1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 138 typedef struct ip_stat { 139 kstat_named_t ipsec_fanout_proto; 140 kstat_named_t ip_udp_fannorm; 141 kstat_named_t ip_udp_fanmb; 142 kstat_named_t ip_udp_fanothers; 143 kstat_named_t ip_udp_fast_path; 144 kstat_named_t ip_udp_slow_path; 145 kstat_named_t ip_udp_input_err; 146 kstat_named_t ip_tcppullup; 147 kstat_named_t ip_tcpoptions; 148 kstat_named_t ip_multipkttcp; 149 kstat_named_t ip_tcp_fast_path; 150 kstat_named_t ip_tcp_slow_path; 151 kstat_named_t ip_tcp_input_error; 152 kstat_named_t ip_db_ref; 153 kstat_named_t ip_notaligned1; 154 kstat_named_t ip_notaligned2; 155 kstat_named_t ip_multimblk3; 156 kstat_named_t ip_multimblk4; 157 kstat_named_t ip_ipoptions; 158 kstat_named_t ip_classify_fail; 159 kstat_named_t ip_opt; 160 kstat_named_t ip_udp_rput_local; 161 kstat_named_t ipsec_proto_ahesp; 162 kstat_named_t ip_conn_flputbq; 163 kstat_named_t ip_conn_walk_drain; 164 kstat_named_t ip_out_sw_cksum; 165 kstat_named_t ip_in_sw_cksum; 166 kstat_named_t ip_trash_ire_reclaim_calls; 167 kstat_named_t ip_trash_ire_reclaim_success; 168 kstat_named_t ip_ire_arp_timer_expired; 169 kstat_named_t ip_ire_redirect_timer_expired; 170 kstat_named_t ip_ire_pmtu_timer_expired; 171 kstat_named_t ip_input_multi_squeue; 172 kstat_named_t ip_tcp_in_full_hw_cksum_err; 173 kstat_named_t ip_tcp_in_part_hw_cksum_err; 174 kstat_named_t ip_tcp_in_sw_cksum_err; 175 kstat_named_t ip_tcp_out_sw_cksum_bytes; 176 kstat_named_t ip_udp_in_full_hw_cksum_err; 177 kstat_named_t ip_udp_in_part_hw_cksum_err; 178 kstat_named_t ip_udp_in_sw_cksum_err; 179 kstat_named_t ip_udp_out_sw_cksum_bytes; 180 kstat_named_t ip_frag_mdt_pkt_out; 181 kstat_named_t ip_frag_mdt_discarded; 182 kstat_named_t ip_frag_mdt_allocfail; 183 kstat_named_t ip_frag_mdt_addpdescfail; 184 kstat_named_t ip_frag_mdt_allocd; 185 } ip_stat_t; 186 187 static ip_stat_t ip_statistics = { 188 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 189 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 193 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 195 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 196 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 197 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 198 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 201 { "ip_db_ref", KSTAT_DATA_UINT64 }, 202 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 204 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 206 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 207 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 208 { "ip_opt", KSTAT_DATA_UINT64 }, 209 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 210 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 211 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 212 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 213 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 214 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 217 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 218 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 221 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 225 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 234 }; 235 236 static kstat_t *ip_kstat; 237 238 #define TCP6 "tcp6" 239 #define TCP "tcp" 240 #define SCTP "sctp" 241 #define SCTP6 "sctp6" 242 243 major_t TCP6_MAJ; 244 major_t TCP_MAJ; 245 major_t SCTP_MAJ; 246 major_t SCTP6_MAJ; 247 248 int ip_poll_normal_ms = 100; 249 int ip_poll_normal_ticks = 0; 250 251 /* 252 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 253 */ 254 255 struct listptr_s { 256 mblk_t *lp_head; /* pointer to the head of the list */ 257 mblk_t *lp_tail; /* pointer to the tail of the list */ 258 }; 259 260 typedef struct listptr_s listptr_t; 261 262 /* 263 * This is used by ip_snmp_get_mib2_ip_route_media and 264 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 265 */ 266 typedef struct iproutedata_s { 267 uint_t ird_idx; 268 listptr_t ird_route; /* ipRouteEntryTable */ 269 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 270 listptr_t ird_attrs; /* ipRouteAttributeTable */ 271 } iproutedata_t; 272 273 /* 274 * Cluster specific hooks. These should be NULL when booted as a non-cluster 275 */ 276 277 /* 278 * Hook functions to enable cluster networking 279 * On non-clustered systems these vectors must always be NULL. 280 * 281 * Hook function to Check ip specified ip address is a shared ip address 282 * in the cluster 283 * 284 */ 285 int (*cl_inet_isclusterwide)(uint8_t protocol, 286 sa_family_t addr_family, uint8_t *laddrp) = NULL; 287 288 /* 289 * Hook function to generate cluster wide ip fragment identifier 290 */ 291 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 292 uint8_t *laddrp, uint8_t *faddrp) = NULL; 293 294 /* 295 * Synchronization notes: 296 * 297 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 298 * MT level protection given by STREAMS. IP uses a combination of its own 299 * internal serialization mechanism and standard Solaris locking techniques. 300 * The internal serialization is per phyint (no IPMP) or per IPMP group. 301 * This is used to serialize plumbing operations, IPMP operations, certain 302 * multicast operations, most set ioctls, igmp/mld timers etc. 303 * 304 * Plumbing is a long sequence of operations involving message 305 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 306 * involved in plumbing operations. A natural model is to serialize these 307 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 308 * parallel without any interference. But various set ioctls on hme0 are best 309 * serialized. However if the system uses IPMP, the operations are easier if 310 * they are serialized on a per IPMP group basis since IPMP operations 311 * happen across ill's of a group. Thus the lowest common denominator is to 312 * serialize most set ioctls, multicast join/leave operations, IPMP operations 313 * igmp/mld timer operations, and processing of DLPI control messages received 314 * from drivers on a per IPMP group basis. If the system does not employ 315 * IPMP the serialization is on a per phyint basis. This serialization is 316 * provided by the ipsq_t and primitives operating on this. Details can 317 * be found in ip_if.c above the core primitives operating on ipsq_t. 318 * 319 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 320 * Simiarly lookup of an ire by a thread also returns a refheld ire. 321 * In addition ipif's and ill's referenced by the ire are also indirectly 322 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 323 * the ipif's address or netmask change as long as an ipif is refheld 324 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 325 * address of an ipif has to go through the ipsq_t. This ensures that only 326 * 1 such exclusive operation proceeds at any time on the ipif. It then 327 * deletes all ires associated with this ipif, and waits for all refcnts 328 * associated with this ipif to come down to zero. The address is changed 329 * only after the ipif has been quiesced. Then the ipif is brought up again. 330 * More details are described above the comment in ip_sioctl_flags. 331 * 332 * Packet processing is based mostly on IREs and are fully multi-threaded 333 * using standard Solaris MT techniques. 334 * 335 * There are explicit locks in IP to handle: 336 * - The ip_g_head list maintained by mi_open_link() and friends. 337 * 338 * - The reassembly data structures (one lock per hash bucket) 339 * 340 * - conn_lock is meant to protect conn_t fields. The fields actually 341 * protected by conn_lock are documented in the conn_t definition. 342 * 343 * - ire_lock to protect some of the fields of the ire, IRE tables 344 * (one lock per hash bucket). Refer to ip_ire.c for details. 345 * 346 * - ndp_g_lock and nce_lock for protecting NCEs. 347 * 348 * - ill_lock protects fields of the ill and ipif. Details in ip.h 349 * 350 * - ill_g_lock: This is a global reader/writer lock. Protects the following 351 * * The AVL tree based global multi list of all ills. 352 * * The linked list of all ipifs of an ill 353 * * The <ill-ipsq> mapping 354 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 355 * * The illgroup list threaded by ill_group_next. 356 * * <ill-phyint> association 357 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 358 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 359 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 360 * will all have to hold the ill_g_lock as writer for the actual duration 361 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 362 * may be found in the IPMP section. 363 * 364 * - ill_lock: This is a per ill mutex. 365 * It protects some members of the ill and is documented below. 366 * It also protects the <ill-ipsq> mapping 367 * It also protects the illgroup list threaded by ill_group_next. 368 * It also protects the <ill-phyint> assoc. 369 * It also protects the list of ipifs hanging off the ill. 370 * 371 * - ipsq_lock: This is a per ipsq_t mutex lock. 372 * This protects all the other members of the ipsq struct except 373 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 374 * 375 * - illgrp_lock: This is a per ill_group mutex lock. 376 * The only thing it protects is the illgrp_ill_schednext member of ill_group 377 * which dictates which is the next ill in an ill_group that is to be chosen 378 * for sending outgoing packets, through creation of an IRE_CACHE that 379 * references this ill. 380 * 381 * - phyint_lock: This is a per phyint mutex lock. Protects just the 382 * phyint_flags 383 * 384 * - ip_g_nd_lock: This is a global reader/writer lock. 385 * Any call to nd_load to load a new parameter to the ND table must hold the 386 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 387 * as reader. 388 * 389 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 390 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 391 * uniqueness check also done atomically. 392 * 393 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 394 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 395 * as a writer when adding or deleting elements from these lists, and 396 * as a reader when walking these lists to send a SADB update to the 397 * IPsec capable ills. 398 * 399 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 400 * group list linked by ill_usesrc_grp_next. It also protects the 401 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 402 * group is being added or deleted. This lock is taken as a reader when 403 * walking the list/group(eg: to get the number of members in a usesrc group). 404 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 405 * field is changing state i.e from NULL to non-NULL or vice-versa. For 406 * example, it is not necessary to take this lock in the initial portion 407 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 408 * ip_sioctl_flags since the these operations are executed exclusively and 409 * that ensures that the "usesrc group state" cannot change. The "usesrc 410 * group state" change can happen only in the latter part of 411 * ip_sioctl_slifusesrc and in ill_delete. 412 * 413 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 414 * 415 * To change the <ill-phyint> association, the ill_g_lock must be held 416 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 417 * must be held. 418 * 419 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 420 * and the ill_lock of the ill in question must be held. 421 * 422 * To change the <ill-illgroup> association the ill_g_lock must be held as 423 * writer and the ill_lock of the ill in question must be held. 424 * 425 * To add or delete an ipif from the list of ipifs hanging off the ill, 426 * ill_g_lock (writer) and ill_lock must be held and the thread must be 427 * a writer on the associated ipsq,. 428 * 429 * To add or delete an ill to the system, the ill_g_lock must be held as 430 * writer and the thread must be a writer on the associated ipsq. 431 * 432 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 433 * must be a writer on the associated ipsq. 434 * 435 * Lock hierarchy 436 * 437 * Some lock hierarchy scenarios are listed below. 438 * 439 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 440 * ill_g_lock -> illgrp_lock -> ill_lock 441 * ill_g_lock -> ill_lock(s) -> phyint_lock 442 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 443 * ill_g_lock -> ip_addr_avail_lock 444 * conn_lock -> irb_lock -> ill_lock -> ire_lock 445 * ill_g_lock -> ip_g_nd_lock 446 * 447 * When more than 1 ill lock is needed to be held, all ill lock addresses 448 * are sorted on address and locked starting from highest addressed lock 449 * downward. 450 * 451 * Mobile-IP scenarios 452 * 453 * irb_lock -> ill_lock -> ire_mrtun_lock 454 * irb_lock -> ill_lock -> ire_srcif_table_lock 455 * 456 * IPsec scenarios 457 * 458 * ipsa_lock -> ill_g_lock -> ill_lock 459 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ipsa_lock 461 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 462 * 463 * Trusted Solaris scenarios 464 * 465 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 466 * igsa_lock -> gcdb_lock 467 * gcgrp_rwlock -> ire_lock 468 * gcgrp_rwlock -> gcdb_lock 469 * 470 * IPSEC notes : 471 * 472 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 473 * in front of the actual packet. For outbound datagrams, the M_CTL 474 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 475 * information used by the IPSEC code for applying the right level of 476 * protection. The information initialized by IP in the ipsec_out_t 477 * is determined by the per-socket policy or global policy in the system. 478 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 479 * ipsec_info.h) which starts out with nothing in it. It gets filled 480 * with the right information if it goes through the AH/ESP code, which 481 * happens if the incoming packet is secure. The information initialized 482 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 483 * the policy requirements needed by per-socket policy or global policy 484 * is met or not. 485 * 486 * If there is both per-socket policy (set using setsockopt) and there 487 * is also global policy match for the 5 tuples of the socket, 488 * ipsec_override_policy() makes the decision of which one to use. 489 * 490 * For fully connected sockets i.e dst, src [addr, port] is known, 491 * conn_policy_cached is set indicating that policy has been cached. 492 * conn_in_enforce_policy may or may not be set depending on whether 493 * there is a global policy match or per-socket policy match. 494 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 495 * Once the right policy is set on the conn_t, policy cannot change for 496 * this socket. This makes life simpler for TCP (UDP ?) where 497 * re-transmissions go out with the same policy. For symmetry, policy 498 * is cached for fully connected UDP sockets also. Thus if policy is cached, 499 * it also implies that policy is latched i.e policy cannot change 500 * on these sockets. As we have the right policy on the conn, we don't 501 * have to lookup global policy for every outbound and inbound datagram 502 * and thus serving as an optimization. Note that a global policy change 503 * does not affect fully connected sockets if they have policy. If fully 504 * connected sockets did not have any policy associated with it, global 505 * policy change may affect them. 506 * 507 * IP Flow control notes: 508 * 509 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 510 * cannot be sent down to the driver by IP, because of a canput failure, IP 511 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 512 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 513 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 514 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 515 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 516 * the queued messages, and removes the conn from the drain list, if all 517 * messages were drained. It also qenables the next conn in the drain list to 518 * continue the drain process. 519 * 520 * In reality the drain list is not a single list, but a configurable number 521 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 522 * list. If the ip_wsrv of the next qenabled conn does not run, because the 523 * stream closes, ip_close takes responsibility to qenable the next conn in 524 * the drain list. The directly called ip_wput path always does a putq, if 525 * it cannot putnext. Thus synchronization problems are handled between 526 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 527 * functions that manipulate this drain list. Furthermore conn_drain_insert 528 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 529 * running on a queue at any time. conn_drain_tail can be simultaneously called 530 * from both ip_wsrv and ip_close. 531 * 532 * IPQOS notes: 533 * 534 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 535 * and IPQoS modules. IPPF includes hooks in IP at different control points 536 * (callout positions) which direct packets to IPQoS modules for policy 537 * processing. Policies, if present, are global. 538 * 539 * The callout positions are located in the following paths: 540 * o local_in (packets destined for this host) 541 * o local_out (packets orginating from this host ) 542 * o fwd_in (packets forwarded by this m/c - inbound) 543 * o fwd_out (packets forwarded by this m/c - outbound) 544 * Hooks at these callout points can be enabled/disabled using the ndd variable 545 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 546 * By default all the callout positions are enabled. 547 * 548 * Outbound (local_out) 549 * Hooks are placed in ip_wput_ire and ipsec_out_process. 550 * 551 * Inbound (local_in) 552 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 553 * TCP and UDP fanout routines. 554 * 555 * Forwarding (in and out) 556 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 557 * 558 * IP Policy Framework processing (IPPF processing) 559 * Policy processing for a packet is initiated by ip_process, which ascertains 560 * that the classifier (ipgpc) is loaded and configured, failing which the 561 * packet resumes normal processing in IP. If the clasifier is present, the 562 * packet is acted upon by one or more IPQoS modules (action instances), per 563 * filters configured in ipgpc and resumes normal IP processing thereafter. 564 * An action instance can drop a packet in course of its processing. 565 * 566 * A boolean variable, ip_policy, is used in all the fanout routines that can 567 * invoke ip_process for a packet. This variable indicates if the packet should 568 * to be sent for policy processing. The variable is set to B_TRUE by default, 569 * i.e. when the routines are invoked in the normal ip procesing path for a 570 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 571 * ip_policy is set to B_FALSE for all the routines called in these two 572 * functions because, in the former case, we don't process loopback traffic 573 * currently while in the latter, the packets have already been processed in 574 * icmp_inbound. 575 * 576 * Zones notes: 577 * 578 * The partitioning rules for networking are as follows: 579 * 1) Packets coming from a zone must have a source address belonging to that 580 * zone. 581 * 2) Packets coming from a zone can only be sent on a physical interface on 582 * which the zone has an IP address. 583 * 3) Between two zones on the same machine, packet delivery is only allowed if 584 * there's a matching route for the destination and zone in the forwarding 585 * table. 586 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 587 * different zones can bind to the same port with the wildcard address 588 * (INADDR_ANY). 589 * 590 * The granularity of interface partitioning is at the logical interface level. 591 * Therefore, every zone has its own IP addresses, and incoming packets can be 592 * attributed to a zone unambiguously. A logical interface is placed into a zone 593 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 594 * structure. Rule (1) is implemented by modifying the source address selection 595 * algorithm so that the list of eligible addresses is filtered based on the 596 * sending process zone. 597 * 598 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 599 * across all zones, depending on their type. Here is the break-up: 600 * 601 * IRE type Shared/exclusive 602 * -------- ---------------- 603 * IRE_BROADCAST Exclusive 604 * IRE_DEFAULT (default routes) Shared (*) 605 * IRE_LOCAL Exclusive 606 * IRE_LOOPBACK Exclusive 607 * IRE_PREFIX (net routes) Shared (*) 608 * IRE_CACHE Exclusive 609 * IRE_IF_NORESOLVER (interface routes) Exclusive 610 * IRE_IF_RESOLVER (interface routes) Exclusive 611 * IRE_HOST (host routes) Shared (*) 612 * 613 * (*) A zone can only use a default or off-subnet route if the gateway is 614 * directly reachable from the zone, that is, if the gateway's address matches 615 * one of the zone's logical interfaces. 616 * 617 * Multiple zones can share a common broadcast address; typically all zones 618 * share the 255.255.255.255 address. Incoming as well as locally originated 619 * broadcast packets must be dispatched to all the zones on the broadcast 620 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 621 * since some zones may not be on the 10.16.72/24 network. To handle this, each 622 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 623 * sent to every zone that has an IRE_BROADCAST entry for the destination 624 * address on the input ill, see conn_wantpacket(). 625 * 626 * Applications in different zones can join the same multicast group address. 627 * For IPv4, group memberships are per-logical interface, so they're already 628 * inherently part of a zone. For IPv6, group memberships are per-physical 629 * interface, so we distinguish IPv6 group memberships based on group address, 630 * interface and zoneid. In both cases, received multicast packets are sent to 631 * every zone for which a group membership entry exists. On IPv6 we need to 632 * check that the target zone still has an address on the receiving physical 633 * interface; it could have been removed since the application issued the 634 * IPV6_JOIN_GROUP. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 #define IS_SIMPLE_IPH(ipha) \ 650 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 651 652 /* RFC1122 Conformance */ 653 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 654 655 #define ILL_MAX_NAMELEN LIFNAMSIZ 656 657 /* Leave room for ip_newroute to tack on the src and target addresses */ 658 #define OK_RESOLVER_MP(mp) \ 659 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 660 661 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 662 663 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 664 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 665 666 static void icmp_frag_needed(queue_t *, mblk_t *, int); 667 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 668 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 669 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 670 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 671 mblk_t *mp); 672 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 673 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 674 ill_t *, zoneid_t); 675 static void icmp_options_update(ipha_t *); 676 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 677 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 678 static mblk_t *icmp_pkt_err_ok(mblk_t *); 679 static void icmp_redirect(mblk_t *); 680 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 681 682 static void ip_arp_news(queue_t *, mblk_t *); 683 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 684 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 685 char *ip_dot_addr(ipaddr_t, char *); 686 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 687 int ip_close(queue_t *, int); 688 static char *ip_dot_saddr(uchar_t *, char *); 689 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 690 boolean_t, boolean_t, ill_t *, zoneid_t); 691 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 692 boolean_t, boolean_t, zoneid_t); 693 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 694 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static void ip_lrput(queue_t *, mblk_t *); 696 ipaddr_t ip_massage_options(ipha_t *); 697 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 698 ipaddr_t ip_net_mask(ipaddr_t); 699 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 700 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 701 conn_t *, uint32_t); 702 static int ip_hdr_complete(ipha_t *, zoneid_t); 703 char *ip_nv_lookup(nv_t *, int); 704 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 705 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 706 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 707 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 708 size_t); 709 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 710 void ip_rput(queue_t *, mblk_t *); 711 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 712 void *dummy_arg); 713 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 714 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 715 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 716 ire_t *); 717 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 718 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 719 uint16_t *); 720 int ip_snmp_get(queue_t *, mblk_t *); 721 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 722 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 723 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 724 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 725 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 726 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 727 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 728 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 729 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 730 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 731 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 732 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 733 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 734 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 735 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 736 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 737 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 738 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 739 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 740 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 741 static boolean_t ip_source_routed(ipha_t *); 742 static boolean_t ip_source_route_included(ipha_t *); 743 744 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 745 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 746 static void ip_wput_local_options(ipha_t *); 747 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 748 zoneid_t); 749 750 static void conn_drain_init(void); 751 static void conn_drain_fini(void); 752 static void conn_drain_tail(conn_t *connp, boolean_t closing); 753 754 static void conn_walk_drain(void); 755 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 756 zoneid_t); 757 758 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 759 zoneid_t); 760 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 761 void *dummy_arg); 762 763 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 764 765 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 766 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 767 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 768 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 769 770 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 771 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 772 caddr_t, cred_t *); 773 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 774 caddr_t cp, cred_t *cr); 775 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 776 cred_t *); 777 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 778 caddr_t cp, cred_t *cr); 779 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 780 cred_t *); 781 static squeue_func_t ip_squeue_switch(int); 782 783 static void ip_kstat_init(void); 784 static void ip_kstat_fini(void); 785 static int ip_kstat_update(kstat_t *kp, int rw); 786 static void icmp_kstat_init(void); 787 static void icmp_kstat_fini(void); 788 static int icmp_kstat_update(kstat_t *kp, int rw); 789 790 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 791 792 static boolean_t ip_no_forward(ipha_t *, ill_t *); 793 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 794 795 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 796 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 797 798 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 799 800 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 801 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 802 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 803 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 804 805 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 806 uint_t ip_ire_default_index; /* Walking index used to mod in */ 807 808 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 809 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 810 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 811 812 /* How long, in seconds, we allow frags to hang around. */ 813 #define IP_FRAG_TIMEOUT 60 814 815 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 816 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 817 818 /* 819 * Threshold which determines whether MDT should be used when 820 * generating IP fragments; payload size must be greater than 821 * this threshold for MDT to take place. 822 */ 823 #define IP_WPUT_FRAG_MDT_MIN 32768 824 825 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 826 827 /* Protected by ip_mi_lock */ 828 static void *ip_g_head; /* Instance Data List Head */ 829 kmutex_t ip_mi_lock; /* Lock for list of instances */ 830 831 /* Only modified during _init and _fini thus no locking is needed. */ 832 caddr_t ip_g_nd; /* Named Dispatch List Head */ 833 834 835 static long ip_rput_pullups; 836 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 837 838 vmem_t *ip_minor_arena; 839 840 /* 841 * MIB-2 stuff for SNMP (both IP and ICMP) 842 */ 843 mib2_ip_t ip_mib; 844 mib2_icmp_t icmp_mib; 845 846 #ifdef DEBUG 847 uint32_t ipsechw_debug = 0; 848 #endif 849 850 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 851 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 852 853 uint_t loopback_packets = 0; 854 855 /* 856 * Multirouting/CGTP stuff 857 */ 858 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 859 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 860 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 861 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 862 hrtime_t ip_multirt_log_interval = 1000; 863 /* Time since last warning issued. */ 864 static hrtime_t multirt_bad_mtu_last_time = 0; 865 866 kmutex_t ip_trash_timer_lock; 867 krwlock_t ip_g_nd_lock; 868 869 /* 870 * XXX following really should only be in a header. Would need more 871 * header and .c clean up first. 872 */ 873 extern optdb_obj_t ip_opt_obj; 874 875 ulong_t ip_squeue_enter_unbound = 0; 876 877 /* 878 * Named Dispatch Parameter Table. 879 * All of these are alterable, within the min/max values given, at run time. 880 */ 881 static ipparam_t lcl_param_arr[] = { 882 /* min max value name */ 883 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 884 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 885 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 886 { 0, 1, 0, "ip_respond_to_timestamp"}, 887 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 888 { 0, 1, 1, "ip_send_redirects"}, 889 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 890 { 0, 10, 0, "ip_debug"}, 891 { 0, 10, 0, "ip_mrtdebug"}, 892 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 893 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 894 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 895 { 1, 255, 255, "ip_def_ttl" }, 896 { 0, 1, 0, "ip_forward_src_routed"}, 897 { 0, 256, 32, "ip_wroff_extra" }, 898 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 899 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 900 { 0, 1, 1, "ip_path_mtu_discovery" }, 901 { 0, 240, 30, "ip_ignore_delete_time" }, 902 { 0, 1, 0, "ip_ignore_redirect" }, 903 { 0, 1, 1, "ip_output_queue" }, 904 { 1, 254, 1, "ip_broadcast_ttl" }, 905 { 0, 99999, 100, "ip_icmp_err_interval" }, 906 { 1, 99999, 10, "ip_icmp_err_burst" }, 907 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 908 { 0, 1, 0, "ip_strict_dst_multihoming" }, 909 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 910 { 0, 1, 0, "ipsec_override_persocket_policy" }, 911 { 0, 1, 1, "icmp_accept_clear_messages" }, 912 { 0, 1, 1, "igmp_accept_clear_messages" }, 913 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 914 "ip_ndp_delay_first_probe_time"}, 915 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 916 "ip_ndp_max_unicast_solicit"}, 917 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 918 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 919 { 0, 1, 0, "ip6_forward_src_routed"}, 920 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 921 { 0, 1, 1, "ip6_send_redirects"}, 922 { 0, 1, 0, "ip6_ignore_redirect" }, 923 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 924 925 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 926 927 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 928 929 { 0, 1, 1, "pim_accept_clear_messages" }, 930 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 931 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 932 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 933 { 0, 15, 0, "ip_policy_mask" }, 934 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 935 { 0, 255, 1, "ip_multirt_ttl" }, 936 { 0, 1, 1, "ip_multidata_outbound" }, 937 #ifdef DEBUG 938 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 939 #endif 940 }; 941 942 ipparam_t *ip_param_arr = lcl_param_arr; 943 944 /* Extended NDP table */ 945 static ipndp_t lcl_ndp_arr[] = { 946 /* getf setf data name */ 947 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 948 "ip_forwarding" }, 949 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 950 "ip6_forwarding" }, 951 { ip_ill_report, NULL, NULL, 952 "ip_ill_status" }, 953 { ip_ipif_report, NULL, NULL, 954 "ip_ipif_status" }, 955 { ip_ire_report, NULL, NULL, 956 "ipv4_ire_status" }, 957 { ip_ire_report_mrtun, NULL, NULL, 958 "ipv4_mrtun_ire_status" }, 959 { ip_ire_report_srcif, NULL, NULL, 960 "ipv4_srcif_ire_status" }, 961 { ip_ire_report_v6, NULL, NULL, 962 "ipv6_ire_status" }, 963 { ip_conn_report, NULL, NULL, 964 "ip_conn_status" }, 965 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 966 "ip_rput_pullups" }, 967 { ndp_report, NULL, NULL, 968 "ip_ndp_cache_report" }, 969 { ip_srcid_report, NULL, NULL, 970 "ip_srcid_status" }, 971 { ip_param_generic_get, ip_squeue_profile_set, 972 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 973 { ip_param_generic_get, ip_squeue_bind_set, 974 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 975 { ip_param_generic_get, ip_input_proc_set, 976 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 977 { ip_param_generic_get, ip_int_set, 978 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 979 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 980 "ip_cgtp_filter" }, 981 { ip_param_generic_get, ip_int_set, 982 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 983 }; 984 985 /* 986 * ip_g_forward controls IP forwarding. It takes two values: 987 * 0: IP_FORWARD_NEVER Don't forward packets ever. 988 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 989 * 990 * RFC1122 says there must be a configuration switch to control forwarding, 991 * but that the default MUST be to not forward packets ever. Implicit 992 * control based on configuration of multiple interfaces MUST NOT be 993 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 994 * and, in fact, it was the default. That capability is now provided in the 995 * /etc/rc2.d/S69inet script. 996 */ 997 int ip_g_forward = IP_FORWARD_DEFAULT; 998 999 /* It also has an IPv6 counterpart. */ 1000 1001 int ipv6_forward = IP_FORWARD_DEFAULT; 1002 1003 /* Following line is external, and in ip.h. Normally marked with * *. */ 1004 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 1005 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 1006 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 1007 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 1008 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 1009 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 1010 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 1011 #define ip_debug ip_param_arr[7].ip_param_value /* */ 1012 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 1013 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 1014 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 1015 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 1016 #define ip_def_ttl ip_param_arr[12].ip_param_value 1017 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 1018 #define ip_wroff_extra ip_param_arr[14].ip_param_value 1019 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 1020 #define ip_icmp_return ip_param_arr[16].ip_param_value 1021 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 1022 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 1023 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 1024 #define ip_output_queue ip_param_arr[20].ip_param_value 1025 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 1026 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 1027 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 1028 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 1029 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 1030 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 1031 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 1032 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1033 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1034 1035 /* IPv6 configuration knobs */ 1036 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1037 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1038 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1039 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1040 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1041 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1042 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1043 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1044 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1045 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1046 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1047 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1048 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1049 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1050 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1051 #define ip_policy_mask ip_param_arr[45].ip_param_value 1052 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1053 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1054 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1055 #ifdef DEBUG 1056 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1057 #else 1058 #define ipv6_drop_inbound_icmpv6 0 1059 #endif 1060 1061 1062 /* 1063 * Table of IP ioctls encoding the various properties of the ioctl and 1064 * indexed based on the last byte of the ioctl command. Occasionally there 1065 * is a clash, and there is more than 1 ioctl with the same last byte. 1066 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1067 * ioctls are encoded in the misc table. An entry in the ndx table is 1068 * retrieved by indexing on the last byte of the ioctl command and comparing 1069 * the ioctl command with the value in the ndx table. In the event of a 1070 * mismatch the misc table is then searched sequentially for the desired 1071 * ioctl command. 1072 * 1073 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1074 */ 1075 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1076 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1088 MISC_CMD, ip_siocaddrt, NULL }, 1089 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1090 MISC_CMD, ip_siocdelrt, NULL }, 1091 1092 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1093 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1094 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_addr, NULL }, 1096 1097 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1098 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1099 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1100 IPI_GET_CMD | IPI_REPL, 1101 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1102 1103 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1104 IPI_PRIV | IPI_WR | IPI_REPL, 1105 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1106 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1107 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1108 IF_CMD, ip_sioctl_get_flags, NULL }, 1109 1110 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* copyin size cannot be coded for SIOCGIFCONF */ 1114 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1115 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1116 1117 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1118 IF_CMD, ip_sioctl_mtu, NULL }, 1119 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_mtu, NULL }, 1121 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1124 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1125 IF_CMD, ip_sioctl_brdaddr, NULL }, 1126 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 IF_CMD, ip_sioctl_get_netmask, NULL }, 1129 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1130 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1131 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 IF_CMD, ip_sioctl_get_metric, NULL }, 1134 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1135 IF_CMD, ip_sioctl_metric, NULL }, 1136 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* See 166-168 below for extended SIOC*XARP ioctls */ 1139 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1142 MISC_CMD, ip_sioctl_arp, NULL }, 1143 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1144 MISC_CMD, ip_sioctl_arp, NULL }, 1145 1146 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 1168 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1169 MISC_CMD, if_unitsel, if_unitsel_restart }, 1170 1171 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 1190 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1191 IPI_PRIV | IPI_WR | IPI_MODOK, 1192 IF_CMD, ip_sioctl_sifname, NULL }, 1193 1194 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 1208 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1209 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1210 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1211 IF_CMD, ip_sioctl_get_muxid, NULL }, 1212 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 IF_CMD, ip_sioctl_muxid, NULL }, 1215 1216 /* Both if and lif variants share same func */ 1217 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1218 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1219 /* Both if and lif variants share same func */ 1220 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 IF_CMD, ip_sioctl_slifindex, NULL }, 1223 1224 /* copyin size cannot be coded for SIOCGIFCONF */ 1225 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1226 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1227 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_removeif, 1248 ip_sioctl_removeif_restart }, 1249 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1251 LIF_CMD, ip_sioctl_addif, NULL }, 1252 #define SIOCLIFADDR_NDX 112 1253 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1255 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_addr, NULL }, 1258 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1259 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1260 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1261 IPI_GET_CMD | IPI_REPL, 1262 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1263 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1264 IPI_PRIV | IPI_WR | IPI_REPL, 1265 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1266 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_flags, NULL }, 1269 1270 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1271 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 1273 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1274 ip_sioctl_get_lifconf, NULL }, 1275 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1276 LIF_CMD, ip_sioctl_mtu, NULL }, 1277 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1279 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1282 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1284 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1285 IPI_GET_CMD | IPI_REPL, 1286 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1287 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1289 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_metric, NULL }, 1292 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1293 LIF_CMD, ip_sioctl_metric, NULL }, 1294 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1296 LIF_CMD, ip_sioctl_slifname, 1297 ip_sioctl_slifname_restart }, 1298 1299 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1300 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1301 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1302 IPI_GET_CMD | IPI_REPL, 1303 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1304 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1305 IPI_PRIV | IPI_WR | IPI_REPL, 1306 LIF_CMD, ip_sioctl_muxid, NULL }, 1307 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1310 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1311 IPI_PRIV | IPI_WR | IPI_REPL, 1312 LIF_CMD, ip_sioctl_slifindex, 0 }, 1313 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_token, NULL }, 1315 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1316 IPI_GET_CMD | IPI_REPL, 1317 LIF_CMD, ip_sioctl_get_token, NULL }, 1318 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1319 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1320 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1321 IPI_GET_CMD | IPI_REPL, 1322 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1323 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1324 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1325 1326 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1327 IPI_GET_CMD | IPI_REPL, 1328 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1329 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocdelndp_v6, NULL }, 1331 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1332 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1333 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1334 LIF_CMD, ip_siocsetndp_v6, NULL }, 1335 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1336 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1337 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1338 MISC_CMD, ip_sioctl_tonlink, NULL }, 1339 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1340 MISC_CMD, ip_sioctl_tmysite, NULL }, 1341 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1342 TUN_CMD, ip_sioctl_tunparam, NULL }, 1343 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1344 IPI_PRIV | IPI_WR, 1345 TUN_CMD, ip_sioctl_tunparam, NULL }, 1346 1347 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1348 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1349 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1350 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1351 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1352 1353 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1354 IPI_PRIV | IPI_WR | IPI_REPL, 1355 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1356 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1357 IPI_PRIV | IPI_WR | IPI_REPL, 1358 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1359 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1360 IPI_PRIV | IPI_WR, 1361 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1362 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1365 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1366 IPI_GET_CMD | IPI_REPL, 1367 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1368 1369 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1370 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 1374 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1375 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1376 1377 /* These are handled in ip_sioctl_copyin_setup itself */ 1378 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1379 MISC_CMD, NULL, NULL }, 1380 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1381 MISC_CMD, NULL, NULL }, 1382 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1383 1384 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1385 ip_sioctl_get_lifconf, NULL }, 1386 1387 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1390 MISC_CMD, ip_sioctl_xarp, NULL }, 1391 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1392 MISC_CMD, ip_sioctl_xarp, NULL }, 1393 1394 /* SIOCPOPSOCKFS is not handled by IP */ 1395 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1396 1397 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1398 IPI_GET_CMD | IPI_REPL, 1399 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1400 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1401 IPI_PRIV | IPI_WR | IPI_REPL, 1402 LIF_CMD, ip_sioctl_slifzone, 1403 ip_sioctl_slifzone_restart }, 1404 /* 172-174 are SCTP ioctls and not handled by IP */ 1405 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1406 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1407 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1408 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1409 IPI_GET_CMD, LIF_CMD, 1410 ip_sioctl_get_lifusesrc, 0 }, 1411 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1412 IPI_PRIV | IPI_WR, 1413 LIF_CMD, ip_sioctl_slifusesrc, 1414 NULL }, 1415 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1416 ip_sioctl_get_lifsrcof, NULL }, 1417 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1422 MISC_CMD, ip_sioctl_msfilter, NULL }, 1423 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1424 MISC_CMD, ip_sioctl_msfilter, NULL }, 1425 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1426 ip_sioctl_set_ipmpfailback, NULL } 1427 }; 1428 1429 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1430 1431 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1432 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1433 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1434 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1435 TUN_CMD, ip_sioctl_tunparam, NULL }, 1436 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1439 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1440 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1441 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1442 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1443 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl}, 1445 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1446 MISC_CMD, mrt_ioctl}, 1447 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1448 MISC_CMD, mrt_ioctl} 1449 }; 1450 1451 int ip_misc_ioctl_count = 1452 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1453 1454 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1455 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1456 static int conn_drain_list_index; /* Next drain_list to be used */ 1457 int conn_drain_nthreads; /* Number of drainers reqd. */ 1458 /* Settable in /etc/system */ 1459 1460 /* Defined in ip_ire.c */ 1461 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1462 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1463 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1464 1465 static nv_t ire_nv_arr[] = { 1466 { IRE_BROADCAST, "BROADCAST" }, 1467 { IRE_LOCAL, "LOCAL" }, 1468 { IRE_LOOPBACK, "LOOPBACK" }, 1469 { IRE_CACHE, "CACHE" }, 1470 { IRE_DEFAULT, "DEFAULT" }, 1471 { IRE_PREFIX, "PREFIX" }, 1472 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1473 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1474 { IRE_HOST, "HOST" }, 1475 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1476 { 0 } 1477 }; 1478 1479 nv_t *ire_nv_tbl = ire_nv_arr; 1480 1481 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1482 extern krwlock_t ipsec_capab_ills_lock; 1483 1484 /* Packet dropper for IP IPsec processing failures */ 1485 ipdropper_t ip_dropper; 1486 1487 /* Simple ICMP IP Header Template */ 1488 static ipha_t icmp_ipha = { 1489 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1490 }; 1491 1492 struct module_info ip_mod_info = { 1493 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1494 }; 1495 1496 static struct qinit rinit = { 1497 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit winit = { 1502 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit lrinit = { 1507 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 static struct qinit lwinit = { 1512 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1513 &ip_mod_info 1514 }; 1515 1516 struct streamtab ipinfo = { 1517 &rinit, &winit, &lrinit, &lwinit 1518 }; 1519 1520 #ifdef DEBUG 1521 static boolean_t skip_sctp_cksum = B_FALSE; 1522 #endif 1523 /* 1524 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1525 */ 1526 mblk_t * 1527 ip_copymsg(mblk_t *mp) 1528 { 1529 mblk_t *nmp; 1530 ipsec_info_t *in; 1531 1532 if (mp->b_datap->db_type != M_CTL) 1533 return (copymsg(mp)); 1534 1535 in = (ipsec_info_t *)mp->b_rptr; 1536 1537 /* 1538 * Note that M_CTL is also used for delivering ICMP error messages 1539 * upstream to transport layers. 1540 */ 1541 if (in->ipsec_info_type != IPSEC_OUT && 1542 in->ipsec_info_type != IPSEC_IN) 1543 return (copymsg(mp)); 1544 1545 nmp = copymsg(mp->b_cont); 1546 1547 if (in->ipsec_info_type == IPSEC_OUT) 1548 return (ipsec_out_tag(mp, nmp)); 1549 else 1550 return (ipsec_in_tag(mp, nmp)); 1551 } 1552 1553 /* Generate an ICMP fragmentation needed message. */ 1554 static void 1555 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1556 { 1557 icmph_t icmph; 1558 mblk_t *first_mp; 1559 boolean_t mctl_present; 1560 1561 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1562 1563 if (!(mp = icmp_pkt_err_ok(mp))) { 1564 if (mctl_present) 1565 freeb(first_mp); 1566 return; 1567 } 1568 1569 bzero(&icmph, sizeof (icmph_t)); 1570 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1571 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1572 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1573 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1574 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1575 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1576 } 1577 1578 /* 1579 * icmp_inbound deals with ICMP messages in the following ways. 1580 * 1581 * 1) It needs to send a reply back and possibly delivering it 1582 * to the "interested" upper clients. 1583 * 2) It needs to send it to the upper clients only. 1584 * 3) It needs to change some values in IP only. 1585 * 4) It needs to change some values in IP and upper layers e.g TCP. 1586 * 1587 * We need to accomodate icmp messages coming in clear until we get 1588 * everything secure from the wire. If icmp_accept_clear_messages 1589 * is zero we check with the global policy and act accordingly. If 1590 * it is non-zero, we accept the message without any checks. But 1591 * *this does not mean* that this will be delivered to the upper 1592 * clients. By accepting we might send replies back, change our MTU 1593 * value etc. but delivery to the ULP/clients depends on their policy 1594 * dispositions. 1595 * 1596 * We handle the above 4 cases in the context of IPSEC in the 1597 * following way : 1598 * 1599 * 1) Send the reply back in the same way as the request came in. 1600 * If it came in encrypted, it goes out encrypted. If it came in 1601 * clear, it goes out in clear. Thus, this will prevent chosen 1602 * plain text attack. 1603 * 2) The client may or may not expect things to come in secure. 1604 * If it comes in secure, the policy constraints are checked 1605 * before delivering it to the upper layers. If it comes in 1606 * clear, ipsec_inbound_accept_clear will decide whether to 1607 * accept this in clear or not. In both the cases, if the returned 1608 * message (IP header + 8 bytes) that caused the icmp message has 1609 * AH/ESP headers, it is sent up to AH/ESP for validation before 1610 * sending up. If there are only 8 bytes of returned message, then 1611 * upper client will not be notified. 1612 * 3) Check with global policy to see whether it matches the constaints. 1613 * But this will be done only if icmp_accept_messages_in_clear is 1614 * zero. 1615 * 4) If we need to change both in IP and ULP, then the decision taken 1616 * while affecting the values in IP and while delivering up to TCP 1617 * should be the same. 1618 * 1619 * There are two cases. 1620 * 1621 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1622 * failed), we will not deliver it to the ULP, even though they 1623 * are *willing* to accept in *clear*. This is fine as our global 1624 * disposition to icmp messages asks us reject the datagram. 1625 * 1626 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1627 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1628 * to deliver it to ULP (policy failed), it can lead to 1629 * consistency problems. The cases known at this time are 1630 * ICMP_DESTINATION_UNREACHABLE messages with following code 1631 * values : 1632 * 1633 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1634 * and Upper layer rejects. Then the communication will 1635 * come to a stop. This is solved by making similar decisions 1636 * at both levels. Currently, when we are unable to deliver 1637 * to the Upper Layer (due to policy failures) while IP has 1638 * adjusted ire_max_frag, the next outbound datagram would 1639 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1640 * will be with the right level of protection. Thus the right 1641 * value will be communicated even if we are not able to 1642 * communicate when we get from the wire initially. But this 1643 * assumes there would be at least one outbound datagram after 1644 * IP has adjusted its ire_max_frag value. To make things 1645 * simpler, we accept in clear after the validation of 1646 * AH/ESP headers. 1647 * 1648 * - Other ICMP ERRORS : We may not be able to deliver it to the 1649 * upper layer depending on the level of protection the upper 1650 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1651 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1652 * should be accepted in clear when the Upper layer expects secure. 1653 * Thus the communication may get aborted by some bad ICMP 1654 * packets. 1655 * 1656 * IPQoS Notes: 1657 * The only instance when a packet is sent for processing is when there 1658 * isn't an ICMP client and if we are interested in it. 1659 * If there is a client, IPPF processing will take place in the 1660 * ip_fanout_proto routine. 1661 * 1662 * Zones notes: 1663 * The packet is only processed in the context of the specified zone: typically 1664 * only this zone will reply to an echo request, and only interested clients in 1665 * this zone will receive a copy of the packet. This means that the caller must 1666 * call icmp_inbound() for each relevant zone. 1667 */ 1668 static void 1669 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1670 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1671 ill_t *recv_ill, zoneid_t zoneid) 1672 { 1673 icmph_t *icmph; 1674 ipha_t *ipha; 1675 int iph_hdr_length; 1676 int hdr_length; 1677 boolean_t interested; 1678 uint32_t ts; 1679 uchar_t *wptr; 1680 ipif_t *ipif; 1681 mblk_t *first_mp; 1682 ipsec_in_t *ii; 1683 ire_t *src_ire; 1684 boolean_t onlink; 1685 timestruc_t now; 1686 uint32_t ill_index; 1687 1688 ASSERT(ill != NULL); 1689 1690 first_mp = mp; 1691 if (mctl_present) { 1692 mp = first_mp->b_cont; 1693 ASSERT(mp != NULL); 1694 } 1695 1696 ipha = (ipha_t *)mp->b_rptr; 1697 if (icmp_accept_clear_messages == 0) { 1698 first_mp = ipsec_check_global_policy(first_mp, NULL, 1699 ipha, NULL, mctl_present); 1700 if (first_mp == NULL) 1701 return; 1702 } 1703 1704 /* 1705 * On a labeled system, we have to check whether the zone itself is 1706 * permitted to receive raw traffic. 1707 */ 1708 if (is_system_labeled()) { 1709 if (zoneid == ALL_ZONES) 1710 zoneid = tsol_packet_to_zoneid(mp); 1711 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1712 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1713 zoneid)); 1714 BUMP_MIB(&icmp_mib, icmpInErrors); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 } 1719 1720 /* 1721 * We have accepted the ICMP message. It means that we will 1722 * respond to the packet if needed. It may not be delivered 1723 * to the upper client depending on the policy constraints 1724 * and the disposition in ipsec_inbound_accept_clear. 1725 */ 1726 1727 ASSERT(ill != NULL); 1728 1729 BUMP_MIB(&icmp_mib, icmpInMsgs); 1730 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1731 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1732 /* Last chance to get real. */ 1733 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1734 BUMP_MIB(&icmp_mib, icmpInErrors); 1735 freemsg(first_mp); 1736 return; 1737 } 1738 /* Refresh iph following the pullup. */ 1739 ipha = (ipha_t *)mp->b_rptr; 1740 } 1741 /* ICMP header checksum, including checksum field, should be zero. */ 1742 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1743 IP_CSUM(mp, iph_hdr_length, 0)) { 1744 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 /* The IP header will always be a multiple of four bytes */ 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1751 icmph->icmph_code)); 1752 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1753 /* We will set "interested" to "true" if we want a copy */ 1754 interested = B_FALSE; 1755 switch (icmph->icmph_type) { 1756 case ICMP_ECHO_REPLY: 1757 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1758 break; 1759 case ICMP_DEST_UNREACHABLE: 1760 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1761 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1764 break; 1765 case ICMP_SOURCE_QUENCH: 1766 interested = B_TRUE; /* Pass up to transport */ 1767 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1768 break; 1769 case ICMP_REDIRECT: 1770 if (!ip_ignore_redirect) 1771 interested = B_TRUE; 1772 BUMP_MIB(&icmp_mib, icmpInRedirects); 1773 break; 1774 case ICMP_ECHO_REQUEST: 1775 /* 1776 * Whether to respond to echo requests that come in as IP 1777 * broadcasts or as IP multicast is subject to debate 1778 * (what isn't?). We aim to please, you pick it. 1779 * Default is do it. 1780 */ 1781 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1782 /* unicast: always respond */ 1783 interested = B_TRUE; 1784 } else if (CLASSD(ipha->ipha_dst)) { 1785 /* multicast: respond based on tunable */ 1786 interested = ip_g_resp_to_echo_mcast; 1787 } else if (broadcast) { 1788 /* broadcast: respond based on tunable */ 1789 interested = ip_g_resp_to_echo_bcast; 1790 } 1791 BUMP_MIB(&icmp_mib, icmpInEchos); 1792 break; 1793 case ICMP_ROUTER_ADVERTISEMENT: 1794 case ICMP_ROUTER_SOLICITATION: 1795 break; 1796 case ICMP_TIME_EXCEEDED: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1799 break; 1800 case ICMP_PARAM_PROBLEM: 1801 interested = B_TRUE; /* Pass up to transport */ 1802 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1803 break; 1804 case ICMP_TIME_STAMP_REQUEST: 1805 /* Response to Time Stamp Requests is local policy. */ 1806 if (ip_g_resp_to_timestamp && 1807 /* So is whether to respond if it was an IP broadcast. */ 1808 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1809 int tstamp_len = 3 * sizeof (uint32_t); 1810 1811 if (wptr + tstamp_len > mp->b_wptr) { 1812 if (!pullupmsg(mp, wptr + tstamp_len - 1813 mp->b_rptr)) { 1814 BUMP_MIB(&ip_mib, ipInDiscards); 1815 freemsg(first_mp); 1816 return; 1817 } 1818 /* Refresh ipha following the pullup. */ 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 interested = B_TRUE; 1824 } 1825 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1826 break; 1827 case ICMP_TIME_STAMP_REPLY: 1828 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1829 break; 1830 case ICMP_INFO_REQUEST: 1831 /* Per RFC 1122 3.2.2.7, ignore this. */ 1832 case ICMP_INFO_REPLY: 1833 break; 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1836 /* TODO m_pullup of complete header? */ 1837 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1838 interested = B_TRUE; 1839 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1840 break; 1841 case ICMP_ADDRESS_MASK_REPLY: 1842 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1843 break; 1844 default: 1845 interested = B_TRUE; /* Pass up to transport */ 1846 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1847 break; 1848 } 1849 /* See if there is an ICMP client. */ 1850 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1851 /* If there is an ICMP client and we want one too, copy it. */ 1852 mblk_t *first_mp1; 1853 1854 if (!interested) { 1855 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1856 ip_policy, recv_ill, zoneid); 1857 return; 1858 } 1859 first_mp1 = ip_copymsg(first_mp); 1860 if (first_mp1 != NULL) { 1861 ip_fanout_proto(q, first_mp1, ill, ipha, 1862 0, mctl_present, ip_policy, recv_ill, zoneid); 1863 } 1864 } else if (!interested) { 1865 freemsg(first_mp); 1866 return; 1867 } else { 1868 /* 1869 * Initiate policy processing for this packet if ip_policy 1870 * is true. 1871 */ 1872 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1873 ill_index = ill->ill_phyint->phyint_ifindex; 1874 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1875 if (mp == NULL) { 1876 if (mctl_present) { 1877 freeb(first_mp); 1878 } 1879 BUMP_MIB(&icmp_mib, icmpInErrors); 1880 return; 1881 } 1882 } 1883 } 1884 /* We want to do something with it. */ 1885 /* Check db_ref to make sure we can modify the packet. */ 1886 if (mp->b_datap->db_ref > 1) { 1887 mblk_t *first_mp1; 1888 1889 first_mp1 = ip_copymsg(first_mp); 1890 freemsg(first_mp); 1891 if (!first_mp1) { 1892 BUMP_MIB(&icmp_mib, icmpOutDrops); 1893 return; 1894 } 1895 first_mp = first_mp1; 1896 if (mctl_present) { 1897 mp = first_mp->b_cont; 1898 ASSERT(mp != NULL); 1899 } else { 1900 mp = first_mp; 1901 } 1902 ipha = (ipha_t *)mp->b_rptr; 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1905 } 1906 switch (icmph->icmph_type) { 1907 case ICMP_ADDRESS_MASK_REQUEST: 1908 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1909 if (ipif == NULL) { 1910 freemsg(first_mp); 1911 return; 1912 } 1913 /* 1914 * outging interface must be IPv4 1915 */ 1916 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1917 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1918 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1919 ipif_refrele(ipif); 1920 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1921 break; 1922 case ICMP_ECHO_REQUEST: 1923 icmph->icmph_type = ICMP_ECHO_REPLY; 1924 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1925 break; 1926 case ICMP_TIME_STAMP_REQUEST: { 1927 uint32_t *tsp; 1928 1929 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1930 tsp = (uint32_t *)wptr; 1931 tsp++; /* Skip past 'originate time' */ 1932 /* Compute # of milliseconds since midnight */ 1933 gethrestime(&now); 1934 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1935 now.tv_nsec / (NANOSEC / MILLISEC); 1936 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1937 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1938 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1939 break; 1940 } 1941 default: 1942 ipha = (ipha_t *)&icmph[1]; 1943 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1944 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1945 BUMP_MIB(&ip_mib, ipInDiscards); 1946 freemsg(first_mp); 1947 return; 1948 } 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1953 BUMP_MIB(&ip_mib, ipInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 hdr_length = IPH_HDR_LENGTH(ipha); 1958 if (hdr_length < sizeof (ipha_t)) { 1959 BUMP_MIB(&ip_mib, ipInDiscards); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1964 if (!pullupmsg(mp, 1965 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1966 BUMP_MIB(&ip_mib, ipInDiscards); 1967 freemsg(first_mp); 1968 return; 1969 } 1970 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1971 ipha = (ipha_t *)&icmph[1]; 1972 } 1973 switch (icmph->icmph_type) { 1974 case ICMP_REDIRECT: 1975 /* 1976 * As there is no upper client to deliver, we don't 1977 * need the first_mp any more. 1978 */ 1979 if (mctl_present) { 1980 freeb(first_mp); 1981 } 1982 icmp_redirect(mp); 1983 return; 1984 case ICMP_DEST_UNREACHABLE: 1985 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1986 if (!icmp_inbound_too_big(icmph, ipha, ill, 1987 zoneid, mp)) { 1988 freemsg(first_mp); 1989 return; 1990 } 1991 } 1992 /* FALLTHRU */ 1993 default : 1994 /* 1995 * IPQoS notes: Since we have already done IPQoS 1996 * processing we don't want to do it again in 1997 * the fanout routines called by 1998 * icmp_inbound_error_fanout, hence the last 1999 * argument, ip_policy, is B_FALSE. 2000 */ 2001 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2002 ipha, iph_hdr_length, hdr_length, mctl_present, 2003 B_FALSE, recv_ill, zoneid); 2004 } 2005 return; 2006 } 2007 /* Send out an ICMP packet */ 2008 icmph->icmph_checksum = 0; 2009 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2010 if (icmph->icmph_checksum == 0) 2011 icmph->icmph_checksum = 0xFFFF; 2012 if (broadcast || CLASSD(ipha->ipha_dst)) { 2013 ipif_t *ipif_chosen; 2014 /* 2015 * Make it look like it was directed to us, so we don't look 2016 * like a fool with a broadcast or multicast source address. 2017 */ 2018 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2019 /* 2020 * Make sure that we haven't grabbed an interface that's DOWN. 2021 */ 2022 if (ipif != NULL) { 2023 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2024 ipha->ipha_src, zoneid); 2025 if (ipif_chosen != NULL) { 2026 ipif_refrele(ipif); 2027 ipif = ipif_chosen; 2028 } 2029 } 2030 if (ipif == NULL) { 2031 ip0dbg(("icmp_inbound: " 2032 "No source for broadcast/multicast:\n" 2033 "\tsrc 0x%x dst 0x%x ill %p " 2034 "ipif_lcl_addr 0x%x\n", 2035 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2036 (void *)ill, 2037 ill->ill_ipif->ipif_lcl_addr)); 2038 freemsg(first_mp); 2039 return; 2040 } 2041 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2042 ipha->ipha_dst = ipif->ipif_src_addr; 2043 ipif_refrele(ipif); 2044 } 2045 /* Reset time to live. */ 2046 ipha->ipha_ttl = ip_def_ttl; 2047 { 2048 /* Swap source and destination addresses */ 2049 ipaddr_t tmp; 2050 2051 tmp = ipha->ipha_src; 2052 ipha->ipha_src = ipha->ipha_dst; 2053 ipha->ipha_dst = tmp; 2054 } 2055 ipha->ipha_ident = 0; 2056 if (!IS_SIMPLE_IPH(ipha)) 2057 icmp_options_update(ipha); 2058 2059 /* 2060 * ICMP echo replies should go out on the same interface 2061 * the request came on as probes used by in.mpathd for detecting 2062 * NIC failures are ECHO packets. We turn-off load spreading 2063 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2064 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2065 * function. This is in turn handled by ip_wput and ip_newroute 2066 * to make sure that the packet goes out on the interface it came 2067 * in on. If we don't turnoff load spreading, the packets might get 2068 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2069 * to go out and in.mpathd would wrongly detect a failure or 2070 * mis-detect a NIC failure for link failure. As load spreading 2071 * can happen only if ill_group is not NULL, we do only for 2072 * that case and this does not affect the normal case. 2073 * 2074 * We turn off load spreading only on echo packets that came from 2075 * on-link hosts. If the interface route has been deleted, this will 2076 * not be enforced as we can't do much. For off-link hosts, as the 2077 * default routes in IPv4 does not typically have an ire_ipif 2078 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2079 * Moreover, expecting a default route through this interface may 2080 * not be correct. We use ipha_dst because of the swap above. 2081 */ 2082 onlink = B_FALSE; 2083 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2084 /* 2085 * First, we need to make sure that it is not one of our 2086 * local addresses. If we set onlink when it is one of 2087 * our local addresses, we will end up creating IRE_CACHES 2088 * for one of our local addresses. Then, we will never 2089 * accept packets for them afterwards. 2090 */ 2091 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2092 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2093 if (src_ire == NULL) { 2094 ipif = ipif_get_next_ipif(NULL, ill); 2095 if (ipif == NULL) { 2096 BUMP_MIB(&ip_mib, ipInDiscards); 2097 freemsg(mp); 2098 return; 2099 } 2100 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2101 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2102 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2103 ipif_refrele(ipif); 2104 if (src_ire != NULL) { 2105 onlink = B_TRUE; 2106 ire_refrele(src_ire); 2107 } 2108 } else { 2109 ire_refrele(src_ire); 2110 } 2111 } 2112 if (!mctl_present) { 2113 /* 2114 * This packet should go out the same way as it 2115 * came in i.e in clear. To make sure that global 2116 * policy will not be applied to this in ip_wput_ire, 2117 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2118 */ 2119 ASSERT(first_mp == mp); 2120 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2121 BUMP_MIB(&ip_mib, ipInDiscards); 2122 freemsg(mp); 2123 return; 2124 } 2125 ii = (ipsec_in_t *)first_mp->b_rptr; 2126 2127 /* This is not a secure packet */ 2128 ii->ipsec_in_secure = B_FALSE; 2129 if (onlink) { 2130 ii->ipsec_in_attach_if = B_TRUE; 2131 ii->ipsec_in_ill_index = 2132 ill->ill_phyint->phyint_ifindex; 2133 ii->ipsec_in_rill_index = 2134 recv_ill->ill_phyint->phyint_ifindex; 2135 } 2136 first_mp->b_cont = mp; 2137 } else if (onlink) { 2138 ii = (ipsec_in_t *)first_mp->b_rptr; 2139 ii->ipsec_in_attach_if = B_TRUE; 2140 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2141 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2142 } else { 2143 ii = (ipsec_in_t *)first_mp->b_rptr; 2144 } 2145 ii->ipsec_in_zoneid = zoneid; 2146 ASSERT(zoneid != ALL_ZONES); 2147 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2148 BUMP_MIB(&ip_mib, ipInDiscards); 2149 return; 2150 } 2151 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2152 put(WR(q), first_mp); 2153 } 2154 2155 static ipaddr_t 2156 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2157 { 2158 conn_t *connp; 2159 connf_t *connfp; 2160 ipaddr_t nexthop_addr = INADDR_ANY; 2161 int hdr_length = IPH_HDR_LENGTH(ipha); 2162 uint16_t *up; 2163 uint32_t ports; 2164 2165 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2166 switch (ipha->ipha_protocol) { 2167 case IPPROTO_TCP: 2168 { 2169 tcph_t *tcph; 2170 2171 /* do a reverse lookup */ 2172 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2173 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2174 TCPS_LISTEN); 2175 break; 2176 } 2177 case IPPROTO_UDP: 2178 { 2179 uint32_t dstport, srcport; 2180 2181 ((uint16_t *)&ports)[0] = up[1]; 2182 ((uint16_t *)&ports)[1] = up[0]; 2183 2184 /* Extract ports in net byte order */ 2185 dstport = htons(ntohl(ports) & 0xFFFF); 2186 srcport = htons(ntohl(ports) >> 16); 2187 2188 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2189 mutex_enter(&connfp->connf_lock); 2190 connp = connfp->connf_head; 2191 2192 /* do a reverse lookup */ 2193 while ((connp != NULL) && 2194 (!IPCL_UDP_MATCH(connp, dstport, 2195 ipha->ipha_src, srcport, ipha->ipha_dst) || 2196 connp->conn_zoneid != zoneid)) { 2197 connp = connp->conn_next; 2198 } 2199 if (connp != NULL) 2200 CONN_INC_REF(connp); 2201 mutex_exit(&connfp->connf_lock); 2202 break; 2203 } 2204 case IPPROTO_SCTP: 2205 { 2206 in6_addr_t map_src, map_dst; 2207 2208 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2209 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2210 ((uint16_t *)&ports)[0] = up[1]; 2211 ((uint16_t *)&ports)[1] = up[0]; 2212 2213 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2214 0, zoneid)) == NULL) { 2215 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2216 zoneid, ports, ipha); 2217 } else { 2218 CONN_INC_REF(connp); 2219 SCTP_REFRELE(CONN2SCTP(connp)); 2220 } 2221 break; 2222 } 2223 default: 2224 { 2225 ipha_t ripha; 2226 2227 ripha.ipha_src = ipha->ipha_dst; 2228 ripha.ipha_dst = ipha->ipha_src; 2229 ripha.ipha_protocol = ipha->ipha_protocol; 2230 2231 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2232 mutex_enter(&connfp->connf_lock); 2233 connp = connfp->connf_head; 2234 for (connp = connfp->connf_head; connp != NULL; 2235 connp = connp->conn_next) { 2236 if (IPCL_PROTO_MATCH(connp, 2237 ipha->ipha_protocol, &ripha, ill, 2238 0, zoneid)) { 2239 CONN_INC_REF(connp); 2240 break; 2241 } 2242 } 2243 mutex_exit(&connfp->connf_lock); 2244 } 2245 } 2246 if (connp != NULL) { 2247 if (connp->conn_nexthop_set) 2248 nexthop_addr = connp->conn_nexthop_v4; 2249 CONN_DEC_REF(connp); 2250 } 2251 return (nexthop_addr); 2252 } 2253 2254 /* Table from RFC 1191 */ 2255 static int icmp_frag_size_table[] = 2256 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2257 2258 /* 2259 * Process received ICMP Packet too big. 2260 * After updating any IRE it does the fanout to any matching transport streams. 2261 * Assumes the message has been pulled up till the IP header that caused 2262 * the error. 2263 * 2264 * Returns B_FALSE on failure and B_TRUE on success. 2265 */ 2266 static boolean_t 2267 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2268 zoneid_t zoneid, mblk_t *mp) 2269 { 2270 ire_t *ire, *first_ire; 2271 int mtu; 2272 int hdr_length; 2273 ipaddr_t nexthop_addr; 2274 2275 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2276 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2277 2278 hdr_length = IPH_HDR_LENGTH(ipha); 2279 2280 /* Drop if the original packet contained a source route */ 2281 if (ip_source_route_included(ipha)) { 2282 return (B_FALSE); 2283 } 2284 /* 2285 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2286 * header. 2287 */ 2288 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2289 mp->b_wptr) { 2290 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2291 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2292 BUMP_MIB(&ip_mib, ipInDiscards); 2293 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2294 return (B_FALSE); 2295 } 2296 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2297 ipha = (ipha_t *)&icmph[1]; 2298 } 2299 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2300 if (nexthop_addr != INADDR_ANY) { 2301 /* nexthop set */ 2302 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2303 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2304 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2305 } else { 2306 /* nexthop not set */ 2307 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2308 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2309 } 2310 2311 if (!first_ire) { 2312 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2313 ntohl(ipha->ipha_dst))); 2314 return (B_FALSE); 2315 } 2316 /* Check for MTU discovery advice as described in RFC 1191 */ 2317 mtu = ntohs(icmph->icmph_du_mtu); 2318 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2319 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2320 ire = ire->ire_next) { 2321 /* 2322 * Look for the connection to which this ICMP message is 2323 * directed. If it has the IP_NEXTHOP option set, then the 2324 * search is limited to IREs with the MATCH_IRE_PRIVATE 2325 * option. Else the search is limited to regular IREs. 2326 */ 2327 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2328 (nexthop_addr != ire->ire_gateway_addr)) || 2329 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2330 (nexthop_addr != INADDR_ANY))) 2331 continue; 2332 2333 mutex_enter(&ire->ire_lock); 2334 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2335 /* Reduce the IRE max frag value as advised. */ 2336 ip1dbg(("Received mtu from router: %d (was %d)\n", 2337 mtu, ire->ire_max_frag)); 2338 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2339 } else { 2340 uint32_t length; 2341 int i; 2342 2343 /* 2344 * Use the table from RFC 1191 to figure out 2345 * the next "plateau" based on the length in 2346 * the original IP packet. 2347 */ 2348 length = ntohs(ipha->ipha_length); 2349 if (ire->ire_max_frag <= length && 2350 ire->ire_max_frag >= length - hdr_length) { 2351 /* 2352 * Handle broken BSD 4.2 systems that 2353 * return the wrong iph_length in ICMP 2354 * errors. 2355 */ 2356 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2357 length, ire->ire_max_frag)); 2358 length -= hdr_length; 2359 } 2360 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2361 if (length > icmp_frag_size_table[i]) 2362 break; 2363 } 2364 if (i == A_CNT(icmp_frag_size_table)) { 2365 /* Smaller than 68! */ 2366 ip1dbg(("Too big for packet size %d\n", 2367 length)); 2368 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2369 ire->ire_frag_flag = 0; 2370 } else { 2371 mtu = icmp_frag_size_table[i]; 2372 ip1dbg(("Calculated mtu %d, packet size %d, " 2373 "before %d", mtu, length, 2374 ire->ire_max_frag)); 2375 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2376 ip1dbg((", after %d\n", ire->ire_max_frag)); 2377 } 2378 /* Record the new max frag size for the ULP. */ 2379 icmph->icmph_du_zero = 0; 2380 icmph->icmph_du_mtu = 2381 htons((uint16_t)ire->ire_max_frag); 2382 } 2383 mutex_exit(&ire->ire_lock); 2384 } 2385 rw_exit(&first_ire->ire_bucket->irb_lock); 2386 ire_refrele(first_ire); 2387 return (B_TRUE); 2388 } 2389 2390 /* 2391 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2392 * calls this function. 2393 */ 2394 static mblk_t * 2395 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2396 { 2397 ipha_t *ipha; 2398 icmph_t *icmph; 2399 ipha_t *in_ipha; 2400 int length; 2401 2402 ASSERT(mp->b_datap->db_type == M_DATA); 2403 2404 /* 2405 * For Self-encapsulated packets, we added an extra IP header 2406 * without the options. Inner IP header is the one from which 2407 * the outer IP header was formed. Thus, we need to remove the 2408 * outer IP header. To do this, we pullup the whole message 2409 * and overlay whatever follows the outer IP header over the 2410 * outer IP header. 2411 */ 2412 2413 if (!pullupmsg(mp, -1)) { 2414 BUMP_MIB(&ip_mib, ipInDiscards); 2415 return (NULL); 2416 } 2417 2418 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2419 ipha = (ipha_t *)&icmph[1]; 2420 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2421 2422 /* 2423 * The length that we want to overlay is following the inner 2424 * IP header. Subtracting the IP header + icmp header + outer 2425 * IP header's length should give us the length that we want to 2426 * overlay. 2427 */ 2428 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2429 hdr_length; 2430 /* 2431 * Overlay whatever follows the inner header over the 2432 * outer header. 2433 */ 2434 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2435 2436 /* Set the wptr to account for the outer header */ 2437 mp->b_wptr -= hdr_length; 2438 return (mp); 2439 } 2440 2441 /* 2442 * Try to pass the ICMP message upstream in case the ULP cares. 2443 * 2444 * If the packet that caused the ICMP error is secure, we send 2445 * it to AH/ESP to make sure that the attached packet has a 2446 * valid association. ipha in the code below points to the 2447 * IP header of the packet that caused the error. 2448 * 2449 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2450 * in the context of IPSEC. Normally we tell the upper layer 2451 * whenever we send the ire (including ip_bind), the IPSEC header 2452 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2453 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2454 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2455 * same thing. As TCP has the IPSEC options size that needs to be 2456 * adjusted, we just pass the MTU unchanged. 2457 * 2458 * IFN could have been generated locally or by some router. 2459 * 2460 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2461 * This happens because IP adjusted its value of MTU on an 2462 * earlier IFN message and could not tell the upper layer, 2463 * the new adjusted value of MTU e.g. Packet was encrypted 2464 * or there was not enough information to fanout to upper 2465 * layers. Thus on the next outbound datagram, ip_wput_ire 2466 * generates the IFN, where IPSEC processing has *not* been 2467 * done. 2468 * 2469 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2470 * could have generated this. This happens because ire_max_frag 2471 * value in IP was set to a new value, while the IPSEC processing 2472 * was being done and after we made the fragmentation check in 2473 * ip_wput_ire. Thus on return from IPSEC processing, 2474 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2475 * and generates the IFN. As IPSEC processing is over, we fanout 2476 * to AH/ESP to remove the header. 2477 * 2478 * In both these cases, ipsec_in_loopback will be set indicating 2479 * that IFN was generated locally. 2480 * 2481 * ROUTER : IFN could be secure or non-secure. 2482 * 2483 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2484 * packet in error has AH/ESP headers to validate the AH/ESP 2485 * headers. AH/ESP will verify whether there is a valid SA or 2486 * not and send it back. We will fanout again if we have more 2487 * data in the packet. 2488 * 2489 * If the packet in error does not have AH/ESP, we handle it 2490 * like any other case. 2491 * 2492 * * NON_SECURE : If the packet in error has AH/ESP headers, 2493 * we attach a dummy ipsec_in and send it up to AH/ESP 2494 * for validation. AH/ESP will verify whether there is a 2495 * valid SA or not and send it back. We will fanout again if 2496 * we have more data in the packet. 2497 * 2498 * If the packet in error does not have AH/ESP, we handle it 2499 * like any other case. 2500 */ 2501 static void 2502 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2503 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2504 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2505 zoneid_t zoneid) 2506 { 2507 uint16_t *up; /* Pointer to ports in ULP header */ 2508 uint32_t ports; /* reversed ports for fanout */ 2509 ipha_t ripha; /* With reversed addresses */ 2510 mblk_t *first_mp; 2511 ipsec_in_t *ii; 2512 tcph_t *tcph; 2513 conn_t *connp; 2514 2515 first_mp = mp; 2516 if (mctl_present) { 2517 mp = first_mp->b_cont; 2518 ASSERT(mp != NULL); 2519 2520 ii = (ipsec_in_t *)first_mp->b_rptr; 2521 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2522 } else { 2523 ii = NULL; 2524 } 2525 2526 switch (ipha->ipha_protocol) { 2527 case IPPROTO_UDP: 2528 /* 2529 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2530 * transport header. 2531 */ 2532 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2533 mp->b_wptr) { 2534 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2535 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2536 BUMP_MIB(&ip_mib, ipInDiscards); 2537 goto drop_pkt; 2538 } 2539 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2540 ipha = (ipha_t *)&icmph[1]; 2541 } 2542 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2543 2544 /* 2545 * Attempt to find a client stream based on port. 2546 * Note that we do a reverse lookup since the header is 2547 * in the form we sent it out. 2548 * The ripha header is only used for the IP_UDP_MATCH and we 2549 * only set the src and dst addresses and protocol. 2550 */ 2551 ripha.ipha_src = ipha->ipha_dst; 2552 ripha.ipha_dst = ipha->ipha_src; 2553 ripha.ipha_protocol = ipha->ipha_protocol; 2554 ((uint16_t *)&ports)[0] = up[1]; 2555 ((uint16_t *)&ports)[1] = up[0]; 2556 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2557 ntohl(ipha->ipha_src), ntohs(up[0]), 2558 ntohl(ipha->ipha_dst), ntohs(up[1]), 2559 icmph->icmph_type, icmph->icmph_code)); 2560 2561 /* Have to change db_type after any pullupmsg */ 2562 DB_TYPE(mp) = M_CTL; 2563 2564 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2565 mctl_present, ip_policy, recv_ill, zoneid); 2566 return; 2567 2568 case IPPROTO_TCP: 2569 /* 2570 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2571 * transport header. 2572 */ 2573 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2574 mp->b_wptr) { 2575 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2576 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2577 BUMP_MIB(&ip_mib, ipInDiscards); 2578 goto drop_pkt; 2579 } 2580 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2581 ipha = (ipha_t *)&icmph[1]; 2582 } 2583 /* 2584 * Find a TCP client stream for this packet. 2585 * Note that we do a reverse lookup since the header is 2586 * in the form we sent it out. 2587 */ 2588 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2589 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2590 if (connp == NULL) { 2591 BUMP_MIB(&ip_mib, ipInDiscards); 2592 goto drop_pkt; 2593 } 2594 2595 /* Have to change db_type after any pullupmsg */ 2596 DB_TYPE(mp) = M_CTL; 2597 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2598 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2599 return; 2600 2601 case IPPROTO_SCTP: 2602 /* 2603 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2604 * transport header. 2605 */ 2606 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2607 mp->b_wptr) { 2608 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2609 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2610 BUMP_MIB(&ip_mib, ipInDiscards); 2611 goto drop_pkt; 2612 } 2613 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2614 ipha = (ipha_t *)&icmph[1]; 2615 } 2616 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2617 /* 2618 * Find a SCTP client stream for this packet. 2619 * Note that we do a reverse lookup since the header is 2620 * in the form we sent it out. 2621 * The ripha header is only used for the matching and we 2622 * only set the src and dst addresses, protocol, and version. 2623 */ 2624 ripha.ipha_src = ipha->ipha_dst; 2625 ripha.ipha_dst = ipha->ipha_src; 2626 ripha.ipha_protocol = ipha->ipha_protocol; 2627 ripha.ipha_version_and_hdr_length = 2628 ipha->ipha_version_and_hdr_length; 2629 ((uint16_t *)&ports)[0] = up[1]; 2630 ((uint16_t *)&ports)[1] = up[0]; 2631 2632 /* Have to change db_type after any pullupmsg */ 2633 DB_TYPE(mp) = M_CTL; 2634 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2635 mctl_present, ip_policy, 0, zoneid); 2636 return; 2637 2638 case IPPROTO_ESP: 2639 case IPPROTO_AH: { 2640 int ipsec_rc; 2641 2642 /* 2643 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2644 * We will re-use the IPSEC_IN if it is already present as 2645 * AH/ESP will not affect any fields in the IPSEC_IN for 2646 * ICMP errors. If there is no IPSEC_IN, allocate a new 2647 * one and attach it in the front. 2648 */ 2649 if (ii != NULL) { 2650 /* 2651 * ip_fanout_proto_again converts the ICMP errors 2652 * that come back from AH/ESP to M_DATA so that 2653 * if it is non-AH/ESP and we do a pullupmsg in 2654 * this function, it would work. Convert it back 2655 * to M_CTL before we send up as this is a ICMP 2656 * error. This could have been generated locally or 2657 * by some router. Validate the inner IPSEC 2658 * headers. 2659 * 2660 * NOTE : ill_index is used by ip_fanout_proto_again 2661 * to locate the ill. 2662 */ 2663 ASSERT(ill != NULL); 2664 ii->ipsec_in_ill_index = 2665 ill->ill_phyint->phyint_ifindex; 2666 ii->ipsec_in_rill_index = 2667 recv_ill->ill_phyint->phyint_ifindex; 2668 DB_TYPE(first_mp->b_cont) = M_CTL; 2669 } else { 2670 /* 2671 * IPSEC_IN is not present. We attach a ipsec_in 2672 * message and send up to IPSEC for validating 2673 * and removing the IPSEC headers. Clear 2674 * ipsec_in_secure so that when we return 2675 * from IPSEC, we don't mistakenly think that this 2676 * is a secure packet came from the network. 2677 * 2678 * NOTE : ill_index is used by ip_fanout_proto_again 2679 * to locate the ill. 2680 */ 2681 ASSERT(first_mp == mp); 2682 first_mp = ipsec_in_alloc(B_TRUE); 2683 if (first_mp == NULL) { 2684 freemsg(mp); 2685 BUMP_MIB(&ip_mib, ipInDiscards); 2686 return; 2687 } 2688 ii = (ipsec_in_t *)first_mp->b_rptr; 2689 2690 /* This is not a secure packet */ 2691 ii->ipsec_in_secure = B_FALSE; 2692 first_mp->b_cont = mp; 2693 DB_TYPE(mp) = M_CTL; 2694 ASSERT(ill != NULL); 2695 ii->ipsec_in_ill_index = 2696 ill->ill_phyint->phyint_ifindex; 2697 ii->ipsec_in_rill_index = 2698 recv_ill->ill_phyint->phyint_ifindex; 2699 } 2700 ip2dbg(("icmp_inbound_error: ipsec\n")); 2701 2702 if (!ipsec_loaded()) { 2703 ip_proto_not_sup(q, first_mp, 0, zoneid); 2704 return; 2705 } 2706 2707 if (ipha->ipha_protocol == IPPROTO_ESP) 2708 ipsec_rc = ipsecesp_icmp_error(first_mp); 2709 else 2710 ipsec_rc = ipsecah_icmp_error(first_mp); 2711 if (ipsec_rc == IPSEC_STATUS_FAILED) 2712 return; 2713 2714 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2715 return; 2716 } 2717 default: 2718 /* 2719 * The ripha header is only used for the lookup and we 2720 * only set the src and dst addresses and protocol. 2721 */ 2722 ripha.ipha_src = ipha->ipha_dst; 2723 ripha.ipha_dst = ipha->ipha_src; 2724 ripha.ipha_protocol = ipha->ipha_protocol; 2725 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2726 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2727 ntohl(ipha->ipha_dst), 2728 icmph->icmph_type, icmph->icmph_code)); 2729 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2730 ipha_t *in_ipha; 2731 2732 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2733 mp->b_wptr) { 2734 if (!pullupmsg(mp, (uchar_t *)ipha + 2735 hdr_length + sizeof (ipha_t) - 2736 mp->b_rptr)) { 2737 2738 BUMP_MIB(&ip_mib, ipInDiscards); 2739 goto drop_pkt; 2740 } 2741 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2742 ipha = (ipha_t *)&icmph[1]; 2743 } 2744 /* 2745 * Caller has verified that length has to be 2746 * at least the size of IP header. 2747 */ 2748 ASSERT(hdr_length >= sizeof (ipha_t)); 2749 /* 2750 * Check the sanity of the inner IP header like 2751 * we did for the outer header. 2752 */ 2753 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2754 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2755 BUMP_MIB(&ip_mib, ipInDiscards); 2756 goto drop_pkt; 2757 } 2758 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2759 BUMP_MIB(&ip_mib, ipInDiscards); 2760 goto drop_pkt; 2761 } 2762 /* Check for Self-encapsulated tunnels */ 2763 if (in_ipha->ipha_src == ipha->ipha_src && 2764 in_ipha->ipha_dst == ipha->ipha_dst) { 2765 2766 mp = icmp_inbound_self_encap_error(mp, 2767 iph_hdr_length, hdr_length); 2768 if (mp == NULL) 2769 goto drop_pkt; 2770 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2771 ipha = (ipha_t *)&icmph[1]; 2772 hdr_length = IPH_HDR_LENGTH(ipha); 2773 /* 2774 * The packet in error is self-encapsualted. 2775 * And we are finding it further encapsulated 2776 * which we could not have possibly generated. 2777 */ 2778 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2779 BUMP_MIB(&ip_mib, ipInDiscards); 2780 goto drop_pkt; 2781 } 2782 icmp_inbound_error_fanout(q, ill, first_mp, 2783 icmph, ipha, iph_hdr_length, hdr_length, 2784 mctl_present, ip_policy, recv_ill, zoneid); 2785 return; 2786 } 2787 } 2788 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2789 ipha->ipha_protocol == IPPROTO_IPV6) && 2790 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2791 ii != NULL && 2792 ii->ipsec_in_loopback && 2793 ii->ipsec_in_secure) { 2794 /* 2795 * For IP tunnels that get a looped-back 2796 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2797 * reported new MTU to take into account the IPsec 2798 * headers protecting this configured tunnel. 2799 * 2800 * This allows the tunnel module (tun.c) to blindly 2801 * accept the MTU reported in an ICMP "too big" 2802 * message. 2803 * 2804 * Non-looped back ICMP messages will just be 2805 * handled by the security protocols (if needed), 2806 * and the first subsequent packet will hit this 2807 * path. 2808 */ 2809 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2810 ipsec_in_extra_length(first_mp)); 2811 } 2812 /* Have to change db_type after any pullupmsg */ 2813 DB_TYPE(mp) = M_CTL; 2814 2815 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2816 ip_policy, recv_ill, zoneid); 2817 return; 2818 } 2819 /* NOTREACHED */ 2820 drop_pkt:; 2821 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2822 freemsg(first_mp); 2823 } 2824 2825 /* 2826 * Common IP options parser. 2827 * 2828 * Setup routine: fill in *optp with options-parsing state, then 2829 * tail-call ipoptp_next to return the first option. 2830 */ 2831 uint8_t 2832 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2833 { 2834 uint32_t totallen; /* total length of all options */ 2835 2836 totallen = ipha->ipha_version_and_hdr_length - 2837 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2838 totallen <<= 2; 2839 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2840 optp->ipoptp_end = optp->ipoptp_next + totallen; 2841 optp->ipoptp_flags = 0; 2842 return (ipoptp_next(optp)); 2843 } 2844 2845 /* 2846 * Common IP options parser: extract next option. 2847 */ 2848 uint8_t 2849 ipoptp_next(ipoptp_t *optp) 2850 { 2851 uint8_t *end = optp->ipoptp_end; 2852 uint8_t *cur = optp->ipoptp_next; 2853 uint8_t opt, len, pointer; 2854 2855 /* 2856 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2857 * has been corrupted. 2858 */ 2859 ASSERT(cur <= end); 2860 2861 if (cur == end) 2862 return (IPOPT_EOL); 2863 2864 opt = cur[IPOPT_OPTVAL]; 2865 2866 /* 2867 * Skip any NOP options. 2868 */ 2869 while (opt == IPOPT_NOP) { 2870 cur++; 2871 if (cur == end) 2872 return (IPOPT_EOL); 2873 opt = cur[IPOPT_OPTVAL]; 2874 } 2875 2876 if (opt == IPOPT_EOL) 2877 return (IPOPT_EOL); 2878 2879 /* 2880 * Option requiring a length. 2881 */ 2882 if ((cur + 1) >= end) { 2883 optp->ipoptp_flags |= IPOPTP_ERROR; 2884 return (IPOPT_EOL); 2885 } 2886 len = cur[IPOPT_OLEN]; 2887 if (len < 2) { 2888 optp->ipoptp_flags |= IPOPTP_ERROR; 2889 return (IPOPT_EOL); 2890 } 2891 optp->ipoptp_cur = cur; 2892 optp->ipoptp_len = len; 2893 optp->ipoptp_next = cur + len; 2894 if (cur + len > end) { 2895 optp->ipoptp_flags |= IPOPTP_ERROR; 2896 return (IPOPT_EOL); 2897 } 2898 2899 /* 2900 * For the options which require a pointer field, make sure 2901 * its there, and make sure it points to either something 2902 * inside this option, or the end of the option. 2903 */ 2904 switch (opt) { 2905 case IPOPT_RR: 2906 case IPOPT_TS: 2907 case IPOPT_LSRR: 2908 case IPOPT_SSRR: 2909 if (len <= IPOPT_OFFSET) { 2910 optp->ipoptp_flags |= IPOPTP_ERROR; 2911 return (opt); 2912 } 2913 pointer = cur[IPOPT_OFFSET]; 2914 if (pointer - 1 > len) { 2915 optp->ipoptp_flags |= IPOPTP_ERROR; 2916 return (opt); 2917 } 2918 break; 2919 } 2920 2921 /* 2922 * Sanity check the pointer field based on the type of the 2923 * option. 2924 */ 2925 switch (opt) { 2926 case IPOPT_RR: 2927 case IPOPT_SSRR: 2928 case IPOPT_LSRR: 2929 if (pointer < IPOPT_MINOFF_SR) 2930 optp->ipoptp_flags |= IPOPTP_ERROR; 2931 break; 2932 case IPOPT_TS: 2933 if (pointer < IPOPT_MINOFF_IT) 2934 optp->ipoptp_flags |= IPOPTP_ERROR; 2935 /* 2936 * Note that the Internet Timestamp option also 2937 * contains two four bit fields (the Overflow field, 2938 * and the Flag field), which follow the pointer 2939 * field. We don't need to check that these fields 2940 * fall within the length of the option because this 2941 * was implicitely done above. We've checked that the 2942 * pointer value is at least IPOPT_MINOFF_IT, and that 2943 * it falls within the option. Since IPOPT_MINOFF_IT > 2944 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2945 */ 2946 ASSERT(len > IPOPT_POS_OV_FLG); 2947 break; 2948 } 2949 2950 return (opt); 2951 } 2952 2953 /* 2954 * Use the outgoing IP header to create an IP_OPTIONS option the way 2955 * it was passed down from the application. 2956 */ 2957 int 2958 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2959 { 2960 ipoptp_t opts; 2961 const uchar_t *opt; 2962 uint8_t optval; 2963 uint8_t optlen; 2964 uint32_t len = 0; 2965 uchar_t *buf1 = buf; 2966 2967 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2968 len += IP_ADDR_LEN; 2969 bzero(buf1, IP_ADDR_LEN); 2970 2971 /* 2972 * OK to cast away const here, as we don't store through the returned 2973 * opts.ipoptp_cur pointer. 2974 */ 2975 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2976 optval != IPOPT_EOL; 2977 optval = ipoptp_next(&opts)) { 2978 int off; 2979 2980 opt = opts.ipoptp_cur; 2981 optlen = opts.ipoptp_len; 2982 switch (optval) { 2983 case IPOPT_SSRR: 2984 case IPOPT_LSRR: 2985 2986 /* 2987 * Insert ipha_dst as the first entry in the source 2988 * route and move down the entries on step. 2989 * The last entry gets placed at buf1. 2990 */ 2991 buf[IPOPT_OPTVAL] = optval; 2992 buf[IPOPT_OLEN] = optlen; 2993 buf[IPOPT_OFFSET] = optlen; 2994 2995 off = optlen - IP_ADDR_LEN; 2996 if (off < 0) { 2997 /* No entries in source route */ 2998 break; 2999 } 3000 /* Last entry in source route */ 3001 bcopy(opt + off, buf1, IP_ADDR_LEN); 3002 off -= IP_ADDR_LEN; 3003 3004 while (off > 0) { 3005 bcopy(opt + off, 3006 buf + off + IP_ADDR_LEN, 3007 IP_ADDR_LEN); 3008 off -= IP_ADDR_LEN; 3009 } 3010 /* ipha_dst into first slot */ 3011 bcopy(&ipha->ipha_dst, 3012 buf + off + IP_ADDR_LEN, 3013 IP_ADDR_LEN); 3014 buf += optlen; 3015 len += optlen; 3016 break; 3017 3018 case IPOPT_COMSEC: 3019 case IPOPT_SECURITY: 3020 /* if passing up a label is not ok, then remove */ 3021 if (is_system_labeled()) 3022 break; 3023 /* FALLTHROUGH */ 3024 default: 3025 bcopy(opt, buf, optlen); 3026 buf += optlen; 3027 len += optlen; 3028 break; 3029 } 3030 } 3031 done: 3032 /* Pad the resulting options */ 3033 while (len & 0x3) { 3034 *buf++ = IPOPT_EOL; 3035 len++; 3036 } 3037 return (len); 3038 } 3039 3040 /* 3041 * Update any record route or timestamp options to include this host. 3042 * Reverse any source route option. 3043 * This routine assumes that the options are well formed i.e. that they 3044 * have already been checked. 3045 */ 3046 static void 3047 icmp_options_update(ipha_t *ipha) 3048 { 3049 ipoptp_t opts; 3050 uchar_t *opt; 3051 uint8_t optval; 3052 ipaddr_t src; /* Our local address */ 3053 ipaddr_t dst; 3054 3055 ip2dbg(("icmp_options_update\n")); 3056 src = ipha->ipha_src; 3057 dst = ipha->ipha_dst; 3058 3059 for (optval = ipoptp_first(&opts, ipha); 3060 optval != IPOPT_EOL; 3061 optval = ipoptp_next(&opts)) { 3062 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3063 opt = opts.ipoptp_cur; 3064 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3065 optval, opts.ipoptp_len)); 3066 switch (optval) { 3067 int off1, off2; 3068 case IPOPT_SSRR: 3069 case IPOPT_LSRR: 3070 /* 3071 * Reverse the source route. The first entry 3072 * should be the next to last one in the current 3073 * source route (the last entry is our address). 3074 * The last entry should be the final destination. 3075 */ 3076 off1 = IPOPT_MINOFF_SR - 1; 3077 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3078 if (off2 < 0) { 3079 /* No entries in source route */ 3080 ip1dbg(( 3081 "icmp_options_update: bad src route\n")); 3082 break; 3083 } 3084 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3085 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3086 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3087 off2 -= IP_ADDR_LEN; 3088 3089 while (off1 < off2) { 3090 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3091 bcopy((char *)opt + off2, (char *)opt + off1, 3092 IP_ADDR_LEN); 3093 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3094 off1 += IP_ADDR_LEN; 3095 off2 -= IP_ADDR_LEN; 3096 } 3097 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3098 break; 3099 } 3100 } 3101 } 3102 3103 /* 3104 * Process received ICMP Redirect messages. 3105 */ 3106 /* ARGSUSED */ 3107 static void 3108 icmp_redirect(mblk_t *mp) 3109 { 3110 ipha_t *ipha; 3111 int iph_hdr_length; 3112 icmph_t *icmph; 3113 ipha_t *ipha_err; 3114 ire_t *ire; 3115 ire_t *prev_ire; 3116 ire_t *save_ire; 3117 ipaddr_t src, dst, gateway; 3118 iulp_t ulp_info = { 0 }; 3119 int error; 3120 3121 ipha = (ipha_t *)mp->b_rptr; 3122 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3123 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3124 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3125 BUMP_MIB(&icmp_mib, icmpInErrors); 3126 freemsg(mp); 3127 return; 3128 } 3129 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3130 ipha_err = (ipha_t *)&icmph[1]; 3131 src = ipha->ipha_src; 3132 dst = ipha_err->ipha_dst; 3133 gateway = icmph->icmph_rd_gateway; 3134 /* Make sure the new gateway is reachable somehow. */ 3135 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3136 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3137 /* 3138 * Make sure we had a route for the dest in question and that 3139 * that route was pointing to the old gateway (the source of the 3140 * redirect packet.) 3141 */ 3142 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3143 NULL, MATCH_IRE_GW); 3144 /* 3145 * Check that 3146 * the redirect was not from ourselves 3147 * the new gateway and the old gateway are directly reachable 3148 */ 3149 if (!prev_ire || 3150 !ire || 3151 ire->ire_type == IRE_LOCAL) { 3152 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3153 freemsg(mp); 3154 if (ire != NULL) 3155 ire_refrele(ire); 3156 if (prev_ire != NULL) 3157 ire_refrele(prev_ire); 3158 return; 3159 } 3160 3161 /* 3162 * Should we use the old ULP info to create the new gateway? From 3163 * a user's perspective, we should inherit the info so that it 3164 * is a "smooth" transition. If we do not do that, then new 3165 * connections going thru the new gateway will have no route metrics, 3166 * which is counter-intuitive to user. From a network point of 3167 * view, this may or may not make sense even though the new gateway 3168 * is still directly connected to us so the route metrics should not 3169 * change much. 3170 * 3171 * But if the old ire_uinfo is not initialized, we do another 3172 * recursive lookup on the dest using the new gateway. There may 3173 * be a route to that. If so, use it to initialize the redirect 3174 * route. 3175 */ 3176 if (prev_ire->ire_uinfo.iulp_set) { 3177 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3178 } else { 3179 ire_t *tmp_ire; 3180 ire_t *sire; 3181 3182 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3183 ALL_ZONES, 0, NULL, 3184 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3185 if (sire != NULL) { 3186 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3187 /* 3188 * If sire != NULL, ire_ftable_lookup() should not 3189 * return a NULL value. 3190 */ 3191 ASSERT(tmp_ire != NULL); 3192 ire_refrele(tmp_ire); 3193 ire_refrele(sire); 3194 } else if (tmp_ire != NULL) { 3195 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3196 sizeof (iulp_t)); 3197 ire_refrele(tmp_ire); 3198 } 3199 } 3200 if (prev_ire->ire_type == IRE_CACHE) 3201 ire_delete(prev_ire); 3202 ire_refrele(prev_ire); 3203 /* 3204 * TODO: more precise handling for cases 0, 2, 3, the latter two 3205 * require TOS routing 3206 */ 3207 switch (icmph->icmph_code) { 3208 case 0: 3209 case 1: 3210 /* TODO: TOS specificity for cases 2 and 3 */ 3211 case 2: 3212 case 3: 3213 break; 3214 default: 3215 freemsg(mp); 3216 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3217 ire_refrele(ire); 3218 return; 3219 } 3220 /* 3221 * Create a Route Association. This will allow us to remember that 3222 * someone we believe told us to use the particular gateway. 3223 */ 3224 save_ire = ire; 3225 ire = ire_create( 3226 (uchar_t *)&dst, /* dest addr */ 3227 (uchar_t *)&ip_g_all_ones, /* mask */ 3228 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3229 (uchar_t *)&gateway, /* gateway addr */ 3230 NULL, /* no in_srcaddr */ 3231 &save_ire->ire_max_frag, /* max frag */ 3232 NULL, /* Fast Path header */ 3233 NULL, /* no rfq */ 3234 NULL, /* no stq */ 3235 IRE_HOST_REDIRECT, 3236 NULL, 3237 NULL, 3238 NULL, 3239 0, 3240 0, 3241 0, 3242 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3243 &ulp_info, 3244 NULL, 3245 NULL); 3246 3247 if (ire == NULL) { 3248 freemsg(mp); 3249 ire_refrele(save_ire); 3250 return; 3251 } 3252 error = ire_add(&ire, NULL, NULL, NULL); 3253 ire_refrele(save_ire); 3254 if (error == 0) { 3255 ire_refrele(ire); /* Held in ire_add_v4 */ 3256 /* tell routing sockets that we received a redirect */ 3257 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3258 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3259 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3260 } 3261 3262 /* 3263 * Delete any existing IRE_HOST_REDIRECT for this destination. 3264 * This together with the added IRE has the effect of 3265 * modifying an existing redirect. 3266 */ 3267 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3268 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3269 if (prev_ire) { 3270 ire_delete(prev_ire); 3271 ire_refrele(prev_ire); 3272 } 3273 3274 freemsg(mp); 3275 } 3276 3277 /* 3278 * Generate an ICMP parameter problem message. 3279 */ 3280 static void 3281 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3282 { 3283 icmph_t icmph; 3284 boolean_t mctl_present; 3285 mblk_t *first_mp; 3286 3287 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3288 3289 if (!(mp = icmp_pkt_err_ok(mp))) { 3290 if (mctl_present) 3291 freeb(first_mp); 3292 return; 3293 } 3294 3295 bzero(&icmph, sizeof (icmph_t)); 3296 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3297 icmph.icmph_pp_ptr = ptr; 3298 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3299 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3300 } 3301 3302 /* 3303 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3304 * the ICMP header pointed to by "stuff". (May be called as writer.) 3305 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3306 * an icmp error packet can be sent. 3307 * Assigns an appropriate source address to the packet. If ipha_dst is 3308 * one of our addresses use it for source. Otherwise pick a source based 3309 * on a route lookup back to ipha_src. 3310 * Note that ipha_src must be set here since the 3311 * packet is likely to arrive on an ill queue in ip_wput() which will 3312 * not set a source address. 3313 */ 3314 static void 3315 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3316 boolean_t mctl_present) 3317 { 3318 ipaddr_t dst; 3319 icmph_t *icmph; 3320 ipha_t *ipha; 3321 uint_t len_needed; 3322 size_t msg_len; 3323 mblk_t *mp1; 3324 ipaddr_t src; 3325 ire_t *ire; 3326 mblk_t *ipsec_mp; 3327 ipsec_out_t *io = NULL; 3328 boolean_t xmit_if_on = B_FALSE; 3329 zoneid_t zoneid; 3330 3331 if (mctl_present) { 3332 /* 3333 * If it is : 3334 * 3335 * 1) a IPSEC_OUT, then this is caused by outbound 3336 * datagram originating on this host. IPSEC processing 3337 * may or may not have been done. Refer to comments above 3338 * icmp_inbound_error_fanout for details. 3339 * 3340 * 2) a IPSEC_IN if we are generating a icmp_message 3341 * for an incoming datagram destined for us i.e called 3342 * from ip_fanout_send_icmp. 3343 */ 3344 ipsec_info_t *in; 3345 ipsec_mp = mp; 3346 mp = ipsec_mp->b_cont; 3347 3348 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3349 ipha = (ipha_t *)mp->b_rptr; 3350 3351 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3352 in->ipsec_info_type == IPSEC_IN); 3353 3354 if (in->ipsec_info_type == IPSEC_IN) { 3355 /* 3356 * Convert the IPSEC_IN to IPSEC_OUT. 3357 */ 3358 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3359 BUMP_MIB(&ip_mib, ipOutDiscards); 3360 return; 3361 } 3362 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3363 } else { 3364 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3365 io = (ipsec_out_t *)in; 3366 if (io->ipsec_out_xmit_if) 3367 xmit_if_on = B_TRUE; 3368 /* 3369 * Clear out ipsec_out_proc_begin, so we do a fresh 3370 * ire lookup. 3371 */ 3372 io->ipsec_out_proc_begin = B_FALSE; 3373 } 3374 zoneid = io->ipsec_out_zoneid; 3375 ASSERT(zoneid != ALL_ZONES); 3376 } else { 3377 /* 3378 * This is in clear. The icmp message we are building 3379 * here should go out in clear. 3380 * 3381 * Pardon the convolution of it all, but it's easier to 3382 * allocate a "use cleartext" IPSEC_IN message and convert 3383 * it than it is to allocate a new one. 3384 */ 3385 ipsec_in_t *ii; 3386 ASSERT(DB_TYPE(mp) == M_DATA); 3387 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3388 freemsg(mp); 3389 BUMP_MIB(&ip_mib, ipOutDiscards); 3390 return; 3391 } 3392 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3393 3394 /* This is not a secure packet */ 3395 ii->ipsec_in_secure = B_FALSE; 3396 if (CONN_Q(q)) { 3397 zoneid = Q_TO_CONN(q)->conn_zoneid; 3398 } else { 3399 zoneid = GLOBAL_ZONEID; 3400 } 3401 ii->ipsec_in_zoneid = zoneid; 3402 ASSERT(zoneid != ALL_ZONES); 3403 ipsec_mp->b_cont = mp; 3404 ipha = (ipha_t *)mp->b_rptr; 3405 /* 3406 * Convert the IPSEC_IN to IPSEC_OUT. 3407 */ 3408 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3409 BUMP_MIB(&ip_mib, ipOutDiscards); 3410 return; 3411 } 3412 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3413 } 3414 3415 /* Remember our eventual destination */ 3416 dst = ipha->ipha_src; 3417 3418 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3419 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3420 if (ire != NULL && 3421 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3422 src = ipha->ipha_dst; 3423 } else if (!xmit_if_on) { 3424 if (ire != NULL) 3425 ire_refrele(ire); 3426 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3427 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3428 if (ire == NULL) { 3429 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3430 freemsg(ipsec_mp); 3431 return; 3432 } 3433 src = ire->ire_src_addr; 3434 } else { 3435 ipif_t *ipif = NULL; 3436 ill_t *ill; 3437 /* 3438 * This must be an ICMP error coming from 3439 * ip_mrtun_forward(). The src addr should 3440 * be equal to the IP-addr of the outgoing 3441 * interface. 3442 */ 3443 if (io == NULL) { 3444 /* This is not a IPSEC_OUT type control msg */ 3445 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3446 freemsg(ipsec_mp); 3447 return; 3448 } 3449 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3450 NULL, NULL, NULL, NULL); 3451 if (ill != NULL) { 3452 ipif = ipif_get_next_ipif(NULL, ill); 3453 ill_refrele(ill); 3454 } 3455 if (ipif == NULL) { 3456 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3457 freemsg(ipsec_mp); 3458 return; 3459 } 3460 src = ipif->ipif_src_addr; 3461 ipif_refrele(ipif); 3462 } 3463 3464 if (ire != NULL) 3465 ire_refrele(ire); 3466 3467 /* 3468 * Check if we can send back more then 8 bytes in addition 3469 * to the IP header. We will include as much as 64 bytes. 3470 */ 3471 len_needed = IPH_HDR_LENGTH(ipha); 3472 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3473 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3474 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3475 } 3476 len_needed += ip_icmp_return; 3477 msg_len = msgdsize(mp); 3478 if (msg_len > len_needed) { 3479 (void) adjmsg(mp, len_needed - msg_len); 3480 msg_len = len_needed; 3481 } 3482 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3483 if (mp1 == NULL) { 3484 BUMP_MIB(&icmp_mib, icmpOutErrors); 3485 freemsg(ipsec_mp); 3486 return; 3487 } 3488 /* 3489 * On an unlabeled system, dblks don't necessarily have creds. 3490 */ 3491 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3492 if (DB_CRED(mp) != NULL) 3493 mblk_setcred(mp1, DB_CRED(mp)); 3494 mp1->b_cont = mp; 3495 mp = mp1; 3496 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3497 ipsec_mp->b_rptr == (uint8_t *)io && 3498 io->ipsec_out_type == IPSEC_OUT); 3499 ipsec_mp->b_cont = mp; 3500 3501 /* 3502 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3503 * node generates be accepted in peace by all on-host destinations. 3504 * If we do NOT assume that all on-host destinations trust 3505 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3506 * (Look for ipsec_out_icmp_loopback). 3507 */ 3508 io->ipsec_out_icmp_loopback = B_TRUE; 3509 3510 ipha = (ipha_t *)mp->b_rptr; 3511 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3512 *ipha = icmp_ipha; 3513 ipha->ipha_src = src; 3514 ipha->ipha_dst = dst; 3515 ipha->ipha_ttl = ip_def_ttl; 3516 msg_len += sizeof (icmp_ipha) + len; 3517 if (msg_len > IP_MAXPACKET) { 3518 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3519 msg_len = IP_MAXPACKET; 3520 } 3521 ipha->ipha_length = htons((uint16_t)msg_len); 3522 icmph = (icmph_t *)&ipha[1]; 3523 bcopy(stuff, icmph, len); 3524 icmph->icmph_checksum = 0; 3525 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3526 if (icmph->icmph_checksum == 0) 3527 icmph->icmph_checksum = 0xFFFF; 3528 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3529 put(q, ipsec_mp); 3530 } 3531 3532 /* 3533 * Determine if an ICMP error packet can be sent given the rate limit. 3534 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3535 * in milliseconds) and a burst size. Burst size number of packets can 3536 * be sent arbitrarely closely spaced. 3537 * The state is tracked using two variables to implement an approximate 3538 * token bucket filter: 3539 * icmp_pkt_err_last - lbolt value when the last burst started 3540 * icmp_pkt_err_sent - number of packets sent in current burst 3541 */ 3542 boolean_t 3543 icmp_err_rate_limit(void) 3544 { 3545 clock_t now = TICK_TO_MSEC(lbolt); 3546 uint_t refilled; /* Number of packets refilled in tbf since last */ 3547 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3548 3549 if (err_interval == 0) 3550 return (B_FALSE); 3551 3552 if (icmp_pkt_err_last > now) { 3553 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3554 icmp_pkt_err_last = 0; 3555 icmp_pkt_err_sent = 0; 3556 } 3557 /* 3558 * If we are in a burst update the token bucket filter. 3559 * Update the "last" time to be close to "now" but make sure 3560 * we don't loose precision. 3561 */ 3562 if (icmp_pkt_err_sent != 0) { 3563 refilled = (now - icmp_pkt_err_last)/err_interval; 3564 if (refilled > icmp_pkt_err_sent) { 3565 icmp_pkt_err_sent = 0; 3566 } else { 3567 icmp_pkt_err_sent -= refilled; 3568 icmp_pkt_err_last += refilled * err_interval; 3569 } 3570 } 3571 if (icmp_pkt_err_sent == 0) { 3572 /* Start of new burst */ 3573 icmp_pkt_err_last = now; 3574 } 3575 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3576 icmp_pkt_err_sent++; 3577 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3578 icmp_pkt_err_sent)); 3579 return (B_FALSE); 3580 } 3581 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3582 return (B_TRUE); 3583 } 3584 3585 /* 3586 * Check if it is ok to send an IPv4 ICMP error packet in 3587 * response to the IPv4 packet in mp. 3588 * Free the message and return null if no 3589 * ICMP error packet should be sent. 3590 */ 3591 static mblk_t * 3592 icmp_pkt_err_ok(mblk_t *mp) 3593 { 3594 icmph_t *icmph; 3595 ipha_t *ipha; 3596 uint_t len_needed; 3597 ire_t *src_ire; 3598 ire_t *dst_ire; 3599 3600 if (!mp) 3601 return (NULL); 3602 ipha = (ipha_t *)mp->b_rptr; 3603 if (ip_csum_hdr(ipha)) { 3604 BUMP_MIB(&ip_mib, ipInCksumErrs); 3605 freemsg(mp); 3606 return (NULL); 3607 } 3608 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3609 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3610 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3611 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3612 if (src_ire != NULL || dst_ire != NULL || 3613 CLASSD(ipha->ipha_dst) || 3614 CLASSD(ipha->ipha_src) || 3615 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3616 /* Note: only errors to the fragment with offset 0 */ 3617 BUMP_MIB(&icmp_mib, icmpOutDrops); 3618 freemsg(mp); 3619 if (src_ire != NULL) 3620 ire_refrele(src_ire); 3621 if (dst_ire != NULL) 3622 ire_refrele(dst_ire); 3623 return (NULL); 3624 } 3625 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3626 /* 3627 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3628 * errors in response to any ICMP errors. 3629 */ 3630 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3631 if (mp->b_wptr - mp->b_rptr < len_needed) { 3632 if (!pullupmsg(mp, len_needed)) { 3633 BUMP_MIB(&icmp_mib, icmpInErrors); 3634 freemsg(mp); 3635 return (NULL); 3636 } 3637 ipha = (ipha_t *)mp->b_rptr; 3638 } 3639 icmph = (icmph_t *) 3640 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3641 switch (icmph->icmph_type) { 3642 case ICMP_DEST_UNREACHABLE: 3643 case ICMP_SOURCE_QUENCH: 3644 case ICMP_TIME_EXCEEDED: 3645 case ICMP_PARAM_PROBLEM: 3646 case ICMP_REDIRECT: 3647 BUMP_MIB(&icmp_mib, icmpOutDrops); 3648 freemsg(mp); 3649 return (NULL); 3650 default: 3651 break; 3652 } 3653 } 3654 /* 3655 * If this is a labeled system, then check to see if we're allowed to 3656 * send a response to this particular sender. If not, then just drop. 3657 */ 3658 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3659 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3660 BUMP_MIB(&icmp_mib, icmpOutDrops); 3661 freemsg(mp); 3662 return (NULL); 3663 } 3664 if (icmp_err_rate_limit()) { 3665 /* 3666 * Only send ICMP error packets every so often. 3667 * This should be done on a per port/source basis, 3668 * but for now this will suffice. 3669 */ 3670 freemsg(mp); 3671 return (NULL); 3672 } 3673 return (mp); 3674 } 3675 3676 /* 3677 * Generate an ICMP redirect message. 3678 */ 3679 static void 3680 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3681 { 3682 icmph_t icmph; 3683 3684 /* 3685 * We are called from ip_rput where we could 3686 * not have attached an IPSEC_IN. 3687 */ 3688 ASSERT(mp->b_datap->db_type == M_DATA); 3689 3690 if (!(mp = icmp_pkt_err_ok(mp))) { 3691 return; 3692 } 3693 3694 bzero(&icmph, sizeof (icmph_t)); 3695 icmph.icmph_type = ICMP_REDIRECT; 3696 icmph.icmph_code = 1; 3697 icmph.icmph_rd_gateway = gateway; 3698 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3699 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3700 } 3701 3702 /* 3703 * Generate an ICMP time exceeded message. 3704 */ 3705 void 3706 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3707 { 3708 icmph_t icmph; 3709 boolean_t mctl_present; 3710 mblk_t *first_mp; 3711 3712 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3713 3714 if (!(mp = icmp_pkt_err_ok(mp))) { 3715 if (mctl_present) 3716 freeb(first_mp); 3717 return; 3718 } 3719 3720 bzero(&icmph, sizeof (icmph_t)); 3721 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3722 icmph.icmph_code = code; 3723 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3724 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3725 } 3726 3727 /* 3728 * Generate an ICMP unreachable message. 3729 */ 3730 void 3731 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3732 { 3733 icmph_t icmph; 3734 mblk_t *first_mp; 3735 boolean_t mctl_present; 3736 3737 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3738 3739 if (!(mp = icmp_pkt_err_ok(mp))) { 3740 if (mctl_present) 3741 freeb(first_mp); 3742 return; 3743 } 3744 3745 bzero(&icmph, sizeof (icmph_t)); 3746 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3747 icmph.icmph_code = code; 3748 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3749 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3750 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3751 } 3752 3753 /* 3754 * News from ARP. ARP sends notification of interesting events down 3755 * to its clients using M_CTL messages with the interesting ARP packet 3756 * attached via b_cont. 3757 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3758 * queue as opposed to ARP sending the message to all the clients, i.e. all 3759 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3760 * table if a cache IRE is found to delete all the entries for the address in 3761 * the packet. 3762 */ 3763 static void 3764 ip_arp_news(queue_t *q, mblk_t *mp) 3765 { 3766 arcn_t *arcn; 3767 arh_t *arh; 3768 char *cp1; 3769 uchar_t *cp2; 3770 ire_t *ire = NULL; 3771 int i1; 3772 char hbuf[128]; 3773 char sbuf[16]; 3774 ipaddr_t src; 3775 in6_addr_t v6src; 3776 boolean_t isv6 = B_FALSE; 3777 3778 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3779 if (q->q_next) { 3780 putnext(q, mp); 3781 } else 3782 freemsg(mp); 3783 return; 3784 } 3785 arh = (arh_t *)mp->b_cont->b_rptr; 3786 /* Is it one we are interested in? */ 3787 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3788 isv6 = B_TRUE; 3789 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3790 IPV6_ADDR_LEN); 3791 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3792 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3793 IP_ADDR_LEN); 3794 } else { 3795 freemsg(mp); 3796 return; 3797 } 3798 3799 arcn = (arcn_t *)mp->b_rptr; 3800 switch (arcn->arcn_code) { 3801 case AR_CN_BOGON: 3802 /* 3803 * Someone is sending ARP packets with a source protocol 3804 * address which we have published. Either they are 3805 * pretending to be us, or we have been asked to proxy 3806 * for a machine that can do fine for itself, or two 3807 * different machines are providing proxy service for the 3808 * same protocol address, or something. We try and do 3809 * something appropriate here. 3810 */ 3811 cp2 = (uchar_t *)&arh[1]; 3812 cp1 = hbuf; 3813 *cp1 = '\0'; 3814 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3815 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3816 if (cp1 != hbuf) 3817 cp1[-1] = '\0'; 3818 (void) ip_dot_addr(src, sbuf); 3819 if (isv6) 3820 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 3821 else 3822 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 3823 3824 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3825 cmn_err(CE_WARN, 3826 "IP: Hardware address '%s' trying" 3827 " to be our address %s!", 3828 hbuf, sbuf); 3829 } else { 3830 cmn_err(CE_WARN, 3831 "IP: Proxy ARP problem? " 3832 "Hardware address '%s' thinks it is %s", 3833 hbuf, sbuf); 3834 } 3835 if (ire != NULL) 3836 ire_refrele(ire); 3837 break; 3838 case AR_CN_ANNOUNCE: 3839 if (isv6) { 3840 /* 3841 * For XRESOLV interfaces. 3842 * Delete the IRE cache entry and NCE for this 3843 * v6 address 3844 */ 3845 ip_ire_clookup_and_delete_v6(&v6src); 3846 /* 3847 * If v6src is a non-zero, it's a router address 3848 * as below. Do the same sort of thing to clean 3849 * out off-net IRE_CACHE entries that go through 3850 * the router. 3851 */ 3852 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3853 ire_walk_v6(ire_delete_cache_gw_v6, 3854 (char *)&v6src, ALL_ZONES); 3855 } 3856 break; 3857 } 3858 /* 3859 * ARP gives us a copy of any broadcast packet with identical 3860 * sender and receiver protocol address, in 3861 * case we want to intuit something from it. Such a packet 3862 * usually means that a machine has just come up on the net. 3863 * If we have an IRE_CACHE, we blow it away. This way we will 3864 * immediately pick up the rare case of a host changing 3865 * hardware address. ip_ire_clookup_and_delete achieves this. 3866 * 3867 * The address in "src" may be an entry for a router. 3868 * (Default router, or non-default router.) If 3869 * that's true, then any off-net IRE_CACHE entries 3870 * that go through the router with address "src" 3871 * must be clobbered. Use ire_walk to achieve this 3872 * goal. 3873 * 3874 * It should be possible to determine if the address 3875 * in src is or is not for a router. This way, 3876 * the ire_walk() isn't called all of the time here. 3877 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3878 * as it would remove all IRE_CACHE entries for onlink 3879 * destinations. All onlink destinations have 3880 * ire_gateway_addr == 0. 3881 */ 3882 if ((ip_ire_clookup_and_delete(src, NULL) || 3883 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3884 0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3885 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3886 ALL_ZONES); 3887 } 3888 /* From ire_ftable_lookup */ 3889 if (ire != NULL) 3890 ire_refrele(ire); 3891 break; 3892 default: 3893 if (ire != NULL) 3894 ire_refrele(ire); 3895 break; 3896 } 3897 freemsg(mp); 3898 } 3899 3900 /* 3901 * Create a mblk suitable for carrying the interface index and/or source link 3902 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3903 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3904 * application. 3905 */ 3906 mblk_t * 3907 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3908 { 3909 mblk_t *mp; 3910 in_pktinfo_t *pinfo; 3911 ipha_t *ipha; 3912 struct ether_header *pether; 3913 3914 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3915 if (mp == NULL) { 3916 ip1dbg(("ip_add_info: allocation failure.\n")); 3917 return (data_mp); 3918 } 3919 3920 ipha = (ipha_t *)data_mp->b_rptr; 3921 pinfo = (in_pktinfo_t *)mp->b_rptr; 3922 bzero(pinfo, sizeof (in_pktinfo_t)); 3923 pinfo->in_pkt_flags = (uchar_t)flags; 3924 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3925 3926 if (flags & IPF_RECVIF) 3927 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3928 3929 pether = (struct ether_header *)((char *)ipha 3930 - sizeof (struct ether_header)); 3931 /* 3932 * Make sure the interface is an ethernet type, since this option 3933 * is currently supported only on this type of interface. Also make 3934 * sure we are pointing correctly above db_base. 3935 */ 3936 3937 if ((flags & IPF_RECVSLLA) && 3938 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3939 (ill->ill_type == IFT_ETHER) && 3940 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3941 3942 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3943 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3944 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3945 } else { 3946 /* 3947 * Clear the bit. Indicate to upper layer that IP is not 3948 * sending this ancillary info. 3949 */ 3950 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3951 } 3952 3953 mp->b_datap->db_type = M_CTL; 3954 mp->b_wptr += sizeof (in_pktinfo_t); 3955 mp->b_cont = data_mp; 3956 3957 return (mp); 3958 } 3959 3960 /* 3961 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3962 * part of the bind request. 3963 */ 3964 3965 boolean_t 3966 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3967 { 3968 ipsec_in_t *ii; 3969 3970 ASSERT(policy_mp != NULL); 3971 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3972 3973 ii = (ipsec_in_t *)policy_mp->b_rptr; 3974 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3975 3976 connp->conn_policy = ii->ipsec_in_policy; 3977 ii->ipsec_in_policy = NULL; 3978 3979 if (ii->ipsec_in_action != NULL) { 3980 if (connp->conn_latch == NULL) { 3981 connp->conn_latch = iplatch_create(); 3982 if (connp->conn_latch == NULL) 3983 return (B_FALSE); 3984 } 3985 ipsec_latch_inbound(connp->conn_latch, ii); 3986 } 3987 return (B_TRUE); 3988 } 3989 3990 /* 3991 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3992 * and to arrange for power-fanout assist. The ULP is identified by 3993 * adding a single byte at the end of the original bind message. 3994 * A ULP other than UDP or TCP that wishes to be recognized passes 3995 * down a bind with a zero length address. 3996 * 3997 * The binding works as follows: 3998 * - A zero byte address means just bind to the protocol. 3999 * - A four byte address is treated as a request to validate 4000 * that the address is a valid local address, appropriate for 4001 * an application to bind to. This does not affect any fanout 4002 * information in IP. 4003 * - A sizeof sin_t byte address is used to bind to only the local address 4004 * and port. 4005 * - A sizeof ipa_conn_t byte address contains complete fanout information 4006 * consisting of local and remote addresses and ports. In 4007 * this case, the addresses are both validated as appropriate 4008 * for this operation, and, if so, the information is retained 4009 * for use in the inbound fanout. 4010 * 4011 * The ULP (except in the zero-length bind) can append an 4012 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4013 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4014 * a copy of the source or destination IRE (source for local bind; 4015 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4016 * policy information contained should be copied on to the conn. 4017 * 4018 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4019 */ 4020 mblk_t * 4021 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4022 { 4023 ssize_t len; 4024 struct T_bind_req *tbr; 4025 sin_t *sin; 4026 ipa_conn_t *ac; 4027 uchar_t *ucp; 4028 mblk_t *mp1; 4029 boolean_t ire_requested; 4030 boolean_t ipsec_policy_set = B_FALSE; 4031 int error = 0; 4032 int protocol; 4033 ipa_conn_x_t *acx; 4034 4035 ASSERT(!connp->conn_af_isv6); 4036 connp->conn_pkt_isv6 = B_FALSE; 4037 4038 len = MBLKL(mp); 4039 if (len < (sizeof (*tbr) + 1)) { 4040 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4041 "ip_bind: bogus msg, len %ld", len); 4042 /* XXX: Need to return something better */ 4043 goto bad_addr; 4044 } 4045 /* Back up and extract the protocol identifier. */ 4046 mp->b_wptr--; 4047 protocol = *mp->b_wptr & 0xFF; 4048 tbr = (struct T_bind_req *)mp->b_rptr; 4049 /* Reset the message type in preparation for shipping it back. */ 4050 DB_TYPE(mp) = M_PCPROTO; 4051 4052 connp->conn_ulp = (uint8_t)protocol; 4053 4054 /* 4055 * Check for a zero length address. This is from a protocol that 4056 * wants to register to receive all packets of its type. 4057 */ 4058 if (tbr->ADDR_length == 0) { 4059 /* 4060 * These protocols are now intercepted in ip_bind_v6(). 4061 * Reject protocol-level binds here for now. 4062 * 4063 * For SCTP raw socket, ICMP sends down a bind with sin_t 4064 * so that the protocol type cannot be SCTP. 4065 */ 4066 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4067 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4068 goto bad_addr; 4069 } 4070 4071 /* 4072 * 4073 * The udp module never sends down a zero-length address, 4074 * and allowing this on a labeled system will break MLP 4075 * functionality. 4076 */ 4077 if (is_system_labeled() && protocol == IPPROTO_UDP) 4078 goto bad_addr; 4079 4080 if (connp->conn_mac_exempt) 4081 goto bad_addr; 4082 4083 /* No hash here really. The table is big enough. */ 4084 connp->conn_srcv6 = ipv6_all_zeros; 4085 4086 ipcl_proto_insert(connp, protocol); 4087 4088 tbr->PRIM_type = T_BIND_ACK; 4089 return (mp); 4090 } 4091 4092 /* Extract the address pointer from the message. */ 4093 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4094 tbr->ADDR_length); 4095 if (ucp == NULL) { 4096 ip1dbg(("ip_bind: no address\n")); 4097 goto bad_addr; 4098 } 4099 if (!OK_32PTR(ucp)) { 4100 ip1dbg(("ip_bind: unaligned address\n")); 4101 goto bad_addr; 4102 } 4103 /* 4104 * Check for trailing mps. 4105 */ 4106 4107 mp1 = mp->b_cont; 4108 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4109 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4110 4111 switch (tbr->ADDR_length) { 4112 default: 4113 ip1dbg(("ip_bind: bad address length %d\n", 4114 (int)tbr->ADDR_length)); 4115 goto bad_addr; 4116 4117 case IP_ADDR_LEN: 4118 /* Verification of local address only */ 4119 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4120 ire_requested, ipsec_policy_set, B_FALSE); 4121 break; 4122 4123 case sizeof (sin_t): 4124 sin = (sin_t *)ucp; 4125 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4126 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4127 if (protocol == IPPROTO_TCP) 4128 connp->conn_recv = tcp_conn_request; 4129 break; 4130 4131 case sizeof (ipa_conn_t): 4132 ac = (ipa_conn_t *)ucp; 4133 /* For raw socket, the local port is not set. */ 4134 if (ac->ac_lport == 0) 4135 ac->ac_lport = connp->conn_lport; 4136 /* Always verify destination reachability. */ 4137 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4138 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4139 ipsec_policy_set, B_TRUE, B_TRUE); 4140 if (protocol == IPPROTO_TCP) 4141 connp->conn_recv = tcp_input; 4142 break; 4143 4144 case sizeof (ipa_conn_x_t): 4145 acx = (ipa_conn_x_t *)ucp; 4146 /* 4147 * Whether or not to verify destination reachability depends 4148 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4149 */ 4150 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4151 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4152 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4153 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4154 if (protocol == IPPROTO_TCP) 4155 connp->conn_recv = tcp_input; 4156 break; 4157 } 4158 if (error == EINPROGRESS) 4159 return (NULL); 4160 else if (error != 0) 4161 goto bad_addr; 4162 /* 4163 * Pass the IPSEC headers size in ire_ipsec_overhead. 4164 * We can't do this in ip_bind_insert_ire because the policy 4165 * may not have been inherited at that point in time and hence 4166 * conn_out_enforce_policy may not be set. 4167 */ 4168 mp1 = mp->b_cont; 4169 if (ire_requested && connp->conn_out_enforce_policy && 4170 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4171 ire_t *ire = (ire_t *)mp1->b_rptr; 4172 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4173 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4174 } 4175 4176 /* Send it home. */ 4177 mp->b_datap->db_type = M_PCPROTO; 4178 tbr->PRIM_type = T_BIND_ACK; 4179 return (mp); 4180 4181 bad_addr: 4182 /* 4183 * If error = -1 then we generate a TBADADDR - otherwise error is 4184 * a unix errno. 4185 */ 4186 if (error > 0) 4187 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4188 else 4189 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4190 return (mp); 4191 } 4192 4193 /* 4194 * Here address is verified to be a valid local address. 4195 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4196 * address is also considered a valid local address. 4197 * In the case of a broadcast/multicast address, however, the 4198 * upper protocol is expected to reset the src address 4199 * to 0 if it sees a IRE_BROADCAST type returned so that 4200 * no packets are emitted with broadcast/multicast address as 4201 * source address (that violates hosts requirements RFC1122) 4202 * The addresses valid for bind are: 4203 * (1) - INADDR_ANY (0) 4204 * (2) - IP address of an UP interface 4205 * (3) - IP address of a DOWN interface 4206 * (4) - valid local IP broadcast addresses. In this case 4207 * the conn will only receive packets destined to 4208 * the specified broadcast address. 4209 * (5) - a multicast address. In this case 4210 * the conn will only receive packets destined to 4211 * the specified multicast address. Note: the 4212 * application still has to issue an 4213 * IP_ADD_MEMBERSHIP socket option. 4214 * 4215 * On error, return -1 for TBADADDR otherwise pass the 4216 * errno with TSYSERR reply. 4217 * 4218 * In all the above cases, the bound address must be valid in the current zone. 4219 * When the address is loopback, multicast or broadcast, there might be many 4220 * matching IREs so bind has to look up based on the zone. 4221 * 4222 * Note: lport is in network byte order. 4223 */ 4224 int 4225 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4226 boolean_t ire_requested, boolean_t ipsec_policy_set, 4227 boolean_t fanout_insert) 4228 { 4229 int error = 0; 4230 ire_t *src_ire; 4231 mblk_t *policy_mp; 4232 ipif_t *ipif; 4233 zoneid_t zoneid; 4234 4235 if (ipsec_policy_set) { 4236 policy_mp = mp->b_cont; 4237 } 4238 4239 /* 4240 * If it was previously connected, conn_fully_bound would have 4241 * been set. 4242 */ 4243 connp->conn_fully_bound = B_FALSE; 4244 4245 src_ire = NULL; 4246 ipif = NULL; 4247 4248 zoneid = IPCL_ZONEID(connp); 4249 4250 if (src_addr) { 4251 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4252 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4253 /* 4254 * If an address other than 0.0.0.0 is requested, 4255 * we verify that it is a valid address for bind 4256 * Note: Following code is in if-else-if form for 4257 * readability compared to a condition check. 4258 */ 4259 /* LINTED - statement has no consequent */ 4260 if (IRE_IS_LOCAL(src_ire)) { 4261 /* 4262 * (2) Bind to address of local UP interface 4263 */ 4264 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4265 /* 4266 * (4) Bind to broadcast address 4267 * Note: permitted only from transports that 4268 * request IRE 4269 */ 4270 if (!ire_requested) 4271 error = EADDRNOTAVAIL; 4272 } else { 4273 /* 4274 * (3) Bind to address of local DOWN interface 4275 * (ipif_lookup_addr() looks up all interfaces 4276 * but we do not get here for UP interfaces 4277 * - case (2) above) 4278 * We put the protocol byte back into the mblk 4279 * since we may come back via ip_wput_nondata() 4280 * later with this mblk if ipif_lookup_addr chooses 4281 * to defer processing. 4282 */ 4283 *mp->b_wptr++ = (char)connp->conn_ulp; 4284 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4285 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4286 &error)) != NULL) { 4287 ipif_refrele(ipif); 4288 } else if (error == EINPROGRESS) { 4289 if (src_ire != NULL) 4290 ire_refrele(src_ire); 4291 return (EINPROGRESS); 4292 } else if (CLASSD(src_addr)) { 4293 error = 0; 4294 if (src_ire != NULL) 4295 ire_refrele(src_ire); 4296 /* 4297 * (5) bind to multicast address. 4298 * Fake out the IRE returned to upper 4299 * layer to be a broadcast IRE. 4300 */ 4301 src_ire = ire_ctable_lookup( 4302 INADDR_BROADCAST, INADDR_ANY, 4303 IRE_BROADCAST, NULL, zoneid, NULL, 4304 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4305 if (src_ire == NULL || !ire_requested) 4306 error = EADDRNOTAVAIL; 4307 } else { 4308 /* 4309 * Not a valid address for bind 4310 */ 4311 error = EADDRNOTAVAIL; 4312 } 4313 /* 4314 * Just to keep it consistent with the processing in 4315 * ip_bind_v4() 4316 */ 4317 mp->b_wptr--; 4318 } 4319 if (error) { 4320 /* Red Alert! Attempting to be a bogon! */ 4321 ip1dbg(("ip_bind: bad src address 0x%x\n", 4322 ntohl(src_addr))); 4323 goto bad_addr; 4324 } 4325 } 4326 4327 /* 4328 * Allow setting new policies. For example, disconnects come 4329 * down as ipa_t bind. As we would have set conn_policy_cached 4330 * to B_TRUE before, we should set it to B_FALSE, so that policy 4331 * can change after the disconnect. 4332 */ 4333 connp->conn_policy_cached = B_FALSE; 4334 4335 /* 4336 * If not fanout_insert this was just an address verification 4337 */ 4338 if (fanout_insert) { 4339 /* 4340 * The addresses have been verified. Time to insert in 4341 * the correct fanout list. 4342 */ 4343 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4344 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4345 connp->conn_lport = lport; 4346 connp->conn_fport = 0; 4347 /* 4348 * Do we need to add a check to reject Multicast packets 4349 */ 4350 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4351 } 4352 4353 if (error == 0) { 4354 if (ire_requested) { 4355 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4356 error = -1; 4357 /* Falls through to bad_addr */ 4358 } 4359 } else if (ipsec_policy_set) { 4360 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4361 error = -1; 4362 /* Falls through to bad_addr */ 4363 } 4364 } 4365 } 4366 bad_addr: 4367 if (error != 0) { 4368 if (connp->conn_anon_port) { 4369 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4370 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4371 B_FALSE); 4372 } 4373 connp->conn_mlp_type = mlptSingle; 4374 } 4375 if (src_ire != NULL) 4376 IRE_REFRELE(src_ire); 4377 if (ipsec_policy_set) { 4378 ASSERT(policy_mp == mp->b_cont); 4379 ASSERT(policy_mp != NULL); 4380 freeb(policy_mp); 4381 /* 4382 * As of now assume that nothing else accompanies 4383 * IPSEC_POLICY_SET. 4384 */ 4385 mp->b_cont = NULL; 4386 } 4387 return (error); 4388 } 4389 4390 /* 4391 * Verify that both the source and destination addresses 4392 * are valid. If verify_dst is false, then the destination address may be 4393 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4394 * destination reachability, while tunnels do not. 4395 * Note that we allow connect to broadcast and multicast 4396 * addresses when ire_requested is set. Thus the ULP 4397 * has to check for IRE_BROADCAST and multicast. 4398 * 4399 * Returns zero if ok. 4400 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4401 * (for use with TSYSERR reply). 4402 * 4403 * Note: lport and fport are in network byte order. 4404 */ 4405 int 4406 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4407 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4408 boolean_t ire_requested, boolean_t ipsec_policy_set, 4409 boolean_t fanout_insert, boolean_t verify_dst) 4410 { 4411 ire_t *src_ire; 4412 ire_t *dst_ire; 4413 int error = 0; 4414 int protocol; 4415 mblk_t *policy_mp; 4416 ire_t *sire = NULL; 4417 ire_t *md_dst_ire = NULL; 4418 ill_t *md_ill = NULL; 4419 zoneid_t zoneid; 4420 ipaddr_t src_addr = *src_addrp; 4421 4422 src_ire = dst_ire = NULL; 4423 protocol = *mp->b_wptr & 0xFF; 4424 4425 /* 4426 * If we never got a disconnect before, clear it now. 4427 */ 4428 connp->conn_fully_bound = B_FALSE; 4429 4430 if (ipsec_policy_set) { 4431 policy_mp = mp->b_cont; 4432 } 4433 4434 zoneid = IPCL_ZONEID(connp); 4435 4436 if (CLASSD(dst_addr)) { 4437 /* Pick up an IRE_BROADCAST */ 4438 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4439 NULL, zoneid, MBLK_GETLABEL(mp), 4440 (MATCH_IRE_RECURSIVE | 4441 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4442 MATCH_IRE_SECATTR)); 4443 } else { 4444 /* 4445 * If conn_dontroute is set or if conn_nexthop_set is set, 4446 * and onlink ipif is not found set ENETUNREACH error. 4447 */ 4448 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4449 ipif_t *ipif; 4450 4451 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4452 dst_addr : connp->conn_nexthop_v4, zoneid); 4453 if (ipif == NULL) { 4454 error = ENETUNREACH; 4455 goto bad_addr; 4456 } 4457 ipif_refrele(ipif); 4458 } 4459 4460 if (connp->conn_nexthop_set) { 4461 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4462 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4463 MATCH_IRE_SECATTR); 4464 } else { 4465 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4466 &sire, zoneid, MBLK_GETLABEL(mp), 4467 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4468 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4469 MATCH_IRE_SECATTR)); 4470 } 4471 } 4472 /* 4473 * dst_ire can't be a broadcast when not ire_requested. 4474 * We also prevent ire's with src address INADDR_ANY to 4475 * be used, which are created temporarily for 4476 * sending out packets from endpoints that have 4477 * conn_unspec_src set. If verify_dst is true, the destination must be 4478 * reachable. If verify_dst is false, the destination needn't be 4479 * reachable. 4480 * 4481 * If we match on a reject or black hole, then we've got a 4482 * local failure. May as well fail out the connect() attempt, 4483 * since it's never going to succeed. 4484 */ 4485 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4486 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4487 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4488 /* 4489 * If we're verifying destination reachability, we always want 4490 * to complain here. 4491 * 4492 * If we're not verifying destination reachability but the 4493 * destination has a route, we still want to fail on the 4494 * temporary address and broadcast address tests. 4495 */ 4496 if (verify_dst || (dst_ire != NULL)) { 4497 if (ip_debug > 2) { 4498 pr_addr_dbg("ip_bind_connected: bad connected " 4499 "dst %s\n", AF_INET, &dst_addr); 4500 } 4501 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4502 error = ENETUNREACH; 4503 else 4504 error = EHOSTUNREACH; 4505 goto bad_addr; 4506 } 4507 } 4508 4509 /* 4510 * We now know that routing will allow us to reach the destination. 4511 * Check whether Trusted Solaris policy allows communication with this 4512 * host, and pretend that the destination is unreachable if not. 4513 * 4514 * This is never a problem for TCP, since that transport is known to 4515 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4516 * handling. If the remote is unreachable, it will be detected at that 4517 * point, so there's no reason to check it here. 4518 * 4519 * Note that for sendto (and other datagram-oriented friends), this 4520 * check is done as part of the data path label computation instead. 4521 * The check here is just to make non-TCP connect() report the right 4522 * error. 4523 */ 4524 if (dst_ire != NULL && is_system_labeled() && 4525 !IPCL_IS_TCP(connp) && 4526 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4527 connp->conn_mac_exempt) != 0) { 4528 error = EHOSTUNREACH; 4529 if (ip_debug > 2) { 4530 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4531 AF_INET, &dst_addr); 4532 } 4533 goto bad_addr; 4534 } 4535 4536 /* 4537 * If the app does a connect(), it means that it will most likely 4538 * send more than 1 packet to the destination. It makes sense 4539 * to clear the temporary flag. 4540 */ 4541 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4542 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4543 irb_t *irb = dst_ire->ire_bucket; 4544 4545 rw_enter(&irb->irb_lock, RW_WRITER); 4546 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4547 irb->irb_tmp_ire_cnt--; 4548 rw_exit(&irb->irb_lock); 4549 } 4550 4551 /* 4552 * See if we should notify ULP about MDT; we do this whether or not 4553 * ire_requested is TRUE, in order to handle active connects; MDT 4554 * eligibility tests for passive connects are handled separately 4555 * through tcp_adapt_ire(). We do this before the source address 4556 * selection, because dst_ire may change after a call to 4557 * ipif_select_source(). This is a best-effort check, as the 4558 * packet for this connection may not actually go through 4559 * dst_ire->ire_stq, and the exact IRE can only be known after 4560 * calling ip_newroute(). This is why we further check on the 4561 * IRE during Multidata packet transmission in tcp_multisend(). 4562 */ 4563 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4564 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4565 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4566 ILL_MDT_CAPABLE(md_ill)) { 4567 md_dst_ire = dst_ire; 4568 IRE_REFHOLD(md_dst_ire); 4569 } 4570 4571 if (dst_ire != NULL && 4572 dst_ire->ire_type == IRE_LOCAL && 4573 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4574 /* 4575 * If the IRE belongs to a different zone, look for a matching 4576 * route in the forwarding table and use the source address from 4577 * that route. 4578 */ 4579 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4580 zoneid, 0, NULL, 4581 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4582 MATCH_IRE_RJ_BHOLE); 4583 if (src_ire == NULL) { 4584 error = EHOSTUNREACH; 4585 goto bad_addr; 4586 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4587 if (!(src_ire->ire_type & IRE_HOST)) 4588 error = ENETUNREACH; 4589 else 4590 error = EHOSTUNREACH; 4591 goto bad_addr; 4592 } 4593 if (src_addr == INADDR_ANY) 4594 src_addr = src_ire->ire_src_addr; 4595 ire_refrele(src_ire); 4596 src_ire = NULL; 4597 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4598 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4599 src_addr = sire->ire_src_addr; 4600 ire_refrele(dst_ire); 4601 dst_ire = sire; 4602 sire = NULL; 4603 } else { 4604 /* 4605 * Pick a source address so that a proper inbound 4606 * load spreading would happen. 4607 */ 4608 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4609 ipif_t *src_ipif = NULL; 4610 ire_t *ipif_ire; 4611 4612 /* 4613 * Supply a local source address such that inbound 4614 * load spreading happens. 4615 * 4616 * Determine the best source address on this ill for 4617 * the destination. 4618 * 4619 * 1) For broadcast, we should return a broadcast ire 4620 * found above so that upper layers know that the 4621 * destination address is a broadcast address. 4622 * 4623 * 2) If this is part of a group, select a better 4624 * source address so that better inbound load 4625 * balancing happens. Do the same if the ipif 4626 * is DEPRECATED. 4627 * 4628 * 3) If the outgoing interface is part of a usesrc 4629 * group, then try selecting a source address from 4630 * the usesrc ILL. 4631 */ 4632 if ((dst_ire->ire_zoneid != zoneid && 4633 dst_ire->ire_zoneid != ALL_ZONES) || 4634 (!(dst_ire->ire_type & IRE_BROADCAST) && 4635 ((dst_ill->ill_group != NULL) || 4636 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4637 (dst_ill->ill_usesrc_ifindex != 0)))) { 4638 /* 4639 * If the destination is reachable via a 4640 * given gateway, the selected source address 4641 * should be in the same subnet as the gateway. 4642 * Otherwise, the destination is not reachable. 4643 * 4644 * If there are no interfaces on the same subnet 4645 * as the destination, ipif_select_source gives 4646 * first non-deprecated interface which might be 4647 * on a different subnet than the gateway. 4648 * This is not desirable. Hence pass the dst_ire 4649 * source address to ipif_select_source. 4650 * It is sure that the destination is reachable 4651 * with the dst_ire source address subnet. 4652 * So passing dst_ire source address to 4653 * ipif_select_source will make sure that the 4654 * selected source will be on the same subnet 4655 * as dst_ire source address. 4656 */ 4657 ipaddr_t saddr = 4658 dst_ire->ire_ipif->ipif_src_addr; 4659 src_ipif = ipif_select_source(dst_ill, 4660 saddr, zoneid); 4661 if (src_ipif != NULL) { 4662 if (IS_VNI(src_ipif->ipif_ill)) { 4663 /* 4664 * For VNI there is no 4665 * interface route 4666 */ 4667 src_addr = 4668 src_ipif->ipif_src_addr; 4669 } else { 4670 ipif_ire = 4671 ipif_to_ire(src_ipif); 4672 if (ipif_ire != NULL) { 4673 IRE_REFRELE(dst_ire); 4674 dst_ire = ipif_ire; 4675 } 4676 src_addr = 4677 dst_ire->ire_src_addr; 4678 } 4679 ipif_refrele(src_ipif); 4680 } else { 4681 src_addr = dst_ire->ire_src_addr; 4682 } 4683 } else { 4684 src_addr = dst_ire->ire_src_addr; 4685 } 4686 } 4687 } 4688 4689 /* 4690 * We do ire_route_lookup() here (and not 4691 * interface lookup as we assert that 4692 * src_addr should only come from an 4693 * UP interface for hard binding. 4694 */ 4695 ASSERT(src_ire == NULL); 4696 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4697 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4698 /* src_ire must be a local|loopback */ 4699 if (!IRE_IS_LOCAL(src_ire)) { 4700 if (ip_debug > 2) { 4701 pr_addr_dbg("ip_bind_connected: bad connected " 4702 "src %s\n", AF_INET, &src_addr); 4703 } 4704 error = EADDRNOTAVAIL; 4705 goto bad_addr; 4706 } 4707 4708 /* 4709 * If the source address is a loopback address, the 4710 * destination had best be local or multicast. 4711 * The transports that can't handle multicast will reject 4712 * those addresses. 4713 */ 4714 if (src_ire->ire_type == IRE_LOOPBACK && 4715 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4716 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4717 error = -1; 4718 goto bad_addr; 4719 } 4720 4721 /* 4722 * Allow setting new policies. For example, disconnects come 4723 * down as ipa_t bind. As we would have set conn_policy_cached 4724 * to B_TRUE before, we should set it to B_FALSE, so that policy 4725 * can change after the disconnect. 4726 */ 4727 connp->conn_policy_cached = B_FALSE; 4728 4729 /* 4730 * Set the conn addresses/ports immediately, so the IPsec policy calls 4731 * can handle their passed-in conn's. 4732 */ 4733 4734 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4735 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4736 connp->conn_lport = lport; 4737 connp->conn_fport = fport; 4738 *src_addrp = src_addr; 4739 4740 ASSERT(!(ipsec_policy_set && ire_requested)); 4741 if (ire_requested) { 4742 iulp_t *ulp_info = NULL; 4743 4744 /* 4745 * Note that sire will not be NULL if this is an off-link 4746 * connection and there is not cache for that dest yet. 4747 * 4748 * XXX Because of an existing bug, if there are multiple 4749 * default routes, the IRE returned now may not be the actual 4750 * default route used (default routes are chosen in a 4751 * round robin fashion). So if the metrics for different 4752 * default routes are different, we may return the wrong 4753 * metrics. This will not be a problem if the existing 4754 * bug is fixed. 4755 */ 4756 if (sire != NULL) { 4757 ulp_info = &(sire->ire_uinfo); 4758 } 4759 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4760 error = -1; 4761 goto bad_addr; 4762 } 4763 } else if (ipsec_policy_set) { 4764 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4765 error = -1; 4766 goto bad_addr; 4767 } 4768 } 4769 4770 /* 4771 * Cache IPsec policy in this conn. If we have per-socket policy, 4772 * we'll cache that. If we don't, we'll inherit global policy. 4773 * 4774 * We can't insert until the conn reflects the policy. Note that 4775 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4776 * connections where we don't have a policy. This is to prevent 4777 * global policy lookups in the inbound path. 4778 * 4779 * If we insert before we set conn_policy_cached, 4780 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4781 * because global policy cound be non-empty. We normally call 4782 * ipsec_check_policy() for conn_policy_cached connections only if 4783 * ipc_in_enforce_policy is set. But in this case, 4784 * conn_policy_cached can get set anytime since we made the 4785 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4786 * called, which will make the above assumption false. Thus, we 4787 * need to insert after we set conn_policy_cached. 4788 */ 4789 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4790 goto bad_addr; 4791 4792 if (fanout_insert) { 4793 /* 4794 * The addresses have been verified. Time to insert in 4795 * the correct fanout list. 4796 */ 4797 error = ipcl_conn_insert(connp, protocol, src_addr, 4798 dst_addr, connp->conn_ports); 4799 } 4800 4801 if (error == 0) { 4802 connp->conn_fully_bound = B_TRUE; 4803 /* 4804 * Our initial checks for MDT have passed; the IRE is not 4805 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4806 * be supporting MDT. Pass the IRE, IPC and ILL into 4807 * ip_mdinfo_return(), which performs further checks 4808 * against them and upon success, returns the MDT info 4809 * mblk which we will attach to the bind acknowledgment. 4810 */ 4811 if (md_dst_ire != NULL) { 4812 mblk_t *mdinfo_mp; 4813 4814 ASSERT(md_ill != NULL); 4815 ASSERT(md_ill->ill_mdt_capab != NULL); 4816 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4817 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4818 linkb(mp, mdinfo_mp); 4819 } 4820 } 4821 bad_addr: 4822 if (ipsec_policy_set) { 4823 ASSERT(policy_mp == mp->b_cont); 4824 ASSERT(policy_mp != NULL); 4825 freeb(policy_mp); 4826 /* 4827 * As of now assume that nothing else accompanies 4828 * IPSEC_POLICY_SET. 4829 */ 4830 mp->b_cont = NULL; 4831 } 4832 if (src_ire != NULL) 4833 IRE_REFRELE(src_ire); 4834 if (dst_ire != NULL) 4835 IRE_REFRELE(dst_ire); 4836 if (sire != NULL) 4837 IRE_REFRELE(sire); 4838 if (md_dst_ire != NULL) 4839 IRE_REFRELE(md_dst_ire); 4840 return (error); 4841 } 4842 4843 /* 4844 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4845 * Prefers dst_ire over src_ire. 4846 */ 4847 static boolean_t 4848 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4849 { 4850 mblk_t *mp1; 4851 ire_t *ret_ire = NULL; 4852 4853 mp1 = mp->b_cont; 4854 ASSERT(mp1 != NULL); 4855 4856 if (ire != NULL) { 4857 /* 4858 * mp1 initialized above to IRE_DB_REQ_TYPE 4859 * appended mblk. Its <upper protocol>'s 4860 * job to make sure there is room. 4861 */ 4862 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4863 return (0); 4864 4865 mp1->b_datap->db_type = IRE_DB_TYPE; 4866 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4867 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4868 ret_ire = (ire_t *)mp1->b_rptr; 4869 /* 4870 * Pass the latest setting of the ip_path_mtu_discovery and 4871 * copy the ulp info if any. 4872 */ 4873 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4874 IPH_DF : 0; 4875 if (ulp_info != NULL) { 4876 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4877 sizeof (iulp_t)); 4878 } 4879 ret_ire->ire_mp = mp1; 4880 } else { 4881 /* 4882 * No IRE was found. Remove IRE mblk. 4883 */ 4884 mp->b_cont = mp1->b_cont; 4885 freeb(mp1); 4886 } 4887 4888 return (1); 4889 } 4890 4891 /* 4892 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4893 * the final piece where we don't. Return a pointer to the first mblk in the 4894 * result, and update the pointer to the next mblk to chew on. If anything 4895 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4896 * NULL pointer. 4897 */ 4898 mblk_t * 4899 ip_carve_mp(mblk_t **mpp, ssize_t len) 4900 { 4901 mblk_t *mp0; 4902 mblk_t *mp1; 4903 mblk_t *mp2; 4904 4905 if (!len || !mpp || !(mp0 = *mpp)) 4906 return (NULL); 4907 /* If we aren't going to consume the first mblk, we need a dup. */ 4908 if (mp0->b_wptr - mp0->b_rptr > len) { 4909 mp1 = dupb(mp0); 4910 if (mp1) { 4911 /* Partition the data between the two mblks. */ 4912 mp1->b_wptr = mp1->b_rptr + len; 4913 mp0->b_rptr = mp1->b_wptr; 4914 /* 4915 * after adjustments if mblk not consumed is now 4916 * unaligned, try to align it. If this fails free 4917 * all messages and let upper layer recover. 4918 */ 4919 if (!OK_32PTR(mp0->b_rptr)) { 4920 if (!pullupmsg(mp0, -1)) { 4921 freemsg(mp0); 4922 freemsg(mp1); 4923 *mpp = NULL; 4924 return (NULL); 4925 } 4926 } 4927 } 4928 return (mp1); 4929 } 4930 /* Eat through as many mblks as we need to get len bytes. */ 4931 len -= mp0->b_wptr - mp0->b_rptr; 4932 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4933 if (mp2->b_wptr - mp2->b_rptr > len) { 4934 /* 4935 * We won't consume the entire last mblk. Like 4936 * above, dup and partition it. 4937 */ 4938 mp1->b_cont = dupb(mp2); 4939 mp1 = mp1->b_cont; 4940 if (!mp1) { 4941 /* 4942 * Trouble. Rather than go to a lot of 4943 * trouble to clean up, we free the messages. 4944 * This won't be any worse than losing it on 4945 * the wire. 4946 */ 4947 freemsg(mp0); 4948 freemsg(mp2); 4949 *mpp = NULL; 4950 return (NULL); 4951 } 4952 mp1->b_wptr = mp1->b_rptr + len; 4953 mp2->b_rptr = mp1->b_wptr; 4954 /* 4955 * after adjustments if mblk not consumed is now 4956 * unaligned, try to align it. If this fails free 4957 * all messages and let upper layer recover. 4958 */ 4959 if (!OK_32PTR(mp2->b_rptr)) { 4960 if (!pullupmsg(mp2, -1)) { 4961 freemsg(mp0); 4962 freemsg(mp2); 4963 *mpp = NULL; 4964 return (NULL); 4965 } 4966 } 4967 *mpp = mp2; 4968 return (mp0); 4969 } 4970 /* Decrement len by the amount we just got. */ 4971 len -= mp2->b_wptr - mp2->b_rptr; 4972 } 4973 /* 4974 * len should be reduced to zero now. If not our caller has 4975 * screwed up. 4976 */ 4977 if (len) { 4978 /* Shouldn't happen! */ 4979 freemsg(mp0); 4980 *mpp = NULL; 4981 return (NULL); 4982 } 4983 /* 4984 * We consumed up to exactly the end of an mblk. Detach the part 4985 * we are returning from the rest of the chain. 4986 */ 4987 mp1->b_cont = NULL; 4988 *mpp = mp2; 4989 return (mp0); 4990 } 4991 4992 /* The ill stream is being unplumbed. Called from ip_close */ 4993 int 4994 ip_modclose(ill_t *ill) 4995 { 4996 4997 boolean_t success; 4998 ipsq_t *ipsq; 4999 ipif_t *ipif; 5000 queue_t *q = ill->ill_rq; 5001 5002 /* 5003 * Forcibly enter the ipsq after some delay. This is to take 5004 * care of the case when some ioctl does not complete because 5005 * we sent a control message to the driver and it did not 5006 * send us a reply. We want to be able to at least unplumb 5007 * and replumb rather than force the user to reboot the system. 5008 */ 5009 success = ipsq_enter(ill, B_FALSE); 5010 5011 /* 5012 * Open/close/push/pop is guaranteed to be single threaded 5013 * per stream by STREAMS. FS guarantees that all references 5014 * from top are gone before close is called. So there can't 5015 * be another close thread that has set CONDEMNED on this ill. 5016 * and cause ipsq_enter to return failure. 5017 */ 5018 ASSERT(success); 5019 ipsq = ill->ill_phyint->phyint_ipsq; 5020 5021 /* 5022 * Mark it condemned. No new reference will be made to this ill. 5023 * Lookup functions will return an error. Threads that try to 5024 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5025 * that the refcnt will drop down to zero. 5026 */ 5027 mutex_enter(&ill->ill_lock); 5028 ill->ill_state_flags |= ILL_CONDEMNED; 5029 for (ipif = ill->ill_ipif; ipif != NULL; 5030 ipif = ipif->ipif_next) { 5031 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5032 } 5033 /* 5034 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5035 * returns error if ILL_CONDEMNED is set 5036 */ 5037 cv_broadcast(&ill->ill_cv); 5038 mutex_exit(&ill->ill_lock); 5039 5040 /* 5041 * Shut down fragmentation reassembly. 5042 * ill_frag_timer won't start a timer again. 5043 * Now cancel any existing timer 5044 */ 5045 (void) untimeout(ill->ill_frag_timer_id); 5046 (void) ill_frag_timeout(ill, 0); 5047 5048 /* 5049 * If MOVE was in progress, clear the 5050 * move_in_progress fields also. 5051 */ 5052 if (ill->ill_move_in_progress) { 5053 ILL_CLEAR_MOVE(ill); 5054 } 5055 5056 /* 5057 * Call ill_delete to bring down the ipifs, ilms and ill on 5058 * this ill. Then wait for the refcnts to drop to zero. 5059 * ill_is_quiescent checks whether the ill is really quiescent. 5060 * Then make sure that threads that are waiting to enter the 5061 * ipsq have seen the error returned by ipsq_enter and have 5062 * gone away. Then we call ill_delete_tail which does the 5063 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5064 */ 5065 ill_delete(ill); 5066 mutex_enter(&ill->ill_lock); 5067 while (!ill_is_quiescent(ill)) 5068 cv_wait(&ill->ill_cv, &ill->ill_lock); 5069 while (ill->ill_waiters) 5070 cv_wait(&ill->ill_cv, &ill->ill_lock); 5071 5072 mutex_exit(&ill->ill_lock); 5073 5074 /* qprocsoff is called in ill_delete_tail */ 5075 ill_delete_tail(ill); 5076 5077 /* 5078 * Walk through all upper (conn) streams and qenable 5079 * those that have queued data. 5080 * close synchronization needs this to 5081 * be done to ensure that all upper layers blocked 5082 * due to flow control to the closing device 5083 * get unblocked. 5084 */ 5085 ip1dbg(("ip_wsrv: walking\n")); 5086 conn_walk_drain(); 5087 5088 mutex_enter(&ip_mi_lock); 5089 mi_close_unlink(&ip_g_head, (IDP)ill); 5090 mutex_exit(&ip_mi_lock); 5091 5092 /* 5093 * credp could be null if the open didn't succeed and ip_modopen 5094 * itself calls ip_close. 5095 */ 5096 if (ill->ill_credp != NULL) 5097 crfree(ill->ill_credp); 5098 5099 mi_close_free((IDP)ill); 5100 q->q_ptr = WR(q)->q_ptr = NULL; 5101 5102 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5103 5104 return (0); 5105 } 5106 5107 /* 5108 * This is called as part of close() for both IP and UDP 5109 * in order to quiesce the conn. 5110 */ 5111 void 5112 ip_quiesce_conn(conn_t *connp) 5113 { 5114 boolean_t drain_cleanup_reqd = B_FALSE; 5115 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5116 boolean_t ilg_cleanup_reqd = B_FALSE; 5117 5118 ASSERT(!IPCL_IS_TCP(connp)); 5119 5120 /* 5121 * Mark the conn as closing, and this conn must not be 5122 * inserted in future into any list. Eg. conn_drain_insert(), 5123 * won't insert this conn into the conn_drain_list. 5124 * Similarly ill_pending_mp_add() will not add any mp to 5125 * the pending mp list, after this conn has started closing. 5126 * 5127 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5128 * cannot get set henceforth. 5129 */ 5130 mutex_enter(&connp->conn_lock); 5131 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5132 connp->conn_state_flags |= CONN_CLOSING; 5133 if (connp->conn_idl != NULL) 5134 drain_cleanup_reqd = B_TRUE; 5135 if (connp->conn_oper_pending_ill != NULL) 5136 conn_ioctl_cleanup_reqd = B_TRUE; 5137 if (connp->conn_ilg_inuse != 0) 5138 ilg_cleanup_reqd = B_TRUE; 5139 mutex_exit(&connp->conn_lock); 5140 5141 if (IPCL_IS_UDP(connp)) 5142 udp_quiesce_conn(connp); 5143 5144 if (conn_ioctl_cleanup_reqd) 5145 conn_ioctl_cleanup(connp); 5146 5147 if (is_system_labeled() && connp->conn_anon_port) { 5148 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5149 connp->conn_mlp_type, connp->conn_ulp, 5150 ntohs(connp->conn_lport), B_FALSE); 5151 connp->conn_anon_port = 0; 5152 } 5153 connp->conn_mlp_type = mlptSingle; 5154 5155 /* 5156 * Remove this conn from any fanout list it is on. 5157 * and then wait for any threads currently operating 5158 * on this endpoint to finish 5159 */ 5160 ipcl_hash_remove(connp); 5161 5162 /* 5163 * Remove this conn from the drain list, and do 5164 * any other cleanup that may be required. 5165 * (Only non-tcp streams may have a non-null conn_idl. 5166 * TCP streams are never flow controlled, and 5167 * conn_idl will be null) 5168 */ 5169 if (drain_cleanup_reqd) 5170 conn_drain_tail(connp, B_TRUE); 5171 5172 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5173 (void) ip_mrouter_done(NULL); 5174 5175 if (ilg_cleanup_reqd) 5176 ilg_delete_all(connp); 5177 5178 conn_delete_ire(connp, NULL); 5179 5180 /* 5181 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5182 * callers from write side can't be there now because close 5183 * is in progress. The only other caller is ipcl_walk 5184 * which checks for the condemned flag. 5185 */ 5186 mutex_enter(&connp->conn_lock); 5187 connp->conn_state_flags |= CONN_CONDEMNED; 5188 while (connp->conn_ref != 1) 5189 cv_wait(&connp->conn_cv, &connp->conn_lock); 5190 connp->conn_state_flags |= CONN_QUIESCED; 5191 mutex_exit(&connp->conn_lock); 5192 } 5193 5194 /* ARGSUSED */ 5195 int 5196 ip_close(queue_t *q, int flags) 5197 { 5198 conn_t *connp; 5199 5200 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5201 5202 /* 5203 * Call the appropriate delete routine depending on whether this is 5204 * a module or device. 5205 */ 5206 if (WR(q)->q_next != NULL) { 5207 /* This is a module close */ 5208 return (ip_modclose((ill_t *)q->q_ptr)); 5209 } 5210 5211 connp = q->q_ptr; 5212 ip_quiesce_conn(connp); 5213 5214 qprocsoff(q); 5215 5216 /* 5217 * Now we are truly single threaded on this stream, and can 5218 * delete the things hanging off the connp, and finally the connp. 5219 * We removed this connp from the fanout list, it cannot be 5220 * accessed thru the fanouts, and we already waited for the 5221 * conn_ref to drop to 0. We are already in close, so 5222 * there cannot be any other thread from the top. qprocsoff 5223 * has completed, and service has completed or won't run in 5224 * future. 5225 */ 5226 ASSERT(connp->conn_ref == 1); 5227 5228 /* 5229 * A conn which was previously marked as IPCL_UDP cannot 5230 * retain the flag because it would have been cleared by 5231 * udp_close(). 5232 */ 5233 ASSERT(!IPCL_IS_UDP(connp)); 5234 5235 if (connp->conn_latch != NULL) { 5236 IPLATCH_REFRELE(connp->conn_latch); 5237 connp->conn_latch = NULL; 5238 } 5239 if (connp->conn_policy != NULL) { 5240 IPPH_REFRELE(connp->conn_policy); 5241 connp->conn_policy = NULL; 5242 } 5243 if (connp->conn_ipsec_opt_mp != NULL) { 5244 freemsg(connp->conn_ipsec_opt_mp); 5245 connp->conn_ipsec_opt_mp = NULL; 5246 } 5247 5248 inet_minor_free(ip_minor_arena, connp->conn_dev); 5249 5250 connp->conn_ref--; 5251 ipcl_conn_destroy(connp); 5252 5253 q->q_ptr = WR(q)->q_ptr = NULL; 5254 return (0); 5255 } 5256 5257 int 5258 ip_snmpmod_close(queue_t *q) 5259 { 5260 conn_t *connp = Q_TO_CONN(q); 5261 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5262 5263 qprocsoff(q); 5264 5265 if (connp->conn_flags & IPCL_UDPMOD) 5266 udp_close_free(connp); 5267 5268 if (connp->conn_cred != NULL) { 5269 crfree(connp->conn_cred); 5270 connp->conn_cred = NULL; 5271 } 5272 CONN_DEC_REF(connp); 5273 q->q_ptr = WR(q)->q_ptr = NULL; 5274 return (0); 5275 } 5276 5277 /* 5278 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5279 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5280 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5281 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5282 * queues as we never enqueue messages there and we don't handle any ioctls. 5283 * Everything else is freed. 5284 */ 5285 void 5286 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5287 { 5288 conn_t *connp = q->q_ptr; 5289 pfi_t setfn; 5290 pfi_t getfn; 5291 5292 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5293 5294 switch (DB_TYPE(mp)) { 5295 case M_PROTO: 5296 case M_PCPROTO: 5297 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5298 ((((union T_primitives *)mp->b_rptr)->type == 5299 T_SVR4_OPTMGMT_REQ) || 5300 (((union T_primitives *)mp->b_rptr)->type == 5301 T_OPTMGMT_REQ))) { 5302 /* 5303 * This is the only TPI primitive supported. Its 5304 * handling does not require tcp_t, but it does require 5305 * conn_t to check permissions. 5306 */ 5307 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5308 5309 if (connp->conn_flags & IPCL_TCPMOD) { 5310 setfn = tcp_snmp_set; 5311 getfn = tcp_snmp_get; 5312 } else { 5313 setfn = udp_snmp_set; 5314 getfn = udp_snmp_get; 5315 } 5316 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5317 freemsg(mp); 5318 return; 5319 } 5320 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5321 != NULL) 5322 qreply(q, mp); 5323 break; 5324 case M_FLUSH: 5325 case M_IOCTL: 5326 putnext(q, mp); 5327 break; 5328 default: 5329 freemsg(mp); 5330 break; 5331 } 5332 } 5333 5334 /* Return the IP checksum for the IP header at "iph". */ 5335 uint16_t 5336 ip_csum_hdr(ipha_t *ipha) 5337 { 5338 uint16_t *uph; 5339 uint32_t sum; 5340 int opt_len; 5341 5342 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5343 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5344 uph = (uint16_t *)ipha; 5345 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5346 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5347 if (opt_len > 0) { 5348 do { 5349 sum += uph[10]; 5350 sum += uph[11]; 5351 uph += 2; 5352 } while (--opt_len); 5353 } 5354 sum = (sum & 0xFFFF) + (sum >> 16); 5355 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5356 if (sum == 0xffff) 5357 sum = 0; 5358 return ((uint16_t)sum); 5359 } 5360 5361 void 5362 ip_ddi_destroy(void) 5363 { 5364 tnet_fini(); 5365 tcp_ddi_destroy(); 5366 sctp_ddi_destroy(); 5367 ipsec_loader_destroy(); 5368 ipsec_policy_destroy(); 5369 ipsec_kstat_destroy(); 5370 nd_free(&ip_g_nd); 5371 mutex_destroy(&igmp_timer_lock); 5372 mutex_destroy(&mld_timer_lock); 5373 mutex_destroy(&igmp_slowtimeout_lock); 5374 mutex_destroy(&mld_slowtimeout_lock); 5375 mutex_destroy(&ip_mi_lock); 5376 mutex_destroy(&rts_clients.connf_lock); 5377 ip_ire_fini(); 5378 ip6_asp_free(); 5379 conn_drain_fini(); 5380 ipcl_destroy(); 5381 inet_minor_destroy(ip_minor_arena); 5382 icmp_kstat_fini(); 5383 ip_kstat_fini(); 5384 rw_destroy(&ipsec_capab_ills_lock); 5385 rw_destroy(&ill_g_usesrc_lock); 5386 ip_drop_unregister(&ip_dropper); 5387 } 5388 5389 5390 void 5391 ip_ddi_init(void) 5392 { 5393 TCP6_MAJ = ddi_name_to_major(TCP6); 5394 TCP_MAJ = ddi_name_to_major(TCP); 5395 SCTP_MAJ = ddi_name_to_major(SCTP); 5396 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5397 5398 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5399 5400 /* IP's IPsec code calls the packet dropper */ 5401 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5402 5403 if (!ip_g_nd) { 5404 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5405 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5406 nd_free(&ip_g_nd); 5407 } 5408 } 5409 5410 ipsec_loader_init(); 5411 ipsec_policy_init(); 5412 ipsec_kstat_init(); 5413 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5414 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5415 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5416 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5417 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5418 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5419 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5420 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5421 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5422 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5423 5424 /* 5425 * For IP and TCP the minor numbers should start from 2 since we have 4 5426 * initial devices: ip, ip6, tcp, tcp6. 5427 */ 5428 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5429 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5430 cmn_err(CE_PANIC, 5431 "ip_ddi_init: ip_minor_arena creation failed\n"); 5432 } 5433 5434 ipcl_init(); 5435 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5436 ip_ire_init(); 5437 ip6_asp_init(); 5438 ipif_init(); 5439 conn_drain_init(); 5440 tcp_ddi_init(); 5441 sctp_ddi_init(); 5442 5443 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5444 5445 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5446 "net", KSTAT_TYPE_NAMED, 5447 sizeof (ip_statistics) / sizeof (kstat_named_t), 5448 KSTAT_FLAG_VIRTUAL)) != NULL) { 5449 ip_kstat->ks_data = &ip_statistics; 5450 kstat_install(ip_kstat); 5451 } 5452 ip_kstat_init(); 5453 ip6_kstat_init(); 5454 icmp_kstat_init(); 5455 ipsec_loader_start(); 5456 tnet_init(); 5457 } 5458 5459 /* 5460 * Allocate and initialize a DLPI template of the specified length. (May be 5461 * called as writer.) 5462 */ 5463 mblk_t * 5464 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5465 { 5466 mblk_t *mp; 5467 5468 mp = allocb(len, BPRI_MED); 5469 if (!mp) 5470 return (NULL); 5471 5472 /* 5473 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5474 * of which we don't seem to use) are sent with M_PCPROTO, and 5475 * that other DLPI are M_PROTO. 5476 */ 5477 if (prim == DL_INFO_REQ) { 5478 mp->b_datap->db_type = M_PCPROTO; 5479 } else { 5480 mp->b_datap->db_type = M_PROTO; 5481 } 5482 5483 mp->b_wptr = mp->b_rptr + len; 5484 bzero(mp->b_rptr, len); 5485 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5486 return (mp); 5487 } 5488 5489 const char * 5490 dlpi_prim_str(int prim) 5491 { 5492 switch (prim) { 5493 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5494 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5495 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5496 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5497 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5498 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5499 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5500 case DL_OK_ACK: return ("DL_OK_ACK"); 5501 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5502 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5503 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5504 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5505 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5506 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5507 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5508 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5509 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5510 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5511 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5512 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5513 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5514 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5515 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5516 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5517 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5518 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5519 default: return ("<unknown primitive>"); 5520 } 5521 } 5522 5523 const char * 5524 dlpi_err_str(int err) 5525 { 5526 switch (err) { 5527 case DL_ACCESS: return ("DL_ACCESS"); 5528 case DL_BADADDR: return ("DL_BADADDR"); 5529 case DL_BADCORR: return ("DL_BADCORR"); 5530 case DL_BADDATA: return ("DL_BADDATA"); 5531 case DL_BADPPA: return ("DL_BADPPA"); 5532 case DL_BADPRIM: return ("DL_BADPRIM"); 5533 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5534 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5535 case DL_BADSAP: return ("DL_BADSAP"); 5536 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5537 case DL_BOUND: return ("DL_BOUND"); 5538 case DL_INITFAILED: return ("DL_INITFAILED"); 5539 case DL_NOADDR: return ("DL_NOADDR"); 5540 case DL_NOTINIT: return ("DL_NOTINIT"); 5541 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5542 case DL_SYSERR: return ("DL_SYSERR"); 5543 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5544 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5545 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5546 case DL_TOOMANY: return ("DL_TOOMANY"); 5547 case DL_NOTENAB: return ("DL_NOTENAB"); 5548 case DL_BUSY: return ("DL_BUSY"); 5549 case DL_NOAUTO: return ("DL_NOAUTO"); 5550 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5551 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5552 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5553 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5554 case DL_PENDING: return ("DL_PENDING"); 5555 default: return ("<unknown error>"); 5556 } 5557 } 5558 5559 /* 5560 * Debug formatting routine. Returns a character string representation of the 5561 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5562 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5563 */ 5564 char * 5565 ip_dot_addr(ipaddr_t addr, char *buf) 5566 { 5567 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5568 } 5569 5570 /* 5571 * Debug formatting routine. Returns a character string representation of the 5572 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5573 * as a pointer. The "xxx" parts including left zero padding so the final 5574 * string will fit easily in tables. It would be nice to take a padding 5575 * length argument instead. 5576 */ 5577 static char * 5578 ip_dot_saddr(uchar_t *addr, char *buf) 5579 { 5580 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5581 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5582 return (buf); 5583 } 5584 5585 /* 5586 * Send an ICMP error after patching up the packet appropriately. Returns 5587 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5588 */ 5589 static boolean_t 5590 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5591 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5592 { 5593 ipha_t *ipha; 5594 mblk_t *first_mp; 5595 boolean_t secure; 5596 unsigned char db_type; 5597 5598 first_mp = mp; 5599 if (mctl_present) { 5600 mp = mp->b_cont; 5601 secure = ipsec_in_is_secure(first_mp); 5602 ASSERT(mp != NULL); 5603 } else { 5604 /* 5605 * If this is an ICMP error being reported - which goes 5606 * up as M_CTLs, we need to convert them to M_DATA till 5607 * we finish checking with global policy because 5608 * ipsec_check_global_policy() assumes M_DATA as clear 5609 * and M_CTL as secure. 5610 */ 5611 db_type = DB_TYPE(mp); 5612 DB_TYPE(mp) = M_DATA; 5613 secure = B_FALSE; 5614 } 5615 /* 5616 * We are generating an icmp error for some inbound packet. 5617 * Called from all ip_fanout_(udp, tcp, proto) functions. 5618 * Before we generate an error, check with global policy 5619 * to see whether this is allowed to enter the system. As 5620 * there is no "conn", we are checking with global policy. 5621 */ 5622 ipha = (ipha_t *)mp->b_rptr; 5623 if (secure || ipsec_inbound_v4_policy_present) { 5624 first_mp = ipsec_check_global_policy(first_mp, NULL, 5625 ipha, NULL, mctl_present); 5626 if (first_mp == NULL) 5627 return (B_FALSE); 5628 } 5629 5630 if (!mctl_present) 5631 DB_TYPE(mp) = db_type; 5632 5633 if (flags & IP_FF_SEND_ICMP) { 5634 if (flags & IP_FF_HDR_COMPLETE) { 5635 if (ip_hdr_complete(ipha, zoneid)) { 5636 freemsg(first_mp); 5637 return (B_TRUE); 5638 } 5639 } 5640 if (flags & IP_FF_CKSUM) { 5641 /* 5642 * Have to correct checksum since 5643 * the packet might have been 5644 * fragmented and the reassembly code in ip_rput 5645 * does not restore the IP checksum. 5646 */ 5647 ipha->ipha_hdr_checksum = 0; 5648 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5649 } 5650 switch (icmp_type) { 5651 case ICMP_DEST_UNREACHABLE: 5652 icmp_unreachable(WR(q), first_mp, icmp_code); 5653 break; 5654 default: 5655 freemsg(first_mp); 5656 break; 5657 } 5658 } else { 5659 freemsg(first_mp); 5660 return (B_FALSE); 5661 } 5662 5663 return (B_TRUE); 5664 } 5665 5666 /* 5667 * Used to send an ICMP error message when a packet is received for 5668 * a protocol that is not supported. The mblk passed as argument 5669 * is consumed by this function. 5670 */ 5671 void 5672 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5673 { 5674 mblk_t *mp; 5675 ipha_t *ipha; 5676 ill_t *ill; 5677 ipsec_in_t *ii; 5678 5679 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5680 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5681 5682 mp = ipsec_mp->b_cont; 5683 ipsec_mp->b_cont = NULL; 5684 ipha = (ipha_t *)mp->b_rptr; 5685 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5686 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5687 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5688 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5689 } 5690 } else { 5691 /* Get ill from index in ipsec_in_t. */ 5692 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5693 B_TRUE, NULL, NULL, NULL, NULL); 5694 if (ill != NULL) { 5695 if (ip_fanout_send_icmp_v6(q, mp, flags, 5696 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5697 0, B_FALSE, zoneid)) { 5698 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5699 } 5700 5701 ill_refrele(ill); 5702 } else { /* re-link for the freemsg() below. */ 5703 ipsec_mp->b_cont = mp; 5704 } 5705 } 5706 5707 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5708 freemsg(ipsec_mp); 5709 } 5710 5711 /* 5712 * See if the inbound datagram has had IPsec processing applied to it. 5713 */ 5714 boolean_t 5715 ipsec_in_is_secure(mblk_t *ipsec_mp) 5716 { 5717 ipsec_in_t *ii; 5718 5719 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5720 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5721 5722 if (ii->ipsec_in_loopback) { 5723 return (ii->ipsec_in_secure); 5724 } else { 5725 return (ii->ipsec_in_ah_sa != NULL || 5726 ii->ipsec_in_esp_sa != NULL || 5727 ii->ipsec_in_decaps); 5728 } 5729 } 5730 5731 /* 5732 * Handle protocols with which IP is less intimate. There 5733 * can be more than one stream bound to a particular 5734 * protocol. When this is the case, normally each one gets a copy 5735 * of any incoming packets. 5736 * 5737 * IPSEC NOTE : 5738 * 5739 * Don't allow a secure packet going up a non-secure connection. 5740 * We don't allow this because 5741 * 5742 * 1) Reply might go out in clear which will be dropped at 5743 * the sending side. 5744 * 2) If the reply goes out in clear it will give the 5745 * adversary enough information for getting the key in 5746 * most of the cases. 5747 * 5748 * Moreover getting a secure packet when we expect clear 5749 * implies that SA's were added without checking for 5750 * policy on both ends. This should not happen once ISAKMP 5751 * is used to negotiate SAs as SAs will be added only after 5752 * verifying the policy. 5753 * 5754 * NOTE : If the packet was tunneled and not multicast we only send 5755 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5756 * back to delivering packets to AF_INET6 raw sockets. 5757 * 5758 * IPQoS Notes: 5759 * Once we have determined the client, invoke IPPF processing. 5760 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5761 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5762 * ip_policy will be false. 5763 * 5764 * Zones notes: 5765 * Currently only applications in the global zone can create raw sockets for 5766 * protocols other than ICMP. So unlike the broadcast / multicast case of 5767 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5768 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5769 */ 5770 static void 5771 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5772 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5773 zoneid_t zoneid) 5774 { 5775 queue_t *rq; 5776 mblk_t *mp1, *first_mp1; 5777 uint_t protocol = ipha->ipha_protocol; 5778 ipaddr_t dst; 5779 boolean_t one_only; 5780 mblk_t *first_mp = mp; 5781 boolean_t secure; 5782 uint32_t ill_index; 5783 conn_t *connp, *first_connp, *next_connp; 5784 connf_t *connfp; 5785 boolean_t shared_addr; 5786 5787 if (mctl_present) { 5788 mp = first_mp->b_cont; 5789 secure = ipsec_in_is_secure(first_mp); 5790 ASSERT(mp != NULL); 5791 } else { 5792 secure = B_FALSE; 5793 } 5794 dst = ipha->ipha_dst; 5795 /* 5796 * If the packet was tunneled and not multicast we only send to it 5797 * the first match. 5798 */ 5799 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5800 !CLASSD(dst)); 5801 5802 shared_addr = (zoneid == ALL_ZONES); 5803 if (shared_addr) { 5804 /* 5805 * We don't allow multilevel ports for raw IP, so no need to 5806 * check for that here. 5807 */ 5808 zoneid = tsol_packet_to_zoneid(mp); 5809 } 5810 5811 connfp = &ipcl_proto_fanout[protocol]; 5812 mutex_enter(&connfp->connf_lock); 5813 connp = connfp->connf_head; 5814 for (connp = connfp->connf_head; connp != NULL; 5815 connp = connp->conn_next) { 5816 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 5817 zoneid) && 5818 (!is_system_labeled() || 5819 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 5820 connp))) 5821 break; 5822 } 5823 5824 if (connp == NULL || connp->conn_upq == NULL) { 5825 /* 5826 * No one bound to these addresses. Is 5827 * there a client that wants all 5828 * unclaimed datagrams? 5829 */ 5830 mutex_exit(&connfp->connf_lock); 5831 /* 5832 * Check for IPPROTO_ENCAP... 5833 */ 5834 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5835 /* 5836 * XXX If an IPsec mblk is here on a multicast 5837 * tunnel (using ip_mroute stuff), what should 5838 * I do? 5839 * 5840 * For now, just free the IPsec mblk before 5841 * passing it up to the multicast routing 5842 * stuff. 5843 * 5844 * BTW, If I match a configured IP-in-IP 5845 * tunnel, ip_mroute_decap will never be 5846 * called. 5847 */ 5848 if (mp != first_mp) 5849 freeb(first_mp); 5850 ip_mroute_decap(q, mp); 5851 } else { 5852 /* 5853 * Otherwise send an ICMP protocol unreachable. 5854 */ 5855 if (ip_fanout_send_icmp(q, first_mp, flags, 5856 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5857 mctl_present, zoneid)) { 5858 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5859 } 5860 } 5861 return; 5862 } 5863 CONN_INC_REF(connp); 5864 first_connp = connp; 5865 5866 /* 5867 * Only send message to one tunnel driver by immediately 5868 * terminating the loop. 5869 */ 5870 connp = one_only ? NULL : connp->conn_next; 5871 5872 for (;;) { 5873 while (connp != NULL) { 5874 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5875 flags, zoneid) && 5876 (!is_system_labeled() || 5877 tsol_receive_local(mp, &dst, IPV4_VERSION, 5878 shared_addr, connp))) 5879 break; 5880 connp = connp->conn_next; 5881 } 5882 5883 /* 5884 * Copy the packet. 5885 */ 5886 if (connp == NULL || connp->conn_upq == NULL || 5887 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5888 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5889 /* 5890 * No more interested clients or memory 5891 * allocation failed 5892 */ 5893 connp = first_connp; 5894 break; 5895 } 5896 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5897 CONN_INC_REF(connp); 5898 mutex_exit(&connfp->connf_lock); 5899 rq = connp->conn_rq; 5900 if (!canputnext(rq)) { 5901 if (flags & IP_FF_RAWIP) { 5902 BUMP_MIB(&ip_mib, rawipInOverflows); 5903 } else { 5904 BUMP_MIB(&icmp_mib, icmpInOverflows); 5905 } 5906 5907 freemsg(first_mp1); 5908 } else { 5909 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5910 first_mp1 = ipsec_check_inbound_policy 5911 (first_mp1, connp, ipha, NULL, 5912 mctl_present); 5913 } 5914 if (first_mp1 != NULL) { 5915 /* 5916 * ip_fanout_proto also gets called from 5917 * icmp_inbound_error_fanout, in which case 5918 * the msg type is M_CTL. Don't add info 5919 * in this case for the time being. In future 5920 * when there is a need for knowing the 5921 * inbound iface index for ICMP error msgs, 5922 * then this can be changed. 5923 */ 5924 if ((connp->conn_recvif != 0) && 5925 (mp->b_datap->db_type != M_CTL)) { 5926 /* 5927 * the actual data will be 5928 * contained in b_cont upon 5929 * successful return of the 5930 * following call else 5931 * original mblk is returned 5932 */ 5933 ASSERT(recv_ill != NULL); 5934 mp1 = ip_add_info(mp1, recv_ill, 5935 IPF_RECVIF); 5936 } 5937 BUMP_MIB(&ip_mib, ipInDelivers); 5938 if (mctl_present) 5939 freeb(first_mp1); 5940 putnext(rq, mp1); 5941 } 5942 } 5943 mutex_enter(&connfp->connf_lock); 5944 /* Follow the next pointer before releasing the conn. */ 5945 next_connp = connp->conn_next; 5946 CONN_DEC_REF(connp); 5947 connp = next_connp; 5948 } 5949 5950 /* Last one. Send it upstream. */ 5951 mutex_exit(&connfp->connf_lock); 5952 5953 /* 5954 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5955 * will be set to false. 5956 */ 5957 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5958 ill_index = ill->ill_phyint->phyint_ifindex; 5959 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5960 if (mp == NULL) { 5961 CONN_DEC_REF(connp); 5962 if (mctl_present) { 5963 freeb(first_mp); 5964 } 5965 return; 5966 } 5967 } 5968 5969 rq = connp->conn_rq; 5970 if (!canputnext(rq)) { 5971 if (flags & IP_FF_RAWIP) { 5972 BUMP_MIB(&ip_mib, rawipInOverflows); 5973 } else { 5974 BUMP_MIB(&icmp_mib, icmpInOverflows); 5975 } 5976 5977 freemsg(first_mp); 5978 } else { 5979 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5980 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5981 ipha, NULL, mctl_present); 5982 } 5983 if (first_mp != NULL) { 5984 /* 5985 * ip_fanout_proto also gets called 5986 * from icmp_inbound_error_fanout, in 5987 * which case the msg type is M_CTL. 5988 * Don't add info in this case for time 5989 * being. In future when there is a 5990 * need for knowing the inbound iface 5991 * index for ICMP error msgs, then this 5992 * can be changed 5993 */ 5994 if ((connp->conn_recvif != 0) && 5995 (mp->b_datap->db_type != M_CTL)) { 5996 /* 5997 * the actual data will be contained in 5998 * b_cont upon successful return 5999 * of the following call else original 6000 * mblk is returned 6001 */ 6002 ASSERT(recv_ill != NULL); 6003 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6004 } 6005 BUMP_MIB(&ip_mib, ipInDelivers); 6006 putnext(rq, mp); 6007 if (mctl_present) 6008 freeb(first_mp); 6009 } 6010 } 6011 CONN_DEC_REF(connp); 6012 } 6013 6014 /* 6015 * Fanout for TCP packets 6016 * The caller puts <fport, lport> in the ports parameter. 6017 * 6018 * IPQoS Notes 6019 * Before sending it to the client, invoke IPPF processing. 6020 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6021 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6022 * ip_policy is false. 6023 */ 6024 static void 6025 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6026 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6027 { 6028 mblk_t *first_mp; 6029 boolean_t secure; 6030 uint32_t ill_index; 6031 int ip_hdr_len; 6032 tcph_t *tcph; 6033 boolean_t syn_present = B_FALSE; 6034 conn_t *connp; 6035 6036 first_mp = mp; 6037 if (mctl_present) { 6038 ASSERT(first_mp->b_datap->db_type == M_CTL); 6039 mp = first_mp->b_cont; 6040 secure = ipsec_in_is_secure(first_mp); 6041 ASSERT(mp != NULL); 6042 } else { 6043 secure = B_FALSE; 6044 } 6045 6046 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6047 6048 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6049 NULL) { 6050 /* 6051 * No connected connection or listener. Send a 6052 * TH_RST via tcp_xmit_listeners_reset. 6053 */ 6054 6055 /* Initiate IPPf processing, if needed. */ 6056 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6057 uint32_t ill_index; 6058 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6059 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6060 if (first_mp == NULL) 6061 return; 6062 } 6063 BUMP_MIB(&ip_mib, ipInDelivers); 6064 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6065 zoneid)); 6066 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6067 return; 6068 } 6069 6070 /* 6071 * Allocate the SYN for the TCP connection here itself 6072 */ 6073 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6074 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6075 if (IPCL_IS_TCP(connp)) { 6076 squeue_t *sqp; 6077 6078 /* 6079 * For fused tcp loopback, assign the eager's 6080 * squeue to be that of the active connect's. 6081 * Note that we don't check for IP_FF_LOOPBACK 6082 * here since this routine gets called only 6083 * for loopback (unlike the IPv6 counterpart). 6084 */ 6085 ASSERT(Q_TO_CONN(q) != NULL); 6086 if (do_tcp_fusion && 6087 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6088 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6089 IPCL_IS_TCP(Q_TO_CONN(q))) { 6090 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6091 sqp = Q_TO_CONN(q)->conn_sqp; 6092 } else { 6093 sqp = IP_SQUEUE_GET(lbolt); 6094 } 6095 6096 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6097 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6098 syn_present = B_TRUE; 6099 } 6100 } 6101 6102 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6103 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6104 if ((flags & TH_RST) || (flags & TH_URG)) { 6105 CONN_DEC_REF(connp); 6106 freemsg(first_mp); 6107 return; 6108 } 6109 if (flags & TH_ACK) { 6110 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6111 CONN_DEC_REF(connp); 6112 return; 6113 } 6114 6115 CONN_DEC_REF(connp); 6116 freemsg(first_mp); 6117 return; 6118 } 6119 6120 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6121 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6122 NULL, mctl_present); 6123 if (first_mp == NULL) { 6124 CONN_DEC_REF(connp); 6125 return; 6126 } 6127 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6128 ASSERT(syn_present); 6129 if (mctl_present) { 6130 ASSERT(first_mp != mp); 6131 first_mp->b_datap->db_struioflag |= 6132 STRUIO_POLICY; 6133 } else { 6134 ASSERT(first_mp == mp); 6135 mp->b_datap->db_struioflag &= 6136 ~STRUIO_EAGER; 6137 mp->b_datap->db_struioflag |= 6138 STRUIO_POLICY; 6139 } 6140 } else { 6141 /* 6142 * Discard first_mp early since we're dealing with a 6143 * fully-connected conn_t and tcp doesn't do policy in 6144 * this case. 6145 */ 6146 if (mctl_present) { 6147 freeb(first_mp); 6148 mctl_present = B_FALSE; 6149 } 6150 first_mp = mp; 6151 } 6152 } 6153 6154 /* 6155 * Initiate policy processing here if needed. If we get here from 6156 * icmp_inbound_error_fanout, ip_policy is false. 6157 */ 6158 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6159 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6160 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6161 if (mp == NULL) { 6162 CONN_DEC_REF(connp); 6163 if (mctl_present) 6164 freeb(first_mp); 6165 return; 6166 } else if (mctl_present) { 6167 ASSERT(first_mp != mp); 6168 first_mp->b_cont = mp; 6169 } else { 6170 first_mp = mp; 6171 } 6172 } 6173 6174 6175 6176 /* Handle IPv6 socket options. */ 6177 if (!syn_present && 6178 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6179 /* Add header */ 6180 ASSERT(recv_ill != NULL); 6181 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6182 if (mp == NULL) { 6183 CONN_DEC_REF(connp); 6184 if (mctl_present) 6185 freeb(first_mp); 6186 return; 6187 } else if (mctl_present) { 6188 /* 6189 * ip_add_info might return a new mp. 6190 */ 6191 ASSERT(first_mp != mp); 6192 first_mp->b_cont = mp; 6193 } else { 6194 first_mp = mp; 6195 } 6196 } 6197 6198 BUMP_MIB(&ip_mib, ipInDelivers); 6199 if (IPCL_IS_TCP(connp)) { 6200 (*ip_input_proc)(connp->conn_sqp, first_mp, 6201 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6202 } else { 6203 putnext(connp->conn_rq, first_mp); 6204 CONN_DEC_REF(connp); 6205 } 6206 } 6207 6208 /* 6209 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6210 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6211 * Caller is responsible for dropping references to the conn, and freeing 6212 * first_mp. 6213 * 6214 * IPQoS Notes 6215 * Before sending it to the client, invoke IPPF processing. Policy processing 6216 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6217 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6218 * ip_wput_local, ip_policy is false. 6219 */ 6220 static void 6221 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6222 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6223 boolean_t ip_policy) 6224 { 6225 boolean_t mctl_present = (first_mp != NULL); 6226 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6227 uint32_t ill_index; 6228 6229 if (mctl_present) 6230 first_mp->b_cont = mp; 6231 else 6232 first_mp = mp; 6233 6234 if (CONN_UDP_FLOWCTLD(connp)) { 6235 BUMP_MIB(&ip_mib, udpInOverflows); 6236 freemsg(first_mp); 6237 return; 6238 } 6239 6240 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6241 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6242 NULL, mctl_present); 6243 if (first_mp == NULL) 6244 return; /* Freed by ipsec_check_inbound_policy(). */ 6245 } 6246 if (mctl_present) 6247 freeb(first_mp); 6248 6249 if (connp->conn_recvif) 6250 in_flags = IPF_RECVIF; 6251 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6252 in_flags |= IPF_RECVSLLA; 6253 6254 /* Handle IPv6 options. */ 6255 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6256 in_flags |= IPF_RECVIF; 6257 6258 /* 6259 * Initiate IPPF processing here, if needed. Note first_mp won't be 6260 * freed if the packet is dropped. The caller will do so. 6261 */ 6262 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6263 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6264 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6265 if (mp == NULL) { 6266 return; 6267 } 6268 } 6269 if ((in_flags != 0) && 6270 (mp->b_datap->db_type != M_CTL)) { 6271 /* 6272 * The actual data will be contained in b_cont 6273 * upon successful return of the following call 6274 * else original mblk is returned 6275 */ 6276 ASSERT(recv_ill != NULL); 6277 mp = ip_add_info(mp, recv_ill, in_flags); 6278 } 6279 BUMP_MIB(&ip_mib, ipInDelivers); 6280 6281 /* Send it upstream */ 6282 CONN_UDP_RECV(connp, mp); 6283 } 6284 6285 /* 6286 * Fanout for UDP packets. 6287 * The caller puts <fport, lport> in the ports parameter. 6288 * 6289 * If SO_REUSEADDR is set all multicast and broadcast packets 6290 * will be delivered to all streams bound to the same port. 6291 * 6292 * Zones notes: 6293 * Multicast and broadcast packets will be distributed to streams in all zones. 6294 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6295 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6296 * packets. To maintain this behavior with multiple zones, the conns are grouped 6297 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6298 * each zone. If unset, all the following conns in the same zone are skipped. 6299 */ 6300 static void 6301 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6302 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6303 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6304 { 6305 uint32_t dstport, srcport; 6306 ipaddr_t dst; 6307 mblk_t *first_mp; 6308 boolean_t secure; 6309 in6_addr_t v6src; 6310 conn_t *connp; 6311 connf_t *connfp; 6312 conn_t *first_connp; 6313 conn_t *next_connp; 6314 mblk_t *mp1, *first_mp1; 6315 ipaddr_t src; 6316 zoneid_t last_zoneid; 6317 boolean_t reuseaddr; 6318 boolean_t shared_addr; 6319 6320 first_mp = mp; 6321 if (mctl_present) { 6322 mp = first_mp->b_cont; 6323 first_mp->b_cont = NULL; 6324 secure = ipsec_in_is_secure(first_mp); 6325 ASSERT(mp != NULL); 6326 } else { 6327 first_mp = NULL; 6328 secure = B_FALSE; 6329 } 6330 6331 /* Extract ports in net byte order */ 6332 dstport = htons(ntohl(ports) & 0xFFFF); 6333 srcport = htons(ntohl(ports) >> 16); 6334 dst = ipha->ipha_dst; 6335 src = ipha->ipha_src; 6336 6337 shared_addr = (zoneid == ALL_ZONES); 6338 if (shared_addr) { 6339 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6340 if (zoneid == ALL_ZONES) 6341 zoneid = tsol_packet_to_zoneid(mp); 6342 } 6343 6344 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6345 mutex_enter(&connfp->connf_lock); 6346 connp = connfp->connf_head; 6347 if (!broadcast && !CLASSD(dst)) { 6348 /* 6349 * Not broadcast or multicast. Send to the one (first) 6350 * client we find. No need to check conn_wantpacket() 6351 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6352 * IPv4 unicast packets. 6353 */ 6354 while ((connp != NULL) && 6355 (!IPCL_UDP_MATCH(connp, dstport, dst, 6356 srcport, src) || 6357 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6358 connp = connp->conn_next; 6359 } 6360 6361 if (connp == NULL || connp->conn_upq == NULL) 6362 goto notfound; 6363 6364 if (is_system_labeled() && 6365 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6366 connp)) 6367 goto notfound; 6368 6369 CONN_INC_REF(connp); 6370 mutex_exit(&connfp->connf_lock); 6371 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6372 recv_ill, ip_policy); 6373 IP_STAT(ip_udp_fannorm); 6374 CONN_DEC_REF(connp); 6375 return; 6376 } 6377 6378 /* 6379 * Broadcast and multicast case 6380 * 6381 * Need to check conn_wantpacket(). 6382 * If SO_REUSEADDR has been set on the first we send the 6383 * packet to all clients that have joined the group and 6384 * match the port. 6385 */ 6386 6387 while (connp != NULL) { 6388 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6389 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6390 (!is_system_labeled() || 6391 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6392 connp))) 6393 break; 6394 connp = connp->conn_next; 6395 } 6396 6397 if (connp == NULL || connp->conn_upq == NULL) 6398 goto notfound; 6399 6400 first_connp = connp; 6401 /* 6402 * When SO_REUSEADDR is not set, send the packet only to the first 6403 * matching connection in its zone by keeping track of the zoneid. 6404 */ 6405 reuseaddr = first_connp->conn_reuseaddr; 6406 last_zoneid = first_connp->conn_zoneid; 6407 6408 CONN_INC_REF(connp); 6409 connp = connp->conn_next; 6410 for (;;) { 6411 while (connp != NULL) { 6412 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6413 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6414 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6415 (!is_system_labeled() || 6416 tsol_receive_local(mp, &dst, IPV4_VERSION, 6417 shared_addr, connp))) 6418 break; 6419 connp = connp->conn_next; 6420 } 6421 /* 6422 * Just copy the data part alone. The mctl part is 6423 * needed just for verifying policy and it is never 6424 * sent up. 6425 */ 6426 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6427 ((mp1 = copymsg(mp)) == NULL))) { 6428 /* 6429 * No more interested clients or memory 6430 * allocation failed 6431 */ 6432 connp = first_connp; 6433 break; 6434 } 6435 if (connp->conn_zoneid != last_zoneid) { 6436 /* 6437 * Update the zoneid so that the packet isn't sent to 6438 * any more conns in the same zone unless SO_REUSEADDR 6439 * is set. 6440 */ 6441 reuseaddr = connp->conn_reuseaddr; 6442 last_zoneid = connp->conn_zoneid; 6443 } 6444 if (first_mp != NULL) { 6445 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6446 ipsec_info_type == IPSEC_IN); 6447 first_mp1 = ipsec_in_tag(first_mp, NULL); 6448 if (first_mp1 == NULL) { 6449 freemsg(mp1); 6450 connp = first_connp; 6451 break; 6452 } 6453 } else { 6454 first_mp1 = NULL; 6455 } 6456 CONN_INC_REF(connp); 6457 mutex_exit(&connfp->connf_lock); 6458 /* 6459 * IPQoS notes: We don't send the packet for policy 6460 * processing here, will do it for the last one (below). 6461 * i.e. we do it per-packet now, but if we do policy 6462 * processing per-conn, then we would need to do it 6463 * here too. 6464 */ 6465 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6466 ipha, flags, recv_ill, B_FALSE); 6467 mutex_enter(&connfp->connf_lock); 6468 /* Follow the next pointer before releasing the conn. */ 6469 next_connp = connp->conn_next; 6470 IP_STAT(ip_udp_fanmb); 6471 CONN_DEC_REF(connp); 6472 connp = next_connp; 6473 } 6474 6475 /* Last one. Send it upstream. */ 6476 mutex_exit(&connfp->connf_lock); 6477 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6478 ip_policy); 6479 IP_STAT(ip_udp_fanmb); 6480 CONN_DEC_REF(connp); 6481 return; 6482 6483 notfound: 6484 6485 mutex_exit(&connfp->connf_lock); 6486 IP_STAT(ip_udp_fanothers); 6487 /* 6488 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6489 * have already been matched above, since they live in the IPv4 6490 * fanout tables. This implies we only need to 6491 * check for IPv6 in6addr_any endpoints here. 6492 * Thus we compare using ipv6_all_zeros instead of the destination 6493 * address, except for the multicast group membership lookup which 6494 * uses the IPv4 destination. 6495 */ 6496 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6497 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6498 mutex_enter(&connfp->connf_lock); 6499 connp = connfp->connf_head; 6500 if (!broadcast && !CLASSD(dst)) { 6501 while (connp != NULL) { 6502 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6503 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6504 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6505 !connp->conn_ipv6_v6only) 6506 break; 6507 connp = connp->conn_next; 6508 } 6509 6510 if (connp != NULL && is_system_labeled() && 6511 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6512 connp)) 6513 connp = NULL; 6514 6515 if (connp == NULL || connp->conn_upq == NULL) { 6516 /* 6517 * No one bound to this port. Is 6518 * there a client that wants all 6519 * unclaimed datagrams? 6520 */ 6521 mutex_exit(&connfp->connf_lock); 6522 6523 if (mctl_present) 6524 first_mp->b_cont = mp; 6525 else 6526 first_mp = mp; 6527 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6528 ip_fanout_proto(q, first_mp, ill, ipha, 6529 flags | IP_FF_RAWIP, mctl_present, 6530 ip_policy, recv_ill, zoneid); 6531 } else { 6532 if (ip_fanout_send_icmp(q, first_mp, flags, 6533 ICMP_DEST_UNREACHABLE, 6534 ICMP_PORT_UNREACHABLE, 6535 mctl_present, zoneid)) { 6536 BUMP_MIB(&ip_mib, udpNoPorts); 6537 } 6538 } 6539 return; 6540 } 6541 6542 CONN_INC_REF(connp); 6543 mutex_exit(&connfp->connf_lock); 6544 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6545 recv_ill, ip_policy); 6546 CONN_DEC_REF(connp); 6547 return; 6548 } 6549 /* 6550 * IPv4 multicast packet being delivered to an AF_INET6 6551 * in6addr_any endpoint. 6552 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6553 * and not conn_wantpacket_v6() since any multicast membership is 6554 * for an IPv4-mapped multicast address. 6555 * The packet is sent to all clients in all zones that have joined the 6556 * group and match the port. 6557 */ 6558 while (connp != NULL) { 6559 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6560 srcport, v6src) && 6561 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6562 (!is_system_labeled() || 6563 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6564 connp))) 6565 break; 6566 connp = connp->conn_next; 6567 } 6568 6569 if (connp == NULL || connp->conn_upq == NULL) { 6570 /* 6571 * No one bound to this port. Is 6572 * there a client that wants all 6573 * unclaimed datagrams? 6574 */ 6575 mutex_exit(&connfp->connf_lock); 6576 6577 if (mctl_present) 6578 first_mp->b_cont = mp; 6579 else 6580 first_mp = mp; 6581 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6582 ip_fanout_proto(q, first_mp, ill, ipha, 6583 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6584 recv_ill, zoneid); 6585 } else { 6586 /* 6587 * We used to attempt to send an icmp error here, but 6588 * since this is known to be a multicast packet 6589 * and we don't send icmp errors in response to 6590 * multicast, just drop the packet and give up sooner. 6591 */ 6592 BUMP_MIB(&ip_mib, udpNoPorts); 6593 freemsg(first_mp); 6594 } 6595 return; 6596 } 6597 6598 first_connp = connp; 6599 6600 CONN_INC_REF(connp); 6601 connp = connp->conn_next; 6602 for (;;) { 6603 while (connp != NULL) { 6604 if (IPCL_UDP_MATCH_V6(connp, dstport, 6605 ipv6_all_zeros, srcport, v6src) && 6606 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6607 (!is_system_labeled() || 6608 tsol_receive_local(mp, &dst, IPV4_VERSION, 6609 shared_addr, connp))) 6610 break; 6611 connp = connp->conn_next; 6612 } 6613 /* 6614 * Just copy the data part alone. The mctl part is 6615 * needed just for verifying policy and it is never 6616 * sent up. 6617 */ 6618 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6619 ((mp1 = copymsg(mp)) == NULL))) { 6620 /* 6621 * No more intested clients or memory 6622 * allocation failed 6623 */ 6624 connp = first_connp; 6625 break; 6626 } 6627 if (first_mp != NULL) { 6628 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6629 ipsec_info_type == IPSEC_IN); 6630 first_mp1 = ipsec_in_tag(first_mp, NULL); 6631 if (first_mp1 == NULL) { 6632 freemsg(mp1); 6633 connp = first_connp; 6634 break; 6635 } 6636 } else { 6637 first_mp1 = NULL; 6638 } 6639 CONN_INC_REF(connp); 6640 mutex_exit(&connfp->connf_lock); 6641 /* 6642 * IPQoS notes: We don't send the packet for policy 6643 * processing here, will do it for the last one (below). 6644 * i.e. we do it per-packet now, but if we do policy 6645 * processing per-conn, then we would need to do it 6646 * here too. 6647 */ 6648 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6649 ipha, flags, recv_ill, B_FALSE); 6650 mutex_enter(&connfp->connf_lock); 6651 /* Follow the next pointer before releasing the conn. */ 6652 next_connp = connp->conn_next; 6653 CONN_DEC_REF(connp); 6654 connp = next_connp; 6655 } 6656 6657 /* Last one. Send it upstream. */ 6658 mutex_exit(&connfp->connf_lock); 6659 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6660 ip_policy); 6661 CONN_DEC_REF(connp); 6662 } 6663 6664 /* 6665 * Complete the ip_wput header so that it 6666 * is possible to generate ICMP 6667 * errors. 6668 */ 6669 static int 6670 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6671 { 6672 ire_t *ire; 6673 6674 if (ipha->ipha_src == INADDR_ANY) { 6675 ire = ire_lookup_local(zoneid); 6676 if (ire == NULL) { 6677 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6678 return (1); 6679 } 6680 ipha->ipha_src = ire->ire_addr; 6681 ire_refrele(ire); 6682 } 6683 ipha->ipha_ttl = ip_def_ttl; 6684 ipha->ipha_hdr_checksum = 0; 6685 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6686 return (0); 6687 } 6688 6689 /* 6690 * Nobody should be sending 6691 * packets up this stream 6692 */ 6693 static void 6694 ip_lrput(queue_t *q, mblk_t *mp) 6695 { 6696 mblk_t *mp1; 6697 6698 switch (mp->b_datap->db_type) { 6699 case M_FLUSH: 6700 /* Turn around */ 6701 if (*mp->b_rptr & FLUSHW) { 6702 *mp->b_rptr &= ~FLUSHR; 6703 qreply(q, mp); 6704 return; 6705 } 6706 break; 6707 } 6708 /* Could receive messages that passed through ar_rput */ 6709 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6710 mp1->b_prev = mp1->b_next = NULL; 6711 freemsg(mp); 6712 } 6713 6714 /* Nobody should be sending packets down this stream */ 6715 /* ARGSUSED */ 6716 void 6717 ip_lwput(queue_t *q, mblk_t *mp) 6718 { 6719 freemsg(mp); 6720 } 6721 6722 /* 6723 * Move the first hop in any source route to ipha_dst and remove that part of 6724 * the source route. Called by other protocols. Errors in option formatting 6725 * are ignored - will be handled by ip_wput_options Return the final 6726 * destination (either ipha_dst or the last entry in a source route.) 6727 */ 6728 ipaddr_t 6729 ip_massage_options(ipha_t *ipha) 6730 { 6731 ipoptp_t opts; 6732 uchar_t *opt; 6733 uint8_t optval; 6734 uint8_t optlen; 6735 ipaddr_t dst; 6736 int i; 6737 ire_t *ire; 6738 6739 ip2dbg(("ip_massage_options\n")); 6740 dst = ipha->ipha_dst; 6741 for (optval = ipoptp_first(&opts, ipha); 6742 optval != IPOPT_EOL; 6743 optval = ipoptp_next(&opts)) { 6744 opt = opts.ipoptp_cur; 6745 switch (optval) { 6746 uint8_t off; 6747 case IPOPT_SSRR: 6748 case IPOPT_LSRR: 6749 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6750 ip1dbg(("ip_massage_options: bad src route\n")); 6751 break; 6752 } 6753 optlen = opts.ipoptp_len; 6754 off = opt[IPOPT_OFFSET]; 6755 off--; 6756 redo_srr: 6757 if (optlen < IP_ADDR_LEN || 6758 off > optlen - IP_ADDR_LEN) { 6759 /* End of source route */ 6760 ip1dbg(("ip_massage_options: end of SR\n")); 6761 break; 6762 } 6763 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6764 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6765 ntohl(dst))); 6766 /* 6767 * Check if our address is present more than 6768 * once as consecutive hops in source route. 6769 * XXX verify per-interface ip_forwarding 6770 * for source route? 6771 */ 6772 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6773 ALL_ZONES, NULL, MATCH_IRE_TYPE); 6774 if (ire != NULL) { 6775 ire_refrele(ire); 6776 off += IP_ADDR_LEN; 6777 goto redo_srr; 6778 } 6779 if (dst == htonl(INADDR_LOOPBACK)) { 6780 ip1dbg(("ip_massage_options: loopback addr in " 6781 "source route!\n")); 6782 break; 6783 } 6784 /* 6785 * Update ipha_dst to be the first hop and remove the 6786 * first hop from the source route (by overwriting 6787 * part of the option with NOP options). 6788 */ 6789 ipha->ipha_dst = dst; 6790 /* Put the last entry in dst */ 6791 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6792 3; 6793 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6794 6795 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6796 ntohl(dst))); 6797 /* Move down and overwrite */ 6798 opt[IP_ADDR_LEN] = opt[0]; 6799 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6800 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6801 for (i = 0; i < IP_ADDR_LEN; i++) 6802 opt[i] = IPOPT_NOP; 6803 break; 6804 } 6805 } 6806 return (dst); 6807 } 6808 6809 /* 6810 * This function's job is to forward data to the reverse tunnel (FA->HA) 6811 * after doing a few checks. It is assumed that the incoming interface 6812 * of the packet is always different than the outgoing interface and the 6813 * ire_type of the found ire has to be a non-resolver type. 6814 * 6815 * IPQoS notes 6816 * IP policy is invoked twice for a forwarded packet, once on the read side 6817 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6818 * enabled. 6819 */ 6820 static void 6821 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6822 { 6823 ipha_t *ipha; 6824 queue_t *q; 6825 uint32_t pkt_len; 6826 #define rptr ((uchar_t *)ipha) 6827 uint32_t sum; 6828 uint32_t max_frag; 6829 mblk_t *first_mp; 6830 uint32_t ill_index; 6831 6832 ASSERT(ire != NULL); 6833 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6834 ASSERT(ire->ire_stq != NULL); 6835 6836 /* Initiate read side IPPF processing */ 6837 if (IPP_ENABLED(IPP_FWD_IN)) { 6838 ill_index = in_ill->ill_phyint->phyint_ifindex; 6839 ip_process(IPP_FWD_IN, &mp, ill_index); 6840 if (mp == NULL) { 6841 ip2dbg(("ip_mrtun_forward: inbound pkt " 6842 "dropped during IPPF processing\n")); 6843 return; 6844 } 6845 } 6846 6847 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6848 ILLF_ROUTER) == 0) || 6849 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6850 BUMP_MIB(&ip_mib, ipForwProhibits); 6851 ip0dbg(("ip_mrtun_forward: Can't forward :" 6852 "forwarding is not turned on\n")); 6853 goto drop_pkt; 6854 } 6855 6856 /* 6857 * Don't forward if the interface is down 6858 */ 6859 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6860 BUMP_MIB(&ip_mib, ipInDiscards); 6861 goto drop_pkt; 6862 } 6863 6864 ipha = (ipha_t *)mp->b_rptr; 6865 pkt_len = ntohs(ipha->ipha_length); 6866 /* Adjust the checksum to reflect the ttl decrement. */ 6867 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6868 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6869 if (ipha->ipha_ttl-- <= 1) { 6870 if (ip_csum_hdr(ipha)) { 6871 BUMP_MIB(&ip_mib, ipInCksumErrs); 6872 goto drop_pkt; 6873 } 6874 q = ire->ire_stq; 6875 if ((first_mp = allocb(sizeof (ipsec_info_t), 6876 BPRI_HI)) == NULL) { 6877 goto drop_pkt; 6878 } 6879 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6880 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6881 6882 return; 6883 } 6884 6885 /* Get the ill_index of the ILL */ 6886 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6887 6888 /* 6889 * ip_mrtun_forward is only used by foreign agent to reverse 6890 * tunnel the incoming packet. So it does not do any option 6891 * processing for source routing. 6892 */ 6893 max_frag = ire->ire_max_frag; 6894 if (pkt_len > max_frag) { 6895 /* 6896 * It needs fragging on its way out. We haven't 6897 * verified the header checksum yet. Since we 6898 * are going to put a surely good checksum in the 6899 * outgoing header, we have to make sure that it 6900 * was good coming in. 6901 */ 6902 if (ip_csum_hdr(ipha)) { 6903 BUMP_MIB(&ip_mib, ipInCksumErrs); 6904 goto drop_pkt; 6905 } 6906 6907 /* Initiate write side IPPF processing */ 6908 if (IPP_ENABLED(IPP_FWD_OUT)) { 6909 ip_process(IPP_FWD_OUT, &mp, ill_index); 6910 if (mp == NULL) { 6911 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6912 "dropped/deferred during ip policy "\ 6913 "processing\n")); 6914 return; 6915 } 6916 } 6917 if ((first_mp = allocb(sizeof (ipsec_info_t), 6918 BPRI_HI)) == NULL) { 6919 goto drop_pkt; 6920 } 6921 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6922 mp = first_mp; 6923 6924 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6925 return; 6926 } 6927 6928 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6929 6930 ASSERT(ire->ire_ipif != NULL); 6931 6932 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6933 if (mp == NULL) { 6934 BUMP_MIB(&ip_mib, ipInDiscards); 6935 return; 6936 } 6937 6938 /* Now send the packet to the tunnel interface */ 6939 q = ire->ire_stq; 6940 UPDATE_IB_PKT_COUNT(ire); 6941 ire->ire_last_used_time = lbolt; 6942 BUMP_MIB(&ip_mib, ipForwDatagrams); 6943 putnext(q, mp); 6944 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6945 return; 6946 6947 drop_pkt:; 6948 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6949 freemsg(mp); 6950 #undef rptr 6951 } 6952 6953 /* 6954 * Fills the ipsec_out_t data structure with appropriate fields and 6955 * prepends it to mp which contains the IP hdr + data that was meant 6956 * to be forwarded. Please note that ipsec_out_info data structure 6957 * is used here to communicate the outgoing ill path at ip_wput() 6958 * for the ICMP error packet. This has nothing to do with ipsec IP 6959 * security. ipsec_out_t is really used to pass the info to the module 6960 * IP where this information cannot be extracted from conn. 6961 * This functions is called by ip_mrtun_forward(). 6962 */ 6963 void 6964 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6965 { 6966 ipsec_out_t *io; 6967 6968 ASSERT(xmit_ill != NULL); 6969 first_mp->b_datap->db_type = M_CTL; 6970 first_mp->b_wptr += sizeof (ipsec_info_t); 6971 /* 6972 * This is to pass info to ip_wput in absence of conn. 6973 * ipsec_out_secure will be B_FALSE because of this. 6974 * Thus ipsec_out_secure being B_FALSE indicates that 6975 * this is not IPSEC security related information. 6976 */ 6977 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6978 io = (ipsec_out_t *)first_mp->b_rptr; 6979 io->ipsec_out_type = IPSEC_OUT; 6980 io->ipsec_out_len = sizeof (ipsec_out_t); 6981 first_mp->b_cont = mp; 6982 io->ipsec_out_ill_index = 6983 xmit_ill->ill_phyint->phyint_ifindex; 6984 io->ipsec_out_xmit_if = B_TRUE; 6985 } 6986 6987 /* 6988 * Return the network mask 6989 * associated with the specified address. 6990 */ 6991 ipaddr_t 6992 ip_net_mask(ipaddr_t addr) 6993 { 6994 uchar_t *up = (uchar_t *)&addr; 6995 ipaddr_t mask = 0; 6996 uchar_t *maskp = (uchar_t *)&mask; 6997 6998 #if defined(__i386) || defined(__amd64) 6999 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7000 #endif 7001 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7002 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7003 #endif 7004 if (CLASSD(addr)) { 7005 maskp[0] = 0xF0; 7006 return (mask); 7007 } 7008 if (addr == 0) 7009 return (0); 7010 maskp[0] = 0xFF; 7011 if ((up[0] & 0x80) == 0) 7012 return (mask); 7013 7014 maskp[1] = 0xFF; 7015 if ((up[0] & 0xC0) == 0x80) 7016 return (mask); 7017 7018 maskp[2] = 0xFF; 7019 if ((up[0] & 0xE0) == 0xC0) 7020 return (mask); 7021 7022 /* Must be experimental or multicast, indicate as much */ 7023 return ((ipaddr_t)0); 7024 } 7025 7026 /* 7027 * Select an ill for the packet by considering load spreading across 7028 * a different ill in the group if dst_ill is part of some group. 7029 */ 7030 static ill_t * 7031 ip_newroute_get_dst_ill(ill_t *dst_ill) 7032 { 7033 ill_t *ill; 7034 7035 /* 7036 * We schedule irrespective of whether the source address is 7037 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7038 */ 7039 ill = illgrp_scheduler(dst_ill); 7040 if (ill == NULL) 7041 return (NULL); 7042 7043 /* 7044 * For groups with names ip_sioctl_groupname ensures that all 7045 * ills are of same type. For groups without names, ifgrp_insert 7046 * ensures this. 7047 */ 7048 ASSERT(dst_ill->ill_type == ill->ill_type); 7049 7050 return (ill); 7051 } 7052 7053 /* 7054 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7055 */ 7056 ill_t * 7057 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7058 { 7059 ill_t *ret_ill; 7060 7061 ASSERT(ifindex != 0); 7062 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7063 if (ret_ill == NULL || 7064 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7065 if (isv6) { 7066 if (ill != NULL) { 7067 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7068 } else { 7069 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7070 } 7071 ip1dbg(("ip_grab_attach_ill (IPv6): " 7072 "bad ifindex %d.\n", ifindex)); 7073 } else { 7074 BUMP_MIB(&ip_mib, ipOutDiscards); 7075 ip1dbg(("ip_grab_attach_ill (IPv4): " 7076 "bad ifindex %d.\n", ifindex)); 7077 } 7078 if (ret_ill != NULL) 7079 ill_refrele(ret_ill); 7080 freemsg(first_mp); 7081 return (NULL); 7082 } 7083 7084 return (ret_ill); 7085 } 7086 7087 /* 7088 * IPv4 - 7089 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7090 * out a packet to a destination address for which we do not have specific 7091 * (or sufficient) routing information. 7092 * 7093 * NOTE : These are the scopes of some of the variables that point at IRE, 7094 * which needs to be followed while making any future modifications 7095 * to avoid memory leaks. 7096 * 7097 * - ire and sire are the entries looked up initially by 7098 * ire_ftable_lookup. 7099 * - ipif_ire is used to hold the interface ire associated with 7100 * the new cache ire. But it's scope is limited, so we always REFRELE 7101 * it before branching out to error paths. 7102 * - save_ire is initialized before ire_create, so that ire returned 7103 * by ire_create will not over-write the ire. We REFRELE save_ire 7104 * before breaking out of the switch. 7105 * 7106 * Thus on failures, we have to REFRELE only ire and sire, if they 7107 * are not NULL. 7108 */ 7109 void 7110 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7111 { 7112 areq_t *areq; 7113 ipaddr_t gw = 0; 7114 ire_t *ire = NULL; 7115 mblk_t *res_mp; 7116 ipaddr_t *addrp; 7117 ipaddr_t nexthop_addr; 7118 ipif_t *src_ipif = NULL; 7119 ill_t *dst_ill = NULL; 7120 ipha_t *ipha; 7121 ire_t *sire = NULL; 7122 mblk_t *first_mp; 7123 ire_t *save_ire; 7124 mblk_t *dlureq_mp; 7125 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7126 ushort_t ire_marks = 0; 7127 boolean_t mctl_present; 7128 ipsec_out_t *io; 7129 mblk_t *saved_mp; 7130 ire_t *first_sire = NULL; 7131 mblk_t *copy_mp = NULL; 7132 mblk_t *xmit_mp = NULL; 7133 ipaddr_t save_dst; 7134 uint32_t multirt_flags = 7135 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7136 boolean_t multirt_is_resolvable; 7137 boolean_t multirt_resolve_next; 7138 boolean_t do_attach_ill = B_FALSE; 7139 boolean_t ip_nexthop = B_FALSE; 7140 zoneid_t zoneid; 7141 tsol_ire_gw_secattr_t *attrp = NULL; 7142 tsol_gcgrp_t *gcgrp = NULL; 7143 tsol_gcgrp_addr_t ga; 7144 7145 if (ip_debug > 2) { 7146 /* ip1dbg */ 7147 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7148 } 7149 7150 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7151 if (mctl_present) { 7152 io = (ipsec_out_t *)first_mp->b_rptr; 7153 zoneid = io->ipsec_out_zoneid; 7154 ASSERT(zoneid != ALL_ZONES); 7155 } else if (connp != NULL) { 7156 zoneid = connp->conn_zoneid; 7157 } else { 7158 zoneid = GLOBAL_ZONEID; 7159 } 7160 7161 ipha = (ipha_t *)mp->b_rptr; 7162 7163 /* All multicast lookups come through ip_newroute_ipif() */ 7164 if (CLASSD(dst)) { 7165 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7166 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7167 freemsg(first_mp); 7168 return; 7169 } 7170 7171 if (ip_loopback_src_or_dst(ipha, NULL)) { 7172 goto icmp_err_ret; 7173 } 7174 7175 if (mctl_present && io->ipsec_out_attach_if) { 7176 /* ip_grab_attach_ill returns a held ill */ 7177 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7178 io->ipsec_out_ill_index, B_FALSE); 7179 7180 /* Failure case frees things for us. */ 7181 if (attach_ill == NULL) 7182 return; 7183 7184 /* 7185 * Check if we need an ire that will not be 7186 * looked up by anybody else i.e. HIDDEN. 7187 */ 7188 if (ill_is_probeonly(attach_ill)) 7189 ire_marks = IRE_MARK_HIDDEN; 7190 } 7191 if (mctl_present && io->ipsec_out_ip_nexthop) { 7192 ip_nexthop = B_TRUE; 7193 nexthop_addr = io->ipsec_out_nexthop_addr; 7194 } 7195 /* 7196 * If this IRE is created for forwarding or it is not for 7197 * traffic for congestion controlled protocols, mark it as temporary. 7198 */ 7199 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7200 ire_marks |= IRE_MARK_TEMPORARY; 7201 7202 /* 7203 * Get what we can from ire_ftable_lookup which will follow an IRE 7204 * chain until it gets the most specific information available. 7205 * For example, we know that there is no IRE_CACHE for this dest, 7206 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7207 * ire_ftable_lookup will look up the gateway, etc. 7208 * Check if in_ill != NULL. If it is true, the packet must be 7209 * from an incoming interface where RTA_SRCIFP is set. 7210 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7211 * to the destination, of equal netmask length in the forward table, 7212 * will be recursively explored. If no information is available 7213 * for the final gateway of that route, we force the returned ire 7214 * to be equal to sire using MATCH_IRE_PARENT. 7215 * At least, in this case we have a starting point (in the buckets) 7216 * to look for other routes to the destination in the forward table. 7217 * This is actually used only for multirouting, where a list 7218 * of routes has to be processed in sequence. 7219 */ 7220 if (in_ill != NULL) { 7221 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7222 in_ill, MATCH_IRE_TYPE); 7223 } else if (ip_nexthop) { 7224 /* 7225 * The first time we come here, we look for an IRE_INTERFACE 7226 * entry for the specified nexthop, set the dst to be the 7227 * nexthop address and create an IRE_CACHE entry for the 7228 * nexthop. The next time around, we are able to find an 7229 * IRE_CACHE entry for the nexthop, set the gateway to be the 7230 * nexthop address and create an IRE_CACHE entry for the 7231 * destination address via the specified nexthop. 7232 */ 7233 ire = ire_cache_lookup(nexthop_addr, zoneid, 7234 MBLK_GETLABEL(mp)); 7235 if (ire != NULL) { 7236 gw = nexthop_addr; 7237 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7238 } else { 7239 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7240 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7241 MBLK_GETLABEL(mp), 7242 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7243 if (ire != NULL) { 7244 dst = nexthop_addr; 7245 } 7246 } 7247 } else if (attach_ill == NULL) { 7248 ire = ire_ftable_lookup(dst, 0, 0, 0, 7249 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7250 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7251 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7252 MATCH_IRE_SECATTR); 7253 } else { 7254 /* 7255 * attach_ill is set only for communicating with 7256 * on-link hosts. So, don't look for DEFAULT. 7257 */ 7258 ipif_t *attach_ipif; 7259 7260 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7261 if (attach_ipif == NULL) { 7262 ill_refrele(attach_ill); 7263 goto icmp_err_ret; 7264 } 7265 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7266 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7267 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7268 MATCH_IRE_SECATTR); 7269 ipif_refrele(attach_ipif); 7270 } 7271 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7272 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7273 7274 /* 7275 * This loop is run only once in most cases. 7276 * We loop to resolve further routes only when the destination 7277 * can be reached through multiple RTF_MULTIRT-flagged ires. 7278 */ 7279 do { 7280 /* Clear the previous iteration's values */ 7281 if (src_ipif != NULL) { 7282 ipif_refrele(src_ipif); 7283 src_ipif = NULL; 7284 } 7285 if (dst_ill != NULL) { 7286 ill_refrele(dst_ill); 7287 dst_ill = NULL; 7288 } 7289 7290 multirt_resolve_next = B_FALSE; 7291 /* 7292 * We check if packets have to be multirouted. 7293 * In this case, given the current <ire, sire> couple, 7294 * we look for the next suitable <ire, sire>. 7295 * This check is done in ire_multirt_lookup(), 7296 * which applies various criteria to find the next route 7297 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7298 * unchanged if it detects it has not been tried yet. 7299 */ 7300 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7301 ip3dbg(("ip_newroute: starting next_resolution " 7302 "with first_mp %p, tag %d\n", 7303 (void *)first_mp, 7304 MULTIRT_DEBUG_TAGGED(first_mp))); 7305 7306 ASSERT(sire != NULL); 7307 multirt_is_resolvable = 7308 ire_multirt_lookup(&ire, &sire, multirt_flags, 7309 MBLK_GETLABEL(mp)); 7310 7311 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7312 "ire %p, sire %p\n", 7313 multirt_is_resolvable, 7314 (void *)ire, (void *)sire)); 7315 7316 if (!multirt_is_resolvable) { 7317 /* 7318 * No more multirt route to resolve; give up 7319 * (all routes resolved or no more 7320 * resolvable routes). 7321 */ 7322 if (ire != NULL) { 7323 ire_refrele(ire); 7324 ire = NULL; 7325 } 7326 } else { 7327 ASSERT(sire != NULL); 7328 ASSERT(ire != NULL); 7329 /* 7330 * We simply use first_sire as a flag that 7331 * indicates if a resolvable multirt route 7332 * has already been found. 7333 * If it is not the case, we may have to send 7334 * an ICMP error to report that the 7335 * destination is unreachable. 7336 * We do not IRE_REFHOLD first_sire. 7337 */ 7338 if (first_sire == NULL) { 7339 first_sire = sire; 7340 } 7341 } 7342 } 7343 if (ire == NULL) { 7344 if (ip_debug > 3) { 7345 /* ip2dbg */ 7346 pr_addr_dbg("ip_newroute: " 7347 "can't resolve %s\n", AF_INET, &dst); 7348 } 7349 ip3dbg(("ip_newroute: " 7350 "ire %p, sire %p, first_sire %p\n", 7351 (void *)ire, (void *)sire, (void *)first_sire)); 7352 7353 if (sire != NULL) { 7354 ire_refrele(sire); 7355 sire = NULL; 7356 } 7357 7358 if (first_sire != NULL) { 7359 /* 7360 * At least one multirt route has been found 7361 * in the same call to ip_newroute(); 7362 * there is no need to report an ICMP error. 7363 * first_sire was not IRE_REFHOLDed. 7364 */ 7365 MULTIRT_DEBUG_UNTAG(first_mp); 7366 freemsg(first_mp); 7367 return; 7368 } 7369 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7370 RTA_DST); 7371 if (attach_ill != NULL) 7372 ill_refrele(attach_ill); 7373 goto icmp_err_ret; 7374 } 7375 7376 /* 7377 * When RTA_SRCIFP is used to add a route, then an interface 7378 * route is added in the source interface's routing table. 7379 * If the outgoing interface of this route is of type 7380 * IRE_IF_RESOLVER, then upon creation of the ire, 7381 * ire_dlureq_mp is set to NULL. Later, when this route is 7382 * first used for forwarding packet, ip_newroute() is called 7383 * to resolve the hardware address of the outgoing ipif. 7384 * We do not come here for IRE_IF_NORESOLVER entries in the 7385 * source interface based table. We only come here if the 7386 * outgoing interface is a resolver interface and we don't 7387 * have the ire_dlureq_mp information yet. 7388 * If in_ill is not null that means it is called from 7389 * ip_rput. 7390 */ 7391 7392 ASSERT(ire->ire_in_ill == NULL || 7393 (ire->ire_type == IRE_IF_RESOLVER && 7394 ire->ire_dlureq_mp == NULL)); 7395 7396 /* 7397 * Verify that the returned IRE does not have either 7398 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7399 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7400 */ 7401 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7402 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7403 if (attach_ill != NULL) 7404 ill_refrele(attach_ill); 7405 goto icmp_err_ret; 7406 } 7407 /* 7408 * Increment the ire_ob_pkt_count field for ire if it is an 7409 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7410 * increment the same for the parent IRE, sire, if it is some 7411 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7412 * and HOST_REDIRECT). 7413 */ 7414 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7415 UPDATE_OB_PKT_COUNT(ire); 7416 ire->ire_last_used_time = lbolt; 7417 } 7418 7419 if (sire != NULL) { 7420 gw = sire->ire_gateway_addr; 7421 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7422 IRE_INTERFACE)) == 0); 7423 UPDATE_OB_PKT_COUNT(sire); 7424 sire->ire_last_used_time = lbolt; 7425 } 7426 /* 7427 * We have a route to reach the destination. 7428 * 7429 * 1) If the interface is part of ill group, try to get a new 7430 * ill taking load spreading into account. 7431 * 7432 * 2) After selecting the ill, get a source address that 7433 * might create good inbound load spreading. 7434 * ipif_select_source does this for us. 7435 * 7436 * If the application specified the ill (ifindex), we still 7437 * load spread. Only if the packets needs to go out 7438 * specifically on a given ill e.g. binding to 7439 * IPIF_NOFAILOVER address, then we don't try to use a 7440 * different ill for load spreading. 7441 */ 7442 if (attach_ill == NULL) { 7443 /* 7444 * Don't perform outbound load spreading in the 7445 * case of an RTF_MULTIRT route, as we actually 7446 * typically want to replicate outgoing packets 7447 * through particular interfaces. 7448 */ 7449 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7450 dst_ill = ire->ire_ipif->ipif_ill; 7451 /* for uniformity */ 7452 ill_refhold(dst_ill); 7453 } else { 7454 /* 7455 * If we are here trying to create an IRE_CACHE 7456 * for an offlink destination and have the 7457 * IRE_CACHE for the next hop and the latter is 7458 * using virtual IP source address selection i.e 7459 * it's ire->ire_ipif is pointing to a virtual 7460 * network interface (vni) then 7461 * ip_newroute_get_dst_ll() will return the vni 7462 * interface as the dst_ill. Since the vni is 7463 * virtual i.e not associated with any physical 7464 * interface, it cannot be the dst_ill, hence 7465 * in such a case call ip_newroute_get_dst_ll() 7466 * with the stq_ill instead of the ire_ipif ILL. 7467 * The function returns a refheld ill. 7468 */ 7469 if ((ire->ire_type == IRE_CACHE) && 7470 IS_VNI(ire->ire_ipif->ipif_ill)) 7471 dst_ill = ip_newroute_get_dst_ill( 7472 ire->ire_stq->q_ptr); 7473 else 7474 dst_ill = ip_newroute_get_dst_ill( 7475 ire->ire_ipif->ipif_ill); 7476 } 7477 if (dst_ill == NULL) { 7478 if (ip_debug > 2) { 7479 pr_addr_dbg("ip_newroute: " 7480 "no dst ill for dst" 7481 " %s\n", AF_INET, &dst); 7482 } 7483 goto icmp_err_ret; 7484 } 7485 } else { 7486 dst_ill = ire->ire_ipif->ipif_ill; 7487 /* for uniformity */ 7488 ill_refhold(dst_ill); 7489 /* 7490 * We should have found a route matching ill as we 7491 * called ire_ftable_lookup with MATCH_IRE_ILL. 7492 * Rather than asserting, when there is a mismatch, 7493 * we just drop the packet. 7494 */ 7495 if (dst_ill != attach_ill) { 7496 ip0dbg(("ip_newroute: Packet dropped as " 7497 "IPIF_NOFAILOVER ill is %s, " 7498 "ire->ire_ipif->ipif_ill is %s\n", 7499 attach_ill->ill_name, 7500 dst_ill->ill_name)); 7501 ill_refrele(attach_ill); 7502 goto icmp_err_ret; 7503 } 7504 } 7505 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7506 if (attach_ill != NULL) { 7507 ill_refrele(attach_ill); 7508 attach_ill = NULL; 7509 do_attach_ill = B_TRUE; 7510 } 7511 ASSERT(dst_ill != NULL); 7512 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7513 7514 /* 7515 * Pick the best source address from dst_ill. 7516 * 7517 * 1) If it is part of a multipathing group, we would 7518 * like to spread the inbound packets across different 7519 * interfaces. ipif_select_source picks a random source 7520 * across the different ills in the group. 7521 * 7522 * 2) If it is not part of a multipathing group, we try 7523 * to pick the source address from the destination 7524 * route. Clustering assumes that when we have multiple 7525 * prefixes hosted on an interface, the prefix of the 7526 * source address matches the prefix of the destination 7527 * route. We do this only if the address is not 7528 * DEPRECATED. 7529 * 7530 * 3) If the conn is in a different zone than the ire, we 7531 * need to pick a source address from the right zone. 7532 * 7533 * NOTE : If we hit case (1) above, the prefix of the source 7534 * address picked may not match the prefix of the 7535 * destination routes prefix as ipif_select_source 7536 * does not look at "dst" while picking a source 7537 * address. 7538 * If we want the same behavior as (2), we will need 7539 * to change the behavior of ipif_select_source. 7540 */ 7541 ASSERT(src_ipif == NULL); 7542 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7543 /* 7544 * The RTF_SETSRC flag is set in the parent ire (sire). 7545 * Check that the ipif matching the requested source 7546 * address still exists. 7547 */ 7548 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7549 zoneid, NULL, NULL, NULL, NULL); 7550 } 7551 if (src_ipif == NULL) { 7552 ire_marks |= IRE_MARK_USESRC_CHECK; 7553 if ((dst_ill->ill_group != NULL) || 7554 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7555 (connp != NULL && ire->ire_zoneid != zoneid && 7556 ire->ire_zoneid != ALL_ZONES) || 7557 (dst_ill->ill_usesrc_ifindex != 0)) { 7558 /* 7559 * If the destination is reachable via a 7560 * given gateway, the selected source address 7561 * should be in the same subnet as the gateway. 7562 * Otherwise, the destination is not reachable. 7563 * 7564 * If there are no interfaces on the same subnet 7565 * as the destination, ipif_select_source gives 7566 * first non-deprecated interface which might be 7567 * on a different subnet than the gateway. 7568 * This is not desirable. Hence pass the dst_ire 7569 * source address to ipif_select_source. 7570 * It is sure that the destination is reachable 7571 * with the dst_ire source address subnet. 7572 * So passing dst_ire source address to 7573 * ipif_select_source will make sure that the 7574 * selected source will be on the same subnet 7575 * as dst_ire source address. 7576 */ 7577 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7578 src_ipif = ipif_select_source(dst_ill, saddr, 7579 zoneid); 7580 if (src_ipif == NULL) { 7581 if (ip_debug > 2) { 7582 pr_addr_dbg("ip_newroute: " 7583 "no src for dst %s ", 7584 AF_INET, &dst); 7585 printf("through interface %s\n", 7586 dst_ill->ill_name); 7587 } 7588 goto icmp_err_ret; 7589 } 7590 } else { 7591 src_ipif = ire->ire_ipif; 7592 ASSERT(src_ipif != NULL); 7593 /* hold src_ipif for uniformity */ 7594 ipif_refhold(src_ipif); 7595 } 7596 } 7597 7598 /* 7599 * Assign a source address while we have the conn. 7600 * We can't have ip_wput_ire pick a source address when the 7601 * packet returns from arp since we need to look at 7602 * conn_unspec_src and conn_zoneid, and we lose the conn when 7603 * going through arp. 7604 * 7605 * NOTE : ip_newroute_v6 does not have this piece of code as 7606 * it uses ip6i to store this information. 7607 */ 7608 if (ipha->ipha_src == INADDR_ANY && 7609 (connp == NULL || !connp->conn_unspec_src)) { 7610 ipha->ipha_src = src_ipif->ipif_src_addr; 7611 } 7612 if (ip_debug > 3) { 7613 /* ip2dbg */ 7614 pr_addr_dbg("ip_newroute: first hop %s\n", 7615 AF_INET, &gw); 7616 } 7617 ip2dbg(("\tire type %s (%d)\n", 7618 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7619 7620 /* 7621 * The TTL of multirouted packets is bounded by the 7622 * ip_multirt_ttl ndd variable. 7623 */ 7624 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7625 /* Force TTL of multirouted packets */ 7626 if ((ip_multirt_ttl > 0) && 7627 (ipha->ipha_ttl > ip_multirt_ttl)) { 7628 ip2dbg(("ip_newroute: forcing multirt TTL " 7629 "to %d (was %d), dst 0x%08x\n", 7630 ip_multirt_ttl, ipha->ipha_ttl, 7631 ntohl(sire->ire_addr))); 7632 ipha->ipha_ttl = ip_multirt_ttl; 7633 } 7634 } 7635 /* 7636 * At this point in ip_newroute(), ire is either the 7637 * IRE_CACHE of the next-hop gateway for an off-subnet 7638 * destination or an IRE_INTERFACE type that should be used 7639 * to resolve an on-subnet destination or an on-subnet 7640 * next-hop gateway. 7641 * 7642 * In the IRE_CACHE case, we have the following : 7643 * 7644 * 1) src_ipif - used for getting a source address. 7645 * 7646 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7647 * means packets using this IRE_CACHE will go out on 7648 * dst_ill. 7649 * 7650 * 3) The IRE sire will point to the prefix that is the 7651 * longest matching route for the destination. These 7652 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7653 * and IRE_HOST_REDIRECT. 7654 * 7655 * The newly created IRE_CACHE entry for the off-subnet 7656 * destination is tied to both the prefix route and the 7657 * interface route used to resolve the next-hop gateway 7658 * via the ire_phandle and ire_ihandle fields, 7659 * respectively. 7660 * 7661 * In the IRE_INTERFACE case, we have the following : 7662 * 7663 * 1) src_ipif - used for getting a source address. 7664 * 7665 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7666 * means packets using the IRE_CACHE that we will build 7667 * here will go out on dst_ill. 7668 * 7669 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7670 * to be created will only be tied to the IRE_INTERFACE 7671 * that was derived from the ire_ihandle field. 7672 * 7673 * If sire is non-NULL, it means the destination is 7674 * off-link and we will first create the IRE_CACHE for the 7675 * gateway. Next time through ip_newroute, we will create 7676 * the IRE_CACHE for the final destination as described 7677 * above. 7678 * 7679 * In both cases, after the current resolution has been 7680 * completed (or possibly initialised, in the IRE_INTERFACE 7681 * case), the loop may be re-entered to attempt the resolution 7682 * of another RTF_MULTIRT route. 7683 * 7684 * When an IRE_CACHE entry for the off-subnet destination is 7685 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7686 * for further processing in emission loops. 7687 */ 7688 save_ire = ire; 7689 switch (ire->ire_type) { 7690 case IRE_CACHE: { 7691 ire_t *ipif_ire; 7692 mblk_t *ire_fp_mp; 7693 7694 if (gw == 0) 7695 gw = ire->ire_gateway_addr; 7696 /* 7697 * We need 3 ire's to create a new cache ire for an 7698 * off-link destination from the cache ire of the 7699 * gateway. 7700 * 7701 * 1. The prefix ire 'sire' (Note that this does 7702 * not apply to the conn_nexthop_set case) 7703 * 2. The cache ire of the gateway 'ire' 7704 * 3. The interface ire 'ipif_ire' 7705 * 7706 * We have (1) and (2). We lookup (3) below. 7707 * 7708 * If there is no interface route to the gateway, 7709 * it is a race condition, where we found the cache 7710 * but the interface route has been deleted. 7711 */ 7712 if (ip_nexthop) { 7713 ipif_ire = ire_ihandle_lookup_onlink(ire); 7714 } else { 7715 ipif_ire = 7716 ire_ihandle_lookup_offlink(ire, sire); 7717 } 7718 if (ipif_ire == NULL) { 7719 ip1dbg(("ip_newroute: " 7720 "ire_ihandle_lookup_offlink failed\n")); 7721 goto icmp_err_ret; 7722 } 7723 /* 7724 * XXX We are using the same dlureq_mp 7725 * (DL_UNITDATA_REQ) though the save_ire is not 7726 * pointing at the same ill. 7727 * This is incorrect. We need to send it up to the 7728 * resolver to get the right dlureq_mp. For ethernets 7729 * this may be okay (ill_type == DL_ETHER). 7730 */ 7731 dlureq_mp = save_ire->ire_dlureq_mp; 7732 ire_fp_mp = NULL; 7733 /* 7734 * save_ire's ire_fp_mp can't change since it is 7735 * not an IRE_MIPRTUN or IRE_BROADCAST 7736 * LOCK_IRE_FP_MP does not do any useful work in 7737 * the case of IRE_CACHE. So we don't use it below. 7738 */ 7739 if (save_ire->ire_stq == dst_ill->ill_wq) 7740 ire_fp_mp = save_ire->ire_fp_mp; 7741 7742 /* 7743 * Check cached gateway IRE for any security 7744 * attributes; if found, associate the gateway 7745 * credentials group to the destination IRE. 7746 */ 7747 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 7748 mutex_enter(&attrp->igsa_lock); 7749 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 7750 GCGRP_REFHOLD(gcgrp); 7751 mutex_exit(&attrp->igsa_lock); 7752 } 7753 7754 ire = ire_create( 7755 (uchar_t *)&dst, /* dest address */ 7756 (uchar_t *)&ip_g_all_ones, /* mask */ 7757 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7758 (uchar_t *)&gw, /* gateway address */ 7759 NULL, 7760 &save_ire->ire_max_frag, 7761 ire_fp_mp, /* Fast Path header */ 7762 dst_ill->ill_rq, /* recv-from queue */ 7763 dst_ill->ill_wq, /* send-to queue */ 7764 IRE_CACHE, /* IRE type */ 7765 save_ire->ire_dlureq_mp, 7766 src_ipif, 7767 in_ill, /* incoming ill */ 7768 (sire != NULL) ? 7769 sire->ire_mask : 0, /* Parent mask */ 7770 (sire != NULL) ? 7771 sire->ire_phandle : 0, /* Parent handle */ 7772 ipif_ire->ire_ihandle, /* Interface handle */ 7773 (sire != NULL) ? (sire->ire_flags & 7774 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7775 (sire != NULL) ? 7776 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 7777 NULL, 7778 gcgrp); 7779 7780 if (ire == NULL) { 7781 if (gcgrp != NULL) { 7782 GCGRP_REFRELE(gcgrp); 7783 gcgrp = NULL; 7784 } 7785 ire_refrele(ipif_ire); 7786 ire_refrele(save_ire); 7787 break; 7788 } 7789 7790 /* reference now held by IRE */ 7791 gcgrp = NULL; 7792 7793 ire->ire_marks |= ire_marks; 7794 7795 /* 7796 * Prevent sire and ipif_ire from getting deleted. 7797 * The newly created ire is tied to both of them via 7798 * the phandle and ihandle respectively. 7799 */ 7800 if (sire != NULL) { 7801 IRB_REFHOLD(sire->ire_bucket); 7802 /* Has it been removed already ? */ 7803 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7804 IRB_REFRELE(sire->ire_bucket); 7805 ire_refrele(ipif_ire); 7806 ire_refrele(save_ire); 7807 break; 7808 } 7809 } 7810 7811 IRB_REFHOLD(ipif_ire->ire_bucket); 7812 /* Has it been removed already ? */ 7813 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7814 IRB_REFRELE(ipif_ire->ire_bucket); 7815 if (sire != NULL) 7816 IRB_REFRELE(sire->ire_bucket); 7817 ire_refrele(ipif_ire); 7818 ire_refrele(save_ire); 7819 break; 7820 } 7821 7822 xmit_mp = first_mp; 7823 /* 7824 * In the case of multirouting, a copy 7825 * of the packet is done before its sending. 7826 * The copy is used to attempt another 7827 * route resolution, in a next loop. 7828 */ 7829 if (ire->ire_flags & RTF_MULTIRT) { 7830 copy_mp = copymsg(first_mp); 7831 if (copy_mp != NULL) { 7832 xmit_mp = copy_mp; 7833 MULTIRT_DEBUG_TAG(first_mp); 7834 } 7835 } 7836 ire_add_then_send(q, ire, xmit_mp); 7837 ire_refrele(save_ire); 7838 7839 /* Assert that sire is not deleted yet. */ 7840 if (sire != NULL) { 7841 ASSERT(sire->ire_ptpn != NULL); 7842 IRB_REFRELE(sire->ire_bucket); 7843 } 7844 7845 /* Assert that ipif_ire is not deleted yet. */ 7846 ASSERT(ipif_ire->ire_ptpn != NULL); 7847 IRB_REFRELE(ipif_ire->ire_bucket); 7848 ire_refrele(ipif_ire); 7849 7850 /* 7851 * If copy_mp is not NULL, multirouting was 7852 * requested. We loop to initiate a next 7853 * route resolution attempt, starting from sire. 7854 */ 7855 if (copy_mp != NULL) { 7856 /* 7857 * Search for the next unresolved 7858 * multirt route. 7859 */ 7860 copy_mp = NULL; 7861 ipif_ire = NULL; 7862 ire = NULL; 7863 multirt_resolve_next = B_TRUE; 7864 continue; 7865 } 7866 if (sire != NULL) 7867 ire_refrele(sire); 7868 ipif_refrele(src_ipif); 7869 ill_refrele(dst_ill); 7870 return; 7871 } 7872 case IRE_IF_NORESOLVER: { 7873 /* 7874 * We have what we need to build an IRE_CACHE. 7875 * 7876 * Create a new dlureq_mp with the IP gateway address 7877 * in destination address in the DLPI hdr if the 7878 * physical length is exactly 4 bytes. 7879 */ 7880 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7881 uchar_t *addr; 7882 7883 if (gw) 7884 addr = (uchar_t *)&gw; 7885 else 7886 addr = (uchar_t *)&dst; 7887 7888 dlureq_mp = ill_dlur_gen(addr, 7889 dst_ill->ill_phys_addr_length, 7890 dst_ill->ill_sap, 7891 dst_ill->ill_sap_length); 7892 } else { 7893 dlureq_mp = ire->ire_dlureq_mp; 7894 } 7895 7896 if (dlureq_mp == NULL) { 7897 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7898 break; 7899 } 7900 7901 /* 7902 * TSol note: We are creating the ire cache for the 7903 * destination 'dst'. If 'dst' is offlink, going 7904 * through the first hop 'gw', the security attributes 7905 * of 'dst' must be set to point to the gateway 7906 * credentials of gateway 'gw'. If 'dst' is onlink, it 7907 * is possible that 'dst' is a potential gateway that is 7908 * referenced by some route that has some security 7909 * attributes. Thus in the former case, we need to do a 7910 * gcgrp_lookup of 'gw' while in the latter case we 7911 * need to do gcgrp_lookup of 'dst' itself. 7912 */ 7913 ga.ga_af = AF_INET; 7914 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 7915 &ga.ga_addr); 7916 gcgrp = gcgrp_lookup(&ga, B_FALSE); 7917 7918 ire = ire_create( 7919 (uchar_t *)&dst, /* dest address */ 7920 (uchar_t *)&ip_g_all_ones, /* mask */ 7921 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7922 (uchar_t *)&gw, /* gateway address */ 7923 NULL, 7924 &save_ire->ire_max_frag, 7925 NULL, /* Fast Path header */ 7926 dst_ill->ill_rq, /* recv-from queue */ 7927 dst_ill->ill_wq, /* send-to queue */ 7928 IRE_CACHE, 7929 dlureq_mp, 7930 src_ipif, 7931 in_ill, /* Incoming ill */ 7932 save_ire->ire_mask, /* Parent mask */ 7933 (sire != NULL) ? /* Parent handle */ 7934 sire->ire_phandle : 0, 7935 save_ire->ire_ihandle, /* Interface handle */ 7936 (sire != NULL) ? sire->ire_flags & 7937 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7938 &(save_ire->ire_uinfo), 7939 NULL, 7940 gcgrp); 7941 7942 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7943 freeb(dlureq_mp); 7944 7945 if (ire == NULL) { 7946 if (gcgrp != NULL) { 7947 GCGRP_REFRELE(gcgrp); 7948 gcgrp = NULL; 7949 } 7950 ire_refrele(save_ire); 7951 break; 7952 } 7953 7954 /* reference now held by IRE */ 7955 gcgrp = NULL; 7956 7957 ire->ire_marks |= ire_marks; 7958 7959 /* Prevent save_ire from getting deleted */ 7960 IRB_REFHOLD(save_ire->ire_bucket); 7961 /* Has it been removed already ? */ 7962 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7963 IRB_REFRELE(save_ire->ire_bucket); 7964 ire_refrele(save_ire); 7965 break; 7966 } 7967 7968 /* 7969 * In the case of multirouting, a copy 7970 * of the packet is made before it is sent. 7971 * The copy is used in the next 7972 * loop to attempt another resolution. 7973 */ 7974 xmit_mp = first_mp; 7975 if ((sire != NULL) && 7976 (sire->ire_flags & RTF_MULTIRT)) { 7977 copy_mp = copymsg(first_mp); 7978 if (copy_mp != NULL) { 7979 xmit_mp = copy_mp; 7980 MULTIRT_DEBUG_TAG(first_mp); 7981 } 7982 } 7983 ire_add_then_send(q, ire, xmit_mp); 7984 7985 /* Assert that it is not deleted yet. */ 7986 ASSERT(save_ire->ire_ptpn != NULL); 7987 IRB_REFRELE(save_ire->ire_bucket); 7988 ire_refrele(save_ire); 7989 7990 if (copy_mp != NULL) { 7991 /* 7992 * If we found a (no)resolver, we ignore any 7993 * trailing top priority IRE_CACHE in further 7994 * loops. This ensures that we do not omit any 7995 * (no)resolver. 7996 * This IRE_CACHE, if any, will be processed 7997 * by another thread entering ip_newroute(). 7998 * IRE_CACHE entries, if any, will be processed 7999 * by another thread entering ip_newroute(), 8000 * (upon resolver response, for instance). 8001 * This aims to force parallel multirt 8002 * resolutions as soon as a packet must be sent. 8003 * In the best case, after the tx of only one 8004 * packet, all reachable routes are resolved. 8005 * Otherwise, the resolution of all RTF_MULTIRT 8006 * routes would require several emissions. 8007 */ 8008 multirt_flags &= ~MULTIRT_CACHEGW; 8009 8010 /* 8011 * Search for the next unresolved multirt 8012 * route. 8013 */ 8014 copy_mp = NULL; 8015 save_ire = NULL; 8016 ire = NULL; 8017 multirt_resolve_next = B_TRUE; 8018 continue; 8019 } 8020 8021 /* 8022 * Don't need sire anymore 8023 */ 8024 if (sire != NULL) 8025 ire_refrele(sire); 8026 8027 ipif_refrele(src_ipif); 8028 ill_refrele(dst_ill); 8029 return; 8030 } 8031 case IRE_IF_RESOLVER: 8032 /* 8033 * We can't build an IRE_CACHE yet, but at least we 8034 * found a resolver that can help. 8035 */ 8036 res_mp = dst_ill->ill_resolver_mp; 8037 if (!OK_RESOLVER_MP(res_mp)) 8038 break; 8039 8040 /* 8041 * To be at this point in the code with a non-zero gw 8042 * means that dst is reachable through a gateway that 8043 * we have never resolved. By changing dst to the gw 8044 * addr we resolve the gateway first. 8045 * When ire_add_then_send() tries to put the IP dg 8046 * to dst, it will reenter ip_newroute() at which 8047 * time we will find the IRE_CACHE for the gw and 8048 * create another IRE_CACHE in case IRE_CACHE above. 8049 */ 8050 if (gw != INADDR_ANY) { 8051 /* 8052 * The source ipif that was determined above was 8053 * relative to the destination address, not the 8054 * gateway's. If src_ipif was not taken out of 8055 * the IRE_IF_RESOLVER entry, we'll need to call 8056 * ipif_select_source() again. 8057 */ 8058 if (src_ipif != ire->ire_ipif) { 8059 ipif_refrele(src_ipif); 8060 src_ipif = ipif_select_source(dst_ill, 8061 gw, zoneid); 8062 if (src_ipif == NULL) { 8063 if (ip_debug > 2) { 8064 pr_addr_dbg( 8065 "ip_newroute: no " 8066 "src for gw %s ", 8067 AF_INET, &gw); 8068 printf("through " 8069 "interface %s\n", 8070 dst_ill->ill_name); 8071 } 8072 goto icmp_err_ret; 8073 } 8074 } 8075 save_dst = dst; 8076 dst = gw; 8077 gw = INADDR_ANY; 8078 } 8079 8080 /* 8081 * TSol note: Please see the corresponding note 8082 * of the IRE_IF_NORESOLVER case 8083 */ 8084 ga.ga_af = AF_INET; 8085 IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr); 8086 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8087 8088 /* 8089 * We obtain a partial IRE_CACHE which we will pass 8090 * along with the resolver query. When the response 8091 * comes back it will be there ready for us to add. 8092 * The ire_max_frag is atomically set under the 8093 * irebucket lock in ire_add_v[46]. 8094 */ 8095 ire = ire_create_mp( 8096 (uchar_t *)&dst, /* dest address */ 8097 (uchar_t *)&ip_g_all_ones, /* mask */ 8098 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8099 (uchar_t *)&gw, /* gateway address */ 8100 NULL, /* no in_src_addr */ 8101 NULL, /* ire_max_frag */ 8102 NULL, /* Fast Path header */ 8103 dst_ill->ill_rq, /* recv-from queue */ 8104 dst_ill->ill_wq, /* send-to queue */ 8105 IRE_CACHE, 8106 res_mp, 8107 src_ipif, /* Interface ipif */ 8108 in_ill, /* Incoming ILL */ 8109 save_ire->ire_mask, /* Parent mask */ 8110 0, 8111 save_ire->ire_ihandle, /* Interface handle */ 8112 0, /* flags if any */ 8113 &(save_ire->ire_uinfo), 8114 NULL, 8115 gcgrp); 8116 8117 if (ire == NULL) { 8118 ire_refrele(save_ire); 8119 if (gcgrp != NULL) { 8120 GCGRP_REFRELE(gcgrp); 8121 gcgrp = NULL; 8122 } 8123 break; 8124 } 8125 8126 /* reference now held by IRE */ 8127 gcgrp = NULL; 8128 8129 if ((sire != NULL) && 8130 (sire->ire_flags & RTF_MULTIRT)) { 8131 copy_mp = copymsg(first_mp); 8132 if (copy_mp != NULL) 8133 MULTIRT_DEBUG_TAG(copy_mp); 8134 } 8135 8136 ire->ire_marks |= ire_marks; 8137 8138 /* 8139 * Construct message chain for the resolver 8140 * of the form: 8141 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8142 * Packet could contain a IPSEC_OUT mp. 8143 * 8144 * NOTE : ire will be added later when the response 8145 * comes back from ARP. If the response does not 8146 * come back, ARP frees the packet. For this reason, 8147 * we can't REFHOLD the bucket of save_ire to prevent 8148 * deletions. We may not be able to REFRELE the bucket 8149 * if the response never comes back. Thus, before 8150 * adding the ire, ire_add_v4 will make sure that the 8151 * interface route does not get deleted. This is the 8152 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8153 * where we can always prevent deletions because of 8154 * the synchronous nature of adding IRES i.e 8155 * ire_add_then_send is called after creating the IRE. 8156 */ 8157 ASSERT(ire->ire_mp != NULL); 8158 ire->ire_mp->b_cont = first_mp; 8159 /* Have saved_mp handy, for cleanup if canput fails */ 8160 saved_mp = mp; 8161 mp = ire->ire_dlureq_mp; 8162 ASSERT(mp != NULL); 8163 ire->ire_dlureq_mp = NULL; 8164 linkb(mp, ire->ire_mp); 8165 8166 8167 /* 8168 * Fill in the source and dest addrs for the resolver. 8169 * NOTE: this depends on memory layouts imposed by 8170 * ill_init(). 8171 */ 8172 areq = (areq_t *)mp->b_rptr; 8173 addrp = (ipaddr_t *)((char *)areq + 8174 areq->areq_sender_addr_offset); 8175 if (do_attach_ill) { 8176 /* 8177 * This is bind to no failover case. 8178 * arp packet also must go out on attach_ill. 8179 */ 8180 ASSERT(ipha->ipha_src != NULL); 8181 *addrp = ipha->ipha_src; 8182 } else { 8183 *addrp = save_ire->ire_src_addr; 8184 } 8185 8186 ire_refrele(save_ire); 8187 addrp = (ipaddr_t *)((char *)areq + 8188 areq->areq_target_addr_offset); 8189 *addrp = dst; 8190 /* Up to the resolver. */ 8191 if (canputnext(dst_ill->ill_rq)) { 8192 putnext(dst_ill->ill_rq, mp); 8193 ire = NULL; 8194 if (copy_mp != NULL) { 8195 /* 8196 * If we found a resolver, we ignore 8197 * any trailing top priority IRE_CACHE 8198 * in the further loops. This ensures 8199 * that we do not omit any resolver. 8200 * IRE_CACHE entries, if any, will be 8201 * processed next time we enter 8202 * ip_newroute(). 8203 */ 8204 multirt_flags &= ~MULTIRT_CACHEGW; 8205 /* 8206 * Search for the next unresolved 8207 * multirt route. 8208 */ 8209 first_mp = copy_mp; 8210 copy_mp = NULL; 8211 /* Prepare the next resolution loop. */ 8212 mp = first_mp; 8213 EXTRACT_PKT_MP(mp, first_mp, 8214 mctl_present); 8215 if (mctl_present) 8216 io = (ipsec_out_t *) 8217 first_mp->b_rptr; 8218 ipha = (ipha_t *)mp->b_rptr; 8219 8220 ASSERT(sire != NULL); 8221 8222 dst = save_dst; 8223 multirt_resolve_next = B_TRUE; 8224 continue; 8225 } 8226 8227 if (sire != NULL) 8228 ire_refrele(sire); 8229 8230 /* 8231 * The response will come back in ip_wput 8232 * with db_type IRE_DB_TYPE. 8233 */ 8234 ipif_refrele(src_ipif); 8235 ill_refrele(dst_ill); 8236 return; 8237 } else { 8238 /* Prepare for cleanup */ 8239 ire->ire_dlureq_mp = mp; 8240 mp->b_cont = NULL; 8241 ire_delete(ire); 8242 mp = saved_mp; 8243 ire = NULL; 8244 if (copy_mp != NULL) { 8245 MULTIRT_DEBUG_UNTAG(copy_mp); 8246 freemsg(copy_mp); 8247 copy_mp = NULL; 8248 } 8249 break; 8250 } 8251 default: 8252 break; 8253 } 8254 } while (multirt_resolve_next); 8255 8256 ip1dbg(("ip_newroute: dropped\n")); 8257 /* Did this packet originate externally? */ 8258 if (mp->b_prev) { 8259 mp->b_next = NULL; 8260 mp->b_prev = NULL; 8261 BUMP_MIB(&ip_mib, ipInDiscards); 8262 } else { 8263 BUMP_MIB(&ip_mib, ipOutDiscards); 8264 } 8265 ASSERT(copy_mp == NULL); 8266 MULTIRT_DEBUG_UNTAG(first_mp); 8267 freemsg(first_mp); 8268 if (ire != NULL) 8269 ire_refrele(ire); 8270 if (sire != NULL) 8271 ire_refrele(sire); 8272 if (src_ipif != NULL) 8273 ipif_refrele(src_ipif); 8274 if (dst_ill != NULL) 8275 ill_refrele(dst_ill); 8276 return; 8277 8278 icmp_err_ret: 8279 ip1dbg(("ip_newroute: no route\n")); 8280 if (src_ipif != NULL) 8281 ipif_refrele(src_ipif); 8282 if (dst_ill != NULL) 8283 ill_refrele(dst_ill); 8284 if (sire != NULL) 8285 ire_refrele(sire); 8286 /* Did this packet originate externally? */ 8287 if (mp->b_prev) { 8288 mp->b_next = NULL; 8289 mp->b_prev = NULL; 8290 /* XXX ipInNoRoutes */ 8291 q = WR(q); 8292 } else { 8293 /* 8294 * Since ip_wput() isn't close to finished, we fill 8295 * in enough of the header for credible error reporting. 8296 */ 8297 if (ip_hdr_complete(ipha, zoneid)) { 8298 /* Failed */ 8299 MULTIRT_DEBUG_UNTAG(first_mp); 8300 freemsg(first_mp); 8301 if (ire != NULL) 8302 ire_refrele(ire); 8303 return; 8304 } 8305 } 8306 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8307 8308 /* 8309 * At this point we will have ire only if RTF_BLACKHOLE 8310 * or RTF_REJECT flags are set on the IRE. It will not 8311 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8312 */ 8313 if (ire != NULL) { 8314 if (ire->ire_flags & RTF_BLACKHOLE) { 8315 ire_refrele(ire); 8316 MULTIRT_DEBUG_UNTAG(first_mp); 8317 freemsg(first_mp); 8318 return; 8319 } 8320 ire_refrele(ire); 8321 } 8322 if (ip_source_routed(ipha)) { 8323 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8324 return; 8325 } 8326 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8327 } 8328 8329 /* 8330 * IPv4 - 8331 * ip_newroute_ipif is called by ip_wput_multicast and 8332 * ip_rput_forward_multicast whenever we need to send 8333 * out a packet to a destination address for which we do not have specific 8334 * routing information. It is used when the packet will be sent out 8335 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8336 * socket option is set or icmp error message wants to go out on a particular 8337 * interface for a unicast packet. 8338 * 8339 * In most cases, the destination address is resolved thanks to the ipif 8340 * intrinsic resolver. However, there are some cases where the call to 8341 * ip_newroute_ipif must take into account the potential presence of 8342 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8343 * that uses the interface. This is specified through flags, 8344 * which can be a combination of: 8345 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8346 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8347 * and flags. Additionally, the packet source address has to be set to 8348 * the specified address. The caller is thus expected to set this flag 8349 * if the packet has no specific source address yet. 8350 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8351 * flag, the resulting ire will inherit the flag. All unresolved routes 8352 * to the destination must be explored in the same call to 8353 * ip_newroute_ipif(). 8354 */ 8355 static void 8356 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8357 conn_t *connp, uint32_t flags) 8358 { 8359 areq_t *areq; 8360 ire_t *ire = NULL; 8361 mblk_t *res_mp; 8362 ipaddr_t *addrp; 8363 mblk_t *first_mp; 8364 ire_t *save_ire = NULL; 8365 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8366 ipif_t *src_ipif = NULL; 8367 ushort_t ire_marks = 0; 8368 ill_t *dst_ill = NULL; 8369 boolean_t mctl_present; 8370 ipsec_out_t *io; 8371 ipha_t *ipha; 8372 int ihandle = 0; 8373 mblk_t *saved_mp; 8374 ire_t *fire = NULL; 8375 mblk_t *copy_mp = NULL; 8376 boolean_t multirt_resolve_next; 8377 ipaddr_t ipha_dst; 8378 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8379 8380 /* 8381 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8382 * here for uniformity 8383 */ 8384 ipif_refhold(ipif); 8385 8386 /* 8387 * This loop is run only once in most cases. 8388 * We loop to resolve further routes only when the destination 8389 * can be reached through multiple RTF_MULTIRT-flagged ires. 8390 */ 8391 do { 8392 if (dst_ill != NULL) { 8393 ill_refrele(dst_ill); 8394 dst_ill = NULL; 8395 } 8396 if (src_ipif != NULL) { 8397 ipif_refrele(src_ipif); 8398 src_ipif = NULL; 8399 } 8400 multirt_resolve_next = B_FALSE; 8401 8402 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8403 ipif->ipif_ill->ill_name)); 8404 8405 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8406 if (mctl_present) 8407 io = (ipsec_out_t *)first_mp->b_rptr; 8408 8409 ipha = (ipha_t *)mp->b_rptr; 8410 8411 /* 8412 * Save the packet destination address, we may need it after 8413 * the packet has been consumed. 8414 */ 8415 ipha_dst = ipha->ipha_dst; 8416 8417 /* 8418 * If the interface is a pt-pt interface we look for an 8419 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8420 * local_address and the pt-pt destination address. Otherwise 8421 * we just match the local address. 8422 * NOTE: dst could be different than ipha->ipha_dst in case 8423 * of sending igmp multicast packets over a point-to-point 8424 * connection. 8425 * Thus we must be careful enough to check ipha_dst to be a 8426 * multicast address, otherwise it will take xmit_if path for 8427 * multicast packets resulting into kernel stack overflow by 8428 * repeated calls to ip_newroute_ipif from ire_send(). 8429 */ 8430 if (CLASSD(ipha_dst) && 8431 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8432 goto err_ret; 8433 } 8434 8435 /* 8436 * We check if an IRE_OFFSUBNET for the addr that goes through 8437 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8438 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8439 * propagate its flags to the new ire. 8440 */ 8441 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8442 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8443 ip2dbg(("ip_newroute_ipif: " 8444 "ipif_lookup_multi_ire(" 8445 "ipif %p, dst %08x) = fire %p\n", 8446 (void *)ipif, ntohl(dst), (void *)fire)); 8447 } 8448 8449 if (mctl_present && io->ipsec_out_attach_if) { 8450 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8451 io->ipsec_out_ill_index, B_FALSE); 8452 8453 /* Failure case frees things for us. */ 8454 if (attach_ill == NULL) { 8455 ipif_refrele(ipif); 8456 if (fire != NULL) 8457 ire_refrele(fire); 8458 return; 8459 } 8460 8461 /* 8462 * Check if we need an ire that will not be 8463 * looked up by anybody else i.e. HIDDEN. 8464 */ 8465 if (ill_is_probeonly(attach_ill)) { 8466 ire_marks = IRE_MARK_HIDDEN; 8467 } 8468 /* 8469 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8470 * case. 8471 */ 8472 dst_ill = ipif->ipif_ill; 8473 /* attach_ill has been refheld by ip_grab_attach_ill */ 8474 ASSERT(dst_ill == attach_ill); 8475 } else { 8476 /* 8477 * If this is set by IP_XMIT_IF, then make sure that 8478 * ipif is pointing to the same ill as the IP_XMIT_IF 8479 * specified ill. 8480 */ 8481 ASSERT((connp == NULL) || 8482 (connp->conn_xmit_if_ill == NULL) || 8483 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8484 /* 8485 * If the interface belongs to an interface group, 8486 * make sure the next possible interface in the group 8487 * is used. This encourages load spreading among 8488 * peers in an interface group. 8489 * Note: load spreading is disabled for RTF_MULTIRT 8490 * routes. 8491 */ 8492 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8493 (fire->ire_flags & RTF_MULTIRT)) { 8494 /* 8495 * Don't perform outbound load spreading 8496 * in the case of an RTF_MULTIRT issued route, 8497 * we actually typically want to replicate 8498 * outgoing packets through particular 8499 * interfaces. 8500 */ 8501 dst_ill = ipif->ipif_ill; 8502 ill_refhold(dst_ill); 8503 } else { 8504 dst_ill = ip_newroute_get_dst_ill( 8505 ipif->ipif_ill); 8506 } 8507 if (dst_ill == NULL) { 8508 if (ip_debug > 2) { 8509 pr_addr_dbg("ip_newroute_ipif: " 8510 "no dst ill for dst %s\n", 8511 AF_INET, &dst); 8512 } 8513 goto err_ret; 8514 } 8515 } 8516 8517 /* 8518 * Pick a source address preferring non-deprecated ones. 8519 * Unlike ip_newroute, we don't do any source address 8520 * selection here since for multicast it really does not help 8521 * in inbound load spreading as in the unicast case. 8522 */ 8523 if ((flags & RTF_SETSRC) && (fire != NULL) && 8524 (fire->ire_flags & RTF_SETSRC)) { 8525 /* 8526 * As requested by flags, an IRE_OFFSUBNET was looked up 8527 * on that interface. This ire has RTF_SETSRC flag, so 8528 * the source address of the packet must be changed. 8529 * Check that the ipif matching the requested source 8530 * address still exists. 8531 */ 8532 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8533 zoneid, NULL, NULL, NULL, NULL); 8534 } 8535 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8536 (connp != NULL && ipif->ipif_zoneid != zoneid && 8537 ipif->ipif_zoneid != ALL_ZONES)) && 8538 (src_ipif == NULL)) { 8539 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8540 if (src_ipif == NULL) { 8541 if (ip_debug > 2) { 8542 /* ip1dbg */ 8543 pr_addr_dbg("ip_newroute_ipif: " 8544 "no src for dst %s", 8545 AF_INET, &dst); 8546 } 8547 ip1dbg((" through interface %s\n", 8548 dst_ill->ill_name)); 8549 goto err_ret; 8550 } 8551 ipif_refrele(ipif); 8552 ipif = src_ipif; 8553 ipif_refhold(ipif); 8554 } 8555 if (src_ipif == NULL) { 8556 src_ipif = ipif; 8557 ipif_refhold(src_ipif); 8558 } 8559 8560 /* 8561 * Assign a source address while we have the conn. 8562 * We can't have ip_wput_ire pick a source address when the 8563 * packet returns from arp since conn_unspec_src might be set 8564 * and we loose the conn when going through arp. 8565 */ 8566 if (ipha->ipha_src == INADDR_ANY && 8567 (connp == NULL || !connp->conn_unspec_src)) { 8568 ipha->ipha_src = src_ipif->ipif_src_addr; 8569 } 8570 8571 /* 8572 * In case of IP_XMIT_IF, it is possible that the outgoing 8573 * interface does not have an interface ire. 8574 * Example: Thousands of mobileip PPP interfaces to mobile 8575 * nodes. We don't want to create interface ires because 8576 * packets from other mobile nodes must not take the route 8577 * via interface ires to the visiting mobile node without 8578 * going through the home agent, in absence of mobileip 8579 * route optimization. 8580 */ 8581 if (CLASSD(ipha_dst) && (connp == NULL || 8582 connp->conn_xmit_if_ill == NULL)) { 8583 /* ipif_to_ire returns an held ire */ 8584 ire = ipif_to_ire(ipif); 8585 if (ire == NULL) 8586 goto err_ret; 8587 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8588 goto err_ret; 8589 /* 8590 * ihandle is needed when the ire is added to 8591 * cache table. 8592 */ 8593 save_ire = ire; 8594 ihandle = save_ire->ire_ihandle; 8595 8596 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8597 "flags %04x\n", 8598 (void *)ire, (void *)ipif, flags)); 8599 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8600 (fire->ire_flags & RTF_MULTIRT)) { 8601 /* 8602 * As requested by flags, an IRE_OFFSUBNET was 8603 * looked up on that interface. This ire has 8604 * RTF_MULTIRT flag, so the resolution loop will 8605 * be re-entered to resolve additional routes on 8606 * other interfaces. For that purpose, a copy of 8607 * the packet is performed at this point. 8608 */ 8609 fire->ire_last_used_time = lbolt; 8610 copy_mp = copymsg(first_mp); 8611 if (copy_mp) { 8612 MULTIRT_DEBUG_TAG(copy_mp); 8613 } 8614 } 8615 if ((flags & RTF_SETSRC) && (fire != NULL) && 8616 (fire->ire_flags & RTF_SETSRC)) { 8617 /* 8618 * As requested by flags, an IRE_OFFSUBET was 8619 * looked up on that interface. This ire has 8620 * RTF_SETSRC flag, so the source address of the 8621 * packet must be changed. 8622 */ 8623 ipha->ipha_src = fire->ire_src_addr; 8624 } 8625 } else { 8626 ASSERT((connp == NULL) || 8627 (connp->conn_xmit_if_ill != NULL) || 8628 (connp->conn_dontroute)); 8629 /* 8630 * The only ways we can come here are: 8631 * 1) IP_XMIT_IF socket option is set 8632 * 2) ICMP error message generated from 8633 * ip_mrtun_forward() routine and it needs 8634 * to go through the specified ill. 8635 * 3) SO_DONTROUTE socket option is set 8636 * In all cases, the new ire will not be added 8637 * into cache table. 8638 */ 8639 ire_marks |= IRE_MARK_NOADD; 8640 } 8641 8642 switch (ipif->ipif_net_type) { 8643 case IRE_IF_NORESOLVER: { 8644 /* We have what we need to build an IRE_CACHE. */ 8645 mblk_t *dlureq_mp; 8646 8647 /* 8648 * Create a new dlureq_mp with the 8649 * IP gateway address as destination address in the 8650 * DLPI hdr if the physical length is exactly 4 bytes. 8651 */ 8652 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8653 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8654 dst_ill->ill_phys_addr_length, 8655 dst_ill->ill_sap, 8656 dst_ill->ill_sap_length); 8657 } else { 8658 /* use the value set in ip_ll_subnet_defaults */ 8659 dlureq_mp = ill_dlur_gen(NULL, 8660 dst_ill->ill_phys_addr_length, 8661 dst_ill->ill_sap, 8662 dst_ill->ill_sap_length); 8663 } 8664 8665 if (dlureq_mp == NULL) 8666 break; 8667 /* 8668 * The new ire inherits the IRE_OFFSUBNET flags 8669 * and source address, if this was requested. 8670 */ 8671 ire = ire_create( 8672 (uchar_t *)&dst, /* dest address */ 8673 (uchar_t *)&ip_g_all_ones, /* mask */ 8674 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8675 NULL, /* gateway address */ 8676 NULL, 8677 &ipif->ipif_mtu, 8678 NULL, /* Fast Path header */ 8679 dst_ill->ill_rq, /* recv-from queue */ 8680 dst_ill->ill_wq, /* send-to queue */ 8681 IRE_CACHE, 8682 dlureq_mp, 8683 src_ipif, 8684 NULL, 8685 (save_ire != NULL ? save_ire->ire_mask : 0), 8686 (fire != NULL) ? /* Parent handle */ 8687 fire->ire_phandle : 0, 8688 ihandle, /* Interface handle */ 8689 (fire != NULL) ? 8690 (fire->ire_flags & 8691 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8692 (save_ire == NULL ? &ire_uinfo_null : 8693 &save_ire->ire_uinfo), 8694 NULL, 8695 NULL); 8696 8697 freeb(dlureq_mp); 8698 8699 if (ire == NULL) { 8700 if (save_ire != NULL) 8701 ire_refrele(save_ire); 8702 break; 8703 } 8704 8705 ire->ire_marks |= ire_marks; 8706 8707 /* 8708 * If IRE_MARK_NOADD is set then we need to convert 8709 * the max_fragp to a useable value now. This is 8710 * normally done in ire_add_v[46]. 8711 */ 8712 if (ire->ire_marks & IRE_MARK_NOADD) { 8713 uint_t max_frag; 8714 8715 max_frag = *ire->ire_max_fragp; 8716 ire->ire_max_fragp = NULL; 8717 ire->ire_max_frag = max_frag; 8718 } 8719 8720 /* Prevent save_ire from getting deleted */ 8721 if (save_ire != NULL) { 8722 IRB_REFHOLD(save_ire->ire_bucket); 8723 /* Has it been removed already ? */ 8724 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8725 IRB_REFRELE(save_ire->ire_bucket); 8726 ire_refrele(save_ire); 8727 break; 8728 } 8729 } 8730 8731 ire_add_then_send(q, ire, first_mp); 8732 8733 /* Assert that save_ire is not deleted yet. */ 8734 if (save_ire != NULL) { 8735 ASSERT(save_ire->ire_ptpn != NULL); 8736 IRB_REFRELE(save_ire->ire_bucket); 8737 ire_refrele(save_ire); 8738 save_ire = NULL; 8739 } 8740 if (fire != NULL) { 8741 ire_refrele(fire); 8742 fire = NULL; 8743 } 8744 8745 /* 8746 * the resolution loop is re-entered if this 8747 * was requested through flags and if we 8748 * actually are in a multirouting case. 8749 */ 8750 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8751 boolean_t need_resolve = 8752 ire_multirt_need_resolve(ipha_dst, 8753 MBLK_GETLABEL(copy_mp)); 8754 if (!need_resolve) { 8755 MULTIRT_DEBUG_UNTAG(copy_mp); 8756 freemsg(copy_mp); 8757 copy_mp = NULL; 8758 } else { 8759 /* 8760 * ipif_lookup_group() calls 8761 * ire_lookup_multi() that uses 8762 * ire_ftable_lookup() to find 8763 * an IRE_INTERFACE for the group. 8764 * In the multirt case, 8765 * ire_lookup_multi() then invokes 8766 * ire_multirt_lookup() to find 8767 * the next resolvable ire. 8768 * As a result, we obtain an new 8769 * interface, derived from the 8770 * next ire. 8771 */ 8772 ipif_refrele(ipif); 8773 ipif = ipif_lookup_group(ipha_dst, 8774 zoneid); 8775 ip2dbg(("ip_newroute_ipif: " 8776 "multirt dst %08x, ipif %p\n", 8777 htonl(dst), (void *)ipif)); 8778 if (ipif != NULL) { 8779 mp = copy_mp; 8780 copy_mp = NULL; 8781 multirt_resolve_next = B_TRUE; 8782 continue; 8783 } else { 8784 freemsg(copy_mp); 8785 } 8786 } 8787 } 8788 if (ipif != NULL) 8789 ipif_refrele(ipif); 8790 ill_refrele(dst_ill); 8791 ipif_refrele(src_ipif); 8792 return; 8793 } 8794 case IRE_IF_RESOLVER: 8795 /* 8796 * We can't build an IRE_CACHE yet, but at least 8797 * we found a resolver that can help. 8798 */ 8799 res_mp = dst_ill->ill_resolver_mp; 8800 if (!OK_RESOLVER_MP(res_mp)) 8801 break; 8802 8803 /* 8804 * We obtain a partial IRE_CACHE which we will pass 8805 * along with the resolver query. When the response 8806 * comes back it will be there ready for us to add. 8807 * The new ire inherits the IRE_OFFSUBNET flags 8808 * and source address, if this was requested. 8809 * The ire_max_frag is atomically set under the 8810 * irebucket lock in ire_add_v[46]. Only in the 8811 * case of IRE_MARK_NOADD, we set it here itself. 8812 */ 8813 ire = ire_create_mp( 8814 (uchar_t *)&dst, /* dest address */ 8815 (uchar_t *)&ip_g_all_ones, /* mask */ 8816 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8817 NULL, /* gateway address */ 8818 NULL, /* no in_src_addr */ 8819 (ire_marks & IRE_MARK_NOADD) ? 8820 ipif->ipif_mtu : 0, /* max_frag */ 8821 NULL, /* Fast path header */ 8822 dst_ill->ill_rq, /* recv-from queue */ 8823 dst_ill->ill_wq, /* send-to queue */ 8824 IRE_CACHE, 8825 res_mp, 8826 src_ipif, 8827 NULL, 8828 (save_ire != NULL ? save_ire->ire_mask : 0), 8829 (fire != NULL) ? /* Parent handle */ 8830 fire->ire_phandle : 0, 8831 ihandle, /* Interface handle */ 8832 (fire != NULL) ? /* flags if any */ 8833 (fire->ire_flags & 8834 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8835 (save_ire == NULL ? &ire_uinfo_null : 8836 &save_ire->ire_uinfo), 8837 NULL, 8838 NULL); 8839 8840 if (save_ire != NULL) { 8841 ire_refrele(save_ire); 8842 save_ire = NULL; 8843 } 8844 if (ire == NULL) 8845 break; 8846 8847 ire->ire_marks |= ire_marks; 8848 /* 8849 * Construct message chain for the resolver of the 8850 * form: 8851 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8852 * 8853 * NOTE : ire will be added later when the response 8854 * comes back from ARP. If the response does not 8855 * come back, ARP frees the packet. For this reason, 8856 * we can't REFHOLD the bucket of save_ire to prevent 8857 * deletions. We may not be able to REFRELE the 8858 * bucket if the response never comes back. 8859 * Thus, before adding the ire, ire_add_v4 will make 8860 * sure that the interface route does not get deleted. 8861 * This is the only case unlike ip_newroute_v6, 8862 * ip_newroute_ipif_v6 where we can always prevent 8863 * deletions because ire_add_then_send is called after 8864 * creating the IRE. 8865 * If IRE_MARK_NOADD is set, then ire_add_then_send 8866 * does not add this IRE into the IRE CACHE. 8867 */ 8868 ASSERT(ire->ire_mp != NULL); 8869 ire->ire_mp->b_cont = first_mp; 8870 /* Have saved_mp handy, for cleanup if canput fails */ 8871 saved_mp = mp; 8872 mp = ire->ire_dlureq_mp; 8873 ASSERT(mp != NULL); 8874 ire->ire_dlureq_mp = NULL; 8875 linkb(mp, ire->ire_mp); 8876 8877 /* 8878 * Fill in the source and dest addrs for the resolver. 8879 * NOTE: this depends on memory layouts imposed by 8880 * ill_init(). 8881 */ 8882 areq = (areq_t *)mp->b_rptr; 8883 addrp = (ipaddr_t *)((char *)areq + 8884 areq->areq_sender_addr_offset); 8885 *addrp = ire->ire_src_addr; 8886 addrp = (ipaddr_t *)((char *)areq + 8887 areq->areq_target_addr_offset); 8888 *addrp = dst; 8889 /* Up to the resolver. */ 8890 if (canputnext(dst_ill->ill_rq)) { 8891 putnext(dst_ill->ill_rq, mp); 8892 /* 8893 * The response will come back in ip_wput 8894 * with db_type IRE_DB_TYPE. 8895 */ 8896 } else { 8897 ire->ire_dlureq_mp = mp; 8898 mp->b_cont = NULL; 8899 ire_delete(ire); 8900 saved_mp->b_next = NULL; 8901 saved_mp->b_prev = NULL; 8902 freemsg(first_mp); 8903 ip2dbg(("ip_newroute_ipif: dropped\n")); 8904 } 8905 8906 if (fire != NULL) { 8907 ire_refrele(fire); 8908 fire = NULL; 8909 } 8910 8911 8912 /* 8913 * The resolution loop is re-entered if this was 8914 * requested through flags and we actually are 8915 * in a multirouting case. 8916 */ 8917 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8918 boolean_t need_resolve = 8919 ire_multirt_need_resolve(ipha_dst, 8920 MBLK_GETLABEL(copy_mp)); 8921 if (!need_resolve) { 8922 MULTIRT_DEBUG_UNTAG(copy_mp); 8923 freemsg(copy_mp); 8924 copy_mp = NULL; 8925 } else { 8926 /* 8927 * ipif_lookup_group() calls 8928 * ire_lookup_multi() that uses 8929 * ire_ftable_lookup() to find 8930 * an IRE_INTERFACE for the group. 8931 * In the multirt case, 8932 * ire_lookup_multi() then invokes 8933 * ire_multirt_lookup() to find 8934 * the next resolvable ire. 8935 * As a result, we obtain an new 8936 * interface, derived from the 8937 * next ire. 8938 */ 8939 ipif_refrele(ipif); 8940 ipif = ipif_lookup_group(ipha_dst, 8941 zoneid); 8942 if (ipif != NULL) { 8943 mp = copy_mp; 8944 copy_mp = NULL; 8945 multirt_resolve_next = B_TRUE; 8946 continue; 8947 } else { 8948 freemsg(copy_mp); 8949 } 8950 } 8951 } 8952 if (ipif != NULL) 8953 ipif_refrele(ipif); 8954 ill_refrele(dst_ill); 8955 ipif_refrele(src_ipif); 8956 return; 8957 default: 8958 break; 8959 } 8960 } while (multirt_resolve_next); 8961 8962 err_ret: 8963 ip2dbg(("ip_newroute_ipif: dropped\n")); 8964 if (fire != NULL) 8965 ire_refrele(fire); 8966 ipif_refrele(ipif); 8967 /* Did this packet originate externally? */ 8968 if (dst_ill != NULL) 8969 ill_refrele(dst_ill); 8970 if (src_ipif != NULL) 8971 ipif_refrele(src_ipif); 8972 if (mp->b_prev || mp->b_next) { 8973 mp->b_next = NULL; 8974 mp->b_prev = NULL; 8975 } else { 8976 /* 8977 * Since ip_wput() isn't close to finished, we fill 8978 * in enough of the header for credible error reporting. 8979 */ 8980 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8981 /* Failed */ 8982 freemsg(first_mp); 8983 if (ire != NULL) 8984 ire_refrele(ire); 8985 return; 8986 } 8987 } 8988 /* 8989 * At this point we will have ire only if RTF_BLACKHOLE 8990 * or RTF_REJECT flags are set on the IRE. It will not 8991 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8992 */ 8993 if (ire != NULL) { 8994 if (ire->ire_flags & RTF_BLACKHOLE) { 8995 ire_refrele(ire); 8996 freemsg(first_mp); 8997 return; 8998 } 8999 ire_refrele(ire); 9000 } 9001 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 9002 } 9003 9004 /* Name/Value Table Lookup Routine */ 9005 char * 9006 ip_nv_lookup(nv_t *nv, int value) 9007 { 9008 if (!nv) 9009 return (NULL); 9010 for (; nv->nv_name; nv++) { 9011 if (nv->nv_value == value) 9012 return (nv->nv_name); 9013 } 9014 return ("unknown"); 9015 } 9016 9017 /* 9018 * one day it can be patched to 1 from /etc/system for machines that have few 9019 * fast network interfaces feeding multiple cpus. 9020 */ 9021 int ill_stream_putlocks = 0; 9022 9023 /* 9024 * This is a module open, i.e. this is a control stream for access 9025 * to a DLPI device. We allocate an ill_t as the instance data in 9026 * this case. 9027 */ 9028 int 9029 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9030 { 9031 uint32_t mem_cnt; 9032 uint32_t cpu_cnt; 9033 uint32_t min_cnt; 9034 pgcnt_t mem_avail; 9035 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 9036 ill_t *ill; 9037 int err; 9038 9039 /* 9040 * Prevent unprivileged processes from pushing IP so that 9041 * they can't send raw IP. 9042 */ 9043 if (secpolicy_net_rawaccess(credp) != 0) 9044 return (EPERM); 9045 9046 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9047 q->q_ptr = WR(q)->q_ptr = ill; 9048 9049 /* 9050 * ill_init initializes the ill fields and then sends down 9051 * down a DL_INFO_REQ after calling qprocson. 9052 */ 9053 err = ill_init(q, ill); 9054 if (err != 0) { 9055 mi_free(ill); 9056 q->q_ptr = NULL; 9057 WR(q)->q_ptr = NULL; 9058 return (err); 9059 } 9060 9061 /* ill_init initializes the ipsq marking this thread as writer */ 9062 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9063 /* Wait for the DL_INFO_ACK */ 9064 mutex_enter(&ill->ill_lock); 9065 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9066 /* 9067 * Return value of 0 indicates a pending signal. 9068 */ 9069 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9070 if (err == 0) { 9071 mutex_exit(&ill->ill_lock); 9072 (void) ip_close(q, 0); 9073 return (EINTR); 9074 } 9075 } 9076 mutex_exit(&ill->ill_lock); 9077 9078 /* 9079 * ip_rput_other could have set an error in ill_error on 9080 * receipt of M_ERROR. 9081 */ 9082 9083 err = ill->ill_error; 9084 if (err != 0) { 9085 (void) ip_close(q, 0); 9086 return (err); 9087 } 9088 9089 /* 9090 * ip_ire_max_bucket_cnt is sized below based on the memory 9091 * size and the cpu speed of the machine. This is upper 9092 * bounded by the compile time value of ip_ire_max_bucket_cnt 9093 * and is lower bounded by the compile time value of 9094 * ip_ire_min_bucket_cnt. Similar logic applies to 9095 * ip6_ire_max_bucket_cnt. 9096 */ 9097 mem_avail = kmem_avail(); 9098 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9099 ip_cache_table_size / sizeof (ire_t); 9100 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9101 9102 min_cnt = MIN(cpu_cnt, mem_cnt); 9103 if (min_cnt < ip_ire_min_bucket_cnt) 9104 min_cnt = ip_ire_min_bucket_cnt; 9105 if (ip_ire_max_bucket_cnt > min_cnt) { 9106 ip_ire_max_bucket_cnt = min_cnt; 9107 } 9108 9109 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9110 ip6_cache_table_size / sizeof (ire_t); 9111 min_cnt = MIN(cpu_cnt, mem_cnt); 9112 if (min_cnt < ip6_ire_min_bucket_cnt) 9113 min_cnt = ip6_ire_min_bucket_cnt; 9114 if (ip6_ire_max_bucket_cnt > min_cnt) { 9115 ip6_ire_max_bucket_cnt = min_cnt; 9116 } 9117 9118 ill->ill_credp = credp; 9119 crhold(credp); 9120 9121 mutex_enter(&ip_mi_lock); 9122 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9123 mutex_exit(&ip_mi_lock); 9124 if (err) { 9125 (void) ip_close(q, 0); 9126 return (err); 9127 } 9128 return (0); 9129 } 9130 9131 /* IP open routine. */ 9132 int 9133 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9134 { 9135 conn_t *connp; 9136 major_t maj; 9137 9138 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9139 9140 /* Allow reopen. */ 9141 if (q->q_ptr != NULL) 9142 return (0); 9143 9144 if (sflag & MODOPEN) { 9145 /* This is a module open */ 9146 return (ip_modopen(q, devp, flag, sflag, credp)); 9147 } 9148 9149 /* 9150 * We are opening as a device. This is an IP client stream, and we 9151 * allocate an conn_t as the instance data. 9152 */ 9153 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9154 connp->conn_upq = q; 9155 q->q_ptr = WR(q)->q_ptr = connp; 9156 9157 if (flag & SO_SOCKSTR) 9158 connp->conn_flags |= IPCL_SOCKET; 9159 9160 /* Minor tells us which /dev entry was opened */ 9161 if (geteminor(*devp) == IPV6_MINOR) { 9162 connp->conn_flags |= IPCL_ISV6; 9163 connp->conn_af_isv6 = B_TRUE; 9164 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9165 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9166 } else { 9167 connp->conn_af_isv6 = B_FALSE; 9168 connp->conn_pkt_isv6 = B_FALSE; 9169 } 9170 9171 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9172 q->q_ptr = WR(q)->q_ptr = NULL; 9173 CONN_DEC_REF(connp); 9174 return (EBUSY); 9175 } 9176 9177 maj = getemajor(*devp); 9178 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9179 9180 /* 9181 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9182 */ 9183 connp->conn_cred = credp; 9184 crhold(connp->conn_cred); 9185 9186 /* 9187 * If the caller has the process-wide flag set, then default to MAC 9188 * exempt mode. This allows read-down to unlabeled hosts. 9189 */ 9190 if (getpflags(NET_MAC_AWARE, credp) != 0) 9191 connp->conn_mac_exempt = B_TRUE; 9192 9193 connp->conn_zoneid = getzoneid(); 9194 9195 /* 9196 * This should only happen for ndd, netstat, raw socket or other SCTP 9197 * administrative ops. In these cases, we just need a normal conn_t 9198 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9199 * an error will be returned. 9200 */ 9201 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9202 connp->conn_rq = q; 9203 connp->conn_wq = WR(q); 9204 } else { 9205 connp->conn_ulp = IPPROTO_SCTP; 9206 connp->conn_rq = connp->conn_wq = NULL; 9207 } 9208 /* Non-zero default values */ 9209 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9210 9211 /* 9212 * Make the conn globally visible to walkers 9213 */ 9214 mutex_enter(&connp->conn_lock); 9215 connp->conn_state_flags &= ~CONN_INCIPIENT; 9216 mutex_exit(&connp->conn_lock); 9217 ASSERT(connp->conn_ref == 1); 9218 9219 qprocson(q); 9220 9221 return (0); 9222 } 9223 9224 /* 9225 * Change q_qinfo based on the value of isv6. 9226 * This can not called on an ill queue. 9227 * Note that there is no race since either q_qinfo works for conn queues - it 9228 * is just an optimization to enter the best wput routine directly. 9229 */ 9230 void 9231 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9232 { 9233 ASSERT(q->q_flag & QREADR); 9234 ASSERT(WR(q)->q_next == NULL); 9235 ASSERT(q->q_ptr != NULL); 9236 9237 if (minor == IPV6_MINOR) { 9238 if (bump_mib) 9239 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9240 q->q_qinfo = &rinit_ipv6; 9241 WR(q)->q_qinfo = &winit_ipv6; 9242 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9243 } else { 9244 if (bump_mib) 9245 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9246 q->q_qinfo = &rinit; 9247 WR(q)->q_qinfo = &winit; 9248 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9249 } 9250 9251 } 9252 9253 /* 9254 * See if IPsec needs loading because of the options in mp. 9255 */ 9256 static boolean_t 9257 ipsec_opt_present(mblk_t *mp) 9258 { 9259 uint8_t *optcp, *next_optcp, *opt_endcp; 9260 struct opthdr *opt; 9261 struct T_opthdr *topt; 9262 int opthdr_len; 9263 t_uscalar_t optname, optlevel; 9264 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9265 ipsec_req_t *ipsr; 9266 9267 /* 9268 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9269 * return TRUE. 9270 */ 9271 9272 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9273 opt_endcp = optcp + tor->OPT_length; 9274 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9275 opthdr_len = sizeof (struct T_opthdr); 9276 } else { /* O_OPTMGMT_REQ */ 9277 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9278 opthdr_len = sizeof (struct opthdr); 9279 } 9280 for (; optcp < opt_endcp; optcp = next_optcp) { 9281 if (optcp + opthdr_len > opt_endcp) 9282 return (B_FALSE); /* Not enough option header. */ 9283 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9284 topt = (struct T_opthdr *)optcp; 9285 optlevel = topt->level; 9286 optname = topt->name; 9287 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9288 } else { 9289 opt = (struct opthdr *)optcp; 9290 optlevel = opt->level; 9291 optname = opt->name; 9292 next_optcp = optcp + opthdr_len + 9293 _TPI_ALIGN_OPT(opt->len); 9294 } 9295 if ((next_optcp < optcp) || /* wraparound pointer space */ 9296 ((next_optcp >= opt_endcp) && /* last option bad len */ 9297 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9298 return (B_FALSE); /* bad option buffer */ 9299 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9300 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9301 /* 9302 * Check to see if it's an all-bypass or all-zeroes 9303 * IPsec request. Don't bother loading IPsec if 9304 * the socket doesn't want to use it. (A good example 9305 * is a bypass request.) 9306 * 9307 * Basically, if any of the non-NEVER bits are set, 9308 * load IPsec. 9309 */ 9310 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9311 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9312 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9313 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9314 != 0) 9315 return (B_TRUE); 9316 } 9317 } 9318 return (B_FALSE); 9319 } 9320 9321 /* 9322 * If conn is is waiting for ipsec to finish loading, kick it. 9323 */ 9324 /* ARGSUSED */ 9325 static void 9326 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9327 { 9328 t_scalar_t optreq_prim; 9329 mblk_t *mp; 9330 cred_t *cr; 9331 int err = 0; 9332 9333 /* 9334 * This function is called, after ipsec loading is complete. 9335 * Since IP checks exclusively and atomically (i.e it prevents 9336 * ipsec load from completing until ip_optcom_req completes) 9337 * whether ipsec load is complete, there cannot be a race with IP 9338 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9339 */ 9340 mutex_enter(&connp->conn_lock); 9341 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9342 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9343 mp = connp->conn_ipsec_opt_mp; 9344 connp->conn_ipsec_opt_mp = NULL; 9345 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9346 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9347 mutex_exit(&connp->conn_lock); 9348 9349 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9350 9351 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9352 if (optreq_prim == T_OPTMGMT_REQ) { 9353 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9354 &ip_opt_obj); 9355 } else { 9356 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9357 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9358 &ip_opt_obj); 9359 } 9360 if (err != EINPROGRESS) 9361 CONN_OPER_PENDING_DONE(connp); 9362 return; 9363 } 9364 mutex_exit(&connp->conn_lock); 9365 } 9366 9367 /* 9368 * Called from the ipsec_loader thread, outside any perimeter, to tell 9369 * ip qenable any of the queues waiting for the ipsec loader to 9370 * complete. 9371 * 9372 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9373 * are done with this lock held, so it's guaranteed that none of the 9374 * links will change along the way. 9375 */ 9376 void 9377 ip_ipsec_load_complete() 9378 { 9379 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9380 } 9381 9382 /* 9383 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9384 * determines the grp on which it has to become exclusive, queues the mp 9385 * and sq draining restarts the optmgmt 9386 */ 9387 static boolean_t 9388 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9389 { 9390 conn_t *connp; 9391 9392 /* 9393 * Take IPsec requests and treat them special. 9394 */ 9395 if (ipsec_opt_present(mp)) { 9396 /* First check if IPsec is loaded. */ 9397 mutex_enter(&ipsec_loader_lock); 9398 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9399 mutex_exit(&ipsec_loader_lock); 9400 return (B_FALSE); 9401 } 9402 connp = Q_TO_CONN(q); 9403 mutex_enter(&connp->conn_lock); 9404 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9405 9406 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9407 connp->conn_ipsec_opt_mp = mp; 9408 mutex_exit(&connp->conn_lock); 9409 mutex_exit(&ipsec_loader_lock); 9410 9411 ipsec_loader_loadnow(); 9412 return (B_TRUE); 9413 } 9414 return (B_FALSE); 9415 } 9416 9417 /* 9418 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9419 * all of them are copied to the conn_t. If the req is "zero", the policy is 9420 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9421 * fields. 9422 * We keep only the latest setting of the policy and thus policy setting 9423 * is not incremental/cumulative. 9424 * 9425 * Requests to set policies with multiple alternative actions will 9426 * go through a different API. 9427 */ 9428 int 9429 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9430 { 9431 uint_t ah_req = 0; 9432 uint_t esp_req = 0; 9433 uint_t se_req = 0; 9434 ipsec_selkey_t sel; 9435 ipsec_act_t *actp = NULL; 9436 uint_t nact; 9437 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9438 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9439 ipsec_policy_root_t *pr; 9440 ipsec_policy_head_t *ph; 9441 int fam; 9442 boolean_t is_pol_reset; 9443 int error = 0; 9444 9445 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9446 9447 /* 9448 * The IP_SEC_OPT option does not allow variable length parameters, 9449 * hence a request cannot be NULL. 9450 */ 9451 if (req == NULL) 9452 return (EINVAL); 9453 9454 ah_req = req->ipsr_ah_req; 9455 esp_req = req->ipsr_esp_req; 9456 se_req = req->ipsr_self_encap_req; 9457 9458 /* 9459 * Are we dealing with a request to reset the policy (i.e. 9460 * zero requests). 9461 */ 9462 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9463 (esp_req & REQ_MASK) == 0 && 9464 (se_req & REQ_MASK) == 0); 9465 9466 if (!is_pol_reset) { 9467 /* 9468 * If we couldn't load IPsec, fail with "protocol 9469 * not supported". 9470 * IPsec may not have been loaded for a request with zero 9471 * policies, so we don't fail in this case. 9472 */ 9473 mutex_enter(&ipsec_loader_lock); 9474 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9475 mutex_exit(&ipsec_loader_lock); 9476 return (EPROTONOSUPPORT); 9477 } 9478 mutex_exit(&ipsec_loader_lock); 9479 9480 /* 9481 * Test for valid requests. Invalid algorithms 9482 * need to be tested by IPSEC code because new 9483 * algorithms can be added dynamically. 9484 */ 9485 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9486 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9487 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9488 return (EINVAL); 9489 } 9490 9491 /* 9492 * Only privileged users can issue these 9493 * requests. 9494 */ 9495 if (((ah_req & IPSEC_PREF_NEVER) || 9496 (esp_req & IPSEC_PREF_NEVER) || 9497 (se_req & IPSEC_PREF_NEVER)) && 9498 secpolicy_net_config(cr, B_FALSE) != 0) { 9499 return (EPERM); 9500 } 9501 9502 /* 9503 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9504 * are mutually exclusive. 9505 */ 9506 if (((ah_req & REQ_MASK) == REQ_MASK) || 9507 ((esp_req & REQ_MASK) == REQ_MASK) || 9508 ((se_req & REQ_MASK) == REQ_MASK)) { 9509 /* Both of them are set */ 9510 return (EINVAL); 9511 } 9512 } 9513 9514 mutex_enter(&connp->conn_lock); 9515 9516 /* 9517 * If we have already cached policies in ip_bind_connected*(), don't 9518 * let them change now. We cache policies for connections 9519 * whose src,dst [addr, port] is known. The exception to this is 9520 * tunnels. Tunnels are allowed to change policies after having 9521 * become fully bound. 9522 */ 9523 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9524 mutex_exit(&connp->conn_lock); 9525 return (EINVAL); 9526 } 9527 9528 /* 9529 * We have a zero policies, reset the connection policy if already 9530 * set. This will cause the connection to inherit the 9531 * global policy, if any. 9532 */ 9533 if (is_pol_reset) { 9534 if (connp->conn_policy != NULL) { 9535 IPPH_REFRELE(connp->conn_policy); 9536 connp->conn_policy = NULL; 9537 } 9538 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9539 connp->conn_in_enforce_policy = B_FALSE; 9540 connp->conn_out_enforce_policy = B_FALSE; 9541 mutex_exit(&connp->conn_lock); 9542 return (0); 9543 } 9544 9545 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9546 if (ph == NULL) 9547 goto enomem; 9548 9549 ipsec_actvec_from_req(req, &actp, &nact); 9550 if (actp == NULL) 9551 goto enomem; 9552 9553 /* 9554 * Always allocate IPv4 policy entries, since they can also 9555 * apply to ipv6 sockets being used in ipv4-compat mode. 9556 */ 9557 bzero(&sel, sizeof (sel)); 9558 sel.ipsl_valid = IPSL_IPV4; 9559 9560 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9561 if (pin4 == NULL) 9562 goto enomem; 9563 9564 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9565 if (pout4 == NULL) 9566 goto enomem; 9567 9568 if (connp->conn_pkt_isv6) { 9569 /* 9570 * We're looking at a v6 socket, also allocate the 9571 * v6-specific entries... 9572 */ 9573 sel.ipsl_valid = IPSL_IPV6; 9574 pin6 = ipsec_policy_create(&sel, actp, nact, 9575 IPSEC_PRIO_SOCKET); 9576 if (pin6 == NULL) 9577 goto enomem; 9578 9579 pout6 = ipsec_policy_create(&sel, actp, nact, 9580 IPSEC_PRIO_SOCKET); 9581 if (pout6 == NULL) 9582 goto enomem; 9583 9584 /* 9585 * .. and file them away in the right place. 9586 */ 9587 fam = IPSEC_AF_V6; 9588 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9589 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9590 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9591 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9592 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9593 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9594 } 9595 9596 ipsec_actvec_free(actp, nact); 9597 9598 /* 9599 * File the v4 policies. 9600 */ 9601 fam = IPSEC_AF_V4; 9602 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9603 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9604 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9605 9606 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9607 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9608 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9609 9610 /* 9611 * If the requests need security, set enforce_policy. 9612 * If the requests are IPSEC_PREF_NEVER, one should 9613 * still set conn_out_enforce_policy so that an ipsec_out 9614 * gets attached in ip_wput. This is needed so that 9615 * for connections that we don't cache policy in ip_bind, 9616 * if global policy matches in ip_wput_attach_policy, we 9617 * don't wrongly inherit global policy. Similarly, we need 9618 * to set conn_in_enforce_policy also so that we don't verify 9619 * policy wrongly. 9620 */ 9621 if ((ah_req & REQ_MASK) != 0 || 9622 (esp_req & REQ_MASK) != 0 || 9623 (se_req & REQ_MASK) != 0) { 9624 connp->conn_in_enforce_policy = B_TRUE; 9625 connp->conn_out_enforce_policy = B_TRUE; 9626 connp->conn_flags |= IPCL_CHECK_POLICY; 9627 } 9628 9629 /* 9630 * Tunnels are allowed to set policy after having been fully bound. 9631 * If that's the case, cache policy here. 9632 */ 9633 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9634 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9635 9636 mutex_exit(&connp->conn_lock); 9637 return (error); 9638 #undef REQ_MASK 9639 9640 /* 9641 * Common memory-allocation-failure exit path. 9642 */ 9643 enomem: 9644 mutex_exit(&connp->conn_lock); 9645 if (actp != NULL) 9646 ipsec_actvec_free(actp, nact); 9647 if (pin4 != NULL) 9648 IPPOL_REFRELE(pin4); 9649 if (pout4 != NULL) 9650 IPPOL_REFRELE(pout4); 9651 if (pin6 != NULL) 9652 IPPOL_REFRELE(pin6); 9653 if (pout6 != NULL) 9654 IPPOL_REFRELE(pout6); 9655 return (ENOMEM); 9656 } 9657 9658 /* 9659 * Only for options that pass in an IP addr. Currently only V4 options 9660 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9661 * So this function assumes level is IPPROTO_IP 9662 */ 9663 int 9664 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9665 mblk_t *first_mp) 9666 { 9667 ipif_t *ipif = NULL; 9668 int error; 9669 ill_t *ill; 9670 int zoneid; 9671 9672 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9673 9674 if (addr != INADDR_ANY || checkonly) { 9675 ASSERT(connp != NULL); 9676 zoneid = IPCL_ZONEID(connp); 9677 if (option == IP_NEXTHOP) { 9678 ipif = ipif_lookup_onlink_addr(addr, zoneid); 9679 } else { 9680 ipif = ipif_lookup_addr(addr, NULL, zoneid, 9681 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9682 &error); 9683 } 9684 if (ipif == NULL) { 9685 if (error == EINPROGRESS) 9686 return (error); 9687 else if ((option == IP_MULTICAST_IF) || 9688 (option == IP_NEXTHOP)) 9689 return (EHOSTUNREACH); 9690 else 9691 return (EINVAL); 9692 } else if (checkonly) { 9693 if (option == IP_MULTICAST_IF) { 9694 ill = ipif->ipif_ill; 9695 /* not supported by the virtual network iface */ 9696 if (IS_VNI(ill)) { 9697 ipif_refrele(ipif); 9698 return (EINVAL); 9699 } 9700 } 9701 ipif_refrele(ipif); 9702 return (0); 9703 } 9704 ill = ipif->ipif_ill; 9705 mutex_enter(&connp->conn_lock); 9706 mutex_enter(&ill->ill_lock); 9707 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9708 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9709 mutex_exit(&ill->ill_lock); 9710 mutex_exit(&connp->conn_lock); 9711 ipif_refrele(ipif); 9712 return (option == IP_MULTICAST_IF ? 9713 EHOSTUNREACH : EINVAL); 9714 } 9715 } else { 9716 mutex_enter(&connp->conn_lock); 9717 } 9718 9719 /* None of the options below are supported on the VNI */ 9720 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9721 mutex_exit(&ill->ill_lock); 9722 mutex_exit(&connp->conn_lock); 9723 ipif_refrele(ipif); 9724 return (EINVAL); 9725 } 9726 9727 switch (option) { 9728 case IP_DONTFAILOVER_IF: 9729 /* 9730 * This option is used by in.mpathd to ensure 9731 * that IPMP probe packets only go out on the 9732 * test interfaces. in.mpathd sets this option 9733 * on the non-failover interfaces. 9734 * For backward compatibility, this option 9735 * implicitly sets IP_MULTICAST_IF, as used 9736 * be done in bind(), so that ip_wput gets 9737 * this ipif to send mcast packets. 9738 */ 9739 if (ipif != NULL) { 9740 ASSERT(addr != INADDR_ANY); 9741 connp->conn_nofailover_ill = ipif->ipif_ill; 9742 connp->conn_multicast_ipif = ipif; 9743 } else { 9744 ASSERT(addr == INADDR_ANY); 9745 connp->conn_nofailover_ill = NULL; 9746 connp->conn_multicast_ipif = NULL; 9747 } 9748 break; 9749 9750 case IP_MULTICAST_IF: 9751 connp->conn_multicast_ipif = ipif; 9752 break; 9753 case IP_NEXTHOP: 9754 connp->conn_nexthop_v4 = addr; 9755 connp->conn_nexthop_set = B_TRUE; 9756 break; 9757 } 9758 9759 if (ipif != NULL) { 9760 mutex_exit(&ill->ill_lock); 9761 mutex_exit(&connp->conn_lock); 9762 ipif_refrele(ipif); 9763 return (0); 9764 } 9765 mutex_exit(&connp->conn_lock); 9766 /* We succeded in cleared the option */ 9767 return (0); 9768 } 9769 9770 /* 9771 * For options that pass in an ifindex specifying the ill. V6 options always 9772 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9773 */ 9774 int 9775 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9776 int level, int option, mblk_t *first_mp) 9777 { 9778 ill_t *ill = NULL; 9779 int error = 0; 9780 9781 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9782 if (ifindex != 0) { 9783 ASSERT(connp != NULL); 9784 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9785 first_mp, ip_restart_optmgmt, &error); 9786 if (ill != NULL) { 9787 if (checkonly) { 9788 /* not supported by the virtual network iface */ 9789 if (IS_VNI(ill)) { 9790 ill_refrele(ill); 9791 return (EINVAL); 9792 } 9793 ill_refrele(ill); 9794 return (0); 9795 } 9796 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9797 0, NULL)) { 9798 ill_refrele(ill); 9799 ill = NULL; 9800 mutex_enter(&connp->conn_lock); 9801 goto setit; 9802 } 9803 mutex_enter(&connp->conn_lock); 9804 mutex_enter(&ill->ill_lock); 9805 if (ill->ill_state_flags & ILL_CONDEMNED) { 9806 mutex_exit(&ill->ill_lock); 9807 mutex_exit(&connp->conn_lock); 9808 ill_refrele(ill); 9809 ill = NULL; 9810 mutex_enter(&connp->conn_lock); 9811 } 9812 goto setit; 9813 } else if (error == EINPROGRESS) { 9814 return (error); 9815 } else { 9816 error = 0; 9817 } 9818 } 9819 mutex_enter(&connp->conn_lock); 9820 setit: 9821 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9822 9823 /* 9824 * The options below assume that the ILL (if any) transmits and/or 9825 * receives traffic. Neither of which is true for the virtual network 9826 * interface, so fail setting these on a VNI. 9827 */ 9828 if (IS_VNI(ill)) { 9829 ASSERT(ill != NULL); 9830 mutex_exit(&ill->ill_lock); 9831 mutex_exit(&connp->conn_lock); 9832 ill_refrele(ill); 9833 return (EINVAL); 9834 } 9835 9836 if (level == IPPROTO_IP) { 9837 switch (option) { 9838 case IP_BOUND_IF: 9839 connp->conn_incoming_ill = ill; 9840 connp->conn_outgoing_ill = ill; 9841 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9842 0 : ifindex; 9843 break; 9844 9845 case IP_XMIT_IF: 9846 /* 9847 * Similar to IP_BOUND_IF, but this only 9848 * determines the outgoing interface for 9849 * unicast packets. Also no IRE_CACHE entry 9850 * is added for the destination of the 9851 * outgoing packets. This feature is needed 9852 * for mobile IP. 9853 */ 9854 connp->conn_xmit_if_ill = ill; 9855 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9856 0 : ifindex; 9857 break; 9858 9859 case IP_MULTICAST_IF: 9860 /* 9861 * This option is an internal special. The socket 9862 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9863 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9864 * specifies an ifindex and we try first on V6 ill's. 9865 * If we don't find one, we they try using on v4 ill's 9866 * intenally and we come here. 9867 */ 9868 if (!checkonly && ill != NULL) { 9869 ipif_t *ipif; 9870 ipif = ill->ill_ipif; 9871 9872 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9873 mutex_exit(&ill->ill_lock); 9874 mutex_exit(&connp->conn_lock); 9875 ill_refrele(ill); 9876 ill = NULL; 9877 mutex_enter(&connp->conn_lock); 9878 } else { 9879 connp->conn_multicast_ipif = ipif; 9880 } 9881 } 9882 break; 9883 } 9884 } else { 9885 switch (option) { 9886 case IPV6_BOUND_IF: 9887 connp->conn_incoming_ill = ill; 9888 connp->conn_outgoing_ill = ill; 9889 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9890 0 : ifindex; 9891 break; 9892 9893 case IPV6_BOUND_PIF: 9894 /* 9895 * Limit all transmit to this ill. 9896 * Unlike IPV6_BOUND_IF, using this option 9897 * prevents load spreading and failover from 9898 * happening when the interface is part of the 9899 * group. That's why we don't need to remember 9900 * the ifindex in orig_bound_ifindex as in 9901 * IPV6_BOUND_IF. 9902 */ 9903 connp->conn_outgoing_pill = ill; 9904 break; 9905 9906 case IPV6_DONTFAILOVER_IF: 9907 /* 9908 * This option is used by in.mpathd to ensure 9909 * that IPMP probe packets only go out on the 9910 * test interfaces. in.mpathd sets this option 9911 * on the non-failover interfaces. 9912 */ 9913 connp->conn_nofailover_ill = ill; 9914 /* 9915 * For backward compatibility, this option 9916 * implicitly sets ip_multicast_ill as used in 9917 * IP_MULTICAST_IF so that ip_wput gets 9918 * this ipif to send mcast packets. 9919 */ 9920 connp->conn_multicast_ill = ill; 9921 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9922 0 : ifindex; 9923 break; 9924 9925 case IPV6_MULTICAST_IF: 9926 /* 9927 * Set conn_multicast_ill to be the IPv6 ill. 9928 * Set conn_multicast_ipif to be an IPv4 ipif 9929 * for ifindex to make IPv4 mapped addresses 9930 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9931 * Even if no IPv6 ill exists for the ifindex 9932 * we need to check for an IPv4 ifindex in order 9933 * for this to work with mapped addresses. In that 9934 * case only set conn_multicast_ipif. 9935 */ 9936 if (!checkonly) { 9937 if (ifindex == 0) { 9938 connp->conn_multicast_ill = NULL; 9939 connp->conn_orig_multicast_ifindex = 0; 9940 connp->conn_multicast_ipif = NULL; 9941 } else if (ill != NULL) { 9942 connp->conn_multicast_ill = ill; 9943 connp->conn_orig_multicast_ifindex = 9944 ifindex; 9945 } 9946 } 9947 break; 9948 } 9949 } 9950 9951 if (ill != NULL) { 9952 mutex_exit(&ill->ill_lock); 9953 mutex_exit(&connp->conn_lock); 9954 ill_refrele(ill); 9955 return (0); 9956 } 9957 mutex_exit(&connp->conn_lock); 9958 /* 9959 * We succeeded in clearing the option (ifindex == 0) or failed to 9960 * locate the ill and could not set the option (ifindex != 0) 9961 */ 9962 return (ifindex == 0 ? 0 : EINVAL); 9963 } 9964 9965 /* This routine sets socket options. */ 9966 /* ARGSUSED */ 9967 int 9968 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9969 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9970 void *dummy, cred_t *cr, mblk_t *first_mp) 9971 { 9972 int *i1 = (int *)invalp; 9973 conn_t *connp = Q_TO_CONN(q); 9974 int error = 0; 9975 boolean_t checkonly; 9976 ire_t *ire; 9977 boolean_t found; 9978 9979 switch (optset_context) { 9980 9981 case SETFN_OPTCOM_CHECKONLY: 9982 checkonly = B_TRUE; 9983 /* 9984 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9985 * inlen != 0 implies value supplied and 9986 * we have to "pretend" to set it. 9987 * inlen == 0 implies that there is no 9988 * value part in T_CHECK request and just validation 9989 * done elsewhere should be enough, we just return here. 9990 */ 9991 if (inlen == 0) { 9992 *outlenp = 0; 9993 return (0); 9994 } 9995 break; 9996 case SETFN_OPTCOM_NEGOTIATE: 9997 case SETFN_UD_NEGOTIATE: 9998 case SETFN_CONN_NEGOTIATE: 9999 checkonly = B_FALSE; 10000 break; 10001 default: 10002 /* 10003 * We should never get here 10004 */ 10005 *outlenp = 0; 10006 return (EINVAL); 10007 } 10008 10009 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10010 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10011 10012 /* 10013 * For fixed length options, no sanity check 10014 * of passed in length is done. It is assumed *_optcom_req() 10015 * routines do the right thing. 10016 */ 10017 10018 switch (level) { 10019 case SOL_SOCKET: 10020 /* 10021 * conn_lock protects the bitfields, and is used to 10022 * set the fields atomically. 10023 */ 10024 switch (name) { 10025 case SO_BROADCAST: 10026 if (!checkonly) { 10027 /* TODO: use value someplace? */ 10028 mutex_enter(&connp->conn_lock); 10029 connp->conn_broadcast = *i1 ? 1 : 0; 10030 mutex_exit(&connp->conn_lock); 10031 } 10032 break; /* goto sizeof (int) option return */ 10033 case SO_USELOOPBACK: 10034 if (!checkonly) { 10035 /* TODO: use value someplace? */ 10036 mutex_enter(&connp->conn_lock); 10037 connp->conn_loopback = *i1 ? 1 : 0; 10038 mutex_exit(&connp->conn_lock); 10039 } 10040 break; /* goto sizeof (int) option return */ 10041 case SO_DONTROUTE: 10042 if (!checkonly) { 10043 mutex_enter(&connp->conn_lock); 10044 connp->conn_dontroute = *i1 ? 1 : 0; 10045 mutex_exit(&connp->conn_lock); 10046 } 10047 break; /* goto sizeof (int) option return */ 10048 case SO_REUSEADDR: 10049 if (!checkonly) { 10050 mutex_enter(&connp->conn_lock); 10051 connp->conn_reuseaddr = *i1 ? 1 : 0; 10052 mutex_exit(&connp->conn_lock); 10053 } 10054 break; /* goto sizeof (int) option return */ 10055 case SO_PROTOTYPE: 10056 if (!checkonly) { 10057 mutex_enter(&connp->conn_lock); 10058 connp->conn_proto = *i1; 10059 mutex_exit(&connp->conn_lock); 10060 } 10061 break; /* goto sizeof (int) option return */ 10062 case SO_ALLZONES: 10063 if (!checkonly) { 10064 mutex_enter(&connp->conn_lock); 10065 if (IPCL_IS_BOUND(connp)) { 10066 mutex_exit(&connp->conn_lock); 10067 return (EINVAL); 10068 } 10069 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10070 mutex_exit(&connp->conn_lock); 10071 } 10072 break; /* goto sizeof (int) option return */ 10073 case SO_ANON_MLP: 10074 if (!checkonly) { 10075 mutex_enter(&connp->conn_lock); 10076 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10077 mutex_exit(&connp->conn_lock); 10078 } 10079 break; /* goto sizeof (int) option return */ 10080 case SO_MAC_EXEMPT: 10081 if (secpolicy_net_mac_aware(cr) != 0 || 10082 IPCL_IS_BOUND(connp)) 10083 return (EACCES); 10084 if (!checkonly) { 10085 mutex_enter(&connp->conn_lock); 10086 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10087 mutex_exit(&connp->conn_lock); 10088 } 10089 break; /* goto sizeof (int) option return */ 10090 default: 10091 /* 10092 * "soft" error (negative) 10093 * option not handled at this level 10094 * Note: Do not modify *outlenp 10095 */ 10096 return (-EINVAL); 10097 } 10098 break; 10099 case IPPROTO_IP: 10100 switch (name) { 10101 case IP_NEXTHOP: 10102 case IP_MULTICAST_IF: 10103 case IP_DONTFAILOVER_IF: { 10104 ipaddr_t addr = *i1; 10105 10106 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10107 first_mp); 10108 if (error != 0) 10109 return (error); 10110 break; /* goto sizeof (int) option return */ 10111 } 10112 10113 case IP_MULTICAST_TTL: 10114 /* Recorded in transport above IP */ 10115 *outvalp = *invalp; 10116 *outlenp = sizeof (uchar_t); 10117 return (0); 10118 case IP_MULTICAST_LOOP: 10119 if (!checkonly) { 10120 mutex_enter(&connp->conn_lock); 10121 connp->conn_multicast_loop = *invalp ? 1 : 0; 10122 mutex_exit(&connp->conn_lock); 10123 } 10124 *outvalp = *invalp; 10125 *outlenp = sizeof (uchar_t); 10126 return (0); 10127 case IP_ADD_MEMBERSHIP: 10128 case MCAST_JOIN_GROUP: 10129 case IP_DROP_MEMBERSHIP: 10130 case MCAST_LEAVE_GROUP: { 10131 struct ip_mreq *mreqp; 10132 struct group_req *greqp; 10133 ire_t *ire; 10134 boolean_t done = B_FALSE; 10135 ipaddr_t group, ifaddr; 10136 struct sockaddr_in *sin; 10137 uint32_t *ifindexp; 10138 boolean_t mcast_opt = B_TRUE; 10139 mcast_record_t fmode; 10140 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10141 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10142 10143 switch (name) { 10144 case IP_ADD_MEMBERSHIP: 10145 mcast_opt = B_FALSE; 10146 /* FALLTHRU */ 10147 case MCAST_JOIN_GROUP: 10148 fmode = MODE_IS_EXCLUDE; 10149 optfn = ip_opt_add_group; 10150 break; 10151 10152 case IP_DROP_MEMBERSHIP: 10153 mcast_opt = B_FALSE; 10154 /* FALLTHRU */ 10155 case MCAST_LEAVE_GROUP: 10156 fmode = MODE_IS_INCLUDE; 10157 optfn = ip_opt_delete_group; 10158 break; 10159 } 10160 10161 if (mcast_opt) { 10162 greqp = (struct group_req *)i1; 10163 sin = (struct sockaddr_in *)&greqp->gr_group; 10164 if (sin->sin_family != AF_INET) { 10165 *outlenp = 0; 10166 return (ENOPROTOOPT); 10167 } 10168 group = (ipaddr_t)sin->sin_addr.s_addr; 10169 ifaddr = INADDR_ANY; 10170 ifindexp = &greqp->gr_interface; 10171 } else { 10172 mreqp = (struct ip_mreq *)i1; 10173 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10174 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10175 ifindexp = NULL; 10176 } 10177 10178 /* 10179 * In the multirouting case, we need to replicate 10180 * the request on all interfaces that will take part 10181 * in replication. We do so because multirouting is 10182 * reflective, thus we will probably receive multi- 10183 * casts on those interfaces. 10184 * The ip_multirt_apply_membership() succeeds if the 10185 * operation succeeds on at least one interface. 10186 */ 10187 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10188 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10189 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10190 if (ire != NULL) { 10191 if (ire->ire_flags & RTF_MULTIRT) { 10192 error = ip_multirt_apply_membership( 10193 optfn, ire, connp, checkonly, group, 10194 fmode, INADDR_ANY, first_mp); 10195 done = B_TRUE; 10196 } 10197 ire_refrele(ire); 10198 } 10199 if (!done) { 10200 error = optfn(connp, checkonly, group, ifaddr, 10201 ifindexp, fmode, INADDR_ANY, first_mp); 10202 } 10203 if (error) { 10204 /* 10205 * EINPROGRESS is a soft error, needs retry 10206 * so don't make *outlenp zero. 10207 */ 10208 if (error != EINPROGRESS) 10209 *outlenp = 0; 10210 return (error); 10211 } 10212 /* OK return - copy input buffer into output buffer */ 10213 if (invalp != outvalp) { 10214 /* don't trust bcopy for identical src/dst */ 10215 bcopy(invalp, outvalp, inlen); 10216 } 10217 *outlenp = inlen; 10218 return (0); 10219 } 10220 case IP_BLOCK_SOURCE: 10221 case IP_UNBLOCK_SOURCE: 10222 case IP_ADD_SOURCE_MEMBERSHIP: 10223 case IP_DROP_SOURCE_MEMBERSHIP: 10224 case MCAST_BLOCK_SOURCE: 10225 case MCAST_UNBLOCK_SOURCE: 10226 case MCAST_JOIN_SOURCE_GROUP: 10227 case MCAST_LEAVE_SOURCE_GROUP: { 10228 struct ip_mreq_source *imreqp; 10229 struct group_source_req *gsreqp; 10230 in_addr_t grp, src, ifaddr = INADDR_ANY; 10231 uint32_t ifindex = 0; 10232 mcast_record_t fmode; 10233 struct sockaddr_in *sin; 10234 ire_t *ire; 10235 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10236 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10237 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10238 10239 switch (name) { 10240 case IP_BLOCK_SOURCE: 10241 mcast_opt = B_FALSE; 10242 /* FALLTHRU */ 10243 case MCAST_BLOCK_SOURCE: 10244 fmode = MODE_IS_EXCLUDE; 10245 optfn = ip_opt_add_group; 10246 break; 10247 10248 case IP_UNBLOCK_SOURCE: 10249 mcast_opt = B_FALSE; 10250 /* FALLTHRU */ 10251 case MCAST_UNBLOCK_SOURCE: 10252 fmode = MODE_IS_EXCLUDE; 10253 optfn = ip_opt_delete_group; 10254 break; 10255 10256 case IP_ADD_SOURCE_MEMBERSHIP: 10257 mcast_opt = B_FALSE; 10258 /* FALLTHRU */ 10259 case MCAST_JOIN_SOURCE_GROUP: 10260 fmode = MODE_IS_INCLUDE; 10261 optfn = ip_opt_add_group; 10262 break; 10263 10264 case IP_DROP_SOURCE_MEMBERSHIP: 10265 mcast_opt = B_FALSE; 10266 /* FALLTHRU */ 10267 case MCAST_LEAVE_SOURCE_GROUP: 10268 fmode = MODE_IS_INCLUDE; 10269 optfn = ip_opt_delete_group; 10270 break; 10271 } 10272 10273 if (mcast_opt) { 10274 gsreqp = (struct group_source_req *)i1; 10275 if (gsreqp->gsr_group.ss_family != AF_INET) { 10276 *outlenp = 0; 10277 return (ENOPROTOOPT); 10278 } 10279 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10280 grp = (ipaddr_t)sin->sin_addr.s_addr; 10281 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10282 src = (ipaddr_t)sin->sin_addr.s_addr; 10283 ifindex = gsreqp->gsr_interface; 10284 } else { 10285 imreqp = (struct ip_mreq_source *)i1; 10286 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10287 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10288 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10289 } 10290 10291 /* 10292 * In the multirouting case, we need to replicate 10293 * the request as noted in the mcast cases above. 10294 */ 10295 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10296 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10297 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10298 if (ire != NULL) { 10299 if (ire->ire_flags & RTF_MULTIRT) { 10300 error = ip_multirt_apply_membership( 10301 optfn, ire, connp, checkonly, grp, 10302 fmode, src, first_mp); 10303 done = B_TRUE; 10304 } 10305 ire_refrele(ire); 10306 } 10307 if (!done) { 10308 error = optfn(connp, checkonly, grp, ifaddr, 10309 &ifindex, fmode, src, first_mp); 10310 } 10311 if (error != 0) { 10312 /* 10313 * EINPROGRESS is a soft error, needs retry 10314 * so don't make *outlenp zero. 10315 */ 10316 if (error != EINPROGRESS) 10317 *outlenp = 0; 10318 return (error); 10319 } 10320 /* OK return - copy input buffer into output buffer */ 10321 if (invalp != outvalp) { 10322 bcopy(invalp, outvalp, inlen); 10323 } 10324 *outlenp = inlen; 10325 return (0); 10326 } 10327 case IP_SEC_OPT: 10328 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10329 if (error != 0) { 10330 *outlenp = 0; 10331 return (error); 10332 } 10333 break; 10334 case IP_HDRINCL: 10335 case IP_OPTIONS: 10336 case T_IP_OPTIONS: 10337 case IP_TOS: 10338 case T_IP_TOS: 10339 case IP_TTL: 10340 case IP_RECVDSTADDR: 10341 case IP_RECVOPTS: 10342 /* OK return - copy input buffer into output buffer */ 10343 if (invalp != outvalp) { 10344 /* don't trust bcopy for identical src/dst */ 10345 bcopy(invalp, outvalp, inlen); 10346 } 10347 *outlenp = inlen; 10348 return (0); 10349 case IP_RECVIF: 10350 /* Retrieve the inbound interface index */ 10351 if (!checkonly) { 10352 mutex_enter(&connp->conn_lock); 10353 connp->conn_recvif = *i1 ? 1 : 0; 10354 mutex_exit(&connp->conn_lock); 10355 } 10356 break; /* goto sizeof (int) option return */ 10357 case IP_RECVSLLA: 10358 /* Retrieve the source link layer address */ 10359 if (!checkonly) { 10360 mutex_enter(&connp->conn_lock); 10361 connp->conn_recvslla = *i1 ? 1 : 0; 10362 mutex_exit(&connp->conn_lock); 10363 } 10364 break; /* goto sizeof (int) option return */ 10365 case MRT_INIT: 10366 case MRT_DONE: 10367 case MRT_ADD_VIF: 10368 case MRT_DEL_VIF: 10369 case MRT_ADD_MFC: 10370 case MRT_DEL_MFC: 10371 case MRT_ASSERT: 10372 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10373 *outlenp = 0; 10374 return (error); 10375 } 10376 error = ip_mrouter_set((int)name, q, checkonly, 10377 (uchar_t *)invalp, inlen, first_mp); 10378 if (error) { 10379 *outlenp = 0; 10380 return (error); 10381 } 10382 /* OK return - copy input buffer into output buffer */ 10383 if (invalp != outvalp) { 10384 /* don't trust bcopy for identical src/dst */ 10385 bcopy(invalp, outvalp, inlen); 10386 } 10387 *outlenp = inlen; 10388 return (0); 10389 case IP_BOUND_IF: 10390 case IP_XMIT_IF: 10391 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10392 level, name, first_mp); 10393 if (error != 0) 10394 return (error); 10395 break; /* goto sizeof (int) option return */ 10396 10397 case IP_UNSPEC_SRC: 10398 /* Allow sending with a zero source address */ 10399 if (!checkonly) { 10400 mutex_enter(&connp->conn_lock); 10401 connp->conn_unspec_src = *i1 ? 1 : 0; 10402 mutex_exit(&connp->conn_lock); 10403 } 10404 break; /* goto sizeof (int) option return */ 10405 default: 10406 /* 10407 * "soft" error (negative) 10408 * option not handled at this level 10409 * Note: Do not modify *outlenp 10410 */ 10411 return (-EINVAL); 10412 } 10413 break; 10414 case IPPROTO_IPV6: 10415 switch (name) { 10416 case IPV6_BOUND_IF: 10417 case IPV6_BOUND_PIF: 10418 case IPV6_DONTFAILOVER_IF: 10419 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10420 level, name, first_mp); 10421 if (error != 0) 10422 return (error); 10423 break; /* goto sizeof (int) option return */ 10424 10425 case IPV6_MULTICAST_IF: 10426 /* 10427 * The only possible errors are EINPROGRESS and 10428 * EINVAL. EINPROGRESS will be restarted and is not 10429 * a hard error. We call this option on both V4 and V6 10430 * If both return EINVAL, then this call returns 10431 * EINVAL. If at least one of them succeeds we 10432 * return success. 10433 */ 10434 found = B_FALSE; 10435 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10436 level, name, first_mp); 10437 if (error == EINPROGRESS) 10438 return (error); 10439 if (error == 0) 10440 found = B_TRUE; 10441 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10442 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10443 if (error == 0) 10444 found = B_TRUE; 10445 if (!found) 10446 return (error); 10447 break; /* goto sizeof (int) option return */ 10448 10449 case IPV6_MULTICAST_HOPS: 10450 /* Recorded in transport above IP */ 10451 break; /* goto sizeof (int) option return */ 10452 case IPV6_MULTICAST_LOOP: 10453 if (!checkonly) { 10454 mutex_enter(&connp->conn_lock); 10455 connp->conn_multicast_loop = *i1; 10456 mutex_exit(&connp->conn_lock); 10457 } 10458 break; /* goto sizeof (int) option return */ 10459 case IPV6_JOIN_GROUP: 10460 case MCAST_JOIN_GROUP: 10461 case IPV6_LEAVE_GROUP: 10462 case MCAST_LEAVE_GROUP: { 10463 struct ipv6_mreq *ip_mreqp; 10464 struct group_req *greqp; 10465 ire_t *ire; 10466 boolean_t done = B_FALSE; 10467 in6_addr_t groupv6; 10468 uint32_t ifindex; 10469 boolean_t mcast_opt = B_TRUE; 10470 mcast_record_t fmode; 10471 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10472 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10473 10474 switch (name) { 10475 case IPV6_JOIN_GROUP: 10476 mcast_opt = B_FALSE; 10477 /* FALLTHRU */ 10478 case MCAST_JOIN_GROUP: 10479 fmode = MODE_IS_EXCLUDE; 10480 optfn = ip_opt_add_group_v6; 10481 break; 10482 10483 case IPV6_LEAVE_GROUP: 10484 mcast_opt = B_FALSE; 10485 /* FALLTHRU */ 10486 case MCAST_LEAVE_GROUP: 10487 fmode = MODE_IS_INCLUDE; 10488 optfn = ip_opt_delete_group_v6; 10489 break; 10490 } 10491 10492 if (mcast_opt) { 10493 struct sockaddr_in *sin; 10494 struct sockaddr_in6 *sin6; 10495 greqp = (struct group_req *)i1; 10496 if (greqp->gr_group.ss_family == AF_INET) { 10497 sin = (struct sockaddr_in *) 10498 &(greqp->gr_group); 10499 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10500 &groupv6); 10501 } else { 10502 sin6 = (struct sockaddr_in6 *) 10503 &(greqp->gr_group); 10504 groupv6 = sin6->sin6_addr; 10505 } 10506 ifindex = greqp->gr_interface; 10507 } else { 10508 ip_mreqp = (struct ipv6_mreq *)i1; 10509 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10510 ifindex = ip_mreqp->ipv6mr_interface; 10511 } 10512 /* 10513 * In the multirouting case, we need to replicate 10514 * the request on all interfaces that will take part 10515 * in replication. We do so because multirouting is 10516 * reflective, thus we will probably receive multi- 10517 * casts on those interfaces. 10518 * The ip_multirt_apply_membership_v6() succeeds if 10519 * the operation succeeds on at least one interface. 10520 */ 10521 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10522 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10523 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10524 if (ire != NULL) { 10525 if (ire->ire_flags & RTF_MULTIRT) { 10526 error = ip_multirt_apply_membership_v6( 10527 optfn, ire, connp, checkonly, 10528 &groupv6, fmode, &ipv6_all_zeros, 10529 first_mp); 10530 done = B_TRUE; 10531 } 10532 ire_refrele(ire); 10533 } 10534 if (!done) { 10535 error = optfn(connp, checkonly, &groupv6, 10536 ifindex, fmode, &ipv6_all_zeros, first_mp); 10537 } 10538 if (error) { 10539 /* 10540 * EINPROGRESS is a soft error, needs retry 10541 * so don't make *outlenp zero. 10542 */ 10543 if (error != EINPROGRESS) 10544 *outlenp = 0; 10545 return (error); 10546 } 10547 /* OK return - copy input buffer into output buffer */ 10548 if (invalp != outvalp) { 10549 /* don't trust bcopy for identical src/dst */ 10550 bcopy(invalp, outvalp, inlen); 10551 } 10552 *outlenp = inlen; 10553 return (0); 10554 } 10555 case MCAST_BLOCK_SOURCE: 10556 case MCAST_UNBLOCK_SOURCE: 10557 case MCAST_JOIN_SOURCE_GROUP: 10558 case MCAST_LEAVE_SOURCE_GROUP: { 10559 struct group_source_req *gsreqp; 10560 in6_addr_t v6grp, v6src; 10561 uint32_t ifindex; 10562 mcast_record_t fmode; 10563 ire_t *ire; 10564 boolean_t done = B_FALSE; 10565 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10566 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10567 10568 switch (name) { 10569 case MCAST_BLOCK_SOURCE: 10570 fmode = MODE_IS_EXCLUDE; 10571 optfn = ip_opt_add_group_v6; 10572 break; 10573 case MCAST_UNBLOCK_SOURCE: 10574 fmode = MODE_IS_EXCLUDE; 10575 optfn = ip_opt_delete_group_v6; 10576 break; 10577 case MCAST_JOIN_SOURCE_GROUP: 10578 fmode = MODE_IS_INCLUDE; 10579 optfn = ip_opt_add_group_v6; 10580 break; 10581 case MCAST_LEAVE_SOURCE_GROUP: 10582 fmode = MODE_IS_INCLUDE; 10583 optfn = ip_opt_delete_group_v6; 10584 break; 10585 } 10586 10587 gsreqp = (struct group_source_req *)i1; 10588 ifindex = gsreqp->gsr_interface; 10589 if (gsreqp->gsr_group.ss_family == AF_INET) { 10590 struct sockaddr_in *s; 10591 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10592 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10593 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10594 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10595 } else { 10596 struct sockaddr_in6 *s6; 10597 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10598 v6grp = s6->sin6_addr; 10599 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10600 v6src = s6->sin6_addr; 10601 } 10602 10603 /* 10604 * In the multirouting case, we need to replicate 10605 * the request as noted in the mcast cases above. 10606 */ 10607 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10608 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10609 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10610 if (ire != NULL) { 10611 if (ire->ire_flags & RTF_MULTIRT) { 10612 error = ip_multirt_apply_membership_v6( 10613 optfn, ire, connp, checkonly, 10614 &v6grp, fmode, &v6src, first_mp); 10615 done = B_TRUE; 10616 } 10617 ire_refrele(ire); 10618 } 10619 if (!done) { 10620 error = optfn(connp, checkonly, &v6grp, 10621 ifindex, fmode, &v6src, first_mp); 10622 } 10623 if (error != 0) { 10624 /* 10625 * EINPROGRESS is a soft error, needs retry 10626 * so don't make *outlenp zero. 10627 */ 10628 if (error != EINPROGRESS) 10629 *outlenp = 0; 10630 return (error); 10631 } 10632 /* OK return - copy input buffer into output buffer */ 10633 if (invalp != outvalp) { 10634 bcopy(invalp, outvalp, inlen); 10635 } 10636 *outlenp = inlen; 10637 return (0); 10638 } 10639 case IPV6_UNICAST_HOPS: 10640 /* Recorded in transport above IP */ 10641 break; /* goto sizeof (int) option return */ 10642 case IPV6_UNSPEC_SRC: 10643 /* Allow sending with a zero source address */ 10644 if (!checkonly) { 10645 mutex_enter(&connp->conn_lock); 10646 connp->conn_unspec_src = *i1 ? 1 : 0; 10647 mutex_exit(&connp->conn_lock); 10648 } 10649 break; /* goto sizeof (int) option return */ 10650 case IPV6_RECVPKTINFO: 10651 if (!checkonly) { 10652 mutex_enter(&connp->conn_lock); 10653 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10654 mutex_exit(&connp->conn_lock); 10655 } 10656 break; /* goto sizeof (int) option return */ 10657 case IPV6_RECVTCLASS: 10658 if (!checkonly) { 10659 if (*i1 < 0 || *i1 > 1) { 10660 return (EINVAL); 10661 } 10662 mutex_enter(&connp->conn_lock); 10663 connp->conn_ipv6_recvtclass = *i1; 10664 mutex_exit(&connp->conn_lock); 10665 } 10666 break; 10667 case IPV6_RECVPATHMTU: 10668 if (!checkonly) { 10669 if (*i1 < 0 || *i1 > 1) { 10670 return (EINVAL); 10671 } 10672 mutex_enter(&connp->conn_lock); 10673 connp->conn_ipv6_recvpathmtu = *i1; 10674 mutex_exit(&connp->conn_lock); 10675 } 10676 break; 10677 case IPV6_RECVHOPLIMIT: 10678 if (!checkonly) { 10679 mutex_enter(&connp->conn_lock); 10680 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10681 mutex_exit(&connp->conn_lock); 10682 } 10683 break; /* goto sizeof (int) option return */ 10684 case IPV6_RECVHOPOPTS: 10685 if (!checkonly) { 10686 mutex_enter(&connp->conn_lock); 10687 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10688 mutex_exit(&connp->conn_lock); 10689 } 10690 break; /* goto sizeof (int) option return */ 10691 case IPV6_RECVDSTOPTS: 10692 if (!checkonly) { 10693 mutex_enter(&connp->conn_lock); 10694 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10695 mutex_exit(&connp->conn_lock); 10696 } 10697 break; /* goto sizeof (int) option return */ 10698 case IPV6_RECVRTHDR: 10699 if (!checkonly) { 10700 mutex_enter(&connp->conn_lock); 10701 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case IPV6_RECVRTHDRDSTOPTS: 10706 if (!checkonly) { 10707 mutex_enter(&connp->conn_lock); 10708 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10709 mutex_exit(&connp->conn_lock); 10710 } 10711 break; /* goto sizeof (int) option return */ 10712 case IPV6_PKTINFO: 10713 if (inlen == 0) 10714 return (-EINVAL); /* clearing option */ 10715 error = ip6_set_pktinfo(cr, connp, 10716 (struct in6_pktinfo *)invalp, first_mp); 10717 if (error != 0) 10718 *outlenp = 0; 10719 else 10720 *outlenp = inlen; 10721 return (error); 10722 case IPV6_NEXTHOP: { 10723 struct sockaddr_in6 *sin6; 10724 10725 /* Verify that the nexthop is reachable */ 10726 if (inlen == 0) 10727 return (-EINVAL); /* clearing option */ 10728 10729 sin6 = (struct sockaddr_in6 *)invalp; 10730 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10731 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10732 NULL, MATCH_IRE_DEFAULT); 10733 10734 if (ire == NULL) { 10735 *outlenp = 0; 10736 return (EHOSTUNREACH); 10737 } 10738 ire_refrele(ire); 10739 return (-EINVAL); 10740 } 10741 case IPV6_SEC_OPT: 10742 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10743 if (error != 0) { 10744 *outlenp = 0; 10745 return (error); 10746 } 10747 break; 10748 case IPV6_SRC_PREFERENCES: { 10749 /* 10750 * This is implemented strictly in the ip module 10751 * (here and in tcp_opt_*() to accomodate tcp 10752 * sockets). Modules above ip pass this option 10753 * down here since ip is the only one that needs to 10754 * be aware of source address preferences. 10755 * 10756 * This socket option only affects connected 10757 * sockets that haven't already bound to a specific 10758 * IPv6 address. In other words, sockets that 10759 * don't call bind() with an address other than the 10760 * unspecified address and that call connect(). 10761 * ip_bind_connected_v6() passes these preferences 10762 * to the ipif_select_source_v6() function. 10763 */ 10764 if (inlen != sizeof (uint32_t)) 10765 return (EINVAL); 10766 error = ip6_set_src_preferences(connp, 10767 *(uint32_t *)invalp); 10768 if (error != 0) { 10769 *outlenp = 0; 10770 return (error); 10771 } else { 10772 *outlenp = sizeof (uint32_t); 10773 } 10774 break; 10775 } 10776 case IPV6_V6ONLY: 10777 if (*i1 < 0 || *i1 > 1) { 10778 return (EINVAL); 10779 } 10780 mutex_enter(&connp->conn_lock); 10781 connp->conn_ipv6_v6only = *i1; 10782 mutex_exit(&connp->conn_lock); 10783 break; 10784 default: 10785 return (-EINVAL); 10786 } 10787 break; 10788 default: 10789 /* 10790 * "soft" error (negative) 10791 * option not handled at this level 10792 * Note: Do not modify *outlenp 10793 */ 10794 return (-EINVAL); 10795 } 10796 /* 10797 * Common case of return from an option that is sizeof (int) 10798 */ 10799 *(int *)outvalp = *i1; 10800 *outlenp = sizeof (int); 10801 return (0); 10802 } 10803 10804 /* 10805 * This routine gets default values of certain options whose default 10806 * values are maintained by protocol specific code 10807 */ 10808 /* ARGSUSED */ 10809 int 10810 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10811 { 10812 int *i1 = (int *)ptr; 10813 10814 switch (level) { 10815 case IPPROTO_IP: 10816 switch (name) { 10817 case IP_MULTICAST_TTL: 10818 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10819 return (sizeof (uchar_t)); 10820 case IP_MULTICAST_LOOP: 10821 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10822 return (sizeof (uchar_t)); 10823 default: 10824 return (-1); 10825 } 10826 case IPPROTO_IPV6: 10827 switch (name) { 10828 case IPV6_UNICAST_HOPS: 10829 *i1 = ipv6_def_hops; 10830 return (sizeof (int)); 10831 case IPV6_MULTICAST_HOPS: 10832 *i1 = IP_DEFAULT_MULTICAST_TTL; 10833 return (sizeof (int)); 10834 case IPV6_MULTICAST_LOOP: 10835 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10836 return (sizeof (int)); 10837 case IPV6_V6ONLY: 10838 *i1 = 1; 10839 return (sizeof (int)); 10840 default: 10841 return (-1); 10842 } 10843 default: 10844 return (-1); 10845 } 10846 /* NOTREACHED */ 10847 } 10848 10849 /* 10850 * Given a destination address and a pointer to where to put the information 10851 * this routine fills in the mtuinfo. 10852 */ 10853 int 10854 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10855 struct ip6_mtuinfo *mtuinfo) 10856 { 10857 ire_t *ire; 10858 10859 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10860 return (-1); 10861 10862 bzero(mtuinfo, sizeof (*mtuinfo)); 10863 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10864 mtuinfo->ip6m_addr.sin6_port = port; 10865 mtuinfo->ip6m_addr.sin6_addr = *in6; 10866 10867 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 10868 if (ire != NULL) { 10869 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10870 ire_refrele(ire); 10871 } else { 10872 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10873 } 10874 return (sizeof (struct ip6_mtuinfo)); 10875 } 10876 10877 /* 10878 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10879 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10880 * isn't. This doesn't matter as the error checking is done properly for the 10881 * other MRT options coming in through ip_opt_set. 10882 */ 10883 int 10884 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10885 { 10886 conn_t *connp = Q_TO_CONN(q); 10887 ipsec_req_t *req = (ipsec_req_t *)ptr; 10888 10889 switch (level) { 10890 case IPPROTO_IP: 10891 switch (name) { 10892 case MRT_VERSION: 10893 case MRT_ASSERT: 10894 (void) ip_mrouter_get(name, q, ptr); 10895 return (sizeof (int)); 10896 case IP_SEC_OPT: 10897 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10898 case IP_NEXTHOP: 10899 if (connp->conn_nexthop_set) { 10900 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10901 return (sizeof (ipaddr_t)); 10902 } else 10903 return (0); 10904 default: 10905 break; 10906 } 10907 break; 10908 case IPPROTO_IPV6: 10909 switch (name) { 10910 case IPV6_SEC_OPT: 10911 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10912 case IPV6_SRC_PREFERENCES: { 10913 return (ip6_get_src_preferences(connp, 10914 (uint32_t *)ptr)); 10915 } 10916 case IPV6_V6ONLY: 10917 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10918 return (sizeof (int)); 10919 case IPV6_PATHMTU: 10920 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10921 (struct ip6_mtuinfo *)ptr)); 10922 default: 10923 break; 10924 } 10925 break; 10926 default: 10927 break; 10928 } 10929 return (-1); 10930 } 10931 10932 /* Named Dispatch routine to get a current value out of our parameter table. */ 10933 /* ARGSUSED */ 10934 static int 10935 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10936 { 10937 ipparam_t *ippa = (ipparam_t *)cp; 10938 10939 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10940 return (0); 10941 } 10942 10943 /* ARGSUSED */ 10944 static int 10945 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10946 { 10947 10948 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10949 return (0); 10950 } 10951 10952 /* 10953 * Set ip{,6}_forwarding values. This means walking through all of the 10954 * ill's and toggling their forwarding values. 10955 */ 10956 /* ARGSUSED */ 10957 static int 10958 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10959 { 10960 long new_value; 10961 int *forwarding_value = (int *)cp; 10962 ill_t *walker; 10963 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10964 ill_walk_context_t ctx; 10965 10966 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10967 new_value < 0 || new_value > 1) { 10968 return (EINVAL); 10969 } 10970 10971 *forwarding_value = new_value; 10972 10973 /* 10974 * Regardless of the current value of ip_forwarding, set all per-ill 10975 * values of ip_forwarding to the value being set. 10976 * 10977 * Bring all the ill's up to date with the new global value. 10978 */ 10979 rw_enter(&ill_g_lock, RW_READER); 10980 10981 if (isv6) 10982 walker = ILL_START_WALK_V6(&ctx); 10983 else 10984 walker = ILL_START_WALK_V4(&ctx); 10985 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10986 (void) ill_forward_set(q, mp, (new_value != 0), 10987 (caddr_t)walker); 10988 } 10989 rw_exit(&ill_g_lock); 10990 10991 return (0); 10992 } 10993 10994 /* 10995 * Walk through the param array specified registering each element with the 10996 * Named Dispatch handler. This is called only during init. So it is ok 10997 * not to acquire any locks 10998 */ 10999 static boolean_t 11000 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11001 ipndp_t *ipnd, size_t ipnd_cnt) 11002 { 11003 for (; ippa_cnt-- > 0; ippa++) { 11004 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11005 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11006 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11007 nd_free(&ip_g_nd); 11008 return (B_FALSE); 11009 } 11010 } 11011 } 11012 11013 for (; ipnd_cnt-- > 0; ipnd++) { 11014 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11015 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11016 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11017 ipnd->ip_ndp_data)) { 11018 nd_free(&ip_g_nd); 11019 return (B_FALSE); 11020 } 11021 } 11022 } 11023 11024 return (B_TRUE); 11025 } 11026 11027 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11028 /* ARGSUSED */ 11029 static int 11030 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11031 { 11032 long new_value; 11033 ipparam_t *ippa = (ipparam_t *)cp; 11034 11035 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11036 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11037 return (EINVAL); 11038 } 11039 ippa->ip_param_value = new_value; 11040 return (0); 11041 } 11042 11043 /* 11044 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11045 * When an ipf is passed here for the first time, if 11046 * we already have in-order fragments on the queue, we convert from the fast- 11047 * path reassembly scheme to the hard-case scheme. From then on, additional 11048 * fragments are reassembled here. We keep track of the start and end offsets 11049 * of each piece, and the number of holes in the chain. When the hole count 11050 * goes to zero, we are done! 11051 * 11052 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11053 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11054 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11055 * after the call to ip_reassemble(). 11056 */ 11057 int 11058 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11059 size_t msg_len) 11060 { 11061 uint_t end; 11062 mblk_t *next_mp; 11063 mblk_t *mp1; 11064 uint_t offset; 11065 boolean_t incr_dups = B_TRUE; 11066 boolean_t offset_zero_seen = B_FALSE; 11067 boolean_t pkt_boundary_checked = B_FALSE; 11068 11069 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11070 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11071 11072 /* Add in byte count */ 11073 ipf->ipf_count += msg_len; 11074 if (ipf->ipf_end) { 11075 /* 11076 * We were part way through in-order reassembly, but now there 11077 * is a hole. We walk through messages already queued, and 11078 * mark them for hard case reassembly. We know that up till 11079 * now they were in order starting from offset zero. 11080 */ 11081 offset = 0; 11082 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11083 IP_REASS_SET_START(mp1, offset); 11084 if (offset == 0) { 11085 ASSERT(ipf->ipf_nf_hdr_len != 0); 11086 offset = -ipf->ipf_nf_hdr_len; 11087 } 11088 offset += mp1->b_wptr - mp1->b_rptr; 11089 IP_REASS_SET_END(mp1, offset); 11090 } 11091 /* One hole at the end. */ 11092 ipf->ipf_hole_cnt = 1; 11093 /* Brand it as a hard case, forever. */ 11094 ipf->ipf_end = 0; 11095 } 11096 /* Walk through all the new pieces. */ 11097 do { 11098 end = start + (mp->b_wptr - mp->b_rptr); 11099 /* 11100 * If start is 0, decrease 'end' only for the first mblk of 11101 * the fragment. Otherwise 'end' can get wrong value in the 11102 * second pass of the loop if first mblk is exactly the 11103 * size of ipf_nf_hdr_len. 11104 */ 11105 if (start == 0 && !offset_zero_seen) { 11106 /* First segment */ 11107 ASSERT(ipf->ipf_nf_hdr_len != 0); 11108 end -= ipf->ipf_nf_hdr_len; 11109 offset_zero_seen = B_TRUE; 11110 } 11111 next_mp = mp->b_cont; 11112 /* 11113 * We are checking to see if there is any interesing data 11114 * to process. If there isn't and the mblk isn't the 11115 * one which carries the unfragmentable header then we 11116 * drop it. It's possible to have just the unfragmentable 11117 * header come through without any data. That needs to be 11118 * saved. 11119 * 11120 * If the assert at the top of this function holds then the 11121 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11122 * is infrequently traveled enough that the test is left in 11123 * to protect against future code changes which break that 11124 * invariant. 11125 */ 11126 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11127 /* Empty. Blast it. */ 11128 IP_REASS_SET_START(mp, 0); 11129 IP_REASS_SET_END(mp, 0); 11130 /* 11131 * If the ipf points to the mblk we are about to free, 11132 * update ipf to point to the next mblk (or NULL 11133 * if none). 11134 */ 11135 if (ipf->ipf_mp->b_cont == mp) 11136 ipf->ipf_mp->b_cont = next_mp; 11137 freeb(mp); 11138 continue; 11139 } 11140 mp->b_cont = NULL; 11141 IP_REASS_SET_START(mp, start); 11142 IP_REASS_SET_END(mp, end); 11143 if (!ipf->ipf_tail_mp) { 11144 ipf->ipf_tail_mp = mp; 11145 ipf->ipf_mp->b_cont = mp; 11146 if (start == 0 || !more) { 11147 ipf->ipf_hole_cnt = 1; 11148 /* 11149 * if the first fragment comes in more than one 11150 * mblk, this loop will be executed for each 11151 * mblk. Need to adjust hole count so exiting 11152 * this routine will leave hole count at 1. 11153 */ 11154 if (next_mp) 11155 ipf->ipf_hole_cnt++; 11156 } else 11157 ipf->ipf_hole_cnt = 2; 11158 continue; 11159 } else if (ipf->ipf_last_frag_seen && !more && 11160 !pkt_boundary_checked) { 11161 /* 11162 * We check datagram boundary only if this fragment 11163 * claims to be the last fragment and we have seen a 11164 * last fragment in the past too. We do this only 11165 * once for a given fragment. 11166 * 11167 * start cannot be 0 here as fragments with start=0 11168 * and MF=0 gets handled as a complete packet. These 11169 * fragments should not reach here. 11170 */ 11171 11172 if (start + msgdsize(mp) != 11173 IP_REASS_END(ipf->ipf_tail_mp)) { 11174 /* 11175 * We have two fragments both of which claim 11176 * to be the last fragment but gives conflicting 11177 * information about the whole datagram size. 11178 * Something fishy is going on. Drop the 11179 * fragment and free up the reassembly list. 11180 */ 11181 return (IP_REASS_FAILED); 11182 } 11183 11184 /* 11185 * We shouldn't come to this code block again for this 11186 * particular fragment. 11187 */ 11188 pkt_boundary_checked = B_TRUE; 11189 } 11190 11191 /* New stuff at or beyond tail? */ 11192 offset = IP_REASS_END(ipf->ipf_tail_mp); 11193 if (start >= offset) { 11194 if (ipf->ipf_last_frag_seen) { 11195 /* current fragment is beyond last fragment */ 11196 return (IP_REASS_FAILED); 11197 } 11198 /* Link it on end. */ 11199 ipf->ipf_tail_mp->b_cont = mp; 11200 ipf->ipf_tail_mp = mp; 11201 if (more) { 11202 if (start != offset) 11203 ipf->ipf_hole_cnt++; 11204 } else if (start == offset && next_mp == NULL) 11205 ipf->ipf_hole_cnt--; 11206 continue; 11207 } 11208 mp1 = ipf->ipf_mp->b_cont; 11209 offset = IP_REASS_START(mp1); 11210 /* New stuff at the front? */ 11211 if (start < offset) { 11212 if (start == 0) { 11213 if (end >= offset) { 11214 /* Nailed the hole at the begining. */ 11215 ipf->ipf_hole_cnt--; 11216 } 11217 } else if (end < offset) { 11218 /* 11219 * A hole, stuff, and a hole where there used 11220 * to be just a hole. 11221 */ 11222 ipf->ipf_hole_cnt++; 11223 } 11224 mp->b_cont = mp1; 11225 /* Check for overlap. */ 11226 while (end > offset) { 11227 if (end < IP_REASS_END(mp1)) { 11228 mp->b_wptr -= end - offset; 11229 IP_REASS_SET_END(mp, offset); 11230 if (ill->ill_isv6) { 11231 BUMP_MIB(ill->ill_ip6_mib, 11232 ipv6ReasmPartDups); 11233 } else { 11234 BUMP_MIB(&ip_mib, 11235 ipReasmPartDups); 11236 } 11237 break; 11238 } 11239 /* Did we cover another hole? */ 11240 if ((mp1->b_cont && 11241 IP_REASS_END(mp1) != 11242 IP_REASS_START(mp1->b_cont) && 11243 end >= IP_REASS_START(mp1->b_cont)) || 11244 (!ipf->ipf_last_frag_seen && !more)) { 11245 ipf->ipf_hole_cnt--; 11246 } 11247 /* Clip out mp1. */ 11248 if ((mp->b_cont = mp1->b_cont) == NULL) { 11249 /* 11250 * After clipping out mp1, this guy 11251 * is now hanging off the end. 11252 */ 11253 ipf->ipf_tail_mp = mp; 11254 } 11255 IP_REASS_SET_START(mp1, 0); 11256 IP_REASS_SET_END(mp1, 0); 11257 /* Subtract byte count */ 11258 ipf->ipf_count -= mp1->b_datap->db_lim - 11259 mp1->b_datap->db_base; 11260 freeb(mp1); 11261 if (ill->ill_isv6) { 11262 BUMP_MIB(ill->ill_ip6_mib, 11263 ipv6ReasmPartDups); 11264 } else { 11265 BUMP_MIB(&ip_mib, ipReasmPartDups); 11266 } 11267 mp1 = mp->b_cont; 11268 if (!mp1) 11269 break; 11270 offset = IP_REASS_START(mp1); 11271 } 11272 ipf->ipf_mp->b_cont = mp; 11273 continue; 11274 } 11275 /* 11276 * The new piece starts somewhere between the start of the head 11277 * and before the end of the tail. 11278 */ 11279 for (; mp1; mp1 = mp1->b_cont) { 11280 offset = IP_REASS_END(mp1); 11281 if (start < offset) { 11282 if (end <= offset) { 11283 /* Nothing new. */ 11284 IP_REASS_SET_START(mp, 0); 11285 IP_REASS_SET_END(mp, 0); 11286 /* Subtract byte count */ 11287 ipf->ipf_count -= mp->b_datap->db_lim - 11288 mp->b_datap->db_base; 11289 if (incr_dups) { 11290 ipf->ipf_num_dups++; 11291 incr_dups = B_FALSE; 11292 } 11293 freeb(mp); 11294 if (ill->ill_isv6) { 11295 BUMP_MIB(ill->ill_ip6_mib, 11296 ipv6ReasmDuplicates); 11297 } else { 11298 BUMP_MIB(&ip_mib, 11299 ipReasmDuplicates); 11300 } 11301 break; 11302 } 11303 /* 11304 * Trim redundant stuff off beginning of new 11305 * piece. 11306 */ 11307 IP_REASS_SET_START(mp, offset); 11308 mp->b_rptr += offset - start; 11309 if (ill->ill_isv6) { 11310 BUMP_MIB(ill->ill_ip6_mib, 11311 ipv6ReasmPartDups); 11312 } else { 11313 BUMP_MIB(&ip_mib, ipReasmPartDups); 11314 } 11315 start = offset; 11316 if (!mp1->b_cont) { 11317 /* 11318 * After trimming, this guy is now 11319 * hanging off the end. 11320 */ 11321 mp1->b_cont = mp; 11322 ipf->ipf_tail_mp = mp; 11323 if (!more) { 11324 ipf->ipf_hole_cnt--; 11325 } 11326 break; 11327 } 11328 } 11329 if (start >= IP_REASS_START(mp1->b_cont)) 11330 continue; 11331 /* Fill a hole */ 11332 if (start > offset) 11333 ipf->ipf_hole_cnt++; 11334 mp->b_cont = mp1->b_cont; 11335 mp1->b_cont = mp; 11336 mp1 = mp->b_cont; 11337 offset = IP_REASS_START(mp1); 11338 if (end >= offset) { 11339 ipf->ipf_hole_cnt--; 11340 /* Check for overlap. */ 11341 while (end > offset) { 11342 if (end < IP_REASS_END(mp1)) { 11343 mp->b_wptr -= end - offset; 11344 IP_REASS_SET_END(mp, offset); 11345 /* 11346 * TODO we might bump 11347 * this up twice if there is 11348 * overlap at both ends. 11349 */ 11350 if (ill->ill_isv6) { 11351 BUMP_MIB( 11352 ill->ill_ip6_mib, 11353 ipv6ReasmPartDups); 11354 } else { 11355 BUMP_MIB(&ip_mib, 11356 ipReasmPartDups); 11357 } 11358 break; 11359 } 11360 /* Did we cover another hole? */ 11361 if ((mp1->b_cont && 11362 IP_REASS_END(mp1) 11363 != IP_REASS_START(mp1->b_cont) && 11364 end >= 11365 IP_REASS_START(mp1->b_cont)) || 11366 (!ipf->ipf_last_frag_seen && 11367 !more)) { 11368 ipf->ipf_hole_cnt--; 11369 } 11370 /* Clip out mp1. */ 11371 if ((mp->b_cont = mp1->b_cont) == 11372 NULL) { 11373 /* 11374 * After clipping out mp1, 11375 * this guy is now hanging 11376 * off the end. 11377 */ 11378 ipf->ipf_tail_mp = mp; 11379 } 11380 IP_REASS_SET_START(mp1, 0); 11381 IP_REASS_SET_END(mp1, 0); 11382 /* Subtract byte count */ 11383 ipf->ipf_count -= 11384 mp1->b_datap->db_lim - 11385 mp1->b_datap->db_base; 11386 freeb(mp1); 11387 if (ill->ill_isv6) { 11388 BUMP_MIB(ill->ill_ip6_mib, 11389 ipv6ReasmPartDups); 11390 } else { 11391 BUMP_MIB(&ip_mib, 11392 ipReasmPartDups); 11393 } 11394 mp1 = mp->b_cont; 11395 if (!mp1) 11396 break; 11397 offset = IP_REASS_START(mp1); 11398 } 11399 } 11400 break; 11401 } 11402 } while (start = end, mp = next_mp); 11403 11404 /* Fragment just processed could be the last one. Remember this fact */ 11405 if (!more) 11406 ipf->ipf_last_frag_seen = B_TRUE; 11407 11408 /* Still got holes? */ 11409 if (ipf->ipf_hole_cnt) 11410 return (IP_REASS_PARTIAL); 11411 /* Clean up overloaded fields to avoid upstream disasters. */ 11412 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11413 IP_REASS_SET_START(mp1, 0); 11414 IP_REASS_SET_END(mp1, 0); 11415 } 11416 return (IP_REASS_COMPLETE); 11417 } 11418 11419 /* 11420 * ipsec processing for the fast path, used for input UDP Packets 11421 */ 11422 static boolean_t 11423 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11424 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11425 { 11426 uint32_t ill_index; 11427 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11428 11429 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11430 /* The ill_index of the incoming ILL */ 11431 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11432 11433 /* pass packet up to the transport */ 11434 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11435 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11436 NULL, mctl_present); 11437 if (*first_mpp == NULL) { 11438 return (B_FALSE); 11439 } 11440 } 11441 11442 /* Initiate IPPF processing for fastpath UDP */ 11443 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11444 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11445 if (*mpp == NULL) { 11446 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11447 "deferred/dropped during IPPF processing\n")); 11448 return (B_FALSE); 11449 } 11450 } 11451 /* 11452 * We make the checks as below since we are in the fast path 11453 * and want to minimize the number of checks if the IP_RECVIF and/or 11454 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11455 */ 11456 if (connp->conn_recvif || connp->conn_recvslla || 11457 connp->conn_ipv6_recvpktinfo) { 11458 if (connp->conn_recvif || 11459 connp->conn_ipv6_recvpktinfo) { 11460 in_flags = IPF_RECVIF; 11461 } 11462 if (connp->conn_recvslla) { 11463 in_flags |= IPF_RECVSLLA; 11464 } 11465 /* 11466 * since in_flags are being set ill will be 11467 * referenced in ip_add_info, so it better not 11468 * be NULL. 11469 */ 11470 /* 11471 * the actual data will be contained in b_cont 11472 * upon successful return of the following call. 11473 * If the call fails then the original mblk is 11474 * returned. 11475 */ 11476 *mpp = ip_add_info(*mpp, ill, in_flags); 11477 } 11478 11479 return (B_TRUE); 11480 } 11481 11482 /* 11483 * Fragmentation reassembly. Each ILL has a hash table for 11484 * queuing packets undergoing reassembly for all IPIFs 11485 * associated with the ILL. The hash is based on the packet 11486 * IP ident field. The ILL frag hash table was allocated 11487 * as a timer block at the time the ILL was created. Whenever 11488 * there is anything on the reassembly queue, the timer will 11489 * be running. Returns B_TRUE if successful else B_FALSE; 11490 * frees mp on failure. 11491 */ 11492 static boolean_t 11493 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11494 uint32_t *cksum_val, uint16_t *cksum_flags) 11495 { 11496 uint32_t frag_offset_flags; 11497 ill_t *ill = (ill_t *)q->q_ptr; 11498 mblk_t *mp = *mpp; 11499 mblk_t *t_mp; 11500 ipaddr_t dst; 11501 uint8_t proto = ipha->ipha_protocol; 11502 uint32_t sum_val; 11503 uint16_t sum_flags; 11504 ipf_t *ipf; 11505 ipf_t **ipfp; 11506 ipfb_t *ipfb; 11507 uint16_t ident; 11508 uint32_t offset; 11509 ipaddr_t src; 11510 uint_t hdr_length; 11511 uint32_t end; 11512 mblk_t *mp1; 11513 mblk_t *tail_mp; 11514 size_t count; 11515 size_t msg_len; 11516 uint8_t ecn_info = 0; 11517 uint32_t packet_size; 11518 boolean_t pruned = B_FALSE; 11519 11520 if (cksum_val != NULL) 11521 *cksum_val = 0; 11522 if (cksum_flags != NULL) 11523 *cksum_flags = 0; 11524 11525 /* 11526 * Drop the fragmented as early as possible, if 11527 * we don't have resource(s) to re-assemble. 11528 */ 11529 if (ip_reass_queue_bytes == 0) { 11530 freemsg(mp); 11531 return (B_FALSE); 11532 } 11533 11534 /* Check for fragmentation offset; return if there's none */ 11535 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11536 (IPH_MF | IPH_OFFSET)) == 0) 11537 return (B_TRUE); 11538 11539 /* 11540 * We utilize hardware computed checksum info only for UDP since 11541 * IP fragmentation is a normal occurence for the protocol. In 11542 * addition, checksum offload support for IP fragments carrying 11543 * UDP payload is commonly implemented across network adapters. 11544 */ 11545 ASSERT(ill != NULL); 11546 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11547 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11548 mblk_t *mp1 = mp->b_cont; 11549 int32_t len; 11550 11551 /* Record checksum information from the packet */ 11552 sum_val = (uint32_t)DB_CKSUM16(mp); 11553 sum_flags = DB_CKSUMFLAGS(mp); 11554 11555 /* IP payload offset from beginning of mblk */ 11556 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11557 11558 if ((sum_flags & HCK_PARTIALCKSUM) && 11559 (mp1 == NULL || mp1->b_cont == NULL) && 11560 offset >= DB_CKSUMSTART(mp) && 11561 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11562 uint32_t adj; 11563 /* 11564 * Partial checksum has been calculated by hardware 11565 * and attached to the packet; in addition, any 11566 * prepended extraneous data is even byte aligned. 11567 * If any such data exists, we adjust the checksum; 11568 * this would also handle any postpended data. 11569 */ 11570 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11571 mp, mp1, len, adj); 11572 11573 /* One's complement subtract extraneous checksum */ 11574 if (adj >= sum_val) 11575 sum_val = ~(adj - sum_val) & 0xFFFF; 11576 else 11577 sum_val -= adj; 11578 } 11579 } else { 11580 sum_val = 0; 11581 sum_flags = 0; 11582 } 11583 11584 /* Clear hardware checksumming flag */ 11585 DB_CKSUMFLAGS(mp) = 0; 11586 11587 ident = ipha->ipha_ident; 11588 offset = (frag_offset_flags << 3) & 0xFFFF; 11589 src = ipha->ipha_src; 11590 dst = ipha->ipha_dst; 11591 hdr_length = IPH_HDR_LENGTH(ipha); 11592 end = ntohs(ipha->ipha_length) - hdr_length; 11593 11594 /* If end == 0 then we have a packet with no data, so just free it */ 11595 if (end == 0) { 11596 freemsg(mp); 11597 return (B_FALSE); 11598 } 11599 11600 /* Record the ECN field info. */ 11601 ecn_info = (ipha->ipha_type_of_service & 0x3); 11602 if (offset != 0) { 11603 /* 11604 * If this isn't the first piece, strip the header, and 11605 * add the offset to the end value. 11606 */ 11607 mp->b_rptr += hdr_length; 11608 end += offset; 11609 } 11610 11611 msg_len = MBLKSIZE(mp); 11612 tail_mp = mp; 11613 while (tail_mp->b_cont != NULL) { 11614 tail_mp = tail_mp->b_cont; 11615 msg_len += MBLKSIZE(tail_mp); 11616 } 11617 11618 /* If the reassembly list for this ILL will get too big, prune it */ 11619 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11620 ip_reass_queue_bytes) { 11621 ill_frag_prune(ill, 11622 (ip_reass_queue_bytes < msg_len) ? 0 : 11623 (ip_reass_queue_bytes - msg_len)); 11624 pruned = B_TRUE; 11625 } 11626 11627 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11628 mutex_enter(&ipfb->ipfb_lock); 11629 11630 ipfp = &ipfb->ipfb_ipf; 11631 /* Try to find an existing fragment queue for this packet. */ 11632 for (;;) { 11633 ipf = ipfp[0]; 11634 if (ipf != NULL) { 11635 /* 11636 * It has to match on ident and src/dst address. 11637 */ 11638 if (ipf->ipf_ident == ident && 11639 ipf->ipf_src == src && 11640 ipf->ipf_dst == dst && 11641 ipf->ipf_protocol == proto) { 11642 /* 11643 * If we have received too many 11644 * duplicate fragments for this packet 11645 * free it. 11646 */ 11647 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11648 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11649 freemsg(mp); 11650 mutex_exit(&ipfb->ipfb_lock); 11651 return (B_FALSE); 11652 } 11653 /* Found it. */ 11654 break; 11655 } 11656 ipfp = &ipf->ipf_hash_next; 11657 continue; 11658 } 11659 11660 /* 11661 * If we pruned the list, do we want to store this new 11662 * fragment?. We apply an optimization here based on the 11663 * fact that most fragments will be received in order. 11664 * So if the offset of this incoming fragment is zero, 11665 * it is the first fragment of a new packet. We will 11666 * keep it. Otherwise drop the fragment, as we have 11667 * probably pruned the packet already (since the 11668 * packet cannot be found). 11669 */ 11670 if (pruned && offset != 0) { 11671 mutex_exit(&ipfb->ipfb_lock); 11672 freemsg(mp); 11673 return (B_FALSE); 11674 } 11675 11676 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11677 /* 11678 * Too many fragmented packets in this hash 11679 * bucket. Free the oldest. 11680 */ 11681 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11682 } 11683 11684 /* New guy. Allocate a frag message. */ 11685 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11686 if (mp1 == NULL) { 11687 BUMP_MIB(&ip_mib, ipInDiscards); 11688 freemsg(mp); 11689 reass_done: 11690 mutex_exit(&ipfb->ipfb_lock); 11691 return (B_FALSE); 11692 } 11693 11694 11695 BUMP_MIB(&ip_mib, ipReasmReqds); 11696 mp1->b_cont = mp; 11697 11698 /* Initialize the fragment header. */ 11699 ipf = (ipf_t *)mp1->b_rptr; 11700 ipf->ipf_mp = mp1; 11701 ipf->ipf_ptphn = ipfp; 11702 ipfp[0] = ipf; 11703 ipf->ipf_hash_next = NULL; 11704 ipf->ipf_ident = ident; 11705 ipf->ipf_protocol = proto; 11706 ipf->ipf_src = src; 11707 ipf->ipf_dst = dst; 11708 ipf->ipf_nf_hdr_len = 0; 11709 /* Record reassembly start time. */ 11710 ipf->ipf_timestamp = gethrestime_sec(); 11711 /* Record ipf generation and account for frag header */ 11712 ipf->ipf_gen = ill->ill_ipf_gen++; 11713 ipf->ipf_count = MBLKSIZE(mp1); 11714 ipf->ipf_last_frag_seen = B_FALSE; 11715 ipf->ipf_ecn = ecn_info; 11716 ipf->ipf_num_dups = 0; 11717 ipfb->ipfb_frag_pkts++; 11718 ipf->ipf_checksum = 0; 11719 ipf->ipf_checksum_flags = 0; 11720 11721 /* Store checksum value in fragment header */ 11722 if (sum_flags != 0) { 11723 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11724 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11725 ipf->ipf_checksum = sum_val; 11726 ipf->ipf_checksum_flags = sum_flags; 11727 } 11728 11729 /* 11730 * We handle reassembly two ways. In the easy case, 11731 * where all the fragments show up in order, we do 11732 * minimal bookkeeping, and just clip new pieces on 11733 * the end. If we ever see a hole, then we go off 11734 * to ip_reassemble which has to mark the pieces and 11735 * keep track of the number of holes, etc. Obviously, 11736 * the point of having both mechanisms is so we can 11737 * handle the easy case as efficiently as possible. 11738 */ 11739 if (offset == 0) { 11740 /* Easy case, in-order reassembly so far. */ 11741 ipf->ipf_count += msg_len; 11742 ipf->ipf_tail_mp = tail_mp; 11743 /* 11744 * Keep track of next expected offset in 11745 * ipf_end. 11746 */ 11747 ipf->ipf_end = end; 11748 ipf->ipf_nf_hdr_len = hdr_length; 11749 } else { 11750 /* Hard case, hole at the beginning. */ 11751 ipf->ipf_tail_mp = NULL; 11752 /* 11753 * ipf_end == 0 means that we have given up 11754 * on easy reassembly. 11755 */ 11756 ipf->ipf_end = 0; 11757 11758 /* Forget checksum offload from now on */ 11759 ipf->ipf_checksum_flags = 0; 11760 11761 /* 11762 * ipf_hole_cnt is set by ip_reassemble. 11763 * ipf_count is updated by ip_reassemble. 11764 * No need to check for return value here 11765 * as we don't expect reassembly to complete 11766 * or fail for the first fragment itself. 11767 */ 11768 (void) ip_reassemble(mp, ipf, 11769 (frag_offset_flags & IPH_OFFSET) << 3, 11770 (frag_offset_flags & IPH_MF), ill, msg_len); 11771 } 11772 /* Update per ipfb and ill byte counts */ 11773 ipfb->ipfb_count += ipf->ipf_count; 11774 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11775 ill->ill_frag_count += ipf->ipf_count; 11776 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11777 /* If the frag timer wasn't already going, start it. */ 11778 mutex_enter(&ill->ill_lock); 11779 ill_frag_timer_start(ill); 11780 mutex_exit(&ill->ill_lock); 11781 goto reass_done; 11782 } 11783 11784 /* 11785 * If the packet's flag has changed (it could be coming up 11786 * from an interface different than the previous, therefore 11787 * possibly different checksum capability), then forget about 11788 * any stored checksum states. Otherwise add the value to 11789 * the existing one stored in the fragment header. 11790 */ 11791 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11792 sum_val += ipf->ipf_checksum; 11793 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11794 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11795 ipf->ipf_checksum = sum_val; 11796 } else if (ipf->ipf_checksum_flags != 0) { 11797 /* Forget checksum offload from now on */ 11798 ipf->ipf_checksum_flags = 0; 11799 } 11800 11801 /* 11802 * We have a new piece of a datagram which is already being 11803 * reassembled. Update the ECN info if all IP fragments 11804 * are ECN capable. If there is one which is not, clear 11805 * all the info. If there is at least one which has CE 11806 * code point, IP needs to report that up to transport. 11807 */ 11808 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11809 if (ecn_info == IPH_ECN_CE) 11810 ipf->ipf_ecn = IPH_ECN_CE; 11811 } else { 11812 ipf->ipf_ecn = IPH_ECN_NECT; 11813 } 11814 if (offset && ipf->ipf_end == offset) { 11815 /* The new fragment fits at the end */ 11816 ipf->ipf_tail_mp->b_cont = mp; 11817 /* Update the byte count */ 11818 ipf->ipf_count += msg_len; 11819 /* Update per ipfb and ill byte counts */ 11820 ipfb->ipfb_count += msg_len; 11821 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11822 ill->ill_frag_count += msg_len; 11823 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11824 if (frag_offset_flags & IPH_MF) { 11825 /* More to come. */ 11826 ipf->ipf_end = end; 11827 ipf->ipf_tail_mp = tail_mp; 11828 goto reass_done; 11829 } 11830 } else { 11831 /* Go do the hard cases. */ 11832 int ret; 11833 11834 if (offset == 0) 11835 ipf->ipf_nf_hdr_len = hdr_length; 11836 11837 /* Save current byte count */ 11838 count = ipf->ipf_count; 11839 ret = ip_reassemble(mp, ipf, 11840 (frag_offset_flags & IPH_OFFSET) << 3, 11841 (frag_offset_flags & IPH_MF), ill, msg_len); 11842 /* Count of bytes added and subtracted (freeb()ed) */ 11843 count = ipf->ipf_count - count; 11844 if (count) { 11845 /* Update per ipfb and ill byte counts */ 11846 ipfb->ipfb_count += count; 11847 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11848 ill->ill_frag_count += count; 11849 ASSERT(ill->ill_frag_count > 0); 11850 } 11851 if (ret == IP_REASS_PARTIAL) { 11852 goto reass_done; 11853 } else if (ret == IP_REASS_FAILED) { 11854 /* Reassembly failed. Free up all resources */ 11855 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11856 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11857 IP_REASS_SET_START(t_mp, 0); 11858 IP_REASS_SET_END(t_mp, 0); 11859 } 11860 freemsg(mp); 11861 goto reass_done; 11862 } 11863 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11864 } 11865 /* 11866 * We have completed reassembly. Unhook the frag header from 11867 * the reassembly list. 11868 * 11869 * Before we free the frag header, record the ECN info 11870 * to report back to the transport. 11871 */ 11872 ecn_info = ipf->ipf_ecn; 11873 BUMP_MIB(&ip_mib, ipReasmOKs); 11874 ipfp = ipf->ipf_ptphn; 11875 11876 /* We need to supply these to caller */ 11877 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11878 sum_val = ipf->ipf_checksum; 11879 else 11880 sum_val = 0; 11881 11882 mp1 = ipf->ipf_mp; 11883 count = ipf->ipf_count; 11884 ipf = ipf->ipf_hash_next; 11885 if (ipf != NULL) 11886 ipf->ipf_ptphn = ipfp; 11887 ipfp[0] = ipf; 11888 ill->ill_frag_count -= count; 11889 ASSERT(ipfb->ipfb_count >= count); 11890 ipfb->ipfb_count -= count; 11891 ipfb->ipfb_frag_pkts--; 11892 mutex_exit(&ipfb->ipfb_lock); 11893 /* Ditch the frag header. */ 11894 mp = mp1->b_cont; 11895 11896 freeb(mp1); 11897 11898 /* Restore original IP length in header. */ 11899 packet_size = (uint32_t)msgdsize(mp); 11900 if (packet_size > IP_MAXPACKET) { 11901 freemsg(mp); 11902 BUMP_MIB(&ip_mib, ipInHdrErrors); 11903 return (B_FALSE); 11904 } 11905 11906 if (DB_REF(mp) > 1) { 11907 mblk_t *mp2 = copymsg(mp); 11908 11909 freemsg(mp); 11910 if (mp2 == NULL) { 11911 BUMP_MIB(&ip_mib, ipInDiscards); 11912 return (B_FALSE); 11913 } 11914 mp = mp2; 11915 } 11916 ipha = (ipha_t *)mp->b_rptr; 11917 11918 ipha->ipha_length = htons((uint16_t)packet_size); 11919 /* We're now complete, zip the frag state */ 11920 ipha->ipha_fragment_offset_and_flags = 0; 11921 /* Record the ECN info. */ 11922 ipha->ipha_type_of_service &= 0xFC; 11923 ipha->ipha_type_of_service |= ecn_info; 11924 *mpp = mp; 11925 11926 /* Reassembly is successful; return checksum information if needed */ 11927 if (cksum_val != NULL) 11928 *cksum_val = sum_val; 11929 if (cksum_flags != NULL) 11930 *cksum_flags = sum_flags; 11931 11932 return (B_TRUE); 11933 } 11934 11935 /* 11936 * Perform ip header check sum update local options. 11937 * return B_TRUE if all is well, else return B_FALSE and release 11938 * the mp. caller is responsible for decrementing ire ref cnt. 11939 */ 11940 static boolean_t 11941 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11942 { 11943 mblk_t *first_mp; 11944 boolean_t mctl_present; 11945 uint16_t sum; 11946 11947 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11948 /* 11949 * Don't do the checksum if it has gone through AH/ESP 11950 * processing. 11951 */ 11952 if (!mctl_present) { 11953 sum = ip_csum_hdr(ipha); 11954 if (sum != 0) { 11955 BUMP_MIB(&ip_mib, ipInCksumErrs); 11956 freemsg(first_mp); 11957 return (B_FALSE); 11958 } 11959 } 11960 11961 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11962 if (mctl_present) 11963 freeb(first_mp); 11964 return (B_FALSE); 11965 } 11966 11967 return (B_TRUE); 11968 } 11969 11970 /* 11971 * All udp packet are delivered to the local host via this routine. 11972 */ 11973 void 11974 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11975 ill_t *recv_ill) 11976 { 11977 uint32_t sum; 11978 uint32_t u1; 11979 boolean_t mctl_present; 11980 conn_t *connp; 11981 mblk_t *first_mp; 11982 uint16_t *up; 11983 ill_t *ill = (ill_t *)q->q_ptr; 11984 uint16_t reass_hck_flags = 0; 11985 11986 #define rptr ((uchar_t *)ipha) 11987 11988 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11989 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11990 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11991 11992 /* 11993 * FAST PATH for udp packets 11994 */ 11995 11996 /* u1 is # words of IP options */ 11997 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11998 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11999 12000 /* IP options present */ 12001 if (u1 != 0) 12002 goto ipoptions; 12003 12004 /* Check the IP header checksum. */ 12005 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12006 /* Clear the IP header h/w cksum flag */ 12007 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12008 } else { 12009 #define uph ((uint16_t *)ipha) 12010 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12011 uph[6] + uph[7] + uph[8] + uph[9]; 12012 #undef uph 12013 /* finish doing IP checksum */ 12014 sum = (sum & 0xFFFF) + (sum >> 16); 12015 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12016 /* 12017 * Don't verify header checksum if this packet is coming 12018 * back from AH/ESP as we already did it. 12019 */ 12020 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12021 BUMP_MIB(&ip_mib, ipInCksumErrs); 12022 freemsg(first_mp); 12023 return; 12024 } 12025 } 12026 12027 /* 12028 * Count for SNMP of inbound packets for ire. 12029 * if mctl is present this might be a secure packet and 12030 * has already been counted for in ip_proto_input(). 12031 */ 12032 if (!mctl_present) { 12033 UPDATE_IB_PKT_COUNT(ire); 12034 ire->ire_last_used_time = lbolt; 12035 } 12036 12037 /* packet part of fragmented IP packet? */ 12038 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12039 if (u1 & (IPH_MF | IPH_OFFSET)) { 12040 goto fragmented; 12041 } 12042 12043 /* u1 = IP header length (20 bytes) */ 12044 u1 = IP_SIMPLE_HDR_LENGTH; 12045 12046 /* packet does not contain complete IP & UDP headers */ 12047 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12048 goto udppullup; 12049 12050 /* up points to UDP header */ 12051 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12052 #define iphs ((uint16_t *)ipha) 12053 12054 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12055 if (up[3] != 0) { 12056 mblk_t *mp1 = mp->b_cont; 12057 boolean_t cksum_err; 12058 uint16_t hck_flags = 0; 12059 12060 /* Pseudo-header checksum */ 12061 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12062 iphs[9] + up[2]; 12063 12064 /* 12065 * Revert to software checksum calculation if the interface 12066 * isn't capable of checksum offload or if IPsec is present. 12067 */ 12068 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12069 hck_flags = DB_CKSUMFLAGS(mp); 12070 12071 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12072 IP_STAT(ip_in_sw_cksum); 12073 12074 IP_CKSUM_RECV(hck_flags, u1, 12075 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12076 (int32_t)((uchar_t *)up - rptr), 12077 mp, mp1, cksum_err); 12078 12079 if (cksum_err) { 12080 BUMP_MIB(&ip_mib, udpInCksumErrs); 12081 12082 if (hck_flags & HCK_FULLCKSUM) 12083 IP_STAT(ip_udp_in_full_hw_cksum_err); 12084 else if (hck_flags & HCK_PARTIALCKSUM) 12085 IP_STAT(ip_udp_in_part_hw_cksum_err); 12086 else 12087 IP_STAT(ip_udp_in_sw_cksum_err); 12088 12089 freemsg(first_mp); 12090 return; 12091 } 12092 } 12093 12094 /* Non-fragmented broadcast or multicast packet? */ 12095 if (ire->ire_type == IRE_BROADCAST) 12096 goto udpslowpath; 12097 12098 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12099 ire->ire_zoneid)) != NULL) { 12100 ASSERT(connp->conn_upq != NULL); 12101 IP_STAT(ip_udp_fast_path); 12102 12103 if (CONN_UDP_FLOWCTLD(connp)) { 12104 freemsg(mp); 12105 BUMP_MIB(&ip_mib, udpInOverflows); 12106 } else { 12107 if (!mctl_present) { 12108 BUMP_MIB(&ip_mib, ipInDelivers); 12109 } 12110 /* 12111 * mp and first_mp can change. 12112 */ 12113 if (ip_udp_check(q, connp, recv_ill, 12114 ipha, &mp, &first_mp, mctl_present)) { 12115 /* Send it upstream */ 12116 CONN_UDP_RECV(connp, mp); 12117 } 12118 } 12119 /* 12120 * freeb() cannot deal with null mblk being passed 12121 * in and first_mp can be set to null in the call 12122 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12123 */ 12124 if (mctl_present && first_mp != NULL) { 12125 freeb(first_mp); 12126 } 12127 CONN_DEC_REF(connp); 12128 return; 12129 } 12130 12131 /* 12132 * if we got here we know the packet is not fragmented and 12133 * has no options. The classifier could not find a conn_t and 12134 * most likely its an icmp packet so send it through slow path. 12135 */ 12136 12137 goto udpslowpath; 12138 12139 ipoptions: 12140 if (!ip_options_cksum(q, mp, ipha, ire)) { 12141 goto slow_done; 12142 } 12143 12144 UPDATE_IB_PKT_COUNT(ire); 12145 ire->ire_last_used_time = lbolt; 12146 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12147 if (u1 & (IPH_MF | IPH_OFFSET)) { 12148 fragmented: 12149 /* 12150 * "sum" and "reass_hck_flags" are non-zero if the 12151 * reassembled packet has a valid hardware computed 12152 * checksum information associated with it. 12153 */ 12154 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12155 goto slow_done; 12156 /* 12157 * Make sure that first_mp points back to mp as 12158 * the mp we came in with could have changed in 12159 * ip_rput_fragment(). 12160 */ 12161 ASSERT(!mctl_present); 12162 ipha = (ipha_t *)mp->b_rptr; 12163 first_mp = mp; 12164 } 12165 12166 /* Now we have a complete datagram, destined for this machine. */ 12167 u1 = IPH_HDR_LENGTH(ipha); 12168 /* Pull up the UDP header, if necessary. */ 12169 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12170 udppullup: 12171 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12172 BUMP_MIB(&ip_mib, ipInDiscards); 12173 freemsg(first_mp); 12174 goto slow_done; 12175 } 12176 ipha = (ipha_t *)mp->b_rptr; 12177 } 12178 12179 /* 12180 * Validate the checksum for the reassembled packet; for the 12181 * pullup case we calculate the payload checksum in software. 12182 */ 12183 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12184 if (up[3] != 0) { 12185 boolean_t cksum_err; 12186 12187 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12188 IP_STAT(ip_in_sw_cksum); 12189 12190 IP_CKSUM_RECV_REASS(reass_hck_flags, 12191 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12192 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12193 iphs[9] + up[2], sum, cksum_err); 12194 12195 if (cksum_err) { 12196 BUMP_MIB(&ip_mib, udpInCksumErrs); 12197 12198 if (reass_hck_flags & HCK_FULLCKSUM) 12199 IP_STAT(ip_udp_in_full_hw_cksum_err); 12200 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12201 IP_STAT(ip_udp_in_part_hw_cksum_err); 12202 else 12203 IP_STAT(ip_udp_in_sw_cksum_err); 12204 12205 freemsg(first_mp); 12206 goto slow_done; 12207 } 12208 } 12209 udpslowpath: 12210 12211 /* Clear hardware checksum flag to be safe */ 12212 DB_CKSUMFLAGS(mp) = 0; 12213 12214 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12215 (ire->ire_type == IRE_BROADCAST), 12216 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12217 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12218 12219 slow_done: 12220 IP_STAT(ip_udp_slow_path); 12221 return; 12222 12223 #undef iphs 12224 #undef rptr 12225 } 12226 12227 /* ARGSUSED */ 12228 static mblk_t * 12229 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12230 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12231 ill_rx_ring_t *ill_ring) 12232 { 12233 conn_t *connp; 12234 uint32_t sum; 12235 uint32_t u1; 12236 uint16_t *up; 12237 int offset; 12238 ssize_t len; 12239 mblk_t *mp1; 12240 boolean_t syn_present = B_FALSE; 12241 tcph_t *tcph; 12242 uint_t ip_hdr_len; 12243 ill_t *ill = (ill_t *)q->q_ptr; 12244 zoneid_t zoneid = ire->ire_zoneid; 12245 boolean_t cksum_err; 12246 uint16_t hck_flags = 0; 12247 12248 #define rptr ((uchar_t *)ipha) 12249 12250 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12251 12252 /* 12253 * FAST PATH for tcp packets 12254 */ 12255 12256 /* u1 is # words of IP options */ 12257 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12258 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12259 12260 /* IP options present */ 12261 if (u1) { 12262 goto ipoptions; 12263 } else { 12264 /* Check the IP header checksum. */ 12265 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12266 /* Clear the IP header h/w cksum flag */ 12267 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12268 } else { 12269 #define uph ((uint16_t *)ipha) 12270 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12271 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12272 #undef uph 12273 /* finish doing IP checksum */ 12274 sum = (sum & 0xFFFF) + (sum >> 16); 12275 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12276 /* 12277 * Don't verify header checksum if this packet 12278 * is coming back from AH/ESP as we already did it. 12279 */ 12280 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12281 BUMP_MIB(&ip_mib, ipInCksumErrs); 12282 goto error; 12283 } 12284 } 12285 } 12286 12287 if (!mctl_present) { 12288 UPDATE_IB_PKT_COUNT(ire); 12289 ire->ire_last_used_time = lbolt; 12290 } 12291 12292 /* packet part of fragmented IP packet? */ 12293 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12294 if (u1 & (IPH_MF | IPH_OFFSET)) { 12295 goto fragmented; 12296 } 12297 12298 /* u1 = IP header length (20 bytes) */ 12299 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12300 12301 /* does packet contain IP+TCP headers? */ 12302 len = mp->b_wptr - rptr; 12303 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12304 IP_STAT(ip_tcppullup); 12305 goto tcppullup; 12306 } 12307 12308 /* TCP options present? */ 12309 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12310 12311 /* 12312 * If options need to be pulled up, then goto tcpoptions. 12313 * otherwise we are still in the fast path 12314 */ 12315 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12316 IP_STAT(ip_tcpoptions); 12317 goto tcpoptions; 12318 } 12319 12320 /* multiple mblks of tcp data? */ 12321 if ((mp1 = mp->b_cont) != NULL) { 12322 /* more then two? */ 12323 if (mp1->b_cont != NULL) { 12324 IP_STAT(ip_multipkttcp); 12325 goto multipkttcp; 12326 } 12327 len += mp1->b_wptr - mp1->b_rptr; 12328 } 12329 12330 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12331 12332 /* part of pseudo checksum */ 12333 12334 /* TCP datagram length */ 12335 u1 = len - IP_SIMPLE_HDR_LENGTH; 12336 12337 #define iphs ((uint16_t *)ipha) 12338 12339 #ifdef _BIG_ENDIAN 12340 u1 += IPPROTO_TCP; 12341 #else 12342 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12343 #endif 12344 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12345 12346 /* 12347 * Revert to software checksum calculation if the interface 12348 * isn't capable of checksum offload or if IPsec is present. 12349 */ 12350 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12351 hck_flags = DB_CKSUMFLAGS(mp); 12352 12353 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12354 IP_STAT(ip_in_sw_cksum); 12355 12356 IP_CKSUM_RECV(hck_flags, u1, 12357 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12358 (int32_t)((uchar_t *)up - rptr), 12359 mp, mp1, cksum_err); 12360 12361 if (cksum_err) { 12362 BUMP_MIB(&ip_mib, tcpInErrs); 12363 12364 if (hck_flags & HCK_FULLCKSUM) 12365 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12366 else if (hck_flags & HCK_PARTIALCKSUM) 12367 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12368 else 12369 IP_STAT(ip_tcp_in_sw_cksum_err); 12370 12371 goto error; 12372 } 12373 12374 try_again: 12375 12376 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12377 NULL) { 12378 /* Send the TH_RST */ 12379 goto no_conn; 12380 } 12381 12382 /* 12383 * TCP FAST PATH for AF_INET socket. 12384 * 12385 * TCP fast path to avoid extra work. An AF_INET socket type 12386 * does not have facility to receive extra information via 12387 * ip_process or ip_add_info. Also, when the connection was 12388 * established, we made a check if this connection is impacted 12389 * by any global IPSec policy or per connection policy (a 12390 * policy that comes in effect later will not apply to this 12391 * connection). Since all this can be determined at the 12392 * connection establishment time, a quick check of flags 12393 * can avoid extra work. 12394 */ 12395 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12396 !IPP_ENABLED(IPP_LOCAL_IN)) { 12397 ASSERT(first_mp == mp); 12398 SET_SQUEUE(mp, tcp_rput_data, connp); 12399 return (mp); 12400 } 12401 12402 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12403 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12404 if (IPCL_IS_TCP(connp)) { 12405 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12406 DB_CKSUMSTART(mp) = 12407 (intptr_t)ip_squeue_get(ill_ring); 12408 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12409 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12410 SET_SQUEUE(mp, connp->conn_recv, connp); 12411 return (mp); 12412 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12413 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12414 ip_squeue_enter_unbound++; 12415 SET_SQUEUE(mp, tcp_conn_request_unbound, 12416 connp); 12417 return (mp); 12418 } 12419 syn_present = B_TRUE; 12420 } 12421 12422 } 12423 12424 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12425 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12426 12427 /* No need to send this packet to TCP */ 12428 if ((flags & TH_RST) || (flags & TH_URG)) { 12429 CONN_DEC_REF(connp); 12430 freemsg(first_mp); 12431 return (NULL); 12432 } 12433 if (flags & TH_ACK) { 12434 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12435 CONN_DEC_REF(connp); 12436 return (NULL); 12437 } 12438 12439 CONN_DEC_REF(connp); 12440 freemsg(first_mp); 12441 return (NULL); 12442 } 12443 12444 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12445 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12446 ipha, NULL, mctl_present); 12447 if (first_mp == NULL) { 12448 CONN_DEC_REF(connp); 12449 return (NULL); 12450 } 12451 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12452 ASSERT(syn_present); 12453 if (mctl_present) { 12454 ASSERT(first_mp != mp); 12455 first_mp->b_datap->db_struioflag |= 12456 STRUIO_POLICY; 12457 } else { 12458 ASSERT(first_mp == mp); 12459 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12460 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12461 } 12462 } else { 12463 /* 12464 * Discard first_mp early since we're dealing with a 12465 * fully-connected conn_t and tcp doesn't do policy in 12466 * this case. 12467 */ 12468 if (mctl_present) { 12469 freeb(first_mp); 12470 mctl_present = B_FALSE; 12471 } 12472 first_mp = mp; 12473 } 12474 } 12475 12476 /* Initiate IPPF processing for fastpath */ 12477 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12478 uint32_t ill_index; 12479 12480 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12481 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12482 if (mp == NULL) { 12483 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12484 "deferred/dropped during IPPF processing\n")); 12485 CONN_DEC_REF(connp); 12486 if (mctl_present) 12487 freeb(first_mp); 12488 return (NULL); 12489 } else if (mctl_present) { 12490 /* 12491 * ip_process might return a new mp. 12492 */ 12493 ASSERT(first_mp != mp); 12494 first_mp->b_cont = mp; 12495 } else { 12496 first_mp = mp; 12497 } 12498 12499 } 12500 12501 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12502 mp = ip_add_info(mp, recv_ill, flags); 12503 if (mp == NULL) { 12504 CONN_DEC_REF(connp); 12505 if (mctl_present) 12506 freeb(first_mp); 12507 return (NULL); 12508 } else if (mctl_present) { 12509 /* 12510 * ip_add_info might return a new mp. 12511 */ 12512 ASSERT(first_mp != mp); 12513 first_mp->b_cont = mp; 12514 } else { 12515 first_mp = mp; 12516 } 12517 } 12518 12519 if (IPCL_IS_TCP(connp)) { 12520 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12521 return (first_mp); 12522 } else { 12523 putnext(connp->conn_rq, first_mp); 12524 CONN_DEC_REF(connp); 12525 return (NULL); 12526 } 12527 12528 no_conn: 12529 /* Initiate IPPf processing, if needed. */ 12530 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12531 uint32_t ill_index; 12532 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12533 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12534 if (first_mp == NULL) { 12535 return (NULL); 12536 } 12537 } 12538 BUMP_MIB(&ip_mib, ipInDelivers); 12539 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12540 return (NULL); 12541 ipoptions: 12542 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12543 goto slow_done; 12544 } 12545 12546 UPDATE_IB_PKT_COUNT(ire); 12547 ire->ire_last_used_time = lbolt; 12548 12549 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12550 if (u1 & (IPH_MF | IPH_OFFSET)) { 12551 fragmented: 12552 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12553 if (mctl_present) 12554 freeb(first_mp); 12555 goto slow_done; 12556 } 12557 /* 12558 * Make sure that first_mp points back to mp as 12559 * the mp we came in with could have changed in 12560 * ip_rput_fragment(). 12561 */ 12562 ASSERT(!mctl_present); 12563 ipha = (ipha_t *)mp->b_rptr; 12564 first_mp = mp; 12565 } 12566 12567 /* Now we have a complete datagram, destined for this machine. */ 12568 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12569 12570 len = mp->b_wptr - mp->b_rptr; 12571 /* Pull up a minimal TCP header, if necessary. */ 12572 if (len < (u1 + 20)) { 12573 tcppullup: 12574 if (!pullupmsg(mp, u1 + 20)) { 12575 BUMP_MIB(&ip_mib, ipInDiscards); 12576 goto error; 12577 } 12578 ipha = (ipha_t *)mp->b_rptr; 12579 len = mp->b_wptr - mp->b_rptr; 12580 } 12581 12582 /* 12583 * Extract the offset field from the TCP header. As usual, we 12584 * try to help the compiler more than the reader. 12585 */ 12586 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12587 if (offset != 5) { 12588 tcpoptions: 12589 if (offset < 5) { 12590 BUMP_MIB(&ip_mib, ipInDiscards); 12591 goto error; 12592 } 12593 /* 12594 * There must be TCP options. 12595 * Make sure we can grab them. 12596 */ 12597 offset <<= 2; 12598 offset += u1; 12599 if (len < offset) { 12600 if (!pullupmsg(mp, offset)) { 12601 BUMP_MIB(&ip_mib, ipInDiscards); 12602 goto error; 12603 } 12604 ipha = (ipha_t *)mp->b_rptr; 12605 len = mp->b_wptr - rptr; 12606 } 12607 } 12608 12609 /* Get the total packet length in len, including headers. */ 12610 if (mp->b_cont) { 12611 multipkttcp: 12612 len = msgdsize(mp); 12613 } 12614 12615 /* 12616 * Check the TCP checksum by pulling together the pseudo- 12617 * header checksum, and passing it to ip_csum to be added in 12618 * with the TCP datagram. 12619 * 12620 * Since we are not using the hwcksum if available we must 12621 * clear the flag. We may come here via tcppullup or tcpoptions. 12622 * If either of these fails along the way the mblk is freed. 12623 * If this logic ever changes and mblk is reused to say send 12624 * ICMP's back, then this flag may need to be cleared in 12625 * other places as well. 12626 */ 12627 DB_CKSUMFLAGS(mp) = 0; 12628 12629 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12630 12631 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12632 #ifdef _BIG_ENDIAN 12633 u1 += IPPROTO_TCP; 12634 #else 12635 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12636 #endif 12637 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12638 /* 12639 * Not M_DATA mblk or its a dup, so do the checksum now. 12640 */ 12641 IP_STAT(ip_in_sw_cksum); 12642 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12643 BUMP_MIB(&ip_mib, tcpInErrs); 12644 goto error; 12645 } 12646 12647 IP_STAT(ip_tcp_slow_path); 12648 goto try_again; 12649 #undef iphs 12650 #undef rptr 12651 12652 error: 12653 freemsg(first_mp); 12654 slow_done: 12655 return (NULL); 12656 } 12657 12658 /* ARGSUSED */ 12659 static void 12660 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12661 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12662 { 12663 conn_t *connp; 12664 uint32_t sum; 12665 uint32_t u1; 12666 ssize_t len; 12667 sctp_hdr_t *sctph; 12668 zoneid_t zoneid = ire->ire_zoneid; 12669 uint32_t pktsum; 12670 uint32_t calcsum; 12671 uint32_t ports; 12672 uint_t ipif_seqid; 12673 in6_addr_t map_src, map_dst; 12674 ill_t *ill = (ill_t *)q->q_ptr; 12675 12676 #define rptr ((uchar_t *)ipha) 12677 12678 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12679 12680 /* u1 is # words of IP options */ 12681 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12682 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12683 12684 /* IP options present */ 12685 if (u1 > 0) { 12686 goto ipoptions; 12687 } else { 12688 /* Check the IP header checksum. */ 12689 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12690 #define uph ((uint16_t *)ipha) 12691 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12692 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12693 #undef uph 12694 /* finish doing IP checksum */ 12695 sum = (sum & 0xFFFF) + (sum >> 16); 12696 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12697 /* 12698 * Don't verify header checksum if this packet 12699 * is coming back from AH/ESP as we already did it. 12700 */ 12701 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12702 BUMP_MIB(&ip_mib, ipInCksumErrs); 12703 goto error; 12704 } 12705 } 12706 /* 12707 * Since there is no SCTP h/w cksum support yet, just 12708 * clear the flag. 12709 */ 12710 DB_CKSUMFLAGS(mp) = 0; 12711 } 12712 12713 /* 12714 * Don't verify header checksum if this packet is coming 12715 * back from AH/ESP as we already did it. 12716 */ 12717 if (!mctl_present) { 12718 UPDATE_IB_PKT_COUNT(ire); 12719 ire->ire_last_used_time = lbolt; 12720 } 12721 12722 /* packet part of fragmented IP packet? */ 12723 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12724 if (u1 & (IPH_MF | IPH_OFFSET)) 12725 goto fragmented; 12726 12727 /* u1 = IP header length (20 bytes) */ 12728 u1 = IP_SIMPLE_HDR_LENGTH; 12729 12730 find_sctp_client: 12731 /* Pullup if we don't have the sctp common header. */ 12732 len = MBLKL(mp); 12733 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12734 if (mp->b_cont == NULL || 12735 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12736 BUMP_MIB(&ip_mib, ipInDiscards); 12737 goto error; 12738 } 12739 ipha = (ipha_t *)mp->b_rptr; 12740 len = MBLKL(mp); 12741 } 12742 12743 sctph = (sctp_hdr_t *)(rptr + u1); 12744 #ifdef DEBUG 12745 if (!skip_sctp_cksum) { 12746 #endif 12747 pktsum = sctph->sh_chksum; 12748 sctph->sh_chksum = 0; 12749 calcsum = sctp_cksum(mp, u1); 12750 if (calcsum != pktsum) { 12751 BUMP_MIB(&sctp_mib, sctpChecksumError); 12752 goto error; 12753 } 12754 sctph->sh_chksum = pktsum; 12755 #ifdef DEBUG /* skip_sctp_cksum */ 12756 } 12757 #endif 12758 /* get the ports */ 12759 ports = *(uint32_t *)&sctph->sh_sport; 12760 12761 ipif_seqid = ire->ire_ipif->ipif_seqid; 12762 IRE_REFRELE(ire); 12763 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12764 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12765 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 12766 mp)) == NULL) { 12767 /* Check for raw socket or OOTB handling */ 12768 goto no_conn; 12769 } 12770 12771 /* Found a client; up it goes */ 12772 BUMP_MIB(&ip_mib, ipInDelivers); 12773 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12774 return; 12775 12776 no_conn: 12777 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12778 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12779 return; 12780 12781 ipoptions: 12782 DB_CKSUMFLAGS(mp) = 0; 12783 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12784 goto slow_done; 12785 12786 UPDATE_IB_PKT_COUNT(ire); 12787 ire->ire_last_used_time = lbolt; 12788 12789 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12790 if (u1 & (IPH_MF | IPH_OFFSET)) { 12791 fragmented: 12792 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12793 goto slow_done; 12794 /* 12795 * Make sure that first_mp points back to mp as 12796 * the mp we came in with could have changed in 12797 * ip_rput_fragment(). 12798 */ 12799 ASSERT(!mctl_present); 12800 ipha = (ipha_t *)mp->b_rptr; 12801 first_mp = mp; 12802 } 12803 12804 /* Now we have a complete datagram, destined for this machine. */ 12805 u1 = IPH_HDR_LENGTH(ipha); 12806 goto find_sctp_client; 12807 #undef iphs 12808 #undef rptr 12809 12810 error: 12811 freemsg(first_mp); 12812 slow_done: 12813 IRE_REFRELE(ire); 12814 } 12815 12816 #define VER_BITS 0xF0 12817 #define VERSION_6 0x60 12818 12819 static boolean_t 12820 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12821 ipaddr_t *dstp) 12822 { 12823 uint_t opt_len; 12824 ipha_t *ipha; 12825 ssize_t len; 12826 uint_t pkt_len; 12827 12828 IP_STAT(ip_ipoptions); 12829 ipha = *iphapp; 12830 12831 #define rptr ((uchar_t *)ipha) 12832 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12833 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12834 BUMP_MIB(&ip_mib, ipInIPv6); 12835 freemsg(mp); 12836 return (B_FALSE); 12837 } 12838 12839 /* multiple mblk or too short */ 12840 pkt_len = ntohs(ipha->ipha_length); 12841 12842 /* Get the number of words of IP options in the IP header. */ 12843 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12844 if (opt_len) { 12845 /* IP Options present! Validate and process. */ 12846 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12847 BUMP_MIB(&ip_mib, ipInHdrErrors); 12848 goto done; 12849 } 12850 /* 12851 * Recompute complete header length and make sure we 12852 * have access to all of it. 12853 */ 12854 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12855 if (len > (mp->b_wptr - rptr)) { 12856 if (len > pkt_len) { 12857 BUMP_MIB(&ip_mib, ipInHdrErrors); 12858 goto done; 12859 } 12860 if (!pullupmsg(mp, len)) { 12861 BUMP_MIB(&ip_mib, ipInDiscards); 12862 goto done; 12863 } 12864 ipha = (ipha_t *)mp->b_rptr; 12865 } 12866 /* 12867 * Go off to ip_rput_options which returns the next hop 12868 * destination address, which may have been affected 12869 * by source routing. 12870 */ 12871 IP_STAT(ip_opt); 12872 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12873 return (B_FALSE); 12874 } 12875 } 12876 *iphapp = ipha; 12877 return (B_TRUE); 12878 done: 12879 /* clear b_prev - used by ip_mroute_decap */ 12880 mp->b_prev = NULL; 12881 freemsg(mp); 12882 return (B_FALSE); 12883 #undef rptr 12884 } 12885 12886 /* 12887 * Deal with the fact that there is no ire for the destination. 12888 * The incoming ill (in_ill) is passed in to ip_newroute only 12889 * in the case of packets coming from mobile ip forward tunnel. 12890 * It must be null otherwise. 12891 */ 12892 static void 12893 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12894 ipaddr_t dst) 12895 { 12896 ipha_t *ipha; 12897 ill_t *ill; 12898 12899 ipha = (ipha_t *)mp->b_rptr; 12900 ill = (ill_t *)q->q_ptr; 12901 12902 ASSERT(ill != NULL); 12903 /* 12904 * No IRE for this destination, so it can't be for us. 12905 * Unless we are forwarding, drop the packet. 12906 * We have to let source routed packets through 12907 * since we don't yet know if they are 'ping -l' 12908 * packets i.e. if they will go out over the 12909 * same interface as they came in on. 12910 */ 12911 if (ll_multicast) { 12912 freemsg(mp); 12913 return; 12914 } 12915 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12916 BUMP_MIB(&ip_mib, ipForwProhibits); 12917 freemsg(mp); 12918 return; 12919 } 12920 12921 /* Check for Martian addresses */ 12922 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12923 freemsg(mp); 12924 return; 12925 } 12926 12927 /* Mark this packet as having originated externally */ 12928 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12929 12930 /* 12931 * Clear the indication that this may have a hardware checksum 12932 * as we are not using it 12933 */ 12934 DB_CKSUMFLAGS(mp) = 0; 12935 12936 /* 12937 * Now hand the packet to ip_newroute. 12938 */ 12939 ip_newroute(q, mp, dst, in_ill, NULL); 12940 } 12941 12942 /* 12943 * check ip header length and align it. 12944 */ 12945 static boolean_t 12946 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12947 { 12948 ssize_t len; 12949 ill_t *ill; 12950 ipha_t *ipha; 12951 12952 len = MBLKL(mp); 12953 12954 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12955 if (!OK_32PTR(mp->b_rptr)) 12956 IP_STAT(ip_notaligned1); 12957 else 12958 IP_STAT(ip_notaligned2); 12959 /* Guard against bogus device drivers */ 12960 if (len < 0) { 12961 /* clear b_prev - used by ip_mroute_decap */ 12962 mp->b_prev = NULL; 12963 BUMP_MIB(&ip_mib, ipInHdrErrors); 12964 freemsg(mp); 12965 return (B_FALSE); 12966 } 12967 12968 if (ip_rput_pullups++ == 0) { 12969 ill = (ill_t *)q->q_ptr; 12970 ipha = (ipha_t *)mp->b_rptr; 12971 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12972 "ip_check_and_align_header: %s forced us to " 12973 " pullup pkt, hdr len %ld, hdr addr %p", 12974 ill->ill_name, len, ipha); 12975 } 12976 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12977 /* clear b_prev - used by ip_mroute_decap */ 12978 mp->b_prev = NULL; 12979 BUMP_MIB(&ip_mib, ipInDiscards); 12980 freemsg(mp); 12981 return (B_FALSE); 12982 } 12983 } 12984 return (B_TRUE); 12985 } 12986 12987 static boolean_t 12988 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12989 { 12990 ill_group_t *ill_group; 12991 ill_group_t *ire_group; 12992 queue_t *q; 12993 ill_t *ire_ill; 12994 uint_t ill_ifindex; 12995 12996 q = *qp; 12997 /* 12998 * We need to check to make sure the packet came in 12999 * on the queue associated with the destination IRE. 13000 * Note that for multicast packets and broadcast packets sent to 13001 * a broadcast address which is shared between multiple interfaces 13002 * we should not do this since we just got a random broadcast ire. 13003 */ 13004 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13005 boolean_t check_multi = B_TRUE; 13006 13007 /* 13008 * This packet came in on an interface other than the 13009 * one associated with the destination address. 13010 * "Gateway" it to the appropriate interface here. 13011 * As long as the ills belong to the same group, 13012 * we don't consider them to arriving on the wrong 13013 * interface. Thus, when the switch is doing inbound 13014 * load spreading, we won't drop packets when we 13015 * are doing strict multihoming checks. Note, the 13016 * same holds true for 'usesrc groups' where the 13017 * destination address may belong to another interface 13018 * to allow multipathing to happen 13019 */ 13020 ill_group = ill->ill_group; 13021 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13022 ill_ifindex = ill->ill_usesrc_ifindex; 13023 ire_group = ire_ill->ill_group; 13024 13025 /* 13026 * If it's part of the same IPMP group, or if it's a legal 13027 * address on the 'usesrc' interface, then bypass strict 13028 * checks. 13029 */ 13030 if (ill_group != NULL && ill_group == ire_group) { 13031 check_multi = B_FALSE; 13032 } else if (ill_ifindex != 0 && 13033 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13034 check_multi = B_FALSE; 13035 } 13036 13037 if (check_multi && 13038 ip_strict_dst_multihoming && 13039 ((ill->ill_flags & 13040 ire->ire_ipif->ipif_ill->ill_flags & 13041 ILLF_ROUTER) == 0)) { 13042 /* Drop packet */ 13043 BUMP_MIB(&ip_mib, ipForwProhibits); 13044 freemsg(mp); 13045 ire_refrele(ire); 13046 return (B_TRUE); 13047 } 13048 13049 /* 13050 * Change the queue (for non-virtual destination network 13051 * interfaces) and ip_rput_local will be called with the right 13052 * queue 13053 */ 13054 q = ire->ire_rfq; 13055 } 13056 /* Must be broadcast. We'll take it. */ 13057 *qp = q; 13058 return (B_FALSE); 13059 } 13060 13061 static void 13062 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13063 ill_t *ill, int ll_multicast) 13064 { 13065 ill_group_t *ill_group; 13066 ill_group_t *ire_group; 13067 queue_t *dev_q; 13068 13069 ASSERT(ire->ire_stq != NULL); 13070 if (ll_multicast != 0) 13071 goto drop_pkt; 13072 13073 if (ip_no_forward(ipha, ill)) 13074 goto drop_pkt; 13075 13076 ill_group = ill->ill_group; 13077 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13078 /* 13079 * Check if we want to forward this one at this time. 13080 * We allow source routed packets on a host provided that 13081 * they go out the same interface or same interface group 13082 * as they came in on. 13083 * 13084 * XXX To be quicker, we may wish to not chase pointers to 13085 * get the ILLF_ROUTER flag and instead store the 13086 * forwarding policy in the ire. An unfortunate 13087 * side-effect of that would be requiring an ire flush 13088 * whenever the ILLF_ROUTER flag changes. 13089 */ 13090 if (((ill->ill_flags & 13091 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13092 ILLF_ROUTER) == 0) && 13093 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13094 (ill_group != NULL && ill_group == ire_group)))) { 13095 BUMP_MIB(&ip_mib, ipForwProhibits); 13096 if (ip_source_routed(ipha)) { 13097 q = WR(q); 13098 /* 13099 * Clear the indication that this may have 13100 * hardware checksum as we are not using it. 13101 */ 13102 DB_CKSUMFLAGS(mp) = 0; 13103 icmp_unreachable(q, mp, 13104 ICMP_SOURCE_ROUTE_FAILED); 13105 ire_refrele(ire); 13106 return; 13107 } 13108 goto drop_pkt; 13109 } 13110 13111 /* Packet is being forwarded. Turning off hwcksum flag. */ 13112 DB_CKSUMFLAGS(mp) = 0; 13113 if (ip_g_send_redirects) { 13114 /* 13115 * Check whether the incoming interface and outgoing 13116 * interface is part of the same group. If so, 13117 * send redirects. 13118 * 13119 * Check the source address to see if it originated 13120 * on the same logical subnet it is going back out on. 13121 * If so, we should be able to send it a redirect. 13122 * Avoid sending a redirect if the destination 13123 * is directly connected (gw_addr == 0), 13124 * or if the packet was source routed out this 13125 * interface. 13126 */ 13127 ipaddr_t src; 13128 mblk_t *mp1; 13129 ire_t *src_ire = NULL; 13130 13131 /* 13132 * Check whether ire_rfq and q are from the same ill 13133 * or if they are not same, they at least belong 13134 * to the same group. If so, send redirects. 13135 */ 13136 if ((ire->ire_rfq == q || 13137 (ill_group != NULL && ill_group == ire_group)) && 13138 (ire->ire_gateway_addr != 0) && 13139 !ip_source_routed(ipha)) { 13140 13141 src = ipha->ipha_src; 13142 src_ire = ire_ftable_lookup(src, 0, 0, 13143 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13144 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13145 13146 if (src_ire != NULL) { 13147 /* 13148 * The source is directly connected. 13149 * Just copy the ip header (which is 13150 * in the first mblk) 13151 */ 13152 mp1 = copyb(mp); 13153 if (mp1 != NULL) { 13154 icmp_send_redirect(WR(q), mp1, 13155 ire->ire_gateway_addr); 13156 } 13157 ire_refrele(src_ire); 13158 } 13159 } 13160 } 13161 13162 dev_q = ire->ire_stq->q_next; 13163 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13164 BUMP_MIB(&ip_mib, ipInDiscards); 13165 freemsg(mp); 13166 ire_refrele(ire); 13167 return; 13168 } 13169 13170 ip_rput_forward(ire, ipha, mp, ill); 13171 IRE_REFRELE(ire); 13172 return; 13173 13174 drop_pkt: 13175 ire_refrele(ire); 13176 ip2dbg(("ip_rput_forward: drop pkt\n")); 13177 freemsg(mp); 13178 } 13179 13180 static boolean_t 13181 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 13182 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13183 { 13184 queue_t *q; 13185 ire_t *ire; 13186 uint16_t hcksumflags; 13187 13188 q = *qp; 13189 ire = *irep; 13190 13191 /* 13192 * Clear the indication that this may have hardware 13193 * checksum as we are not using it for forwarding. 13194 */ 13195 hcksumflags = DB_CKSUMFLAGS(mp); 13196 DB_CKSUMFLAGS(mp) = 0; 13197 13198 /* 13199 * Directed broadcast forwarding: if the packet came in over a 13200 * different interface then it is routed out over we can forward it. 13201 */ 13202 if (ipha->ipha_protocol == IPPROTO_TCP) { 13203 ire_refrele(ire); 13204 freemsg(mp); 13205 BUMP_MIB(&ip_mib, ipInDiscards); 13206 return (B_TRUE); 13207 } 13208 /* 13209 * For multicast we have set dst to be INADDR_BROADCAST 13210 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13211 * only for broadcast packets. 13212 */ 13213 if (!CLASSD(ipha->ipha_dst)) { 13214 ire_t *new_ire; 13215 ipif_t *ipif; 13216 /* 13217 * For ill groups, as the switch duplicates broadcasts 13218 * across all the ports, we need to filter out and 13219 * send up only one copy. There is one copy for every 13220 * broadcast address on each ill. Thus, we look for a 13221 * specific IRE on this ill and look at IRE_MARK_NORECV 13222 * later to see whether this ill is eligible to receive 13223 * them or not. ill_nominate_bcast_rcv() nominates only 13224 * one set of IREs for receiving. 13225 */ 13226 13227 ipif = ipif_get_next_ipif(NULL, ill); 13228 if (ipif == NULL) { 13229 ire_refrele(ire); 13230 freemsg(mp); 13231 BUMP_MIB(&ip_mib, ipInDiscards); 13232 return (B_TRUE); 13233 } 13234 new_ire = ire_ctable_lookup(dst, 0, 0, 13235 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13236 ipif_refrele(ipif); 13237 13238 if (new_ire != NULL) { 13239 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13240 ire_refrele(ire); 13241 ire_refrele(new_ire); 13242 freemsg(mp); 13243 BUMP_MIB(&ip_mib, ipInDiscards); 13244 return (B_TRUE); 13245 } 13246 /* 13247 * In the special case of multirouted broadcast 13248 * packets, we unconditionally need to "gateway" 13249 * them to the appropriate interface here. 13250 * In the normal case, this cannot happen, because 13251 * there is no broadcast IRE tagged with the 13252 * RTF_MULTIRT flag. 13253 */ 13254 if (new_ire->ire_flags & RTF_MULTIRT) { 13255 ire_refrele(new_ire); 13256 if (ire->ire_rfq != NULL) { 13257 q = ire->ire_rfq; 13258 *qp = q; 13259 } 13260 } else { 13261 ire_refrele(ire); 13262 ire = new_ire; 13263 } 13264 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13265 if (!ip_g_forward_directed_bcast) { 13266 /* 13267 * Free the message if 13268 * ip_g_forward_directed_bcast is turned 13269 * off for non-local broadcast. 13270 */ 13271 ire_refrele(ire); 13272 freemsg(mp); 13273 BUMP_MIB(&ip_mib, ipInDiscards); 13274 return (B_TRUE); 13275 } 13276 } else { 13277 /* 13278 * This CGTP packet successfully passed the 13279 * CGTP filter, but the related CGTP 13280 * broadcast IRE has not been found, 13281 * meaning that the redundant ipif is 13282 * probably down. However, if we discarded 13283 * this packet, its duplicate would be 13284 * filtered out by the CGTP filter so none 13285 * of them would get through. So we keep 13286 * going with this one. 13287 */ 13288 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13289 if (ire->ire_rfq != NULL) { 13290 q = ire->ire_rfq; 13291 *qp = q; 13292 } 13293 } 13294 } 13295 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13296 /* 13297 * Verify that there are not more then one 13298 * IRE_BROADCAST with this broadcast address which 13299 * has ire_stq set. 13300 * TODO: simplify, loop over all IRE's 13301 */ 13302 ire_t *ire1; 13303 int num_stq = 0; 13304 mblk_t *mp1; 13305 13306 /* Find the first one with ire_stq set */ 13307 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13308 for (ire1 = ire; ire1 && 13309 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13310 ire1 = ire1->ire_next) 13311 ; 13312 if (ire1) { 13313 ire_refrele(ire); 13314 ire = ire1; 13315 IRE_REFHOLD(ire); 13316 } 13317 13318 /* Check if there are additional ones with stq set */ 13319 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13320 if (ire->ire_addr != ire1->ire_addr) 13321 break; 13322 if (ire1->ire_stq) { 13323 num_stq++; 13324 break; 13325 } 13326 } 13327 rw_exit(&ire->ire_bucket->irb_lock); 13328 if (num_stq == 1 && ire->ire_stq != NULL) { 13329 ip1dbg(("ip_rput_process_broadcast: directed " 13330 "broadcast to 0x%x\n", 13331 ntohl(ire->ire_addr))); 13332 mp1 = copymsg(mp); 13333 if (mp1) { 13334 switch (ipha->ipha_protocol) { 13335 case IPPROTO_UDP: 13336 ip_udp_input(q, mp1, ipha, ire, ill); 13337 break; 13338 default: 13339 ip_proto_input(q, mp1, ipha, ire, ill); 13340 break; 13341 } 13342 } 13343 /* 13344 * Adjust ttl to 2 (1+1 - the forward engine 13345 * will decrement it by one. 13346 */ 13347 if (ip_csum_hdr(ipha)) { 13348 BUMP_MIB(&ip_mib, ipInCksumErrs); 13349 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13350 freemsg(mp); 13351 ire_refrele(ire); 13352 return (B_TRUE); 13353 } 13354 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13355 ipha->ipha_hdr_checksum = 0; 13356 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13357 ip_rput_process_forward(q, mp, ire, ipha, 13358 ill, ll_multicast); 13359 return (B_TRUE); 13360 } 13361 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13362 ntohl(ire->ire_addr))); 13363 } 13364 13365 *irep = ire; 13366 13367 /* Restore any hardware checksum flags */ 13368 DB_CKSUMFLAGS(mp) = hcksumflags; 13369 return (B_FALSE); 13370 } 13371 13372 /* ARGSUSED */ 13373 static boolean_t 13374 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13375 int *ll_multicast, ipaddr_t *dstp) 13376 { 13377 /* 13378 * Forward packets only if we have joined the allmulti 13379 * group on this interface. 13380 */ 13381 if (ip_g_mrouter && ill->ill_join_allmulti) { 13382 int retval; 13383 13384 /* 13385 * Clear the indication that this may have hardware 13386 * checksum as we are not using it. 13387 */ 13388 DB_CKSUMFLAGS(mp) = 0; 13389 retval = ip_mforward(ill, ipha, mp); 13390 /* ip_mforward updates mib variables if needed */ 13391 /* clear b_prev - used by ip_mroute_decap */ 13392 mp->b_prev = NULL; 13393 13394 switch (retval) { 13395 case 0: 13396 /* 13397 * pkt is okay and arrived on phyint. 13398 * 13399 * If we are running as a multicast router 13400 * we need to see all IGMP and/or PIM packets. 13401 */ 13402 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13403 (ipha->ipha_protocol == IPPROTO_PIM)) { 13404 goto done; 13405 } 13406 break; 13407 case -1: 13408 /* pkt is mal-formed, toss it */ 13409 goto drop_pkt; 13410 case 1: 13411 /* pkt is okay and arrived on a tunnel */ 13412 /* 13413 * If we are running a multicast router 13414 * we need to see all igmp packets. 13415 */ 13416 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13417 *dstp = INADDR_BROADCAST; 13418 *ll_multicast = 1; 13419 return (B_FALSE); 13420 } 13421 13422 goto drop_pkt; 13423 } 13424 } 13425 13426 ILM_WALKER_HOLD(ill); 13427 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13428 /* 13429 * This might just be caused by the fact that 13430 * multiple IP Multicast addresses map to the same 13431 * link layer multicast - no need to increment counter! 13432 */ 13433 ILM_WALKER_RELE(ill); 13434 freemsg(mp); 13435 return (B_TRUE); 13436 } 13437 ILM_WALKER_RELE(ill); 13438 done: 13439 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13440 /* 13441 * This assumes the we deliver to all streams for multicast 13442 * and broadcast packets. 13443 */ 13444 *dstp = INADDR_BROADCAST; 13445 *ll_multicast = 1; 13446 return (B_FALSE); 13447 drop_pkt: 13448 ip2dbg(("ip_rput: drop pkt\n")); 13449 freemsg(mp); 13450 return (B_TRUE); 13451 } 13452 13453 static boolean_t 13454 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13455 int *ll_multicast, mblk_t **mpp) 13456 { 13457 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13458 boolean_t must_copy = B_FALSE; 13459 struct iocblk *iocp; 13460 ipha_t *ipha; 13461 13462 #define rptr ((uchar_t *)ipha) 13463 13464 first_mp = *first_mpp; 13465 mp = *mpp; 13466 13467 ASSERT(first_mp == mp); 13468 13469 /* 13470 * if db_ref > 1 then copymsg and free original. Packet may be 13471 * changed and do not want other entity who has a reference to this 13472 * message to trip over the changes. This is a blind change because 13473 * trying to catch all places that might change packet is too 13474 * difficult (since it may be a module above this one) 13475 * 13476 * This corresponds to the non-fast path case. We walk down the full 13477 * chain in this case, and check the db_ref count of all the dblks, 13478 * and do a copymsg if required. It is possible that the db_ref counts 13479 * of the data blocks in the mblk chain can be different. 13480 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 13481 * count of 1, followed by a M_DATA block with a ref count of 2, if 13482 * 'snoop' is running. 13483 */ 13484 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 13485 if (mp1->b_datap->db_ref > 1) { 13486 must_copy = B_TRUE; 13487 break; 13488 } 13489 } 13490 13491 if (must_copy) { 13492 mp1 = copymsg(mp); 13493 if (mp1 == NULL) { 13494 for (mp1 = mp; mp1 != NULL; 13495 mp1 = mp1->b_cont) { 13496 mp1->b_next = NULL; 13497 mp1->b_prev = NULL; 13498 } 13499 freemsg(mp); 13500 BUMP_MIB(&ip_mib, ipInDiscards); 13501 return (B_TRUE); 13502 } 13503 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 13504 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 13505 /* Copy b_next - used in M_BREAK messages */ 13506 to_mp->b_next = from_mp->b_next; 13507 from_mp->b_next = NULL; 13508 /* Copy b_prev - used by ip_mroute_decap */ 13509 to_mp->b_prev = from_mp->b_prev; 13510 from_mp->b_prev = NULL; 13511 } 13512 *first_mpp = first_mp = mp1; 13513 freemsg(mp); 13514 mp = mp1; 13515 *mpp = mp1; 13516 } 13517 13518 ipha = (ipha_t *)mp->b_rptr; 13519 13520 /* 13521 * previous code has a case for M_DATA. 13522 * We want to check how that happens. 13523 */ 13524 ASSERT(first_mp->b_datap->db_type != M_DATA); 13525 switch (first_mp->b_datap->db_type) { 13526 case M_PROTO: 13527 case M_PCPROTO: 13528 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13529 DL_UNITDATA_IND) { 13530 /* Go handle anything other than data elsewhere. */ 13531 ip_rput_dlpi(q, mp); 13532 return (B_TRUE); 13533 } 13534 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13535 /* Ditch the DLPI header. */ 13536 mp1 = mp->b_cont; 13537 ASSERT(first_mp == mp); 13538 *first_mpp = mp1; 13539 freeb(mp); 13540 *mpp = mp1; 13541 return (B_FALSE); 13542 case M_BREAK: 13543 /* 13544 * A packet arrives as M_BREAK following a cycle through 13545 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13546 * This is an IP datagram sans lower level header. 13547 * M_BREAK are also used to pass back in multicast packets 13548 * that are encapsulated with a source route. 13549 */ 13550 /* Ditch the M_BREAK mblk */ 13551 mp1 = mp->b_cont; 13552 ASSERT(first_mp == mp); 13553 *first_mpp = mp1; 13554 freeb(mp); 13555 mp = mp1; 13556 mp->b_next = NULL; 13557 *mpp = mp; 13558 *ll_multicast = 0; 13559 return (B_FALSE); 13560 case M_IOCACK: 13561 ip1dbg(("got iocack ")); 13562 iocp = (struct iocblk *)mp->b_rptr; 13563 switch (iocp->ioc_cmd) { 13564 case DL_IOC_HDR_INFO: 13565 ill = (ill_t *)q->q_ptr; 13566 ill_fastpath_ack(ill, mp); 13567 return (B_TRUE); 13568 case SIOCSTUNPARAM: 13569 case OSIOCSTUNPARAM: 13570 /* Go through qwriter_ip */ 13571 break; 13572 case SIOCGTUNPARAM: 13573 case OSIOCGTUNPARAM: 13574 ip_rput_other(NULL, q, mp, NULL); 13575 return (B_TRUE); 13576 default: 13577 putnext(q, mp); 13578 return (B_TRUE); 13579 } 13580 /* FALLTHRU */ 13581 case M_ERROR: 13582 case M_HANGUP: 13583 /* 13584 * Since this is on the ill stream we unconditionally 13585 * bump up the refcount 13586 */ 13587 ill_refhold(ill); 13588 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13589 B_FALSE); 13590 return (B_TRUE); 13591 case M_CTL: 13592 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13593 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13594 IPHADA_M_CTL)) { 13595 /* 13596 * It's an IPsec accelerated packet. 13597 * Make sure that the ill from which we received the 13598 * packet has enabled IPsec hardware acceleration. 13599 */ 13600 if (!(ill->ill_capabilities & 13601 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13602 /* IPsec kstats: bean counter */ 13603 freemsg(mp); 13604 return (B_TRUE); 13605 } 13606 13607 /* 13608 * Make mp point to the mblk following the M_CTL, 13609 * then process according to type of mp. 13610 * After this processing, first_mp will point to 13611 * the data-attributes and mp to the pkt following 13612 * the M_CTL. 13613 */ 13614 mp = first_mp->b_cont; 13615 if (mp == NULL) { 13616 freemsg(first_mp); 13617 return (B_TRUE); 13618 } 13619 /* 13620 * A Hardware Accelerated packet can only be M_DATA 13621 * ESP or AH packet. 13622 */ 13623 if (mp->b_datap->db_type != M_DATA) { 13624 /* non-M_DATA IPsec accelerated packet */ 13625 IPSECHW_DEBUG(IPSECHW_PKT, 13626 ("non-M_DATA IPsec accelerated pkt\n")); 13627 freemsg(first_mp); 13628 return (B_TRUE); 13629 } 13630 ipha = (ipha_t *)mp->b_rptr; 13631 if (ipha->ipha_protocol != IPPROTO_AH && 13632 ipha->ipha_protocol != IPPROTO_ESP) { 13633 IPSECHW_DEBUG(IPSECHW_PKT, 13634 ("non-M_DATA IPsec accelerated pkt\n")); 13635 freemsg(first_mp); 13636 return (B_TRUE); 13637 } 13638 *mpp = mp; 13639 return (B_FALSE); 13640 } 13641 putnext(q, mp); 13642 return (B_TRUE); 13643 case M_FLUSH: 13644 if (*mp->b_rptr & FLUSHW) { 13645 *mp->b_rptr &= ~FLUSHR; 13646 qreply(q, mp); 13647 return (B_TRUE); 13648 } 13649 freemsg(mp); 13650 return (B_TRUE); 13651 case M_IOCNAK: 13652 ip1dbg(("got iocnak ")); 13653 iocp = (struct iocblk *)mp->b_rptr; 13654 switch (iocp->ioc_cmd) { 13655 case DL_IOC_HDR_INFO: 13656 case SIOCSTUNPARAM: 13657 case OSIOCSTUNPARAM: 13658 /* 13659 * Since this is on the ill stream we unconditionally 13660 * bump up the refcount 13661 */ 13662 ill_refhold(ill); 13663 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13664 CUR_OP, B_FALSE); 13665 return (B_TRUE); 13666 case SIOCGTUNPARAM: 13667 case OSIOCGTUNPARAM: 13668 ip_rput_other(NULL, q, mp, NULL); 13669 return (B_TRUE); 13670 default: 13671 break; 13672 } 13673 /* FALLTHRU */ 13674 default: 13675 putnext(q, mp); 13676 return (B_TRUE); 13677 } 13678 } 13679 13680 /* Read side put procedure. Packets coming from the wire arrive here. */ 13681 void 13682 ip_rput(queue_t *q, mblk_t *mp) 13683 { 13684 ill_t *ill; 13685 13686 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13687 13688 ill = (ill_t *)q->q_ptr; 13689 13690 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13691 union DL_primitives *dl; 13692 13693 /* 13694 * Things are opening or closing. Only accept DLPI control 13695 * messages. In the open case, the ill->ill_ipif has not yet 13696 * been created. In the close case, things hanging off the 13697 * ill could have been freed already. In either case it 13698 * may not be safe to proceed further. 13699 */ 13700 13701 dl = (union DL_primitives *)mp->b_rptr; 13702 if ((mp->b_datap->db_type != M_PCPROTO) || 13703 (dl->dl_primitive == DL_UNITDATA_IND)) { 13704 /* 13705 * Also SIOC[GS]TUN* ioctls can come here. 13706 */ 13707 inet_freemsg(mp); 13708 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13709 "ip_input_end: q %p (%S)", q, "uninit"); 13710 return; 13711 } 13712 } 13713 13714 /* 13715 * if db_ref > 1 then copymsg and free original. Packet may be 13716 * changed and we do not want the other entity who has a reference to 13717 * this message to trip over the changes. This is a blind change because 13718 * trying to catch all places that might change the packet is too 13719 * difficult. 13720 * 13721 * This corresponds to the fast path case, where we have a chain of 13722 * M_DATA mblks. We check the db_ref count of only the 1st data block 13723 * in the mblk chain. There doesn't seem to be a reason why a device 13724 * driver would send up data with varying db_ref counts in the mblk 13725 * chain. In any case the Fast path is a private interface, and our 13726 * drivers don't do such a thing. Given the above assumption, there is 13727 * no need to walk down the entire mblk chain (which could have a 13728 * potential performance problem) 13729 */ 13730 if (mp->b_datap->db_ref > 1) { 13731 mblk_t *mp1; 13732 boolean_t adjusted = B_FALSE; 13733 IP_STAT(ip_db_ref); 13734 13735 /* 13736 * The IP_RECVSLLA option depends on having the link layer 13737 * header. First check that: 13738 * a> the underlying device is of type ether, since this 13739 * option is currently supported only over ethernet. 13740 * b> there is enough room to copy over the link layer header. 13741 * 13742 * Once the checks are done, adjust rptr so that the link layer 13743 * header will be copied via copymsg. Note that, IFT_ETHER may 13744 * be returned by some non-ethernet drivers but in this case the 13745 * second check will fail. 13746 */ 13747 if (ill->ill_type == IFT_ETHER && 13748 (mp->b_rptr - mp->b_datap->db_base) >= 13749 sizeof (struct ether_header)) { 13750 mp->b_rptr -= sizeof (struct ether_header); 13751 adjusted = B_TRUE; 13752 } 13753 mp1 = copymsg(mp); 13754 if (mp1 == NULL) { 13755 /* Clear b_next - used in M_BREAK messages */ 13756 mp->b_next = NULL; 13757 /* clear b_prev - used by ip_mroute_decap */ 13758 mp->b_prev = NULL; 13759 freemsg(mp); 13760 BUMP_MIB(&ip_mib, ipInDiscards); 13761 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13762 "ip_rput_end: q %p (%S)", q, "copymsg"); 13763 return; 13764 } 13765 if (adjusted) { 13766 /* 13767 * Copy is done. Restore the pointer in the _new_ mblk 13768 */ 13769 mp1->b_rptr += sizeof (struct ether_header); 13770 } 13771 /* Copy b_next - used in M_BREAK messages */ 13772 mp1->b_next = mp->b_next; 13773 mp->b_next = NULL; 13774 /* Copy b_prev - used by ip_mroute_decap */ 13775 mp1->b_prev = mp->b_prev; 13776 mp->b_prev = NULL; 13777 freemsg(mp); 13778 mp = mp1; 13779 } 13780 13781 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13782 "ip_rput_end: q %p (%S)", q, "end"); 13783 13784 ip_input(ill, NULL, mp, 0); 13785 } 13786 13787 /* 13788 * Direct read side procedure capable of dealing with chains. GLDv3 based 13789 * drivers call this function directly with mblk chains while STREAMS 13790 * read side procedure ip_rput() calls this for single packet with ip_ring 13791 * set to NULL to process one packet at a time. 13792 * 13793 * The ill will always be valid if this function is called directly from 13794 * the driver. 13795 */ 13796 /*ARGSUSED*/ 13797 void 13798 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13799 { 13800 ipaddr_t dst; 13801 ire_t *ire; 13802 ipha_t *ipha; 13803 uint_t pkt_len; 13804 ssize_t len; 13805 uint_t opt_len; 13806 int ll_multicast; 13807 int cgtp_flt_pkt; 13808 queue_t *q = ill->ill_rq; 13809 squeue_t *curr_sqp = NULL; 13810 mblk_t *head = NULL; 13811 mblk_t *tail = NULL; 13812 mblk_t *first_mp; 13813 mblk_t *mp; 13814 int cnt = 0; 13815 13816 ASSERT(mp_chain != NULL); 13817 ASSERT(ill != NULL); 13818 13819 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13820 13821 #define rptr ((uchar_t *)ipha) 13822 13823 while (mp_chain != NULL) { 13824 first_mp = mp = mp_chain; 13825 mp_chain = mp_chain->b_next; 13826 mp->b_next = NULL; 13827 ll_multicast = 0; 13828 ire = NULL; 13829 13830 /* 13831 * ip_input fast path 13832 */ 13833 13834 /* mblk type is not M_DATA */ 13835 if (mp->b_datap->db_type != M_DATA) { 13836 if (ip_rput_process_notdata(q, &first_mp, ill, 13837 &ll_multicast, &mp)) 13838 continue; 13839 } 13840 13841 ASSERT(mp->b_datap->db_type == M_DATA); 13842 ASSERT(mp->b_datap->db_ref == 1); 13843 13844 13845 ipha = (ipha_t *)mp->b_rptr; 13846 len = mp->b_wptr - rptr; 13847 13848 BUMP_MIB(&ip_mib, ipInReceives); 13849 13850 /* 13851 * IP header ptr not aligned? 13852 * OR IP header not complete in first mblk 13853 */ 13854 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13855 if (!ip_check_and_align_header(q, mp)) 13856 continue; 13857 ipha = (ipha_t *)mp->b_rptr; 13858 len = mp->b_wptr - rptr; 13859 } 13860 13861 /* multiple mblk or too short */ 13862 pkt_len = ntohs(ipha->ipha_length); 13863 len -= pkt_len; 13864 if (len != 0) { 13865 /* 13866 * Make sure we have data length consistent 13867 * with the IP header. 13868 */ 13869 if (mp->b_cont == NULL) { 13870 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13871 BUMP_MIB(&ip_mib, ipInHdrErrors); 13872 ip2dbg(("ip_input: drop pkt\n")); 13873 freemsg(mp); 13874 continue; 13875 } 13876 mp->b_wptr = rptr + pkt_len; 13877 } else if (len += msgdsize(mp->b_cont)) { 13878 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13879 BUMP_MIB(&ip_mib, ipInHdrErrors); 13880 ip2dbg(("ip_input: drop pkt\n")); 13881 freemsg(mp); 13882 continue; 13883 } 13884 (void) adjmsg(mp, -len); 13885 IP_STAT(ip_multimblk3); 13886 } 13887 } 13888 13889 if (ip_loopback_src_or_dst(ipha, ill)) { 13890 ip2dbg(("ip_input: drop pkt\n")); 13891 freemsg(mp); 13892 continue; 13893 } 13894 13895 /* 13896 * Attach any necessary label information to this packet. 13897 */ 13898 if (is_system_labeled() && 13899 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 13900 BUMP_MIB(&ip_mib, ipInDiscards); 13901 freemsg(mp); 13902 continue; 13903 } 13904 13905 opt_len = ipha->ipha_version_and_hdr_length - 13906 IP_SIMPLE_HDR_VERSION; 13907 /* IP version bad or there are IP options */ 13908 if (opt_len) { 13909 if (len != 0) 13910 IP_STAT(ip_multimblk4); 13911 else 13912 IP_STAT(ip_ipoptions); 13913 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13914 continue; 13915 } else { 13916 dst = ipha->ipha_dst; 13917 } 13918 13919 /* 13920 * Invoke the CGTP (multirouting) filtering module to process 13921 * the incoming packet. Packets identified as duplicates 13922 * must be discarded. Filtering is active only if the 13923 * the ip_cgtp_filter ndd variable is non-zero. 13924 */ 13925 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13926 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13927 cgtp_flt_pkt = 13928 ip_cgtp_filter_ops->cfo_filter(q, mp); 13929 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13930 freemsg(first_mp); 13931 continue; 13932 } 13933 } 13934 13935 /* 13936 * If rsvpd is running, let RSVP daemon handle its processing 13937 * and forwarding of RSVP multicast/unicast packets. 13938 * If rsvpd is not running but mrouted is running, RSVP 13939 * multicast packets are forwarded as multicast traffic 13940 * and RSVP unicast packets are forwarded by unicast router. 13941 * If neither rsvpd nor mrouted is running, RSVP multicast 13942 * packets are not forwarded, but the unicast packets are 13943 * forwarded like unicast traffic. 13944 */ 13945 if (ipha->ipha_protocol == IPPROTO_RSVP && 13946 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13947 /* RSVP packet and rsvpd running. Treat as ours */ 13948 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13949 /* 13950 * This assumes that we deliver to all streams for 13951 * multicast and broadcast packets. 13952 * We have to force ll_multicast to 1 to handle the 13953 * M_DATA messages passed in from ip_mroute_decap. 13954 */ 13955 dst = INADDR_BROADCAST; 13956 ll_multicast = 1; 13957 } else if (CLASSD(dst)) { 13958 /* packet is multicast */ 13959 mp->b_next = NULL; 13960 if (ip_rput_process_multicast(q, mp, ill, ipha, 13961 &ll_multicast, &dst)) 13962 continue; 13963 } 13964 13965 13966 /* 13967 * Check if the packet is coming from the Mobile IP 13968 * forward tunnel interface 13969 */ 13970 if (ill->ill_srcif_refcnt > 0) { 13971 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13972 NULL, ill, MATCH_IRE_TYPE); 13973 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13974 ire->ire_ipif->ipif_net_type == 13975 IRE_IF_RESOLVER) { 13976 /* We need to resolve the link layer info */ 13977 ire_refrele(ire); 13978 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13979 ll_multicast, dst); 13980 continue; 13981 } 13982 } 13983 13984 if (ire == NULL) { 13985 ire = ire_cache_lookup(dst, ALL_ZONES, 13986 MBLK_GETLABEL(mp)); 13987 } 13988 13989 /* 13990 * If mipagent is running and reverse tunnel is created as per 13991 * mobile node request, then any packet coming through the 13992 * incoming interface from the mobile-node, should be reverse 13993 * tunneled to it's home agent except those that are destined 13994 * to foreign agent only. 13995 * This needs source address based ire lookup. The routing 13996 * entries for source address based lookup are only created by 13997 * mipagent program only when a reverse tunnel is created. 13998 * Reference : RFC2002, RFC2344 13999 */ 14000 if (ill->ill_mrtun_refcnt > 0) { 14001 ipaddr_t srcaddr; 14002 ire_t *tmp_ire; 14003 14004 tmp_ire = ire; /* Save, we might need it later */ 14005 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14006 ire->ire_type != IRE_BROADCAST)) { 14007 srcaddr = ipha->ipha_src; 14008 ire = ire_mrtun_lookup(srcaddr, ill); 14009 if (ire != NULL) { 14010 /* 14011 * Should not be getting iphada packet 14012 * here. we should only get those for 14013 * IRE_LOCAL traffic, excluded above. 14014 * Fail-safe (drop packet) in the event 14015 * hardware is misbehaving. 14016 */ 14017 if (first_mp != mp) { 14018 /* IPsec KSTATS: beancount me */ 14019 freemsg(first_mp); 14020 } else { 14021 /* 14022 * This packet must be forwarded 14023 * to Reverse Tunnel 14024 */ 14025 ip_mrtun_forward(ire, ill, mp); 14026 } 14027 ire_refrele(ire); 14028 if (tmp_ire != NULL) 14029 ire_refrele(tmp_ire); 14030 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14031 "ip_input_end: q %p (%S)", 14032 q, "uninit"); 14033 continue; 14034 } 14035 } 14036 /* 14037 * If this packet is from a non-mobilenode or a 14038 * mobile-node which does not request reverse 14039 * tunnel service 14040 */ 14041 ire = tmp_ire; 14042 } 14043 14044 14045 /* 14046 * If we reach here that means the incoming packet satisfies 14047 * one of the following conditions: 14048 * - packet is from a mobile node which does not request 14049 * reverse tunnel 14050 * - packet is from a non-mobile node, which is the most 14051 * common case 14052 * - packet is from a reverse tunnel enabled mobile node 14053 * and destined to foreign agent only 14054 */ 14055 14056 if (ire == NULL) { 14057 /* 14058 * No IRE for this destination, so it can't be for us. 14059 * Unless we are forwarding, drop the packet. 14060 * We have to let source routed packets through 14061 * since we don't yet know if they are 'ping -l' 14062 * packets i.e. if they will go out over the 14063 * same interface as they came in on. 14064 */ 14065 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14066 continue; 14067 } 14068 14069 /* 14070 * Broadcast IRE may indicate either broadcast or 14071 * multicast packet 14072 */ 14073 if (ire->ire_type == IRE_BROADCAST) { 14074 /* 14075 * Skip broadcast checks if packet is UDP multicast; 14076 * we'd rather not enter ip_rput_process_broadcast() 14077 * unless the packet is broadcast for real, since 14078 * that routine is a no-op for multicast. 14079 */ 14080 if ((ipha->ipha_protocol != IPPROTO_UDP || 14081 !CLASSD(ipha->ipha_dst)) && 14082 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 14083 dst, cgtp_flt_pkt, ll_multicast)) { 14084 continue; 14085 } 14086 } else if (ire->ire_stq != NULL) { 14087 /* fowarding? */ 14088 ip_rput_process_forward(q, mp, ire, ipha, ill, 14089 ll_multicast); 14090 continue; 14091 } 14092 14093 /* packet not for us */ 14094 if (ire->ire_rfq != q) { 14095 if (ip_rput_notforus(&q, mp, ire, ill)) { 14096 continue; 14097 } 14098 } 14099 14100 switch (ipha->ipha_protocol) { 14101 case IPPROTO_TCP: 14102 ASSERT(first_mp == mp); 14103 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14104 mp, 0, q, ip_ring)) != NULL) { 14105 if (curr_sqp == NULL) { 14106 curr_sqp = GET_SQUEUE(mp); 14107 ASSERT(cnt == 0); 14108 cnt++; 14109 head = tail = mp; 14110 } else if (curr_sqp == GET_SQUEUE(mp)) { 14111 ASSERT(tail != NULL); 14112 cnt++; 14113 tail->b_next = mp; 14114 tail = mp; 14115 } else { 14116 /* 14117 * A different squeue. Send the 14118 * chain for the previous squeue on 14119 * its way. This shouldn't happen 14120 * often unless interrupt binding 14121 * changes. 14122 */ 14123 IP_STAT(ip_input_multi_squeue); 14124 squeue_enter_chain(curr_sqp, head, 14125 tail, cnt, SQTAG_IP_INPUT); 14126 curr_sqp = GET_SQUEUE(mp); 14127 head = mp; 14128 tail = mp; 14129 cnt = 1; 14130 } 14131 } 14132 IRE_REFRELE(ire); 14133 continue; 14134 case IPPROTO_UDP: 14135 ASSERT(first_mp == mp); 14136 ip_udp_input(q, mp, ipha, ire, ill); 14137 IRE_REFRELE(ire); 14138 continue; 14139 case IPPROTO_SCTP: 14140 ASSERT(first_mp == mp); 14141 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14142 q, dst); 14143 continue; 14144 default: 14145 ip_proto_input(q, first_mp, ipha, ire, ill); 14146 IRE_REFRELE(ire); 14147 continue; 14148 } 14149 } 14150 14151 if (head != NULL) 14152 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14153 14154 /* 14155 * This code is there just to make netperf/ttcp look good. 14156 * 14157 * Its possible that after being in polling mode (and having cleared 14158 * the backlog), squeues have turned the interrupt frequency higher 14159 * to improve latency at the expense of more CPU utilization (less 14160 * packets per interrupts or more number of interrupts). Workloads 14161 * like ttcp/netperf do manage to tickle polling once in a while 14162 * but for the remaining time, stay in higher interrupt mode since 14163 * their packet arrival rate is pretty uniform and this shows up 14164 * as higher CPU utilization. Since people care about CPU utilization 14165 * while running netperf/ttcp, turn the interrupt frequency back to 14166 * normal/default if polling has not been used in ip_poll_normal_ticks. 14167 */ 14168 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14169 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14170 ip_ring->rr_poll_state &= ~ILL_POLLING; 14171 ip_ring->rr_blank(ip_ring->rr_handle, 14172 ip_ring->rr_normal_blank_time, 14173 ip_ring->rr_normal_pkt_cnt); 14174 } 14175 } 14176 14177 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14178 "ip_input_end: q %p (%S)", q, "end"); 14179 #undef rptr 14180 } 14181 14182 static void 14183 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14184 t_uscalar_t err) 14185 { 14186 if (dl_err == DL_SYSERR) { 14187 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14188 "%s: %s failed: DL_SYSERR (errno %u)\n", 14189 ill->ill_name, dlpi_prim_str(prim), err); 14190 return; 14191 } 14192 14193 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14194 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14195 dlpi_err_str(dl_err)); 14196 } 14197 14198 /* 14199 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14200 * than DL_UNITDATA_IND messages. If we need to process this message 14201 * exclusively, we call qwriter_ip, in which case we also need to call 14202 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14203 */ 14204 void 14205 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14206 { 14207 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14208 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14209 ill_t *ill; 14210 14211 ip1dbg(("ip_rput_dlpi")); 14212 ill = (ill_t *)q->q_ptr; 14213 switch (dloa->dl_primitive) { 14214 case DL_ERROR_ACK: 14215 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14216 "%s (0x%x), unix %u\n", ill->ill_name, 14217 dlpi_prim_str(dlea->dl_error_primitive), 14218 dlea->dl_error_primitive, 14219 dlpi_err_str(dlea->dl_errno), 14220 dlea->dl_errno, 14221 dlea->dl_unix_errno)); 14222 switch (dlea->dl_error_primitive) { 14223 case DL_UNBIND_REQ: 14224 mutex_enter(&ill->ill_lock); 14225 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14226 cv_signal(&ill->ill_cv); 14227 mutex_exit(&ill->ill_lock); 14228 /* FALLTHRU */ 14229 case DL_NOTIFY_REQ: 14230 case DL_ATTACH_REQ: 14231 case DL_DETACH_REQ: 14232 case DL_INFO_REQ: 14233 case DL_BIND_REQ: 14234 case DL_ENABMULTI_REQ: 14235 case DL_PHYS_ADDR_REQ: 14236 case DL_CAPABILITY_REQ: 14237 case DL_CONTROL_REQ: 14238 /* 14239 * Refhold the ill to match qwriter_ip which does a 14240 * refrele. Since this is on the ill stream we 14241 * unconditionally bump up the refcount without 14242 * checking for ILL_CAN_LOOKUP 14243 */ 14244 ill_refhold(ill); 14245 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14246 CUR_OP, B_FALSE); 14247 return; 14248 case DL_DISABMULTI_REQ: 14249 freemsg(mp); /* Don't want to pass this up */ 14250 return; 14251 default: 14252 break; 14253 } 14254 ip_dlpi_error(ill, dlea->dl_error_primitive, 14255 dlea->dl_errno, dlea->dl_unix_errno); 14256 freemsg(mp); 14257 return; 14258 case DL_INFO_ACK: 14259 case DL_BIND_ACK: 14260 case DL_PHYS_ADDR_ACK: 14261 case DL_NOTIFY_ACK: 14262 case DL_CAPABILITY_ACK: 14263 case DL_CONTROL_ACK: 14264 /* 14265 * Refhold the ill to match qwriter_ip which does a refrele 14266 * Since this is on the ill stream we unconditionally 14267 * bump up the refcount without doing ILL_CAN_LOOKUP. 14268 */ 14269 ill_refhold(ill); 14270 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14271 CUR_OP, B_FALSE); 14272 return; 14273 case DL_NOTIFY_IND: 14274 ill_refhold(ill); 14275 /* 14276 * The DL_NOTIFY_IND is an asynchronous message that has no 14277 * relation to the current ioctl in progress (if any). Hence we 14278 * pass in NEW_OP in this case. 14279 */ 14280 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14281 NEW_OP, B_FALSE); 14282 return; 14283 case DL_OK_ACK: 14284 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14285 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14286 switch (dloa->dl_correct_primitive) { 14287 case DL_UNBIND_REQ: 14288 mutex_enter(&ill->ill_lock); 14289 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14290 cv_signal(&ill->ill_cv); 14291 mutex_exit(&ill->ill_lock); 14292 /* FALLTHRU */ 14293 case DL_ATTACH_REQ: 14294 case DL_DETACH_REQ: 14295 /* 14296 * Refhold the ill to match qwriter_ip which does a 14297 * refrele. Since this is on the ill stream we 14298 * unconditionally bump up the refcount 14299 */ 14300 ill_refhold(ill); 14301 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14302 CUR_OP, B_FALSE); 14303 return; 14304 case DL_ENABMULTI_REQ: 14305 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14306 ill->ill_dlpi_multicast_state = IDMS_OK; 14307 break; 14308 14309 } 14310 break; 14311 default: 14312 break; 14313 } 14314 freemsg(mp); 14315 } 14316 14317 /* 14318 * Handling of DLPI messages that require exclusive access to the ipsq. 14319 * 14320 * Need to do ill_pending_mp_release on ioctl completion, which could 14321 * happen here. (along with mi_copy_done) 14322 */ 14323 /* ARGSUSED */ 14324 static void 14325 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14326 { 14327 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14328 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14329 int err = 0; 14330 ill_t *ill; 14331 ipif_t *ipif = NULL; 14332 mblk_t *mp1 = NULL; 14333 conn_t *connp = NULL; 14334 t_uscalar_t physaddr_req; 14335 mblk_t *mp_hw; 14336 union DL_primitives *dlp; 14337 boolean_t success; 14338 boolean_t ioctl_aborted = B_FALSE; 14339 boolean_t log = B_TRUE; 14340 14341 ip1dbg(("ip_rput_dlpi_writer ..")); 14342 ill = (ill_t *)q->q_ptr; 14343 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14344 14345 ASSERT(IAM_WRITER_ILL(ill)); 14346 14347 /* 14348 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14349 * both are null or non-null. However we can assert that only 14350 * after grabbing the ipsq_lock. So we don't make any assertion 14351 * here and in other places in the code. 14352 */ 14353 ipif = ipsq->ipsq_pending_ipif; 14354 /* 14355 * The current ioctl could have been aborted by the user and a new 14356 * ioctl to bring up another ill could have started. We could still 14357 * get a response from the driver later. 14358 */ 14359 if (ipif != NULL && ipif->ipif_ill != ill) 14360 ioctl_aborted = B_TRUE; 14361 14362 switch (dloa->dl_primitive) { 14363 case DL_ERROR_ACK: 14364 switch (dlea->dl_error_primitive) { 14365 case DL_UNBIND_REQ: 14366 case DL_ATTACH_REQ: 14367 case DL_DETACH_REQ: 14368 case DL_INFO_REQ: 14369 ill_dlpi_done(ill, dlea->dl_error_primitive); 14370 break; 14371 case DL_NOTIFY_REQ: 14372 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14373 log = B_FALSE; 14374 break; 14375 case DL_PHYS_ADDR_REQ: 14376 /* 14377 * For IPv6 only, there are two additional 14378 * phys_addr_req's sent to the driver to get the 14379 * IPv6 token and lla. This allows IP to acquire 14380 * the hardware address format for a given interface 14381 * without having built in knowledge of the hardware 14382 * address. ill_phys_addr_pend keeps track of the last 14383 * DL_PAR sent so we know which response we are 14384 * dealing with. ill_dlpi_done will update 14385 * ill_phys_addr_pend when it sends the next req. 14386 * We don't complete the IOCTL until all three DL_PARs 14387 * have been attempted, so set *_len to 0 and break. 14388 */ 14389 physaddr_req = ill->ill_phys_addr_pend; 14390 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14391 if (physaddr_req == DL_IPV6_TOKEN) { 14392 ill->ill_token_length = 0; 14393 log = B_FALSE; 14394 break; 14395 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14396 ill->ill_nd_lla_len = 0; 14397 log = B_FALSE; 14398 break; 14399 } 14400 /* 14401 * Something went wrong with the DL_PHYS_ADDR_REQ. 14402 * We presumably have an IOCTL hanging out waiting 14403 * for completion. Find it and complete the IOCTL 14404 * with the error noted. 14405 * However, ill_dl_phys was called on an ill queue 14406 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14407 * set. But the ioctl is known to be pending on ill_wq. 14408 */ 14409 if (!ill->ill_ifname_pending) 14410 break; 14411 ill->ill_ifname_pending = 0; 14412 if (!ioctl_aborted) 14413 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14414 if (mp1 != NULL) { 14415 /* 14416 * This operation (SIOCSLIFNAME) must have 14417 * happened on the ill. Assert there is no conn 14418 */ 14419 ASSERT(connp == NULL); 14420 q = ill->ill_wq; 14421 } 14422 break; 14423 case DL_BIND_REQ: 14424 ill_dlpi_done(ill, DL_BIND_REQ); 14425 if (ill->ill_ifname_pending) 14426 break; 14427 /* 14428 * Something went wrong with the bind. We presumably 14429 * have an IOCTL hanging out waiting for completion. 14430 * Find it, take down the interface that was coming 14431 * up, and complete the IOCTL with the error noted. 14432 */ 14433 if (!ioctl_aborted) 14434 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14435 if (mp1 != NULL) { 14436 /* 14437 * This operation (SIOCSLIFFLAGS) must have 14438 * happened from a conn. 14439 */ 14440 ASSERT(connp != NULL); 14441 q = CONNP_TO_WQ(connp); 14442 if (ill->ill_move_in_progress) { 14443 ILL_CLEAR_MOVE(ill); 14444 } 14445 (void) ipif_down(ipif, NULL, NULL); 14446 /* error is set below the switch */ 14447 } 14448 break; 14449 case DL_ENABMULTI_REQ: 14450 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 14451 14452 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14453 ill->ill_dlpi_multicast_state = IDMS_FAILED; 14454 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 14455 ipif_t *ipif; 14456 14457 log = B_FALSE; 14458 printf("ip: joining multicasts failed (%d)" 14459 " on %s - will use link layer " 14460 "broadcasts for multicast\n", 14461 dlea->dl_errno, ill->ill_name); 14462 14463 /* 14464 * Set up the multicast mapping alone. 14465 * writer, so ok to access ill->ill_ipif 14466 * without any lock. 14467 */ 14468 ipif = ill->ill_ipif; 14469 mutex_enter(&ill->ill_phyint->phyint_lock); 14470 ill->ill_phyint->phyint_flags |= 14471 PHYI_MULTI_BCAST; 14472 mutex_exit(&ill->ill_phyint->phyint_lock); 14473 14474 if (!ill->ill_isv6) { 14475 (void) ipif_arp_setup_multicast(ipif, 14476 NULL); 14477 } else { 14478 (void) ipif_ndp_setup_multicast(ipif, 14479 NULL); 14480 } 14481 } 14482 freemsg(mp); /* Don't want to pass this up */ 14483 return; 14484 case DL_CAPABILITY_REQ: 14485 case DL_CONTROL_REQ: 14486 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 14487 "DL_CAPABILITY/CONTROL REQ\n")); 14488 ill_dlpi_done(ill, dlea->dl_error_primitive); 14489 ill->ill_capab_state = IDMS_FAILED; 14490 freemsg(mp); 14491 return; 14492 } 14493 /* 14494 * Note the error for IOCTL completion (mp1 is set when 14495 * ready to complete ioctl). If ill_ifname_pending_err is 14496 * set, an error occured during plumbing (ill_ifname_pending), 14497 * so we want to report that error. 14498 * 14499 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 14500 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 14501 * expected to get errack'd if the driver doesn't support 14502 * these flags (e.g. ethernet). log will be set to B_FALSE 14503 * if these error conditions are encountered. 14504 */ 14505 if (mp1 != NULL) { 14506 if (ill->ill_ifname_pending_err != 0) { 14507 err = ill->ill_ifname_pending_err; 14508 ill->ill_ifname_pending_err = 0; 14509 } else { 14510 err = dlea->dl_unix_errno ? 14511 dlea->dl_unix_errno : ENXIO; 14512 } 14513 /* 14514 * If we're plumbing an interface and an error hasn't already 14515 * been saved, set ill_ifname_pending_err to the error passed 14516 * up. Ignore the error if log is B_FALSE (see comment above). 14517 */ 14518 } else if (log && ill->ill_ifname_pending && 14519 ill->ill_ifname_pending_err == 0) { 14520 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 14521 dlea->dl_unix_errno : ENXIO; 14522 } 14523 14524 if (log) 14525 ip_dlpi_error(ill, dlea->dl_error_primitive, 14526 dlea->dl_errno, dlea->dl_unix_errno); 14527 break; 14528 case DL_CAPABILITY_ACK: { 14529 boolean_t reneg_flag = B_FALSE; 14530 /* Call a routine to handle this one. */ 14531 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14532 /* 14533 * Check if the ACK is due to renegotiation case since we 14534 * will need to send a new CAPABILITY_REQ later. 14535 */ 14536 if (ill->ill_capab_state == IDMS_RENEG) { 14537 /* This is the ack for a renogiation case */ 14538 reneg_flag = B_TRUE; 14539 ill->ill_capab_state = IDMS_UNKNOWN; 14540 } 14541 ill_capability_ack(ill, mp); 14542 if (reneg_flag) 14543 ill_capability_probe(ill); 14544 break; 14545 } 14546 case DL_CONTROL_ACK: 14547 /* We treat all of these as "fire and forget" */ 14548 ill_dlpi_done(ill, DL_CONTROL_REQ); 14549 break; 14550 case DL_INFO_ACK: 14551 /* Call a routine to handle this one. */ 14552 ill_dlpi_done(ill, DL_INFO_REQ); 14553 ip_ll_subnet_defaults(ill, mp); 14554 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14555 return; 14556 case DL_BIND_ACK: 14557 /* 14558 * We should have an IOCTL waiting on this unless 14559 * sent by ill_dl_phys, in which case just return 14560 */ 14561 ill_dlpi_done(ill, DL_BIND_REQ); 14562 if (ill->ill_ifname_pending) 14563 break; 14564 14565 if (!ioctl_aborted) 14566 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14567 if (mp1 == NULL) 14568 break; 14569 ASSERT(connp != NULL); 14570 q = CONNP_TO_WQ(connp); 14571 14572 /* 14573 * We are exclusive. So nothing can change even after 14574 * we get the pending mp. If need be we can put it back 14575 * and restart, as in calling ipif_arp_up() below. 14576 */ 14577 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14578 14579 mutex_enter(&ill->ill_lock); 14580 ill->ill_dl_up = 1; 14581 mutex_exit(&ill->ill_lock); 14582 14583 /* 14584 * Now bring up the resolver, when that is 14585 * done we'll create IREs and we are done. 14586 */ 14587 if (ill->ill_isv6) { 14588 /* 14589 * v6 interfaces. 14590 * Unlike ARP which has to do another bind 14591 * and attach, once we get here we are 14592 * done withh NDP. Except in the case of 14593 * ILLF_XRESOLV, in which case we send an 14594 * AR_INTERFACE_UP to the external resolver. 14595 * If all goes well, the ioctl will complete 14596 * in ip_rput(). If there's an error, we 14597 * complete it here. 14598 */ 14599 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14600 B_FALSE); 14601 if (err == 0) { 14602 if (ill->ill_flags & ILLF_XRESOLV) { 14603 mutex_enter(&connp->conn_lock); 14604 mutex_enter(&ill->ill_lock); 14605 success = ipsq_pending_mp_add( 14606 connp, ipif, q, mp1, 0); 14607 mutex_exit(&ill->ill_lock); 14608 mutex_exit(&connp->conn_lock); 14609 if (success) { 14610 err = ipif_resolver_up(ipif, 14611 B_FALSE); 14612 if (err == EINPROGRESS) { 14613 freemsg(mp); 14614 return; 14615 } 14616 ASSERT(err != 0); 14617 mp1 = ipsq_pending_mp_get(ipsq, 14618 &connp); 14619 ASSERT(mp1 != NULL); 14620 } else { 14621 /* conn has started closing */ 14622 err = EINTR; 14623 } 14624 } else { /* Non XRESOLV interface */ 14625 err = ipif_up_done_v6(ipif); 14626 } 14627 } 14628 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14629 /* 14630 * ARP and other v4 external resolvers. 14631 * Leave the pending mblk intact so that 14632 * the ioctl completes in ip_rput(). 14633 */ 14634 mutex_enter(&connp->conn_lock); 14635 mutex_enter(&ill->ill_lock); 14636 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14637 mutex_exit(&ill->ill_lock); 14638 mutex_exit(&connp->conn_lock); 14639 if (success) { 14640 err = ipif_resolver_up(ipif, B_FALSE); 14641 if (err == EINPROGRESS) { 14642 freemsg(mp); 14643 return; 14644 } 14645 ASSERT(err != 0); 14646 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14647 } else { 14648 /* The conn has started closing */ 14649 err = EINTR; 14650 } 14651 } else { 14652 /* 14653 * This one is complete. Reply to pending ioctl. 14654 */ 14655 err = ipif_up_done(ipif); 14656 } 14657 14658 if ((err == 0) && (ill->ill_up_ipifs)) { 14659 err = ill_up_ipifs(ill, q, mp1); 14660 if (err == EINPROGRESS) { 14661 freemsg(mp); 14662 return; 14663 } 14664 } 14665 14666 if (ill->ill_up_ipifs) { 14667 ill_group_cleanup(ill); 14668 } 14669 14670 break; 14671 case DL_NOTIFY_IND: { 14672 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14673 ire_t *ire; 14674 boolean_t need_ire_walk_v4 = B_FALSE; 14675 boolean_t need_ire_walk_v6 = B_FALSE; 14676 14677 /* 14678 * Change the address everywhere we need to. 14679 * What we're getting here is a link-level addr or phys addr. 14680 * The new addr is at notify + notify->dl_addr_offset 14681 * The address length is notify->dl_addr_length; 14682 */ 14683 switch (notify->dl_notification) { 14684 case DL_NOTE_PHYS_ADDR: 14685 mp_hw = copyb(mp); 14686 if (mp_hw == NULL) { 14687 err = ENOMEM; 14688 break; 14689 } 14690 dlp = (union DL_primitives *)mp_hw->b_rptr; 14691 /* 14692 * We currently don't support changing 14693 * the token via DL_NOTIFY_IND. 14694 * When we do support it, we have to consider 14695 * what the implications are with respect to 14696 * the token and the link local address. 14697 */ 14698 mutex_enter(&ill->ill_lock); 14699 if (dlp->notify_ind.dl_data == 14700 DL_IPV6_LINK_LAYER_ADDR) { 14701 if (ill->ill_nd_lla_mp != NULL) 14702 freemsg(ill->ill_nd_lla_mp); 14703 ill->ill_nd_lla_mp = mp_hw; 14704 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14705 dlp->notify_ind.dl_addr_offset; 14706 ill->ill_nd_lla_len = 14707 dlp->notify_ind.dl_addr_length - 14708 ABS(ill->ill_sap_length); 14709 mutex_exit(&ill->ill_lock); 14710 break; 14711 } else if (dlp->notify_ind.dl_data == 14712 DL_CURR_PHYS_ADDR) { 14713 if (ill->ill_phys_addr_mp != NULL) 14714 freemsg(ill->ill_phys_addr_mp); 14715 ill->ill_phys_addr_mp = mp_hw; 14716 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14717 dlp->notify_ind.dl_addr_offset; 14718 ill->ill_phys_addr_length = 14719 dlp->notify_ind.dl_addr_length - 14720 ABS(ill->ill_sap_length); 14721 if (ill->ill_isv6 && 14722 !(ill->ill_flags & ILLF_XRESOLV)) { 14723 if (ill->ill_nd_lla_mp != NULL) 14724 freemsg(ill->ill_nd_lla_mp); 14725 ill->ill_nd_lla_mp = copyb(mp_hw); 14726 ill->ill_nd_lla = (uchar_t *) 14727 ill->ill_nd_lla_mp->b_rptr + 14728 dlp->notify_ind.dl_addr_offset; 14729 ill->ill_nd_lla_len = 14730 ill->ill_phys_addr_length; 14731 } 14732 } 14733 mutex_exit(&ill->ill_lock); 14734 /* 14735 * Send out gratuitous arp request for our new 14736 * hardware address. 14737 */ 14738 for (ipif = ill->ill_ipif; ipif != NULL; 14739 ipif = ipif->ipif_next) { 14740 if (!(ipif->ipif_flags & IPIF_UP)) 14741 continue; 14742 if (ill->ill_isv6) { 14743 ipif_ndp_down(ipif); 14744 /* 14745 * Set B_TRUE to enable 14746 * ipif_ndp_up() to send out 14747 * unsolicited advertisements. 14748 */ 14749 err = ipif_ndp_up(ipif, 14750 &ipif->ipif_v6lcl_addr, 14751 B_TRUE); 14752 if (err) { 14753 ip1dbg(( 14754 "ip_rput_dlpi_writer: " 14755 "Failed to update ndp " 14756 "err %d\n", err)); 14757 } 14758 } else { 14759 /* 14760 * IPv4 ARP case 14761 * 14762 * Set B_TRUE, as we only want 14763 * ipif_resolver_up to send an 14764 * AR_ENTRY_ADD request up to 14765 * ARP. 14766 */ 14767 err = ipif_resolver_up(ipif, 14768 B_TRUE); 14769 if (err) { 14770 ip1dbg(( 14771 "ip_rput_dlpi_writer: " 14772 "Failed to update arp " 14773 "err %d\n", err)); 14774 } 14775 } 14776 } 14777 /* 14778 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14779 * case so that all old fastpath information can be 14780 * purged from IRE caches. 14781 */ 14782 /* FALLTHRU */ 14783 case DL_NOTE_FASTPATH_FLUSH: 14784 /* 14785 * Any fastpath probe sent henceforth will get the 14786 * new fp mp. So we first delete any ires that are 14787 * waiting for the fastpath. Then walk all ires and 14788 * delete the ire or delete the fp mp. In the case of 14789 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14790 * recreate the ire's without going through a complex 14791 * ipif up/down dance. So we don't delete the ire 14792 * itself, but just the ire_fp_mp for these 2 ire's 14793 * In the case of the other ire's we delete the ire's 14794 * themselves. Access to ire_fp_mp is completely 14795 * protected by ire_lock for IRE_MIPRTUN and 14796 * IRE_BROADCAST. Deleting the ire is preferable in the 14797 * other cases for performance. 14798 */ 14799 if (ill->ill_isv6) { 14800 nce_fastpath_list_dispatch(ill, NULL, NULL); 14801 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14802 NULL); 14803 } else { 14804 ire_fastpath_list_dispatch(ill, NULL, NULL); 14805 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14806 IRE_CACHE | IRE_BROADCAST, 14807 ire_fastpath_flush, NULL, ill); 14808 mutex_enter(&ire_mrtun_lock); 14809 if (ire_mrtun_count != 0) { 14810 mutex_exit(&ire_mrtun_lock); 14811 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14812 IRE_MIPRTUN, ire_fastpath_flush, 14813 NULL, ill); 14814 } else { 14815 mutex_exit(&ire_mrtun_lock); 14816 } 14817 } 14818 break; 14819 case DL_NOTE_SDU_SIZE: 14820 /* 14821 * Change the MTU size of the interface, of all 14822 * attached ipif's, and of all relevant ire's. The 14823 * new value's a uint32_t at notify->dl_data. 14824 * Mtu change Vs. new ire creation - protocol below. 14825 * 14826 * a Mark the ipif as IPIF_CHANGING. 14827 * b Set the new mtu in the ipif. 14828 * c Change the ire_max_frag on all affected ires 14829 * d Unmark the IPIF_CHANGING 14830 * 14831 * To see how the protocol works, assume an interface 14832 * route is also being added simultaneously by 14833 * ip_rt_add and let 'ipif' be the ipif referenced by 14834 * the ire. If the ire is created before step a, 14835 * it will be cleaned up by step c. If the ire is 14836 * created after step d, it will see the new value of 14837 * ipif_mtu. Any attempt to create the ire between 14838 * steps a to d will fail because of the IPIF_CHANGING 14839 * flag. Note that ire_create() is passed a pointer to 14840 * the ipif_mtu, and not the value. During ire_add 14841 * under the bucket lock, the ire_max_frag of the 14842 * new ire being created is set from the ipif/ire from 14843 * which it is being derived. 14844 */ 14845 mutex_enter(&ill->ill_lock); 14846 ill->ill_max_frag = (uint_t)notify->dl_data; 14847 14848 /* 14849 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14850 * leave it alone 14851 */ 14852 if (ill->ill_mtu_userspecified) { 14853 mutex_exit(&ill->ill_lock); 14854 break; 14855 } 14856 ill->ill_max_mtu = ill->ill_max_frag; 14857 if (ill->ill_isv6) { 14858 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14859 ill->ill_max_mtu = IPV6_MIN_MTU; 14860 } else { 14861 if (ill->ill_max_mtu < IP_MIN_MTU) 14862 ill->ill_max_mtu = IP_MIN_MTU; 14863 } 14864 for (ipif = ill->ill_ipif; ipif != NULL; 14865 ipif = ipif->ipif_next) { 14866 /* 14867 * Don't override the mtu if the user 14868 * has explicitly set it. 14869 */ 14870 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14871 continue; 14872 ipif->ipif_mtu = (uint_t)notify->dl_data; 14873 if (ipif->ipif_isv6) 14874 ire = ipif_to_ire_v6(ipif); 14875 else 14876 ire = ipif_to_ire(ipif); 14877 if (ire != NULL) { 14878 ire->ire_max_frag = ipif->ipif_mtu; 14879 ire_refrele(ire); 14880 } 14881 if (ipif->ipif_flags & IPIF_UP) { 14882 if (ill->ill_isv6) 14883 need_ire_walk_v6 = B_TRUE; 14884 else 14885 need_ire_walk_v4 = B_TRUE; 14886 } 14887 } 14888 mutex_exit(&ill->ill_lock); 14889 if (need_ire_walk_v4) 14890 ire_walk_v4(ill_mtu_change, (char *)ill, 14891 ALL_ZONES); 14892 if (need_ire_walk_v6) 14893 ire_walk_v6(ill_mtu_change, (char *)ill, 14894 ALL_ZONES); 14895 break; 14896 case DL_NOTE_LINK_UP: 14897 case DL_NOTE_LINK_DOWN: { 14898 /* 14899 * We are writer. ill / phyint / ipsq assocs stable. 14900 * The RUNNING flag reflects the state of the link. 14901 */ 14902 phyint_t *phyint = ill->ill_phyint; 14903 uint64_t new_phyint_flags; 14904 boolean_t changed = B_FALSE; 14905 14906 mutex_enter(&phyint->phyint_lock); 14907 new_phyint_flags = 14908 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14909 phyint->phyint_flags | PHYI_RUNNING : 14910 phyint->phyint_flags & ~PHYI_RUNNING; 14911 if (new_phyint_flags != phyint->phyint_flags) { 14912 phyint->phyint_flags = new_phyint_flags; 14913 changed = B_TRUE; 14914 } 14915 mutex_exit(&phyint->phyint_lock); 14916 /* 14917 * If the flags have changed, send a message to 14918 * the routing socket. 14919 */ 14920 if (changed) { 14921 if (phyint->phyint_illv4 != NULL) { 14922 ip_rts_ifmsg( 14923 phyint->phyint_illv4->ill_ipif); 14924 } 14925 if (phyint->phyint_illv6 != NULL) { 14926 ip_rts_ifmsg( 14927 phyint->phyint_illv6->ill_ipif); 14928 } 14929 } 14930 break; 14931 } 14932 case DL_NOTE_PROMISC_ON_PHYS: 14933 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14934 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14935 mutex_enter(&ill->ill_lock); 14936 ill->ill_promisc_on_phys = B_TRUE; 14937 mutex_exit(&ill->ill_lock); 14938 break; 14939 case DL_NOTE_PROMISC_OFF_PHYS: 14940 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14941 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14942 mutex_enter(&ill->ill_lock); 14943 ill->ill_promisc_on_phys = B_FALSE; 14944 mutex_exit(&ill->ill_lock); 14945 break; 14946 case DL_NOTE_CAPAB_RENEG: 14947 /* 14948 * Something changed on the driver side. 14949 * It wants us to renegotiate the capabilities 14950 * on this ill. The most likely cause is the 14951 * aggregation interface under us where a 14952 * port got added or went away. 14953 * 14954 * We reset the capabilities and set the 14955 * state to IDMS_RENG so that when the ack 14956 * comes back, we can start the 14957 * renegotiation process. 14958 */ 14959 ill_capability_reset(ill); 14960 ill->ill_capab_state = IDMS_RENEG; 14961 break; 14962 default: 14963 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14964 "type 0x%x for DL_NOTIFY_IND\n", 14965 notify->dl_notification)); 14966 break; 14967 } 14968 14969 /* 14970 * As this is an asynchronous operation, we 14971 * should not call ill_dlpi_done 14972 */ 14973 break; 14974 } 14975 case DL_NOTIFY_ACK: 14976 /* 14977 * Don't really need to check for what notifications 14978 * are supported; we'll process what gets sent upstream, 14979 * and we know it'll be something we support changing 14980 * based on our DL_NOTIFY_REQ. 14981 */ 14982 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14983 break; 14984 case DL_PHYS_ADDR_ACK: { 14985 /* 14986 * We should have an IOCTL waiting on this when request 14987 * sent by ill_dl_phys. 14988 * However, ill_dl_phys was called on an ill queue (from 14989 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14990 * ioctl is known to be pending on ill_wq. 14991 * There are two additional phys_addr_req's sent to the 14992 * driver to get the token and lla. ill_phys_addr_pend 14993 * keeps track of the last one sent so we know which 14994 * response we are dealing with. ill_dlpi_done will 14995 * update ill_phys_addr_pend when it sends the next req. 14996 * We don't complete the IOCTL until all three DL_PARs 14997 * have been attempted. 14998 * 14999 * We don't need any lock to update ill_nd_lla* fields, 15000 * since the ill is not yet up, We grab the lock just 15001 * for uniformity with other code that accesses ill_nd_lla. 15002 */ 15003 physaddr_req = ill->ill_phys_addr_pend; 15004 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15005 if (physaddr_req == DL_IPV6_TOKEN || 15006 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15007 if (physaddr_req == DL_IPV6_TOKEN) { 15008 /* 15009 * bcopy to low-order bits of ill_token 15010 * 15011 * XXX Temporary hack - currently, 15012 * all known tokens are 64 bits, 15013 * so I'll cheat for the moment. 15014 */ 15015 dlp = (union DL_primitives *)mp->b_rptr; 15016 15017 mutex_enter(&ill->ill_lock); 15018 bcopy((uchar_t *)(mp->b_rptr + 15019 dlp->physaddr_ack.dl_addr_offset), 15020 (void *)&ill->ill_token.s6_addr32[2], 15021 dlp->physaddr_ack.dl_addr_length); 15022 ill->ill_token_length = 15023 dlp->physaddr_ack.dl_addr_length; 15024 mutex_exit(&ill->ill_lock); 15025 } else { 15026 ASSERT(ill->ill_nd_lla_mp == NULL); 15027 mp_hw = copyb(mp); 15028 if (mp_hw == NULL) { 15029 err = ENOMEM; 15030 break; 15031 } 15032 dlp = (union DL_primitives *)mp_hw->b_rptr; 15033 mutex_enter(&ill->ill_lock); 15034 ill->ill_nd_lla_mp = mp_hw; 15035 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15036 dlp->physaddr_ack.dl_addr_offset; 15037 ill->ill_nd_lla_len = 15038 dlp->physaddr_ack.dl_addr_length; 15039 mutex_exit(&ill->ill_lock); 15040 } 15041 break; 15042 } 15043 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15044 ASSERT(ill->ill_phys_addr_mp == NULL); 15045 if (!ill->ill_ifname_pending) 15046 break; 15047 ill->ill_ifname_pending = 0; 15048 if (!ioctl_aborted) 15049 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15050 if (mp1 != NULL) { 15051 ASSERT(connp == NULL); 15052 q = ill->ill_wq; 15053 } 15054 /* 15055 * If any error acks received during the plumbing sequence, 15056 * ill_ifname_pending_err will be set. Break out and send up 15057 * the error to the pending ioctl. 15058 */ 15059 if (ill->ill_ifname_pending_err != 0) { 15060 err = ill->ill_ifname_pending_err; 15061 ill->ill_ifname_pending_err = 0; 15062 break; 15063 } 15064 /* 15065 * Get the interface token. If the zeroth interface 15066 * address is zero then set the address to the link local 15067 * address 15068 */ 15069 mp_hw = copyb(mp); 15070 if (mp_hw == NULL) { 15071 err = ENOMEM; 15072 break; 15073 } 15074 dlp = (union DL_primitives *)mp_hw->b_rptr; 15075 ill->ill_phys_addr_mp = mp_hw; 15076 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15077 dlp->physaddr_ack.dl_addr_offset; 15078 if (dlp->physaddr_ack.dl_addr_length == 0 || 15079 ill->ill_phys_addr_length == 0 || 15080 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15081 /* 15082 * Compatibility: atun driver returns a length of 0. 15083 * ipdptp has an ill_phys_addr_length of zero(from 15084 * DL_BIND_ACK) but a non-zero length here. 15085 * ipd has an ill_phys_addr_length of 4(from 15086 * DL_BIND_ACK) but a non-zero length here. 15087 */ 15088 ill->ill_phys_addr = NULL; 15089 } else if (dlp->physaddr_ack.dl_addr_length != 15090 ill->ill_phys_addr_length) { 15091 ip0dbg(("DL_PHYS_ADDR_ACK: " 15092 "Address length mismatch %d %d\n", 15093 dlp->physaddr_ack.dl_addr_length, 15094 ill->ill_phys_addr_length)); 15095 err = EINVAL; 15096 break; 15097 } 15098 mutex_enter(&ill->ill_lock); 15099 if (ill->ill_nd_lla_mp == NULL) { 15100 ill->ill_nd_lla_mp = copyb(mp_hw); 15101 if (ill->ill_nd_lla_mp == NULL) { 15102 err = ENOMEM; 15103 mutex_exit(&ill->ill_lock); 15104 break; 15105 } 15106 ill->ill_nd_lla = 15107 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15108 dlp->physaddr_ack.dl_addr_offset; 15109 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15110 } 15111 mutex_exit(&ill->ill_lock); 15112 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15113 (void) ill_setdefaulttoken(ill); 15114 15115 /* 15116 * If the ill zero interface has a zero address assign 15117 * it the proper link local address. 15118 */ 15119 ASSERT(ill->ill_ipif->ipif_id == 0); 15120 if (ipif != NULL && 15121 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15122 (void) ipif_setlinklocal(ipif); 15123 break; 15124 } 15125 case DL_OK_ACK: 15126 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15127 dlpi_prim_str((int)dloa->dl_correct_primitive), 15128 dloa->dl_correct_primitive)); 15129 switch (dloa->dl_correct_primitive) { 15130 case DL_UNBIND_REQ: 15131 case DL_ATTACH_REQ: 15132 case DL_DETACH_REQ: 15133 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15134 break; 15135 } 15136 break; 15137 default: 15138 break; 15139 } 15140 15141 freemsg(mp); 15142 if (mp1) { 15143 struct iocblk *iocp; 15144 int mode; 15145 15146 /* 15147 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15148 * SIOCSLIFNAME do a copyout. 15149 */ 15150 iocp = (struct iocblk *)mp1->b_rptr; 15151 15152 if (iocp->ioc_cmd == SIOCLIFADDIF || 15153 iocp->ioc_cmd == SIOCSLIFNAME) 15154 mode = COPYOUT; 15155 else 15156 mode = NO_COPYOUT; 15157 /* 15158 * The ioctl must complete now without EINPROGRESS 15159 * since ipsq_pending_mp_get has removed the ioctl mblk 15160 * from ipsq_pending_mp. Otherwise the ioctl will be 15161 * stuck for ever in the ipsq. 15162 */ 15163 ASSERT(err != EINPROGRESS); 15164 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15165 15166 } 15167 } 15168 15169 /* 15170 * ip_rput_other is called by ip_rput to handle messages modifying the global 15171 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15172 */ 15173 /* ARGSUSED */ 15174 void 15175 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15176 { 15177 ill_t *ill; 15178 struct iocblk *iocp; 15179 mblk_t *mp1; 15180 conn_t *connp = NULL; 15181 15182 ip1dbg(("ip_rput_other ")); 15183 ill = (ill_t *)q->q_ptr; 15184 /* 15185 * This routine is not a writer in the case of SIOCGTUNPARAM 15186 * in which case ipsq is NULL. 15187 */ 15188 if (ipsq != NULL) { 15189 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15190 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15191 } 15192 15193 switch (mp->b_datap->db_type) { 15194 case M_ERROR: 15195 case M_HANGUP: 15196 /* 15197 * The device has a problem. We force the ILL down. It can 15198 * be brought up again manually using SIOCSIFFLAGS (via 15199 * ifconfig or equivalent). 15200 */ 15201 ASSERT(ipsq != NULL); 15202 if (mp->b_rptr < mp->b_wptr) 15203 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15204 if (ill->ill_error == 0) 15205 ill->ill_error = ENXIO; 15206 if (!ill_down_start(q, mp)) 15207 return; 15208 ipif_all_down_tail(ipsq, q, mp, NULL); 15209 break; 15210 case M_IOCACK: 15211 iocp = (struct iocblk *)mp->b_rptr; 15212 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15213 switch (iocp->ioc_cmd) { 15214 case SIOCSTUNPARAM: 15215 case OSIOCSTUNPARAM: 15216 ASSERT(ipsq != NULL); 15217 /* 15218 * Finish socket ioctl passed through to tun. 15219 * We should have an IOCTL waiting on this. 15220 */ 15221 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15222 if (ill->ill_isv6) { 15223 struct iftun_req *ta; 15224 15225 /* 15226 * if a source or destination is 15227 * being set, try and set the link 15228 * local address for the tunnel 15229 */ 15230 ta = (struct iftun_req *)mp->b_cont-> 15231 b_cont->b_rptr; 15232 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15233 ipif_set_tun_llink(ill, ta); 15234 } 15235 15236 } 15237 if (mp1 != NULL) { 15238 /* 15239 * Now copy back the b_next/b_prev used by 15240 * mi code for the mi_copy* functions. 15241 * See ip_sioctl_tunparam() for the reason. 15242 * Also protect against missing b_cont. 15243 */ 15244 if (mp->b_cont != NULL) { 15245 mp->b_cont->b_next = 15246 mp1->b_cont->b_next; 15247 mp->b_cont->b_prev = 15248 mp1->b_cont->b_prev; 15249 } 15250 inet_freemsg(mp1); 15251 ASSERT(ipsq->ipsq_current_ipif != NULL); 15252 ASSERT(connp != NULL); 15253 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15254 iocp->ioc_error, NO_COPYOUT, 15255 ipsq->ipsq_current_ipif, ipsq); 15256 } else { 15257 ASSERT(connp == NULL); 15258 putnext(q, mp); 15259 } 15260 break; 15261 case SIOCGTUNPARAM: 15262 case OSIOCGTUNPARAM: 15263 /* 15264 * This is really M_IOCDATA from the tunnel driver. 15265 * convert back and complete the ioctl. 15266 * We should have an IOCTL waiting on this. 15267 */ 15268 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15269 if (mp1) { 15270 /* 15271 * Now copy back the b_next/b_prev used by 15272 * mi code for the mi_copy* functions. 15273 * See ip_sioctl_tunparam() for the reason. 15274 * Also protect against missing b_cont. 15275 */ 15276 if (mp->b_cont != NULL) { 15277 mp->b_cont->b_next = 15278 mp1->b_cont->b_next; 15279 mp->b_cont->b_prev = 15280 mp1->b_cont->b_prev; 15281 } 15282 inet_freemsg(mp1); 15283 if (iocp->ioc_error == 0) 15284 mp->b_datap->db_type = M_IOCDATA; 15285 ASSERT(connp != NULL); 15286 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15287 iocp->ioc_error, COPYOUT, NULL, NULL); 15288 } else { 15289 ASSERT(connp == NULL); 15290 putnext(q, mp); 15291 } 15292 break; 15293 default: 15294 break; 15295 } 15296 break; 15297 case M_IOCNAK: 15298 iocp = (struct iocblk *)mp->b_rptr; 15299 15300 switch (iocp->ioc_cmd) { 15301 int mode; 15302 ipif_t *ipif; 15303 15304 case DL_IOC_HDR_INFO: 15305 /* 15306 * If this was the first attempt turn of the 15307 * fastpath probing. 15308 */ 15309 mutex_enter(&ill->ill_lock); 15310 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15311 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15312 mutex_exit(&ill->ill_lock); 15313 ill_fastpath_nack(ill); 15314 ip1dbg(("ip_rput: DLPI fastpath off on " 15315 "interface %s\n", 15316 ill->ill_name)); 15317 } else { 15318 mutex_exit(&ill->ill_lock); 15319 } 15320 freemsg(mp); 15321 break; 15322 case SIOCSTUNPARAM: 15323 case OSIOCSTUNPARAM: 15324 ASSERT(ipsq != NULL); 15325 /* 15326 * Finish socket ioctl passed through to tun 15327 * We should have an IOCTL waiting on this. 15328 */ 15329 /* FALLTHRU */ 15330 case SIOCGTUNPARAM: 15331 case OSIOCGTUNPARAM: 15332 /* 15333 * This is really M_IOCDATA from the tunnel driver. 15334 * convert back and complete the ioctl. 15335 * We should have an IOCTL waiting on this. 15336 */ 15337 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15338 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15339 mp1 = ill_pending_mp_get(ill, &connp, 15340 iocp->ioc_id); 15341 mode = COPYOUT; 15342 ipsq = NULL; 15343 ipif = NULL; 15344 } else { 15345 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15346 mode = NO_COPYOUT; 15347 ASSERT(ipsq->ipsq_current_ipif != NULL); 15348 ipif = ipsq->ipsq_current_ipif; 15349 } 15350 if (mp1 != NULL) { 15351 /* 15352 * Now copy back the b_next/b_prev used by 15353 * mi code for the mi_copy* functions. 15354 * See ip_sioctl_tunparam() for the reason. 15355 * Also protect against missing b_cont. 15356 */ 15357 if (mp->b_cont != NULL) { 15358 mp->b_cont->b_next = 15359 mp1->b_cont->b_next; 15360 mp->b_cont->b_prev = 15361 mp1->b_cont->b_prev; 15362 } 15363 inet_freemsg(mp1); 15364 if (iocp->ioc_error == 0) 15365 iocp->ioc_error = EINVAL; 15366 ASSERT(connp != NULL); 15367 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15368 iocp->ioc_error, mode, ipif, ipsq); 15369 } else { 15370 ASSERT(connp == NULL); 15371 putnext(q, mp); 15372 } 15373 break; 15374 default: 15375 break; 15376 } 15377 default: 15378 break; 15379 } 15380 } 15381 15382 /* 15383 * NOTE : This function does not ire_refrele the ire argument passed in. 15384 * 15385 * IPQoS notes 15386 * IP policy is invoked twice for a forwarded packet, once on the read side 15387 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15388 * enabled. An additional parameter, in_ill, has been added for this purpose. 15389 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15390 * because ip_mroute drops this information. 15391 * 15392 */ 15393 void 15394 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15395 { 15396 uint32_t pkt_len; 15397 queue_t *q; 15398 uint32_t sum; 15399 #define rptr ((uchar_t *)ipha) 15400 uint32_t max_frag; 15401 uint32_t ill_index; 15402 15403 /* Get the ill_index of the incoming ILL */ 15404 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15405 15406 /* Initiate Read side IPPF processing */ 15407 if (IPP_ENABLED(IPP_FWD_IN)) { 15408 ip_process(IPP_FWD_IN, &mp, ill_index); 15409 if (mp == NULL) { 15410 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15411 "during IPPF processing\n")); 15412 return; 15413 } 15414 } 15415 pkt_len = ntohs(ipha->ipha_length); 15416 15417 /* Adjust the checksum to reflect the ttl decrement. */ 15418 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 15419 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 15420 15421 if (ipha->ipha_ttl-- <= 1) { 15422 if (ip_csum_hdr(ipha)) { 15423 BUMP_MIB(&ip_mib, ipInCksumErrs); 15424 goto drop_pkt; 15425 } 15426 /* 15427 * Note: ire_stq this will be NULL for multicast 15428 * datagrams using the long path through arp (the IRE 15429 * is not an IRE_CACHE). This should not cause 15430 * problems since we don't generate ICMP errors for 15431 * multicast packets. 15432 */ 15433 q = ire->ire_stq; 15434 if (q) 15435 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 15436 else 15437 freemsg(mp); 15438 return; 15439 } 15440 15441 /* 15442 * Don't forward if the interface is down 15443 */ 15444 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 15445 BUMP_MIB(&ip_mib, ipInDiscards); 15446 goto drop_pkt; 15447 } 15448 15449 /* Get the ill_index of the outgoing ILL */ 15450 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 15451 15452 if (is_system_labeled()) { 15453 mblk_t *mp1; 15454 15455 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 15456 BUMP_MIB(&ip_mib, ipForwProhibits); 15457 goto drop_pkt; 15458 } 15459 /* Size may have changed */ 15460 mp = mp1; 15461 ipha = (ipha_t *)mp->b_rptr; 15462 pkt_len = ntohs(ipha->ipha_length); 15463 } 15464 15465 /* Check if there are options to update */ 15466 if (!IS_SIMPLE_IPH(ipha)) { 15467 if (ip_csum_hdr(ipha)) { 15468 BUMP_MIB(&ip_mib, ipInCksumErrs); 15469 goto drop_pkt; 15470 } 15471 if (ip_rput_forward_options(mp, ipha, ire)) { 15472 return; 15473 } 15474 15475 ipha->ipha_hdr_checksum = 0; 15476 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 15477 } 15478 max_frag = ire->ire_max_frag; 15479 if (pkt_len > max_frag) { 15480 /* 15481 * It needs fragging on its way out. We haven't 15482 * verified the header checksum yet. Since we 15483 * are going to put a surely good checksum in the 15484 * outgoing header, we have to make sure that it 15485 * was good coming in. 15486 */ 15487 if (ip_csum_hdr(ipha)) { 15488 BUMP_MIB(&ip_mib, ipInCksumErrs); 15489 goto drop_pkt; 15490 } 15491 /* Initiate Write side IPPF processing */ 15492 if (IPP_ENABLED(IPP_FWD_OUT)) { 15493 ip_process(IPP_FWD_OUT, &mp, ill_index); 15494 if (mp == NULL) { 15495 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 15496 " during IPPF processing\n")); 15497 return; 15498 } 15499 } 15500 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 15501 return; 15502 } 15503 15504 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 15505 if (mp == NULL) { 15506 BUMP_MIB(&ip_mib, ipInDiscards); 15507 return; 15508 } 15509 15510 q = ire->ire_stq; 15511 UPDATE_IB_PKT_COUNT(ire); 15512 ire->ire_last_used_time = lbolt; 15513 BUMP_MIB(&ip_mib, ipForwDatagrams); 15514 putnext(q, mp); 15515 return; 15516 15517 drop_pkt:; 15518 ip1dbg(("ip_rput_forward: drop pkt\n")); 15519 freemsg(mp); 15520 #undef rptr 15521 } 15522 15523 void 15524 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 15525 { 15526 ire_t *ire; 15527 15528 ASSERT(!ipif->ipif_isv6); 15529 /* 15530 * Find an IRE which matches the destination and the outgoing 15531 * queue in the cache table. All we need is an IRE_CACHE which 15532 * is pointing at ipif->ipif_ill. If it is part of some ill group, 15533 * then it is enough to have some IRE_CACHE in the group. 15534 */ 15535 if (ipif->ipif_flags & IPIF_POINTOPOINT) 15536 dst = ipif->ipif_pp_dst_addr; 15537 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 15538 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 15539 if (ire == NULL) { 15540 /* 15541 * Mark this packet to make it be delivered to 15542 * ip_rput_forward after the new ire has been 15543 * created. 15544 */ 15545 mp->b_prev = NULL; 15546 mp->b_next = mp; 15547 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 15548 NULL, 0); 15549 } else { 15550 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 15551 IRE_REFRELE(ire); 15552 } 15553 } 15554 15555 /* Update any source route, record route or timestamp options */ 15556 static int 15557 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15558 { 15559 ipoptp_t opts; 15560 uchar_t *opt; 15561 uint8_t optval; 15562 uint8_t optlen; 15563 ipaddr_t dst; 15564 uint32_t ts; 15565 ire_t *dst_ire = NULL; 15566 ire_t *tmp_ire = NULL; 15567 timestruc_t now; 15568 15569 ip2dbg(("ip_rput_forward_options\n")); 15570 dst = ipha->ipha_dst; 15571 for (optval = ipoptp_first(&opts, ipha); 15572 optval != IPOPT_EOL; 15573 optval = ipoptp_next(&opts)) { 15574 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15575 opt = opts.ipoptp_cur; 15576 optlen = opts.ipoptp_len; 15577 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15578 optval, opts.ipoptp_len)); 15579 switch (optval) { 15580 uint32_t off; 15581 case IPOPT_SSRR: 15582 case IPOPT_LSRR: 15583 /* Check if adminstratively disabled */ 15584 if (!ip_forward_src_routed) { 15585 BUMP_MIB(&ip_mib, ipForwProhibits); 15586 if (ire->ire_stq) 15587 icmp_unreachable(ire->ire_stq, mp, 15588 ICMP_SOURCE_ROUTE_FAILED); 15589 else { 15590 ip0dbg(("ip_rput_forward_options: " 15591 "unable to send unreach\n")); 15592 freemsg(mp); 15593 } 15594 return (-1); 15595 } 15596 15597 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15598 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15599 if (dst_ire == NULL) { 15600 /* 15601 * Must be partial since ip_rput_options 15602 * checked for strict. 15603 */ 15604 break; 15605 } 15606 off = opt[IPOPT_OFFSET]; 15607 off--; 15608 redo_srr: 15609 if (optlen < IP_ADDR_LEN || 15610 off > optlen - IP_ADDR_LEN) { 15611 /* End of source route */ 15612 ip1dbg(( 15613 "ip_rput_forward_options: end of SR\n")); 15614 ire_refrele(dst_ire); 15615 break; 15616 } 15617 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15618 bcopy(&ire->ire_src_addr, (char *)opt + off, 15619 IP_ADDR_LEN); 15620 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15621 ntohl(dst))); 15622 15623 /* 15624 * Check if our address is present more than 15625 * once as consecutive hops in source route. 15626 */ 15627 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15628 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15629 if (tmp_ire != NULL) { 15630 ire_refrele(tmp_ire); 15631 off += IP_ADDR_LEN; 15632 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15633 goto redo_srr; 15634 } 15635 ipha->ipha_dst = dst; 15636 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15637 ire_refrele(dst_ire); 15638 break; 15639 case IPOPT_RR: 15640 off = opt[IPOPT_OFFSET]; 15641 off--; 15642 if (optlen < IP_ADDR_LEN || 15643 off > optlen - IP_ADDR_LEN) { 15644 /* No more room - ignore */ 15645 ip1dbg(( 15646 "ip_rput_forward_options: end of RR\n")); 15647 break; 15648 } 15649 bcopy(&ire->ire_src_addr, (char *)opt + off, 15650 IP_ADDR_LEN); 15651 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15652 break; 15653 case IPOPT_TS: 15654 /* Insert timestamp if there is room */ 15655 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15656 case IPOPT_TS_TSONLY: 15657 off = IPOPT_TS_TIMELEN; 15658 break; 15659 case IPOPT_TS_PRESPEC: 15660 case IPOPT_TS_PRESPEC_RFC791: 15661 /* Verify that the address matched */ 15662 off = opt[IPOPT_OFFSET] - 1; 15663 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15664 dst_ire = ire_ctable_lookup(dst, 0, 15665 IRE_LOCAL, NULL, ALL_ZONES, NULL, 15666 MATCH_IRE_TYPE); 15667 15668 if (dst_ire == NULL) { 15669 /* Not for us */ 15670 break; 15671 } 15672 ire_refrele(dst_ire); 15673 /* FALLTHRU */ 15674 case IPOPT_TS_TSANDADDR: 15675 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15676 break; 15677 default: 15678 /* 15679 * ip_*put_options should have already 15680 * dropped this packet. 15681 */ 15682 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15683 "unknown IT - bug in ip_rput_options?\n"); 15684 return (0); /* Keep "lint" happy */ 15685 } 15686 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15687 /* Increase overflow counter */ 15688 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15689 opt[IPOPT_POS_OV_FLG] = 15690 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15691 (off << 4)); 15692 break; 15693 } 15694 off = opt[IPOPT_OFFSET] - 1; 15695 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15696 case IPOPT_TS_PRESPEC: 15697 case IPOPT_TS_PRESPEC_RFC791: 15698 case IPOPT_TS_TSANDADDR: 15699 bcopy(&ire->ire_src_addr, 15700 (char *)opt + off, IP_ADDR_LEN); 15701 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15702 /* FALLTHRU */ 15703 case IPOPT_TS_TSONLY: 15704 off = opt[IPOPT_OFFSET] - 1; 15705 /* Compute # of milliseconds since midnight */ 15706 gethrestime(&now); 15707 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15708 now.tv_nsec / (NANOSEC / MILLISEC); 15709 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15710 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15711 break; 15712 } 15713 break; 15714 } 15715 } 15716 return (0); 15717 } 15718 15719 /* 15720 * This is called after processing at least one of AH/ESP headers. 15721 * 15722 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15723 * the actual, physical interface on which the packet was received, 15724 * but, when ip_strict_dst_multihoming is set to 1, could be the 15725 * interface which had the ipha_dst configured when the packet went 15726 * through ip_rput. The ill_index corresponding to the recv_ill 15727 * is saved in ipsec_in_rill_index 15728 */ 15729 void 15730 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15731 { 15732 mblk_t *mp; 15733 ipaddr_t dst; 15734 in6_addr_t *v6dstp; 15735 ipha_t *ipha; 15736 ip6_t *ip6h; 15737 ipsec_in_t *ii; 15738 boolean_t ill_need_rele = B_FALSE; 15739 boolean_t rill_need_rele = B_FALSE; 15740 boolean_t ire_need_rele = B_FALSE; 15741 15742 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15743 ASSERT(ii->ipsec_in_ill_index != 0); 15744 15745 mp = ipsec_mp->b_cont; 15746 ASSERT(mp != NULL); 15747 15748 15749 if (ill == NULL) { 15750 ASSERT(recv_ill == NULL); 15751 /* 15752 * We need to get the original queue on which ip_rput_local 15753 * or ip_rput_data_v6 was called. 15754 */ 15755 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15756 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15757 ill_need_rele = B_TRUE; 15758 15759 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15760 recv_ill = ill_lookup_on_ifindex( 15761 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15762 NULL, NULL, NULL, NULL); 15763 rill_need_rele = B_TRUE; 15764 } else { 15765 recv_ill = ill; 15766 } 15767 15768 if ((ill == NULL) || (recv_ill == NULL)) { 15769 ip0dbg(("ip_fanout_proto_again: interface " 15770 "disappeared\n")); 15771 if (ill != NULL) 15772 ill_refrele(ill); 15773 if (recv_ill != NULL) 15774 ill_refrele(recv_ill); 15775 freemsg(ipsec_mp); 15776 return; 15777 } 15778 } 15779 15780 ASSERT(ill != NULL && recv_ill != NULL); 15781 15782 if (mp->b_datap->db_type == M_CTL) { 15783 /* 15784 * AH/ESP is returning the ICMP message after 15785 * removing their headers. Fanout again till 15786 * it gets to the right protocol. 15787 */ 15788 if (ii->ipsec_in_v4) { 15789 icmph_t *icmph; 15790 int iph_hdr_length; 15791 int hdr_length; 15792 15793 ipha = (ipha_t *)mp->b_rptr; 15794 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15795 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15796 ipha = (ipha_t *)&icmph[1]; 15797 hdr_length = IPH_HDR_LENGTH(ipha); 15798 /* 15799 * icmp_inbound_error_fanout may need to do pullupmsg. 15800 * Reset the type to M_DATA. 15801 */ 15802 mp->b_datap->db_type = M_DATA; 15803 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15804 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15805 B_FALSE, ill, ii->ipsec_in_zoneid); 15806 } else { 15807 icmp6_t *icmp6; 15808 int hdr_length; 15809 15810 ip6h = (ip6_t *)mp->b_rptr; 15811 /* Don't call hdr_length_v6() unless you have to. */ 15812 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15813 hdr_length = ip_hdr_length_v6(mp, ip6h); 15814 else 15815 hdr_length = IPV6_HDR_LEN; 15816 15817 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15818 /* 15819 * icmp_inbound_error_fanout_v6 may need to do 15820 * pullupmsg. Reset the type to M_DATA. 15821 */ 15822 mp->b_datap->db_type = M_DATA; 15823 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15824 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15825 } 15826 if (ill_need_rele) 15827 ill_refrele(ill); 15828 if (rill_need_rele) 15829 ill_refrele(recv_ill); 15830 return; 15831 } 15832 15833 if (ii->ipsec_in_v4) { 15834 ipha = (ipha_t *)mp->b_rptr; 15835 dst = ipha->ipha_dst; 15836 if (CLASSD(dst)) { 15837 /* 15838 * Multicast has to be delivered to all streams. 15839 */ 15840 dst = INADDR_BROADCAST; 15841 } 15842 15843 if (ire == NULL) { 15844 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 15845 MBLK_GETLABEL(mp)); 15846 if (ire == NULL) { 15847 if (ill_need_rele) 15848 ill_refrele(ill); 15849 if (rill_need_rele) 15850 ill_refrele(recv_ill); 15851 ip1dbg(("ip_fanout_proto_again: " 15852 "IRE not found")); 15853 freemsg(ipsec_mp); 15854 return; 15855 } 15856 ire_need_rele = B_TRUE; 15857 } 15858 15859 switch (ipha->ipha_protocol) { 15860 case IPPROTO_UDP: 15861 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15862 recv_ill); 15863 if (ire_need_rele) 15864 ire_refrele(ire); 15865 break; 15866 case IPPROTO_TCP: 15867 if (!ire_need_rele) 15868 IRE_REFHOLD(ire); 15869 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15870 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15871 IRE_REFRELE(ire); 15872 if (mp != NULL) 15873 squeue_enter_chain(GET_SQUEUE(mp), mp, 15874 mp, 1, SQTAG_IP_PROTO_AGAIN); 15875 break; 15876 case IPPROTO_SCTP: 15877 if (!ire_need_rele) 15878 IRE_REFHOLD(ire); 15879 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15880 ipsec_mp, 0, ill->ill_rq, dst); 15881 break; 15882 default: 15883 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15884 recv_ill); 15885 if (ire_need_rele) 15886 ire_refrele(ire); 15887 break; 15888 } 15889 } else { 15890 uint32_t rput_flags = 0; 15891 15892 ip6h = (ip6_t *)mp->b_rptr; 15893 v6dstp = &ip6h->ip6_dst; 15894 /* 15895 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15896 * address. 15897 * 15898 * Currently, we don't store that state in the IPSEC_IN 15899 * message, and we may need to. 15900 */ 15901 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15902 IP6_IN_LLMCAST : 0); 15903 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15904 NULL); 15905 } 15906 if (ill_need_rele) 15907 ill_refrele(ill); 15908 if (rill_need_rele) 15909 ill_refrele(recv_ill); 15910 } 15911 15912 /* 15913 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15914 * returns 'true' if there are still fragments left on the queue, in 15915 * which case we restart the timer. 15916 */ 15917 void 15918 ill_frag_timer(void *arg) 15919 { 15920 ill_t *ill = (ill_t *)arg; 15921 boolean_t frag_pending; 15922 15923 mutex_enter(&ill->ill_lock); 15924 ASSERT(!ill->ill_fragtimer_executing); 15925 if (ill->ill_state_flags & ILL_CONDEMNED) { 15926 ill->ill_frag_timer_id = 0; 15927 mutex_exit(&ill->ill_lock); 15928 return; 15929 } 15930 ill->ill_fragtimer_executing = 1; 15931 mutex_exit(&ill->ill_lock); 15932 15933 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15934 15935 /* 15936 * Restart the timer, if we have fragments pending or if someone 15937 * wanted us to be scheduled again. 15938 */ 15939 mutex_enter(&ill->ill_lock); 15940 ill->ill_fragtimer_executing = 0; 15941 ill->ill_frag_timer_id = 0; 15942 if (frag_pending || ill->ill_fragtimer_needrestart) 15943 ill_frag_timer_start(ill); 15944 mutex_exit(&ill->ill_lock); 15945 } 15946 15947 void 15948 ill_frag_timer_start(ill_t *ill) 15949 { 15950 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15951 15952 /* If the ill is closing or opening don't proceed */ 15953 if (ill->ill_state_flags & ILL_CONDEMNED) 15954 return; 15955 15956 if (ill->ill_fragtimer_executing) { 15957 /* 15958 * ill_frag_timer is currently executing. Just record the 15959 * the fact that we want the timer to be restarted. 15960 * ill_frag_timer will post a timeout before it returns, 15961 * ensuring it will be called again. 15962 */ 15963 ill->ill_fragtimer_needrestart = 1; 15964 return; 15965 } 15966 15967 if (ill->ill_frag_timer_id == 0) { 15968 /* 15969 * The timer is neither running nor is the timeout handler 15970 * executing. Post a timeout so that ill_frag_timer will be 15971 * called 15972 */ 15973 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15974 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15975 ill->ill_fragtimer_needrestart = 0; 15976 } 15977 } 15978 15979 /* 15980 * This routine is needed for loopback when forwarding multicasts. 15981 * 15982 * IPQoS Notes: 15983 * IPPF processing is done in fanout routines. 15984 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15985 * processing for IPSec packets is done when it comes back in clear. 15986 * NOTE : The callers of this function need to do the ire_refrele for the 15987 * ire that is being passed in. 15988 */ 15989 void 15990 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15991 ill_t *recv_ill) 15992 { 15993 ill_t *ill = (ill_t *)q->q_ptr; 15994 uint32_t sum; 15995 uint32_t u1; 15996 uint32_t u2; 15997 int hdr_length; 15998 boolean_t mctl_present; 15999 mblk_t *first_mp = mp; 16000 mblk_t *hada_mp = NULL; 16001 ipha_t *inner_ipha; 16002 16003 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16004 "ip_rput_locl_start: q %p", q); 16005 16006 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16007 16008 16009 #define rptr ((uchar_t *)ipha) 16010 #define iphs ((uint16_t *)ipha) 16011 16012 /* 16013 * no UDP or TCP packet should come here anymore. 16014 */ 16015 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16016 (ipha->ipha_protocol != IPPROTO_UDP)); 16017 16018 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16019 if (mctl_present && 16020 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16021 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16022 16023 /* 16024 * It's an IPsec accelerated packet. 16025 * Keep a pointer to the data attributes around until 16026 * we allocate the ipsec_info_t. 16027 */ 16028 IPSECHW_DEBUG(IPSECHW_PKT, 16029 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16030 hada_mp = first_mp; 16031 hada_mp->b_cont = NULL; 16032 /* 16033 * Since it is accelerated, it comes directly from 16034 * the ill and the data attributes is followed by 16035 * the packet data. 16036 */ 16037 ASSERT(mp->b_datap->db_type != M_CTL); 16038 first_mp = mp; 16039 mctl_present = B_FALSE; 16040 } 16041 16042 /* 16043 * IF M_CTL is not present, then ipsec_in_is_secure 16044 * should return B_TRUE. There is a case where loopback 16045 * packets has an M_CTL in the front with all the 16046 * IPSEC options set to IPSEC_PREF_NEVER - which means 16047 * ipsec_in_is_secure will return B_FALSE. As loopback 16048 * packets never comes here, it is safe to ASSERT the 16049 * following. 16050 */ 16051 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16052 16053 16054 /* u1 is # words of IP options */ 16055 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16056 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16057 16058 if (u1) { 16059 if (!ip_options_cksum(q, mp, ipha, ire)) { 16060 if (hada_mp != NULL) 16061 freemsg(hada_mp); 16062 return; 16063 } 16064 } else { 16065 /* Check the IP header checksum. */ 16066 #define uph ((uint16_t *)ipha) 16067 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16068 uph[6] + uph[7] + uph[8] + uph[9]; 16069 #undef uph 16070 /* finish doing IP checksum */ 16071 sum = (sum & 0xFFFF) + (sum >> 16); 16072 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16073 /* 16074 * Don't verify header checksum if this packet is coming 16075 * back from AH/ESP as we already did it. 16076 */ 16077 if (!mctl_present && (sum && sum != 0xFFFF)) { 16078 BUMP_MIB(&ip_mib, ipInCksumErrs); 16079 goto drop_pkt; 16080 } 16081 } 16082 16083 /* 16084 * Count for SNMP of inbound packets for ire. As ip_proto_input 16085 * might be called more than once for secure packets, count only 16086 * the first time. 16087 */ 16088 if (!mctl_present) { 16089 UPDATE_IB_PKT_COUNT(ire); 16090 ire->ire_last_used_time = lbolt; 16091 } 16092 16093 /* Check for fragmentation offset. */ 16094 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16095 u1 = u2 & (IPH_MF | IPH_OFFSET); 16096 if (u1) { 16097 /* 16098 * We re-assemble fragments before we do the AH/ESP 16099 * processing. Thus, M_CTL should not be present 16100 * while we are re-assembling. 16101 */ 16102 ASSERT(!mctl_present); 16103 ASSERT(first_mp == mp); 16104 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16105 return; 16106 } 16107 /* 16108 * Make sure that first_mp points back to mp as 16109 * the mp we came in with could have changed in 16110 * ip_rput_fragment(). 16111 */ 16112 ipha = (ipha_t *)mp->b_rptr; 16113 first_mp = mp; 16114 } 16115 16116 /* 16117 * Clear hardware checksumming flag as it is currently only 16118 * used by TCP and UDP. 16119 */ 16120 DB_CKSUMFLAGS(mp) = 0; 16121 16122 /* Now we have a complete datagram, destined for this machine. */ 16123 u1 = IPH_HDR_LENGTH(ipha); 16124 switch (ipha->ipha_protocol) { 16125 case IPPROTO_ICMP: { 16126 ire_t *ire_zone; 16127 ilm_t *ilm; 16128 mblk_t *mp1; 16129 zoneid_t last_zoneid; 16130 16131 if (CLASSD(ipha->ipha_dst) && 16132 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16133 ASSERT(ire->ire_type == IRE_BROADCAST); 16134 /* 16135 * In the multicast case, applications may have joined 16136 * the group from different zones, so we need to deliver 16137 * the packet to each of them. Loop through the 16138 * multicast memberships structures (ilm) on the receive 16139 * ill and send a copy of the packet up each matching 16140 * one. However, we don't do this for multicasts sent on 16141 * the loopback interface (PHYI_LOOPBACK flag set) as 16142 * they must stay in the sender's zone. 16143 * 16144 * ilm_add_v6() ensures that ilms in the same zone are 16145 * contiguous in the ill_ilm list. We use this property 16146 * to avoid sending duplicates needed when two 16147 * applications in the same zone join the same group on 16148 * different logical interfaces: we ignore the ilm if 16149 * its zoneid is the same as the last matching one. 16150 * In addition, the sending of the packet for 16151 * ire_zoneid is delayed until all of the other ilms 16152 * have been exhausted. 16153 */ 16154 last_zoneid = -1; 16155 ILM_WALKER_HOLD(recv_ill); 16156 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16157 ilm = ilm->ilm_next) { 16158 if ((ilm->ilm_flags & ILM_DELETED) || 16159 ipha->ipha_dst != ilm->ilm_addr || 16160 ilm->ilm_zoneid == last_zoneid || 16161 ilm->ilm_zoneid == ire->ire_zoneid || 16162 ilm->ilm_zoneid == ALL_ZONES || 16163 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16164 continue; 16165 mp1 = ip_copymsg(first_mp); 16166 if (mp1 == NULL) 16167 continue; 16168 icmp_inbound(q, mp1, B_TRUE, ill, 16169 0, sum, mctl_present, B_TRUE, 16170 recv_ill, ilm->ilm_zoneid); 16171 last_zoneid = ilm->ilm_zoneid; 16172 } 16173 ILM_WALKER_RELE(recv_ill); 16174 } else if (ire->ire_type == IRE_BROADCAST) { 16175 /* 16176 * In the broadcast case, there may be many zones 16177 * which need a copy of the packet delivered to them. 16178 * There is one IRE_BROADCAST per broadcast address 16179 * and per zone; we walk those using a helper function. 16180 * In addition, the sending of the packet for ire is 16181 * delayed until all of the other ires have been 16182 * processed. 16183 */ 16184 IRB_REFHOLD(ire->ire_bucket); 16185 ire_zone = NULL; 16186 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16187 ire)) != NULL) { 16188 mp1 = ip_copymsg(first_mp); 16189 if (mp1 == NULL) 16190 continue; 16191 16192 UPDATE_IB_PKT_COUNT(ire_zone); 16193 ire_zone->ire_last_used_time = lbolt; 16194 icmp_inbound(q, mp1, B_TRUE, ill, 16195 0, sum, mctl_present, B_TRUE, 16196 recv_ill, ire_zone->ire_zoneid); 16197 } 16198 IRB_REFRELE(ire->ire_bucket); 16199 } 16200 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16201 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16202 ire->ire_zoneid); 16203 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16204 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16205 return; 16206 } 16207 case IPPROTO_IGMP: 16208 /* 16209 * If we are not willing to accept IGMP packets in clear, 16210 * then check with global policy. 16211 */ 16212 if (igmp_accept_clear_messages == 0) { 16213 first_mp = ipsec_check_global_policy(first_mp, NULL, 16214 ipha, NULL, mctl_present); 16215 if (first_mp == NULL) 16216 return; 16217 } 16218 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16219 freemsg(first_mp); 16220 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16221 BUMP_MIB(&ip_mib, ipInDiscards); 16222 return; 16223 } 16224 if (igmp_input(q, mp, ill)) { 16225 /* Bad packet - discarded by igmp_input */ 16226 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16227 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16228 if (mctl_present) 16229 freeb(first_mp); 16230 return; 16231 } 16232 /* 16233 * igmp_input() may have pulled up the message so ipha needs to 16234 * be reinitialized. 16235 */ 16236 ipha = (ipha_t *)mp->b_rptr; 16237 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16238 /* No user-level listener for IGMP packets */ 16239 goto drop_pkt; 16240 } 16241 /* deliver to local raw users */ 16242 break; 16243 case IPPROTO_PIM: 16244 /* 16245 * If we are not willing to accept PIM packets in clear, 16246 * then check with global policy. 16247 */ 16248 if (pim_accept_clear_messages == 0) { 16249 first_mp = ipsec_check_global_policy(first_mp, NULL, 16250 ipha, NULL, mctl_present); 16251 if (first_mp == NULL) 16252 return; 16253 } 16254 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16255 freemsg(first_mp); 16256 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16257 BUMP_MIB(&ip_mib, ipInDiscards); 16258 return; 16259 } 16260 if (pim_input(q, mp) != 0) { 16261 /* Bad packet - discarded by pim_input */ 16262 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16263 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16264 if (mctl_present) 16265 freeb(first_mp); 16266 return; 16267 } 16268 16269 /* 16270 * pim_input() may have pulled up the message so ipha needs to 16271 * be reinitialized. 16272 */ 16273 ipha = (ipha_t *)mp->b_rptr; 16274 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16275 /* No user-level listener for PIM packets */ 16276 goto drop_pkt; 16277 } 16278 /* deliver to local raw users */ 16279 break; 16280 case IPPROTO_ENCAP: 16281 /* 16282 * Handle self-encapsulated packets (IP-in-IP where 16283 * the inner addresses == the outer addresses). 16284 */ 16285 hdr_length = IPH_HDR_LENGTH(ipha); 16286 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16287 mp->b_wptr) { 16288 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16289 sizeof (ipha_t) - mp->b_rptr)) { 16290 BUMP_MIB(&ip_mib, ipInDiscards); 16291 freemsg(first_mp); 16292 return; 16293 } 16294 ipha = (ipha_t *)mp->b_rptr; 16295 } 16296 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16297 /* 16298 * Check the sanity of the inner IP header. 16299 */ 16300 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16301 BUMP_MIB(&ip_mib, ipInDiscards); 16302 freemsg(first_mp); 16303 return; 16304 } 16305 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16306 BUMP_MIB(&ip_mib, ipInDiscards); 16307 freemsg(first_mp); 16308 return; 16309 } 16310 if (inner_ipha->ipha_src == ipha->ipha_src && 16311 inner_ipha->ipha_dst == ipha->ipha_dst) { 16312 ipsec_in_t *ii; 16313 16314 /* 16315 * Self-encapsulated tunnel packet. Remove 16316 * the outer IP header and fanout again. 16317 * We also need to make sure that the inner 16318 * header is pulled up until options. 16319 */ 16320 mp->b_rptr = (uchar_t *)inner_ipha; 16321 ipha = inner_ipha; 16322 hdr_length = IPH_HDR_LENGTH(ipha); 16323 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16324 if (!pullupmsg(mp, (uchar_t *)ipha + 16325 + hdr_length - mp->b_rptr)) { 16326 freemsg(first_mp); 16327 return; 16328 } 16329 ipha = (ipha_t *)mp->b_rptr; 16330 } 16331 if (!mctl_present) { 16332 ASSERT(first_mp == mp); 16333 /* 16334 * This means that somebody is sending 16335 * Self-encapsualted packets without AH/ESP. 16336 * If AH/ESP was present, we would have already 16337 * allocated the first_mp. 16338 */ 16339 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16340 NULL) { 16341 ip1dbg(("ip_proto_input: IPSEC_IN " 16342 "allocation failure.\n")); 16343 BUMP_MIB(&ip_mib, ipInDiscards); 16344 freemsg(mp); 16345 return; 16346 } 16347 first_mp->b_cont = mp; 16348 } 16349 /* 16350 * We generally store the ill_index if we need to 16351 * do IPSEC processing as we lose the ill queue when 16352 * we come back. But in this case, we never should 16353 * have to store the ill_index here as it should have 16354 * been stored previously when we processed the 16355 * AH/ESP header in this routine or for non-ipsec 16356 * cases, we still have the queue. But for some bad 16357 * packets from the wire, we can get to IPSEC after 16358 * this and we better store the index for that case. 16359 */ 16360 ill = (ill_t *)q->q_ptr; 16361 ii = (ipsec_in_t *)first_mp->b_rptr; 16362 ii->ipsec_in_ill_index = 16363 ill->ill_phyint->phyint_ifindex; 16364 ii->ipsec_in_rill_index = 16365 recv_ill->ill_phyint->phyint_ifindex; 16366 if (ii->ipsec_in_decaps) { 16367 /* 16368 * This packet is self-encapsulated multiple 16369 * times. We don't want to recurse infinitely. 16370 * To keep it simple, drop the packet. 16371 */ 16372 BUMP_MIB(&ip_mib, ipInDiscards); 16373 freemsg(first_mp); 16374 return; 16375 } 16376 ii->ipsec_in_decaps = B_TRUE; 16377 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16378 return; 16379 } 16380 break; 16381 case IPPROTO_AH: 16382 case IPPROTO_ESP: { 16383 /* 16384 * Fast path for AH/ESP. If this is the first time 16385 * we are sending a datagram to AH/ESP, allocate 16386 * a IPSEC_IN message and prepend it. Otherwise, 16387 * just fanout. 16388 */ 16389 16390 int ipsec_rc; 16391 ipsec_in_t *ii; 16392 16393 IP_STAT(ipsec_proto_ahesp); 16394 if (!mctl_present) { 16395 ASSERT(first_mp == mp); 16396 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16397 ip1dbg(("ip_proto_input: IPSEC_IN " 16398 "allocation failure.\n")); 16399 freemsg(hada_mp); /* okay ifnull */ 16400 BUMP_MIB(&ip_mib, ipInDiscards); 16401 freemsg(mp); 16402 return; 16403 } 16404 /* 16405 * Store the ill_index so that when we come back 16406 * from IPSEC we ride on the same queue. 16407 */ 16408 ill = (ill_t *)q->q_ptr; 16409 ii = (ipsec_in_t *)first_mp->b_rptr; 16410 ii->ipsec_in_ill_index = 16411 ill->ill_phyint->phyint_ifindex; 16412 ii->ipsec_in_rill_index = 16413 recv_ill->ill_phyint->phyint_ifindex; 16414 first_mp->b_cont = mp; 16415 /* 16416 * Cache hardware acceleration info. 16417 */ 16418 if (hada_mp != NULL) { 16419 IPSECHW_DEBUG(IPSECHW_PKT, 16420 ("ip_rput_local: caching data attr.\n")); 16421 ii->ipsec_in_accelerated = B_TRUE; 16422 ii->ipsec_in_da = hada_mp; 16423 hada_mp = NULL; 16424 } 16425 } else { 16426 ii = (ipsec_in_t *)first_mp->b_rptr; 16427 } 16428 16429 if (!ipsec_loaded()) { 16430 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 16431 ire->ire_zoneid); 16432 return; 16433 } 16434 16435 /* select inbound SA and have IPsec process the pkt */ 16436 if (ipha->ipha_protocol == IPPROTO_ESP) { 16437 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 16438 if (esph == NULL) 16439 return; 16440 ASSERT(ii->ipsec_in_esp_sa != NULL); 16441 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 16442 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 16443 first_mp, esph); 16444 } else { 16445 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 16446 if (ah == NULL) 16447 return; 16448 ASSERT(ii->ipsec_in_ah_sa != NULL); 16449 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 16450 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 16451 first_mp, ah); 16452 } 16453 16454 switch (ipsec_rc) { 16455 case IPSEC_STATUS_SUCCESS: 16456 break; 16457 case IPSEC_STATUS_FAILED: 16458 BUMP_MIB(&ip_mib, ipInDiscards); 16459 /* FALLTHRU */ 16460 case IPSEC_STATUS_PENDING: 16461 return; 16462 } 16463 /* we're done with IPsec processing, send it up */ 16464 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 16465 return; 16466 } 16467 default: 16468 break; 16469 } 16470 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 16471 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 16472 ire->ire_zoneid)); 16473 goto drop_pkt; 16474 } 16475 /* 16476 * Handle protocols with which IP is less intimate. There 16477 * can be more than one stream bound to a particular 16478 * protocol. When this is the case, each one gets a copy 16479 * of any incoming packets. 16480 */ 16481 ip_fanout_proto(q, first_mp, ill, ipha, 16482 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 16483 B_TRUE, recv_ill, ire->ire_zoneid); 16484 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16485 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 16486 return; 16487 16488 drop_pkt: 16489 freemsg(first_mp); 16490 if (hada_mp != NULL) 16491 freeb(hada_mp); 16492 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16493 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 16494 #undef rptr 16495 #undef iphs 16496 16497 } 16498 16499 /* 16500 * Update any source route, record route or timestamp options. 16501 * Check that we are at end of strict source route. 16502 * The options have already been checked for sanity in ip_rput_options(). 16503 */ 16504 static boolean_t 16505 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 16506 { 16507 ipoptp_t opts; 16508 uchar_t *opt; 16509 uint8_t optval; 16510 uint8_t optlen; 16511 ipaddr_t dst; 16512 uint32_t ts; 16513 ire_t *dst_ire; 16514 timestruc_t now; 16515 16516 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16517 16518 ip2dbg(("ip_rput_local_options\n")); 16519 16520 for (optval = ipoptp_first(&opts, ipha); 16521 optval != IPOPT_EOL; 16522 optval = ipoptp_next(&opts)) { 16523 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16524 opt = opts.ipoptp_cur; 16525 optlen = opts.ipoptp_len; 16526 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 16527 optval, optlen)); 16528 switch (optval) { 16529 uint32_t off; 16530 case IPOPT_SSRR: 16531 case IPOPT_LSRR: 16532 off = opt[IPOPT_OFFSET]; 16533 off--; 16534 if (optlen < IP_ADDR_LEN || 16535 off > optlen - IP_ADDR_LEN) { 16536 /* End of source route */ 16537 ip1dbg(("ip_rput_local_options: end of SR\n")); 16538 break; 16539 } 16540 /* 16541 * This will only happen if two consecutive entries 16542 * in the source route contains our address or if 16543 * it is a packet with a loose source route which 16544 * reaches us before consuming the whole source route 16545 */ 16546 ip1dbg(("ip_rput_local_options: not end of SR\n")); 16547 if (optval == IPOPT_SSRR) { 16548 goto bad_src_route; 16549 } 16550 /* 16551 * Hack: instead of dropping the packet truncate the 16552 * source route to what has been used by filling the 16553 * rest with IPOPT_NOP. 16554 */ 16555 opt[IPOPT_OLEN] = (uint8_t)off; 16556 while (off < optlen) { 16557 opt[off++] = IPOPT_NOP; 16558 } 16559 break; 16560 case IPOPT_RR: 16561 off = opt[IPOPT_OFFSET]; 16562 off--; 16563 if (optlen < IP_ADDR_LEN || 16564 off > optlen - IP_ADDR_LEN) { 16565 /* No more room - ignore */ 16566 ip1dbg(( 16567 "ip_rput_local_options: end of RR\n")); 16568 break; 16569 } 16570 bcopy(&ire->ire_src_addr, (char *)opt + off, 16571 IP_ADDR_LEN); 16572 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16573 break; 16574 case IPOPT_TS: 16575 /* Insert timestamp if there is romm */ 16576 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16577 case IPOPT_TS_TSONLY: 16578 off = IPOPT_TS_TIMELEN; 16579 break; 16580 case IPOPT_TS_PRESPEC: 16581 case IPOPT_TS_PRESPEC_RFC791: 16582 /* Verify that the address matched */ 16583 off = opt[IPOPT_OFFSET] - 1; 16584 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16585 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16586 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16587 if (dst_ire == NULL) { 16588 /* Not for us */ 16589 break; 16590 } 16591 ire_refrele(dst_ire); 16592 /* FALLTHRU */ 16593 case IPOPT_TS_TSANDADDR: 16594 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16595 break; 16596 default: 16597 /* 16598 * ip_*put_options should have already 16599 * dropped this packet. 16600 */ 16601 cmn_err(CE_PANIC, "ip_rput_local_options: " 16602 "unknown IT - bug in ip_rput_options?\n"); 16603 return (B_TRUE); /* Keep "lint" happy */ 16604 } 16605 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16606 /* Increase overflow counter */ 16607 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16608 opt[IPOPT_POS_OV_FLG] = 16609 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16610 (off << 4)); 16611 break; 16612 } 16613 off = opt[IPOPT_OFFSET] - 1; 16614 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16615 case IPOPT_TS_PRESPEC: 16616 case IPOPT_TS_PRESPEC_RFC791: 16617 case IPOPT_TS_TSANDADDR: 16618 bcopy(&ire->ire_src_addr, (char *)opt + off, 16619 IP_ADDR_LEN); 16620 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16621 /* FALLTHRU */ 16622 case IPOPT_TS_TSONLY: 16623 off = opt[IPOPT_OFFSET] - 1; 16624 /* Compute # of milliseconds since midnight */ 16625 gethrestime(&now); 16626 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16627 now.tv_nsec / (NANOSEC / MILLISEC); 16628 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16629 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16630 break; 16631 } 16632 break; 16633 } 16634 } 16635 return (B_TRUE); 16636 16637 bad_src_route: 16638 q = WR(q); 16639 /* make sure we clear any indication of a hardware checksum */ 16640 DB_CKSUMFLAGS(mp) = 0; 16641 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16642 return (B_FALSE); 16643 16644 } 16645 16646 /* 16647 * Process IP options in an inbound packet. If an option affects the 16648 * effective destination address, return the next hop address via dstp. 16649 * Returns -1 if something fails in which case an ICMP error has been sent 16650 * and mp freed. 16651 */ 16652 static int 16653 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16654 { 16655 ipoptp_t opts; 16656 uchar_t *opt; 16657 uint8_t optval; 16658 uint8_t optlen; 16659 ipaddr_t dst; 16660 intptr_t code = 0; 16661 ire_t *ire = NULL; 16662 16663 ip2dbg(("ip_rput_options\n")); 16664 dst = ipha->ipha_dst; 16665 for (optval = ipoptp_first(&opts, ipha); 16666 optval != IPOPT_EOL; 16667 optval = ipoptp_next(&opts)) { 16668 opt = opts.ipoptp_cur; 16669 optlen = opts.ipoptp_len; 16670 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16671 optval, optlen)); 16672 /* 16673 * Note: we need to verify the checksum before we 16674 * modify anything thus this routine only extracts the next 16675 * hop dst from any source route. 16676 */ 16677 switch (optval) { 16678 uint32_t off; 16679 case IPOPT_SSRR: 16680 case IPOPT_LSRR: 16681 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16682 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16683 if (ire == NULL) { 16684 if (optval == IPOPT_SSRR) { 16685 ip1dbg(("ip_rput_options: not next" 16686 " strict source route 0x%x\n", 16687 ntohl(dst))); 16688 code = (char *)&ipha->ipha_dst - 16689 (char *)ipha; 16690 goto param_prob; /* RouterReq's */ 16691 } 16692 ip2dbg(("ip_rput_options: " 16693 "not next source route 0x%x\n", 16694 ntohl(dst))); 16695 break; 16696 } 16697 ire_refrele(ire); 16698 16699 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16700 ip1dbg(( 16701 "ip_rput_options: bad option offset\n")); 16702 code = (char *)&opt[IPOPT_OLEN] - 16703 (char *)ipha; 16704 goto param_prob; 16705 } 16706 off = opt[IPOPT_OFFSET]; 16707 off--; 16708 redo_srr: 16709 if (optlen < IP_ADDR_LEN || 16710 off > optlen - IP_ADDR_LEN) { 16711 /* End of source route */ 16712 ip1dbg(("ip_rput_options: end of SR\n")); 16713 break; 16714 } 16715 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16716 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16717 ntohl(dst))); 16718 16719 /* 16720 * Check if our address is present more than 16721 * once as consecutive hops in source route. 16722 * XXX verify per-interface ip_forwarding 16723 * for source route? 16724 */ 16725 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16726 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16727 16728 if (ire != NULL) { 16729 ire_refrele(ire); 16730 off += IP_ADDR_LEN; 16731 goto redo_srr; 16732 } 16733 16734 if (dst == htonl(INADDR_LOOPBACK)) { 16735 ip1dbg(("ip_rput_options: loopback addr in " 16736 "source route!\n")); 16737 goto bad_src_route; 16738 } 16739 /* 16740 * For strict: verify that dst is directly 16741 * reachable. 16742 */ 16743 if (optval == IPOPT_SSRR) { 16744 ire = ire_ftable_lookup(dst, 0, 0, 16745 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16746 MBLK_GETLABEL(mp), 16747 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 16748 if (ire == NULL) { 16749 ip1dbg(("ip_rput_options: SSRR not " 16750 "directly reachable: 0x%x\n", 16751 ntohl(dst))); 16752 goto bad_src_route; 16753 } 16754 ire_refrele(ire); 16755 } 16756 /* 16757 * Defer update of the offset and the record route 16758 * until the packet is forwarded. 16759 */ 16760 break; 16761 case IPOPT_RR: 16762 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16763 ip1dbg(( 16764 "ip_rput_options: bad option offset\n")); 16765 code = (char *)&opt[IPOPT_OLEN] - 16766 (char *)ipha; 16767 goto param_prob; 16768 } 16769 break; 16770 case IPOPT_TS: 16771 /* 16772 * Verify that length >= 5 and that there is either 16773 * room for another timestamp or that the overflow 16774 * counter is not maxed out. 16775 */ 16776 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16777 if (optlen < IPOPT_MINLEN_IT) { 16778 goto param_prob; 16779 } 16780 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16781 ip1dbg(( 16782 "ip_rput_options: bad option offset\n")); 16783 code = (char *)&opt[IPOPT_OFFSET] - 16784 (char *)ipha; 16785 goto param_prob; 16786 } 16787 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16788 case IPOPT_TS_TSONLY: 16789 off = IPOPT_TS_TIMELEN; 16790 break; 16791 case IPOPT_TS_TSANDADDR: 16792 case IPOPT_TS_PRESPEC: 16793 case IPOPT_TS_PRESPEC_RFC791: 16794 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16795 break; 16796 default: 16797 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16798 (char *)ipha; 16799 goto param_prob; 16800 } 16801 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16802 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16803 /* 16804 * No room and the overflow counter is 15 16805 * already. 16806 */ 16807 goto param_prob; 16808 } 16809 break; 16810 } 16811 } 16812 16813 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16814 *dstp = dst; 16815 return (0); 16816 } 16817 16818 ip1dbg(("ip_rput_options: error processing IP options.")); 16819 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16820 16821 param_prob: 16822 q = WR(q); 16823 /* make sure we clear any indication of a hardware checksum */ 16824 DB_CKSUMFLAGS(mp) = 0; 16825 icmp_param_problem(q, mp, (uint8_t)code); 16826 return (-1); 16827 16828 bad_src_route: 16829 q = WR(q); 16830 /* make sure we clear any indication of a hardware checksum */ 16831 DB_CKSUMFLAGS(mp) = 0; 16832 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16833 return (-1); 16834 } 16835 16836 /* 16837 * IP & ICMP info in >=14 msg's ... 16838 * - ip fixed part (mib2_ip_t) 16839 * - icmp fixed part (mib2_icmp_t) 16840 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16841 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16842 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16843 * - ipRouteAttributeTable (ip 102) labeled routes 16844 * - ip multicast membership (ip_member_t) 16845 * - ip multicast source filtering (ip_grpsrc_t) 16846 * - igmp fixed part (struct igmpstat) 16847 * - multicast routing stats (struct mrtstat) 16848 * - multicast routing vifs (array of struct vifctl) 16849 * - multicast routing routes (array of struct mfcctl) 16850 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16851 * One per ill plus one generic 16852 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16853 * One per ill plus one generic 16854 * - ipv6RouteEntry all IPv6 IREs 16855 * - ipv6RouteAttributeTable (ip6 102) labeled routes 16856 * - ipv6NetToMediaEntry all Neighbor Cache entries 16857 * - ipv6AddrEntry all IPv6 ipifs 16858 * - ipv6 multicast membership (ipv6_member_t) 16859 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16860 * 16861 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16862 * already present. 16863 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 16864 * already filled in by the caller. 16865 * Return value of 0 indicates that no messages were sent and caller 16866 * should free mpctl. 16867 */ 16868 int 16869 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16870 { 16871 16872 if (mpctl == NULL || mpctl->b_cont == NULL) { 16873 return (0); 16874 } 16875 16876 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16877 return (1); 16878 } 16879 16880 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16881 return (1); 16882 } 16883 16884 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16885 return (1); 16886 } 16887 16888 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16889 return (1); 16890 } 16891 16892 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16893 return (1); 16894 } 16895 16896 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16897 return (1); 16898 } 16899 16900 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16901 return (1); 16902 } 16903 16904 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16905 return (1); 16906 } 16907 16908 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16909 return (1); 16910 } 16911 16912 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16913 return (1); 16914 } 16915 16916 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16917 return (1); 16918 } 16919 16920 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16921 return (1); 16922 } 16923 16924 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16925 return (1); 16926 } 16927 16928 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16929 return (1); 16930 } 16931 16932 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16933 return (1); 16934 } 16935 16936 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16937 return (1); 16938 } 16939 16940 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16941 return (1); 16942 } 16943 freemsg(mpctl); 16944 return (1); 16945 } 16946 16947 16948 /* Get global IPv4 statistics */ 16949 static mblk_t * 16950 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16951 { 16952 struct opthdr *optp; 16953 mblk_t *mp2ctl; 16954 16955 /* 16956 * make a copy of the original message 16957 */ 16958 mp2ctl = copymsg(mpctl); 16959 16960 /* fixed length IP structure... */ 16961 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16962 optp->level = MIB2_IP; 16963 optp->name = 0; 16964 SET_MIB(ip_mib.ipForwarding, 16965 (WE_ARE_FORWARDING ? 1 : 2)); 16966 SET_MIB(ip_mib.ipDefaultTTL, 16967 (uint32_t)ip_def_ttl); 16968 SET_MIB(ip_mib.ipReasmTimeout, 16969 ip_g_frag_timeout); 16970 SET_MIB(ip_mib.ipAddrEntrySize, 16971 sizeof (mib2_ipAddrEntry_t)); 16972 SET_MIB(ip_mib.ipRouteEntrySize, 16973 sizeof (mib2_ipRouteEntry_t)); 16974 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16975 sizeof (mib2_ipNetToMediaEntry_t)); 16976 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16977 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16978 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 16979 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 16980 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16981 (int)sizeof (ip_mib))) { 16982 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16983 (uint_t)sizeof (ip_mib))); 16984 } 16985 16986 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16987 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16988 (int)optp->level, (int)optp->name, (int)optp->len)); 16989 qreply(q, mpctl); 16990 return (mp2ctl); 16991 } 16992 16993 /* Global IPv4 ICMP statistics */ 16994 static mblk_t * 16995 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16996 { 16997 struct opthdr *optp; 16998 mblk_t *mp2ctl; 16999 17000 /* 17001 * Make a copy of the original message 17002 */ 17003 mp2ctl = copymsg(mpctl); 17004 17005 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17006 optp->level = MIB2_ICMP; 17007 optp->name = 0; 17008 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17009 (int)sizeof (icmp_mib))) { 17010 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17011 (uint_t)sizeof (icmp_mib))); 17012 } 17013 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17014 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17015 (int)optp->level, (int)optp->name, (int)optp->len)); 17016 qreply(q, mpctl); 17017 return (mp2ctl); 17018 } 17019 17020 /* Global IPv4 IGMP statistics */ 17021 static mblk_t * 17022 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17023 { 17024 struct opthdr *optp; 17025 mblk_t *mp2ctl; 17026 17027 /* 17028 * make a copy of the original message 17029 */ 17030 mp2ctl = copymsg(mpctl); 17031 17032 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17033 optp->level = EXPER_IGMP; 17034 optp->name = 0; 17035 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17036 (int)sizeof (igmpstat))) { 17037 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17038 (uint_t)sizeof (igmpstat))); 17039 } 17040 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17041 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17042 (int)optp->level, (int)optp->name, (int)optp->len)); 17043 qreply(q, mpctl); 17044 return (mp2ctl); 17045 } 17046 17047 /* Global IPv4 Multicast Routing statistics */ 17048 static mblk_t * 17049 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17050 { 17051 struct opthdr *optp; 17052 mblk_t *mp2ctl; 17053 17054 /* 17055 * make a copy of the original message 17056 */ 17057 mp2ctl = copymsg(mpctl); 17058 17059 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17060 optp->level = EXPER_DVMRP; 17061 optp->name = 0; 17062 if (!ip_mroute_stats(mpctl->b_cont)) { 17063 ip0dbg(("ip_mroute_stats: failed\n")); 17064 } 17065 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17066 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17067 (int)optp->level, (int)optp->name, (int)optp->len)); 17068 qreply(q, mpctl); 17069 return (mp2ctl); 17070 } 17071 17072 /* IPv4 address information */ 17073 static mblk_t * 17074 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17075 { 17076 struct opthdr *optp; 17077 mblk_t *mp2ctl; 17078 mblk_t *mp_tail = NULL; 17079 ill_t *ill; 17080 ipif_t *ipif; 17081 uint_t bitval; 17082 mib2_ipAddrEntry_t mae; 17083 zoneid_t zoneid; 17084 ill_walk_context_t ctx; 17085 17086 /* 17087 * make a copy of the original message 17088 */ 17089 mp2ctl = copymsg(mpctl); 17090 17091 /* ipAddrEntryTable */ 17092 17093 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17094 optp->level = MIB2_IP; 17095 optp->name = MIB2_IP_ADDR; 17096 zoneid = Q_TO_CONN(q)->conn_zoneid; 17097 17098 rw_enter(&ill_g_lock, RW_READER); 17099 ill = ILL_START_WALK_V4(&ctx); 17100 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17101 for (ipif = ill->ill_ipif; ipif != NULL; 17102 ipif = ipif->ipif_next) { 17103 if (ipif->ipif_zoneid != zoneid && 17104 ipif->ipif_zoneid != ALL_ZONES) 17105 continue; 17106 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17107 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17108 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17109 17110 (void) ipif_get_name(ipif, 17111 mae.ipAdEntIfIndex.o_bytes, 17112 OCTET_LENGTH); 17113 mae.ipAdEntIfIndex.o_length = 17114 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17115 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17116 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17117 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17118 mae.ipAdEntInfo.ae_subnet_len = 17119 ip_mask_to_plen(ipif->ipif_net_mask); 17120 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17121 for (bitval = 1; 17122 bitval && 17123 !(bitval & ipif->ipif_brd_addr); 17124 bitval <<= 1) 17125 noop; 17126 mae.ipAdEntBcastAddr = bitval; 17127 mae.ipAdEntReasmMaxSize = 65535; 17128 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17129 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17130 mae.ipAdEntInfo.ae_broadcast_addr = 17131 ipif->ipif_brd_addr; 17132 mae.ipAdEntInfo.ae_pp_dst_addr = 17133 ipif->ipif_pp_dst_addr; 17134 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17135 ill->ill_flags | ill->ill_phyint->phyint_flags; 17136 17137 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17138 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17139 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17140 "allocate %u bytes\n", 17141 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17142 } 17143 } 17144 } 17145 rw_exit(&ill_g_lock); 17146 17147 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17148 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17149 (int)optp->level, (int)optp->name, (int)optp->len)); 17150 qreply(q, mpctl); 17151 return (mp2ctl); 17152 } 17153 17154 /* IPv6 address information */ 17155 static mblk_t * 17156 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17157 { 17158 struct opthdr *optp; 17159 mblk_t *mp2ctl; 17160 mblk_t *mp_tail = NULL; 17161 ill_t *ill; 17162 ipif_t *ipif; 17163 mib2_ipv6AddrEntry_t mae6; 17164 zoneid_t zoneid; 17165 ill_walk_context_t ctx; 17166 17167 /* 17168 * make a copy of the original message 17169 */ 17170 mp2ctl = copymsg(mpctl); 17171 17172 /* ipv6AddrEntryTable */ 17173 17174 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17175 optp->level = MIB2_IP6; 17176 optp->name = MIB2_IP6_ADDR; 17177 zoneid = Q_TO_CONN(q)->conn_zoneid; 17178 17179 rw_enter(&ill_g_lock, RW_READER); 17180 ill = ILL_START_WALK_V6(&ctx); 17181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17182 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17183 if (ipif->ipif_zoneid != zoneid && 17184 ipif->ipif_zoneid != ALL_ZONES) 17185 continue; 17186 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17187 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17188 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17189 17190 (void) ipif_get_name(ipif, 17191 mae6.ipv6AddrIfIndex.o_bytes, 17192 OCTET_LENGTH); 17193 mae6.ipv6AddrIfIndex.o_length = 17194 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17195 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17196 mae6.ipv6AddrPfxLength = 17197 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17198 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17199 mae6.ipv6AddrInfo.ae_subnet_len = 17200 mae6.ipv6AddrPfxLength; 17201 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17202 17203 /* Type: stateless(1), stateful(2), unknown(3) */ 17204 if (ipif->ipif_flags & IPIF_ADDRCONF) 17205 mae6.ipv6AddrType = 1; 17206 else 17207 mae6.ipv6AddrType = 2; 17208 /* Anycast: true(1), false(2) */ 17209 if (ipif->ipif_flags & IPIF_ANYCAST) 17210 mae6.ipv6AddrAnycastFlag = 1; 17211 else 17212 mae6.ipv6AddrAnycastFlag = 2; 17213 17214 /* 17215 * Address status: preferred(1), deprecated(2), 17216 * invalid(3), inaccessible(4), unknown(5) 17217 */ 17218 if (ipif->ipif_flags & IPIF_NOLOCAL) 17219 mae6.ipv6AddrStatus = 3; 17220 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17221 mae6.ipv6AddrStatus = 2; 17222 else 17223 mae6.ipv6AddrStatus = 1; 17224 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17225 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17226 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17227 ipif->ipif_v6pp_dst_addr; 17228 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17229 ill->ill_flags | ill->ill_phyint->phyint_flags; 17230 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17231 (char *)&mae6, 17232 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17233 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17234 "allocate %u bytes\n", 17235 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17236 } 17237 } 17238 } 17239 rw_exit(&ill_g_lock); 17240 17241 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17242 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17243 (int)optp->level, (int)optp->name, (int)optp->len)); 17244 qreply(q, mpctl); 17245 return (mp2ctl); 17246 } 17247 17248 /* IPv4 multicast group membership. */ 17249 static mblk_t * 17250 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17251 { 17252 struct opthdr *optp; 17253 mblk_t *mp2ctl; 17254 ill_t *ill; 17255 ipif_t *ipif; 17256 ilm_t *ilm; 17257 ip_member_t ipm; 17258 mblk_t *mp_tail = NULL; 17259 ill_walk_context_t ctx; 17260 zoneid_t zoneid; 17261 17262 /* 17263 * make a copy of the original message 17264 */ 17265 mp2ctl = copymsg(mpctl); 17266 zoneid = Q_TO_CONN(q)->conn_zoneid; 17267 17268 /* ipGroupMember table */ 17269 optp = (struct opthdr *)&mpctl->b_rptr[ 17270 sizeof (struct T_optmgmt_ack)]; 17271 optp->level = MIB2_IP; 17272 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17273 17274 rw_enter(&ill_g_lock, RW_READER); 17275 ill = ILL_START_WALK_V4(&ctx); 17276 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17277 ILM_WALKER_HOLD(ill); 17278 for (ipif = ill->ill_ipif; ipif != NULL; 17279 ipif = ipif->ipif_next) { 17280 if (ipif->ipif_zoneid != zoneid && 17281 ipif->ipif_zoneid != ALL_ZONES) 17282 continue; /* not this zone */ 17283 (void) ipif_get_name(ipif, 17284 ipm.ipGroupMemberIfIndex.o_bytes, 17285 OCTET_LENGTH); 17286 ipm.ipGroupMemberIfIndex.o_length = 17287 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17288 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17289 ASSERT(ilm->ilm_ipif != NULL); 17290 ASSERT(ilm->ilm_ill == NULL); 17291 if (ilm->ilm_ipif != ipif) 17292 continue; 17293 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17294 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17295 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17296 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17297 (char *)&ipm, (int)sizeof (ipm))) { 17298 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17299 "failed to allocate %u bytes\n", 17300 (uint_t)sizeof (ipm))); 17301 } 17302 } 17303 } 17304 ILM_WALKER_RELE(ill); 17305 } 17306 rw_exit(&ill_g_lock); 17307 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17308 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17309 (int)optp->level, (int)optp->name, (int)optp->len)); 17310 qreply(q, mpctl); 17311 return (mp2ctl); 17312 } 17313 17314 /* IPv6 multicast group membership. */ 17315 static mblk_t * 17316 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17317 { 17318 struct opthdr *optp; 17319 mblk_t *mp2ctl; 17320 ill_t *ill; 17321 ilm_t *ilm; 17322 ipv6_member_t ipm6; 17323 mblk_t *mp_tail = NULL; 17324 ill_walk_context_t ctx; 17325 zoneid_t zoneid; 17326 17327 /* 17328 * make a copy of the original message 17329 */ 17330 mp2ctl = copymsg(mpctl); 17331 zoneid = Q_TO_CONN(q)->conn_zoneid; 17332 17333 /* ip6GroupMember table */ 17334 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17335 optp->level = MIB2_IP6; 17336 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17337 17338 rw_enter(&ill_g_lock, RW_READER); 17339 ill = ILL_START_WALK_V6(&ctx); 17340 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17341 ILM_WALKER_HOLD(ill); 17342 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17343 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17344 ASSERT(ilm->ilm_ipif == NULL); 17345 ASSERT(ilm->ilm_ill != NULL); 17346 if (ilm->ilm_zoneid != zoneid) 17347 continue; /* not this zone */ 17348 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17349 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17350 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17351 if (!snmp_append_data2(mpctl->b_cont, 17352 &mp_tail, 17353 (char *)&ipm6, (int)sizeof (ipm6))) { 17354 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17355 "failed to allocate %u bytes\n", 17356 (uint_t)sizeof (ipm6))); 17357 } 17358 } 17359 ILM_WALKER_RELE(ill); 17360 } 17361 rw_exit(&ill_g_lock); 17362 17363 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17364 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17365 (int)optp->level, (int)optp->name, (int)optp->len)); 17366 qreply(q, mpctl); 17367 return (mp2ctl); 17368 } 17369 17370 /* IP multicast filtered sources */ 17371 static mblk_t * 17372 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17373 { 17374 struct opthdr *optp; 17375 mblk_t *mp2ctl; 17376 ill_t *ill; 17377 ipif_t *ipif; 17378 ilm_t *ilm; 17379 ip_grpsrc_t ips; 17380 mblk_t *mp_tail = NULL; 17381 ill_walk_context_t ctx; 17382 zoneid_t zoneid; 17383 int i; 17384 slist_t *sl; 17385 17386 /* 17387 * make a copy of the original message 17388 */ 17389 mp2ctl = copymsg(mpctl); 17390 zoneid = Q_TO_CONN(q)->conn_zoneid; 17391 17392 /* ipGroupSource table */ 17393 optp = (struct opthdr *)&mpctl->b_rptr[ 17394 sizeof (struct T_optmgmt_ack)]; 17395 optp->level = MIB2_IP; 17396 optp->name = EXPER_IP_GROUP_SOURCES; 17397 17398 rw_enter(&ill_g_lock, RW_READER); 17399 ill = ILL_START_WALK_V4(&ctx); 17400 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17401 ILM_WALKER_HOLD(ill); 17402 for (ipif = ill->ill_ipif; ipif != NULL; 17403 ipif = ipif->ipif_next) { 17404 if (ipif->ipif_zoneid != zoneid) 17405 continue; /* not this zone */ 17406 (void) ipif_get_name(ipif, 17407 ips.ipGroupSourceIfIndex.o_bytes, 17408 OCTET_LENGTH); 17409 ips.ipGroupSourceIfIndex.o_length = 17410 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17411 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17412 ASSERT(ilm->ilm_ipif != NULL); 17413 ASSERT(ilm->ilm_ill == NULL); 17414 sl = ilm->ilm_filter; 17415 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17416 continue; 17417 ips.ipGroupSourceGroup = ilm->ilm_addr; 17418 for (i = 0; i < sl->sl_numsrc; i++) { 17419 if (!IN6_IS_ADDR_V4MAPPED( 17420 &sl->sl_addr[i])) 17421 continue; 17422 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 17423 ips.ipGroupSourceAddress); 17424 if (snmp_append_data2(mpctl->b_cont, 17425 &mp_tail, (char *)&ips, 17426 (int)sizeof (ips)) == 0) { 17427 ip1dbg(("ip_snmp_get_mib2_" 17428 "ip_group_src: failed to " 17429 "allocate %u bytes\n", 17430 (uint_t)sizeof (ips))); 17431 } 17432 } 17433 } 17434 } 17435 ILM_WALKER_RELE(ill); 17436 } 17437 rw_exit(&ill_g_lock); 17438 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17439 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17440 (int)optp->level, (int)optp->name, (int)optp->len)); 17441 qreply(q, mpctl); 17442 return (mp2ctl); 17443 } 17444 17445 /* IPv6 multicast filtered sources. */ 17446 static mblk_t * 17447 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 17448 { 17449 struct opthdr *optp; 17450 mblk_t *mp2ctl; 17451 ill_t *ill; 17452 ilm_t *ilm; 17453 ipv6_grpsrc_t ips6; 17454 mblk_t *mp_tail = NULL; 17455 ill_walk_context_t ctx; 17456 zoneid_t zoneid; 17457 int i; 17458 slist_t *sl; 17459 17460 /* 17461 * make a copy of the original message 17462 */ 17463 mp2ctl = copymsg(mpctl); 17464 zoneid = Q_TO_CONN(q)->conn_zoneid; 17465 17466 /* ip6GroupMember table */ 17467 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17468 optp->level = MIB2_IP6; 17469 optp->name = EXPER_IP6_GROUP_SOURCES; 17470 17471 rw_enter(&ill_g_lock, RW_READER); 17472 ill = ILL_START_WALK_V6(&ctx); 17473 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17474 ILM_WALKER_HOLD(ill); 17475 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 17476 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17477 ASSERT(ilm->ilm_ipif == NULL); 17478 ASSERT(ilm->ilm_ill != NULL); 17479 sl = ilm->ilm_filter; 17480 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 17481 continue; 17482 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 17483 for (i = 0; i < sl->sl_numsrc; i++) { 17484 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 17485 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17486 (char *)&ips6, (int)sizeof (ips6))) { 17487 ip1dbg(("ip_snmp_get_mib2_ip6_" 17488 "group_src: failed to allocate " 17489 "%u bytes\n", 17490 (uint_t)sizeof (ips6))); 17491 } 17492 } 17493 } 17494 ILM_WALKER_RELE(ill); 17495 } 17496 rw_exit(&ill_g_lock); 17497 17498 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17499 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17500 (int)optp->level, (int)optp->name, (int)optp->len)); 17501 qreply(q, mpctl); 17502 return (mp2ctl); 17503 } 17504 17505 /* Multicast routing virtual interface table. */ 17506 static mblk_t * 17507 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 17508 { 17509 struct opthdr *optp; 17510 mblk_t *mp2ctl; 17511 17512 /* 17513 * make a copy of the original message 17514 */ 17515 mp2ctl = copymsg(mpctl); 17516 17517 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17518 optp->level = EXPER_DVMRP; 17519 optp->name = EXPER_DVMRP_VIF; 17520 if (!ip_mroute_vif(mpctl->b_cont)) { 17521 ip0dbg(("ip_mroute_vif: failed\n")); 17522 } 17523 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17524 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 17525 (int)optp->level, (int)optp->name, (int)optp->len)); 17526 qreply(q, mpctl); 17527 return (mp2ctl); 17528 } 17529 17530 /* Multicast routing table. */ 17531 static mblk_t * 17532 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 17533 { 17534 struct opthdr *optp; 17535 mblk_t *mp2ctl; 17536 17537 /* 17538 * make a copy of the original message 17539 */ 17540 mp2ctl = copymsg(mpctl); 17541 17542 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17543 optp->level = EXPER_DVMRP; 17544 optp->name = EXPER_DVMRP_MRT; 17545 if (!ip_mroute_mrt(mpctl->b_cont)) { 17546 ip0dbg(("ip_mroute_mrt: failed\n")); 17547 } 17548 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17549 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 17550 (int)optp->level, (int)optp->name, (int)optp->len)); 17551 qreply(q, mpctl); 17552 return (mp2ctl); 17553 } 17554 17555 /* 17556 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 17557 * in one IRE walk. 17558 */ 17559 static mblk_t * 17560 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 17561 { 17562 struct opthdr *optp; 17563 mblk_t *mp2ctl; /* Returned */ 17564 mblk_t *mp3ctl; /* nettomedia */ 17565 mblk_t *mp4ctl; /* routeattrs */ 17566 iproutedata_t ird; 17567 zoneid_t zoneid; 17568 17569 /* 17570 * make copies of the original message 17571 * - mp2ctl is returned unchanged to the caller for his use 17572 * - mpctl is sent upstream as ipRouteEntryTable 17573 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 17574 * - mp4ctl is sent upstream as ipRouteAttributeTable 17575 */ 17576 mp2ctl = copymsg(mpctl); 17577 mp3ctl = copymsg(mpctl); 17578 mp4ctl = copymsg(mpctl); 17579 if (mp3ctl == NULL || mp4ctl == NULL) { 17580 freemsg(mp4ctl); 17581 freemsg(mp3ctl); 17582 freemsg(mp2ctl); 17583 freemsg(mpctl); 17584 return (NULL); 17585 } 17586 17587 bzero(&ird, sizeof (ird)); 17588 17589 ird.ird_route.lp_head = mpctl->b_cont; 17590 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17591 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17592 17593 zoneid = Q_TO_CONN(q)->conn_zoneid; 17594 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 17595 if (zoneid == GLOBAL_ZONEID) { 17596 /* 17597 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17598 * the sys_net_config privilege, it can only run in the global 17599 * zone, so we don't display these IREs in the other zones. 17600 */ 17601 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 17602 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 17603 } 17604 17605 /* ipRouteEntryTable in mpctl */ 17606 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17607 optp->level = MIB2_IP; 17608 optp->name = MIB2_IP_ROUTE; 17609 optp->len = msgdsize(ird.ird_route.lp_head); 17610 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17611 (int)optp->level, (int)optp->name, (int)optp->len)); 17612 qreply(q, mpctl); 17613 17614 /* ipNetToMediaEntryTable in mp3ctl */ 17615 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17616 optp->level = MIB2_IP; 17617 optp->name = MIB2_IP_MEDIA; 17618 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17619 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17620 (int)optp->level, (int)optp->name, (int)optp->len)); 17621 qreply(q, mp3ctl); 17622 17623 /* ipRouteAttributeTable in mp4ctl */ 17624 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17625 optp->level = MIB2_IP; 17626 optp->name = EXPER_IP_RTATTR; 17627 optp->len = msgdsize(ird.ird_attrs.lp_head); 17628 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17629 (int)optp->level, (int)optp->name, (int)optp->len)); 17630 if (optp->len == 0) 17631 freemsg(mp4ctl); 17632 else 17633 qreply(q, mp4ctl); 17634 17635 return (mp2ctl); 17636 } 17637 17638 /* 17639 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 17640 * ipv6NetToMediaEntryTable in an NDP walk. 17641 */ 17642 static mblk_t * 17643 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17644 { 17645 struct opthdr *optp; 17646 mblk_t *mp2ctl; /* Returned */ 17647 mblk_t *mp3ctl; /* nettomedia */ 17648 mblk_t *mp4ctl; /* routeattrs */ 17649 iproutedata_t ird; 17650 zoneid_t zoneid; 17651 17652 /* 17653 * make copies of the original message 17654 * - mp2ctl is returned unchanged to the caller for his use 17655 * - mpctl is sent upstream as ipv6RouteEntryTable 17656 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 17657 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 17658 */ 17659 mp2ctl = copymsg(mpctl); 17660 mp3ctl = copymsg(mpctl); 17661 mp4ctl = copymsg(mpctl); 17662 if (mp3ctl == NULL || mp4ctl == NULL) { 17663 freemsg(mp4ctl); 17664 freemsg(mp3ctl); 17665 freemsg(mp2ctl); 17666 freemsg(mpctl); 17667 return (NULL); 17668 } 17669 17670 bzero(&ird, sizeof (ird)); 17671 17672 ird.ird_route.lp_head = mpctl->b_cont; 17673 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17674 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17675 17676 zoneid = Q_TO_CONN(q)->conn_zoneid; 17677 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 17678 17679 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17680 optp->level = MIB2_IP6; 17681 optp->name = MIB2_IP6_ROUTE; 17682 optp->len = msgdsize(ird.ird_route.lp_head); 17683 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17684 (int)optp->level, (int)optp->name, (int)optp->len)); 17685 qreply(q, mpctl); 17686 17687 /* ipv6NetToMediaEntryTable in mp3ctl */ 17688 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 17689 17690 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17691 optp->level = MIB2_IP6; 17692 optp->name = MIB2_IP6_MEDIA; 17693 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17694 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17695 (int)optp->level, (int)optp->name, (int)optp->len)); 17696 qreply(q, mp3ctl); 17697 17698 /* ipv6RouteAttributeTable in mp4ctl */ 17699 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17700 optp->level = MIB2_IP6; 17701 optp->name = EXPER_IP_RTATTR; 17702 optp->len = msgdsize(ird.ird_attrs.lp_head); 17703 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17704 (int)optp->level, (int)optp->name, (int)optp->len)); 17705 if (optp->len == 0) 17706 freemsg(mp4ctl); 17707 else 17708 qreply(q, mp4ctl); 17709 17710 return (mp2ctl); 17711 } 17712 17713 /* 17714 * ICMPv6 mib: One per ill 17715 */ 17716 static mblk_t * 17717 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17718 { 17719 struct opthdr *optp; 17720 mblk_t *mp2ctl; 17721 ill_t *ill; 17722 ill_walk_context_t ctx; 17723 mblk_t *mp_tail = NULL; 17724 17725 /* 17726 * Make a copy of the original message 17727 */ 17728 mp2ctl = copymsg(mpctl); 17729 17730 /* fixed length IPv6 structure ... */ 17731 17732 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17733 optp->level = MIB2_IP6; 17734 optp->name = 0; 17735 /* Include "unknown interface" ip6_mib */ 17736 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17737 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17738 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17739 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17740 sizeof (mib2_ipv6IfStatsEntry_t)); 17741 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17742 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17743 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17744 sizeof (mib2_ipv6NetToMediaEntry_t)); 17745 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17746 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17747 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17748 (int)sizeof (ip6_mib))) { 17749 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17750 (uint_t)sizeof (ip6_mib))); 17751 } 17752 17753 rw_enter(&ill_g_lock, RW_READER); 17754 ill = ILL_START_WALK_V6(&ctx); 17755 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17756 ill->ill_ip6_mib->ipv6IfIndex = 17757 ill->ill_phyint->phyint_ifindex; 17758 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17759 ipv6_forward ? 1 : 2); 17760 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17761 ill->ill_max_hops); 17762 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17763 sizeof (mib2_ipv6IfStatsEntry_t)); 17764 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17765 sizeof (mib2_ipv6AddrEntry_t)); 17766 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17767 sizeof (mib2_ipv6RouteEntry_t)); 17768 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17769 sizeof (mib2_ipv6NetToMediaEntry_t)); 17770 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17771 sizeof (ipv6_member_t)); 17772 17773 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17774 (char *)ill->ill_ip6_mib, 17775 (int)sizeof (*ill->ill_ip6_mib))) { 17776 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17777 "%u bytes\n", 17778 (uint_t)sizeof (*ill->ill_ip6_mib))); 17779 } 17780 } 17781 rw_exit(&ill_g_lock); 17782 17783 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17784 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17785 (int)optp->level, (int)optp->name, (int)optp->len)); 17786 qreply(q, mpctl); 17787 return (mp2ctl); 17788 } 17789 17790 /* 17791 * ICMPv6 mib: One per ill 17792 */ 17793 static mblk_t * 17794 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17795 { 17796 struct opthdr *optp; 17797 mblk_t *mp2ctl; 17798 ill_t *ill; 17799 ill_walk_context_t ctx; 17800 mblk_t *mp_tail = NULL; 17801 /* 17802 * Make a copy of the original message 17803 */ 17804 mp2ctl = copymsg(mpctl); 17805 17806 /* fixed length ICMPv6 structure ... */ 17807 17808 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17809 optp->level = MIB2_ICMP6; 17810 optp->name = 0; 17811 /* Include "unknown interface" icmp6_mib */ 17812 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17813 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17814 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17815 (int)sizeof (icmp6_mib))) { 17816 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17817 (uint_t)sizeof (icmp6_mib))); 17818 } 17819 17820 rw_enter(&ill_g_lock, RW_READER); 17821 ill = ILL_START_WALK_V6(&ctx); 17822 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17823 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17824 ill->ill_phyint->phyint_ifindex; 17825 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17826 sizeof (mib2_ipv6IfIcmpEntry_t); 17827 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17828 (char *)ill->ill_icmp6_mib, 17829 (int)sizeof (*ill->ill_icmp6_mib))) { 17830 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17831 "%u bytes\n", 17832 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17833 } 17834 } 17835 rw_exit(&ill_g_lock); 17836 17837 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17838 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17839 (int)optp->level, (int)optp->name, (int)optp->len)); 17840 qreply(q, mpctl); 17841 return (mp2ctl); 17842 } 17843 17844 /* 17845 * ire_walk routine to create both ipRouteEntryTable and 17846 * ipNetToMediaEntryTable in one IRE walk 17847 */ 17848 static void 17849 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 17850 { 17851 ill_t *ill; 17852 ipif_t *ipif; 17853 mblk_t *llmp; 17854 dl_unitdata_req_t *dlup; 17855 mib2_ipRouteEntry_t *re; 17856 mib2_ipNetToMediaEntry_t ntme; 17857 mib2_ipAttributeEntry_t *iae, *iaeptr; 17858 ipaddr_t gw_addr; 17859 tsol_ire_gw_secattr_t *attrp; 17860 tsol_gc_t *gc = NULL; 17861 tsol_gcgrp_t *gcgrp = NULL; 17862 uint_t sacnt = 0; 17863 int i; 17864 17865 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17866 17867 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 17868 return; 17869 17870 if ((attrp = ire->ire_gw_secattr) != NULL) { 17871 mutex_enter(&attrp->igsa_lock); 17872 if ((gc = attrp->igsa_gc) != NULL) { 17873 gcgrp = gc->gc_grp; 17874 ASSERT(gcgrp != NULL); 17875 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17876 sacnt = 1; 17877 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 17878 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17879 gc = gcgrp->gcgrp_head; 17880 sacnt = gcgrp->gcgrp_count; 17881 } 17882 mutex_exit(&attrp->igsa_lock); 17883 17884 /* do nothing if there's no gc to report */ 17885 if (gc == NULL) { 17886 ASSERT(sacnt == 0); 17887 if (gcgrp != NULL) { 17888 /* we might as well drop the lock now */ 17889 rw_exit(&gcgrp->gcgrp_rwlock); 17890 gcgrp = NULL; 17891 } 17892 attrp = NULL; 17893 } 17894 17895 ASSERT(gc == NULL || (gcgrp != NULL && 17896 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 17897 } 17898 ASSERT(sacnt == 0 || gc != NULL); 17899 17900 if (sacnt != 0 && 17901 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 17902 kmem_free(re, sizeof (*re)); 17903 rw_exit(&gcgrp->gcgrp_rwlock); 17904 return; 17905 } 17906 17907 /* 17908 * Return all IRE types for route table... let caller pick and choose 17909 */ 17910 re->ipRouteDest = ire->ire_addr; 17911 ipif = ire->ire_ipif; 17912 re->ipRouteIfIndex.o_length = 0; 17913 if (ire->ire_type == IRE_CACHE) { 17914 ill = (ill_t *)ire->ire_stq->q_ptr; 17915 re->ipRouteIfIndex.o_length = 17916 ill->ill_name_length == 0 ? 0 : 17917 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17918 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 17919 re->ipRouteIfIndex.o_length); 17920 } else if (ipif != NULL) { 17921 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 17922 OCTET_LENGTH); 17923 re->ipRouteIfIndex.o_length = 17924 mi_strlen(re->ipRouteIfIndex.o_bytes); 17925 } 17926 re->ipRouteMetric1 = -1; 17927 re->ipRouteMetric2 = -1; 17928 re->ipRouteMetric3 = -1; 17929 re->ipRouteMetric4 = -1; 17930 17931 gw_addr = ire->ire_gateway_addr; 17932 17933 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17934 re->ipRouteNextHop = ire->ire_src_addr; 17935 else 17936 re->ipRouteNextHop = gw_addr; 17937 /* indirect(4), direct(3), or invalid(2) */ 17938 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17939 re->ipRouteType = 2; 17940 else 17941 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 17942 re->ipRouteProto = -1; 17943 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17944 re->ipRouteMask = ire->ire_mask; 17945 re->ipRouteMetric5 = -1; 17946 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 17947 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17948 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17949 llmp = ire->ire_dlureq_mp; 17950 re->ipRouteInfo.re_ref = ire->ire_refcnt; 17951 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 17952 re->ipRouteInfo.re_ire_type = ire->ire_type; 17953 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17954 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17955 re->ipRouteInfo.re_flags = ire->ire_flags; 17956 re->ipRouteInfo.re_in_ill.o_length = 0; 17957 if (ire->ire_in_ill != NULL) { 17958 re->ipRouteInfo.re_in_ill.o_length = 17959 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17960 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17961 bcopy(ire->ire_in_ill->ill_name, 17962 re->ipRouteInfo.re_in_ill.o_bytes, 17963 re->ipRouteInfo.re_in_ill.o_length); 17964 } 17965 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17966 17967 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 17968 (char *)re, (int)sizeof (*re))) { 17969 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17970 (uint_t)sizeof (*re))); 17971 } 17972 17973 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 17974 iaeptr->iae_routeidx = ird->ird_idx; 17975 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 17976 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 17977 } 17978 17979 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 17980 (char *)iae, sacnt * sizeof (*iae))) { 17981 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17982 (unsigned)(sacnt * sizeof (*iae)))); 17983 } 17984 17985 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17986 goto done; 17987 /* 17988 * only IRE_CACHE entries that are for a directly connected subnet 17989 * get appended to net -> phys addr table 17990 * (others in arp) 17991 */ 17992 ntme.ipNetToMediaIfIndex.o_length = 0; 17993 ill = ire_to_ill(ire); 17994 ASSERT(ill != NULL); 17995 ntme.ipNetToMediaIfIndex.o_length = 17996 ill->ill_name_length == 0 ? 0 : 17997 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17998 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17999 ntme.ipNetToMediaIfIndex.o_length); 18000 18001 ntme.ipNetToMediaPhysAddress.o_length = 0; 18002 if (llmp) { 18003 uchar_t *addr; 18004 18005 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18006 /* Remove sap from address */ 18007 if (ill->ill_sap_length < 0) 18008 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18009 else 18010 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18011 ill->ill_sap_length; 18012 18013 ntme.ipNetToMediaPhysAddress.o_length = 18014 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18015 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18016 ntme.ipNetToMediaPhysAddress.o_length); 18017 } 18018 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18019 /* assume dynamic (may be changed in arp) */ 18020 ntme.ipNetToMediaType = 3; 18021 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18022 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18023 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18024 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18025 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18026 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18027 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18028 (uint_t)sizeof (ntme))); 18029 } 18030 done: 18031 /* bump route index for next pass */ 18032 ird->ird_idx++; 18033 18034 kmem_free(re, sizeof (*re)); 18035 if (sacnt != 0) 18036 kmem_free(iae, sacnt * sizeof (*iae)); 18037 18038 if (gcgrp != NULL) 18039 rw_exit(&gcgrp->gcgrp_rwlock); 18040 } 18041 18042 /* 18043 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18044 */ 18045 static void 18046 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18047 { 18048 ill_t *ill; 18049 ipif_t *ipif; 18050 mib2_ipv6RouteEntry_t *re; 18051 mib2_ipAttributeEntry_t *iae, *iaeptr; 18052 in6_addr_t gw_addr_v6; 18053 tsol_ire_gw_secattr_t *attrp; 18054 tsol_gc_t *gc = NULL; 18055 tsol_gcgrp_t *gcgrp = NULL; 18056 uint_t sacnt = 0; 18057 int i; 18058 18059 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18060 18061 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18062 return; 18063 18064 if ((attrp = ire->ire_gw_secattr) != NULL) { 18065 mutex_enter(&attrp->igsa_lock); 18066 if ((gc = attrp->igsa_gc) != NULL) { 18067 gcgrp = gc->gc_grp; 18068 ASSERT(gcgrp != NULL); 18069 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18070 sacnt = 1; 18071 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18072 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18073 gc = gcgrp->gcgrp_head; 18074 sacnt = gcgrp->gcgrp_count; 18075 } 18076 mutex_exit(&attrp->igsa_lock); 18077 18078 /* do nothing if there's no gc to report */ 18079 if (gc == NULL) { 18080 ASSERT(sacnt == 0); 18081 if (gcgrp != NULL) { 18082 /* we might as well drop the lock now */ 18083 rw_exit(&gcgrp->gcgrp_rwlock); 18084 gcgrp = NULL; 18085 } 18086 attrp = NULL; 18087 } 18088 18089 ASSERT(gc == NULL || (gcgrp != NULL && 18090 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18091 } 18092 ASSERT(sacnt == 0 || gc != NULL); 18093 18094 if (sacnt != 0 && 18095 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18096 kmem_free(re, sizeof (*re)); 18097 rw_exit(&gcgrp->gcgrp_rwlock); 18098 return; 18099 } 18100 18101 /* 18102 * Return all IRE types for route table... let caller pick and choose 18103 */ 18104 re->ipv6RouteDest = ire->ire_addr_v6; 18105 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18106 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18107 re->ipv6RouteIfIndex.o_length = 0; 18108 ipif = ire->ire_ipif; 18109 if (ire->ire_type == IRE_CACHE) { 18110 ill = (ill_t *)ire->ire_stq->q_ptr; 18111 re->ipv6RouteIfIndex.o_length = 18112 ill->ill_name_length == 0 ? 0 : 18113 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18114 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18115 re->ipv6RouteIfIndex.o_length); 18116 } else if (ipif != NULL) { 18117 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18118 OCTET_LENGTH); 18119 re->ipv6RouteIfIndex.o_length = 18120 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18121 } 18122 18123 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18124 18125 mutex_enter(&ire->ire_lock); 18126 gw_addr_v6 = ire->ire_gateway_addr_v6; 18127 mutex_exit(&ire->ire_lock); 18128 18129 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18130 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18131 else 18132 re->ipv6RouteNextHop = gw_addr_v6; 18133 18134 /* remote(4), local(3), or discard(2) */ 18135 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18136 re->ipv6RouteType = 2; 18137 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18138 re->ipv6RouteType = 3; 18139 else 18140 re->ipv6RouteType = 4; 18141 18142 re->ipv6RouteProtocol = -1; 18143 re->ipv6RoutePolicy = 0; 18144 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18145 re->ipv6RouteNextHopRDI = 0; 18146 re->ipv6RouteWeight = 0; 18147 re->ipv6RouteMetric = 0; 18148 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18149 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18150 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18151 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18152 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18153 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18154 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18155 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18156 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18157 18158 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18159 (char *)re, (int)sizeof (*re))) { 18160 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18161 (uint_t)sizeof (*re))); 18162 } 18163 18164 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18165 iaeptr->iae_routeidx = ird->ird_idx; 18166 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18167 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18168 } 18169 18170 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18171 (char *)iae, sacnt * sizeof (*iae))) { 18172 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18173 (unsigned)(sacnt * sizeof (*iae)))); 18174 } 18175 18176 /* bump route index for next pass */ 18177 ird->ird_idx++; 18178 18179 kmem_free(re, sizeof (*re)); 18180 if (sacnt != 0) 18181 kmem_free(iae, sacnt * sizeof (*iae)); 18182 18183 if (gcgrp != NULL) 18184 rw_exit(&gcgrp->gcgrp_rwlock); 18185 } 18186 18187 /* 18188 * ndp_walk routine to create ipv6NetToMediaEntryTable 18189 */ 18190 static int 18191 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18192 { 18193 ill_t *ill; 18194 mib2_ipv6NetToMediaEntry_t ntme; 18195 dl_unitdata_req_t *dl; 18196 18197 ill = nce->nce_ill; 18198 ASSERT(ill->ill_isv6); 18199 18200 /* 18201 * Neighbor cache entry attached to IRE with on-link 18202 * destination. 18203 */ 18204 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18205 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18206 if ((ill->ill_flags & ILLF_XRESOLV) && 18207 (nce->nce_res_mp != NULL)) { 18208 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18209 ntme.ipv6NetToMediaPhysAddress.o_length = 18210 dl->dl_dest_addr_length; 18211 } else { 18212 ntme.ipv6NetToMediaPhysAddress.o_length = 18213 ill->ill_phys_addr_length; 18214 } 18215 if (nce->nce_res_mp != NULL) { 18216 bcopy((char *)nce->nce_res_mp->b_rptr + 18217 NCE_LL_ADDR_OFFSET(ill), 18218 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18219 ntme.ipv6NetToMediaPhysAddress.o_length); 18220 } else { 18221 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18222 ill->ill_phys_addr_length); 18223 } 18224 /* 18225 * Note: Returns ND_* states. Should be: 18226 * reachable(1), stale(2), delay(3), probe(4), 18227 * invalid(5), unknown(6) 18228 */ 18229 ntme.ipv6NetToMediaState = nce->nce_state; 18230 ntme.ipv6NetToMediaLastUpdated = 0; 18231 18232 /* other(1), dynamic(2), static(3), local(4) */ 18233 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18234 ntme.ipv6NetToMediaType = 4; 18235 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18236 ntme.ipv6NetToMediaType = 1; 18237 } else { 18238 ntme.ipv6NetToMediaType = 2; 18239 } 18240 18241 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18242 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18243 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18244 (uint_t)sizeof (ntme))); 18245 } 18246 return (0); 18247 } 18248 18249 /* 18250 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18251 */ 18252 /* ARGSUSED */ 18253 int 18254 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18255 { 18256 switch (level) { 18257 case MIB2_IP: 18258 case MIB2_ICMP: 18259 switch (name) { 18260 default: 18261 break; 18262 } 18263 return (1); 18264 default: 18265 return (1); 18266 } 18267 } 18268 18269 /* 18270 * Called before the options are updated to check if this packet will 18271 * be source routed from here. 18272 * This routine assumes that the options are well formed i.e. that they 18273 * have already been checked. 18274 */ 18275 static boolean_t 18276 ip_source_routed(ipha_t *ipha) 18277 { 18278 ipoptp_t opts; 18279 uchar_t *opt; 18280 uint8_t optval; 18281 uint8_t optlen; 18282 ipaddr_t dst; 18283 ire_t *ire; 18284 18285 if (IS_SIMPLE_IPH(ipha)) { 18286 ip2dbg(("not source routed\n")); 18287 return (B_FALSE); 18288 } 18289 dst = ipha->ipha_dst; 18290 for (optval = ipoptp_first(&opts, ipha); 18291 optval != IPOPT_EOL; 18292 optval = ipoptp_next(&opts)) { 18293 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18294 opt = opts.ipoptp_cur; 18295 optlen = opts.ipoptp_len; 18296 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18297 optval, optlen)); 18298 switch (optval) { 18299 uint32_t off; 18300 case IPOPT_SSRR: 18301 case IPOPT_LSRR: 18302 /* 18303 * If dst is one of our addresses and there are some 18304 * entries left in the source route return (true). 18305 */ 18306 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18307 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18308 if (ire == NULL) { 18309 ip2dbg(("ip_source_routed: not next" 18310 " source route 0x%x\n", 18311 ntohl(dst))); 18312 return (B_FALSE); 18313 } 18314 ire_refrele(ire); 18315 off = opt[IPOPT_OFFSET]; 18316 off--; 18317 if (optlen < IP_ADDR_LEN || 18318 off > optlen - IP_ADDR_LEN) { 18319 /* End of source route */ 18320 ip1dbg(("ip_source_routed: end of SR\n")); 18321 return (B_FALSE); 18322 } 18323 return (B_TRUE); 18324 } 18325 } 18326 ip2dbg(("not source routed\n")); 18327 return (B_FALSE); 18328 } 18329 18330 /* 18331 * Check if the packet contains any source route. 18332 */ 18333 static boolean_t 18334 ip_source_route_included(ipha_t *ipha) 18335 { 18336 ipoptp_t opts; 18337 uint8_t optval; 18338 18339 if (IS_SIMPLE_IPH(ipha)) 18340 return (B_FALSE); 18341 for (optval = ipoptp_first(&opts, ipha); 18342 optval != IPOPT_EOL; 18343 optval = ipoptp_next(&opts)) { 18344 switch (optval) { 18345 case IPOPT_SSRR: 18346 case IPOPT_LSRR: 18347 return (B_TRUE); 18348 } 18349 } 18350 return (B_FALSE); 18351 } 18352 18353 /* 18354 * Called when the IRE expiration timer fires. 18355 */ 18356 /* ARGSUSED */ 18357 void 18358 ip_trash_timer_expire(void *args) 18359 { 18360 int flush_flag = 0; 18361 18362 /* 18363 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18364 * This lock makes sure that a new invocation of this function 18365 * that occurs due to an almost immediate timer firing will not 18366 * progress beyond this point until the current invocation is done 18367 */ 18368 mutex_enter(&ip_trash_timer_lock); 18369 ip_ire_expire_id = 0; 18370 mutex_exit(&ip_trash_timer_lock); 18371 18372 /* Periodic timer */ 18373 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18374 /* 18375 * Remove all IRE_CACHE entries since they might 18376 * contain arp information. 18377 */ 18378 flush_flag |= FLUSH_ARP_TIME; 18379 ip_ire_arp_time_elapsed = 0; 18380 IP_STAT(ip_ire_arp_timer_expired); 18381 } 18382 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18383 /* Remove all redirects */ 18384 flush_flag |= FLUSH_REDIRECT_TIME; 18385 ip_ire_rd_time_elapsed = 0; 18386 IP_STAT(ip_ire_redirect_timer_expired); 18387 } 18388 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18389 /* Increase path mtu */ 18390 flush_flag |= FLUSH_MTU_TIME; 18391 ip_ire_pmtu_time_elapsed = 0; 18392 IP_STAT(ip_ire_pmtu_timer_expired); 18393 } 18394 if (flush_flag != 0) { 18395 /* Walk all IPv4 IRE's and update them */ 18396 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 18397 ALL_ZONES); 18398 } 18399 if (flush_flag & FLUSH_MTU_TIME) { 18400 /* 18401 * Walk all IPv6 IRE's and update them 18402 * Note that ARP and redirect timers are not 18403 * needed since NUD handles stale entries. 18404 */ 18405 flush_flag = FLUSH_MTU_TIME; 18406 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18407 ALL_ZONES); 18408 } 18409 18410 ip_ire_arp_time_elapsed += ip_timer_interval; 18411 ip_ire_rd_time_elapsed += ip_timer_interval; 18412 ip_ire_pmtu_time_elapsed += ip_timer_interval; 18413 18414 /* 18415 * Hold the lock to serialize timeout calls and prevent 18416 * stale values in ip_ire_expire_id. Otherwise it is possible 18417 * for the timer to fire and a new invocation of this function 18418 * to start before the return value of timeout has been stored 18419 * in ip_ire_expire_id by the current invocation. 18420 */ 18421 mutex_enter(&ip_trash_timer_lock); 18422 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 18423 MSEC_TO_TICK(ip_timer_interval)); 18424 mutex_exit(&ip_trash_timer_lock); 18425 } 18426 18427 /* 18428 * Called by the memory allocator subsystem directly, when the system 18429 * is running low on memory. 18430 */ 18431 /* ARGSUSED */ 18432 void 18433 ip_trash_ire_reclaim(void *args) 18434 { 18435 ire_cache_count_t icc; 18436 ire_cache_reclaim_t icr; 18437 ncc_cache_count_t ncc; 18438 nce_cache_reclaim_t ncr; 18439 uint_t delete_cnt; 18440 /* 18441 * Memory reclaim call back. 18442 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 18443 * Then, with a target of freeing 1/Nth of IRE_CACHE 18444 * entries, determine what fraction to free for 18445 * each category of IRE_CACHE entries giving absolute priority 18446 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 18447 * entry will be freed unless all offlink entries are freed). 18448 */ 18449 icc.icc_total = 0; 18450 icc.icc_unused = 0; 18451 icc.icc_offlink = 0; 18452 icc.icc_pmtu = 0; 18453 icc.icc_onlink = 0; 18454 ire_walk(ire_cache_count, (char *)&icc); 18455 18456 /* 18457 * Free NCEs for IPv6 like the onlink ires. 18458 */ 18459 ncc.ncc_total = 0; 18460 ncc.ncc_host = 0; 18461 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 18462 18463 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 18464 icc.icc_pmtu + icc.icc_onlink); 18465 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 18466 IP_STAT(ip_trash_ire_reclaim_calls); 18467 if (delete_cnt == 0) 18468 return; 18469 IP_STAT(ip_trash_ire_reclaim_success); 18470 /* Always delete all unused offlink entries */ 18471 icr.icr_unused = 1; 18472 if (delete_cnt <= icc.icc_unused) { 18473 /* 18474 * Only need to free unused entries. In other words, 18475 * there are enough unused entries to free to meet our 18476 * target number of freed ire cache entries. 18477 */ 18478 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 18479 ncr.ncr_host = 0; 18480 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 18481 /* 18482 * Only need to free unused entries, plus a fraction of offlink 18483 * entries. It follows from the first if statement that 18484 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 18485 */ 18486 delete_cnt -= icc.icc_unused; 18487 /* Round up # deleted by truncating fraction */ 18488 icr.icr_offlink = icc.icc_offlink / delete_cnt; 18489 icr.icr_pmtu = icr.icr_onlink = 0; 18490 ncr.ncr_host = 0; 18491 } else if (delete_cnt <= 18492 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 18493 /* 18494 * Free all unused and offlink entries, plus a fraction of 18495 * pmtu entries. It follows from the previous if statement 18496 * that icc_pmtu is non-zero, and that 18497 * delete_cnt != icc_unused + icc_offlink. 18498 */ 18499 icr.icr_offlink = 1; 18500 delete_cnt -= icc.icc_unused + icc.icc_offlink; 18501 /* Round up # deleted by truncating fraction */ 18502 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 18503 icr.icr_onlink = 0; 18504 ncr.ncr_host = 0; 18505 } else { 18506 /* 18507 * Free all unused, offlink, and pmtu entries, plus a fraction 18508 * of onlink entries. If we're here, then we know that 18509 * icc_onlink is non-zero, and that 18510 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 18511 */ 18512 icr.icr_offlink = icr.icr_pmtu = 1; 18513 delete_cnt -= icc.icc_unused + icc.icc_offlink + 18514 icc.icc_pmtu; 18515 /* Round up # deleted by truncating fraction */ 18516 icr.icr_onlink = icc.icc_onlink / delete_cnt; 18517 /* Using the same delete fraction as for onlink IREs */ 18518 ncr.ncr_host = ncc.ncc_host / delete_cnt; 18519 } 18520 #ifdef DEBUG 18521 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 18522 "fractions %d/%d/%d/%d\n", 18523 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 18524 icc.icc_unused, icc.icc_offlink, 18525 icc.icc_pmtu, icc.icc_onlink, 18526 icr.icr_unused, icr.icr_offlink, 18527 icr.icr_pmtu, icr.icr_onlink)); 18528 #endif 18529 ire_walk(ire_cache_reclaim, (char *)&icr); 18530 if (ncr.ncr_host != 0) 18531 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 18532 (uchar_t *)&ncr); 18533 #ifdef DEBUG 18534 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 18535 icc.icc_pmtu = 0; icc.icc_onlink = 0; 18536 ire_walk(ire_cache_count, (char *)&icc); 18537 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 18538 icc.icc_total, icc.icc_unused, icc.icc_offlink, 18539 icc.icc_pmtu, icc.icc_onlink)); 18540 #endif 18541 } 18542 18543 /* 18544 * ip_unbind is called when a copy of an unbind request is received from the 18545 * upper level protocol. We remove this conn from any fanout hash list it is 18546 * on, and zero out the bind information. No reply is expected up above. 18547 */ 18548 mblk_t * 18549 ip_unbind(queue_t *q, mblk_t *mp) 18550 { 18551 conn_t *connp = Q_TO_CONN(q); 18552 18553 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 18554 18555 if (is_system_labeled() && connp->conn_anon_port) { 18556 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 18557 connp->conn_mlp_type, connp->conn_ulp, 18558 ntohs(connp->conn_lport), B_FALSE); 18559 connp->conn_anon_port = 0; 18560 } 18561 connp->conn_mlp_type = mlptSingle; 18562 18563 ipcl_hash_remove(connp); 18564 18565 ASSERT(mp->b_cont == NULL); 18566 /* 18567 * Convert mp into a T_OK_ACK 18568 */ 18569 mp = mi_tpi_ok_ack_alloc(mp); 18570 18571 /* 18572 * should not happen in practice... T_OK_ACK is smaller than the 18573 * original message. 18574 */ 18575 if (mp == NULL) 18576 return (NULL); 18577 18578 /* 18579 * Don't bzero the ports if its TCP since TCP still needs the 18580 * lport to remove it from its own bind hash. TCP will do the 18581 * cleanup. 18582 */ 18583 if (!IPCL_IS_TCP(connp)) 18584 bzero(&connp->u_port, sizeof (connp->u_port)); 18585 18586 return (mp); 18587 } 18588 18589 /* 18590 * Write side put procedure. Outbound data, IOCTLs, responses from 18591 * resolvers, etc, come down through here. 18592 */ 18593 void 18594 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 18595 { 18596 conn_t *connp = NULL; 18597 queue_t *q = (queue_t *)arg2; 18598 ipha_t *ipha; 18599 #define rptr ((uchar_t *)ipha) 18600 ire_t *ire = NULL; 18601 ire_t *sctp_ire = NULL; 18602 uint32_t v_hlen_tos_len; 18603 ipaddr_t dst; 18604 mblk_t *first_mp = NULL; 18605 boolean_t mctl_present; 18606 ipsec_out_t *io; 18607 int match_flags; 18608 ill_t *attach_ill = NULL; 18609 /* Bind to IPIF_NOFAILOVER ill etc. */ 18610 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 18611 ipif_t *dst_ipif; 18612 boolean_t multirt_need_resolve = B_FALSE; 18613 mblk_t *copy_mp = NULL; 18614 int err; 18615 zoneid_t zoneid; 18616 int adjust; 18617 uint16_t iplen; 18618 boolean_t need_decref = B_FALSE; 18619 boolean_t ignore_dontroute = B_FALSE; 18620 boolean_t ignore_nexthop = B_FALSE; 18621 boolean_t ip_nexthop = B_FALSE; 18622 ipaddr_t nexthop_addr; 18623 18624 #ifdef _BIG_ENDIAN 18625 #define V_HLEN (v_hlen_tos_len >> 24) 18626 #else 18627 #define V_HLEN (v_hlen_tos_len & 0xFF) 18628 #endif 18629 18630 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 18631 "ip_wput_start: q %p", q); 18632 18633 /* 18634 * ip_wput fast path 18635 */ 18636 18637 /* is packet from ARP ? */ 18638 if (q->q_next != NULL) 18639 goto qnext; 18640 18641 connp = (conn_t *)arg; 18642 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 18643 18644 /* is queue flow controlled? */ 18645 if ((q->q_first != NULL || connp->conn_draining) && 18646 (caller == IP_WPUT)) { 18647 ASSERT(!need_decref); 18648 (void) putq(q, mp); 18649 return; 18650 } 18651 18652 /* Multidata transmit? */ 18653 if (DB_TYPE(mp) == M_MULTIDATA) { 18654 /* 18655 * We should never get here, since all Multidata messages 18656 * originating from tcp should have been directed over to 18657 * tcp_multisend() in the first place. 18658 */ 18659 BUMP_MIB(&ip_mib, ipOutDiscards); 18660 freemsg(mp); 18661 return; 18662 } else if (DB_TYPE(mp) != M_DATA) 18663 goto notdata; 18664 18665 if (mp->b_flag & MSGHASREF) { 18666 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18667 mp->b_flag &= ~MSGHASREF; 18668 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 18669 need_decref = B_TRUE; 18670 } 18671 ipha = (ipha_t *)mp->b_rptr; 18672 18673 /* is IP header non-aligned or mblk smaller than basic IP header */ 18674 #ifndef SAFETY_BEFORE_SPEED 18675 if (!OK_32PTR(rptr) || 18676 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 18677 goto hdrtoosmall; 18678 #endif 18679 18680 ASSERT(OK_32PTR(ipha)); 18681 18682 /* 18683 * This function assumes that mp points to an IPv4 packet. If it's the 18684 * wrong version, we'll catch it again in ip_output_v6. 18685 * 18686 * Note that this is *only* locally-generated output here, and never 18687 * forwarded data, and that we need to deal only with transports that 18688 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 18689 * label.) 18690 */ 18691 if (is_system_labeled() && 18692 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 18693 !connp->conn_ulp_labeled) { 18694 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 18695 connp->conn_mac_exempt); 18696 ipha = (ipha_t *)mp->b_rptr; 18697 if (err != 0) { 18698 first_mp = mp; 18699 if (err == EINVAL) 18700 goto icmp_parameter_problem; 18701 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 18702 goto drop_pkt; 18703 } 18704 iplen = ntohs(ipha->ipha_length) + adjust; 18705 ipha->ipha_length = htons(iplen); 18706 } 18707 18708 /* 18709 * If there is a policy, try to attach an ipsec_out in 18710 * the front. At the end, first_mp either points to a 18711 * M_DATA message or IPSEC_OUT message linked to a 18712 * M_DATA message. We have to do it now as we might 18713 * lose the "conn" if we go through ip_newroute. 18714 */ 18715 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 18716 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 18717 ipha->ipha_protocol)) == NULL)) { 18718 if (need_decref) 18719 CONN_DEC_REF(connp); 18720 return; 18721 } else { 18722 ASSERT(mp->b_datap->db_type == M_CTL); 18723 first_mp = mp; 18724 mp = mp->b_cont; 18725 mctl_present = B_TRUE; 18726 } 18727 } else { 18728 first_mp = mp; 18729 mctl_present = B_FALSE; 18730 } 18731 18732 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18733 18734 /* is wrong version or IP options present */ 18735 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 18736 goto version_hdrlen_check; 18737 dst = ipha->ipha_dst; 18738 18739 if (connp->conn_nofailover_ill != NULL) { 18740 attach_ill = conn_get_held_ill(connp, 18741 &connp->conn_nofailover_ill, &err); 18742 if (err == ILL_LOOKUP_FAILED) { 18743 if (need_decref) 18744 CONN_DEC_REF(connp); 18745 freemsg(first_mp); 18746 return; 18747 } 18748 } 18749 18750 /* is packet multicast? */ 18751 if (CLASSD(dst)) 18752 goto multicast; 18753 18754 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 18755 (connp->conn_nexthop_set)) { 18756 /* 18757 * If the destination is a broadcast or a loopback 18758 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 18759 * through the standard path. But in the case of local 18760 * destination only SO_DONTROUTE and IP_NEXTHOP go through 18761 * the standard path not IP_XMIT_IF. 18762 */ 18763 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18764 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 18765 (ire->ire_type != IRE_LOOPBACK))) { 18766 if ((connp->conn_dontroute || 18767 connp->conn_nexthop_set) && (ire != NULL) && 18768 (ire->ire_type == IRE_LOCAL)) 18769 goto standard_path; 18770 18771 if (ire != NULL) { 18772 ire_refrele(ire); 18773 /* No more access to ire */ 18774 ire = NULL; 18775 } 18776 /* 18777 * bypass routing checks and go directly to 18778 * interface. 18779 */ 18780 if (connp->conn_dontroute) { 18781 goto dontroute; 18782 } else if (connp->conn_nexthop_set) { 18783 ip_nexthop = B_TRUE; 18784 nexthop_addr = connp->conn_nexthop_v4; 18785 goto send_from_ill; 18786 } 18787 18788 /* 18789 * If IP_XMIT_IF socket option is set, 18790 * then we allow unicast and multicast 18791 * packets to go through the ill. It is 18792 * quite possible that the destination 18793 * is not in the ire cache table and we 18794 * do not want to go to ip_newroute() 18795 * instead we call ip_newroute_ipif. 18796 */ 18797 xmit_ill = conn_get_held_ill(connp, 18798 &connp->conn_xmit_if_ill, &err); 18799 if (err == ILL_LOOKUP_FAILED) { 18800 if (attach_ill != NULL) 18801 ill_refrele(attach_ill); 18802 if (need_decref) 18803 CONN_DEC_REF(connp); 18804 freemsg(first_mp); 18805 return; 18806 } 18807 goto send_from_ill; 18808 } 18809 standard_path: 18810 /* Must be a broadcast, a loopback or a local ire */ 18811 if (ire != NULL) { 18812 ire_refrele(ire); 18813 /* No more access to ire */ 18814 ire = NULL; 18815 } 18816 } 18817 18818 if (attach_ill != NULL) 18819 goto send_from_ill; 18820 18821 /* 18822 * We cache IRE_CACHEs to avoid lookups. We don't do 18823 * this for the tcp global queue and listen end point 18824 * as it does not really have a real destination to 18825 * talk to. This is also true for SCTP. 18826 */ 18827 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18828 !connp->conn_fully_bound) { 18829 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18830 if (ire == NULL) 18831 goto noirefound; 18832 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18833 "ip_wput_end: q %p (%S)", q, "end"); 18834 18835 /* 18836 * Check if the ire has the RTF_MULTIRT flag, inherited 18837 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18838 */ 18839 if (ire->ire_flags & RTF_MULTIRT) { 18840 18841 /* 18842 * Force the TTL of multirouted packets if required. 18843 * The TTL of such packets is bounded by the 18844 * ip_multirt_ttl ndd variable. 18845 */ 18846 if ((ip_multirt_ttl > 0) && 18847 (ipha->ipha_ttl > ip_multirt_ttl)) { 18848 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18849 "(was %d), dst 0x%08x\n", 18850 ip_multirt_ttl, ipha->ipha_ttl, 18851 ntohl(ire->ire_addr))); 18852 ipha->ipha_ttl = ip_multirt_ttl; 18853 } 18854 /* 18855 * We look at this point if there are pending 18856 * unresolved routes. ire_multirt_resolvable() 18857 * checks in O(n) that all IRE_OFFSUBNET ire 18858 * entries for the packet's destination and 18859 * flagged RTF_MULTIRT are currently resolved. 18860 * If some remain unresolved, we make a copy 18861 * of the current message. It will be used 18862 * to initiate additional route resolutions. 18863 */ 18864 multirt_need_resolve = 18865 ire_multirt_need_resolve(ire->ire_addr, 18866 MBLK_GETLABEL(first_mp)); 18867 ip2dbg(("ip_wput[TCP]: ire %p, " 18868 "multirt_need_resolve %d, first_mp %p\n", 18869 (void *)ire, multirt_need_resolve, 18870 (void *)first_mp)); 18871 if (multirt_need_resolve) { 18872 copy_mp = copymsg(first_mp); 18873 if (copy_mp != NULL) { 18874 MULTIRT_DEBUG_TAG(copy_mp); 18875 } 18876 } 18877 } 18878 18879 ip_wput_ire(q, first_mp, ire, connp, caller); 18880 18881 /* 18882 * Try to resolve another multiroute if 18883 * ire_multirt_need_resolve() deemed it necessary. 18884 */ 18885 if (copy_mp != NULL) { 18886 ip_newroute(q, copy_mp, dst, NULL, connp); 18887 } 18888 if (need_decref) 18889 CONN_DEC_REF(connp); 18890 return; 18891 } 18892 18893 /* 18894 * Access to conn_ire_cache. (protected by conn_lock) 18895 * 18896 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18897 * the ire bucket lock here to check for CONDEMNED as it is okay to 18898 * send a packet or two with the IRE_CACHE that is going away. 18899 * Access to the ire requires an ire refhold on the ire prior to 18900 * its use since an interface unplumb thread may delete the cached 18901 * ire and release the refhold at any time. 18902 * 18903 * Caching an ire in the conn_ire_cache 18904 * 18905 * o Caching an ire pointer in the conn requires a strict check for 18906 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18907 * ires before cleaning up the conns. So the caching of an ire pointer 18908 * in the conn is done after making sure under the bucket lock that the 18909 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18910 * caching an ire after the unplumb thread has cleaned up the conn. 18911 * If the conn does not send a packet subsequently the unplumb thread 18912 * will be hanging waiting for the ire count to drop to zero. 18913 * 18914 * o We also need to atomically test for a null conn_ire_cache and 18915 * set the conn_ire_cache under the the protection of the conn_lock 18916 * to avoid races among concurrent threads trying to simultaneously 18917 * cache an ire in the conn_ire_cache. 18918 */ 18919 mutex_enter(&connp->conn_lock); 18920 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18921 18922 if (ire != NULL && ire->ire_addr == dst && 18923 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18924 18925 IRE_REFHOLD(ire); 18926 mutex_exit(&connp->conn_lock); 18927 18928 } else { 18929 boolean_t cached = B_FALSE; 18930 connp->conn_ire_cache = NULL; 18931 mutex_exit(&connp->conn_lock); 18932 /* Release the old ire */ 18933 if (ire != NULL && sctp_ire == NULL) 18934 IRE_REFRELE_NOTR(ire); 18935 18936 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18937 if (ire == NULL) 18938 goto noirefound; 18939 IRE_REFHOLD_NOTR(ire); 18940 18941 mutex_enter(&connp->conn_lock); 18942 if (!(connp->conn_state_flags & CONN_CLOSING) && 18943 connp->conn_ire_cache == NULL) { 18944 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18945 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18946 connp->conn_ire_cache = ire; 18947 cached = B_TRUE; 18948 } 18949 rw_exit(&ire->ire_bucket->irb_lock); 18950 } 18951 mutex_exit(&connp->conn_lock); 18952 18953 /* 18954 * We can continue to use the ire but since it was 18955 * not cached, we should drop the extra reference. 18956 */ 18957 if (!cached) 18958 IRE_REFRELE_NOTR(ire); 18959 } 18960 18961 18962 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18963 "ip_wput_end: q %p (%S)", q, "end"); 18964 18965 /* 18966 * Check if the ire has the RTF_MULTIRT flag, inherited 18967 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18968 */ 18969 if (ire->ire_flags & RTF_MULTIRT) { 18970 18971 /* 18972 * Force the TTL of multirouted packets if required. 18973 * The TTL of such packets is bounded by the 18974 * ip_multirt_ttl ndd variable. 18975 */ 18976 if ((ip_multirt_ttl > 0) && 18977 (ipha->ipha_ttl > ip_multirt_ttl)) { 18978 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18979 "(was %d), dst 0x%08x\n", 18980 ip_multirt_ttl, ipha->ipha_ttl, 18981 ntohl(ire->ire_addr))); 18982 ipha->ipha_ttl = ip_multirt_ttl; 18983 } 18984 18985 /* 18986 * At this point, we check to see if there are any pending 18987 * unresolved routes. ire_multirt_resolvable() 18988 * checks in O(n) that all IRE_OFFSUBNET ire 18989 * entries for the packet's destination and 18990 * flagged RTF_MULTIRT are currently resolved. 18991 * If some remain unresolved, we make a copy 18992 * of the current message. It will be used 18993 * to initiate additional route resolutions. 18994 */ 18995 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 18996 MBLK_GETLABEL(first_mp)); 18997 ip2dbg(("ip_wput[not TCP]: ire %p, " 18998 "multirt_need_resolve %d, first_mp %p\n", 18999 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19000 if (multirt_need_resolve) { 19001 copy_mp = copymsg(first_mp); 19002 if (copy_mp != NULL) { 19003 MULTIRT_DEBUG_TAG(copy_mp); 19004 } 19005 } 19006 } 19007 19008 ip_wput_ire(q, first_mp, ire, connp, caller); 19009 19010 /* 19011 * Try to resolve another multiroute if 19012 * ire_multirt_resolvable() deemed it necessary 19013 */ 19014 if (copy_mp != NULL) { 19015 ip_newroute(q, copy_mp, dst, NULL, connp); 19016 } 19017 if (need_decref) 19018 CONN_DEC_REF(connp); 19019 return; 19020 19021 qnext: 19022 /* 19023 * Upper Level Protocols pass down complete IP datagrams 19024 * as M_DATA messages. Everything else is a sideshow. 19025 * 19026 * 1) We could be re-entering ip_wput because of ip_neworute 19027 * in which case we could have a IPSEC_OUT message. We 19028 * need to pass through ip_wput like other datagrams and 19029 * hence cannot branch to ip_wput_nondata. 19030 * 19031 * 2) ARP, AH, ESP, and other clients who are on the module 19032 * instance of IP stream, give us something to deal with. 19033 * We will handle AH and ESP here and rest in ip_wput_nondata. 19034 * 19035 * 3) ICMP replies also could come here. 19036 */ 19037 if (DB_TYPE(mp) != M_DATA) { 19038 notdata: 19039 if (DB_TYPE(mp) == M_CTL) { 19040 /* 19041 * M_CTL messages are used by ARP, AH and ESP to 19042 * communicate with IP. We deal with IPSEC_IN and 19043 * IPSEC_OUT here. ip_wput_nondata handles other 19044 * cases. 19045 */ 19046 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19047 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19048 first_mp = mp->b_cont; 19049 first_mp->b_flag &= ~MSGHASREF; 19050 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19051 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19052 CONN_DEC_REF(connp); 19053 connp = NULL; 19054 } 19055 if (ii->ipsec_info_type == IPSEC_IN) { 19056 /* 19057 * Either this message goes back to 19058 * IPSEC for further processing or to 19059 * ULP after policy checks. 19060 */ 19061 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19062 return; 19063 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19064 io = (ipsec_out_t *)ii; 19065 if (io->ipsec_out_proc_begin) { 19066 /* 19067 * IPSEC processing has already started. 19068 * Complete it. 19069 * IPQoS notes: We don't care what is 19070 * in ipsec_out_ill_index since this 19071 * won't be processed for IPQoS policies 19072 * in ipsec_out_process. 19073 */ 19074 ipsec_out_process(q, mp, NULL, 19075 io->ipsec_out_ill_index); 19076 return; 19077 } else { 19078 connp = (q->q_next != NULL) ? 19079 NULL : Q_TO_CONN(q); 19080 first_mp = mp; 19081 mp = mp->b_cont; 19082 mctl_present = B_TRUE; 19083 } 19084 zoneid = io->ipsec_out_zoneid; 19085 ASSERT(zoneid != ALL_ZONES); 19086 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19087 /* 19088 * It's an IPsec control message requesting 19089 * an SADB update to be sent to the IPsec 19090 * hardware acceleration capable ills. 19091 */ 19092 ipsec_ctl_t *ipsec_ctl = 19093 (ipsec_ctl_t *)mp->b_rptr; 19094 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19095 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19096 mblk_t *cmp = mp->b_cont; 19097 19098 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19099 ASSERT(cmp != NULL); 19100 19101 freeb(mp); 19102 ill_ipsec_capab_send_all(satype, cmp, sa); 19103 return; 19104 } else { 19105 /* 19106 * This must be ARP or special TSOL signaling. 19107 */ 19108 ip_wput_nondata(NULL, q, mp, NULL); 19109 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19110 "ip_wput_end: q %p (%S)", q, "nondata"); 19111 return; 19112 } 19113 } else { 19114 /* 19115 * This must be non-(ARP/AH/ESP) messages. 19116 */ 19117 ASSERT(!need_decref); 19118 ip_wput_nondata(NULL, q, mp, NULL); 19119 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19120 "ip_wput_end: q %p (%S)", q, "nondata"); 19121 return; 19122 } 19123 } else { 19124 first_mp = mp; 19125 mctl_present = B_FALSE; 19126 } 19127 19128 ASSERT(first_mp != NULL); 19129 /* 19130 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19131 * to make sure that this packet goes out on the same interface it 19132 * came in. We handle that here. 19133 */ 19134 if (mctl_present) { 19135 uint_t ifindex; 19136 19137 io = (ipsec_out_t *)first_mp->b_rptr; 19138 if (io->ipsec_out_attach_if || 19139 io->ipsec_out_xmit_if || 19140 io->ipsec_out_ip_nexthop) { 19141 ill_t *ill; 19142 19143 /* 19144 * We may have lost the conn context if we are 19145 * coming here from ip_newroute(). Copy the 19146 * nexthop information. 19147 */ 19148 if (io->ipsec_out_ip_nexthop) { 19149 ip_nexthop = B_TRUE; 19150 nexthop_addr = io->ipsec_out_nexthop_addr; 19151 19152 ipha = (ipha_t *)mp->b_rptr; 19153 dst = ipha->ipha_dst; 19154 goto send_from_ill; 19155 } else { 19156 ASSERT(io->ipsec_out_ill_index != 0); 19157 ifindex = io->ipsec_out_ill_index; 19158 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19159 NULL, NULL, NULL, NULL); 19160 /* 19161 * ipsec_out_xmit_if bit is used to tell 19162 * ip_wput to use the ill to send outgoing data 19163 * as we have no conn when data comes from ICMP 19164 * error msg routines. Currently this feature is 19165 * only used by ip_mrtun_forward routine. 19166 */ 19167 if (io->ipsec_out_xmit_if) { 19168 xmit_ill = ill; 19169 if (xmit_ill == NULL) { 19170 ip1dbg(("ip_output:bad ifindex " 19171 "for xmit_ill %d\n", 19172 ifindex)); 19173 freemsg(first_mp); 19174 BUMP_MIB(&ip_mib, 19175 ipOutDiscards); 19176 ASSERT(!need_decref); 19177 return; 19178 } 19179 /* Free up the ipsec_out_t mblk */ 19180 ASSERT(first_mp->b_cont == mp); 19181 first_mp->b_cont = NULL; 19182 freeb(first_mp); 19183 /* Just send the IP header+ICMP+data */ 19184 first_mp = mp; 19185 ipha = (ipha_t *)mp->b_rptr; 19186 dst = ipha->ipha_dst; 19187 goto send_from_ill; 19188 } else { 19189 attach_ill = ill; 19190 } 19191 19192 if (attach_ill == NULL) { 19193 ASSERT(xmit_ill == NULL); 19194 ip1dbg(("ip_output: bad ifindex for " 19195 "(BIND TO IPIF_NOFAILOVER) %d\n", 19196 ifindex)); 19197 freemsg(first_mp); 19198 BUMP_MIB(&ip_mib, ipOutDiscards); 19199 ASSERT(!need_decref); 19200 return; 19201 } 19202 } 19203 } 19204 } 19205 19206 ASSERT(xmit_ill == NULL); 19207 19208 /* We have a complete IP datagram heading outbound. */ 19209 ipha = (ipha_t *)mp->b_rptr; 19210 19211 #ifndef SPEED_BEFORE_SAFETY 19212 /* 19213 * Make sure we have a full-word aligned message and that at least 19214 * a simple IP header is accessible in the first message. If not, 19215 * try a pullup. 19216 */ 19217 if (!OK_32PTR(rptr) || 19218 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19219 hdrtoosmall: 19220 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19221 BUMP_MIB(&ip_mib, ipOutDiscards); 19222 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19223 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19224 if (first_mp == NULL) 19225 first_mp = mp; 19226 goto drop_pkt; 19227 } 19228 19229 /* This function assumes that mp points to an IPv4 packet. */ 19230 if (is_system_labeled() && q->q_next == NULL && 19231 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19232 !connp->conn_ulp_labeled) { 19233 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19234 &adjust, connp->conn_mac_exempt); 19235 ipha = (ipha_t *)mp->b_rptr; 19236 if (first_mp != NULL) 19237 first_mp->b_cont = mp; 19238 if (err != 0) { 19239 if (first_mp == NULL) 19240 first_mp = mp; 19241 if (err == EINVAL) 19242 goto icmp_parameter_problem; 19243 ip2dbg(("ip_wput: label check failed (%d)\n", 19244 err)); 19245 goto drop_pkt; 19246 } 19247 iplen = ntohs(ipha->ipha_length) + adjust; 19248 ipha->ipha_length = htons(iplen); 19249 } 19250 19251 ipha = (ipha_t *)mp->b_rptr; 19252 if (first_mp == NULL) { 19253 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19254 /* 19255 * If we got here because of "goto hdrtoosmall" 19256 * We need to attach a IPSEC_OUT. 19257 */ 19258 if (connp->conn_out_enforce_policy) { 19259 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19260 NULL, ipha->ipha_protocol)) == NULL)) { 19261 if (need_decref) 19262 CONN_DEC_REF(connp); 19263 return; 19264 } else { 19265 ASSERT(mp->b_datap->db_type == M_CTL); 19266 first_mp = mp; 19267 mp = mp->b_cont; 19268 mctl_present = B_TRUE; 19269 } 19270 } else { 19271 first_mp = mp; 19272 mctl_present = B_FALSE; 19273 } 19274 } 19275 } 19276 #endif 19277 19278 /* Most of the code below is written for speed, not readability */ 19279 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19280 19281 /* 19282 * If ip_newroute() fails, we're going to need a full 19283 * header for the icmp wraparound. 19284 */ 19285 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19286 uint_t v_hlen; 19287 version_hdrlen_check: 19288 ASSERT(first_mp != NULL); 19289 v_hlen = V_HLEN; 19290 /* 19291 * siphon off IPv6 packets coming down from transport 19292 * layer modules here. 19293 * Note: high-order bit carries NUD reachability confirmation 19294 */ 19295 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19296 /* 19297 * XXX implement a IPv4 and IPv6 packet counter per 19298 * conn and switch when ratio exceeds e.g. 10:1 19299 */ 19300 #ifdef notyet 19301 if (q->q_next == NULL) /* Avoid ill queue */ 19302 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19303 #endif 19304 BUMP_MIB(&ip_mib, ipOutIPv6); 19305 ASSERT(xmit_ill == NULL); 19306 if (attach_ill != NULL) 19307 ill_refrele(attach_ill); 19308 if (need_decref) 19309 mp->b_flag |= MSGHASREF; 19310 (void) ip_output_v6(connp, first_mp, q, caller); 19311 return; 19312 } 19313 19314 if ((v_hlen >> 4) != IP_VERSION) { 19315 BUMP_MIB(&ip_mib, ipOutDiscards); 19316 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19317 "ip_wput_end: q %p (%S)", q, "badvers"); 19318 goto drop_pkt; 19319 } 19320 /* 19321 * Is the header length at least 20 bytes? 19322 * 19323 * Are there enough bytes accessible in the header? If 19324 * not, try a pullup. 19325 */ 19326 v_hlen &= 0xF; 19327 v_hlen <<= 2; 19328 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19329 BUMP_MIB(&ip_mib, ipOutDiscards); 19330 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19331 "ip_wput_end: q %p (%S)", q, "badlen"); 19332 goto drop_pkt; 19333 } 19334 if (v_hlen > (mp->b_wptr - rptr)) { 19335 if (!pullupmsg(mp, v_hlen)) { 19336 BUMP_MIB(&ip_mib, ipOutDiscards); 19337 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19338 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19339 goto drop_pkt; 19340 } 19341 ipha = (ipha_t *)mp->b_rptr; 19342 } 19343 /* 19344 * Move first entry from any source route into ipha_dst and 19345 * verify the options 19346 */ 19347 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19348 ASSERT(xmit_ill == NULL); 19349 if (attach_ill != NULL) 19350 ill_refrele(attach_ill); 19351 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19352 "ip_wput_end: q %p (%S)", q, "badopts"); 19353 if (need_decref) 19354 CONN_DEC_REF(connp); 19355 return; 19356 } 19357 } 19358 dst = ipha->ipha_dst; 19359 19360 /* 19361 * Try to get an IRE_CACHE for the destination address. If we can't, 19362 * we have to run the packet through ip_newroute which will take 19363 * the appropriate action to arrange for an IRE_CACHE, such as querying 19364 * a resolver, or assigning a default gateway, etc. 19365 */ 19366 if (CLASSD(dst)) { 19367 ipif_t *ipif; 19368 uint32_t setsrc = 0; 19369 19370 multicast: 19371 ASSERT(first_mp != NULL); 19372 ASSERT(xmit_ill == NULL); 19373 ip2dbg(("ip_wput: CLASSD\n")); 19374 if (connp == NULL) { 19375 /* 19376 * Use the first good ipif on the ill. 19377 * XXX Should this ever happen? (Appears 19378 * to show up with just ppp and no ethernet due 19379 * to in.rdisc.) 19380 * However, ire_send should be able to 19381 * call ip_wput_ire directly. 19382 * 19383 * XXX Also, this can happen for ICMP and other packets 19384 * with multicast source addresses. Perhaps we should 19385 * fix things so that we drop the packet in question, 19386 * but for now, just run with it. 19387 */ 19388 ill_t *ill = (ill_t *)q->q_ptr; 19389 19390 /* 19391 * Don't honor attach_if for this case. If ill 19392 * is part of the group, ipif could belong to 19393 * any ill and we cannot maintain attach_ill 19394 * and ipif_ill same anymore and the assert 19395 * below would fail. 19396 */ 19397 if (mctl_present) { 19398 io->ipsec_out_ill_index = 0; 19399 io->ipsec_out_attach_if = B_FALSE; 19400 ASSERT(attach_ill != NULL); 19401 ill_refrele(attach_ill); 19402 attach_ill = NULL; 19403 } 19404 19405 ASSERT(attach_ill == NULL); 19406 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19407 if (ipif == NULL) { 19408 if (need_decref) 19409 CONN_DEC_REF(connp); 19410 freemsg(first_mp); 19411 return; 19412 } 19413 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 19414 ntohl(dst), ill->ill_name)); 19415 } else { 19416 /* 19417 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 19418 * IP_XMIT_IF is honoured. 19419 * Block comment above this function explains the 19420 * locking mechanism used here 19421 */ 19422 xmit_ill = conn_get_held_ill(connp, 19423 &connp->conn_xmit_if_ill, &err); 19424 if (err == ILL_LOOKUP_FAILED) { 19425 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 19426 goto drop_pkt; 19427 } 19428 if (xmit_ill == NULL) { 19429 ipif = conn_get_held_ipif(connp, 19430 &connp->conn_multicast_ipif, &err); 19431 if (err == IPIF_LOOKUP_FAILED) { 19432 ip1dbg(("ip_wput: No ipif for " 19433 "multicast\n")); 19434 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19435 goto drop_pkt; 19436 } 19437 } 19438 if (xmit_ill != NULL) { 19439 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19440 if (ipif == NULL) { 19441 ip1dbg(("ip_wput: No ipif for " 19442 "IP_XMIT_IF\n")); 19443 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19444 goto drop_pkt; 19445 } 19446 } else if (ipif == NULL || ipif->ipif_isv6) { 19447 /* 19448 * We must do this ipif determination here 19449 * else we could pass through ip_newroute 19450 * and come back here without the conn context. 19451 * 19452 * Note: we do late binding i.e. we bind to 19453 * the interface when the first packet is sent. 19454 * For performance reasons we do not rebind on 19455 * each packet but keep the binding until the 19456 * next IP_MULTICAST_IF option. 19457 * 19458 * conn_multicast_{ipif,ill} are shared between 19459 * IPv4 and IPv6 and AF_INET6 sockets can 19460 * send both IPv4 and IPv6 packets. Hence 19461 * we have to check that "isv6" matches above. 19462 */ 19463 if (ipif != NULL) 19464 ipif_refrele(ipif); 19465 ipif = ipif_lookup_group(dst, zoneid); 19466 if (ipif == NULL) { 19467 ip1dbg(("ip_wput: No ipif for " 19468 "multicast\n")); 19469 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19470 goto drop_pkt; 19471 } 19472 err = conn_set_held_ipif(connp, 19473 &connp->conn_multicast_ipif, ipif); 19474 if (err == IPIF_LOOKUP_FAILED) { 19475 ipif_refrele(ipif); 19476 ip1dbg(("ip_wput: No ipif for " 19477 "multicast\n")); 19478 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19479 goto drop_pkt; 19480 } 19481 } 19482 } 19483 ASSERT(!ipif->ipif_isv6); 19484 /* 19485 * As we may lose the conn by the time we reach ip_wput_ire, 19486 * we copy conn_multicast_loop and conn_dontroute on to an 19487 * ipsec_out. In case if this datagram goes out secure, 19488 * we need the ill_index also. Copy that also into the 19489 * ipsec_out. 19490 */ 19491 if (mctl_present) { 19492 io = (ipsec_out_t *)first_mp->b_rptr; 19493 ASSERT(first_mp->b_datap->db_type == M_CTL); 19494 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19495 } else { 19496 ASSERT(mp == first_mp); 19497 if ((first_mp = allocb(sizeof (ipsec_info_t), 19498 BPRI_HI)) == NULL) { 19499 ipif_refrele(ipif); 19500 first_mp = mp; 19501 goto drop_pkt; 19502 } 19503 first_mp->b_datap->db_type = M_CTL; 19504 first_mp->b_wptr += sizeof (ipsec_info_t); 19505 /* ipsec_out_secure is B_FALSE now */ 19506 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 19507 io = (ipsec_out_t *)first_mp->b_rptr; 19508 io->ipsec_out_type = IPSEC_OUT; 19509 io->ipsec_out_len = sizeof (ipsec_out_t); 19510 io->ipsec_out_use_global_policy = B_TRUE; 19511 first_mp->b_cont = mp; 19512 mctl_present = B_TRUE; 19513 } 19514 if (attach_ill != NULL) { 19515 ASSERT(attach_ill == ipif->ipif_ill); 19516 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19517 19518 /* 19519 * Check if we need an ire that will not be 19520 * looked up by anybody else i.e. HIDDEN. 19521 */ 19522 if (ill_is_probeonly(attach_ill)) { 19523 match_flags |= MATCH_IRE_MARK_HIDDEN; 19524 } 19525 io->ipsec_out_ill_index = 19526 attach_ill->ill_phyint->phyint_ifindex; 19527 io->ipsec_out_attach_if = B_TRUE; 19528 } else { 19529 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 19530 io->ipsec_out_ill_index = 19531 ipif->ipif_ill->ill_phyint->phyint_ifindex; 19532 } 19533 if (connp != NULL) { 19534 io->ipsec_out_multicast_loop = 19535 connp->conn_multicast_loop; 19536 io->ipsec_out_dontroute = connp->conn_dontroute; 19537 io->ipsec_out_zoneid = connp->conn_zoneid; 19538 } 19539 /* 19540 * If the application uses IP_MULTICAST_IF with 19541 * different logical addresses of the same ILL, we 19542 * need to make sure that the soruce address of 19543 * the packet matches the logical IP address used 19544 * in the option. We do it by initializing ipha_src 19545 * here. This should keep IPSEC also happy as 19546 * when we return from IPSEC processing, we don't 19547 * have to worry about getting the right address on 19548 * the packet. Thus it is sufficient to look for 19549 * IRE_CACHE using MATCH_IRE_ILL rathen than 19550 * MATCH_IRE_IPIF. 19551 * 19552 * NOTE : We need to do it for non-secure case also as 19553 * this might go out secure if there is a global policy 19554 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 19555 * address, the source should be initialized already and 19556 * hence we won't be initializing here. 19557 * 19558 * As we do not have the ire yet, it is possible that 19559 * we set the source address here and then later discover 19560 * that the ire implies the source address to be assigned 19561 * through the RTF_SETSRC flag. 19562 * In that case, the setsrc variable will remind us 19563 * that overwritting the source address by the one 19564 * of the RTF_SETSRC-flagged ire is allowed. 19565 */ 19566 if (ipha->ipha_src == INADDR_ANY && 19567 (connp == NULL || !connp->conn_unspec_src)) { 19568 ipha->ipha_src = ipif->ipif_src_addr; 19569 setsrc = RTF_SETSRC; 19570 } 19571 /* 19572 * Find an IRE which matches the destination and the outgoing 19573 * queue (i.e. the outgoing interface.) 19574 * For loopback use a unicast IP address for 19575 * the ire lookup. 19576 */ 19577 if (ipif->ipif_ill->ill_phyint->phyint_flags & 19578 PHYI_LOOPBACK) { 19579 dst = ipif->ipif_lcl_addr; 19580 } 19581 /* 19582 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 19583 * We don't need to lookup ire in ctable as the packet 19584 * needs to be sent to the destination through the specified 19585 * ill irrespective of ires in the cache table. 19586 */ 19587 ire = NULL; 19588 if (xmit_ill == NULL) { 19589 ire = ire_ctable_lookup(dst, 0, 0, ipif, 19590 zoneid, MBLK_GETLABEL(mp), match_flags); 19591 } 19592 19593 /* 19594 * refrele attach_ill as its not needed anymore. 19595 */ 19596 if (attach_ill != NULL) { 19597 ill_refrele(attach_ill); 19598 attach_ill = NULL; 19599 } 19600 19601 if (ire == NULL) { 19602 /* 19603 * Multicast loopback and multicast forwarding is 19604 * done in ip_wput_ire. 19605 * 19606 * Mark this packet to make it be delivered to 19607 * ip_wput_ire after the new ire has been 19608 * created. 19609 * 19610 * The call to ip_newroute_ipif takes into account 19611 * the setsrc reminder. In any case, we take care 19612 * of the RTF_MULTIRT flag. 19613 */ 19614 mp->b_prev = mp->b_next = NULL; 19615 if (xmit_ill == NULL || 19616 xmit_ill->ill_ipif_up_count > 0) { 19617 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 19618 setsrc | RTF_MULTIRT); 19619 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19620 "ip_wput_end: q %p (%S)", q, "noire"); 19621 } else { 19622 freemsg(first_mp); 19623 } 19624 ipif_refrele(ipif); 19625 if (xmit_ill != NULL) 19626 ill_refrele(xmit_ill); 19627 if (need_decref) 19628 CONN_DEC_REF(connp); 19629 return; 19630 } 19631 19632 ipif_refrele(ipif); 19633 ipif = NULL; 19634 ASSERT(xmit_ill == NULL); 19635 19636 /* 19637 * Honor the RTF_SETSRC flag for multicast packets, 19638 * if allowed by the setsrc reminder. 19639 */ 19640 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 19641 ipha->ipha_src = ire->ire_src_addr; 19642 } 19643 19644 /* 19645 * Unconditionally force the TTL to 1 for 19646 * multirouted multicast packets: 19647 * multirouted multicast should not cross 19648 * multicast routers. 19649 */ 19650 if (ire->ire_flags & RTF_MULTIRT) { 19651 if (ipha->ipha_ttl > 1) { 19652 ip2dbg(("ip_wput: forcing multicast " 19653 "multirt TTL to 1 (was %d), dst 0x%08x\n", 19654 ipha->ipha_ttl, ntohl(ire->ire_addr))); 19655 ipha->ipha_ttl = 1; 19656 } 19657 } 19658 } else { 19659 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19660 if ((ire != NULL) && (ire->ire_type & 19661 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 19662 ignore_dontroute = B_TRUE; 19663 ignore_nexthop = B_TRUE; 19664 } 19665 if (ire != NULL) { 19666 ire_refrele(ire); 19667 ire = NULL; 19668 } 19669 /* 19670 * Guard against coming in from arp in which case conn is NULL. 19671 * Also guard against non M_DATA with dontroute set but 19672 * destined to local, loopback or broadcast addresses. 19673 */ 19674 if (connp != NULL && connp->conn_dontroute && 19675 !ignore_dontroute) { 19676 dontroute: 19677 /* 19678 * Set TTL to 1 if SO_DONTROUTE is set to prevent 19679 * routing protocols from seeing false direct 19680 * connectivity. 19681 */ 19682 ipha->ipha_ttl = 1; 19683 /* 19684 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 19685 * along with SO_DONTROUTE, higher precedence is 19686 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 19687 */ 19688 if (connp->conn_xmit_if_ill == NULL) { 19689 /* If suitable ipif not found, drop packet */ 19690 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 19691 if (dst_ipif == NULL) { 19692 ip1dbg(("ip_wput: no route for " 19693 "dst using SO_DONTROUTE\n")); 19694 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19695 mp->b_prev = mp->b_next = NULL; 19696 if (first_mp == NULL) 19697 first_mp = mp; 19698 goto drop_pkt; 19699 } else { 19700 /* 19701 * If suitable ipif has been found, set 19702 * xmit_ill to the corresponding 19703 * ipif_ill because we'll be following 19704 * the IP_XMIT_IF logic. 19705 */ 19706 ASSERT(xmit_ill == NULL); 19707 xmit_ill = dst_ipif->ipif_ill; 19708 mutex_enter(&xmit_ill->ill_lock); 19709 if (!ILL_CAN_LOOKUP(xmit_ill)) { 19710 mutex_exit(&xmit_ill->ill_lock); 19711 xmit_ill = NULL; 19712 ipif_refrele(dst_ipif); 19713 ip1dbg(("ip_wput: no route for" 19714 " dst using" 19715 " SO_DONTROUTE\n")); 19716 BUMP_MIB(&ip_mib, 19717 ipOutNoRoutes); 19718 mp->b_prev = mp->b_next = NULL; 19719 if (first_mp == NULL) 19720 first_mp = mp; 19721 goto drop_pkt; 19722 } 19723 ill_refhold_locked(xmit_ill); 19724 mutex_exit(&xmit_ill->ill_lock); 19725 ipif_refrele(dst_ipif); 19726 } 19727 } 19728 19729 } 19730 /* 19731 * If we are bound to IPIF_NOFAILOVER address, look for 19732 * an IRE_CACHE matching the ill. 19733 */ 19734 send_from_ill: 19735 if (attach_ill != NULL) { 19736 ipif_t *attach_ipif; 19737 19738 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19739 19740 /* 19741 * Check if we need an ire that will not be 19742 * looked up by anybody else i.e. HIDDEN. 19743 */ 19744 if (ill_is_probeonly(attach_ill)) { 19745 match_flags |= MATCH_IRE_MARK_HIDDEN; 19746 } 19747 19748 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 19749 if (attach_ipif == NULL) { 19750 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 19751 goto drop_pkt; 19752 } 19753 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 19754 zoneid, MBLK_GETLABEL(mp), match_flags); 19755 ipif_refrele(attach_ipif); 19756 } else if (xmit_ill != NULL || (connp != NULL && 19757 connp->conn_xmit_if_ill != NULL)) { 19758 /* 19759 * Mark this packet as originated locally 19760 */ 19761 mp->b_prev = mp->b_next = NULL; 19762 /* 19763 * xmit_ill could be NULL if SO_DONTROUTE 19764 * is also set. 19765 */ 19766 if (xmit_ill == NULL) { 19767 xmit_ill = conn_get_held_ill(connp, 19768 &connp->conn_xmit_if_ill, &err); 19769 if (err == ILL_LOOKUP_FAILED) { 19770 if (need_decref) 19771 CONN_DEC_REF(connp); 19772 freemsg(first_mp); 19773 return; 19774 } 19775 if (xmit_ill == NULL) { 19776 if (connp->conn_dontroute) 19777 goto dontroute; 19778 goto send_from_ill; 19779 } 19780 } 19781 /* 19782 * could be SO_DONTROUTE case also. 19783 * check at least one interface is UP as 19784 * spcified by this ILL, and then call 19785 * ip_newroute_ipif() 19786 */ 19787 if (xmit_ill->ill_ipif_up_count > 0) { 19788 ipif_t *ipif; 19789 19790 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19791 if (ipif != NULL) { 19792 ip_newroute_ipif(q, first_mp, ipif, 19793 dst, connp, 0); 19794 ipif_refrele(ipif); 19795 ip1dbg(("ip_wput: ip_unicast_if\n")); 19796 } 19797 } else { 19798 freemsg(first_mp); 19799 } 19800 ill_refrele(xmit_ill); 19801 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19802 "ip_wput_end: q %p (%S)", q, "unicast_if"); 19803 if (need_decref) 19804 CONN_DEC_REF(connp); 19805 return; 19806 } else if (ip_nexthop || (connp != NULL && 19807 (connp->conn_nexthop_set)) && !ignore_nexthop) { 19808 if (!ip_nexthop) { 19809 ip_nexthop = B_TRUE; 19810 nexthop_addr = connp->conn_nexthop_v4; 19811 } 19812 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 19813 MATCH_IRE_GW; 19814 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19815 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 19816 } else { 19817 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19818 } 19819 if (!ire) { 19820 /* 19821 * Make sure we don't load spread if this 19822 * is IPIF_NOFAILOVER case. 19823 */ 19824 if ((attach_ill != NULL) || 19825 (ip_nexthop && !ignore_nexthop)) { 19826 if (mctl_present) { 19827 io = (ipsec_out_t *)first_mp->b_rptr; 19828 ASSERT(first_mp->b_datap->db_type == 19829 M_CTL); 19830 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19831 } else { 19832 ASSERT(mp == first_mp); 19833 first_mp = allocb( 19834 sizeof (ipsec_info_t), BPRI_HI); 19835 if (first_mp == NULL) { 19836 first_mp = mp; 19837 goto drop_pkt; 19838 } 19839 first_mp->b_datap->db_type = M_CTL; 19840 first_mp->b_wptr += 19841 sizeof (ipsec_info_t); 19842 /* ipsec_out_secure is B_FALSE now */ 19843 bzero(first_mp->b_rptr, 19844 sizeof (ipsec_info_t)); 19845 io = (ipsec_out_t *)first_mp->b_rptr; 19846 io->ipsec_out_type = IPSEC_OUT; 19847 io->ipsec_out_len = 19848 sizeof (ipsec_out_t); 19849 io->ipsec_out_use_global_policy = 19850 B_TRUE; 19851 first_mp->b_cont = mp; 19852 mctl_present = B_TRUE; 19853 } 19854 if (attach_ill != NULL) { 19855 io->ipsec_out_ill_index = attach_ill-> 19856 ill_phyint->phyint_ifindex; 19857 io->ipsec_out_attach_if = B_TRUE; 19858 } else { 19859 io->ipsec_out_ip_nexthop = ip_nexthop; 19860 io->ipsec_out_nexthop_addr = 19861 nexthop_addr; 19862 } 19863 } 19864 noirefound: 19865 /* 19866 * Mark this packet as having originated on 19867 * this machine. This will be noted in 19868 * ire_add_then_send, which needs to know 19869 * whether to run it back through ip_wput or 19870 * ip_rput following successful resolution. 19871 */ 19872 mp->b_prev = NULL; 19873 mp->b_next = NULL; 19874 ip_newroute(q, first_mp, dst, NULL, connp); 19875 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19876 "ip_wput_end: q %p (%S)", q, "newroute"); 19877 if (attach_ill != NULL) 19878 ill_refrele(attach_ill); 19879 if (xmit_ill != NULL) 19880 ill_refrele(xmit_ill); 19881 if (need_decref) 19882 CONN_DEC_REF(connp); 19883 return; 19884 } 19885 } 19886 19887 /* We now know where we are going with it. */ 19888 19889 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19890 "ip_wput_end: q %p (%S)", q, "end"); 19891 19892 /* 19893 * Check if the ire has the RTF_MULTIRT flag, inherited 19894 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19895 */ 19896 if (ire->ire_flags & RTF_MULTIRT) { 19897 /* 19898 * Force the TTL of multirouted packets if required. 19899 * The TTL of such packets is bounded by the 19900 * ip_multirt_ttl ndd variable. 19901 */ 19902 if ((ip_multirt_ttl > 0) && 19903 (ipha->ipha_ttl > ip_multirt_ttl)) { 19904 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19905 "(was %d), dst 0x%08x\n", 19906 ip_multirt_ttl, ipha->ipha_ttl, 19907 ntohl(ire->ire_addr))); 19908 ipha->ipha_ttl = ip_multirt_ttl; 19909 } 19910 /* 19911 * At this point, we check to see if there are any pending 19912 * unresolved routes. ire_multirt_resolvable() 19913 * checks in O(n) that all IRE_OFFSUBNET ire 19914 * entries for the packet's destination and 19915 * flagged RTF_MULTIRT are currently resolved. 19916 * If some remain unresolved, we make a copy 19917 * of the current message. It will be used 19918 * to initiate additional route resolutions. 19919 */ 19920 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19921 MBLK_GETLABEL(first_mp)); 19922 ip2dbg(("ip_wput[noirefound]: ire %p, " 19923 "multirt_need_resolve %d, first_mp %p\n", 19924 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19925 if (multirt_need_resolve) { 19926 copy_mp = copymsg(first_mp); 19927 if (copy_mp != NULL) { 19928 MULTIRT_DEBUG_TAG(copy_mp); 19929 } 19930 } 19931 } 19932 19933 ip_wput_ire(q, first_mp, ire, connp, caller); 19934 /* 19935 * Try to resolve another multiroute if 19936 * ire_multirt_resolvable() deemed it necessary. 19937 * At this point, we need to distinguish 19938 * multicasts from other packets. For multicasts, 19939 * we call ip_newroute_ipif() and request that both 19940 * multirouting and setsrc flags are checked. 19941 */ 19942 if (copy_mp != NULL) { 19943 if (CLASSD(dst)) { 19944 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19945 if (ipif) { 19946 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19947 RTF_SETSRC | RTF_MULTIRT); 19948 ipif_refrele(ipif); 19949 } else { 19950 MULTIRT_DEBUG_UNTAG(copy_mp); 19951 freemsg(copy_mp); 19952 copy_mp = NULL; 19953 } 19954 } else { 19955 ip_newroute(q, copy_mp, dst, NULL, connp); 19956 } 19957 } 19958 if (attach_ill != NULL) 19959 ill_refrele(attach_ill); 19960 if (xmit_ill != NULL) 19961 ill_refrele(xmit_ill); 19962 if (need_decref) 19963 CONN_DEC_REF(connp); 19964 return; 19965 19966 icmp_parameter_problem: 19967 /* could not have originated externally */ 19968 ASSERT(mp->b_prev == NULL); 19969 if (ip_hdr_complete(ipha, zoneid) == 0) { 19970 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19971 /* it's the IP header length that's in trouble */ 19972 icmp_param_problem(q, first_mp, 0); 19973 first_mp = NULL; 19974 } 19975 19976 drop_pkt: 19977 ip1dbg(("ip_wput: dropped packet\n")); 19978 if (ire != NULL) 19979 ire_refrele(ire); 19980 if (need_decref) 19981 CONN_DEC_REF(connp); 19982 freemsg(first_mp); 19983 if (attach_ill != NULL) 19984 ill_refrele(attach_ill); 19985 if (xmit_ill != NULL) 19986 ill_refrele(xmit_ill); 19987 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19988 "ip_wput_end: q %p (%S)", q, "droppkt"); 19989 } 19990 19991 void 19992 ip_wput(queue_t *q, mblk_t *mp) 19993 { 19994 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19995 } 19996 19997 /* 19998 * 19999 * The following rules must be observed when accessing any ipif or ill 20000 * that has been cached in the conn. Typically conn_nofailover_ill, 20001 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20002 * 20003 * Access: The ipif or ill pointed to from the conn can be accessed under 20004 * the protection of the conn_lock or after it has been refheld under the 20005 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20006 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20007 * The reason for this is that a concurrent unplumb could actually be 20008 * cleaning up these cached pointers by walking the conns and might have 20009 * finished cleaning up the conn in question. The macros check that an 20010 * unplumb has not yet started on the ipif or ill. 20011 * 20012 * Caching: An ipif or ill pointer may be cached in the conn only after 20013 * making sure that an unplumb has not started. So the caching is done 20014 * while holding both the conn_lock and the ill_lock and after using the 20015 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20016 * flag before starting the cleanup of conns. 20017 * 20018 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20019 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20020 * or a reference to the ipif or a reference to an ire that references the 20021 * ipif. An ipif does not change its ill except for failover/failback. Since 20022 * failover/failback happens only after bringing down the ipif and making sure 20023 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20024 * the above holds. 20025 */ 20026 ipif_t * 20027 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20028 { 20029 ipif_t *ipif; 20030 ill_t *ill; 20031 20032 *err = 0; 20033 rw_enter(&ill_g_lock, RW_READER); 20034 mutex_enter(&connp->conn_lock); 20035 ipif = *ipifp; 20036 if (ipif != NULL) { 20037 ill = ipif->ipif_ill; 20038 mutex_enter(&ill->ill_lock); 20039 if (IPIF_CAN_LOOKUP(ipif)) { 20040 ipif_refhold_locked(ipif); 20041 mutex_exit(&ill->ill_lock); 20042 mutex_exit(&connp->conn_lock); 20043 rw_exit(&ill_g_lock); 20044 return (ipif); 20045 } else { 20046 *err = IPIF_LOOKUP_FAILED; 20047 } 20048 mutex_exit(&ill->ill_lock); 20049 } 20050 mutex_exit(&connp->conn_lock); 20051 rw_exit(&ill_g_lock); 20052 return (NULL); 20053 } 20054 20055 ill_t * 20056 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20057 { 20058 ill_t *ill; 20059 20060 *err = 0; 20061 mutex_enter(&connp->conn_lock); 20062 ill = *illp; 20063 if (ill != NULL) { 20064 mutex_enter(&ill->ill_lock); 20065 if (ILL_CAN_LOOKUP(ill)) { 20066 ill_refhold_locked(ill); 20067 mutex_exit(&ill->ill_lock); 20068 mutex_exit(&connp->conn_lock); 20069 return (ill); 20070 } else { 20071 *err = ILL_LOOKUP_FAILED; 20072 } 20073 mutex_exit(&ill->ill_lock); 20074 } 20075 mutex_exit(&connp->conn_lock); 20076 return (NULL); 20077 } 20078 20079 static int 20080 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20081 { 20082 ill_t *ill; 20083 20084 ill = ipif->ipif_ill; 20085 mutex_enter(&connp->conn_lock); 20086 mutex_enter(&ill->ill_lock); 20087 if (IPIF_CAN_LOOKUP(ipif)) { 20088 *ipifp = ipif; 20089 mutex_exit(&ill->ill_lock); 20090 mutex_exit(&connp->conn_lock); 20091 return (0); 20092 } 20093 mutex_exit(&ill->ill_lock); 20094 mutex_exit(&connp->conn_lock); 20095 return (IPIF_LOOKUP_FAILED); 20096 } 20097 20098 /* 20099 * This is called if the outbound datagram needs fragmentation. 20100 * 20101 * NOTE : This function does not ire_refrele the ire argument passed in. 20102 */ 20103 static void 20104 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20105 { 20106 ipha_t *ipha; 20107 mblk_t *mp; 20108 uint32_t v_hlen_tos_len; 20109 uint32_t max_frag; 20110 uint32_t frag_flag; 20111 boolean_t dont_use; 20112 20113 if (ipsec_mp->b_datap->db_type == M_CTL) { 20114 mp = ipsec_mp->b_cont; 20115 } else { 20116 mp = ipsec_mp; 20117 } 20118 20119 ipha = (ipha_t *)mp->b_rptr; 20120 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20121 20122 #ifdef _BIG_ENDIAN 20123 #define V_HLEN (v_hlen_tos_len >> 24) 20124 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20125 #else 20126 #define V_HLEN (v_hlen_tos_len & 0xFF) 20127 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20128 #endif 20129 20130 #ifndef SPEED_BEFORE_SAFETY 20131 /* 20132 * Check that ipha_length is consistent with 20133 * the mblk length 20134 */ 20135 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20136 ip0dbg(("Packet length mismatch: %d, %ld\n", 20137 LENGTH, msgdsize(mp))); 20138 freemsg(ipsec_mp); 20139 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20140 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20141 "packet length mismatch"); 20142 return; 20143 } 20144 #endif 20145 /* 20146 * Don't use frag_flag if pre-built packet or source 20147 * routed or if multicast (since multicast packets do not solicit 20148 * ICMP "packet too big" messages). Get the values of 20149 * max_frag and frag_flag atomically by acquiring the 20150 * ire_lock. 20151 */ 20152 mutex_enter(&ire->ire_lock); 20153 max_frag = ire->ire_max_frag; 20154 frag_flag = ire->ire_frag_flag; 20155 mutex_exit(&ire->ire_lock); 20156 20157 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20158 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20159 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20160 20161 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20162 (dont_use ? 0 : frag_flag)); 20163 } 20164 20165 /* 20166 * Used for deciding the MSS size for the upper layer. Thus 20167 * we need to check the outbound policy values in the conn. 20168 */ 20169 int 20170 conn_ipsec_length(conn_t *connp) 20171 { 20172 ipsec_latch_t *ipl; 20173 20174 ipl = connp->conn_latch; 20175 if (ipl == NULL) 20176 return (0); 20177 20178 if (ipl->ipl_out_policy == NULL) 20179 return (0); 20180 20181 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20182 } 20183 20184 /* 20185 * Returns an estimate of the IPSEC headers size. This is used if 20186 * we don't want to call into IPSEC to get the exact size. 20187 */ 20188 int 20189 ipsec_out_extra_length(mblk_t *ipsec_mp) 20190 { 20191 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20192 ipsec_action_t *a; 20193 20194 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20195 if (!io->ipsec_out_secure) 20196 return (0); 20197 20198 a = io->ipsec_out_act; 20199 20200 if (a == NULL) { 20201 ASSERT(io->ipsec_out_policy != NULL); 20202 a = io->ipsec_out_policy->ipsp_act; 20203 } 20204 ASSERT(a != NULL); 20205 20206 return (a->ipa_ovhd); 20207 } 20208 20209 /* 20210 * Returns an estimate of the IPSEC headers size. This is used if 20211 * we don't want to call into IPSEC to get the exact size. 20212 */ 20213 int 20214 ipsec_in_extra_length(mblk_t *ipsec_mp) 20215 { 20216 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20217 ipsec_action_t *a; 20218 20219 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20220 20221 a = ii->ipsec_in_action; 20222 return (a == NULL ? 0 : a->ipa_ovhd); 20223 } 20224 20225 /* 20226 * If there are any source route options, return the true final 20227 * destination. Otherwise, return the destination. 20228 */ 20229 ipaddr_t 20230 ip_get_dst(ipha_t *ipha) 20231 { 20232 ipoptp_t opts; 20233 uchar_t *opt; 20234 uint8_t optval; 20235 uint8_t optlen; 20236 ipaddr_t dst; 20237 uint32_t off; 20238 20239 dst = ipha->ipha_dst; 20240 20241 if (IS_SIMPLE_IPH(ipha)) 20242 return (dst); 20243 20244 for (optval = ipoptp_first(&opts, ipha); 20245 optval != IPOPT_EOL; 20246 optval = ipoptp_next(&opts)) { 20247 opt = opts.ipoptp_cur; 20248 optlen = opts.ipoptp_len; 20249 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20250 switch (optval) { 20251 case IPOPT_SSRR: 20252 case IPOPT_LSRR: 20253 off = opt[IPOPT_OFFSET]; 20254 /* 20255 * If one of the conditions is true, it means 20256 * end of options and dst already has the right 20257 * value. 20258 */ 20259 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20260 off = optlen - IP_ADDR_LEN; 20261 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20262 } 20263 return (dst); 20264 default: 20265 break; 20266 } 20267 } 20268 20269 return (dst); 20270 } 20271 20272 mblk_t * 20273 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20274 conn_t *connp, boolean_t unspec_src) 20275 { 20276 ipsec_out_t *io; 20277 mblk_t *first_mp; 20278 boolean_t policy_present; 20279 20280 first_mp = mp; 20281 if (mp->b_datap->db_type == M_CTL) { 20282 io = (ipsec_out_t *)first_mp->b_rptr; 20283 /* 20284 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20285 * 20286 * 1) There is per-socket policy (including cached global 20287 * policy). 20288 * 2) There is no per-socket policy, but it is 20289 * a multicast packet that needs to go out 20290 * on a specific interface. This is the case 20291 * where (ip_wput and ip_wput_multicast) attaches 20292 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20293 * 20294 * In case (2) we check with global policy to 20295 * see if there is a match and set the ill_index 20296 * appropriately so that we can lookup the ire 20297 * properly in ip_wput_ipsec_out. 20298 */ 20299 20300 /* 20301 * ipsec_out_use_global_policy is set to B_FALSE 20302 * in ipsec_in_to_out(). Refer to that function for 20303 * details. 20304 */ 20305 if ((io->ipsec_out_latch == NULL) && 20306 (io->ipsec_out_use_global_policy)) { 20307 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20308 ire, connp, unspec_src)); 20309 } 20310 if (!io->ipsec_out_secure) { 20311 /* 20312 * If this is not a secure packet, drop 20313 * the IPSEC_OUT mp and treat it as a clear 20314 * packet. This happens when we are sending 20315 * a ICMP reply back to a clear packet. See 20316 * ipsec_in_to_out() for details. 20317 */ 20318 mp = first_mp->b_cont; 20319 freeb(first_mp); 20320 } 20321 return (mp); 20322 } 20323 /* 20324 * See whether we need to attach a global policy here. We 20325 * don't depend on the conn (as it could be null) for deciding 20326 * what policy this datagram should go through because it 20327 * should have happened in ip_wput if there was some 20328 * policy. This normally happens for connections which are not 20329 * fully bound preventing us from caching policies in 20330 * ip_bind. Packets coming from the TCP listener/global queue 20331 * - which are non-hard_bound - could also be affected by 20332 * applying policy here. 20333 * 20334 * If this packet is coming from tcp global queue or listener, 20335 * we will be applying policy here. This may not be *right* 20336 * if these packets are coming from the detached connection as 20337 * it could have gone in clear before. This happens only if a 20338 * TCP connection started when there is no policy and somebody 20339 * added policy before it became detached. Thus packets of the 20340 * detached connection could go out secure and the other end 20341 * would drop it because it will be expecting in clear. The 20342 * converse is not true i.e if somebody starts a TCP 20343 * connection and deletes the policy, all the packets will 20344 * still go out with the policy that existed before deleting 20345 * because ip_unbind sends up policy information which is used 20346 * by TCP on subsequent ip_wputs. The right solution is to fix 20347 * TCP to attach a dummy IPSEC_OUT and set 20348 * ipsec_out_use_global_policy to B_FALSE. As this might 20349 * affect performance for normal cases, we are not doing it. 20350 * Thus, set policy before starting any TCP connections. 20351 * 20352 * NOTE - We might apply policy even for a hard bound connection 20353 * - for which we cached policy in ip_bind - if somebody added 20354 * global policy after we inherited the policy in ip_bind. 20355 * This means that the packets that were going out in clear 20356 * previously would start going secure and hence get dropped 20357 * on the other side. To fix this, TCP attaches a dummy 20358 * ipsec_out and make sure that we don't apply global policy. 20359 */ 20360 if (ipha != NULL) 20361 policy_present = ipsec_outbound_v4_policy_present; 20362 else 20363 policy_present = ipsec_outbound_v6_policy_present; 20364 if (!policy_present) 20365 return (mp); 20366 20367 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20368 } 20369 20370 ire_t * 20371 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20372 { 20373 ipaddr_t addr; 20374 ire_t *save_ire; 20375 irb_t *irb; 20376 ill_group_t *illgrp; 20377 int err; 20378 20379 save_ire = ire; 20380 addr = ire->ire_addr; 20381 20382 ASSERT(ire->ire_type == IRE_BROADCAST); 20383 20384 illgrp = connp->conn_outgoing_ill->ill_group; 20385 if (illgrp == NULL) { 20386 *conn_outgoing_ill = conn_get_held_ill(connp, 20387 &connp->conn_outgoing_ill, &err); 20388 if (err == ILL_LOOKUP_FAILED) { 20389 ire_refrele(save_ire); 20390 return (NULL); 20391 } 20392 return (save_ire); 20393 } 20394 /* 20395 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20396 * If it is part of the group, we need to send on the ire 20397 * that has been cleared of IRE_MARK_NORECV and that belongs 20398 * to this group. This is okay as IP_BOUND_IF really means 20399 * any ill in the group. We depend on the fact that the 20400 * first ire in the group is always cleared of IRE_MARK_NORECV 20401 * if such an ire exists. This is possible only if you have 20402 * at least one ill in the group that has not failed. 20403 * 20404 * First get to the ire that matches the address and group. 20405 * 20406 * We don't look for an ire with a matching zoneid because a given zone 20407 * won't always have broadcast ires on all ills in the group. 20408 */ 20409 irb = ire->ire_bucket; 20410 rw_enter(&irb->irb_lock, RW_READER); 20411 if (ire->ire_marks & IRE_MARK_NORECV) { 20412 /* 20413 * If the current zone only has an ire broadcast for this 20414 * address marked NORECV, the ire we want is ahead in the 20415 * bucket, so we look it up deliberately ignoring the zoneid. 20416 */ 20417 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 20418 if (ire->ire_addr != addr) 20419 continue; 20420 /* skip over deleted ires */ 20421 if (ire->ire_marks & IRE_MARK_CONDEMNED) 20422 continue; 20423 } 20424 } 20425 while (ire != NULL) { 20426 /* 20427 * If a new interface is coming up, we could end up 20428 * seeing the loopback ire and the non-loopback ire 20429 * may not have been added yet. So check for ire_stq 20430 */ 20431 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 20432 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 20433 break; 20434 } 20435 ire = ire->ire_next; 20436 } 20437 if (ire != NULL && ire->ire_addr == addr && 20438 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 20439 IRE_REFHOLD(ire); 20440 rw_exit(&irb->irb_lock); 20441 ire_refrele(save_ire); 20442 *conn_outgoing_ill = ire_to_ill(ire); 20443 /* 20444 * Refhold the ill to make the conn_outgoing_ill 20445 * independent of the ire. ip_wput_ire goes in a loop 20446 * and may refrele the ire. Since we have an ire at this 20447 * point we don't need to use ILL_CAN_LOOKUP on the ill. 20448 */ 20449 ill_refhold(*conn_outgoing_ill); 20450 return (ire); 20451 } 20452 rw_exit(&irb->irb_lock); 20453 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 20454 /* 20455 * If we can't find a suitable ire, return the original ire. 20456 */ 20457 return (save_ire); 20458 } 20459 20460 /* 20461 * This function does the ire_refrele of the ire passed in as the 20462 * argument. As this function looks up more ires i.e broadcast ires, 20463 * it needs to REFRELE them. Currently, for simplicity we don't 20464 * differentiate the one passed in and looked up here. We always 20465 * REFRELE. 20466 * IPQoS Notes: 20467 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 20468 * IPSec packets are done in ipsec_out_process. 20469 * 20470 */ 20471 void 20472 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 20473 { 20474 ipha_t *ipha; 20475 #define rptr ((uchar_t *)ipha) 20476 mblk_t *mp1; 20477 queue_t *stq; 20478 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 20479 uint32_t v_hlen_tos_len; 20480 uint32_t ttl_protocol; 20481 ipaddr_t src; 20482 ipaddr_t dst; 20483 uint32_t cksum; 20484 ipaddr_t orig_src; 20485 ire_t *ire1; 20486 mblk_t *next_mp; 20487 uint_t hlen; 20488 uint16_t *up; 20489 uint32_t max_frag = ire->ire_max_frag; 20490 ill_t *ill = ire_to_ill(ire); 20491 int clusterwide; 20492 uint16_t ip_hdr_included; /* IP header included by ULP? */ 20493 int ipsec_len; 20494 mblk_t *first_mp; 20495 ipsec_out_t *io; 20496 boolean_t conn_dontroute; /* conn value for multicast */ 20497 boolean_t conn_multicast_loop; /* conn value for multicast */ 20498 boolean_t multicast_forward; /* Should we forward ? */ 20499 boolean_t unspec_src; 20500 ill_t *conn_outgoing_ill = NULL; 20501 ill_t *ire_ill; 20502 ill_t *ire1_ill; 20503 uint32_t ill_index = 0; 20504 boolean_t multirt_send = B_FALSE; 20505 int err; 20506 zoneid_t zoneid; 20507 20508 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 20509 "ip_wput_ire_start: q %p", q); 20510 20511 multicast_forward = B_FALSE; 20512 unspec_src = (connp != NULL && connp->conn_unspec_src); 20513 20514 if (ire->ire_flags & RTF_MULTIRT) { 20515 /* 20516 * Multirouting case. The bucket where ire is stored 20517 * probably holds other RTF_MULTIRT flagged ire 20518 * to the destination. In this call to ip_wput_ire, 20519 * we attempt to send the packet through all 20520 * those ires. Thus, we first ensure that ire is the 20521 * first RTF_MULTIRT ire in the bucket, 20522 * before walking the ire list. 20523 */ 20524 ire_t *first_ire; 20525 irb_t *irb = ire->ire_bucket; 20526 ASSERT(irb != NULL); 20527 20528 /* Make sure we do not omit any multiroute ire. */ 20529 IRB_REFHOLD(irb); 20530 for (first_ire = irb->irb_ire; 20531 first_ire != NULL; 20532 first_ire = first_ire->ire_next) { 20533 if ((first_ire->ire_flags & RTF_MULTIRT) && 20534 (first_ire->ire_addr == ire->ire_addr) && 20535 !(first_ire->ire_marks & 20536 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 20537 break; 20538 } 20539 20540 if ((first_ire != NULL) && (first_ire != ire)) { 20541 IRE_REFHOLD(first_ire); 20542 ire_refrele(ire); 20543 ire = first_ire; 20544 ill = ire_to_ill(ire); 20545 } 20546 IRB_REFRELE(irb); 20547 } 20548 20549 /* 20550 * conn_outgoing_ill is used only in the broadcast loop. 20551 * for performance we don't grab the mutexs in the fastpath 20552 */ 20553 if ((connp != NULL) && 20554 (connp->conn_xmit_if_ill == NULL) && 20555 (ire->ire_type == IRE_BROADCAST) && 20556 ((connp->conn_nofailover_ill != NULL) || 20557 (connp->conn_outgoing_ill != NULL))) { 20558 /* 20559 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 20560 * option. So, see if this endpoint is bound to a 20561 * IPIF_NOFAILOVER address. If so, honor it. This implies 20562 * that if the interface is failed, we will still send 20563 * the packet on the same ill which is what we want. 20564 */ 20565 conn_outgoing_ill = conn_get_held_ill(connp, 20566 &connp->conn_nofailover_ill, &err); 20567 if (err == ILL_LOOKUP_FAILED) { 20568 ire_refrele(ire); 20569 freemsg(mp); 20570 return; 20571 } 20572 if (conn_outgoing_ill == NULL) { 20573 /* 20574 * Choose a good ill in the group to send the 20575 * packets on. 20576 */ 20577 ire = conn_set_outgoing_ill(connp, ire, 20578 &conn_outgoing_ill); 20579 if (ire == NULL) { 20580 freemsg(mp); 20581 return; 20582 } 20583 } 20584 } 20585 20586 if (mp->b_datap->db_type != M_CTL) { 20587 ipha = (ipha_t *)mp->b_rptr; 20588 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 20589 } else { 20590 io = (ipsec_out_t *)mp->b_rptr; 20591 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20592 zoneid = io->ipsec_out_zoneid; 20593 ASSERT(zoneid != ALL_ZONES); 20594 ipha = (ipha_t *)mp->b_cont->b_rptr; 20595 dst = ipha->ipha_dst; 20596 /* 20597 * For the multicast case, ipsec_out carries conn_dontroute and 20598 * conn_multicast_loop as conn may not be available here. We 20599 * need this for multicast loopback and forwarding which is done 20600 * later in the code. 20601 */ 20602 if (CLASSD(dst)) { 20603 conn_dontroute = io->ipsec_out_dontroute; 20604 conn_multicast_loop = io->ipsec_out_multicast_loop; 20605 /* 20606 * If conn_dontroute is not set or conn_multicast_loop 20607 * is set, we need to do forwarding/loopback. For 20608 * datagrams from ip_wput_multicast, conn_dontroute is 20609 * set to B_TRUE and conn_multicast_loop is set to 20610 * B_FALSE so that we neither do forwarding nor 20611 * loopback. 20612 */ 20613 if (!conn_dontroute || conn_multicast_loop) 20614 multicast_forward = B_TRUE; 20615 } 20616 } 20617 20618 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 20619 ire->ire_zoneid != ALL_ZONES) { 20620 /* 20621 * When a zone sends a packet to another zone, we try to deliver 20622 * the packet under the same conditions as if the destination 20623 * was a real node on the network. To do so, we look for a 20624 * matching route in the forwarding table. 20625 * RTF_REJECT and RTF_BLACKHOLE are handled just like 20626 * ip_newroute() does. 20627 */ 20628 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 20629 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 20630 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 20631 if (src_ire != NULL && 20632 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 20633 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 20634 ipha->ipha_src = src_ire->ire_src_addr; 20635 ire_refrele(src_ire); 20636 } else { 20637 ire_refrele(ire); 20638 if (conn_outgoing_ill != NULL) 20639 ill_refrele(conn_outgoing_ill); 20640 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20641 if (src_ire != NULL) { 20642 if (src_ire->ire_flags & RTF_BLACKHOLE) { 20643 ire_refrele(src_ire); 20644 freemsg(mp); 20645 return; 20646 } 20647 ire_refrele(src_ire); 20648 } 20649 if (ip_hdr_complete(ipha, zoneid)) { 20650 /* Failed */ 20651 freemsg(mp); 20652 return; 20653 } 20654 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 20655 return; 20656 } 20657 } 20658 20659 if (mp->b_datap->db_type == M_CTL || 20660 ipsec_outbound_v4_policy_present) { 20661 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 20662 unspec_src); 20663 if (mp == NULL) { 20664 ire_refrele(ire); 20665 if (conn_outgoing_ill != NULL) 20666 ill_refrele(conn_outgoing_ill); 20667 return; 20668 } 20669 } 20670 20671 first_mp = mp; 20672 ipsec_len = 0; 20673 20674 if (first_mp->b_datap->db_type == M_CTL) { 20675 io = (ipsec_out_t *)first_mp->b_rptr; 20676 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20677 mp = first_mp->b_cont; 20678 ipsec_len = ipsec_out_extra_length(first_mp); 20679 ASSERT(ipsec_len >= 0); 20680 zoneid = io->ipsec_out_zoneid; 20681 ASSERT(zoneid != ALL_ZONES); 20682 20683 /* 20684 * Drop M_CTL here if IPsec processing is not needed. 20685 * (Non-IPsec use of M_CTL extracted any information it 20686 * needed above). 20687 */ 20688 if (ipsec_len == 0) { 20689 freeb(first_mp); 20690 first_mp = mp; 20691 } 20692 } 20693 20694 /* 20695 * Fast path for ip_wput_ire 20696 */ 20697 20698 ipha = (ipha_t *)mp->b_rptr; 20699 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20700 dst = ipha->ipha_dst; 20701 20702 /* 20703 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 20704 * if the socket is a SOCK_RAW type. The transport checksum should 20705 * be provided in the pre-built packet, so we don't need to compute it. 20706 * Also, other application set flags, like DF, should not be altered. 20707 * Other transport MUST pass down zero. 20708 */ 20709 ip_hdr_included = ipha->ipha_ident; 20710 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20711 20712 if (CLASSD(dst)) { 20713 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 20714 ntohl(dst), 20715 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 20716 ntohl(ire->ire_addr))); 20717 } 20718 20719 /* Macros to extract header fields from data already in registers */ 20720 #ifdef _BIG_ENDIAN 20721 #define V_HLEN (v_hlen_tos_len >> 24) 20722 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20723 #define PROTO (ttl_protocol & 0xFF) 20724 #else 20725 #define V_HLEN (v_hlen_tos_len & 0xFF) 20726 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20727 #define PROTO (ttl_protocol >> 8) 20728 #endif 20729 20730 20731 orig_src = src = ipha->ipha_src; 20732 /* (The loop back to "another" is explained down below.) */ 20733 another:; 20734 /* 20735 * Assign an ident value for this packet. We assign idents on 20736 * a per destination basis out of the IRE. There could be 20737 * other threads targeting the same destination, so we have to 20738 * arrange for a atomic increment. Note that we use a 32-bit 20739 * atomic add because it has better performance than its 20740 * 16-bit sibling. 20741 * 20742 * If running in cluster mode and if the source address 20743 * belongs to a replicated service then vector through 20744 * cl_inet_ipident vector to allocate ip identifier 20745 * NOTE: This is a contract private interface with the 20746 * clustering group. 20747 */ 20748 clusterwide = 0; 20749 if (cl_inet_ipident) { 20750 ASSERT(cl_inet_isclusterwide); 20751 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20752 AF_INET, (uint8_t *)(uintptr_t)src)) { 20753 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 20754 AF_INET, (uint8_t *)(uintptr_t)src, 20755 (uint8_t *)(uintptr_t)dst); 20756 clusterwide = 1; 20757 } 20758 } 20759 if (!clusterwide) { 20760 ipha->ipha_ident = 20761 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 20762 } 20763 20764 #ifndef _BIG_ENDIAN 20765 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20766 #endif 20767 20768 /* 20769 * Set source address unless sent on an ill or conn_unspec_src is set. 20770 * This is needed to obey conn_unspec_src when packets go through 20771 * ip_newroute + arp. 20772 * Assumes ip_newroute{,_multi} sets the source address as well. 20773 */ 20774 if (src == INADDR_ANY && !unspec_src) { 20775 /* 20776 * Assign the appropriate source address from the IRE if none 20777 * was specified. 20778 */ 20779 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20780 20781 /* 20782 * With IP multipathing, broadcast packets are sent on the ire 20783 * that has been cleared of IRE_MARK_NORECV and that belongs to 20784 * the group. However, this ire might not be in the same zone so 20785 * we can't always use its source address. We look for a 20786 * broadcast ire in the same group and in the right zone. 20787 */ 20788 if (ire->ire_type == IRE_BROADCAST && 20789 ire->ire_zoneid != zoneid) { 20790 ire_t *src_ire = ire_ctable_lookup(dst, 0, 20791 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 20792 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 20793 if (src_ire != NULL) { 20794 src = src_ire->ire_src_addr; 20795 ire_refrele(src_ire); 20796 } else { 20797 ire_refrele(ire); 20798 if (conn_outgoing_ill != NULL) 20799 ill_refrele(conn_outgoing_ill); 20800 freemsg(first_mp); 20801 BUMP_MIB(&ip_mib, ipOutDiscards); 20802 return; 20803 } 20804 } else { 20805 src = ire->ire_src_addr; 20806 } 20807 20808 if (connp == NULL) { 20809 ip1dbg(("ip_wput_ire: no connp and no src " 20810 "address for dst 0x%x, using src 0x%x\n", 20811 ntohl(dst), 20812 ntohl(src))); 20813 } 20814 ipha->ipha_src = src; 20815 } 20816 stq = ire->ire_stq; 20817 20818 /* 20819 * We only allow ire chains for broadcasts since there will 20820 * be multiple IRE_CACHE entries for the same multicast 20821 * address (one per ipif). 20822 */ 20823 next_mp = NULL; 20824 20825 /* broadcast packet */ 20826 if (ire->ire_type == IRE_BROADCAST) 20827 goto broadcast; 20828 20829 /* loopback ? */ 20830 if (stq == NULL) 20831 goto nullstq; 20832 20833 /* The ill_index for outbound ILL */ 20834 ill_index = Q_TO_INDEX(stq); 20835 20836 BUMP_MIB(&ip_mib, ipOutRequests); 20837 ttl_protocol = ((uint16_t *)ipha)[4]; 20838 20839 /* pseudo checksum (do it in parts for IP header checksum) */ 20840 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20841 20842 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20843 queue_t *dev_q = stq->q_next; 20844 20845 /* flow controlled */ 20846 if ((dev_q->q_next || dev_q->q_first) && 20847 !canput(dev_q)) 20848 goto blocked; 20849 if ((PROTO == IPPROTO_UDP) && 20850 (ip_hdr_included != IP_HDR_INCLUDED)) { 20851 hlen = (V_HLEN & 0xF) << 2; 20852 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20853 if (*up != 0) { 20854 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20855 hlen, LENGTH, max_frag, ipsec_len, cksum); 20856 /* Software checksum? */ 20857 if (DB_CKSUMFLAGS(mp) == 0) { 20858 IP_STAT(ip_out_sw_cksum); 20859 IP_STAT_UPDATE( 20860 ip_udp_out_sw_cksum_bytes, 20861 LENGTH - hlen); 20862 } 20863 } 20864 } 20865 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20866 hlen = (V_HLEN & 0xF) << 2; 20867 if (PROTO == IPPROTO_TCP) { 20868 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20869 /* 20870 * The packet header is processed once and for all, even 20871 * in the multirouting case. We disable hardware 20872 * checksum if the packet is multirouted, as it will be 20873 * replicated via several interfaces, and not all of 20874 * them may have this capability. 20875 */ 20876 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20877 LENGTH, max_frag, ipsec_len, cksum); 20878 /* Software checksum? */ 20879 if (DB_CKSUMFLAGS(mp) == 0) { 20880 IP_STAT(ip_out_sw_cksum); 20881 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20882 LENGTH - hlen); 20883 } 20884 } else { 20885 sctp_hdr_t *sctph; 20886 20887 ASSERT(PROTO == IPPROTO_SCTP); 20888 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20889 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20890 /* 20891 * Zero out the checksum field to ensure proper 20892 * checksum calculation. 20893 */ 20894 sctph->sh_chksum = 0; 20895 #ifdef DEBUG 20896 if (!skip_sctp_cksum) 20897 #endif 20898 sctph->sh_chksum = sctp_cksum(mp, hlen); 20899 } 20900 } 20901 20902 /* 20903 * If this is a multicast packet and originated from ip_wput 20904 * we need to do loopback and forwarding checks. If it comes 20905 * from ip_wput_multicast, we SHOULD not do this. 20906 */ 20907 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20908 20909 /* checksum */ 20910 cksum += ttl_protocol; 20911 20912 /* fragment the packet */ 20913 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20914 goto fragmentit; 20915 /* 20916 * Don't use frag_flag if packet is pre-built or source 20917 * routed or if multicast (since multicast packets do 20918 * not solicit ICMP "packet too big" messages). 20919 */ 20920 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20921 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20922 !ip_source_route_included(ipha)) && 20923 !CLASSD(ipha->ipha_dst)) 20924 ipha->ipha_fragment_offset_and_flags |= 20925 htons(ire->ire_frag_flag); 20926 20927 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20928 /* calculate IP header checksum */ 20929 cksum += ipha->ipha_ident; 20930 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20931 cksum += ipha->ipha_fragment_offset_and_flags; 20932 20933 /* IP options present */ 20934 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20935 if (hlen) 20936 goto checksumoptions; 20937 20938 /* calculate hdr checksum */ 20939 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20940 cksum = ~(cksum + (cksum >> 16)); 20941 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20942 } 20943 if (ipsec_len != 0) { 20944 /* 20945 * We will do the rest of the processing after 20946 * we come back from IPSEC in ip_wput_ipsec_out(). 20947 */ 20948 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20949 20950 io = (ipsec_out_t *)first_mp->b_rptr; 20951 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20952 ill_phyint->phyint_ifindex; 20953 20954 ipsec_out_process(q, first_mp, ire, ill_index); 20955 ire_refrele(ire); 20956 if (conn_outgoing_ill != NULL) 20957 ill_refrele(conn_outgoing_ill); 20958 return; 20959 } 20960 20961 /* 20962 * In most cases, the emission loop below is entered only 20963 * once. Only in the case where the ire holds the 20964 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20965 * flagged ires in the bucket, and send the packet 20966 * through all crossed RTF_MULTIRT routes. 20967 */ 20968 if (ire->ire_flags & RTF_MULTIRT) { 20969 multirt_send = B_TRUE; 20970 } 20971 do { 20972 if (multirt_send) { 20973 irb_t *irb; 20974 /* 20975 * We are in a multiple send case, need to get 20976 * the next ire and make a duplicate of the packet. 20977 * ire1 holds here the next ire to process in the 20978 * bucket. If multirouting is expected, 20979 * any non-RTF_MULTIRT ire that has the 20980 * right destination address is ignored. 20981 */ 20982 irb = ire->ire_bucket; 20983 ASSERT(irb != NULL); 20984 20985 IRB_REFHOLD(irb); 20986 for (ire1 = ire->ire_next; 20987 ire1 != NULL; 20988 ire1 = ire1->ire_next) { 20989 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20990 continue; 20991 if (ire1->ire_addr != ire->ire_addr) 20992 continue; 20993 if (ire1->ire_marks & 20994 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20995 continue; 20996 20997 /* Got one */ 20998 IRE_REFHOLD(ire1); 20999 break; 21000 } 21001 IRB_REFRELE(irb); 21002 21003 if (ire1 != NULL) { 21004 next_mp = copyb(mp); 21005 if ((next_mp == NULL) || 21006 ((mp->b_cont != NULL) && 21007 ((next_mp->b_cont = 21008 dupmsg(mp->b_cont)) == NULL))) { 21009 freemsg(next_mp); 21010 next_mp = NULL; 21011 ire_refrele(ire1); 21012 ire1 = NULL; 21013 } 21014 } 21015 21016 /* Last multiroute ire; don't loop anymore. */ 21017 if (ire1 == NULL) { 21018 multirt_send = B_FALSE; 21019 } 21020 } 21021 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 21022 if (mp == NULL) { 21023 BUMP_MIB(&ip_mib, ipOutDiscards); 21024 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 21025 "during IPPF processing\n")); 21026 ire_refrele(ire); 21027 if (next_mp != NULL) { 21028 freemsg(next_mp); 21029 ire_refrele(ire1); 21030 } 21031 if (conn_outgoing_ill != NULL) 21032 ill_refrele(conn_outgoing_ill); 21033 return; 21034 } 21035 UPDATE_OB_PKT_COUNT(ire); 21036 ire->ire_last_used_time = lbolt; 21037 21038 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21039 "ip_wput_ire_end: q %p (%S)", 21040 q, "last copy out"); 21041 putnext(stq, mp); 21042 IRE_REFRELE(ire); 21043 21044 if (multirt_send) { 21045 ASSERT(ire1); 21046 /* 21047 * Proceed with the next RTF_MULTIRT ire, 21048 * Also set up the send-to queue accordingly. 21049 */ 21050 ire = ire1; 21051 ire1 = NULL; 21052 stq = ire->ire_stq; 21053 mp = next_mp; 21054 next_mp = NULL; 21055 ipha = (ipha_t *)mp->b_rptr; 21056 ill_index = Q_TO_INDEX(stq); 21057 } 21058 } while (multirt_send); 21059 if (conn_outgoing_ill != NULL) 21060 ill_refrele(conn_outgoing_ill); 21061 return; 21062 21063 /* 21064 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21065 */ 21066 broadcast: 21067 { 21068 /* 21069 * Avoid broadcast storms by setting the ttl to 1 21070 * for broadcasts. This parameter can be set 21071 * via ndd, so make sure that for the SO_DONTROUTE 21072 * case that ipha_ttl is always set to 1. 21073 * In the event that we are replying to incoming 21074 * ICMP packets, conn could be NULL. 21075 */ 21076 if ((connp != NULL) && connp->conn_dontroute) 21077 ipha->ipha_ttl = 1; 21078 else 21079 ipha->ipha_ttl = ip_broadcast_ttl; 21080 21081 /* 21082 * Note that we are not doing a IRB_REFHOLD here. 21083 * Actually we don't care if the list changes i.e 21084 * if somebody deletes an IRE from the list while 21085 * we drop the lock, the next time we come around 21086 * ire_next will be NULL and hence we won't send 21087 * out multiple copies which is fine. 21088 */ 21089 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21090 ire1 = ire->ire_next; 21091 if (conn_outgoing_ill != NULL) { 21092 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21093 ASSERT(ire1 == ire->ire_next); 21094 if (ire1 != NULL && ire1->ire_addr == dst) { 21095 ire_refrele(ire); 21096 ire = ire1; 21097 IRE_REFHOLD(ire); 21098 ire1 = ire->ire_next; 21099 continue; 21100 } 21101 rw_exit(&ire->ire_bucket->irb_lock); 21102 /* Did not find a matching ill */ 21103 ip1dbg(("ip_wput_ire: broadcast with no " 21104 "matching IP_BOUND_IF ill %s\n", 21105 conn_outgoing_ill->ill_name)); 21106 freemsg(first_mp); 21107 if (ire != NULL) 21108 ire_refrele(ire); 21109 ill_refrele(conn_outgoing_ill); 21110 return; 21111 } 21112 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21113 /* 21114 * If the next IRE has the same address and is not one 21115 * of the two copies that we need to send, try to see 21116 * whether this copy should be sent at all. This 21117 * assumes that we insert loopbacks first and then 21118 * non-loopbacks. This is acheived by inserting the 21119 * loopback always before non-loopback. 21120 * This is used to send a single copy of a broadcast 21121 * packet out all physical interfaces that have an 21122 * matching IRE_BROADCAST while also looping 21123 * back one copy (to ip_wput_local) for each 21124 * matching physical interface. However, we avoid 21125 * sending packets out different logical that match by 21126 * having ipif_up/ipif_down supress duplicate 21127 * IRE_BROADCASTS. 21128 * 21129 * This feature is currently used to get broadcasts 21130 * sent to multiple interfaces, when the broadcast 21131 * address being used applies to multiple interfaces. 21132 * For example, a whole net broadcast will be 21133 * replicated on every connected subnet of 21134 * the target net. 21135 * 21136 * Each zone has its own set of IRE_BROADCASTs, so that 21137 * we're able to distribute inbound packets to multiple 21138 * zones who share a broadcast address. We avoid looping 21139 * back outbound packets in different zones but on the 21140 * same ill, as the application would see duplicates. 21141 * 21142 * If the interfaces are part of the same group, 21143 * we would want to send only one copy out for 21144 * whole group. 21145 * 21146 * This logic assumes that ire_add_v4() groups the 21147 * IRE_BROADCAST entries so that those with the same 21148 * ire_addr and ill_group are kept together. 21149 */ 21150 ire_ill = ire->ire_ipif->ipif_ill; 21151 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21152 if (ire_ill->ill_group != NULL && 21153 (ire->ire_marks & IRE_MARK_NORECV)) { 21154 /* 21155 * If the current zone only has an ire 21156 * broadcast for this address marked 21157 * NORECV, the ire we want is ahead in 21158 * the bucket, so we look it up 21159 * deliberately ignoring the zoneid. 21160 */ 21161 for (ire1 = ire->ire_bucket->irb_ire; 21162 ire1 != NULL; 21163 ire1 = ire1->ire_next) { 21164 ire1_ill = 21165 ire1->ire_ipif->ipif_ill; 21166 if (ire1->ire_addr != dst) 21167 continue; 21168 /* skip over the current ire */ 21169 if (ire1 == ire) 21170 continue; 21171 /* skip over deleted ires */ 21172 if (ire1->ire_marks & 21173 IRE_MARK_CONDEMNED) 21174 continue; 21175 /* 21176 * non-loopback ire in our 21177 * group: use it for the next 21178 * pass in the loop 21179 */ 21180 if (ire1->ire_stq != NULL && 21181 ire1_ill->ill_group == 21182 ire_ill->ill_group) 21183 break; 21184 } 21185 } 21186 } else { 21187 while (ire1 != NULL && ire1->ire_addr == dst) { 21188 ire1_ill = ire1->ire_ipif->ipif_ill; 21189 /* 21190 * We can have two broadcast ires on the 21191 * same ill in different zones; here 21192 * we'll send a copy of the packet on 21193 * each ill and the fanout code will 21194 * call conn_wantpacket() to check that 21195 * the zone has the broadcast address 21196 * configured on the ill. If the two 21197 * ires are in the same group we only 21198 * send one copy up. 21199 */ 21200 if (ire1_ill != ire_ill && 21201 (ire1_ill->ill_group == NULL || 21202 ire_ill->ill_group == NULL || 21203 ire1_ill->ill_group != 21204 ire_ill->ill_group)) { 21205 break; 21206 } 21207 ire1 = ire1->ire_next; 21208 } 21209 } 21210 } 21211 ASSERT(multirt_send == B_FALSE); 21212 if (ire1 != NULL && ire1->ire_addr == dst) { 21213 if ((ire->ire_flags & RTF_MULTIRT) && 21214 (ire1->ire_flags & RTF_MULTIRT)) { 21215 /* 21216 * We are in the multirouting case. 21217 * The message must be sent at least 21218 * on both ires. These ires have been 21219 * inserted AFTER the standard ones 21220 * in ip_rt_add(). There are thus no 21221 * other ire entries for the destination 21222 * address in the rest of the bucket 21223 * that do not have the RTF_MULTIRT 21224 * flag. We don't process a copy 21225 * of the message here. This will be 21226 * done in the final sending loop. 21227 */ 21228 multirt_send = B_TRUE; 21229 } else { 21230 next_mp = ip_copymsg(first_mp); 21231 if (next_mp != NULL) 21232 IRE_REFHOLD(ire1); 21233 } 21234 } 21235 rw_exit(&ire->ire_bucket->irb_lock); 21236 } 21237 21238 if (stq) { 21239 /* 21240 * A non-NULL send-to queue means this packet is going 21241 * out of this machine. 21242 */ 21243 21244 BUMP_MIB(&ip_mib, ipOutRequests); 21245 ttl_protocol = ((uint16_t *)ipha)[4]; 21246 /* 21247 * We accumulate the pseudo header checksum in cksum. 21248 * This is pretty hairy code, so watch close. One 21249 * thing to keep in mind is that UDP and TCP have 21250 * stored their respective datagram lengths in their 21251 * checksum fields. This lines things up real nice. 21252 */ 21253 cksum = (dst >> 16) + (dst & 0xFFFF) + 21254 (src >> 16) + (src & 0xFFFF); 21255 /* 21256 * We assume the udp checksum field contains the 21257 * length, so to compute the pseudo header checksum, 21258 * all we need is the protocol number and src/dst. 21259 */ 21260 /* Provide the checksums for UDP and TCP. */ 21261 if ((PROTO == IPPROTO_TCP) && 21262 (ip_hdr_included != IP_HDR_INCLUDED)) { 21263 /* hlen gets the number of uchar_ts in the IP header */ 21264 hlen = (V_HLEN & 0xF) << 2; 21265 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21266 IP_STAT(ip_out_sw_cksum); 21267 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21268 LENGTH - hlen); 21269 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21270 if (*up == 0) 21271 *up = 0xFFFF; 21272 } else if (PROTO == IPPROTO_SCTP && 21273 (ip_hdr_included != IP_HDR_INCLUDED)) { 21274 sctp_hdr_t *sctph; 21275 21276 hlen = (V_HLEN & 0xF) << 2; 21277 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21278 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21279 sctph->sh_chksum = 0; 21280 #ifdef DEBUG 21281 if (!skip_sctp_cksum) 21282 #endif 21283 sctph->sh_chksum = sctp_cksum(mp, hlen); 21284 } else { 21285 queue_t *dev_q = stq->q_next; 21286 21287 if ((dev_q->q_next || dev_q->q_first) && 21288 !canput(dev_q)) { 21289 blocked: 21290 ipha->ipha_ident = ip_hdr_included; 21291 /* 21292 * If we don't have a conn to apply 21293 * backpressure, free the message. 21294 * In the ire_send path, we don't know 21295 * the position to requeue the packet. Rather 21296 * than reorder packets, we just drop this 21297 * packet. 21298 */ 21299 if (ip_output_queue && connp != NULL && 21300 caller != IRE_SEND) { 21301 if (caller == IP_WSRV) { 21302 connp->conn_did_putbq = 1; 21303 (void) putbq(connp->conn_wq, 21304 first_mp); 21305 conn_drain_insert(connp); 21306 /* 21307 * This is the service thread, 21308 * and the queue is already 21309 * noenabled. The check for 21310 * canput and the putbq is not 21311 * atomic. So we need to check 21312 * again. 21313 */ 21314 if (canput(stq->q_next)) 21315 connp->conn_did_putbq 21316 = 0; 21317 IP_STAT(ip_conn_flputbq); 21318 } else { 21319 /* 21320 * We are not the service proc. 21321 * ip_wsrv will be scheduled or 21322 * is already running. 21323 */ 21324 (void) putq(connp->conn_wq, 21325 first_mp); 21326 } 21327 } else { 21328 BUMP_MIB(&ip_mib, ipOutDiscards); 21329 freemsg(first_mp); 21330 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21331 "ip_wput_ire_end: q %p (%S)", 21332 q, "discard"); 21333 } 21334 ire_refrele(ire); 21335 if (next_mp) { 21336 ire_refrele(ire1); 21337 freemsg(next_mp); 21338 } 21339 if (conn_outgoing_ill != NULL) 21340 ill_refrele(conn_outgoing_ill); 21341 return; 21342 } 21343 if ((PROTO == IPPROTO_UDP) && 21344 (ip_hdr_included != IP_HDR_INCLUDED)) { 21345 /* 21346 * hlen gets the number of uchar_ts in the 21347 * IP header 21348 */ 21349 hlen = (V_HLEN & 0xF) << 2; 21350 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21351 max_frag = ire->ire_max_frag; 21352 if (*up != 0) { 21353 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21354 up, PROTO, hlen, LENGTH, max_frag, 21355 ipsec_len, cksum); 21356 /* Software checksum? */ 21357 if (DB_CKSUMFLAGS(mp) == 0) { 21358 IP_STAT(ip_out_sw_cksum); 21359 IP_STAT_UPDATE( 21360 ip_udp_out_sw_cksum_bytes, 21361 LENGTH - hlen); 21362 } 21363 } 21364 } 21365 } 21366 /* 21367 * Need to do this even when fragmenting. The local 21368 * loopback can be done without computing checksums 21369 * but forwarding out other interface must be done 21370 * after the IP checksum (and ULP checksums) have been 21371 * computed. 21372 * 21373 * NOTE : multicast_forward is set only if this packet 21374 * originated from ip_wput. For packets originating from 21375 * ip_wput_multicast, it is not set. 21376 */ 21377 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21378 multi_loopback: 21379 ip2dbg(("ip_wput: multicast, loop %d\n", 21380 conn_multicast_loop)); 21381 21382 /* Forget header checksum offload */ 21383 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21384 21385 /* 21386 * Local loopback of multicasts? Check the 21387 * ill. 21388 * 21389 * Note that the loopback function will not come 21390 * in through ip_rput - it will only do the 21391 * client fanout thus we need to do an mforward 21392 * as well. The is different from the BSD 21393 * logic. 21394 */ 21395 if (ill != NULL) { 21396 ilm_t *ilm; 21397 21398 ILM_WALKER_HOLD(ill); 21399 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21400 ALL_ZONES); 21401 ILM_WALKER_RELE(ill); 21402 if (ilm != NULL) { 21403 /* 21404 * Pass along the virtual output q. 21405 * ip_wput_local() will distribute the 21406 * packet to all the matching zones, 21407 * except the sending zone when 21408 * IP_MULTICAST_LOOP is false. 21409 */ 21410 ip_multicast_loopback(q, ill, first_mp, 21411 conn_multicast_loop ? 0 : 21412 IP_FF_NO_MCAST_LOOP, zoneid); 21413 } 21414 } 21415 if (ipha->ipha_ttl == 0) { 21416 /* 21417 * 0 => only to this host i.e. we are 21418 * done. We are also done if this was the 21419 * loopback interface since it is sufficient 21420 * to loopback one copy of a multicast packet. 21421 */ 21422 freemsg(first_mp); 21423 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21424 "ip_wput_ire_end: q %p (%S)", 21425 q, "loopback"); 21426 ire_refrele(ire); 21427 if (conn_outgoing_ill != NULL) 21428 ill_refrele(conn_outgoing_ill); 21429 return; 21430 } 21431 /* 21432 * ILLF_MULTICAST is checked in ip_newroute 21433 * i.e. we don't need to check it here since 21434 * all IRE_CACHEs come from ip_newroute. 21435 * For multicast traffic, SO_DONTROUTE is interpreted 21436 * to mean only send the packet out the interface 21437 * (optionally specified with IP_MULTICAST_IF) 21438 * and do not forward it out additional interfaces. 21439 * RSVP and the rsvp daemon is an example of a 21440 * protocol and user level process that 21441 * handles it's own routing. Hence, it uses the 21442 * SO_DONTROUTE option to accomplish this. 21443 */ 21444 21445 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 21446 /* Unconditionally redo the checksum */ 21447 ipha->ipha_hdr_checksum = 0; 21448 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21449 21450 /* 21451 * If this needs to go out secure, we need 21452 * to wait till we finish the IPSEC 21453 * processing. 21454 */ 21455 if (ipsec_len == 0 && 21456 ip_mforward(ill, ipha, mp)) { 21457 freemsg(first_mp); 21458 ip1dbg(("ip_wput: mforward failed\n")); 21459 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21460 "ip_wput_ire_end: q %p (%S)", 21461 q, "mforward failed"); 21462 ire_refrele(ire); 21463 if (conn_outgoing_ill != NULL) 21464 ill_refrele(conn_outgoing_ill); 21465 return; 21466 } 21467 } 21468 } 21469 max_frag = ire->ire_max_frag; 21470 cksum += ttl_protocol; 21471 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 21472 /* No fragmentation required for this one. */ 21473 /* 21474 * Don't use frag_flag if packet is pre-built or source 21475 * routed or if multicast (since multicast packets do 21476 * not solicit ICMP "packet too big" messages). 21477 */ 21478 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21479 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21480 !ip_source_route_included(ipha)) && 21481 !CLASSD(ipha->ipha_dst)) 21482 ipha->ipha_fragment_offset_and_flags |= 21483 htons(ire->ire_frag_flag); 21484 21485 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21486 /* Complete the IP header checksum. */ 21487 cksum += ipha->ipha_ident; 21488 cksum += (v_hlen_tos_len >> 16)+ 21489 (v_hlen_tos_len & 0xFFFF); 21490 cksum += ipha->ipha_fragment_offset_and_flags; 21491 hlen = (V_HLEN & 0xF) - 21492 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21493 if (hlen) { 21494 checksumoptions: 21495 /* 21496 * Account for the IP Options in the IP 21497 * header checksum. 21498 */ 21499 up = (uint16_t *)(rptr+ 21500 IP_SIMPLE_HDR_LENGTH); 21501 do { 21502 cksum += up[0]; 21503 cksum += up[1]; 21504 up += 2; 21505 } while (--hlen); 21506 } 21507 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21508 cksum = ~(cksum + (cksum >> 16)); 21509 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21510 } 21511 if (ipsec_len != 0) { 21512 ipsec_out_process(q, first_mp, ire, ill_index); 21513 if (!next_mp) { 21514 ire_refrele(ire); 21515 if (conn_outgoing_ill != NULL) 21516 ill_refrele(conn_outgoing_ill); 21517 return; 21518 } 21519 goto next; 21520 } 21521 21522 /* 21523 * multirt_send has already been handled 21524 * for broadcast, but not yet for multicast 21525 * or IP options. 21526 */ 21527 if (next_mp == NULL) { 21528 if (ire->ire_flags & RTF_MULTIRT) { 21529 multirt_send = B_TRUE; 21530 } 21531 } 21532 21533 /* 21534 * In most cases, the emission loop below is 21535 * entered only once. Only in the case where 21536 * the ire holds the RTF_MULTIRT flag, do we loop 21537 * to process all RTF_MULTIRT ires in the bucket, 21538 * and send the packet through all crossed 21539 * RTF_MULTIRT routes. 21540 */ 21541 do { 21542 if (multirt_send) { 21543 irb_t *irb; 21544 21545 irb = ire->ire_bucket; 21546 ASSERT(irb != NULL); 21547 /* 21548 * We are in a multiple send case, 21549 * need to get the next IRE and make 21550 * a duplicate of the packet. 21551 */ 21552 IRB_REFHOLD(irb); 21553 for (ire1 = ire->ire_next; 21554 ire1 != NULL; 21555 ire1 = ire1->ire_next) { 21556 if (!(ire1->ire_flags & 21557 RTF_MULTIRT)) 21558 continue; 21559 if (ire1->ire_addr != 21560 ire->ire_addr) 21561 continue; 21562 if (ire1->ire_marks & 21563 (IRE_MARK_CONDEMNED| 21564 IRE_MARK_HIDDEN)) 21565 continue; 21566 21567 /* Got one */ 21568 IRE_REFHOLD(ire1); 21569 break; 21570 } 21571 IRB_REFRELE(irb); 21572 21573 if (ire1 != NULL) { 21574 next_mp = copyb(mp); 21575 if ((next_mp == NULL) || 21576 ((mp->b_cont != NULL) && 21577 ((next_mp->b_cont = 21578 dupmsg(mp->b_cont)) 21579 == NULL))) { 21580 freemsg(next_mp); 21581 next_mp = NULL; 21582 ire_refrele(ire1); 21583 ire1 = NULL; 21584 } 21585 } 21586 21587 /* 21588 * Last multiroute ire; don't loop 21589 * anymore. The emission is over 21590 * and next_mp is NULL. 21591 */ 21592 if (ire1 == NULL) { 21593 multirt_send = B_FALSE; 21594 } 21595 } 21596 21597 ASSERT(ipsec_len == 0); 21598 mp1 = ip_wput_attach_llhdr(mp, ire, 21599 IPP_LOCAL_OUT, ill_index); 21600 if (mp1 == NULL) { 21601 BUMP_MIB(&ip_mib, ipOutDiscards); 21602 if (next_mp) { 21603 freemsg(next_mp); 21604 ire_refrele(ire1); 21605 } 21606 ire_refrele(ire); 21607 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21608 "ip_wput_ire_end: q %p (%S)", 21609 q, "discard MDATA"); 21610 if (conn_outgoing_ill != NULL) 21611 ill_refrele(conn_outgoing_ill); 21612 return; 21613 } 21614 UPDATE_OB_PKT_COUNT(ire); 21615 ire->ire_last_used_time = lbolt; 21616 21617 if (multirt_send) { 21618 /* 21619 * We are in a multiple send case, 21620 * need to re-enter the sending loop 21621 * using the next ire. 21622 */ 21623 putnext(stq, mp1); 21624 ire_refrele(ire); 21625 ire = ire1; 21626 stq = ire->ire_stq; 21627 mp = next_mp; 21628 next_mp = NULL; 21629 ipha = (ipha_t *)mp->b_rptr; 21630 ill_index = Q_TO_INDEX(stq); 21631 } 21632 } while (multirt_send); 21633 21634 if (!next_mp) { 21635 /* 21636 * Last copy going out (the ultra-common 21637 * case). Note that we intentionally replicate 21638 * the putnext rather than calling it before 21639 * the next_mp check in hopes of a little 21640 * tail-call action out of the compiler. 21641 */ 21642 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21643 "ip_wput_ire_end: q %p (%S)", 21644 q, "last copy out(1)"); 21645 putnext(stq, mp1); 21646 ire_refrele(ire); 21647 if (conn_outgoing_ill != NULL) 21648 ill_refrele(conn_outgoing_ill); 21649 return; 21650 } 21651 /* More copies going out below. */ 21652 putnext(stq, mp1); 21653 } else { 21654 int offset; 21655 fragmentit: 21656 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21657 /* 21658 * If this would generate a icmp_frag_needed message, 21659 * we need to handle it before we do the IPSEC 21660 * processing. Otherwise, we need to strip the IPSEC 21661 * headers before we send up the message to the ULPs 21662 * which becomes messy and difficult. 21663 */ 21664 if (ipsec_len != 0) { 21665 if ((max_frag < (unsigned int)(LENGTH + 21666 ipsec_len)) && (offset & IPH_DF)) { 21667 21668 BUMP_MIB(&ip_mib, ipFragFails); 21669 ipha->ipha_hdr_checksum = 0; 21670 ipha->ipha_hdr_checksum = 21671 (uint16_t)ip_csum_hdr(ipha); 21672 icmp_frag_needed(ire->ire_stq, first_mp, 21673 max_frag); 21674 if (!next_mp) { 21675 ire_refrele(ire); 21676 if (conn_outgoing_ill != NULL) { 21677 ill_refrele( 21678 conn_outgoing_ill); 21679 } 21680 return; 21681 } 21682 } else { 21683 /* 21684 * This won't cause a icmp_frag_needed 21685 * message. to be gnerated. Send it on 21686 * the wire. Note that this could still 21687 * cause fragmentation and all we 21688 * do is the generation of the message 21689 * to the ULP if needed before IPSEC. 21690 */ 21691 if (!next_mp) { 21692 ipsec_out_process(q, first_mp, 21693 ire, ill_index); 21694 TRACE_2(TR_FAC_IP, 21695 TR_IP_WPUT_IRE_END, 21696 "ip_wput_ire_end: q %p " 21697 "(%S)", q, 21698 "last ipsec_out_process"); 21699 ire_refrele(ire); 21700 if (conn_outgoing_ill != NULL) { 21701 ill_refrele( 21702 conn_outgoing_ill); 21703 } 21704 return; 21705 } 21706 ipsec_out_process(q, first_mp, 21707 ire, ill_index); 21708 } 21709 } else { 21710 /* Initiate IPPF processing */ 21711 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21712 ip_process(IPP_LOCAL_OUT, &mp, 21713 ill_index); 21714 if (mp == NULL) { 21715 BUMP_MIB(&ip_mib, 21716 ipOutDiscards); 21717 if (next_mp != NULL) { 21718 freemsg(next_mp); 21719 ire_refrele(ire1); 21720 } 21721 ire_refrele(ire); 21722 TRACE_2(TR_FAC_IP, 21723 TR_IP_WPUT_IRE_END, 21724 "ip_wput_ire: q %p (%S)", 21725 q, "discard MDATA"); 21726 if (conn_outgoing_ill != NULL) { 21727 ill_refrele( 21728 conn_outgoing_ill); 21729 } 21730 return; 21731 } 21732 } 21733 if (!next_mp) { 21734 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21735 "ip_wput_ire_end: q %p (%S)", 21736 q, "last fragmentation"); 21737 ip_wput_ire_fragmentit(mp, ire); 21738 ire_refrele(ire); 21739 if (conn_outgoing_ill != NULL) 21740 ill_refrele(conn_outgoing_ill); 21741 return; 21742 } 21743 ip_wput_ire_fragmentit(mp, ire); 21744 } 21745 } 21746 } else { 21747 nullstq: 21748 /* A NULL stq means the destination address is local. */ 21749 UPDATE_OB_PKT_COUNT(ire); 21750 ire->ire_last_used_time = lbolt; 21751 ASSERT(ire->ire_ipif != NULL); 21752 if (!next_mp) { 21753 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21754 "ip_wput_ire_end: q %p (%S)", 21755 q, "local address"); 21756 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 21757 first_mp, ire, 0, ire->ire_zoneid); 21758 ire_refrele(ire); 21759 if (conn_outgoing_ill != NULL) 21760 ill_refrele(conn_outgoing_ill); 21761 return; 21762 } 21763 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 21764 ire, 0, ire->ire_zoneid); 21765 } 21766 next: 21767 /* 21768 * More copies going out to additional interfaces. 21769 * ire1 has already been held. We don't need the 21770 * "ire" anymore. 21771 */ 21772 ire_refrele(ire); 21773 ire = ire1; 21774 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 21775 mp = next_mp; 21776 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21777 ill = ire_to_ill(ire); 21778 first_mp = mp; 21779 if (ipsec_len != 0) { 21780 ASSERT(first_mp->b_datap->db_type == M_CTL); 21781 mp = mp->b_cont; 21782 } 21783 dst = ire->ire_addr; 21784 ipha = (ipha_t *)mp->b_rptr; 21785 /* 21786 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 21787 * Restore ipha_ident "no checksum" flag. 21788 */ 21789 src = orig_src; 21790 ipha->ipha_ident = ip_hdr_included; 21791 goto another; 21792 21793 #undef rptr 21794 #undef Q_TO_INDEX 21795 } 21796 21797 /* 21798 * Routine to allocate a message that is used to notify the ULP about MDT. 21799 * The caller may provide a pointer to the link-layer MDT capabilities, 21800 * or NULL if MDT is to be disabled on the stream. 21801 */ 21802 mblk_t * 21803 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 21804 { 21805 mblk_t *mp; 21806 ip_mdt_info_t *mdti; 21807 ill_mdt_capab_t *idst; 21808 21809 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 21810 DB_TYPE(mp) = M_CTL; 21811 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 21812 mdti = (ip_mdt_info_t *)mp->b_rptr; 21813 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 21814 idst = &(mdti->mdt_capab); 21815 21816 /* 21817 * If the caller provides us with the capability, copy 21818 * it over into our notification message; otherwise 21819 * we zero out the capability portion. 21820 */ 21821 if (isrc != NULL) 21822 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 21823 else 21824 bzero((caddr_t)idst, sizeof (*idst)); 21825 } 21826 return (mp); 21827 } 21828 21829 /* 21830 * Routine which determines whether MDT can be enabled on the destination 21831 * IRE and IPC combination, and if so, allocates and returns the MDT 21832 * notification mblk that may be used by ULP. We also check if we need to 21833 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21834 * MDT usage in the past have been lifted. This gets called during IP 21835 * and ULP binding. 21836 */ 21837 mblk_t * 21838 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21839 ill_mdt_capab_t *mdt_cap) 21840 { 21841 mblk_t *mp; 21842 boolean_t rc = B_FALSE; 21843 21844 ASSERT(dst_ire != NULL); 21845 ASSERT(connp != NULL); 21846 ASSERT(mdt_cap != NULL); 21847 21848 /* 21849 * Currently, we only support simple TCP/{IPv4,IPv6} with 21850 * Multidata, which is handled in tcp_multisend(). This 21851 * is the reason why we do all these checks here, to ensure 21852 * that we don't enable Multidata for the cases which we 21853 * can't handle at the moment. 21854 */ 21855 do { 21856 /* Only do TCP at the moment */ 21857 if (connp->conn_ulp != IPPROTO_TCP) 21858 break; 21859 21860 /* 21861 * IPSEC outbound policy present? Note that we get here 21862 * after calling ipsec_conn_cache_policy() where the global 21863 * policy checking is performed. conn_latch will be 21864 * non-NULL as long as there's a policy defined, 21865 * i.e. conn_out_enforce_policy may be NULL in such case 21866 * when the connection is non-secure, and hence we check 21867 * further if the latch refers to an outbound policy. 21868 */ 21869 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21870 break; 21871 21872 /* CGTP (multiroute) is enabled? */ 21873 if (dst_ire->ire_flags & RTF_MULTIRT) 21874 break; 21875 21876 /* Outbound IPQoS enabled? */ 21877 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21878 /* 21879 * In this case, we disable MDT for this and all 21880 * future connections going over the interface. 21881 */ 21882 mdt_cap->ill_mdt_on = 0; 21883 break; 21884 } 21885 21886 /* socket option(s) present? */ 21887 if (!CONN_IS_MD_FASTPATH(connp)) 21888 break; 21889 21890 rc = B_TRUE; 21891 /* CONSTCOND */ 21892 } while (0); 21893 21894 /* Remember the result */ 21895 connp->conn_mdt_ok = rc; 21896 21897 if (!rc) 21898 return (NULL); 21899 else if (!mdt_cap->ill_mdt_on) { 21900 /* 21901 * If MDT has been previously turned off in the past, and we 21902 * currently can do MDT (due to IPQoS policy removal, etc.) 21903 * then enable it for this interface. 21904 */ 21905 mdt_cap->ill_mdt_on = 1; 21906 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21907 "interface %s\n", ill_name)); 21908 } 21909 21910 /* Allocate the MDT info mblk */ 21911 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21912 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21913 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21914 return (NULL); 21915 } 21916 return (mp); 21917 } 21918 21919 /* 21920 * Create destination address attribute, and fill it with the physical 21921 * destination address and SAP taken from the template DL_UNITDATA_REQ 21922 * message block. 21923 */ 21924 boolean_t 21925 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21926 { 21927 dl_unitdata_req_t *dlurp; 21928 pattr_t *pa; 21929 pattrinfo_t pa_info; 21930 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21931 uint_t das_len, das_off; 21932 21933 ASSERT(dlmp != NULL); 21934 21935 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21936 das_len = dlurp->dl_dest_addr_length; 21937 das_off = dlurp->dl_dest_addr_offset; 21938 21939 pa_info.type = PATTR_DSTADDRSAP; 21940 pa_info.len = sizeof (**das) + das_len - 1; 21941 21942 /* create and associate the attribute */ 21943 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21944 if (pa != NULL) { 21945 ASSERT(*das != NULL); 21946 (*das)->addr_is_group = 0; 21947 (*das)->addr_len = (uint8_t)das_len; 21948 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21949 } 21950 21951 return (pa != NULL); 21952 } 21953 21954 /* 21955 * Create hardware checksum attribute and fill it with the values passed. 21956 */ 21957 boolean_t 21958 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21959 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21960 { 21961 pattr_t *pa; 21962 pattrinfo_t pa_info; 21963 21964 ASSERT(mmd != NULL); 21965 21966 pa_info.type = PATTR_HCKSUM; 21967 pa_info.len = sizeof (pattr_hcksum_t); 21968 21969 /* create and associate the attribute */ 21970 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21971 if (pa != NULL) { 21972 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21973 21974 hck->hcksum_start_offset = start_offset; 21975 hck->hcksum_stuff_offset = stuff_offset; 21976 hck->hcksum_end_offset = end_offset; 21977 hck->hcksum_flags = flags; 21978 } 21979 return (pa != NULL); 21980 } 21981 21982 /* 21983 * Create zerocopy attribute and fill it with the specified flags 21984 */ 21985 boolean_t 21986 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21987 { 21988 pattr_t *pa; 21989 pattrinfo_t pa_info; 21990 21991 ASSERT(mmd != NULL); 21992 pa_info.type = PATTR_ZCOPY; 21993 pa_info.len = sizeof (pattr_zcopy_t); 21994 21995 /* create and associate the attribute */ 21996 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21997 if (pa != NULL) { 21998 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21999 22000 zcopy->zcopy_flags = flags; 22001 } 22002 return (pa != NULL); 22003 } 22004 22005 /* 22006 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22007 * block chain. We could rewrite to handle arbitrary message block chains but 22008 * that would make the code complicated and slow. Right now there three 22009 * restrictions: 22010 * 22011 * 1. The first message block must contain the complete IP header and 22012 * at least 1 byte of payload data. 22013 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22014 * so that we can use a single Multidata message. 22015 * 3. No frag must be distributed over two or more message blocks so 22016 * that we don't need more than two packet descriptors per frag. 22017 * 22018 * The above restrictions allow us to support userland applications (which 22019 * will send down a single message block) and NFS over UDP (which will 22020 * send down a chain of at most three message blocks). 22021 * 22022 * We also don't use MDT for payloads with less than or equal to 22023 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22024 */ 22025 boolean_t 22026 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22027 { 22028 int blocks; 22029 ssize_t total, missing, size; 22030 22031 ASSERT(mp != NULL); 22032 ASSERT(hdr_len > 0); 22033 22034 size = MBLKL(mp) - hdr_len; 22035 if (size <= 0) 22036 return (B_FALSE); 22037 22038 /* The first mblk contains the header and some payload. */ 22039 blocks = 1; 22040 total = size; 22041 size %= len; 22042 missing = (size == 0) ? 0 : (len - size); 22043 mp = mp->b_cont; 22044 22045 while (mp != NULL) { 22046 /* 22047 * Give up if we encounter a zero length message block. 22048 * In practice, this should rarely happen and therefore 22049 * not worth the trouble of freeing and re-linking the 22050 * mblk from the chain to handle such case. 22051 */ 22052 if ((size = MBLKL(mp)) == 0) 22053 return (B_FALSE); 22054 22055 /* Too many payload buffers for a single Multidata message? */ 22056 if (++blocks > MULTIDATA_MAX_PBUFS) 22057 return (B_FALSE); 22058 22059 total += size; 22060 /* Is a frag distributed over two or more message blocks? */ 22061 if (missing > size) 22062 return (B_FALSE); 22063 size -= missing; 22064 22065 size %= len; 22066 missing = (size == 0) ? 0 : (len - size); 22067 22068 mp = mp->b_cont; 22069 } 22070 22071 return (total > ip_wput_frag_mdt_min); 22072 } 22073 22074 /* 22075 * Outbound IPv4 fragmentation routine using MDT. 22076 */ 22077 static void 22078 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22079 uint32_t frag_flag, int offset) 22080 { 22081 ipha_t *ipha_orig; 22082 int i1, ip_data_end; 22083 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22084 mblk_t *hdr_mp, *md_mp = NULL; 22085 unsigned char *hdr_ptr, *pld_ptr; 22086 multidata_t *mmd; 22087 ip_pdescinfo_t pdi; 22088 22089 ASSERT(DB_TYPE(mp) == M_DATA); 22090 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22091 22092 ipha_orig = (ipha_t *)mp->b_rptr; 22093 mp->b_rptr += sizeof (ipha_t); 22094 22095 /* Calculate how many packets we will send out */ 22096 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22097 pkts = (i1 + len - 1) / len; 22098 ASSERT(pkts > 1); 22099 22100 /* Allocate a message block which will hold all the IP Headers. */ 22101 wroff = ip_wroff_extra; 22102 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22103 22104 i1 = pkts * hdr_chunk_len; 22105 /* 22106 * Create the header buffer, Multidata and destination address 22107 * and SAP attribute that should be associated with it. 22108 */ 22109 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22110 ((hdr_mp->b_wptr += i1), 22111 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22112 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 22113 freemsg(mp); 22114 if (md_mp == NULL) { 22115 freemsg(hdr_mp); 22116 } else { 22117 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22118 freemsg(md_mp); 22119 } 22120 IP_STAT(ip_frag_mdt_allocfail); 22121 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22122 return; 22123 } 22124 IP_STAT(ip_frag_mdt_allocd); 22125 22126 /* 22127 * Add a payload buffer to the Multidata; this operation must not 22128 * fail, or otherwise our logic in this routine is broken. There 22129 * is no memory allocation done by the routine, so any returned 22130 * failure simply tells us that we've done something wrong. 22131 * 22132 * A failure tells us that either we're adding the same payload 22133 * buffer more than once, or we're trying to add more buffers than 22134 * allowed. None of the above cases should happen, and we panic 22135 * because either there's horrible heap corruption, and/or 22136 * programming mistake. 22137 */ 22138 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22139 goto pbuf_panic; 22140 22141 hdr_ptr = hdr_mp->b_rptr; 22142 pld_ptr = mp->b_rptr; 22143 22144 /* Establish the ending byte offset, based on the starting offset. */ 22145 offset <<= 3; 22146 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22147 IP_SIMPLE_HDR_LENGTH; 22148 22149 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22150 22151 while (pld_ptr < mp->b_wptr) { 22152 ipha_t *ipha; 22153 uint16_t offset_and_flags; 22154 uint16_t ip_len; 22155 int error; 22156 22157 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22158 ipha = (ipha_t *)(hdr_ptr + wroff); 22159 ASSERT(OK_32PTR(ipha)); 22160 *ipha = *ipha_orig; 22161 22162 if (ip_data_end - offset > len) { 22163 offset_and_flags = IPH_MF; 22164 } else { 22165 /* 22166 * Last frag. Set len to the length of this last piece. 22167 */ 22168 len = ip_data_end - offset; 22169 /* A frag of a frag might have IPH_MF non-zero */ 22170 offset_and_flags = 22171 ntohs(ipha->ipha_fragment_offset_and_flags) & 22172 IPH_MF; 22173 } 22174 offset_and_flags |= (uint16_t)(offset >> 3); 22175 offset_and_flags |= (uint16_t)frag_flag; 22176 /* Store the offset and flags in the IP header. */ 22177 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22178 22179 /* Store the length in the IP header. */ 22180 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22181 ipha->ipha_length = htons(ip_len); 22182 22183 /* 22184 * Set the IP header checksum. Note that mp is just 22185 * the header, so this is easy to pass to ip_csum. 22186 */ 22187 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22188 22189 /* 22190 * Record offset and size of header and data of the next packet 22191 * in the multidata message. 22192 */ 22193 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22194 PDESC_PLD_INIT(&pdi); 22195 i1 = MIN(mp->b_wptr - pld_ptr, len); 22196 ASSERT(i1 > 0); 22197 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22198 if (i1 == len) { 22199 pld_ptr += len; 22200 } else { 22201 i1 = len - i1; 22202 mp = mp->b_cont; 22203 ASSERT(mp != NULL); 22204 ASSERT(MBLKL(mp) >= i1); 22205 /* 22206 * Attach the next payload message block to the 22207 * multidata message. 22208 */ 22209 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22210 goto pbuf_panic; 22211 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22212 pld_ptr = mp->b_rptr + i1; 22213 } 22214 22215 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22216 KM_NOSLEEP)) == NULL) { 22217 /* 22218 * Any failure other than ENOMEM indicates that we 22219 * have passed in invalid pdesc info or parameters 22220 * to mmd_addpdesc, which must not happen. 22221 * 22222 * EINVAL is a result of failure on boundary checks 22223 * against the pdesc info contents. It should not 22224 * happen, and we panic because either there's 22225 * horrible heap corruption, and/or programming 22226 * mistake. 22227 */ 22228 if (error != ENOMEM) { 22229 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22230 "pdesc logic error detected for " 22231 "mmd %p pinfo %p (%d)\n", 22232 (void *)mmd, (void *)&pdi, error); 22233 /* NOTREACHED */ 22234 } 22235 IP_STAT(ip_frag_mdt_addpdescfail); 22236 /* Free unattached payload message blocks as well */ 22237 md_mp->b_cont = mp->b_cont; 22238 goto free_mmd; 22239 } 22240 22241 /* Advance fragment offset. */ 22242 offset += len; 22243 22244 /* Advance to location for next header in the buffer. */ 22245 hdr_ptr += hdr_chunk_len; 22246 22247 /* Did we reach the next payload message block? */ 22248 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22249 mp = mp->b_cont; 22250 /* 22251 * Attach the next message block with payload 22252 * data to the multidata message. 22253 */ 22254 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22255 goto pbuf_panic; 22256 pld_ptr = mp->b_rptr; 22257 } 22258 } 22259 22260 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22261 ASSERT(mp->b_wptr == pld_ptr); 22262 22263 /* Update IP statistics */ 22264 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22265 BUMP_MIB(&ip_mib, ipFragOKs); 22266 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22267 22268 if (pkt_type == OB_PKT) { 22269 ire->ire_ob_pkt_count += pkts; 22270 if (ire->ire_ipif != NULL) 22271 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22272 } else { 22273 /* 22274 * The type is IB_PKT in the forwarding path and in 22275 * the mobile IP case when the packet is being reverse- 22276 * tunneled to the home agent. 22277 */ 22278 ire->ire_ib_pkt_count += pkts; 22279 ASSERT(!IRE_IS_LOCAL(ire)); 22280 if (ire->ire_type & IRE_BROADCAST) 22281 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22282 else 22283 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22284 } 22285 ire->ire_last_used_time = lbolt; 22286 /* Send it down */ 22287 putnext(ire->ire_stq, md_mp); 22288 return; 22289 22290 pbuf_panic: 22291 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22292 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22293 pbuf_idx); 22294 /* NOTREACHED */ 22295 } 22296 22297 /* 22298 * Outbound IP fragmentation routine. 22299 * 22300 * NOTE : This routine does not ire_refrele the ire that is passed in 22301 * as the argument. 22302 */ 22303 static void 22304 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22305 uint32_t frag_flag) 22306 { 22307 int i1; 22308 mblk_t *ll_hdr_mp; 22309 int ll_hdr_len; 22310 int hdr_len; 22311 mblk_t *hdr_mp; 22312 ipha_t *ipha; 22313 int ip_data_end; 22314 int len; 22315 mblk_t *mp = mp_orig; 22316 int offset; 22317 queue_t *q; 22318 uint32_t v_hlen_tos_len; 22319 mblk_t *first_mp; 22320 boolean_t mctl_present; 22321 ill_t *ill; 22322 mblk_t *xmit_mp; 22323 mblk_t *carve_mp; 22324 ire_t *ire1 = NULL; 22325 ire_t *save_ire = NULL; 22326 mblk_t *next_mp = NULL; 22327 boolean_t last_frag = B_FALSE; 22328 boolean_t multirt_send = B_FALSE; 22329 ire_t *first_ire = NULL; 22330 irb_t *irb = NULL; 22331 22332 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22333 "ip_wput_frag_start:"); 22334 22335 if (mp->b_datap->db_type == M_CTL) { 22336 first_mp = mp; 22337 mp_orig = mp = mp->b_cont; 22338 mctl_present = B_TRUE; 22339 } else { 22340 first_mp = mp; 22341 mctl_present = B_FALSE; 22342 } 22343 22344 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22345 ipha = (ipha_t *)mp->b_rptr; 22346 22347 /* 22348 * If the Don't Fragment flag is on, generate an ICMP destination 22349 * unreachable, fragmentation needed. 22350 */ 22351 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22352 if (offset & IPH_DF) { 22353 BUMP_MIB(&ip_mib, ipFragFails); 22354 /* 22355 * Need to compute hdr checksum if called from ip_wput_ire. 22356 * Note that ip_rput_forward verifies the checksum before 22357 * calling this routine so in that case this is a noop. 22358 */ 22359 ipha->ipha_hdr_checksum = 0; 22360 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22361 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22362 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22363 "ip_wput_frag_end:(%S)", 22364 "don't fragment"); 22365 return; 22366 } 22367 if (mctl_present) 22368 freeb(first_mp); 22369 /* 22370 * Establish the starting offset. May not be zero if we are fragging 22371 * a fragment that is being forwarded. 22372 */ 22373 offset = offset & IPH_OFFSET; 22374 22375 /* TODO why is this test needed? */ 22376 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22377 if (((max_frag - LENGTH) & ~7) < 8) { 22378 /* TODO: notify ulp somehow */ 22379 BUMP_MIB(&ip_mib, ipFragFails); 22380 freemsg(mp); 22381 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22382 "ip_wput_frag_end:(%S)", 22383 "len < 8"); 22384 return; 22385 } 22386 22387 hdr_len = (V_HLEN & 0xF) << 2; 22388 22389 ipha->ipha_hdr_checksum = 0; 22390 22391 /* 22392 * Establish the number of bytes maximum per frag, after putting 22393 * in the header. 22394 */ 22395 len = (max_frag - hdr_len) & ~7; 22396 22397 /* Check if we can use MDT to send out the frags. */ 22398 ASSERT(!IRE_IS_LOCAL(ire)); 22399 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 22400 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 22401 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 22402 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 22403 ASSERT(ill->ill_mdt_capab != NULL); 22404 if (!ill->ill_mdt_capab->ill_mdt_on) { 22405 /* 22406 * If MDT has been previously turned off in the past, 22407 * and we currently can do MDT (due to IPQoS policy 22408 * removal, etc.) then enable it for this interface. 22409 */ 22410 ill->ill_mdt_capab->ill_mdt_on = 1; 22411 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 22412 ill->ill_name)); 22413 } 22414 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 22415 offset); 22416 return; 22417 } 22418 22419 /* Get a copy of the header for the trailing frags */ 22420 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 22421 if (!hdr_mp) { 22422 BUMP_MIB(&ip_mib, ipOutDiscards); 22423 freemsg(mp); 22424 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22425 "ip_wput_frag_end:(%S)", 22426 "couldn't copy hdr"); 22427 return; 22428 } 22429 if (DB_CRED(mp) != NULL) 22430 mblk_setcred(hdr_mp, DB_CRED(mp)); 22431 22432 /* Store the starting offset, with the MoreFrags flag. */ 22433 i1 = offset | IPH_MF | frag_flag; 22434 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 22435 22436 /* Establish the ending byte offset, based on the starting offset. */ 22437 offset <<= 3; 22438 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 22439 22440 /* Store the length of the first fragment in the IP header. */ 22441 i1 = len + hdr_len; 22442 ASSERT(i1 <= IP_MAXPACKET); 22443 ipha->ipha_length = htons((uint16_t)i1); 22444 22445 /* 22446 * Compute the IP header checksum for the first frag. We have to 22447 * watch out that we stop at the end of the header. 22448 */ 22449 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22450 22451 /* 22452 * Now carve off the first frag. Note that this will include the 22453 * original IP header. 22454 */ 22455 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 22456 BUMP_MIB(&ip_mib, ipOutDiscards); 22457 freeb(hdr_mp); 22458 freemsg(mp_orig); 22459 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22460 "ip_wput_frag_end:(%S)", 22461 "couldn't carve first"); 22462 return; 22463 } 22464 22465 /* 22466 * Multirouting case. Each fragment is replicated 22467 * via all non-condemned RTF_MULTIRT routes 22468 * currently resolved. 22469 * We ensure that first_ire is the first RTF_MULTIRT 22470 * ire in the bucket. 22471 */ 22472 if (ire->ire_flags & RTF_MULTIRT) { 22473 irb = ire->ire_bucket; 22474 ASSERT(irb != NULL); 22475 22476 multirt_send = B_TRUE; 22477 22478 /* Make sure we do not omit any multiroute ire. */ 22479 IRB_REFHOLD(irb); 22480 for (first_ire = irb->irb_ire; 22481 first_ire != NULL; 22482 first_ire = first_ire->ire_next) { 22483 if ((first_ire->ire_flags & RTF_MULTIRT) && 22484 (first_ire->ire_addr == ire->ire_addr) && 22485 !(first_ire->ire_marks & 22486 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22487 break; 22488 } 22489 22490 if (first_ire != NULL) { 22491 if (first_ire != ire) { 22492 IRE_REFHOLD(first_ire); 22493 /* 22494 * Do not release the ire passed in 22495 * as the argument. 22496 */ 22497 ire = first_ire; 22498 } else { 22499 first_ire = NULL; 22500 } 22501 } 22502 IRB_REFRELE(irb); 22503 22504 /* 22505 * Save the first ire; we will need to restore it 22506 * for the trailing frags. 22507 * We REFHOLD save_ire, as each iterated ire will be 22508 * REFRELEd. 22509 */ 22510 save_ire = ire; 22511 IRE_REFHOLD(save_ire); 22512 } 22513 22514 /* 22515 * First fragment emission loop. 22516 * In most cases, the emission loop below is entered only 22517 * once. Only in the case where the ire holds the RTF_MULTIRT 22518 * flag, do we loop to process all RTF_MULTIRT ires in the 22519 * bucket, and send the fragment through all crossed 22520 * RTF_MULTIRT routes. 22521 */ 22522 do { 22523 if (ire->ire_flags & RTF_MULTIRT) { 22524 /* 22525 * We are in a multiple send case, need to get 22526 * the next ire and make a copy of the packet. 22527 * ire1 holds here the next ire to process in the 22528 * bucket. If multirouting is expected, 22529 * any non-RTF_MULTIRT ire that has the 22530 * right destination address is ignored. 22531 * 22532 * We have to take into account the MTU of 22533 * each walked ire. max_frag is set by the 22534 * the caller and generally refers to 22535 * the primary ire entry. Here we ensure that 22536 * no route with a lower MTU will be used, as 22537 * fragments are carved once for all ires, 22538 * then replicated. 22539 */ 22540 ASSERT(irb != NULL); 22541 IRB_REFHOLD(irb); 22542 for (ire1 = ire->ire_next; 22543 ire1 != NULL; 22544 ire1 = ire1->ire_next) { 22545 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22546 continue; 22547 if (ire1->ire_addr != ire->ire_addr) 22548 continue; 22549 if (ire1->ire_marks & 22550 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22551 continue; 22552 /* 22553 * Ensure we do not exceed the MTU 22554 * of the next route. 22555 */ 22556 if (ire1->ire_max_frag < max_frag) { 22557 ip_multirt_bad_mtu(ire1, max_frag); 22558 continue; 22559 } 22560 22561 /* Got one. */ 22562 IRE_REFHOLD(ire1); 22563 break; 22564 } 22565 IRB_REFRELE(irb); 22566 22567 if (ire1 != NULL) { 22568 next_mp = copyb(mp); 22569 if ((next_mp == NULL) || 22570 ((mp->b_cont != NULL) && 22571 ((next_mp->b_cont = 22572 dupmsg(mp->b_cont)) == NULL))) { 22573 freemsg(next_mp); 22574 next_mp = NULL; 22575 ire_refrele(ire1); 22576 ire1 = NULL; 22577 } 22578 } 22579 22580 /* Last multiroute ire; don't loop anymore. */ 22581 if (ire1 == NULL) { 22582 multirt_send = B_FALSE; 22583 } 22584 } 22585 22586 ll_hdr_len = 0; 22587 LOCK_IRE_FP_MP(ire); 22588 ll_hdr_mp = ire->ire_fp_mp; 22589 if (ll_hdr_mp != NULL) { 22590 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22591 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 22592 } else { 22593 ll_hdr_mp = ire->ire_dlureq_mp; 22594 } 22595 22596 /* If there is a transmit header, get a copy for this frag. */ 22597 /* 22598 * TODO: should check db_ref before calling ip_carve_mp since 22599 * it might give us a dup. 22600 */ 22601 if (!ll_hdr_mp) { 22602 /* No xmit header. */ 22603 xmit_mp = mp; 22604 } else if (mp->b_datap->db_ref == 1 && 22605 ll_hdr_len != 0 && 22606 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22607 /* M_DATA fastpath */ 22608 mp->b_rptr -= ll_hdr_len; 22609 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 22610 xmit_mp = mp; 22611 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 22612 UNLOCK_IRE_FP_MP(ire); 22613 BUMP_MIB(&ip_mib, ipOutDiscards); 22614 freeb(hdr_mp); 22615 freemsg(mp); 22616 freemsg(mp_orig); 22617 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22618 "ip_wput_frag_end:(%S)", 22619 "discard"); 22620 22621 if (multirt_send) { 22622 ASSERT(ire1); 22623 ASSERT(next_mp); 22624 22625 freemsg(next_mp); 22626 ire_refrele(ire1); 22627 } 22628 if (save_ire != NULL) 22629 IRE_REFRELE(save_ire); 22630 22631 if (first_ire != NULL) 22632 ire_refrele(first_ire); 22633 return; 22634 } else { 22635 xmit_mp->b_cont = mp; 22636 if (DB_CRED(mp) != NULL) 22637 mblk_setcred(xmit_mp, DB_CRED(mp)); 22638 /* Get priority marking, if any. */ 22639 if (DB_TYPE(xmit_mp) == M_DATA) 22640 xmit_mp->b_band = mp->b_band; 22641 } 22642 UNLOCK_IRE_FP_MP(ire); 22643 q = ire->ire_stq; 22644 BUMP_MIB(&ip_mib, ipFragCreates); 22645 putnext(q, xmit_mp); 22646 if (pkt_type != OB_PKT) { 22647 /* 22648 * Update the packet count of trailing 22649 * RTF_MULTIRT ires. 22650 */ 22651 UPDATE_OB_PKT_COUNT(ire); 22652 } 22653 22654 if (multirt_send) { 22655 /* 22656 * We are in a multiple send case; look for 22657 * the next ire and re-enter the loop. 22658 */ 22659 ASSERT(ire1); 22660 ASSERT(next_mp); 22661 /* REFRELE the current ire before looping */ 22662 ire_refrele(ire); 22663 ire = ire1; 22664 ire1 = NULL; 22665 mp = next_mp; 22666 next_mp = NULL; 22667 } 22668 } while (multirt_send); 22669 22670 ASSERT(ire1 == NULL); 22671 22672 /* Restore the original ire; we need it for the trailing frags */ 22673 if (save_ire != NULL) { 22674 /* REFRELE the last iterated ire */ 22675 ire_refrele(ire); 22676 /* save_ire has been REFHOLDed */ 22677 ire = save_ire; 22678 save_ire = NULL; 22679 q = ire->ire_stq; 22680 } 22681 22682 if (pkt_type == OB_PKT) { 22683 UPDATE_OB_PKT_COUNT(ire); 22684 } else { 22685 UPDATE_IB_PKT_COUNT(ire); 22686 } 22687 22688 /* Advance the offset to the second frag starting point. */ 22689 offset += len; 22690 /* 22691 * Update hdr_len from the copied header - there might be less options 22692 * in the later fragments. 22693 */ 22694 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 22695 /* Loop until done. */ 22696 for (;;) { 22697 uint16_t offset_and_flags; 22698 uint16_t ip_len; 22699 22700 if (ip_data_end - offset > len) { 22701 /* 22702 * Carve off the appropriate amount from the original 22703 * datagram. 22704 */ 22705 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22706 mp = NULL; 22707 break; 22708 } 22709 /* 22710 * More frags after this one. Get another copy 22711 * of the header. 22712 */ 22713 if (carve_mp->b_datap->db_ref == 1 && 22714 hdr_mp->b_wptr - hdr_mp->b_rptr < 22715 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22716 /* Inline IP header */ 22717 carve_mp->b_rptr -= hdr_mp->b_wptr - 22718 hdr_mp->b_rptr; 22719 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22720 hdr_mp->b_wptr - hdr_mp->b_rptr); 22721 mp = carve_mp; 22722 } else { 22723 if (!(mp = copyb(hdr_mp))) { 22724 freemsg(carve_mp); 22725 break; 22726 } 22727 /* Get priority marking, if any. */ 22728 mp->b_band = carve_mp->b_band; 22729 mp->b_cont = carve_mp; 22730 } 22731 ipha = (ipha_t *)mp->b_rptr; 22732 offset_and_flags = IPH_MF; 22733 } else { 22734 /* 22735 * Last frag. Consume the header. Set len to 22736 * the length of this last piece. 22737 */ 22738 len = ip_data_end - offset; 22739 22740 /* 22741 * Carve off the appropriate amount from the original 22742 * datagram. 22743 */ 22744 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22745 mp = NULL; 22746 break; 22747 } 22748 if (carve_mp->b_datap->db_ref == 1 && 22749 hdr_mp->b_wptr - hdr_mp->b_rptr < 22750 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22751 /* Inline IP header */ 22752 carve_mp->b_rptr -= hdr_mp->b_wptr - 22753 hdr_mp->b_rptr; 22754 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22755 hdr_mp->b_wptr - hdr_mp->b_rptr); 22756 mp = carve_mp; 22757 freeb(hdr_mp); 22758 hdr_mp = mp; 22759 } else { 22760 mp = hdr_mp; 22761 /* Get priority marking, if any. */ 22762 mp->b_band = carve_mp->b_band; 22763 mp->b_cont = carve_mp; 22764 } 22765 ipha = (ipha_t *)mp->b_rptr; 22766 /* A frag of a frag might have IPH_MF non-zero */ 22767 offset_and_flags = 22768 ntohs(ipha->ipha_fragment_offset_and_flags) & 22769 IPH_MF; 22770 } 22771 offset_and_flags |= (uint16_t)(offset >> 3); 22772 offset_and_flags |= (uint16_t)frag_flag; 22773 /* Store the offset and flags in the IP header. */ 22774 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22775 22776 /* Store the length in the IP header. */ 22777 ip_len = (uint16_t)(len + hdr_len); 22778 ipha->ipha_length = htons(ip_len); 22779 22780 /* 22781 * Set the IP header checksum. Note that mp is just 22782 * the header, so this is easy to pass to ip_csum. 22783 */ 22784 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22785 22786 /* Attach a transmit header, if any, and ship it. */ 22787 if (pkt_type == OB_PKT) { 22788 UPDATE_OB_PKT_COUNT(ire); 22789 } else { 22790 UPDATE_IB_PKT_COUNT(ire); 22791 } 22792 22793 if (ire->ire_flags & RTF_MULTIRT) { 22794 irb = ire->ire_bucket; 22795 ASSERT(irb != NULL); 22796 22797 multirt_send = B_TRUE; 22798 22799 /* 22800 * Save the original ire; we will need to restore it 22801 * for the tailing frags. 22802 */ 22803 save_ire = ire; 22804 IRE_REFHOLD(save_ire); 22805 } 22806 /* 22807 * Emission loop for this fragment, similar 22808 * to what is done for the first fragment. 22809 */ 22810 do { 22811 if (multirt_send) { 22812 /* 22813 * We are in a multiple send case, need to get 22814 * the next ire and make a copy of the packet. 22815 */ 22816 ASSERT(irb != NULL); 22817 IRB_REFHOLD(irb); 22818 for (ire1 = ire->ire_next; 22819 ire1 != NULL; 22820 ire1 = ire1->ire_next) { 22821 if (!(ire1->ire_flags & RTF_MULTIRT)) 22822 continue; 22823 if (ire1->ire_addr != ire->ire_addr) 22824 continue; 22825 if (ire1->ire_marks & 22826 (IRE_MARK_CONDEMNED| 22827 IRE_MARK_HIDDEN)) 22828 continue; 22829 /* 22830 * Ensure we do not exceed the MTU 22831 * of the next route. 22832 */ 22833 if (ire1->ire_max_frag < max_frag) { 22834 ip_multirt_bad_mtu(ire1, 22835 max_frag); 22836 continue; 22837 } 22838 22839 /* Got one. */ 22840 IRE_REFHOLD(ire1); 22841 break; 22842 } 22843 IRB_REFRELE(irb); 22844 22845 if (ire1 != NULL) { 22846 next_mp = copyb(mp); 22847 if ((next_mp == NULL) || 22848 ((mp->b_cont != NULL) && 22849 ((next_mp->b_cont = 22850 dupmsg(mp->b_cont)) == NULL))) { 22851 freemsg(next_mp); 22852 next_mp = NULL; 22853 ire_refrele(ire1); 22854 ire1 = NULL; 22855 } 22856 } 22857 22858 /* Last multiroute ire; don't loop anymore. */ 22859 if (ire1 == NULL) { 22860 multirt_send = B_FALSE; 22861 } 22862 } 22863 22864 /* Update transmit header */ 22865 ll_hdr_len = 0; 22866 LOCK_IRE_FP_MP(ire); 22867 ll_hdr_mp = ire->ire_fp_mp; 22868 if (ll_hdr_mp != NULL) { 22869 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22870 ll_hdr_len = MBLKL(ll_hdr_mp); 22871 } else { 22872 ll_hdr_mp = ire->ire_dlureq_mp; 22873 } 22874 22875 if (!ll_hdr_mp) { 22876 xmit_mp = mp; 22877 } else if (mp->b_datap->db_ref == 1 && 22878 ll_hdr_len != 0 && 22879 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22880 /* M_DATA fastpath */ 22881 mp->b_rptr -= ll_hdr_len; 22882 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22883 ll_hdr_len); 22884 xmit_mp = mp; 22885 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22886 xmit_mp->b_cont = mp; 22887 if (DB_CRED(mp) != NULL) 22888 mblk_setcred(xmit_mp, DB_CRED(mp)); 22889 /* Get priority marking, if any. */ 22890 if (DB_TYPE(xmit_mp) == M_DATA) 22891 xmit_mp->b_band = mp->b_band; 22892 } else { 22893 /* 22894 * Exit both the replication and 22895 * fragmentation loops. 22896 */ 22897 UNLOCK_IRE_FP_MP(ire); 22898 goto drop_pkt; 22899 } 22900 UNLOCK_IRE_FP_MP(ire); 22901 BUMP_MIB(&ip_mib, ipFragCreates); 22902 putnext(q, xmit_mp); 22903 22904 if (pkt_type != OB_PKT) { 22905 /* 22906 * Update the packet count of trailing 22907 * RTF_MULTIRT ires. 22908 */ 22909 UPDATE_OB_PKT_COUNT(ire); 22910 } 22911 22912 /* All done if we just consumed the hdr_mp. */ 22913 if (mp == hdr_mp) { 22914 last_frag = B_TRUE; 22915 } 22916 22917 if (multirt_send) { 22918 /* 22919 * We are in a multiple send case; look for 22920 * the next ire and re-enter the loop. 22921 */ 22922 ASSERT(ire1); 22923 ASSERT(next_mp); 22924 /* REFRELE the current ire before looping */ 22925 ire_refrele(ire); 22926 ire = ire1; 22927 ire1 = NULL; 22928 q = ire->ire_stq; 22929 mp = next_mp; 22930 next_mp = NULL; 22931 } 22932 } while (multirt_send); 22933 /* 22934 * Restore the original ire; we need it for the 22935 * trailing frags 22936 */ 22937 if (save_ire != NULL) { 22938 ASSERT(ire1 == NULL); 22939 /* REFRELE the last iterated ire */ 22940 ire_refrele(ire); 22941 /* save_ire has been REFHOLDed */ 22942 ire = save_ire; 22943 q = ire->ire_stq; 22944 save_ire = NULL; 22945 } 22946 22947 if (last_frag) { 22948 BUMP_MIB(&ip_mib, ipFragOKs); 22949 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22950 "ip_wput_frag_end:(%S)", 22951 "consumed hdr_mp"); 22952 22953 if (first_ire != NULL) 22954 ire_refrele(first_ire); 22955 return; 22956 } 22957 /* Otherwise, advance and loop. */ 22958 offset += len; 22959 } 22960 22961 drop_pkt: 22962 /* Clean up following allocation failure. */ 22963 BUMP_MIB(&ip_mib, ipOutDiscards); 22964 freemsg(mp); 22965 if (mp != hdr_mp) 22966 freeb(hdr_mp); 22967 if (mp != mp_orig) 22968 freemsg(mp_orig); 22969 22970 if (save_ire != NULL) 22971 IRE_REFRELE(save_ire); 22972 if (first_ire != NULL) 22973 ire_refrele(first_ire); 22974 22975 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22976 "ip_wput_frag_end:(%S)", 22977 "end--alloc failure"); 22978 } 22979 22980 /* 22981 * Copy the header plus those options which have the copy bit set 22982 */ 22983 static mblk_t * 22984 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22985 { 22986 mblk_t *mp; 22987 uchar_t *up; 22988 22989 /* 22990 * Quick check if we need to look for options without the copy bit 22991 * set 22992 */ 22993 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22994 if (!mp) 22995 return (mp); 22996 mp->b_rptr += ip_wroff_extra; 22997 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22998 bcopy(rptr, mp->b_rptr, hdr_len); 22999 mp->b_wptr += hdr_len + ip_wroff_extra; 23000 return (mp); 23001 } 23002 up = mp->b_rptr; 23003 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23004 up += IP_SIMPLE_HDR_LENGTH; 23005 rptr += IP_SIMPLE_HDR_LENGTH; 23006 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23007 while (hdr_len > 0) { 23008 uint32_t optval; 23009 uint32_t optlen; 23010 23011 optval = *rptr; 23012 if (optval == IPOPT_EOL) 23013 break; 23014 if (optval == IPOPT_NOP) 23015 optlen = 1; 23016 else 23017 optlen = rptr[1]; 23018 if (optval & IPOPT_COPY) { 23019 bcopy(rptr, up, optlen); 23020 up += optlen; 23021 } 23022 rptr += optlen; 23023 hdr_len -= optlen; 23024 } 23025 /* 23026 * Make sure that we drop an even number of words by filling 23027 * with EOL to the next word boundary. 23028 */ 23029 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23030 hdr_len & 0x3; hdr_len++) 23031 *up++ = IPOPT_EOL; 23032 mp->b_wptr = up; 23033 /* Update header length */ 23034 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23035 return (mp); 23036 } 23037 23038 /* 23039 * Delivery to local recipients including fanout to multiple recipients. 23040 * Does not do checksumming of UDP/TCP. 23041 * Note: q should be the read side queue for either the ill or conn. 23042 * Note: rq should be the read side q for the lower (ill) stream. 23043 * We don't send packets to IPPF processing, thus the last argument 23044 * to all the fanout calls are B_FALSE. 23045 */ 23046 void 23047 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23048 int fanout_flags, zoneid_t zoneid) 23049 { 23050 uint32_t protocol; 23051 mblk_t *first_mp; 23052 boolean_t mctl_present; 23053 int ire_type; 23054 #define rptr ((uchar_t *)ipha) 23055 23056 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23057 "ip_wput_local_start: q %p", q); 23058 23059 if (ire != NULL) { 23060 ire_type = ire->ire_type; 23061 } else { 23062 /* 23063 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23064 * packet is not multicast, we can't tell the ire type. 23065 */ 23066 ASSERT(CLASSD(ipha->ipha_dst)); 23067 ire_type = IRE_BROADCAST; 23068 } 23069 23070 first_mp = mp; 23071 if (first_mp->b_datap->db_type == M_CTL) { 23072 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23073 if (!io->ipsec_out_secure) { 23074 /* 23075 * This ipsec_out_t was allocated in ip_wput 23076 * for multicast packets to store the ill_index. 23077 * As this is being delivered locally, we don't 23078 * need this anymore. 23079 */ 23080 mp = first_mp->b_cont; 23081 freeb(first_mp); 23082 first_mp = mp; 23083 mctl_present = B_FALSE; 23084 } else { 23085 mctl_present = B_TRUE; 23086 mp = first_mp->b_cont; 23087 ASSERT(mp != NULL); 23088 ipsec_out_to_in(first_mp); 23089 } 23090 } else { 23091 mctl_present = B_FALSE; 23092 } 23093 23094 loopback_packets++; 23095 23096 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23097 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23098 if (!IS_SIMPLE_IPH(ipha)) { 23099 ip_wput_local_options(ipha); 23100 } 23101 23102 protocol = ipha->ipha_protocol; 23103 switch (protocol) { 23104 case IPPROTO_ICMP: { 23105 ire_t *ire_zone; 23106 ilm_t *ilm; 23107 mblk_t *mp1; 23108 zoneid_t last_zoneid; 23109 23110 if (CLASSD(ipha->ipha_dst) && 23111 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23112 ASSERT(ire_type == IRE_BROADCAST); 23113 /* 23114 * In the multicast case, applications may have joined 23115 * the group from different zones, so we need to deliver 23116 * the packet to each of them. Loop through the 23117 * multicast memberships structures (ilm) on the receive 23118 * ill and send a copy of the packet up each matching 23119 * one. However, we don't do this for multicasts sent on 23120 * the loopback interface (PHYI_LOOPBACK flag set) as 23121 * they must stay in the sender's zone. 23122 * 23123 * ilm_add_v6() ensures that ilms in the same zone are 23124 * contiguous in the ill_ilm list. We use this property 23125 * to avoid sending duplicates needed when two 23126 * applications in the same zone join the same group on 23127 * different logical interfaces: we ignore the ilm if 23128 * its zoneid is the same as the last matching one. 23129 * In addition, the sending of the packet for 23130 * ire_zoneid is delayed until all of the other ilms 23131 * have been exhausted. 23132 */ 23133 last_zoneid = -1; 23134 ILM_WALKER_HOLD(ill); 23135 for (ilm = ill->ill_ilm; ilm != NULL; 23136 ilm = ilm->ilm_next) { 23137 if ((ilm->ilm_flags & ILM_DELETED) || 23138 ipha->ipha_dst != ilm->ilm_addr || 23139 ilm->ilm_zoneid == last_zoneid || 23140 ilm->ilm_zoneid == zoneid || 23141 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23142 continue; 23143 mp1 = ip_copymsg(first_mp); 23144 if (mp1 == NULL) 23145 continue; 23146 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23147 mctl_present, B_FALSE, ill, 23148 ilm->ilm_zoneid); 23149 last_zoneid = ilm->ilm_zoneid; 23150 } 23151 ILM_WALKER_RELE(ill); 23152 /* 23153 * Loopback case: the sending endpoint has 23154 * IP_MULTICAST_LOOP disabled, therefore we don't 23155 * dispatch the multicast packet to the sending zone. 23156 */ 23157 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23158 freemsg(first_mp); 23159 return; 23160 } 23161 } else if (ire_type == IRE_BROADCAST) { 23162 /* 23163 * In the broadcast case, there may be many zones 23164 * which need a copy of the packet delivered to them. 23165 * There is one IRE_BROADCAST per broadcast address 23166 * and per zone; we walk those using a helper function. 23167 * In addition, the sending of the packet for zoneid is 23168 * delayed until all of the other ires have been 23169 * processed. 23170 */ 23171 IRB_REFHOLD(ire->ire_bucket); 23172 ire_zone = NULL; 23173 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23174 ire)) != NULL) { 23175 mp1 = ip_copymsg(first_mp); 23176 if (mp1 == NULL) 23177 continue; 23178 23179 UPDATE_IB_PKT_COUNT(ire_zone); 23180 ire_zone->ire_last_used_time = lbolt; 23181 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23182 mctl_present, B_FALSE, ill, 23183 ire_zone->ire_zoneid); 23184 } 23185 IRB_REFRELE(ire->ire_bucket); 23186 } 23187 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23188 0, mctl_present, B_FALSE, ill, zoneid); 23189 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23190 "ip_wput_local_end: q %p (%S)", 23191 q, "icmp"); 23192 return; 23193 } 23194 case IPPROTO_IGMP: 23195 if (igmp_input(q, mp, ill)) { 23196 /* Bad packet - discarded by igmp_input */ 23197 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23198 "ip_wput_local_end: q %p (%S)", 23199 q, "igmp_input--bad packet"); 23200 if (mctl_present) 23201 freeb(first_mp); 23202 return; 23203 } 23204 /* 23205 * igmp_input() may have pulled up the message so ipha needs to 23206 * be reinitialized. 23207 */ 23208 ipha = (ipha_t *)mp->b_rptr; 23209 /* deliver to local raw users */ 23210 break; 23211 case IPPROTO_ENCAP: 23212 /* 23213 * This case is covered by either ip_fanout_proto, or by 23214 * the above security processing for self-tunneled packets. 23215 */ 23216 break; 23217 case IPPROTO_UDP: { 23218 uint16_t *up; 23219 uint32_t ports; 23220 23221 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23222 UDP_PORTS_OFFSET); 23223 /* Force a 'valid' checksum. */ 23224 up[3] = 0; 23225 23226 ports = *(uint32_t *)up; 23227 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23228 (ire_type == IRE_BROADCAST), 23229 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23230 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23231 ill, zoneid); 23232 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23233 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23234 return; 23235 } 23236 case IPPROTO_TCP: { 23237 23238 /* 23239 * For TCP, discard broadcast packets. 23240 */ 23241 if ((ushort_t)ire_type == IRE_BROADCAST) { 23242 freemsg(first_mp); 23243 BUMP_MIB(&ip_mib, ipInDiscards); 23244 ip2dbg(("ip_wput_local: discard broadcast\n")); 23245 return; 23246 } 23247 23248 if (mp->b_datap->db_type == M_DATA) { 23249 /* 23250 * M_DATA mblk, so init mblk (chain) for no struio(). 23251 */ 23252 mblk_t *mp1 = mp; 23253 23254 do 23255 mp1->b_datap->db_struioflag = 0; 23256 while ((mp1 = mp1->b_cont) != NULL); 23257 } 23258 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23259 <= mp->b_wptr); 23260 ip_fanout_tcp(q, first_mp, ill, ipha, 23261 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23262 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23263 mctl_present, B_FALSE, zoneid); 23264 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23265 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23266 return; 23267 } 23268 case IPPROTO_SCTP: 23269 { 23270 uint32_t ports; 23271 23272 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23273 ip_fanout_sctp(first_mp, ill, ipha, ports, 23274 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23275 IP_FF_IP6INFO, 23276 mctl_present, B_FALSE, 0, zoneid); 23277 return; 23278 } 23279 23280 default: 23281 break; 23282 } 23283 /* 23284 * Find a client for some other protocol. We give 23285 * copies to multiple clients, if more than one is 23286 * bound. 23287 */ 23288 ip_fanout_proto(q, first_mp, ill, ipha, 23289 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23290 mctl_present, B_FALSE, ill, zoneid); 23291 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23292 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23293 #undef rptr 23294 } 23295 23296 /* 23297 * Update any source route, record route, or timestamp options. 23298 * Check that we are at end of strict source route. 23299 * The options have been sanity checked by ip_wput_options(). 23300 */ 23301 static void 23302 ip_wput_local_options(ipha_t *ipha) 23303 { 23304 ipoptp_t opts; 23305 uchar_t *opt; 23306 uint8_t optval; 23307 uint8_t optlen; 23308 ipaddr_t dst; 23309 uint32_t ts; 23310 ire_t *ire; 23311 timestruc_t now; 23312 23313 ip2dbg(("ip_wput_local_options\n")); 23314 for (optval = ipoptp_first(&opts, ipha); 23315 optval != IPOPT_EOL; 23316 optval = ipoptp_next(&opts)) { 23317 opt = opts.ipoptp_cur; 23318 optlen = opts.ipoptp_len; 23319 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23320 switch (optval) { 23321 uint32_t off; 23322 case IPOPT_SSRR: 23323 case IPOPT_LSRR: 23324 off = opt[IPOPT_OFFSET]; 23325 off--; 23326 if (optlen < IP_ADDR_LEN || 23327 off > optlen - IP_ADDR_LEN) { 23328 /* End of source route */ 23329 break; 23330 } 23331 /* 23332 * This will only happen if two consecutive entries 23333 * in the source route contains our address or if 23334 * it is a packet with a loose source route which 23335 * reaches us before consuming the whole source route 23336 */ 23337 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23338 if (optval == IPOPT_SSRR) { 23339 return; 23340 } 23341 /* 23342 * Hack: instead of dropping the packet truncate the 23343 * source route to what has been used by filling the 23344 * rest with IPOPT_NOP. 23345 */ 23346 opt[IPOPT_OLEN] = (uint8_t)off; 23347 while (off < optlen) { 23348 opt[off++] = IPOPT_NOP; 23349 } 23350 break; 23351 case IPOPT_RR: 23352 off = opt[IPOPT_OFFSET]; 23353 off--; 23354 if (optlen < IP_ADDR_LEN || 23355 off > optlen - IP_ADDR_LEN) { 23356 /* No more room - ignore */ 23357 ip1dbg(( 23358 "ip_wput_forward_options: end of RR\n")); 23359 break; 23360 } 23361 dst = htonl(INADDR_LOOPBACK); 23362 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23363 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23364 break; 23365 case IPOPT_TS: 23366 /* Insert timestamp if there is romm */ 23367 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23368 case IPOPT_TS_TSONLY: 23369 off = IPOPT_TS_TIMELEN; 23370 break; 23371 case IPOPT_TS_PRESPEC: 23372 case IPOPT_TS_PRESPEC_RFC791: 23373 /* Verify that the address matched */ 23374 off = opt[IPOPT_OFFSET] - 1; 23375 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 23376 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 23377 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23378 if (ire == NULL) { 23379 /* Not for us */ 23380 break; 23381 } 23382 ire_refrele(ire); 23383 /* FALLTHRU */ 23384 case IPOPT_TS_TSANDADDR: 23385 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 23386 break; 23387 default: 23388 /* 23389 * ip_*put_options should have already 23390 * dropped this packet. 23391 */ 23392 cmn_err(CE_PANIC, "ip_wput_local_options: " 23393 "unknown IT - bug in ip_wput_options?\n"); 23394 return; /* Keep "lint" happy */ 23395 } 23396 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 23397 /* Increase overflow counter */ 23398 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 23399 opt[IPOPT_POS_OV_FLG] = (uint8_t) 23400 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 23401 (off << 4); 23402 break; 23403 } 23404 off = opt[IPOPT_OFFSET] - 1; 23405 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23406 case IPOPT_TS_PRESPEC: 23407 case IPOPT_TS_PRESPEC_RFC791: 23408 case IPOPT_TS_TSANDADDR: 23409 dst = htonl(INADDR_LOOPBACK); 23410 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23411 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23412 /* FALLTHRU */ 23413 case IPOPT_TS_TSONLY: 23414 off = opt[IPOPT_OFFSET] - 1; 23415 /* Compute # of milliseconds since midnight */ 23416 gethrestime(&now); 23417 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 23418 now.tv_nsec / (NANOSEC / MILLISEC); 23419 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 23420 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 23421 break; 23422 } 23423 break; 23424 } 23425 } 23426 } 23427 23428 /* 23429 * Send out a multicast packet on interface ipif. 23430 * The sender does not have an conn. 23431 * Caller verifies that this isn't a PHYI_LOOPBACK. 23432 */ 23433 void 23434 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 23435 { 23436 ipha_t *ipha; 23437 ire_t *ire; 23438 ipaddr_t dst; 23439 mblk_t *first_mp; 23440 23441 /* igmp_sendpkt always allocates a ipsec_out_t */ 23442 ASSERT(mp->b_datap->db_type == M_CTL); 23443 ASSERT(!ipif->ipif_isv6); 23444 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 23445 23446 first_mp = mp; 23447 mp = first_mp->b_cont; 23448 ASSERT(mp->b_datap->db_type == M_DATA); 23449 ipha = (ipha_t *)mp->b_rptr; 23450 23451 /* 23452 * Find an IRE which matches the destination and the outgoing 23453 * queue (i.e. the outgoing interface.) 23454 */ 23455 if (ipif->ipif_flags & IPIF_POINTOPOINT) 23456 dst = ipif->ipif_pp_dst_addr; 23457 else 23458 dst = ipha->ipha_dst; 23459 /* 23460 * The source address has already been initialized by the 23461 * caller and hence matching on ILL (MATCH_IRE_ILL) would 23462 * be sufficient rather than MATCH_IRE_IPIF. 23463 * 23464 * This function is used for sending IGMP packets. We need 23465 * to make sure that we send the packet out of the interface 23466 * (ipif->ipif_ill) where we joined the group. This is to 23467 * prevent from switches doing IGMP snooping to send us multicast 23468 * packets for a given group on the interface we have joined. 23469 * If we can't find an ire, igmp_sendpkt has already initialized 23470 * ipsec_out_attach_if so that this will not be load spread in 23471 * ip_newroute_ipif. 23472 */ 23473 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 23474 MATCH_IRE_ILL); 23475 if (!ire) { 23476 /* 23477 * Mark this packet to make it be delivered to 23478 * ip_wput_ire after the new ire has been 23479 * created. 23480 */ 23481 mp->b_prev = NULL; 23482 mp->b_next = NULL; 23483 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 23484 return; 23485 } 23486 23487 /* 23488 * Honor the RTF_SETSRC flag; this is the only case 23489 * where we force this addr whatever the current src addr is, 23490 * because this address is set by igmp_sendpkt(), and 23491 * cannot be specified by any user. 23492 */ 23493 if (ire->ire_flags & RTF_SETSRC) { 23494 ipha->ipha_src = ire->ire_src_addr; 23495 } 23496 23497 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 23498 } 23499 23500 /* 23501 * NOTE : This function does not ire_refrele the ire argument passed in. 23502 * 23503 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 23504 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 23505 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 23506 * the ire_lock to access the ire_fp_mp in this case. 23507 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 23508 * prepending a fastpath message IPQoS processing must precede it, we also set 23509 * the b_band of the fastpath message to that of the mblk returned by IPQoS 23510 * (IPQoS might have set the b_band for CoS marking). 23511 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 23512 * must follow it so that IPQoS can mark the dl_priority field for CoS 23513 * marking, if needed. 23514 */ 23515 static mblk_t * 23516 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 23517 { 23518 uint_t hlen; 23519 ipha_t *ipha; 23520 mblk_t *mp1; 23521 boolean_t qos_done = B_FALSE; 23522 uchar_t *ll_hdr; 23523 23524 #define rptr ((uchar_t *)ipha) 23525 23526 ipha = (ipha_t *)mp->b_rptr; 23527 hlen = 0; 23528 LOCK_IRE_FP_MP(ire); 23529 if ((mp1 = ire->ire_fp_mp) != NULL) { 23530 ASSERT(DB_TYPE(mp1) == M_DATA); 23531 /* Initiate IPPF processing */ 23532 if ((proc != 0) && IPP_ENABLED(proc)) { 23533 UNLOCK_IRE_FP_MP(ire); 23534 ip_process(proc, &mp, ill_index); 23535 if (mp == NULL) 23536 return (NULL); 23537 23538 ipha = (ipha_t *)mp->b_rptr; 23539 LOCK_IRE_FP_MP(ire); 23540 if ((mp1 = ire->ire_fp_mp) == NULL) { 23541 qos_done = B_TRUE; 23542 goto no_fp_mp; 23543 } 23544 ASSERT(DB_TYPE(mp1) == M_DATA); 23545 } 23546 hlen = MBLKL(mp1); 23547 /* 23548 * Check if we have enough room to prepend fastpath 23549 * header 23550 */ 23551 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 23552 ll_hdr = rptr - hlen; 23553 bcopy(mp1->b_rptr, ll_hdr, hlen); 23554 /* XXX ipha is not aligned here */ 23555 ipha = (ipha_t *)(rptr - hlen); 23556 /* 23557 * Set the b_rptr to the start of the link layer 23558 * header 23559 */ 23560 mp->b_rptr = rptr; 23561 mp1 = mp; 23562 } else { 23563 mp1 = copyb(mp1); 23564 if (mp1 == NULL) 23565 goto unlock_err; 23566 mp1->b_band = mp->b_band; 23567 mp1->b_cont = mp; 23568 /* 23569 * certain system generated traffic may not 23570 * have cred/label in ip header block. This 23571 * is true even for a labeled system. But for 23572 * labeled traffic, inherit the label in the 23573 * new header. 23574 */ 23575 if (DB_CRED(mp) != NULL) 23576 mblk_setcred(mp1, DB_CRED(mp)); 23577 /* 23578 * XXX disable ICK_VALID and compute checksum 23579 * here; can happen if ire_fp_mp changes and 23580 * it can't be copied now due to insufficient 23581 * space. (unlikely, fp mp can change, but it 23582 * does not increase in length) 23583 */ 23584 } 23585 UNLOCK_IRE_FP_MP(ire); 23586 } else { 23587 no_fp_mp: 23588 mp1 = copyb(ire->ire_dlureq_mp); 23589 if (mp1 == NULL) { 23590 unlock_err: 23591 UNLOCK_IRE_FP_MP(ire); 23592 freemsg(mp); 23593 return (NULL); 23594 } 23595 UNLOCK_IRE_FP_MP(ire); 23596 mp1->b_cont = mp; 23597 /* 23598 * certain system generated traffic may not 23599 * have cred/label in ip header block. This 23600 * is true even for a labeled system. But for 23601 * labeled traffic, inherit the label in the 23602 * new header. 23603 */ 23604 if (DB_CRED(mp) != NULL) 23605 mblk_setcred(mp1, DB_CRED(mp)); 23606 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 23607 ip_process(proc, &mp1, ill_index); 23608 if (mp1 == NULL) 23609 return (NULL); 23610 } 23611 } 23612 return (mp1); 23613 #undef rptr 23614 } 23615 23616 /* 23617 * Finish the outbound IPsec processing for an IPv6 packet. This function 23618 * is called from ipsec_out_process() if the IPsec packet was processed 23619 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23620 * asynchronously. 23621 */ 23622 void 23623 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 23624 ire_t *ire_arg) 23625 { 23626 in6_addr_t *v6dstp; 23627 ire_t *ire; 23628 mblk_t *mp; 23629 uint_t ill_index; 23630 ipsec_out_t *io; 23631 boolean_t attach_if, hwaccel; 23632 uint32_t flags = IP6_NO_IPPOLICY; 23633 int match_flags; 23634 zoneid_t zoneid; 23635 boolean_t ill_need_rele = B_FALSE; 23636 boolean_t ire_need_rele = B_FALSE; 23637 23638 mp = ipsec_mp->b_cont; 23639 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23640 ill_index = io->ipsec_out_ill_index; 23641 if (io->ipsec_out_reachable) { 23642 flags |= IPV6_REACHABILITY_CONFIRMATION; 23643 } 23644 attach_if = io->ipsec_out_attach_if; 23645 hwaccel = io->ipsec_out_accelerated; 23646 zoneid = io->ipsec_out_zoneid; 23647 ASSERT(zoneid != ALL_ZONES); 23648 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23649 /* Multicast addresses should have non-zero ill_index. */ 23650 v6dstp = &ip6h->ip6_dst; 23651 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 23652 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 23653 ASSERT(!attach_if || ill_index != 0); 23654 if (ill_index != 0) { 23655 if (ill == NULL) { 23656 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 23657 B_TRUE); 23658 23659 /* Failure case frees things for us. */ 23660 if (ill == NULL) 23661 return; 23662 23663 ill_need_rele = B_TRUE; 23664 } 23665 /* 23666 * If this packet needs to go out on a particular interface 23667 * honor it. 23668 */ 23669 if (attach_if) { 23670 match_flags = MATCH_IRE_ILL; 23671 23672 /* 23673 * Check if we need an ire that will not be 23674 * looked up by anybody else i.e. HIDDEN. 23675 */ 23676 if (ill_is_probeonly(ill)) { 23677 match_flags |= MATCH_IRE_MARK_HIDDEN; 23678 } 23679 } 23680 } 23681 ASSERT(mp != NULL); 23682 23683 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 23684 boolean_t unspec_src; 23685 ipif_t *ipif; 23686 23687 /* 23688 * Use the ill_index to get the right ill. 23689 */ 23690 unspec_src = io->ipsec_out_unspec_src; 23691 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23692 if (ipif == NULL) { 23693 if (ill_need_rele) 23694 ill_refrele(ill); 23695 freemsg(ipsec_mp); 23696 return; 23697 } 23698 23699 if (ire_arg != NULL) { 23700 ire = ire_arg; 23701 } else { 23702 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23703 zoneid, MBLK_GETLABEL(mp), match_flags); 23704 ire_need_rele = B_TRUE; 23705 } 23706 if (ire != NULL) { 23707 ipif_refrele(ipif); 23708 /* 23709 * XXX Do the multicast forwarding now, as the IPSEC 23710 * processing has been done. 23711 */ 23712 goto send; 23713 } 23714 23715 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 23716 mp->b_prev = NULL; 23717 mp->b_next = NULL; 23718 23719 /* 23720 * If the IPsec packet was processed asynchronously, 23721 * drop it now. 23722 */ 23723 if (q == NULL) { 23724 if (ill_need_rele) 23725 ill_refrele(ill); 23726 freemsg(ipsec_mp); 23727 return; 23728 } 23729 23730 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 23731 unspec_src, zoneid); 23732 ipif_refrele(ipif); 23733 } else { 23734 if (attach_if) { 23735 ipif_t *ipif; 23736 23737 ipif = ipif_get_next_ipif(NULL, ill); 23738 if (ipif == NULL) { 23739 if (ill_need_rele) 23740 ill_refrele(ill); 23741 freemsg(ipsec_mp); 23742 return; 23743 } 23744 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23745 zoneid, MBLK_GETLABEL(mp), match_flags); 23746 ire_need_rele = B_TRUE; 23747 ipif_refrele(ipif); 23748 } else { 23749 if (ire_arg != NULL) { 23750 ire = ire_arg; 23751 } else { 23752 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 23753 ire_need_rele = B_TRUE; 23754 } 23755 } 23756 if (ire != NULL) 23757 goto send; 23758 /* 23759 * ire disappeared underneath. 23760 * 23761 * What we need to do here is the ip_newroute 23762 * logic to get the ire without doing the IPSEC 23763 * processing. Follow the same old path. But this 23764 * time, ip_wput or ire_add_then_send will call us 23765 * directly as all the IPSEC operations are done. 23766 */ 23767 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 23768 mp->b_prev = NULL; 23769 mp->b_next = NULL; 23770 23771 /* 23772 * If the IPsec packet was processed asynchronously, 23773 * drop it now. 23774 */ 23775 if (q == NULL) { 23776 if (ill_need_rele) 23777 ill_refrele(ill); 23778 freemsg(ipsec_mp); 23779 return; 23780 } 23781 23782 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 23783 zoneid); 23784 } 23785 if (ill != NULL && ill_need_rele) 23786 ill_refrele(ill); 23787 return; 23788 send: 23789 if (ill != NULL && ill_need_rele) 23790 ill_refrele(ill); 23791 23792 /* Local delivery */ 23793 if (ire->ire_stq == NULL) { 23794 ASSERT(q != NULL); 23795 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 23796 ire, 0); 23797 if (ire_need_rele) 23798 ire_refrele(ire); 23799 return; 23800 } 23801 /* 23802 * Everything is done. Send it out on the wire. 23803 * We force the insertion of a fragment header using the 23804 * IPH_FRAG_HDR flag in two cases: 23805 * - after reception of an ICMPv6 "packet too big" message 23806 * with a MTU < 1280 (cf. RFC 2460 section 5) 23807 * - for multirouted IPv6 packets, so that the receiver can 23808 * discard duplicates according to their fragment identifier 23809 */ 23810 /* XXX fix flow control problems. */ 23811 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 23812 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 23813 if (hwaccel) { 23814 /* 23815 * hardware acceleration does not handle these 23816 * "slow path" cases. 23817 */ 23818 /* IPsec KSTATS: should bump bean counter here. */ 23819 if (ire_need_rele) 23820 ire_refrele(ire); 23821 freemsg(ipsec_mp); 23822 return; 23823 } 23824 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 23825 (mp->b_cont ? msgdsize(mp) : 23826 mp->b_wptr - (uchar_t *)ip6h)) { 23827 /* IPsec KSTATS: should bump bean counter here. */ 23828 ip0dbg(("Packet length mismatch: %d, %ld\n", 23829 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 23830 msgdsize(mp))); 23831 if (ire_need_rele) 23832 ire_refrele(ire); 23833 freemsg(ipsec_mp); 23834 return; 23835 } 23836 ASSERT(mp->b_prev == NULL); 23837 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 23838 ntohs(ip6h->ip6_plen) + 23839 IPV6_HDR_LEN, ire->ire_max_frag)); 23840 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 23841 ire->ire_max_frag); 23842 } else { 23843 UPDATE_OB_PKT_COUNT(ire); 23844 ire->ire_last_used_time = lbolt; 23845 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 23846 } 23847 if (ire_need_rele) 23848 ire_refrele(ire); 23849 freeb(ipsec_mp); 23850 } 23851 23852 void 23853 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23854 { 23855 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23856 da_ipsec_t *hada; /* data attributes */ 23857 ill_t *ill = (ill_t *)q->q_ptr; 23858 23859 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23860 23861 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23862 /* IPsec KSTATS: Bump lose counter here! */ 23863 freemsg(mp); 23864 return; 23865 } 23866 23867 /* 23868 * It's an IPsec packet that must be 23869 * accelerated by the Provider, and the 23870 * outbound ill is IPsec acceleration capable. 23871 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23872 * to the ill. 23873 * IPsec KSTATS: should bump packet counter here. 23874 */ 23875 23876 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23877 if (hada_mp == NULL) { 23878 /* IPsec KSTATS: should bump packet counter here. */ 23879 freemsg(mp); 23880 return; 23881 } 23882 23883 hada_mp->b_datap->db_type = M_CTL; 23884 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23885 hada_mp->b_cont = mp; 23886 23887 hada = (da_ipsec_t *)hada_mp->b_rptr; 23888 bzero(hada, sizeof (da_ipsec_t)); 23889 hada->da_type = IPHADA_M_CTL; 23890 23891 putnext(q, hada_mp); 23892 } 23893 23894 /* 23895 * Finish the outbound IPsec processing. This function is called from 23896 * ipsec_out_process() if the IPsec packet was processed 23897 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23898 * asynchronously. 23899 */ 23900 void 23901 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23902 ire_t *ire_arg) 23903 { 23904 uint32_t v_hlen_tos_len; 23905 ipaddr_t dst; 23906 ipif_t *ipif = NULL; 23907 ire_t *ire; 23908 ire_t *ire1 = NULL; 23909 mblk_t *next_mp = NULL; 23910 uint32_t max_frag; 23911 boolean_t multirt_send = B_FALSE; 23912 mblk_t *mp; 23913 mblk_t *mp1; 23914 uint_t ill_index; 23915 ipsec_out_t *io; 23916 boolean_t attach_if; 23917 int match_flags, offset; 23918 irb_t *irb = NULL; 23919 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23920 zoneid_t zoneid; 23921 uint32_t cksum; 23922 uint16_t *up; 23923 #ifdef _BIG_ENDIAN 23924 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23925 #else 23926 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23927 #endif 23928 23929 mp = ipsec_mp->b_cont; 23930 ASSERT(mp != NULL); 23931 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23932 dst = ipha->ipha_dst; 23933 23934 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23935 ill_index = io->ipsec_out_ill_index; 23936 attach_if = io->ipsec_out_attach_if; 23937 zoneid = io->ipsec_out_zoneid; 23938 ASSERT(zoneid != ALL_ZONES); 23939 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23940 if (ill_index != 0) { 23941 if (ill == NULL) { 23942 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23943 ill_index, B_FALSE); 23944 23945 /* Failure case frees things for us. */ 23946 if (ill == NULL) 23947 return; 23948 23949 ill_need_rele = B_TRUE; 23950 } 23951 /* 23952 * If this packet needs to go out on a particular interface 23953 * honor it. 23954 */ 23955 if (attach_if) { 23956 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 23957 23958 /* 23959 * Check if we need an ire that will not be 23960 * looked up by anybody else i.e. HIDDEN. 23961 */ 23962 if (ill_is_probeonly(ill)) { 23963 match_flags |= MATCH_IRE_MARK_HIDDEN; 23964 } 23965 } 23966 } 23967 23968 if (CLASSD(dst)) { 23969 boolean_t conn_dontroute; 23970 /* 23971 * Use the ill_index to get the right ipif. 23972 */ 23973 conn_dontroute = io->ipsec_out_dontroute; 23974 if (ill_index == 0) 23975 ipif = ipif_lookup_group(dst, zoneid); 23976 else 23977 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23978 if (ipif == NULL) { 23979 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23980 " multicast\n")); 23981 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23982 freemsg(ipsec_mp); 23983 goto done; 23984 } 23985 /* 23986 * ipha_src has already been intialized with the 23987 * value of the ipif in ip_wput. All we need now is 23988 * an ire to send this downstream. 23989 */ 23990 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 23991 MBLK_GETLABEL(mp), match_flags); 23992 if (ire != NULL) { 23993 ill_t *ill1; 23994 /* 23995 * Do the multicast forwarding now, as the IPSEC 23996 * processing has been done. 23997 */ 23998 if (ip_g_mrouter && !conn_dontroute && 23999 (ill1 = ire_to_ill(ire))) { 24000 if (ip_mforward(ill1, ipha, mp)) { 24001 freemsg(ipsec_mp); 24002 ip1dbg(("ip_wput_ipsec_out: mforward " 24003 "failed\n")); 24004 ire_refrele(ire); 24005 goto done; 24006 } 24007 } 24008 goto send; 24009 } 24010 24011 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24012 mp->b_prev = NULL; 24013 mp->b_next = NULL; 24014 24015 /* 24016 * If the IPsec packet was processed asynchronously, 24017 * drop it now. 24018 */ 24019 if (q == NULL) { 24020 freemsg(ipsec_mp); 24021 goto done; 24022 } 24023 24024 /* 24025 * We may be using a wrong ipif to create the ire. 24026 * But it is okay as the source address is assigned 24027 * for the packet already. Next outbound packet would 24028 * create the IRE with the right IPIF in ip_wput. 24029 * 24030 * Also handle RTF_MULTIRT routes. 24031 */ 24032 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24033 } else { 24034 if (attach_if) { 24035 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24036 zoneid, MBLK_GETLABEL(mp), match_flags); 24037 } else { 24038 if (ire_arg != NULL) { 24039 ire = ire_arg; 24040 ire_need_rele = B_FALSE; 24041 } else { 24042 ire = ire_cache_lookup(dst, zoneid, 24043 MBLK_GETLABEL(mp)); 24044 } 24045 } 24046 if (ire != NULL) { 24047 goto send; 24048 } 24049 24050 /* 24051 * ire disappeared underneath. 24052 * 24053 * What we need to do here is the ip_newroute 24054 * logic to get the ire without doing the IPSEC 24055 * processing. Follow the same old path. But this 24056 * time, ip_wput or ire_add_then_put will call us 24057 * directly as all the IPSEC operations are done. 24058 */ 24059 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24060 mp->b_prev = NULL; 24061 mp->b_next = NULL; 24062 24063 /* 24064 * If the IPsec packet was processed asynchronously, 24065 * drop it now. 24066 */ 24067 if (q == NULL) { 24068 freemsg(ipsec_mp); 24069 goto done; 24070 } 24071 24072 /* 24073 * Since we're going through ip_newroute() again, we 24074 * need to make sure we don't: 24075 * 24076 * 1.) Trigger the ASSERT() with the ipha_ident 24077 * overloading. 24078 * 2.) Redo transport-layer checksumming, since we've 24079 * already done all that to get this far. 24080 * 24081 * The easiest way not do either of the above is to set 24082 * the ipha_ident field to IP_HDR_INCLUDED. 24083 */ 24084 ipha->ipha_ident = IP_HDR_INCLUDED; 24085 ip_newroute(q, ipsec_mp, dst, NULL, 24086 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24087 } 24088 goto done; 24089 send: 24090 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24091 /* 24092 * ESP NAT-Traversal packet. 24093 * 24094 * Just do software checksum for now. 24095 */ 24096 24097 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24098 IP_STAT(ip_out_sw_cksum); 24099 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24100 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24101 #define iphs ((uint16_t *)ipha) 24102 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24103 iphs[9] + ntohs(htons(ipha->ipha_length) - 24104 IP_SIMPLE_HDR_LENGTH); 24105 #undef iphs 24106 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24107 cksum = 0xFFFF; 24108 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24109 if (mp1->b_wptr - mp1->b_rptr >= 24110 offset + sizeof (uint16_t)) { 24111 up = (uint16_t *)(mp1->b_rptr + offset); 24112 *up = cksum; 24113 break; /* out of for loop */ 24114 } else { 24115 offset -= (mp->b_wptr - mp->b_rptr); 24116 } 24117 } /* Otherwise, just keep the all-zero checksum. */ 24118 24119 if (ire->ire_stq == NULL) { 24120 /* 24121 * Loopbacks go through ip_wput_local except for one case. 24122 * We come here if we generate a icmp_frag_needed message 24123 * after IPSEC processing is over. When this function calls 24124 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24125 * icmp_frag_needed. The message generated comes back here 24126 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24127 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24128 * source address as it is usually set in ip_wput_ire. As 24129 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24130 * and we end up here. We can't enter ip_wput_ire once the 24131 * IPSEC processing is over and hence we need to do it here. 24132 */ 24133 ASSERT(q != NULL); 24134 UPDATE_OB_PKT_COUNT(ire); 24135 ire->ire_last_used_time = lbolt; 24136 if (ipha->ipha_src == 0) 24137 ipha->ipha_src = ire->ire_src_addr; 24138 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24139 ire, 0, zoneid); 24140 if (ire_need_rele) 24141 ire_refrele(ire); 24142 goto done; 24143 } 24144 24145 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24146 /* 24147 * We are through with IPSEC processing. 24148 * Fragment this and send it on the wire. 24149 */ 24150 if (io->ipsec_out_accelerated) { 24151 /* 24152 * The packet has been accelerated but must 24153 * be fragmented. This should not happen 24154 * since AH and ESP must not accelerate 24155 * packets that need fragmentation, however 24156 * the configuration could have changed 24157 * since the AH or ESP processing. 24158 * Drop packet. 24159 * IPsec KSTATS: bump bean counter here. 24160 */ 24161 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24162 "fragmented accelerated packet!\n")); 24163 freemsg(ipsec_mp); 24164 } else { 24165 ip_wput_ire_fragmentit(ipsec_mp, ire); 24166 } 24167 if (ire_need_rele) 24168 ire_refrele(ire); 24169 goto done; 24170 } 24171 24172 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24173 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24174 (void *)ire->ire_ipif, (void *)ipif)); 24175 24176 /* 24177 * Multiroute the secured packet, unless IPsec really 24178 * requires the packet to go out only through a particular 24179 * interface. 24180 */ 24181 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24182 ire_t *first_ire; 24183 irb = ire->ire_bucket; 24184 ASSERT(irb != NULL); 24185 /* 24186 * This ire has been looked up as the one that 24187 * goes through the given ipif; 24188 * make sure we do not omit any other multiroute ire 24189 * that may be present in the bucket before this one. 24190 */ 24191 IRB_REFHOLD(irb); 24192 for (first_ire = irb->irb_ire; 24193 first_ire != NULL; 24194 first_ire = first_ire->ire_next) { 24195 if ((first_ire->ire_flags & RTF_MULTIRT) && 24196 (first_ire->ire_addr == ire->ire_addr) && 24197 !(first_ire->ire_marks & 24198 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24199 break; 24200 } 24201 24202 if ((first_ire != NULL) && (first_ire != ire)) { 24203 /* 24204 * Don't change the ire if the packet must 24205 * be fragmented if sent via this new one. 24206 */ 24207 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24208 IRE_REFHOLD(first_ire); 24209 if (ire_need_rele) 24210 ire_refrele(ire); 24211 else 24212 ire_need_rele = B_TRUE; 24213 ire = first_ire; 24214 } 24215 } 24216 IRB_REFRELE(irb); 24217 24218 multirt_send = B_TRUE; 24219 max_frag = ire->ire_max_frag; 24220 } else { 24221 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24222 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24223 "flag, attach_if %d\n", attach_if)); 24224 } 24225 } 24226 24227 /* 24228 * In most cases, the emission loop below is entered only once. 24229 * Only in the case where the ire holds the RTF_MULTIRT 24230 * flag, we loop to process all RTF_MULTIRT ires in the 24231 * bucket, and send the packet through all crossed 24232 * RTF_MULTIRT routes. 24233 */ 24234 do { 24235 if (multirt_send) { 24236 /* 24237 * ire1 holds here the next ire to process in the 24238 * bucket. If multirouting is expected, 24239 * any non-RTF_MULTIRT ire that has the 24240 * right destination address is ignored. 24241 */ 24242 ASSERT(irb != NULL); 24243 IRB_REFHOLD(irb); 24244 for (ire1 = ire->ire_next; 24245 ire1 != NULL; 24246 ire1 = ire1->ire_next) { 24247 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24248 continue; 24249 if (ire1->ire_addr != ire->ire_addr) 24250 continue; 24251 if (ire1->ire_marks & 24252 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24253 continue; 24254 /* No loopback here */ 24255 if (ire1->ire_stq == NULL) 24256 continue; 24257 /* 24258 * Ensure we do not exceed the MTU 24259 * of the next route. 24260 */ 24261 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24262 ip_multirt_bad_mtu(ire1, max_frag); 24263 continue; 24264 } 24265 24266 IRE_REFHOLD(ire1); 24267 break; 24268 } 24269 IRB_REFRELE(irb); 24270 if (ire1 != NULL) { 24271 /* 24272 * We are in a multiple send case, need to 24273 * make a copy of the packet. 24274 */ 24275 next_mp = copymsg(ipsec_mp); 24276 if (next_mp == NULL) { 24277 ire_refrele(ire1); 24278 ire1 = NULL; 24279 } 24280 } 24281 } 24282 24283 /* Everything is done. Send it out on the wire */ 24284 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 24285 if (mp1 == NULL) { 24286 BUMP_MIB(&ip_mib, ipOutDiscards); 24287 freemsg(ipsec_mp); 24288 if (ire_need_rele) 24289 ire_refrele(ire); 24290 if (ire1 != NULL) { 24291 ire_refrele(ire1); 24292 freemsg(next_mp); 24293 } 24294 goto done; 24295 } 24296 UPDATE_OB_PKT_COUNT(ire); 24297 ire->ire_last_used_time = lbolt; 24298 if (!io->ipsec_out_accelerated) { 24299 putnext(ire->ire_stq, mp1); 24300 } else { 24301 /* 24302 * Safety Pup says: make sure this is going to 24303 * the right interface! 24304 */ 24305 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 24306 int ifindex = ill1->ill_phyint->phyint_ifindex; 24307 24308 if (ifindex != io->ipsec_out_capab_ill_index) { 24309 /* IPsec kstats: bump lose counter */ 24310 freemsg(mp1); 24311 } else { 24312 ipsec_hw_putnext(ire->ire_stq, mp1); 24313 } 24314 } 24315 24316 freeb(ipsec_mp); 24317 if (ire_need_rele) 24318 ire_refrele(ire); 24319 24320 if (ire1 != NULL) { 24321 ire = ire1; 24322 ire_need_rele = B_TRUE; 24323 ASSERT(next_mp); 24324 ipsec_mp = next_mp; 24325 mp = ipsec_mp->b_cont; 24326 ire1 = NULL; 24327 next_mp = NULL; 24328 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24329 } else { 24330 multirt_send = B_FALSE; 24331 } 24332 } while (multirt_send); 24333 done: 24334 if (ill != NULL && ill_need_rele) 24335 ill_refrele(ill); 24336 if (ipif != NULL) 24337 ipif_refrele(ipif); 24338 } 24339 24340 /* 24341 * Get the ill corresponding to the specified ire, and compare its 24342 * capabilities with the protocol and algorithms specified by the 24343 * the SA obtained from ipsec_out. If they match, annotate the 24344 * ipsec_out structure to indicate that the packet needs acceleration. 24345 * 24346 * 24347 * A packet is eligible for outbound hardware acceleration if the 24348 * following conditions are satisfied: 24349 * 24350 * 1. the packet will not be fragmented 24351 * 2. the provider supports the algorithm 24352 * 3. there is no pending control message being exchanged 24353 * 4. snoop is not attached 24354 * 5. the destination address is not a broadcast or multicast address. 24355 * 24356 * Rationale: 24357 * - Hardware drivers do not support fragmentation with 24358 * the current interface. 24359 * - snoop, multicast, and broadcast may result in exposure of 24360 * a cleartext datagram. 24361 * We check all five of these conditions here. 24362 * 24363 * XXX would like to nuke "ire_t *" parameter here; problem is that 24364 * IRE is only way to figure out if a v4 address is a broadcast and 24365 * thus ineligible for acceleration... 24366 */ 24367 static void 24368 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 24369 { 24370 ipsec_out_t *io; 24371 mblk_t *data_mp; 24372 uint_t plen, overhead; 24373 24374 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 24375 return; 24376 24377 if (ill == NULL) 24378 return; 24379 24380 /* 24381 * Destination address is a broadcast or multicast. Punt. 24382 */ 24383 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 24384 IRE_LOCAL))) 24385 return; 24386 24387 data_mp = ipsec_mp->b_cont; 24388 24389 if (ill->ill_isv6) { 24390 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 24391 24392 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 24393 return; 24394 24395 plen = ip6h->ip6_plen; 24396 } else { 24397 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 24398 24399 if (CLASSD(ipha->ipha_dst)) 24400 return; 24401 24402 plen = ipha->ipha_length; 24403 } 24404 /* 24405 * Is there a pending DLPI control message being exchanged 24406 * between IP/IPsec and the DLS Provider? If there is, it 24407 * could be a SADB update, and the state of the DLS Provider 24408 * SADB might not be in sync with the SADB maintained by 24409 * IPsec. To avoid dropping packets or using the wrong keying 24410 * material, we do not accelerate this packet. 24411 */ 24412 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 24413 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24414 "ill_dlpi_pending! don't accelerate packet\n")); 24415 return; 24416 } 24417 24418 /* 24419 * Is the Provider in promiscous mode? If it does, we don't 24420 * accelerate the packet since it will bounce back up to the 24421 * listeners in the clear. 24422 */ 24423 if (ill->ill_promisc_on_phys) { 24424 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24425 "ill in promiscous mode, don't accelerate packet\n")); 24426 return; 24427 } 24428 24429 /* 24430 * Will the packet require fragmentation? 24431 */ 24432 24433 /* 24434 * IPsec ESP note: this is a pessimistic estimate, but the same 24435 * as is used elsewhere. 24436 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 24437 * + 2-byte trailer 24438 */ 24439 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 24440 IPSEC_BASE_ESP_HDR_SIZE(sa); 24441 24442 if ((plen + overhead) > ill->ill_max_mtu) 24443 return; 24444 24445 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24446 24447 /* 24448 * Can the ill accelerate this IPsec protocol and algorithm 24449 * specified by the SA? 24450 */ 24451 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 24452 ill->ill_isv6, sa)) { 24453 return; 24454 } 24455 24456 /* 24457 * Tell AH or ESP that the outbound ill is capable of 24458 * accelerating this packet. 24459 */ 24460 io->ipsec_out_is_capab_ill = B_TRUE; 24461 } 24462 24463 /* 24464 * Select which AH & ESP SA's to use (if any) for the outbound packet. 24465 * 24466 * If this function returns B_TRUE, the requested SA's have been filled 24467 * into the ipsec_out_*_sa pointers. 24468 * 24469 * If the function returns B_FALSE, the packet has been "consumed", most 24470 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 24471 * 24472 * The SA references created by the protocol-specific "select" 24473 * function will be released when the ipsec_mp is freed, thanks to the 24474 * ipsec_out_free destructor -- see spd.c. 24475 */ 24476 static boolean_t 24477 ipsec_out_select_sa(mblk_t *ipsec_mp) 24478 { 24479 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 24480 ipsec_out_t *io; 24481 ipsec_policy_t *pp; 24482 ipsec_action_t *ap; 24483 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24484 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24485 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24486 24487 if (!io->ipsec_out_secure) { 24488 /* 24489 * We came here by mistake. 24490 * Don't bother with ipsec processing 24491 * We should "discourage" this path in the future. 24492 */ 24493 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24494 return (B_FALSE); 24495 } 24496 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24497 ASSERT((io->ipsec_out_policy != NULL) || 24498 (io->ipsec_out_act != NULL)); 24499 24500 ASSERT(io->ipsec_out_failed == B_FALSE); 24501 24502 /* 24503 * IPSEC processing has started. 24504 */ 24505 io->ipsec_out_proc_begin = B_TRUE; 24506 ap = io->ipsec_out_act; 24507 if (ap == NULL) { 24508 pp = io->ipsec_out_policy; 24509 ASSERT(pp != NULL); 24510 ap = pp->ipsp_act; 24511 ASSERT(ap != NULL); 24512 } 24513 24514 /* 24515 * We have an action. now, let's select SA's. 24516 * (In the future, we can cache this in the conn_t..) 24517 */ 24518 if (ap->ipa_want_esp) { 24519 if (io->ipsec_out_esp_sa == NULL) { 24520 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 24521 IPPROTO_ESP); 24522 } 24523 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 24524 } 24525 24526 if (ap->ipa_want_ah) { 24527 if (io->ipsec_out_ah_sa == NULL) { 24528 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 24529 IPPROTO_AH); 24530 } 24531 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 24532 /* 24533 * The ESP and AH processing order needs to be preserved 24534 * when both protocols are required (ESP should be applied 24535 * before AH for an outbound packet). Force an ESP ACQUIRE 24536 * when both ESP and AH are required, and an AH ACQUIRE 24537 * is needed. 24538 */ 24539 if (ap->ipa_want_esp && need_ah_acquire) 24540 need_esp_acquire = B_TRUE; 24541 } 24542 24543 /* 24544 * Send an ACQUIRE (extended, regular, or both) if we need one. 24545 * Release SAs that got referenced, but will not be used until we 24546 * acquire _all_ of the SAs we need. 24547 */ 24548 if (need_ah_acquire || need_esp_acquire) { 24549 if (io->ipsec_out_ah_sa != NULL) { 24550 IPSA_REFRELE(io->ipsec_out_ah_sa); 24551 io->ipsec_out_ah_sa = NULL; 24552 } 24553 if (io->ipsec_out_esp_sa != NULL) { 24554 IPSA_REFRELE(io->ipsec_out_esp_sa); 24555 io->ipsec_out_esp_sa = NULL; 24556 } 24557 24558 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 24559 return (B_FALSE); 24560 } 24561 24562 return (B_TRUE); 24563 } 24564 24565 /* 24566 * Process an IPSEC_OUT message and see what you can 24567 * do with it. 24568 * IPQoS Notes: 24569 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 24570 * IPSec. 24571 * XXX would like to nuke ire_t. 24572 * XXX ill_index better be "real" 24573 */ 24574 void 24575 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 24576 { 24577 ipsec_out_t *io; 24578 ipsec_policy_t *pp; 24579 ipsec_action_t *ap; 24580 ipha_t *ipha; 24581 ip6_t *ip6h; 24582 mblk_t *mp; 24583 ill_t *ill; 24584 zoneid_t zoneid; 24585 ipsec_status_t ipsec_rc; 24586 boolean_t ill_need_rele = B_FALSE; 24587 24588 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24589 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24590 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24591 mp = ipsec_mp->b_cont; 24592 24593 /* 24594 * Initiate IPPF processing. We do it here to account for packets 24595 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 24596 * We can check for ipsec_out_proc_begin even for such packets, as 24597 * they will always be false (asserted below). 24598 */ 24599 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 24600 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 24601 io->ipsec_out_ill_index : ill_index); 24602 if (mp == NULL) { 24603 ip2dbg(("ipsec_out_process: packet dropped "\ 24604 "during IPPF processing\n")); 24605 freeb(ipsec_mp); 24606 BUMP_MIB(&ip_mib, ipOutDiscards); 24607 return; 24608 } 24609 } 24610 24611 if (!io->ipsec_out_secure) { 24612 /* 24613 * We came here by mistake. 24614 * Don't bother with ipsec processing 24615 * Should "discourage" this path in the future. 24616 */ 24617 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24618 goto done; 24619 } 24620 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24621 ASSERT((io->ipsec_out_policy != NULL) || 24622 (io->ipsec_out_act != NULL)); 24623 ASSERT(io->ipsec_out_failed == B_FALSE); 24624 24625 if (!ipsec_loaded()) { 24626 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 24627 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24628 BUMP_MIB(&ip_mib, ipOutDiscards); 24629 } else { 24630 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 24631 } 24632 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 24633 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 24634 return; 24635 } 24636 24637 /* 24638 * IPSEC processing has started. 24639 */ 24640 io->ipsec_out_proc_begin = B_TRUE; 24641 ap = io->ipsec_out_act; 24642 if (ap == NULL) { 24643 pp = io->ipsec_out_policy; 24644 ASSERT(pp != NULL); 24645 ap = pp->ipsp_act; 24646 ASSERT(ap != NULL); 24647 } 24648 24649 /* 24650 * Save the outbound ill index. When the packet comes back 24651 * from IPsec, we make sure the ill hasn't changed or disappeared 24652 * before sending it the accelerated packet. 24653 */ 24654 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 24655 int ifindex; 24656 ill = ire_to_ill(ire); 24657 ifindex = ill->ill_phyint->phyint_ifindex; 24658 io->ipsec_out_capab_ill_index = ifindex; 24659 } 24660 24661 /* 24662 * The order of processing is first insert a IP header if needed. 24663 * Then insert the ESP header and then the AH header. 24664 */ 24665 if ((io->ipsec_out_se_done == B_FALSE) && 24666 (ap->ipa_want_se)) { 24667 /* 24668 * First get the outer IP header before sending 24669 * it to ESP. 24670 */ 24671 ipha_t *oipha, *iipha; 24672 mblk_t *outer_mp, *inner_mp; 24673 24674 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 24675 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 24676 "ipsec_out_process: " 24677 "Self-Encapsulation failed: Out of memory\n"); 24678 freemsg(ipsec_mp); 24679 BUMP_MIB(&ip_mib, ipOutDiscards); 24680 return; 24681 } 24682 inner_mp = ipsec_mp->b_cont; 24683 ASSERT(inner_mp->b_datap->db_type == M_DATA); 24684 oipha = (ipha_t *)outer_mp->b_rptr; 24685 iipha = (ipha_t *)inner_mp->b_rptr; 24686 *oipha = *iipha; 24687 outer_mp->b_wptr += sizeof (ipha_t); 24688 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 24689 sizeof (ipha_t)); 24690 oipha->ipha_protocol = IPPROTO_ENCAP; 24691 oipha->ipha_version_and_hdr_length = 24692 IP_SIMPLE_HDR_VERSION; 24693 oipha->ipha_hdr_checksum = 0; 24694 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 24695 outer_mp->b_cont = inner_mp; 24696 ipsec_mp->b_cont = outer_mp; 24697 24698 io->ipsec_out_se_done = B_TRUE; 24699 io->ipsec_out_encaps = B_TRUE; 24700 } 24701 24702 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 24703 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 24704 !ipsec_out_select_sa(ipsec_mp)) 24705 return; 24706 24707 /* 24708 * By now, we know what SA's to use. Toss over to ESP & AH 24709 * to do the heavy lifting. 24710 */ 24711 zoneid = io->ipsec_out_zoneid; 24712 ASSERT(zoneid != ALL_ZONES); 24713 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 24714 ASSERT(io->ipsec_out_esp_sa != NULL); 24715 io->ipsec_out_esp_done = B_TRUE; 24716 /* 24717 * Note that since hw accel can only apply one transform, 24718 * not two, we skip hw accel for ESP if we also have AH 24719 * This is an design limitation of the interface 24720 * which should be revisited. 24721 */ 24722 ASSERT(ire != NULL); 24723 if (io->ipsec_out_ah_sa == NULL) { 24724 ill = (ill_t *)ire->ire_stq->q_ptr; 24725 ipsec_out_is_accelerated(ipsec_mp, 24726 io->ipsec_out_esp_sa, ill, ire); 24727 } 24728 24729 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 24730 switch (ipsec_rc) { 24731 case IPSEC_STATUS_SUCCESS: 24732 break; 24733 case IPSEC_STATUS_FAILED: 24734 BUMP_MIB(&ip_mib, ipOutDiscards); 24735 /* FALLTHRU */ 24736 case IPSEC_STATUS_PENDING: 24737 return; 24738 } 24739 } 24740 24741 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 24742 ASSERT(io->ipsec_out_ah_sa != NULL); 24743 io->ipsec_out_ah_done = B_TRUE; 24744 if (ire == NULL) { 24745 int idx = io->ipsec_out_capab_ill_index; 24746 ill = ill_lookup_on_ifindex(idx, B_FALSE, 24747 NULL, NULL, NULL, NULL); 24748 ill_need_rele = B_TRUE; 24749 } else { 24750 ill = (ill_t *)ire->ire_stq->q_ptr; 24751 } 24752 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 24753 ire); 24754 24755 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 24756 switch (ipsec_rc) { 24757 case IPSEC_STATUS_SUCCESS: 24758 break; 24759 case IPSEC_STATUS_FAILED: 24760 BUMP_MIB(&ip_mib, ipOutDiscards); 24761 /* FALLTHRU */ 24762 case IPSEC_STATUS_PENDING: 24763 if (ill != NULL && ill_need_rele) 24764 ill_refrele(ill); 24765 return; 24766 } 24767 } 24768 /* 24769 * We are done with IPSEC processing. Send it over 24770 * the wire. 24771 */ 24772 done: 24773 mp = ipsec_mp->b_cont; 24774 ipha = (ipha_t *)mp->b_rptr; 24775 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24776 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 24777 } else { 24778 ip6h = (ip6_t *)ipha; 24779 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 24780 } 24781 if (ill != NULL && ill_need_rele) 24782 ill_refrele(ill); 24783 } 24784 24785 /* ARGSUSED */ 24786 void 24787 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 24788 { 24789 opt_restart_t *or; 24790 int err; 24791 conn_t *connp; 24792 24793 ASSERT(CONN_Q(q)); 24794 connp = Q_TO_CONN(q); 24795 24796 ASSERT(first_mp->b_datap->db_type == M_CTL); 24797 or = (opt_restart_t *)first_mp->b_rptr; 24798 /* 24799 * We don't need to pass any credentials here since this is just 24800 * a restart. The credentials are passed in when svr4_optcom_req 24801 * is called the first time (from ip_wput_nondata). 24802 */ 24803 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 24804 err = svr4_optcom_req(q, first_mp, NULL, 24805 &ip_opt_obj); 24806 } else { 24807 ASSERT(or->or_type == T_OPTMGMT_REQ); 24808 err = tpi_optcom_req(q, first_mp, NULL, 24809 &ip_opt_obj); 24810 } 24811 if (err != EINPROGRESS) { 24812 /* operation is done */ 24813 CONN_OPER_PENDING_DONE(connp); 24814 } 24815 } 24816 24817 /* 24818 * ioctls that go through a down/up sequence may need to wait for the down 24819 * to complete. This involves waiting for the ire and ipif refcnts to go down 24820 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 24821 */ 24822 /* ARGSUSED */ 24823 void 24824 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24825 { 24826 struct iocblk *iocp; 24827 mblk_t *mp1; 24828 ipif_t *ipif; 24829 ip_ioctl_cmd_t *ipip; 24830 int err; 24831 sin_t *sin; 24832 struct lifreq *lifr; 24833 struct ifreq *ifr; 24834 24835 iocp = (struct iocblk *)mp->b_rptr; 24836 ASSERT(ipsq != NULL); 24837 /* Existence of mp1 verified in ip_wput_nondata */ 24838 mp1 = mp->b_cont->b_cont; 24839 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24840 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 24841 ill_t *ill; 24842 /* 24843 * Special case where ipsq_current_ipif may not be set. 24844 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 24845 * ill could also have become part of a ipmp group in the 24846 * process, we are here as were not able to complete the 24847 * operation in ipif_set_values because we could not become 24848 * exclusive on the new ipsq, In such a case ipsq_current_ipif 24849 * will not be set so we need to set it. 24850 */ 24851 ill = (ill_t *)q->q_ptr; 24852 ipsq->ipsq_current_ipif = ill->ill_ipif; 24853 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24854 } 24855 24856 ipif = ipsq->ipsq_current_ipif; 24857 ASSERT(ipif != NULL); 24858 if (ipip->ipi_cmd_type == IF_CMD) { 24859 /* This a old style SIOC[GS]IF* command */ 24860 ifr = (struct ifreq *)mp1->b_rptr; 24861 sin = (sin_t *)&ifr->ifr_addr; 24862 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24863 /* This a new style SIOC[GS]LIF* command */ 24864 lifr = (struct lifreq *)mp1->b_rptr; 24865 sin = (sin_t *)&lifr->lifr_addr; 24866 } else { 24867 sin = NULL; 24868 } 24869 24870 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24871 (void *)mp1->b_rptr); 24872 24873 /* SIOCLIFREMOVEIF could have removed the ipif */ 24874 ip_ioctl_finish(q, mp, err, 24875 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24876 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24877 } 24878 24879 /* 24880 * ioctl processing 24881 * 24882 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24883 * the ioctl command in the ioctl tables and determines the copyin data size 24884 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24885 * size. 24886 * 24887 * ioctl processing then continues when the M_IOCDATA makes its way down. 24888 * Now the ioctl is looked up again in the ioctl table, and its properties are 24889 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24890 * and the general ioctl processing function ip_process_ioctl is called. 24891 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24892 * so goes thru the serialization primitive ipsq_try_enter. Then the 24893 * appropriate function to handle the ioctl is called based on the entry in 24894 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24895 * which also refreleases the 'conn' that was refheld at the start of the 24896 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24897 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24898 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24899 * 24900 * Many exclusive ioctls go thru an internal down up sequence as part of 24901 * the operation. For example an attempt to change the IP address of an 24902 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24903 * does all the cleanup such as deleting all ires that use this address. 24904 * Then we need to wait till all references to the interface go away. 24905 */ 24906 void 24907 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24908 { 24909 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24910 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24911 cmd_info_t ci; 24912 int err; 24913 boolean_t entered_ipsq = B_FALSE; 24914 24915 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24916 24917 if (ipip == NULL) 24918 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24919 24920 /* 24921 * SIOCLIFADDIF needs to go thru a special path since the 24922 * ill may not exist yet. This happens in the case of lo0 24923 * which is created using this ioctl. 24924 */ 24925 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24926 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24927 ip_ioctl_finish(q, mp, err, 24928 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24929 NULL, NULL); 24930 return; 24931 } 24932 24933 ci.ci_ipif = NULL; 24934 switch (ipip->ipi_cmd_type) { 24935 case IF_CMD: 24936 case LIF_CMD: 24937 /* 24938 * ioctls that pass in a [l]ifreq appear here. 24939 * ip_extract_lifreq_cmn returns a refheld ipif in 24940 * ci.ci_ipif 24941 */ 24942 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24943 ipip->ipi_flags, &ci, ip_process_ioctl); 24944 if (err != 0) { 24945 ip_ioctl_finish(q, mp, err, 24946 ipip->ipi_flags & IPI_GET_CMD ? 24947 COPYOUT : NO_COPYOUT, NULL, NULL); 24948 return; 24949 } 24950 ASSERT(ci.ci_ipif != NULL); 24951 break; 24952 24953 case TUN_CMD: 24954 /* 24955 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24956 * a refheld ipif in ci.ci_ipif 24957 */ 24958 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24959 if (err != 0) { 24960 ip_ioctl_finish(q, mp, err, 24961 ipip->ipi_flags & IPI_GET_CMD ? 24962 COPYOUT : NO_COPYOUT, NULL, NULL); 24963 return; 24964 } 24965 ASSERT(ci.ci_ipif != NULL); 24966 break; 24967 24968 case MISC_CMD: 24969 /* 24970 * ioctls that neither pass in [l]ifreq or iftun_req come here 24971 * For eg. SIOCGLIFCONF will appear here. 24972 */ 24973 switch (ipip->ipi_cmd) { 24974 case IF_UNITSEL: 24975 /* ioctl comes down the ill */ 24976 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24977 ipif_refhold(ci.ci_ipif); 24978 break; 24979 case SIOCGMSFILTER: 24980 case SIOCSMSFILTER: 24981 case SIOCGIPMSFILTER: 24982 case SIOCSIPMSFILTER: 24983 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24984 ip_process_ioctl); 24985 if (err != 0) { 24986 ip_ioctl_finish(q, mp, err, 24987 ipip->ipi_flags & IPI_GET_CMD ? 24988 COPYOUT : NO_COPYOUT, NULL, NULL); 24989 return; 24990 } 24991 break; 24992 } 24993 err = 0; 24994 ci.ci_sin = NULL; 24995 ci.ci_sin6 = NULL; 24996 ci.ci_lifr = NULL; 24997 break; 24998 } 24999 25000 /* 25001 * If ipsq is non-null, we are already being called exclusively 25002 */ 25003 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25004 if (!(ipip->ipi_flags & IPI_WR)) { 25005 /* 25006 * A return value of EINPROGRESS means the ioctl is 25007 * either queued and waiting for some reason or has 25008 * already completed. 25009 */ 25010 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25011 ci.ci_lifr); 25012 if (ci.ci_ipif != NULL) 25013 ipif_refrele(ci.ci_ipif); 25014 ip_ioctl_finish(q, mp, err, 25015 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25016 NULL, NULL); 25017 return; 25018 } 25019 25020 ASSERT(ci.ci_ipif != NULL); 25021 25022 if (ipsq == NULL) { 25023 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25024 ip_process_ioctl, NEW_OP, B_TRUE); 25025 entered_ipsq = B_TRUE; 25026 } 25027 /* 25028 * Release the ipif so that ipif_down and friends that wait for 25029 * references to go away are not misled about the current ipif_refcnt 25030 * values. We are writer so we can access the ipif even after releasing 25031 * the ipif. 25032 */ 25033 ipif_refrele(ci.ci_ipif); 25034 if (ipsq == NULL) 25035 return; 25036 25037 mutex_enter(&ipsq->ipsq_lock); 25038 ASSERT(ipsq->ipsq_current_ipif == NULL); 25039 ipsq->ipsq_current_ipif = ci.ci_ipif; 25040 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25041 mutex_exit(&ipsq->ipsq_lock); 25042 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25043 /* 25044 * For most set ioctls that come here, this serves as a single point 25045 * where we set the IPIF_CHANGING flag. This ensures that there won't 25046 * be any new references to the ipif. This helps functions that go 25047 * through this path and end up trying to wait for the refcnts 25048 * associated with the ipif to go down to zero. Some exceptions are 25049 * Failover, Failback, and Groupname commands that operate on more than 25050 * just the ci.ci_ipif. These commands internally determine the 25051 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25052 * flags on that set. Another exception is the Removeif command that 25053 * sets the IPIF_CONDEMNED flag internally after identifying the right 25054 * ipif to operate on. 25055 */ 25056 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25057 ipip->ipi_cmd != SIOCLIFFAILOVER && 25058 ipip->ipi_cmd != SIOCLIFFAILBACK && 25059 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25060 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25061 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25062 25063 /* 25064 * A return value of EINPROGRESS means the ioctl is 25065 * either queued and waiting for some reason or has 25066 * already completed. 25067 */ 25068 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25069 ci.ci_lifr); 25070 25071 /* SIOCLIFREMOVEIF could have removed the ipif */ 25072 ip_ioctl_finish(q, mp, err, 25073 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25074 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25075 25076 if (entered_ipsq) 25077 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25078 } 25079 25080 /* 25081 * Complete the ioctl. Typically ioctls use the mi package and need to 25082 * do mi_copyout/mi_copy_done. 25083 */ 25084 void 25085 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25086 ipif_t *ipif, ipsq_t *ipsq) 25087 { 25088 conn_t *connp = NULL; 25089 25090 if (err == EINPROGRESS) 25091 return; 25092 25093 if (CONN_Q(q)) { 25094 connp = Q_TO_CONN(q); 25095 ASSERT(connp->conn_ref >= 2); 25096 } 25097 25098 switch (mode) { 25099 case COPYOUT: 25100 if (err == 0) 25101 mi_copyout(q, mp); 25102 else 25103 mi_copy_done(q, mp, err); 25104 break; 25105 25106 case NO_COPYOUT: 25107 mi_copy_done(q, mp, err); 25108 break; 25109 25110 default: 25111 /* An ioctl aborted through a conn close would take this path */ 25112 break; 25113 } 25114 25115 /* 25116 * The refhold placed at the start of the ioctl is released here. 25117 */ 25118 if (connp != NULL) 25119 CONN_OPER_PENDING_DONE(connp); 25120 25121 /* 25122 * If the ioctl were an exclusive ioctl it would have set 25123 * IPIF_CHANGING at the start of the ioctl which is undone here. 25124 */ 25125 if (ipif != NULL) { 25126 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25127 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25128 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25129 } 25130 25131 /* 25132 * Clear the current ipif in the ipsq at the completion of the ioctl. 25133 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25134 * entering the ipsq 25135 */ 25136 if (ipsq != NULL) { 25137 mutex_enter(&ipsq->ipsq_lock); 25138 ipsq->ipsq_current_ipif = NULL; 25139 mutex_exit(&ipsq->ipsq_lock); 25140 } 25141 } 25142 25143 /* 25144 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25145 */ 25146 /* ARGSUSED */ 25147 void 25148 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25149 { 25150 conn_t *connp = arg; 25151 tcp_t *tcp; 25152 25153 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25154 tcp = connp->conn_tcp; 25155 25156 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25157 freemsg(mp); 25158 else 25159 tcp_rput_other(tcp, mp); 25160 CONN_OPER_PENDING_DONE(connp); 25161 } 25162 25163 /* Called from ip_wput for all non data messages */ 25164 /* ARGSUSED */ 25165 void 25166 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25167 { 25168 mblk_t *mp1; 25169 ire_t *ire; 25170 ill_t *ill; 25171 struct iocblk *iocp; 25172 ip_ioctl_cmd_t *ipip; 25173 cred_t *cr; 25174 conn_t *connp = NULL; 25175 int cmd, err; 25176 25177 if (CONN_Q(q)) 25178 connp = Q_TO_CONN(q); 25179 25180 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25181 25182 /* Check if it is a queue to /dev/sctp. */ 25183 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25184 connp->conn_rq == NULL) { 25185 sctp_wput(q, mp); 25186 return; 25187 } 25188 25189 switch (DB_TYPE(mp)) { 25190 case M_IOCTL: 25191 /* 25192 * IOCTL processing begins in ip_sioctl_copyin_setup which 25193 * will arrange to copy in associated control structures. 25194 */ 25195 ip_sioctl_copyin_setup(q, mp); 25196 return; 25197 case M_IOCDATA: 25198 /* 25199 * Ensure that this is associated with one of our trans- 25200 * parent ioctls. If it's not ours, discard it if we're 25201 * running as a driver, or pass it on if we're a module. 25202 */ 25203 iocp = (struct iocblk *)mp->b_rptr; 25204 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25205 if (ipip == NULL) { 25206 if (q->q_next == NULL) { 25207 goto nak; 25208 } else { 25209 putnext(q, mp); 25210 } 25211 return; 25212 } else if ((q->q_next != NULL) && 25213 !(ipip->ipi_flags & IPI_MODOK)) { 25214 /* 25215 * the ioctl is one we recognise, but is not 25216 * consumed by IP as a module, pass M_IOCDATA 25217 * for processing downstream, but only for 25218 * common Streams ioctls. 25219 */ 25220 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25221 putnext(q, mp); 25222 return; 25223 } else { 25224 goto nak; 25225 } 25226 } 25227 25228 /* IOCTL continuation following copyin or copyout. */ 25229 if (mi_copy_state(q, mp, NULL) == -1) { 25230 /* 25231 * The copy operation failed. mi_copy_state already 25232 * cleaned up, so we're out of here. 25233 */ 25234 return; 25235 } 25236 /* 25237 * If we just completed a copy in, we become writer and 25238 * continue processing in ip_sioctl_copyin_done. If it 25239 * was a copy out, we call mi_copyout again. If there is 25240 * nothing more to copy out, it will complete the IOCTL. 25241 */ 25242 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25243 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25244 mi_copy_done(q, mp, EPROTO); 25245 return; 25246 } 25247 /* 25248 * Check for cases that need more copying. A return 25249 * value of 0 means a second copyin has been started, 25250 * so we return; a return value of 1 means no more 25251 * copying is needed, so we continue. 25252 */ 25253 cmd = iocp->ioc_cmd; 25254 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25255 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25256 MI_COPY_COUNT(mp) == 1) { 25257 if (ip_copyin_msfilter(q, mp) == 0) 25258 return; 25259 } 25260 /* 25261 * Refhold the conn, till the ioctl completes. This is 25262 * needed in case the ioctl ends up in the pending mp 25263 * list. Every mp in the ill_pending_mp list and 25264 * the ipsq_pending_mp must have a refhold on the conn 25265 * to resume processing. The refhold is released when 25266 * the ioctl completes. (normally or abnormally) 25267 * In all cases ip_ioctl_finish is called to finish 25268 * the ioctl. 25269 */ 25270 if (connp != NULL) { 25271 /* This is not a reentry */ 25272 ASSERT(ipsq == NULL); 25273 CONN_INC_REF(connp); 25274 } else { 25275 if (!(ipip->ipi_flags & IPI_MODOK)) { 25276 mi_copy_done(q, mp, EINVAL); 25277 return; 25278 } 25279 } 25280 25281 ip_process_ioctl(ipsq, q, mp, ipip); 25282 25283 } else { 25284 mi_copyout(q, mp); 25285 } 25286 return; 25287 nak: 25288 iocp->ioc_error = EINVAL; 25289 mp->b_datap->db_type = M_IOCNAK; 25290 iocp->ioc_count = 0; 25291 qreply(q, mp); 25292 return; 25293 25294 case M_IOCNAK: 25295 /* 25296 * The only way we could get here is if a resolver didn't like 25297 * an IOCTL we sent it. This shouldn't happen. 25298 */ 25299 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25300 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25301 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25302 freemsg(mp); 25303 return; 25304 case M_IOCACK: 25305 /* Finish socket ioctls passed through to ARP. */ 25306 ip_sioctl_iocack(q, mp); 25307 return; 25308 case M_FLUSH: 25309 if (*mp->b_rptr & FLUSHW) 25310 flushq(q, FLUSHALL); 25311 if (q->q_next) { 25312 /* 25313 * M_FLUSH is sent up to IP by some drivers during 25314 * unbind. ip_rput has already replied to it. We are 25315 * here for the M_FLUSH that we originated in IP 25316 * before sending the unbind request to the driver. 25317 * Just free it as we don't queue packets in IP 25318 * on the write side of the device instance. 25319 */ 25320 freemsg(mp); 25321 return; 25322 } 25323 if (*mp->b_rptr & FLUSHR) { 25324 *mp->b_rptr &= ~FLUSHW; 25325 qreply(q, mp); 25326 return; 25327 } 25328 freemsg(mp); 25329 return; 25330 case IRE_DB_REQ_TYPE: 25331 /* An Upper Level Protocol wants a copy of an IRE. */ 25332 ip_ire_req(q, mp); 25333 return; 25334 case M_CTL: 25335 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 25336 break; 25337 25338 if (connp != NULL && *(uint32_t *)mp->b_rptr == 25339 IP_ULP_OUT_LABELED) { 25340 out_labeled_t *olp; 25341 25342 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 25343 break; 25344 olp = (out_labeled_t *)mp->b_rptr; 25345 connp->conn_ulp_labeled = olp->out_qnext == q; 25346 freemsg(mp); 25347 return; 25348 } 25349 25350 /* M_CTL messages are used by ARP to tell us things. */ 25351 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 25352 break; 25353 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 25354 case AR_ENTRY_SQUERY: 25355 ip_wput_ctl(q, mp); 25356 return; 25357 case AR_CLIENT_NOTIFY: 25358 ip_arp_news(q, mp); 25359 return; 25360 case AR_DLPIOP_DONE: 25361 ASSERT(q->q_next != NULL); 25362 ill = (ill_t *)q->q_ptr; 25363 /* qwriter_ip releases the refhold */ 25364 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 25365 ill_refhold(ill); 25366 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 25367 CUR_OP, B_FALSE); 25368 return; 25369 case AR_ARP_CLOSING: 25370 /* 25371 * ARP (above us) is closing. If no ARP bringup is 25372 * currently pending, ack the message so that ARP 25373 * can complete its close. Also mark ill_arp_closing 25374 * so that new ARP bringups will fail. If any 25375 * ARP bringup is currently in progress, we will 25376 * ack this when the current ARP bringup completes. 25377 */ 25378 ASSERT(q->q_next != NULL); 25379 ill = (ill_t *)q->q_ptr; 25380 mutex_enter(&ill->ill_lock); 25381 ill->ill_arp_closing = 1; 25382 if (!ill->ill_arp_bringup_pending) { 25383 mutex_exit(&ill->ill_lock); 25384 qreply(q, mp); 25385 } else { 25386 mutex_exit(&ill->ill_lock); 25387 freemsg(mp); 25388 } 25389 return; 25390 default: 25391 break; 25392 } 25393 break; 25394 case M_PROTO: 25395 case M_PCPROTO: 25396 /* 25397 * The only PROTO messages we expect are ULP binds and 25398 * copies of option negotiation acknowledgements. 25399 */ 25400 switch (((union T_primitives *)mp->b_rptr)->type) { 25401 case O_T_BIND_REQ: 25402 case T_BIND_REQ: { 25403 /* Request can get queued in bind */ 25404 ASSERT(connp != NULL); 25405 /* 25406 * Both TCP and UDP call ip_bind_{v4,v6}() directly 25407 * instead of going through this path. We only get 25408 * here in the following cases: 25409 * 25410 * a. Bind retries, where ipsq is non-NULL. 25411 * b. T_BIND_REQ is issued from non TCP/UDP 25412 * transport, e.g. icmp for raw socket, 25413 * in which case ipsq will be NULL. 25414 */ 25415 ASSERT(ipsq != NULL || 25416 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 25417 25418 /* Don't increment refcnt if this is a re-entry */ 25419 if (ipsq == NULL) 25420 CONN_INC_REF(connp); 25421 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 25422 connp, NULL) : ip_bind_v4(q, mp, connp); 25423 if (mp == NULL) 25424 return; 25425 if (IPCL_IS_TCP(connp)) { 25426 /* 25427 * In the case of TCP endpoint we 25428 * come here only for bind retries 25429 */ 25430 ASSERT(ipsq != NULL); 25431 CONN_INC_REF(connp); 25432 squeue_fill(connp->conn_sqp, mp, 25433 ip_resume_tcp_bind, connp, 25434 SQTAG_BIND_RETRY); 25435 return; 25436 } else if (IPCL_IS_UDP(connp)) { 25437 /* 25438 * In the case of UDP endpoint we 25439 * come here only for bind retries 25440 */ 25441 ASSERT(ipsq != NULL); 25442 udp_resume_bind(connp, mp); 25443 return; 25444 } 25445 qreply(q, mp); 25446 CONN_OPER_PENDING_DONE(connp); 25447 return; 25448 } 25449 case T_SVR4_OPTMGMT_REQ: 25450 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 25451 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 25452 25453 ASSERT(connp != NULL); 25454 if (!snmpcom_req(q, mp, ip_snmp_set, 25455 ip_snmp_get, cr)) { 25456 /* 25457 * Call svr4_optcom_req so that it can 25458 * generate the ack. We don't come here 25459 * if this operation is being restarted. 25460 * ip_restart_optmgmt will drop the conn ref. 25461 * In the case of ipsec option after the ipsec 25462 * load is complete conn_restart_ipsec_waiter 25463 * drops the conn ref. 25464 */ 25465 ASSERT(ipsq == NULL); 25466 CONN_INC_REF(connp); 25467 if (ip_check_for_ipsec_opt(q, mp)) 25468 return; 25469 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 25470 if (err != EINPROGRESS) { 25471 /* Operation is done */ 25472 CONN_OPER_PENDING_DONE(connp); 25473 } 25474 } 25475 return; 25476 case T_OPTMGMT_REQ: 25477 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 25478 /* 25479 * Note: No snmpcom_req support through new 25480 * T_OPTMGMT_REQ. 25481 * Call tpi_optcom_req so that it can 25482 * generate the ack. 25483 */ 25484 ASSERT(connp != NULL); 25485 ASSERT(ipsq == NULL); 25486 /* 25487 * We don't come here for restart. ip_restart_optmgmt 25488 * will drop the conn ref. In the case of ipsec option 25489 * after the ipsec load is complete 25490 * conn_restart_ipsec_waiter drops the conn ref. 25491 */ 25492 CONN_INC_REF(connp); 25493 if (ip_check_for_ipsec_opt(q, mp)) 25494 return; 25495 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 25496 if (err != EINPROGRESS) { 25497 /* Operation is done */ 25498 CONN_OPER_PENDING_DONE(connp); 25499 } 25500 return; 25501 case T_UNBIND_REQ: 25502 mp = ip_unbind(q, mp); 25503 qreply(q, mp); 25504 return; 25505 default: 25506 /* 25507 * Have to drop any DLPI messages coming down from 25508 * arp (such as an info_req which would cause ip 25509 * to receive an extra info_ack if it was passed 25510 * through. 25511 */ 25512 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 25513 (int)*(uint_t *)mp->b_rptr)); 25514 freemsg(mp); 25515 return; 25516 } 25517 /* NOTREACHED */ 25518 case IRE_DB_TYPE: { 25519 nce_t *nce; 25520 ill_t *ill; 25521 in6_addr_t gw_addr_v6; 25522 25523 25524 /* 25525 * This is a response back from a resolver. It 25526 * consists of a message chain containing: 25527 * IRE_MBLK-->LL_HDR_MBLK->pkt 25528 * The IRE_MBLK is the one we allocated in ip_newroute. 25529 * The LL_HDR_MBLK is the DLPI header to use to get 25530 * the attached packet, and subsequent ones for the 25531 * same destination, transmitted. 25532 */ 25533 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 25534 break; 25535 /* 25536 * First, check to make sure the resolution succeeded. 25537 * If it failed, the second mblk will be empty. 25538 * If it is, free the chain, dropping the packet. 25539 * (We must ire_delete the ire; that frees the ire mblk) 25540 * We're doing this now to support PVCs for ATM; it's 25541 * a partial xresolv implementation. When we fully implement 25542 * xresolv interfaces, instead of freeing everything here 25543 * we'll initiate neighbor discovery. 25544 * 25545 * For v4 (ARP and other external resolvers) the resolver 25546 * frees the message, so no check is needed. This check 25547 * is required, though, for a full xresolve implementation. 25548 * Including this code here now both shows how external 25549 * resolvers can NACK a resolution request using an 25550 * existing design that has no specific provisions for NACKs, 25551 * and also takes into account that the current non-ARP 25552 * external resolver has been coded to use this method of 25553 * NACKing for all IPv6 (xresolv) cases, 25554 * whether our xresolv implementation is complete or not. 25555 * 25556 */ 25557 ire = (ire_t *)mp->b_rptr; 25558 ill = ire_to_ill(ire); 25559 mp1 = mp->b_cont; /* dl_unitdata_req */ 25560 if (mp1->b_rptr == mp1->b_wptr) { 25561 if (ire->ire_ipversion == IPV6_VERSION) { 25562 /* 25563 * XRESOLV interface. 25564 */ 25565 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25566 mutex_enter(&ire->ire_lock); 25567 gw_addr_v6 = ire->ire_gateway_addr_v6; 25568 mutex_exit(&ire->ire_lock); 25569 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25570 nce = ndp_lookup(ill, 25571 &ire->ire_addr_v6, B_FALSE); 25572 } else { 25573 nce = ndp_lookup(ill, &gw_addr_v6, 25574 B_FALSE); 25575 } 25576 if (nce != NULL) { 25577 nce_resolv_failed(nce); 25578 ndp_delete(nce); 25579 NCE_REFRELE(nce); 25580 } 25581 } 25582 mp->b_cont = NULL; 25583 freemsg(mp1); /* frees the pkt as well */ 25584 ire_delete((ire_t *)mp->b_rptr); 25585 return; 25586 } 25587 /* 25588 * Split them into IRE_MBLK and pkt and feed it into 25589 * ire_add_then_send. Then in ire_add_then_send 25590 * the IRE will be added, and then the packet will be 25591 * run back through ip_wput. This time it will make 25592 * it to the wire. 25593 */ 25594 mp->b_cont = NULL; 25595 mp = mp1->b_cont; /* now, mp points to pkt */ 25596 mp1->b_cont = NULL; 25597 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 25598 if (ire->ire_ipversion == IPV6_VERSION) { 25599 /* 25600 * XRESOLV interface. Find the nce and put a copy 25601 * of the dl_unitdata_req in nce_res_mp 25602 */ 25603 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25604 mutex_enter(&ire->ire_lock); 25605 gw_addr_v6 = ire->ire_gateway_addr_v6; 25606 mutex_exit(&ire->ire_lock); 25607 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25608 nce = ndp_lookup(ill, &ire->ire_addr_v6, 25609 B_FALSE); 25610 } else { 25611 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 25612 } 25613 if (nce != NULL) { 25614 /* 25615 * We have to protect nce_res_mp here 25616 * from being accessed by other threads 25617 * while we change the mblk pointer. 25618 * Other functions will also lock the nce when 25619 * accessing nce_res_mp. 25620 * 25621 * The reason we change the mblk pointer 25622 * here rather than copying the resolved address 25623 * into the template is that, unlike with 25624 * ethernet, we have no guarantee that the 25625 * resolved address length will be 25626 * smaller than or equal to the lla length 25627 * with which the template was allocated, 25628 * (for ethernet, they're equal) 25629 * so we have to use the actual resolved 25630 * address mblk - which holds the real 25631 * dl_unitdata_req with the resolved address. 25632 * 25633 * Doing this is the same behavior as was 25634 * previously used in the v4 ARP case. 25635 */ 25636 mutex_enter(&nce->nce_lock); 25637 if (nce->nce_res_mp != NULL) 25638 freemsg(nce->nce_res_mp); 25639 nce->nce_res_mp = mp1; 25640 mutex_exit(&nce->nce_lock); 25641 /* 25642 * We do a fastpath probe here because 25643 * we have resolved the address without 25644 * using Neighbor Discovery. 25645 * In the non-XRESOLV v6 case, the fastpath 25646 * probe is done right after neighbor 25647 * discovery completes. 25648 */ 25649 if (nce->nce_res_mp != NULL) { 25650 int res; 25651 nce_fastpath_list_add(nce); 25652 res = ill_fastpath_probe(ill, 25653 nce->nce_res_mp); 25654 if (res != 0 && res != EAGAIN) 25655 nce_fastpath_list_delete(nce); 25656 } 25657 25658 ire_add_then_send(q, ire, mp); 25659 /* 25660 * Now we have to clean out any packets 25661 * that may have been queued on the nce 25662 * while it was waiting for address resolution 25663 * to complete. 25664 */ 25665 mutex_enter(&nce->nce_lock); 25666 mp1 = nce->nce_qd_mp; 25667 nce->nce_qd_mp = NULL; 25668 mutex_exit(&nce->nce_lock); 25669 while (mp1 != NULL) { 25670 mblk_t *nxt_mp; 25671 queue_t *fwdq = NULL; 25672 ill_t *inbound_ill; 25673 uint_t ifindex; 25674 25675 nxt_mp = mp1->b_next; 25676 mp1->b_next = NULL; 25677 /* 25678 * Retrieve ifindex stored in 25679 * ip_rput_data_v6() 25680 */ 25681 ifindex = 25682 (uint_t)(uintptr_t)mp1->b_prev; 25683 inbound_ill = 25684 ill_lookup_on_ifindex(ifindex, 25685 B_TRUE, NULL, NULL, NULL, 25686 NULL); 25687 mp1->b_prev = NULL; 25688 if (inbound_ill != NULL) 25689 fwdq = inbound_ill->ill_rq; 25690 25691 if (fwdq != NULL) { 25692 put(fwdq, mp1); 25693 ill_refrele(inbound_ill); 25694 } else 25695 put(WR(ill->ill_rq), mp1); 25696 mp1 = nxt_mp; 25697 } 25698 NCE_REFRELE(nce); 25699 } else { /* nce is NULL; clean up */ 25700 ire_delete(ire); 25701 freemsg(mp); 25702 freemsg(mp1); 25703 return; 25704 } 25705 } else { 25706 ire->ire_dlureq_mp = mp1; 25707 ire_add_then_send(q, ire, mp); 25708 } 25709 return; /* All is well, the packet has been sent. */ 25710 } 25711 default: 25712 break; 25713 } 25714 if (q->q_next) { 25715 putnext(q, mp); 25716 } else 25717 freemsg(mp); 25718 } 25719 25720 /* 25721 * Process IP options in an outbound packet. Modify the destination if there 25722 * is a source route option. 25723 * Returns non-zero if something fails in which case an ICMP error has been 25724 * sent and mp freed. 25725 */ 25726 static int 25727 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 25728 boolean_t mctl_present, zoneid_t zoneid) 25729 { 25730 ipoptp_t opts; 25731 uchar_t *opt; 25732 uint8_t optval; 25733 uint8_t optlen; 25734 ipaddr_t dst; 25735 intptr_t code = 0; 25736 mblk_t *mp; 25737 ire_t *ire = NULL; 25738 25739 ip2dbg(("ip_wput_options\n")); 25740 mp = ipsec_mp; 25741 if (mctl_present) { 25742 mp = ipsec_mp->b_cont; 25743 } 25744 25745 dst = ipha->ipha_dst; 25746 for (optval = ipoptp_first(&opts, ipha); 25747 optval != IPOPT_EOL; 25748 optval = ipoptp_next(&opts)) { 25749 opt = opts.ipoptp_cur; 25750 optlen = opts.ipoptp_len; 25751 ip2dbg(("ip_wput_options: opt %d, len %d\n", 25752 optval, optlen)); 25753 switch (optval) { 25754 uint32_t off; 25755 case IPOPT_SSRR: 25756 case IPOPT_LSRR: 25757 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25758 ip1dbg(( 25759 "ip_wput_options: bad option offset\n")); 25760 code = (char *)&opt[IPOPT_OLEN] - 25761 (char *)ipha; 25762 goto param_prob; 25763 } 25764 off = opt[IPOPT_OFFSET]; 25765 ip1dbg(("ip_wput_options: next hop 0x%x\n", 25766 ntohl(dst))); 25767 /* 25768 * For strict: verify that dst is directly 25769 * reachable. 25770 */ 25771 if (optval == IPOPT_SSRR) { 25772 ire = ire_ftable_lookup(dst, 0, 0, 25773 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25774 MBLK_GETLABEL(mp), 25775 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 25776 if (ire == NULL) { 25777 ip1dbg(("ip_wput_options: SSRR not" 25778 " directly reachable: 0x%x\n", 25779 ntohl(dst))); 25780 goto bad_src_route; 25781 } 25782 ire_refrele(ire); 25783 } 25784 break; 25785 case IPOPT_RR: 25786 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25787 ip1dbg(( 25788 "ip_wput_options: bad option offset\n")); 25789 code = (char *)&opt[IPOPT_OLEN] - 25790 (char *)ipha; 25791 goto param_prob; 25792 } 25793 break; 25794 case IPOPT_TS: 25795 /* 25796 * Verify that length >=5 and that there is either 25797 * room for another timestamp or that the overflow 25798 * counter is not maxed out. 25799 */ 25800 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 25801 if (optlen < IPOPT_MINLEN_IT) { 25802 goto param_prob; 25803 } 25804 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25805 ip1dbg(( 25806 "ip_wput_options: bad option offset\n")); 25807 code = (char *)&opt[IPOPT_OFFSET] - 25808 (char *)ipha; 25809 goto param_prob; 25810 } 25811 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25812 case IPOPT_TS_TSONLY: 25813 off = IPOPT_TS_TIMELEN; 25814 break; 25815 case IPOPT_TS_TSANDADDR: 25816 case IPOPT_TS_PRESPEC: 25817 case IPOPT_TS_PRESPEC_RFC791: 25818 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25819 break; 25820 default: 25821 code = (char *)&opt[IPOPT_POS_OV_FLG] - 25822 (char *)ipha; 25823 goto param_prob; 25824 } 25825 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 25826 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 25827 /* 25828 * No room and the overflow counter is 15 25829 * already. 25830 */ 25831 goto param_prob; 25832 } 25833 break; 25834 } 25835 } 25836 25837 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 25838 return (0); 25839 25840 ip1dbg(("ip_wput_options: error processing IP options.")); 25841 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 25842 25843 param_prob: 25844 /* 25845 * Since ip_wput() isn't close to finished, we fill 25846 * in enough of the header for credible error reporting. 25847 */ 25848 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25849 /* Failed */ 25850 freemsg(ipsec_mp); 25851 return (-1); 25852 } 25853 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 25854 return (-1); 25855 25856 bad_src_route: 25857 /* 25858 * Since ip_wput() isn't close to finished, we fill 25859 * in enough of the header for credible error reporting. 25860 */ 25861 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25862 /* Failed */ 25863 freemsg(ipsec_mp); 25864 return (-1); 25865 } 25866 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 25867 return (-1); 25868 } 25869 25870 /* 25871 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25872 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25873 * thru /etc/system. 25874 */ 25875 #define CONN_MAXDRAINCNT 64 25876 25877 static void 25878 conn_drain_init(void) 25879 { 25880 int i; 25881 25882 conn_drain_list_cnt = conn_drain_nthreads; 25883 25884 if ((conn_drain_list_cnt == 0) || 25885 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25886 /* 25887 * Default value of the number of drainers is the 25888 * number of cpus, subject to maximum of 8 drainers. 25889 */ 25890 if (boot_max_ncpus != -1) 25891 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25892 else 25893 conn_drain_list_cnt = MIN(max_ncpus, 8); 25894 } 25895 25896 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25897 KM_SLEEP); 25898 25899 for (i = 0; i < conn_drain_list_cnt; i++) { 25900 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25901 MUTEX_DEFAULT, NULL); 25902 } 25903 } 25904 25905 static void 25906 conn_drain_fini(void) 25907 { 25908 int i; 25909 25910 for (i = 0; i < conn_drain_list_cnt; i++) 25911 mutex_destroy(&conn_drain_list[i].idl_lock); 25912 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25913 conn_drain_list = NULL; 25914 } 25915 25916 /* 25917 * Note: For an overview of how flowcontrol is handled in IP please see the 25918 * IP Flowcontrol notes at the top of this file. 25919 * 25920 * Flow control has blocked us from proceeding. Insert the given conn in one 25921 * of the conn drain lists. These conn wq's will be qenabled later on when 25922 * STREAMS flow control does a backenable. conn_walk_drain will enable 25923 * the first conn in each of these drain lists. Each of these qenabled conns 25924 * in turn enables the next in the list, after it runs, or when it closes, 25925 * thus sustaining the drain process. 25926 * 25927 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25928 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25929 * running at any time, on a given conn, since there can be only 1 service proc 25930 * running on a queue at any time. 25931 */ 25932 void 25933 conn_drain_insert(conn_t *connp) 25934 { 25935 idl_t *idl; 25936 uint_t index; 25937 25938 mutex_enter(&connp->conn_lock); 25939 if (connp->conn_state_flags & CONN_CLOSING) { 25940 /* 25941 * The conn is closing as a result of which CONN_CLOSING 25942 * is set. Return. 25943 */ 25944 mutex_exit(&connp->conn_lock); 25945 return; 25946 } else if (connp->conn_idl == NULL) { 25947 /* 25948 * Assign the next drain list round robin. We dont' use 25949 * a lock, and thus it may not be strictly round robin. 25950 * Atomicity of load/stores is enough to make sure that 25951 * conn_drain_list_index is always within bounds. 25952 */ 25953 index = conn_drain_list_index; 25954 ASSERT(index < conn_drain_list_cnt); 25955 connp->conn_idl = &conn_drain_list[index]; 25956 index++; 25957 if (index == conn_drain_list_cnt) 25958 index = 0; 25959 conn_drain_list_index = index; 25960 } 25961 mutex_exit(&connp->conn_lock); 25962 25963 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25964 if ((connp->conn_drain_prev != NULL) || 25965 (connp->conn_state_flags & CONN_CLOSING)) { 25966 /* 25967 * The conn is already in the drain list, OR 25968 * the conn is closing. We need to check again for 25969 * the closing case again since close can happen 25970 * after we drop the conn_lock, and before we 25971 * acquire the CONN_DRAIN_LIST_LOCK. 25972 */ 25973 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25974 return; 25975 } else { 25976 idl = connp->conn_idl; 25977 } 25978 25979 /* 25980 * The conn is not in the drain list. Insert it at the 25981 * tail of the drain list. The drain list is circular 25982 * and doubly linked. idl_conn points to the 1st element 25983 * in the list. 25984 */ 25985 if (idl->idl_conn == NULL) { 25986 idl->idl_conn = connp; 25987 connp->conn_drain_next = connp; 25988 connp->conn_drain_prev = connp; 25989 } else { 25990 conn_t *head = idl->idl_conn; 25991 25992 connp->conn_drain_next = head; 25993 connp->conn_drain_prev = head->conn_drain_prev; 25994 head->conn_drain_prev->conn_drain_next = connp; 25995 head->conn_drain_prev = connp; 25996 } 25997 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25998 } 25999 26000 /* 26001 * This conn is closing, and we are called from ip_close. OR 26002 * This conn has been serviced by ip_wsrv, and we need to do the tail 26003 * processing. 26004 * If this conn is part of the drain list, we may need to sustain the drain 26005 * process by qenabling the next conn in the drain list. We may also need to 26006 * remove this conn from the list, if it is done. 26007 */ 26008 static void 26009 conn_drain_tail(conn_t *connp, boolean_t closing) 26010 { 26011 idl_t *idl; 26012 26013 /* 26014 * connp->conn_idl is stable at this point, and no lock is needed 26015 * to check it. If we are called from ip_close, close has already 26016 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26017 * called us only because conn_idl is non-null. If we are called thru 26018 * service, conn_idl could be null, but it cannot change because 26019 * service is single-threaded per queue, and there cannot be another 26020 * instance of service trying to call conn_drain_insert on this conn 26021 * now. 26022 */ 26023 ASSERT(!closing || (connp->conn_idl != NULL)); 26024 26025 /* 26026 * If connp->conn_idl is null, the conn has not been inserted into any 26027 * drain list even once since creation of the conn. Just return. 26028 */ 26029 if (connp->conn_idl == NULL) 26030 return; 26031 26032 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26033 26034 if (connp->conn_drain_prev == NULL) { 26035 /* This conn is currently not in the drain list. */ 26036 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26037 return; 26038 } 26039 idl = connp->conn_idl; 26040 if (idl->idl_conn_draining == connp) { 26041 /* 26042 * This conn is the current drainer. If this is the last conn 26043 * in the drain list, we need to do more checks, in the 'if' 26044 * below. Otherwwise we need to just qenable the next conn, 26045 * to sustain the draining, and is handled in the 'else' 26046 * below. 26047 */ 26048 if (connp->conn_drain_next == idl->idl_conn) { 26049 /* 26050 * This conn is the last in this list. This round 26051 * of draining is complete. If idl_repeat is set, 26052 * it means another flow enabling has happened from 26053 * the driver/streams and we need to another round 26054 * of draining. 26055 * If there are more than 2 conns in the drain list, 26056 * do a left rotate by 1, so that all conns except the 26057 * conn at the head move towards the head by 1, and the 26058 * the conn at the head goes to the tail. This attempts 26059 * a more even share for all queues that are being 26060 * drained. 26061 */ 26062 if ((connp->conn_drain_next != connp) && 26063 (idl->idl_conn->conn_drain_next != connp)) { 26064 idl->idl_conn = idl->idl_conn->conn_drain_next; 26065 } 26066 if (idl->idl_repeat) { 26067 qenable(idl->idl_conn->conn_wq); 26068 idl->idl_conn_draining = idl->idl_conn; 26069 idl->idl_repeat = 0; 26070 } else { 26071 idl->idl_conn_draining = NULL; 26072 } 26073 } else { 26074 /* 26075 * If the next queue that we are now qenable'ing, 26076 * is closing, it will remove itself from this list 26077 * and qenable the subsequent queue in ip_close(). 26078 * Serialization is acheived thru idl_lock. 26079 */ 26080 qenable(connp->conn_drain_next->conn_wq); 26081 idl->idl_conn_draining = connp->conn_drain_next; 26082 } 26083 } 26084 if (!connp->conn_did_putbq || closing) { 26085 /* 26086 * Remove ourself from the drain list, if we did not do 26087 * a putbq, or if the conn is closing. 26088 * Note: It is possible that q->q_first is non-null. It means 26089 * that these messages landed after we did a enableok() in 26090 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26091 * service them. 26092 */ 26093 if (connp->conn_drain_next == connp) { 26094 /* Singleton in the list */ 26095 ASSERT(connp->conn_drain_prev == connp); 26096 idl->idl_conn = NULL; 26097 idl->idl_conn_draining = NULL; 26098 } else { 26099 connp->conn_drain_prev->conn_drain_next = 26100 connp->conn_drain_next; 26101 connp->conn_drain_next->conn_drain_prev = 26102 connp->conn_drain_prev; 26103 if (idl->idl_conn == connp) 26104 idl->idl_conn = connp->conn_drain_next; 26105 ASSERT(idl->idl_conn_draining != connp); 26106 26107 } 26108 connp->conn_drain_next = NULL; 26109 connp->conn_drain_prev = NULL; 26110 } 26111 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26112 } 26113 26114 /* 26115 * Write service routine. Shared perimeter entry point. 26116 * ip_wsrv can be called in any of the following ways. 26117 * 1. The device queue's messages has fallen below the low water mark 26118 * and STREAMS has backenabled the ill_wq. We walk thru all the 26119 * the drain lists and backenable the first conn in each list. 26120 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 26121 * qenabled non-tcp upper layers. We start dequeing messages and call 26122 * ip_wput for each message. 26123 */ 26124 26125 void 26126 ip_wsrv(queue_t *q) 26127 { 26128 conn_t *connp; 26129 ill_t *ill; 26130 mblk_t *mp; 26131 26132 if (q->q_next) { 26133 ill = (ill_t *)q->q_ptr; 26134 if (ill->ill_state_flags == 0) { 26135 /* 26136 * The device flow control has opened up. 26137 * Walk through conn drain lists and qenable the 26138 * first conn in each list. This makes sense only 26139 * if the stream is fully plumbed and setup. 26140 * Hence the if check above. 26141 */ 26142 ip1dbg(("ip_wsrv: walking\n")); 26143 conn_walk_drain(); 26144 } 26145 return; 26146 } 26147 26148 connp = Q_TO_CONN(q); 26149 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 26150 26151 /* 26152 * 1. Set conn_draining flag to signal that service is active. 26153 * 26154 * 2. ip_output determines whether it has been called from service, 26155 * based on the last parameter. If it is IP_WSRV it concludes it 26156 * has been called from service. 26157 * 26158 * 3. Message ordering is preserved by the following logic. 26159 * i. A directly called ip_output (i.e. not thru service) will queue 26160 * the message at the tail, if conn_draining is set (i.e. service 26161 * is running) or if q->q_first is non-null. 26162 * 26163 * ii. If ip_output is called from service, and if ip_output cannot 26164 * putnext due to flow control, it does a putbq. 26165 * 26166 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 26167 * (causing an infinite loop). 26168 */ 26169 ASSERT(!connp->conn_did_putbq); 26170 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 26171 connp->conn_draining = 1; 26172 noenable(q); 26173 while ((mp = getq(q)) != NULL) { 26174 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 26175 if (connp->conn_did_putbq) { 26176 /* ip_wput did a putbq */ 26177 break; 26178 } 26179 } 26180 /* 26181 * At this point, a thread coming down from top, calling 26182 * ip_wput, may end up queueing the message. We have not yet 26183 * enabled the queue, so ip_wsrv won't be called again. 26184 * To avoid this race, check q->q_first again (in the loop) 26185 * If the other thread queued the message before we call 26186 * enableok(), we will catch it in the q->q_first check. 26187 * If the other thread queues the message after we call 26188 * enableok(), ip_wsrv will be called again by STREAMS. 26189 */ 26190 connp->conn_draining = 0; 26191 enableok(q); 26192 } 26193 26194 /* Enable the next conn for draining */ 26195 conn_drain_tail(connp, B_FALSE); 26196 26197 connp->conn_did_putbq = 0; 26198 } 26199 26200 /* 26201 * Walk the list of all conn's calling the function provided with the 26202 * specified argument for each. Note that this only walks conn's that 26203 * have been bound. 26204 * Applies to both IPv4 and IPv6. 26205 */ 26206 static void 26207 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 26208 { 26209 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 26210 func, arg, zoneid); 26211 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 26212 func, arg, zoneid); 26213 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 26214 func, arg, zoneid); 26215 conn_walk_fanout_table(ipcl_proto_fanout, 26216 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 26217 conn_walk_fanout_table(ipcl_proto_fanout_v6, 26218 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 26219 } 26220 26221 /* 26222 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 26223 * of conns that need to be drained, check if drain is already in progress. 26224 * If so set the idl_repeat bit, indicating that the last conn in the list 26225 * needs to reinitiate the drain once again, for the list. If drain is not 26226 * in progress for the list, initiate the draining, by qenabling the 1st 26227 * conn in the list. The drain is self-sustaining, each qenabled conn will 26228 * in turn qenable the next conn, when it is done/blocked/closing. 26229 */ 26230 static void 26231 conn_walk_drain(void) 26232 { 26233 int i; 26234 idl_t *idl; 26235 26236 IP_STAT(ip_conn_walk_drain); 26237 26238 for (i = 0; i < conn_drain_list_cnt; i++) { 26239 idl = &conn_drain_list[i]; 26240 mutex_enter(&idl->idl_lock); 26241 if (idl->idl_conn == NULL) { 26242 mutex_exit(&idl->idl_lock); 26243 continue; 26244 } 26245 /* 26246 * If this list is not being drained currently by 26247 * an ip_wsrv thread, start the process. 26248 */ 26249 if (idl->idl_conn_draining == NULL) { 26250 ASSERT(idl->idl_repeat == 0); 26251 qenable(idl->idl_conn->conn_wq); 26252 idl->idl_conn_draining = idl->idl_conn; 26253 } else { 26254 idl->idl_repeat = 1; 26255 } 26256 mutex_exit(&idl->idl_lock); 26257 } 26258 } 26259 26260 /* 26261 * Walk an conn hash table of `count' buckets, calling func for each entry. 26262 */ 26263 static void 26264 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 26265 zoneid_t zoneid) 26266 { 26267 conn_t *connp; 26268 26269 while (count-- > 0) { 26270 mutex_enter(&connfp->connf_lock); 26271 for (connp = connfp->connf_head; connp != NULL; 26272 connp = connp->conn_next) { 26273 if (zoneid == GLOBAL_ZONEID || 26274 zoneid == connp->conn_zoneid) { 26275 CONN_INC_REF(connp); 26276 mutex_exit(&connfp->connf_lock); 26277 (*func)(connp, arg); 26278 mutex_enter(&connfp->connf_lock); 26279 CONN_DEC_REF(connp); 26280 } 26281 } 26282 mutex_exit(&connfp->connf_lock); 26283 connfp++; 26284 } 26285 } 26286 26287 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 26288 static void 26289 conn_report1(conn_t *connp, void *mp) 26290 { 26291 char buf1[INET6_ADDRSTRLEN]; 26292 char buf2[INET6_ADDRSTRLEN]; 26293 uint_t print_len, buf_len; 26294 26295 ASSERT(connp != NULL); 26296 26297 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 26298 if (buf_len <= 0) 26299 return; 26300 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 26301 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 26302 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 26303 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 26304 "%5d %s/%05d %s/%05d\n", 26305 (void *)connp, (void *)CONNP_TO_RQ(connp), 26306 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 26307 buf1, connp->conn_lport, 26308 buf2, connp->conn_fport); 26309 if (print_len < buf_len) { 26310 ((mblk_t *)mp)->b_wptr += print_len; 26311 } else { 26312 ((mblk_t *)mp)->b_wptr += buf_len; 26313 } 26314 } 26315 26316 /* 26317 * Named Dispatch routine to produce a formatted report on all conns 26318 * that are listed in one of the fanout tables. 26319 * This report is accessed by using the ndd utility to "get" ND variable 26320 * "ip_conn_status". 26321 */ 26322 /* ARGSUSED */ 26323 static int 26324 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 26325 { 26326 (void) mi_mpprintf(mp, 26327 "CONN " MI_COL_HDRPAD_STR 26328 "rfq " MI_COL_HDRPAD_STR 26329 "stq " MI_COL_HDRPAD_STR 26330 " zone local remote"); 26331 26332 /* 26333 * Because of the ndd constraint, at most we can have 64K buffer 26334 * to put in all conn info. So to be more efficient, just 26335 * allocate a 64K buffer here, assuming we need that large buffer. 26336 * This should be OK as only privileged processes can do ndd /dev/ip. 26337 */ 26338 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 26339 /* The following may work even if we cannot get a large buf. */ 26340 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 26341 return (0); 26342 } 26343 26344 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 26345 return (0); 26346 } 26347 26348 /* 26349 * Determine if the ill and multicast aspects of that packets 26350 * "matches" the conn. 26351 */ 26352 boolean_t 26353 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 26354 zoneid_t zoneid) 26355 { 26356 ill_t *in_ill; 26357 boolean_t found; 26358 ipif_t *ipif; 26359 ire_t *ire; 26360 ipaddr_t dst, src; 26361 26362 dst = ipha->ipha_dst; 26363 src = ipha->ipha_src; 26364 26365 /* 26366 * conn_incoming_ill is set by IP_BOUND_IF which limits 26367 * unicast, broadcast and multicast reception to 26368 * conn_incoming_ill. conn_wantpacket itself is called 26369 * only for BROADCAST and multicast. 26370 * 26371 * 1) ip_rput supresses duplicate broadcasts if the ill 26372 * is part of a group. Hence, we should be receiving 26373 * just one copy of broadcast for the whole group. 26374 * Thus, if it is part of the group the packet could 26375 * come on any ill of the group and hence we need a 26376 * match on the group. Otherwise, match on ill should 26377 * be sufficient. 26378 * 26379 * 2) ip_rput does not suppress duplicate multicast packets. 26380 * If there are two interfaces in a ill group and we have 26381 * 2 applications (conns) joined a multicast group G on 26382 * both the interfaces, ilm_lookup_ill filter in ip_rput 26383 * will give us two packets because we join G on both the 26384 * interfaces rather than nominating just one interface 26385 * for receiving multicast like broadcast above. So, 26386 * we have to call ilg_lookup_ill to filter out duplicate 26387 * copies, if ill is part of a group. 26388 */ 26389 in_ill = connp->conn_incoming_ill; 26390 if (in_ill != NULL) { 26391 if (in_ill->ill_group == NULL) { 26392 if (in_ill != ill) 26393 return (B_FALSE); 26394 } else if (in_ill->ill_group != ill->ill_group) { 26395 return (B_FALSE); 26396 } 26397 } 26398 26399 if (!CLASSD(dst)) { 26400 if (IPCL_ZONE_MATCH(connp, zoneid)) 26401 return (B_TRUE); 26402 /* 26403 * The conn is in a different zone; we need to check that this 26404 * broadcast address is configured in the application's zone and 26405 * on one ill in the group. 26406 */ 26407 ipif = ipif_get_next_ipif(NULL, ill); 26408 if (ipif == NULL) 26409 return (B_FALSE); 26410 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 26411 connp->conn_zoneid, NULL, 26412 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 26413 ipif_refrele(ipif); 26414 if (ire != NULL) { 26415 ire_refrele(ire); 26416 return (B_TRUE); 26417 } else { 26418 return (B_FALSE); 26419 } 26420 } 26421 26422 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 26423 connp->conn_zoneid == zoneid) { 26424 /* 26425 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 26426 * disabled, therefore we don't dispatch the multicast packet to 26427 * the sending zone. 26428 */ 26429 return (B_FALSE); 26430 } 26431 26432 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 26433 connp->conn_zoneid != zoneid) { 26434 /* 26435 * Multicast packet on the loopback interface: we only match 26436 * conns who joined the group in the specified zone. 26437 */ 26438 return (B_FALSE); 26439 } 26440 26441 if (connp->conn_multi_router) { 26442 /* multicast packet and multicast router socket: send up */ 26443 return (B_TRUE); 26444 } 26445 26446 mutex_enter(&connp->conn_lock); 26447 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 26448 mutex_exit(&connp->conn_lock); 26449 return (found); 26450 } 26451 26452 /* 26453 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 26454 */ 26455 /* ARGSUSED */ 26456 static void 26457 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 26458 { 26459 ill_t *ill = (ill_t *)q->q_ptr; 26460 mblk_t *mp1, *mp2; 26461 ipif_t *ipif; 26462 int err = 0; 26463 conn_t *connp = NULL; 26464 ipsq_t *ipsq; 26465 arc_t *arc; 26466 26467 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 26468 26469 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 26470 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 26471 26472 ASSERT(IAM_WRITER_ILL(ill)); 26473 mp2 = mp->b_cont; 26474 mp->b_cont = NULL; 26475 26476 /* 26477 * We have now received the arp bringup completion message 26478 * from ARP. Mark the arp bringup as done. Also if the arp 26479 * stream has already started closing, send up the AR_ARP_CLOSING 26480 * ack now since ARP is waiting in close for this ack. 26481 */ 26482 mutex_enter(&ill->ill_lock); 26483 ill->ill_arp_bringup_pending = 0; 26484 if (ill->ill_arp_closing) { 26485 mutex_exit(&ill->ill_lock); 26486 /* Let's reuse the mp for sending the ack */ 26487 arc = (arc_t *)mp->b_rptr; 26488 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 26489 arc->arc_cmd = AR_ARP_CLOSING; 26490 qreply(q, mp); 26491 } else { 26492 mutex_exit(&ill->ill_lock); 26493 freeb(mp); 26494 } 26495 26496 /* We should have an IOCTL waiting on this. */ 26497 ipsq = ill->ill_phyint->phyint_ipsq; 26498 ipif = ipsq->ipsq_pending_ipif; 26499 mp1 = ipsq_pending_mp_get(ipsq, &connp); 26500 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 26501 if (mp1 == NULL) { 26502 /* bringup was aborted by the user */ 26503 freemsg(mp2); 26504 return; 26505 } 26506 ASSERT(connp != NULL); 26507 q = CONNP_TO_WQ(connp); 26508 /* 26509 * If the DL_BIND_REQ fails, it is noted 26510 * in arc_name_offset. 26511 */ 26512 err = *((int *)mp2->b_rptr); 26513 if (err == 0) { 26514 if (ipif->ipif_isv6) { 26515 if ((err = ipif_up_done_v6(ipif)) != 0) 26516 ip0dbg(("ip_arp_done: init failed\n")); 26517 } else { 26518 if ((err = ipif_up_done(ipif)) != 0) 26519 ip0dbg(("ip_arp_done: init failed\n")); 26520 } 26521 } else { 26522 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 26523 } 26524 26525 freemsg(mp2); 26526 26527 if ((err == 0) && (ill->ill_up_ipifs)) { 26528 err = ill_up_ipifs(ill, q, mp1); 26529 if (err == EINPROGRESS) 26530 return; 26531 } 26532 26533 if (ill->ill_up_ipifs) { 26534 ill_group_cleanup(ill); 26535 } 26536 26537 /* 26538 * The ioctl must complete now without EINPROGRESS 26539 * since ipsq_pending_mp_get has removed the ioctl mblk 26540 * from ipsq_pending_mp. Otherwise the ioctl will be 26541 * stuck for ever in the ipsq. 26542 */ 26543 ASSERT(err != EINPROGRESS); 26544 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 26545 } 26546 26547 /* Allocate the private structure */ 26548 static int 26549 ip_priv_alloc(void **bufp) 26550 { 26551 void *buf; 26552 26553 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 26554 return (ENOMEM); 26555 26556 *bufp = buf; 26557 return (0); 26558 } 26559 26560 /* Function to delete the private structure */ 26561 void 26562 ip_priv_free(void *buf) 26563 { 26564 ASSERT(buf != NULL); 26565 kmem_free(buf, sizeof (ip_priv_t)); 26566 } 26567 26568 /* 26569 * The entry point for IPPF processing. 26570 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 26571 * routine just returns. 26572 * 26573 * When called, ip_process generates an ipp_packet_t structure 26574 * which holds the state information for this packet and invokes the 26575 * the classifier (via ipp_packet_process). The classification, depending on 26576 * configured filters, results in a list of actions for this packet. Invoking 26577 * an action may cause the packet to be dropped, in which case the resulting 26578 * mblk (*mpp) is NULL. proc indicates the callout position for 26579 * this packet and ill_index is the interface this packet on or will leave 26580 * on (inbound and outbound resp.). 26581 */ 26582 void 26583 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 26584 { 26585 mblk_t *mp; 26586 ip_priv_t *priv; 26587 ipp_action_id_t aid; 26588 int rc = 0; 26589 ipp_packet_t *pp; 26590 #define IP_CLASS "ip" 26591 26592 /* If the classifier is not loaded, return */ 26593 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 26594 return; 26595 } 26596 26597 mp = *mpp; 26598 ASSERT(mp != NULL); 26599 26600 /* Allocate the packet structure */ 26601 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 26602 if (rc != 0) { 26603 *mpp = NULL; 26604 freemsg(mp); 26605 return; 26606 } 26607 26608 /* Allocate the private structure */ 26609 rc = ip_priv_alloc((void **)&priv); 26610 if (rc != 0) { 26611 *mpp = NULL; 26612 freemsg(mp); 26613 ipp_packet_free(pp); 26614 return; 26615 } 26616 priv->proc = proc; 26617 priv->ill_index = ill_index; 26618 ipp_packet_set_private(pp, priv, ip_priv_free); 26619 ipp_packet_set_data(pp, mp); 26620 26621 /* Invoke the classifier */ 26622 rc = ipp_packet_process(&pp); 26623 if (pp != NULL) { 26624 mp = ipp_packet_get_data(pp); 26625 ipp_packet_free(pp); 26626 if (rc != 0) { 26627 freemsg(mp); 26628 *mpp = NULL; 26629 } 26630 } else { 26631 *mpp = NULL; 26632 } 26633 #undef IP_CLASS 26634 } 26635 26636 /* 26637 * Propagate a multicast group membership operation (add/drop) on 26638 * all the interfaces crossed by the related multirt routes. 26639 * The call is considered successful if the operation succeeds 26640 * on at least one interface. 26641 */ 26642 static int 26643 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 26644 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 26645 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 26646 mblk_t *first_mp) 26647 { 26648 ire_t *ire_gw; 26649 irb_t *irb; 26650 int error = 0; 26651 opt_restart_t *or; 26652 26653 irb = ire->ire_bucket; 26654 ASSERT(irb != NULL); 26655 26656 ASSERT(DB_TYPE(first_mp) == M_CTL); 26657 26658 or = (opt_restart_t *)first_mp->b_rptr; 26659 IRB_REFHOLD(irb); 26660 for (; ire != NULL; ire = ire->ire_next) { 26661 if ((ire->ire_flags & RTF_MULTIRT) == 0) 26662 continue; 26663 if (ire->ire_addr != group) 26664 continue; 26665 26666 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 26667 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 26668 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 26669 /* No resolver exists for the gateway; skip this ire. */ 26670 if (ire_gw == NULL) 26671 continue; 26672 26673 /* 26674 * This function can return EINPROGRESS. If so the operation 26675 * will be restarted from ip_restart_optmgmt which will 26676 * call ip_opt_set and option processing will restart for 26677 * this option. So we may end up calling 'fn' more than once. 26678 * This requires that 'fn' is idempotent except for the 26679 * return value. The operation is considered a success if 26680 * it succeeds at least once on any one interface. 26681 */ 26682 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 26683 NULL, fmode, src, first_mp); 26684 if (error == 0) 26685 or->or_private = CGTP_MCAST_SUCCESS; 26686 26687 if (ip_debug > 0) { 26688 ulong_t off; 26689 char *ksym; 26690 ksym = kobj_getsymname((uintptr_t)fn, &off); 26691 ip2dbg(("ip_multirt_apply_membership: " 26692 "called %s, multirt group 0x%08x via itf 0x%08x, " 26693 "error %d [success %u]\n", 26694 ksym ? ksym : "?", 26695 ntohl(group), ntohl(ire_gw->ire_src_addr), 26696 error, or->or_private)); 26697 } 26698 26699 ire_refrele(ire_gw); 26700 if (error == EINPROGRESS) { 26701 IRB_REFRELE(irb); 26702 return (error); 26703 } 26704 } 26705 IRB_REFRELE(irb); 26706 /* 26707 * Consider the call as successful if we succeeded on at least 26708 * one interface. Otherwise, return the last encountered error. 26709 */ 26710 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 26711 } 26712 26713 26714 /* 26715 * Issue a warning regarding a route crossing an interface with an 26716 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 26717 * amount of time is logged. 26718 */ 26719 static void 26720 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 26721 { 26722 hrtime_t current = gethrtime(); 26723 char buf[16]; 26724 26725 /* Convert interval in ms to hrtime in ns */ 26726 if (multirt_bad_mtu_last_time + 26727 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 26728 current) { 26729 cmn_err(CE_WARN, "ip: ignoring multiroute " 26730 "to %s, incorrect MTU %u (expected %u)\n", 26731 ip_dot_addr(ire->ire_addr, buf), 26732 ire->ire_max_frag, max_frag); 26733 26734 multirt_bad_mtu_last_time = current; 26735 } 26736 } 26737 26738 26739 /* 26740 * Get the CGTP (multirouting) filtering status. 26741 * If 0, the CGTP hooks are transparent. 26742 */ 26743 /* ARGSUSED */ 26744 static int 26745 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 26746 { 26747 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26748 26749 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 26750 return (0); 26751 } 26752 26753 26754 /* 26755 * Set the CGTP (multirouting) filtering status. 26756 * If the status is changed from active to transparent 26757 * or from transparent to active, forward the new status 26758 * to the filtering module (if loaded). 26759 */ 26760 /* ARGSUSED */ 26761 static int 26762 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 26763 cred_t *ioc_cr) 26764 { 26765 long new_value; 26766 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26767 26768 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 26769 new_value < 0 || new_value > 1) { 26770 return (EINVAL); 26771 } 26772 26773 /* 26774 * Do not enable CGTP filtering - thus preventing the hooks 26775 * from being invoked - if the version number of the 26776 * filtering module hooks does not match. 26777 */ 26778 if ((ip_cgtp_filter_ops != NULL) && 26779 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 26780 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 26781 "(module hooks version %d, expecting %d)\n", 26782 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 26783 return (ENOTSUP); 26784 } 26785 26786 if ((!*ip_cgtp_filter_value) && new_value) { 26787 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 26788 ip_cgtp_filter_ops == NULL ? 26789 " (module not loaded)" : ""); 26790 } 26791 if (*ip_cgtp_filter_value && (!new_value)) { 26792 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 26793 ip_cgtp_filter_ops == NULL ? 26794 " (module not loaded)" : ""); 26795 } 26796 26797 if (ip_cgtp_filter_ops != NULL) { 26798 int res; 26799 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 26800 return (res); 26801 } 26802 } 26803 26804 *ip_cgtp_filter_value = (boolean_t)new_value; 26805 26806 return (0); 26807 } 26808 26809 26810 /* 26811 * Return the expected CGTP hooks version number. 26812 */ 26813 int 26814 ip_cgtp_filter_supported(void) 26815 { 26816 return (ip_cgtp_filter_rev); 26817 } 26818 26819 26820 /* 26821 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 26822 * or by invoking this function. In the first case, the version number 26823 * of the registered structure is checked at hooks activation time 26824 * in ip_cgtp_filter_set(). 26825 */ 26826 int 26827 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 26828 { 26829 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 26830 return (ENOTSUP); 26831 26832 ip_cgtp_filter_ops = ops; 26833 return (0); 26834 } 26835 26836 static squeue_func_t 26837 ip_squeue_switch(int val) 26838 { 26839 squeue_func_t rval = squeue_fill; 26840 26841 switch (val) { 26842 case IP_SQUEUE_ENTER_NODRAIN: 26843 rval = squeue_enter_nodrain; 26844 break; 26845 case IP_SQUEUE_ENTER: 26846 rval = squeue_enter; 26847 break; 26848 default: 26849 break; 26850 } 26851 return (rval); 26852 } 26853 26854 /* ARGSUSED */ 26855 static int 26856 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 26857 caddr_t addr, cred_t *cr) 26858 { 26859 int *v = (int *)addr; 26860 long new_value; 26861 26862 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26863 return (EINVAL); 26864 26865 ip_input_proc = ip_squeue_switch(new_value); 26866 *v = new_value; 26867 return (0); 26868 } 26869 26870 /* ARGSUSED */ 26871 static int 26872 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26873 caddr_t addr, cred_t *cr) 26874 { 26875 int *v = (int *)addr; 26876 long new_value; 26877 26878 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26879 return (EINVAL); 26880 26881 *v = new_value; 26882 return (0); 26883 } 26884 26885 static void 26886 ip_kstat_init(void) 26887 { 26888 ip_named_kstat_t template = { 26889 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26890 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26891 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26892 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26893 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26894 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26895 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26896 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26897 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26898 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26899 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26900 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26901 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26902 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26903 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26904 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26905 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26906 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26907 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26908 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26909 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26910 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26911 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26912 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26913 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26914 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26915 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26916 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26917 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26918 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26919 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26920 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26921 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26922 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26923 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26924 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26925 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26926 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26927 }; 26928 26929 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26930 NUM_OF_FIELDS(ip_named_kstat_t), 26931 0); 26932 if (!ip_mibkp) 26933 return; 26934 26935 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26936 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26937 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26938 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26939 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26940 26941 template.netToMediaEntrySize.value.i32 = 26942 sizeof (mib2_ipNetToMediaEntry_t); 26943 26944 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26945 26946 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26947 26948 ip_mibkp->ks_update = ip_kstat_update; 26949 26950 kstat_install(ip_mibkp); 26951 } 26952 26953 static void 26954 ip_kstat_fini(void) 26955 { 26956 26957 if (ip_mibkp != NULL) { 26958 kstat_delete(ip_mibkp); 26959 ip_mibkp = NULL; 26960 } 26961 } 26962 26963 static int 26964 ip_kstat_update(kstat_t *kp, int rw) 26965 { 26966 ip_named_kstat_t *ipkp; 26967 26968 if (!kp || !kp->ks_data) 26969 return (EIO); 26970 26971 if (rw == KSTAT_WRITE) 26972 return (EACCES); 26973 26974 ipkp = (ip_named_kstat_t *)kp->ks_data; 26975 26976 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26977 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26978 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26979 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26980 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26981 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26982 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26983 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26984 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26985 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26986 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26987 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26988 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26989 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26990 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26991 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26992 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26993 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26994 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26995 26996 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26997 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26998 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26999 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 27000 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 27001 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 27002 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 27003 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 27004 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 27005 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 27006 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 27007 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 27008 27009 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27010 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27011 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27012 27013 return (0); 27014 } 27015 27016 static void 27017 icmp_kstat_init(void) 27018 { 27019 icmp_named_kstat_t template = { 27020 { "inMsgs", KSTAT_DATA_UINT32 }, 27021 { "inErrors", KSTAT_DATA_UINT32 }, 27022 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27023 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27024 { "inParmProbs", KSTAT_DATA_UINT32 }, 27025 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27026 { "inRedirects", KSTAT_DATA_UINT32 }, 27027 { "inEchos", KSTAT_DATA_UINT32 }, 27028 { "inEchoReps", KSTAT_DATA_UINT32 }, 27029 { "inTimestamps", KSTAT_DATA_UINT32 }, 27030 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27031 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27032 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27033 { "outMsgs", KSTAT_DATA_UINT32 }, 27034 { "outErrors", KSTAT_DATA_UINT32 }, 27035 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27036 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27037 { "outParmProbs", KSTAT_DATA_UINT32 }, 27038 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27039 { "outRedirects", KSTAT_DATA_UINT32 }, 27040 { "outEchos", KSTAT_DATA_UINT32 }, 27041 { "outEchoReps", KSTAT_DATA_UINT32 }, 27042 { "outTimestamps", KSTAT_DATA_UINT32 }, 27043 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27044 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27045 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27046 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27047 { "inUnknowns", KSTAT_DATA_UINT32 }, 27048 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27049 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27050 { "outDrops", KSTAT_DATA_UINT32 }, 27051 { "inOverFlows", KSTAT_DATA_UINT32 }, 27052 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27053 }; 27054 27055 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27056 NUM_OF_FIELDS(icmp_named_kstat_t), 27057 0); 27058 if (icmp_mibkp == NULL) 27059 return; 27060 27061 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27062 27063 icmp_mibkp->ks_update = icmp_kstat_update; 27064 27065 kstat_install(icmp_mibkp); 27066 } 27067 27068 static void 27069 icmp_kstat_fini(void) 27070 { 27071 27072 if (icmp_mibkp != NULL) { 27073 kstat_delete(icmp_mibkp); 27074 icmp_mibkp = NULL; 27075 } 27076 } 27077 27078 static int 27079 icmp_kstat_update(kstat_t *kp, int rw) 27080 { 27081 icmp_named_kstat_t *icmpkp; 27082 27083 if ((kp == NULL) || (kp->ks_data == NULL)) 27084 return (EIO); 27085 27086 if (rw == KSTAT_WRITE) 27087 return (EACCES); 27088 27089 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27090 27091 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27092 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27093 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27094 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27095 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27096 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27097 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27098 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27099 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27100 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27101 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27102 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27103 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27104 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27105 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27106 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27107 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27108 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27109 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27110 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27111 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27112 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27113 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27114 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27115 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27116 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27117 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27118 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27119 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27120 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 27121 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 27122 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 27123 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 27124 27125 return (0); 27126 } 27127 27128 /* 27129 * This is the fanout function for raw socket opened for SCTP. Note 27130 * that it is called after SCTP checks that there is no socket which 27131 * wants a packet. Then before SCTP handles this out of the blue packet, 27132 * this function is called to see if there is any raw socket for SCTP. 27133 * If there is and it is bound to the correct address, the packet will 27134 * be sent to that socket. Note that only one raw socket can be bound to 27135 * a port. This is assured in ipcl_sctp_hash_insert(); 27136 */ 27137 void 27138 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 27139 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 27140 uint_t ipif_seqid, zoneid_t zoneid) 27141 { 27142 conn_t *connp; 27143 queue_t *rq; 27144 mblk_t *first_mp; 27145 boolean_t secure; 27146 ip6_t *ip6h; 27147 27148 first_mp = mp; 27149 if (mctl_present) { 27150 mp = first_mp->b_cont; 27151 secure = ipsec_in_is_secure(first_mp); 27152 ASSERT(mp != NULL); 27153 } else { 27154 secure = B_FALSE; 27155 } 27156 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 27157 27158 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 27159 if (connp == NULL) { 27160 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 27161 mctl_present); 27162 return; 27163 } 27164 rq = connp->conn_rq; 27165 if (!canputnext(rq)) { 27166 CONN_DEC_REF(connp); 27167 BUMP_MIB(&ip_mib, rawipInOverflows); 27168 freemsg(first_mp); 27169 return; 27170 } 27171 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 27172 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 27173 first_mp = ipsec_check_inbound_policy(first_mp, connp, 27174 (isv4 ? ipha : NULL), ip6h, mctl_present); 27175 if (first_mp == NULL) { 27176 CONN_DEC_REF(connp); 27177 return; 27178 } 27179 } 27180 /* 27181 * We probably should not send M_CTL message up to 27182 * raw socket. 27183 */ 27184 if (mctl_present) 27185 freeb(first_mp); 27186 27187 /* Initiate IPPF processing here if needed. */ 27188 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 27189 (!isv4 && IP6_IN_IPP(flags))) { 27190 ip_process(IPP_LOCAL_IN, &mp, 27191 recv_ill->ill_phyint->phyint_ifindex); 27192 if (mp == NULL) { 27193 CONN_DEC_REF(connp); 27194 return; 27195 } 27196 } 27197 27198 if (connp->conn_recvif || connp->conn_recvslla || 27199 ((connp->conn_ipv6_recvpktinfo || 27200 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 27201 (flags & IP_FF_IP6INFO))) { 27202 int in_flags = 0; 27203 27204 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 27205 in_flags = IPF_RECVIF; 27206 } 27207 if (connp->conn_recvslla) { 27208 in_flags |= IPF_RECVSLLA; 27209 } 27210 if (isv4) { 27211 mp = ip_add_info(mp, recv_ill, in_flags); 27212 } else { 27213 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 27214 if (mp == NULL) { 27215 CONN_DEC_REF(connp); 27216 return; 27217 } 27218 } 27219 } 27220 27221 BUMP_MIB(&ip_mib, ipInDelivers); 27222 /* 27223 * We are sending the IPSEC_IN message also up. Refer 27224 * to comments above this function. 27225 */ 27226 putnext(rq, mp); 27227 CONN_DEC_REF(connp); 27228 } 27229 27230 /* 27231 * Martian Address Filtering [RFC 1812, Section 5.3.7] 27232 */ 27233 static boolean_t 27234 ip_no_forward(ipha_t *ipha, ill_t *ill) 27235 { 27236 ipaddr_t ip_src, ip_dst; 27237 ire_t *src_ire = NULL; 27238 27239 ip_src = ntohl(ipha->ipha_src); 27240 ip_dst = ntohl(ipha->ipha_dst); 27241 27242 if (ip_dst == INADDR_ANY) 27243 goto dont_forward; 27244 27245 if (IN_CLASSD(ip_src)) 27246 goto dont_forward; 27247 27248 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 27249 goto dont_forward; 27250 27251 if (IN_BADCLASS(ip_dst)) 27252 goto dont_forward; 27253 27254 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 27255 ALL_ZONES, NULL, MATCH_IRE_TYPE); 27256 if (src_ire != NULL) { 27257 ire_refrele(src_ire); 27258 goto dont_forward; 27259 } 27260 27261 return (B_FALSE); 27262 27263 dont_forward: 27264 if (ip_debug > 2) { 27265 printf("ip_no_forward: dropping packet received on %s\n", 27266 ill->ill_name); 27267 pr_addr_dbg("ip_no_forward: from src %s\n", 27268 AF_INET, &ipha->ipha_src); 27269 pr_addr_dbg("ip_no_forward: to dst %s\n", 27270 AF_INET, &ipha->ipha_dst); 27271 } 27272 BUMP_MIB(&ip_mib, ipForwProhibits); 27273 return (B_TRUE); 27274 } 27275 27276 static boolean_t 27277 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 27278 { 27279 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 27280 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 27281 if (ip_debug > 2) { 27282 if (ill != NULL) { 27283 printf("ip_loopback_src_or_dst: " 27284 "dropping packet received on %s\n", 27285 ill->ill_name); 27286 } else { 27287 printf("ip_loopback_src_or_dst: " 27288 "dropping packet\n"); 27289 } 27290 27291 pr_addr_dbg( 27292 "ip_loopback_src_or_dst: from src %s\n", 27293 AF_INET, &ipha->ipha_src); 27294 pr_addr_dbg( 27295 "ip_loopback_src_or_dst: to dst %s\n", 27296 AF_INET, &ipha->ipha_dst); 27297 } 27298 27299 BUMP_MIB(&ip_mib, ipInAddrErrors); 27300 return (B_TRUE); 27301 } 27302 return (B_FALSE); 27303 } 27304 27305 /* 27306 * Return B_TRUE if the buffers differ in length or content. 27307 * This is used for comparing extension header buffers. 27308 * Note that an extension header would be declared different 27309 * even if all that changed was the next header value in that header i.e. 27310 * what really changed is the next extension header. 27311 */ 27312 boolean_t 27313 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 27314 uint_t blen) 27315 { 27316 if (!b_valid) 27317 blen = 0; 27318 27319 if (alen != blen) 27320 return (B_TRUE); 27321 if (alen == 0) 27322 return (B_FALSE); /* Both zero length */ 27323 return (bcmp(abuf, bbuf, alen)); 27324 } 27325 27326 /* 27327 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 27328 * Return B_FALSE if memory allocation fails - don't change any state! 27329 */ 27330 boolean_t 27331 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27332 const void *src, uint_t srclen) 27333 { 27334 void *dst; 27335 27336 if (!src_valid) 27337 srclen = 0; 27338 27339 ASSERT(*dstlenp == 0); 27340 if (src != NULL && srclen != 0) { 27341 dst = mi_alloc(srclen, BPRI_MED); 27342 if (dst == NULL) 27343 return (B_FALSE); 27344 } else { 27345 dst = NULL; 27346 } 27347 if (*dstp != NULL) 27348 mi_free(*dstp); 27349 *dstp = dst; 27350 *dstlenp = dst == NULL ? 0 : srclen; 27351 return (B_TRUE); 27352 } 27353 27354 /* 27355 * Replace what is in *dst, *dstlen with the source. 27356 * Assumes ip_allocbuf has already been called. 27357 */ 27358 void 27359 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27360 const void *src, uint_t srclen) 27361 { 27362 if (!src_valid) 27363 srclen = 0; 27364 27365 ASSERT(*dstlenp == srclen); 27366 if (src != NULL && srclen != 0) 27367 bcopy(src, *dstp, srclen); 27368 } 27369 27370 /* 27371 * Free the storage pointed to by the members of an ip6_pkt_t. 27372 */ 27373 void 27374 ip6_pkt_free(ip6_pkt_t *ipp) 27375 { 27376 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 27377 27378 if (ipp->ipp_fields & IPPF_HOPOPTS) { 27379 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 27380 ipp->ipp_hopopts = NULL; 27381 ipp->ipp_hopoptslen = 0; 27382 } 27383 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 27384 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 27385 ipp->ipp_rtdstopts = NULL; 27386 ipp->ipp_rtdstoptslen = 0; 27387 } 27388 if (ipp->ipp_fields & IPPF_DSTOPTS) { 27389 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 27390 ipp->ipp_dstopts = NULL; 27391 ipp->ipp_dstoptslen = 0; 27392 } 27393 if (ipp->ipp_fields & IPPF_RTHDR) { 27394 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 27395 ipp->ipp_rthdr = NULL; 27396 ipp->ipp_rthdrlen = 0; 27397 } 27398 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 27399 IPPF_RTHDR); 27400 } 27401