1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 609 610 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 611 ip_stack_t *); 612 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 613 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 614 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 615 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 616 mblk_t *, int, ip_stack_t *); 617 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 618 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 619 ill_t *, zoneid_t); 620 static void icmp_options_update(ipha_t *); 621 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 622 ip_stack_t *); 623 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 624 zoneid_t zoneid, ip_stack_t *); 625 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 626 static void icmp_redirect(ill_t *, mblk_t *); 627 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 628 ip_stack_t *); 629 630 static void ip_arp_news(queue_t *, mblk_t *); 631 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 632 ip_stack_t *); 633 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 634 char *ip_dot_addr(ipaddr_t, char *); 635 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 636 int ip_close(queue_t *, int); 637 static char *ip_dot_saddr(uchar_t *, char *); 638 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 639 boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, zoneid_t); 642 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 643 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_lrput(queue_t *, mblk_t *); 645 ipaddr_t ip_net_mask(ipaddr_t); 646 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 647 ip_stack_t *); 648 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 649 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 650 char *ip_nv_lookup(nv_t *, int); 651 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 652 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 655 ipndp_t *, size_t); 656 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 657 void ip_rput(queue_t *, mblk_t *); 658 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 659 void *dummy_arg); 660 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 661 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 662 ip_stack_t *); 663 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 664 ire_t *, ip_stack_t *); 665 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 666 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 667 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 668 ip_stack_t *); 669 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 670 uint16_t *); 671 int ip_snmp_get(queue_t *, mblk_t *, int); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 673 mib2_ipIfStatsEntry_t *, ip_stack_t *); 674 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 675 ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 702 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 703 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 704 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 705 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 706 static boolean_t ip_source_route_included(ipha_t *); 707 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 708 709 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 710 zoneid_t, ip_stack_t *); 711 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 712 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 713 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 714 zoneid_t, ip_stack_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain_tail(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *); 721 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 722 zoneid_t); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 729 zoneid_t); 730 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 731 void *dummy_arg); 732 733 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 734 735 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 736 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 737 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 738 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 739 740 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 741 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 742 caddr_t, cred_t *); 743 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 748 caddr_t cp, cred_t *cr); 749 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 750 cred_t *); 751 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 752 cred_t *); 753 static squeue_func_t ip_squeue_switch(int); 754 755 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 756 static void ip_kstat_fini(netstackid_t, kstat_t *); 757 static int ip_kstat_update(kstat_t *kp, int rw); 758 static void *icmp_kstat_init(netstackid_t); 759 static void icmp_kstat_fini(netstackid_t, kstat_t *); 760 static int icmp_kstat_update(kstat_t *kp, int rw); 761 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 762 static void ip_kstat2_fini(netstackid_t, kstat_t *); 763 764 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 765 766 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 767 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 768 769 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 770 ipha_t *, ill_t *, boolean_t); 771 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 772 773 /* How long, in seconds, we allow frags to hang around. */ 774 #define IP_FRAG_TIMEOUT 60 775 776 /* 777 * Threshold which determines whether MDT should be used when 778 * generating IP fragments; payload size must be greater than 779 * this threshold for MDT to take place. 780 */ 781 #define IP_WPUT_FRAG_MDT_MIN 32768 782 783 /* Setable in /etc/system only */ 784 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 #ifdef DEBUG 795 uint32_t ipsechw_debug = 0; 796 #endif 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 802 803 /* 804 * XXX following really should only be in a header. Would need more 805 * header and .c clean up first. 806 */ 807 extern optdb_obj_t ip_opt_obj; 808 809 ulong_t ip_squeue_enter_unbound = 0; 810 811 /* 812 * Named Dispatch Parameter Table. 813 * All of these are alterable, within the min/max values given, at run time. 814 */ 815 static ipparam_t lcl_param_arr[] = { 816 /* min max value name */ 817 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 820 { 0, 1, 0, "ip_respond_to_timestamp"}, 821 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 822 { 0, 1, 1, "ip_send_redirects"}, 823 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 824 { 0, 10, 0, "ip_mrtdebug"}, 825 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 826 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 827 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 828 { 1, 255, 255, "ip_def_ttl" }, 829 { 0, 1, 0, "ip_forward_src_routed"}, 830 { 0, 256, 32, "ip_wroff_extra" }, 831 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 832 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 833 { 0, 1, 1, "ip_path_mtu_discovery" }, 834 { 0, 240, 30, "ip_ignore_delete_time" }, 835 { 0, 1, 0, "ip_ignore_redirect" }, 836 { 0, 1, 1, "ip_output_queue" }, 837 { 1, 254, 1, "ip_broadcast_ttl" }, 838 { 0, 99999, 100, "ip_icmp_err_interval" }, 839 { 1, 99999, 10, "ip_icmp_err_burst" }, 840 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 841 { 0, 1, 0, "ip_strict_dst_multihoming" }, 842 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 843 { 0, 1, 0, "ipsec_override_persocket_policy" }, 844 { 0, 1, 1, "icmp_accept_clear_messages" }, 845 { 0, 1, 1, "igmp_accept_clear_messages" }, 846 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 847 "ip_ndp_delay_first_probe_time"}, 848 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 849 "ip_ndp_max_unicast_solicit"}, 850 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 851 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 852 { 0, 1, 0, "ip6_forward_src_routed"}, 853 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 854 { 0, 1, 1, "ip6_send_redirects"}, 855 { 0, 1, 0, "ip6_ignore_redirect" }, 856 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 857 858 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 859 860 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 861 862 { 0, 1, 1, "pim_accept_clear_messages" }, 863 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 864 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 865 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 866 { 0, 15, 0, "ip_policy_mask" }, 867 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 868 { 0, 255, 1, "ip_multirt_ttl" }, 869 { 0, 1, 1, "ip_multidata_outbound" }, 870 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 871 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 872 { 0, 1000, 1, "ip_max_temp_defend" }, 873 { 0, 1000, 3, "ip_max_defend" }, 874 { 0, 999999, 30, "ip_defend_interval" }, 875 { 0, 3600000, 300000, "ip_dup_recovery" }, 876 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 877 { 0, 1, 1, "ip_lso_outbound" }, 878 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 879 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #else 883 { 0, 0, 0, "" }, 884 #endif 885 }; 886 887 /* 888 * Extended NDP table 889 * The addresses for the first two are filled in to be ips_ip_g_forward 890 * and ips_ipv6_forward at init time. 891 */ 892 static ipndp_t lcl_ndp_arr[] = { 893 /* getf setf data name */ 894 #define IPNDP_IP_FORWARDING_OFFSET 0 895 { ip_param_generic_get, ip_forward_set, NULL, 896 "ip_forwarding" }, 897 #define IPNDP_IP6_FORWARDING_OFFSET 1 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip6_forwarding" }, 900 { ip_ill_report, NULL, NULL, 901 "ip_ill_status" }, 902 { ip_ipif_report, NULL, NULL, 903 "ip_ipif_status" }, 904 { ip_ire_report, NULL, NULL, 905 "ipv4_ire_status" }, 906 { ip_ire_report_v6, NULL, NULL, 907 "ipv6_ire_status" }, 908 { ip_conn_report, NULL, NULL, 909 "ip_conn_status" }, 910 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 911 "ip_rput_pullups" }, 912 { ndp_report, NULL, NULL, 913 "ip_ndp_cache_report" }, 914 { ip_srcid_report, NULL, NULL, 915 "ip_srcid_status" }, 916 { ip_param_generic_get, ip_squeue_profile_set, 917 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 918 { ip_param_generic_get, ip_squeue_bind_set, 919 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 920 { ip_param_generic_get, ip_input_proc_set, 921 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 922 { ip_param_generic_get, ip_int_set, 923 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 924 #define IPNDP_CGTP_FILTER_OFFSET 14 925 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 926 "ip_cgtp_filter" }, 927 { ip_param_generic_get, ip_int_set, 928 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 929 #define IPNDP_IPMP_HOOK_OFFSET 16 930 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 931 "ipmp_hook_emulation" }, 932 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 933 "ip_debug" }, 934 }; 935 936 /* 937 * Table of IP ioctls encoding the various properties of the ioctl and 938 * indexed based on the last byte of the ioctl command. Occasionally there 939 * is a clash, and there is more than 1 ioctl with the same last byte. 940 * In such a case 1 ioctl is encoded in the ndx table and the remaining 941 * ioctls are encoded in the misc table. An entry in the ndx table is 942 * retrieved by indexing on the last byte of the ioctl command and comparing 943 * the ioctl command with the value in the ndx table. In the event of a 944 * mismatch the misc table is then searched sequentially for the desired 945 * ioctl command. 946 * 947 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 948 */ 949 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 950 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 961 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocaddrt, NULL }, 963 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 964 MISC_CMD, ip_siocdelrt, NULL }, 965 966 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 968 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_addr, NULL }, 970 971 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 973 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 974 IPI_GET_CMD | IPI_REPL, 975 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 976 977 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 978 IPI_PRIV | IPI_WR | IPI_REPL, 979 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 980 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 981 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 982 IF_CMD, ip_sioctl_get_flags, NULL }, 983 984 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 986 987 /* copyin size cannot be coded for SIOCGIFCONF */ 988 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 989 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 990 991 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_mtu, NULL }, 993 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_mtu, NULL }, 995 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 996 IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 998 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_brdaddr, NULL }, 1000 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_netmask, NULL }, 1003 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1005 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_metric, NULL }, 1008 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1009 IF_CMD, ip_sioctl_metric, NULL }, 1010 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1011 1012 /* See 166-168 below for extended SIOC*XARP ioctls */ 1013 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1018 ARP_CMD, ip_sioctl_arp, NULL }, 1019 1020 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 1042 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1043 MISC_CMD, if_unitsel, if_unitsel_restart }, 1044 1045 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 1064 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1065 IPI_PRIV | IPI_WR | IPI_MODOK, 1066 IF_CMD, ip_sioctl_sifname, NULL }, 1067 1068 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1083 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1084 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_muxid, NULL }, 1086 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1087 IPI_PRIV | IPI_WR | IPI_REPL, 1088 IF_CMD, ip_sioctl_muxid, NULL }, 1089 1090 /* Both if and lif variants share same func */ 1091 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1093 /* Both if and lif variants share same func */ 1094 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1095 IPI_PRIV | IPI_WR | IPI_REPL, 1096 IF_CMD, ip_sioctl_slifindex, NULL }, 1097 1098 /* copyin size cannot be coded for SIOCGIFCONF */ 1099 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1100 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1101 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 1119 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1120 IPI_PRIV | IPI_WR | IPI_REPL, 1121 LIF_CMD, ip_sioctl_removeif, 1122 ip_sioctl_removeif_restart }, 1123 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1125 LIF_CMD, ip_sioctl_addif, NULL }, 1126 #define SIOCLIFADDR_NDX 112 1127 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1128 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1129 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1130 IPI_GET_CMD | IPI_REPL, 1131 LIF_CMD, ip_sioctl_get_addr, NULL }, 1132 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1134 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1137 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1138 IPI_PRIV | IPI_WR | IPI_REPL, 1139 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1140 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1141 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1142 LIF_CMD, ip_sioctl_get_flags, NULL }, 1143 1144 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 1147 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1148 ip_sioctl_get_lifconf, NULL }, 1149 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_mtu, NULL }, 1151 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1153 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1156 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1158 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1161 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1163 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_metric, NULL }, 1166 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_metric, NULL }, 1168 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1169 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1170 LIF_CMD, ip_sioctl_slifname, 1171 ip_sioctl_slifname_restart }, 1172 1173 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1174 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1175 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1178 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_muxid, NULL }, 1181 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1182 IPI_GET_CMD | IPI_REPL, 1183 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1184 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1185 IPI_PRIV | IPI_WR | IPI_REPL, 1186 LIF_CMD, ip_sioctl_slifindex, 0 }, 1187 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_token, NULL }, 1189 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_token, NULL }, 1192 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1194 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1197 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1199 1200 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1201 IPI_GET_CMD | IPI_REPL, 1202 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1203 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1204 LIF_CMD, ip_siocdelndp_v6, NULL }, 1205 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1206 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1207 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1208 LIF_CMD, ip_siocsetndp_v6, NULL }, 1209 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1211 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1212 MISC_CMD, ip_sioctl_tonlink, NULL }, 1213 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1214 MISC_CMD, ip_sioctl_tmysite, NULL }, 1215 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1216 TUN_CMD, ip_sioctl_tunparam, NULL }, 1217 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1218 IPI_PRIV | IPI_WR, 1219 TUN_CMD, ip_sioctl_tunparam, NULL }, 1220 1221 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1222 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1225 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1226 1227 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR | IPI_REPL, 1229 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1230 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_REPL, 1232 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1233 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1234 IPI_PRIV | IPI_WR, 1235 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1236 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_REPL, 1238 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1239 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1240 IPI_GET_CMD | IPI_REPL, 1241 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1242 1243 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1244 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1246 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1247 1248 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1249 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1250 1251 /* These are handled in ip_sioctl_copyin_setup itself */ 1252 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1255 MISC_CMD, NULL, NULL }, 1256 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1257 1258 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1259 ip_sioctl_get_lifconf, NULL }, 1260 1261 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1266 XARP_CMD, ip_sioctl_arp, NULL }, 1267 1268 /* SIOCPOPSOCKFS is not handled by IP */ 1269 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1270 1271 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_REPL, 1273 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1274 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1275 IPI_PRIV | IPI_WR | IPI_REPL, 1276 LIF_CMD, ip_sioctl_slifzone, 1277 ip_sioctl_slifzone_restart }, 1278 /* 172-174 are SCTP ioctls and not handled by IP */ 1279 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1281 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1282 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1283 IPI_GET_CMD, LIF_CMD, 1284 ip_sioctl_get_lifusesrc, 0 }, 1285 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1286 IPI_PRIV | IPI_WR, 1287 LIF_CMD, ip_sioctl_slifusesrc, 1288 NULL }, 1289 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1290 ip_sioctl_get_lifsrcof, NULL }, 1291 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1298 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1299 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1300 ip_sioctl_set_ipmpfailback, NULL }, 1301 /* SIOCSENABLESDP is handled by SDP */ 1302 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1303 }; 1304 1305 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1306 1307 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1308 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1309 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1311 TUN_CMD, ip_sioctl_tunparam, NULL }, 1312 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1319 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl}, 1323 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1324 MISC_CMD, mrt_ioctl} 1325 }; 1326 1327 int ip_misc_ioctl_count = 1328 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1329 1330 int conn_drain_nthreads; /* Number of drainers reqd. */ 1331 /* Settable in /etc/system */ 1332 /* Defined in ip_ire.c */ 1333 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1334 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1335 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1336 1337 static nv_t ire_nv_arr[] = { 1338 { IRE_BROADCAST, "BROADCAST" }, 1339 { IRE_LOCAL, "LOCAL" }, 1340 { IRE_LOOPBACK, "LOOPBACK" }, 1341 { IRE_CACHE, "CACHE" }, 1342 { IRE_DEFAULT, "DEFAULT" }, 1343 { IRE_PREFIX, "PREFIX" }, 1344 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1345 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1346 { IRE_HOST, "HOST" }, 1347 { 0 } 1348 }; 1349 1350 nv_t *ire_nv_tbl = ire_nv_arr; 1351 1352 /* Defined in ip_netinfo.c */ 1353 extern ddi_taskq_t *eventq_queue_nic; 1354 1355 /* Simple ICMP IP Header Template */ 1356 static ipha_t icmp_ipha = { 1357 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1358 }; 1359 1360 struct module_info ip_mod_info = { 1361 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1362 }; 1363 1364 /* 1365 * Duplicate static symbols within a module confuses mdb; so we avoid the 1366 * problem by making the symbols here distinct from those in udp.c. 1367 */ 1368 1369 /* 1370 * Entry points for IP as a device and as a module. 1371 * FIXME: down the road we might want a separate module and driver qinit. 1372 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1373 */ 1374 static struct qinit iprinitv4 = { 1375 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 struct qinit iprinitv6 = { 1380 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit ipwinitv4 = { 1385 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 struct qinit ipwinitv6 = { 1390 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 static struct qinit iplrinit = { 1395 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1396 &ip_mod_info 1397 }; 1398 1399 static struct qinit iplwinit = { 1400 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1401 &ip_mod_info 1402 }; 1403 1404 /* For AF_INET aka /dev/ip */ 1405 struct streamtab ipinfov4 = { 1406 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1407 }; 1408 1409 /* For AF_INET6 aka /dev/ip6 */ 1410 struct streamtab ipinfov6 = { 1411 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1412 }; 1413 1414 #ifdef DEBUG 1415 static boolean_t skip_sctp_cksum = B_FALSE; 1416 #endif 1417 1418 /* 1419 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1420 * ip_rput_v6(), ip_output(), etc. If the message 1421 * block already has a M_CTL at the front of it, then simply set the zoneid 1422 * appropriately. 1423 */ 1424 mblk_t * 1425 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1426 { 1427 mblk_t *first_mp; 1428 ipsec_out_t *io; 1429 1430 ASSERT(zoneid != ALL_ZONES); 1431 if (mp->b_datap->db_type == M_CTL) { 1432 io = (ipsec_out_t *)mp->b_rptr; 1433 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1434 io->ipsec_out_zoneid = zoneid; 1435 return (mp); 1436 } 1437 1438 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1439 if (first_mp == NULL) 1440 return (NULL); 1441 io = (ipsec_out_t *)first_mp->b_rptr; 1442 /* This is not a secure packet */ 1443 io->ipsec_out_secure = B_FALSE; 1444 io->ipsec_out_zoneid = zoneid; 1445 first_mp->b_cont = mp; 1446 return (first_mp); 1447 } 1448 1449 /* 1450 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1451 */ 1452 mblk_t * 1453 ip_copymsg(mblk_t *mp) 1454 { 1455 mblk_t *nmp; 1456 ipsec_info_t *in; 1457 1458 if (mp->b_datap->db_type != M_CTL) 1459 return (copymsg(mp)); 1460 1461 in = (ipsec_info_t *)mp->b_rptr; 1462 1463 /* 1464 * Note that M_CTL is also used for delivering ICMP error messages 1465 * upstream to transport layers. 1466 */ 1467 if (in->ipsec_info_type != IPSEC_OUT && 1468 in->ipsec_info_type != IPSEC_IN) 1469 return (copymsg(mp)); 1470 1471 nmp = copymsg(mp->b_cont); 1472 1473 if (in->ipsec_info_type == IPSEC_OUT) { 1474 return (ipsec_out_tag(mp, nmp, 1475 ((ipsec_out_t *)in)->ipsec_out_ns)); 1476 } else { 1477 return (ipsec_in_tag(mp, nmp, 1478 ((ipsec_in_t *)in)->ipsec_in_ns)); 1479 } 1480 } 1481 1482 /* Generate an ICMP fragmentation needed message. */ 1483 static void 1484 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1485 ip_stack_t *ipst) 1486 { 1487 icmph_t icmph; 1488 mblk_t *first_mp; 1489 boolean_t mctl_present; 1490 1491 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1492 1493 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1494 if (mctl_present) 1495 freeb(first_mp); 1496 return; 1497 } 1498 1499 bzero(&icmph, sizeof (icmph_t)); 1500 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1501 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1502 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1503 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1505 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1506 ipst); 1507 } 1508 1509 /* 1510 * icmp_inbound deals with ICMP messages in the following ways. 1511 * 1512 * 1) It needs to send a reply back and possibly delivering it 1513 * to the "interested" upper clients. 1514 * 2) It needs to send it to the upper clients only. 1515 * 3) It needs to change some values in IP only. 1516 * 4) It needs to change some values in IP and upper layers e.g TCP. 1517 * 1518 * We need to accomodate icmp messages coming in clear until we get 1519 * everything secure from the wire. If icmp_accept_clear_messages 1520 * is zero we check with the global policy and act accordingly. If 1521 * it is non-zero, we accept the message without any checks. But 1522 * *this does not mean* that this will be delivered to the upper 1523 * clients. By accepting we might send replies back, change our MTU 1524 * value etc. but delivery to the ULP/clients depends on their policy 1525 * dispositions. 1526 * 1527 * We handle the above 4 cases in the context of IPsec in the 1528 * following way : 1529 * 1530 * 1) Send the reply back in the same way as the request came in. 1531 * If it came in encrypted, it goes out encrypted. If it came in 1532 * clear, it goes out in clear. Thus, this will prevent chosen 1533 * plain text attack. 1534 * 2) The client may or may not expect things to come in secure. 1535 * If it comes in secure, the policy constraints are checked 1536 * before delivering it to the upper layers. If it comes in 1537 * clear, ipsec_inbound_accept_clear will decide whether to 1538 * accept this in clear or not. In both the cases, if the returned 1539 * message (IP header + 8 bytes) that caused the icmp message has 1540 * AH/ESP headers, it is sent up to AH/ESP for validation before 1541 * sending up. If there are only 8 bytes of returned message, then 1542 * upper client will not be notified. 1543 * 3) Check with global policy to see whether it matches the constaints. 1544 * But this will be done only if icmp_accept_messages_in_clear is 1545 * zero. 1546 * 4) If we need to change both in IP and ULP, then the decision taken 1547 * while affecting the values in IP and while delivering up to TCP 1548 * should be the same. 1549 * 1550 * There are two cases. 1551 * 1552 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1553 * failed), we will not deliver it to the ULP, even though they 1554 * are *willing* to accept in *clear*. This is fine as our global 1555 * disposition to icmp messages asks us reject the datagram. 1556 * 1557 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1558 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1559 * to deliver it to ULP (policy failed), it can lead to 1560 * consistency problems. The cases known at this time are 1561 * ICMP_DESTINATION_UNREACHABLE messages with following code 1562 * values : 1563 * 1564 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1565 * and Upper layer rejects. Then the communication will 1566 * come to a stop. This is solved by making similar decisions 1567 * at both levels. Currently, when we are unable to deliver 1568 * to the Upper Layer (due to policy failures) while IP has 1569 * adjusted ire_max_frag, the next outbound datagram would 1570 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1571 * will be with the right level of protection. Thus the right 1572 * value will be communicated even if we are not able to 1573 * communicate when we get from the wire initially. But this 1574 * assumes there would be at least one outbound datagram after 1575 * IP has adjusted its ire_max_frag value. To make things 1576 * simpler, we accept in clear after the validation of 1577 * AH/ESP headers. 1578 * 1579 * - Other ICMP ERRORS : We may not be able to deliver it to the 1580 * upper layer depending on the level of protection the upper 1581 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1582 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1583 * should be accepted in clear when the Upper layer expects secure. 1584 * Thus the communication may get aborted by some bad ICMP 1585 * packets. 1586 * 1587 * IPQoS Notes: 1588 * The only instance when a packet is sent for processing is when there 1589 * isn't an ICMP client and if we are interested in it. 1590 * If there is a client, IPPF processing will take place in the 1591 * ip_fanout_proto routine. 1592 * 1593 * Zones notes: 1594 * The packet is only processed in the context of the specified zone: typically 1595 * only this zone will reply to an echo request, and only interested clients in 1596 * this zone will receive a copy of the packet. This means that the caller must 1597 * call icmp_inbound() for each relevant zone. 1598 */ 1599 static void 1600 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1601 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1602 ill_t *recv_ill, zoneid_t zoneid) 1603 { 1604 icmph_t *icmph; 1605 ipha_t *ipha; 1606 int iph_hdr_length; 1607 int hdr_length; 1608 boolean_t interested; 1609 uint32_t ts; 1610 uchar_t *wptr; 1611 ipif_t *ipif; 1612 mblk_t *first_mp; 1613 ipsec_in_t *ii; 1614 ire_t *src_ire; 1615 boolean_t onlink; 1616 timestruc_t now; 1617 uint32_t ill_index; 1618 ip_stack_t *ipst; 1619 1620 ASSERT(ill != NULL); 1621 ipst = ill->ill_ipst; 1622 1623 first_mp = mp; 1624 if (mctl_present) { 1625 mp = first_mp->b_cont; 1626 ASSERT(mp != NULL); 1627 } 1628 1629 ipha = (ipha_t *)mp->b_rptr; 1630 if (ipst->ips_icmp_accept_clear_messages == 0) { 1631 first_mp = ipsec_check_global_policy(first_mp, NULL, 1632 ipha, NULL, mctl_present, ipst->ips_netstack); 1633 if (first_mp == NULL) 1634 return; 1635 } 1636 1637 /* 1638 * On a labeled system, we have to check whether the zone itself is 1639 * permitted to receive raw traffic. 1640 */ 1641 if (is_system_labeled()) { 1642 if (zoneid == ALL_ZONES) 1643 zoneid = tsol_packet_to_zoneid(mp); 1644 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1645 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1646 zoneid)); 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1648 freemsg(first_mp); 1649 return; 1650 } 1651 } 1652 1653 /* 1654 * We have accepted the ICMP message. It means that we will 1655 * respond to the packet if needed. It may not be delivered 1656 * to the upper client depending on the policy constraints 1657 * and the disposition in ipsec_inbound_accept_clear. 1658 */ 1659 1660 ASSERT(ill != NULL); 1661 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1663 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1664 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1665 /* Last chance to get real. */ 1666 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1668 freemsg(first_mp); 1669 return; 1670 } 1671 /* Refresh iph following the pullup. */ 1672 ipha = (ipha_t *)mp->b_rptr; 1673 } 1674 /* ICMP header checksum, including checksum field, should be zero. */ 1675 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1676 IP_CSUM(mp, iph_hdr_length, 0)) { 1677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1678 freemsg(first_mp); 1679 return; 1680 } 1681 /* The IP header will always be a multiple of four bytes */ 1682 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1683 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1684 icmph->icmph_code)); 1685 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1686 /* We will set "interested" to "true" if we want a copy */ 1687 interested = B_FALSE; 1688 switch (icmph->icmph_type) { 1689 case ICMP_ECHO_REPLY: 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1691 break; 1692 case ICMP_DEST_UNREACHABLE: 1693 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1695 interested = B_TRUE; /* Pass up to transport */ 1696 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1697 break; 1698 case ICMP_SOURCE_QUENCH: 1699 interested = B_TRUE; /* Pass up to transport */ 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1701 break; 1702 case ICMP_REDIRECT: 1703 if (!ipst->ips_ip_ignore_redirect) 1704 interested = B_TRUE; 1705 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1706 break; 1707 case ICMP_ECHO_REQUEST: 1708 /* 1709 * Whether to respond to echo requests that come in as IP 1710 * broadcasts or as IP multicast is subject to debate 1711 * (what isn't?). We aim to please, you pick it. 1712 * Default is do it. 1713 */ 1714 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1715 /* unicast: always respond */ 1716 interested = B_TRUE; 1717 } else if (CLASSD(ipha->ipha_dst)) { 1718 /* multicast: respond based on tunable */ 1719 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1720 } else if (broadcast) { 1721 /* broadcast: respond based on tunable */ 1722 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1723 } 1724 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1725 break; 1726 case ICMP_ROUTER_ADVERTISEMENT: 1727 case ICMP_ROUTER_SOLICITATION: 1728 break; 1729 case ICMP_TIME_EXCEEDED: 1730 interested = B_TRUE; /* Pass up to transport */ 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1732 break; 1733 case ICMP_PARAM_PROBLEM: 1734 interested = B_TRUE; /* Pass up to transport */ 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1736 break; 1737 case ICMP_TIME_STAMP_REQUEST: 1738 /* Response to Time Stamp Requests is local policy. */ 1739 if (ipst->ips_ip_g_resp_to_timestamp && 1740 /* So is whether to respond if it was an IP broadcast. */ 1741 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1742 int tstamp_len = 3 * sizeof (uint32_t); 1743 1744 if (wptr + tstamp_len > mp->b_wptr) { 1745 if (!pullupmsg(mp, wptr + tstamp_len - 1746 mp->b_rptr)) { 1747 BUMP_MIB(ill->ill_ip_mib, 1748 ipIfStatsInDiscards); 1749 freemsg(first_mp); 1750 return; 1751 } 1752 /* Refresh ipha following the pullup. */ 1753 ipha = (ipha_t *)mp->b_rptr; 1754 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1755 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1756 } 1757 interested = B_TRUE; 1758 } 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1760 break; 1761 case ICMP_TIME_STAMP_REPLY: 1762 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1763 break; 1764 case ICMP_INFO_REQUEST: 1765 /* Per RFC 1122 3.2.2.7, ignore this. */ 1766 case ICMP_INFO_REPLY: 1767 break; 1768 case ICMP_ADDRESS_MASK_REQUEST: 1769 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1770 !broadcast) && 1771 /* TODO m_pullup of complete header? */ 1772 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1773 interested = B_TRUE; 1774 } 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1776 break; 1777 case ICMP_ADDRESS_MASK_REPLY: 1778 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1779 break; 1780 default: 1781 interested = B_TRUE; /* Pass up to transport */ 1782 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1783 break; 1784 } 1785 /* See if there is an ICMP client. */ 1786 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1787 /* If there is an ICMP client and we want one too, copy it. */ 1788 mblk_t *first_mp1; 1789 1790 if (!interested) { 1791 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1792 ip_policy, recv_ill, zoneid); 1793 return; 1794 } 1795 first_mp1 = ip_copymsg(first_mp); 1796 if (first_mp1 != NULL) { 1797 ip_fanout_proto(q, first_mp1, ill, ipha, 1798 0, mctl_present, ip_policy, recv_ill, zoneid); 1799 } 1800 } else if (!interested) { 1801 freemsg(first_mp); 1802 return; 1803 } else { 1804 /* 1805 * Initiate policy processing for this packet if ip_policy 1806 * is true. 1807 */ 1808 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1809 ill_index = ill->ill_phyint->phyint_ifindex; 1810 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1811 if (mp == NULL) { 1812 if (mctl_present) { 1813 freeb(first_mp); 1814 } 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1816 return; 1817 } 1818 } 1819 } 1820 /* We want to do something with it. */ 1821 /* Check db_ref to make sure we can modify the packet. */ 1822 if (mp->b_datap->db_ref > 1) { 1823 mblk_t *first_mp1; 1824 1825 first_mp1 = ip_copymsg(first_mp); 1826 freemsg(first_mp); 1827 if (!first_mp1) { 1828 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1829 return; 1830 } 1831 first_mp = first_mp1; 1832 if (mctl_present) { 1833 mp = first_mp->b_cont; 1834 ASSERT(mp != NULL); 1835 } else { 1836 mp = first_mp; 1837 } 1838 ipha = (ipha_t *)mp->b_rptr; 1839 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1840 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1841 } 1842 switch (icmph->icmph_type) { 1843 case ICMP_ADDRESS_MASK_REQUEST: 1844 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1845 if (ipif == NULL) { 1846 freemsg(first_mp); 1847 return; 1848 } 1849 /* 1850 * outging interface must be IPv4 1851 */ 1852 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1853 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1854 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1855 ipif_refrele(ipif); 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1857 break; 1858 case ICMP_ECHO_REQUEST: 1859 icmph->icmph_type = ICMP_ECHO_REPLY; 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1861 break; 1862 case ICMP_TIME_STAMP_REQUEST: { 1863 uint32_t *tsp; 1864 1865 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1866 tsp = (uint32_t *)wptr; 1867 tsp++; /* Skip past 'originate time' */ 1868 /* Compute # of milliseconds since midnight */ 1869 gethrestime(&now); 1870 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1871 now.tv_nsec / (NANOSEC / MILLISEC); 1872 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1873 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1875 break; 1876 } 1877 default: 1878 ipha = (ipha_t *)&icmph[1]; 1879 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1880 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1886 ipha = (ipha_t *)&icmph[1]; 1887 } 1888 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1890 freemsg(first_mp); 1891 return; 1892 } 1893 hdr_length = IPH_HDR_LENGTH(ipha); 1894 if (hdr_length < sizeof (ipha_t)) { 1895 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1896 freemsg(first_mp); 1897 return; 1898 } 1899 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1900 if (!pullupmsg(mp, 1901 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1903 freemsg(first_mp); 1904 return; 1905 } 1906 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1907 ipha = (ipha_t *)&icmph[1]; 1908 } 1909 switch (icmph->icmph_type) { 1910 case ICMP_REDIRECT: 1911 /* 1912 * As there is no upper client to deliver, we don't 1913 * need the first_mp any more. 1914 */ 1915 if (mctl_present) { 1916 freeb(first_mp); 1917 } 1918 icmp_redirect(ill, mp); 1919 return; 1920 case ICMP_DEST_UNREACHABLE: 1921 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1922 if (!icmp_inbound_too_big(icmph, ipha, ill, 1923 zoneid, mp, iph_hdr_length, ipst)) { 1924 freemsg(first_mp); 1925 return; 1926 } 1927 /* 1928 * icmp_inbound_too_big() may alter mp. 1929 * Resynch ipha and icmph accordingly. 1930 */ 1931 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1932 ipha = (ipha_t *)&icmph[1]; 1933 } 1934 /* FALLTHRU */ 1935 default : 1936 /* 1937 * IPQoS notes: Since we have already done IPQoS 1938 * processing we don't want to do it again in 1939 * the fanout routines called by 1940 * icmp_inbound_error_fanout, hence the last 1941 * argument, ip_policy, is B_FALSE. 1942 */ 1943 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1944 ipha, iph_hdr_length, hdr_length, mctl_present, 1945 B_FALSE, recv_ill, zoneid); 1946 } 1947 return; 1948 } 1949 /* Send out an ICMP packet */ 1950 icmph->icmph_checksum = 0; 1951 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1952 if (broadcast || CLASSD(ipha->ipha_dst)) { 1953 ipif_t *ipif_chosen; 1954 /* 1955 * Make it look like it was directed to us, so we don't look 1956 * like a fool with a broadcast or multicast source address. 1957 */ 1958 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1959 /* 1960 * Make sure that we haven't grabbed an interface that's DOWN. 1961 */ 1962 if (ipif != NULL) { 1963 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1964 ipha->ipha_src, zoneid); 1965 if (ipif_chosen != NULL) { 1966 ipif_refrele(ipif); 1967 ipif = ipif_chosen; 1968 } 1969 } 1970 if (ipif == NULL) { 1971 ip0dbg(("icmp_inbound: " 1972 "No source for broadcast/multicast:\n" 1973 "\tsrc 0x%x dst 0x%x ill %p " 1974 "ipif_lcl_addr 0x%x\n", 1975 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1976 (void *)ill, 1977 ill->ill_ipif->ipif_lcl_addr)); 1978 freemsg(first_mp); 1979 return; 1980 } 1981 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1982 ipha->ipha_dst = ipif->ipif_src_addr; 1983 ipif_refrele(ipif); 1984 } 1985 /* Reset time to live. */ 1986 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1987 { 1988 /* Swap source and destination addresses */ 1989 ipaddr_t tmp; 1990 1991 tmp = ipha->ipha_src; 1992 ipha->ipha_src = ipha->ipha_dst; 1993 ipha->ipha_dst = tmp; 1994 } 1995 ipha->ipha_ident = 0; 1996 if (!IS_SIMPLE_IPH(ipha)) 1997 icmp_options_update(ipha); 1998 1999 /* 2000 * ICMP echo replies should go out on the same interface 2001 * the request came on as probes used by in.mpathd for detecting 2002 * NIC failures are ECHO packets. We turn-off load spreading 2003 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2004 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2005 * function. This is in turn handled by ip_wput and ip_newroute 2006 * to make sure that the packet goes out on the interface it came 2007 * in on. If we don't turnoff load spreading, the packets might get 2008 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2009 * to go out and in.mpathd would wrongly detect a failure or 2010 * mis-detect a NIC failure for link failure. As load spreading 2011 * can happen only if ill_group is not NULL, we do only for 2012 * that case and this does not affect the normal case. 2013 * 2014 * We turn off load spreading only on echo packets that came from 2015 * on-link hosts. If the interface route has been deleted, this will 2016 * not be enforced as we can't do much. For off-link hosts, as the 2017 * default routes in IPv4 does not typically have an ire_ipif 2018 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2019 * Moreover, expecting a default route through this interface may 2020 * not be correct. We use ipha_dst because of the swap above. 2021 */ 2022 onlink = B_FALSE; 2023 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2024 /* 2025 * First, we need to make sure that it is not one of our 2026 * local addresses. If we set onlink when it is one of 2027 * our local addresses, we will end up creating IRE_CACHES 2028 * for one of our local addresses. Then, we will never 2029 * accept packets for them afterwards. 2030 */ 2031 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2032 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2033 if (src_ire == NULL) { 2034 ipif = ipif_get_next_ipif(NULL, ill); 2035 if (ipif == NULL) { 2036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2037 freemsg(mp); 2038 return; 2039 } 2040 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2041 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2042 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2043 ipif_refrele(ipif); 2044 if (src_ire != NULL) { 2045 onlink = B_TRUE; 2046 ire_refrele(src_ire); 2047 } 2048 } else { 2049 ire_refrele(src_ire); 2050 } 2051 } 2052 if (!mctl_present) { 2053 /* 2054 * This packet should go out the same way as it 2055 * came in i.e in clear. To make sure that global 2056 * policy will not be applied to this in ip_wput_ire, 2057 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2058 */ 2059 ASSERT(first_mp == mp); 2060 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2061 if (first_mp == NULL) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 freemsg(mp); 2064 return; 2065 } 2066 ii = (ipsec_in_t *)first_mp->b_rptr; 2067 2068 /* This is not a secure packet */ 2069 ii->ipsec_in_secure = B_FALSE; 2070 if (onlink) { 2071 ii->ipsec_in_attach_if = B_TRUE; 2072 ii->ipsec_in_ill_index = 2073 ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_rill_index = 2075 recv_ill->ill_phyint->phyint_ifindex; 2076 } 2077 first_mp->b_cont = mp; 2078 } else if (onlink) { 2079 ii = (ipsec_in_t *)first_mp->b_rptr; 2080 ii->ipsec_in_attach_if = B_TRUE; 2081 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2082 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2083 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2084 } else { 2085 ii = (ipsec_in_t *)first_mp->b_rptr; 2086 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2087 } 2088 ii->ipsec_in_zoneid = zoneid; 2089 ASSERT(zoneid != ALL_ZONES); 2090 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2092 return; 2093 } 2094 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2095 put(WR(q), first_mp); 2096 } 2097 2098 static ipaddr_t 2099 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2100 { 2101 conn_t *connp; 2102 connf_t *connfp; 2103 ipaddr_t nexthop_addr = INADDR_ANY; 2104 int hdr_length = IPH_HDR_LENGTH(ipha); 2105 uint16_t *up; 2106 uint32_t ports; 2107 ip_stack_t *ipst = ill->ill_ipst; 2108 2109 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2110 switch (ipha->ipha_protocol) { 2111 case IPPROTO_TCP: 2112 { 2113 tcph_t *tcph; 2114 2115 /* do a reverse lookup */ 2116 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2117 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2118 TCPS_LISTEN, ipst); 2119 break; 2120 } 2121 case IPPROTO_UDP: 2122 { 2123 uint32_t dstport, srcport; 2124 2125 ((uint16_t *)&ports)[0] = up[1]; 2126 ((uint16_t *)&ports)[1] = up[0]; 2127 2128 /* Extract ports in net byte order */ 2129 dstport = htons(ntohl(ports) & 0xFFFF); 2130 srcport = htons(ntohl(ports) >> 16); 2131 2132 connfp = &ipst->ips_ipcl_udp_fanout[ 2133 IPCL_UDP_HASH(dstport, ipst)]; 2134 mutex_enter(&connfp->connf_lock); 2135 connp = connfp->connf_head; 2136 2137 /* do a reverse lookup */ 2138 while ((connp != NULL) && 2139 (!IPCL_UDP_MATCH(connp, dstport, 2140 ipha->ipha_src, srcport, ipha->ipha_dst) || 2141 !IPCL_ZONE_MATCH(connp, zoneid))) { 2142 connp = connp->conn_next; 2143 } 2144 if (connp != NULL) 2145 CONN_INC_REF(connp); 2146 mutex_exit(&connfp->connf_lock); 2147 break; 2148 } 2149 case IPPROTO_SCTP: 2150 { 2151 in6_addr_t map_src, map_dst; 2152 2153 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2154 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2155 ((uint16_t *)&ports)[0] = up[1]; 2156 ((uint16_t *)&ports)[1] = up[0]; 2157 2158 connp = sctp_find_conn(&map_src, &map_dst, ports, 2159 zoneid, ipst->ips_netstack->netstack_sctp); 2160 if (connp == NULL) { 2161 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2162 zoneid, ports, ipha, ipst); 2163 } else { 2164 CONN_INC_REF(connp); 2165 SCTP_REFRELE(CONN2SCTP(connp)); 2166 } 2167 break; 2168 } 2169 default: 2170 { 2171 ipha_t ripha; 2172 2173 ripha.ipha_src = ipha->ipha_dst; 2174 ripha.ipha_dst = ipha->ipha_src; 2175 ripha.ipha_protocol = ipha->ipha_protocol; 2176 2177 connfp = &ipst->ips_ipcl_proto_fanout[ 2178 ipha->ipha_protocol]; 2179 mutex_enter(&connfp->connf_lock); 2180 connp = connfp->connf_head; 2181 for (connp = connfp->connf_head; connp != NULL; 2182 connp = connp->conn_next) { 2183 if (IPCL_PROTO_MATCH(connp, 2184 ipha->ipha_protocol, &ripha, ill, 2185 0, zoneid)) { 2186 CONN_INC_REF(connp); 2187 break; 2188 } 2189 } 2190 mutex_exit(&connfp->connf_lock); 2191 } 2192 } 2193 if (connp != NULL) { 2194 if (connp->conn_nexthop_set) 2195 nexthop_addr = connp->conn_nexthop_v4; 2196 CONN_DEC_REF(connp); 2197 } 2198 return (nexthop_addr); 2199 } 2200 2201 /* Table from RFC 1191 */ 2202 static int icmp_frag_size_table[] = 2203 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2204 2205 /* 2206 * Process received ICMP Packet too big. 2207 * After updating any IRE it does the fanout to any matching transport streams. 2208 * Assumes the message has been pulled up till the IP header that caused 2209 * the error. 2210 * 2211 * Returns B_FALSE on failure and B_TRUE on success. 2212 */ 2213 static boolean_t 2214 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2215 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2216 ip_stack_t *ipst) 2217 { 2218 ire_t *ire, *first_ire; 2219 int mtu; 2220 int hdr_length; 2221 ipaddr_t nexthop_addr; 2222 2223 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2224 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2225 ASSERT(ill != NULL); 2226 2227 hdr_length = IPH_HDR_LENGTH(ipha); 2228 2229 /* Drop if the original packet contained a source route */ 2230 if (ip_source_route_included(ipha)) { 2231 return (B_FALSE); 2232 } 2233 /* 2234 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2235 * header. 2236 */ 2237 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2238 mp->b_wptr) { 2239 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2240 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2241 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2242 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2243 return (B_FALSE); 2244 } 2245 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2246 ipha = (ipha_t *)&icmph[1]; 2247 } 2248 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2249 if (nexthop_addr != INADDR_ANY) { 2250 /* nexthop set */ 2251 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2252 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2253 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2254 } else { 2255 /* nexthop not set */ 2256 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2257 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2258 } 2259 2260 if (!first_ire) { 2261 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2262 ntohl(ipha->ipha_dst))); 2263 return (B_FALSE); 2264 } 2265 /* Check for MTU discovery advice as described in RFC 1191 */ 2266 mtu = ntohs(icmph->icmph_du_mtu); 2267 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2268 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2269 ire = ire->ire_next) { 2270 /* 2271 * Look for the connection to which this ICMP message is 2272 * directed. If it has the IP_NEXTHOP option set, then the 2273 * search is limited to IREs with the MATCH_IRE_PRIVATE 2274 * option. Else the search is limited to regular IREs. 2275 */ 2276 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != ire->ire_gateway_addr)) || 2278 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2279 (nexthop_addr != INADDR_ANY))) 2280 continue; 2281 2282 mutex_enter(&ire->ire_lock); 2283 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2284 /* Reduce the IRE max frag value as advised. */ 2285 ip1dbg(("Received mtu from router: %d (was %d)\n", 2286 mtu, ire->ire_max_frag)); 2287 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2288 } else { 2289 uint32_t length; 2290 int i; 2291 2292 /* 2293 * Use the table from RFC 1191 to figure out 2294 * the next "plateau" based on the length in 2295 * the original IP packet. 2296 */ 2297 length = ntohs(ipha->ipha_length); 2298 if (ire->ire_max_frag <= length && 2299 ire->ire_max_frag >= length - hdr_length) { 2300 /* 2301 * Handle broken BSD 4.2 systems that 2302 * return the wrong iph_length in ICMP 2303 * errors. 2304 */ 2305 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2306 length, ire->ire_max_frag)); 2307 length -= hdr_length; 2308 } 2309 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2310 if (length > icmp_frag_size_table[i]) 2311 break; 2312 } 2313 if (i == A_CNT(icmp_frag_size_table)) { 2314 /* Smaller than 68! */ 2315 ip1dbg(("Too big for packet size %d\n", 2316 length)); 2317 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2318 ire->ire_frag_flag = 0; 2319 } else { 2320 mtu = icmp_frag_size_table[i]; 2321 ip1dbg(("Calculated mtu %d, packet size %d, " 2322 "before %d", mtu, length, 2323 ire->ire_max_frag)); 2324 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2325 ip1dbg((", after %d\n", ire->ire_max_frag)); 2326 } 2327 /* Record the new max frag size for the ULP. */ 2328 icmph->icmph_du_zero = 0; 2329 icmph->icmph_du_mtu = 2330 htons((uint16_t)ire->ire_max_frag); 2331 } 2332 mutex_exit(&ire->ire_lock); 2333 } 2334 rw_exit(&first_ire->ire_bucket->irb_lock); 2335 ire_refrele(first_ire); 2336 return (B_TRUE); 2337 } 2338 2339 /* 2340 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2341 * calls this function. 2342 */ 2343 static mblk_t * 2344 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2345 { 2346 ipha_t *ipha; 2347 icmph_t *icmph; 2348 ipha_t *in_ipha; 2349 int length; 2350 2351 ASSERT(mp->b_datap->db_type == M_DATA); 2352 2353 /* 2354 * For Self-encapsulated packets, we added an extra IP header 2355 * without the options. Inner IP header is the one from which 2356 * the outer IP header was formed. Thus, we need to remove the 2357 * outer IP header. To do this, we pullup the whole message 2358 * and overlay whatever follows the outer IP header over the 2359 * outer IP header. 2360 */ 2361 2362 if (!pullupmsg(mp, -1)) 2363 return (NULL); 2364 2365 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2366 ipha = (ipha_t *)&icmph[1]; 2367 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2368 2369 /* 2370 * The length that we want to overlay is following the inner 2371 * IP header. Subtracting the IP header + icmp header + outer 2372 * IP header's length should give us the length that we want to 2373 * overlay. 2374 */ 2375 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2376 hdr_length; 2377 /* 2378 * Overlay whatever follows the inner header over the 2379 * outer header. 2380 */ 2381 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2382 2383 /* Set the wptr to account for the outer header */ 2384 mp->b_wptr -= hdr_length; 2385 return (mp); 2386 } 2387 2388 /* 2389 * Try to pass the ICMP message upstream in case the ULP cares. 2390 * 2391 * If the packet that caused the ICMP error is secure, we send 2392 * it to AH/ESP to make sure that the attached packet has a 2393 * valid association. ipha in the code below points to the 2394 * IP header of the packet that caused the error. 2395 * 2396 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2397 * in the context of IPsec. Normally we tell the upper layer 2398 * whenever we send the ire (including ip_bind), the IPsec header 2399 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2400 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2401 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2402 * same thing. As TCP has the IPsec options size that needs to be 2403 * adjusted, we just pass the MTU unchanged. 2404 * 2405 * IFN could have been generated locally or by some router. 2406 * 2407 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2408 * This happens because IP adjusted its value of MTU on an 2409 * earlier IFN message and could not tell the upper layer, 2410 * the new adjusted value of MTU e.g. Packet was encrypted 2411 * or there was not enough information to fanout to upper 2412 * layers. Thus on the next outbound datagram, ip_wput_ire 2413 * generates the IFN, where IPsec processing has *not* been 2414 * done. 2415 * 2416 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2417 * could have generated this. This happens because ire_max_frag 2418 * value in IP was set to a new value, while the IPsec processing 2419 * was being done and after we made the fragmentation check in 2420 * ip_wput_ire. Thus on return from IPsec processing, 2421 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2422 * and generates the IFN. As IPsec processing is over, we fanout 2423 * to AH/ESP to remove the header. 2424 * 2425 * In both these cases, ipsec_in_loopback will be set indicating 2426 * that IFN was generated locally. 2427 * 2428 * ROUTER : IFN could be secure or non-secure. 2429 * 2430 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2431 * packet in error has AH/ESP headers to validate the AH/ESP 2432 * headers. AH/ESP will verify whether there is a valid SA or 2433 * not and send it back. We will fanout again if we have more 2434 * data in the packet. 2435 * 2436 * If the packet in error does not have AH/ESP, we handle it 2437 * like any other case. 2438 * 2439 * * NON_SECURE : If the packet in error has AH/ESP headers, 2440 * we attach a dummy ipsec_in and send it up to AH/ESP 2441 * for validation. AH/ESP will verify whether there is a 2442 * valid SA or not and send it back. We will fanout again if 2443 * we have more data in the packet. 2444 * 2445 * If the packet in error does not have AH/ESP, we handle it 2446 * like any other case. 2447 */ 2448 static void 2449 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2450 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2451 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2452 zoneid_t zoneid) 2453 { 2454 uint16_t *up; /* Pointer to ports in ULP header */ 2455 uint32_t ports; /* reversed ports for fanout */ 2456 ipha_t ripha; /* With reversed addresses */ 2457 mblk_t *first_mp; 2458 ipsec_in_t *ii; 2459 tcph_t *tcph; 2460 conn_t *connp; 2461 ip_stack_t *ipst; 2462 2463 ASSERT(ill != NULL); 2464 2465 ASSERT(recv_ill != NULL); 2466 ipst = recv_ill->ill_ipst; 2467 2468 first_mp = mp; 2469 if (mctl_present) { 2470 mp = first_mp->b_cont; 2471 ASSERT(mp != NULL); 2472 2473 ii = (ipsec_in_t *)first_mp->b_rptr; 2474 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2475 } else { 2476 ii = NULL; 2477 } 2478 2479 switch (ipha->ipha_protocol) { 2480 case IPPROTO_UDP: 2481 /* 2482 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2483 * transport header. 2484 */ 2485 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2486 mp->b_wptr) { 2487 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2488 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2489 goto discard_pkt; 2490 } 2491 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2492 ipha = (ipha_t *)&icmph[1]; 2493 } 2494 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2495 2496 /* 2497 * Attempt to find a client stream based on port. 2498 * Note that we do a reverse lookup since the header is 2499 * in the form we sent it out. 2500 * The ripha header is only used for the IP_UDP_MATCH and we 2501 * only set the src and dst addresses and protocol. 2502 */ 2503 ripha.ipha_src = ipha->ipha_dst; 2504 ripha.ipha_dst = ipha->ipha_src; 2505 ripha.ipha_protocol = ipha->ipha_protocol; 2506 ((uint16_t *)&ports)[0] = up[1]; 2507 ((uint16_t *)&ports)[1] = up[0]; 2508 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2509 ntohl(ipha->ipha_src), ntohs(up[0]), 2510 ntohl(ipha->ipha_dst), ntohs(up[1]), 2511 icmph->icmph_type, icmph->icmph_code)); 2512 2513 /* Have to change db_type after any pullupmsg */ 2514 DB_TYPE(mp) = M_CTL; 2515 2516 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2517 mctl_present, ip_policy, recv_ill, zoneid); 2518 return; 2519 2520 case IPPROTO_TCP: 2521 /* 2522 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2523 * transport header. 2524 */ 2525 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2526 mp->b_wptr) { 2527 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2528 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2529 goto discard_pkt; 2530 } 2531 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2532 ipha = (ipha_t *)&icmph[1]; 2533 } 2534 /* 2535 * Find a TCP client stream for this packet. 2536 * Note that we do a reverse lookup since the header is 2537 * in the form we sent it out. 2538 */ 2539 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2540 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2541 ipst); 2542 if (connp == NULL) 2543 goto discard_pkt; 2544 2545 /* Have to change db_type after any pullupmsg */ 2546 DB_TYPE(mp) = M_CTL; 2547 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2548 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2549 return; 2550 2551 case IPPROTO_SCTP: 2552 /* 2553 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2554 * transport header. 2555 */ 2556 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2557 mp->b_wptr) { 2558 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2559 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2560 goto discard_pkt; 2561 } 2562 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2563 ipha = (ipha_t *)&icmph[1]; 2564 } 2565 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2566 /* 2567 * Find a SCTP client stream for this packet. 2568 * Note that we do a reverse lookup since the header is 2569 * in the form we sent it out. 2570 * The ripha header is only used for the matching and we 2571 * only set the src and dst addresses, protocol, and version. 2572 */ 2573 ripha.ipha_src = ipha->ipha_dst; 2574 ripha.ipha_dst = ipha->ipha_src; 2575 ripha.ipha_protocol = ipha->ipha_protocol; 2576 ripha.ipha_version_and_hdr_length = 2577 ipha->ipha_version_and_hdr_length; 2578 ((uint16_t *)&ports)[0] = up[1]; 2579 ((uint16_t *)&ports)[1] = up[0]; 2580 2581 /* Have to change db_type after any pullupmsg */ 2582 DB_TYPE(mp) = M_CTL; 2583 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2584 mctl_present, ip_policy, zoneid); 2585 return; 2586 2587 case IPPROTO_ESP: 2588 case IPPROTO_AH: { 2589 int ipsec_rc; 2590 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2591 2592 /* 2593 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2594 * We will re-use the IPSEC_IN if it is already present as 2595 * AH/ESP will not affect any fields in the IPSEC_IN for 2596 * ICMP errors. If there is no IPSEC_IN, allocate a new 2597 * one and attach it in the front. 2598 */ 2599 if (ii != NULL) { 2600 /* 2601 * ip_fanout_proto_again converts the ICMP errors 2602 * that come back from AH/ESP to M_DATA so that 2603 * if it is non-AH/ESP and we do a pullupmsg in 2604 * this function, it would work. Convert it back 2605 * to M_CTL before we send up as this is a ICMP 2606 * error. This could have been generated locally or 2607 * by some router. Validate the inner IPsec 2608 * headers. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(ill != NULL); 2614 ii->ipsec_in_ill_index = 2615 ill->ill_phyint->phyint_ifindex; 2616 ii->ipsec_in_rill_index = 2617 recv_ill->ill_phyint->phyint_ifindex; 2618 DB_TYPE(first_mp->b_cont) = M_CTL; 2619 } else { 2620 /* 2621 * IPSEC_IN is not present. We attach a ipsec_in 2622 * message and send up to IPsec for validating 2623 * and removing the IPsec headers. Clear 2624 * ipsec_in_secure so that when we return 2625 * from IPsec, we don't mistakenly think that this 2626 * is a secure packet came from the network. 2627 * 2628 * NOTE : ill_index is used by ip_fanout_proto_again 2629 * to locate the ill. 2630 */ 2631 ASSERT(first_mp == mp); 2632 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2633 if (first_mp == NULL) { 2634 freemsg(mp); 2635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2636 return; 2637 } 2638 ii = (ipsec_in_t *)first_mp->b_rptr; 2639 2640 /* This is not a secure packet */ 2641 ii->ipsec_in_secure = B_FALSE; 2642 first_mp->b_cont = mp; 2643 DB_TYPE(mp) = M_CTL; 2644 ASSERT(ill != NULL); 2645 ii->ipsec_in_ill_index = 2646 ill->ill_phyint->phyint_ifindex; 2647 ii->ipsec_in_rill_index = 2648 recv_ill->ill_phyint->phyint_ifindex; 2649 } 2650 ip2dbg(("icmp_inbound_error: ipsec\n")); 2651 2652 if (!ipsec_loaded(ipss)) { 2653 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2654 return; 2655 } 2656 2657 if (ipha->ipha_protocol == IPPROTO_ESP) 2658 ipsec_rc = ipsecesp_icmp_error(first_mp); 2659 else 2660 ipsec_rc = ipsecah_icmp_error(first_mp); 2661 if (ipsec_rc == IPSEC_STATUS_FAILED) 2662 return; 2663 2664 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2665 return; 2666 } 2667 default: 2668 /* 2669 * The ripha header is only used for the lookup and we 2670 * only set the src and dst addresses and protocol. 2671 */ 2672 ripha.ipha_src = ipha->ipha_dst; 2673 ripha.ipha_dst = ipha->ipha_src; 2674 ripha.ipha_protocol = ipha->ipha_protocol; 2675 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2676 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2677 ntohl(ipha->ipha_dst), 2678 icmph->icmph_type, icmph->icmph_code)); 2679 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2680 ipha_t *in_ipha; 2681 2682 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2683 mp->b_wptr) { 2684 if (!pullupmsg(mp, (uchar_t *)ipha + 2685 hdr_length + sizeof (ipha_t) - 2686 mp->b_rptr)) { 2687 goto discard_pkt; 2688 } 2689 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2690 ipha = (ipha_t *)&icmph[1]; 2691 } 2692 /* 2693 * Caller has verified that length has to be 2694 * at least the size of IP header. 2695 */ 2696 ASSERT(hdr_length >= sizeof (ipha_t)); 2697 /* 2698 * Check the sanity of the inner IP header like 2699 * we did for the outer header. 2700 */ 2701 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2702 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2703 goto discard_pkt; 2704 } 2705 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2706 goto discard_pkt; 2707 } 2708 /* Check for Self-encapsulated tunnels */ 2709 if (in_ipha->ipha_src == ipha->ipha_src && 2710 in_ipha->ipha_dst == ipha->ipha_dst) { 2711 2712 mp = icmp_inbound_self_encap_error(mp, 2713 iph_hdr_length, hdr_length); 2714 if (mp == NULL) 2715 goto discard_pkt; 2716 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2717 ipha = (ipha_t *)&icmph[1]; 2718 hdr_length = IPH_HDR_LENGTH(ipha); 2719 /* 2720 * The packet in error is self-encapsualted. 2721 * And we are finding it further encapsulated 2722 * which we could not have possibly generated. 2723 */ 2724 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2725 goto discard_pkt; 2726 } 2727 icmp_inbound_error_fanout(q, ill, first_mp, 2728 icmph, ipha, iph_hdr_length, hdr_length, 2729 mctl_present, ip_policy, recv_ill, zoneid); 2730 return; 2731 } 2732 } 2733 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2734 ipha->ipha_protocol == IPPROTO_IPV6) && 2735 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2736 ii != NULL && 2737 ii->ipsec_in_loopback && 2738 ii->ipsec_in_secure) { 2739 /* 2740 * For IP tunnels that get a looped-back 2741 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2742 * reported new MTU to take into account the IPsec 2743 * headers protecting this configured tunnel. 2744 * 2745 * This allows the tunnel module (tun.c) to blindly 2746 * accept the MTU reported in an ICMP "too big" 2747 * message. 2748 * 2749 * Non-looped back ICMP messages will just be 2750 * handled by the security protocols (if needed), 2751 * and the first subsequent packet will hit this 2752 * path. 2753 */ 2754 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2755 ipsec_in_extra_length(first_mp)); 2756 } 2757 /* Have to change db_type after any pullupmsg */ 2758 DB_TYPE(mp) = M_CTL; 2759 2760 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2761 ip_policy, recv_ill, zoneid); 2762 return; 2763 } 2764 /* NOTREACHED */ 2765 discard_pkt: 2766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2767 drop_pkt:; 2768 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2769 freemsg(first_mp); 2770 } 2771 2772 /* 2773 * Common IP options parser. 2774 * 2775 * Setup routine: fill in *optp with options-parsing state, then 2776 * tail-call ipoptp_next to return the first option. 2777 */ 2778 uint8_t 2779 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2780 { 2781 uint32_t totallen; /* total length of all options */ 2782 2783 totallen = ipha->ipha_version_and_hdr_length - 2784 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2785 totallen <<= 2; 2786 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2787 optp->ipoptp_end = optp->ipoptp_next + totallen; 2788 optp->ipoptp_flags = 0; 2789 return (ipoptp_next(optp)); 2790 } 2791 2792 /* 2793 * Common IP options parser: extract next option. 2794 */ 2795 uint8_t 2796 ipoptp_next(ipoptp_t *optp) 2797 { 2798 uint8_t *end = optp->ipoptp_end; 2799 uint8_t *cur = optp->ipoptp_next; 2800 uint8_t opt, len, pointer; 2801 2802 /* 2803 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2804 * has been corrupted. 2805 */ 2806 ASSERT(cur <= end); 2807 2808 if (cur == end) 2809 return (IPOPT_EOL); 2810 2811 opt = cur[IPOPT_OPTVAL]; 2812 2813 /* 2814 * Skip any NOP options. 2815 */ 2816 while (opt == IPOPT_NOP) { 2817 cur++; 2818 if (cur == end) 2819 return (IPOPT_EOL); 2820 opt = cur[IPOPT_OPTVAL]; 2821 } 2822 2823 if (opt == IPOPT_EOL) 2824 return (IPOPT_EOL); 2825 2826 /* 2827 * Option requiring a length. 2828 */ 2829 if ((cur + 1) >= end) { 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 return (IPOPT_EOL); 2832 } 2833 len = cur[IPOPT_OLEN]; 2834 if (len < 2) { 2835 optp->ipoptp_flags |= IPOPTP_ERROR; 2836 return (IPOPT_EOL); 2837 } 2838 optp->ipoptp_cur = cur; 2839 optp->ipoptp_len = len; 2840 optp->ipoptp_next = cur + len; 2841 if (cur + len > end) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (IPOPT_EOL); 2844 } 2845 2846 /* 2847 * For the options which require a pointer field, make sure 2848 * its there, and make sure it points to either something 2849 * inside this option, or the end of the option. 2850 */ 2851 switch (opt) { 2852 case IPOPT_RR: 2853 case IPOPT_TS: 2854 case IPOPT_LSRR: 2855 case IPOPT_SSRR: 2856 if (len <= IPOPT_OFFSET) { 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 return (opt); 2859 } 2860 pointer = cur[IPOPT_OFFSET]; 2861 if (pointer - 1 > len) { 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 return (opt); 2864 } 2865 break; 2866 } 2867 2868 /* 2869 * Sanity check the pointer field based on the type of the 2870 * option. 2871 */ 2872 switch (opt) { 2873 case IPOPT_RR: 2874 case IPOPT_SSRR: 2875 case IPOPT_LSRR: 2876 if (pointer < IPOPT_MINOFF_SR) 2877 optp->ipoptp_flags |= IPOPTP_ERROR; 2878 break; 2879 case IPOPT_TS: 2880 if (pointer < IPOPT_MINOFF_IT) 2881 optp->ipoptp_flags |= IPOPTP_ERROR; 2882 /* 2883 * Note that the Internet Timestamp option also 2884 * contains two four bit fields (the Overflow field, 2885 * and the Flag field), which follow the pointer 2886 * field. We don't need to check that these fields 2887 * fall within the length of the option because this 2888 * was implicitely done above. We've checked that the 2889 * pointer value is at least IPOPT_MINOFF_IT, and that 2890 * it falls within the option. Since IPOPT_MINOFF_IT > 2891 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2892 */ 2893 ASSERT(len > IPOPT_POS_OV_FLG); 2894 break; 2895 } 2896 2897 return (opt); 2898 } 2899 2900 /* 2901 * Use the outgoing IP header to create an IP_OPTIONS option the way 2902 * it was passed down from the application. 2903 */ 2904 int 2905 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2906 { 2907 ipoptp_t opts; 2908 const uchar_t *opt; 2909 uint8_t optval; 2910 uint8_t optlen; 2911 uint32_t len = 0; 2912 uchar_t *buf1 = buf; 2913 2914 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2915 len += IP_ADDR_LEN; 2916 bzero(buf1, IP_ADDR_LEN); 2917 2918 /* 2919 * OK to cast away const here, as we don't store through the returned 2920 * opts.ipoptp_cur pointer. 2921 */ 2922 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2923 optval != IPOPT_EOL; 2924 optval = ipoptp_next(&opts)) { 2925 int off; 2926 2927 opt = opts.ipoptp_cur; 2928 optlen = opts.ipoptp_len; 2929 switch (optval) { 2930 case IPOPT_SSRR: 2931 case IPOPT_LSRR: 2932 2933 /* 2934 * Insert ipha_dst as the first entry in the source 2935 * route and move down the entries on step. 2936 * The last entry gets placed at buf1. 2937 */ 2938 buf[IPOPT_OPTVAL] = optval; 2939 buf[IPOPT_OLEN] = optlen; 2940 buf[IPOPT_OFFSET] = optlen; 2941 2942 off = optlen - IP_ADDR_LEN; 2943 if (off < 0) { 2944 /* No entries in source route */ 2945 break; 2946 } 2947 /* Last entry in source route */ 2948 bcopy(opt + off, buf1, IP_ADDR_LEN); 2949 off -= IP_ADDR_LEN; 2950 2951 while (off > 0) { 2952 bcopy(opt + off, 2953 buf + off + IP_ADDR_LEN, 2954 IP_ADDR_LEN); 2955 off -= IP_ADDR_LEN; 2956 } 2957 /* ipha_dst into first slot */ 2958 bcopy(&ipha->ipha_dst, 2959 buf + off + IP_ADDR_LEN, 2960 IP_ADDR_LEN); 2961 buf += optlen; 2962 len += optlen; 2963 break; 2964 2965 case IPOPT_COMSEC: 2966 case IPOPT_SECURITY: 2967 /* if passing up a label is not ok, then remove */ 2968 if (is_system_labeled()) 2969 break; 2970 /* FALLTHROUGH */ 2971 default: 2972 bcopy(opt, buf, optlen); 2973 buf += optlen; 2974 len += optlen; 2975 break; 2976 } 2977 } 2978 done: 2979 /* Pad the resulting options */ 2980 while (len & 0x3) { 2981 *buf++ = IPOPT_EOL; 2982 len++; 2983 } 2984 return (len); 2985 } 2986 2987 /* 2988 * Update any record route or timestamp options to include this host. 2989 * Reverse any source route option. 2990 * This routine assumes that the options are well formed i.e. that they 2991 * have already been checked. 2992 */ 2993 static void 2994 icmp_options_update(ipha_t *ipha) 2995 { 2996 ipoptp_t opts; 2997 uchar_t *opt; 2998 uint8_t optval; 2999 ipaddr_t src; /* Our local address */ 3000 ipaddr_t dst; 3001 3002 ip2dbg(("icmp_options_update\n")); 3003 src = ipha->ipha_src; 3004 dst = ipha->ipha_dst; 3005 3006 for (optval = ipoptp_first(&opts, ipha); 3007 optval != IPOPT_EOL; 3008 optval = ipoptp_next(&opts)) { 3009 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3010 opt = opts.ipoptp_cur; 3011 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3012 optval, opts.ipoptp_len)); 3013 switch (optval) { 3014 int off1, off2; 3015 case IPOPT_SSRR: 3016 case IPOPT_LSRR: 3017 /* 3018 * Reverse the source route. The first entry 3019 * should be the next to last one in the current 3020 * source route (the last entry is our address). 3021 * The last entry should be the final destination. 3022 */ 3023 off1 = IPOPT_MINOFF_SR - 1; 3024 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3025 if (off2 < 0) { 3026 /* No entries in source route */ 3027 ip1dbg(( 3028 "icmp_options_update: bad src route\n")); 3029 break; 3030 } 3031 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3032 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3033 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3034 off2 -= IP_ADDR_LEN; 3035 3036 while (off1 < off2) { 3037 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3038 bcopy((char *)opt + off2, (char *)opt + off1, 3039 IP_ADDR_LEN); 3040 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3041 off1 += IP_ADDR_LEN; 3042 off2 -= IP_ADDR_LEN; 3043 } 3044 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3045 break; 3046 } 3047 } 3048 } 3049 3050 /* 3051 * Process received ICMP Redirect messages. 3052 */ 3053 static void 3054 icmp_redirect(ill_t *ill, mblk_t *mp) 3055 { 3056 ipha_t *ipha; 3057 int iph_hdr_length; 3058 icmph_t *icmph; 3059 ipha_t *ipha_err; 3060 ire_t *ire; 3061 ire_t *prev_ire; 3062 ire_t *save_ire; 3063 ipaddr_t src, dst, gateway; 3064 iulp_t ulp_info = { 0 }; 3065 int error; 3066 ip_stack_t *ipst; 3067 3068 ASSERT(ill != NULL); 3069 ipst = ill->ill_ipst; 3070 3071 ipha = (ipha_t *)mp->b_rptr; 3072 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3073 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3074 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3075 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3076 freemsg(mp); 3077 return; 3078 } 3079 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3080 ipha_err = (ipha_t *)&icmph[1]; 3081 src = ipha->ipha_src; 3082 dst = ipha_err->ipha_dst; 3083 gateway = icmph->icmph_rd_gateway; 3084 /* Make sure the new gateway is reachable somehow. */ 3085 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3086 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3087 /* 3088 * Make sure we had a route for the dest in question and that 3089 * that route was pointing to the old gateway (the source of the 3090 * redirect packet.) 3091 */ 3092 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3093 NULL, MATCH_IRE_GW, ipst); 3094 /* 3095 * Check that 3096 * the redirect was not from ourselves 3097 * the new gateway and the old gateway are directly reachable 3098 */ 3099 if (!prev_ire || 3100 !ire || 3101 ire->ire_type == IRE_LOCAL) { 3102 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3103 freemsg(mp); 3104 if (ire != NULL) 3105 ire_refrele(ire); 3106 if (prev_ire != NULL) 3107 ire_refrele(prev_ire); 3108 return; 3109 } 3110 3111 /* 3112 * Should we use the old ULP info to create the new gateway? From 3113 * a user's perspective, we should inherit the info so that it 3114 * is a "smooth" transition. If we do not do that, then new 3115 * connections going thru the new gateway will have no route metrics, 3116 * which is counter-intuitive to user. From a network point of 3117 * view, this may or may not make sense even though the new gateway 3118 * is still directly connected to us so the route metrics should not 3119 * change much. 3120 * 3121 * But if the old ire_uinfo is not initialized, we do another 3122 * recursive lookup on the dest using the new gateway. There may 3123 * be a route to that. If so, use it to initialize the redirect 3124 * route. 3125 */ 3126 if (prev_ire->ire_uinfo.iulp_set) { 3127 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3128 } else { 3129 ire_t *tmp_ire; 3130 ire_t *sire; 3131 3132 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3133 ALL_ZONES, 0, NULL, 3134 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3135 ipst); 3136 if (sire != NULL) { 3137 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3138 /* 3139 * If sire != NULL, ire_ftable_lookup() should not 3140 * return a NULL value. 3141 */ 3142 ASSERT(tmp_ire != NULL); 3143 ire_refrele(tmp_ire); 3144 ire_refrele(sire); 3145 } else if (tmp_ire != NULL) { 3146 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3147 sizeof (iulp_t)); 3148 ire_refrele(tmp_ire); 3149 } 3150 } 3151 if (prev_ire->ire_type == IRE_CACHE) 3152 ire_delete(prev_ire); 3153 ire_refrele(prev_ire); 3154 /* 3155 * TODO: more precise handling for cases 0, 2, 3, the latter two 3156 * require TOS routing 3157 */ 3158 switch (icmph->icmph_code) { 3159 case 0: 3160 case 1: 3161 /* TODO: TOS specificity for cases 2 and 3 */ 3162 case 2: 3163 case 3: 3164 break; 3165 default: 3166 freemsg(mp); 3167 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3168 ire_refrele(ire); 3169 return; 3170 } 3171 /* 3172 * Create a Route Association. This will allow us to remember that 3173 * someone we believe told us to use the particular gateway. 3174 */ 3175 save_ire = ire; 3176 ire = ire_create( 3177 (uchar_t *)&dst, /* dest addr */ 3178 (uchar_t *)&ip_g_all_ones, /* mask */ 3179 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3180 (uchar_t *)&gateway, /* gateway addr */ 3181 &save_ire->ire_max_frag, /* max frag */ 3182 NULL, /* no src nce */ 3183 NULL, /* no rfq */ 3184 NULL, /* no stq */ 3185 IRE_HOST, 3186 NULL, /* ipif */ 3187 0, /* cmask */ 3188 0, /* phandle */ 3189 0, /* ihandle */ 3190 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3191 &ulp_info, 3192 NULL, /* tsol_gc_t */ 3193 NULL, /* gcgrp */ 3194 ipst); 3195 3196 if (ire == NULL) { 3197 freemsg(mp); 3198 ire_refrele(save_ire); 3199 return; 3200 } 3201 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3202 ire_refrele(save_ire); 3203 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3204 3205 if (error == 0) { 3206 ire_refrele(ire); /* Held in ire_add_v4 */ 3207 /* tell routing sockets that we received a redirect */ 3208 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3209 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3210 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3211 } 3212 3213 /* 3214 * Delete any existing IRE_HOST type redirect ires for this destination. 3215 * This together with the added IRE has the effect of 3216 * modifying an existing redirect. 3217 */ 3218 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3219 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3220 if (prev_ire != NULL) { 3221 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3222 ire_delete(prev_ire); 3223 ire_refrele(prev_ire); 3224 } 3225 3226 freemsg(mp); 3227 } 3228 3229 /* 3230 * Generate an ICMP parameter problem message. 3231 */ 3232 static void 3233 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3234 ip_stack_t *ipst) 3235 { 3236 icmph_t icmph; 3237 boolean_t mctl_present; 3238 mblk_t *first_mp; 3239 3240 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3241 3242 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3243 if (mctl_present) 3244 freeb(first_mp); 3245 return; 3246 } 3247 3248 bzero(&icmph, sizeof (icmph_t)); 3249 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3250 icmph.icmph_pp_ptr = ptr; 3251 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3252 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3253 ipst); 3254 } 3255 3256 /* 3257 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3258 * the ICMP header pointed to by "stuff". (May be called as writer.) 3259 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3260 * an icmp error packet can be sent. 3261 * Assigns an appropriate source address to the packet. If ipha_dst is 3262 * one of our addresses use it for source. Otherwise pick a source based 3263 * on a route lookup back to ipha_src. 3264 * Note that ipha_src must be set here since the 3265 * packet is likely to arrive on an ill queue in ip_wput() which will 3266 * not set a source address. 3267 */ 3268 static void 3269 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3270 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3271 { 3272 ipaddr_t dst; 3273 icmph_t *icmph; 3274 ipha_t *ipha; 3275 uint_t len_needed; 3276 size_t msg_len; 3277 mblk_t *mp1; 3278 ipaddr_t src; 3279 ire_t *ire; 3280 mblk_t *ipsec_mp; 3281 ipsec_out_t *io = NULL; 3282 3283 if (mctl_present) { 3284 /* 3285 * If it is : 3286 * 3287 * 1) a IPSEC_OUT, then this is caused by outbound 3288 * datagram originating on this host. IPsec processing 3289 * may or may not have been done. Refer to comments above 3290 * icmp_inbound_error_fanout for details. 3291 * 3292 * 2) a IPSEC_IN if we are generating a icmp_message 3293 * for an incoming datagram destined for us i.e called 3294 * from ip_fanout_send_icmp. 3295 */ 3296 ipsec_info_t *in; 3297 ipsec_mp = mp; 3298 mp = ipsec_mp->b_cont; 3299 3300 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3301 ipha = (ipha_t *)mp->b_rptr; 3302 3303 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3304 in->ipsec_info_type == IPSEC_IN); 3305 3306 if (in->ipsec_info_type == IPSEC_IN) { 3307 /* 3308 * Convert the IPSEC_IN to IPSEC_OUT. 3309 */ 3310 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3311 BUMP_MIB(&ipst->ips_ip_mib, 3312 ipIfStatsOutDiscards); 3313 return; 3314 } 3315 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3316 } else { 3317 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3318 io = (ipsec_out_t *)in; 3319 /* 3320 * Clear out ipsec_out_proc_begin, so we do a fresh 3321 * ire lookup. 3322 */ 3323 io->ipsec_out_proc_begin = B_FALSE; 3324 } 3325 ASSERT(zoneid == io->ipsec_out_zoneid); 3326 ASSERT(zoneid != ALL_ZONES); 3327 } else { 3328 /* 3329 * This is in clear. The icmp message we are building 3330 * here should go out in clear. 3331 * 3332 * Pardon the convolution of it all, but it's easier to 3333 * allocate a "use cleartext" IPSEC_IN message and convert 3334 * it than it is to allocate a new one. 3335 */ 3336 ipsec_in_t *ii; 3337 ASSERT(DB_TYPE(mp) == M_DATA); 3338 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3339 if (ipsec_mp == NULL) { 3340 freemsg(mp); 3341 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3342 return; 3343 } 3344 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3345 3346 /* This is not a secure packet */ 3347 ii->ipsec_in_secure = B_FALSE; 3348 /* 3349 * For trusted extensions using a shared IP address we can 3350 * send using any zoneid. 3351 */ 3352 if (zoneid == ALL_ZONES) 3353 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3354 else 3355 ii->ipsec_in_zoneid = zoneid; 3356 ipsec_mp->b_cont = mp; 3357 ipha = (ipha_t *)mp->b_rptr; 3358 /* 3359 * Convert the IPSEC_IN to IPSEC_OUT. 3360 */ 3361 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3362 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3363 return; 3364 } 3365 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3366 } 3367 3368 /* Remember our eventual destination */ 3369 dst = ipha->ipha_src; 3370 3371 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3372 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3373 if (ire != NULL && 3374 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3375 src = ipha->ipha_dst; 3376 } else { 3377 if (ire != NULL) 3378 ire_refrele(ire); 3379 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3380 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3381 ipst); 3382 if (ire == NULL) { 3383 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3384 freemsg(ipsec_mp); 3385 return; 3386 } 3387 src = ire->ire_src_addr; 3388 } 3389 3390 if (ire != NULL) 3391 ire_refrele(ire); 3392 3393 /* 3394 * Check if we can send back more then 8 bytes in addition to 3395 * the IP header. We try to send 64 bytes of data and the internal 3396 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3397 */ 3398 len_needed = IPH_HDR_LENGTH(ipha); 3399 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3400 ipha->ipha_protocol == IPPROTO_IPV6) { 3401 3402 if (!pullupmsg(mp, -1)) { 3403 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3404 freemsg(ipsec_mp); 3405 return; 3406 } 3407 ipha = (ipha_t *)mp->b_rptr; 3408 3409 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3410 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3411 len_needed)); 3412 } else { 3413 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3414 3415 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3416 len_needed += ip_hdr_length_v6(mp, ip6h); 3417 } 3418 } 3419 len_needed += ipst->ips_ip_icmp_return; 3420 msg_len = msgdsize(mp); 3421 if (msg_len > len_needed) { 3422 (void) adjmsg(mp, len_needed - msg_len); 3423 msg_len = len_needed; 3424 } 3425 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3426 if (mp1 == NULL) { 3427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3428 freemsg(ipsec_mp); 3429 return; 3430 } 3431 mp1->b_cont = mp; 3432 mp = mp1; 3433 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3434 ipsec_mp->b_rptr == (uint8_t *)io && 3435 io->ipsec_out_type == IPSEC_OUT); 3436 ipsec_mp->b_cont = mp; 3437 3438 /* 3439 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3440 * node generates be accepted in peace by all on-host destinations. 3441 * If we do NOT assume that all on-host destinations trust 3442 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3443 * (Look for ipsec_out_icmp_loopback). 3444 */ 3445 io->ipsec_out_icmp_loopback = B_TRUE; 3446 3447 ipha = (ipha_t *)mp->b_rptr; 3448 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3449 *ipha = icmp_ipha; 3450 ipha->ipha_src = src; 3451 ipha->ipha_dst = dst; 3452 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3453 msg_len += sizeof (icmp_ipha) + len; 3454 if (msg_len > IP_MAXPACKET) { 3455 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3456 msg_len = IP_MAXPACKET; 3457 } 3458 ipha->ipha_length = htons((uint16_t)msg_len); 3459 icmph = (icmph_t *)&ipha[1]; 3460 bcopy(stuff, icmph, len); 3461 icmph->icmph_checksum = 0; 3462 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3463 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3464 put(q, ipsec_mp); 3465 } 3466 3467 /* 3468 * Determine if an ICMP error packet can be sent given the rate limit. 3469 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3470 * in milliseconds) and a burst size. Burst size number of packets can 3471 * be sent arbitrarely closely spaced. 3472 * The state is tracked using two variables to implement an approximate 3473 * token bucket filter: 3474 * icmp_pkt_err_last - lbolt value when the last burst started 3475 * icmp_pkt_err_sent - number of packets sent in current burst 3476 */ 3477 boolean_t 3478 icmp_err_rate_limit(ip_stack_t *ipst) 3479 { 3480 clock_t now = TICK_TO_MSEC(lbolt); 3481 uint_t refilled; /* Number of packets refilled in tbf since last */ 3482 /* Guard against changes by loading into local variable */ 3483 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3484 3485 if (err_interval == 0) 3486 return (B_FALSE); 3487 3488 if (ipst->ips_icmp_pkt_err_last > now) { 3489 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3490 ipst->ips_icmp_pkt_err_last = 0; 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } 3493 /* 3494 * If we are in a burst update the token bucket filter. 3495 * Update the "last" time to be close to "now" but make sure 3496 * we don't loose precision. 3497 */ 3498 if (ipst->ips_icmp_pkt_err_sent != 0) { 3499 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3500 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3501 ipst->ips_icmp_pkt_err_sent = 0; 3502 } else { 3503 ipst->ips_icmp_pkt_err_sent -= refilled; 3504 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3505 } 3506 } 3507 if (ipst->ips_icmp_pkt_err_sent == 0) { 3508 /* Start of new burst */ 3509 ipst->ips_icmp_pkt_err_last = now; 3510 } 3511 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3512 ipst->ips_icmp_pkt_err_sent++; 3513 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3514 ipst->ips_icmp_pkt_err_sent)); 3515 return (B_FALSE); 3516 } 3517 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3518 return (B_TRUE); 3519 } 3520 3521 /* 3522 * Check if it is ok to send an IPv4 ICMP error packet in 3523 * response to the IPv4 packet in mp. 3524 * Free the message and return null if no 3525 * ICMP error packet should be sent. 3526 */ 3527 static mblk_t * 3528 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3529 { 3530 icmph_t *icmph; 3531 ipha_t *ipha; 3532 uint_t len_needed; 3533 ire_t *src_ire; 3534 ire_t *dst_ire; 3535 3536 if (!mp) 3537 return (NULL); 3538 ipha = (ipha_t *)mp->b_rptr; 3539 if (ip_csum_hdr(ipha)) { 3540 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3541 freemsg(mp); 3542 return (NULL); 3543 } 3544 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3547 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3548 if (src_ire != NULL || dst_ire != NULL || 3549 CLASSD(ipha->ipha_dst) || 3550 CLASSD(ipha->ipha_src) || 3551 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3552 /* Note: only errors to the fragment with offset 0 */ 3553 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3554 freemsg(mp); 3555 if (src_ire != NULL) 3556 ire_refrele(src_ire); 3557 if (dst_ire != NULL) 3558 ire_refrele(dst_ire); 3559 return (NULL); 3560 } 3561 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3562 /* 3563 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3564 * errors in response to any ICMP errors. 3565 */ 3566 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3567 if (mp->b_wptr - mp->b_rptr < len_needed) { 3568 if (!pullupmsg(mp, len_needed)) { 3569 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3570 freemsg(mp); 3571 return (NULL); 3572 } 3573 ipha = (ipha_t *)mp->b_rptr; 3574 } 3575 icmph = (icmph_t *) 3576 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3577 switch (icmph->icmph_type) { 3578 case ICMP_DEST_UNREACHABLE: 3579 case ICMP_SOURCE_QUENCH: 3580 case ICMP_TIME_EXCEEDED: 3581 case ICMP_PARAM_PROBLEM: 3582 case ICMP_REDIRECT: 3583 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3584 freemsg(mp); 3585 return (NULL); 3586 default: 3587 break; 3588 } 3589 } 3590 /* 3591 * If this is a labeled system, then check to see if we're allowed to 3592 * send a response to this particular sender. If not, then just drop. 3593 */ 3594 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3595 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3596 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3597 freemsg(mp); 3598 return (NULL); 3599 } 3600 if (icmp_err_rate_limit(ipst)) { 3601 /* 3602 * Only send ICMP error packets every so often. 3603 * This should be done on a per port/source basis, 3604 * but for now this will suffice. 3605 */ 3606 freemsg(mp); 3607 return (NULL); 3608 } 3609 return (mp); 3610 } 3611 3612 /* 3613 * Generate an ICMP redirect message. 3614 */ 3615 static void 3616 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3617 { 3618 icmph_t icmph; 3619 3620 /* 3621 * We are called from ip_rput where we could 3622 * not have attached an IPSEC_IN. 3623 */ 3624 ASSERT(mp->b_datap->db_type == M_DATA); 3625 3626 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3627 return; 3628 } 3629 3630 bzero(&icmph, sizeof (icmph_t)); 3631 icmph.icmph_type = ICMP_REDIRECT; 3632 icmph.icmph_code = 1; 3633 icmph.icmph_rd_gateway = gateway; 3634 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3635 /* Redirects sent by router, and router is global zone */ 3636 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3637 } 3638 3639 /* 3640 * Generate an ICMP time exceeded message. 3641 */ 3642 void 3643 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3644 ip_stack_t *ipst) 3645 { 3646 icmph_t icmph; 3647 boolean_t mctl_present; 3648 mblk_t *first_mp; 3649 3650 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3651 3652 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3653 if (mctl_present) 3654 freeb(first_mp); 3655 return; 3656 } 3657 3658 bzero(&icmph, sizeof (icmph_t)); 3659 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3660 icmph.icmph_code = code; 3661 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3662 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3663 ipst); 3664 } 3665 3666 /* 3667 * Generate an ICMP unreachable message. 3668 */ 3669 void 3670 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3671 ip_stack_t *ipst) 3672 { 3673 icmph_t icmph; 3674 mblk_t *first_mp; 3675 boolean_t mctl_present; 3676 3677 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3678 3679 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3680 if (mctl_present) 3681 freeb(first_mp); 3682 return; 3683 } 3684 3685 bzero(&icmph, sizeof (icmph_t)); 3686 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3687 icmph.icmph_code = code; 3688 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3689 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3690 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3691 zoneid, ipst); 3692 } 3693 3694 /* 3695 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3696 * duplicate. As long as someone else holds the address, the interface will 3697 * stay down. When that conflict goes away, the interface is brought back up. 3698 * This is done so that accidental shutdowns of addresses aren't made 3699 * permanent. Your server will recover from a failure. 3700 * 3701 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3702 * user space process (dhcpagent). 3703 * 3704 * Recovery completes if ARP reports that the address is now ours (via 3705 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3706 * 3707 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3708 */ 3709 static void 3710 ipif_dup_recovery(void *arg) 3711 { 3712 ipif_t *ipif = arg; 3713 ill_t *ill = ipif->ipif_ill; 3714 mblk_t *arp_add_mp; 3715 mblk_t *arp_del_mp; 3716 area_t *area; 3717 ip_stack_t *ipst = ill->ill_ipst; 3718 3719 ipif->ipif_recovery_id = 0; 3720 3721 /* 3722 * No lock needed for moving or condemned check, as this is just an 3723 * optimization. 3724 */ 3725 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3726 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3727 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3728 /* No reason to try to bring this address back. */ 3729 return; 3730 } 3731 3732 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3733 goto alloc_fail; 3734 3735 if (ipif->ipif_arp_del_mp == NULL) { 3736 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3737 goto alloc_fail; 3738 ipif->ipif_arp_del_mp = arp_del_mp; 3739 } 3740 3741 /* Setting the 'unverified' flag restarts DAD */ 3742 area = (area_t *)arp_add_mp->b_rptr; 3743 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3744 ACE_F_UNVERIFIED; 3745 putnext(ill->ill_rq, arp_add_mp); 3746 return; 3747 3748 alloc_fail: 3749 /* 3750 * On allocation failure, just restart the timer. Note that the ipif 3751 * is down here, so no other thread could be trying to start a recovery 3752 * timer. The ill_lock protects the condemned flag and the recovery 3753 * timer ID. 3754 */ 3755 freemsg(arp_add_mp); 3756 mutex_enter(&ill->ill_lock); 3757 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3758 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3759 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3760 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3761 } 3762 mutex_exit(&ill->ill_lock); 3763 } 3764 3765 /* 3766 * This is for exclusive changes due to ARP. Either tear down an interface due 3767 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3768 */ 3769 /* ARGSUSED */ 3770 static void 3771 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3772 { 3773 ill_t *ill = rq->q_ptr; 3774 arh_t *arh; 3775 ipaddr_t src; 3776 ipif_t *ipif; 3777 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3778 char hbuf[MAC_STR_LEN]; 3779 char sbuf[INET_ADDRSTRLEN]; 3780 const char *failtype; 3781 boolean_t bring_up; 3782 ip_stack_t *ipst = ill->ill_ipst; 3783 3784 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3785 case AR_CN_READY: 3786 failtype = NULL; 3787 bring_up = B_TRUE; 3788 break; 3789 case AR_CN_FAILED: 3790 failtype = "in use"; 3791 bring_up = B_FALSE; 3792 break; 3793 default: 3794 failtype = "claimed"; 3795 bring_up = B_FALSE; 3796 break; 3797 } 3798 3799 arh = (arh_t *)mp->b_cont->b_rptr; 3800 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3801 3802 /* Handle failures due to probes */ 3803 if (src == 0) { 3804 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3805 IP_ADDR_LEN); 3806 } 3807 3808 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3809 sizeof (hbuf)); 3810 (void) ip_dot_addr(src, sbuf); 3811 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3812 3813 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3814 ipif->ipif_lcl_addr != src) { 3815 continue; 3816 } 3817 3818 /* 3819 * If we failed on a recovery probe, then restart the timer to 3820 * try again later. 3821 */ 3822 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3823 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3824 ill->ill_net_type == IRE_IF_RESOLVER && 3825 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3826 ipst->ips_ip_dup_recovery > 0 && 3827 ipif->ipif_recovery_id == 0) { 3828 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3829 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3830 continue; 3831 } 3832 3833 /* 3834 * If what we're trying to do has already been done, then do 3835 * nothing. 3836 */ 3837 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3838 continue; 3839 3840 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3841 3842 if (failtype == NULL) { 3843 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3844 ibuf); 3845 } else { 3846 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3847 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3848 } 3849 3850 if (bring_up) { 3851 ASSERT(ill->ill_dl_up); 3852 /* 3853 * Free up the ARP delete message so we can allocate 3854 * a fresh one through the normal path. 3855 */ 3856 freemsg(ipif->ipif_arp_del_mp); 3857 ipif->ipif_arp_del_mp = NULL; 3858 if (ipif_resolver_up(ipif, Res_act_initial) != 3859 EINPROGRESS) { 3860 ipif->ipif_addr_ready = 1; 3861 (void) ipif_up_done(ipif); 3862 } 3863 continue; 3864 } 3865 3866 mutex_enter(&ill->ill_lock); 3867 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3868 ipif->ipif_flags |= IPIF_DUPLICATE; 3869 ill->ill_ipif_dup_count++; 3870 mutex_exit(&ill->ill_lock); 3871 /* 3872 * Already exclusive on the ill; no need to handle deferred 3873 * processing here. 3874 */ 3875 (void) ipif_down(ipif, NULL, NULL); 3876 ipif_down_tail(ipif); 3877 mutex_enter(&ill->ill_lock); 3878 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3879 ill->ill_net_type == IRE_IF_RESOLVER && 3880 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3881 ipst->ips_ip_dup_recovery > 0) { 3882 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3883 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3884 } 3885 mutex_exit(&ill->ill_lock); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* ARGSUSED */ 3891 static void 3892 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3893 { 3894 ill_t *ill = rq->q_ptr; 3895 arh_t *arh; 3896 ipaddr_t src; 3897 ipif_t *ipif; 3898 3899 arh = (arh_t *)mp->b_cont->b_rptr; 3900 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3901 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3902 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3903 (void) ipif_resolver_up(ipif, Res_act_defend); 3904 } 3905 freemsg(mp); 3906 } 3907 3908 /* 3909 * News from ARP. ARP sends notification of interesting events down 3910 * to its clients using M_CTL messages with the interesting ARP packet 3911 * attached via b_cont. 3912 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3913 * queue as opposed to ARP sending the message to all the clients, i.e. all 3914 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3915 * table if a cache IRE is found to delete all the entries for the address in 3916 * the packet. 3917 */ 3918 static void 3919 ip_arp_news(queue_t *q, mblk_t *mp) 3920 { 3921 arcn_t *arcn; 3922 arh_t *arh; 3923 ire_t *ire = NULL; 3924 char hbuf[MAC_STR_LEN]; 3925 char sbuf[INET_ADDRSTRLEN]; 3926 ipaddr_t src; 3927 in6_addr_t v6src; 3928 boolean_t isv6 = B_FALSE; 3929 ipif_t *ipif; 3930 ill_t *ill; 3931 ip_stack_t *ipst; 3932 3933 if (CONN_Q(q)) { 3934 conn_t *connp = Q_TO_CONN(q); 3935 3936 ipst = connp->conn_netstack->netstack_ip; 3937 } else { 3938 ill_t *ill = (ill_t *)q->q_ptr; 3939 3940 ipst = ill->ill_ipst; 3941 } 3942 3943 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3944 if (q->q_next) { 3945 putnext(q, mp); 3946 } else 3947 freemsg(mp); 3948 return; 3949 } 3950 arh = (arh_t *)mp->b_cont->b_rptr; 3951 /* Is it one we are interested in? */ 3952 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3953 isv6 = B_TRUE; 3954 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3955 IPV6_ADDR_LEN); 3956 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3957 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3958 IP_ADDR_LEN); 3959 } else { 3960 freemsg(mp); 3961 return; 3962 } 3963 3964 ill = q->q_ptr; 3965 3966 arcn = (arcn_t *)mp->b_rptr; 3967 switch (arcn->arcn_code) { 3968 case AR_CN_BOGON: 3969 /* 3970 * Someone is sending ARP packets with a source protocol 3971 * address that we have published and for which we believe our 3972 * entry is authoritative and (when ill_arp_extend is set) 3973 * verified to be unique on the network. 3974 * 3975 * The ARP module internally handles the cases where the sender 3976 * is just probing (for DAD) and where the hardware address of 3977 * a non-authoritative entry has changed. Thus, these are the 3978 * real conflicts, and we have to do resolution. 3979 * 3980 * We back away quickly from the address if it's from DHCP or 3981 * otherwise temporary and hasn't been used recently (or at 3982 * all). We'd like to include "deprecated" addresses here as 3983 * well (as there's no real reason to defend something we're 3984 * discarding), but IPMP "reuses" this flag to mean something 3985 * other than the standard meaning. 3986 * 3987 * If the ARP module above is not extended (meaning that it 3988 * doesn't know how to defend the address), then we just log 3989 * the problem as we always did and continue on. It's not 3990 * right, but there's little else we can do, and those old ATM 3991 * users are going away anyway. 3992 */ 3993 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3994 hbuf, sizeof (hbuf)); 3995 (void) ip_dot_addr(src, sbuf); 3996 if (isv6) { 3997 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3998 ipst); 3999 } else { 4000 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4001 } 4002 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4003 uint32_t now; 4004 uint32_t maxage; 4005 clock_t lused; 4006 uint_t maxdefense; 4007 uint_t defs; 4008 4009 /* 4010 * First, figure out if this address hasn't been used 4011 * in a while. If it hasn't, then it's a better 4012 * candidate for abandoning. 4013 */ 4014 ipif = ire->ire_ipif; 4015 ASSERT(ipif != NULL); 4016 now = gethrestime_sec(); 4017 maxage = now - ire->ire_create_time; 4018 if (maxage > ipst->ips_ip_max_temp_idle) 4019 maxage = ipst->ips_ip_max_temp_idle; 4020 lused = drv_hztousec(ddi_get_lbolt() - 4021 ire->ire_last_used_time) / MICROSEC + 1; 4022 if (lused >= maxage && (ipif->ipif_flags & 4023 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4024 maxdefense = ipst->ips_ip_max_temp_defend; 4025 else 4026 maxdefense = ipst->ips_ip_max_defend; 4027 4028 /* 4029 * Now figure out how many times we've defended 4030 * ourselves. Ignore defenses that happened long in 4031 * the past. 4032 */ 4033 mutex_enter(&ire->ire_lock); 4034 if ((defs = ire->ire_defense_count) > 0 && 4035 now - ire->ire_defense_time > 4036 ipst->ips_ip_defend_interval) { 4037 ire->ire_defense_count = defs = 0; 4038 } 4039 ire->ire_defense_count++; 4040 ire->ire_defense_time = now; 4041 mutex_exit(&ire->ire_lock); 4042 ill_refhold(ill); 4043 ire_refrele(ire); 4044 4045 /* 4046 * If we've defended ourselves too many times already, 4047 * then give up and tear down the interface(s) using 4048 * this address. Otherwise, defend by sending out a 4049 * gratuitous ARP. 4050 */ 4051 if (defs >= maxdefense && ill->ill_arp_extend) { 4052 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4053 B_FALSE); 4054 } else { 4055 cmn_err(CE_WARN, 4056 "node %s is using our IP address %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 /* 4059 * If this is an old (ATM) ARP module, then 4060 * don't try to defend the address. Remain 4061 * compatible with the old behavior. Defend 4062 * only with new ARP. 4063 */ 4064 if (ill->ill_arp_extend) { 4065 qwriter_ip(ill, q, mp, ip_arp_defend, 4066 NEW_OP, B_FALSE); 4067 } else { 4068 ill_refrele(ill); 4069 } 4070 } 4071 return; 4072 } 4073 cmn_err(CE_WARN, 4074 "proxy ARP problem? Node '%s' is using %s on %s", 4075 hbuf, sbuf, ill->ill_name); 4076 if (ire != NULL) 4077 ire_refrele(ire); 4078 break; 4079 case AR_CN_ANNOUNCE: 4080 if (isv6) { 4081 /* 4082 * For XRESOLV interfaces. 4083 * Delete the IRE cache entry and NCE for this 4084 * v6 address 4085 */ 4086 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4087 /* 4088 * If v6src is a non-zero, it's a router address 4089 * as below. Do the same sort of thing to clean 4090 * out off-net IRE_CACHE entries that go through 4091 * the router. 4092 */ 4093 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4094 ire_walk_v6(ire_delete_cache_gw_v6, 4095 (char *)&v6src, ALL_ZONES, ipst); 4096 } 4097 } else { 4098 nce_hw_map_t hwm; 4099 4100 /* 4101 * ARP gives us a copy of any packet where it thinks 4102 * the address has changed, so that we can update our 4103 * caches. We're responsible for caching known answers 4104 * in the current design. We check whether the 4105 * hardware address really has changed in all of our 4106 * entries that have cached this mapping, and if so, we 4107 * blow them away. This way we will immediately pick 4108 * up the rare case of a host changing hardware 4109 * address. 4110 */ 4111 if (src == 0) 4112 break; 4113 hwm.hwm_addr = src; 4114 hwm.hwm_hwlen = arh->arh_hlen; 4115 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4116 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4117 ndp_walk_common(ipst->ips_ndp4, NULL, 4118 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4119 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4120 } 4121 break; 4122 case AR_CN_READY: 4123 /* No external v6 resolver has a contract to use this */ 4124 if (isv6) 4125 break; 4126 /* If the link is down, we'll retry this later */ 4127 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4128 break; 4129 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4130 NULL, NULL, ipst); 4131 if (ipif != NULL) { 4132 /* 4133 * If this is a duplicate recovery, then we now need to 4134 * go exclusive to bring this thing back up. 4135 */ 4136 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4137 IPIF_DUPLICATE) { 4138 ipif_refrele(ipif); 4139 ill_refhold(ill); 4140 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4141 B_FALSE); 4142 return; 4143 } 4144 /* 4145 * If this is the first notice that this address is 4146 * ready, then let the user know now. 4147 */ 4148 if ((ipif->ipif_flags & IPIF_UP) && 4149 !ipif->ipif_addr_ready) { 4150 ipif_mask_reply(ipif); 4151 ip_rts_ifmsg(ipif); 4152 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4153 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4154 } 4155 ipif->ipif_addr_ready = 1; 4156 ipif_refrele(ipif); 4157 } 4158 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4159 if (ire != NULL) { 4160 ire->ire_defense_count = 0; 4161 ire_refrele(ire); 4162 } 4163 break; 4164 case AR_CN_FAILED: 4165 /* No external v6 resolver has a contract to use this */ 4166 if (isv6) 4167 break; 4168 ill_refhold(ill); 4169 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4170 return; 4171 } 4172 freemsg(mp); 4173 } 4174 4175 /* 4176 * Create a mblk suitable for carrying the interface index and/or source link 4177 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4178 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4179 * application. 4180 */ 4181 mblk_t * 4182 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4183 ip_stack_t *ipst) 4184 { 4185 mblk_t *mp; 4186 ip_pktinfo_t *pinfo; 4187 ipha_t *ipha; 4188 struct ether_header *pether; 4189 4190 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4191 if (mp == NULL) { 4192 ip1dbg(("ip_add_info: allocation failure.\n")); 4193 return (data_mp); 4194 } 4195 4196 ipha = (ipha_t *)data_mp->b_rptr; 4197 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4198 bzero(pinfo, sizeof (ip_pktinfo_t)); 4199 pinfo->ip_pkt_flags = (uchar_t)flags; 4200 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4201 4202 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4203 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4204 if (flags & IPF_RECVADDR) { 4205 ipif_t *ipif; 4206 ire_t *ire; 4207 4208 /* 4209 * Only valid for V4 4210 */ 4211 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4212 (IPV4_VERSION << 4)); 4213 4214 ipif = ipif_get_next_ipif(NULL, ill); 4215 if (ipif != NULL) { 4216 /* 4217 * Since a decision has already been made to deliver the 4218 * packet, there is no need to test for SECATTR and 4219 * ZONEONLY. 4220 * When a multicast packet is transmitted 4221 * a cache entry is created for the multicast address. 4222 * When delivering a copy of the packet or when new 4223 * packets are received we do not want to match on the 4224 * cached entry so explicitly match on 4225 * IRE_LOCAL and IRE_LOOPBACK 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4228 IRE_LOCAL | IRE_LOOPBACK, 4229 ipif, zoneid, NULL, 4230 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4231 if (ire == NULL) { 4232 /* 4233 * packet must have come on a different 4234 * interface. 4235 * Since a decision has already been made to 4236 * deliver the packet, there is no need to test 4237 * for SECATTR and ZONEONLY. 4238 * Only match on local and broadcast ire's. 4239 * See detailed comment above. 4240 */ 4241 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4242 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4243 NULL, MATCH_IRE_TYPE, ipst); 4244 } 4245 4246 if (ire == NULL) { 4247 /* 4248 * This is either a multicast packet or 4249 * the address has been removed since 4250 * the packet was received. 4251 * Return INADDR_ANY so that normal source 4252 * selection occurs for the response. 4253 */ 4254 4255 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4256 } else { 4257 pinfo->ip_pkt_match_addr.s_addr = 4258 ire->ire_src_addr; 4259 ire_refrele(ire); 4260 } 4261 ipif_refrele(ipif); 4262 } else { 4263 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4264 } 4265 } 4266 4267 pether = (struct ether_header *)((char *)ipha 4268 - sizeof (struct ether_header)); 4269 /* 4270 * Make sure the interface is an ethernet type, since this option 4271 * is currently supported only on this type of interface. Also make 4272 * sure we are pointing correctly above db_base. 4273 */ 4274 4275 if ((flags & IPF_RECVSLLA) && 4276 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4277 (ill->ill_type == IFT_ETHER) && 4278 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4279 4280 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4281 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4282 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4283 } else { 4284 /* 4285 * Clear the bit. Indicate to upper layer that IP is not 4286 * sending this ancillary info. 4287 */ 4288 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4289 } 4290 4291 mp->b_datap->db_type = M_CTL; 4292 mp->b_wptr += sizeof (ip_pktinfo_t); 4293 mp->b_cont = data_mp; 4294 4295 return (mp); 4296 } 4297 4298 /* 4299 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4300 * part of the bind request. 4301 */ 4302 4303 boolean_t 4304 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4305 { 4306 ipsec_in_t *ii; 4307 4308 ASSERT(policy_mp != NULL); 4309 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4310 4311 ii = (ipsec_in_t *)policy_mp->b_rptr; 4312 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4313 4314 connp->conn_policy = ii->ipsec_in_policy; 4315 ii->ipsec_in_policy = NULL; 4316 4317 if (ii->ipsec_in_action != NULL) { 4318 if (connp->conn_latch == NULL) { 4319 connp->conn_latch = iplatch_create(); 4320 if (connp->conn_latch == NULL) 4321 return (B_FALSE); 4322 } 4323 ipsec_latch_inbound(connp->conn_latch, ii); 4324 } 4325 return (B_TRUE); 4326 } 4327 4328 /* 4329 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4330 * and to arrange for power-fanout assist. The ULP is identified by 4331 * adding a single byte at the end of the original bind message. 4332 * A ULP other than UDP or TCP that wishes to be recognized passes 4333 * down a bind with a zero length address. 4334 * 4335 * The binding works as follows: 4336 * - A zero byte address means just bind to the protocol. 4337 * - A four byte address is treated as a request to validate 4338 * that the address is a valid local address, appropriate for 4339 * an application to bind to. This does not affect any fanout 4340 * information in IP. 4341 * - A sizeof sin_t byte address is used to bind to only the local address 4342 * and port. 4343 * - A sizeof ipa_conn_t byte address contains complete fanout information 4344 * consisting of local and remote addresses and ports. In 4345 * this case, the addresses are both validated as appropriate 4346 * for this operation, and, if so, the information is retained 4347 * for use in the inbound fanout. 4348 * 4349 * The ULP (except in the zero-length bind) can append an 4350 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4351 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4352 * a copy of the source or destination IRE (source for local bind; 4353 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4354 * policy information contained should be copied on to the conn. 4355 * 4356 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4357 */ 4358 mblk_t * 4359 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4360 { 4361 ssize_t len; 4362 struct T_bind_req *tbr; 4363 sin_t *sin; 4364 ipa_conn_t *ac; 4365 uchar_t *ucp; 4366 mblk_t *mp1; 4367 boolean_t ire_requested; 4368 boolean_t ipsec_policy_set = B_FALSE; 4369 int error = 0; 4370 int protocol; 4371 ipa_conn_x_t *acx; 4372 4373 ASSERT(!connp->conn_af_isv6); 4374 connp->conn_pkt_isv6 = B_FALSE; 4375 4376 len = MBLKL(mp); 4377 if (len < (sizeof (*tbr) + 1)) { 4378 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4379 "ip_bind: bogus msg, len %ld", len); 4380 /* XXX: Need to return something better */ 4381 goto bad_addr; 4382 } 4383 /* Back up and extract the protocol identifier. */ 4384 mp->b_wptr--; 4385 protocol = *mp->b_wptr & 0xFF; 4386 tbr = (struct T_bind_req *)mp->b_rptr; 4387 /* Reset the message type in preparation for shipping it back. */ 4388 DB_TYPE(mp) = M_PCPROTO; 4389 4390 connp->conn_ulp = (uint8_t)protocol; 4391 4392 /* 4393 * Check for a zero length address. This is from a protocol that 4394 * wants to register to receive all packets of its type. 4395 */ 4396 if (tbr->ADDR_length == 0) { 4397 /* 4398 * These protocols are now intercepted in ip_bind_v6(). 4399 * Reject protocol-level binds here for now. 4400 * 4401 * For SCTP raw socket, ICMP sends down a bind with sin_t 4402 * so that the protocol type cannot be SCTP. 4403 */ 4404 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4405 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4406 goto bad_addr; 4407 } 4408 4409 /* 4410 * 4411 * The udp module never sends down a zero-length address, 4412 * and allowing this on a labeled system will break MLP 4413 * functionality. 4414 */ 4415 if (is_system_labeled() && protocol == IPPROTO_UDP) 4416 goto bad_addr; 4417 4418 if (connp->conn_mac_exempt) 4419 goto bad_addr; 4420 4421 /* No hash here really. The table is big enough. */ 4422 connp->conn_srcv6 = ipv6_all_zeros; 4423 4424 ipcl_proto_insert(connp, protocol); 4425 4426 tbr->PRIM_type = T_BIND_ACK; 4427 return (mp); 4428 } 4429 4430 /* Extract the address pointer from the message. */ 4431 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4432 tbr->ADDR_length); 4433 if (ucp == NULL) { 4434 ip1dbg(("ip_bind: no address\n")); 4435 goto bad_addr; 4436 } 4437 if (!OK_32PTR(ucp)) { 4438 ip1dbg(("ip_bind: unaligned address\n")); 4439 goto bad_addr; 4440 } 4441 /* 4442 * Check for trailing mps. 4443 */ 4444 4445 mp1 = mp->b_cont; 4446 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4447 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4448 4449 switch (tbr->ADDR_length) { 4450 default: 4451 ip1dbg(("ip_bind: bad address length %d\n", 4452 (int)tbr->ADDR_length)); 4453 goto bad_addr; 4454 4455 case IP_ADDR_LEN: 4456 /* Verification of local address only */ 4457 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4458 ire_requested, ipsec_policy_set, B_FALSE); 4459 break; 4460 4461 case sizeof (sin_t): 4462 sin = (sin_t *)ucp; 4463 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4464 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4465 break; 4466 4467 case sizeof (ipa_conn_t): 4468 ac = (ipa_conn_t *)ucp; 4469 /* For raw socket, the local port is not set. */ 4470 if (ac->ac_lport == 0) 4471 ac->ac_lport = connp->conn_lport; 4472 /* Always verify destination reachability. */ 4473 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4474 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4475 ipsec_policy_set, B_TRUE, B_TRUE); 4476 break; 4477 4478 case sizeof (ipa_conn_x_t): 4479 acx = (ipa_conn_x_t *)ucp; 4480 /* 4481 * Whether or not to verify destination reachability depends 4482 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4483 */ 4484 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4485 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4486 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4487 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4488 break; 4489 } 4490 if (error == EINPROGRESS) 4491 return (NULL); 4492 else if (error != 0) 4493 goto bad_addr; 4494 /* 4495 * Pass the IPsec headers size in ire_ipsec_overhead. 4496 * We can't do this in ip_bind_insert_ire because the policy 4497 * may not have been inherited at that point in time and hence 4498 * conn_out_enforce_policy may not be set. 4499 */ 4500 mp1 = mp->b_cont; 4501 if (ire_requested && connp->conn_out_enforce_policy && 4502 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4503 ire_t *ire = (ire_t *)mp1->b_rptr; 4504 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4505 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4506 } 4507 4508 /* Send it home. */ 4509 mp->b_datap->db_type = M_PCPROTO; 4510 tbr->PRIM_type = T_BIND_ACK; 4511 return (mp); 4512 4513 bad_addr: 4514 /* 4515 * If error = -1 then we generate a TBADADDR - otherwise error is 4516 * a unix errno. 4517 */ 4518 if (error > 0) 4519 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4520 else 4521 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4522 return (mp); 4523 } 4524 4525 /* 4526 * Here address is verified to be a valid local address. 4527 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4528 * address is also considered a valid local address. 4529 * In the case of a broadcast/multicast address, however, the 4530 * upper protocol is expected to reset the src address 4531 * to 0 if it sees a IRE_BROADCAST type returned so that 4532 * no packets are emitted with broadcast/multicast address as 4533 * source address (that violates hosts requirements RFC1122) 4534 * The addresses valid for bind are: 4535 * (1) - INADDR_ANY (0) 4536 * (2) - IP address of an UP interface 4537 * (3) - IP address of a DOWN interface 4538 * (4) - valid local IP broadcast addresses. In this case 4539 * the conn will only receive packets destined to 4540 * the specified broadcast address. 4541 * (5) - a multicast address. In this case 4542 * the conn will only receive packets destined to 4543 * the specified multicast address. Note: the 4544 * application still has to issue an 4545 * IP_ADD_MEMBERSHIP socket option. 4546 * 4547 * On error, return -1 for TBADADDR otherwise pass the 4548 * errno with TSYSERR reply. 4549 * 4550 * In all the above cases, the bound address must be valid in the current zone. 4551 * When the address is loopback, multicast or broadcast, there might be many 4552 * matching IREs so bind has to look up based on the zone. 4553 * 4554 * Note: lport is in network byte order. 4555 */ 4556 int 4557 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4558 boolean_t ire_requested, boolean_t ipsec_policy_set, 4559 boolean_t fanout_insert) 4560 { 4561 int error = 0; 4562 ire_t *src_ire; 4563 mblk_t *policy_mp; 4564 ipif_t *ipif; 4565 zoneid_t zoneid; 4566 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4567 4568 if (ipsec_policy_set) { 4569 policy_mp = mp->b_cont; 4570 } 4571 4572 /* 4573 * If it was previously connected, conn_fully_bound would have 4574 * been set. 4575 */ 4576 connp->conn_fully_bound = B_FALSE; 4577 4578 src_ire = NULL; 4579 ipif = NULL; 4580 4581 zoneid = IPCL_ZONEID(connp); 4582 4583 if (src_addr) { 4584 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4585 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4586 /* 4587 * If an address other than 0.0.0.0 is requested, 4588 * we verify that it is a valid address for bind 4589 * Note: Following code is in if-else-if form for 4590 * readability compared to a condition check. 4591 */ 4592 /* LINTED - statement has no consequent */ 4593 if (IRE_IS_LOCAL(src_ire)) { 4594 /* 4595 * (2) Bind to address of local UP interface 4596 */ 4597 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4598 /* 4599 * (4) Bind to broadcast address 4600 * Note: permitted only from transports that 4601 * request IRE 4602 */ 4603 if (!ire_requested) 4604 error = EADDRNOTAVAIL; 4605 } else { 4606 /* 4607 * (3) Bind to address of local DOWN interface 4608 * (ipif_lookup_addr() looks up all interfaces 4609 * but we do not get here for UP interfaces 4610 * - case (2) above) 4611 * We put the protocol byte back into the mblk 4612 * since we may come back via ip_wput_nondata() 4613 * later with this mblk if ipif_lookup_addr chooses 4614 * to defer processing. 4615 */ 4616 *mp->b_wptr++ = (char)connp->conn_ulp; 4617 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4618 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4619 &error, ipst)) != NULL) { 4620 ipif_refrele(ipif); 4621 } else if (error == EINPROGRESS) { 4622 if (src_ire != NULL) 4623 ire_refrele(src_ire); 4624 return (EINPROGRESS); 4625 } else if (CLASSD(src_addr)) { 4626 error = 0; 4627 if (src_ire != NULL) 4628 ire_refrele(src_ire); 4629 /* 4630 * (5) bind to multicast address. 4631 * Fake out the IRE returned to upper 4632 * layer to be a broadcast IRE. 4633 */ 4634 src_ire = ire_ctable_lookup( 4635 INADDR_BROADCAST, INADDR_ANY, 4636 IRE_BROADCAST, NULL, zoneid, NULL, 4637 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4638 ipst); 4639 if (src_ire == NULL || !ire_requested) 4640 error = EADDRNOTAVAIL; 4641 } else { 4642 /* 4643 * Not a valid address for bind 4644 */ 4645 error = EADDRNOTAVAIL; 4646 } 4647 /* 4648 * Just to keep it consistent with the processing in 4649 * ip_bind_v4() 4650 */ 4651 mp->b_wptr--; 4652 } 4653 if (error) { 4654 /* Red Alert! Attempting to be a bogon! */ 4655 ip1dbg(("ip_bind: bad src address 0x%x\n", 4656 ntohl(src_addr))); 4657 goto bad_addr; 4658 } 4659 } 4660 4661 /* 4662 * Allow setting new policies. For example, disconnects come 4663 * down as ipa_t bind. As we would have set conn_policy_cached 4664 * to B_TRUE before, we should set it to B_FALSE, so that policy 4665 * can change after the disconnect. 4666 */ 4667 connp->conn_policy_cached = B_FALSE; 4668 4669 /* 4670 * If not fanout_insert this was just an address verification 4671 */ 4672 if (fanout_insert) { 4673 /* 4674 * The addresses have been verified. Time to insert in 4675 * the correct fanout list. 4676 */ 4677 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4678 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4679 connp->conn_lport = lport; 4680 connp->conn_fport = 0; 4681 /* 4682 * Do we need to add a check to reject Multicast packets 4683 */ 4684 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4685 } 4686 4687 if (error == 0) { 4688 if (ire_requested) { 4689 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4690 error = -1; 4691 /* Falls through to bad_addr */ 4692 } 4693 } else if (ipsec_policy_set) { 4694 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4695 error = -1; 4696 /* Falls through to bad_addr */ 4697 } 4698 } 4699 } 4700 bad_addr: 4701 if (error != 0) { 4702 if (connp->conn_anon_port) { 4703 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4704 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4705 B_FALSE); 4706 } 4707 connp->conn_mlp_type = mlptSingle; 4708 } 4709 if (src_ire != NULL) 4710 IRE_REFRELE(src_ire); 4711 if (ipsec_policy_set) { 4712 ASSERT(policy_mp == mp->b_cont); 4713 ASSERT(policy_mp != NULL); 4714 freeb(policy_mp); 4715 /* 4716 * As of now assume that nothing else accompanies 4717 * IPSEC_POLICY_SET. 4718 */ 4719 mp->b_cont = NULL; 4720 } 4721 return (error); 4722 } 4723 4724 /* 4725 * Verify that both the source and destination addresses 4726 * are valid. If verify_dst is false, then the destination address may be 4727 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4728 * destination reachability, while tunnels do not. 4729 * Note that we allow connect to broadcast and multicast 4730 * addresses when ire_requested is set. Thus the ULP 4731 * has to check for IRE_BROADCAST and multicast. 4732 * 4733 * Returns zero if ok. 4734 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4735 * (for use with TSYSERR reply). 4736 * 4737 * Note: lport and fport are in network byte order. 4738 */ 4739 int 4740 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4741 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4742 boolean_t ire_requested, boolean_t ipsec_policy_set, 4743 boolean_t fanout_insert, boolean_t verify_dst) 4744 { 4745 ire_t *src_ire; 4746 ire_t *dst_ire; 4747 int error = 0; 4748 int protocol; 4749 mblk_t *policy_mp; 4750 ire_t *sire = NULL; 4751 ire_t *md_dst_ire = NULL; 4752 ire_t *lso_dst_ire = NULL; 4753 ill_t *ill = NULL; 4754 zoneid_t zoneid; 4755 ipaddr_t src_addr = *src_addrp; 4756 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4757 4758 src_ire = dst_ire = NULL; 4759 protocol = *mp->b_wptr & 0xFF; 4760 4761 /* 4762 * If we never got a disconnect before, clear it now. 4763 */ 4764 connp->conn_fully_bound = B_FALSE; 4765 4766 if (ipsec_policy_set) { 4767 policy_mp = mp->b_cont; 4768 } 4769 4770 zoneid = IPCL_ZONEID(connp); 4771 4772 if (CLASSD(dst_addr)) { 4773 /* Pick up an IRE_BROADCAST */ 4774 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4775 NULL, zoneid, MBLK_GETLABEL(mp), 4776 (MATCH_IRE_RECURSIVE | 4777 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4778 MATCH_IRE_SECATTR), ipst); 4779 } else { 4780 /* 4781 * If conn_dontroute is set or if conn_nexthop_set is set, 4782 * and onlink ipif is not found set ENETUNREACH error. 4783 */ 4784 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4785 ipif_t *ipif; 4786 4787 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4788 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4789 if (ipif == NULL) { 4790 error = ENETUNREACH; 4791 goto bad_addr; 4792 } 4793 ipif_refrele(ipif); 4794 } 4795 4796 if (connp->conn_nexthop_set) { 4797 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4798 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4799 MATCH_IRE_SECATTR, ipst); 4800 } else { 4801 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4802 &sire, zoneid, MBLK_GETLABEL(mp), 4803 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4804 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4805 MATCH_IRE_SECATTR), ipst); 4806 } 4807 } 4808 /* 4809 * dst_ire can't be a broadcast when not ire_requested. 4810 * We also prevent ire's with src address INADDR_ANY to 4811 * be used, which are created temporarily for 4812 * sending out packets from endpoints that have 4813 * conn_unspec_src set. If verify_dst is true, the destination must be 4814 * reachable. If verify_dst is false, the destination needn't be 4815 * reachable. 4816 * 4817 * If we match on a reject or black hole, then we've got a 4818 * local failure. May as well fail out the connect() attempt, 4819 * since it's never going to succeed. 4820 */ 4821 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4822 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4823 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4824 /* 4825 * If we're verifying destination reachability, we always want 4826 * to complain here. 4827 * 4828 * If we're not verifying destination reachability but the 4829 * destination has a route, we still want to fail on the 4830 * temporary address and broadcast address tests. 4831 */ 4832 if (verify_dst || (dst_ire != NULL)) { 4833 if (ip_debug > 2) { 4834 pr_addr_dbg("ip_bind_connected: bad connected " 4835 "dst %s\n", AF_INET, &dst_addr); 4836 } 4837 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4838 error = ENETUNREACH; 4839 else 4840 error = EHOSTUNREACH; 4841 goto bad_addr; 4842 } 4843 } 4844 4845 /* 4846 * We now know that routing will allow us to reach the destination. 4847 * Check whether Trusted Solaris policy allows communication with this 4848 * host, and pretend that the destination is unreachable if not. 4849 * 4850 * This is never a problem for TCP, since that transport is known to 4851 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4852 * handling. If the remote is unreachable, it will be detected at that 4853 * point, so there's no reason to check it here. 4854 * 4855 * Note that for sendto (and other datagram-oriented friends), this 4856 * check is done as part of the data path label computation instead. 4857 * The check here is just to make non-TCP connect() report the right 4858 * error. 4859 */ 4860 if (dst_ire != NULL && is_system_labeled() && 4861 !IPCL_IS_TCP(connp) && 4862 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4863 connp->conn_mac_exempt, ipst) != 0) { 4864 error = EHOSTUNREACH; 4865 if (ip_debug > 2) { 4866 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4867 AF_INET, &dst_addr); 4868 } 4869 goto bad_addr; 4870 } 4871 4872 /* 4873 * If the app does a connect(), it means that it will most likely 4874 * send more than 1 packet to the destination. It makes sense 4875 * to clear the temporary flag. 4876 */ 4877 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4878 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4879 irb_t *irb = dst_ire->ire_bucket; 4880 4881 rw_enter(&irb->irb_lock, RW_WRITER); 4882 /* 4883 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4884 * the lock to guarantee irb_tmp_ire_cnt. 4885 */ 4886 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4887 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4888 irb->irb_tmp_ire_cnt--; 4889 } 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && 4920 dst_ire->ire_type == IRE_LOCAL && 4921 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4922 /* 4923 * If the IRE belongs to a different zone, look for a matching 4924 * route in the forwarding table and use the source address from 4925 * that route. 4926 */ 4927 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4928 zoneid, 0, NULL, 4929 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4930 MATCH_IRE_RJ_BHOLE, ipst); 4931 if (src_ire == NULL) { 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4935 if (!(src_ire->ire_type & IRE_HOST)) 4936 error = ENETUNREACH; 4937 else 4938 error = EHOSTUNREACH; 4939 goto bad_addr; 4940 } 4941 if (src_addr == INADDR_ANY) 4942 src_addr = src_ire->ire_src_addr; 4943 ire_refrele(src_ire); 4944 src_ire = NULL; 4945 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4946 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4947 src_addr = sire->ire_src_addr; 4948 ire_refrele(dst_ire); 4949 dst_ire = sire; 4950 sire = NULL; 4951 } else { 4952 /* 4953 * Pick a source address so that a proper inbound 4954 * load spreading would happen. 4955 */ 4956 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4957 ipif_t *src_ipif = NULL; 4958 ire_t *ipif_ire; 4959 4960 /* 4961 * Supply a local source address such that inbound 4962 * load spreading happens. 4963 * 4964 * Determine the best source address on this ill for 4965 * the destination. 4966 * 4967 * 1) For broadcast, we should return a broadcast ire 4968 * found above so that upper layers know that the 4969 * destination address is a broadcast address. 4970 * 4971 * 2) If this is part of a group, select a better 4972 * source address so that better inbound load 4973 * balancing happens. Do the same if the ipif 4974 * is DEPRECATED. 4975 * 4976 * 3) If the outgoing interface is part of a usesrc 4977 * group, then try selecting a source address from 4978 * the usesrc ILL. 4979 */ 4980 if ((dst_ire->ire_zoneid != zoneid && 4981 dst_ire->ire_zoneid != ALL_ZONES) || 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 ((dst_ill->ill_group != NULL) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (dst_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(dst_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 } else if (ipsec_policy_set) { 5112 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 } 5117 5118 /* 5119 * Cache IPsec policy in this conn. If we have per-socket policy, 5120 * we'll cache that. If we don't, we'll inherit global policy. 5121 * 5122 * We can't insert until the conn reflects the policy. Note that 5123 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5124 * connections where we don't have a policy. This is to prevent 5125 * global policy lookups in the inbound path. 5126 * 5127 * If we insert before we set conn_policy_cached, 5128 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5129 * because global policy cound be non-empty. We normally call 5130 * ipsec_check_policy() for conn_policy_cached connections only if 5131 * ipc_in_enforce_policy is set. But in this case, 5132 * conn_policy_cached can get set anytime since we made the 5133 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5134 * called, which will make the above assumption false. Thus, we 5135 * need to insert after we set conn_policy_cached. 5136 */ 5137 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5138 goto bad_addr; 5139 5140 if (fanout_insert) { 5141 /* 5142 * The addresses have been verified. Time to insert in 5143 * the correct fanout list. 5144 */ 5145 error = ipcl_conn_insert(connp, protocol, src_addr, 5146 dst_addr, connp->conn_ports); 5147 } 5148 5149 if (error == 0) { 5150 connp->conn_fully_bound = B_TRUE; 5151 /* 5152 * Our initial checks for LSO/MDT have passed; the IRE is not 5153 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5154 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5155 * ip_xxinfo_return(), which performs further checks 5156 * against them and upon success, returns the LSO/MDT info 5157 * mblk which we will attach to the bind acknowledgment. 5158 */ 5159 if (lso_dst_ire != NULL) { 5160 mblk_t *lsoinfo_mp; 5161 5162 ASSERT(ill->ill_lso_capab != NULL); 5163 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5164 ill->ill_name, ill->ill_lso_capab)) != NULL) 5165 linkb(mp, lsoinfo_mp); 5166 } else if (md_dst_ire != NULL) { 5167 mblk_t *mdinfo_mp; 5168 5169 ASSERT(ill->ill_mdt_capab != NULL); 5170 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5171 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5172 linkb(mp, mdinfo_mp); 5173 } 5174 } 5175 bad_addr: 5176 if (ipsec_policy_set) { 5177 ASSERT(policy_mp == mp->b_cont); 5178 ASSERT(policy_mp != NULL); 5179 freeb(policy_mp); 5180 /* 5181 * As of now assume that nothing else accompanies 5182 * IPSEC_POLICY_SET. 5183 */ 5184 mp->b_cont = NULL; 5185 } 5186 if (src_ire != NULL) 5187 IRE_REFRELE(src_ire); 5188 if (dst_ire != NULL) 5189 IRE_REFRELE(dst_ire); 5190 if (sire != NULL) 5191 IRE_REFRELE(sire); 5192 if (md_dst_ire != NULL) 5193 IRE_REFRELE(md_dst_ire); 5194 if (lso_dst_ire != NULL) 5195 IRE_REFRELE(lso_dst_ire); 5196 return (error); 5197 } 5198 5199 /* 5200 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5201 * Prefers dst_ire over src_ire. 5202 */ 5203 static boolean_t 5204 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5205 { 5206 mblk_t *mp1; 5207 ire_t *ret_ire = NULL; 5208 5209 mp1 = mp->b_cont; 5210 ASSERT(mp1 != NULL); 5211 5212 if (ire != NULL) { 5213 /* 5214 * mp1 initialized above to IRE_DB_REQ_TYPE 5215 * appended mblk. Its <upper protocol>'s 5216 * job to make sure there is room. 5217 */ 5218 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5219 return (0); 5220 5221 mp1->b_datap->db_type = IRE_DB_TYPE; 5222 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5223 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5224 ret_ire = (ire_t *)mp1->b_rptr; 5225 /* 5226 * Pass the latest setting of the ip_path_mtu_discovery and 5227 * copy the ulp info if any. 5228 */ 5229 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5230 IPH_DF : 0; 5231 if (ulp_info != NULL) { 5232 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5233 sizeof (iulp_t)); 5234 } 5235 ret_ire->ire_mp = mp1; 5236 } else { 5237 /* 5238 * No IRE was found. Remove IRE mblk. 5239 */ 5240 mp->b_cont = mp1->b_cont; 5241 freeb(mp1); 5242 } 5243 5244 return (1); 5245 } 5246 5247 /* 5248 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5249 * the final piece where we don't. Return a pointer to the first mblk in the 5250 * result, and update the pointer to the next mblk to chew on. If anything 5251 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5252 * NULL pointer. 5253 */ 5254 mblk_t * 5255 ip_carve_mp(mblk_t **mpp, ssize_t len) 5256 { 5257 mblk_t *mp0; 5258 mblk_t *mp1; 5259 mblk_t *mp2; 5260 5261 if (!len || !mpp || !(mp0 = *mpp)) 5262 return (NULL); 5263 /* If we aren't going to consume the first mblk, we need a dup. */ 5264 if (mp0->b_wptr - mp0->b_rptr > len) { 5265 mp1 = dupb(mp0); 5266 if (mp1) { 5267 /* Partition the data between the two mblks. */ 5268 mp1->b_wptr = mp1->b_rptr + len; 5269 mp0->b_rptr = mp1->b_wptr; 5270 /* 5271 * after adjustments if mblk not consumed is now 5272 * unaligned, try to align it. If this fails free 5273 * all messages and let upper layer recover. 5274 */ 5275 if (!OK_32PTR(mp0->b_rptr)) { 5276 if (!pullupmsg(mp0, -1)) { 5277 freemsg(mp0); 5278 freemsg(mp1); 5279 *mpp = NULL; 5280 return (NULL); 5281 } 5282 } 5283 } 5284 return (mp1); 5285 } 5286 /* Eat through as many mblks as we need to get len bytes. */ 5287 len -= mp0->b_wptr - mp0->b_rptr; 5288 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5289 if (mp2->b_wptr - mp2->b_rptr > len) { 5290 /* 5291 * We won't consume the entire last mblk. Like 5292 * above, dup and partition it. 5293 */ 5294 mp1->b_cont = dupb(mp2); 5295 mp1 = mp1->b_cont; 5296 if (!mp1) { 5297 /* 5298 * Trouble. Rather than go to a lot of 5299 * trouble to clean up, we free the messages. 5300 * This won't be any worse than losing it on 5301 * the wire. 5302 */ 5303 freemsg(mp0); 5304 freemsg(mp2); 5305 *mpp = NULL; 5306 return (NULL); 5307 } 5308 mp1->b_wptr = mp1->b_rptr + len; 5309 mp2->b_rptr = mp1->b_wptr; 5310 /* 5311 * after adjustments if mblk not consumed is now 5312 * unaligned, try to align it. If this fails free 5313 * all messages and let upper layer recover. 5314 */ 5315 if (!OK_32PTR(mp2->b_rptr)) { 5316 if (!pullupmsg(mp2, -1)) { 5317 freemsg(mp0); 5318 freemsg(mp2); 5319 *mpp = NULL; 5320 return (NULL); 5321 } 5322 } 5323 *mpp = mp2; 5324 return (mp0); 5325 } 5326 /* Decrement len by the amount we just got. */ 5327 len -= mp2->b_wptr - mp2->b_rptr; 5328 } 5329 /* 5330 * len should be reduced to zero now. If not our caller has 5331 * screwed up. 5332 */ 5333 if (len) { 5334 /* Shouldn't happen! */ 5335 freemsg(mp0); 5336 *mpp = NULL; 5337 return (NULL); 5338 } 5339 /* 5340 * We consumed up to exactly the end of an mblk. Detach the part 5341 * we are returning from the rest of the chain. 5342 */ 5343 mp1->b_cont = NULL; 5344 *mpp = mp2; 5345 return (mp0); 5346 } 5347 5348 /* The ill stream is being unplumbed. Called from ip_close */ 5349 int 5350 ip_modclose(ill_t *ill) 5351 { 5352 boolean_t success; 5353 ipsq_t *ipsq; 5354 ipif_t *ipif; 5355 queue_t *q = ill->ill_rq; 5356 ip_stack_t *ipst = ill->ill_ipst; 5357 clock_t timeout; 5358 5359 /* 5360 * Wait for the ACKs of all deferred control messages to be processed. 5361 * In particular, we wait for a potential capability reset initiated 5362 * in ip_sioctl_plink() to complete before proceeding. 5363 * 5364 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5365 * in case the driver never replies. 5366 */ 5367 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5368 mutex_enter(&ill->ill_lock); 5369 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5370 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5371 /* Timeout */ 5372 break; 5373 } 5374 } 5375 mutex_exit(&ill->ill_lock); 5376 5377 /* 5378 * Forcibly enter the ipsq after some delay. This is to take 5379 * care of the case when some ioctl does not complete because 5380 * we sent a control message to the driver and it did not 5381 * send us a reply. We want to be able to at least unplumb 5382 * and replumb rather than force the user to reboot the system. 5383 */ 5384 success = ipsq_enter(ill, B_FALSE); 5385 5386 /* 5387 * Open/close/push/pop is guaranteed to be single threaded 5388 * per stream by STREAMS. FS guarantees that all references 5389 * from top are gone before close is called. So there can't 5390 * be another close thread that has set CONDEMNED on this ill. 5391 * and cause ipsq_enter to return failure. 5392 */ 5393 ASSERT(success); 5394 ipsq = ill->ill_phyint->phyint_ipsq; 5395 5396 /* 5397 * Mark it condemned. No new reference will be made to this ill. 5398 * Lookup functions will return an error. Threads that try to 5399 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5400 * that the refcnt will drop down to zero. 5401 */ 5402 mutex_enter(&ill->ill_lock); 5403 ill->ill_state_flags |= ILL_CONDEMNED; 5404 for (ipif = ill->ill_ipif; ipif != NULL; 5405 ipif = ipif->ipif_next) { 5406 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5407 } 5408 /* 5409 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5410 * returns error if ILL_CONDEMNED is set 5411 */ 5412 cv_broadcast(&ill->ill_cv); 5413 mutex_exit(&ill->ill_lock); 5414 5415 /* 5416 * Send all the deferred DLPI messages downstream which came in 5417 * during the small window right before ipsq_enter(). We do this 5418 * without waiting for the ACKs because all the ACKs for M_PROTO 5419 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5420 */ 5421 ill_dlpi_send_deferred(ill); 5422 5423 /* 5424 * Shut down fragmentation reassembly. 5425 * ill_frag_timer won't start a timer again. 5426 * Now cancel any existing timer 5427 */ 5428 (void) untimeout(ill->ill_frag_timer_id); 5429 (void) ill_frag_timeout(ill, 0); 5430 5431 /* 5432 * If MOVE was in progress, clear the 5433 * move_in_progress fields also. 5434 */ 5435 if (ill->ill_move_in_progress) { 5436 ILL_CLEAR_MOVE(ill); 5437 } 5438 5439 /* 5440 * Call ill_delete to bring down the ipifs, ilms and ill on 5441 * this ill. Then wait for the refcnts to drop to zero. 5442 * ill_is_quiescent checks whether the ill is really quiescent. 5443 * Then make sure that threads that are waiting to enter the 5444 * ipsq have seen the error returned by ipsq_enter and have 5445 * gone away. Then we call ill_delete_tail which does the 5446 * DL_UNBIND_REQ with the driver and then qprocsoff. 5447 */ 5448 ill_delete(ill); 5449 mutex_enter(&ill->ill_lock); 5450 while (!ill_is_quiescent(ill)) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 while (ill->ill_waiters) 5453 cv_wait(&ill->ill_cv, &ill->ill_lock); 5454 5455 mutex_exit(&ill->ill_lock); 5456 5457 /* 5458 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5459 * it held until the end of the function since the cleanup 5460 * below needs to be able to use the ip_stack_t. 5461 */ 5462 netstack_hold(ipst->ips_netstack); 5463 5464 /* qprocsoff is called in ill_delete_tail */ 5465 ill_delete_tail(ill); 5466 ASSERT(ill->ill_ipst == NULL); 5467 5468 /* 5469 * Walk through all upper (conn) streams and qenable 5470 * those that have queued data. 5471 * close synchronization needs this to 5472 * be done to ensure that all upper layers blocked 5473 * due to flow control to the closing device 5474 * get unblocked. 5475 */ 5476 ip1dbg(("ip_wsrv: walking\n")); 5477 conn_walk_drain(ipst); 5478 5479 mutex_enter(&ipst->ips_ip_mi_lock); 5480 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5481 mutex_exit(&ipst->ips_ip_mi_lock); 5482 5483 /* 5484 * credp could be null if the open didn't succeed and ip_modopen 5485 * itself calls ip_close. 5486 */ 5487 if (ill->ill_credp != NULL) 5488 crfree(ill->ill_credp); 5489 5490 mutex_enter(&ill->ill_lock); 5491 ill_nic_info_dispatch(ill); 5492 mutex_exit(&ill->ill_lock); 5493 5494 /* 5495 * Now we are done with the module close pieces that 5496 * need the netstack_t. 5497 */ 5498 netstack_rele(ipst->ips_netstack); 5499 5500 mi_close_free((IDP)ill); 5501 q->q_ptr = WR(q)->q_ptr = NULL; 5502 5503 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5504 5505 return (0); 5506 } 5507 5508 /* 5509 * This is called as part of close() for IP, UDP, ICMP, and RTS 5510 * in order to quiesce the conn. 5511 */ 5512 void 5513 ip_quiesce_conn(conn_t *connp) 5514 { 5515 boolean_t drain_cleanup_reqd = B_FALSE; 5516 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5517 boolean_t ilg_cleanup_reqd = B_FALSE; 5518 ip_stack_t *ipst; 5519 5520 ASSERT(!IPCL_IS_TCP(connp)); 5521 ipst = connp->conn_netstack->netstack_ip; 5522 5523 /* 5524 * Mark the conn as closing, and this conn must not be 5525 * inserted in future into any list. Eg. conn_drain_insert(), 5526 * won't insert this conn into the conn_drain_list. 5527 * Similarly ill_pending_mp_add() will not add any mp to 5528 * the pending mp list, after this conn has started closing. 5529 * 5530 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5531 * cannot get set henceforth. 5532 */ 5533 mutex_enter(&connp->conn_lock); 5534 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5535 connp->conn_state_flags |= CONN_CLOSING; 5536 if (connp->conn_idl != NULL) 5537 drain_cleanup_reqd = B_TRUE; 5538 if (connp->conn_oper_pending_ill != NULL) 5539 conn_ioctl_cleanup_reqd = B_TRUE; 5540 if (connp->conn_dhcpinit_ill != NULL) { 5541 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5542 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5543 connp->conn_dhcpinit_ill = NULL; 5544 } 5545 if (connp->conn_ilg_inuse != 0) 5546 ilg_cleanup_reqd = B_TRUE; 5547 mutex_exit(&connp->conn_lock); 5548 5549 if (conn_ioctl_cleanup_reqd) 5550 conn_ioctl_cleanup(connp); 5551 5552 if (is_system_labeled() && connp->conn_anon_port) { 5553 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5554 connp->conn_mlp_type, connp->conn_ulp, 5555 ntohs(connp->conn_lport), B_FALSE); 5556 connp->conn_anon_port = 0; 5557 } 5558 connp->conn_mlp_type = mlptSingle; 5559 5560 /* 5561 * Remove this conn from any fanout list it is on. 5562 * and then wait for any threads currently operating 5563 * on this endpoint to finish 5564 */ 5565 ipcl_hash_remove(connp); 5566 5567 /* 5568 * Remove this conn from the drain list, and do 5569 * any other cleanup that may be required. 5570 * (Only non-tcp streams may have a non-null conn_idl. 5571 * TCP streams are never flow controlled, and 5572 * conn_idl will be null) 5573 */ 5574 if (drain_cleanup_reqd) 5575 conn_drain_tail(connp, B_TRUE); 5576 5577 if (connp == ipst->ips_ip_g_mrouter) 5578 (void) ip_mrouter_done(NULL, ipst); 5579 5580 if (ilg_cleanup_reqd) 5581 ilg_delete_all(connp); 5582 5583 conn_delete_ire(connp, NULL); 5584 5585 /* 5586 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5587 * callers from write side can't be there now because close 5588 * is in progress. The only other caller is ipcl_walk 5589 * which checks for the condemned flag. 5590 */ 5591 mutex_enter(&connp->conn_lock); 5592 connp->conn_state_flags |= CONN_CONDEMNED; 5593 while (connp->conn_ref != 1) 5594 cv_wait(&connp->conn_cv, &connp->conn_lock); 5595 connp->conn_state_flags |= CONN_QUIESCED; 5596 mutex_exit(&connp->conn_lock); 5597 } 5598 5599 /* ARGSUSED */ 5600 int 5601 ip_close(queue_t *q, int flags) 5602 { 5603 conn_t *connp; 5604 5605 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5606 5607 /* 5608 * Call the appropriate delete routine depending on whether this is 5609 * a module or device. 5610 */ 5611 if (WR(q)->q_next != NULL) { 5612 /* This is a module close */ 5613 return (ip_modclose((ill_t *)q->q_ptr)); 5614 } 5615 5616 connp = q->q_ptr; 5617 ip_quiesce_conn(connp); 5618 5619 qprocsoff(q); 5620 5621 /* 5622 * Now we are truly single threaded on this stream, and can 5623 * delete the things hanging off the connp, and finally the connp. 5624 * We removed this connp from the fanout list, it cannot be 5625 * accessed thru the fanouts, and we already waited for the 5626 * conn_ref to drop to 0. We are already in close, so 5627 * there cannot be any other thread from the top. qprocsoff 5628 * has completed, and service has completed or won't run in 5629 * future. 5630 */ 5631 ASSERT(connp->conn_ref == 1); 5632 5633 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5634 5635 connp->conn_ref--; 5636 ipcl_conn_destroy(connp); 5637 5638 q->q_ptr = WR(q)->q_ptr = NULL; 5639 return (0); 5640 } 5641 5642 /* 5643 * Wapper around putnext() so that ip_rts_request can merely use 5644 * conn_recv. 5645 */ 5646 /*ARGSUSED2*/ 5647 static void 5648 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5649 { 5650 conn_t *connp = (conn_t *)arg1; 5651 5652 putnext(connp->conn_rq, mp); 5653 } 5654 5655 /* Return the IP checksum for the IP header at "iph". */ 5656 uint16_t 5657 ip_csum_hdr(ipha_t *ipha) 5658 { 5659 uint16_t *uph; 5660 uint32_t sum; 5661 int opt_len; 5662 5663 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5664 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5665 uph = (uint16_t *)ipha; 5666 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5667 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5668 if (opt_len > 0) { 5669 do { 5670 sum += uph[10]; 5671 sum += uph[11]; 5672 uph += 2; 5673 } while (--opt_len); 5674 } 5675 sum = (sum & 0xFFFF) + (sum >> 16); 5676 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5677 if (sum == 0xffff) 5678 sum = 0; 5679 return ((uint16_t)sum); 5680 } 5681 5682 /* 5683 * Called when the module is about to be unloaded 5684 */ 5685 void 5686 ip_ddi_destroy(void) 5687 { 5688 tnet_fini(); 5689 5690 icmp_ddi_destroy(); 5691 rts_ddi_destroy(); 5692 udp_ddi_destroy(); 5693 sctp_ddi_g_destroy(); 5694 tcp_ddi_g_destroy(); 5695 ipsec_policy_g_destroy(); 5696 ipcl_g_destroy(); 5697 ip_net_g_destroy(); 5698 ip_ire_g_fini(); 5699 inet_minor_destroy(ip_minor_arena_sa); 5700 #if defined(_LP64) 5701 inet_minor_destroy(ip_minor_arena_la); 5702 #endif 5703 5704 #ifdef DEBUG 5705 list_destroy(&ip_thread_list); 5706 rw_destroy(&ip_thread_rwlock); 5707 tsd_destroy(&ip_thread_data); 5708 #endif 5709 5710 netstack_unregister(NS_IP); 5711 } 5712 5713 /* 5714 * First step in cleanup. 5715 */ 5716 /* ARGSUSED */ 5717 static void 5718 ip_stack_shutdown(netstackid_t stackid, void *arg) 5719 { 5720 ip_stack_t *ipst = (ip_stack_t *)arg; 5721 5722 #ifdef NS_DEBUG 5723 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5724 #endif 5725 5726 /* Get rid of loopback interfaces and their IREs */ 5727 ip_loopback_cleanup(ipst); 5728 } 5729 5730 /* 5731 * Free the IP stack instance. 5732 */ 5733 static void 5734 ip_stack_fini(netstackid_t stackid, void *arg) 5735 { 5736 ip_stack_t *ipst = (ip_stack_t *)arg; 5737 int ret; 5738 5739 #ifdef NS_DEBUG 5740 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5741 #endif 5742 ipv4_hook_destroy(ipst); 5743 ipv6_hook_destroy(ipst); 5744 ip_net_destroy(ipst); 5745 5746 rw_destroy(&ipst->ips_srcid_lock); 5747 5748 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5749 ipst->ips_ip_mibkp = NULL; 5750 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5751 ipst->ips_icmp_mibkp = NULL; 5752 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5753 ipst->ips_ip_kstat = NULL; 5754 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5755 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5756 ipst->ips_ip6_kstat = NULL; 5757 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5758 5759 nd_free(&ipst->ips_ip_g_nd); 5760 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5761 ipst->ips_param_arr = NULL; 5762 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5763 ipst->ips_ndp_arr = NULL; 5764 5765 ip_mrouter_stack_destroy(ipst); 5766 5767 mutex_destroy(&ipst->ips_ip_mi_lock); 5768 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5769 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5770 rw_destroy(&ipst->ips_ip_g_nd_lock); 5771 5772 ret = untimeout(ipst->ips_igmp_timeout_id); 5773 if (ret == -1) { 5774 ASSERT(ipst->ips_igmp_timeout_id == 0); 5775 } else { 5776 ASSERT(ipst->ips_igmp_timeout_id != 0); 5777 ipst->ips_igmp_timeout_id = 0; 5778 } 5779 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5780 if (ret == -1) { 5781 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5782 } else { 5783 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5784 ipst->ips_igmp_slowtimeout_id = 0; 5785 } 5786 ret = untimeout(ipst->ips_mld_timeout_id); 5787 if (ret == -1) { 5788 ASSERT(ipst->ips_mld_timeout_id == 0); 5789 } else { 5790 ASSERT(ipst->ips_mld_timeout_id != 0); 5791 ipst->ips_mld_timeout_id = 0; 5792 } 5793 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5794 if (ret == -1) { 5795 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5796 } else { 5797 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5798 ipst->ips_mld_slowtimeout_id = 0; 5799 } 5800 ret = untimeout(ipst->ips_ip_ire_expire_id); 5801 if (ret == -1) { 5802 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5803 } else { 5804 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5805 ipst->ips_ip_ire_expire_id = 0; 5806 } 5807 5808 mutex_destroy(&ipst->ips_igmp_timer_lock); 5809 mutex_destroy(&ipst->ips_mld_timer_lock); 5810 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5811 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5812 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5813 rw_destroy(&ipst->ips_ill_g_lock); 5814 5815 ip_ire_fini(ipst); 5816 ip6_asp_free(ipst); 5817 conn_drain_fini(ipst); 5818 ipcl_destroy(ipst); 5819 5820 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5821 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5822 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5823 ipst->ips_ndp4 = NULL; 5824 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5825 ipst->ips_ndp6 = NULL; 5826 5827 if (ipst->ips_loopback_ksp != NULL) { 5828 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5829 ipst->ips_loopback_ksp = NULL; 5830 } 5831 5832 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5833 ipst->ips_phyint_g_list = NULL; 5834 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5835 ipst->ips_ill_g_heads = NULL; 5836 5837 kmem_free(ipst, sizeof (*ipst)); 5838 } 5839 5840 /* 5841 * This function is called from the TSD destructor, and is used to debug 5842 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5843 * details. 5844 */ 5845 static void 5846 ip_thread_exit(void *phash) 5847 { 5848 th_hash_t *thh = phash; 5849 5850 rw_enter(&ip_thread_rwlock, RW_WRITER); 5851 list_remove(&ip_thread_list, thh); 5852 rw_exit(&ip_thread_rwlock); 5853 mod_hash_destroy_hash(thh->thh_hash); 5854 kmem_free(thh, sizeof (*thh)); 5855 } 5856 5857 /* 5858 * Called when the IP kernel module is loaded into the kernel 5859 */ 5860 void 5861 ip_ddi_init(void) 5862 { 5863 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5864 5865 /* 5866 * For IP and TCP the minor numbers should start from 2 since we have 4 5867 * initial devices: ip, ip6, tcp, tcp6. 5868 */ 5869 /* 5870 * If this is a 64-bit kernel, then create two separate arenas - 5871 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5872 * other for socket apps in the range 2^^18 through 2^^32-1. 5873 */ 5874 ip_minor_arena_la = NULL; 5875 ip_minor_arena_sa = NULL; 5876 #if defined(_LP64) 5877 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5878 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5879 cmn_err(CE_PANIC, 5880 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5881 } 5882 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5883 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5884 cmn_err(CE_PANIC, 5885 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5886 } 5887 #else 5888 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5889 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5890 cmn_err(CE_PANIC, 5891 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5892 } 5893 #endif 5894 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5895 5896 ipcl_g_init(); 5897 ip_ire_g_init(); 5898 ip_net_g_init(); 5899 5900 #ifdef DEBUG 5901 tsd_create(&ip_thread_data, ip_thread_exit); 5902 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5903 list_create(&ip_thread_list, sizeof (th_hash_t), 5904 offsetof(th_hash_t, thh_link)); 5905 #endif 5906 5907 /* 5908 * We want to be informed each time a stack is created or 5909 * destroyed in the kernel, so we can maintain the 5910 * set of udp_stack_t's. 5911 */ 5912 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5913 ip_stack_fini); 5914 5915 ipsec_policy_g_init(); 5916 tcp_ddi_g_init(); 5917 sctp_ddi_g_init(); 5918 5919 tnet_init(); 5920 5921 udp_ddi_init(); 5922 rts_ddi_init(); 5923 icmp_ddi_init(); 5924 } 5925 5926 /* 5927 * Initialize the IP stack instance. 5928 */ 5929 static void * 5930 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5931 { 5932 ip_stack_t *ipst; 5933 ipparam_t *pa; 5934 ipndp_t *na; 5935 5936 #ifdef NS_DEBUG 5937 printf("ip_stack_init(stack %d)\n", stackid); 5938 #endif 5939 5940 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5941 ipst->ips_netstack = ns; 5942 5943 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5944 KM_SLEEP); 5945 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5946 KM_SLEEP); 5947 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5948 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5949 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5950 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5951 5952 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5953 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5954 ipst->ips_igmp_deferred_next = INFINITY; 5955 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5956 ipst->ips_mld_deferred_next = INFINITY; 5957 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5958 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5959 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5960 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5961 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5962 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5963 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5964 5965 ipcl_init(ipst); 5966 ip_ire_init(ipst); 5967 ip6_asp_init(ipst); 5968 ipif_init(ipst); 5969 conn_drain_init(ipst); 5970 ip_mrouter_stack_init(ipst); 5971 5972 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5973 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5974 5975 ipst->ips_ip_multirt_log_interval = 1000; 5976 5977 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5978 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5979 ipst->ips_ill_index = 1; 5980 5981 ipst->ips_saved_ip_g_forward = -1; 5982 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5983 5984 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5985 ipst->ips_param_arr = pa; 5986 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5987 5988 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5989 ipst->ips_ndp_arr = na; 5990 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5991 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5992 (caddr_t)&ipst->ips_ip_g_forward; 5993 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5994 (caddr_t)&ipst->ips_ipv6_forward; 5995 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5996 "ip_cgtp_filter") == 0); 5997 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5998 (caddr_t)&ipst->ips_ip_cgtp_filter; 5999 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6000 "ipmp_hook_emulation") == 0); 6001 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6002 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6003 6004 (void) ip_param_register(&ipst->ips_ip_g_nd, 6005 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6006 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6007 6008 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6009 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6010 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6011 ipst->ips_ip6_kstat = 6012 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6013 6014 ipst->ips_ipmp_enable_failback = B_TRUE; 6015 6016 ipst->ips_ip_src_id = 1; 6017 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6018 6019 ip_net_init(ipst, ns); 6020 ipv4_hook_init(ipst); 6021 ipv6_hook_init(ipst); 6022 6023 return (ipst); 6024 } 6025 6026 /* 6027 * Allocate and initialize a DLPI template of the specified length. (May be 6028 * called as writer.) 6029 */ 6030 mblk_t * 6031 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6032 { 6033 mblk_t *mp; 6034 6035 mp = allocb(len, BPRI_MED); 6036 if (!mp) 6037 return (NULL); 6038 6039 /* 6040 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6041 * of which we don't seem to use) are sent with M_PCPROTO, and 6042 * that other DLPI are M_PROTO. 6043 */ 6044 if (prim == DL_INFO_REQ) { 6045 mp->b_datap->db_type = M_PCPROTO; 6046 } else { 6047 mp->b_datap->db_type = M_PROTO; 6048 } 6049 6050 mp->b_wptr = mp->b_rptr + len; 6051 bzero(mp->b_rptr, len); 6052 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6053 return (mp); 6054 } 6055 6056 /* 6057 * Debug formatting routine. Returns a character string representation of the 6058 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6059 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6060 * 6061 * Once the ndd table-printing interfaces are removed, this can be changed to 6062 * standard dotted-decimal form. 6063 */ 6064 char * 6065 ip_dot_addr(ipaddr_t addr, char *buf) 6066 { 6067 uint8_t *ap = (uint8_t *)&addr; 6068 6069 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6070 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6071 return (buf); 6072 } 6073 6074 /* 6075 * Write the given MAC address as a printable string in the usual colon- 6076 * separated format. 6077 */ 6078 const char * 6079 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6080 { 6081 char *bp; 6082 6083 if (alen == 0 || buflen < 4) 6084 return ("?"); 6085 bp = buf; 6086 for (;;) { 6087 /* 6088 * If there are more MAC address bytes available, but we won't 6089 * have any room to print them, then add "..." to the string 6090 * instead. See below for the 'magic number' explanation. 6091 */ 6092 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6093 (void) strcpy(bp, "..."); 6094 break; 6095 } 6096 (void) sprintf(bp, "%02x", *addr++); 6097 bp += 2; 6098 if (--alen == 0) 6099 break; 6100 *bp++ = ':'; 6101 buflen -= 3; 6102 /* 6103 * At this point, based on the first 'if' statement above, 6104 * either alen == 1 and buflen >= 3, or alen > 1 and 6105 * buflen >= 4. The first case leaves room for the final "xx" 6106 * number and trailing NUL byte. The second leaves room for at 6107 * least "...". Thus the apparently 'magic' numbers chosen for 6108 * that statement. 6109 */ 6110 } 6111 return (buf); 6112 } 6113 6114 /* 6115 * Send an ICMP error after patching up the packet appropriately. Returns 6116 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6117 */ 6118 static boolean_t 6119 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6120 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6121 zoneid_t zoneid, ip_stack_t *ipst) 6122 { 6123 ipha_t *ipha; 6124 mblk_t *first_mp; 6125 boolean_t secure; 6126 unsigned char db_type; 6127 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6128 6129 first_mp = mp; 6130 if (mctl_present) { 6131 mp = mp->b_cont; 6132 secure = ipsec_in_is_secure(first_mp); 6133 ASSERT(mp != NULL); 6134 } else { 6135 /* 6136 * If this is an ICMP error being reported - which goes 6137 * up as M_CTLs, we need to convert them to M_DATA till 6138 * we finish checking with global policy because 6139 * ipsec_check_global_policy() assumes M_DATA as clear 6140 * and M_CTL as secure. 6141 */ 6142 db_type = DB_TYPE(mp); 6143 DB_TYPE(mp) = M_DATA; 6144 secure = B_FALSE; 6145 } 6146 /* 6147 * We are generating an icmp error for some inbound packet. 6148 * Called from all ip_fanout_(udp, tcp, proto) functions. 6149 * Before we generate an error, check with global policy 6150 * to see whether this is allowed to enter the system. As 6151 * there is no "conn", we are checking with global policy. 6152 */ 6153 ipha = (ipha_t *)mp->b_rptr; 6154 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6155 first_mp = ipsec_check_global_policy(first_mp, NULL, 6156 ipha, NULL, mctl_present, ipst->ips_netstack); 6157 if (first_mp == NULL) 6158 return (B_FALSE); 6159 } 6160 6161 if (!mctl_present) 6162 DB_TYPE(mp) = db_type; 6163 6164 if (flags & IP_FF_SEND_ICMP) { 6165 if (flags & IP_FF_HDR_COMPLETE) { 6166 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6167 freemsg(first_mp); 6168 return (B_TRUE); 6169 } 6170 } 6171 if (flags & IP_FF_CKSUM) { 6172 /* 6173 * Have to correct checksum since 6174 * the packet might have been 6175 * fragmented and the reassembly code in ip_rput 6176 * does not restore the IP checksum. 6177 */ 6178 ipha->ipha_hdr_checksum = 0; 6179 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6180 } 6181 switch (icmp_type) { 6182 case ICMP_DEST_UNREACHABLE: 6183 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6184 ipst); 6185 break; 6186 default: 6187 freemsg(first_mp); 6188 break; 6189 } 6190 } else { 6191 freemsg(first_mp); 6192 return (B_FALSE); 6193 } 6194 6195 return (B_TRUE); 6196 } 6197 6198 /* 6199 * Used to send an ICMP error message when a packet is received for 6200 * a protocol that is not supported. The mblk passed as argument 6201 * is consumed by this function. 6202 */ 6203 void 6204 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6205 ip_stack_t *ipst) 6206 { 6207 mblk_t *mp; 6208 ipha_t *ipha; 6209 ill_t *ill; 6210 ipsec_in_t *ii; 6211 6212 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6213 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6214 6215 mp = ipsec_mp->b_cont; 6216 ipsec_mp->b_cont = NULL; 6217 ipha = (ipha_t *)mp->b_rptr; 6218 /* Get ill from index in ipsec_in_t. */ 6219 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6220 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6221 ipst); 6222 if (ill != NULL) { 6223 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6224 if (ip_fanout_send_icmp(q, mp, flags, 6225 ICMP_DEST_UNREACHABLE, 6226 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6227 BUMP_MIB(ill->ill_ip_mib, 6228 ipIfStatsInUnknownProtos); 6229 } 6230 } else { 6231 if (ip_fanout_send_icmp_v6(q, mp, flags, 6232 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6233 0, B_FALSE, zoneid, ipst)) { 6234 BUMP_MIB(ill->ill_ip_mib, 6235 ipIfStatsInUnknownProtos); 6236 } 6237 } 6238 ill_refrele(ill); 6239 } else { /* re-link for the freemsg() below. */ 6240 ipsec_mp->b_cont = mp; 6241 } 6242 6243 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6244 freemsg(ipsec_mp); 6245 } 6246 6247 /* 6248 * See if the inbound datagram has had IPsec processing applied to it. 6249 */ 6250 boolean_t 6251 ipsec_in_is_secure(mblk_t *ipsec_mp) 6252 { 6253 ipsec_in_t *ii; 6254 6255 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6256 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6257 6258 if (ii->ipsec_in_loopback) { 6259 return (ii->ipsec_in_secure); 6260 } else { 6261 return (ii->ipsec_in_ah_sa != NULL || 6262 ii->ipsec_in_esp_sa != NULL || 6263 ii->ipsec_in_decaps); 6264 } 6265 } 6266 6267 /* 6268 * Handle protocols with which IP is less intimate. There 6269 * can be more than one stream bound to a particular 6270 * protocol. When this is the case, normally each one gets a copy 6271 * of any incoming packets. 6272 * 6273 * IPsec NOTE : 6274 * 6275 * Don't allow a secure packet going up a non-secure connection. 6276 * We don't allow this because 6277 * 6278 * 1) Reply might go out in clear which will be dropped at 6279 * the sending side. 6280 * 2) If the reply goes out in clear it will give the 6281 * adversary enough information for getting the key in 6282 * most of the cases. 6283 * 6284 * Moreover getting a secure packet when we expect clear 6285 * implies that SA's were added without checking for 6286 * policy on both ends. This should not happen once ISAKMP 6287 * is used to negotiate SAs as SAs will be added only after 6288 * verifying the policy. 6289 * 6290 * NOTE : If the packet was tunneled and not multicast we only send 6291 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6292 * back to delivering packets to AF_INET6 raw sockets. 6293 * 6294 * IPQoS Notes: 6295 * Once we have determined the client, invoke IPPF processing. 6296 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6297 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6298 * ip_policy will be false. 6299 * 6300 * Zones notes: 6301 * Currently only applications in the global zone can create raw sockets for 6302 * protocols other than ICMP. So unlike the broadcast / multicast case of 6303 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6304 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6305 */ 6306 static void 6307 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6308 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6309 zoneid_t zoneid) 6310 { 6311 queue_t *rq; 6312 mblk_t *mp1, *first_mp1; 6313 uint_t protocol = ipha->ipha_protocol; 6314 ipaddr_t dst; 6315 boolean_t one_only; 6316 mblk_t *first_mp = mp; 6317 boolean_t secure; 6318 uint32_t ill_index; 6319 conn_t *connp, *first_connp, *next_connp; 6320 connf_t *connfp; 6321 boolean_t shared_addr; 6322 mib2_ipIfStatsEntry_t *mibptr; 6323 ip_stack_t *ipst = recv_ill->ill_ipst; 6324 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6325 6326 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6327 if (mctl_present) { 6328 mp = first_mp->b_cont; 6329 secure = ipsec_in_is_secure(first_mp); 6330 ASSERT(mp != NULL); 6331 } else { 6332 secure = B_FALSE; 6333 } 6334 dst = ipha->ipha_dst; 6335 /* 6336 * If the packet was tunneled and not multicast we only send to it 6337 * the first match. 6338 */ 6339 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6340 !CLASSD(dst)); 6341 6342 shared_addr = (zoneid == ALL_ZONES); 6343 if (shared_addr) { 6344 /* 6345 * We don't allow multilevel ports for raw IP, so no need to 6346 * check for that here. 6347 */ 6348 zoneid = tsol_packet_to_zoneid(mp); 6349 } 6350 6351 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6352 mutex_enter(&connfp->connf_lock); 6353 connp = connfp->connf_head; 6354 for (connp = connfp->connf_head; connp != NULL; 6355 connp = connp->conn_next) { 6356 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6357 zoneid) && 6358 (!is_system_labeled() || 6359 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6360 connp))) { 6361 break; 6362 } 6363 } 6364 6365 if (connp == NULL || connp->conn_upq == NULL) { 6366 /* 6367 * No one bound to these addresses. Is 6368 * there a client that wants all 6369 * unclaimed datagrams? 6370 */ 6371 mutex_exit(&connfp->connf_lock); 6372 /* 6373 * Check for IPPROTO_ENCAP... 6374 */ 6375 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6376 /* 6377 * If an IPsec mblk is here on a multicast 6378 * tunnel (using ip_mroute stuff), check policy here, 6379 * THEN ship off to ip_mroute_decap(). 6380 * 6381 * BTW, If I match a configured IP-in-IP 6382 * tunnel, this path will not be reached, and 6383 * ip_mroute_decap will never be called. 6384 */ 6385 first_mp = ipsec_check_global_policy(first_mp, connp, 6386 ipha, NULL, mctl_present, ipst->ips_netstack); 6387 if (first_mp != NULL) { 6388 if (mctl_present) 6389 freeb(first_mp); 6390 ip_mroute_decap(q, mp, ill); 6391 } /* Else we already freed everything! */ 6392 } else { 6393 /* 6394 * Otherwise send an ICMP protocol unreachable. 6395 */ 6396 if (ip_fanout_send_icmp(q, first_mp, flags, 6397 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6398 mctl_present, zoneid, ipst)) { 6399 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6400 } 6401 } 6402 return; 6403 } 6404 CONN_INC_REF(connp); 6405 first_connp = connp; 6406 6407 /* 6408 * Only send message to one tunnel driver by immediately 6409 * terminating the loop. 6410 */ 6411 connp = one_only ? NULL : connp->conn_next; 6412 6413 for (;;) { 6414 while (connp != NULL) { 6415 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6416 flags, zoneid) && 6417 (!is_system_labeled() || 6418 tsol_receive_local(mp, &dst, IPV4_VERSION, 6419 shared_addr, connp))) 6420 break; 6421 connp = connp->conn_next; 6422 } 6423 6424 /* 6425 * Copy the packet. 6426 */ 6427 if (connp == NULL || connp->conn_upq == NULL || 6428 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6429 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6430 /* 6431 * No more interested clients or memory 6432 * allocation failed 6433 */ 6434 connp = first_connp; 6435 break; 6436 } 6437 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6438 CONN_INC_REF(connp); 6439 mutex_exit(&connfp->connf_lock); 6440 rq = connp->conn_rq; 6441 if (!canputnext(rq)) { 6442 if (flags & IP_FF_RAWIP) { 6443 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6444 } else { 6445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6446 } 6447 6448 freemsg(first_mp1); 6449 } else { 6450 /* 6451 * Don't enforce here if we're an actual tunnel - 6452 * let "tun" do it instead. 6453 */ 6454 if (!IPCL_IS_IPTUN(connp) && 6455 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6456 secure)) { 6457 first_mp1 = ipsec_check_inbound_policy 6458 (first_mp1, connp, ipha, NULL, 6459 mctl_present); 6460 } 6461 if (first_mp1 != NULL) { 6462 int in_flags = 0; 6463 /* 6464 * ip_fanout_proto also gets called from 6465 * icmp_inbound_error_fanout, in which case 6466 * the msg type is M_CTL. Don't add info 6467 * in this case for the time being. In future 6468 * when there is a need for knowing the 6469 * inbound iface index for ICMP error msgs, 6470 * then this can be changed. 6471 */ 6472 if (connp->conn_recvif) 6473 in_flags = IPF_RECVIF; 6474 /* 6475 * The ULP may support IP_RECVPKTINFO for both 6476 * IP v4 and v6 so pass the appropriate argument 6477 * based on conn IP version. 6478 */ 6479 if (connp->conn_ip_recvpktinfo) { 6480 if (connp->conn_af_isv6) { 6481 /* 6482 * V6 only needs index 6483 */ 6484 in_flags |= IPF_RECVIF; 6485 } else { 6486 /* 6487 * V4 needs index + 6488 * matching address. 6489 */ 6490 in_flags |= IPF_RECVADDR; 6491 } 6492 } 6493 if ((in_flags != 0) && 6494 (mp->b_datap->db_type != M_CTL)) { 6495 /* 6496 * the actual data will be 6497 * contained in b_cont upon 6498 * successful return of the 6499 * following call else 6500 * original mblk is returned 6501 */ 6502 ASSERT(recv_ill != NULL); 6503 mp1 = ip_add_info(mp1, recv_ill, 6504 in_flags, IPCL_ZONEID(connp), ipst); 6505 } 6506 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6507 if (mctl_present) 6508 freeb(first_mp1); 6509 (connp->conn_recv)(connp, mp1, NULL); 6510 } 6511 } 6512 mutex_enter(&connfp->connf_lock); 6513 /* Follow the next pointer before releasing the conn. */ 6514 next_connp = connp->conn_next; 6515 CONN_DEC_REF(connp); 6516 connp = next_connp; 6517 } 6518 6519 /* Last one. Send it upstream. */ 6520 mutex_exit(&connfp->connf_lock); 6521 6522 /* 6523 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6524 * will be set to false. 6525 */ 6526 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6527 ill_index = ill->ill_phyint->phyint_ifindex; 6528 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6529 if (mp == NULL) { 6530 CONN_DEC_REF(connp); 6531 if (mctl_present) { 6532 freeb(first_mp); 6533 } 6534 return; 6535 } 6536 } 6537 6538 rq = connp->conn_rq; 6539 if (!canputnext(rq)) { 6540 if (flags & IP_FF_RAWIP) { 6541 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6542 } else { 6543 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6544 } 6545 6546 freemsg(first_mp); 6547 } else { 6548 if (IPCL_IS_IPTUN(connp)) { 6549 /* 6550 * Tunneled packet. We enforce policy in the tunnel 6551 * module itself. 6552 * 6553 * Send the WHOLE packet up (incl. IPSEC_IN) without 6554 * a policy check. 6555 * FIXME to use conn_recv for tun later. 6556 */ 6557 putnext(rq, first_mp); 6558 CONN_DEC_REF(connp); 6559 return; 6560 } 6561 6562 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6563 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6564 ipha, NULL, mctl_present); 6565 } 6566 6567 if (first_mp != NULL) { 6568 int in_flags = 0; 6569 6570 /* 6571 * ip_fanout_proto also gets called 6572 * from icmp_inbound_error_fanout, in 6573 * which case the msg type is M_CTL. 6574 * Don't add info in this case for time 6575 * being. In future when there is a 6576 * need for knowing the inbound iface 6577 * index for ICMP error msgs, then this 6578 * can be changed 6579 */ 6580 if (connp->conn_recvif) 6581 in_flags = IPF_RECVIF; 6582 if (connp->conn_ip_recvpktinfo) { 6583 if (connp->conn_af_isv6) { 6584 /* 6585 * V6 only needs index 6586 */ 6587 in_flags |= IPF_RECVIF; 6588 } else { 6589 /* 6590 * V4 needs index + 6591 * matching address. 6592 */ 6593 in_flags |= IPF_RECVADDR; 6594 } 6595 } 6596 if ((in_flags != 0) && 6597 (mp->b_datap->db_type != M_CTL)) { 6598 6599 /* 6600 * the actual data will be contained in 6601 * b_cont upon successful return 6602 * of the following call else original 6603 * mblk is returned 6604 */ 6605 ASSERT(recv_ill != NULL); 6606 mp = ip_add_info(mp, recv_ill, 6607 in_flags, IPCL_ZONEID(connp), ipst); 6608 } 6609 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6610 (connp->conn_recv)(connp, mp, NULL); 6611 if (mctl_present) 6612 freeb(first_mp); 6613 } 6614 } 6615 CONN_DEC_REF(connp); 6616 } 6617 6618 /* 6619 * Fanout for TCP packets 6620 * The caller puts <fport, lport> in the ports parameter. 6621 * 6622 * IPQoS Notes 6623 * Before sending it to the client, invoke IPPF processing. 6624 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6625 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6626 * ip_policy is false. 6627 */ 6628 static void 6629 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6630 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6631 { 6632 mblk_t *first_mp; 6633 boolean_t secure; 6634 uint32_t ill_index; 6635 int ip_hdr_len; 6636 tcph_t *tcph; 6637 boolean_t syn_present = B_FALSE; 6638 conn_t *connp; 6639 ip_stack_t *ipst = recv_ill->ill_ipst; 6640 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6641 6642 ASSERT(recv_ill != NULL); 6643 6644 first_mp = mp; 6645 if (mctl_present) { 6646 ASSERT(first_mp->b_datap->db_type == M_CTL); 6647 mp = first_mp->b_cont; 6648 secure = ipsec_in_is_secure(first_mp); 6649 ASSERT(mp != NULL); 6650 } else { 6651 secure = B_FALSE; 6652 } 6653 6654 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6655 6656 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6657 zoneid, ipst)) == NULL) { 6658 /* 6659 * No connected connection or listener. Send a 6660 * TH_RST via tcp_xmit_listeners_reset. 6661 */ 6662 6663 /* Initiate IPPf processing, if needed. */ 6664 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6665 uint32_t ill_index; 6666 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6667 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6668 if (first_mp == NULL) 6669 return; 6670 } 6671 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6672 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6673 zoneid)); 6674 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6675 ipst->ips_netstack->netstack_tcp, NULL); 6676 return; 6677 } 6678 6679 /* 6680 * Allocate the SYN for the TCP connection here itself 6681 */ 6682 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6683 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6684 if (IPCL_IS_TCP(connp)) { 6685 squeue_t *sqp; 6686 6687 /* 6688 * For fused tcp loopback, assign the eager's 6689 * squeue to be that of the active connect's. 6690 * Note that we don't check for IP_FF_LOOPBACK 6691 * here since this routine gets called only 6692 * for loopback (unlike the IPv6 counterpart). 6693 */ 6694 ASSERT(Q_TO_CONN(q) != NULL); 6695 if (do_tcp_fusion && 6696 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6697 !secure && 6698 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6699 IPCL_IS_TCP(Q_TO_CONN(q))) { 6700 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6701 sqp = Q_TO_CONN(q)->conn_sqp; 6702 } else { 6703 sqp = IP_SQUEUE_GET(lbolt); 6704 } 6705 6706 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6707 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6708 syn_present = B_TRUE; 6709 } 6710 } 6711 6712 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6713 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6714 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6715 if ((flags & TH_RST) || (flags & TH_URG)) { 6716 CONN_DEC_REF(connp); 6717 freemsg(first_mp); 6718 return; 6719 } 6720 if (flags & TH_ACK) { 6721 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6722 ipst->ips_netstack->netstack_tcp, connp); 6723 CONN_DEC_REF(connp); 6724 return; 6725 } 6726 6727 CONN_DEC_REF(connp); 6728 freemsg(first_mp); 6729 return; 6730 } 6731 6732 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6733 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6734 NULL, mctl_present); 6735 if (first_mp == NULL) { 6736 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6737 CONN_DEC_REF(connp); 6738 return; 6739 } 6740 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6741 ASSERT(syn_present); 6742 if (mctl_present) { 6743 ASSERT(first_mp != mp); 6744 first_mp->b_datap->db_struioflag |= 6745 STRUIO_POLICY; 6746 } else { 6747 ASSERT(first_mp == mp); 6748 mp->b_datap->db_struioflag &= 6749 ~STRUIO_EAGER; 6750 mp->b_datap->db_struioflag |= 6751 STRUIO_POLICY; 6752 } 6753 } else { 6754 /* 6755 * Discard first_mp early since we're dealing with a 6756 * fully-connected conn_t and tcp doesn't do policy in 6757 * this case. 6758 */ 6759 if (mctl_present) { 6760 freeb(first_mp); 6761 mctl_present = B_FALSE; 6762 } 6763 first_mp = mp; 6764 } 6765 } 6766 6767 /* 6768 * Initiate policy processing here if needed. If we get here from 6769 * icmp_inbound_error_fanout, ip_policy is false. 6770 */ 6771 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6772 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6773 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6774 if (mp == NULL) { 6775 CONN_DEC_REF(connp); 6776 if (mctl_present) 6777 freeb(first_mp); 6778 return; 6779 } else if (mctl_present) { 6780 ASSERT(first_mp != mp); 6781 first_mp->b_cont = mp; 6782 } else { 6783 first_mp = mp; 6784 } 6785 } 6786 6787 6788 6789 /* Handle socket options. */ 6790 if (!syn_present && 6791 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6792 /* Add header */ 6793 ASSERT(recv_ill != NULL); 6794 /* 6795 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6796 * IPF_RECVIF. 6797 */ 6798 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6799 ipst); 6800 if (mp == NULL) { 6801 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6802 CONN_DEC_REF(connp); 6803 if (mctl_present) 6804 freeb(first_mp); 6805 return; 6806 } else if (mctl_present) { 6807 /* 6808 * ip_add_info might return a new mp. 6809 */ 6810 ASSERT(first_mp != mp); 6811 first_mp->b_cont = mp; 6812 } else { 6813 first_mp = mp; 6814 } 6815 } 6816 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6817 if (IPCL_IS_TCP(connp)) { 6818 /* do not drain, certain use cases can blow the stack */ 6819 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6820 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6821 } else { 6822 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6823 (connp->conn_recv)(connp, first_mp, NULL); 6824 CONN_DEC_REF(connp); 6825 } 6826 } 6827 6828 /* 6829 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6830 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6831 * is not consumed. 6832 * 6833 * One of four things can happen, all of which affect the passed-in mblk: 6834 * 6835 * 1.) ICMP messages that go through here just get returned TRUE. 6836 * 6837 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6838 * 6839 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6840 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6841 * 6842 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6843 */ 6844 static boolean_t 6845 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6846 ipsec_stack_t *ipss) 6847 { 6848 int shift, plen, iph_len; 6849 ipha_t *ipha; 6850 udpha_t *udpha; 6851 uint32_t *spi; 6852 uint8_t *orptr; 6853 boolean_t udp_pkt, free_ire; 6854 6855 if (DB_TYPE(mp) == M_CTL) { 6856 /* 6857 * ICMP message with UDP inside. Don't bother stripping, just 6858 * send it up. 6859 * 6860 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6861 * to ignore errors set by ICMP anyway ('cause they might be 6862 * forged), but that's the app's decision, not ours. 6863 */ 6864 6865 /* Bunch of reality checks for DEBUG kernels... */ 6866 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6867 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6868 6869 return (B_TRUE); 6870 } 6871 6872 ipha = (ipha_t *)mp->b_rptr; 6873 iph_len = IPH_HDR_LENGTH(ipha); 6874 plen = ntohs(ipha->ipha_length); 6875 6876 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6877 /* 6878 * Most likely a keepalive for the benefit of an intervening 6879 * NAT. These aren't for us, per se, so drop it. 6880 * 6881 * RFC 3947/8 doesn't say for sure what to do for 2-3 6882 * byte packets (keepalives are 1-byte), but we'll drop them 6883 * also. 6884 */ 6885 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6886 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6887 return (B_FALSE); 6888 } 6889 6890 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6891 /* might as well pull it all up - it might be ESP. */ 6892 if (!pullupmsg(mp, -1)) { 6893 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6894 DROPPER(ipss, ipds_esp_nomem), 6895 &ipss->ipsec_dropper); 6896 return (B_FALSE); 6897 } 6898 6899 ipha = (ipha_t *)mp->b_rptr; 6900 } 6901 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6902 if (*spi == 0) { 6903 /* UDP packet - remove 0-spi. */ 6904 shift = sizeof (uint32_t); 6905 } else { 6906 /* ESP-in-UDP packet - reduce to ESP. */ 6907 ipha->ipha_protocol = IPPROTO_ESP; 6908 shift = sizeof (udpha_t); 6909 } 6910 6911 /* Fix IP header */ 6912 ipha->ipha_length = htons(plen - shift); 6913 ipha->ipha_hdr_checksum = 0; 6914 6915 orptr = mp->b_rptr; 6916 mp->b_rptr += shift; 6917 6918 if (*spi == 0) { 6919 ASSERT((uint8_t *)ipha == orptr); 6920 udpha = (udpha_t *)(orptr + iph_len); 6921 udpha->uha_length = htons(plen - shift - iph_len); 6922 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6923 udp_pkt = B_TRUE; 6924 } else { 6925 udp_pkt = B_FALSE; 6926 } 6927 ovbcopy(orptr, orptr + shift, iph_len); 6928 if (!udp_pkt) /* Punt up for ESP processing. */ { 6929 ipha = (ipha_t *)(orptr + shift); 6930 6931 free_ire = (ire == NULL); 6932 if (free_ire) { 6933 /* Re-acquire ire. */ 6934 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6935 ipss->ipsec_netstack->netstack_ip); 6936 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6937 if (ire != NULL) 6938 ire_refrele(ire); 6939 /* 6940 * Do a regular freemsg(), as this is an IP 6941 * error (no local route) not an IPsec one. 6942 */ 6943 freemsg(mp); 6944 } 6945 } 6946 6947 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6948 if (free_ire) 6949 ire_refrele(ire); 6950 } 6951 6952 return (udp_pkt); 6953 } 6954 6955 /* 6956 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6957 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6958 * Caller is responsible for dropping references to the conn, and freeing 6959 * first_mp. 6960 * 6961 * IPQoS Notes 6962 * Before sending it to the client, invoke IPPF processing. Policy processing 6963 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6964 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6965 * ip_wput_local, ip_policy is false. 6966 */ 6967 static void 6968 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6969 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6970 boolean_t ip_policy) 6971 { 6972 boolean_t mctl_present = (first_mp != NULL); 6973 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6974 uint32_t ill_index; 6975 ip_stack_t *ipst = recv_ill->ill_ipst; 6976 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6977 6978 ASSERT(ill != NULL); 6979 6980 if (mctl_present) 6981 first_mp->b_cont = mp; 6982 else 6983 first_mp = mp; 6984 6985 if (CONN_UDP_FLOWCTLD(connp)) { 6986 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6987 freemsg(first_mp); 6988 return; 6989 } 6990 6991 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6992 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6993 NULL, mctl_present); 6994 if (first_mp == NULL) { 6995 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6996 return; /* Freed by ipsec_check_inbound_policy(). */ 6997 } 6998 } 6999 if (mctl_present) 7000 freeb(first_mp); 7001 7002 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7003 if (connp->conn_udp->udp_nat_t_endpoint) { 7004 if (mctl_present) { 7005 /* mctl_present *shouldn't* happen. */ 7006 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7007 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7008 &ipss->ipsec_dropper); 7009 return; 7010 } 7011 7012 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7013 return; 7014 } 7015 7016 /* Handle options. */ 7017 if (connp->conn_recvif) 7018 in_flags = IPF_RECVIF; 7019 /* 7020 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7021 * passed to ip_add_info is based on IP version of connp. 7022 */ 7023 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7024 if (connp->conn_af_isv6) { 7025 /* 7026 * V6 only needs index 7027 */ 7028 in_flags |= IPF_RECVIF; 7029 } else { 7030 /* 7031 * V4 needs index + matching address. 7032 */ 7033 in_flags |= IPF_RECVADDR; 7034 } 7035 } 7036 7037 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7038 in_flags |= IPF_RECVSLLA; 7039 7040 /* 7041 * Initiate IPPF processing here, if needed. Note first_mp won't be 7042 * freed if the packet is dropped. The caller will do so. 7043 */ 7044 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7045 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7046 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7047 if (mp == NULL) { 7048 return; 7049 } 7050 } 7051 if ((in_flags != 0) && 7052 (mp->b_datap->db_type != M_CTL)) { 7053 /* 7054 * The actual data will be contained in b_cont 7055 * upon successful return of the following call 7056 * else original mblk is returned 7057 */ 7058 ASSERT(recv_ill != NULL); 7059 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7060 ipst); 7061 } 7062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7063 /* Send it upstream */ 7064 (connp->conn_recv)(connp, mp, NULL); 7065 } 7066 7067 /* 7068 * Fanout for UDP packets. 7069 * The caller puts <fport, lport> in the ports parameter. 7070 * 7071 * If SO_REUSEADDR is set all multicast and broadcast packets 7072 * will be delivered to all streams bound to the same port. 7073 * 7074 * Zones notes: 7075 * Multicast and broadcast packets will be distributed to streams in all zones. 7076 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7077 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7078 * packets. To maintain this behavior with multiple zones, the conns are grouped 7079 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7080 * each zone. If unset, all the following conns in the same zone are skipped. 7081 */ 7082 static void 7083 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7084 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7085 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7086 { 7087 uint32_t dstport, srcport; 7088 ipaddr_t dst; 7089 mblk_t *first_mp; 7090 boolean_t secure; 7091 in6_addr_t v6src; 7092 conn_t *connp; 7093 connf_t *connfp; 7094 conn_t *first_connp; 7095 conn_t *next_connp; 7096 mblk_t *mp1, *first_mp1; 7097 ipaddr_t src; 7098 zoneid_t last_zoneid; 7099 boolean_t reuseaddr; 7100 boolean_t shared_addr; 7101 ip_stack_t *ipst; 7102 7103 ASSERT(recv_ill != NULL); 7104 ipst = recv_ill->ill_ipst; 7105 7106 first_mp = mp; 7107 if (mctl_present) { 7108 mp = first_mp->b_cont; 7109 first_mp->b_cont = NULL; 7110 secure = ipsec_in_is_secure(first_mp); 7111 ASSERT(mp != NULL); 7112 } else { 7113 first_mp = NULL; 7114 secure = B_FALSE; 7115 } 7116 7117 /* Extract ports in net byte order */ 7118 dstport = htons(ntohl(ports) & 0xFFFF); 7119 srcport = htons(ntohl(ports) >> 16); 7120 dst = ipha->ipha_dst; 7121 src = ipha->ipha_src; 7122 7123 shared_addr = (zoneid == ALL_ZONES); 7124 if (shared_addr) { 7125 /* 7126 * No need to handle exclusive-stack zones since ALL_ZONES 7127 * only applies to the shared stack. 7128 */ 7129 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7130 if (zoneid == ALL_ZONES) 7131 zoneid = tsol_packet_to_zoneid(mp); 7132 } 7133 7134 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7135 mutex_enter(&connfp->connf_lock); 7136 connp = connfp->connf_head; 7137 if (!broadcast && !CLASSD(dst)) { 7138 /* 7139 * Not broadcast or multicast. Send to the one (first) 7140 * client we find. No need to check conn_wantpacket() 7141 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7142 * IPv4 unicast packets. 7143 */ 7144 while ((connp != NULL) && 7145 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7146 !IPCL_ZONE_MATCH(connp, zoneid))) { 7147 connp = connp->conn_next; 7148 } 7149 7150 if (connp == NULL || connp->conn_upq == NULL) 7151 goto notfound; 7152 7153 if (is_system_labeled() && 7154 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7155 connp)) 7156 goto notfound; 7157 7158 CONN_INC_REF(connp); 7159 mutex_exit(&connfp->connf_lock); 7160 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7161 flags, recv_ill, ip_policy); 7162 IP_STAT(ipst, ip_udp_fannorm); 7163 CONN_DEC_REF(connp); 7164 return; 7165 } 7166 7167 /* 7168 * Broadcast and multicast case 7169 * 7170 * Need to check conn_wantpacket(). 7171 * If SO_REUSEADDR has been set on the first we send the 7172 * packet to all clients that have joined the group and 7173 * match the port. 7174 */ 7175 7176 while (connp != NULL) { 7177 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7178 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7179 (!is_system_labeled() || 7180 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7181 connp))) 7182 break; 7183 connp = connp->conn_next; 7184 } 7185 7186 if (connp == NULL || connp->conn_upq == NULL) 7187 goto notfound; 7188 7189 first_connp = connp; 7190 /* 7191 * When SO_REUSEADDR is not set, send the packet only to the first 7192 * matching connection in its zone by keeping track of the zoneid. 7193 */ 7194 reuseaddr = first_connp->conn_reuseaddr; 7195 last_zoneid = first_connp->conn_zoneid; 7196 7197 CONN_INC_REF(connp); 7198 connp = connp->conn_next; 7199 for (;;) { 7200 while (connp != NULL) { 7201 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7202 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7203 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7204 (!is_system_labeled() || 7205 tsol_receive_local(mp, &dst, IPV4_VERSION, 7206 shared_addr, connp))) 7207 break; 7208 connp = connp->conn_next; 7209 } 7210 /* 7211 * Just copy the data part alone. The mctl part is 7212 * needed just for verifying policy and it is never 7213 * sent up. 7214 */ 7215 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7216 ((mp1 = copymsg(mp)) == NULL))) { 7217 /* 7218 * No more interested clients or memory 7219 * allocation failed 7220 */ 7221 connp = first_connp; 7222 break; 7223 } 7224 if (connp->conn_zoneid != last_zoneid) { 7225 /* 7226 * Update the zoneid so that the packet isn't sent to 7227 * any more conns in the same zone unless SO_REUSEADDR 7228 * is set. 7229 */ 7230 reuseaddr = connp->conn_reuseaddr; 7231 last_zoneid = connp->conn_zoneid; 7232 } 7233 if (first_mp != NULL) { 7234 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7235 ipsec_info_type == IPSEC_IN); 7236 first_mp1 = ipsec_in_tag(first_mp, NULL, 7237 ipst->ips_netstack); 7238 if (first_mp1 == NULL) { 7239 freemsg(mp1); 7240 connp = first_connp; 7241 break; 7242 } 7243 } else { 7244 first_mp1 = NULL; 7245 } 7246 CONN_INC_REF(connp); 7247 mutex_exit(&connfp->connf_lock); 7248 /* 7249 * IPQoS notes: We don't send the packet for policy 7250 * processing here, will do it for the last one (below). 7251 * i.e. we do it per-packet now, but if we do policy 7252 * processing per-conn, then we would need to do it 7253 * here too. 7254 */ 7255 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7256 ipha, flags, recv_ill, B_FALSE); 7257 mutex_enter(&connfp->connf_lock); 7258 /* Follow the next pointer before releasing the conn. */ 7259 next_connp = connp->conn_next; 7260 IP_STAT(ipst, ip_udp_fanmb); 7261 CONN_DEC_REF(connp); 7262 connp = next_connp; 7263 } 7264 7265 /* Last one. Send it upstream. */ 7266 mutex_exit(&connfp->connf_lock); 7267 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7268 recv_ill, ip_policy); 7269 IP_STAT(ipst, ip_udp_fanmb); 7270 CONN_DEC_REF(connp); 7271 return; 7272 7273 notfound: 7274 7275 mutex_exit(&connfp->connf_lock); 7276 IP_STAT(ipst, ip_udp_fanothers); 7277 /* 7278 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7279 * have already been matched above, since they live in the IPv4 7280 * fanout tables. This implies we only need to 7281 * check for IPv6 in6addr_any endpoints here. 7282 * Thus we compare using ipv6_all_zeros instead of the destination 7283 * address, except for the multicast group membership lookup which 7284 * uses the IPv4 destination. 7285 */ 7286 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7287 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7288 mutex_enter(&connfp->connf_lock); 7289 connp = connfp->connf_head; 7290 if (!broadcast && !CLASSD(dst)) { 7291 while (connp != NULL) { 7292 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7293 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7294 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7295 !connp->conn_ipv6_v6only) 7296 break; 7297 connp = connp->conn_next; 7298 } 7299 7300 if (connp != NULL && is_system_labeled() && 7301 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7302 connp)) 7303 connp = NULL; 7304 7305 if (connp == NULL || connp->conn_upq == NULL) { 7306 /* 7307 * No one bound to this port. Is 7308 * there a client that wants all 7309 * unclaimed datagrams? 7310 */ 7311 mutex_exit(&connfp->connf_lock); 7312 7313 if (mctl_present) 7314 first_mp->b_cont = mp; 7315 else 7316 first_mp = mp; 7317 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7318 connf_head != NULL) { 7319 ip_fanout_proto(q, first_mp, ill, ipha, 7320 flags | IP_FF_RAWIP, mctl_present, 7321 ip_policy, recv_ill, zoneid); 7322 } else { 7323 if (ip_fanout_send_icmp(q, first_mp, flags, 7324 ICMP_DEST_UNREACHABLE, 7325 ICMP_PORT_UNREACHABLE, 7326 mctl_present, zoneid, ipst)) { 7327 BUMP_MIB(ill->ill_ip_mib, 7328 udpIfStatsNoPorts); 7329 } 7330 } 7331 return; 7332 } 7333 7334 CONN_INC_REF(connp); 7335 mutex_exit(&connfp->connf_lock); 7336 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7337 flags, recv_ill, ip_policy); 7338 CONN_DEC_REF(connp); 7339 return; 7340 } 7341 /* 7342 * IPv4 multicast packet being delivered to an AF_INET6 7343 * in6addr_any endpoint. 7344 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7345 * and not conn_wantpacket_v6() since any multicast membership is 7346 * for an IPv4-mapped multicast address. 7347 * The packet is sent to all clients in all zones that have joined the 7348 * group and match the port. 7349 */ 7350 while (connp != NULL) { 7351 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7352 srcport, v6src) && 7353 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7354 (!is_system_labeled() || 7355 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7356 connp))) 7357 break; 7358 connp = connp->conn_next; 7359 } 7360 7361 if (connp == NULL || connp->conn_upq == NULL) { 7362 /* 7363 * No one bound to this port. Is 7364 * there a client that wants all 7365 * unclaimed datagrams? 7366 */ 7367 mutex_exit(&connfp->connf_lock); 7368 7369 if (mctl_present) 7370 first_mp->b_cont = mp; 7371 else 7372 first_mp = mp; 7373 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7374 NULL) { 7375 ip_fanout_proto(q, first_mp, ill, ipha, 7376 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7377 recv_ill, zoneid); 7378 } else { 7379 /* 7380 * We used to attempt to send an icmp error here, but 7381 * since this is known to be a multicast packet 7382 * and we don't send icmp errors in response to 7383 * multicast, just drop the packet and give up sooner. 7384 */ 7385 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7386 freemsg(first_mp); 7387 } 7388 return; 7389 } 7390 7391 first_connp = connp; 7392 7393 CONN_INC_REF(connp); 7394 connp = connp->conn_next; 7395 for (;;) { 7396 while (connp != NULL) { 7397 if (IPCL_UDP_MATCH_V6(connp, dstport, 7398 ipv6_all_zeros, srcport, v6src) && 7399 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7400 (!is_system_labeled() || 7401 tsol_receive_local(mp, &dst, IPV4_VERSION, 7402 shared_addr, connp))) 7403 break; 7404 connp = connp->conn_next; 7405 } 7406 /* 7407 * Just copy the data part alone. The mctl part is 7408 * needed just for verifying policy and it is never 7409 * sent up. 7410 */ 7411 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7412 ((mp1 = copymsg(mp)) == NULL))) { 7413 /* 7414 * No more intested clients or memory 7415 * allocation failed 7416 */ 7417 connp = first_connp; 7418 break; 7419 } 7420 if (first_mp != NULL) { 7421 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7422 ipsec_info_type == IPSEC_IN); 7423 first_mp1 = ipsec_in_tag(first_mp, NULL, 7424 ipst->ips_netstack); 7425 if (first_mp1 == NULL) { 7426 freemsg(mp1); 7427 connp = first_connp; 7428 break; 7429 } 7430 } else { 7431 first_mp1 = NULL; 7432 } 7433 CONN_INC_REF(connp); 7434 mutex_exit(&connfp->connf_lock); 7435 /* 7436 * IPQoS notes: We don't send the packet for policy 7437 * processing here, will do it for the last one (below). 7438 * i.e. we do it per-packet now, but if we do policy 7439 * processing per-conn, then we would need to do it 7440 * here too. 7441 */ 7442 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7443 ipha, flags, recv_ill, B_FALSE); 7444 mutex_enter(&connfp->connf_lock); 7445 /* Follow the next pointer before releasing the conn. */ 7446 next_connp = connp->conn_next; 7447 CONN_DEC_REF(connp); 7448 connp = next_connp; 7449 } 7450 7451 /* Last one. Send it upstream. */ 7452 mutex_exit(&connfp->connf_lock); 7453 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7454 recv_ill, ip_policy); 7455 CONN_DEC_REF(connp); 7456 } 7457 7458 /* 7459 * Complete the ip_wput header so that it 7460 * is possible to generate ICMP 7461 * errors. 7462 */ 7463 int 7464 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7465 { 7466 ire_t *ire; 7467 7468 if (ipha->ipha_src == INADDR_ANY) { 7469 ire = ire_lookup_local(zoneid, ipst); 7470 if (ire == NULL) { 7471 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7472 return (1); 7473 } 7474 ipha->ipha_src = ire->ire_addr; 7475 ire_refrele(ire); 7476 } 7477 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7478 ipha->ipha_hdr_checksum = 0; 7479 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7480 return (0); 7481 } 7482 7483 /* 7484 * Nobody should be sending 7485 * packets up this stream 7486 */ 7487 static void 7488 ip_lrput(queue_t *q, mblk_t *mp) 7489 { 7490 mblk_t *mp1; 7491 7492 switch (mp->b_datap->db_type) { 7493 case M_FLUSH: 7494 /* Turn around */ 7495 if (*mp->b_rptr & FLUSHW) { 7496 *mp->b_rptr &= ~FLUSHR; 7497 qreply(q, mp); 7498 return; 7499 } 7500 break; 7501 } 7502 /* Could receive messages that passed through ar_rput */ 7503 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7504 mp1->b_prev = mp1->b_next = NULL; 7505 freemsg(mp); 7506 } 7507 7508 /* Nobody should be sending packets down this stream */ 7509 /* ARGSUSED */ 7510 void 7511 ip_lwput(queue_t *q, mblk_t *mp) 7512 { 7513 freemsg(mp); 7514 } 7515 7516 /* 7517 * Move the first hop in any source route to ipha_dst and remove that part of 7518 * the source route. Called by other protocols. Errors in option formatting 7519 * are ignored - will be handled by ip_wput_options Return the final 7520 * destination (either ipha_dst or the last entry in a source route.) 7521 */ 7522 ipaddr_t 7523 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7524 { 7525 ipoptp_t opts; 7526 uchar_t *opt; 7527 uint8_t optval; 7528 uint8_t optlen; 7529 ipaddr_t dst; 7530 int i; 7531 ire_t *ire; 7532 ip_stack_t *ipst = ns->netstack_ip; 7533 7534 ip2dbg(("ip_massage_options\n")); 7535 dst = ipha->ipha_dst; 7536 for (optval = ipoptp_first(&opts, ipha); 7537 optval != IPOPT_EOL; 7538 optval = ipoptp_next(&opts)) { 7539 opt = opts.ipoptp_cur; 7540 switch (optval) { 7541 uint8_t off; 7542 case IPOPT_SSRR: 7543 case IPOPT_LSRR: 7544 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7545 ip1dbg(("ip_massage_options: bad src route\n")); 7546 break; 7547 } 7548 optlen = opts.ipoptp_len; 7549 off = opt[IPOPT_OFFSET]; 7550 off--; 7551 redo_srr: 7552 if (optlen < IP_ADDR_LEN || 7553 off > optlen - IP_ADDR_LEN) { 7554 /* End of source route */ 7555 ip1dbg(("ip_massage_options: end of SR\n")); 7556 break; 7557 } 7558 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7559 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7560 ntohl(dst))); 7561 /* 7562 * Check if our address is present more than 7563 * once as consecutive hops in source route. 7564 * XXX verify per-interface ip_forwarding 7565 * for source route? 7566 */ 7567 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7568 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7569 if (ire != NULL) { 7570 ire_refrele(ire); 7571 off += IP_ADDR_LEN; 7572 goto redo_srr; 7573 } 7574 if (dst == htonl(INADDR_LOOPBACK)) { 7575 ip1dbg(("ip_massage_options: loopback addr in " 7576 "source route!\n")); 7577 break; 7578 } 7579 /* 7580 * Update ipha_dst to be the first hop and remove the 7581 * first hop from the source route (by overwriting 7582 * part of the option with NOP options). 7583 */ 7584 ipha->ipha_dst = dst; 7585 /* Put the last entry in dst */ 7586 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7587 3; 7588 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7589 7590 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7591 ntohl(dst))); 7592 /* Move down and overwrite */ 7593 opt[IP_ADDR_LEN] = opt[0]; 7594 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7595 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7596 for (i = 0; i < IP_ADDR_LEN; i++) 7597 opt[i] = IPOPT_NOP; 7598 break; 7599 } 7600 } 7601 return (dst); 7602 } 7603 7604 /* 7605 * Return the network mask 7606 * associated with the specified address. 7607 */ 7608 ipaddr_t 7609 ip_net_mask(ipaddr_t addr) 7610 { 7611 uchar_t *up = (uchar_t *)&addr; 7612 ipaddr_t mask = 0; 7613 uchar_t *maskp = (uchar_t *)&mask; 7614 7615 #if defined(__i386) || defined(__amd64) 7616 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7617 #endif 7618 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7619 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7620 #endif 7621 if (CLASSD(addr)) { 7622 maskp[0] = 0xF0; 7623 return (mask); 7624 } 7625 7626 /* We assume Class E default netmask to be 32 */ 7627 if (CLASSE(addr)) 7628 return (0xffffffffU); 7629 7630 if (addr == 0) 7631 return (0); 7632 maskp[0] = 0xFF; 7633 if ((up[0] & 0x80) == 0) 7634 return (mask); 7635 7636 maskp[1] = 0xFF; 7637 if ((up[0] & 0xC0) == 0x80) 7638 return (mask); 7639 7640 maskp[2] = 0xFF; 7641 if ((up[0] & 0xE0) == 0xC0) 7642 return (mask); 7643 7644 /* Otherwise return no mask */ 7645 return ((ipaddr_t)0); 7646 } 7647 7648 /* 7649 * Select an ill for the packet by considering load spreading across 7650 * a different ill in the group if dst_ill is part of some group. 7651 */ 7652 ill_t * 7653 ip_newroute_get_dst_ill(ill_t *dst_ill) 7654 { 7655 ill_t *ill; 7656 7657 /* 7658 * We schedule irrespective of whether the source address is 7659 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7660 */ 7661 ill = illgrp_scheduler(dst_ill); 7662 if (ill == NULL) 7663 return (NULL); 7664 7665 /* 7666 * For groups with names ip_sioctl_groupname ensures that all 7667 * ills are of same type. For groups without names, ifgrp_insert 7668 * ensures this. 7669 */ 7670 ASSERT(dst_ill->ill_type == ill->ill_type); 7671 7672 return (ill); 7673 } 7674 7675 /* 7676 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7677 */ 7678 ill_t * 7679 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7680 ip_stack_t *ipst) 7681 { 7682 ill_t *ret_ill; 7683 7684 ASSERT(ifindex != 0); 7685 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7686 ipst); 7687 if (ret_ill == NULL || 7688 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7689 if (isv6) { 7690 if (ill != NULL) { 7691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7692 } else { 7693 BUMP_MIB(&ipst->ips_ip6_mib, 7694 ipIfStatsOutDiscards); 7695 } 7696 ip1dbg(("ip_grab_attach_ill (IPv6): " 7697 "bad ifindex %d.\n", ifindex)); 7698 } else { 7699 if (ill != NULL) { 7700 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7701 } else { 7702 BUMP_MIB(&ipst->ips_ip_mib, 7703 ipIfStatsOutDiscards); 7704 } 7705 ip1dbg(("ip_grab_attach_ill (IPv4): " 7706 "bad ifindex %d.\n", ifindex)); 7707 } 7708 if (ret_ill != NULL) 7709 ill_refrele(ret_ill); 7710 freemsg(first_mp); 7711 return (NULL); 7712 } 7713 7714 return (ret_ill); 7715 } 7716 7717 /* 7718 * IPv4 - 7719 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7720 * out a packet to a destination address for which we do not have specific 7721 * (or sufficient) routing information. 7722 * 7723 * NOTE : These are the scopes of some of the variables that point at IRE, 7724 * which needs to be followed while making any future modifications 7725 * to avoid memory leaks. 7726 * 7727 * - ire and sire are the entries looked up initially by 7728 * ire_ftable_lookup. 7729 * - ipif_ire is used to hold the interface ire associated with 7730 * the new cache ire. But it's scope is limited, so we always REFRELE 7731 * it before branching out to error paths. 7732 * - save_ire is initialized before ire_create, so that ire returned 7733 * by ire_create will not over-write the ire. We REFRELE save_ire 7734 * before breaking out of the switch. 7735 * 7736 * Thus on failures, we have to REFRELE only ire and sire, if they 7737 * are not NULL. 7738 */ 7739 void 7740 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7741 zoneid_t zoneid, ip_stack_t *ipst) 7742 { 7743 areq_t *areq; 7744 ipaddr_t gw = 0; 7745 ire_t *ire = NULL; 7746 mblk_t *res_mp; 7747 ipaddr_t *addrp; 7748 ipaddr_t nexthop_addr; 7749 ipif_t *src_ipif = NULL; 7750 ill_t *dst_ill = NULL; 7751 ipha_t *ipha; 7752 ire_t *sire = NULL; 7753 mblk_t *first_mp; 7754 ire_t *save_ire; 7755 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7756 ushort_t ire_marks = 0; 7757 boolean_t mctl_present; 7758 ipsec_out_t *io; 7759 mblk_t *saved_mp; 7760 ire_t *first_sire = NULL; 7761 mblk_t *copy_mp = NULL; 7762 mblk_t *xmit_mp = NULL; 7763 ipaddr_t save_dst; 7764 uint32_t multirt_flags = 7765 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7766 boolean_t multirt_is_resolvable; 7767 boolean_t multirt_resolve_next; 7768 boolean_t unspec_src; 7769 boolean_t do_attach_ill = B_FALSE; 7770 boolean_t ip_nexthop = B_FALSE; 7771 tsol_ire_gw_secattr_t *attrp = NULL; 7772 tsol_gcgrp_t *gcgrp = NULL; 7773 tsol_gcgrp_addr_t ga; 7774 7775 if (ip_debug > 2) { 7776 /* ip1dbg */ 7777 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7778 } 7779 7780 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7781 if (mctl_present) { 7782 io = (ipsec_out_t *)first_mp->b_rptr; 7783 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7784 ASSERT(zoneid == io->ipsec_out_zoneid); 7785 ASSERT(zoneid != ALL_ZONES); 7786 } 7787 7788 ipha = (ipha_t *)mp->b_rptr; 7789 7790 /* All multicast lookups come through ip_newroute_ipif() */ 7791 if (CLASSD(dst)) { 7792 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7793 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7794 freemsg(first_mp); 7795 return; 7796 } 7797 7798 if (mctl_present && io->ipsec_out_attach_if) { 7799 /* ip_grab_attach_ill returns a held ill */ 7800 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7801 io->ipsec_out_ill_index, B_FALSE, ipst); 7802 7803 /* Failure case frees things for us. */ 7804 if (attach_ill == NULL) 7805 return; 7806 7807 /* 7808 * Check if we need an ire that will not be 7809 * looked up by anybody else i.e. HIDDEN. 7810 */ 7811 if (ill_is_probeonly(attach_ill)) 7812 ire_marks = IRE_MARK_HIDDEN; 7813 } 7814 if (mctl_present && io->ipsec_out_ip_nexthop) { 7815 ip_nexthop = B_TRUE; 7816 nexthop_addr = io->ipsec_out_nexthop_addr; 7817 } 7818 /* 7819 * If this IRE is created for forwarding or it is not for 7820 * traffic for congestion controlled protocols, mark it as temporary. 7821 */ 7822 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7823 ire_marks |= IRE_MARK_TEMPORARY; 7824 7825 /* 7826 * Get what we can from ire_ftable_lookup which will follow an IRE 7827 * chain until it gets the most specific information available. 7828 * For example, we know that there is no IRE_CACHE for this dest, 7829 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7830 * ire_ftable_lookup will look up the gateway, etc. 7831 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7832 * to the destination, of equal netmask length in the forward table, 7833 * will be recursively explored. If no information is available 7834 * for the final gateway of that route, we force the returned ire 7835 * to be equal to sire using MATCH_IRE_PARENT. 7836 * At least, in this case we have a starting point (in the buckets) 7837 * to look for other routes to the destination in the forward table. 7838 * This is actually used only for multirouting, where a list 7839 * of routes has to be processed in sequence. 7840 * 7841 * In the process of coming up with the most specific information, 7842 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7843 * for the gateway (i.e., one for which the ire_nce->nce_state is 7844 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7845 * Two caveats when handling incomplete ire's in ip_newroute: 7846 * - we should be careful when accessing its ire_nce (specifically 7847 * the nce_res_mp) ast it might change underneath our feet, and, 7848 * - not all legacy code path callers are prepared to handle 7849 * incomplete ire's, so we should not create/add incomplete 7850 * ire_cache entries here. (See discussion about temporary solution 7851 * further below). 7852 * 7853 * In order to minimize packet dropping, and to preserve existing 7854 * behavior, we treat this case as if there were no IRE_CACHE for the 7855 * gateway, and instead use the IF_RESOLVER ire to send out 7856 * another request to ARP (this is achieved by passing the 7857 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7858 * arp response comes back in ip_wput_nondata, we will create 7859 * a per-dst ire_cache that has an ND_COMPLETE ire. 7860 * 7861 * Note that this is a temporary solution; the correct solution is 7862 * to create an incomplete per-dst ire_cache entry, and send the 7863 * packet out when the gw's nce is resolved. In order to achieve this, 7864 * all packet processing must have been completed prior to calling 7865 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7866 * to be modified to accomodate this solution. 7867 */ 7868 if (ip_nexthop) { 7869 /* 7870 * The first time we come here, we look for an IRE_INTERFACE 7871 * entry for the specified nexthop, set the dst to be the 7872 * nexthop address and create an IRE_CACHE entry for the 7873 * nexthop. The next time around, we are able to find an 7874 * IRE_CACHE entry for the nexthop, set the gateway to be the 7875 * nexthop address and create an IRE_CACHE entry for the 7876 * destination address via the specified nexthop. 7877 */ 7878 ire = ire_cache_lookup(nexthop_addr, zoneid, 7879 MBLK_GETLABEL(mp), ipst); 7880 if (ire != NULL) { 7881 gw = nexthop_addr; 7882 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7883 } else { 7884 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7885 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7886 MBLK_GETLABEL(mp), 7887 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7888 ipst); 7889 if (ire != NULL) { 7890 dst = nexthop_addr; 7891 } 7892 } 7893 } else if (attach_ill == NULL) { 7894 ire = ire_ftable_lookup(dst, 0, 0, 0, 7895 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7896 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7897 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7898 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7899 ipst); 7900 } else { 7901 /* 7902 * attach_ill is set only for communicating with 7903 * on-link hosts. So, don't look for DEFAULT. 7904 */ 7905 ipif_t *attach_ipif; 7906 7907 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7908 if (attach_ipif == NULL) { 7909 ill_refrele(attach_ill); 7910 goto icmp_err_ret; 7911 } 7912 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7913 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7914 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7915 MATCH_IRE_SECATTR, ipst); 7916 ipif_refrele(attach_ipif); 7917 } 7918 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7919 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7920 7921 /* 7922 * This loop is run only once in most cases. 7923 * We loop to resolve further routes only when the destination 7924 * can be reached through multiple RTF_MULTIRT-flagged ires. 7925 */ 7926 do { 7927 /* Clear the previous iteration's values */ 7928 if (src_ipif != NULL) { 7929 ipif_refrele(src_ipif); 7930 src_ipif = NULL; 7931 } 7932 if (dst_ill != NULL) { 7933 ill_refrele(dst_ill); 7934 dst_ill = NULL; 7935 } 7936 7937 multirt_resolve_next = B_FALSE; 7938 /* 7939 * We check if packets have to be multirouted. 7940 * In this case, given the current <ire, sire> couple, 7941 * we look for the next suitable <ire, sire>. 7942 * This check is done in ire_multirt_lookup(), 7943 * which applies various criteria to find the next route 7944 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7945 * unchanged if it detects it has not been tried yet. 7946 */ 7947 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7948 ip3dbg(("ip_newroute: starting next_resolution " 7949 "with first_mp %p, tag %d\n", 7950 (void *)first_mp, 7951 MULTIRT_DEBUG_TAGGED(first_mp))); 7952 7953 ASSERT(sire != NULL); 7954 multirt_is_resolvable = 7955 ire_multirt_lookup(&ire, &sire, multirt_flags, 7956 MBLK_GETLABEL(mp), ipst); 7957 7958 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7959 "ire %p, sire %p\n", 7960 multirt_is_resolvable, 7961 (void *)ire, (void *)sire)); 7962 7963 if (!multirt_is_resolvable) { 7964 /* 7965 * No more multirt route to resolve; give up 7966 * (all routes resolved or no more 7967 * resolvable routes). 7968 */ 7969 if (ire != NULL) { 7970 ire_refrele(ire); 7971 ire = NULL; 7972 } 7973 } else { 7974 ASSERT(sire != NULL); 7975 ASSERT(ire != NULL); 7976 /* 7977 * We simply use first_sire as a flag that 7978 * indicates if a resolvable multirt route 7979 * has already been found. 7980 * If it is not the case, we may have to send 7981 * an ICMP error to report that the 7982 * destination is unreachable. 7983 * We do not IRE_REFHOLD first_sire. 7984 */ 7985 if (first_sire == NULL) { 7986 first_sire = sire; 7987 } 7988 } 7989 } 7990 if (ire == NULL) { 7991 if (ip_debug > 3) { 7992 /* ip2dbg */ 7993 pr_addr_dbg("ip_newroute: " 7994 "can't resolve %s\n", AF_INET, &dst); 7995 } 7996 ip3dbg(("ip_newroute: " 7997 "ire %p, sire %p, first_sire %p\n", 7998 (void *)ire, (void *)sire, (void *)first_sire)); 7999 8000 if (sire != NULL) { 8001 ire_refrele(sire); 8002 sire = NULL; 8003 } 8004 8005 if (first_sire != NULL) { 8006 /* 8007 * At least one multirt route has been found 8008 * in the same call to ip_newroute(); 8009 * there is no need to report an ICMP error. 8010 * first_sire was not IRE_REFHOLDed. 8011 */ 8012 MULTIRT_DEBUG_UNTAG(first_mp); 8013 freemsg(first_mp); 8014 return; 8015 } 8016 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8017 RTA_DST, ipst); 8018 if (attach_ill != NULL) 8019 ill_refrele(attach_ill); 8020 goto icmp_err_ret; 8021 } 8022 8023 /* 8024 * Verify that the returned IRE does not have either 8025 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8026 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8027 */ 8028 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8029 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8030 if (attach_ill != NULL) 8031 ill_refrele(attach_ill); 8032 goto icmp_err_ret; 8033 } 8034 /* 8035 * Increment the ire_ob_pkt_count field for ire if it is an 8036 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8037 * increment the same for the parent IRE, sire, if it is some 8038 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8039 */ 8040 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8041 UPDATE_OB_PKT_COUNT(ire); 8042 ire->ire_last_used_time = lbolt; 8043 } 8044 8045 if (sire != NULL) { 8046 gw = sire->ire_gateway_addr; 8047 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8048 IRE_INTERFACE)) == 0); 8049 UPDATE_OB_PKT_COUNT(sire); 8050 sire->ire_last_used_time = lbolt; 8051 } 8052 /* 8053 * We have a route to reach the destination. 8054 * 8055 * 1) If the interface is part of ill group, try to get a new 8056 * ill taking load spreading into account. 8057 * 8058 * 2) After selecting the ill, get a source address that 8059 * might create good inbound load spreading. 8060 * ipif_select_source does this for us. 8061 * 8062 * If the application specified the ill (ifindex), we still 8063 * load spread. Only if the packets needs to go out 8064 * specifically on a given ill e.g. binding to 8065 * IPIF_NOFAILOVER address, then we don't try to use a 8066 * different ill for load spreading. 8067 */ 8068 if (attach_ill == NULL) { 8069 /* 8070 * Don't perform outbound load spreading in the 8071 * case of an RTF_MULTIRT route, as we actually 8072 * typically want to replicate outgoing packets 8073 * through particular interfaces. 8074 */ 8075 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8076 dst_ill = ire->ire_ipif->ipif_ill; 8077 /* for uniformity */ 8078 ill_refhold(dst_ill); 8079 } else { 8080 /* 8081 * If we are here trying to create an IRE_CACHE 8082 * for an offlink destination and have the 8083 * IRE_CACHE for the next hop and the latter is 8084 * using virtual IP source address selection i.e 8085 * it's ire->ire_ipif is pointing to a virtual 8086 * network interface (vni) then 8087 * ip_newroute_get_dst_ll() will return the vni 8088 * interface as the dst_ill. Since the vni is 8089 * virtual i.e not associated with any physical 8090 * interface, it cannot be the dst_ill, hence 8091 * in such a case call ip_newroute_get_dst_ll() 8092 * with the stq_ill instead of the ire_ipif ILL. 8093 * The function returns a refheld ill. 8094 */ 8095 if ((ire->ire_type == IRE_CACHE) && 8096 IS_VNI(ire->ire_ipif->ipif_ill)) 8097 dst_ill = ip_newroute_get_dst_ill( 8098 ire->ire_stq->q_ptr); 8099 else 8100 dst_ill = ip_newroute_get_dst_ill( 8101 ire->ire_ipif->ipif_ill); 8102 } 8103 if (dst_ill == NULL) { 8104 if (ip_debug > 2) { 8105 pr_addr_dbg("ip_newroute: " 8106 "no dst ill for dst" 8107 " %s\n", AF_INET, &dst); 8108 } 8109 goto icmp_err_ret; 8110 } 8111 } else { 8112 dst_ill = ire->ire_ipif->ipif_ill; 8113 /* for uniformity */ 8114 ill_refhold(dst_ill); 8115 /* 8116 * We should have found a route matching ill as we 8117 * called ire_ftable_lookup with MATCH_IRE_ILL. 8118 * Rather than asserting, when there is a mismatch, 8119 * we just drop the packet. 8120 */ 8121 if (dst_ill != attach_ill) { 8122 ip0dbg(("ip_newroute: Packet dropped as " 8123 "IPIF_NOFAILOVER ill is %s, " 8124 "ire->ire_ipif->ipif_ill is %s\n", 8125 attach_ill->ill_name, 8126 dst_ill->ill_name)); 8127 ill_refrele(attach_ill); 8128 goto icmp_err_ret; 8129 } 8130 } 8131 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8132 if (attach_ill != NULL) { 8133 ill_refrele(attach_ill); 8134 attach_ill = NULL; 8135 do_attach_ill = B_TRUE; 8136 } 8137 ASSERT(dst_ill != NULL); 8138 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8139 8140 /* 8141 * Pick the best source address from dst_ill. 8142 * 8143 * 1) If it is part of a multipathing group, we would 8144 * like to spread the inbound packets across different 8145 * interfaces. ipif_select_source picks a random source 8146 * across the different ills in the group. 8147 * 8148 * 2) If it is not part of a multipathing group, we try 8149 * to pick the source address from the destination 8150 * route. Clustering assumes that when we have multiple 8151 * prefixes hosted on an interface, the prefix of the 8152 * source address matches the prefix of the destination 8153 * route. We do this only if the address is not 8154 * DEPRECATED. 8155 * 8156 * 3) If the conn is in a different zone than the ire, we 8157 * need to pick a source address from the right zone. 8158 * 8159 * NOTE : If we hit case (1) above, the prefix of the source 8160 * address picked may not match the prefix of the 8161 * destination routes prefix as ipif_select_source 8162 * does not look at "dst" while picking a source 8163 * address. 8164 * If we want the same behavior as (2), we will need 8165 * to change the behavior of ipif_select_source. 8166 */ 8167 ASSERT(src_ipif == NULL); 8168 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8169 /* 8170 * The RTF_SETSRC flag is set in the parent ire (sire). 8171 * Check that the ipif matching the requested source 8172 * address still exists. 8173 */ 8174 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8175 zoneid, NULL, NULL, NULL, NULL, ipst); 8176 } 8177 8178 unspec_src = (connp != NULL && connp->conn_unspec_src); 8179 8180 if (src_ipif == NULL && 8181 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8182 ire_marks |= IRE_MARK_USESRC_CHECK; 8183 if ((dst_ill->ill_group != NULL) || 8184 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8185 (connp != NULL && ire->ire_zoneid != zoneid && 8186 ire->ire_zoneid != ALL_ZONES) || 8187 (dst_ill->ill_usesrc_ifindex != 0)) { 8188 /* 8189 * If the destination is reachable via a 8190 * given gateway, the selected source address 8191 * should be in the same subnet as the gateway. 8192 * Otherwise, the destination is not reachable. 8193 * 8194 * If there are no interfaces on the same subnet 8195 * as the destination, ipif_select_source gives 8196 * first non-deprecated interface which might be 8197 * on a different subnet than the gateway. 8198 * This is not desirable. Hence pass the dst_ire 8199 * source address to ipif_select_source. 8200 * It is sure that the destination is reachable 8201 * with the dst_ire source address subnet. 8202 * So passing dst_ire source address to 8203 * ipif_select_source will make sure that the 8204 * selected source will be on the same subnet 8205 * as dst_ire source address. 8206 */ 8207 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8208 src_ipif = ipif_select_source(dst_ill, saddr, 8209 zoneid); 8210 if (src_ipif == NULL) { 8211 if (ip_debug > 2) { 8212 pr_addr_dbg("ip_newroute: " 8213 "no src for dst %s ", 8214 AF_INET, &dst); 8215 printf("through interface %s\n", 8216 dst_ill->ill_name); 8217 } 8218 goto icmp_err_ret; 8219 } 8220 } else { 8221 src_ipif = ire->ire_ipif; 8222 ASSERT(src_ipif != NULL); 8223 /* hold src_ipif for uniformity */ 8224 ipif_refhold(src_ipif); 8225 } 8226 } 8227 8228 /* 8229 * Assign a source address while we have the conn. 8230 * We can't have ip_wput_ire pick a source address when the 8231 * packet returns from arp since we need to look at 8232 * conn_unspec_src and conn_zoneid, and we lose the conn when 8233 * going through arp. 8234 * 8235 * NOTE : ip_newroute_v6 does not have this piece of code as 8236 * it uses ip6i to store this information. 8237 */ 8238 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8239 ipha->ipha_src = src_ipif->ipif_src_addr; 8240 8241 if (ip_debug > 3) { 8242 /* ip2dbg */ 8243 pr_addr_dbg("ip_newroute: first hop %s\n", 8244 AF_INET, &gw); 8245 } 8246 ip2dbg(("\tire type %s (%d)\n", 8247 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8248 8249 /* 8250 * The TTL of multirouted packets is bounded by the 8251 * ip_multirt_ttl ndd variable. 8252 */ 8253 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8254 /* Force TTL of multirouted packets */ 8255 if ((ipst->ips_ip_multirt_ttl > 0) && 8256 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8257 ip2dbg(("ip_newroute: forcing multirt TTL " 8258 "to %d (was %d), dst 0x%08x\n", 8259 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8260 ntohl(sire->ire_addr))); 8261 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8262 } 8263 } 8264 /* 8265 * At this point in ip_newroute(), ire is either the 8266 * IRE_CACHE of the next-hop gateway for an off-subnet 8267 * destination or an IRE_INTERFACE type that should be used 8268 * to resolve an on-subnet destination or an on-subnet 8269 * next-hop gateway. 8270 * 8271 * In the IRE_CACHE case, we have the following : 8272 * 8273 * 1) src_ipif - used for getting a source address. 8274 * 8275 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8276 * means packets using this IRE_CACHE will go out on 8277 * dst_ill. 8278 * 8279 * 3) The IRE sire will point to the prefix that is the 8280 * longest matching route for the destination. These 8281 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8282 * 8283 * The newly created IRE_CACHE entry for the off-subnet 8284 * destination is tied to both the prefix route and the 8285 * interface route used to resolve the next-hop gateway 8286 * via the ire_phandle and ire_ihandle fields, 8287 * respectively. 8288 * 8289 * In the IRE_INTERFACE case, we have the following : 8290 * 8291 * 1) src_ipif - used for getting a source address. 8292 * 8293 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8294 * means packets using the IRE_CACHE that we will build 8295 * here will go out on dst_ill. 8296 * 8297 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8298 * to be created will only be tied to the IRE_INTERFACE 8299 * that was derived from the ire_ihandle field. 8300 * 8301 * If sire is non-NULL, it means the destination is 8302 * off-link and we will first create the IRE_CACHE for the 8303 * gateway. Next time through ip_newroute, we will create 8304 * the IRE_CACHE for the final destination as described 8305 * above. 8306 * 8307 * In both cases, after the current resolution has been 8308 * completed (or possibly initialised, in the IRE_INTERFACE 8309 * case), the loop may be re-entered to attempt the resolution 8310 * of another RTF_MULTIRT route. 8311 * 8312 * When an IRE_CACHE entry for the off-subnet destination is 8313 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8314 * for further processing in emission loops. 8315 */ 8316 save_ire = ire; 8317 switch (ire->ire_type) { 8318 case IRE_CACHE: { 8319 ire_t *ipif_ire; 8320 8321 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8322 if (gw == 0) 8323 gw = ire->ire_gateway_addr; 8324 /* 8325 * We need 3 ire's to create a new cache ire for an 8326 * off-link destination from the cache ire of the 8327 * gateway. 8328 * 8329 * 1. The prefix ire 'sire' (Note that this does 8330 * not apply to the conn_nexthop_set case) 8331 * 2. The cache ire of the gateway 'ire' 8332 * 3. The interface ire 'ipif_ire' 8333 * 8334 * We have (1) and (2). We lookup (3) below. 8335 * 8336 * If there is no interface route to the gateway, 8337 * it is a race condition, where we found the cache 8338 * but the interface route has been deleted. 8339 */ 8340 if (ip_nexthop) { 8341 ipif_ire = ire_ihandle_lookup_onlink(ire); 8342 } else { 8343 ipif_ire = 8344 ire_ihandle_lookup_offlink(ire, sire); 8345 } 8346 if (ipif_ire == NULL) { 8347 ip1dbg(("ip_newroute: " 8348 "ire_ihandle_lookup_offlink failed\n")); 8349 goto icmp_err_ret; 8350 } 8351 8352 /* 8353 * Check cached gateway IRE for any security 8354 * attributes; if found, associate the gateway 8355 * credentials group to the destination IRE. 8356 */ 8357 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8358 mutex_enter(&attrp->igsa_lock); 8359 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8360 GCGRP_REFHOLD(gcgrp); 8361 mutex_exit(&attrp->igsa_lock); 8362 } 8363 8364 /* 8365 * XXX For the source of the resolver mp, 8366 * we are using the same DL_UNITDATA_REQ 8367 * (from save_ire->ire_nce->nce_res_mp) 8368 * though the save_ire is not pointing at the same ill. 8369 * This is incorrect. We need to send it up to the 8370 * resolver to get the right res_mp. For ethernets 8371 * this may be okay (ill_type == DL_ETHER). 8372 */ 8373 8374 ire = ire_create( 8375 (uchar_t *)&dst, /* dest address */ 8376 (uchar_t *)&ip_g_all_ones, /* mask */ 8377 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8378 (uchar_t *)&gw, /* gateway address */ 8379 &save_ire->ire_max_frag, 8380 save_ire->ire_nce, /* src nce */ 8381 dst_ill->ill_rq, /* recv-from queue */ 8382 dst_ill->ill_wq, /* send-to queue */ 8383 IRE_CACHE, /* IRE type */ 8384 src_ipif, 8385 (sire != NULL) ? 8386 sire->ire_mask : 0, /* Parent mask */ 8387 (sire != NULL) ? 8388 sire->ire_phandle : 0, /* Parent handle */ 8389 ipif_ire->ire_ihandle, /* Interface handle */ 8390 (sire != NULL) ? (sire->ire_flags & 8391 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8392 (sire != NULL) ? 8393 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8394 NULL, 8395 gcgrp, 8396 ipst); 8397 8398 if (ire == NULL) { 8399 if (gcgrp != NULL) { 8400 GCGRP_REFRELE(gcgrp); 8401 gcgrp = NULL; 8402 } 8403 ire_refrele(ipif_ire); 8404 ire_refrele(save_ire); 8405 break; 8406 } 8407 8408 /* reference now held by IRE */ 8409 gcgrp = NULL; 8410 8411 ire->ire_marks |= ire_marks; 8412 8413 /* 8414 * Prevent sire and ipif_ire from getting deleted. 8415 * The newly created ire is tied to both of them via 8416 * the phandle and ihandle respectively. 8417 */ 8418 if (sire != NULL) { 8419 IRB_REFHOLD(sire->ire_bucket); 8420 /* Has it been removed already ? */ 8421 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8422 IRB_REFRELE(sire->ire_bucket); 8423 ire_refrele(ipif_ire); 8424 ire_refrele(save_ire); 8425 break; 8426 } 8427 } 8428 8429 IRB_REFHOLD(ipif_ire->ire_bucket); 8430 /* Has it been removed already ? */ 8431 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8432 IRB_REFRELE(ipif_ire->ire_bucket); 8433 if (sire != NULL) 8434 IRB_REFRELE(sire->ire_bucket); 8435 ire_refrele(ipif_ire); 8436 ire_refrele(save_ire); 8437 break; 8438 } 8439 8440 xmit_mp = first_mp; 8441 /* 8442 * In the case of multirouting, a copy 8443 * of the packet is done before its sending. 8444 * The copy is used to attempt another 8445 * route resolution, in a next loop. 8446 */ 8447 if (ire->ire_flags & RTF_MULTIRT) { 8448 copy_mp = copymsg(first_mp); 8449 if (copy_mp != NULL) { 8450 xmit_mp = copy_mp; 8451 MULTIRT_DEBUG_TAG(first_mp); 8452 } 8453 } 8454 ire_add_then_send(q, ire, xmit_mp); 8455 ire_refrele(save_ire); 8456 8457 /* Assert that sire is not deleted yet. */ 8458 if (sire != NULL) { 8459 ASSERT(sire->ire_ptpn != NULL); 8460 IRB_REFRELE(sire->ire_bucket); 8461 } 8462 8463 /* Assert that ipif_ire is not deleted yet. */ 8464 ASSERT(ipif_ire->ire_ptpn != NULL); 8465 IRB_REFRELE(ipif_ire->ire_bucket); 8466 ire_refrele(ipif_ire); 8467 8468 /* 8469 * If copy_mp is not NULL, multirouting was 8470 * requested. We loop to initiate a next 8471 * route resolution attempt, starting from sire. 8472 */ 8473 if (copy_mp != NULL) { 8474 /* 8475 * Search for the next unresolved 8476 * multirt route. 8477 */ 8478 copy_mp = NULL; 8479 ipif_ire = NULL; 8480 ire = NULL; 8481 multirt_resolve_next = B_TRUE; 8482 continue; 8483 } 8484 if (sire != NULL) 8485 ire_refrele(sire); 8486 ipif_refrele(src_ipif); 8487 ill_refrele(dst_ill); 8488 return; 8489 } 8490 case IRE_IF_NORESOLVER: { 8491 8492 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8493 dst_ill->ill_resolver_mp == NULL) { 8494 ip1dbg(("ip_newroute: dst_ill %p " 8495 "for IRE_IF_NORESOLVER ire %p has " 8496 "no ill_resolver_mp\n", 8497 (void *)dst_ill, (void *)ire)); 8498 break; 8499 } 8500 8501 /* 8502 * TSol note: We are creating the ire cache for the 8503 * destination 'dst'. If 'dst' is offlink, going 8504 * through the first hop 'gw', the security attributes 8505 * of 'dst' must be set to point to the gateway 8506 * credentials of gateway 'gw'. If 'dst' is onlink, it 8507 * is possible that 'dst' is a potential gateway that is 8508 * referenced by some route that has some security 8509 * attributes. Thus in the former case, we need to do a 8510 * gcgrp_lookup of 'gw' while in the latter case we 8511 * need to do gcgrp_lookup of 'dst' itself. 8512 */ 8513 ga.ga_af = AF_INET; 8514 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8515 &ga.ga_addr); 8516 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8517 8518 ire = ire_create( 8519 (uchar_t *)&dst, /* dest address */ 8520 (uchar_t *)&ip_g_all_ones, /* mask */ 8521 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8522 (uchar_t *)&gw, /* gateway address */ 8523 &save_ire->ire_max_frag, 8524 NULL, /* no src nce */ 8525 dst_ill->ill_rq, /* recv-from queue */ 8526 dst_ill->ill_wq, /* send-to queue */ 8527 IRE_CACHE, 8528 src_ipif, 8529 save_ire->ire_mask, /* Parent mask */ 8530 (sire != NULL) ? /* Parent handle */ 8531 sire->ire_phandle : 0, 8532 save_ire->ire_ihandle, /* Interface handle */ 8533 (sire != NULL) ? sire->ire_flags & 8534 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8535 &(save_ire->ire_uinfo), 8536 NULL, 8537 gcgrp, 8538 ipst); 8539 8540 if (ire == NULL) { 8541 if (gcgrp != NULL) { 8542 GCGRP_REFRELE(gcgrp); 8543 gcgrp = NULL; 8544 } 8545 ire_refrele(save_ire); 8546 break; 8547 } 8548 8549 /* reference now held by IRE */ 8550 gcgrp = NULL; 8551 8552 ire->ire_marks |= ire_marks; 8553 8554 /* Prevent save_ire from getting deleted */ 8555 IRB_REFHOLD(save_ire->ire_bucket); 8556 /* Has it been removed already ? */ 8557 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8558 IRB_REFRELE(save_ire->ire_bucket); 8559 ire_refrele(save_ire); 8560 break; 8561 } 8562 8563 /* 8564 * In the case of multirouting, a copy 8565 * of the packet is made before it is sent. 8566 * The copy is used in the next 8567 * loop to attempt another resolution. 8568 */ 8569 xmit_mp = first_mp; 8570 if ((sire != NULL) && 8571 (sire->ire_flags & RTF_MULTIRT)) { 8572 copy_mp = copymsg(first_mp); 8573 if (copy_mp != NULL) { 8574 xmit_mp = copy_mp; 8575 MULTIRT_DEBUG_TAG(first_mp); 8576 } 8577 } 8578 ire_add_then_send(q, ire, xmit_mp); 8579 8580 /* Assert that it is not deleted yet. */ 8581 ASSERT(save_ire->ire_ptpn != NULL); 8582 IRB_REFRELE(save_ire->ire_bucket); 8583 ire_refrele(save_ire); 8584 8585 if (copy_mp != NULL) { 8586 /* 8587 * If we found a (no)resolver, we ignore any 8588 * trailing top priority IRE_CACHE in further 8589 * loops. This ensures that we do not omit any 8590 * (no)resolver. 8591 * This IRE_CACHE, if any, will be processed 8592 * by another thread entering ip_newroute(). 8593 * IRE_CACHE entries, if any, will be processed 8594 * by another thread entering ip_newroute(), 8595 * (upon resolver response, for instance). 8596 * This aims to force parallel multirt 8597 * resolutions as soon as a packet must be sent. 8598 * In the best case, after the tx of only one 8599 * packet, all reachable routes are resolved. 8600 * Otherwise, the resolution of all RTF_MULTIRT 8601 * routes would require several emissions. 8602 */ 8603 multirt_flags &= ~MULTIRT_CACHEGW; 8604 8605 /* 8606 * Search for the next unresolved multirt 8607 * route. 8608 */ 8609 copy_mp = NULL; 8610 save_ire = NULL; 8611 ire = NULL; 8612 multirt_resolve_next = B_TRUE; 8613 continue; 8614 } 8615 8616 /* 8617 * Don't need sire anymore 8618 */ 8619 if (sire != NULL) 8620 ire_refrele(sire); 8621 8622 ipif_refrele(src_ipif); 8623 ill_refrele(dst_ill); 8624 return; 8625 } 8626 case IRE_IF_RESOLVER: 8627 /* 8628 * We can't build an IRE_CACHE yet, but at least we 8629 * found a resolver that can help. 8630 */ 8631 res_mp = dst_ill->ill_resolver_mp; 8632 if (!OK_RESOLVER_MP(res_mp)) 8633 break; 8634 8635 /* 8636 * To be at this point in the code with a non-zero gw 8637 * means that dst is reachable through a gateway that 8638 * we have never resolved. By changing dst to the gw 8639 * addr we resolve the gateway first. 8640 * When ire_add_then_send() tries to put the IP dg 8641 * to dst, it will reenter ip_newroute() at which 8642 * time we will find the IRE_CACHE for the gw and 8643 * create another IRE_CACHE in case IRE_CACHE above. 8644 */ 8645 if (gw != INADDR_ANY) { 8646 /* 8647 * The source ipif that was determined above was 8648 * relative to the destination address, not the 8649 * gateway's. If src_ipif was not taken out of 8650 * the IRE_IF_RESOLVER entry, we'll need to call 8651 * ipif_select_source() again. 8652 */ 8653 if (src_ipif != ire->ire_ipif) { 8654 ipif_refrele(src_ipif); 8655 src_ipif = ipif_select_source(dst_ill, 8656 gw, zoneid); 8657 if (src_ipif == NULL) { 8658 if (ip_debug > 2) { 8659 pr_addr_dbg( 8660 "ip_newroute: no " 8661 "src for gw %s ", 8662 AF_INET, &gw); 8663 printf("through " 8664 "interface %s\n", 8665 dst_ill->ill_name); 8666 } 8667 goto icmp_err_ret; 8668 } 8669 } 8670 save_dst = dst; 8671 dst = gw; 8672 gw = INADDR_ANY; 8673 } 8674 8675 /* 8676 * We obtain a partial IRE_CACHE which we will pass 8677 * along with the resolver query. When the response 8678 * comes back it will be there ready for us to add. 8679 * The ire_max_frag is atomically set under the 8680 * irebucket lock in ire_add_v[46]. 8681 */ 8682 8683 ire = ire_create_mp( 8684 (uchar_t *)&dst, /* dest address */ 8685 (uchar_t *)&ip_g_all_ones, /* mask */ 8686 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8687 (uchar_t *)&gw, /* gateway address */ 8688 NULL, /* ire_max_frag */ 8689 NULL, /* no src nce */ 8690 dst_ill->ill_rq, /* recv-from queue */ 8691 dst_ill->ill_wq, /* send-to queue */ 8692 IRE_CACHE, 8693 src_ipif, /* Interface ipif */ 8694 save_ire->ire_mask, /* Parent mask */ 8695 0, 8696 save_ire->ire_ihandle, /* Interface handle */ 8697 0, /* flags if any */ 8698 &(save_ire->ire_uinfo), 8699 NULL, 8700 NULL, 8701 ipst); 8702 8703 if (ire == NULL) { 8704 ire_refrele(save_ire); 8705 break; 8706 } 8707 8708 if ((sire != NULL) && 8709 (sire->ire_flags & RTF_MULTIRT)) { 8710 copy_mp = copymsg(first_mp); 8711 if (copy_mp != NULL) 8712 MULTIRT_DEBUG_TAG(copy_mp); 8713 } 8714 8715 ire->ire_marks |= ire_marks; 8716 8717 /* 8718 * Construct message chain for the resolver 8719 * of the form: 8720 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8721 * Packet could contain a IPSEC_OUT mp. 8722 * 8723 * NOTE : ire will be added later when the response 8724 * comes back from ARP. If the response does not 8725 * come back, ARP frees the packet. For this reason, 8726 * we can't REFHOLD the bucket of save_ire to prevent 8727 * deletions. We may not be able to REFRELE the bucket 8728 * if the response never comes back. Thus, before 8729 * adding the ire, ire_add_v4 will make sure that the 8730 * interface route does not get deleted. This is the 8731 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8732 * where we can always prevent deletions because of 8733 * the synchronous nature of adding IRES i.e 8734 * ire_add_then_send is called after creating the IRE. 8735 */ 8736 ASSERT(ire->ire_mp != NULL); 8737 ire->ire_mp->b_cont = first_mp; 8738 /* Have saved_mp handy, for cleanup if canput fails */ 8739 saved_mp = mp; 8740 mp = copyb(res_mp); 8741 if (mp == NULL) { 8742 /* Prepare for cleanup */ 8743 mp = saved_mp; /* pkt */ 8744 ire_delete(ire); /* ire_mp */ 8745 ire = NULL; 8746 ire_refrele(save_ire); 8747 if (copy_mp != NULL) { 8748 MULTIRT_DEBUG_UNTAG(copy_mp); 8749 freemsg(copy_mp); 8750 copy_mp = NULL; 8751 } 8752 break; 8753 } 8754 linkb(mp, ire->ire_mp); 8755 8756 /* 8757 * Fill in the source and dest addrs for the resolver. 8758 * NOTE: this depends on memory layouts imposed by 8759 * ill_init(). 8760 */ 8761 areq = (areq_t *)mp->b_rptr; 8762 addrp = (ipaddr_t *)((char *)areq + 8763 areq->areq_sender_addr_offset); 8764 if (do_attach_ill) { 8765 /* 8766 * This is bind to no failover case. 8767 * arp packet also must go out on attach_ill. 8768 */ 8769 ASSERT(ipha->ipha_src != NULL); 8770 *addrp = ipha->ipha_src; 8771 } else { 8772 *addrp = save_ire->ire_src_addr; 8773 } 8774 8775 ire_refrele(save_ire); 8776 addrp = (ipaddr_t *)((char *)areq + 8777 areq->areq_target_addr_offset); 8778 *addrp = dst; 8779 /* Up to the resolver. */ 8780 if (canputnext(dst_ill->ill_rq) && 8781 !(dst_ill->ill_arp_closing)) { 8782 putnext(dst_ill->ill_rq, mp); 8783 ire = NULL; 8784 if (copy_mp != NULL) { 8785 /* 8786 * If we found a resolver, we ignore 8787 * any trailing top priority IRE_CACHE 8788 * in the further loops. This ensures 8789 * that we do not omit any resolver. 8790 * IRE_CACHE entries, if any, will be 8791 * processed next time we enter 8792 * ip_newroute(). 8793 */ 8794 multirt_flags &= ~MULTIRT_CACHEGW; 8795 /* 8796 * Search for the next unresolved 8797 * multirt route. 8798 */ 8799 first_mp = copy_mp; 8800 copy_mp = NULL; 8801 /* Prepare the next resolution loop. */ 8802 mp = first_mp; 8803 EXTRACT_PKT_MP(mp, first_mp, 8804 mctl_present); 8805 if (mctl_present) 8806 io = (ipsec_out_t *) 8807 first_mp->b_rptr; 8808 ipha = (ipha_t *)mp->b_rptr; 8809 8810 ASSERT(sire != NULL); 8811 8812 dst = save_dst; 8813 multirt_resolve_next = B_TRUE; 8814 continue; 8815 } 8816 8817 if (sire != NULL) 8818 ire_refrele(sire); 8819 8820 /* 8821 * The response will come back in ip_wput 8822 * with db_type IRE_DB_TYPE. 8823 */ 8824 ipif_refrele(src_ipif); 8825 ill_refrele(dst_ill); 8826 return; 8827 } else { 8828 /* Prepare for cleanup */ 8829 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8830 mp); 8831 mp->b_cont = NULL; 8832 freeb(mp); /* areq */ 8833 /* 8834 * this is an ire that is not added to the 8835 * cache. ire_freemblk will handle the release 8836 * of any resources associated with the ire. 8837 */ 8838 ire_delete(ire); /* ire_mp */ 8839 mp = saved_mp; /* pkt */ 8840 ire = NULL; 8841 if (copy_mp != NULL) { 8842 MULTIRT_DEBUG_UNTAG(copy_mp); 8843 freemsg(copy_mp); 8844 copy_mp = NULL; 8845 } 8846 break; 8847 } 8848 default: 8849 break; 8850 } 8851 } while (multirt_resolve_next); 8852 8853 ip1dbg(("ip_newroute: dropped\n")); 8854 /* Did this packet originate externally? */ 8855 if (mp->b_prev) { 8856 mp->b_next = NULL; 8857 mp->b_prev = NULL; 8858 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8859 } else { 8860 if (dst_ill != NULL) { 8861 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8862 } else { 8863 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8864 } 8865 } 8866 ASSERT(copy_mp == NULL); 8867 MULTIRT_DEBUG_UNTAG(first_mp); 8868 freemsg(first_mp); 8869 if (ire != NULL) 8870 ire_refrele(ire); 8871 if (sire != NULL) 8872 ire_refrele(sire); 8873 if (src_ipif != NULL) 8874 ipif_refrele(src_ipif); 8875 if (dst_ill != NULL) 8876 ill_refrele(dst_ill); 8877 return; 8878 8879 icmp_err_ret: 8880 ip1dbg(("ip_newroute: no route\n")); 8881 if (src_ipif != NULL) 8882 ipif_refrele(src_ipif); 8883 if (dst_ill != NULL) 8884 ill_refrele(dst_ill); 8885 if (sire != NULL) 8886 ire_refrele(sire); 8887 /* Did this packet originate externally? */ 8888 if (mp->b_prev) { 8889 mp->b_next = NULL; 8890 mp->b_prev = NULL; 8891 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8892 q = WR(q); 8893 } else { 8894 /* 8895 * There is no outgoing ill, so just increment the 8896 * system MIB. 8897 */ 8898 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8899 /* 8900 * Since ip_wput() isn't close to finished, we fill 8901 * in enough of the header for credible error reporting. 8902 */ 8903 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8904 /* Failed */ 8905 MULTIRT_DEBUG_UNTAG(first_mp); 8906 freemsg(first_mp); 8907 if (ire != NULL) 8908 ire_refrele(ire); 8909 return; 8910 } 8911 } 8912 8913 /* 8914 * At this point we will have ire only if RTF_BLACKHOLE 8915 * or RTF_REJECT flags are set on the IRE. It will not 8916 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8917 */ 8918 if (ire != NULL) { 8919 if (ire->ire_flags & RTF_BLACKHOLE) { 8920 ire_refrele(ire); 8921 MULTIRT_DEBUG_UNTAG(first_mp); 8922 freemsg(first_mp); 8923 return; 8924 } 8925 ire_refrele(ire); 8926 } 8927 if (ip_source_routed(ipha, ipst)) { 8928 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8929 zoneid, ipst); 8930 return; 8931 } 8932 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8933 } 8934 8935 ip_opt_info_t zero_info; 8936 8937 /* 8938 * IPv4 - 8939 * ip_newroute_ipif is called by ip_wput_multicast and 8940 * ip_rput_forward_multicast whenever we need to send 8941 * out a packet to a destination address for which we do not have specific 8942 * routing information. It is used when the packet will be sent out 8943 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8944 * socket option is set or icmp error message wants to go out on a particular 8945 * interface for a unicast packet. 8946 * 8947 * In most cases, the destination address is resolved thanks to the ipif 8948 * intrinsic resolver. However, there are some cases where the call to 8949 * ip_newroute_ipif must take into account the potential presence of 8950 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8951 * that uses the interface. This is specified through flags, 8952 * which can be a combination of: 8953 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8954 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8955 * and flags. Additionally, the packet source address has to be set to 8956 * the specified address. The caller is thus expected to set this flag 8957 * if the packet has no specific source address yet. 8958 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8959 * flag, the resulting ire will inherit the flag. All unresolved routes 8960 * to the destination must be explored in the same call to 8961 * ip_newroute_ipif(). 8962 */ 8963 static void 8964 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8965 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8966 { 8967 areq_t *areq; 8968 ire_t *ire = NULL; 8969 mblk_t *res_mp; 8970 ipaddr_t *addrp; 8971 mblk_t *first_mp; 8972 ire_t *save_ire = NULL; 8973 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8974 ipif_t *src_ipif = NULL; 8975 ushort_t ire_marks = 0; 8976 ill_t *dst_ill = NULL; 8977 boolean_t mctl_present; 8978 ipsec_out_t *io; 8979 ipha_t *ipha; 8980 int ihandle = 0; 8981 mblk_t *saved_mp; 8982 ire_t *fire = NULL; 8983 mblk_t *copy_mp = NULL; 8984 boolean_t multirt_resolve_next; 8985 boolean_t unspec_src; 8986 ipaddr_t ipha_dst; 8987 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8988 8989 /* 8990 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8991 * here for uniformity 8992 */ 8993 ipif_refhold(ipif); 8994 8995 /* 8996 * This loop is run only once in most cases. 8997 * We loop to resolve further routes only when the destination 8998 * can be reached through multiple RTF_MULTIRT-flagged ires. 8999 */ 9000 do { 9001 if (dst_ill != NULL) { 9002 ill_refrele(dst_ill); 9003 dst_ill = NULL; 9004 } 9005 if (src_ipif != NULL) { 9006 ipif_refrele(src_ipif); 9007 src_ipif = NULL; 9008 } 9009 multirt_resolve_next = B_FALSE; 9010 9011 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9012 ipif->ipif_ill->ill_name)); 9013 9014 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9015 if (mctl_present) 9016 io = (ipsec_out_t *)first_mp->b_rptr; 9017 9018 ipha = (ipha_t *)mp->b_rptr; 9019 9020 /* 9021 * Save the packet destination address, we may need it after 9022 * the packet has been consumed. 9023 */ 9024 ipha_dst = ipha->ipha_dst; 9025 9026 /* 9027 * If the interface is a pt-pt interface we look for an 9028 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9029 * local_address and the pt-pt destination address. Otherwise 9030 * we just match the local address. 9031 * NOTE: dst could be different than ipha->ipha_dst in case 9032 * of sending igmp multicast packets over a point-to-point 9033 * connection. 9034 * Thus we must be careful enough to check ipha_dst to be a 9035 * multicast address, otherwise it will take xmit_if path for 9036 * multicast packets resulting into kernel stack overflow by 9037 * repeated calls to ip_newroute_ipif from ire_send(). 9038 */ 9039 if (CLASSD(ipha_dst) && 9040 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9041 goto err_ret; 9042 } 9043 9044 /* 9045 * We check if an IRE_OFFSUBNET for the addr that goes through 9046 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9047 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9048 * propagate its flags to the new ire. 9049 */ 9050 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9051 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9052 ip2dbg(("ip_newroute_ipif: " 9053 "ipif_lookup_multi_ire(" 9054 "ipif %p, dst %08x) = fire %p\n", 9055 (void *)ipif, ntohl(dst), (void *)fire)); 9056 } 9057 9058 if (mctl_present && io->ipsec_out_attach_if) { 9059 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9060 io->ipsec_out_ill_index, B_FALSE, ipst); 9061 9062 /* Failure case frees things for us. */ 9063 if (attach_ill == NULL) { 9064 ipif_refrele(ipif); 9065 if (fire != NULL) 9066 ire_refrele(fire); 9067 return; 9068 } 9069 9070 /* 9071 * Check if we need an ire that will not be 9072 * looked up by anybody else i.e. HIDDEN. 9073 */ 9074 if (ill_is_probeonly(attach_ill)) { 9075 ire_marks = IRE_MARK_HIDDEN; 9076 } 9077 /* 9078 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9079 * case. 9080 */ 9081 dst_ill = ipif->ipif_ill; 9082 /* attach_ill has been refheld by ip_grab_attach_ill */ 9083 ASSERT(dst_ill == attach_ill); 9084 } else { 9085 /* 9086 * If the interface belongs to an interface group, 9087 * make sure the next possible interface in the group 9088 * is used. This encourages load spreading among 9089 * peers in an interface group. 9090 * Note: load spreading is disabled for RTF_MULTIRT 9091 * routes. 9092 */ 9093 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9094 (fire->ire_flags & RTF_MULTIRT)) { 9095 /* 9096 * Don't perform outbound load spreading 9097 * in the case of an RTF_MULTIRT issued route, 9098 * we actually typically want to replicate 9099 * outgoing packets through particular 9100 * interfaces. 9101 */ 9102 dst_ill = ipif->ipif_ill; 9103 ill_refhold(dst_ill); 9104 } else { 9105 dst_ill = ip_newroute_get_dst_ill( 9106 ipif->ipif_ill); 9107 } 9108 if (dst_ill == NULL) { 9109 if (ip_debug > 2) { 9110 pr_addr_dbg("ip_newroute_ipif: " 9111 "no dst ill for dst %s\n", 9112 AF_INET, &dst); 9113 } 9114 goto err_ret; 9115 } 9116 } 9117 9118 /* 9119 * Pick a source address preferring non-deprecated ones. 9120 * Unlike ip_newroute, we don't do any source address 9121 * selection here since for multicast it really does not help 9122 * in inbound load spreading as in the unicast case. 9123 */ 9124 if ((flags & RTF_SETSRC) && (fire != NULL) && 9125 (fire->ire_flags & RTF_SETSRC)) { 9126 /* 9127 * As requested by flags, an IRE_OFFSUBNET was looked up 9128 * on that interface. This ire has RTF_SETSRC flag, so 9129 * the source address of the packet must be changed. 9130 * Check that the ipif matching the requested source 9131 * address still exists. 9132 */ 9133 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9134 zoneid, NULL, NULL, NULL, NULL, ipst); 9135 } 9136 9137 unspec_src = (connp != NULL && connp->conn_unspec_src); 9138 9139 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9140 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9141 (connp != NULL && ipif->ipif_zoneid != zoneid && 9142 ipif->ipif_zoneid != ALL_ZONES)) && 9143 (src_ipif == NULL) && 9144 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9145 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9146 if (src_ipif == NULL) { 9147 if (ip_debug > 2) { 9148 /* ip1dbg */ 9149 pr_addr_dbg("ip_newroute_ipif: " 9150 "no src for dst %s", 9151 AF_INET, &dst); 9152 } 9153 ip1dbg((" through interface %s\n", 9154 dst_ill->ill_name)); 9155 goto err_ret; 9156 } 9157 ipif_refrele(ipif); 9158 ipif = src_ipif; 9159 ipif_refhold(ipif); 9160 } 9161 if (src_ipif == NULL) { 9162 src_ipif = ipif; 9163 ipif_refhold(src_ipif); 9164 } 9165 9166 /* 9167 * Assign a source address while we have the conn. 9168 * We can't have ip_wput_ire pick a source address when the 9169 * packet returns from arp since conn_unspec_src might be set 9170 * and we lose the conn when going through arp. 9171 */ 9172 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9173 ipha->ipha_src = src_ipif->ipif_src_addr; 9174 9175 /* 9176 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9177 * that the outgoing interface does not have an interface ire. 9178 */ 9179 if (CLASSD(ipha_dst) && (connp == NULL || 9180 connp->conn_outgoing_ill == NULL) && 9181 infop->ip_opt_ill_index == 0) { 9182 /* ipif_to_ire returns an held ire */ 9183 ire = ipif_to_ire(ipif); 9184 if (ire == NULL) 9185 goto err_ret; 9186 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9187 goto err_ret; 9188 /* 9189 * ihandle is needed when the ire is added to 9190 * cache table. 9191 */ 9192 save_ire = ire; 9193 ihandle = save_ire->ire_ihandle; 9194 9195 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9196 "flags %04x\n", 9197 (void *)ire, (void *)ipif, flags)); 9198 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9199 (fire->ire_flags & RTF_MULTIRT)) { 9200 /* 9201 * As requested by flags, an IRE_OFFSUBNET was 9202 * looked up on that interface. This ire has 9203 * RTF_MULTIRT flag, so the resolution loop will 9204 * be re-entered to resolve additional routes on 9205 * other interfaces. For that purpose, a copy of 9206 * the packet is performed at this point. 9207 */ 9208 fire->ire_last_used_time = lbolt; 9209 copy_mp = copymsg(first_mp); 9210 if (copy_mp) { 9211 MULTIRT_DEBUG_TAG(copy_mp); 9212 } 9213 } 9214 if ((flags & RTF_SETSRC) && (fire != NULL) && 9215 (fire->ire_flags & RTF_SETSRC)) { 9216 /* 9217 * As requested by flags, an IRE_OFFSUBET was 9218 * looked up on that interface. This ire has 9219 * RTF_SETSRC flag, so the source address of the 9220 * packet must be changed. 9221 */ 9222 ipha->ipha_src = fire->ire_src_addr; 9223 } 9224 } else { 9225 ASSERT((connp == NULL) || 9226 (connp->conn_outgoing_ill != NULL) || 9227 (connp->conn_dontroute) || 9228 infop->ip_opt_ill_index != 0); 9229 /* 9230 * The only ways we can come here are: 9231 * 1) IP_BOUND_IF socket option is set 9232 * 2) SO_DONTROUTE socket option is set 9233 * 3) IP_PKTINFO option is passed in as ancillary data. 9234 * In all cases, the new ire will not be added 9235 * into cache table. 9236 */ 9237 ire_marks |= IRE_MARK_NOADD; 9238 } 9239 9240 switch (ipif->ipif_net_type) { 9241 case IRE_IF_NORESOLVER: { 9242 /* We have what we need to build an IRE_CACHE. */ 9243 9244 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9245 (dst_ill->ill_resolver_mp == NULL)) { 9246 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9247 "for IRE_IF_NORESOLVER ire %p has " 9248 "no ill_resolver_mp\n", 9249 (void *)dst_ill, (void *)ire)); 9250 break; 9251 } 9252 9253 /* 9254 * The new ire inherits the IRE_OFFSUBNET flags 9255 * and source address, if this was requested. 9256 */ 9257 ire = ire_create( 9258 (uchar_t *)&dst, /* dest address */ 9259 (uchar_t *)&ip_g_all_ones, /* mask */ 9260 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9261 NULL, /* gateway address */ 9262 &ipif->ipif_mtu, 9263 NULL, /* no src nce */ 9264 dst_ill->ill_rq, /* recv-from queue */ 9265 dst_ill->ill_wq, /* send-to queue */ 9266 IRE_CACHE, 9267 src_ipif, 9268 (save_ire != NULL ? save_ire->ire_mask : 0), 9269 (fire != NULL) ? /* Parent handle */ 9270 fire->ire_phandle : 0, 9271 ihandle, /* Interface handle */ 9272 (fire != NULL) ? 9273 (fire->ire_flags & 9274 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9275 (save_ire == NULL ? &ire_uinfo_null : 9276 &save_ire->ire_uinfo), 9277 NULL, 9278 NULL, 9279 ipst); 9280 9281 if (ire == NULL) { 9282 if (save_ire != NULL) 9283 ire_refrele(save_ire); 9284 break; 9285 } 9286 9287 ire->ire_marks |= ire_marks; 9288 9289 /* 9290 * If IRE_MARK_NOADD is set then we need to convert 9291 * the max_fragp to a useable value now. This is 9292 * normally done in ire_add_v[46]. We also need to 9293 * associate the ire with an nce (normally would be 9294 * done in ip_wput_nondata()). 9295 * 9296 * Note that IRE_MARK_NOADD packets created here 9297 * do not have a non-null ire_mp pointer. The null 9298 * value of ire_bucket indicates that they were 9299 * never added. 9300 */ 9301 if (ire->ire_marks & IRE_MARK_NOADD) { 9302 uint_t max_frag; 9303 9304 max_frag = *ire->ire_max_fragp; 9305 ire->ire_max_fragp = NULL; 9306 ire->ire_max_frag = max_frag; 9307 9308 if ((ire->ire_nce = ndp_lookup_v4( 9309 ire_to_ill(ire), 9310 (ire->ire_gateway_addr != INADDR_ANY ? 9311 &ire->ire_gateway_addr : &ire->ire_addr), 9312 B_FALSE)) == NULL) { 9313 if (save_ire != NULL) 9314 ire_refrele(save_ire); 9315 break; 9316 } 9317 ASSERT(ire->ire_nce->nce_state == 9318 ND_REACHABLE); 9319 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9320 } 9321 9322 /* Prevent save_ire from getting deleted */ 9323 if (save_ire != NULL) { 9324 IRB_REFHOLD(save_ire->ire_bucket); 9325 /* Has it been removed already ? */ 9326 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9327 IRB_REFRELE(save_ire->ire_bucket); 9328 ire_refrele(save_ire); 9329 break; 9330 } 9331 } 9332 9333 ire_add_then_send(q, ire, first_mp); 9334 9335 /* Assert that save_ire is not deleted yet. */ 9336 if (save_ire != NULL) { 9337 ASSERT(save_ire->ire_ptpn != NULL); 9338 IRB_REFRELE(save_ire->ire_bucket); 9339 ire_refrele(save_ire); 9340 save_ire = NULL; 9341 } 9342 if (fire != NULL) { 9343 ire_refrele(fire); 9344 fire = NULL; 9345 } 9346 9347 /* 9348 * the resolution loop is re-entered if this 9349 * was requested through flags and if we 9350 * actually are in a multirouting case. 9351 */ 9352 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9353 boolean_t need_resolve = 9354 ire_multirt_need_resolve(ipha_dst, 9355 MBLK_GETLABEL(copy_mp), ipst); 9356 if (!need_resolve) { 9357 MULTIRT_DEBUG_UNTAG(copy_mp); 9358 freemsg(copy_mp); 9359 copy_mp = NULL; 9360 } else { 9361 /* 9362 * ipif_lookup_group() calls 9363 * ire_lookup_multi() that uses 9364 * ire_ftable_lookup() to find 9365 * an IRE_INTERFACE for the group. 9366 * In the multirt case, 9367 * ire_lookup_multi() then invokes 9368 * ire_multirt_lookup() to find 9369 * the next resolvable ire. 9370 * As a result, we obtain an new 9371 * interface, derived from the 9372 * next ire. 9373 */ 9374 ipif_refrele(ipif); 9375 ipif = ipif_lookup_group(ipha_dst, 9376 zoneid, ipst); 9377 ip2dbg(("ip_newroute_ipif: " 9378 "multirt dst %08x, ipif %p\n", 9379 htonl(dst), (void *)ipif)); 9380 if (ipif != NULL) { 9381 mp = copy_mp; 9382 copy_mp = NULL; 9383 multirt_resolve_next = B_TRUE; 9384 continue; 9385 } else { 9386 freemsg(copy_mp); 9387 } 9388 } 9389 } 9390 if (ipif != NULL) 9391 ipif_refrele(ipif); 9392 ill_refrele(dst_ill); 9393 ipif_refrele(src_ipif); 9394 return; 9395 } 9396 case IRE_IF_RESOLVER: 9397 /* 9398 * We can't build an IRE_CACHE yet, but at least 9399 * we found a resolver that can help. 9400 */ 9401 res_mp = dst_ill->ill_resolver_mp; 9402 if (!OK_RESOLVER_MP(res_mp)) 9403 break; 9404 9405 /* 9406 * We obtain a partial IRE_CACHE which we will pass 9407 * along with the resolver query. When the response 9408 * comes back it will be there ready for us to add. 9409 * The new ire inherits the IRE_OFFSUBNET flags 9410 * and source address, if this was requested. 9411 * The ire_max_frag is atomically set under the 9412 * irebucket lock in ire_add_v[46]. Only in the 9413 * case of IRE_MARK_NOADD, we set it here itself. 9414 */ 9415 ire = ire_create_mp( 9416 (uchar_t *)&dst, /* dest address */ 9417 (uchar_t *)&ip_g_all_ones, /* mask */ 9418 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9419 NULL, /* gateway address */ 9420 (ire_marks & IRE_MARK_NOADD) ? 9421 ipif->ipif_mtu : 0, /* max_frag */ 9422 NULL, /* no src nce */ 9423 dst_ill->ill_rq, /* recv-from queue */ 9424 dst_ill->ill_wq, /* send-to queue */ 9425 IRE_CACHE, 9426 src_ipif, 9427 (save_ire != NULL ? save_ire->ire_mask : 0), 9428 (fire != NULL) ? /* Parent handle */ 9429 fire->ire_phandle : 0, 9430 ihandle, /* Interface handle */ 9431 (fire != NULL) ? /* flags if any */ 9432 (fire->ire_flags & 9433 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9434 (save_ire == NULL ? &ire_uinfo_null : 9435 &save_ire->ire_uinfo), 9436 NULL, 9437 NULL, 9438 ipst); 9439 9440 if (save_ire != NULL) { 9441 ire_refrele(save_ire); 9442 save_ire = NULL; 9443 } 9444 if (ire == NULL) 9445 break; 9446 9447 ire->ire_marks |= ire_marks; 9448 /* 9449 * Construct message chain for the resolver of the 9450 * form: 9451 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9452 * 9453 * NOTE : ire will be added later when the response 9454 * comes back from ARP. If the response does not 9455 * come back, ARP frees the packet. For this reason, 9456 * we can't REFHOLD the bucket of save_ire to prevent 9457 * deletions. We may not be able to REFRELE the 9458 * bucket if the response never comes back. 9459 * Thus, before adding the ire, ire_add_v4 will make 9460 * sure that the interface route does not get deleted. 9461 * This is the only case unlike ip_newroute_v6, 9462 * ip_newroute_ipif_v6 where we can always prevent 9463 * deletions because ire_add_then_send is called after 9464 * creating the IRE. 9465 * If IRE_MARK_NOADD is set, then ire_add_then_send 9466 * does not add this IRE into the IRE CACHE. 9467 */ 9468 ASSERT(ire->ire_mp != NULL); 9469 ire->ire_mp->b_cont = first_mp; 9470 /* Have saved_mp handy, for cleanup if canput fails */ 9471 saved_mp = mp; 9472 mp = copyb(res_mp); 9473 if (mp == NULL) { 9474 /* Prepare for cleanup */ 9475 mp = saved_mp; /* pkt */ 9476 ire_delete(ire); /* ire_mp */ 9477 ire = NULL; 9478 if (copy_mp != NULL) { 9479 MULTIRT_DEBUG_UNTAG(copy_mp); 9480 freemsg(copy_mp); 9481 copy_mp = NULL; 9482 } 9483 break; 9484 } 9485 linkb(mp, ire->ire_mp); 9486 9487 /* 9488 * Fill in the source and dest addrs for the resolver. 9489 * NOTE: this depends on memory layouts imposed by 9490 * ill_init(). 9491 */ 9492 areq = (areq_t *)mp->b_rptr; 9493 addrp = (ipaddr_t *)((char *)areq + 9494 areq->areq_sender_addr_offset); 9495 *addrp = ire->ire_src_addr; 9496 addrp = (ipaddr_t *)((char *)areq + 9497 areq->areq_target_addr_offset); 9498 *addrp = dst; 9499 /* Up to the resolver. */ 9500 if (canputnext(dst_ill->ill_rq) && 9501 !(dst_ill->ill_arp_closing)) { 9502 putnext(dst_ill->ill_rq, mp); 9503 /* 9504 * The response will come back in ip_wput 9505 * with db_type IRE_DB_TYPE. 9506 */ 9507 } else { 9508 mp->b_cont = NULL; 9509 freeb(mp); /* areq */ 9510 ire_delete(ire); /* ire_mp */ 9511 saved_mp->b_next = NULL; 9512 saved_mp->b_prev = NULL; 9513 freemsg(first_mp); /* pkt */ 9514 ip2dbg(("ip_newroute_ipif: dropped\n")); 9515 } 9516 9517 if (fire != NULL) { 9518 ire_refrele(fire); 9519 fire = NULL; 9520 } 9521 9522 9523 /* 9524 * The resolution loop is re-entered if this was 9525 * requested through flags and we actually are 9526 * in a multirouting case. 9527 */ 9528 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9529 boolean_t need_resolve = 9530 ire_multirt_need_resolve(ipha_dst, 9531 MBLK_GETLABEL(copy_mp), ipst); 9532 if (!need_resolve) { 9533 MULTIRT_DEBUG_UNTAG(copy_mp); 9534 freemsg(copy_mp); 9535 copy_mp = NULL; 9536 } else { 9537 /* 9538 * ipif_lookup_group() calls 9539 * ire_lookup_multi() that uses 9540 * ire_ftable_lookup() to find 9541 * an IRE_INTERFACE for the group. 9542 * In the multirt case, 9543 * ire_lookup_multi() then invokes 9544 * ire_multirt_lookup() to find 9545 * the next resolvable ire. 9546 * As a result, we obtain an new 9547 * interface, derived from the 9548 * next ire. 9549 */ 9550 ipif_refrele(ipif); 9551 ipif = ipif_lookup_group(ipha_dst, 9552 zoneid, ipst); 9553 if (ipif != NULL) { 9554 mp = copy_mp; 9555 copy_mp = NULL; 9556 multirt_resolve_next = B_TRUE; 9557 continue; 9558 } else { 9559 freemsg(copy_mp); 9560 } 9561 } 9562 } 9563 if (ipif != NULL) 9564 ipif_refrele(ipif); 9565 ill_refrele(dst_ill); 9566 ipif_refrele(src_ipif); 9567 return; 9568 default: 9569 break; 9570 } 9571 } while (multirt_resolve_next); 9572 9573 err_ret: 9574 ip2dbg(("ip_newroute_ipif: dropped\n")); 9575 if (fire != NULL) 9576 ire_refrele(fire); 9577 ipif_refrele(ipif); 9578 /* Did this packet originate externally? */ 9579 if (dst_ill != NULL) 9580 ill_refrele(dst_ill); 9581 if (src_ipif != NULL) 9582 ipif_refrele(src_ipif); 9583 if (mp->b_prev || mp->b_next) { 9584 mp->b_next = NULL; 9585 mp->b_prev = NULL; 9586 } else { 9587 /* 9588 * Since ip_wput() isn't close to finished, we fill 9589 * in enough of the header for credible error reporting. 9590 */ 9591 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9592 /* Failed */ 9593 freemsg(first_mp); 9594 if (ire != NULL) 9595 ire_refrele(ire); 9596 return; 9597 } 9598 } 9599 /* 9600 * At this point we will have ire only if RTF_BLACKHOLE 9601 * or RTF_REJECT flags are set on the IRE. It will not 9602 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9603 */ 9604 if (ire != NULL) { 9605 if (ire->ire_flags & RTF_BLACKHOLE) { 9606 ire_refrele(ire); 9607 freemsg(first_mp); 9608 return; 9609 } 9610 ire_refrele(ire); 9611 } 9612 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9613 } 9614 9615 /* Name/Value Table Lookup Routine */ 9616 char * 9617 ip_nv_lookup(nv_t *nv, int value) 9618 { 9619 if (!nv) 9620 return (NULL); 9621 for (; nv->nv_name; nv++) { 9622 if (nv->nv_value == value) 9623 return (nv->nv_name); 9624 } 9625 return ("unknown"); 9626 } 9627 9628 /* 9629 * This is a module open, i.e. this is a control stream for access 9630 * to a DLPI device. We allocate an ill_t as the instance data in 9631 * this case. 9632 */ 9633 int 9634 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9635 { 9636 ill_t *ill; 9637 int err; 9638 zoneid_t zoneid; 9639 netstack_t *ns; 9640 ip_stack_t *ipst; 9641 9642 /* 9643 * Prevent unprivileged processes from pushing IP so that 9644 * they can't send raw IP. 9645 */ 9646 if (secpolicy_net_rawaccess(credp) != 0) 9647 return (EPERM); 9648 9649 ns = netstack_find_by_cred(credp); 9650 ASSERT(ns != NULL); 9651 ipst = ns->netstack_ip; 9652 ASSERT(ipst != NULL); 9653 9654 /* 9655 * For exclusive stacks we set the zoneid to zero 9656 * to make IP operate as if in the global zone. 9657 */ 9658 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9659 zoneid = GLOBAL_ZONEID; 9660 else 9661 zoneid = crgetzoneid(credp); 9662 9663 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9664 q->q_ptr = WR(q)->q_ptr = ill; 9665 ill->ill_ipst = ipst; 9666 ill->ill_zoneid = zoneid; 9667 9668 /* 9669 * ill_init initializes the ill fields and then sends down 9670 * down a DL_INFO_REQ after calling qprocson. 9671 */ 9672 err = ill_init(q, ill); 9673 if (err != 0) { 9674 mi_free(ill); 9675 netstack_rele(ipst->ips_netstack); 9676 q->q_ptr = NULL; 9677 WR(q)->q_ptr = NULL; 9678 return (err); 9679 } 9680 9681 /* ill_init initializes the ipsq marking this thread as writer */ 9682 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9683 /* Wait for the DL_INFO_ACK */ 9684 mutex_enter(&ill->ill_lock); 9685 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9686 /* 9687 * Return value of 0 indicates a pending signal. 9688 */ 9689 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9690 if (err == 0) { 9691 mutex_exit(&ill->ill_lock); 9692 (void) ip_close(q, 0); 9693 return (EINTR); 9694 } 9695 } 9696 mutex_exit(&ill->ill_lock); 9697 9698 /* 9699 * ip_rput_other could have set an error in ill_error on 9700 * receipt of M_ERROR. 9701 */ 9702 9703 err = ill->ill_error; 9704 if (err != 0) { 9705 (void) ip_close(q, 0); 9706 return (err); 9707 } 9708 9709 ill->ill_credp = credp; 9710 crhold(credp); 9711 9712 mutex_enter(&ipst->ips_ip_mi_lock); 9713 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9714 credp); 9715 mutex_exit(&ipst->ips_ip_mi_lock); 9716 if (err) { 9717 (void) ip_close(q, 0); 9718 return (err); 9719 } 9720 return (0); 9721 } 9722 9723 /* For /dev/ip aka AF_INET open */ 9724 int 9725 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9726 { 9727 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9728 } 9729 9730 /* For /dev/ip6 aka AF_INET6 open */ 9731 int 9732 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9733 { 9734 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9735 } 9736 9737 /* IP open routine. */ 9738 int 9739 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9740 boolean_t isv6) 9741 { 9742 conn_t *connp; 9743 major_t maj; 9744 zoneid_t zoneid; 9745 netstack_t *ns; 9746 ip_stack_t *ipst; 9747 9748 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9749 9750 /* Allow reopen. */ 9751 if (q->q_ptr != NULL) 9752 return (0); 9753 9754 if (sflag & MODOPEN) { 9755 /* This is a module open */ 9756 return (ip_modopen(q, devp, flag, sflag, credp)); 9757 } 9758 9759 ns = netstack_find_by_cred(credp); 9760 ASSERT(ns != NULL); 9761 ipst = ns->netstack_ip; 9762 ASSERT(ipst != NULL); 9763 9764 /* 9765 * For exclusive stacks we set the zoneid to zero 9766 * to make IP operate as if in the global zone. 9767 */ 9768 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9769 zoneid = GLOBAL_ZONEID; 9770 else 9771 zoneid = crgetzoneid(credp); 9772 9773 /* 9774 * We are opening as a device. This is an IP client stream, and we 9775 * allocate an conn_t as the instance data. 9776 */ 9777 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9778 9779 /* 9780 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9781 * done by netstack_find_by_cred() 9782 */ 9783 netstack_rele(ipst->ips_netstack); 9784 9785 connp->conn_zoneid = zoneid; 9786 9787 connp->conn_upq = q; 9788 q->q_ptr = WR(q)->q_ptr = connp; 9789 9790 if (flag & SO_SOCKSTR) 9791 connp->conn_flags |= IPCL_SOCKET; 9792 9793 /* Minor tells us which /dev entry was opened */ 9794 if (isv6) { 9795 connp->conn_flags |= IPCL_ISV6; 9796 connp->conn_af_isv6 = B_TRUE; 9797 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9798 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9799 } else { 9800 connp->conn_af_isv6 = B_FALSE; 9801 connp->conn_pkt_isv6 = B_FALSE; 9802 } 9803 9804 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9805 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9806 connp->conn_minor_arena = ip_minor_arena_la; 9807 } else { 9808 /* 9809 * Either minor numbers in the large arena were exhausted 9810 * or a non socket application is doing the open. 9811 * Try to allocate from the small arena. 9812 */ 9813 if ((connp->conn_dev = 9814 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9815 /* CONN_DEC_REF takes care of netstack_rele() */ 9816 q->q_ptr = WR(q)->q_ptr = NULL; 9817 CONN_DEC_REF(connp); 9818 return (EBUSY); 9819 } 9820 connp->conn_minor_arena = ip_minor_arena_sa; 9821 } 9822 9823 maj = getemajor(*devp); 9824 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9825 9826 /* 9827 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9828 */ 9829 connp->conn_cred = credp; 9830 9831 /* 9832 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9833 */ 9834 connp->conn_recv = ip_conn_input; 9835 9836 crhold(connp->conn_cred); 9837 9838 /* 9839 * If the caller has the process-wide flag set, then default to MAC 9840 * exempt mode. This allows read-down to unlabeled hosts. 9841 */ 9842 if (getpflags(NET_MAC_AWARE, credp) != 0) 9843 connp->conn_mac_exempt = B_TRUE; 9844 9845 connp->conn_rq = q; 9846 connp->conn_wq = WR(q); 9847 9848 /* Non-zero default values */ 9849 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9850 9851 /* 9852 * Make the conn globally visible to walkers 9853 */ 9854 ASSERT(connp->conn_ref == 1); 9855 mutex_enter(&connp->conn_lock); 9856 connp->conn_state_flags &= ~CONN_INCIPIENT; 9857 mutex_exit(&connp->conn_lock); 9858 9859 qprocson(q); 9860 9861 return (0); 9862 } 9863 9864 /* 9865 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9866 * Note that there is no race since either ip_output function works - it 9867 * is just an optimization to enter the best ip_output routine directly. 9868 */ 9869 void 9870 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9871 ip_stack_t *ipst) 9872 { 9873 if (isv6) { 9874 if (bump_mib) { 9875 BUMP_MIB(&ipst->ips_ip6_mib, 9876 ipIfStatsOutSwitchIPVersion); 9877 } 9878 connp->conn_send = ip_output_v6; 9879 connp->conn_pkt_isv6 = B_TRUE; 9880 } else { 9881 if (bump_mib) { 9882 BUMP_MIB(&ipst->ips_ip_mib, 9883 ipIfStatsOutSwitchIPVersion); 9884 } 9885 connp->conn_send = ip_output; 9886 connp->conn_pkt_isv6 = B_FALSE; 9887 } 9888 9889 } 9890 9891 /* 9892 * See if IPsec needs loading because of the options in mp. 9893 */ 9894 static boolean_t 9895 ipsec_opt_present(mblk_t *mp) 9896 { 9897 uint8_t *optcp, *next_optcp, *opt_endcp; 9898 struct opthdr *opt; 9899 struct T_opthdr *topt; 9900 int opthdr_len; 9901 t_uscalar_t optname, optlevel; 9902 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9903 ipsec_req_t *ipsr; 9904 9905 /* 9906 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9907 * return TRUE. 9908 */ 9909 9910 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9911 opt_endcp = optcp + tor->OPT_length; 9912 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9913 opthdr_len = sizeof (struct T_opthdr); 9914 } else { /* O_OPTMGMT_REQ */ 9915 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9916 opthdr_len = sizeof (struct opthdr); 9917 } 9918 for (; optcp < opt_endcp; optcp = next_optcp) { 9919 if (optcp + opthdr_len > opt_endcp) 9920 return (B_FALSE); /* Not enough option header. */ 9921 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9922 topt = (struct T_opthdr *)optcp; 9923 optlevel = topt->level; 9924 optname = topt->name; 9925 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9926 } else { 9927 opt = (struct opthdr *)optcp; 9928 optlevel = opt->level; 9929 optname = opt->name; 9930 next_optcp = optcp + opthdr_len + 9931 _TPI_ALIGN_OPT(opt->len); 9932 } 9933 if ((next_optcp < optcp) || /* wraparound pointer space */ 9934 ((next_optcp >= opt_endcp) && /* last option bad len */ 9935 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9936 return (B_FALSE); /* bad option buffer */ 9937 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9938 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9939 /* 9940 * Check to see if it's an all-bypass or all-zeroes 9941 * IPsec request. Don't bother loading IPsec if 9942 * the socket doesn't want to use it. (A good example 9943 * is a bypass request.) 9944 * 9945 * Basically, if any of the non-NEVER bits are set, 9946 * load IPsec. 9947 */ 9948 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9949 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9950 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9951 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9952 != 0) 9953 return (B_TRUE); 9954 } 9955 } 9956 return (B_FALSE); 9957 } 9958 9959 /* 9960 * If conn is is waiting for ipsec to finish loading, kick it. 9961 */ 9962 /* ARGSUSED */ 9963 static void 9964 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9965 { 9966 t_scalar_t optreq_prim; 9967 mblk_t *mp; 9968 cred_t *cr; 9969 int err = 0; 9970 9971 /* 9972 * This function is called, after ipsec loading is complete. 9973 * Since IP checks exclusively and atomically (i.e it prevents 9974 * ipsec load from completing until ip_optcom_req completes) 9975 * whether ipsec load is complete, there cannot be a race with IP 9976 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9977 */ 9978 mutex_enter(&connp->conn_lock); 9979 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9980 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9981 mp = connp->conn_ipsec_opt_mp; 9982 connp->conn_ipsec_opt_mp = NULL; 9983 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9984 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9985 mutex_exit(&connp->conn_lock); 9986 9987 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9988 9989 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9990 if (optreq_prim == T_OPTMGMT_REQ) { 9991 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9992 &ip_opt_obj, B_FALSE); 9993 } else { 9994 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9995 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9996 &ip_opt_obj, B_FALSE); 9997 } 9998 if (err != EINPROGRESS) 9999 CONN_OPER_PENDING_DONE(connp); 10000 return; 10001 } 10002 mutex_exit(&connp->conn_lock); 10003 } 10004 10005 /* 10006 * Called from the ipsec_loader thread, outside any perimeter, to tell 10007 * ip qenable any of the queues waiting for the ipsec loader to 10008 * complete. 10009 */ 10010 void 10011 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10012 { 10013 netstack_t *ns = ipss->ipsec_netstack; 10014 10015 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10016 } 10017 10018 /* 10019 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10020 * determines the grp on which it has to become exclusive, queues the mp 10021 * and sq draining restarts the optmgmt 10022 */ 10023 static boolean_t 10024 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10025 { 10026 conn_t *connp = Q_TO_CONN(q); 10027 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10028 10029 /* 10030 * Take IPsec requests and treat them special. 10031 */ 10032 if (ipsec_opt_present(mp)) { 10033 /* First check if IPsec is loaded. */ 10034 mutex_enter(&ipss->ipsec_loader_lock); 10035 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10036 mutex_exit(&ipss->ipsec_loader_lock); 10037 return (B_FALSE); 10038 } 10039 mutex_enter(&connp->conn_lock); 10040 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10041 10042 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10043 connp->conn_ipsec_opt_mp = mp; 10044 mutex_exit(&connp->conn_lock); 10045 mutex_exit(&ipss->ipsec_loader_lock); 10046 10047 ipsec_loader_loadnow(ipss); 10048 return (B_TRUE); 10049 } 10050 return (B_FALSE); 10051 } 10052 10053 /* 10054 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10055 * all of them are copied to the conn_t. If the req is "zero", the policy is 10056 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10057 * fields. 10058 * We keep only the latest setting of the policy and thus policy setting 10059 * is not incremental/cumulative. 10060 * 10061 * Requests to set policies with multiple alternative actions will 10062 * go through a different API. 10063 */ 10064 int 10065 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10066 { 10067 uint_t ah_req = 0; 10068 uint_t esp_req = 0; 10069 uint_t se_req = 0; 10070 ipsec_selkey_t sel; 10071 ipsec_act_t *actp = NULL; 10072 uint_t nact; 10073 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10074 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10075 ipsec_policy_root_t *pr; 10076 ipsec_policy_head_t *ph; 10077 int fam; 10078 boolean_t is_pol_reset; 10079 int error = 0; 10080 netstack_t *ns = connp->conn_netstack; 10081 ip_stack_t *ipst = ns->netstack_ip; 10082 ipsec_stack_t *ipss = ns->netstack_ipsec; 10083 10084 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10085 10086 /* 10087 * The IP_SEC_OPT option does not allow variable length parameters, 10088 * hence a request cannot be NULL. 10089 */ 10090 if (req == NULL) 10091 return (EINVAL); 10092 10093 ah_req = req->ipsr_ah_req; 10094 esp_req = req->ipsr_esp_req; 10095 se_req = req->ipsr_self_encap_req; 10096 10097 /* 10098 * Are we dealing with a request to reset the policy (i.e. 10099 * zero requests). 10100 */ 10101 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10102 (esp_req & REQ_MASK) == 0 && 10103 (se_req & REQ_MASK) == 0); 10104 10105 if (!is_pol_reset) { 10106 /* 10107 * If we couldn't load IPsec, fail with "protocol 10108 * not supported". 10109 * IPsec may not have been loaded for a request with zero 10110 * policies, so we don't fail in this case. 10111 */ 10112 mutex_enter(&ipss->ipsec_loader_lock); 10113 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10114 mutex_exit(&ipss->ipsec_loader_lock); 10115 return (EPROTONOSUPPORT); 10116 } 10117 mutex_exit(&ipss->ipsec_loader_lock); 10118 10119 /* 10120 * Test for valid requests. Invalid algorithms 10121 * need to be tested by IPsec code because new 10122 * algorithms can be added dynamically. 10123 */ 10124 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10125 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10126 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10127 return (EINVAL); 10128 } 10129 10130 /* 10131 * Only privileged users can issue these 10132 * requests. 10133 */ 10134 if (((ah_req & IPSEC_PREF_NEVER) || 10135 (esp_req & IPSEC_PREF_NEVER) || 10136 (se_req & IPSEC_PREF_NEVER)) && 10137 secpolicy_ip_config(cr, B_FALSE) != 0) { 10138 return (EPERM); 10139 } 10140 10141 /* 10142 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10143 * are mutually exclusive. 10144 */ 10145 if (((ah_req & REQ_MASK) == REQ_MASK) || 10146 ((esp_req & REQ_MASK) == REQ_MASK) || 10147 ((se_req & REQ_MASK) == REQ_MASK)) { 10148 /* Both of them are set */ 10149 return (EINVAL); 10150 } 10151 } 10152 10153 mutex_enter(&connp->conn_lock); 10154 10155 /* 10156 * If we have already cached policies in ip_bind_connected*(), don't 10157 * let them change now. We cache policies for connections 10158 * whose src,dst [addr, port] is known. 10159 */ 10160 if (connp->conn_policy_cached) { 10161 mutex_exit(&connp->conn_lock); 10162 return (EINVAL); 10163 } 10164 10165 /* 10166 * We have a zero policies, reset the connection policy if already 10167 * set. This will cause the connection to inherit the 10168 * global policy, if any. 10169 */ 10170 if (is_pol_reset) { 10171 if (connp->conn_policy != NULL) { 10172 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10173 connp->conn_policy = NULL; 10174 } 10175 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10176 connp->conn_in_enforce_policy = B_FALSE; 10177 connp->conn_out_enforce_policy = B_FALSE; 10178 mutex_exit(&connp->conn_lock); 10179 return (0); 10180 } 10181 10182 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10183 ipst->ips_netstack); 10184 if (ph == NULL) 10185 goto enomem; 10186 10187 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10188 if (actp == NULL) 10189 goto enomem; 10190 10191 /* 10192 * Always allocate IPv4 policy entries, since they can also 10193 * apply to ipv6 sockets being used in ipv4-compat mode. 10194 */ 10195 bzero(&sel, sizeof (sel)); 10196 sel.ipsl_valid = IPSL_IPV4; 10197 10198 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10199 ipst->ips_netstack); 10200 if (pin4 == NULL) 10201 goto enomem; 10202 10203 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10204 ipst->ips_netstack); 10205 if (pout4 == NULL) 10206 goto enomem; 10207 10208 if (connp->conn_af_isv6) { 10209 /* 10210 * We're looking at a v6 socket, also allocate the 10211 * v6-specific entries... 10212 */ 10213 sel.ipsl_valid = IPSL_IPV6; 10214 pin6 = ipsec_policy_create(&sel, actp, nact, 10215 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10216 if (pin6 == NULL) 10217 goto enomem; 10218 10219 pout6 = ipsec_policy_create(&sel, actp, nact, 10220 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10221 if (pout6 == NULL) 10222 goto enomem; 10223 10224 /* 10225 * .. and file them away in the right place. 10226 */ 10227 fam = IPSEC_AF_V6; 10228 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10229 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10230 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10231 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10232 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10233 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10234 } 10235 10236 ipsec_actvec_free(actp, nact); 10237 10238 /* 10239 * File the v4 policies. 10240 */ 10241 fam = IPSEC_AF_V4; 10242 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10243 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10244 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10245 10246 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10247 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10248 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10249 10250 /* 10251 * If the requests need security, set enforce_policy. 10252 * If the requests are IPSEC_PREF_NEVER, one should 10253 * still set conn_out_enforce_policy so that an ipsec_out 10254 * gets attached in ip_wput. This is needed so that 10255 * for connections that we don't cache policy in ip_bind, 10256 * if global policy matches in ip_wput_attach_policy, we 10257 * don't wrongly inherit global policy. Similarly, we need 10258 * to set conn_in_enforce_policy also so that we don't verify 10259 * policy wrongly. 10260 */ 10261 if ((ah_req & REQ_MASK) != 0 || 10262 (esp_req & REQ_MASK) != 0 || 10263 (se_req & REQ_MASK) != 0) { 10264 connp->conn_in_enforce_policy = B_TRUE; 10265 connp->conn_out_enforce_policy = B_TRUE; 10266 connp->conn_flags |= IPCL_CHECK_POLICY; 10267 } 10268 10269 mutex_exit(&connp->conn_lock); 10270 return (error); 10271 #undef REQ_MASK 10272 10273 /* 10274 * Common memory-allocation-failure exit path. 10275 */ 10276 enomem: 10277 mutex_exit(&connp->conn_lock); 10278 if (actp != NULL) 10279 ipsec_actvec_free(actp, nact); 10280 if (pin4 != NULL) 10281 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10282 if (pout4 != NULL) 10283 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10284 if (pin6 != NULL) 10285 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10286 if (pout6 != NULL) 10287 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10288 return (ENOMEM); 10289 } 10290 10291 /* 10292 * Only for options that pass in an IP addr. Currently only V4 options 10293 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10294 * So this function assumes level is IPPROTO_IP 10295 */ 10296 int 10297 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10298 mblk_t *first_mp) 10299 { 10300 ipif_t *ipif = NULL; 10301 int error; 10302 ill_t *ill; 10303 int zoneid; 10304 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10305 10306 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10307 10308 if (addr != INADDR_ANY || checkonly) { 10309 ASSERT(connp != NULL); 10310 zoneid = IPCL_ZONEID(connp); 10311 if (option == IP_NEXTHOP) { 10312 ipif = ipif_lookup_onlink_addr(addr, 10313 connp->conn_zoneid, ipst); 10314 } else { 10315 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10316 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10317 &error, ipst); 10318 } 10319 if (ipif == NULL) { 10320 if (error == EINPROGRESS) 10321 return (error); 10322 else if ((option == IP_MULTICAST_IF) || 10323 (option == IP_NEXTHOP)) 10324 return (EHOSTUNREACH); 10325 else 10326 return (EINVAL); 10327 } else if (checkonly) { 10328 if (option == IP_MULTICAST_IF) { 10329 ill = ipif->ipif_ill; 10330 /* not supported by the virtual network iface */ 10331 if (IS_VNI(ill)) { 10332 ipif_refrele(ipif); 10333 return (EINVAL); 10334 } 10335 } 10336 ipif_refrele(ipif); 10337 return (0); 10338 } 10339 ill = ipif->ipif_ill; 10340 mutex_enter(&connp->conn_lock); 10341 mutex_enter(&ill->ill_lock); 10342 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10343 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10344 mutex_exit(&ill->ill_lock); 10345 mutex_exit(&connp->conn_lock); 10346 ipif_refrele(ipif); 10347 return (option == IP_MULTICAST_IF ? 10348 EHOSTUNREACH : EINVAL); 10349 } 10350 } else { 10351 mutex_enter(&connp->conn_lock); 10352 } 10353 10354 /* None of the options below are supported on the VNI */ 10355 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10356 mutex_exit(&ill->ill_lock); 10357 mutex_exit(&connp->conn_lock); 10358 ipif_refrele(ipif); 10359 return (EINVAL); 10360 } 10361 10362 switch (option) { 10363 case IP_DONTFAILOVER_IF: 10364 /* 10365 * This option is used by in.mpathd to ensure 10366 * that IPMP probe packets only go out on the 10367 * test interfaces. in.mpathd sets this option 10368 * on the non-failover interfaces. 10369 * For backward compatibility, this option 10370 * implicitly sets IP_MULTICAST_IF, as used 10371 * be done in bind(), so that ip_wput gets 10372 * this ipif to send mcast packets. 10373 */ 10374 if (ipif != NULL) { 10375 ASSERT(addr != INADDR_ANY); 10376 connp->conn_nofailover_ill = ipif->ipif_ill; 10377 connp->conn_multicast_ipif = ipif; 10378 } else { 10379 ASSERT(addr == INADDR_ANY); 10380 connp->conn_nofailover_ill = NULL; 10381 connp->conn_multicast_ipif = NULL; 10382 } 10383 break; 10384 10385 case IP_MULTICAST_IF: 10386 connp->conn_multicast_ipif = ipif; 10387 break; 10388 case IP_NEXTHOP: 10389 connp->conn_nexthop_v4 = addr; 10390 connp->conn_nexthop_set = B_TRUE; 10391 break; 10392 } 10393 10394 if (ipif != NULL) { 10395 mutex_exit(&ill->ill_lock); 10396 mutex_exit(&connp->conn_lock); 10397 ipif_refrele(ipif); 10398 return (0); 10399 } 10400 mutex_exit(&connp->conn_lock); 10401 /* We succeded in cleared the option */ 10402 return (0); 10403 } 10404 10405 /* 10406 * For options that pass in an ifindex specifying the ill. V6 options always 10407 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10408 */ 10409 int 10410 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10411 int level, int option, mblk_t *first_mp) 10412 { 10413 ill_t *ill = NULL; 10414 int error = 0; 10415 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10416 10417 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10418 if (ifindex != 0) { 10419 ASSERT(connp != NULL); 10420 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10421 first_mp, ip_restart_optmgmt, &error, ipst); 10422 if (ill != NULL) { 10423 if (checkonly) { 10424 /* not supported by the virtual network iface */ 10425 if (IS_VNI(ill)) { 10426 ill_refrele(ill); 10427 return (EINVAL); 10428 } 10429 ill_refrele(ill); 10430 return (0); 10431 } 10432 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10433 0, NULL)) { 10434 ill_refrele(ill); 10435 ill = NULL; 10436 mutex_enter(&connp->conn_lock); 10437 goto setit; 10438 } 10439 mutex_enter(&connp->conn_lock); 10440 mutex_enter(&ill->ill_lock); 10441 if (ill->ill_state_flags & ILL_CONDEMNED) { 10442 mutex_exit(&ill->ill_lock); 10443 mutex_exit(&connp->conn_lock); 10444 ill_refrele(ill); 10445 ill = NULL; 10446 mutex_enter(&connp->conn_lock); 10447 } 10448 goto setit; 10449 } else if (error == EINPROGRESS) { 10450 return (error); 10451 } else { 10452 error = 0; 10453 } 10454 } 10455 mutex_enter(&connp->conn_lock); 10456 setit: 10457 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10458 10459 /* 10460 * The options below assume that the ILL (if any) transmits and/or 10461 * receives traffic. Neither of which is true for the virtual network 10462 * interface, so fail setting these on a VNI. 10463 */ 10464 if (IS_VNI(ill)) { 10465 ASSERT(ill != NULL); 10466 mutex_exit(&ill->ill_lock); 10467 mutex_exit(&connp->conn_lock); 10468 ill_refrele(ill); 10469 return (EINVAL); 10470 } 10471 10472 if (level == IPPROTO_IP) { 10473 switch (option) { 10474 case IP_BOUND_IF: 10475 connp->conn_incoming_ill = ill; 10476 connp->conn_outgoing_ill = ill; 10477 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10478 0 : ifindex; 10479 break; 10480 10481 case IP_MULTICAST_IF: 10482 /* 10483 * This option is an internal special. The socket 10484 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10485 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10486 * specifies an ifindex and we try first on V6 ill's. 10487 * If we don't find one, we they try using on v4 ill's 10488 * intenally and we come here. 10489 */ 10490 if (!checkonly && ill != NULL) { 10491 ipif_t *ipif; 10492 ipif = ill->ill_ipif; 10493 10494 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10495 mutex_exit(&ill->ill_lock); 10496 mutex_exit(&connp->conn_lock); 10497 ill_refrele(ill); 10498 ill = NULL; 10499 mutex_enter(&connp->conn_lock); 10500 } else { 10501 connp->conn_multicast_ipif = ipif; 10502 } 10503 } 10504 break; 10505 10506 case IP_DHCPINIT_IF: 10507 if (connp->conn_dhcpinit_ill != NULL) { 10508 /* 10509 * We've locked the conn so conn_cleanup_ill() 10510 * cannot clear conn_dhcpinit_ill -- so it's 10511 * safe to access the ill. 10512 */ 10513 ill_t *oill = connp->conn_dhcpinit_ill; 10514 10515 ASSERT(oill->ill_dhcpinit != 0); 10516 atomic_dec_32(&oill->ill_dhcpinit); 10517 connp->conn_dhcpinit_ill = NULL; 10518 } 10519 10520 if (ill != NULL) { 10521 connp->conn_dhcpinit_ill = ill; 10522 atomic_inc_32(&ill->ill_dhcpinit); 10523 } 10524 break; 10525 } 10526 } else { 10527 switch (option) { 10528 case IPV6_BOUND_IF: 10529 connp->conn_incoming_ill = ill; 10530 connp->conn_outgoing_ill = ill; 10531 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10532 0 : ifindex; 10533 break; 10534 10535 case IPV6_BOUND_PIF: 10536 /* 10537 * Limit all transmit to this ill. 10538 * Unlike IPV6_BOUND_IF, using this option 10539 * prevents load spreading and failover from 10540 * happening when the interface is part of the 10541 * group. That's why we don't need to remember 10542 * the ifindex in orig_bound_ifindex as in 10543 * IPV6_BOUND_IF. 10544 */ 10545 connp->conn_outgoing_pill = ill; 10546 break; 10547 10548 case IPV6_DONTFAILOVER_IF: 10549 /* 10550 * This option is used by in.mpathd to ensure 10551 * that IPMP probe packets only go out on the 10552 * test interfaces. in.mpathd sets this option 10553 * on the non-failover interfaces. 10554 */ 10555 connp->conn_nofailover_ill = ill; 10556 /* 10557 * For backward compatibility, this option 10558 * implicitly sets ip_multicast_ill as used in 10559 * IPV6_MULTICAST_IF so that ip_wput gets 10560 * this ill to send mcast packets. 10561 */ 10562 connp->conn_multicast_ill = ill; 10563 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10564 0 : ifindex; 10565 break; 10566 10567 case IPV6_MULTICAST_IF: 10568 /* 10569 * Set conn_multicast_ill to be the IPv6 ill. 10570 * Set conn_multicast_ipif to be an IPv4 ipif 10571 * for ifindex to make IPv4 mapped addresses 10572 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10573 * Even if no IPv6 ill exists for the ifindex 10574 * we need to check for an IPv4 ifindex in order 10575 * for this to work with mapped addresses. In that 10576 * case only set conn_multicast_ipif. 10577 */ 10578 if (!checkonly) { 10579 if (ifindex == 0) { 10580 connp->conn_multicast_ill = NULL; 10581 connp->conn_orig_multicast_ifindex = 0; 10582 connp->conn_multicast_ipif = NULL; 10583 } else if (ill != NULL) { 10584 connp->conn_multicast_ill = ill; 10585 connp->conn_orig_multicast_ifindex = 10586 ifindex; 10587 } 10588 } 10589 break; 10590 } 10591 } 10592 10593 if (ill != NULL) { 10594 mutex_exit(&ill->ill_lock); 10595 mutex_exit(&connp->conn_lock); 10596 ill_refrele(ill); 10597 return (0); 10598 } 10599 mutex_exit(&connp->conn_lock); 10600 /* 10601 * We succeeded in clearing the option (ifindex == 0) or failed to 10602 * locate the ill and could not set the option (ifindex != 0) 10603 */ 10604 return (ifindex == 0 ? 0 : EINVAL); 10605 } 10606 10607 /* This routine sets socket options. */ 10608 /* ARGSUSED */ 10609 int 10610 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10611 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10612 void *dummy, cred_t *cr, mblk_t *first_mp) 10613 { 10614 int *i1 = (int *)invalp; 10615 conn_t *connp = Q_TO_CONN(q); 10616 int error = 0; 10617 boolean_t checkonly; 10618 ire_t *ire; 10619 boolean_t found; 10620 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10621 10622 switch (optset_context) { 10623 10624 case SETFN_OPTCOM_CHECKONLY: 10625 checkonly = B_TRUE; 10626 /* 10627 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10628 * inlen != 0 implies value supplied and 10629 * we have to "pretend" to set it. 10630 * inlen == 0 implies that there is no 10631 * value part in T_CHECK request and just validation 10632 * done elsewhere should be enough, we just return here. 10633 */ 10634 if (inlen == 0) { 10635 *outlenp = 0; 10636 return (0); 10637 } 10638 break; 10639 case SETFN_OPTCOM_NEGOTIATE: 10640 case SETFN_UD_NEGOTIATE: 10641 case SETFN_CONN_NEGOTIATE: 10642 checkonly = B_FALSE; 10643 break; 10644 default: 10645 /* 10646 * We should never get here 10647 */ 10648 *outlenp = 0; 10649 return (EINVAL); 10650 } 10651 10652 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10653 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10654 10655 /* 10656 * For fixed length options, no sanity check 10657 * of passed in length is done. It is assumed *_optcom_req() 10658 * routines do the right thing. 10659 */ 10660 10661 switch (level) { 10662 case SOL_SOCKET: 10663 /* 10664 * conn_lock protects the bitfields, and is used to 10665 * set the fields atomically. 10666 */ 10667 switch (name) { 10668 case SO_BROADCAST: 10669 if (!checkonly) { 10670 /* TODO: use value someplace? */ 10671 mutex_enter(&connp->conn_lock); 10672 connp->conn_broadcast = *i1 ? 1 : 0; 10673 mutex_exit(&connp->conn_lock); 10674 } 10675 break; /* goto sizeof (int) option return */ 10676 case SO_USELOOPBACK: 10677 if (!checkonly) { 10678 /* TODO: use value someplace? */ 10679 mutex_enter(&connp->conn_lock); 10680 connp->conn_loopback = *i1 ? 1 : 0; 10681 mutex_exit(&connp->conn_lock); 10682 } 10683 break; /* goto sizeof (int) option return */ 10684 case SO_DONTROUTE: 10685 if (!checkonly) { 10686 mutex_enter(&connp->conn_lock); 10687 connp->conn_dontroute = *i1 ? 1 : 0; 10688 mutex_exit(&connp->conn_lock); 10689 } 10690 break; /* goto sizeof (int) option return */ 10691 case SO_REUSEADDR: 10692 if (!checkonly) { 10693 mutex_enter(&connp->conn_lock); 10694 connp->conn_reuseaddr = *i1 ? 1 : 0; 10695 mutex_exit(&connp->conn_lock); 10696 } 10697 break; /* goto sizeof (int) option return */ 10698 case SO_PROTOTYPE: 10699 if (!checkonly) { 10700 mutex_enter(&connp->conn_lock); 10701 connp->conn_proto = *i1; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case SO_ALLZONES: 10706 if (!checkonly) { 10707 mutex_enter(&connp->conn_lock); 10708 if (IPCL_IS_BOUND(connp)) { 10709 mutex_exit(&connp->conn_lock); 10710 return (EINVAL); 10711 } 10712 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10713 mutex_exit(&connp->conn_lock); 10714 } 10715 break; /* goto sizeof (int) option return */ 10716 case SO_ANON_MLP: 10717 if (!checkonly) { 10718 mutex_enter(&connp->conn_lock); 10719 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10720 mutex_exit(&connp->conn_lock); 10721 } 10722 break; /* goto sizeof (int) option return */ 10723 case SO_MAC_EXEMPT: 10724 if (secpolicy_net_mac_aware(cr) != 0 || 10725 IPCL_IS_BOUND(connp)) 10726 return (EACCES); 10727 if (!checkonly) { 10728 mutex_enter(&connp->conn_lock); 10729 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10730 mutex_exit(&connp->conn_lock); 10731 } 10732 break; /* goto sizeof (int) option return */ 10733 default: 10734 /* 10735 * "soft" error (negative) 10736 * option not handled at this level 10737 * Note: Do not modify *outlenp 10738 */ 10739 return (-EINVAL); 10740 } 10741 break; 10742 case IPPROTO_IP: 10743 switch (name) { 10744 case IP_NEXTHOP: 10745 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10746 return (EPERM); 10747 /* FALLTHRU */ 10748 case IP_MULTICAST_IF: 10749 case IP_DONTFAILOVER_IF: { 10750 ipaddr_t addr = *i1; 10751 10752 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10753 first_mp); 10754 if (error != 0) 10755 return (error); 10756 break; /* goto sizeof (int) option return */ 10757 } 10758 10759 case IP_MULTICAST_TTL: 10760 /* Recorded in transport above IP */ 10761 *outvalp = *invalp; 10762 *outlenp = sizeof (uchar_t); 10763 return (0); 10764 case IP_MULTICAST_LOOP: 10765 if (!checkonly) { 10766 mutex_enter(&connp->conn_lock); 10767 connp->conn_multicast_loop = *invalp ? 1 : 0; 10768 mutex_exit(&connp->conn_lock); 10769 } 10770 *outvalp = *invalp; 10771 *outlenp = sizeof (uchar_t); 10772 return (0); 10773 case IP_ADD_MEMBERSHIP: 10774 case MCAST_JOIN_GROUP: 10775 case IP_DROP_MEMBERSHIP: 10776 case MCAST_LEAVE_GROUP: { 10777 struct ip_mreq *mreqp; 10778 struct group_req *greqp; 10779 ire_t *ire; 10780 boolean_t done = B_FALSE; 10781 ipaddr_t group, ifaddr; 10782 struct sockaddr_in *sin; 10783 uint32_t *ifindexp; 10784 boolean_t mcast_opt = B_TRUE; 10785 mcast_record_t fmode; 10786 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10787 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10788 10789 switch (name) { 10790 case IP_ADD_MEMBERSHIP: 10791 mcast_opt = B_FALSE; 10792 /* FALLTHRU */ 10793 case MCAST_JOIN_GROUP: 10794 fmode = MODE_IS_EXCLUDE; 10795 optfn = ip_opt_add_group; 10796 break; 10797 10798 case IP_DROP_MEMBERSHIP: 10799 mcast_opt = B_FALSE; 10800 /* FALLTHRU */ 10801 case MCAST_LEAVE_GROUP: 10802 fmode = MODE_IS_INCLUDE; 10803 optfn = ip_opt_delete_group; 10804 break; 10805 } 10806 10807 if (mcast_opt) { 10808 greqp = (struct group_req *)i1; 10809 sin = (struct sockaddr_in *)&greqp->gr_group; 10810 if (sin->sin_family != AF_INET) { 10811 *outlenp = 0; 10812 return (ENOPROTOOPT); 10813 } 10814 group = (ipaddr_t)sin->sin_addr.s_addr; 10815 ifaddr = INADDR_ANY; 10816 ifindexp = &greqp->gr_interface; 10817 } else { 10818 mreqp = (struct ip_mreq *)i1; 10819 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10820 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10821 ifindexp = NULL; 10822 } 10823 10824 /* 10825 * In the multirouting case, we need to replicate 10826 * the request on all interfaces that will take part 10827 * in replication. We do so because multirouting is 10828 * reflective, thus we will probably receive multi- 10829 * casts on those interfaces. 10830 * The ip_multirt_apply_membership() succeeds if the 10831 * operation succeeds on at least one interface. 10832 */ 10833 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10834 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10835 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10836 if (ire != NULL) { 10837 if (ire->ire_flags & RTF_MULTIRT) { 10838 error = ip_multirt_apply_membership( 10839 optfn, ire, connp, checkonly, group, 10840 fmode, INADDR_ANY, first_mp); 10841 done = B_TRUE; 10842 } 10843 ire_refrele(ire); 10844 } 10845 if (!done) { 10846 error = optfn(connp, checkonly, group, ifaddr, 10847 ifindexp, fmode, INADDR_ANY, first_mp); 10848 } 10849 if (error) { 10850 /* 10851 * EINPROGRESS is a soft error, needs retry 10852 * so don't make *outlenp zero. 10853 */ 10854 if (error != EINPROGRESS) 10855 *outlenp = 0; 10856 return (error); 10857 } 10858 /* OK return - copy input buffer into output buffer */ 10859 if (invalp != outvalp) { 10860 /* don't trust bcopy for identical src/dst */ 10861 bcopy(invalp, outvalp, inlen); 10862 } 10863 *outlenp = inlen; 10864 return (0); 10865 } 10866 case IP_BLOCK_SOURCE: 10867 case IP_UNBLOCK_SOURCE: 10868 case IP_ADD_SOURCE_MEMBERSHIP: 10869 case IP_DROP_SOURCE_MEMBERSHIP: 10870 case MCAST_BLOCK_SOURCE: 10871 case MCAST_UNBLOCK_SOURCE: 10872 case MCAST_JOIN_SOURCE_GROUP: 10873 case MCAST_LEAVE_SOURCE_GROUP: { 10874 struct ip_mreq_source *imreqp; 10875 struct group_source_req *gsreqp; 10876 in_addr_t grp, src, ifaddr = INADDR_ANY; 10877 uint32_t ifindex = 0; 10878 mcast_record_t fmode; 10879 struct sockaddr_in *sin; 10880 ire_t *ire; 10881 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10882 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10883 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10884 10885 switch (name) { 10886 case IP_BLOCK_SOURCE: 10887 mcast_opt = B_FALSE; 10888 /* FALLTHRU */ 10889 case MCAST_BLOCK_SOURCE: 10890 fmode = MODE_IS_EXCLUDE; 10891 optfn = ip_opt_add_group; 10892 break; 10893 10894 case IP_UNBLOCK_SOURCE: 10895 mcast_opt = B_FALSE; 10896 /* FALLTHRU */ 10897 case MCAST_UNBLOCK_SOURCE: 10898 fmode = MODE_IS_EXCLUDE; 10899 optfn = ip_opt_delete_group; 10900 break; 10901 10902 case IP_ADD_SOURCE_MEMBERSHIP: 10903 mcast_opt = B_FALSE; 10904 /* FALLTHRU */ 10905 case MCAST_JOIN_SOURCE_GROUP: 10906 fmode = MODE_IS_INCLUDE; 10907 optfn = ip_opt_add_group; 10908 break; 10909 10910 case IP_DROP_SOURCE_MEMBERSHIP: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_LEAVE_SOURCE_GROUP: 10914 fmode = MODE_IS_INCLUDE; 10915 optfn = ip_opt_delete_group; 10916 break; 10917 } 10918 10919 if (mcast_opt) { 10920 gsreqp = (struct group_source_req *)i1; 10921 if (gsreqp->gsr_group.ss_family != AF_INET) { 10922 *outlenp = 0; 10923 return (ENOPROTOOPT); 10924 } 10925 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10926 grp = (ipaddr_t)sin->sin_addr.s_addr; 10927 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10928 src = (ipaddr_t)sin->sin_addr.s_addr; 10929 ifindex = gsreqp->gsr_interface; 10930 } else { 10931 imreqp = (struct ip_mreq_source *)i1; 10932 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10933 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10934 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10935 } 10936 10937 /* 10938 * In the multirouting case, we need to replicate 10939 * the request as noted in the mcast cases above. 10940 */ 10941 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10942 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10943 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10944 if (ire != NULL) { 10945 if (ire->ire_flags & RTF_MULTIRT) { 10946 error = ip_multirt_apply_membership( 10947 optfn, ire, connp, checkonly, grp, 10948 fmode, src, first_mp); 10949 done = B_TRUE; 10950 } 10951 ire_refrele(ire); 10952 } 10953 if (!done) { 10954 error = optfn(connp, checkonly, grp, ifaddr, 10955 &ifindex, fmode, src, first_mp); 10956 } 10957 if (error != 0) { 10958 /* 10959 * EINPROGRESS is a soft error, needs retry 10960 * so don't make *outlenp zero. 10961 */ 10962 if (error != EINPROGRESS) 10963 *outlenp = 0; 10964 return (error); 10965 } 10966 /* OK return - copy input buffer into output buffer */ 10967 if (invalp != outvalp) { 10968 bcopy(invalp, outvalp, inlen); 10969 } 10970 *outlenp = inlen; 10971 return (0); 10972 } 10973 case IP_SEC_OPT: 10974 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10975 if (error != 0) { 10976 *outlenp = 0; 10977 return (error); 10978 } 10979 break; 10980 case IP_HDRINCL: 10981 case IP_OPTIONS: 10982 case T_IP_OPTIONS: 10983 case IP_TOS: 10984 case T_IP_TOS: 10985 case IP_TTL: 10986 case IP_RECVDSTADDR: 10987 case IP_RECVOPTS: 10988 /* OK return - copy input buffer into output buffer */ 10989 if (invalp != outvalp) { 10990 /* don't trust bcopy for identical src/dst */ 10991 bcopy(invalp, outvalp, inlen); 10992 } 10993 *outlenp = inlen; 10994 return (0); 10995 case IP_RECVIF: 10996 /* Retrieve the inbound interface index */ 10997 if (!checkonly) { 10998 mutex_enter(&connp->conn_lock); 10999 connp->conn_recvif = *i1 ? 1 : 0; 11000 mutex_exit(&connp->conn_lock); 11001 } 11002 break; /* goto sizeof (int) option return */ 11003 case IP_RECVPKTINFO: 11004 if (!checkonly) { 11005 mutex_enter(&connp->conn_lock); 11006 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11007 mutex_exit(&connp->conn_lock); 11008 } 11009 break; /* goto sizeof (int) option return */ 11010 case IP_RECVSLLA: 11011 /* Retrieve the source link layer address */ 11012 if (!checkonly) { 11013 mutex_enter(&connp->conn_lock); 11014 connp->conn_recvslla = *i1 ? 1 : 0; 11015 mutex_exit(&connp->conn_lock); 11016 } 11017 break; /* goto sizeof (int) option return */ 11018 case MRT_INIT: 11019 case MRT_DONE: 11020 case MRT_ADD_VIF: 11021 case MRT_DEL_VIF: 11022 case MRT_ADD_MFC: 11023 case MRT_DEL_MFC: 11024 case MRT_ASSERT: 11025 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11026 *outlenp = 0; 11027 return (error); 11028 } 11029 error = ip_mrouter_set((int)name, q, checkonly, 11030 (uchar_t *)invalp, inlen, first_mp); 11031 if (error) { 11032 *outlenp = 0; 11033 return (error); 11034 } 11035 /* OK return - copy input buffer into output buffer */ 11036 if (invalp != outvalp) { 11037 /* don't trust bcopy for identical src/dst */ 11038 bcopy(invalp, outvalp, inlen); 11039 } 11040 *outlenp = inlen; 11041 return (0); 11042 case IP_BOUND_IF: 11043 case IP_DHCPINIT_IF: 11044 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11045 level, name, first_mp); 11046 if (error != 0) 11047 return (error); 11048 break; /* goto sizeof (int) option return */ 11049 11050 case IP_UNSPEC_SRC: 11051 /* Allow sending with a zero source address */ 11052 if (!checkonly) { 11053 mutex_enter(&connp->conn_lock); 11054 connp->conn_unspec_src = *i1 ? 1 : 0; 11055 mutex_exit(&connp->conn_lock); 11056 } 11057 break; /* goto sizeof (int) option return */ 11058 default: 11059 /* 11060 * "soft" error (negative) 11061 * option not handled at this level 11062 * Note: Do not modify *outlenp 11063 */ 11064 return (-EINVAL); 11065 } 11066 break; 11067 case IPPROTO_IPV6: 11068 switch (name) { 11069 case IPV6_BOUND_IF: 11070 case IPV6_BOUND_PIF: 11071 case IPV6_DONTFAILOVER_IF: 11072 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11073 level, name, first_mp); 11074 if (error != 0) 11075 return (error); 11076 break; /* goto sizeof (int) option return */ 11077 11078 case IPV6_MULTICAST_IF: 11079 /* 11080 * The only possible errors are EINPROGRESS and 11081 * EINVAL. EINPROGRESS will be restarted and is not 11082 * a hard error. We call this option on both V4 and V6 11083 * If both return EINVAL, then this call returns 11084 * EINVAL. If at least one of them succeeds we 11085 * return success. 11086 */ 11087 found = B_FALSE; 11088 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11089 level, name, first_mp); 11090 if (error == EINPROGRESS) 11091 return (error); 11092 if (error == 0) 11093 found = B_TRUE; 11094 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11095 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11096 if (error == 0) 11097 found = B_TRUE; 11098 if (!found) 11099 return (error); 11100 break; /* goto sizeof (int) option return */ 11101 11102 case IPV6_MULTICAST_HOPS: 11103 /* Recorded in transport above IP */ 11104 break; /* goto sizeof (int) option return */ 11105 case IPV6_MULTICAST_LOOP: 11106 if (!checkonly) { 11107 mutex_enter(&connp->conn_lock); 11108 connp->conn_multicast_loop = *i1; 11109 mutex_exit(&connp->conn_lock); 11110 } 11111 break; /* goto sizeof (int) option return */ 11112 case IPV6_JOIN_GROUP: 11113 case MCAST_JOIN_GROUP: 11114 case IPV6_LEAVE_GROUP: 11115 case MCAST_LEAVE_GROUP: { 11116 struct ipv6_mreq *ip_mreqp; 11117 struct group_req *greqp; 11118 ire_t *ire; 11119 boolean_t done = B_FALSE; 11120 in6_addr_t groupv6; 11121 uint32_t ifindex; 11122 boolean_t mcast_opt = B_TRUE; 11123 mcast_record_t fmode; 11124 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11125 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11126 11127 switch (name) { 11128 case IPV6_JOIN_GROUP: 11129 mcast_opt = B_FALSE; 11130 /* FALLTHRU */ 11131 case MCAST_JOIN_GROUP: 11132 fmode = MODE_IS_EXCLUDE; 11133 optfn = ip_opt_add_group_v6; 11134 break; 11135 11136 case IPV6_LEAVE_GROUP: 11137 mcast_opt = B_FALSE; 11138 /* FALLTHRU */ 11139 case MCAST_LEAVE_GROUP: 11140 fmode = MODE_IS_INCLUDE; 11141 optfn = ip_opt_delete_group_v6; 11142 break; 11143 } 11144 11145 if (mcast_opt) { 11146 struct sockaddr_in *sin; 11147 struct sockaddr_in6 *sin6; 11148 greqp = (struct group_req *)i1; 11149 if (greqp->gr_group.ss_family == AF_INET) { 11150 sin = (struct sockaddr_in *) 11151 &(greqp->gr_group); 11152 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11153 &groupv6); 11154 } else { 11155 sin6 = (struct sockaddr_in6 *) 11156 &(greqp->gr_group); 11157 groupv6 = sin6->sin6_addr; 11158 } 11159 ifindex = greqp->gr_interface; 11160 } else { 11161 ip_mreqp = (struct ipv6_mreq *)i1; 11162 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11163 ifindex = ip_mreqp->ipv6mr_interface; 11164 } 11165 /* 11166 * In the multirouting case, we need to replicate 11167 * the request on all interfaces that will take part 11168 * in replication. We do so because multirouting is 11169 * reflective, thus we will probably receive multi- 11170 * casts on those interfaces. 11171 * The ip_multirt_apply_membership_v6() succeeds if 11172 * the operation succeeds on at least one interface. 11173 */ 11174 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11175 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11176 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11177 if (ire != NULL) { 11178 if (ire->ire_flags & RTF_MULTIRT) { 11179 error = ip_multirt_apply_membership_v6( 11180 optfn, ire, connp, checkonly, 11181 &groupv6, fmode, &ipv6_all_zeros, 11182 first_mp); 11183 done = B_TRUE; 11184 } 11185 ire_refrele(ire); 11186 } 11187 if (!done) { 11188 error = optfn(connp, checkonly, &groupv6, 11189 ifindex, fmode, &ipv6_all_zeros, first_mp); 11190 } 11191 if (error) { 11192 /* 11193 * EINPROGRESS is a soft error, needs retry 11194 * so don't make *outlenp zero. 11195 */ 11196 if (error != EINPROGRESS) 11197 *outlenp = 0; 11198 return (error); 11199 } 11200 /* OK return - copy input buffer into output buffer */ 11201 if (invalp != outvalp) { 11202 /* don't trust bcopy for identical src/dst */ 11203 bcopy(invalp, outvalp, inlen); 11204 } 11205 *outlenp = inlen; 11206 return (0); 11207 } 11208 case MCAST_BLOCK_SOURCE: 11209 case MCAST_UNBLOCK_SOURCE: 11210 case MCAST_JOIN_SOURCE_GROUP: 11211 case MCAST_LEAVE_SOURCE_GROUP: { 11212 struct group_source_req *gsreqp; 11213 in6_addr_t v6grp, v6src; 11214 uint32_t ifindex; 11215 mcast_record_t fmode; 11216 ire_t *ire; 11217 boolean_t done = B_FALSE; 11218 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11219 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11220 11221 switch (name) { 11222 case MCAST_BLOCK_SOURCE: 11223 fmode = MODE_IS_EXCLUDE; 11224 optfn = ip_opt_add_group_v6; 11225 break; 11226 case MCAST_UNBLOCK_SOURCE: 11227 fmode = MODE_IS_EXCLUDE; 11228 optfn = ip_opt_delete_group_v6; 11229 break; 11230 case MCAST_JOIN_SOURCE_GROUP: 11231 fmode = MODE_IS_INCLUDE; 11232 optfn = ip_opt_add_group_v6; 11233 break; 11234 case MCAST_LEAVE_SOURCE_GROUP: 11235 fmode = MODE_IS_INCLUDE; 11236 optfn = ip_opt_delete_group_v6; 11237 break; 11238 } 11239 11240 gsreqp = (struct group_source_req *)i1; 11241 ifindex = gsreqp->gsr_interface; 11242 if (gsreqp->gsr_group.ss_family == AF_INET) { 11243 struct sockaddr_in *s; 11244 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11245 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11246 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11247 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11248 } else { 11249 struct sockaddr_in6 *s6; 11250 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11251 v6grp = s6->sin6_addr; 11252 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11253 v6src = s6->sin6_addr; 11254 } 11255 11256 /* 11257 * In the multirouting case, we need to replicate 11258 * the request as noted in the mcast cases above. 11259 */ 11260 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11261 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11262 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11263 if (ire != NULL) { 11264 if (ire->ire_flags & RTF_MULTIRT) { 11265 error = ip_multirt_apply_membership_v6( 11266 optfn, ire, connp, checkonly, 11267 &v6grp, fmode, &v6src, first_mp); 11268 done = B_TRUE; 11269 } 11270 ire_refrele(ire); 11271 } 11272 if (!done) { 11273 error = optfn(connp, checkonly, &v6grp, 11274 ifindex, fmode, &v6src, first_mp); 11275 } 11276 if (error != 0) { 11277 /* 11278 * EINPROGRESS is a soft error, needs retry 11279 * so don't make *outlenp zero. 11280 */ 11281 if (error != EINPROGRESS) 11282 *outlenp = 0; 11283 return (error); 11284 } 11285 /* OK return - copy input buffer into output buffer */ 11286 if (invalp != outvalp) { 11287 bcopy(invalp, outvalp, inlen); 11288 } 11289 *outlenp = inlen; 11290 return (0); 11291 } 11292 case IPV6_UNICAST_HOPS: 11293 /* Recorded in transport above IP */ 11294 break; /* goto sizeof (int) option return */ 11295 case IPV6_UNSPEC_SRC: 11296 /* Allow sending with a zero source address */ 11297 if (!checkonly) { 11298 mutex_enter(&connp->conn_lock); 11299 connp->conn_unspec_src = *i1 ? 1 : 0; 11300 mutex_exit(&connp->conn_lock); 11301 } 11302 break; /* goto sizeof (int) option return */ 11303 case IPV6_RECVPKTINFO: 11304 if (!checkonly) { 11305 mutex_enter(&connp->conn_lock); 11306 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11307 mutex_exit(&connp->conn_lock); 11308 } 11309 break; /* goto sizeof (int) option return */ 11310 case IPV6_RECVTCLASS: 11311 if (!checkonly) { 11312 if (*i1 < 0 || *i1 > 1) { 11313 return (EINVAL); 11314 } 11315 mutex_enter(&connp->conn_lock); 11316 connp->conn_ipv6_recvtclass = *i1; 11317 mutex_exit(&connp->conn_lock); 11318 } 11319 break; 11320 case IPV6_RECVPATHMTU: 11321 if (!checkonly) { 11322 if (*i1 < 0 || *i1 > 1) { 11323 return (EINVAL); 11324 } 11325 mutex_enter(&connp->conn_lock); 11326 connp->conn_ipv6_recvpathmtu = *i1; 11327 mutex_exit(&connp->conn_lock); 11328 } 11329 break; 11330 case IPV6_RECVHOPLIMIT: 11331 if (!checkonly) { 11332 mutex_enter(&connp->conn_lock); 11333 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11334 mutex_exit(&connp->conn_lock); 11335 } 11336 break; /* goto sizeof (int) option return */ 11337 case IPV6_RECVHOPOPTS: 11338 if (!checkonly) { 11339 mutex_enter(&connp->conn_lock); 11340 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11341 mutex_exit(&connp->conn_lock); 11342 } 11343 break; /* goto sizeof (int) option return */ 11344 case IPV6_RECVDSTOPTS: 11345 if (!checkonly) { 11346 mutex_enter(&connp->conn_lock); 11347 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11348 mutex_exit(&connp->conn_lock); 11349 } 11350 break; /* goto sizeof (int) option return */ 11351 case IPV6_RECVRTHDR: 11352 if (!checkonly) { 11353 mutex_enter(&connp->conn_lock); 11354 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11355 mutex_exit(&connp->conn_lock); 11356 } 11357 break; /* goto sizeof (int) option return */ 11358 case IPV6_RECVRTHDRDSTOPTS: 11359 if (!checkonly) { 11360 mutex_enter(&connp->conn_lock); 11361 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11362 mutex_exit(&connp->conn_lock); 11363 } 11364 break; /* goto sizeof (int) option return */ 11365 case IPV6_PKTINFO: 11366 if (inlen == 0) 11367 return (-EINVAL); /* clearing option */ 11368 error = ip6_set_pktinfo(cr, connp, 11369 (struct in6_pktinfo *)invalp, first_mp); 11370 if (error != 0) 11371 *outlenp = 0; 11372 else 11373 *outlenp = inlen; 11374 return (error); 11375 case IPV6_NEXTHOP: { 11376 struct sockaddr_in6 *sin6; 11377 11378 /* Verify that the nexthop is reachable */ 11379 if (inlen == 0) 11380 return (-EINVAL); /* clearing option */ 11381 11382 sin6 = (struct sockaddr_in6 *)invalp; 11383 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11384 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11385 NULL, MATCH_IRE_DEFAULT, ipst); 11386 11387 if (ire == NULL) { 11388 *outlenp = 0; 11389 return (EHOSTUNREACH); 11390 } 11391 ire_refrele(ire); 11392 return (-EINVAL); 11393 } 11394 case IPV6_SEC_OPT: 11395 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11396 if (error != 0) { 11397 *outlenp = 0; 11398 return (error); 11399 } 11400 break; 11401 case IPV6_SRC_PREFERENCES: { 11402 /* 11403 * This is implemented strictly in the ip module 11404 * (here and in tcp_opt_*() to accomodate tcp 11405 * sockets). Modules above ip pass this option 11406 * down here since ip is the only one that needs to 11407 * be aware of source address preferences. 11408 * 11409 * This socket option only affects connected 11410 * sockets that haven't already bound to a specific 11411 * IPv6 address. In other words, sockets that 11412 * don't call bind() with an address other than the 11413 * unspecified address and that call connect(). 11414 * ip_bind_connected_v6() passes these preferences 11415 * to the ipif_select_source_v6() function. 11416 */ 11417 if (inlen != sizeof (uint32_t)) 11418 return (EINVAL); 11419 error = ip6_set_src_preferences(connp, 11420 *(uint32_t *)invalp); 11421 if (error != 0) { 11422 *outlenp = 0; 11423 return (error); 11424 } else { 11425 *outlenp = sizeof (uint32_t); 11426 } 11427 break; 11428 } 11429 case IPV6_V6ONLY: 11430 if (*i1 < 0 || *i1 > 1) { 11431 return (EINVAL); 11432 } 11433 mutex_enter(&connp->conn_lock); 11434 connp->conn_ipv6_v6only = *i1; 11435 mutex_exit(&connp->conn_lock); 11436 break; 11437 default: 11438 return (-EINVAL); 11439 } 11440 break; 11441 default: 11442 /* 11443 * "soft" error (negative) 11444 * option not handled at this level 11445 * Note: Do not modify *outlenp 11446 */ 11447 return (-EINVAL); 11448 } 11449 /* 11450 * Common case of return from an option that is sizeof (int) 11451 */ 11452 *(int *)outvalp = *i1; 11453 *outlenp = sizeof (int); 11454 return (0); 11455 } 11456 11457 /* 11458 * This routine gets default values of certain options whose default 11459 * values are maintained by protocol specific code 11460 */ 11461 /* ARGSUSED */ 11462 int 11463 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11464 { 11465 int *i1 = (int *)ptr; 11466 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11467 11468 switch (level) { 11469 case IPPROTO_IP: 11470 switch (name) { 11471 case IP_MULTICAST_TTL: 11472 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11473 return (sizeof (uchar_t)); 11474 case IP_MULTICAST_LOOP: 11475 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11476 return (sizeof (uchar_t)); 11477 default: 11478 return (-1); 11479 } 11480 case IPPROTO_IPV6: 11481 switch (name) { 11482 case IPV6_UNICAST_HOPS: 11483 *i1 = ipst->ips_ipv6_def_hops; 11484 return (sizeof (int)); 11485 case IPV6_MULTICAST_HOPS: 11486 *i1 = IP_DEFAULT_MULTICAST_TTL; 11487 return (sizeof (int)); 11488 case IPV6_MULTICAST_LOOP: 11489 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11490 return (sizeof (int)); 11491 case IPV6_V6ONLY: 11492 *i1 = 1; 11493 return (sizeof (int)); 11494 default: 11495 return (-1); 11496 } 11497 default: 11498 return (-1); 11499 } 11500 /* NOTREACHED */ 11501 } 11502 11503 /* 11504 * Given a destination address and a pointer to where to put the information 11505 * this routine fills in the mtuinfo. 11506 */ 11507 int 11508 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11509 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11510 { 11511 ire_t *ire; 11512 ip_stack_t *ipst = ns->netstack_ip; 11513 11514 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11515 return (-1); 11516 11517 bzero(mtuinfo, sizeof (*mtuinfo)); 11518 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11519 mtuinfo->ip6m_addr.sin6_port = port; 11520 mtuinfo->ip6m_addr.sin6_addr = *in6; 11521 11522 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11523 if (ire != NULL) { 11524 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11525 ire_refrele(ire); 11526 } else { 11527 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11528 } 11529 return (sizeof (struct ip6_mtuinfo)); 11530 } 11531 11532 /* 11533 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11534 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11535 * isn't. This doesn't matter as the error checking is done properly for the 11536 * other MRT options coming in through ip_opt_set. 11537 */ 11538 int 11539 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11540 { 11541 conn_t *connp = Q_TO_CONN(q); 11542 ipsec_req_t *req = (ipsec_req_t *)ptr; 11543 11544 switch (level) { 11545 case IPPROTO_IP: 11546 switch (name) { 11547 case MRT_VERSION: 11548 case MRT_ASSERT: 11549 (void) ip_mrouter_get(name, q, ptr); 11550 return (sizeof (int)); 11551 case IP_SEC_OPT: 11552 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11553 case IP_NEXTHOP: 11554 if (connp->conn_nexthop_set) { 11555 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11556 return (sizeof (ipaddr_t)); 11557 } else 11558 return (0); 11559 case IP_RECVPKTINFO: 11560 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11561 return (sizeof (int)); 11562 default: 11563 break; 11564 } 11565 break; 11566 case IPPROTO_IPV6: 11567 switch (name) { 11568 case IPV6_SEC_OPT: 11569 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11570 case IPV6_SRC_PREFERENCES: { 11571 return (ip6_get_src_preferences(connp, 11572 (uint32_t *)ptr)); 11573 } 11574 case IPV6_V6ONLY: 11575 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11576 return (sizeof (int)); 11577 case IPV6_PATHMTU: 11578 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11579 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11580 default: 11581 break; 11582 } 11583 break; 11584 default: 11585 break; 11586 } 11587 return (-1); 11588 } 11589 11590 /* Named Dispatch routine to get a current value out of our parameter table. */ 11591 /* ARGSUSED */ 11592 static int 11593 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11594 { 11595 ipparam_t *ippa = (ipparam_t *)cp; 11596 11597 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11598 return (0); 11599 } 11600 11601 /* ARGSUSED */ 11602 static int 11603 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11604 { 11605 11606 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11607 return (0); 11608 } 11609 11610 /* 11611 * Set ip{,6}_forwarding values. This means walking through all of the 11612 * ill's and toggling their forwarding values. 11613 */ 11614 /* ARGSUSED */ 11615 static int 11616 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11617 { 11618 long new_value; 11619 int *forwarding_value = (int *)cp; 11620 ill_t *ill; 11621 boolean_t isv6; 11622 ill_walk_context_t ctx; 11623 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11624 11625 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11626 11627 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11628 new_value < 0 || new_value > 1) { 11629 return (EINVAL); 11630 } 11631 11632 *forwarding_value = new_value; 11633 11634 /* 11635 * Regardless of the current value of ip_forwarding, set all per-ill 11636 * values of ip_forwarding to the value being set. 11637 * 11638 * Bring all the ill's up to date with the new global value. 11639 */ 11640 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11641 11642 if (isv6) 11643 ill = ILL_START_WALK_V6(&ctx, ipst); 11644 else 11645 ill = ILL_START_WALK_V4(&ctx, ipst); 11646 11647 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11648 (void) ill_forward_set(ill, new_value != 0); 11649 11650 rw_exit(&ipst->ips_ill_g_lock); 11651 return (0); 11652 } 11653 11654 /* 11655 * Walk through the param array specified registering each element with the 11656 * Named Dispatch handler. This is called only during init. So it is ok 11657 * not to acquire any locks 11658 */ 11659 static boolean_t 11660 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11661 ipndp_t *ipnd, size_t ipnd_cnt) 11662 { 11663 for (; ippa_cnt-- > 0; ippa++) { 11664 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11665 if (!nd_load(ndp, ippa->ip_param_name, 11666 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11667 nd_free(ndp); 11668 return (B_FALSE); 11669 } 11670 } 11671 } 11672 11673 for (; ipnd_cnt-- > 0; ipnd++) { 11674 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11675 if (!nd_load(ndp, ipnd->ip_ndp_name, 11676 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11677 ipnd->ip_ndp_data)) { 11678 nd_free(ndp); 11679 return (B_FALSE); 11680 } 11681 } 11682 } 11683 11684 return (B_TRUE); 11685 } 11686 11687 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11688 /* ARGSUSED */ 11689 static int 11690 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11691 { 11692 long new_value; 11693 ipparam_t *ippa = (ipparam_t *)cp; 11694 11695 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11696 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11697 return (EINVAL); 11698 } 11699 ippa->ip_param_value = new_value; 11700 return (0); 11701 } 11702 11703 /* 11704 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11705 * When an ipf is passed here for the first time, if 11706 * we already have in-order fragments on the queue, we convert from the fast- 11707 * path reassembly scheme to the hard-case scheme. From then on, additional 11708 * fragments are reassembled here. We keep track of the start and end offsets 11709 * of each piece, and the number of holes in the chain. When the hole count 11710 * goes to zero, we are done! 11711 * 11712 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11713 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11714 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11715 * after the call to ip_reassemble(). 11716 */ 11717 int 11718 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11719 size_t msg_len) 11720 { 11721 uint_t end; 11722 mblk_t *next_mp; 11723 mblk_t *mp1; 11724 uint_t offset; 11725 boolean_t incr_dups = B_TRUE; 11726 boolean_t offset_zero_seen = B_FALSE; 11727 boolean_t pkt_boundary_checked = B_FALSE; 11728 11729 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11730 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11731 11732 /* Add in byte count */ 11733 ipf->ipf_count += msg_len; 11734 if (ipf->ipf_end) { 11735 /* 11736 * We were part way through in-order reassembly, but now there 11737 * is a hole. We walk through messages already queued, and 11738 * mark them for hard case reassembly. We know that up till 11739 * now they were in order starting from offset zero. 11740 */ 11741 offset = 0; 11742 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11743 IP_REASS_SET_START(mp1, offset); 11744 if (offset == 0) { 11745 ASSERT(ipf->ipf_nf_hdr_len != 0); 11746 offset = -ipf->ipf_nf_hdr_len; 11747 } 11748 offset += mp1->b_wptr - mp1->b_rptr; 11749 IP_REASS_SET_END(mp1, offset); 11750 } 11751 /* One hole at the end. */ 11752 ipf->ipf_hole_cnt = 1; 11753 /* Brand it as a hard case, forever. */ 11754 ipf->ipf_end = 0; 11755 } 11756 /* Walk through all the new pieces. */ 11757 do { 11758 end = start + (mp->b_wptr - mp->b_rptr); 11759 /* 11760 * If start is 0, decrease 'end' only for the first mblk of 11761 * the fragment. Otherwise 'end' can get wrong value in the 11762 * second pass of the loop if first mblk is exactly the 11763 * size of ipf_nf_hdr_len. 11764 */ 11765 if (start == 0 && !offset_zero_seen) { 11766 /* First segment */ 11767 ASSERT(ipf->ipf_nf_hdr_len != 0); 11768 end -= ipf->ipf_nf_hdr_len; 11769 offset_zero_seen = B_TRUE; 11770 } 11771 next_mp = mp->b_cont; 11772 /* 11773 * We are checking to see if there is any interesing data 11774 * to process. If there isn't and the mblk isn't the 11775 * one which carries the unfragmentable header then we 11776 * drop it. It's possible to have just the unfragmentable 11777 * header come through without any data. That needs to be 11778 * saved. 11779 * 11780 * If the assert at the top of this function holds then the 11781 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11782 * is infrequently traveled enough that the test is left in 11783 * to protect against future code changes which break that 11784 * invariant. 11785 */ 11786 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11787 /* Empty. Blast it. */ 11788 IP_REASS_SET_START(mp, 0); 11789 IP_REASS_SET_END(mp, 0); 11790 /* 11791 * If the ipf points to the mblk we are about to free, 11792 * update ipf to point to the next mblk (or NULL 11793 * if none). 11794 */ 11795 if (ipf->ipf_mp->b_cont == mp) 11796 ipf->ipf_mp->b_cont = next_mp; 11797 freeb(mp); 11798 continue; 11799 } 11800 mp->b_cont = NULL; 11801 IP_REASS_SET_START(mp, start); 11802 IP_REASS_SET_END(mp, end); 11803 if (!ipf->ipf_tail_mp) { 11804 ipf->ipf_tail_mp = mp; 11805 ipf->ipf_mp->b_cont = mp; 11806 if (start == 0 || !more) { 11807 ipf->ipf_hole_cnt = 1; 11808 /* 11809 * if the first fragment comes in more than one 11810 * mblk, this loop will be executed for each 11811 * mblk. Need to adjust hole count so exiting 11812 * this routine will leave hole count at 1. 11813 */ 11814 if (next_mp) 11815 ipf->ipf_hole_cnt++; 11816 } else 11817 ipf->ipf_hole_cnt = 2; 11818 continue; 11819 } else if (ipf->ipf_last_frag_seen && !more && 11820 !pkt_boundary_checked) { 11821 /* 11822 * We check datagram boundary only if this fragment 11823 * claims to be the last fragment and we have seen a 11824 * last fragment in the past too. We do this only 11825 * once for a given fragment. 11826 * 11827 * start cannot be 0 here as fragments with start=0 11828 * and MF=0 gets handled as a complete packet. These 11829 * fragments should not reach here. 11830 */ 11831 11832 if (start + msgdsize(mp) != 11833 IP_REASS_END(ipf->ipf_tail_mp)) { 11834 /* 11835 * We have two fragments both of which claim 11836 * to be the last fragment but gives conflicting 11837 * information about the whole datagram size. 11838 * Something fishy is going on. Drop the 11839 * fragment and free up the reassembly list. 11840 */ 11841 return (IP_REASS_FAILED); 11842 } 11843 11844 /* 11845 * We shouldn't come to this code block again for this 11846 * particular fragment. 11847 */ 11848 pkt_boundary_checked = B_TRUE; 11849 } 11850 11851 /* New stuff at or beyond tail? */ 11852 offset = IP_REASS_END(ipf->ipf_tail_mp); 11853 if (start >= offset) { 11854 if (ipf->ipf_last_frag_seen) { 11855 /* current fragment is beyond last fragment */ 11856 return (IP_REASS_FAILED); 11857 } 11858 /* Link it on end. */ 11859 ipf->ipf_tail_mp->b_cont = mp; 11860 ipf->ipf_tail_mp = mp; 11861 if (more) { 11862 if (start != offset) 11863 ipf->ipf_hole_cnt++; 11864 } else if (start == offset && next_mp == NULL) 11865 ipf->ipf_hole_cnt--; 11866 continue; 11867 } 11868 mp1 = ipf->ipf_mp->b_cont; 11869 offset = IP_REASS_START(mp1); 11870 /* New stuff at the front? */ 11871 if (start < offset) { 11872 if (start == 0) { 11873 if (end >= offset) { 11874 /* Nailed the hole at the begining. */ 11875 ipf->ipf_hole_cnt--; 11876 } 11877 } else if (end < offset) { 11878 /* 11879 * A hole, stuff, and a hole where there used 11880 * to be just a hole. 11881 */ 11882 ipf->ipf_hole_cnt++; 11883 } 11884 mp->b_cont = mp1; 11885 /* Check for overlap. */ 11886 while (end > offset) { 11887 if (end < IP_REASS_END(mp1)) { 11888 mp->b_wptr -= end - offset; 11889 IP_REASS_SET_END(mp, offset); 11890 BUMP_MIB(ill->ill_ip_mib, 11891 ipIfStatsReasmPartDups); 11892 break; 11893 } 11894 /* Did we cover another hole? */ 11895 if ((mp1->b_cont && 11896 IP_REASS_END(mp1) != 11897 IP_REASS_START(mp1->b_cont) && 11898 end >= IP_REASS_START(mp1->b_cont)) || 11899 (!ipf->ipf_last_frag_seen && !more)) { 11900 ipf->ipf_hole_cnt--; 11901 } 11902 /* Clip out mp1. */ 11903 if ((mp->b_cont = mp1->b_cont) == NULL) { 11904 /* 11905 * After clipping out mp1, this guy 11906 * is now hanging off the end. 11907 */ 11908 ipf->ipf_tail_mp = mp; 11909 } 11910 IP_REASS_SET_START(mp1, 0); 11911 IP_REASS_SET_END(mp1, 0); 11912 /* Subtract byte count */ 11913 ipf->ipf_count -= mp1->b_datap->db_lim - 11914 mp1->b_datap->db_base; 11915 freeb(mp1); 11916 BUMP_MIB(ill->ill_ip_mib, 11917 ipIfStatsReasmPartDups); 11918 mp1 = mp->b_cont; 11919 if (!mp1) 11920 break; 11921 offset = IP_REASS_START(mp1); 11922 } 11923 ipf->ipf_mp->b_cont = mp; 11924 continue; 11925 } 11926 /* 11927 * The new piece starts somewhere between the start of the head 11928 * and before the end of the tail. 11929 */ 11930 for (; mp1; mp1 = mp1->b_cont) { 11931 offset = IP_REASS_END(mp1); 11932 if (start < offset) { 11933 if (end <= offset) { 11934 /* Nothing new. */ 11935 IP_REASS_SET_START(mp, 0); 11936 IP_REASS_SET_END(mp, 0); 11937 /* Subtract byte count */ 11938 ipf->ipf_count -= mp->b_datap->db_lim - 11939 mp->b_datap->db_base; 11940 if (incr_dups) { 11941 ipf->ipf_num_dups++; 11942 incr_dups = B_FALSE; 11943 } 11944 freeb(mp); 11945 BUMP_MIB(ill->ill_ip_mib, 11946 ipIfStatsReasmDuplicates); 11947 break; 11948 } 11949 /* 11950 * Trim redundant stuff off beginning of new 11951 * piece. 11952 */ 11953 IP_REASS_SET_START(mp, offset); 11954 mp->b_rptr += offset - start; 11955 BUMP_MIB(ill->ill_ip_mib, 11956 ipIfStatsReasmPartDups); 11957 start = offset; 11958 if (!mp1->b_cont) { 11959 /* 11960 * After trimming, this guy is now 11961 * hanging off the end. 11962 */ 11963 mp1->b_cont = mp; 11964 ipf->ipf_tail_mp = mp; 11965 if (!more) { 11966 ipf->ipf_hole_cnt--; 11967 } 11968 break; 11969 } 11970 } 11971 if (start >= IP_REASS_START(mp1->b_cont)) 11972 continue; 11973 /* Fill a hole */ 11974 if (start > offset) 11975 ipf->ipf_hole_cnt++; 11976 mp->b_cont = mp1->b_cont; 11977 mp1->b_cont = mp; 11978 mp1 = mp->b_cont; 11979 offset = IP_REASS_START(mp1); 11980 if (end >= offset) { 11981 ipf->ipf_hole_cnt--; 11982 /* Check for overlap. */ 11983 while (end > offset) { 11984 if (end < IP_REASS_END(mp1)) { 11985 mp->b_wptr -= end - offset; 11986 IP_REASS_SET_END(mp, offset); 11987 /* 11988 * TODO we might bump 11989 * this up twice if there is 11990 * overlap at both ends. 11991 */ 11992 BUMP_MIB(ill->ill_ip_mib, 11993 ipIfStatsReasmPartDups); 11994 break; 11995 } 11996 /* Did we cover another hole? */ 11997 if ((mp1->b_cont && 11998 IP_REASS_END(mp1) 11999 != IP_REASS_START(mp1->b_cont) && 12000 end >= 12001 IP_REASS_START(mp1->b_cont)) || 12002 (!ipf->ipf_last_frag_seen && 12003 !more)) { 12004 ipf->ipf_hole_cnt--; 12005 } 12006 /* Clip out mp1. */ 12007 if ((mp->b_cont = mp1->b_cont) == 12008 NULL) { 12009 /* 12010 * After clipping out mp1, 12011 * this guy is now hanging 12012 * off the end. 12013 */ 12014 ipf->ipf_tail_mp = mp; 12015 } 12016 IP_REASS_SET_START(mp1, 0); 12017 IP_REASS_SET_END(mp1, 0); 12018 /* Subtract byte count */ 12019 ipf->ipf_count -= 12020 mp1->b_datap->db_lim - 12021 mp1->b_datap->db_base; 12022 freeb(mp1); 12023 BUMP_MIB(ill->ill_ip_mib, 12024 ipIfStatsReasmPartDups); 12025 mp1 = mp->b_cont; 12026 if (!mp1) 12027 break; 12028 offset = IP_REASS_START(mp1); 12029 } 12030 } 12031 break; 12032 } 12033 } while (start = end, mp = next_mp); 12034 12035 /* Fragment just processed could be the last one. Remember this fact */ 12036 if (!more) 12037 ipf->ipf_last_frag_seen = B_TRUE; 12038 12039 /* Still got holes? */ 12040 if (ipf->ipf_hole_cnt) 12041 return (IP_REASS_PARTIAL); 12042 /* Clean up overloaded fields to avoid upstream disasters. */ 12043 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12044 IP_REASS_SET_START(mp1, 0); 12045 IP_REASS_SET_END(mp1, 0); 12046 } 12047 return (IP_REASS_COMPLETE); 12048 } 12049 12050 /* 12051 * ipsec processing for the fast path, used for input UDP Packets 12052 * Returns true if ready for passup to UDP. 12053 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12054 * was an ESP-in-UDP packet, etc.). 12055 */ 12056 static boolean_t 12057 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12058 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12059 { 12060 uint32_t ill_index; 12061 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12062 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12063 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12064 udp_t *udp = connp->conn_udp; 12065 12066 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12067 /* The ill_index of the incoming ILL */ 12068 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12069 12070 /* pass packet up to the transport */ 12071 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12072 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12073 NULL, mctl_present); 12074 if (*first_mpp == NULL) { 12075 return (B_FALSE); 12076 } 12077 } 12078 12079 /* Initiate IPPF processing for fastpath UDP */ 12080 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12081 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12082 if (*mpp == NULL) { 12083 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12084 "deferred/dropped during IPPF processing\n")); 12085 return (B_FALSE); 12086 } 12087 } 12088 /* 12089 * Remove 0-spi if it's 0, or move everything behind 12090 * the UDP header over it and forward to ESP via 12091 * ip_proto_input(). 12092 */ 12093 if (udp->udp_nat_t_endpoint) { 12094 if (mctl_present) { 12095 /* mctl_present *shouldn't* happen. */ 12096 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12097 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12098 &ipss->ipsec_dropper); 12099 *first_mpp = NULL; 12100 return (B_FALSE); 12101 } 12102 12103 /* "ill" is "recv_ill" in actuality. */ 12104 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12105 return (B_FALSE); 12106 12107 /* Else continue like a normal UDP packet. */ 12108 } 12109 12110 /* 12111 * We make the checks as below since we are in the fast path 12112 * and want to minimize the number of checks if the IP_RECVIF and/or 12113 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12114 */ 12115 if (connp->conn_recvif || connp->conn_recvslla || 12116 connp->conn_ip_recvpktinfo) { 12117 if (connp->conn_recvif) { 12118 in_flags = IPF_RECVIF; 12119 } 12120 /* 12121 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12122 * so the flag passed to ip_add_info is based on IP version 12123 * of connp. 12124 */ 12125 if (connp->conn_ip_recvpktinfo) { 12126 if (connp->conn_af_isv6) { 12127 /* 12128 * V6 only needs index 12129 */ 12130 in_flags |= IPF_RECVIF; 12131 } else { 12132 /* 12133 * V4 needs index + matching address. 12134 */ 12135 in_flags |= IPF_RECVADDR; 12136 } 12137 } 12138 if (connp->conn_recvslla) { 12139 in_flags |= IPF_RECVSLLA; 12140 } 12141 /* 12142 * since in_flags are being set ill will be 12143 * referenced in ip_add_info, so it better not 12144 * be NULL. 12145 */ 12146 /* 12147 * the actual data will be contained in b_cont 12148 * upon successful return of the following call. 12149 * If the call fails then the original mblk is 12150 * returned. 12151 */ 12152 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12153 ipst); 12154 } 12155 12156 return (B_TRUE); 12157 } 12158 12159 /* 12160 * Fragmentation reassembly. Each ILL has a hash table for 12161 * queuing packets undergoing reassembly for all IPIFs 12162 * associated with the ILL. The hash is based on the packet 12163 * IP ident field. The ILL frag hash table was allocated 12164 * as a timer block at the time the ILL was created. Whenever 12165 * there is anything on the reassembly queue, the timer will 12166 * be running. Returns B_TRUE if successful else B_FALSE; 12167 * frees mp on failure. 12168 */ 12169 static boolean_t 12170 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12171 uint32_t *cksum_val, uint16_t *cksum_flags) 12172 { 12173 uint32_t frag_offset_flags; 12174 ill_t *ill = (ill_t *)q->q_ptr; 12175 mblk_t *mp = *mpp; 12176 mblk_t *t_mp; 12177 ipaddr_t dst; 12178 uint8_t proto = ipha->ipha_protocol; 12179 uint32_t sum_val; 12180 uint16_t sum_flags; 12181 ipf_t *ipf; 12182 ipf_t **ipfp; 12183 ipfb_t *ipfb; 12184 uint16_t ident; 12185 uint32_t offset; 12186 ipaddr_t src; 12187 uint_t hdr_length; 12188 uint32_t end; 12189 mblk_t *mp1; 12190 mblk_t *tail_mp; 12191 size_t count; 12192 size_t msg_len; 12193 uint8_t ecn_info = 0; 12194 uint32_t packet_size; 12195 boolean_t pruned = B_FALSE; 12196 ip_stack_t *ipst = ill->ill_ipst; 12197 12198 if (cksum_val != NULL) 12199 *cksum_val = 0; 12200 if (cksum_flags != NULL) 12201 *cksum_flags = 0; 12202 12203 /* 12204 * Drop the fragmented as early as possible, if 12205 * we don't have resource(s) to re-assemble. 12206 */ 12207 if (ipst->ips_ip_reass_queue_bytes == 0) { 12208 freemsg(mp); 12209 return (B_FALSE); 12210 } 12211 12212 /* Check for fragmentation offset; return if there's none */ 12213 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12214 (IPH_MF | IPH_OFFSET)) == 0) 12215 return (B_TRUE); 12216 12217 /* 12218 * We utilize hardware computed checksum info only for UDP since 12219 * IP fragmentation is a normal occurence for the protocol. In 12220 * addition, checksum offload support for IP fragments carrying 12221 * UDP payload is commonly implemented across network adapters. 12222 */ 12223 ASSERT(ill != NULL); 12224 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12225 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12226 mblk_t *mp1 = mp->b_cont; 12227 int32_t len; 12228 12229 /* Record checksum information from the packet */ 12230 sum_val = (uint32_t)DB_CKSUM16(mp); 12231 sum_flags = DB_CKSUMFLAGS(mp); 12232 12233 /* IP payload offset from beginning of mblk */ 12234 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12235 12236 if ((sum_flags & HCK_PARTIALCKSUM) && 12237 (mp1 == NULL || mp1->b_cont == NULL) && 12238 offset >= DB_CKSUMSTART(mp) && 12239 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12240 uint32_t adj; 12241 /* 12242 * Partial checksum has been calculated by hardware 12243 * and attached to the packet; in addition, any 12244 * prepended extraneous data is even byte aligned. 12245 * If any such data exists, we adjust the checksum; 12246 * this would also handle any postpended data. 12247 */ 12248 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12249 mp, mp1, len, adj); 12250 12251 /* One's complement subtract extraneous checksum */ 12252 if (adj >= sum_val) 12253 sum_val = ~(adj - sum_val) & 0xFFFF; 12254 else 12255 sum_val -= adj; 12256 } 12257 } else { 12258 sum_val = 0; 12259 sum_flags = 0; 12260 } 12261 12262 /* Clear hardware checksumming flag */ 12263 DB_CKSUMFLAGS(mp) = 0; 12264 12265 ident = ipha->ipha_ident; 12266 offset = (frag_offset_flags << 3) & 0xFFFF; 12267 src = ipha->ipha_src; 12268 dst = ipha->ipha_dst; 12269 hdr_length = IPH_HDR_LENGTH(ipha); 12270 end = ntohs(ipha->ipha_length) - hdr_length; 12271 12272 /* If end == 0 then we have a packet with no data, so just free it */ 12273 if (end == 0) { 12274 freemsg(mp); 12275 return (B_FALSE); 12276 } 12277 12278 /* Record the ECN field info. */ 12279 ecn_info = (ipha->ipha_type_of_service & 0x3); 12280 if (offset != 0) { 12281 /* 12282 * If this isn't the first piece, strip the header, and 12283 * add the offset to the end value. 12284 */ 12285 mp->b_rptr += hdr_length; 12286 end += offset; 12287 } 12288 12289 msg_len = MBLKSIZE(mp); 12290 tail_mp = mp; 12291 while (tail_mp->b_cont != NULL) { 12292 tail_mp = tail_mp->b_cont; 12293 msg_len += MBLKSIZE(tail_mp); 12294 } 12295 12296 /* If the reassembly list for this ILL will get too big, prune it */ 12297 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12298 ipst->ips_ip_reass_queue_bytes) { 12299 ill_frag_prune(ill, 12300 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12301 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12302 pruned = B_TRUE; 12303 } 12304 12305 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12306 mutex_enter(&ipfb->ipfb_lock); 12307 12308 ipfp = &ipfb->ipfb_ipf; 12309 /* Try to find an existing fragment queue for this packet. */ 12310 for (;;) { 12311 ipf = ipfp[0]; 12312 if (ipf != NULL) { 12313 /* 12314 * It has to match on ident and src/dst address. 12315 */ 12316 if (ipf->ipf_ident == ident && 12317 ipf->ipf_src == src && 12318 ipf->ipf_dst == dst && 12319 ipf->ipf_protocol == proto) { 12320 /* 12321 * If we have received too many 12322 * duplicate fragments for this packet 12323 * free it. 12324 */ 12325 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12326 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12327 freemsg(mp); 12328 mutex_exit(&ipfb->ipfb_lock); 12329 return (B_FALSE); 12330 } 12331 /* Found it. */ 12332 break; 12333 } 12334 ipfp = &ipf->ipf_hash_next; 12335 continue; 12336 } 12337 12338 /* 12339 * If we pruned the list, do we want to store this new 12340 * fragment?. We apply an optimization here based on the 12341 * fact that most fragments will be received in order. 12342 * So if the offset of this incoming fragment is zero, 12343 * it is the first fragment of a new packet. We will 12344 * keep it. Otherwise drop the fragment, as we have 12345 * probably pruned the packet already (since the 12346 * packet cannot be found). 12347 */ 12348 if (pruned && offset != 0) { 12349 mutex_exit(&ipfb->ipfb_lock); 12350 freemsg(mp); 12351 return (B_FALSE); 12352 } 12353 12354 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12355 /* 12356 * Too many fragmented packets in this hash 12357 * bucket. Free the oldest. 12358 */ 12359 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12360 } 12361 12362 /* New guy. Allocate a frag message. */ 12363 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12364 if (mp1 == NULL) { 12365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12366 freemsg(mp); 12367 reass_done: 12368 mutex_exit(&ipfb->ipfb_lock); 12369 return (B_FALSE); 12370 } 12371 12372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12373 mp1->b_cont = mp; 12374 12375 /* Initialize the fragment header. */ 12376 ipf = (ipf_t *)mp1->b_rptr; 12377 ipf->ipf_mp = mp1; 12378 ipf->ipf_ptphn = ipfp; 12379 ipfp[0] = ipf; 12380 ipf->ipf_hash_next = NULL; 12381 ipf->ipf_ident = ident; 12382 ipf->ipf_protocol = proto; 12383 ipf->ipf_src = src; 12384 ipf->ipf_dst = dst; 12385 ipf->ipf_nf_hdr_len = 0; 12386 /* Record reassembly start time. */ 12387 ipf->ipf_timestamp = gethrestime_sec(); 12388 /* Record ipf generation and account for frag header */ 12389 ipf->ipf_gen = ill->ill_ipf_gen++; 12390 ipf->ipf_count = MBLKSIZE(mp1); 12391 ipf->ipf_last_frag_seen = B_FALSE; 12392 ipf->ipf_ecn = ecn_info; 12393 ipf->ipf_num_dups = 0; 12394 ipfb->ipfb_frag_pkts++; 12395 ipf->ipf_checksum = 0; 12396 ipf->ipf_checksum_flags = 0; 12397 12398 /* Store checksum value in fragment header */ 12399 if (sum_flags != 0) { 12400 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12401 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12402 ipf->ipf_checksum = sum_val; 12403 ipf->ipf_checksum_flags = sum_flags; 12404 } 12405 12406 /* 12407 * We handle reassembly two ways. In the easy case, 12408 * where all the fragments show up in order, we do 12409 * minimal bookkeeping, and just clip new pieces on 12410 * the end. If we ever see a hole, then we go off 12411 * to ip_reassemble which has to mark the pieces and 12412 * keep track of the number of holes, etc. Obviously, 12413 * the point of having both mechanisms is so we can 12414 * handle the easy case as efficiently as possible. 12415 */ 12416 if (offset == 0) { 12417 /* Easy case, in-order reassembly so far. */ 12418 ipf->ipf_count += msg_len; 12419 ipf->ipf_tail_mp = tail_mp; 12420 /* 12421 * Keep track of next expected offset in 12422 * ipf_end. 12423 */ 12424 ipf->ipf_end = end; 12425 ipf->ipf_nf_hdr_len = hdr_length; 12426 } else { 12427 /* Hard case, hole at the beginning. */ 12428 ipf->ipf_tail_mp = NULL; 12429 /* 12430 * ipf_end == 0 means that we have given up 12431 * on easy reassembly. 12432 */ 12433 ipf->ipf_end = 0; 12434 12435 /* Forget checksum offload from now on */ 12436 ipf->ipf_checksum_flags = 0; 12437 12438 /* 12439 * ipf_hole_cnt is set by ip_reassemble. 12440 * ipf_count is updated by ip_reassemble. 12441 * No need to check for return value here 12442 * as we don't expect reassembly to complete 12443 * or fail for the first fragment itself. 12444 */ 12445 (void) ip_reassemble(mp, ipf, 12446 (frag_offset_flags & IPH_OFFSET) << 3, 12447 (frag_offset_flags & IPH_MF), ill, msg_len); 12448 } 12449 /* Update per ipfb and ill byte counts */ 12450 ipfb->ipfb_count += ipf->ipf_count; 12451 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12452 ill->ill_frag_count += ipf->ipf_count; 12453 /* If the frag timer wasn't already going, start it. */ 12454 mutex_enter(&ill->ill_lock); 12455 ill_frag_timer_start(ill); 12456 mutex_exit(&ill->ill_lock); 12457 goto reass_done; 12458 } 12459 12460 /* 12461 * If the packet's flag has changed (it could be coming up 12462 * from an interface different than the previous, therefore 12463 * possibly different checksum capability), then forget about 12464 * any stored checksum states. Otherwise add the value to 12465 * the existing one stored in the fragment header. 12466 */ 12467 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12468 sum_val += ipf->ipf_checksum; 12469 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12470 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12471 ipf->ipf_checksum = sum_val; 12472 } else if (ipf->ipf_checksum_flags != 0) { 12473 /* Forget checksum offload from now on */ 12474 ipf->ipf_checksum_flags = 0; 12475 } 12476 12477 /* 12478 * We have a new piece of a datagram which is already being 12479 * reassembled. Update the ECN info if all IP fragments 12480 * are ECN capable. If there is one which is not, clear 12481 * all the info. If there is at least one which has CE 12482 * code point, IP needs to report that up to transport. 12483 */ 12484 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12485 if (ecn_info == IPH_ECN_CE) 12486 ipf->ipf_ecn = IPH_ECN_CE; 12487 } else { 12488 ipf->ipf_ecn = IPH_ECN_NECT; 12489 } 12490 if (offset && ipf->ipf_end == offset) { 12491 /* The new fragment fits at the end */ 12492 ipf->ipf_tail_mp->b_cont = mp; 12493 /* Update the byte count */ 12494 ipf->ipf_count += msg_len; 12495 /* Update per ipfb and ill byte counts */ 12496 ipfb->ipfb_count += msg_len; 12497 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12498 ill->ill_frag_count += msg_len; 12499 if (frag_offset_flags & IPH_MF) { 12500 /* More to come. */ 12501 ipf->ipf_end = end; 12502 ipf->ipf_tail_mp = tail_mp; 12503 goto reass_done; 12504 } 12505 } else { 12506 /* Go do the hard cases. */ 12507 int ret; 12508 12509 if (offset == 0) 12510 ipf->ipf_nf_hdr_len = hdr_length; 12511 12512 /* Save current byte count */ 12513 count = ipf->ipf_count; 12514 ret = ip_reassemble(mp, ipf, 12515 (frag_offset_flags & IPH_OFFSET) << 3, 12516 (frag_offset_flags & IPH_MF), ill, msg_len); 12517 /* Count of bytes added and subtracted (freeb()ed) */ 12518 count = ipf->ipf_count - count; 12519 if (count) { 12520 /* Update per ipfb and ill byte counts */ 12521 ipfb->ipfb_count += count; 12522 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12523 ill->ill_frag_count += count; 12524 } 12525 if (ret == IP_REASS_PARTIAL) { 12526 goto reass_done; 12527 } else if (ret == IP_REASS_FAILED) { 12528 /* Reassembly failed. Free up all resources */ 12529 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12530 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12531 IP_REASS_SET_START(t_mp, 0); 12532 IP_REASS_SET_END(t_mp, 0); 12533 } 12534 freemsg(mp); 12535 goto reass_done; 12536 } 12537 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12538 } 12539 /* 12540 * We have completed reassembly. Unhook the frag header from 12541 * the reassembly list. 12542 * 12543 * Before we free the frag header, record the ECN info 12544 * to report back to the transport. 12545 */ 12546 ecn_info = ipf->ipf_ecn; 12547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12548 ipfp = ipf->ipf_ptphn; 12549 12550 /* We need to supply these to caller */ 12551 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12552 sum_val = ipf->ipf_checksum; 12553 else 12554 sum_val = 0; 12555 12556 mp1 = ipf->ipf_mp; 12557 count = ipf->ipf_count; 12558 ipf = ipf->ipf_hash_next; 12559 if (ipf != NULL) 12560 ipf->ipf_ptphn = ipfp; 12561 ipfp[0] = ipf; 12562 ill->ill_frag_count -= count; 12563 ASSERT(ipfb->ipfb_count >= count); 12564 ipfb->ipfb_count -= count; 12565 ipfb->ipfb_frag_pkts--; 12566 mutex_exit(&ipfb->ipfb_lock); 12567 /* Ditch the frag header. */ 12568 mp = mp1->b_cont; 12569 12570 freeb(mp1); 12571 12572 /* Restore original IP length in header. */ 12573 packet_size = (uint32_t)msgdsize(mp); 12574 if (packet_size > IP_MAXPACKET) { 12575 freemsg(mp); 12576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12577 return (B_FALSE); 12578 } 12579 12580 if (DB_REF(mp) > 1) { 12581 mblk_t *mp2 = copymsg(mp); 12582 12583 freemsg(mp); 12584 if (mp2 == NULL) { 12585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12586 return (B_FALSE); 12587 } 12588 mp = mp2; 12589 } 12590 ipha = (ipha_t *)mp->b_rptr; 12591 12592 ipha->ipha_length = htons((uint16_t)packet_size); 12593 /* We're now complete, zip the frag state */ 12594 ipha->ipha_fragment_offset_and_flags = 0; 12595 /* Record the ECN info. */ 12596 ipha->ipha_type_of_service &= 0xFC; 12597 ipha->ipha_type_of_service |= ecn_info; 12598 *mpp = mp; 12599 12600 /* Reassembly is successful; return checksum information if needed */ 12601 if (cksum_val != NULL) 12602 *cksum_val = sum_val; 12603 if (cksum_flags != NULL) 12604 *cksum_flags = sum_flags; 12605 12606 return (B_TRUE); 12607 } 12608 12609 /* 12610 * Perform ip header check sum update local options. 12611 * return B_TRUE if all is well, else return B_FALSE and release 12612 * the mp. caller is responsible for decrementing ire ref cnt. 12613 */ 12614 static boolean_t 12615 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12616 ip_stack_t *ipst) 12617 { 12618 mblk_t *first_mp; 12619 boolean_t mctl_present; 12620 uint16_t sum; 12621 12622 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12623 /* 12624 * Don't do the checksum if it has gone through AH/ESP 12625 * processing. 12626 */ 12627 if (!mctl_present) { 12628 sum = ip_csum_hdr(ipha); 12629 if (sum != 0) { 12630 if (ill != NULL) { 12631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12632 } else { 12633 BUMP_MIB(&ipst->ips_ip_mib, 12634 ipIfStatsInCksumErrs); 12635 } 12636 freemsg(first_mp); 12637 return (B_FALSE); 12638 } 12639 } 12640 12641 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12642 if (mctl_present) 12643 freeb(first_mp); 12644 return (B_FALSE); 12645 } 12646 12647 return (B_TRUE); 12648 } 12649 12650 /* 12651 * All udp packet are delivered to the local host via this routine. 12652 */ 12653 void 12654 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12655 ill_t *recv_ill) 12656 { 12657 uint32_t sum; 12658 uint32_t u1; 12659 boolean_t mctl_present; 12660 conn_t *connp; 12661 mblk_t *first_mp; 12662 uint16_t *up; 12663 ill_t *ill = (ill_t *)q->q_ptr; 12664 uint16_t reass_hck_flags = 0; 12665 ip_stack_t *ipst; 12666 12667 ASSERT(recv_ill != NULL); 12668 ipst = recv_ill->ill_ipst; 12669 12670 #define rptr ((uchar_t *)ipha) 12671 12672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12673 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12674 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12675 ASSERT(ill != NULL); 12676 12677 /* 12678 * FAST PATH for udp packets 12679 */ 12680 12681 /* u1 is # words of IP options */ 12682 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12683 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12684 12685 /* IP options present */ 12686 if (u1 != 0) 12687 goto ipoptions; 12688 12689 /* Check the IP header checksum. */ 12690 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12691 /* Clear the IP header h/w cksum flag */ 12692 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12693 } else if (!mctl_present) { 12694 /* 12695 * Don't verify header checksum if this packet is coming 12696 * back from AH/ESP as we already did it. 12697 */ 12698 #define uph ((uint16_t *)ipha) 12699 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12700 uph[6] + uph[7] + uph[8] + uph[9]; 12701 #undef uph 12702 /* finish doing IP checksum */ 12703 sum = (sum & 0xFFFF) + (sum >> 16); 12704 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12705 if (sum != 0 && sum != 0xFFFF) { 12706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12707 freemsg(first_mp); 12708 return; 12709 } 12710 } 12711 12712 /* 12713 * Count for SNMP of inbound packets for ire. 12714 * if mctl is present this might be a secure packet and 12715 * has already been counted for in ip_proto_input(). 12716 */ 12717 if (!mctl_present) { 12718 UPDATE_IB_PKT_COUNT(ire); 12719 ire->ire_last_used_time = lbolt; 12720 } 12721 12722 /* packet part of fragmented IP packet? */ 12723 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12724 if (u1 & (IPH_MF | IPH_OFFSET)) { 12725 goto fragmented; 12726 } 12727 12728 /* u1 = IP header length (20 bytes) */ 12729 u1 = IP_SIMPLE_HDR_LENGTH; 12730 12731 /* packet does not contain complete IP & UDP headers */ 12732 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12733 goto udppullup; 12734 12735 /* up points to UDP header */ 12736 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12737 #define iphs ((uint16_t *)ipha) 12738 12739 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12740 if (up[3] != 0) { 12741 mblk_t *mp1 = mp->b_cont; 12742 boolean_t cksum_err; 12743 uint16_t hck_flags = 0; 12744 12745 /* Pseudo-header checksum */ 12746 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12747 iphs[9] + up[2]; 12748 12749 /* 12750 * Revert to software checksum calculation if the interface 12751 * isn't capable of checksum offload or if IPsec is present. 12752 */ 12753 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12754 hck_flags = DB_CKSUMFLAGS(mp); 12755 12756 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12757 IP_STAT(ipst, ip_in_sw_cksum); 12758 12759 IP_CKSUM_RECV(hck_flags, u1, 12760 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12761 (int32_t)((uchar_t *)up - rptr), 12762 mp, mp1, cksum_err); 12763 12764 if (cksum_err) { 12765 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12766 if (hck_flags & HCK_FULLCKSUM) 12767 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12768 else if (hck_flags & HCK_PARTIALCKSUM) 12769 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12770 else 12771 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12772 12773 freemsg(first_mp); 12774 return; 12775 } 12776 } 12777 12778 /* Non-fragmented broadcast or multicast packet? */ 12779 if (ire->ire_type == IRE_BROADCAST) 12780 goto udpslowpath; 12781 12782 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12783 ire->ire_zoneid, ipst)) != NULL) { 12784 ASSERT(connp->conn_upq != NULL); 12785 IP_STAT(ipst, ip_udp_fast_path); 12786 12787 if (CONN_UDP_FLOWCTLD(connp)) { 12788 freemsg(mp); 12789 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12790 } else { 12791 if (!mctl_present) { 12792 BUMP_MIB(ill->ill_ip_mib, 12793 ipIfStatsHCInDelivers); 12794 } 12795 /* 12796 * mp and first_mp can change. 12797 */ 12798 if (ip_udp_check(q, connp, recv_ill, 12799 ipha, &mp, &first_mp, mctl_present, ire)) { 12800 /* Send it upstream */ 12801 (connp->conn_recv)(connp, mp, NULL); 12802 } 12803 } 12804 /* 12805 * freeb() cannot deal with null mblk being passed 12806 * in and first_mp can be set to null in the call 12807 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12808 */ 12809 if (mctl_present && first_mp != NULL) { 12810 freeb(first_mp); 12811 } 12812 CONN_DEC_REF(connp); 12813 return; 12814 } 12815 12816 /* 12817 * if we got here we know the packet is not fragmented and 12818 * has no options. The classifier could not find a conn_t and 12819 * most likely its an icmp packet so send it through slow path. 12820 */ 12821 12822 goto udpslowpath; 12823 12824 ipoptions: 12825 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12826 goto slow_done; 12827 } 12828 12829 UPDATE_IB_PKT_COUNT(ire); 12830 ire->ire_last_used_time = lbolt; 12831 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12832 if (u1 & (IPH_MF | IPH_OFFSET)) { 12833 fragmented: 12834 /* 12835 * "sum" and "reass_hck_flags" are non-zero if the 12836 * reassembled packet has a valid hardware computed 12837 * checksum information associated with it. 12838 */ 12839 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12840 goto slow_done; 12841 /* 12842 * Make sure that first_mp points back to mp as 12843 * the mp we came in with could have changed in 12844 * ip_rput_fragment(). 12845 */ 12846 ASSERT(!mctl_present); 12847 ipha = (ipha_t *)mp->b_rptr; 12848 first_mp = mp; 12849 } 12850 12851 /* Now we have a complete datagram, destined for this machine. */ 12852 u1 = IPH_HDR_LENGTH(ipha); 12853 /* Pull up the UDP header, if necessary. */ 12854 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12855 udppullup: 12856 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12858 freemsg(first_mp); 12859 goto slow_done; 12860 } 12861 ipha = (ipha_t *)mp->b_rptr; 12862 } 12863 12864 /* 12865 * Validate the checksum for the reassembled packet; for the 12866 * pullup case we calculate the payload checksum in software. 12867 */ 12868 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12869 if (up[3] != 0) { 12870 boolean_t cksum_err; 12871 12872 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12873 IP_STAT(ipst, ip_in_sw_cksum); 12874 12875 IP_CKSUM_RECV_REASS(reass_hck_flags, 12876 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12877 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12878 iphs[9] + up[2], sum, cksum_err); 12879 12880 if (cksum_err) { 12881 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12882 12883 if (reass_hck_flags & HCK_FULLCKSUM) 12884 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12885 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12886 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12887 else 12888 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12889 12890 freemsg(first_mp); 12891 goto slow_done; 12892 } 12893 } 12894 udpslowpath: 12895 12896 /* Clear hardware checksum flag to be safe */ 12897 DB_CKSUMFLAGS(mp) = 0; 12898 12899 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12900 (ire->ire_type == IRE_BROADCAST), 12901 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12902 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12903 12904 slow_done: 12905 IP_STAT(ipst, ip_udp_slow_path); 12906 return; 12907 12908 #undef iphs 12909 #undef rptr 12910 } 12911 12912 /* ARGSUSED */ 12913 static mblk_t * 12914 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12915 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12916 ill_rx_ring_t *ill_ring) 12917 { 12918 conn_t *connp; 12919 uint32_t sum; 12920 uint32_t u1; 12921 uint16_t *up; 12922 int offset; 12923 ssize_t len; 12924 mblk_t *mp1; 12925 boolean_t syn_present = B_FALSE; 12926 tcph_t *tcph; 12927 uint_t ip_hdr_len; 12928 ill_t *ill = (ill_t *)q->q_ptr; 12929 zoneid_t zoneid = ire->ire_zoneid; 12930 boolean_t cksum_err; 12931 uint16_t hck_flags = 0; 12932 ip_stack_t *ipst = recv_ill->ill_ipst; 12933 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12934 12935 #define rptr ((uchar_t *)ipha) 12936 12937 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12938 ASSERT(ill != NULL); 12939 12940 /* 12941 * FAST PATH for tcp packets 12942 */ 12943 12944 /* u1 is # words of IP options */ 12945 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12946 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12947 12948 /* IP options present */ 12949 if (u1) { 12950 goto ipoptions; 12951 } else if (!mctl_present) { 12952 /* Check the IP header checksum. */ 12953 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12954 /* Clear the IP header h/w cksum flag */ 12955 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12956 } else if (!mctl_present) { 12957 /* 12958 * Don't verify header checksum if this packet 12959 * is coming back from AH/ESP as we already did it. 12960 */ 12961 #define uph ((uint16_t *)ipha) 12962 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12963 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12964 #undef uph 12965 /* finish doing IP checksum */ 12966 sum = (sum & 0xFFFF) + (sum >> 16); 12967 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12968 if (sum != 0 && sum != 0xFFFF) { 12969 BUMP_MIB(ill->ill_ip_mib, 12970 ipIfStatsInCksumErrs); 12971 goto error; 12972 } 12973 } 12974 } 12975 12976 if (!mctl_present) { 12977 UPDATE_IB_PKT_COUNT(ire); 12978 ire->ire_last_used_time = lbolt; 12979 } 12980 12981 /* packet part of fragmented IP packet? */ 12982 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12983 if (u1 & (IPH_MF | IPH_OFFSET)) { 12984 goto fragmented; 12985 } 12986 12987 /* u1 = IP header length (20 bytes) */ 12988 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12989 12990 /* does packet contain IP+TCP headers? */ 12991 len = mp->b_wptr - rptr; 12992 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12993 IP_STAT(ipst, ip_tcppullup); 12994 goto tcppullup; 12995 } 12996 12997 /* TCP options present? */ 12998 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12999 13000 /* 13001 * If options need to be pulled up, then goto tcpoptions. 13002 * otherwise we are still in the fast path 13003 */ 13004 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13005 IP_STAT(ipst, ip_tcpoptions); 13006 goto tcpoptions; 13007 } 13008 13009 /* multiple mblks of tcp data? */ 13010 if ((mp1 = mp->b_cont) != NULL) { 13011 /* more then two? */ 13012 if (mp1->b_cont != NULL) { 13013 IP_STAT(ipst, ip_multipkttcp); 13014 goto multipkttcp; 13015 } 13016 len += mp1->b_wptr - mp1->b_rptr; 13017 } 13018 13019 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13020 13021 /* part of pseudo checksum */ 13022 13023 /* TCP datagram length */ 13024 u1 = len - IP_SIMPLE_HDR_LENGTH; 13025 13026 #define iphs ((uint16_t *)ipha) 13027 13028 #ifdef _BIG_ENDIAN 13029 u1 += IPPROTO_TCP; 13030 #else 13031 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13032 #endif 13033 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13034 13035 /* 13036 * Revert to software checksum calculation if the interface 13037 * isn't capable of checksum offload or if IPsec is present. 13038 */ 13039 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13040 hck_flags = DB_CKSUMFLAGS(mp); 13041 13042 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13043 IP_STAT(ipst, ip_in_sw_cksum); 13044 13045 IP_CKSUM_RECV(hck_flags, u1, 13046 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13047 (int32_t)((uchar_t *)up - rptr), 13048 mp, mp1, cksum_err); 13049 13050 if (cksum_err) { 13051 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13052 13053 if (hck_flags & HCK_FULLCKSUM) 13054 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13055 else if (hck_flags & HCK_PARTIALCKSUM) 13056 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13057 else 13058 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13059 13060 goto error; 13061 } 13062 13063 try_again: 13064 13065 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13066 zoneid, ipst)) == NULL) { 13067 /* Send the TH_RST */ 13068 goto no_conn; 13069 } 13070 13071 /* 13072 * TCP FAST PATH for AF_INET socket. 13073 * 13074 * TCP fast path to avoid extra work. An AF_INET socket type 13075 * does not have facility to receive extra information via 13076 * ip_process or ip_add_info. Also, when the connection was 13077 * established, we made a check if this connection is impacted 13078 * by any global IPsec policy or per connection policy (a 13079 * policy that comes in effect later will not apply to this 13080 * connection). Since all this can be determined at the 13081 * connection establishment time, a quick check of flags 13082 * can avoid extra work. 13083 */ 13084 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13085 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13086 ASSERT(first_mp == mp); 13087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13088 SET_SQUEUE(mp, tcp_rput_data, connp); 13089 return (mp); 13090 } 13091 13092 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13093 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13094 if (IPCL_IS_TCP(connp)) { 13095 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13096 DB_CKSUMSTART(mp) = 13097 (intptr_t)ip_squeue_get(ill_ring); 13098 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13099 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13100 BUMP_MIB(ill->ill_ip_mib, 13101 ipIfStatsHCInDelivers); 13102 SET_SQUEUE(mp, connp->conn_recv, connp); 13103 return (mp); 13104 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13105 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13106 BUMP_MIB(ill->ill_ip_mib, 13107 ipIfStatsHCInDelivers); 13108 ip_squeue_enter_unbound++; 13109 SET_SQUEUE(mp, tcp_conn_request_unbound, 13110 connp); 13111 return (mp); 13112 } 13113 syn_present = B_TRUE; 13114 } 13115 13116 } 13117 13118 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13119 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13120 13121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13122 /* No need to send this packet to TCP */ 13123 if ((flags & TH_RST) || (flags & TH_URG)) { 13124 CONN_DEC_REF(connp); 13125 freemsg(first_mp); 13126 return (NULL); 13127 } 13128 if (flags & TH_ACK) { 13129 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13130 ipst->ips_netstack->netstack_tcp, connp); 13131 CONN_DEC_REF(connp); 13132 return (NULL); 13133 } 13134 13135 CONN_DEC_REF(connp); 13136 freemsg(first_mp); 13137 return (NULL); 13138 } 13139 13140 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13141 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13142 ipha, NULL, mctl_present); 13143 if (first_mp == NULL) { 13144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13145 CONN_DEC_REF(connp); 13146 return (NULL); 13147 } 13148 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13149 ASSERT(syn_present); 13150 if (mctl_present) { 13151 ASSERT(first_mp != mp); 13152 first_mp->b_datap->db_struioflag |= 13153 STRUIO_POLICY; 13154 } else { 13155 ASSERT(first_mp == mp); 13156 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13157 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13158 } 13159 } else { 13160 /* 13161 * Discard first_mp early since we're dealing with a 13162 * fully-connected conn_t and tcp doesn't do policy in 13163 * this case. 13164 */ 13165 if (mctl_present) { 13166 freeb(first_mp); 13167 mctl_present = B_FALSE; 13168 } 13169 first_mp = mp; 13170 } 13171 } 13172 13173 /* Initiate IPPF processing for fastpath */ 13174 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13175 uint32_t ill_index; 13176 13177 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13178 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13179 if (mp == NULL) { 13180 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13181 "deferred/dropped during IPPF processing\n")); 13182 CONN_DEC_REF(connp); 13183 if (mctl_present) 13184 freeb(first_mp); 13185 return (NULL); 13186 } else if (mctl_present) { 13187 /* 13188 * ip_process might return a new mp. 13189 */ 13190 ASSERT(first_mp != mp); 13191 first_mp->b_cont = mp; 13192 } else { 13193 first_mp = mp; 13194 } 13195 13196 } 13197 13198 if (!syn_present && connp->conn_ip_recvpktinfo) { 13199 /* 13200 * TCP does not support IP_RECVPKTINFO for v4 so lets 13201 * make sure IPF_RECVIF is passed to ip_add_info. 13202 */ 13203 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13204 IPCL_ZONEID(connp), ipst); 13205 if (mp == NULL) { 13206 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13207 CONN_DEC_REF(connp); 13208 if (mctl_present) 13209 freeb(first_mp); 13210 return (NULL); 13211 } else if (mctl_present) { 13212 /* 13213 * ip_add_info might return a new mp. 13214 */ 13215 ASSERT(first_mp != mp); 13216 first_mp->b_cont = mp; 13217 } else { 13218 first_mp = mp; 13219 } 13220 } 13221 13222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13223 if (IPCL_IS_TCP(connp)) { 13224 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13225 return (first_mp); 13226 } else { 13227 /* SOCK_RAW, IPPROTO_TCP case */ 13228 (connp->conn_recv)(connp, first_mp, NULL); 13229 CONN_DEC_REF(connp); 13230 return (NULL); 13231 } 13232 13233 no_conn: 13234 /* Initiate IPPf processing, if needed. */ 13235 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13236 uint32_t ill_index; 13237 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13238 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13239 if (first_mp == NULL) { 13240 return (NULL); 13241 } 13242 } 13243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13244 13245 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13246 ipst->ips_netstack->netstack_tcp, NULL); 13247 return (NULL); 13248 ipoptions: 13249 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13250 goto slow_done; 13251 } 13252 13253 UPDATE_IB_PKT_COUNT(ire); 13254 ire->ire_last_used_time = lbolt; 13255 13256 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13257 if (u1 & (IPH_MF | IPH_OFFSET)) { 13258 fragmented: 13259 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13260 if (mctl_present) 13261 freeb(first_mp); 13262 goto slow_done; 13263 } 13264 /* 13265 * Make sure that first_mp points back to mp as 13266 * the mp we came in with could have changed in 13267 * ip_rput_fragment(). 13268 */ 13269 ASSERT(!mctl_present); 13270 ipha = (ipha_t *)mp->b_rptr; 13271 first_mp = mp; 13272 } 13273 13274 /* Now we have a complete datagram, destined for this machine. */ 13275 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13276 13277 len = mp->b_wptr - mp->b_rptr; 13278 /* Pull up a minimal TCP header, if necessary. */ 13279 if (len < (u1 + 20)) { 13280 tcppullup: 13281 if (!pullupmsg(mp, u1 + 20)) { 13282 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13283 goto error; 13284 } 13285 ipha = (ipha_t *)mp->b_rptr; 13286 len = mp->b_wptr - mp->b_rptr; 13287 } 13288 13289 /* 13290 * Extract the offset field from the TCP header. As usual, we 13291 * try to help the compiler more than the reader. 13292 */ 13293 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13294 if (offset != 5) { 13295 tcpoptions: 13296 if (offset < 5) { 13297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13298 goto error; 13299 } 13300 /* 13301 * There must be TCP options. 13302 * Make sure we can grab them. 13303 */ 13304 offset <<= 2; 13305 offset += u1; 13306 if (len < offset) { 13307 if (!pullupmsg(mp, offset)) { 13308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13309 goto error; 13310 } 13311 ipha = (ipha_t *)mp->b_rptr; 13312 len = mp->b_wptr - rptr; 13313 } 13314 } 13315 13316 /* Get the total packet length in len, including headers. */ 13317 if (mp->b_cont) { 13318 multipkttcp: 13319 len = msgdsize(mp); 13320 } 13321 13322 /* 13323 * Check the TCP checksum by pulling together the pseudo- 13324 * header checksum, and passing it to ip_csum to be added in 13325 * with the TCP datagram. 13326 * 13327 * Since we are not using the hwcksum if available we must 13328 * clear the flag. We may come here via tcppullup or tcpoptions. 13329 * If either of these fails along the way the mblk is freed. 13330 * If this logic ever changes and mblk is reused to say send 13331 * ICMP's back, then this flag may need to be cleared in 13332 * other places as well. 13333 */ 13334 DB_CKSUMFLAGS(mp) = 0; 13335 13336 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13337 13338 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13339 #ifdef _BIG_ENDIAN 13340 u1 += IPPROTO_TCP; 13341 #else 13342 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13343 #endif 13344 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13345 /* 13346 * Not M_DATA mblk or its a dup, so do the checksum now. 13347 */ 13348 IP_STAT(ipst, ip_in_sw_cksum); 13349 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13350 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13351 goto error; 13352 } 13353 13354 IP_STAT(ipst, ip_tcp_slow_path); 13355 goto try_again; 13356 #undef iphs 13357 #undef rptr 13358 13359 error: 13360 freemsg(first_mp); 13361 slow_done: 13362 return (NULL); 13363 } 13364 13365 /* ARGSUSED */ 13366 static void 13367 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13368 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13369 { 13370 conn_t *connp; 13371 uint32_t sum; 13372 uint32_t u1; 13373 ssize_t len; 13374 sctp_hdr_t *sctph; 13375 zoneid_t zoneid = ire->ire_zoneid; 13376 uint32_t pktsum; 13377 uint32_t calcsum; 13378 uint32_t ports; 13379 in6_addr_t map_src, map_dst; 13380 ill_t *ill = (ill_t *)q->q_ptr; 13381 ip_stack_t *ipst; 13382 sctp_stack_t *sctps; 13383 boolean_t sctp_csum_err = B_FALSE; 13384 13385 ASSERT(recv_ill != NULL); 13386 ipst = recv_ill->ill_ipst; 13387 sctps = ipst->ips_netstack->netstack_sctp; 13388 13389 #define rptr ((uchar_t *)ipha) 13390 13391 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13392 ASSERT(ill != NULL); 13393 13394 /* u1 is # words of IP options */ 13395 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13396 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13397 13398 /* IP options present */ 13399 if (u1 > 0) { 13400 goto ipoptions; 13401 } else { 13402 /* Check the IP header checksum. */ 13403 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13404 !mctl_present) { 13405 #define uph ((uint16_t *)ipha) 13406 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13407 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13408 #undef uph 13409 /* finish doing IP checksum */ 13410 sum = (sum & 0xFFFF) + (sum >> 16); 13411 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13412 /* 13413 * Don't verify header checksum if this packet 13414 * is coming back from AH/ESP as we already did it. 13415 */ 13416 if (sum != 0 && sum != 0xFFFF) { 13417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13418 goto error; 13419 } 13420 } 13421 /* 13422 * Since there is no SCTP h/w cksum support yet, just 13423 * clear the flag. 13424 */ 13425 DB_CKSUMFLAGS(mp) = 0; 13426 } 13427 13428 /* 13429 * Don't verify header checksum if this packet is coming 13430 * back from AH/ESP as we already did it. 13431 */ 13432 if (!mctl_present) { 13433 UPDATE_IB_PKT_COUNT(ire); 13434 ire->ire_last_used_time = lbolt; 13435 } 13436 13437 /* packet part of fragmented IP packet? */ 13438 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13439 if (u1 & (IPH_MF | IPH_OFFSET)) 13440 goto fragmented; 13441 13442 /* u1 = IP header length (20 bytes) */ 13443 u1 = IP_SIMPLE_HDR_LENGTH; 13444 13445 find_sctp_client: 13446 /* Pullup if we don't have the sctp common header. */ 13447 len = MBLKL(mp); 13448 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13449 if (mp->b_cont == NULL || 13450 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13452 goto error; 13453 } 13454 ipha = (ipha_t *)mp->b_rptr; 13455 len = MBLKL(mp); 13456 } 13457 13458 sctph = (sctp_hdr_t *)(rptr + u1); 13459 #ifdef DEBUG 13460 if (!skip_sctp_cksum) { 13461 #endif 13462 pktsum = sctph->sh_chksum; 13463 sctph->sh_chksum = 0; 13464 calcsum = sctp_cksum(mp, u1); 13465 sctph->sh_chksum = pktsum; 13466 if (calcsum != pktsum) 13467 sctp_csum_err = B_TRUE; 13468 #ifdef DEBUG /* skip_sctp_cksum */ 13469 } 13470 #endif 13471 /* get the ports */ 13472 ports = *(uint32_t *)&sctph->sh_sport; 13473 13474 IRE_REFRELE(ire); 13475 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13476 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13477 if (sctp_csum_err) { 13478 /* 13479 * No potential sctp checksum errors go to the Sun 13480 * sctp stack however they might be Adler-32 summed 13481 * packets a userland stack bound to a raw IP socket 13482 * could reasonably use. Note though that Adler-32 is 13483 * a long deprecated algorithm and customer sctp 13484 * networks should eventually migrate to CRC-32 at 13485 * which time this facility should be removed. 13486 */ 13487 flags |= IP_FF_SCTP_CSUM_ERR; 13488 goto no_conn; 13489 } 13490 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13491 sctps)) == NULL) { 13492 /* Check for raw socket or OOTB handling */ 13493 goto no_conn; 13494 } 13495 13496 /* Found a client; up it goes */ 13497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13498 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13499 return; 13500 13501 no_conn: 13502 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13503 ports, mctl_present, flags, B_TRUE, zoneid); 13504 return; 13505 13506 ipoptions: 13507 DB_CKSUMFLAGS(mp) = 0; 13508 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13509 goto slow_done; 13510 13511 UPDATE_IB_PKT_COUNT(ire); 13512 ire->ire_last_used_time = lbolt; 13513 13514 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13515 if (u1 & (IPH_MF | IPH_OFFSET)) { 13516 fragmented: 13517 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13518 goto slow_done; 13519 /* 13520 * Make sure that first_mp points back to mp as 13521 * the mp we came in with could have changed in 13522 * ip_rput_fragment(). 13523 */ 13524 ASSERT(!mctl_present); 13525 ipha = (ipha_t *)mp->b_rptr; 13526 first_mp = mp; 13527 } 13528 13529 /* Now we have a complete datagram, destined for this machine. */ 13530 u1 = IPH_HDR_LENGTH(ipha); 13531 goto find_sctp_client; 13532 #undef iphs 13533 #undef rptr 13534 13535 error: 13536 freemsg(first_mp); 13537 slow_done: 13538 IRE_REFRELE(ire); 13539 } 13540 13541 #define VER_BITS 0xF0 13542 #define VERSION_6 0x60 13543 13544 static boolean_t 13545 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13546 ipaddr_t *dstp, ip_stack_t *ipst) 13547 { 13548 uint_t opt_len; 13549 ipha_t *ipha; 13550 ssize_t len; 13551 uint_t pkt_len; 13552 13553 ASSERT(ill != NULL); 13554 IP_STAT(ipst, ip_ipoptions); 13555 ipha = *iphapp; 13556 13557 #define rptr ((uchar_t *)ipha) 13558 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13559 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13561 freemsg(mp); 13562 return (B_FALSE); 13563 } 13564 13565 /* multiple mblk or too short */ 13566 pkt_len = ntohs(ipha->ipha_length); 13567 13568 /* Get the number of words of IP options in the IP header. */ 13569 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13570 if (opt_len) { 13571 /* IP Options present! Validate and process. */ 13572 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13573 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13574 goto done; 13575 } 13576 /* 13577 * Recompute complete header length and make sure we 13578 * have access to all of it. 13579 */ 13580 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13581 if (len > (mp->b_wptr - rptr)) { 13582 if (len > pkt_len) { 13583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13584 goto done; 13585 } 13586 if (!pullupmsg(mp, len)) { 13587 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13588 goto done; 13589 } 13590 ipha = (ipha_t *)mp->b_rptr; 13591 } 13592 /* 13593 * Go off to ip_rput_options which returns the next hop 13594 * destination address, which may have been affected 13595 * by source routing. 13596 */ 13597 IP_STAT(ipst, ip_opt); 13598 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13600 return (B_FALSE); 13601 } 13602 } 13603 *iphapp = ipha; 13604 return (B_TRUE); 13605 done: 13606 /* clear b_prev - used by ip_mroute_decap */ 13607 mp->b_prev = NULL; 13608 freemsg(mp); 13609 return (B_FALSE); 13610 #undef rptr 13611 } 13612 13613 /* 13614 * Deal with the fact that there is no ire for the destination. 13615 */ 13616 static ire_t * 13617 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13618 { 13619 ipha_t *ipha; 13620 ill_t *ill; 13621 ire_t *ire; 13622 ip_stack_t *ipst; 13623 enum ire_forward_action ret_action; 13624 13625 ipha = (ipha_t *)mp->b_rptr; 13626 ill = (ill_t *)q->q_ptr; 13627 13628 ASSERT(ill != NULL); 13629 ipst = ill->ill_ipst; 13630 13631 /* 13632 * No IRE for this destination, so it can't be for us. 13633 * Unless we are forwarding, drop the packet. 13634 * We have to let source routed packets through 13635 * since we don't yet know if they are 'ping -l' 13636 * packets i.e. if they will go out over the 13637 * same interface as they came in on. 13638 */ 13639 if (ll_multicast) { 13640 freemsg(mp); 13641 return (NULL); 13642 } 13643 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13645 freemsg(mp); 13646 return (NULL); 13647 } 13648 13649 /* 13650 * Mark this packet as having originated externally. 13651 * 13652 * For non-forwarding code path, ire_send later double 13653 * checks this interface to see if it is still exists 13654 * post-ARP resolution. 13655 * 13656 * Also, IPQOS uses this to differentiate between 13657 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13658 * QOS packet processing in ip_wput_attach_llhdr(). 13659 * The QoS module can mark the b_band for a fastpath message 13660 * or the dl_priority field in a unitdata_req header for 13661 * CoS marking. This info can only be found in 13662 * ip_wput_attach_llhdr(). 13663 */ 13664 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13665 /* 13666 * Clear the indication that this may have a hardware checksum 13667 * as we are not using it 13668 */ 13669 DB_CKSUMFLAGS(mp) = 0; 13670 13671 ire = ire_forward(dst, &ret_action, NULL, NULL, 13672 MBLK_GETLABEL(mp), ipst); 13673 13674 if (ire == NULL && ret_action == Forward_check_multirt) { 13675 /* Let ip_newroute handle CGTP */ 13676 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13677 return (NULL); 13678 } 13679 13680 if (ire != NULL) 13681 return (ire); 13682 13683 mp->b_prev = mp->b_next = 0; 13684 13685 if (ret_action == Forward_blackhole) { 13686 freemsg(mp); 13687 return (NULL); 13688 } 13689 /* send icmp unreachable */ 13690 q = WR(q); 13691 /* Sent by forwarding path, and router is global zone */ 13692 if (ip_source_routed(ipha, ipst)) { 13693 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13694 GLOBAL_ZONEID, ipst); 13695 } else { 13696 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13697 ipst); 13698 } 13699 13700 return (NULL); 13701 13702 } 13703 13704 /* 13705 * check ip header length and align it. 13706 */ 13707 static boolean_t 13708 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13709 { 13710 ssize_t len; 13711 ill_t *ill; 13712 ipha_t *ipha; 13713 13714 len = MBLKL(mp); 13715 13716 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13717 ill = (ill_t *)q->q_ptr; 13718 13719 if (!OK_32PTR(mp->b_rptr)) 13720 IP_STAT(ipst, ip_notaligned1); 13721 else 13722 IP_STAT(ipst, ip_notaligned2); 13723 /* Guard against bogus device drivers */ 13724 if (len < 0) { 13725 /* clear b_prev - used by ip_mroute_decap */ 13726 mp->b_prev = NULL; 13727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13728 freemsg(mp); 13729 return (B_FALSE); 13730 } 13731 13732 if (ip_rput_pullups++ == 0) { 13733 ipha = (ipha_t *)mp->b_rptr; 13734 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13735 "ip_check_and_align_header: %s forced us to " 13736 " pullup pkt, hdr len %ld, hdr addr %p", 13737 ill->ill_name, len, ipha); 13738 } 13739 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13740 /* clear b_prev - used by ip_mroute_decap */ 13741 mp->b_prev = NULL; 13742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13743 freemsg(mp); 13744 return (B_FALSE); 13745 } 13746 } 13747 return (B_TRUE); 13748 } 13749 13750 ire_t * 13751 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13752 { 13753 ire_t *new_ire; 13754 ill_t *ire_ill; 13755 uint_t ifindex; 13756 ip_stack_t *ipst = ill->ill_ipst; 13757 boolean_t strict_check = B_FALSE; 13758 13759 /* 13760 * This packet came in on an interface other than the one associated 13761 * with the first ire we found for the destination address. We do 13762 * another ire lookup here, using the ingress ill, to see if the 13763 * interface is in an interface group. 13764 * As long as the ills belong to the same group, we don't consider 13765 * them to be arriving on the wrong interface. Thus, if the switch 13766 * is doing inbound load spreading, we won't drop packets when the 13767 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13768 * for 'usesrc groups' where the destination address may belong to 13769 * another interface to allow multipathing to happen. 13770 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13771 * where the local address may not be unique. In this case we were 13772 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13773 * actually returned. The new lookup, which is more specific, should 13774 * only find the IRE_LOCAL associated with the ingress ill if one 13775 * exists. 13776 */ 13777 13778 if (ire->ire_ipversion == IPV4_VERSION) { 13779 if (ipst->ips_ip_strict_dst_multihoming) 13780 strict_check = B_TRUE; 13781 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13782 ill->ill_ipif, ALL_ZONES, NULL, 13783 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13784 } else { 13785 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13786 if (ipst->ips_ipv6_strict_dst_multihoming) 13787 strict_check = B_TRUE; 13788 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13789 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13790 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13791 } 13792 /* 13793 * If the same ire that was returned in ip_input() is found then this 13794 * is an indication that interface groups are in use. The packet 13795 * arrived on a different ill in the group than the one associated with 13796 * the destination address. If a different ire was found then the same 13797 * IP address must be hosted on multiple ills. This is possible with 13798 * unnumbered point2point interfaces. We switch to use this new ire in 13799 * order to have accurate interface statistics. 13800 */ 13801 if (new_ire != NULL) { 13802 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13803 ire_refrele(ire); 13804 ire = new_ire; 13805 } else { 13806 ire_refrele(new_ire); 13807 } 13808 return (ire); 13809 } else if ((ire->ire_rfq == NULL) && 13810 (ire->ire_ipversion == IPV4_VERSION)) { 13811 /* 13812 * The best match could have been the original ire which 13813 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13814 * the strict multihoming checks are irrelevant as we consider 13815 * local addresses hosted on lo0 to be interface agnostic. We 13816 * only expect a null ire_rfq on IREs which are associated with 13817 * lo0 hence we can return now. 13818 */ 13819 return (ire); 13820 } 13821 13822 /* 13823 * Chase pointers once and store locally. 13824 */ 13825 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13826 (ill_t *)(ire->ire_rfq->q_ptr); 13827 ifindex = ill->ill_usesrc_ifindex; 13828 13829 /* 13830 * Check if it's a legal address on the 'usesrc' interface. 13831 */ 13832 if ((ifindex != 0) && (ire_ill != NULL) && 13833 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13834 return (ire); 13835 } 13836 13837 /* 13838 * If the ip*_strict_dst_multihoming switch is on then we can 13839 * only accept this packet if the interface is marked as routing. 13840 */ 13841 if (!(strict_check)) 13842 return (ire); 13843 13844 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13845 ILLF_ROUTER) != 0) { 13846 return (ire); 13847 } 13848 13849 ire_refrele(ire); 13850 return (NULL); 13851 } 13852 13853 ire_t * 13854 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13855 { 13856 ipha_t *ipha; 13857 ire_t *src_ire; 13858 ill_t *stq_ill; 13859 uint_t hlen; 13860 uint_t pkt_len; 13861 uint32_t sum; 13862 queue_t *dev_q; 13863 ip_stack_t *ipst = ill->ill_ipst; 13864 mblk_t *fpmp; 13865 enum ire_forward_action ret_action; 13866 13867 ipha = (ipha_t *)mp->b_rptr; 13868 13869 /* 13870 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13871 * The loopback address check for both src and dst has already 13872 * been checked in ip_input 13873 */ 13874 13875 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13877 goto drop; 13878 } 13879 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13880 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13881 13882 if (src_ire != NULL) { 13883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13884 ire_refrele(src_ire); 13885 goto drop; 13886 } 13887 13888 13889 /* No ire cache of nexthop. So first create one */ 13890 if (ire == NULL) { 13891 13892 ire = ire_forward(dst, &ret_action, NULL, NULL, 13893 NULL, ipst); 13894 /* 13895 * We only come to ip_fast_forward if ip_cgtp_filter 13896 * is not set. So ire_forward() should not return with 13897 * Forward_check_multirt as the next action. 13898 */ 13899 ASSERT(ret_action != Forward_check_multirt); 13900 if (ire == NULL) { 13901 /* An attempt was made to forward the packet */ 13902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13904 mp->b_prev = mp->b_next = 0; 13905 /* send icmp unreachable */ 13906 /* Sent by forwarding path, and router is global zone */ 13907 if (ret_action == Forward_ret_icmp_err) { 13908 if (ip_source_routed(ipha, ipst)) { 13909 icmp_unreachable(ill->ill_wq, mp, 13910 ICMP_SOURCE_ROUTE_FAILED, 13911 GLOBAL_ZONEID, ipst); 13912 } else { 13913 icmp_unreachable(ill->ill_wq, mp, 13914 ICMP_HOST_UNREACHABLE, 13915 GLOBAL_ZONEID, ipst); 13916 } 13917 } else { 13918 freemsg(mp); 13919 } 13920 return (NULL); 13921 } 13922 } 13923 13924 /* 13925 * Forwarding fastpath exception case: 13926 * If either of the follwoing case is true, we take 13927 * the slowpath 13928 * o forwarding is not enabled 13929 * o incoming and outgoing interface are the same, or the same 13930 * IPMP group 13931 * o corresponding ire is in incomplete state 13932 * o packet needs fragmentation 13933 * o ARP cache is not resolved 13934 * 13935 * The codeflow from here on is thus: 13936 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13937 */ 13938 pkt_len = ntohs(ipha->ipha_length); 13939 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13940 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13941 !(ill->ill_flags & ILLF_ROUTER) || 13942 (ill == stq_ill) || 13943 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13944 (ire->ire_nce == NULL) || 13945 (pkt_len > ire->ire_max_frag) || 13946 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13947 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13948 ipha->ipha_ttl <= 1) { 13949 ip_rput_process_forward(ill->ill_rq, mp, ire, 13950 ipha, ill, B_FALSE); 13951 return (ire); 13952 } 13953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13954 13955 DTRACE_PROBE4(ip4__forwarding__start, 13956 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13957 13958 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13959 ipst->ips_ipv4firewall_forwarding, 13960 ill, stq_ill, ipha, mp, mp, 0, ipst); 13961 13962 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13963 13964 if (mp == NULL) 13965 goto drop; 13966 13967 mp->b_datap->db_struioun.cksum.flags = 0; 13968 /* Adjust the checksum to reflect the ttl decrement. */ 13969 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13970 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13971 ipha->ipha_ttl--; 13972 13973 /* 13974 * Write the link layer header. We can do this safely here, 13975 * because we have already tested to make sure that the IP 13976 * policy is not set, and that we have a fast path destination 13977 * header. 13978 */ 13979 mp->b_rptr -= hlen; 13980 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13981 13982 UPDATE_IB_PKT_COUNT(ire); 13983 ire->ire_last_used_time = lbolt; 13984 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13985 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13986 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13987 13988 dev_q = ire->ire_stq->q_next; 13989 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 13990 !canputnext(ire->ire_stq)) { 13991 goto indiscard; 13992 } 13993 if (ILL_DLS_CAPABLE(stq_ill)) { 13994 /* 13995 * Send the packet directly to DLD, where it 13996 * may be queued depending on the availability 13997 * of transmit resources at the media layer. 13998 */ 13999 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14000 } else { 14001 DTRACE_PROBE4(ip4__physical__out__start, 14002 ill_t *, NULL, ill_t *, stq_ill, 14003 ipha_t *, ipha, mblk_t *, mp); 14004 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14005 ipst->ips_ipv4firewall_physical_out, 14006 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14007 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14008 if (mp == NULL) 14009 goto drop; 14010 putnext(ire->ire_stq, mp); 14011 } 14012 return (ire); 14013 14014 indiscard: 14015 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14016 drop: 14017 if (mp != NULL) 14018 freemsg(mp); 14019 return (ire); 14020 14021 } 14022 14023 /* 14024 * This function is called in the forwarding slowpath, when 14025 * either the ire lacks the link-layer address, or the packet needs 14026 * further processing(eg. fragmentation), before transmission. 14027 */ 14028 14029 static void 14030 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14031 ill_t *ill, boolean_t ll_multicast) 14032 { 14033 ill_group_t *ill_group; 14034 ill_group_t *ire_group; 14035 queue_t *dev_q; 14036 ire_t *src_ire; 14037 ip_stack_t *ipst = ill->ill_ipst; 14038 14039 ASSERT(ire->ire_stq != NULL); 14040 14041 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14042 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14043 14044 if (ll_multicast != 0) { 14045 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14046 goto drop_pkt; 14047 } 14048 14049 /* 14050 * check if ipha_src is a broadcast address. Note that this 14051 * check is redundant when we get here from ip_fast_forward() 14052 * which has already done this check. However, since we can 14053 * also get here from ip_rput_process_broadcast() or, for 14054 * for the slow path through ip_fast_forward(), we perform 14055 * the check again for code-reusability 14056 */ 14057 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14058 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14059 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14060 if (src_ire != NULL) 14061 ire_refrele(src_ire); 14062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14063 ip2dbg(("ip_rput_process_forward: Received packet with" 14064 " bad src/dst address on %s\n", ill->ill_name)); 14065 goto drop_pkt; 14066 } 14067 14068 ill_group = ill->ill_group; 14069 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14070 /* 14071 * Check if we want to forward this one at this time. 14072 * We allow source routed packets on a host provided that 14073 * they go out the same interface or same interface group 14074 * as they came in on. 14075 * 14076 * XXX To be quicker, we may wish to not chase pointers to 14077 * get the ILLF_ROUTER flag and instead store the 14078 * forwarding policy in the ire. An unfortunate 14079 * side-effect of that would be requiring an ire flush 14080 * whenever the ILLF_ROUTER flag changes. 14081 */ 14082 if (((ill->ill_flags & 14083 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14084 ILLF_ROUTER) == 0) && 14085 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14086 (ill_group != NULL && ill_group == ire_group)))) { 14087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14088 if (ip_source_routed(ipha, ipst)) { 14089 q = WR(q); 14090 /* 14091 * Clear the indication that this may have 14092 * hardware checksum as we are not using it. 14093 */ 14094 DB_CKSUMFLAGS(mp) = 0; 14095 /* Sent by forwarding path, and router is global zone */ 14096 icmp_unreachable(q, mp, 14097 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14098 return; 14099 } 14100 goto drop_pkt; 14101 } 14102 14103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14104 14105 /* Packet is being forwarded. Turning off hwcksum flag. */ 14106 DB_CKSUMFLAGS(mp) = 0; 14107 if (ipst->ips_ip_g_send_redirects) { 14108 /* 14109 * Check whether the incoming interface and outgoing 14110 * interface is part of the same group. If so, 14111 * send redirects. 14112 * 14113 * Check the source address to see if it originated 14114 * on the same logical subnet it is going back out on. 14115 * If so, we should be able to send it a redirect. 14116 * Avoid sending a redirect if the destination 14117 * is directly connected (i.e., ipha_dst is the same 14118 * as ire_gateway_addr or the ire_addr of the 14119 * nexthop IRE_CACHE ), or if the packet was source 14120 * routed out this interface. 14121 */ 14122 ipaddr_t src, nhop; 14123 mblk_t *mp1; 14124 ire_t *nhop_ire = NULL; 14125 14126 /* 14127 * Check whether ire_rfq and q are from the same ill 14128 * or if they are not same, they at least belong 14129 * to the same group. If so, send redirects. 14130 */ 14131 if ((ire->ire_rfq == q || 14132 (ill_group != NULL && ill_group == ire_group)) && 14133 !ip_source_routed(ipha, ipst)) { 14134 14135 nhop = (ire->ire_gateway_addr != 0 ? 14136 ire->ire_gateway_addr : ire->ire_addr); 14137 14138 if (ipha->ipha_dst == nhop) { 14139 /* 14140 * We avoid sending a redirect if the 14141 * destination is directly connected 14142 * because it is possible that multiple 14143 * IP subnets may have been configured on 14144 * the link, and the source may not 14145 * be on the same subnet as ip destination, 14146 * even though they are on the same 14147 * physical link. 14148 */ 14149 goto sendit; 14150 } 14151 14152 src = ipha->ipha_src; 14153 14154 /* 14155 * We look up the interface ire for the nexthop, 14156 * to see if ipha_src is in the same subnet 14157 * as the nexthop. 14158 * 14159 * Note that, if, in the future, IRE_CACHE entries 14160 * are obsoleted, this lookup will not be needed, 14161 * as the ire passed to this function will be the 14162 * same as the nhop_ire computed below. 14163 */ 14164 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14165 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14166 0, NULL, MATCH_IRE_TYPE, ipst); 14167 14168 if (nhop_ire != NULL) { 14169 if ((src & nhop_ire->ire_mask) == 14170 (nhop & nhop_ire->ire_mask)) { 14171 /* 14172 * The source is directly connected. 14173 * Just copy the ip header (which is 14174 * in the first mblk) 14175 */ 14176 mp1 = copyb(mp); 14177 if (mp1 != NULL) { 14178 icmp_send_redirect(WR(q), mp1, 14179 nhop, ipst); 14180 } 14181 } 14182 ire_refrele(nhop_ire); 14183 } 14184 } 14185 } 14186 sendit: 14187 dev_q = ire->ire_stq->q_next; 14188 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14190 freemsg(mp); 14191 return; 14192 } 14193 14194 ip_rput_forward(ire, ipha, mp, ill); 14195 return; 14196 14197 drop_pkt: 14198 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14199 freemsg(mp); 14200 } 14201 14202 ire_t * 14203 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14204 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14205 { 14206 queue_t *q; 14207 uint16_t hcksumflags; 14208 ip_stack_t *ipst = ill->ill_ipst; 14209 14210 q = *qp; 14211 14212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14213 14214 /* 14215 * Clear the indication that this may have hardware 14216 * checksum as we are not using it for forwarding. 14217 */ 14218 hcksumflags = DB_CKSUMFLAGS(mp); 14219 DB_CKSUMFLAGS(mp) = 0; 14220 14221 /* 14222 * Directed broadcast forwarding: if the packet came in over a 14223 * different interface then it is routed out over we can forward it. 14224 */ 14225 if (ipha->ipha_protocol == IPPROTO_TCP) { 14226 ire_refrele(ire); 14227 freemsg(mp); 14228 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14229 return (NULL); 14230 } 14231 /* 14232 * For multicast we have set dst to be INADDR_BROADCAST 14233 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14234 * only for broadcast packets. 14235 */ 14236 if (!CLASSD(ipha->ipha_dst)) { 14237 ire_t *new_ire; 14238 ipif_t *ipif; 14239 /* 14240 * For ill groups, as the switch duplicates broadcasts 14241 * across all the ports, we need to filter out and 14242 * send up only one copy. There is one copy for every 14243 * broadcast address on each ill. Thus, we look for a 14244 * specific IRE on this ill and look at IRE_MARK_NORECV 14245 * later to see whether this ill is eligible to receive 14246 * them or not. ill_nominate_bcast_rcv() nominates only 14247 * one set of IREs for receiving. 14248 */ 14249 14250 ipif = ipif_get_next_ipif(NULL, ill); 14251 if (ipif == NULL) { 14252 ire_refrele(ire); 14253 freemsg(mp); 14254 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14255 return (NULL); 14256 } 14257 new_ire = ire_ctable_lookup(dst, 0, 0, 14258 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14259 ipif_refrele(ipif); 14260 14261 if (new_ire != NULL) { 14262 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14263 ire_refrele(ire); 14264 ire_refrele(new_ire); 14265 freemsg(mp); 14266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14267 return (NULL); 14268 } 14269 /* 14270 * In the special case of multirouted broadcast 14271 * packets, we unconditionally need to "gateway" 14272 * them to the appropriate interface here. 14273 * In the normal case, this cannot happen, because 14274 * there is no broadcast IRE tagged with the 14275 * RTF_MULTIRT flag. 14276 */ 14277 if (new_ire->ire_flags & RTF_MULTIRT) { 14278 ire_refrele(new_ire); 14279 if (ire->ire_rfq != NULL) { 14280 q = ire->ire_rfq; 14281 *qp = q; 14282 } 14283 } else { 14284 ire_refrele(ire); 14285 ire = new_ire; 14286 } 14287 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14288 if (!ipst->ips_ip_g_forward_directed_bcast) { 14289 /* 14290 * Free the message if 14291 * ip_g_forward_directed_bcast is turned 14292 * off for non-local broadcast. 14293 */ 14294 ire_refrele(ire); 14295 freemsg(mp); 14296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14297 return (NULL); 14298 } 14299 } else { 14300 /* 14301 * This CGTP packet successfully passed the 14302 * CGTP filter, but the related CGTP 14303 * broadcast IRE has not been found, 14304 * meaning that the redundant ipif is 14305 * probably down. However, if we discarded 14306 * this packet, its duplicate would be 14307 * filtered out by the CGTP filter so none 14308 * of them would get through. So we keep 14309 * going with this one. 14310 */ 14311 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14312 if (ire->ire_rfq != NULL) { 14313 q = ire->ire_rfq; 14314 *qp = q; 14315 } 14316 } 14317 } 14318 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14319 /* 14320 * Verify that there are not more then one 14321 * IRE_BROADCAST with this broadcast address which 14322 * has ire_stq set. 14323 * TODO: simplify, loop over all IRE's 14324 */ 14325 ire_t *ire1; 14326 int num_stq = 0; 14327 mblk_t *mp1; 14328 14329 /* Find the first one with ire_stq set */ 14330 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14331 for (ire1 = ire; ire1 && 14332 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14333 ire1 = ire1->ire_next) 14334 ; 14335 if (ire1) { 14336 ire_refrele(ire); 14337 ire = ire1; 14338 IRE_REFHOLD(ire); 14339 } 14340 14341 /* Check if there are additional ones with stq set */ 14342 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14343 if (ire->ire_addr != ire1->ire_addr) 14344 break; 14345 if (ire1->ire_stq) { 14346 num_stq++; 14347 break; 14348 } 14349 } 14350 rw_exit(&ire->ire_bucket->irb_lock); 14351 if (num_stq == 1 && ire->ire_stq != NULL) { 14352 ip1dbg(("ip_rput_process_broadcast: directed " 14353 "broadcast to 0x%x\n", 14354 ntohl(ire->ire_addr))); 14355 mp1 = copymsg(mp); 14356 if (mp1) { 14357 switch (ipha->ipha_protocol) { 14358 case IPPROTO_UDP: 14359 ip_udp_input(q, mp1, ipha, ire, ill); 14360 break; 14361 default: 14362 ip_proto_input(q, mp1, ipha, ire, ill, 14363 B_FALSE); 14364 break; 14365 } 14366 } 14367 /* 14368 * Adjust ttl to 2 (1+1 - the forward engine 14369 * will decrement it by one. 14370 */ 14371 if (ip_csum_hdr(ipha)) { 14372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14373 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14374 freemsg(mp); 14375 ire_refrele(ire); 14376 return (NULL); 14377 } 14378 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14379 ipha->ipha_hdr_checksum = 0; 14380 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14381 ip_rput_process_forward(q, mp, ire, ipha, 14382 ill, ll_multicast); 14383 ire_refrele(ire); 14384 return (NULL); 14385 } 14386 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14387 ntohl(ire->ire_addr))); 14388 } 14389 14390 14391 /* Restore any hardware checksum flags */ 14392 DB_CKSUMFLAGS(mp) = hcksumflags; 14393 return (ire); 14394 } 14395 14396 /* ARGSUSED */ 14397 static boolean_t 14398 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14399 int *ll_multicast, ipaddr_t *dstp) 14400 { 14401 ip_stack_t *ipst = ill->ill_ipst; 14402 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14404 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14405 ntohs(ipha->ipha_length)); 14406 14407 /* 14408 * Forward packets only if we have joined the allmulti 14409 * group on this interface. 14410 */ 14411 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14412 int retval; 14413 14414 /* 14415 * Clear the indication that this may have hardware 14416 * checksum as we are not using it. 14417 */ 14418 DB_CKSUMFLAGS(mp) = 0; 14419 retval = ip_mforward(ill, ipha, mp); 14420 /* ip_mforward updates mib variables if needed */ 14421 /* clear b_prev - used by ip_mroute_decap */ 14422 mp->b_prev = NULL; 14423 14424 switch (retval) { 14425 case 0: 14426 /* 14427 * pkt is okay and arrived on phyint. 14428 * 14429 * If we are running as a multicast router 14430 * we need to see all IGMP and/or PIM packets. 14431 */ 14432 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14433 (ipha->ipha_protocol == IPPROTO_PIM)) { 14434 goto done; 14435 } 14436 break; 14437 case -1: 14438 /* pkt is mal-formed, toss it */ 14439 goto drop_pkt; 14440 case 1: 14441 /* pkt is okay and arrived on a tunnel */ 14442 /* 14443 * If we are running a multicast router 14444 * we need to see all igmp packets. 14445 */ 14446 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14447 *dstp = INADDR_BROADCAST; 14448 *ll_multicast = 1; 14449 return (B_FALSE); 14450 } 14451 14452 goto drop_pkt; 14453 } 14454 } 14455 14456 ILM_WALKER_HOLD(ill); 14457 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14458 /* 14459 * This might just be caused by the fact that 14460 * multiple IP Multicast addresses map to the same 14461 * link layer multicast - no need to increment counter! 14462 */ 14463 ILM_WALKER_RELE(ill); 14464 freemsg(mp); 14465 return (B_TRUE); 14466 } 14467 ILM_WALKER_RELE(ill); 14468 done: 14469 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14470 /* 14471 * This assumes the we deliver to all streams for multicast 14472 * and broadcast packets. 14473 */ 14474 *dstp = INADDR_BROADCAST; 14475 *ll_multicast = 1; 14476 return (B_FALSE); 14477 drop_pkt: 14478 ip2dbg(("ip_rput: drop pkt\n")); 14479 freemsg(mp); 14480 return (B_TRUE); 14481 } 14482 14483 /* 14484 * This function is used to both return an indication of whether or not 14485 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14486 * and in doing so, determine whether or not it is broadcast vs multicast. 14487 * For it to be a broadcast packet, we must have the appropriate mblk_t 14488 * hanging off the ill_t. If this is either not present or doesn't match 14489 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14490 * to be multicast. Thus NICs that have no broadcast address (or no 14491 * capability for one, such as point to point links) cannot return as 14492 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14493 * the return values simplifies the current use of the return value of this 14494 * function, which is to pass through the multicast/broadcast characteristic 14495 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14496 * changing the return value to some other symbol demands the appropriate 14497 * "translation" when hpe_flags is set prior to calling hook_run() for 14498 * packet events. 14499 */ 14500 int 14501 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14502 { 14503 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14504 mblk_t *bmp; 14505 14506 if (ind->dl_group_address) { 14507 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14508 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14509 MBLKL(mb) && 14510 (bmp = ill->ill_bcast_mp) != NULL) { 14511 dl_unitdata_req_t *dlur; 14512 uint8_t *bphys_addr; 14513 14514 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14515 if (ill->ill_sap_length < 0) 14516 bphys_addr = (uchar_t *)dlur + 14517 dlur->dl_dest_addr_offset; 14518 else 14519 bphys_addr = (uchar_t *)dlur + 14520 dlur->dl_dest_addr_offset + 14521 ill->ill_sap_length; 14522 14523 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14524 bphys_addr, ind->dl_dest_addr_length) == 0) { 14525 return (HPE_BROADCAST); 14526 } 14527 return (HPE_MULTICAST); 14528 } 14529 return (HPE_MULTICAST); 14530 } 14531 return (0); 14532 } 14533 14534 static boolean_t 14535 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14536 int *ll_multicast, mblk_t **mpp) 14537 { 14538 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14539 boolean_t must_copy = B_FALSE; 14540 struct iocblk *iocp; 14541 ipha_t *ipha; 14542 ip_stack_t *ipst = ill->ill_ipst; 14543 14544 #define rptr ((uchar_t *)ipha) 14545 14546 first_mp = *first_mpp; 14547 mp = *mpp; 14548 14549 ASSERT(first_mp == mp); 14550 14551 /* 14552 * if db_ref > 1 then copymsg and free original. Packet may be 14553 * changed and do not want other entity who has a reference to this 14554 * message to trip over the changes. This is a blind change because 14555 * trying to catch all places that might change packet is too 14556 * difficult (since it may be a module above this one) 14557 * 14558 * This corresponds to the non-fast path case. We walk down the full 14559 * chain in this case, and check the db_ref count of all the dblks, 14560 * and do a copymsg if required. It is possible that the db_ref counts 14561 * of the data blocks in the mblk chain can be different. 14562 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14563 * count of 1, followed by a M_DATA block with a ref count of 2, if 14564 * 'snoop' is running. 14565 */ 14566 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14567 if (mp1->b_datap->db_ref > 1) { 14568 must_copy = B_TRUE; 14569 break; 14570 } 14571 } 14572 14573 if (must_copy) { 14574 mp1 = copymsg(mp); 14575 if (mp1 == NULL) { 14576 for (mp1 = mp; mp1 != NULL; 14577 mp1 = mp1->b_cont) { 14578 mp1->b_next = NULL; 14579 mp1->b_prev = NULL; 14580 } 14581 freemsg(mp); 14582 if (ill != NULL) { 14583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14584 } else { 14585 BUMP_MIB(&ipst->ips_ip_mib, 14586 ipIfStatsInDiscards); 14587 } 14588 return (B_TRUE); 14589 } 14590 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14591 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14592 /* Copy b_prev - used by ip_mroute_decap */ 14593 to_mp->b_prev = from_mp->b_prev; 14594 from_mp->b_prev = NULL; 14595 } 14596 *first_mpp = first_mp = mp1; 14597 freemsg(mp); 14598 mp = mp1; 14599 *mpp = mp1; 14600 } 14601 14602 ipha = (ipha_t *)mp->b_rptr; 14603 14604 /* 14605 * previous code has a case for M_DATA. 14606 * We want to check how that happens. 14607 */ 14608 ASSERT(first_mp->b_datap->db_type != M_DATA); 14609 switch (first_mp->b_datap->db_type) { 14610 case M_PROTO: 14611 case M_PCPROTO: 14612 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14613 DL_UNITDATA_IND) { 14614 /* Go handle anything other than data elsewhere. */ 14615 ip_rput_dlpi(q, mp); 14616 return (B_TRUE); 14617 } 14618 14619 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14620 /* Ditch the DLPI header. */ 14621 mp1 = mp->b_cont; 14622 ASSERT(first_mp == mp); 14623 *first_mpp = mp1; 14624 freeb(mp); 14625 *mpp = mp1; 14626 return (B_FALSE); 14627 case M_IOCACK: 14628 ip1dbg(("got iocack ")); 14629 iocp = (struct iocblk *)mp->b_rptr; 14630 switch (iocp->ioc_cmd) { 14631 case DL_IOC_HDR_INFO: 14632 ill = (ill_t *)q->q_ptr; 14633 ill_fastpath_ack(ill, mp); 14634 return (B_TRUE); 14635 case SIOCSTUNPARAM: 14636 case OSIOCSTUNPARAM: 14637 /* Go through qwriter_ip */ 14638 break; 14639 case SIOCGTUNPARAM: 14640 case OSIOCGTUNPARAM: 14641 ip_rput_other(NULL, q, mp, NULL); 14642 return (B_TRUE); 14643 default: 14644 putnext(q, mp); 14645 return (B_TRUE); 14646 } 14647 /* FALLTHRU */ 14648 case M_ERROR: 14649 case M_HANGUP: 14650 /* 14651 * Since this is on the ill stream we unconditionally 14652 * bump up the refcount 14653 */ 14654 ill_refhold(ill); 14655 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14656 return (B_TRUE); 14657 case M_CTL: 14658 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14659 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14660 IPHADA_M_CTL)) { 14661 /* 14662 * It's an IPsec accelerated packet. 14663 * Make sure that the ill from which we received the 14664 * packet has enabled IPsec hardware acceleration. 14665 */ 14666 if (!(ill->ill_capabilities & 14667 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14668 /* IPsec kstats: bean counter */ 14669 freemsg(mp); 14670 return (B_TRUE); 14671 } 14672 14673 /* 14674 * Make mp point to the mblk following the M_CTL, 14675 * then process according to type of mp. 14676 * After this processing, first_mp will point to 14677 * the data-attributes and mp to the pkt following 14678 * the M_CTL. 14679 */ 14680 mp = first_mp->b_cont; 14681 if (mp == NULL) { 14682 freemsg(first_mp); 14683 return (B_TRUE); 14684 } 14685 /* 14686 * A Hardware Accelerated packet can only be M_DATA 14687 * ESP or AH packet. 14688 */ 14689 if (mp->b_datap->db_type != M_DATA) { 14690 /* non-M_DATA IPsec accelerated packet */ 14691 IPSECHW_DEBUG(IPSECHW_PKT, 14692 ("non-M_DATA IPsec accelerated pkt\n")); 14693 freemsg(first_mp); 14694 return (B_TRUE); 14695 } 14696 ipha = (ipha_t *)mp->b_rptr; 14697 if (ipha->ipha_protocol != IPPROTO_AH && 14698 ipha->ipha_protocol != IPPROTO_ESP) { 14699 IPSECHW_DEBUG(IPSECHW_PKT, 14700 ("non-M_DATA IPsec accelerated pkt\n")); 14701 freemsg(first_mp); 14702 return (B_TRUE); 14703 } 14704 *mpp = mp; 14705 return (B_FALSE); 14706 } 14707 putnext(q, mp); 14708 return (B_TRUE); 14709 case M_IOCNAK: 14710 ip1dbg(("got iocnak ")); 14711 iocp = (struct iocblk *)mp->b_rptr; 14712 switch (iocp->ioc_cmd) { 14713 case SIOCSTUNPARAM: 14714 case OSIOCSTUNPARAM: 14715 /* 14716 * Since this is on the ill stream we unconditionally 14717 * bump up the refcount 14718 */ 14719 ill_refhold(ill); 14720 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14721 return (B_TRUE); 14722 case DL_IOC_HDR_INFO: 14723 case SIOCGTUNPARAM: 14724 case OSIOCGTUNPARAM: 14725 ip_rput_other(NULL, q, mp, NULL); 14726 return (B_TRUE); 14727 default: 14728 break; 14729 } 14730 /* FALLTHRU */ 14731 default: 14732 putnext(q, mp); 14733 return (B_TRUE); 14734 } 14735 } 14736 14737 /* Read side put procedure. Packets coming from the wire arrive here. */ 14738 void 14739 ip_rput(queue_t *q, mblk_t *mp) 14740 { 14741 ill_t *ill; 14742 union DL_primitives *dl; 14743 14744 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14745 14746 ill = (ill_t *)q->q_ptr; 14747 14748 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14749 /* 14750 * If things are opening or closing, only accept high-priority 14751 * DLPI messages. (On open ill->ill_ipif has not yet been 14752 * created; on close, things hanging off the ill may have been 14753 * freed already.) 14754 */ 14755 dl = (union DL_primitives *)mp->b_rptr; 14756 if (DB_TYPE(mp) != M_PCPROTO || 14757 dl->dl_primitive == DL_UNITDATA_IND) { 14758 /* 14759 * SIOC[GS]TUNPARAM ioctls can come here. 14760 */ 14761 inet_freemsg(mp); 14762 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14763 "ip_rput_end: q %p (%S)", q, "uninit"); 14764 return; 14765 } 14766 } 14767 14768 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14769 "ip_rput_end: q %p (%S)", q, "end"); 14770 14771 ip_input(ill, NULL, mp, NULL); 14772 } 14773 14774 static mblk_t * 14775 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14776 { 14777 mblk_t *mp1; 14778 boolean_t adjusted = B_FALSE; 14779 ip_stack_t *ipst = ill->ill_ipst; 14780 14781 IP_STAT(ipst, ip_db_ref); 14782 /* 14783 * The IP_RECVSLLA option depends on having the 14784 * link layer header. First check that: 14785 * a> the underlying device is of type ether, 14786 * since this option is currently supported only 14787 * over ethernet. 14788 * b> there is enough room to copy over the link 14789 * layer header. 14790 * 14791 * Once the checks are done, adjust rptr so that 14792 * the link layer header will be copied via 14793 * copymsg. Note that, IFT_ETHER may be returned 14794 * by some non-ethernet drivers but in this case 14795 * the second check will fail. 14796 */ 14797 if (ill->ill_type == IFT_ETHER && 14798 (mp->b_rptr - mp->b_datap->db_base) >= 14799 sizeof (struct ether_header)) { 14800 mp->b_rptr -= sizeof (struct ether_header); 14801 adjusted = B_TRUE; 14802 } 14803 mp1 = copymsg(mp); 14804 14805 if (mp1 == NULL) { 14806 mp->b_next = NULL; 14807 /* clear b_prev - used by ip_mroute_decap */ 14808 mp->b_prev = NULL; 14809 freemsg(mp); 14810 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14811 return (NULL); 14812 } 14813 14814 if (adjusted) { 14815 /* 14816 * Copy is done. Restore the pointer in 14817 * the _new_ mblk 14818 */ 14819 mp1->b_rptr += sizeof (struct ether_header); 14820 } 14821 14822 /* Copy b_prev - used by ip_mroute_decap */ 14823 mp1->b_prev = mp->b_prev; 14824 mp->b_prev = NULL; 14825 14826 /* preserve the hardware checksum flags and data, if present */ 14827 if (DB_CKSUMFLAGS(mp) != 0) { 14828 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14829 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14830 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14831 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14832 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14833 } 14834 14835 freemsg(mp); 14836 return (mp1); 14837 } 14838 14839 /* 14840 * Direct read side procedure capable of dealing with chains. GLDv3 based 14841 * drivers call this function directly with mblk chains while STREAMS 14842 * read side procedure ip_rput() calls this for single packet with ip_ring 14843 * set to NULL to process one packet at a time. 14844 * 14845 * The ill will always be valid if this function is called directly from 14846 * the driver. 14847 * 14848 * If ip_input() is called from GLDv3: 14849 * 14850 * - This must be a non-VLAN IP stream. 14851 * - 'mp' is either an untagged or a special priority-tagged packet. 14852 * - Any VLAN tag that was in the MAC header has been stripped. 14853 * 14854 * If the IP header in packet is not 32-bit aligned, every message in the 14855 * chain will be aligned before further operations. This is required on SPARC 14856 * platform. 14857 */ 14858 /* ARGSUSED */ 14859 void 14860 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14861 struct mac_header_info_s *mhip) 14862 { 14863 ipaddr_t dst = NULL; 14864 ipaddr_t prev_dst; 14865 ire_t *ire = NULL; 14866 ipha_t *ipha; 14867 uint_t pkt_len; 14868 ssize_t len; 14869 uint_t opt_len; 14870 int ll_multicast; 14871 int cgtp_flt_pkt; 14872 queue_t *q = ill->ill_rq; 14873 squeue_t *curr_sqp = NULL; 14874 mblk_t *head = NULL; 14875 mblk_t *tail = NULL; 14876 mblk_t *first_mp; 14877 mblk_t *mp; 14878 mblk_t *dmp; 14879 int cnt = 0; 14880 ip_stack_t *ipst = ill->ill_ipst; 14881 14882 ASSERT(mp_chain != NULL); 14883 ASSERT(ill != NULL); 14884 14885 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14886 14887 #define rptr ((uchar_t *)ipha) 14888 14889 while (mp_chain != NULL) { 14890 first_mp = mp = mp_chain; 14891 mp_chain = mp_chain->b_next; 14892 mp->b_next = NULL; 14893 ll_multicast = 0; 14894 14895 /* 14896 * We do ire caching from one iteration to 14897 * another. In the event the packet chain contains 14898 * all packets from the same dst, this caching saves 14899 * an ire_cache_lookup for each of the succeeding 14900 * packets in a packet chain. 14901 */ 14902 prev_dst = dst; 14903 14904 /* 14905 * if db_ref > 1 then copymsg and free original. Packet 14906 * may be changed and we do not want the other entity 14907 * who has a reference to this message to trip over the 14908 * changes. This is a blind change because trying to 14909 * catch all places that might change the packet is too 14910 * difficult. 14911 * 14912 * This corresponds to the fast path case, where we have 14913 * a chain of M_DATA mblks. We check the db_ref count 14914 * of only the 1st data block in the mblk chain. There 14915 * doesn't seem to be a reason why a device driver would 14916 * send up data with varying db_ref counts in the mblk 14917 * chain. In any case the Fast path is a private 14918 * interface, and our drivers don't do such a thing. 14919 * Given the above assumption, there is no need to walk 14920 * down the entire mblk chain (which could have a 14921 * potential performance problem) 14922 */ 14923 14924 if (DB_REF(mp) > 1) { 14925 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14926 continue; 14927 } 14928 14929 /* 14930 * Check and align the IP header. 14931 */ 14932 first_mp = mp; 14933 if (DB_TYPE(mp) == M_DATA) { 14934 dmp = mp; 14935 } else if (DB_TYPE(mp) == M_PROTO && 14936 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14937 dmp = mp->b_cont; 14938 } else { 14939 dmp = NULL; 14940 } 14941 if (dmp != NULL) { 14942 /* 14943 * IP header ptr not aligned? 14944 * OR IP header not complete in first mblk 14945 */ 14946 if (!OK_32PTR(dmp->b_rptr) || 14947 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14948 if (!ip_check_and_align_header(q, dmp, ipst)) 14949 continue; 14950 } 14951 } 14952 14953 /* 14954 * ip_input fast path 14955 */ 14956 14957 /* mblk type is not M_DATA */ 14958 if (DB_TYPE(mp) != M_DATA) { 14959 if (ip_rput_process_notdata(q, &first_mp, ill, 14960 &ll_multicast, &mp)) 14961 continue; 14962 14963 /* 14964 * The only way we can get here is if we had a 14965 * packet that was either a DL_UNITDATA_IND or 14966 * an M_CTL for an IPsec accelerated packet. 14967 * 14968 * In either case, the first_mp will point to 14969 * the leading M_PROTO or M_CTL. 14970 */ 14971 ASSERT(first_mp != NULL); 14972 } else if (mhip != NULL) { 14973 /* 14974 * ll_multicast is set here so that it is ready 14975 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14976 * manipulates ll_multicast in the same fashion when 14977 * called from ip_rput_process_notdata. 14978 */ 14979 switch (mhip->mhi_dsttype) { 14980 case MAC_ADDRTYPE_MULTICAST : 14981 ll_multicast = HPE_MULTICAST; 14982 break; 14983 case MAC_ADDRTYPE_BROADCAST : 14984 ll_multicast = HPE_BROADCAST; 14985 break; 14986 default : 14987 break; 14988 } 14989 } 14990 14991 /* Make sure its an M_DATA and that its aligned */ 14992 ASSERT(DB_TYPE(mp) == M_DATA); 14993 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14994 14995 ipha = (ipha_t *)mp->b_rptr; 14996 len = mp->b_wptr - rptr; 14997 pkt_len = ntohs(ipha->ipha_length); 14998 14999 /* 15000 * We must count all incoming packets, even if they end 15001 * up being dropped later on. 15002 */ 15003 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15004 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15005 15006 /* multiple mblk or too short */ 15007 len -= pkt_len; 15008 if (len != 0) { 15009 /* 15010 * Make sure we have data length consistent 15011 * with the IP header. 15012 */ 15013 if (mp->b_cont == NULL) { 15014 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15015 BUMP_MIB(ill->ill_ip_mib, 15016 ipIfStatsInHdrErrors); 15017 ip2dbg(("ip_input: drop pkt\n")); 15018 freemsg(mp); 15019 continue; 15020 } 15021 mp->b_wptr = rptr + pkt_len; 15022 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15023 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15024 BUMP_MIB(ill->ill_ip_mib, 15025 ipIfStatsInHdrErrors); 15026 ip2dbg(("ip_input: drop pkt\n")); 15027 freemsg(mp); 15028 continue; 15029 } 15030 (void) adjmsg(mp, -len); 15031 IP_STAT(ipst, ip_multimblk3); 15032 } 15033 } 15034 15035 /* Obtain the dst of the current packet */ 15036 dst = ipha->ipha_dst; 15037 15038 /* 15039 * The following test for loopback is faster than 15040 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15041 * operations. 15042 * Note that these addresses are always in network byte order 15043 */ 15044 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15045 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15047 freemsg(mp); 15048 continue; 15049 } 15050 15051 /* 15052 * The event for packets being received from a 'physical' 15053 * interface is placed after validation of the source and/or 15054 * destination address as being local so that packets can be 15055 * redirected to loopback addresses using ipnat. 15056 */ 15057 DTRACE_PROBE4(ip4__physical__in__start, 15058 ill_t *, ill, ill_t *, NULL, 15059 ipha_t *, ipha, mblk_t *, first_mp); 15060 15061 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15062 ipst->ips_ipv4firewall_physical_in, 15063 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15064 15065 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15066 15067 if (first_mp == NULL) { 15068 continue; 15069 } 15070 dst = ipha->ipha_dst; 15071 15072 /* 15073 * Attach any necessary label information to 15074 * this packet 15075 */ 15076 if (is_system_labeled() && 15077 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15079 freemsg(mp); 15080 continue; 15081 } 15082 15083 /* 15084 * Reuse the cached ire only if the ipha_dst of the previous 15085 * packet is the same as the current packet AND it is not 15086 * INADDR_ANY. 15087 */ 15088 if (!(dst == prev_dst && dst != INADDR_ANY) && 15089 (ire != NULL)) { 15090 ire_refrele(ire); 15091 ire = NULL; 15092 } 15093 opt_len = ipha->ipha_version_and_hdr_length - 15094 IP_SIMPLE_HDR_VERSION; 15095 15096 /* 15097 * Check to see if we can take the fastpath. 15098 * That is possible if the following conditions are met 15099 * o Tsol disabled 15100 * o CGTP disabled 15101 * o ipp_action_count is 0 15102 * o no options in the packet 15103 * o not a RSVP packet 15104 * o not a multicast packet 15105 * o ill not in IP_DHCPINIT_IF mode 15106 */ 15107 if (!is_system_labeled() && 15108 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15109 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15110 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15111 if (ire == NULL) 15112 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15113 ipst); 15114 15115 /* incoming packet is for forwarding */ 15116 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15117 ire = ip_fast_forward(ire, dst, ill, mp); 15118 continue; 15119 } 15120 /* incoming packet is for local consumption */ 15121 if (ire->ire_type & IRE_LOCAL) 15122 goto local; 15123 } 15124 15125 /* 15126 * Disable ire caching for anything more complex 15127 * than the simple fast path case we checked for above. 15128 */ 15129 if (ire != NULL) { 15130 ire_refrele(ire); 15131 ire = NULL; 15132 } 15133 15134 /* 15135 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15136 * server to unicast DHCP packets to a DHCP client using the 15137 * IP address it is offering to the client. This can be 15138 * disabled through the "broadcast bit", but not all DHCP 15139 * servers honor that bit. Therefore, to interoperate with as 15140 * many DHCP servers as possible, the DHCP client allows the 15141 * server to unicast, but we treat those packets as broadcast 15142 * here. Note that we don't rewrite the packet itself since 15143 * (a) that would mess up the checksums and (b) the DHCP 15144 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15145 * hand it the packet regardless. 15146 */ 15147 if (ill->ill_dhcpinit != 0 && 15148 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15149 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15150 udpha_t *udpha; 15151 15152 /* 15153 * Reload ipha since pullupmsg() can change b_rptr. 15154 */ 15155 ipha = (ipha_t *)mp->b_rptr; 15156 udpha = (udpha_t *)&ipha[1]; 15157 15158 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15159 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15160 mblk_t *, mp); 15161 dst = INADDR_BROADCAST; 15162 } 15163 } 15164 15165 /* Full-blown slow path */ 15166 if (opt_len != 0) { 15167 if (len != 0) 15168 IP_STAT(ipst, ip_multimblk4); 15169 else 15170 IP_STAT(ipst, ip_ipoptions); 15171 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15172 &dst, ipst)) 15173 continue; 15174 } 15175 15176 /* 15177 * Invoke the CGTP (multirouting) filtering module to process 15178 * the incoming packet. Packets identified as duplicates 15179 * must be discarded. Filtering is active only if the 15180 * the ip_cgtp_filter ndd variable is non-zero. 15181 */ 15182 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15183 if (ipst->ips_ip_cgtp_filter && 15184 ipst->ips_ip_cgtp_filter_ops != NULL) { 15185 netstackid_t stackid; 15186 15187 stackid = ipst->ips_netstack->netstack_stackid; 15188 cgtp_flt_pkt = 15189 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15190 ill->ill_phyint->phyint_ifindex, mp); 15191 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15192 freemsg(first_mp); 15193 continue; 15194 } 15195 } 15196 15197 /* 15198 * If rsvpd is running, let RSVP daemon handle its processing 15199 * and forwarding of RSVP multicast/unicast packets. 15200 * If rsvpd is not running but mrouted is running, RSVP 15201 * multicast packets are forwarded as multicast traffic 15202 * and RSVP unicast packets are forwarded by unicast router. 15203 * If neither rsvpd nor mrouted is running, RSVP multicast 15204 * packets are not forwarded, but the unicast packets are 15205 * forwarded like unicast traffic. 15206 */ 15207 if (ipha->ipha_protocol == IPPROTO_RSVP && 15208 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15209 NULL) { 15210 /* RSVP packet and rsvpd running. Treat as ours */ 15211 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15212 /* 15213 * This assumes that we deliver to all streams for 15214 * multicast and broadcast packets. 15215 * We have to force ll_multicast to 1 to handle the 15216 * M_DATA messages passed in from ip_mroute_decap. 15217 */ 15218 dst = INADDR_BROADCAST; 15219 ll_multicast = 1; 15220 } else if (CLASSD(dst)) { 15221 /* packet is multicast */ 15222 mp->b_next = NULL; 15223 if (ip_rput_process_multicast(q, mp, ill, ipha, 15224 &ll_multicast, &dst)) 15225 continue; 15226 } 15227 15228 if (ire == NULL) { 15229 ire = ire_cache_lookup(dst, ALL_ZONES, 15230 MBLK_GETLABEL(mp), ipst); 15231 } 15232 15233 if (ire == NULL) { 15234 /* 15235 * No IRE for this destination, so it can't be for us. 15236 * Unless we are forwarding, drop the packet. 15237 * We have to let source routed packets through 15238 * since we don't yet know if they are 'ping -l' 15239 * packets i.e. if they will go out over the 15240 * same interface as they came in on. 15241 */ 15242 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15243 if (ire == NULL) 15244 continue; 15245 } 15246 15247 /* 15248 * Broadcast IRE may indicate either broadcast or 15249 * multicast packet 15250 */ 15251 if (ire->ire_type == IRE_BROADCAST) { 15252 /* 15253 * Skip broadcast checks if packet is UDP multicast; 15254 * we'd rather not enter ip_rput_process_broadcast() 15255 * unless the packet is broadcast for real, since 15256 * that routine is a no-op for multicast. 15257 */ 15258 if (ipha->ipha_protocol != IPPROTO_UDP || 15259 !CLASSD(ipha->ipha_dst)) { 15260 ire = ip_rput_process_broadcast(&q, mp, 15261 ire, ipha, ill, dst, cgtp_flt_pkt, 15262 ll_multicast); 15263 if (ire == NULL) 15264 continue; 15265 } 15266 } else if (ire->ire_stq != NULL) { 15267 /* fowarding? */ 15268 ip_rput_process_forward(q, mp, ire, ipha, ill, 15269 ll_multicast); 15270 /* ip_rput_process_forward consumed the packet */ 15271 continue; 15272 } 15273 15274 local: 15275 /* 15276 * If the queue in the ire is different to the ingress queue 15277 * then we need to check to see if we can accept the packet. 15278 * Note that for multicast packets and broadcast packets sent 15279 * to a broadcast address which is shared between multiple 15280 * interfaces we should not do this since we just got a random 15281 * broadcast ire. 15282 */ 15283 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15284 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15285 ill)) == NULL) { 15286 /* Drop packet */ 15287 BUMP_MIB(ill->ill_ip_mib, 15288 ipIfStatsForwProhibits); 15289 freemsg(mp); 15290 continue; 15291 } 15292 if (ire->ire_rfq != NULL) 15293 q = ire->ire_rfq; 15294 } 15295 15296 switch (ipha->ipha_protocol) { 15297 case IPPROTO_TCP: 15298 ASSERT(first_mp == mp); 15299 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15300 mp, 0, q, ip_ring)) != NULL) { 15301 if (curr_sqp == NULL) { 15302 curr_sqp = GET_SQUEUE(mp); 15303 ASSERT(cnt == 0); 15304 cnt++; 15305 head = tail = mp; 15306 } else if (curr_sqp == GET_SQUEUE(mp)) { 15307 ASSERT(tail != NULL); 15308 cnt++; 15309 tail->b_next = mp; 15310 tail = mp; 15311 } else { 15312 /* 15313 * A different squeue. Send the 15314 * chain for the previous squeue on 15315 * its way. This shouldn't happen 15316 * often unless interrupt binding 15317 * changes. 15318 */ 15319 IP_STAT(ipst, ip_input_multi_squeue); 15320 squeue_enter_chain(curr_sqp, head, 15321 tail, cnt, SQTAG_IP_INPUT); 15322 curr_sqp = GET_SQUEUE(mp); 15323 head = mp; 15324 tail = mp; 15325 cnt = 1; 15326 } 15327 } 15328 continue; 15329 case IPPROTO_UDP: 15330 ASSERT(first_mp == mp); 15331 ip_udp_input(q, mp, ipha, ire, ill); 15332 continue; 15333 case IPPROTO_SCTP: 15334 ASSERT(first_mp == mp); 15335 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15336 q, dst); 15337 /* ire has been released by ip_sctp_input */ 15338 ire = NULL; 15339 continue; 15340 default: 15341 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15342 continue; 15343 } 15344 } 15345 15346 if (ire != NULL) 15347 ire_refrele(ire); 15348 15349 if (head != NULL) 15350 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15351 15352 /* 15353 * This code is there just to make netperf/ttcp look good. 15354 * 15355 * Its possible that after being in polling mode (and having cleared 15356 * the backlog), squeues have turned the interrupt frequency higher 15357 * to improve latency at the expense of more CPU utilization (less 15358 * packets per interrupts or more number of interrupts). Workloads 15359 * like ttcp/netperf do manage to tickle polling once in a while 15360 * but for the remaining time, stay in higher interrupt mode since 15361 * their packet arrival rate is pretty uniform and this shows up 15362 * as higher CPU utilization. Since people care about CPU utilization 15363 * while running netperf/ttcp, turn the interrupt frequency back to 15364 * normal/default if polling has not been used in ip_poll_normal_ticks. 15365 */ 15366 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15367 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15368 ip_ring->rr_poll_state &= ~ILL_POLLING; 15369 ip_ring->rr_blank(ip_ring->rr_handle, 15370 ip_ring->rr_normal_blank_time, 15371 ip_ring->rr_normal_pkt_cnt); 15372 } 15373 } 15374 15375 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15376 "ip_input_end: q %p (%S)", q, "end"); 15377 #undef rptr 15378 } 15379 15380 static void 15381 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15382 t_uscalar_t err) 15383 { 15384 if (dl_err == DL_SYSERR) { 15385 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15386 "%s: %s failed: DL_SYSERR (errno %u)\n", 15387 ill->ill_name, dl_primstr(prim), err); 15388 return; 15389 } 15390 15391 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15392 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15393 dl_errstr(dl_err)); 15394 } 15395 15396 /* 15397 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15398 * than DL_UNITDATA_IND messages. If we need to process this message 15399 * exclusively, we call qwriter_ip, in which case we also need to call 15400 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15401 */ 15402 void 15403 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15404 { 15405 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15406 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15407 ill_t *ill = (ill_t *)q->q_ptr; 15408 boolean_t pending; 15409 15410 ip1dbg(("ip_rput_dlpi")); 15411 if (dloa->dl_primitive == DL_ERROR_ACK) { 15412 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15413 "%s (0x%x), unix %u\n", ill->ill_name, 15414 dl_primstr(dlea->dl_error_primitive), 15415 dlea->dl_error_primitive, 15416 dl_errstr(dlea->dl_errno), 15417 dlea->dl_errno, 15418 dlea->dl_unix_errno)); 15419 } 15420 15421 /* 15422 * If we received an ACK but didn't send a request for it, then it 15423 * can't be part of any pending operation; discard up-front. 15424 */ 15425 switch (dloa->dl_primitive) { 15426 case DL_NOTIFY_IND: 15427 pending = B_TRUE; 15428 break; 15429 case DL_ERROR_ACK: 15430 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15431 break; 15432 case DL_OK_ACK: 15433 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15434 break; 15435 case DL_INFO_ACK: 15436 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15437 break; 15438 case DL_BIND_ACK: 15439 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15440 break; 15441 case DL_PHYS_ADDR_ACK: 15442 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15443 break; 15444 case DL_NOTIFY_ACK: 15445 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15446 break; 15447 case DL_CONTROL_ACK: 15448 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15449 break; 15450 case DL_CAPABILITY_ACK: 15451 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15452 break; 15453 default: 15454 /* Not a DLPI message we support or were expecting */ 15455 freemsg(mp); 15456 return; 15457 } 15458 15459 if (!pending) { 15460 freemsg(mp); 15461 return; 15462 } 15463 15464 switch (dloa->dl_primitive) { 15465 case DL_ERROR_ACK: 15466 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15467 mutex_enter(&ill->ill_lock); 15468 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15469 cv_signal(&ill->ill_cv); 15470 mutex_exit(&ill->ill_lock); 15471 } 15472 break; 15473 15474 case DL_OK_ACK: 15475 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15476 dl_primstr((int)dloa->dl_correct_primitive))); 15477 switch (dloa->dl_correct_primitive) { 15478 case DL_UNBIND_REQ: 15479 mutex_enter(&ill->ill_lock); 15480 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15481 cv_signal(&ill->ill_cv); 15482 mutex_exit(&ill->ill_lock); 15483 break; 15484 15485 case DL_ENABMULTI_REQ: 15486 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15487 ill->ill_dlpi_multicast_state = IDS_OK; 15488 break; 15489 } 15490 break; 15491 default: 15492 break; 15493 } 15494 15495 /* 15496 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15497 * and we need to become writer to continue to process it. If it's not 15498 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15499 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15500 * some work as part of the current exclusive operation that actually 15501 * is not part of it -- which is wrong, but better than the 15502 * alternative of deadlock (if NEW_OP is always used). Someday, we 15503 * should track which DLPI requests have ACKs that we wait on 15504 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15505 * 15506 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15507 * Since this is on the ill stream we unconditionally bump up the 15508 * refcount without doing ILL_CAN_LOOKUP(). 15509 */ 15510 ill_refhold(ill); 15511 if (dloa->dl_primitive == DL_NOTIFY_IND) 15512 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15513 else 15514 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15515 } 15516 15517 /* 15518 * Handling of DLPI messages that require exclusive access to the ipsq. 15519 * 15520 * Need to do ill_pending_mp_release on ioctl completion, which could 15521 * happen here. (along with mi_copy_done) 15522 */ 15523 /* ARGSUSED */ 15524 static void 15525 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15526 { 15527 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15528 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15529 int err = 0; 15530 ill_t *ill; 15531 ipif_t *ipif = NULL; 15532 mblk_t *mp1 = NULL; 15533 conn_t *connp = NULL; 15534 t_uscalar_t paddrreq; 15535 mblk_t *mp_hw; 15536 boolean_t success; 15537 boolean_t ioctl_aborted = B_FALSE; 15538 boolean_t log = B_TRUE; 15539 hook_nic_event_t *info; 15540 ip_stack_t *ipst; 15541 15542 ip1dbg(("ip_rput_dlpi_writer ..")); 15543 ill = (ill_t *)q->q_ptr; 15544 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15545 15546 ASSERT(IAM_WRITER_ILL(ill)); 15547 15548 ipst = ill->ill_ipst; 15549 15550 /* 15551 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15552 * both are null or non-null. However we can assert that only 15553 * after grabbing the ipsq_lock. So we don't make any assertion 15554 * here and in other places in the code. 15555 */ 15556 ipif = ipsq->ipsq_pending_ipif; 15557 /* 15558 * The current ioctl could have been aborted by the user and a new 15559 * ioctl to bring up another ill could have started. We could still 15560 * get a response from the driver later. 15561 */ 15562 if (ipif != NULL && ipif->ipif_ill != ill) 15563 ioctl_aborted = B_TRUE; 15564 15565 switch (dloa->dl_primitive) { 15566 case DL_ERROR_ACK: 15567 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15568 dl_primstr(dlea->dl_error_primitive))); 15569 15570 switch (dlea->dl_error_primitive) { 15571 case DL_PROMISCON_REQ: 15572 case DL_PROMISCOFF_REQ: 15573 case DL_DISABMULTI_REQ: 15574 case DL_UNBIND_REQ: 15575 case DL_ATTACH_REQ: 15576 case DL_INFO_REQ: 15577 ill_dlpi_done(ill, dlea->dl_error_primitive); 15578 break; 15579 case DL_NOTIFY_REQ: 15580 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15581 log = B_FALSE; 15582 break; 15583 case DL_PHYS_ADDR_REQ: 15584 /* 15585 * For IPv6 only, there are two additional 15586 * phys_addr_req's sent to the driver to get the 15587 * IPv6 token and lla. This allows IP to acquire 15588 * the hardware address format for a given interface 15589 * without having built in knowledge of the hardware 15590 * address. ill_phys_addr_pend keeps track of the last 15591 * DL_PAR sent so we know which response we are 15592 * dealing with. ill_dlpi_done will update 15593 * ill_phys_addr_pend when it sends the next req. 15594 * We don't complete the IOCTL until all three DL_PARs 15595 * have been attempted, so set *_len to 0 and break. 15596 */ 15597 paddrreq = ill->ill_phys_addr_pend; 15598 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15599 if (paddrreq == DL_IPV6_TOKEN) { 15600 ill->ill_token_length = 0; 15601 log = B_FALSE; 15602 break; 15603 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15604 ill->ill_nd_lla_len = 0; 15605 log = B_FALSE; 15606 break; 15607 } 15608 /* 15609 * Something went wrong with the DL_PHYS_ADDR_REQ. 15610 * We presumably have an IOCTL hanging out waiting 15611 * for completion. Find it and complete the IOCTL 15612 * with the error noted. 15613 * However, ill_dl_phys was called on an ill queue 15614 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15615 * set. But the ioctl is known to be pending on ill_wq. 15616 */ 15617 if (!ill->ill_ifname_pending) 15618 break; 15619 ill->ill_ifname_pending = 0; 15620 if (!ioctl_aborted) 15621 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15622 if (mp1 != NULL) { 15623 /* 15624 * This operation (SIOCSLIFNAME) must have 15625 * happened on the ill. Assert there is no conn 15626 */ 15627 ASSERT(connp == NULL); 15628 q = ill->ill_wq; 15629 } 15630 break; 15631 case DL_BIND_REQ: 15632 ill_dlpi_done(ill, DL_BIND_REQ); 15633 if (ill->ill_ifname_pending) 15634 break; 15635 /* 15636 * Something went wrong with the bind. We presumably 15637 * have an IOCTL hanging out waiting for completion. 15638 * Find it, take down the interface that was coming 15639 * up, and complete the IOCTL with the error noted. 15640 */ 15641 if (!ioctl_aborted) 15642 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15643 if (mp1 != NULL) { 15644 /* 15645 * This operation (SIOCSLIFFLAGS) must have 15646 * happened from a conn. 15647 */ 15648 ASSERT(connp != NULL); 15649 q = CONNP_TO_WQ(connp); 15650 if (ill->ill_move_in_progress) { 15651 ILL_CLEAR_MOVE(ill); 15652 } 15653 (void) ipif_down(ipif, NULL, NULL); 15654 /* error is set below the switch */ 15655 } 15656 break; 15657 case DL_ENABMULTI_REQ: 15658 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15659 15660 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15661 ill->ill_dlpi_multicast_state = IDS_FAILED; 15662 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15663 ipif_t *ipif; 15664 15665 printf("ip: joining multicasts failed (%d)" 15666 " on %s - will use link layer " 15667 "broadcasts for multicast\n", 15668 dlea->dl_errno, ill->ill_name); 15669 15670 /* 15671 * Set up the multicast mapping alone. 15672 * writer, so ok to access ill->ill_ipif 15673 * without any lock. 15674 */ 15675 ipif = ill->ill_ipif; 15676 mutex_enter(&ill->ill_phyint->phyint_lock); 15677 ill->ill_phyint->phyint_flags |= 15678 PHYI_MULTI_BCAST; 15679 mutex_exit(&ill->ill_phyint->phyint_lock); 15680 15681 if (!ill->ill_isv6) { 15682 (void) ipif_arp_setup_multicast(ipif, 15683 NULL); 15684 } else { 15685 (void) ipif_ndp_setup_multicast(ipif, 15686 NULL); 15687 } 15688 } 15689 freemsg(mp); /* Don't want to pass this up */ 15690 return; 15691 15692 case DL_CAPABILITY_REQ: 15693 case DL_CONTROL_REQ: 15694 ill_dlpi_done(ill, dlea->dl_error_primitive); 15695 ill->ill_dlpi_capab_state = IDS_FAILED; 15696 freemsg(mp); 15697 return; 15698 } 15699 /* 15700 * Note the error for IOCTL completion (mp1 is set when 15701 * ready to complete ioctl). If ill_ifname_pending_err is 15702 * set, an error occured during plumbing (ill_ifname_pending), 15703 * so we want to report that error. 15704 * 15705 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15706 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15707 * expected to get errack'd if the driver doesn't support 15708 * these flags (e.g. ethernet). log will be set to B_FALSE 15709 * if these error conditions are encountered. 15710 */ 15711 if (mp1 != NULL) { 15712 if (ill->ill_ifname_pending_err != 0) { 15713 err = ill->ill_ifname_pending_err; 15714 ill->ill_ifname_pending_err = 0; 15715 } else { 15716 err = dlea->dl_unix_errno ? 15717 dlea->dl_unix_errno : ENXIO; 15718 } 15719 /* 15720 * If we're plumbing an interface and an error hasn't already 15721 * been saved, set ill_ifname_pending_err to the error passed 15722 * up. Ignore the error if log is B_FALSE (see comment above). 15723 */ 15724 } else if (log && ill->ill_ifname_pending && 15725 ill->ill_ifname_pending_err == 0) { 15726 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15727 dlea->dl_unix_errno : ENXIO; 15728 } 15729 15730 if (log) 15731 ip_dlpi_error(ill, dlea->dl_error_primitive, 15732 dlea->dl_errno, dlea->dl_unix_errno); 15733 break; 15734 case DL_CAPABILITY_ACK: 15735 /* Call a routine to handle this one. */ 15736 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15737 ill_capability_ack(ill, mp); 15738 15739 /* 15740 * If the ack is due to renegotiation, we will need to send 15741 * a new CAPABILITY_REQ to start the renegotiation. 15742 */ 15743 if (ill->ill_capab_reneg) { 15744 ill->ill_capab_reneg = B_FALSE; 15745 ill_capability_probe(ill); 15746 } 15747 break; 15748 case DL_CONTROL_ACK: 15749 /* We treat all of these as "fire and forget" */ 15750 ill_dlpi_done(ill, DL_CONTROL_REQ); 15751 break; 15752 case DL_INFO_ACK: 15753 /* Call a routine to handle this one. */ 15754 ill_dlpi_done(ill, DL_INFO_REQ); 15755 ip_ll_subnet_defaults(ill, mp); 15756 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15757 return; 15758 case DL_BIND_ACK: 15759 /* 15760 * We should have an IOCTL waiting on this unless 15761 * sent by ill_dl_phys, in which case just return 15762 */ 15763 ill_dlpi_done(ill, DL_BIND_REQ); 15764 if (ill->ill_ifname_pending) 15765 break; 15766 15767 if (!ioctl_aborted) 15768 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15769 if (mp1 == NULL) 15770 break; 15771 /* 15772 * Because mp1 was added by ill_dl_up(), and it always 15773 * passes a valid connp, connp must be valid here. 15774 */ 15775 ASSERT(connp != NULL); 15776 q = CONNP_TO_WQ(connp); 15777 15778 /* 15779 * We are exclusive. So nothing can change even after 15780 * we get the pending mp. If need be we can put it back 15781 * and restart, as in calling ipif_arp_up() below. 15782 */ 15783 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15784 15785 mutex_enter(&ill->ill_lock); 15786 15787 ill->ill_dl_up = 1; 15788 15789 if ((info = ill->ill_nic_event_info) != NULL) { 15790 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15791 "attached for %s\n", info->hne_event, 15792 ill->ill_name)); 15793 if (info->hne_data != NULL) 15794 kmem_free(info->hne_data, info->hne_datalen); 15795 kmem_free(info, sizeof (hook_nic_event_t)); 15796 } 15797 15798 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15799 if (info != NULL) { 15800 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15801 info->hne_lif = 0; 15802 info->hne_event = NE_UP; 15803 info->hne_data = NULL; 15804 info->hne_datalen = 0; 15805 info->hne_family = ill->ill_isv6 ? 15806 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15807 } else 15808 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15809 "event information for %s (ENOMEM)\n", 15810 ill->ill_name)); 15811 15812 ill->ill_nic_event_info = info; 15813 15814 mutex_exit(&ill->ill_lock); 15815 15816 /* 15817 * Now bring up the resolver; when that is complete, we'll 15818 * create IREs. Note that we intentionally mirror what 15819 * ipif_up() would have done, because we got here by way of 15820 * ill_dl_up(), which stopped ipif_up()'s processing. 15821 */ 15822 if (ill->ill_isv6) { 15823 /* 15824 * v6 interfaces. 15825 * Unlike ARP which has to do another bind 15826 * and attach, once we get here we are 15827 * done with NDP. Except in the case of 15828 * ILLF_XRESOLV, in which case we send an 15829 * AR_INTERFACE_UP to the external resolver. 15830 * If all goes well, the ioctl will complete 15831 * in ip_rput(). If there's an error, we 15832 * complete it here. 15833 */ 15834 if ((err = ipif_ndp_up(ipif)) == 0) { 15835 if (ill->ill_flags & ILLF_XRESOLV) { 15836 mutex_enter(&connp->conn_lock); 15837 mutex_enter(&ill->ill_lock); 15838 success = ipsq_pending_mp_add( 15839 connp, ipif, q, mp1, 0); 15840 mutex_exit(&ill->ill_lock); 15841 mutex_exit(&connp->conn_lock); 15842 if (success) { 15843 err = ipif_resolver_up(ipif, 15844 Res_act_initial); 15845 if (err == EINPROGRESS) { 15846 freemsg(mp); 15847 return; 15848 } 15849 ASSERT(err != 0); 15850 mp1 = ipsq_pending_mp_get(ipsq, 15851 &connp); 15852 ASSERT(mp1 != NULL); 15853 } else { 15854 /* conn has started closing */ 15855 err = EINTR; 15856 } 15857 } else { /* Non XRESOLV interface */ 15858 (void) ipif_resolver_up(ipif, 15859 Res_act_initial); 15860 err = ipif_up_done_v6(ipif); 15861 } 15862 } 15863 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15864 /* 15865 * ARP and other v4 external resolvers. 15866 * Leave the pending mblk intact so that 15867 * the ioctl completes in ip_rput(). 15868 */ 15869 mutex_enter(&connp->conn_lock); 15870 mutex_enter(&ill->ill_lock); 15871 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15872 mutex_exit(&ill->ill_lock); 15873 mutex_exit(&connp->conn_lock); 15874 if (success) { 15875 err = ipif_resolver_up(ipif, Res_act_initial); 15876 if (err == EINPROGRESS) { 15877 freemsg(mp); 15878 return; 15879 } 15880 ASSERT(err != 0); 15881 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15882 } else { 15883 /* The conn has started closing */ 15884 err = EINTR; 15885 } 15886 } else { 15887 /* 15888 * This one is complete. Reply to pending ioctl. 15889 */ 15890 (void) ipif_resolver_up(ipif, Res_act_initial); 15891 err = ipif_up_done(ipif); 15892 } 15893 15894 if ((err == 0) && (ill->ill_up_ipifs)) { 15895 err = ill_up_ipifs(ill, q, mp1); 15896 if (err == EINPROGRESS) { 15897 freemsg(mp); 15898 return; 15899 } 15900 } 15901 15902 if (ill->ill_up_ipifs) { 15903 ill_group_cleanup(ill); 15904 } 15905 15906 break; 15907 case DL_NOTIFY_IND: { 15908 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15909 ire_t *ire; 15910 boolean_t need_ire_walk_v4 = B_FALSE; 15911 boolean_t need_ire_walk_v6 = B_FALSE; 15912 15913 switch (notify->dl_notification) { 15914 case DL_NOTE_PHYS_ADDR: 15915 err = ill_set_phys_addr(ill, mp); 15916 break; 15917 15918 case DL_NOTE_FASTPATH_FLUSH: 15919 ill_fastpath_flush(ill); 15920 break; 15921 15922 case DL_NOTE_SDU_SIZE: 15923 /* 15924 * Change the MTU size of the interface, of all 15925 * attached ipif's, and of all relevant ire's. The 15926 * new value's a uint32_t at notify->dl_data. 15927 * Mtu change Vs. new ire creation - protocol below. 15928 * 15929 * a Mark the ipif as IPIF_CHANGING. 15930 * b Set the new mtu in the ipif. 15931 * c Change the ire_max_frag on all affected ires 15932 * d Unmark the IPIF_CHANGING 15933 * 15934 * To see how the protocol works, assume an interface 15935 * route is also being added simultaneously by 15936 * ip_rt_add and let 'ipif' be the ipif referenced by 15937 * the ire. If the ire is created before step a, 15938 * it will be cleaned up by step c. If the ire is 15939 * created after step d, it will see the new value of 15940 * ipif_mtu. Any attempt to create the ire between 15941 * steps a to d will fail because of the IPIF_CHANGING 15942 * flag. Note that ire_create() is passed a pointer to 15943 * the ipif_mtu, and not the value. During ire_add 15944 * under the bucket lock, the ire_max_frag of the 15945 * new ire being created is set from the ipif/ire from 15946 * which it is being derived. 15947 */ 15948 mutex_enter(&ill->ill_lock); 15949 ill->ill_max_frag = (uint_t)notify->dl_data; 15950 15951 /* 15952 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15953 * leave it alone 15954 */ 15955 if (ill->ill_mtu_userspecified) { 15956 mutex_exit(&ill->ill_lock); 15957 break; 15958 } 15959 ill->ill_max_mtu = ill->ill_max_frag; 15960 if (ill->ill_isv6) { 15961 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15962 ill->ill_max_mtu = IPV6_MIN_MTU; 15963 } else { 15964 if (ill->ill_max_mtu < IP_MIN_MTU) 15965 ill->ill_max_mtu = IP_MIN_MTU; 15966 } 15967 for (ipif = ill->ill_ipif; ipif != NULL; 15968 ipif = ipif->ipif_next) { 15969 /* 15970 * Don't override the mtu if the user 15971 * has explicitly set it. 15972 */ 15973 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15974 continue; 15975 ipif->ipif_mtu = (uint_t)notify->dl_data; 15976 if (ipif->ipif_isv6) 15977 ire = ipif_to_ire_v6(ipif); 15978 else 15979 ire = ipif_to_ire(ipif); 15980 if (ire != NULL) { 15981 ire->ire_max_frag = ipif->ipif_mtu; 15982 ire_refrele(ire); 15983 } 15984 if (ipif->ipif_flags & IPIF_UP) { 15985 if (ill->ill_isv6) 15986 need_ire_walk_v6 = B_TRUE; 15987 else 15988 need_ire_walk_v4 = B_TRUE; 15989 } 15990 } 15991 mutex_exit(&ill->ill_lock); 15992 if (need_ire_walk_v4) 15993 ire_walk_v4(ill_mtu_change, (char *)ill, 15994 ALL_ZONES, ipst); 15995 if (need_ire_walk_v6) 15996 ire_walk_v6(ill_mtu_change, (char *)ill, 15997 ALL_ZONES, ipst); 15998 break; 15999 case DL_NOTE_LINK_UP: 16000 case DL_NOTE_LINK_DOWN: { 16001 /* 16002 * We are writer. ill / phyint / ipsq assocs stable. 16003 * The RUNNING flag reflects the state of the link. 16004 */ 16005 phyint_t *phyint = ill->ill_phyint; 16006 uint64_t new_phyint_flags; 16007 boolean_t changed = B_FALSE; 16008 boolean_t went_up; 16009 16010 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16011 mutex_enter(&phyint->phyint_lock); 16012 new_phyint_flags = went_up ? 16013 phyint->phyint_flags | PHYI_RUNNING : 16014 phyint->phyint_flags & ~PHYI_RUNNING; 16015 if (new_phyint_flags != phyint->phyint_flags) { 16016 phyint->phyint_flags = new_phyint_flags; 16017 changed = B_TRUE; 16018 } 16019 mutex_exit(&phyint->phyint_lock); 16020 /* 16021 * ill_restart_dad handles the DAD restart and routing 16022 * socket notification logic. 16023 */ 16024 if (changed) { 16025 ill_restart_dad(phyint->phyint_illv4, went_up); 16026 ill_restart_dad(phyint->phyint_illv6, went_up); 16027 } 16028 break; 16029 } 16030 case DL_NOTE_PROMISC_ON_PHYS: 16031 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16032 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16033 mutex_enter(&ill->ill_lock); 16034 ill->ill_promisc_on_phys = B_TRUE; 16035 mutex_exit(&ill->ill_lock); 16036 break; 16037 case DL_NOTE_PROMISC_OFF_PHYS: 16038 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16039 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16040 mutex_enter(&ill->ill_lock); 16041 ill->ill_promisc_on_phys = B_FALSE; 16042 mutex_exit(&ill->ill_lock); 16043 break; 16044 case DL_NOTE_CAPAB_RENEG: 16045 /* 16046 * Something changed on the driver side. 16047 * It wants us to renegotiate the capabilities 16048 * on this ill. One possible cause is the aggregation 16049 * interface under us where a port got added or 16050 * went away. 16051 * 16052 * If the capability negotiation is already done 16053 * or is in progress, reset the capabilities and 16054 * mark the ill's ill_capab_reneg to be B_TRUE, 16055 * so that when the ack comes back, we can start 16056 * the renegotiation process. 16057 * 16058 * Note that if ill_capab_reneg is already B_TRUE 16059 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16060 * the capability resetting request has been sent 16061 * and the renegotiation has not been started yet; 16062 * nothing needs to be done in this case. 16063 */ 16064 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16065 ill_capability_reset(ill); 16066 ill->ill_capab_reneg = B_TRUE; 16067 } 16068 break; 16069 default: 16070 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16071 "type 0x%x for DL_NOTIFY_IND\n", 16072 notify->dl_notification)); 16073 break; 16074 } 16075 16076 /* 16077 * As this is an asynchronous operation, we 16078 * should not call ill_dlpi_done 16079 */ 16080 break; 16081 } 16082 case DL_NOTIFY_ACK: { 16083 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16084 16085 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16086 ill->ill_note_link = 1; 16087 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16088 break; 16089 } 16090 case DL_PHYS_ADDR_ACK: { 16091 /* 16092 * As part of plumbing the interface via SIOCSLIFNAME, 16093 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16094 * whose answers we receive here. As each answer is received, 16095 * we call ill_dlpi_done() to dispatch the next request as 16096 * we're processing the current one. Once all answers have 16097 * been received, we use ipsq_pending_mp_get() to dequeue the 16098 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16099 * is invoked from an ill queue, conn_oper_pending_ill is not 16100 * available, but we know the ioctl is pending on ill_wq.) 16101 */ 16102 uint_t paddrlen, paddroff; 16103 16104 paddrreq = ill->ill_phys_addr_pend; 16105 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16106 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16107 16108 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16109 if (paddrreq == DL_IPV6_TOKEN) { 16110 /* 16111 * bcopy to low-order bits of ill_token 16112 * 16113 * XXX Temporary hack - currently, all known tokens 16114 * are 64 bits, so I'll cheat for the moment. 16115 */ 16116 bcopy(mp->b_rptr + paddroff, 16117 &ill->ill_token.s6_addr32[2], paddrlen); 16118 ill->ill_token_length = paddrlen; 16119 break; 16120 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16121 ASSERT(ill->ill_nd_lla_mp == NULL); 16122 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16123 mp = NULL; 16124 break; 16125 } 16126 16127 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16128 ASSERT(ill->ill_phys_addr_mp == NULL); 16129 if (!ill->ill_ifname_pending) 16130 break; 16131 ill->ill_ifname_pending = 0; 16132 if (!ioctl_aborted) 16133 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16134 if (mp1 != NULL) { 16135 ASSERT(connp == NULL); 16136 q = ill->ill_wq; 16137 } 16138 /* 16139 * If any error acks received during the plumbing sequence, 16140 * ill_ifname_pending_err will be set. Break out and send up 16141 * the error to the pending ioctl. 16142 */ 16143 if (ill->ill_ifname_pending_err != 0) { 16144 err = ill->ill_ifname_pending_err; 16145 ill->ill_ifname_pending_err = 0; 16146 break; 16147 } 16148 16149 ill->ill_phys_addr_mp = mp; 16150 ill->ill_phys_addr = mp->b_rptr + paddroff; 16151 mp = NULL; 16152 16153 /* 16154 * If paddrlen is zero, the DLPI provider doesn't support 16155 * physical addresses. The other two tests were historical 16156 * workarounds for bugs in our former PPP implementation, but 16157 * now other things have grown dependencies on them -- e.g., 16158 * the tun module specifies a dl_addr_length of zero in its 16159 * DL_BIND_ACK, but then specifies an incorrect value in its 16160 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16161 * but only after careful testing ensures that all dependent 16162 * broken DLPI providers have been fixed. 16163 */ 16164 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16165 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16166 ill->ill_phys_addr = NULL; 16167 } else if (paddrlen != ill->ill_phys_addr_length) { 16168 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16169 paddrlen, ill->ill_phys_addr_length)); 16170 err = EINVAL; 16171 break; 16172 } 16173 16174 if (ill->ill_nd_lla_mp == NULL) { 16175 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16176 err = ENOMEM; 16177 break; 16178 } 16179 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16180 } 16181 16182 /* 16183 * Set the interface token. If the zeroth interface address 16184 * is unspecified, then set it to the link local address. 16185 */ 16186 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16187 (void) ill_setdefaulttoken(ill); 16188 16189 ASSERT(ill->ill_ipif->ipif_id == 0); 16190 if (ipif != NULL && 16191 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16192 (void) ipif_setlinklocal(ipif); 16193 } 16194 break; 16195 } 16196 case DL_OK_ACK: 16197 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16198 dl_primstr((int)dloa->dl_correct_primitive), 16199 dloa->dl_correct_primitive)); 16200 switch (dloa->dl_correct_primitive) { 16201 case DL_PROMISCON_REQ: 16202 case DL_PROMISCOFF_REQ: 16203 case DL_ENABMULTI_REQ: 16204 case DL_DISABMULTI_REQ: 16205 case DL_UNBIND_REQ: 16206 case DL_ATTACH_REQ: 16207 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16208 break; 16209 } 16210 break; 16211 default: 16212 break; 16213 } 16214 16215 freemsg(mp); 16216 if (mp1 != NULL) { 16217 /* 16218 * The operation must complete without EINPROGRESS 16219 * since ipsq_pending_mp_get() has removed the mblk 16220 * from ipsq_pending_mp. Otherwise, the operation 16221 * will be stuck forever in the ipsq. 16222 */ 16223 ASSERT(err != EINPROGRESS); 16224 16225 switch (ipsq->ipsq_current_ioctl) { 16226 case 0: 16227 ipsq_current_finish(ipsq); 16228 break; 16229 16230 case SIOCLIFADDIF: 16231 case SIOCSLIFNAME: 16232 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16233 break; 16234 16235 default: 16236 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16237 break; 16238 } 16239 } 16240 } 16241 16242 /* 16243 * ip_rput_other is called by ip_rput to handle messages modifying the global 16244 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16245 */ 16246 /* ARGSUSED */ 16247 void 16248 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16249 { 16250 ill_t *ill; 16251 struct iocblk *iocp; 16252 mblk_t *mp1; 16253 conn_t *connp = NULL; 16254 16255 ip1dbg(("ip_rput_other ")); 16256 ill = (ill_t *)q->q_ptr; 16257 /* 16258 * This routine is not a writer in the case of SIOCGTUNPARAM 16259 * in which case ipsq is NULL. 16260 */ 16261 if (ipsq != NULL) { 16262 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16263 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16264 } 16265 16266 switch (mp->b_datap->db_type) { 16267 case M_ERROR: 16268 case M_HANGUP: 16269 /* 16270 * The device has a problem. We force the ILL down. It can 16271 * be brought up again manually using SIOCSIFFLAGS (via 16272 * ifconfig or equivalent). 16273 */ 16274 ASSERT(ipsq != NULL); 16275 if (mp->b_rptr < mp->b_wptr) 16276 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16277 if (ill->ill_error == 0) 16278 ill->ill_error = ENXIO; 16279 if (!ill_down_start(q, mp)) 16280 return; 16281 ipif_all_down_tail(ipsq, q, mp, NULL); 16282 break; 16283 case M_IOCACK: 16284 iocp = (struct iocblk *)mp->b_rptr; 16285 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16286 switch (iocp->ioc_cmd) { 16287 case SIOCSTUNPARAM: 16288 case OSIOCSTUNPARAM: 16289 ASSERT(ipsq != NULL); 16290 /* 16291 * Finish socket ioctl passed through to tun. 16292 * We should have an IOCTL waiting on this. 16293 */ 16294 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16295 if (ill->ill_isv6) { 16296 struct iftun_req *ta; 16297 16298 /* 16299 * if a source or destination is 16300 * being set, try and set the link 16301 * local address for the tunnel 16302 */ 16303 ta = (struct iftun_req *)mp->b_cont-> 16304 b_cont->b_rptr; 16305 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16306 ipif_set_tun_llink(ill, ta); 16307 } 16308 16309 } 16310 if (mp1 != NULL) { 16311 /* 16312 * Now copy back the b_next/b_prev used by 16313 * mi code for the mi_copy* functions. 16314 * See ip_sioctl_tunparam() for the reason. 16315 * Also protect against missing b_cont. 16316 */ 16317 if (mp->b_cont != NULL) { 16318 mp->b_cont->b_next = 16319 mp1->b_cont->b_next; 16320 mp->b_cont->b_prev = 16321 mp1->b_cont->b_prev; 16322 } 16323 inet_freemsg(mp1); 16324 ASSERT(connp != NULL); 16325 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16326 iocp->ioc_error, NO_COPYOUT, ipsq); 16327 } else { 16328 ASSERT(connp == NULL); 16329 putnext(q, mp); 16330 } 16331 break; 16332 case SIOCGTUNPARAM: 16333 case OSIOCGTUNPARAM: 16334 /* 16335 * This is really M_IOCDATA from the tunnel driver. 16336 * convert back and complete the ioctl. 16337 * We should have an IOCTL waiting on this. 16338 */ 16339 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16340 if (mp1) { 16341 /* 16342 * Now copy back the b_next/b_prev used by 16343 * mi code for the mi_copy* functions. 16344 * See ip_sioctl_tunparam() for the reason. 16345 * Also protect against missing b_cont. 16346 */ 16347 if (mp->b_cont != NULL) { 16348 mp->b_cont->b_next = 16349 mp1->b_cont->b_next; 16350 mp->b_cont->b_prev = 16351 mp1->b_cont->b_prev; 16352 } 16353 inet_freemsg(mp1); 16354 if (iocp->ioc_error == 0) 16355 mp->b_datap->db_type = M_IOCDATA; 16356 ASSERT(connp != NULL); 16357 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16358 iocp->ioc_error, COPYOUT, NULL); 16359 } else { 16360 ASSERT(connp == NULL); 16361 putnext(q, mp); 16362 } 16363 break; 16364 default: 16365 break; 16366 } 16367 break; 16368 case M_IOCNAK: 16369 iocp = (struct iocblk *)mp->b_rptr; 16370 16371 switch (iocp->ioc_cmd) { 16372 int mode; 16373 16374 case DL_IOC_HDR_INFO: 16375 /* 16376 * If this was the first attempt turn of the 16377 * fastpath probing. 16378 */ 16379 mutex_enter(&ill->ill_lock); 16380 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16381 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16382 mutex_exit(&ill->ill_lock); 16383 ill_fastpath_nack(ill); 16384 ip1dbg(("ip_rput: DLPI fastpath off on " 16385 "interface %s\n", 16386 ill->ill_name)); 16387 } else { 16388 mutex_exit(&ill->ill_lock); 16389 } 16390 freemsg(mp); 16391 break; 16392 case SIOCSTUNPARAM: 16393 case OSIOCSTUNPARAM: 16394 ASSERT(ipsq != NULL); 16395 /* 16396 * Finish socket ioctl passed through to tun 16397 * We should have an IOCTL waiting on this. 16398 */ 16399 /* FALLTHRU */ 16400 case SIOCGTUNPARAM: 16401 case OSIOCGTUNPARAM: 16402 /* 16403 * This is really M_IOCDATA from the tunnel driver. 16404 * convert back and complete the ioctl. 16405 * We should have an IOCTL waiting on this. 16406 */ 16407 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16408 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16409 mp1 = ill_pending_mp_get(ill, &connp, 16410 iocp->ioc_id); 16411 mode = COPYOUT; 16412 ipsq = NULL; 16413 } else { 16414 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16415 mode = NO_COPYOUT; 16416 } 16417 if (mp1 != NULL) { 16418 /* 16419 * Now copy back the b_next/b_prev used by 16420 * mi code for the mi_copy* functions. 16421 * See ip_sioctl_tunparam() for the reason. 16422 * Also protect against missing b_cont. 16423 */ 16424 if (mp->b_cont != NULL) { 16425 mp->b_cont->b_next = 16426 mp1->b_cont->b_next; 16427 mp->b_cont->b_prev = 16428 mp1->b_cont->b_prev; 16429 } 16430 inet_freemsg(mp1); 16431 if (iocp->ioc_error == 0) 16432 iocp->ioc_error = EINVAL; 16433 ASSERT(connp != NULL); 16434 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16435 iocp->ioc_error, mode, ipsq); 16436 } else { 16437 ASSERT(connp == NULL); 16438 putnext(q, mp); 16439 } 16440 break; 16441 default: 16442 break; 16443 } 16444 default: 16445 break; 16446 } 16447 } 16448 16449 /* 16450 * NOTE : This function does not ire_refrele the ire argument passed in. 16451 * 16452 * IPQoS notes 16453 * IP policy is invoked twice for a forwarded packet, once on the read side 16454 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16455 * enabled. An additional parameter, in_ill, has been added for this purpose. 16456 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16457 * because ip_mroute drops this information. 16458 * 16459 */ 16460 void 16461 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16462 { 16463 uint32_t old_pkt_len; 16464 uint32_t pkt_len; 16465 queue_t *q; 16466 uint32_t sum; 16467 #define rptr ((uchar_t *)ipha) 16468 uint32_t max_frag; 16469 uint32_t ill_index; 16470 ill_t *out_ill; 16471 mib2_ipIfStatsEntry_t *mibptr; 16472 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16473 16474 /* Get the ill_index of the incoming ILL */ 16475 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16476 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16477 16478 /* Initiate Read side IPPF processing */ 16479 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16480 ip_process(IPP_FWD_IN, &mp, ill_index); 16481 if (mp == NULL) { 16482 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16483 "during IPPF processing\n")); 16484 return; 16485 } 16486 } 16487 16488 /* Adjust the checksum to reflect the ttl decrement. */ 16489 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16490 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16491 16492 if (ipha->ipha_ttl-- <= 1) { 16493 if (ip_csum_hdr(ipha)) { 16494 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16495 goto drop_pkt; 16496 } 16497 /* 16498 * Note: ire_stq this will be NULL for multicast 16499 * datagrams using the long path through arp (the IRE 16500 * is not an IRE_CACHE). This should not cause 16501 * problems since we don't generate ICMP errors for 16502 * multicast packets. 16503 */ 16504 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16505 q = ire->ire_stq; 16506 if (q != NULL) { 16507 /* Sent by forwarding path, and router is global zone */ 16508 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16509 GLOBAL_ZONEID, ipst); 16510 } else 16511 freemsg(mp); 16512 return; 16513 } 16514 16515 /* 16516 * Don't forward if the interface is down 16517 */ 16518 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16519 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16520 ip2dbg(("ip_rput_forward:interface is down\n")); 16521 goto drop_pkt; 16522 } 16523 16524 /* Get the ill_index of the outgoing ILL */ 16525 out_ill = ire_to_ill(ire); 16526 ill_index = out_ill->ill_phyint->phyint_ifindex; 16527 16528 DTRACE_PROBE4(ip4__forwarding__start, 16529 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16530 16531 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16532 ipst->ips_ipv4firewall_forwarding, 16533 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16534 16535 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16536 16537 if (mp == NULL) 16538 return; 16539 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16540 16541 if (is_system_labeled()) { 16542 mblk_t *mp1; 16543 16544 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16545 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16546 goto drop_pkt; 16547 } 16548 /* Size may have changed */ 16549 mp = mp1; 16550 ipha = (ipha_t *)mp->b_rptr; 16551 pkt_len = ntohs(ipha->ipha_length); 16552 } 16553 16554 /* Check if there are options to update */ 16555 if (!IS_SIMPLE_IPH(ipha)) { 16556 if (ip_csum_hdr(ipha)) { 16557 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16558 goto drop_pkt; 16559 } 16560 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16561 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16562 return; 16563 } 16564 16565 ipha->ipha_hdr_checksum = 0; 16566 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16567 } 16568 max_frag = ire->ire_max_frag; 16569 if (pkt_len > max_frag) { 16570 /* 16571 * It needs fragging on its way out. We haven't 16572 * verified the header checksum yet. Since we 16573 * are going to put a surely good checksum in the 16574 * outgoing header, we have to make sure that it 16575 * was good coming in. 16576 */ 16577 if (ip_csum_hdr(ipha)) { 16578 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16579 goto drop_pkt; 16580 } 16581 /* Initiate Write side IPPF processing */ 16582 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16583 ip_process(IPP_FWD_OUT, &mp, ill_index); 16584 if (mp == NULL) { 16585 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16586 " during IPPF processing\n")); 16587 return; 16588 } 16589 } 16590 /* 16591 * Handle labeled packet resizing. 16592 * 16593 * If we have added a label, inform ip_wput_frag() of its 16594 * effect on the MTU for ICMP messages. 16595 */ 16596 if (pkt_len > old_pkt_len) { 16597 uint32_t secopt_size; 16598 16599 secopt_size = pkt_len - old_pkt_len; 16600 if (secopt_size < max_frag) 16601 max_frag -= secopt_size; 16602 } 16603 16604 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16605 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16606 return; 16607 } 16608 16609 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16610 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16611 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16612 ipst->ips_ipv4firewall_physical_out, 16613 NULL, out_ill, ipha, mp, mp, 0, ipst); 16614 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16615 if (mp == NULL) 16616 return; 16617 16618 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16619 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16620 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16621 /* ip_xmit_v4 always consumes the packet */ 16622 return; 16623 16624 drop_pkt:; 16625 ip1dbg(("ip_rput_forward: drop pkt\n")); 16626 freemsg(mp); 16627 #undef rptr 16628 } 16629 16630 void 16631 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16632 { 16633 ire_t *ire; 16634 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16635 16636 ASSERT(!ipif->ipif_isv6); 16637 /* 16638 * Find an IRE which matches the destination and the outgoing 16639 * queue in the cache table. All we need is an IRE_CACHE which 16640 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16641 * then it is enough to have some IRE_CACHE in the group. 16642 */ 16643 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16644 dst = ipif->ipif_pp_dst_addr; 16645 16646 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16647 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16648 if (ire == NULL) { 16649 /* 16650 * Mark this packet to make it be delivered to 16651 * ip_rput_forward after the new ire has been 16652 * created. 16653 */ 16654 mp->b_prev = NULL; 16655 mp->b_next = mp; 16656 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16657 NULL, 0, GLOBAL_ZONEID, &zero_info); 16658 } else { 16659 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16660 IRE_REFRELE(ire); 16661 } 16662 } 16663 16664 /* Update any source route, record route or timestamp options */ 16665 static int 16666 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16667 { 16668 ipoptp_t opts; 16669 uchar_t *opt; 16670 uint8_t optval; 16671 uint8_t optlen; 16672 ipaddr_t dst; 16673 uint32_t ts; 16674 ire_t *dst_ire = NULL; 16675 ire_t *tmp_ire = NULL; 16676 timestruc_t now; 16677 16678 ip2dbg(("ip_rput_forward_options\n")); 16679 dst = ipha->ipha_dst; 16680 for (optval = ipoptp_first(&opts, ipha); 16681 optval != IPOPT_EOL; 16682 optval = ipoptp_next(&opts)) { 16683 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16684 opt = opts.ipoptp_cur; 16685 optlen = opts.ipoptp_len; 16686 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16687 optval, opts.ipoptp_len)); 16688 switch (optval) { 16689 uint32_t off; 16690 case IPOPT_SSRR: 16691 case IPOPT_LSRR: 16692 /* Check if adminstratively disabled */ 16693 if (!ipst->ips_ip_forward_src_routed) { 16694 if (ire->ire_stq != NULL) { 16695 /* 16696 * Sent by forwarding path, and router 16697 * is global zone 16698 */ 16699 icmp_unreachable(ire->ire_stq, mp, 16700 ICMP_SOURCE_ROUTE_FAILED, 16701 GLOBAL_ZONEID, ipst); 16702 } else { 16703 ip0dbg(("ip_rput_forward_options: " 16704 "unable to send unreach\n")); 16705 freemsg(mp); 16706 } 16707 return (-1); 16708 } 16709 16710 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16711 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16712 if (dst_ire == NULL) { 16713 /* 16714 * Must be partial since ip_rput_options 16715 * checked for strict. 16716 */ 16717 break; 16718 } 16719 off = opt[IPOPT_OFFSET]; 16720 off--; 16721 redo_srr: 16722 if (optlen < IP_ADDR_LEN || 16723 off > optlen - IP_ADDR_LEN) { 16724 /* End of source route */ 16725 ip1dbg(( 16726 "ip_rput_forward_options: end of SR\n")); 16727 ire_refrele(dst_ire); 16728 break; 16729 } 16730 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16731 bcopy(&ire->ire_src_addr, (char *)opt + off, 16732 IP_ADDR_LEN); 16733 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16734 ntohl(dst))); 16735 16736 /* 16737 * Check if our address is present more than 16738 * once as consecutive hops in source route. 16739 */ 16740 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16741 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16742 if (tmp_ire != NULL) { 16743 ire_refrele(tmp_ire); 16744 off += IP_ADDR_LEN; 16745 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16746 goto redo_srr; 16747 } 16748 ipha->ipha_dst = dst; 16749 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16750 ire_refrele(dst_ire); 16751 break; 16752 case IPOPT_RR: 16753 off = opt[IPOPT_OFFSET]; 16754 off--; 16755 if (optlen < IP_ADDR_LEN || 16756 off > optlen - IP_ADDR_LEN) { 16757 /* No more room - ignore */ 16758 ip1dbg(( 16759 "ip_rput_forward_options: end of RR\n")); 16760 break; 16761 } 16762 bcopy(&ire->ire_src_addr, (char *)opt + off, 16763 IP_ADDR_LEN); 16764 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16765 break; 16766 case IPOPT_TS: 16767 /* Insert timestamp if there is room */ 16768 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16769 case IPOPT_TS_TSONLY: 16770 off = IPOPT_TS_TIMELEN; 16771 break; 16772 case IPOPT_TS_PRESPEC: 16773 case IPOPT_TS_PRESPEC_RFC791: 16774 /* Verify that the address matched */ 16775 off = opt[IPOPT_OFFSET] - 1; 16776 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16777 dst_ire = ire_ctable_lookup(dst, 0, 16778 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16779 MATCH_IRE_TYPE, ipst); 16780 if (dst_ire == NULL) { 16781 /* Not for us */ 16782 break; 16783 } 16784 ire_refrele(dst_ire); 16785 /* FALLTHRU */ 16786 case IPOPT_TS_TSANDADDR: 16787 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16788 break; 16789 default: 16790 /* 16791 * ip_*put_options should have already 16792 * dropped this packet. 16793 */ 16794 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16795 "unknown IT - bug in ip_rput_options?\n"); 16796 return (0); /* Keep "lint" happy */ 16797 } 16798 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16799 /* Increase overflow counter */ 16800 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16801 opt[IPOPT_POS_OV_FLG] = 16802 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16803 (off << 4)); 16804 break; 16805 } 16806 off = opt[IPOPT_OFFSET] - 1; 16807 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16808 case IPOPT_TS_PRESPEC: 16809 case IPOPT_TS_PRESPEC_RFC791: 16810 case IPOPT_TS_TSANDADDR: 16811 bcopy(&ire->ire_src_addr, 16812 (char *)opt + off, IP_ADDR_LEN); 16813 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16814 /* FALLTHRU */ 16815 case IPOPT_TS_TSONLY: 16816 off = opt[IPOPT_OFFSET] - 1; 16817 /* Compute # of milliseconds since midnight */ 16818 gethrestime(&now); 16819 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16820 now.tv_nsec / (NANOSEC / MILLISEC); 16821 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16822 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16823 break; 16824 } 16825 break; 16826 } 16827 } 16828 return (0); 16829 } 16830 16831 /* 16832 * This is called after processing at least one of AH/ESP headers. 16833 * 16834 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16835 * the actual, physical interface on which the packet was received, 16836 * but, when ip_strict_dst_multihoming is set to 1, could be the 16837 * interface which had the ipha_dst configured when the packet went 16838 * through ip_rput. The ill_index corresponding to the recv_ill 16839 * is saved in ipsec_in_rill_index 16840 * 16841 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16842 * cannot assume "ire" points to valid data for any IPv6 cases. 16843 */ 16844 void 16845 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16846 { 16847 mblk_t *mp; 16848 ipaddr_t dst; 16849 in6_addr_t *v6dstp; 16850 ipha_t *ipha; 16851 ip6_t *ip6h; 16852 ipsec_in_t *ii; 16853 boolean_t ill_need_rele = B_FALSE; 16854 boolean_t rill_need_rele = B_FALSE; 16855 boolean_t ire_need_rele = B_FALSE; 16856 netstack_t *ns; 16857 ip_stack_t *ipst; 16858 16859 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16860 ASSERT(ii->ipsec_in_ill_index != 0); 16861 ns = ii->ipsec_in_ns; 16862 ASSERT(ii->ipsec_in_ns != NULL); 16863 ipst = ns->netstack_ip; 16864 16865 mp = ipsec_mp->b_cont; 16866 ASSERT(mp != NULL); 16867 16868 16869 if (ill == NULL) { 16870 ASSERT(recv_ill == NULL); 16871 /* 16872 * We need to get the original queue on which ip_rput_local 16873 * or ip_rput_data_v6 was called. 16874 */ 16875 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16876 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16877 ill_need_rele = B_TRUE; 16878 16879 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16880 recv_ill = ill_lookup_on_ifindex( 16881 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16882 NULL, NULL, NULL, NULL, ipst); 16883 rill_need_rele = B_TRUE; 16884 } else { 16885 recv_ill = ill; 16886 } 16887 16888 if ((ill == NULL) || (recv_ill == NULL)) { 16889 ip0dbg(("ip_fanout_proto_again: interface " 16890 "disappeared\n")); 16891 if (ill != NULL) 16892 ill_refrele(ill); 16893 if (recv_ill != NULL) 16894 ill_refrele(recv_ill); 16895 freemsg(ipsec_mp); 16896 return; 16897 } 16898 } 16899 16900 ASSERT(ill != NULL && recv_ill != NULL); 16901 16902 if (mp->b_datap->db_type == M_CTL) { 16903 /* 16904 * AH/ESP is returning the ICMP message after 16905 * removing their headers. Fanout again till 16906 * it gets to the right protocol. 16907 */ 16908 if (ii->ipsec_in_v4) { 16909 icmph_t *icmph; 16910 int iph_hdr_length; 16911 int hdr_length; 16912 16913 ipha = (ipha_t *)mp->b_rptr; 16914 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16915 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16916 ipha = (ipha_t *)&icmph[1]; 16917 hdr_length = IPH_HDR_LENGTH(ipha); 16918 /* 16919 * icmp_inbound_error_fanout may need to do pullupmsg. 16920 * Reset the type to M_DATA. 16921 */ 16922 mp->b_datap->db_type = M_DATA; 16923 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16924 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16925 B_FALSE, ill, ii->ipsec_in_zoneid); 16926 } else { 16927 icmp6_t *icmp6; 16928 int hdr_length; 16929 16930 ip6h = (ip6_t *)mp->b_rptr; 16931 /* Don't call hdr_length_v6() unless you have to. */ 16932 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16933 hdr_length = ip_hdr_length_v6(mp, ip6h); 16934 else 16935 hdr_length = IPV6_HDR_LEN; 16936 16937 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16938 /* 16939 * icmp_inbound_error_fanout_v6 may need to do 16940 * pullupmsg. Reset the type to M_DATA. 16941 */ 16942 mp->b_datap->db_type = M_DATA; 16943 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16944 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16945 } 16946 if (ill_need_rele) 16947 ill_refrele(ill); 16948 if (rill_need_rele) 16949 ill_refrele(recv_ill); 16950 return; 16951 } 16952 16953 if (ii->ipsec_in_v4) { 16954 ipha = (ipha_t *)mp->b_rptr; 16955 dst = ipha->ipha_dst; 16956 if (CLASSD(dst)) { 16957 /* 16958 * Multicast has to be delivered to all streams. 16959 */ 16960 dst = INADDR_BROADCAST; 16961 } 16962 16963 if (ire == NULL) { 16964 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16965 MBLK_GETLABEL(mp), ipst); 16966 if (ire == NULL) { 16967 if (ill_need_rele) 16968 ill_refrele(ill); 16969 if (rill_need_rele) 16970 ill_refrele(recv_ill); 16971 ip1dbg(("ip_fanout_proto_again: " 16972 "IRE not found")); 16973 freemsg(ipsec_mp); 16974 return; 16975 } 16976 ire_need_rele = B_TRUE; 16977 } 16978 16979 switch (ipha->ipha_protocol) { 16980 case IPPROTO_UDP: 16981 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16982 recv_ill); 16983 if (ire_need_rele) 16984 ire_refrele(ire); 16985 break; 16986 case IPPROTO_TCP: 16987 if (!ire_need_rele) 16988 IRE_REFHOLD(ire); 16989 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16990 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16991 IRE_REFRELE(ire); 16992 if (mp != NULL) 16993 squeue_enter_chain(GET_SQUEUE(mp), mp, 16994 mp, 1, SQTAG_IP_PROTO_AGAIN); 16995 break; 16996 case IPPROTO_SCTP: 16997 if (!ire_need_rele) 16998 IRE_REFHOLD(ire); 16999 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17000 ipsec_mp, 0, ill->ill_rq, dst); 17001 break; 17002 default: 17003 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17004 recv_ill, B_FALSE); 17005 if (ire_need_rele) 17006 ire_refrele(ire); 17007 break; 17008 } 17009 } else { 17010 uint32_t rput_flags = 0; 17011 17012 ip6h = (ip6_t *)mp->b_rptr; 17013 v6dstp = &ip6h->ip6_dst; 17014 /* 17015 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17016 * address. 17017 * 17018 * Currently, we don't store that state in the IPSEC_IN 17019 * message, and we may need to. 17020 */ 17021 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17022 IP6_IN_LLMCAST : 0); 17023 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17024 NULL, NULL); 17025 } 17026 if (ill_need_rele) 17027 ill_refrele(ill); 17028 if (rill_need_rele) 17029 ill_refrele(recv_ill); 17030 } 17031 17032 /* 17033 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17034 * returns 'true' if there are still fragments left on the queue, in 17035 * which case we restart the timer. 17036 */ 17037 void 17038 ill_frag_timer(void *arg) 17039 { 17040 ill_t *ill = (ill_t *)arg; 17041 boolean_t frag_pending; 17042 ip_stack_t *ipst = ill->ill_ipst; 17043 17044 mutex_enter(&ill->ill_lock); 17045 ASSERT(!ill->ill_fragtimer_executing); 17046 if (ill->ill_state_flags & ILL_CONDEMNED) { 17047 ill->ill_frag_timer_id = 0; 17048 mutex_exit(&ill->ill_lock); 17049 return; 17050 } 17051 ill->ill_fragtimer_executing = 1; 17052 mutex_exit(&ill->ill_lock); 17053 17054 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17055 17056 /* 17057 * Restart the timer, if we have fragments pending or if someone 17058 * wanted us to be scheduled again. 17059 */ 17060 mutex_enter(&ill->ill_lock); 17061 ill->ill_fragtimer_executing = 0; 17062 ill->ill_frag_timer_id = 0; 17063 if (frag_pending || ill->ill_fragtimer_needrestart) 17064 ill_frag_timer_start(ill); 17065 mutex_exit(&ill->ill_lock); 17066 } 17067 17068 void 17069 ill_frag_timer_start(ill_t *ill) 17070 { 17071 ip_stack_t *ipst = ill->ill_ipst; 17072 17073 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17074 17075 /* If the ill is closing or opening don't proceed */ 17076 if (ill->ill_state_flags & ILL_CONDEMNED) 17077 return; 17078 17079 if (ill->ill_fragtimer_executing) { 17080 /* 17081 * ill_frag_timer is currently executing. Just record the 17082 * the fact that we want the timer to be restarted. 17083 * ill_frag_timer will post a timeout before it returns, 17084 * ensuring it will be called again. 17085 */ 17086 ill->ill_fragtimer_needrestart = 1; 17087 return; 17088 } 17089 17090 if (ill->ill_frag_timer_id == 0) { 17091 /* 17092 * The timer is neither running nor is the timeout handler 17093 * executing. Post a timeout so that ill_frag_timer will be 17094 * called 17095 */ 17096 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17097 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17098 ill->ill_fragtimer_needrestart = 0; 17099 } 17100 } 17101 17102 /* 17103 * This routine is needed for loopback when forwarding multicasts. 17104 * 17105 * IPQoS Notes: 17106 * IPPF processing is done in fanout routines. 17107 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17108 * processing for IPsec packets is done when it comes back in clear. 17109 * NOTE : The callers of this function need to do the ire_refrele for the 17110 * ire that is being passed in. 17111 */ 17112 void 17113 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17114 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17115 { 17116 ill_t *ill = (ill_t *)q->q_ptr; 17117 uint32_t sum; 17118 uint32_t u1; 17119 uint32_t u2; 17120 int hdr_length; 17121 boolean_t mctl_present; 17122 mblk_t *first_mp = mp; 17123 mblk_t *hada_mp = NULL; 17124 ipha_t *inner_ipha; 17125 ip_stack_t *ipst; 17126 17127 ASSERT(recv_ill != NULL); 17128 ipst = recv_ill->ill_ipst; 17129 17130 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17131 "ip_rput_locl_start: q %p", q); 17132 17133 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17134 ASSERT(ill != NULL); 17135 17136 17137 #define rptr ((uchar_t *)ipha) 17138 #define iphs ((uint16_t *)ipha) 17139 17140 /* 17141 * no UDP or TCP packet should come here anymore. 17142 */ 17143 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17144 ipha->ipha_protocol != IPPROTO_UDP); 17145 17146 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17147 if (mctl_present && 17148 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17149 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17150 17151 /* 17152 * It's an IPsec accelerated packet. 17153 * Keep a pointer to the data attributes around until 17154 * we allocate the ipsec_info_t. 17155 */ 17156 IPSECHW_DEBUG(IPSECHW_PKT, 17157 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17158 hada_mp = first_mp; 17159 hada_mp->b_cont = NULL; 17160 /* 17161 * Since it is accelerated, it comes directly from 17162 * the ill and the data attributes is followed by 17163 * the packet data. 17164 */ 17165 ASSERT(mp->b_datap->db_type != M_CTL); 17166 first_mp = mp; 17167 mctl_present = B_FALSE; 17168 } 17169 17170 /* 17171 * IF M_CTL is not present, then ipsec_in_is_secure 17172 * should return B_TRUE. There is a case where loopback 17173 * packets has an M_CTL in the front with all the 17174 * IPsec options set to IPSEC_PREF_NEVER - which means 17175 * ipsec_in_is_secure will return B_FALSE. As loopback 17176 * packets never comes here, it is safe to ASSERT the 17177 * following. 17178 */ 17179 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17180 17181 /* 17182 * Also, we should never have an mctl_present if this is an 17183 * ESP-in-UDP packet. 17184 */ 17185 ASSERT(!mctl_present || !esp_in_udp_packet); 17186 17187 17188 /* u1 is # words of IP options */ 17189 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17190 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17191 17192 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17193 if (u1) { 17194 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17195 if (hada_mp != NULL) 17196 freemsg(hada_mp); 17197 return; 17198 } 17199 } else { 17200 /* Check the IP header checksum. */ 17201 #define uph ((uint16_t *)ipha) 17202 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17203 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17204 #undef uph 17205 /* finish doing IP checksum */ 17206 sum = (sum & 0xFFFF) + (sum >> 16); 17207 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17208 if (sum && sum != 0xFFFF) { 17209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17210 goto drop_pkt; 17211 } 17212 } 17213 } 17214 17215 /* 17216 * Count for SNMP of inbound packets for ire. As ip_proto_input 17217 * might be called more than once for secure packets, count only 17218 * the first time. 17219 */ 17220 if (!mctl_present) { 17221 UPDATE_IB_PKT_COUNT(ire); 17222 ire->ire_last_used_time = lbolt; 17223 } 17224 17225 /* Check for fragmentation offset. */ 17226 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17227 u1 = u2 & (IPH_MF | IPH_OFFSET); 17228 if (u1) { 17229 /* 17230 * We re-assemble fragments before we do the AH/ESP 17231 * processing. Thus, M_CTL should not be present 17232 * while we are re-assembling. 17233 */ 17234 ASSERT(!mctl_present); 17235 ASSERT(first_mp == mp); 17236 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17237 return; 17238 } 17239 /* 17240 * Make sure that first_mp points back to mp as 17241 * the mp we came in with could have changed in 17242 * ip_rput_fragment(). 17243 */ 17244 ipha = (ipha_t *)mp->b_rptr; 17245 first_mp = mp; 17246 } 17247 17248 /* 17249 * Clear hardware checksumming flag as it is currently only 17250 * used by TCP and UDP. 17251 */ 17252 DB_CKSUMFLAGS(mp) = 0; 17253 17254 /* Now we have a complete datagram, destined for this machine. */ 17255 u1 = IPH_HDR_LENGTH(ipha); 17256 switch (ipha->ipha_protocol) { 17257 case IPPROTO_ICMP: { 17258 ire_t *ire_zone; 17259 ilm_t *ilm; 17260 mblk_t *mp1; 17261 zoneid_t last_zoneid; 17262 17263 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17264 ASSERT(ire->ire_type == IRE_BROADCAST); 17265 /* 17266 * In the multicast case, applications may have joined 17267 * the group from different zones, so we need to deliver 17268 * the packet to each of them. Loop through the 17269 * multicast memberships structures (ilm) on the receive 17270 * ill and send a copy of the packet up each matching 17271 * one. However, we don't do this for multicasts sent on 17272 * the loopback interface (PHYI_LOOPBACK flag set) as 17273 * they must stay in the sender's zone. 17274 * 17275 * ilm_add_v6() ensures that ilms in the same zone are 17276 * contiguous in the ill_ilm list. We use this property 17277 * to avoid sending duplicates needed when two 17278 * applications in the same zone join the same group on 17279 * different logical interfaces: we ignore the ilm if 17280 * its zoneid is the same as the last matching one. 17281 * In addition, the sending of the packet for 17282 * ire_zoneid is delayed until all of the other ilms 17283 * have been exhausted. 17284 */ 17285 last_zoneid = -1; 17286 ILM_WALKER_HOLD(recv_ill); 17287 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17288 ilm = ilm->ilm_next) { 17289 if ((ilm->ilm_flags & ILM_DELETED) || 17290 ipha->ipha_dst != ilm->ilm_addr || 17291 ilm->ilm_zoneid == last_zoneid || 17292 ilm->ilm_zoneid == ire->ire_zoneid || 17293 ilm->ilm_zoneid == ALL_ZONES || 17294 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17295 continue; 17296 mp1 = ip_copymsg(first_mp); 17297 if (mp1 == NULL) 17298 continue; 17299 icmp_inbound(q, mp1, B_TRUE, ill, 17300 0, sum, mctl_present, B_TRUE, 17301 recv_ill, ilm->ilm_zoneid); 17302 last_zoneid = ilm->ilm_zoneid; 17303 } 17304 ILM_WALKER_RELE(recv_ill); 17305 } else if (ire->ire_type == IRE_BROADCAST) { 17306 /* 17307 * In the broadcast case, there may be many zones 17308 * which need a copy of the packet delivered to them. 17309 * There is one IRE_BROADCAST per broadcast address 17310 * and per zone; we walk those using a helper function. 17311 * In addition, the sending of the packet for ire is 17312 * delayed until all of the other ires have been 17313 * processed. 17314 */ 17315 IRB_REFHOLD(ire->ire_bucket); 17316 ire_zone = NULL; 17317 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17318 ire)) != NULL) { 17319 mp1 = ip_copymsg(first_mp); 17320 if (mp1 == NULL) 17321 continue; 17322 17323 UPDATE_IB_PKT_COUNT(ire_zone); 17324 ire_zone->ire_last_used_time = lbolt; 17325 icmp_inbound(q, mp1, B_TRUE, ill, 17326 0, sum, mctl_present, B_TRUE, 17327 recv_ill, ire_zone->ire_zoneid); 17328 } 17329 IRB_REFRELE(ire->ire_bucket); 17330 } 17331 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17332 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17333 ire->ire_zoneid); 17334 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17335 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17336 return; 17337 } 17338 case IPPROTO_IGMP: 17339 /* 17340 * If we are not willing to accept IGMP packets in clear, 17341 * then check with global policy. 17342 */ 17343 if (ipst->ips_igmp_accept_clear_messages == 0) { 17344 first_mp = ipsec_check_global_policy(first_mp, NULL, 17345 ipha, NULL, mctl_present, ipst->ips_netstack); 17346 if (first_mp == NULL) 17347 return; 17348 } 17349 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17350 freemsg(first_mp); 17351 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17353 return; 17354 } 17355 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17356 /* Bad packet - discarded by igmp_input */ 17357 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17358 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17359 if (mctl_present) 17360 freeb(first_mp); 17361 return; 17362 } 17363 /* 17364 * igmp_input() may have returned the pulled up message. 17365 * So first_mp and ipha need to be reinitialized. 17366 */ 17367 ipha = (ipha_t *)mp->b_rptr; 17368 if (mctl_present) 17369 first_mp->b_cont = mp; 17370 else 17371 first_mp = mp; 17372 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17373 connf_head != NULL) { 17374 /* No user-level listener for IGMP packets */ 17375 goto drop_pkt; 17376 } 17377 /* deliver to local raw users */ 17378 break; 17379 case IPPROTO_PIM: 17380 /* 17381 * If we are not willing to accept PIM packets in clear, 17382 * then check with global policy. 17383 */ 17384 if (ipst->ips_pim_accept_clear_messages == 0) { 17385 first_mp = ipsec_check_global_policy(first_mp, NULL, 17386 ipha, NULL, mctl_present, ipst->ips_netstack); 17387 if (first_mp == NULL) 17388 return; 17389 } 17390 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17391 freemsg(first_mp); 17392 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17394 return; 17395 } 17396 if (pim_input(q, mp, ill) != 0) { 17397 /* Bad packet - discarded by pim_input */ 17398 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17399 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17400 if (mctl_present) 17401 freeb(first_mp); 17402 return; 17403 } 17404 17405 /* 17406 * pim_input() may have pulled up the message so ipha needs to 17407 * be reinitialized. 17408 */ 17409 ipha = (ipha_t *)mp->b_rptr; 17410 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17411 connf_head != NULL) { 17412 /* No user-level listener for PIM packets */ 17413 goto drop_pkt; 17414 } 17415 /* deliver to local raw users */ 17416 break; 17417 case IPPROTO_ENCAP: 17418 /* 17419 * Handle self-encapsulated packets (IP-in-IP where 17420 * the inner addresses == the outer addresses). 17421 */ 17422 hdr_length = IPH_HDR_LENGTH(ipha); 17423 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17424 mp->b_wptr) { 17425 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17426 sizeof (ipha_t) - mp->b_rptr)) { 17427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17428 freemsg(first_mp); 17429 return; 17430 } 17431 ipha = (ipha_t *)mp->b_rptr; 17432 } 17433 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17434 /* 17435 * Check the sanity of the inner IP header. 17436 */ 17437 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17439 freemsg(first_mp); 17440 return; 17441 } 17442 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17443 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17444 freemsg(first_mp); 17445 return; 17446 } 17447 if (inner_ipha->ipha_src == ipha->ipha_src && 17448 inner_ipha->ipha_dst == ipha->ipha_dst) { 17449 ipsec_in_t *ii; 17450 17451 /* 17452 * Self-encapsulated tunnel packet. Remove 17453 * the outer IP header and fanout again. 17454 * We also need to make sure that the inner 17455 * header is pulled up until options. 17456 */ 17457 mp->b_rptr = (uchar_t *)inner_ipha; 17458 ipha = inner_ipha; 17459 hdr_length = IPH_HDR_LENGTH(ipha); 17460 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17461 if (!pullupmsg(mp, (uchar_t *)ipha + 17462 + hdr_length - mp->b_rptr)) { 17463 freemsg(first_mp); 17464 return; 17465 } 17466 ipha = (ipha_t *)mp->b_rptr; 17467 } 17468 if (!mctl_present) { 17469 ASSERT(first_mp == mp); 17470 /* 17471 * This means that somebody is sending 17472 * Self-encapsualted packets without AH/ESP. 17473 * If AH/ESP was present, we would have already 17474 * allocated the first_mp. 17475 */ 17476 first_mp = ipsec_in_alloc(B_TRUE, 17477 ipst->ips_netstack); 17478 if (first_mp == NULL) { 17479 ip1dbg(("ip_proto_input: IPSEC_IN " 17480 "allocation failure.\n")); 17481 BUMP_MIB(ill->ill_ip_mib, 17482 ipIfStatsInDiscards); 17483 freemsg(mp); 17484 return; 17485 } 17486 first_mp->b_cont = mp; 17487 } 17488 /* 17489 * We generally store the ill_index if we need to 17490 * do IPsec processing as we lose the ill queue when 17491 * we come back. But in this case, we never should 17492 * have to store the ill_index here as it should have 17493 * been stored previously when we processed the 17494 * AH/ESP header in this routine or for non-ipsec 17495 * cases, we still have the queue. But for some bad 17496 * packets from the wire, we can get to IPsec after 17497 * this and we better store the index for that case. 17498 */ 17499 ill = (ill_t *)q->q_ptr; 17500 ii = (ipsec_in_t *)first_mp->b_rptr; 17501 ii->ipsec_in_ill_index = 17502 ill->ill_phyint->phyint_ifindex; 17503 ii->ipsec_in_rill_index = 17504 recv_ill->ill_phyint->phyint_ifindex; 17505 if (ii->ipsec_in_decaps) { 17506 /* 17507 * This packet is self-encapsulated multiple 17508 * times. We don't want to recurse infinitely. 17509 * To keep it simple, drop the packet. 17510 */ 17511 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17512 freemsg(first_mp); 17513 return; 17514 } 17515 ii->ipsec_in_decaps = B_TRUE; 17516 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17517 ire); 17518 return; 17519 } 17520 break; 17521 case IPPROTO_AH: 17522 case IPPROTO_ESP: { 17523 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17524 17525 /* 17526 * Fast path for AH/ESP. If this is the first time 17527 * we are sending a datagram to AH/ESP, allocate 17528 * a IPSEC_IN message and prepend it. Otherwise, 17529 * just fanout. 17530 */ 17531 17532 int ipsec_rc; 17533 ipsec_in_t *ii; 17534 netstack_t *ns = ipst->ips_netstack; 17535 17536 IP_STAT(ipst, ipsec_proto_ahesp); 17537 if (!mctl_present) { 17538 ASSERT(first_mp == mp); 17539 first_mp = ipsec_in_alloc(B_TRUE, ns); 17540 if (first_mp == NULL) { 17541 ip1dbg(("ip_proto_input: IPSEC_IN " 17542 "allocation failure.\n")); 17543 freemsg(hada_mp); /* okay ifnull */ 17544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17545 freemsg(mp); 17546 return; 17547 } 17548 /* 17549 * Store the ill_index so that when we come back 17550 * from IPsec we ride on the same queue. 17551 */ 17552 ill = (ill_t *)q->q_ptr; 17553 ii = (ipsec_in_t *)first_mp->b_rptr; 17554 ii->ipsec_in_ill_index = 17555 ill->ill_phyint->phyint_ifindex; 17556 ii->ipsec_in_rill_index = 17557 recv_ill->ill_phyint->phyint_ifindex; 17558 first_mp->b_cont = mp; 17559 /* 17560 * Cache hardware acceleration info. 17561 */ 17562 if (hada_mp != NULL) { 17563 IPSECHW_DEBUG(IPSECHW_PKT, 17564 ("ip_rput_local: caching data attr.\n")); 17565 ii->ipsec_in_accelerated = B_TRUE; 17566 ii->ipsec_in_da = hada_mp; 17567 hada_mp = NULL; 17568 } 17569 } else { 17570 ii = (ipsec_in_t *)first_mp->b_rptr; 17571 } 17572 17573 if (!ipsec_loaded(ipss)) { 17574 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17575 ire->ire_zoneid, ipst); 17576 return; 17577 } 17578 17579 ns = ipst->ips_netstack; 17580 /* select inbound SA and have IPsec process the pkt */ 17581 if (ipha->ipha_protocol == IPPROTO_ESP) { 17582 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17583 boolean_t esp_in_udp_sa; 17584 if (esph == NULL) 17585 return; 17586 ASSERT(ii->ipsec_in_esp_sa != NULL); 17587 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17588 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17589 IPSA_F_NATT) != 0); 17590 /* 17591 * The following is a fancy, but quick, way of saying: 17592 * ESP-in-UDP SA and Raw ESP packet --> drop 17593 * OR 17594 * ESP SA and ESP-in-UDP packet --> drop 17595 */ 17596 if (esp_in_udp_sa != esp_in_udp_packet) { 17597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17598 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17599 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17600 &ns->netstack_ipsec->ipsec_dropper); 17601 return; 17602 } 17603 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17604 first_mp, esph); 17605 } else { 17606 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17607 if (ah == NULL) 17608 return; 17609 ASSERT(ii->ipsec_in_ah_sa != NULL); 17610 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17611 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17612 first_mp, ah); 17613 } 17614 17615 switch (ipsec_rc) { 17616 case IPSEC_STATUS_SUCCESS: 17617 break; 17618 case IPSEC_STATUS_FAILED: 17619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17620 /* FALLTHRU */ 17621 case IPSEC_STATUS_PENDING: 17622 return; 17623 } 17624 /* we're done with IPsec processing, send it up */ 17625 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17626 return; 17627 } 17628 default: 17629 break; 17630 } 17631 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17632 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17633 ire->ire_zoneid)); 17634 goto drop_pkt; 17635 } 17636 /* 17637 * Handle protocols with which IP is less intimate. There 17638 * can be more than one stream bound to a particular 17639 * protocol. When this is the case, each one gets a copy 17640 * of any incoming packets. 17641 */ 17642 ip_fanout_proto(q, first_mp, ill, ipha, 17643 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17644 B_TRUE, recv_ill, ire->ire_zoneid); 17645 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17646 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17647 return; 17648 17649 drop_pkt: 17650 freemsg(first_mp); 17651 if (hada_mp != NULL) 17652 freeb(hada_mp); 17653 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17654 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17655 #undef rptr 17656 #undef iphs 17657 17658 } 17659 17660 /* 17661 * Update any source route, record route or timestamp options. 17662 * Check that we are at end of strict source route. 17663 * The options have already been checked for sanity in ip_rput_options(). 17664 */ 17665 static boolean_t 17666 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17667 ip_stack_t *ipst) 17668 { 17669 ipoptp_t opts; 17670 uchar_t *opt; 17671 uint8_t optval; 17672 uint8_t optlen; 17673 ipaddr_t dst; 17674 uint32_t ts; 17675 ire_t *dst_ire; 17676 timestruc_t now; 17677 zoneid_t zoneid; 17678 ill_t *ill; 17679 17680 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17681 17682 ip2dbg(("ip_rput_local_options\n")); 17683 17684 for (optval = ipoptp_first(&opts, ipha); 17685 optval != IPOPT_EOL; 17686 optval = ipoptp_next(&opts)) { 17687 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17688 opt = opts.ipoptp_cur; 17689 optlen = opts.ipoptp_len; 17690 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17691 optval, optlen)); 17692 switch (optval) { 17693 uint32_t off; 17694 case IPOPT_SSRR: 17695 case IPOPT_LSRR: 17696 off = opt[IPOPT_OFFSET]; 17697 off--; 17698 if (optlen < IP_ADDR_LEN || 17699 off > optlen - IP_ADDR_LEN) { 17700 /* End of source route */ 17701 ip1dbg(("ip_rput_local_options: end of SR\n")); 17702 break; 17703 } 17704 /* 17705 * This will only happen if two consecutive entries 17706 * in the source route contains our address or if 17707 * it is a packet with a loose source route which 17708 * reaches us before consuming the whole source route 17709 */ 17710 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17711 if (optval == IPOPT_SSRR) { 17712 goto bad_src_route; 17713 } 17714 /* 17715 * Hack: instead of dropping the packet truncate the 17716 * source route to what has been used by filling the 17717 * rest with IPOPT_NOP. 17718 */ 17719 opt[IPOPT_OLEN] = (uint8_t)off; 17720 while (off < optlen) { 17721 opt[off++] = IPOPT_NOP; 17722 } 17723 break; 17724 case IPOPT_RR: 17725 off = opt[IPOPT_OFFSET]; 17726 off--; 17727 if (optlen < IP_ADDR_LEN || 17728 off > optlen - IP_ADDR_LEN) { 17729 /* No more room - ignore */ 17730 ip1dbg(( 17731 "ip_rput_local_options: end of RR\n")); 17732 break; 17733 } 17734 bcopy(&ire->ire_src_addr, (char *)opt + off, 17735 IP_ADDR_LEN); 17736 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17737 break; 17738 case IPOPT_TS: 17739 /* Insert timestamp if there is romm */ 17740 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17741 case IPOPT_TS_TSONLY: 17742 off = IPOPT_TS_TIMELEN; 17743 break; 17744 case IPOPT_TS_PRESPEC: 17745 case IPOPT_TS_PRESPEC_RFC791: 17746 /* Verify that the address matched */ 17747 off = opt[IPOPT_OFFSET] - 1; 17748 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17749 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17750 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17751 ipst); 17752 if (dst_ire == NULL) { 17753 /* Not for us */ 17754 break; 17755 } 17756 ire_refrele(dst_ire); 17757 /* FALLTHRU */ 17758 case IPOPT_TS_TSANDADDR: 17759 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17760 break; 17761 default: 17762 /* 17763 * ip_*put_options should have already 17764 * dropped this packet. 17765 */ 17766 cmn_err(CE_PANIC, "ip_rput_local_options: " 17767 "unknown IT - bug in ip_rput_options?\n"); 17768 return (B_TRUE); /* Keep "lint" happy */ 17769 } 17770 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17771 /* Increase overflow counter */ 17772 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17773 opt[IPOPT_POS_OV_FLG] = 17774 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17775 (off << 4)); 17776 break; 17777 } 17778 off = opt[IPOPT_OFFSET] - 1; 17779 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17780 case IPOPT_TS_PRESPEC: 17781 case IPOPT_TS_PRESPEC_RFC791: 17782 case IPOPT_TS_TSANDADDR: 17783 bcopy(&ire->ire_src_addr, (char *)opt + off, 17784 IP_ADDR_LEN); 17785 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17786 /* FALLTHRU */ 17787 case IPOPT_TS_TSONLY: 17788 off = opt[IPOPT_OFFSET] - 1; 17789 /* Compute # of milliseconds since midnight */ 17790 gethrestime(&now); 17791 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17792 now.tv_nsec / (NANOSEC / MILLISEC); 17793 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17794 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17795 break; 17796 } 17797 break; 17798 } 17799 } 17800 return (B_TRUE); 17801 17802 bad_src_route: 17803 q = WR(q); 17804 if (q->q_next != NULL) 17805 ill = q->q_ptr; 17806 else 17807 ill = NULL; 17808 17809 /* make sure we clear any indication of a hardware checksum */ 17810 DB_CKSUMFLAGS(mp) = 0; 17811 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17812 if (zoneid == ALL_ZONES) 17813 freemsg(mp); 17814 else 17815 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17816 return (B_FALSE); 17817 17818 } 17819 17820 /* 17821 * Process IP options in an inbound packet. If an option affects the 17822 * effective destination address, return the next hop address via dstp. 17823 * Returns -1 if something fails in which case an ICMP error has been sent 17824 * and mp freed. 17825 */ 17826 static int 17827 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17828 ip_stack_t *ipst) 17829 { 17830 ipoptp_t opts; 17831 uchar_t *opt; 17832 uint8_t optval; 17833 uint8_t optlen; 17834 ipaddr_t dst; 17835 intptr_t code = 0; 17836 ire_t *ire = NULL; 17837 zoneid_t zoneid; 17838 ill_t *ill; 17839 17840 ip2dbg(("ip_rput_options\n")); 17841 dst = ipha->ipha_dst; 17842 for (optval = ipoptp_first(&opts, ipha); 17843 optval != IPOPT_EOL; 17844 optval = ipoptp_next(&opts)) { 17845 opt = opts.ipoptp_cur; 17846 optlen = opts.ipoptp_len; 17847 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17848 optval, optlen)); 17849 /* 17850 * Note: we need to verify the checksum before we 17851 * modify anything thus this routine only extracts the next 17852 * hop dst from any source route. 17853 */ 17854 switch (optval) { 17855 uint32_t off; 17856 case IPOPT_SSRR: 17857 case IPOPT_LSRR: 17858 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17859 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17860 if (ire == NULL) { 17861 if (optval == IPOPT_SSRR) { 17862 ip1dbg(("ip_rput_options: not next" 17863 " strict source route 0x%x\n", 17864 ntohl(dst))); 17865 code = (char *)&ipha->ipha_dst - 17866 (char *)ipha; 17867 goto param_prob; /* RouterReq's */ 17868 } 17869 ip2dbg(("ip_rput_options: " 17870 "not next source route 0x%x\n", 17871 ntohl(dst))); 17872 break; 17873 } 17874 ire_refrele(ire); 17875 17876 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17877 ip1dbg(( 17878 "ip_rput_options: bad option offset\n")); 17879 code = (char *)&opt[IPOPT_OLEN] - 17880 (char *)ipha; 17881 goto param_prob; 17882 } 17883 off = opt[IPOPT_OFFSET]; 17884 off--; 17885 redo_srr: 17886 if (optlen < IP_ADDR_LEN || 17887 off > optlen - IP_ADDR_LEN) { 17888 /* End of source route */ 17889 ip1dbg(("ip_rput_options: end of SR\n")); 17890 break; 17891 } 17892 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17893 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17894 ntohl(dst))); 17895 17896 /* 17897 * Check if our address is present more than 17898 * once as consecutive hops in source route. 17899 * XXX verify per-interface ip_forwarding 17900 * for source route? 17901 */ 17902 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17903 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17904 17905 if (ire != NULL) { 17906 ire_refrele(ire); 17907 off += IP_ADDR_LEN; 17908 goto redo_srr; 17909 } 17910 17911 if (dst == htonl(INADDR_LOOPBACK)) { 17912 ip1dbg(("ip_rput_options: loopback addr in " 17913 "source route!\n")); 17914 goto bad_src_route; 17915 } 17916 /* 17917 * For strict: verify that dst is directly 17918 * reachable. 17919 */ 17920 if (optval == IPOPT_SSRR) { 17921 ire = ire_ftable_lookup(dst, 0, 0, 17922 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17923 MBLK_GETLABEL(mp), 17924 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17925 if (ire == NULL) { 17926 ip1dbg(("ip_rput_options: SSRR not " 17927 "directly reachable: 0x%x\n", 17928 ntohl(dst))); 17929 goto bad_src_route; 17930 } 17931 ire_refrele(ire); 17932 } 17933 /* 17934 * Defer update of the offset and the record route 17935 * until the packet is forwarded. 17936 */ 17937 break; 17938 case IPOPT_RR: 17939 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17940 ip1dbg(( 17941 "ip_rput_options: bad option offset\n")); 17942 code = (char *)&opt[IPOPT_OLEN] - 17943 (char *)ipha; 17944 goto param_prob; 17945 } 17946 break; 17947 case IPOPT_TS: 17948 /* 17949 * Verify that length >= 5 and that there is either 17950 * room for another timestamp or that the overflow 17951 * counter is not maxed out. 17952 */ 17953 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17954 if (optlen < IPOPT_MINLEN_IT) { 17955 goto param_prob; 17956 } 17957 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17958 ip1dbg(( 17959 "ip_rput_options: bad option offset\n")); 17960 code = (char *)&opt[IPOPT_OFFSET] - 17961 (char *)ipha; 17962 goto param_prob; 17963 } 17964 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17965 case IPOPT_TS_TSONLY: 17966 off = IPOPT_TS_TIMELEN; 17967 break; 17968 case IPOPT_TS_TSANDADDR: 17969 case IPOPT_TS_PRESPEC: 17970 case IPOPT_TS_PRESPEC_RFC791: 17971 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17972 break; 17973 default: 17974 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17975 (char *)ipha; 17976 goto param_prob; 17977 } 17978 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17979 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17980 /* 17981 * No room and the overflow counter is 15 17982 * already. 17983 */ 17984 goto param_prob; 17985 } 17986 break; 17987 } 17988 } 17989 17990 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17991 *dstp = dst; 17992 return (0); 17993 } 17994 17995 ip1dbg(("ip_rput_options: error processing IP options.")); 17996 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17997 17998 param_prob: 17999 q = WR(q); 18000 if (q->q_next != NULL) 18001 ill = q->q_ptr; 18002 else 18003 ill = NULL; 18004 18005 /* make sure we clear any indication of a hardware checksum */ 18006 DB_CKSUMFLAGS(mp) = 0; 18007 /* Don't know whether this is for non-global or global/forwarding */ 18008 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18009 if (zoneid == ALL_ZONES) 18010 freemsg(mp); 18011 else 18012 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18013 return (-1); 18014 18015 bad_src_route: 18016 q = WR(q); 18017 if (q->q_next != NULL) 18018 ill = q->q_ptr; 18019 else 18020 ill = NULL; 18021 18022 /* make sure we clear any indication of a hardware checksum */ 18023 DB_CKSUMFLAGS(mp) = 0; 18024 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18025 if (zoneid == ALL_ZONES) 18026 freemsg(mp); 18027 else 18028 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18029 return (-1); 18030 } 18031 18032 /* 18033 * IP & ICMP info in >=14 msg's ... 18034 * - ip fixed part (mib2_ip_t) 18035 * - icmp fixed part (mib2_icmp_t) 18036 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18037 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18038 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18039 * - ipRouteAttributeTable (ip 102) labeled routes 18040 * - ip multicast membership (ip_member_t) 18041 * - ip multicast source filtering (ip_grpsrc_t) 18042 * - igmp fixed part (struct igmpstat) 18043 * - multicast routing stats (struct mrtstat) 18044 * - multicast routing vifs (array of struct vifctl) 18045 * - multicast routing routes (array of struct mfcctl) 18046 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18047 * One per ill plus one generic 18048 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18049 * One per ill plus one generic 18050 * - ipv6RouteEntry all IPv6 IREs 18051 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18052 * - ipv6NetToMediaEntry all Neighbor Cache entries 18053 * - ipv6AddrEntry all IPv6 ipifs 18054 * - ipv6 multicast membership (ipv6_member_t) 18055 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18056 * 18057 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18058 * 18059 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18060 * already filled in by the caller. 18061 * Return value of 0 indicates that no messages were sent and caller 18062 * should free mpctl. 18063 */ 18064 int 18065 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18066 { 18067 ip_stack_t *ipst; 18068 sctp_stack_t *sctps; 18069 18070 if (q->q_next != NULL) { 18071 ipst = ILLQ_TO_IPST(q); 18072 } else { 18073 ipst = CONNQ_TO_IPST(q); 18074 } 18075 ASSERT(ipst != NULL); 18076 sctps = ipst->ips_netstack->netstack_sctp; 18077 18078 if (mpctl == NULL || mpctl->b_cont == NULL) { 18079 return (0); 18080 } 18081 18082 /* 18083 * For the purposes of the (broken) packet shell use 18084 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18085 * to make TCP and UDP appear first in the list of mib items. 18086 * TBD: We could expand this and use it in netstat so that 18087 * the kernel doesn't have to produce large tables (connections, 18088 * routes, etc) when netstat only wants the statistics or a particular 18089 * table. 18090 */ 18091 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18092 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18093 return (1); 18094 } 18095 } 18096 18097 if (level != MIB2_TCP) { 18098 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18099 return (1); 18100 } 18101 } 18102 18103 if (level != MIB2_UDP) { 18104 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18105 return (1); 18106 } 18107 } 18108 18109 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18110 ipst)) == NULL) { 18111 return (1); 18112 } 18113 18114 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18115 return (1); 18116 } 18117 18118 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18119 return (1); 18120 } 18121 18122 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18123 return (1); 18124 } 18125 18126 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18127 return (1); 18128 } 18129 18130 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18131 return (1); 18132 } 18133 18134 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18135 return (1); 18136 } 18137 18138 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18139 return (1); 18140 } 18141 18142 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18143 return (1); 18144 } 18145 18146 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18147 return (1); 18148 } 18149 18150 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18151 return (1); 18152 } 18153 18154 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18155 return (1); 18156 } 18157 18158 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18159 return (1); 18160 } 18161 18162 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18163 return (1); 18164 } 18165 18166 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18167 return (1); 18168 } 18169 18170 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18171 if (mpctl == NULL) { 18172 return (1); 18173 } 18174 18175 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18176 return (1); 18177 } 18178 freemsg(mpctl); 18179 return (1); 18180 } 18181 18182 18183 /* Get global (legacy) IPv4 statistics */ 18184 static mblk_t * 18185 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18186 ip_stack_t *ipst) 18187 { 18188 mib2_ip_t old_ip_mib; 18189 struct opthdr *optp; 18190 mblk_t *mp2ctl; 18191 18192 /* 18193 * make a copy of the original message 18194 */ 18195 mp2ctl = copymsg(mpctl); 18196 18197 /* fixed length IP structure... */ 18198 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18199 optp->level = MIB2_IP; 18200 optp->name = 0; 18201 SET_MIB(old_ip_mib.ipForwarding, 18202 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18203 SET_MIB(old_ip_mib.ipDefaultTTL, 18204 (uint32_t)ipst->ips_ip_def_ttl); 18205 SET_MIB(old_ip_mib.ipReasmTimeout, 18206 ipst->ips_ip_g_frag_timeout); 18207 SET_MIB(old_ip_mib.ipAddrEntrySize, 18208 sizeof (mib2_ipAddrEntry_t)); 18209 SET_MIB(old_ip_mib.ipRouteEntrySize, 18210 sizeof (mib2_ipRouteEntry_t)); 18211 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18212 sizeof (mib2_ipNetToMediaEntry_t)); 18213 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18214 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18215 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18216 sizeof (mib2_ipAttributeEntry_t)); 18217 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18218 18219 /* 18220 * Grab the statistics from the new IP MIB 18221 */ 18222 SET_MIB(old_ip_mib.ipInReceives, 18223 (uint32_t)ipmib->ipIfStatsHCInReceives); 18224 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18225 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18226 SET_MIB(old_ip_mib.ipForwDatagrams, 18227 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18228 SET_MIB(old_ip_mib.ipInUnknownProtos, 18229 ipmib->ipIfStatsInUnknownProtos); 18230 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18231 SET_MIB(old_ip_mib.ipInDelivers, 18232 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18233 SET_MIB(old_ip_mib.ipOutRequests, 18234 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18235 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18236 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18237 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18238 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18239 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18240 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18241 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18242 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18243 18244 /* ipRoutingDiscards is not being used */ 18245 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18246 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18247 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18248 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18249 SET_MIB(old_ip_mib.ipReasmDuplicates, 18250 ipmib->ipIfStatsReasmDuplicates); 18251 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18252 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18253 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18254 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18255 SET_MIB(old_ip_mib.rawipInOverflows, 18256 ipmib->rawipIfStatsInOverflows); 18257 18258 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18259 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18260 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18261 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18262 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18263 ipmib->ipIfStatsOutSwitchIPVersion); 18264 18265 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18266 (int)sizeof (old_ip_mib))) { 18267 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18268 (uint_t)sizeof (old_ip_mib))); 18269 } 18270 18271 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18272 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18273 (int)optp->level, (int)optp->name, (int)optp->len)); 18274 qreply(q, mpctl); 18275 return (mp2ctl); 18276 } 18277 18278 /* Per interface IPv4 statistics */ 18279 static mblk_t * 18280 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18281 { 18282 struct opthdr *optp; 18283 mblk_t *mp2ctl; 18284 ill_t *ill; 18285 ill_walk_context_t ctx; 18286 mblk_t *mp_tail = NULL; 18287 mib2_ipIfStatsEntry_t global_ip_mib; 18288 18289 /* 18290 * Make a copy of the original message 18291 */ 18292 mp2ctl = copymsg(mpctl); 18293 18294 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18295 optp->level = MIB2_IP; 18296 optp->name = MIB2_IP_TRAFFIC_STATS; 18297 /* Include "unknown interface" ip_mib */ 18298 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18299 ipst->ips_ip_mib.ipIfStatsIfIndex = 18300 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18301 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18302 (ipst->ips_ip_g_forward ? 1 : 2)); 18303 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18304 (uint32_t)ipst->ips_ip_def_ttl); 18305 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18306 sizeof (mib2_ipIfStatsEntry_t)); 18307 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18308 sizeof (mib2_ipAddrEntry_t)); 18309 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18310 sizeof (mib2_ipRouteEntry_t)); 18311 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18312 sizeof (mib2_ipNetToMediaEntry_t)); 18313 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18314 sizeof (ip_member_t)); 18315 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18316 sizeof (ip_grpsrc_t)); 18317 18318 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18319 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18320 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18321 "failed to allocate %u bytes\n", 18322 (uint_t)sizeof (ipst->ips_ip_mib))); 18323 } 18324 18325 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18326 18327 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18328 ill = ILL_START_WALK_V4(&ctx, ipst); 18329 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18330 ill->ill_ip_mib->ipIfStatsIfIndex = 18331 ill->ill_phyint->phyint_ifindex; 18332 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18333 (ipst->ips_ip_g_forward ? 1 : 2)); 18334 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18335 (uint32_t)ipst->ips_ip_def_ttl); 18336 18337 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18338 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18339 (char *)ill->ill_ip_mib, 18340 (int)sizeof (*ill->ill_ip_mib))) { 18341 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18342 "failed to allocate %u bytes\n", 18343 (uint_t)sizeof (*ill->ill_ip_mib))); 18344 } 18345 } 18346 rw_exit(&ipst->ips_ill_g_lock); 18347 18348 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18349 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18350 "level %d, name %d, len %d\n", 18351 (int)optp->level, (int)optp->name, (int)optp->len)); 18352 qreply(q, mpctl); 18353 18354 if (mp2ctl == NULL) 18355 return (NULL); 18356 18357 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18358 } 18359 18360 /* Global IPv4 ICMP statistics */ 18361 static mblk_t * 18362 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18363 { 18364 struct opthdr *optp; 18365 mblk_t *mp2ctl; 18366 18367 /* 18368 * Make a copy of the original message 18369 */ 18370 mp2ctl = copymsg(mpctl); 18371 18372 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18373 optp->level = MIB2_ICMP; 18374 optp->name = 0; 18375 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18376 (int)sizeof (ipst->ips_icmp_mib))) { 18377 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18378 (uint_t)sizeof (ipst->ips_icmp_mib))); 18379 } 18380 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18381 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18382 (int)optp->level, (int)optp->name, (int)optp->len)); 18383 qreply(q, mpctl); 18384 return (mp2ctl); 18385 } 18386 18387 /* Global IPv4 IGMP statistics */ 18388 static mblk_t * 18389 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18390 { 18391 struct opthdr *optp; 18392 mblk_t *mp2ctl; 18393 18394 /* 18395 * make a copy of the original message 18396 */ 18397 mp2ctl = copymsg(mpctl); 18398 18399 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18400 optp->level = EXPER_IGMP; 18401 optp->name = 0; 18402 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18403 (int)sizeof (ipst->ips_igmpstat))) { 18404 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18405 (uint_t)sizeof (ipst->ips_igmpstat))); 18406 } 18407 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18408 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18409 (int)optp->level, (int)optp->name, (int)optp->len)); 18410 qreply(q, mpctl); 18411 return (mp2ctl); 18412 } 18413 18414 /* Global IPv4 Multicast Routing statistics */ 18415 static mblk_t * 18416 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18417 { 18418 struct opthdr *optp; 18419 mblk_t *mp2ctl; 18420 18421 /* 18422 * make a copy of the original message 18423 */ 18424 mp2ctl = copymsg(mpctl); 18425 18426 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18427 optp->level = EXPER_DVMRP; 18428 optp->name = 0; 18429 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18430 ip0dbg(("ip_mroute_stats: failed\n")); 18431 } 18432 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18433 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18434 (int)optp->level, (int)optp->name, (int)optp->len)); 18435 qreply(q, mpctl); 18436 return (mp2ctl); 18437 } 18438 18439 /* IPv4 address information */ 18440 static mblk_t * 18441 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18442 { 18443 struct opthdr *optp; 18444 mblk_t *mp2ctl; 18445 mblk_t *mp_tail = NULL; 18446 ill_t *ill; 18447 ipif_t *ipif; 18448 uint_t bitval; 18449 mib2_ipAddrEntry_t mae; 18450 zoneid_t zoneid; 18451 ill_walk_context_t ctx; 18452 18453 /* 18454 * make a copy of the original message 18455 */ 18456 mp2ctl = copymsg(mpctl); 18457 18458 /* ipAddrEntryTable */ 18459 18460 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18461 optp->level = MIB2_IP; 18462 optp->name = MIB2_IP_ADDR; 18463 zoneid = Q_TO_CONN(q)->conn_zoneid; 18464 18465 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18466 ill = ILL_START_WALK_V4(&ctx, ipst); 18467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18468 for (ipif = ill->ill_ipif; ipif != NULL; 18469 ipif = ipif->ipif_next) { 18470 if (ipif->ipif_zoneid != zoneid && 18471 ipif->ipif_zoneid != ALL_ZONES) 18472 continue; 18473 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18474 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18475 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18476 18477 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18478 OCTET_LENGTH); 18479 mae.ipAdEntIfIndex.o_length = 18480 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18481 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18482 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18483 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18484 mae.ipAdEntInfo.ae_subnet_len = 18485 ip_mask_to_plen(ipif->ipif_net_mask); 18486 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18487 for (bitval = 1; 18488 bitval && 18489 !(bitval & ipif->ipif_brd_addr); 18490 bitval <<= 1) 18491 noop; 18492 mae.ipAdEntBcastAddr = bitval; 18493 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18494 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18495 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18496 mae.ipAdEntInfo.ae_broadcast_addr = 18497 ipif->ipif_brd_addr; 18498 mae.ipAdEntInfo.ae_pp_dst_addr = 18499 ipif->ipif_pp_dst_addr; 18500 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18501 ill->ill_flags | ill->ill_phyint->phyint_flags; 18502 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18503 18504 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18505 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18506 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18507 "allocate %u bytes\n", 18508 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18509 } 18510 } 18511 } 18512 rw_exit(&ipst->ips_ill_g_lock); 18513 18514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18515 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18516 (int)optp->level, (int)optp->name, (int)optp->len)); 18517 qreply(q, mpctl); 18518 return (mp2ctl); 18519 } 18520 18521 /* IPv6 address information */ 18522 static mblk_t * 18523 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18524 { 18525 struct opthdr *optp; 18526 mblk_t *mp2ctl; 18527 mblk_t *mp_tail = NULL; 18528 ill_t *ill; 18529 ipif_t *ipif; 18530 mib2_ipv6AddrEntry_t mae6; 18531 zoneid_t zoneid; 18532 ill_walk_context_t ctx; 18533 18534 /* 18535 * make a copy of the original message 18536 */ 18537 mp2ctl = copymsg(mpctl); 18538 18539 /* ipv6AddrEntryTable */ 18540 18541 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18542 optp->level = MIB2_IP6; 18543 optp->name = MIB2_IP6_ADDR; 18544 zoneid = Q_TO_CONN(q)->conn_zoneid; 18545 18546 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18547 ill = ILL_START_WALK_V6(&ctx, ipst); 18548 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18549 for (ipif = ill->ill_ipif; ipif != NULL; 18550 ipif = ipif->ipif_next) { 18551 if (ipif->ipif_zoneid != zoneid && 18552 ipif->ipif_zoneid != ALL_ZONES) 18553 continue; 18554 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18555 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18556 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18557 18558 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18559 OCTET_LENGTH); 18560 mae6.ipv6AddrIfIndex.o_length = 18561 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18562 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18563 mae6.ipv6AddrPfxLength = 18564 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18565 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18566 mae6.ipv6AddrInfo.ae_subnet_len = 18567 mae6.ipv6AddrPfxLength; 18568 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18569 18570 /* Type: stateless(1), stateful(2), unknown(3) */ 18571 if (ipif->ipif_flags & IPIF_ADDRCONF) 18572 mae6.ipv6AddrType = 1; 18573 else 18574 mae6.ipv6AddrType = 2; 18575 /* Anycast: true(1), false(2) */ 18576 if (ipif->ipif_flags & IPIF_ANYCAST) 18577 mae6.ipv6AddrAnycastFlag = 1; 18578 else 18579 mae6.ipv6AddrAnycastFlag = 2; 18580 18581 /* 18582 * Address status: preferred(1), deprecated(2), 18583 * invalid(3), inaccessible(4), unknown(5) 18584 */ 18585 if (ipif->ipif_flags & IPIF_NOLOCAL) 18586 mae6.ipv6AddrStatus = 3; 18587 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18588 mae6.ipv6AddrStatus = 2; 18589 else 18590 mae6.ipv6AddrStatus = 1; 18591 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18592 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18593 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18594 ipif->ipif_v6pp_dst_addr; 18595 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18596 ill->ill_flags | ill->ill_phyint->phyint_flags; 18597 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18598 mae6.ipv6AddrIdentifier = ill->ill_token; 18599 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18600 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18601 mae6.ipv6AddrRetransmitTime = 18602 ill->ill_reachable_retrans_time; 18603 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18604 (char *)&mae6, 18605 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18606 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18607 "allocate %u bytes\n", 18608 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18609 } 18610 } 18611 } 18612 rw_exit(&ipst->ips_ill_g_lock); 18613 18614 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18615 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18616 (int)optp->level, (int)optp->name, (int)optp->len)); 18617 qreply(q, mpctl); 18618 return (mp2ctl); 18619 } 18620 18621 /* IPv4 multicast group membership. */ 18622 static mblk_t * 18623 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18624 { 18625 struct opthdr *optp; 18626 mblk_t *mp2ctl; 18627 ill_t *ill; 18628 ipif_t *ipif; 18629 ilm_t *ilm; 18630 ip_member_t ipm; 18631 mblk_t *mp_tail = NULL; 18632 ill_walk_context_t ctx; 18633 zoneid_t zoneid; 18634 18635 /* 18636 * make a copy of the original message 18637 */ 18638 mp2ctl = copymsg(mpctl); 18639 zoneid = Q_TO_CONN(q)->conn_zoneid; 18640 18641 /* ipGroupMember table */ 18642 optp = (struct opthdr *)&mpctl->b_rptr[ 18643 sizeof (struct T_optmgmt_ack)]; 18644 optp->level = MIB2_IP; 18645 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18646 18647 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18648 ill = ILL_START_WALK_V4(&ctx, ipst); 18649 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18650 ILM_WALKER_HOLD(ill); 18651 for (ipif = ill->ill_ipif; ipif != NULL; 18652 ipif = ipif->ipif_next) { 18653 if (ipif->ipif_zoneid != zoneid && 18654 ipif->ipif_zoneid != ALL_ZONES) 18655 continue; /* not this zone */ 18656 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18657 OCTET_LENGTH); 18658 ipm.ipGroupMemberIfIndex.o_length = 18659 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18660 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18661 ASSERT(ilm->ilm_ipif != NULL); 18662 ASSERT(ilm->ilm_ill == NULL); 18663 if (ilm->ilm_ipif != ipif) 18664 continue; 18665 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18666 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18667 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18668 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18669 (char *)&ipm, (int)sizeof (ipm))) { 18670 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18671 "failed to allocate %u bytes\n", 18672 (uint_t)sizeof (ipm))); 18673 } 18674 } 18675 } 18676 ILM_WALKER_RELE(ill); 18677 } 18678 rw_exit(&ipst->ips_ill_g_lock); 18679 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18680 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18681 (int)optp->level, (int)optp->name, (int)optp->len)); 18682 qreply(q, mpctl); 18683 return (mp2ctl); 18684 } 18685 18686 /* IPv6 multicast group membership. */ 18687 static mblk_t * 18688 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18689 { 18690 struct opthdr *optp; 18691 mblk_t *mp2ctl; 18692 ill_t *ill; 18693 ilm_t *ilm; 18694 ipv6_member_t ipm6; 18695 mblk_t *mp_tail = NULL; 18696 ill_walk_context_t ctx; 18697 zoneid_t zoneid; 18698 18699 /* 18700 * make a copy of the original message 18701 */ 18702 mp2ctl = copymsg(mpctl); 18703 zoneid = Q_TO_CONN(q)->conn_zoneid; 18704 18705 /* ip6GroupMember table */ 18706 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18707 optp->level = MIB2_IP6; 18708 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18709 18710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18711 ill = ILL_START_WALK_V6(&ctx, ipst); 18712 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18713 ILM_WALKER_HOLD(ill); 18714 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18715 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18716 ASSERT(ilm->ilm_ipif == NULL); 18717 ASSERT(ilm->ilm_ill != NULL); 18718 if (ilm->ilm_zoneid != zoneid) 18719 continue; /* not this zone */ 18720 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18721 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18722 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18723 if (!snmp_append_data2(mpctl->b_cont, 18724 &mp_tail, 18725 (char *)&ipm6, (int)sizeof (ipm6))) { 18726 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18727 "failed to allocate %u bytes\n", 18728 (uint_t)sizeof (ipm6))); 18729 } 18730 } 18731 ILM_WALKER_RELE(ill); 18732 } 18733 rw_exit(&ipst->ips_ill_g_lock); 18734 18735 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18736 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18737 (int)optp->level, (int)optp->name, (int)optp->len)); 18738 qreply(q, mpctl); 18739 return (mp2ctl); 18740 } 18741 18742 /* IP multicast filtered sources */ 18743 static mblk_t * 18744 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18745 { 18746 struct opthdr *optp; 18747 mblk_t *mp2ctl; 18748 ill_t *ill; 18749 ipif_t *ipif; 18750 ilm_t *ilm; 18751 ip_grpsrc_t ips; 18752 mblk_t *mp_tail = NULL; 18753 ill_walk_context_t ctx; 18754 zoneid_t zoneid; 18755 int i; 18756 slist_t *sl; 18757 18758 /* 18759 * make a copy of the original message 18760 */ 18761 mp2ctl = copymsg(mpctl); 18762 zoneid = Q_TO_CONN(q)->conn_zoneid; 18763 18764 /* ipGroupSource table */ 18765 optp = (struct opthdr *)&mpctl->b_rptr[ 18766 sizeof (struct T_optmgmt_ack)]; 18767 optp->level = MIB2_IP; 18768 optp->name = EXPER_IP_GROUP_SOURCES; 18769 18770 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18771 ill = ILL_START_WALK_V4(&ctx, ipst); 18772 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18773 ILM_WALKER_HOLD(ill); 18774 for (ipif = ill->ill_ipif; ipif != NULL; 18775 ipif = ipif->ipif_next) { 18776 if (ipif->ipif_zoneid != zoneid) 18777 continue; /* not this zone */ 18778 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18779 OCTET_LENGTH); 18780 ips.ipGroupSourceIfIndex.o_length = 18781 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18782 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18783 ASSERT(ilm->ilm_ipif != NULL); 18784 ASSERT(ilm->ilm_ill == NULL); 18785 sl = ilm->ilm_filter; 18786 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18787 continue; 18788 ips.ipGroupSourceGroup = ilm->ilm_addr; 18789 for (i = 0; i < sl->sl_numsrc; i++) { 18790 if (!IN6_IS_ADDR_V4MAPPED( 18791 &sl->sl_addr[i])) 18792 continue; 18793 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18794 ips.ipGroupSourceAddress); 18795 if (snmp_append_data2(mpctl->b_cont, 18796 &mp_tail, (char *)&ips, 18797 (int)sizeof (ips)) == 0) { 18798 ip1dbg(("ip_snmp_get_mib2_" 18799 "ip_group_src: failed to " 18800 "allocate %u bytes\n", 18801 (uint_t)sizeof (ips))); 18802 } 18803 } 18804 } 18805 } 18806 ILM_WALKER_RELE(ill); 18807 } 18808 rw_exit(&ipst->ips_ill_g_lock); 18809 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18810 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18811 (int)optp->level, (int)optp->name, (int)optp->len)); 18812 qreply(q, mpctl); 18813 return (mp2ctl); 18814 } 18815 18816 /* IPv6 multicast filtered sources. */ 18817 static mblk_t * 18818 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18819 { 18820 struct opthdr *optp; 18821 mblk_t *mp2ctl; 18822 ill_t *ill; 18823 ilm_t *ilm; 18824 ipv6_grpsrc_t ips6; 18825 mblk_t *mp_tail = NULL; 18826 ill_walk_context_t ctx; 18827 zoneid_t zoneid; 18828 int i; 18829 slist_t *sl; 18830 18831 /* 18832 * make a copy of the original message 18833 */ 18834 mp2ctl = copymsg(mpctl); 18835 zoneid = Q_TO_CONN(q)->conn_zoneid; 18836 18837 /* ip6GroupMember table */ 18838 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18839 optp->level = MIB2_IP6; 18840 optp->name = EXPER_IP6_GROUP_SOURCES; 18841 18842 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18843 ill = ILL_START_WALK_V6(&ctx, ipst); 18844 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18845 ILM_WALKER_HOLD(ill); 18846 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18847 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18848 ASSERT(ilm->ilm_ipif == NULL); 18849 ASSERT(ilm->ilm_ill != NULL); 18850 sl = ilm->ilm_filter; 18851 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18852 continue; 18853 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18854 for (i = 0; i < sl->sl_numsrc; i++) { 18855 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18856 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18857 (char *)&ips6, (int)sizeof (ips6))) { 18858 ip1dbg(("ip_snmp_get_mib2_ip6_" 18859 "group_src: failed to allocate " 18860 "%u bytes\n", 18861 (uint_t)sizeof (ips6))); 18862 } 18863 } 18864 } 18865 ILM_WALKER_RELE(ill); 18866 } 18867 rw_exit(&ipst->ips_ill_g_lock); 18868 18869 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18870 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18871 (int)optp->level, (int)optp->name, (int)optp->len)); 18872 qreply(q, mpctl); 18873 return (mp2ctl); 18874 } 18875 18876 /* Multicast routing virtual interface table. */ 18877 static mblk_t * 18878 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18879 { 18880 struct opthdr *optp; 18881 mblk_t *mp2ctl; 18882 18883 /* 18884 * make a copy of the original message 18885 */ 18886 mp2ctl = copymsg(mpctl); 18887 18888 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18889 optp->level = EXPER_DVMRP; 18890 optp->name = EXPER_DVMRP_VIF; 18891 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18892 ip0dbg(("ip_mroute_vif: failed\n")); 18893 } 18894 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18895 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18896 (int)optp->level, (int)optp->name, (int)optp->len)); 18897 qreply(q, mpctl); 18898 return (mp2ctl); 18899 } 18900 18901 /* Multicast routing table. */ 18902 static mblk_t * 18903 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18904 { 18905 struct opthdr *optp; 18906 mblk_t *mp2ctl; 18907 18908 /* 18909 * make a copy of the original message 18910 */ 18911 mp2ctl = copymsg(mpctl); 18912 18913 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18914 optp->level = EXPER_DVMRP; 18915 optp->name = EXPER_DVMRP_MRT; 18916 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18917 ip0dbg(("ip_mroute_mrt: failed\n")); 18918 } 18919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18920 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18921 (int)optp->level, (int)optp->name, (int)optp->len)); 18922 qreply(q, mpctl); 18923 return (mp2ctl); 18924 } 18925 18926 /* 18927 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18928 * in one IRE walk. 18929 */ 18930 static mblk_t * 18931 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18932 { 18933 struct opthdr *optp; 18934 mblk_t *mp2ctl; /* Returned */ 18935 mblk_t *mp3ctl; /* nettomedia */ 18936 mblk_t *mp4ctl; /* routeattrs */ 18937 iproutedata_t ird; 18938 zoneid_t zoneid; 18939 18940 /* 18941 * make copies of the original message 18942 * - mp2ctl is returned unchanged to the caller for his use 18943 * - mpctl is sent upstream as ipRouteEntryTable 18944 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18945 * - mp4ctl is sent upstream as ipRouteAttributeTable 18946 */ 18947 mp2ctl = copymsg(mpctl); 18948 mp3ctl = copymsg(mpctl); 18949 mp4ctl = copymsg(mpctl); 18950 if (mp3ctl == NULL || mp4ctl == NULL) { 18951 freemsg(mp4ctl); 18952 freemsg(mp3ctl); 18953 freemsg(mp2ctl); 18954 freemsg(mpctl); 18955 return (NULL); 18956 } 18957 18958 bzero(&ird, sizeof (ird)); 18959 18960 ird.ird_route.lp_head = mpctl->b_cont; 18961 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18962 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18963 18964 zoneid = Q_TO_CONN(q)->conn_zoneid; 18965 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18966 18967 /* ipRouteEntryTable in mpctl */ 18968 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18969 optp->level = MIB2_IP; 18970 optp->name = MIB2_IP_ROUTE; 18971 optp->len = msgdsize(ird.ird_route.lp_head); 18972 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18973 (int)optp->level, (int)optp->name, (int)optp->len)); 18974 qreply(q, mpctl); 18975 18976 /* ipNetToMediaEntryTable in mp3ctl */ 18977 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18978 optp->level = MIB2_IP; 18979 optp->name = MIB2_IP_MEDIA; 18980 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18981 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18982 (int)optp->level, (int)optp->name, (int)optp->len)); 18983 qreply(q, mp3ctl); 18984 18985 /* ipRouteAttributeTable in mp4ctl */ 18986 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18987 optp->level = MIB2_IP; 18988 optp->name = EXPER_IP_RTATTR; 18989 optp->len = msgdsize(ird.ird_attrs.lp_head); 18990 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18991 (int)optp->level, (int)optp->name, (int)optp->len)); 18992 if (optp->len == 0) 18993 freemsg(mp4ctl); 18994 else 18995 qreply(q, mp4ctl); 18996 18997 return (mp2ctl); 18998 } 18999 19000 /* 19001 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19002 * ipv6NetToMediaEntryTable in an NDP walk. 19003 */ 19004 static mblk_t * 19005 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19006 { 19007 struct opthdr *optp; 19008 mblk_t *mp2ctl; /* Returned */ 19009 mblk_t *mp3ctl; /* nettomedia */ 19010 mblk_t *mp4ctl; /* routeattrs */ 19011 iproutedata_t ird; 19012 zoneid_t zoneid; 19013 19014 /* 19015 * make copies of the original message 19016 * - mp2ctl is returned unchanged to the caller for his use 19017 * - mpctl is sent upstream as ipv6RouteEntryTable 19018 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19019 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19020 */ 19021 mp2ctl = copymsg(mpctl); 19022 mp3ctl = copymsg(mpctl); 19023 mp4ctl = copymsg(mpctl); 19024 if (mp3ctl == NULL || mp4ctl == NULL) { 19025 freemsg(mp4ctl); 19026 freemsg(mp3ctl); 19027 freemsg(mp2ctl); 19028 freemsg(mpctl); 19029 return (NULL); 19030 } 19031 19032 bzero(&ird, sizeof (ird)); 19033 19034 ird.ird_route.lp_head = mpctl->b_cont; 19035 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19036 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19037 19038 zoneid = Q_TO_CONN(q)->conn_zoneid; 19039 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19040 19041 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19042 optp->level = MIB2_IP6; 19043 optp->name = MIB2_IP6_ROUTE; 19044 optp->len = msgdsize(ird.ird_route.lp_head); 19045 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19046 (int)optp->level, (int)optp->name, (int)optp->len)); 19047 qreply(q, mpctl); 19048 19049 /* ipv6NetToMediaEntryTable in mp3ctl */ 19050 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19051 19052 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19053 optp->level = MIB2_IP6; 19054 optp->name = MIB2_IP6_MEDIA; 19055 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19056 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19057 (int)optp->level, (int)optp->name, (int)optp->len)); 19058 qreply(q, mp3ctl); 19059 19060 /* ipv6RouteAttributeTable in mp4ctl */ 19061 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19062 optp->level = MIB2_IP6; 19063 optp->name = EXPER_IP_RTATTR; 19064 optp->len = msgdsize(ird.ird_attrs.lp_head); 19065 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19066 (int)optp->level, (int)optp->name, (int)optp->len)); 19067 if (optp->len == 0) 19068 freemsg(mp4ctl); 19069 else 19070 qreply(q, mp4ctl); 19071 19072 return (mp2ctl); 19073 } 19074 19075 /* 19076 * IPv6 mib: One per ill 19077 */ 19078 static mblk_t * 19079 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19080 { 19081 struct opthdr *optp; 19082 mblk_t *mp2ctl; 19083 ill_t *ill; 19084 ill_walk_context_t ctx; 19085 mblk_t *mp_tail = NULL; 19086 19087 /* 19088 * Make a copy of the original message 19089 */ 19090 mp2ctl = copymsg(mpctl); 19091 19092 /* fixed length IPv6 structure ... */ 19093 19094 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19095 optp->level = MIB2_IP6; 19096 optp->name = 0; 19097 /* Include "unknown interface" ip6_mib */ 19098 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19099 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19100 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19101 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19102 ipst->ips_ipv6_forward ? 1 : 2); 19103 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19104 ipst->ips_ipv6_def_hops); 19105 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19106 sizeof (mib2_ipIfStatsEntry_t)); 19107 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19108 sizeof (mib2_ipv6AddrEntry_t)); 19109 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19110 sizeof (mib2_ipv6RouteEntry_t)); 19111 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19112 sizeof (mib2_ipv6NetToMediaEntry_t)); 19113 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19114 sizeof (ipv6_member_t)); 19115 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19116 sizeof (ipv6_grpsrc_t)); 19117 19118 /* 19119 * Synchronize 64- and 32-bit counters 19120 */ 19121 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19122 ipIfStatsHCInReceives); 19123 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19124 ipIfStatsHCInDelivers); 19125 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19126 ipIfStatsHCOutRequests); 19127 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19128 ipIfStatsHCOutForwDatagrams); 19129 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19130 ipIfStatsHCOutMcastPkts); 19131 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19132 ipIfStatsHCInMcastPkts); 19133 19134 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19135 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19136 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19137 (uint_t)sizeof (ipst->ips_ip6_mib))); 19138 } 19139 19140 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19141 ill = ILL_START_WALK_V6(&ctx, ipst); 19142 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19143 ill->ill_ip_mib->ipIfStatsIfIndex = 19144 ill->ill_phyint->phyint_ifindex; 19145 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19146 ipst->ips_ipv6_forward ? 1 : 2); 19147 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19148 ill->ill_max_hops); 19149 19150 /* 19151 * Synchronize 64- and 32-bit counters 19152 */ 19153 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19154 ipIfStatsHCInReceives); 19155 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19156 ipIfStatsHCInDelivers); 19157 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19158 ipIfStatsHCOutRequests); 19159 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19160 ipIfStatsHCOutForwDatagrams); 19161 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19162 ipIfStatsHCOutMcastPkts); 19163 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19164 ipIfStatsHCInMcastPkts); 19165 19166 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19167 (char *)ill->ill_ip_mib, 19168 (int)sizeof (*ill->ill_ip_mib))) { 19169 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19170 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19171 } 19172 } 19173 rw_exit(&ipst->ips_ill_g_lock); 19174 19175 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19176 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19177 (int)optp->level, (int)optp->name, (int)optp->len)); 19178 qreply(q, mpctl); 19179 return (mp2ctl); 19180 } 19181 19182 /* 19183 * ICMPv6 mib: One per ill 19184 */ 19185 static mblk_t * 19186 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19187 { 19188 struct opthdr *optp; 19189 mblk_t *mp2ctl; 19190 ill_t *ill; 19191 ill_walk_context_t ctx; 19192 mblk_t *mp_tail = NULL; 19193 /* 19194 * Make a copy of the original message 19195 */ 19196 mp2ctl = copymsg(mpctl); 19197 19198 /* fixed length ICMPv6 structure ... */ 19199 19200 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19201 optp->level = MIB2_ICMP6; 19202 optp->name = 0; 19203 /* Include "unknown interface" icmp6_mib */ 19204 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19205 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19206 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19207 sizeof (mib2_ipv6IfIcmpEntry_t); 19208 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19209 (char *)&ipst->ips_icmp6_mib, 19210 (int)sizeof (ipst->ips_icmp6_mib))) { 19211 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19212 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19213 } 19214 19215 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19216 ill = ILL_START_WALK_V6(&ctx, ipst); 19217 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19218 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19219 ill->ill_phyint->phyint_ifindex; 19220 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19221 (char *)ill->ill_icmp6_mib, 19222 (int)sizeof (*ill->ill_icmp6_mib))) { 19223 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19224 "%u bytes\n", 19225 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19226 } 19227 } 19228 rw_exit(&ipst->ips_ill_g_lock); 19229 19230 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19231 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19232 (int)optp->level, (int)optp->name, (int)optp->len)); 19233 qreply(q, mpctl); 19234 return (mp2ctl); 19235 } 19236 19237 /* 19238 * ire_walk routine to create both ipRouteEntryTable and 19239 * ipRouteAttributeTable in one IRE walk 19240 */ 19241 static void 19242 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19243 { 19244 ill_t *ill; 19245 ipif_t *ipif; 19246 mib2_ipRouteEntry_t *re; 19247 mib2_ipAttributeEntry_t *iae, *iaeptr; 19248 ipaddr_t gw_addr; 19249 tsol_ire_gw_secattr_t *attrp; 19250 tsol_gc_t *gc = NULL; 19251 tsol_gcgrp_t *gcgrp = NULL; 19252 uint_t sacnt = 0; 19253 int i; 19254 19255 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19256 19257 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19258 return; 19259 19260 if ((attrp = ire->ire_gw_secattr) != NULL) { 19261 mutex_enter(&attrp->igsa_lock); 19262 if ((gc = attrp->igsa_gc) != NULL) { 19263 gcgrp = gc->gc_grp; 19264 ASSERT(gcgrp != NULL); 19265 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19266 sacnt = 1; 19267 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19268 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19269 gc = gcgrp->gcgrp_head; 19270 sacnt = gcgrp->gcgrp_count; 19271 } 19272 mutex_exit(&attrp->igsa_lock); 19273 19274 /* do nothing if there's no gc to report */ 19275 if (gc == NULL) { 19276 ASSERT(sacnt == 0); 19277 if (gcgrp != NULL) { 19278 /* we might as well drop the lock now */ 19279 rw_exit(&gcgrp->gcgrp_rwlock); 19280 gcgrp = NULL; 19281 } 19282 attrp = NULL; 19283 } 19284 19285 ASSERT(gc == NULL || (gcgrp != NULL && 19286 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19287 } 19288 ASSERT(sacnt == 0 || gc != NULL); 19289 19290 if (sacnt != 0 && 19291 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19292 kmem_free(re, sizeof (*re)); 19293 rw_exit(&gcgrp->gcgrp_rwlock); 19294 return; 19295 } 19296 19297 /* 19298 * Return all IRE types for route table... let caller pick and choose 19299 */ 19300 re->ipRouteDest = ire->ire_addr; 19301 ipif = ire->ire_ipif; 19302 re->ipRouteIfIndex.o_length = 0; 19303 if (ire->ire_type == IRE_CACHE) { 19304 ill = (ill_t *)ire->ire_stq->q_ptr; 19305 re->ipRouteIfIndex.o_length = 19306 ill->ill_name_length == 0 ? 0 : 19307 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19308 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19309 re->ipRouteIfIndex.o_length); 19310 } else if (ipif != NULL) { 19311 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19312 re->ipRouteIfIndex.o_length = 19313 mi_strlen(re->ipRouteIfIndex.o_bytes); 19314 } 19315 re->ipRouteMetric1 = -1; 19316 re->ipRouteMetric2 = -1; 19317 re->ipRouteMetric3 = -1; 19318 re->ipRouteMetric4 = -1; 19319 19320 gw_addr = ire->ire_gateway_addr; 19321 19322 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19323 re->ipRouteNextHop = ire->ire_src_addr; 19324 else 19325 re->ipRouteNextHop = gw_addr; 19326 /* indirect(4), direct(3), or invalid(2) */ 19327 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19328 re->ipRouteType = 2; 19329 else 19330 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19331 re->ipRouteProto = -1; 19332 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19333 re->ipRouteMask = ire->ire_mask; 19334 re->ipRouteMetric5 = -1; 19335 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19336 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19337 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19338 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19339 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19340 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19341 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19342 re->ipRouteInfo.re_flags = ire->ire_flags; 19343 19344 if (ire->ire_flags & RTF_DYNAMIC) { 19345 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19346 } else { 19347 re->ipRouteInfo.re_ire_type = ire->ire_type; 19348 } 19349 19350 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19351 (char *)re, (int)sizeof (*re))) { 19352 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19353 (uint_t)sizeof (*re))); 19354 } 19355 19356 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19357 iaeptr->iae_routeidx = ird->ird_idx; 19358 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19359 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19360 } 19361 19362 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19363 (char *)iae, sacnt * sizeof (*iae))) { 19364 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19365 (unsigned)(sacnt * sizeof (*iae)))); 19366 } 19367 19368 /* bump route index for next pass */ 19369 ird->ird_idx++; 19370 19371 kmem_free(re, sizeof (*re)); 19372 if (sacnt != 0) 19373 kmem_free(iae, sacnt * sizeof (*iae)); 19374 19375 if (gcgrp != NULL) 19376 rw_exit(&gcgrp->gcgrp_rwlock); 19377 } 19378 19379 /* 19380 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19381 */ 19382 static void 19383 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19384 { 19385 ill_t *ill; 19386 ipif_t *ipif; 19387 mib2_ipv6RouteEntry_t *re; 19388 mib2_ipAttributeEntry_t *iae, *iaeptr; 19389 in6_addr_t gw_addr_v6; 19390 tsol_ire_gw_secattr_t *attrp; 19391 tsol_gc_t *gc = NULL; 19392 tsol_gcgrp_t *gcgrp = NULL; 19393 uint_t sacnt = 0; 19394 int i; 19395 19396 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19397 19398 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19399 return; 19400 19401 if ((attrp = ire->ire_gw_secattr) != NULL) { 19402 mutex_enter(&attrp->igsa_lock); 19403 if ((gc = attrp->igsa_gc) != NULL) { 19404 gcgrp = gc->gc_grp; 19405 ASSERT(gcgrp != NULL); 19406 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19407 sacnt = 1; 19408 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19409 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19410 gc = gcgrp->gcgrp_head; 19411 sacnt = gcgrp->gcgrp_count; 19412 } 19413 mutex_exit(&attrp->igsa_lock); 19414 19415 /* do nothing if there's no gc to report */ 19416 if (gc == NULL) { 19417 ASSERT(sacnt == 0); 19418 if (gcgrp != NULL) { 19419 /* we might as well drop the lock now */ 19420 rw_exit(&gcgrp->gcgrp_rwlock); 19421 gcgrp = NULL; 19422 } 19423 attrp = NULL; 19424 } 19425 19426 ASSERT(gc == NULL || (gcgrp != NULL && 19427 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19428 } 19429 ASSERT(sacnt == 0 || gc != NULL); 19430 19431 if (sacnt != 0 && 19432 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19433 kmem_free(re, sizeof (*re)); 19434 rw_exit(&gcgrp->gcgrp_rwlock); 19435 return; 19436 } 19437 19438 /* 19439 * Return all IRE types for route table... let caller pick and choose 19440 */ 19441 re->ipv6RouteDest = ire->ire_addr_v6; 19442 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19443 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19444 re->ipv6RouteIfIndex.o_length = 0; 19445 ipif = ire->ire_ipif; 19446 if (ire->ire_type == IRE_CACHE) { 19447 ill = (ill_t *)ire->ire_stq->q_ptr; 19448 re->ipv6RouteIfIndex.o_length = 19449 ill->ill_name_length == 0 ? 0 : 19450 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19451 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19452 re->ipv6RouteIfIndex.o_length); 19453 } else if (ipif != NULL) { 19454 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19455 re->ipv6RouteIfIndex.o_length = 19456 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19457 } 19458 19459 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19460 19461 mutex_enter(&ire->ire_lock); 19462 gw_addr_v6 = ire->ire_gateway_addr_v6; 19463 mutex_exit(&ire->ire_lock); 19464 19465 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19466 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19467 else 19468 re->ipv6RouteNextHop = gw_addr_v6; 19469 19470 /* remote(4), local(3), or discard(2) */ 19471 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19472 re->ipv6RouteType = 2; 19473 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19474 re->ipv6RouteType = 3; 19475 else 19476 re->ipv6RouteType = 4; 19477 19478 re->ipv6RouteProtocol = -1; 19479 re->ipv6RoutePolicy = 0; 19480 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19481 re->ipv6RouteNextHopRDI = 0; 19482 re->ipv6RouteWeight = 0; 19483 re->ipv6RouteMetric = 0; 19484 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19485 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19486 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19487 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19488 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19489 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19490 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19491 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19492 19493 if (ire->ire_flags & RTF_DYNAMIC) { 19494 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19495 } else { 19496 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19497 } 19498 19499 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19500 (char *)re, (int)sizeof (*re))) { 19501 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19502 (uint_t)sizeof (*re))); 19503 } 19504 19505 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19506 iaeptr->iae_routeidx = ird->ird_idx; 19507 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19508 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19509 } 19510 19511 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19512 (char *)iae, sacnt * sizeof (*iae))) { 19513 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19514 (unsigned)(sacnt * sizeof (*iae)))); 19515 } 19516 19517 /* bump route index for next pass */ 19518 ird->ird_idx++; 19519 19520 kmem_free(re, sizeof (*re)); 19521 if (sacnt != 0) 19522 kmem_free(iae, sacnt * sizeof (*iae)); 19523 19524 if (gcgrp != NULL) 19525 rw_exit(&gcgrp->gcgrp_rwlock); 19526 } 19527 19528 /* 19529 * ndp_walk routine to create ipv6NetToMediaEntryTable 19530 */ 19531 static int 19532 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19533 { 19534 ill_t *ill; 19535 mib2_ipv6NetToMediaEntry_t ntme; 19536 dl_unitdata_req_t *dl; 19537 19538 ill = nce->nce_ill; 19539 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19540 return (0); 19541 19542 /* 19543 * Neighbor cache entry attached to IRE with on-link 19544 * destination. 19545 */ 19546 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19547 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19548 if ((ill->ill_flags & ILLF_XRESOLV) && 19549 (nce->nce_res_mp != NULL)) { 19550 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19551 ntme.ipv6NetToMediaPhysAddress.o_length = 19552 dl->dl_dest_addr_length; 19553 } else { 19554 ntme.ipv6NetToMediaPhysAddress.o_length = 19555 ill->ill_phys_addr_length; 19556 } 19557 if (nce->nce_res_mp != NULL) { 19558 bcopy((char *)nce->nce_res_mp->b_rptr + 19559 NCE_LL_ADDR_OFFSET(ill), 19560 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19561 ntme.ipv6NetToMediaPhysAddress.o_length); 19562 } else { 19563 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19564 ill->ill_phys_addr_length); 19565 } 19566 /* 19567 * Note: Returns ND_* states. Should be: 19568 * reachable(1), stale(2), delay(3), probe(4), 19569 * invalid(5), unknown(6) 19570 */ 19571 ntme.ipv6NetToMediaState = nce->nce_state; 19572 ntme.ipv6NetToMediaLastUpdated = 0; 19573 19574 /* other(1), dynamic(2), static(3), local(4) */ 19575 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19576 ntme.ipv6NetToMediaType = 4; 19577 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19578 ntme.ipv6NetToMediaType = 1; 19579 } else { 19580 ntme.ipv6NetToMediaType = 2; 19581 } 19582 19583 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19584 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19585 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19586 (uint_t)sizeof (ntme))); 19587 } 19588 return (0); 19589 } 19590 19591 /* 19592 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19593 */ 19594 /* ARGSUSED */ 19595 int 19596 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19597 { 19598 switch (level) { 19599 case MIB2_IP: 19600 case MIB2_ICMP: 19601 switch (name) { 19602 default: 19603 break; 19604 } 19605 return (1); 19606 default: 19607 return (1); 19608 } 19609 } 19610 19611 /* 19612 * When there exists both a 64- and 32-bit counter of a particular type 19613 * (i.e., InReceives), only the 64-bit counters are added. 19614 */ 19615 void 19616 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19617 { 19618 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19619 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19620 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19621 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19622 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19623 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19624 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19625 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19626 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19627 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19628 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19629 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19630 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19631 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19632 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19633 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19634 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19635 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19636 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19637 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19638 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19639 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19640 o2->ipIfStatsInWrongIPVersion); 19641 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19642 o2->ipIfStatsInWrongIPVersion); 19643 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19644 o2->ipIfStatsOutSwitchIPVersion); 19645 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19646 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19647 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19648 o2->ipIfStatsHCInForwDatagrams); 19649 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19650 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19651 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19652 o2->ipIfStatsHCOutForwDatagrams); 19653 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19654 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19655 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19656 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19657 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19658 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19659 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19660 o2->ipIfStatsHCOutMcastOctets); 19661 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19662 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19663 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19664 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19665 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19666 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19667 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19668 } 19669 19670 void 19671 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19672 { 19673 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19674 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19675 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19676 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19677 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19678 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19679 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19680 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19681 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19682 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19683 o2->ipv6IfIcmpInRouterSolicits); 19684 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19685 o2->ipv6IfIcmpInRouterAdvertisements); 19686 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19687 o2->ipv6IfIcmpInNeighborSolicits); 19688 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19689 o2->ipv6IfIcmpInNeighborAdvertisements); 19690 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19691 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19692 o2->ipv6IfIcmpInGroupMembQueries); 19693 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19694 o2->ipv6IfIcmpInGroupMembResponses); 19695 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19696 o2->ipv6IfIcmpInGroupMembReductions); 19697 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19698 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19699 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19700 o2->ipv6IfIcmpOutDestUnreachs); 19701 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19702 o2->ipv6IfIcmpOutAdminProhibs); 19703 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19704 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19705 o2->ipv6IfIcmpOutParmProblems); 19706 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19707 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19708 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19709 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19710 o2->ipv6IfIcmpOutRouterSolicits); 19711 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19712 o2->ipv6IfIcmpOutRouterAdvertisements); 19713 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19714 o2->ipv6IfIcmpOutNeighborSolicits); 19715 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19716 o2->ipv6IfIcmpOutNeighborAdvertisements); 19717 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19718 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19719 o2->ipv6IfIcmpOutGroupMembQueries); 19720 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19721 o2->ipv6IfIcmpOutGroupMembResponses); 19722 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19723 o2->ipv6IfIcmpOutGroupMembReductions); 19724 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19725 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19726 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19727 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19728 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19729 o2->ipv6IfIcmpInBadNeighborSolicitations); 19730 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19731 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19732 o2->ipv6IfIcmpInGroupMembTotal); 19733 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19734 o2->ipv6IfIcmpInGroupMembBadQueries); 19735 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19736 o2->ipv6IfIcmpInGroupMembBadReports); 19737 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19738 o2->ipv6IfIcmpInGroupMembOurReports); 19739 } 19740 19741 /* 19742 * Called before the options are updated to check if this packet will 19743 * be source routed from here. 19744 * This routine assumes that the options are well formed i.e. that they 19745 * have already been checked. 19746 */ 19747 static boolean_t 19748 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19749 { 19750 ipoptp_t opts; 19751 uchar_t *opt; 19752 uint8_t optval; 19753 uint8_t optlen; 19754 ipaddr_t dst; 19755 ire_t *ire; 19756 19757 if (IS_SIMPLE_IPH(ipha)) { 19758 ip2dbg(("not source routed\n")); 19759 return (B_FALSE); 19760 } 19761 dst = ipha->ipha_dst; 19762 for (optval = ipoptp_first(&opts, ipha); 19763 optval != IPOPT_EOL; 19764 optval = ipoptp_next(&opts)) { 19765 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19766 opt = opts.ipoptp_cur; 19767 optlen = opts.ipoptp_len; 19768 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19769 optval, optlen)); 19770 switch (optval) { 19771 uint32_t off; 19772 case IPOPT_SSRR: 19773 case IPOPT_LSRR: 19774 /* 19775 * If dst is one of our addresses and there are some 19776 * entries left in the source route return (true). 19777 */ 19778 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19779 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19780 if (ire == NULL) { 19781 ip2dbg(("ip_source_routed: not next" 19782 " source route 0x%x\n", 19783 ntohl(dst))); 19784 return (B_FALSE); 19785 } 19786 ire_refrele(ire); 19787 off = opt[IPOPT_OFFSET]; 19788 off--; 19789 if (optlen < IP_ADDR_LEN || 19790 off > optlen - IP_ADDR_LEN) { 19791 /* End of source route */ 19792 ip1dbg(("ip_source_routed: end of SR\n")); 19793 return (B_FALSE); 19794 } 19795 return (B_TRUE); 19796 } 19797 } 19798 ip2dbg(("not source routed\n")); 19799 return (B_FALSE); 19800 } 19801 19802 /* 19803 * Check if the packet contains any source route. 19804 */ 19805 static boolean_t 19806 ip_source_route_included(ipha_t *ipha) 19807 { 19808 ipoptp_t opts; 19809 uint8_t optval; 19810 19811 if (IS_SIMPLE_IPH(ipha)) 19812 return (B_FALSE); 19813 for (optval = ipoptp_first(&opts, ipha); 19814 optval != IPOPT_EOL; 19815 optval = ipoptp_next(&opts)) { 19816 switch (optval) { 19817 case IPOPT_SSRR: 19818 case IPOPT_LSRR: 19819 return (B_TRUE); 19820 } 19821 } 19822 return (B_FALSE); 19823 } 19824 19825 /* 19826 * Called when the IRE expiration timer fires. 19827 */ 19828 void 19829 ip_trash_timer_expire(void *args) 19830 { 19831 int flush_flag = 0; 19832 ire_expire_arg_t iea; 19833 ip_stack_t *ipst = (ip_stack_t *)args; 19834 19835 iea.iea_ipst = ipst; /* No netstack_hold */ 19836 19837 /* 19838 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19839 * This lock makes sure that a new invocation of this function 19840 * that occurs due to an almost immediate timer firing will not 19841 * progress beyond this point until the current invocation is done 19842 */ 19843 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19844 ipst->ips_ip_ire_expire_id = 0; 19845 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19846 19847 /* Periodic timer */ 19848 if (ipst->ips_ip_ire_arp_time_elapsed >= 19849 ipst->ips_ip_ire_arp_interval) { 19850 /* 19851 * Remove all IRE_CACHE entries since they might 19852 * contain arp information. 19853 */ 19854 flush_flag |= FLUSH_ARP_TIME; 19855 ipst->ips_ip_ire_arp_time_elapsed = 0; 19856 IP_STAT(ipst, ip_ire_arp_timer_expired); 19857 } 19858 if (ipst->ips_ip_ire_rd_time_elapsed >= 19859 ipst->ips_ip_ire_redir_interval) { 19860 /* Remove all redirects */ 19861 flush_flag |= FLUSH_REDIRECT_TIME; 19862 ipst->ips_ip_ire_rd_time_elapsed = 0; 19863 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19864 } 19865 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19866 ipst->ips_ip_ire_pathmtu_interval) { 19867 /* Increase path mtu */ 19868 flush_flag |= FLUSH_MTU_TIME; 19869 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19870 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19871 } 19872 19873 /* 19874 * Optimize for the case when there are no redirects in the 19875 * ftable, that is, no need to walk the ftable in that case. 19876 */ 19877 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19878 iea.iea_flush_flag = flush_flag; 19879 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19880 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19881 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19882 NULL, ALL_ZONES, ipst); 19883 } 19884 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19885 ipst->ips_ip_redirect_cnt > 0) { 19886 iea.iea_flush_flag = flush_flag; 19887 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19888 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19889 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19890 } 19891 if (flush_flag & FLUSH_MTU_TIME) { 19892 /* 19893 * Walk all IPv6 IRE's and update them 19894 * Note that ARP and redirect timers are not 19895 * needed since NUD handles stale entries. 19896 */ 19897 flush_flag = FLUSH_MTU_TIME; 19898 iea.iea_flush_flag = flush_flag; 19899 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19900 ALL_ZONES, ipst); 19901 } 19902 19903 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19904 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19905 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19906 19907 /* 19908 * Hold the lock to serialize timeout calls and prevent 19909 * stale values in ip_ire_expire_id. Otherwise it is possible 19910 * for the timer to fire and a new invocation of this function 19911 * to start before the return value of timeout has been stored 19912 * in ip_ire_expire_id by the current invocation. 19913 */ 19914 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19915 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19916 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19917 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19918 } 19919 19920 /* 19921 * Called by the memory allocator subsystem directly, when the system 19922 * is running low on memory. 19923 */ 19924 /* ARGSUSED */ 19925 void 19926 ip_trash_ire_reclaim(void *args) 19927 { 19928 netstack_handle_t nh; 19929 netstack_t *ns; 19930 19931 netstack_next_init(&nh); 19932 while ((ns = netstack_next(&nh)) != NULL) { 19933 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19934 netstack_rele(ns); 19935 } 19936 netstack_next_fini(&nh); 19937 } 19938 19939 static void 19940 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19941 { 19942 ire_cache_count_t icc; 19943 ire_cache_reclaim_t icr; 19944 ncc_cache_count_t ncc; 19945 nce_cache_reclaim_t ncr; 19946 uint_t delete_cnt; 19947 /* 19948 * Memory reclaim call back. 19949 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19950 * Then, with a target of freeing 1/Nth of IRE_CACHE 19951 * entries, determine what fraction to free for 19952 * each category of IRE_CACHE entries giving absolute priority 19953 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19954 * entry will be freed unless all offlink entries are freed). 19955 */ 19956 icc.icc_total = 0; 19957 icc.icc_unused = 0; 19958 icc.icc_offlink = 0; 19959 icc.icc_pmtu = 0; 19960 icc.icc_onlink = 0; 19961 ire_walk(ire_cache_count, (char *)&icc, ipst); 19962 19963 /* 19964 * Free NCEs for IPv6 like the onlink ires. 19965 */ 19966 ncc.ncc_total = 0; 19967 ncc.ncc_host = 0; 19968 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19969 19970 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19971 icc.icc_pmtu + icc.icc_onlink); 19972 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19973 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19974 if (delete_cnt == 0) 19975 return; 19976 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19977 /* Always delete all unused offlink entries */ 19978 icr.icr_ipst = ipst; 19979 icr.icr_unused = 1; 19980 if (delete_cnt <= icc.icc_unused) { 19981 /* 19982 * Only need to free unused entries. In other words, 19983 * there are enough unused entries to free to meet our 19984 * target number of freed ire cache entries. 19985 */ 19986 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19987 ncr.ncr_host = 0; 19988 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19989 /* 19990 * Only need to free unused entries, plus a fraction of offlink 19991 * entries. It follows from the first if statement that 19992 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19993 */ 19994 delete_cnt -= icc.icc_unused; 19995 /* Round up # deleted by truncating fraction */ 19996 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19997 icr.icr_pmtu = icr.icr_onlink = 0; 19998 ncr.ncr_host = 0; 19999 } else if (delete_cnt <= 20000 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20001 /* 20002 * Free all unused and offlink entries, plus a fraction of 20003 * pmtu entries. It follows from the previous if statement 20004 * that icc_pmtu is non-zero, and that 20005 * delete_cnt != icc_unused + icc_offlink. 20006 */ 20007 icr.icr_offlink = 1; 20008 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20009 /* Round up # deleted by truncating fraction */ 20010 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20011 icr.icr_onlink = 0; 20012 ncr.ncr_host = 0; 20013 } else { 20014 /* 20015 * Free all unused, offlink, and pmtu entries, plus a fraction 20016 * of onlink entries. If we're here, then we know that 20017 * icc_onlink is non-zero, and that 20018 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20019 */ 20020 icr.icr_offlink = icr.icr_pmtu = 1; 20021 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20022 icc.icc_pmtu; 20023 /* Round up # deleted by truncating fraction */ 20024 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20025 /* Using the same delete fraction as for onlink IREs */ 20026 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20027 } 20028 #ifdef DEBUG 20029 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20030 "fractions %d/%d/%d/%d\n", 20031 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20032 icc.icc_unused, icc.icc_offlink, 20033 icc.icc_pmtu, icc.icc_onlink, 20034 icr.icr_unused, icr.icr_offlink, 20035 icr.icr_pmtu, icr.icr_onlink)); 20036 #endif 20037 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20038 if (ncr.ncr_host != 0) 20039 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20040 (uchar_t *)&ncr, ipst); 20041 #ifdef DEBUG 20042 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20043 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20044 ire_walk(ire_cache_count, (char *)&icc, ipst); 20045 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20046 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20047 icc.icc_pmtu, icc.icc_onlink)); 20048 #endif 20049 } 20050 20051 /* 20052 * ip_unbind is called when a copy of an unbind request is received from the 20053 * upper level protocol. We remove this conn from any fanout hash list it is 20054 * on, and zero out the bind information. No reply is expected up above. 20055 */ 20056 mblk_t * 20057 ip_unbind(queue_t *q, mblk_t *mp) 20058 { 20059 conn_t *connp = Q_TO_CONN(q); 20060 20061 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20062 20063 if (is_system_labeled() && connp->conn_anon_port) { 20064 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20065 connp->conn_mlp_type, connp->conn_ulp, 20066 ntohs(connp->conn_lport), B_FALSE); 20067 connp->conn_anon_port = 0; 20068 } 20069 connp->conn_mlp_type = mlptSingle; 20070 20071 ipcl_hash_remove(connp); 20072 20073 ASSERT(mp->b_cont == NULL); 20074 /* 20075 * Convert mp into a T_OK_ACK 20076 */ 20077 mp = mi_tpi_ok_ack_alloc(mp); 20078 20079 /* 20080 * should not happen in practice... T_OK_ACK is smaller than the 20081 * original message. 20082 */ 20083 if (mp == NULL) 20084 return (NULL); 20085 20086 return (mp); 20087 } 20088 20089 /* 20090 * Write side put procedure. Outbound data, IOCTLs, responses from 20091 * resolvers, etc, come down through here. 20092 * 20093 * arg2 is always a queue_t *. 20094 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20095 * the zoneid. 20096 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20097 */ 20098 void 20099 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20100 { 20101 ip_output_options(arg, mp, arg2, caller, &zero_info); 20102 } 20103 20104 void 20105 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20106 ip_opt_info_t *infop) 20107 { 20108 conn_t *connp = NULL; 20109 queue_t *q = (queue_t *)arg2; 20110 ipha_t *ipha; 20111 #define rptr ((uchar_t *)ipha) 20112 ire_t *ire = NULL; 20113 ire_t *sctp_ire = NULL; 20114 uint32_t v_hlen_tos_len; 20115 ipaddr_t dst; 20116 mblk_t *first_mp = NULL; 20117 boolean_t mctl_present; 20118 ipsec_out_t *io; 20119 int match_flags; 20120 ill_t *attach_ill = NULL; 20121 /* Bind to IPIF_NOFAILOVER ill etc. */ 20122 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20123 ipif_t *dst_ipif; 20124 boolean_t multirt_need_resolve = B_FALSE; 20125 mblk_t *copy_mp = NULL; 20126 int err; 20127 zoneid_t zoneid; 20128 int adjust; 20129 uint16_t iplen; 20130 boolean_t need_decref = B_FALSE; 20131 boolean_t ignore_dontroute = B_FALSE; 20132 boolean_t ignore_nexthop = B_FALSE; 20133 boolean_t ip_nexthop = B_FALSE; 20134 ipaddr_t nexthop_addr; 20135 ip_stack_t *ipst; 20136 20137 #ifdef _BIG_ENDIAN 20138 #define V_HLEN (v_hlen_tos_len >> 24) 20139 #else 20140 #define V_HLEN (v_hlen_tos_len & 0xFF) 20141 #endif 20142 20143 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20144 "ip_wput_start: q %p", q); 20145 20146 /* 20147 * ip_wput fast path 20148 */ 20149 20150 /* is packet from ARP ? */ 20151 if (q->q_next != NULL) { 20152 zoneid = (zoneid_t)(uintptr_t)arg; 20153 goto qnext; 20154 } 20155 20156 connp = (conn_t *)arg; 20157 ASSERT(connp != NULL); 20158 zoneid = connp->conn_zoneid; 20159 ipst = connp->conn_netstack->netstack_ip; 20160 20161 /* is queue flow controlled? */ 20162 if ((q->q_first != NULL || connp->conn_draining) && 20163 (caller == IP_WPUT)) { 20164 ASSERT(!need_decref); 20165 (void) putq(q, mp); 20166 return; 20167 } 20168 20169 /* Multidata transmit? */ 20170 if (DB_TYPE(mp) == M_MULTIDATA) { 20171 /* 20172 * We should never get here, since all Multidata messages 20173 * originating from tcp should have been directed over to 20174 * tcp_multisend() in the first place. 20175 */ 20176 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20177 freemsg(mp); 20178 return; 20179 } else if (DB_TYPE(mp) != M_DATA) 20180 goto notdata; 20181 20182 if (mp->b_flag & MSGHASREF) { 20183 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20184 mp->b_flag &= ~MSGHASREF; 20185 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20186 need_decref = B_TRUE; 20187 } 20188 ipha = (ipha_t *)mp->b_rptr; 20189 20190 /* is IP header non-aligned or mblk smaller than basic IP header */ 20191 #ifndef SAFETY_BEFORE_SPEED 20192 if (!OK_32PTR(rptr) || 20193 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20194 goto hdrtoosmall; 20195 #endif 20196 20197 ASSERT(OK_32PTR(ipha)); 20198 20199 /* 20200 * This function assumes that mp points to an IPv4 packet. If it's the 20201 * wrong version, we'll catch it again in ip_output_v6. 20202 * 20203 * Note that this is *only* locally-generated output here, and never 20204 * forwarded data, and that we need to deal only with transports that 20205 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20206 * label.) 20207 */ 20208 if (is_system_labeled() && 20209 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20210 !connp->conn_ulp_labeled) { 20211 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20212 connp->conn_mac_exempt, ipst); 20213 ipha = (ipha_t *)mp->b_rptr; 20214 if (err != 0) { 20215 first_mp = mp; 20216 if (err == EINVAL) 20217 goto icmp_parameter_problem; 20218 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20219 goto discard_pkt; 20220 } 20221 iplen = ntohs(ipha->ipha_length) + adjust; 20222 ipha->ipha_length = htons(iplen); 20223 } 20224 20225 ASSERT(infop != NULL); 20226 20227 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20228 /* 20229 * IP_PKTINFO ancillary option is present. 20230 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20231 * allows using address of any zone as the source address. 20232 */ 20233 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20234 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20235 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20236 if (ire == NULL) 20237 goto drop_pkt; 20238 ire_refrele(ire); 20239 ire = NULL; 20240 } 20241 20242 /* 20243 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20244 * passed in IP_PKTINFO. 20245 */ 20246 if (infop->ip_opt_ill_index != 0 && 20247 connp->conn_outgoing_ill == NULL && 20248 connp->conn_nofailover_ill == NULL) { 20249 20250 xmit_ill = ill_lookup_on_ifindex( 20251 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20252 ipst); 20253 20254 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20255 goto drop_pkt; 20256 /* 20257 * check that there is an ipif belonging 20258 * to our zone. IPCL_ZONEID is not used because 20259 * IP_ALLZONES option is valid only when the ill is 20260 * accessible from all zones i.e has a valid ipif in 20261 * all zones. 20262 */ 20263 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20264 goto drop_pkt; 20265 } 20266 } 20267 20268 /* 20269 * If there is a policy, try to attach an ipsec_out in 20270 * the front. At the end, first_mp either points to a 20271 * M_DATA message or IPSEC_OUT message linked to a 20272 * M_DATA message. We have to do it now as we might 20273 * lose the "conn" if we go through ip_newroute. 20274 */ 20275 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20276 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20277 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20278 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20279 if (need_decref) 20280 CONN_DEC_REF(connp); 20281 return; 20282 } else { 20283 ASSERT(mp->b_datap->db_type == M_CTL); 20284 first_mp = mp; 20285 mp = mp->b_cont; 20286 mctl_present = B_TRUE; 20287 } 20288 } else { 20289 first_mp = mp; 20290 mctl_present = B_FALSE; 20291 } 20292 20293 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20294 20295 /* is wrong version or IP options present */ 20296 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20297 goto version_hdrlen_check; 20298 dst = ipha->ipha_dst; 20299 20300 if (connp->conn_nofailover_ill != NULL) { 20301 attach_ill = conn_get_held_ill(connp, 20302 &connp->conn_nofailover_ill, &err); 20303 if (err == ILL_LOOKUP_FAILED) { 20304 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20305 if (need_decref) 20306 CONN_DEC_REF(connp); 20307 freemsg(first_mp); 20308 return; 20309 } 20310 } 20311 20312 /* If IP_BOUND_IF has been set, use that ill. */ 20313 if (connp->conn_outgoing_ill != NULL) { 20314 xmit_ill = conn_get_held_ill(connp, 20315 &connp->conn_outgoing_ill, &err); 20316 if (err == ILL_LOOKUP_FAILED) 20317 goto drop_pkt; 20318 20319 goto send_from_ill; 20320 } 20321 20322 /* is packet multicast? */ 20323 if (CLASSD(dst)) 20324 goto multicast; 20325 20326 /* 20327 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20328 * takes precedence over conn_dontroute and conn_nexthop_set 20329 */ 20330 if (xmit_ill != NULL) 20331 goto send_from_ill; 20332 20333 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20334 /* 20335 * If the destination is a broadcast, local, or loopback 20336 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20337 * standard path. 20338 */ 20339 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20340 if ((ire == NULL) || (ire->ire_type & 20341 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20342 if (ire != NULL) { 20343 ire_refrele(ire); 20344 /* No more access to ire */ 20345 ire = NULL; 20346 } 20347 /* 20348 * bypass routing checks and go directly to interface. 20349 */ 20350 if (connp->conn_dontroute) 20351 goto dontroute; 20352 20353 ASSERT(connp->conn_nexthop_set); 20354 ip_nexthop = B_TRUE; 20355 nexthop_addr = connp->conn_nexthop_v4; 20356 goto send_from_ill; 20357 } 20358 20359 /* Must be a broadcast, a loopback or a local ire */ 20360 ire_refrele(ire); 20361 /* No more access to ire */ 20362 ire = NULL; 20363 } 20364 20365 if (attach_ill != NULL) 20366 goto send_from_ill; 20367 20368 /* 20369 * We cache IRE_CACHEs to avoid lookups. We don't do 20370 * this for the tcp global queue and listen end point 20371 * as it does not really have a real destination to 20372 * talk to. This is also true for SCTP. 20373 */ 20374 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20375 !connp->conn_fully_bound) { 20376 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20377 if (ire == NULL) 20378 goto noirefound; 20379 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20380 "ip_wput_end: q %p (%S)", q, "end"); 20381 20382 /* 20383 * Check if the ire has the RTF_MULTIRT flag, inherited 20384 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20385 */ 20386 if (ire->ire_flags & RTF_MULTIRT) { 20387 20388 /* 20389 * Force the TTL of multirouted packets if required. 20390 * The TTL of such packets is bounded by the 20391 * ip_multirt_ttl ndd variable. 20392 */ 20393 if ((ipst->ips_ip_multirt_ttl > 0) && 20394 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20395 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20396 "(was %d), dst 0x%08x\n", 20397 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20398 ntohl(ire->ire_addr))); 20399 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20400 } 20401 /* 20402 * We look at this point if there are pending 20403 * unresolved routes. ire_multirt_resolvable() 20404 * checks in O(n) that all IRE_OFFSUBNET ire 20405 * entries for the packet's destination and 20406 * flagged RTF_MULTIRT are currently resolved. 20407 * If some remain unresolved, we make a copy 20408 * of the current message. It will be used 20409 * to initiate additional route resolutions. 20410 */ 20411 multirt_need_resolve = 20412 ire_multirt_need_resolve(ire->ire_addr, 20413 MBLK_GETLABEL(first_mp), ipst); 20414 ip2dbg(("ip_wput[TCP]: ire %p, " 20415 "multirt_need_resolve %d, first_mp %p\n", 20416 (void *)ire, multirt_need_resolve, 20417 (void *)first_mp)); 20418 if (multirt_need_resolve) { 20419 copy_mp = copymsg(first_mp); 20420 if (copy_mp != NULL) { 20421 MULTIRT_DEBUG_TAG(copy_mp); 20422 } 20423 } 20424 } 20425 20426 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20427 20428 /* 20429 * Try to resolve another multiroute if 20430 * ire_multirt_need_resolve() deemed it necessary. 20431 */ 20432 if (copy_mp != NULL) 20433 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20434 if (need_decref) 20435 CONN_DEC_REF(connp); 20436 return; 20437 } 20438 20439 /* 20440 * Access to conn_ire_cache. (protected by conn_lock) 20441 * 20442 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20443 * the ire bucket lock here to check for CONDEMNED as it is okay to 20444 * send a packet or two with the IRE_CACHE that is going away. 20445 * Access to the ire requires an ire refhold on the ire prior to 20446 * its use since an interface unplumb thread may delete the cached 20447 * ire and release the refhold at any time. 20448 * 20449 * Caching an ire in the conn_ire_cache 20450 * 20451 * o Caching an ire pointer in the conn requires a strict check for 20452 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20453 * ires before cleaning up the conns. So the caching of an ire pointer 20454 * in the conn is done after making sure under the bucket lock that the 20455 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20456 * caching an ire after the unplumb thread has cleaned up the conn. 20457 * If the conn does not send a packet subsequently the unplumb thread 20458 * will be hanging waiting for the ire count to drop to zero. 20459 * 20460 * o We also need to atomically test for a null conn_ire_cache and 20461 * set the conn_ire_cache under the the protection of the conn_lock 20462 * to avoid races among concurrent threads trying to simultaneously 20463 * cache an ire in the conn_ire_cache. 20464 */ 20465 mutex_enter(&connp->conn_lock); 20466 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20467 20468 if (ire != NULL && ire->ire_addr == dst && 20469 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20470 20471 IRE_REFHOLD(ire); 20472 mutex_exit(&connp->conn_lock); 20473 20474 } else { 20475 boolean_t cached = B_FALSE; 20476 connp->conn_ire_cache = NULL; 20477 mutex_exit(&connp->conn_lock); 20478 /* Release the old ire */ 20479 if (ire != NULL && sctp_ire == NULL) 20480 IRE_REFRELE_NOTR(ire); 20481 20482 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20483 if (ire == NULL) 20484 goto noirefound; 20485 IRE_REFHOLD_NOTR(ire); 20486 20487 mutex_enter(&connp->conn_lock); 20488 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20489 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20490 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20491 if (connp->conn_ulp == IPPROTO_TCP) 20492 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20493 connp->conn_ire_cache = ire; 20494 cached = B_TRUE; 20495 } 20496 rw_exit(&ire->ire_bucket->irb_lock); 20497 } 20498 mutex_exit(&connp->conn_lock); 20499 20500 /* 20501 * We can continue to use the ire but since it was 20502 * not cached, we should drop the extra reference. 20503 */ 20504 if (!cached) 20505 IRE_REFRELE_NOTR(ire); 20506 } 20507 20508 20509 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20510 "ip_wput_end: q %p (%S)", q, "end"); 20511 20512 /* 20513 * Check if the ire has the RTF_MULTIRT flag, inherited 20514 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20515 */ 20516 if (ire->ire_flags & RTF_MULTIRT) { 20517 20518 /* 20519 * Force the TTL of multirouted packets if required. 20520 * The TTL of such packets is bounded by the 20521 * ip_multirt_ttl ndd variable. 20522 */ 20523 if ((ipst->ips_ip_multirt_ttl > 0) && 20524 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20525 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20526 "(was %d), dst 0x%08x\n", 20527 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20528 ntohl(ire->ire_addr))); 20529 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20530 } 20531 20532 /* 20533 * At this point, we check to see if there are any pending 20534 * unresolved routes. ire_multirt_resolvable() 20535 * checks in O(n) that all IRE_OFFSUBNET ire 20536 * entries for the packet's destination and 20537 * flagged RTF_MULTIRT are currently resolved. 20538 * If some remain unresolved, we make a copy 20539 * of the current message. It will be used 20540 * to initiate additional route resolutions. 20541 */ 20542 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20543 MBLK_GETLABEL(first_mp), ipst); 20544 ip2dbg(("ip_wput[not TCP]: ire %p, " 20545 "multirt_need_resolve %d, first_mp %p\n", 20546 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20547 if (multirt_need_resolve) { 20548 copy_mp = copymsg(first_mp); 20549 if (copy_mp != NULL) { 20550 MULTIRT_DEBUG_TAG(copy_mp); 20551 } 20552 } 20553 } 20554 20555 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20556 20557 /* 20558 * Try to resolve another multiroute if 20559 * ire_multirt_resolvable() deemed it necessary 20560 */ 20561 if (copy_mp != NULL) 20562 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20563 if (need_decref) 20564 CONN_DEC_REF(connp); 20565 return; 20566 20567 qnext: 20568 /* 20569 * Upper Level Protocols pass down complete IP datagrams 20570 * as M_DATA messages. Everything else is a sideshow. 20571 * 20572 * 1) We could be re-entering ip_wput because of ip_neworute 20573 * in which case we could have a IPSEC_OUT message. We 20574 * need to pass through ip_wput like other datagrams and 20575 * hence cannot branch to ip_wput_nondata. 20576 * 20577 * 2) ARP, AH, ESP, and other clients who are on the module 20578 * instance of IP stream, give us something to deal with. 20579 * We will handle AH and ESP here and rest in ip_wput_nondata. 20580 * 20581 * 3) ICMP replies also could come here. 20582 */ 20583 ipst = ILLQ_TO_IPST(q); 20584 20585 if (DB_TYPE(mp) != M_DATA) { 20586 notdata: 20587 if (DB_TYPE(mp) == M_CTL) { 20588 /* 20589 * M_CTL messages are used by ARP, AH and ESP to 20590 * communicate with IP. We deal with IPSEC_IN and 20591 * IPSEC_OUT here. ip_wput_nondata handles other 20592 * cases. 20593 */ 20594 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20595 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20596 first_mp = mp->b_cont; 20597 first_mp->b_flag &= ~MSGHASREF; 20598 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20599 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20600 CONN_DEC_REF(connp); 20601 connp = NULL; 20602 } 20603 if (ii->ipsec_info_type == IPSEC_IN) { 20604 /* 20605 * Either this message goes back to 20606 * IPsec for further processing or to 20607 * ULP after policy checks. 20608 */ 20609 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20610 return; 20611 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20612 io = (ipsec_out_t *)ii; 20613 if (io->ipsec_out_proc_begin) { 20614 /* 20615 * IPsec processing has already started. 20616 * Complete it. 20617 * IPQoS notes: We don't care what is 20618 * in ipsec_out_ill_index since this 20619 * won't be processed for IPQoS policies 20620 * in ipsec_out_process. 20621 */ 20622 ipsec_out_process(q, mp, NULL, 20623 io->ipsec_out_ill_index); 20624 return; 20625 } else { 20626 connp = (q->q_next != NULL) ? 20627 NULL : Q_TO_CONN(q); 20628 first_mp = mp; 20629 mp = mp->b_cont; 20630 mctl_present = B_TRUE; 20631 } 20632 zoneid = io->ipsec_out_zoneid; 20633 ASSERT(zoneid != ALL_ZONES); 20634 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20635 /* 20636 * It's an IPsec control message requesting 20637 * an SADB update to be sent to the IPsec 20638 * hardware acceleration capable ills. 20639 */ 20640 ipsec_ctl_t *ipsec_ctl = 20641 (ipsec_ctl_t *)mp->b_rptr; 20642 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20643 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20644 mblk_t *cmp = mp->b_cont; 20645 20646 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20647 ASSERT(cmp != NULL); 20648 20649 freeb(mp); 20650 ill_ipsec_capab_send_all(satype, cmp, sa, 20651 ipst->ips_netstack); 20652 return; 20653 } else { 20654 /* 20655 * This must be ARP or special TSOL signaling. 20656 */ 20657 ip_wput_nondata(NULL, q, mp, NULL); 20658 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20659 "ip_wput_end: q %p (%S)", q, "nondata"); 20660 return; 20661 } 20662 } else { 20663 /* 20664 * This must be non-(ARP/AH/ESP) messages. 20665 */ 20666 ASSERT(!need_decref); 20667 ip_wput_nondata(NULL, q, mp, NULL); 20668 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20669 "ip_wput_end: q %p (%S)", q, "nondata"); 20670 return; 20671 } 20672 } else { 20673 first_mp = mp; 20674 mctl_present = B_FALSE; 20675 } 20676 20677 ASSERT(first_mp != NULL); 20678 /* 20679 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20680 * to make sure that this packet goes out on the same interface it 20681 * came in. We handle that here. 20682 */ 20683 if (mctl_present) { 20684 uint_t ifindex; 20685 20686 io = (ipsec_out_t *)first_mp->b_rptr; 20687 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20688 /* 20689 * We may have lost the conn context if we are 20690 * coming here from ip_newroute(). Copy the 20691 * nexthop information. 20692 */ 20693 if (io->ipsec_out_ip_nexthop) { 20694 ip_nexthop = B_TRUE; 20695 nexthop_addr = io->ipsec_out_nexthop_addr; 20696 20697 ipha = (ipha_t *)mp->b_rptr; 20698 dst = ipha->ipha_dst; 20699 goto send_from_ill; 20700 } else { 20701 ASSERT(io->ipsec_out_ill_index != 0); 20702 ifindex = io->ipsec_out_ill_index; 20703 attach_ill = ill_lookup_on_ifindex(ifindex, 20704 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20705 if (attach_ill == NULL) { 20706 ASSERT(xmit_ill == NULL); 20707 ip1dbg(("ip_output: bad ifindex for " 20708 "(BIND TO IPIF_NOFAILOVER) %d\n", 20709 ifindex)); 20710 freemsg(first_mp); 20711 BUMP_MIB(&ipst->ips_ip_mib, 20712 ipIfStatsOutDiscards); 20713 ASSERT(!need_decref); 20714 return; 20715 } 20716 } 20717 } 20718 } 20719 20720 ASSERT(xmit_ill == NULL); 20721 20722 /* We have a complete IP datagram heading outbound. */ 20723 ipha = (ipha_t *)mp->b_rptr; 20724 20725 #ifndef SPEED_BEFORE_SAFETY 20726 /* 20727 * Make sure we have a full-word aligned message and that at least 20728 * a simple IP header is accessible in the first message. If not, 20729 * try a pullup. 20730 */ 20731 if (!OK_32PTR(rptr) || 20732 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20733 hdrtoosmall: 20734 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20735 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20736 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20737 if (first_mp == NULL) 20738 first_mp = mp; 20739 goto discard_pkt; 20740 } 20741 20742 /* This function assumes that mp points to an IPv4 packet. */ 20743 if (is_system_labeled() && q->q_next == NULL && 20744 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20745 !connp->conn_ulp_labeled) { 20746 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20747 &adjust, connp->conn_mac_exempt, ipst); 20748 ipha = (ipha_t *)mp->b_rptr; 20749 if (first_mp != NULL) 20750 first_mp->b_cont = mp; 20751 if (err != 0) { 20752 if (first_mp == NULL) 20753 first_mp = mp; 20754 if (err == EINVAL) 20755 goto icmp_parameter_problem; 20756 ip2dbg(("ip_wput: label check failed (%d)\n", 20757 err)); 20758 goto discard_pkt; 20759 } 20760 iplen = ntohs(ipha->ipha_length) + adjust; 20761 ipha->ipha_length = htons(iplen); 20762 } 20763 20764 ipha = (ipha_t *)mp->b_rptr; 20765 if (first_mp == NULL) { 20766 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20767 /* 20768 * If we got here because of "goto hdrtoosmall" 20769 * We need to attach a IPSEC_OUT. 20770 */ 20771 if (connp->conn_out_enforce_policy) { 20772 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20773 NULL, ipha->ipha_protocol, 20774 ipst->ips_netstack)) == NULL)) { 20775 BUMP_MIB(&ipst->ips_ip_mib, 20776 ipIfStatsOutDiscards); 20777 if (need_decref) 20778 CONN_DEC_REF(connp); 20779 return; 20780 } else { 20781 ASSERT(mp->b_datap->db_type == M_CTL); 20782 first_mp = mp; 20783 mp = mp->b_cont; 20784 mctl_present = B_TRUE; 20785 } 20786 } else { 20787 first_mp = mp; 20788 mctl_present = B_FALSE; 20789 } 20790 } 20791 } 20792 #endif 20793 20794 /* Most of the code below is written for speed, not readability */ 20795 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20796 20797 /* 20798 * If ip_newroute() fails, we're going to need a full 20799 * header for the icmp wraparound. 20800 */ 20801 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20802 uint_t v_hlen; 20803 version_hdrlen_check: 20804 ASSERT(first_mp != NULL); 20805 v_hlen = V_HLEN; 20806 /* 20807 * siphon off IPv6 packets coming down from transport 20808 * layer modules here. 20809 * Note: high-order bit carries NUD reachability confirmation 20810 */ 20811 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20812 /* 20813 * FIXME: assume that callers of ip_output* call 20814 * the right version? 20815 */ 20816 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20817 ASSERT(xmit_ill == NULL); 20818 if (attach_ill != NULL) 20819 ill_refrele(attach_ill); 20820 if (need_decref) 20821 mp->b_flag |= MSGHASREF; 20822 (void) ip_output_v6(arg, first_mp, arg2, caller); 20823 return; 20824 } 20825 20826 if ((v_hlen >> 4) != IP_VERSION) { 20827 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20828 "ip_wput_end: q %p (%S)", q, "badvers"); 20829 goto discard_pkt; 20830 } 20831 /* 20832 * Is the header length at least 20 bytes? 20833 * 20834 * Are there enough bytes accessible in the header? If 20835 * not, try a pullup. 20836 */ 20837 v_hlen &= 0xF; 20838 v_hlen <<= 2; 20839 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20840 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20841 "ip_wput_end: q %p (%S)", q, "badlen"); 20842 goto discard_pkt; 20843 } 20844 if (v_hlen > (mp->b_wptr - rptr)) { 20845 if (!pullupmsg(mp, v_hlen)) { 20846 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20847 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20848 goto discard_pkt; 20849 } 20850 ipha = (ipha_t *)mp->b_rptr; 20851 } 20852 /* 20853 * Move first entry from any source route into ipha_dst and 20854 * verify the options 20855 */ 20856 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20857 zoneid, ipst)) { 20858 ASSERT(xmit_ill == NULL); 20859 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20860 if (attach_ill != NULL) 20861 ill_refrele(attach_ill); 20862 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20863 "ip_wput_end: q %p (%S)", q, "badopts"); 20864 if (need_decref) 20865 CONN_DEC_REF(connp); 20866 return; 20867 } 20868 } 20869 dst = ipha->ipha_dst; 20870 20871 /* 20872 * Try to get an IRE_CACHE for the destination address. If we can't, 20873 * we have to run the packet through ip_newroute which will take 20874 * the appropriate action to arrange for an IRE_CACHE, such as querying 20875 * a resolver, or assigning a default gateway, etc. 20876 */ 20877 if (CLASSD(dst)) { 20878 ipif_t *ipif; 20879 uint32_t setsrc = 0; 20880 20881 multicast: 20882 ASSERT(first_mp != NULL); 20883 ip2dbg(("ip_wput: CLASSD\n")); 20884 if (connp == NULL) { 20885 /* 20886 * Use the first good ipif on the ill. 20887 * XXX Should this ever happen? (Appears 20888 * to show up with just ppp and no ethernet due 20889 * to in.rdisc.) 20890 * However, ire_send should be able to 20891 * call ip_wput_ire directly. 20892 * 20893 * XXX Also, this can happen for ICMP and other packets 20894 * with multicast source addresses. Perhaps we should 20895 * fix things so that we drop the packet in question, 20896 * but for now, just run with it. 20897 */ 20898 ill_t *ill = (ill_t *)q->q_ptr; 20899 20900 /* 20901 * Don't honor attach_if for this case. If ill 20902 * is part of the group, ipif could belong to 20903 * any ill and we cannot maintain attach_ill 20904 * and ipif_ill same anymore and the assert 20905 * below would fail. 20906 */ 20907 if (mctl_present && io->ipsec_out_attach_if) { 20908 io->ipsec_out_ill_index = 0; 20909 io->ipsec_out_attach_if = B_FALSE; 20910 ASSERT(attach_ill != NULL); 20911 ill_refrele(attach_ill); 20912 attach_ill = NULL; 20913 } 20914 20915 ASSERT(attach_ill == NULL); 20916 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20917 if (ipif == NULL) { 20918 if (need_decref) 20919 CONN_DEC_REF(connp); 20920 freemsg(first_mp); 20921 return; 20922 } 20923 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20924 ntohl(dst), ill->ill_name)); 20925 } else { 20926 /* 20927 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20928 * and IP_MULTICAST_IF. The block comment above this 20929 * function explains the locking mechanism used here. 20930 */ 20931 if (xmit_ill == NULL) { 20932 xmit_ill = conn_get_held_ill(connp, 20933 &connp->conn_outgoing_ill, &err); 20934 if (err == ILL_LOOKUP_FAILED) { 20935 ip1dbg(("ip_wput: No ill for " 20936 "IP_BOUND_IF\n")); 20937 BUMP_MIB(&ipst->ips_ip_mib, 20938 ipIfStatsOutNoRoutes); 20939 goto drop_pkt; 20940 } 20941 } 20942 20943 if (xmit_ill == NULL) { 20944 ipif = conn_get_held_ipif(connp, 20945 &connp->conn_multicast_ipif, &err); 20946 if (err == IPIF_LOOKUP_FAILED) { 20947 ip1dbg(("ip_wput: No ipif for " 20948 "multicast\n")); 20949 BUMP_MIB(&ipst->ips_ip_mib, 20950 ipIfStatsOutNoRoutes); 20951 goto drop_pkt; 20952 } 20953 } 20954 if (xmit_ill != NULL) { 20955 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20956 if (ipif == NULL) { 20957 ip1dbg(("ip_wput: No ipif for " 20958 "xmit_ill\n")); 20959 BUMP_MIB(&ipst->ips_ip_mib, 20960 ipIfStatsOutNoRoutes); 20961 goto drop_pkt; 20962 } 20963 } else if (ipif == NULL || ipif->ipif_isv6) { 20964 /* 20965 * We must do this ipif determination here 20966 * else we could pass through ip_newroute 20967 * and come back here without the conn context. 20968 * 20969 * Note: we do late binding i.e. we bind to 20970 * the interface when the first packet is sent. 20971 * For performance reasons we do not rebind on 20972 * each packet but keep the binding until the 20973 * next IP_MULTICAST_IF option. 20974 * 20975 * conn_multicast_{ipif,ill} are shared between 20976 * IPv4 and IPv6 and AF_INET6 sockets can 20977 * send both IPv4 and IPv6 packets. Hence 20978 * we have to check that "isv6" matches above. 20979 */ 20980 if (ipif != NULL) 20981 ipif_refrele(ipif); 20982 ipif = ipif_lookup_group(dst, zoneid, ipst); 20983 if (ipif == NULL) { 20984 ip1dbg(("ip_wput: No ipif for " 20985 "multicast\n")); 20986 BUMP_MIB(&ipst->ips_ip_mib, 20987 ipIfStatsOutNoRoutes); 20988 goto drop_pkt; 20989 } 20990 err = conn_set_held_ipif(connp, 20991 &connp->conn_multicast_ipif, ipif); 20992 if (err == IPIF_LOOKUP_FAILED) { 20993 ipif_refrele(ipif); 20994 ip1dbg(("ip_wput: No ipif for " 20995 "multicast\n")); 20996 BUMP_MIB(&ipst->ips_ip_mib, 20997 ipIfStatsOutNoRoutes); 20998 goto drop_pkt; 20999 } 21000 } 21001 } 21002 ASSERT(!ipif->ipif_isv6); 21003 /* 21004 * As we may lose the conn by the time we reach ip_wput_ire, 21005 * we copy conn_multicast_loop and conn_dontroute on to an 21006 * ipsec_out. In case if this datagram goes out secure, 21007 * we need the ill_index also. Copy that also into the 21008 * ipsec_out. 21009 */ 21010 if (mctl_present) { 21011 io = (ipsec_out_t *)first_mp->b_rptr; 21012 ASSERT(first_mp->b_datap->db_type == M_CTL); 21013 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21014 } else { 21015 ASSERT(mp == first_mp); 21016 if ((first_mp = allocb(sizeof (ipsec_info_t), 21017 BPRI_HI)) == NULL) { 21018 ipif_refrele(ipif); 21019 first_mp = mp; 21020 goto discard_pkt; 21021 } 21022 first_mp->b_datap->db_type = M_CTL; 21023 first_mp->b_wptr += sizeof (ipsec_info_t); 21024 /* ipsec_out_secure is B_FALSE now */ 21025 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21026 io = (ipsec_out_t *)first_mp->b_rptr; 21027 io->ipsec_out_type = IPSEC_OUT; 21028 io->ipsec_out_len = sizeof (ipsec_out_t); 21029 io->ipsec_out_use_global_policy = B_TRUE; 21030 io->ipsec_out_ns = ipst->ips_netstack; 21031 first_mp->b_cont = mp; 21032 mctl_present = B_TRUE; 21033 } 21034 if (attach_ill != NULL) { 21035 ASSERT(attach_ill == ipif->ipif_ill); 21036 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21037 21038 /* 21039 * Check if we need an ire that will not be 21040 * looked up by anybody else i.e. HIDDEN. 21041 */ 21042 if (ill_is_probeonly(attach_ill)) { 21043 match_flags |= MATCH_IRE_MARK_HIDDEN; 21044 } 21045 io->ipsec_out_ill_index = 21046 attach_ill->ill_phyint->phyint_ifindex; 21047 io->ipsec_out_attach_if = B_TRUE; 21048 } else { 21049 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21050 io->ipsec_out_ill_index = 21051 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21052 } 21053 if (connp != NULL) { 21054 io->ipsec_out_multicast_loop = 21055 connp->conn_multicast_loop; 21056 io->ipsec_out_dontroute = connp->conn_dontroute; 21057 io->ipsec_out_zoneid = connp->conn_zoneid; 21058 } 21059 /* 21060 * If the application uses IP_MULTICAST_IF with 21061 * different logical addresses of the same ILL, we 21062 * need to make sure that the soruce address of 21063 * the packet matches the logical IP address used 21064 * in the option. We do it by initializing ipha_src 21065 * here. This should keep IPsec also happy as 21066 * when we return from IPsec processing, we don't 21067 * have to worry about getting the right address on 21068 * the packet. Thus it is sufficient to look for 21069 * IRE_CACHE using MATCH_IRE_ILL rathen than 21070 * MATCH_IRE_IPIF. 21071 * 21072 * NOTE : We need to do it for non-secure case also as 21073 * this might go out secure if there is a global policy 21074 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21075 * address, the source should be initialized already and 21076 * hence we won't be initializing here. 21077 * 21078 * As we do not have the ire yet, it is possible that 21079 * we set the source address here and then later discover 21080 * that the ire implies the source address to be assigned 21081 * through the RTF_SETSRC flag. 21082 * In that case, the setsrc variable will remind us 21083 * that overwritting the source address by the one 21084 * of the RTF_SETSRC-flagged ire is allowed. 21085 */ 21086 if (ipha->ipha_src == INADDR_ANY && 21087 (connp == NULL || !connp->conn_unspec_src)) { 21088 ipha->ipha_src = ipif->ipif_src_addr; 21089 setsrc = RTF_SETSRC; 21090 } 21091 /* 21092 * Find an IRE which matches the destination and the outgoing 21093 * queue (i.e. the outgoing interface.) 21094 * For loopback use a unicast IP address for 21095 * the ire lookup. 21096 */ 21097 if (IS_LOOPBACK(ipif->ipif_ill)) 21098 dst = ipif->ipif_lcl_addr; 21099 21100 /* 21101 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21102 * We don't need to lookup ire in ctable as the packet 21103 * needs to be sent to the destination through the specified 21104 * ill irrespective of ires in the cache table. 21105 */ 21106 ire = NULL; 21107 if (xmit_ill == NULL) { 21108 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21109 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21110 } 21111 21112 /* 21113 * refrele attach_ill as its not needed anymore. 21114 */ 21115 if (attach_ill != NULL) { 21116 ill_refrele(attach_ill); 21117 attach_ill = NULL; 21118 } 21119 21120 if (ire == NULL) { 21121 /* 21122 * Multicast loopback and multicast forwarding is 21123 * done in ip_wput_ire. 21124 * 21125 * Mark this packet to make it be delivered to 21126 * ip_wput_ire after the new ire has been 21127 * created. 21128 * 21129 * The call to ip_newroute_ipif takes into account 21130 * the setsrc reminder. In any case, we take care 21131 * of the RTF_MULTIRT flag. 21132 */ 21133 mp->b_prev = mp->b_next = NULL; 21134 if (xmit_ill == NULL || 21135 xmit_ill->ill_ipif_up_count > 0) { 21136 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21137 setsrc | RTF_MULTIRT, zoneid, infop); 21138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21139 "ip_wput_end: q %p (%S)", q, "noire"); 21140 } else { 21141 freemsg(first_mp); 21142 } 21143 ipif_refrele(ipif); 21144 if (xmit_ill != NULL) 21145 ill_refrele(xmit_ill); 21146 if (need_decref) 21147 CONN_DEC_REF(connp); 21148 return; 21149 } 21150 21151 ipif_refrele(ipif); 21152 ipif = NULL; 21153 ASSERT(xmit_ill == NULL); 21154 21155 /* 21156 * Honor the RTF_SETSRC flag for multicast packets, 21157 * if allowed by the setsrc reminder. 21158 */ 21159 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21160 ipha->ipha_src = ire->ire_src_addr; 21161 } 21162 21163 /* 21164 * Unconditionally force the TTL to 1 for 21165 * multirouted multicast packets: 21166 * multirouted multicast should not cross 21167 * multicast routers. 21168 */ 21169 if (ire->ire_flags & RTF_MULTIRT) { 21170 if (ipha->ipha_ttl > 1) { 21171 ip2dbg(("ip_wput: forcing multicast " 21172 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21173 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21174 ipha->ipha_ttl = 1; 21175 } 21176 } 21177 } else { 21178 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21179 if ((ire != NULL) && (ire->ire_type & 21180 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21181 ignore_dontroute = B_TRUE; 21182 ignore_nexthop = B_TRUE; 21183 } 21184 if (ire != NULL) { 21185 ire_refrele(ire); 21186 ire = NULL; 21187 } 21188 /* 21189 * Guard against coming in from arp in which case conn is NULL. 21190 * Also guard against non M_DATA with dontroute set but 21191 * destined to local, loopback or broadcast addresses. 21192 */ 21193 if (connp != NULL && connp->conn_dontroute && 21194 !ignore_dontroute) { 21195 dontroute: 21196 /* 21197 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21198 * routing protocols from seeing false direct 21199 * connectivity. 21200 */ 21201 ipha->ipha_ttl = 1; 21202 21203 /* If suitable ipif not found, drop packet */ 21204 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21205 if (dst_ipif == NULL) { 21206 noroute: 21207 ip1dbg(("ip_wput: no route for dst using" 21208 " SO_DONTROUTE\n")); 21209 BUMP_MIB(&ipst->ips_ip_mib, 21210 ipIfStatsOutNoRoutes); 21211 mp->b_prev = mp->b_next = NULL; 21212 if (first_mp == NULL) 21213 first_mp = mp; 21214 goto drop_pkt; 21215 } else { 21216 /* 21217 * If suitable ipif has been found, set 21218 * xmit_ill to the corresponding 21219 * ipif_ill because we'll be using the 21220 * send_from_ill logic below. 21221 */ 21222 ASSERT(xmit_ill == NULL); 21223 xmit_ill = dst_ipif->ipif_ill; 21224 mutex_enter(&xmit_ill->ill_lock); 21225 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21226 mutex_exit(&xmit_ill->ill_lock); 21227 xmit_ill = NULL; 21228 ipif_refrele(dst_ipif); 21229 goto noroute; 21230 } 21231 ill_refhold_locked(xmit_ill); 21232 mutex_exit(&xmit_ill->ill_lock); 21233 ipif_refrele(dst_ipif); 21234 } 21235 } 21236 /* 21237 * If we are bound to IPIF_NOFAILOVER address, look for 21238 * an IRE_CACHE matching the ill. 21239 */ 21240 send_from_ill: 21241 if (attach_ill != NULL) { 21242 ipif_t *attach_ipif; 21243 21244 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21245 21246 /* 21247 * Check if we need an ire that will not be 21248 * looked up by anybody else i.e. HIDDEN. 21249 */ 21250 if (ill_is_probeonly(attach_ill)) { 21251 match_flags |= MATCH_IRE_MARK_HIDDEN; 21252 } 21253 21254 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21255 if (attach_ipif == NULL) { 21256 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21257 goto discard_pkt; 21258 } 21259 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21260 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21261 ipif_refrele(attach_ipif); 21262 } else if (xmit_ill != NULL) { 21263 ipif_t *ipif; 21264 21265 /* 21266 * Mark this packet as originated locally 21267 */ 21268 mp->b_prev = mp->b_next = NULL; 21269 21270 /* 21271 * Could be SO_DONTROUTE case also. 21272 * Verify that at least one ipif is up on the ill. 21273 */ 21274 if (xmit_ill->ill_ipif_up_count == 0) { 21275 ip1dbg(("ip_output: xmit_ill %s is down\n", 21276 xmit_ill->ill_name)); 21277 goto drop_pkt; 21278 } 21279 21280 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21281 if (ipif == NULL) { 21282 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21283 xmit_ill->ill_name)); 21284 goto drop_pkt; 21285 } 21286 21287 /* 21288 * Look for a ire that is part of the group, 21289 * if found use it else call ip_newroute_ipif. 21290 * IPCL_ZONEID is not used for matching because 21291 * IP_ALLZONES option is valid only when the 21292 * ill is accessible from all zones i.e has a 21293 * valid ipif in all zones. 21294 */ 21295 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21296 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21297 MBLK_GETLABEL(mp), match_flags, ipst); 21298 /* 21299 * If an ire exists use it or else create 21300 * an ire but don't add it to the cache. 21301 * Adding an ire may cause issues with 21302 * asymmetric routing. 21303 * In case of multiroute always act as if 21304 * ire does not exist. 21305 */ 21306 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21307 if (ire != NULL) 21308 ire_refrele(ire); 21309 ip_newroute_ipif(q, first_mp, ipif, 21310 dst, connp, 0, zoneid, infop); 21311 ipif_refrele(ipif); 21312 ip1dbg(("ip_output: xmit_ill via %s\n", 21313 xmit_ill->ill_name)); 21314 ill_refrele(xmit_ill); 21315 if (need_decref) 21316 CONN_DEC_REF(connp); 21317 return; 21318 } 21319 ipif_refrele(ipif); 21320 } else if (ip_nexthop || (connp != NULL && 21321 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21322 if (!ip_nexthop) { 21323 ip_nexthop = B_TRUE; 21324 nexthop_addr = connp->conn_nexthop_v4; 21325 } 21326 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21327 MATCH_IRE_GW; 21328 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21329 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21330 } else { 21331 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21332 ipst); 21333 } 21334 if (!ire) { 21335 /* 21336 * Make sure we don't load spread if this 21337 * is IPIF_NOFAILOVER case. 21338 */ 21339 if ((attach_ill != NULL) || 21340 (ip_nexthop && !ignore_nexthop)) { 21341 if (mctl_present) { 21342 io = (ipsec_out_t *)first_mp->b_rptr; 21343 ASSERT(first_mp->b_datap->db_type == 21344 M_CTL); 21345 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21346 } else { 21347 ASSERT(mp == first_mp); 21348 first_mp = allocb( 21349 sizeof (ipsec_info_t), BPRI_HI); 21350 if (first_mp == NULL) { 21351 first_mp = mp; 21352 goto discard_pkt; 21353 } 21354 first_mp->b_datap->db_type = M_CTL; 21355 first_mp->b_wptr += 21356 sizeof (ipsec_info_t); 21357 /* ipsec_out_secure is B_FALSE now */ 21358 bzero(first_mp->b_rptr, 21359 sizeof (ipsec_info_t)); 21360 io = (ipsec_out_t *)first_mp->b_rptr; 21361 io->ipsec_out_type = IPSEC_OUT; 21362 io->ipsec_out_len = 21363 sizeof (ipsec_out_t); 21364 io->ipsec_out_use_global_policy = 21365 B_TRUE; 21366 io->ipsec_out_ns = ipst->ips_netstack; 21367 first_mp->b_cont = mp; 21368 mctl_present = B_TRUE; 21369 } 21370 if (attach_ill != NULL) { 21371 io->ipsec_out_ill_index = attach_ill-> 21372 ill_phyint->phyint_ifindex; 21373 io->ipsec_out_attach_if = B_TRUE; 21374 } else { 21375 io->ipsec_out_ip_nexthop = ip_nexthop; 21376 io->ipsec_out_nexthop_addr = 21377 nexthop_addr; 21378 } 21379 } 21380 noirefound: 21381 /* 21382 * Mark this packet as having originated on 21383 * this machine. This will be noted in 21384 * ire_add_then_send, which needs to know 21385 * whether to run it back through ip_wput or 21386 * ip_rput following successful resolution. 21387 */ 21388 mp->b_prev = NULL; 21389 mp->b_next = NULL; 21390 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21391 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21392 "ip_wput_end: q %p (%S)", q, "newroute"); 21393 if (attach_ill != NULL) 21394 ill_refrele(attach_ill); 21395 if (xmit_ill != NULL) 21396 ill_refrele(xmit_ill); 21397 if (need_decref) 21398 CONN_DEC_REF(connp); 21399 return; 21400 } 21401 } 21402 21403 /* We now know where we are going with it. */ 21404 21405 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21406 "ip_wput_end: q %p (%S)", q, "end"); 21407 21408 /* 21409 * Check if the ire has the RTF_MULTIRT flag, inherited 21410 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21411 */ 21412 if (ire->ire_flags & RTF_MULTIRT) { 21413 /* 21414 * Force the TTL of multirouted packets if required. 21415 * The TTL of such packets is bounded by the 21416 * ip_multirt_ttl ndd variable. 21417 */ 21418 if ((ipst->ips_ip_multirt_ttl > 0) && 21419 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21420 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21421 "(was %d), dst 0x%08x\n", 21422 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21423 ntohl(ire->ire_addr))); 21424 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21425 } 21426 /* 21427 * At this point, we check to see if there are any pending 21428 * unresolved routes. ire_multirt_resolvable() 21429 * checks in O(n) that all IRE_OFFSUBNET ire 21430 * entries for the packet's destination and 21431 * flagged RTF_MULTIRT are currently resolved. 21432 * If some remain unresolved, we make a copy 21433 * of the current message. It will be used 21434 * to initiate additional route resolutions. 21435 */ 21436 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21437 MBLK_GETLABEL(first_mp), ipst); 21438 ip2dbg(("ip_wput[noirefound]: ire %p, " 21439 "multirt_need_resolve %d, first_mp %p\n", 21440 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21441 if (multirt_need_resolve) { 21442 copy_mp = copymsg(first_mp); 21443 if (copy_mp != NULL) { 21444 MULTIRT_DEBUG_TAG(copy_mp); 21445 } 21446 } 21447 } 21448 21449 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21450 /* 21451 * Try to resolve another multiroute if 21452 * ire_multirt_resolvable() deemed it necessary. 21453 * At this point, we need to distinguish 21454 * multicasts from other packets. For multicasts, 21455 * we call ip_newroute_ipif() and request that both 21456 * multirouting and setsrc flags are checked. 21457 */ 21458 if (copy_mp != NULL) { 21459 if (CLASSD(dst)) { 21460 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21461 if (ipif) { 21462 ASSERT(infop->ip_opt_ill_index == 0); 21463 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21464 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21465 ipif_refrele(ipif); 21466 } else { 21467 MULTIRT_DEBUG_UNTAG(copy_mp); 21468 freemsg(copy_mp); 21469 copy_mp = NULL; 21470 } 21471 } else { 21472 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21473 } 21474 } 21475 if (attach_ill != NULL) 21476 ill_refrele(attach_ill); 21477 if (xmit_ill != NULL) 21478 ill_refrele(xmit_ill); 21479 if (need_decref) 21480 CONN_DEC_REF(connp); 21481 return; 21482 21483 icmp_parameter_problem: 21484 /* could not have originated externally */ 21485 ASSERT(mp->b_prev == NULL); 21486 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21487 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21488 /* it's the IP header length that's in trouble */ 21489 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21490 first_mp = NULL; 21491 } 21492 21493 discard_pkt: 21494 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21495 drop_pkt: 21496 ip1dbg(("ip_wput: dropped packet\n")); 21497 if (ire != NULL) 21498 ire_refrele(ire); 21499 if (need_decref) 21500 CONN_DEC_REF(connp); 21501 freemsg(first_mp); 21502 if (attach_ill != NULL) 21503 ill_refrele(attach_ill); 21504 if (xmit_ill != NULL) 21505 ill_refrele(xmit_ill); 21506 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21507 "ip_wput_end: q %p (%S)", q, "droppkt"); 21508 } 21509 21510 /* 21511 * If this is a conn_t queue, then we pass in the conn. This includes the 21512 * zoneid. 21513 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21514 * in which case we use the global zoneid since those are all part of 21515 * the global zone. 21516 */ 21517 void 21518 ip_wput(queue_t *q, mblk_t *mp) 21519 { 21520 if (CONN_Q(q)) 21521 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21522 else 21523 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21524 } 21525 21526 /* 21527 * 21528 * The following rules must be observed when accessing any ipif or ill 21529 * that has been cached in the conn. Typically conn_nofailover_ill, 21530 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21531 * 21532 * Access: The ipif or ill pointed to from the conn can be accessed under 21533 * the protection of the conn_lock or after it has been refheld under the 21534 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21535 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21536 * The reason for this is that a concurrent unplumb could actually be 21537 * cleaning up these cached pointers by walking the conns and might have 21538 * finished cleaning up the conn in question. The macros check that an 21539 * unplumb has not yet started on the ipif or ill. 21540 * 21541 * Caching: An ipif or ill pointer may be cached in the conn only after 21542 * making sure that an unplumb has not started. So the caching is done 21543 * while holding both the conn_lock and the ill_lock and after using the 21544 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21545 * flag before starting the cleanup of conns. 21546 * 21547 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21548 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21549 * or a reference to the ipif or a reference to an ire that references the 21550 * ipif. An ipif does not change its ill except for failover/failback. Since 21551 * failover/failback happens only after bringing down the ipif and making sure 21552 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21553 * the above holds. 21554 */ 21555 ipif_t * 21556 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21557 { 21558 ipif_t *ipif; 21559 ill_t *ill; 21560 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21561 21562 *err = 0; 21563 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21564 mutex_enter(&connp->conn_lock); 21565 ipif = *ipifp; 21566 if (ipif != NULL) { 21567 ill = ipif->ipif_ill; 21568 mutex_enter(&ill->ill_lock); 21569 if (IPIF_CAN_LOOKUP(ipif)) { 21570 ipif_refhold_locked(ipif); 21571 mutex_exit(&ill->ill_lock); 21572 mutex_exit(&connp->conn_lock); 21573 rw_exit(&ipst->ips_ill_g_lock); 21574 return (ipif); 21575 } else { 21576 *err = IPIF_LOOKUP_FAILED; 21577 } 21578 mutex_exit(&ill->ill_lock); 21579 } 21580 mutex_exit(&connp->conn_lock); 21581 rw_exit(&ipst->ips_ill_g_lock); 21582 return (NULL); 21583 } 21584 21585 ill_t * 21586 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21587 { 21588 ill_t *ill; 21589 21590 *err = 0; 21591 mutex_enter(&connp->conn_lock); 21592 ill = *illp; 21593 if (ill != NULL) { 21594 mutex_enter(&ill->ill_lock); 21595 if (ILL_CAN_LOOKUP(ill)) { 21596 ill_refhold_locked(ill); 21597 mutex_exit(&ill->ill_lock); 21598 mutex_exit(&connp->conn_lock); 21599 return (ill); 21600 } else { 21601 *err = ILL_LOOKUP_FAILED; 21602 } 21603 mutex_exit(&ill->ill_lock); 21604 } 21605 mutex_exit(&connp->conn_lock); 21606 return (NULL); 21607 } 21608 21609 static int 21610 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21611 { 21612 ill_t *ill; 21613 21614 ill = ipif->ipif_ill; 21615 mutex_enter(&connp->conn_lock); 21616 mutex_enter(&ill->ill_lock); 21617 if (IPIF_CAN_LOOKUP(ipif)) { 21618 *ipifp = ipif; 21619 mutex_exit(&ill->ill_lock); 21620 mutex_exit(&connp->conn_lock); 21621 return (0); 21622 } 21623 mutex_exit(&ill->ill_lock); 21624 mutex_exit(&connp->conn_lock); 21625 return (IPIF_LOOKUP_FAILED); 21626 } 21627 21628 /* 21629 * This is called if the outbound datagram needs fragmentation. 21630 * 21631 * NOTE : This function does not ire_refrele the ire argument passed in. 21632 */ 21633 static void 21634 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21635 ip_stack_t *ipst) 21636 { 21637 ipha_t *ipha; 21638 mblk_t *mp; 21639 uint32_t v_hlen_tos_len; 21640 uint32_t max_frag; 21641 uint32_t frag_flag; 21642 boolean_t dont_use; 21643 21644 if (ipsec_mp->b_datap->db_type == M_CTL) { 21645 mp = ipsec_mp->b_cont; 21646 } else { 21647 mp = ipsec_mp; 21648 } 21649 21650 ipha = (ipha_t *)mp->b_rptr; 21651 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21652 21653 #ifdef _BIG_ENDIAN 21654 #define V_HLEN (v_hlen_tos_len >> 24) 21655 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21656 #else 21657 #define V_HLEN (v_hlen_tos_len & 0xFF) 21658 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21659 #endif 21660 21661 #ifndef SPEED_BEFORE_SAFETY 21662 /* 21663 * Check that ipha_length is consistent with 21664 * the mblk length 21665 */ 21666 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21667 ip0dbg(("Packet length mismatch: %d, %ld\n", 21668 LENGTH, msgdsize(mp))); 21669 freemsg(ipsec_mp); 21670 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21671 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21672 "packet length mismatch"); 21673 return; 21674 } 21675 #endif 21676 /* 21677 * Don't use frag_flag if pre-built packet or source 21678 * routed or if multicast (since multicast packets do not solicit 21679 * ICMP "packet too big" messages). Get the values of 21680 * max_frag and frag_flag atomically by acquiring the 21681 * ire_lock. 21682 */ 21683 mutex_enter(&ire->ire_lock); 21684 max_frag = ire->ire_max_frag; 21685 frag_flag = ire->ire_frag_flag; 21686 mutex_exit(&ire->ire_lock); 21687 21688 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21689 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21690 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21691 21692 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21693 (dont_use ? 0 : frag_flag), zoneid, ipst); 21694 } 21695 21696 /* 21697 * Used for deciding the MSS size for the upper layer. Thus 21698 * we need to check the outbound policy values in the conn. 21699 */ 21700 int 21701 conn_ipsec_length(conn_t *connp) 21702 { 21703 ipsec_latch_t *ipl; 21704 21705 ipl = connp->conn_latch; 21706 if (ipl == NULL) 21707 return (0); 21708 21709 if (ipl->ipl_out_policy == NULL) 21710 return (0); 21711 21712 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21713 } 21714 21715 /* 21716 * Returns an estimate of the IPsec headers size. This is used if 21717 * we don't want to call into IPsec to get the exact size. 21718 */ 21719 int 21720 ipsec_out_extra_length(mblk_t *ipsec_mp) 21721 { 21722 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21723 ipsec_action_t *a; 21724 21725 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21726 if (!io->ipsec_out_secure) 21727 return (0); 21728 21729 a = io->ipsec_out_act; 21730 21731 if (a == NULL) { 21732 ASSERT(io->ipsec_out_policy != NULL); 21733 a = io->ipsec_out_policy->ipsp_act; 21734 } 21735 ASSERT(a != NULL); 21736 21737 return (a->ipa_ovhd); 21738 } 21739 21740 /* 21741 * Returns an estimate of the IPsec headers size. This is used if 21742 * we don't want to call into IPsec to get the exact size. 21743 */ 21744 int 21745 ipsec_in_extra_length(mblk_t *ipsec_mp) 21746 { 21747 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21748 ipsec_action_t *a; 21749 21750 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21751 21752 a = ii->ipsec_in_action; 21753 return (a == NULL ? 0 : a->ipa_ovhd); 21754 } 21755 21756 /* 21757 * If there are any source route options, return the true final 21758 * destination. Otherwise, return the destination. 21759 */ 21760 ipaddr_t 21761 ip_get_dst(ipha_t *ipha) 21762 { 21763 ipoptp_t opts; 21764 uchar_t *opt; 21765 uint8_t optval; 21766 uint8_t optlen; 21767 ipaddr_t dst; 21768 uint32_t off; 21769 21770 dst = ipha->ipha_dst; 21771 21772 if (IS_SIMPLE_IPH(ipha)) 21773 return (dst); 21774 21775 for (optval = ipoptp_first(&opts, ipha); 21776 optval != IPOPT_EOL; 21777 optval = ipoptp_next(&opts)) { 21778 opt = opts.ipoptp_cur; 21779 optlen = opts.ipoptp_len; 21780 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21781 switch (optval) { 21782 case IPOPT_SSRR: 21783 case IPOPT_LSRR: 21784 off = opt[IPOPT_OFFSET]; 21785 /* 21786 * If one of the conditions is true, it means 21787 * end of options and dst already has the right 21788 * value. 21789 */ 21790 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21791 off = optlen - IP_ADDR_LEN; 21792 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21793 } 21794 return (dst); 21795 default: 21796 break; 21797 } 21798 } 21799 21800 return (dst); 21801 } 21802 21803 mblk_t * 21804 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21805 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21806 { 21807 ipsec_out_t *io; 21808 mblk_t *first_mp; 21809 boolean_t policy_present; 21810 ip_stack_t *ipst; 21811 ipsec_stack_t *ipss; 21812 21813 ASSERT(ire != NULL); 21814 ipst = ire->ire_ipst; 21815 ipss = ipst->ips_netstack->netstack_ipsec; 21816 21817 first_mp = mp; 21818 if (mp->b_datap->db_type == M_CTL) { 21819 io = (ipsec_out_t *)first_mp->b_rptr; 21820 /* 21821 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21822 * 21823 * 1) There is per-socket policy (including cached global 21824 * policy) or a policy on the IP-in-IP tunnel. 21825 * 2) There is no per-socket policy, but it is 21826 * a multicast packet that needs to go out 21827 * on a specific interface. This is the case 21828 * where (ip_wput and ip_wput_multicast) attaches 21829 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21830 * 21831 * In case (2) we check with global policy to 21832 * see if there is a match and set the ill_index 21833 * appropriately so that we can lookup the ire 21834 * properly in ip_wput_ipsec_out. 21835 */ 21836 21837 /* 21838 * ipsec_out_use_global_policy is set to B_FALSE 21839 * in ipsec_in_to_out(). Refer to that function for 21840 * details. 21841 */ 21842 if ((io->ipsec_out_latch == NULL) && 21843 (io->ipsec_out_use_global_policy)) { 21844 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21845 ire, connp, unspec_src, zoneid)); 21846 } 21847 if (!io->ipsec_out_secure) { 21848 /* 21849 * If this is not a secure packet, drop 21850 * the IPSEC_OUT mp and treat it as a clear 21851 * packet. This happens when we are sending 21852 * a ICMP reply back to a clear packet. See 21853 * ipsec_in_to_out() for details. 21854 */ 21855 mp = first_mp->b_cont; 21856 freeb(first_mp); 21857 } 21858 return (mp); 21859 } 21860 /* 21861 * See whether we need to attach a global policy here. We 21862 * don't depend on the conn (as it could be null) for deciding 21863 * what policy this datagram should go through because it 21864 * should have happened in ip_wput if there was some 21865 * policy. This normally happens for connections which are not 21866 * fully bound preventing us from caching policies in 21867 * ip_bind. Packets coming from the TCP listener/global queue 21868 * - which are non-hard_bound - could also be affected by 21869 * applying policy here. 21870 * 21871 * If this packet is coming from tcp global queue or listener, 21872 * we will be applying policy here. This may not be *right* 21873 * if these packets are coming from the detached connection as 21874 * it could have gone in clear before. This happens only if a 21875 * TCP connection started when there is no policy and somebody 21876 * added policy before it became detached. Thus packets of the 21877 * detached connection could go out secure and the other end 21878 * would drop it because it will be expecting in clear. The 21879 * converse is not true i.e if somebody starts a TCP 21880 * connection and deletes the policy, all the packets will 21881 * still go out with the policy that existed before deleting 21882 * because ip_unbind sends up policy information which is used 21883 * by TCP on subsequent ip_wputs. The right solution is to fix 21884 * TCP to attach a dummy IPSEC_OUT and set 21885 * ipsec_out_use_global_policy to B_FALSE. As this might 21886 * affect performance for normal cases, we are not doing it. 21887 * Thus, set policy before starting any TCP connections. 21888 * 21889 * NOTE - We might apply policy even for a hard bound connection 21890 * - for which we cached policy in ip_bind - if somebody added 21891 * global policy after we inherited the policy in ip_bind. 21892 * This means that the packets that were going out in clear 21893 * previously would start going secure and hence get dropped 21894 * on the other side. To fix this, TCP attaches a dummy 21895 * ipsec_out and make sure that we don't apply global policy. 21896 */ 21897 if (ipha != NULL) 21898 policy_present = ipss->ipsec_outbound_v4_policy_present; 21899 else 21900 policy_present = ipss->ipsec_outbound_v6_policy_present; 21901 if (!policy_present) 21902 return (mp); 21903 21904 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21905 zoneid)); 21906 } 21907 21908 ire_t * 21909 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21910 { 21911 ipaddr_t addr; 21912 ire_t *save_ire; 21913 irb_t *irb; 21914 ill_group_t *illgrp; 21915 int err; 21916 21917 save_ire = ire; 21918 addr = ire->ire_addr; 21919 21920 ASSERT(ire->ire_type == IRE_BROADCAST); 21921 21922 illgrp = connp->conn_outgoing_ill->ill_group; 21923 if (illgrp == NULL) { 21924 *conn_outgoing_ill = conn_get_held_ill(connp, 21925 &connp->conn_outgoing_ill, &err); 21926 if (err == ILL_LOOKUP_FAILED) { 21927 ire_refrele(save_ire); 21928 return (NULL); 21929 } 21930 return (save_ire); 21931 } 21932 /* 21933 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21934 * If it is part of the group, we need to send on the ire 21935 * that has been cleared of IRE_MARK_NORECV and that belongs 21936 * to this group. This is okay as IP_BOUND_IF really means 21937 * any ill in the group. We depend on the fact that the 21938 * first ire in the group is always cleared of IRE_MARK_NORECV 21939 * if such an ire exists. This is possible only if you have 21940 * at least one ill in the group that has not failed. 21941 * 21942 * First get to the ire that matches the address and group. 21943 * 21944 * We don't look for an ire with a matching zoneid because a given zone 21945 * won't always have broadcast ires on all ills in the group. 21946 */ 21947 irb = ire->ire_bucket; 21948 rw_enter(&irb->irb_lock, RW_READER); 21949 if (ire->ire_marks & IRE_MARK_NORECV) { 21950 /* 21951 * If the current zone only has an ire broadcast for this 21952 * address marked NORECV, the ire we want is ahead in the 21953 * bucket, so we look it up deliberately ignoring the zoneid. 21954 */ 21955 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21956 if (ire->ire_addr != addr) 21957 continue; 21958 /* skip over deleted ires */ 21959 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21960 continue; 21961 } 21962 } 21963 while (ire != NULL) { 21964 /* 21965 * If a new interface is coming up, we could end up 21966 * seeing the loopback ire and the non-loopback ire 21967 * may not have been added yet. So check for ire_stq 21968 */ 21969 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21970 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21971 break; 21972 } 21973 ire = ire->ire_next; 21974 } 21975 if (ire != NULL && ire->ire_addr == addr && 21976 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21977 IRE_REFHOLD(ire); 21978 rw_exit(&irb->irb_lock); 21979 ire_refrele(save_ire); 21980 *conn_outgoing_ill = ire_to_ill(ire); 21981 /* 21982 * Refhold the ill to make the conn_outgoing_ill 21983 * independent of the ire. ip_wput_ire goes in a loop 21984 * and may refrele the ire. Since we have an ire at this 21985 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21986 */ 21987 ill_refhold(*conn_outgoing_ill); 21988 return (ire); 21989 } 21990 rw_exit(&irb->irb_lock); 21991 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21992 /* 21993 * If we can't find a suitable ire, return the original ire. 21994 */ 21995 return (save_ire); 21996 } 21997 21998 /* 21999 * This function does the ire_refrele of the ire passed in as the 22000 * argument. As this function looks up more ires i.e broadcast ires, 22001 * it needs to REFRELE them. Currently, for simplicity we don't 22002 * differentiate the one passed in and looked up here. We always 22003 * REFRELE. 22004 * IPQoS Notes: 22005 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22006 * IPsec packets are done in ipsec_out_process. 22007 * 22008 */ 22009 void 22010 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22011 zoneid_t zoneid) 22012 { 22013 ipha_t *ipha; 22014 #define rptr ((uchar_t *)ipha) 22015 queue_t *stq; 22016 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22017 uint32_t v_hlen_tos_len; 22018 uint32_t ttl_protocol; 22019 ipaddr_t src; 22020 ipaddr_t dst; 22021 uint32_t cksum; 22022 ipaddr_t orig_src; 22023 ire_t *ire1; 22024 mblk_t *next_mp; 22025 uint_t hlen; 22026 uint16_t *up; 22027 uint32_t max_frag = ire->ire_max_frag; 22028 ill_t *ill = ire_to_ill(ire); 22029 int clusterwide; 22030 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22031 int ipsec_len; 22032 mblk_t *first_mp; 22033 ipsec_out_t *io; 22034 boolean_t conn_dontroute; /* conn value for multicast */ 22035 boolean_t conn_multicast_loop; /* conn value for multicast */ 22036 boolean_t multicast_forward; /* Should we forward ? */ 22037 boolean_t unspec_src; 22038 ill_t *conn_outgoing_ill = NULL; 22039 ill_t *ire_ill; 22040 ill_t *ire1_ill; 22041 ill_t *out_ill; 22042 uint32_t ill_index = 0; 22043 boolean_t multirt_send = B_FALSE; 22044 int err; 22045 ipxmit_state_t pktxmit_state; 22046 ip_stack_t *ipst = ire->ire_ipst; 22047 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22048 22049 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22050 "ip_wput_ire_start: q %p", q); 22051 22052 multicast_forward = B_FALSE; 22053 unspec_src = (connp != NULL && connp->conn_unspec_src); 22054 22055 if (ire->ire_flags & RTF_MULTIRT) { 22056 /* 22057 * Multirouting case. The bucket where ire is stored 22058 * probably holds other RTF_MULTIRT flagged ire 22059 * to the destination. In this call to ip_wput_ire, 22060 * we attempt to send the packet through all 22061 * those ires. Thus, we first ensure that ire is the 22062 * first RTF_MULTIRT ire in the bucket, 22063 * before walking the ire list. 22064 */ 22065 ire_t *first_ire; 22066 irb_t *irb = ire->ire_bucket; 22067 ASSERT(irb != NULL); 22068 22069 /* Make sure we do not omit any multiroute ire. */ 22070 IRB_REFHOLD(irb); 22071 for (first_ire = irb->irb_ire; 22072 first_ire != NULL; 22073 first_ire = first_ire->ire_next) { 22074 if ((first_ire->ire_flags & RTF_MULTIRT) && 22075 (first_ire->ire_addr == ire->ire_addr) && 22076 !(first_ire->ire_marks & 22077 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22078 break; 22079 } 22080 } 22081 22082 if ((first_ire != NULL) && (first_ire != ire)) { 22083 IRE_REFHOLD(first_ire); 22084 ire_refrele(ire); 22085 ire = first_ire; 22086 ill = ire_to_ill(ire); 22087 } 22088 IRB_REFRELE(irb); 22089 } 22090 22091 /* 22092 * conn_outgoing_ill variable is used only in the broadcast loop. 22093 * for performance we don't grab the mutexs in the fastpath 22094 */ 22095 if ((connp != NULL) && 22096 (ire->ire_type == IRE_BROADCAST) && 22097 ((connp->conn_nofailover_ill != NULL) || 22098 (connp->conn_outgoing_ill != NULL))) { 22099 /* 22100 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22101 * option. So, see if this endpoint is bound to a 22102 * IPIF_NOFAILOVER address. If so, honor it. This implies 22103 * that if the interface is failed, we will still send 22104 * the packet on the same ill which is what we want. 22105 */ 22106 conn_outgoing_ill = conn_get_held_ill(connp, 22107 &connp->conn_nofailover_ill, &err); 22108 if (err == ILL_LOOKUP_FAILED) { 22109 ire_refrele(ire); 22110 freemsg(mp); 22111 return; 22112 } 22113 if (conn_outgoing_ill == NULL) { 22114 /* 22115 * Choose a good ill in the group to send the 22116 * packets on. 22117 */ 22118 ire = conn_set_outgoing_ill(connp, ire, 22119 &conn_outgoing_ill); 22120 if (ire == NULL) { 22121 freemsg(mp); 22122 return; 22123 } 22124 } 22125 } 22126 22127 if (mp->b_datap->db_type != M_CTL) { 22128 ipha = (ipha_t *)mp->b_rptr; 22129 } else { 22130 io = (ipsec_out_t *)mp->b_rptr; 22131 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22132 ASSERT(zoneid == io->ipsec_out_zoneid); 22133 ASSERT(zoneid != ALL_ZONES); 22134 ipha = (ipha_t *)mp->b_cont->b_rptr; 22135 dst = ipha->ipha_dst; 22136 /* 22137 * For the multicast case, ipsec_out carries conn_dontroute and 22138 * conn_multicast_loop as conn may not be available here. We 22139 * need this for multicast loopback and forwarding which is done 22140 * later in the code. 22141 */ 22142 if (CLASSD(dst)) { 22143 conn_dontroute = io->ipsec_out_dontroute; 22144 conn_multicast_loop = io->ipsec_out_multicast_loop; 22145 /* 22146 * If conn_dontroute is not set or conn_multicast_loop 22147 * is set, we need to do forwarding/loopback. For 22148 * datagrams from ip_wput_multicast, conn_dontroute is 22149 * set to B_TRUE and conn_multicast_loop is set to 22150 * B_FALSE so that we neither do forwarding nor 22151 * loopback. 22152 */ 22153 if (!conn_dontroute || conn_multicast_loop) 22154 multicast_forward = B_TRUE; 22155 } 22156 } 22157 22158 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22159 ire->ire_zoneid != ALL_ZONES) { 22160 /* 22161 * When a zone sends a packet to another zone, we try to deliver 22162 * the packet under the same conditions as if the destination 22163 * was a real node on the network. To do so, we look for a 22164 * matching route in the forwarding table. 22165 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22166 * ip_newroute() does. 22167 * Note that IRE_LOCAL are special, since they are used 22168 * when the zoneid doesn't match in some cases. This means that 22169 * we need to handle ipha_src differently since ire_src_addr 22170 * belongs to the receiving zone instead of the sending zone. 22171 * When ip_restrict_interzone_loopback is set, then 22172 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22173 * for loopback between zones when the logical "Ethernet" would 22174 * have looped them back. 22175 */ 22176 ire_t *src_ire; 22177 22178 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22179 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22180 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22181 if (src_ire != NULL && 22182 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22183 (!ipst->ips_ip_restrict_interzone_loopback || 22184 ire_local_same_ill_group(ire, src_ire))) { 22185 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22186 ipha->ipha_src = src_ire->ire_src_addr; 22187 ire_refrele(src_ire); 22188 } else { 22189 ire_refrele(ire); 22190 if (conn_outgoing_ill != NULL) 22191 ill_refrele(conn_outgoing_ill); 22192 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22193 if (src_ire != NULL) { 22194 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22195 ire_refrele(src_ire); 22196 freemsg(mp); 22197 return; 22198 } 22199 ire_refrele(src_ire); 22200 } 22201 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22202 /* Failed */ 22203 freemsg(mp); 22204 return; 22205 } 22206 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22207 ipst); 22208 return; 22209 } 22210 } 22211 22212 if (mp->b_datap->db_type == M_CTL || 22213 ipss->ipsec_outbound_v4_policy_present) { 22214 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22215 unspec_src, zoneid); 22216 if (mp == NULL) { 22217 ire_refrele(ire); 22218 if (conn_outgoing_ill != NULL) 22219 ill_refrele(conn_outgoing_ill); 22220 return; 22221 } 22222 } 22223 22224 first_mp = mp; 22225 ipsec_len = 0; 22226 22227 if (first_mp->b_datap->db_type == M_CTL) { 22228 io = (ipsec_out_t *)first_mp->b_rptr; 22229 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22230 mp = first_mp->b_cont; 22231 ipsec_len = ipsec_out_extra_length(first_mp); 22232 ASSERT(ipsec_len >= 0); 22233 /* We already picked up the zoneid from the M_CTL above */ 22234 ASSERT(zoneid == io->ipsec_out_zoneid); 22235 ASSERT(zoneid != ALL_ZONES); 22236 22237 /* 22238 * Drop M_CTL here if IPsec processing is not needed. 22239 * (Non-IPsec use of M_CTL extracted any information it 22240 * needed above). 22241 */ 22242 if (ipsec_len == 0) { 22243 freeb(first_mp); 22244 first_mp = mp; 22245 } 22246 } 22247 22248 /* 22249 * Fast path for ip_wput_ire 22250 */ 22251 22252 ipha = (ipha_t *)mp->b_rptr; 22253 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22254 dst = ipha->ipha_dst; 22255 22256 /* 22257 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22258 * if the socket is a SOCK_RAW type. The transport checksum should 22259 * be provided in the pre-built packet, so we don't need to compute it. 22260 * Also, other application set flags, like DF, should not be altered. 22261 * Other transport MUST pass down zero. 22262 */ 22263 ip_hdr_included = ipha->ipha_ident; 22264 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22265 22266 if (CLASSD(dst)) { 22267 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22268 ntohl(dst), 22269 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22270 ntohl(ire->ire_addr))); 22271 } 22272 22273 /* Macros to extract header fields from data already in registers */ 22274 #ifdef _BIG_ENDIAN 22275 #define V_HLEN (v_hlen_tos_len >> 24) 22276 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22277 #define PROTO (ttl_protocol & 0xFF) 22278 #else 22279 #define V_HLEN (v_hlen_tos_len & 0xFF) 22280 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22281 #define PROTO (ttl_protocol >> 8) 22282 #endif 22283 22284 22285 orig_src = src = ipha->ipha_src; 22286 /* (The loop back to "another" is explained down below.) */ 22287 another:; 22288 /* 22289 * Assign an ident value for this packet. We assign idents on 22290 * a per destination basis out of the IRE. There could be 22291 * other threads targeting the same destination, so we have to 22292 * arrange for a atomic increment. Note that we use a 32-bit 22293 * atomic add because it has better performance than its 22294 * 16-bit sibling. 22295 * 22296 * If running in cluster mode and if the source address 22297 * belongs to a replicated service then vector through 22298 * cl_inet_ipident vector to allocate ip identifier 22299 * NOTE: This is a contract private interface with the 22300 * clustering group. 22301 */ 22302 clusterwide = 0; 22303 if (cl_inet_ipident) { 22304 ASSERT(cl_inet_isclusterwide); 22305 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22306 AF_INET, (uint8_t *)(uintptr_t)src)) { 22307 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22308 AF_INET, (uint8_t *)(uintptr_t)src, 22309 (uint8_t *)(uintptr_t)dst); 22310 clusterwide = 1; 22311 } 22312 } 22313 if (!clusterwide) { 22314 ipha->ipha_ident = 22315 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22316 } 22317 22318 #ifndef _BIG_ENDIAN 22319 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22320 #endif 22321 22322 /* 22323 * Set source address unless sent on an ill or conn_unspec_src is set. 22324 * This is needed to obey conn_unspec_src when packets go through 22325 * ip_newroute + arp. 22326 * Assumes ip_newroute{,_multi} sets the source address as well. 22327 */ 22328 if (src == INADDR_ANY && !unspec_src) { 22329 /* 22330 * Assign the appropriate source address from the IRE if none 22331 * was specified. 22332 */ 22333 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22334 22335 /* 22336 * With IP multipathing, broadcast packets are sent on the ire 22337 * that has been cleared of IRE_MARK_NORECV and that belongs to 22338 * the group. However, this ire might not be in the same zone so 22339 * we can't always use its source address. We look for a 22340 * broadcast ire in the same group and in the right zone. 22341 */ 22342 if (ire->ire_type == IRE_BROADCAST && 22343 ire->ire_zoneid != zoneid) { 22344 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22345 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22346 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22347 if (src_ire != NULL) { 22348 src = src_ire->ire_src_addr; 22349 ire_refrele(src_ire); 22350 } else { 22351 ire_refrele(ire); 22352 if (conn_outgoing_ill != NULL) 22353 ill_refrele(conn_outgoing_ill); 22354 freemsg(first_mp); 22355 if (ill != NULL) { 22356 BUMP_MIB(ill->ill_ip_mib, 22357 ipIfStatsOutDiscards); 22358 } else { 22359 BUMP_MIB(&ipst->ips_ip_mib, 22360 ipIfStatsOutDiscards); 22361 } 22362 return; 22363 } 22364 } else { 22365 src = ire->ire_src_addr; 22366 } 22367 22368 if (connp == NULL) { 22369 ip1dbg(("ip_wput_ire: no connp and no src " 22370 "address for dst 0x%x, using src 0x%x\n", 22371 ntohl(dst), 22372 ntohl(src))); 22373 } 22374 ipha->ipha_src = src; 22375 } 22376 stq = ire->ire_stq; 22377 22378 /* 22379 * We only allow ire chains for broadcasts since there will 22380 * be multiple IRE_CACHE entries for the same multicast 22381 * address (one per ipif). 22382 */ 22383 next_mp = NULL; 22384 22385 /* broadcast packet */ 22386 if (ire->ire_type == IRE_BROADCAST) 22387 goto broadcast; 22388 22389 /* loopback ? */ 22390 if (stq == NULL) 22391 goto nullstq; 22392 22393 /* The ill_index for outbound ILL */ 22394 ill_index = Q_TO_INDEX(stq); 22395 22396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22397 ttl_protocol = ((uint16_t *)ipha)[4]; 22398 22399 /* pseudo checksum (do it in parts for IP header checksum) */ 22400 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22401 22402 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22403 queue_t *dev_q = stq->q_next; 22404 22405 /* flow controlled */ 22406 if ((dev_q->q_next || dev_q->q_first) && 22407 !canput(dev_q)) 22408 goto blocked; 22409 if ((PROTO == IPPROTO_UDP) && 22410 (ip_hdr_included != IP_HDR_INCLUDED)) { 22411 hlen = (V_HLEN & 0xF) << 2; 22412 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22413 if (*up != 0) { 22414 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22415 hlen, LENGTH, max_frag, ipsec_len, cksum); 22416 /* Software checksum? */ 22417 if (DB_CKSUMFLAGS(mp) == 0) { 22418 IP_STAT(ipst, ip_out_sw_cksum); 22419 IP_STAT_UPDATE(ipst, 22420 ip_udp_out_sw_cksum_bytes, 22421 LENGTH - hlen); 22422 } 22423 } 22424 } 22425 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22426 hlen = (V_HLEN & 0xF) << 2; 22427 if (PROTO == IPPROTO_TCP) { 22428 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22429 /* 22430 * The packet header is processed once and for all, even 22431 * in the multirouting case. We disable hardware 22432 * checksum if the packet is multirouted, as it will be 22433 * replicated via several interfaces, and not all of 22434 * them may have this capability. 22435 */ 22436 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22437 LENGTH, max_frag, ipsec_len, cksum); 22438 /* Software checksum? */ 22439 if (DB_CKSUMFLAGS(mp) == 0) { 22440 IP_STAT(ipst, ip_out_sw_cksum); 22441 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22442 LENGTH - hlen); 22443 } 22444 } else { 22445 sctp_hdr_t *sctph; 22446 22447 ASSERT(PROTO == IPPROTO_SCTP); 22448 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22449 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22450 /* 22451 * Zero out the checksum field to ensure proper 22452 * checksum calculation. 22453 */ 22454 sctph->sh_chksum = 0; 22455 #ifdef DEBUG 22456 if (!skip_sctp_cksum) 22457 #endif 22458 sctph->sh_chksum = sctp_cksum(mp, hlen); 22459 } 22460 } 22461 22462 /* 22463 * If this is a multicast packet and originated from ip_wput 22464 * we need to do loopback and forwarding checks. If it comes 22465 * from ip_wput_multicast, we SHOULD not do this. 22466 */ 22467 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22468 22469 /* checksum */ 22470 cksum += ttl_protocol; 22471 22472 /* fragment the packet */ 22473 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22474 goto fragmentit; 22475 /* 22476 * Don't use frag_flag if packet is pre-built or source 22477 * routed or if multicast (since multicast packets do 22478 * not solicit ICMP "packet too big" messages). 22479 */ 22480 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22481 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22482 !ip_source_route_included(ipha)) && 22483 !CLASSD(ipha->ipha_dst)) 22484 ipha->ipha_fragment_offset_and_flags |= 22485 htons(ire->ire_frag_flag); 22486 22487 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22488 /* calculate IP header checksum */ 22489 cksum += ipha->ipha_ident; 22490 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22491 cksum += ipha->ipha_fragment_offset_and_flags; 22492 22493 /* IP options present */ 22494 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22495 if (hlen) 22496 goto checksumoptions; 22497 22498 /* calculate hdr checksum */ 22499 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22500 cksum = ~(cksum + (cksum >> 16)); 22501 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22502 } 22503 if (ipsec_len != 0) { 22504 /* 22505 * We will do the rest of the processing after 22506 * we come back from IPsec in ip_wput_ipsec_out(). 22507 */ 22508 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22509 22510 io = (ipsec_out_t *)first_mp->b_rptr; 22511 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22512 ill_phyint->phyint_ifindex; 22513 22514 ipsec_out_process(q, first_mp, ire, ill_index); 22515 ire_refrele(ire); 22516 if (conn_outgoing_ill != NULL) 22517 ill_refrele(conn_outgoing_ill); 22518 return; 22519 } 22520 22521 /* 22522 * In most cases, the emission loop below is entered only 22523 * once. Only in the case where the ire holds the 22524 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22525 * flagged ires in the bucket, and send the packet 22526 * through all crossed RTF_MULTIRT routes. 22527 */ 22528 if (ire->ire_flags & RTF_MULTIRT) { 22529 multirt_send = B_TRUE; 22530 } 22531 do { 22532 if (multirt_send) { 22533 irb_t *irb; 22534 /* 22535 * We are in a multiple send case, need to get 22536 * the next ire and make a duplicate of the packet. 22537 * ire1 holds here the next ire to process in the 22538 * bucket. If multirouting is expected, 22539 * any non-RTF_MULTIRT ire that has the 22540 * right destination address is ignored. 22541 */ 22542 irb = ire->ire_bucket; 22543 ASSERT(irb != NULL); 22544 22545 IRB_REFHOLD(irb); 22546 for (ire1 = ire->ire_next; 22547 ire1 != NULL; 22548 ire1 = ire1->ire_next) { 22549 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22550 continue; 22551 if (ire1->ire_addr != ire->ire_addr) 22552 continue; 22553 if (ire1->ire_marks & 22554 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22555 continue; 22556 22557 /* Got one */ 22558 IRE_REFHOLD(ire1); 22559 break; 22560 } 22561 IRB_REFRELE(irb); 22562 22563 if (ire1 != NULL) { 22564 next_mp = copyb(mp); 22565 if ((next_mp == NULL) || 22566 ((mp->b_cont != NULL) && 22567 ((next_mp->b_cont = 22568 dupmsg(mp->b_cont)) == NULL))) { 22569 freemsg(next_mp); 22570 next_mp = NULL; 22571 ire_refrele(ire1); 22572 ire1 = NULL; 22573 } 22574 } 22575 22576 /* Last multiroute ire; don't loop anymore. */ 22577 if (ire1 == NULL) { 22578 multirt_send = B_FALSE; 22579 } 22580 } 22581 22582 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22583 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22584 mblk_t *, mp); 22585 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22586 ipst->ips_ipv4firewall_physical_out, 22587 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22588 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22589 if (mp == NULL) 22590 goto release_ire_and_ill; 22591 22592 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22593 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22594 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22595 if ((pktxmit_state == SEND_FAILED) || 22596 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22597 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22598 "- packet dropped\n")); 22599 release_ire_and_ill: 22600 ire_refrele(ire); 22601 if (next_mp != NULL) { 22602 freemsg(next_mp); 22603 ire_refrele(ire1); 22604 } 22605 if (conn_outgoing_ill != NULL) 22606 ill_refrele(conn_outgoing_ill); 22607 return; 22608 } 22609 22610 if (CLASSD(dst)) { 22611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22612 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22613 LENGTH); 22614 } 22615 22616 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22617 "ip_wput_ire_end: q %p (%S)", 22618 q, "last copy out"); 22619 IRE_REFRELE(ire); 22620 22621 if (multirt_send) { 22622 ASSERT(ire1); 22623 /* 22624 * Proceed with the next RTF_MULTIRT ire, 22625 * Also set up the send-to queue accordingly. 22626 */ 22627 ire = ire1; 22628 ire1 = NULL; 22629 stq = ire->ire_stq; 22630 mp = next_mp; 22631 next_mp = NULL; 22632 ipha = (ipha_t *)mp->b_rptr; 22633 ill_index = Q_TO_INDEX(stq); 22634 ill = (ill_t *)stq->q_ptr; 22635 } 22636 } while (multirt_send); 22637 if (conn_outgoing_ill != NULL) 22638 ill_refrele(conn_outgoing_ill); 22639 return; 22640 22641 /* 22642 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22643 */ 22644 broadcast: 22645 { 22646 /* 22647 * To avoid broadcast storms, we usually set the TTL to 1 for 22648 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22649 * can be overridden stack-wide through the ip_broadcast_ttl 22650 * ndd tunable, or on a per-connection basis through the 22651 * IP_BROADCAST_TTL socket option. 22652 * 22653 * In the event that we are replying to incoming ICMP packets, 22654 * connp could be NULL. 22655 */ 22656 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22657 if (connp != NULL) { 22658 if (connp->conn_dontroute) 22659 ipha->ipha_ttl = 1; 22660 else if (connp->conn_broadcast_ttl != 0) 22661 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22662 } 22663 22664 /* 22665 * Note that we are not doing a IRB_REFHOLD here. 22666 * Actually we don't care if the list changes i.e 22667 * if somebody deletes an IRE from the list while 22668 * we drop the lock, the next time we come around 22669 * ire_next will be NULL and hence we won't send 22670 * out multiple copies which is fine. 22671 */ 22672 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22673 ire1 = ire->ire_next; 22674 if (conn_outgoing_ill != NULL) { 22675 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22676 ASSERT(ire1 == ire->ire_next); 22677 if (ire1 != NULL && ire1->ire_addr == dst) { 22678 ire_refrele(ire); 22679 ire = ire1; 22680 IRE_REFHOLD(ire); 22681 ire1 = ire->ire_next; 22682 continue; 22683 } 22684 rw_exit(&ire->ire_bucket->irb_lock); 22685 /* Did not find a matching ill */ 22686 ip1dbg(("ip_wput_ire: broadcast with no " 22687 "matching IP_BOUND_IF ill %s dst %x\n", 22688 conn_outgoing_ill->ill_name, dst)); 22689 freemsg(first_mp); 22690 if (ire != NULL) 22691 ire_refrele(ire); 22692 ill_refrele(conn_outgoing_ill); 22693 return; 22694 } 22695 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22696 /* 22697 * If the next IRE has the same address and is not one 22698 * of the two copies that we need to send, try to see 22699 * whether this copy should be sent at all. This 22700 * assumes that we insert loopbacks first and then 22701 * non-loopbacks. This is acheived by inserting the 22702 * loopback always before non-loopback. 22703 * This is used to send a single copy of a broadcast 22704 * packet out all physical interfaces that have an 22705 * matching IRE_BROADCAST while also looping 22706 * back one copy (to ip_wput_local) for each 22707 * matching physical interface. However, we avoid 22708 * sending packets out different logical that match by 22709 * having ipif_up/ipif_down supress duplicate 22710 * IRE_BROADCASTS. 22711 * 22712 * This feature is currently used to get broadcasts 22713 * sent to multiple interfaces, when the broadcast 22714 * address being used applies to multiple interfaces. 22715 * For example, a whole net broadcast will be 22716 * replicated on every connected subnet of 22717 * the target net. 22718 * 22719 * Each zone has its own set of IRE_BROADCASTs, so that 22720 * we're able to distribute inbound packets to multiple 22721 * zones who share a broadcast address. We avoid looping 22722 * back outbound packets in different zones but on the 22723 * same ill, as the application would see duplicates. 22724 * 22725 * If the interfaces are part of the same group, 22726 * we would want to send only one copy out for 22727 * whole group. 22728 * 22729 * This logic assumes that ire_add_v4() groups the 22730 * IRE_BROADCAST entries so that those with the same 22731 * ire_addr and ill_group are kept together. 22732 */ 22733 ire_ill = ire->ire_ipif->ipif_ill; 22734 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22735 if (ire_ill->ill_group != NULL && 22736 (ire->ire_marks & IRE_MARK_NORECV)) { 22737 /* 22738 * If the current zone only has an ire 22739 * broadcast for this address marked 22740 * NORECV, the ire we want is ahead in 22741 * the bucket, so we look it up 22742 * deliberately ignoring the zoneid. 22743 */ 22744 for (ire1 = ire->ire_bucket->irb_ire; 22745 ire1 != NULL; 22746 ire1 = ire1->ire_next) { 22747 ire1_ill = 22748 ire1->ire_ipif->ipif_ill; 22749 if (ire1->ire_addr != dst) 22750 continue; 22751 /* skip over the current ire */ 22752 if (ire1 == ire) 22753 continue; 22754 /* skip over deleted ires */ 22755 if (ire1->ire_marks & 22756 IRE_MARK_CONDEMNED) 22757 continue; 22758 /* 22759 * non-loopback ire in our 22760 * group: use it for the next 22761 * pass in the loop 22762 */ 22763 if (ire1->ire_stq != NULL && 22764 ire1_ill->ill_group == 22765 ire_ill->ill_group) 22766 break; 22767 } 22768 } 22769 } else { 22770 while (ire1 != NULL && ire1->ire_addr == dst) { 22771 ire1_ill = ire1->ire_ipif->ipif_ill; 22772 /* 22773 * We can have two broadcast ires on the 22774 * same ill in different zones; here 22775 * we'll send a copy of the packet on 22776 * each ill and the fanout code will 22777 * call conn_wantpacket() to check that 22778 * the zone has the broadcast address 22779 * configured on the ill. If the two 22780 * ires are in the same group we only 22781 * send one copy up. 22782 */ 22783 if (ire1_ill != ire_ill && 22784 (ire1_ill->ill_group == NULL || 22785 ire_ill->ill_group == NULL || 22786 ire1_ill->ill_group != 22787 ire_ill->ill_group)) { 22788 break; 22789 } 22790 ire1 = ire1->ire_next; 22791 } 22792 } 22793 } 22794 ASSERT(multirt_send == B_FALSE); 22795 if (ire1 != NULL && ire1->ire_addr == dst) { 22796 if ((ire->ire_flags & RTF_MULTIRT) && 22797 (ire1->ire_flags & RTF_MULTIRT)) { 22798 /* 22799 * We are in the multirouting case. 22800 * The message must be sent at least 22801 * on both ires. These ires have been 22802 * inserted AFTER the standard ones 22803 * in ip_rt_add(). There are thus no 22804 * other ire entries for the destination 22805 * address in the rest of the bucket 22806 * that do not have the RTF_MULTIRT 22807 * flag. We don't process a copy 22808 * of the message here. This will be 22809 * done in the final sending loop. 22810 */ 22811 multirt_send = B_TRUE; 22812 } else { 22813 next_mp = ip_copymsg(first_mp); 22814 if (next_mp != NULL) 22815 IRE_REFHOLD(ire1); 22816 } 22817 } 22818 rw_exit(&ire->ire_bucket->irb_lock); 22819 } 22820 22821 if (stq) { 22822 /* 22823 * A non-NULL send-to queue means this packet is going 22824 * out of this machine. 22825 */ 22826 out_ill = (ill_t *)stq->q_ptr; 22827 22828 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22829 ttl_protocol = ((uint16_t *)ipha)[4]; 22830 /* 22831 * We accumulate the pseudo header checksum in cksum. 22832 * This is pretty hairy code, so watch close. One 22833 * thing to keep in mind is that UDP and TCP have 22834 * stored their respective datagram lengths in their 22835 * checksum fields. This lines things up real nice. 22836 */ 22837 cksum = (dst >> 16) + (dst & 0xFFFF) + 22838 (src >> 16) + (src & 0xFFFF); 22839 /* 22840 * We assume the udp checksum field contains the 22841 * length, so to compute the pseudo header checksum, 22842 * all we need is the protocol number and src/dst. 22843 */ 22844 /* Provide the checksums for UDP and TCP. */ 22845 if ((PROTO == IPPROTO_TCP) && 22846 (ip_hdr_included != IP_HDR_INCLUDED)) { 22847 /* hlen gets the number of uchar_ts in the IP header */ 22848 hlen = (V_HLEN & 0xF) << 2; 22849 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22850 IP_STAT(ipst, ip_out_sw_cksum); 22851 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22852 LENGTH - hlen); 22853 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22854 } else if (PROTO == IPPROTO_SCTP && 22855 (ip_hdr_included != IP_HDR_INCLUDED)) { 22856 sctp_hdr_t *sctph; 22857 22858 hlen = (V_HLEN & 0xF) << 2; 22859 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22860 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22861 sctph->sh_chksum = 0; 22862 #ifdef DEBUG 22863 if (!skip_sctp_cksum) 22864 #endif 22865 sctph->sh_chksum = sctp_cksum(mp, hlen); 22866 } else { 22867 queue_t *dev_q = stq->q_next; 22868 22869 if ((dev_q->q_next || dev_q->q_first) && 22870 !canput(dev_q)) { 22871 blocked: 22872 ipha->ipha_ident = ip_hdr_included; 22873 /* 22874 * If we don't have a conn to apply 22875 * backpressure, free the message. 22876 * In the ire_send path, we don't know 22877 * the position to requeue the packet. Rather 22878 * than reorder packets, we just drop this 22879 * packet. 22880 */ 22881 if (ipst->ips_ip_output_queue && 22882 connp != NULL && 22883 caller != IRE_SEND) { 22884 if (caller == IP_WSRV) { 22885 connp->conn_did_putbq = 1; 22886 (void) putbq(connp->conn_wq, 22887 first_mp); 22888 conn_drain_insert(connp); 22889 /* 22890 * This is the service thread, 22891 * and the queue is already 22892 * noenabled. The check for 22893 * canput and the putbq is not 22894 * atomic. So we need to check 22895 * again. 22896 */ 22897 if (canput(stq->q_next)) 22898 connp->conn_did_putbq 22899 = 0; 22900 IP_STAT(ipst, ip_conn_flputbq); 22901 } else { 22902 /* 22903 * We are not the service proc. 22904 * ip_wsrv will be scheduled or 22905 * is already running. 22906 */ 22907 (void) putq(connp->conn_wq, 22908 first_mp); 22909 } 22910 } else { 22911 out_ill = (ill_t *)stq->q_ptr; 22912 BUMP_MIB(out_ill->ill_ip_mib, 22913 ipIfStatsOutDiscards); 22914 freemsg(first_mp); 22915 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22916 "ip_wput_ire_end: q %p (%S)", 22917 q, "discard"); 22918 } 22919 ire_refrele(ire); 22920 if (next_mp) { 22921 ire_refrele(ire1); 22922 freemsg(next_mp); 22923 } 22924 if (conn_outgoing_ill != NULL) 22925 ill_refrele(conn_outgoing_ill); 22926 return; 22927 } 22928 if ((PROTO == IPPROTO_UDP) && 22929 (ip_hdr_included != IP_HDR_INCLUDED)) { 22930 /* 22931 * hlen gets the number of uchar_ts in the 22932 * IP header 22933 */ 22934 hlen = (V_HLEN & 0xF) << 2; 22935 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22936 max_frag = ire->ire_max_frag; 22937 if (*up != 0) { 22938 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22939 up, PROTO, hlen, LENGTH, max_frag, 22940 ipsec_len, cksum); 22941 /* Software checksum? */ 22942 if (DB_CKSUMFLAGS(mp) == 0) { 22943 IP_STAT(ipst, ip_out_sw_cksum); 22944 IP_STAT_UPDATE(ipst, 22945 ip_udp_out_sw_cksum_bytes, 22946 LENGTH - hlen); 22947 } 22948 } 22949 } 22950 } 22951 /* 22952 * Need to do this even when fragmenting. The local 22953 * loopback can be done without computing checksums 22954 * but forwarding out other interface must be done 22955 * after the IP checksum (and ULP checksums) have been 22956 * computed. 22957 * 22958 * NOTE : multicast_forward is set only if this packet 22959 * originated from ip_wput. For packets originating from 22960 * ip_wput_multicast, it is not set. 22961 */ 22962 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22963 multi_loopback: 22964 ip2dbg(("ip_wput: multicast, loop %d\n", 22965 conn_multicast_loop)); 22966 22967 /* Forget header checksum offload */ 22968 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22969 22970 /* 22971 * Local loopback of multicasts? Check the 22972 * ill. 22973 * 22974 * Note that the loopback function will not come 22975 * in through ip_rput - it will only do the 22976 * client fanout thus we need to do an mforward 22977 * as well. The is different from the BSD 22978 * logic. 22979 */ 22980 if (ill != NULL) { 22981 ilm_t *ilm; 22982 22983 ILM_WALKER_HOLD(ill); 22984 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22985 ALL_ZONES); 22986 ILM_WALKER_RELE(ill); 22987 if (ilm != NULL) { 22988 /* 22989 * Pass along the virtual output q. 22990 * ip_wput_local() will distribute the 22991 * packet to all the matching zones, 22992 * except the sending zone when 22993 * IP_MULTICAST_LOOP is false. 22994 */ 22995 ip_multicast_loopback(q, ill, first_mp, 22996 conn_multicast_loop ? 0 : 22997 IP_FF_NO_MCAST_LOOP, zoneid); 22998 } 22999 } 23000 if (ipha->ipha_ttl == 0) { 23001 /* 23002 * 0 => only to this host i.e. we are 23003 * done. We are also done if this was the 23004 * loopback interface since it is sufficient 23005 * to loopback one copy of a multicast packet. 23006 */ 23007 freemsg(first_mp); 23008 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23009 "ip_wput_ire_end: q %p (%S)", 23010 q, "loopback"); 23011 ire_refrele(ire); 23012 if (conn_outgoing_ill != NULL) 23013 ill_refrele(conn_outgoing_ill); 23014 return; 23015 } 23016 /* 23017 * ILLF_MULTICAST is checked in ip_newroute 23018 * i.e. we don't need to check it here since 23019 * all IRE_CACHEs come from ip_newroute. 23020 * For multicast traffic, SO_DONTROUTE is interpreted 23021 * to mean only send the packet out the interface 23022 * (optionally specified with IP_MULTICAST_IF) 23023 * and do not forward it out additional interfaces. 23024 * RSVP and the rsvp daemon is an example of a 23025 * protocol and user level process that 23026 * handles it's own routing. Hence, it uses the 23027 * SO_DONTROUTE option to accomplish this. 23028 */ 23029 23030 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23031 ill != NULL) { 23032 /* Unconditionally redo the checksum */ 23033 ipha->ipha_hdr_checksum = 0; 23034 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23035 23036 /* 23037 * If this needs to go out secure, we need 23038 * to wait till we finish the IPsec 23039 * processing. 23040 */ 23041 if (ipsec_len == 0 && 23042 ip_mforward(ill, ipha, mp)) { 23043 freemsg(first_mp); 23044 ip1dbg(("ip_wput: mforward failed\n")); 23045 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23046 "ip_wput_ire_end: q %p (%S)", 23047 q, "mforward failed"); 23048 ire_refrele(ire); 23049 if (conn_outgoing_ill != NULL) 23050 ill_refrele(conn_outgoing_ill); 23051 return; 23052 } 23053 } 23054 } 23055 max_frag = ire->ire_max_frag; 23056 cksum += ttl_protocol; 23057 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23058 /* No fragmentation required for this one. */ 23059 /* 23060 * Don't use frag_flag if packet is pre-built or source 23061 * routed or if multicast (since multicast packets do 23062 * not solicit ICMP "packet too big" messages). 23063 */ 23064 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23065 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23066 !ip_source_route_included(ipha)) && 23067 !CLASSD(ipha->ipha_dst)) 23068 ipha->ipha_fragment_offset_and_flags |= 23069 htons(ire->ire_frag_flag); 23070 23071 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23072 /* Complete the IP header checksum. */ 23073 cksum += ipha->ipha_ident; 23074 cksum += (v_hlen_tos_len >> 16)+ 23075 (v_hlen_tos_len & 0xFFFF); 23076 cksum += ipha->ipha_fragment_offset_and_flags; 23077 hlen = (V_HLEN & 0xF) - 23078 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23079 if (hlen) { 23080 checksumoptions: 23081 /* 23082 * Account for the IP Options in the IP 23083 * header checksum. 23084 */ 23085 up = (uint16_t *)(rptr+ 23086 IP_SIMPLE_HDR_LENGTH); 23087 do { 23088 cksum += up[0]; 23089 cksum += up[1]; 23090 up += 2; 23091 } while (--hlen); 23092 } 23093 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23094 cksum = ~(cksum + (cksum >> 16)); 23095 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23096 } 23097 if (ipsec_len != 0) { 23098 ipsec_out_process(q, first_mp, ire, ill_index); 23099 if (!next_mp) { 23100 ire_refrele(ire); 23101 if (conn_outgoing_ill != NULL) 23102 ill_refrele(conn_outgoing_ill); 23103 return; 23104 } 23105 goto next; 23106 } 23107 23108 /* 23109 * multirt_send has already been handled 23110 * for broadcast, but not yet for multicast 23111 * or IP options. 23112 */ 23113 if (next_mp == NULL) { 23114 if (ire->ire_flags & RTF_MULTIRT) { 23115 multirt_send = B_TRUE; 23116 } 23117 } 23118 23119 /* 23120 * In most cases, the emission loop below is 23121 * entered only once. Only in the case where 23122 * the ire holds the RTF_MULTIRT flag, do we loop 23123 * to process all RTF_MULTIRT ires in the bucket, 23124 * and send the packet through all crossed 23125 * RTF_MULTIRT routes. 23126 */ 23127 do { 23128 if (multirt_send) { 23129 irb_t *irb; 23130 23131 irb = ire->ire_bucket; 23132 ASSERT(irb != NULL); 23133 /* 23134 * We are in a multiple send case, 23135 * need to get the next IRE and make 23136 * a duplicate of the packet. 23137 */ 23138 IRB_REFHOLD(irb); 23139 for (ire1 = ire->ire_next; 23140 ire1 != NULL; 23141 ire1 = ire1->ire_next) { 23142 if (!(ire1->ire_flags & 23143 RTF_MULTIRT)) { 23144 continue; 23145 } 23146 if (ire1->ire_addr != 23147 ire->ire_addr) { 23148 continue; 23149 } 23150 if (ire1->ire_marks & 23151 (IRE_MARK_CONDEMNED| 23152 IRE_MARK_HIDDEN)) { 23153 continue; 23154 } 23155 23156 /* Got one */ 23157 IRE_REFHOLD(ire1); 23158 break; 23159 } 23160 IRB_REFRELE(irb); 23161 23162 if (ire1 != NULL) { 23163 next_mp = copyb(mp); 23164 if ((next_mp == NULL) || 23165 ((mp->b_cont != NULL) && 23166 ((next_mp->b_cont = 23167 dupmsg(mp->b_cont)) 23168 == NULL))) { 23169 freemsg(next_mp); 23170 next_mp = NULL; 23171 ire_refrele(ire1); 23172 ire1 = NULL; 23173 } 23174 } 23175 23176 /* 23177 * Last multiroute ire; don't loop 23178 * anymore. The emission is over 23179 * and next_mp is NULL. 23180 */ 23181 if (ire1 == NULL) { 23182 multirt_send = B_FALSE; 23183 } 23184 } 23185 23186 out_ill = ire_to_ill(ire); 23187 DTRACE_PROBE4(ip4__physical__out__start, 23188 ill_t *, NULL, 23189 ill_t *, out_ill, 23190 ipha_t *, ipha, mblk_t *, mp); 23191 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23192 ipst->ips_ipv4firewall_physical_out, 23193 NULL, out_ill, ipha, mp, mp, 0, ipst); 23194 DTRACE_PROBE1(ip4__physical__out__end, 23195 mblk_t *, mp); 23196 if (mp == NULL) 23197 goto release_ire_and_ill_2; 23198 23199 ASSERT(ipsec_len == 0); 23200 mp->b_prev = 23201 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23202 DTRACE_PROBE2(ip__xmit__2, 23203 mblk_t *, mp, ire_t *, ire); 23204 pktxmit_state = ip_xmit_v4(mp, ire, 23205 NULL, B_TRUE); 23206 if ((pktxmit_state == SEND_FAILED) || 23207 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23208 release_ire_and_ill_2: 23209 if (next_mp) { 23210 freemsg(next_mp); 23211 ire_refrele(ire1); 23212 } 23213 ire_refrele(ire); 23214 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23215 "ip_wput_ire_end: q %p (%S)", 23216 q, "discard MDATA"); 23217 if (conn_outgoing_ill != NULL) 23218 ill_refrele(conn_outgoing_ill); 23219 return; 23220 } 23221 23222 if (CLASSD(dst)) { 23223 BUMP_MIB(out_ill->ill_ip_mib, 23224 ipIfStatsHCOutMcastPkts); 23225 UPDATE_MIB(out_ill->ill_ip_mib, 23226 ipIfStatsHCOutMcastOctets, 23227 LENGTH); 23228 } else if (ire->ire_type == IRE_BROADCAST) { 23229 BUMP_MIB(out_ill->ill_ip_mib, 23230 ipIfStatsHCOutBcastPkts); 23231 } 23232 23233 if (multirt_send) { 23234 /* 23235 * We are in a multiple send case, 23236 * need to re-enter the sending loop 23237 * using the next ire. 23238 */ 23239 ire_refrele(ire); 23240 ire = ire1; 23241 stq = ire->ire_stq; 23242 mp = next_mp; 23243 next_mp = NULL; 23244 ipha = (ipha_t *)mp->b_rptr; 23245 ill_index = Q_TO_INDEX(stq); 23246 } 23247 } while (multirt_send); 23248 23249 if (!next_mp) { 23250 /* 23251 * Last copy going out (the ultra-common 23252 * case). Note that we intentionally replicate 23253 * the putnext rather than calling it before 23254 * the next_mp check in hopes of a little 23255 * tail-call action out of the compiler. 23256 */ 23257 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23258 "ip_wput_ire_end: q %p (%S)", 23259 q, "last copy out(1)"); 23260 ire_refrele(ire); 23261 if (conn_outgoing_ill != NULL) 23262 ill_refrele(conn_outgoing_ill); 23263 return; 23264 } 23265 /* More copies going out below. */ 23266 } else { 23267 int offset; 23268 fragmentit: 23269 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23270 /* 23271 * If this would generate a icmp_frag_needed message, 23272 * we need to handle it before we do the IPsec 23273 * processing. Otherwise, we need to strip the IPsec 23274 * headers before we send up the message to the ULPs 23275 * which becomes messy and difficult. 23276 */ 23277 if (ipsec_len != 0) { 23278 if ((max_frag < (unsigned int)(LENGTH + 23279 ipsec_len)) && (offset & IPH_DF)) { 23280 out_ill = (ill_t *)stq->q_ptr; 23281 BUMP_MIB(out_ill->ill_ip_mib, 23282 ipIfStatsOutFragFails); 23283 BUMP_MIB(out_ill->ill_ip_mib, 23284 ipIfStatsOutFragReqds); 23285 ipha->ipha_hdr_checksum = 0; 23286 ipha->ipha_hdr_checksum = 23287 (uint16_t)ip_csum_hdr(ipha); 23288 icmp_frag_needed(ire->ire_stq, first_mp, 23289 max_frag, zoneid, ipst); 23290 if (!next_mp) { 23291 ire_refrele(ire); 23292 if (conn_outgoing_ill != NULL) { 23293 ill_refrele( 23294 conn_outgoing_ill); 23295 } 23296 return; 23297 } 23298 } else { 23299 /* 23300 * This won't cause a icmp_frag_needed 23301 * message. to be generated. Send it on 23302 * the wire. Note that this could still 23303 * cause fragmentation and all we 23304 * do is the generation of the message 23305 * to the ULP if needed before IPsec. 23306 */ 23307 if (!next_mp) { 23308 ipsec_out_process(q, first_mp, 23309 ire, ill_index); 23310 TRACE_2(TR_FAC_IP, 23311 TR_IP_WPUT_IRE_END, 23312 "ip_wput_ire_end: q %p " 23313 "(%S)", q, 23314 "last ipsec_out_process"); 23315 ire_refrele(ire); 23316 if (conn_outgoing_ill != NULL) { 23317 ill_refrele( 23318 conn_outgoing_ill); 23319 } 23320 return; 23321 } 23322 ipsec_out_process(q, first_mp, 23323 ire, ill_index); 23324 } 23325 } else { 23326 /* 23327 * Initiate IPPF processing. For 23328 * fragmentable packets we finish 23329 * all QOS packet processing before 23330 * calling: 23331 * ip_wput_ire_fragmentit->ip_wput_frag 23332 */ 23333 23334 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23335 ip_process(IPP_LOCAL_OUT, &mp, 23336 ill_index); 23337 if (mp == NULL) { 23338 out_ill = (ill_t *)stq->q_ptr; 23339 BUMP_MIB(out_ill->ill_ip_mib, 23340 ipIfStatsOutDiscards); 23341 if (next_mp != NULL) { 23342 freemsg(next_mp); 23343 ire_refrele(ire1); 23344 } 23345 ire_refrele(ire); 23346 TRACE_2(TR_FAC_IP, 23347 TR_IP_WPUT_IRE_END, 23348 "ip_wput_ire: q %p (%S)", 23349 q, "discard MDATA"); 23350 if (conn_outgoing_ill != NULL) { 23351 ill_refrele( 23352 conn_outgoing_ill); 23353 } 23354 return; 23355 } 23356 } 23357 if (!next_mp) { 23358 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23359 "ip_wput_ire_end: q %p (%S)", 23360 q, "last fragmentation"); 23361 ip_wput_ire_fragmentit(mp, ire, 23362 zoneid, ipst); 23363 ire_refrele(ire); 23364 if (conn_outgoing_ill != NULL) 23365 ill_refrele(conn_outgoing_ill); 23366 return; 23367 } 23368 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23369 } 23370 } 23371 } else { 23372 nullstq: 23373 /* A NULL stq means the destination address is local. */ 23374 UPDATE_OB_PKT_COUNT(ire); 23375 ire->ire_last_used_time = lbolt; 23376 ASSERT(ire->ire_ipif != NULL); 23377 if (!next_mp) { 23378 /* 23379 * Is there an "in" and "out" for traffic local 23380 * to a host (loopback)? The code in Solaris doesn't 23381 * explicitly draw a line in its code for in vs out, 23382 * so we've had to draw a line in the sand: ip_wput_ire 23383 * is considered to be the "output" side and 23384 * ip_wput_local to be the "input" side. 23385 */ 23386 out_ill = ire_to_ill(ire); 23387 23388 DTRACE_PROBE4(ip4__loopback__out__start, 23389 ill_t *, NULL, ill_t *, out_ill, 23390 ipha_t *, ipha, mblk_t *, first_mp); 23391 23392 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23393 ipst->ips_ipv4firewall_loopback_out, 23394 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23395 23396 DTRACE_PROBE1(ip4__loopback__out_end, 23397 mblk_t *, first_mp); 23398 23399 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23400 "ip_wput_ire_end: q %p (%S)", 23401 q, "local address"); 23402 23403 if (first_mp != NULL) 23404 ip_wput_local(q, out_ill, ipha, 23405 first_mp, ire, 0, ire->ire_zoneid); 23406 ire_refrele(ire); 23407 if (conn_outgoing_ill != NULL) 23408 ill_refrele(conn_outgoing_ill); 23409 return; 23410 } 23411 23412 out_ill = ire_to_ill(ire); 23413 23414 DTRACE_PROBE4(ip4__loopback__out__start, 23415 ill_t *, NULL, ill_t *, out_ill, 23416 ipha_t *, ipha, mblk_t *, first_mp); 23417 23418 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23419 ipst->ips_ipv4firewall_loopback_out, 23420 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23421 23422 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23423 23424 if (first_mp != NULL) 23425 ip_wput_local(q, out_ill, ipha, 23426 first_mp, ire, 0, ire->ire_zoneid); 23427 } 23428 next: 23429 /* 23430 * More copies going out to additional interfaces. 23431 * ire1 has already been held. We don't need the 23432 * "ire" anymore. 23433 */ 23434 ire_refrele(ire); 23435 ire = ire1; 23436 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23437 mp = next_mp; 23438 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23439 ill = ire_to_ill(ire); 23440 first_mp = mp; 23441 if (ipsec_len != 0) { 23442 ASSERT(first_mp->b_datap->db_type == M_CTL); 23443 mp = mp->b_cont; 23444 } 23445 dst = ire->ire_addr; 23446 ipha = (ipha_t *)mp->b_rptr; 23447 /* 23448 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23449 * Restore ipha_ident "no checksum" flag. 23450 */ 23451 src = orig_src; 23452 ipha->ipha_ident = ip_hdr_included; 23453 goto another; 23454 23455 #undef rptr 23456 #undef Q_TO_INDEX 23457 } 23458 23459 /* 23460 * Routine to allocate a message that is used to notify the ULP about MDT. 23461 * The caller may provide a pointer to the link-layer MDT capabilities, 23462 * or NULL if MDT is to be disabled on the stream. 23463 */ 23464 mblk_t * 23465 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23466 { 23467 mblk_t *mp; 23468 ip_mdt_info_t *mdti; 23469 ill_mdt_capab_t *idst; 23470 23471 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23472 DB_TYPE(mp) = M_CTL; 23473 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23474 mdti = (ip_mdt_info_t *)mp->b_rptr; 23475 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23476 idst = &(mdti->mdt_capab); 23477 23478 /* 23479 * If the caller provides us with the capability, copy 23480 * it over into our notification message; otherwise 23481 * we zero out the capability portion. 23482 */ 23483 if (isrc != NULL) 23484 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23485 else 23486 bzero((caddr_t)idst, sizeof (*idst)); 23487 } 23488 return (mp); 23489 } 23490 23491 /* 23492 * Routine which determines whether MDT can be enabled on the destination 23493 * IRE and IPC combination, and if so, allocates and returns the MDT 23494 * notification mblk that may be used by ULP. We also check if we need to 23495 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23496 * MDT usage in the past have been lifted. This gets called during IP 23497 * and ULP binding. 23498 */ 23499 mblk_t * 23500 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23501 ill_mdt_capab_t *mdt_cap) 23502 { 23503 mblk_t *mp; 23504 boolean_t rc = B_FALSE; 23505 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23506 23507 ASSERT(dst_ire != NULL); 23508 ASSERT(connp != NULL); 23509 ASSERT(mdt_cap != NULL); 23510 23511 /* 23512 * Currently, we only support simple TCP/{IPv4,IPv6} with 23513 * Multidata, which is handled in tcp_multisend(). This 23514 * is the reason why we do all these checks here, to ensure 23515 * that we don't enable Multidata for the cases which we 23516 * can't handle at the moment. 23517 */ 23518 do { 23519 /* Only do TCP at the moment */ 23520 if (connp->conn_ulp != IPPROTO_TCP) 23521 break; 23522 23523 /* 23524 * IPsec outbound policy present? Note that we get here 23525 * after calling ipsec_conn_cache_policy() where the global 23526 * policy checking is performed. conn_latch will be 23527 * non-NULL as long as there's a policy defined, 23528 * i.e. conn_out_enforce_policy may be NULL in such case 23529 * when the connection is non-secure, and hence we check 23530 * further if the latch refers to an outbound policy. 23531 */ 23532 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23533 break; 23534 23535 /* CGTP (multiroute) is enabled? */ 23536 if (dst_ire->ire_flags & RTF_MULTIRT) 23537 break; 23538 23539 /* Outbound IPQoS enabled? */ 23540 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23541 /* 23542 * In this case, we disable MDT for this and all 23543 * future connections going over the interface. 23544 */ 23545 mdt_cap->ill_mdt_on = 0; 23546 break; 23547 } 23548 23549 /* socket option(s) present? */ 23550 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23551 break; 23552 23553 rc = B_TRUE; 23554 /* CONSTCOND */ 23555 } while (0); 23556 23557 /* Remember the result */ 23558 connp->conn_mdt_ok = rc; 23559 23560 if (!rc) 23561 return (NULL); 23562 else if (!mdt_cap->ill_mdt_on) { 23563 /* 23564 * If MDT has been previously turned off in the past, and we 23565 * currently can do MDT (due to IPQoS policy removal, etc.) 23566 * then enable it for this interface. 23567 */ 23568 mdt_cap->ill_mdt_on = 1; 23569 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23570 "interface %s\n", ill_name)); 23571 } 23572 23573 /* Allocate the MDT info mblk */ 23574 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23575 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23576 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23577 return (NULL); 23578 } 23579 return (mp); 23580 } 23581 23582 /* 23583 * Routine to allocate a message that is used to notify the ULP about LSO. 23584 * The caller may provide a pointer to the link-layer LSO capabilities, 23585 * or NULL if LSO is to be disabled on the stream. 23586 */ 23587 mblk_t * 23588 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23589 { 23590 mblk_t *mp; 23591 ip_lso_info_t *lsoi; 23592 ill_lso_capab_t *idst; 23593 23594 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23595 DB_TYPE(mp) = M_CTL; 23596 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23597 lsoi = (ip_lso_info_t *)mp->b_rptr; 23598 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23599 idst = &(lsoi->lso_capab); 23600 23601 /* 23602 * If the caller provides us with the capability, copy 23603 * it over into our notification message; otherwise 23604 * we zero out the capability portion. 23605 */ 23606 if (isrc != NULL) 23607 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23608 else 23609 bzero((caddr_t)idst, sizeof (*idst)); 23610 } 23611 return (mp); 23612 } 23613 23614 /* 23615 * Routine which determines whether LSO can be enabled on the destination 23616 * IRE and IPC combination, and if so, allocates and returns the LSO 23617 * notification mblk that may be used by ULP. We also check if we need to 23618 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23619 * LSO usage in the past have been lifted. This gets called during IP 23620 * and ULP binding. 23621 */ 23622 mblk_t * 23623 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23624 ill_lso_capab_t *lso_cap) 23625 { 23626 mblk_t *mp; 23627 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23628 23629 ASSERT(dst_ire != NULL); 23630 ASSERT(connp != NULL); 23631 ASSERT(lso_cap != NULL); 23632 23633 connp->conn_lso_ok = B_TRUE; 23634 23635 if ((connp->conn_ulp != IPPROTO_TCP) || 23636 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23637 (dst_ire->ire_flags & RTF_MULTIRT) || 23638 !CONN_IS_LSO_MD_FASTPATH(connp) || 23639 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23640 connp->conn_lso_ok = B_FALSE; 23641 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23642 /* 23643 * Disable LSO for this and all future connections going 23644 * over the interface. 23645 */ 23646 lso_cap->ill_lso_on = 0; 23647 } 23648 } 23649 23650 if (!connp->conn_lso_ok) 23651 return (NULL); 23652 else if (!lso_cap->ill_lso_on) { 23653 /* 23654 * If LSO has been previously turned off in the past, and we 23655 * currently can do LSO (due to IPQoS policy removal, etc.) 23656 * then enable it for this interface. 23657 */ 23658 lso_cap->ill_lso_on = 1; 23659 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23660 ill_name)); 23661 } 23662 23663 /* Allocate the LSO info mblk */ 23664 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23665 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23666 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23667 23668 return (mp); 23669 } 23670 23671 /* 23672 * Create destination address attribute, and fill it with the physical 23673 * destination address and SAP taken from the template DL_UNITDATA_REQ 23674 * message block. 23675 */ 23676 boolean_t 23677 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23678 { 23679 dl_unitdata_req_t *dlurp; 23680 pattr_t *pa; 23681 pattrinfo_t pa_info; 23682 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23683 uint_t das_len, das_off; 23684 23685 ASSERT(dlmp != NULL); 23686 23687 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23688 das_len = dlurp->dl_dest_addr_length; 23689 das_off = dlurp->dl_dest_addr_offset; 23690 23691 pa_info.type = PATTR_DSTADDRSAP; 23692 pa_info.len = sizeof (**das) + das_len - 1; 23693 23694 /* create and associate the attribute */ 23695 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23696 if (pa != NULL) { 23697 ASSERT(*das != NULL); 23698 (*das)->addr_is_group = 0; 23699 (*das)->addr_len = (uint8_t)das_len; 23700 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23701 } 23702 23703 return (pa != NULL); 23704 } 23705 23706 /* 23707 * Create hardware checksum attribute and fill it with the values passed. 23708 */ 23709 boolean_t 23710 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23711 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23712 { 23713 pattr_t *pa; 23714 pattrinfo_t pa_info; 23715 23716 ASSERT(mmd != NULL); 23717 23718 pa_info.type = PATTR_HCKSUM; 23719 pa_info.len = sizeof (pattr_hcksum_t); 23720 23721 /* create and associate the attribute */ 23722 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23723 if (pa != NULL) { 23724 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23725 23726 hck->hcksum_start_offset = start_offset; 23727 hck->hcksum_stuff_offset = stuff_offset; 23728 hck->hcksum_end_offset = end_offset; 23729 hck->hcksum_flags = flags; 23730 } 23731 return (pa != NULL); 23732 } 23733 23734 /* 23735 * Create zerocopy attribute and fill it with the specified flags 23736 */ 23737 boolean_t 23738 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23739 { 23740 pattr_t *pa; 23741 pattrinfo_t pa_info; 23742 23743 ASSERT(mmd != NULL); 23744 pa_info.type = PATTR_ZCOPY; 23745 pa_info.len = sizeof (pattr_zcopy_t); 23746 23747 /* create and associate the attribute */ 23748 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23749 if (pa != NULL) { 23750 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23751 23752 zcopy->zcopy_flags = flags; 23753 } 23754 return (pa != NULL); 23755 } 23756 23757 /* 23758 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23759 * block chain. We could rewrite to handle arbitrary message block chains but 23760 * that would make the code complicated and slow. Right now there three 23761 * restrictions: 23762 * 23763 * 1. The first message block must contain the complete IP header and 23764 * at least 1 byte of payload data. 23765 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23766 * so that we can use a single Multidata message. 23767 * 3. No frag must be distributed over two or more message blocks so 23768 * that we don't need more than two packet descriptors per frag. 23769 * 23770 * The above restrictions allow us to support userland applications (which 23771 * will send down a single message block) and NFS over UDP (which will 23772 * send down a chain of at most three message blocks). 23773 * 23774 * We also don't use MDT for payloads with less than or equal to 23775 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23776 */ 23777 boolean_t 23778 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23779 { 23780 int blocks; 23781 ssize_t total, missing, size; 23782 23783 ASSERT(mp != NULL); 23784 ASSERT(hdr_len > 0); 23785 23786 size = MBLKL(mp) - hdr_len; 23787 if (size <= 0) 23788 return (B_FALSE); 23789 23790 /* The first mblk contains the header and some payload. */ 23791 blocks = 1; 23792 total = size; 23793 size %= len; 23794 missing = (size == 0) ? 0 : (len - size); 23795 mp = mp->b_cont; 23796 23797 while (mp != NULL) { 23798 /* 23799 * Give up if we encounter a zero length message block. 23800 * In practice, this should rarely happen and therefore 23801 * not worth the trouble of freeing and re-linking the 23802 * mblk from the chain to handle such case. 23803 */ 23804 if ((size = MBLKL(mp)) == 0) 23805 return (B_FALSE); 23806 23807 /* Too many payload buffers for a single Multidata message? */ 23808 if (++blocks > MULTIDATA_MAX_PBUFS) 23809 return (B_FALSE); 23810 23811 total += size; 23812 /* Is a frag distributed over two or more message blocks? */ 23813 if (missing > size) 23814 return (B_FALSE); 23815 size -= missing; 23816 23817 size %= len; 23818 missing = (size == 0) ? 0 : (len - size); 23819 23820 mp = mp->b_cont; 23821 } 23822 23823 return (total > ip_wput_frag_mdt_min); 23824 } 23825 23826 /* 23827 * Outbound IPv4 fragmentation routine using MDT. 23828 */ 23829 static void 23830 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23831 uint32_t frag_flag, int offset) 23832 { 23833 ipha_t *ipha_orig; 23834 int i1, ip_data_end; 23835 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23836 mblk_t *hdr_mp, *md_mp = NULL; 23837 unsigned char *hdr_ptr, *pld_ptr; 23838 multidata_t *mmd; 23839 ip_pdescinfo_t pdi; 23840 ill_t *ill; 23841 ip_stack_t *ipst = ire->ire_ipst; 23842 23843 ASSERT(DB_TYPE(mp) == M_DATA); 23844 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23845 23846 ill = ire_to_ill(ire); 23847 ASSERT(ill != NULL); 23848 23849 ipha_orig = (ipha_t *)mp->b_rptr; 23850 mp->b_rptr += sizeof (ipha_t); 23851 23852 /* Calculate how many packets we will send out */ 23853 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23854 pkts = (i1 + len - 1) / len; 23855 ASSERT(pkts > 1); 23856 23857 /* Allocate a message block which will hold all the IP Headers. */ 23858 wroff = ipst->ips_ip_wroff_extra; 23859 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23860 23861 i1 = pkts * hdr_chunk_len; 23862 /* 23863 * Create the header buffer, Multidata and destination address 23864 * and SAP attribute that should be associated with it. 23865 */ 23866 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23867 ((hdr_mp->b_wptr += i1), 23868 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23869 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23870 freemsg(mp); 23871 if (md_mp == NULL) { 23872 freemsg(hdr_mp); 23873 } else { 23874 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23875 freemsg(md_mp); 23876 } 23877 IP_STAT(ipst, ip_frag_mdt_allocfail); 23878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23879 return; 23880 } 23881 IP_STAT(ipst, ip_frag_mdt_allocd); 23882 23883 /* 23884 * Add a payload buffer to the Multidata; this operation must not 23885 * fail, or otherwise our logic in this routine is broken. There 23886 * is no memory allocation done by the routine, so any returned 23887 * failure simply tells us that we've done something wrong. 23888 * 23889 * A failure tells us that either we're adding the same payload 23890 * buffer more than once, or we're trying to add more buffers than 23891 * allowed. None of the above cases should happen, and we panic 23892 * because either there's horrible heap corruption, and/or 23893 * programming mistake. 23894 */ 23895 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23896 goto pbuf_panic; 23897 23898 hdr_ptr = hdr_mp->b_rptr; 23899 pld_ptr = mp->b_rptr; 23900 23901 /* Establish the ending byte offset, based on the starting offset. */ 23902 offset <<= 3; 23903 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23904 IP_SIMPLE_HDR_LENGTH; 23905 23906 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23907 23908 while (pld_ptr < mp->b_wptr) { 23909 ipha_t *ipha; 23910 uint16_t offset_and_flags; 23911 uint16_t ip_len; 23912 int error; 23913 23914 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23915 ipha = (ipha_t *)(hdr_ptr + wroff); 23916 ASSERT(OK_32PTR(ipha)); 23917 *ipha = *ipha_orig; 23918 23919 if (ip_data_end - offset > len) { 23920 offset_and_flags = IPH_MF; 23921 } else { 23922 /* 23923 * Last frag. Set len to the length of this last piece. 23924 */ 23925 len = ip_data_end - offset; 23926 /* A frag of a frag might have IPH_MF non-zero */ 23927 offset_and_flags = 23928 ntohs(ipha->ipha_fragment_offset_and_flags) & 23929 IPH_MF; 23930 } 23931 offset_and_flags |= (uint16_t)(offset >> 3); 23932 offset_and_flags |= (uint16_t)frag_flag; 23933 /* Store the offset and flags in the IP header. */ 23934 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23935 23936 /* Store the length in the IP header. */ 23937 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23938 ipha->ipha_length = htons(ip_len); 23939 23940 /* 23941 * Set the IP header checksum. Note that mp is just 23942 * the header, so this is easy to pass to ip_csum. 23943 */ 23944 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23945 23946 /* 23947 * Record offset and size of header and data of the next packet 23948 * in the multidata message. 23949 */ 23950 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23951 PDESC_PLD_INIT(&pdi); 23952 i1 = MIN(mp->b_wptr - pld_ptr, len); 23953 ASSERT(i1 > 0); 23954 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23955 if (i1 == len) { 23956 pld_ptr += len; 23957 } else { 23958 i1 = len - i1; 23959 mp = mp->b_cont; 23960 ASSERT(mp != NULL); 23961 ASSERT(MBLKL(mp) >= i1); 23962 /* 23963 * Attach the next payload message block to the 23964 * multidata message. 23965 */ 23966 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23967 goto pbuf_panic; 23968 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23969 pld_ptr = mp->b_rptr + i1; 23970 } 23971 23972 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23973 KM_NOSLEEP)) == NULL) { 23974 /* 23975 * Any failure other than ENOMEM indicates that we 23976 * have passed in invalid pdesc info or parameters 23977 * to mmd_addpdesc, which must not happen. 23978 * 23979 * EINVAL is a result of failure on boundary checks 23980 * against the pdesc info contents. It should not 23981 * happen, and we panic because either there's 23982 * horrible heap corruption, and/or programming 23983 * mistake. 23984 */ 23985 if (error != ENOMEM) { 23986 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23987 "pdesc logic error detected for " 23988 "mmd %p pinfo %p (%d)\n", 23989 (void *)mmd, (void *)&pdi, error); 23990 /* NOTREACHED */ 23991 } 23992 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23993 /* Free unattached payload message blocks as well */ 23994 md_mp->b_cont = mp->b_cont; 23995 goto free_mmd; 23996 } 23997 23998 /* Advance fragment offset. */ 23999 offset += len; 24000 24001 /* Advance to location for next header in the buffer. */ 24002 hdr_ptr += hdr_chunk_len; 24003 24004 /* Did we reach the next payload message block? */ 24005 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24006 mp = mp->b_cont; 24007 /* 24008 * Attach the next message block with payload 24009 * data to the multidata message. 24010 */ 24011 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24012 goto pbuf_panic; 24013 pld_ptr = mp->b_rptr; 24014 } 24015 } 24016 24017 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24018 ASSERT(mp->b_wptr == pld_ptr); 24019 24020 /* Update IP statistics */ 24021 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24022 24023 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24024 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24025 24026 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24027 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24028 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24029 24030 if (pkt_type == OB_PKT) { 24031 ire->ire_ob_pkt_count += pkts; 24032 if (ire->ire_ipif != NULL) 24033 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24034 } else { 24035 /* The type is IB_PKT in the forwarding path. */ 24036 ire->ire_ib_pkt_count += pkts; 24037 ASSERT(!IRE_IS_LOCAL(ire)); 24038 if (ire->ire_type & IRE_BROADCAST) { 24039 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24040 } else { 24041 UPDATE_MIB(ill->ill_ip_mib, 24042 ipIfStatsHCOutForwDatagrams, pkts); 24043 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24044 } 24045 } 24046 ire->ire_last_used_time = lbolt; 24047 /* Send it down */ 24048 putnext(ire->ire_stq, md_mp); 24049 return; 24050 24051 pbuf_panic: 24052 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24053 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24054 pbuf_idx); 24055 /* NOTREACHED */ 24056 } 24057 24058 /* 24059 * Outbound IP fragmentation routine. 24060 * 24061 * NOTE : This routine does not ire_refrele the ire that is passed in 24062 * as the argument. 24063 */ 24064 static void 24065 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24066 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24067 { 24068 int i1; 24069 mblk_t *ll_hdr_mp; 24070 int ll_hdr_len; 24071 int hdr_len; 24072 mblk_t *hdr_mp; 24073 ipha_t *ipha; 24074 int ip_data_end; 24075 int len; 24076 mblk_t *mp = mp_orig, *mp1; 24077 int offset; 24078 queue_t *q; 24079 uint32_t v_hlen_tos_len; 24080 mblk_t *first_mp; 24081 boolean_t mctl_present; 24082 ill_t *ill; 24083 ill_t *out_ill; 24084 mblk_t *xmit_mp; 24085 mblk_t *carve_mp; 24086 ire_t *ire1 = NULL; 24087 ire_t *save_ire = NULL; 24088 mblk_t *next_mp = NULL; 24089 boolean_t last_frag = B_FALSE; 24090 boolean_t multirt_send = B_FALSE; 24091 ire_t *first_ire = NULL; 24092 irb_t *irb = NULL; 24093 mib2_ipIfStatsEntry_t *mibptr = NULL; 24094 24095 ill = ire_to_ill(ire); 24096 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24097 24098 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24099 24100 if (max_frag == 0) { 24101 ip1dbg(("ip_wput_frag: ire frag size is 0" 24102 " - dropping packet\n")); 24103 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24104 freemsg(mp); 24105 return; 24106 } 24107 24108 /* 24109 * IPsec does not allow hw accelerated packets to be fragmented 24110 * This check is made in ip_wput_ipsec_out prior to coming here 24111 * via ip_wput_ire_fragmentit. 24112 * 24113 * If at this point we have an ire whose ARP request has not 24114 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24115 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24116 * This packet and all fragmentable packets for this ire will 24117 * continue to get dropped while ire_nce->nce_state remains in 24118 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24119 * ND_REACHABLE, all subsquent large packets for this ire will 24120 * get fragemented and sent out by this function. 24121 */ 24122 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24123 /* If nce_state is ND_INITIAL, trigger ARP query */ 24124 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24125 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24126 " - dropping packet\n")); 24127 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24128 freemsg(mp); 24129 return; 24130 } 24131 24132 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24133 "ip_wput_frag_start:"); 24134 24135 if (mp->b_datap->db_type == M_CTL) { 24136 first_mp = mp; 24137 mp_orig = mp = mp->b_cont; 24138 mctl_present = B_TRUE; 24139 } else { 24140 first_mp = mp; 24141 mctl_present = B_FALSE; 24142 } 24143 24144 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24145 ipha = (ipha_t *)mp->b_rptr; 24146 24147 /* 24148 * If the Don't Fragment flag is on, generate an ICMP destination 24149 * unreachable, fragmentation needed. 24150 */ 24151 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24152 if (offset & IPH_DF) { 24153 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24154 if (is_system_labeled()) { 24155 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24156 ire->ire_max_frag - max_frag, AF_INET); 24157 } 24158 /* 24159 * Need to compute hdr checksum if called from ip_wput_ire. 24160 * Note that ip_rput_forward verifies the checksum before 24161 * calling this routine so in that case this is a noop. 24162 */ 24163 ipha->ipha_hdr_checksum = 0; 24164 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24165 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24166 ipst); 24167 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24168 "ip_wput_frag_end:(%S)", 24169 "don't fragment"); 24170 return; 24171 } 24172 /* 24173 * Labeled systems adjust max_frag if they add a label 24174 * to send the correct path mtu. We need the real mtu since we 24175 * are fragmenting the packet after label adjustment. 24176 */ 24177 if (is_system_labeled()) 24178 max_frag = ire->ire_max_frag; 24179 if (mctl_present) 24180 freeb(first_mp); 24181 /* 24182 * Establish the starting offset. May not be zero if we are fragging 24183 * a fragment that is being forwarded. 24184 */ 24185 offset = offset & IPH_OFFSET; 24186 24187 /* TODO why is this test needed? */ 24188 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24189 if (((max_frag - LENGTH) & ~7) < 8) { 24190 /* TODO: notify ulp somehow */ 24191 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24192 freemsg(mp); 24193 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24194 "ip_wput_frag_end:(%S)", 24195 "len < 8"); 24196 return; 24197 } 24198 24199 hdr_len = (V_HLEN & 0xF) << 2; 24200 24201 ipha->ipha_hdr_checksum = 0; 24202 24203 /* 24204 * Establish the number of bytes maximum per frag, after putting 24205 * in the header. 24206 */ 24207 len = (max_frag - hdr_len) & ~7; 24208 24209 /* Check if we can use MDT to send out the frags. */ 24210 ASSERT(!IRE_IS_LOCAL(ire)); 24211 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24212 ipst->ips_ip_multidata_outbound && 24213 !(ire->ire_flags & RTF_MULTIRT) && 24214 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24215 ill != NULL && ILL_MDT_CAPABLE(ill) && 24216 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24217 ASSERT(ill->ill_mdt_capab != NULL); 24218 if (!ill->ill_mdt_capab->ill_mdt_on) { 24219 /* 24220 * If MDT has been previously turned off in the past, 24221 * and we currently can do MDT (due to IPQoS policy 24222 * removal, etc.) then enable it for this interface. 24223 */ 24224 ill->ill_mdt_capab->ill_mdt_on = 1; 24225 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24226 ill->ill_name)); 24227 } 24228 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24229 offset); 24230 return; 24231 } 24232 24233 /* Get a copy of the header for the trailing frags */ 24234 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24235 if (!hdr_mp) { 24236 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24237 freemsg(mp); 24238 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24239 "ip_wput_frag_end:(%S)", 24240 "couldn't copy hdr"); 24241 return; 24242 } 24243 if (DB_CRED(mp) != NULL) 24244 mblk_setcred(hdr_mp, DB_CRED(mp)); 24245 24246 /* Store the starting offset, with the MoreFrags flag. */ 24247 i1 = offset | IPH_MF | frag_flag; 24248 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24249 24250 /* Establish the ending byte offset, based on the starting offset. */ 24251 offset <<= 3; 24252 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24253 24254 /* Store the length of the first fragment in the IP header. */ 24255 i1 = len + hdr_len; 24256 ASSERT(i1 <= IP_MAXPACKET); 24257 ipha->ipha_length = htons((uint16_t)i1); 24258 24259 /* 24260 * Compute the IP header checksum for the first frag. We have to 24261 * watch out that we stop at the end of the header. 24262 */ 24263 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24264 24265 /* 24266 * Now carve off the first frag. Note that this will include the 24267 * original IP header. 24268 */ 24269 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24270 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24271 freeb(hdr_mp); 24272 freemsg(mp_orig); 24273 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24274 "ip_wput_frag_end:(%S)", 24275 "couldn't carve first"); 24276 return; 24277 } 24278 24279 /* 24280 * Multirouting case. Each fragment is replicated 24281 * via all non-condemned RTF_MULTIRT routes 24282 * currently resolved. 24283 * We ensure that first_ire is the first RTF_MULTIRT 24284 * ire in the bucket. 24285 */ 24286 if (ire->ire_flags & RTF_MULTIRT) { 24287 irb = ire->ire_bucket; 24288 ASSERT(irb != NULL); 24289 24290 multirt_send = B_TRUE; 24291 24292 /* Make sure we do not omit any multiroute ire. */ 24293 IRB_REFHOLD(irb); 24294 for (first_ire = irb->irb_ire; 24295 first_ire != NULL; 24296 first_ire = first_ire->ire_next) { 24297 if ((first_ire->ire_flags & RTF_MULTIRT) && 24298 (first_ire->ire_addr == ire->ire_addr) && 24299 !(first_ire->ire_marks & 24300 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24301 break; 24302 } 24303 } 24304 24305 if (first_ire != NULL) { 24306 if (first_ire != ire) { 24307 IRE_REFHOLD(first_ire); 24308 /* 24309 * Do not release the ire passed in 24310 * as the argument. 24311 */ 24312 ire = first_ire; 24313 } else { 24314 first_ire = NULL; 24315 } 24316 } 24317 IRB_REFRELE(irb); 24318 24319 /* 24320 * Save the first ire; we will need to restore it 24321 * for the trailing frags. 24322 * We REFHOLD save_ire, as each iterated ire will be 24323 * REFRELEd. 24324 */ 24325 save_ire = ire; 24326 IRE_REFHOLD(save_ire); 24327 } 24328 24329 /* 24330 * First fragment emission loop. 24331 * In most cases, the emission loop below is entered only 24332 * once. Only in the case where the ire holds the RTF_MULTIRT 24333 * flag, do we loop to process all RTF_MULTIRT ires in the 24334 * bucket, and send the fragment through all crossed 24335 * RTF_MULTIRT routes. 24336 */ 24337 do { 24338 if (ire->ire_flags & RTF_MULTIRT) { 24339 /* 24340 * We are in a multiple send case, need to get 24341 * the next ire and make a copy of the packet. 24342 * ire1 holds here the next ire to process in the 24343 * bucket. If multirouting is expected, 24344 * any non-RTF_MULTIRT ire that has the 24345 * right destination address is ignored. 24346 * 24347 * We have to take into account the MTU of 24348 * each walked ire. max_frag is set by the 24349 * the caller and generally refers to 24350 * the primary ire entry. Here we ensure that 24351 * no route with a lower MTU will be used, as 24352 * fragments are carved once for all ires, 24353 * then replicated. 24354 */ 24355 ASSERT(irb != NULL); 24356 IRB_REFHOLD(irb); 24357 for (ire1 = ire->ire_next; 24358 ire1 != NULL; 24359 ire1 = ire1->ire_next) { 24360 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24361 continue; 24362 if (ire1->ire_addr != ire->ire_addr) 24363 continue; 24364 if (ire1->ire_marks & 24365 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24366 continue; 24367 /* 24368 * Ensure we do not exceed the MTU 24369 * of the next route. 24370 */ 24371 if (ire1->ire_max_frag < max_frag) { 24372 ip_multirt_bad_mtu(ire1, max_frag); 24373 continue; 24374 } 24375 24376 /* Got one. */ 24377 IRE_REFHOLD(ire1); 24378 break; 24379 } 24380 IRB_REFRELE(irb); 24381 24382 if (ire1 != NULL) { 24383 next_mp = copyb(mp); 24384 if ((next_mp == NULL) || 24385 ((mp->b_cont != NULL) && 24386 ((next_mp->b_cont = 24387 dupmsg(mp->b_cont)) == NULL))) { 24388 freemsg(next_mp); 24389 next_mp = NULL; 24390 ire_refrele(ire1); 24391 ire1 = NULL; 24392 } 24393 } 24394 24395 /* Last multiroute ire; don't loop anymore. */ 24396 if (ire1 == NULL) { 24397 multirt_send = B_FALSE; 24398 } 24399 } 24400 24401 ll_hdr_len = 0; 24402 LOCK_IRE_FP_MP(ire); 24403 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24404 if (ll_hdr_mp != NULL) { 24405 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24406 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24407 } else { 24408 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24409 } 24410 24411 /* If there is a transmit header, get a copy for this frag. */ 24412 /* 24413 * TODO: should check db_ref before calling ip_carve_mp since 24414 * it might give us a dup. 24415 */ 24416 if (!ll_hdr_mp) { 24417 /* No xmit header. */ 24418 xmit_mp = mp; 24419 24420 /* We have a link-layer header that can fit in our mblk. */ 24421 } else if (mp->b_datap->db_ref == 1 && 24422 ll_hdr_len != 0 && 24423 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24424 /* M_DATA fastpath */ 24425 mp->b_rptr -= ll_hdr_len; 24426 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24427 xmit_mp = mp; 24428 24429 /* Corner case if copyb has failed */ 24430 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24431 UNLOCK_IRE_FP_MP(ire); 24432 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24433 freeb(hdr_mp); 24434 freemsg(mp); 24435 freemsg(mp_orig); 24436 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24437 "ip_wput_frag_end:(%S)", 24438 "discard"); 24439 24440 if (multirt_send) { 24441 ASSERT(ire1); 24442 ASSERT(next_mp); 24443 24444 freemsg(next_mp); 24445 ire_refrele(ire1); 24446 } 24447 if (save_ire != NULL) 24448 IRE_REFRELE(save_ire); 24449 24450 if (first_ire != NULL) 24451 ire_refrele(first_ire); 24452 return; 24453 24454 /* 24455 * Case of res_mp OR the fastpath mp can't fit 24456 * in the mblk 24457 */ 24458 } else { 24459 xmit_mp->b_cont = mp; 24460 if (DB_CRED(mp) != NULL) 24461 mblk_setcred(xmit_mp, DB_CRED(mp)); 24462 /* 24463 * Get priority marking, if any. 24464 * We propagate the CoS marking from the 24465 * original packet that went to QoS processing 24466 * in ip_wput_ire to the newly carved mp. 24467 */ 24468 if (DB_TYPE(xmit_mp) == M_DATA) 24469 xmit_mp->b_band = mp->b_band; 24470 } 24471 UNLOCK_IRE_FP_MP(ire); 24472 24473 q = ire->ire_stq; 24474 out_ill = (ill_t *)q->q_ptr; 24475 24476 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24477 24478 DTRACE_PROBE4(ip4__physical__out__start, 24479 ill_t *, NULL, ill_t *, out_ill, 24480 ipha_t *, ipha, mblk_t *, xmit_mp); 24481 24482 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24483 ipst->ips_ipv4firewall_physical_out, 24484 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24485 24486 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24487 24488 if (xmit_mp != NULL) { 24489 putnext(q, xmit_mp); 24490 24491 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24492 UPDATE_MIB(out_ill->ill_ip_mib, 24493 ipIfStatsHCOutOctets, i1); 24494 24495 if (pkt_type != OB_PKT) { 24496 /* 24497 * Update the packet count and MIB stats 24498 * of trailing RTF_MULTIRT ires. 24499 */ 24500 UPDATE_OB_PKT_COUNT(ire); 24501 BUMP_MIB(out_ill->ill_ip_mib, 24502 ipIfStatsOutFragReqds); 24503 } 24504 } 24505 24506 if (multirt_send) { 24507 /* 24508 * We are in a multiple send case; look for 24509 * the next ire and re-enter the loop. 24510 */ 24511 ASSERT(ire1); 24512 ASSERT(next_mp); 24513 /* REFRELE the current ire before looping */ 24514 ire_refrele(ire); 24515 ire = ire1; 24516 ire1 = NULL; 24517 mp = next_mp; 24518 next_mp = NULL; 24519 } 24520 } while (multirt_send); 24521 24522 ASSERT(ire1 == NULL); 24523 24524 /* Restore the original ire; we need it for the trailing frags */ 24525 if (save_ire != NULL) { 24526 /* REFRELE the last iterated ire */ 24527 ire_refrele(ire); 24528 /* save_ire has been REFHOLDed */ 24529 ire = save_ire; 24530 save_ire = NULL; 24531 q = ire->ire_stq; 24532 } 24533 24534 if (pkt_type == OB_PKT) { 24535 UPDATE_OB_PKT_COUNT(ire); 24536 } else { 24537 out_ill = (ill_t *)q->q_ptr; 24538 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24539 UPDATE_IB_PKT_COUNT(ire); 24540 } 24541 24542 /* Advance the offset to the second frag starting point. */ 24543 offset += len; 24544 /* 24545 * Update hdr_len from the copied header - there might be less options 24546 * in the later fragments. 24547 */ 24548 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24549 /* Loop until done. */ 24550 for (;;) { 24551 uint16_t offset_and_flags; 24552 uint16_t ip_len; 24553 24554 if (ip_data_end - offset > len) { 24555 /* 24556 * Carve off the appropriate amount from the original 24557 * datagram. 24558 */ 24559 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24560 mp = NULL; 24561 break; 24562 } 24563 /* 24564 * More frags after this one. Get another copy 24565 * of the header. 24566 */ 24567 if (carve_mp->b_datap->db_ref == 1 && 24568 hdr_mp->b_wptr - hdr_mp->b_rptr < 24569 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24570 /* Inline IP header */ 24571 carve_mp->b_rptr -= hdr_mp->b_wptr - 24572 hdr_mp->b_rptr; 24573 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24574 hdr_mp->b_wptr - hdr_mp->b_rptr); 24575 mp = carve_mp; 24576 } else { 24577 if (!(mp = copyb(hdr_mp))) { 24578 freemsg(carve_mp); 24579 break; 24580 } 24581 /* Get priority marking, if any. */ 24582 mp->b_band = carve_mp->b_band; 24583 mp->b_cont = carve_mp; 24584 } 24585 ipha = (ipha_t *)mp->b_rptr; 24586 offset_and_flags = IPH_MF; 24587 } else { 24588 /* 24589 * Last frag. Consume the header. Set len to 24590 * the length of this last piece. 24591 */ 24592 len = ip_data_end - offset; 24593 24594 /* 24595 * Carve off the appropriate amount from the original 24596 * datagram. 24597 */ 24598 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24599 mp = NULL; 24600 break; 24601 } 24602 if (carve_mp->b_datap->db_ref == 1 && 24603 hdr_mp->b_wptr - hdr_mp->b_rptr < 24604 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24605 /* Inline IP header */ 24606 carve_mp->b_rptr -= hdr_mp->b_wptr - 24607 hdr_mp->b_rptr; 24608 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24609 hdr_mp->b_wptr - hdr_mp->b_rptr); 24610 mp = carve_mp; 24611 freeb(hdr_mp); 24612 hdr_mp = mp; 24613 } else { 24614 mp = hdr_mp; 24615 /* Get priority marking, if any. */ 24616 mp->b_band = carve_mp->b_band; 24617 mp->b_cont = carve_mp; 24618 } 24619 ipha = (ipha_t *)mp->b_rptr; 24620 /* A frag of a frag might have IPH_MF non-zero */ 24621 offset_and_flags = 24622 ntohs(ipha->ipha_fragment_offset_and_flags) & 24623 IPH_MF; 24624 } 24625 offset_and_flags |= (uint16_t)(offset >> 3); 24626 offset_and_flags |= (uint16_t)frag_flag; 24627 /* Store the offset and flags in the IP header. */ 24628 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24629 24630 /* Store the length in the IP header. */ 24631 ip_len = (uint16_t)(len + hdr_len); 24632 ipha->ipha_length = htons(ip_len); 24633 24634 /* 24635 * Set the IP header checksum. Note that mp is just 24636 * the header, so this is easy to pass to ip_csum. 24637 */ 24638 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24639 24640 /* Attach a transmit header, if any, and ship it. */ 24641 if (pkt_type == OB_PKT) { 24642 UPDATE_OB_PKT_COUNT(ire); 24643 } else { 24644 out_ill = (ill_t *)q->q_ptr; 24645 BUMP_MIB(out_ill->ill_ip_mib, 24646 ipIfStatsHCOutForwDatagrams); 24647 UPDATE_IB_PKT_COUNT(ire); 24648 } 24649 24650 if (ire->ire_flags & RTF_MULTIRT) { 24651 irb = ire->ire_bucket; 24652 ASSERT(irb != NULL); 24653 24654 multirt_send = B_TRUE; 24655 24656 /* 24657 * Save the original ire; we will need to restore it 24658 * for the tailing frags. 24659 */ 24660 save_ire = ire; 24661 IRE_REFHOLD(save_ire); 24662 } 24663 /* 24664 * Emission loop for this fragment, similar 24665 * to what is done for the first fragment. 24666 */ 24667 do { 24668 if (multirt_send) { 24669 /* 24670 * We are in a multiple send case, need to get 24671 * the next ire and make a copy of the packet. 24672 */ 24673 ASSERT(irb != NULL); 24674 IRB_REFHOLD(irb); 24675 for (ire1 = ire->ire_next; 24676 ire1 != NULL; 24677 ire1 = ire1->ire_next) { 24678 if (!(ire1->ire_flags & RTF_MULTIRT)) 24679 continue; 24680 if (ire1->ire_addr != ire->ire_addr) 24681 continue; 24682 if (ire1->ire_marks & 24683 (IRE_MARK_CONDEMNED| 24684 IRE_MARK_HIDDEN)) { 24685 continue; 24686 } 24687 /* 24688 * Ensure we do not exceed the MTU 24689 * of the next route. 24690 */ 24691 if (ire1->ire_max_frag < max_frag) { 24692 ip_multirt_bad_mtu(ire1, 24693 max_frag); 24694 continue; 24695 } 24696 24697 /* Got one. */ 24698 IRE_REFHOLD(ire1); 24699 break; 24700 } 24701 IRB_REFRELE(irb); 24702 24703 if (ire1 != NULL) { 24704 next_mp = copyb(mp); 24705 if ((next_mp == NULL) || 24706 ((mp->b_cont != NULL) && 24707 ((next_mp->b_cont = 24708 dupmsg(mp->b_cont)) == NULL))) { 24709 freemsg(next_mp); 24710 next_mp = NULL; 24711 ire_refrele(ire1); 24712 ire1 = NULL; 24713 } 24714 } 24715 24716 /* Last multiroute ire; don't loop anymore. */ 24717 if (ire1 == NULL) { 24718 multirt_send = B_FALSE; 24719 } 24720 } 24721 24722 /* Update transmit header */ 24723 ll_hdr_len = 0; 24724 LOCK_IRE_FP_MP(ire); 24725 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24726 if (ll_hdr_mp != NULL) { 24727 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24728 ll_hdr_len = MBLKL(ll_hdr_mp); 24729 } else { 24730 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24731 } 24732 24733 if (!ll_hdr_mp) { 24734 xmit_mp = mp; 24735 24736 /* 24737 * We have link-layer header that can fit in 24738 * our mblk. 24739 */ 24740 } else if (mp->b_datap->db_ref == 1 && 24741 ll_hdr_len != 0 && 24742 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24743 /* M_DATA fastpath */ 24744 mp->b_rptr -= ll_hdr_len; 24745 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24746 ll_hdr_len); 24747 xmit_mp = mp; 24748 24749 /* 24750 * Case of res_mp OR the fastpath mp can't fit 24751 * in the mblk 24752 */ 24753 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24754 xmit_mp->b_cont = mp; 24755 if (DB_CRED(mp) != NULL) 24756 mblk_setcred(xmit_mp, DB_CRED(mp)); 24757 /* Get priority marking, if any. */ 24758 if (DB_TYPE(xmit_mp) == M_DATA) 24759 xmit_mp->b_band = mp->b_band; 24760 24761 /* Corner case if copyb failed */ 24762 } else { 24763 /* 24764 * Exit both the replication and 24765 * fragmentation loops. 24766 */ 24767 UNLOCK_IRE_FP_MP(ire); 24768 goto drop_pkt; 24769 } 24770 UNLOCK_IRE_FP_MP(ire); 24771 24772 mp1 = mp; 24773 out_ill = (ill_t *)q->q_ptr; 24774 24775 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24776 24777 DTRACE_PROBE4(ip4__physical__out__start, 24778 ill_t *, NULL, ill_t *, out_ill, 24779 ipha_t *, ipha, mblk_t *, xmit_mp); 24780 24781 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24782 ipst->ips_ipv4firewall_physical_out, 24783 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24784 24785 DTRACE_PROBE1(ip4__physical__out__end, 24786 mblk_t *, xmit_mp); 24787 24788 if (mp != mp1 && hdr_mp == mp1) 24789 hdr_mp = mp; 24790 if (mp != mp1 && mp_orig == mp1) 24791 mp_orig = mp; 24792 24793 if (xmit_mp != NULL) { 24794 putnext(q, xmit_mp); 24795 24796 BUMP_MIB(out_ill->ill_ip_mib, 24797 ipIfStatsHCOutTransmits); 24798 UPDATE_MIB(out_ill->ill_ip_mib, 24799 ipIfStatsHCOutOctets, ip_len); 24800 24801 if (pkt_type != OB_PKT) { 24802 /* 24803 * Update the packet count of trailing 24804 * RTF_MULTIRT ires. 24805 */ 24806 UPDATE_OB_PKT_COUNT(ire); 24807 } 24808 } 24809 24810 /* All done if we just consumed the hdr_mp. */ 24811 if (mp == hdr_mp) { 24812 last_frag = B_TRUE; 24813 BUMP_MIB(out_ill->ill_ip_mib, 24814 ipIfStatsOutFragOKs); 24815 } 24816 24817 if (multirt_send) { 24818 /* 24819 * We are in a multiple send case; look for 24820 * the next ire and re-enter the loop. 24821 */ 24822 ASSERT(ire1); 24823 ASSERT(next_mp); 24824 /* REFRELE the current ire before looping */ 24825 ire_refrele(ire); 24826 ire = ire1; 24827 ire1 = NULL; 24828 q = ire->ire_stq; 24829 mp = next_mp; 24830 next_mp = NULL; 24831 } 24832 } while (multirt_send); 24833 /* 24834 * Restore the original ire; we need it for the 24835 * trailing frags 24836 */ 24837 if (save_ire != NULL) { 24838 ASSERT(ire1 == NULL); 24839 /* REFRELE the last iterated ire */ 24840 ire_refrele(ire); 24841 /* save_ire has been REFHOLDed */ 24842 ire = save_ire; 24843 q = ire->ire_stq; 24844 save_ire = NULL; 24845 } 24846 24847 if (last_frag) { 24848 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24849 "ip_wput_frag_end:(%S)", 24850 "consumed hdr_mp"); 24851 24852 if (first_ire != NULL) 24853 ire_refrele(first_ire); 24854 return; 24855 } 24856 /* Otherwise, advance and loop. */ 24857 offset += len; 24858 } 24859 24860 drop_pkt: 24861 /* Clean up following allocation failure. */ 24862 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24863 freemsg(mp); 24864 if (mp != hdr_mp) 24865 freeb(hdr_mp); 24866 if (mp != mp_orig) 24867 freemsg(mp_orig); 24868 24869 if (save_ire != NULL) 24870 IRE_REFRELE(save_ire); 24871 if (first_ire != NULL) 24872 ire_refrele(first_ire); 24873 24874 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24875 "ip_wput_frag_end:(%S)", 24876 "end--alloc failure"); 24877 } 24878 24879 /* 24880 * Copy the header plus those options which have the copy bit set 24881 */ 24882 static mblk_t * 24883 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24884 { 24885 mblk_t *mp; 24886 uchar_t *up; 24887 24888 /* 24889 * Quick check if we need to look for options without the copy bit 24890 * set 24891 */ 24892 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24893 if (!mp) 24894 return (mp); 24895 mp->b_rptr += ipst->ips_ip_wroff_extra; 24896 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24897 bcopy(rptr, mp->b_rptr, hdr_len); 24898 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24899 return (mp); 24900 } 24901 up = mp->b_rptr; 24902 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24903 up += IP_SIMPLE_HDR_LENGTH; 24904 rptr += IP_SIMPLE_HDR_LENGTH; 24905 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24906 while (hdr_len > 0) { 24907 uint32_t optval; 24908 uint32_t optlen; 24909 24910 optval = *rptr; 24911 if (optval == IPOPT_EOL) 24912 break; 24913 if (optval == IPOPT_NOP) 24914 optlen = 1; 24915 else 24916 optlen = rptr[1]; 24917 if (optval & IPOPT_COPY) { 24918 bcopy(rptr, up, optlen); 24919 up += optlen; 24920 } 24921 rptr += optlen; 24922 hdr_len -= optlen; 24923 } 24924 /* 24925 * Make sure that we drop an even number of words by filling 24926 * with EOL to the next word boundary. 24927 */ 24928 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24929 hdr_len & 0x3; hdr_len++) 24930 *up++ = IPOPT_EOL; 24931 mp->b_wptr = up; 24932 /* Update header length */ 24933 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24934 return (mp); 24935 } 24936 24937 /* 24938 * Delivery to local recipients including fanout to multiple recipients. 24939 * Does not do checksumming of UDP/TCP. 24940 * Note: q should be the read side queue for either the ill or conn. 24941 * Note: rq should be the read side q for the lower (ill) stream. 24942 * We don't send packets to IPPF processing, thus the last argument 24943 * to all the fanout calls are B_FALSE. 24944 */ 24945 void 24946 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24947 int fanout_flags, zoneid_t zoneid) 24948 { 24949 uint32_t protocol; 24950 mblk_t *first_mp; 24951 boolean_t mctl_present; 24952 int ire_type; 24953 #define rptr ((uchar_t *)ipha) 24954 ip_stack_t *ipst = ill->ill_ipst; 24955 24956 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24957 "ip_wput_local_start: q %p", q); 24958 24959 if (ire != NULL) { 24960 ire_type = ire->ire_type; 24961 } else { 24962 /* 24963 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24964 * packet is not multicast, we can't tell the ire type. 24965 */ 24966 ASSERT(CLASSD(ipha->ipha_dst)); 24967 ire_type = IRE_BROADCAST; 24968 } 24969 24970 first_mp = mp; 24971 if (first_mp->b_datap->db_type == M_CTL) { 24972 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24973 if (!io->ipsec_out_secure) { 24974 /* 24975 * This ipsec_out_t was allocated in ip_wput 24976 * for multicast packets to store the ill_index. 24977 * As this is being delivered locally, we don't 24978 * need this anymore. 24979 */ 24980 mp = first_mp->b_cont; 24981 freeb(first_mp); 24982 first_mp = mp; 24983 mctl_present = B_FALSE; 24984 } else { 24985 /* 24986 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24987 * security properties for the looped-back packet. 24988 */ 24989 mctl_present = B_TRUE; 24990 mp = first_mp->b_cont; 24991 ASSERT(mp != NULL); 24992 ipsec_out_to_in(first_mp); 24993 } 24994 } else { 24995 mctl_present = B_FALSE; 24996 } 24997 24998 DTRACE_PROBE4(ip4__loopback__in__start, 24999 ill_t *, ill, ill_t *, NULL, 25000 ipha_t *, ipha, mblk_t *, first_mp); 25001 25002 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25003 ipst->ips_ipv4firewall_loopback_in, 25004 ill, NULL, ipha, first_mp, mp, 0, ipst); 25005 25006 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25007 25008 if (first_mp == NULL) 25009 return; 25010 25011 ipst->ips_loopback_packets++; 25012 25013 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25014 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25015 if (!IS_SIMPLE_IPH(ipha)) { 25016 ip_wput_local_options(ipha, ipst); 25017 } 25018 25019 protocol = ipha->ipha_protocol; 25020 switch (protocol) { 25021 case IPPROTO_ICMP: { 25022 ire_t *ire_zone; 25023 ilm_t *ilm; 25024 mblk_t *mp1; 25025 zoneid_t last_zoneid; 25026 25027 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25028 ASSERT(ire_type == IRE_BROADCAST); 25029 /* 25030 * In the multicast case, applications may have joined 25031 * the group from different zones, so we need to deliver 25032 * the packet to each of them. Loop through the 25033 * multicast memberships structures (ilm) on the receive 25034 * ill and send a copy of the packet up each matching 25035 * one. However, we don't do this for multicasts sent on 25036 * the loopback interface (PHYI_LOOPBACK flag set) as 25037 * they must stay in the sender's zone. 25038 * 25039 * ilm_add_v6() ensures that ilms in the same zone are 25040 * contiguous in the ill_ilm list. We use this property 25041 * to avoid sending duplicates needed when two 25042 * applications in the same zone join the same group on 25043 * different logical interfaces: we ignore the ilm if 25044 * it's zoneid is the same as the last matching one. 25045 * In addition, the sending of the packet for 25046 * ire_zoneid is delayed until all of the other ilms 25047 * have been exhausted. 25048 */ 25049 last_zoneid = -1; 25050 ILM_WALKER_HOLD(ill); 25051 for (ilm = ill->ill_ilm; ilm != NULL; 25052 ilm = ilm->ilm_next) { 25053 if ((ilm->ilm_flags & ILM_DELETED) || 25054 ipha->ipha_dst != ilm->ilm_addr || 25055 ilm->ilm_zoneid == last_zoneid || 25056 ilm->ilm_zoneid == zoneid || 25057 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25058 continue; 25059 mp1 = ip_copymsg(first_mp); 25060 if (mp1 == NULL) 25061 continue; 25062 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25063 mctl_present, B_FALSE, ill, 25064 ilm->ilm_zoneid); 25065 last_zoneid = ilm->ilm_zoneid; 25066 } 25067 ILM_WALKER_RELE(ill); 25068 /* 25069 * Loopback case: the sending endpoint has 25070 * IP_MULTICAST_LOOP disabled, therefore we don't 25071 * dispatch the multicast packet to the sending zone. 25072 */ 25073 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25074 freemsg(first_mp); 25075 return; 25076 } 25077 } else if (ire_type == IRE_BROADCAST) { 25078 /* 25079 * In the broadcast case, there may be many zones 25080 * which need a copy of the packet delivered to them. 25081 * There is one IRE_BROADCAST per broadcast address 25082 * and per zone; we walk those using a helper function. 25083 * In addition, the sending of the packet for zoneid is 25084 * delayed until all of the other ires have been 25085 * processed. 25086 */ 25087 IRB_REFHOLD(ire->ire_bucket); 25088 ire_zone = NULL; 25089 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25090 ire)) != NULL) { 25091 mp1 = ip_copymsg(first_mp); 25092 if (mp1 == NULL) 25093 continue; 25094 25095 UPDATE_IB_PKT_COUNT(ire_zone); 25096 ire_zone->ire_last_used_time = lbolt; 25097 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25098 mctl_present, B_FALSE, ill, 25099 ire_zone->ire_zoneid); 25100 } 25101 IRB_REFRELE(ire->ire_bucket); 25102 } 25103 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25104 0, mctl_present, B_FALSE, ill, zoneid); 25105 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25106 "ip_wput_local_end: q %p (%S)", 25107 q, "icmp"); 25108 return; 25109 } 25110 case IPPROTO_IGMP: 25111 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25112 /* Bad packet - discarded by igmp_input */ 25113 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25114 "ip_wput_local_end: q %p (%S)", 25115 q, "igmp_input--bad packet"); 25116 if (mctl_present) 25117 freeb(first_mp); 25118 return; 25119 } 25120 /* 25121 * igmp_input() may have returned the pulled up message. 25122 * So first_mp and ipha need to be reinitialized. 25123 */ 25124 ipha = (ipha_t *)mp->b_rptr; 25125 if (mctl_present) 25126 first_mp->b_cont = mp; 25127 else 25128 first_mp = mp; 25129 /* deliver to local raw users */ 25130 break; 25131 case IPPROTO_ENCAP: 25132 /* 25133 * This case is covered by either ip_fanout_proto, or by 25134 * the above security processing for self-tunneled packets. 25135 */ 25136 break; 25137 case IPPROTO_UDP: { 25138 uint16_t *up; 25139 uint32_t ports; 25140 25141 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25142 UDP_PORTS_OFFSET); 25143 /* Force a 'valid' checksum. */ 25144 up[3] = 0; 25145 25146 ports = *(uint32_t *)up; 25147 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25148 (ire_type == IRE_BROADCAST), 25149 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25150 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25151 ill, zoneid); 25152 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25153 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25154 return; 25155 } 25156 case IPPROTO_TCP: { 25157 25158 /* 25159 * For TCP, discard broadcast packets. 25160 */ 25161 if ((ushort_t)ire_type == IRE_BROADCAST) { 25162 freemsg(first_mp); 25163 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25164 ip2dbg(("ip_wput_local: discard broadcast\n")); 25165 return; 25166 } 25167 25168 if (mp->b_datap->db_type == M_DATA) { 25169 /* 25170 * M_DATA mblk, so init mblk (chain) for no struio(). 25171 */ 25172 mblk_t *mp1 = mp; 25173 25174 do { 25175 mp1->b_datap->db_struioflag = 0; 25176 } while ((mp1 = mp1->b_cont) != NULL); 25177 } 25178 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25179 <= mp->b_wptr); 25180 ip_fanout_tcp(q, first_mp, ill, ipha, 25181 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25182 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25183 mctl_present, B_FALSE, zoneid); 25184 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25185 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25186 return; 25187 } 25188 case IPPROTO_SCTP: 25189 { 25190 uint32_t ports; 25191 25192 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25193 ip_fanout_sctp(first_mp, ill, ipha, ports, 25194 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25195 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25196 return; 25197 } 25198 25199 default: 25200 break; 25201 } 25202 /* 25203 * Find a client for some other protocol. We give 25204 * copies to multiple clients, if more than one is 25205 * bound. 25206 */ 25207 ip_fanout_proto(q, first_mp, ill, ipha, 25208 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25209 mctl_present, B_FALSE, ill, zoneid); 25210 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25211 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25212 #undef rptr 25213 } 25214 25215 /* 25216 * Update any source route, record route, or timestamp options. 25217 * Check that we are at end of strict source route. 25218 * The options have been sanity checked by ip_wput_options(). 25219 */ 25220 static void 25221 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25222 { 25223 ipoptp_t opts; 25224 uchar_t *opt; 25225 uint8_t optval; 25226 uint8_t optlen; 25227 ipaddr_t dst; 25228 uint32_t ts; 25229 ire_t *ire; 25230 timestruc_t now; 25231 25232 ip2dbg(("ip_wput_local_options\n")); 25233 for (optval = ipoptp_first(&opts, ipha); 25234 optval != IPOPT_EOL; 25235 optval = ipoptp_next(&opts)) { 25236 opt = opts.ipoptp_cur; 25237 optlen = opts.ipoptp_len; 25238 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25239 switch (optval) { 25240 uint32_t off; 25241 case IPOPT_SSRR: 25242 case IPOPT_LSRR: 25243 off = opt[IPOPT_OFFSET]; 25244 off--; 25245 if (optlen < IP_ADDR_LEN || 25246 off > optlen - IP_ADDR_LEN) { 25247 /* End of source route */ 25248 break; 25249 } 25250 /* 25251 * This will only happen if two consecutive entries 25252 * in the source route contains our address or if 25253 * it is a packet with a loose source route which 25254 * reaches us before consuming the whole source route 25255 */ 25256 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25257 if (optval == IPOPT_SSRR) { 25258 return; 25259 } 25260 /* 25261 * Hack: instead of dropping the packet truncate the 25262 * source route to what has been used by filling the 25263 * rest with IPOPT_NOP. 25264 */ 25265 opt[IPOPT_OLEN] = (uint8_t)off; 25266 while (off < optlen) { 25267 opt[off++] = IPOPT_NOP; 25268 } 25269 break; 25270 case IPOPT_RR: 25271 off = opt[IPOPT_OFFSET]; 25272 off--; 25273 if (optlen < IP_ADDR_LEN || 25274 off > optlen - IP_ADDR_LEN) { 25275 /* No more room - ignore */ 25276 ip1dbg(( 25277 "ip_wput_forward_options: end of RR\n")); 25278 break; 25279 } 25280 dst = htonl(INADDR_LOOPBACK); 25281 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25282 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25283 break; 25284 case IPOPT_TS: 25285 /* Insert timestamp if there is romm */ 25286 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25287 case IPOPT_TS_TSONLY: 25288 off = IPOPT_TS_TIMELEN; 25289 break; 25290 case IPOPT_TS_PRESPEC: 25291 case IPOPT_TS_PRESPEC_RFC791: 25292 /* Verify that the address matched */ 25293 off = opt[IPOPT_OFFSET] - 1; 25294 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25295 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25296 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25297 ipst); 25298 if (ire == NULL) { 25299 /* Not for us */ 25300 break; 25301 } 25302 ire_refrele(ire); 25303 /* FALLTHRU */ 25304 case IPOPT_TS_TSANDADDR: 25305 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25306 break; 25307 default: 25308 /* 25309 * ip_*put_options should have already 25310 * dropped this packet. 25311 */ 25312 cmn_err(CE_PANIC, "ip_wput_local_options: " 25313 "unknown IT - bug in ip_wput_options?\n"); 25314 return; /* Keep "lint" happy */ 25315 } 25316 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25317 /* Increase overflow counter */ 25318 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25319 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25320 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25321 (off << 4); 25322 break; 25323 } 25324 off = opt[IPOPT_OFFSET] - 1; 25325 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25326 case IPOPT_TS_PRESPEC: 25327 case IPOPT_TS_PRESPEC_RFC791: 25328 case IPOPT_TS_TSANDADDR: 25329 dst = htonl(INADDR_LOOPBACK); 25330 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25331 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25332 /* FALLTHRU */ 25333 case IPOPT_TS_TSONLY: 25334 off = opt[IPOPT_OFFSET] - 1; 25335 /* Compute # of milliseconds since midnight */ 25336 gethrestime(&now); 25337 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25338 now.tv_nsec / (NANOSEC / MILLISEC); 25339 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25340 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25341 break; 25342 } 25343 break; 25344 } 25345 } 25346 } 25347 25348 /* 25349 * Send out a multicast packet on interface ipif. 25350 * The sender does not have an conn. 25351 * Caller verifies that this isn't a PHYI_LOOPBACK. 25352 */ 25353 void 25354 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25355 { 25356 ipha_t *ipha; 25357 ire_t *ire; 25358 ipaddr_t dst; 25359 mblk_t *first_mp; 25360 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25361 25362 /* igmp_sendpkt always allocates a ipsec_out_t */ 25363 ASSERT(mp->b_datap->db_type == M_CTL); 25364 ASSERT(!ipif->ipif_isv6); 25365 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25366 25367 first_mp = mp; 25368 mp = first_mp->b_cont; 25369 ASSERT(mp->b_datap->db_type == M_DATA); 25370 ipha = (ipha_t *)mp->b_rptr; 25371 25372 /* 25373 * Find an IRE which matches the destination and the outgoing 25374 * queue (i.e. the outgoing interface.) 25375 */ 25376 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25377 dst = ipif->ipif_pp_dst_addr; 25378 else 25379 dst = ipha->ipha_dst; 25380 /* 25381 * The source address has already been initialized by the 25382 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25383 * be sufficient rather than MATCH_IRE_IPIF. 25384 * 25385 * This function is used for sending IGMP packets. We need 25386 * to make sure that we send the packet out of the interface 25387 * (ipif->ipif_ill) where we joined the group. This is to 25388 * prevent from switches doing IGMP snooping to send us multicast 25389 * packets for a given group on the interface we have joined. 25390 * If we can't find an ire, igmp_sendpkt has already initialized 25391 * ipsec_out_attach_if so that this will not be load spread in 25392 * ip_newroute_ipif. 25393 */ 25394 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25395 MATCH_IRE_ILL, ipst); 25396 if (!ire) { 25397 /* 25398 * Mark this packet to make it be delivered to 25399 * ip_wput_ire after the new ire has been 25400 * created. 25401 */ 25402 mp->b_prev = NULL; 25403 mp->b_next = NULL; 25404 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25405 zoneid, &zero_info); 25406 return; 25407 } 25408 25409 /* 25410 * Honor the RTF_SETSRC flag; this is the only case 25411 * where we force this addr whatever the current src addr is, 25412 * because this address is set by igmp_sendpkt(), and 25413 * cannot be specified by any user. 25414 */ 25415 if (ire->ire_flags & RTF_SETSRC) { 25416 ipha->ipha_src = ire->ire_src_addr; 25417 } 25418 25419 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25420 } 25421 25422 /* 25423 * NOTE : This function does not ire_refrele the ire argument passed in. 25424 * 25425 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25426 * failure. The nce_fp_mp can vanish any time in the case of 25427 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25428 * the ire_lock to access the nce_fp_mp in this case. 25429 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25430 * prepending a fastpath message IPQoS processing must precede it, we also set 25431 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25432 * (IPQoS might have set the b_band for CoS marking). 25433 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25434 * must follow it so that IPQoS can mark the dl_priority field for CoS 25435 * marking, if needed. 25436 */ 25437 static mblk_t * 25438 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25439 { 25440 uint_t hlen; 25441 ipha_t *ipha; 25442 mblk_t *mp1; 25443 boolean_t qos_done = B_FALSE; 25444 uchar_t *ll_hdr; 25445 ip_stack_t *ipst = ire->ire_ipst; 25446 25447 #define rptr ((uchar_t *)ipha) 25448 25449 ipha = (ipha_t *)mp->b_rptr; 25450 hlen = 0; 25451 LOCK_IRE_FP_MP(ire); 25452 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25453 ASSERT(DB_TYPE(mp1) == M_DATA); 25454 /* Initiate IPPF processing */ 25455 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25456 UNLOCK_IRE_FP_MP(ire); 25457 ip_process(proc, &mp, ill_index); 25458 if (mp == NULL) 25459 return (NULL); 25460 25461 ipha = (ipha_t *)mp->b_rptr; 25462 LOCK_IRE_FP_MP(ire); 25463 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25464 qos_done = B_TRUE; 25465 goto no_fp_mp; 25466 } 25467 ASSERT(DB_TYPE(mp1) == M_DATA); 25468 } 25469 hlen = MBLKL(mp1); 25470 /* 25471 * Check if we have enough room to prepend fastpath 25472 * header 25473 */ 25474 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25475 ll_hdr = rptr - hlen; 25476 bcopy(mp1->b_rptr, ll_hdr, hlen); 25477 /* 25478 * Set the b_rptr to the start of the link layer 25479 * header 25480 */ 25481 mp->b_rptr = ll_hdr; 25482 mp1 = mp; 25483 } else { 25484 mp1 = copyb(mp1); 25485 if (mp1 == NULL) 25486 goto unlock_err; 25487 mp1->b_band = mp->b_band; 25488 mp1->b_cont = mp; 25489 /* 25490 * certain system generated traffic may not 25491 * have cred/label in ip header block. This 25492 * is true even for a labeled system. But for 25493 * labeled traffic, inherit the label in the 25494 * new header. 25495 */ 25496 if (DB_CRED(mp) != NULL) 25497 mblk_setcred(mp1, DB_CRED(mp)); 25498 /* 25499 * XXX disable ICK_VALID and compute checksum 25500 * here; can happen if nce_fp_mp changes and 25501 * it can't be copied now due to insufficient 25502 * space. (unlikely, fp mp can change, but it 25503 * does not increase in length) 25504 */ 25505 } 25506 UNLOCK_IRE_FP_MP(ire); 25507 } else { 25508 no_fp_mp: 25509 mp1 = copyb(ire->ire_nce->nce_res_mp); 25510 if (mp1 == NULL) { 25511 unlock_err: 25512 UNLOCK_IRE_FP_MP(ire); 25513 freemsg(mp); 25514 return (NULL); 25515 } 25516 UNLOCK_IRE_FP_MP(ire); 25517 mp1->b_cont = mp; 25518 /* 25519 * certain system generated traffic may not 25520 * have cred/label in ip header block. This 25521 * is true even for a labeled system. But for 25522 * labeled traffic, inherit the label in the 25523 * new header. 25524 */ 25525 if (DB_CRED(mp) != NULL) 25526 mblk_setcred(mp1, DB_CRED(mp)); 25527 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25528 ip_process(proc, &mp1, ill_index); 25529 if (mp1 == NULL) 25530 return (NULL); 25531 } 25532 } 25533 return (mp1); 25534 #undef rptr 25535 } 25536 25537 /* 25538 * Finish the outbound IPsec processing for an IPv6 packet. This function 25539 * is called from ipsec_out_process() if the IPsec packet was processed 25540 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25541 * asynchronously. 25542 */ 25543 void 25544 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25545 ire_t *ire_arg) 25546 { 25547 in6_addr_t *v6dstp; 25548 ire_t *ire; 25549 mblk_t *mp; 25550 ip6_t *ip6h1; 25551 uint_t ill_index; 25552 ipsec_out_t *io; 25553 boolean_t attach_if, hwaccel; 25554 uint32_t flags = IP6_NO_IPPOLICY; 25555 int match_flags; 25556 zoneid_t zoneid; 25557 boolean_t ill_need_rele = B_FALSE; 25558 boolean_t ire_need_rele = B_FALSE; 25559 ip_stack_t *ipst; 25560 25561 mp = ipsec_mp->b_cont; 25562 ip6h1 = (ip6_t *)mp->b_rptr; 25563 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25564 ASSERT(io->ipsec_out_ns != NULL); 25565 ipst = io->ipsec_out_ns->netstack_ip; 25566 ill_index = io->ipsec_out_ill_index; 25567 if (io->ipsec_out_reachable) { 25568 flags |= IPV6_REACHABILITY_CONFIRMATION; 25569 } 25570 attach_if = io->ipsec_out_attach_if; 25571 hwaccel = io->ipsec_out_accelerated; 25572 zoneid = io->ipsec_out_zoneid; 25573 ASSERT(zoneid != ALL_ZONES); 25574 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25575 /* Multicast addresses should have non-zero ill_index. */ 25576 v6dstp = &ip6h->ip6_dst; 25577 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25578 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25579 ASSERT(!attach_if || ill_index != 0); 25580 if (ill_index != 0) { 25581 if (ill == NULL) { 25582 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25583 B_TRUE, ipst); 25584 25585 /* Failure case frees things for us. */ 25586 if (ill == NULL) 25587 return; 25588 25589 ill_need_rele = B_TRUE; 25590 } 25591 /* 25592 * If this packet needs to go out on a particular interface 25593 * honor it. 25594 */ 25595 if (attach_if) { 25596 match_flags = MATCH_IRE_ILL; 25597 25598 /* 25599 * Check if we need an ire that will not be 25600 * looked up by anybody else i.e. HIDDEN. 25601 */ 25602 if (ill_is_probeonly(ill)) { 25603 match_flags |= MATCH_IRE_MARK_HIDDEN; 25604 } 25605 } 25606 } 25607 ASSERT(mp != NULL); 25608 25609 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25610 boolean_t unspec_src; 25611 ipif_t *ipif; 25612 25613 /* 25614 * Use the ill_index to get the right ill. 25615 */ 25616 unspec_src = io->ipsec_out_unspec_src; 25617 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25618 if (ipif == NULL) { 25619 if (ill_need_rele) 25620 ill_refrele(ill); 25621 freemsg(ipsec_mp); 25622 return; 25623 } 25624 25625 if (ire_arg != NULL) { 25626 ire = ire_arg; 25627 } else { 25628 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25629 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25630 ire_need_rele = B_TRUE; 25631 } 25632 if (ire != NULL) { 25633 ipif_refrele(ipif); 25634 /* 25635 * XXX Do the multicast forwarding now, as the IPsec 25636 * processing has been done. 25637 */ 25638 goto send; 25639 } 25640 25641 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25642 mp->b_prev = NULL; 25643 mp->b_next = NULL; 25644 25645 /* 25646 * If the IPsec packet was processed asynchronously, 25647 * drop it now. 25648 */ 25649 if (q == NULL) { 25650 if (ill_need_rele) 25651 ill_refrele(ill); 25652 freemsg(ipsec_mp); 25653 return; 25654 } 25655 25656 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25657 unspec_src, zoneid); 25658 ipif_refrele(ipif); 25659 } else { 25660 if (attach_if) { 25661 ipif_t *ipif; 25662 25663 ipif = ipif_get_next_ipif(NULL, ill); 25664 if (ipif == NULL) { 25665 if (ill_need_rele) 25666 ill_refrele(ill); 25667 freemsg(ipsec_mp); 25668 return; 25669 } 25670 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25671 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25672 ire_need_rele = B_TRUE; 25673 ipif_refrele(ipif); 25674 } else { 25675 if (ire_arg != NULL) { 25676 ire = ire_arg; 25677 } else { 25678 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25679 ipst); 25680 ire_need_rele = B_TRUE; 25681 } 25682 } 25683 if (ire != NULL) 25684 goto send; 25685 /* 25686 * ire disappeared underneath. 25687 * 25688 * What we need to do here is the ip_newroute 25689 * logic to get the ire without doing the IPsec 25690 * processing. Follow the same old path. But this 25691 * time, ip_wput or ire_add_then_send will call us 25692 * directly as all the IPsec operations are done. 25693 */ 25694 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25695 mp->b_prev = NULL; 25696 mp->b_next = NULL; 25697 25698 /* 25699 * If the IPsec packet was processed asynchronously, 25700 * drop it now. 25701 */ 25702 if (q == NULL) { 25703 if (ill_need_rele) 25704 ill_refrele(ill); 25705 freemsg(ipsec_mp); 25706 return; 25707 } 25708 25709 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25710 zoneid, ipst); 25711 } 25712 if (ill != NULL && ill_need_rele) 25713 ill_refrele(ill); 25714 return; 25715 send: 25716 if (ill != NULL && ill_need_rele) 25717 ill_refrele(ill); 25718 25719 /* Local delivery */ 25720 if (ire->ire_stq == NULL) { 25721 ill_t *out_ill; 25722 ASSERT(q != NULL); 25723 25724 /* PFHooks: LOOPBACK_OUT */ 25725 out_ill = ire_to_ill(ire); 25726 25727 DTRACE_PROBE4(ip6__loopback__out__start, 25728 ill_t *, NULL, ill_t *, out_ill, 25729 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25730 25731 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25732 ipst->ips_ipv6firewall_loopback_out, 25733 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25734 25735 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25736 25737 if (ipsec_mp != NULL) 25738 ip_wput_local_v6(RD(q), out_ill, 25739 ip6h, ipsec_mp, ire, 0); 25740 if (ire_need_rele) 25741 ire_refrele(ire); 25742 return; 25743 } 25744 /* 25745 * Everything is done. Send it out on the wire. 25746 * We force the insertion of a fragment header using the 25747 * IPH_FRAG_HDR flag in two cases: 25748 * - after reception of an ICMPv6 "packet too big" message 25749 * with a MTU < 1280 (cf. RFC 2460 section 5) 25750 * - for multirouted IPv6 packets, so that the receiver can 25751 * discard duplicates according to their fragment identifier 25752 */ 25753 /* XXX fix flow control problems. */ 25754 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25755 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25756 if (hwaccel) { 25757 /* 25758 * hardware acceleration does not handle these 25759 * "slow path" cases. 25760 */ 25761 /* IPsec KSTATS: should bump bean counter here. */ 25762 if (ire_need_rele) 25763 ire_refrele(ire); 25764 freemsg(ipsec_mp); 25765 return; 25766 } 25767 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25768 (mp->b_cont ? msgdsize(mp) : 25769 mp->b_wptr - (uchar_t *)ip6h)) { 25770 /* IPsec KSTATS: should bump bean counter here. */ 25771 ip0dbg(("Packet length mismatch: %d, %ld\n", 25772 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25773 msgdsize(mp))); 25774 if (ire_need_rele) 25775 ire_refrele(ire); 25776 freemsg(ipsec_mp); 25777 return; 25778 } 25779 ASSERT(mp->b_prev == NULL); 25780 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25781 ntohs(ip6h->ip6_plen) + 25782 IPV6_HDR_LEN, ire->ire_max_frag)); 25783 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25784 ire->ire_max_frag); 25785 } else { 25786 UPDATE_OB_PKT_COUNT(ire); 25787 ire->ire_last_used_time = lbolt; 25788 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25789 } 25790 if (ire_need_rele) 25791 ire_refrele(ire); 25792 freeb(ipsec_mp); 25793 } 25794 25795 void 25796 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25797 { 25798 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25799 da_ipsec_t *hada; /* data attributes */ 25800 ill_t *ill = (ill_t *)q->q_ptr; 25801 25802 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25803 25804 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25805 /* IPsec KSTATS: Bump lose counter here! */ 25806 freemsg(mp); 25807 return; 25808 } 25809 25810 /* 25811 * It's an IPsec packet that must be 25812 * accelerated by the Provider, and the 25813 * outbound ill is IPsec acceleration capable. 25814 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25815 * to the ill. 25816 * IPsec KSTATS: should bump packet counter here. 25817 */ 25818 25819 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25820 if (hada_mp == NULL) { 25821 /* IPsec KSTATS: should bump packet counter here. */ 25822 freemsg(mp); 25823 return; 25824 } 25825 25826 hada_mp->b_datap->db_type = M_CTL; 25827 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25828 hada_mp->b_cont = mp; 25829 25830 hada = (da_ipsec_t *)hada_mp->b_rptr; 25831 bzero(hada, sizeof (da_ipsec_t)); 25832 hada->da_type = IPHADA_M_CTL; 25833 25834 putnext(q, hada_mp); 25835 } 25836 25837 /* 25838 * Finish the outbound IPsec processing. This function is called from 25839 * ipsec_out_process() if the IPsec packet was processed 25840 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25841 * asynchronously. 25842 */ 25843 void 25844 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25845 ire_t *ire_arg) 25846 { 25847 uint32_t v_hlen_tos_len; 25848 ipaddr_t dst; 25849 ipif_t *ipif = NULL; 25850 ire_t *ire; 25851 ire_t *ire1 = NULL; 25852 mblk_t *next_mp = NULL; 25853 uint32_t max_frag; 25854 boolean_t multirt_send = B_FALSE; 25855 mblk_t *mp; 25856 ipha_t *ipha1; 25857 uint_t ill_index; 25858 ipsec_out_t *io; 25859 boolean_t attach_if; 25860 int match_flags; 25861 irb_t *irb = NULL; 25862 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25863 zoneid_t zoneid; 25864 ipxmit_state_t pktxmit_state; 25865 ip_stack_t *ipst; 25866 25867 #ifdef _BIG_ENDIAN 25868 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25869 #else 25870 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25871 #endif 25872 25873 mp = ipsec_mp->b_cont; 25874 ipha1 = (ipha_t *)mp->b_rptr; 25875 ASSERT(mp != NULL); 25876 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25877 dst = ipha->ipha_dst; 25878 25879 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25880 ill_index = io->ipsec_out_ill_index; 25881 attach_if = io->ipsec_out_attach_if; 25882 zoneid = io->ipsec_out_zoneid; 25883 ASSERT(zoneid != ALL_ZONES); 25884 ipst = io->ipsec_out_ns->netstack_ip; 25885 ASSERT(io->ipsec_out_ns != NULL); 25886 25887 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25888 if (ill_index != 0) { 25889 if (ill == NULL) { 25890 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25891 ill_index, B_FALSE, ipst); 25892 25893 /* Failure case frees things for us. */ 25894 if (ill == NULL) 25895 return; 25896 25897 ill_need_rele = B_TRUE; 25898 } 25899 /* 25900 * If this packet needs to go out on a particular interface 25901 * honor it. 25902 */ 25903 if (attach_if) { 25904 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25905 25906 /* 25907 * Check if we need an ire that will not be 25908 * looked up by anybody else i.e. HIDDEN. 25909 */ 25910 if (ill_is_probeonly(ill)) { 25911 match_flags |= MATCH_IRE_MARK_HIDDEN; 25912 } 25913 } 25914 } 25915 25916 if (CLASSD(dst)) { 25917 boolean_t conn_dontroute; 25918 /* 25919 * Use the ill_index to get the right ipif. 25920 */ 25921 conn_dontroute = io->ipsec_out_dontroute; 25922 if (ill_index == 0) 25923 ipif = ipif_lookup_group(dst, zoneid, ipst); 25924 else 25925 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25926 if (ipif == NULL) { 25927 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25928 " multicast\n")); 25929 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25930 freemsg(ipsec_mp); 25931 goto done; 25932 } 25933 /* 25934 * ipha_src has already been intialized with the 25935 * value of the ipif in ip_wput. All we need now is 25936 * an ire to send this downstream. 25937 */ 25938 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25939 MBLK_GETLABEL(mp), match_flags, ipst); 25940 if (ire != NULL) { 25941 ill_t *ill1; 25942 /* 25943 * Do the multicast forwarding now, as the IPsec 25944 * processing has been done. 25945 */ 25946 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25947 (ill1 = ire_to_ill(ire))) { 25948 if (ip_mforward(ill1, ipha, mp)) { 25949 freemsg(ipsec_mp); 25950 ip1dbg(("ip_wput_ipsec_out: mforward " 25951 "failed\n")); 25952 ire_refrele(ire); 25953 goto done; 25954 } 25955 } 25956 goto send; 25957 } 25958 25959 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25960 mp->b_prev = NULL; 25961 mp->b_next = NULL; 25962 25963 /* 25964 * If the IPsec packet was processed asynchronously, 25965 * drop it now. 25966 */ 25967 if (q == NULL) { 25968 freemsg(ipsec_mp); 25969 goto done; 25970 } 25971 25972 /* 25973 * We may be using a wrong ipif to create the ire. 25974 * But it is okay as the source address is assigned 25975 * for the packet already. Next outbound packet would 25976 * create the IRE with the right IPIF in ip_wput. 25977 * 25978 * Also handle RTF_MULTIRT routes. 25979 */ 25980 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25981 zoneid, &zero_info); 25982 } else { 25983 if (attach_if) { 25984 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25985 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25986 } else { 25987 if (ire_arg != NULL) { 25988 ire = ire_arg; 25989 ire_need_rele = B_FALSE; 25990 } else { 25991 ire = ire_cache_lookup(dst, zoneid, 25992 MBLK_GETLABEL(mp), ipst); 25993 } 25994 } 25995 if (ire != NULL) { 25996 goto send; 25997 } 25998 25999 /* 26000 * ire disappeared underneath. 26001 * 26002 * What we need to do here is the ip_newroute 26003 * logic to get the ire without doing the IPsec 26004 * processing. Follow the same old path. But this 26005 * time, ip_wput or ire_add_then_put will call us 26006 * directly as all the IPsec operations are done. 26007 */ 26008 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26009 mp->b_prev = NULL; 26010 mp->b_next = NULL; 26011 26012 /* 26013 * If the IPsec packet was processed asynchronously, 26014 * drop it now. 26015 */ 26016 if (q == NULL) { 26017 freemsg(ipsec_mp); 26018 goto done; 26019 } 26020 26021 /* 26022 * Since we're going through ip_newroute() again, we 26023 * need to make sure we don't: 26024 * 26025 * 1.) Trigger the ASSERT() with the ipha_ident 26026 * overloading. 26027 * 2.) Redo transport-layer checksumming, since we've 26028 * already done all that to get this far. 26029 * 26030 * The easiest way not do either of the above is to set 26031 * the ipha_ident field to IP_HDR_INCLUDED. 26032 */ 26033 ipha->ipha_ident = IP_HDR_INCLUDED; 26034 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26035 zoneid, ipst); 26036 } 26037 goto done; 26038 send: 26039 if (ire->ire_stq == NULL) { 26040 ill_t *out_ill; 26041 /* 26042 * Loopbacks go through ip_wput_local except for one case. 26043 * We come here if we generate a icmp_frag_needed message 26044 * after IPsec processing is over. When this function calls 26045 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26046 * icmp_frag_needed. The message generated comes back here 26047 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26048 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26049 * source address as it is usually set in ip_wput_ire. As 26050 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26051 * and we end up here. We can't enter ip_wput_ire once the 26052 * IPsec processing is over and hence we need to do it here. 26053 */ 26054 ASSERT(q != NULL); 26055 UPDATE_OB_PKT_COUNT(ire); 26056 ire->ire_last_used_time = lbolt; 26057 if (ipha->ipha_src == 0) 26058 ipha->ipha_src = ire->ire_src_addr; 26059 26060 /* PFHooks: LOOPBACK_OUT */ 26061 out_ill = ire_to_ill(ire); 26062 26063 DTRACE_PROBE4(ip4__loopback__out__start, 26064 ill_t *, NULL, ill_t *, out_ill, 26065 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26066 26067 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26068 ipst->ips_ipv4firewall_loopback_out, 26069 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26070 26071 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26072 26073 if (ipsec_mp != NULL) 26074 ip_wput_local(RD(q), out_ill, 26075 ipha, ipsec_mp, ire, 0, zoneid); 26076 if (ire_need_rele) 26077 ire_refrele(ire); 26078 goto done; 26079 } 26080 26081 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26082 /* 26083 * We are through with IPsec processing. 26084 * Fragment this and send it on the wire. 26085 */ 26086 if (io->ipsec_out_accelerated) { 26087 /* 26088 * The packet has been accelerated but must 26089 * be fragmented. This should not happen 26090 * since AH and ESP must not accelerate 26091 * packets that need fragmentation, however 26092 * the configuration could have changed 26093 * since the AH or ESP processing. 26094 * Drop packet. 26095 * IPsec KSTATS: bump bean counter here. 26096 */ 26097 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26098 "fragmented accelerated packet!\n")); 26099 freemsg(ipsec_mp); 26100 } else { 26101 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26102 } 26103 if (ire_need_rele) 26104 ire_refrele(ire); 26105 goto done; 26106 } 26107 26108 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26109 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26110 (void *)ire->ire_ipif, (void *)ipif)); 26111 26112 /* 26113 * Multiroute the secured packet, unless IPsec really 26114 * requires the packet to go out only through a particular 26115 * interface. 26116 */ 26117 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26118 ire_t *first_ire; 26119 irb = ire->ire_bucket; 26120 ASSERT(irb != NULL); 26121 /* 26122 * This ire has been looked up as the one that 26123 * goes through the given ipif; 26124 * make sure we do not omit any other multiroute ire 26125 * that may be present in the bucket before this one. 26126 */ 26127 IRB_REFHOLD(irb); 26128 for (first_ire = irb->irb_ire; 26129 first_ire != NULL; 26130 first_ire = first_ire->ire_next) { 26131 if ((first_ire->ire_flags & RTF_MULTIRT) && 26132 (first_ire->ire_addr == ire->ire_addr) && 26133 !(first_ire->ire_marks & 26134 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26135 break; 26136 } 26137 } 26138 26139 if ((first_ire != NULL) && (first_ire != ire)) { 26140 /* 26141 * Don't change the ire if the packet must 26142 * be fragmented if sent via this new one. 26143 */ 26144 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26145 IRE_REFHOLD(first_ire); 26146 if (ire_need_rele) 26147 ire_refrele(ire); 26148 else 26149 ire_need_rele = B_TRUE; 26150 ire = first_ire; 26151 } 26152 } 26153 IRB_REFRELE(irb); 26154 26155 multirt_send = B_TRUE; 26156 max_frag = ire->ire_max_frag; 26157 } else { 26158 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26159 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26160 "flag, attach_if %d\n", attach_if)); 26161 } 26162 } 26163 26164 /* 26165 * In most cases, the emission loop below is entered only once. 26166 * Only in the case where the ire holds the RTF_MULTIRT 26167 * flag, we loop to process all RTF_MULTIRT ires in the 26168 * bucket, and send the packet through all crossed 26169 * RTF_MULTIRT routes. 26170 */ 26171 do { 26172 if (multirt_send) { 26173 /* 26174 * ire1 holds here the next ire to process in the 26175 * bucket. If multirouting is expected, 26176 * any non-RTF_MULTIRT ire that has the 26177 * right destination address is ignored. 26178 */ 26179 ASSERT(irb != NULL); 26180 IRB_REFHOLD(irb); 26181 for (ire1 = ire->ire_next; 26182 ire1 != NULL; 26183 ire1 = ire1->ire_next) { 26184 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26185 continue; 26186 if (ire1->ire_addr != ire->ire_addr) 26187 continue; 26188 if (ire1->ire_marks & 26189 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26190 continue; 26191 /* No loopback here */ 26192 if (ire1->ire_stq == NULL) 26193 continue; 26194 /* 26195 * Ensure we do not exceed the MTU 26196 * of the next route. 26197 */ 26198 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26199 ip_multirt_bad_mtu(ire1, max_frag); 26200 continue; 26201 } 26202 26203 IRE_REFHOLD(ire1); 26204 break; 26205 } 26206 IRB_REFRELE(irb); 26207 if (ire1 != NULL) { 26208 /* 26209 * We are in a multiple send case, need to 26210 * make a copy of the packet. 26211 */ 26212 next_mp = copymsg(ipsec_mp); 26213 if (next_mp == NULL) { 26214 ire_refrele(ire1); 26215 ire1 = NULL; 26216 } 26217 } 26218 } 26219 /* 26220 * Everything is done. Send it out on the wire 26221 * 26222 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26223 * either send it on the wire or, in the case of 26224 * HW acceleration, call ipsec_hw_putnext. 26225 */ 26226 if (ire->ire_nce && 26227 ire->ire_nce->nce_state != ND_REACHABLE) { 26228 DTRACE_PROBE2(ip__wput__ipsec__bail, 26229 (ire_t *), ire, (mblk_t *), ipsec_mp); 26230 /* 26231 * If ire's link-layer is unresolved (this 26232 * would only happen if the incomplete ire 26233 * was added to cachetable via forwarding path) 26234 * don't bother going to ip_xmit_v4. Just drop the 26235 * packet. 26236 * There is a slight risk here, in that, if we 26237 * have the forwarding path create an incomplete 26238 * IRE, then until the IRE is completed, any 26239 * transmitted IPsec packets will be dropped 26240 * instead of being queued waiting for resolution. 26241 * 26242 * But the likelihood of a forwarding packet and a wput 26243 * packet sending to the same dst at the same time 26244 * and there not yet be an ARP entry for it is small. 26245 * Furthermore, if this actually happens, it might 26246 * be likely that wput would generate multiple 26247 * packets (and forwarding would also have a train 26248 * of packets) for that destination. If this is 26249 * the case, some of them would have been dropped 26250 * anyway, since ARP only queues a few packets while 26251 * waiting for resolution 26252 * 26253 * NOTE: We should really call ip_xmit_v4, 26254 * and let it queue the packet and send the 26255 * ARP query and have ARP come back thus: 26256 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26257 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26258 * hw accel work. But it's too complex to get 26259 * the IPsec hw acceleration approach to fit 26260 * well with ip_xmit_v4 doing ARP without 26261 * doing IPsec simplification. For now, we just 26262 * poke ip_xmit_v4 to trigger the arp resolve, so 26263 * that we can continue with the send on the next 26264 * attempt. 26265 * 26266 * XXX THis should be revisited, when 26267 * the IPsec/IP interaction is cleaned up 26268 */ 26269 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26270 " - dropping packet\n")); 26271 freemsg(ipsec_mp); 26272 /* 26273 * Call ip_xmit_v4() to trigger ARP query 26274 * in case the nce_state is ND_INITIAL 26275 */ 26276 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26277 goto drop_pkt; 26278 } 26279 26280 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26281 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26282 mblk_t *, ipsec_mp); 26283 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26284 ipst->ips_ipv4firewall_physical_out, NULL, 26285 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26286 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26287 if (ipsec_mp == NULL) 26288 goto drop_pkt; 26289 26290 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26291 pktxmit_state = ip_xmit_v4(mp, ire, 26292 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26293 26294 if ((pktxmit_state == SEND_FAILED) || 26295 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26296 26297 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26298 drop_pkt: 26299 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26300 ipIfStatsOutDiscards); 26301 if (ire_need_rele) 26302 ire_refrele(ire); 26303 if (ire1 != NULL) { 26304 ire_refrele(ire1); 26305 freemsg(next_mp); 26306 } 26307 goto done; 26308 } 26309 26310 freeb(ipsec_mp); 26311 if (ire_need_rele) 26312 ire_refrele(ire); 26313 26314 if (ire1 != NULL) { 26315 ire = ire1; 26316 ire_need_rele = B_TRUE; 26317 ASSERT(next_mp); 26318 ipsec_mp = next_mp; 26319 mp = ipsec_mp->b_cont; 26320 ire1 = NULL; 26321 next_mp = NULL; 26322 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26323 } else { 26324 multirt_send = B_FALSE; 26325 } 26326 } while (multirt_send); 26327 done: 26328 if (ill != NULL && ill_need_rele) 26329 ill_refrele(ill); 26330 if (ipif != NULL) 26331 ipif_refrele(ipif); 26332 } 26333 26334 /* 26335 * Get the ill corresponding to the specified ire, and compare its 26336 * capabilities with the protocol and algorithms specified by the 26337 * the SA obtained from ipsec_out. If they match, annotate the 26338 * ipsec_out structure to indicate that the packet needs acceleration. 26339 * 26340 * 26341 * A packet is eligible for outbound hardware acceleration if the 26342 * following conditions are satisfied: 26343 * 26344 * 1. the packet will not be fragmented 26345 * 2. the provider supports the algorithm 26346 * 3. there is no pending control message being exchanged 26347 * 4. snoop is not attached 26348 * 5. the destination address is not a broadcast or multicast address. 26349 * 26350 * Rationale: 26351 * - Hardware drivers do not support fragmentation with 26352 * the current interface. 26353 * - snoop, multicast, and broadcast may result in exposure of 26354 * a cleartext datagram. 26355 * We check all five of these conditions here. 26356 * 26357 * XXX would like to nuke "ire_t *" parameter here; problem is that 26358 * IRE is only way to figure out if a v4 address is a broadcast and 26359 * thus ineligible for acceleration... 26360 */ 26361 static void 26362 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26363 { 26364 ipsec_out_t *io; 26365 mblk_t *data_mp; 26366 uint_t plen, overhead; 26367 ip_stack_t *ipst; 26368 26369 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26370 return; 26371 26372 if (ill == NULL) 26373 return; 26374 ipst = ill->ill_ipst; 26375 /* 26376 * Destination address is a broadcast or multicast. Punt. 26377 */ 26378 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26379 IRE_LOCAL))) 26380 return; 26381 26382 data_mp = ipsec_mp->b_cont; 26383 26384 if (ill->ill_isv6) { 26385 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26386 26387 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26388 return; 26389 26390 plen = ip6h->ip6_plen; 26391 } else { 26392 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26393 26394 if (CLASSD(ipha->ipha_dst)) 26395 return; 26396 26397 plen = ipha->ipha_length; 26398 } 26399 /* 26400 * Is there a pending DLPI control message being exchanged 26401 * between IP/IPsec and the DLS Provider? If there is, it 26402 * could be a SADB update, and the state of the DLS Provider 26403 * SADB might not be in sync with the SADB maintained by 26404 * IPsec. To avoid dropping packets or using the wrong keying 26405 * material, we do not accelerate this packet. 26406 */ 26407 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26408 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26409 "ill_dlpi_pending! don't accelerate packet\n")); 26410 return; 26411 } 26412 26413 /* 26414 * Is the Provider in promiscous mode? If it does, we don't 26415 * accelerate the packet since it will bounce back up to the 26416 * listeners in the clear. 26417 */ 26418 if (ill->ill_promisc_on_phys) { 26419 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26420 "ill in promiscous mode, don't accelerate packet\n")); 26421 return; 26422 } 26423 26424 /* 26425 * Will the packet require fragmentation? 26426 */ 26427 26428 /* 26429 * IPsec ESP note: this is a pessimistic estimate, but the same 26430 * as is used elsewhere. 26431 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26432 * + 2-byte trailer 26433 */ 26434 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26435 IPSEC_BASE_ESP_HDR_SIZE(sa); 26436 26437 if ((plen + overhead) > ill->ill_max_mtu) 26438 return; 26439 26440 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26441 26442 /* 26443 * Can the ill accelerate this IPsec protocol and algorithm 26444 * specified by the SA? 26445 */ 26446 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26447 ill->ill_isv6, sa, ipst->ips_netstack)) { 26448 return; 26449 } 26450 26451 /* 26452 * Tell AH or ESP that the outbound ill is capable of 26453 * accelerating this packet. 26454 */ 26455 io->ipsec_out_is_capab_ill = B_TRUE; 26456 } 26457 26458 /* 26459 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26460 * 26461 * If this function returns B_TRUE, the requested SA's have been filled 26462 * into the ipsec_out_*_sa pointers. 26463 * 26464 * If the function returns B_FALSE, the packet has been "consumed", most 26465 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26466 * 26467 * The SA references created by the protocol-specific "select" 26468 * function will be released when the ipsec_mp is freed, thanks to the 26469 * ipsec_out_free destructor -- see spd.c. 26470 */ 26471 static boolean_t 26472 ipsec_out_select_sa(mblk_t *ipsec_mp) 26473 { 26474 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26475 ipsec_out_t *io; 26476 ipsec_policy_t *pp; 26477 ipsec_action_t *ap; 26478 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26479 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26480 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26481 26482 if (!io->ipsec_out_secure) { 26483 /* 26484 * We came here by mistake. 26485 * Don't bother with ipsec processing 26486 * We should "discourage" this path in the future. 26487 */ 26488 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26489 return (B_FALSE); 26490 } 26491 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26492 ASSERT((io->ipsec_out_policy != NULL) || 26493 (io->ipsec_out_act != NULL)); 26494 26495 ASSERT(io->ipsec_out_failed == B_FALSE); 26496 26497 /* 26498 * IPsec processing has started. 26499 */ 26500 io->ipsec_out_proc_begin = B_TRUE; 26501 ap = io->ipsec_out_act; 26502 if (ap == NULL) { 26503 pp = io->ipsec_out_policy; 26504 ASSERT(pp != NULL); 26505 ap = pp->ipsp_act; 26506 ASSERT(ap != NULL); 26507 } 26508 26509 /* 26510 * We have an action. now, let's select SA's. 26511 * (In the future, we can cache this in the conn_t..) 26512 */ 26513 if (ap->ipa_want_esp) { 26514 if (io->ipsec_out_esp_sa == NULL) { 26515 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26516 IPPROTO_ESP); 26517 } 26518 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26519 } 26520 26521 if (ap->ipa_want_ah) { 26522 if (io->ipsec_out_ah_sa == NULL) { 26523 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26524 IPPROTO_AH); 26525 } 26526 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26527 /* 26528 * The ESP and AH processing order needs to be preserved 26529 * when both protocols are required (ESP should be applied 26530 * before AH for an outbound packet). Force an ESP ACQUIRE 26531 * when both ESP and AH are required, and an AH ACQUIRE 26532 * is needed. 26533 */ 26534 if (ap->ipa_want_esp && need_ah_acquire) 26535 need_esp_acquire = B_TRUE; 26536 } 26537 26538 /* 26539 * Send an ACQUIRE (extended, regular, or both) if we need one. 26540 * Release SAs that got referenced, but will not be used until we 26541 * acquire _all_ of the SAs we need. 26542 */ 26543 if (need_ah_acquire || need_esp_acquire) { 26544 if (io->ipsec_out_ah_sa != NULL) { 26545 IPSA_REFRELE(io->ipsec_out_ah_sa); 26546 io->ipsec_out_ah_sa = NULL; 26547 } 26548 if (io->ipsec_out_esp_sa != NULL) { 26549 IPSA_REFRELE(io->ipsec_out_esp_sa); 26550 io->ipsec_out_esp_sa = NULL; 26551 } 26552 26553 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26554 return (B_FALSE); 26555 } 26556 26557 return (B_TRUE); 26558 } 26559 26560 /* 26561 * Process an IPSEC_OUT message and see what you can 26562 * do with it. 26563 * IPQoS Notes: 26564 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26565 * IPsec. 26566 * XXX would like to nuke ire_t. 26567 * XXX ill_index better be "real" 26568 */ 26569 void 26570 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26571 { 26572 ipsec_out_t *io; 26573 ipsec_policy_t *pp; 26574 ipsec_action_t *ap; 26575 ipha_t *ipha; 26576 ip6_t *ip6h; 26577 mblk_t *mp; 26578 ill_t *ill; 26579 zoneid_t zoneid; 26580 ipsec_status_t ipsec_rc; 26581 boolean_t ill_need_rele = B_FALSE; 26582 ip_stack_t *ipst; 26583 ipsec_stack_t *ipss; 26584 26585 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26586 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26587 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26588 ipst = io->ipsec_out_ns->netstack_ip; 26589 mp = ipsec_mp->b_cont; 26590 26591 /* 26592 * Initiate IPPF processing. We do it here to account for packets 26593 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26594 * We can check for ipsec_out_proc_begin even for such packets, as 26595 * they will always be false (asserted below). 26596 */ 26597 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26598 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26599 io->ipsec_out_ill_index : ill_index); 26600 if (mp == NULL) { 26601 ip2dbg(("ipsec_out_process: packet dropped "\ 26602 "during IPPF processing\n")); 26603 freeb(ipsec_mp); 26604 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26605 return; 26606 } 26607 } 26608 26609 if (!io->ipsec_out_secure) { 26610 /* 26611 * We came here by mistake. 26612 * Don't bother with ipsec processing 26613 * Should "discourage" this path in the future. 26614 */ 26615 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26616 goto done; 26617 } 26618 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26619 ASSERT((io->ipsec_out_policy != NULL) || 26620 (io->ipsec_out_act != NULL)); 26621 ASSERT(io->ipsec_out_failed == B_FALSE); 26622 26623 ipss = ipst->ips_netstack->netstack_ipsec; 26624 if (!ipsec_loaded(ipss)) { 26625 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26626 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26627 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26628 } else { 26629 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26630 } 26631 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26632 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26633 &ipss->ipsec_dropper); 26634 return; 26635 } 26636 26637 /* 26638 * IPsec processing has started. 26639 */ 26640 io->ipsec_out_proc_begin = B_TRUE; 26641 ap = io->ipsec_out_act; 26642 if (ap == NULL) { 26643 pp = io->ipsec_out_policy; 26644 ASSERT(pp != NULL); 26645 ap = pp->ipsp_act; 26646 ASSERT(ap != NULL); 26647 } 26648 26649 /* 26650 * Save the outbound ill index. When the packet comes back 26651 * from IPsec, we make sure the ill hasn't changed or disappeared 26652 * before sending it the accelerated packet. 26653 */ 26654 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26655 int ifindex; 26656 ill = ire_to_ill(ire); 26657 ifindex = ill->ill_phyint->phyint_ifindex; 26658 io->ipsec_out_capab_ill_index = ifindex; 26659 } 26660 26661 /* 26662 * The order of processing is first insert a IP header if needed. 26663 * Then insert the ESP header and then the AH header. 26664 */ 26665 if ((io->ipsec_out_se_done == B_FALSE) && 26666 (ap->ipa_want_se)) { 26667 /* 26668 * First get the outer IP header before sending 26669 * it to ESP. 26670 */ 26671 ipha_t *oipha, *iipha; 26672 mblk_t *outer_mp, *inner_mp; 26673 26674 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26675 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26676 "ipsec_out_process: " 26677 "Self-Encapsulation failed: Out of memory\n"); 26678 freemsg(ipsec_mp); 26679 if (ill != NULL) { 26680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26681 } else { 26682 BUMP_MIB(&ipst->ips_ip_mib, 26683 ipIfStatsOutDiscards); 26684 } 26685 return; 26686 } 26687 inner_mp = ipsec_mp->b_cont; 26688 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26689 oipha = (ipha_t *)outer_mp->b_rptr; 26690 iipha = (ipha_t *)inner_mp->b_rptr; 26691 *oipha = *iipha; 26692 outer_mp->b_wptr += sizeof (ipha_t); 26693 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26694 sizeof (ipha_t)); 26695 oipha->ipha_protocol = IPPROTO_ENCAP; 26696 oipha->ipha_version_and_hdr_length = 26697 IP_SIMPLE_HDR_VERSION; 26698 oipha->ipha_hdr_checksum = 0; 26699 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26700 outer_mp->b_cont = inner_mp; 26701 ipsec_mp->b_cont = outer_mp; 26702 26703 io->ipsec_out_se_done = B_TRUE; 26704 io->ipsec_out_tunnel = B_TRUE; 26705 } 26706 26707 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26708 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26709 !ipsec_out_select_sa(ipsec_mp)) 26710 return; 26711 26712 /* 26713 * By now, we know what SA's to use. Toss over to ESP & AH 26714 * to do the heavy lifting. 26715 */ 26716 zoneid = io->ipsec_out_zoneid; 26717 ASSERT(zoneid != ALL_ZONES); 26718 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26719 ASSERT(io->ipsec_out_esp_sa != NULL); 26720 io->ipsec_out_esp_done = B_TRUE; 26721 /* 26722 * Note that since hw accel can only apply one transform, 26723 * not two, we skip hw accel for ESP if we also have AH 26724 * This is an design limitation of the interface 26725 * which should be revisited. 26726 */ 26727 ASSERT(ire != NULL); 26728 if (io->ipsec_out_ah_sa == NULL) { 26729 ill = (ill_t *)ire->ire_stq->q_ptr; 26730 ipsec_out_is_accelerated(ipsec_mp, 26731 io->ipsec_out_esp_sa, ill, ire); 26732 } 26733 26734 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26735 switch (ipsec_rc) { 26736 case IPSEC_STATUS_SUCCESS: 26737 break; 26738 case IPSEC_STATUS_FAILED: 26739 if (ill != NULL) { 26740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26741 } else { 26742 BUMP_MIB(&ipst->ips_ip_mib, 26743 ipIfStatsOutDiscards); 26744 } 26745 /* FALLTHRU */ 26746 case IPSEC_STATUS_PENDING: 26747 return; 26748 } 26749 } 26750 26751 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26752 ASSERT(io->ipsec_out_ah_sa != NULL); 26753 io->ipsec_out_ah_done = B_TRUE; 26754 if (ire == NULL) { 26755 int idx = io->ipsec_out_capab_ill_index; 26756 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26757 NULL, NULL, NULL, NULL, ipst); 26758 ill_need_rele = B_TRUE; 26759 } else { 26760 ill = (ill_t *)ire->ire_stq->q_ptr; 26761 } 26762 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26763 ire); 26764 26765 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26766 switch (ipsec_rc) { 26767 case IPSEC_STATUS_SUCCESS: 26768 break; 26769 case IPSEC_STATUS_FAILED: 26770 if (ill != NULL) { 26771 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26772 } else { 26773 BUMP_MIB(&ipst->ips_ip_mib, 26774 ipIfStatsOutDiscards); 26775 } 26776 /* FALLTHRU */ 26777 case IPSEC_STATUS_PENDING: 26778 if (ill != NULL && ill_need_rele) 26779 ill_refrele(ill); 26780 return; 26781 } 26782 } 26783 /* 26784 * We are done with IPsec processing. Send it over 26785 * the wire. 26786 */ 26787 done: 26788 mp = ipsec_mp->b_cont; 26789 ipha = (ipha_t *)mp->b_rptr; 26790 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26791 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26792 } else { 26793 ip6h = (ip6_t *)ipha; 26794 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26795 } 26796 if (ill != NULL && ill_need_rele) 26797 ill_refrele(ill); 26798 } 26799 26800 /* ARGSUSED */ 26801 void 26802 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26803 { 26804 opt_restart_t *or; 26805 int err; 26806 conn_t *connp; 26807 26808 ASSERT(CONN_Q(q)); 26809 connp = Q_TO_CONN(q); 26810 26811 ASSERT(first_mp->b_datap->db_type == M_CTL); 26812 or = (opt_restart_t *)first_mp->b_rptr; 26813 /* 26814 * We don't need to pass any credentials here since this is just 26815 * a restart. The credentials are passed in when svr4_optcom_req 26816 * is called the first time (from ip_wput_nondata). 26817 */ 26818 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26819 err = svr4_optcom_req(q, first_mp, NULL, 26820 &ip_opt_obj, B_FALSE); 26821 } else { 26822 ASSERT(or->or_type == T_OPTMGMT_REQ); 26823 err = tpi_optcom_req(q, first_mp, NULL, 26824 &ip_opt_obj, B_FALSE); 26825 } 26826 if (err != EINPROGRESS) { 26827 /* operation is done */ 26828 CONN_OPER_PENDING_DONE(connp); 26829 } 26830 } 26831 26832 /* 26833 * ioctls that go through a down/up sequence may need to wait for the down 26834 * to complete. This involves waiting for the ire and ipif refcnts to go down 26835 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26836 */ 26837 /* ARGSUSED */ 26838 void 26839 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26840 { 26841 struct iocblk *iocp; 26842 mblk_t *mp1; 26843 ip_ioctl_cmd_t *ipip; 26844 int err; 26845 sin_t *sin; 26846 struct lifreq *lifr; 26847 struct ifreq *ifr; 26848 26849 iocp = (struct iocblk *)mp->b_rptr; 26850 ASSERT(ipsq != NULL); 26851 /* Existence of mp1 verified in ip_wput_nondata */ 26852 mp1 = mp->b_cont->b_cont; 26853 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26854 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26855 /* 26856 * Special case where ipsq_current_ipif is not set: 26857 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26858 * ill could also have become part of a ipmp group in the 26859 * process, we are here as were not able to complete the 26860 * operation in ipif_set_values because we could not become 26861 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26862 * will not be set so we need to set it. 26863 */ 26864 ill_t *ill = q->q_ptr; 26865 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26866 } 26867 ASSERT(ipsq->ipsq_current_ipif != NULL); 26868 26869 if (ipip->ipi_cmd_type == IF_CMD) { 26870 /* This a old style SIOC[GS]IF* command */ 26871 ifr = (struct ifreq *)mp1->b_rptr; 26872 sin = (sin_t *)&ifr->ifr_addr; 26873 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26874 /* This a new style SIOC[GS]LIF* command */ 26875 lifr = (struct lifreq *)mp1->b_rptr; 26876 sin = (sin_t *)&lifr->lifr_addr; 26877 } else { 26878 sin = NULL; 26879 } 26880 26881 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26882 ipip, mp1->b_rptr); 26883 26884 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26885 } 26886 26887 /* 26888 * ioctl processing 26889 * 26890 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26891 * the ioctl command in the ioctl tables, determines the copyin data size 26892 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26893 * 26894 * ioctl processing then continues when the M_IOCDATA makes its way down to 26895 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26896 * associated 'conn' is refheld till the end of the ioctl and the general 26897 * ioctl processing function ip_process_ioctl() is called to extract the 26898 * arguments and process the ioctl. To simplify extraction, ioctl commands 26899 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26900 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26901 * is used to extract the ioctl's arguments. 26902 * 26903 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26904 * so goes thru the serialization primitive ipsq_try_enter. Then the 26905 * appropriate function to handle the ioctl is called based on the entry in 26906 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26907 * which also refreleases the 'conn' that was refheld at the start of the 26908 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26909 * 26910 * Many exclusive ioctls go thru an internal down up sequence as part of 26911 * the operation. For example an attempt to change the IP address of an 26912 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26913 * does all the cleanup such as deleting all ires that use this address. 26914 * Then we need to wait till all references to the interface go away. 26915 */ 26916 void 26917 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26918 { 26919 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26920 ip_ioctl_cmd_t *ipip = arg; 26921 ip_extract_func_t *extract_funcp; 26922 cmd_info_t ci; 26923 int err; 26924 boolean_t entered_ipsq = B_FALSE; 26925 26926 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26927 26928 if (ipip == NULL) 26929 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26930 26931 /* 26932 * SIOCLIFADDIF needs to go thru a special path since the 26933 * ill may not exist yet. This happens in the case of lo0 26934 * which is created using this ioctl. 26935 */ 26936 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26937 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26938 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26939 return; 26940 } 26941 26942 ci.ci_ipif = NULL; 26943 if (ipip->ipi_cmd_type == MISC_CMD) { 26944 /* 26945 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26946 */ 26947 if (ipip->ipi_cmd == IF_UNITSEL) { 26948 /* ioctl comes down the ill */ 26949 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26950 ipif_refhold(ci.ci_ipif); 26951 } 26952 err = 0; 26953 ci.ci_sin = NULL; 26954 ci.ci_sin6 = NULL; 26955 ci.ci_lifr = NULL; 26956 } else { 26957 switch (ipip->ipi_cmd_type) { 26958 case IF_CMD: 26959 case LIF_CMD: 26960 extract_funcp = ip_extract_lifreq; 26961 break; 26962 26963 case ARP_CMD: 26964 case XARP_CMD: 26965 extract_funcp = ip_extract_arpreq; 26966 break; 26967 26968 case TUN_CMD: 26969 extract_funcp = ip_extract_tunreq; 26970 break; 26971 26972 case MSFILT_CMD: 26973 extract_funcp = ip_extract_msfilter; 26974 break; 26975 26976 default: 26977 ASSERT(0); 26978 } 26979 26980 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26981 if (err != 0) { 26982 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26983 return; 26984 } 26985 26986 /* 26987 * All of the extraction functions return a refheld ipif. 26988 */ 26989 ASSERT(ci.ci_ipif != NULL); 26990 } 26991 26992 /* 26993 * If ipsq is non-null, we are already being called exclusively 26994 */ 26995 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26996 if (!(ipip->ipi_flags & IPI_WR)) { 26997 /* 26998 * A return value of EINPROGRESS means the ioctl is 26999 * either queued and waiting for some reason or has 27000 * already completed. 27001 */ 27002 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27003 ci.ci_lifr); 27004 if (ci.ci_ipif != NULL) 27005 ipif_refrele(ci.ci_ipif); 27006 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27007 return; 27008 } 27009 27010 ASSERT(ci.ci_ipif != NULL); 27011 27012 if (ipsq == NULL) { 27013 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27014 ip_process_ioctl, NEW_OP, B_TRUE); 27015 entered_ipsq = B_TRUE; 27016 } 27017 /* 27018 * Release the ipif so that ipif_down and friends that wait for 27019 * references to go away are not misled about the current ipif_refcnt 27020 * values. We are writer so we can access the ipif even after releasing 27021 * the ipif. 27022 */ 27023 ipif_refrele(ci.ci_ipif); 27024 if (ipsq == NULL) 27025 return; 27026 27027 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27028 27029 /* 27030 * For most set ioctls that come here, this serves as a single point 27031 * where we set the IPIF_CHANGING flag. This ensures that there won't 27032 * be any new references to the ipif. This helps functions that go 27033 * through this path and end up trying to wait for the refcnts 27034 * associated with the ipif to go down to zero. Some exceptions are 27035 * Failover, Failback, and Groupname commands that operate on more than 27036 * just the ci.ci_ipif. These commands internally determine the 27037 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27038 * flags on that set. Another exception is the Removeif command that 27039 * sets the IPIF_CONDEMNED flag internally after identifying the right 27040 * ipif to operate on. 27041 */ 27042 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27043 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27044 ipip->ipi_cmd != SIOCLIFFAILOVER && 27045 ipip->ipi_cmd != SIOCLIFFAILBACK && 27046 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27047 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27048 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27049 27050 /* 27051 * A return value of EINPROGRESS means the ioctl is 27052 * either queued and waiting for some reason or has 27053 * already completed. 27054 */ 27055 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27056 27057 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27058 27059 if (entered_ipsq) 27060 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27061 } 27062 27063 /* 27064 * Complete the ioctl. Typically ioctls use the mi package and need to 27065 * do mi_copyout/mi_copy_done. 27066 */ 27067 void 27068 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27069 { 27070 conn_t *connp = NULL; 27071 27072 if (err == EINPROGRESS) 27073 return; 27074 27075 if (CONN_Q(q)) { 27076 connp = Q_TO_CONN(q); 27077 ASSERT(connp->conn_ref >= 2); 27078 } 27079 27080 switch (mode) { 27081 case COPYOUT: 27082 if (err == 0) 27083 mi_copyout(q, mp); 27084 else 27085 mi_copy_done(q, mp, err); 27086 break; 27087 27088 case NO_COPYOUT: 27089 mi_copy_done(q, mp, err); 27090 break; 27091 27092 default: 27093 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27094 break; 27095 } 27096 27097 /* 27098 * The refhold placed at the start of the ioctl is released here. 27099 */ 27100 if (connp != NULL) 27101 CONN_OPER_PENDING_DONE(connp); 27102 27103 if (ipsq != NULL) 27104 ipsq_current_finish(ipsq); 27105 } 27106 27107 /* 27108 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27109 */ 27110 /* ARGSUSED */ 27111 void 27112 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27113 { 27114 conn_t *connp = arg; 27115 tcp_t *tcp; 27116 27117 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27118 tcp = connp->conn_tcp; 27119 27120 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27121 freemsg(mp); 27122 else 27123 tcp_rput_other(tcp, mp); 27124 CONN_OPER_PENDING_DONE(connp); 27125 } 27126 27127 /* Called from ip_wput for all non data messages */ 27128 /* ARGSUSED */ 27129 void 27130 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27131 { 27132 mblk_t *mp1; 27133 ire_t *ire, *fake_ire; 27134 ill_t *ill; 27135 struct iocblk *iocp; 27136 ip_ioctl_cmd_t *ipip; 27137 cred_t *cr; 27138 conn_t *connp; 27139 int err; 27140 nce_t *nce; 27141 ipif_t *ipif; 27142 ip_stack_t *ipst; 27143 char *proto_str; 27144 27145 if (CONN_Q(q)) { 27146 connp = Q_TO_CONN(q); 27147 ipst = connp->conn_netstack->netstack_ip; 27148 } else { 27149 connp = NULL; 27150 ipst = ILLQ_TO_IPST(q); 27151 } 27152 27153 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27154 27155 switch (DB_TYPE(mp)) { 27156 case M_IOCTL: 27157 /* 27158 * IOCTL processing begins in ip_sioctl_copyin_setup which 27159 * will arrange to copy in associated control structures. 27160 */ 27161 ip_sioctl_copyin_setup(q, mp); 27162 return; 27163 case M_IOCDATA: 27164 /* 27165 * Ensure that this is associated with one of our trans- 27166 * parent ioctls. If it's not ours, discard it if we're 27167 * running as a driver, or pass it on if we're a module. 27168 */ 27169 iocp = (struct iocblk *)mp->b_rptr; 27170 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27171 if (ipip == NULL) { 27172 if (q->q_next == NULL) { 27173 goto nak; 27174 } else { 27175 putnext(q, mp); 27176 } 27177 return; 27178 } 27179 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27180 /* 27181 * the ioctl is one we recognise, but is not 27182 * consumed by IP as a module, pass M_IOCDATA 27183 * for processing downstream, but only for 27184 * common Streams ioctls. 27185 */ 27186 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27187 putnext(q, mp); 27188 return; 27189 } else { 27190 goto nak; 27191 } 27192 } 27193 27194 /* IOCTL continuation following copyin or copyout. */ 27195 if (mi_copy_state(q, mp, NULL) == -1) { 27196 /* 27197 * The copy operation failed. mi_copy_state already 27198 * cleaned up, so we're out of here. 27199 */ 27200 return; 27201 } 27202 /* 27203 * If we just completed a copy in, we become writer and 27204 * continue processing in ip_sioctl_copyin_done. If it 27205 * was a copy out, we call mi_copyout again. If there is 27206 * nothing more to copy out, it will complete the IOCTL. 27207 */ 27208 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27209 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27210 mi_copy_done(q, mp, EPROTO); 27211 return; 27212 } 27213 /* 27214 * Check for cases that need more copying. A return 27215 * value of 0 means a second copyin has been started, 27216 * so we return; a return value of 1 means no more 27217 * copying is needed, so we continue. 27218 */ 27219 if (ipip->ipi_cmd_type == MSFILT_CMD && 27220 MI_COPY_COUNT(mp) == 1) { 27221 if (ip_copyin_msfilter(q, mp) == 0) 27222 return; 27223 } 27224 /* 27225 * Refhold the conn, till the ioctl completes. This is 27226 * needed in case the ioctl ends up in the pending mp 27227 * list. Every mp in the ill_pending_mp list and 27228 * the ipsq_pending_mp must have a refhold on the conn 27229 * to resume processing. The refhold is released when 27230 * the ioctl completes. (normally or abnormally) 27231 * In all cases ip_ioctl_finish is called to finish 27232 * the ioctl. 27233 */ 27234 if (connp != NULL) { 27235 /* This is not a reentry */ 27236 ASSERT(ipsq == NULL); 27237 CONN_INC_REF(connp); 27238 } else { 27239 if (!(ipip->ipi_flags & IPI_MODOK)) { 27240 mi_copy_done(q, mp, EINVAL); 27241 return; 27242 } 27243 } 27244 27245 ip_process_ioctl(ipsq, q, mp, ipip); 27246 27247 } else { 27248 mi_copyout(q, mp); 27249 } 27250 return; 27251 nak: 27252 iocp->ioc_error = EINVAL; 27253 mp->b_datap->db_type = M_IOCNAK; 27254 iocp->ioc_count = 0; 27255 qreply(q, mp); 27256 return; 27257 27258 case M_IOCNAK: 27259 /* 27260 * The only way we could get here is if a resolver didn't like 27261 * an IOCTL we sent it. This shouldn't happen. 27262 */ 27263 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27264 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27265 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27266 freemsg(mp); 27267 return; 27268 case M_IOCACK: 27269 /* /dev/ip shouldn't see this */ 27270 if (CONN_Q(q)) 27271 goto nak; 27272 27273 /* Finish socket ioctls passed through to ARP. */ 27274 ip_sioctl_iocack(q, mp); 27275 return; 27276 case M_FLUSH: 27277 if (*mp->b_rptr & FLUSHW) 27278 flushq(q, FLUSHALL); 27279 if (q->q_next) { 27280 putnext(q, mp); 27281 return; 27282 } 27283 if (*mp->b_rptr & FLUSHR) { 27284 *mp->b_rptr &= ~FLUSHW; 27285 qreply(q, mp); 27286 return; 27287 } 27288 freemsg(mp); 27289 return; 27290 case IRE_DB_REQ_TYPE: 27291 if (connp == NULL) { 27292 proto_str = "IRE_DB_REQ_TYPE"; 27293 goto protonak; 27294 } 27295 /* An Upper Level Protocol wants a copy of an IRE. */ 27296 ip_ire_req(q, mp); 27297 return; 27298 case M_CTL: 27299 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27300 break; 27301 27302 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27303 TUN_HELLO) { 27304 ASSERT(connp != NULL); 27305 connp->conn_flags |= IPCL_IPTUN; 27306 freeb(mp); 27307 return; 27308 } 27309 27310 /* M_CTL messages are used by ARP to tell us things. */ 27311 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27312 break; 27313 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27314 case AR_ENTRY_SQUERY: 27315 ip_wput_ctl(q, mp); 27316 return; 27317 case AR_CLIENT_NOTIFY: 27318 ip_arp_news(q, mp); 27319 return; 27320 case AR_DLPIOP_DONE: 27321 ASSERT(q->q_next != NULL); 27322 ill = (ill_t *)q->q_ptr; 27323 /* qwriter_ip releases the refhold */ 27324 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27325 ill_refhold(ill); 27326 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27327 return; 27328 case AR_ARP_CLOSING: 27329 /* 27330 * ARP (above us) is closing. If no ARP bringup is 27331 * currently pending, ack the message so that ARP 27332 * can complete its close. Also mark ill_arp_closing 27333 * so that new ARP bringups will fail. If any 27334 * ARP bringup is currently in progress, we will 27335 * ack this when the current ARP bringup completes. 27336 */ 27337 ASSERT(q->q_next != NULL); 27338 ill = (ill_t *)q->q_ptr; 27339 mutex_enter(&ill->ill_lock); 27340 ill->ill_arp_closing = 1; 27341 if (!ill->ill_arp_bringup_pending) { 27342 mutex_exit(&ill->ill_lock); 27343 qreply(q, mp); 27344 } else { 27345 mutex_exit(&ill->ill_lock); 27346 freemsg(mp); 27347 } 27348 return; 27349 case AR_ARP_EXTEND: 27350 /* 27351 * The ARP module above us is capable of duplicate 27352 * address detection. Old ATM drivers will not send 27353 * this message. 27354 */ 27355 ASSERT(q->q_next != NULL); 27356 ill = (ill_t *)q->q_ptr; 27357 ill->ill_arp_extend = B_TRUE; 27358 freemsg(mp); 27359 return; 27360 default: 27361 break; 27362 } 27363 break; 27364 case M_PROTO: 27365 case M_PCPROTO: 27366 /* 27367 * The only PROTO messages we expect are ULP binds and 27368 * copies of option negotiation acknowledgements. 27369 */ 27370 switch (((union T_primitives *)mp->b_rptr)->type) { 27371 case O_T_BIND_REQ: 27372 case T_BIND_REQ: { 27373 /* Request can get queued in bind */ 27374 if (connp == NULL) { 27375 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27376 goto protonak; 27377 } 27378 /* 27379 * The transports except SCTP call ip_bind_{v4,v6}() 27380 * directly instead of a a putnext. SCTP doesn't 27381 * generate any T_BIND_REQ since it has its own 27382 * fanout data structures. However, ESP and AH 27383 * come in for regular binds; all other cases are 27384 * bind retries. 27385 */ 27386 ASSERT(!IPCL_IS_SCTP(connp)); 27387 27388 /* Don't increment refcnt if this is a re-entry */ 27389 if (ipsq == NULL) 27390 CONN_INC_REF(connp); 27391 27392 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27393 connp, NULL) : ip_bind_v4(q, mp, connp); 27394 if (mp == NULL) 27395 return; 27396 if (IPCL_IS_TCP(connp)) { 27397 /* 27398 * In the case of TCP endpoint we 27399 * come here only for bind retries 27400 */ 27401 ASSERT(ipsq != NULL); 27402 CONN_INC_REF(connp); 27403 squeue_fill(connp->conn_sqp, mp, 27404 ip_resume_tcp_bind, connp, 27405 SQTAG_BIND_RETRY); 27406 } else if (IPCL_IS_UDP(connp)) { 27407 /* 27408 * In the case of UDP endpoint we 27409 * come here only for bind retries 27410 */ 27411 ASSERT(ipsq != NULL); 27412 udp_resume_bind(connp, mp); 27413 } else if (IPCL_IS_RAWIP(connp)) { 27414 /* 27415 * In the case of RAWIP endpoint we 27416 * come here only for bind retries 27417 */ 27418 ASSERT(ipsq != NULL); 27419 rawip_resume_bind(connp, mp); 27420 } else { 27421 /* The case of AH and ESP */ 27422 qreply(q, mp); 27423 CONN_OPER_PENDING_DONE(connp); 27424 } 27425 return; 27426 } 27427 case T_SVR4_OPTMGMT_REQ: 27428 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27429 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27430 27431 if (connp == NULL) { 27432 proto_str = "T_SVR4_OPTMGMT_REQ"; 27433 goto protonak; 27434 } 27435 27436 if (!snmpcom_req(q, mp, ip_snmp_set, 27437 ip_snmp_get, cr)) { 27438 /* 27439 * Call svr4_optcom_req so that it can 27440 * generate the ack. We don't come here 27441 * if this operation is being restarted. 27442 * ip_restart_optmgmt will drop the conn ref. 27443 * In the case of ipsec option after the ipsec 27444 * load is complete conn_restart_ipsec_waiter 27445 * drops the conn ref. 27446 */ 27447 ASSERT(ipsq == NULL); 27448 CONN_INC_REF(connp); 27449 if (ip_check_for_ipsec_opt(q, mp)) 27450 return; 27451 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27452 B_FALSE); 27453 if (err != EINPROGRESS) { 27454 /* Operation is done */ 27455 CONN_OPER_PENDING_DONE(connp); 27456 } 27457 } 27458 return; 27459 case T_OPTMGMT_REQ: 27460 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27461 /* 27462 * Note: No snmpcom_req support through new 27463 * T_OPTMGMT_REQ. 27464 * Call tpi_optcom_req so that it can 27465 * generate the ack. 27466 */ 27467 if (connp == NULL) { 27468 proto_str = "T_OPTMGMT_REQ"; 27469 goto protonak; 27470 } 27471 27472 ASSERT(ipsq == NULL); 27473 /* 27474 * We don't come here for restart. ip_restart_optmgmt 27475 * will drop the conn ref. In the case of ipsec option 27476 * after the ipsec load is complete 27477 * conn_restart_ipsec_waiter drops the conn ref. 27478 */ 27479 CONN_INC_REF(connp); 27480 if (ip_check_for_ipsec_opt(q, mp)) 27481 return; 27482 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27483 if (err != EINPROGRESS) { 27484 /* Operation is done */ 27485 CONN_OPER_PENDING_DONE(connp); 27486 } 27487 return; 27488 case T_UNBIND_REQ: 27489 if (connp == NULL) { 27490 proto_str = "T_UNBIND_REQ"; 27491 goto protonak; 27492 } 27493 mp = ip_unbind(q, mp); 27494 qreply(q, mp); 27495 return; 27496 default: 27497 /* 27498 * Have to drop any DLPI messages coming down from 27499 * arp (such as an info_req which would cause ip 27500 * to receive an extra info_ack if it was passed 27501 * through. 27502 */ 27503 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27504 (int)*(uint_t *)mp->b_rptr)); 27505 freemsg(mp); 27506 return; 27507 } 27508 /* NOTREACHED */ 27509 case IRE_DB_TYPE: { 27510 nce_t *nce; 27511 ill_t *ill; 27512 in6_addr_t gw_addr_v6; 27513 27514 27515 /* 27516 * This is a response back from a resolver. It 27517 * consists of a message chain containing: 27518 * IRE_MBLK-->LL_HDR_MBLK->pkt 27519 * The IRE_MBLK is the one we allocated in ip_newroute. 27520 * The LL_HDR_MBLK is the DLPI header to use to get 27521 * the attached packet, and subsequent ones for the 27522 * same destination, transmitted. 27523 */ 27524 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27525 break; 27526 /* 27527 * First, check to make sure the resolution succeeded. 27528 * If it failed, the second mblk will be empty. 27529 * If it is, free the chain, dropping the packet. 27530 * (We must ire_delete the ire; that frees the ire mblk) 27531 * We're doing this now to support PVCs for ATM; it's 27532 * a partial xresolv implementation. When we fully implement 27533 * xresolv interfaces, instead of freeing everything here 27534 * we'll initiate neighbor discovery. 27535 * 27536 * For v4 (ARP and other external resolvers) the resolver 27537 * frees the message, so no check is needed. This check 27538 * is required, though, for a full xresolve implementation. 27539 * Including this code here now both shows how external 27540 * resolvers can NACK a resolution request using an 27541 * existing design that has no specific provisions for NACKs, 27542 * and also takes into account that the current non-ARP 27543 * external resolver has been coded to use this method of 27544 * NACKing for all IPv6 (xresolv) cases, 27545 * whether our xresolv implementation is complete or not. 27546 * 27547 */ 27548 ire = (ire_t *)mp->b_rptr; 27549 ill = ire_to_ill(ire); 27550 mp1 = mp->b_cont; /* dl_unitdata_req */ 27551 if (mp1->b_rptr == mp1->b_wptr) { 27552 if (ire->ire_ipversion == IPV6_VERSION) { 27553 /* 27554 * XRESOLV interface. 27555 */ 27556 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27557 mutex_enter(&ire->ire_lock); 27558 gw_addr_v6 = ire->ire_gateway_addr_v6; 27559 mutex_exit(&ire->ire_lock); 27560 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27561 nce = ndp_lookup_v6(ill, 27562 &ire->ire_addr_v6, B_FALSE); 27563 } else { 27564 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27565 B_FALSE); 27566 } 27567 if (nce != NULL) { 27568 nce_resolv_failed(nce); 27569 ndp_delete(nce); 27570 NCE_REFRELE(nce); 27571 } 27572 } 27573 mp->b_cont = NULL; 27574 freemsg(mp1); /* frees the pkt as well */ 27575 ASSERT(ire->ire_nce == NULL); 27576 ire_delete((ire_t *)mp->b_rptr); 27577 return; 27578 } 27579 27580 /* 27581 * Split them into IRE_MBLK and pkt and feed it into 27582 * ire_add_then_send. Then in ire_add_then_send 27583 * the IRE will be added, and then the packet will be 27584 * run back through ip_wput. This time it will make 27585 * it to the wire. 27586 */ 27587 mp->b_cont = NULL; 27588 mp = mp1->b_cont; /* now, mp points to pkt */ 27589 mp1->b_cont = NULL; 27590 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27591 if (ire->ire_ipversion == IPV6_VERSION) { 27592 /* 27593 * XRESOLV interface. Find the nce and put a copy 27594 * of the dl_unitdata_req in nce_res_mp 27595 */ 27596 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27597 mutex_enter(&ire->ire_lock); 27598 gw_addr_v6 = ire->ire_gateway_addr_v6; 27599 mutex_exit(&ire->ire_lock); 27600 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27601 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27602 B_FALSE); 27603 } else { 27604 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27605 } 27606 if (nce != NULL) { 27607 /* 27608 * We have to protect nce_res_mp here 27609 * from being accessed by other threads 27610 * while we change the mblk pointer. 27611 * Other functions will also lock the nce when 27612 * accessing nce_res_mp. 27613 * 27614 * The reason we change the mblk pointer 27615 * here rather than copying the resolved address 27616 * into the template is that, unlike with 27617 * ethernet, we have no guarantee that the 27618 * resolved address length will be 27619 * smaller than or equal to the lla length 27620 * with which the template was allocated, 27621 * (for ethernet, they're equal) 27622 * so we have to use the actual resolved 27623 * address mblk - which holds the real 27624 * dl_unitdata_req with the resolved address. 27625 * 27626 * Doing this is the same behavior as was 27627 * previously used in the v4 ARP case. 27628 */ 27629 mutex_enter(&nce->nce_lock); 27630 if (nce->nce_res_mp != NULL) 27631 freemsg(nce->nce_res_mp); 27632 nce->nce_res_mp = mp1; 27633 mutex_exit(&nce->nce_lock); 27634 /* 27635 * We do a fastpath probe here because 27636 * we have resolved the address without 27637 * using Neighbor Discovery. 27638 * In the non-XRESOLV v6 case, the fastpath 27639 * probe is done right after neighbor 27640 * discovery completes. 27641 */ 27642 if (nce->nce_res_mp != NULL) { 27643 int res; 27644 nce_fastpath_list_add(nce); 27645 res = ill_fastpath_probe(ill, 27646 nce->nce_res_mp); 27647 if (res != 0 && res != EAGAIN) 27648 nce_fastpath_list_delete(nce); 27649 } 27650 27651 ire_add_then_send(q, ire, mp); 27652 /* 27653 * Now we have to clean out any packets 27654 * that may have been queued on the nce 27655 * while it was waiting for address resolution 27656 * to complete. 27657 */ 27658 mutex_enter(&nce->nce_lock); 27659 mp1 = nce->nce_qd_mp; 27660 nce->nce_qd_mp = NULL; 27661 mutex_exit(&nce->nce_lock); 27662 while (mp1 != NULL) { 27663 mblk_t *nxt_mp; 27664 queue_t *fwdq = NULL; 27665 ill_t *inbound_ill; 27666 uint_t ifindex; 27667 27668 nxt_mp = mp1->b_next; 27669 mp1->b_next = NULL; 27670 /* 27671 * Retrieve ifindex stored in 27672 * ip_rput_data_v6() 27673 */ 27674 ifindex = 27675 (uint_t)(uintptr_t)mp1->b_prev; 27676 inbound_ill = 27677 ill_lookup_on_ifindex(ifindex, 27678 B_TRUE, NULL, NULL, NULL, 27679 NULL, ipst); 27680 mp1->b_prev = NULL; 27681 if (inbound_ill != NULL) 27682 fwdq = inbound_ill->ill_rq; 27683 27684 if (fwdq != NULL) { 27685 put(fwdq, mp1); 27686 ill_refrele(inbound_ill); 27687 } else 27688 put(WR(ill->ill_rq), mp1); 27689 mp1 = nxt_mp; 27690 } 27691 NCE_REFRELE(nce); 27692 } else { /* nce is NULL; clean up */ 27693 ire_delete(ire); 27694 freemsg(mp); 27695 freemsg(mp1); 27696 return; 27697 } 27698 } else { 27699 nce_t *arpce; 27700 /* 27701 * Link layer resolution succeeded. Recompute the 27702 * ire_nce. 27703 */ 27704 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27705 if ((arpce = ndp_lookup_v4(ill, 27706 (ire->ire_gateway_addr != INADDR_ANY ? 27707 &ire->ire_gateway_addr : &ire->ire_addr), 27708 B_FALSE)) == NULL) { 27709 freeb(ire->ire_mp); 27710 freeb(mp1); 27711 freemsg(mp); 27712 return; 27713 } 27714 mutex_enter(&arpce->nce_lock); 27715 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27716 if (arpce->nce_state == ND_REACHABLE) { 27717 /* 27718 * Someone resolved this before us; 27719 * cleanup the res_mp. Since ire has 27720 * not been added yet, the call to ire_add_v4 27721 * from ire_add_then_send (when a dup is 27722 * detected) will clean up the ire. 27723 */ 27724 freeb(mp1); 27725 } else { 27726 ASSERT(arpce->nce_res_mp == NULL); 27727 arpce->nce_res_mp = mp1; 27728 arpce->nce_state = ND_REACHABLE; 27729 } 27730 mutex_exit(&arpce->nce_lock); 27731 if (ire->ire_marks & IRE_MARK_NOADD) { 27732 /* 27733 * this ire will not be added to the ire 27734 * cache table, so we can set the ire_nce 27735 * here, as there are no atomicity constraints. 27736 */ 27737 ire->ire_nce = arpce; 27738 /* 27739 * We are associating this nce with the ire 27740 * so change the nce ref taken in 27741 * ndp_lookup_v4() from 27742 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27743 */ 27744 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27745 } else { 27746 NCE_REFRELE(arpce); 27747 } 27748 ire_add_then_send(q, ire, mp); 27749 } 27750 return; /* All is well, the packet has been sent. */ 27751 } 27752 case IRE_ARPRESOLVE_TYPE: { 27753 27754 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27755 break; 27756 mp1 = mp->b_cont; /* dl_unitdata_req */ 27757 mp->b_cont = NULL; 27758 /* 27759 * First, check to make sure the resolution succeeded. 27760 * If it failed, the second mblk will be empty. 27761 */ 27762 if (mp1->b_rptr == mp1->b_wptr) { 27763 /* cleanup the incomplete ire, free queued packets */ 27764 freemsg(mp); /* fake ire */ 27765 freeb(mp1); /* dl_unitdata response */ 27766 return; 27767 } 27768 27769 /* 27770 * update any incomplete nce_t found. we lookup the ctable 27771 * and find the nce from the ire->ire_nce because we need 27772 * to pass the ire to ip_xmit_v4 later, and can find both 27773 * ire and nce in one lookup from the ctable. 27774 */ 27775 fake_ire = (ire_t *)mp->b_rptr; 27776 /* 27777 * By the time we come back here from ARP 27778 * the logical outgoing interface of the incomplete ire 27779 * we added in ire_forward could have disappeared, 27780 * causing the incomplete ire to also have 27781 * dissapeared. So we need to retreive the 27782 * proper ipif for the ire before looking 27783 * in ctable; do the ctablelookup based on ire_ipif_seqid 27784 */ 27785 ill = q->q_ptr; 27786 27787 /* Get the outgoing ipif */ 27788 mutex_enter(&ill->ill_lock); 27789 if (ill->ill_state_flags & ILL_CONDEMNED) { 27790 mutex_exit(&ill->ill_lock); 27791 freemsg(mp); /* fake ire */ 27792 freeb(mp1); /* dl_unitdata response */ 27793 return; 27794 } 27795 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27796 27797 if (ipif == NULL) { 27798 mutex_exit(&ill->ill_lock); 27799 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27800 freemsg(mp); 27801 freeb(mp1); 27802 return; 27803 } 27804 ipif_refhold_locked(ipif); 27805 mutex_exit(&ill->ill_lock); 27806 ire = ire_ctable_lookup(fake_ire->ire_addr, 27807 fake_ire->ire_gateway_addr, IRE_CACHE, 27808 ipif, fake_ire->ire_zoneid, NULL, 27809 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27810 ipif_refrele(ipif); 27811 if (ire == NULL) { 27812 /* 27813 * no ire was found; check if there is an nce 27814 * for this lookup; if it has no ire's pointing at it 27815 * cleanup. 27816 */ 27817 if ((nce = ndp_lookup_v4(ill, 27818 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27819 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27820 B_FALSE)) != NULL) { 27821 /* 27822 * cleanup: 27823 * We check for refcnt 2 (one for the nce 27824 * hash list + 1 for the ref taken by 27825 * ndp_lookup_v4) to check that there are 27826 * no ire's pointing at the nce. 27827 */ 27828 if (nce->nce_refcnt == 2) 27829 ndp_delete(nce); 27830 NCE_REFRELE(nce); 27831 } 27832 freeb(mp1); /* dl_unitdata response */ 27833 freemsg(mp); /* fake ire */ 27834 return; 27835 } 27836 nce = ire->ire_nce; 27837 DTRACE_PROBE2(ire__arpresolve__type, 27838 ire_t *, ire, nce_t *, nce); 27839 ASSERT(nce->nce_state != ND_INITIAL); 27840 mutex_enter(&nce->nce_lock); 27841 nce->nce_last = TICK_TO_MSEC(lbolt64); 27842 if (nce->nce_state == ND_REACHABLE) { 27843 /* 27844 * Someone resolved this before us; 27845 * our response is not needed any more. 27846 */ 27847 mutex_exit(&nce->nce_lock); 27848 freeb(mp1); /* dl_unitdata response */ 27849 } else { 27850 ASSERT(nce->nce_res_mp == NULL); 27851 nce->nce_res_mp = mp1; 27852 nce->nce_state = ND_REACHABLE; 27853 mutex_exit(&nce->nce_lock); 27854 nce_fastpath(nce); 27855 } 27856 /* 27857 * The cached nce_t has been updated to be reachable; 27858 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27859 */ 27860 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27861 freemsg(mp); 27862 /* 27863 * send out queued packets. 27864 */ 27865 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27866 27867 IRE_REFRELE(ire); 27868 return; 27869 } 27870 default: 27871 break; 27872 } 27873 if (q->q_next) { 27874 putnext(q, mp); 27875 } else 27876 freemsg(mp); 27877 return; 27878 27879 protonak: 27880 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27881 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27882 qreply(q, mp); 27883 } 27884 27885 /* 27886 * Process IP options in an outbound packet. Modify the destination if there 27887 * is a source route option. 27888 * Returns non-zero if something fails in which case an ICMP error has been 27889 * sent and mp freed. 27890 */ 27891 static int 27892 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27893 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27894 { 27895 ipoptp_t opts; 27896 uchar_t *opt; 27897 uint8_t optval; 27898 uint8_t optlen; 27899 ipaddr_t dst; 27900 intptr_t code = 0; 27901 mblk_t *mp; 27902 ire_t *ire = NULL; 27903 27904 ip2dbg(("ip_wput_options\n")); 27905 mp = ipsec_mp; 27906 if (mctl_present) { 27907 mp = ipsec_mp->b_cont; 27908 } 27909 27910 dst = ipha->ipha_dst; 27911 for (optval = ipoptp_first(&opts, ipha); 27912 optval != IPOPT_EOL; 27913 optval = ipoptp_next(&opts)) { 27914 opt = opts.ipoptp_cur; 27915 optlen = opts.ipoptp_len; 27916 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27917 optval, optlen)); 27918 switch (optval) { 27919 uint32_t off; 27920 case IPOPT_SSRR: 27921 case IPOPT_LSRR: 27922 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27923 ip1dbg(( 27924 "ip_wput_options: bad option offset\n")); 27925 code = (char *)&opt[IPOPT_OLEN] - 27926 (char *)ipha; 27927 goto param_prob; 27928 } 27929 off = opt[IPOPT_OFFSET]; 27930 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27931 ntohl(dst))); 27932 /* 27933 * For strict: verify that dst is directly 27934 * reachable. 27935 */ 27936 if (optval == IPOPT_SSRR) { 27937 ire = ire_ftable_lookup(dst, 0, 0, 27938 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27939 MBLK_GETLABEL(mp), 27940 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27941 if (ire == NULL) { 27942 ip1dbg(("ip_wput_options: SSRR not" 27943 " directly reachable: 0x%x\n", 27944 ntohl(dst))); 27945 goto bad_src_route; 27946 } 27947 ire_refrele(ire); 27948 } 27949 break; 27950 case IPOPT_RR: 27951 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27952 ip1dbg(( 27953 "ip_wput_options: bad option offset\n")); 27954 code = (char *)&opt[IPOPT_OLEN] - 27955 (char *)ipha; 27956 goto param_prob; 27957 } 27958 break; 27959 case IPOPT_TS: 27960 /* 27961 * Verify that length >=5 and that there is either 27962 * room for another timestamp or that the overflow 27963 * counter is not maxed out. 27964 */ 27965 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27966 if (optlen < IPOPT_MINLEN_IT) { 27967 goto param_prob; 27968 } 27969 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27970 ip1dbg(( 27971 "ip_wput_options: bad option offset\n")); 27972 code = (char *)&opt[IPOPT_OFFSET] - 27973 (char *)ipha; 27974 goto param_prob; 27975 } 27976 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27977 case IPOPT_TS_TSONLY: 27978 off = IPOPT_TS_TIMELEN; 27979 break; 27980 case IPOPT_TS_TSANDADDR: 27981 case IPOPT_TS_PRESPEC: 27982 case IPOPT_TS_PRESPEC_RFC791: 27983 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27984 break; 27985 default: 27986 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27987 (char *)ipha; 27988 goto param_prob; 27989 } 27990 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27991 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27992 /* 27993 * No room and the overflow counter is 15 27994 * already. 27995 */ 27996 goto param_prob; 27997 } 27998 break; 27999 } 28000 } 28001 28002 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28003 return (0); 28004 28005 ip1dbg(("ip_wput_options: error processing IP options.")); 28006 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28007 28008 param_prob: 28009 /* 28010 * Since ip_wput() isn't close to finished, we fill 28011 * in enough of the header for credible error reporting. 28012 */ 28013 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28014 /* Failed */ 28015 freemsg(ipsec_mp); 28016 return (-1); 28017 } 28018 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28019 return (-1); 28020 28021 bad_src_route: 28022 /* 28023 * Since ip_wput() isn't close to finished, we fill 28024 * in enough of the header for credible error reporting. 28025 */ 28026 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28027 /* Failed */ 28028 freemsg(ipsec_mp); 28029 return (-1); 28030 } 28031 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28032 return (-1); 28033 } 28034 28035 /* 28036 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28037 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28038 * thru /etc/system. 28039 */ 28040 #define CONN_MAXDRAINCNT 64 28041 28042 static void 28043 conn_drain_init(ip_stack_t *ipst) 28044 { 28045 int i; 28046 28047 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28048 28049 if ((ipst->ips_conn_drain_list_cnt == 0) || 28050 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28051 /* 28052 * Default value of the number of drainers is the 28053 * number of cpus, subject to maximum of 8 drainers. 28054 */ 28055 if (boot_max_ncpus != -1) 28056 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28057 else 28058 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28059 } 28060 28061 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28062 sizeof (idl_t), KM_SLEEP); 28063 28064 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28065 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28066 MUTEX_DEFAULT, NULL); 28067 } 28068 } 28069 28070 static void 28071 conn_drain_fini(ip_stack_t *ipst) 28072 { 28073 int i; 28074 28075 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28076 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28077 kmem_free(ipst->ips_conn_drain_list, 28078 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28079 ipst->ips_conn_drain_list = NULL; 28080 } 28081 28082 /* 28083 * Note: For an overview of how flowcontrol is handled in IP please see the 28084 * IP Flowcontrol notes at the top of this file. 28085 * 28086 * Flow control has blocked us from proceeding. Insert the given conn in one 28087 * of the conn drain lists. These conn wq's will be qenabled later on when 28088 * STREAMS flow control does a backenable. conn_walk_drain will enable 28089 * the first conn in each of these drain lists. Each of these qenabled conns 28090 * in turn enables the next in the list, after it runs, or when it closes, 28091 * thus sustaining the drain process. 28092 * 28093 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28094 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28095 * running at any time, on a given conn, since there can be only 1 service proc 28096 * running on a queue at any time. 28097 */ 28098 void 28099 conn_drain_insert(conn_t *connp) 28100 { 28101 idl_t *idl; 28102 uint_t index; 28103 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28104 28105 mutex_enter(&connp->conn_lock); 28106 if (connp->conn_state_flags & CONN_CLOSING) { 28107 /* 28108 * The conn is closing as a result of which CONN_CLOSING 28109 * is set. Return. 28110 */ 28111 mutex_exit(&connp->conn_lock); 28112 return; 28113 } else if (connp->conn_idl == NULL) { 28114 /* 28115 * Assign the next drain list round robin. We dont' use 28116 * a lock, and thus it may not be strictly round robin. 28117 * Atomicity of load/stores is enough to make sure that 28118 * conn_drain_list_index is always within bounds. 28119 */ 28120 index = ipst->ips_conn_drain_list_index; 28121 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28122 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28123 index++; 28124 if (index == ipst->ips_conn_drain_list_cnt) 28125 index = 0; 28126 ipst->ips_conn_drain_list_index = index; 28127 } 28128 mutex_exit(&connp->conn_lock); 28129 28130 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28131 if ((connp->conn_drain_prev != NULL) || 28132 (connp->conn_state_flags & CONN_CLOSING)) { 28133 /* 28134 * The conn is already in the drain list, OR 28135 * the conn is closing. We need to check again for 28136 * the closing case again since close can happen 28137 * after we drop the conn_lock, and before we 28138 * acquire the CONN_DRAIN_LIST_LOCK. 28139 */ 28140 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28141 return; 28142 } else { 28143 idl = connp->conn_idl; 28144 } 28145 28146 /* 28147 * The conn is not in the drain list. Insert it at the 28148 * tail of the drain list. The drain list is circular 28149 * and doubly linked. idl_conn points to the 1st element 28150 * in the list. 28151 */ 28152 if (idl->idl_conn == NULL) { 28153 idl->idl_conn = connp; 28154 connp->conn_drain_next = connp; 28155 connp->conn_drain_prev = connp; 28156 } else { 28157 conn_t *head = idl->idl_conn; 28158 28159 connp->conn_drain_next = head; 28160 connp->conn_drain_prev = head->conn_drain_prev; 28161 head->conn_drain_prev->conn_drain_next = connp; 28162 head->conn_drain_prev = connp; 28163 } 28164 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28165 } 28166 28167 /* 28168 * This conn is closing, and we are called from ip_close. OR 28169 * This conn has been serviced by ip_wsrv, and we need to do the tail 28170 * processing. 28171 * If this conn is part of the drain list, we may need to sustain the drain 28172 * process by qenabling the next conn in the drain list. We may also need to 28173 * remove this conn from the list, if it is done. 28174 */ 28175 static void 28176 conn_drain_tail(conn_t *connp, boolean_t closing) 28177 { 28178 idl_t *idl; 28179 28180 /* 28181 * connp->conn_idl is stable at this point, and no lock is needed 28182 * to check it. If we are called from ip_close, close has already 28183 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28184 * called us only because conn_idl is non-null. If we are called thru 28185 * service, conn_idl could be null, but it cannot change because 28186 * service is single-threaded per queue, and there cannot be another 28187 * instance of service trying to call conn_drain_insert on this conn 28188 * now. 28189 */ 28190 ASSERT(!closing || (connp->conn_idl != NULL)); 28191 28192 /* 28193 * If connp->conn_idl is null, the conn has not been inserted into any 28194 * drain list even once since creation of the conn. Just return. 28195 */ 28196 if (connp->conn_idl == NULL) 28197 return; 28198 28199 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28200 28201 if (connp->conn_drain_prev == NULL) { 28202 /* This conn is currently not in the drain list. */ 28203 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28204 return; 28205 } 28206 idl = connp->conn_idl; 28207 if (idl->idl_conn_draining == connp) { 28208 /* 28209 * This conn is the current drainer. If this is the last conn 28210 * in the drain list, we need to do more checks, in the 'if' 28211 * below. Otherwwise we need to just qenable the next conn, 28212 * to sustain the draining, and is handled in the 'else' 28213 * below. 28214 */ 28215 if (connp->conn_drain_next == idl->idl_conn) { 28216 /* 28217 * This conn is the last in this list. This round 28218 * of draining is complete. If idl_repeat is set, 28219 * it means another flow enabling has happened from 28220 * the driver/streams and we need to another round 28221 * of draining. 28222 * If there are more than 2 conns in the drain list, 28223 * do a left rotate by 1, so that all conns except the 28224 * conn at the head move towards the head by 1, and the 28225 * the conn at the head goes to the tail. This attempts 28226 * a more even share for all queues that are being 28227 * drained. 28228 */ 28229 if ((connp->conn_drain_next != connp) && 28230 (idl->idl_conn->conn_drain_next != connp)) { 28231 idl->idl_conn = idl->idl_conn->conn_drain_next; 28232 } 28233 if (idl->idl_repeat) { 28234 qenable(idl->idl_conn->conn_wq); 28235 idl->idl_conn_draining = idl->idl_conn; 28236 idl->idl_repeat = 0; 28237 } else { 28238 idl->idl_conn_draining = NULL; 28239 } 28240 } else { 28241 /* 28242 * If the next queue that we are now qenable'ing, 28243 * is closing, it will remove itself from this list 28244 * and qenable the subsequent queue in ip_close(). 28245 * Serialization is acheived thru idl_lock. 28246 */ 28247 qenable(connp->conn_drain_next->conn_wq); 28248 idl->idl_conn_draining = connp->conn_drain_next; 28249 } 28250 } 28251 if (!connp->conn_did_putbq || closing) { 28252 /* 28253 * Remove ourself from the drain list, if we did not do 28254 * a putbq, or if the conn is closing. 28255 * Note: It is possible that q->q_first is non-null. It means 28256 * that these messages landed after we did a enableok() in 28257 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28258 * service them. 28259 */ 28260 if (connp->conn_drain_next == connp) { 28261 /* Singleton in the list */ 28262 ASSERT(connp->conn_drain_prev == connp); 28263 idl->idl_conn = NULL; 28264 idl->idl_conn_draining = NULL; 28265 } else { 28266 connp->conn_drain_prev->conn_drain_next = 28267 connp->conn_drain_next; 28268 connp->conn_drain_next->conn_drain_prev = 28269 connp->conn_drain_prev; 28270 if (idl->idl_conn == connp) 28271 idl->idl_conn = connp->conn_drain_next; 28272 ASSERT(idl->idl_conn_draining != connp); 28273 28274 } 28275 connp->conn_drain_next = NULL; 28276 connp->conn_drain_prev = NULL; 28277 } 28278 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28279 } 28280 28281 /* 28282 * Write service routine. Shared perimeter entry point. 28283 * ip_wsrv can be called in any of the following ways. 28284 * 1. The device queue's messages has fallen below the low water mark 28285 * and STREAMS has backenabled the ill_wq. We walk thru all the 28286 * the drain lists and backenable the first conn in each list. 28287 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28288 * qenabled non-tcp upper layers. We start dequeing messages and call 28289 * ip_wput for each message. 28290 */ 28291 28292 void 28293 ip_wsrv(queue_t *q) 28294 { 28295 conn_t *connp; 28296 ill_t *ill; 28297 mblk_t *mp; 28298 28299 if (q->q_next) { 28300 ill = (ill_t *)q->q_ptr; 28301 if (ill->ill_state_flags == 0) { 28302 /* 28303 * The device flow control has opened up. 28304 * Walk through conn drain lists and qenable the 28305 * first conn in each list. This makes sense only 28306 * if the stream is fully plumbed and setup. 28307 * Hence the if check above. 28308 */ 28309 ip1dbg(("ip_wsrv: walking\n")); 28310 conn_walk_drain(ill->ill_ipst); 28311 } 28312 return; 28313 } 28314 28315 connp = Q_TO_CONN(q); 28316 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28317 28318 /* 28319 * 1. Set conn_draining flag to signal that service is active. 28320 * 28321 * 2. ip_output determines whether it has been called from service, 28322 * based on the last parameter. If it is IP_WSRV it concludes it 28323 * has been called from service. 28324 * 28325 * 3. Message ordering is preserved by the following logic. 28326 * i. A directly called ip_output (i.e. not thru service) will queue 28327 * the message at the tail, if conn_draining is set (i.e. service 28328 * is running) or if q->q_first is non-null. 28329 * 28330 * ii. If ip_output is called from service, and if ip_output cannot 28331 * putnext due to flow control, it does a putbq. 28332 * 28333 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28334 * (causing an infinite loop). 28335 */ 28336 ASSERT(!connp->conn_did_putbq); 28337 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28338 connp->conn_draining = 1; 28339 noenable(q); 28340 while ((mp = getq(q)) != NULL) { 28341 ASSERT(CONN_Q(q)); 28342 28343 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28344 if (connp->conn_did_putbq) { 28345 /* ip_wput did a putbq */ 28346 break; 28347 } 28348 } 28349 /* 28350 * At this point, a thread coming down from top, calling 28351 * ip_wput, may end up queueing the message. We have not yet 28352 * enabled the queue, so ip_wsrv won't be called again. 28353 * To avoid this race, check q->q_first again (in the loop) 28354 * If the other thread queued the message before we call 28355 * enableok(), we will catch it in the q->q_first check. 28356 * If the other thread queues the message after we call 28357 * enableok(), ip_wsrv will be called again by STREAMS. 28358 */ 28359 connp->conn_draining = 0; 28360 enableok(q); 28361 } 28362 28363 /* Enable the next conn for draining */ 28364 conn_drain_tail(connp, B_FALSE); 28365 28366 connp->conn_did_putbq = 0; 28367 } 28368 28369 /* 28370 * Walk the list of all conn's calling the function provided with the 28371 * specified argument for each. Note that this only walks conn's that 28372 * have been bound. 28373 * Applies to both IPv4 and IPv6. 28374 */ 28375 static void 28376 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28377 { 28378 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28379 ipst->ips_ipcl_udp_fanout_size, 28380 func, arg, zoneid); 28381 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28382 ipst->ips_ipcl_conn_fanout_size, 28383 func, arg, zoneid); 28384 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28385 ipst->ips_ipcl_bind_fanout_size, 28386 func, arg, zoneid); 28387 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28388 IPPROTO_MAX, func, arg, zoneid); 28389 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28390 IPPROTO_MAX, func, arg, zoneid); 28391 } 28392 28393 /* 28394 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28395 * of conns that need to be drained, check if drain is already in progress. 28396 * If so set the idl_repeat bit, indicating that the last conn in the list 28397 * needs to reinitiate the drain once again, for the list. If drain is not 28398 * in progress for the list, initiate the draining, by qenabling the 1st 28399 * conn in the list. The drain is self-sustaining, each qenabled conn will 28400 * in turn qenable the next conn, when it is done/blocked/closing. 28401 */ 28402 static void 28403 conn_walk_drain(ip_stack_t *ipst) 28404 { 28405 int i; 28406 idl_t *idl; 28407 28408 IP_STAT(ipst, ip_conn_walk_drain); 28409 28410 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28411 idl = &ipst->ips_conn_drain_list[i]; 28412 mutex_enter(&idl->idl_lock); 28413 if (idl->idl_conn == NULL) { 28414 mutex_exit(&idl->idl_lock); 28415 continue; 28416 } 28417 /* 28418 * If this list is not being drained currently by 28419 * an ip_wsrv thread, start the process. 28420 */ 28421 if (idl->idl_conn_draining == NULL) { 28422 ASSERT(idl->idl_repeat == 0); 28423 qenable(idl->idl_conn->conn_wq); 28424 idl->idl_conn_draining = idl->idl_conn; 28425 } else { 28426 idl->idl_repeat = 1; 28427 } 28428 mutex_exit(&idl->idl_lock); 28429 } 28430 } 28431 28432 /* 28433 * Walk an conn hash table of `count' buckets, calling func for each entry. 28434 */ 28435 static void 28436 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28437 zoneid_t zoneid) 28438 { 28439 conn_t *connp; 28440 28441 while (count-- > 0) { 28442 mutex_enter(&connfp->connf_lock); 28443 for (connp = connfp->connf_head; connp != NULL; 28444 connp = connp->conn_next) { 28445 if (zoneid == GLOBAL_ZONEID || 28446 zoneid == connp->conn_zoneid) { 28447 CONN_INC_REF(connp); 28448 mutex_exit(&connfp->connf_lock); 28449 (*func)(connp, arg); 28450 mutex_enter(&connfp->connf_lock); 28451 CONN_DEC_REF(connp); 28452 } 28453 } 28454 mutex_exit(&connfp->connf_lock); 28455 connfp++; 28456 } 28457 } 28458 28459 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28460 static void 28461 conn_report1(conn_t *connp, void *mp) 28462 { 28463 char buf1[INET6_ADDRSTRLEN]; 28464 char buf2[INET6_ADDRSTRLEN]; 28465 uint_t print_len, buf_len; 28466 28467 ASSERT(connp != NULL); 28468 28469 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28470 if (buf_len <= 0) 28471 return; 28472 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28473 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28474 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28475 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28476 "%5d %s/%05d %s/%05d\n", 28477 (void *)connp, (void *)CONNP_TO_RQ(connp), 28478 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28479 buf1, connp->conn_lport, 28480 buf2, connp->conn_fport); 28481 if (print_len < buf_len) { 28482 ((mblk_t *)mp)->b_wptr += print_len; 28483 } else { 28484 ((mblk_t *)mp)->b_wptr += buf_len; 28485 } 28486 } 28487 28488 /* 28489 * Named Dispatch routine to produce a formatted report on all conns 28490 * that are listed in one of the fanout tables. 28491 * This report is accessed by using the ndd utility to "get" ND variable 28492 * "ip_conn_status". 28493 */ 28494 /* ARGSUSED */ 28495 static int 28496 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28497 { 28498 conn_t *connp = Q_TO_CONN(q); 28499 28500 (void) mi_mpprintf(mp, 28501 "CONN " MI_COL_HDRPAD_STR 28502 "rfq " MI_COL_HDRPAD_STR 28503 "stq " MI_COL_HDRPAD_STR 28504 " zone local remote"); 28505 28506 /* 28507 * Because of the ndd constraint, at most we can have 64K buffer 28508 * to put in all conn info. So to be more efficient, just 28509 * allocate a 64K buffer here, assuming we need that large buffer. 28510 * This should be OK as only privileged processes can do ndd /dev/ip. 28511 */ 28512 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28513 /* The following may work even if we cannot get a large buf. */ 28514 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28515 return (0); 28516 } 28517 28518 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28519 connp->conn_netstack->netstack_ip); 28520 return (0); 28521 } 28522 28523 /* 28524 * Determine if the ill and multicast aspects of that packets 28525 * "matches" the conn. 28526 */ 28527 boolean_t 28528 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28529 zoneid_t zoneid) 28530 { 28531 ill_t *in_ill; 28532 boolean_t found; 28533 ipif_t *ipif; 28534 ire_t *ire; 28535 ipaddr_t dst, src; 28536 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28537 28538 dst = ipha->ipha_dst; 28539 src = ipha->ipha_src; 28540 28541 /* 28542 * conn_incoming_ill is set by IP_BOUND_IF which limits 28543 * unicast, broadcast and multicast reception to 28544 * conn_incoming_ill. conn_wantpacket itself is called 28545 * only for BROADCAST and multicast. 28546 * 28547 * 1) ip_rput supresses duplicate broadcasts if the ill 28548 * is part of a group. Hence, we should be receiving 28549 * just one copy of broadcast for the whole group. 28550 * Thus, if it is part of the group the packet could 28551 * come on any ill of the group and hence we need a 28552 * match on the group. Otherwise, match on ill should 28553 * be sufficient. 28554 * 28555 * 2) ip_rput does not suppress duplicate multicast packets. 28556 * If there are two interfaces in a ill group and we have 28557 * 2 applications (conns) joined a multicast group G on 28558 * both the interfaces, ilm_lookup_ill filter in ip_rput 28559 * will give us two packets because we join G on both the 28560 * interfaces rather than nominating just one interface 28561 * for receiving multicast like broadcast above. So, 28562 * we have to call ilg_lookup_ill to filter out duplicate 28563 * copies, if ill is part of a group. 28564 */ 28565 in_ill = connp->conn_incoming_ill; 28566 if (in_ill != NULL) { 28567 if (in_ill->ill_group == NULL) { 28568 if (in_ill != ill) 28569 return (B_FALSE); 28570 } else if (in_ill->ill_group != ill->ill_group) { 28571 return (B_FALSE); 28572 } 28573 } 28574 28575 if (!CLASSD(dst)) { 28576 if (IPCL_ZONE_MATCH(connp, zoneid)) 28577 return (B_TRUE); 28578 /* 28579 * The conn is in a different zone; we need to check that this 28580 * broadcast address is configured in the application's zone and 28581 * on one ill in the group. 28582 */ 28583 ipif = ipif_get_next_ipif(NULL, ill); 28584 if (ipif == NULL) 28585 return (B_FALSE); 28586 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28587 connp->conn_zoneid, NULL, 28588 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28589 ipif_refrele(ipif); 28590 if (ire != NULL) { 28591 ire_refrele(ire); 28592 return (B_TRUE); 28593 } else { 28594 return (B_FALSE); 28595 } 28596 } 28597 28598 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28599 connp->conn_zoneid == zoneid) { 28600 /* 28601 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28602 * disabled, therefore we don't dispatch the multicast packet to 28603 * the sending zone. 28604 */ 28605 return (B_FALSE); 28606 } 28607 28608 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28609 /* 28610 * Multicast packet on the loopback interface: we only match 28611 * conns who joined the group in the specified zone. 28612 */ 28613 return (B_FALSE); 28614 } 28615 28616 if (connp->conn_multi_router) { 28617 /* multicast packet and multicast router socket: send up */ 28618 return (B_TRUE); 28619 } 28620 28621 mutex_enter(&connp->conn_lock); 28622 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28623 mutex_exit(&connp->conn_lock); 28624 return (found); 28625 } 28626 28627 /* 28628 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28629 */ 28630 /* ARGSUSED */ 28631 static void 28632 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28633 { 28634 ill_t *ill = (ill_t *)q->q_ptr; 28635 mblk_t *mp1, *mp2; 28636 ipif_t *ipif; 28637 int err = 0; 28638 conn_t *connp = NULL; 28639 ipsq_t *ipsq; 28640 arc_t *arc; 28641 28642 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28643 28644 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28645 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28646 28647 ASSERT(IAM_WRITER_ILL(ill)); 28648 mp2 = mp->b_cont; 28649 mp->b_cont = NULL; 28650 28651 /* 28652 * We have now received the arp bringup completion message 28653 * from ARP. Mark the arp bringup as done. Also if the arp 28654 * stream has already started closing, send up the AR_ARP_CLOSING 28655 * ack now since ARP is waiting in close for this ack. 28656 */ 28657 mutex_enter(&ill->ill_lock); 28658 ill->ill_arp_bringup_pending = 0; 28659 if (ill->ill_arp_closing) { 28660 mutex_exit(&ill->ill_lock); 28661 /* Let's reuse the mp for sending the ack */ 28662 arc = (arc_t *)mp->b_rptr; 28663 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28664 arc->arc_cmd = AR_ARP_CLOSING; 28665 qreply(q, mp); 28666 } else { 28667 mutex_exit(&ill->ill_lock); 28668 freeb(mp); 28669 } 28670 28671 ipsq = ill->ill_phyint->phyint_ipsq; 28672 ipif = ipsq->ipsq_pending_ipif; 28673 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28674 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28675 if (mp1 == NULL) { 28676 /* bringup was aborted by the user */ 28677 freemsg(mp2); 28678 return; 28679 } 28680 28681 /* 28682 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28683 * must have an associated conn_t. Otherwise, we're bringing this 28684 * interface back up as part of handling an asynchronous event (e.g., 28685 * physical address change). 28686 */ 28687 if (ipsq->ipsq_current_ioctl != 0) { 28688 ASSERT(connp != NULL); 28689 q = CONNP_TO_WQ(connp); 28690 } else { 28691 ASSERT(connp == NULL); 28692 q = ill->ill_rq; 28693 } 28694 28695 /* 28696 * If the DL_BIND_REQ fails, it is noted 28697 * in arc_name_offset. 28698 */ 28699 err = *((int *)mp2->b_rptr); 28700 if (err == 0) { 28701 if (ipif->ipif_isv6) { 28702 if ((err = ipif_up_done_v6(ipif)) != 0) 28703 ip0dbg(("ip_arp_done: init failed\n")); 28704 } else { 28705 if ((err = ipif_up_done(ipif)) != 0) 28706 ip0dbg(("ip_arp_done: init failed\n")); 28707 } 28708 } else { 28709 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28710 } 28711 28712 freemsg(mp2); 28713 28714 if ((err == 0) && (ill->ill_up_ipifs)) { 28715 err = ill_up_ipifs(ill, q, mp1); 28716 if (err == EINPROGRESS) 28717 return; 28718 } 28719 28720 if (ill->ill_up_ipifs) 28721 ill_group_cleanup(ill); 28722 28723 /* 28724 * The operation must complete without EINPROGRESS since 28725 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28726 * Otherwise, the operation will be stuck forever in the ipsq. 28727 */ 28728 ASSERT(err != EINPROGRESS); 28729 if (ipsq->ipsq_current_ioctl != 0) 28730 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28731 else 28732 ipsq_current_finish(ipsq); 28733 } 28734 28735 /* Allocate the private structure */ 28736 static int 28737 ip_priv_alloc(void **bufp) 28738 { 28739 void *buf; 28740 28741 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28742 return (ENOMEM); 28743 28744 *bufp = buf; 28745 return (0); 28746 } 28747 28748 /* Function to delete the private structure */ 28749 void 28750 ip_priv_free(void *buf) 28751 { 28752 ASSERT(buf != NULL); 28753 kmem_free(buf, sizeof (ip_priv_t)); 28754 } 28755 28756 /* 28757 * The entry point for IPPF processing. 28758 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28759 * routine just returns. 28760 * 28761 * When called, ip_process generates an ipp_packet_t structure 28762 * which holds the state information for this packet and invokes the 28763 * the classifier (via ipp_packet_process). The classification, depending on 28764 * configured filters, results in a list of actions for this packet. Invoking 28765 * an action may cause the packet to be dropped, in which case the resulting 28766 * mblk (*mpp) is NULL. proc indicates the callout position for 28767 * this packet and ill_index is the interface this packet on or will leave 28768 * on (inbound and outbound resp.). 28769 */ 28770 void 28771 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28772 { 28773 mblk_t *mp; 28774 ip_priv_t *priv; 28775 ipp_action_id_t aid; 28776 int rc = 0; 28777 ipp_packet_t *pp; 28778 #define IP_CLASS "ip" 28779 28780 /* If the classifier is not loaded, return */ 28781 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28782 return; 28783 } 28784 28785 mp = *mpp; 28786 ASSERT(mp != NULL); 28787 28788 /* Allocate the packet structure */ 28789 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28790 if (rc != 0) { 28791 *mpp = NULL; 28792 freemsg(mp); 28793 return; 28794 } 28795 28796 /* Allocate the private structure */ 28797 rc = ip_priv_alloc((void **)&priv); 28798 if (rc != 0) { 28799 *mpp = NULL; 28800 freemsg(mp); 28801 ipp_packet_free(pp); 28802 return; 28803 } 28804 priv->proc = proc; 28805 priv->ill_index = ill_index; 28806 ipp_packet_set_private(pp, priv, ip_priv_free); 28807 ipp_packet_set_data(pp, mp); 28808 28809 /* Invoke the classifier */ 28810 rc = ipp_packet_process(&pp); 28811 if (pp != NULL) { 28812 mp = ipp_packet_get_data(pp); 28813 ipp_packet_free(pp); 28814 if (rc != 0) { 28815 freemsg(mp); 28816 *mpp = NULL; 28817 } 28818 } else { 28819 *mpp = NULL; 28820 } 28821 #undef IP_CLASS 28822 } 28823 28824 /* 28825 * Propagate a multicast group membership operation (add/drop) on 28826 * all the interfaces crossed by the related multirt routes. 28827 * The call is considered successful if the operation succeeds 28828 * on at least one interface. 28829 */ 28830 static int 28831 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28832 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28833 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28834 mblk_t *first_mp) 28835 { 28836 ire_t *ire_gw; 28837 irb_t *irb; 28838 int error = 0; 28839 opt_restart_t *or; 28840 ip_stack_t *ipst = ire->ire_ipst; 28841 28842 irb = ire->ire_bucket; 28843 ASSERT(irb != NULL); 28844 28845 ASSERT(DB_TYPE(first_mp) == M_CTL); 28846 28847 or = (opt_restart_t *)first_mp->b_rptr; 28848 IRB_REFHOLD(irb); 28849 for (; ire != NULL; ire = ire->ire_next) { 28850 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28851 continue; 28852 if (ire->ire_addr != group) 28853 continue; 28854 28855 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28856 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28857 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28858 /* No resolver exists for the gateway; skip this ire. */ 28859 if (ire_gw == NULL) 28860 continue; 28861 28862 /* 28863 * This function can return EINPROGRESS. If so the operation 28864 * will be restarted from ip_restart_optmgmt which will 28865 * call ip_opt_set and option processing will restart for 28866 * this option. So we may end up calling 'fn' more than once. 28867 * This requires that 'fn' is idempotent except for the 28868 * return value. The operation is considered a success if 28869 * it succeeds at least once on any one interface. 28870 */ 28871 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28872 NULL, fmode, src, first_mp); 28873 if (error == 0) 28874 or->or_private = CGTP_MCAST_SUCCESS; 28875 28876 if (ip_debug > 0) { 28877 ulong_t off; 28878 char *ksym; 28879 ksym = kobj_getsymname((uintptr_t)fn, &off); 28880 ip2dbg(("ip_multirt_apply_membership: " 28881 "called %s, multirt group 0x%08x via itf 0x%08x, " 28882 "error %d [success %u]\n", 28883 ksym ? ksym : "?", 28884 ntohl(group), ntohl(ire_gw->ire_src_addr), 28885 error, or->or_private)); 28886 } 28887 28888 ire_refrele(ire_gw); 28889 if (error == EINPROGRESS) { 28890 IRB_REFRELE(irb); 28891 return (error); 28892 } 28893 } 28894 IRB_REFRELE(irb); 28895 /* 28896 * Consider the call as successful if we succeeded on at least 28897 * one interface. Otherwise, return the last encountered error. 28898 */ 28899 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28900 } 28901 28902 28903 /* 28904 * Issue a warning regarding a route crossing an interface with an 28905 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28906 * amount of time is logged. 28907 */ 28908 static void 28909 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28910 { 28911 hrtime_t current = gethrtime(); 28912 char buf[INET_ADDRSTRLEN]; 28913 ip_stack_t *ipst = ire->ire_ipst; 28914 28915 /* Convert interval in ms to hrtime in ns */ 28916 if (ipst->ips_multirt_bad_mtu_last_time + 28917 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28918 current) { 28919 cmn_err(CE_WARN, "ip: ignoring multiroute " 28920 "to %s, incorrect MTU %u (expected %u)\n", 28921 ip_dot_addr(ire->ire_addr, buf), 28922 ire->ire_max_frag, max_frag); 28923 28924 ipst->ips_multirt_bad_mtu_last_time = current; 28925 } 28926 } 28927 28928 28929 /* 28930 * Get the CGTP (multirouting) filtering status. 28931 * If 0, the CGTP hooks are transparent. 28932 */ 28933 /* ARGSUSED */ 28934 static int 28935 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28936 { 28937 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28938 28939 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28940 return (0); 28941 } 28942 28943 28944 /* 28945 * Set the CGTP (multirouting) filtering status. 28946 * If the status is changed from active to transparent 28947 * or from transparent to active, forward the new status 28948 * to the filtering module (if loaded). 28949 */ 28950 /* ARGSUSED */ 28951 static int 28952 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28953 cred_t *ioc_cr) 28954 { 28955 long new_value; 28956 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28957 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28958 28959 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28960 return (EPERM); 28961 28962 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28963 new_value < 0 || new_value > 1) { 28964 return (EINVAL); 28965 } 28966 28967 if ((!*ip_cgtp_filter_value) && new_value) { 28968 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28969 ipst->ips_ip_cgtp_filter_ops == NULL ? 28970 " (module not loaded)" : ""); 28971 } 28972 if (*ip_cgtp_filter_value && (!new_value)) { 28973 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28974 ipst->ips_ip_cgtp_filter_ops == NULL ? 28975 " (module not loaded)" : ""); 28976 } 28977 28978 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28979 int res; 28980 netstackid_t stackid; 28981 28982 stackid = ipst->ips_netstack->netstack_stackid; 28983 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28984 new_value); 28985 if (res) 28986 return (res); 28987 } 28988 28989 *ip_cgtp_filter_value = (boolean_t)new_value; 28990 28991 return (0); 28992 } 28993 28994 28995 /* 28996 * Return the expected CGTP hooks version number. 28997 */ 28998 int 28999 ip_cgtp_filter_supported(void) 29000 { 29001 return (ip_cgtp_filter_rev); 29002 } 29003 29004 29005 /* 29006 * CGTP hooks can be registered by invoking this function. 29007 * Checks that the version number matches. 29008 */ 29009 int 29010 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29011 { 29012 netstack_t *ns; 29013 ip_stack_t *ipst; 29014 29015 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29016 return (ENOTSUP); 29017 29018 ns = netstack_find_by_stackid(stackid); 29019 if (ns == NULL) 29020 return (EINVAL); 29021 ipst = ns->netstack_ip; 29022 ASSERT(ipst != NULL); 29023 29024 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29025 netstack_rele(ns); 29026 return (EALREADY); 29027 } 29028 29029 ipst->ips_ip_cgtp_filter_ops = ops; 29030 netstack_rele(ns); 29031 return (0); 29032 } 29033 29034 /* 29035 * CGTP hooks can be unregistered by invoking this function. 29036 * Returns ENXIO if there was no registration. 29037 * Returns EBUSY if the ndd variable has not been turned off. 29038 */ 29039 int 29040 ip_cgtp_filter_unregister(netstackid_t stackid) 29041 { 29042 netstack_t *ns; 29043 ip_stack_t *ipst; 29044 29045 ns = netstack_find_by_stackid(stackid); 29046 if (ns == NULL) 29047 return (EINVAL); 29048 ipst = ns->netstack_ip; 29049 ASSERT(ipst != NULL); 29050 29051 if (ipst->ips_ip_cgtp_filter) { 29052 netstack_rele(ns); 29053 return (EBUSY); 29054 } 29055 29056 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29057 netstack_rele(ns); 29058 return (ENXIO); 29059 } 29060 ipst->ips_ip_cgtp_filter_ops = NULL; 29061 netstack_rele(ns); 29062 return (0); 29063 } 29064 29065 /* 29066 * Check whether there is a CGTP filter registration. 29067 * Returns non-zero if there is a registration, otherwise returns zero. 29068 * Note: returns zero if bad stackid. 29069 */ 29070 int 29071 ip_cgtp_filter_is_registered(netstackid_t stackid) 29072 { 29073 netstack_t *ns; 29074 ip_stack_t *ipst; 29075 int ret; 29076 29077 ns = netstack_find_by_stackid(stackid); 29078 if (ns == NULL) 29079 return (0); 29080 ipst = ns->netstack_ip; 29081 ASSERT(ipst != NULL); 29082 29083 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29084 ret = 1; 29085 else 29086 ret = 0; 29087 29088 netstack_rele(ns); 29089 return (ret); 29090 } 29091 29092 static squeue_func_t 29093 ip_squeue_switch(int val) 29094 { 29095 squeue_func_t rval = squeue_fill; 29096 29097 switch (val) { 29098 case IP_SQUEUE_ENTER_NODRAIN: 29099 rval = squeue_enter_nodrain; 29100 break; 29101 case IP_SQUEUE_ENTER: 29102 rval = squeue_enter; 29103 break; 29104 default: 29105 break; 29106 } 29107 return (rval); 29108 } 29109 29110 /* ARGSUSED */ 29111 static int 29112 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29113 caddr_t addr, cred_t *cr) 29114 { 29115 int *v = (int *)addr; 29116 long new_value; 29117 29118 if (secpolicy_net_config(cr, B_FALSE) != 0) 29119 return (EPERM); 29120 29121 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29122 return (EINVAL); 29123 29124 ip_input_proc = ip_squeue_switch(new_value); 29125 *v = new_value; 29126 return (0); 29127 } 29128 29129 /* 29130 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29131 * ip_debug. 29132 */ 29133 /* ARGSUSED */ 29134 static int 29135 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29136 caddr_t addr, cred_t *cr) 29137 { 29138 int *v = (int *)addr; 29139 long new_value; 29140 29141 if (secpolicy_net_config(cr, B_FALSE) != 0) 29142 return (EPERM); 29143 29144 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29145 return (EINVAL); 29146 29147 *v = new_value; 29148 return (0); 29149 } 29150 29151 /* 29152 * Handle changes to ipmp_hook_emulation ndd variable. 29153 * Need to update phyint_hook_ifindex. 29154 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29155 */ 29156 static void 29157 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29158 { 29159 phyint_t *phyi; 29160 phyint_t *phyi_tmp; 29161 char *groupname; 29162 int namelen; 29163 ill_t *ill; 29164 boolean_t new_group; 29165 29166 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29167 /* 29168 * Group indicies are stored in the phyint - a common structure 29169 * to both IPv4 and IPv6. 29170 */ 29171 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29172 for (; phyi != NULL; 29173 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29174 phyi, AVL_AFTER)) { 29175 /* Ignore the ones that do not have a group */ 29176 if (phyi->phyint_groupname_len == 0) 29177 continue; 29178 29179 /* 29180 * Look for other phyint in group. 29181 * Clear name/namelen so the lookup doesn't find ourselves. 29182 */ 29183 namelen = phyi->phyint_groupname_len; 29184 groupname = phyi->phyint_groupname; 29185 phyi->phyint_groupname_len = 0; 29186 phyi->phyint_groupname = NULL; 29187 29188 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29189 /* Restore */ 29190 phyi->phyint_groupname_len = namelen; 29191 phyi->phyint_groupname = groupname; 29192 29193 new_group = B_FALSE; 29194 if (ipst->ips_ipmp_hook_emulation) { 29195 /* 29196 * If the group already exists and has already 29197 * been assigned a group ifindex, we use the existing 29198 * group_ifindex, otherwise we pick a new group_ifindex 29199 * here. 29200 */ 29201 if (phyi_tmp != NULL && 29202 phyi_tmp->phyint_group_ifindex != 0) { 29203 phyi->phyint_group_ifindex = 29204 phyi_tmp->phyint_group_ifindex; 29205 } else { 29206 /* XXX We need a recovery strategy here. */ 29207 if (!ip_assign_ifindex( 29208 &phyi->phyint_group_ifindex, ipst)) 29209 cmn_err(CE_PANIC, 29210 "ip_assign_ifindex() failed"); 29211 new_group = B_TRUE; 29212 } 29213 } else { 29214 phyi->phyint_group_ifindex = 0; 29215 } 29216 if (ipst->ips_ipmp_hook_emulation) 29217 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29218 else 29219 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29220 29221 /* 29222 * For IP Filter to find out the relationship between 29223 * names and interface indicies, we need to generate 29224 * a NE_PLUMB event when a new group can appear. 29225 * We always generate events when a new interface appears 29226 * (even when ipmp_hook_emulation is set) so there 29227 * is no need to generate NE_PLUMB events when 29228 * ipmp_hook_emulation is turned off. 29229 * And since it isn't critical for IP Filter to get 29230 * the NE_UNPLUMB events we skip those here. 29231 */ 29232 if (new_group) { 29233 /* 29234 * First phyint in group - generate group PLUMB event. 29235 * Since we are not running inside the ipsq we do 29236 * the dispatch immediately. 29237 */ 29238 if (phyi->phyint_illv4 != NULL) 29239 ill = phyi->phyint_illv4; 29240 else 29241 ill = phyi->phyint_illv6; 29242 29243 if (ill != NULL) { 29244 mutex_enter(&ill->ill_lock); 29245 ill_nic_info_plumb(ill, B_TRUE); 29246 ill_nic_info_dispatch(ill); 29247 mutex_exit(&ill->ill_lock); 29248 } 29249 } 29250 } 29251 rw_exit(&ipst->ips_ill_g_lock); 29252 } 29253 29254 /* ARGSUSED */ 29255 static int 29256 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29257 caddr_t addr, cred_t *cr) 29258 { 29259 int *v = (int *)addr; 29260 long new_value; 29261 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29262 29263 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29264 return (EINVAL); 29265 29266 if (*v != new_value) { 29267 *v = new_value; 29268 ipmp_hook_emulation_changed(ipst); 29269 } 29270 return (0); 29271 } 29272 29273 static void * 29274 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29275 { 29276 kstat_t *ksp; 29277 29278 ip_stat_t template = { 29279 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29280 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29281 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29282 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29283 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29284 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29285 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29286 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29287 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29288 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29289 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29290 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29291 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29292 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29293 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29294 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29295 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29296 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29297 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29298 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29299 { "ip_opt", KSTAT_DATA_UINT64 }, 29300 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29301 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29302 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29303 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29304 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29305 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29306 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29307 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29308 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29309 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29310 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29311 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29312 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29313 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29314 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29315 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29316 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29317 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29318 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29319 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29320 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29321 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29322 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29323 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29324 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29325 }; 29326 29327 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29328 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29329 KSTAT_FLAG_VIRTUAL, stackid); 29330 29331 if (ksp == NULL) 29332 return (NULL); 29333 29334 bcopy(&template, ip_statisticsp, sizeof (template)); 29335 ksp->ks_data = (void *)ip_statisticsp; 29336 ksp->ks_private = (void *)(uintptr_t)stackid; 29337 29338 kstat_install(ksp); 29339 return (ksp); 29340 } 29341 29342 static void 29343 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29344 { 29345 if (ksp != NULL) { 29346 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29347 kstat_delete_netstack(ksp, stackid); 29348 } 29349 } 29350 29351 static void * 29352 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29353 { 29354 kstat_t *ksp; 29355 29356 ip_named_kstat_t template = { 29357 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29358 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29359 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29360 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29361 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29362 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29363 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29364 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29365 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29366 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29367 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29368 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29369 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29370 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29371 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29372 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29373 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29374 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29375 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29376 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29377 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29378 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29379 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29380 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29381 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29382 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29383 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29384 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29385 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29386 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29387 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29388 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29389 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29390 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29391 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29392 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29393 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29394 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29395 }; 29396 29397 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29398 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29399 if (ksp == NULL || ksp->ks_data == NULL) 29400 return (NULL); 29401 29402 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29403 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29404 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29405 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29406 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29407 29408 template.netToMediaEntrySize.value.i32 = 29409 sizeof (mib2_ipNetToMediaEntry_t); 29410 29411 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29412 29413 bcopy(&template, ksp->ks_data, sizeof (template)); 29414 ksp->ks_update = ip_kstat_update; 29415 ksp->ks_private = (void *)(uintptr_t)stackid; 29416 29417 kstat_install(ksp); 29418 return (ksp); 29419 } 29420 29421 static void 29422 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29423 { 29424 if (ksp != NULL) { 29425 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29426 kstat_delete_netstack(ksp, stackid); 29427 } 29428 } 29429 29430 static int 29431 ip_kstat_update(kstat_t *kp, int rw) 29432 { 29433 ip_named_kstat_t *ipkp; 29434 mib2_ipIfStatsEntry_t ipmib; 29435 ill_walk_context_t ctx; 29436 ill_t *ill; 29437 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29438 netstack_t *ns; 29439 ip_stack_t *ipst; 29440 29441 if (kp == NULL || kp->ks_data == NULL) 29442 return (EIO); 29443 29444 if (rw == KSTAT_WRITE) 29445 return (EACCES); 29446 29447 ns = netstack_find_by_stackid(stackid); 29448 if (ns == NULL) 29449 return (-1); 29450 ipst = ns->netstack_ip; 29451 if (ipst == NULL) { 29452 netstack_rele(ns); 29453 return (-1); 29454 } 29455 ipkp = (ip_named_kstat_t *)kp->ks_data; 29456 29457 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29458 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29459 ill = ILL_START_WALK_V4(&ctx, ipst); 29460 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29461 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29462 rw_exit(&ipst->ips_ill_g_lock); 29463 29464 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29465 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29466 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29467 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29468 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29469 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29470 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29471 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29472 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29473 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29474 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29475 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29476 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29477 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29478 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29479 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29480 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29481 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29482 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29483 29484 ipkp->routingDiscards.value.ui32 = 0; 29485 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29486 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29487 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29488 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29489 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29490 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29491 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29492 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29493 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29494 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29495 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29496 29497 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29498 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29499 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29500 29501 netstack_rele(ns); 29502 29503 return (0); 29504 } 29505 29506 static void * 29507 icmp_kstat_init(netstackid_t stackid) 29508 { 29509 kstat_t *ksp; 29510 29511 icmp_named_kstat_t template = { 29512 { "inMsgs", KSTAT_DATA_UINT32 }, 29513 { "inErrors", KSTAT_DATA_UINT32 }, 29514 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29515 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29516 { "inParmProbs", KSTAT_DATA_UINT32 }, 29517 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29518 { "inRedirects", KSTAT_DATA_UINT32 }, 29519 { "inEchos", KSTAT_DATA_UINT32 }, 29520 { "inEchoReps", KSTAT_DATA_UINT32 }, 29521 { "inTimestamps", KSTAT_DATA_UINT32 }, 29522 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29523 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29524 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29525 { "outMsgs", KSTAT_DATA_UINT32 }, 29526 { "outErrors", KSTAT_DATA_UINT32 }, 29527 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29528 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29529 { "outParmProbs", KSTAT_DATA_UINT32 }, 29530 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29531 { "outRedirects", KSTAT_DATA_UINT32 }, 29532 { "outEchos", KSTAT_DATA_UINT32 }, 29533 { "outEchoReps", KSTAT_DATA_UINT32 }, 29534 { "outTimestamps", KSTAT_DATA_UINT32 }, 29535 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29536 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29537 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29538 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29539 { "inUnknowns", KSTAT_DATA_UINT32 }, 29540 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29541 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29542 { "outDrops", KSTAT_DATA_UINT32 }, 29543 { "inOverFlows", KSTAT_DATA_UINT32 }, 29544 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29545 }; 29546 29547 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29548 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29549 if (ksp == NULL || ksp->ks_data == NULL) 29550 return (NULL); 29551 29552 bcopy(&template, ksp->ks_data, sizeof (template)); 29553 29554 ksp->ks_update = icmp_kstat_update; 29555 ksp->ks_private = (void *)(uintptr_t)stackid; 29556 29557 kstat_install(ksp); 29558 return (ksp); 29559 } 29560 29561 static void 29562 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29563 { 29564 if (ksp != NULL) { 29565 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29566 kstat_delete_netstack(ksp, stackid); 29567 } 29568 } 29569 29570 static int 29571 icmp_kstat_update(kstat_t *kp, int rw) 29572 { 29573 icmp_named_kstat_t *icmpkp; 29574 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29575 netstack_t *ns; 29576 ip_stack_t *ipst; 29577 29578 if ((kp == NULL) || (kp->ks_data == NULL)) 29579 return (EIO); 29580 29581 if (rw == KSTAT_WRITE) 29582 return (EACCES); 29583 29584 ns = netstack_find_by_stackid(stackid); 29585 if (ns == NULL) 29586 return (-1); 29587 ipst = ns->netstack_ip; 29588 if (ipst == NULL) { 29589 netstack_rele(ns); 29590 return (-1); 29591 } 29592 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29593 29594 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29595 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29596 icmpkp->inDestUnreachs.value.ui32 = 29597 ipst->ips_icmp_mib.icmpInDestUnreachs; 29598 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29599 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29600 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29601 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29602 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29603 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29604 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29605 icmpkp->inTimestampReps.value.ui32 = 29606 ipst->ips_icmp_mib.icmpInTimestampReps; 29607 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29608 icmpkp->inAddrMaskReps.value.ui32 = 29609 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29610 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29611 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29612 icmpkp->outDestUnreachs.value.ui32 = 29613 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29614 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29615 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29616 icmpkp->outSrcQuenchs.value.ui32 = 29617 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29618 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29619 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29620 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29621 icmpkp->outTimestamps.value.ui32 = 29622 ipst->ips_icmp_mib.icmpOutTimestamps; 29623 icmpkp->outTimestampReps.value.ui32 = 29624 ipst->ips_icmp_mib.icmpOutTimestampReps; 29625 icmpkp->outAddrMasks.value.ui32 = 29626 ipst->ips_icmp_mib.icmpOutAddrMasks; 29627 icmpkp->outAddrMaskReps.value.ui32 = 29628 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29629 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29630 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29631 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29632 icmpkp->outFragNeeded.value.ui32 = 29633 ipst->ips_icmp_mib.icmpOutFragNeeded; 29634 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29635 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29636 icmpkp->inBadRedirects.value.ui32 = 29637 ipst->ips_icmp_mib.icmpInBadRedirects; 29638 29639 netstack_rele(ns); 29640 return (0); 29641 } 29642 29643 /* 29644 * This is the fanout function for raw socket opened for SCTP. Note 29645 * that it is called after SCTP checks that there is no socket which 29646 * wants a packet. Then before SCTP handles this out of the blue packet, 29647 * this function is called to see if there is any raw socket for SCTP. 29648 * If there is and it is bound to the correct address, the packet will 29649 * be sent to that socket. Note that only one raw socket can be bound to 29650 * a port. This is assured in ipcl_sctp_hash_insert(); 29651 */ 29652 void 29653 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29654 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29655 zoneid_t zoneid) 29656 { 29657 conn_t *connp; 29658 queue_t *rq; 29659 mblk_t *first_mp; 29660 boolean_t secure; 29661 ip6_t *ip6h; 29662 ip_stack_t *ipst = recv_ill->ill_ipst; 29663 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29664 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29665 boolean_t sctp_csum_err = B_FALSE; 29666 29667 if (flags & IP_FF_SCTP_CSUM_ERR) { 29668 sctp_csum_err = B_TRUE; 29669 flags &= ~IP_FF_SCTP_CSUM_ERR; 29670 } 29671 29672 first_mp = mp; 29673 if (mctl_present) { 29674 mp = first_mp->b_cont; 29675 secure = ipsec_in_is_secure(first_mp); 29676 ASSERT(mp != NULL); 29677 } else { 29678 secure = B_FALSE; 29679 } 29680 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29681 29682 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29683 if (connp == NULL) { 29684 /* 29685 * Although raw sctp is not summed, OOB chunks must be. 29686 * Drop the packet here if the sctp checksum failed. 29687 */ 29688 if (sctp_csum_err) { 29689 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29690 freemsg(first_mp); 29691 return; 29692 } 29693 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29694 return; 29695 } 29696 rq = connp->conn_rq; 29697 if (!canputnext(rq)) { 29698 CONN_DEC_REF(connp); 29699 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29700 freemsg(first_mp); 29701 return; 29702 } 29703 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29704 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29705 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29706 (isv4 ? ipha : NULL), ip6h, mctl_present); 29707 if (first_mp == NULL) { 29708 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29709 CONN_DEC_REF(connp); 29710 return; 29711 } 29712 } 29713 /* 29714 * We probably should not send M_CTL message up to 29715 * raw socket. 29716 */ 29717 if (mctl_present) 29718 freeb(first_mp); 29719 29720 /* Initiate IPPF processing here if needed. */ 29721 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29722 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29723 ip_process(IPP_LOCAL_IN, &mp, 29724 recv_ill->ill_phyint->phyint_ifindex); 29725 if (mp == NULL) { 29726 CONN_DEC_REF(connp); 29727 return; 29728 } 29729 } 29730 29731 if (connp->conn_recvif || connp->conn_recvslla || 29732 ((connp->conn_ip_recvpktinfo || 29733 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29734 (flags & IP_FF_IPINFO))) { 29735 int in_flags = 0; 29736 29737 /* 29738 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29739 * IPF_RECVIF. 29740 */ 29741 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29742 in_flags = IPF_RECVIF; 29743 } 29744 if (connp->conn_recvslla) { 29745 in_flags |= IPF_RECVSLLA; 29746 } 29747 if (isv4) { 29748 mp = ip_add_info(mp, recv_ill, in_flags, 29749 IPCL_ZONEID(connp), ipst); 29750 } else { 29751 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29752 if (mp == NULL) { 29753 BUMP_MIB(recv_ill->ill_ip_mib, 29754 ipIfStatsInDiscards); 29755 CONN_DEC_REF(connp); 29756 return; 29757 } 29758 } 29759 } 29760 29761 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29762 /* 29763 * We are sending the IPSEC_IN message also up. Refer 29764 * to comments above this function. 29765 * This is the SOCK_RAW, IPPROTO_SCTP case. 29766 */ 29767 (connp->conn_recv)(connp, mp, NULL); 29768 CONN_DEC_REF(connp); 29769 } 29770 29771 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29772 { \ 29773 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29774 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29775 } 29776 /* 29777 * This function should be called only if all packet processing 29778 * including fragmentation is complete. Callers of this function 29779 * must set mp->b_prev to one of these values: 29780 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29781 * prior to handing over the mp as first argument to this function. 29782 * 29783 * If the ire passed by caller is incomplete, this function 29784 * queues the packet and if necessary, sends ARP request and bails. 29785 * If the ire passed is fully resolved, we simply prepend 29786 * the link-layer header to the packet, do ipsec hw acceleration 29787 * work if necessary, and send the packet out on the wire. 29788 * 29789 * NOTE: IPsec will only call this function with fully resolved 29790 * ires if hw acceleration is involved. 29791 * TODO list : 29792 * a Handle M_MULTIDATA so that 29793 * tcp_multisend->tcp_multisend_data can 29794 * call ip_xmit_v4 directly 29795 * b Handle post-ARP work for fragments so that 29796 * ip_wput_frag can call this function. 29797 */ 29798 ipxmit_state_t 29799 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29800 { 29801 nce_t *arpce; 29802 queue_t *q; 29803 int ill_index; 29804 mblk_t *nxt_mp, *first_mp; 29805 boolean_t xmit_drop = B_FALSE; 29806 ip_proc_t proc; 29807 ill_t *out_ill; 29808 int pkt_len; 29809 29810 arpce = ire->ire_nce; 29811 ASSERT(arpce != NULL); 29812 29813 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29814 29815 mutex_enter(&arpce->nce_lock); 29816 switch (arpce->nce_state) { 29817 case ND_REACHABLE: 29818 /* If there are other queued packets, queue this packet */ 29819 if (arpce->nce_qd_mp != NULL) { 29820 if (mp != NULL) 29821 nce_queue_mp_common(arpce, mp, B_FALSE); 29822 mp = arpce->nce_qd_mp; 29823 } 29824 arpce->nce_qd_mp = NULL; 29825 mutex_exit(&arpce->nce_lock); 29826 29827 /* 29828 * Flush the queue. In the common case, where the 29829 * ARP is already resolved, it will go through the 29830 * while loop only once. 29831 */ 29832 while (mp != NULL) { 29833 29834 nxt_mp = mp->b_next; 29835 mp->b_next = NULL; 29836 ASSERT(mp->b_datap->db_type != M_CTL); 29837 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29838 /* 29839 * This info is needed for IPQOS to do COS marking 29840 * in ip_wput_attach_llhdr->ip_process. 29841 */ 29842 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29843 mp->b_prev = NULL; 29844 29845 /* set up ill index for outbound qos processing */ 29846 out_ill = ire_to_ill(ire); 29847 ill_index = out_ill->ill_phyint->phyint_ifindex; 29848 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29849 ill_index); 29850 if (first_mp == NULL) { 29851 xmit_drop = B_TRUE; 29852 BUMP_MIB(out_ill->ill_ip_mib, 29853 ipIfStatsOutDiscards); 29854 goto next_mp; 29855 } 29856 /* non-ipsec hw accel case */ 29857 if (io == NULL || !io->ipsec_out_accelerated) { 29858 /* send it */ 29859 q = ire->ire_stq; 29860 if (proc == IPP_FWD_OUT) { 29861 UPDATE_IB_PKT_COUNT(ire); 29862 } else { 29863 UPDATE_OB_PKT_COUNT(ire); 29864 } 29865 ire->ire_last_used_time = lbolt; 29866 29867 if (flow_ctl_enabled || canputnext(q)) { 29868 if (proc == IPP_FWD_OUT) { 29869 29870 BUMP_MIB(out_ill->ill_ip_mib, 29871 ipIfStatsHCOutForwDatagrams); 29872 29873 } 29874 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29875 pkt_len); 29876 29877 putnext(q, first_mp); 29878 } else { 29879 BUMP_MIB(out_ill->ill_ip_mib, 29880 ipIfStatsOutDiscards); 29881 xmit_drop = B_TRUE; 29882 freemsg(first_mp); 29883 } 29884 } else { 29885 /* 29886 * Safety Pup says: make sure this 29887 * is going to the right interface! 29888 */ 29889 ill_t *ill1 = 29890 (ill_t *)ire->ire_stq->q_ptr; 29891 int ifindex = 29892 ill1->ill_phyint->phyint_ifindex; 29893 if (ifindex != 29894 io->ipsec_out_capab_ill_index) { 29895 xmit_drop = B_TRUE; 29896 freemsg(mp); 29897 } else { 29898 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29899 pkt_len); 29900 ipsec_hw_putnext(ire->ire_stq, mp); 29901 } 29902 } 29903 next_mp: 29904 mp = nxt_mp; 29905 } /* while (mp != NULL) */ 29906 if (xmit_drop) 29907 return (SEND_FAILED); 29908 else 29909 return (SEND_PASSED); 29910 29911 case ND_INITIAL: 29912 case ND_INCOMPLETE: 29913 29914 /* 29915 * While we do send off packets to dests that 29916 * use fully-resolved CGTP routes, we do not 29917 * handle unresolved CGTP routes. 29918 */ 29919 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29920 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29921 29922 if (mp != NULL) { 29923 /* queue the packet */ 29924 nce_queue_mp_common(arpce, mp, B_FALSE); 29925 } 29926 29927 if (arpce->nce_state == ND_INCOMPLETE) { 29928 mutex_exit(&arpce->nce_lock); 29929 DTRACE_PROBE3(ip__xmit__incomplete, 29930 (ire_t *), ire, (mblk_t *), mp, 29931 (ipsec_out_t *), io); 29932 return (LOOKUP_IN_PROGRESS); 29933 } 29934 29935 arpce->nce_state = ND_INCOMPLETE; 29936 mutex_exit(&arpce->nce_lock); 29937 /* 29938 * Note that ire_add() (called from ire_forward()) 29939 * holds a ref on the ire until ARP is completed. 29940 */ 29941 29942 ire_arpresolve(ire, ire_to_ill(ire)); 29943 return (LOOKUP_IN_PROGRESS); 29944 default: 29945 ASSERT(0); 29946 mutex_exit(&arpce->nce_lock); 29947 return (LLHDR_RESLV_FAILED); 29948 } 29949 } 29950 29951 #undef UPDATE_IP_MIB_OB_COUNTERS 29952 29953 /* 29954 * Return B_TRUE if the buffers differ in length or content. 29955 * This is used for comparing extension header buffers. 29956 * Note that an extension header would be declared different 29957 * even if all that changed was the next header value in that header i.e. 29958 * what really changed is the next extension header. 29959 */ 29960 boolean_t 29961 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29962 uint_t blen) 29963 { 29964 if (!b_valid) 29965 blen = 0; 29966 29967 if (alen != blen) 29968 return (B_TRUE); 29969 if (alen == 0) 29970 return (B_FALSE); /* Both zero length */ 29971 return (bcmp(abuf, bbuf, alen)); 29972 } 29973 29974 /* 29975 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29976 * Return B_FALSE if memory allocation fails - don't change any state! 29977 */ 29978 boolean_t 29979 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29980 const void *src, uint_t srclen) 29981 { 29982 void *dst; 29983 29984 if (!src_valid) 29985 srclen = 0; 29986 29987 ASSERT(*dstlenp == 0); 29988 if (src != NULL && srclen != 0) { 29989 dst = mi_alloc(srclen, BPRI_MED); 29990 if (dst == NULL) 29991 return (B_FALSE); 29992 } else { 29993 dst = NULL; 29994 } 29995 if (*dstp != NULL) 29996 mi_free(*dstp); 29997 *dstp = dst; 29998 *dstlenp = dst == NULL ? 0 : srclen; 29999 return (B_TRUE); 30000 } 30001 30002 /* 30003 * Replace what is in *dst, *dstlen with the source. 30004 * Assumes ip_allocbuf has already been called. 30005 */ 30006 void 30007 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30008 const void *src, uint_t srclen) 30009 { 30010 if (!src_valid) 30011 srclen = 0; 30012 30013 ASSERT(*dstlenp == srclen); 30014 if (src != NULL && srclen != 0) 30015 bcopy(src, *dstp, srclen); 30016 } 30017 30018 /* 30019 * Free the storage pointed to by the members of an ip6_pkt_t. 30020 */ 30021 void 30022 ip6_pkt_free(ip6_pkt_t *ipp) 30023 { 30024 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30025 30026 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30027 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30028 ipp->ipp_hopopts = NULL; 30029 ipp->ipp_hopoptslen = 0; 30030 } 30031 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30032 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30033 ipp->ipp_rtdstopts = NULL; 30034 ipp->ipp_rtdstoptslen = 0; 30035 } 30036 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30037 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30038 ipp->ipp_dstopts = NULL; 30039 ipp->ipp_dstoptslen = 0; 30040 } 30041 if (ipp->ipp_fields & IPPF_RTHDR) { 30042 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30043 ipp->ipp_rthdr = NULL; 30044 ipp->ipp_rthdrlen = 0; 30045 } 30046 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30047 IPPF_RTHDR); 30048 } 30049