541 ntohs(connp->conn_lport), B_FALSE); 5542 connp->conn_anon_port = 0; 5543 } 5544 connp->conn_mlp_type = mlptSingle; 5545 5546 /* 5547 * Remove this conn from any fanout list it is on. 5548 * and then wait for any threads currently operating 5549 * on this endpoint to finish 5550 */ 5551 ipcl_hash_remove(connp); 5552 5553 /* 5554 * Remove this conn from the drain list, and do 5555 * any other cleanup that may be required. 5556 * (Only non-tcp streams may have a non-null conn_idl. 5557 * TCP streams are never flow controlled, and 5558 * conn_idl will be null) 5559 */ 5560 if (drain_cleanup_reqd) 5561 conn_drain_tail(connp, B_TRUE); 5562 5563 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5564 connp->conn_wq == ipst->ips_ip_g_mrouter) 5565 (void) ip_mrouter_done(NULL, ipst); 5566 5567 if (ilg_cleanup_reqd) 5568 ilg_delete_all(connp); 5569 5570 conn_delete_ire(connp, NULL); 5571 5572 /* 5573 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5574 * callers from write side can't be there now because close 5575 * is in progress. The only other caller is ipcl_walk 5576 * which checks for the condemned flag. 5577 */ 5578 mutex_enter(&connp->conn_lock); 5579 connp->conn_state_flags |= CONN_CONDEMNED; 5580 while (connp->conn_ref != 1) 5581 cv_wait(&connp->conn_cv, &connp->conn_lock); 5582 connp->conn_state_flags |= CONN_QUIESCED; 5583 mutex_exit(&connp->conn_lock); 5584 } 5585 5586 /* ARGSUSED */ 5587 int 5588 ip_close(queue_t *q, int flags) 5589 { 5590 conn_t *connp; 5591 5592 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5593 5594 /* 5595 * Call the appropriate delete routine depending on whether this is 5596 * a module or device. 5597 */ 5598 if (WR(q)->q_next != NULL) { 5599 /* This is a module close */ 5600 return (ip_modclose((ill_t *)q->q_ptr)); 5601 } 5602 5603 connp = q->q_ptr; 5604 ip_quiesce_conn(connp); 5605 5606 qprocsoff(q); 5607 5608 /* 5609 * Now we are truly single threaded on this stream, and can 5610 * delete the things hanging off the connp, and finally the connp. 5611 * We removed this connp from the fanout list, it cannot be 5612 * accessed thru the fanouts, and we already waited for the 5613 * conn_ref to drop to 0. We are already in close, so 5614 * there cannot be any other thread from the top. qprocsoff 5615 * has completed, and service has completed or won't run in 5616 * future. 5617 */ 5618 ASSERT(connp->conn_ref == 1); 5619 5620 /* 5621 * A conn which was previously marked as IPCL_UDP cannot 5622 * retain the flag because it would have been cleared by 5623 * udp_close(). 5624 */ 5625 ASSERT(!IPCL_IS_UDP(connp)); 5626 5627 if (connp->conn_latch != NULL) { 5628 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5629 connp->conn_latch = NULL; 5630 } 5631 if (connp->conn_policy != NULL) { 5632 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5633 connp->conn_policy = NULL; 5634 } 5635 if (connp->conn_ipsec_opt_mp != NULL) { 5636 freemsg(connp->conn_ipsec_opt_mp); 5637 connp->conn_ipsec_opt_mp = NULL; 5638 } 5639 5640 inet_minor_free(ip_minor_arena, connp->conn_dev); 5641 5642 connp->conn_ref--; 5643 ipcl_conn_destroy(connp); 5644 5645 q->q_ptr = WR(q)->q_ptr = NULL; 5646 return (0); 5647 } 5648 5649 int 5650 ip_snmpmod_close(queue_t *q) 5651 { 5652 conn_t *connp = Q_TO_CONN(q); 5653 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5654 5655 qprocsoff(q); 5656 5657 if (connp->conn_flags & IPCL_UDPMOD) 5658 udp_close_free(connp); 5659 5660 if (connp->conn_cred != NULL) { 5661 crfree(connp->conn_cred); 5662 connp->conn_cred = NULL; 5663 } 5664 CONN_DEC_REF(connp); 5665 q->q_ptr = WR(q)->q_ptr = NULL; 5666 return (0); 5667 } 5668 5669 /* 5670 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5671 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5672 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5673 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5674 * queues as we never enqueue messages there and we don't handle any ioctls. 5675 * Everything else is freed. 5676 */ 5677 void 5678 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5679 { 5680 conn_t *connp = q->q_ptr; 5681 pfi_t setfn; 5682 pfi_t getfn; 5683 5684 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5685 5686 switch (DB_TYPE(mp)) { 5687 case M_PROTO: 5688 case M_PCPROTO: 5689 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5690 ((((union T_primitives *)mp->b_rptr)->type == 5691 T_SVR4_OPTMGMT_REQ) || 5692 (((union T_primitives *)mp->b_rptr)->type == 5693 T_OPTMGMT_REQ))) { 5694 /* 5695 * This is the only TPI primitive supported. Its 5696 * handling does not require tcp_t, but it does require 5697 * conn_t to check permissions. 5698 */ 5699 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5700 5701 if (connp->conn_flags & IPCL_TCPMOD) { 5702 setfn = tcp_snmp_set; 5703 getfn = tcp_snmp_get; 5704 } else { 5705 setfn = udp_snmp_set; 5706 getfn = udp_snmp_get; 5707 } 5708 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5709 freemsg(mp); 5710 return; 5711 } 5712 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5713 != NULL) 5714 qreply(q, mp); 5715 break; 5716 case M_FLUSH: 5717 case M_IOCTL: 5718 putnext(q, mp); 5719 break; 5720 default: 5721 freemsg(mp); 5722 break; 5723 } 5724 } 5725 5726 /* Return the IP checksum for the IP header at "iph". */ 5727 uint16_t 5728 ip_csum_hdr(ipha_t *ipha) 5729 { 5730 uint16_t *uph; 5731 uint32_t sum; 5732 int opt_len; 5733 5734 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5735 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5736 uph = (uint16_t *)ipha; 5737 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5738 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5739 if (opt_len > 0) { 5740 do { 5741 sum += uph[10]; 5742 sum += uph[11]; 5743 uph += 2; 5744 } while (--opt_len); 5745 } 5746 sum = (sum & 0xFFFF) + (sum >> 16); 5747 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5748 if (sum == 0xffff) 5749 sum = 0; 5750 return ((uint16_t)sum); 5751 } 5752 5753 /* 5754 * Called when the module is about to be unloaded 5755 */ 5756 void 5757 ip_ddi_destroy(void) 5758 { 5759 tnet_fini(); 5760 5761 sctp_ddi_g_destroy(); 5762 tcp_ddi_g_destroy(); 5763 ipsec_policy_g_destroy(); 5764 ipcl_g_destroy(); 5765 ip_net_g_destroy(); 5766 ip_ire_g_fini(); 5767 inet_minor_destroy(ip_minor_arena); 5768 5769 #ifdef DEBUG 5770 list_destroy(&ip_thread_list); 5771 rw_destroy(&ip_thread_rwlock); 5772 tsd_destroy(&ip_thread_data); 5773 #endif 5774 5775 netstack_unregister(NS_IP); 5776 } 5777 5778 /* 5779 * First step in cleanup. 5780 */ 5781 /* ARGSUSED */ 5782 static void 5783 ip_stack_shutdown(netstackid_t stackid, void *arg) 5784 { 5785 ip_stack_t *ipst = (ip_stack_t *)arg; 5786 5787 #ifdef NS_DEBUG 5788 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5789 #endif 5790 5791 /* Get rid of loopback interfaces and their IREs */ 5792 ip_loopback_cleanup(ipst); 5793 } 5794 5795 /* 5796 * Free the IP stack instance. 5797 */ 5798 static void 5799 ip_stack_fini(netstackid_t stackid, void *arg) 5800 { 5801 ip_stack_t *ipst = (ip_stack_t *)arg; 5802 int ret; 5803 5804 #ifdef NS_DEBUG 5805 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5806 #endif 5807 ipv4_hook_destroy(ipst); 5808 ipv6_hook_destroy(ipst); 5809 ip_net_destroy(ipst); 5810 5811 rw_destroy(&ipst->ips_srcid_lock); 5812 5813 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5814 ipst->ips_ip_mibkp = NULL; 5815 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5816 ipst->ips_icmp_mibkp = NULL; 5817 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5818 ipst->ips_ip_kstat = NULL; 5819 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5820 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5821 ipst->ips_ip6_kstat = NULL; 5822 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5823 5824 nd_free(&ipst->ips_ip_g_nd); 5825 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5826 ipst->ips_param_arr = NULL; 5827 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5828 ipst->ips_ndp_arr = NULL; 5829 5830 ip_mrouter_stack_destroy(ipst); 5831 5832 mutex_destroy(&ipst->ips_ip_mi_lock); 5833 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5834 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5835 rw_destroy(&ipst->ips_ip_g_nd_lock); 5836 5837 ret = untimeout(ipst->ips_igmp_timeout_id); 5838 if (ret == -1) { 5839 ASSERT(ipst->ips_igmp_timeout_id == 0); 5840 } else { 5841 ASSERT(ipst->ips_igmp_timeout_id != 0); 5842 ipst->ips_igmp_timeout_id = 0; 5843 } 5844 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5845 if (ret == -1) { 5846 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5847 } else { 5848 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5849 ipst->ips_igmp_slowtimeout_id = 0; 5850 } 5851 ret = untimeout(ipst->ips_mld_timeout_id); 5852 if (ret == -1) { 5853 ASSERT(ipst->ips_mld_timeout_id == 0); 5854 } else { 5855 ASSERT(ipst->ips_mld_timeout_id != 0); 5856 ipst->ips_mld_timeout_id = 0; 5857 } 5858 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5859 if (ret == -1) { 5860 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5861 } else { 5862 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5863 ipst->ips_mld_slowtimeout_id = 0; 5864 } 5865 ret = untimeout(ipst->ips_ip_ire_expire_id); 5866 if (ret == -1) { 5867 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5868 } else { 5869 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5870 ipst->ips_ip_ire_expire_id = 0; 5871 } 5872 5873 mutex_destroy(&ipst->ips_igmp_timer_lock); 5874 mutex_destroy(&ipst->ips_mld_timer_lock); 5875 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5876 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5877 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5878 rw_destroy(&ipst->ips_ill_g_lock); 5879 5880 ip_ire_fini(ipst); 5881 ip6_asp_free(ipst); 5882 conn_drain_fini(ipst); 5883 ipcl_destroy(ipst); 5884 5885 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5886 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5887 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5888 ipst->ips_ndp4 = NULL; 5889 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5890 ipst->ips_ndp6 = NULL; 5891 5892 if (ipst->ips_loopback_ksp != NULL) { 5893 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5894 ipst->ips_loopback_ksp = NULL; 5895 } 5896 5897 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5898 ipst->ips_phyint_g_list = NULL; 5899 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5900 ipst->ips_ill_g_heads = NULL; 5901 5902 kmem_free(ipst, sizeof (*ipst)); 5903 } 5904 5905 /* 5906 * This function is called from the TSD destructor, and is used to debug 5907 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5908 * details. 5909 */ 5910 static void 5911 ip_thread_exit(void *phash) 5912 { 5913 th_hash_t *thh = phash; 5914 5915 rw_enter(&ip_thread_rwlock, RW_WRITER); 5916 list_remove(&ip_thread_list, thh); 5917 rw_exit(&ip_thread_rwlock); 5918 mod_hash_destroy_hash(thh->thh_hash); 5919 kmem_free(thh, sizeof (*thh)); 5920 } 5921 5922 /* 5923 * Called when the IP kernel module is loaded into the kernel 5924 */ 5925 void 5926 ip_ddi_init(void) 5927 { 5928 TCP6_MAJ = ddi_name_to_major(TCP6); 5929 TCP_MAJ = ddi_name_to_major(TCP); 5930 SCTP_MAJ = ddi_name_to_major(SCTP); 5931 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5932 5933 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5934 5935 /* 5936 * For IP and TCP the minor numbers should start from 2 since we have 4 5937 * initial devices: ip, ip6, tcp, tcp6. 5938 */ 5939 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5940 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5941 cmn_err(CE_PANIC, 5942 "ip_ddi_init: ip_minor_arena creation failed\n"); 5943 } 5944 5945 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5946 5947 ipcl_g_init(); 5948 ip_ire_g_init(); 5949 ip_net_g_init(); 5950 5951 #ifdef DEBUG 5952 tsd_create(&ip_thread_data, ip_thread_exit); 5953 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5954 list_create(&ip_thread_list, sizeof (th_hash_t), 5955 offsetof(th_hash_t, thh_link)); 5956 #endif 5957 5958 /* 5959 * We want to be informed each time a stack is created or 5960 * destroyed in the kernel, so we can maintain the 5961 * set of udp_stack_t's. 5962 */ 5963 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5964 ip_stack_fini); 5965 5966 ipsec_policy_g_init(); 5967 tcp_ddi_g_init(); 5968 sctp_ddi_g_init(); 5969 5970 tnet_init(); 5971 } 5972 5973 /* 5974 * Initialize the IP stack instance. 5975 */ 5976 static void * 5977 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5978 { 5979 ip_stack_t *ipst; 5980 ipparam_t *pa; 5981 ipndp_t *na; 5982 5983 #ifdef NS_DEBUG 5984 printf("ip_stack_init(stack %d)\n", stackid); 5985 #endif 5986 5987 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5988 ipst->ips_netstack = ns; 5989 5990 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5991 KM_SLEEP); 5992 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5993 KM_SLEEP); 5994 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5995 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5996 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5997 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5998 5999 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6000 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6001 ipst->ips_igmp_deferred_next = INFINITY; 6002 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6003 ipst->ips_mld_deferred_next = INFINITY; 6004 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6005 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6006 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6007 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6008 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6009 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6010 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6011 6012 ipcl_init(ipst); 6013 ip_ire_init(ipst); 6014 ip6_asp_init(ipst); 6015 ipif_init(ipst); 6016 conn_drain_init(ipst); 6017 ip_mrouter_stack_init(ipst); 6018 6019 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6020 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6021 6022 ipst->ips_ip_multirt_log_interval = 1000; 6023 6024 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6025 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6026 ipst->ips_ill_index = 1; 6027 6028 ipst->ips_saved_ip_g_forward = -1; 6029 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6030 6031 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6032 ipst->ips_param_arr = pa; 6033 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6034 6035 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6036 ipst->ips_ndp_arr = na; 6037 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6038 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6039 (caddr_t)&ipst->ips_ip_g_forward; 6040 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6041 (caddr_t)&ipst->ips_ipv6_forward; 6042 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6043 "ip_cgtp_filter") == 0); 6044 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6045 (caddr_t)&ipst->ips_ip_cgtp_filter; 6046 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6047 "ipmp_hook_emulation") == 0); 6048 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6049 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6050 6051 (void) ip_param_register(&ipst->ips_ip_g_nd, 6052 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6053 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6054 6055 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6056 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6057 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6058 ipst->ips_ip6_kstat = 6059 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6060 6061 ipst->ips_ipmp_enable_failback = B_TRUE; 6062 6063 ipst->ips_ip_src_id = 1; 6064 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6065 6066 ip_net_init(ipst, ns); 6067 ipv4_hook_init(ipst); 6068 ipv6_hook_init(ipst); 6069 6070 return (ipst); 6071 } 6072 6073 /* 6074 * Allocate and initialize a DLPI template of the specified length. (May be 6075 * called as writer.) 6076 */ 6077 mblk_t * 6078 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6079 { 6080 mblk_t *mp; 6081 6082 mp = allocb(len, BPRI_MED); 6083 if (!mp) 6084 return (NULL); 6085 6086 /* 6087 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6088 * of which we don't seem to use) are sent with M_PCPROTO, and 6089 * that other DLPI are M_PROTO. 6090 */ 6091 if (prim == DL_INFO_REQ) { 6092 mp->b_datap->db_type = M_PCPROTO; 6093 } else { 6094 mp->b_datap->db_type = M_PROTO; 6095 } 6096 6097 mp->b_wptr = mp->b_rptr + len; 6098 bzero(mp->b_rptr, len); 6099 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6100 return (mp); 6101 } 6102 6103 const char * 6104 dlpi_prim_str(int prim) 6105 { 6106 switch (prim) { 6107 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6108 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6109 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6110 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6111 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6112 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6113 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6114 case DL_OK_ACK: return ("DL_OK_ACK"); 6115 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6116 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6117 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6118 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6119 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6120 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6121 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6122 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6123 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6124 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6125 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6126 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6127 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6128 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6129 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6130 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6131 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6132 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6133 default: return ("<unknown primitive>"); 6134 } 6135 } 6136 6137 const char * 6138 dlpi_err_str(int err) 6139 { 6140 switch (err) { 6141 case DL_ACCESS: return ("DL_ACCESS"); 6142 case DL_BADADDR: return ("DL_BADADDR"); 6143 case DL_BADCORR: return ("DL_BADCORR"); 6144 case DL_BADDATA: return ("DL_BADDATA"); 6145 case DL_BADPPA: return ("DL_BADPPA"); 6146 case DL_BADPRIM: return ("DL_BADPRIM"); 6147 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6148 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6149 case DL_BADSAP: return ("DL_BADSAP"); 6150 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6151 case DL_BOUND: return ("DL_BOUND"); 6152 case DL_INITFAILED: return ("DL_INITFAILED"); 6153 case DL_NOADDR: return ("DL_NOADDR"); 6154 case DL_NOTINIT: return ("DL_NOTINIT"); 6155 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6156 case DL_SYSERR: return ("DL_SYSERR"); 6157 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6158 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6159 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6160 case DL_TOOMANY: return ("DL_TOOMANY"); 6161 case DL_NOTENAB: return ("DL_NOTENAB"); 6162 case DL_BUSY: return ("DL_BUSY"); 6163 case DL_NOAUTO: return ("DL_NOAUTO"); 6164 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6165 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6166 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6167 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6168 case DL_PENDING: return ("DL_PENDING"); 6169 default: return ("<unknown error>"); 6170 } 6171 } 6172 6173 /* 6174 * Debug formatting routine. Returns a character string representation of the 6175 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6176 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6177 * 6178 * Once the ndd table-printing interfaces are removed, this can be changed to 6179 * standard dotted-decimal form. 6180 */ 6181 char * 6182 ip_dot_addr(ipaddr_t addr, char *buf) 6183 { 6184 uint8_t *ap = (uint8_t *)&addr; 6185 6186 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6187 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6188 return (buf); 6189 } 6190 6191 /* 6192 * Write the given MAC address as a printable string in the usual colon- 6193 * separated format. 6194 */ 6195 const char * 6196 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6197 { 6198 char *bp; 6199 6200 if (alen == 0 || buflen < 4) 6201 return ("?"); 6202 bp = buf; 6203 for (;;) { 6204 /* 6205 * If there are more MAC address bytes available, but we won't 6206 * have any room to print them, then add "..." to the string 6207 * instead. See below for the 'magic number' explanation. 6208 */ 6209 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6210 (void) strcpy(bp, "..."); 6211 break; 6212 } 6213 (void) sprintf(bp, "%02x", *addr++); 6214 bp += 2; 6215 if (--alen == 0) 6216 break; 6217 *bp++ = ':'; 6218 buflen -= 3; 6219 /* 6220 * At this point, based on the first 'if' statement above, 6221 * either alen == 1 and buflen >= 3, or alen > 1 and 6222 * buflen >= 4. The first case leaves room for the final "xx" 6223 * number and trailing NUL byte. The second leaves room for at 6224 * least "...". Thus the apparently 'magic' numbers chosen for 6225 * that statement. 6226 */ 6227 } 6228 return (buf); 6229 } 6230 6231 /* 6232 * Send an ICMP error after patching up the packet appropriately. Returns 6233 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6234 */ 6235 static boolean_t 6236 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6237 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6238 zoneid_t zoneid, ip_stack_t *ipst) 6239 { 6240 ipha_t *ipha; 6241 mblk_t *first_mp; 6242 boolean_t secure; 6243 unsigned char db_type; 6244 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6245 6246 first_mp = mp; 6247 if (mctl_present) { 6248 mp = mp->b_cont; 6249 secure = ipsec_in_is_secure(first_mp); 6250 ASSERT(mp != NULL); 6251 } else { 6252 /* 6253 * If this is an ICMP error being reported - which goes 6254 * up as M_CTLs, we need to convert them to M_DATA till 6255 * we finish checking with global policy because 6256 * ipsec_check_global_policy() assumes M_DATA as clear 6257 * and M_CTL as secure. 6258 */ 6259 db_type = DB_TYPE(mp); 6260 DB_TYPE(mp) = M_DATA; 6261 secure = B_FALSE; 6262 } 6263 /* 6264 * We are generating an icmp error for some inbound packet. 6265 * Called from all ip_fanout_(udp, tcp, proto) functions. 6266 * Before we generate an error, check with global policy 6267 * to see whether this is allowed to enter the system. As 6268 * there is no "conn", we are checking with global policy. 6269 */ 6270 ipha = (ipha_t *)mp->b_rptr; 6271 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6272 first_mp = ipsec_check_global_policy(first_mp, NULL, 6273 ipha, NULL, mctl_present, ipst->ips_netstack); 6274 if (first_mp == NULL) 6275 return (B_FALSE); 6276 } 6277 6278 if (!mctl_present) 6279 DB_TYPE(mp) = db_type; 6280 6281 if (flags & IP_FF_SEND_ICMP) { 6282 if (flags & IP_FF_HDR_COMPLETE) { 6283 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6284 freemsg(first_mp); 6285 return (B_TRUE); 6286 } 6287 } 6288 if (flags & IP_FF_CKSUM) { 6289 /* 6290 * Have to correct checksum since 6291 * the packet might have been 6292 * fragmented and the reassembly code in ip_rput 6293 * does not restore the IP checksum. 6294 */ 6295 ipha->ipha_hdr_checksum = 0; 6296 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6297 } 6298 switch (icmp_type) { 6299 case ICMP_DEST_UNREACHABLE: 6300 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6301 ipst); 6302 break; 6303 default: 6304 freemsg(first_mp); 6305 break; 6306 } 6307 } else { 6308 freemsg(first_mp); 6309 return (B_FALSE); 6310 } 6311 6312 return (B_TRUE); 6313 } 6314 6315 /* 6316 * Used to send an ICMP error message when a packet is received for 6317 * a protocol that is not supported. The mblk passed as argument 6318 * is consumed by this function. 6319 */ 6320 void 6321 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6322 ip_stack_t *ipst) 6323 { 6324 mblk_t *mp; 6325 ipha_t *ipha; 6326 ill_t *ill; 6327 ipsec_in_t *ii; 6328 6329 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6330 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6331 6332 mp = ipsec_mp->b_cont; 6333 ipsec_mp->b_cont = NULL; 6334 ipha = (ipha_t *)mp->b_rptr; 6335 /* Get ill from index in ipsec_in_t. */ 6336 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6337 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6338 ipst); 6339 if (ill != NULL) { 6340 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6341 if (ip_fanout_send_icmp(q, mp, flags, 6342 ICMP_DEST_UNREACHABLE, 6343 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6344 BUMP_MIB(ill->ill_ip_mib, 6345 ipIfStatsInUnknownProtos); 6346 } 6347 } else { 6348 if (ip_fanout_send_icmp_v6(q, mp, flags, 6349 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6350 0, B_FALSE, zoneid, ipst)) { 6351 BUMP_MIB(ill->ill_ip_mib, 6352 ipIfStatsInUnknownProtos); 6353 } 6354 } 6355 ill_refrele(ill); 6356 } else { /* re-link for the freemsg() below. */ 6357 ipsec_mp->b_cont = mp; 6358 } 6359 6360 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6361 freemsg(ipsec_mp); 6362 } 6363 6364 /* 6365 * See if the inbound datagram has had IPsec processing applied to it. 6366 */ 6367 boolean_t 6368 ipsec_in_is_secure(mblk_t *ipsec_mp) 6369 { 6370 ipsec_in_t *ii; 6371 6372 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6373 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6374 6375 if (ii->ipsec_in_loopback) { 6376 return (ii->ipsec_in_secure); 6377 } else { 6378 return (ii->ipsec_in_ah_sa != NULL || 6379 ii->ipsec_in_esp_sa != NULL || 6380 ii->ipsec_in_decaps); 6381 } 6382 } 6383 6384 /* 6385 * Handle protocols with which IP is less intimate. There 6386 * can be more than one stream bound to a particular 6387 * protocol. When this is the case, normally each one gets a copy 6388 * of any incoming packets. 6389 * 6390 * IPsec NOTE : 6391 * 6392 * Don't allow a secure packet going up a non-secure connection. 6393 * We don't allow this because 6394 * 6395 * 1) Reply might go out in clear which will be dropped at 6396 * the sending side. 6397 * 2) If the reply goes out in clear it will give the 6398 * adversary enough information for getting the key in 6399 * most of the cases. 6400 * 6401 * Moreover getting a secure packet when we expect clear 6402 * implies that SA's were added without checking for 6403 * policy on both ends. This should not happen once ISAKMP 6404 * is used to negotiate SAs as SAs will be added only after 6405 * verifying the policy. 6406 * 6407 * NOTE : If the packet was tunneled and not multicast we only send 6408 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6409 * back to delivering packets to AF_INET6 raw sockets. 6410 * 6411 * IPQoS Notes: 6412 * Once we have determined the client, invoke IPPF processing. 6413 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6414 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6415 * ip_policy will be false. 6416 * 6417 * Zones notes: 6418 * Currently only applications in the global zone can create raw sockets for 6419 * protocols other than ICMP. So unlike the broadcast / multicast case of 6420 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6421 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6422 */ 6423 static void 6424 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6425 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6426 zoneid_t zoneid) 6427 { 6428 queue_t *rq; 6429 mblk_t *mp1, *first_mp1; 6430 uint_t protocol = ipha->ipha_protocol; 6431 ipaddr_t dst; 6432 boolean_t one_only; 6433 mblk_t *first_mp = mp; 6434 boolean_t secure; 6435 uint32_t ill_index; 6436 conn_t *connp, *first_connp, *next_connp; 6437 connf_t *connfp; 6438 boolean_t shared_addr; 6439 mib2_ipIfStatsEntry_t *mibptr; 6440 ip_stack_t *ipst = recv_ill->ill_ipst; 6441 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6442 6443 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6444 if (mctl_present) { 6445 mp = first_mp->b_cont; 6446 secure = ipsec_in_is_secure(first_mp); 6447 ASSERT(mp != NULL); 6448 } else { 6449 secure = B_FALSE; 6450 } 6451 dst = ipha->ipha_dst; 6452 /* 6453 * If the packet was tunneled and not multicast we only send to it 6454 * the first match. 6455 */ 6456 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6457 !CLASSD(dst)); 6458 6459 shared_addr = (zoneid == ALL_ZONES); 6460 if (shared_addr) { 6461 /* 6462 * We don't allow multilevel ports for raw IP, so no need to 6463 * check for that here. 6464 */ 6465 zoneid = tsol_packet_to_zoneid(mp); 6466 } 6467 6468 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6469 mutex_enter(&connfp->connf_lock); 6470 connp = connfp->connf_head; 6471 for (connp = connfp->connf_head; connp != NULL; 6472 connp = connp->conn_next) { 6473 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6474 zoneid) && 6475 (!is_system_labeled() || 6476 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6477 connp))) { 6478 break; 6479 } 6480 } 6481 6482 if (connp == NULL || connp->conn_upq == NULL) { 6483 /* 6484 * No one bound to these addresses. Is 6485 * there a client that wants all 6486 * unclaimed datagrams? 6487 */ 6488 mutex_exit(&connfp->connf_lock); 6489 /* 6490 * Check for IPPROTO_ENCAP... 6491 */ 6492 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6493 /* 6494 * If an IPsec mblk is here on a multicast 6495 * tunnel (using ip_mroute stuff), check policy here, 6496 * THEN ship off to ip_mroute_decap(). 6497 * 6498 * BTW, If I match a configured IP-in-IP 6499 * tunnel, this path will not be reached, and 6500 * ip_mroute_decap will never be called. 6501 */ 6502 first_mp = ipsec_check_global_policy(first_mp, connp, 6503 ipha, NULL, mctl_present, ipst->ips_netstack); 6504 if (first_mp != NULL) { 6505 if (mctl_present) 6506 freeb(first_mp); 6507 ip_mroute_decap(q, mp, ill); 6508 } /* Else we already freed everything! */ 6509 } else { 6510 /* 6511 * Otherwise send an ICMP protocol unreachable. 6512 */ 6513 if (ip_fanout_send_icmp(q, first_mp, flags, 6514 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6515 mctl_present, zoneid, ipst)) { 6516 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6517 } 6518 } 6519 return; 6520 } 6521 CONN_INC_REF(connp); 6522 first_connp = connp; 6523 6524 /* 6525 * Only send message to one tunnel driver by immediately 6526 * terminating the loop. 6527 */ 6528 connp = one_only ? NULL : connp->conn_next; 6529 6530 for (;;) { 6531 while (connp != NULL) { 6532 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6533 flags, zoneid) && 6534 (!is_system_labeled() || 6535 tsol_receive_local(mp, &dst, IPV4_VERSION, 6536 shared_addr, connp))) 6537 break; 6538 connp = connp->conn_next; 6539 } 6540 6541 /* 6542 * Copy the packet. 6543 */ 6544 if (connp == NULL || connp->conn_upq == NULL || 6545 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6546 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6547 /* 6548 * No more interested clients or memory 6549 * allocation failed 6550 */ 6551 connp = first_connp; 6552 break; 6553 } 6554 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6555 CONN_INC_REF(connp); 6556 mutex_exit(&connfp->connf_lock); 6557 rq = connp->conn_rq; 6558 if (!canputnext(rq)) { 6559 if (flags & IP_FF_RAWIP) { 6560 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6561 } else { 6562 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6563 } 6564 6565 freemsg(first_mp1); 6566 } else { 6567 /* 6568 * Don't enforce here if we're an actual tunnel - 6569 * let "tun" do it instead. 6570 */ 6571 if (!IPCL_IS_IPTUN(connp) && 6572 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6573 secure)) { 6574 first_mp1 = ipsec_check_inbound_policy 6575 (first_mp1, connp, ipha, NULL, 6576 mctl_present); 6577 } 6578 if (first_mp1 != NULL) { 6579 int in_flags = 0; 6580 /* 6581 * ip_fanout_proto also gets called from 6582 * icmp_inbound_error_fanout, in which case 6583 * the msg type is M_CTL. Don't add info 6584 * in this case for the time being. In future 6585 * when there is a need for knowing the 6586 * inbound iface index for ICMP error msgs, 6587 * then this can be changed. 6588 */ 6589 if (connp->conn_recvif) 6590 in_flags = IPF_RECVIF; 6591 /* 6592 * The ULP may support IP_RECVPKTINFO for both 6593 * IP v4 and v6 so pass the appropriate argument 6594 * based on conn IP version. 6595 */ 6596 if (connp->conn_ip_recvpktinfo) { 6597 if (connp->conn_af_isv6) { 6598 /* 6599 * V6 only needs index 6600 */ 6601 in_flags |= IPF_RECVIF; 6602 } else { 6603 /* 6604 * V4 needs index + 6605 * matching address. 6606 */ 6607 in_flags |= IPF_RECVADDR; 6608 } 6609 } 6610 if ((in_flags != 0) && 6611 (mp->b_datap->db_type != M_CTL)) { 6612 /* 6613 * the actual data will be 6614 * contained in b_cont upon 6615 * successful return of the 6616 * following call else 6617 * original mblk is returned 6618 */ 6619 ASSERT(recv_ill != NULL); 6620 mp1 = ip_add_info(mp1, recv_ill, 6621 in_flags, IPCL_ZONEID(connp), ipst); 6622 } 6623 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6624 if (mctl_present) 6625 freeb(first_mp1); 6626 putnext(rq, mp1); 6627 } 6628 } 6629 mutex_enter(&connfp->connf_lock); 6630 /* Follow the next pointer before releasing the conn. */ 6631 next_connp = connp->conn_next; 6632 CONN_DEC_REF(connp); 6633 connp = next_connp; 6634 } 6635 6636 /* Last one. Send it upstream. */ 6637 mutex_exit(&connfp->connf_lock); 6638 6639 /* 6640 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6641 * will be set to false. 6642 */ 6643 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6644 ill_index = ill->ill_phyint->phyint_ifindex; 6645 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6646 if (mp == NULL) { 6647 CONN_DEC_REF(connp); 6648 if (mctl_present) { 6649 freeb(first_mp); 6650 } 6651 return; 6652 } 6653 } 6654 6655 rq = connp->conn_rq; 6656 if (!canputnext(rq)) { 6657 if (flags & IP_FF_RAWIP) { 6658 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6659 } else { 6660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6661 } 6662 6663 freemsg(first_mp); 6664 } else { 6665 if (IPCL_IS_IPTUN(connp)) { 6666 /* 6667 * Tunneled packet. We enforce policy in the tunnel 6668 * module itself. 6669 * 6670 * Send the WHOLE packet up (incl. IPSEC_IN) without 6671 * a policy check. 6672 */ 6673 putnext(rq, first_mp); 6674 CONN_DEC_REF(connp); 6675 return; 6676 } 6677 6678 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6679 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6680 ipha, NULL, mctl_present); 6681 } 6682 6683 if (first_mp != NULL) { 6684 int in_flags = 0; 6685 6686 /* 6687 * ip_fanout_proto also gets called 6688 * from icmp_inbound_error_fanout, in 6689 * which case the msg type is M_CTL. 6690 * Don't add info in this case for time 6691 * being. In future when there is a 6692 * need for knowing the inbound iface 6693 * index for ICMP error msgs, then this 6694 * can be changed 6695 */ 6696 if (connp->conn_recvif) 6697 in_flags = IPF_RECVIF; 6698 if (connp->conn_ip_recvpktinfo) { 6699 if (connp->conn_af_isv6) { 6700 /* 6701 * V6 only needs index 6702 */ 6703 in_flags |= IPF_RECVIF; 6704 } else { 6705 /* 6706 * V4 needs index + 6707 * matching address. 6708 */ 6709 in_flags |= IPF_RECVADDR; 6710 } 6711 } 6712 if ((in_flags != 0) && 6713 (mp->b_datap->db_type != M_CTL)) { 6714 6715 /* 6716 * the actual data will be contained in 6717 * b_cont upon successful return 6718 * of the following call else original 6719 * mblk is returned 6720 */ 6721 ASSERT(recv_ill != NULL); 6722 mp = ip_add_info(mp, recv_ill, 6723 in_flags, IPCL_ZONEID(connp), ipst); 6724 } 6725 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6726 putnext(rq, mp); 6727 if (mctl_present) 6728 freeb(first_mp); 6729 } 6730 } 6731 CONN_DEC_REF(connp); 6732 } 6733 6734 /* 6735 * Fanout for TCP packets 6736 * The caller puts <fport, lport> in the ports parameter. 6737 * 6738 * IPQoS Notes 6739 * Before sending it to the client, invoke IPPF processing. 6740 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6741 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6742 * ip_policy is false. 6743 */ 6744 static void 6745 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6746 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6747 { 6748 mblk_t *first_mp; 6749 boolean_t secure; 6750 uint32_t ill_index; 6751 int ip_hdr_len; 6752 tcph_t *tcph; 6753 boolean_t syn_present = B_FALSE; 6754 conn_t *connp; 6755 ip_stack_t *ipst = recv_ill->ill_ipst; 6756 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6757 6758 ASSERT(recv_ill != NULL); 6759 6760 first_mp = mp; 6761 if (mctl_present) { 6762 ASSERT(first_mp->b_datap->db_type == M_CTL); 6763 mp = first_mp->b_cont; 6764 secure = ipsec_in_is_secure(first_mp); 6765 ASSERT(mp != NULL); 6766 } else { 6767 secure = B_FALSE; 6768 } 6769 6770 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6771 6772 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6773 zoneid, ipst)) == NULL) { 6774 /* 6775 * No connected connection or listener. Send a 6776 * TH_RST via tcp_xmit_listeners_reset. 6777 */ 6778 6779 /* Initiate IPPf processing, if needed. */ 6780 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6781 uint32_t ill_index; 6782 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6783 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6784 if (first_mp == NULL) 6785 return; 6786 } 6787 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6788 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6789 zoneid)); 6790 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6791 ipst->ips_netstack->netstack_tcp, NULL); 6792 return; 6793 } 6794 6795 /* 6796 * Allocate the SYN for the TCP connection here itself 6797 */ 6798 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6799 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6800 if (IPCL_IS_TCP(connp)) { 6801 squeue_t *sqp; 6802 6803 /* 6804 * For fused tcp loopback, assign the eager's 6805 * squeue to be that of the active connect's. 6806 * Note that we don't check for IP_FF_LOOPBACK 6807 * here since this routine gets called only 6808 * for loopback (unlike the IPv6 counterpart). 6809 */ 6810 ASSERT(Q_TO_CONN(q) != NULL); 6811 if (do_tcp_fusion && 6812 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6813 !secure && 6814 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6815 IPCL_IS_TCP(Q_TO_CONN(q))) { 6816 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6817 sqp = Q_TO_CONN(q)->conn_sqp; 6818 } else { 6819 sqp = IP_SQUEUE_GET(lbolt); 6820 } 6821 6822 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6823 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6824 syn_present = B_TRUE; 6825 } 6826 } 6827 6828 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6829 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6830 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6831 if ((flags & TH_RST) || (flags & TH_URG)) { 6832 CONN_DEC_REF(connp); 6833 freemsg(first_mp); 6834 return; 6835 } 6836 if (flags & TH_ACK) { 6837 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6838 ipst->ips_netstack->netstack_tcp, connp); 6839 CONN_DEC_REF(connp); 6840 return; 6841 } 6842 6843 CONN_DEC_REF(connp); 6844 freemsg(first_mp); 6845 return; 6846 } 6847 6848 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6849 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6850 NULL, mctl_present); 6851 if (first_mp == NULL) { 6852 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6853 CONN_DEC_REF(connp); 6854 return; 6855 } 6856 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6857 ASSERT(syn_present); 6858 if (mctl_present) { 6859 ASSERT(first_mp != mp); 6860 first_mp->b_datap->db_struioflag |= 6861 STRUIO_POLICY; 6862 } else { 6863 ASSERT(first_mp == mp); 6864 mp->b_datap->db_struioflag &= 6865 ~STRUIO_EAGER; 6866 mp->b_datap->db_struioflag |= 6867 STRUIO_POLICY; 6868 } 6869 } else { 6870 /* 6871 * Discard first_mp early since we're dealing with a 6872 * fully-connected conn_t and tcp doesn't do policy in 6873 * this case. 6874 */ 6875 if (mctl_present) { 6876 freeb(first_mp); 6877 mctl_present = B_FALSE; 6878 } 6879 first_mp = mp; 6880 } 6881 } 6882 6883 /* 6884 * Initiate policy processing here if needed. If we get here from 6885 * icmp_inbound_error_fanout, ip_policy is false. 6886 */ 6887 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6888 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6889 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6890 if (mp == NULL) { 6891 CONN_DEC_REF(connp); 6892 if (mctl_present) 6893 freeb(first_mp); 6894 return; 6895 } else if (mctl_present) { 6896 ASSERT(first_mp != mp); 6897 first_mp->b_cont = mp; 6898 } else { 6899 first_mp = mp; 6900 } 6901 } 6902 6903 6904 6905 /* Handle socket options. */ 6906 if (!syn_present && 6907 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6908 /* Add header */ 6909 ASSERT(recv_ill != NULL); 6910 /* 6911 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6912 * IPF_RECVIF. 6913 */ 6914 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6915 ipst); 6916 if (mp == NULL) { 6917 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6918 CONN_DEC_REF(connp); 6919 if (mctl_present) 6920 freeb(first_mp); 6921 return; 6922 } else if (mctl_present) { 6923 /* 6924 * ip_add_info might return a new mp. 6925 */ 6926 ASSERT(first_mp != mp); 6927 first_mp->b_cont = mp; 6928 } else { 6929 first_mp = mp; 6930 } 6931 } 6932 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6933 if (IPCL_IS_TCP(connp)) { 6934 /* do not drain, certain use cases can blow the stack */ 6935 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6936 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6937 } else { 6938 putnext(connp->conn_rq, first_mp); 6939 CONN_DEC_REF(connp); 6940 } 6941 } 6942 6943 /* 6944 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6945 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6946 * is not consumed. 6947 * 6948 * One of four things can happen, all of which affect the passed-in mblk: 6949 * 6950 * 1.) ICMP messages that go through here just get returned TRUE. 6951 * 6952 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6953 * 6954 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6955 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6956 * 6957 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6958 */ 6959 static boolean_t 6960 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6961 ipsec_stack_t *ipss) 6962 { 6963 int shift, plen, iph_len; 6964 ipha_t *ipha; 6965 udpha_t *udpha; 6966 uint32_t *spi; 6967 uint8_t *orptr; 6968 boolean_t udp_pkt, free_ire; 6969 6970 if (DB_TYPE(mp) == M_CTL) { 6971 /* 6972 * ICMP message with UDP inside. Don't bother stripping, just 6973 * send it up. 6974 * 6975 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6976 * to ignore errors set by ICMP anyway ('cause they might be 6977 * forged), but that's the app's decision, not ours. 6978 */ 6979 6980 /* Bunch of reality checks for DEBUG kernels... */ 6981 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6982 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6983 6984 return (B_TRUE); 6985 } 6986 6987 ipha = (ipha_t *)mp->b_rptr; 6988 iph_len = IPH_HDR_LENGTH(ipha); 6989 plen = ntohs(ipha->ipha_length); 6990 6991 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6992 /* 6993 * Most likely a keepalive for the benefit of an intervening 6994 * NAT. These aren't for us, per se, so drop it. 6995 * 6996 * RFC 3947/8 doesn't say for sure what to do for 2-3 6997 * byte packets (keepalives are 1-byte), but we'll drop them 6998 * also. 6999 */ 7000 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7001 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7002 return (B_FALSE); 7003 } 7004 7005 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7006 /* might as well pull it all up - it might be ESP. */ 7007 if (!pullupmsg(mp, -1)) { 7008 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7009 DROPPER(ipss, ipds_esp_nomem), 7010 &ipss->ipsec_dropper); 7011 return (B_FALSE); 7012 } 7013 7014 ipha = (ipha_t *)mp->b_rptr; 7015 } 7016 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7017 if (*spi == 0) { 7018 /* UDP packet - remove 0-spi. */ 7019 shift = sizeof (uint32_t); 7020 } else { 7021 /* ESP-in-UDP packet - reduce to ESP. */ 7022 ipha->ipha_protocol = IPPROTO_ESP; 7023 shift = sizeof (udpha_t); 7024 } 7025 7026 /* Fix IP header */ 7027 ipha->ipha_length = htons(plen - shift); 7028 ipha->ipha_hdr_checksum = 0; 7029 7030 orptr = mp->b_rptr; 7031 mp->b_rptr += shift; 7032 7033 if (*spi == 0) { 7034 ASSERT((uint8_t *)ipha == orptr); 7035 udpha = (udpha_t *)(orptr + iph_len); 7036 udpha->uha_length = htons(plen - shift - iph_len); 7037 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7038 udp_pkt = B_TRUE; 7039 } else { 7040 udp_pkt = B_FALSE; 7041 } 7042 ovbcopy(orptr, orptr + shift, iph_len); 7043 if (!udp_pkt) /* Punt up for ESP processing. */ { 7044 ipha = (ipha_t *)(orptr + shift); 7045 7046 free_ire = (ire == NULL); 7047 if (free_ire) { 7048 /* Re-acquire ire. */ 7049 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7050 ipss->ipsec_netstack->netstack_ip); 7051 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7052 if (ire != NULL) 7053 ire_refrele(ire); 7054 /* 7055 * Do a regular freemsg(), as this is an IP 7056 * error (no local route) not an IPsec one. 7057 */ 7058 freemsg(mp); 7059 } 7060 } 7061 7062 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 7063 if (free_ire) 7064 ire_refrele(ire); 7065 } 7066 7067 return (udp_pkt); 7068 } 7069 7070 /* 7071 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7072 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7073 * Caller is responsible for dropping references to the conn, and freeing 7074 * first_mp. 7075 * 7076 * IPQoS Notes 7077 * Before sending it to the client, invoke IPPF processing. Policy processing 7078 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7079 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7080 * ip_wput_local, ip_policy is false. 7081 */ 7082 static void 7083 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7084 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7085 boolean_t ip_policy) 7086 { 7087 boolean_t mctl_present = (first_mp != NULL); 7088 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7089 uint32_t ill_index; 7090 ip_stack_t *ipst = recv_ill->ill_ipst; 7091 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7092 7093 ASSERT(ill != NULL); 7094 7095 if (mctl_present) 7096 first_mp->b_cont = mp; 7097 else 7098 first_mp = mp; 7099 7100 if (CONN_UDP_FLOWCTLD(connp)) { 7101 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7102 freemsg(first_mp); 7103 return; 7104 } 7105 7106 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7107 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7108 NULL, mctl_present); 7109 if (first_mp == NULL) { 7110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7111 return; /* Freed by ipsec_check_inbound_policy(). */ 7112 } 7113 } 7114 if (mctl_present) 7115 freeb(first_mp); 7116 7117 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7118 if (connp->conn_udp->udp_nat_t_endpoint) { 7119 if (mctl_present) { 7120 /* mctl_present *shouldn't* happen. */ 7121 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7122 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7123 &ipss->ipsec_dropper); 7124 return; 7125 } 7126 7127 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7128 return; 7129 } 7130 7131 /* Handle options. */ 7132 if (connp->conn_recvif) 7133 in_flags = IPF_RECVIF; 7134 /* 7135 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7136 * passed to ip_add_info is based on IP version of connp. 7137 */ 7138 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7139 if (connp->conn_af_isv6) { 7140 /* 7141 * V6 only needs index 7142 */ 7143 in_flags |= IPF_RECVIF; 7144 } else { 7145 /* 7146 * V4 needs index + matching address. 7147 */ 7148 in_flags |= IPF_RECVADDR; 7149 } 7150 } 7151 7152 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7153 in_flags |= IPF_RECVSLLA; 7154 7155 /* 7156 * Initiate IPPF processing here, if needed. Note first_mp won't be 7157 * freed if the packet is dropped. The caller will do so. 7158 */ 7159 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7160 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7161 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7162 if (mp == NULL) { 7163 return; 7164 } 7165 } 7166 if ((in_flags != 0) && 7167 (mp->b_datap->db_type != M_CTL)) { 7168 /* 7169 * The actual data will be contained in b_cont 7170 * upon successful return of the following call 7171 * else original mblk is returned 7172 */ 7173 ASSERT(recv_ill != NULL); 7174 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7175 ipst); 7176 } 7177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7178 /* Send it upstream */ 7179 CONN_UDP_RECV(connp, mp); 7180 } 7181 7182 /* 7183 * Fanout for UDP packets. 7184 * The caller puts <fport, lport> in the ports parameter. 7185 * 7186 * If SO_REUSEADDR is set all multicast and broadcast packets 7187 * will be delivered to all streams bound to the same port. 7188 * 7189 * Zones notes: 7190 * Multicast and broadcast packets will be distributed to streams in all zones. 7191 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7192 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7193 * packets. To maintain this behavior with multiple zones, the conns are grouped 7194 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7195 * each zone. If unset, all the following conns in the same zone are skipped. 7196 */ 7197 static void 7198 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7199 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7200 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7201 { 7202 uint32_t dstport, srcport; 7203 ipaddr_t dst; 7204 mblk_t *first_mp; 7205 boolean_t secure; 7206 in6_addr_t v6src; 7207 conn_t *connp; 7208 connf_t *connfp; 7209 conn_t *first_connp; 7210 conn_t *next_connp; 7211 mblk_t *mp1, *first_mp1; 7212 ipaddr_t src; 7213 zoneid_t last_zoneid; 7214 boolean_t reuseaddr; 7215 boolean_t shared_addr; 7216 ip_stack_t *ipst; 7217 7218 ASSERT(recv_ill != NULL); 7219 ipst = recv_ill->ill_ipst; 7220 7221 first_mp = mp; 7222 if (mctl_present) { 7223 mp = first_mp->b_cont; 7224 first_mp->b_cont = NULL; 7225 secure = ipsec_in_is_secure(first_mp); 7226 ASSERT(mp != NULL); 7227 } else { 7228 first_mp = NULL; 7229 secure = B_FALSE; 7230 } 7231 7232 /* Extract ports in net byte order */ 7233 dstport = htons(ntohl(ports) & 0xFFFF); 7234 srcport = htons(ntohl(ports) >> 16); 7235 dst = ipha->ipha_dst; 7236 src = ipha->ipha_src; 7237 7238 shared_addr = (zoneid == ALL_ZONES); 7239 if (shared_addr) { 7240 /* 7241 * No need to handle exclusive-stack zones since ALL_ZONES 7242 * only applies to the shared stack. 7243 */ 7244 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7245 if (zoneid == ALL_ZONES) 7246 zoneid = tsol_packet_to_zoneid(mp); 7247 } 7248 7249 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7250 mutex_enter(&connfp->connf_lock); 7251 connp = connfp->connf_head; 7252 if (!broadcast && !CLASSD(dst)) { 7253 /* 7254 * Not broadcast or multicast. Send to the one (first) 7255 * client we find. No need to check conn_wantpacket() 7256 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7257 * IPv4 unicast packets. 7258 */ 7259 while ((connp != NULL) && 7260 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7261 !IPCL_ZONE_MATCH(connp, zoneid))) { 7262 connp = connp->conn_next; 7263 } 7264 7265 if (connp == NULL || connp->conn_upq == NULL) 7266 goto notfound; 7267 7268 if (is_system_labeled() && 7269 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7270 connp)) 7271 goto notfound; 7272 7273 CONN_INC_REF(connp); 7274 mutex_exit(&connfp->connf_lock); 7275 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7276 flags, recv_ill, ip_policy); 7277 IP_STAT(ipst, ip_udp_fannorm); 7278 CONN_DEC_REF(connp); 7279 return; 7280 } 7281 7282 /* 7283 * Broadcast and multicast case 7284 * 7285 * Need to check conn_wantpacket(). 7286 * If SO_REUSEADDR has been set on the first we send the 7287 * packet to all clients that have joined the group and 7288 * match the port. 7289 */ 7290 7291 while (connp != NULL) { 7292 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7293 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7294 (!is_system_labeled() || 7295 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7296 connp))) 7297 break; 7298 connp = connp->conn_next; 7299 } 7300 7301 if (connp == NULL || connp->conn_upq == NULL) 7302 goto notfound; 7303 7304 first_connp = connp; 7305 /* 7306 * When SO_REUSEADDR is not set, send the packet only to the first 7307 * matching connection in its zone by keeping track of the zoneid. 7308 */ 7309 reuseaddr = first_connp->conn_reuseaddr; 7310 last_zoneid = first_connp->conn_zoneid; 7311 7312 CONN_INC_REF(connp); 7313 connp = connp->conn_next; 7314 for (;;) { 7315 while (connp != NULL) { 7316 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7317 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7318 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7319 (!is_system_labeled() || 7320 tsol_receive_local(mp, &dst, IPV4_VERSION, 7321 shared_addr, connp))) 7322 break; 7323 connp = connp->conn_next; 7324 } 7325 /* 7326 * Just copy the data part alone. The mctl part is 7327 * needed just for verifying policy and it is never 7328 * sent up. 7329 */ 7330 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7331 ((mp1 = copymsg(mp)) == NULL))) { 7332 /* 7333 * No more interested clients or memory 7334 * allocation failed 7335 */ 7336 connp = first_connp; 7337 break; 7338 } 7339 if (connp->conn_zoneid != last_zoneid) { 7340 /* 7341 * Update the zoneid so that the packet isn't sent to 7342 * any more conns in the same zone unless SO_REUSEADDR 7343 * is set. 7344 */ 7345 reuseaddr = connp->conn_reuseaddr; 7346 last_zoneid = connp->conn_zoneid; 7347 } 7348 if (first_mp != NULL) { 7349 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7350 ipsec_info_type == IPSEC_IN); 7351 first_mp1 = ipsec_in_tag(first_mp, NULL, 7352 ipst->ips_netstack); 7353 if (first_mp1 == NULL) { 7354 freemsg(mp1); 7355 connp = first_connp; 7356 break; 7357 } 7358 } else { 7359 first_mp1 = NULL; 7360 } 7361 CONN_INC_REF(connp); 7362 mutex_exit(&connfp->connf_lock); 7363 /* 7364 * IPQoS notes: We don't send the packet for policy 7365 * processing here, will do it for the last one (below). 7366 * i.e. we do it per-packet now, but if we do policy 7367 * processing per-conn, then we would need to do it 7368 * here too. 7369 */ 7370 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7371 ipha, flags, recv_ill, B_FALSE); 7372 mutex_enter(&connfp->connf_lock); 7373 /* Follow the next pointer before releasing the conn. */ 7374 next_connp = connp->conn_next; 7375 IP_STAT(ipst, ip_udp_fanmb); 7376 CONN_DEC_REF(connp); 7377 connp = next_connp; 7378 } 7379 7380 /* Last one. Send it upstream. */ 7381 mutex_exit(&connfp->connf_lock); 7382 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7383 recv_ill, ip_policy); 7384 IP_STAT(ipst, ip_udp_fanmb); 7385 CONN_DEC_REF(connp); 7386 return; 7387 7388 notfound: 7389 7390 mutex_exit(&connfp->connf_lock); 7391 IP_STAT(ipst, ip_udp_fanothers); 7392 /* 7393 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7394 * have already been matched above, since they live in the IPv4 7395 * fanout tables. This implies we only need to 7396 * check for IPv6 in6addr_any endpoints here. 7397 * Thus we compare using ipv6_all_zeros instead of the destination 7398 * address, except for the multicast group membership lookup which 7399 * uses the IPv4 destination. 7400 */ 7401 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7402 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7403 mutex_enter(&connfp->connf_lock); 7404 connp = connfp->connf_head; 7405 if (!broadcast && !CLASSD(dst)) { 7406 while (connp != NULL) { 7407 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7408 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7409 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7410 !connp->conn_ipv6_v6only) 7411 break; 7412 connp = connp->conn_next; 7413 } 7414 7415 if (connp != NULL && is_system_labeled() && 7416 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7417 connp)) 7418 connp = NULL; 7419 7420 if (connp == NULL || connp->conn_upq == NULL) { 7421 /* 7422 * No one bound to this port. Is 7423 * there a client that wants all 7424 * unclaimed datagrams? 7425 */ 7426 mutex_exit(&connfp->connf_lock); 7427 7428 if (mctl_present) 7429 first_mp->b_cont = mp; 7430 else 7431 first_mp = mp; 7432 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7433 connf_head != NULL) { 7434 ip_fanout_proto(q, first_mp, ill, ipha, 7435 flags | IP_FF_RAWIP, mctl_present, 7436 ip_policy, recv_ill, zoneid); 7437 } else { 7438 if (ip_fanout_send_icmp(q, first_mp, flags, 7439 ICMP_DEST_UNREACHABLE, 7440 ICMP_PORT_UNREACHABLE, 7441 mctl_present, zoneid, ipst)) { 7442 BUMP_MIB(ill->ill_ip_mib, 7443 udpIfStatsNoPorts); 7444 } 7445 } 7446 return; 7447 } 7448 7449 CONN_INC_REF(connp); 7450 mutex_exit(&connfp->connf_lock); 7451 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7452 flags, recv_ill, ip_policy); 7453 CONN_DEC_REF(connp); 7454 return; 7455 } 7456 /* 7457 * IPv4 multicast packet being delivered to an AF_INET6 7458 * in6addr_any endpoint. 7459 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7460 * and not conn_wantpacket_v6() since any multicast membership is 7461 * for an IPv4-mapped multicast address. 7462 * The packet is sent to all clients in all zones that have joined the 7463 * group and match the port. 7464 */ 7465 while (connp != NULL) { 7466 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7467 srcport, v6src) && 7468 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7469 (!is_system_labeled() || 7470 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7471 connp))) 7472 break; 7473 connp = connp->conn_next; 7474 } 7475 7476 if (connp == NULL || connp->conn_upq == NULL) { 7477 /* 7478 * No one bound to this port. Is 7479 * there a client that wants all 7480 * unclaimed datagrams? 7481 */ 7482 mutex_exit(&connfp->connf_lock); 7483 7484 if (mctl_present) 7485 first_mp->b_cont = mp; 7486 else 7487 first_mp = mp; 7488 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7489 NULL) { 7490 ip_fanout_proto(q, first_mp, ill, ipha, 7491 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7492 recv_ill, zoneid); 7493 } else { 7494 /* 7495 * We used to attempt to send an icmp error here, but 7496 * since this is known to be a multicast packet 7497 * and we don't send icmp errors in response to 7498 * multicast, just drop the packet and give up sooner. 7499 */ 7500 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7501 freemsg(first_mp); 7502 } 7503 return; 7504 } 7505 7506 first_connp = connp; 7507 7508 CONN_INC_REF(connp); 7509 connp = connp->conn_next; 7510 for (;;) { 7511 while (connp != NULL) { 7512 if (IPCL_UDP_MATCH_V6(connp, dstport, 7513 ipv6_all_zeros, srcport, v6src) && 7514 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7515 (!is_system_labeled() || 7516 tsol_receive_local(mp, &dst, IPV4_VERSION, 7517 shared_addr, connp))) 7518 break; 7519 connp = connp->conn_next; 7520 } 7521 /* 7522 * Just copy the data part alone. The mctl part is 7523 * needed just for verifying policy and it is never 7524 * sent up. 7525 */ 7526 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7527 ((mp1 = copymsg(mp)) == NULL))) { 7528 /* 7529 * No more intested clients or memory 7530 * allocation failed 7531 */ 7532 connp = first_connp; 7533 break; 7534 } 7535 if (first_mp != NULL) { 7536 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7537 ipsec_info_type == IPSEC_IN); 7538 first_mp1 = ipsec_in_tag(first_mp, NULL, 7539 ipst->ips_netstack); 7540 if (first_mp1 == NULL) { 7541 freemsg(mp1); 7542 connp = first_connp; 7543 break; 7544 } 7545 } else { 7546 first_mp1 = NULL; 7547 } 7548 CONN_INC_REF(connp); 7549 mutex_exit(&connfp->connf_lock); 7550 /* 7551 * IPQoS notes: We don't send the packet for policy 7552 * processing here, will do it for the last one (below). 7553 * i.e. we do it per-packet now, but if we do policy 7554 * processing per-conn, then we would need to do it 7555 * here too. 7556 */ 7557 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7558 ipha, flags, recv_ill, B_FALSE); 7559 mutex_enter(&connfp->connf_lock); 7560 /* Follow the next pointer before releasing the conn. */ 7561 next_connp = connp->conn_next; 7562 CONN_DEC_REF(connp); 7563 connp = next_connp; 7564 } 7565 7566 /* Last one. Send it upstream. */ 7567 mutex_exit(&connfp->connf_lock); 7568 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7569 recv_ill, ip_policy); 7570 CONN_DEC_REF(connp); 7571 } 7572 7573 /* 7574 * Complete the ip_wput header so that it 7575 * is possible to generate ICMP 7576 * errors. 7577 */ 7578 int 7579 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7580 { 7581 ire_t *ire; 7582 7583 if (ipha->ipha_src == INADDR_ANY) { 7584 ire = ire_lookup_local(zoneid, ipst); 7585 if (ire == NULL) { 7586 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7587 return (1); 7588 } 7589 ipha->ipha_src = ire->ire_addr; 7590 ire_refrele(ire); 7591 } 7592 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7593 ipha->ipha_hdr_checksum = 0; 7594 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7595 return (0); 7596 } 7597 7598 /* 7599 * Nobody should be sending 7600 * packets up this stream 7601 */ 7602 static void 7603 ip_lrput(queue_t *q, mblk_t *mp) 7604 { 7605 mblk_t *mp1; 7606 7607 switch (mp->b_datap->db_type) { 7608 case M_FLUSH: 7609 /* Turn around */ 7610 if (*mp->b_rptr & FLUSHW) { 7611 *mp->b_rptr &= ~FLUSHR; 7612 qreply(q, mp); 7613 return; 7614 } 7615 break; 7616 } 7617 /* Could receive messages that passed through ar_rput */ 7618 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7619 mp1->b_prev = mp1->b_next = NULL; 7620 freemsg(mp); 7621 } 7622 7623 /* Nobody should be sending packets down this stream */ 7624 /* ARGSUSED */ 7625 void 7626 ip_lwput(queue_t *q, mblk_t *mp) 7627 { 7628 freemsg(mp); 7629 } 7630 7631 /* 7632 * Move the first hop in any source route to ipha_dst and remove that part of 7633 * the source route. Called by other protocols. Errors in option formatting 7634 * are ignored - will be handled by ip_wput_options Return the final 7635 * destination (either ipha_dst or the last entry in a source route.) 7636 */ 7637 ipaddr_t 7638 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7639 { 7640 ipoptp_t opts; 7641 uchar_t *opt; 7642 uint8_t optval; 7643 uint8_t optlen; 7644 ipaddr_t dst; 7645 int i; 7646 ire_t *ire; 7647 ip_stack_t *ipst = ns->netstack_ip; 7648 7649 ip2dbg(("ip_massage_options\n")); 7650 dst = ipha->ipha_dst; 7651 for (optval = ipoptp_first(&opts, ipha); 7652 optval != IPOPT_EOL; 7653 optval = ipoptp_next(&opts)) { 7654 opt = opts.ipoptp_cur; 7655 switch (optval) { 7656 uint8_t off; 7657 case IPOPT_SSRR: 7658 case IPOPT_LSRR: 7659 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7660 ip1dbg(("ip_massage_options: bad src route\n")); 7661 break; 7662 } 7663 optlen = opts.ipoptp_len; 7664 off = opt[IPOPT_OFFSET]; 7665 off--; 7666 redo_srr: 7667 if (optlen < IP_ADDR_LEN || 7668 off > optlen - IP_ADDR_LEN) { 7669 /* End of source route */ 7670 ip1dbg(("ip_massage_options: end of SR\n")); 7671 break; 7672 } 7673 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7674 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7675 ntohl(dst))); 7676 /* 7677 * Check if our address is present more than 7678 * once as consecutive hops in source route. 7679 * XXX verify per-interface ip_forwarding 7680 * for source route? 7681 */ 7682 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7683 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7684 if (ire != NULL) { 7685 ire_refrele(ire); 7686 off += IP_ADDR_LEN; 7687 goto redo_srr; 7688 } 7689 if (dst == htonl(INADDR_LOOPBACK)) { 7690 ip1dbg(("ip_massage_options: loopback addr in " 7691 "source route!\n")); 7692 break; 7693 } 7694 /* 7695 * Update ipha_dst to be the first hop and remove the 7696 * first hop from the source route (by overwriting 7697 * part of the option with NOP options). 7698 */ 7699 ipha->ipha_dst = dst; 7700 /* Put the last entry in dst */ 7701 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7702 3; 7703 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7704 7705 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7706 ntohl(dst))); 7707 /* Move down and overwrite */ 7708 opt[IP_ADDR_LEN] = opt[0]; 7709 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7710 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7711 for (i = 0; i < IP_ADDR_LEN; i++) 7712 opt[i] = IPOPT_NOP; 7713 break; 7714 } 7715 } 7716 return (dst); 7717 } 7718 7719 /* 7720 * Return the network mask 7721 * associated with the specified address. 7722 */ 7723 ipaddr_t 7724 ip_net_mask(ipaddr_t addr) 7725 { 7726 uchar_t *up = (uchar_t *)&addr; 7727 ipaddr_t mask = 0; 7728 uchar_t *maskp = (uchar_t *)&mask; 7729 7730 #if defined(__i386) || defined(__amd64) 7731 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7732 #endif 7733 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7734 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7735 #endif 7736 if (CLASSD(addr)) { 7737 maskp[0] = 0xF0; 7738 return (mask); 7739 } 7740 if (addr == 0) 7741 return (0); 7742 maskp[0] = 0xFF; 7743 if ((up[0] & 0x80) == 0) 7744 return (mask); 7745 7746 maskp[1] = 0xFF; 7747 if ((up[0] & 0xC0) == 0x80) 7748 return (mask); 7749 7750 maskp[2] = 0xFF; 7751 if ((up[0] & 0xE0) == 0xC0) 7752 return (mask); 7753 7754 /* Must be experimental or multicast, indicate as much */ 7755 return ((ipaddr_t)0); 7756 } 7757 7758 /* 7759 * Select an ill for the packet by considering load spreading across 7760 * a different ill in the group if dst_ill is part of some group. 7761 */ 7762 ill_t * 7763 ip_newroute_get_dst_ill(ill_t *dst_ill) 7764 { 7765 ill_t *ill; 7766 7767 /* 7768 * We schedule irrespective of whether the source address is 7769 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7770 */ 7771 ill = illgrp_scheduler(dst_ill); 7772 if (ill == NULL) 7773 return (NULL); 7774 7775 /* 7776 * For groups with names ip_sioctl_groupname ensures that all 7777 * ills are of same type. For groups without names, ifgrp_insert 7778 * ensures this. 7779 */ 7780 ASSERT(dst_ill->ill_type == ill->ill_type); 7781 7782 return (ill); 7783 } 7784 7785 /* 7786 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7787 */ 7788 ill_t * 7789 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7790 ip_stack_t *ipst) 7791 { 7792 ill_t *ret_ill; 7793 7794 ASSERT(ifindex != 0); 7795 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7796 ipst); 7797 if (ret_ill == NULL || 7798 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7799 if (isv6) { 7800 if (ill != NULL) { 7801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7802 } else { 7803 BUMP_MIB(&ipst->ips_ip6_mib, 7804 ipIfStatsOutDiscards); 7805 } 7806 ip1dbg(("ip_grab_attach_ill (IPv6): " 7807 "bad ifindex %d.\n", ifindex)); 7808 } else { 7809 if (ill != NULL) { 7810 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7811 } else { 7812 BUMP_MIB(&ipst->ips_ip_mib, 7813 ipIfStatsOutDiscards); 7814 } 7815 ip1dbg(("ip_grab_attach_ill (IPv4): " 7816 "bad ifindex %d.\n", ifindex)); 7817 } 7818 if (ret_ill != NULL) 7819 ill_refrele(ret_ill); 7820 freemsg(first_mp); 7821 return (NULL); 7822 } 7823 7824 return (ret_ill); 7825 } 7826 7827 /* 7828 * IPv4 - 7829 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7830 * out a packet to a destination address for which we do not have specific 7831 * (or sufficient) routing information. 7832 * 7833 * NOTE : These are the scopes of some of the variables that point at IRE, 7834 * which needs to be followed while making any future modifications 7835 * to avoid memory leaks. 7836 * 7837 * - ire and sire are the entries looked up initially by 7838 * ire_ftable_lookup. 7839 * - ipif_ire is used to hold the interface ire associated with 7840 * the new cache ire. But it's scope is limited, so we always REFRELE 7841 * it before branching out to error paths. 7842 * - save_ire is initialized before ire_create, so that ire returned 7843 * by ire_create will not over-write the ire. We REFRELE save_ire 7844 * before breaking out of the switch. 7845 * 7846 * Thus on failures, we have to REFRELE only ire and sire, if they 7847 * are not NULL. 7848 */ 7849 void 7850 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7851 zoneid_t zoneid, ip_stack_t *ipst) 7852 { 7853 areq_t *areq; 7854 ipaddr_t gw = 0; 7855 ire_t *ire = NULL; 7856 mblk_t *res_mp; 7857 ipaddr_t *addrp; 7858 ipaddr_t nexthop_addr; 7859 ipif_t *src_ipif = NULL; 7860 ill_t *dst_ill = NULL; 7861 ipha_t *ipha; 7862 ire_t *sire = NULL; 7863 mblk_t *first_mp; 7864 ire_t *save_ire; 7865 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7866 ushort_t ire_marks = 0; 7867 boolean_t mctl_present; 7868 ipsec_out_t *io; 7869 mblk_t *saved_mp; 7870 ire_t *first_sire = NULL; 7871 mblk_t *copy_mp = NULL; 7872 mblk_t *xmit_mp = NULL; 7873 ipaddr_t save_dst; 7874 uint32_t multirt_flags = 7875 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7876 boolean_t multirt_is_resolvable; 7877 boolean_t multirt_resolve_next; 7878 boolean_t do_attach_ill = B_FALSE; 7879 boolean_t ip_nexthop = B_FALSE; 7880 tsol_ire_gw_secattr_t *attrp = NULL; 7881 tsol_gcgrp_t *gcgrp = NULL; 7882 tsol_gcgrp_addr_t ga; 7883 7884 if (ip_debug > 2) { 7885 /* ip1dbg */ 7886 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7887 } 7888 7889 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7890 if (mctl_present) { 7891 io = (ipsec_out_t *)first_mp->b_rptr; 7892 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7893 ASSERT(zoneid == io->ipsec_out_zoneid); 7894 ASSERT(zoneid != ALL_ZONES); 7895 } 7896 7897 ipha = (ipha_t *)mp->b_rptr; 7898 7899 /* All multicast lookups come through ip_newroute_ipif() */ 7900 if (CLASSD(dst)) { 7901 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7902 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7903 freemsg(first_mp); 7904 return; 7905 } 7906 7907 if (mctl_present && io->ipsec_out_attach_if) { 7908 /* ip_grab_attach_ill returns a held ill */ 7909 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7910 io->ipsec_out_ill_index, B_FALSE, ipst); 7911 7912 /* Failure case frees things for us. */ 7913 if (attach_ill == NULL) 7914 return; 7915 7916 /* 7917 * Check if we need an ire that will not be 7918 * looked up by anybody else i.e. HIDDEN. 7919 */ 7920 if (ill_is_probeonly(attach_ill)) 7921 ire_marks = IRE_MARK_HIDDEN; 7922 } 7923 if (mctl_present && io->ipsec_out_ip_nexthop) { 7924 ip_nexthop = B_TRUE; 7925 nexthop_addr = io->ipsec_out_nexthop_addr; 7926 } 7927 /* 7928 * If this IRE is created for forwarding or it is not for 7929 * traffic for congestion controlled protocols, mark it as temporary. 7930 */ 7931 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7932 ire_marks |= IRE_MARK_TEMPORARY; 7933 7934 /* 7935 * Get what we can from ire_ftable_lookup which will follow an IRE 7936 * chain until it gets the most specific information available. 7937 * For example, we know that there is no IRE_CACHE for this dest, 7938 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7939 * ire_ftable_lookup will look up the gateway, etc. 7940 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7941 * to the destination, of equal netmask length in the forward table, 7942 * will be recursively explored. If no information is available 7943 * for the final gateway of that route, we force the returned ire 7944 * to be equal to sire using MATCH_IRE_PARENT. 7945 * At least, in this case we have a starting point (in the buckets) 7946 * to look for other routes to the destination in the forward table. 7947 * This is actually used only for multirouting, where a list 7948 * of routes has to be processed in sequence. 7949 * 7950 * In the process of coming up with the most specific information, 7951 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7952 * for the gateway (i.e., one for which the ire_nce->nce_state is 7953 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7954 * Two caveats when handling incomplete ire's in ip_newroute: 7955 * - we should be careful when accessing its ire_nce (specifically 7956 * the nce_res_mp) ast it might change underneath our feet, and, 7957 * - not all legacy code path callers are prepared to handle 7958 * incomplete ire's, so we should not create/add incomplete 7959 * ire_cache entries here. (See discussion about temporary solution 7960 * further below). 7961 * 7962 * In order to minimize packet dropping, and to preserve existing 7963 * behavior, we treat this case as if there were no IRE_CACHE for the 7964 * gateway, and instead use the IF_RESOLVER ire to send out 7965 * another request to ARP (this is achieved by passing the 7966 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7967 * arp response comes back in ip_wput_nondata, we will create 7968 * a per-dst ire_cache that has an ND_COMPLETE ire. 7969 * 7970 * Note that this is a temporary solution; the correct solution is 7971 * to create an incomplete per-dst ire_cache entry, and send the 7972 * packet out when the gw's nce is resolved. In order to achieve this, 7973 * all packet processing must have been completed prior to calling 7974 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7975 * to be modified to accomodate this solution. 7976 */ 7977 if (ip_nexthop) { 7978 /* 7979 * The first time we come here, we look for an IRE_INTERFACE 7980 * entry for the specified nexthop, set the dst to be the 7981 * nexthop address and create an IRE_CACHE entry for the 7982 * nexthop. The next time around, we are able to find an 7983 * IRE_CACHE entry for the nexthop, set the gateway to be the 7984 * nexthop address and create an IRE_CACHE entry for the 7985 * destination address via the specified nexthop. 7986 */ 7987 ire = ire_cache_lookup(nexthop_addr, zoneid, 7988 MBLK_GETLABEL(mp), ipst); 7989 if (ire != NULL) { 7990 gw = nexthop_addr; 7991 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7992 } else { 7993 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7994 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7995 MBLK_GETLABEL(mp), 7996 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7997 ipst); 7998 if (ire != NULL) { 7999 dst = nexthop_addr; 8000 } 8001 } 8002 } else if (attach_ill == NULL) { 8003 ire = ire_ftable_lookup(dst, 0, 0, 0, 8004 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8005 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8006 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8007 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8008 ipst); 8009 } else { 8010 /* 8011 * attach_ill is set only for communicating with 8012 * on-link hosts. So, don't look for DEFAULT. 8013 */ 8014 ipif_t *attach_ipif; 8015 8016 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8017 if (attach_ipif == NULL) { 8018 ill_refrele(attach_ill); 8019 goto icmp_err_ret; 8020 } 8021 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8022 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8023 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8024 MATCH_IRE_SECATTR, ipst); 8025 ipif_refrele(attach_ipif); 8026 } 8027 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8028 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8029 8030 /* 8031 * This loop is run only once in most cases. 8032 * We loop to resolve further routes only when the destination 8033 * can be reached through multiple RTF_MULTIRT-flagged ires. 8034 */ 8035 do { 8036 /* Clear the previous iteration's values */ 8037 if (src_ipif != NULL) { 8038 ipif_refrele(src_ipif); 8039 src_ipif = NULL; 8040 } 8041 if (dst_ill != NULL) { 8042 ill_refrele(dst_ill); 8043 dst_ill = NULL; 8044 } 8045 8046 multirt_resolve_next = B_FALSE; 8047 /* 8048 * We check if packets have to be multirouted. 8049 * In this case, given the current <ire, sire> couple, 8050 * we look for the next suitable <ire, sire>. 8051 * This check is done in ire_multirt_lookup(), 8052 * which applies various criteria to find the next route 8053 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8054 * unchanged if it detects it has not been tried yet. 8055 */ 8056 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8057 ip3dbg(("ip_newroute: starting next_resolution " 8058 "with first_mp %p, tag %d\n", 8059 (void *)first_mp, 8060 MULTIRT_DEBUG_TAGGED(first_mp))); 8061 8062 ASSERT(sire != NULL); 8063 multirt_is_resolvable = 8064 ire_multirt_lookup(&ire, &sire, multirt_flags, 8065 MBLK_GETLABEL(mp), ipst); 8066 8067 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8068 "ire %p, sire %p\n", 8069 multirt_is_resolvable, 8070 (void *)ire, (void *)sire)); 8071 8072 if (!multirt_is_resolvable) { 8073 /* 8074 * No more multirt route to resolve; give up 8075 * (all routes resolved or no more 8076 * resolvable routes). 8077 */ 8078 if (ire != NULL) { 8079 ire_refrele(ire); 8080 ire = NULL; 8081 } 8082 } else { 8083 ASSERT(sire != NULL); 8084 ASSERT(ire != NULL); 8085 /* 8086 * We simply use first_sire as a flag that 8087 * indicates if a resolvable multirt route 8088 * has already been found. 8089 * If it is not the case, we may have to send 8090 * an ICMP error to report that the 8091 * destination is unreachable. 8092 * We do not IRE_REFHOLD first_sire. 8093 */ 8094 if (first_sire == NULL) { 8095 first_sire = sire; 8096 } 8097 } 8098 } 8099 if (ire == NULL) { 8100 if (ip_debug > 3) { 8101 /* ip2dbg */ 8102 pr_addr_dbg("ip_newroute: " 8103 "can't resolve %s\n", AF_INET, &dst); 8104 } 8105 ip3dbg(("ip_newroute: " 8106 "ire %p, sire %p, first_sire %p\n", 8107 (void *)ire, (void *)sire, (void *)first_sire)); 8108 8109 if (sire != NULL) { 8110 ire_refrele(sire); 8111 sire = NULL; 8112 } 8113 8114 if (first_sire != NULL) { 8115 /* 8116 * At least one multirt route has been found 8117 * in the same call to ip_newroute(); 8118 * there is no need to report an ICMP error. 8119 * first_sire was not IRE_REFHOLDed. 8120 */ 8121 MULTIRT_DEBUG_UNTAG(first_mp); 8122 freemsg(first_mp); 8123 return; 8124 } 8125 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8126 RTA_DST, ipst); 8127 if (attach_ill != NULL) 8128 ill_refrele(attach_ill); 8129 goto icmp_err_ret; 8130 } 8131 8132 /* 8133 * Verify that the returned IRE does not have either 8134 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8135 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8136 */ 8137 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8138 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8139 if (attach_ill != NULL) 8140 ill_refrele(attach_ill); 8141 goto icmp_err_ret; 8142 } 8143 /* 8144 * Increment the ire_ob_pkt_count field for ire if it is an 8145 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8146 * increment the same for the parent IRE, sire, if it is some 8147 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8148 */ 8149 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8150 UPDATE_OB_PKT_COUNT(ire); 8151 ire->ire_last_used_time = lbolt; 8152 } 8153 8154 if (sire != NULL) { 8155 gw = sire->ire_gateway_addr; 8156 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8157 IRE_INTERFACE)) == 0); 8158 UPDATE_OB_PKT_COUNT(sire); 8159 sire->ire_last_used_time = lbolt; 8160 } 8161 /* 8162 * We have a route to reach the destination. 8163 * 8164 * 1) If the interface is part of ill group, try to get a new 8165 * ill taking load spreading into account. 8166 * 8167 * 2) After selecting the ill, get a source address that 8168 * might create good inbound load spreading. 8169 * ipif_select_source does this for us. 8170 * 8171 * If the application specified the ill (ifindex), we still 8172 * load spread. Only if the packets needs to go out 8173 * specifically on a given ill e.g. binding to 8174 * IPIF_NOFAILOVER address, then we don't try to use a 8175 * different ill for load spreading. 8176 */ 8177 if (attach_ill == NULL) { 8178 /* 8179 * Don't perform outbound load spreading in the 8180 * case of an RTF_MULTIRT route, as we actually 8181 * typically want to replicate outgoing packets 8182 * through particular interfaces. 8183 */ 8184 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8185 dst_ill = ire->ire_ipif->ipif_ill; 8186 /* for uniformity */ 8187 ill_refhold(dst_ill); 8188 } else { 8189 /* 8190 * If we are here trying to create an IRE_CACHE 8191 * for an offlink destination and have the 8192 * IRE_CACHE for the next hop and the latter is 8193 * using virtual IP source address selection i.e 8194 * it's ire->ire_ipif is pointing to a virtual 8195 * network interface (vni) then 8196 * ip_newroute_get_dst_ll() will return the vni 8197 * interface as the dst_ill. Since the vni is 8198 * virtual i.e not associated with any physical 8199 * interface, it cannot be the dst_ill, hence 8200 * in such a case call ip_newroute_get_dst_ll() 8201 * with the stq_ill instead of the ire_ipif ILL. 8202 * The function returns a refheld ill. 8203 */ 8204 if ((ire->ire_type == IRE_CACHE) && 8205 IS_VNI(ire->ire_ipif->ipif_ill)) 8206 dst_ill = ip_newroute_get_dst_ill( 8207 ire->ire_stq->q_ptr); 8208 else 8209 dst_ill = ip_newroute_get_dst_ill( 8210 ire->ire_ipif->ipif_ill); 8211 } 8212 if (dst_ill == NULL) { 8213 if (ip_debug > 2) { 8214 pr_addr_dbg("ip_newroute: " 8215 "no dst ill for dst" 8216 " %s\n", AF_INET, &dst); 8217 } 8218 goto icmp_err_ret; 8219 } 8220 } else { 8221 dst_ill = ire->ire_ipif->ipif_ill; 8222 /* for uniformity */ 8223 ill_refhold(dst_ill); 8224 /* 8225 * We should have found a route matching ill as we 8226 * called ire_ftable_lookup with MATCH_IRE_ILL. 8227 * Rather than asserting, when there is a mismatch, 8228 * we just drop the packet. 8229 */ 8230 if (dst_ill != attach_ill) { 8231 ip0dbg(("ip_newroute: Packet dropped as " 8232 "IPIF_NOFAILOVER ill is %s, " 8233 "ire->ire_ipif->ipif_ill is %s\n", 8234 attach_ill->ill_name, 8235 dst_ill->ill_name)); 8236 ill_refrele(attach_ill); 8237 goto icmp_err_ret; 8238 } 8239 } 8240 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8241 if (attach_ill != NULL) { 8242 ill_refrele(attach_ill); 8243 attach_ill = NULL; 8244 do_attach_ill = B_TRUE; 8245 } 8246 ASSERT(dst_ill != NULL); 8247 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8248 8249 /* 8250 * Pick the best source address from dst_ill. 8251 * 8252 * 1) If it is part of a multipathing group, we would 8253 * like to spread the inbound packets across different 8254 * interfaces. ipif_select_source picks a random source 8255 * across the different ills in the group. 8256 * 8257 * 2) If it is not part of a multipathing group, we try 8258 * to pick the source address from the destination 8259 * route. Clustering assumes that when we have multiple 8260 * prefixes hosted on an interface, the prefix of the 8261 * source address matches the prefix of the destination 8262 * route. We do this only if the address is not 8263 * DEPRECATED. 8264 * 8265 * 3) If the conn is in a different zone than the ire, we 8266 * need to pick a source address from the right zone. 8267 * 8268 * NOTE : If we hit case (1) above, the prefix of the source 8269 * address picked may not match the prefix of the 8270 * destination routes prefix as ipif_select_source 8271 * does not look at "dst" while picking a source 8272 * address. 8273 * If we want the same behavior as (2), we will need 8274 * to change the behavior of ipif_select_source. 8275 */ 8276 ASSERT(src_ipif == NULL); 8277 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8278 /* 8279 * The RTF_SETSRC flag is set in the parent ire (sire). 8280 * Check that the ipif matching the requested source 8281 * address still exists. 8282 */ 8283 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8284 zoneid, NULL, NULL, NULL, NULL, ipst); 8285 } 8286 if (src_ipif == NULL) { 8287 ire_marks |= IRE_MARK_USESRC_CHECK; 8288 if ((dst_ill->ill_group != NULL) || 8289 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8290 (connp != NULL && ire->ire_zoneid != zoneid && 8291 ire->ire_zoneid != ALL_ZONES) || 8292 (dst_ill->ill_usesrc_ifindex != 0)) { 8293 /* 8294 * If the destination is reachable via a 8295 * given gateway, the selected source address 8296 * should be in the same subnet as the gateway. 8297 * Otherwise, the destination is not reachable. 8298 * 8299 * If there are no interfaces on the same subnet 8300 * as the destination, ipif_select_source gives 8301 * first non-deprecated interface which might be 8302 * on a different subnet than the gateway. 8303 * This is not desirable. Hence pass the dst_ire 8304 * source address to ipif_select_source. 8305 * It is sure that the destination is reachable 8306 * with the dst_ire source address subnet. 8307 * So passing dst_ire source address to 8308 * ipif_select_source will make sure that the 8309 * selected source will be on the same subnet 8310 * as dst_ire source address. 8311 */ 8312 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8313 src_ipif = ipif_select_source(dst_ill, saddr, 8314 zoneid); 8315 if (src_ipif == NULL) { 8316 if (ip_debug > 2) { 8317 pr_addr_dbg("ip_newroute: " 8318 "no src for dst %s ", 8319 AF_INET, &dst); 8320 printf("through interface %s\n", 8321 dst_ill->ill_name); 8322 } 8323 goto icmp_err_ret; 8324 } 8325 } else { 8326 src_ipif = ire->ire_ipif; 8327 ASSERT(src_ipif != NULL); 8328 /* hold src_ipif for uniformity */ 8329 ipif_refhold(src_ipif); 8330 } 8331 } 8332 8333 /* 8334 * Assign a source address while we have the conn. 8335 * We can't have ip_wput_ire pick a source address when the 8336 * packet returns from arp since we need to look at 8337 * conn_unspec_src and conn_zoneid, and we lose the conn when 8338 * going through arp. 8339 * 8340 * NOTE : ip_newroute_v6 does not have this piece of code as 8341 * it uses ip6i to store this information. 8342 */ 8343 if (ipha->ipha_src == INADDR_ANY && 8344 (connp == NULL || !connp->conn_unspec_src)) { 8345 ipha->ipha_src = src_ipif->ipif_src_addr; 8346 } 8347 if (ip_debug > 3) { 8348 /* ip2dbg */ 8349 pr_addr_dbg("ip_newroute: first hop %s\n", 8350 AF_INET, &gw); 8351 } 8352 ip2dbg(("\tire type %s (%d)\n", 8353 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8354 8355 /* 8356 * The TTL of multirouted packets is bounded by the 8357 * ip_multirt_ttl ndd variable. 8358 */ 8359 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8360 /* Force TTL of multirouted packets */ 8361 if ((ipst->ips_ip_multirt_ttl > 0) && 8362 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8363 ip2dbg(("ip_newroute: forcing multirt TTL " 8364 "to %d (was %d), dst 0x%08x\n", 8365 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8366 ntohl(sire->ire_addr))); 8367 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8368 } 8369 } 8370 /* 8371 * At this point in ip_newroute(), ire is either the 8372 * IRE_CACHE of the next-hop gateway for an off-subnet 8373 * destination or an IRE_INTERFACE type that should be used 8374 * to resolve an on-subnet destination or an on-subnet 8375 * next-hop gateway. 8376 * 8377 * In the IRE_CACHE case, we have the following : 8378 * 8379 * 1) src_ipif - used for getting a source address. 8380 * 8381 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8382 * means packets using this IRE_CACHE will go out on 8383 * dst_ill. 8384 * 8385 * 3) The IRE sire will point to the prefix that is the 8386 * longest matching route for the destination. These 8387 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8388 * 8389 * The newly created IRE_CACHE entry for the off-subnet 8390 * destination is tied to both the prefix route and the 8391 * interface route used to resolve the next-hop gateway 8392 * via the ire_phandle and ire_ihandle fields, 8393 * respectively. 8394 * 8395 * In the IRE_INTERFACE case, we have the following : 8396 * 8397 * 1) src_ipif - used for getting a source address. 8398 * 8399 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8400 * means packets using the IRE_CACHE that we will build 8401 * here will go out on dst_ill. 8402 * 8403 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8404 * to be created will only be tied to the IRE_INTERFACE 8405 * that was derived from the ire_ihandle field. 8406 * 8407 * If sire is non-NULL, it means the destination is 8408 * off-link and we will first create the IRE_CACHE for the 8409 * gateway. Next time through ip_newroute, we will create 8410 * the IRE_CACHE for the final destination as described 8411 * above. 8412 * 8413 * In both cases, after the current resolution has been 8414 * completed (or possibly initialised, in the IRE_INTERFACE 8415 * case), the loop may be re-entered to attempt the resolution 8416 * of another RTF_MULTIRT route. 8417 * 8418 * When an IRE_CACHE entry for the off-subnet destination is 8419 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8420 * for further processing in emission loops. 8421 */ 8422 save_ire = ire; 8423 switch (ire->ire_type) { 8424 case IRE_CACHE: { 8425 ire_t *ipif_ire; 8426 8427 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8428 if (gw == 0) 8429 gw = ire->ire_gateway_addr; 8430 /* 8431 * We need 3 ire's to create a new cache ire for an 8432 * off-link destination from the cache ire of the 8433 * gateway. 8434 * 8435 * 1. The prefix ire 'sire' (Note that this does 8436 * not apply to the conn_nexthop_set case) 8437 * 2. The cache ire of the gateway 'ire' 8438 * 3. The interface ire 'ipif_ire' 8439 * 8440 * We have (1) and (2). We lookup (3) below. 8441 * 8442 * If there is no interface route to the gateway, 8443 * it is a race condition, where we found the cache 8444 * but the interface route has been deleted. 8445 */ 8446 if (ip_nexthop) { 8447 ipif_ire = ire_ihandle_lookup_onlink(ire); 8448 } else { 8449 ipif_ire = 8450 ire_ihandle_lookup_offlink(ire, sire); 8451 } 8452 if (ipif_ire == NULL) { 8453 ip1dbg(("ip_newroute: " 8454 "ire_ihandle_lookup_offlink failed\n")); 8455 goto icmp_err_ret; 8456 } 8457 8458 /* 8459 * Check cached gateway IRE for any security 8460 * attributes; if found, associate the gateway 8461 * credentials group to the destination IRE. 8462 */ 8463 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8464 mutex_enter(&attrp->igsa_lock); 8465 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8466 GCGRP_REFHOLD(gcgrp); 8467 mutex_exit(&attrp->igsa_lock); 8468 } 8469 8470 /* 8471 * XXX For the source of the resolver mp, 8472 * we are using the same DL_UNITDATA_REQ 8473 * (from save_ire->ire_nce->nce_res_mp) 8474 * though the save_ire is not pointing at the same ill. 8475 * This is incorrect. We need to send it up to the 8476 * resolver to get the right res_mp. For ethernets 8477 * this may be okay (ill_type == DL_ETHER). 8478 */ 8479 8480 ire = ire_create( 8481 (uchar_t *)&dst, /* dest address */ 8482 (uchar_t *)&ip_g_all_ones, /* mask */ 8483 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8484 (uchar_t *)&gw, /* gateway address */ 8485 &save_ire->ire_max_frag, 8486 save_ire->ire_nce, /* src nce */ 8487 dst_ill->ill_rq, /* recv-from queue */ 8488 dst_ill->ill_wq, /* send-to queue */ 8489 IRE_CACHE, /* IRE type */ 8490 src_ipif, 8491 (sire != NULL) ? 8492 sire->ire_mask : 0, /* Parent mask */ 8493 (sire != NULL) ? 8494 sire->ire_phandle : 0, /* Parent handle */ 8495 ipif_ire->ire_ihandle, /* Interface handle */ 8496 (sire != NULL) ? (sire->ire_flags & 8497 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8498 (sire != NULL) ? 8499 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8500 NULL, 8501 gcgrp, 8502 ipst); 8503 8504 if (ire == NULL) { 8505 if (gcgrp != NULL) { 8506 GCGRP_REFRELE(gcgrp); 8507 gcgrp = NULL; 8508 } 8509 ire_refrele(ipif_ire); 8510 ire_refrele(save_ire); 8511 break; 8512 } 8513 8514 /* reference now held by IRE */ 8515 gcgrp = NULL; 8516 8517 ire->ire_marks |= ire_marks; 8518 8519 /* 8520 * Prevent sire and ipif_ire from getting deleted. 8521 * The newly created ire is tied to both of them via 8522 * the phandle and ihandle respectively. 8523 */ 8524 if (sire != NULL) { 8525 IRB_REFHOLD(sire->ire_bucket); 8526 /* Has it been removed already ? */ 8527 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8528 IRB_REFRELE(sire->ire_bucket); 8529 ire_refrele(ipif_ire); 8530 ire_refrele(save_ire); 8531 break; 8532 } 8533 } 8534 8535 IRB_REFHOLD(ipif_ire->ire_bucket); 8536 /* Has it been removed already ? */ 8537 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8538 IRB_REFRELE(ipif_ire->ire_bucket); 8539 if (sire != NULL) 8540 IRB_REFRELE(sire->ire_bucket); 8541 ire_refrele(ipif_ire); 8542 ire_refrele(save_ire); 8543 break; 8544 } 8545 8546 xmit_mp = first_mp; 8547 /* 8548 * In the case of multirouting, a copy 8549 * of the packet is done before its sending. 8550 * The copy is used to attempt another 8551 * route resolution, in a next loop. 8552 */ 8553 if (ire->ire_flags & RTF_MULTIRT) { 8554 copy_mp = copymsg(first_mp); 8555 if (copy_mp != NULL) { 8556 xmit_mp = copy_mp; 8557 MULTIRT_DEBUG_TAG(first_mp); 8558 } 8559 } 8560 ire_add_then_send(q, ire, xmit_mp); 8561 ire_refrele(save_ire); 8562 8563 /* Assert that sire is not deleted yet. */ 8564 if (sire != NULL) { 8565 ASSERT(sire->ire_ptpn != NULL); 8566 IRB_REFRELE(sire->ire_bucket); 8567 } 8568 8569 /* Assert that ipif_ire is not deleted yet. */ 8570 ASSERT(ipif_ire->ire_ptpn != NULL); 8571 IRB_REFRELE(ipif_ire->ire_bucket); 8572 ire_refrele(ipif_ire); 8573 8574 /* 8575 * If copy_mp is not NULL, multirouting was 8576 * requested. We loop to initiate a next 8577 * route resolution attempt, starting from sire. 8578 */ 8579 if (copy_mp != NULL) { 8580 /* 8581 * Search for the next unresolved 8582 * multirt route. 8583 */ 8584 copy_mp = NULL; 8585 ipif_ire = NULL; 8586 ire = NULL; 8587 multirt_resolve_next = B_TRUE; 8588 continue; 8589 } 8590 if (sire != NULL) 8591 ire_refrele(sire); 8592 ipif_refrele(src_ipif); 8593 ill_refrele(dst_ill); 8594 return; 8595 } 8596 case IRE_IF_NORESOLVER: { 8597 8598 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8599 dst_ill->ill_resolver_mp == NULL) { 8600 ip1dbg(("ip_newroute: dst_ill %p " 8601 "for IRE_IF_NORESOLVER ire %p has " 8602 "no ill_resolver_mp\n", 8603 (void *)dst_ill, (void *)ire)); 8604 break; 8605 } 8606 8607 /* 8608 * TSol note: We are creating the ire cache for the 8609 * destination 'dst'. If 'dst' is offlink, going 8610 * through the first hop 'gw', the security attributes 8611 * of 'dst' must be set to point to the gateway 8612 * credentials of gateway 'gw'. If 'dst' is onlink, it 8613 * is possible that 'dst' is a potential gateway that is 8614 * referenced by some route that has some security 8615 * attributes. Thus in the former case, we need to do a 8616 * gcgrp_lookup of 'gw' while in the latter case we 8617 * need to do gcgrp_lookup of 'dst' itself. 8618 */ 8619 ga.ga_af = AF_INET; 8620 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8621 &ga.ga_addr); 8622 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8623 8624 ire = ire_create( 8625 (uchar_t *)&dst, /* dest address */ 8626 (uchar_t *)&ip_g_all_ones, /* mask */ 8627 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8628 (uchar_t *)&gw, /* gateway address */ 8629 &save_ire->ire_max_frag, 8630 NULL, /* no src nce */ 8631 dst_ill->ill_rq, /* recv-from queue */ 8632 dst_ill->ill_wq, /* send-to queue */ 8633 IRE_CACHE, 8634 src_ipif, 8635 save_ire->ire_mask, /* Parent mask */ 8636 (sire != NULL) ? /* Parent handle */ 8637 sire->ire_phandle : 0, 8638 save_ire->ire_ihandle, /* Interface handle */ 8639 (sire != NULL) ? sire->ire_flags & 8640 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8641 &(save_ire->ire_uinfo), 8642 NULL, 8643 gcgrp, 8644 ipst); 8645 8646 if (ire == NULL) { 8647 if (gcgrp != NULL) { 8648 GCGRP_REFRELE(gcgrp); 8649 gcgrp = NULL; 8650 } 8651 ire_refrele(save_ire); 8652 break; 8653 } 8654 8655 /* reference now held by IRE */ 8656 gcgrp = NULL; 8657 8658 ire->ire_marks |= ire_marks; 8659 8660 /* Prevent save_ire from getting deleted */ 8661 IRB_REFHOLD(save_ire->ire_bucket); 8662 /* Has it been removed already ? */ 8663 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8664 IRB_REFRELE(save_ire->ire_bucket); 8665 ire_refrele(save_ire); 8666 break; 8667 } 8668 8669 /* 8670 * In the case of multirouting, a copy 8671 * of the packet is made before it is sent. 8672 * The copy is used in the next 8673 * loop to attempt another resolution. 8674 */ 8675 xmit_mp = first_mp; 8676 if ((sire != NULL) && 8677 (sire->ire_flags & RTF_MULTIRT)) { 8678 copy_mp = copymsg(first_mp); 8679 if (copy_mp != NULL) { 8680 xmit_mp = copy_mp; 8681 MULTIRT_DEBUG_TAG(first_mp); 8682 } 8683 } 8684 ire_add_then_send(q, ire, xmit_mp); 8685 8686 /* Assert that it is not deleted yet. */ 8687 ASSERT(save_ire->ire_ptpn != NULL); 8688 IRB_REFRELE(save_ire->ire_bucket); 8689 ire_refrele(save_ire); 8690 8691 if (copy_mp != NULL) { 8692 /* 8693 * If we found a (no)resolver, we ignore any 8694 * trailing top priority IRE_CACHE in further 8695 * loops. This ensures that we do not omit any 8696 * (no)resolver. 8697 * This IRE_CACHE, if any, will be processed 8698 * by another thread entering ip_newroute(). 8699 * IRE_CACHE entries, if any, will be processed 8700 * by another thread entering ip_newroute(), 8701 * (upon resolver response, for instance). 8702 * This aims to force parallel multirt 8703 * resolutions as soon as a packet must be sent. 8704 * In the best case, after the tx of only one 8705 * packet, all reachable routes are resolved. 8706 * Otherwise, the resolution of all RTF_MULTIRT 8707 * routes would require several emissions. 8708 */ 8709 multirt_flags &= ~MULTIRT_CACHEGW; 8710 8711 /* 8712 * Search for the next unresolved multirt 8713 * route. 8714 */ 8715 copy_mp = NULL; 8716 save_ire = NULL; 8717 ire = NULL; 8718 multirt_resolve_next = B_TRUE; 8719 continue; 8720 } 8721 8722 /* 8723 * Don't need sire anymore 8724 */ 8725 if (sire != NULL) 8726 ire_refrele(sire); 8727 8728 ipif_refrele(src_ipif); 8729 ill_refrele(dst_ill); 8730 return; 8731 } 8732 case IRE_IF_RESOLVER: 8733 /* 8734 * We can't build an IRE_CACHE yet, but at least we 8735 * found a resolver that can help. 8736 */ 8737 res_mp = dst_ill->ill_resolver_mp; 8738 if (!OK_RESOLVER_MP(res_mp)) 8739 break; 8740 8741 /* 8742 * To be at this point in the code with a non-zero gw 8743 * means that dst is reachable through a gateway that 8744 * we have never resolved. By changing dst to the gw 8745 * addr we resolve the gateway first. 8746 * When ire_add_then_send() tries to put the IP dg 8747 * to dst, it will reenter ip_newroute() at which 8748 * time we will find the IRE_CACHE for the gw and 8749 * create another IRE_CACHE in case IRE_CACHE above. 8750 */ 8751 if (gw != INADDR_ANY) { 8752 /* 8753 * The source ipif that was determined above was 8754 * relative to the destination address, not the 8755 * gateway's. If src_ipif was not taken out of 8756 * the IRE_IF_RESOLVER entry, we'll need to call 8757 * ipif_select_source() again. 8758 */ 8759 if (src_ipif != ire->ire_ipif) { 8760 ipif_refrele(src_ipif); 8761 src_ipif = ipif_select_source(dst_ill, 8762 gw, zoneid); 8763 if (src_ipif == NULL) { 8764 if (ip_debug > 2) { 8765 pr_addr_dbg( 8766 "ip_newroute: no " 8767 "src for gw %s ", 8768 AF_INET, &gw); 8769 printf("through " 8770 "interface %s\n", 8771 dst_ill->ill_name); 8772 } 8773 goto icmp_err_ret; 8774 } 8775 } 8776 save_dst = dst; 8777 dst = gw; 8778 gw = INADDR_ANY; 8779 } 8780 8781 /* 8782 * We obtain a partial IRE_CACHE which we will pass 8783 * along with the resolver query. When the response 8784 * comes back it will be there ready for us to add. 8785 * The ire_max_frag is atomically set under the 8786 * irebucket lock in ire_add_v[46]. 8787 */ 8788 8789 ire = ire_create_mp( 8790 (uchar_t *)&dst, /* dest address */ 8791 (uchar_t *)&ip_g_all_ones, /* mask */ 8792 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8793 (uchar_t *)&gw, /* gateway address */ 8794 NULL, /* ire_max_frag */ 8795 NULL, /* no src nce */ 8796 dst_ill->ill_rq, /* recv-from queue */ 8797 dst_ill->ill_wq, /* send-to queue */ 8798 IRE_CACHE, 8799 src_ipif, /* Interface ipif */ 8800 save_ire->ire_mask, /* Parent mask */ 8801 0, 8802 save_ire->ire_ihandle, /* Interface handle */ 8803 0, /* flags if any */ 8804 &(save_ire->ire_uinfo), 8805 NULL, 8806 NULL, 8807 ipst); 8808 8809 if (ire == NULL) { 8810 ire_refrele(save_ire); 8811 break; 8812 } 8813 8814 if ((sire != NULL) && 8815 (sire->ire_flags & RTF_MULTIRT)) { 8816 copy_mp = copymsg(first_mp); 8817 if (copy_mp != NULL) 8818 MULTIRT_DEBUG_TAG(copy_mp); 8819 } 8820 8821 ire->ire_marks |= ire_marks; 8822 8823 /* 8824 * Construct message chain for the resolver 8825 * of the form: 8826 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8827 * Packet could contain a IPSEC_OUT mp. 8828 * 8829 * NOTE : ire will be added later when the response 8830 * comes back from ARP. If the response does not 8831 * come back, ARP frees the packet. For this reason, 8832 * we can't REFHOLD the bucket of save_ire to prevent 8833 * deletions. We may not be able to REFRELE the bucket 8834 * if the response never comes back. Thus, before 8835 * adding the ire, ire_add_v4 will make sure that the 8836 * interface route does not get deleted. This is the 8837 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8838 * where we can always prevent deletions because of 8839 * the synchronous nature of adding IRES i.e 8840 * ire_add_then_send is called after creating the IRE. 8841 */ 8842 ASSERT(ire->ire_mp != NULL); 8843 ire->ire_mp->b_cont = first_mp; 8844 /* Have saved_mp handy, for cleanup if canput fails */ 8845 saved_mp = mp; 8846 mp = copyb(res_mp); 8847 if (mp == NULL) { 8848 /* Prepare for cleanup */ 8849 mp = saved_mp; /* pkt */ 8850 ire_delete(ire); /* ire_mp */ 8851 ire = NULL; 8852 ire_refrele(save_ire); 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 linkb(mp, ire->ire_mp); 8861 8862 /* 8863 * Fill in the source and dest addrs for the resolver. 8864 * NOTE: this depends on memory layouts imposed by 8865 * ill_init(). 8866 */ 8867 areq = (areq_t *)mp->b_rptr; 8868 addrp = (ipaddr_t *)((char *)areq + 8869 areq->areq_sender_addr_offset); 8870 if (do_attach_ill) { 8871 /* 8872 * This is bind to no failover case. 8873 * arp packet also must go out on attach_ill. 8874 */ 8875 ASSERT(ipha->ipha_src != NULL); 8876 *addrp = ipha->ipha_src; 8877 } else { 8878 *addrp = save_ire->ire_src_addr; 8879 } 8880 8881 ire_refrele(save_ire); 8882 addrp = (ipaddr_t *)((char *)areq + 8883 areq->areq_target_addr_offset); 8884 *addrp = dst; 8885 /* Up to the resolver. */ 8886 if (canputnext(dst_ill->ill_rq) && 8887 !(dst_ill->ill_arp_closing)) { 8888 putnext(dst_ill->ill_rq, mp); 8889 ire = NULL; 8890 if (copy_mp != NULL) { 8891 /* 8892 * If we found a resolver, we ignore 8893 * any trailing top priority IRE_CACHE 8894 * in the further loops. This ensures 8895 * that we do not omit any resolver. 8896 * IRE_CACHE entries, if any, will be 8897 * processed next time we enter 8898 * ip_newroute(). 8899 */ 8900 multirt_flags &= ~MULTIRT_CACHEGW; 8901 /* 8902 * Search for the next unresolved 8903 * multirt route. 8904 */ 8905 first_mp = copy_mp; 8906 copy_mp = NULL; 8907 /* Prepare the next resolution loop. */ 8908 mp = first_mp; 8909 EXTRACT_PKT_MP(mp, first_mp, 8910 mctl_present); 8911 if (mctl_present) 8912 io = (ipsec_out_t *) 8913 first_mp->b_rptr; 8914 ipha = (ipha_t *)mp->b_rptr; 8915 8916 ASSERT(sire != NULL); 8917 8918 dst = save_dst; 8919 multirt_resolve_next = B_TRUE; 8920 continue; 8921 } 8922 8923 if (sire != NULL) 8924 ire_refrele(sire); 8925 8926 /* 8927 * The response will come back in ip_wput 8928 * with db_type IRE_DB_TYPE. 8929 */ 8930 ipif_refrele(src_ipif); 8931 ill_refrele(dst_ill); 8932 return; 8933 } else { 8934 /* Prepare for cleanup */ 8935 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8936 mp); 8937 mp->b_cont = NULL; 8938 freeb(mp); /* areq */ 8939 /* 8940 * this is an ire that is not added to the 8941 * cache. ire_freemblk will handle the release 8942 * of any resources associated with the ire. 8943 */ 8944 ire_delete(ire); /* ire_mp */ 8945 mp = saved_mp; /* pkt */ 8946 ire = NULL; 8947 if (copy_mp != NULL) { 8948 MULTIRT_DEBUG_UNTAG(copy_mp); 8949 freemsg(copy_mp); 8950 copy_mp = NULL; 8951 } 8952 break; 8953 } 8954 default: 8955 break; 8956 } 8957 } while (multirt_resolve_next); 8958 8959 ip1dbg(("ip_newroute: dropped\n")); 8960 /* Did this packet originate externally? */ 8961 if (mp->b_prev) { 8962 mp->b_next = NULL; 8963 mp->b_prev = NULL; 8964 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8965 } else { 8966 if (dst_ill != NULL) { 8967 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8968 } else { 8969 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8970 } 8971 } 8972 ASSERT(copy_mp == NULL); 8973 MULTIRT_DEBUG_UNTAG(first_mp); 8974 freemsg(first_mp); 8975 if (ire != NULL) 8976 ire_refrele(ire); 8977 if (sire != NULL) 8978 ire_refrele(sire); 8979 if (src_ipif != NULL) 8980 ipif_refrele(src_ipif); 8981 if (dst_ill != NULL) 8982 ill_refrele(dst_ill); 8983 return; 8984 8985 icmp_err_ret: 8986 ip1dbg(("ip_newroute: no route\n")); 8987 if (src_ipif != NULL) 8988 ipif_refrele(src_ipif); 8989 if (dst_ill != NULL) 8990 ill_refrele(dst_ill); 8991 if (sire != NULL) 8992 ire_refrele(sire); 8993 /* Did this packet originate externally? */ 8994 if (mp->b_prev) { 8995 mp->b_next = NULL; 8996 mp->b_prev = NULL; 8997 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8998 q = WR(q); 8999 } else { 9000 /* 9001 * There is no outgoing ill, so just increment the 9002 * system MIB. 9003 */ 9004 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9005 /* 9006 * Since ip_wput() isn't close to finished, we fill 9007 * in enough of the header for credible error reporting. 9008 */ 9009 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9010 /* Failed */ 9011 MULTIRT_DEBUG_UNTAG(first_mp); 9012 freemsg(first_mp); 9013 if (ire != NULL) 9014 ire_refrele(ire); 9015 return; 9016 } 9017 } 9018 9019 /* 9020 * At this point we will have ire only if RTF_BLACKHOLE 9021 * or RTF_REJECT flags are set on the IRE. It will not 9022 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9023 */ 9024 if (ire != NULL) { 9025 if (ire->ire_flags & RTF_BLACKHOLE) { 9026 ire_refrele(ire); 9027 MULTIRT_DEBUG_UNTAG(first_mp); 9028 freemsg(first_mp); 9029 return; 9030 } 9031 ire_refrele(ire); 9032 } 9033 if (ip_source_routed(ipha, ipst)) { 9034 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9035 zoneid, ipst); 9036 return; 9037 } 9038 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9039 } 9040 9041 ip_opt_info_t zero_info; 9042 9043 /* 9044 * IPv4 - 9045 * ip_newroute_ipif is called by ip_wput_multicast and 9046 * ip_rput_forward_multicast whenever we need to send 9047 * out a packet to a destination address for which we do not have specific 9048 * routing information. It is used when the packet will be sent out 9049 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9050 * socket option is set or icmp error message wants to go out on a particular 9051 * interface for a unicast packet. 9052 * 9053 * In most cases, the destination address is resolved thanks to the ipif 9054 * intrinsic resolver. However, there are some cases where the call to 9055 * ip_newroute_ipif must take into account the potential presence of 9056 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9057 * that uses the interface. This is specified through flags, 9058 * which can be a combination of: 9059 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9060 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9061 * and flags. Additionally, the packet source address has to be set to 9062 * the specified address. The caller is thus expected to set this flag 9063 * if the packet has no specific source address yet. 9064 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9065 * flag, the resulting ire will inherit the flag. All unresolved routes 9066 * to the destination must be explored in the same call to 9067 * ip_newroute_ipif(). 9068 */ 9069 static void 9070 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9071 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9072 { 9073 areq_t *areq; 9074 ire_t *ire = NULL; 9075 mblk_t *res_mp; 9076 ipaddr_t *addrp; 9077 mblk_t *first_mp; 9078 ire_t *save_ire = NULL; 9079 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9080 ipif_t *src_ipif = NULL; 9081 ushort_t ire_marks = 0; 9082 ill_t *dst_ill = NULL; 9083 boolean_t mctl_present; 9084 ipsec_out_t *io; 9085 ipha_t *ipha; 9086 int ihandle = 0; 9087 mblk_t *saved_mp; 9088 ire_t *fire = NULL; 9089 mblk_t *copy_mp = NULL; 9090 boolean_t multirt_resolve_next; 9091 ipaddr_t ipha_dst; 9092 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9093 9094 /* 9095 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9096 * here for uniformity 9097 */ 9098 ipif_refhold(ipif); 9099 9100 /* 9101 * This loop is run only once in most cases. 9102 * We loop to resolve further routes only when the destination 9103 * can be reached through multiple RTF_MULTIRT-flagged ires. 9104 */ 9105 do { 9106 if (dst_ill != NULL) { 9107 ill_refrele(dst_ill); 9108 dst_ill = NULL; 9109 } 9110 if (src_ipif != NULL) { 9111 ipif_refrele(src_ipif); 9112 src_ipif = NULL; 9113 } 9114 multirt_resolve_next = B_FALSE; 9115 9116 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9117 ipif->ipif_ill->ill_name)); 9118 9119 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9120 if (mctl_present) 9121 io = (ipsec_out_t *)first_mp->b_rptr; 9122 9123 ipha = (ipha_t *)mp->b_rptr; 9124 9125 /* 9126 * Save the packet destination address, we may need it after 9127 * the packet has been consumed. 9128 */ 9129 ipha_dst = ipha->ipha_dst; 9130 9131 /* 9132 * If the interface is a pt-pt interface we look for an 9133 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9134 * local_address and the pt-pt destination address. Otherwise 9135 * we just match the local address. 9136 * NOTE: dst could be different than ipha->ipha_dst in case 9137 * of sending igmp multicast packets over a point-to-point 9138 * connection. 9139 * Thus we must be careful enough to check ipha_dst to be a 9140 * multicast address, otherwise it will take xmit_if path for 9141 * multicast packets resulting into kernel stack overflow by 9142 * repeated calls to ip_newroute_ipif from ire_send(). 9143 */ 9144 if (CLASSD(ipha_dst) && 9145 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9146 goto err_ret; 9147 } 9148 9149 /* 9150 * We check if an IRE_OFFSUBNET for the addr that goes through 9151 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9152 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9153 * propagate its flags to the new ire. 9154 */ 9155 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9156 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9157 ip2dbg(("ip_newroute_ipif: " 9158 "ipif_lookup_multi_ire(" 9159 "ipif %p, dst %08x) = fire %p\n", 9160 (void *)ipif, ntohl(dst), (void *)fire)); 9161 } 9162 9163 if (mctl_present && io->ipsec_out_attach_if) { 9164 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9165 io->ipsec_out_ill_index, B_FALSE, ipst); 9166 9167 /* Failure case frees things for us. */ 9168 if (attach_ill == NULL) { 9169 ipif_refrele(ipif); 9170 if (fire != NULL) 9171 ire_refrele(fire); 9172 return; 9173 } 9174 9175 /* 9176 * Check if we need an ire that will not be 9177 * looked up by anybody else i.e. HIDDEN. 9178 */ 9179 if (ill_is_probeonly(attach_ill)) { 9180 ire_marks = IRE_MARK_HIDDEN; 9181 } 9182 /* 9183 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9184 * case. 9185 */ 9186 dst_ill = ipif->ipif_ill; 9187 /* attach_ill has been refheld by ip_grab_attach_ill */ 9188 ASSERT(dst_ill == attach_ill); 9189 } else { 9190 /* 9191 * If this is set by IP_XMIT_IF, then make sure that 9192 * ipif is pointing to the same ill as the IP_XMIT_IF 9193 * specified ill. 9194 */ 9195 ASSERT((connp == NULL) || 9196 (connp->conn_xmit_if_ill == NULL) || 9197 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9198 /* 9199 * If the interface belongs to an interface group, 9200 * make sure the next possible interface in the group 9201 * is used. This encourages load spreading among 9202 * peers in an interface group. 9203 * Note: load spreading is disabled for RTF_MULTIRT 9204 * routes. 9205 */ 9206 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9207 (fire->ire_flags & RTF_MULTIRT)) { 9208 /* 9209 * Don't perform outbound load spreading 9210 * in the case of an RTF_MULTIRT issued route, 9211 * we actually typically want to replicate 9212 * outgoing packets through particular 9213 * interfaces. 9214 */ 9215 dst_ill = ipif->ipif_ill; 9216 ill_refhold(dst_ill); 9217 } else { 9218 dst_ill = ip_newroute_get_dst_ill( 9219 ipif->ipif_ill); 9220 } 9221 if (dst_ill == NULL) { 9222 if (ip_debug > 2) { 9223 pr_addr_dbg("ip_newroute_ipif: " 9224 "no dst ill for dst %s\n", 9225 AF_INET, &dst); 9226 } 9227 goto err_ret; 9228 } 9229 } 9230 9231 /* 9232 * Pick a source address preferring non-deprecated ones. 9233 * Unlike ip_newroute, we don't do any source address 9234 * selection here since for multicast it really does not help 9235 * in inbound load spreading as in the unicast case. 9236 */ 9237 if ((flags & RTF_SETSRC) && (fire != NULL) && 9238 (fire->ire_flags & RTF_SETSRC)) { 9239 /* 9240 * As requested by flags, an IRE_OFFSUBNET was looked up 9241 * on that interface. This ire has RTF_SETSRC flag, so 9242 * the source address of the packet must be changed. 9243 * Check that the ipif matching the requested source 9244 * address still exists. 9245 */ 9246 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9247 zoneid, NULL, NULL, NULL, NULL, ipst); 9248 } 9249 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9250 (connp != NULL && ipif->ipif_zoneid != zoneid && 9251 ipif->ipif_zoneid != ALL_ZONES)) && 9252 (src_ipif == NULL)) { 9253 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9254 if (src_ipif == NULL) { 9255 if (ip_debug > 2) { 9256 /* ip1dbg */ 9257 pr_addr_dbg("ip_newroute_ipif: " 9258 "no src for dst %s", 9259 AF_INET, &dst); 9260 } 9261 ip1dbg((" through interface %s\n", 9262 dst_ill->ill_name)); 9263 goto err_ret; 9264 } 9265 ipif_refrele(ipif); 9266 ipif = src_ipif; 9267 ipif_refhold(ipif); 9268 } 9269 if (src_ipif == NULL) { 9270 src_ipif = ipif; 9271 ipif_refhold(src_ipif); 9272 } 9273 9274 /* 9275 * Assign a source address while we have the conn. 9276 * We can't have ip_wput_ire pick a source address when the 9277 * packet returns from arp since conn_unspec_src might be set 9278 * and we loose the conn when going through arp. 9279 */ 9280 if (ipha->ipha_src == INADDR_ANY && 9281 (connp == NULL || !connp->conn_unspec_src)) { 9282 ipha->ipha_src = src_ipif->ipif_src_addr; 9283 } 9284 9285 /* 9286 * In the case of IP_XMIT_IF, it is possible that the 9287 * outgoing interface does not have an interface ire. 9288 */ 9289 if (CLASSD(ipha_dst) && (connp == NULL || 9290 connp->conn_xmit_if_ill == NULL) && 9291 infop->ip_opt_ill_index == 0) { 9292 /* ipif_to_ire returns an held ire */ 9293 ire = ipif_to_ire(ipif); 9294 if (ire == NULL) 9295 goto err_ret; 9296 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9297 goto err_ret; 9298 /* 9299 * ihandle is needed when the ire is added to 9300 * cache table. 9301 */ 9302 save_ire = ire; 9303 ihandle = save_ire->ire_ihandle; 9304 9305 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9306 "flags %04x\n", 9307 (void *)ire, (void *)ipif, flags)); 9308 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9309 (fire->ire_flags & RTF_MULTIRT)) { 9310 /* 9311 * As requested by flags, an IRE_OFFSUBNET was 9312 * looked up on that interface. This ire has 9313 * RTF_MULTIRT flag, so the resolution loop will 9314 * be re-entered to resolve additional routes on 9315 * other interfaces. For that purpose, a copy of 9316 * the packet is performed at this point. 9317 */ 9318 fire->ire_last_used_time = lbolt; 9319 copy_mp = copymsg(first_mp); 9320 if (copy_mp) { 9321 MULTIRT_DEBUG_TAG(copy_mp); 9322 } 9323 } 9324 if ((flags & RTF_SETSRC) && (fire != NULL) && 9325 (fire->ire_flags & RTF_SETSRC)) { 9326 /* 9327 * As requested by flags, an IRE_OFFSUBET was 9328 * looked up on that interface. This ire has 9329 * RTF_SETSRC flag, so the source address of the 9330 * packet must be changed. 9331 */ 9332 ipha->ipha_src = fire->ire_src_addr; 9333 } 9334 } else { 9335 ASSERT((connp == NULL) || 9336 (connp->conn_xmit_if_ill != NULL) || 9337 (connp->conn_dontroute) || 9338 infop->ip_opt_ill_index != 0); 9339 /* 9340 * The only ways we can come here are: 9341 * 1) IP_XMIT_IF socket option is set 9342 * 2) SO_DONTROUTE socket option is set 9343 * 3) IP_PKTINFO option is passed in as ancillary data. 9344 * In all cases, the new ire will not be added 9345 * into cache table. 9346 */ 9347 ire_marks |= IRE_MARK_NOADD; 9348 } 9349 9350 switch (ipif->ipif_net_type) { 9351 case IRE_IF_NORESOLVER: { 9352 /* We have what we need to build an IRE_CACHE. */ 9353 9354 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9355 (dst_ill->ill_resolver_mp == NULL)) { 9356 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9357 "for IRE_IF_NORESOLVER ire %p has " 9358 "no ill_resolver_mp\n", 9359 (void *)dst_ill, (void *)ire)); 9360 break; 9361 } 9362 9363 /* 9364 * The new ire inherits the IRE_OFFSUBNET flags 9365 * and source address, if this was requested. 9366 */ 9367 ire = ire_create( 9368 (uchar_t *)&dst, /* dest address */ 9369 (uchar_t *)&ip_g_all_ones, /* mask */ 9370 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9371 NULL, /* gateway address */ 9372 &ipif->ipif_mtu, 9373 NULL, /* no src nce */ 9374 dst_ill->ill_rq, /* recv-from queue */ 9375 dst_ill->ill_wq, /* send-to queue */ 9376 IRE_CACHE, 9377 src_ipif, 9378 (save_ire != NULL ? save_ire->ire_mask : 0), 9379 (fire != NULL) ? /* Parent handle */ 9380 fire->ire_phandle : 0, 9381 ihandle, /* Interface handle */ 9382 (fire != NULL) ? 9383 (fire->ire_flags & 9384 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9385 (save_ire == NULL ? &ire_uinfo_null : 9386 &save_ire->ire_uinfo), 9387 NULL, 9388 NULL, 9389 ipst); 9390 9391 if (ire == NULL) { 9392 if (save_ire != NULL) 9393 ire_refrele(save_ire); 9394 break; 9395 } 9396 9397 ire->ire_marks |= ire_marks; 9398 9399 /* 9400 * If IRE_MARK_NOADD is set then we need to convert 9401 * the max_fragp to a useable value now. This is 9402 * normally done in ire_add_v[46]. We also need to 9403 * associate the ire with an nce (normally would be 9404 * done in ip_wput_nondata()). 9405 * 9406 * Note that IRE_MARK_NOADD packets created here 9407 * do not have a non-null ire_mp pointer. The null 9408 * value of ire_bucket indicates that they were 9409 * never added. 9410 */ 9411 if (ire->ire_marks & IRE_MARK_NOADD) { 9412 uint_t max_frag; 9413 9414 max_frag = *ire->ire_max_fragp; 9415 ire->ire_max_fragp = NULL; 9416 ire->ire_max_frag = max_frag; 9417 9418 if ((ire->ire_nce = ndp_lookup_v4( 9419 ire_to_ill(ire), 9420 (ire->ire_gateway_addr != INADDR_ANY ? 9421 &ire->ire_gateway_addr : &ire->ire_addr), 9422 B_FALSE)) == NULL) { 9423 if (save_ire != NULL) 9424 ire_refrele(save_ire); 9425 break; 9426 } 9427 ASSERT(ire->ire_nce->nce_state == 9428 ND_REACHABLE); 9429 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9430 } 9431 9432 /* Prevent save_ire from getting deleted */ 9433 if (save_ire != NULL) { 9434 IRB_REFHOLD(save_ire->ire_bucket); 9435 /* Has it been removed already ? */ 9436 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9437 IRB_REFRELE(save_ire->ire_bucket); 9438 ire_refrele(save_ire); 9439 break; 9440 } 9441 } 9442 9443 ire_add_then_send(q, ire, first_mp); 9444 9445 /* Assert that save_ire is not deleted yet. */ 9446 if (save_ire != NULL) { 9447 ASSERT(save_ire->ire_ptpn != NULL); 9448 IRB_REFRELE(save_ire->ire_bucket); 9449 ire_refrele(save_ire); 9450 save_ire = NULL; 9451 } 9452 if (fire != NULL) { 9453 ire_refrele(fire); 9454 fire = NULL; 9455 } 9456 9457 /* 9458 * the resolution loop is re-entered if this 9459 * was requested through flags and if we 9460 * actually are in a multirouting case. 9461 */ 9462 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9463 boolean_t need_resolve = 9464 ire_multirt_need_resolve(ipha_dst, 9465 MBLK_GETLABEL(copy_mp), ipst); 9466 if (!need_resolve) { 9467 MULTIRT_DEBUG_UNTAG(copy_mp); 9468 freemsg(copy_mp); 9469 copy_mp = NULL; 9470 } else { 9471 /* 9472 * ipif_lookup_group() calls 9473 * ire_lookup_multi() that uses 9474 * ire_ftable_lookup() to find 9475 * an IRE_INTERFACE for the group. 9476 * In the multirt case, 9477 * ire_lookup_multi() then invokes 9478 * ire_multirt_lookup() to find 9479 * the next resolvable ire. 9480 * As a result, we obtain an new 9481 * interface, derived from the 9482 * next ire. 9483 */ 9484 ipif_refrele(ipif); 9485 ipif = ipif_lookup_group(ipha_dst, 9486 zoneid, ipst); 9487 ip2dbg(("ip_newroute_ipif: " 9488 "multirt dst %08x, ipif %p\n", 9489 htonl(dst), (void *)ipif)); 9490 if (ipif != NULL) { 9491 mp = copy_mp; 9492 copy_mp = NULL; 9493 multirt_resolve_next = B_TRUE; 9494 continue; 9495 } else { 9496 freemsg(copy_mp); 9497 } 9498 } 9499 } 9500 if (ipif != NULL) 9501 ipif_refrele(ipif); 9502 ill_refrele(dst_ill); 9503 ipif_refrele(src_ipif); 9504 return; 9505 } 9506 case IRE_IF_RESOLVER: 9507 /* 9508 * We can't build an IRE_CACHE yet, but at least 9509 * we found a resolver that can help. 9510 */ 9511 res_mp = dst_ill->ill_resolver_mp; 9512 if (!OK_RESOLVER_MP(res_mp)) 9513 break; 9514 9515 /* 9516 * We obtain a partial IRE_CACHE which we will pass 9517 * along with the resolver query. When the response 9518 * comes back it will be there ready for us to add. 9519 * The new ire inherits the IRE_OFFSUBNET flags 9520 * and source address, if this was requested. 9521 * The ire_max_frag is atomically set under the 9522 * irebucket lock in ire_add_v[46]. Only in the 9523 * case of IRE_MARK_NOADD, we set it here itself. 9524 */ 9525 ire = ire_create_mp( 9526 (uchar_t *)&dst, /* dest address */ 9527 (uchar_t *)&ip_g_all_ones, /* mask */ 9528 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9529 NULL, /* gateway address */ 9530 (ire_marks & IRE_MARK_NOADD) ? 9531 ipif->ipif_mtu : 0, /* max_frag */ 9532 NULL, /* no src nce */ 9533 dst_ill->ill_rq, /* recv-from queue */ 9534 dst_ill->ill_wq, /* send-to queue */ 9535 IRE_CACHE, 9536 src_ipif, 9537 (save_ire != NULL ? save_ire->ire_mask : 0), 9538 (fire != NULL) ? /* Parent handle */ 9539 fire->ire_phandle : 0, 9540 ihandle, /* Interface handle */ 9541 (fire != NULL) ? /* flags if any */ 9542 (fire->ire_flags & 9543 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9544 (save_ire == NULL ? &ire_uinfo_null : 9545 &save_ire->ire_uinfo), 9546 NULL, 9547 NULL, 9548 ipst); 9549 9550 if (save_ire != NULL) { 9551 ire_refrele(save_ire); 9552 save_ire = NULL; 9553 } 9554 if (ire == NULL) 9555 break; 9556 9557 ire->ire_marks |= ire_marks; 9558 /* 9559 * Construct message chain for the resolver of the 9560 * form: 9561 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9562 * 9563 * NOTE : ire will be added later when the response 9564 * comes back from ARP. If the response does not 9565 * come back, ARP frees the packet. For this reason, 9566 * we can't REFHOLD the bucket of save_ire to prevent 9567 * deletions. We may not be able to REFRELE the 9568 * bucket if the response never comes back. 9569 * Thus, before adding the ire, ire_add_v4 will make 9570 * sure that the interface route does not get deleted. 9571 * This is the only case unlike ip_newroute_v6, 9572 * ip_newroute_ipif_v6 where we can always prevent 9573 * deletions because ire_add_then_send is called after 9574 * creating the IRE. 9575 * If IRE_MARK_NOADD is set, then ire_add_then_send 9576 * does not add this IRE into the IRE CACHE. 9577 */ 9578 ASSERT(ire->ire_mp != NULL); 9579 ire->ire_mp->b_cont = first_mp; 9580 /* Have saved_mp handy, for cleanup if canput fails */ 9581 saved_mp = mp; 9582 mp = copyb(res_mp); 9583 if (mp == NULL) { 9584 /* Prepare for cleanup */ 9585 mp = saved_mp; /* pkt */ 9586 ire_delete(ire); /* ire_mp */ 9587 ire = NULL; 9588 if (copy_mp != NULL) { 9589 MULTIRT_DEBUG_UNTAG(copy_mp); 9590 freemsg(copy_mp); 9591 copy_mp = NULL; 9592 } 9593 break; 9594 } 9595 linkb(mp, ire->ire_mp); 9596 9597 /* 9598 * Fill in the source and dest addrs for the resolver. 9599 * NOTE: this depends on memory layouts imposed by 9600 * ill_init(). 9601 */ 9602 areq = (areq_t *)mp->b_rptr; 9603 addrp = (ipaddr_t *)((char *)areq + 9604 areq->areq_sender_addr_offset); 9605 *addrp = ire->ire_src_addr; 9606 addrp = (ipaddr_t *)((char *)areq + 9607 areq->areq_target_addr_offset); 9608 *addrp = dst; 9609 /* Up to the resolver. */ 9610 if (canputnext(dst_ill->ill_rq) && 9611 !(dst_ill->ill_arp_closing)) { 9612 putnext(dst_ill->ill_rq, mp); 9613 /* 9614 * The response will come back in ip_wput 9615 * with db_type IRE_DB_TYPE. 9616 */ 9617 } else { 9618 mp->b_cont = NULL; 9619 freeb(mp); /* areq */ 9620 ire_delete(ire); /* ire_mp */ 9621 saved_mp->b_next = NULL; 9622 saved_mp->b_prev = NULL; 9623 freemsg(first_mp); /* pkt */ 9624 ip2dbg(("ip_newroute_ipif: dropped\n")); 9625 } 9626 9627 if (fire != NULL) { 9628 ire_refrele(fire); 9629 fire = NULL; 9630 } 9631 9632 9633 /* 9634 * The resolution loop is re-entered if this was 9635 * requested through flags and we actually are 9636 * in a multirouting case. 9637 */ 9638 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9639 boolean_t need_resolve = 9640 ire_multirt_need_resolve(ipha_dst, 9641 MBLK_GETLABEL(copy_mp), ipst); 9642 if (!need_resolve) { 9643 MULTIRT_DEBUG_UNTAG(copy_mp); 9644 freemsg(copy_mp); 9645 copy_mp = NULL; 9646 } else { 9647 /* 9648 * ipif_lookup_group() calls 9649 * ire_lookup_multi() that uses 9650 * ire_ftable_lookup() to find 9651 * an IRE_INTERFACE for the group. 9652 * In the multirt case, 9653 * ire_lookup_multi() then invokes 9654 * ire_multirt_lookup() to find 9655 * the next resolvable ire. 9656 * As a result, we obtain an new 9657 * interface, derived from the 9658 * next ire. 9659 */ 9660 ipif_refrele(ipif); 9661 ipif = ipif_lookup_group(ipha_dst, 9662 zoneid, ipst); 9663 if (ipif != NULL) { 9664 mp = copy_mp; 9665 copy_mp = NULL; 9666 multirt_resolve_next = B_TRUE; 9667 continue; 9668 } else { 9669 freemsg(copy_mp); 9670 } 9671 } 9672 } 9673 if (ipif != NULL) 9674 ipif_refrele(ipif); 9675 ill_refrele(dst_ill); 9676 ipif_refrele(src_ipif); 9677 return; 9678 default: 9679 break; 9680 } 9681 } while (multirt_resolve_next); 9682 9683 err_ret: 9684 ip2dbg(("ip_newroute_ipif: dropped\n")); 9685 if (fire != NULL) 9686 ire_refrele(fire); 9687 ipif_refrele(ipif); 9688 /* Did this packet originate externally? */ 9689 if (dst_ill != NULL) 9690 ill_refrele(dst_ill); 9691 if (src_ipif != NULL) 9692 ipif_refrele(src_ipif); 9693 if (mp->b_prev || mp->b_next) { 9694 mp->b_next = NULL; 9695 mp->b_prev = NULL; 9696 } else { 9697 /* 9698 * Since ip_wput() isn't close to finished, we fill 9699 * in enough of the header for credible error reporting. 9700 */ 9701 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9702 /* Failed */ 9703 freemsg(first_mp); 9704 if (ire != NULL) 9705 ire_refrele(ire); 9706 return; 9707 } 9708 } 9709 /* 9710 * At this point we will have ire only if RTF_BLACKHOLE 9711 * or RTF_REJECT flags are set on the IRE. It will not 9712 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9713 */ 9714 if (ire != NULL) { 9715 if (ire->ire_flags & RTF_BLACKHOLE) { 9716 ire_refrele(ire); 9717 freemsg(first_mp); 9718 return; 9719 } 9720 ire_refrele(ire); 9721 } 9722 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9723 } 9724 9725 /* Name/Value Table Lookup Routine */ 9726 char * 9727 ip_nv_lookup(nv_t *nv, int value) 9728 { 9729 if (!nv) 9730 return (NULL); 9731 for (; nv->nv_name; nv++) { 9732 if (nv->nv_value == value) 9733 return (nv->nv_name); 9734 } 9735 return ("unknown"); 9736 } 9737 9738 /* 9739 * This is a module open, i.e. this is a control stream for access 9740 * to a DLPI device. We allocate an ill_t as the instance data in 9741 * this case. 9742 */ 9743 int 9744 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9745 { 9746 ill_t *ill; 9747 int err; 9748 zoneid_t zoneid; 9749 netstack_t *ns; 9750 ip_stack_t *ipst; 9751 9752 /* 9753 * Prevent unprivileged processes from pushing IP so that 9754 * they can't send raw IP. 9755 */ 9756 if (secpolicy_net_rawaccess(credp) != 0) 9757 return (EPERM); 9758 9759 ns = netstack_find_by_cred(credp); 9760 ASSERT(ns != NULL); 9761 ipst = ns->netstack_ip; 9762 ASSERT(ipst != NULL); 9763 9764 /* 9765 * For exclusive stacks we set the zoneid to zero 9766 * to make IP operate as if in the global zone. 9767 */ 9768 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9769 zoneid = GLOBAL_ZONEID; 9770 else 9771 zoneid = crgetzoneid(credp); 9772 9773 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9774 q->q_ptr = WR(q)->q_ptr = ill; 9775 ill->ill_ipst = ipst; 9776 ill->ill_zoneid = zoneid; 9777 9778 /* 9779 * ill_init initializes the ill fields and then sends down 9780 * down a DL_INFO_REQ after calling qprocson. 9781 */ 9782 err = ill_init(q, ill); 9783 if (err != 0) { 9784 mi_free(ill); 9785 netstack_rele(ipst->ips_netstack); 9786 q->q_ptr = NULL; 9787 WR(q)->q_ptr = NULL; 9788 return (err); 9789 } 9790 9791 /* ill_init initializes the ipsq marking this thread as writer */ 9792 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9793 /* Wait for the DL_INFO_ACK */ 9794 mutex_enter(&ill->ill_lock); 9795 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9796 /* 9797 * Return value of 0 indicates a pending signal. 9798 */ 9799 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9800 if (err == 0) { 9801 mutex_exit(&ill->ill_lock); 9802 (void) ip_close(q, 0); 9803 return (EINTR); 9804 } 9805 } 9806 mutex_exit(&ill->ill_lock); 9807 9808 /* 9809 * ip_rput_other could have set an error in ill_error on 9810 * receipt of M_ERROR. 9811 */ 9812 9813 err = ill->ill_error; 9814 if (err != 0) { 9815 (void) ip_close(q, 0); 9816 return (err); 9817 } 9818 9819 ill->ill_credp = credp; 9820 crhold(credp); 9821 9822 mutex_enter(&ipst->ips_ip_mi_lock); 9823 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9824 credp); 9825 mutex_exit(&ipst->ips_ip_mi_lock); 9826 if (err) { 9827 (void) ip_close(q, 0); 9828 return (err); 9829 } 9830 return (0); 9831 } 9832 9833 /* IP open routine. */ 9834 int 9835 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9836 { 9837 conn_t *connp; 9838 major_t maj; 9839 zoneid_t zoneid; 9840 netstack_t *ns; 9841 ip_stack_t *ipst; 9842 9843 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9844 9845 /* Allow reopen. */ 9846 if (q->q_ptr != NULL) 9847 return (0); 9848 9849 if (sflag & MODOPEN) { 9850 /* This is a module open */ 9851 return (ip_modopen(q, devp, flag, sflag, credp)); 9852 } 9853 9854 ns = netstack_find_by_cred(credp); 9855 ASSERT(ns != NULL); 9856 ipst = ns->netstack_ip; 9857 ASSERT(ipst != NULL); 9858 9859 /* 9860 * For exclusive stacks we set the zoneid to zero 9861 * to make IP operate as if in the global zone. 9862 */ 9863 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9864 zoneid = GLOBAL_ZONEID; 9865 else 9866 zoneid = crgetzoneid(credp); 9867 9868 /* 9869 * We are opening as a device. This is an IP client stream, and we 9870 * allocate an conn_t as the instance data. 9871 */ 9872 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9873 9874 /* 9875 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9876 * done by netstack_find_by_cred() 9877 */ 9878 netstack_rele(ipst->ips_netstack); 9879 9880 connp->conn_zoneid = zoneid; 9881 9882 connp->conn_upq = q; 9883 q->q_ptr = WR(q)->q_ptr = connp; 9884 9885 if (flag & SO_SOCKSTR) 9886 connp->conn_flags |= IPCL_SOCKET; 9887 9888 /* Minor tells us which /dev entry was opened */ 9889 if (geteminor(*devp) == IPV6_MINOR) { 9890 connp->conn_flags |= IPCL_ISV6; 9891 connp->conn_af_isv6 = B_TRUE; 9892 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 9893 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9894 } else { 9895 connp->conn_af_isv6 = B_FALSE; 9896 connp->conn_pkt_isv6 = B_FALSE; 9897 } 9898 9899 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9900 /* CONN_DEC_REF takes care of netstack_rele() */ 9901 q->q_ptr = WR(q)->q_ptr = NULL; 9902 CONN_DEC_REF(connp); 9903 return (EBUSY); 9904 } 9905 9906 maj = getemajor(*devp); 9907 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9908 9909 /* 9910 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9911 */ 9912 connp->conn_cred = credp; 9913 crhold(connp->conn_cred); 9914 9915 /* 9916 * If the caller has the process-wide flag set, then default to MAC 9917 * exempt mode. This allows read-down to unlabeled hosts. 9918 */ 9919 if (getpflags(NET_MAC_AWARE, credp) != 0) 9920 connp->conn_mac_exempt = B_TRUE; 9921 9922 /* 9923 * This should only happen for ndd, netstat, raw socket or other SCTP 9924 * administrative ops. In these cases, we just need a normal conn_t 9925 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9926 * an error will be returned. 9927 */ 9928 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9929 connp->conn_rq = q; 9930 connp->conn_wq = WR(q); 9931 } else { 9932 connp->conn_ulp = IPPROTO_SCTP; 9933 connp->conn_rq = connp->conn_wq = NULL; 9934 } 9935 /* Non-zero default values */ 9936 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9937 9938 /* 9939 * Make the conn globally visible to walkers 9940 */ 9941 ASSERT(connp->conn_ref == 1); 9942 mutex_enter(&connp->conn_lock); 9943 connp->conn_state_flags &= ~CONN_INCIPIENT; 9944 mutex_exit(&connp->conn_lock); 9945 9946 qprocson(q); 9947 9948 return (0); 9949 } 9950 9951 /* 9952 * Change q_qinfo based on the value of isv6. 9953 * This can not called on an ill queue. 9954 * Note that there is no race since either q_qinfo works for conn queues - it 9955 * is just an optimization to enter the best wput routine directly. 9956 */ 9957 void 9958 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 9959 { 9960 ASSERT(q->q_flag & QREADR); 9961 ASSERT(WR(q)->q_next == NULL); 9962 ASSERT(q->q_ptr != NULL); 9963 9964 if (minor == IPV6_MINOR) { 9965 if (bump_mib) { 9966 BUMP_MIB(&ipst->ips_ip6_mib, 9967 ipIfStatsOutSwitchIPVersion); 9968 } 9969 q->q_qinfo = &rinit_ipv6; 9970 WR(q)->q_qinfo = &winit_ipv6; 9971 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9972 } else { 9973 if (bump_mib) { 9974 BUMP_MIB(&ipst->ips_ip_mib, 9975 ipIfStatsOutSwitchIPVersion); 9976 } 9977 q->q_qinfo = &iprinit; 9978 WR(q)->q_qinfo = &ipwinit; 9979 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9980 } 9981 9982 } 9983 9984 /* 9985 * See if IPsec needs loading because of the options in mp. 9986 */ 9987 static boolean_t 9988 ipsec_opt_present(mblk_t *mp) 9989 { 9990 uint8_t *optcp, *next_optcp, *opt_endcp; 9991 struct opthdr *opt; 9992 struct T_opthdr *topt; 9993 int opthdr_len; 9994 t_uscalar_t optname, optlevel; 9995 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9996 ipsec_req_t *ipsr; 9997 9998 /* 9999 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10000 * return TRUE. 10001 */ 10002 10003 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10004 opt_endcp = optcp + tor->OPT_length; 10005 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10006 opthdr_len = sizeof (struct T_opthdr); 10007 } else { /* O_OPTMGMT_REQ */ 10008 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10009 opthdr_len = sizeof (struct opthdr); 10010 } 10011 for (; optcp < opt_endcp; optcp = next_optcp) { 10012 if (optcp + opthdr_len > opt_endcp) 10013 return (B_FALSE); /* Not enough option header. */ 10014 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10015 topt = (struct T_opthdr *)optcp; 10016 optlevel = topt->level; 10017 optname = topt->name; 10018 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10019 } else { 10020 opt = (struct opthdr *)optcp; 10021 optlevel = opt->level; 10022 optname = opt->name; 10023 next_optcp = optcp + opthdr_len + 10024 _TPI_ALIGN_OPT(opt->len); 10025 } 10026 if ((next_optcp < optcp) || /* wraparound pointer space */ 10027 ((next_optcp >= opt_endcp) && /* last option bad len */ 10028 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10029 return (B_FALSE); /* bad option buffer */ 10030 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10031 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10032 /* 10033 * Check to see if it's an all-bypass or all-zeroes 10034 * IPsec request. Don't bother loading IPsec if 10035 * the socket doesn't want to use it. (A good example 10036 * is a bypass request.) 10037 * 10038 * Basically, if any of the non-NEVER bits are set, 10039 * load IPsec. 10040 */ 10041 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10042 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10043 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10044 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10045 != 0) 10046 return (B_TRUE); 10047 } 10048 } 10049 return (B_FALSE); 10050 } 10051 10052 /* 10053 * If conn is is waiting for ipsec to finish loading, kick it. 10054 */ 10055 /* ARGSUSED */ 10056 static void 10057 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10058 { 10059 t_scalar_t optreq_prim; 10060 mblk_t *mp; 10061 cred_t *cr; 10062 int err = 0; 10063 10064 /* 10065 * This function is called, after ipsec loading is complete. 10066 * Since IP checks exclusively and atomically (i.e it prevents 10067 * ipsec load from completing until ip_optcom_req completes) 10068 * whether ipsec load is complete, there cannot be a race with IP 10069 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10070 */ 10071 mutex_enter(&connp->conn_lock); 10072 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10073 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10074 mp = connp->conn_ipsec_opt_mp; 10075 connp->conn_ipsec_opt_mp = NULL; 10076 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10077 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10078 mutex_exit(&connp->conn_lock); 10079 10080 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10081 10082 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10083 if (optreq_prim == T_OPTMGMT_REQ) { 10084 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10085 &ip_opt_obj); 10086 } else { 10087 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10088 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10089 &ip_opt_obj); 10090 } 10091 if (err != EINPROGRESS) 10092 CONN_OPER_PENDING_DONE(connp); 10093 return; 10094 } 10095 mutex_exit(&connp->conn_lock); 10096 } 10097 10098 /* 10099 * Called from the ipsec_loader thread, outside any perimeter, to tell 10100 * ip qenable any of the queues waiting for the ipsec loader to 10101 * complete. 10102 */ 10103 void 10104 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10105 { 10106 netstack_t *ns = ipss->ipsec_netstack; 10107 10108 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10109 } 10110 10111 /* 10112 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10113 * determines the grp on which it has to become exclusive, queues the mp 10114 * and sq draining restarts the optmgmt 10115 */ 10116 static boolean_t 10117 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10118 { 10119 conn_t *connp = Q_TO_CONN(q); 10120 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10121 10122 /* 10123 * Take IPsec requests and treat them special. 10124 */ 10125 if (ipsec_opt_present(mp)) { 10126 /* First check if IPsec is loaded. */ 10127 mutex_enter(&ipss->ipsec_loader_lock); 10128 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10129 mutex_exit(&ipss->ipsec_loader_lock); 10130 return (B_FALSE); 10131 } 10132 mutex_enter(&connp->conn_lock); 10133 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10134 10135 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10136 connp->conn_ipsec_opt_mp = mp; 10137 mutex_exit(&connp->conn_lock); 10138 mutex_exit(&ipss->ipsec_loader_lock); 10139 10140 ipsec_loader_loadnow(ipss); 10141 return (B_TRUE); 10142 } 10143 return (B_FALSE); 10144 } 10145 10146 /* 10147 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10148 * all of them are copied to the conn_t. If the req is "zero", the policy is 10149 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10150 * fields. 10151 * We keep only the latest setting of the policy and thus policy setting 10152 * is not incremental/cumulative. 10153 * 10154 * Requests to set policies with multiple alternative actions will 10155 * go through a different API. 10156 */ 10157 int 10158 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10159 { 10160 uint_t ah_req = 0; 10161 uint_t esp_req = 0; 10162 uint_t se_req = 0; 10163 ipsec_selkey_t sel; 10164 ipsec_act_t *actp = NULL; 10165 uint_t nact; 10166 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10167 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10168 ipsec_policy_root_t *pr; 10169 ipsec_policy_head_t *ph; 10170 int fam; 10171 boolean_t is_pol_reset; 10172 int error = 0; 10173 netstack_t *ns = connp->conn_netstack; 10174 ip_stack_t *ipst = ns->netstack_ip; 10175 ipsec_stack_t *ipss = ns->netstack_ipsec; 10176 10177 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10178 10179 /* 10180 * The IP_SEC_OPT option does not allow variable length parameters, 10181 * hence a request cannot be NULL. 10182 */ 10183 if (req == NULL) 10184 return (EINVAL); 10185 10186 ah_req = req->ipsr_ah_req; 10187 esp_req = req->ipsr_esp_req; 10188 se_req = req->ipsr_self_encap_req; 10189 10190 /* 10191 * Are we dealing with a request to reset the policy (i.e. 10192 * zero requests). 10193 */ 10194 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10195 (esp_req & REQ_MASK) == 0 && 10196 (se_req & REQ_MASK) == 0); 10197 10198 if (!is_pol_reset) { 10199 /* 10200 * If we couldn't load IPsec, fail with "protocol 10201 * not supported". 10202 * IPsec may not have been loaded for a request with zero 10203 * policies, so we don't fail in this case. 10204 */ 10205 mutex_enter(&ipss->ipsec_loader_lock); 10206 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10207 mutex_exit(&ipss->ipsec_loader_lock); 10208 return (EPROTONOSUPPORT); 10209 } 10210 mutex_exit(&ipss->ipsec_loader_lock); 10211 10212 /* 10213 * Test for valid requests. Invalid algorithms 10214 * need to be tested by IPsec code because new 10215 * algorithms can be added dynamically. 10216 */ 10217 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10218 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10219 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10220 return (EINVAL); 10221 } 10222 10223 /* 10224 * Only privileged users can issue these 10225 * requests. 10226 */ 10227 if (((ah_req & IPSEC_PREF_NEVER) || 10228 (esp_req & IPSEC_PREF_NEVER) || 10229 (se_req & IPSEC_PREF_NEVER)) && 10230 secpolicy_ip_config(cr, B_FALSE) != 0) { 10231 return (EPERM); 10232 } 10233 10234 /* 10235 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10236 * are mutually exclusive. 10237 */ 10238 if (((ah_req & REQ_MASK) == REQ_MASK) || 10239 ((esp_req & REQ_MASK) == REQ_MASK) || 10240 ((se_req & REQ_MASK) == REQ_MASK)) { 10241 /* Both of them are set */ 10242 return (EINVAL); 10243 } 10244 } 10245 10246 mutex_enter(&connp->conn_lock); 10247 10248 /* 10249 * If we have already cached policies in ip_bind_connected*(), don't 10250 * let them change now. We cache policies for connections 10251 * whose src,dst [addr, port] is known. 10252 */ 10253 if (connp->conn_policy_cached) { 10254 mutex_exit(&connp->conn_lock); 10255 return (EINVAL); 10256 } 10257 10258 /* 10259 * We have a zero policies, reset the connection policy if already 10260 * set. This will cause the connection to inherit the 10261 * global policy, if any. 10262 */ 10263 if (is_pol_reset) { 10264 if (connp->conn_policy != NULL) { 10265 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10266 connp->conn_policy = NULL; 10267 } 10268 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10269 connp->conn_in_enforce_policy = B_FALSE; 10270 connp->conn_out_enforce_policy = B_FALSE; 10271 mutex_exit(&connp->conn_lock); 10272 return (0); 10273 } 10274 10275 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10276 ipst->ips_netstack); 10277 if (ph == NULL) 10278 goto enomem; 10279 10280 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10281 if (actp == NULL) 10282 goto enomem; 10283 10284 /* 10285 * Always allocate IPv4 policy entries, since they can also 10286 * apply to ipv6 sockets being used in ipv4-compat mode. 10287 */ 10288 bzero(&sel, sizeof (sel)); 10289 sel.ipsl_valid = IPSL_IPV4; 10290 10291 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10292 ipst->ips_netstack); 10293 if (pin4 == NULL) 10294 goto enomem; 10295 10296 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10297 ipst->ips_netstack); 10298 if (pout4 == NULL) 10299 goto enomem; 10300 10301 if (connp->conn_pkt_isv6) { 10302 /* 10303 * We're looking at a v6 socket, also allocate the 10304 * v6-specific entries... 10305 */ 10306 sel.ipsl_valid = IPSL_IPV6; 10307 pin6 = ipsec_policy_create(&sel, actp, nact, 10308 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10309 if (pin6 == NULL) 10310 goto enomem; 10311 10312 pout6 = ipsec_policy_create(&sel, actp, nact, 10313 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10314 if (pout6 == NULL) 10315 goto enomem; 10316 10317 /* 10318 * .. and file them away in the right place. 10319 */ 10320 fam = IPSEC_AF_V6; 10321 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10322 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10323 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10324 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10325 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10326 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10327 } 10328 10329 ipsec_actvec_free(actp, nact); 10330 10331 /* 10332 * File the v4 policies. 10333 */ 10334 fam = IPSEC_AF_V4; 10335 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10336 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10337 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10338 10339 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10340 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10341 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10342 10343 /* 10344 * If the requests need security, set enforce_policy. 10345 * If the requests are IPSEC_PREF_NEVER, one should 10346 * still set conn_out_enforce_policy so that an ipsec_out 10347 * gets attached in ip_wput. This is needed so that 10348 * for connections that we don't cache policy in ip_bind, 10349 * if global policy matches in ip_wput_attach_policy, we 10350 * don't wrongly inherit global policy. Similarly, we need 10351 * to set conn_in_enforce_policy also so that we don't verify 10352 * policy wrongly. 10353 */ 10354 if ((ah_req & REQ_MASK) != 0 || 10355 (esp_req & REQ_MASK) != 0 || 10356 (se_req & REQ_MASK) != 0) { 10357 connp->conn_in_enforce_policy = B_TRUE; 10358 connp->conn_out_enforce_policy = B_TRUE; 10359 connp->conn_flags |= IPCL_CHECK_POLICY; 10360 } 10361 10362 mutex_exit(&connp->conn_lock); 10363 return (error); 10364 #undef REQ_MASK 10365 10366 /* 10367 * Common memory-allocation-failure exit path. 10368 */ 10369 enomem: 10370 mutex_exit(&connp->conn_lock); 10371 if (actp != NULL) 10372 ipsec_actvec_free(actp, nact); 10373 if (pin4 != NULL) 10374 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10375 if (pout4 != NULL) 10376 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10377 if (pin6 != NULL) 10378 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10379 if (pout6 != NULL) 10380 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10381 return (ENOMEM); 10382 } 10383 10384 /* 10385 * Only for options that pass in an IP addr. Currently only V4 options 10386 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10387 * So this function assumes level is IPPROTO_IP 10388 */ 10389 int 10390 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10391 mblk_t *first_mp) 10392 { 10393 ipif_t *ipif = NULL; 10394 int error; 10395 ill_t *ill; 10396 int zoneid; 10397 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10398 10399 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10400 10401 if (addr != INADDR_ANY || checkonly) { 10402 ASSERT(connp != NULL); 10403 zoneid = IPCL_ZONEID(connp); 10404 if (option == IP_NEXTHOP) { 10405 ipif = ipif_lookup_onlink_addr(addr, 10406 connp->conn_zoneid, ipst); 10407 } else { 10408 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10409 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10410 &error, ipst); 10411 } 10412 if (ipif == NULL) { 10413 if (error == EINPROGRESS) 10414 return (error); 10415 else if ((option == IP_MULTICAST_IF) || 10416 (option == IP_NEXTHOP)) 10417 return (EHOSTUNREACH); 10418 else 10419 return (EINVAL); 10420 } else if (checkonly) { 10421 if (option == IP_MULTICAST_IF) { 10422 ill = ipif->ipif_ill; 10423 /* not supported by the virtual network iface */ 10424 if (IS_VNI(ill)) { 10425 ipif_refrele(ipif); 10426 return (EINVAL); 10427 } 10428 } 10429 ipif_refrele(ipif); 10430 return (0); 10431 } 10432 ill = ipif->ipif_ill; 10433 mutex_enter(&connp->conn_lock); 10434 mutex_enter(&ill->ill_lock); 10435 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10436 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10437 mutex_exit(&ill->ill_lock); 10438 mutex_exit(&connp->conn_lock); 10439 ipif_refrele(ipif); 10440 return (option == IP_MULTICAST_IF ? 10441 EHOSTUNREACH : EINVAL); 10442 } 10443 } else { 10444 mutex_enter(&connp->conn_lock); 10445 } 10446 10447 /* None of the options below are supported on the VNI */ 10448 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10449 mutex_exit(&ill->ill_lock); 10450 mutex_exit(&connp->conn_lock); 10451 ipif_refrele(ipif); 10452 return (EINVAL); 10453 } 10454 10455 switch (option) { 10456 case IP_DONTFAILOVER_IF: 10457 /* 10458 * This option is used by in.mpathd to ensure 10459 * that IPMP probe packets only go out on the 10460 * test interfaces. in.mpathd sets this option 10461 * on the non-failover interfaces. 10462 * For backward compatibility, this option 10463 * implicitly sets IP_MULTICAST_IF, as used 10464 * be done in bind(), so that ip_wput gets 10465 * this ipif to send mcast packets. 10466 */ 10467 if (ipif != NULL) { 10468 ASSERT(addr != INADDR_ANY); 10469 connp->conn_nofailover_ill = ipif->ipif_ill; 10470 connp->conn_multicast_ipif = ipif; 10471 } else { 10472 ASSERT(addr == INADDR_ANY); 10473 connp->conn_nofailover_ill = NULL; 10474 connp->conn_multicast_ipif = NULL; 10475 } 10476 break; 10477 10478 case IP_MULTICAST_IF: 10479 connp->conn_multicast_ipif = ipif; 10480 break; 10481 case IP_NEXTHOP: 10482 connp->conn_nexthop_v4 = addr; 10483 connp->conn_nexthop_set = B_TRUE; 10484 break; 10485 } 10486 10487 if (ipif != NULL) { 10488 mutex_exit(&ill->ill_lock); 10489 mutex_exit(&connp->conn_lock); 10490 ipif_refrele(ipif); 10491 return (0); 10492 } 10493 mutex_exit(&connp->conn_lock); 10494 /* We succeded in cleared the option */ 10495 return (0); 10496 } 10497 10498 /* 10499 * For options that pass in an ifindex specifying the ill. V6 options always 10500 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10501 */ 10502 int 10503 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10504 int level, int option, mblk_t *first_mp) 10505 { 10506 ill_t *ill = NULL; 10507 int error = 0; 10508 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10509 10510 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10511 if (ifindex != 0) { 10512 ASSERT(connp != NULL); 10513 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10514 first_mp, ip_restart_optmgmt, &error, ipst); 10515 if (ill != NULL) { 10516 if (checkonly) { 10517 /* not supported by the virtual network iface */ 10518 if (IS_VNI(ill)) { 10519 ill_refrele(ill); 10520 return (EINVAL); 10521 } 10522 ill_refrele(ill); 10523 return (0); 10524 } 10525 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10526 0, NULL)) { 10527 ill_refrele(ill); 10528 ill = NULL; 10529 mutex_enter(&connp->conn_lock); 10530 goto setit; 10531 } 10532 mutex_enter(&connp->conn_lock); 10533 mutex_enter(&ill->ill_lock); 10534 if (ill->ill_state_flags & ILL_CONDEMNED) { 10535 mutex_exit(&ill->ill_lock); 10536 mutex_exit(&connp->conn_lock); 10537 ill_refrele(ill); 10538 ill = NULL; 10539 mutex_enter(&connp->conn_lock); 10540 } 10541 goto setit; 10542 } else if (error == EINPROGRESS) { 10543 return (error); 10544 } else { 10545 error = 0; 10546 } 10547 } 10548 mutex_enter(&connp->conn_lock); 10549 setit: 10550 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10551 10552 /* 10553 * The options below assume that the ILL (if any) transmits and/or 10554 * receives traffic. Neither of which is true for the virtual network 10555 * interface, so fail setting these on a VNI. 10556 */ 10557 if (IS_VNI(ill)) { 10558 ASSERT(ill != NULL); 10559 mutex_exit(&ill->ill_lock); 10560 mutex_exit(&connp->conn_lock); 10561 ill_refrele(ill); 10562 return (EINVAL); 10563 } 10564 10565 if (level == IPPROTO_IP) { 10566 switch (option) { 10567 case IP_BOUND_IF: 10568 connp->conn_incoming_ill = ill; 10569 connp->conn_outgoing_ill = ill; 10570 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10571 0 : ifindex; 10572 break; 10573 10574 case IP_XMIT_IF: 10575 /* 10576 * Similar to IP_BOUND_IF, but this only 10577 * determines the outgoing interface for 10578 * unicast packets. Also no IRE_CACHE entry 10579 * is added for the destination of the 10580 * outgoing packets. 10581 */ 10582 connp->conn_xmit_if_ill = ill; 10583 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10584 0 : ifindex; 10585 break; 10586 10587 case IP_MULTICAST_IF: 10588 /* 10589 * This option is an internal special. The socket 10590 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10591 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10592 * specifies an ifindex and we try first on V6 ill's. 10593 * If we don't find one, we they try using on v4 ill's 10594 * intenally and we come here. 10595 */ 10596 if (!checkonly && ill != NULL) { 10597 ipif_t *ipif; 10598 ipif = ill->ill_ipif; 10599 10600 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10601 mutex_exit(&ill->ill_lock); 10602 mutex_exit(&connp->conn_lock); 10603 ill_refrele(ill); 10604 ill = NULL; 10605 mutex_enter(&connp->conn_lock); 10606 } else { 10607 connp->conn_multicast_ipif = ipif; 10608 } 10609 } 10610 break; 10611 } 10612 } else { 10613 switch (option) { 10614 case IPV6_BOUND_IF: 10615 connp->conn_incoming_ill = ill; 10616 connp->conn_outgoing_ill = ill; 10617 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10618 0 : ifindex; 10619 break; 10620 10621 case IPV6_BOUND_PIF: 10622 /* 10623 * Limit all transmit to this ill. 10624 * Unlike IPV6_BOUND_IF, using this option 10625 * prevents load spreading and failover from 10626 * happening when the interface is part of the 10627 * group. That's why we don't need to remember 10628 * the ifindex in orig_bound_ifindex as in 10629 * IPV6_BOUND_IF. 10630 */ 10631 connp->conn_outgoing_pill = ill; 10632 break; 10633 10634 case IPV6_DONTFAILOVER_IF: 10635 /* 10636 * This option is used by in.mpathd to ensure 10637 * that IPMP probe packets only go out on the 10638 * test interfaces. in.mpathd sets this option 10639 * on the non-failover interfaces. 10640 */ 10641 connp->conn_nofailover_ill = ill; 10642 /* 10643 * For backward compatibility, this option 10644 * implicitly sets ip_multicast_ill as used in 10645 * IP_MULTICAST_IF so that ip_wput gets 10646 * this ipif to send mcast packets. 10647 */ 10648 connp->conn_multicast_ill = ill; 10649 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10650 0 : ifindex; 10651 break; 10652 10653 case IPV6_MULTICAST_IF: 10654 /* 10655 * Set conn_multicast_ill to be the IPv6 ill. 10656 * Set conn_multicast_ipif to be an IPv4 ipif 10657 * for ifindex to make IPv4 mapped addresses 10658 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10659 * Even if no IPv6 ill exists for the ifindex 10660 * we need to check for an IPv4 ifindex in order 10661 * for this to work with mapped addresses. In that 10662 * case only set conn_multicast_ipif. 10663 */ 10664 if (!checkonly) { 10665 if (ifindex == 0) { 10666 connp->conn_multicast_ill = NULL; 10667 connp->conn_orig_multicast_ifindex = 0; 10668 connp->conn_multicast_ipif = NULL; 10669 } else if (ill != NULL) { 10670 connp->conn_multicast_ill = ill; 10671 connp->conn_orig_multicast_ifindex = 10672 ifindex; 10673 } 10674 } 10675 break; 10676 } 10677 } 10678 10679 if (ill != NULL) { 10680 mutex_exit(&ill->ill_lock); 10681 mutex_exit(&connp->conn_lock); 10682 ill_refrele(ill); 10683 return (0); 10684 } 10685 mutex_exit(&connp->conn_lock); 10686 /* 10687 * We succeeded in clearing the option (ifindex == 0) or failed to 10688 * locate the ill and could not set the option (ifindex != 0) 10689 */ 10690 return (ifindex == 0 ? 0 : EINVAL); 10691 } 10692 10693 /* This routine sets socket options. */ 10694 /* ARGSUSED */ 10695 int 10696 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10697 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10698 void *dummy, cred_t *cr, mblk_t *first_mp) 10699 { 10700 int *i1 = (int *)invalp; 10701 conn_t *connp = Q_TO_CONN(q); 10702 int error = 0; 10703 boolean_t checkonly; 10704 ire_t *ire; 10705 boolean_t found; 10706 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10707 10708 switch (optset_context) { 10709 10710 case SETFN_OPTCOM_CHECKONLY: 10711 checkonly = B_TRUE; 10712 /* 10713 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10714 * inlen != 0 implies value supplied and 10715 * we have to "pretend" to set it. 10716 * inlen == 0 implies that there is no 10717 * value part in T_CHECK request and just validation 10718 * done elsewhere should be enough, we just return here. 10719 */ 10720 if (inlen == 0) { 10721 *outlenp = 0; 10722 return (0); 10723 } 10724 break; 10725 case SETFN_OPTCOM_NEGOTIATE: 10726 case SETFN_UD_NEGOTIATE: 10727 case SETFN_CONN_NEGOTIATE: 10728 checkonly = B_FALSE; 10729 break; 10730 default: 10731 /* 10732 * We should never get here 10733 */ 10734 *outlenp = 0; 10735 return (EINVAL); 10736 } 10737 10738 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10739 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10740 10741 /* 10742 * For fixed length options, no sanity check 10743 * of passed in length is done. It is assumed *_optcom_req() 10744 * routines do the right thing. 10745 */ 10746 10747 switch (level) { 10748 case SOL_SOCKET: 10749 /* 10750 * conn_lock protects the bitfields, and is used to 10751 * set the fields atomically. 10752 */ 10753 switch (name) { 10754 case SO_BROADCAST: 10755 if (!checkonly) { 10756 /* TODO: use value someplace? */ 10757 mutex_enter(&connp->conn_lock); 10758 connp->conn_broadcast = *i1 ? 1 : 0; 10759 mutex_exit(&connp->conn_lock); 10760 } 10761 break; /* goto sizeof (int) option return */ 10762 case SO_USELOOPBACK: 10763 if (!checkonly) { 10764 /* TODO: use value someplace? */ 10765 mutex_enter(&connp->conn_lock); 10766 connp->conn_loopback = *i1 ? 1 : 0; 10767 mutex_exit(&connp->conn_lock); 10768 } 10769 break; /* goto sizeof (int) option return */ 10770 case SO_DONTROUTE: 10771 if (!checkonly) { 10772 mutex_enter(&connp->conn_lock); 10773 connp->conn_dontroute = *i1 ? 1 : 0; 10774 mutex_exit(&connp->conn_lock); 10775 } 10776 break; /* goto sizeof (int) option return */ 10777 case SO_REUSEADDR: 10778 if (!checkonly) { 10779 mutex_enter(&connp->conn_lock); 10780 connp->conn_reuseaddr = *i1 ? 1 : 0; 10781 mutex_exit(&connp->conn_lock); 10782 } 10783 break; /* goto sizeof (int) option return */ 10784 case SO_PROTOTYPE: 10785 if (!checkonly) { 10786 mutex_enter(&connp->conn_lock); 10787 connp->conn_proto = *i1; 10788 mutex_exit(&connp->conn_lock); 10789 } 10790 break; /* goto sizeof (int) option return */ 10791 case SO_ALLZONES: 10792 if (!checkonly) { 10793 mutex_enter(&connp->conn_lock); 10794 if (IPCL_IS_BOUND(connp)) { 10795 mutex_exit(&connp->conn_lock); 10796 return (EINVAL); 10797 } 10798 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10799 mutex_exit(&connp->conn_lock); 10800 } 10801 break; /* goto sizeof (int) option return */ 10802 case SO_ANON_MLP: 10803 if (!checkonly) { 10804 mutex_enter(&connp->conn_lock); 10805 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10806 mutex_exit(&connp->conn_lock); 10807 } 10808 break; /* goto sizeof (int) option return */ 10809 case SO_MAC_EXEMPT: 10810 if (secpolicy_net_mac_aware(cr) != 0 || 10811 IPCL_IS_BOUND(connp)) 10812 return (EACCES); 10813 if (!checkonly) { 10814 mutex_enter(&connp->conn_lock); 10815 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10816 mutex_exit(&connp->conn_lock); 10817 } 10818 break; /* goto sizeof (int) option return */ 10819 default: 10820 /* 10821 * "soft" error (negative) 10822 * option not handled at this level 10823 * Note: Do not modify *outlenp 10824 */ 10825 return (-EINVAL); 10826 } 10827 break; 10828 case IPPROTO_IP: 10829 switch (name) { 10830 case IP_NEXTHOP: 10831 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10832 return (EPERM); 10833 /* FALLTHRU */ 10834 case IP_MULTICAST_IF: 10835 case IP_DONTFAILOVER_IF: { 10836 ipaddr_t addr = *i1; 10837 10838 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10839 first_mp); 10840 if (error != 0) 10841 return (error); 10842 break; /* goto sizeof (int) option return */ 10843 } 10844 10845 case IP_MULTICAST_TTL: 10846 /* Recorded in transport above IP */ 10847 *outvalp = *invalp; 10848 *outlenp = sizeof (uchar_t); 10849 return (0); 10850 case IP_MULTICAST_LOOP: 10851 if (!checkonly) { 10852 mutex_enter(&connp->conn_lock); 10853 connp->conn_multicast_loop = *invalp ? 1 : 0; 10854 mutex_exit(&connp->conn_lock); 10855 } 10856 *outvalp = *invalp; 10857 *outlenp = sizeof (uchar_t); 10858 return (0); 10859 case IP_ADD_MEMBERSHIP: 10860 case MCAST_JOIN_GROUP: 10861 case IP_DROP_MEMBERSHIP: 10862 case MCAST_LEAVE_GROUP: { 10863 struct ip_mreq *mreqp; 10864 struct group_req *greqp; 10865 ire_t *ire; 10866 boolean_t done = B_FALSE; 10867 ipaddr_t group, ifaddr; 10868 struct sockaddr_in *sin; 10869 uint32_t *ifindexp; 10870 boolean_t mcast_opt = B_TRUE; 10871 mcast_record_t fmode; 10872 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10873 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10874 10875 switch (name) { 10876 case IP_ADD_MEMBERSHIP: 10877 mcast_opt = B_FALSE; 10878 /* FALLTHRU */ 10879 case MCAST_JOIN_GROUP: 10880 fmode = MODE_IS_EXCLUDE; 10881 optfn = ip_opt_add_group; 10882 break; 10883 10884 case IP_DROP_MEMBERSHIP: 10885 mcast_opt = B_FALSE; 10886 /* FALLTHRU */ 10887 case MCAST_LEAVE_GROUP: 10888 fmode = MODE_IS_INCLUDE; 10889 optfn = ip_opt_delete_group; 10890 break; 10891 } 10892 10893 if (mcast_opt) { 10894 greqp = (struct group_req *)i1; 10895 sin = (struct sockaddr_in *)&greqp->gr_group; 10896 if (sin->sin_family != AF_INET) { 10897 *outlenp = 0; 10898 return (ENOPROTOOPT); 10899 } 10900 group = (ipaddr_t)sin->sin_addr.s_addr; 10901 ifaddr = INADDR_ANY; 10902 ifindexp = &greqp->gr_interface; 10903 } else { 10904 mreqp = (struct ip_mreq *)i1; 10905 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10906 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10907 ifindexp = NULL; 10908 } 10909 10910 /* 10911 * In the multirouting case, we need to replicate 10912 * the request on all interfaces that will take part 10913 * in replication. We do so because multirouting is 10914 * reflective, thus we will probably receive multi- 10915 * casts on those interfaces. 10916 * The ip_multirt_apply_membership() succeeds if the 10917 * operation succeeds on at least one interface. 10918 */ 10919 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10920 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10921 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10922 if (ire != NULL) { 10923 if (ire->ire_flags & RTF_MULTIRT) { 10924 error = ip_multirt_apply_membership( 10925 optfn, ire, connp, checkonly, group, 10926 fmode, INADDR_ANY, first_mp); 10927 done = B_TRUE; 10928 } 10929 ire_refrele(ire); 10930 } 10931 if (!done) { 10932 error = optfn(connp, checkonly, group, ifaddr, 10933 ifindexp, fmode, INADDR_ANY, first_mp); 10934 } 10935 if (error) { 10936 /* 10937 * EINPROGRESS is a soft error, needs retry 10938 * so don't make *outlenp zero. 10939 */ 10940 if (error != EINPROGRESS) 10941 *outlenp = 0; 10942 return (error); 10943 } 10944 /* OK return - copy input buffer into output buffer */ 10945 if (invalp != outvalp) { 10946 /* don't trust bcopy for identical src/dst */ 10947 bcopy(invalp, outvalp, inlen); 10948 } 10949 *outlenp = inlen; 10950 return (0); 10951 } 10952 case IP_BLOCK_SOURCE: 10953 case IP_UNBLOCK_SOURCE: 10954 case IP_ADD_SOURCE_MEMBERSHIP: 10955 case IP_DROP_SOURCE_MEMBERSHIP: 10956 case MCAST_BLOCK_SOURCE: 10957 case MCAST_UNBLOCK_SOURCE: 10958 case MCAST_JOIN_SOURCE_GROUP: 10959 case MCAST_LEAVE_SOURCE_GROUP: { 10960 struct ip_mreq_source *imreqp; 10961 struct group_source_req *gsreqp; 10962 in_addr_t grp, src, ifaddr = INADDR_ANY; 10963 uint32_t ifindex = 0; 10964 mcast_record_t fmode; 10965 struct sockaddr_in *sin; 10966 ire_t *ire; 10967 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10968 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10969 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10970 10971 switch (name) { 10972 case IP_BLOCK_SOURCE: 10973 mcast_opt = B_FALSE; 10974 /* FALLTHRU */ 10975 case MCAST_BLOCK_SOURCE: 10976 fmode = MODE_IS_EXCLUDE; 10977 optfn = ip_opt_add_group; 10978 break; 10979 10980 case IP_UNBLOCK_SOURCE: 10981 mcast_opt = B_FALSE; 10982 /* FALLTHRU */ 10983 case MCAST_UNBLOCK_SOURCE: 10984 fmode = MODE_IS_EXCLUDE; 10985 optfn = ip_opt_delete_group; 10986 break; 10987 10988 case IP_ADD_SOURCE_MEMBERSHIP: 10989 mcast_opt = B_FALSE; 10990 /* FALLTHRU */ 10991 case MCAST_JOIN_SOURCE_GROUP: 10992 fmode = MODE_IS_INCLUDE; 10993 optfn = ip_opt_add_group; 10994 break; 10995 10996 case IP_DROP_SOURCE_MEMBERSHIP: 10997 mcast_opt = B_FALSE; 10998 /* FALLTHRU */ 10999 case MCAST_LEAVE_SOURCE_GROUP: 11000 fmode = MODE_IS_INCLUDE; 11001 optfn = ip_opt_delete_group; 11002 break; 11003 } 11004 11005 if (mcast_opt) { 11006 gsreqp = (struct group_source_req *)i1; 11007 if (gsreqp->gsr_group.ss_family != AF_INET) { 11008 *outlenp = 0; 11009 return (ENOPROTOOPT); 11010 } 11011 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11012 grp = (ipaddr_t)sin->sin_addr.s_addr; 11013 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11014 src = (ipaddr_t)sin->sin_addr.s_addr; 11015 ifindex = gsreqp->gsr_interface; 11016 } else { 11017 imreqp = (struct ip_mreq_source *)i1; 11018 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11019 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11020 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11021 } 11022 11023 /* 11024 * In the multirouting case, we need to replicate 11025 * the request as noted in the mcast cases above. 11026 */ 11027 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11028 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11029 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11030 if (ire != NULL) { 11031 if (ire->ire_flags & RTF_MULTIRT) { 11032 error = ip_multirt_apply_membership( 11033 optfn, ire, connp, checkonly, grp, 11034 fmode, src, first_mp); 11035 done = B_TRUE; 11036 } 11037 ire_refrele(ire); 11038 } 11039 if (!done) { 11040 error = optfn(connp, checkonly, grp, ifaddr, 11041 &ifindex, fmode, src, first_mp); 11042 } 11043 if (error != 0) { 11044 /* 11045 * EINPROGRESS is a soft error, needs retry 11046 * so don't make *outlenp zero. 11047 */ 11048 if (error != EINPROGRESS) 11049 *outlenp = 0; 11050 return (error); 11051 } 11052 /* OK return - copy input buffer into output buffer */ 11053 if (invalp != outvalp) { 11054 bcopy(invalp, outvalp, inlen); 11055 } 11056 *outlenp = inlen; 11057 return (0); 11058 } 11059 case IP_SEC_OPT: 11060 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11061 if (error != 0) { 11062 *outlenp = 0; 11063 return (error); 11064 } 11065 break; 11066 case IP_HDRINCL: 11067 case IP_OPTIONS: 11068 case T_IP_OPTIONS: 11069 case IP_TOS: 11070 case T_IP_TOS: 11071 case IP_TTL: 11072 case IP_RECVDSTADDR: 11073 case IP_RECVOPTS: 11074 /* OK return - copy input buffer into output buffer */ 11075 if (invalp != outvalp) { 11076 /* don't trust bcopy for identical src/dst */ 11077 bcopy(invalp, outvalp, inlen); 11078 } 11079 *outlenp = inlen; 11080 return (0); 11081 case IP_RECVIF: 11082 /* Retrieve the inbound interface index */ 11083 if (!checkonly) { 11084 mutex_enter(&connp->conn_lock); 11085 connp->conn_recvif = *i1 ? 1 : 0; 11086 mutex_exit(&connp->conn_lock); 11087 } 11088 break; /* goto sizeof (int) option return */ 11089 case IP_RECVPKTINFO: 11090 if (!checkonly) { 11091 mutex_enter(&connp->conn_lock); 11092 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11093 mutex_exit(&connp->conn_lock); 11094 } 11095 break; /* goto sizeof (int) option return */ 11096 case IP_RECVSLLA: 11097 /* Retrieve the source link layer address */ 11098 if (!checkonly) { 11099 mutex_enter(&connp->conn_lock); 11100 connp->conn_recvslla = *i1 ? 1 : 0; 11101 mutex_exit(&connp->conn_lock); 11102 } 11103 break; /* goto sizeof (int) option return */ 11104 case MRT_INIT: 11105 case MRT_DONE: 11106 case MRT_ADD_VIF: 11107 case MRT_DEL_VIF: 11108 case MRT_ADD_MFC: 11109 case MRT_DEL_MFC: 11110 case MRT_ASSERT: 11111 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11112 *outlenp = 0; 11113 return (error); 11114 } 11115 error = ip_mrouter_set((int)name, q, checkonly, 11116 (uchar_t *)invalp, inlen, first_mp); 11117 if (error) { 11118 *outlenp = 0; 11119 return (error); 11120 } 11121 /* OK return - copy input buffer into output buffer */ 11122 if (invalp != outvalp) { 11123 /* don't trust bcopy for identical src/dst */ 11124 bcopy(invalp, outvalp, inlen); 11125 } 11126 *outlenp = inlen; 11127 return (0); 11128 case IP_BOUND_IF: 11129 case IP_XMIT_IF: 11130 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11131 level, name, first_mp); 11132 if (error != 0) 11133 return (error); 11134 break; /* goto sizeof (int) option return */ 11135 11136 case IP_UNSPEC_SRC: 11137 /* Allow sending with a zero source address */ 11138 if (!checkonly) { 11139 mutex_enter(&connp->conn_lock); 11140 connp->conn_unspec_src = *i1 ? 1 : 0; 11141 mutex_exit(&connp->conn_lock); 11142 } 11143 break; /* goto sizeof (int) option return */ 11144 default: 11145 /* 11146 * "soft" error (negative) 11147 * option not handled at this level 11148 * Note: Do not modify *outlenp 11149 */ 11150 return (-EINVAL); 11151 } 11152 break; 11153 case IPPROTO_IPV6: 11154 switch (name) { 11155 case IPV6_BOUND_IF: 11156 case IPV6_BOUND_PIF: 11157 case IPV6_DONTFAILOVER_IF: 11158 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11159 level, name, first_mp); 11160 if (error != 0) 11161 return (error); 11162 break; /* goto sizeof (int) option return */ 11163 11164 case IPV6_MULTICAST_IF: 11165 /* 11166 * The only possible errors are EINPROGRESS and 11167 * EINVAL. EINPROGRESS will be restarted and is not 11168 * a hard error. We call this option on both V4 and V6 11169 * If both return EINVAL, then this call returns 11170 * EINVAL. If at least one of them succeeds we 11171 * return success. 11172 */ 11173 found = B_FALSE; 11174 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11175 level, name, first_mp); 11176 if (error == EINPROGRESS) 11177 return (error); 11178 if (error == 0) 11179 found = B_TRUE; 11180 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11181 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11182 if (error == 0) 11183 found = B_TRUE; 11184 if (!found) 11185 return (error); 11186 break; /* goto sizeof (int) option return */ 11187 11188 case IPV6_MULTICAST_HOPS: 11189 /* Recorded in transport above IP */ 11190 break; /* goto sizeof (int) option return */ 11191 case IPV6_MULTICAST_LOOP: 11192 if (!checkonly) { 11193 mutex_enter(&connp->conn_lock); 11194 connp->conn_multicast_loop = *i1; 11195 mutex_exit(&connp->conn_lock); 11196 } 11197 break; /* goto sizeof (int) option return */ 11198 case IPV6_JOIN_GROUP: 11199 case MCAST_JOIN_GROUP: 11200 case IPV6_LEAVE_GROUP: 11201 case MCAST_LEAVE_GROUP: { 11202 struct ipv6_mreq *ip_mreqp; 11203 struct group_req *greqp; 11204 ire_t *ire; 11205 boolean_t done = B_FALSE; 11206 in6_addr_t groupv6; 11207 uint32_t ifindex; 11208 boolean_t mcast_opt = B_TRUE; 11209 mcast_record_t fmode; 11210 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11211 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11212 11213 switch (name) { 11214 case IPV6_JOIN_GROUP: 11215 mcast_opt = B_FALSE; 11216 /* FALLTHRU */ 11217 case MCAST_JOIN_GROUP: 11218 fmode = MODE_IS_EXCLUDE; 11219 optfn = ip_opt_add_group_v6; 11220 break; 11221 11222 case IPV6_LEAVE_GROUP: 11223 mcast_opt = B_FALSE; 11224 /* FALLTHRU */ 11225 case MCAST_LEAVE_GROUP: 11226 fmode = MODE_IS_INCLUDE; 11227 optfn = ip_opt_delete_group_v6; 11228 break; 11229 } 11230 11231 if (mcast_opt) { 11232 struct sockaddr_in *sin; 11233 struct sockaddr_in6 *sin6; 11234 greqp = (struct group_req *)i1; 11235 if (greqp->gr_group.ss_family == AF_INET) { 11236 sin = (struct sockaddr_in *) 11237 &(greqp->gr_group); 11238 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11239 &groupv6); 11240 } else { 11241 sin6 = (struct sockaddr_in6 *) 11242 &(greqp->gr_group); 11243 groupv6 = sin6->sin6_addr; 11244 } 11245 ifindex = greqp->gr_interface; 11246 } else { 11247 ip_mreqp = (struct ipv6_mreq *)i1; 11248 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11249 ifindex = ip_mreqp->ipv6mr_interface; 11250 } 11251 /* 11252 * In the multirouting case, we need to replicate 11253 * the request on all interfaces that will take part 11254 * in replication. We do so because multirouting is 11255 * reflective, thus we will probably receive multi- 11256 * casts on those interfaces. 11257 * The ip_multirt_apply_membership_v6() succeeds if 11258 * the operation succeeds on at least one interface. 11259 */ 11260 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11261 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11262 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11263 if (ire != NULL) { 11264 if (ire->ire_flags & RTF_MULTIRT) { 11265 error = ip_multirt_apply_membership_v6( 11266 optfn, ire, connp, checkonly, 11267 &groupv6, fmode, &ipv6_all_zeros, 11268 first_mp); 11269 done = B_TRUE; 11270 } 11271 ire_refrele(ire); 11272 } 11273 if (!done) { 11274 error = optfn(connp, checkonly, &groupv6, 11275 ifindex, fmode, &ipv6_all_zeros, first_mp); 11276 } 11277 if (error) { 11278 /* 11279 * EINPROGRESS is a soft error, needs retry 11280 * so don't make *outlenp zero. 11281 */ 11282 if (error != EINPROGRESS) 11283 *outlenp = 0; 11284 return (error); 11285 } 11286 /* OK return - copy input buffer into output buffer */ 11287 if (invalp != outvalp) { 11288 /* don't trust bcopy for identical src/dst */ 11289 bcopy(invalp, outvalp, inlen); 11290 } 11291 *outlenp = inlen; 11292 return (0); 11293 } 11294 case MCAST_BLOCK_SOURCE: 11295 case MCAST_UNBLOCK_SOURCE: 11296 case MCAST_JOIN_SOURCE_GROUP: 11297 case MCAST_LEAVE_SOURCE_GROUP: { 11298 struct group_source_req *gsreqp; 11299 in6_addr_t v6grp, v6src; 11300 uint32_t ifindex; 11301 mcast_record_t fmode; 11302 ire_t *ire; 11303 boolean_t done = B_FALSE; 11304 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11305 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11306 11307 switch (name) { 11308 case MCAST_BLOCK_SOURCE: 11309 fmode = MODE_IS_EXCLUDE; 11310 optfn = ip_opt_add_group_v6; 11311 break; 11312 case MCAST_UNBLOCK_SOURCE: 11313 fmode = MODE_IS_EXCLUDE; 11314 optfn = ip_opt_delete_group_v6; 11315 break; 11316 case MCAST_JOIN_SOURCE_GROUP: 11317 fmode = MODE_IS_INCLUDE; 11318 optfn = ip_opt_add_group_v6; 11319 break; 11320 case MCAST_LEAVE_SOURCE_GROUP: 11321 fmode = MODE_IS_INCLUDE; 11322 optfn = ip_opt_delete_group_v6; 11323 break; 11324 } 11325 11326 gsreqp = (struct group_source_req *)i1; 11327 ifindex = gsreqp->gsr_interface; 11328 if (gsreqp->gsr_group.ss_family == AF_INET) { 11329 struct sockaddr_in *s; 11330 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11331 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11332 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11333 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11334 } else { 11335 struct sockaddr_in6 *s6; 11336 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11337 v6grp = s6->sin6_addr; 11338 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11339 v6src = s6->sin6_addr; 11340 } 11341 11342 /* 11343 * In the multirouting case, we need to replicate 11344 * the request as noted in the mcast cases above. 11345 */ 11346 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11347 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11348 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11349 if (ire != NULL) { 11350 if (ire->ire_flags & RTF_MULTIRT) { 11351 error = ip_multirt_apply_membership_v6( 11352 optfn, ire, connp, checkonly, 11353 &v6grp, fmode, &v6src, first_mp); 11354 done = B_TRUE; 11355 } 11356 ire_refrele(ire); 11357 } 11358 if (!done) { 11359 error = optfn(connp, checkonly, &v6grp, 11360 ifindex, fmode, &v6src, first_mp); 11361 } 11362 if (error != 0) { 11363 /* 11364 * EINPROGRESS is a soft error, needs retry 11365 * so don't make *outlenp zero. 11366 */ 11367 if (error != EINPROGRESS) 11368 *outlenp = 0; 11369 return (error); 11370 } 11371 /* OK return - copy input buffer into output buffer */ 11372 if (invalp != outvalp) { 11373 bcopy(invalp, outvalp, inlen); 11374 } 11375 *outlenp = inlen; 11376 return (0); 11377 } 11378 case IPV6_UNICAST_HOPS: 11379 /* Recorded in transport above IP */ 11380 break; /* goto sizeof (int) option return */ 11381 case IPV6_UNSPEC_SRC: 11382 /* Allow sending with a zero source address */ 11383 if (!checkonly) { 11384 mutex_enter(&connp->conn_lock); 11385 connp->conn_unspec_src = *i1 ? 1 : 0; 11386 mutex_exit(&connp->conn_lock); 11387 } 11388 break; /* goto sizeof (int) option return */ 11389 case IPV6_RECVPKTINFO: 11390 if (!checkonly) { 11391 mutex_enter(&connp->conn_lock); 11392 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11393 mutex_exit(&connp->conn_lock); 11394 } 11395 break; /* goto sizeof (int) option return */ 11396 case IPV6_RECVTCLASS: 11397 if (!checkonly) { 11398 if (*i1 < 0 || *i1 > 1) { 11399 return (EINVAL); 11400 } 11401 mutex_enter(&connp->conn_lock); 11402 connp->conn_ipv6_recvtclass = *i1; 11403 mutex_exit(&connp->conn_lock); 11404 } 11405 break; 11406 case IPV6_RECVPATHMTU: 11407 if (!checkonly) { 11408 if (*i1 < 0 || *i1 > 1) { 11409 return (EINVAL); 11410 } 11411 mutex_enter(&connp->conn_lock); 11412 connp->conn_ipv6_recvpathmtu = *i1; 11413 mutex_exit(&connp->conn_lock); 11414 } 11415 break; 11416 case IPV6_RECVHOPLIMIT: 11417 if (!checkonly) { 11418 mutex_enter(&connp->conn_lock); 11419 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11420 mutex_exit(&connp->conn_lock); 11421 } 11422 break; /* goto sizeof (int) option return */ 11423 case IPV6_RECVHOPOPTS: 11424 if (!checkonly) { 11425 mutex_enter(&connp->conn_lock); 11426 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11427 mutex_exit(&connp->conn_lock); 11428 } 11429 break; /* goto sizeof (int) option return */ 11430 case IPV6_RECVDSTOPTS: 11431 if (!checkonly) { 11432 mutex_enter(&connp->conn_lock); 11433 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11434 mutex_exit(&connp->conn_lock); 11435 } 11436 break; /* goto sizeof (int) option return */ 11437 case IPV6_RECVRTHDR: 11438 if (!checkonly) { 11439 mutex_enter(&connp->conn_lock); 11440 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11441 mutex_exit(&connp->conn_lock); 11442 } 11443 break; /* goto sizeof (int) option return */ 11444 case IPV6_RECVRTHDRDSTOPTS: 11445 if (!checkonly) { 11446 mutex_enter(&connp->conn_lock); 11447 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11448 mutex_exit(&connp->conn_lock); 11449 } 11450 break; /* goto sizeof (int) option return */ 11451 case IPV6_PKTINFO: 11452 if (inlen == 0) 11453 return (-EINVAL); /* clearing option */ 11454 error = ip6_set_pktinfo(cr, connp, 11455 (struct in6_pktinfo *)invalp, first_mp); 11456 if (error != 0) 11457 *outlenp = 0; 11458 else 11459 *outlenp = inlen; 11460 return (error); 11461 case IPV6_NEXTHOP: { 11462 struct sockaddr_in6 *sin6; 11463 11464 /* Verify that the nexthop is reachable */ 11465 if (inlen == 0) 11466 return (-EINVAL); /* clearing option */ 11467 11468 sin6 = (struct sockaddr_in6 *)invalp; 11469 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11470 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11471 NULL, MATCH_IRE_DEFAULT, ipst); 11472 11473 if (ire == NULL) { 11474 *outlenp = 0; 11475 return (EHOSTUNREACH); 11476 } 11477 ire_refrele(ire); 11478 return (-EINVAL); 11479 } 11480 case IPV6_SEC_OPT: 11481 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11482 if (error != 0) { 11483 *outlenp = 0; 11484 return (error); 11485 } 11486 break; 11487 case IPV6_SRC_PREFERENCES: { 11488 /* 11489 * This is implemented strictly in the ip module 11490 * (here and in tcp_opt_*() to accomodate tcp 11491 * sockets). Modules above ip pass this option 11492 * down here since ip is the only one that needs to 11493 * be aware of source address preferences. 11494 * 11495 * This socket option only affects connected 11496 * sockets that haven't already bound to a specific 11497 * IPv6 address. In other words, sockets that 11498 * don't call bind() with an address other than the 11499 * unspecified address and that call connect(). 11500 * ip_bind_connected_v6() passes these preferences 11501 * to the ipif_select_source_v6() function. 11502 */ 11503 if (inlen != sizeof (uint32_t)) 11504 return (EINVAL); 11505 error = ip6_set_src_preferences(connp, 11506 *(uint32_t *)invalp); 11507 if (error != 0) { 11508 *outlenp = 0; 11509 return (error); 11510 } else { 11511 *outlenp = sizeof (uint32_t); 11512 } 11513 break; 11514 } 11515 case IPV6_V6ONLY: 11516 if (*i1 < 0 || *i1 > 1) { 11517 return (EINVAL); 11518 } 11519 mutex_enter(&connp->conn_lock); 11520 connp->conn_ipv6_v6only = *i1; 11521 mutex_exit(&connp->conn_lock); 11522 break; 11523 default: 11524 return (-EINVAL); 11525 } 11526 break; 11527 default: 11528 /* 11529 * "soft" error (negative) 11530 * option not handled at this level 11531 * Note: Do not modify *outlenp 11532 */ 11533 return (-EINVAL); 11534 } 11535 /* 11536 * Common case of return from an option that is sizeof (int) 11537 */ 11538 *(int *)outvalp = *i1; 11539 *outlenp = sizeof (int); 11540 return (0); 11541 } 11542 11543 /* 11544 * This routine gets default values of certain options whose default 11545 * values are maintained by protocol specific code 11546 */ 11547 /* ARGSUSED */ 11548 int 11549 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11550 { 11551 int *i1 = (int *)ptr; 11552 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11553 11554 switch (level) { 11555 case IPPROTO_IP: 11556 switch (name) { 11557 case IP_MULTICAST_TTL: 11558 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11559 return (sizeof (uchar_t)); 11560 case IP_MULTICAST_LOOP: 11561 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11562 return (sizeof (uchar_t)); 11563 default: 11564 return (-1); 11565 } 11566 case IPPROTO_IPV6: 11567 switch (name) { 11568 case IPV6_UNICAST_HOPS: 11569 *i1 = ipst->ips_ipv6_def_hops; 11570 return (sizeof (int)); 11571 case IPV6_MULTICAST_HOPS: 11572 *i1 = IP_DEFAULT_MULTICAST_TTL; 11573 return (sizeof (int)); 11574 case IPV6_MULTICAST_LOOP: 11575 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11576 return (sizeof (int)); 11577 case IPV6_V6ONLY: 11578 *i1 = 1; 11579 return (sizeof (int)); 11580 default: 11581 return (-1); 11582 } 11583 default: 11584 return (-1); 11585 } 11586 /* NOTREACHED */ 11587 } 11588 11589 /* 11590 * Given a destination address and a pointer to where to put the information 11591 * this routine fills in the mtuinfo. 11592 */ 11593 int 11594 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11595 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11596 { 11597 ire_t *ire; 11598 ip_stack_t *ipst = ns->netstack_ip; 11599 11600 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11601 return (-1); 11602 11603 bzero(mtuinfo, sizeof (*mtuinfo)); 11604 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11605 mtuinfo->ip6m_addr.sin6_port = port; 11606 mtuinfo->ip6m_addr.sin6_addr = *in6; 11607 11608 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11609 if (ire != NULL) { 11610 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11611 ire_refrele(ire); 11612 } else { 11613 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11614 } 11615 return (sizeof (struct ip6_mtuinfo)); 11616 } 11617 11618 /* 11619 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11620 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11621 * isn't. This doesn't matter as the error checking is done properly for the 11622 * other MRT options coming in through ip_opt_set. 11623 */ 11624 int 11625 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11626 { 11627 conn_t *connp = Q_TO_CONN(q); 11628 ipsec_req_t *req = (ipsec_req_t *)ptr; 11629 11630 switch (level) { 11631 case IPPROTO_IP: 11632 switch (name) { 11633 case MRT_VERSION: 11634 case MRT_ASSERT: 11635 (void) ip_mrouter_get(name, q, ptr); 11636 return (sizeof (int)); 11637 case IP_SEC_OPT: 11638 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11639 case IP_NEXTHOP: 11640 if (connp->conn_nexthop_set) { 11641 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11642 return (sizeof (ipaddr_t)); 11643 } else 11644 return (0); 11645 case IP_RECVPKTINFO: 11646 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11647 return (sizeof (int)); 11648 default: 11649 break; 11650 } 11651 break; 11652 case IPPROTO_IPV6: 11653 switch (name) { 11654 case IPV6_SEC_OPT: 11655 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11656 case IPV6_SRC_PREFERENCES: { 11657 return (ip6_get_src_preferences(connp, 11658 (uint32_t *)ptr)); 11659 } 11660 case IPV6_V6ONLY: 11661 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11662 return (sizeof (int)); 11663 case IPV6_PATHMTU: 11664 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11665 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11666 default: 11667 break; 11668 } 11669 break; 11670 default: 11671 break; 11672 } 11673 return (-1); 11674 } 11675 11676 /* Named Dispatch routine to get a current value out of our parameter table. */ 11677 /* ARGSUSED */ 11678 static int 11679 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11680 { 11681 ipparam_t *ippa = (ipparam_t *)cp; 11682 11683 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11684 return (0); 11685 } 11686 11687 /* ARGSUSED */ 11688 static int 11689 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11690 { 11691 11692 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11693 return (0); 11694 } 11695 11696 /* 11697 * Set ip{,6}_forwarding values. This means walking through all of the 11698 * ill's and toggling their forwarding values. 11699 */ 11700 /* ARGSUSED */ 11701 static int 11702 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11703 { 11704 long new_value; 11705 int *forwarding_value = (int *)cp; 11706 ill_t *ill; 11707 boolean_t isv6; 11708 ill_walk_context_t ctx; 11709 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11710 11711 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11712 11713 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11714 new_value < 0 || new_value > 1) { 11715 return (EINVAL); 11716 } 11717 11718 *forwarding_value = new_value; 11719 11720 /* 11721 * Regardless of the current value of ip_forwarding, set all per-ill 11722 * values of ip_forwarding to the value being set. 11723 * 11724 * Bring all the ill's up to date with the new global value. 11725 */ 11726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11727 11728 if (isv6) 11729 ill = ILL_START_WALK_V6(&ctx, ipst); 11730 else 11731 ill = ILL_START_WALK_V4(&ctx, ipst); 11732 11733 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11734 (void) ill_forward_set(ill, new_value != 0); 11735 11736 rw_exit(&ipst->ips_ill_g_lock); 11737 return (0); 11738 } 11739 11740 /* 11741 * Walk through the param array specified registering each element with the 11742 * Named Dispatch handler. This is called only during init. So it is ok 11743 * not to acquire any locks 11744 */ 11745 static boolean_t 11746 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11747 ipndp_t *ipnd, size_t ipnd_cnt) 11748 { 11749 for (; ippa_cnt-- > 0; ippa++) { 11750 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11751 if (!nd_load(ndp, ippa->ip_param_name, 11752 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11753 nd_free(ndp); 11754 return (B_FALSE); 11755 } 11756 } 11757 } 11758 11759 for (; ipnd_cnt-- > 0; ipnd++) { 11760 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11761 if (!nd_load(ndp, ipnd->ip_ndp_name, 11762 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11763 ipnd->ip_ndp_data)) { 11764 nd_free(ndp); 11765 return (B_FALSE); 11766 } 11767 } 11768 } 11769 11770 return (B_TRUE); 11771 } 11772 11773 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11774 /* ARGSUSED */ 11775 static int 11776 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11777 { 11778 long new_value; 11779 ipparam_t *ippa = (ipparam_t *)cp; 11780 11781 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11782 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11783 return (EINVAL); 11784 } 11785 ippa->ip_param_value = new_value; 11786 return (0); 11787 } 11788 11789 /* 11790 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11791 * When an ipf is passed here for the first time, if 11792 * we already have in-order fragments on the queue, we convert from the fast- 11793 * path reassembly scheme to the hard-case scheme. From then on, additional 11794 * fragments are reassembled here. We keep track of the start and end offsets 11795 * of each piece, and the number of holes in the chain. When the hole count 11796 * goes to zero, we are done! 11797 * 11798 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11799 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11800 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11801 * after the call to ip_reassemble(). 11802 */ 11803 int 11804 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11805 size_t msg_len) 11806 { 11807 uint_t end; 11808 mblk_t *next_mp; 11809 mblk_t *mp1; 11810 uint_t offset; 11811 boolean_t incr_dups = B_TRUE; 11812 boolean_t offset_zero_seen = B_FALSE; 11813 boolean_t pkt_boundary_checked = B_FALSE; 11814 11815 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11816 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11817 11818 /* Add in byte count */ 11819 ipf->ipf_count += msg_len; 11820 if (ipf->ipf_end) { 11821 /* 11822 * We were part way through in-order reassembly, but now there 11823 * is a hole. We walk through messages already queued, and 11824 * mark them for hard case reassembly. We know that up till 11825 * now they were in order starting from offset zero. 11826 */ 11827 offset = 0; 11828 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11829 IP_REASS_SET_START(mp1, offset); 11830 if (offset == 0) { 11831 ASSERT(ipf->ipf_nf_hdr_len != 0); 11832 offset = -ipf->ipf_nf_hdr_len; 11833 } 11834 offset += mp1->b_wptr - mp1->b_rptr; 11835 IP_REASS_SET_END(mp1, offset); 11836 } 11837 /* One hole at the end. */ 11838 ipf->ipf_hole_cnt = 1; 11839 /* Brand it as a hard case, forever. */ 11840 ipf->ipf_end = 0; 11841 } 11842 /* Walk through all the new pieces. */ 11843 do { 11844 end = start + (mp->b_wptr - mp->b_rptr); 11845 /* 11846 * If start is 0, decrease 'end' only for the first mblk of 11847 * the fragment. Otherwise 'end' can get wrong value in the 11848 * second pass of the loop if first mblk is exactly the 11849 * size of ipf_nf_hdr_len. 11850 */ 11851 if (start == 0 && !offset_zero_seen) { 11852 /* First segment */ 11853 ASSERT(ipf->ipf_nf_hdr_len != 0); 11854 end -= ipf->ipf_nf_hdr_len; 11855 offset_zero_seen = B_TRUE; 11856 } 11857 next_mp = mp->b_cont; 11858 /* 11859 * We are checking to see if there is any interesing data 11860 * to process. If there isn't and the mblk isn't the 11861 * one which carries the unfragmentable header then we 11862 * drop it. It's possible to have just the unfragmentable 11863 * header come through without any data. That needs to be 11864 * saved. 11865 * 11866 * If the assert at the top of this function holds then the 11867 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11868 * is infrequently traveled enough that the test is left in 11869 * to protect against future code changes which break that 11870 * invariant. 11871 */ 11872 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11873 /* Empty. Blast it. */ 11874 IP_REASS_SET_START(mp, 0); 11875 IP_REASS_SET_END(mp, 0); 11876 /* 11877 * If the ipf points to the mblk we are about to free, 11878 * update ipf to point to the next mblk (or NULL 11879 * if none). 11880 */ 11881 if (ipf->ipf_mp->b_cont == mp) 11882 ipf->ipf_mp->b_cont = next_mp; 11883 freeb(mp); 11884 continue; 11885 } 11886 mp->b_cont = NULL; 11887 IP_REASS_SET_START(mp, start); 11888 IP_REASS_SET_END(mp, end); 11889 if (!ipf->ipf_tail_mp) { 11890 ipf->ipf_tail_mp = mp; 11891 ipf->ipf_mp->b_cont = mp; 11892 if (start == 0 || !more) { 11893 ipf->ipf_hole_cnt = 1; 11894 /* 11895 * if the first fragment comes in more than one 11896 * mblk, this loop will be executed for each 11897 * mblk. Need to adjust hole count so exiting 11898 * this routine will leave hole count at 1. 11899 */ 11900 if (next_mp) 11901 ipf->ipf_hole_cnt++; 11902 } else 11903 ipf->ipf_hole_cnt = 2; 11904 continue; 11905 } else if (ipf->ipf_last_frag_seen && !more && 11906 !pkt_boundary_checked) { 11907 /* 11908 * We check datagram boundary only if this fragment 11909 * claims to be the last fragment and we have seen a 11910 * last fragment in the past too. We do this only 11911 * once for a given fragment. 11912 * 11913 * start cannot be 0 here as fragments with start=0 11914 * and MF=0 gets handled as a complete packet. These 11915 * fragments should not reach here. 11916 */ 11917 11918 if (start + msgdsize(mp) != 11919 IP_REASS_END(ipf->ipf_tail_mp)) { 11920 /* 11921 * We have two fragments both of which claim 11922 * to be the last fragment but gives conflicting 11923 * information about the whole datagram size. 11924 * Something fishy is going on. Drop the 11925 * fragment and free up the reassembly list. 11926 */ 11927 return (IP_REASS_FAILED); 11928 } 11929 11930 /* 11931 * We shouldn't come to this code block again for this 11932 * particular fragment. 11933 */ 11934 pkt_boundary_checked = B_TRUE; 11935 } 11936 11937 /* New stuff at or beyond tail? */ 11938 offset = IP_REASS_END(ipf->ipf_tail_mp); 11939 if (start >= offset) { 11940 if (ipf->ipf_last_frag_seen) { 11941 /* current fragment is beyond last fragment */ 11942 return (IP_REASS_FAILED); 11943 } 11944 /* Link it on end. */ 11945 ipf->ipf_tail_mp->b_cont = mp; 11946 ipf->ipf_tail_mp = mp; 11947 if (more) { 11948 if (start != offset) 11949 ipf->ipf_hole_cnt++; 11950 } else if (start == offset && next_mp == NULL) 11951 ipf->ipf_hole_cnt--; 11952 continue; 11953 } 11954 mp1 = ipf->ipf_mp->b_cont; 11955 offset = IP_REASS_START(mp1); 11956 /* New stuff at the front? */ 11957 if (start < offset) { 11958 if (start == 0) { 11959 if (end >= offset) { 11960 /* Nailed the hole at the begining. */ 11961 ipf->ipf_hole_cnt--; 11962 } 11963 } else if (end < offset) { 11964 /* 11965 * A hole, stuff, and a hole where there used 11966 * to be just a hole. 11967 */ 11968 ipf->ipf_hole_cnt++; 11969 } 11970 mp->b_cont = mp1; 11971 /* Check for overlap. */ 11972 while (end > offset) { 11973 if (end < IP_REASS_END(mp1)) { 11974 mp->b_wptr -= end - offset; 11975 IP_REASS_SET_END(mp, offset); 11976 BUMP_MIB(ill->ill_ip_mib, 11977 ipIfStatsReasmPartDups); 11978 break; 11979 } 11980 /* Did we cover another hole? */ 11981 if ((mp1->b_cont && 11982 IP_REASS_END(mp1) != 11983 IP_REASS_START(mp1->b_cont) && 11984 end >= IP_REASS_START(mp1->b_cont)) || 11985 (!ipf->ipf_last_frag_seen && !more)) { 11986 ipf->ipf_hole_cnt--; 11987 } 11988 /* Clip out mp1. */ 11989 if ((mp->b_cont = mp1->b_cont) == NULL) { 11990 /* 11991 * After clipping out mp1, this guy 11992 * is now hanging off the end. 11993 */ 11994 ipf->ipf_tail_mp = mp; 11995 } 11996 IP_REASS_SET_START(mp1, 0); 11997 IP_REASS_SET_END(mp1, 0); 11998 /* Subtract byte count */ 11999 ipf->ipf_count -= mp1->b_datap->db_lim - 12000 mp1->b_datap->db_base; 12001 freeb(mp1); 12002 BUMP_MIB(ill->ill_ip_mib, 12003 ipIfStatsReasmPartDups); 12004 mp1 = mp->b_cont; 12005 if (!mp1) 12006 break; 12007 offset = IP_REASS_START(mp1); 12008 } 12009 ipf->ipf_mp->b_cont = mp; 12010 continue; 12011 } 12012 /* 12013 * The new piece starts somewhere between the start of the head 12014 * and before the end of the tail. 12015 */ 12016 for (; mp1; mp1 = mp1->b_cont) { 12017 offset = IP_REASS_END(mp1); 12018 if (start < offset) { 12019 if (end <= offset) { 12020 /* Nothing new. */ 12021 IP_REASS_SET_START(mp, 0); 12022 IP_REASS_SET_END(mp, 0); 12023 /* Subtract byte count */ 12024 ipf->ipf_count -= mp->b_datap->db_lim - 12025 mp->b_datap->db_base; 12026 if (incr_dups) { 12027 ipf->ipf_num_dups++; 12028 incr_dups = B_FALSE; 12029 } 12030 freeb(mp); 12031 BUMP_MIB(ill->ill_ip_mib, 12032 ipIfStatsReasmDuplicates); 12033 break; 12034 } 12035 /* 12036 * Trim redundant stuff off beginning of new 12037 * piece. 12038 */ 12039 IP_REASS_SET_START(mp, offset); 12040 mp->b_rptr += offset - start; 12041 BUMP_MIB(ill->ill_ip_mib, 12042 ipIfStatsReasmPartDups); 12043 start = offset; 12044 if (!mp1->b_cont) { 12045 /* 12046 * After trimming, this guy is now 12047 * hanging off the end. 12048 */ 12049 mp1->b_cont = mp; 12050 ipf->ipf_tail_mp = mp; 12051 if (!more) { 12052 ipf->ipf_hole_cnt--; 12053 } 12054 break; 12055 } 12056 } 12057 if (start >= IP_REASS_START(mp1->b_cont)) 12058 continue; 12059 /* Fill a hole */ 12060 if (start > offset) 12061 ipf->ipf_hole_cnt++; 12062 mp->b_cont = mp1->b_cont; 12063 mp1->b_cont = mp; 12064 mp1 = mp->b_cont; 12065 offset = IP_REASS_START(mp1); 12066 if (end >= offset) { 12067 ipf->ipf_hole_cnt--; 12068 /* Check for overlap. */ 12069 while (end > offset) { 12070 if (end < IP_REASS_END(mp1)) { 12071 mp->b_wptr -= end - offset; 12072 IP_REASS_SET_END(mp, offset); 12073 /* 12074 * TODO we might bump 12075 * this up twice if there is 12076 * overlap at both ends. 12077 */ 12078 BUMP_MIB(ill->ill_ip_mib, 12079 ipIfStatsReasmPartDups); 12080 break; 12081 } 12082 /* Did we cover another hole? */ 12083 if ((mp1->b_cont && 12084 IP_REASS_END(mp1) 12085 != IP_REASS_START(mp1->b_cont) && 12086 end >= 12087 IP_REASS_START(mp1->b_cont)) || 12088 (!ipf->ipf_last_frag_seen && 12089 !more)) { 12090 ipf->ipf_hole_cnt--; 12091 } 12092 /* Clip out mp1. */ 12093 if ((mp->b_cont = mp1->b_cont) == 12094 NULL) { 12095 /* 12096 * After clipping out mp1, 12097 * this guy is now hanging 12098 * off the end. 12099 */ 12100 ipf->ipf_tail_mp = mp; 12101 } 12102 IP_REASS_SET_START(mp1, 0); 12103 IP_REASS_SET_END(mp1, 0); 12104 /* Subtract byte count */ 12105 ipf->ipf_count -= 12106 mp1->b_datap->db_lim - 12107 mp1->b_datap->db_base; 12108 freeb(mp1); 12109 BUMP_MIB(ill->ill_ip_mib, 12110 ipIfStatsReasmPartDups); 12111 mp1 = mp->b_cont; 12112 if (!mp1) 12113 break; 12114 offset = IP_REASS_START(mp1); 12115 } 12116 } 12117 break; 12118 } 12119 } while (start = end, mp = next_mp); 12120 12121 /* Fragment just processed could be the last one. Remember this fact */ 12122 if (!more) 12123 ipf->ipf_last_frag_seen = B_TRUE; 12124 12125 /* Still got holes? */ 12126 if (ipf->ipf_hole_cnt) 12127 return (IP_REASS_PARTIAL); 12128 /* Clean up overloaded fields to avoid upstream disasters. */ 12129 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12130 IP_REASS_SET_START(mp1, 0); 12131 IP_REASS_SET_END(mp1, 0); 12132 } 12133 return (IP_REASS_COMPLETE); 12134 } 12135 12136 /* 12137 * ipsec processing for the fast path, used for input UDP Packets 12138 * Returns true if ready for passup to UDP. 12139 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12140 * was an ESP-in-UDP packet, etc.). 12141 */ 12142 static boolean_t 12143 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12144 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12145 { 12146 uint32_t ill_index; 12147 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12148 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12149 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12150 udp_t *udp = connp->conn_udp; 12151 12152 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12153 /* The ill_index of the incoming ILL */ 12154 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12155 12156 /* pass packet up to the transport */ 12157 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12158 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12159 NULL, mctl_present); 12160 if (*first_mpp == NULL) { 12161 return (B_FALSE); 12162 } 12163 } 12164 12165 /* Initiate IPPF processing for fastpath UDP */ 12166 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12167 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12168 if (*mpp == NULL) { 12169 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12170 "deferred/dropped during IPPF processing\n")); 12171 return (B_FALSE); 12172 } 12173 } 12174 /* 12175 * Remove 0-spi if it's 0, or move everything behind 12176 * the UDP header over it and forward to ESP via 12177 * ip_proto_input(). 12178 */ 12179 if (udp->udp_nat_t_endpoint) { 12180 if (mctl_present) { 12181 /* mctl_present *shouldn't* happen. */ 12182 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12183 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12184 &ipss->ipsec_dropper); 12185 *first_mpp = NULL; 12186 return (B_FALSE); 12187 } 12188 12189 /* "ill" is "recv_ill" in actuality. */ 12190 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12191 return (B_FALSE); 12192 12193 /* Else continue like a normal UDP packet. */ 12194 } 12195 12196 /* 12197 * We make the checks as below since we are in the fast path 12198 * and want to minimize the number of checks if the IP_RECVIF and/or 12199 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12200 */ 12201 if (connp->conn_recvif || connp->conn_recvslla || 12202 connp->conn_ip_recvpktinfo) { 12203 if (connp->conn_recvif) { 12204 in_flags = IPF_RECVIF; 12205 } 12206 /* 12207 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12208 * so the flag passed to ip_add_info is based on IP version 12209 * of connp. 12210 */ 12211 if (connp->conn_ip_recvpktinfo) { 12212 if (connp->conn_af_isv6) { 12213 /* 12214 * V6 only needs index 12215 */ 12216 in_flags |= IPF_RECVIF; 12217 } else { 12218 /* 12219 * V4 needs index + matching address. 12220 */ 12221 in_flags |= IPF_RECVADDR; 12222 } 12223 } 12224 if (connp->conn_recvslla) { 12225 in_flags |= IPF_RECVSLLA; 12226 } 12227 /* 12228 * since in_flags are being set ill will be 12229 * referenced in ip_add_info, so it better not 12230 * be NULL. 12231 */ 12232 /* 12233 * the actual data will be contained in b_cont 12234 * upon successful return of the following call. 12235 * If the call fails then the original mblk is 12236 * returned. 12237 */ 12238 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12239 ipst); 12240 } 12241 12242 return (B_TRUE); 12243 } 12244 12245 /* 12246 * Fragmentation reassembly. Each ILL has a hash table for 12247 * queuing packets undergoing reassembly for all IPIFs 12248 * associated with the ILL. The hash is based on the packet 12249 * IP ident field. The ILL frag hash table was allocated 12250 * as a timer block at the time the ILL was created. Whenever 12251 * there is anything on the reassembly queue, the timer will 12252 * be running. Returns B_TRUE if successful else B_FALSE; 12253 * frees mp on failure. 12254 */ 12255 static boolean_t 12256 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12257 uint32_t *cksum_val, uint16_t *cksum_flags) 12258 { 12259 uint32_t frag_offset_flags; 12260 ill_t *ill = (ill_t *)q->q_ptr; 12261 mblk_t *mp = *mpp; 12262 mblk_t *t_mp; 12263 ipaddr_t dst; 12264 uint8_t proto = ipha->ipha_protocol; 12265 uint32_t sum_val; 12266 uint16_t sum_flags; 12267 ipf_t *ipf; 12268 ipf_t **ipfp; 12269 ipfb_t *ipfb; 12270 uint16_t ident; 12271 uint32_t offset; 12272 ipaddr_t src; 12273 uint_t hdr_length; 12274 uint32_t end; 12275 mblk_t *mp1; 12276 mblk_t *tail_mp; 12277 size_t count; 12278 size_t msg_len; 12279 uint8_t ecn_info = 0; 12280 uint32_t packet_size; 12281 boolean_t pruned = B_FALSE; 12282 ip_stack_t *ipst = ill->ill_ipst; 12283 12284 if (cksum_val != NULL) 12285 *cksum_val = 0; 12286 if (cksum_flags != NULL) 12287 *cksum_flags = 0; 12288 12289 /* 12290 * Drop the fragmented as early as possible, if 12291 * we don't have resource(s) to re-assemble. 12292 */ 12293 if (ipst->ips_ip_reass_queue_bytes == 0) { 12294 freemsg(mp); 12295 return (B_FALSE); 12296 } 12297 12298 /* Check for fragmentation offset; return if there's none */ 12299 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12300 (IPH_MF | IPH_OFFSET)) == 0) 12301 return (B_TRUE); 12302 12303 /* 12304 * We utilize hardware computed checksum info only for UDP since 12305 * IP fragmentation is a normal occurence for the protocol. In 12306 * addition, checksum offload support for IP fragments carrying 12307 * UDP payload is commonly implemented across network adapters. 12308 */ 12309 ASSERT(ill != NULL); 12310 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12311 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12312 mblk_t *mp1 = mp->b_cont; 12313 int32_t len; 12314 12315 /* Record checksum information from the packet */ 12316 sum_val = (uint32_t)DB_CKSUM16(mp); 12317 sum_flags = DB_CKSUMFLAGS(mp); 12318 12319 /* IP payload offset from beginning of mblk */ 12320 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12321 12322 if ((sum_flags & HCK_PARTIALCKSUM) && 12323 (mp1 == NULL || mp1->b_cont == NULL) && 12324 offset >= DB_CKSUMSTART(mp) && 12325 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12326 uint32_t adj; 12327 /* 12328 * Partial checksum has been calculated by hardware 12329 * and attached to the packet; in addition, any 12330 * prepended extraneous data is even byte aligned. 12331 * If any such data exists, we adjust the checksum; 12332 * this would also handle any postpended data. 12333 */ 12334 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12335 mp, mp1, len, adj); 12336 12337 /* One's complement subtract extraneous checksum */ 12338 if (adj >= sum_val) 12339 sum_val = ~(adj - sum_val) & 0xFFFF; 12340 else 12341 sum_val -= adj; 12342 } 12343 } else { 12344 sum_val = 0; 12345 sum_flags = 0; 12346 } 12347 12348 /* Clear hardware checksumming flag */ 12349 DB_CKSUMFLAGS(mp) = 0; 12350 12351 ident = ipha->ipha_ident; 12352 offset = (frag_offset_flags << 3) & 0xFFFF; 12353 src = ipha->ipha_src; 12354 dst = ipha->ipha_dst; 12355 hdr_length = IPH_HDR_LENGTH(ipha); 12356 end = ntohs(ipha->ipha_length) - hdr_length; 12357 12358 /* If end == 0 then we have a packet with no data, so just free it */ 12359 if (end == 0) { 12360 freemsg(mp); 12361 return (B_FALSE); 12362 } 12363 12364 /* Record the ECN field info. */ 12365 ecn_info = (ipha->ipha_type_of_service & 0x3); 12366 if (offset != 0) { 12367 /* 12368 * If this isn't the first piece, strip the header, and 12369 * add the offset to the end value. 12370 */ 12371 mp->b_rptr += hdr_length; 12372 end += offset; 12373 } 12374 12375 msg_len = MBLKSIZE(mp); 12376 tail_mp = mp; 12377 while (tail_mp->b_cont != NULL) { 12378 tail_mp = tail_mp->b_cont; 12379 msg_len += MBLKSIZE(tail_mp); 12380 } 12381 12382 /* If the reassembly list for this ILL will get too big, prune it */ 12383 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12384 ipst->ips_ip_reass_queue_bytes) { 12385 ill_frag_prune(ill, 12386 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12387 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12388 pruned = B_TRUE; 12389 } 12390 12391 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12392 mutex_enter(&ipfb->ipfb_lock); 12393 12394 ipfp = &ipfb->ipfb_ipf; 12395 /* Try to find an existing fragment queue for this packet. */ 12396 for (;;) { 12397 ipf = ipfp[0]; 12398 if (ipf != NULL) { 12399 /* 12400 * It has to match on ident and src/dst address. 12401 */ 12402 if (ipf->ipf_ident == ident && 12403 ipf->ipf_src == src && 12404 ipf->ipf_dst == dst && 12405 ipf->ipf_protocol == proto) { 12406 /* 12407 * If we have received too many 12408 * duplicate fragments for this packet 12409 * free it. 12410 */ 12411 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12412 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12413 freemsg(mp); 12414 mutex_exit(&ipfb->ipfb_lock); 12415 return (B_FALSE); 12416 } 12417 /* Found it. */ 12418 break; 12419 } 12420 ipfp = &ipf->ipf_hash_next; 12421 continue; 12422 } 12423 12424 /* 12425 * If we pruned the list, do we want to store this new 12426 * fragment?. We apply an optimization here based on the 12427 * fact that most fragments will be received in order. 12428 * So if the offset of this incoming fragment is zero, 12429 * it is the first fragment of a new packet. We will 12430 * keep it. Otherwise drop the fragment, as we have 12431 * probably pruned the packet already (since the 12432 * packet cannot be found). 12433 */ 12434 if (pruned && offset != 0) { 12435 mutex_exit(&ipfb->ipfb_lock); 12436 freemsg(mp); 12437 return (B_FALSE); 12438 } 12439 12440 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12441 /* 12442 * Too many fragmented packets in this hash 12443 * bucket. Free the oldest. 12444 */ 12445 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12446 } 12447 12448 /* New guy. Allocate a frag message. */ 12449 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12450 if (mp1 == NULL) { 12451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12452 freemsg(mp); 12453 reass_done: 12454 mutex_exit(&ipfb->ipfb_lock); 12455 return (B_FALSE); 12456 } 12457 12458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12459 mp1->b_cont = mp; 12460 12461 /* Initialize the fragment header. */ 12462 ipf = (ipf_t *)mp1->b_rptr; 12463 ipf->ipf_mp = mp1; 12464 ipf->ipf_ptphn = ipfp; 12465 ipfp[0] = ipf; 12466 ipf->ipf_hash_next = NULL; 12467 ipf->ipf_ident = ident; 12468 ipf->ipf_protocol = proto; 12469 ipf->ipf_src = src; 12470 ipf->ipf_dst = dst; 12471 ipf->ipf_nf_hdr_len = 0; 12472 /* Record reassembly start time. */ 12473 ipf->ipf_timestamp = gethrestime_sec(); 12474 /* Record ipf generation and account for frag header */ 12475 ipf->ipf_gen = ill->ill_ipf_gen++; 12476 ipf->ipf_count = MBLKSIZE(mp1); 12477 ipf->ipf_last_frag_seen = B_FALSE; 12478 ipf->ipf_ecn = ecn_info; 12479 ipf->ipf_num_dups = 0; 12480 ipfb->ipfb_frag_pkts++; 12481 ipf->ipf_checksum = 0; 12482 ipf->ipf_checksum_flags = 0; 12483 12484 /* Store checksum value in fragment header */ 12485 if (sum_flags != 0) { 12486 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12487 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12488 ipf->ipf_checksum = sum_val; 12489 ipf->ipf_checksum_flags = sum_flags; 12490 } 12491 12492 /* 12493 * We handle reassembly two ways. In the easy case, 12494 * where all the fragments show up in order, we do 12495 * minimal bookkeeping, and just clip new pieces on 12496 * the end. If we ever see a hole, then we go off 12497 * to ip_reassemble which has to mark the pieces and 12498 * keep track of the number of holes, etc. Obviously, 12499 * the point of having both mechanisms is so we can 12500 * handle the easy case as efficiently as possible. 12501 */ 12502 if (offset == 0) { 12503 /* Easy case, in-order reassembly so far. */ 12504 ipf->ipf_count += msg_len; 12505 ipf->ipf_tail_mp = tail_mp; 12506 /* 12507 * Keep track of next expected offset in 12508 * ipf_end. 12509 */ 12510 ipf->ipf_end = end; 12511 ipf->ipf_nf_hdr_len = hdr_length; 12512 } else { 12513 /* Hard case, hole at the beginning. */ 12514 ipf->ipf_tail_mp = NULL; 12515 /* 12516 * ipf_end == 0 means that we have given up 12517 * on easy reassembly. 12518 */ 12519 ipf->ipf_end = 0; 12520 12521 /* Forget checksum offload from now on */ 12522 ipf->ipf_checksum_flags = 0; 12523 12524 /* 12525 * ipf_hole_cnt is set by ip_reassemble. 12526 * ipf_count is updated by ip_reassemble. 12527 * No need to check for return value here 12528 * as we don't expect reassembly to complete 12529 * or fail for the first fragment itself. 12530 */ 12531 (void) ip_reassemble(mp, ipf, 12532 (frag_offset_flags & IPH_OFFSET) << 3, 12533 (frag_offset_flags & IPH_MF), ill, msg_len); 12534 } 12535 /* Update per ipfb and ill byte counts */ 12536 ipfb->ipfb_count += ipf->ipf_count; 12537 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12538 ill->ill_frag_count += ipf->ipf_count; 12539 /* If the frag timer wasn't already going, start it. */ 12540 mutex_enter(&ill->ill_lock); 12541 ill_frag_timer_start(ill); 12542 mutex_exit(&ill->ill_lock); 12543 goto reass_done; 12544 } 12545 12546 /* 12547 * If the packet's flag has changed (it could be coming up 12548 * from an interface different than the previous, therefore 12549 * possibly different checksum capability), then forget about 12550 * any stored checksum states. Otherwise add the value to 12551 * the existing one stored in the fragment header. 12552 */ 12553 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12554 sum_val += ipf->ipf_checksum; 12555 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12556 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12557 ipf->ipf_checksum = sum_val; 12558 } else if (ipf->ipf_checksum_flags != 0) { 12559 /* Forget checksum offload from now on */ 12560 ipf->ipf_checksum_flags = 0; 12561 } 12562 12563 /* 12564 * We have a new piece of a datagram which is already being 12565 * reassembled. Update the ECN info if all IP fragments 12566 * are ECN capable. If there is one which is not, clear 12567 * all the info. If there is at least one which has CE 12568 * code point, IP needs to report that up to transport. 12569 */ 12570 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12571 if (ecn_info == IPH_ECN_CE) 12572 ipf->ipf_ecn = IPH_ECN_CE; 12573 } else { 12574 ipf->ipf_ecn = IPH_ECN_NECT; 12575 } 12576 if (offset && ipf->ipf_end == offset) { 12577 /* The new fragment fits at the end */ 12578 ipf->ipf_tail_mp->b_cont = mp; 12579 /* Update the byte count */ 12580 ipf->ipf_count += msg_len; 12581 /* Update per ipfb and ill byte counts */ 12582 ipfb->ipfb_count += msg_len; 12583 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12584 ill->ill_frag_count += msg_len; 12585 if (frag_offset_flags & IPH_MF) { 12586 /* More to come. */ 12587 ipf->ipf_end = end; 12588 ipf->ipf_tail_mp = tail_mp; 12589 goto reass_done; 12590 } 12591 } else { 12592 /* Go do the hard cases. */ 12593 int ret; 12594 12595 if (offset == 0) 12596 ipf->ipf_nf_hdr_len = hdr_length; 12597 12598 /* Save current byte count */ 12599 count = ipf->ipf_count; 12600 ret = ip_reassemble(mp, ipf, 12601 (frag_offset_flags & IPH_OFFSET) << 3, 12602 (frag_offset_flags & IPH_MF), ill, msg_len); 12603 /* Count of bytes added and subtracted (freeb()ed) */ 12604 count = ipf->ipf_count - count; 12605 if (count) { 12606 /* Update per ipfb and ill byte counts */ 12607 ipfb->ipfb_count += count; 12608 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12609 ill->ill_frag_count += count; 12610 } 12611 if (ret == IP_REASS_PARTIAL) { 12612 goto reass_done; 12613 } else if (ret == IP_REASS_FAILED) { 12614 /* Reassembly failed. Free up all resources */ 12615 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12616 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12617 IP_REASS_SET_START(t_mp, 0); 12618 IP_REASS_SET_END(t_mp, 0); 12619 } 12620 freemsg(mp); 12621 goto reass_done; 12622 } 12623 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12624 } 12625 /* 12626 * We have completed reassembly. Unhook the frag header from 12627 * the reassembly list. 12628 * 12629 * Before we free the frag header, record the ECN info 12630 * to report back to the transport. 12631 */ 12632 ecn_info = ipf->ipf_ecn; 12633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12634 ipfp = ipf->ipf_ptphn; 12635 12636 /* We need to supply these to caller */ 12637 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12638 sum_val = ipf->ipf_checksum; 12639 else 12640 sum_val = 0; 12641 12642 mp1 = ipf->ipf_mp; 12643 count = ipf->ipf_count; 12644 ipf = ipf->ipf_hash_next; 12645 if (ipf != NULL) 12646 ipf->ipf_ptphn = ipfp; 12647 ipfp[0] = ipf; 12648 ill->ill_frag_count -= count; 12649 ASSERT(ipfb->ipfb_count >= count); 12650 ipfb->ipfb_count -= count; 12651 ipfb->ipfb_frag_pkts--; 12652 mutex_exit(&ipfb->ipfb_lock); 12653 /* Ditch the frag header. */ 12654 mp = mp1->b_cont; 12655 12656 freeb(mp1); 12657 12658 /* Restore original IP length in header. */ 12659 packet_size = (uint32_t)msgdsize(mp); 12660 if (packet_size > IP_MAXPACKET) { 12661 freemsg(mp); 12662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12663 return (B_FALSE); 12664 } 12665 12666 if (DB_REF(mp) > 1) { 12667 mblk_t *mp2 = copymsg(mp); 12668 12669 freemsg(mp); 12670 if (mp2 == NULL) { 12671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12672 return (B_FALSE); 12673 } 12674 mp = mp2; 12675 } 12676 ipha = (ipha_t *)mp->b_rptr; 12677 12678 ipha->ipha_length = htons((uint16_t)packet_size); 12679 /* We're now complete, zip the frag state */ 12680 ipha->ipha_fragment_offset_and_flags = 0; 12681 /* Record the ECN info. */ 12682 ipha->ipha_type_of_service &= 0xFC; 12683 ipha->ipha_type_of_service |= ecn_info; 12684 *mpp = mp; 12685 12686 /* Reassembly is successful; return checksum information if needed */ 12687 if (cksum_val != NULL) 12688 *cksum_val = sum_val; 12689 if (cksum_flags != NULL) 12690 *cksum_flags = sum_flags; 12691 12692 return (B_TRUE); 12693 } 12694 12695 /* 12696 * Perform ip header check sum update local options. 12697 * return B_TRUE if all is well, else return B_FALSE and release 12698 * the mp. caller is responsible for decrementing ire ref cnt. 12699 */ 12700 static boolean_t 12701 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12702 ip_stack_t *ipst) 12703 { 12704 mblk_t *first_mp; 12705 boolean_t mctl_present; 12706 uint16_t sum; 12707 12708 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12709 /* 12710 * Don't do the checksum if it has gone through AH/ESP 12711 * processing. 12712 */ 12713 if (!mctl_present) { 12714 sum = ip_csum_hdr(ipha); 12715 if (sum != 0) { 12716 if (ill != NULL) { 12717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12718 } else { 12719 BUMP_MIB(&ipst->ips_ip_mib, 12720 ipIfStatsInCksumErrs); 12721 } 12722 freemsg(first_mp); 12723 return (B_FALSE); 12724 } 12725 } 12726 12727 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12728 if (mctl_present) 12729 freeb(first_mp); 12730 return (B_FALSE); 12731 } 12732 12733 return (B_TRUE); 12734 } 12735 12736 /* 12737 * All udp packet are delivered to the local host via this routine. 12738 */ 12739 void 12740 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12741 ill_t *recv_ill) 12742 { 12743 uint32_t sum; 12744 uint32_t u1; 12745 boolean_t mctl_present; 12746 conn_t *connp; 12747 mblk_t *first_mp; 12748 uint16_t *up; 12749 ill_t *ill = (ill_t *)q->q_ptr; 12750 uint16_t reass_hck_flags = 0; 12751 ip_stack_t *ipst; 12752 12753 ASSERT(recv_ill != NULL); 12754 ipst = recv_ill->ill_ipst; 12755 12756 #define rptr ((uchar_t *)ipha) 12757 12758 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12759 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12760 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12761 ASSERT(ill != NULL); 12762 12763 /* 12764 * FAST PATH for udp packets 12765 */ 12766 12767 /* u1 is # words of IP options */ 12768 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12769 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12770 12771 /* IP options present */ 12772 if (u1 != 0) 12773 goto ipoptions; 12774 12775 /* Check the IP header checksum. */ 12776 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12777 /* Clear the IP header h/w cksum flag */ 12778 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12779 } else if (!mctl_present) { 12780 /* 12781 * Don't verify header checksum if this packet is coming 12782 * back from AH/ESP as we already did it. 12783 */ 12784 #define uph ((uint16_t *)ipha) 12785 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12786 uph[6] + uph[7] + uph[8] + uph[9]; 12787 #undef uph 12788 /* finish doing IP checksum */ 12789 sum = (sum & 0xFFFF) + (sum >> 16); 12790 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12791 if (sum != 0 && sum != 0xFFFF) { 12792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12793 freemsg(first_mp); 12794 return; 12795 } 12796 } 12797 12798 /* 12799 * Count for SNMP of inbound packets for ire. 12800 * if mctl is present this might be a secure packet and 12801 * has already been counted for in ip_proto_input(). 12802 */ 12803 if (!mctl_present) { 12804 UPDATE_IB_PKT_COUNT(ire); 12805 ire->ire_last_used_time = lbolt; 12806 } 12807 12808 /* packet part of fragmented IP packet? */ 12809 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12810 if (u1 & (IPH_MF | IPH_OFFSET)) { 12811 goto fragmented; 12812 } 12813 12814 /* u1 = IP header length (20 bytes) */ 12815 u1 = IP_SIMPLE_HDR_LENGTH; 12816 12817 /* packet does not contain complete IP & UDP headers */ 12818 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12819 goto udppullup; 12820 12821 /* up points to UDP header */ 12822 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12823 #define iphs ((uint16_t *)ipha) 12824 12825 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12826 if (up[3] != 0) { 12827 mblk_t *mp1 = mp->b_cont; 12828 boolean_t cksum_err; 12829 uint16_t hck_flags = 0; 12830 12831 /* Pseudo-header checksum */ 12832 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12833 iphs[9] + up[2]; 12834 12835 /* 12836 * Revert to software checksum calculation if the interface 12837 * isn't capable of checksum offload or if IPsec is present. 12838 */ 12839 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12840 hck_flags = DB_CKSUMFLAGS(mp); 12841 12842 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12843 IP_STAT(ipst, ip_in_sw_cksum); 12844 12845 IP_CKSUM_RECV(hck_flags, u1, 12846 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12847 (int32_t)((uchar_t *)up - rptr), 12848 mp, mp1, cksum_err); 12849 12850 if (cksum_err) { 12851 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12852 if (hck_flags & HCK_FULLCKSUM) 12853 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12854 else if (hck_flags & HCK_PARTIALCKSUM) 12855 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12856 else 12857 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12858 12859 freemsg(first_mp); 12860 return; 12861 } 12862 } 12863 12864 /* Non-fragmented broadcast or multicast packet? */ 12865 if (ire->ire_type == IRE_BROADCAST) 12866 goto udpslowpath; 12867 12868 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12869 ire->ire_zoneid, ipst)) != NULL) { 12870 ASSERT(connp->conn_upq != NULL); 12871 IP_STAT(ipst, ip_udp_fast_path); 12872 12873 if (CONN_UDP_FLOWCTLD(connp)) { 12874 freemsg(mp); 12875 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12876 } else { 12877 if (!mctl_present) { 12878 BUMP_MIB(ill->ill_ip_mib, 12879 ipIfStatsHCInDelivers); 12880 } 12881 /* 12882 * mp and first_mp can change. 12883 */ 12884 if (ip_udp_check(q, connp, recv_ill, 12885 ipha, &mp, &first_mp, mctl_present, ire)) { 12886 /* Send it upstream */ 12887 CONN_UDP_RECV(connp, mp); 12888 } 12889 } 12890 /* 12891 * freeb() cannot deal with null mblk being passed 12892 * in and first_mp can be set to null in the call 12893 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12894 */ 12895 if (mctl_present && first_mp != NULL) { 12896 freeb(first_mp); 12897 } 12898 CONN_DEC_REF(connp); 12899 return; 12900 } 12901 12902 /* 12903 * if we got here we know the packet is not fragmented and 12904 * has no options. The classifier could not find a conn_t and 12905 * most likely its an icmp packet so send it through slow path. 12906 */ 12907 12908 goto udpslowpath; 12909 12910 ipoptions: 12911 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12912 goto slow_done; 12913 } 12914 12915 UPDATE_IB_PKT_COUNT(ire); 12916 ire->ire_last_used_time = lbolt; 12917 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12918 if (u1 & (IPH_MF | IPH_OFFSET)) { 12919 fragmented: 12920 /* 12921 * "sum" and "reass_hck_flags" are non-zero if the 12922 * reassembled packet has a valid hardware computed 12923 * checksum information associated with it. 12924 */ 12925 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12926 goto slow_done; 12927 /* 12928 * Make sure that first_mp points back to mp as 12929 * the mp we came in with could have changed in 12930 * ip_rput_fragment(). 12931 */ 12932 ASSERT(!mctl_present); 12933 ipha = (ipha_t *)mp->b_rptr; 12934 first_mp = mp; 12935 } 12936 12937 /* Now we have a complete datagram, destined for this machine. */ 12938 u1 = IPH_HDR_LENGTH(ipha); 12939 /* Pull up the UDP header, if necessary. */ 12940 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12941 udppullup: 12942 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12944 freemsg(first_mp); 12945 goto slow_done; 12946 } 12947 ipha = (ipha_t *)mp->b_rptr; 12948 } 12949 12950 /* 12951 * Validate the checksum for the reassembled packet; for the 12952 * pullup case we calculate the payload checksum in software. 12953 */ 12954 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12955 if (up[3] != 0) { 12956 boolean_t cksum_err; 12957 12958 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12959 IP_STAT(ipst, ip_in_sw_cksum); 12960 12961 IP_CKSUM_RECV_REASS(reass_hck_flags, 12962 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12963 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12964 iphs[9] + up[2], sum, cksum_err); 12965 12966 if (cksum_err) { 12967 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12968 12969 if (reass_hck_flags & HCK_FULLCKSUM) 12970 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12971 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12972 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12973 else 12974 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12975 12976 freemsg(first_mp); 12977 goto slow_done; 12978 } 12979 } 12980 udpslowpath: 12981 12982 /* Clear hardware checksum flag to be safe */ 12983 DB_CKSUMFLAGS(mp) = 0; 12984 12985 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12986 (ire->ire_type == IRE_BROADCAST), 12987 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12988 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12989 12990 slow_done: 12991 IP_STAT(ipst, ip_udp_slow_path); 12992 return; 12993 12994 #undef iphs 12995 #undef rptr 12996 } 12997 12998 /* ARGSUSED */ 12999 static mblk_t * 13000 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13001 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13002 ill_rx_ring_t *ill_ring) 13003 { 13004 conn_t *connp; 13005 uint32_t sum; 13006 uint32_t u1; 13007 uint16_t *up; 13008 int offset; 13009 ssize_t len; 13010 mblk_t *mp1; 13011 boolean_t syn_present = B_FALSE; 13012 tcph_t *tcph; 13013 uint_t ip_hdr_len; 13014 ill_t *ill = (ill_t *)q->q_ptr; 13015 zoneid_t zoneid = ire->ire_zoneid; 13016 boolean_t cksum_err; 13017 uint16_t hck_flags = 0; 13018 ip_stack_t *ipst = recv_ill->ill_ipst; 13019 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13020 13021 #define rptr ((uchar_t *)ipha) 13022 13023 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13024 ASSERT(ill != NULL); 13025 13026 /* 13027 * FAST PATH for tcp packets 13028 */ 13029 13030 /* u1 is # words of IP options */ 13031 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13032 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13033 13034 /* IP options present */ 13035 if (u1) { 13036 goto ipoptions; 13037 } else if (!mctl_present) { 13038 /* Check the IP header checksum. */ 13039 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13040 /* Clear the IP header h/w cksum flag */ 13041 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13042 } else if (!mctl_present) { 13043 /* 13044 * Don't verify header checksum if this packet 13045 * is coming back from AH/ESP as we already did it. 13046 */ 13047 #define uph ((uint16_t *)ipha) 13048 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13049 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13050 #undef uph 13051 /* finish doing IP checksum */ 13052 sum = (sum & 0xFFFF) + (sum >> 16); 13053 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13054 if (sum != 0 && sum != 0xFFFF) { 13055 BUMP_MIB(ill->ill_ip_mib, 13056 ipIfStatsInCksumErrs); 13057 goto error; 13058 } 13059 } 13060 } 13061 13062 if (!mctl_present) { 13063 UPDATE_IB_PKT_COUNT(ire); 13064 ire->ire_last_used_time = lbolt; 13065 } 13066 13067 /* packet part of fragmented IP packet? */ 13068 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13069 if (u1 & (IPH_MF | IPH_OFFSET)) { 13070 goto fragmented; 13071 } 13072 13073 /* u1 = IP header length (20 bytes) */ 13074 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13075 13076 /* does packet contain IP+TCP headers? */ 13077 len = mp->b_wptr - rptr; 13078 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13079 IP_STAT(ipst, ip_tcppullup); 13080 goto tcppullup; 13081 } 13082 13083 /* TCP options present? */ 13084 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13085 13086 /* 13087 * If options need to be pulled up, then goto tcpoptions. 13088 * otherwise we are still in the fast path 13089 */ 13090 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13091 IP_STAT(ipst, ip_tcpoptions); 13092 goto tcpoptions; 13093 } 13094 13095 /* multiple mblks of tcp data? */ 13096 if ((mp1 = mp->b_cont) != NULL) { 13097 /* more then two? */ 13098 if (mp1->b_cont != NULL) { 13099 IP_STAT(ipst, ip_multipkttcp); 13100 goto multipkttcp; 13101 } 13102 len += mp1->b_wptr - mp1->b_rptr; 13103 } 13104 13105 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13106 13107 /* part of pseudo checksum */ 13108 13109 /* TCP datagram length */ 13110 u1 = len - IP_SIMPLE_HDR_LENGTH; 13111 13112 #define iphs ((uint16_t *)ipha) 13113 13114 #ifdef _BIG_ENDIAN 13115 u1 += IPPROTO_TCP; 13116 #else 13117 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13118 #endif 13119 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13120 13121 /* 13122 * Revert to software checksum calculation if the interface 13123 * isn't capable of checksum offload or if IPsec is present. 13124 */ 13125 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13126 hck_flags = DB_CKSUMFLAGS(mp); 13127 13128 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13129 IP_STAT(ipst, ip_in_sw_cksum); 13130 13131 IP_CKSUM_RECV(hck_flags, u1, 13132 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13133 (int32_t)((uchar_t *)up - rptr), 13134 mp, mp1, cksum_err); 13135 13136 if (cksum_err) { 13137 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13138 13139 if (hck_flags & HCK_FULLCKSUM) 13140 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13141 else if (hck_flags & HCK_PARTIALCKSUM) 13142 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13143 else 13144 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13145 13146 goto error; 13147 } 13148 13149 try_again: 13150 13151 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13152 zoneid, ipst)) == NULL) { 13153 /* Send the TH_RST */ 13154 goto no_conn; 13155 } 13156 13157 /* 13158 * TCP FAST PATH for AF_INET socket. 13159 * 13160 * TCP fast path to avoid extra work. An AF_INET socket type 13161 * does not have facility to receive extra information via 13162 * ip_process or ip_add_info. Also, when the connection was 13163 * established, we made a check if this connection is impacted 13164 * by any global IPsec policy or per connection policy (a 13165 * policy that comes in effect later will not apply to this 13166 * connection). Since all this can be determined at the 13167 * connection establishment time, a quick check of flags 13168 * can avoid extra work. 13169 */ 13170 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13171 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13172 ASSERT(first_mp == mp); 13173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13174 SET_SQUEUE(mp, tcp_rput_data, connp); 13175 return (mp); 13176 } 13177 13178 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13179 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13180 if (IPCL_IS_TCP(connp)) { 13181 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13182 DB_CKSUMSTART(mp) = 13183 (intptr_t)ip_squeue_get(ill_ring); 13184 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13185 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13186 BUMP_MIB(ill->ill_ip_mib, 13187 ipIfStatsHCInDelivers); 13188 SET_SQUEUE(mp, connp->conn_recv, connp); 13189 return (mp); 13190 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13191 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13192 BUMP_MIB(ill->ill_ip_mib, 13193 ipIfStatsHCInDelivers); 13194 ip_squeue_enter_unbound++; 13195 SET_SQUEUE(mp, tcp_conn_request_unbound, 13196 connp); 13197 return (mp); 13198 } 13199 syn_present = B_TRUE; 13200 } 13201 13202 } 13203 13204 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13205 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13206 13207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13208 /* No need to send this packet to TCP */ 13209 if ((flags & TH_RST) || (flags & TH_URG)) { 13210 CONN_DEC_REF(connp); 13211 freemsg(first_mp); 13212 return (NULL); 13213 } 13214 if (flags & TH_ACK) { 13215 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13216 ipst->ips_netstack->netstack_tcp, connp); 13217 CONN_DEC_REF(connp); 13218 return (NULL); 13219 } 13220 13221 CONN_DEC_REF(connp); 13222 freemsg(first_mp); 13223 return (NULL); 13224 } 13225 13226 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13227 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13228 ipha, NULL, mctl_present); 13229 if (first_mp == NULL) { 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13231 CONN_DEC_REF(connp); 13232 return (NULL); 13233 } 13234 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13235 ASSERT(syn_present); 13236 if (mctl_present) { 13237 ASSERT(first_mp != mp); 13238 first_mp->b_datap->db_struioflag |= 13239 STRUIO_POLICY; 13240 } else { 13241 ASSERT(first_mp == mp); 13242 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13243 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13244 } 13245 } else { 13246 /* 13247 * Discard first_mp early since we're dealing with a 13248 * fully-connected conn_t and tcp doesn't do policy in 13249 * this case. 13250 */ 13251 if (mctl_present) { 13252 freeb(first_mp); 13253 mctl_present = B_FALSE; 13254 } 13255 first_mp = mp; 13256 } 13257 } 13258 13259 /* Initiate IPPF processing for fastpath */ 13260 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13261 uint32_t ill_index; 13262 13263 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13264 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13265 if (mp == NULL) { 13266 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13267 "deferred/dropped during IPPF processing\n")); 13268 CONN_DEC_REF(connp); 13269 if (mctl_present) 13270 freeb(first_mp); 13271 return (NULL); 13272 } else if (mctl_present) { 13273 /* 13274 * ip_process might return a new mp. 13275 */ 13276 ASSERT(first_mp != mp); 13277 first_mp->b_cont = mp; 13278 } else { 13279 first_mp = mp; 13280 } 13281 13282 } 13283 13284 if (!syn_present && connp->conn_ip_recvpktinfo) { 13285 /* 13286 * TCP does not support IP_RECVPKTINFO for v4 so lets 13287 * make sure IPF_RECVIF is passed to ip_add_info. 13288 */ 13289 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13290 IPCL_ZONEID(connp), ipst); 13291 if (mp == NULL) { 13292 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13293 CONN_DEC_REF(connp); 13294 if (mctl_present) 13295 freeb(first_mp); 13296 return (NULL); 13297 } else if (mctl_present) { 13298 /* 13299 * ip_add_info might return a new mp. 13300 */ 13301 ASSERT(first_mp != mp); 13302 first_mp->b_cont = mp; 13303 } else { 13304 first_mp = mp; 13305 } 13306 } 13307 13308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13309 if (IPCL_IS_TCP(connp)) { 13310 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13311 return (first_mp); 13312 } else { 13313 putnext(connp->conn_rq, first_mp); 13314 CONN_DEC_REF(connp); 13315 return (NULL); 13316 } 13317 13318 no_conn: 13319 /* Initiate IPPf processing, if needed. */ 13320 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13321 uint32_t ill_index; 13322 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13323 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13324 if (first_mp == NULL) { 13325 return (NULL); 13326 } 13327 } 13328 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13329 13330 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13331 ipst->ips_netstack->netstack_tcp, NULL); 13332 return (NULL); 13333 ipoptions: 13334 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13335 goto slow_done; 13336 } 13337 13338 UPDATE_IB_PKT_COUNT(ire); 13339 ire->ire_last_used_time = lbolt; 13340 13341 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13342 if (u1 & (IPH_MF | IPH_OFFSET)) { 13343 fragmented: 13344 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13345 if (mctl_present) 13346 freeb(first_mp); 13347 goto slow_done; 13348 } 13349 /* 13350 * Make sure that first_mp points back to mp as 13351 * the mp we came in with could have changed in 13352 * ip_rput_fragment(). 13353 */ 13354 ASSERT(!mctl_present); 13355 ipha = (ipha_t *)mp->b_rptr; 13356 first_mp = mp; 13357 } 13358 13359 /* Now we have a complete datagram, destined for this machine. */ 13360 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13361 13362 len = mp->b_wptr - mp->b_rptr; 13363 /* Pull up a minimal TCP header, if necessary. */ 13364 if (len < (u1 + 20)) { 13365 tcppullup: 13366 if (!pullupmsg(mp, u1 + 20)) { 13367 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13368 goto error; 13369 } 13370 ipha = (ipha_t *)mp->b_rptr; 13371 len = mp->b_wptr - mp->b_rptr; 13372 } 13373 13374 /* 13375 * Extract the offset field from the TCP header. As usual, we 13376 * try to help the compiler more than the reader. 13377 */ 13378 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13379 if (offset != 5) { 13380 tcpoptions: 13381 if (offset < 5) { 13382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13383 goto error; 13384 } 13385 /* 13386 * There must be TCP options. 13387 * Make sure we can grab them. 13388 */ 13389 offset <<= 2; 13390 offset += u1; 13391 if (len < offset) { 13392 if (!pullupmsg(mp, offset)) { 13393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13394 goto error; 13395 } 13396 ipha = (ipha_t *)mp->b_rptr; 13397 len = mp->b_wptr - rptr; 13398 } 13399 } 13400 13401 /* Get the total packet length in len, including headers. */ 13402 if (mp->b_cont) { 13403 multipkttcp: 13404 len = msgdsize(mp); 13405 } 13406 13407 /* 13408 * Check the TCP checksum by pulling together the pseudo- 13409 * header checksum, and passing it to ip_csum to be added in 13410 * with the TCP datagram. 13411 * 13412 * Since we are not using the hwcksum if available we must 13413 * clear the flag. We may come here via tcppullup or tcpoptions. 13414 * If either of these fails along the way the mblk is freed. 13415 * If this logic ever changes and mblk is reused to say send 13416 * ICMP's back, then this flag may need to be cleared in 13417 * other places as well. 13418 */ 13419 DB_CKSUMFLAGS(mp) = 0; 13420 13421 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13422 13423 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13424 #ifdef _BIG_ENDIAN 13425 u1 += IPPROTO_TCP; 13426 #else 13427 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13428 #endif 13429 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13430 /* 13431 * Not M_DATA mblk or its a dup, so do the checksum now. 13432 */ 13433 IP_STAT(ipst, ip_in_sw_cksum); 13434 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13435 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13436 goto error; 13437 } 13438 13439 IP_STAT(ipst, ip_tcp_slow_path); 13440 goto try_again; 13441 #undef iphs 13442 #undef rptr 13443 13444 error: 13445 freemsg(first_mp); 13446 slow_done: 13447 return (NULL); 13448 } 13449 13450 /* ARGSUSED */ 13451 static void 13452 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13453 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13454 { 13455 conn_t *connp; 13456 uint32_t sum; 13457 uint32_t u1; 13458 ssize_t len; 13459 sctp_hdr_t *sctph; 13460 zoneid_t zoneid = ire->ire_zoneid; 13461 uint32_t pktsum; 13462 uint32_t calcsum; 13463 uint32_t ports; 13464 in6_addr_t map_src, map_dst; 13465 ill_t *ill = (ill_t *)q->q_ptr; 13466 ip_stack_t *ipst; 13467 sctp_stack_t *sctps; 13468 13469 ASSERT(recv_ill != NULL); 13470 ipst = recv_ill->ill_ipst; 13471 sctps = ipst->ips_netstack->netstack_sctp; 13472 13473 #define rptr ((uchar_t *)ipha) 13474 13475 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13476 ASSERT(ill != NULL); 13477 13478 /* u1 is # words of IP options */ 13479 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13480 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13481 13482 /* IP options present */ 13483 if (u1 > 0) { 13484 goto ipoptions; 13485 } else { 13486 /* Check the IP header checksum. */ 13487 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13488 !mctl_present) { 13489 #define uph ((uint16_t *)ipha) 13490 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13491 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13492 #undef uph 13493 /* finish doing IP checksum */ 13494 sum = (sum & 0xFFFF) + (sum >> 16); 13495 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13496 /* 13497 * Don't verify header checksum if this packet 13498 * is coming back from AH/ESP as we already did it. 13499 */ 13500 if (sum != 0 && sum != 0xFFFF) { 13501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13502 goto error; 13503 } 13504 } 13505 /* 13506 * Since there is no SCTP h/w cksum support yet, just 13507 * clear the flag. 13508 */ 13509 DB_CKSUMFLAGS(mp) = 0; 13510 } 13511 13512 /* 13513 * Don't verify header checksum if this packet is coming 13514 * back from AH/ESP as we already did it. 13515 */ 13516 if (!mctl_present) { 13517 UPDATE_IB_PKT_COUNT(ire); 13518 ire->ire_last_used_time = lbolt; 13519 } 13520 13521 /* packet part of fragmented IP packet? */ 13522 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13523 if (u1 & (IPH_MF | IPH_OFFSET)) 13524 goto fragmented; 13525 13526 /* u1 = IP header length (20 bytes) */ 13527 u1 = IP_SIMPLE_HDR_LENGTH; 13528 13529 find_sctp_client: 13530 /* Pullup if we don't have the sctp common header. */ 13531 len = MBLKL(mp); 13532 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13533 if (mp->b_cont == NULL || 13534 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13536 goto error; 13537 } 13538 ipha = (ipha_t *)mp->b_rptr; 13539 len = MBLKL(mp); 13540 } 13541 13542 sctph = (sctp_hdr_t *)(rptr + u1); 13543 #ifdef DEBUG 13544 if (!skip_sctp_cksum) { 13545 #endif 13546 pktsum = sctph->sh_chksum; 13547 sctph->sh_chksum = 0; 13548 calcsum = sctp_cksum(mp, u1); 13549 if (calcsum != pktsum) { 13550 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13551 goto error; 13552 } 13553 sctph->sh_chksum = pktsum; 13554 #ifdef DEBUG /* skip_sctp_cksum */ 13555 } 13556 #endif 13557 /* get the ports */ 13558 ports = *(uint32_t *)&sctph->sh_sport; 13559 13560 IRE_REFRELE(ire); 13561 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13562 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13563 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13564 sctps)) == NULL) { 13565 /* Check for raw socket or OOTB handling */ 13566 goto no_conn; 13567 } 13568 13569 /* Found a client; up it goes */ 13570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13571 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13572 return; 13573 13574 no_conn: 13575 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13576 ports, mctl_present, flags, B_TRUE, zoneid); 13577 return; 13578 13579 ipoptions: 13580 DB_CKSUMFLAGS(mp) = 0; 13581 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13582 goto slow_done; 13583 13584 UPDATE_IB_PKT_COUNT(ire); 13585 ire->ire_last_used_time = lbolt; 13586 13587 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13588 if (u1 & (IPH_MF | IPH_OFFSET)) { 13589 fragmented: 13590 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13591 goto slow_done; 13592 /* 13593 * Make sure that first_mp points back to mp as 13594 * the mp we came in with could have changed in 13595 * ip_rput_fragment(). 13596 */ 13597 ASSERT(!mctl_present); 13598 ipha = (ipha_t *)mp->b_rptr; 13599 first_mp = mp; 13600 } 13601 13602 /* Now we have a complete datagram, destined for this machine. */ 13603 u1 = IPH_HDR_LENGTH(ipha); 13604 goto find_sctp_client; 13605 #undef iphs 13606 #undef rptr 13607 13608 error: 13609 freemsg(first_mp); 13610 slow_done: 13611 IRE_REFRELE(ire); 13612 } 13613 13614 #define VER_BITS 0xF0 13615 #define VERSION_6 0x60 13616 13617 static boolean_t 13618 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13619 ipaddr_t *dstp, ip_stack_t *ipst) 13620 { 13621 uint_t opt_len; 13622 ipha_t *ipha; 13623 ssize_t len; 13624 uint_t pkt_len; 13625 13626 ASSERT(ill != NULL); 13627 IP_STAT(ipst, ip_ipoptions); 13628 ipha = *iphapp; 13629 13630 #define rptr ((uchar_t *)ipha) 13631 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13632 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13634 freemsg(mp); 13635 return (B_FALSE); 13636 } 13637 13638 /* multiple mblk or too short */ 13639 pkt_len = ntohs(ipha->ipha_length); 13640 13641 /* Get the number of words of IP options in the IP header. */ 13642 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13643 if (opt_len) { 13644 /* IP Options present! Validate and process. */ 13645 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13647 goto done; 13648 } 13649 /* 13650 * Recompute complete header length and make sure we 13651 * have access to all of it. 13652 */ 13653 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13654 if (len > (mp->b_wptr - rptr)) { 13655 if (len > pkt_len) { 13656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13657 goto done; 13658 } 13659 if (!pullupmsg(mp, len)) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13661 goto done; 13662 } 13663 ipha = (ipha_t *)mp->b_rptr; 13664 } 13665 /* 13666 * Go off to ip_rput_options which returns the next hop 13667 * destination address, which may have been affected 13668 * by source routing. 13669 */ 13670 IP_STAT(ipst, ip_opt); 13671 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13673 return (B_FALSE); 13674 } 13675 } 13676 *iphapp = ipha; 13677 return (B_TRUE); 13678 done: 13679 /* clear b_prev - used by ip_mroute_decap */ 13680 mp->b_prev = NULL; 13681 freemsg(mp); 13682 return (B_FALSE); 13683 #undef rptr 13684 } 13685 13686 /* 13687 * Deal with the fact that there is no ire for the destination. 13688 */ 13689 static ire_t * 13690 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13691 { 13692 ipha_t *ipha; 13693 ill_t *ill; 13694 ire_t *ire; 13695 boolean_t check_multirt = B_FALSE; 13696 ip_stack_t *ipst; 13697 13698 ipha = (ipha_t *)mp->b_rptr; 13699 ill = (ill_t *)q->q_ptr; 13700 13701 ASSERT(ill != NULL); 13702 ipst = ill->ill_ipst; 13703 13704 /* 13705 * No IRE for this destination, so it can't be for us. 13706 * Unless we are forwarding, drop the packet. 13707 * We have to let source routed packets through 13708 * since we don't yet know if they are 'ping -l' 13709 * packets i.e. if they will go out over the 13710 * same interface as they came in on. 13711 */ 13712 if (ll_multicast) { 13713 freemsg(mp); 13714 return (NULL); 13715 } 13716 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13718 freemsg(mp); 13719 return (NULL); 13720 } 13721 13722 /* 13723 * Mark this packet as having originated externally. 13724 * 13725 * For non-forwarding code path, ire_send later double 13726 * checks this interface to see if it is still exists 13727 * post-ARP resolution. 13728 * 13729 * Also, IPQOS uses this to differentiate between 13730 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13731 * QOS packet processing in ip_wput_attach_llhdr(). 13732 * The QoS module can mark the b_band for a fastpath message 13733 * or the dl_priority field in a unitdata_req header for 13734 * CoS marking. This info can only be found in 13735 * ip_wput_attach_llhdr(). 13736 */ 13737 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13738 /* 13739 * Clear the indication that this may have a hardware checksum 13740 * as we are not using it 13741 */ 13742 DB_CKSUMFLAGS(mp) = 0; 13743 13744 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13745 MBLK_GETLABEL(mp), ipst); 13746 13747 if (ire == NULL && check_multirt) { 13748 /* Let ip_newroute handle CGTP */ 13749 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13750 return (NULL); 13751 } 13752 13753 if (ire != NULL) 13754 return (ire); 13755 13756 mp->b_prev = mp->b_next = 0; 13757 /* send icmp unreachable */ 13758 q = WR(q); 13759 /* Sent by forwarding path, and router is global zone */ 13760 if (ip_source_routed(ipha, ipst)) { 13761 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13762 GLOBAL_ZONEID, ipst); 13763 } else { 13764 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13765 ipst); 13766 } 13767 13768 return (NULL); 13769 13770 } 13771 13772 /* 13773 * check ip header length and align it. 13774 */ 13775 static boolean_t 13776 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13777 { 13778 ssize_t len; 13779 ill_t *ill; 13780 ipha_t *ipha; 13781 13782 len = MBLKL(mp); 13783 13784 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13785 ill = (ill_t *)q->q_ptr; 13786 13787 if (!OK_32PTR(mp->b_rptr)) 13788 IP_STAT(ipst, ip_notaligned1); 13789 else 13790 IP_STAT(ipst, ip_notaligned2); 13791 /* Guard against bogus device drivers */ 13792 if (len < 0) { 13793 /* clear b_prev - used by ip_mroute_decap */ 13794 mp->b_prev = NULL; 13795 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13796 freemsg(mp); 13797 return (B_FALSE); 13798 } 13799 13800 if (ip_rput_pullups++ == 0) { 13801 ipha = (ipha_t *)mp->b_rptr; 13802 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13803 "ip_check_and_align_header: %s forced us to " 13804 " pullup pkt, hdr len %ld, hdr addr %p", 13805 ill->ill_name, len, ipha); 13806 } 13807 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13808 /* clear b_prev - used by ip_mroute_decap */ 13809 mp->b_prev = NULL; 13810 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13811 freemsg(mp); 13812 return (B_FALSE); 13813 } 13814 } 13815 return (B_TRUE); 13816 } 13817 13818 ire_t * 13819 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13820 { 13821 ire_t *new_ire; 13822 ill_t *ire_ill; 13823 uint_t ifindex; 13824 ip_stack_t *ipst = ill->ill_ipst; 13825 boolean_t strict_check = B_FALSE; 13826 13827 /* 13828 * This packet came in on an interface other than the one associated 13829 * with the first ire we found for the destination address. We do 13830 * another ire lookup here, using the ingress ill, to see if the 13831 * interface is in an interface group. 13832 * As long as the ills belong to the same group, we don't consider 13833 * them to be arriving on the wrong interface. Thus, if the switch 13834 * is doing inbound load spreading, we won't drop packets when the 13835 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13836 * for 'usesrc groups' where the destination address may belong to 13837 * another interface to allow multipathing to happen. 13838 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13839 * where the local address may not be unique. In this case we were 13840 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13841 * actually returned. The new lookup, which is more specific, should 13842 * only find the IRE_LOCAL associated with the ingress ill if one 13843 * exists. 13844 */ 13845 13846 if (ire->ire_ipversion == IPV4_VERSION) { 13847 if (ipst->ips_ip_strict_dst_multihoming) 13848 strict_check = B_TRUE; 13849 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13850 ill->ill_ipif, ALL_ZONES, NULL, 13851 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13852 } else { 13853 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13854 if (ipst->ips_ipv6_strict_dst_multihoming) 13855 strict_check = B_TRUE; 13856 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13857 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13858 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13859 } 13860 /* 13861 * If the same ire that was returned in ip_input() is found then this 13862 * is an indication that interface groups are in use. The packet 13863 * arrived on a different ill in the group than the one associated with 13864 * the destination address. If a different ire was found then the same 13865 * IP address must be hosted on multiple ills. This is possible with 13866 * unnumbered point2point interfaces. We switch to use this new ire in 13867 * order to have accurate interface statistics. 13868 */ 13869 if (new_ire != NULL) { 13870 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13871 ire_refrele(ire); 13872 ire = new_ire; 13873 } else { 13874 ire_refrele(new_ire); 13875 } 13876 return (ire); 13877 } else if ((ire->ire_rfq == NULL) && 13878 (ire->ire_ipversion == IPV4_VERSION)) { 13879 /* 13880 * The best match could have been the original ire which 13881 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13882 * the strict multihoming checks are irrelevant as we consider 13883 * local addresses hosted on lo0 to be interface agnostic. We 13884 * only expect a null ire_rfq on IREs which are associated with 13885 * lo0 hence we can return now. 13886 */ 13887 return (ire); 13888 } 13889 13890 /* 13891 * Chase pointers once and store locally. 13892 */ 13893 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13894 (ill_t *)(ire->ire_rfq->q_ptr); 13895 ifindex = ill->ill_usesrc_ifindex; 13896 13897 /* 13898 * Check if it's a legal address on the 'usesrc' interface. 13899 */ 13900 if ((ifindex != 0) && (ire_ill != NULL) && 13901 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13902 return (ire); 13903 } 13904 13905 /* 13906 * If the ip*_strict_dst_multihoming switch is on then we can 13907 * only accept this packet if the interface is marked as routing. 13908 */ 13909 if (!(strict_check)) 13910 return (ire); 13911 13912 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13913 ILLF_ROUTER) != 0) { 13914 return (ire); 13915 } 13916 13917 ire_refrele(ire); 13918 return (NULL); 13919 } 13920 13921 ire_t * 13922 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13923 { 13924 ipha_t *ipha; 13925 ipaddr_t ip_dst, ip_src; 13926 ire_t *src_ire = NULL; 13927 ill_t *stq_ill; 13928 uint_t hlen; 13929 uint_t pkt_len; 13930 uint32_t sum; 13931 queue_t *dev_q; 13932 boolean_t check_multirt = B_FALSE; 13933 ip_stack_t *ipst = ill->ill_ipst; 13934 13935 ipha = (ipha_t *)mp->b_rptr; 13936 13937 /* 13938 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13939 * The loopback address check for both src and dst has already 13940 * been checked in ip_input 13941 */ 13942 ip_dst = ntohl(dst); 13943 ip_src = ntohl(ipha->ipha_src); 13944 13945 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13946 IN_CLASSD(ip_src)) { 13947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13948 goto drop; 13949 } 13950 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13951 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13952 13953 if (src_ire != NULL) { 13954 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13955 goto drop; 13956 } 13957 13958 13959 /* No ire cache of nexthop. So first create one */ 13960 if (ire == NULL) { 13961 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13962 /* 13963 * We only come to ip_fast_forward if ip_cgtp_filter is 13964 * is not set. So upon return from ire_forward 13965 * check_multirt should remain as false. 13966 */ 13967 ASSERT(!check_multirt); 13968 if (ire == NULL) { 13969 /* An attempt was made to forward the packet */ 13970 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13971 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13972 mp->b_prev = mp->b_next = 0; 13973 /* send icmp unreachable */ 13974 /* Sent by forwarding path, and router is global zone */ 13975 if (ip_source_routed(ipha, ipst)) { 13976 icmp_unreachable(ill->ill_wq, mp, 13977 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13978 ipst); 13979 } else { 13980 icmp_unreachable(ill->ill_wq, mp, 13981 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13982 ipst); 13983 } 13984 return (ire); 13985 } 13986 } 13987 13988 /* 13989 * Forwarding fastpath exception case: 13990 * If either of the follwoing case is true, we take 13991 * the slowpath 13992 * o forwarding is not enabled 13993 * o incoming and outgoing interface are the same, or the same 13994 * IPMP group 13995 * o corresponding ire is in incomplete state 13996 * o packet needs fragmentation 13997 * 13998 * The codeflow from here on is thus: 13999 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14000 */ 14001 pkt_len = ntohs(ipha->ipha_length); 14002 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14003 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14004 !(ill->ill_flags & ILLF_ROUTER) || 14005 (ill == stq_ill) || 14006 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14007 (ire->ire_nce == NULL) || 14008 (ire->ire_nce->nce_state != ND_REACHABLE) || 14009 (pkt_len > ire->ire_max_frag) || 14010 ipha->ipha_ttl <= 1) { 14011 ip_rput_process_forward(ill->ill_rq, mp, ire, 14012 ipha, ill, B_FALSE); 14013 return (ire); 14014 } 14015 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14016 14017 DTRACE_PROBE4(ip4__forwarding__start, 14018 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14019 14020 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14021 ipst->ips_ipv4firewall_forwarding, 14022 ill, stq_ill, ipha, mp, mp, ipst); 14023 14024 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14025 14026 if (mp == NULL) 14027 goto drop; 14028 14029 mp->b_datap->db_struioun.cksum.flags = 0; 14030 /* Adjust the checksum to reflect the ttl decrement. */ 14031 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14032 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14033 ipha->ipha_ttl--; 14034 14035 dev_q = ire->ire_stq->q_next; 14036 if ((dev_q->q_next != NULL || 14037 dev_q->q_first != NULL) && !canput(dev_q)) { 14038 goto indiscard; 14039 } 14040 14041 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14042 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14043 14044 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14045 mblk_t *mpip = mp; 14046 14047 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14048 if (mp != NULL) { 14049 DTRACE_PROBE4(ip4__physical__out__start, 14050 ill_t *, NULL, ill_t *, stq_ill, 14051 ipha_t *, ipha, mblk_t *, mp); 14052 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14053 ipst->ips_ipv4firewall_physical_out, 14054 NULL, stq_ill, ipha, mp, mpip, ipst); 14055 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14056 mp); 14057 if (mp == NULL) 14058 goto drop; 14059 14060 UPDATE_IB_PKT_COUNT(ire); 14061 ire->ire_last_used_time = lbolt; 14062 BUMP_MIB(stq_ill->ill_ip_mib, 14063 ipIfStatsHCOutForwDatagrams); 14064 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14065 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14066 pkt_len); 14067 putnext(ire->ire_stq, mp); 14068 return (ire); 14069 } 14070 } 14071 14072 indiscard: 14073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14074 drop: 14075 if (mp != NULL) 14076 freemsg(mp); 14077 if (src_ire != NULL) 14078 ire_refrele(src_ire); 14079 return (ire); 14080 14081 } 14082 14083 /* 14084 * This function is called in the forwarding slowpath, when 14085 * either the ire lacks the link-layer address, or the packet needs 14086 * further processing(eg. fragmentation), before transmission. 14087 */ 14088 14089 static void 14090 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14091 ill_t *ill, boolean_t ll_multicast) 14092 { 14093 ill_group_t *ill_group; 14094 ill_group_t *ire_group; 14095 queue_t *dev_q; 14096 ire_t *src_ire; 14097 ip_stack_t *ipst = ill->ill_ipst; 14098 14099 ASSERT(ire->ire_stq != NULL); 14100 14101 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14102 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14103 14104 if (ll_multicast != 0) { 14105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14106 goto drop_pkt; 14107 } 14108 14109 /* 14110 * check if ipha_src is a broadcast address. Note that this 14111 * check is redundant when we get here from ip_fast_forward() 14112 * which has already done this check. However, since we can 14113 * also get here from ip_rput_process_broadcast() or, for 14114 * for the slow path through ip_fast_forward(), we perform 14115 * the check again for code-reusability 14116 */ 14117 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14118 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14119 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14120 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14121 if (src_ire != NULL) 14122 ire_refrele(src_ire); 14123 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14124 ip2dbg(("ip_rput_process_forward: Received packet with" 14125 " bad src/dst address on %s\n", ill->ill_name)); 14126 goto drop_pkt; 14127 } 14128 14129 ill_group = ill->ill_group; 14130 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14131 /* 14132 * Check if we want to forward this one at this time. 14133 * We allow source routed packets on a host provided that 14134 * they go out the same interface or same interface group 14135 * as they came in on. 14136 * 14137 * XXX To be quicker, we may wish to not chase pointers to 14138 * get the ILLF_ROUTER flag and instead store the 14139 * forwarding policy in the ire. An unfortunate 14140 * side-effect of that would be requiring an ire flush 14141 * whenever the ILLF_ROUTER flag changes. 14142 */ 14143 if (((ill->ill_flags & 14144 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14145 ILLF_ROUTER) == 0) && 14146 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14147 (ill_group != NULL && ill_group == ire_group)))) { 14148 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14149 if (ip_source_routed(ipha, ipst)) { 14150 q = WR(q); 14151 /* 14152 * Clear the indication that this may have 14153 * hardware checksum as we are not using it. 14154 */ 14155 DB_CKSUMFLAGS(mp) = 0; 14156 /* Sent by forwarding path, and router is global zone */ 14157 icmp_unreachable(q, mp, 14158 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14159 return; 14160 } 14161 goto drop_pkt; 14162 } 14163 14164 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14165 14166 /* Packet is being forwarded. Turning off hwcksum flag. */ 14167 DB_CKSUMFLAGS(mp) = 0; 14168 if (ipst->ips_ip_g_send_redirects) { 14169 /* 14170 * Check whether the incoming interface and outgoing 14171 * interface is part of the same group. If so, 14172 * send redirects. 14173 * 14174 * Check the source address to see if it originated 14175 * on the same logical subnet it is going back out on. 14176 * If so, we should be able to send it a redirect. 14177 * Avoid sending a redirect if the destination 14178 * is directly connected (i.e., ipha_dst is the same 14179 * as ire_gateway_addr or the ire_addr of the 14180 * nexthop IRE_CACHE ), or if the packet was source 14181 * routed out this interface. 14182 */ 14183 ipaddr_t src, nhop; 14184 mblk_t *mp1; 14185 ire_t *nhop_ire = NULL; 14186 14187 /* 14188 * Check whether ire_rfq and q are from the same ill 14189 * or if they are not same, they at least belong 14190 * to the same group. If so, send redirects. 14191 */ 14192 if ((ire->ire_rfq == q || 14193 (ill_group != NULL && ill_group == ire_group)) && 14194 !ip_source_routed(ipha, ipst)) { 14195 14196 nhop = (ire->ire_gateway_addr != 0 ? 14197 ire->ire_gateway_addr : ire->ire_addr); 14198 14199 if (ipha->ipha_dst == nhop) { 14200 /* 14201 * We avoid sending a redirect if the 14202 * destination is directly connected 14203 * because it is possible that multiple 14204 * IP subnets may have been configured on 14205 * the link, and the source may not 14206 * be on the same subnet as ip destination, 14207 * even though they are on the same 14208 * physical link. 14209 */ 14210 goto sendit; 14211 } 14212 14213 src = ipha->ipha_src; 14214 14215 /* 14216 * We look up the interface ire for the nexthop, 14217 * to see if ipha_src is in the same subnet 14218 * as the nexthop. 14219 * 14220 * Note that, if, in the future, IRE_CACHE entries 14221 * are obsoleted, this lookup will not be needed, 14222 * as the ire passed to this function will be the 14223 * same as the nhop_ire computed below. 14224 */ 14225 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14226 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14227 0, NULL, MATCH_IRE_TYPE, ipst); 14228 14229 if (nhop_ire != NULL) { 14230 if ((src & nhop_ire->ire_mask) == 14231 (nhop & nhop_ire->ire_mask)) { 14232 /* 14233 * The source is directly connected. 14234 * Just copy the ip header (which is 14235 * in the first mblk) 14236 */ 14237 mp1 = copyb(mp); 14238 if (mp1 != NULL) { 14239 icmp_send_redirect(WR(q), mp1, 14240 nhop, ipst); 14241 } 14242 } 14243 ire_refrele(nhop_ire); 14244 } 14245 } 14246 } 14247 sendit: 14248 dev_q = ire->ire_stq->q_next; 14249 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14251 freemsg(mp); 14252 return; 14253 } 14254 14255 ip_rput_forward(ire, ipha, mp, ill); 14256 return; 14257 14258 drop_pkt: 14259 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14260 freemsg(mp); 14261 } 14262 14263 ire_t * 14264 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14265 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14266 { 14267 queue_t *q; 14268 uint16_t hcksumflags; 14269 ip_stack_t *ipst = ill->ill_ipst; 14270 14271 q = *qp; 14272 14273 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14274 14275 /* 14276 * Clear the indication that this may have hardware 14277 * checksum as we are not using it for forwarding. 14278 */ 14279 hcksumflags = DB_CKSUMFLAGS(mp); 14280 DB_CKSUMFLAGS(mp) = 0; 14281 14282 /* 14283 * Directed broadcast forwarding: if the packet came in over a 14284 * different interface then it is routed out over we can forward it. 14285 */ 14286 if (ipha->ipha_protocol == IPPROTO_TCP) { 14287 ire_refrele(ire); 14288 freemsg(mp); 14289 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14290 return (NULL); 14291 } 14292 /* 14293 * For multicast we have set dst to be INADDR_BROADCAST 14294 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14295 * only for broadcast packets. 14296 */ 14297 if (!CLASSD(ipha->ipha_dst)) { 14298 ire_t *new_ire; 14299 ipif_t *ipif; 14300 /* 14301 * For ill groups, as the switch duplicates broadcasts 14302 * across all the ports, we need to filter out and 14303 * send up only one copy. There is one copy for every 14304 * broadcast address on each ill. Thus, we look for a 14305 * specific IRE on this ill and look at IRE_MARK_NORECV 14306 * later to see whether this ill is eligible to receive 14307 * them or not. ill_nominate_bcast_rcv() nominates only 14308 * one set of IREs for receiving. 14309 */ 14310 14311 ipif = ipif_get_next_ipif(NULL, ill); 14312 if (ipif == NULL) { 14313 ire_refrele(ire); 14314 freemsg(mp); 14315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14316 return (NULL); 14317 } 14318 new_ire = ire_ctable_lookup(dst, 0, 0, 14319 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14320 ipif_refrele(ipif); 14321 14322 if (new_ire != NULL) { 14323 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14324 ire_refrele(ire); 14325 ire_refrele(new_ire); 14326 freemsg(mp); 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14328 return (NULL); 14329 } 14330 /* 14331 * In the special case of multirouted broadcast 14332 * packets, we unconditionally need to "gateway" 14333 * them to the appropriate interface here. 14334 * In the normal case, this cannot happen, because 14335 * there is no broadcast IRE tagged with the 14336 * RTF_MULTIRT flag. 14337 */ 14338 if (new_ire->ire_flags & RTF_MULTIRT) { 14339 ire_refrele(new_ire); 14340 if (ire->ire_rfq != NULL) { 14341 q = ire->ire_rfq; 14342 *qp = q; 14343 } 14344 } else { 14345 ire_refrele(ire); 14346 ire = new_ire; 14347 } 14348 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14349 if (!ipst->ips_ip_g_forward_directed_bcast) { 14350 /* 14351 * Free the message if 14352 * ip_g_forward_directed_bcast is turned 14353 * off for non-local broadcast. 14354 */ 14355 ire_refrele(ire); 14356 freemsg(mp); 14357 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14358 return (NULL); 14359 } 14360 } else { 14361 /* 14362 * This CGTP packet successfully passed the 14363 * CGTP filter, but the related CGTP 14364 * broadcast IRE has not been found, 14365 * meaning that the redundant ipif is 14366 * probably down. However, if we discarded 14367 * this packet, its duplicate would be 14368 * filtered out by the CGTP filter so none 14369 * of them would get through. So we keep 14370 * going with this one. 14371 */ 14372 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14373 if (ire->ire_rfq != NULL) { 14374 q = ire->ire_rfq; 14375 *qp = q; 14376 } 14377 } 14378 } 14379 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14380 /* 14381 * Verify that there are not more then one 14382 * IRE_BROADCAST with this broadcast address which 14383 * has ire_stq set. 14384 * TODO: simplify, loop over all IRE's 14385 */ 14386 ire_t *ire1; 14387 int num_stq = 0; 14388 mblk_t *mp1; 14389 14390 /* Find the first one with ire_stq set */ 14391 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14392 for (ire1 = ire; ire1 && 14393 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14394 ire1 = ire1->ire_next) 14395 ; 14396 if (ire1) { 14397 ire_refrele(ire); 14398 ire = ire1; 14399 IRE_REFHOLD(ire); 14400 } 14401 14402 /* Check if there are additional ones with stq set */ 14403 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14404 if (ire->ire_addr != ire1->ire_addr) 14405 break; 14406 if (ire1->ire_stq) { 14407 num_stq++; 14408 break; 14409 } 14410 } 14411 rw_exit(&ire->ire_bucket->irb_lock); 14412 if (num_stq == 1 && ire->ire_stq != NULL) { 14413 ip1dbg(("ip_rput_process_broadcast: directed " 14414 "broadcast to 0x%x\n", 14415 ntohl(ire->ire_addr))); 14416 mp1 = copymsg(mp); 14417 if (mp1) { 14418 switch (ipha->ipha_protocol) { 14419 case IPPROTO_UDP: 14420 ip_udp_input(q, mp1, ipha, ire, ill); 14421 break; 14422 default: 14423 ip_proto_input(q, mp1, ipha, ire, ill, 14424 B_FALSE); 14425 break; 14426 } 14427 } 14428 /* 14429 * Adjust ttl to 2 (1+1 - the forward engine 14430 * will decrement it by one. 14431 */ 14432 if (ip_csum_hdr(ipha)) { 14433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14434 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14435 freemsg(mp); 14436 ire_refrele(ire); 14437 return (NULL); 14438 } 14439 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14440 ipha->ipha_hdr_checksum = 0; 14441 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14442 ip_rput_process_forward(q, mp, ire, ipha, 14443 ill, ll_multicast); 14444 ire_refrele(ire); 14445 return (NULL); 14446 } 14447 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14448 ntohl(ire->ire_addr))); 14449 } 14450 14451 14452 /* Restore any hardware checksum flags */ 14453 DB_CKSUMFLAGS(mp) = hcksumflags; 14454 return (ire); 14455 } 14456 14457 /* ARGSUSED */ 14458 static boolean_t 14459 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14460 int *ll_multicast, ipaddr_t *dstp) 14461 { 14462 ip_stack_t *ipst = ill->ill_ipst; 14463 14464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14465 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14466 ntohs(ipha->ipha_length)); 14467 14468 /* 14469 * Forward packets only if we have joined the allmulti 14470 * group on this interface. 14471 */ 14472 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14473 int retval; 14474 14475 /* 14476 * Clear the indication that this may have hardware 14477 * checksum as we are not using it. 14478 */ 14479 DB_CKSUMFLAGS(mp) = 0; 14480 retval = ip_mforward(ill, ipha, mp); 14481 /* ip_mforward updates mib variables if needed */ 14482 /* clear b_prev - used by ip_mroute_decap */ 14483 mp->b_prev = NULL; 14484 14485 switch (retval) { 14486 case 0: 14487 /* 14488 * pkt is okay and arrived on phyint. 14489 * 14490 * If we are running as a multicast router 14491 * we need to see all IGMP and/or PIM packets. 14492 */ 14493 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14494 (ipha->ipha_protocol == IPPROTO_PIM)) { 14495 goto done; 14496 } 14497 break; 14498 case -1: 14499 /* pkt is mal-formed, toss it */ 14500 goto drop_pkt; 14501 case 1: 14502 /* pkt is okay and arrived on a tunnel */ 14503 /* 14504 * If we are running a multicast router 14505 * we need to see all igmp packets. 14506 */ 14507 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14508 *dstp = INADDR_BROADCAST; 14509 *ll_multicast = 1; 14510 return (B_FALSE); 14511 } 14512 14513 goto drop_pkt; 14514 } 14515 } 14516 14517 ILM_WALKER_HOLD(ill); 14518 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14519 /* 14520 * This might just be caused by the fact that 14521 * multiple IP Multicast addresses map to the same 14522 * link layer multicast - no need to increment counter! 14523 */ 14524 ILM_WALKER_RELE(ill); 14525 freemsg(mp); 14526 return (B_TRUE); 14527 } 14528 ILM_WALKER_RELE(ill); 14529 done: 14530 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14531 /* 14532 * This assumes the we deliver to all streams for multicast 14533 * and broadcast packets. 14534 */ 14535 *dstp = INADDR_BROADCAST; 14536 *ll_multicast = 1; 14537 return (B_FALSE); 14538 drop_pkt: 14539 ip2dbg(("ip_rput: drop pkt\n")); 14540 freemsg(mp); 14541 return (B_TRUE); 14542 } 14543 14544 static boolean_t 14545 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14546 int *ll_multicast, mblk_t **mpp) 14547 { 14548 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14549 boolean_t must_copy = B_FALSE; 14550 struct iocblk *iocp; 14551 ipha_t *ipha; 14552 ip_stack_t *ipst = ill->ill_ipst; 14553 14554 #define rptr ((uchar_t *)ipha) 14555 14556 first_mp = *first_mpp; 14557 mp = *mpp; 14558 14559 ASSERT(first_mp == mp); 14560 14561 /* 14562 * if db_ref > 1 then copymsg and free original. Packet may be 14563 * changed and do not want other entity who has a reference to this 14564 * message to trip over the changes. This is a blind change because 14565 * trying to catch all places that might change packet is too 14566 * difficult (since it may be a module above this one) 14567 * 14568 * This corresponds to the non-fast path case. We walk down the full 14569 * chain in this case, and check the db_ref count of all the dblks, 14570 * and do a copymsg if required. It is possible that the db_ref counts 14571 * of the data blocks in the mblk chain can be different. 14572 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14573 * count of 1, followed by a M_DATA block with a ref count of 2, if 14574 * 'snoop' is running. 14575 */ 14576 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14577 if (mp1->b_datap->db_ref > 1) { 14578 must_copy = B_TRUE; 14579 break; 14580 } 14581 } 14582 14583 if (must_copy) { 14584 mp1 = copymsg(mp); 14585 if (mp1 == NULL) { 14586 for (mp1 = mp; mp1 != NULL; 14587 mp1 = mp1->b_cont) { 14588 mp1->b_next = NULL; 14589 mp1->b_prev = NULL; 14590 } 14591 freemsg(mp); 14592 if (ill != NULL) { 14593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14594 } else { 14595 BUMP_MIB(&ipst->ips_ip_mib, 14596 ipIfStatsInDiscards); 14597 } 14598 return (B_TRUE); 14599 } 14600 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14601 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14602 /* Copy b_prev - used by ip_mroute_decap */ 14603 to_mp->b_prev = from_mp->b_prev; 14604 from_mp->b_prev = NULL; 14605 } 14606 *first_mpp = first_mp = mp1; 14607 freemsg(mp); 14608 mp = mp1; 14609 *mpp = mp1; 14610 } 14611 14612 ipha = (ipha_t *)mp->b_rptr; 14613 14614 /* 14615 * previous code has a case for M_DATA. 14616 * We want to check how that happens. 14617 */ 14618 ASSERT(first_mp->b_datap->db_type != M_DATA); 14619 switch (first_mp->b_datap->db_type) { 14620 case M_PROTO: 14621 case M_PCPROTO: 14622 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14623 DL_UNITDATA_IND) { 14624 /* Go handle anything other than data elsewhere. */ 14625 ip_rput_dlpi(q, mp); 14626 return (B_TRUE); 14627 } 14628 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14629 /* Ditch the DLPI header. */ 14630 mp1 = mp->b_cont; 14631 ASSERT(first_mp == mp); 14632 *first_mpp = mp1; 14633 freeb(mp); 14634 *mpp = mp1; 14635 return (B_FALSE); 14636 case M_IOCACK: 14637 ip1dbg(("got iocack ")); 14638 iocp = (struct iocblk *)mp->b_rptr; 14639 switch (iocp->ioc_cmd) { 14640 case DL_IOC_HDR_INFO: 14641 ill = (ill_t *)q->q_ptr; 14642 ill_fastpath_ack(ill, mp); 14643 return (B_TRUE); 14644 case SIOCSTUNPARAM: 14645 case OSIOCSTUNPARAM: 14646 /* Go through qwriter_ip */ 14647 break; 14648 case SIOCGTUNPARAM: 14649 case OSIOCGTUNPARAM: 14650 ip_rput_other(NULL, q, mp, NULL); 14651 return (B_TRUE); 14652 default: 14653 putnext(q, mp); 14654 return (B_TRUE); 14655 } 14656 /* FALLTHRU */ 14657 case M_ERROR: 14658 case M_HANGUP: 14659 /* 14660 * Since this is on the ill stream we unconditionally 14661 * bump up the refcount 14662 */ 14663 ill_refhold(ill); 14664 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14665 return (B_TRUE); 14666 case M_CTL: 14667 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14668 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14669 IPHADA_M_CTL)) { 14670 /* 14671 * It's an IPsec accelerated packet. 14672 * Make sure that the ill from which we received the 14673 * packet has enabled IPsec hardware acceleration. 14674 */ 14675 if (!(ill->ill_capabilities & 14676 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14677 /* IPsec kstats: bean counter */ 14678 freemsg(mp); 14679 return (B_TRUE); 14680 } 14681 14682 /* 14683 * Make mp point to the mblk following the M_CTL, 14684 * then process according to type of mp. 14685 * After this processing, first_mp will point to 14686 * the data-attributes and mp to the pkt following 14687 * the M_CTL. 14688 */ 14689 mp = first_mp->b_cont; 14690 if (mp == NULL) { 14691 freemsg(first_mp); 14692 return (B_TRUE); 14693 } 14694 /* 14695 * A Hardware Accelerated packet can only be M_DATA 14696 * ESP or AH packet. 14697 */ 14698 if (mp->b_datap->db_type != M_DATA) { 14699 /* non-M_DATA IPsec accelerated packet */ 14700 IPSECHW_DEBUG(IPSECHW_PKT, 14701 ("non-M_DATA IPsec accelerated pkt\n")); 14702 freemsg(first_mp); 14703 return (B_TRUE); 14704 } 14705 ipha = (ipha_t *)mp->b_rptr; 14706 if (ipha->ipha_protocol != IPPROTO_AH && 14707 ipha->ipha_protocol != IPPROTO_ESP) { 14708 IPSECHW_DEBUG(IPSECHW_PKT, 14709 ("non-M_DATA IPsec accelerated pkt\n")); 14710 freemsg(first_mp); 14711 return (B_TRUE); 14712 } 14713 *mpp = mp; 14714 return (B_FALSE); 14715 } 14716 putnext(q, mp); 14717 return (B_TRUE); 14718 case M_IOCNAK: 14719 ip1dbg(("got iocnak ")); 14720 iocp = (struct iocblk *)mp->b_rptr; 14721 switch (iocp->ioc_cmd) { 14722 case SIOCSTUNPARAM: 14723 case OSIOCSTUNPARAM: 14724 /* 14725 * Since this is on the ill stream we unconditionally 14726 * bump up the refcount 14727 */ 14728 ill_refhold(ill); 14729 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14730 return (B_TRUE); 14731 case DL_IOC_HDR_INFO: 14732 case SIOCGTUNPARAM: 14733 case OSIOCGTUNPARAM: 14734 ip_rput_other(NULL, q, mp, NULL); 14735 return (B_TRUE); 14736 default: 14737 break; 14738 } 14739 /* FALLTHRU */ 14740 default: 14741 putnext(q, mp); 14742 return (B_TRUE); 14743 } 14744 } 14745 14746 /* Read side put procedure. Packets coming from the wire arrive here. */ 14747 void 14748 ip_rput(queue_t *q, mblk_t *mp) 14749 { 14750 ill_t *ill; 14751 union DL_primitives *dl; 14752 14753 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14754 14755 ill = (ill_t *)q->q_ptr; 14756 14757 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14758 /* 14759 * If things are opening or closing, only accept high-priority 14760 * DLPI messages. (On open ill->ill_ipif has not yet been 14761 * created; on close, things hanging off the ill may have been 14762 * freed already.) 14763 */ 14764 dl = (union DL_primitives *)mp->b_rptr; 14765 if (DB_TYPE(mp) != M_PCPROTO || 14766 dl->dl_primitive == DL_UNITDATA_IND) { 14767 /* 14768 * SIOC[GS]TUNPARAM ioctls can come here. 14769 */ 14770 inet_freemsg(mp); 14771 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14772 "ip_rput_end: q %p (%S)", q, "uninit"); 14773 return; 14774 } 14775 } 14776 14777 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14778 "ip_rput_end: q %p (%S)", q, "end"); 14779 14780 ip_input(ill, NULL, mp, NULL); 14781 } 14782 14783 static mblk_t * 14784 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14785 { 14786 mblk_t *mp1; 14787 boolean_t adjusted = B_FALSE; 14788 ip_stack_t *ipst = ill->ill_ipst; 14789 14790 IP_STAT(ipst, ip_db_ref); 14791 /* 14792 * The IP_RECVSLLA option depends on having the 14793 * link layer header. First check that: 14794 * a> the underlying device is of type ether, 14795 * since this option is currently supported only 14796 * over ethernet. 14797 * b> there is enough room to copy over the link 14798 * layer header. 14799 * 14800 * Once the checks are done, adjust rptr so that 14801 * the link layer header will be copied via 14802 * copymsg. Note that, IFT_ETHER may be returned 14803 * by some non-ethernet drivers but in this case 14804 * the second check will fail. 14805 */ 14806 if (ill->ill_type == IFT_ETHER && 14807 (mp->b_rptr - mp->b_datap->db_base) >= 14808 sizeof (struct ether_header)) { 14809 mp->b_rptr -= sizeof (struct ether_header); 14810 adjusted = B_TRUE; 14811 } 14812 mp1 = copymsg(mp); 14813 14814 if (mp1 == NULL) { 14815 mp->b_next = NULL; 14816 /* clear b_prev - used by ip_mroute_decap */ 14817 mp->b_prev = NULL; 14818 freemsg(mp); 14819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14820 return (NULL); 14821 } 14822 14823 if (adjusted) { 14824 /* 14825 * Copy is done. Restore the pointer in 14826 * the _new_ mblk 14827 */ 14828 mp1->b_rptr += sizeof (struct ether_header); 14829 } 14830 14831 /* Copy b_prev - used by ip_mroute_decap */ 14832 mp1->b_prev = mp->b_prev; 14833 mp->b_prev = NULL; 14834 14835 /* preserve the hardware checksum flags and data, if present */ 14836 if (DB_CKSUMFLAGS(mp) != 0) { 14837 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14838 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14839 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14840 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14841 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14842 } 14843 14844 freemsg(mp); 14845 return (mp1); 14846 } 14847 14848 /* 14849 * Direct read side procedure capable of dealing with chains. GLDv3 based 14850 * drivers call this function directly with mblk chains while STREAMS 14851 * read side procedure ip_rput() calls this for single packet with ip_ring 14852 * set to NULL to process one packet at a time. 14853 * 14854 * The ill will always be valid if this function is called directly from 14855 * the driver. 14856 * 14857 * If ip_input() is called from GLDv3: 14858 * 14859 * - This must be a non-VLAN IP stream. 14860 * - 'mp' is either an untagged or a special priority-tagged packet. 14861 * - Any VLAN tag that was in the MAC header has been stripped. 14862 * 14863 * If the IP header in packet is not 32-bit aligned, every message in the 14864 * chain will be aligned before further operations. This is required on SPARC 14865 * platform. 14866 */ 14867 /* ARGSUSED */ 14868 void 14869 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14870 struct mac_header_info_s *mhip) 14871 { 14872 ipaddr_t dst = NULL; 14873 ipaddr_t prev_dst; 14874 ire_t *ire = NULL; 14875 ipha_t *ipha; 14876 uint_t pkt_len; 14877 ssize_t len; 14878 uint_t opt_len; 14879 int ll_multicast; 14880 int cgtp_flt_pkt; 14881 queue_t *q = ill->ill_rq; 14882 squeue_t *curr_sqp = NULL; 14883 mblk_t *head = NULL; 14884 mblk_t *tail = NULL; 14885 mblk_t *first_mp; 14886 mblk_t *mp; 14887 mblk_t *dmp; 14888 int cnt = 0; 14889 ip_stack_t *ipst = ill->ill_ipst; 14890 14891 ASSERT(mp_chain != NULL); 14892 ASSERT(ill != NULL); 14893 14894 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14895 14896 #define rptr ((uchar_t *)ipha) 14897 14898 while (mp_chain != NULL) { 14899 first_mp = mp = mp_chain; 14900 mp_chain = mp_chain->b_next; 14901 mp->b_next = NULL; 14902 ll_multicast = 0; 14903 14904 /* 14905 * We do ire caching from one iteration to 14906 * another. In the event the packet chain contains 14907 * all packets from the same dst, this caching saves 14908 * an ire_cache_lookup for each of the succeeding 14909 * packets in a packet chain. 14910 */ 14911 prev_dst = dst; 14912 14913 /* 14914 * if db_ref > 1 then copymsg and free original. Packet 14915 * may be changed and we do not want the other entity 14916 * who has a reference to this message to trip over the 14917 * changes. This is a blind change because trying to 14918 * catch all places that might change the packet is too 14919 * difficult. 14920 * 14921 * This corresponds to the fast path case, where we have 14922 * a chain of M_DATA mblks. We check the db_ref count 14923 * of only the 1st data block in the mblk chain. There 14924 * doesn't seem to be a reason why a device driver would 14925 * send up data with varying db_ref counts in the mblk 14926 * chain. In any case the Fast path is a private 14927 * interface, and our drivers don't do such a thing. 14928 * Given the above assumption, there is no need to walk 14929 * down the entire mblk chain (which could have a 14930 * potential performance problem) 14931 */ 14932 14933 if (DB_REF(mp) > 1) { 14934 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14935 continue; 14936 } 14937 14938 /* 14939 * Check and align the IP header. 14940 */ 14941 first_mp = mp; 14942 if (DB_TYPE(mp) == M_DATA) { 14943 dmp = mp; 14944 } else if (DB_TYPE(mp) == M_PROTO && 14945 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14946 dmp = mp->b_cont; 14947 } else { 14948 dmp = NULL; 14949 } 14950 if (dmp != NULL) { 14951 /* 14952 * IP header ptr not aligned? 14953 * OR IP header not complete in first mblk 14954 */ 14955 if (!OK_32PTR(dmp->b_rptr) || 14956 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14957 if (!ip_check_and_align_header(q, dmp, ipst)) 14958 continue; 14959 } 14960 } 14961 14962 /* 14963 * ip_input fast path 14964 */ 14965 14966 /* mblk type is not M_DATA */ 14967 if (DB_TYPE(mp) != M_DATA) { 14968 if (ip_rput_process_notdata(q, &first_mp, ill, 14969 &ll_multicast, &mp)) 14970 continue; 14971 } 14972 14973 /* Make sure its an M_DATA and that its aligned */ 14974 ASSERT(DB_TYPE(mp) == M_DATA); 14975 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14976 14977 ipha = (ipha_t *)mp->b_rptr; 14978 len = mp->b_wptr - rptr; 14979 pkt_len = ntohs(ipha->ipha_length); 14980 14981 /* 14982 * We must count all incoming packets, even if they end 14983 * up being dropped later on. 14984 */ 14985 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14986 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14987 14988 /* multiple mblk or too short */ 14989 len -= pkt_len; 14990 if (len != 0) { 14991 /* 14992 * Make sure we have data length consistent 14993 * with the IP header. 14994 */ 14995 if (mp->b_cont == NULL) { 14996 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14997 BUMP_MIB(ill->ill_ip_mib, 14998 ipIfStatsInHdrErrors); 14999 ip2dbg(("ip_input: drop pkt\n")); 15000 freemsg(mp); 15001 continue; 15002 } 15003 mp->b_wptr = rptr + pkt_len; 15004 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15005 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15006 BUMP_MIB(ill->ill_ip_mib, 15007 ipIfStatsInHdrErrors); 15008 ip2dbg(("ip_input: drop pkt\n")); 15009 freemsg(mp); 15010 continue; 15011 } 15012 (void) adjmsg(mp, -len); 15013 IP_STAT(ipst, ip_multimblk3); 15014 } 15015 } 15016 15017 /* Obtain the dst of the current packet */ 15018 dst = ipha->ipha_dst; 15019 15020 if (IP_LOOPBACK_ADDR(dst) || 15021 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15022 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15023 cmn_err(CE_CONT, "dst %X src %X\n", 15024 dst, ipha->ipha_src); 15025 freemsg(mp); 15026 continue; 15027 } 15028 15029 /* 15030 * The event for packets being received from a 'physical' 15031 * interface is placed after validation of the source and/or 15032 * destination address as being local so that packets can be 15033 * redirected to loopback addresses using ipnat. 15034 */ 15035 DTRACE_PROBE4(ip4__physical__in__start, 15036 ill_t *, ill, ill_t *, NULL, 15037 ipha_t *, ipha, mblk_t *, first_mp); 15038 15039 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15040 ipst->ips_ipv4firewall_physical_in, 15041 ill, NULL, ipha, first_mp, mp, ipst); 15042 15043 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15044 15045 if (first_mp == NULL) { 15046 continue; 15047 } 15048 dst = ipha->ipha_dst; 15049 15050 /* 15051 * Attach any necessary label information to 15052 * this packet 15053 */ 15054 if (is_system_labeled() && 15055 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15057 freemsg(mp); 15058 continue; 15059 } 15060 15061 /* 15062 * Reuse the cached ire only if the ipha_dst of the previous 15063 * packet is the same as the current packet AND it is not 15064 * INADDR_ANY. 15065 */ 15066 if (!(dst == prev_dst && dst != INADDR_ANY) && 15067 (ire != NULL)) { 15068 ire_refrele(ire); 15069 ire = NULL; 15070 } 15071 opt_len = ipha->ipha_version_and_hdr_length - 15072 IP_SIMPLE_HDR_VERSION; 15073 15074 /* 15075 * Check to see if we can take the fastpath. 15076 * That is possible if the following conditions are met 15077 * o Tsol disabled 15078 * o CGTP disabled 15079 * o ipp_action_count is 0 15080 * o no options in the packet 15081 * o not a RSVP packet 15082 * o not a multicast packet 15083 */ 15084 if (!is_system_labeled() && 15085 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15086 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15087 !ll_multicast && !CLASSD(dst)) { 15088 if (ire == NULL) 15089 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15090 ipst); 15091 15092 /* incoming packet is for forwarding */ 15093 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15094 ire = ip_fast_forward(ire, dst, ill, mp); 15095 continue; 15096 } 15097 /* incoming packet is for local consumption */ 15098 if (ire->ire_type & IRE_LOCAL) 15099 goto local; 15100 } 15101 15102 /* 15103 * Disable ire caching for anything more complex 15104 * than the simple fast path case we checked for above. 15105 */ 15106 if (ire != NULL) { 15107 ire_refrele(ire); 15108 ire = NULL; 15109 } 15110 15111 /* Full-blown slow path */ 15112 if (opt_len != 0) { 15113 if (len != 0) 15114 IP_STAT(ipst, ip_multimblk4); 15115 else 15116 IP_STAT(ipst, ip_ipoptions); 15117 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15118 &dst, ipst)) 15119 continue; 15120 } 15121 15122 /* 15123 * Invoke the CGTP (multirouting) filtering module to process 15124 * the incoming packet. Packets identified as duplicates 15125 * must be discarded. Filtering is active only if the 15126 * the ip_cgtp_filter ndd variable is non-zero. 15127 */ 15128 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15129 if (ipst->ips_ip_cgtp_filter && 15130 ipst->ips_ip_cgtp_filter_ops != NULL) { 15131 netstackid_t stackid; 15132 15133 stackid = ipst->ips_netstack->netstack_stackid; 15134 cgtp_flt_pkt = 15135 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15136 ill->ill_phyint->phyint_ifindex, mp); 15137 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15138 freemsg(first_mp); 15139 continue; 15140 } 15141 } 15142 15143 /* 15144 * If rsvpd is running, let RSVP daemon handle its processing 15145 * and forwarding of RSVP multicast/unicast packets. 15146 * If rsvpd is not running but mrouted is running, RSVP 15147 * multicast packets are forwarded as multicast traffic 15148 * and RSVP unicast packets are forwarded by unicast router. 15149 * If neither rsvpd nor mrouted is running, RSVP multicast 15150 * packets are not forwarded, but the unicast packets are 15151 * forwarded like unicast traffic. 15152 */ 15153 if (ipha->ipha_protocol == IPPROTO_RSVP && 15154 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15155 NULL) { 15156 /* RSVP packet and rsvpd running. Treat as ours */ 15157 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15158 /* 15159 * This assumes that we deliver to all streams for 15160 * multicast and broadcast packets. 15161 * We have to force ll_multicast to 1 to handle the 15162 * M_DATA messages passed in from ip_mroute_decap. 15163 */ 15164 dst = INADDR_BROADCAST; 15165 ll_multicast = 1; 15166 } else if (CLASSD(dst)) { 15167 /* packet is multicast */ 15168 mp->b_next = NULL; 15169 if (ip_rput_process_multicast(q, mp, ill, ipha, 15170 &ll_multicast, &dst)) 15171 continue; 15172 } 15173 15174 if (ire == NULL) { 15175 ire = ire_cache_lookup(dst, ALL_ZONES, 15176 MBLK_GETLABEL(mp), ipst); 15177 } 15178 15179 if (ire == NULL) { 15180 /* 15181 * No IRE for this destination, so it can't be for us. 15182 * Unless we are forwarding, drop the packet. 15183 * We have to let source routed packets through 15184 * since we don't yet know if they are 'ping -l' 15185 * packets i.e. if they will go out over the 15186 * same interface as they came in on. 15187 */ 15188 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15189 if (ire == NULL) 15190 continue; 15191 } 15192 15193 /* 15194 * Broadcast IRE may indicate either broadcast or 15195 * multicast packet 15196 */ 15197 if (ire->ire_type == IRE_BROADCAST) { 15198 /* 15199 * Skip broadcast checks if packet is UDP multicast; 15200 * we'd rather not enter ip_rput_process_broadcast() 15201 * unless the packet is broadcast for real, since 15202 * that routine is a no-op for multicast. 15203 */ 15204 if (ipha->ipha_protocol != IPPROTO_UDP || 15205 !CLASSD(ipha->ipha_dst)) { 15206 ire = ip_rput_process_broadcast(&q, mp, 15207 ire, ipha, ill, dst, cgtp_flt_pkt, 15208 ll_multicast); 15209 if (ire == NULL) 15210 continue; 15211 } 15212 } else if (ire->ire_stq != NULL) { 15213 /* fowarding? */ 15214 ip_rput_process_forward(q, mp, ire, ipha, ill, 15215 ll_multicast); 15216 /* ip_rput_process_forward consumed the packet */ 15217 continue; 15218 } 15219 15220 local: 15221 /* 15222 * If the queue in the ire is different to the ingress queue 15223 * then we need to check to see if we can accept the packet. 15224 * Note that for multicast packets and broadcast packets sent 15225 * to a broadcast address which is shared between multiple 15226 * interfaces we should not do this since we just got a random 15227 * broadcast ire. 15228 */ 15229 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15230 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15231 ill)) == NULL) { 15232 /* Drop packet */ 15233 BUMP_MIB(ill->ill_ip_mib, 15234 ipIfStatsForwProhibits); 15235 freemsg(mp); 15236 continue; 15237 } 15238 if (ire->ire_rfq != NULL) 15239 q = ire->ire_rfq; 15240 } 15241 15242 switch (ipha->ipha_protocol) { 15243 case IPPROTO_TCP: 15244 ASSERT(first_mp == mp); 15245 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15246 mp, 0, q, ip_ring)) != NULL) { 15247 if (curr_sqp == NULL) { 15248 curr_sqp = GET_SQUEUE(mp); 15249 ASSERT(cnt == 0); 15250 cnt++; 15251 head = tail = mp; 15252 } else if (curr_sqp == GET_SQUEUE(mp)) { 15253 ASSERT(tail != NULL); 15254 cnt++; 15255 tail->b_next = mp; 15256 tail = mp; 15257 } else { 15258 /* 15259 * A different squeue. Send the 15260 * chain for the previous squeue on 15261 * its way. This shouldn't happen 15262 * often unless interrupt binding 15263 * changes. 15264 */ 15265 IP_STAT(ipst, ip_input_multi_squeue); 15266 squeue_enter_chain(curr_sqp, head, 15267 tail, cnt, SQTAG_IP_INPUT); 15268 curr_sqp = GET_SQUEUE(mp); 15269 head = mp; 15270 tail = mp; 15271 cnt = 1; 15272 } 15273 } 15274 continue; 15275 case IPPROTO_UDP: 15276 ASSERT(first_mp == mp); 15277 ip_udp_input(q, mp, ipha, ire, ill); 15278 continue; 15279 case IPPROTO_SCTP: 15280 ASSERT(first_mp == mp); 15281 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15282 q, dst); 15283 /* ire has been released by ip_sctp_input */ 15284 ire = NULL; 15285 continue; 15286 default: 15287 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15288 continue; 15289 } 15290 } 15291 15292 if (ire != NULL) 15293 ire_refrele(ire); 15294 15295 if (head != NULL) 15296 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15297 15298 /* 15299 * This code is there just to make netperf/ttcp look good. 15300 * 15301 * Its possible that after being in polling mode (and having cleared 15302 * the backlog), squeues have turned the interrupt frequency higher 15303 * to improve latency at the expense of more CPU utilization (less 15304 * packets per interrupts or more number of interrupts). Workloads 15305 * like ttcp/netperf do manage to tickle polling once in a while 15306 * but for the remaining time, stay in higher interrupt mode since 15307 * their packet arrival rate is pretty uniform and this shows up 15308 * as higher CPU utilization. Since people care about CPU utilization 15309 * while running netperf/ttcp, turn the interrupt frequency back to 15310 * normal/default if polling has not been used in ip_poll_normal_ticks. 15311 */ 15312 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15313 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15314 ip_ring->rr_poll_state &= ~ILL_POLLING; 15315 ip_ring->rr_blank(ip_ring->rr_handle, 15316 ip_ring->rr_normal_blank_time, 15317 ip_ring->rr_normal_pkt_cnt); 15318 } 15319 } 15320 15321 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15322 "ip_input_end: q %p (%S)", q, "end"); 15323 #undef rptr 15324 } 15325 15326 static void 15327 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15328 t_uscalar_t err) 15329 { 15330 if (dl_err == DL_SYSERR) { 15331 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15332 "%s: %s failed: DL_SYSERR (errno %u)\n", 15333 ill->ill_name, dlpi_prim_str(prim), err); 15334 return; 15335 } 15336 15337 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15338 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15339 dlpi_err_str(dl_err)); 15340 } 15341 15342 /* 15343 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15344 * than DL_UNITDATA_IND messages. If we need to process this message 15345 * exclusively, we call qwriter_ip, in which case we also need to call 15346 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15347 */ 15348 void 15349 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15350 { 15351 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15352 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15353 ill_t *ill = (ill_t *)q->q_ptr; 15354 boolean_t pending; 15355 15356 ip1dbg(("ip_rput_dlpi")); 15357 if (dloa->dl_primitive == DL_ERROR_ACK) { 15358 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15359 "%s (0x%x), unix %u\n", ill->ill_name, 15360 dlpi_prim_str(dlea->dl_error_primitive), 15361 dlea->dl_error_primitive, 15362 dlpi_err_str(dlea->dl_errno), 15363 dlea->dl_errno, 15364 dlea->dl_unix_errno)); 15365 } 15366 15367 /* 15368 * If we received an ACK but didn't send a request for it, then it 15369 * can't be part of any pending operation; discard up-front. 15370 */ 15371 switch (dloa->dl_primitive) { 15372 case DL_NOTIFY_IND: 15373 pending = B_TRUE; 15374 break; 15375 case DL_ERROR_ACK: 15376 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15377 break; 15378 case DL_OK_ACK: 15379 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15380 break; 15381 case DL_INFO_ACK: 15382 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15383 break; 15384 case DL_BIND_ACK: 15385 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15386 break; 15387 case DL_PHYS_ADDR_ACK: 15388 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15389 break; 15390 case DL_NOTIFY_ACK: 15391 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15392 break; 15393 case DL_CONTROL_ACK: 15394 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15395 break; 15396 case DL_CAPABILITY_ACK: 15397 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15398 break; 15399 default: 15400 /* Not a DLPI message we support or were expecting */ 15401 freemsg(mp); 15402 return; 15403 } 15404 15405 if (!pending) { 15406 freemsg(mp); 15407 return; 15408 } 15409 15410 switch (dloa->dl_primitive) { 15411 case DL_ERROR_ACK: 15412 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15413 mutex_enter(&ill->ill_lock); 15414 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15415 cv_signal(&ill->ill_cv); 15416 mutex_exit(&ill->ill_lock); 15417 } 15418 break; 15419 15420 case DL_OK_ACK: 15421 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15422 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15423 switch (dloa->dl_correct_primitive) { 15424 case DL_UNBIND_REQ: 15425 mutex_enter(&ill->ill_lock); 15426 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15427 cv_signal(&ill->ill_cv); 15428 mutex_exit(&ill->ill_lock); 15429 break; 15430 15431 case DL_ENABMULTI_REQ: 15432 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15433 ill->ill_dlpi_multicast_state = IDS_OK; 15434 break; 15435 } 15436 break; 15437 default: 15438 break; 15439 } 15440 15441 /* 15442 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15443 * and we need to become writer to continue to process it. If it's not 15444 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15445 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15446 * some work as part of the current exclusive operation that actually 15447 * is not part of it -- which is wrong, but better than the 15448 * alternative of deadlock (if NEW_OP is always used). Someday, we 15449 * should track which DLPI requests have ACKs that we wait on 15450 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15451 * 15452 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15453 * Since this is on the ill stream we unconditionally bump up the 15454 * refcount without doing ILL_CAN_LOOKUP(). 15455 */ 15456 ill_refhold(ill); 15457 if (dloa->dl_primitive == DL_NOTIFY_IND) 15458 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15459 else 15460 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15461 } 15462 15463 /* 15464 * Handling of DLPI messages that require exclusive access to the ipsq. 15465 * 15466 * Need to do ill_pending_mp_release on ioctl completion, which could 15467 * happen here. (along with mi_copy_done) 15468 */ 15469 /* ARGSUSED */ 15470 static void 15471 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15472 { 15473 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15474 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15475 int err = 0; 15476 ill_t *ill; 15477 ipif_t *ipif = NULL; 15478 mblk_t *mp1 = NULL; 15479 conn_t *connp = NULL; 15480 t_uscalar_t paddrreq; 15481 mblk_t *mp_hw; 15482 boolean_t success; 15483 boolean_t ioctl_aborted = B_FALSE; 15484 boolean_t log = B_TRUE; 15485 hook_nic_event_t *info; 15486 ip_stack_t *ipst; 15487 15488 ip1dbg(("ip_rput_dlpi_writer ..")); 15489 ill = (ill_t *)q->q_ptr; 15490 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15491 15492 ASSERT(IAM_WRITER_ILL(ill)); 15493 15494 ipst = ill->ill_ipst; 15495 15496 /* 15497 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15498 * both are null or non-null. However we can assert that only 15499 * after grabbing the ipsq_lock. So we don't make any assertion 15500 * here and in other places in the code. 15501 */ 15502 ipif = ipsq->ipsq_pending_ipif; 15503 /* 15504 * The current ioctl could have been aborted by the user and a new 15505 * ioctl to bring up another ill could have started. We could still 15506 * get a response from the driver later. 15507 */ 15508 if (ipif != NULL && ipif->ipif_ill != ill) 15509 ioctl_aborted = B_TRUE; 15510 15511 switch (dloa->dl_primitive) { 15512 case DL_ERROR_ACK: 15513 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15514 dlpi_prim_str(dlea->dl_error_primitive))); 15515 15516 switch (dlea->dl_error_primitive) { 15517 case DL_PROMISCON_REQ: 15518 case DL_PROMISCOFF_REQ: 15519 case DL_DISABMULTI_REQ: 15520 case DL_UNBIND_REQ: 15521 case DL_ATTACH_REQ: 15522 case DL_INFO_REQ: 15523 ill_dlpi_done(ill, dlea->dl_error_primitive); 15524 break; 15525 case DL_NOTIFY_REQ: 15526 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15527 log = B_FALSE; 15528 break; 15529 case DL_PHYS_ADDR_REQ: 15530 /* 15531 * For IPv6 only, there are two additional 15532 * phys_addr_req's sent to the driver to get the 15533 * IPv6 token and lla. This allows IP to acquire 15534 * the hardware address format for a given interface 15535 * without having built in knowledge of the hardware 15536 * address. ill_phys_addr_pend keeps track of the last 15537 * DL_PAR sent so we know which response we are 15538 * dealing with. ill_dlpi_done will update 15539 * ill_phys_addr_pend when it sends the next req. 15540 * We don't complete the IOCTL until all three DL_PARs 15541 * have been attempted, so set *_len to 0 and break. 15542 */ 15543 paddrreq = ill->ill_phys_addr_pend; 15544 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15545 if (paddrreq == DL_IPV6_TOKEN) { 15546 ill->ill_token_length = 0; 15547 log = B_FALSE; 15548 break; 15549 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15550 ill->ill_nd_lla_len = 0; 15551 log = B_FALSE; 15552 break; 15553 } 15554 /* 15555 * Something went wrong with the DL_PHYS_ADDR_REQ. 15556 * We presumably have an IOCTL hanging out waiting 15557 * for completion. Find it and complete the IOCTL 15558 * with the error noted. 15559 * However, ill_dl_phys was called on an ill queue 15560 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15561 * set. But the ioctl is known to be pending on ill_wq. 15562 */ 15563 if (!ill->ill_ifname_pending) 15564 break; 15565 ill->ill_ifname_pending = 0; 15566 if (!ioctl_aborted) 15567 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15568 if (mp1 != NULL) { 15569 /* 15570 * This operation (SIOCSLIFNAME) must have 15571 * happened on the ill. Assert there is no conn 15572 */ 15573 ASSERT(connp == NULL); 15574 q = ill->ill_wq; 15575 } 15576 break; 15577 case DL_BIND_REQ: 15578 ill_dlpi_done(ill, DL_BIND_REQ); 15579 if (ill->ill_ifname_pending) 15580 break; 15581 /* 15582 * Something went wrong with the bind. We presumably 15583 * have an IOCTL hanging out waiting for completion. 15584 * Find it, take down the interface that was coming 15585 * up, and complete the IOCTL with the error noted. 15586 */ 15587 if (!ioctl_aborted) 15588 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15589 if (mp1 != NULL) { 15590 /* 15591 * This operation (SIOCSLIFFLAGS) must have 15592 * happened from a conn. 15593 */ 15594 ASSERT(connp != NULL); 15595 q = CONNP_TO_WQ(connp); 15596 if (ill->ill_move_in_progress) { 15597 ILL_CLEAR_MOVE(ill); 15598 } 15599 (void) ipif_down(ipif, NULL, NULL); 15600 /* error is set below the switch */ 15601 } 15602 break; 15603 case DL_ENABMULTI_REQ: 15604 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15605 15606 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15607 ill->ill_dlpi_multicast_state = IDS_FAILED; 15608 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15609 ipif_t *ipif; 15610 15611 printf("ip: joining multicasts failed (%d)" 15612 " on %s - will use link layer " 15613 "broadcasts for multicast\n", 15614 dlea->dl_errno, ill->ill_name); 15615 15616 /* 15617 * Set up the multicast mapping alone. 15618 * writer, so ok to access ill->ill_ipif 15619 * without any lock. 15620 */ 15621 ipif = ill->ill_ipif; 15622 mutex_enter(&ill->ill_phyint->phyint_lock); 15623 ill->ill_phyint->phyint_flags |= 15624 PHYI_MULTI_BCAST; 15625 mutex_exit(&ill->ill_phyint->phyint_lock); 15626 15627 if (!ill->ill_isv6) { 15628 (void) ipif_arp_setup_multicast(ipif, 15629 NULL); 15630 } else { 15631 (void) ipif_ndp_setup_multicast(ipif, 15632 NULL); 15633 } 15634 } 15635 freemsg(mp); /* Don't want to pass this up */ 15636 return; 15637 15638 case DL_CAPABILITY_REQ: 15639 case DL_CONTROL_REQ: 15640 ill_dlpi_done(ill, dlea->dl_error_primitive); 15641 ill->ill_dlpi_capab_state = IDS_FAILED; 15642 freemsg(mp); 15643 return; 15644 } 15645 /* 15646 * Note the error for IOCTL completion (mp1 is set when 15647 * ready to complete ioctl). If ill_ifname_pending_err is 15648 * set, an error occured during plumbing (ill_ifname_pending), 15649 * so we want to report that error. 15650 * 15651 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15652 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15653 * expected to get errack'd if the driver doesn't support 15654 * these flags (e.g. ethernet). log will be set to B_FALSE 15655 * if these error conditions are encountered. 15656 */ 15657 if (mp1 != NULL) { 15658 if (ill->ill_ifname_pending_err != 0) { 15659 err = ill->ill_ifname_pending_err; 15660 ill->ill_ifname_pending_err = 0; 15661 } else { 15662 err = dlea->dl_unix_errno ? 15663 dlea->dl_unix_errno : ENXIO; 15664 } 15665 /* 15666 * If we're plumbing an interface and an error hasn't already 15667 * been saved, set ill_ifname_pending_err to the error passed 15668 * up. Ignore the error if log is B_FALSE (see comment above). 15669 */ 15670 } else if (log && ill->ill_ifname_pending && 15671 ill->ill_ifname_pending_err == 0) { 15672 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15673 dlea->dl_unix_errno : ENXIO; 15674 } 15675 15676 if (log) 15677 ip_dlpi_error(ill, dlea->dl_error_primitive, 15678 dlea->dl_errno, dlea->dl_unix_errno); 15679 break; 15680 case DL_CAPABILITY_ACK: 15681 /* Call a routine to handle this one. */ 15682 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15683 ill_capability_ack(ill, mp); 15684 15685 /* 15686 * If the ack is due to renegotiation, we will need to send 15687 * a new CAPABILITY_REQ to start the renegotiation. 15688 */ 15689 if (ill->ill_capab_reneg) { 15690 ill->ill_capab_reneg = B_FALSE; 15691 ill_capability_probe(ill); 15692 } 15693 break; 15694 case DL_CONTROL_ACK: 15695 /* We treat all of these as "fire and forget" */ 15696 ill_dlpi_done(ill, DL_CONTROL_REQ); 15697 break; 15698 case DL_INFO_ACK: 15699 /* Call a routine to handle this one. */ 15700 ill_dlpi_done(ill, DL_INFO_REQ); 15701 ip_ll_subnet_defaults(ill, mp); 15702 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15703 return; 15704 case DL_BIND_ACK: 15705 /* 15706 * We should have an IOCTL waiting on this unless 15707 * sent by ill_dl_phys, in which case just return 15708 */ 15709 ill_dlpi_done(ill, DL_BIND_REQ); 15710 if (ill->ill_ifname_pending) 15711 break; 15712 15713 if (!ioctl_aborted) 15714 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15715 if (mp1 == NULL) 15716 break; 15717 /* 15718 * Because mp1 was added by ill_dl_up(), and it always 15719 * passes a valid connp, connp must be valid here. 15720 */ 15721 ASSERT(connp != NULL); 15722 q = CONNP_TO_WQ(connp); 15723 15724 /* 15725 * We are exclusive. So nothing can change even after 15726 * we get the pending mp. If need be we can put it back 15727 * and restart, as in calling ipif_arp_up() below. 15728 */ 15729 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15730 15731 mutex_enter(&ill->ill_lock); 15732 15733 ill->ill_dl_up = 1; 15734 15735 if ((info = ill->ill_nic_event_info) != NULL) { 15736 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15737 "attached for %s\n", info->hne_event, 15738 ill->ill_name)); 15739 if (info->hne_data != NULL) 15740 kmem_free(info->hne_data, info->hne_datalen); 15741 kmem_free(info, sizeof (hook_nic_event_t)); 15742 } 15743 15744 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15745 if (info != NULL) { 15746 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15747 info->hne_lif = 0; 15748 info->hne_event = NE_UP; 15749 info->hne_data = NULL; 15750 info->hne_datalen = 0; 15751 info->hne_family = ill->ill_isv6 ? 15752 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15753 } else 15754 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15755 "event information for %s (ENOMEM)\n", 15756 ill->ill_name)); 15757 15758 ill->ill_nic_event_info = info; 15759 15760 mutex_exit(&ill->ill_lock); 15761 15762 /* 15763 * Now bring up the resolver; when that is complete, we'll 15764 * create IREs. Note that we intentionally mirror what 15765 * ipif_up() would have done, because we got here by way of 15766 * ill_dl_up(), which stopped ipif_up()'s processing. 15767 */ 15768 if (ill->ill_isv6) { 15769 /* 15770 * v6 interfaces. 15771 * Unlike ARP which has to do another bind 15772 * and attach, once we get here we are 15773 * done with NDP. Except in the case of 15774 * ILLF_XRESOLV, in which case we send an 15775 * AR_INTERFACE_UP to the external resolver. 15776 * If all goes well, the ioctl will complete 15777 * in ip_rput(). If there's an error, we 15778 * complete it here. 15779 */ 15780 if ((err = ipif_ndp_up(ipif)) == 0) { 15781 if (ill->ill_flags & ILLF_XRESOLV) { 15782 mutex_enter(&connp->conn_lock); 15783 mutex_enter(&ill->ill_lock); 15784 success = ipsq_pending_mp_add( 15785 connp, ipif, q, mp1, 0); 15786 mutex_exit(&ill->ill_lock); 15787 mutex_exit(&connp->conn_lock); 15788 if (success) { 15789 err = ipif_resolver_up(ipif, 15790 Res_act_initial); 15791 if (err == EINPROGRESS) { 15792 freemsg(mp); 15793 return; 15794 } 15795 ASSERT(err != 0); 15796 mp1 = ipsq_pending_mp_get(ipsq, 15797 &connp); 15798 ASSERT(mp1 != NULL); 15799 } else { 15800 /* conn has started closing */ 15801 err = EINTR; 15802 } 15803 } else { /* Non XRESOLV interface */ 15804 (void) ipif_resolver_up(ipif, 15805 Res_act_initial); 15806 err = ipif_up_done_v6(ipif); 15807 } 15808 } 15809 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15810 /* 15811 * ARP and other v4 external resolvers. 15812 * Leave the pending mblk intact so that 15813 * the ioctl completes in ip_rput(). 15814 */ 15815 mutex_enter(&connp->conn_lock); 15816 mutex_enter(&ill->ill_lock); 15817 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15818 mutex_exit(&ill->ill_lock); 15819 mutex_exit(&connp->conn_lock); 15820 if (success) { 15821 err = ipif_resolver_up(ipif, Res_act_initial); 15822 if (err == EINPROGRESS) { 15823 freemsg(mp); 15824 return; 15825 } 15826 ASSERT(err != 0); 15827 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15828 } else { 15829 /* The conn has started closing */ 15830 err = EINTR; 15831 } 15832 } else { 15833 /* 15834 * This one is complete. Reply to pending ioctl. 15835 */ 15836 (void) ipif_resolver_up(ipif, Res_act_initial); 15837 err = ipif_up_done(ipif); 15838 } 15839 15840 if ((err == 0) && (ill->ill_up_ipifs)) { 15841 err = ill_up_ipifs(ill, q, mp1); 15842 if (err == EINPROGRESS) { 15843 freemsg(mp); 15844 return; 15845 } 15846 } 15847 15848 if (ill->ill_up_ipifs) { 15849 ill_group_cleanup(ill); 15850 } 15851 15852 break; 15853 case DL_NOTIFY_IND: { 15854 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15855 ire_t *ire; 15856 boolean_t need_ire_walk_v4 = B_FALSE; 15857 boolean_t need_ire_walk_v6 = B_FALSE; 15858 15859 switch (notify->dl_notification) { 15860 case DL_NOTE_PHYS_ADDR: 15861 err = ill_set_phys_addr(ill, mp); 15862 break; 15863 15864 case DL_NOTE_FASTPATH_FLUSH: 15865 ill_fastpath_flush(ill); 15866 break; 15867 15868 case DL_NOTE_SDU_SIZE: 15869 /* 15870 * Change the MTU size of the interface, of all 15871 * attached ipif's, and of all relevant ire's. The 15872 * new value's a uint32_t at notify->dl_data. 15873 * Mtu change Vs. new ire creation - protocol below. 15874 * 15875 * a Mark the ipif as IPIF_CHANGING. 15876 * b Set the new mtu in the ipif. 15877 * c Change the ire_max_frag on all affected ires 15878 * d Unmark the IPIF_CHANGING 15879 * 15880 * To see how the protocol works, assume an interface 15881 * route is also being added simultaneously by 15882 * ip_rt_add and let 'ipif' be the ipif referenced by 15883 * the ire. If the ire is created before step a, 15884 * it will be cleaned up by step c. If the ire is 15885 * created after step d, it will see the new value of 15886 * ipif_mtu. Any attempt to create the ire between 15887 * steps a to d will fail because of the IPIF_CHANGING 15888 * flag. Note that ire_create() is passed a pointer to 15889 * the ipif_mtu, and not the value. During ire_add 15890 * under the bucket lock, the ire_max_frag of the 15891 * new ire being created is set from the ipif/ire from 15892 * which it is being derived. 15893 */ 15894 mutex_enter(&ill->ill_lock); 15895 ill->ill_max_frag = (uint_t)notify->dl_data; 15896 15897 /* 15898 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15899 * leave it alone 15900 */ 15901 if (ill->ill_mtu_userspecified) { 15902 mutex_exit(&ill->ill_lock); 15903 break; 15904 } 15905 ill->ill_max_mtu = ill->ill_max_frag; 15906 if (ill->ill_isv6) { 15907 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15908 ill->ill_max_mtu = IPV6_MIN_MTU; 15909 } else { 15910 if (ill->ill_max_mtu < IP_MIN_MTU) 15911 ill->ill_max_mtu = IP_MIN_MTU; 15912 } 15913 for (ipif = ill->ill_ipif; ipif != NULL; 15914 ipif = ipif->ipif_next) { 15915 /* 15916 * Don't override the mtu if the user 15917 * has explicitly set it. 15918 */ 15919 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15920 continue; 15921 ipif->ipif_mtu = (uint_t)notify->dl_data; 15922 if (ipif->ipif_isv6) 15923 ire = ipif_to_ire_v6(ipif); 15924 else 15925 ire = ipif_to_ire(ipif); 15926 if (ire != NULL) { 15927 ire->ire_max_frag = ipif->ipif_mtu; 15928 ire_refrele(ire); 15929 } 15930 if (ipif->ipif_flags & IPIF_UP) { 15931 if (ill->ill_isv6) 15932 need_ire_walk_v6 = B_TRUE; 15933 else 15934 need_ire_walk_v4 = B_TRUE; 15935 } 15936 } 15937 mutex_exit(&ill->ill_lock); 15938 if (need_ire_walk_v4) 15939 ire_walk_v4(ill_mtu_change, (char *)ill, 15940 ALL_ZONES, ipst); 15941 if (need_ire_walk_v6) 15942 ire_walk_v6(ill_mtu_change, (char *)ill, 15943 ALL_ZONES, ipst); 15944 break; 15945 case DL_NOTE_LINK_UP: 15946 case DL_NOTE_LINK_DOWN: { 15947 /* 15948 * We are writer. ill / phyint / ipsq assocs stable. 15949 * The RUNNING flag reflects the state of the link. 15950 */ 15951 phyint_t *phyint = ill->ill_phyint; 15952 uint64_t new_phyint_flags; 15953 boolean_t changed = B_FALSE; 15954 boolean_t went_up; 15955 15956 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15957 mutex_enter(&phyint->phyint_lock); 15958 new_phyint_flags = went_up ? 15959 phyint->phyint_flags | PHYI_RUNNING : 15960 phyint->phyint_flags & ~PHYI_RUNNING; 15961 if (new_phyint_flags != phyint->phyint_flags) { 15962 phyint->phyint_flags = new_phyint_flags; 15963 changed = B_TRUE; 15964 } 15965 mutex_exit(&phyint->phyint_lock); 15966 /* 15967 * ill_restart_dad handles the DAD restart and routing 15968 * socket notification logic. 15969 */ 15970 if (changed) { 15971 ill_restart_dad(phyint->phyint_illv4, went_up); 15972 ill_restart_dad(phyint->phyint_illv6, went_up); 15973 } 15974 break; 15975 } 15976 case DL_NOTE_PROMISC_ON_PHYS: 15977 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15978 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15979 mutex_enter(&ill->ill_lock); 15980 ill->ill_promisc_on_phys = B_TRUE; 15981 mutex_exit(&ill->ill_lock); 15982 break; 15983 case DL_NOTE_PROMISC_OFF_PHYS: 15984 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15985 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15986 mutex_enter(&ill->ill_lock); 15987 ill->ill_promisc_on_phys = B_FALSE; 15988 mutex_exit(&ill->ill_lock); 15989 break; 15990 case DL_NOTE_CAPAB_RENEG: 15991 /* 15992 * Something changed on the driver side. 15993 * It wants us to renegotiate the capabilities 15994 * on this ill. One possible cause is the aggregation 15995 * interface under us where a port got added or 15996 * went away. 15997 * 15998 * If the capability negotiation is already done 15999 * or is in progress, reset the capabilities and 16000 * mark the ill's ill_capab_reneg to be B_TRUE, 16001 * so that when the ack comes back, we can start 16002 * the renegotiation process. 16003 * 16004 * Note that if ill_capab_reneg is already B_TRUE 16005 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16006 * the capability resetting request has been sent 16007 * and the renegotiation has not been started yet; 16008 * nothing needs to be done in this case. 16009 */ 16010 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16011 ill_capability_reset(ill); 16012 ill->ill_capab_reneg = B_TRUE; 16013 } 16014 break; 16015 default: 16016 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16017 "type 0x%x for DL_NOTIFY_IND\n", 16018 notify->dl_notification)); 16019 break; 16020 } 16021 16022 /* 16023 * As this is an asynchronous operation, we 16024 * should not call ill_dlpi_done 16025 */ 16026 break; 16027 } 16028 case DL_NOTIFY_ACK: { 16029 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16030 16031 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16032 ill->ill_note_link = 1; 16033 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16034 break; 16035 } 16036 case DL_PHYS_ADDR_ACK: { 16037 /* 16038 * As part of plumbing the interface via SIOCSLIFNAME, 16039 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16040 * whose answers we receive here. As each answer is received, 16041 * we call ill_dlpi_done() to dispatch the next request as 16042 * we're processing the current one. Once all answers have 16043 * been received, we use ipsq_pending_mp_get() to dequeue the 16044 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16045 * is invoked from an ill queue, conn_oper_pending_ill is not 16046 * available, but we know the ioctl is pending on ill_wq.) 16047 */ 16048 uint_t paddrlen, paddroff; 16049 16050 paddrreq = ill->ill_phys_addr_pend; 16051 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16052 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16053 16054 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16055 if (paddrreq == DL_IPV6_TOKEN) { 16056 /* 16057 * bcopy to low-order bits of ill_token 16058 * 16059 * XXX Temporary hack - currently, all known tokens 16060 * are 64 bits, so I'll cheat for the moment. 16061 */ 16062 bcopy(mp->b_rptr + paddroff, 16063 &ill->ill_token.s6_addr32[2], paddrlen); 16064 ill->ill_token_length = paddrlen; 16065 break; 16066 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16067 ASSERT(ill->ill_nd_lla_mp == NULL); 16068 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16069 mp = NULL; 16070 break; 16071 } 16072 16073 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16074 ASSERT(ill->ill_phys_addr_mp == NULL); 16075 if (!ill->ill_ifname_pending) 16076 break; 16077 ill->ill_ifname_pending = 0; 16078 if (!ioctl_aborted) 16079 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16080 if (mp1 != NULL) { 16081 ASSERT(connp == NULL); 16082 q = ill->ill_wq; 16083 } 16084 /* 16085 * If any error acks received during the plumbing sequence, 16086 * ill_ifname_pending_err will be set. Break out and send up 16087 * the error to the pending ioctl. 16088 */ 16089 if (ill->ill_ifname_pending_err != 0) { 16090 err = ill->ill_ifname_pending_err; 16091 ill->ill_ifname_pending_err = 0; 16092 break; 16093 } 16094 16095 ill->ill_phys_addr_mp = mp; 16096 ill->ill_phys_addr = mp->b_rptr + paddroff; 16097 mp = NULL; 16098 16099 /* 16100 * If paddrlen is zero, the DLPI provider doesn't support 16101 * physical addresses. The other two tests were historical 16102 * workarounds for bugs in our former PPP implementation, but 16103 * now other things have grown dependencies on them -- e.g., 16104 * the tun module specifies a dl_addr_length of zero in its 16105 * DL_BIND_ACK, but then specifies an incorrect value in its 16106 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16107 * but only after careful testing ensures that all dependent 16108 * broken DLPI providers have been fixed. 16109 */ 16110 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16111 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16112 ill->ill_phys_addr = NULL; 16113 } else if (paddrlen != ill->ill_phys_addr_length) { 16114 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16115 paddrlen, ill->ill_phys_addr_length)); 16116 err = EINVAL; 16117 break; 16118 } 16119 16120 if (ill->ill_nd_lla_mp == NULL) { 16121 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16122 err = ENOMEM; 16123 break; 16124 } 16125 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16126 } 16127 16128 /* 16129 * Set the interface token. If the zeroth interface address 16130 * is unspecified, then set it to the link local address. 16131 */ 16132 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16133 (void) ill_setdefaulttoken(ill); 16134 16135 ASSERT(ill->ill_ipif->ipif_id == 0); 16136 if (ipif != NULL && 16137 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16138 (void) ipif_setlinklocal(ipif); 16139 } 16140 break; 16141 } 16142 case DL_OK_ACK: 16143 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16144 dlpi_prim_str((int)dloa->dl_correct_primitive), 16145 dloa->dl_correct_primitive)); 16146 switch (dloa->dl_correct_primitive) { 16147 case DL_PROMISCON_REQ: 16148 case DL_PROMISCOFF_REQ: 16149 case DL_ENABMULTI_REQ: 16150 case DL_DISABMULTI_REQ: 16151 case DL_UNBIND_REQ: 16152 case DL_ATTACH_REQ: 16153 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16154 break; 16155 } 16156 break; 16157 default: 16158 break; 16159 } 16160 16161 freemsg(mp); 16162 if (mp1 != NULL) { 16163 /* 16164 * The operation must complete without EINPROGRESS 16165 * since ipsq_pending_mp_get() has removed the mblk 16166 * from ipsq_pending_mp. Otherwise, the operation 16167 * will be stuck forever in the ipsq. 16168 */ 16169 ASSERT(err != EINPROGRESS); 16170 16171 switch (ipsq->ipsq_current_ioctl) { 16172 case 0: 16173 ipsq_current_finish(ipsq); 16174 break; 16175 16176 case SIOCLIFADDIF: 16177 case SIOCSLIFNAME: 16178 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16179 break; 16180 16181 default: 16182 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16183 break; 16184 } 16185 } 16186 } 16187 16188 /* 16189 * ip_rput_other is called by ip_rput to handle messages modifying the global 16190 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16191 */ 16192 /* ARGSUSED */ 16193 void 16194 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16195 { 16196 ill_t *ill; 16197 struct iocblk *iocp; 16198 mblk_t *mp1; 16199 conn_t *connp = NULL; 16200 16201 ip1dbg(("ip_rput_other ")); 16202 ill = (ill_t *)q->q_ptr; 16203 /* 16204 * This routine is not a writer in the case of SIOCGTUNPARAM 16205 * in which case ipsq is NULL. 16206 */ 16207 if (ipsq != NULL) { 16208 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16209 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16210 } 16211 16212 switch (mp->b_datap->db_type) { 16213 case M_ERROR: 16214 case M_HANGUP: 16215 /* 16216 * The device has a problem. We force the ILL down. It can 16217 * be brought up again manually using SIOCSIFFLAGS (via 16218 * ifconfig or equivalent). 16219 */ 16220 ASSERT(ipsq != NULL); 16221 if (mp->b_rptr < mp->b_wptr) 16222 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16223 if (ill->ill_error == 0) 16224 ill->ill_error = ENXIO; 16225 if (!ill_down_start(q, mp)) 16226 return; 16227 ipif_all_down_tail(ipsq, q, mp, NULL); 16228 break; 16229 case M_IOCACK: 16230 iocp = (struct iocblk *)mp->b_rptr; 16231 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16232 switch (iocp->ioc_cmd) { 16233 case SIOCSTUNPARAM: 16234 case OSIOCSTUNPARAM: 16235 ASSERT(ipsq != NULL); 16236 /* 16237 * Finish socket ioctl passed through to tun. 16238 * We should have an IOCTL waiting on this. 16239 */ 16240 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16241 if (ill->ill_isv6) { 16242 struct iftun_req *ta; 16243 16244 /* 16245 * if a source or destination is 16246 * being set, try and set the link 16247 * local address for the tunnel 16248 */ 16249 ta = (struct iftun_req *)mp->b_cont-> 16250 b_cont->b_rptr; 16251 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16252 ipif_set_tun_llink(ill, ta); 16253 } 16254 16255 } 16256 if (mp1 != NULL) { 16257 /* 16258 * Now copy back the b_next/b_prev used by 16259 * mi code for the mi_copy* functions. 16260 * See ip_sioctl_tunparam() for the reason. 16261 * Also protect against missing b_cont. 16262 */ 16263 if (mp->b_cont != NULL) { 16264 mp->b_cont->b_next = 16265 mp1->b_cont->b_next; 16266 mp->b_cont->b_prev = 16267 mp1->b_cont->b_prev; 16268 } 16269 inet_freemsg(mp1); 16270 ASSERT(connp != NULL); 16271 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16272 iocp->ioc_error, NO_COPYOUT, ipsq); 16273 } else { 16274 ASSERT(connp == NULL); 16275 putnext(q, mp); 16276 } 16277 break; 16278 case SIOCGTUNPARAM: 16279 case OSIOCGTUNPARAM: 16280 /* 16281 * This is really M_IOCDATA from the tunnel driver. 16282 * convert back and complete the ioctl. 16283 * We should have an IOCTL waiting on this. 16284 */ 16285 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16286 if (mp1) { 16287 /* 16288 * Now copy back the b_next/b_prev used by 16289 * mi code for the mi_copy* functions. 16290 * See ip_sioctl_tunparam() for the reason. 16291 * Also protect against missing b_cont. 16292 */ 16293 if (mp->b_cont != NULL) { 16294 mp->b_cont->b_next = 16295 mp1->b_cont->b_next; 16296 mp->b_cont->b_prev = 16297 mp1->b_cont->b_prev; 16298 } 16299 inet_freemsg(mp1); 16300 if (iocp->ioc_error == 0) 16301 mp->b_datap->db_type = M_IOCDATA; 16302 ASSERT(connp != NULL); 16303 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16304 iocp->ioc_error, COPYOUT, NULL); 16305 } else { 16306 ASSERT(connp == NULL); 16307 putnext(q, mp); 16308 } 16309 break; 16310 default: 16311 break; 16312 } 16313 break; 16314 case M_IOCNAK: 16315 iocp = (struct iocblk *)mp->b_rptr; 16316 16317 switch (iocp->ioc_cmd) { 16318 int mode; 16319 16320 case DL_IOC_HDR_INFO: 16321 /* 16322 * If this was the first attempt turn of the 16323 * fastpath probing. 16324 */ 16325 mutex_enter(&ill->ill_lock); 16326 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16327 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16328 mutex_exit(&ill->ill_lock); 16329 ill_fastpath_nack(ill); 16330 ip1dbg(("ip_rput: DLPI fastpath off on " 16331 "interface %s\n", 16332 ill->ill_name)); 16333 } else { 16334 mutex_exit(&ill->ill_lock); 16335 } 16336 freemsg(mp); 16337 break; 16338 case SIOCSTUNPARAM: 16339 case OSIOCSTUNPARAM: 16340 ASSERT(ipsq != NULL); 16341 /* 16342 * Finish socket ioctl passed through to tun 16343 * We should have an IOCTL waiting on this. 16344 */ 16345 /* FALLTHRU */ 16346 case SIOCGTUNPARAM: 16347 case OSIOCGTUNPARAM: 16348 /* 16349 * This is really M_IOCDATA from the tunnel driver. 16350 * convert back and complete the ioctl. 16351 * We should have an IOCTL waiting on this. 16352 */ 16353 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16354 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16355 mp1 = ill_pending_mp_get(ill, &connp, 16356 iocp->ioc_id); 16357 mode = COPYOUT; 16358 ipsq = NULL; 16359 } else { 16360 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16361 mode = NO_COPYOUT; 16362 } 16363 if (mp1 != NULL) { 16364 /* 16365 * Now copy back the b_next/b_prev used by 16366 * mi code for the mi_copy* functions. 16367 * See ip_sioctl_tunparam() for the reason. 16368 * Also protect against missing b_cont. 16369 */ 16370 if (mp->b_cont != NULL) { 16371 mp->b_cont->b_next = 16372 mp1->b_cont->b_next; 16373 mp->b_cont->b_prev = 16374 mp1->b_cont->b_prev; 16375 } 16376 inet_freemsg(mp1); 16377 if (iocp->ioc_error == 0) 16378 iocp->ioc_error = EINVAL; 16379 ASSERT(connp != NULL); 16380 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16381 iocp->ioc_error, mode, ipsq); 16382 } else { 16383 ASSERT(connp == NULL); 16384 putnext(q, mp); 16385 } 16386 break; 16387 default: 16388 break; 16389 } 16390 default: 16391 break; 16392 } 16393 } 16394 16395 /* 16396 * NOTE : This function does not ire_refrele the ire argument passed in. 16397 * 16398 * IPQoS notes 16399 * IP policy is invoked twice for a forwarded packet, once on the read side 16400 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16401 * enabled. An additional parameter, in_ill, has been added for this purpose. 16402 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16403 * because ip_mroute drops this information. 16404 * 16405 */ 16406 void 16407 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16408 { 16409 uint32_t old_pkt_len; 16410 uint32_t pkt_len; 16411 queue_t *q; 16412 uint32_t sum; 16413 #define rptr ((uchar_t *)ipha) 16414 uint32_t max_frag; 16415 uint32_t ill_index; 16416 ill_t *out_ill; 16417 mib2_ipIfStatsEntry_t *mibptr; 16418 ip_stack_t *ipst = in_ill->ill_ipst; 16419 16420 /* Get the ill_index of the incoming ILL */ 16421 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16422 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16423 16424 /* Initiate Read side IPPF processing */ 16425 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16426 ip_process(IPP_FWD_IN, &mp, ill_index); 16427 if (mp == NULL) { 16428 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16429 "during IPPF processing\n")); 16430 return; 16431 } 16432 } 16433 16434 /* Adjust the checksum to reflect the ttl decrement. */ 16435 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16436 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16437 16438 if (ipha->ipha_ttl-- <= 1) { 16439 if (ip_csum_hdr(ipha)) { 16440 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16441 goto drop_pkt; 16442 } 16443 /* 16444 * Note: ire_stq this will be NULL for multicast 16445 * datagrams using the long path through arp (the IRE 16446 * is not an IRE_CACHE). This should not cause 16447 * problems since we don't generate ICMP errors for 16448 * multicast packets. 16449 */ 16450 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16451 q = ire->ire_stq; 16452 if (q != NULL) { 16453 /* Sent by forwarding path, and router is global zone */ 16454 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16455 GLOBAL_ZONEID, ipst); 16456 } else 16457 freemsg(mp); 16458 return; 16459 } 16460 16461 /* 16462 * Don't forward if the interface is down 16463 */ 16464 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16465 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16466 ip2dbg(("ip_rput_forward:interface is down\n")); 16467 goto drop_pkt; 16468 } 16469 16470 /* Get the ill_index of the outgoing ILL */ 16471 out_ill = ire_to_ill(ire); 16472 ill_index = out_ill->ill_phyint->phyint_ifindex; 16473 16474 DTRACE_PROBE4(ip4__forwarding__start, 16475 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16476 16477 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16478 ipst->ips_ipv4firewall_forwarding, 16479 in_ill, out_ill, ipha, mp, mp, ipst); 16480 16481 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16482 16483 if (mp == NULL) 16484 return; 16485 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16486 16487 if (is_system_labeled()) { 16488 mblk_t *mp1; 16489 16490 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16491 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16492 goto drop_pkt; 16493 } 16494 /* Size may have changed */ 16495 mp = mp1; 16496 ipha = (ipha_t *)mp->b_rptr; 16497 pkt_len = ntohs(ipha->ipha_length); 16498 } 16499 16500 /* Check if there are options to update */ 16501 if (!IS_SIMPLE_IPH(ipha)) { 16502 if (ip_csum_hdr(ipha)) { 16503 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16504 goto drop_pkt; 16505 } 16506 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16507 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16508 return; 16509 } 16510 16511 ipha->ipha_hdr_checksum = 0; 16512 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16513 } 16514 max_frag = ire->ire_max_frag; 16515 if (pkt_len > max_frag) { 16516 /* 16517 * It needs fragging on its way out. We haven't 16518 * verified the header checksum yet. Since we 16519 * are going to put a surely good checksum in the 16520 * outgoing header, we have to make sure that it 16521 * was good coming in. 16522 */ 16523 if (ip_csum_hdr(ipha)) { 16524 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16525 goto drop_pkt; 16526 } 16527 /* Initiate Write side IPPF processing */ 16528 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16529 ip_process(IPP_FWD_OUT, &mp, ill_index); 16530 if (mp == NULL) { 16531 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16532 " during IPPF processing\n")); 16533 return; 16534 } 16535 } 16536 /* 16537 * Handle labeled packet resizing. 16538 * 16539 * If we have added a label, inform ip_wput_frag() of its 16540 * effect on the MTU for ICMP messages. 16541 */ 16542 if (pkt_len > old_pkt_len) { 16543 uint32_t secopt_size; 16544 16545 secopt_size = pkt_len - old_pkt_len; 16546 if (secopt_size < max_frag) 16547 max_frag -= secopt_size; 16548 } 16549 16550 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16551 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16552 return; 16553 } 16554 16555 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16556 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16557 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16558 ipst->ips_ipv4firewall_physical_out, 16559 NULL, out_ill, ipha, mp, mp, ipst); 16560 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16561 if (mp == NULL) 16562 return; 16563 16564 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16565 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16566 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16567 /* ip_xmit_v4 always consumes the packet */ 16568 return; 16569 16570 drop_pkt:; 16571 ip1dbg(("ip_rput_forward: drop pkt\n")); 16572 freemsg(mp); 16573 #undef rptr 16574 } 16575 16576 void 16577 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16578 { 16579 ire_t *ire; 16580 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16581 16582 ASSERT(!ipif->ipif_isv6); 16583 /* 16584 * Find an IRE which matches the destination and the outgoing 16585 * queue in the cache table. All we need is an IRE_CACHE which 16586 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16587 * then it is enough to have some IRE_CACHE in the group. 16588 */ 16589 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16590 dst = ipif->ipif_pp_dst_addr; 16591 16592 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16593 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16594 if (ire == NULL) { 16595 /* 16596 * Mark this packet to make it be delivered to 16597 * ip_rput_forward after the new ire has been 16598 * created. 16599 */ 16600 mp->b_prev = NULL; 16601 mp->b_next = mp; 16602 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16603 NULL, 0, GLOBAL_ZONEID, &zero_info); 16604 } else { 16605 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16606 IRE_REFRELE(ire); 16607 } 16608 } 16609 16610 /* Update any source route, record route or timestamp options */ 16611 static int 16612 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16613 { 16614 ipoptp_t opts; 16615 uchar_t *opt; 16616 uint8_t optval; 16617 uint8_t optlen; 16618 ipaddr_t dst; 16619 uint32_t ts; 16620 ire_t *dst_ire = NULL; 16621 ire_t *tmp_ire = NULL; 16622 timestruc_t now; 16623 16624 ip2dbg(("ip_rput_forward_options\n")); 16625 dst = ipha->ipha_dst; 16626 for (optval = ipoptp_first(&opts, ipha); 16627 optval != IPOPT_EOL; 16628 optval = ipoptp_next(&opts)) { 16629 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16630 opt = opts.ipoptp_cur; 16631 optlen = opts.ipoptp_len; 16632 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16633 optval, opts.ipoptp_len)); 16634 switch (optval) { 16635 uint32_t off; 16636 case IPOPT_SSRR: 16637 case IPOPT_LSRR: 16638 /* Check if adminstratively disabled */ 16639 if (!ipst->ips_ip_forward_src_routed) { 16640 if (ire->ire_stq != NULL) { 16641 /* 16642 * Sent by forwarding path, and router 16643 * is global zone 16644 */ 16645 icmp_unreachable(ire->ire_stq, mp, 16646 ICMP_SOURCE_ROUTE_FAILED, 16647 GLOBAL_ZONEID, ipst); 16648 } else { 16649 ip0dbg(("ip_rput_forward_options: " 16650 "unable to send unreach\n")); 16651 freemsg(mp); 16652 } 16653 return (-1); 16654 } 16655 16656 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16657 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16658 if (dst_ire == NULL) { 16659 /* 16660 * Must be partial since ip_rput_options 16661 * checked for strict. 16662 */ 16663 break; 16664 } 16665 off = opt[IPOPT_OFFSET]; 16666 off--; 16667 redo_srr: 16668 if (optlen < IP_ADDR_LEN || 16669 off > optlen - IP_ADDR_LEN) { 16670 /* End of source route */ 16671 ip1dbg(( 16672 "ip_rput_forward_options: end of SR\n")); 16673 ire_refrele(dst_ire); 16674 break; 16675 } 16676 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16677 bcopy(&ire->ire_src_addr, (char *)opt + off, 16678 IP_ADDR_LEN); 16679 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16680 ntohl(dst))); 16681 16682 /* 16683 * Check if our address is present more than 16684 * once as consecutive hops in source route. 16685 */ 16686 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16687 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16688 if (tmp_ire != NULL) { 16689 ire_refrele(tmp_ire); 16690 off += IP_ADDR_LEN; 16691 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16692 goto redo_srr; 16693 } 16694 ipha->ipha_dst = dst; 16695 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16696 ire_refrele(dst_ire); 16697 break; 16698 case IPOPT_RR: 16699 off = opt[IPOPT_OFFSET]; 16700 off--; 16701 if (optlen < IP_ADDR_LEN || 16702 off > optlen - IP_ADDR_LEN) { 16703 /* No more room - ignore */ 16704 ip1dbg(( 16705 "ip_rput_forward_options: end of RR\n")); 16706 break; 16707 } 16708 bcopy(&ire->ire_src_addr, (char *)opt + off, 16709 IP_ADDR_LEN); 16710 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16711 break; 16712 case IPOPT_TS: 16713 /* Insert timestamp if there is room */ 16714 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16715 case IPOPT_TS_TSONLY: 16716 off = IPOPT_TS_TIMELEN; 16717 break; 16718 case IPOPT_TS_PRESPEC: 16719 case IPOPT_TS_PRESPEC_RFC791: 16720 /* Verify that the address matched */ 16721 off = opt[IPOPT_OFFSET] - 1; 16722 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16723 dst_ire = ire_ctable_lookup(dst, 0, 16724 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16725 MATCH_IRE_TYPE, ipst); 16726 if (dst_ire == NULL) { 16727 /* Not for us */ 16728 break; 16729 } 16730 ire_refrele(dst_ire); 16731 /* FALLTHRU */ 16732 case IPOPT_TS_TSANDADDR: 16733 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16734 break; 16735 default: 16736 /* 16737 * ip_*put_options should have already 16738 * dropped this packet. 16739 */ 16740 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16741 "unknown IT - bug in ip_rput_options?\n"); 16742 return (0); /* Keep "lint" happy */ 16743 } 16744 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16745 /* Increase overflow counter */ 16746 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16747 opt[IPOPT_POS_OV_FLG] = 16748 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16749 (off << 4)); 16750 break; 16751 } 16752 off = opt[IPOPT_OFFSET] - 1; 16753 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16754 case IPOPT_TS_PRESPEC: 16755 case IPOPT_TS_PRESPEC_RFC791: 16756 case IPOPT_TS_TSANDADDR: 16757 bcopy(&ire->ire_src_addr, 16758 (char *)opt + off, IP_ADDR_LEN); 16759 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16760 /* FALLTHRU */ 16761 case IPOPT_TS_TSONLY: 16762 off = opt[IPOPT_OFFSET] - 1; 16763 /* Compute # of milliseconds since midnight */ 16764 gethrestime(&now); 16765 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16766 now.tv_nsec / (NANOSEC / MILLISEC); 16767 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16768 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16769 break; 16770 } 16771 break; 16772 } 16773 } 16774 return (0); 16775 } 16776 16777 /* 16778 * This is called after processing at least one of AH/ESP headers. 16779 * 16780 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16781 * the actual, physical interface on which the packet was received, 16782 * but, when ip_strict_dst_multihoming is set to 1, could be the 16783 * interface which had the ipha_dst configured when the packet went 16784 * through ip_rput. The ill_index corresponding to the recv_ill 16785 * is saved in ipsec_in_rill_index 16786 * 16787 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16788 * cannot assume "ire" points to valid data for any IPv6 cases. 16789 */ 16790 void 16791 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16792 { 16793 mblk_t *mp; 16794 ipaddr_t dst; 16795 in6_addr_t *v6dstp; 16796 ipha_t *ipha; 16797 ip6_t *ip6h; 16798 ipsec_in_t *ii; 16799 boolean_t ill_need_rele = B_FALSE; 16800 boolean_t rill_need_rele = B_FALSE; 16801 boolean_t ire_need_rele = B_FALSE; 16802 netstack_t *ns; 16803 ip_stack_t *ipst; 16804 16805 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16806 ASSERT(ii->ipsec_in_ill_index != 0); 16807 ns = ii->ipsec_in_ns; 16808 ASSERT(ii->ipsec_in_ns != NULL); 16809 ipst = ns->netstack_ip; 16810 16811 mp = ipsec_mp->b_cont; 16812 ASSERT(mp != NULL); 16813 16814 16815 if (ill == NULL) { 16816 ASSERT(recv_ill == NULL); 16817 /* 16818 * We need to get the original queue on which ip_rput_local 16819 * or ip_rput_data_v6 was called. 16820 */ 16821 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16822 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16823 ill_need_rele = B_TRUE; 16824 16825 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16826 recv_ill = ill_lookup_on_ifindex( 16827 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16828 NULL, NULL, NULL, NULL, ipst); 16829 rill_need_rele = B_TRUE; 16830 } else { 16831 recv_ill = ill; 16832 } 16833 16834 if ((ill == NULL) || (recv_ill == NULL)) { 16835 ip0dbg(("ip_fanout_proto_again: interface " 16836 "disappeared\n")); 16837 if (ill != NULL) 16838 ill_refrele(ill); 16839 if (recv_ill != NULL) 16840 ill_refrele(recv_ill); 16841 freemsg(ipsec_mp); 16842 return; 16843 } 16844 } 16845 16846 ASSERT(ill != NULL && recv_ill != NULL); 16847 16848 if (mp->b_datap->db_type == M_CTL) { 16849 /* 16850 * AH/ESP is returning the ICMP message after 16851 * removing their headers. Fanout again till 16852 * it gets to the right protocol. 16853 */ 16854 if (ii->ipsec_in_v4) { 16855 icmph_t *icmph; 16856 int iph_hdr_length; 16857 int hdr_length; 16858 16859 ipha = (ipha_t *)mp->b_rptr; 16860 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16861 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16862 ipha = (ipha_t *)&icmph[1]; 16863 hdr_length = IPH_HDR_LENGTH(ipha); 16864 /* 16865 * icmp_inbound_error_fanout may need to do pullupmsg. 16866 * Reset the type to M_DATA. 16867 */ 16868 mp->b_datap->db_type = M_DATA; 16869 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16870 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16871 B_FALSE, ill, ii->ipsec_in_zoneid); 16872 } else { 16873 icmp6_t *icmp6; 16874 int hdr_length; 16875 16876 ip6h = (ip6_t *)mp->b_rptr; 16877 /* Don't call hdr_length_v6() unless you have to. */ 16878 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16879 hdr_length = ip_hdr_length_v6(mp, ip6h); 16880 else 16881 hdr_length = IPV6_HDR_LEN; 16882 16883 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16884 /* 16885 * icmp_inbound_error_fanout_v6 may need to do 16886 * pullupmsg. Reset the type to M_DATA. 16887 */ 16888 mp->b_datap->db_type = M_DATA; 16889 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16890 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16891 } 16892 if (ill_need_rele) 16893 ill_refrele(ill); 16894 if (rill_need_rele) 16895 ill_refrele(recv_ill); 16896 return; 16897 } 16898 16899 if (ii->ipsec_in_v4) { 16900 ipha = (ipha_t *)mp->b_rptr; 16901 dst = ipha->ipha_dst; 16902 if (CLASSD(dst)) { 16903 /* 16904 * Multicast has to be delivered to all streams. 16905 */ 16906 dst = INADDR_BROADCAST; 16907 } 16908 16909 if (ire == NULL) { 16910 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16911 MBLK_GETLABEL(mp), ipst); 16912 if (ire == NULL) { 16913 if (ill_need_rele) 16914 ill_refrele(ill); 16915 if (rill_need_rele) 16916 ill_refrele(recv_ill); 16917 ip1dbg(("ip_fanout_proto_again: " 16918 "IRE not found")); 16919 freemsg(ipsec_mp); 16920 return; 16921 } 16922 ire_need_rele = B_TRUE; 16923 } 16924 16925 switch (ipha->ipha_protocol) { 16926 case IPPROTO_UDP: 16927 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16928 recv_ill); 16929 if (ire_need_rele) 16930 ire_refrele(ire); 16931 break; 16932 case IPPROTO_TCP: 16933 if (!ire_need_rele) 16934 IRE_REFHOLD(ire); 16935 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16936 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16937 IRE_REFRELE(ire); 16938 if (mp != NULL) 16939 squeue_enter_chain(GET_SQUEUE(mp), mp, 16940 mp, 1, SQTAG_IP_PROTO_AGAIN); 16941 break; 16942 case IPPROTO_SCTP: 16943 if (!ire_need_rele) 16944 IRE_REFHOLD(ire); 16945 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16946 ipsec_mp, 0, ill->ill_rq, dst); 16947 break; 16948 default: 16949 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16950 recv_ill, B_FALSE); 16951 if (ire_need_rele) 16952 ire_refrele(ire); 16953 break; 16954 } 16955 } else { 16956 uint32_t rput_flags = 0; 16957 16958 ip6h = (ip6_t *)mp->b_rptr; 16959 v6dstp = &ip6h->ip6_dst; 16960 /* 16961 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16962 * address. 16963 * 16964 * Currently, we don't store that state in the IPSEC_IN 16965 * message, and we may need to. 16966 */ 16967 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16968 IP6_IN_LLMCAST : 0); 16969 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16970 NULL, NULL); 16971 } 16972 if (ill_need_rele) 16973 ill_refrele(ill); 16974 if (rill_need_rele) 16975 ill_refrele(recv_ill); 16976 } 16977 16978 /* 16979 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16980 * returns 'true' if there are still fragments left on the queue, in 16981 * which case we restart the timer. 16982 */ 16983 void 16984 ill_frag_timer(void *arg) 16985 { 16986 ill_t *ill = (ill_t *)arg; 16987 boolean_t frag_pending; 16988 ip_stack_t *ipst = ill->ill_ipst; 16989 16990 mutex_enter(&ill->ill_lock); 16991 ASSERT(!ill->ill_fragtimer_executing); 16992 if (ill->ill_state_flags & ILL_CONDEMNED) { 16993 ill->ill_frag_timer_id = 0; 16994 mutex_exit(&ill->ill_lock); 16995 return; 16996 } 16997 ill->ill_fragtimer_executing = 1; 16998 mutex_exit(&ill->ill_lock); 16999 17000 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17001 17002 /* 17003 * Restart the timer, if we have fragments pending or if someone 17004 * wanted us to be scheduled again. 17005 */ 17006 mutex_enter(&ill->ill_lock); 17007 ill->ill_fragtimer_executing = 0; 17008 ill->ill_frag_timer_id = 0; 17009 if (frag_pending || ill->ill_fragtimer_needrestart) 17010 ill_frag_timer_start(ill); 17011 mutex_exit(&ill->ill_lock); 17012 } 17013 17014 void 17015 ill_frag_timer_start(ill_t *ill) 17016 { 17017 ip_stack_t *ipst = ill->ill_ipst; 17018 17019 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17020 17021 /* If the ill is closing or opening don't proceed */ 17022 if (ill->ill_state_flags & ILL_CONDEMNED) 17023 return; 17024 17025 if (ill->ill_fragtimer_executing) { 17026 /* 17027 * ill_frag_timer is currently executing. Just record the 17028 * the fact that we want the timer to be restarted. 17029 * ill_frag_timer will post a timeout before it returns, 17030 * ensuring it will be called again. 17031 */ 17032 ill->ill_fragtimer_needrestart = 1; 17033 return; 17034 } 17035 17036 if (ill->ill_frag_timer_id == 0) { 17037 /* 17038 * The timer is neither running nor is the timeout handler 17039 * executing. Post a timeout so that ill_frag_timer will be 17040 * called 17041 */ 17042 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17043 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17044 ill->ill_fragtimer_needrestart = 0; 17045 } 17046 } 17047 17048 /* 17049 * This routine is needed for loopback when forwarding multicasts. 17050 * 17051 * IPQoS Notes: 17052 * IPPF processing is done in fanout routines. 17053 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17054 * processing for IPsec packets is done when it comes back in clear. 17055 * NOTE : The callers of this function need to do the ire_refrele for the 17056 * ire that is being passed in. 17057 */ 17058 void 17059 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17060 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17061 { 17062 ill_t *ill = (ill_t *)q->q_ptr; 17063 uint32_t sum; 17064 uint32_t u1; 17065 uint32_t u2; 17066 int hdr_length; 17067 boolean_t mctl_present; 17068 mblk_t *first_mp = mp; 17069 mblk_t *hada_mp = NULL; 17070 ipha_t *inner_ipha; 17071 ip_stack_t *ipst; 17072 17073 ASSERT(recv_ill != NULL); 17074 ipst = recv_ill->ill_ipst; 17075 17076 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17077 "ip_rput_locl_start: q %p", q); 17078 17079 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17080 ASSERT(ill != NULL); 17081 17082 17083 #define rptr ((uchar_t *)ipha) 17084 #define iphs ((uint16_t *)ipha) 17085 17086 /* 17087 * no UDP or TCP packet should come here anymore. 17088 */ 17089 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17090 ipha->ipha_protocol != IPPROTO_UDP); 17091 17092 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17093 if (mctl_present && 17094 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17095 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17096 17097 /* 17098 * It's an IPsec accelerated packet. 17099 * Keep a pointer to the data attributes around until 17100 * we allocate the ipsec_info_t. 17101 */ 17102 IPSECHW_DEBUG(IPSECHW_PKT, 17103 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17104 hada_mp = first_mp; 17105 hada_mp->b_cont = NULL; 17106 /* 17107 * Since it is accelerated, it comes directly from 17108 * the ill and the data attributes is followed by 17109 * the packet data. 17110 */ 17111 ASSERT(mp->b_datap->db_type != M_CTL); 17112 first_mp = mp; 17113 mctl_present = B_FALSE; 17114 } 17115 17116 /* 17117 * IF M_CTL is not present, then ipsec_in_is_secure 17118 * should return B_TRUE. There is a case where loopback 17119 * packets has an M_CTL in the front with all the 17120 * IPsec options set to IPSEC_PREF_NEVER - which means 17121 * ipsec_in_is_secure will return B_FALSE. As loopback 17122 * packets never comes here, it is safe to ASSERT the 17123 * following. 17124 */ 17125 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17126 17127 /* 17128 * Also, we should never have an mctl_present if this is an 17129 * ESP-in-UDP packet. 17130 */ 17131 ASSERT(!mctl_present || !esp_in_udp_packet); 17132 17133 17134 /* u1 is # words of IP options */ 17135 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17136 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17137 17138 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17139 if (u1) { 17140 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17141 if (hada_mp != NULL) 17142 freemsg(hada_mp); 17143 return; 17144 } 17145 } else { 17146 /* Check the IP header checksum. */ 17147 #define uph ((uint16_t *)ipha) 17148 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17149 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17150 #undef uph 17151 /* finish doing IP checksum */ 17152 sum = (sum & 0xFFFF) + (sum >> 16); 17153 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17154 if (sum && sum != 0xFFFF) { 17155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17156 goto drop_pkt; 17157 } 17158 } 17159 } 17160 17161 /* 17162 * Count for SNMP of inbound packets for ire. As ip_proto_input 17163 * might be called more than once for secure packets, count only 17164 * the first time. 17165 */ 17166 if (!mctl_present) { 17167 UPDATE_IB_PKT_COUNT(ire); 17168 ire->ire_last_used_time = lbolt; 17169 } 17170 17171 /* Check for fragmentation offset. */ 17172 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17173 u1 = u2 & (IPH_MF | IPH_OFFSET); 17174 if (u1) { 17175 /* 17176 * We re-assemble fragments before we do the AH/ESP 17177 * processing. Thus, M_CTL should not be present 17178 * while we are re-assembling. 17179 */ 17180 ASSERT(!mctl_present); 17181 ASSERT(first_mp == mp); 17182 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17183 return; 17184 } 17185 /* 17186 * Make sure that first_mp points back to mp as 17187 * the mp we came in with could have changed in 17188 * ip_rput_fragment(). 17189 */ 17190 ipha = (ipha_t *)mp->b_rptr; 17191 first_mp = mp; 17192 } 17193 17194 /* 17195 * Clear hardware checksumming flag as it is currently only 17196 * used by TCP and UDP. 17197 */ 17198 DB_CKSUMFLAGS(mp) = 0; 17199 17200 /* Now we have a complete datagram, destined for this machine. */ 17201 u1 = IPH_HDR_LENGTH(ipha); 17202 switch (ipha->ipha_protocol) { 17203 case IPPROTO_ICMP: { 17204 ire_t *ire_zone; 17205 ilm_t *ilm; 17206 mblk_t *mp1; 17207 zoneid_t last_zoneid; 17208 17209 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17210 ASSERT(ire->ire_type == IRE_BROADCAST); 17211 /* 17212 * In the multicast case, applications may have joined 17213 * the group from different zones, so we need to deliver 17214 * the packet to each of them. Loop through the 17215 * multicast memberships structures (ilm) on the receive 17216 * ill and send a copy of the packet up each matching 17217 * one. However, we don't do this for multicasts sent on 17218 * the loopback interface (PHYI_LOOPBACK flag set) as 17219 * they must stay in the sender's zone. 17220 * 17221 * ilm_add_v6() ensures that ilms in the same zone are 17222 * contiguous in the ill_ilm list. We use this property 17223 * to avoid sending duplicates needed when two 17224 * applications in the same zone join the same group on 17225 * different logical interfaces: we ignore the ilm if 17226 * its zoneid is the same as the last matching one. 17227 * In addition, the sending of the packet for 17228 * ire_zoneid is delayed until all of the other ilms 17229 * have been exhausted. 17230 */ 17231 last_zoneid = -1; 17232 ILM_WALKER_HOLD(recv_ill); 17233 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17234 ilm = ilm->ilm_next) { 17235 if ((ilm->ilm_flags & ILM_DELETED) || 17236 ipha->ipha_dst != ilm->ilm_addr || 17237 ilm->ilm_zoneid == last_zoneid || 17238 ilm->ilm_zoneid == ire->ire_zoneid || 17239 ilm->ilm_zoneid == ALL_ZONES || 17240 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17241 continue; 17242 mp1 = ip_copymsg(first_mp); 17243 if (mp1 == NULL) 17244 continue; 17245 icmp_inbound(q, mp1, B_TRUE, ill, 17246 0, sum, mctl_present, B_TRUE, 17247 recv_ill, ilm->ilm_zoneid); 17248 last_zoneid = ilm->ilm_zoneid; 17249 } 17250 ILM_WALKER_RELE(recv_ill); 17251 } else if (ire->ire_type == IRE_BROADCAST) { 17252 /* 17253 * In the broadcast case, there may be many zones 17254 * which need a copy of the packet delivered to them. 17255 * There is one IRE_BROADCAST per broadcast address 17256 * and per zone; we walk those using a helper function. 17257 * In addition, the sending of the packet for ire is 17258 * delayed until all of the other ires have been 17259 * processed. 17260 */ 17261 IRB_REFHOLD(ire->ire_bucket); 17262 ire_zone = NULL; 17263 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17264 ire)) != NULL) { 17265 mp1 = ip_copymsg(first_mp); 17266 if (mp1 == NULL) 17267 continue; 17268 17269 UPDATE_IB_PKT_COUNT(ire_zone); 17270 ire_zone->ire_last_used_time = lbolt; 17271 icmp_inbound(q, mp1, B_TRUE, ill, 17272 0, sum, mctl_present, B_TRUE, 17273 recv_ill, ire_zone->ire_zoneid); 17274 } 17275 IRB_REFRELE(ire->ire_bucket); 17276 } 17277 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17278 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17279 ire->ire_zoneid); 17280 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17281 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17282 return; 17283 } 17284 case IPPROTO_IGMP: 17285 /* 17286 * If we are not willing to accept IGMP packets in clear, 17287 * then check with global policy. 17288 */ 17289 if (ipst->ips_igmp_accept_clear_messages == 0) { 17290 first_mp = ipsec_check_global_policy(first_mp, NULL, 17291 ipha, NULL, mctl_present, ipst->ips_netstack); 17292 if (first_mp == NULL) 17293 return; 17294 } 17295 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17296 freemsg(first_mp); 17297 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17299 return; 17300 } 17301 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17302 /* Bad packet - discarded by igmp_input */ 17303 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17304 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17305 if (mctl_present) 17306 freeb(first_mp); 17307 return; 17308 } 17309 /* 17310 * igmp_input() may have returned the pulled up message. 17311 * So first_mp and ipha need to be reinitialized. 17312 */ 17313 ipha = (ipha_t *)mp->b_rptr; 17314 if (mctl_present) 17315 first_mp->b_cont = mp; 17316 else 17317 first_mp = mp; 17318 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17319 connf_head != NULL) { 17320 /* No user-level listener for IGMP packets */ 17321 goto drop_pkt; 17322 } 17323 /* deliver to local raw users */ 17324 break; 17325 case IPPROTO_PIM: 17326 /* 17327 * If we are not willing to accept PIM packets in clear, 17328 * then check with global policy. 17329 */ 17330 if (ipst->ips_pim_accept_clear_messages == 0) { 17331 first_mp = ipsec_check_global_policy(first_mp, NULL, 17332 ipha, NULL, mctl_present, ipst->ips_netstack); 17333 if (first_mp == NULL) 17334 return; 17335 } 17336 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17337 freemsg(first_mp); 17338 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17340 return; 17341 } 17342 if (pim_input(q, mp, ill) != 0) { 17343 /* Bad packet - discarded by pim_input */ 17344 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17345 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17346 if (mctl_present) 17347 freeb(first_mp); 17348 return; 17349 } 17350 17351 /* 17352 * pim_input() may have pulled up the message so ipha needs to 17353 * be reinitialized. 17354 */ 17355 ipha = (ipha_t *)mp->b_rptr; 17356 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17357 connf_head != NULL) { 17358 /* No user-level listener for PIM packets */ 17359 goto drop_pkt; 17360 } 17361 /* deliver to local raw users */ 17362 break; 17363 case IPPROTO_ENCAP: 17364 /* 17365 * Handle self-encapsulated packets (IP-in-IP where 17366 * the inner addresses == the outer addresses). 17367 */ 17368 hdr_length = IPH_HDR_LENGTH(ipha); 17369 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17370 mp->b_wptr) { 17371 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17372 sizeof (ipha_t) - mp->b_rptr)) { 17373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17374 freemsg(first_mp); 17375 return; 17376 } 17377 ipha = (ipha_t *)mp->b_rptr; 17378 } 17379 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17380 /* 17381 * Check the sanity of the inner IP header. 17382 */ 17383 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17385 freemsg(first_mp); 17386 return; 17387 } 17388 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17389 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17390 freemsg(first_mp); 17391 return; 17392 } 17393 if (inner_ipha->ipha_src == ipha->ipha_src && 17394 inner_ipha->ipha_dst == ipha->ipha_dst) { 17395 ipsec_in_t *ii; 17396 17397 /* 17398 * Self-encapsulated tunnel packet. Remove 17399 * the outer IP header and fanout again. 17400 * We also need to make sure that the inner 17401 * header is pulled up until options. 17402 */ 17403 mp->b_rptr = (uchar_t *)inner_ipha; 17404 ipha = inner_ipha; 17405 hdr_length = IPH_HDR_LENGTH(ipha); 17406 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17407 if (!pullupmsg(mp, (uchar_t *)ipha + 17408 + hdr_length - mp->b_rptr)) { 17409 freemsg(first_mp); 17410 return; 17411 } 17412 ipha = (ipha_t *)mp->b_rptr; 17413 } 17414 if (!mctl_present) { 17415 ASSERT(first_mp == mp); 17416 /* 17417 * This means that somebody is sending 17418 * Self-encapsualted packets without AH/ESP. 17419 * If AH/ESP was present, we would have already 17420 * allocated the first_mp. 17421 */ 17422 first_mp = ipsec_in_alloc(B_TRUE, 17423 ipst->ips_netstack); 17424 if (first_mp == NULL) { 17425 ip1dbg(("ip_proto_input: IPSEC_IN " 17426 "allocation failure.\n")); 17427 BUMP_MIB(ill->ill_ip_mib, 17428 ipIfStatsInDiscards); 17429 freemsg(mp); 17430 return; 17431 } 17432 first_mp->b_cont = mp; 17433 } 17434 /* 17435 * We generally store the ill_index if we need to 17436 * do IPsec processing as we lose the ill queue when 17437 * we come back. But in this case, we never should 17438 * have to store the ill_index here as it should have 17439 * been stored previously when we processed the 17440 * AH/ESP header in this routine or for non-ipsec 17441 * cases, we still have the queue. But for some bad 17442 * packets from the wire, we can get to IPsec after 17443 * this and we better store the index for that case. 17444 */ 17445 ill = (ill_t *)q->q_ptr; 17446 ii = (ipsec_in_t *)first_mp->b_rptr; 17447 ii->ipsec_in_ill_index = 17448 ill->ill_phyint->phyint_ifindex; 17449 ii->ipsec_in_rill_index = 17450 recv_ill->ill_phyint->phyint_ifindex; 17451 if (ii->ipsec_in_decaps) { 17452 /* 17453 * This packet is self-encapsulated multiple 17454 * times. We don't want to recurse infinitely. 17455 * To keep it simple, drop the packet. 17456 */ 17457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17458 freemsg(first_mp); 17459 return; 17460 } 17461 ii->ipsec_in_decaps = B_TRUE; 17462 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17463 ire); 17464 return; 17465 } 17466 break; 17467 case IPPROTO_AH: 17468 case IPPROTO_ESP: { 17469 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17470 17471 /* 17472 * Fast path for AH/ESP. If this is the first time 17473 * we are sending a datagram to AH/ESP, allocate 17474 * a IPSEC_IN message and prepend it. Otherwise, 17475 * just fanout. 17476 */ 17477 17478 int ipsec_rc; 17479 ipsec_in_t *ii; 17480 netstack_t *ns = ipst->ips_netstack; 17481 17482 IP_STAT(ipst, ipsec_proto_ahesp); 17483 if (!mctl_present) { 17484 ASSERT(first_mp == mp); 17485 first_mp = ipsec_in_alloc(B_TRUE, ns); 17486 if (first_mp == NULL) { 17487 ip1dbg(("ip_proto_input: IPSEC_IN " 17488 "allocation failure.\n")); 17489 freemsg(hada_mp); /* okay ifnull */ 17490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17491 freemsg(mp); 17492 return; 17493 } 17494 /* 17495 * Store the ill_index so that when we come back 17496 * from IPsec we ride on the same queue. 17497 */ 17498 ill = (ill_t *)q->q_ptr; 17499 ii = (ipsec_in_t *)first_mp->b_rptr; 17500 ii->ipsec_in_ill_index = 17501 ill->ill_phyint->phyint_ifindex; 17502 ii->ipsec_in_rill_index = 17503 recv_ill->ill_phyint->phyint_ifindex; 17504 first_mp->b_cont = mp; 17505 /* 17506 * Cache hardware acceleration info. 17507 */ 17508 if (hada_mp != NULL) { 17509 IPSECHW_DEBUG(IPSECHW_PKT, 17510 ("ip_rput_local: caching data attr.\n")); 17511 ii->ipsec_in_accelerated = B_TRUE; 17512 ii->ipsec_in_da = hada_mp; 17513 hada_mp = NULL; 17514 } 17515 } else { 17516 ii = (ipsec_in_t *)first_mp->b_rptr; 17517 } 17518 17519 if (!ipsec_loaded(ipss)) { 17520 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17521 ire->ire_zoneid, ipst); 17522 return; 17523 } 17524 17525 ns = ipst->ips_netstack; 17526 /* select inbound SA and have IPsec process the pkt */ 17527 if (ipha->ipha_protocol == IPPROTO_ESP) { 17528 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17529 boolean_t esp_in_udp_sa; 17530 if (esph == NULL) 17531 return; 17532 ASSERT(ii->ipsec_in_esp_sa != NULL); 17533 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17534 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17535 IPSA_F_NATT) != 0); 17536 /* 17537 * The following is a fancy, but quick, way of saying: 17538 * ESP-in-UDP SA and Raw ESP packet --> drop 17539 * OR 17540 * ESP SA and ESP-in-UDP packet --> drop 17541 */ 17542 if (esp_in_udp_sa != esp_in_udp_packet) { 17543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17544 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17545 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17546 &ns->netstack_ipsec->ipsec_dropper); 17547 return; 17548 } 17549 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17550 first_mp, esph); 17551 } else { 17552 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17553 if (ah == NULL) 17554 return; 17555 ASSERT(ii->ipsec_in_ah_sa != NULL); 17556 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17557 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17558 first_mp, ah); 17559 } 17560 17561 switch (ipsec_rc) { 17562 case IPSEC_STATUS_SUCCESS: 17563 break; 17564 case IPSEC_STATUS_FAILED: 17565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17566 /* FALLTHRU */ 17567 case IPSEC_STATUS_PENDING: 17568 return; 17569 } 17570 /* we're done with IPsec processing, send it up */ 17571 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17572 return; 17573 } 17574 default: 17575 break; 17576 } 17577 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17578 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17579 ire->ire_zoneid)); 17580 goto drop_pkt; 17581 } 17582 /* 17583 * Handle protocols with which IP is less intimate. There 17584 * can be more than one stream bound to a particular 17585 * protocol. When this is the case, each one gets a copy 17586 * of any incoming packets. 17587 */ 17588 ip_fanout_proto(q, first_mp, ill, ipha, 17589 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17590 B_TRUE, recv_ill, ire->ire_zoneid); 17591 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17592 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17593 return; 17594 17595 drop_pkt: 17596 freemsg(first_mp); 17597 if (hada_mp != NULL) 17598 freeb(hada_mp); 17599 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17600 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17601 #undef rptr 17602 #undef iphs 17603 17604 } 17605 17606 /* 17607 * Update any source route, record route or timestamp options. 17608 * Check that we are at end of strict source route. 17609 * The options have already been checked for sanity in ip_rput_options(). 17610 */ 17611 static boolean_t 17612 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17613 ip_stack_t *ipst) 17614 { 17615 ipoptp_t opts; 17616 uchar_t *opt; 17617 uint8_t optval; 17618 uint8_t optlen; 17619 ipaddr_t dst; 17620 uint32_t ts; 17621 ire_t *dst_ire; 17622 timestruc_t now; 17623 zoneid_t zoneid; 17624 ill_t *ill; 17625 17626 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17627 17628 ip2dbg(("ip_rput_local_options\n")); 17629 17630 for (optval = ipoptp_first(&opts, ipha); 17631 optval != IPOPT_EOL; 17632 optval = ipoptp_next(&opts)) { 17633 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17634 opt = opts.ipoptp_cur; 17635 optlen = opts.ipoptp_len; 17636 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17637 optval, optlen)); 17638 switch (optval) { 17639 uint32_t off; 17640 case IPOPT_SSRR: 17641 case IPOPT_LSRR: 17642 off = opt[IPOPT_OFFSET]; 17643 off--; 17644 if (optlen < IP_ADDR_LEN || 17645 off > optlen - IP_ADDR_LEN) { 17646 /* End of source route */ 17647 ip1dbg(("ip_rput_local_options: end of SR\n")); 17648 break; 17649 } 17650 /* 17651 * This will only happen if two consecutive entries 17652 * in the source route contains our address or if 17653 * it is a packet with a loose source route which 17654 * reaches us before consuming the whole source route 17655 */ 17656 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17657 if (optval == IPOPT_SSRR) { 17658 goto bad_src_route; 17659 } 17660 /* 17661 * Hack: instead of dropping the packet truncate the 17662 * source route to what has been used by filling the 17663 * rest with IPOPT_NOP. 17664 */ 17665 opt[IPOPT_OLEN] = (uint8_t)off; 17666 while (off < optlen) { 17667 opt[off++] = IPOPT_NOP; 17668 } 17669 break; 17670 case IPOPT_RR: 17671 off = opt[IPOPT_OFFSET]; 17672 off--; 17673 if (optlen < IP_ADDR_LEN || 17674 off > optlen - IP_ADDR_LEN) { 17675 /* No more room - ignore */ 17676 ip1dbg(( 17677 "ip_rput_local_options: end of RR\n")); 17678 break; 17679 } 17680 bcopy(&ire->ire_src_addr, (char *)opt + off, 17681 IP_ADDR_LEN); 17682 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17683 break; 17684 case IPOPT_TS: 17685 /* Insert timestamp if there is romm */ 17686 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17687 case IPOPT_TS_TSONLY: 17688 off = IPOPT_TS_TIMELEN; 17689 break; 17690 case IPOPT_TS_PRESPEC: 17691 case IPOPT_TS_PRESPEC_RFC791: 17692 /* Verify that the address matched */ 17693 off = opt[IPOPT_OFFSET] - 1; 17694 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17695 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17696 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17697 ipst); 17698 if (dst_ire == NULL) { 17699 /* Not for us */ 17700 break; 17701 } 17702 ire_refrele(dst_ire); 17703 /* FALLTHRU */ 17704 case IPOPT_TS_TSANDADDR: 17705 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17706 break; 17707 default: 17708 /* 17709 * ip_*put_options should have already 17710 * dropped this packet. 17711 */ 17712 cmn_err(CE_PANIC, "ip_rput_local_options: " 17713 "unknown IT - bug in ip_rput_options?\n"); 17714 return (B_TRUE); /* Keep "lint" happy */ 17715 } 17716 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17717 /* Increase overflow counter */ 17718 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17719 opt[IPOPT_POS_OV_FLG] = 17720 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17721 (off << 4)); 17722 break; 17723 } 17724 off = opt[IPOPT_OFFSET] - 1; 17725 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17726 case IPOPT_TS_PRESPEC: 17727 case IPOPT_TS_PRESPEC_RFC791: 17728 case IPOPT_TS_TSANDADDR: 17729 bcopy(&ire->ire_src_addr, (char *)opt + off, 17730 IP_ADDR_LEN); 17731 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17732 /* FALLTHRU */ 17733 case IPOPT_TS_TSONLY: 17734 off = opt[IPOPT_OFFSET] - 1; 17735 /* Compute # of milliseconds since midnight */ 17736 gethrestime(&now); 17737 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17738 now.tv_nsec / (NANOSEC / MILLISEC); 17739 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17740 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17741 break; 17742 } 17743 break; 17744 } 17745 } 17746 return (B_TRUE); 17747 17748 bad_src_route: 17749 q = WR(q); 17750 if (q->q_next != NULL) 17751 ill = q->q_ptr; 17752 else 17753 ill = NULL; 17754 17755 /* make sure we clear any indication of a hardware checksum */ 17756 DB_CKSUMFLAGS(mp) = 0; 17757 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17758 if (zoneid == ALL_ZONES) 17759 freemsg(mp); 17760 else 17761 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17762 return (B_FALSE); 17763 17764 } 17765 17766 /* 17767 * Process IP options in an inbound packet. If an option affects the 17768 * effective destination address, return the next hop address via dstp. 17769 * Returns -1 if something fails in which case an ICMP error has been sent 17770 * and mp freed. 17771 */ 17772 static int 17773 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17774 ip_stack_t *ipst) 17775 { 17776 ipoptp_t opts; 17777 uchar_t *opt; 17778 uint8_t optval; 17779 uint8_t optlen; 17780 ipaddr_t dst; 17781 intptr_t code = 0; 17782 ire_t *ire = NULL; 17783 zoneid_t zoneid; 17784 ill_t *ill; 17785 17786 ip2dbg(("ip_rput_options\n")); 17787 dst = ipha->ipha_dst; 17788 for (optval = ipoptp_first(&opts, ipha); 17789 optval != IPOPT_EOL; 17790 optval = ipoptp_next(&opts)) { 17791 opt = opts.ipoptp_cur; 17792 optlen = opts.ipoptp_len; 17793 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17794 optval, optlen)); 17795 /* 17796 * Note: we need to verify the checksum before we 17797 * modify anything thus this routine only extracts the next 17798 * hop dst from any source route. 17799 */ 17800 switch (optval) { 17801 uint32_t off; 17802 case IPOPT_SSRR: 17803 case IPOPT_LSRR: 17804 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17805 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17806 if (ire == NULL) { 17807 if (optval == IPOPT_SSRR) { 17808 ip1dbg(("ip_rput_options: not next" 17809 " strict source route 0x%x\n", 17810 ntohl(dst))); 17811 code = (char *)&ipha->ipha_dst - 17812 (char *)ipha; 17813 goto param_prob; /* RouterReq's */ 17814 } 17815 ip2dbg(("ip_rput_options: " 17816 "not next source route 0x%x\n", 17817 ntohl(dst))); 17818 break; 17819 } 17820 ire_refrele(ire); 17821 17822 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17823 ip1dbg(( 17824 "ip_rput_options: bad option offset\n")); 17825 code = (char *)&opt[IPOPT_OLEN] - 17826 (char *)ipha; 17827 goto param_prob; 17828 } 17829 off = opt[IPOPT_OFFSET]; 17830 off--; 17831 redo_srr: 17832 if (optlen < IP_ADDR_LEN || 17833 off > optlen - IP_ADDR_LEN) { 17834 /* End of source route */ 17835 ip1dbg(("ip_rput_options: end of SR\n")); 17836 break; 17837 } 17838 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17839 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17840 ntohl(dst))); 17841 17842 /* 17843 * Check if our address is present more than 17844 * once as consecutive hops in source route. 17845 * XXX verify per-interface ip_forwarding 17846 * for source route? 17847 */ 17848 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17849 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17850 17851 if (ire != NULL) { 17852 ire_refrele(ire); 17853 off += IP_ADDR_LEN; 17854 goto redo_srr; 17855 } 17856 17857 if (dst == htonl(INADDR_LOOPBACK)) { 17858 ip1dbg(("ip_rput_options: loopback addr in " 17859 "source route!\n")); 17860 goto bad_src_route; 17861 } 17862 /* 17863 * For strict: verify that dst is directly 17864 * reachable. 17865 */ 17866 if (optval == IPOPT_SSRR) { 17867 ire = ire_ftable_lookup(dst, 0, 0, 17868 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17869 MBLK_GETLABEL(mp), 17870 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17871 if (ire == NULL) { 17872 ip1dbg(("ip_rput_options: SSRR not " 17873 "directly reachable: 0x%x\n", 17874 ntohl(dst))); 17875 goto bad_src_route; 17876 } 17877 ire_refrele(ire); 17878 } 17879 /* 17880 * Defer update of the offset and the record route 17881 * until the packet is forwarded. 17882 */ 17883 break; 17884 case IPOPT_RR: 17885 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17886 ip1dbg(( 17887 "ip_rput_options: bad option offset\n")); 17888 code = (char *)&opt[IPOPT_OLEN] - 17889 (char *)ipha; 17890 goto param_prob; 17891 } 17892 break; 17893 case IPOPT_TS: 17894 /* 17895 * Verify that length >= 5 and that there is either 17896 * room for another timestamp or that the overflow 17897 * counter is not maxed out. 17898 */ 17899 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17900 if (optlen < IPOPT_MINLEN_IT) { 17901 goto param_prob; 17902 } 17903 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17904 ip1dbg(( 17905 "ip_rput_options: bad option offset\n")); 17906 code = (char *)&opt[IPOPT_OFFSET] - 17907 (char *)ipha; 17908 goto param_prob; 17909 } 17910 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17911 case IPOPT_TS_TSONLY: 17912 off = IPOPT_TS_TIMELEN; 17913 break; 17914 case IPOPT_TS_TSANDADDR: 17915 case IPOPT_TS_PRESPEC: 17916 case IPOPT_TS_PRESPEC_RFC791: 17917 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17918 break; 17919 default: 17920 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17921 (char *)ipha; 17922 goto param_prob; 17923 } 17924 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17925 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17926 /* 17927 * No room and the overflow counter is 15 17928 * already. 17929 */ 17930 goto param_prob; 17931 } 17932 break; 17933 } 17934 } 17935 17936 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17937 *dstp = dst; 17938 return (0); 17939 } 17940 17941 ip1dbg(("ip_rput_options: error processing IP options.")); 17942 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17943 17944 param_prob: 17945 q = WR(q); 17946 if (q->q_next != NULL) 17947 ill = q->q_ptr; 17948 else 17949 ill = NULL; 17950 17951 /* make sure we clear any indication of a hardware checksum */ 17952 DB_CKSUMFLAGS(mp) = 0; 17953 /* Don't know whether this is for non-global or global/forwarding */ 17954 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17955 if (zoneid == ALL_ZONES) 17956 freemsg(mp); 17957 else 17958 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17959 return (-1); 17960 17961 bad_src_route: 17962 q = WR(q); 17963 if (q->q_next != NULL) 17964 ill = q->q_ptr; 17965 else 17966 ill = NULL; 17967 17968 /* make sure we clear any indication of a hardware checksum */ 17969 DB_CKSUMFLAGS(mp) = 0; 17970 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17971 if (zoneid == ALL_ZONES) 17972 freemsg(mp); 17973 else 17974 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17975 return (-1); 17976 } 17977 17978 /* 17979 * IP & ICMP info in >=14 msg's ... 17980 * - ip fixed part (mib2_ip_t) 17981 * - icmp fixed part (mib2_icmp_t) 17982 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17983 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17984 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17985 * - ipRouteAttributeTable (ip 102) labeled routes 17986 * - ip multicast membership (ip_member_t) 17987 * - ip multicast source filtering (ip_grpsrc_t) 17988 * - igmp fixed part (struct igmpstat) 17989 * - multicast routing stats (struct mrtstat) 17990 * - multicast routing vifs (array of struct vifctl) 17991 * - multicast routing routes (array of struct mfcctl) 17992 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17993 * One per ill plus one generic 17994 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17995 * One per ill plus one generic 17996 * - ipv6RouteEntry all IPv6 IREs 17997 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17998 * - ipv6NetToMediaEntry all Neighbor Cache entries 17999 * - ipv6AddrEntry all IPv6 ipifs 18000 * - ipv6 multicast membership (ipv6_member_t) 18001 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18002 * 18003 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18004 * 18005 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18006 * already filled in by the caller. 18007 * Return value of 0 indicates that no messages were sent and caller 18008 * should free mpctl. 18009 */ 18010 int 18011 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18012 { 18013 ip_stack_t *ipst; 18014 sctp_stack_t *sctps; 18015 18016 18017 if (q->q_next != NULL) { 18018 ipst = ILLQ_TO_IPST(q); 18019 } else { 18020 ipst = CONNQ_TO_IPST(q); 18021 } 18022 ASSERT(ipst != NULL); 18023 sctps = ipst->ips_netstack->netstack_sctp; 18024 18025 if (mpctl == NULL || mpctl->b_cont == NULL) { 18026 return (0); 18027 } 18028 18029 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18030 ipst)) == NULL) { 18031 return (1); 18032 } 18033 18034 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18035 return (1); 18036 } 18037 18038 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18039 return (1); 18040 } 18041 18042 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18043 return (1); 18044 } 18045 18046 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18047 return (1); 18048 } 18049 18050 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18051 return (1); 18052 } 18053 18054 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18055 return (1); 18056 } 18057 18058 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18059 return (1); 18060 } 18061 18062 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18063 return (1); 18064 } 18065 18066 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18067 return (1); 18068 } 18069 18070 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18071 return (1); 18072 } 18073 18074 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18075 return (1); 18076 } 18077 18078 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18079 return (1); 18080 } 18081 18082 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18083 return (1); 18084 } 18085 18086 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18087 return (1); 18088 } 18089 18090 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18091 if (mpctl == NULL) { 18092 return (1); 18093 } 18094 18095 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18096 return (1); 18097 } 18098 freemsg(mpctl); 18099 return (1); 18100 } 18101 18102 18103 /* Get global (legacy) IPv4 statistics */ 18104 static mblk_t * 18105 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18106 ip_stack_t *ipst) 18107 { 18108 mib2_ip_t old_ip_mib; 18109 struct opthdr *optp; 18110 mblk_t *mp2ctl; 18111 18112 /* 18113 * make a copy of the original message 18114 */ 18115 mp2ctl = copymsg(mpctl); 18116 18117 /* fixed length IP structure... */ 18118 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18119 optp->level = MIB2_IP; 18120 optp->name = 0; 18121 SET_MIB(old_ip_mib.ipForwarding, 18122 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18123 SET_MIB(old_ip_mib.ipDefaultTTL, 18124 (uint32_t)ipst->ips_ip_def_ttl); 18125 SET_MIB(old_ip_mib.ipReasmTimeout, 18126 ipst->ips_ip_g_frag_timeout); 18127 SET_MIB(old_ip_mib.ipAddrEntrySize, 18128 sizeof (mib2_ipAddrEntry_t)); 18129 SET_MIB(old_ip_mib.ipRouteEntrySize, 18130 sizeof (mib2_ipRouteEntry_t)); 18131 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18132 sizeof (mib2_ipNetToMediaEntry_t)); 18133 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18134 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18135 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18136 sizeof (mib2_ipAttributeEntry_t)); 18137 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18138 18139 /* 18140 * Grab the statistics from the new IP MIB 18141 */ 18142 SET_MIB(old_ip_mib.ipInReceives, 18143 (uint32_t)ipmib->ipIfStatsHCInReceives); 18144 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18145 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18146 SET_MIB(old_ip_mib.ipForwDatagrams, 18147 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18148 SET_MIB(old_ip_mib.ipInUnknownProtos, 18149 ipmib->ipIfStatsInUnknownProtos); 18150 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18151 SET_MIB(old_ip_mib.ipInDelivers, 18152 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18153 SET_MIB(old_ip_mib.ipOutRequests, 18154 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18155 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18156 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18157 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18158 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18159 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18160 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18161 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18162 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18163 18164 /* ipRoutingDiscards is not being used */ 18165 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18166 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18167 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18168 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18169 SET_MIB(old_ip_mib.ipReasmDuplicates, 18170 ipmib->ipIfStatsReasmDuplicates); 18171 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18172 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18173 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18174 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18175 SET_MIB(old_ip_mib.rawipInOverflows, 18176 ipmib->rawipIfStatsInOverflows); 18177 18178 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18179 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18180 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18181 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18182 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18183 ipmib->ipIfStatsOutSwitchIPVersion); 18184 18185 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18186 (int)sizeof (old_ip_mib))) { 18187 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18188 (uint_t)sizeof (old_ip_mib))); 18189 } 18190 18191 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18192 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18193 (int)optp->level, (int)optp->name, (int)optp->len)); 18194 qreply(q, mpctl); 18195 return (mp2ctl); 18196 } 18197 18198 /* Per interface IPv4 statistics */ 18199 static mblk_t * 18200 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18201 { 18202 struct opthdr *optp; 18203 mblk_t *mp2ctl; 18204 ill_t *ill; 18205 ill_walk_context_t ctx; 18206 mblk_t *mp_tail = NULL; 18207 mib2_ipIfStatsEntry_t global_ip_mib; 18208 18209 /* 18210 * Make a copy of the original message 18211 */ 18212 mp2ctl = copymsg(mpctl); 18213 18214 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18215 optp->level = MIB2_IP; 18216 optp->name = MIB2_IP_TRAFFIC_STATS; 18217 /* Include "unknown interface" ip_mib */ 18218 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18219 ipst->ips_ip_mib.ipIfStatsIfIndex = 18220 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18221 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18222 (ipst->ips_ip_g_forward ? 1 : 2)); 18223 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18224 (uint32_t)ipst->ips_ip_def_ttl); 18225 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18226 sizeof (mib2_ipIfStatsEntry_t)); 18227 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18228 sizeof (mib2_ipAddrEntry_t)); 18229 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18230 sizeof (mib2_ipRouteEntry_t)); 18231 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18232 sizeof (mib2_ipNetToMediaEntry_t)); 18233 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18234 sizeof (ip_member_t)); 18235 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18236 sizeof (ip_grpsrc_t)); 18237 18238 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18239 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18240 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18241 "failed to allocate %u bytes\n", 18242 (uint_t)sizeof (ipst->ips_ip_mib))); 18243 } 18244 18245 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18246 18247 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18248 ill = ILL_START_WALK_V4(&ctx, ipst); 18249 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18250 ill->ill_ip_mib->ipIfStatsIfIndex = 18251 ill->ill_phyint->phyint_ifindex; 18252 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18253 (ipst->ips_ip_g_forward ? 1 : 2)); 18254 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18255 (uint32_t)ipst->ips_ip_def_ttl); 18256 18257 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18258 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18259 (char *)ill->ill_ip_mib, 18260 (int)sizeof (*ill->ill_ip_mib))) { 18261 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18262 "failed to allocate %u bytes\n", 18263 (uint_t)sizeof (*ill->ill_ip_mib))); 18264 } 18265 } 18266 rw_exit(&ipst->ips_ill_g_lock); 18267 18268 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18269 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18270 "level %d, name %d, len %d\n", 18271 (int)optp->level, (int)optp->name, (int)optp->len)); 18272 qreply(q, mpctl); 18273 18274 if (mp2ctl == NULL) 18275 return (NULL); 18276 18277 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18278 } 18279 18280 /* Global IPv4 ICMP statistics */ 18281 static mblk_t * 18282 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18283 { 18284 struct opthdr *optp; 18285 mblk_t *mp2ctl; 18286 18287 /* 18288 * Make a copy of the original message 18289 */ 18290 mp2ctl = copymsg(mpctl); 18291 18292 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18293 optp->level = MIB2_ICMP; 18294 optp->name = 0; 18295 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18296 (int)sizeof (ipst->ips_icmp_mib))) { 18297 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18298 (uint_t)sizeof (ipst->ips_icmp_mib))); 18299 } 18300 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18301 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18302 (int)optp->level, (int)optp->name, (int)optp->len)); 18303 qreply(q, mpctl); 18304 return (mp2ctl); 18305 } 18306 18307 /* Global IPv4 IGMP statistics */ 18308 static mblk_t * 18309 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18310 { 18311 struct opthdr *optp; 18312 mblk_t *mp2ctl; 18313 18314 /* 18315 * make a copy of the original message 18316 */ 18317 mp2ctl = copymsg(mpctl); 18318 18319 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18320 optp->level = EXPER_IGMP; 18321 optp->name = 0; 18322 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18323 (int)sizeof (ipst->ips_igmpstat))) { 18324 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18325 (uint_t)sizeof (ipst->ips_igmpstat))); 18326 } 18327 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18328 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18329 (int)optp->level, (int)optp->name, (int)optp->len)); 18330 qreply(q, mpctl); 18331 return (mp2ctl); 18332 } 18333 18334 /* Global IPv4 Multicast Routing statistics */ 18335 static mblk_t * 18336 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18337 { 18338 struct opthdr *optp; 18339 mblk_t *mp2ctl; 18340 18341 /* 18342 * make a copy of the original message 18343 */ 18344 mp2ctl = copymsg(mpctl); 18345 18346 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18347 optp->level = EXPER_DVMRP; 18348 optp->name = 0; 18349 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18350 ip0dbg(("ip_mroute_stats: failed\n")); 18351 } 18352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18353 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18354 (int)optp->level, (int)optp->name, (int)optp->len)); 18355 qreply(q, mpctl); 18356 return (mp2ctl); 18357 } 18358 18359 /* IPv4 address information */ 18360 static mblk_t * 18361 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18362 { 18363 struct opthdr *optp; 18364 mblk_t *mp2ctl; 18365 mblk_t *mp_tail = NULL; 18366 ill_t *ill; 18367 ipif_t *ipif; 18368 uint_t bitval; 18369 mib2_ipAddrEntry_t mae; 18370 zoneid_t zoneid; 18371 ill_walk_context_t ctx; 18372 18373 /* 18374 * make a copy of the original message 18375 */ 18376 mp2ctl = copymsg(mpctl); 18377 18378 /* ipAddrEntryTable */ 18379 18380 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18381 optp->level = MIB2_IP; 18382 optp->name = MIB2_IP_ADDR; 18383 zoneid = Q_TO_CONN(q)->conn_zoneid; 18384 18385 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18386 ill = ILL_START_WALK_V4(&ctx, ipst); 18387 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18388 for (ipif = ill->ill_ipif; ipif != NULL; 18389 ipif = ipif->ipif_next) { 18390 if (ipif->ipif_zoneid != zoneid && 18391 ipif->ipif_zoneid != ALL_ZONES) 18392 continue; 18393 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18394 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18395 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18396 18397 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18398 OCTET_LENGTH); 18399 mae.ipAdEntIfIndex.o_length = 18400 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18401 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18402 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18403 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18404 mae.ipAdEntInfo.ae_subnet_len = 18405 ip_mask_to_plen(ipif->ipif_net_mask); 18406 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18407 for (bitval = 1; 18408 bitval && 18409 !(bitval & ipif->ipif_brd_addr); 18410 bitval <<= 1) 18411 noop; 18412 mae.ipAdEntBcastAddr = bitval; 18413 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18414 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18415 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18416 mae.ipAdEntInfo.ae_broadcast_addr = 18417 ipif->ipif_brd_addr; 18418 mae.ipAdEntInfo.ae_pp_dst_addr = 18419 ipif->ipif_pp_dst_addr; 18420 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18421 ill->ill_flags | ill->ill_phyint->phyint_flags; 18422 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18423 18424 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18425 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18426 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18427 "allocate %u bytes\n", 18428 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18429 } 18430 } 18431 } 18432 rw_exit(&ipst->ips_ill_g_lock); 18433 18434 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18435 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18436 (int)optp->level, (int)optp->name, (int)optp->len)); 18437 qreply(q, mpctl); 18438 return (mp2ctl); 18439 } 18440 18441 /* IPv6 address information */ 18442 static mblk_t * 18443 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18444 { 18445 struct opthdr *optp; 18446 mblk_t *mp2ctl; 18447 mblk_t *mp_tail = NULL; 18448 ill_t *ill; 18449 ipif_t *ipif; 18450 mib2_ipv6AddrEntry_t mae6; 18451 zoneid_t zoneid; 18452 ill_walk_context_t ctx; 18453 18454 /* 18455 * make a copy of the original message 18456 */ 18457 mp2ctl = copymsg(mpctl); 18458 18459 /* ipv6AddrEntryTable */ 18460 18461 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18462 optp->level = MIB2_IP6; 18463 optp->name = MIB2_IP6_ADDR; 18464 zoneid = Q_TO_CONN(q)->conn_zoneid; 18465 18466 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18467 ill = ILL_START_WALK_V6(&ctx, ipst); 18468 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18469 for (ipif = ill->ill_ipif; ipif != NULL; 18470 ipif = ipif->ipif_next) { 18471 if (ipif->ipif_zoneid != zoneid && 18472 ipif->ipif_zoneid != ALL_ZONES) 18473 continue; 18474 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18475 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18476 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18477 18478 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18479 OCTET_LENGTH); 18480 mae6.ipv6AddrIfIndex.o_length = 18481 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18482 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18483 mae6.ipv6AddrPfxLength = 18484 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18485 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18486 mae6.ipv6AddrInfo.ae_subnet_len = 18487 mae6.ipv6AddrPfxLength; 18488 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18489 18490 /* Type: stateless(1), stateful(2), unknown(3) */ 18491 if (ipif->ipif_flags & IPIF_ADDRCONF) 18492 mae6.ipv6AddrType = 1; 18493 else 18494 mae6.ipv6AddrType = 2; 18495 /* Anycast: true(1), false(2) */ 18496 if (ipif->ipif_flags & IPIF_ANYCAST) 18497 mae6.ipv6AddrAnycastFlag = 1; 18498 else 18499 mae6.ipv6AddrAnycastFlag = 2; 18500 18501 /* 18502 * Address status: preferred(1), deprecated(2), 18503 * invalid(3), inaccessible(4), unknown(5) 18504 */ 18505 if (ipif->ipif_flags & IPIF_NOLOCAL) 18506 mae6.ipv6AddrStatus = 3; 18507 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18508 mae6.ipv6AddrStatus = 2; 18509 else 18510 mae6.ipv6AddrStatus = 1; 18511 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18512 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18513 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18514 ipif->ipif_v6pp_dst_addr; 18515 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18516 ill->ill_flags | ill->ill_phyint->phyint_flags; 18517 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18518 mae6.ipv6AddrIdentifier = ill->ill_token; 18519 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18520 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18521 mae6.ipv6AddrRetransmitTime = 18522 ill->ill_reachable_retrans_time; 18523 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18524 (char *)&mae6, 18525 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18526 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18527 "allocate %u bytes\n", 18528 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18529 } 18530 } 18531 } 18532 rw_exit(&ipst->ips_ill_g_lock); 18533 18534 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18535 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18536 (int)optp->level, (int)optp->name, (int)optp->len)); 18537 qreply(q, mpctl); 18538 return (mp2ctl); 18539 } 18540 18541 /* IPv4 multicast group membership. */ 18542 static mblk_t * 18543 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18544 { 18545 struct opthdr *optp; 18546 mblk_t *mp2ctl; 18547 ill_t *ill; 18548 ipif_t *ipif; 18549 ilm_t *ilm; 18550 ip_member_t ipm; 18551 mblk_t *mp_tail = NULL; 18552 ill_walk_context_t ctx; 18553 zoneid_t zoneid; 18554 18555 /* 18556 * make a copy of the original message 18557 */ 18558 mp2ctl = copymsg(mpctl); 18559 zoneid = Q_TO_CONN(q)->conn_zoneid; 18560 18561 /* ipGroupMember table */ 18562 optp = (struct opthdr *)&mpctl->b_rptr[ 18563 sizeof (struct T_optmgmt_ack)]; 18564 optp->level = MIB2_IP; 18565 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18566 18567 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18568 ill = ILL_START_WALK_V4(&ctx, ipst); 18569 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18570 ILM_WALKER_HOLD(ill); 18571 for (ipif = ill->ill_ipif; ipif != NULL; 18572 ipif = ipif->ipif_next) { 18573 if (ipif->ipif_zoneid != zoneid && 18574 ipif->ipif_zoneid != ALL_ZONES) 18575 continue; /* not this zone */ 18576 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18577 OCTET_LENGTH); 18578 ipm.ipGroupMemberIfIndex.o_length = 18579 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18580 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18581 ASSERT(ilm->ilm_ipif != NULL); 18582 ASSERT(ilm->ilm_ill == NULL); 18583 if (ilm->ilm_ipif != ipif) 18584 continue; 18585 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18586 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18587 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18588 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18589 (char *)&ipm, (int)sizeof (ipm))) { 18590 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18591 "failed to allocate %u bytes\n", 18592 (uint_t)sizeof (ipm))); 18593 } 18594 } 18595 } 18596 ILM_WALKER_RELE(ill); 18597 } 18598 rw_exit(&ipst->ips_ill_g_lock); 18599 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18600 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18601 (int)optp->level, (int)optp->name, (int)optp->len)); 18602 qreply(q, mpctl); 18603 return (mp2ctl); 18604 } 18605 18606 /* IPv6 multicast group membership. */ 18607 static mblk_t * 18608 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18609 { 18610 struct opthdr *optp; 18611 mblk_t *mp2ctl; 18612 ill_t *ill; 18613 ilm_t *ilm; 18614 ipv6_member_t ipm6; 18615 mblk_t *mp_tail = NULL; 18616 ill_walk_context_t ctx; 18617 zoneid_t zoneid; 18618 18619 /* 18620 * make a copy of the original message 18621 */ 18622 mp2ctl = copymsg(mpctl); 18623 zoneid = Q_TO_CONN(q)->conn_zoneid; 18624 18625 /* ip6GroupMember table */ 18626 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18627 optp->level = MIB2_IP6; 18628 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18629 18630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18631 ill = ILL_START_WALK_V6(&ctx, ipst); 18632 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18633 ILM_WALKER_HOLD(ill); 18634 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18635 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18636 ASSERT(ilm->ilm_ipif == NULL); 18637 ASSERT(ilm->ilm_ill != NULL); 18638 if (ilm->ilm_zoneid != zoneid) 18639 continue; /* not this zone */ 18640 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18641 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18642 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18643 if (!snmp_append_data2(mpctl->b_cont, 18644 &mp_tail, 18645 (char *)&ipm6, (int)sizeof (ipm6))) { 18646 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18647 "failed to allocate %u bytes\n", 18648 (uint_t)sizeof (ipm6))); 18649 } 18650 } 18651 ILM_WALKER_RELE(ill); 18652 } 18653 rw_exit(&ipst->ips_ill_g_lock); 18654 18655 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18656 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18657 (int)optp->level, (int)optp->name, (int)optp->len)); 18658 qreply(q, mpctl); 18659 return (mp2ctl); 18660 } 18661 18662 /* IP multicast filtered sources */ 18663 static mblk_t * 18664 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18665 { 18666 struct opthdr *optp; 18667 mblk_t *mp2ctl; 18668 ill_t *ill; 18669 ipif_t *ipif; 18670 ilm_t *ilm; 18671 ip_grpsrc_t ips; 18672 mblk_t *mp_tail = NULL; 18673 ill_walk_context_t ctx; 18674 zoneid_t zoneid; 18675 int i; 18676 slist_t *sl; 18677 18678 /* 18679 * make a copy of the original message 18680 */ 18681 mp2ctl = copymsg(mpctl); 18682 zoneid = Q_TO_CONN(q)->conn_zoneid; 18683 18684 /* ipGroupSource table */ 18685 optp = (struct opthdr *)&mpctl->b_rptr[ 18686 sizeof (struct T_optmgmt_ack)]; 18687 optp->level = MIB2_IP; 18688 optp->name = EXPER_IP_GROUP_SOURCES; 18689 18690 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18691 ill = ILL_START_WALK_V4(&ctx, ipst); 18692 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18693 ILM_WALKER_HOLD(ill); 18694 for (ipif = ill->ill_ipif; ipif != NULL; 18695 ipif = ipif->ipif_next) { 18696 if (ipif->ipif_zoneid != zoneid) 18697 continue; /* not this zone */ 18698 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18699 OCTET_LENGTH); 18700 ips.ipGroupSourceIfIndex.o_length = 18701 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18702 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18703 ASSERT(ilm->ilm_ipif != NULL); 18704 ASSERT(ilm->ilm_ill == NULL); 18705 sl = ilm->ilm_filter; 18706 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18707 continue; 18708 ips.ipGroupSourceGroup = ilm->ilm_addr; 18709 for (i = 0; i < sl->sl_numsrc; i++) { 18710 if (!IN6_IS_ADDR_V4MAPPED( 18711 &sl->sl_addr[i])) 18712 continue; 18713 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18714 ips.ipGroupSourceAddress); 18715 if (snmp_append_data2(mpctl->b_cont, 18716 &mp_tail, (char *)&ips, 18717 (int)sizeof (ips)) == 0) { 18718 ip1dbg(("ip_snmp_get_mib2_" 18719 "ip_group_src: failed to " 18720 "allocate %u bytes\n", 18721 (uint_t)sizeof (ips))); 18722 } 18723 } 18724 } 18725 } 18726 ILM_WALKER_RELE(ill); 18727 } 18728 rw_exit(&ipst->ips_ill_g_lock); 18729 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18730 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18731 (int)optp->level, (int)optp->name, (int)optp->len)); 18732 qreply(q, mpctl); 18733 return (mp2ctl); 18734 } 18735 18736 /* IPv6 multicast filtered sources. */ 18737 static mblk_t * 18738 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18739 { 18740 struct opthdr *optp; 18741 mblk_t *mp2ctl; 18742 ill_t *ill; 18743 ilm_t *ilm; 18744 ipv6_grpsrc_t ips6; 18745 mblk_t *mp_tail = NULL; 18746 ill_walk_context_t ctx; 18747 zoneid_t zoneid; 18748 int i; 18749 slist_t *sl; 18750 18751 /* 18752 * make a copy of the original message 18753 */ 18754 mp2ctl = copymsg(mpctl); 18755 zoneid = Q_TO_CONN(q)->conn_zoneid; 18756 18757 /* ip6GroupMember table */ 18758 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18759 optp->level = MIB2_IP6; 18760 optp->name = EXPER_IP6_GROUP_SOURCES; 18761 18762 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18763 ill = ILL_START_WALK_V6(&ctx, ipst); 18764 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18765 ILM_WALKER_HOLD(ill); 18766 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18767 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18768 ASSERT(ilm->ilm_ipif == NULL); 18769 ASSERT(ilm->ilm_ill != NULL); 18770 sl = ilm->ilm_filter; 18771 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18772 continue; 18773 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18774 for (i = 0; i < sl->sl_numsrc; i++) { 18775 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18776 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18777 (char *)&ips6, (int)sizeof (ips6))) { 18778 ip1dbg(("ip_snmp_get_mib2_ip6_" 18779 "group_src: failed to allocate " 18780 "%u bytes\n", 18781 (uint_t)sizeof (ips6))); 18782 } 18783 } 18784 } 18785 ILM_WALKER_RELE(ill); 18786 } 18787 rw_exit(&ipst->ips_ill_g_lock); 18788 18789 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18790 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18791 (int)optp->level, (int)optp->name, (int)optp->len)); 18792 qreply(q, mpctl); 18793 return (mp2ctl); 18794 } 18795 18796 /* Multicast routing virtual interface table. */ 18797 static mblk_t * 18798 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18799 { 18800 struct opthdr *optp; 18801 mblk_t *mp2ctl; 18802 18803 /* 18804 * make a copy of the original message 18805 */ 18806 mp2ctl = copymsg(mpctl); 18807 18808 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18809 optp->level = EXPER_DVMRP; 18810 optp->name = EXPER_DVMRP_VIF; 18811 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18812 ip0dbg(("ip_mroute_vif: failed\n")); 18813 } 18814 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18815 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18816 (int)optp->level, (int)optp->name, (int)optp->len)); 18817 qreply(q, mpctl); 18818 return (mp2ctl); 18819 } 18820 18821 /* Multicast routing table. */ 18822 static mblk_t * 18823 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18824 { 18825 struct opthdr *optp; 18826 mblk_t *mp2ctl; 18827 18828 /* 18829 * make a copy of the original message 18830 */ 18831 mp2ctl = copymsg(mpctl); 18832 18833 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18834 optp->level = EXPER_DVMRP; 18835 optp->name = EXPER_DVMRP_MRT; 18836 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18837 ip0dbg(("ip_mroute_mrt: failed\n")); 18838 } 18839 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18840 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18841 (int)optp->level, (int)optp->name, (int)optp->len)); 18842 qreply(q, mpctl); 18843 return (mp2ctl); 18844 } 18845 18846 /* 18847 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18848 * in one IRE walk. 18849 */ 18850 static mblk_t * 18851 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18852 { 18853 struct opthdr *optp; 18854 mblk_t *mp2ctl; /* Returned */ 18855 mblk_t *mp3ctl; /* nettomedia */ 18856 mblk_t *mp4ctl; /* routeattrs */ 18857 iproutedata_t ird; 18858 zoneid_t zoneid; 18859 18860 /* 18861 * make copies of the original message 18862 * - mp2ctl is returned unchanged to the caller for his use 18863 * - mpctl is sent upstream as ipRouteEntryTable 18864 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18865 * - mp4ctl is sent upstream as ipRouteAttributeTable 18866 */ 18867 mp2ctl = copymsg(mpctl); 18868 mp3ctl = copymsg(mpctl); 18869 mp4ctl = copymsg(mpctl); 18870 if (mp3ctl == NULL || mp4ctl == NULL) { 18871 freemsg(mp4ctl); 18872 freemsg(mp3ctl); 18873 freemsg(mp2ctl); 18874 freemsg(mpctl); 18875 return (NULL); 18876 } 18877 18878 bzero(&ird, sizeof (ird)); 18879 18880 ird.ird_route.lp_head = mpctl->b_cont; 18881 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18882 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18883 18884 zoneid = Q_TO_CONN(q)->conn_zoneid; 18885 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18886 18887 /* ipRouteEntryTable in mpctl */ 18888 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18889 optp->level = MIB2_IP; 18890 optp->name = MIB2_IP_ROUTE; 18891 optp->len = msgdsize(ird.ird_route.lp_head); 18892 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18893 (int)optp->level, (int)optp->name, (int)optp->len)); 18894 qreply(q, mpctl); 18895 18896 /* ipNetToMediaEntryTable in mp3ctl */ 18897 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18898 optp->level = MIB2_IP; 18899 optp->name = MIB2_IP_MEDIA; 18900 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18901 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18902 (int)optp->level, (int)optp->name, (int)optp->len)); 18903 qreply(q, mp3ctl); 18904 18905 /* ipRouteAttributeTable in mp4ctl */ 18906 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18907 optp->level = MIB2_IP; 18908 optp->name = EXPER_IP_RTATTR; 18909 optp->len = msgdsize(ird.ird_attrs.lp_head); 18910 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18911 (int)optp->level, (int)optp->name, (int)optp->len)); 18912 if (optp->len == 0) 18913 freemsg(mp4ctl); 18914 else 18915 qreply(q, mp4ctl); 18916 18917 return (mp2ctl); 18918 } 18919 18920 /* 18921 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18922 * ipv6NetToMediaEntryTable in an NDP walk. 18923 */ 18924 static mblk_t * 18925 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18926 { 18927 struct opthdr *optp; 18928 mblk_t *mp2ctl; /* Returned */ 18929 mblk_t *mp3ctl; /* nettomedia */ 18930 mblk_t *mp4ctl; /* routeattrs */ 18931 iproutedata_t ird; 18932 zoneid_t zoneid; 18933 18934 /* 18935 * make copies of the original message 18936 * - mp2ctl is returned unchanged to the caller for his use 18937 * - mpctl is sent upstream as ipv6RouteEntryTable 18938 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18939 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18940 */ 18941 mp2ctl = copymsg(mpctl); 18942 mp3ctl = copymsg(mpctl); 18943 mp4ctl = copymsg(mpctl); 18944 if (mp3ctl == NULL || mp4ctl == NULL) { 18945 freemsg(mp4ctl); 18946 freemsg(mp3ctl); 18947 freemsg(mp2ctl); 18948 freemsg(mpctl); 18949 return (NULL); 18950 } 18951 18952 bzero(&ird, sizeof (ird)); 18953 18954 ird.ird_route.lp_head = mpctl->b_cont; 18955 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18956 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18957 18958 zoneid = Q_TO_CONN(q)->conn_zoneid; 18959 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18960 18961 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18962 optp->level = MIB2_IP6; 18963 optp->name = MIB2_IP6_ROUTE; 18964 optp->len = msgdsize(ird.ird_route.lp_head); 18965 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18966 (int)optp->level, (int)optp->name, (int)optp->len)); 18967 qreply(q, mpctl); 18968 18969 /* ipv6NetToMediaEntryTable in mp3ctl */ 18970 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18971 18972 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18973 optp->level = MIB2_IP6; 18974 optp->name = MIB2_IP6_MEDIA; 18975 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18976 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18977 (int)optp->level, (int)optp->name, (int)optp->len)); 18978 qreply(q, mp3ctl); 18979 18980 /* ipv6RouteAttributeTable in mp4ctl */ 18981 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18982 optp->level = MIB2_IP6; 18983 optp->name = EXPER_IP_RTATTR; 18984 optp->len = msgdsize(ird.ird_attrs.lp_head); 18985 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18986 (int)optp->level, (int)optp->name, (int)optp->len)); 18987 if (optp->len == 0) 18988 freemsg(mp4ctl); 18989 else 18990 qreply(q, mp4ctl); 18991 18992 return (mp2ctl); 18993 } 18994 18995 /* 18996 * IPv6 mib: One per ill 18997 */ 18998 static mblk_t * 18999 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19000 { 19001 struct opthdr *optp; 19002 mblk_t *mp2ctl; 19003 ill_t *ill; 19004 ill_walk_context_t ctx; 19005 mblk_t *mp_tail = NULL; 19006 19007 /* 19008 * Make a copy of the original message 19009 */ 19010 mp2ctl = copymsg(mpctl); 19011 19012 /* fixed length IPv6 structure ... */ 19013 19014 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19015 optp->level = MIB2_IP6; 19016 optp->name = 0; 19017 /* Include "unknown interface" ip6_mib */ 19018 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19019 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19020 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19021 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19022 ipst->ips_ipv6_forward ? 1 : 2); 19023 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19024 ipst->ips_ipv6_def_hops); 19025 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19026 sizeof (mib2_ipIfStatsEntry_t)); 19027 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19028 sizeof (mib2_ipv6AddrEntry_t)); 19029 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19030 sizeof (mib2_ipv6RouteEntry_t)); 19031 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19032 sizeof (mib2_ipv6NetToMediaEntry_t)); 19033 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19034 sizeof (ipv6_member_t)); 19035 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19036 sizeof (ipv6_grpsrc_t)); 19037 19038 /* 19039 * Synchronize 64- and 32-bit counters 19040 */ 19041 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19042 ipIfStatsHCInReceives); 19043 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19044 ipIfStatsHCInDelivers); 19045 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19046 ipIfStatsHCOutRequests); 19047 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19048 ipIfStatsHCOutForwDatagrams); 19049 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19050 ipIfStatsHCOutMcastPkts); 19051 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19052 ipIfStatsHCInMcastPkts); 19053 19054 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19055 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19056 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19057 (uint_t)sizeof (ipst->ips_ip6_mib))); 19058 } 19059 19060 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19061 ill = ILL_START_WALK_V6(&ctx, ipst); 19062 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19063 ill->ill_ip_mib->ipIfStatsIfIndex = 19064 ill->ill_phyint->phyint_ifindex; 19065 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19066 ipst->ips_ipv6_forward ? 1 : 2); 19067 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19068 ill->ill_max_hops); 19069 19070 /* 19071 * Synchronize 64- and 32-bit counters 19072 */ 19073 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19074 ipIfStatsHCInReceives); 19075 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19076 ipIfStatsHCInDelivers); 19077 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19078 ipIfStatsHCOutRequests); 19079 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19080 ipIfStatsHCOutForwDatagrams); 19081 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19082 ipIfStatsHCOutMcastPkts); 19083 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19084 ipIfStatsHCInMcastPkts); 19085 19086 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19087 (char *)ill->ill_ip_mib, 19088 (int)sizeof (*ill->ill_ip_mib))) { 19089 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19090 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19091 } 19092 } 19093 rw_exit(&ipst->ips_ill_g_lock); 19094 19095 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19096 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19097 (int)optp->level, (int)optp->name, (int)optp->len)); 19098 qreply(q, mpctl); 19099 return (mp2ctl); 19100 } 19101 19102 /* 19103 * ICMPv6 mib: One per ill 19104 */ 19105 static mblk_t * 19106 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19107 { 19108 struct opthdr *optp; 19109 mblk_t *mp2ctl; 19110 ill_t *ill; 19111 ill_walk_context_t ctx; 19112 mblk_t *mp_tail = NULL; 19113 /* 19114 * Make a copy of the original message 19115 */ 19116 mp2ctl = copymsg(mpctl); 19117 19118 /* fixed length ICMPv6 structure ... */ 19119 19120 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19121 optp->level = MIB2_ICMP6; 19122 optp->name = 0; 19123 /* Include "unknown interface" icmp6_mib */ 19124 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19125 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19126 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19127 sizeof (mib2_ipv6IfIcmpEntry_t); 19128 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19129 (char *)&ipst->ips_icmp6_mib, 19130 (int)sizeof (ipst->ips_icmp6_mib))) { 19131 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19132 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19133 } 19134 19135 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19136 ill = ILL_START_WALK_V6(&ctx, ipst); 19137 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19138 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19139 ill->ill_phyint->phyint_ifindex; 19140 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19141 (char *)ill->ill_icmp6_mib, 19142 (int)sizeof (*ill->ill_icmp6_mib))) { 19143 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19144 "%u bytes\n", 19145 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19146 } 19147 } 19148 rw_exit(&ipst->ips_ill_g_lock); 19149 19150 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19151 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19152 (int)optp->level, (int)optp->name, (int)optp->len)); 19153 qreply(q, mpctl); 19154 return (mp2ctl); 19155 } 19156 19157 /* 19158 * ire_walk routine to create both ipRouteEntryTable and 19159 * ipRouteAttributeTable in one IRE walk 19160 */ 19161 static void 19162 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19163 { 19164 ill_t *ill; 19165 ipif_t *ipif; 19166 mib2_ipRouteEntry_t *re; 19167 mib2_ipAttributeEntry_t *iae, *iaeptr; 19168 ipaddr_t gw_addr; 19169 tsol_ire_gw_secattr_t *attrp; 19170 tsol_gc_t *gc = NULL; 19171 tsol_gcgrp_t *gcgrp = NULL; 19172 uint_t sacnt = 0; 19173 int i; 19174 19175 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19176 19177 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19178 return; 19179 19180 if ((attrp = ire->ire_gw_secattr) != NULL) { 19181 mutex_enter(&attrp->igsa_lock); 19182 if ((gc = attrp->igsa_gc) != NULL) { 19183 gcgrp = gc->gc_grp; 19184 ASSERT(gcgrp != NULL); 19185 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19186 sacnt = 1; 19187 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19188 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19189 gc = gcgrp->gcgrp_head; 19190 sacnt = gcgrp->gcgrp_count; 19191 } 19192 mutex_exit(&attrp->igsa_lock); 19193 19194 /* do nothing if there's no gc to report */ 19195 if (gc == NULL) { 19196 ASSERT(sacnt == 0); 19197 if (gcgrp != NULL) { 19198 /* we might as well drop the lock now */ 19199 rw_exit(&gcgrp->gcgrp_rwlock); 19200 gcgrp = NULL; 19201 } 19202 attrp = NULL; 19203 } 19204 19205 ASSERT(gc == NULL || (gcgrp != NULL && 19206 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19207 } 19208 ASSERT(sacnt == 0 || gc != NULL); 19209 19210 if (sacnt != 0 && 19211 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19212 kmem_free(re, sizeof (*re)); 19213 rw_exit(&gcgrp->gcgrp_rwlock); 19214 return; 19215 } 19216 19217 /* 19218 * Return all IRE types for route table... let caller pick and choose 19219 */ 19220 re->ipRouteDest = ire->ire_addr; 19221 ipif = ire->ire_ipif; 19222 re->ipRouteIfIndex.o_length = 0; 19223 if (ire->ire_type == IRE_CACHE) { 19224 ill = (ill_t *)ire->ire_stq->q_ptr; 19225 re->ipRouteIfIndex.o_length = 19226 ill->ill_name_length == 0 ? 0 : 19227 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19228 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19229 re->ipRouteIfIndex.o_length); 19230 } else if (ipif != NULL) { 19231 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19232 re->ipRouteIfIndex.o_length = 19233 mi_strlen(re->ipRouteIfIndex.o_bytes); 19234 } 19235 re->ipRouteMetric1 = -1; 19236 re->ipRouteMetric2 = -1; 19237 re->ipRouteMetric3 = -1; 19238 re->ipRouteMetric4 = -1; 19239 19240 gw_addr = ire->ire_gateway_addr; 19241 19242 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19243 re->ipRouteNextHop = ire->ire_src_addr; 19244 else 19245 re->ipRouteNextHop = gw_addr; 19246 /* indirect(4), direct(3), or invalid(2) */ 19247 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19248 re->ipRouteType = 2; 19249 else 19250 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19251 re->ipRouteProto = -1; 19252 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19253 re->ipRouteMask = ire->ire_mask; 19254 re->ipRouteMetric5 = -1; 19255 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19256 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19257 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19258 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19259 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19260 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19261 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19262 re->ipRouteInfo.re_flags = ire->ire_flags; 19263 19264 if (ire->ire_flags & RTF_DYNAMIC) { 19265 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19266 } else { 19267 re->ipRouteInfo.re_ire_type = ire->ire_type; 19268 } 19269 19270 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19271 (char *)re, (int)sizeof (*re))) { 19272 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19273 (uint_t)sizeof (*re))); 19274 } 19275 19276 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19277 iaeptr->iae_routeidx = ird->ird_idx; 19278 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19279 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19280 } 19281 19282 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19283 (char *)iae, sacnt * sizeof (*iae))) { 19284 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19285 (unsigned)(sacnt * sizeof (*iae)))); 19286 } 19287 19288 /* bump route index for next pass */ 19289 ird->ird_idx++; 19290 19291 kmem_free(re, sizeof (*re)); 19292 if (sacnt != 0) 19293 kmem_free(iae, sacnt * sizeof (*iae)); 19294 19295 if (gcgrp != NULL) 19296 rw_exit(&gcgrp->gcgrp_rwlock); 19297 } 19298 19299 /* 19300 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19301 */ 19302 static void 19303 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19304 { 19305 ill_t *ill; 19306 ipif_t *ipif; 19307 mib2_ipv6RouteEntry_t *re; 19308 mib2_ipAttributeEntry_t *iae, *iaeptr; 19309 in6_addr_t gw_addr_v6; 19310 tsol_ire_gw_secattr_t *attrp; 19311 tsol_gc_t *gc = NULL; 19312 tsol_gcgrp_t *gcgrp = NULL; 19313 uint_t sacnt = 0; 19314 int i; 19315 19316 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19317 19318 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19319 return; 19320 19321 if ((attrp = ire->ire_gw_secattr) != NULL) { 19322 mutex_enter(&attrp->igsa_lock); 19323 if ((gc = attrp->igsa_gc) != NULL) { 19324 gcgrp = gc->gc_grp; 19325 ASSERT(gcgrp != NULL); 19326 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19327 sacnt = 1; 19328 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19329 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19330 gc = gcgrp->gcgrp_head; 19331 sacnt = gcgrp->gcgrp_count; 19332 } 19333 mutex_exit(&attrp->igsa_lock); 19334 19335 /* do nothing if there's no gc to report */ 19336 if (gc == NULL) { 19337 ASSERT(sacnt == 0); 19338 if (gcgrp != NULL) { 19339 /* we might as well drop the lock now */ 19340 rw_exit(&gcgrp->gcgrp_rwlock); 19341 gcgrp = NULL; 19342 } 19343 attrp = NULL; 19344 } 19345 19346 ASSERT(gc == NULL || (gcgrp != NULL && 19347 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19348 } 19349 ASSERT(sacnt == 0 || gc != NULL); 19350 19351 if (sacnt != 0 && 19352 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19353 kmem_free(re, sizeof (*re)); 19354 rw_exit(&gcgrp->gcgrp_rwlock); 19355 return; 19356 } 19357 19358 /* 19359 * Return all IRE types for route table... let caller pick and choose 19360 */ 19361 re->ipv6RouteDest = ire->ire_addr_v6; 19362 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19363 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19364 re->ipv6RouteIfIndex.o_length = 0; 19365 ipif = ire->ire_ipif; 19366 if (ire->ire_type == IRE_CACHE) { 19367 ill = (ill_t *)ire->ire_stq->q_ptr; 19368 re->ipv6RouteIfIndex.o_length = 19369 ill->ill_name_length == 0 ? 0 : 19370 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19371 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19372 re->ipv6RouteIfIndex.o_length); 19373 } else if (ipif != NULL) { 19374 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19375 re->ipv6RouteIfIndex.o_length = 19376 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19377 } 19378 19379 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19380 19381 mutex_enter(&ire->ire_lock); 19382 gw_addr_v6 = ire->ire_gateway_addr_v6; 19383 mutex_exit(&ire->ire_lock); 19384 19385 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19386 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19387 else 19388 re->ipv6RouteNextHop = gw_addr_v6; 19389 19390 /* remote(4), local(3), or discard(2) */ 19391 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19392 re->ipv6RouteType = 2; 19393 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19394 re->ipv6RouteType = 3; 19395 else 19396 re->ipv6RouteType = 4; 19397 19398 re->ipv6RouteProtocol = -1; 19399 re->ipv6RoutePolicy = 0; 19400 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19401 re->ipv6RouteNextHopRDI = 0; 19402 re->ipv6RouteWeight = 0; 19403 re->ipv6RouteMetric = 0; 19404 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19405 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19406 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19407 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19408 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19409 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19410 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19411 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19412 19413 if (ire->ire_flags & RTF_DYNAMIC) { 19414 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19415 } else { 19416 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19417 } 19418 19419 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19420 (char *)re, (int)sizeof (*re))) { 19421 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19422 (uint_t)sizeof (*re))); 19423 } 19424 19425 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19426 iaeptr->iae_routeidx = ird->ird_idx; 19427 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19428 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19429 } 19430 19431 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19432 (char *)iae, sacnt * sizeof (*iae))) { 19433 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19434 (unsigned)(sacnt * sizeof (*iae)))); 19435 } 19436 19437 /* bump route index for next pass */ 19438 ird->ird_idx++; 19439 19440 kmem_free(re, sizeof (*re)); 19441 if (sacnt != 0) 19442 kmem_free(iae, sacnt * sizeof (*iae)); 19443 19444 if (gcgrp != NULL) 19445 rw_exit(&gcgrp->gcgrp_rwlock); 19446 } 19447 19448 /* 19449 * ndp_walk routine to create ipv6NetToMediaEntryTable 19450 */ 19451 static int 19452 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19453 { 19454 ill_t *ill; 19455 mib2_ipv6NetToMediaEntry_t ntme; 19456 dl_unitdata_req_t *dl; 19457 19458 ill = nce->nce_ill; 19459 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19460 return (0); 19461 19462 /* 19463 * Neighbor cache entry attached to IRE with on-link 19464 * destination. 19465 */ 19466 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19467 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19468 if ((ill->ill_flags & ILLF_XRESOLV) && 19469 (nce->nce_res_mp != NULL)) { 19470 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19471 ntme.ipv6NetToMediaPhysAddress.o_length = 19472 dl->dl_dest_addr_length; 19473 } else { 19474 ntme.ipv6NetToMediaPhysAddress.o_length = 19475 ill->ill_phys_addr_length; 19476 } 19477 if (nce->nce_res_mp != NULL) { 19478 bcopy((char *)nce->nce_res_mp->b_rptr + 19479 NCE_LL_ADDR_OFFSET(ill), 19480 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19481 ntme.ipv6NetToMediaPhysAddress.o_length); 19482 } else { 19483 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19484 ill->ill_phys_addr_length); 19485 } 19486 /* 19487 * Note: Returns ND_* states. Should be: 19488 * reachable(1), stale(2), delay(3), probe(4), 19489 * invalid(5), unknown(6) 19490 */ 19491 ntme.ipv6NetToMediaState = nce->nce_state; 19492 ntme.ipv6NetToMediaLastUpdated = 0; 19493 19494 /* other(1), dynamic(2), static(3), local(4) */ 19495 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19496 ntme.ipv6NetToMediaType = 4; 19497 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19498 ntme.ipv6NetToMediaType = 1; 19499 } else { 19500 ntme.ipv6NetToMediaType = 2; 19501 } 19502 19503 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19504 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19505 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19506 (uint_t)sizeof (ntme))); 19507 } 19508 return (0); 19509 } 19510 19511 /* 19512 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19513 */ 19514 /* ARGSUSED */ 19515 int 19516 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19517 { 19518 switch (level) { 19519 case MIB2_IP: 19520 case MIB2_ICMP: 19521 switch (name) { 19522 default: 19523 break; 19524 } 19525 return (1); 19526 default: 19527 return (1); 19528 } 19529 } 19530 19531 /* 19532 * When there exists both a 64- and 32-bit counter of a particular type 19533 * (i.e., InReceives), only the 64-bit counters are added. 19534 */ 19535 void 19536 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19537 { 19538 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19539 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19540 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19541 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19542 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19543 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19544 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19545 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19546 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19547 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19548 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19549 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19550 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19551 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19552 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19553 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19554 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19555 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19556 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19557 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19558 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19559 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19560 o2->ipIfStatsInWrongIPVersion); 19561 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19562 o2->ipIfStatsInWrongIPVersion); 19563 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19564 o2->ipIfStatsOutSwitchIPVersion); 19565 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19566 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19567 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19568 o2->ipIfStatsHCInForwDatagrams); 19569 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19570 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19571 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19572 o2->ipIfStatsHCOutForwDatagrams); 19573 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19574 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19575 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19576 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19577 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19578 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19579 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19580 o2->ipIfStatsHCOutMcastOctets); 19581 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19582 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19583 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19584 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19585 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19586 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19587 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19588 } 19589 19590 void 19591 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19592 { 19593 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19594 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19595 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19596 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19597 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19598 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19599 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19600 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19601 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19602 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19603 o2->ipv6IfIcmpInRouterSolicits); 19604 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19605 o2->ipv6IfIcmpInRouterAdvertisements); 19606 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19607 o2->ipv6IfIcmpInNeighborSolicits); 19608 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19609 o2->ipv6IfIcmpInNeighborAdvertisements); 19610 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19611 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19612 o2->ipv6IfIcmpInGroupMembQueries); 19613 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19614 o2->ipv6IfIcmpInGroupMembResponses); 19615 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19616 o2->ipv6IfIcmpInGroupMembReductions); 19617 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19618 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19619 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19620 o2->ipv6IfIcmpOutDestUnreachs); 19621 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19622 o2->ipv6IfIcmpOutAdminProhibs); 19623 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19624 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19625 o2->ipv6IfIcmpOutParmProblems); 19626 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19627 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19628 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19629 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19630 o2->ipv6IfIcmpOutRouterSolicits); 19631 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19632 o2->ipv6IfIcmpOutRouterAdvertisements); 19633 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19634 o2->ipv6IfIcmpOutNeighborSolicits); 19635 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19636 o2->ipv6IfIcmpOutNeighborAdvertisements); 19637 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19638 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19639 o2->ipv6IfIcmpOutGroupMembQueries); 19640 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19641 o2->ipv6IfIcmpOutGroupMembResponses); 19642 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19643 o2->ipv6IfIcmpOutGroupMembReductions); 19644 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19645 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19646 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19647 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19648 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19649 o2->ipv6IfIcmpInBadNeighborSolicitations); 19650 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19651 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19652 o2->ipv6IfIcmpInGroupMembTotal); 19653 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19654 o2->ipv6IfIcmpInGroupMembBadQueries); 19655 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19656 o2->ipv6IfIcmpInGroupMembBadReports); 19657 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19658 o2->ipv6IfIcmpInGroupMembOurReports); 19659 } 19660 19661 /* 19662 * Called before the options are updated to check if this packet will 19663 * be source routed from here. 19664 * This routine assumes that the options are well formed i.e. that they 19665 * have already been checked. 19666 */ 19667 static boolean_t 19668 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19669 { 19670 ipoptp_t opts; 19671 uchar_t *opt; 19672 uint8_t optval; 19673 uint8_t optlen; 19674 ipaddr_t dst; 19675 ire_t *ire; 19676 19677 if (IS_SIMPLE_IPH(ipha)) { 19678 ip2dbg(("not source routed\n")); 19679 return (B_FALSE); 19680 } 19681 dst = ipha->ipha_dst; 19682 for (optval = ipoptp_first(&opts, ipha); 19683 optval != IPOPT_EOL; 19684 optval = ipoptp_next(&opts)) { 19685 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19686 opt = opts.ipoptp_cur; 19687 optlen = opts.ipoptp_len; 19688 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19689 optval, optlen)); 19690 switch (optval) { 19691 uint32_t off; 19692 case IPOPT_SSRR: 19693 case IPOPT_LSRR: 19694 /* 19695 * If dst is one of our addresses and there are some 19696 * entries left in the source route return (true). 19697 */ 19698 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19699 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19700 if (ire == NULL) { 19701 ip2dbg(("ip_source_routed: not next" 19702 " source route 0x%x\n", 19703 ntohl(dst))); 19704 return (B_FALSE); 19705 } 19706 ire_refrele(ire); 19707 off = opt[IPOPT_OFFSET]; 19708 off--; 19709 if (optlen < IP_ADDR_LEN || 19710 off > optlen - IP_ADDR_LEN) { 19711 /* End of source route */ 19712 ip1dbg(("ip_source_routed: end of SR\n")); 19713 return (B_FALSE); 19714 } 19715 return (B_TRUE); 19716 } 19717 } 19718 ip2dbg(("not source routed\n")); 19719 return (B_FALSE); 19720 } 19721 19722 /* 19723 * Check if the packet contains any source route. 19724 */ 19725 static boolean_t 19726 ip_source_route_included(ipha_t *ipha) 19727 { 19728 ipoptp_t opts; 19729 uint8_t optval; 19730 19731 if (IS_SIMPLE_IPH(ipha)) 19732 return (B_FALSE); 19733 for (optval = ipoptp_first(&opts, ipha); 19734 optval != IPOPT_EOL; 19735 optval = ipoptp_next(&opts)) { 19736 switch (optval) { 19737 case IPOPT_SSRR: 19738 case IPOPT_LSRR: 19739 return (B_TRUE); 19740 } 19741 } 19742 return (B_FALSE); 19743 } 19744 19745 /* 19746 * Called when the IRE expiration timer fires. 19747 */ 19748 void 19749 ip_trash_timer_expire(void *args) 19750 { 19751 int flush_flag = 0; 19752 ire_expire_arg_t iea; 19753 ip_stack_t *ipst = (ip_stack_t *)args; 19754 19755 iea.iea_ipst = ipst; /* No netstack_hold */ 19756 19757 /* 19758 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19759 * This lock makes sure that a new invocation of this function 19760 * that occurs due to an almost immediate timer firing will not 19761 * progress beyond this point until the current invocation is done 19762 */ 19763 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19764 ipst->ips_ip_ire_expire_id = 0; 19765 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19766 19767 /* Periodic timer */ 19768 if (ipst->ips_ip_ire_arp_time_elapsed >= 19769 ipst->ips_ip_ire_arp_interval) { 19770 /* 19771 * Remove all IRE_CACHE entries since they might 19772 * contain arp information. 19773 */ 19774 flush_flag |= FLUSH_ARP_TIME; 19775 ipst->ips_ip_ire_arp_time_elapsed = 0; 19776 IP_STAT(ipst, ip_ire_arp_timer_expired); 19777 } 19778 if (ipst->ips_ip_ire_rd_time_elapsed >= 19779 ipst->ips_ip_ire_redir_interval) { 19780 /* Remove all redirects */ 19781 flush_flag |= FLUSH_REDIRECT_TIME; 19782 ipst->ips_ip_ire_rd_time_elapsed = 0; 19783 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19784 } 19785 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19786 ipst->ips_ip_ire_pathmtu_interval) { 19787 /* Increase path mtu */ 19788 flush_flag |= FLUSH_MTU_TIME; 19789 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19790 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19791 } 19792 19793 /* 19794 * Optimize for the case when there are no redirects in the 19795 * ftable, that is, no need to walk the ftable in that case. 19796 */ 19797 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19798 iea.iea_flush_flag = flush_flag; 19799 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19800 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19801 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19802 NULL, ALL_ZONES, ipst); 19803 } 19804 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19805 ipst->ips_ip_redirect_cnt > 0) { 19806 iea.iea_flush_flag = flush_flag; 19807 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19808 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19809 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19810 } 19811 if (flush_flag & FLUSH_MTU_TIME) { 19812 /* 19813 * Walk all IPv6 IRE's and update them 19814 * Note that ARP and redirect timers are not 19815 * needed since NUD handles stale entries. 19816 */ 19817 flush_flag = FLUSH_MTU_TIME; 19818 iea.iea_flush_flag = flush_flag; 19819 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19820 ALL_ZONES, ipst); 19821 } 19822 19823 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19824 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19825 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19826 19827 /* 19828 * Hold the lock to serialize timeout calls and prevent 19829 * stale values in ip_ire_expire_id. Otherwise it is possible 19830 * for the timer to fire and a new invocation of this function 19831 * to start before the return value of timeout has been stored 19832 * in ip_ire_expire_id by the current invocation. 19833 */ 19834 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19835 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19836 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19837 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19838 } 19839 19840 /* 19841 * Called by the memory allocator subsystem directly, when the system 19842 * is running low on memory. 19843 */ 19844 /* ARGSUSED */ 19845 void 19846 ip_trash_ire_reclaim(void *args) 19847 { 19848 netstack_handle_t nh; 19849 netstack_t *ns; 19850 19851 netstack_next_init(&nh); 19852 while ((ns = netstack_next(&nh)) != NULL) { 19853 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19854 netstack_rele(ns); 19855 } 19856 netstack_next_fini(&nh); 19857 } 19858 19859 static void 19860 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19861 { 19862 ire_cache_count_t icc; 19863 ire_cache_reclaim_t icr; 19864 ncc_cache_count_t ncc; 19865 nce_cache_reclaim_t ncr; 19866 uint_t delete_cnt; 19867 /* 19868 * Memory reclaim call back. 19869 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19870 * Then, with a target of freeing 1/Nth of IRE_CACHE 19871 * entries, determine what fraction to free for 19872 * each category of IRE_CACHE entries giving absolute priority 19873 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19874 * entry will be freed unless all offlink entries are freed). 19875 */ 19876 icc.icc_total = 0; 19877 icc.icc_unused = 0; 19878 icc.icc_offlink = 0; 19879 icc.icc_pmtu = 0; 19880 icc.icc_onlink = 0; 19881 ire_walk(ire_cache_count, (char *)&icc, ipst); 19882 19883 /* 19884 * Free NCEs for IPv6 like the onlink ires. 19885 */ 19886 ncc.ncc_total = 0; 19887 ncc.ncc_host = 0; 19888 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19889 19890 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19891 icc.icc_pmtu + icc.icc_onlink); 19892 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19893 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19894 if (delete_cnt == 0) 19895 return; 19896 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19897 /* Always delete all unused offlink entries */ 19898 icr.icr_ipst = ipst; 19899 icr.icr_unused = 1; 19900 if (delete_cnt <= icc.icc_unused) { 19901 /* 19902 * Only need to free unused entries. In other words, 19903 * there are enough unused entries to free to meet our 19904 * target number of freed ire cache entries. 19905 */ 19906 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19907 ncr.ncr_host = 0; 19908 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19909 /* 19910 * Only need to free unused entries, plus a fraction of offlink 19911 * entries. It follows from the first if statement that 19912 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19913 */ 19914 delete_cnt -= icc.icc_unused; 19915 /* Round up # deleted by truncating fraction */ 19916 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19917 icr.icr_pmtu = icr.icr_onlink = 0; 19918 ncr.ncr_host = 0; 19919 } else if (delete_cnt <= 19920 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19921 /* 19922 * Free all unused and offlink entries, plus a fraction of 19923 * pmtu entries. It follows from the previous if statement 19924 * that icc_pmtu is non-zero, and that 19925 * delete_cnt != icc_unused + icc_offlink. 19926 */ 19927 icr.icr_offlink = 1; 19928 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19929 /* Round up # deleted by truncating fraction */ 19930 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19931 icr.icr_onlink = 0; 19932 ncr.ncr_host = 0; 19933 } else { 19934 /* 19935 * Free all unused, offlink, and pmtu entries, plus a fraction 19936 * of onlink entries. If we're here, then we know that 19937 * icc_onlink is non-zero, and that 19938 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19939 */ 19940 icr.icr_offlink = icr.icr_pmtu = 1; 19941 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19942 icc.icc_pmtu; 19943 /* Round up # deleted by truncating fraction */ 19944 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19945 /* Using the same delete fraction as for onlink IREs */ 19946 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19947 } 19948 #ifdef DEBUG 19949 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19950 "fractions %d/%d/%d/%d\n", 19951 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19952 icc.icc_unused, icc.icc_offlink, 19953 icc.icc_pmtu, icc.icc_onlink, 19954 icr.icr_unused, icr.icr_offlink, 19955 icr.icr_pmtu, icr.icr_onlink)); 19956 #endif 19957 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19958 if (ncr.ncr_host != 0) 19959 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19960 (uchar_t *)&ncr, ipst); 19961 #ifdef DEBUG 19962 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19963 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19964 ire_walk(ire_cache_count, (char *)&icc, ipst); 19965 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19966 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19967 icc.icc_pmtu, icc.icc_onlink)); 19968 #endif 19969 } 19970 19971 /* 19972 * ip_unbind is called when a copy of an unbind request is received from the 19973 * upper level protocol. We remove this conn from any fanout hash list it is 19974 * on, and zero out the bind information. No reply is expected up above. 19975 */ 19976 mblk_t * 19977 ip_unbind(queue_t *q, mblk_t *mp) 19978 { 19979 conn_t *connp = Q_TO_CONN(q); 19980 19981 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19982 19983 if (is_system_labeled() && connp->conn_anon_port) { 19984 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19985 connp->conn_mlp_type, connp->conn_ulp, 19986 ntohs(connp->conn_lport), B_FALSE); 19987 connp->conn_anon_port = 0; 19988 } 19989 connp->conn_mlp_type = mlptSingle; 19990 19991 ipcl_hash_remove(connp); 19992 19993 ASSERT(mp->b_cont == NULL); 19994 /* 19995 * Convert mp into a T_OK_ACK 19996 */ 19997 mp = mi_tpi_ok_ack_alloc(mp); 19998 19999 /* 20000 * should not happen in practice... T_OK_ACK is smaller than the 20001 * original message. 20002 */ 20003 if (mp == NULL) 20004 return (NULL); 20005 20006 /* 20007 * Don't bzero the ports if its TCP since TCP still needs the 20008 * lport to remove it from its own bind hash. TCP will do the 20009 * cleanup. 20010 */ 20011 if (!IPCL_IS_TCP(connp)) 20012 bzero(&connp->u_port, sizeof (connp->u_port)); 20013 20014 return (mp); 20015 } 20016 20017 /* 20018 * Write side put procedure. Outbound data, IOCTLs, responses from 20019 * resolvers, etc, come down through here. 20020 * 20021 * arg2 is always a queue_t *. 20022 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20023 * the zoneid. 20024 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20025 */ 20026 void 20027 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20028 { 20029 ip_output_options(arg, mp, arg2, caller, &zero_info); 20030 } 20031 20032 void 20033 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20034 ip_opt_info_t *infop) 20035 { 20036 conn_t *connp = NULL; 20037 queue_t *q = (queue_t *)arg2; 20038 ipha_t *ipha; 20039 #define rptr ((uchar_t *)ipha) 20040 ire_t *ire = NULL; 20041 ire_t *sctp_ire = NULL; 20042 uint32_t v_hlen_tos_len; 20043 ipaddr_t dst; 20044 mblk_t *first_mp = NULL; 20045 boolean_t mctl_present; 20046 ipsec_out_t *io; 20047 int match_flags; 20048 ill_t *attach_ill = NULL; 20049 /* Bind to IPIF_NOFAILOVER ill etc. */ 20050 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20051 ipif_t *dst_ipif; 20052 boolean_t multirt_need_resolve = B_FALSE; 20053 mblk_t *copy_mp = NULL; 20054 int err; 20055 zoneid_t zoneid; 20056 int adjust; 20057 uint16_t iplen; 20058 boolean_t need_decref = B_FALSE; 20059 boolean_t ignore_dontroute = B_FALSE; 20060 boolean_t ignore_nexthop = B_FALSE; 20061 boolean_t ip_nexthop = B_FALSE; 20062 ipaddr_t nexthop_addr; 20063 ip_stack_t *ipst; 20064 20065 #ifdef _BIG_ENDIAN 20066 #define V_HLEN (v_hlen_tos_len >> 24) 20067 #else 20068 #define V_HLEN (v_hlen_tos_len & 0xFF) 20069 #endif 20070 20071 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20072 "ip_wput_start: q %p", q); 20073 20074 /* 20075 * ip_wput fast path 20076 */ 20077 20078 /* is packet from ARP ? */ 20079 if (q->q_next != NULL) { 20080 zoneid = (zoneid_t)(uintptr_t)arg; 20081 goto qnext; 20082 } 20083 20084 connp = (conn_t *)arg; 20085 ASSERT(connp != NULL); 20086 zoneid = connp->conn_zoneid; 20087 ipst = connp->conn_netstack->netstack_ip; 20088 20089 /* is queue flow controlled? */ 20090 if ((q->q_first != NULL || connp->conn_draining) && 20091 (caller == IP_WPUT)) { 20092 ASSERT(!need_decref); 20093 (void) putq(q, mp); 20094 return; 20095 } 20096 20097 /* Multidata transmit? */ 20098 if (DB_TYPE(mp) == M_MULTIDATA) { 20099 /* 20100 * We should never get here, since all Multidata messages 20101 * originating from tcp should have been directed over to 20102 * tcp_multisend() in the first place. 20103 */ 20104 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20105 freemsg(mp); 20106 return; 20107 } else if (DB_TYPE(mp) != M_DATA) 20108 goto notdata; 20109 20110 if (mp->b_flag & MSGHASREF) { 20111 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20112 mp->b_flag &= ~MSGHASREF; 20113 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20114 need_decref = B_TRUE; 20115 } 20116 ipha = (ipha_t *)mp->b_rptr; 20117 20118 /* is IP header non-aligned or mblk smaller than basic IP header */ 20119 #ifndef SAFETY_BEFORE_SPEED 20120 if (!OK_32PTR(rptr) || 20121 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20122 goto hdrtoosmall; 20123 #endif 20124 20125 ASSERT(OK_32PTR(ipha)); 20126 20127 /* 20128 * This function assumes that mp points to an IPv4 packet. If it's the 20129 * wrong version, we'll catch it again in ip_output_v6. 20130 * 20131 * Note that this is *only* locally-generated output here, and never 20132 * forwarded data, and that we need to deal only with transports that 20133 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20134 * label.) 20135 */ 20136 if (is_system_labeled() && 20137 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20138 !connp->conn_ulp_labeled) { 20139 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20140 connp->conn_mac_exempt, ipst); 20141 ipha = (ipha_t *)mp->b_rptr; 20142 if (err != 0) { 20143 first_mp = mp; 20144 if (err == EINVAL) 20145 goto icmp_parameter_problem; 20146 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20147 goto discard_pkt; 20148 } 20149 iplen = ntohs(ipha->ipha_length) + adjust; 20150 ipha->ipha_length = htons(iplen); 20151 } 20152 20153 ASSERT(infop != NULL); 20154 20155 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20156 /* 20157 * IP_PKTINFO ancillary option is present. 20158 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20159 * allows using address of any zone as the source address. 20160 */ 20161 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20162 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20163 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20164 if (ire == NULL) 20165 goto drop_pkt; 20166 ire_refrele(ire); 20167 ire = NULL; 20168 } 20169 20170 /* 20171 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20172 * ill index passed in IP_PKTINFO. 20173 */ 20174 if (infop->ip_opt_ill_index != 0 && 20175 connp->conn_xmit_if_ill == NULL && 20176 connp->conn_nofailover_ill == NULL) { 20177 20178 xmit_ill = ill_lookup_on_ifindex( 20179 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20180 ipst); 20181 20182 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20183 goto drop_pkt; 20184 /* 20185 * check that there is an ipif belonging 20186 * to our zone. IPCL_ZONEID is not used because 20187 * IP_ALLZONES option is valid only when the ill is 20188 * accessible from all zones i.e has a valid ipif in 20189 * all zones. 20190 */ 20191 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20192 goto drop_pkt; 20193 } 20194 } 20195 20196 /* 20197 * If there is a policy, try to attach an ipsec_out in 20198 * the front. At the end, first_mp either points to a 20199 * M_DATA message or IPSEC_OUT message linked to a 20200 * M_DATA message. We have to do it now as we might 20201 * lose the "conn" if we go through ip_newroute. 20202 */ 20203 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20204 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20205 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20206 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20207 if (need_decref) 20208 CONN_DEC_REF(connp); 20209 return; 20210 } else { 20211 ASSERT(mp->b_datap->db_type == M_CTL); 20212 first_mp = mp; 20213 mp = mp->b_cont; 20214 mctl_present = B_TRUE; 20215 } 20216 } else { 20217 first_mp = mp; 20218 mctl_present = B_FALSE; 20219 } 20220 20221 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20222 20223 /* is wrong version or IP options present */ 20224 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20225 goto version_hdrlen_check; 20226 dst = ipha->ipha_dst; 20227 20228 if (connp->conn_nofailover_ill != NULL) { 20229 attach_ill = conn_get_held_ill(connp, 20230 &connp->conn_nofailover_ill, &err); 20231 if (err == ILL_LOOKUP_FAILED) { 20232 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20233 if (need_decref) 20234 CONN_DEC_REF(connp); 20235 freemsg(first_mp); 20236 return; 20237 } 20238 } 20239 20240 20241 /* is packet multicast? */ 20242 if (CLASSD(dst)) 20243 goto multicast; 20244 20245 /* 20246 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20247 * takes precedence over conn_dontroute and conn_nexthop_set 20248 */ 20249 if (xmit_ill != NULL) { 20250 goto send_from_ill; 20251 } 20252 20253 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20254 (connp->conn_nexthop_set)) { 20255 /* 20256 * If the destination is a broadcast or a loopback 20257 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20258 * through the standard path. But in the case of local 20259 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20260 * the standard path not IP_XMIT_IF. 20261 */ 20262 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20263 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20264 (ire->ire_type != IRE_LOOPBACK))) { 20265 if ((connp->conn_dontroute || 20266 connp->conn_nexthop_set) && (ire != NULL) && 20267 (ire->ire_type == IRE_LOCAL)) 20268 goto standard_path; 20269 20270 if (ire != NULL) { 20271 ire_refrele(ire); 20272 /* No more access to ire */ 20273 ire = NULL; 20274 } 20275 /* 20276 * bypass routing checks and go directly to 20277 * interface. 20278 */ 20279 if (connp->conn_dontroute) { 20280 goto dontroute; 20281 } else if (connp->conn_nexthop_set) { 20282 ip_nexthop = B_TRUE; 20283 nexthop_addr = connp->conn_nexthop_v4; 20284 goto send_from_ill; 20285 } 20286 20287 /* 20288 * If IP_XMIT_IF socket option is set, 20289 * then we allow unicast and multicast 20290 * packets to go through the ill. It is 20291 * quite possible that the destination 20292 * is not in the ire cache table and we 20293 * do not want to go to ip_newroute() 20294 * instead we call ip_newroute_ipif. 20295 */ 20296 xmit_ill = conn_get_held_ill(connp, 20297 &connp->conn_xmit_if_ill, &err); 20298 if (err == ILL_LOOKUP_FAILED) { 20299 BUMP_MIB(&ipst->ips_ip_mib, 20300 ipIfStatsOutDiscards); 20301 if (attach_ill != NULL) 20302 ill_refrele(attach_ill); 20303 if (need_decref) 20304 CONN_DEC_REF(connp); 20305 freemsg(first_mp); 20306 return; 20307 } 20308 goto send_from_ill; 20309 } 20310 standard_path: 20311 /* Must be a broadcast, a loopback or a local ire */ 20312 if (ire != NULL) { 20313 ire_refrele(ire); 20314 /* No more access to ire */ 20315 ire = NULL; 20316 } 20317 } 20318 20319 if (attach_ill != NULL) 20320 goto send_from_ill; 20321 20322 /* 20323 * We cache IRE_CACHEs to avoid lookups. We don't do 20324 * this for the tcp global queue and listen end point 20325 * as it does not really have a real destination to 20326 * talk to. This is also true for SCTP. 20327 */ 20328 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20329 !connp->conn_fully_bound) { 20330 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20331 if (ire == NULL) 20332 goto noirefound; 20333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20334 "ip_wput_end: q %p (%S)", q, "end"); 20335 20336 /* 20337 * Check if the ire has the RTF_MULTIRT flag, inherited 20338 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20339 */ 20340 if (ire->ire_flags & RTF_MULTIRT) { 20341 20342 /* 20343 * Force the TTL of multirouted packets if required. 20344 * The TTL of such packets is bounded by the 20345 * ip_multirt_ttl ndd variable. 20346 */ 20347 if ((ipst->ips_ip_multirt_ttl > 0) && 20348 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20349 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20350 "(was %d), dst 0x%08x\n", 20351 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20352 ntohl(ire->ire_addr))); 20353 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20354 } 20355 /* 20356 * We look at this point if there are pending 20357 * unresolved routes. ire_multirt_resolvable() 20358 * checks in O(n) that all IRE_OFFSUBNET ire 20359 * entries for the packet's destination and 20360 * flagged RTF_MULTIRT are currently resolved. 20361 * If some remain unresolved, we make a copy 20362 * of the current message. It will be used 20363 * to initiate additional route resolutions. 20364 */ 20365 multirt_need_resolve = 20366 ire_multirt_need_resolve(ire->ire_addr, 20367 MBLK_GETLABEL(first_mp), ipst); 20368 ip2dbg(("ip_wput[TCP]: ire %p, " 20369 "multirt_need_resolve %d, first_mp %p\n", 20370 (void *)ire, multirt_need_resolve, 20371 (void *)first_mp)); 20372 if (multirt_need_resolve) { 20373 copy_mp = copymsg(first_mp); 20374 if (copy_mp != NULL) { 20375 MULTIRT_DEBUG_TAG(copy_mp); 20376 } 20377 } 20378 } 20379 20380 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20381 20382 /* 20383 * Try to resolve another multiroute if 20384 * ire_multirt_need_resolve() deemed it necessary. 20385 */ 20386 if (copy_mp != NULL) 20387 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20388 if (need_decref) 20389 CONN_DEC_REF(connp); 20390 return; 20391 } 20392 20393 /* 20394 * Access to conn_ire_cache. (protected by conn_lock) 20395 * 20396 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20397 * the ire bucket lock here to check for CONDEMNED as it is okay to 20398 * send a packet or two with the IRE_CACHE that is going away. 20399 * Access to the ire requires an ire refhold on the ire prior to 20400 * its use since an interface unplumb thread may delete the cached 20401 * ire and release the refhold at any time. 20402 * 20403 * Caching an ire in the conn_ire_cache 20404 * 20405 * o Caching an ire pointer in the conn requires a strict check for 20406 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20407 * ires before cleaning up the conns. So the caching of an ire pointer 20408 * in the conn is done after making sure under the bucket lock that the 20409 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20410 * caching an ire after the unplumb thread has cleaned up the conn. 20411 * If the conn does not send a packet subsequently the unplumb thread 20412 * will be hanging waiting for the ire count to drop to zero. 20413 * 20414 * o We also need to atomically test for a null conn_ire_cache and 20415 * set the conn_ire_cache under the the protection of the conn_lock 20416 * to avoid races among concurrent threads trying to simultaneously 20417 * cache an ire in the conn_ire_cache. 20418 */ 20419 mutex_enter(&connp->conn_lock); 20420 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20421 20422 if (ire != NULL && ire->ire_addr == dst && 20423 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20424 20425 IRE_REFHOLD(ire); 20426 mutex_exit(&connp->conn_lock); 20427 20428 } else { 20429 boolean_t cached = B_FALSE; 20430 connp->conn_ire_cache = NULL; 20431 mutex_exit(&connp->conn_lock); 20432 /* Release the old ire */ 20433 if (ire != NULL && sctp_ire == NULL) 20434 IRE_REFRELE_NOTR(ire); 20435 20436 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20437 if (ire == NULL) 20438 goto noirefound; 20439 IRE_REFHOLD_NOTR(ire); 20440 20441 mutex_enter(&connp->conn_lock); 20442 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20443 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20444 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20445 if (connp->conn_ulp == IPPROTO_TCP) 20446 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20447 connp->conn_ire_cache = ire; 20448 cached = B_TRUE; 20449 } 20450 rw_exit(&ire->ire_bucket->irb_lock); 20451 } 20452 mutex_exit(&connp->conn_lock); 20453 20454 /* 20455 * We can continue to use the ire but since it was 20456 * not cached, we should drop the extra reference. 20457 */ 20458 if (!cached) 20459 IRE_REFRELE_NOTR(ire); 20460 } 20461 20462 20463 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20464 "ip_wput_end: q %p (%S)", q, "end"); 20465 20466 /* 20467 * Check if the ire has the RTF_MULTIRT flag, inherited 20468 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20469 */ 20470 if (ire->ire_flags & RTF_MULTIRT) { 20471 20472 /* 20473 * Force the TTL of multirouted packets if required. 20474 * The TTL of such packets is bounded by the 20475 * ip_multirt_ttl ndd variable. 20476 */ 20477 if ((ipst->ips_ip_multirt_ttl > 0) && 20478 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20479 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20480 "(was %d), dst 0x%08x\n", 20481 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20482 ntohl(ire->ire_addr))); 20483 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20484 } 20485 20486 /* 20487 * At this point, we check to see if there are any pending 20488 * unresolved routes. ire_multirt_resolvable() 20489 * checks in O(n) that all IRE_OFFSUBNET ire 20490 * entries for the packet's destination and 20491 * flagged RTF_MULTIRT are currently resolved. 20492 * If some remain unresolved, we make a copy 20493 * of the current message. It will be used 20494 * to initiate additional route resolutions. 20495 */ 20496 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20497 MBLK_GETLABEL(first_mp), ipst); 20498 ip2dbg(("ip_wput[not TCP]: ire %p, " 20499 "multirt_need_resolve %d, first_mp %p\n", 20500 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20501 if (multirt_need_resolve) { 20502 copy_mp = copymsg(first_mp); 20503 if (copy_mp != NULL) { 20504 MULTIRT_DEBUG_TAG(copy_mp); 20505 } 20506 } 20507 } 20508 20509 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20510 20511 /* 20512 * Try to resolve another multiroute if 20513 * ire_multirt_resolvable() deemed it necessary 20514 */ 20515 if (copy_mp != NULL) 20516 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20517 if (need_decref) 20518 CONN_DEC_REF(connp); 20519 return; 20520 20521 qnext: 20522 /* 20523 * Upper Level Protocols pass down complete IP datagrams 20524 * as M_DATA messages. Everything else is a sideshow. 20525 * 20526 * 1) We could be re-entering ip_wput because of ip_neworute 20527 * in which case we could have a IPSEC_OUT message. We 20528 * need to pass through ip_wput like other datagrams and 20529 * hence cannot branch to ip_wput_nondata. 20530 * 20531 * 2) ARP, AH, ESP, and other clients who are on the module 20532 * instance of IP stream, give us something to deal with. 20533 * We will handle AH and ESP here and rest in ip_wput_nondata. 20534 * 20535 * 3) ICMP replies also could come here. 20536 */ 20537 ipst = ILLQ_TO_IPST(q); 20538 20539 if (DB_TYPE(mp) != M_DATA) { 20540 notdata: 20541 if (DB_TYPE(mp) == M_CTL) { 20542 /* 20543 * M_CTL messages are used by ARP, AH and ESP to 20544 * communicate with IP. We deal with IPSEC_IN and 20545 * IPSEC_OUT here. ip_wput_nondata handles other 20546 * cases. 20547 */ 20548 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20549 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20550 first_mp = mp->b_cont; 20551 first_mp->b_flag &= ~MSGHASREF; 20552 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20553 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20554 CONN_DEC_REF(connp); 20555 connp = NULL; 20556 } 20557 if (ii->ipsec_info_type == IPSEC_IN) { 20558 /* 20559 * Either this message goes back to 20560 * IPsec for further processing or to 20561 * ULP after policy checks. 20562 */ 20563 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20564 return; 20565 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20566 io = (ipsec_out_t *)ii; 20567 if (io->ipsec_out_proc_begin) { 20568 /* 20569 * IPsec processing has already started. 20570 * Complete it. 20571 * IPQoS notes: We don't care what is 20572 * in ipsec_out_ill_index since this 20573 * won't be processed for IPQoS policies 20574 * in ipsec_out_process. 20575 */ 20576 ipsec_out_process(q, mp, NULL, 20577 io->ipsec_out_ill_index); 20578 return; 20579 } else { 20580 connp = (q->q_next != NULL) ? 20581 NULL : Q_TO_CONN(q); 20582 first_mp = mp; 20583 mp = mp->b_cont; 20584 mctl_present = B_TRUE; 20585 } 20586 zoneid = io->ipsec_out_zoneid; 20587 ASSERT(zoneid != ALL_ZONES); 20588 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20589 /* 20590 * It's an IPsec control message requesting 20591 * an SADB update to be sent to the IPsec 20592 * hardware acceleration capable ills. 20593 */ 20594 ipsec_ctl_t *ipsec_ctl = 20595 (ipsec_ctl_t *)mp->b_rptr; 20596 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20597 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20598 mblk_t *cmp = mp->b_cont; 20599 20600 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20601 ASSERT(cmp != NULL); 20602 20603 freeb(mp); 20604 ill_ipsec_capab_send_all(satype, cmp, sa, 20605 ipst->ips_netstack); 20606 return; 20607 } else { 20608 /* 20609 * This must be ARP or special TSOL signaling. 20610 */ 20611 ip_wput_nondata(NULL, q, mp, NULL); 20612 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20613 "ip_wput_end: q %p (%S)", q, "nondata"); 20614 return; 20615 } 20616 } else { 20617 /* 20618 * This must be non-(ARP/AH/ESP) messages. 20619 */ 20620 ASSERT(!need_decref); 20621 ip_wput_nondata(NULL, q, mp, NULL); 20622 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20623 "ip_wput_end: q %p (%S)", q, "nondata"); 20624 return; 20625 } 20626 } else { 20627 first_mp = mp; 20628 mctl_present = B_FALSE; 20629 } 20630 20631 ASSERT(first_mp != NULL); 20632 /* 20633 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20634 * to make sure that this packet goes out on the same interface it 20635 * came in. We handle that here. 20636 */ 20637 if (mctl_present) { 20638 uint_t ifindex; 20639 20640 io = (ipsec_out_t *)first_mp->b_rptr; 20641 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20642 /* 20643 * We may have lost the conn context if we are 20644 * coming here from ip_newroute(). Copy the 20645 * nexthop information. 20646 */ 20647 if (io->ipsec_out_ip_nexthop) { 20648 ip_nexthop = B_TRUE; 20649 nexthop_addr = io->ipsec_out_nexthop_addr; 20650 20651 ipha = (ipha_t *)mp->b_rptr; 20652 dst = ipha->ipha_dst; 20653 goto send_from_ill; 20654 } else { 20655 ASSERT(io->ipsec_out_ill_index != 0); 20656 ifindex = io->ipsec_out_ill_index; 20657 attach_ill = ill_lookup_on_ifindex(ifindex, 20658 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20659 if (attach_ill == NULL) { 20660 ASSERT(xmit_ill == NULL); 20661 ip1dbg(("ip_output: bad ifindex for " 20662 "(BIND TO IPIF_NOFAILOVER) %d\n", 20663 ifindex)); 20664 freemsg(first_mp); 20665 BUMP_MIB(&ipst->ips_ip_mib, 20666 ipIfStatsOutDiscards); 20667 ASSERT(!need_decref); 20668 return; 20669 } 20670 } 20671 } 20672 } 20673 20674 ASSERT(xmit_ill == NULL); 20675 20676 /* We have a complete IP datagram heading outbound. */ 20677 ipha = (ipha_t *)mp->b_rptr; 20678 20679 #ifndef SPEED_BEFORE_SAFETY 20680 /* 20681 * Make sure we have a full-word aligned message and that at least 20682 * a simple IP header is accessible in the first message. If not, 20683 * try a pullup. 20684 */ 20685 if (!OK_32PTR(rptr) || 20686 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20687 hdrtoosmall: 20688 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20689 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20690 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20691 if (first_mp == NULL) 20692 first_mp = mp; 20693 goto discard_pkt; 20694 } 20695 20696 /* This function assumes that mp points to an IPv4 packet. */ 20697 if (is_system_labeled() && q->q_next == NULL && 20698 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20699 !connp->conn_ulp_labeled) { 20700 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20701 &adjust, connp->conn_mac_exempt, ipst); 20702 ipha = (ipha_t *)mp->b_rptr; 20703 if (first_mp != NULL) 20704 first_mp->b_cont = mp; 20705 if (err != 0) { 20706 if (first_mp == NULL) 20707 first_mp = mp; 20708 if (err == EINVAL) 20709 goto icmp_parameter_problem; 20710 ip2dbg(("ip_wput: label check failed (%d)\n", 20711 err)); 20712 goto discard_pkt; 20713 } 20714 iplen = ntohs(ipha->ipha_length) + adjust; 20715 ipha->ipha_length = htons(iplen); 20716 } 20717 20718 ipha = (ipha_t *)mp->b_rptr; 20719 if (first_mp == NULL) { 20720 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20721 /* 20722 * If we got here because of "goto hdrtoosmall" 20723 * We need to attach a IPSEC_OUT. 20724 */ 20725 if (connp->conn_out_enforce_policy) { 20726 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20727 NULL, ipha->ipha_protocol, 20728 ipst->ips_netstack)) == NULL)) { 20729 BUMP_MIB(&ipst->ips_ip_mib, 20730 ipIfStatsOutDiscards); 20731 if (need_decref) 20732 CONN_DEC_REF(connp); 20733 return; 20734 } else { 20735 ASSERT(mp->b_datap->db_type == M_CTL); 20736 first_mp = mp; 20737 mp = mp->b_cont; 20738 mctl_present = B_TRUE; 20739 } 20740 } else { 20741 first_mp = mp; 20742 mctl_present = B_FALSE; 20743 } 20744 } 20745 } 20746 #endif 20747 20748 /* Most of the code below is written for speed, not readability */ 20749 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20750 20751 /* 20752 * If ip_newroute() fails, we're going to need a full 20753 * header for the icmp wraparound. 20754 */ 20755 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20756 uint_t v_hlen; 20757 version_hdrlen_check: 20758 ASSERT(first_mp != NULL); 20759 v_hlen = V_HLEN; 20760 /* 20761 * siphon off IPv6 packets coming down from transport 20762 * layer modules here. 20763 * Note: high-order bit carries NUD reachability confirmation 20764 */ 20765 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20766 /* 20767 * XXX implement a IPv4 and IPv6 packet counter per 20768 * conn and switch when ratio exceeds e.g. 10:1 20769 */ 20770 #ifdef notyet 20771 if (q->q_next == NULL) /* Avoid ill queue */ 20772 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 20773 #endif 20774 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20775 ASSERT(xmit_ill == NULL); 20776 if (attach_ill != NULL) 20777 ill_refrele(attach_ill); 20778 if (need_decref) 20779 mp->b_flag |= MSGHASREF; 20780 (void) ip_output_v6(arg, first_mp, arg2, caller); 20781 return; 20782 } 20783 20784 if ((v_hlen >> 4) != IP_VERSION) { 20785 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20786 "ip_wput_end: q %p (%S)", q, "badvers"); 20787 goto discard_pkt; 20788 } 20789 /* 20790 * Is the header length at least 20 bytes? 20791 * 20792 * Are there enough bytes accessible in the header? If 20793 * not, try a pullup. 20794 */ 20795 v_hlen &= 0xF; 20796 v_hlen <<= 2; 20797 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20798 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20799 "ip_wput_end: q %p (%S)", q, "badlen"); 20800 goto discard_pkt; 20801 } 20802 if (v_hlen > (mp->b_wptr - rptr)) { 20803 if (!pullupmsg(mp, v_hlen)) { 20804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20805 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20806 goto discard_pkt; 20807 } 20808 ipha = (ipha_t *)mp->b_rptr; 20809 } 20810 /* 20811 * Move first entry from any source route into ipha_dst and 20812 * verify the options 20813 */ 20814 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20815 zoneid, ipst)) { 20816 ASSERT(xmit_ill == NULL); 20817 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20818 if (attach_ill != NULL) 20819 ill_refrele(attach_ill); 20820 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20821 "ip_wput_end: q %p (%S)", q, "badopts"); 20822 if (need_decref) 20823 CONN_DEC_REF(connp); 20824 return; 20825 } 20826 } 20827 dst = ipha->ipha_dst; 20828 20829 /* 20830 * Try to get an IRE_CACHE for the destination address. If we can't, 20831 * we have to run the packet through ip_newroute which will take 20832 * the appropriate action to arrange for an IRE_CACHE, such as querying 20833 * a resolver, or assigning a default gateway, etc. 20834 */ 20835 if (CLASSD(dst)) { 20836 ipif_t *ipif; 20837 uint32_t setsrc = 0; 20838 20839 multicast: 20840 ASSERT(first_mp != NULL); 20841 ip2dbg(("ip_wput: CLASSD\n")); 20842 if (connp == NULL) { 20843 /* 20844 * Use the first good ipif on the ill. 20845 * XXX Should this ever happen? (Appears 20846 * to show up with just ppp and no ethernet due 20847 * to in.rdisc.) 20848 * However, ire_send should be able to 20849 * call ip_wput_ire directly. 20850 * 20851 * XXX Also, this can happen for ICMP and other packets 20852 * with multicast source addresses. Perhaps we should 20853 * fix things so that we drop the packet in question, 20854 * but for now, just run with it. 20855 */ 20856 ill_t *ill = (ill_t *)q->q_ptr; 20857 20858 /* 20859 * Don't honor attach_if for this case. If ill 20860 * is part of the group, ipif could belong to 20861 * any ill and we cannot maintain attach_ill 20862 * and ipif_ill same anymore and the assert 20863 * below would fail. 20864 */ 20865 if (mctl_present && io->ipsec_out_attach_if) { 20866 io->ipsec_out_ill_index = 0; 20867 io->ipsec_out_attach_if = B_FALSE; 20868 ASSERT(attach_ill != NULL); 20869 ill_refrele(attach_ill); 20870 attach_ill = NULL; 20871 } 20872 20873 ASSERT(attach_ill == NULL); 20874 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20875 if (ipif == NULL) { 20876 if (need_decref) 20877 CONN_DEC_REF(connp); 20878 freemsg(first_mp); 20879 return; 20880 } 20881 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20882 ntohl(dst), ill->ill_name)); 20883 } else { 20884 /* 20885 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20886 * and IP_MULTICAST_IF. 20887 * Block comment above this function explains the 20888 * locking mechanism used here 20889 */ 20890 if (xmit_ill == NULL) { 20891 xmit_ill = conn_get_held_ill(connp, 20892 &connp->conn_xmit_if_ill, &err); 20893 if (err == ILL_LOOKUP_FAILED) { 20894 ip1dbg(("ip_wput: No ill for " 20895 "IP_XMIT_IF\n")); 20896 BUMP_MIB(&ipst->ips_ip_mib, 20897 ipIfStatsOutNoRoutes); 20898 goto drop_pkt; 20899 } 20900 } 20901 20902 if (xmit_ill == NULL) { 20903 ipif = conn_get_held_ipif(connp, 20904 &connp->conn_multicast_ipif, &err); 20905 if (err == IPIF_LOOKUP_FAILED) { 20906 ip1dbg(("ip_wput: No ipif for " 20907 "multicast\n")); 20908 BUMP_MIB(&ipst->ips_ip_mib, 20909 ipIfStatsOutNoRoutes); 20910 goto drop_pkt; 20911 } 20912 } 20913 if (xmit_ill != NULL) { 20914 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20915 if (ipif == NULL) { 20916 ip1dbg(("ip_wput: No ipif for " 20917 "IP_XMIT_IF\n")); 20918 BUMP_MIB(&ipst->ips_ip_mib, 20919 ipIfStatsOutNoRoutes); 20920 goto drop_pkt; 20921 } 20922 } else if (ipif == NULL || ipif->ipif_isv6) { 20923 /* 20924 * We must do this ipif determination here 20925 * else we could pass through ip_newroute 20926 * and come back here without the conn context. 20927 * 20928 * Note: we do late binding i.e. we bind to 20929 * the interface when the first packet is sent. 20930 * For performance reasons we do not rebind on 20931 * each packet but keep the binding until the 20932 * next IP_MULTICAST_IF option. 20933 * 20934 * conn_multicast_{ipif,ill} are shared between 20935 * IPv4 and IPv6 and AF_INET6 sockets can 20936 * send both IPv4 and IPv6 packets. Hence 20937 * we have to check that "isv6" matches above. 20938 */ 20939 if (ipif != NULL) 20940 ipif_refrele(ipif); 20941 ipif = ipif_lookup_group(dst, zoneid, ipst); 20942 if (ipif == NULL) { 20943 ip1dbg(("ip_wput: No ipif for " 20944 "multicast\n")); 20945 BUMP_MIB(&ipst->ips_ip_mib, 20946 ipIfStatsOutNoRoutes); 20947 goto drop_pkt; 20948 } 20949 err = conn_set_held_ipif(connp, 20950 &connp->conn_multicast_ipif, ipif); 20951 if (err == IPIF_LOOKUP_FAILED) { 20952 ipif_refrele(ipif); 20953 ip1dbg(("ip_wput: No ipif for " 20954 "multicast\n")); 20955 BUMP_MIB(&ipst->ips_ip_mib, 20956 ipIfStatsOutNoRoutes); 20957 goto drop_pkt; 20958 } 20959 } 20960 } 20961 ASSERT(!ipif->ipif_isv6); 20962 /* 20963 * As we may lose the conn by the time we reach ip_wput_ire, 20964 * we copy conn_multicast_loop and conn_dontroute on to an 20965 * ipsec_out. In case if this datagram goes out secure, 20966 * we need the ill_index also. Copy that also into the 20967 * ipsec_out. 20968 */ 20969 if (mctl_present) { 20970 io = (ipsec_out_t *)first_mp->b_rptr; 20971 ASSERT(first_mp->b_datap->db_type == M_CTL); 20972 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20973 } else { 20974 ASSERT(mp == first_mp); 20975 if ((first_mp = allocb(sizeof (ipsec_info_t), 20976 BPRI_HI)) == NULL) { 20977 ipif_refrele(ipif); 20978 first_mp = mp; 20979 goto discard_pkt; 20980 } 20981 first_mp->b_datap->db_type = M_CTL; 20982 first_mp->b_wptr += sizeof (ipsec_info_t); 20983 /* ipsec_out_secure is B_FALSE now */ 20984 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20985 io = (ipsec_out_t *)first_mp->b_rptr; 20986 io->ipsec_out_type = IPSEC_OUT; 20987 io->ipsec_out_len = sizeof (ipsec_out_t); 20988 io->ipsec_out_use_global_policy = B_TRUE; 20989 io->ipsec_out_ns = ipst->ips_netstack; 20990 first_mp->b_cont = mp; 20991 mctl_present = B_TRUE; 20992 } 20993 if (attach_ill != NULL) { 20994 ASSERT(attach_ill == ipif->ipif_ill); 20995 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20996 20997 /* 20998 * Check if we need an ire that will not be 20999 * looked up by anybody else i.e. HIDDEN. 21000 */ 21001 if (ill_is_probeonly(attach_ill)) { 21002 match_flags |= MATCH_IRE_MARK_HIDDEN; 21003 } 21004 io->ipsec_out_ill_index = 21005 attach_ill->ill_phyint->phyint_ifindex; 21006 io->ipsec_out_attach_if = B_TRUE; 21007 } else { 21008 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21009 io->ipsec_out_ill_index = 21010 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21011 } 21012 if (connp != NULL) { 21013 io->ipsec_out_multicast_loop = 21014 connp->conn_multicast_loop; 21015 io->ipsec_out_dontroute = connp->conn_dontroute; 21016 io->ipsec_out_zoneid = connp->conn_zoneid; 21017 } 21018 /* 21019 * If the application uses IP_MULTICAST_IF with 21020 * different logical addresses of the same ILL, we 21021 * need to make sure that the soruce address of 21022 * the packet matches the logical IP address used 21023 * in the option. We do it by initializing ipha_src 21024 * here. This should keep IPsec also happy as 21025 * when we return from IPsec processing, we don't 21026 * have to worry about getting the right address on 21027 * the packet. Thus it is sufficient to look for 21028 * IRE_CACHE using MATCH_IRE_ILL rathen than 21029 * MATCH_IRE_IPIF. 21030 * 21031 * NOTE : We need to do it for non-secure case also as 21032 * this might go out secure if there is a global policy 21033 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21034 * address, the source should be initialized already and 21035 * hence we won't be initializing here. 21036 * 21037 * As we do not have the ire yet, it is possible that 21038 * we set the source address here and then later discover 21039 * that the ire implies the source address to be assigned 21040 * through the RTF_SETSRC flag. 21041 * In that case, the setsrc variable will remind us 21042 * that overwritting the source address by the one 21043 * of the RTF_SETSRC-flagged ire is allowed. 21044 */ 21045 if (ipha->ipha_src == INADDR_ANY && 21046 (connp == NULL || !connp->conn_unspec_src)) { 21047 ipha->ipha_src = ipif->ipif_src_addr; 21048 setsrc = RTF_SETSRC; 21049 } 21050 /* 21051 * Find an IRE which matches the destination and the outgoing 21052 * queue (i.e. the outgoing interface.) 21053 * For loopback use a unicast IP address for 21054 * the ire lookup. 21055 */ 21056 if (IS_LOOPBACK(ipif->ipif_ill)) 21057 dst = ipif->ipif_lcl_addr; 21058 21059 /* 21060 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21061 * We don't need to lookup ire in ctable as the packet 21062 * needs to be sent to the destination through the specified 21063 * ill irrespective of ires in the cache table. 21064 */ 21065 ire = NULL; 21066 if (xmit_ill == NULL) { 21067 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21068 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21069 } 21070 21071 /* 21072 * refrele attach_ill as its not needed anymore. 21073 */ 21074 if (attach_ill != NULL) { 21075 ill_refrele(attach_ill); 21076 attach_ill = NULL; 21077 } 21078 21079 if (ire == NULL) { 21080 /* 21081 * Multicast loopback and multicast forwarding is 21082 * done in ip_wput_ire. 21083 * 21084 * Mark this packet to make it be delivered to 21085 * ip_wput_ire after the new ire has been 21086 * created. 21087 * 21088 * The call to ip_newroute_ipif takes into account 21089 * the setsrc reminder. In any case, we take care 21090 * of the RTF_MULTIRT flag. 21091 */ 21092 mp->b_prev = mp->b_next = NULL; 21093 if (xmit_ill == NULL || 21094 xmit_ill->ill_ipif_up_count > 0) { 21095 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21096 setsrc | RTF_MULTIRT, zoneid, infop); 21097 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21098 "ip_wput_end: q %p (%S)", q, "noire"); 21099 } else { 21100 freemsg(first_mp); 21101 } 21102 ipif_refrele(ipif); 21103 if (xmit_ill != NULL) 21104 ill_refrele(xmit_ill); 21105 if (need_decref) 21106 CONN_DEC_REF(connp); 21107 return; 21108 } 21109 21110 ipif_refrele(ipif); 21111 ipif = NULL; 21112 ASSERT(xmit_ill == NULL); 21113 21114 /* 21115 * Honor the RTF_SETSRC flag for multicast packets, 21116 * if allowed by the setsrc reminder. 21117 */ 21118 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21119 ipha->ipha_src = ire->ire_src_addr; 21120 } 21121 21122 /* 21123 * Unconditionally force the TTL to 1 for 21124 * multirouted multicast packets: 21125 * multirouted multicast should not cross 21126 * multicast routers. 21127 */ 21128 if (ire->ire_flags & RTF_MULTIRT) { 21129 if (ipha->ipha_ttl > 1) { 21130 ip2dbg(("ip_wput: forcing multicast " 21131 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21132 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21133 ipha->ipha_ttl = 1; 21134 } 21135 } 21136 } else { 21137 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21138 if ((ire != NULL) && (ire->ire_type & 21139 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21140 ignore_dontroute = B_TRUE; 21141 ignore_nexthop = B_TRUE; 21142 } 21143 if (ire != NULL) { 21144 ire_refrele(ire); 21145 ire = NULL; 21146 } 21147 /* 21148 * Guard against coming in from arp in which case conn is NULL. 21149 * Also guard against non M_DATA with dontroute set but 21150 * destined to local, loopback or broadcast addresses. 21151 */ 21152 if (connp != NULL && connp->conn_dontroute && 21153 !ignore_dontroute) { 21154 dontroute: 21155 /* 21156 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21157 * routing protocols from seeing false direct 21158 * connectivity. 21159 */ 21160 ipha->ipha_ttl = 1; 21161 /* 21162 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21163 * along with SO_DONTROUTE, higher precedence is 21164 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21165 */ 21166 if (connp->conn_xmit_if_ill == NULL) { 21167 /* If suitable ipif not found, drop packet */ 21168 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21169 ipst); 21170 if (dst_ipif == NULL) { 21171 ip1dbg(("ip_wput: no route for " 21172 "dst using SO_DONTROUTE\n")); 21173 BUMP_MIB(&ipst->ips_ip_mib, 21174 ipIfStatsOutNoRoutes); 21175 mp->b_prev = mp->b_next = NULL; 21176 if (first_mp == NULL) 21177 first_mp = mp; 21178 goto drop_pkt; 21179 } else { 21180 /* 21181 * If suitable ipif has been found, set 21182 * xmit_ill to the corresponding 21183 * ipif_ill because we'll be following 21184 * the IP_XMIT_IF logic. 21185 */ 21186 ASSERT(xmit_ill == NULL); 21187 xmit_ill = dst_ipif->ipif_ill; 21188 mutex_enter(&xmit_ill->ill_lock); 21189 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21190 mutex_exit(&xmit_ill->ill_lock); 21191 xmit_ill = NULL; 21192 ipif_refrele(dst_ipif); 21193 ip1dbg(("ip_wput: no route for" 21194 " dst using" 21195 " SO_DONTROUTE\n")); 21196 BUMP_MIB(&ipst->ips_ip_mib, 21197 ipIfStatsOutNoRoutes); 21198 mp->b_prev = mp->b_next = NULL; 21199 if (first_mp == NULL) 21200 first_mp = mp; 21201 goto drop_pkt; 21202 } 21203 ill_refhold_locked(xmit_ill); 21204 mutex_exit(&xmit_ill->ill_lock); 21205 ipif_refrele(dst_ipif); 21206 } 21207 } 21208 21209 } 21210 /* 21211 * If we are bound to IPIF_NOFAILOVER address, look for 21212 * an IRE_CACHE matching the ill. 21213 */ 21214 send_from_ill: 21215 if (attach_ill != NULL) { 21216 ipif_t *attach_ipif; 21217 21218 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21219 21220 /* 21221 * Check if we need an ire that will not be 21222 * looked up by anybody else i.e. HIDDEN. 21223 */ 21224 if (ill_is_probeonly(attach_ill)) { 21225 match_flags |= MATCH_IRE_MARK_HIDDEN; 21226 } 21227 21228 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21229 if (attach_ipif == NULL) { 21230 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21231 goto discard_pkt; 21232 } 21233 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21234 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21235 ipif_refrele(attach_ipif); 21236 } else if (xmit_ill != NULL || (connp != NULL && 21237 connp->conn_xmit_if_ill != NULL)) { 21238 /* 21239 * Mark this packet as originated locally 21240 */ 21241 mp->b_prev = mp->b_next = NULL; 21242 /* 21243 * xmit_ill could be NULL if SO_DONTROUTE 21244 * is also set. 21245 */ 21246 if (xmit_ill == NULL) { 21247 xmit_ill = conn_get_held_ill(connp, 21248 &connp->conn_xmit_if_ill, &err); 21249 if (err == ILL_LOOKUP_FAILED) { 21250 BUMP_MIB(&ipst->ips_ip_mib, 21251 ipIfStatsOutDiscards); 21252 if (need_decref) 21253 CONN_DEC_REF(connp); 21254 freemsg(first_mp); 21255 return; 21256 } 21257 if (xmit_ill == NULL) { 21258 if (connp->conn_dontroute) 21259 goto dontroute; 21260 goto send_from_ill; 21261 } 21262 } 21263 /* 21264 * Could be SO_DONTROUTE case also. 21265 * check at least one interface is UP as 21266 * specified by this ILL 21267 */ 21268 if (xmit_ill->ill_ipif_up_count > 0) { 21269 ipif_t *ipif; 21270 21271 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21272 if (ipif == NULL) { 21273 ip1dbg(("ip_output: " 21274 "xmit_ill NULL ipif\n")); 21275 goto drop_pkt; 21276 } 21277 /* 21278 * Look for a ire that is part of the group, 21279 * if found use it else call ip_newroute_ipif. 21280 * IPCL_ZONEID is not used for matching because 21281 * IP_ALLZONES option is valid only when the 21282 * ill is accessible from all zones i.e has a 21283 * valid ipif in all zones. 21284 */ 21285 match_flags = MATCH_IRE_ILL_GROUP | 21286 MATCH_IRE_SECATTR; 21287 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21288 MBLK_GETLABEL(mp), match_flags, ipst); 21289 /* 21290 * If an ire exists use it or else create 21291 * an ire but don't add it to the cache. 21292 * Adding an ire may cause issues with 21293 * asymmetric routing. 21294 * In case of multiroute always act as if 21295 * ire does not exist. 21296 */ 21297 if (ire == NULL || 21298 ire->ire_flags & RTF_MULTIRT) { 21299 if (ire != NULL) 21300 ire_refrele(ire); 21301 ip_newroute_ipif(q, first_mp, ipif, 21302 dst, connp, 0, zoneid, infop); 21303 ipif_refrele(ipif); 21304 ip1dbg(("ip_wput: ip_unicast_if\n")); 21305 ill_refrele(xmit_ill); 21306 if (need_decref) 21307 CONN_DEC_REF(connp); 21308 return; 21309 } 21310 ipif_refrele(ipif); 21311 } else { 21312 goto drop_pkt; 21313 } 21314 } else if (ip_nexthop || (connp != NULL && 21315 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21316 if (!ip_nexthop) { 21317 ip_nexthop = B_TRUE; 21318 nexthop_addr = connp->conn_nexthop_v4; 21319 } 21320 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21321 MATCH_IRE_GW; 21322 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21323 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21324 } else { 21325 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21326 ipst); 21327 } 21328 if (!ire) { 21329 /* 21330 * Make sure we don't load spread if this 21331 * is IPIF_NOFAILOVER case. 21332 */ 21333 if ((attach_ill != NULL) || 21334 (ip_nexthop && !ignore_nexthop)) { 21335 if (mctl_present) { 21336 io = (ipsec_out_t *)first_mp->b_rptr; 21337 ASSERT(first_mp->b_datap->db_type == 21338 M_CTL); 21339 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21340 } else { 21341 ASSERT(mp == first_mp); 21342 first_mp = allocb( 21343 sizeof (ipsec_info_t), BPRI_HI); 21344 if (first_mp == NULL) { 21345 first_mp = mp; 21346 goto discard_pkt; 21347 } 21348 first_mp->b_datap->db_type = M_CTL; 21349 first_mp->b_wptr += 21350 sizeof (ipsec_info_t); 21351 /* ipsec_out_secure is B_FALSE now */ 21352 bzero(first_mp->b_rptr, 21353 sizeof (ipsec_info_t)); 21354 io = (ipsec_out_t *)first_mp->b_rptr; 21355 io->ipsec_out_type = IPSEC_OUT; 21356 io->ipsec_out_len = 21357 sizeof (ipsec_out_t); 21358 io->ipsec_out_use_global_policy = 21359 B_TRUE; 21360 io->ipsec_out_ns = ipst->ips_netstack; 21361 first_mp->b_cont = mp; 21362 mctl_present = B_TRUE; 21363 } 21364 if (attach_ill != NULL) { 21365 io->ipsec_out_ill_index = attach_ill-> 21366 ill_phyint->phyint_ifindex; 21367 io->ipsec_out_attach_if = B_TRUE; 21368 } else { 21369 io->ipsec_out_ip_nexthop = ip_nexthop; 21370 io->ipsec_out_nexthop_addr = 21371 nexthop_addr; 21372 } 21373 } 21374 noirefound: 21375 /* 21376 * Mark this packet as having originated on 21377 * this machine. This will be noted in 21378 * ire_add_then_send, which needs to know 21379 * whether to run it back through ip_wput or 21380 * ip_rput following successful resolution. 21381 */ 21382 mp->b_prev = NULL; 21383 mp->b_next = NULL; 21384 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21385 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21386 "ip_wput_end: q %p (%S)", q, "newroute"); 21387 if (attach_ill != NULL) 21388 ill_refrele(attach_ill); 21389 if (xmit_ill != NULL) 21390 ill_refrele(xmit_ill); 21391 if (need_decref) 21392 CONN_DEC_REF(connp); 21393 return; 21394 } 21395 } 21396 21397 /* We now know where we are going with it. */ 21398 21399 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21400 "ip_wput_end: q %p (%S)", q, "end"); 21401 21402 /* 21403 * Check if the ire has the RTF_MULTIRT flag, inherited 21404 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21405 */ 21406 if (ire->ire_flags & RTF_MULTIRT) { 21407 /* 21408 * Force the TTL of multirouted packets if required. 21409 * The TTL of such packets is bounded by the 21410 * ip_multirt_ttl ndd variable. 21411 */ 21412 if ((ipst->ips_ip_multirt_ttl > 0) && 21413 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21414 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21415 "(was %d), dst 0x%08x\n", 21416 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21417 ntohl(ire->ire_addr))); 21418 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21419 } 21420 /* 21421 * At this point, we check to see if there are any pending 21422 * unresolved routes. ire_multirt_resolvable() 21423 * checks in O(n) that all IRE_OFFSUBNET ire 21424 * entries for the packet's destination and 21425 * flagged RTF_MULTIRT are currently resolved. 21426 * If some remain unresolved, we make a copy 21427 * of the current message. It will be used 21428 * to initiate additional route resolutions. 21429 */ 21430 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21431 MBLK_GETLABEL(first_mp), ipst); 21432 ip2dbg(("ip_wput[noirefound]: ire %p, " 21433 "multirt_need_resolve %d, first_mp %p\n", 21434 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21435 if (multirt_need_resolve) { 21436 copy_mp = copymsg(first_mp); 21437 if (copy_mp != NULL) { 21438 MULTIRT_DEBUG_TAG(copy_mp); 21439 } 21440 } 21441 } 21442 21443 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21444 /* 21445 * Try to resolve another multiroute if 21446 * ire_multirt_resolvable() deemed it necessary. 21447 * At this point, we need to distinguish 21448 * multicasts from other packets. For multicasts, 21449 * we call ip_newroute_ipif() and request that both 21450 * multirouting and setsrc flags are checked. 21451 */ 21452 if (copy_mp != NULL) { 21453 if (CLASSD(dst)) { 21454 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21455 if (ipif) { 21456 ASSERT(infop->ip_opt_ill_index == 0); 21457 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21458 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21459 ipif_refrele(ipif); 21460 } else { 21461 MULTIRT_DEBUG_UNTAG(copy_mp); 21462 freemsg(copy_mp); 21463 copy_mp = NULL; 21464 } 21465 } else { 21466 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21467 } 21468 } 21469 if (attach_ill != NULL) 21470 ill_refrele(attach_ill); 21471 if (xmit_ill != NULL) 21472 ill_refrele(xmit_ill); 21473 if (need_decref) 21474 CONN_DEC_REF(connp); 21475 return; 21476 21477 icmp_parameter_problem: 21478 /* could not have originated externally */ 21479 ASSERT(mp->b_prev == NULL); 21480 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21481 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21482 /* it's the IP header length that's in trouble */ 21483 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21484 first_mp = NULL; 21485 } 21486 21487 discard_pkt: 21488 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21489 drop_pkt: 21490 ip1dbg(("ip_wput: dropped packet\n")); 21491 if (ire != NULL) 21492 ire_refrele(ire); 21493 if (need_decref) 21494 CONN_DEC_REF(connp); 21495 freemsg(first_mp); 21496 if (attach_ill != NULL) 21497 ill_refrele(attach_ill); 21498 if (xmit_ill != NULL) 21499 ill_refrele(xmit_ill); 21500 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21501 "ip_wput_end: q %p (%S)", q, "droppkt"); 21502 } 21503 21504 /* 21505 * If this is a conn_t queue, then we pass in the conn. This includes the 21506 * zoneid. 21507 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21508 * in which case we use the global zoneid since those are all part of 21509 * the global zone. 21510 */ 21511 void 21512 ip_wput(queue_t *q, mblk_t *mp) 21513 { 21514 if (CONN_Q(q)) 21515 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21516 else 21517 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21518 } 21519 21520 /* 21521 * 21522 * The following rules must be observed when accessing any ipif or ill 21523 * that has been cached in the conn. Typically conn_nofailover_ill, 21524 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21525 * 21526 * Access: The ipif or ill pointed to from the conn can be accessed under 21527 * the protection of the conn_lock or after it has been refheld under the 21528 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21529 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21530 * The reason for this is that a concurrent unplumb could actually be 21531 * cleaning up these cached pointers by walking the conns and might have 21532 * finished cleaning up the conn in question. The macros check that an 21533 * unplumb has not yet started on the ipif or ill. 21534 * 21535 * Caching: An ipif or ill pointer may be cached in the conn only after 21536 * making sure that an unplumb has not started. So the caching is done 21537 * while holding both the conn_lock and the ill_lock and after using the 21538 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21539 * flag before starting the cleanup of conns. 21540 * 21541 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21542 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21543 * or a reference to the ipif or a reference to an ire that references the 21544 * ipif. An ipif does not change its ill except for failover/failback. Since 21545 * failover/failback happens only after bringing down the ipif and making sure 21546 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21547 * the above holds. 21548 */ 21549 ipif_t * 21550 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21551 { 21552 ipif_t *ipif; 21553 ill_t *ill; 21554 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21555 21556 *err = 0; 21557 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21558 mutex_enter(&connp->conn_lock); 21559 ipif = *ipifp; 21560 if (ipif != NULL) { 21561 ill = ipif->ipif_ill; 21562 mutex_enter(&ill->ill_lock); 21563 if (IPIF_CAN_LOOKUP(ipif)) { 21564 ipif_refhold_locked(ipif); 21565 mutex_exit(&ill->ill_lock); 21566 mutex_exit(&connp->conn_lock); 21567 rw_exit(&ipst->ips_ill_g_lock); 21568 return (ipif); 21569 } else { 21570 *err = IPIF_LOOKUP_FAILED; 21571 } 21572 mutex_exit(&ill->ill_lock); 21573 } 21574 mutex_exit(&connp->conn_lock); 21575 rw_exit(&ipst->ips_ill_g_lock); 21576 return (NULL); 21577 } 21578 21579 ill_t * 21580 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21581 { 21582 ill_t *ill; 21583 21584 *err = 0; 21585 mutex_enter(&connp->conn_lock); 21586 ill = *illp; 21587 if (ill != NULL) { 21588 mutex_enter(&ill->ill_lock); 21589 if (ILL_CAN_LOOKUP(ill)) { 21590 ill_refhold_locked(ill); 21591 mutex_exit(&ill->ill_lock); 21592 mutex_exit(&connp->conn_lock); 21593 return (ill); 21594 } else { 21595 *err = ILL_LOOKUP_FAILED; 21596 } 21597 mutex_exit(&ill->ill_lock); 21598 } 21599 mutex_exit(&connp->conn_lock); 21600 return (NULL); 21601 } 21602 21603 static int 21604 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21605 { 21606 ill_t *ill; 21607 21608 ill = ipif->ipif_ill; 21609 mutex_enter(&connp->conn_lock); 21610 mutex_enter(&ill->ill_lock); 21611 if (IPIF_CAN_LOOKUP(ipif)) { 21612 *ipifp = ipif; 21613 mutex_exit(&ill->ill_lock); 21614 mutex_exit(&connp->conn_lock); 21615 return (0); 21616 } 21617 mutex_exit(&ill->ill_lock); 21618 mutex_exit(&connp->conn_lock); 21619 return (IPIF_LOOKUP_FAILED); 21620 } 21621 21622 /* 21623 * This is called if the outbound datagram needs fragmentation. 21624 * 21625 * NOTE : This function does not ire_refrele the ire argument passed in. 21626 */ 21627 static void 21628 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21629 ip_stack_t *ipst) 21630 { 21631 ipha_t *ipha; 21632 mblk_t *mp; 21633 uint32_t v_hlen_tos_len; 21634 uint32_t max_frag; 21635 uint32_t frag_flag; 21636 boolean_t dont_use; 21637 21638 if (ipsec_mp->b_datap->db_type == M_CTL) { 21639 mp = ipsec_mp->b_cont; 21640 } else { 21641 mp = ipsec_mp; 21642 } 21643 21644 ipha = (ipha_t *)mp->b_rptr; 21645 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21646 21647 #ifdef _BIG_ENDIAN 21648 #define V_HLEN (v_hlen_tos_len >> 24) 21649 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21650 #else 21651 #define V_HLEN (v_hlen_tos_len & 0xFF) 21652 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21653 #endif 21654 21655 #ifndef SPEED_BEFORE_SAFETY 21656 /* 21657 * Check that ipha_length is consistent with 21658 * the mblk length 21659 */ 21660 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21661 ip0dbg(("Packet length mismatch: %d, %ld\n", 21662 LENGTH, msgdsize(mp))); 21663 freemsg(ipsec_mp); 21664 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21665 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21666 "packet length mismatch"); 21667 return; 21668 } 21669 #endif 21670 /* 21671 * Don't use frag_flag if pre-built packet or source 21672 * routed or if multicast (since multicast packets do not solicit 21673 * ICMP "packet too big" messages). Get the values of 21674 * max_frag and frag_flag atomically by acquiring the 21675 * ire_lock. 21676 */ 21677 mutex_enter(&ire->ire_lock); 21678 max_frag = ire->ire_max_frag; 21679 frag_flag = ire->ire_frag_flag; 21680 mutex_exit(&ire->ire_lock); 21681 21682 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21683 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21684 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21685 21686 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21687 (dont_use ? 0 : frag_flag), zoneid, ipst); 21688 } 21689 21690 /* 21691 * Used for deciding the MSS size for the upper layer. Thus 21692 * we need to check the outbound policy values in the conn. 21693 */ 21694 int 21695 conn_ipsec_length(conn_t *connp) 21696 { 21697 ipsec_latch_t *ipl; 21698 21699 ipl = connp->conn_latch; 21700 if (ipl == NULL) 21701 return (0); 21702 21703 if (ipl->ipl_out_policy == NULL) 21704 return (0); 21705 21706 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21707 } 21708 21709 /* 21710 * Returns an estimate of the IPsec headers size. This is used if 21711 * we don't want to call into IPsec to get the exact size. 21712 */ 21713 int 21714 ipsec_out_extra_length(mblk_t *ipsec_mp) 21715 { 21716 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21717 ipsec_action_t *a; 21718 21719 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21720 if (!io->ipsec_out_secure) 21721 return (0); 21722 21723 a = io->ipsec_out_act; 21724 21725 if (a == NULL) { 21726 ASSERT(io->ipsec_out_policy != NULL); 21727 a = io->ipsec_out_policy->ipsp_act; 21728 } 21729 ASSERT(a != NULL); 21730 21731 return (a->ipa_ovhd); 21732 } 21733 21734 /* 21735 * Returns an estimate of the IPsec headers size. This is used if 21736 * we don't want to call into IPsec to get the exact size. 21737 */ 21738 int 21739 ipsec_in_extra_length(mblk_t *ipsec_mp) 21740 { 21741 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21742 ipsec_action_t *a; 21743 21744 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21745 21746 a = ii->ipsec_in_action; 21747 return (a == NULL ? 0 : a->ipa_ovhd); 21748 } 21749 21750 /* 21751 * If there are any source route options, return the true final 21752 * destination. Otherwise, return the destination. 21753 */ 21754 ipaddr_t 21755 ip_get_dst(ipha_t *ipha) 21756 { 21757 ipoptp_t opts; 21758 uchar_t *opt; 21759 uint8_t optval; 21760 uint8_t optlen; 21761 ipaddr_t dst; 21762 uint32_t off; 21763 21764 dst = ipha->ipha_dst; 21765 21766 if (IS_SIMPLE_IPH(ipha)) 21767 return (dst); 21768 21769 for (optval = ipoptp_first(&opts, ipha); 21770 optval != IPOPT_EOL; 21771 optval = ipoptp_next(&opts)) { 21772 opt = opts.ipoptp_cur; 21773 optlen = opts.ipoptp_len; 21774 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21775 switch (optval) { 21776 case IPOPT_SSRR: 21777 case IPOPT_LSRR: 21778 off = opt[IPOPT_OFFSET]; 21779 /* 21780 * If one of the conditions is true, it means 21781 * end of options and dst already has the right 21782 * value. 21783 */ 21784 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21785 off = optlen - IP_ADDR_LEN; 21786 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21787 } 21788 return (dst); 21789 default: 21790 break; 21791 } 21792 } 21793 21794 return (dst); 21795 } 21796 21797 mblk_t * 21798 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21799 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21800 { 21801 ipsec_out_t *io; 21802 mblk_t *first_mp; 21803 boolean_t policy_present; 21804 ip_stack_t *ipst; 21805 ipsec_stack_t *ipss; 21806 21807 ASSERT(ire != NULL); 21808 ipst = ire->ire_ipst; 21809 ipss = ipst->ips_netstack->netstack_ipsec; 21810 21811 first_mp = mp; 21812 if (mp->b_datap->db_type == M_CTL) { 21813 io = (ipsec_out_t *)first_mp->b_rptr; 21814 /* 21815 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21816 * 21817 * 1) There is per-socket policy (including cached global 21818 * policy) or a policy on the IP-in-IP tunnel. 21819 * 2) There is no per-socket policy, but it is 21820 * a multicast packet that needs to go out 21821 * on a specific interface. This is the case 21822 * where (ip_wput and ip_wput_multicast) attaches 21823 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21824 * 21825 * In case (2) we check with global policy to 21826 * see if there is a match and set the ill_index 21827 * appropriately so that we can lookup the ire 21828 * properly in ip_wput_ipsec_out. 21829 */ 21830 21831 /* 21832 * ipsec_out_use_global_policy is set to B_FALSE 21833 * in ipsec_in_to_out(). Refer to that function for 21834 * details. 21835 */ 21836 if ((io->ipsec_out_latch == NULL) && 21837 (io->ipsec_out_use_global_policy)) { 21838 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21839 ire, connp, unspec_src, zoneid)); 21840 } 21841 if (!io->ipsec_out_secure) { 21842 /* 21843 * If this is not a secure packet, drop 21844 * the IPSEC_OUT mp and treat it as a clear 21845 * packet. This happens when we are sending 21846 * a ICMP reply back to a clear packet. See 21847 * ipsec_in_to_out() for details. 21848 */ 21849 mp = first_mp->b_cont; 21850 freeb(first_mp); 21851 } 21852 return (mp); 21853 } 21854 /* 21855 * See whether we need to attach a global policy here. We 21856 * don't depend on the conn (as it could be null) for deciding 21857 * what policy this datagram should go through because it 21858 * should have happened in ip_wput if there was some 21859 * policy. This normally happens for connections which are not 21860 * fully bound preventing us from caching policies in 21861 * ip_bind. Packets coming from the TCP listener/global queue 21862 * - which are non-hard_bound - could also be affected by 21863 * applying policy here. 21864 * 21865 * If this packet is coming from tcp global queue or listener, 21866 * we will be applying policy here. This may not be *right* 21867 * if these packets are coming from the detached connection as 21868 * it could have gone in clear before. This happens only if a 21869 * TCP connection started when there is no policy and somebody 21870 * added policy before it became detached. Thus packets of the 21871 * detached connection could go out secure and the other end 21872 * would drop it because it will be expecting in clear. The 21873 * converse is not true i.e if somebody starts a TCP 21874 * connection and deletes the policy, all the packets will 21875 * still go out with the policy that existed before deleting 21876 * because ip_unbind sends up policy information which is used 21877 * by TCP on subsequent ip_wputs. The right solution is to fix 21878 * TCP to attach a dummy IPSEC_OUT and set 21879 * ipsec_out_use_global_policy to B_FALSE. As this might 21880 * affect performance for normal cases, we are not doing it. 21881 * Thus, set policy before starting any TCP connections. 21882 * 21883 * NOTE - We might apply policy even for a hard bound connection 21884 * - for which we cached policy in ip_bind - if somebody added 21885 * global policy after we inherited the policy in ip_bind. 21886 * This means that the packets that were going out in clear 21887 * previously would start going secure and hence get dropped 21888 * on the other side. To fix this, TCP attaches a dummy 21889 * ipsec_out and make sure that we don't apply global policy. 21890 */ 21891 if (ipha != NULL) 21892 policy_present = ipss->ipsec_outbound_v4_policy_present; 21893 else 21894 policy_present = ipss->ipsec_outbound_v6_policy_present; 21895 if (!policy_present) 21896 return (mp); 21897 21898 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21899 zoneid)); 21900 } 21901 21902 ire_t * 21903 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21904 { 21905 ipaddr_t addr; 21906 ire_t *save_ire; 21907 irb_t *irb; 21908 ill_group_t *illgrp; 21909 int err; 21910 21911 save_ire = ire; 21912 addr = ire->ire_addr; 21913 21914 ASSERT(ire->ire_type == IRE_BROADCAST); 21915 21916 illgrp = connp->conn_outgoing_ill->ill_group; 21917 if (illgrp == NULL) { 21918 *conn_outgoing_ill = conn_get_held_ill(connp, 21919 &connp->conn_outgoing_ill, &err); 21920 if (err == ILL_LOOKUP_FAILED) { 21921 ire_refrele(save_ire); 21922 return (NULL); 21923 } 21924 return (save_ire); 21925 } 21926 /* 21927 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21928 * If it is part of the group, we need to send on the ire 21929 * that has been cleared of IRE_MARK_NORECV and that belongs 21930 * to this group. This is okay as IP_BOUND_IF really means 21931 * any ill in the group. We depend on the fact that the 21932 * first ire in the group is always cleared of IRE_MARK_NORECV 21933 * if such an ire exists. This is possible only if you have 21934 * at least one ill in the group that has not failed. 21935 * 21936 * First get to the ire that matches the address and group. 21937 * 21938 * We don't look for an ire with a matching zoneid because a given zone 21939 * won't always have broadcast ires on all ills in the group. 21940 */ 21941 irb = ire->ire_bucket; 21942 rw_enter(&irb->irb_lock, RW_READER); 21943 if (ire->ire_marks & IRE_MARK_NORECV) { 21944 /* 21945 * If the current zone only has an ire broadcast for this 21946 * address marked NORECV, the ire we want is ahead in the 21947 * bucket, so we look it up deliberately ignoring the zoneid. 21948 */ 21949 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21950 if (ire->ire_addr != addr) 21951 continue; 21952 /* skip over deleted ires */ 21953 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21954 continue; 21955 } 21956 } 21957 while (ire != NULL) { 21958 /* 21959 * If a new interface is coming up, we could end up 21960 * seeing the loopback ire and the non-loopback ire 21961 * may not have been added yet. So check for ire_stq 21962 */ 21963 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21964 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21965 break; 21966 } 21967 ire = ire->ire_next; 21968 } 21969 if (ire != NULL && ire->ire_addr == addr && 21970 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21971 IRE_REFHOLD(ire); 21972 rw_exit(&irb->irb_lock); 21973 ire_refrele(save_ire); 21974 *conn_outgoing_ill = ire_to_ill(ire); 21975 /* 21976 * Refhold the ill to make the conn_outgoing_ill 21977 * independent of the ire. ip_wput_ire goes in a loop 21978 * and may refrele the ire. Since we have an ire at this 21979 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21980 */ 21981 ill_refhold(*conn_outgoing_ill); 21982 return (ire); 21983 } 21984 rw_exit(&irb->irb_lock); 21985 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21986 /* 21987 * If we can't find a suitable ire, return the original ire. 21988 */ 21989 return (save_ire); 21990 } 21991 21992 /* 21993 * This function does the ire_refrele of the ire passed in as the 21994 * argument. As this function looks up more ires i.e broadcast ires, 21995 * it needs to REFRELE them. Currently, for simplicity we don't 21996 * differentiate the one passed in and looked up here. We always 21997 * REFRELE. 21998 * IPQoS Notes: 21999 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22000 * IPsec packets are done in ipsec_out_process. 22001 * 22002 */ 22003 void 22004 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22005 zoneid_t zoneid) 22006 { 22007 ipha_t *ipha; 22008 #define rptr ((uchar_t *)ipha) 22009 queue_t *stq; 22010 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22011 uint32_t v_hlen_tos_len; 22012 uint32_t ttl_protocol; 22013 ipaddr_t src; 22014 ipaddr_t dst; 22015 uint32_t cksum; 22016 ipaddr_t orig_src; 22017 ire_t *ire1; 22018 mblk_t *next_mp; 22019 uint_t hlen; 22020 uint16_t *up; 22021 uint32_t max_frag = ire->ire_max_frag; 22022 ill_t *ill = ire_to_ill(ire); 22023 int clusterwide; 22024 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22025 int ipsec_len; 22026 mblk_t *first_mp; 22027 ipsec_out_t *io; 22028 boolean_t conn_dontroute; /* conn value for multicast */ 22029 boolean_t conn_multicast_loop; /* conn value for multicast */ 22030 boolean_t multicast_forward; /* Should we forward ? */ 22031 boolean_t unspec_src; 22032 ill_t *conn_outgoing_ill = NULL; 22033 ill_t *ire_ill; 22034 ill_t *ire1_ill; 22035 ill_t *out_ill; 22036 uint32_t ill_index = 0; 22037 boolean_t multirt_send = B_FALSE; 22038 int err; 22039 ipxmit_state_t pktxmit_state; 22040 ip_stack_t *ipst = ire->ire_ipst; 22041 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22042 22043 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22044 "ip_wput_ire_start: q %p", q); 22045 22046 multicast_forward = B_FALSE; 22047 unspec_src = (connp != NULL && connp->conn_unspec_src); 22048 22049 if (ire->ire_flags & RTF_MULTIRT) { 22050 /* 22051 * Multirouting case. The bucket where ire is stored 22052 * probably holds other RTF_MULTIRT flagged ire 22053 * to the destination. In this call to ip_wput_ire, 22054 * we attempt to send the packet through all 22055 * those ires. Thus, we first ensure that ire is the 22056 * first RTF_MULTIRT ire in the bucket, 22057 * before walking the ire list. 22058 */ 22059 ire_t *first_ire; 22060 irb_t *irb = ire->ire_bucket; 22061 ASSERT(irb != NULL); 22062 22063 /* Make sure we do not omit any multiroute ire. */ 22064 IRB_REFHOLD(irb); 22065 for (first_ire = irb->irb_ire; 22066 first_ire != NULL; 22067 first_ire = first_ire->ire_next) { 22068 if ((first_ire->ire_flags & RTF_MULTIRT) && 22069 (first_ire->ire_addr == ire->ire_addr) && 22070 !(first_ire->ire_marks & 22071 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22072 break; 22073 } 22074 } 22075 22076 if ((first_ire != NULL) && (first_ire != ire)) { 22077 IRE_REFHOLD(first_ire); 22078 ire_refrele(ire); 22079 ire = first_ire; 22080 ill = ire_to_ill(ire); 22081 } 22082 IRB_REFRELE(irb); 22083 } 22084 22085 /* 22086 * conn_outgoing_ill is used only in the broadcast loop. 22087 * for performance we don't grab the mutexs in the fastpath 22088 */ 22089 if ((connp != NULL) && 22090 (connp->conn_xmit_if_ill == NULL) && 22091 (ire->ire_type == IRE_BROADCAST) && 22092 ((connp->conn_nofailover_ill != NULL) || 22093 (connp->conn_outgoing_ill != NULL))) { 22094 /* 22095 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22096 * option. So, see if this endpoint is bound to a 22097 * IPIF_NOFAILOVER address. If so, honor it. This implies 22098 * that if the interface is failed, we will still send 22099 * the packet on the same ill which is what we want. 22100 */ 22101 conn_outgoing_ill = conn_get_held_ill(connp, 22102 &connp->conn_nofailover_ill, &err); 22103 if (err == ILL_LOOKUP_FAILED) { 22104 ire_refrele(ire); 22105 freemsg(mp); 22106 return; 22107 } 22108 if (conn_outgoing_ill == NULL) { 22109 /* 22110 * Choose a good ill in the group to send the 22111 * packets on. 22112 */ 22113 ire = conn_set_outgoing_ill(connp, ire, 22114 &conn_outgoing_ill); 22115 if (ire == NULL) { 22116 freemsg(mp); 22117 return; 22118 } 22119 } 22120 } 22121 22122 if (mp->b_datap->db_type != M_CTL) { 22123 ipha = (ipha_t *)mp->b_rptr; 22124 } else { 22125 io = (ipsec_out_t *)mp->b_rptr; 22126 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22127 ASSERT(zoneid == io->ipsec_out_zoneid); 22128 ASSERT(zoneid != ALL_ZONES); 22129 ipha = (ipha_t *)mp->b_cont->b_rptr; 22130 dst = ipha->ipha_dst; 22131 /* 22132 * For the multicast case, ipsec_out carries conn_dontroute and 22133 * conn_multicast_loop as conn may not be available here. We 22134 * need this for multicast loopback and forwarding which is done 22135 * later in the code. 22136 */ 22137 if (CLASSD(dst)) { 22138 conn_dontroute = io->ipsec_out_dontroute; 22139 conn_multicast_loop = io->ipsec_out_multicast_loop; 22140 /* 22141 * If conn_dontroute is not set or conn_multicast_loop 22142 * is set, we need to do forwarding/loopback. For 22143 * datagrams from ip_wput_multicast, conn_dontroute is 22144 * set to B_TRUE and conn_multicast_loop is set to 22145 * B_FALSE so that we neither do forwarding nor 22146 * loopback. 22147 */ 22148 if (!conn_dontroute || conn_multicast_loop) 22149 multicast_forward = B_TRUE; 22150 } 22151 } 22152 22153 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22154 ire->ire_zoneid != ALL_ZONES) { 22155 /* 22156 * When a zone sends a packet to another zone, we try to deliver 22157 * the packet under the same conditions as if the destination 22158 * was a real node on the network. To do so, we look for a 22159 * matching route in the forwarding table. 22160 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22161 * ip_newroute() does. 22162 * Note that IRE_LOCAL are special, since they are used 22163 * when the zoneid doesn't match in some cases. This means that 22164 * we need to handle ipha_src differently since ire_src_addr 22165 * belongs to the receiving zone instead of the sending zone. 22166 * When ip_restrict_interzone_loopback is set, then 22167 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22168 * for loopback between zones when the logical "Ethernet" would 22169 * have looped them back. 22170 */ 22171 ire_t *src_ire; 22172 22173 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22174 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22175 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22176 if (src_ire != NULL && 22177 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22178 (!ipst->ips_ip_restrict_interzone_loopback || 22179 ire_local_same_ill_group(ire, src_ire))) { 22180 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22181 ipha->ipha_src = src_ire->ire_src_addr; 22182 ire_refrele(src_ire); 22183 } else { 22184 ire_refrele(ire); 22185 if (conn_outgoing_ill != NULL) 22186 ill_refrele(conn_outgoing_ill); 22187 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22188 if (src_ire != NULL) { 22189 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22190 ire_refrele(src_ire); 22191 freemsg(mp); 22192 return; 22193 } 22194 ire_refrele(src_ire); 22195 } 22196 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22197 /* Failed */ 22198 freemsg(mp); 22199 return; 22200 } 22201 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22202 ipst); 22203 return; 22204 } 22205 } 22206 22207 if (mp->b_datap->db_type == M_CTL || 22208 ipss->ipsec_outbound_v4_policy_present) { 22209 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22210 unspec_src, zoneid); 22211 if (mp == NULL) { 22212 ire_refrele(ire); 22213 if (conn_outgoing_ill != NULL) 22214 ill_refrele(conn_outgoing_ill); 22215 return; 22216 } 22217 } 22218 22219 first_mp = mp; 22220 ipsec_len = 0; 22221 22222 if (first_mp->b_datap->db_type == M_CTL) { 22223 io = (ipsec_out_t *)first_mp->b_rptr; 22224 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22225 mp = first_mp->b_cont; 22226 ipsec_len = ipsec_out_extra_length(first_mp); 22227 ASSERT(ipsec_len >= 0); 22228 /* We already picked up the zoneid from the M_CTL above */ 22229 ASSERT(zoneid == io->ipsec_out_zoneid); 22230 ASSERT(zoneid != ALL_ZONES); 22231 22232 /* 22233 * Drop M_CTL here if IPsec processing is not needed. 22234 * (Non-IPsec use of M_CTL extracted any information it 22235 * needed above). 22236 */ 22237 if (ipsec_len == 0) { 22238 freeb(first_mp); 22239 first_mp = mp; 22240 } 22241 } 22242 22243 /* 22244 * Fast path for ip_wput_ire 22245 */ 22246 22247 ipha = (ipha_t *)mp->b_rptr; 22248 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22249 dst = ipha->ipha_dst; 22250 22251 /* 22252 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22253 * if the socket is a SOCK_RAW type. The transport checksum should 22254 * be provided in the pre-built packet, so we don't need to compute it. 22255 * Also, other application set flags, like DF, should not be altered. 22256 * Other transport MUST pass down zero. 22257 */ 22258 ip_hdr_included = ipha->ipha_ident; 22259 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22260 22261 if (CLASSD(dst)) { 22262 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22263 ntohl(dst), 22264 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22265 ntohl(ire->ire_addr))); 22266 } 22267 22268 /* Macros to extract header fields from data already in registers */ 22269 #ifdef _BIG_ENDIAN 22270 #define V_HLEN (v_hlen_tos_len >> 24) 22271 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22272 #define PROTO (ttl_protocol & 0xFF) 22273 #else 22274 #define V_HLEN (v_hlen_tos_len & 0xFF) 22275 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22276 #define PROTO (ttl_protocol >> 8) 22277 #endif 22278 22279 22280 orig_src = src = ipha->ipha_src; 22281 /* (The loop back to "another" is explained down below.) */ 22282 another:; 22283 /* 22284 * Assign an ident value for this packet. We assign idents on 22285 * a per destination basis out of the IRE. There could be 22286 * other threads targeting the same destination, so we have to 22287 * arrange for a atomic increment. Note that we use a 32-bit 22288 * atomic add because it has better performance than its 22289 * 16-bit sibling. 22290 * 22291 * If running in cluster mode and if the source address 22292 * belongs to a replicated service then vector through 22293 * cl_inet_ipident vector to allocate ip identifier 22294 * NOTE: This is a contract private interface with the 22295 * clustering group. 22296 */ 22297 clusterwide = 0; 22298 if (cl_inet_ipident) { 22299 ASSERT(cl_inet_isclusterwide); 22300 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22301 AF_INET, (uint8_t *)(uintptr_t)src)) { 22302 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22303 AF_INET, (uint8_t *)(uintptr_t)src, 22304 (uint8_t *)(uintptr_t)dst); 22305 clusterwide = 1; 22306 } 22307 } 22308 if (!clusterwide) { 22309 ipha->ipha_ident = 22310 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22311 } 22312 22313 #ifndef _BIG_ENDIAN 22314 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22315 #endif 22316 22317 /* 22318 * Set source address unless sent on an ill or conn_unspec_src is set. 22319 * This is needed to obey conn_unspec_src when packets go through 22320 * ip_newroute + arp. 22321 * Assumes ip_newroute{,_multi} sets the source address as well. 22322 */ 22323 if (src == INADDR_ANY && !unspec_src) { 22324 /* 22325 * Assign the appropriate source address from the IRE if none 22326 * was specified. 22327 */ 22328 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22329 22330 /* 22331 * With IP multipathing, broadcast packets are sent on the ire 22332 * that has been cleared of IRE_MARK_NORECV and that belongs to 22333 * the group. However, this ire might not be in the same zone so 22334 * we can't always use its source address. We look for a 22335 * broadcast ire in the same group and in the right zone. 22336 */ 22337 if (ire->ire_type == IRE_BROADCAST && 22338 ire->ire_zoneid != zoneid) { 22339 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22340 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22341 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22342 if (src_ire != NULL) { 22343 src = src_ire->ire_src_addr; 22344 ire_refrele(src_ire); 22345 } else { 22346 ire_refrele(ire); 22347 if (conn_outgoing_ill != NULL) 22348 ill_refrele(conn_outgoing_ill); 22349 freemsg(first_mp); 22350 if (ill != NULL) { 22351 BUMP_MIB(ill->ill_ip_mib, 22352 ipIfStatsOutDiscards); 22353 } else { 22354 BUMP_MIB(&ipst->ips_ip_mib, 22355 ipIfStatsOutDiscards); 22356 } 22357 return; 22358 } 22359 } else { 22360 src = ire->ire_src_addr; 22361 } 22362 22363 if (connp == NULL) { 22364 ip1dbg(("ip_wput_ire: no connp and no src " 22365 "address for dst 0x%x, using src 0x%x\n", 22366 ntohl(dst), 22367 ntohl(src))); 22368 } 22369 ipha->ipha_src = src; 22370 } 22371 stq = ire->ire_stq; 22372 22373 /* 22374 * We only allow ire chains for broadcasts since there will 22375 * be multiple IRE_CACHE entries for the same multicast 22376 * address (one per ipif). 22377 */ 22378 next_mp = NULL; 22379 22380 /* broadcast packet */ 22381 if (ire->ire_type == IRE_BROADCAST) 22382 goto broadcast; 22383 22384 /* loopback ? */ 22385 if (stq == NULL) 22386 goto nullstq; 22387 22388 /* The ill_index for outbound ILL */ 22389 ill_index = Q_TO_INDEX(stq); 22390 22391 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22392 ttl_protocol = ((uint16_t *)ipha)[4]; 22393 22394 /* pseudo checksum (do it in parts for IP header checksum) */ 22395 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22396 22397 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22398 queue_t *dev_q = stq->q_next; 22399 22400 /* flow controlled */ 22401 if ((dev_q->q_next || dev_q->q_first) && 22402 !canput(dev_q)) 22403 goto blocked; 22404 if ((PROTO == IPPROTO_UDP) && 22405 (ip_hdr_included != IP_HDR_INCLUDED)) { 22406 hlen = (V_HLEN & 0xF) << 2; 22407 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22408 if (*up != 0) { 22409 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22410 hlen, LENGTH, max_frag, ipsec_len, cksum); 22411 /* Software checksum? */ 22412 if (DB_CKSUMFLAGS(mp) == 0) { 22413 IP_STAT(ipst, ip_out_sw_cksum); 22414 IP_STAT_UPDATE(ipst, 22415 ip_udp_out_sw_cksum_bytes, 22416 LENGTH - hlen); 22417 } 22418 } 22419 } 22420 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22421 hlen = (V_HLEN & 0xF) << 2; 22422 if (PROTO == IPPROTO_TCP) { 22423 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22424 /* 22425 * The packet header is processed once and for all, even 22426 * in the multirouting case. We disable hardware 22427 * checksum if the packet is multirouted, as it will be 22428 * replicated via several interfaces, and not all of 22429 * them may have this capability. 22430 */ 22431 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22432 LENGTH, max_frag, ipsec_len, cksum); 22433 /* Software checksum? */ 22434 if (DB_CKSUMFLAGS(mp) == 0) { 22435 IP_STAT(ipst, ip_out_sw_cksum); 22436 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22437 LENGTH - hlen); 22438 } 22439 } else { 22440 sctp_hdr_t *sctph; 22441 22442 ASSERT(PROTO == IPPROTO_SCTP); 22443 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22444 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22445 /* 22446 * Zero out the checksum field to ensure proper 22447 * checksum calculation. 22448 */ 22449 sctph->sh_chksum = 0; 22450 #ifdef DEBUG 22451 if (!skip_sctp_cksum) 22452 #endif 22453 sctph->sh_chksum = sctp_cksum(mp, hlen); 22454 } 22455 } 22456 22457 /* 22458 * If this is a multicast packet and originated from ip_wput 22459 * we need to do loopback and forwarding checks. If it comes 22460 * from ip_wput_multicast, we SHOULD not do this. 22461 */ 22462 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22463 22464 /* checksum */ 22465 cksum += ttl_protocol; 22466 22467 /* fragment the packet */ 22468 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22469 goto fragmentit; 22470 /* 22471 * Don't use frag_flag if packet is pre-built or source 22472 * routed or if multicast (since multicast packets do 22473 * not solicit ICMP "packet too big" messages). 22474 */ 22475 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22476 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22477 !ip_source_route_included(ipha)) && 22478 !CLASSD(ipha->ipha_dst)) 22479 ipha->ipha_fragment_offset_and_flags |= 22480 htons(ire->ire_frag_flag); 22481 22482 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22483 /* calculate IP header checksum */ 22484 cksum += ipha->ipha_ident; 22485 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22486 cksum += ipha->ipha_fragment_offset_and_flags; 22487 22488 /* IP options present */ 22489 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22490 if (hlen) 22491 goto checksumoptions; 22492 22493 /* calculate hdr checksum */ 22494 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22495 cksum = ~(cksum + (cksum >> 16)); 22496 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22497 } 22498 if (ipsec_len != 0) { 22499 /* 22500 * We will do the rest of the processing after 22501 * we come back from IPsec in ip_wput_ipsec_out(). 22502 */ 22503 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22504 22505 io = (ipsec_out_t *)first_mp->b_rptr; 22506 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22507 ill_phyint->phyint_ifindex; 22508 22509 ipsec_out_process(q, first_mp, ire, ill_index); 22510 ire_refrele(ire); 22511 if (conn_outgoing_ill != NULL) 22512 ill_refrele(conn_outgoing_ill); 22513 return; 22514 } 22515 22516 /* 22517 * In most cases, the emission loop below is entered only 22518 * once. Only in the case where the ire holds the 22519 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22520 * flagged ires in the bucket, and send the packet 22521 * through all crossed RTF_MULTIRT routes. 22522 */ 22523 if (ire->ire_flags & RTF_MULTIRT) { 22524 multirt_send = B_TRUE; 22525 } 22526 do { 22527 if (multirt_send) { 22528 irb_t *irb; 22529 /* 22530 * We are in a multiple send case, need to get 22531 * the next ire and make a duplicate of the packet. 22532 * ire1 holds here the next ire to process in the 22533 * bucket. If multirouting is expected, 22534 * any non-RTF_MULTIRT ire that has the 22535 * right destination address is ignored. 22536 */ 22537 irb = ire->ire_bucket; 22538 ASSERT(irb != NULL); 22539 22540 IRB_REFHOLD(irb); 22541 for (ire1 = ire->ire_next; 22542 ire1 != NULL; 22543 ire1 = ire1->ire_next) { 22544 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22545 continue; 22546 if (ire1->ire_addr != ire->ire_addr) 22547 continue; 22548 if (ire1->ire_marks & 22549 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22550 continue; 22551 22552 /* Got one */ 22553 IRE_REFHOLD(ire1); 22554 break; 22555 } 22556 IRB_REFRELE(irb); 22557 22558 if (ire1 != NULL) { 22559 next_mp = copyb(mp); 22560 if ((next_mp == NULL) || 22561 ((mp->b_cont != NULL) && 22562 ((next_mp->b_cont = 22563 dupmsg(mp->b_cont)) == NULL))) { 22564 freemsg(next_mp); 22565 next_mp = NULL; 22566 ire_refrele(ire1); 22567 ire1 = NULL; 22568 } 22569 } 22570 22571 /* Last multiroute ire; don't loop anymore. */ 22572 if (ire1 == NULL) { 22573 multirt_send = B_FALSE; 22574 } 22575 } 22576 22577 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22578 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22579 mblk_t *, mp); 22580 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22581 ipst->ips_ipv4firewall_physical_out, 22582 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22583 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22584 if (mp == NULL) 22585 goto release_ire_and_ill; 22586 22587 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22588 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22589 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22590 if ((pktxmit_state == SEND_FAILED) || 22591 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22592 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22593 "- packet dropped\n")); 22594 release_ire_and_ill: 22595 ire_refrele(ire); 22596 if (next_mp != NULL) { 22597 freemsg(next_mp); 22598 ire_refrele(ire1); 22599 } 22600 if (conn_outgoing_ill != NULL) 22601 ill_refrele(conn_outgoing_ill); 22602 return; 22603 } 22604 22605 if (CLASSD(dst)) { 22606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22607 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22608 LENGTH); 22609 } 22610 22611 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22612 "ip_wput_ire_end: q %p (%S)", 22613 q, "last copy out"); 22614 IRE_REFRELE(ire); 22615 22616 if (multirt_send) { 22617 ASSERT(ire1); 22618 /* 22619 * Proceed with the next RTF_MULTIRT ire, 22620 * Also set up the send-to queue accordingly. 22621 */ 22622 ire = ire1; 22623 ire1 = NULL; 22624 stq = ire->ire_stq; 22625 mp = next_mp; 22626 next_mp = NULL; 22627 ipha = (ipha_t *)mp->b_rptr; 22628 ill_index = Q_TO_INDEX(stq); 22629 ill = (ill_t *)stq->q_ptr; 22630 } 22631 } while (multirt_send); 22632 if (conn_outgoing_ill != NULL) 22633 ill_refrele(conn_outgoing_ill); 22634 return; 22635 22636 /* 22637 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22638 */ 22639 broadcast: 22640 { 22641 /* 22642 * Avoid broadcast storms by setting the ttl to 1 22643 * for broadcasts. This parameter can be set 22644 * via ndd, so make sure that for the SO_DONTROUTE 22645 * case that ipha_ttl is always set to 1. 22646 * In the event that we are replying to incoming 22647 * ICMP packets, conn could be NULL. 22648 */ 22649 if ((connp != NULL) && connp->conn_dontroute) 22650 ipha->ipha_ttl = 1; 22651 else 22652 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22653 22654 /* 22655 * Note that we are not doing a IRB_REFHOLD here. 22656 * Actually we don't care if the list changes i.e 22657 * if somebody deletes an IRE from the list while 22658 * we drop the lock, the next time we come around 22659 * ire_next will be NULL and hence we won't send 22660 * out multiple copies which is fine. 22661 */ 22662 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22663 ire1 = ire->ire_next; 22664 if (conn_outgoing_ill != NULL) { 22665 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22666 ASSERT(ire1 == ire->ire_next); 22667 if (ire1 != NULL && ire1->ire_addr == dst) { 22668 ire_refrele(ire); 22669 ire = ire1; 22670 IRE_REFHOLD(ire); 22671 ire1 = ire->ire_next; 22672 continue; 22673 } 22674 rw_exit(&ire->ire_bucket->irb_lock); 22675 /* Did not find a matching ill */ 22676 ip1dbg(("ip_wput_ire: broadcast with no " 22677 "matching IP_BOUND_IF ill %s\n", 22678 conn_outgoing_ill->ill_name)); 22679 freemsg(first_mp); 22680 if (ire != NULL) 22681 ire_refrele(ire); 22682 ill_refrele(conn_outgoing_ill); 22683 return; 22684 } 22685 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22686 /* 22687 * If the next IRE has the same address and is not one 22688 * of the two copies that we need to send, try to see 22689 * whether this copy should be sent at all. This 22690 * assumes that we insert loopbacks first and then 22691 * non-loopbacks. This is acheived by inserting the 22692 * loopback always before non-loopback. 22693 * This is used to send a single copy of a broadcast 22694 * packet out all physical interfaces that have an 22695 * matching IRE_BROADCAST while also looping 22696 * back one copy (to ip_wput_local) for each 22697 * matching physical interface. However, we avoid 22698 * sending packets out different logical that match by 22699 * having ipif_up/ipif_down supress duplicate 22700 * IRE_BROADCASTS. 22701 * 22702 * This feature is currently used to get broadcasts 22703 * sent to multiple interfaces, when the broadcast 22704 * address being used applies to multiple interfaces. 22705 * For example, a whole net broadcast will be 22706 * replicated on every connected subnet of 22707 * the target net. 22708 * 22709 * Each zone has its own set of IRE_BROADCASTs, so that 22710 * we're able to distribute inbound packets to multiple 22711 * zones who share a broadcast address. We avoid looping 22712 * back outbound packets in different zones but on the 22713 * same ill, as the application would see duplicates. 22714 * 22715 * If the interfaces are part of the same group, 22716 * we would want to send only one copy out for 22717 * whole group. 22718 * 22719 * This logic assumes that ire_add_v4() groups the 22720 * IRE_BROADCAST entries so that those with the same 22721 * ire_addr and ill_group are kept together. 22722 */ 22723 ire_ill = ire->ire_ipif->ipif_ill; 22724 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22725 if (ire_ill->ill_group != NULL && 22726 (ire->ire_marks & IRE_MARK_NORECV)) { 22727 /* 22728 * If the current zone only has an ire 22729 * broadcast for this address marked 22730 * NORECV, the ire we want is ahead in 22731 * the bucket, so we look it up 22732 * deliberately ignoring the zoneid. 22733 */ 22734 for (ire1 = ire->ire_bucket->irb_ire; 22735 ire1 != NULL; 22736 ire1 = ire1->ire_next) { 22737 ire1_ill = 22738 ire1->ire_ipif->ipif_ill; 22739 if (ire1->ire_addr != dst) 22740 continue; 22741 /* skip over the current ire */ 22742 if (ire1 == ire) 22743 continue; 22744 /* skip over deleted ires */ 22745 if (ire1->ire_marks & 22746 IRE_MARK_CONDEMNED) 22747 continue; 22748 /* 22749 * non-loopback ire in our 22750 * group: use it for the next 22751 * pass in the loop 22752 */ 22753 if (ire1->ire_stq != NULL && 22754 ire1_ill->ill_group == 22755 ire_ill->ill_group) 22756 break; 22757 } 22758 } 22759 } else { 22760 while (ire1 != NULL && ire1->ire_addr == dst) { 22761 ire1_ill = ire1->ire_ipif->ipif_ill; 22762 /* 22763 * We can have two broadcast ires on the 22764 * same ill in different zones; here 22765 * we'll send a copy of the packet on 22766 * each ill and the fanout code will 22767 * call conn_wantpacket() to check that 22768 * the zone has the broadcast address 22769 * configured on the ill. If the two 22770 * ires are in the same group we only 22771 * send one copy up. 22772 */ 22773 if (ire1_ill != ire_ill && 22774 (ire1_ill->ill_group == NULL || 22775 ire_ill->ill_group == NULL || 22776 ire1_ill->ill_group != 22777 ire_ill->ill_group)) { 22778 break; 22779 } 22780 ire1 = ire1->ire_next; 22781 } 22782 } 22783 } 22784 ASSERT(multirt_send == B_FALSE); 22785 if (ire1 != NULL && ire1->ire_addr == dst) { 22786 if ((ire->ire_flags & RTF_MULTIRT) && 22787 (ire1->ire_flags & RTF_MULTIRT)) { 22788 /* 22789 * We are in the multirouting case. 22790 * The message must be sent at least 22791 * on both ires. These ires have been 22792 * inserted AFTER the standard ones 22793 * in ip_rt_add(). There are thus no 22794 * other ire entries for the destination 22795 * address in the rest of the bucket 22796 * that do not have the RTF_MULTIRT 22797 * flag. We don't process a copy 22798 * of the message here. This will be 22799 * done in the final sending loop. 22800 */ 22801 multirt_send = B_TRUE; 22802 } else { 22803 next_mp = ip_copymsg(first_mp); 22804 if (next_mp != NULL) 22805 IRE_REFHOLD(ire1); 22806 } 22807 } 22808 rw_exit(&ire->ire_bucket->irb_lock); 22809 } 22810 22811 if (stq) { 22812 /* 22813 * A non-NULL send-to queue means this packet is going 22814 * out of this machine. 22815 */ 22816 out_ill = (ill_t *)stq->q_ptr; 22817 22818 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22819 ttl_protocol = ((uint16_t *)ipha)[4]; 22820 /* 22821 * We accumulate the pseudo header checksum in cksum. 22822 * This is pretty hairy code, so watch close. One 22823 * thing to keep in mind is that UDP and TCP have 22824 * stored their respective datagram lengths in their 22825 * checksum fields. This lines things up real nice. 22826 */ 22827 cksum = (dst >> 16) + (dst & 0xFFFF) + 22828 (src >> 16) + (src & 0xFFFF); 22829 /* 22830 * We assume the udp checksum field contains the 22831 * length, so to compute the pseudo header checksum, 22832 * all we need is the protocol number and src/dst. 22833 */ 22834 /* Provide the checksums for UDP and TCP. */ 22835 if ((PROTO == IPPROTO_TCP) && 22836 (ip_hdr_included != IP_HDR_INCLUDED)) { 22837 /* hlen gets the number of uchar_ts in the IP header */ 22838 hlen = (V_HLEN & 0xF) << 2; 22839 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22840 IP_STAT(ipst, ip_out_sw_cksum); 22841 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22842 LENGTH - hlen); 22843 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22844 } else if (PROTO == IPPROTO_SCTP && 22845 (ip_hdr_included != IP_HDR_INCLUDED)) { 22846 sctp_hdr_t *sctph; 22847 22848 hlen = (V_HLEN & 0xF) << 2; 22849 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22850 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22851 sctph->sh_chksum = 0; 22852 #ifdef DEBUG 22853 if (!skip_sctp_cksum) 22854 #endif 22855 sctph->sh_chksum = sctp_cksum(mp, hlen); 22856 } else { 22857 queue_t *dev_q = stq->q_next; 22858 22859 if ((dev_q->q_next || dev_q->q_first) && 22860 !canput(dev_q)) { 22861 blocked: 22862 ipha->ipha_ident = ip_hdr_included; 22863 /* 22864 * If we don't have a conn to apply 22865 * backpressure, free the message. 22866 * In the ire_send path, we don't know 22867 * the position to requeue the packet. Rather 22868 * than reorder packets, we just drop this 22869 * packet. 22870 */ 22871 if (ipst->ips_ip_output_queue && 22872 connp != NULL && 22873 caller != IRE_SEND) { 22874 if (caller == IP_WSRV) { 22875 connp->conn_did_putbq = 1; 22876 (void) putbq(connp->conn_wq, 22877 first_mp); 22878 conn_drain_insert(connp); 22879 /* 22880 * This is the service thread, 22881 * and the queue is already 22882 * noenabled. The check for 22883 * canput and the putbq is not 22884 * atomic. So we need to check 22885 * again. 22886 */ 22887 if (canput(stq->q_next)) 22888 connp->conn_did_putbq 22889 = 0; 22890 IP_STAT(ipst, ip_conn_flputbq); 22891 } else { 22892 /* 22893 * We are not the service proc. 22894 * ip_wsrv will be scheduled or 22895 * is already running. 22896 */ 22897 (void) putq(connp->conn_wq, 22898 first_mp); 22899 } 22900 } else { 22901 out_ill = (ill_t *)stq->q_ptr; 22902 BUMP_MIB(out_ill->ill_ip_mib, 22903 ipIfStatsOutDiscards); 22904 freemsg(first_mp); 22905 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22906 "ip_wput_ire_end: q %p (%S)", 22907 q, "discard"); 22908 } 22909 ire_refrele(ire); 22910 if (next_mp) { 22911 ire_refrele(ire1); 22912 freemsg(next_mp); 22913 } 22914 if (conn_outgoing_ill != NULL) 22915 ill_refrele(conn_outgoing_ill); 22916 return; 22917 } 22918 if ((PROTO == IPPROTO_UDP) && 22919 (ip_hdr_included != IP_HDR_INCLUDED)) { 22920 /* 22921 * hlen gets the number of uchar_ts in the 22922 * IP header 22923 */ 22924 hlen = (V_HLEN & 0xF) << 2; 22925 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22926 max_frag = ire->ire_max_frag; 22927 if (*up != 0) { 22928 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22929 up, PROTO, hlen, LENGTH, max_frag, 22930 ipsec_len, cksum); 22931 /* Software checksum? */ 22932 if (DB_CKSUMFLAGS(mp) == 0) { 22933 IP_STAT(ipst, ip_out_sw_cksum); 22934 IP_STAT_UPDATE(ipst, 22935 ip_udp_out_sw_cksum_bytes, 22936 LENGTH - hlen); 22937 } 22938 } 22939 } 22940 } 22941 /* 22942 * Need to do this even when fragmenting. The local 22943 * loopback can be done without computing checksums 22944 * but forwarding out other interface must be done 22945 * after the IP checksum (and ULP checksums) have been 22946 * computed. 22947 * 22948 * NOTE : multicast_forward is set only if this packet 22949 * originated from ip_wput. For packets originating from 22950 * ip_wput_multicast, it is not set. 22951 */ 22952 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22953 multi_loopback: 22954 ip2dbg(("ip_wput: multicast, loop %d\n", 22955 conn_multicast_loop)); 22956 22957 /* Forget header checksum offload */ 22958 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22959 22960 /* 22961 * Local loopback of multicasts? Check the 22962 * ill. 22963 * 22964 * Note that the loopback function will not come 22965 * in through ip_rput - it will only do the 22966 * client fanout thus we need to do an mforward 22967 * as well. The is different from the BSD 22968 * logic. 22969 */ 22970 if (ill != NULL) { 22971 ilm_t *ilm; 22972 22973 ILM_WALKER_HOLD(ill); 22974 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22975 ALL_ZONES); 22976 ILM_WALKER_RELE(ill); 22977 if (ilm != NULL) { 22978 /* 22979 * Pass along the virtual output q. 22980 * ip_wput_local() will distribute the 22981 * packet to all the matching zones, 22982 * except the sending zone when 22983 * IP_MULTICAST_LOOP is false. 22984 */ 22985 ip_multicast_loopback(q, ill, first_mp, 22986 conn_multicast_loop ? 0 : 22987 IP_FF_NO_MCAST_LOOP, zoneid); 22988 } 22989 } 22990 if (ipha->ipha_ttl == 0) { 22991 /* 22992 * 0 => only to this host i.e. we are 22993 * done. We are also done if this was the 22994 * loopback interface since it is sufficient 22995 * to loopback one copy of a multicast packet. 22996 */ 22997 freemsg(first_mp); 22998 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22999 "ip_wput_ire_end: q %p (%S)", 23000 q, "loopback"); 23001 ire_refrele(ire); 23002 if (conn_outgoing_ill != NULL) 23003 ill_refrele(conn_outgoing_ill); 23004 return; 23005 } 23006 /* 23007 * ILLF_MULTICAST is checked in ip_newroute 23008 * i.e. we don't need to check it here since 23009 * all IRE_CACHEs come from ip_newroute. 23010 * For multicast traffic, SO_DONTROUTE is interpreted 23011 * to mean only send the packet out the interface 23012 * (optionally specified with IP_MULTICAST_IF) 23013 * and do not forward it out additional interfaces. 23014 * RSVP and the rsvp daemon is an example of a 23015 * protocol and user level process that 23016 * handles it's own routing. Hence, it uses the 23017 * SO_DONTROUTE option to accomplish this. 23018 */ 23019 23020 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23021 ill != NULL) { 23022 /* Unconditionally redo the checksum */ 23023 ipha->ipha_hdr_checksum = 0; 23024 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23025 23026 /* 23027 * If this needs to go out secure, we need 23028 * to wait till we finish the IPsec 23029 * processing. 23030 */ 23031 if (ipsec_len == 0 && 23032 ip_mforward(ill, ipha, mp)) { 23033 freemsg(first_mp); 23034 ip1dbg(("ip_wput: mforward failed\n")); 23035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23036 "ip_wput_ire_end: q %p (%S)", 23037 q, "mforward failed"); 23038 ire_refrele(ire); 23039 if (conn_outgoing_ill != NULL) 23040 ill_refrele(conn_outgoing_ill); 23041 return; 23042 } 23043 } 23044 } 23045 max_frag = ire->ire_max_frag; 23046 cksum += ttl_protocol; 23047 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23048 /* No fragmentation required for this one. */ 23049 /* 23050 * Don't use frag_flag if packet is pre-built or source 23051 * routed or if multicast (since multicast packets do 23052 * not solicit ICMP "packet too big" messages). 23053 */ 23054 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23055 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23056 !ip_source_route_included(ipha)) && 23057 !CLASSD(ipha->ipha_dst)) 23058 ipha->ipha_fragment_offset_and_flags |= 23059 htons(ire->ire_frag_flag); 23060 23061 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23062 /* Complete the IP header checksum. */ 23063 cksum += ipha->ipha_ident; 23064 cksum += (v_hlen_tos_len >> 16)+ 23065 (v_hlen_tos_len & 0xFFFF); 23066 cksum += ipha->ipha_fragment_offset_and_flags; 23067 hlen = (V_HLEN & 0xF) - 23068 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23069 if (hlen) { 23070 checksumoptions: 23071 /* 23072 * Account for the IP Options in the IP 23073 * header checksum. 23074 */ 23075 up = (uint16_t *)(rptr+ 23076 IP_SIMPLE_HDR_LENGTH); 23077 do { 23078 cksum += up[0]; 23079 cksum += up[1]; 23080 up += 2; 23081 } while (--hlen); 23082 } 23083 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23084 cksum = ~(cksum + (cksum >> 16)); 23085 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23086 } 23087 if (ipsec_len != 0) { 23088 ipsec_out_process(q, first_mp, ire, ill_index); 23089 if (!next_mp) { 23090 ire_refrele(ire); 23091 if (conn_outgoing_ill != NULL) 23092 ill_refrele(conn_outgoing_ill); 23093 return; 23094 } 23095 goto next; 23096 } 23097 23098 /* 23099 * multirt_send has already been handled 23100 * for broadcast, but not yet for multicast 23101 * or IP options. 23102 */ 23103 if (next_mp == NULL) { 23104 if (ire->ire_flags & RTF_MULTIRT) { 23105 multirt_send = B_TRUE; 23106 } 23107 } 23108 23109 /* 23110 * In most cases, the emission loop below is 23111 * entered only once. Only in the case where 23112 * the ire holds the RTF_MULTIRT flag, do we loop 23113 * to process all RTF_MULTIRT ires in the bucket, 23114 * and send the packet through all crossed 23115 * RTF_MULTIRT routes. 23116 */ 23117 do { 23118 if (multirt_send) { 23119 irb_t *irb; 23120 23121 irb = ire->ire_bucket; 23122 ASSERT(irb != NULL); 23123 /* 23124 * We are in a multiple send case, 23125 * need to get the next IRE and make 23126 * a duplicate of the packet. 23127 */ 23128 IRB_REFHOLD(irb); 23129 for (ire1 = ire->ire_next; 23130 ire1 != NULL; 23131 ire1 = ire1->ire_next) { 23132 if (!(ire1->ire_flags & 23133 RTF_MULTIRT)) { 23134 continue; 23135 } 23136 if (ire1->ire_addr != 23137 ire->ire_addr) { 23138 continue; 23139 } 23140 if (ire1->ire_marks & 23141 (IRE_MARK_CONDEMNED| 23142 IRE_MARK_HIDDEN)) { 23143 continue; 23144 } 23145 23146 /* Got one */ 23147 IRE_REFHOLD(ire1); 23148 break; 23149 } 23150 IRB_REFRELE(irb); 23151 23152 if (ire1 != NULL) { 23153 next_mp = copyb(mp); 23154 if ((next_mp == NULL) || 23155 ((mp->b_cont != NULL) && 23156 ((next_mp->b_cont = 23157 dupmsg(mp->b_cont)) 23158 == NULL))) { 23159 freemsg(next_mp); 23160 next_mp = NULL; 23161 ire_refrele(ire1); 23162 ire1 = NULL; 23163 } 23164 } 23165 23166 /* 23167 * Last multiroute ire; don't loop 23168 * anymore. The emission is over 23169 * and next_mp is NULL. 23170 */ 23171 if (ire1 == NULL) { 23172 multirt_send = B_FALSE; 23173 } 23174 } 23175 23176 out_ill = ire_to_ill(ire); 23177 DTRACE_PROBE4(ip4__physical__out__start, 23178 ill_t *, NULL, 23179 ill_t *, out_ill, 23180 ipha_t *, ipha, mblk_t *, mp); 23181 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23182 ipst->ips_ipv4firewall_physical_out, 23183 NULL, out_ill, ipha, mp, mp, ipst); 23184 DTRACE_PROBE1(ip4__physical__out__end, 23185 mblk_t *, mp); 23186 if (mp == NULL) 23187 goto release_ire_and_ill_2; 23188 23189 ASSERT(ipsec_len == 0); 23190 mp->b_prev = 23191 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23192 DTRACE_PROBE2(ip__xmit__2, 23193 mblk_t *, mp, ire_t *, ire); 23194 pktxmit_state = ip_xmit_v4(mp, ire, 23195 NULL, B_TRUE); 23196 if ((pktxmit_state == SEND_FAILED) || 23197 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23198 release_ire_and_ill_2: 23199 if (next_mp) { 23200 freemsg(next_mp); 23201 ire_refrele(ire1); 23202 } 23203 ire_refrele(ire); 23204 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23205 "ip_wput_ire_end: q %p (%S)", 23206 q, "discard MDATA"); 23207 if (conn_outgoing_ill != NULL) 23208 ill_refrele(conn_outgoing_ill); 23209 return; 23210 } 23211 23212 if (CLASSD(dst)) { 23213 BUMP_MIB(out_ill->ill_ip_mib, 23214 ipIfStatsHCOutMcastPkts); 23215 UPDATE_MIB(out_ill->ill_ip_mib, 23216 ipIfStatsHCOutMcastOctets, 23217 LENGTH); 23218 } else if (ire->ire_type == IRE_BROADCAST) { 23219 BUMP_MIB(out_ill->ill_ip_mib, 23220 ipIfStatsHCOutBcastPkts); 23221 } 23222 23223 if (multirt_send) { 23224 /* 23225 * We are in a multiple send case, 23226 * need to re-enter the sending loop 23227 * using the next ire. 23228 */ 23229 ire_refrele(ire); 23230 ire = ire1; 23231 stq = ire->ire_stq; 23232 mp = next_mp; 23233 next_mp = NULL; 23234 ipha = (ipha_t *)mp->b_rptr; 23235 ill_index = Q_TO_INDEX(stq); 23236 } 23237 } while (multirt_send); 23238 23239 if (!next_mp) { 23240 /* 23241 * Last copy going out (the ultra-common 23242 * case). Note that we intentionally replicate 23243 * the putnext rather than calling it before 23244 * the next_mp check in hopes of a little 23245 * tail-call action out of the compiler. 23246 */ 23247 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23248 "ip_wput_ire_end: q %p (%S)", 23249 q, "last copy out(1)"); 23250 ire_refrele(ire); 23251 if (conn_outgoing_ill != NULL) 23252 ill_refrele(conn_outgoing_ill); 23253 return; 23254 } 23255 /* More copies going out below. */ 23256 } else { 23257 int offset; 23258 fragmentit: 23259 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23260 /* 23261 * If this would generate a icmp_frag_needed message, 23262 * we need to handle it before we do the IPsec 23263 * processing. Otherwise, we need to strip the IPsec 23264 * headers before we send up the message to the ULPs 23265 * which becomes messy and difficult. 23266 */ 23267 if (ipsec_len != 0) { 23268 if ((max_frag < (unsigned int)(LENGTH + 23269 ipsec_len)) && (offset & IPH_DF)) { 23270 out_ill = (ill_t *)stq->q_ptr; 23271 BUMP_MIB(out_ill->ill_ip_mib, 23272 ipIfStatsOutFragFails); 23273 BUMP_MIB(out_ill->ill_ip_mib, 23274 ipIfStatsOutFragReqds); 23275 ipha->ipha_hdr_checksum = 0; 23276 ipha->ipha_hdr_checksum = 23277 (uint16_t)ip_csum_hdr(ipha); 23278 icmp_frag_needed(ire->ire_stq, first_mp, 23279 max_frag, zoneid, ipst); 23280 if (!next_mp) { 23281 ire_refrele(ire); 23282 if (conn_outgoing_ill != NULL) { 23283 ill_refrele( 23284 conn_outgoing_ill); 23285 } 23286 return; 23287 } 23288 } else { 23289 /* 23290 * This won't cause a icmp_frag_needed 23291 * message. to be generated. Send it on 23292 * the wire. Note that this could still 23293 * cause fragmentation and all we 23294 * do is the generation of the message 23295 * to the ULP if needed before IPsec. 23296 */ 23297 if (!next_mp) { 23298 ipsec_out_process(q, first_mp, 23299 ire, ill_index); 23300 TRACE_2(TR_FAC_IP, 23301 TR_IP_WPUT_IRE_END, 23302 "ip_wput_ire_end: q %p " 23303 "(%S)", q, 23304 "last ipsec_out_process"); 23305 ire_refrele(ire); 23306 if (conn_outgoing_ill != NULL) { 23307 ill_refrele( 23308 conn_outgoing_ill); 23309 } 23310 return; 23311 } 23312 ipsec_out_process(q, first_mp, 23313 ire, ill_index); 23314 } 23315 } else { 23316 /* 23317 * Initiate IPPF processing. For 23318 * fragmentable packets we finish 23319 * all QOS packet processing before 23320 * calling: 23321 * ip_wput_ire_fragmentit->ip_wput_frag 23322 */ 23323 23324 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23325 ip_process(IPP_LOCAL_OUT, &mp, 23326 ill_index); 23327 if (mp == NULL) { 23328 out_ill = (ill_t *)stq->q_ptr; 23329 BUMP_MIB(out_ill->ill_ip_mib, 23330 ipIfStatsOutDiscards); 23331 if (next_mp != NULL) { 23332 freemsg(next_mp); 23333 ire_refrele(ire1); 23334 } 23335 ire_refrele(ire); 23336 TRACE_2(TR_FAC_IP, 23337 TR_IP_WPUT_IRE_END, 23338 "ip_wput_ire: q %p (%S)", 23339 q, "discard MDATA"); 23340 if (conn_outgoing_ill != NULL) { 23341 ill_refrele( 23342 conn_outgoing_ill); 23343 } 23344 return; 23345 } 23346 } 23347 if (!next_mp) { 23348 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23349 "ip_wput_ire_end: q %p (%S)", 23350 q, "last fragmentation"); 23351 ip_wput_ire_fragmentit(mp, ire, 23352 zoneid, ipst); 23353 ire_refrele(ire); 23354 if (conn_outgoing_ill != NULL) 23355 ill_refrele(conn_outgoing_ill); 23356 return; 23357 } 23358 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23359 } 23360 } 23361 } else { 23362 nullstq: 23363 /* A NULL stq means the destination address is local. */ 23364 UPDATE_OB_PKT_COUNT(ire); 23365 ire->ire_last_used_time = lbolt; 23366 ASSERT(ire->ire_ipif != NULL); 23367 if (!next_mp) { 23368 /* 23369 * Is there an "in" and "out" for traffic local 23370 * to a host (loopback)? The code in Solaris doesn't 23371 * explicitly draw a line in its code for in vs out, 23372 * so we've had to draw a line in the sand: ip_wput_ire 23373 * is considered to be the "output" side and 23374 * ip_wput_local to be the "input" side. 23375 */ 23376 out_ill = ire_to_ill(ire); 23377 23378 DTRACE_PROBE4(ip4__loopback__out__start, 23379 ill_t *, NULL, ill_t *, out_ill, 23380 ipha_t *, ipha, mblk_t *, first_mp); 23381 23382 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23383 ipst->ips_ipv4firewall_loopback_out, 23384 NULL, out_ill, ipha, first_mp, mp, ipst); 23385 23386 DTRACE_PROBE1(ip4__loopback__out_end, 23387 mblk_t *, first_mp); 23388 23389 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23390 "ip_wput_ire_end: q %p (%S)", 23391 q, "local address"); 23392 23393 if (first_mp != NULL) 23394 ip_wput_local(q, out_ill, ipha, 23395 first_mp, ire, 0, ire->ire_zoneid); 23396 ire_refrele(ire); 23397 if (conn_outgoing_ill != NULL) 23398 ill_refrele(conn_outgoing_ill); 23399 return; 23400 } 23401 23402 out_ill = ire_to_ill(ire); 23403 23404 DTRACE_PROBE4(ip4__loopback__out__start, 23405 ill_t *, NULL, ill_t *, out_ill, 23406 ipha_t *, ipha, mblk_t *, first_mp); 23407 23408 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23409 ipst->ips_ipv4firewall_loopback_out, 23410 NULL, out_ill, ipha, first_mp, mp, ipst); 23411 23412 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23413 23414 if (first_mp != NULL) 23415 ip_wput_local(q, out_ill, ipha, 23416 first_mp, ire, 0, ire->ire_zoneid); 23417 } 23418 next: 23419 /* 23420 * More copies going out to additional interfaces. 23421 * ire1 has already been held. We don't need the 23422 * "ire" anymore. 23423 */ 23424 ire_refrele(ire); 23425 ire = ire1; 23426 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23427 mp = next_mp; 23428 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23429 ill = ire_to_ill(ire); 23430 first_mp = mp; 23431 if (ipsec_len != 0) { 23432 ASSERT(first_mp->b_datap->db_type == M_CTL); 23433 mp = mp->b_cont; 23434 } 23435 dst = ire->ire_addr; 23436 ipha = (ipha_t *)mp->b_rptr; 23437 /* 23438 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23439 * Restore ipha_ident "no checksum" flag. 23440 */ 23441 src = orig_src; 23442 ipha->ipha_ident = ip_hdr_included; 23443 goto another; 23444 23445 #undef rptr 23446 #undef Q_TO_INDEX 23447 } 23448 23449 /* 23450 * Routine to allocate a message that is used to notify the ULP about MDT. 23451 * The caller may provide a pointer to the link-layer MDT capabilities, 23452 * or NULL if MDT is to be disabled on the stream. 23453 */ 23454 mblk_t * 23455 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23456 { 23457 mblk_t *mp; 23458 ip_mdt_info_t *mdti; 23459 ill_mdt_capab_t *idst; 23460 23461 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23462 DB_TYPE(mp) = M_CTL; 23463 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23464 mdti = (ip_mdt_info_t *)mp->b_rptr; 23465 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23466 idst = &(mdti->mdt_capab); 23467 23468 /* 23469 * If the caller provides us with the capability, copy 23470 * it over into our notification message; otherwise 23471 * we zero out the capability portion. 23472 */ 23473 if (isrc != NULL) 23474 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23475 else 23476 bzero((caddr_t)idst, sizeof (*idst)); 23477 } 23478 return (mp); 23479 } 23480 23481 /* 23482 * Routine which determines whether MDT can be enabled on the destination 23483 * IRE and IPC combination, and if so, allocates and returns the MDT 23484 * notification mblk that may be used by ULP. We also check if we need to 23485 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23486 * MDT usage in the past have been lifted. This gets called during IP 23487 * and ULP binding. 23488 */ 23489 mblk_t * 23490 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23491 ill_mdt_capab_t *mdt_cap) 23492 { 23493 mblk_t *mp; 23494 boolean_t rc = B_FALSE; 23495 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23496 23497 ASSERT(dst_ire != NULL); 23498 ASSERT(connp != NULL); 23499 ASSERT(mdt_cap != NULL); 23500 23501 /* 23502 * Currently, we only support simple TCP/{IPv4,IPv6} with 23503 * Multidata, which is handled in tcp_multisend(). This 23504 * is the reason why we do all these checks here, to ensure 23505 * that we don't enable Multidata for the cases which we 23506 * can't handle at the moment. 23507 */ 23508 do { 23509 /* Only do TCP at the moment */ 23510 if (connp->conn_ulp != IPPROTO_TCP) 23511 break; 23512 23513 /* 23514 * IPsec outbound policy present? Note that we get here 23515 * after calling ipsec_conn_cache_policy() where the global 23516 * policy checking is performed. conn_latch will be 23517 * non-NULL as long as there's a policy defined, 23518 * i.e. conn_out_enforce_policy may be NULL in such case 23519 * when the connection is non-secure, and hence we check 23520 * further if the latch refers to an outbound policy. 23521 */ 23522 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23523 break; 23524 23525 /* CGTP (multiroute) is enabled? */ 23526 if (dst_ire->ire_flags & RTF_MULTIRT) 23527 break; 23528 23529 /* Outbound IPQoS enabled? */ 23530 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23531 /* 23532 * In this case, we disable MDT for this and all 23533 * future connections going over the interface. 23534 */ 23535 mdt_cap->ill_mdt_on = 0; 23536 break; 23537 } 23538 23539 /* socket option(s) present? */ 23540 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23541 break; 23542 23543 rc = B_TRUE; 23544 /* CONSTCOND */ 23545 } while (0); 23546 23547 /* Remember the result */ 23548 connp->conn_mdt_ok = rc; 23549 23550 if (!rc) 23551 return (NULL); 23552 else if (!mdt_cap->ill_mdt_on) { 23553 /* 23554 * If MDT has been previously turned off in the past, and we 23555 * currently can do MDT (due to IPQoS policy removal, etc.) 23556 * then enable it for this interface. 23557 */ 23558 mdt_cap->ill_mdt_on = 1; 23559 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23560 "interface %s\n", ill_name)); 23561 } 23562 23563 /* Allocate the MDT info mblk */ 23564 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23565 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23566 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23567 return (NULL); 23568 } 23569 return (mp); 23570 } 23571 23572 /* 23573 * Routine to allocate a message that is used to notify the ULP about LSO. 23574 * The caller may provide a pointer to the link-layer LSO capabilities, 23575 * or NULL if LSO is to be disabled on the stream. 23576 */ 23577 mblk_t * 23578 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23579 { 23580 mblk_t *mp; 23581 ip_lso_info_t *lsoi; 23582 ill_lso_capab_t *idst; 23583 23584 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23585 DB_TYPE(mp) = M_CTL; 23586 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23587 lsoi = (ip_lso_info_t *)mp->b_rptr; 23588 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23589 idst = &(lsoi->lso_capab); 23590 23591 /* 23592 * If the caller provides us with the capability, copy 23593 * it over into our notification message; otherwise 23594 * we zero out the capability portion. 23595 */ 23596 if (isrc != NULL) 23597 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23598 else 23599 bzero((caddr_t)idst, sizeof (*idst)); 23600 } 23601 return (mp); 23602 } 23603 23604 /* 23605 * Routine which determines whether LSO can be enabled on the destination 23606 * IRE and IPC combination, and if so, allocates and returns the LSO 23607 * notification mblk that may be used by ULP. We also check if we need to 23608 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23609 * LSO usage in the past have been lifted. This gets called during IP 23610 * and ULP binding. 23611 */ 23612 mblk_t * 23613 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23614 ill_lso_capab_t *lso_cap) 23615 { 23616 mblk_t *mp; 23617 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23618 23619 ASSERT(dst_ire != NULL); 23620 ASSERT(connp != NULL); 23621 ASSERT(lso_cap != NULL); 23622 23623 connp->conn_lso_ok = B_TRUE; 23624 23625 if ((connp->conn_ulp != IPPROTO_TCP) || 23626 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23627 (dst_ire->ire_flags & RTF_MULTIRT) || 23628 !CONN_IS_LSO_MD_FASTPATH(connp) || 23629 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23630 connp->conn_lso_ok = B_FALSE; 23631 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23632 /* 23633 * Disable LSO for this and all future connections going 23634 * over the interface. 23635 */ 23636 lso_cap->ill_lso_on = 0; 23637 } 23638 } 23639 23640 if (!connp->conn_lso_ok) 23641 return (NULL); 23642 else if (!lso_cap->ill_lso_on) { 23643 /* 23644 * If LSO has been previously turned off in the past, and we 23645 * currently can do LSO (due to IPQoS policy removal, etc.) 23646 * then enable it for this interface. 23647 */ 23648 lso_cap->ill_lso_on = 1; 23649 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23650 ill_name)); 23651 } 23652 23653 /* Allocate the LSO info mblk */ 23654 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23655 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23656 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23657 23658 return (mp); 23659 } 23660 23661 /* 23662 * Create destination address attribute, and fill it with the physical 23663 * destination address and SAP taken from the template DL_UNITDATA_REQ 23664 * message block. 23665 */ 23666 boolean_t 23667 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23668 { 23669 dl_unitdata_req_t *dlurp; 23670 pattr_t *pa; 23671 pattrinfo_t pa_info; 23672 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23673 uint_t das_len, das_off; 23674 23675 ASSERT(dlmp != NULL); 23676 23677 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23678 das_len = dlurp->dl_dest_addr_length; 23679 das_off = dlurp->dl_dest_addr_offset; 23680 23681 pa_info.type = PATTR_DSTADDRSAP; 23682 pa_info.len = sizeof (**das) + das_len - 1; 23683 23684 /* create and associate the attribute */ 23685 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23686 if (pa != NULL) { 23687 ASSERT(*das != NULL); 23688 (*das)->addr_is_group = 0; 23689 (*das)->addr_len = (uint8_t)das_len; 23690 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23691 } 23692 23693 return (pa != NULL); 23694 } 23695 23696 /* 23697 * Create hardware checksum attribute and fill it with the values passed. 23698 */ 23699 boolean_t 23700 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23701 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23702 { 23703 pattr_t *pa; 23704 pattrinfo_t pa_info; 23705 23706 ASSERT(mmd != NULL); 23707 23708 pa_info.type = PATTR_HCKSUM; 23709 pa_info.len = sizeof (pattr_hcksum_t); 23710 23711 /* create and associate the attribute */ 23712 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23713 if (pa != NULL) { 23714 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23715 23716 hck->hcksum_start_offset = start_offset; 23717 hck->hcksum_stuff_offset = stuff_offset; 23718 hck->hcksum_end_offset = end_offset; 23719 hck->hcksum_flags = flags; 23720 } 23721 return (pa != NULL); 23722 } 23723 23724 /* 23725 * Create zerocopy attribute and fill it with the specified flags 23726 */ 23727 boolean_t 23728 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23729 { 23730 pattr_t *pa; 23731 pattrinfo_t pa_info; 23732 23733 ASSERT(mmd != NULL); 23734 pa_info.type = PATTR_ZCOPY; 23735 pa_info.len = sizeof (pattr_zcopy_t); 23736 23737 /* create and associate the attribute */ 23738 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23739 if (pa != NULL) { 23740 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23741 23742 zcopy->zcopy_flags = flags; 23743 } 23744 return (pa != NULL); 23745 } 23746 23747 /* 23748 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23749 * block chain. We could rewrite to handle arbitrary message block chains but 23750 * that would make the code complicated and slow. Right now there three 23751 * restrictions: 23752 * 23753 * 1. The first message block must contain the complete IP header and 23754 * at least 1 byte of payload data. 23755 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23756 * so that we can use a single Multidata message. 23757 * 3. No frag must be distributed over two or more message blocks so 23758 * that we don't need more than two packet descriptors per frag. 23759 * 23760 * The above restrictions allow us to support userland applications (which 23761 * will send down a single message block) and NFS over UDP (which will 23762 * send down a chain of at most three message blocks). 23763 * 23764 * We also don't use MDT for payloads with less than or equal to 23765 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23766 */ 23767 boolean_t 23768 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23769 { 23770 int blocks; 23771 ssize_t total, missing, size; 23772 23773 ASSERT(mp != NULL); 23774 ASSERT(hdr_len > 0); 23775 23776 size = MBLKL(mp) - hdr_len; 23777 if (size <= 0) 23778 return (B_FALSE); 23779 23780 /* The first mblk contains the header and some payload. */ 23781 blocks = 1; 23782 total = size; 23783 size %= len; 23784 missing = (size == 0) ? 0 : (len - size); 23785 mp = mp->b_cont; 23786 23787 while (mp != NULL) { 23788 /* 23789 * Give up if we encounter a zero length message block. 23790 * In practice, this should rarely happen and therefore 23791 * not worth the trouble of freeing and re-linking the 23792 * mblk from the chain to handle such case. 23793 */ 23794 if ((size = MBLKL(mp)) == 0) 23795 return (B_FALSE); 23796 23797 /* Too many payload buffers for a single Multidata message? */ 23798 if (++blocks > MULTIDATA_MAX_PBUFS) 23799 return (B_FALSE); 23800 23801 total += size; 23802 /* Is a frag distributed over two or more message blocks? */ 23803 if (missing > size) 23804 return (B_FALSE); 23805 size -= missing; 23806 23807 size %= len; 23808 missing = (size == 0) ? 0 : (len - size); 23809 23810 mp = mp->b_cont; 23811 } 23812 23813 return (total > ip_wput_frag_mdt_min); 23814 } 23815 23816 /* 23817 * Outbound IPv4 fragmentation routine using MDT. 23818 */ 23819 static void 23820 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23821 uint32_t frag_flag, int offset) 23822 { 23823 ipha_t *ipha_orig; 23824 int i1, ip_data_end; 23825 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23826 mblk_t *hdr_mp, *md_mp = NULL; 23827 unsigned char *hdr_ptr, *pld_ptr; 23828 multidata_t *mmd; 23829 ip_pdescinfo_t pdi; 23830 ill_t *ill; 23831 ip_stack_t *ipst = ire->ire_ipst; 23832 23833 ASSERT(DB_TYPE(mp) == M_DATA); 23834 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23835 23836 ill = ire_to_ill(ire); 23837 ASSERT(ill != NULL); 23838 23839 ipha_orig = (ipha_t *)mp->b_rptr; 23840 mp->b_rptr += sizeof (ipha_t); 23841 23842 /* Calculate how many packets we will send out */ 23843 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23844 pkts = (i1 + len - 1) / len; 23845 ASSERT(pkts > 1); 23846 23847 /* Allocate a message block which will hold all the IP Headers. */ 23848 wroff = ipst->ips_ip_wroff_extra; 23849 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23850 23851 i1 = pkts * hdr_chunk_len; 23852 /* 23853 * Create the header buffer, Multidata and destination address 23854 * and SAP attribute that should be associated with it. 23855 */ 23856 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23857 ((hdr_mp->b_wptr += i1), 23858 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23859 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23860 freemsg(mp); 23861 if (md_mp == NULL) { 23862 freemsg(hdr_mp); 23863 } else { 23864 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23865 freemsg(md_mp); 23866 } 23867 IP_STAT(ipst, ip_frag_mdt_allocfail); 23868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23869 return; 23870 } 23871 IP_STAT(ipst, ip_frag_mdt_allocd); 23872 23873 /* 23874 * Add a payload buffer to the Multidata; this operation must not 23875 * fail, or otherwise our logic in this routine is broken. There 23876 * is no memory allocation done by the routine, so any returned 23877 * failure simply tells us that we've done something wrong. 23878 * 23879 * A failure tells us that either we're adding the same payload 23880 * buffer more than once, or we're trying to add more buffers than 23881 * allowed. None of the above cases should happen, and we panic 23882 * because either there's horrible heap corruption, and/or 23883 * programming mistake. 23884 */ 23885 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23886 goto pbuf_panic; 23887 23888 hdr_ptr = hdr_mp->b_rptr; 23889 pld_ptr = mp->b_rptr; 23890 23891 /* Establish the ending byte offset, based on the starting offset. */ 23892 offset <<= 3; 23893 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23894 IP_SIMPLE_HDR_LENGTH; 23895 23896 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23897 23898 while (pld_ptr < mp->b_wptr) { 23899 ipha_t *ipha; 23900 uint16_t offset_and_flags; 23901 uint16_t ip_len; 23902 int error; 23903 23904 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23905 ipha = (ipha_t *)(hdr_ptr + wroff); 23906 ASSERT(OK_32PTR(ipha)); 23907 *ipha = *ipha_orig; 23908 23909 if (ip_data_end - offset > len) { 23910 offset_and_flags = IPH_MF; 23911 } else { 23912 /* 23913 * Last frag. Set len to the length of this last piece. 23914 */ 23915 len = ip_data_end - offset; 23916 /* A frag of a frag might have IPH_MF non-zero */ 23917 offset_and_flags = 23918 ntohs(ipha->ipha_fragment_offset_and_flags) & 23919 IPH_MF; 23920 } 23921 offset_and_flags |= (uint16_t)(offset >> 3); 23922 offset_and_flags |= (uint16_t)frag_flag; 23923 /* Store the offset and flags in the IP header. */ 23924 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23925 23926 /* Store the length in the IP header. */ 23927 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23928 ipha->ipha_length = htons(ip_len); 23929 23930 /* 23931 * Set the IP header checksum. Note that mp is just 23932 * the header, so this is easy to pass to ip_csum. 23933 */ 23934 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23935 23936 /* 23937 * Record offset and size of header and data of the next packet 23938 * in the multidata message. 23939 */ 23940 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23941 PDESC_PLD_INIT(&pdi); 23942 i1 = MIN(mp->b_wptr - pld_ptr, len); 23943 ASSERT(i1 > 0); 23944 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23945 if (i1 == len) { 23946 pld_ptr += len; 23947 } else { 23948 i1 = len - i1; 23949 mp = mp->b_cont; 23950 ASSERT(mp != NULL); 23951 ASSERT(MBLKL(mp) >= i1); 23952 /* 23953 * Attach the next payload message block to the 23954 * multidata message. 23955 */ 23956 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23957 goto pbuf_panic; 23958 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23959 pld_ptr = mp->b_rptr + i1; 23960 } 23961 23962 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23963 KM_NOSLEEP)) == NULL) { 23964 /* 23965 * Any failure other than ENOMEM indicates that we 23966 * have passed in invalid pdesc info or parameters 23967 * to mmd_addpdesc, which must not happen. 23968 * 23969 * EINVAL is a result of failure on boundary checks 23970 * against the pdesc info contents. It should not 23971 * happen, and we panic because either there's 23972 * horrible heap corruption, and/or programming 23973 * mistake. 23974 */ 23975 if (error != ENOMEM) { 23976 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23977 "pdesc logic error detected for " 23978 "mmd %p pinfo %p (%d)\n", 23979 (void *)mmd, (void *)&pdi, error); 23980 /* NOTREACHED */ 23981 } 23982 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23983 /* Free unattached payload message blocks as well */ 23984 md_mp->b_cont = mp->b_cont; 23985 goto free_mmd; 23986 } 23987 23988 /* Advance fragment offset. */ 23989 offset += len; 23990 23991 /* Advance to location for next header in the buffer. */ 23992 hdr_ptr += hdr_chunk_len; 23993 23994 /* Did we reach the next payload message block? */ 23995 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23996 mp = mp->b_cont; 23997 /* 23998 * Attach the next message block with payload 23999 * data to the multidata message. 24000 */ 24001 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24002 goto pbuf_panic; 24003 pld_ptr = mp->b_rptr; 24004 } 24005 } 24006 24007 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24008 ASSERT(mp->b_wptr == pld_ptr); 24009 24010 /* Update IP statistics */ 24011 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24012 24013 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24014 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24015 24016 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24017 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24018 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24019 24020 if (pkt_type == OB_PKT) { 24021 ire->ire_ob_pkt_count += pkts; 24022 if (ire->ire_ipif != NULL) 24023 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24024 } else { 24025 /* The type is IB_PKT in the forwarding path. */ 24026 ire->ire_ib_pkt_count += pkts; 24027 ASSERT(!IRE_IS_LOCAL(ire)); 24028 if (ire->ire_type & IRE_BROADCAST) { 24029 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24030 } else { 24031 UPDATE_MIB(ill->ill_ip_mib, 24032 ipIfStatsHCOutForwDatagrams, pkts); 24033 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24034 } 24035 } 24036 ire->ire_last_used_time = lbolt; 24037 /* Send it down */ 24038 putnext(ire->ire_stq, md_mp); 24039 return; 24040 24041 pbuf_panic: 24042 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24043 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24044 pbuf_idx); 24045 /* NOTREACHED */ 24046 } 24047 24048 /* 24049 * Outbound IP fragmentation routine. 24050 * 24051 * NOTE : This routine does not ire_refrele the ire that is passed in 24052 * as the argument. 24053 */ 24054 static void 24055 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24056 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24057 { 24058 int i1; 24059 mblk_t *ll_hdr_mp; 24060 int ll_hdr_len; 24061 int hdr_len; 24062 mblk_t *hdr_mp; 24063 ipha_t *ipha; 24064 int ip_data_end; 24065 int len; 24066 mblk_t *mp = mp_orig, *mp1; 24067 int offset; 24068 queue_t *q; 24069 uint32_t v_hlen_tos_len; 24070 mblk_t *first_mp; 24071 boolean_t mctl_present; 24072 ill_t *ill; 24073 ill_t *out_ill; 24074 mblk_t *xmit_mp; 24075 mblk_t *carve_mp; 24076 ire_t *ire1 = NULL; 24077 ire_t *save_ire = NULL; 24078 mblk_t *next_mp = NULL; 24079 boolean_t last_frag = B_FALSE; 24080 boolean_t multirt_send = B_FALSE; 24081 ire_t *first_ire = NULL; 24082 irb_t *irb = NULL; 24083 mib2_ipIfStatsEntry_t *mibptr = NULL; 24084 24085 ill = ire_to_ill(ire); 24086 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24087 24088 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24089 24090 if (max_frag == 0) { 24091 ip1dbg(("ip_wput_frag: ire frag size is 0" 24092 " - dropping packet\n")); 24093 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24094 freemsg(mp); 24095 return; 24096 } 24097 24098 /* 24099 * IPsec does not allow hw accelerated packets to be fragmented 24100 * This check is made in ip_wput_ipsec_out prior to coming here 24101 * via ip_wput_ire_fragmentit. 24102 * 24103 * If at this point we have an ire whose ARP request has not 24104 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24105 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24106 * This packet and all fragmentable packets for this ire will 24107 * continue to get dropped while ire_nce->nce_state remains in 24108 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24109 * ND_REACHABLE, all subsquent large packets for this ire will 24110 * get fragemented and sent out by this function. 24111 */ 24112 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24113 /* If nce_state is ND_INITIAL, trigger ARP query */ 24114 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24115 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24116 " - dropping packet\n")); 24117 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24118 freemsg(mp); 24119 return; 24120 } 24121 24122 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24123 "ip_wput_frag_start:"); 24124 24125 if (mp->b_datap->db_type == M_CTL) { 24126 first_mp = mp; 24127 mp_orig = mp = mp->b_cont; 24128 mctl_present = B_TRUE; 24129 } else { 24130 first_mp = mp; 24131 mctl_present = B_FALSE; 24132 } 24133 24134 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24135 ipha = (ipha_t *)mp->b_rptr; 24136 24137 /* 24138 * If the Don't Fragment flag is on, generate an ICMP destination 24139 * unreachable, fragmentation needed. 24140 */ 24141 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24142 if (offset & IPH_DF) { 24143 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24144 if (is_system_labeled()) { 24145 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24146 ire->ire_max_frag - max_frag, AF_INET); 24147 } 24148 /* 24149 * Need to compute hdr checksum if called from ip_wput_ire. 24150 * Note that ip_rput_forward verifies the checksum before 24151 * calling this routine so in that case this is a noop. 24152 */ 24153 ipha->ipha_hdr_checksum = 0; 24154 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24155 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24156 ipst); 24157 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24158 "ip_wput_frag_end:(%S)", 24159 "don't fragment"); 24160 return; 24161 } 24162 /* 24163 * Labeled systems adjust max_frag if they add a label 24164 * to send the correct path mtu. We need the real mtu since we 24165 * are fragmenting the packet after label adjustment. 24166 */ 24167 if (is_system_labeled()) 24168 max_frag = ire->ire_max_frag; 24169 if (mctl_present) 24170 freeb(first_mp); 24171 /* 24172 * Establish the starting offset. May not be zero if we are fragging 24173 * a fragment that is being forwarded. 24174 */ 24175 offset = offset & IPH_OFFSET; 24176 24177 /* TODO why is this test needed? */ 24178 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24179 if (((max_frag - LENGTH) & ~7) < 8) { 24180 /* TODO: notify ulp somehow */ 24181 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24182 freemsg(mp); 24183 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24184 "ip_wput_frag_end:(%S)", 24185 "len < 8"); 24186 return; 24187 } 24188 24189 hdr_len = (V_HLEN & 0xF) << 2; 24190 24191 ipha->ipha_hdr_checksum = 0; 24192 24193 /* 24194 * Establish the number of bytes maximum per frag, after putting 24195 * in the header. 24196 */ 24197 len = (max_frag - hdr_len) & ~7; 24198 24199 /* Check if we can use MDT to send out the frags. */ 24200 ASSERT(!IRE_IS_LOCAL(ire)); 24201 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24202 ipst->ips_ip_multidata_outbound && 24203 !(ire->ire_flags & RTF_MULTIRT) && 24204 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24205 ill != NULL && ILL_MDT_CAPABLE(ill) && 24206 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24207 ASSERT(ill->ill_mdt_capab != NULL); 24208 if (!ill->ill_mdt_capab->ill_mdt_on) { 24209 /* 24210 * If MDT has been previously turned off in the past, 24211 * and we currently can do MDT (due to IPQoS policy 24212 * removal, etc.) then enable it for this interface. 24213 */ 24214 ill->ill_mdt_capab->ill_mdt_on = 1; 24215 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24216 ill->ill_name)); 24217 } 24218 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24219 offset); 24220 return; 24221 } 24222 24223 /* Get a copy of the header for the trailing frags */ 24224 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24225 if (!hdr_mp) { 24226 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24227 freemsg(mp); 24228 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24229 "ip_wput_frag_end:(%S)", 24230 "couldn't copy hdr"); 24231 return; 24232 } 24233 if (DB_CRED(mp) != NULL) 24234 mblk_setcred(hdr_mp, DB_CRED(mp)); 24235 24236 /* Store the starting offset, with the MoreFrags flag. */ 24237 i1 = offset | IPH_MF | frag_flag; 24238 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24239 24240 /* Establish the ending byte offset, based on the starting offset. */ 24241 offset <<= 3; 24242 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24243 24244 /* Store the length of the first fragment in the IP header. */ 24245 i1 = len + hdr_len; 24246 ASSERT(i1 <= IP_MAXPACKET); 24247 ipha->ipha_length = htons((uint16_t)i1); 24248 24249 /* 24250 * Compute the IP header checksum for the first frag. We have to 24251 * watch out that we stop at the end of the header. 24252 */ 24253 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24254 24255 /* 24256 * Now carve off the first frag. Note that this will include the 24257 * original IP header. 24258 */ 24259 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24260 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24261 freeb(hdr_mp); 24262 freemsg(mp_orig); 24263 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24264 "ip_wput_frag_end:(%S)", 24265 "couldn't carve first"); 24266 return; 24267 } 24268 24269 /* 24270 * Multirouting case. Each fragment is replicated 24271 * via all non-condemned RTF_MULTIRT routes 24272 * currently resolved. 24273 * We ensure that first_ire is the first RTF_MULTIRT 24274 * ire in the bucket. 24275 */ 24276 if (ire->ire_flags & RTF_MULTIRT) { 24277 irb = ire->ire_bucket; 24278 ASSERT(irb != NULL); 24279 24280 multirt_send = B_TRUE; 24281 24282 /* Make sure we do not omit any multiroute ire. */ 24283 IRB_REFHOLD(irb); 24284 for (first_ire = irb->irb_ire; 24285 first_ire != NULL; 24286 first_ire = first_ire->ire_next) { 24287 if ((first_ire->ire_flags & RTF_MULTIRT) && 24288 (first_ire->ire_addr == ire->ire_addr) && 24289 !(first_ire->ire_marks & 24290 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24291 break; 24292 } 24293 } 24294 24295 if (first_ire != NULL) { 24296 if (first_ire != ire) { 24297 IRE_REFHOLD(first_ire); 24298 /* 24299 * Do not release the ire passed in 24300 * as the argument. 24301 */ 24302 ire = first_ire; 24303 } else { 24304 first_ire = NULL; 24305 } 24306 } 24307 IRB_REFRELE(irb); 24308 24309 /* 24310 * Save the first ire; we will need to restore it 24311 * for the trailing frags. 24312 * We REFHOLD save_ire, as each iterated ire will be 24313 * REFRELEd. 24314 */ 24315 save_ire = ire; 24316 IRE_REFHOLD(save_ire); 24317 } 24318 24319 /* 24320 * First fragment emission loop. 24321 * In most cases, the emission loop below is entered only 24322 * once. Only in the case where the ire holds the RTF_MULTIRT 24323 * flag, do we loop to process all RTF_MULTIRT ires in the 24324 * bucket, and send the fragment through all crossed 24325 * RTF_MULTIRT routes. 24326 */ 24327 do { 24328 if (ire->ire_flags & RTF_MULTIRT) { 24329 /* 24330 * We are in a multiple send case, need to get 24331 * the next ire and make a copy of the packet. 24332 * ire1 holds here the next ire to process in the 24333 * bucket. If multirouting is expected, 24334 * any non-RTF_MULTIRT ire that has the 24335 * right destination address is ignored. 24336 * 24337 * We have to take into account the MTU of 24338 * each walked ire. max_frag is set by the 24339 * the caller and generally refers to 24340 * the primary ire entry. Here we ensure that 24341 * no route with a lower MTU will be used, as 24342 * fragments are carved once for all ires, 24343 * then replicated. 24344 */ 24345 ASSERT(irb != NULL); 24346 IRB_REFHOLD(irb); 24347 for (ire1 = ire->ire_next; 24348 ire1 != NULL; 24349 ire1 = ire1->ire_next) { 24350 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24351 continue; 24352 if (ire1->ire_addr != ire->ire_addr) 24353 continue; 24354 if (ire1->ire_marks & 24355 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24356 continue; 24357 /* 24358 * Ensure we do not exceed the MTU 24359 * of the next route. 24360 */ 24361 if (ire1->ire_max_frag < max_frag) { 24362 ip_multirt_bad_mtu(ire1, max_frag); 24363 continue; 24364 } 24365 24366 /* Got one. */ 24367 IRE_REFHOLD(ire1); 24368 break; 24369 } 24370 IRB_REFRELE(irb); 24371 24372 if (ire1 != NULL) { 24373 next_mp = copyb(mp); 24374 if ((next_mp == NULL) || 24375 ((mp->b_cont != NULL) && 24376 ((next_mp->b_cont = 24377 dupmsg(mp->b_cont)) == NULL))) { 24378 freemsg(next_mp); 24379 next_mp = NULL; 24380 ire_refrele(ire1); 24381 ire1 = NULL; 24382 } 24383 } 24384 24385 /* Last multiroute ire; don't loop anymore. */ 24386 if (ire1 == NULL) { 24387 multirt_send = B_FALSE; 24388 } 24389 } 24390 24391 ll_hdr_len = 0; 24392 LOCK_IRE_FP_MP(ire); 24393 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24394 if (ll_hdr_mp != NULL) { 24395 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24396 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24397 } else { 24398 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24399 } 24400 24401 /* If there is a transmit header, get a copy for this frag. */ 24402 /* 24403 * TODO: should check db_ref before calling ip_carve_mp since 24404 * it might give us a dup. 24405 */ 24406 if (!ll_hdr_mp) { 24407 /* No xmit header. */ 24408 xmit_mp = mp; 24409 24410 /* We have a link-layer header that can fit in our mblk. */ 24411 } else if (mp->b_datap->db_ref == 1 && 24412 ll_hdr_len != 0 && 24413 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24414 /* M_DATA fastpath */ 24415 mp->b_rptr -= ll_hdr_len; 24416 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24417 xmit_mp = mp; 24418 24419 /* Corner case if copyb has failed */ 24420 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24421 UNLOCK_IRE_FP_MP(ire); 24422 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24423 freeb(hdr_mp); 24424 freemsg(mp); 24425 freemsg(mp_orig); 24426 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24427 "ip_wput_frag_end:(%S)", 24428 "discard"); 24429 24430 if (multirt_send) { 24431 ASSERT(ire1); 24432 ASSERT(next_mp); 24433 24434 freemsg(next_mp); 24435 ire_refrele(ire1); 24436 } 24437 if (save_ire != NULL) 24438 IRE_REFRELE(save_ire); 24439 24440 if (first_ire != NULL) 24441 ire_refrele(first_ire); 24442 return; 24443 24444 /* 24445 * Case of res_mp OR the fastpath mp can't fit 24446 * in the mblk 24447 */ 24448 } else { 24449 xmit_mp->b_cont = mp; 24450 if (DB_CRED(mp) != NULL) 24451 mblk_setcred(xmit_mp, DB_CRED(mp)); 24452 /* 24453 * Get priority marking, if any. 24454 * We propagate the CoS marking from the 24455 * original packet that went to QoS processing 24456 * in ip_wput_ire to the newly carved mp. 24457 */ 24458 if (DB_TYPE(xmit_mp) == M_DATA) 24459 xmit_mp->b_band = mp->b_band; 24460 } 24461 UNLOCK_IRE_FP_MP(ire); 24462 24463 q = ire->ire_stq; 24464 out_ill = (ill_t *)q->q_ptr; 24465 24466 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24467 24468 DTRACE_PROBE4(ip4__physical__out__start, 24469 ill_t *, NULL, ill_t *, out_ill, 24470 ipha_t *, ipha, mblk_t *, xmit_mp); 24471 24472 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24473 ipst->ips_ipv4firewall_physical_out, 24474 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24475 24476 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24477 24478 if (xmit_mp != NULL) { 24479 putnext(q, xmit_mp); 24480 24481 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24482 UPDATE_MIB(out_ill->ill_ip_mib, 24483 ipIfStatsHCOutOctets, i1); 24484 24485 if (pkt_type != OB_PKT) { 24486 /* 24487 * Update the packet count and MIB stats 24488 * of trailing RTF_MULTIRT ires. 24489 */ 24490 UPDATE_OB_PKT_COUNT(ire); 24491 BUMP_MIB(out_ill->ill_ip_mib, 24492 ipIfStatsOutFragReqds); 24493 } 24494 } 24495 24496 if (multirt_send) { 24497 /* 24498 * We are in a multiple send case; look for 24499 * the next ire and re-enter the loop. 24500 */ 24501 ASSERT(ire1); 24502 ASSERT(next_mp); 24503 /* REFRELE the current ire before looping */ 24504 ire_refrele(ire); 24505 ire = ire1; 24506 ire1 = NULL; 24507 mp = next_mp; 24508 next_mp = NULL; 24509 } 24510 } while (multirt_send); 24511 24512 ASSERT(ire1 == NULL); 24513 24514 /* Restore the original ire; we need it for the trailing frags */ 24515 if (save_ire != NULL) { 24516 /* REFRELE the last iterated ire */ 24517 ire_refrele(ire); 24518 /* save_ire has been REFHOLDed */ 24519 ire = save_ire; 24520 save_ire = NULL; 24521 q = ire->ire_stq; 24522 } 24523 24524 if (pkt_type == OB_PKT) { 24525 UPDATE_OB_PKT_COUNT(ire); 24526 } else { 24527 out_ill = (ill_t *)q->q_ptr; 24528 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24529 UPDATE_IB_PKT_COUNT(ire); 24530 } 24531 24532 /* Advance the offset to the second frag starting point. */ 24533 offset += len; 24534 /* 24535 * Update hdr_len from the copied header - there might be less options 24536 * in the later fragments. 24537 */ 24538 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24539 /* Loop until done. */ 24540 for (;;) { 24541 uint16_t offset_and_flags; 24542 uint16_t ip_len; 24543 24544 if (ip_data_end - offset > len) { 24545 /* 24546 * Carve off the appropriate amount from the original 24547 * datagram. 24548 */ 24549 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24550 mp = NULL; 24551 break; 24552 } 24553 /* 24554 * More frags after this one. Get another copy 24555 * of the header. 24556 */ 24557 if (carve_mp->b_datap->db_ref == 1 && 24558 hdr_mp->b_wptr - hdr_mp->b_rptr < 24559 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24560 /* Inline IP header */ 24561 carve_mp->b_rptr -= hdr_mp->b_wptr - 24562 hdr_mp->b_rptr; 24563 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24564 hdr_mp->b_wptr - hdr_mp->b_rptr); 24565 mp = carve_mp; 24566 } else { 24567 if (!(mp = copyb(hdr_mp))) { 24568 freemsg(carve_mp); 24569 break; 24570 } 24571 /* Get priority marking, if any. */ 24572 mp->b_band = carve_mp->b_band; 24573 mp->b_cont = carve_mp; 24574 } 24575 ipha = (ipha_t *)mp->b_rptr; 24576 offset_and_flags = IPH_MF; 24577 } else { 24578 /* 24579 * Last frag. Consume the header. Set len to 24580 * the length of this last piece. 24581 */ 24582 len = ip_data_end - offset; 24583 24584 /* 24585 * Carve off the appropriate amount from the original 24586 * datagram. 24587 */ 24588 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24589 mp = NULL; 24590 break; 24591 } 24592 if (carve_mp->b_datap->db_ref == 1 && 24593 hdr_mp->b_wptr - hdr_mp->b_rptr < 24594 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24595 /* Inline IP header */ 24596 carve_mp->b_rptr -= hdr_mp->b_wptr - 24597 hdr_mp->b_rptr; 24598 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24599 hdr_mp->b_wptr - hdr_mp->b_rptr); 24600 mp = carve_mp; 24601 freeb(hdr_mp); 24602 hdr_mp = mp; 24603 } else { 24604 mp = hdr_mp; 24605 /* Get priority marking, if any. */ 24606 mp->b_band = carve_mp->b_band; 24607 mp->b_cont = carve_mp; 24608 } 24609 ipha = (ipha_t *)mp->b_rptr; 24610 /* A frag of a frag might have IPH_MF non-zero */ 24611 offset_and_flags = 24612 ntohs(ipha->ipha_fragment_offset_and_flags) & 24613 IPH_MF; 24614 } 24615 offset_and_flags |= (uint16_t)(offset >> 3); 24616 offset_and_flags |= (uint16_t)frag_flag; 24617 /* Store the offset and flags in the IP header. */ 24618 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24619 24620 /* Store the length in the IP header. */ 24621 ip_len = (uint16_t)(len + hdr_len); 24622 ipha->ipha_length = htons(ip_len); 24623 24624 /* 24625 * Set the IP header checksum. Note that mp is just 24626 * the header, so this is easy to pass to ip_csum. 24627 */ 24628 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24629 24630 /* Attach a transmit header, if any, and ship it. */ 24631 if (pkt_type == OB_PKT) { 24632 UPDATE_OB_PKT_COUNT(ire); 24633 } else { 24634 out_ill = (ill_t *)q->q_ptr; 24635 BUMP_MIB(out_ill->ill_ip_mib, 24636 ipIfStatsHCOutForwDatagrams); 24637 UPDATE_IB_PKT_COUNT(ire); 24638 } 24639 24640 if (ire->ire_flags & RTF_MULTIRT) { 24641 irb = ire->ire_bucket; 24642 ASSERT(irb != NULL); 24643 24644 multirt_send = B_TRUE; 24645 24646 /* 24647 * Save the original ire; we will need to restore it 24648 * for the tailing frags. 24649 */ 24650 save_ire = ire; 24651 IRE_REFHOLD(save_ire); 24652 } 24653 /* 24654 * Emission loop for this fragment, similar 24655 * to what is done for the first fragment. 24656 */ 24657 do { 24658 if (multirt_send) { 24659 /* 24660 * We are in a multiple send case, need to get 24661 * the next ire and make a copy of the packet. 24662 */ 24663 ASSERT(irb != NULL); 24664 IRB_REFHOLD(irb); 24665 for (ire1 = ire->ire_next; 24666 ire1 != NULL; 24667 ire1 = ire1->ire_next) { 24668 if (!(ire1->ire_flags & RTF_MULTIRT)) 24669 continue; 24670 if (ire1->ire_addr != ire->ire_addr) 24671 continue; 24672 if (ire1->ire_marks & 24673 (IRE_MARK_CONDEMNED| 24674 IRE_MARK_HIDDEN)) { 24675 continue; 24676 } 24677 /* 24678 * Ensure we do not exceed the MTU 24679 * of the next route. 24680 */ 24681 if (ire1->ire_max_frag < max_frag) { 24682 ip_multirt_bad_mtu(ire1, 24683 max_frag); 24684 continue; 24685 } 24686 24687 /* Got one. */ 24688 IRE_REFHOLD(ire1); 24689 break; 24690 } 24691 IRB_REFRELE(irb); 24692 24693 if (ire1 != NULL) { 24694 next_mp = copyb(mp); 24695 if ((next_mp == NULL) || 24696 ((mp->b_cont != NULL) && 24697 ((next_mp->b_cont = 24698 dupmsg(mp->b_cont)) == NULL))) { 24699 freemsg(next_mp); 24700 next_mp = NULL; 24701 ire_refrele(ire1); 24702 ire1 = NULL; 24703 } 24704 } 24705 24706 /* Last multiroute ire; don't loop anymore. */ 24707 if (ire1 == NULL) { 24708 multirt_send = B_FALSE; 24709 } 24710 } 24711 24712 /* Update transmit header */ 24713 ll_hdr_len = 0; 24714 LOCK_IRE_FP_MP(ire); 24715 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24716 if (ll_hdr_mp != NULL) { 24717 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24718 ll_hdr_len = MBLKL(ll_hdr_mp); 24719 } else { 24720 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24721 } 24722 24723 if (!ll_hdr_mp) { 24724 xmit_mp = mp; 24725 24726 /* 24727 * We have link-layer header that can fit in 24728 * our mblk. 24729 */ 24730 } else if (mp->b_datap->db_ref == 1 && 24731 ll_hdr_len != 0 && 24732 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24733 /* M_DATA fastpath */ 24734 mp->b_rptr -= ll_hdr_len; 24735 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24736 ll_hdr_len); 24737 xmit_mp = mp; 24738 24739 /* 24740 * Case of res_mp OR the fastpath mp can't fit 24741 * in the mblk 24742 */ 24743 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24744 xmit_mp->b_cont = mp; 24745 if (DB_CRED(mp) != NULL) 24746 mblk_setcred(xmit_mp, DB_CRED(mp)); 24747 /* Get priority marking, if any. */ 24748 if (DB_TYPE(xmit_mp) == M_DATA) 24749 xmit_mp->b_band = mp->b_band; 24750 24751 /* Corner case if copyb failed */ 24752 } else { 24753 /* 24754 * Exit both the replication and 24755 * fragmentation loops. 24756 */ 24757 UNLOCK_IRE_FP_MP(ire); 24758 goto drop_pkt; 24759 } 24760 UNLOCK_IRE_FP_MP(ire); 24761 24762 mp1 = mp; 24763 out_ill = (ill_t *)q->q_ptr; 24764 24765 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24766 24767 DTRACE_PROBE4(ip4__physical__out__start, 24768 ill_t *, NULL, ill_t *, out_ill, 24769 ipha_t *, ipha, mblk_t *, xmit_mp); 24770 24771 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24772 ipst->ips_ipv4firewall_physical_out, 24773 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24774 24775 DTRACE_PROBE1(ip4__physical__out__end, 24776 mblk_t *, xmit_mp); 24777 24778 if (mp != mp1 && hdr_mp == mp1) 24779 hdr_mp = mp; 24780 if (mp != mp1 && mp_orig == mp1) 24781 mp_orig = mp; 24782 24783 if (xmit_mp != NULL) { 24784 putnext(q, xmit_mp); 24785 24786 BUMP_MIB(out_ill->ill_ip_mib, 24787 ipIfStatsHCOutTransmits); 24788 UPDATE_MIB(out_ill->ill_ip_mib, 24789 ipIfStatsHCOutOctets, ip_len); 24790 24791 if (pkt_type != OB_PKT) { 24792 /* 24793 * Update the packet count of trailing 24794 * RTF_MULTIRT ires. 24795 */ 24796 UPDATE_OB_PKT_COUNT(ire); 24797 } 24798 } 24799 24800 /* All done if we just consumed the hdr_mp. */ 24801 if (mp == hdr_mp) { 24802 last_frag = B_TRUE; 24803 BUMP_MIB(out_ill->ill_ip_mib, 24804 ipIfStatsOutFragOKs); 24805 } 24806 24807 if (multirt_send) { 24808 /* 24809 * We are in a multiple send case; look for 24810 * the next ire and re-enter the loop. 24811 */ 24812 ASSERT(ire1); 24813 ASSERT(next_mp); 24814 /* REFRELE the current ire before looping */ 24815 ire_refrele(ire); 24816 ire = ire1; 24817 ire1 = NULL; 24818 q = ire->ire_stq; 24819 mp = next_mp; 24820 next_mp = NULL; 24821 } 24822 } while (multirt_send); 24823 /* 24824 * Restore the original ire; we need it for the 24825 * trailing frags 24826 */ 24827 if (save_ire != NULL) { 24828 ASSERT(ire1 == NULL); 24829 /* REFRELE the last iterated ire */ 24830 ire_refrele(ire); 24831 /* save_ire has been REFHOLDed */ 24832 ire = save_ire; 24833 q = ire->ire_stq; 24834 save_ire = NULL; 24835 } 24836 24837 if (last_frag) { 24838 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24839 "ip_wput_frag_end:(%S)", 24840 "consumed hdr_mp"); 24841 24842 if (first_ire != NULL) 24843 ire_refrele(first_ire); 24844 return; 24845 } 24846 /* Otherwise, advance and loop. */ 24847 offset += len; 24848 } 24849 24850 drop_pkt: 24851 /* Clean up following allocation failure. */ 24852 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24853 freemsg(mp); 24854 if (mp != hdr_mp) 24855 freeb(hdr_mp); 24856 if (mp != mp_orig) 24857 freemsg(mp_orig); 24858 24859 if (save_ire != NULL) 24860 IRE_REFRELE(save_ire); 24861 if (first_ire != NULL) 24862 ire_refrele(first_ire); 24863 24864 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24865 "ip_wput_frag_end:(%S)", 24866 "end--alloc failure"); 24867 } 24868 24869 /* 24870 * Copy the header plus those options which have the copy bit set 24871 */ 24872 static mblk_t * 24873 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24874 { 24875 mblk_t *mp; 24876 uchar_t *up; 24877 24878 /* 24879 * Quick check if we need to look for options without the copy bit 24880 * set 24881 */ 24882 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24883 if (!mp) 24884 return (mp); 24885 mp->b_rptr += ipst->ips_ip_wroff_extra; 24886 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24887 bcopy(rptr, mp->b_rptr, hdr_len); 24888 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24889 return (mp); 24890 } 24891 up = mp->b_rptr; 24892 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24893 up += IP_SIMPLE_HDR_LENGTH; 24894 rptr += IP_SIMPLE_HDR_LENGTH; 24895 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24896 while (hdr_len > 0) { 24897 uint32_t optval; 24898 uint32_t optlen; 24899 24900 optval = *rptr; 24901 if (optval == IPOPT_EOL) 24902 break; 24903 if (optval == IPOPT_NOP) 24904 optlen = 1; 24905 else 24906 optlen = rptr[1]; 24907 if (optval & IPOPT_COPY) { 24908 bcopy(rptr, up, optlen); 24909 up += optlen; 24910 } 24911 rptr += optlen; 24912 hdr_len -= optlen; 24913 } 24914 /* 24915 * Make sure that we drop an even number of words by filling 24916 * with EOL to the next word boundary. 24917 */ 24918 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24919 hdr_len & 0x3; hdr_len++) 24920 *up++ = IPOPT_EOL; 24921 mp->b_wptr = up; 24922 /* Update header length */ 24923 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24924 return (mp); 24925 } 24926 24927 /* 24928 * Delivery to local recipients including fanout to multiple recipients. 24929 * Does not do checksumming of UDP/TCP. 24930 * Note: q should be the read side queue for either the ill or conn. 24931 * Note: rq should be the read side q for the lower (ill) stream. 24932 * We don't send packets to IPPF processing, thus the last argument 24933 * to all the fanout calls are B_FALSE. 24934 */ 24935 void 24936 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24937 int fanout_flags, zoneid_t zoneid) 24938 { 24939 uint32_t protocol; 24940 mblk_t *first_mp; 24941 boolean_t mctl_present; 24942 int ire_type; 24943 #define rptr ((uchar_t *)ipha) 24944 ip_stack_t *ipst = ill->ill_ipst; 24945 24946 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24947 "ip_wput_local_start: q %p", q); 24948 24949 if (ire != NULL) { 24950 ire_type = ire->ire_type; 24951 } else { 24952 /* 24953 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24954 * packet is not multicast, we can't tell the ire type. 24955 */ 24956 ASSERT(CLASSD(ipha->ipha_dst)); 24957 ire_type = IRE_BROADCAST; 24958 } 24959 24960 first_mp = mp; 24961 if (first_mp->b_datap->db_type == M_CTL) { 24962 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24963 if (!io->ipsec_out_secure) { 24964 /* 24965 * This ipsec_out_t was allocated in ip_wput 24966 * for multicast packets to store the ill_index. 24967 * As this is being delivered locally, we don't 24968 * need this anymore. 24969 */ 24970 mp = first_mp->b_cont; 24971 freeb(first_mp); 24972 first_mp = mp; 24973 mctl_present = B_FALSE; 24974 } else { 24975 /* 24976 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24977 * security properties for the looped-back packet. 24978 */ 24979 mctl_present = B_TRUE; 24980 mp = first_mp->b_cont; 24981 ASSERT(mp != NULL); 24982 ipsec_out_to_in(first_mp); 24983 } 24984 } else { 24985 mctl_present = B_FALSE; 24986 } 24987 24988 DTRACE_PROBE4(ip4__loopback__in__start, 24989 ill_t *, ill, ill_t *, NULL, 24990 ipha_t *, ipha, mblk_t *, first_mp); 24991 24992 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24993 ipst->ips_ipv4firewall_loopback_in, 24994 ill, NULL, ipha, first_mp, mp, ipst); 24995 24996 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24997 24998 if (first_mp == NULL) 24999 return; 25000 25001 ipst->ips_loopback_packets++; 25002 25003 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25004 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25005 if (!IS_SIMPLE_IPH(ipha)) { 25006 ip_wput_local_options(ipha, ipst); 25007 } 25008 25009 protocol = ipha->ipha_protocol; 25010 switch (protocol) { 25011 case IPPROTO_ICMP: { 25012 ire_t *ire_zone; 25013 ilm_t *ilm; 25014 mblk_t *mp1; 25015 zoneid_t last_zoneid; 25016 25017 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25018 ASSERT(ire_type == IRE_BROADCAST); 25019 /* 25020 * In the multicast case, applications may have joined 25021 * the group from different zones, so we need to deliver 25022 * the packet to each of them. Loop through the 25023 * multicast memberships structures (ilm) on the receive 25024 * ill and send a copy of the packet up each matching 25025 * one. However, we don't do this for multicasts sent on 25026 * the loopback interface (PHYI_LOOPBACK flag set) as 25027 * they must stay in the sender's zone. 25028 * 25029 * ilm_add_v6() ensures that ilms in the same zone are 25030 * contiguous in the ill_ilm list. We use this property 25031 * to avoid sending duplicates needed when two 25032 * applications in the same zone join the same group on 25033 * different logical interfaces: we ignore the ilm if 25034 * it's zoneid is the same as the last matching one. 25035 * In addition, the sending of the packet for 25036 * ire_zoneid is delayed until all of the other ilms 25037 * have been exhausted. 25038 */ 25039 last_zoneid = -1; 25040 ILM_WALKER_HOLD(ill); 25041 for (ilm = ill->ill_ilm; ilm != NULL; 25042 ilm = ilm->ilm_next) { 25043 if ((ilm->ilm_flags & ILM_DELETED) || 25044 ipha->ipha_dst != ilm->ilm_addr || 25045 ilm->ilm_zoneid == last_zoneid || 25046 ilm->ilm_zoneid == zoneid || 25047 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25048 continue; 25049 mp1 = ip_copymsg(first_mp); 25050 if (mp1 == NULL) 25051 continue; 25052 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25053 mctl_present, B_FALSE, ill, 25054 ilm->ilm_zoneid); 25055 last_zoneid = ilm->ilm_zoneid; 25056 } 25057 ILM_WALKER_RELE(ill); 25058 /* 25059 * Loopback case: the sending endpoint has 25060 * IP_MULTICAST_LOOP disabled, therefore we don't 25061 * dispatch the multicast packet to the sending zone. 25062 */ 25063 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25064 freemsg(first_mp); 25065 return; 25066 } 25067 } else if (ire_type == IRE_BROADCAST) { 25068 /* 25069 * In the broadcast case, there may be many zones 25070 * which need a copy of the packet delivered to them. 25071 * There is one IRE_BROADCAST per broadcast address 25072 * and per zone; we walk those using a helper function. 25073 * In addition, the sending of the packet for zoneid is 25074 * delayed until all of the other ires have been 25075 * processed. 25076 */ 25077 IRB_REFHOLD(ire->ire_bucket); 25078 ire_zone = NULL; 25079 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25080 ire)) != NULL) { 25081 mp1 = ip_copymsg(first_mp); 25082 if (mp1 == NULL) 25083 continue; 25084 25085 UPDATE_IB_PKT_COUNT(ire_zone); 25086 ire_zone->ire_last_used_time = lbolt; 25087 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25088 mctl_present, B_FALSE, ill, 25089 ire_zone->ire_zoneid); 25090 } 25091 IRB_REFRELE(ire->ire_bucket); 25092 } 25093 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25094 0, mctl_present, B_FALSE, ill, zoneid); 25095 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25096 "ip_wput_local_end: q %p (%S)", 25097 q, "icmp"); 25098 return; 25099 } 25100 case IPPROTO_IGMP: 25101 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25102 /* Bad packet - discarded by igmp_input */ 25103 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25104 "ip_wput_local_end: q %p (%S)", 25105 q, "igmp_input--bad packet"); 25106 if (mctl_present) 25107 freeb(first_mp); 25108 return; 25109 } 25110 /* 25111 * igmp_input() may have returned the pulled up message. 25112 * So first_mp and ipha need to be reinitialized. 25113 */ 25114 ipha = (ipha_t *)mp->b_rptr; 25115 if (mctl_present) 25116 first_mp->b_cont = mp; 25117 else 25118 first_mp = mp; 25119 /* deliver to local raw users */ 25120 break; 25121 case IPPROTO_ENCAP: 25122 /* 25123 * This case is covered by either ip_fanout_proto, or by 25124 * the above security processing for self-tunneled packets. 25125 */ 25126 break; 25127 case IPPROTO_UDP: { 25128 uint16_t *up; 25129 uint32_t ports; 25130 25131 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25132 UDP_PORTS_OFFSET); 25133 /* Force a 'valid' checksum. */ 25134 up[3] = 0; 25135 25136 ports = *(uint32_t *)up; 25137 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25138 (ire_type == IRE_BROADCAST), 25139 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25140 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25141 ill, zoneid); 25142 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25143 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25144 return; 25145 } 25146 case IPPROTO_TCP: { 25147 25148 /* 25149 * For TCP, discard broadcast packets. 25150 */ 25151 if ((ushort_t)ire_type == IRE_BROADCAST) { 25152 freemsg(first_mp); 25153 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25154 ip2dbg(("ip_wput_local: discard broadcast\n")); 25155 return; 25156 } 25157 25158 if (mp->b_datap->db_type == M_DATA) { 25159 /* 25160 * M_DATA mblk, so init mblk (chain) for no struio(). 25161 */ 25162 mblk_t *mp1 = mp; 25163 25164 do { 25165 mp1->b_datap->db_struioflag = 0; 25166 } while ((mp1 = mp1->b_cont) != NULL); 25167 } 25168 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25169 <= mp->b_wptr); 25170 ip_fanout_tcp(q, first_mp, ill, ipha, 25171 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25172 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25173 mctl_present, B_FALSE, zoneid); 25174 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25175 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25176 return; 25177 } 25178 case IPPROTO_SCTP: 25179 { 25180 uint32_t ports; 25181 25182 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25183 ip_fanout_sctp(first_mp, ill, ipha, ports, 25184 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25185 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25186 return; 25187 } 25188 25189 default: 25190 break; 25191 } 25192 /* 25193 * Find a client for some other protocol. We give 25194 * copies to multiple clients, if more than one is 25195 * bound. 25196 */ 25197 ip_fanout_proto(q, first_mp, ill, ipha, 25198 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25199 mctl_present, B_FALSE, ill, zoneid); 25200 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25201 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25202 #undef rptr 25203 } 25204 25205 /* 25206 * Update any source route, record route, or timestamp options. 25207 * Check that we are at end of strict source route. 25208 * The options have been sanity checked by ip_wput_options(). 25209 */ 25210 static void 25211 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25212 { 25213 ipoptp_t opts; 25214 uchar_t *opt; 25215 uint8_t optval; 25216 uint8_t optlen; 25217 ipaddr_t dst; 25218 uint32_t ts; 25219 ire_t *ire; 25220 timestruc_t now; 25221 25222 ip2dbg(("ip_wput_local_options\n")); 25223 for (optval = ipoptp_first(&opts, ipha); 25224 optval != IPOPT_EOL; 25225 optval = ipoptp_next(&opts)) { 25226 opt = opts.ipoptp_cur; 25227 optlen = opts.ipoptp_len; 25228 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25229 switch (optval) { 25230 uint32_t off; 25231 case IPOPT_SSRR: 25232 case IPOPT_LSRR: 25233 off = opt[IPOPT_OFFSET]; 25234 off--; 25235 if (optlen < IP_ADDR_LEN || 25236 off > optlen - IP_ADDR_LEN) { 25237 /* End of source route */ 25238 break; 25239 } 25240 /* 25241 * This will only happen if two consecutive entries 25242 * in the source route contains our address or if 25243 * it is a packet with a loose source route which 25244 * reaches us before consuming the whole source route 25245 */ 25246 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25247 if (optval == IPOPT_SSRR) { 25248 return; 25249 } 25250 /* 25251 * Hack: instead of dropping the packet truncate the 25252 * source route to what has been used by filling the 25253 * rest with IPOPT_NOP. 25254 */ 25255 opt[IPOPT_OLEN] = (uint8_t)off; 25256 while (off < optlen) { 25257 opt[off++] = IPOPT_NOP; 25258 } 25259 break; 25260 case IPOPT_RR: 25261 off = opt[IPOPT_OFFSET]; 25262 off--; 25263 if (optlen < IP_ADDR_LEN || 25264 off > optlen - IP_ADDR_LEN) { 25265 /* No more room - ignore */ 25266 ip1dbg(( 25267 "ip_wput_forward_options: end of RR\n")); 25268 break; 25269 } 25270 dst = htonl(INADDR_LOOPBACK); 25271 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25272 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25273 break; 25274 case IPOPT_TS: 25275 /* Insert timestamp if there is romm */ 25276 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25277 case IPOPT_TS_TSONLY: 25278 off = IPOPT_TS_TIMELEN; 25279 break; 25280 case IPOPT_TS_PRESPEC: 25281 case IPOPT_TS_PRESPEC_RFC791: 25282 /* Verify that the address matched */ 25283 off = opt[IPOPT_OFFSET] - 1; 25284 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25285 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25286 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25287 ipst); 25288 if (ire == NULL) { 25289 /* Not for us */ 25290 break; 25291 } 25292 ire_refrele(ire); 25293 /* FALLTHRU */ 25294 case IPOPT_TS_TSANDADDR: 25295 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25296 break; 25297 default: 25298 /* 25299 * ip_*put_options should have already 25300 * dropped this packet. 25301 */ 25302 cmn_err(CE_PANIC, "ip_wput_local_options: " 25303 "unknown IT - bug in ip_wput_options?\n"); 25304 return; /* Keep "lint" happy */ 25305 } 25306 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25307 /* Increase overflow counter */ 25308 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25309 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25310 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25311 (off << 4); 25312 break; 25313 } 25314 off = opt[IPOPT_OFFSET] - 1; 25315 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25316 case IPOPT_TS_PRESPEC: 25317 case IPOPT_TS_PRESPEC_RFC791: 25318 case IPOPT_TS_TSANDADDR: 25319 dst = htonl(INADDR_LOOPBACK); 25320 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25321 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25322 /* FALLTHRU */ 25323 case IPOPT_TS_TSONLY: 25324 off = opt[IPOPT_OFFSET] - 1; 25325 /* Compute # of milliseconds since midnight */ 25326 gethrestime(&now); 25327 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25328 now.tv_nsec / (NANOSEC / MILLISEC); 25329 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25330 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25331 break; 25332 } 25333 break; 25334 } 25335 } 25336 } 25337 25338 /* 25339 * Send out a multicast packet on interface ipif. 25340 * The sender does not have an conn. 25341 * Caller verifies that this isn't a PHYI_LOOPBACK. 25342 */ 25343 void 25344 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25345 { 25346 ipha_t *ipha; 25347 ire_t *ire; 25348 ipaddr_t dst; 25349 mblk_t *first_mp; 25350 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25351 25352 /* igmp_sendpkt always allocates a ipsec_out_t */ 25353 ASSERT(mp->b_datap->db_type == M_CTL); 25354 ASSERT(!ipif->ipif_isv6); 25355 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25356 25357 first_mp = mp; 25358 mp = first_mp->b_cont; 25359 ASSERT(mp->b_datap->db_type == M_DATA); 25360 ipha = (ipha_t *)mp->b_rptr; 25361 25362 /* 25363 * Find an IRE which matches the destination and the outgoing 25364 * queue (i.e. the outgoing interface.) 25365 */ 25366 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25367 dst = ipif->ipif_pp_dst_addr; 25368 else 25369 dst = ipha->ipha_dst; 25370 /* 25371 * The source address has already been initialized by the 25372 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25373 * be sufficient rather than MATCH_IRE_IPIF. 25374 * 25375 * This function is used for sending IGMP packets. We need 25376 * to make sure that we send the packet out of the interface 25377 * (ipif->ipif_ill) where we joined the group. This is to 25378 * prevent from switches doing IGMP snooping to send us multicast 25379 * packets for a given group on the interface we have joined. 25380 * If we can't find an ire, igmp_sendpkt has already initialized 25381 * ipsec_out_attach_if so that this will not be load spread in 25382 * ip_newroute_ipif. 25383 */ 25384 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25385 MATCH_IRE_ILL, ipst); 25386 if (!ire) { 25387 /* 25388 * Mark this packet to make it be delivered to 25389 * ip_wput_ire after the new ire has been 25390 * created. 25391 */ 25392 mp->b_prev = NULL; 25393 mp->b_next = NULL; 25394 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25395 zoneid, &zero_info); 25396 return; 25397 } 25398 25399 /* 25400 * Honor the RTF_SETSRC flag; this is the only case 25401 * where we force this addr whatever the current src addr is, 25402 * because this address is set by igmp_sendpkt(), and 25403 * cannot be specified by any user. 25404 */ 25405 if (ire->ire_flags & RTF_SETSRC) { 25406 ipha->ipha_src = ire->ire_src_addr; 25407 } 25408 25409 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25410 } 25411 25412 /* 25413 * NOTE : This function does not ire_refrele the ire argument passed in. 25414 * 25415 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25416 * failure. The nce_fp_mp can vanish any time in the case of 25417 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25418 * the ire_lock to access the nce_fp_mp in this case. 25419 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25420 * prepending a fastpath message IPQoS processing must precede it, we also set 25421 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25422 * (IPQoS might have set the b_band for CoS marking). 25423 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25424 * must follow it so that IPQoS can mark the dl_priority field for CoS 25425 * marking, if needed. 25426 */ 25427 static mblk_t * 25428 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25429 { 25430 uint_t hlen; 25431 ipha_t *ipha; 25432 mblk_t *mp1; 25433 boolean_t qos_done = B_FALSE; 25434 uchar_t *ll_hdr; 25435 ip_stack_t *ipst = ire->ire_ipst; 25436 25437 #define rptr ((uchar_t *)ipha) 25438 25439 ipha = (ipha_t *)mp->b_rptr; 25440 hlen = 0; 25441 LOCK_IRE_FP_MP(ire); 25442 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25443 ASSERT(DB_TYPE(mp1) == M_DATA); 25444 /* Initiate IPPF processing */ 25445 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25446 UNLOCK_IRE_FP_MP(ire); 25447 ip_process(proc, &mp, ill_index); 25448 if (mp == NULL) 25449 return (NULL); 25450 25451 ipha = (ipha_t *)mp->b_rptr; 25452 LOCK_IRE_FP_MP(ire); 25453 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25454 qos_done = B_TRUE; 25455 goto no_fp_mp; 25456 } 25457 ASSERT(DB_TYPE(mp1) == M_DATA); 25458 } 25459 hlen = MBLKL(mp1); 25460 /* 25461 * Check if we have enough room to prepend fastpath 25462 * header 25463 */ 25464 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25465 ll_hdr = rptr - hlen; 25466 bcopy(mp1->b_rptr, ll_hdr, hlen); 25467 /* 25468 * Set the b_rptr to the start of the link layer 25469 * header 25470 */ 25471 mp->b_rptr = ll_hdr; 25472 mp1 = mp; 25473 } else { 25474 mp1 = copyb(mp1); 25475 if (mp1 == NULL) 25476 goto unlock_err; 25477 mp1->b_band = mp->b_band; 25478 mp1->b_cont = mp; 25479 /* 25480 * certain system generated traffic may not 25481 * have cred/label in ip header block. This 25482 * is true even for a labeled system. But for 25483 * labeled traffic, inherit the label in the 25484 * new header. 25485 */ 25486 if (DB_CRED(mp) != NULL) 25487 mblk_setcred(mp1, DB_CRED(mp)); 25488 /* 25489 * XXX disable ICK_VALID and compute checksum 25490 * here; can happen if nce_fp_mp changes and 25491 * it can't be copied now due to insufficient 25492 * space. (unlikely, fp mp can change, but it 25493 * does not increase in length) 25494 */ 25495 } 25496 UNLOCK_IRE_FP_MP(ire); 25497 } else { 25498 no_fp_mp: 25499 mp1 = copyb(ire->ire_nce->nce_res_mp); 25500 if (mp1 == NULL) { 25501 unlock_err: 25502 UNLOCK_IRE_FP_MP(ire); 25503 freemsg(mp); 25504 return (NULL); 25505 } 25506 UNLOCK_IRE_FP_MP(ire); 25507 mp1->b_cont = mp; 25508 /* 25509 * certain system generated traffic may not 25510 * have cred/label in ip header block. This 25511 * is true even for a labeled system. But for 25512 * labeled traffic, inherit the label in the 25513 * new header. 25514 */ 25515 if (DB_CRED(mp) != NULL) 25516 mblk_setcred(mp1, DB_CRED(mp)); 25517 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25518 ip_process(proc, &mp1, ill_index); 25519 if (mp1 == NULL) 25520 return (NULL); 25521 } 25522 } 25523 return (mp1); 25524 #undef rptr 25525 } 25526 25527 /* 25528 * Finish the outbound IPsec processing for an IPv6 packet. This function 25529 * is called from ipsec_out_process() if the IPsec packet was processed 25530 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25531 * asynchronously. 25532 */ 25533 void 25534 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25535 ire_t *ire_arg) 25536 { 25537 in6_addr_t *v6dstp; 25538 ire_t *ire; 25539 mblk_t *mp; 25540 ip6_t *ip6h1; 25541 uint_t ill_index; 25542 ipsec_out_t *io; 25543 boolean_t attach_if, hwaccel; 25544 uint32_t flags = IP6_NO_IPPOLICY; 25545 int match_flags; 25546 zoneid_t zoneid; 25547 boolean_t ill_need_rele = B_FALSE; 25548 boolean_t ire_need_rele = B_FALSE; 25549 ip_stack_t *ipst; 25550 25551 mp = ipsec_mp->b_cont; 25552 ip6h1 = (ip6_t *)mp->b_rptr; 25553 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25554 ASSERT(io->ipsec_out_ns != NULL); 25555 ipst = io->ipsec_out_ns->netstack_ip; 25556 ill_index = io->ipsec_out_ill_index; 25557 if (io->ipsec_out_reachable) { 25558 flags |= IPV6_REACHABILITY_CONFIRMATION; 25559 } 25560 attach_if = io->ipsec_out_attach_if; 25561 hwaccel = io->ipsec_out_accelerated; 25562 zoneid = io->ipsec_out_zoneid; 25563 ASSERT(zoneid != ALL_ZONES); 25564 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25565 /* Multicast addresses should have non-zero ill_index. */ 25566 v6dstp = &ip6h->ip6_dst; 25567 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25568 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25569 ASSERT(!attach_if || ill_index != 0); 25570 if (ill_index != 0) { 25571 if (ill == NULL) { 25572 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25573 B_TRUE, ipst); 25574 25575 /* Failure case frees things for us. */ 25576 if (ill == NULL) 25577 return; 25578 25579 ill_need_rele = B_TRUE; 25580 } 25581 /* 25582 * If this packet needs to go out on a particular interface 25583 * honor it. 25584 */ 25585 if (attach_if) { 25586 match_flags = MATCH_IRE_ILL; 25587 25588 /* 25589 * Check if we need an ire that will not be 25590 * looked up by anybody else i.e. HIDDEN. 25591 */ 25592 if (ill_is_probeonly(ill)) { 25593 match_flags |= MATCH_IRE_MARK_HIDDEN; 25594 } 25595 } 25596 } 25597 ASSERT(mp != NULL); 25598 25599 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25600 boolean_t unspec_src; 25601 ipif_t *ipif; 25602 25603 /* 25604 * Use the ill_index to get the right ill. 25605 */ 25606 unspec_src = io->ipsec_out_unspec_src; 25607 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25608 if (ipif == NULL) { 25609 if (ill_need_rele) 25610 ill_refrele(ill); 25611 freemsg(ipsec_mp); 25612 return; 25613 } 25614 25615 if (ire_arg != NULL) { 25616 ire = ire_arg; 25617 } else { 25618 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25619 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25620 ire_need_rele = B_TRUE; 25621 } 25622 if (ire != NULL) { 25623 ipif_refrele(ipif); 25624 /* 25625 * XXX Do the multicast forwarding now, as the IPsec 25626 * processing has been done. 25627 */ 25628 goto send; 25629 } 25630 25631 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25632 mp->b_prev = NULL; 25633 mp->b_next = NULL; 25634 25635 /* 25636 * If the IPsec packet was processed asynchronously, 25637 * drop it now. 25638 */ 25639 if (q == NULL) { 25640 if (ill_need_rele) 25641 ill_refrele(ill); 25642 freemsg(ipsec_mp); 25643 return; 25644 } 25645 25646 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25647 unspec_src, zoneid); 25648 ipif_refrele(ipif); 25649 } else { 25650 if (attach_if) { 25651 ipif_t *ipif; 25652 25653 ipif = ipif_get_next_ipif(NULL, ill); 25654 if (ipif == NULL) { 25655 if (ill_need_rele) 25656 ill_refrele(ill); 25657 freemsg(ipsec_mp); 25658 return; 25659 } 25660 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25661 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25662 ire_need_rele = B_TRUE; 25663 ipif_refrele(ipif); 25664 } else { 25665 if (ire_arg != NULL) { 25666 ire = ire_arg; 25667 } else { 25668 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25669 ipst); 25670 ire_need_rele = B_TRUE; 25671 } 25672 } 25673 if (ire != NULL) 25674 goto send; 25675 /* 25676 * ire disappeared underneath. 25677 * 25678 * What we need to do here is the ip_newroute 25679 * logic to get the ire without doing the IPsec 25680 * processing. Follow the same old path. But this 25681 * time, ip_wput or ire_add_then_send will call us 25682 * directly as all the IPsec operations are done. 25683 */ 25684 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25685 mp->b_prev = NULL; 25686 mp->b_next = NULL; 25687 25688 /* 25689 * If the IPsec packet was processed asynchronously, 25690 * drop it now. 25691 */ 25692 if (q == NULL) { 25693 if (ill_need_rele) 25694 ill_refrele(ill); 25695 freemsg(ipsec_mp); 25696 return; 25697 } 25698 25699 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25700 zoneid, ipst); 25701 } 25702 if (ill != NULL && ill_need_rele) 25703 ill_refrele(ill); 25704 return; 25705 send: 25706 if (ill != NULL && ill_need_rele) 25707 ill_refrele(ill); 25708 25709 /* Local delivery */ 25710 if (ire->ire_stq == NULL) { 25711 ill_t *out_ill; 25712 ASSERT(q != NULL); 25713 25714 /* PFHooks: LOOPBACK_OUT */ 25715 out_ill = ire_to_ill(ire); 25716 25717 DTRACE_PROBE4(ip6__loopback__out__start, 25718 ill_t *, NULL, ill_t *, out_ill, 25719 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25720 25721 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25722 ipst->ips_ipv6firewall_loopback_out, 25723 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25724 25725 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25726 25727 if (ipsec_mp != NULL) 25728 ip_wput_local_v6(RD(q), out_ill, 25729 ip6h, ipsec_mp, ire, 0); 25730 if (ire_need_rele) 25731 ire_refrele(ire); 25732 return; 25733 } 25734 /* 25735 * Everything is done. Send it out on the wire. 25736 * We force the insertion of a fragment header using the 25737 * IPH_FRAG_HDR flag in two cases: 25738 * - after reception of an ICMPv6 "packet too big" message 25739 * with a MTU < 1280 (cf. RFC 2460 section 5) 25740 * - for multirouted IPv6 packets, so that the receiver can 25741 * discard duplicates according to their fragment identifier 25742 */ 25743 /* XXX fix flow control problems. */ 25744 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25745 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25746 if (hwaccel) { 25747 /* 25748 * hardware acceleration does not handle these 25749 * "slow path" cases. 25750 */ 25751 /* IPsec KSTATS: should bump bean counter here. */ 25752 if (ire_need_rele) 25753 ire_refrele(ire); 25754 freemsg(ipsec_mp); 25755 return; 25756 } 25757 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25758 (mp->b_cont ? msgdsize(mp) : 25759 mp->b_wptr - (uchar_t *)ip6h)) { 25760 /* IPsec KSTATS: should bump bean counter here. */ 25761 ip0dbg(("Packet length mismatch: %d, %ld\n", 25762 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25763 msgdsize(mp))); 25764 if (ire_need_rele) 25765 ire_refrele(ire); 25766 freemsg(ipsec_mp); 25767 return; 25768 } 25769 ASSERT(mp->b_prev == NULL); 25770 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25771 ntohs(ip6h->ip6_plen) + 25772 IPV6_HDR_LEN, ire->ire_max_frag)); 25773 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25774 ire->ire_max_frag); 25775 } else { 25776 UPDATE_OB_PKT_COUNT(ire); 25777 ire->ire_last_used_time = lbolt; 25778 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25779 } 25780 if (ire_need_rele) 25781 ire_refrele(ire); 25782 freeb(ipsec_mp); 25783 } 25784 25785 void 25786 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25787 { 25788 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25789 da_ipsec_t *hada; /* data attributes */ 25790 ill_t *ill = (ill_t *)q->q_ptr; 25791 25792 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25793 25794 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25795 /* IPsec KSTATS: Bump lose counter here! */ 25796 freemsg(mp); 25797 return; 25798 } 25799 25800 /* 25801 * It's an IPsec packet that must be 25802 * accelerated by the Provider, and the 25803 * outbound ill is IPsec acceleration capable. 25804 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25805 * to the ill. 25806 * IPsec KSTATS: should bump packet counter here. 25807 */ 25808 25809 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25810 if (hada_mp == NULL) { 25811 /* IPsec KSTATS: should bump packet counter here. */ 25812 freemsg(mp); 25813 return; 25814 } 25815 25816 hada_mp->b_datap->db_type = M_CTL; 25817 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25818 hada_mp->b_cont = mp; 25819 25820 hada = (da_ipsec_t *)hada_mp->b_rptr; 25821 bzero(hada, sizeof (da_ipsec_t)); 25822 hada->da_type = IPHADA_M_CTL; 25823 25824 putnext(q, hada_mp); 25825 } 25826 25827 /* 25828 * Finish the outbound IPsec processing. This function is called from 25829 * ipsec_out_process() if the IPsec packet was processed 25830 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25831 * asynchronously. 25832 */ 25833 void 25834 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25835 ire_t *ire_arg) 25836 { 25837 uint32_t v_hlen_tos_len; 25838 ipaddr_t dst; 25839 ipif_t *ipif = NULL; 25840 ire_t *ire; 25841 ire_t *ire1 = NULL; 25842 mblk_t *next_mp = NULL; 25843 uint32_t max_frag; 25844 boolean_t multirt_send = B_FALSE; 25845 mblk_t *mp; 25846 ipha_t *ipha1; 25847 uint_t ill_index; 25848 ipsec_out_t *io; 25849 boolean_t attach_if; 25850 int match_flags; 25851 irb_t *irb = NULL; 25852 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25853 zoneid_t zoneid; 25854 ipxmit_state_t pktxmit_state; 25855 ip_stack_t *ipst; 25856 25857 #ifdef _BIG_ENDIAN 25858 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25859 #else 25860 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25861 #endif 25862 25863 mp = ipsec_mp->b_cont; 25864 ipha1 = (ipha_t *)mp->b_rptr; 25865 ASSERT(mp != NULL); 25866 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25867 dst = ipha->ipha_dst; 25868 25869 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25870 ill_index = io->ipsec_out_ill_index; 25871 attach_if = io->ipsec_out_attach_if; 25872 zoneid = io->ipsec_out_zoneid; 25873 ASSERT(zoneid != ALL_ZONES); 25874 ipst = io->ipsec_out_ns->netstack_ip; 25875 ASSERT(io->ipsec_out_ns != NULL); 25876 25877 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25878 if (ill_index != 0) { 25879 if (ill == NULL) { 25880 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25881 ill_index, B_FALSE, ipst); 25882 25883 /* Failure case frees things for us. */ 25884 if (ill == NULL) 25885 return; 25886 25887 ill_need_rele = B_TRUE; 25888 } 25889 /* 25890 * If this packet needs to go out on a particular interface 25891 * honor it. 25892 */ 25893 if (attach_if) { 25894 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25895 25896 /* 25897 * Check if we need an ire that will not be 25898 * looked up by anybody else i.e. HIDDEN. 25899 */ 25900 if (ill_is_probeonly(ill)) { 25901 match_flags |= MATCH_IRE_MARK_HIDDEN; 25902 } 25903 } 25904 } 25905 25906 if (CLASSD(dst)) { 25907 boolean_t conn_dontroute; 25908 /* 25909 * Use the ill_index to get the right ipif. 25910 */ 25911 conn_dontroute = io->ipsec_out_dontroute; 25912 if (ill_index == 0) 25913 ipif = ipif_lookup_group(dst, zoneid, ipst); 25914 else 25915 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25916 if (ipif == NULL) { 25917 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25918 " multicast\n")); 25919 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25920 freemsg(ipsec_mp); 25921 goto done; 25922 } 25923 /* 25924 * ipha_src has already been intialized with the 25925 * value of the ipif in ip_wput. All we need now is 25926 * an ire to send this downstream. 25927 */ 25928 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25929 MBLK_GETLABEL(mp), match_flags, ipst); 25930 if (ire != NULL) { 25931 ill_t *ill1; 25932 /* 25933 * Do the multicast forwarding now, as the IPsec 25934 * processing has been done. 25935 */ 25936 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25937 (ill1 = ire_to_ill(ire))) { 25938 if (ip_mforward(ill1, ipha, mp)) { 25939 freemsg(ipsec_mp); 25940 ip1dbg(("ip_wput_ipsec_out: mforward " 25941 "failed\n")); 25942 ire_refrele(ire); 25943 goto done; 25944 } 25945 } 25946 goto send; 25947 } 25948 25949 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25950 mp->b_prev = NULL; 25951 mp->b_next = NULL; 25952 25953 /* 25954 * If the IPsec packet was processed asynchronously, 25955 * drop it now. 25956 */ 25957 if (q == NULL) { 25958 freemsg(ipsec_mp); 25959 goto done; 25960 } 25961 25962 /* 25963 * We may be using a wrong ipif to create the ire. 25964 * But it is okay as the source address is assigned 25965 * for the packet already. Next outbound packet would 25966 * create the IRE with the right IPIF in ip_wput. 25967 * 25968 * Also handle RTF_MULTIRT routes. 25969 */ 25970 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25971 zoneid, &zero_info); 25972 } else { 25973 if (attach_if) { 25974 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25975 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25976 } else { 25977 if (ire_arg != NULL) { 25978 ire = ire_arg; 25979 ire_need_rele = B_FALSE; 25980 } else { 25981 ire = ire_cache_lookup(dst, zoneid, 25982 MBLK_GETLABEL(mp), ipst); 25983 } 25984 } 25985 if (ire != NULL) { 25986 goto send; 25987 } 25988 25989 /* 25990 * ire disappeared underneath. 25991 * 25992 * What we need to do here is the ip_newroute 25993 * logic to get the ire without doing the IPsec 25994 * processing. Follow the same old path. But this 25995 * time, ip_wput or ire_add_then_put will call us 25996 * directly as all the IPsec operations are done. 25997 */ 25998 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25999 mp->b_prev = NULL; 26000 mp->b_next = NULL; 26001 26002 /* 26003 * If the IPsec packet was processed asynchronously, 26004 * drop it now. 26005 */ 26006 if (q == NULL) { 26007 freemsg(ipsec_mp); 26008 goto done; 26009 } 26010 26011 /* 26012 * Since we're going through ip_newroute() again, we 26013 * need to make sure we don't: 26014 * 26015 * 1.) Trigger the ASSERT() with the ipha_ident 26016 * overloading. 26017 * 2.) Redo transport-layer checksumming, since we've 26018 * already done all that to get this far. 26019 * 26020 * The easiest way not do either of the above is to set 26021 * the ipha_ident field to IP_HDR_INCLUDED. 26022 */ 26023 ipha->ipha_ident = IP_HDR_INCLUDED; 26024 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26025 zoneid, ipst); 26026 } 26027 goto done; 26028 send: 26029 if (ire->ire_stq == NULL) { 26030 ill_t *out_ill; 26031 /* 26032 * Loopbacks go through ip_wput_local except for one case. 26033 * We come here if we generate a icmp_frag_needed message 26034 * after IPsec processing is over. When this function calls 26035 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26036 * icmp_frag_needed. The message generated comes back here 26037 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26038 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26039 * source address as it is usually set in ip_wput_ire. As 26040 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26041 * and we end up here. We can't enter ip_wput_ire once the 26042 * IPsec processing is over and hence we need to do it here. 26043 */ 26044 ASSERT(q != NULL); 26045 UPDATE_OB_PKT_COUNT(ire); 26046 ire->ire_last_used_time = lbolt; 26047 if (ipha->ipha_src == 0) 26048 ipha->ipha_src = ire->ire_src_addr; 26049 26050 /* PFHooks: LOOPBACK_OUT */ 26051 out_ill = ire_to_ill(ire); 26052 26053 DTRACE_PROBE4(ip4__loopback__out__start, 26054 ill_t *, NULL, ill_t *, out_ill, 26055 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26056 26057 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26058 ipst->ips_ipv4firewall_loopback_out, 26059 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26060 26061 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26062 26063 if (ipsec_mp != NULL) 26064 ip_wput_local(RD(q), out_ill, 26065 ipha, ipsec_mp, ire, 0, zoneid); 26066 if (ire_need_rele) 26067 ire_refrele(ire); 26068 goto done; 26069 } 26070 26071 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26072 /* 26073 * We are through with IPsec processing. 26074 * Fragment this and send it on the wire. 26075 */ 26076 if (io->ipsec_out_accelerated) { 26077 /* 26078 * The packet has been accelerated but must 26079 * be fragmented. This should not happen 26080 * since AH and ESP must not accelerate 26081 * packets that need fragmentation, however 26082 * the configuration could have changed 26083 * since the AH or ESP processing. 26084 * Drop packet. 26085 * IPsec KSTATS: bump bean counter here. 26086 */ 26087 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26088 "fragmented accelerated packet!\n")); 26089 freemsg(ipsec_mp); 26090 } else { 26091 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26092 } 26093 if (ire_need_rele) 26094 ire_refrele(ire); 26095 goto done; 26096 } 26097 26098 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26099 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26100 (void *)ire->ire_ipif, (void *)ipif)); 26101 26102 /* 26103 * Multiroute the secured packet, unless IPsec really 26104 * requires the packet to go out only through a particular 26105 * interface. 26106 */ 26107 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26108 ire_t *first_ire; 26109 irb = ire->ire_bucket; 26110 ASSERT(irb != NULL); 26111 /* 26112 * This ire has been looked up as the one that 26113 * goes through the given ipif; 26114 * make sure we do not omit any other multiroute ire 26115 * that may be present in the bucket before this one. 26116 */ 26117 IRB_REFHOLD(irb); 26118 for (first_ire = irb->irb_ire; 26119 first_ire != NULL; 26120 first_ire = first_ire->ire_next) { 26121 if ((first_ire->ire_flags & RTF_MULTIRT) && 26122 (first_ire->ire_addr == ire->ire_addr) && 26123 !(first_ire->ire_marks & 26124 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26125 break; 26126 } 26127 } 26128 26129 if ((first_ire != NULL) && (first_ire != ire)) { 26130 /* 26131 * Don't change the ire if the packet must 26132 * be fragmented if sent via this new one. 26133 */ 26134 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26135 IRE_REFHOLD(first_ire); 26136 if (ire_need_rele) 26137 ire_refrele(ire); 26138 else 26139 ire_need_rele = B_TRUE; 26140 ire = first_ire; 26141 } 26142 } 26143 IRB_REFRELE(irb); 26144 26145 multirt_send = B_TRUE; 26146 max_frag = ire->ire_max_frag; 26147 } else { 26148 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26149 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26150 "flag, attach_if %d\n", attach_if)); 26151 } 26152 } 26153 26154 /* 26155 * In most cases, the emission loop below is entered only once. 26156 * Only in the case where the ire holds the RTF_MULTIRT 26157 * flag, we loop to process all RTF_MULTIRT ires in the 26158 * bucket, and send the packet through all crossed 26159 * RTF_MULTIRT routes. 26160 */ 26161 do { 26162 if (multirt_send) { 26163 /* 26164 * ire1 holds here the next ire to process in the 26165 * bucket. If multirouting is expected, 26166 * any non-RTF_MULTIRT ire that has the 26167 * right destination address is ignored. 26168 */ 26169 ASSERT(irb != NULL); 26170 IRB_REFHOLD(irb); 26171 for (ire1 = ire->ire_next; 26172 ire1 != NULL; 26173 ire1 = ire1->ire_next) { 26174 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26175 continue; 26176 if (ire1->ire_addr != ire->ire_addr) 26177 continue; 26178 if (ire1->ire_marks & 26179 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26180 continue; 26181 /* No loopback here */ 26182 if (ire1->ire_stq == NULL) 26183 continue; 26184 /* 26185 * Ensure we do not exceed the MTU 26186 * of the next route. 26187 */ 26188 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26189 ip_multirt_bad_mtu(ire1, max_frag); 26190 continue; 26191 } 26192 26193 IRE_REFHOLD(ire1); 26194 break; 26195 } 26196 IRB_REFRELE(irb); 26197 if (ire1 != NULL) { 26198 /* 26199 * We are in a multiple send case, need to 26200 * make a copy of the packet. 26201 */ 26202 next_mp = copymsg(ipsec_mp); 26203 if (next_mp == NULL) { 26204 ire_refrele(ire1); 26205 ire1 = NULL; 26206 } 26207 } 26208 } 26209 /* 26210 * Everything is done. Send it out on the wire 26211 * 26212 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26213 * either send it on the wire or, in the case of 26214 * HW acceleration, call ipsec_hw_putnext. 26215 */ 26216 if (ire->ire_nce && 26217 ire->ire_nce->nce_state != ND_REACHABLE) { 26218 DTRACE_PROBE2(ip__wput__ipsec__bail, 26219 (ire_t *), ire, (mblk_t *), ipsec_mp); 26220 /* 26221 * If ire's link-layer is unresolved (this 26222 * would only happen if the incomplete ire 26223 * was added to cachetable via forwarding path) 26224 * don't bother going to ip_xmit_v4. Just drop the 26225 * packet. 26226 * There is a slight risk here, in that, if we 26227 * have the forwarding path create an incomplete 26228 * IRE, then until the IRE is completed, any 26229 * transmitted IPsec packets will be dropped 26230 * instead of being queued waiting for resolution. 26231 * 26232 * But the likelihood of a forwarding packet and a wput 26233 * packet sending to the same dst at the same time 26234 * and there not yet be an ARP entry for it is small. 26235 * Furthermore, if this actually happens, it might 26236 * be likely that wput would generate multiple 26237 * packets (and forwarding would also have a train 26238 * of packets) for that destination. If this is 26239 * the case, some of them would have been dropped 26240 * anyway, since ARP only queues a few packets while 26241 * waiting for resolution 26242 * 26243 * NOTE: We should really call ip_xmit_v4, 26244 * and let it queue the packet and send the 26245 * ARP query and have ARP come back thus: 26246 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26247 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26248 * hw accel work. But it's too complex to get 26249 * the IPsec hw acceleration approach to fit 26250 * well with ip_xmit_v4 doing ARP without 26251 * doing IPsec simplification. For now, we just 26252 * poke ip_xmit_v4 to trigger the arp resolve, so 26253 * that we can continue with the send on the next 26254 * attempt. 26255 * 26256 * XXX THis should be revisited, when 26257 * the IPsec/IP interaction is cleaned up 26258 */ 26259 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26260 " - dropping packet\n")); 26261 freemsg(ipsec_mp); 26262 /* 26263 * Call ip_xmit_v4() to trigger ARP query 26264 * in case the nce_state is ND_INITIAL 26265 */ 26266 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26267 goto drop_pkt; 26268 } 26269 26270 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26271 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26272 mblk_t *, ipsec_mp); 26273 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26274 ipst->ips_ipv4firewall_physical_out, 26275 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26276 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26277 if (ipsec_mp == NULL) 26278 goto drop_pkt; 26279 26280 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26281 pktxmit_state = ip_xmit_v4(mp, ire, 26282 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26283 26284 if ((pktxmit_state == SEND_FAILED) || 26285 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26286 26287 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26288 drop_pkt: 26289 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26290 ipIfStatsOutDiscards); 26291 if (ire_need_rele) 26292 ire_refrele(ire); 26293 if (ire1 != NULL) { 26294 ire_refrele(ire1); 26295 freemsg(next_mp); 26296 } 26297 goto done; 26298 } 26299 26300 freeb(ipsec_mp); 26301 if (ire_need_rele) 26302 ire_refrele(ire); 26303 26304 if (ire1 != NULL) { 26305 ire = ire1; 26306 ire_need_rele = B_TRUE; 26307 ASSERT(next_mp); 26308 ipsec_mp = next_mp; 26309 mp = ipsec_mp->b_cont; 26310 ire1 = NULL; 26311 next_mp = NULL; 26312 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26313 } else { 26314 multirt_send = B_FALSE; 26315 } 26316 } while (multirt_send); 26317 done: 26318 if (ill != NULL && ill_need_rele) 26319 ill_refrele(ill); 26320 if (ipif != NULL) 26321 ipif_refrele(ipif); 26322 } 26323 26324 /* 26325 * Get the ill corresponding to the specified ire, and compare its 26326 * capabilities with the protocol and algorithms specified by the 26327 * the SA obtained from ipsec_out. If they match, annotate the 26328 * ipsec_out structure to indicate that the packet needs acceleration. 26329 * 26330 * 26331 * A packet is eligible for outbound hardware acceleration if the 26332 * following conditions are satisfied: 26333 * 26334 * 1. the packet will not be fragmented 26335 * 2. the provider supports the algorithm 26336 * 3. there is no pending control message being exchanged 26337 * 4. snoop is not attached 26338 * 5. the destination address is not a broadcast or multicast address. 26339 * 26340 * Rationale: 26341 * - Hardware drivers do not support fragmentation with 26342 * the current interface. 26343 * - snoop, multicast, and broadcast may result in exposure of 26344 * a cleartext datagram. 26345 * We check all five of these conditions here. 26346 * 26347 * XXX would like to nuke "ire_t *" parameter here; problem is that 26348 * IRE is only way to figure out if a v4 address is a broadcast and 26349 * thus ineligible for acceleration... 26350 */ 26351 static void 26352 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26353 { 26354 ipsec_out_t *io; 26355 mblk_t *data_mp; 26356 uint_t plen, overhead; 26357 ip_stack_t *ipst; 26358 26359 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26360 return; 26361 26362 if (ill == NULL) 26363 return; 26364 ipst = ill->ill_ipst; 26365 /* 26366 * Destination address is a broadcast or multicast. Punt. 26367 */ 26368 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26369 IRE_LOCAL))) 26370 return; 26371 26372 data_mp = ipsec_mp->b_cont; 26373 26374 if (ill->ill_isv6) { 26375 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26376 26377 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26378 return; 26379 26380 plen = ip6h->ip6_plen; 26381 } else { 26382 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26383 26384 if (CLASSD(ipha->ipha_dst)) 26385 return; 26386 26387 plen = ipha->ipha_length; 26388 } 26389 /* 26390 * Is there a pending DLPI control message being exchanged 26391 * between IP/IPsec and the DLS Provider? If there is, it 26392 * could be a SADB update, and the state of the DLS Provider 26393 * SADB might not be in sync with the SADB maintained by 26394 * IPsec. To avoid dropping packets or using the wrong keying 26395 * material, we do not accelerate this packet. 26396 */ 26397 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26398 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26399 "ill_dlpi_pending! don't accelerate packet\n")); 26400 return; 26401 } 26402 26403 /* 26404 * Is the Provider in promiscous mode? If it does, we don't 26405 * accelerate the packet since it will bounce back up to the 26406 * listeners in the clear. 26407 */ 26408 if (ill->ill_promisc_on_phys) { 26409 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26410 "ill in promiscous mode, don't accelerate packet\n")); 26411 return; 26412 } 26413 26414 /* 26415 * Will the packet require fragmentation? 26416 */ 26417 26418 /* 26419 * IPsec ESP note: this is a pessimistic estimate, but the same 26420 * as is used elsewhere. 26421 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26422 * + 2-byte trailer 26423 */ 26424 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26425 IPSEC_BASE_ESP_HDR_SIZE(sa); 26426 26427 if ((plen + overhead) > ill->ill_max_mtu) 26428 return; 26429 26430 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26431 26432 /* 26433 * Can the ill accelerate this IPsec protocol and algorithm 26434 * specified by the SA? 26435 */ 26436 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26437 ill->ill_isv6, sa, ipst->ips_netstack)) { 26438 return; 26439 } 26440 26441 /* 26442 * Tell AH or ESP that the outbound ill is capable of 26443 * accelerating this packet. 26444 */ 26445 io->ipsec_out_is_capab_ill = B_TRUE; 26446 } 26447 26448 /* 26449 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26450 * 26451 * If this function returns B_TRUE, the requested SA's have been filled 26452 * into the ipsec_out_*_sa pointers. 26453 * 26454 * If the function returns B_FALSE, the packet has been "consumed", most 26455 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26456 * 26457 * The SA references created by the protocol-specific "select" 26458 * function will be released when the ipsec_mp is freed, thanks to the 26459 * ipsec_out_free destructor -- see spd.c. 26460 */ 26461 static boolean_t 26462 ipsec_out_select_sa(mblk_t *ipsec_mp) 26463 { 26464 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26465 ipsec_out_t *io; 26466 ipsec_policy_t *pp; 26467 ipsec_action_t *ap; 26468 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26469 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26470 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26471 26472 if (!io->ipsec_out_secure) { 26473 /* 26474 * We came here by mistake. 26475 * Don't bother with ipsec processing 26476 * We should "discourage" this path in the future. 26477 */ 26478 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26479 return (B_FALSE); 26480 } 26481 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26482 ASSERT((io->ipsec_out_policy != NULL) || 26483 (io->ipsec_out_act != NULL)); 26484 26485 ASSERT(io->ipsec_out_failed == B_FALSE); 26486 26487 /* 26488 * IPsec processing has started. 26489 */ 26490 io->ipsec_out_proc_begin = B_TRUE; 26491 ap = io->ipsec_out_act; 26492 if (ap == NULL) { 26493 pp = io->ipsec_out_policy; 26494 ASSERT(pp != NULL); 26495 ap = pp->ipsp_act; 26496 ASSERT(ap != NULL); 26497 } 26498 26499 /* 26500 * We have an action. now, let's select SA's. 26501 * (In the future, we can cache this in the conn_t..) 26502 */ 26503 if (ap->ipa_want_esp) { 26504 if (io->ipsec_out_esp_sa == NULL) { 26505 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26506 IPPROTO_ESP); 26507 } 26508 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26509 } 26510 26511 if (ap->ipa_want_ah) { 26512 if (io->ipsec_out_ah_sa == NULL) { 26513 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26514 IPPROTO_AH); 26515 } 26516 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26517 /* 26518 * The ESP and AH processing order needs to be preserved 26519 * when both protocols are required (ESP should be applied 26520 * before AH for an outbound packet). Force an ESP ACQUIRE 26521 * when both ESP and AH are required, and an AH ACQUIRE 26522 * is needed. 26523 */ 26524 if (ap->ipa_want_esp && need_ah_acquire) 26525 need_esp_acquire = B_TRUE; 26526 } 26527 26528 /* 26529 * Send an ACQUIRE (extended, regular, or both) if we need one. 26530 * Release SAs that got referenced, but will not be used until we 26531 * acquire _all_ of the SAs we need. 26532 */ 26533 if (need_ah_acquire || need_esp_acquire) { 26534 if (io->ipsec_out_ah_sa != NULL) { 26535 IPSA_REFRELE(io->ipsec_out_ah_sa); 26536 io->ipsec_out_ah_sa = NULL; 26537 } 26538 if (io->ipsec_out_esp_sa != NULL) { 26539 IPSA_REFRELE(io->ipsec_out_esp_sa); 26540 io->ipsec_out_esp_sa = NULL; 26541 } 26542 26543 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26544 return (B_FALSE); 26545 } 26546 26547 return (B_TRUE); 26548 } 26549 26550 /* 26551 * Process an IPSEC_OUT message and see what you can 26552 * do with it. 26553 * IPQoS Notes: 26554 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26555 * IPsec. 26556 * XXX would like to nuke ire_t. 26557 * XXX ill_index better be "real" 26558 */ 26559 void 26560 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26561 { 26562 ipsec_out_t *io; 26563 ipsec_policy_t *pp; 26564 ipsec_action_t *ap; 26565 ipha_t *ipha; 26566 ip6_t *ip6h; 26567 mblk_t *mp; 26568 ill_t *ill; 26569 zoneid_t zoneid; 26570 ipsec_status_t ipsec_rc; 26571 boolean_t ill_need_rele = B_FALSE; 26572 ip_stack_t *ipst; 26573 ipsec_stack_t *ipss; 26574 26575 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26576 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26577 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26578 ipst = io->ipsec_out_ns->netstack_ip; 26579 mp = ipsec_mp->b_cont; 26580 26581 /* 26582 * Initiate IPPF processing. We do it here to account for packets 26583 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26584 * We can check for ipsec_out_proc_begin even for such packets, as 26585 * they will always be false (asserted below). 26586 */ 26587 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26588 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26589 io->ipsec_out_ill_index : ill_index); 26590 if (mp == NULL) { 26591 ip2dbg(("ipsec_out_process: packet dropped "\ 26592 "during IPPF processing\n")); 26593 freeb(ipsec_mp); 26594 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26595 return; 26596 } 26597 } 26598 26599 if (!io->ipsec_out_secure) { 26600 /* 26601 * We came here by mistake. 26602 * Don't bother with ipsec processing 26603 * Should "discourage" this path in the future. 26604 */ 26605 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26606 goto done; 26607 } 26608 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26609 ASSERT((io->ipsec_out_policy != NULL) || 26610 (io->ipsec_out_act != NULL)); 26611 ASSERT(io->ipsec_out_failed == B_FALSE); 26612 26613 ipss = ipst->ips_netstack->netstack_ipsec; 26614 if (!ipsec_loaded(ipss)) { 26615 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26616 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26617 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26618 } else { 26619 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26620 } 26621 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26622 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26623 &ipss->ipsec_dropper); 26624 return; 26625 } 26626 26627 /* 26628 * IPsec processing has started. 26629 */ 26630 io->ipsec_out_proc_begin = B_TRUE; 26631 ap = io->ipsec_out_act; 26632 if (ap == NULL) { 26633 pp = io->ipsec_out_policy; 26634 ASSERT(pp != NULL); 26635 ap = pp->ipsp_act; 26636 ASSERT(ap != NULL); 26637 } 26638 26639 /* 26640 * Save the outbound ill index. When the packet comes back 26641 * from IPsec, we make sure the ill hasn't changed or disappeared 26642 * before sending it the accelerated packet. 26643 */ 26644 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26645 int ifindex; 26646 ill = ire_to_ill(ire); 26647 ifindex = ill->ill_phyint->phyint_ifindex; 26648 io->ipsec_out_capab_ill_index = ifindex; 26649 } 26650 26651 /* 26652 * The order of processing is first insert a IP header if needed. 26653 * Then insert the ESP header and then the AH header. 26654 */ 26655 if ((io->ipsec_out_se_done == B_FALSE) && 26656 (ap->ipa_want_se)) { 26657 /* 26658 * First get the outer IP header before sending 26659 * it to ESP. 26660 */ 26661 ipha_t *oipha, *iipha; 26662 mblk_t *outer_mp, *inner_mp; 26663 26664 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26665 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26666 "ipsec_out_process: " 26667 "Self-Encapsulation failed: Out of memory\n"); 26668 freemsg(ipsec_mp); 26669 if (ill != NULL) { 26670 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26671 } else { 26672 BUMP_MIB(&ipst->ips_ip_mib, 26673 ipIfStatsOutDiscards); 26674 } 26675 return; 26676 } 26677 inner_mp = ipsec_mp->b_cont; 26678 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26679 oipha = (ipha_t *)outer_mp->b_rptr; 26680 iipha = (ipha_t *)inner_mp->b_rptr; 26681 *oipha = *iipha; 26682 outer_mp->b_wptr += sizeof (ipha_t); 26683 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26684 sizeof (ipha_t)); 26685 oipha->ipha_protocol = IPPROTO_ENCAP; 26686 oipha->ipha_version_and_hdr_length = 26687 IP_SIMPLE_HDR_VERSION; 26688 oipha->ipha_hdr_checksum = 0; 26689 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26690 outer_mp->b_cont = inner_mp; 26691 ipsec_mp->b_cont = outer_mp; 26692 26693 io->ipsec_out_se_done = B_TRUE; 26694 io->ipsec_out_tunnel = B_TRUE; 26695 } 26696 26697 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26698 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26699 !ipsec_out_select_sa(ipsec_mp)) 26700 return; 26701 26702 /* 26703 * By now, we know what SA's to use. Toss over to ESP & AH 26704 * to do the heavy lifting. 26705 */ 26706 zoneid = io->ipsec_out_zoneid; 26707 ASSERT(zoneid != ALL_ZONES); 26708 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26709 ASSERT(io->ipsec_out_esp_sa != NULL); 26710 io->ipsec_out_esp_done = B_TRUE; 26711 /* 26712 * Note that since hw accel can only apply one transform, 26713 * not two, we skip hw accel for ESP if we also have AH 26714 * This is an design limitation of the interface 26715 * which should be revisited. 26716 */ 26717 ASSERT(ire != NULL); 26718 if (io->ipsec_out_ah_sa == NULL) { 26719 ill = (ill_t *)ire->ire_stq->q_ptr; 26720 ipsec_out_is_accelerated(ipsec_mp, 26721 io->ipsec_out_esp_sa, ill, ire); 26722 } 26723 26724 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26725 switch (ipsec_rc) { 26726 case IPSEC_STATUS_SUCCESS: 26727 break; 26728 case IPSEC_STATUS_FAILED: 26729 if (ill != NULL) { 26730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26731 } else { 26732 BUMP_MIB(&ipst->ips_ip_mib, 26733 ipIfStatsOutDiscards); 26734 } 26735 /* FALLTHRU */ 26736 case IPSEC_STATUS_PENDING: 26737 return; 26738 } 26739 } 26740 26741 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26742 ASSERT(io->ipsec_out_ah_sa != NULL); 26743 io->ipsec_out_ah_done = B_TRUE; 26744 if (ire == NULL) { 26745 int idx = io->ipsec_out_capab_ill_index; 26746 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26747 NULL, NULL, NULL, NULL, ipst); 26748 ill_need_rele = B_TRUE; 26749 } else { 26750 ill = (ill_t *)ire->ire_stq->q_ptr; 26751 } 26752 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26753 ire); 26754 26755 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26756 switch (ipsec_rc) { 26757 case IPSEC_STATUS_SUCCESS: 26758 break; 26759 case IPSEC_STATUS_FAILED: 26760 if (ill != NULL) { 26761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26762 } else { 26763 BUMP_MIB(&ipst->ips_ip_mib, 26764 ipIfStatsOutDiscards); 26765 } 26766 /* FALLTHRU */ 26767 case IPSEC_STATUS_PENDING: 26768 if (ill != NULL && ill_need_rele) 26769 ill_refrele(ill); 26770 return; 26771 } 26772 } 26773 /* 26774 * We are done with IPsec processing. Send it over 26775 * the wire. 26776 */ 26777 done: 26778 mp = ipsec_mp->b_cont; 26779 ipha = (ipha_t *)mp->b_rptr; 26780 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26781 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26782 } else { 26783 ip6h = (ip6_t *)ipha; 26784 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26785 } 26786 if (ill != NULL && ill_need_rele) 26787 ill_refrele(ill); 26788 } 26789 26790 /* ARGSUSED */ 26791 void 26792 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26793 { 26794 opt_restart_t *or; 26795 int err; 26796 conn_t *connp; 26797 26798 ASSERT(CONN_Q(q)); 26799 connp = Q_TO_CONN(q); 26800 26801 ASSERT(first_mp->b_datap->db_type == M_CTL); 26802 or = (opt_restart_t *)first_mp->b_rptr; 26803 /* 26804 * We don't need to pass any credentials here since this is just 26805 * a restart. The credentials are passed in when svr4_optcom_req 26806 * is called the first time (from ip_wput_nondata). 26807 */ 26808 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26809 err = svr4_optcom_req(q, first_mp, NULL, 26810 &ip_opt_obj); 26811 } else { 26812 ASSERT(or->or_type == T_OPTMGMT_REQ); 26813 err = tpi_optcom_req(q, first_mp, NULL, 26814 &ip_opt_obj); 26815 } 26816 if (err != EINPROGRESS) { 26817 /* operation is done */ 26818 CONN_OPER_PENDING_DONE(connp); 26819 } 26820 } 26821 26822 /* 26823 * ioctls that go through a down/up sequence may need to wait for the down 26824 * to complete. This involves waiting for the ire and ipif refcnts to go down 26825 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26826 */ 26827 /* ARGSUSED */ 26828 void 26829 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26830 { 26831 struct iocblk *iocp; 26832 mblk_t *mp1; 26833 ip_ioctl_cmd_t *ipip; 26834 int err; 26835 sin_t *sin; 26836 struct lifreq *lifr; 26837 struct ifreq *ifr; 26838 26839 iocp = (struct iocblk *)mp->b_rptr; 26840 ASSERT(ipsq != NULL); 26841 /* Existence of mp1 verified in ip_wput_nondata */ 26842 mp1 = mp->b_cont->b_cont; 26843 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26844 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26845 /* 26846 * Special case where ipsq_current_ipif is not set: 26847 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26848 * ill could also have become part of a ipmp group in the 26849 * process, we are here as were not able to complete the 26850 * operation in ipif_set_values because we could not become 26851 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26852 * will not be set so we need to set it. 26853 */ 26854 ill_t *ill = q->q_ptr; 26855 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26856 } 26857 ASSERT(ipsq->ipsq_current_ipif != NULL); 26858 26859 if (ipip->ipi_cmd_type == IF_CMD) { 26860 /* This a old style SIOC[GS]IF* command */ 26861 ifr = (struct ifreq *)mp1->b_rptr; 26862 sin = (sin_t *)&ifr->ifr_addr; 26863 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26864 /* This a new style SIOC[GS]LIF* command */ 26865 lifr = (struct lifreq *)mp1->b_rptr; 26866 sin = (sin_t *)&lifr->lifr_addr; 26867 } else { 26868 sin = NULL; 26869 } 26870 26871 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26872 ipip, mp1->b_rptr); 26873 26874 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26875 } 26876 26877 /* 26878 * ioctl processing 26879 * 26880 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26881 * the ioctl command in the ioctl tables, determines the copyin data size 26882 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26883 * 26884 * ioctl processing then continues when the M_IOCDATA makes its way down to 26885 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26886 * associated 'conn' is refheld till the end of the ioctl and the general 26887 * ioctl processing function ip_process_ioctl() is called to extract the 26888 * arguments and process the ioctl. To simplify extraction, ioctl commands 26889 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26890 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26891 * is used to extract the ioctl's arguments. 26892 * 26893 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26894 * so goes thru the serialization primitive ipsq_try_enter. Then the 26895 * appropriate function to handle the ioctl is called based on the entry in 26896 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26897 * which also refreleases the 'conn' that was refheld at the start of the 26898 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26899 * 26900 * Many exclusive ioctls go thru an internal down up sequence as part of 26901 * the operation. For example an attempt to change the IP address of an 26902 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26903 * does all the cleanup such as deleting all ires that use this address. 26904 * Then we need to wait till all references to the interface go away. 26905 */ 26906 void 26907 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26908 { 26909 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26910 ip_ioctl_cmd_t *ipip = arg; 26911 ip_extract_func_t *extract_funcp; 26912 cmd_info_t ci; 26913 int err; 26914 boolean_t entered_ipsq = B_FALSE; 26915 26916 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26917 26918 if (ipip == NULL) 26919 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26920 26921 /* 26922 * SIOCLIFADDIF needs to go thru a special path since the 26923 * ill may not exist yet. This happens in the case of lo0 26924 * which is created using this ioctl. 26925 */ 26926 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26927 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26928 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26929 return; 26930 } 26931 26932 ci.ci_ipif = NULL; 26933 if (ipip->ipi_cmd_type == MISC_CMD) { 26934 /* 26935 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26936 */ 26937 if (ipip->ipi_cmd == IF_UNITSEL) { 26938 /* ioctl comes down the ill */ 26939 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26940 ipif_refhold(ci.ci_ipif); 26941 } 26942 err = 0; 26943 ci.ci_sin = NULL; 26944 ci.ci_sin6 = NULL; 26945 ci.ci_lifr = NULL; 26946 } else { 26947 switch (ipip->ipi_cmd_type) { 26948 case IF_CMD: 26949 case LIF_CMD: 26950 extract_funcp = ip_extract_lifreq; 26951 break; 26952 26953 case ARP_CMD: 26954 case XARP_CMD: 26955 extract_funcp = ip_extract_arpreq; 26956 break; 26957 26958 case TUN_CMD: 26959 extract_funcp = ip_extract_tunreq; 26960 break; 26961 26962 case MSFILT_CMD: 26963 extract_funcp = ip_extract_msfilter; 26964 break; 26965 26966 default: 26967 ASSERT(0); 26968 } 26969 26970 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26971 if (err != 0) { 26972 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26973 return; 26974 } 26975 26976 /* 26977 * All of the extraction functions return a refheld ipif. 26978 */ 26979 ASSERT(ci.ci_ipif != NULL); 26980 } 26981 26982 /* 26983 * If ipsq is non-null, we are already being called exclusively 26984 */ 26985 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26986 if (!(ipip->ipi_flags & IPI_WR)) { 26987 /* 26988 * A return value of EINPROGRESS means the ioctl is 26989 * either queued and waiting for some reason or has 26990 * already completed. 26991 */ 26992 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26993 ci.ci_lifr); 26994 if (ci.ci_ipif != NULL) 26995 ipif_refrele(ci.ci_ipif); 26996 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26997 return; 26998 } 26999 27000 ASSERT(ci.ci_ipif != NULL); 27001 27002 if (ipsq == NULL) { 27003 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27004 ip_process_ioctl, NEW_OP, B_TRUE); 27005 entered_ipsq = B_TRUE; 27006 } 27007 /* 27008 * Release the ipif so that ipif_down and friends that wait for 27009 * references to go away are not misled about the current ipif_refcnt 27010 * values. We are writer so we can access the ipif even after releasing 27011 * the ipif. 27012 */ 27013 ipif_refrele(ci.ci_ipif); 27014 if (ipsq == NULL) 27015 return; 27016 27017 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27018 27019 /* 27020 * For most set ioctls that come here, this serves as a single point 27021 * where we set the IPIF_CHANGING flag. This ensures that there won't 27022 * be any new references to the ipif. This helps functions that go 27023 * through this path and end up trying to wait for the refcnts 27024 * associated with the ipif to go down to zero. Some exceptions are 27025 * Failover, Failback, and Groupname commands that operate on more than 27026 * just the ci.ci_ipif. These commands internally determine the 27027 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27028 * flags on that set. Another exception is the Removeif command that 27029 * sets the IPIF_CONDEMNED flag internally after identifying the right 27030 * ipif to operate on. 27031 */ 27032 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27033 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27034 ipip->ipi_cmd != SIOCLIFFAILOVER && 27035 ipip->ipi_cmd != SIOCLIFFAILBACK && 27036 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27037 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27038 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27039 27040 /* 27041 * A return value of EINPROGRESS means the ioctl is 27042 * either queued and waiting for some reason or has 27043 * already completed. 27044 */ 27045 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27046 27047 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27048 27049 if (entered_ipsq) 27050 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27051 } 27052 27053 /* 27054 * Complete the ioctl. Typically ioctls use the mi package and need to 27055 * do mi_copyout/mi_copy_done. 27056 */ 27057 void 27058 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27059 { 27060 conn_t *connp = NULL; 27061 27062 if (err == EINPROGRESS) 27063 return; 27064 27065 if (CONN_Q(q)) { 27066 connp = Q_TO_CONN(q); 27067 ASSERT(connp->conn_ref >= 2); 27068 } 27069 27070 switch (mode) { 27071 case COPYOUT: 27072 if (err == 0) 27073 mi_copyout(q, mp); 27074 else 27075 mi_copy_done(q, mp, err); 27076 break; 27077 27078 case NO_COPYOUT: 27079 mi_copy_done(q, mp, err); 27080 break; 27081 27082 default: 27083 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27084 break; 27085 } 27086 27087 /* 27088 * The refhold placed at the start of the ioctl is released here. 27089 */ 27090 if (connp != NULL) 27091 CONN_OPER_PENDING_DONE(connp); 27092 27093 if (ipsq != NULL) 27094 ipsq_current_finish(ipsq); 27095 } 27096 27097 /* 27098 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27099 */ 27100 /* ARGSUSED */ 27101 void 27102 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27103 { 27104 conn_t *connp = arg; 27105 tcp_t *tcp; 27106 27107 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27108 tcp = connp->conn_tcp; 27109 27110 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27111 freemsg(mp); 27112 else 27113 tcp_rput_other(tcp, mp); 27114 CONN_OPER_PENDING_DONE(connp); 27115 } 27116 27117 /* Called from ip_wput for all non data messages */ 27118 /* ARGSUSED */ 27119 void 27120 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27121 { 27122 mblk_t *mp1; 27123 ire_t *ire, *fake_ire; 27124 ill_t *ill; 27125 struct iocblk *iocp; 27126 ip_ioctl_cmd_t *ipip; 27127 cred_t *cr; 27128 conn_t *connp; 27129 int err; 27130 nce_t *nce; 27131 ipif_t *ipif; 27132 ip_stack_t *ipst; 27133 char *proto_str; 27134 27135 if (CONN_Q(q)) { 27136 connp = Q_TO_CONN(q); 27137 ipst = connp->conn_netstack->netstack_ip; 27138 } else { 27139 connp = NULL; 27140 ipst = ILLQ_TO_IPST(q); 27141 } 27142 27143 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27144 27145 /* Check if it is a queue to /dev/sctp. */ 27146 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27147 connp->conn_rq == NULL) { 27148 sctp_wput(q, mp); 27149 return; 27150 } 27151 27152 switch (DB_TYPE(mp)) { 27153 case M_IOCTL: 27154 /* 27155 * IOCTL processing begins in ip_sioctl_copyin_setup which 27156 * will arrange to copy in associated control structures. 27157 */ 27158 ip_sioctl_copyin_setup(q, mp); 27159 return; 27160 case M_IOCDATA: 27161 /* 27162 * Ensure that this is associated with one of our trans- 27163 * parent ioctls. If it's not ours, discard it if we're 27164 * running as a driver, or pass it on if we're a module. 27165 */ 27166 iocp = (struct iocblk *)mp->b_rptr; 27167 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27168 if (ipip == NULL) { 27169 if (q->q_next == NULL) { 27170 goto nak; 27171 } else { 27172 putnext(q, mp); 27173 } 27174 return; 27175 } 27176 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27177 /* 27178 * the ioctl is one we recognise, but is not 27179 * consumed by IP as a module, pass M_IOCDATA 27180 * for processing downstream, but only for 27181 * common Streams ioctls. 27182 */ 27183 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27184 putnext(q, mp); 27185 return; 27186 } else { 27187 goto nak; 27188 } 27189 } 27190 27191 /* IOCTL continuation following copyin or copyout. */ 27192 if (mi_copy_state(q, mp, NULL) == -1) { 27193 /* 27194 * The copy operation failed. mi_copy_state already 27195 * cleaned up, so we're out of here. 27196 */ 27197 return; 27198 } 27199 /* 27200 * If we just completed a copy in, we become writer and 27201 * continue processing in ip_sioctl_copyin_done. If it 27202 * was a copy out, we call mi_copyout again. If there is 27203 * nothing more to copy out, it will complete the IOCTL. 27204 */ 27205 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27206 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27207 mi_copy_done(q, mp, EPROTO); 27208 return; 27209 } 27210 /* 27211 * Check for cases that need more copying. A return 27212 * value of 0 means a second copyin has been started, 27213 * so we return; a return value of 1 means no more 27214 * copying is needed, so we continue. 27215 */ 27216 if (ipip->ipi_cmd_type == MSFILT_CMD && 27217 MI_COPY_COUNT(mp) == 1) { 27218 if (ip_copyin_msfilter(q, mp) == 0) 27219 return; 27220 } 27221 /* 27222 * Refhold the conn, till the ioctl completes. This is 27223 * needed in case the ioctl ends up in the pending mp 27224 * list. Every mp in the ill_pending_mp list and 27225 * the ipsq_pending_mp must have a refhold on the conn 27226 * to resume processing. The refhold is released when 27227 * the ioctl completes. (normally or abnormally) 27228 * In all cases ip_ioctl_finish is called to finish 27229 * the ioctl. 27230 */ 27231 if (connp != NULL) { 27232 /* This is not a reentry */ 27233 ASSERT(ipsq == NULL); 27234 CONN_INC_REF(connp); 27235 } else { 27236 if (!(ipip->ipi_flags & IPI_MODOK)) { 27237 mi_copy_done(q, mp, EINVAL); 27238 return; 27239 } 27240 } 27241 27242 ip_process_ioctl(ipsq, q, mp, ipip); 27243 27244 } else { 27245 mi_copyout(q, mp); 27246 } 27247 return; 27248 nak: 27249 iocp->ioc_error = EINVAL; 27250 mp->b_datap->db_type = M_IOCNAK; 27251 iocp->ioc_count = 0; 27252 qreply(q, mp); 27253 return; 27254 27255 case M_IOCNAK: 27256 /* 27257 * The only way we could get here is if a resolver didn't like 27258 * an IOCTL we sent it. This shouldn't happen. 27259 */ 27260 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27261 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27262 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27263 freemsg(mp); 27264 return; 27265 case M_IOCACK: 27266 /* /dev/ip shouldn't see this */ 27267 if (CONN_Q(q)) 27268 goto nak; 27269 27270 /* Finish socket ioctls passed through to ARP. */ 27271 ip_sioctl_iocack(q, mp); 27272 return; 27273 case M_FLUSH: 27274 if (*mp->b_rptr & FLUSHW) 27275 flushq(q, FLUSHALL); 27276 if (q->q_next) { 27277 putnext(q, mp); 27278 return; 27279 } 27280 if (*mp->b_rptr & FLUSHR) { 27281 *mp->b_rptr &= ~FLUSHW; 27282 qreply(q, mp); 27283 return; 27284 } 27285 freemsg(mp); 27286 return; 27287 case IRE_DB_REQ_TYPE: 27288 if (connp == NULL) { 27289 proto_str = "IRE_DB_REQ_TYPE"; 27290 goto protonak; 27291 } 27292 /* An Upper Level Protocol wants a copy of an IRE. */ 27293 ip_ire_req(q, mp); 27294 return; 27295 case M_CTL: 27296 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27297 break; 27298 27299 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27300 TUN_HELLO) { 27301 ASSERT(connp != NULL); 27302 connp->conn_flags |= IPCL_IPTUN; 27303 freeb(mp); 27304 return; 27305 } 27306 27307 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27308 IP_ULP_OUT_LABELED) { 27309 out_labeled_t *olp; 27310 27311 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27312 break; 27313 olp = (out_labeled_t *)mp->b_rptr; 27314 connp->conn_ulp_labeled = olp->out_qnext == q; 27315 freemsg(mp); 27316 return; 27317 } 27318 27319 /* M_CTL messages are used by ARP to tell us things. */ 27320 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27321 break; 27322 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27323 case AR_ENTRY_SQUERY: 27324 ip_wput_ctl(q, mp); 27325 return; 27326 case AR_CLIENT_NOTIFY: 27327 ip_arp_news(q, mp); 27328 return; 27329 case AR_DLPIOP_DONE: 27330 ASSERT(q->q_next != NULL); 27331 ill = (ill_t *)q->q_ptr; 27332 /* qwriter_ip releases the refhold */ 27333 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27334 ill_refhold(ill); 27335 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27336 return; 27337 case AR_ARP_CLOSING: 27338 /* 27339 * ARP (above us) is closing. If no ARP bringup is 27340 * currently pending, ack the message so that ARP 27341 * can complete its close. Also mark ill_arp_closing 27342 * so that new ARP bringups will fail. If any 27343 * ARP bringup is currently in progress, we will 27344 * ack this when the current ARP bringup completes. 27345 */ 27346 ASSERT(q->q_next != NULL); 27347 ill = (ill_t *)q->q_ptr; 27348 mutex_enter(&ill->ill_lock); 27349 ill->ill_arp_closing = 1; 27350 if (!ill->ill_arp_bringup_pending) { 27351 mutex_exit(&ill->ill_lock); 27352 qreply(q, mp); 27353 } else { 27354 mutex_exit(&ill->ill_lock); 27355 freemsg(mp); 27356 } 27357 return; 27358 case AR_ARP_EXTEND: 27359 /* 27360 * The ARP module above us is capable of duplicate 27361 * address detection. Old ATM drivers will not send 27362 * this message. 27363 */ 27364 ASSERT(q->q_next != NULL); 27365 ill = (ill_t *)q->q_ptr; 27366 ill->ill_arp_extend = B_TRUE; 27367 freemsg(mp); 27368 return; 27369 default: 27370 break; 27371 } 27372 break; 27373 case M_PROTO: 27374 case M_PCPROTO: 27375 /* 27376 * The only PROTO messages we expect are ULP binds and 27377 * copies of option negotiation acknowledgements. 27378 */ 27379 switch (((union T_primitives *)mp->b_rptr)->type) { 27380 case O_T_BIND_REQ: 27381 case T_BIND_REQ: { 27382 /* Request can get queued in bind */ 27383 if (connp == NULL) { 27384 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27385 goto protonak; 27386 } 27387 /* 27388 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27389 * instead of going through this path. We only get 27390 * here in the following cases: 27391 * 27392 * a. Bind retries, where ipsq is non-NULL. 27393 * b. T_BIND_REQ is issued from non TCP/UDP 27394 * transport, e.g. icmp for raw socket, 27395 * in which case ipsq will be NULL. 27396 */ 27397 ASSERT(ipsq != NULL || 27398 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27399 27400 /* Don't increment refcnt if this is a re-entry */ 27401 if (ipsq == NULL) 27402 CONN_INC_REF(connp); 27403 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27404 connp, NULL) : ip_bind_v4(q, mp, connp); 27405 if (mp == NULL) 27406 return; 27407 if (IPCL_IS_TCP(connp)) { 27408 /* 27409 * In the case of TCP endpoint we 27410 * come here only for bind retries 27411 */ 27412 ASSERT(ipsq != NULL); 27413 CONN_INC_REF(connp); 27414 squeue_fill(connp->conn_sqp, mp, 27415 ip_resume_tcp_bind, connp, 27416 SQTAG_BIND_RETRY); 27417 return; 27418 } else if (IPCL_IS_UDP(connp)) { 27419 /* 27420 * In the case of UDP endpoint we 27421 * come here only for bind retries 27422 */ 27423 ASSERT(ipsq != NULL); 27424 udp_resume_bind(connp, mp); 27425 return; 27426 } 27427 qreply(q, mp); 27428 CONN_OPER_PENDING_DONE(connp); 27429 return; 27430 } 27431 case T_SVR4_OPTMGMT_REQ: 27432 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27433 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27434 27435 if (connp == NULL) { 27436 proto_str = "T_SVR4_OPTMGMT_REQ"; 27437 goto protonak; 27438 } 27439 27440 if (!snmpcom_req(q, mp, ip_snmp_set, 27441 ip_snmp_get, cr)) { 27442 /* 27443 * Call svr4_optcom_req so that it can 27444 * generate the ack. We don't come here 27445 * if this operation is being restarted. 27446 * ip_restart_optmgmt will drop the conn ref. 27447 * In the case of ipsec option after the ipsec 27448 * load is complete conn_restart_ipsec_waiter 27449 * drops the conn ref. 27450 */ 27451 ASSERT(ipsq == NULL); 27452 CONN_INC_REF(connp); 27453 if (ip_check_for_ipsec_opt(q, mp)) 27454 return; 27455 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27456 if (err != EINPROGRESS) { 27457 /* Operation is done */ 27458 CONN_OPER_PENDING_DONE(connp); 27459 } 27460 } 27461 return; 27462 case T_OPTMGMT_REQ: 27463 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27464 /* 27465 * Note: No snmpcom_req support through new 27466 * T_OPTMGMT_REQ. 27467 * Call tpi_optcom_req so that it can 27468 * generate the ack. 27469 */ 27470 if (connp == NULL) { 27471 proto_str = "T_OPTMGMT_REQ"; 27472 goto protonak; 27473 } 27474 27475 ASSERT(ipsq == NULL); 27476 /* 27477 * We don't come here for restart. ip_restart_optmgmt 27478 * will drop the conn ref. In the case of ipsec option 27479 * after the ipsec load is complete 27480 * conn_restart_ipsec_waiter drops the conn ref. 27481 */ 27482 CONN_INC_REF(connp); 27483 if (ip_check_for_ipsec_opt(q, mp)) 27484 return; 27485 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27486 if (err != EINPROGRESS) { 27487 /* Operation is done */ 27488 CONN_OPER_PENDING_DONE(connp); 27489 } 27490 return; 27491 case T_UNBIND_REQ: 27492 if (connp == NULL) { 27493 proto_str = "T_UNBIND_REQ"; 27494 goto protonak; 27495 } 27496 mp = ip_unbind(q, mp); 27497 qreply(q, mp); 27498 return; 27499 default: 27500 /* 27501 * Have to drop any DLPI messages coming down from 27502 * arp (such as an info_req which would cause ip 27503 * to receive an extra info_ack if it was passed 27504 * through. 27505 */ 27506 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27507 (int)*(uint_t *)mp->b_rptr)); 27508 freemsg(mp); 27509 return; 27510 } 27511 /* NOTREACHED */ 27512 case IRE_DB_TYPE: { 27513 nce_t *nce; 27514 ill_t *ill; 27515 in6_addr_t gw_addr_v6; 27516 27517 27518 /* 27519 * This is a response back from a resolver. It 27520 * consists of a message chain containing: 27521 * IRE_MBLK-->LL_HDR_MBLK->pkt 27522 * The IRE_MBLK is the one we allocated in ip_newroute. 27523 * The LL_HDR_MBLK is the DLPI header to use to get 27524 * the attached packet, and subsequent ones for the 27525 * same destination, transmitted. 27526 */ 27527 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27528 break; 27529 /* 27530 * First, check to make sure the resolution succeeded. 27531 * If it failed, the second mblk will be empty. 27532 * If it is, free the chain, dropping the packet. 27533 * (We must ire_delete the ire; that frees the ire mblk) 27534 * We're doing this now to support PVCs for ATM; it's 27535 * a partial xresolv implementation. When we fully implement 27536 * xresolv interfaces, instead of freeing everything here 27537 * we'll initiate neighbor discovery. 27538 * 27539 * For v4 (ARP and other external resolvers) the resolver 27540 * frees the message, so no check is needed. This check 27541 * is required, though, for a full xresolve implementation. 27542 * Including this code here now both shows how external 27543 * resolvers can NACK a resolution request using an 27544 * existing design that has no specific provisions for NACKs, 27545 * and also takes into account that the current non-ARP 27546 * external resolver has been coded to use this method of 27547 * NACKing for all IPv6 (xresolv) cases, 27548 * whether our xresolv implementation is complete or not. 27549 * 27550 */ 27551 ire = (ire_t *)mp->b_rptr; 27552 ill = ire_to_ill(ire); 27553 mp1 = mp->b_cont; /* dl_unitdata_req */ 27554 if (mp1->b_rptr == mp1->b_wptr) { 27555 if (ire->ire_ipversion == IPV6_VERSION) { 27556 /* 27557 * XRESOLV interface. 27558 */ 27559 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27560 mutex_enter(&ire->ire_lock); 27561 gw_addr_v6 = ire->ire_gateway_addr_v6; 27562 mutex_exit(&ire->ire_lock); 27563 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27564 nce = ndp_lookup_v6(ill, 27565 &ire->ire_addr_v6, B_FALSE); 27566 } else { 27567 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27568 B_FALSE); 27569 } 27570 if (nce != NULL) { 27571 nce_resolv_failed(nce); 27572 ndp_delete(nce); 27573 NCE_REFRELE(nce); 27574 } 27575 } 27576 mp->b_cont = NULL; 27577 freemsg(mp1); /* frees the pkt as well */ 27578 ASSERT(ire->ire_nce == NULL); 27579 ire_delete((ire_t *)mp->b_rptr); 27580 return; 27581 } 27582 27583 /* 27584 * Split them into IRE_MBLK and pkt and feed it into 27585 * ire_add_then_send. Then in ire_add_then_send 27586 * the IRE will be added, and then the packet will be 27587 * run back through ip_wput. This time it will make 27588 * it to the wire. 27589 */ 27590 mp->b_cont = NULL; 27591 mp = mp1->b_cont; /* now, mp points to pkt */ 27592 mp1->b_cont = NULL; 27593 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27594 if (ire->ire_ipversion == IPV6_VERSION) { 27595 /* 27596 * XRESOLV interface. Find the nce and put a copy 27597 * of the dl_unitdata_req in nce_res_mp 27598 */ 27599 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27600 mutex_enter(&ire->ire_lock); 27601 gw_addr_v6 = ire->ire_gateway_addr_v6; 27602 mutex_exit(&ire->ire_lock); 27603 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27604 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27605 B_FALSE); 27606 } else { 27607 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27608 } 27609 if (nce != NULL) { 27610 /* 27611 * We have to protect nce_res_mp here 27612 * from being accessed by other threads 27613 * while we change the mblk pointer. 27614 * Other functions will also lock the nce when 27615 * accessing nce_res_mp. 27616 * 27617 * The reason we change the mblk pointer 27618 * here rather than copying the resolved address 27619 * into the template is that, unlike with 27620 * ethernet, we have no guarantee that the 27621 * resolved address length will be 27622 * smaller than or equal to the lla length 27623 * with which the template was allocated, 27624 * (for ethernet, they're equal) 27625 * so we have to use the actual resolved 27626 * address mblk - which holds the real 27627 * dl_unitdata_req with the resolved address. 27628 * 27629 * Doing this is the same behavior as was 27630 * previously used in the v4 ARP case. 27631 */ 27632 mutex_enter(&nce->nce_lock); 27633 if (nce->nce_res_mp != NULL) 27634 freemsg(nce->nce_res_mp); 27635 nce->nce_res_mp = mp1; 27636 mutex_exit(&nce->nce_lock); 27637 /* 27638 * We do a fastpath probe here because 27639 * we have resolved the address without 27640 * using Neighbor Discovery. 27641 * In the non-XRESOLV v6 case, the fastpath 27642 * probe is done right after neighbor 27643 * discovery completes. 27644 */ 27645 if (nce->nce_res_mp != NULL) { 27646 int res; 27647 nce_fastpath_list_add(nce); 27648 res = ill_fastpath_probe(ill, 27649 nce->nce_res_mp); 27650 if (res != 0 && res != EAGAIN) 27651 nce_fastpath_list_delete(nce); 27652 } 27653 27654 ire_add_then_send(q, ire, mp); 27655 /* 27656 * Now we have to clean out any packets 27657 * that may have been queued on the nce 27658 * while it was waiting for address resolution 27659 * to complete. 27660 */ 27661 mutex_enter(&nce->nce_lock); 27662 mp1 = nce->nce_qd_mp; 27663 nce->nce_qd_mp = NULL; 27664 mutex_exit(&nce->nce_lock); 27665 while (mp1 != NULL) { 27666 mblk_t *nxt_mp; 27667 queue_t *fwdq = NULL; 27668 ill_t *inbound_ill; 27669 uint_t ifindex; 27670 27671 nxt_mp = mp1->b_next; 27672 mp1->b_next = NULL; 27673 /* 27674 * Retrieve ifindex stored in 27675 * ip_rput_data_v6() 27676 */ 27677 ifindex = 27678 (uint_t)(uintptr_t)mp1->b_prev; 27679 inbound_ill = 27680 ill_lookup_on_ifindex(ifindex, 27681 B_TRUE, NULL, NULL, NULL, 27682 NULL, ipst); 27683 mp1->b_prev = NULL; 27684 if (inbound_ill != NULL) 27685 fwdq = inbound_ill->ill_rq; 27686 27687 if (fwdq != NULL) { 27688 put(fwdq, mp1); 27689 ill_refrele(inbound_ill); 27690 } else 27691 put(WR(ill->ill_rq), mp1); 27692 mp1 = nxt_mp; 27693 } 27694 NCE_REFRELE(nce); 27695 } else { /* nce is NULL; clean up */ 27696 ire_delete(ire); 27697 freemsg(mp); 27698 freemsg(mp1); 27699 return; 27700 } 27701 } else { 27702 nce_t *arpce; 27703 /* 27704 * Link layer resolution succeeded. Recompute the 27705 * ire_nce. 27706 */ 27707 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27708 if ((arpce = ndp_lookup_v4(ill, 27709 (ire->ire_gateway_addr != INADDR_ANY ? 27710 &ire->ire_gateway_addr : &ire->ire_addr), 27711 B_FALSE)) == NULL) { 27712 freeb(ire->ire_mp); 27713 freeb(mp1); 27714 freemsg(mp); 27715 return; 27716 } 27717 mutex_enter(&arpce->nce_lock); 27718 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27719 if (arpce->nce_state == ND_REACHABLE) { 27720 /* 27721 * Someone resolved this before us; 27722 * cleanup the res_mp. Since ire has 27723 * not been added yet, the call to ire_add_v4 27724 * from ire_add_then_send (when a dup is 27725 * detected) will clean up the ire. 27726 */ 27727 freeb(mp1); 27728 } else { 27729 ASSERT(arpce->nce_res_mp == NULL); 27730 arpce->nce_res_mp = mp1; 27731 arpce->nce_state = ND_REACHABLE; 27732 } 27733 mutex_exit(&arpce->nce_lock); 27734 if (ire->ire_marks & IRE_MARK_NOADD) { 27735 /* 27736 * this ire will not be added to the ire 27737 * cache table, so we can set the ire_nce 27738 * here, as there are no atomicity constraints. 27739 */ 27740 ire->ire_nce = arpce; 27741 /* 27742 * We are associating this nce with the ire 27743 * so change the nce ref taken in 27744 * ndp_lookup_v4() from 27745 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27746 */ 27747 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27748 } else { 27749 NCE_REFRELE(arpce); 27750 } 27751 ire_add_then_send(q, ire, mp); 27752 } 27753 return; /* All is well, the packet has been sent. */ 27754 } 27755 case IRE_ARPRESOLVE_TYPE: { 27756 27757 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27758 break; 27759 mp1 = mp->b_cont; /* dl_unitdata_req */ 27760 mp->b_cont = NULL; 27761 /* 27762 * First, check to make sure the resolution succeeded. 27763 * If it failed, the second mblk will be empty. 27764 */ 27765 if (mp1->b_rptr == mp1->b_wptr) { 27766 /* cleanup the incomplete ire, free queued packets */ 27767 freemsg(mp); /* fake ire */ 27768 freeb(mp1); /* dl_unitdata response */ 27769 return; 27770 } 27771 27772 /* 27773 * update any incomplete nce_t found. we lookup the ctable 27774 * and find the nce from the ire->ire_nce because we need 27775 * to pass the ire to ip_xmit_v4 later, and can find both 27776 * ire and nce in one lookup from the ctable. 27777 */ 27778 fake_ire = (ire_t *)mp->b_rptr; 27779 /* 27780 * By the time we come back here from ARP 27781 * the logical outgoing interface of the incomplete ire 27782 * we added in ire_forward could have disappeared, 27783 * causing the incomplete ire to also have 27784 * dissapeared. So we need to retreive the 27785 * proper ipif for the ire before looking 27786 * in ctable; do the ctablelookup based on ire_ipif_seqid 27787 */ 27788 ill = q->q_ptr; 27789 27790 /* Get the outgoing ipif */ 27791 mutex_enter(&ill->ill_lock); 27792 if (ill->ill_state_flags & ILL_CONDEMNED) { 27793 mutex_exit(&ill->ill_lock); 27794 freemsg(mp); /* fake ire */ 27795 freeb(mp1); /* dl_unitdata response */ 27796 return; 27797 } 27798 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27799 27800 if (ipif == NULL) { 27801 mutex_exit(&ill->ill_lock); 27802 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27803 freemsg(mp); 27804 freeb(mp1); 27805 return; 27806 } 27807 ipif_refhold_locked(ipif); 27808 mutex_exit(&ill->ill_lock); 27809 ire = ire_ctable_lookup(fake_ire->ire_addr, 27810 fake_ire->ire_gateway_addr, IRE_CACHE, 27811 ipif, fake_ire->ire_zoneid, NULL, 27812 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27813 ipif_refrele(ipif); 27814 if (ire == NULL) { 27815 /* 27816 * no ire was found; check if there is an nce 27817 * for this lookup; if it has no ire's pointing at it 27818 * cleanup. 27819 */ 27820 if ((nce = ndp_lookup_v4(ill, 27821 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27822 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27823 B_FALSE)) != NULL) { 27824 /* 27825 * cleanup: 27826 * We check for refcnt 2 (one for the nce 27827 * hash list + 1 for the ref taken by 27828 * ndp_lookup_v4) to check that there are 27829 * no ire's pointing at the nce. 27830 */ 27831 if (nce->nce_refcnt == 2) 27832 ndp_delete(nce); 27833 NCE_REFRELE(nce); 27834 } 27835 freeb(mp1); /* dl_unitdata response */ 27836 freemsg(mp); /* fake ire */ 27837 return; 27838 } 27839 nce = ire->ire_nce; 27840 DTRACE_PROBE2(ire__arpresolve__type, 27841 ire_t *, ire, nce_t *, nce); 27842 ASSERT(nce->nce_state != ND_INITIAL); 27843 mutex_enter(&nce->nce_lock); 27844 nce->nce_last = TICK_TO_MSEC(lbolt64); 27845 if (nce->nce_state == ND_REACHABLE) { 27846 /* 27847 * Someone resolved this before us; 27848 * our response is not needed any more. 27849 */ 27850 mutex_exit(&nce->nce_lock); 27851 freeb(mp1); /* dl_unitdata response */ 27852 } else { 27853 ASSERT(nce->nce_res_mp == NULL); 27854 nce->nce_res_mp = mp1; 27855 nce->nce_state = ND_REACHABLE; 27856 mutex_exit(&nce->nce_lock); 27857 nce_fastpath(nce); 27858 } 27859 /* 27860 * The cached nce_t has been updated to be reachable; 27861 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27862 */ 27863 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27864 freemsg(mp); 27865 /* 27866 * send out queued packets. 27867 */ 27868 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27869 27870 IRE_REFRELE(ire); 27871 return; 27872 } 27873 default: 27874 break; 27875 } 27876 if (q->q_next) { 27877 putnext(q, mp); 27878 } else 27879 freemsg(mp); 27880 return; 27881 27882 protonak: 27883 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27884 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27885 qreply(q, mp); 27886 } 27887 27888 /* 27889 * Process IP options in an outbound packet. Modify the destination if there 27890 * is a source route option. 27891 * Returns non-zero if something fails in which case an ICMP error has been 27892 * sent and mp freed. 27893 */ 27894 static int 27895 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27896 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27897 { 27898 ipoptp_t opts; 27899 uchar_t *opt; 27900 uint8_t optval; 27901 uint8_t optlen; 27902 ipaddr_t dst; 27903 intptr_t code = 0; 27904 mblk_t *mp; 27905 ire_t *ire = NULL; 27906 27907 ip2dbg(("ip_wput_options\n")); 27908 mp = ipsec_mp; 27909 if (mctl_present) { 27910 mp = ipsec_mp->b_cont; 27911 } 27912 27913 dst = ipha->ipha_dst; 27914 for (optval = ipoptp_first(&opts, ipha); 27915 optval != IPOPT_EOL; 27916 optval = ipoptp_next(&opts)) { 27917 opt = opts.ipoptp_cur; 27918 optlen = opts.ipoptp_len; 27919 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27920 optval, optlen)); 27921 switch (optval) { 27922 uint32_t off; 27923 case IPOPT_SSRR: 27924 case IPOPT_LSRR: 27925 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27926 ip1dbg(( 27927 "ip_wput_options: bad option offset\n")); 27928 code = (char *)&opt[IPOPT_OLEN] - 27929 (char *)ipha; 27930 goto param_prob; 27931 } 27932 off = opt[IPOPT_OFFSET]; 27933 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27934 ntohl(dst))); 27935 /* 27936 * For strict: verify that dst is directly 27937 * reachable. 27938 */ 27939 if (optval == IPOPT_SSRR) { 27940 ire = ire_ftable_lookup(dst, 0, 0, 27941 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27942 MBLK_GETLABEL(mp), 27943 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27944 if (ire == NULL) { 27945 ip1dbg(("ip_wput_options: SSRR not" 27946 " directly reachable: 0x%x\n", 27947 ntohl(dst))); 27948 goto bad_src_route; 27949 } 27950 ire_refrele(ire); 27951 } 27952 break; 27953 case IPOPT_RR: 27954 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27955 ip1dbg(( 27956 "ip_wput_options: bad option offset\n")); 27957 code = (char *)&opt[IPOPT_OLEN] - 27958 (char *)ipha; 27959 goto param_prob; 27960 } 27961 break; 27962 case IPOPT_TS: 27963 /* 27964 * Verify that length >=5 and that there is either 27965 * room for another timestamp or that the overflow 27966 * counter is not maxed out. 27967 */ 27968 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27969 if (optlen < IPOPT_MINLEN_IT) { 27970 goto param_prob; 27971 } 27972 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27973 ip1dbg(( 27974 "ip_wput_options: bad option offset\n")); 27975 code = (char *)&opt[IPOPT_OFFSET] - 27976 (char *)ipha; 27977 goto param_prob; 27978 } 27979 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27980 case IPOPT_TS_TSONLY: 27981 off = IPOPT_TS_TIMELEN; 27982 break; 27983 case IPOPT_TS_TSANDADDR: 27984 case IPOPT_TS_PRESPEC: 27985 case IPOPT_TS_PRESPEC_RFC791: 27986 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27987 break; 27988 default: 27989 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27990 (char *)ipha; 27991 goto param_prob; 27992 } 27993 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27994 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27995 /* 27996 * No room and the overflow counter is 15 27997 * already. 27998 */ 27999 goto param_prob; 28000 } 28001 break; 28002 } 28003 } 28004 28005 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28006 return (0); 28007 28008 ip1dbg(("ip_wput_options: error processing IP options.")); 28009 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28010 28011 param_prob: 28012 /* 28013 * Since ip_wput() isn't close to finished, we fill 28014 * in enough of the header for credible error reporting. 28015 */ 28016 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28017 /* Failed */ 28018 freemsg(ipsec_mp); 28019 return (-1); 28020 } 28021 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28022 return (-1); 28023 28024 bad_src_route: 28025 /* 28026 * Since ip_wput() isn't close to finished, we fill 28027 * in enough of the header for credible error reporting. 28028 */ 28029 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28030 /* Failed */ 28031 freemsg(ipsec_mp); 28032 return (-1); 28033 } 28034 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28035 return (-1); 28036 } 28037 28038 /* 28039 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28040 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28041 * thru /etc/system. 28042 */ 28043 #define CONN_MAXDRAINCNT 64 28044 28045 static void 28046 conn_drain_init(ip_stack_t *ipst) 28047 { 28048 int i; 28049 28050 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28051 28052 if ((ipst->ips_conn_drain_list_cnt == 0) || 28053 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28054 /* 28055 * Default value of the number of drainers is the 28056 * number of cpus, subject to maximum of 8 drainers. 28057 */ 28058 if (boot_max_ncpus != -1) 28059 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28060 else 28061 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28062 } 28063 28064 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28065 sizeof (idl_t), KM_SLEEP); 28066 28067 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28068 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28069 MUTEX_DEFAULT, NULL); 28070 } 28071 } 28072 28073 static void 28074 conn_drain_fini(ip_stack_t *ipst) 28075 { 28076 int i; 28077 28078 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28079 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28080 kmem_free(ipst->ips_conn_drain_list, 28081 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28082 ipst->ips_conn_drain_list = NULL; 28083 } 28084 28085 /* 28086 * Note: For an overview of how flowcontrol is handled in IP please see the 28087 * IP Flowcontrol notes at the top of this file. 28088 * 28089 * Flow control has blocked us from proceeding. Insert the given conn in one 28090 * of the conn drain lists. These conn wq's will be qenabled later on when 28091 * STREAMS flow control does a backenable. conn_walk_drain will enable 28092 * the first conn in each of these drain lists. Each of these qenabled conns 28093 * in turn enables the next in the list, after it runs, or when it closes, 28094 * thus sustaining the drain process. 28095 * 28096 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28097 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28098 * running at any time, on a given conn, since there can be only 1 service proc 28099 * running on a queue at any time. 28100 */ 28101 void 28102 conn_drain_insert(conn_t *connp) 28103 { 28104 idl_t *idl; 28105 uint_t index; 28106 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28107 28108 mutex_enter(&connp->conn_lock); 28109 if (connp->conn_state_flags & CONN_CLOSING) { 28110 /* 28111 * The conn is closing as a result of which CONN_CLOSING 28112 * is set. Return. 28113 */ 28114 mutex_exit(&connp->conn_lock); 28115 return; 28116 } else if (connp->conn_idl == NULL) { 28117 /* 28118 * Assign the next drain list round robin. We dont' use 28119 * a lock, and thus it may not be strictly round robin. 28120 * Atomicity of load/stores is enough to make sure that 28121 * conn_drain_list_index is always within bounds. 28122 */ 28123 index = ipst->ips_conn_drain_list_index; 28124 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28125 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28126 index++; 28127 if (index == ipst->ips_conn_drain_list_cnt) 28128 index = 0; 28129 ipst->ips_conn_drain_list_index = index; 28130 } 28131 mutex_exit(&connp->conn_lock); 28132 28133 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28134 if ((connp->conn_drain_prev != NULL) || 28135 (connp->conn_state_flags & CONN_CLOSING)) { 28136 /* 28137 * The conn is already in the drain list, OR 28138 * the conn is closing. We need to check again for 28139 * the closing case again since close can happen 28140 * after we drop the conn_lock, and before we 28141 * acquire the CONN_DRAIN_LIST_LOCK. 28142 */ 28143 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28144 return; 28145 } else { 28146 idl = connp->conn_idl; 28147 } 28148 28149 /* 28150 * The conn is not in the drain list. Insert it at the 28151 * tail of the drain list. The drain list is circular 28152 * and doubly linked. idl_conn points to the 1st element 28153 * in the list. 28154 */ 28155 if (idl->idl_conn == NULL) { 28156 idl->idl_conn = connp; 28157 connp->conn_drain_next = connp; 28158 connp->conn_drain_prev = connp; 28159 } else { 28160 conn_t *head = idl->idl_conn; 28161 28162 connp->conn_drain_next = head; 28163 connp->conn_drain_prev = head->conn_drain_prev; 28164 head->conn_drain_prev->conn_drain_next = connp; 28165 head->conn_drain_prev = connp; 28166 } 28167 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28168 } 28169 28170 /* 28171 * This conn is closing, and we are called from ip_close. OR 28172 * This conn has been serviced by ip_wsrv, and we need to do the tail 28173 * processing. 28174 * If this conn is part of the drain list, we may need to sustain the drain 28175 * process by qenabling the next conn in the drain list. We may also need to 28176 * remove this conn from the list, if it is done. 28177 */ 28178 static void 28179 conn_drain_tail(conn_t *connp, boolean_t closing) 28180 { 28181 idl_t *idl; 28182 28183 /* 28184 * connp->conn_idl is stable at this point, and no lock is needed 28185 * to check it. If we are called from ip_close, close has already 28186 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28187 * called us only because conn_idl is non-null. If we are called thru 28188 * service, conn_idl could be null, but it cannot change because 28189 * service is single-threaded per queue, and there cannot be another 28190 * instance of service trying to call conn_drain_insert on this conn 28191 * now. 28192 */ 28193 ASSERT(!closing || (connp->conn_idl != NULL)); 28194 28195 /* 28196 * If connp->conn_idl is null, the conn has not been inserted into any 28197 * drain list even once since creation of the conn. Just return. 28198 */ 28199 if (connp->conn_idl == NULL) 28200 return; 28201 28202 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28203 28204 if (connp->conn_drain_prev == NULL) { 28205 /* This conn is currently not in the drain list. */ 28206 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28207 return; 28208 } 28209 idl = connp->conn_idl; 28210 if (idl->idl_conn_draining == connp) { 28211 /* 28212 * This conn is the current drainer. If this is the last conn 28213 * in the drain list, we need to do more checks, in the 'if' 28214 * below. Otherwwise we need to just qenable the next conn, 28215 * to sustain the draining, and is handled in the 'else' 28216 * below. 28217 */ 28218 if (connp->conn_drain_next == idl->idl_conn) { 28219 /* 28220 * This conn is the last in this list. This round 28221 * of draining is complete. If idl_repeat is set, 28222 * it means another flow enabling has happened from 28223 * the driver/streams and we need to another round 28224 * of draining. 28225 * If there are more than 2 conns in the drain list, 28226 * do a left rotate by 1, so that all conns except the 28227 * conn at the head move towards the head by 1, and the 28228 * the conn at the head goes to the tail. This attempts 28229 * a more even share for all queues that are being 28230 * drained. 28231 */ 28232 if ((connp->conn_drain_next != connp) && 28233 (idl->idl_conn->conn_drain_next != connp)) { 28234 idl->idl_conn = idl->idl_conn->conn_drain_next; 28235 } 28236 if (idl->idl_repeat) { 28237 qenable(idl->idl_conn->conn_wq); 28238 idl->idl_conn_draining = idl->idl_conn; 28239 idl->idl_repeat = 0; 28240 } else { 28241 idl->idl_conn_draining = NULL; 28242 } 28243 } else { 28244 /* 28245 * If the next queue that we are now qenable'ing, 28246 * is closing, it will remove itself from this list 28247 * and qenable the subsequent queue in ip_close(). 28248 * Serialization is acheived thru idl_lock. 28249 */ 28250 qenable(connp->conn_drain_next->conn_wq); 28251 idl->idl_conn_draining = connp->conn_drain_next; 28252 } 28253 } 28254 if (!connp->conn_did_putbq || closing) { 28255 /* 28256 * Remove ourself from the drain list, if we did not do 28257 * a putbq, or if the conn is closing. 28258 * Note: It is possible that q->q_first is non-null. It means 28259 * that these messages landed after we did a enableok() in 28260 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28261 * service them. 28262 */ 28263 if (connp->conn_drain_next == connp) { 28264 /* Singleton in the list */ 28265 ASSERT(connp->conn_drain_prev == connp); 28266 idl->idl_conn = NULL; 28267 idl->idl_conn_draining = NULL; 28268 } else { 28269 connp->conn_drain_prev->conn_drain_next = 28270 connp->conn_drain_next; 28271 connp->conn_drain_next->conn_drain_prev = 28272 connp->conn_drain_prev; 28273 if (idl->idl_conn == connp) 28274 idl->idl_conn = connp->conn_drain_next; 28275 ASSERT(idl->idl_conn_draining != connp); 28276 28277 } 28278 connp->conn_drain_next = NULL; 28279 connp->conn_drain_prev = NULL; 28280 } 28281 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28282 } 28283 28284 /* 28285 * Write service routine. Shared perimeter entry point. 28286 * ip_wsrv can be called in any of the following ways. 28287 * 1. The device queue's messages has fallen below the low water mark 28288 * and STREAMS has backenabled the ill_wq. We walk thru all the 28289 * the drain lists and backenable the first conn in each list. 28290 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28291 * qenabled non-tcp upper layers. We start dequeing messages and call 28292 * ip_wput for each message. 28293 */ 28294 28295 void 28296 ip_wsrv(queue_t *q) 28297 { 28298 conn_t *connp; 28299 ill_t *ill; 28300 mblk_t *mp; 28301 28302 if (q->q_next) { 28303 ill = (ill_t *)q->q_ptr; 28304 if (ill->ill_state_flags == 0) { 28305 /* 28306 * The device flow control has opened up. 28307 * Walk through conn drain lists and qenable the 28308 * first conn in each list. This makes sense only 28309 * if the stream is fully plumbed and setup. 28310 * Hence the if check above. 28311 */ 28312 ip1dbg(("ip_wsrv: walking\n")); 28313 conn_walk_drain(ill->ill_ipst); 28314 } 28315 return; 28316 } 28317 28318 connp = Q_TO_CONN(q); 28319 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28320 28321 /* 28322 * 1. Set conn_draining flag to signal that service is active. 28323 * 28324 * 2. ip_output determines whether it has been called from service, 28325 * based on the last parameter. If it is IP_WSRV it concludes it 28326 * has been called from service. 28327 * 28328 * 3. Message ordering is preserved by the following logic. 28329 * i. A directly called ip_output (i.e. not thru service) will queue 28330 * the message at the tail, if conn_draining is set (i.e. service 28331 * is running) or if q->q_first is non-null. 28332 * 28333 * ii. If ip_output is called from service, and if ip_output cannot 28334 * putnext due to flow control, it does a putbq. 28335 * 28336 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28337 * (causing an infinite loop). 28338 */ 28339 ASSERT(!connp->conn_did_putbq); 28340 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28341 connp->conn_draining = 1; 28342 noenable(q); 28343 while ((mp = getq(q)) != NULL) { 28344 ASSERT(CONN_Q(q)); 28345 28346 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28347 if (connp->conn_did_putbq) { 28348 /* ip_wput did a putbq */ 28349 break; 28350 } 28351 } 28352 /* 28353 * At this point, a thread coming down from top, calling 28354 * ip_wput, may end up queueing the message. We have not yet 28355 * enabled the queue, so ip_wsrv won't be called again. 28356 * To avoid this race, check q->q_first again (in the loop) 28357 * If the other thread queued the message before we call 28358 * enableok(), we will catch it in the q->q_first check. 28359 * If the other thread queues the message after we call 28360 * enableok(), ip_wsrv will be called again by STREAMS. 28361 */ 28362 connp->conn_draining = 0; 28363 enableok(q); 28364 } 28365 28366 /* Enable the next conn for draining */ 28367 conn_drain_tail(connp, B_FALSE); 28368 28369 connp->conn_did_putbq = 0; 28370 } 28371 28372 /* 28373 * Walk the list of all conn's calling the function provided with the 28374 * specified argument for each. Note that this only walks conn's that 28375 * have been bound. 28376 * Applies to both IPv4 and IPv6. 28377 */ 28378 static void 28379 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28380 { 28381 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28382 ipst->ips_ipcl_udp_fanout_size, 28383 func, arg, zoneid); 28384 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28385 ipst->ips_ipcl_conn_fanout_size, 28386 func, arg, zoneid); 28387 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28388 ipst->ips_ipcl_bind_fanout_size, 28389 func, arg, zoneid); 28390 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28391 IPPROTO_MAX, func, arg, zoneid); 28392 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28393 IPPROTO_MAX, func, arg, zoneid); 28394 } 28395 28396 /* 28397 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28398 * of conns that need to be drained, check if drain is already in progress. 28399 * If so set the idl_repeat bit, indicating that the last conn in the list 28400 * needs to reinitiate the drain once again, for the list. If drain is not 28401 * in progress for the list, initiate the draining, by qenabling the 1st 28402 * conn in the list. The drain is self-sustaining, each qenabled conn will 28403 * in turn qenable the next conn, when it is done/blocked/closing. 28404 */ 28405 static void 28406 conn_walk_drain(ip_stack_t *ipst) 28407 { 28408 int i; 28409 idl_t *idl; 28410 28411 IP_STAT(ipst, ip_conn_walk_drain); 28412 28413 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28414 idl = &ipst->ips_conn_drain_list[i]; 28415 mutex_enter(&idl->idl_lock); 28416 if (idl->idl_conn == NULL) { 28417 mutex_exit(&idl->idl_lock); 28418 continue; 28419 } 28420 /* 28421 * If this list is not being drained currently by 28422 * an ip_wsrv thread, start the process. 28423 */ 28424 if (idl->idl_conn_draining == NULL) { 28425 ASSERT(idl->idl_repeat == 0); 28426 qenable(idl->idl_conn->conn_wq); 28427 idl->idl_conn_draining = idl->idl_conn; 28428 } else { 28429 idl->idl_repeat = 1; 28430 } 28431 mutex_exit(&idl->idl_lock); 28432 } 28433 } 28434 28435 /* 28436 * Walk an conn hash table of `count' buckets, calling func for each entry. 28437 */ 28438 static void 28439 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28440 zoneid_t zoneid) 28441 { 28442 conn_t *connp; 28443 28444 while (count-- > 0) { 28445 mutex_enter(&connfp->connf_lock); 28446 for (connp = connfp->connf_head; connp != NULL; 28447 connp = connp->conn_next) { 28448 if (zoneid == GLOBAL_ZONEID || 28449 zoneid == connp->conn_zoneid) { 28450 CONN_INC_REF(connp); 28451 mutex_exit(&connfp->connf_lock); 28452 (*func)(connp, arg); 28453 mutex_enter(&connfp->connf_lock); 28454 CONN_DEC_REF(connp); 28455 } 28456 } 28457 mutex_exit(&connfp->connf_lock); 28458 connfp++; 28459 } 28460 } 28461 28462 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28463 static void 28464 conn_report1(conn_t *connp, void *mp) 28465 { 28466 char buf1[INET6_ADDRSTRLEN]; 28467 char buf2[INET6_ADDRSTRLEN]; 28468 uint_t print_len, buf_len; 28469 28470 ASSERT(connp != NULL); 28471 28472 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28473 if (buf_len <= 0) 28474 return; 28475 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28476 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28477 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28478 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28479 "%5d %s/%05d %s/%05d\n", 28480 (void *)connp, (void *)CONNP_TO_RQ(connp), 28481 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28482 buf1, connp->conn_lport, 28483 buf2, connp->conn_fport); 28484 if (print_len < buf_len) { 28485 ((mblk_t *)mp)->b_wptr += print_len; 28486 } else { 28487 ((mblk_t *)mp)->b_wptr += buf_len; 28488 } 28489 } 28490 28491 /* 28492 * Named Dispatch routine to produce a formatted report on all conns 28493 * that are listed in one of the fanout tables. 28494 * This report is accessed by using the ndd utility to "get" ND variable 28495 * "ip_conn_status". 28496 */ 28497 /* ARGSUSED */ 28498 static int 28499 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28500 { 28501 conn_t *connp = Q_TO_CONN(q); 28502 28503 (void) mi_mpprintf(mp, 28504 "CONN " MI_COL_HDRPAD_STR 28505 "rfq " MI_COL_HDRPAD_STR 28506 "stq " MI_COL_HDRPAD_STR 28507 " zone local remote"); 28508 28509 /* 28510 * Because of the ndd constraint, at most we can have 64K buffer 28511 * to put in all conn info. So to be more efficient, just 28512 * allocate a 64K buffer here, assuming we need that large buffer. 28513 * This should be OK as only privileged processes can do ndd /dev/ip. 28514 */ 28515 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28516 /* The following may work even if we cannot get a large buf. */ 28517 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28518 return (0); 28519 } 28520 28521 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28522 connp->conn_netstack->netstack_ip); 28523 return (0); 28524 } 28525 28526 /* 28527 * Determine if the ill and multicast aspects of that packets 28528 * "matches" the conn. 28529 */ 28530 boolean_t 28531 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28532 zoneid_t zoneid) 28533 { 28534 ill_t *in_ill; 28535 boolean_t found; 28536 ipif_t *ipif; 28537 ire_t *ire; 28538 ipaddr_t dst, src; 28539 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28540 28541 dst = ipha->ipha_dst; 28542 src = ipha->ipha_src; 28543 28544 /* 28545 * conn_incoming_ill is set by IP_BOUND_IF which limits 28546 * unicast, broadcast and multicast reception to 28547 * conn_incoming_ill. conn_wantpacket itself is called 28548 * only for BROADCAST and multicast. 28549 * 28550 * 1) ip_rput supresses duplicate broadcasts if the ill 28551 * is part of a group. Hence, we should be receiving 28552 * just one copy of broadcast for the whole group. 28553 * Thus, if it is part of the group the packet could 28554 * come on any ill of the group and hence we need a 28555 * match on the group. Otherwise, match on ill should 28556 * be sufficient. 28557 * 28558 * 2) ip_rput does not suppress duplicate multicast packets. 28559 * If there are two interfaces in a ill group and we have 28560 * 2 applications (conns) joined a multicast group G on 28561 * both the interfaces, ilm_lookup_ill filter in ip_rput 28562 * will give us two packets because we join G on both the 28563 * interfaces rather than nominating just one interface 28564 * for receiving multicast like broadcast above. So, 28565 * we have to call ilg_lookup_ill to filter out duplicate 28566 * copies, if ill is part of a group. 28567 */ 28568 in_ill = connp->conn_incoming_ill; 28569 if (in_ill != NULL) { 28570 if (in_ill->ill_group == NULL) { 28571 if (in_ill != ill) 28572 return (B_FALSE); 28573 } else if (in_ill->ill_group != ill->ill_group) { 28574 return (B_FALSE); 28575 } 28576 } 28577 28578 if (!CLASSD(dst)) { 28579 if (IPCL_ZONE_MATCH(connp, zoneid)) 28580 return (B_TRUE); 28581 /* 28582 * The conn is in a different zone; we need to check that this 28583 * broadcast address is configured in the application's zone and 28584 * on one ill in the group. 28585 */ 28586 ipif = ipif_get_next_ipif(NULL, ill); 28587 if (ipif == NULL) 28588 return (B_FALSE); 28589 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28590 connp->conn_zoneid, NULL, 28591 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28592 ipif_refrele(ipif); 28593 if (ire != NULL) { 28594 ire_refrele(ire); 28595 return (B_TRUE); 28596 } else { 28597 return (B_FALSE); 28598 } 28599 } 28600 28601 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28602 connp->conn_zoneid == zoneid) { 28603 /* 28604 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28605 * disabled, therefore we don't dispatch the multicast packet to 28606 * the sending zone. 28607 */ 28608 return (B_FALSE); 28609 } 28610 28611 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28612 /* 28613 * Multicast packet on the loopback interface: we only match 28614 * conns who joined the group in the specified zone. 28615 */ 28616 return (B_FALSE); 28617 } 28618 28619 if (connp->conn_multi_router) { 28620 /* multicast packet and multicast router socket: send up */ 28621 return (B_TRUE); 28622 } 28623 28624 mutex_enter(&connp->conn_lock); 28625 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28626 mutex_exit(&connp->conn_lock); 28627 return (found); 28628 } 28629 28630 /* 28631 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28632 */ 28633 /* ARGSUSED */ 28634 static void 28635 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28636 { 28637 ill_t *ill = (ill_t *)q->q_ptr; 28638 mblk_t *mp1, *mp2; 28639 ipif_t *ipif; 28640 int err = 0; 28641 conn_t *connp = NULL; 28642 ipsq_t *ipsq; 28643 arc_t *arc; 28644 28645 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28646 28647 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28648 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28649 28650 ASSERT(IAM_WRITER_ILL(ill)); 28651 mp2 = mp->b_cont; 28652 mp->b_cont = NULL; 28653 28654 /* 28655 * We have now received the arp bringup completion message 28656 * from ARP. Mark the arp bringup as done. Also if the arp 28657 * stream has already started closing, send up the AR_ARP_CLOSING 28658 * ack now since ARP is waiting in close for this ack. 28659 */ 28660 mutex_enter(&ill->ill_lock); 28661 ill->ill_arp_bringup_pending = 0; 28662 if (ill->ill_arp_closing) { 28663 mutex_exit(&ill->ill_lock); 28664 /* Let's reuse the mp for sending the ack */ 28665 arc = (arc_t *)mp->b_rptr; 28666 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28667 arc->arc_cmd = AR_ARP_CLOSING; 28668 qreply(q, mp); 28669 } else { 28670 mutex_exit(&ill->ill_lock); 28671 freeb(mp); 28672 } 28673 28674 ipsq = ill->ill_phyint->phyint_ipsq; 28675 ipif = ipsq->ipsq_pending_ipif; 28676 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28677 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28678 if (mp1 == NULL) { 28679 /* bringup was aborted by the user */ 28680 freemsg(mp2); 28681 return; 28682 } 28683 28684 /* 28685 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28686 * must have an associated conn_t. Otherwise, we're bringing this 28687 * interface back up as part of handling an asynchronous event (e.g., 28688 * physical address change). 28689 */ 28690 if (ipsq->ipsq_current_ioctl != 0) { 28691 ASSERT(connp != NULL); 28692 q = CONNP_TO_WQ(connp); 28693 } else { 28694 ASSERT(connp == NULL); 28695 q = ill->ill_rq; 28696 } 28697 28698 /* 28699 * If the DL_BIND_REQ fails, it is noted 28700 * in arc_name_offset. 28701 */ 28702 err = *((int *)mp2->b_rptr); 28703 if (err == 0) { 28704 if (ipif->ipif_isv6) { 28705 if ((err = ipif_up_done_v6(ipif)) != 0) 28706 ip0dbg(("ip_arp_done: init failed\n")); 28707 } else { 28708 if ((err = ipif_up_done(ipif)) != 0) 28709 ip0dbg(("ip_arp_done: init failed\n")); 28710 } 28711 } else { 28712 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28713 } 28714 28715 freemsg(mp2); 28716 28717 if ((err == 0) && (ill->ill_up_ipifs)) { 28718 err = ill_up_ipifs(ill, q, mp1); 28719 if (err == EINPROGRESS) 28720 return; 28721 } 28722 28723 if (ill->ill_up_ipifs) 28724 ill_group_cleanup(ill); 28725 28726 /* 28727 * The operation must complete without EINPROGRESS since 28728 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28729 * Otherwise, the operation will be stuck forever in the ipsq. 28730 */ 28731 ASSERT(err != EINPROGRESS); 28732 if (ipsq->ipsq_current_ioctl != 0) 28733 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28734 else 28735 ipsq_current_finish(ipsq); 28736 } 28737 28738 /* Allocate the private structure */ 28739 static int 28740 ip_priv_alloc(void **bufp) 28741 { 28742 void *buf; 28743 28744 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28745 return (ENOMEM); 28746 28747 *bufp = buf; 28748 return (0); 28749 } 28750 28751 /* Function to delete the private structure */ 28752 void 28753 ip_priv_free(void *buf) 28754 { 28755 ASSERT(buf != NULL); 28756 kmem_free(buf, sizeof (ip_priv_t)); 28757 } 28758 28759 /* 28760 * The entry point for IPPF processing. 28761 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28762 * routine just returns. 28763 * 28764 * When called, ip_process generates an ipp_packet_t structure 28765 * which holds the state information for this packet and invokes the 28766 * the classifier (via ipp_packet_process). The classification, depending on 28767 * configured filters, results in a list of actions for this packet. Invoking 28768 * an action may cause the packet to be dropped, in which case the resulting 28769 * mblk (*mpp) is NULL. proc indicates the callout position for 28770 * this packet and ill_index is the interface this packet on or will leave 28771 * on (inbound and outbound resp.). 28772 */ 28773 void 28774 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28775 { 28776 mblk_t *mp; 28777 ip_priv_t *priv; 28778 ipp_action_id_t aid; 28779 int rc = 0; 28780 ipp_packet_t *pp; 28781 #define IP_CLASS "ip" 28782 28783 /* If the classifier is not loaded, return */ 28784 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28785 return; 28786 } 28787 28788 mp = *mpp; 28789 ASSERT(mp != NULL); 28790 28791 /* Allocate the packet structure */ 28792 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28793 if (rc != 0) { 28794 *mpp = NULL; 28795 freemsg(mp); 28796 return; 28797 } 28798 28799 /* Allocate the private structure */ 28800 rc = ip_priv_alloc((void **)&priv); 28801 if (rc != 0) { 28802 *mpp = NULL; 28803 freemsg(mp); 28804 ipp_packet_free(pp); 28805 return; 28806 } 28807 priv->proc = proc; 28808 priv->ill_index = ill_index; 28809 ipp_packet_set_private(pp, priv, ip_priv_free); 28810 ipp_packet_set_data(pp, mp); 28811 28812 /* Invoke the classifier */ 28813 rc = ipp_packet_process(&pp); 28814 if (pp != NULL) { 28815 mp = ipp_packet_get_data(pp); 28816 ipp_packet_free(pp); 28817 if (rc != 0) { 28818 freemsg(mp); 28819 *mpp = NULL; 28820 } 28821 } else { 28822 *mpp = NULL; 28823 } 28824 #undef IP_CLASS 28825 } 28826 28827 /* 28828 * Propagate a multicast group membership operation (add/drop) on 28829 * all the interfaces crossed by the related multirt routes. 28830 * The call is considered successful if the operation succeeds 28831 * on at least one interface. 28832 */ 28833 static int 28834 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28835 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28836 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28837 mblk_t *first_mp) 28838 { 28839 ire_t *ire_gw; 28840 irb_t *irb; 28841 int error = 0; 28842 opt_restart_t *or; 28843 ip_stack_t *ipst = ire->ire_ipst; 28844 28845 irb = ire->ire_bucket; 28846 ASSERT(irb != NULL); 28847 28848 ASSERT(DB_TYPE(first_mp) == M_CTL); 28849 28850 or = (opt_restart_t *)first_mp->b_rptr; 28851 IRB_REFHOLD(irb); 28852 for (; ire != NULL; ire = ire->ire_next) { 28853 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28854 continue; 28855 if (ire->ire_addr != group) 28856 continue; 28857 28858 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28859 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28860 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28861 /* No resolver exists for the gateway; skip this ire. */ 28862 if (ire_gw == NULL) 28863 continue; 28864 28865 /* 28866 * This function can return EINPROGRESS. If so the operation 28867 * will be restarted from ip_restart_optmgmt which will 28868 * call ip_opt_set and option processing will restart for 28869 * this option. So we may end up calling 'fn' more than once. 28870 * This requires that 'fn' is idempotent except for the 28871 * return value. The operation is considered a success if 28872 * it succeeds at least once on any one interface. 28873 */ 28874 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28875 NULL, fmode, src, first_mp); 28876 if (error == 0) 28877 or->or_private = CGTP_MCAST_SUCCESS; 28878 28879 if (ip_debug > 0) { 28880 ulong_t off; 28881 char *ksym; 28882 ksym = kobj_getsymname((uintptr_t)fn, &off); 28883 ip2dbg(("ip_multirt_apply_membership: " 28884 "called %s, multirt group 0x%08x via itf 0x%08x, " 28885 "error %d [success %u]\n", 28886 ksym ? ksym : "?", 28887 ntohl(group), ntohl(ire_gw->ire_src_addr), 28888 error, or->or_private)); 28889 } 28890 28891 ire_refrele(ire_gw); 28892 if (error == EINPROGRESS) { 28893 IRB_REFRELE(irb); 28894 return (error); 28895 } 28896 } 28897 IRB_REFRELE(irb); 28898 /* 28899 * Consider the call as successful if we succeeded on at least 28900 * one interface. Otherwise, return the last encountered error. 28901 */ 28902 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28903 } 28904 28905 28906 /* 28907 * Issue a warning regarding a route crossing an interface with an 28908 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28909 * amount of time is logged. 28910 */ 28911 static void 28912 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28913 { 28914 hrtime_t current = gethrtime(); 28915 char buf[INET_ADDRSTRLEN]; 28916 ip_stack_t *ipst = ire->ire_ipst; 28917 28918 /* Convert interval in ms to hrtime in ns */ 28919 if (ipst->ips_multirt_bad_mtu_last_time + 28920 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28921 current) { 28922 cmn_err(CE_WARN, "ip: ignoring multiroute " 28923 "to %s, incorrect MTU %u (expected %u)\n", 28924 ip_dot_addr(ire->ire_addr, buf), 28925 ire->ire_max_frag, max_frag); 28926 28927 ipst->ips_multirt_bad_mtu_last_time = current; 28928 } 28929 } 28930 28931 28932 /* 28933 * Get the CGTP (multirouting) filtering status. 28934 * If 0, the CGTP hooks are transparent. 28935 */ 28936 /* ARGSUSED */ 28937 static int 28938 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28939 { 28940 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28941 28942 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28943 return (0); 28944 } 28945 28946 28947 /* 28948 * Set the CGTP (multirouting) filtering status. 28949 * If the status is changed from active to transparent 28950 * or from transparent to active, forward the new status 28951 * to the filtering module (if loaded). 28952 */ 28953 /* ARGSUSED */ 28954 static int 28955 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28956 cred_t *ioc_cr) 28957 { 28958 long new_value; 28959 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28960 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28961 28962 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28963 return (EPERM); 28964 28965 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28966 new_value < 0 || new_value > 1) { 28967 return (EINVAL); 28968 } 28969 28970 if ((!*ip_cgtp_filter_value) && new_value) { 28971 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28972 ipst->ips_ip_cgtp_filter_ops == NULL ? 28973 " (module not loaded)" : ""); 28974 } 28975 if (*ip_cgtp_filter_value && (!new_value)) { 28976 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28977 ipst->ips_ip_cgtp_filter_ops == NULL ? 28978 " (module not loaded)" : ""); 28979 } 28980 28981 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28982 int res; 28983 netstackid_t stackid; 28984 28985 stackid = ipst->ips_netstack->netstack_stackid; 28986 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28987 new_value); 28988 if (res) 28989 return (res); 28990 } 28991 28992 *ip_cgtp_filter_value = (boolean_t)new_value; 28993 28994 return (0); 28995 } 28996 28997 28998 /* 28999 * Return the expected CGTP hooks version number. 29000 */ 29001 int 29002 ip_cgtp_filter_supported(void) 29003 { 29004 return (ip_cgtp_filter_rev); 29005 } 29006 29007 29008 /* 29009 * CGTP hooks can be registered by invoking this function. 29010 * Checks that the version number matches. 29011 */ 29012 int 29013 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29014 { 29015 netstack_t *ns; 29016 ip_stack_t *ipst; 29017 29018 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29019 return (ENOTSUP); 29020 29021 ns = netstack_find_by_stackid(stackid); 29022 if (ns == NULL) 29023 return (EINVAL); 29024 ipst = ns->netstack_ip; 29025 ASSERT(ipst != NULL); 29026 29027 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29028 netstack_rele(ns); 29029 return (EALREADY); 29030 } 29031 29032 ipst->ips_ip_cgtp_filter_ops = ops; 29033 netstack_rele(ns); 29034 return (0); 29035 } 29036 29037 /* 29038 * CGTP hooks can be unregistered by invoking this function. 29039 * Returns ENXIO if there was no registration. 29040 * Returns EBUSY if the ndd variable has not been turned off. 29041 */ 29042 int 29043 ip_cgtp_filter_unregister(netstackid_t stackid) 29044 { 29045 netstack_t *ns; 29046 ip_stack_t *ipst; 29047 29048 ns = netstack_find_by_stackid(stackid); 29049 if (ns == NULL) 29050 return (EINVAL); 29051 ipst = ns->netstack_ip; 29052 ASSERT(ipst != NULL); 29053 29054 if (ipst->ips_ip_cgtp_filter) { 29055 netstack_rele(ns); 29056 return (EBUSY); 29057 } 29058 29059 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29060 netstack_rele(ns); 29061 return (ENXIO); 29062 } 29063 ipst->ips_ip_cgtp_filter_ops = NULL; 29064 netstack_rele(ns); 29065 return (0); 29066 } 29067 29068 /* 29069 * Check whether there is a CGTP filter registration. 29070 * Returns non-zero if there is a registration, otherwise returns zero. 29071 * Note: returns zero if bad stackid. 29072 */ 29073 int 29074 ip_cgtp_filter_is_registered(netstackid_t stackid) 29075 { 29076 netstack_t *ns; 29077 ip_stack_t *ipst; 29078 int ret; 29079 29080 ns = netstack_find_by_stackid(stackid); 29081 if (ns == NULL) 29082 return (0); 29083 ipst = ns->netstack_ip; 29084 ASSERT(ipst != NULL); 29085 29086 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29087 ret = 1; 29088 else 29089 ret = 0; 29090 29091 netstack_rele(ns); 29092 return (ret); 29093 } 29094 29095 static squeue_func_t 29096 ip_squeue_switch(int val) 29097 { 29098 squeue_func_t rval = squeue_fill; 29099 29100 switch (val) { 29101 case IP_SQUEUE_ENTER_NODRAIN: 29102 rval = squeue_enter_nodrain; 29103 break; 29104 case IP_SQUEUE_ENTER: 29105 rval = squeue_enter; 29106 break; 29107 default: 29108 break; 29109 } 29110 return (rval); 29111 } 29112 29113 /* ARGSUSED */ 29114 static int 29115 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29116 caddr_t addr, cred_t *cr) 29117 { 29118 int *v = (int *)addr; 29119 long new_value; 29120 29121 if (secpolicy_net_config(cr, B_FALSE) != 0) 29122 return (EPERM); 29123 29124 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29125 return (EINVAL); 29126 29127 ip_input_proc = ip_squeue_switch(new_value); 29128 *v = new_value; 29129 return (0); 29130 } 29131 29132 /* ARGSUSED */ 29133 static int 29134 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29135 caddr_t addr, cred_t *cr) 29136 { 29137 int *v = (int *)addr; 29138 long new_value; 29139 29140 if (secpolicy_net_config(cr, B_FALSE) != 0) 29141 return (EPERM); 29142 29143 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29144 return (EINVAL); 29145 29146 *v = new_value; 29147 return (0); 29148 } 29149 29150 /* 29151 * Handle changes to ipmp_hook_emulation ndd variable. 29152 * Need to update phyint_hook_ifindex. 29153 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29154 */ 29155 static void 29156 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29157 { 29158 phyint_t *phyi; 29159 phyint_t *phyi_tmp; 29160 char *groupname; 29161 int namelen; 29162 ill_t *ill; 29163 boolean_t new_group; 29164 29165 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29166 /* 29167 * Group indicies are stored in the phyint - a common structure 29168 * to both IPv4 and IPv6. 29169 */ 29170 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29171 for (; phyi != NULL; 29172 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29173 phyi, AVL_AFTER)) { 29174 /* Ignore the ones that do not have a group */ 29175 if (phyi->phyint_groupname_len == 0) 29176 continue; 29177 29178 /* 29179 * Look for other phyint in group. 29180 * Clear name/namelen so the lookup doesn't find ourselves. 29181 */ 29182 namelen = phyi->phyint_groupname_len; 29183 groupname = phyi->phyint_groupname; 29184 phyi->phyint_groupname_len = 0; 29185 phyi->phyint_groupname = NULL; 29186 29187 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29188 /* Restore */ 29189 phyi->phyint_groupname_len = namelen; 29190 phyi->phyint_groupname = groupname; 29191 29192 new_group = B_FALSE; 29193 if (ipst->ips_ipmp_hook_emulation) { 29194 /* 29195 * If the group already exists and has already 29196 * been assigned a group ifindex, we use the existing 29197 * group_ifindex, otherwise we pick a new group_ifindex 29198 * here. 29199 */ 29200 if (phyi_tmp != NULL && 29201 phyi_tmp->phyint_group_ifindex != 0) { 29202 phyi->phyint_group_ifindex = 29203 phyi_tmp->phyint_group_ifindex; 29204 } else { 29205 /* XXX We need a recovery strategy here. */ 29206 if (!ip_assign_ifindex( 29207 &phyi->phyint_group_ifindex, ipst)) 29208 cmn_err(CE_PANIC, 29209 "ip_assign_ifindex() failed"); 29210 new_group = B_TRUE; 29211 } 29212 } else { 29213 phyi->phyint_group_ifindex = 0; 29214 } 29215 if (ipst->ips_ipmp_hook_emulation) 29216 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29217 else 29218 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29219 29220 /* 29221 * For IP Filter to find out the relationship between 29222 * names and interface indicies, we need to generate 29223 * a NE_PLUMB event when a new group can appear. 29224 * We always generate events when a new interface appears 29225 * (even when ipmp_hook_emulation is set) so there 29226 * is no need to generate NE_PLUMB events when 29227 * ipmp_hook_emulation is turned off. 29228 * And since it isn't critical for IP Filter to get 29229 * the NE_UNPLUMB events we skip those here. 29230 */ 29231 if (new_group) { 29232 /* 29233 * First phyint in group - generate group PLUMB event. 29234 * Since we are not running inside the ipsq we do 29235 * the dispatch immediately. 29236 */ 29237 if (phyi->phyint_illv4 != NULL) 29238 ill = phyi->phyint_illv4; 29239 else 29240 ill = phyi->phyint_illv6; 29241 29242 if (ill != NULL) { 29243 mutex_enter(&ill->ill_lock); 29244 ill_nic_info_plumb(ill, B_TRUE); 29245 ill_nic_info_dispatch(ill); 29246 mutex_exit(&ill->ill_lock); 29247 } 29248 } 29249 } 29250 rw_exit(&ipst->ips_ill_g_lock); 29251 } 29252 29253 /* ARGSUSED */ 29254 static int 29255 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29256 caddr_t addr, cred_t *cr) 29257 { 29258 int *v = (int *)addr; 29259 long new_value; 29260 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29261 29262 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29263 return (EINVAL); 29264 29265 if (*v != new_value) { 29266 *v = new_value; 29267 ipmp_hook_emulation_changed(ipst); 29268 } 29269 return (0); 29270 } 29271 29272 static void * 29273 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29274 { 29275 kstat_t *ksp; 29276 29277 ip_stat_t template = { 29278 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29279 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29280 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29281 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29282 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29283 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29284 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29285 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29286 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29287 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29288 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29289 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29290 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29291 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29292 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29293 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29294 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29295 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29296 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29297 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29298 { "ip_opt", KSTAT_DATA_UINT64 }, 29299 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29300 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29301 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29302 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29303 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29304 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29305 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29306 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29307 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29308 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29309 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29310 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29311 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29312 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29313 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29314 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29315 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29316 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29317 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29318 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29319 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29320 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29321 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29322 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29323 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29324 }; 29325 29326 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29327 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29328 KSTAT_FLAG_VIRTUAL, stackid); 29329 29330 if (ksp == NULL) 29331 return (NULL); 29332 29333 bcopy(&template, ip_statisticsp, sizeof (template)); 29334 ksp->ks_data = (void *)ip_statisticsp; 29335 ksp->ks_private = (void *)(uintptr_t)stackid; 29336 29337 kstat_install(ksp); 29338 return (ksp); 29339 } 29340 29341 static void 29342 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29343 { 29344 if (ksp != NULL) { 29345 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29346 kstat_delete_netstack(ksp, stackid); 29347 } 29348 } 29349 29350 static void * 29351 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29352 { 29353 kstat_t *ksp; 29354 29355 ip_named_kstat_t template = { 29356 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29357 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29358 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29359 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29360 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29361 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29362 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29363 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29364 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29365 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29366 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29367 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29368 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29369 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29370 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29371 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29372 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29373 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29374 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29375 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29376 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29377 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29378 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29379 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29380 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29381 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29382 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29383 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29384 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29385 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29386 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29387 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29388 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29389 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29390 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29391 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29392 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29393 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29394 }; 29395 29396 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29397 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29398 if (ksp == NULL || ksp->ks_data == NULL) 29399 return (NULL); 29400 29401 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29402 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29403 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29404 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29405 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29406 29407 template.netToMediaEntrySize.value.i32 = 29408 sizeof (mib2_ipNetToMediaEntry_t); 29409 29410 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29411 29412 bcopy(&template, ksp->ks_data, sizeof (template)); 29413 ksp->ks_update = ip_kstat_update; 29414 ksp->ks_private = (void *)(uintptr_t)stackid; 29415 29416 kstat_install(ksp); 29417 return (ksp); 29418 } 29419 29420 static void 29421 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29422 { 29423 if (ksp != NULL) { 29424 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29425 kstat_delete_netstack(ksp, stackid); 29426 } 29427 } 29428 29429 static int 29430 ip_kstat_update(kstat_t *kp, int rw) 29431 { 29432 ip_named_kstat_t *ipkp; 29433 mib2_ipIfStatsEntry_t ipmib; 29434 ill_walk_context_t ctx; 29435 ill_t *ill; 29436 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29437 netstack_t *ns; 29438 ip_stack_t *ipst; 29439 29440 if (kp == NULL || kp->ks_data == NULL) 29441 return (EIO); 29442 29443 if (rw == KSTAT_WRITE) 29444 return (EACCES); 29445 29446 ns = netstack_find_by_stackid(stackid); 29447 if (ns == NULL) 29448 return (-1); 29449 ipst = ns->netstack_ip; 29450 if (ipst == NULL) { 29451 netstack_rele(ns); 29452 return (-1); 29453 } 29454 ipkp = (ip_named_kstat_t *)kp->ks_data; 29455 29456 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29457 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29458 ill = ILL_START_WALK_V4(&ctx, ipst); 29459 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29460 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29461 rw_exit(&ipst->ips_ill_g_lock); 29462 29463 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29464 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29465 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29466 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29467 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29468 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29469 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29470 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29471 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29472 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29473 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29474 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29475 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29476 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29477 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29478 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29479 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29480 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29481 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29482 29483 ipkp->routingDiscards.value.ui32 = 0; 29484 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29485 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29486 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29487 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29488 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29489 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29490 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29491 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29492 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29493 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29494 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29495 29496 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29497 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29498 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29499 29500 netstack_rele(ns); 29501 29502 return (0); 29503 } 29504 29505 static void * 29506 icmp_kstat_init(netstackid_t stackid) 29507 { 29508 kstat_t *ksp; 29509 29510 icmp_named_kstat_t template = { 29511 { "inMsgs", KSTAT_DATA_UINT32 }, 29512 { "inErrors", KSTAT_DATA_UINT32 }, 29513 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29514 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29515 { "inParmProbs", KSTAT_DATA_UINT32 }, 29516 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29517 { "inRedirects", KSTAT_DATA_UINT32 }, 29518 { "inEchos", KSTAT_DATA_UINT32 }, 29519 { "inEchoReps", KSTAT_DATA_UINT32 }, 29520 { "inTimestamps", KSTAT_DATA_UINT32 }, 29521 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29522 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29523 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29524 { "outMsgs", KSTAT_DATA_UINT32 }, 29525 { "outErrors", KSTAT_DATA_UINT32 }, 29526 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29527 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29528 { "outParmProbs", KSTAT_DATA_UINT32 }, 29529 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29530 { "outRedirects", KSTAT_DATA_UINT32 }, 29531 { "outEchos", KSTAT_DATA_UINT32 }, 29532 { "outEchoReps", KSTAT_DATA_UINT32 }, 29533 { "outTimestamps", KSTAT_DATA_UINT32 }, 29534 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29535 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29536 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29537 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29538 { "inUnknowns", KSTAT_DATA_UINT32 }, 29539 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29540 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29541 { "outDrops", KSTAT_DATA_UINT32 }, 29542 { "inOverFlows", KSTAT_DATA_UINT32 }, 29543 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29544 }; 29545 29546 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29547 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29548 if (ksp == NULL || ksp->ks_data == NULL) 29549 return (NULL); 29550 29551 bcopy(&template, ksp->ks_data, sizeof (template)); 29552 29553 ksp->ks_update = icmp_kstat_update; 29554 ksp->ks_private = (void *)(uintptr_t)stackid; 29555 29556 kstat_install(ksp); 29557 return (ksp); 29558 } 29559 29560 static void 29561 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29562 { 29563 if (ksp != NULL) { 29564 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29565 kstat_delete_netstack(ksp, stackid); 29566 } 29567 } 29568 29569 static int 29570 icmp_kstat_update(kstat_t *kp, int rw) 29571 { 29572 icmp_named_kstat_t *icmpkp; 29573 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29574 netstack_t *ns; 29575 ip_stack_t *ipst; 29576 29577 if ((kp == NULL) || (kp->ks_data == NULL)) 29578 return (EIO); 29579 29580 if (rw == KSTAT_WRITE) 29581 return (EACCES); 29582 29583 ns = netstack_find_by_stackid(stackid); 29584 if (ns == NULL) 29585 return (-1); 29586 ipst = ns->netstack_ip; 29587 if (ipst == NULL) { 29588 netstack_rele(ns); 29589 return (-1); 29590 } 29591 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29592 29593 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29594 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29595 icmpkp->inDestUnreachs.value.ui32 = 29596 ipst->ips_icmp_mib.icmpInDestUnreachs; 29597 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29598 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29599 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29600 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29601 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29602 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29603 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29604 icmpkp->inTimestampReps.value.ui32 = 29605 ipst->ips_icmp_mib.icmpInTimestampReps; 29606 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29607 icmpkp->inAddrMaskReps.value.ui32 = 29608 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29609 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29610 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29611 icmpkp->outDestUnreachs.value.ui32 = 29612 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29613 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29614 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29615 icmpkp->outSrcQuenchs.value.ui32 = 29616 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29617 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29618 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29619 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29620 icmpkp->outTimestamps.value.ui32 = 29621 ipst->ips_icmp_mib.icmpOutTimestamps; 29622 icmpkp->outTimestampReps.value.ui32 = 29623 ipst->ips_icmp_mib.icmpOutTimestampReps; 29624 icmpkp->outAddrMasks.value.ui32 = 29625 ipst->ips_icmp_mib.icmpOutAddrMasks; 29626 icmpkp->outAddrMaskReps.value.ui32 = 29627 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29628 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29629 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29630 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29631 icmpkp->outFragNeeded.value.ui32 = 29632 ipst->ips_icmp_mib.icmpOutFragNeeded; 29633 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29634 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29635 icmpkp->inBadRedirects.value.ui32 = 29636 ipst->ips_icmp_mib.icmpInBadRedirects; 29637 29638 netstack_rele(ns); 29639 return (0); 29640 } 29641 29642 /* 29643 * This is the fanout function for raw socket opened for SCTP. Note 29644 * that it is called after SCTP checks that there is no socket which 29645 * wants a packet. Then before SCTP handles this out of the blue packet, 29646 * this function is called to see if there is any raw socket for SCTP. 29647 * If there is and it is bound to the correct address, the packet will 29648 * be sent to that socket. Note that only one raw socket can be bound to 29649 * a port. This is assured in ipcl_sctp_hash_insert(); 29650 */ 29651 void 29652 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29653 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29654 zoneid_t zoneid) 29655 { 29656 conn_t *connp; 29657 queue_t *rq; 29658 mblk_t *first_mp; 29659 boolean_t secure; 29660 ip6_t *ip6h; 29661 ip_stack_t *ipst = recv_ill->ill_ipst; 29662 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29663 29664 first_mp = mp; 29665 if (mctl_present) { 29666 mp = first_mp->b_cont; 29667 secure = ipsec_in_is_secure(first_mp); 29668 ASSERT(mp != NULL); 29669 } else { 29670 secure = B_FALSE; 29671 } 29672 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29673 29674 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29675 if (connp == NULL) { 29676 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29677 return; 29678 } 29679 rq = connp->conn_rq; 29680 if (!canputnext(rq)) { 29681 CONN_DEC_REF(connp); 29682 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29683 freemsg(first_mp); 29684 return; 29685 } 29686 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29687 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29688 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29689 (isv4 ? ipha : NULL), ip6h, mctl_present); 29690 if (first_mp == NULL) { 29691 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29692 CONN_DEC_REF(connp); 29693 return; 29694 } 29695 } 29696 /* 29697 * We probably should not send M_CTL message up to 29698 * raw socket. 29699 */ 29700 if (mctl_present) 29701 freeb(first_mp); 29702 29703 /* Initiate IPPF processing here if needed. */ 29704 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29705 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29706 ip_process(IPP_LOCAL_IN, &mp, 29707 recv_ill->ill_phyint->phyint_ifindex); 29708 if (mp == NULL) { 29709 CONN_DEC_REF(connp); 29710 return; 29711 } 29712 } 29713 29714 if (connp->conn_recvif || connp->conn_recvslla || 29715 ((connp->conn_ip_recvpktinfo || 29716 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29717 (flags & IP_FF_IPINFO))) { 29718 int in_flags = 0; 29719 29720 /* 29721 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29722 * IPF_RECVIF. 29723 */ 29724 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29725 in_flags = IPF_RECVIF; 29726 } 29727 if (connp->conn_recvslla) { 29728 in_flags |= IPF_RECVSLLA; 29729 } 29730 if (isv4) { 29731 mp = ip_add_info(mp, recv_ill, in_flags, 29732 IPCL_ZONEID(connp), ipst); 29733 } else { 29734 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29735 if (mp == NULL) { 29736 BUMP_MIB(recv_ill->ill_ip_mib, 29737 ipIfStatsInDiscards); 29738 CONN_DEC_REF(connp); 29739 return; 29740 } 29741 } 29742 } 29743 29744 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29745 /* 29746 * We are sending the IPSEC_IN message also up. Refer 29747 * to comments above this function. 29748 */ 29749 putnext(rq, mp); 29750 CONN_DEC_REF(connp); 29751 } 29752 29753 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29754 { \ 29755 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29756 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29757 } 29758 /* 29759 * This function should be called only if all packet processing 29760 * including fragmentation is complete. Callers of this function 29761 * must set mp->b_prev to one of these values: 29762 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29763 * prior to handing over the mp as first argument to this function. 29764 * 29765 * If the ire passed by caller is incomplete, this function 29766 * queues the packet and if necessary, sends ARP request and bails. 29767 * If the ire passed is fully resolved, we simply prepend 29768 * the link-layer header to the packet, do ipsec hw acceleration 29769 * work if necessary, and send the packet out on the wire. 29770 * 29771 * NOTE: IPsec will only call this function with fully resolved 29772 * ires if hw acceleration is involved. 29773 * TODO list : 29774 * a Handle M_MULTIDATA so that 29775 * tcp_multisend->tcp_multisend_data can 29776 * call ip_xmit_v4 directly 29777 * b Handle post-ARP work for fragments so that 29778 * ip_wput_frag can call this function. 29779 */ 29780 ipxmit_state_t 29781 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29782 { 29783 nce_t *arpce; 29784 queue_t *q; 29785 int ill_index; 29786 mblk_t *nxt_mp, *first_mp; 29787 boolean_t xmit_drop = B_FALSE; 29788 ip_proc_t proc; 29789 ill_t *out_ill; 29790 int pkt_len; 29791 29792 arpce = ire->ire_nce; 29793 ASSERT(arpce != NULL); 29794 29795 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29796 29797 mutex_enter(&arpce->nce_lock); 29798 switch (arpce->nce_state) { 29799 case ND_REACHABLE: 29800 /* If there are other queued packets, queue this packet */ 29801 if (arpce->nce_qd_mp != NULL) { 29802 if (mp != NULL) 29803 nce_queue_mp_common(arpce, mp, B_FALSE); 29804 mp = arpce->nce_qd_mp; 29805 } 29806 arpce->nce_qd_mp = NULL; 29807 mutex_exit(&arpce->nce_lock); 29808 29809 /* 29810 * Flush the queue. In the common case, where the 29811 * ARP is already resolved, it will go through the 29812 * while loop only once. 29813 */ 29814 while (mp != NULL) { 29815 29816 nxt_mp = mp->b_next; 29817 mp->b_next = NULL; 29818 ASSERT(mp->b_datap->db_type != M_CTL); 29819 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29820 /* 29821 * This info is needed for IPQOS to do COS marking 29822 * in ip_wput_attach_llhdr->ip_process. 29823 */ 29824 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29825 mp->b_prev = NULL; 29826 29827 /* set up ill index for outbound qos processing */ 29828 out_ill = ire_to_ill(ire); 29829 ill_index = out_ill->ill_phyint->phyint_ifindex; 29830 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29831 ill_index); 29832 if (first_mp == NULL) { 29833 xmit_drop = B_TRUE; 29834 BUMP_MIB(out_ill->ill_ip_mib, 29835 ipIfStatsOutDiscards); 29836 goto next_mp; 29837 } 29838 /* non-ipsec hw accel case */ 29839 if (io == NULL || !io->ipsec_out_accelerated) { 29840 /* send it */ 29841 q = ire->ire_stq; 29842 if (proc == IPP_FWD_OUT) { 29843 UPDATE_IB_PKT_COUNT(ire); 29844 } else { 29845 UPDATE_OB_PKT_COUNT(ire); 29846 } 29847 ire->ire_last_used_time = lbolt; 29848 29849 if (flow_ctl_enabled || canputnext(q)) { 29850 if (proc == IPP_FWD_OUT) { 29851 29852 BUMP_MIB(out_ill->ill_ip_mib, 29853 ipIfStatsHCOutForwDatagrams); 29854 29855 } 29856 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29857 pkt_len); 29858 29859 putnext(q, first_mp); 29860 } else { 29861 BUMP_MIB(out_ill->ill_ip_mib, 29862 ipIfStatsOutDiscards); 29863 xmit_drop = B_TRUE; 29864 freemsg(first_mp); 29865 } 29866 } else { 29867 /* 29868 * Safety Pup says: make sure this 29869 * is going to the right interface! 29870 */ 29871 ill_t *ill1 = 29872 (ill_t *)ire->ire_stq->q_ptr; 29873 int ifindex = 29874 ill1->ill_phyint->phyint_ifindex; 29875 if (ifindex != 29876 io->ipsec_out_capab_ill_index) { 29877 xmit_drop = B_TRUE; 29878 freemsg(mp); 29879 } else { 29880 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29881 pkt_len); 29882 ipsec_hw_putnext(ire->ire_stq, mp); 29883 } 29884 } 29885 next_mp: 29886 mp = nxt_mp; 29887 } /* while (mp != NULL) */ 29888 if (xmit_drop) 29889 return (SEND_FAILED); 29890 else 29891 return (SEND_PASSED); 29892 29893 case ND_INITIAL: 29894 case ND_INCOMPLETE: 29895 29896 /* 29897 * While we do send off packets to dests that 29898 * use fully-resolved CGTP routes, we do not 29899 * handle unresolved CGTP routes. 29900 */ 29901 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29902 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29903 29904 if (mp != NULL) { 29905 /* queue the packet */ 29906 nce_queue_mp_common(arpce, mp, B_FALSE); 29907 } 29908 29909 if (arpce->nce_state == ND_INCOMPLETE) { 29910 mutex_exit(&arpce->nce_lock); 29911 DTRACE_PROBE3(ip__xmit__incomplete, 29912 (ire_t *), ire, (mblk_t *), mp, 29913 (ipsec_out_t *), io); 29914 return (LOOKUP_IN_PROGRESS); 29915 } 29916 29917 arpce->nce_state = ND_INCOMPLETE; 29918 mutex_exit(&arpce->nce_lock); 29919 /* 29920 * Note that ire_add() (called from ire_forward()) 29921 * holds a ref on the ire until ARP is completed. 29922 */ 29923 29924 ire_arpresolve(ire, ire_to_ill(ire)); 29925 return (LOOKUP_IN_PROGRESS); 29926 default: 29927 ASSERT(0); 29928 mutex_exit(&arpce->nce_lock); 29929 return (LLHDR_RESLV_FAILED); 29930 } 29931 } 29932 29933 #undef UPDATE_IP_MIB_OB_COUNTERS 29934 29935 /* 29936 * Return B_TRUE if the buffers differ in length or content. 29937 * This is used for comparing extension header buffers. 29938 * Note that an extension header would be declared different 29939 * even if all that changed was the next header value in that header i.e. 29940 * what really changed is the next extension header. 29941 */ 29942 boolean_t 29943 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29944 uint_t blen) 29945 { 29946 if (!b_valid) 29947 blen = 0; 29948 29949 if (alen != blen) 29950 return (B_TRUE); 29951 if (alen == 0) 29952 return (B_FALSE); /* Both zero length */ 29953 return (bcmp(abuf, bbuf, alen)); 29954 } 29955 29956 /* 29957 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29958 * Return B_FALSE if memory allocation fails - don't change any state! 29959 */ 29960 boolean_t 29961 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29962 const void *src, uint_t srclen) 29963 { 29964 void *dst; 29965 29966 if (!src_valid) 29967 srclen = 0; 29968 29969 ASSERT(*dstlenp == 0); 29970 if (src != NULL && srclen != 0) { 29971 dst = mi_alloc(srclen, BPRI_MED); 29972 if (dst == NULL) 29973 return (B_FALSE); 29974 } else { 29975 dst = NULL; 29976 } 29977 if (*dstp != NULL) 29978 mi_free(*dstp); 29979 *dstp = dst; 29980 *dstlenp = dst == NULL ? 0 : srclen; 29981 return (B_TRUE); 29982 } 29983 29984 /* 29985 * Replace what is in *dst, *dstlen with the source. 29986 * Assumes ip_allocbuf has already been called. 29987 */ 29988 void 29989 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29990 const void *src, uint_t srclen) 29991 { 29992 if (!src_valid) 29993 srclen = 0; 29994 29995 ASSERT(*dstlenp == srclen); 29996 if (src != NULL && srclen != 0) 29997 bcopy(src, *dstp, srclen); 29998 } 29999 30000 /* 30001 * Free the storage pointed to by the members of an ip6_pkt_t. 30002 */ 30003 void 30004 ip6_pkt_free(ip6_pkt_t *ipp) 30005 { 30006 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30007 30008 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30009 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30010 ipp->ipp_hopopts = NULL; 30011 ipp->ipp_hopoptslen = 0; 30012 } 30013 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30014 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30015 ipp->ipp_rtdstopts = NULL; 30016 ipp->ipp_rtdstoptslen = 0; 30017 } 30018 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30019 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30020 ipp->ipp_dstopts = NULL; 30021 ipp->ipp_dstoptslen = 0; 30022 } 30023 if (ipp->ipp_fields & IPPF_RTHDR) { 30024 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30025 ipp->ipp_rthdr = NULL; 30026 ipp->ipp_rthdrlen = 0; 30027 } 30028 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30029 IPPF_RTHDR); 30030 } 30031